We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent f085c94 commit ed8e719Copy full SHA for ed8e719
src/sage/matrix/matrix2.pyx
@@ -18618,6 +18618,18 @@ def _matrix_power_symbolic(A, n):
18618
-1/2*I*(a + I*b)^k + 1/2*I*(a - I*b)^k,
18619
1/2*I*(a + I*b)^k - 1/2*I*(a - I*b)^k,
18620
1/2*(a + I*b)^k + 1/2*(a - I*b)^k]
18621
+
18622
+ Check if :trac:`36838` is fixed:Checking symbolic power of
18623
+ nilpotent matrix::
18624
18625
+ sage: A = matrix([[0,1],[0,0]]); A
18626
+ [0 1]
18627
+ [0 0]
18628
+ sage: n = var('n'); n
18629
+ n
18630
+ sage: An = A^n; An
18631
+ [ 0^n 0^(n - 1)*n]
18632
+ [ 0 0^n]
18633
"""
18634
from sage.rings.qqbar import AlgebraicNumber
18635
from sage.matrix.constructor import matrix
0 commit comments