Learning to rank resources for selective search
- SVM Rank
 - Python sklean library
 
- Download /bos/tmp11/zhuyund/LeToRankResource/data.zip. Put under the same dir with source code and unzip.
 - Modify SVMRank path in the source code. Modify training basedir (./data/aol-train/ or ./data/mqt-train/) in pairwise-train-AOL-cleaned.py.
 - python ./pairwise-train-AOL-cleaned.py
 - python ./pairwise-test-clean.py
 - pairwise-test-clean.py will print out number of relevant documents retrieved by each method (when selecting 4 shards).
 - Shard list will be written into ./data/cwb-test/aol_l2r_all_{1-10}.shardlist.
 
- Be careful the following files don't override your own ones.
 cp /bos/usr0/zhuyund/fedsearch/run_l2r_cent1.sh ~/fedsearch/.cp /bos/usr0/zhuyund/fedsearch/l2r_make_runs.sh ~/fedsearch/.- Copy qrels: 
cp /bos/usr0/zhuyund/fedsearch/data/cwb*.qrels ~/fedsearch/data/. 
mkdir ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}. For example, runname='aoltrain_lim6' means LeToR trained with AOL queries, and search the top 6 shards.- Copy the shard list you want to test into ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}. 
cp ./data/cwb-test/aol_l2r_all_6.shardlist ~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/aoltrain_lim6/all.shardlist ~/fedsearch/run_l2r_cent1.sh {runname}- TrecEval results will be written into  
~/fedsearch/output/rankings/l2r/cent1-qw160-split-new/{runname}/cwb*.eval(and cwb*.Qeval) 
- upload AOL and MQT training data.