Skip to content

Commit 511d1b3

Browse files
committed
DOC: Fix broken ref
by addressing some low-hanging fruits
1 parent 0cc203f commit 511d1b3

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

57 files changed

+221
-218
lines changed

docs/conf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -78,6 +78,7 @@ def setup(app):
7878
'gwcs': ('https://gwcs.readthedocs.io/en/stable/', None),
7979
'stdatamodels': ('https://stdatamodels.readthedocs.io/en/latest/', None),
8080
'stcal': ('https://stcal.readthedocs.io/en/latest/', None),
81+
'stpipe': ('https://stpipe.readthedocs.io/en/latest/', None),
8182
'drizzle': ('https://drizzlepac.readthedocs.io/en/latest/', None),
8283
'tweakwcs': ('https://tweakwcs.readthedocs.io/en/latest/', None),
8384
}

docs/jwst/ami_analyze/description.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@ Inputs
123123

124124
3D calibrated image
125125
^^^^^^^^^^^^^^^^^^^
126-
:Data model: `~jwst.datamodels.DataModel`
126+
:Data model: `~stdatamodels.DataModel`
127127
:File suffix: _calints
128128

129129
The ``ami_analyze`` step takes a single calibrated image cube as input, which should be

docs/jwst/outlier_detection/outlier_detection_imaging.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ Imaging Data
66
This module serves as the interface for applying ``outlier_detection`` to direct
77
image observations, like those taken with MIRI, NIRCam, and NIRISS.
88
A :ref:`Stage 3 association <asn-level3-techspecs>`,
9-
which is loaded into a :py:class:`~jwst.datamodels.ModelLibrary` object,
9+
which is loaded into a :py:class:`~jwst.datamodels.library.ModelLibrary` object,
1010
serves as the basic format for all processing performed by this step.
1111
This routine performs the following operations:
1212

@@ -107,10 +107,10 @@ Control over this memory model happens
107107
with the use of the ``in_memory`` parameter, which defaults to True.
108108
The full impact of setting this parameter to `False` includes:
109109

110-
#. The input :py:class:`~jwst.datamodels.ModelLibrary` object is loaded with `on_disk=True`.
110+
#. The input :py:class:`~jwst.datamodels.library.ModelLibrary` object is loaded with `on_disk=True`.
111111
This ensures that input models are loaded into memory one at at time,
112112
and saved to a temporary file when not in use; these read-write operations are handled internally by
113-
the :py:class:`~jwst.datamodels.ModelLibrary` object.
113+
the :py:class:`~jwst.datamodels.library.ModelLibrary` object.
114114

115115
#. Computing the median image works by writing the resampled data frames to appendable files
116116
on disk that are split into sections spatially but contain the entire ``groups``

docs/jwst/outlier_detection/outlier_detection_spec.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ Please refer to those docs for more information.
1010
A :ref:`Stage 3 association <asn-level3-techspecs>`,
1111
which is loaded into a :py:class:`~jwst.datamodels.ModelContainer` object,
1212
serves as the input and output to this step, and the :py:class:`~jwst.datamodels.ModelContainer`
13-
is converted into a :py:class:`~jwst.datamodels.ModelLibrary` object to allow sharing code
13+
is converted into a :py:class:`~jwst.datamodels.library.ModelLibrary` object to allow sharing code
1414
with the imaging mode.
1515

1616
This routine performs identical operations to the imaging mode, with the following exceptions:

docs/jwst/pipeline/calwebb_ami3.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ Inputs
4040
3D calibrated images
4141
^^^^^^^^^^^^^^^^^^^^
4242

43-
:Data model: `~jwst.datamodels.DataModel`
43+
:Data model: `~stdatamodels.DataModel`
4444
:File suffix: _calints
4545

4646
The inputs to ``calwebb_ami3`` need to be in the form of an ASN file that lists

docs/jwst/skymatch/description.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ can be grouped together is based on several attributes described in
9898
`jwst.datamodels.ModelContainer`. This grouping is performed automatically
9999
in the ``skymatch`` step using the
100100
`jwst.datamodels.ModelContainer.models_grouped` property or
101-
:py:meth:`jwst.datamodels.ModelLibrary.group_indices`.
101+
:py:meth:`jwst.datamodels.library.ModelLibrary.group_indices`.
102102

103103
However, when background across different detectors in a single "exposure"
104104
(or "group") is dominated by unpredictable background components, we no longer

docs/jwst/stpipe/devel_io_design.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@ ModelContainer vs ModelLibrary
176176
``````````````````````````````
177177

178178
Some steps in the pipeline, namely any steps involved in the Stage 3 Imaging pipeline,
179-
rely on the :class:`~jwst.datamodels.ModelLibrary` class instead of the
179+
rely on the :class:`~jwst.datamodels.library.ModelLibrary` class instead of the
180180
:class:`~jwst.datamodels.ModelContainer` class to process association-type data.
181181
The `ModelLibrary` class is purpose-built for enabling memory-saving options in the
182182
image3 pipeline and is only recommended when working with large associations.

jwst/ami/bp_fix.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -182,7 +182,7 @@ def bad_pixels(data, median_size, median_tres):
182182
183183
Returns
184184
-------
185-
pxdq : np.ndarray[int]
185+
pxdq : ndarray[int]
186186
Bad pixel mask identified by median filtering
187187
"""
188188
mfil_data = median_filter(data, size=median_size)
@@ -280,7 +280,7 @@ def fix_bad_pixels(data, pxdq0, filt, pxsc, nrm_model):
280280
-------
281281
data : numpy array
282282
Corrected data
283-
pxdq : np.ndarray[int]
283+
pxdq : ndarray[int]
284284
Mask of bad pixels, updated if new ones were found
285285
"""
286286
dq_dnu = pxdq0 & DO_NOT_USE == DO_NOT_USE

jwst/ami/leastsqnrm.py

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -548,31 +548,31 @@ class LinearFit:
548548
549549
Attributes
550550
----------
551-
dependent_variable : np.ndarray (1xN)
551+
dependent_variable : ndarray (1xN)
552552
Dependent_variables of the linear equation system (N equations, M unknown coefficients)
553-
inverse_covariance_matrix : np.ndarray (NxN)
553+
inverse_covariance_matrix : ndarray (NxN)
554554
Inverse covariance matrix corresponding to the dependent_variable.
555555
i.e. data weights proportional to 1/sigma**2 where sigma=uncertainty
556-
independent_variable : np.ndarray (MxN)
556+
independent_variable : ndarray (MxN)
557557
The independent_variables that are multiplied by the unknown coefficients
558558
559559
Calculated Attributes
560560
----------
561-
p : np.ndarray
561+
p : ndarray
562562
Coefficients of the solution
563-
p_formal_uncertainty : np.ndarray
563+
p_formal_uncertainty : ndarray
564564
Formal uncertainty of the coefficients
565-
p_formal_covariance_matrix : np.ndarray
565+
p_formal_covariance_matrix : ndarray
566566
Formal covariance matrix of the coefficients (not rescaled)
567-
p_normalised_uncertainty : np.ndarray
567+
p_normalised_uncertainty : ndarray
568568
Normalised uncertainty (chi2 = 1) of the coefficients
569-
p_normalised_covariance_matrix : np.ndarray
569+
p_normalised_covariance_matrix : ndarray
570570
Normalised covariance matrix of the coefficients (rescaled to yield chi2=1)
571-
p_correlation_matrix : np.ndarray
571+
p_correlation_matrix : ndarray
572572
Coefficient correlation matrix
573-
fit : np.ndarray
573+
fit : ndarray
574574
Values of the best-fit model
575-
residuals : np.ndarray
575+
residuals : ndarray
576576
Observed - Calculated (O-C) residuals
577577
chi2 : float
578578
Chi-square value of the best fit

jwst/ami/lg_model.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ def __init__(
5252
Datamodel containing mask geometry information
5353
pixscale : float
5454
Initial estimate of pixel scale in radians
55-
bandpass : np.ndarray[float]
55+
bandpass : ndarray[float]
5656
Array of the form: [(weight1, wavl1), (weight2, wavl2), ...]
5757
mask : str
5858
Keyword for built-in values
@@ -173,7 +173,7 @@ def make_model(self, fov, psf_offset=(0, 0)):
173173
174174
Returns
175175
-------
176-
model : np.ndarray[float]
176+
model : ndarray[float]
177177
Generated fringe model, shape (fov, fov, N * (N - 1) + 2)
178178
"""
179179
self.fov = fov

0 commit comments

Comments
 (0)