- 
                Notifications
    You must be signed in to change notification settings 
- Fork 2.1k
FEAT add GraLoRA #2851
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Open
      
      
            yeonjoon-jung01
  wants to merge
  14
  commits into
  huggingface:main
  
    
      
        
          
  
    
      Choose a base branch
      
     
    
      
        
      
      
        
          
          
        
        
          
            
              
              
              
  
           
        
        
          
            
              
              
           
        
       
     
  
        
          
            
          
            
          
        
       
    
      
from
yeonjoon-jung01:gralora_support
  
      
      
   
  
    
  
  
  
 
  
      
    base: main
Could not load branches
            
              
  
    Branch not found: {{ refName }}
  
            
                
      Loading
              
            Could not load tags
            
            
              Nothing to show
            
              
  
            
                
      Loading
              
            Are you sure you want to change the base?
            Some commits from the old base branch may be removed from the timeline,
            and old review comments may become outdated.
          
          
  
     Open
                    FEAT add GraLoRA #2851
Changes from all commits
      Commits
    
    
            Show all changes
          
          
            14 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      6dfa24e
              
                feat: Add Gralora configuration and basic implementation
              
              
                yeonjoon-jung01 bfa1ef7
              
                ENH Support merge/unmerge in GraLoRA functionality; support init_weig…
              
              
                HaohanTsao 9813b17
              
                TST Add test suite for GraLoRA.
              
              
                HaohanTsao c1fe6c4
              
                FIX & TEST: Fix GraLoRA bugs in get_peft_config_as_dict and improve t…
              
              
                HaohanTsao 4f1444f
              
                Refactor GraLoRA weight computation to improve efficiency in delta-we…
              
              
                yeonjoon-jung01 9431502
              
                Refactor GraLoRA code for clearer documentation, simplified inheritan…
              
              
                yeonjoon-jung01 dec25f5
              
                Update test code for the GraLoRA method
              
              
                yeonjoon-jung01 925ad72
              
                ADD: documentations, examples, and test code for GraLoRA method
              
              
                yeonjoon-jung01 3f69d8f
              
                REFACTOR: integrate GraLoRA tests into existing test files
              
              
                yeonjoon-jung01 430e896
              
                UPDATE document format in GraLoRA
              
              
                yeonjoon-jung01 351877f
              
                FIX CPU casting in GraLoRA get_delta_weight function
              
              
                yeonjoon-jung01 a1c944a
              
                DOCS: update README for GraLoRA finetuning with correct SFTTrainer in…
              
              
                HaohanTsao c0ead87
              
                EXAMPLE: update example code to support latest transformers and remov…
              
              
                yeonjoon-jung01 005745b
              
                ADD GraLoRA experiment configs
              
              
                yeonjoon-jung01 File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,32 @@ | ||
| # GraLoRA | ||
|  | ||
| [**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization. | ||
|  | ||
|  | ||
|  | ||
| Unlike standard LoRA, which applies a single low-rank adapter across the entire feature space, GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions. As a result, each adapter operates on a subspace that is $k$ times smaller in both dimensions than the original LoRA adapter. | ||
|  | ||
| This granular decomposition enables spatially localized and context-aware updates, effectively increasing representational capacity without additional parameters or computational cost. By isolating the influence of extreme activations within smaller subspaces, GraLoRA mitigates gradient distortion and preserves inter-channel balance during adaptation. | ||
|  | ||
| --- | ||
|  | ||
| The abstract from the paper is: | ||
|  | ||
| *Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine- | ||
| tuning (PEFT) of generative models, valued for its simplicity and effectiveness. | ||
| Despite recent enhancements, LoRA still suffers from a fundamental limitation: | ||
| overfitting when the bottleneck is widened. It performs best at ranks 32–64, yet its | ||
| accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning | ||
| (FFT) performance. We identify the root cause as LoRA’s structural bottleneck, | ||
| which introduces gradient entanglement to the unrelated input channels and distorts | ||
| gradient propagation. To address this, we introduce a novel structure, Granular | ||
| Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, | ||
| each with its own low-rank adapter. With negligible computational or storage cost, | ||
| GraLoRA overcomes LoRA’s limitations, effectively increases the representational | ||
| capacity, and more closely approximates FFT behavior. Experiments on code | ||
| generation, commonsense reasoning, mathematical reasoning, general language | ||
| understanding, and image generation benchmarks show that GraLoRA consistently | ||
| outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in | ||
| Pass@1 on HumanEval+. These improvements hold across model sizes and rank | ||
| settings, making GraLoRA a scalable and robust solution for PEFT.* | ||
|  | ||
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,73 @@ | ||
| # GraLoRA: Granular Low-Rank Adaptation | ||
|  | ||
|  | ||
|  | ||
| ## Introduction | ||
| [**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization. | ||
|  | ||
| GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions. | ||
|  | ||
| ## Quick start | ||
|  | ||
| With respect to your standard PEFT training procedure with LoRA, simply swap your `LoraConfig` for a `GraloraConfig`. | ||
|  | ||
| ```python | ||
| import torch | ||
| from datasets import load_dataset | ||
| from transformers import AutoTokenizer, AutoModelForCausalLM | ||
| from trl import SFTTrainer, SFTConfig | ||
| from peft import GraloraConfig | ||
|  | ||
| model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", dtype=torch.bfloat16, device_map="auto") | ||
| tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B") | ||
| dataset = load_dataset("timdettmers/openassistant-guanaco", split="train") | ||
| gralora_config = GraloraConfig() | ||
|  | ||
| trainer = SFTTrainer( | ||
| model=model, | ||
| train_dataset=dataset, | ||
| processing_class=tokenizer, | ||
| peft_config=gralora_config, | ||
| args=SFTConfig( | ||
| max_length=2048, | ||
| dataset_text_field="text", | ||
| per_device_train_batch_size=2, | ||
| ), | ||
| ) | ||
| trainer.train() | ||
| trainer.model.save_pretrained("gralora-llama-3.2-3b") | ||
| ``` | ||
|  | ||
| Run the finetuning script simply by running: | ||
| ```sh | ||
| python examples/gralora_finetuning/gralora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --data_path timdettmers/openassistant-guanaco | ||
| ``` | ||
|  | ||
| ## Use the model on 🤗 | ||
| You can load and use the model as any other 🤗 models. | ||
| ```python | ||
| import torch | ||
| from peft import PeftModel | ||
| from transformers import AutoModelForCausalLM | ||
|  | ||
| model = AutoModelForCausalLM.from_pretrained( | ||
| "meta-llama/Meta-Llama-3-8B", dtype=torch.bfloat16, device_map="auto" | ||
| ) | ||
| peft_model = PeftModel.from_pretrained(model, "gralora-llama-3-8b") | ||
| ``` | ||
|  | ||
| ## Additional Notes | ||
| While `gralora_k` is set to 2 for default, you can increase this value to create more fine-grained adapters. `gralora_k` of 4 is recommended when the total rank (`r + hybrid_r`) is 64 or higher. | ||
|  | ||
| ## Citation | ||
| ``` | ||
| @misc{jung2025graloragranularlowrankadaptation, | ||
| title={GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning}, | ||
| author={Yeonjoon Jung and Daehyun Ahn and Hyungjun Kim and Taesu Kim and Eunhyeok Park}, | ||
| year={2025}, | ||
| eprint={2505.20355}, | ||
| archivePrefix={arXiv}, | ||
| primaryClass={cs.LG}, | ||
| url={https://arxiv.org/abs/2505.20355}, | ||
| } | ||
| ``` | 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,190 @@ | ||
| # This script is based on examples/dora_finetuning/dora_finetuning.py | ||
| import os | ||
|  | ||
| import torch | ||
| from datasets import load_dataset | ||
| from transformers import ( | ||
| AutoModelForCausalLM, | ||
| AutoTokenizer, | ||
| BitsAndBytesConfig, | ||
| DataCollatorForLanguageModeling, | ||
| Trainer, | ||
| TrainingArguments, | ||
| ) | ||
|  | ||
| from peft import GraloraConfig, get_peft_model, prepare_model_for_kbit_training | ||
|  | ||
|  | ||
| def train_model( | ||
| base_model: str, | ||
| data_path: str, | ||
| output_dir: str, | ||
| batch_size: int, | ||
| num_epochs: int, | ||
| learning_rate: float, | ||
| cutoff_len: int, | ||
| val_set_size: int, | ||
| eval_step: int, | ||
| save_step: int, | ||
| device: str, | ||
| gralora_r: int, | ||
| gralora_alpha: int, | ||
| gralora_dropout: float, | ||
| gralora_target_modules: str, | ||
| gralora_k: int, | ||
| hybrid_r: int, | ||
| hub_model_id: str, | ||
| push_to_hub: bool, | ||
| ): | ||
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | ||
| hf_token = os.getenv("HF_TOKEN") | ||
|  | ||
| # Setup device | ||
| if device == "auto": | ||
| device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda" | ||
| else: | ||
| device = torch.device(device) | ||
| print(f"Using device: {device}") | ||
|  | ||
| # load tokenizer | ||
| tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token) | ||
|  | ||
| model = AutoModelForCausalLM.from_pretrained(base_model, token=hf_token) | ||
| # GraLoRA config for the PEFT model | ||
| gralora_config = GraloraConfig( | ||
| r=gralora_r, # Rank of matrix | ||
| gralora_alpha=gralora_alpha, | ||
| target_modules=( | ||
| gralora_target_modules.split(",") | ||
| if gralora_target_modules | ||
| else ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] | ||
| ), | ||
| gralora_dropout=gralora_dropout, | ||
| gralora_k=gralora_k, | ||
| hybrid_r=hybrid_r, | ||
| bias="none", | ||
| ) | ||
|  | ||
| # get the peft model with GraLoRA config | ||
| model = get_peft_model(model, gralora_config) | ||
|  | ||
| model.to(device) # MODEL TO GPU/CUDA | ||
| tokenizer.pad_token = tokenizer.eos_token | ||
|  | ||
| # Load the dataset | ||
| dataset = load_dataset(data_path) | ||
|  | ||
| def tokenize_function(examples): | ||
| inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len) | ||
| inputs["labels"] = inputs["input_ids"].copy() # setting labels for a language modeling task | ||
| return inputs | ||
|  | ||
| # Tokenize the dataset and prepare for training | ||
| tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names) | ||
|  | ||
| # Data collator to dynamically pad the batched examples | ||
| data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) | ||
|  | ||
| # Define training arguments | ||
| training_args = TrainingArguments( | ||
| output_dir=output_dir, | ||
| num_train_epochs=num_epochs, | ||
| per_device_train_batch_size=batch_size, | ||
| per_device_eval_batch_size=batch_size, | ||
| warmup_steps=100, | ||
| weight_decay=0.01, | ||
| logging_steps=eval_step, | ||
| save_steps=save_step, | ||
| save_total_limit=2, | ||
| push_to_hub=push_to_hub, | ||
| hub_model_id=hub_model_id, | ||
| gradient_accumulation_steps=16, | ||
| fp16=True, | ||
| learning_rate=learning_rate, | ||
| hub_token=hf_token, | ||
| ) | ||
|  | ||
| # Clear device cache to free memory | ||
| if torch.cuda.is_available(): | ||
| torch.cuda.empty_cache() | ||
| elif torch.xpu.is_available(): | ||
| torch.xpu.empty_cache() | ||
|  | ||
| # Initialize the Trainer | ||
| trainer = Trainer( | ||
| model=model, | ||
| args=training_args, | ||
| train_dataset=tokenized_datasets["train"], | ||
| eval_dataset=tokenized_datasets["test"], | ||
| data_collator=data_collator, | ||
| ) | ||
|  | ||
| # Start model training | ||
| trainer.train() | ||
|  | ||
| # Save and push the trained model and tokenizer | ||
| if push_to_hub: | ||
| # Push the main model to the hub | ||
| trainer.push_to_hub(commit_message="Fine-tuned model") | ||
|  | ||
| # Save the model and tokenizer locally | ||
| model.save_pretrained(output_dir) | ||
| tokenizer.save_pretrained(output_dir) | ||
|  | ||
|  | ||
| if __name__ == "__main__": | ||
| import argparse | ||
|  | ||
| parser = argparse.ArgumentParser(description="Fine-tune LLaMA with GraLoRA and PEFT") | ||
| parser.add_argument("--base_model", type=str, default="meta-llama/Llama-3.2-3B", help="Base model path or name") | ||
| parser.add_argument( | ||
| "--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name" | ||
| ) | ||
| parser.add_argument( | ||
| "--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model" | ||
| ) | ||
| parser.add_argument("--batch_size", type=int, default=1, help="Batch size") | ||
| parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs") | ||
| parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate") | ||
| parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization") | ||
| parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size") | ||
| parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval") | ||
| parser.add_argument("--save_step", type=int, default=100, help="Save step interval") | ||
| parser.add_argument("--device", type=str, default="auto", help="Device to use for training") | ||
| parser.add_argument("--gralora_r", type=int, default=8, help="LoRA rank") | ||
| parser.add_argument("--gralora_alpha", type=int, default=16, help="LoRA alpha") | ||
| parser.add_argument("--gralora_dropout", type=float, default=0.05, help="LoRA dropout rate") | ||
| parser.add_argument( | ||
| "--gralora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA" | ||
| ) | ||
| parser.add_argument("--gralora_k", type=int, default=2, help="GraLoRA k") | ||
| parser.add_argument("--hybrid_r", type=int, default=0, help="Hybrid rank") | ||
| parser.add_argument( | ||
| "--hub_model_id", | ||
| type=str, | ||
| default="path/to/repo", | ||
| help="Repository name to push the model on the Hugging Face Hub", | ||
| ) | ||
| parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub") | ||
| args = parser.parse_args() | ||
| train_model( | ||
| base_model=args.base_model, | ||
| data_path=args.data_path, | ||
| output_dir=args.output_dir, | ||
| batch_size=args.batch_size, | ||
| num_epochs=args.num_epochs, | ||
| learning_rate=args.learning_rate, | ||
| cutoff_len=args.cutoff_len, | ||
| val_set_size=args.val_set_size, | ||
| eval_step=args.eval_step, | ||
| save_step=args.save_step, | ||
| device=args.device, | ||
| gralora_r=args.gralora_r, | ||
| gralora_alpha=args.gralora_alpha, | ||
| gralora_dropout=args.gralora_dropout, | ||
| gralora_target_modules=args.gralora_target_modules, | ||
| gralora_k=args.gralora_k, | ||
| hybrid_r=args.hybrid_r, | ||
| hub_model_id=args.hub_model_id, | ||
| push_to_hub=args.push_to_hub, | ||
| ) | 
        
          
          
            21 changes: 21 additions & 0 deletions
          
          21 
        
  method_comparison/MetaMathQA/experiments/gralora/llama-3.2-3B-rank32/adapter_config.json
  
  
      
      
   
        
      
      
    
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,21 @@ | ||
| { | ||
| "auto_mapping": null, | ||
| "base_model_name_or_path": null, | ||
| "bias": "none", | ||
| "fan_in_fan_out": false, | ||
| "gralora_alpha": 64, | ||
| "gralora_dropout": 0.0, | ||
| "gralora_k": 2, | ||
| "hybrid_r": 0, | ||
| "inference_mode": false, | ||
| "init_weights": true, | ||
| "layers_pattern": null, | ||
| "layers_to_transform": null, | ||
| "modules_to_save": null, | ||
| "peft_type": "GRALORA", | ||
| "peft_version": "0.17.2.dev0@UNKNOWN", | ||
| "r": 32, | ||
| "revision": null, | ||
| "target_modules": null, | ||
| "task_type": null | ||
| } | 
        
          
          
            5 changes: 5 additions & 0 deletions
          
          5 
        
  method_comparison/MetaMathQA/experiments/gralora/llama-3.2-3B-rank32/training_params.json
  
  
      
      
   
        
      
      
    
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,5 @@ | ||
| { | ||
| "optimizer_kwargs": { | ||
| "lr": 2e-4 | ||
| } | ||
| } | 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,24 @@ | ||
| # Copyright 2025-present the HuggingFace Inc. team. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|  | ||
| from peft.utils import register_peft_method | ||
|  | ||
| from .config import GraloraConfig | ||
| from .layer import GraloraLayer | ||
| from .model import GraloraModel | ||
|  | ||
|  | ||
| __all__ = ["GraloraConfig", "GraloraLayer", "GraloraModel"] | ||
|  | ||
| register_peft_method(name="gralora", config_cls=GraloraConfig, model_cls=GraloraModel) | 
      
      Oops, something went wrong.
        
    
  
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
Uh oh!
There was an error while loading. Please reload this page.