@@ -172,14 +172,19 @@ Initial value of the state `x` can be set with `x`, and of derivative state `xd`
172172end
173173
174174"""
175- PI(;name, gainPI. k = 1.0, T, int.x = 0.0)
175+ PI(;name, k = 1.0, T = 1.0 , int.x = 0.0)
176176
177177Textbook version of a PI-controller without actuator saturation and anti-windup measure.
178- The proportional gain can be set with `gainPI. k`
178+ The proportional gain can be set with `k`
179179Initial value of integrator state `x` can be set with `int.x`
180180
181- # Parameters:
181+ The PI controller is implemented on standard form:
182+ ```math
183+ U(s) = k (1 + \\ dfrac{1}{sT}) E(S)
184+ ```
182185
186+ # Parameters:
187+ - `k`: Proportional gain
183188 - `T`: [s] Integrator time constant (T>0 required)
184189
185190# Connectors:
@@ -191,7 +196,8 @@ See also [`LimPI`](@ref)
191196"""
192197@mtkmodel PI begin
193198 @parameters begin
194- T, [description = " Integrator time constant" ]
199+ k = 1.0 , [description = " Proportional gain" ]
200+ T = 1.0 , [description = " Integrator time constant" ]
195201 end
196202 begin
197203 @symcheck T > 0 ||
@@ -200,7 +206,7 @@ See also [`LimPI`](@ref)
200206 @components begin
201207 err_input = RealInput () # control error
202208 ctr_output = RealOutput () # control signal
203- gainPI = Gain (; k = 1.0 )
209+ gainPI = Gain (; k)
204210 addPI = Add ()
205211 int = Integrator (k = 1 / T, x = 0.0 )
206212 end
294300
295301Text-book version of a PI-controller with actuator saturation and anti-windup measure.
296302
303+ The PI controller is implemented on standard form
304+ ```math
305+ u(t) = sat(k (e(t) + ∫\\ dfrac{1}{T}e(t) dt) )
306+ ```
307+ The simplified expression above is given without the anti-windup protection.
308+
297309# Parameters:
298310
299311 - `k`: Proportional gain
0 commit comments