MCP server for Naver Search API and DataLab API integration, enabling comprehensive search across various Naver services and data trend analysis.
⚠️ Smithery Installation Notice: Due to compatibility issues with the Smithery platform, npx installation is recommended starting from version 1.0.40. Smithery installation is only supported up to version 1.0.30.
get_current_korean_time
tool added - Essential time context tool for Korean timezone- Enhanced all existing tool descriptions to reference time tool for temporal queries
- Improved temporal context handling for "today", "now", "current" searches
- Comprehensive Korean time formatting with multiple output formats
find_category
tool added - with fuzzy matching and ranking system support- Enhanced parameter validation with Zod schema
- Improved category search workflow
- MCP SDK upgraded to 1.17.1
- Fixed compatibility issues with Smithery specification changes
- Added comprehensive DataLab shopping category code documentation
- README updated: cafe article search tool and version history section improved
- Cafe article search feature added
- Shopping category info added to zod
- Source code refactored
- Initial release
- Naver Developers API Key (Client ID and Secret)
- Node.js 18 or higher
- NPM 8 or higher
- Docker (optional, for container deployment)
- Visit Naver Developers
- Click "Register Application"
- Enter application name and select ALL of the following APIs:
- Search (for blog, news, book search, etc.)
- DataLab (Search Trends)
- DataLab (Shopping Insight)
- Set the obtained Client ID and Client Secret as environment variables
- get_current_korean_time: Get current Korean time (KST) with comprehensive date/time information. Essential for understanding "today", "now", or "current" context in Korean timezone. Always use this tool when temporal context is needed for searches or analysis.
- find_category: Category search tool - No more need to manually check category numbers via URL for trend and shopping insight searches. The LLM will find it out as you say.
- search_webkr: Search Naver web documents
- search_news: Search Naver news
- search_blog: Search Naver blogs
- search_cafearticle: Search Naver cafe articles
- search_shop: Search Naver shopping
- search_image: Search Naver images
- search_kin: Search Naver KnowledgeiN
- search_book: Search Naver books
- search_encyc: Search Naver encyclopedia
- search_academic: Search Naver academic papers
- search_local: Search Naver local places
- datalab_search: Analyze search term trends
- datalab_shopping_category: Analyze shopping category trends
- datalab_shopping_by_device: Analyze shopping trends by device
- datalab_shopping_by_gender: Analyze shopping trends by gender
- datalab_shopping_by_age: Analyze shopping trends by age group
- datalab_shopping_keywords: Analyze shopping keyword trends
- datalab_shopping_keyword_by_device: Analyze shopping keyword trends by device
- datalab_shopping_keyword_by_gender: Analyze shopping keyword trends by gender
- datalab_shopping_keyword_by_age: Analyze shopping keyword trends by age group
For a complete list of category codes, you can download from Naver Shopping Partner Center or extract them by browsing Naver Shopping categories.
// Fashion trend discovery
find_category("fashion") → Check top fashion categories and codes
datalab_shopping_category → Analyze seasonal fashion trends
datalab_shopping_age → Identify fashion target demographics
datalab_shopping_keywords → Compare "dress" vs "jacket" vs "coat"
// Beauty industry analysis
find_category("cosmetics") → Find beauty categories
datalab_shopping_gender → 95% female vs 5% male shoppers
datalab_shopping_device → Mobile dominance in beauty shopping
datalab_shopping_keywords → "tint" vs "lipstick" keyword performance
// Tech product insights
find_category("smartphone") → Check electronics categories
datalab_shopping_category → Track iPhone vs Galaxy trends
datalab_shopping_age → 20-30s as main smartphone buyers
datalab_shopping_device → PC vs mobile shopping behavior
// Holiday shopping analysis
find_category("gift") → Gift categories
datalab_shopping_category → Black Friday, Christmas trends
datalab_shopping_keywords → "Mother's Day gift" vs "birthday gift"
datalab_shopping_age → Age-based gift purchasing patterns
// Fitness market analysis
find_category("exercise") → Sports/fitness categories
datalab_shopping_gender → Male vs female fitness spending
datalab_shopping_age → Primary fitness demographics (20-40s)
datalab_shopping_keywords → "home workout" vs "gym" trend analysis
- Category Discovery: Use
find_category
to explore market segments - Trend Analysis: Identify growing vs declining categories
- Demographic Targeting: Age/gender analysis for customer targeting
- Competitive Intelligence: Keyword performance comparison
- Device Strategy: Mobile vs PC shopping optimization
- Market Validation: Category growth trends and seasonality
- Target Customers: Demographic analysis for product positioning
- Marketing Channels: Device preferences for advertising strategy
- Competitive Landscape: Keyword competition and opportunities
- Pricing Strategy: Category performance and price correlation
- Category Health: Monitor product category trends
- Keyword Tracking: Track brand and product keyword performance
- Demographic Shifts: Monitor changing customer demographics
- Seasonal Patterns: Plan inventory and marketing campaigns
- Competitive Benchmarking: Compare performance against category averages
Category | Code | Korean |
---|---|---|
Fashion/Clothing | 50000000 | 패션의류 |
Cosmetics/Beauty | 50000002 | 화장품/미용 |
Digital/Electronics | 50000003 | 디지털/가전 |
Sports/Leisure | 50000004 | 스포츠/레저 |
Food/Beverages | 50000008 | 식품/음료 |
Health/Medical | 50000009 | 건강/의료용품 |
💡 Tip: Use find_category
with fuzzy searches like "beauty", "fashion", "electronics" to easily find categories.
The easiest way to use this MCP server is through NPX. For detailed package information, see the NPM package page.
Add to Claude Desktop config file (%APPDATA%\Claude\claude_desktop_config.json
on Windows, ~/Library/Application Support/Claude/claude_desktop_config.json
on macOS/Linux):
{
"mcpServers": {
"naver-search": {
"command": "npx",
"args": ["-y", "@isnow890/naver-search-mcp"],
"env": {
"NAVER_CLIENT_ID": "your_client_id",
"NAVER_CLIENT_SECRET": "your_client_secret"
}
}
}
}
Add to mcp.json
:
{
"mcpServers": {
"naver-search": {
"command": "npx",
"args": ["-y", "@isnow890/naver-search-mcp"],
"env": {
"NAVER_CLIENT_ID": "your_client_id",
"NAVER_CLIENT_SECRET": "your_client_secret"
}
}
}
}
For local development or custom modifications:
git clone https://github.com/isnow890/naver-search-mcp.git
cd naver-search-mcp
npm install
npm run build
- Download the latest version from GitHub Releases
- Extract the ZIP file to your desired location
- Navigate to the extracted folder in terminal:
cd /path/to/naver-search-mcp
npm install
npm run build
npm run build
after installation to generate the dist
folder that contains the compiled JavaScript files.
After building, you'll need the following information:
- NAVER_CLIENT_ID: Client ID from Naver Developers
- NAVER_CLIENT_SECRET: Client Secret from Naver Developers
- Installation Path: Absolute path to the downloaded folder
Add to Claude Desktop config file (%APPDATA%\Claude\claude_desktop_config.json
):
{
"mcpServers": {
"naver-search": {
"type": "stdio",
"command": "cmd",
"args": [
"/c",
"node",
"C:\\path\\to\\naver-search-mcp\\dist\\src\\index.js"
],
"cwd": "C:\\path\\to\\naver-search-mcp",
"env": {
"NAVER_CLIENT_ID": "your-naver-client-id",
"NAVER_CLIENT_SECRET": "your-naver-client-secret"
}
}
}
}
Add to Claude Desktop config file (~/Library/Application Support/Claude/claude_desktop_config.json
):
{
"mcpServers": {
"naver-search": {
"type": "stdio",
"command": "node",
"args": ["/path/to/naver-search-mcp/dist/src/index.js"],
"cwd": "/path/to/naver-search-mcp",
"env": {
"NAVER_CLIENT_ID": "your-naver-client-id",
"NAVER_CLIENT_SECRET": "your-naver-client-secret"
}
}
}
}
- Windows: Change
C:\\path\\to\\naver-search-mcp
to your actual downloaded folder path - macOS/Linux: Change
/path/to/naver-search-mcp
to your actual downloaded folder path - Build Path: Make sure the path points to
dist/src/index.js
(not justindex.js
)
Finding your path:
# Check current location
pwd
# Absolute path examples
# Windows: C:\Users\username\Downloads\naver-search-mcp
# macOS: /Users/username/Downloads/naver-search-mcp
# Linux: /home/username/Downloads/naver-search-mcp
After completing the configuration, completely close and restart Claude Desktop to activate the Naver Search MCP server.
npx -y @smithery/cli@latest install @isnow890/naver-search-mcp --client claude
# Cursor
npx -y @smithery/cli@latest install @isnow890/naver-search-mcp --client cursor
# Windsurf
npx -y @smithery/cli@latest install @isnow890/naver-search-mcp --client windsurf
# Cline
npx -y @smithery/cli@latest install @isnow890/naver-search-mcp --client cline
For containerized deployment:
docker run -i --rm \
-e NAVER_CLIENT_ID=your_client_id \
-e NAVER_CLIENT_SECRET=your_client_secret \
mcp/naver-search
Docker configuration for Claude Desktop:
{
"mcpServers": {
"naver-search": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"NAVER_CLIENT_ID=your_client_id",
"-e",
"NAVER_CLIENT_SECRET=your_client_secret",
"mcp/naver-search"
]
}
}
}
Docker build:
docker build -t mcp/naver-search .
MIT License