-
Notifications
You must be signed in to change notification settings - Fork 56
Open
Description
🐛 Describe the bug
I having an error trying to read single channel wave file. I tried to upgrade ffmpeg
version but the same error remains.
Reproducing the error using Google Colab Notebook:
! apt install ffmpeg
! pip install torchcodec
! ffmpeg -version
! wget https://raw.githubusercontent.com/obadx/quran-muaalem/main/assets/test.wav
from torchcodec.decoders import AudioDecoder
decoder = AudioDecoder("./test.wav", sample_rate=16000, num_channels=1)
print(decoder.get_all_samples().data[0].shape)
RuntimeError: The frame has 0 channels, expected 1. If you are hitting this, it may be because you are using a buggy FFmpeg version. FFmpeg4 is known to fail here in some valid scenarios. Try to upgrade FFmpeg?
! ffmpeg -i test.wav output.mp3
from torchcodec.decoders import AudioDecoder
decoder = AudioDecoder("./output.mp3", sample_rate=16000, num_channels=1)
print(decoder.get_all_samples().data[0].shape)
# torch.Size([140320])
Versions
Collecting environment information...
PyTorch version: 2.8.0+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.31.6
Libc version: glibc-2.35
Python version: 3.12.11 (main, Jun 4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.1.123+-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
Stepping: 0
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB (1 instance)
L1i cache: 32 KiB (1 instance)
L2 cache: 256 KiB (1 instance)
L3 cache: 55 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable
Versions of relevant libraries:
[pip3] intel-cmplr-lib-ur==2025.2.1
[pip3] intel-openmp==2025.2.1
[pip3] mkl==2025.2.0
[pip3] numpy==2.0.2
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] nvtx==0.2.13
[pip3] optree==0.17.0
[pip3] pynvjitlink-cu12==0.7.0
[pip3] tbb==2022.2.0
[pip3] tcmlib==1.4.0
[pip3] torch==2.8.0+cu126
[pip3] torchao==0.10.0
[pip3] torchaudio==2.8.0+cu126
[pip3] torchcodec==0.6.0
[pip3] torchdata==0.11.0
[pip3] torchsummary==1.5.1
[pip3] torchtune==0.6.1
[pip3] torchvision==0.23.0+cu126
[pip3] triton==3.4.0
[pip3] umf==0.11.0
[conda] Could not collect
Metadata
Metadata
Assignees
Labels
No labels