-
Notifications
You must be signed in to change notification settings - Fork 0
Refactor ingestion helpers and expand tests #9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
tanakachitsamba
wants to merge
2
commits into
main
Choose a base branch
from
refactor-ingestion-logic-and-improve-tests
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,70 +1,159 @@ | ||
| import chromadb | ||
| from chromadb.utils import embedding_functions | ||
| from dotenv import load_dotenv | ||
| """Utilities for ingesting documents into a Chroma collection.""" | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| import json | ||
| from typing import Any, Iterable, List, Sequence | ||
| import os | ||
| import sys | ||
|
|
||
| def load_openai_key(): | ||
| # Load variables from .env file into environment | ||
|
|
||
| class IngestionError(ValueError): | ||
| """Raised when the ingestion payload is invalid.""" | ||
|
|
||
|
|
||
| def load_openai_key() -> str: | ||
| """Load the OpenAI API key from the environment.""" | ||
|
|
||
| from dotenv import load_dotenv | ||
|
|
||
| load_dotenv() | ||
| openai_key = os.environ.get('OPENAI_KEY') | ||
| openai_key = os.environ.get("OPENAI_KEY") | ||
| if not openai_key: | ||
| raise ValueError("OPENAI_KEY is not set in the .env file.") | ||
| return openai_key | ||
|
|
||
| def create_openai_ef(api_key): | ||
| from chromadb.utils import embedding_functions | ||
|
|
||
| # Using OpenAI Embeddings. This assumes you have the openai package installed | ||
| openai_ef = embedding_functions.OpenAIEmbeddingFunction( | ||
| api_key=api_key, | ||
| model_name="text-embedding-ada-002" | ||
| ) | ||
| return openai_ef | ||
|
|
||
| def create_or_get_collection(client): | ||
| # Create a new chroma collection | ||
| collection_name = "lake" | ||
| return client.get_or_create_collection(name=collection_name) | ||
|
|
||
| def add_to_openai_collection(collection, documents, metadatas, ids): | ||
| try: | ||
| collection.add( | ||
| documents=documents, | ||
| metadatas=metadatas, | ||
| ids=ids | ||
| def get_persistent_client(persist_directory: str = "db") -> Any: | ||
| """Return a persistent Chroma client for the provided directory.""" | ||
|
|
||
| import chromadb | ||
|
|
||
| return chromadb.PersistentClient(path=persist_directory) | ||
|
|
||
|
|
||
| def create_or_get_collection(client: Any, name: str = "lake") -> Any: | ||
| """Create a new chroma collection or return an existing one.""" | ||
|
|
||
| return client.get_or_create_collection(name=name) | ||
|
|
||
|
|
||
| def _ensure_sequence(data: Sequence, expected_length: int, label: str) -> List: | ||
| if isinstance(data, (str, bytes)) or not isinstance(data, Sequence): | ||
| raise IngestionError(f"{label} must be a sequence of values.") | ||
|
|
||
| values = list(data) | ||
| if len(values) != expected_length: | ||
| raise IngestionError( | ||
| f"Expected {expected_length} {label}, received {len(values)}." | ||
| ) | ||
| print("Documents added to the collection successfully.") | ||
| except Exception as e: | ||
| print(f"Error occurred while adding documents: {e}") | ||
|
|
||
| if __name__ == "__main__": | ||
| try: | ||
| # Check if three command-line arguments are provided | ||
| if len(sys.argv) != 4: | ||
| raise ValueError("Usage: python script.py <documents> <metadatas> <ids>") | ||
|
|
||
| # Extract the command-line arguments as strings | ||
| documents = sys.argv[1] | ||
| metadatas = sys.argv[2] | ||
| ids = sys.argv[3] | ||
|
|
||
| # Create a new Chroma client with persistence enabled. | ||
| persist_directory = "db" # this path for the db could be an arg | ||
| client = chromadb.PersistentClient(path=persist_directory) | ||
|
|
||
| # Load the OpenAI key | ||
| openai_key = load_openai_key() | ||
|
|
||
| # Create/Open OpenAI Embedding Function | ||
| openai_ef = create_openai_ef(api_key=openai_key) | ||
|
|
||
| # Create or get the Chroma collection | ||
| openai_collection = create_or_get_collection(client) | ||
|
|
||
| # Call the function with the provided arguments | ||
| add_to_openai_collection(openai_collection, documents, metadatas, ids) | ||
| except ValueError as ve: | ||
| print(ve) | ||
| except chromadb.ChromaDBError as cde: | ||
| print(f"ChromaDBError: {cde}") | ||
| except Exception as e: | ||
| print(f"An unexpected error occurred: {e}") | ||
| return values | ||
|
|
||
|
|
||
| def ingest_documents( | ||
| collection, | ||
| documents: Sequence[str], | ||
| metadatas: Sequence[dict], | ||
| ids: Sequence[str], | ||
| ) -> int: | ||
| """Add the provided documents to the collection. | ||
| Args: | ||
| collection: A Chroma collection (or any object exposing an ``add`` method). | ||
| documents: Sequence of textual documents. | ||
| metadatas: Sequence of metadata dictionaries. | ||
| ids: Sequence of unique document identifiers. | ||
| Returns: | ||
| The number of documents ingested. | ||
| Raises: | ||
| IngestionError: If the provided payload is invalid. | ||
| """ | ||
|
|
||
| document_list = list(documents) | ||
| metadata_list = _ensure_sequence(metadatas, len(document_list), "metadatas") | ||
| id_list = _ensure_sequence(ids, len(document_list), "ids") | ||
|
|
||
| if not all(isinstance(doc, str) for doc in document_list): | ||
| raise IngestionError("All documents must be strings.") | ||
|
|
||
| if not all(isinstance(meta, dict) for meta in metadata_list): | ||
| raise IngestionError("All metadatas must be dictionaries.") | ||
|
|
||
| if not all(isinstance(id_value, str) for id_value in id_list): | ||
| raise IngestionError("All ids must be strings.") | ||
|
|
||
| if len(set(id_list)) != len(id_list): | ||
| raise IngestionError("Duplicate ids detected in payload.") | ||
|
|
||
| collection.add(documents=document_list, metadatas=metadata_list, ids=id_list) | ||
| return len(document_list) | ||
|
|
||
|
|
||
| def parse_ingestion_payload(payload: str | dict) -> tuple[List[str], List[dict], List[str]]: | ||
| """Parse a JSON payload into document, metadata, and id lists.""" | ||
|
|
||
| if isinstance(payload, str): | ||
| try: | ||
| payload_data = json.loads(payload) | ||
| except json.JSONDecodeError as exc: | ||
| raise IngestionError("Invalid JSON payload provided.") from exc | ||
| elif isinstance(payload, dict): | ||
| payload_data = payload | ||
| else: | ||
| raise IngestionError("Payload must be a JSON string or dictionary.") | ||
|
|
||
| required_keys = {"documents", "metadatas", "ids"} | ||
| missing_keys = required_keys.difference(payload_data) | ||
| if missing_keys: | ||
| missing = ", ".join(sorted(missing_keys)) | ||
| raise IngestionError(f"Payload is missing required keys: {missing}.") | ||
|
|
||
| documents = payload_data["documents"] | ||
| metadatas = payload_data["metadatas"] | ||
| ids = payload_data["ids"] | ||
|
|
||
| if not isinstance(documents, list): | ||
| raise IngestionError("Payload field 'documents' must be a list.") | ||
| if not isinstance(metadatas, list): | ||
| raise IngestionError("Payload field 'metadatas' must be a list.") | ||
| if not isinstance(ids, list): | ||
| raise IngestionError("Payload field 'ids' must be a list.") | ||
|
|
||
| return documents, metadatas, ids | ||
|
|
||
|
|
||
| def run_ingestion( | ||
| documents: Iterable[str], | ||
| metadatas: Iterable[dict], | ||
| ids: Iterable[str], | ||
| *, | ||
| persist_directory: str = "db", | ||
| collection_name: str = "lake", | ||
| ) -> int: | ||
| """Convenience helper to ingest a batch of documents.""" | ||
|
|
||
| client = get_persistent_client(persist_directory=persist_directory) | ||
| collection = create_or_get_collection(client, name=collection_name) | ||
| return ingest_documents(collection, documents, metadatas, ids) | ||
|
|
||
|
|
||
| __all__ = [ | ||
| "IngestionError", | ||
| "create_openai_ef", | ||
| "create_or_get_collection", | ||
| "get_persistent_client", | ||
| "ingest_documents", | ||
| "load_openai_key", | ||
| "parse_ingestion_payload", | ||
| "run_ingestion", | ||
| ] | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,70 +1,120 @@ | ||
| import json | ||
| import os | ||
| import sys | ||
| import chromadb | ||
| from chromadb.utils import embedding_functions | ||
| from dotenv import load_dotenv | ||
|
|
||
| # Load variables from .env file into environment | ||
| load_dotenv() | ||
| from behave import given, when, then | ||
|
|
||
| from add_documents import ( | ||
| IngestionError, | ||
| create_openai_ef, | ||
| create_or_get_collection, | ||
| get_persistent_client, | ||
| ingest_documents, | ||
| load_openai_key, | ||
| parse_ingestion_payload, | ||
| ) | ||
|
|
||
|
|
||
| # Hooks | ||
|
|
||
| # Define shared context | ||
| def before_scenario(context, scenario): | ||
| context.documents = None | ||
| context.metadatas = None | ||
| context.ids = None | ||
| context.error = None | ||
| context.result = None | ||
| context.documents = [] | ||
| context.metadatas = [] | ||
| context.ids = [] | ||
| context.openai_collection = None | ||
|
|
||
|
|
||
| def after_scenario(context, scenario): | ||
| if context.documents: | ||
| # Clean up the collection after the test | ||
| if getattr(context, "openai_collection", None) and context.result: | ||
| context.openai_collection.remove(ids=context.ids) | ||
|
|
||
|
|
||
| # Step Definitions | ||
|
|
||
|
|
||
| @given("the OpenAI key is set in the .env file") | ||
| def step_impl_load_openai_key(context): | ||
| openai_key = os.environ.get('OPENAI_KEY') | ||
| if not openai_key: | ||
| raise ValueError("OPENAI_KEY is not set in the .env file.") | ||
| context.openai_key = openai_key | ||
| def step_impl_openai_key_present(context): | ||
| os.environ.setdefault("OPENAI_KEY", "test-key") | ||
| context.openai_key = load_openai_key() | ||
|
|
||
|
|
||
| @given("the OpenAI key is not set in the environment") | ||
| def step_impl_openai_key_missing(context): | ||
| os.environ.pop("OPENAI_KEY", None) | ||
|
|
||
|
|
||
| @given("an OpenAI Embedding Function is created") | ||
| def step_impl_create_openai_ef(context): | ||
| context.openai_ef = embedding_functions.OpenAIEmbeddingFunction( | ||
| api_key=context.openai_key, | ||
| model_name="text-embedding-ada-002" | ||
| ) | ||
| context.openai_ef = create_openai_ef(api_key=context.openai_key) | ||
|
|
||
|
|
||
| @given("a Chroma client with persistence enabled is available") | ||
| def step_impl_create_chroma_client(context): | ||
| context.persist_directory = "db" | ||
| context.client = chromadb.PersistentClient(path=context.persist_directory) | ||
| context.client = get_persistent_client(persist_directory=context.persist_directory) | ||
| context.openai_collection = create_or_get_collection(context.client) | ||
|
|
||
| @when("documents, metadatas, and ids are provided") | ||
| def step_impl_provide_arguments(context): | ||
| # Check if three command-line arguments are provided | ||
| if len(sys.argv) != 4: | ||
| raise ValueError("Usage: python script.py <documents> <metadatas> <ids>") | ||
|
|
||
| # Extract the command-line arguments as strings | ||
| context.documents = sys.argv[1] | ||
| context.metadatas = sys.argv[2] | ||
| context.ids = sys.argv[3] | ||
| @when("I load the OpenAI key") | ||
| def step_impl_load_openai_key(context): | ||
| try: | ||
| context.openai_key = load_openai_key() | ||
| except Exception as exc: # pragma: no cover - behave captures the exception | ||
| context.error = exc | ||
|
|
||
|
|
||
| @when("the following documents are ingested") | ||
| def step_impl_ingest_documents(context): | ||
| documents, metadatas, ids = [], [], [] | ||
| for row in context.table: | ||
| documents.append(row["document"]) | ||
| try: | ||
| metadata = json.loads(row["metadata"]) if row["metadata"] else {} | ||
| except json.JSONDecodeError: | ||
| context.error = IngestionError("Invalid metadata JSON provided.") | ||
| return | ||
| metadatas.append(metadata) | ||
| ids.append(row["id"]) | ||
|
|
||
| context.documents = documents | ||
| context.metadatas = metadatas | ||
| context.ids = ids | ||
|
|
||
| try: | ||
| context.result = ingest_documents( | ||
| context.openai_collection, documents, metadatas, ids | ||
| ) | ||
| except Exception as exc: # pragma: no cover - behave captures the exception | ||
| context.error = exc | ||
|
|
||
| # Create or get the Chroma collection | ||
| context.openai_collection = context.client.get_or_create_collection(name="lake") | ||
|
|
||
| # Add documents to the collection | ||
| @when("the payload is ingested") | ||
| def step_impl_ingest_payload(context): | ||
| try: | ||
| context.openai_collection.add( | ||
| documents=context.documents.split(","), | ||
| metadatas=context.metadatas.split(","), | ||
| ids=context.ids.split(",") | ||
| documents, metadatas, ids = parse_ingestion_payload(context.text) | ||
| context.documents = documents | ||
| context.metadatas = metadatas | ||
| context.ids = ids | ||
| context.result = ingest_documents( | ||
| context.openai_collection, documents, metadatas, ids | ||
| ) | ||
| except Exception as e: | ||
| context.error = e | ||
| except Exception as exc: # pragma: no cover - behave captures the exception | ||
| context.error = exc | ||
|
|
||
|
|
||
| @then("the documents should be added to the collection successfully") | ||
| def step_impl_verify_success(context): | ||
| assert context.error is None, f"Error occurred while adding documents: {context.error}" | ||
| assert len(context.openai_collection) == len(context.documents.split(",")), "Number of documents added is incorrect." | ||
| assert context.result == len(context.documents) | ||
|
|
||
|
|
||
| @then('an error should be raised containing "{message}"') | ||
| def step_impl_verify_error_message(context, message): | ||
| assert context.error is not None, "Expected an error but none was raised." | ||
| assert message in str(context.error) | ||
|
|
||
|
|
||
| # Additional assertions if required | ||
| @then("an ingestion error should be raised") | ||
| def step_impl_verify_ingestion_error(context): | ||
| assert isinstance(context.error, IngestionError) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[nitpick] The import is placed inside the function, but it's used in multiple functions. Consider moving this to the top-level imports for consistency and performance.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@codex fix comments
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Summary
python-dotenvdependency at module import time and added a clear fallback error when it is unavailable. add_documents.pyL5-L33add_documentsviaimportlibrather than mutatingsys.path. tests/test_add_documents.pyL1-L21Testing
pytestView task →