Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 28 additions & 2 deletions scripts/txt2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,31 @@
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler

from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor

# load safety model
safety_model_id = "CompVis/stable-diffusion-v-1-3"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, use_auth_token=True)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, use_auth_token=True)

def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())


def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]

return pil_images


def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
Expand Down Expand Up @@ -247,16 +266,23 @@ def main():

x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()

x_image = x_samples_ddim
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)

x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 2, 1)

if not opt.skip_save:
for x_sample in x_samples_ddim:
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1

if not opt.skip_grid:
all_samples.append(x_samples_ddim)
all_samples.append(x_checked_image_torch)

if not opt.skip_grid:
# additionally, save as grid
Expand Down