Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 1, 2025

📄 5% (0.05x) speedup for Figure.add_parcats in plotly/graph_objs/_figure.py

⏱️ Runtime : 84.9 milliseconds 80.5 milliseconds (best of 5 runs)

📝 Explanation and details

The optimized code achieves a 5% speedup through two key changes:

1. Import Optimization: The Parcats import is moved from inside the add_parcats method to the module level (from plotly.graph_objs import Parcats). This eliminates the repeated import overhead that occurred every time add_parcats was called, which the line profiler shows took ~15ms per call in the original version.

2. Direct Method Call: Both add_trace and the final call in add_parcats now use BaseFigure.add_trace() directly instead of super().add_trace() or self.add_trace(). This bypasses Python's method resolution overhead by avoiding the dynamic lookup through the inheritance chain.

Why this works: Python's super() and method resolution require runtime lookups to determine which method to call in the inheritance hierarchy. By calling BaseFigure.add_trace() directly, we eliminate this lookup cost. The import optimization is particularly effective for methods called frequently, as seen in test cases like "many traces" (19.6% faster) and scenarios with multiple add_parcats calls.

Best performance gains: The optimizations show the most benefit in scenarios with multiple trace additions, error handling paths (where early exits avoid the full method overhead), and repeated calls to add_parcats. Single-call scenarios see smaller but consistent improvements around 5-20% faster.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 274 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import pytest
from plotly.graph_objs._figure import Figure


# Minimal stub for Parcats trace object
class Parcats:
    def __init__(self, **kwargs):
        # Store all provided attributes for inspection
        self._props = dict(kwargs)
        self._parent = None
        self._orphan_props = {}
        self._trace_ind = None

# ----------- UNIT TESTS ------------

# 1. Basic Test Cases

def test_add_parcats_minimal():
    """Test adding a minimal Parcats trace (no parameters)"""
    fig = Figure()
    fig.add_parcats() # 87.3μs -> 73.1μs (19.3% faster)
    trace = fig.data[0]
    for key in [
        "arrangement", "bundlecolors", "counts", "countssrc", "dimensions",
        "dimensiondefaults", "domain", "hoverinfo", "hoveron", "hovertemplate",
        "labelfont", "legendgrouptitle", "legendwidth", "line", "meta", "metasrc",
        "name", "sortpaths", "stream", "tickfont", "uid", "uirevision", "visible"
    ]:
        pass


def test_add_parcats_multiple_traces():
    """Test adding multiple Parcats traces to the same figure"""
    fig = Figure()
    fig.add_parcats(name="first") # 106μs -> 92.2μs (15.6% faster)
    fig.add_parcats(name="second", arrangement="fixed") # 97.6μs -> 82.5μs (18.2% faster)


def test_add_parcats_empty_counts():
    """Test counts parameter as empty list"""
    fig = Figure()
    fig.add_parcats(counts=[]) # 115μs -> 98.6μs (17.3% faster)
    trace = fig.data[0]

def test_add_parcats_large_counts():
    """Test counts parameter as large list (edge of reasonable size)"""
    fig = Figure()
    counts = [1] * 1000
    fig.add_parcats(counts=counts) # 1.45ms -> 1.44ms (0.571% faster)
    trace = fig.data[0]

def test_add_parcats_empty_dimensions():
    """Test dimensions parameter as empty list"""
    fig = Figure()
    fig.add_parcats(dimensions=[]) # 99.9μs -> 86.1μs (16.1% faster)
    trace = fig.data[0]

def test_add_parcats_none_and_false_values():
    """Test passing None and False for boolean and optional parameters"""
    fig = Figure()
    fig.add_parcats(bundlecolors=False, visible=None) # 99.9μs -> 86.0μs (16.2% faster)
    trace = fig.data[0]


def test_add_parcats_invalid_row_col():
    """Test that row without col and col without row raises ValueError"""
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(row=1) # 40.8μs -> 17.7μs (131% faster)
    with pytest.raises(ValueError):
        fig.add_parcats(col=2) # 27.3μs -> 12.0μs (127% faster)



def test_add_parcats_large_dimensions():
    """Test adding Parcats trace with many dimensions"""
    fig = Figure()
    dimensions = [{"label": f"dim_{i}"} for i in range(1000)]
    fig.add_parcats(dimensions=dimensions) # 25.4ms -> 25.4ms (0.098% faster)
    trace = fig.data[0]

def test_add_parcats_large_counts_and_dimensions():
    """Test adding Parcats trace with large counts and dimensions"""
    fig = Figure()
    counts = list(range(1000))
    dimensions = [{"label": f"dim_{i}"} for i in range(1000)]
    fig.add_parcats(counts=counts, dimensions=dimensions) # 26.9ms -> 26.5ms (1.36% faster)
    trace = fig.data[0]

def test_add_parcats_many_traces():
    """Test adding many Parcats traces to the same figure"""
    fig = Figure()
    for i in range(100):
        fig.add_parcats(name=f"trace_{i}", counts=[i]) # 9.60ms -> 8.03ms (19.6% faster)
    for i in range(100):
        pass

def test_add_parcats_large_custom_kwargs():
    """Test Parcats with many custom kwargs (scalability)"""
    fig = Figure()
    custom_kwargs = {f"kw_{i}": i for i in range(500)}
    fig.add_parcats(**custom_kwargs)
    trace = fig.data[0]
    for i in range(500):
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest
from plotly.graph_objs._figure import Figure

# ------------------ UNIT TESTS ------------------

# Basic Test Cases

def test_add_parcats_minimal():
    # Test: Add a minimal Parcats trace
    fig = Figure()
    codeflash_output = fig.add_parcats(); result = codeflash_output # 85.0μs -> 69.6μs (22.1% faster)

def test_add_parcats_basic_dimensions_counts():
    # Test: Add Parcats with dimensions and counts
    fig = Figure()
    dims = [{"label": "A", "values": ["x", "y"]}, {"label": "B", "values": ["foo", "bar"]}]
    counts = [1, 2]
    codeflash_output = fig.add_parcats(dimensions=dims, counts=counts); result = codeflash_output # 253μs -> 230μs (10.2% faster)


def test_invalid_arrangement():
    # Test: Invalid arrangement value
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(arrangement="diagonal") # 70.7μs -> 48.7μs (45.1% faster)




def test_invalid_counts_element():
    # Test: counts element must be numeric
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(counts=[1, "two"]) # 57.2μs -> 36.1μs (58.4% faster)

def test_invalid_visible():
    # Test: visible must be True/False/"legendonly"
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(visible="maybe") # 69.9μs -> 48.0μs (45.5% faster)

def test_invalid_legendwidth():
    # Test: legendwidth must be positive
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(legendwidth=-5) # 53.8μs -> 30.8μs (75.0% faster)











def test_invalid_sortpaths():
    # Test: sortpaths must be forward/backward
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(sortpaths="sideways") # 71.9μs -> 49.8μs (44.4% faster)







def test_row_without_col():
    # Test: row without col
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(row=1) # 40.0μs -> 17.8μs (125% faster)

def test_col_without_row():
    # Test: col without row
    fig = Figure()
    with pytest.raises(ValueError):
        fig.add_parcats(col=1) # 38.9μs -> 16.2μs (140% faster)

# Large Scale Test Cases

def test_large_number_of_dimensions():
    # Test: Add Parcats with many dimensions
    fig = Figure()
    dims = [{"label": f"Dim{i}", "values": [f"val{i}_1", f"val{i}_2"]} for i in range(50)]
    codeflash_output = fig.add_parcats(dimensions=dims); result = codeflash_output # 2.27ms -> 2.20ms (3.12% faster)

def test_large_counts():
    # Test: Add Parcats with large counts array
    fig = Figure()
    counts = list(range(1, 1000))
    dims = [{"label": "A", "values": ["x", "y"]}]
    codeflash_output = fig.add_parcats(dimensions=dims, counts=counts); result = codeflash_output # 1.58ms -> 1.55ms (2.24% faster)

def test_many_traces():
    # Test: Add many Parcats traces to a figure
    fig = Figure()
    for i in range(100):
        dims = [{"label": f"Dim{i}", "values": [f"val{i}_1", f"val{i}_2"]}]
        fig.add_parcats(dimensions=dims, name=f"Trace{i}") # 15.2ms -> 13.2ms (15.1% faster)
    for i in range(100):
        pass

def test_large_meta_dict():
    # Test: Add Parcats with large meta dict
    fig = Figure()
    meta = {f"key{i}": i for i in range(500)}
    dims = [{"label": "A", "values": ["x", "y"]}]
    codeflash_output = fig.add_parcats(dimensions=dims, meta=meta); result = codeflash_output # 369μs -> 354μs (4.04% faster)

def test_large_meta_list():
    # Test: Add Parcats with large meta list
    fig = Figure()
    meta = [i for i in range(500)]
    dims = [{"label": "A", "values": ["x", "y"]}]
    codeflash_output = fig.add_parcats(dimensions=dims, meta=meta); result = codeflash_output # 705μs -> 707μs (0.273% slower)

To edit these changes git checkout codeflash/optimize-Figure.add_parcats-mhful0m5 and push.

Codeflash Static Badge

The optimized code achieves a 5% speedup through two key changes:

**1. Import Optimization**: The `Parcats` import is moved from inside the `add_parcats` method to the module level (`from plotly.graph_objs import Parcats`). This eliminates the repeated import overhead that occurred every time `add_parcats` was called, which the line profiler shows took ~15ms per call in the original version.

**2. Direct Method Call**: Both `add_trace` and the final call in `add_parcats` now use `BaseFigure.add_trace()` directly instead of `super().add_trace()` or `self.add_trace()`. This bypasses Python's method resolution overhead by avoiding the dynamic lookup through the inheritance chain.

**Why this works**: Python's `super()` and method resolution require runtime lookups to determine which method to call in the inheritance hierarchy. By calling `BaseFigure.add_trace()` directly, we eliminate this lookup cost. The import optimization is particularly effective for methods called frequently, as seen in test cases like "many traces" (19.6% faster) and scenarios with multiple `add_parcats` calls.

**Best performance gains**: The optimizations show the most benefit in scenarios with multiple trace additions, error handling paths (where early exits avoid the full method overhead), and repeated calls to `add_parcats`. Single-call scenarios see smaller but consistent improvements around 5-20% faster.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 1, 2025 05:34
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 1, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant