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Summary

The tone hole geometry of a clarinet is optimized numerically. The instrument is modeled as a network of one di-
mensional transmission line elements. For each (non-fork) fingering, we first calculate the resonance frequencies
of the input impedance peaks, and compare them with the frequencies of a mathematically even chromatic scale
(equal temperament). A least square algorithm is then used to minimize the differences and to derive the geome-
try of the instrument. Various situations are studied, with and without dedicated register hole and/or enlargement
of the bore. With a dedicated register hole, the differences can remain less than 10 musical cents throughout the
whole usual range of a clarinet. The positions, diameters and lengths of the chimneys vary regularly over the
whole length of the instrument, in contrast with usual clarinets. Nevertheless, we recover one usual feature of
instruments, namely that gradually larger tone holes occur when the distance to the reed increases. A fully chro-
matic prototype instrument has been built to check these calculations, and tested experimentally with an artificial

blowing machine, providing good agreement with the numerical predictions.

PACS no. 43.75.Pq, 43.20.Mv

1. Introduction

Woodwind instruments of the orchestra have often attained
their geometrical shapes through a slow gradual process,
which in many cases has taken centuries. Guided by trial
and error, skilled craftsmen have managed to develop the
instruments as we know them today. In this article we
study the clarinet. Most of its evolutionary process (addi-
tion of new holes and keys, etc.) was made of the succes-
sion of many small steps, each implying a limited depar-
ture from a previous configuration — for clarinets the only
radical change was the introduction of the “Boehm sys-
tem” of French instruments by Klosé in the middle of the
19" century. A typical wind instrument has a large num-
ber of design parameters (positions and size of the holes
and the chimneys, bore, etc.), while many of them con-
tribute at the same time to the production of each note.
Indeed, changing one of them in order to correct a certain
note may have an unexpected, and often adverse, effect on
other notes in terms of pitch, tone quality, stability, etc. In
a posthumous paper, Benade [1] attempted to analyze the
evolutionary path since the 18th century.

Trying new configurations by the traditional method re-
quires a large amount of work. It therefore seems likely
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that the modifications tested by the instrument makers
have been limited to relatively small changes, affecting
only a few parameters at the same time. In other words, in
terms of optimization, existing instrument designs proba-
bly represent local extrema of some optimization function,
in the sense that a small change in the set of tone hole po-
sitions, radii etc. inevitably worsens the instrument. Nev-
ertheless there might exist better geometrical shapes that
are more distant in the parameter space, and therefore not
accessible through small improvements of an existing de-
sign. An additional reason to believe in this scenario is
given by the observation of the rather irregular tone hole
pattern of many woodwinds, with alternating small and
large holes, short and long chimneys, closed holes (opened
for one note only) etc. It seems that no particular physical
principle could explain why such an irregularity is desir-
able; there are actually reasons to believe that it is not, in
particular if homogeneity of the production of sound over
the different notes is required.

Nowadays, with mathematical models of the instrument
and computer optimization algorithms, it is possible to test
a number of configurations that would be inaccessible by
the traditional method. It is therefore interesting to explore
which results can be obtained by automatic optimization,
to compare them with existing instruments, and to inves-
tigate if a strong irregularity spontaneously emerges from
the optimization. The idea is not necessarily to create some
completely new or exotic instrument, even if this possibil-
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ity is not excluded in the long run. It is rather to investigate
whether allowing large “leaps” from usual designs leads
to a completely different geometry of the instruments, to
try and reach more “logical” configuration of the acous-
tical resonator, and eventually test them acoustically. In
particular, an open question (not answered in this work)
is whether or not the use of fork fingering, often used in
clarinets, is an acoustical necessity, or just the result of the
complicated past history of the instrument.

The purpose of this work is therefore to develop algo-
rithms for designing, and possibly improving, woodwind
instruments, in the case of the clarinet. It is to see if it is
possible to conceive a “logical clarinet”, with a perfectly
regular fingering chart, and where the relations between
the acoustical functions of the resonator and its geometry
are more easy to grasp than in the traditional instrument.
Of course, the instrument should produce correct pitch for
all notes. Fortunately this problem is not too complicated
to address in terms of calculated acoustical impedances:
for simplicity it can be assumed that playing frequencies
can be derived from resonance frequencies with a simple
length correction in order to account for reed flow and dy-
namics [2]. A more difficult issue is to design an instru-
ment with balanced timbre over its entire range. While the
precise relation between tone quality and cutoff frequency
of the tone hole lattice [3] is still not perfectly understood,
experience seems to show that a regular cutoff frequency
is useful (see [4], page 485). Here, we study the possibility
of designing an instrument with a much more regular tone
hole lattice in terms of tone hole diameters and positions,
able to produce a complete chromatic scale over the full
range of the traditional instrument.

Of course, whether such instruments will prove to be
musically useful is not obvious a priori. Nevertheless, if
this is the case, it is clear that interesting perspectives for
making simpler and cheaper instruments could be envis-
aged. Our study is limited to the purely acoustical aspects
of instrument design; we have not studied the problem of
mechanical keys that are necessary for an instrumentalist
to really play the instrument. This is indeed an important
question, but this task is beyond the scope of the present
work.

Numerous authors have discussed possible improve-
ments of clarinets, in particular Benade [5], but without
using numerical optimization. Brass instruments have in-
deed been studied by optimization [6, 7, 8], but in this case
the free parameters relate to the bore of the instrument and
not to the geometry of lateral holes.

This article is organized as follows. Section 2 provides
the basic mathematical model used to characterize the
acoustical properties of the instrument — mostly a calcula-
tion of the resonance frequencies of the resonator. Section
3 describes the optimization procedure and the minimiza-
tion algorithm. Section 4 briefly discusses the computer
implementation. Section 5 presents various numerical re-
sults obtained by retaining various optimization criteria;
five different “clarinets” are obtained and their properties
are compared. These results are used in section 6 to design
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Figure 1. Elementary cell with tone hole.

an experimental prototype, and to measure its sound pro-
duction with the help of an automatic blowing machine.
Finally, section 7 draws a few conclusions.

2. Mathematical model

2.1. Transmission line model

The instrument is modeled with a classical one-dimen-
sional transmission line model for planar waves [9], tak-
ing visco-thermal losses into account throughout the main
bore, as well as in the tone holes. It is assumed that the
distance between tone holes is sufficiently large to make
higher mode interactions negligible. This assumption is
valid if the distance is at least larger than the bore diame-
ter (see e.g. [10]). Accordingly, the instrument is modeled
as a succession of transfer matrices representing either a
cylindrical piece of tubing, or a tone hole; each tone hole
is formally represented by a lumped element.

The transfer matrix of a cylindrical piece of tubing of
length L and characteristic impedance Z. is given by

cosh(I'L) Z.sinh(T'L)

H=\(1/7)sinh(CL) cosh("L) |’ M

where I" is the complex propagation constant. The model
is rather accurate for the characteristic wavelengths prop-
agating inside a typical wind instrument. The first higher
order mode is usually far below cutoff; for a cylinder of
I5mm diameter it is a helical mode with a cutoff fre-
quency of 13.5kHz.

2.2. Visco-thermal boundary layer effects

The following expressions for the characteristic impe-
dance Z, and the wave number I" are used (see e.g. [11])
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where p is the mass density of the gas, c the speed of sound
and a the radius of the tube. k denotes the wavenumber
/¢, where w is the angular frequency. The dimensionless
number r, is defined as the ratio between the tube radius
and the thickness of the boundary layer

ry = ay/pw/n, 4)

where 7 is the coefficient of viscosity.

2.3. Tone holes

Each tone hole is modeled as a T-junction (Figure 2).
The transfer matrix corresponding to this electrical
equivalent circuit is the following, if Y; = 1/(Z; + Z,):

1 14+Y,Z,/4 Z, )
1-Y,Z,/4 Y, 1+YZ,/4 )"

The series impedances Z,/2 are purely inertial, but the
total shunt impedance Z, also has a resistive part due to
visco-thermal damping and radiation losses. For the acous-
tic masses m, and m,, we use expressions obtained from
[12,13],

mg, = pta/(”az),
pts/(zb?), (6)

mg
where

5(0.82 — 0.1935 — 1.098% + 1.278> — 0.715%),
= b(—0.37 + 0.0875)5>, (7)
= b/a.

o st S
I n

The input impedance Z of a tone hole of cross section
area S, = zb* depends on whether it is open or closed. For
an open tone hole, Zj, is calculated by considering the tone
hole as a transmission line terminated by a radiation impe-
dance z; . A simple expression for the radiation impedance
of a hole in the side of a cylinder [14] is not known but,
since ka is small, it seems reasonable to assume that the
tone hole acts as an infinitely flanged pipe; a more detailed
model for flanged termination is probably unnecessary for
our purposes. At low frequencies (ka < 1), this leads to
the simple formula

= g—i B(ku)z + j0,82ka] . (8)
Accordingly, a tone hole of length 4, terminated by an im-
pedance z;, is represented by the input impedance

P 21 +j% tan(kh) 0

TS & +jzu tan(kh) ©)
Exterior hole interaction [15] is not taken into account;
assuming that this effect remains negligible is reasonable,
especially at low frequencies. The input impedance of a
closed tone hole is calculated in the same way, but with
zr — oo. In the limit kA < 1, which is an acceptable
approximation of the impedance for short chimneys, the
closed hole input impedance expression reduces to a shunt
stiffness pc? /(joSyh).
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Figure 3. Instead of a bell, the main tubing is extended and fit-
ted with two vent-holes. For 2a = 14.75mm, A = 12.5mm, b
= 4.0mm, and d = 18.2 mm the cutoff frequency is to be f. =
1.420kHz.

2.4. Termination of the instrument

An ordinary clarinet is terminated by a bell. The main pur-
pose of the bell is to equilibrate the timbre of the lowest
notes of the instrument with that of the other notes. In this
project, we replace the bell by a continuation of the cylin-
drical main bore with two vent-holes, as shown in Figure 3.
The length of the extension and the diameters of the vent-
holes are chosen in order to obtain a theoretical lattice cut-
off frequency of 1.420 kHz, approximately equal to the
average cutoff frequency of a clarinet [3].

2.5. Calculation of playing frequencies

The frequency of a blown note depends on the input im-
pedance spectrum, the reed dynamics (in contact with the
lips) and the blowing pressure. In practice, since the play-
ing frequency is much smaller than the resonance fre-
quency of the reed, the dominant factor is the input im-
pedance.

We use a simplified description where the mouthpiece
and the reed are replaced (for a given stiffness, blowing
pressure, air flow correction, etc.) by an effective volume
correction added to the instrument.

The effects of a temperature gradient along the air col-
umn on the pitch can be ignored in a first approximation.
References [16] and [17] indicate that a satisfactory ap-
proximation of the frequency shifts is obtained by taking
into account the average along the instrument of the tem-
perature only; our calculations should then remain valid,
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just with a temperature offset. Another approximation we
have made is not taking into account the effects of changes
in gas composition (CO,, O,), which have been studied by
Coltman[18] for the flute and Fuks[19] for the oboe and
bassoon. Further investigation is probably needed along
these lines.

The playing frequency at soft playing levels is to a first
approximation equal to a resonance frequency of the air
column inside the clarinet-mouthpiece combination, given
by the solution of the equation

Im[Z;,(w)] =0, (10)

where Z;, is the input impedance of the whole instrument
at the tip of the reed, including the volume correction of
the mouthpiece and the reed.

Apart from the resonance frequencies of the resonator,
of course other properties of the input impedance spectrum
may influence sound production. In particular, the heights
and widths of the impedance peaks are relevant to the sta-
bility of played notes. The importance of aligning the har-
monics of the playing frequency with subsequent zeros of
equation (10) has been emphasized by Benade [4]. Ac-
cording to a theoretical evaluation [20], an inharmonicity
of 20 cents between the two first peaks may cause a vari-
ation in the playing frequency of about 10 cents between
piano and fortissimo levels. Moreover, transients during
the attack of the notes may be affected by other proper-
ties of the impedance spectrum. Nevertheless, since less
deviation of intonation can be tolerated during the quasi
permanent regime of sounds, we have chosen to include
only the resonance frequencies of the input impedance in
our optimization.

3. Optimization procedure

3.1. Cost function and minimization algorithm

The principle of clarinet design optimization is to deter-
mine a set of geometrical variables that minimize a cost
function characterizing, for each fingering, the distance
between the solutions of equation (10) and the frequencies
of a tempered scale. Since the number of design variables
is large, and since the cost function depends non-linearly
on them, a numerical treatment of the problem with an ef-
ficient minimization algorithm is necessary. We have cho-
sen gradient based algorithms for their convenience; they
do not guarantee to reach the absolute extremum in gen-
eral, but are efficient to find local optima.

To start the algorithm, a reasonable initial guess for tone
hole positions and dimensions is necessary, as a “seed” for
the calculation. This seed was obtained by starting from
the lowest note, which gives the total length of the in-
strument, and then successively computing by iteration the
position for each tone hole in order to obtain the desired
resonance frequencies of the first register. If the radius and
chimney length of each hole are fixed to some typical value
(in the examples below, the radius increases linearly from
4.0 mm to 5.0 mm and the chimney length is 4.0 mm), and
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if the influence of closed tone holes above the first open
one is ignored, the process amounts to solving a series of
scalar equations for the hole positions.

The cost function was calculated by taking into ac-
count the frequencies fé‘ of the impedance resonances
obtained from equation (10), where k refers to the note
(k=1,2,..., Nyyes) and g refers to the resonance (¢ = 1
corresponds to the first impedance resonance, ¢ = 2 to the
second, etc.). For the lower register, the cost function in-
cludes two elements: the square of the distance between
the first impedance resonance and the frequency f* of
a tempered scale, as well as the square of the distance
between the second resonance and 3 f k. both with equal
weights. In this way, a good impedance peak cooperation
can be expected, resulting in good pitch stability. For the
second register, only the first resonances f2k were taken
into account and compared to the corresponding equal
scale values f k In practice, we introduce a vector R with
2N components associated with the lower register (where
N = 19, the number of notes of this register),

Ryt = (= O/~
Rox = BF* = /3B, (11

as well as N, additional components associated with the
second register. We then choose the square of the norm
of the vector R with 2N; + N, components as our target
function for optimization: F = R - R. With x representing
a vector of physical design variables as described below,
the optimization problem can be stated as
mxin F(x) subject to constraints on X.

The problem is expected to be non-convex, leading to
many extrema that are in general only local, and therefore
dependent on the seed of the calculation. Nevertheless, the
hope is that the crude initial model of the clarinet used to
create this seed should be sufficiently reasonable to make
a sensible instrument emerge from the optimization.

It is probably impossible to attain F = 0 (simultaneous
perfect position of resonances for all considered notes).
What is obtained is a compromise, which can then be ad-
justed if necessary by weighting the terms of the cost func-
tion differently. For instance, the even components of R
corresponding to the second resonance of the first register
may be considered as less important than the odd compo-
nents.

3.2. Design variables

The free parameters x of the model are the total tube length
and the positions, radii and chimney lengths of the tone
holes, which amounts to more than 50 free parameters.
The resonator is perfectly cylindrical; nevertheless, a lo-
calized cylindrical enlargement/constriction between the
mouthpiece and the uppermost tone hole can also be intro-
duced into the calculation, since this is known to improve
harmonicity [21]. We also put constraints on the tone hole
diameters and chimney lengths, in order to avoid unpracti-
cal or otherwise unfeasible solutions. Some constraints are
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straightforward (such as dimensions being positive, and
the hole radii necessarily being smaller than the radius of
the main bore), but others are required by manufacturing,
or by the fact that the mathematical model would other-
wise not be valid. In practice, those constraints were often
left for manual a posteriori check.

All variables do not affect the distances of equations
(11) in the same way. For instance, it is obvious that the
holes of the bottom notes have little influence on the tuning
of the upper resonances. On the other hand, the uppermost
tone holes generally have an appreciable influence on all
of the lower notes, due to the shunt reactance introduced
by closed tone holes.

As a simple first approximation, the effect of an open
tone hole of length 4 can be represented by a shunt acous-
tic mass M), = p(h+ 1.6b)/zb*, which suggests that 4 and
b do not need to be simultaneously considered as design
variables. In practice, however, it appears necessary to in-
clude also the chimney lengths as design variables in order
to obtain acceptable positions of the resonances.

4. Computer implementation

The core of the algorithm is the calculation of a function
giving the input impedance of a series of open and closed
tone holes, separated by cylindrical sections. It is used by
a routine that evaluates R and the cost function, using a
global root finder in the search for the zeros of Im(Z;,).
The global root search is essentially done by analyzing the
spectrum and selecting out the impedance maxima of in-
terest before equation (10) is solved.

One of its input of the optimization code is a fingering-
matrix (such as that shown in Figure 4). This makes op-
timization with arbitrary fingerings possible, for instance
even if fork fingering was considered. The algorithms are
implemented in Matlab, and the routine 1sqnonlin from
the optimization toolbox is used for the optimization pro-
cedure, with the necessary gradient approximated numer-
ically. The stopping criterion for the iteration (change in
F < 107%) was chosen empirically in accordance with the
magnitude of F (see the convergence study in 5.7). The
execution time for the optimization depends on the num-
ber of design variables, the number of components in the
cost function and the convergence process. For the designs
presented below, it varied typically between 20 min and
two hours on a desktop computer.

S. Various designs

A first series of numerical experiments was made in or-
der to get a better idea of a suitable configuration in gen-
eral; five different configurations, denoted a—e, were inves-
tigated. They all represent strictly chromatic instruments,
meaning that they include neither fork fingerings nor “dis-
ordered” opening of tone holes. The frequency range was
D3-F5, corresponding to the first register (chalumeau) and
the first N, = 10 notes of the second register — for case
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Figure 4. Fingering chart for a chromatic instrument where the
G#4 hole also serves as the register hole.

(e), it was even slightly more, as we discuss below. The
clarinets differ in the function of the register hole, which
can be either a dedicated register hole, or a dual register
hole/tone hole. In addition, the effect of a cylindrical con-
striction or enlargement between the mouthpiece and the
first tone hole was investigated — this was the only devia-
tion from an otherwise cylindrical bore.

A cylindrical instrument such as the clarinet overblows
the twelfth. For a chromatic instrument, this requires 18
tone holes to cover the range of the first register. The notes
of the second register are obtained by opening the register
hole and repeating the fingering from the first register. A
fingering chart for the instruments with a dual register hole
can be seen in Figure 4.

Initially, the bore diameter 2a = 14.75 mm was selected
to match available clarinet mouthpieces; a was therefore
not considered as a variable in the optimization. The di-
mension d of the instrument termination (Figure 3) was
then calculated from a and the chosen values b = 4.0 mm
and A—a = 5.0 mm so as to give a cutoff frequency of 1.42
kHz (on real clarinets, the chimney length 4 is often longer
than the tube thickness A — a =). The constraints imposed
on the hole dimensions were rather loose with respect to
the values of existing instruments. A lower bound on the
hole radius was set to 2.0 mm, except for the tone hole act-
ing as the register hole, for which it was set to 1.0 mm. An
upper bound of 6.0 mm was set for all holes.

For chimney lengths, a lower bound was set to 2.5 mm,
with no upper bound. If one includes a dedicated register
hole, 20 cylindrical sections precede, separate, or succeed
the 19 tone holes. Each tone hole is characterized by two
parameters, which now makes a total of 58 design vari-
ables.
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Figure 5. Design (a), corresponding to a clarinet with no dedicated register hole. The upper part of the figure shows the positions of
the 18 tone holes; the two last holes on the right correspond to the acoustical lattice replacing the bell, and have not been optimized
(see § 2.4). The two intermediate figures give more detail on the geometry of these tone holes. The lowest part of the figure shows the
difference between the position of the impedance resonances and the frequencies of a perfect chromatic scale with equal temperament.
Notes 1-19 are the first (lower) register notes, notes 20-29 are second register notes calculated from the second resonance of the
impedance. One notices the particular position of the first hole, which is unusually separated from all the others; this is a consequence

of its dual acoustical role (register and tone hole).

To achieve convergence, it proved necessary to perform
the optimization process in two successive phases. Start-
ing from the crude initial solution described in section 3,
the optimization process was run by calculating a single-
register design (N, = 0) optimizing only the 19 notes
of the first register (including their second resonances).
This solution is then used as the starting point for phase
2, which takes into account the second register also. Ex-
perience shows that phase 2 is more sensitive to the ini-
tial solution than phase 1. A “bad” initial solution might
in practice ruin convergence altogether, or lead to a local
minimum that is clearly not acceptable.

5.1. No specific register hole — case (a)

Our first optimization was the design of a clarinet with an
uppermost tone hole that has the dual function of a register
hole and an ordinary tone hole, as common with existing
instruments. The role of the register hole is to shift and re-
duce the height of the peak of the fundamental resonance,
while the second resonance is not too affected; this facili-
tates the emission of the second register. These conditions
tend to lead to register holes that are significantly smaller
than tone holes, so that some compromise is necessary for
a hole having a dual function.

Figure 5 shows the obtained tone hole pattern and the
position of the acoustical resonances with respect to equal
temperament. The position of the first tone hole/register
hole is 155 mm from the reed end, which is about one
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third of the distance to the F3 hole; this is near the op-
timal position of a register hole for the bottom notes of
the second register. The hole radius is 1.09 mm, which is
in fact slightly larger than the constraint, and consider-
ably smaller than all the other tone holes. This explains
the large distance between the first and the second holes
compared to the rest of the tone hole lattice. The first res-
onances of the notes in the first register are well in tune.
Around the crossover from the first to the second register,
resonance tuning problems occur.

5.2. Adding a cylindrical enlargement to the bore —
case (b)

Introducing a cylindrical enlargement is known to correct
the tuning of the twelfths [21]. Our optimization code is
compatible with the introduction of a cylindrical constric-
tion or enlargement anywhere between the mouthpiece and
the uppermost tone hole. As mentioned above, the latter
is represented by a section of the resonator having the
same volume as a typical mouthpiece (for a 14.75 mm
bore this corresponds to 73 mm.). Optimizing this con-
striction/enlargement introduces new parameters: its posi-
tion, length and diameter. An upper bound on the diameter
was set to 25.0 mm. Lower bounds for both the diameter
and the length were set to O mm.

The optimization provided a 4.4 mm long enlargement
with a diameter of 25 mm, inserted immediately after the
mouthpiece. The diameter was therefore equal to its maxi-
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Figure 6. Design (b), corresponding to a clarinet with a bore enlargement but no dedicated register hole. The different parts of the figure
are defined as explained in the caption of Figure 5. The enlargement has a length of 4.4 mm and a diameter of 25 mm, put immediately
after the mouthpiece. One notices one unusually long first hole (about 50 mm), which seems a rather impractical value for a hole

intended to emit sound.

mal bound, introducing a rather large discontinuity; under
these conditions, higher order duct modes should be taken
into account, introducing added mass [22]. As a simple ap-
proximation, it can be considered as a simple length cor-
rection, found to be 1.5 mm.

Figure 6 shows the positions of the holes as well as the
obtained positions of the resonances with respect to equal
temperament. A comparison with Figure 5 shows that the
addition of the bore enlargement has already introduced a
significant improvement.

5.3. Specific register hole with cylindrical bore —
case (c¢)

The use of a separate register hole removes one impor-
tant acoustic compromise concerning its size. But it is well
known that a compromise is still necessary concerning its
position, since a register hole should be ideally placed at
a pressure node of each note, which is of course impossi-
ble to obtain simultaneously for all of them. The role of the
optimization is precisely to find this compromise. We note,
nevertheless, that it does not take into account the height
of the resonance peaks; the position of the register hole is
only determined by the positions of the second resonances
(and, of course, by constraints as well).

Figure 7 shows the results. Compared to configuration
(a) with a dual register hole, a more even tone hole pro-
gression is achieved, while at the same time the frequency
differences are reduced. The position of the register hole
is roughly at one third of the position to the tone holes
of the bottom notes, making it optimal for the first notes
of the second register. Its diameter reaches the minimum

radius 1.00 mm allowed by the constraint. The constraint
concerning hole no. 2 (the first tone hole) also determines
its radius of 2.00 mm; all the other holes have a size that
remains between the bounds. The constraint of 2.50 mm
for the length of the chimneys is active for some of the
holes, but the variation for the rest of the holes is rather
smooth.

5.4. Combining specific register hole and cylindrical
enlargement — case (d)

Adding a bore enlargement to the design with a separate
register hole improves intonation further. As in design (b),
we put an upper limit of 25mm on the maximum bore di-
ameter, and the enlargement is put directly after the mouth-
piece. Optimization reached this maximum and provided a
length of 1.9 mm. Figure 8 shows the results. The funda-
mental register is now in tune within 0.5 cents RMS; only
the highest note is out of tune by more than 5 cents, which
is still a very small shift.

5.5. Complete second register — case (e)

Finally, we studied a 5th case, clarinet (e). Among candi-
dates (a)-(d), clarinet (c) seems to provide the best com-
promise in terms of intonation and geometrical regularity;
we then decided to extend the study of this design by ex-
ploring the possibility of tuning resonances of all notes of
the second register — including the highest notes, which are
normally played with the third register of standard instru-
ments. In this case, two registers cover three full octaves
D3—Dg, where the second resonance is used throughout
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Figure 7. Design (c) with a specific register hole, but no bore enlargement. The different parts of the figure are defined as explained in
the caption of Figure 5. Here, the length of the register hole, about 15 mm, is comparable to that of real clarinets.

Hole positions from reed end
- : B : o . : -
0000000600 00 00 0 0 O O  © o |
L)
C 0 L 1 L _ ! o
0 100 200 300 400 500 600
position (mm)
6 Hole radii 15 Chimney lengths
H -
E 4 E 10
2 <
2 £
o0
s 2 g 5
(=] —_
=
0 0
0 5 10 15 20 0 5 10 15 20
hole # hole #
10+ : : :
g fundamental, RMS=0.49 cents
8 5L 7 - ond resonance, RMS=2.4 cents ot
g ~
45 Sl - -
= ) i
k5
<
I j
D5 G5
note

Figure 8. Design (d) with both a specific register hole and a bore enlargement just after the mouthpiece. The different parts of the figure

are defined as explained in the caption of Figure 5.

the second register (N, 18). Since the frequencies of
the highest notes are approaching the resonance of the reed
(around 2 kHz), it is likely that the assumption of blown
notes having frequencies equal to impedance resonances
is less accurate in the highest part of the second register
[23]. Nevertheless, it is known that real clarinets provide
a rather large pitch flexibility in the high register; small
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errors in this range should not be too problematic. The po-
sition of the register hole was subject to a constraint of
a maximal distance of 100 mm from the mouthpiece end,
chosen to render the hole effective also in the upper part of
the second register. For this design, a bore diameter 2a =
14.27 mm was chosen (instead of 14.75 mm for the other
designs) to better correspond to the experiments described
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Figure 10. Computed input impedance spectra for the 37 notes
of design (e). The impedance is made dimensionless by dividing
it by the characteristic impedance Z, defined in § 2.2. The im-
pedance peaks are similar to those of a real clarinet but, for the
second register, the second peak remains smaller than the first
one, because of the long register hole.

in the next section. Figure 9 shows the results for this de-
sign, with a long register hole, and Figure 10 shows the
computed impedance spectra associated with it.

For this design, we have also studied the acoustical reg-
ularity of the lattice of tone holes [3]. Local cutoff fre-
quencies of II-shaped sections can be considered as a cri-
terion of acoustical regularity: if these frequencies remain
constant over the various holes, the instrument should be-
have as a periodic lattice with the corresponding cutoff fre-
quency, and should therefore provide a better homogeneity

of sound production. The computed local cutoff frequen-
cies of the Il-shaped sections for 18 tone holes are shown
by the stars in Figure 11. The relative variations of the
cutoff frequency are about 10%, while standard clarinets
have a variation of the order of 40%. Therefore the com-
puted clarinet has a satisfactory acoustical regularity of its
acoustical lattice. As for a real clarinet, the mean value
of the local cutoff frequencies lies around 1700 Hz. This
is significantly higher than the global cutoff frequencies
measured from the input impedance curve for the notes of
the first register, which is around 1450 Hz as shown in Fig-
ure 11. This discrepancy illustrates the difficulty of defin-
ing and measuring global cutoff frequencies for a regular
lattice.

5.6. Comparison of the various designs

We first compare designs (a) to (d), since design (e) was
optimized with a different cost function. There is a strong
degree of correlation between the hole radii for all four in-
struments. The dip in the radius progression between holes
10 and 14 is a common feature, as is the tendency for
the holes to become progressively larger when their dis-
tance with the mouthpiece increases. There is, however, a
significant difference in radius regularity between the in-
struments. The designs (a) and (c) without the tuning en-
largement are more regular than (b) and (d), especially (b).
Similar observations can be made regarding the lengths of
the chimneys, but one notices that the constraint on these
lengths is effective for several of the holes for (a) and (c),
but not so for (b) and (d). The situation concerning the
positions of tone holes is slightly different.
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Figure 11. The local cutoff frequencies for a set of two holes are
shown with stars (*). A star located at n+ 1/2 corresponds to the
cutoff frequency of the set of two holes (n, n+1). The star located
at 18.5 is calculated for the hole 18 and the first vent-hole.

The circles and crosses represent the global cutoff frequencies
obtained in § 6 from the measurement of the input impedance, for
the notes of the first register from D3 to G#4. Circles correspond
to well defined values, crosses to more uncertain values.
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Figure 12. Distances between adjacent tone holes for instruments

()—(d).

Figure 12 shows the distances between adjacent tone
holes of the four designs. Here, (a) and (b) are similar,
as are (c) and (d): the designs with a separate register hole
are more regular than the ones with a dual register hole,
but the introduction of a tuning enlargement does not seem
to have any adverse effect on the regularity of hole posi-
tions. Design (b) and (c) are roughly comparable in terms
of intonation, but the latter has a much smoother tone hole
pattern. The conclusion is that, if the bore enlargement im-
proves the tuning of an otherwise cylindrical instrument,
the price to pay is a less regular tone hole pattern.

The long register hole of (b) and (e) are significantly
different from those of a regular clarinet. At low sound lev-
els, with a linear behavior, the main effect of a register hole
is reactive (the ratio of the boundary layer thickness to the
radius remains small). Therefore the main parameter is the
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shunt acoustic mass, proportional to the ratio length/cross-
section area. In order to have a small perturbation, it is
necessary to have a large acoustic mass, therefore either
a long chimney or a small radius. For practical reasons, a
very small radius is not suitable, so that a long chimney is
required. This seems to be what is happening here, since
the optimization leads to the minimum allowed value of
the radius (1 mm). The obtained length of the height of the
register hole is unusually large; when the hole is open, a
problem is the insufficient reduction of the heights of the
first impedance peaks.

Concerning design (e), we note that the results provide
more regularity in the geometry of its holes than the others.
In optimization, it is well-known that under-determined
problems may easily lead to irregular solutions. Indeed,
in this case, it seems that putting more constraints on the
optimization (by including the position of the resonance
of the upper notes of the second register) leads to more
satisfactory results.

To summarize, the best method to obtain intonation, as
well as regularity, seems to be the introduction of a sep-
arate register hole. If a separate register hole is used, an
enlargement is not necessary in order to achieve an instru-
ment that is in tune within 8 cents for a 29 notes range.
Design (c) seems to be a good compromise, with most res-
onances falling very close to the target (differences of less
than 5 cents). In addition, this design is not very differ-
ent from a standard clarinet, even if it is significantly more
regular and requires no cross fingering. But this optimiza-
tion does not correspond to a fundamental limit: if, for in-
stance, more deviations from a cylindrical bore were per-
mitted, it would probably become possible to adjust reso-
nance frequencies even more accurately.

5.7. Convergence properties of the optimization

It is interesting to study the evolution of the target func-
tion F for the two successive optimization phases: opti-
mization with a target function F) that takes into account
only the 19 notes of the first register and optimization with
a function F, that includes the notes of the two registers.
Figure 13 shows how F, evolves as a function of the num-
ber of iterations, for the designs (a)—(d). The initial point
of the curves corresponds to the crude initial design of
the instrument, which is accurate within 12 cents (RMS)
throughout the first register, but totally out of tune in the
second register. A rapid decrease of function F, is ob-
served, which saturates to a plateau after a few steps. At
the end of this process, a RMS error of 6.5 cents is ob-
tained for the first register, and of 43 cents for the second.
When the optimization function is changed from F; to F>,
a new rapid decrease of the target function takes place;
this is not surprising since the function shown in the fig-
ure now corresponds exactly to the target function used in
the optimization. Finally, the values of the errors obtained
in Figures 5-8 are obtained. Little success was achieved
omitting phase 1. In the rare cases the process converges
at all, convergence is slow with an erratic evolution of the
target function.
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Figure 13. Evolution of the target function F; associated with the
resonance frequencies of the notes or two registers, as a func-
tion of the number or iterations. The first point corresponds to
a non-optimized design used as a seed for the iteration. During
phase 1, the cost function used was Fj, which takes into account
only the resonance frequencies of the first register. In phase 2,
the cost function was changed to F,. The whole process provides
a reduction of the target function by a factor ranging from 100 to
1000.

In order to escape possible local minima, we have also
used stochastic optimization procedures by adding random
perturbations to the previous optimized designs, and using
them to run the deterministic optimization procedure. We
did not obtain significant improvement of the results in this
way. Further studies are probably needed to better under-
stand the optimization properties of the target functions
associated with tone hole patterns.

6. Experimental prototype

We chose to build configuration (e) obtained in the pre-
vious section, since it offers more regularity in its design.
In order to keep the fabrication process as simple as pos-
sible, stock polyurethane tubes were used, and no attempt
was made to build keys. These tubes come in a limited set
of dimensions, of which the one that is closest to a real
clarinet has a nominal inner diameter of 14.25 mm. This
corresponds to the diameter chosen in the optimization of
design (e). The tube did not show a perfectly circular cross
section, but had a diameter varying between 14.10 mm and
14.45 mm, a non-negligible variation. Ref. [21] shows that
the corresponding length correction is bounded by the fol-
lowing equation (equation 31 of that reference):

|AQ] < (1 — )@ =0.05¢'

where @ = Shin/Smax =~ 0.95 and ¢’ is the length of the
enlargement. The tube was modeled as a cylinder with the
same cross section area, which corresponds to a diameter
of 14.27 mm. The chimney lengths were adjusted by cre-
ating a flat external surface at the position of each tone
hole, which is drilled perpendicularly to the main axis of

Figure 15. The prototype instrument attached to the artificial
mouth.

the tube. The edges of the holes are kept sharp, a fea-
ture that may potentially introduce nonlinear flow effects
at high playing levels. Figure 14 shows the prototype. In
Figure 16, a workshop drawing of the instrument is pre-
sented.

The prototype was blown with an artificial mouth (see
Figure 15), with a standard mouthpiece and a ‘“Plasti-
cover” reed. A preliminary calibration of this device was
necessary to measure the equivalent volume of the mouth-
piece/reed ensemble. This volume is used to calculate the
length of upstream cylindrical tube that was removed from
the results of optimization in order to build the prototype.
The measurement was made experimentally by fitting the
mouthpiece to a cylindrical piece of tubing terminated by
an orifice in a large baffle, and deriving a length correction
from the measured oscillation frequency. To check con-
sistency, the experiment was repeated with different tube
lengths and blowing pressures.

The blowing pressure was varied from the oscillation
threshold to the saturation limit at which the reed closes
against the mouthpiece and blocks the oscillation. Fig-
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Figure 17. Equivalent volume computed from played frequency
for different tube lengths and blowing pressures; 1kPa corre-
sponds to a water column of 10 cm.

ure 17 shows the results, ranging from 12.2 to 13.2 cm?, to
be compared to the geometrical volume of the mouthpiece
(11.4 + 0.3 cm?). Since the variation of the equivalent vol-
ume are larger with low blowing pressures, in order to min-
imize nonlinear effects, a working pressure of 4 kPa (about
40cm of water) was chosen, with V,, = 12.5 cm?. This
volume corresponds to a tube length correction of about
73 mm.
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Figure 18. The experimental clarinet: measured intonation errors
with a blowing pressure of 4.0 kPa in the artificial mouth (three
realizations).

The prototype was then studied. The tone holes were
successively closed with tape on which rigid plastic pads
were placed, in order to replace the pads and keys. Fig-
ure 18 shows the results obtained with a blowing pressure
of 4.0kPa, and three series of measurements. From one
series to the next, the instrument is removed from the ar-
tificial mouth. Care was taken to try and obtain as much
reproducibility as possible, but it is clear that this repro-
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ducibility was not perfect, which probably explains the
dispersion of the results. For the first series, the average of
sound frequencies is 12 cents too low, with a mean square
deviation of 4; for the second, the average is 14 cents too
low, with a mean square deviation of 2.7; for the third,
the average is 13 cents too low, with a mean square devia-
tion of 2.9. Figure 19 shows similar results with a blowing
pressure of 5.5 kPa. The first series of measurements give
an average 11 cents too low, with a mean square deviation
of 3.6, the second, an average also 11 cents too low with
a mean square deviation of 2.8. As can be seen, there is
a significant dispersion of the results. The reason for this
dispersion is that, from one run of the experiment to the
next, adjustments of the experimental parameters turned
out to be necessary. The general offset of the pitch, ap-
proximately 10 cents flat, is easy to correct by adjusting
the length of the instrument, as routinely done by instru-
mentalists. This offset being ignored, the remaining errors
are less than 5 cents, which is better than what is usually
obtained with real clarinets.

For the second register, stable sounds were difficult to
obtain with the artificial mouth. A musician was there-
fore asked to play the prototype. Attacking each note, she
played the notes of the two registers successively, but also
observed that the second register was less stable than with
an usual clarinet. For each register, she played the higher
notes by closing the holes with the fingers, and the lower
notes by closing the 8 upper holes with modeling clay. In
a preliminary experiment, the general intonation was too
low (roughly 30 cents, with a rather unsatisfactory bal-
ance between the two registers); this is not so surprising
since the mouthpiece used by the instrumentalist was not
the same as that of the artificial mouth. The experiment
was then slightly modified by reducing the volume of the
mouthpiece by an equivalent length of 1 mm, using mod-
elling clay; the results are shown on Figure 20. Intona-
tion is slightly higher than that obtained with the artifi-
cial mouth, but the agreement remains rather satisfactory,
as well as reproducibility. The pressure in the mouth was
measured to be between 4 and 5 kPa, as for the artificial
mouth. Between the two registers, a discontinuity of 20
cents can be observed. This can be due to the playing tech-
nique of the instrumentalist. It seems likely that between
the two registers, she probably changed the excitation pa-
rameters, such as the reed opening and the mouth pres-
sure. Moreover, no listening reference was given before
she played the note; the player just optimized easy play-
ing. Usually, measurements of the intonation of a clarinet
is made in less severe conditions, where the musician plays
all notes in succession so that he can keep a reference in
mind and automatically apply pitch corrections. Generally
speaking, it turned out that all notes could be played with-
out any special training, which is rather satisfactory.

Comparisons between calculated (Figure 10) and mea-
sured (Figure 21) impedances on the prototype for the 36
semi-tones show an average deviation on the resonance
frequencies of 1.97 cents while the standard deviation is
11.3 cents. It is worth noticing that the last notes of the
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Figure 19. The experimental clarinet: measured intonation errors
with a blowing pressure of 5.5 kPa (two realizations).
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Figure 20. Measured intonation errors (in cents) when the exper-
imental clarinet was played by a musician. Each note was played
three times, at different intensities. Different symbol sizes are
used for the three intensities: A Piano; (1 Mezzoforte; O Forte
- color online

second register contributes to this result. In disagreement
with the assumption that tone hole interaction is small, the
spacing between some of the tone holes is slightly smaller
than the bore diameter. This may account for some of the
deviation between the model and the behavior of the pro-
totype.

7. Conclusion

Computer optimization of the geometry of a clarinet seems
to offer interesting possibilities, even if it should be re-
membered that the numerical results do not necessarily
correspond to an absolute optimum for the chosen crite-
rion: they may be only local optima. The regularity of the
obtained geometries seems to indicate that, indeed, the de-
sign of real instruments is more the result of a compli-
cated history than that of pure logics. For the moment, our
study remains limited in terms of the number of acoustical
properties taken into account in the optimization function,
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Figure 21. Measured input impedance spectrum of the experi-
mental clarinet. This figure shows good agreement with the com-
puted results of Figure 10.

since only the positions of the acoustical resonances have
been included. It would be interesting to also include the
corresponding value of the impedance peaks, which might
lead to significantly different optimization results. Even if
the results seem to be satisfactory in terms of the peak val-
ues of the acoustic impedance, the relative heights of the
peaks is important; for instance, the differential reduction
of the heights of the first and second resonance determines
the stability of emission for the second register.

Generally speaking, there should be no special difficulty
in including more components in the optimization func-
tion, but our purpose in the present work was to explore
the new possibilities offered by optimization within the
simplest possible scheme; experience will show in what
direction the optimization process should be improved.
Moreover, it remains very likely that even a very elabo-
rate mathematical optimization model will probably never
capture all the real musical possibilities of instruments. At
some point, it will be indispensable to build playable in-
struments with keys and collect the evaluation of perform-
ing clarinetists; mathematical optimization can neverthe-
less be very useful as a preselection tool between the enor-
mous number of geometrical possibilities, even if its use
should be followed by a final adjustment with real musical
testing by performers. We hope to be able to continue our
program in this direction.
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