11use crate :: coverageinfo:: ffi:: { Counter , CounterExpression , ExprKind } ;
22
33use rustc_data_structures:: fx:: FxIndexSet ;
4- use rustc_index:: { IndexSlice , IndexVec } ;
5- use rustc_middle:: bug;
6- use rustc_middle:: mir:: coverage:: {
7- CodeRegion , CounterId , ExpressionId , MappedExpressionIndex , Op , Operand ,
8- } ;
4+ use rustc_index:: IndexVec ;
5+ use rustc_middle:: mir:: coverage:: { CodeRegion , CounterId , ExpressionId , Op , Operand } ;
96use rustc_middle:: ty:: Instance ;
107use rustc_middle:: ty:: TyCtxt ;
118
@@ -195,8 +192,14 @@ impl<'tcx> FunctionCoverage<'tcx> {
195192 self . instance
196193 ) ;
197194
195+ let counter_expressions = self . counter_expressions ( ) ;
196+ // Expression IDs are indices into `self.expressions`, and on the LLVM
197+ // side they will be treated as indices into `counter_expressions`, so
198+ // the two vectors should correspond 1:1.
199+ assert_eq ! ( self . expressions. len( ) , counter_expressions. len( ) ) ;
200+
198201 let counter_regions = self . counter_regions ( ) ;
199- let ( counter_expressions , expression_regions) = self . expressions_with_regions ( ) ;
202+ let expression_regions = self . expression_regions ( ) ;
200203 let unreachable_regions = self . unreachable_regions ( ) ;
201204
202205 let counter_regions =
@@ -212,146 +215,47 @@ impl<'tcx> FunctionCoverage<'tcx> {
212215 } )
213216 }
214217
215- fn expressions_with_regions (
216- & self ,
217- ) -> ( Vec < CounterExpression > , impl Iterator < Item = ( Counter , & CodeRegion ) > ) {
218- let mut counter_expressions = Vec :: with_capacity ( self . expressions . len ( ) ) ;
219- let mut expression_regions = Vec :: with_capacity ( self . expressions . len ( ) ) ;
220- let mut new_indexes = IndexVec :: from_elem_n ( None , self . expressions . len ( ) ) ;
221-
222- // This closure converts any `Expression` operand (`lhs` or `rhs` of the `Op::Add` or
223- // `Op::Subtract` operation) into its native `llvm::coverage::Counter::CounterKind` type
224- // and value.
225- //
226- // Expressions will be returned from this function in a sequential vector (array) of
227- // `CounterExpression`, so the expression IDs must be mapped from their original,
228- // potentially sparse set of indexes.
229- //
230- // An `Expression` as an operand will have already been encountered as an `Expression` with
231- // operands, so its new_index will already have been generated (as a 1-up index value).
232- // (If an `Expression` as an operand does not have a corresponding new_index, it was
233- // probably optimized out, after the expression was injected into the MIR, so it will
234- // get a `CounterKind::Zero` instead.)
235- //
236- // In other words, an `Expression`s at any given index can include other expressions as
237- // operands, but expression operands can only come from the subset of expressions having
238- // `expression_index`s lower than the referencing `Expression`. Therefore, it is
239- // reasonable to look up the new index of an expression operand while the `new_indexes`
240- // vector is only complete up to the current `ExpressionIndex`.
241- type NewIndexes = IndexSlice < ExpressionId , Option < MappedExpressionIndex > > ;
242- let id_to_counter = |new_indexes : & NewIndexes , operand : Operand | match operand {
243- Operand :: Zero => Some ( Counter :: ZERO ) ,
244- Operand :: Counter ( id) => Some ( Counter :: counter_value_reference ( id) ) ,
245- Operand :: Expression ( id) => {
246- self . expressions
247- . get ( id)
248- . expect ( "expression id is out of range" )
249- . as_ref ( )
250- // If an expression was optimized out, assume it would have produced a count
251- // of zero. This ensures that expressions dependent on optimized-out
252- // expressions are still valid.
253- . map_or ( Some ( Counter :: ZERO ) , |_| new_indexes[ id] . map ( Counter :: expression) )
254- }
255- } ;
256-
257- for ( original_index, expression) in
258- self . expressions . iter_enumerated ( ) . filter_map ( |( original_index, entry) | {
259- // Option::map() will return None to filter out missing expressions. This may happen
260- // if, for example, a MIR-instrumented expression is removed during an optimization.
261- entry. as_ref ( ) . map ( |expression| ( original_index, expression) )
262- } )
263- {
264- let optional_region = & expression. region ;
265- let Expression { lhs, op, rhs, .. } = * expression;
218+ /// Convert this function's coverage expression data into a form that can be
219+ /// passed through FFI to LLVM.
220+ fn counter_expressions ( & self ) -> Vec < CounterExpression > {
221+ // We know that LLVM will optimize out any unused expressions before
222+ // producing the final coverage map, so there's no need to do the same
223+ // thing on the Rust side unless we're confident we can do much better.
224+ // (See `CounterExpressionsMinimizer` in `CoverageMappingWriter.cpp`.)
266225
267- if let Some ( Some ( ( lhs_counter, mut rhs_counter) ) ) = id_to_counter ( & new_indexes, lhs)
268- . map ( |lhs_counter| {
269- id_to_counter ( & new_indexes, rhs) . map ( |rhs_counter| ( lhs_counter, rhs_counter) )
270- } )
271- {
272- if lhs_counter. is_zero ( ) && op. is_subtract ( ) {
273- // The left side of a subtraction was probably optimized out. As an example,
274- // a branch condition might be evaluated as a constant expression, and the
275- // branch could be removed, dropping unused counters in the process.
276- //
277- // Since counters are unsigned, we must assume the result of the expression
278- // can be no more and no less than zero. An expression known to evaluate to zero
279- // does not need to be added to the coverage map.
280- //
281- // Coverage test `loops_branches.rs` includes multiple variations of branches
282- // based on constant conditional (literal `true` or `false`), and demonstrates
283- // that the expected counts are still correct.
284- debug ! (
285- "Expression subtracts from zero (assume unreachable): \
286- original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
287- original_index, lhs, op, rhs, optional_region,
288- ) ;
289- rhs_counter = Counter :: ZERO ;
226+ self . expressions
227+ . iter ( )
228+ . map ( |expression| match expression {
229+ None => {
230+ // This expression ID was allocated, but we never saw the
231+ // actual expression, so it must have been optimized out.
232+ // Replace it with a dummy expression, and let LLVM take
233+ // care of omitting it from the expression list.
234+ CounterExpression :: DUMMY
290235 }
291- debug_assert ! (
292- lhs_counter. is_zero( )
293- // Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
294- || ( ( lhs_counter. zero_based_id( ) as usize )
295- <= usize :: max( self . counters. len( ) , self . expressions. len( ) ) ) ,
296- "lhs id={} > both counters.len()={} and expressions.len()={}
297- ({:?} {:?} {:?})" ,
298- lhs_counter. zero_based_id( ) ,
299- self . counters. len( ) ,
300- self . expressions. len( ) ,
301- lhs_counter,
302- op,
303- rhs_counter,
304- ) ;
305-
306- debug_assert ! (
307- rhs_counter. is_zero( )
308- // Note: with `as usize` the ID _could_ overflow/wrap if `usize = u16`
309- || ( ( rhs_counter. zero_based_id( ) as usize )
310- <= usize :: max( self . counters. len( ) , self . expressions. len( ) ) ) ,
311- "rhs id={} > both counters.len()={} and expressions.len()={}
312- ({:?} {:?} {:?})" ,
313- rhs_counter. zero_based_id( ) ,
314- self . counters. len( ) ,
315- self . expressions. len( ) ,
316- lhs_counter,
317- op,
318- rhs_counter,
319- ) ;
320-
321- // Both operands exist. `Expression` operands exist in `self.expressions` and have
322- // been assigned a `new_index`.
323- let mapped_expression_index =
324- MappedExpressionIndex :: from ( counter_expressions. len ( ) ) ;
325- let expression = CounterExpression :: new (
326- lhs_counter,
236+ & Some ( Expression { lhs, op, rhs, .. } ) => CounterExpression :: new (
237+ Counter :: from_operand ( lhs) ,
327238 match op {
328239 Op :: Add => ExprKind :: Add ,
329240 Op :: Subtract => ExprKind :: Subtract ,
330241 } ,
331- rhs_counter,
332- ) ;
333- debug ! (
334- "Adding expression {:?} = {:?}, region: {:?}" ,
335- mapped_expression_index, expression, optional_region
336- ) ;
337- counter_expressions. push ( expression) ;
338- new_indexes[ original_index] = Some ( mapped_expression_index) ;
339- if let Some ( region) = optional_region {
340- expression_regions. push ( ( Counter :: expression ( mapped_expression_index) , region) ) ;
341- }
342- } else {
343- bug ! (
344- "expression has one or more missing operands \
345- original_index={:?}, lhs={:?}, op={:?}, rhs={:?}, region={:?}",
346- original_index,
347- lhs,
348- op,
349- rhs,
350- optional_region,
351- ) ;
352- }
353- }
354- ( counter_expressions, expression_regions. into_iter ( ) )
242+ Counter :: from_operand ( rhs) ,
243+ ) ,
244+ } )
245+ . collect :: < Vec < _ > > ( )
246+ }
247+
248+ fn expression_regions ( & self ) -> Vec < ( Counter , & CodeRegion ) > {
249+ // Find all of the expression IDs that weren't optimized out AND have
250+ // an attached code region, and return the corresponding mapping as a
251+ // counter/region pair.
252+ self . expressions
253+ . iter_enumerated ( )
254+ . filter_map ( |( id, expression) | {
255+ let code_region = expression. as_ref ( ) ?. region . as_ref ( ) ?;
256+ Some ( ( Counter :: expression ( id) , code_region) )
257+ } )
258+ . collect :: < Vec < _ > > ( )
355259 }
356260
357261 fn unreachable_regions ( & self ) -> impl Iterator < Item = ( Counter , & CodeRegion ) > {
0 commit comments