Skip to content

santoshray02/csv-editor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

CSV Editor - AI-Powered CSV Processing via MCP

Python MCP License FastMCP Pandas smithery badge

Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.

CSV Editor MCP server

🎯 Why CSV Editor?

The Problem

AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.

The Solution

CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:

  • Clean messy datasets in seconds
  • Perform complex statistical analysis
  • Validate data quality automatically
  • Transform data with natural language commands
  • Track all changes with undo/redo capabilities

Key Differentiators

Feature CSV Editor Traditional Tools
AI Integration Native MCP protocol Manual operations
Auto-Save Automatic with strategies Manual save required
History Tracking Full undo/redo with snapshots Limited or none
Session Management Multi-user isolated sessions Single user
Data Validation Built-in quality scoring Separate tools needed
Performance Handles GB+ files with chunking Memory limitations

⚑ Quick Demo

# Your AI assistant can now do this:
"Load the sales data and remove duplicates"
"Filter for Q4 2024 transactions over $10,000"  
"Calculate correlation between price and quantity"
"Fill missing values with the median"
"Export as Excel with the analysis"

# All with automatic history tracking and undo capability!

πŸš€ Quick Start (2 minutes)

Installing via Smithery

To install csv-editor for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @santoshray02/csv-editor --client claude

Fastest Installation (Recommended)

# Install uv if needed (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Clone and run
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
uv sync
uv run csv-editor

Configure Your AI Assistant

Claude Desktop (Click to expand)

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{
  "mcpServers": {
    "csv-editor": {
      "command": "uv",
      "args": ["tool", "run", "csv-editor"],
      "env": {
        "CSV_MAX_FILE_SIZE": "1073741824"
      }
    }
  }
}
Other Clients (Continue, Cline, Windsurf, Zed)

See MCP_CONFIG.md for detailed configuration.

πŸ’‘ Real-World Use Cases

πŸ“Š Data Analyst Workflow

# Morning: Load yesterday's data
session = load_csv("daily_sales.csv")

# Clean: Remove duplicates and fix types
remove_duplicates(session_id)
change_column_type("date", "datetime")
fill_missing_values(strategy="median", columns=["revenue"])

# Analyze: Get insights
get_statistics(columns=["revenue", "quantity"])
detect_outliers(method="iqr", threshold=1.5)
get_correlation_matrix(min_correlation=0.5)

# Report: Export cleaned data
export_csv(format="excel", file_path="clean_sales.xlsx")

🏭 ETL Pipeline

# Extract from multiple sources
load_csv_from_url("https://api.example.com/data.csv")

# Transform with complex operations
filter_rows(conditions=[
    {"column": "status", "operator": "==", "value": "active"},
    {"column": "amount", "operator": ">", "value": 1000}
])
add_column(name="quarter", formula="Q{(month-1)//3 + 1}")
group_by_aggregate(group_by=["quarter"], aggregations={
    "amount": ["sum", "mean"],
    "customer_id": "count"
})

# Load to different formats
export_csv(format="parquet")  # For data warehouse
export_csv(format="json")     # For API

πŸ” Data Quality Assurance

# Validate incoming data
validate_schema(schema={
    "customer_id": {"type": "integer", "required": True},
    "email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"},
    "age": {"type": "integer", "min": 0, "max": 120}
})

# Quality scoring
quality_report = check_data_quality()
# Returns: overall_score, missing_data%, duplicates, outliers

# Anomaly detection
anomalies = find_anomalies(methods=["statistical", "pattern"])

🎨 Core Features

Data Operations

  • Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown
  • Transform: Filter, sort, group, pivot, join
  • Clean: Remove duplicates, handle missing values, fix types
  • Calculate: Add computed columns, aggregations

Analysis Tools

  • Statistics: Descriptive stats, correlations, distributions
  • Outliers: IQR, Z-score, custom thresholds
  • Profiling: Complete data quality reports
  • Validation: Schema checking, quality scoring

Productivity Features

  • Auto-Save: Never lose work with configurable strategies
  • History: Full undo/redo with operation tracking
  • Sessions: Multi-user support with isolation
  • Performance: Stream processing for large files

πŸ“š Available Tools

Complete Tool List (40+ tools)

I/O Operations

  • load_csv - Load from file
  • load_csv_from_url - Load from URL
  • load_csv_from_content - Load from string
  • export_csv - Export to various formats
  • get_session_info - Session details
  • list_sessions - Active sessions
  • close_session - Cleanup

Data Manipulation

  • filter_rows - Complex filtering
  • sort_data - Multi-column sort
  • select_columns - Column selection
  • rename_columns - Rename columns
  • add_column - Add computed columns
  • remove_columns - Remove columns
  • update_column - Update values
  • change_column_type - Type conversion
  • fill_missing_values - Handle nulls
  • remove_duplicates - Deduplicate

Analysis

  • get_statistics - Statistical summary
  • get_column_statistics - Column stats
  • get_correlation_matrix - Correlations
  • group_by_aggregate - Group operations
  • get_value_counts - Frequency counts
  • detect_outliers - Find outliers
  • profile_data - Data profiling

Validation

  • validate_schema - Schema validation
  • check_data_quality - Quality metrics
  • find_anomalies - Anomaly detection

Auto-Save & History

  • configure_auto_save - Setup auto-save
  • get_auto_save_status - Check status
  • undo / redo - Navigate history
  • get_history - View operations
  • restore_to_operation - Time travel

βš™οΈ Configuration

Environment Variables

Variable Default Description
CSV_MAX_FILE_SIZE 1GB Maximum file size
CSV_SESSION_TIMEOUT 3600s Session timeout
CSV_CHUNK_SIZE 10000 Processing chunk size
CSV_AUTO_SAVE true Enable auto-save

Auto-Save Strategies

CSV Editor automatically saves your work with configurable strategies:

  • Overwrite (default) - Update original file
  • Backup - Create timestamped backups
  • Versioned - Maintain version history
  • Custom - Save to specified location
# Configure auto-save
configure_auto_save(
    strategy="backup",
    backup_dir="/backups",
    max_backups=10
)

πŸ› οΈ Advanced Installation Options

Alternative Installation Methods

Using pip

git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
pip install -e .

Using pipx (Global)

pipx install git+https://github.com/santoshray02/csv-editor.git

From GitHub (Recommended)

# Install latest version
pip install git+https://github.com/santoshray02/csv-editor.git

# Or using uv
uv pip install git+https://github.com/santoshray02/csv-editor.git

# Install specific version
pip install git+https://github.com/santoshray02/[email protected]

πŸ§ͺ Development

Running Tests

uv run test           # Run tests
uv run test-cov       # With coverage
uv run all-checks     # Format, lint, type-check, test

Project Structure

csv-editor/
β”œβ”€β”€ src/csv_editor/   # Core implementation
β”‚   β”œβ”€β”€ tools/        # MCP tool implementations
β”‚   β”œβ”€β”€ models/       # Data models
β”‚   └── server.py     # MCP server
β”œβ”€β”€ tests/            # Test suite
β”œβ”€β”€ examples/         # Usage examples
└── docs/            # Documentation

🀝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Quick Contribution Guide

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Run uv run all-checks
  5. Submit a pull request

πŸ“ˆ Roadmap

  • SQL query interface
  • Real-time collaboration
  • Advanced visualizations
  • Machine learning integrations
  • Cloud storage support
  • Performance optimizations for 10GB+ files

πŸ’¬ Support

πŸ“„ License

MIT License - see LICENSE file

πŸ™ Acknowledgments

Built with:

  • FastMCP - Fast Model Context Protocol
  • Pandas - Data manipulation
  • NumPy - Numerical computing

Ready to supercharge your AI's data capabilities? Get started in 2 minutes β†’

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •