Skip to content

PriorLabs/tabpfn_common_utils

Repository files navigation

TabPFN Common Utilities

A comprehensive utility package for TabPFN - the foundation model for tabular data.

Features

🔒 Privacy-First Telemetry System

  • Anonymous & Aggregated Data Collection: Implements safe, GDPR-compliant telemetry that respects user privacy
  • Configurable Analytics: Optional telemetry that can be disabled via environment variables
  • Usage Pattern Insights: Tracks TabPFN usage patterns to improve the model and user experience
  • Zero Personal Data: No personal information or sensitive data is collected or transmitted

💰 Cost Estimation

  • Resource Planning: Accurate estimation of computational costs and duration for TabPFN predictions
  • Cloud Pricing: Essential for resource planning in cloud-based TabPFN services
  • Task-Specific Calculations: Different cost models for classification vs regression tasks

📊 Data Processing Utilities

  • Regression Results: Comprehensive handling of prediction outputs with mean, median, mode, and quantiles
  • Data Serialization: Convert between pandas DataFrames, NumPy arrays, and CSV formats
  • Dataset Management: Load and preprocess standard ML datasets with proper train/test splits
  • Preprocessing Configuration: Extensive options for data transformation strategies

Installation

pip install tabpfn-common-utils

Or with uv:

uv add tabpfn-common-utils

Quick Start

Telemetry (Privacy-Compliant)

from tabpfn_common_utils.telemetry import ProductTelemetry

# Initialize telemetry service (anonymous, GDPR-compliant)
telemetry = ProductTelemetry()

# Track usage events (no personal data collected)
telemetry.capture(...)

# Telemetry can be disabled by setting environment variable
export TABPFN_DISABLE_TELEMETRY=1

Regression Results

from tabpfn_common_utils.regression_pred_result import RegressionPredictResult

# Handle regression prediction results
result = RegressionPredictResult({
    "mean": [1.2, 2.3, 3.4],
    "median": [1.1, 2.2, 3.3],
    "mode": [1.0, 2.0, 3.0],
    "quantile_0.25": [0.9, 1.9, 2.9],
    "quantile_0.75": [1.5, 2.5, 3.5]
})

# Convert to basic representation for serialization
basic_repr = RegressionPredictResult.to_basic_representation(result)

Data Utilities

from tabpfn_common_utils.utils import get_example_dataset, serialize_to_csv_formatted_bytes
import pandas as pd

# Load example dataset
X_train, X_test, y_train, y_test = get_example_dataset("iris")

# Serialize data to CSV bytes
csv_bytes = serialize_to_csv_formatted_bytes(X_train)

Privacy & Compliance

This package implements privacy-first telemetry that:

  • GDPR Compliant: No personal data collection
  • Anonymous Only: No user identification or tracking
  • Aggregated Data: Only statistical insights are collected
  • User Control: Can be completely disabled
  • Transparent: Open source code for full transparency

Telemetry data helps improve TabPFN but never compromises user privacy.

Development

Setup

# Install dependencies
uv sync

# Activate virtual environment
source .venv/bin/activate

# Run tests
uv run pytest

# Type checking
uv run pyright

# Code formatting
uv run ruff check --fix

Adding Dependencies

# Add runtime dependency
uv add <package_name>

# Add development dependency
uv add --group dev <package_name>

Contributing

Contributions are welcome! Please ensure all code passes type checking and formatting requirements.

Links

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 9

Languages