
Packaging Options for Rx.NET v.next
This document explores the pros and cons of various potential packaging strategies for the next
version of Rx.NET.

The main driving factor behind this is that some projects (e.g. Avalonia) have abandoned Rx.NET
because it forces applications targeting a Windows-specific TFM (e.g. net8.0-
windows10.0.19041) to have a dependency on the Microsoft.Desktop.App framework, with the
effect that tens of megabytes of unnecessary framework DLLs get deployed alongside the app
when using self-contained deployment.

Reverting this is non-trivial because most of the obvious ways of fixing this break a greal deal of
code that already uses Rx. In many cases, it leaves applications in a position where there’s
nothing they can do to fix the problem other than abandoning Rx.NET

It is our goal not to have anyone feel that they have to abandon Rx.NET. This document outlines
the solutions under consideration, and describes the pros and cons of each approach.

Summary of Issues with Candidate Packaging
This table shows summaries of findings for each of the candidate packaging approaches. These approaches are described in detail in the following
sections.

Packaging
Option

Questionable
ref assembly
tricks

Unwanted
Microsoft.Windows-
Desktop.App

Build failures Runtime failures

In
legacy
facade

In main
package

Legacy refs
need
attention

Imposed by
System.Rea
ctive

Desktop
API use
requires
explicit FX
ref where
required

Rx UI use
requires
new
package ref

Multiple
Rx
versions
in scope

Other
undiagnosed
issues

Desktop
API use
requires
explicit
FX ref
where
required

Rx UI
use
requires
new
package
ref

Other
undiagnosed
issues

legacyfacade.1 Yes No NA Yes Yes No Yes Yes No No No

legacyfacade-
refnoui.3

Yes No Yes No Yes Yes Yes Yes Yes Yes No

legacyfacade-
refnoui-
withfxref.1

Yes No NA Yes Yes No Yes Yes No No Yes

nofacade-
refnoui.5

Yes Yes No No No No No No Yes No No

Straightforward legacy facade (legacyfacade.1)
This introduces a new main Rx package System.Reactive.Net with no UI framework
dependencies. UI-framework-specific code moves into specialised packages such
as System.Reactive.For.Wpf. The System.Reactive package becomes a legacy facade to
maintain backwards compatibility, offering the same public API as in previous versions, using
type forwarders to refer to the new homes of these types.

Issues in brief
We will not use this option, because it has two major weaknesses (one of which is addressed by
the legacyfacade-refnoui variation described later):

• System.Reactive imposes a dependency on the Microsoft.Desktop.App framework

• Applications may find that they have two versions of Rx in scope simultaneously

That second problem is easy for applications to fix, but it adds friction. The first is more
problematic because there's no good workaround.

Packaging
Option

Questionable ref
assembly tricks

Unwanted
Microsoft.Windows
Desktop.App

Build failures Runtime failures

In legacy
facade

In main
package

Legacy
refs need
attention

Imposed
by
System.
Reactive

Desktop
API use
requires
explicit FX
ref where
required

Rx UI
use
requir
es new
packa
ge ref

Multiple
Rx
versions
in scope

Other
undiag
nosed
issues

Desktop
API use
requires
explicit FX
ref where
required

Rx UI
use
require
s new
packag
e ref

Other
undiagnos
ed issues

legacyfacade
.1

Yes No NA Yes Yes No Yes Yes No No No

System.Reactive continues to provide UI-framework-specific types
The greatest weakness of this packaging option affects applications that have a transitive
dependency on System.Reactive. Their only option for avoiding a dependency
on Microsoft.Desktop.App (the framework reference that causes self-contained application
deployments to grow by 30MB or more) is to set <DisableTransitiveFrameworkReferences>, but
this doesn't always work: if the application itself also uses Rx directly, this can create a situation
in which code does not compile.

Rx.NET is very widely used, so an application that uses a wide range of NuGet packages may
well find that one or more of those happens to use Rx, meaning that the application has
a transitive dependency on Rx. For many years to come it is likely that some libraries will remain
on Rx 6.0, meaning that this is going to be a very common scenario. Since
this legacyfacade option does not deal with this scenario well, it is not a viable solution.

Why?
To understand why this problem is fundamentally unavoidable when using the simple legacy
facade approach, remember that in this model, the essential role of System.Reactive is to
provide backwards compatibility, both at build time and at runtime. This means two things:

• applications will end up with a dependency on this package if it uses any libraries
that depend on an old version of Rx

• New versions of System.Reactive have to provide the same API as in Rx v6

So although this approach separates the UI-framework-specific code out into new components,
the System.Reactive legacy facade is obliged to reference those components to be able to
forward types to them. So if you were to look at the dependencies for System.Reactive, 7.0.0-
preview-legacyfacade.1.ga1159cd7f3 in the NuGet package viewer in Visual Studio you'd see it
list these dependencies:

• .NETFramework,Version=v4.7.2
o System.Reactive.Net
o System.Reactive.Net.For.WindowsForms
o System.Reactive.Net.For.Wpf
o System.Threading.Tasks.Extensions

• UAP,Version=v10.0.18362
o System.Reactive.Net
o System.Reactive.Net.For.WindowsRuntime
o System.Threading.Tasks.Extensions
o Microsoft.NETCore.UniversalWindowsPlatform

• net8.0
o System.Reactive.Net

• net8.0-windows10.0.19041
o System.Reactive.Net
o System.Reactive.Net.For.WindowsForms
o System.Reactive.Net.For.WindowsRuntime
o System.Reactive.Net.For.Wpf

• .NETStandard,Version=2.0
o System.Reactive.Net
o System.Threading.Tasks.Extensions

Since we're considering the 'bloat' problem, the significant target here is net8.0-
windows10.0.19041. Since the net6.0-windows10.0.19041 target in v6 offered Windows Forms,
WPF, and certain Windows Runtime features, it must continue to do so in its new role as a
legacy facade. And to be able to define type forwarders to the newly-repackaged UI-framework-
specific types, it must specify dependencies on those new packages. And since the new WPF
and Windows Forms packages require the Microsoft.Desktop.App framework, that means
that System.Reactive also imposes a dependency on that framework.

DisableTransitiveFrameworkReferences
In some cases applications might be able to work around this problem by adding this to
their csproj:

<PropertyGroup>
 <DisableTransitiveFrameworkReferences>True</DisableTransitiveFrameworkReferences>
</PropertyGroup>

This tells the .NET build system that if any of the packages our application depends on state that
they require framework reference (e.g. to Microsoft.Desktop.App) it should ignore that.

In fact, you can do this with Rx 6. There are some situations in which applications using self-
contained deployment that find themselves deploying an unwanted copy of the desktop UI
frameworks can avoid the problem by adding that setting to the project file.

Unfortunately it doesn't always work. (If it did work, we wouldn't need to rethink Rx's packaging.)

If the application doesn't use Rx directly itself—if its dependency on Rx was purely for the
benefit of some libraries it happens to use—this workaround will typically be successful. But if
the application was also using Rx itself, this tends to go wrong. Specifically, attempting to use
certain extension methods (e.g. ObserveOn) causes compiler errors when you
set DisableTransitiveFrameworkReferences.

The basic problem here is that Rx's net8.0-windows10.0.19041 target defines all UI-framework-
specific APIs, and in some cases this extends the set of overloads available for certain
extension methods. For example, the basic net8.0 and netstandard2.0 targets define just
two ObserveOn extension method overloads for IObservable<T>: one taking
a SynchronizationContext, and one taking an IScheduler. But the net8.0-
windows10.0.19041 target defines some 10 overloads, including ones that accept a Windows
Forms Control, or a WPF DispatcherObject. This might not seem like it should be a problem—
you might think that as long as you only use one of the two overloads that don't use any UI
framework types, everything will be fine. Sadly not. If you write,
say, obs.ObserveOn(SynchronizationContext.Current), which should resolve to one of the non-
UI-framework-specific overloads, the C# compiler is obliged to consider all available overloads
when deciding which particular one you meant. So it has to look at all of the UI-framework-
specific overloads even though you don't mean to use them. And then, because the project
disabled transitive framework references, types such as Windows Forms' Control, or
WPF's DispatcherObject are unavailable to the compiler, meaning it can't actually work out
whether those overloads are applicable. For all the compiler knows, those types might define
implicit conversions that could affect the overload resolution process. And since it can't see
those types it can't work out which overload to use, and compilation fails.

Legacy facade with type hiding (legacyfacade-refnoui.3)
This is almost identical to the approach desribed in the preceding section. It introduces a new
main Rx package System.Reactive.Net with no UI framework dependencies. UI-framework-
specific code moves into specialised packages such as System.Reactive.For.Wpf.
The System.Reactive package becomes a legacy facade to maintain backwards compatibility,
offering the same public API at runtime as in previous versions, using type forwarders to refer to
the new homes of these types.

There is one critical difference: in this approach, System.Reactive makes the UI-framework-
specific types available only at runtime. Whereas in the preceding
approach, System.Reactive offered both build-time and runtime compatibility, in this approach

it offers only binary compatibility. The API surface area apparently available at build time does
not include any UI-framework-specific features. This in turn enables the package not to have to
declare dependencies on any of the UI-framework-specific Rx packages, which in turn also
enables it not to impose a dependency on the Microsoft.Desktop.App framework.

It achieves this by providing both runtime and reference assemblies (in the lib and ref subfolder
of the NuGet package respectively). The runtime assemblies define the same full public API as
previous versions of System.Reactive (using type forwarders to these types' new locations). The
reference assemblies omit all the UI-framework-specific types.

Issues in brief
This option, has the follwoing significant weaknesses:

• Applications may find that they have two versions of Rx in scope simultaneously

• Desktop applications that upgrade System.Reactive from v6 to v7 that were in fact using
the UI framework support will now get either build or runtime errors, and will need
somehow to discover that they also need to add a reference
to System.Reactive.For.Wpf/WindowsForms to fix this

• It relies on a trick: reference assemblies defining a different API than is on offer at
runtime, and 'clever' tricks often cause problems

Packaging
Option

Questionable ref
assembly tricks

Unwanted
Microsoft.Windows
Desktop.App

Build failures Runtime failures

In
legacy
facade

In main
package

Legacy
refs need
attention

Imposed
by
System.R
eactive

Desktop
API use
requires
explicit FX
ref where
required

Rx UI
use
requires
new
package
ref

Multiple
Rx
versions
in scope

Other
undiagn
osed
issues

Desktop
API use
requires
explicit FX
ref where
required

Rx UI
use
require
s new
packag
e ref

Other
undiagnos
ed issues

legacyfaca
de-
refnoui.3

Yes No Yes No Yes Yes Yes Yes Yes Yes No

Desktop dependency no longer imposed
The major benefit that this offers over the preceding solution is that applications using self-
contained deployment, and that find themselves with a dependency on System.Reactive (which
might be unavoidable because they depend on a library that uses Rx) are now able to avoid the
'bloat' problem (deploying an unwanted copy of Microsoft.Desktop.App). (The 'Imposed
by System.Reactive column is green for this option.) They can do this by upgrading to the latest
version of System.Reactive.

Mixed versions
A confusing downside of this approach is that if an application has a reference (either direct or
transitive) to the latest main Rx assembly, System.Reactive.Net, and also has a transitive
reference to an old version of System.Reactive, that reference to the new main Rx package
won't automatically upgrade the old one. So the application will simultaneously be using:

• System.Reactive.Net,7.0.0
• System.Reactive,6.0.0

This is represented by the red 'Multiple Rx verions in scope' column. The preceding design
option also has this problem. It's an unavoidable consequence of turning System.Reactive into
a legacy facade and introducing a new main Rx package.

This situation doesn't necessarily have to be a problem. If an applications doesn't care about
the bloat problem (which only affects self-contained deployment) and if it doesn't use Rx
directly—if Rx is being used only by other libraries—these two versions can happily coexist in
the same process.

If the application does use Rx directly, the error messages that arise from this situation are
somewhat baffling. That said, we might be able to mitigate that with a code analyzer that
detects when this has happened, and tells you what to do.

Discoverability
When the application is using self-contained deployment and finds itself with the bloat problem
caused by an indirect reference to an old version of Rx, it probably won't be at all obvious how to
fix this. The correct action will be to add a reference to System.Reactive,7.0.0 to their
application, but since System.Reactive will have been marked as deprecated, developers could
very well think that this can't be the right way to proceed.

This is an example of the kind of confusion that meant some veteran Rx developers really didn't
want yet another significant change to Rx's packaging.

Legacy facade with type hiding but desktop framework
reference (legacyfacaderefnouiwithfxref)
This variation mainly exists to illustrate the kind of problem where fixing one issue causes new
ones that are, for a wide range of scenarios, much worse than the problem being fixed. (That's
quite a common problem with the various ways in which people have suggested Rx's long-
standing packaging problems might be fixed.)

This is essentially the same as the preceding approach (legacyfacaderefnoui) but it fixes one
column: the 'Rx UI use requires new package ref' column under 'Build failures' is green here:

Packaging
Option

Questionable ref
assembly tricks

Unwanted
Microsoft.Window
sDesktop.App

Build failures Runtime failures

In
legacy
facade

In main
package

Legacy
refs
need
attentio
n

Imposed
by
System.
Reactive

Desktop
API use
requires
explicit FX
ref where
required

Rx UI
use
requires
new
package
ref

Multiple
Rx
versions
in scope

Other
undiagnose
d issues

Desktop
API use
requires
explicit
FX ref
where
required

Rx UI
use
require
s new
packag
e ref

Other
undiagnos
ed issues

legacyfaca
de-refnoui-
withfxref.1

Yes No NA Yes Yes No Yes Yes No No Yes

Scenario addressed here is applications that were in the situation that Rx 6's UI framework
support packaging was specifically designed for. If the reason your app targets net8.0-
windows10.0.19041 is that you're building a WPF application, then Rx 6's behaviour works great:
it makes all the WPF-specific types available to you without additional package references. And
it even gives you a dependency on the Microsoft.Desktop.App framework without you having to
ask for it.

Of course that last part is, for many potential Rx users, exactly the problem they want us to fix.
But for someone writing a WPF application, this is benefit, not a problem.

This design variation illustrates what happens if we take the preceding design option, but try to
retain the existing behaviour in this one particular way: the package continues to supply an
implicit reference to the Microsoft.Desktop.App package.

(Actually the other reason we have this is that when you're trying to do the preceding packaging,
it's quite easy to end up with this one by accident...)

Anyway, the red cell in the 'Imposed by System.Reactive' makes this a non-starter, so we won't
be doing this.

System.Reactive remains as main Rx package, with type hiding
(nofacade-refnoui.5)
Unlike all the other packing options shown so far, this one does not relegate System.Reactive to
being a legacy facade: in this model System.Reactive continues to be the main Rx package. This
has some significant advantages. It also causes two problems, one potentially quite serious.

In this model, we use the same type hiding trick as in the legacyfacade-refnoui approach:
although System.Reactive provides the full legacy API for runtime backwards compatibility, it
includes reference assemblies that omit these, so the API visible at build-time does not offer
any UI-framework-specific features. Applications or libraries building
against System.Reactive v7.0 or later must use the new System.Reactive.For.* packages to get
the UI-framework-specific types they require.

In the summary table, this option seems to present mostly green cells compared to the
prevalance of yellow and red for the other options. However, it has one particularly serious
issue.

Issues in brief
This design has the following problems:

• Just like legacyfacade-refnoui, this relies on a trick that could cause problems, but this
time that trick is in the main Rx package, and not just a compatibility facade

• With this design option we are doomed to continue to provide a uap10.0.18362 target in
the main Rx assembly for the foreseeable future (likely at least for a decade), something
that the .NET SDK has never supported, and never will

Full disclosure: that second one is a major cause of pain for ongoing Rx.NET development, so it
biases anyone who has to work on Rx (e.g., me) against this particular solution. However, as far
as I know, this second point doesn't cause any problems for people using Rx. If this were the
only issue with this problem, I would reluctantly resign myself to having to continue to battle

with the problems caused by the present of old-school UWP code in the main project. It's
horrible, but if this is the way to provide the best experience for developers using Rx, then I just
have to cope with the pain.

(And no the support that net9.0 added for UWP does not help us in any way at all in the near
term. On the contrary, it just adds yet another configuration we have to consider in our test
matrix. It does not change the fact that if we simply drop the uap10.0.18362 target completely
from System.Reactive, then anyone who still has to maintain applications built for that target
would find their build was broken in a way that was impossible to fix without removing Rx, which
might mean they'd have to stop using other components that happen to depend on Rx. The good
thing about net9.0's addition of UWP is that it does point to a possible future in which nobody
has any good reason to remain on the uap10.0.18362 target. A plausible path to deprecation
and eventual removal of our uap target does exist, but that's several years into the future, so it
doesn't help us today.)

Packagin
g Option

Questionable
ref assembly
tricks

Unwanted
Microsoft.Windo
wsDesktop.App

Build failures Runtime failures

In
legacy
facade

In
main
pack
age

Legacy
refs
need
attentio
n

Imposed
by
System.
Reactive

Desktop
API use
requires
explicit FX
ref where
required

Rx UI use
requires
new
package
ref

Multiple
Rx
versions
in scope

Other
undiagn
osed
issues

Desktop API
use requires
explicit FX ref
where
required

Rx UI use
requires
new
package
ref

Other
undiagno
sed
issues

nofacade
-refnoui.5

Yes Yes No No No No No No Yes No No

The consequences of 'clever' tricks
As far as it's currently possible to tell, this design approach really only has one major
shortcoming: it relies on the non-standard trick of making types available at runtime but hiding
them in the reference assemblies.

This is arguably an abuse of the reference assembly feature. It's not really what they are for.
Reference assemblies are supposed to have the same public API surface area as the runtime
assemblies. The tooling Microsoft provides for generating reference assemblies makes that
assumption, and we've had to make the Rx.NET build perform some unnatural acts to make this
work.

This worries me. The history of addressing Rx packaging problems with clever tricks does not
look good. The initial attempt to solve the plug-in problem performed a slightly off-piste trick,
and it caused so many problems in scenarios outside the ones it was trying to fix (and those
newly-problematic scenarios were much more common than the plug-in problems) that Rx
eventually reversed that design decision. The problems we're still wrestling with today around
unwanted desktop framework references were a result of some clever tricks that enabled the
Great Unification. This worked well at the time, but fairly soon afterwards, developments in the
.NET ecosystem meant these choices have gone on to cause problems in the long run.

For that reason, I am very reluctant to introduce a new 'clever' trick into the main Rx package.

For that reason I don't like this nofacade-refnoui approach. Even if nobody today can think of
any reason that this will necessarily cause problems, the history of Rx teaches us that this is no
guarantee.

I therefore have a bias towards as much normality as possible. (This is also a reason to want to
remove all uap10.0.18362 code from the main Rx package.) And for this reason, I prefer
the legacyfacade-refnoui approach. Yes, that uses the exact same 'type hiding with reference
assemblies' trick but the crucial difference is that it does this only with the legacy compatibilty
package, a package we ultimately would like everyone to stop using. The new main
package, System.Reactive.Net gets to be normal in this world, something that seems not to be
possible if System.Reactive continues to be the main Rx package.

Note that the 'Rx UI use requires new package ref' column under 'Runtime failures' is green.
That's different from the legacyfacade-refnoui, where if you really were actually using UI-
framework-specific features indirectly through a transitive reference, you'll get a runtime error
because those the type forwarders refer to System.Reactive.For.* assemblies, but
the System.Reactive NuGet package does not declare dependencies on the packages that
contain those assemblies. (It can't, because if it did, the) need to add a package reference

Desktop API use requires explicit FX ref where required

We're able to avoid runtime failures because this isn't purely type forwarders. That does mean
there are, once again, two instances of certain types.

Possibilities not yet prototyped
The nofacade-refnoui option uses a technique to avoid runtime failures when you indirectly (via
a transitive reference) use UI-framework-specific Rx features but you've not explicitly referenced
the relevant packages. It does this by baking in its own copies of the relevant types specifically
for use in runtime compatibility scenarios.

In principle we could do the same even when System.Reactive is nominally a facade. An
assembly does not need to be purely a facade consisting of nothing by type forwarders: you can
have a mixture of forwarders and actual code. So we could make a nofacade-refnoui-
hasuitypesatruntime variation, in which System.Reactive contains its own copies of things
like DispatcherScheduler and so on. These would be used at runtime by any packages that used
these particular features and were compiled against Rx 6. Code compiled against Rx 7 and later
would be obliged to use the System.Reactive.For.* packages because these runtime
compatibility types would continue not to be visible in the build-time public API
of System.Reactive.

