@@ -163,9 +163,8 @@ Thanks to the modularity of the `tidybulk` workflow, that can multiplex
163163different methods, we can easily compare the p-values across methods.
164164
165165```  r 
166-     airway  | > 
167-   rowData() | >  
168-   as_tibble() | >  
166+ airway  | > 
167+   pivot_transcript() | >  
169168  select(
170169    ql__PValue , 
171170    lr_robust__PValue , 
@@ -190,7 +189,7 @@ different methods, we can easily compare the p-values across methods.
190189
191190```  r 
192191#  Summary statistics
193- airway  | >  rowData()  | >  as_tibble () | >  select(contains(" ql|lr_robust|voom|voom_weights|deseq2"  )) | >  select(contains(" logFC"  )) | >  
192+ airway  | >  pivot_transcript () | >  select(contains(" ql|lr_robust|voom|voom_weights|deseq2"  )) | >  select(contains(" logFC"  )) | >  
194193summarise(across(everything(), list (min  =  min , median  =  median , max  =  max ), na.rm  =  TRUE ))
195194``` 
196195
@@ -218,8 +217,7 @@ library(GGally)
218217
219218```  r 
220219airway  | >  
221-   rowData() | >  
222-   as_tibble() | >  
220+   pivot_transcript() | >  
223221  select(ql__PValue , lr_robust__PValue , voom__P.Value , voom_weights__P.Value , deseq2__pvalue ) | >  
224222  ggpairs(columns  =  1 : 5 ) + 
225223  scale_x_continuous(trans  =  tidybulk :: log10_reverse_trans()) + 
@@ -235,8 +233,7 @@ airway |>
235233```  r 
236234library(GGally )
237235airway  | >  
238-   rowData() | >  
239-   as_tibble() | >  
236+   pivot_transcript() | >  
240237  select(ql__logFC , lr_robust__logFC , voom__logFC , voom_weights__logFC , deseq2__log2FoldChange ) | >  
241238  ggpairs(columns  =  1 : 5 ) + 
242239  my_theme  + 
@@ -250,14 +247,14 @@ airway |>
250247
251248It is important to check the quality of the fit. All methods produce a
252249fit object that can be used for quality control. The fit object produced
253- by each underlying method are  stored in  as attributes  of the
254- ` airway_mini `  object. We can use them for example to perform quality
250+ by each underlying method is  stored as an attribute  of the
251+ ` airway_mini `  object. We can use them,  for example,  to perform quality
255252control of the fit.
256253
257254#### For edgeR  
258255
259256Plot the biological coefficient of variation (BCV) trend. This plot is
260- helpful to understant  the dispersion of the data.
257+ helpful in understanding  the dispersion of the data.
261258
262259```  r 
263260library(edgeR )
@@ -294,7 +291,7 @@ metadata(airway)$tidybulk$DESeq2_object |>
294291
295292![ ] ( README_files/figure-gfm/differential-expression-DESeq2-object-1.png ) <!--  --> 
296293
297- Plot the log-fold change vs mean plot.
294+ Plot the log-fold change vs the  mean plot.
298295
299296```  r 
300297library(DESeq2 )
@@ -309,17 +306,16 @@ metadata(airway)$tidybulk$DESeq2_object |>
309306### Volcano Plots for Each Method  
310307
311308Visualising the significance and effect size of the differential
312- expression results as a volcano plots  we appreciate that some methods
313- have much lower p-values  distributions than other methods, for the same
309+ expression results as a volcano plot,  we appreciate that some methods
310+ have much lower p-value  distributions than other methods, for the same
314311model and data.
315312
316313```  r 
317314#  Create volcano plots
318315airway  | > 
319316
320317    #  Select the columns we want to plot
321-     rowData() | >  
322-     as_tibble(rownames  =  " .feature"  ) | >  
318+     pivot_transcript() | >  
323319    select(
324320            .feature ,
325321      ql__logFC , ql__PValue ,
0 commit comments