This repository contains my projects and experiments as I learn about artificial intelligence and machine learning. Thanks for the bilibili video: https://www.bilibili.com/video/BV1VZMLzMEUY
- Linear Regression Demo This demo shows a simple linear regression model using scikit-learn on the diabetes dataset.
linear_regression_demo.py
: Python script implementing the linear regression modelrequirements.txt
: Dependencies for the project
Run:
cd linear_regression && pip install -r requirements.txt && python linear_regression_demo.py
- Logistic Regression Iris Demo This demo shows a logistic regression model for iris flower classification using scikit-learn.
logistic_regression_demo_iris_classification.ipynb
: Jupyter notebook implementing the logistic regression modelrequirements.txt
: Dependencies for the project
Run:
cd logistic_regression_iris && pip install -r requirements.txt && jupyter notebook logistic_regression_demo_iris_classification.ipynb
- Logistic Regression Exam Demo This demo shows a logistic regression model to predict exam pass/fail based on Exam1 and Exam2 scores, comparing linear and quadratic decision boundaries.
logistic_regression_demo_exam.ipynb
: Jupyter notebook implementing the logistic regression modelexamdata.csv
: Dataset containing exam scores and pass/fail results
Run:
cd logistic_regression_exam && jupyter notebook logistic_regression_demo_exam.ipynb
- 2D Data Cluster Classifier Demo
This project demonstrates clustering and classification algorithms on 2D data, including KMeans, KNN, MeanShift, and DBSCAN, with visualization and accuracy evaluation.
2Ddata_cluster classifier/demo.ipynb
: Jupyter notebook with code and visualizations2Ddata_cluster classifier/data.csv
: Example dataset (not included, user should provide)2Ddata_cluster classifier/README.md
: Project-specific instructions
Run:
cd "2Ddata_cluster classifier" && jupyter notebook demo.ipynb
See the project README for details on requirements and usage.
- Anomaly Detection Demo This project demonstrates anomaly detection techniques on sample data.
anomaly_detection/demo.ipynb
: Jupyter notebook with code and visualizationsanomaly_detection/anomaly_data.csv
: Dataset for anomaly detection
Run:
cd anomaly_detection && jupyter notebook demo.ipynb
- Decision Tree Demo This project demonstrates decision tree algorithms and visualizations.
decision_tree/demo.ipynb
: Jupyter notebook with decision tree implementation
Run:
cd decision_tree && jupyter notebook demo.ipynb
- PCA Demo This project demonstrates Principal Component Analysis (PCA) for dimensionality reduction.
PCA/demo.ipynb
: Jupyter notebook with PCA implementation
Run:
cd PCA && jupyter notebook demo.ipynb