Skip to content

mngugi/DS_Collections

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

93 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to the DS_Collections wiki!

📊 DS_Collections: Data Science Projects Repository

Welcome to DS_Collections, a curated collection of data science projects and notebooks. This repository showcases various aspects of data analysis, machine learning, and data visualization using Python.


🧠 Projects Overview

Notebook Title Description
Electric_Size_Market_.ipynb Analysis of electric market size trends.
MLLearningWithPython.ipynb Introduction to machine learning concepts.
Seaborn_Visualizations.ipynb Data visualization using Seaborn library.
Sequential_model.ipynb Implementation of sequential neural networks.
Timeseriesplot.ipynb Time series data plotting and analysis.
Yoro_vs_Man_united_Center_Backs.ipynb Comparative analysis of football center backs.
linearRegression.ipynb Linear regression model implementation.
lineplot.ipynb Line plot visualizations with sample data.
mnistdataset.ipynb MNIST dataset exploration and modeling.
tensorTest.ipynb Tensor operations and manipulations.

DS_Collections/ ├── .jupyter/

├── Electric_Size_Market_.ipynb

├── MLLearningWithPython.ipynb

├── Seaborn_Visualizations.ipynb

├── Sequential_model.ipynb

├── Timeseriesplot.ipynb

├── Yoro_vs_Man_united_Center_Backs.ipynb

├── linearRegression.ipynb

├── lineplot.ipynb

├── mnistdataset.ipynb

├── tensorTest.ipynb

├── LICENSE

└── README.md


🎯 Purpose

This repository serves as a learning and reference resource for:

  • Understanding and applying data science techniques.
  • Exploring machine learning models and their implementations.
  • Visualizing data effectively to derive insights.

🤝 Contributions

Contributions are welcome! If you have suggestions, improvements, or additional projects to add, feel free to fork the repository and submit a pull request.


📜 License

This project is licensed under the GPL-3.0 License.


📬 Contact

For any inquiries or discussions, please open an issue on the repository.


Happy Data Exploring!


🛠️ Technologies Used

  • Programming Language: Python
  • Libraries:
    • Data Manipulation: pandas, numpy
    • Visualization: matplotlib, seaborn
    • Machine Learning: scikit-learn, tensorflow
  • Tools: Jupyter Notebooks

📁 Repository Structure


Seaborn_Visualizations.ipynb

Code

# Anscombe Quartet

import seaborn as sns

sns.set_theme(style = "darkgrid")

Anscombe_Dt = sns.load_dataset("anscombe")

sns.lmplot(data= Anscombe_Dt, x= "x", y="y",
           hue= "dataset",col = "dataset", col_wrap=2, palette= "muted",
           ci=None,height=4, scatter_kws={"s": 50, "alpha": 1})

Anscombe_Dt.head()
  • data: The DataFrame to use (in this case, Anscombe_Dt).

  • x: The variable to be plotted on the x-axis.

  • y: The variable to be plotted on the y-axis.

  • hue: Grouping variable that will produce points with different colors. Here, it's based on the "dataset" column.

  • col: Variable that will produce separate columns within the grid for different values. This will create separate plots for each "dataset".

  • col_wrap: Number of columns in the grid before wrapping to a new row.

  • palette: Color palette to use for the different levels of the hue variable.

  • ci: Confidence interval for the regression estimate. None in this case.

  • height: Height (in inches) of each facet.

  • scatter_kws: Additional keyword arguments to pass to plt.scatter and plt.plot.


About

Data Science Projects !

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published