Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.
AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.
CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:
- Clean messy datasets in seconds
- Perform complex statistical analysis
- Validate data quality automatically
- Transform data with natural language commands
- Track all changes with undo/redo capabilities
Feature | CSV Editor | Traditional Tools |
---|---|---|
AI Integration | Native MCP protocol | Manual operations |
Auto-Save | Automatic with strategies | Manual save required |
History Tracking | Full undo/redo with snapshots | Limited or none |
Session Management | Multi-user isolated sessions | Single user |
Data Validation | Built-in quality scoring | Separate tools needed |
Performance | Handles GB+ files with chunking | Memory limitations |
# Your AI assistant can now do this:
"Load the sales data and remove duplicates"
"Filter for Q4 2024 transactions over $10,000"
"Calculate correlation between price and quantity"
"Fill missing values with the median"
"Export as Excel with the analysis"
# All with automatic history tracking and undo capability!
To install csv-editor for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @santoshray02/csv-editor --client claude
# Install uv if needed (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Clone and run
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
uv sync
uv run csv-editor
Claude Desktop (Click to expand)
Add to ~/Library/Application Support/Claude/claude_desktop_config.json
(macOS):
{
"mcpServers": {
"csv-editor": {
"command": "uv",
"args": ["tool", "run", "csv-editor"],
"env": {
"CSV_MAX_FILE_SIZE": "1073741824"
}
}
}
}
Other Clients (Continue, Cline, Windsurf, Zed)
See MCP_CONFIG.md for detailed configuration.
# Morning: Load yesterday's data
session = load_csv("daily_sales.csv")
# Clean: Remove duplicates and fix types
remove_duplicates(session_id)
change_column_type("date", "datetime")
fill_missing_values(strategy="median", columns=["revenue"])
# Analyze: Get insights
get_statistics(columns=["revenue", "quantity"])
detect_outliers(method="iqr", threshold=1.5)
get_correlation_matrix(min_correlation=0.5)
# Report: Export cleaned data
export_csv(format="excel", file_path="clean_sales.xlsx")
# Extract from multiple sources
load_csv_from_url("https://api.example.com/data.csv")
# Transform with complex operations
filter_rows(conditions=[
{"column": "status", "operator": "==", "value": "active"},
{"column": "amount", "operator": ">", "value": 1000}
])
add_column(name="quarter", formula="Q{(month-1)//3 + 1}")
group_by_aggregate(group_by=["quarter"], aggregations={
"amount": ["sum", "mean"],
"customer_id": "count"
})
# Load to different formats
export_csv(format="parquet") # For data warehouse
export_csv(format="json") # For API
# Validate incoming data
validate_schema(schema={
"customer_id": {"type": "integer", "required": True},
"email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"},
"age": {"type": "integer", "min": 0, "max": 120}
})
# Quality scoring
quality_report = check_data_quality()
# Returns: overall_score, missing_data%, duplicates, outliers
# Anomaly detection
anomalies = find_anomalies(methods=["statistical", "pattern"])
- Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown
- Transform: Filter, sort, group, pivot, join
- Clean: Remove duplicates, handle missing values, fix types
- Calculate: Add computed columns, aggregations
- Statistics: Descriptive stats, correlations, distributions
- Outliers: IQR, Z-score, custom thresholds
- Profiling: Complete data quality reports
- Validation: Schema checking, quality scoring
- Auto-Save: Never lose work with configurable strategies
- History: Full undo/redo with operation tracking
- Sessions: Multi-user support with isolation
- Performance: Stream processing for large files
Complete Tool List (40+ tools)
load_csv
- Load from fileload_csv_from_url
- Load from URLload_csv_from_content
- Load from stringexport_csv
- Export to various formatsget_session_info
- Session detailslist_sessions
- Active sessionsclose_session
- Cleanup
filter_rows
- Complex filteringsort_data
- Multi-column sortselect_columns
- Column selectionrename_columns
- Rename columnsadd_column
- Add computed columnsremove_columns
- Remove columnsupdate_column
- Update valueschange_column_type
- Type conversionfill_missing_values
- Handle nullsremove_duplicates
- Deduplicate
get_statistics
- Statistical summaryget_column_statistics
- Column statsget_correlation_matrix
- Correlationsgroup_by_aggregate
- Group operationsget_value_counts
- Frequency countsdetect_outliers
- Find outliersprofile_data
- Data profiling
validate_schema
- Schema validationcheck_data_quality
- Quality metricsfind_anomalies
- Anomaly detection
configure_auto_save
- Setup auto-saveget_auto_save_status
- Check statusundo
/redo
- Navigate historyget_history
- View operationsrestore_to_operation
- Time travel
Variable | Default | Description |
---|---|---|
CSV_MAX_FILE_SIZE |
1GB | Maximum file size |
CSV_SESSION_TIMEOUT |
3600s | Session timeout |
CSV_CHUNK_SIZE |
10000 | Processing chunk size |
CSV_AUTO_SAVE |
true | Enable auto-save |
CSV Editor automatically saves your work with configurable strategies:
- Overwrite (default) - Update original file
- Backup - Create timestamped backups
- Versioned - Maintain version history
- Custom - Save to specified location
# Configure auto-save
configure_auto_save(
strategy="backup",
backup_dir="/backups",
max_backups=10
)
Alternative Installation Methods
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
pip install -e .
pipx install git+https://github.com/santoshray02/csv-editor.git
# Install latest version
pip install git+https://github.com/santoshray02/csv-editor.git
# Or using uv
uv pip install git+https://github.com/santoshray02/csv-editor.git
# Install specific version
pip install git+https://github.com/santoshray02/[email protected]
uv run test # Run tests
uv run test-cov # With coverage
uv run all-checks # Format, lint, type-check, test
csv-editor/
βββ src/csv_editor/ # Core implementation
β βββ tools/ # MCP tool implementations
β βββ models/ # Data models
β βββ server.py # MCP server
βββ tests/ # Test suite
βββ examples/ # Usage examples
βββ docs/ # Documentation
We welcome contributions! See CONTRIBUTING.md for guidelines.
- Fork the repository
- Create a feature branch
- Make your changes with tests
- Run
uv run all-checks
- Submit a pull request
- SQL query interface
- Real-time collaboration
- Advanced visualizations
- Machine learning integrations
- Cloud storage support
- Performance optimizations for 10GB+ files
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
MIT License - see LICENSE file
Built with:
Ready to supercharge your AI's data capabilities? Get started in 2 minutes β