- 
                Notifications
    
You must be signed in to change notification settings  - Fork 1.7k
 
Description
Prerequisite
- I have searched Issues and Discussions but cannot get the expected help.
 - The bug has not been fixed in the latest version(https://github.com/open-mmlab/mmcv).
 
Environment
addict                 2.4.0
aliyun-python-sdk-core 2.13.36
aliyun-python-sdk-kms  2.16.2
appdirs                1.4.4
brotlipy               0.7.0
certifi                2023.7.22
cffi                   1.15.1
charset-normalizer     3.2.0
click                  8.1.7
cloudpickle            2.2.1
colorama               0.4.6
contourpy              1.1.1
crcmod                 1.7
cryptography           41.0.3
cycler                 0.11.0
Cython                 3.0.2
cytoolz                0.12.0
dask                   2023.4.1
fonttools              4.42.1
fsspec                 2023.4.0
future                 0.18.3
idna                   3.4
imagecodecs            2023.1.23
imageio                2.26.0
imgaug                 0.4.0        d:\imgaug-master\imgaug-master
importlib-metadata     6.8.0
importlib-resources    6.0.1
jmespath               0.10.0
kiwisolver             1.4.5
lmdb                   1.4.1
locket                 1.0.0
Markdown               3.4.4
markdown-it-py         3.0.0
matplotlib             3.7.3
mdurl                  0.1.2
mkl-fft                1.3.8
mkl-random             1.2.4
mkl-service            2.4.0
mmcv-full              1.4.2
mmdet                  2.19.1       d:\mmdetection-2.19.1\mmdetection-2.19.1
mmocr                  1.0.1        d:\mmocr-main\mmocr-main
model-index            0.1.11
networkx               3.1
numpy                  1.24.4
opencv-python          4.8.0.76
opendatalab            0.0.10
openmim                0.3.9
openxlab               0.0.25
ordered-set            4.1.0
oss2                   2.17.0
packaging              23.1
pandas                 2.0.3
partd                  1.4.0
Pillow                 10.0.1
pip                    20.0.2
platformdirs           3.10.0
pooch                  1.4.0
pyclipper              1.3.0.post5
pycocotools            2.0.7
pycocotools-windows    2.0.0.2
pycparser              2.21
pycryptodome           3.19.0
Pygments               2.16.1
pyOpenSSL              23.2.0
pyparsing              3.1.1
PySocks                1.7.1
python-dateutil        2.8.2
pytz                   2023.3.post1
PyWavelets             1.4.1
pywin32                306
PyYAML                 6.0.1
rapidfuzz              3.3.0
regex                  2023.8.8
requests               2.31.0
rich                   13.4.2
scikit-image           0.19.3
scipy                  1.10.1
setuptools             68.0.0
shapely                2.0.1
six                    1.16.0
tabulate               0.9.0
terminaltables         3.1.10
tifffile               2021.7.2
tomli                  2.0.1
toolz                  0.12.0
torch                  1.5.0+cu101
torchvision            0.6.0+cu101
tqdm                   4.65.2
typing-extensions      4.7.1
tzdata                 2023.3
urllib3                1.26.16
wheel                  0.38.4
win-inet-pton          1.1.0
yapf                   0.40.1
zipp                   3.16.2
Reproduces the problem - code sample
import argparse
import copy
import os
import os.path as osp
import time
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist
from mmcv.utils import get_git_hash
from mmdet import version
from mmdet.apis import set_random_seed, train_detector
from mmdet.datasets import build_dataset
from mmdet.models import build_detector
from mmdet.utils import collect_env, get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.cfg_options:
    raise ValueError(
        '--options and --cfg-options cannot be both '
        'specified, --options is deprecated in favor of --cfg-options')
if args.options:
    warnings.warn('--options is deprecated in favor of --cfg-options')
    args.cfg_options = args.options
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
    cfg.merge_from_dict(args.cfg_options)
# import modules from string list.
if cfg.get('custom_imports', None):
    from mmcv.utils import import_modules_from_strings
    import_modules_from_strings(**cfg['custom_imports'])
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
    torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
    # update configs according to CLI args if args.work_dir is not None
    cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
    # use config filename as default work_dir if cfg.work_dir is None
    cfg.work_dir = osp.join('./work_dirs',
                            osp.splitext(osp.basename(args.config))[0])
if args.resume_from is not None:
    cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
    cfg.gpu_ids = args.gpu_ids
else:
    cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
    distributed = False
else:
    distributed = True
    init_dist(args.launcher, **cfg.dist_params)
    # re-set gpu_ids with distributed training mode
    _, world_size = get_dist_info()
    cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
            dash_line)
meta['env_info'] = env_info
meta['config'] = cfg.pretty_text
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
# set random seeds
if args.seed is not None:
    logger.info(f'Set random seed to {args.seed}, '
                f'deterministic: {args.deterministic}')
    set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
meta['exp_name'] = osp.basename(args.config)
model = build_detector(
    cfg.model,
    train_cfg=cfg.get('train_cfg'),
    test_cfg=cfg.get('test_cfg'))
model.init_weights()
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
    val_dataset = copy.deepcopy(cfg.data.val)
    val_dataset.pipeline = cfg.data.train.pipeline
    datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
    # save mmdet version, config file content and class names in
    # checkpoints as meta data
    cfg.checkpoint_config.meta = dict(
        mmdet_version=__version__ + get_git_hash()[:7],
        CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
    model,
    datasets,
    cfg,
    distributed=distributed,
    validate=(not args.no_validate),
    timestamp=timestamp,
    meta=meta)
if name == 'main':
main()
Reproduces the problem - command or script
(newpoint) D:\PointTinyBenchmark-master\PointTinyBenchmark-master\TOV_mmdetection\tools>python train.py
Reproduces the problem - error message
from mmdet.apis import set_random_seed, train_detector
from mmcv.ops import RoIPool
from .assign_score_withk import assign_score_withk
ImportError: DLL load failed while importing _ext: 找不到指定的程序。
Additional information
No response