Skip to content

Why can't the tensorrt engine I generated in cuda:0 be used in cuda:1? #341

@vxiaobai

Description

@vxiaobai

Why can't the tensorrt engine I generated in cuda:0 be used in cuda:1?
`Activating unet: [TRT] sd_xl_base_1.0
Loading TensorRT engine: /app/stable-diffusion-webui/models/Unet-trt/sd_xl_base_1.0_be9edd61_cc80_sample=1x4x96x96+2x4x128x128+8x4x128x128-timesteps=1+2+8-encoder_hidden_states=1x77x2048+2x77x2048+8x154x2048-y=1x2816+2x2816+8x2816.trt

Loaded Profile: 0
sample = [(1, 4, 96, 96), (2, 4, 128, 128), (8, 4, 128, 128)]
timesteps = [(1,), (2,), (8,)]
encoder_hidden_states = [(1, 77, 2048), (2, 77, 2048), (8, 154, 2048)]
y = [(1, 2816), (2, 2816), (8, 2816)]
latent = [(0), (0), (0)]

0%| | 0/40 [00:00<?, ?it/s][W] 'colored' module is not installed, will not use colors when logging. To enable colors, please install the 'colored' module: python3 -m pip install colored
[E] 1: [convBaseRunner.cpp::execute::319] Error Code 1: Cask (Cask convolution execution)
0%| | 0/40 [00:07<?, ?it/s]
*** Error completing request
*** Arguments: ('task(jj69p8cz7gmlcr4)', <gradio.routes.Request object at 0x7f6c4c13a290>, 'lora:LogoRedmondv2:1,logo, sports car, dreamlike', 'low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry', [], 1, 4, 7, 1024, 1024, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 40, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=-1, threshold_a=-1.0, threshold_b=-1.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, union_control_type=<ControlNetUnionControlType.UNKNOWN: 'Unknown'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[], batch_keyframe_idx=None), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=-1, threshold_a=-1.0, threshold_b=-1.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, union_control_type=<ControlNetUnionControlType.UNKNOWN: 'Unknown'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[], batch_keyframe_idx=None), ControlNetUnit(is_ui=True, input_mode=<InputMode.SIMPLE: 'simple'>, batch_images='', output_dir='', loopback=False, enabled=False, module='none', model='None', weight=1.0, image=None, resize_mode=<ResizeMode.INNER_FIT: 'Crop and Resize'>, low_vram=False, processor_res=-1, threshold_a=-1.0, threshold_b=-1.0, guidance_start=0.0, guidance_end=1.0, pixel_perfect=False, control_mode=<ControlMode.BALANCED: 'Balanced'>, inpaint_crop_input_image=False, hr_option=<HiResFixOption.BOTH: 'Both'>, save_detected_map=True, advanced_weighting=None, effective_region_mask=None, pulid_mode=<PuLIDMode.FIDELITY: 'Fidelity'>, union_control_type=<ControlNetUnionControlType.UNKNOWN: 'Unknown'>, ipadapter_input=None, mask=None, batch_mask_dir=None, animatediff_batch=False, batch_modifiers=[], batch_image_files=[], batch_keyframe_idx=None), False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False, None, None, False, None, None, False, None, None, False, 50) {}
Traceback (most recent call last):
File "/app/stable-diffusion-webui/modules/call_queue.py", line 74, in f
res = list(func(*args, **kwargs))
File "/app/stable-diffusion-webui/modules/call_queue.py", line 53, in f
res = func(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/txt2img.py", line 109, in txt2img
processed = processing.process_images(p)
File "/app/stable-diffusion-webui/modules/processing.py", line 847, in process_images
res = process_images_inner(p)
File "/app/stable-diffusion-webui/extensions/sd-webui-controlnet/scripts/batch_hijack.py", line 59, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "/app/stable-diffusion-webui/modules/processing.py", line 988, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "/app/stable-diffusion-webui/modules/processing.py", line 1346, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "/app/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/app/stable-diffusion-webui/modules/sd_samplers_common.py", line 272, in launch_sampling
return func()
File "/app/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "/app/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/app/stable-diffusion-webui/repositories/k-diffusion/k_diffusion/sampling.py", line 594, in sample_dpmpp_2m
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/sd_samplers_cfg_denoiser.py", line 249, in forward
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/stable-diffusion-webui/repositories/k-diffusion/k_diffusion/external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
File "/app/stable-diffusion-webui/repositories/k-diffusion/k_diffusion/external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/sd_models_xl.py", line 43, in apply_model
return self.model(x, t, cond)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/sd_hijack_utils.py", line 22, in
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "/app/stable-diffusion-webui/modules/sd_hijack_utils.py", line 34, in call
return self.__sub_func(self.__orig_func, *args, **kwargs)
File "/app/stable-diffusion-webui/modules/sd_hijack_unet.py", line 50, in apply_model
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
File "/app/stable-diffusion-webui/repositories/generative-models/sgm/modules/diffusionmodules/wrappers.py", line 28, in forward
return self.diffusion_model(
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/app/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/stable-diffusion-webui/modules/sd_unet.py", line 89, in UNetModel_forward
return current_unet.forward(x, timesteps, context, *args, **kwargs)
File "/app/stable-diffusion-webui/extensions/Stable-Diffusion-WebUI-TensorRT/scripts/trt.py", line 72, in forward
out = self.engine.infer(feed_dict, self.cudaStream)["latent"]
File "/app/stable-diffusion-webui/extensions/Stable-Diffusion-WebUI-TensorRT/utilities.py", line 320, in infer
raise ValueError("ERROR: inference failed.")
ValueError: ERROR: inference failed.`

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions