Skip to content

Commit cbe4439

Browse files
committed
Small PEP8 fixes
1 parent da425e9 commit cbe4439

File tree

5 files changed

+71
-71
lines changed

5 files changed

+71
-71
lines changed

windpowerlib/density.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,8 @@ def barometric(pressure, pressure_height, hub_height, temperature_hub_height):
3131
-------
3232
pandas.Series or numpy.array
3333
Density of air at hub height in kg/m³.
34-
Returns a pd.Series if one of the input parameters is a pd.Series.
34+
Returns a pandas.Series if one of the input parameters is a
35+
pandas.Series.
3536
3637
Notes
3738
-----
@@ -88,7 +89,8 @@ def ideal_gas(pressure, pressure_height, hub_height, temperature_hub_height):
8889
-------
8990
pandas.Series or numpy.array
9091
Density of air at hub height in kg/m³.
91-
Returns a pd.Series if one of the input parameters is a pd.Series.
92+
Returns a pandas.Series if one of the input parameters is a
93+
pandas.Series.
9294
9395
Notes
9496
-----

windpowerlib/modelchain.py

Lines changed: 63 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -20,9 +20,6 @@ class ModelChain(object):
2020
wind_turbine : WindTurbine
2121
A :class:`~.wind_turbine.WindTurbine` object representing the wind
2222
turbine.
23-
obstacle_height : float
24-
Height of obstacles in the surrounding area of the wind turbine in m.
25-
Set `obstacle_height` to zero for wide spread obstacles. Default: 0.
2623
wind_speed_model : string
2724
Parameter to define which model to use to calculate the wind speed at
2825
hub height. Valid options are 'logarithmic', 'hellman' and
@@ -42,6 +39,9 @@ class ModelChain(object):
4239
density_correction : boolean
4340
If the parameter is True the density corrected power curve is used for
4441
the calculation of the turbine power output. Default: False.
42+
obstacle_height : float
43+
Height of obstacles in the surrounding area of the wind turbine in m.
44+
Set `obstacle_height` to zero for wide spread obstacles. Default: 0.
4545
hellman_exp : float
4646
The Hellman exponent, which combines the increase in wind speed due to
4747
stability of atmospheric conditions and surface roughness into one
@@ -52,9 +52,6 @@ class ModelChain(object):
5252
wind_turbine : WindTurbine
5353
A :class:`~.wind_turbine.WindTurbine` object representing the wind
5454
turbine.
55-
obstacle_height : float
56-
Height of obstacles in the surrounding area of the wind turbine in m.
57-
Set `obstacle_height` to zero for wide spread obstacles. Default: 0.
5855
wind_speed_model : string
5956
Parameter to define which model to use to calculate the wind speed at
6057
hub height. Valid options are 'logarithmic', 'hellman' and
@@ -78,6 +75,9 @@ class ModelChain(object):
7875
The Hellman exponent, which combines the increase in wind speed due to
7976
stability of atmospheric conditions and surface roughness into one
8077
constant. Default: None.
78+
obstacle_height : float
79+
Height of obstacles in the surrounding area of the wind turbine in m.
80+
Set `obstacle_height` to zero for wide spread obstacles. Default: 0.
8181
power_output : pandas.Series
8282
Electrical power output of the wind turbine in W.
8383
@@ -98,12 +98,12 @@ class ModelChain(object):
9898
"""
9999

100100
def __init__(self, wind_turbine,
101-
obstacle_height=0,
102101
wind_speed_model='logarithmic',
103102
temperature_model='linear_gradient',
104103
density_model='barometric',
105104
power_output_model='power_curve',
106105
density_correction=False,
106+
obstacle_height=0,
107107
hellman_exp=None):
108108

109109
self.wind_turbine = wind_turbine
@@ -145,29 +145,28 @@ def temperature_hub(self, weather_df):
145145
temperature(s) closest to the hub height are used.
146146
147147
"""
148-
try:
148+
if self.wind_turbine.hub_height in weather_df['temperature']:
149149
temperature_hub = weather_df['temperature'][
150150
self.wind_turbine.hub_height]
151-
except:
152-
if self.temperature_model == 'linear_gradient':
153-
logging.debug('Calculating temperature using temperature '
154-
'gradient.')
155-
closest_height = weather_df['temperature'].columns[
156-
min(range(len(weather_df['temperature'].columns)),
157-
key=lambda i: abs(weather_df['temperature'].columns[i] -
158-
self.wind_turbine.hub_height))]
159-
temperature_hub = temperature.linear_gradient(
160-
weather_df['temperature'][closest_height], closest_height,
161-
self.wind_turbine.hub_height)
162-
elif self.temperature_model == 'interpolation_extrapolation':
163-
logging.debug('Calculating temperature using linear inter- or '
164-
'extrapolation.')
165-
temperature_hub = tools.linear_interpolation_extrapolation(
166-
weather_df['temperature'], self.wind_turbine.hub_height)
167-
else:
168-
raise ValueError("'{0}' is an invalid value. ".format(
169-
self.temperature_model) + "`temperature_model` must be "
170-
"'linear_gradient' or 'interpolation_extrapolation'.")
151+
elif self.temperature_model == 'linear_gradient':
152+
logging.debug('Calculating temperature using temperature '
153+
'gradient.')
154+
closest_height = weather_df['temperature'].columns[
155+
min(range(len(weather_df['temperature'].columns)),
156+
key=lambda i: abs(weather_df['temperature'].columns[i] -
157+
self.wind_turbine.hub_height))]
158+
temperature_hub = temperature.linear_gradient(
159+
weather_df['temperature'][closest_height], closest_height,
160+
self.wind_turbine.hub_height)
161+
elif self.temperature_model == 'interpolation_extrapolation':
162+
logging.debug('Calculating temperature using linear inter- or '
163+
'extrapolation.')
164+
temperature_hub = tools.linear_interpolation_extrapolation(
165+
weather_df['temperature'], self.wind_turbine.hub_height)
166+
else:
167+
raise ValueError("'{0}' is an invalid value. ".format(
168+
self.temperature_model) + "`temperature_model` must be "
169+
"'linear_gradient' or 'interpolation_extrapolation'.")
171170
return temperature_hub
172171

173172
def density_hub(self, weather_df):
@@ -269,43 +268,42 @@ def wind_speed_hub(self, weather_df):
269268
wind speed(s) closest to the hub height are used.
270269
271270
"""
272-
try:
271+
if self.wind_turbine.hub_height in weather_df['wind_speed']:
273272
wind_speed_hub = weather_df['wind_speed'][
274273
self.wind_turbine.hub_height]
275-
except:
276-
if self.wind_speed_model == 'logarithmic':
277-
logging.debug('Calculating wind speed using logarithmic wind '
278-
'profile.')
279-
closest_height = weather_df['wind_speed'].columns[
280-
min(range(len(weather_df['wind_speed'].columns)),
281-
key=lambda i: abs(weather_df['wind_speed'].columns[i] -
282-
self.wind_turbine.hub_height))]
283-
wind_speed_hub = wind_speed.logarithmic_profile(
284-
weather_df['wind_speed'][closest_height], closest_height,
285-
self.wind_turbine.hub_height,
286-
weather_df['roughness_length'].ix[:, 0],
287-
self.obstacle_height)
288-
elif self.wind_speed_model == 'hellman':
289-
logging.debug('Calculating wind speed using hellman equation.')
290-
closest_height = weather_df['wind_speed'].columns[
291-
min(range(len(weather_df['wind_speed'].columns)),
292-
key=lambda i: abs(weather_df['wind_speed'].columns[i] -
293-
self.wind_turbine.hub_height))]
294-
wind_speed_hub = wind_speed.hellman(
295-
weather_df['wind_speed'][closest_height], closest_height,
296-
self.wind_turbine.hub_height,
297-
weather_df['roughness_length'].ix[:, 0],
298-
self.hellman_exp)
299-
elif self.wind_speed_model == 'interpolation_extrapolation':
300-
logging.debug('Calculating wind speed using linear inter- or '
301-
'extrapolation.')
302-
wind_speed_hub = tools.linear_interpolation_extrapolation(
303-
weather_df['wind_speed'], self.wind_turbine.hub_height)
304-
else:
305-
raise ValueError("'{0}' is an invalid value. ".format(
306-
self.wind_speed_model) + "`wind_speed_model` must be "
307-
"'logarithmic', 'hellman' or "
308-
"'interpolation_extrapolation'.")
274+
elif self.wind_speed_model == 'logarithmic':
275+
logging.debug('Calculating wind speed using logarithmic wind '
276+
'profile.')
277+
closest_height = weather_df['wind_speed'].columns[
278+
min(range(len(weather_df['wind_speed'].columns)),
279+
key=lambda i: abs(weather_df['wind_speed'].columns[i] -
280+
self.wind_turbine.hub_height))]
281+
wind_speed_hub = wind_speed.logarithmic_profile(
282+
weather_df['wind_speed'][closest_height], closest_height,
283+
self.wind_turbine.hub_height,
284+
weather_df['roughness_length'].ix[:, 0],
285+
self.obstacle_height)
286+
elif self.wind_speed_model == 'hellman':
287+
logging.debug('Calculating wind speed using hellman equation.')
288+
closest_height = weather_df['wind_speed'].columns[
289+
min(range(len(weather_df['wind_speed'].columns)),
290+
key=lambda i: abs(weather_df['wind_speed'].columns[i] -
291+
self.wind_turbine.hub_height))]
292+
wind_speed_hub = wind_speed.hellman(
293+
weather_df['wind_speed'][closest_height], closest_height,
294+
self.wind_turbine.hub_height,
295+
weather_df['roughness_length'].ix[:, 0],
296+
self.hellman_exp)
297+
elif self.wind_speed_model == 'interpolation_extrapolation':
298+
logging.debug('Calculating wind speed using linear inter- or '
299+
'extrapolation.')
300+
wind_speed_hub = tools.linear_interpolation_extrapolation(
301+
weather_df['wind_speed'], self.wind_turbine.hub_height)
302+
else:
303+
raise ValueError("'{0}' is an invalid value. ".format(
304+
self.wind_speed_model) + "`wind_speed_model` must be "
305+
"'logarithmic', 'hellman' or "
306+
"'interpolation_extrapolation'.")
309307
return wind_speed_hub
310308

311309
def turbine_power_output(self, wind_speed_hub, density_hub):
@@ -347,7 +345,8 @@ def turbine_power_output(self, wind_speed_hub, density_hub):
347345
'curve.')
348346
return (power_output.power_coefficient_curve(
349347
wind_speed_hub,
350-
self.wind_turbine.power_coefficient_curve['wind_speed'],
348+
self.wind_turbine.power_coefficient_curve[
349+
'wind_speed'],
351350
self.wind_turbine.power_coefficient_curve['values'],
352351
self.wind_turbine.rotor_diameter, density_hub,
353352
self.density_correction))

windpowerlib/tools.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ def linear_interpolation_extrapolation(df, target_height):
4141
4242
For the inter- and extrapolation the following equation is used:
4343
44-
.. math:: f(x) = (f(x_2) - f(x_1)) / (x_2 - x_1) \cdot (x - x_1) + f(x_1)
44+
.. math:: f(x) = \frac{(f(x_2) - f(x_1))}{(x_2 - x_1)} \cdot (x - x_1) + f(x_1)
4545
4646
Examples
4747
---------
@@ -68,5 +68,4 @@ def linear_interpolation_extrapolation(df, target_height):
6868
key=lambda i: abs(df.columns[i] - target_height))]
6969
return ((df[heights_sorted[1]] - df[heights_sorted[0]]) /
7070
(heights_sorted[1] - heights_sorted[0]) *
71-
(target_height - heights_sorted[0]) +
72-
df[heights_sorted[0]])
71+
(target_height - heights_sorted[0]) + df[heights_sorted[0]])

windpowerlib/wind_speed.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212

1313

1414
def logarithmic_profile(wind_speed, wind_speed_height, hub_height,
15-
roughness_length, obstacle_height=0):
15+
roughness_length, obstacle_height=0.0):
1616
r"""
1717
Calculates the wind speed at hub height using a logarithmic wind profile.
1818

windpowerlib/wind_turbine.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -250,4 +250,4 @@ def get_turbine_types(print_out=True, **kwargs):
250250
pd.set_option('display.max_rows', len(df))
251251
print(df[['turbine_id', 'p_nom']])
252252
pd.reset_option('display.max_rows')
253-
return df[['turbine_id', 'p_nom']]
253+
return df[['turbine_id', 'p_nom']]

0 commit comments

Comments
 (0)