-
Notifications
You must be signed in to change notification settings - Fork 15.3k
[mlir][nvgpu] Support strided memref when creating TMA descriptor #85652
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…he TMA descriptor Currently, runtime always assumes that memref is always contiguous, but it's not always the case. This PR improves this supports and supports strided memref. Co-authored-by: Adam Paszke <[email protected]>
|
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-execution-engine Author: Guray Ozen (grypp) ChangesCurrently, the runtime always assumes that memref is always contiguous, and this limits strided memref usage. This PR supports strided memref when creating TMA descriptor. Co-authored-by: Adam Paszke <[email protected]> Full diff: https://github.com/llvm/llvm-project/pull/85652.diff 2 Files Affected:
diff --git a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp
index b9a3429e37b885..9d406bdfc7cc9a 100644
--- a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp
+++ b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp
@@ -423,24 +423,27 @@ extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(
elementStrides[4], interleave, swizzle, l2Promotion, oobFill);
}
-namespace {
-
-template <int rank>
-void mgpuGetMemRefDataAndShape(void *raw_descriptor, char **addr,
- uint64_t *globalDim) {
+template <int Rank>
+void mgpuGetMemRefDataAndShape(void *rawDescriptor, char **addr,
+ uint64_t *globalDim, uint64_t *globalStrides,
+ const CUtensorMapDataType tensorDataType) {
auto descriptor =
- reinterpret_cast<StridedMemRefType<char, rank> *>(raw_descriptor);
+ reinterpret_cast<StridedMemRefType<char, Rank> *>(rawDescriptor);
*addr = descriptor->data;
- for (int i = 0; i < rank; ++i) {
- globalDim[i] = static_cast<uint64_t>(descriptor->sizes[rank - i - 1]);
+ for (int i = 0; i < Rank; ++i) {
+ globalDim[i] = static_cast<uint64_t>(descriptor->sizes[Rank - i - 1]);
+ }
+ static constexpr int elementSizeInBytes[] = {1, 2, 4, 4, 8, 8, 2,
+ 4, 8, 2, 4, 4, 4};
+ for (int i = 0; i < Rank - 1; ++i) {
+ globalStrides[i] = static_cast<uint64_t>(
+ descriptor->strides[Rank - i - 2] * elementSizeInBytes[tensorDataType]);
}
}
-} // namespace
-
extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(
int64_t tensorRank, // Dimensionality of tensor
- void *ranked_descriptor, // Ranked MemRef descriptor
+ void *rankedDescriptor, // Ranked MemRef descriptor
const CUtensorMapDataType tensorDataType, // Stride size (in bytes)
CUtensorMapInterleave interleave, // Type of interleaved layout
CUtensorMapSwizzle swizzle, // Bank swizzling pattern
@@ -457,38 +460,36 @@ extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(
char *globalAddress = nullptr;
switch (tensorRank) {
case 1:
- mgpuGetMemRefDataAndShape<1>(ranked_descriptor, &globalAddress, globalDim);
+ mgpuGetMemRefDataAndShape<1>(rankedDescriptor, &globalAddress, globalDim,
+ globalStrides, tensorDataType);
break;
case 2:
- mgpuGetMemRefDataAndShape<2>(ranked_descriptor, &globalAddress, globalDim);
+ mgpuGetMemRefDataAndShape<2>(rankedDescriptor, &globalAddress, globalDim,
+ globalStrides, tensorDataType);
break;
case 3:
- mgpuGetMemRefDataAndShape<3>(ranked_descriptor, &globalAddress, globalDim);
+ mgpuGetMemRefDataAndShape<3>(rankedDescriptor, &globalAddress, globalDim,
+ globalStrides, tensorDataType);
break;
case 4:
- mgpuGetMemRefDataAndShape<4>(ranked_descriptor, &globalAddress, globalDim);
+ mgpuGetMemRefDataAndShape<4>(rankedDescriptor, &globalAddress, globalDim,
+ globalStrides, tensorDataType);
break;
case 5:
- mgpuGetMemRefDataAndShape<5>(ranked_descriptor, &globalAddress, globalDim);
+ mgpuGetMemRefDataAndShape<5>(rankedDescriptor, &globalAddress, globalDim,
+ globalStrides, tensorDataType);
break;
default:
fprintf(
stderr,
"'mgpuTensorMapEncodeTiledMemref' failed with 'rank is too high'\n");
- return NULL;
+ return nullptr;
}
- static const int elementSizeInBytes[] = {1, 2, 4, 4, 8, 8, 2,
- 4, 8, 2, 4, 4, 4};
for (int64_t r = 0; r < tensorRank; ++r) {
- elementStrides[r] = uint32_t(1);
boxDim[r] = static_cast<uint32_t>(inputBoxDims[tensorRank - r - 1]);
}
- globalStrides[0] = globalDim[0] * elementSizeInBytes[tensorDataType];
- for (int r = 1; r < tensorRank - 1; r++)
- globalStrides[r] = globalStrides[r - 1] * globalDim[r];
-
ScopedContext scopedContext;
mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,
globalAddress, globalDim, globalStrides, boxDim,
diff --git a/mlir/test/Integration/GPU/CUDA/sm90/tma_load_128x128_stride_noswizzle.mlir b/mlir/test/Integration/GPU/CUDA/sm90/tma_load_128x128_stride_noswizzle.mlir
new file mode 100644
index 00000000000000..54045b82d40da3
--- /dev/null
+++ b/mlir/test/Integration/GPU/CUDA/sm90/tma_load_128x128_stride_noswizzle.mlir
@@ -0,0 +1,147 @@
+// RUN: mlir-opt %s \
+// RUN: -gpu-lower-to-nvvm-pipeline="cubin-chip=sm_90 cubin-features=+ptx80 opt-level=3" \
+// RUN: | mlir-cpu-runner \
+// RUN: --shared-libs=%mlir_cuda_runtime \
+// RUN: --shared-libs=%mlir_runner_utils \
+// RUN: --entry-point-result=void \
+// RUN: | FileCheck %s
+
+// CHECK: Correct Results :8192
+// CHECK: Incorrect Results :0
+
+module {
+ func.func @main() {
+ %c10000000 = arith.constant 10000000 : index
+ %false = arith.constant false
+ %c32768 = arith.constant 32768 : index
+ %c31_i32 = arith.constant 31 : i32
+ %c-1_i32 = arith.constant -1 : i32
+ %c5_i32 = arith.constant 5 : i32
+ %c0_i32 = arith.constant 0 : i32
+ %c0 = arith.constant 0 : index
+ %c8 = arith.constant 8 : index
+ %c64 = arith.constant 64 : index
+ %c2 = arith.constant 2 : index
+ %c32768_i32 = arith.constant 32768 : i32
+ %c128 = arith.constant 128 : index
+ %c1 = arith.constant 1 : index
+ %0 = llvm.mlir.constant(1 : i64) : i64
+ %1 = llvm.mlir.constant(128 : i64) : i64
+ %2 = llvm.mlir.constant(0 : i64) : i64
+ %f0 = arith.constant 0.0 : f16
+ %f123 = arith.constant 1.123 : f16
+
+ %srcMemref_host = memref.alloc() : memref<128x128xf16>
+ %dstMemref_host = memref.alloc() : memref<128x128xf16>
+ scf.for %arg0 = %c0 to %c128 step %c1 {
+ scf.for %arg1 = %c0 to %c64 step %c1 {
+ %d1 = arith.index_cast %arg0 : index to i32
+ %d2 = arith.index_cast %arg1 : index to i32
+ %d3 = arith.sitofp %d1 : i32 to f16
+ %d4 = arith.sitofp %d2 : i32 to f16
+ %d5 = arith.addf %d3, %f123 : f16
+ %d6 = arith.constant 3.12 : f16
+ %d7 = arith.mulf %d5, %d6 : f16
+ %d8 = arith.addf %d7, %d5 : f16
+ %d9 = arith.constant 0.178 : f16
+ %d10 = arith.divf %d9, %d8 : f16
+ memref.store %d10, %srcMemref_host[%arg0, %arg1] : memref<128x128xf16>
+ memref.store %f0, %dstMemref_host[%arg0, %arg1] : memref<128x128xf16>
+ }
+ }
+
+ %s1 = gpu.wait async
+ %srcMemref, %s2 = gpu.alloc async [%s1] () : memref<128x128xf16>
+ %dstMemref, %s3 = gpu.alloc async [%s2] () : memref<128x128xf16>
+ %s4 = gpu.memcpy async [%s3] %srcMemref, %srcMemref_host : memref<128x128xf16>, memref<128x128xf16>
+ %s5 = gpu.memcpy async [%s4] %dstMemref, %dstMemref_host : memref<128x128xf16>, memref<128x128xf16>
+
+ %expand_shape = memref.expand_shape %srcMemref [[0, 1], [2, 3]] : memref<128x128xf16> into memref<2x64x2x64xf16>
+ %transpose = memref.transpose %expand_shape (d0, d1, d2, d3) -> (d0, d2, d1, d3) : memref<2x64x2x64xf16> to memref<2x2x64x64xf16, strided<[8192, 64, 128, 1]>>
+ %cast = memref.cast %transpose : memref<2x2x64x64xf16, strided<[8192, 64, 128, 1]>> to memref<*xf16>
+ %24 = nvgpu.tma.create.descriptor %cast box[%c2, %c2, %c64, %c64] : memref<*xf16> -> <tensor = memref<2x2x64x64xf16, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>
+
+ gpu.launch
+ blocks(%arg2, %arg3, %arg4) in (%arg8 = %c1, %arg9 = %c1, %arg10 = %c1)
+ threads(%arg5, %arg6, %arg7) in (%arg11 = %c128, %arg12 = %c1, %arg13 = %c1)
+ dynamic_shared_memory_size %c32768_i32
+ {
+ %26 = gpu.dynamic_shared_memory : memref<?xi8, #gpu.address_space<workgroup>>
+ %view = memref.view %26[%c0][] : memref<?xi8, #gpu.address_space<workgroup>> to memref<2x2x64x64xf16, #gpu.address_space<workgroup>>
+ %27 = nvgpu.mbarrier.create -> <memorySpace = #gpu.address_space<workgroup>>
+ %thread_id_x = gpu.thread_id x
+ %28 = arith.index_cast %thread_id_x : index to i32
+ %29 = arith.shrui %28, %c5_i32 : i32
+ %30 = nvvm.shfl.sync idx %c-1_i32, %29, %c0_i32, %c31_i32 : i32 -> i32
+ %31 = arith.cmpi eq, %30, %c0_i32 : i32
+ %32 = nvvm.elect.sync -> i1
+ %33 = arith.andi %31, %32 : i1
+ scf.if %33 {
+ nvgpu.mbarrier.init %27[%c0], %c1 : <memorySpace = #gpu.address_space<workgroup>>
+ }
+ %34 = nvvm.shfl.sync idx %c-1_i32, %29, %c0_i32, %c31_i32 : i32 -> i32
+ %35 = arith.cmpi eq, %34, %c0_i32 : i32
+ %36 = nvvm.elect.sync -> i1
+ %37 = arith.andi %35, %36 : i1
+ scf.if %37 {
+ nvgpu.mbarrier.arrive.expect_tx %27[%c0], %c32768 : <memorySpace = #gpu.address_space<workgroup>>
+ nvgpu.tma.async.load %24[%c0, %c0, %c0, %c0], %27[%c0] to %view : <tensor = memref<2x2x64x64xf16, 3>, swizzle = none, l2promo = none, oob = zero, interleave = none>, <memorySpace = #gpu.address_space<workgroup>> -> memref<2x2x64x64xf16, #gpu.address_space<workgroup>>
+ }
+ nvgpu.mbarrier.try_wait.parity %27[%c0], %false, %c10000000 : <memorySpace = #gpu.address_space<workgroup>>
+ scf.for %arg14 = %c0 to %c2 step %c1 {
+ scf.for %arg15 = %c0 to %c2 step %c1 {
+ %38 = arith.muli %arg14, %c64 : index
+ %39 = arith.muli %arg15, %c64 : index
+ %subview = memref.subview %view[%arg14, %arg15, 0, 0] [1, 1, 64, 64] [1, 1, 1, 1] : memref<2x2x64x64xf16, #gpu.address_space<workgroup>> to memref<64x64xf16, strided<[64, 1], offset: ?>, #gpu.address_space<workgroup>>
+ %subview_0 = memref.subview %dstMemref[%38, %39] [64, 64] [1, 1] : memref<128x128xf16> to memref<64x64xf16, strided<[128, 1], offset: ?>>
+ %block_dim_x = gpu.block_dim x
+ %thread_id_y = gpu.thread_id y
+ %40 = arith.muli %thread_id_y, %block_dim_x : index
+ %41 = arith.addi %thread_id_x, %40 : index
+ %block_dim_y = gpu.block_dim y
+ %42 = arith.muli %block_dim_x, %block_dim_y : index
+ %thread_id_z = gpu.thread_id z
+ %43 = arith.muli %thread_id_z, %42 : index
+ %44 = arith.addi %41, %43 : index
+ %45 = arith.cmpi eq, %44, %c0 : index
+ scf.if %45 {
+ scf.for %arg16 = %c0 to %c64 step %c1 {
+ scf.for %arg17 = %c0 to %c64 step %c1 {
+ %46 = memref.load %subview[%arg16, %arg17] : memref<64x64xf16, strided<[64, 1], offset: ?>, #gpu.address_space<workgroup>>
+ memref.store %46, %subview_0[%arg16, %arg17] : memref<64x64xf16, strided<[128, 1], offset: ?>>
+ }
+ }
+ }
+ gpu.barrier
+ }
+ }
+ gpu.terminator
+ }
+
+ %s6 = gpu.memcpy async [%s5] %dstMemref_host, %dstMemref : memref<128x128xf16>, memref<128x128xf16>
+ gpu.wait [%s6]
+
+ %errorCount, %correctCount = scf.for %arg0 = %c0 to %c128 step %c1 iter_args(%ec1 = %c0, %cc1 = %c0) -> (index,index) {
+ %ec2, %cc2 = scf.for %arg1 = %c0 to %c64 step %c1 iter_args(%ec2 = %ec1, %cc2 = %cc1) -> (index, index) {
+ %v1 = memref.load %dstMemref_host[%arg0, %arg1] : memref<128x128xf16>
+ %v2 = memref.load %srcMemref_host[%arg0, %arg1] : memref<128x128xf16>
+ %p = arith.cmpf one, %v1, %v2 : f16
+ %ec3, %cc3 = scf.if %p -> (index, index) {
+ %ec3 = arith.addi %ec2, %c1 : index
+ scf.yield %ec3, %cc2 : index, index
+ } else {
+ %cc3 = arith.addi %cc2, %c1 : index
+ scf.yield %ec2, %cc3 : index, index
+ }
+ scf.yield %ec3, %cc3 : index,index
+ }
+ scf.yield %ec2, %cc2 : index,index
+ }
+
+ vector.print str "Correct Results :"
+ vector.print %correctCount : index
+ vector.print str "Incorrect Results :"
+ vector.print %errorCount : index
+ return
+ }
+}
\ No newline at end of file
|
Currently, the runtime always assumes that memref is always contiguous, and this limits strided memref usage. This PR supports strided memref when creating TMA descriptor.
Co-authored-by: Adam Paszke [email protected]