Skip to content

vishrawji/Basic-Introdyction-to-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Basic Introduction to Maths and Python for Neuroscience

Developed and taught by John S Butler

Description of Module

This is a very short introduction into simple mathematical functions that are used in behavourial and neurophysiolgical papers. The python code below is motivated by data and plots from papers to illusrate the use and power of the line, sigmoid function, and sinewaves to analyse and interpret data.

Module Content

Behavioural Examples

Applying simple examples of the line and a psychometric function used Behavioural and Clinical Neuroscience to illustrate python functions.

  • Tutorial 1 Plotting the line [1]. Open In Colab
  • Tutorial 2 Two lines [1]. Open In Colab
  • Tutorial 3 The Psychometric Function [2]. Open In Colab
  • Tutorial 4 The Psychometric function for multisensory integration [2]. Open In Colab

Neurophysiolgical Examples

Using python to implement simple examples of Spike train analysis, tuning functions, frequencies and fast fourier transform.

  • Tutorial 1 Single Spike Train [3]. Open In Colab
  • Tutorial 2 Multiple Spike Trains [3]. Open In Colab
  • Tutorial 3 The Tuning Function [4]. Open In Colab
  • Tutorial 4 Frequencies [5]. Open In Colab
  • Tutorial 5 Fourier Transform [5]. Open In Colab

The sound of different spike patterns [6]

References

[1] Butler, John S., et al. "Non-parametric bootstrapping method for measuring the temporal discrimination threshold for movement disorders." Journal of neural engineering 12.4 (2015): 046026.

[2] Ernst, Marc O., and Martin S. Banks. "Humans integrate visual and haptic information in a statistically optimal fashion." Nature 415.6870 (2002): 429-433.

[3] Meredith, M. A., & Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of neurophysiology, 56(3), 640-662.

[4] Britten, Kenneth H., et al. "The analysis of visual motion: a comparison of neuronal and psychophysical performance." Journal of Neuroscience 12.12 (1992): 4745-4765.

[5] Fiebelkorn, I. C., Foxe, J. J., Butler, J. S., Mercier, M. R., Snyder, A. C., & Molholm, S. (2011). Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset. Journal of Neuroscience, 31(27), 9971-9981.

[6] Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6), 1569-1572.

Supplemental References

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience Series.

More Advanced Modules

Mathematical Tools for Neuroscience by Ella Batty

Neuromatch Academy 't Hart, B. M., Achakulvisut, T., Blohm, G., Kording, K., Peters, M. A. K., Akrami, A., Alicea, B., et al. (2021, February 15). Neuromatch Academy: a 3-week, online summer school in computational neuroscience. OSF Preprints. Retrieved from [https://osf.io/9fp4v/]

Neuromatch Academy GitHub Repository

Supplemental Popular Reading List

Lindsay, G. (2021). Models of the Mind: How Physics, Engineering and Mathematics Have Shaped Our Understanding of the Brain. Bloomsbury Publishing.

Strogatz, S. (2004). Sync: The emerging science of spontaneous order. Penguin UK.

Humphries, M. (2021). The Spike. In The Spike. Princeton University Press.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published