Skip to content

ImageFeatureTests are failing #11148

@GaetanLepage

Description

@GaetanLepage

Short description
Running the test suite with pillow 12.0.0 gives the following failures:

=========================== short test summary info ============================
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images34 - TypeError: Cannot handle this data type: (1, 1, 3), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images35 - TypeError: Cannot handle this data type: (1, 1, 4), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images4 - TypeError: Cannot handle this data type: (1, 1, 3), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images5 - TypeError: Cannot handle this data type: (1, 1, 4), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images10 - TypeError: Cannot handle this data type: (1, 1, 3), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images11 - TypeError: Cannot handle this data type: (1, 1, 4), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images28 - TypeError: Cannot handle this data type: (1, 1, 3), <u2
FAILED tensorflow_datasets/core/features/image_feature_test.py::ImageFeatureTest::test_images29 - TypeError: Cannot handle this data type: (1, 1, 4), <u2
========== 8 failed, 3332 passed, 588 skipped, 773 warnings in 56.61s ==========

Environment information

  • Operating System: NixOS

  • Python version: 3.13.9

  • tensorflow-datasets/tfds-nightly version: tensorflow-datasets 4.9.9

  • tensorflow/tf-nightly version: tensorflow 2.20

  • Does the issue still exists with the last tfds-nightly package (pip install --upgrade tfds-nightly) ?
    -> Not tested

Reproduction instructions

$ pytest

Link to logs

________________________ ImageFeatureTest.test_images34 ________________________
[gw32] linux -- Python 3.13.9 /nix/store/7gl4khq26h625mpqzkiiqsify3hclar1-python3-3.13.9/bin/python3.13

obj = array([[[ 27,  68, 156],
        [108,  16,  90],
        [ 76,  43, 200],
        ...,
        [189,  72, 101],
     ...   ...,
        [159,  21,  92],
        [ 48,  35,  23],
        [ 40, 150, 248]]], shape=(128, 100, 3), dtype=uint16)
mode = 'I;16'

    def fromarray(obj: SupportsArrayInterface, mode: str | None = None) -> Image:
        """
        Creates an image memory from an object exporting the array interface
        (using the buffer protocol)::

          from PIL import Image
          import numpy as np
          a = np.zeros((5, 5))
          im = Image.fromarray(a)

        If ``obj`` is not contiguous, then the ``tobytes`` method is called
        and :py:func:`~PIL.Image.frombuffer` is used.

        In the case of NumPy, be aware that Pillow modes do not always correspond
        to NumPy dtypes. Pillow modes only offer 1-bit pixels, 8-bit pixels,
        32-bit signed integer pixels, and 32-bit floating point pixels.

        Pillow images can also be converted to arrays::

          from PIL import Image
          import numpy as np
          im = Image.open("hopper.jpg")
          a = np.asarray(im)

        When converting Pillow images to arrays however, only pixel values are
        transferred. This means that P and PA mode images will lose their palette.

        :param obj: Object with array interface
        :param mode: Optional mode to use when reading ``obj``. Since pixel values do not
          contain information about palettes or color spaces, this can be used to place
          grayscale L mode data within a P mode image, or read RGB data as YCbCr for
          example.

          See: :ref:`concept-modes` for general information about modes.
        :returns: An image object.

        .. versionadded:: 1.1.6
        """
        arr = obj.__array_interface__
        shape = arr["shape"]
        ndim = len(shape)
        strides = arr.get("strides", None)
        try:
            typekey = (1, 1) + shape[2:], arr["typestr"]
        except KeyError as e:
            if mode is not None:
                typekey = None
                color_modes: list[str] = []
            else:
                msg = "Cannot handle this data type"
                raise TypeError(msg) from e
        if typekey is not None:
            try:
>               typemode, rawmode, color_modes = _fromarray_typemap[typekey]
                                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
E               KeyError: ((1, 1, 3), '<u2')

/nix/store/96vld9s60486ifj2pq1v3gdbq19gx145-python3.13-pillow-12.0.0/lib/python3.13/site-packages/PIL/Image.py:3285: KeyError

The above exception was the direct cause of the following exception:

self = <tensorflow_datasets.core.features.image_feature_test.ImageFeatureTest testMethod=test_images34>
make_lib_fail = <function make_pil_fail at 0x7ffb8c17c400>
dtypes = (tf.uint16, <class 'numpy.uint16'>), channels = 3

    @parameterized.product(
        make_lib_fail=[make_none_fail, make_cv2_fail, make_pil_fail],
        dtypes=[
            (np.uint8, np.uint8),
            (np.uint16, np.uint16),
            (tf.uint8, np.uint8),
            (tf.uint16, np.uint16),
        ],
        channels=[1, 3, 4],
    )
    def test_images(self, make_lib_fail, dtypes, channels):
      dtype, np_dtype = dtypes
      with make_lib_fail() as failing_lib:
        if _unsupported_images_for_pil(np_dtype, failing_lib):
          return
        img = randint(256, size=(128, 100, channels), dtype=np_dtype)
        img_other_shape = randint(256, size=(64, 200, channels), dtype=np_dtype)

        filename = {
            np.uint8: {
                1: '6pixels_grayscale.png',
                3: '6pixels.png',
                4: '6pixels_4chan.png',
            },
            np.uint16: {
                1: '6pixels_grayscale_16bit.png',
                3: '6pixels_16bit.png',
                4: '6pixels_16bit_4chan.png',
            },
        }[np_dtype][channels]

        img_file_path = os.path.join(
            os.path.dirname(__file__), '../../testing/test_data', filename
        )
        with tf.io.gfile.GFile(img_file_path, 'rb') as f:
          img_byte_content = f.read()
        img_file_expected_content = np.array(
            [
                [[0, 255, 0, 255], [255, 0, 0, 255], [255, 0, 255, 255]],
                [[0, 0, 255, 255], [255, 255, 0, 255], [126, 127, 128, 255]],
            ],
            dtype=np_dtype,
        )[
            :, :, :channels
        ]  # Truncate (h, w, 4) -> (h, w, c)
        if dtype == np.uint16 or dtype == tf.uint16:
          img_file_expected_content *= 257  # Scale int16 images

        numpy_array = testing.FeatureExpectationItem(
            value=img,
            expected=img,
            expected_np=img,
        )
        file_path_as_string = testing.FeatureExpectationItem(
            value=img_file_path,
            expected=img_file_expected_content,
            expected_np=img_file_expected_content,
        )
        file_path_as_path = testing.FeatureExpectationItem(
            value=pathlib.Path(img_file_path),
            expected=img_file_expected_content,
            expected_np=img_file_expected_content,
        )
        images_bytes = testing.FeatureExpectationItem(
            value=img_byte_content,
            expected=img_file_expected_content,
            expected_np=img_file_expected_content,
        )
        img_shape_can_be_dynamic = testing.FeatureExpectationItem(
            value=img_other_shape,
            expected=img_other_shape,
            expected_np=img_other_shape,
        )
        invalid_type = testing.FeatureExpectationItem(
            value=randint(256, size=(128, 128, channels), dtype=np.uint32),
            raise_cls=ValueError,
            raise_cls_np=ValueError,
            raise_msg='dtype should be',
        )
        tests = [
            numpy_array,
            file_path_as_string,
            file_path_as_path,
            images_bytes,
            img_shape_can_be_dynamic,
            invalid_type,
        ]
        # PIL doesn't support 16-bit images.
        if (failing_lib != LibWithImportError.PIL) and np_dtype != np.uint16:
          tests.append(
              testing.FeatureExpectationItem(
                  value=PIL.Image.open(img_file_path),
                  expected=img_file_expected_content,
                  expected_np=img_file_expected_content,
              )
          )
>       self.assertFeature(
            feature=features_lib.Image(shape=(None, None, channels), dtype=dtype),
            shape=(None, None, channels),
            dtype=dtype,
            tests=tests,
            test_attributes=dict(
                _encoding_format=None,
                _use_colormap=False,
            ),
        )

tensorflow_datasets/core/features/image_feature_test.py:177:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tensorflow_datasets/testing/test_utils.py:421: in decorated
    f(self, *args, **kwargs)
tensorflow_datasets/testing/feature_test_case.py:186: in assertFeature
    self.assertFeatureEagerOnly(
tensorflow_datasets/testing/feature_test_case.py:236: in assertFeatureEagerOnly
    run_tests(serialize_fdict=fdict, deserialize_fdict=fdict, feature=feature)
tensorflow_datasets/testing/feature_test_case.py:318: in _run_tests
    self.assertFeatureTest(
tensorflow_datasets/testing/feature_test_case.py:463: in assertFeatureTest
    self._test_repr(feature, out_numpy)
tensorflow_datasets/testing/feature_test_case.py:483: in _test_repr
    text = f.repr_html(ex)
           ^^^^^^^^^^^^^^^
tensorflow_datasets/core/features/image_feature.py:398: in repr_html
    img = utils.create_thumbnail(ex, use_colormap=self._use_colormap)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
tensorflow_datasets/core/utils/image_utils.py:190: in create_thumbnail
    img = PIL_Image.fromarray(ex, mode=mode)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

obj = array([[[ 27,  68, 156],
        [108,  16,  90],
        [ 76,  43, 200],
        ...,
        [189,  72, 101],
     ...   ...,
        [159,  21,  92],
        [ 48,  35,  23],
        [ 40, 150, 248]]], shape=(128, 100, 3), dtype=uint16)
mode = 'I;16'

    def fromarray(obj: SupportsArrayInterface, mode: str | None = None) -> Image:
        """
        Creates an image memory from an object exporting the array interface
        (using the buffer protocol)::

          from PIL import Image
          import numpy as np
          a = np.zeros((5, 5))
          im = Image.fromarray(a)

        If ``obj`` is not contiguous, then the ``tobytes`` method is called
        and :py:func:`~PIL.Image.frombuffer` is used.

        In the case of NumPy, be aware that Pillow modes do not always correspond
        to NumPy dtypes. Pillow modes only offer 1-bit pixels, 8-bit pixels,
        32-bit signed integer pixels, and 32-bit floating point pixels.

        Pillow images can also be converted to arrays::

          from PIL import Image
          import numpy as np
          im = Image.open("hopper.jpg")
          a = np.asarray(im)

        When converting Pillow images to arrays however, only pixel values are
        transferred. This means that P and PA mode images will lose their palette.

        :param obj: Object with array interface
        :param mode: Optional mode to use when reading ``obj``. Since pixel values do not
          contain information about palettes or color spaces, this can be used to place
          grayscale L mode data within a P mode image, or read RGB data as YCbCr for
          example.

          See: :ref:`concept-modes` for general information about modes.
        :returns: An image object.

        .. versionadded:: 1.1.6
        """
        arr = obj.__array_interface__
        shape = arr["shape"]
        ndim = len(shape)
        strides = arr.get("strides", None)
        try:
            typekey = (1, 1) + shape[2:], arr["typestr"]
        except KeyError as e:
            if mode is not None:
                typekey = None
                color_modes: list[str] = []
            else:
                msg = "Cannot handle this data type"
                raise TypeError(msg) from e
        if typekey is not None:
            try:
                typemode, rawmode, color_modes = _fromarray_typemap[typekey]
            except KeyError as e:
                typekey_shape, typestr = typekey
                msg = f"Cannot handle this data type: {typekey_shape}, {typestr}"
>               raise TypeError(msg) from e
E               TypeError: Cannot handle this data type: (1, 1, 3), <u2

/nix/store/96vld9s60486ifj2pq1v3gdbq19gx145-python3.13-pillow-12.0.0/lib/python3.13/site-packages/PIL/Image.py:3289: TypeError
------------------------------ Captured log call -------------------------------
WARNING  absl:feature.py:71 `FeatureConnector.dtype` is deprecated. Please change your code to use NumPy with the field `FeatureConnector.np_dtype` or use TensorFlow with the field `FeatureConnector.tf_dtype`.

Expected behavior
All tests pass

Additional context
I am working as a nixpkgs maintainer.
Relevant PR: NixOS/nixpkgs#463025

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions