Skip to content

Commit 6eafc1e

Browse files
committed
2 parents 881bf0e + 574b8f7 commit 6eafc1e

File tree

1 file changed

+12
-16
lines changed

1 file changed

+12
-16
lines changed

README.md

Lines changed: 12 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -163,9 +163,8 @@ Thanks to the modularity of the `tidybulk` workflow, that can multiplex
163163
different methods, we can easily compare the p-values across methods.
164164

165165
``` r
166-
airway |>
167-
rowData() |>
168-
as_tibble() |>
166+
airway |>
167+
pivot_transcript() |>
169168
select(
170169
ql__PValue,
171170
lr_robust__PValue,
@@ -190,7 +189,7 @@ different methods, we can easily compare the p-values across methods.
190189

191190
``` r
192191
# Summary statistics
193-
airway |> rowData() |> as_tibble() |> select(contains("ql|lr_robust|voom|voom_weights|deseq2")) |> select(contains("logFC")) |>
192+
airway |> pivot_transcript() |> select(contains("ql|lr_robust|voom|voom_weights|deseq2")) |> select(contains("logFC")) |>
194193
summarise(across(everything(), list(min = min, median = median, max = max), na.rm = TRUE))
195194
```
196195

@@ -218,8 +217,7 @@ library(GGally)
218217

219218
``` r
220219
airway |>
221-
rowData() |>
222-
as_tibble() |>
220+
pivot_transcript() |>
223221
select(ql__PValue, lr_robust__PValue, voom__P.Value, voom_weights__P.Value, deseq2__pvalue) |>
224222
ggpairs(columns = 1:5) +
225223
scale_x_continuous(trans = tidybulk::log10_reverse_trans()) +
@@ -235,8 +233,7 @@ airway |>
235233
``` r
236234
library(GGally)
237235
airway |>
238-
rowData() |>
239-
as_tibble() |>
236+
pivot_transcript() |>
240237
select(ql__logFC, lr_robust__logFC, voom__logFC, voom_weights__logFC, deseq2__log2FoldChange) |>
241238
ggpairs(columns = 1:5) +
242239
my_theme +
@@ -250,14 +247,14 @@ airway |>
250247

251248
It is important to check the quality of the fit. All methods produce a
252249
fit object that can be used for quality control. The fit object produced
253-
by each underlying method are stored in as attributes of the
254-
`airway_mini` object. We can use them for example to perform quality
250+
by each underlying method is stored as an attribute of the
251+
`airway_mini` object. We can use them, for example, to perform quality
255252
control of the fit.
256253

257254
#### For edgeR
258255

259256
Plot the biological coefficient of variation (BCV) trend. This plot is
260-
helpful to understant the dispersion of the data.
257+
helpful in understanding the dispersion of the data.
261258

262259
``` r
263260
library(edgeR)
@@ -294,7 +291,7 @@ metadata(airway)$tidybulk$DESeq2_object |>
294291

295292
![](README_files/figure-gfm/differential-expression-DESeq2-object-1.png)<!-- -->
296293

297-
Plot the log-fold change vs mean plot.
294+
Plot the log-fold change vs the mean plot.
298295

299296
``` r
300297
library(DESeq2)
@@ -309,17 +306,16 @@ metadata(airway)$tidybulk$DESeq2_object |>
309306
### Volcano Plots for Each Method
310307

311308
Visualising the significance and effect size of the differential
312-
expression results as a volcano plots we appreciate that some methods
313-
have much lower p-values distributions than other methods, for the same
309+
expression results as a volcano plot, we appreciate that some methods
310+
have much lower p-value distributions than other methods, for the same
314311
model and data.
315312

316313
``` r
317314
# Create volcano plots
318315
airway |>
319316

320317
# Select the columns we want to plot
321-
rowData() |>
322-
as_tibble(rownames = ".feature") |>
318+
pivot_transcript() |>
323319
select(
324320
.feature,
325321
ql__logFC, ql__PValue,

0 commit comments

Comments
 (0)