|
| 1 | +from vllm import LLM, SamplingParams |
| 2 | + |
| 3 | +import os |
| 4 | +import time |
| 5 | +import argparse |
| 6 | +import multiprocessing |
| 7 | +import logging |
| 8 | +from vllm.v1.metrics.reader import Counter, Vector |
| 9 | + |
| 10 | +logging.basicConfig( |
| 11 | + level=logging.INFO, |
| 12 | + format="[%(levelname)s][%(processName)s][%(asctime)s] %(message)s", |
| 13 | +) |
| 14 | + |
| 15 | +os.environ["VLLM_SKIP_WARMUP"] = "true" |
| 16 | +os.environ["VLLM_CONTIGUOUS_PA"] = "false" |
| 17 | +os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" |
| 18 | + |
| 19 | + |
| 20 | +def time_generation(llm: LLM, |
| 21 | + prompts: list[str], |
| 22 | + sampling_params: SamplingParams, |
| 23 | + num_spec_tokens=5): |
| 24 | + # Generate texts from the prompts. The output is a list of RequestOutput |
| 25 | + # objects that contain the prompt, generated text, and other information. |
| 26 | + # Warmup first |
| 27 | + logging.info("Warming up the model...") |
| 28 | + llm.generate(prompts, sampling_params) |
| 29 | + llm.generate(prompts, sampling_params) |
| 30 | + logging.info("Starting generation...") |
| 31 | + start = time.time() |
| 32 | + outputs = llm.generate(prompts, sampling_params) |
| 33 | + end = time.time() |
| 34 | + latency = end - start |
| 35 | + logging.info("Generation completed in %.2f seconds.", latency) |
| 36 | + # Print the outputs. |
| 37 | + ret = [] |
| 38 | + acceptance_counts = [0] * (num_spec_tokens + 1) |
| 39 | + for output in outputs: |
| 40 | + generated_text = output.outputs[0].text |
| 41 | + ret.append(generated_text) |
| 42 | + |
| 43 | + try: |
| 44 | + metrics = llm.llm_engine.get_metrics() |
| 45 | + except Exception as e: |
| 46 | + logging.error("Error getting metrics: %s", e) |
| 47 | + result_dict = { |
| 48 | + 'ret_spec': ret, |
| 49 | + 'latency': latency, |
| 50 | + 'acc_counts': acceptance_counts, |
| 51 | + 'acc_rate': 0.0, |
| 52 | + 'num_draft_tokens': 0, |
| 53 | + 'num_drafts': 0, |
| 54 | + } |
| 55 | + return result_dict |
| 56 | + num_drafts = 0 |
| 57 | + num_draft_tokens = 0 |
| 58 | + num_accepted_tokens = 0 |
| 59 | + for metric in metrics: |
| 60 | + if metric.name == "vllm:spec_decode_num_drafts": |
| 61 | + assert isinstance(metric, Counter) |
| 62 | + num_drafts += metric.value |
| 63 | + elif metric.name == "vllm:spec_decode_num_draft_tokens": |
| 64 | + assert isinstance(metric, Counter) |
| 65 | + num_draft_tokens += metric.value |
| 66 | + elif metric.name == "vllm:spec_decode_num_accepted_tokens": |
| 67 | + assert isinstance(metric, Counter) |
| 68 | + num_accepted_tokens += metric.value |
| 69 | + elif metric.name == "vllm:spec_decode_num_accepted_tokens_per_pos": |
| 70 | + assert isinstance(metric, Vector) |
| 71 | + for pos in range(len(metric.values)): |
| 72 | + acceptance_counts[pos] += metric.values[pos] |
| 73 | + |
| 74 | + accept_rate = num_accepted_tokens / num_draft_tokens \ |
| 75 | + if num_draft_tokens > 0 else 0.0 |
| 76 | + result_dict = { |
| 77 | + 'ret_spec': ret, |
| 78 | + 'latency': latency, |
| 79 | + 'acc_counts': acceptance_counts, |
| 80 | + 'acc_rate': accept_rate, |
| 81 | + 'num_draft_tokens': num_draft_tokens, |
| 82 | + 'num_drafts': num_drafts, |
| 83 | + } |
| 84 | + return result_dict |
| 85 | + |
| 86 | + |
| 87 | +def test_ngram(is_enable, args, prompts, sampling_params, task_key, |
| 88 | + result_queue): |
| 89 | + if not is_enable: |
| 90 | + llm = LLM( |
| 91 | + model="Qwen/Qwen3-4B", |
| 92 | + disable_log_stats=False, |
| 93 | + ) |
| 94 | + else: |
| 95 | + llm = LLM( |
| 96 | + model="Qwen/Qwen3-4B", |
| 97 | + speculative_config={ |
| 98 | + "method": "ngram", |
| 99 | + "prompt_lookup_max": 3, |
| 100 | + "num_speculative_tokens": args.num_spec_tokens, |
| 101 | + }, |
| 102 | + disable_log_stats=False, |
| 103 | + ) |
| 104 | + |
| 105 | + result_dict = time_generation(llm, prompts, sampling_params, |
| 106 | + args.num_spec_tokens) |
| 107 | + |
| 108 | + result_queue.put((task_key, result_dict)) |
| 109 | + |
| 110 | + |
| 111 | +def test_eagle_model(is_enable, args, prompts, sampling_params, task_key, |
| 112 | + result_queue): |
| 113 | + if not is_enable: |
| 114 | + llm = LLM( |
| 115 | + model="meta-llama/Meta-Llama-3-8B-Instruct", |
| 116 | + disable_log_stats=False, |
| 117 | + enforce_eager=args.enforce_eager, |
| 118 | + ) |
| 119 | + else: |
| 120 | + llm = LLM( |
| 121 | + model="meta-llama/Meta-Llama-3-8B-Instruct", |
| 122 | + speculative_config={ |
| 123 | + "model": "yuhuili/EAGLE-LLaMA3.1-Instruct-8B", |
| 124 | + "num_speculative_tokens": args.num_spec_tokens, |
| 125 | + }, |
| 126 | + disable_log_stats=False, |
| 127 | + enforce_eager=args.enforce_eager, |
| 128 | + ) |
| 129 | + |
| 130 | + result_dict = time_generation(llm, prompts, sampling_params, |
| 131 | + args.num_spec_tokens) |
| 132 | + result_queue.put((task_key, result_dict)) |
| 133 | + |
| 134 | + |
| 135 | +def test_medusa_model(is_enable, args, prompts, sampling_params, task_key, |
| 136 | + result_queue): |
| 137 | + if not is_enable: |
| 138 | + llm = LLM( |
| 139 | + model="JackFram/llama-68m", |
| 140 | + disable_log_stats=False, |
| 141 | + enforce_eager=args.enforce_eager, |
| 142 | + ) |
| 143 | + else: |
| 144 | + llm = LLM( |
| 145 | + model="JackFram/llama-68m", |
| 146 | + speculative_config={ |
| 147 | + "model": "abhigoyal/vllm-medusa-llama-68m-random", |
| 148 | + "num_speculative_tokens": args.num_spec_tokens, |
| 149 | + }, |
| 150 | + disable_log_stats=False, |
| 151 | + enforce_eager=args.enforce_eager, |
| 152 | + ) |
| 153 | + |
| 154 | + result_dict = time_generation(llm, prompts, sampling_params, |
| 155 | + args.num_spec_tokens) |
| 156 | + result_queue.put((task_key, result_dict)) |
| 157 | + |
| 158 | + |
| 159 | +def test_mtp_model(is_enable, args, prompts, sampling_params, task_key, |
| 160 | + result_queue): |
| 161 | + if not is_enable: |
| 162 | + llm = LLM( |
| 163 | + model="Qwen/Qwen3-4B", |
| 164 | + disable_log_stats=False, |
| 165 | + ) |
| 166 | + else: |
| 167 | + llm = LLM( |
| 168 | + model="Qwen/Qwen3-4B", |
| 169 | + speculative_config={ |
| 170 | + "method": "deepseek_mtp", |
| 171 | + "model": "Qwen/Qwen3-0.6B", |
| 172 | + "num_speculative_tokens": args.num_spec_tokens, |
| 173 | + }, |
| 174 | + disable_log_stats=False, |
| 175 | + ) |
| 176 | + |
| 177 | + result_dict = time_generation(llm, prompts, sampling_params, |
| 178 | + args.num_spec_tokens) |
| 179 | + result_queue.put((task_key, result_dict)) |
| 180 | + |
| 181 | + |
| 182 | +if __name__ == "__main__": |
| 183 | + multiprocessing.set_start_method("spawn", force=True) |
| 184 | + parser = argparse.ArgumentParser(description="Test spec decode.") |
| 185 | + parser.add_argument("--batch_size", type=int, default=8) |
| 186 | + parser.add_argument("--osl", type=int, default=50) |
| 187 | + parser.add_argument("--num_spec_tokens", |
| 188 | + type=int, |
| 189 | + default=1, |
| 190 | + help="Number of speculative tokens to generate.") |
| 191 | + parser.add_argument("--task", |
| 192 | + type=str, |
| 193 | + default="eagle", |
| 194 | + help="Tasks to run the evaluation on.") |
| 195 | + parser.add_argument( |
| 196 | + "--run_base", |
| 197 | + action="store_true", |
| 198 | + help="Run the baseline tasks without speculative decoding.") |
| 199 | + parser.add_argument("--enforce_eager", |
| 200 | + action="store_true", |
| 201 | + help="Enforce eager execution for Eagle model.") |
| 202 | + |
| 203 | + # 'ngram', 'eagle', 'eagle3', 'medusa', 'mlp_speculator', |
| 204 | + # 'draft_model' or 'deepseek_mtp |
| 205 | + # V1 does not support draft_model yet. |
| 206 | + # MLP speculator => https://github.com/vllm-project/vllm/pull/21276 |
| 207 | + args = parser.parse_args() |
| 208 | + |
| 209 | + # Sample prompts. |
| 210 | + prompts = [ |
| 211 | + "Hello, my name is", |
| 212 | + "The president of the United States is", |
| 213 | + "The capital of France is", |
| 214 | + "The future of AI is", |
| 215 | + "San Francisco is know for its", |
| 216 | + "Facebook was created in 2004 by", |
| 217 | + "Curious George is a", |
| 218 | + "Python 3.11 brings improvements to its", |
| 219 | + ] |
| 220 | + if args.batch_size < len(prompts): |
| 221 | + prompts = prompts[:args.batch_size] |
| 222 | + else: |
| 223 | + prompts = prompts * (args.batch_size // len(prompts) |
| 224 | + ) + prompts[:args.batch_size % len(prompts)] |
| 225 | + |
| 226 | + sampling_params = SamplingParams(temperature=0, |
| 227 | + max_tokens=args.osl, |
| 228 | + ignore_eos=True) |
| 229 | + |
| 230 | + task_queue = {} |
| 231 | + result_queue = multiprocessing.Queue() |
| 232 | + task = args.task |
| 233 | + if task == "ngram": |
| 234 | + if args.run_base: |
| 235 | + task_queue['baseline_ngram'] = { |
| 236 | + 'proc': |
| 237 | + multiprocessing.Process(target=test_ngram, |
| 238 | + args=(False, args, prompts, |
| 239 | + sampling_params, |
| 240 | + 'baseline_ngram', result_queue)) |
| 241 | + } |
| 242 | + task_queue['spec_ngram'] = { |
| 243 | + 'proc': |
| 244 | + multiprocessing.Process(target=test_ngram, |
| 245 | + args=(True, args, prompts, sampling_params, |
| 246 | + 'spec_ngram', result_queue)) |
| 247 | + } |
| 248 | + elif task == "deepseek_mtp": |
| 249 | + if args.run_base: |
| 250 | + task_queue['baseline_mtp'] = { |
| 251 | + 'proc': |
| 252 | + multiprocessing.Process(target=test_mtp_model, |
| 253 | + args=(False, args, prompts, |
| 254 | + sampling_params, 'baseline_mtp', |
| 255 | + result_queue)) |
| 256 | + } |
| 257 | + task_queue['spec_mtp'] = { |
| 258 | + 'proc': |
| 259 | + multiprocessing.Process(target=test_mtp_model, |
| 260 | + args=(True, args, prompts, sampling_params, |
| 261 | + 'spec_mtp', result_queue)) |
| 262 | + } |
| 263 | + elif task == "eagle": |
| 264 | + if args.run_base: |
| 265 | + task_queue['baseline_eagle'] = { |
| 266 | + 'proc': |
| 267 | + multiprocessing.Process(target=test_eagle_model, |
| 268 | + args=(False, args, prompts, |
| 269 | + sampling_params, |
| 270 | + 'baseline_eagle', result_queue)) |
| 271 | + } |
| 272 | + task_queue['spec_eagle'] = { |
| 273 | + 'proc': |
| 274 | + multiprocessing.Process(target=test_eagle_model, |
| 275 | + args=(True, args, prompts, sampling_params, |
| 276 | + 'spec_eagle', result_queue)) |
| 277 | + } |
| 278 | + elif task == "medusa": |
| 279 | + if args.run_base: |
| 280 | + task_queue['baseline_eagle'] = { |
| 281 | + 'proc': |
| 282 | + multiprocessing.Process(target=test_medusa_model, |
| 283 | + args=(False, args, prompts, |
| 284 | + sampling_params, |
| 285 | + 'baseline_medusa', result_queue)) |
| 286 | + } |
| 287 | + task_queue['spec_medusa'] = { |
| 288 | + 'proc': |
| 289 | + multiprocessing.Process(target=test_medusa_model, |
| 290 | + args=(True, args, prompts, sampling_params, |
| 291 | + 'spec_medusa', result_queue)) |
| 292 | + } |
| 293 | + |
| 294 | + try: |
| 295 | + for key, task in task_queue.items(): |
| 296 | + logging.info( |
| 297 | + "=============== Starting task: %s ====================", key) |
| 298 | + task['proc'].start() |
| 299 | + task['proc'].join() |
| 300 | + logging.info( |
| 301 | + "=============== Task %s completed. ====================", key) |
| 302 | + for _ in range(len(task_queue)): |
| 303 | + key, result_data = result_queue.get() |
| 304 | + task_queue[key]['result'] = result_data |
| 305 | + except KeyboardInterrupt: |
| 306 | + logging.info("Interrupted by user, terminating processes...") |
| 307 | + finally: |
| 308 | + for key, proc in task_queue.items(): |
| 309 | + print(f"================= {key} =================") |
| 310 | + print(f"latency: {proc['result']['latency']}") |
| 311 | + print(f"acc_counts: {proc['result']['acc_counts']}") |
| 312 | + print(f"acc_rate: {proc['result']['acc_rate']}") |
| 313 | + print(f"num_draft_tokens: {proc['result']['num_draft_tokens']}") |
| 314 | + print(f"num_drafts: {proc['result']['num_drafts']}") |
| 315 | + for prompt, text in zip(prompts, proc['result']['ret_spec']): |
| 316 | + print("---") |
| 317 | + print(f"Prompt: {prompt}") |
| 318 | + print(f"Generated text: {text[:200]}'...'") |
| 319 | + print("=========================================") |
| 320 | + if proc['proc'].is_alive(): |
| 321 | + proc['proc'].terminate() |
| 322 | + proc['proc'].join(timeout=2) |
| 323 | + logging.info("Benchmark finished.") |
0 commit comments