|
| 1 | +# Copyright 2025 The Cirq Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +"""Tools for measuring expectation values of Pauli strings with readout error mitigation.""" |
| 15 | +import time |
| 16 | +from typing import List, Union, Dict, Optional, Tuple |
| 17 | +import attrs |
| 18 | + |
| 19 | +import numpy as np |
| 20 | + |
| 21 | +from cirq import ops, circuits, work |
| 22 | +from cirq.contrib.shuffle_circuits import run_shuffled_with_readout_benchmarking |
| 23 | +from cirq.experiments import SingleQubitReadoutCalibrationResult |
| 24 | +from cirq.experiments.readout_confusion_matrix import TensoredConfusionMatrices |
| 25 | +from cirq.study import ResultDict |
| 26 | + |
| 27 | + |
| 28 | +@attrs.frozen |
| 29 | +class PauliStringMeasurementResult: |
| 30 | + """Result of measuring a Pauli string. |
| 31 | +
|
| 32 | + Attributes: |
| 33 | + pauli_string: The Pauli string that is measured. |
| 34 | + mitigated_expectation: The error-mitigated expectation value of the Pauli string. |
| 35 | + mitigated_stddev: The standard deviation of the error-mitigated expectation value. |
| 36 | + unmitigated_expectation: The unmitigated expectation value of the Pauli string. |
| 37 | + unmitigated_stddev: The standard deviation of the unmitigated expectation value. |
| 38 | + calibration_result: The calibration result for single-qubit readout errors. |
| 39 | + """ |
| 40 | + |
| 41 | + pauli_string: ops.PauliString |
| 42 | + mitigated_expectation: float |
| 43 | + mitigated_stddev: float |
| 44 | + unmitigated_expectation: float |
| 45 | + unmitigated_stddev: float |
| 46 | + calibration_result: Optional[SingleQubitReadoutCalibrationResult] = None |
| 47 | + |
| 48 | + |
| 49 | +@attrs.frozen |
| 50 | +class CircuitToPauliStringsMeasurementResult: |
| 51 | + """Result of measuring Pauli strings on a circuit. |
| 52 | +
|
| 53 | + Attributes: |
| 54 | + circuit: The circuit that is measured. |
| 55 | + results: A list of PauliStringMeasurementResult objects. |
| 56 | + """ |
| 57 | + |
| 58 | + circuit: circuits.FrozenCircuit |
| 59 | + results: List[PauliStringMeasurementResult] |
| 60 | + |
| 61 | + |
| 62 | +def _validate_input( |
| 63 | + circuits_to_pauli: Dict[circuits.FrozenCircuit, list[ops.PauliString]], |
| 64 | + pauli_repetitions: int, |
| 65 | + readout_repetitions: int, |
| 66 | + num_random_bitstrings: int, |
| 67 | + rng_or_seed: Union[np.random.Generator, int], |
| 68 | +): |
| 69 | + if not circuits_to_pauli: |
| 70 | + raise ValueError("Input circuits must not be empty.") |
| 71 | + |
| 72 | + for circuit in circuits_to_pauli.keys(): |
| 73 | + if not isinstance(circuit, circuits.FrozenCircuit): |
| 74 | + raise TypeError("All keys in 'circuits_to_pauli' must be FrozenCircuit instances.") |
| 75 | + |
| 76 | + for pauli_strings in circuits_to_pauli.values(): |
| 77 | + for pauli_str in pauli_strings: |
| 78 | + if not isinstance(pauli_str, ops.PauliString): |
| 79 | + raise TypeError( |
| 80 | + f"All elements in the Pauli string lists must be cirq.PauliString " |
| 81 | + f"instances, got {type(pauli_str)}." |
| 82 | + ) |
| 83 | + |
| 84 | + if all(q == ops.I for q in pauli_str): |
| 85 | + raise ValueError( |
| 86 | + "Empty Pauli strings or Pauli strings consisting" |
| 87 | + "only of Pauli I are not allowed. Please provide" |
| 88 | + "valid input Pauli strings." |
| 89 | + ) |
| 90 | + if pauli_str.coefficient.imag != 0: |
| 91 | + raise ValueError( |
| 92 | + "Cannot compute expectation value of a non-Hermitian PauliString. " |
| 93 | + "Coefficient must be real." |
| 94 | + ) |
| 95 | + |
| 96 | + # Check rng is a numpy random generator |
| 97 | + if not isinstance(rng_or_seed, np.random.Generator) and not isinstance(rng_or_seed, int): |
| 98 | + raise ValueError("Must provide a numpy random generator or a seed") |
| 99 | + |
| 100 | + # Check pauli_repetitions is bigger than 0 |
| 101 | + if pauli_repetitions <= 0: |
| 102 | + raise ValueError("Must provide non-zero pauli_repetitions.") |
| 103 | + |
| 104 | + # Check num_random_bitstrings is bigger than or equal to 0 |
| 105 | + if num_random_bitstrings < 0: |
| 106 | + raise ValueError("Must provide zero or more num_random_bitstrings.") |
| 107 | + |
| 108 | + # Check readout_repetitions is bigger than 0 |
| 109 | + if readout_repetitions <= 0: |
| 110 | + raise ValueError("Must provide non-zero readout_repetitions for readout calibration.") |
| 111 | + |
| 112 | + |
| 113 | +def _pauli_string_to_basis_change_ops( |
| 114 | + pauli_string: ops.PauliString, qid_list: list[ops.Qid] |
| 115 | +) -> List[ops.Operation]: |
| 116 | + """Creates operations to change to the eigenbasis of the given Pauli string. |
| 117 | +
|
| 118 | + This function constructs a list of ops.Operation that performs basis changes |
| 119 | + necessary to measure the given pauli_string in the computational basis. |
| 120 | +
|
| 121 | + Args: |
| 122 | + pauli_string: The Pauli string to diagonalize. |
| 123 | + qid_list: An ordered list of the qubits in the circuit. |
| 124 | +
|
| 125 | + Returns: |
| 126 | + A list of Operations that, when applied before measurement in the |
| 127 | + computational basis, effectively measures in the eigenbasis of |
| 128 | + pauli_strings. |
| 129 | + """ |
| 130 | + operations = [] |
| 131 | + for qubit in qid_list: # Iterate over ALL qubits in the circuit |
| 132 | + if qubit in pauli_string: |
| 133 | + pauli_op = pauli_string[qubit] |
| 134 | + if pauli_op == ops.X: |
| 135 | + operations.append(ops.ry(-np.pi / 2)(qubit)) # =cirq.H |
| 136 | + elif pauli_op == ops.Y: |
| 137 | + operations.append(ops.rx(np.pi / 2)(qubit)) |
| 138 | + # If pauli_op is Z or I, no operation needed |
| 139 | + return operations |
| 140 | + |
| 141 | + |
| 142 | +def _build_one_qubit_confusion_matrix(e0: float, e1: float) -> np.ndarray: |
| 143 | + """Builds a 2x2 confusion matrix for a single qubit. |
| 144 | +
|
| 145 | + Args: |
| 146 | + e0: the 0->1 readout error rate. |
| 147 | + e1: the 1->0 readout error rate. |
| 148 | +
|
| 149 | + Returns: |
| 150 | + A 2x2 NumPy array representing the confusion matrix. |
| 151 | + """ |
| 152 | + return np.array([[1 - e0, e1], [e0, 1 - e1]]) |
| 153 | + |
| 154 | + |
| 155 | +def _build_many_one_qubits_confusion_matrix( |
| 156 | + qubits_to_error: SingleQubitReadoutCalibrationResult, |
| 157 | +) -> list[np.ndarray]: |
| 158 | + """Builds a list of confusion matrices from calibration results. |
| 159 | +
|
| 160 | + This function iterates through the calibration results for each qubit and |
| 161 | + constructs a list of single-qubit confusion matrices. |
| 162 | +
|
| 163 | + Args: |
| 164 | + qubits_to_error: An object containing calibration results for |
| 165 | + single-qubit readout errors, including zero-state and one-state errors |
| 166 | + for each qubit. |
| 167 | +
|
| 168 | + Returns: |
| 169 | + A list of NumPy arrays, where each array is a 2x2 confusion matrix |
| 170 | + for a qubit. The order of matrices corresponds to the order of qubits |
| 171 | + in the calibration results (alphabetical order by qubit name). |
| 172 | + """ |
| 173 | + cms: list[np.ndarray] = [] |
| 174 | + |
| 175 | + for qubit in sorted(qubits_to_error.zero_state_errors.keys()): |
| 176 | + e0 = qubits_to_error.zero_state_errors[qubit] |
| 177 | + e1 = qubits_to_error.one_state_errors[qubit] |
| 178 | + cms.append(_build_one_qubit_confusion_matrix(e0, e1)) |
| 179 | + return cms |
| 180 | + |
| 181 | + |
| 182 | +def _build_many_one_qubits_empty_confusion_matrix(qubits_length: int) -> list[np.ndarray]: |
| 183 | + """Builds a list of empty confusion matrices""" |
| 184 | + return [_build_one_qubit_confusion_matrix(0, 0) for _ in range(qubits_length)] |
| 185 | + |
| 186 | + |
| 187 | +def _process_pauli_measurement_results( |
| 188 | + qubits: List[ops.Qid], |
| 189 | + pauli_strings: List[ops.PauliString], |
| 190 | + circuit_results: List[ResultDict], |
| 191 | + calibration_results: Dict[Tuple[ops.Qid, ...], SingleQubitReadoutCalibrationResult], |
| 192 | + pauli_repetitions: int, |
| 193 | + timestamp: float, |
| 194 | + disable_readout_mitigation: bool = False, |
| 195 | +) -> List[PauliStringMeasurementResult]: |
| 196 | + """Calculates both error-mitigated expectation values and unmitigated expectation values |
| 197 | + from measurement results. |
| 198 | +
|
| 199 | + This function takes the results from shuffled readout benchmarking and: |
| 200 | + 1. Constructs a tensored confusion matrix for error mitigation. |
| 201 | + 2. Mitigates readout errors for each Pauli string measurement. |
| 202 | + 3. Calculates and returns both error-mitigated and unmitigated expectation values. |
| 203 | +
|
| 204 | + Args: |
| 205 | + qubits: Qubits to build confusion matrices for. In a sorted order. |
| 206 | + pauli_strings: The list of PauliStrings that are measured. |
| 207 | + circuit_results: A list of ResultDict obtained |
| 208 | + from running the Pauli measurement circuits. |
| 209 | + confusion_matrices: A list of confusion matrices from calibration results. |
| 210 | + pauli_repetitions: The number of repetitions used for Pauli string measurements. |
| 211 | + timestamp: The timestamp of the calibration results. |
| 212 | + disable_readout_mitigation: If set to True, returns no error-mitigated error |
| 213 | + expectation values. |
| 214 | +
|
| 215 | + Returns: |
| 216 | + A list of PauliStringMeasurementResult. |
| 217 | + """ |
| 218 | + |
| 219 | + pauli_measurement_results: List[PauliStringMeasurementResult] = [] |
| 220 | + |
| 221 | + for pauli_index, circuit_result in enumerate(circuit_results): |
| 222 | + measurement_results = circuit_result.measurements["m"] |
| 223 | + |
| 224 | + pauli_string = pauli_strings[pauli_index] |
| 225 | + qubits_sorted = sorted(pauli_string.qubits) |
| 226 | + qubit_indices = [qubits.index(q) for q in qubits_sorted] |
| 227 | + |
| 228 | + confusion_matrices = ( |
| 229 | + _build_many_one_qubits_confusion_matrix(calibration_results[tuple(qubits_sorted)]) |
| 230 | + if disable_readout_mitigation is False |
| 231 | + else _build_many_one_qubits_empty_confusion_matrix(len(qubits_sorted)) |
| 232 | + ) |
| 233 | + tensored_cm = TensoredConfusionMatrices( |
| 234 | + confusion_matrices, |
| 235 | + [[q] for q in qubits_sorted], |
| 236 | + repetitions=pauli_repetitions, |
| 237 | + timestamp=timestamp, |
| 238 | + ) |
| 239 | + |
| 240 | + # Create a mask for the relevant qubits in the measurement results |
| 241 | + relevant_bits = measurement_results[:, qubit_indices] |
| 242 | + |
| 243 | + # Calculate the mitigated expectation. |
| 244 | + raw_mitigated_values, raw_d_m = tensored_cm.readout_mitigation_pauli_uncorrelated( |
| 245 | + qubits_sorted, relevant_bits |
| 246 | + ) |
| 247 | + mitigated_values_with_coefficient = raw_mitigated_values * pauli_string.coefficient.real |
| 248 | + d_m_with_coefficient = raw_d_m * abs(pauli_string.coefficient.real) |
| 249 | + |
| 250 | + # Calculate the unmitigated expectation. |
| 251 | + parity = np.sum(relevant_bits, axis=1) % 2 |
| 252 | + raw_unmitigated_values = 1 - 2 * np.mean(parity) |
| 253 | + raw_d_unmit = 2 * np.sqrt(np.mean(parity) * (1 - np.mean(parity)) / pauli_repetitions) |
| 254 | + unmitigated_value_with_coefficient = raw_unmitigated_values * pauli_string.coefficient |
| 255 | + d_unmit_with_coefficient = raw_d_unmit * abs(pauli_string.coefficient) |
| 256 | + |
| 257 | + pauli_measurement_results.append( |
| 258 | + PauliStringMeasurementResult( |
| 259 | + pauli_string=pauli_strings[pauli_index], |
| 260 | + mitigated_expectation=mitigated_values_with_coefficient, |
| 261 | + mitigated_stddev=d_m_with_coefficient, |
| 262 | + unmitigated_expectation=unmitigated_value_with_coefficient, |
| 263 | + unmitigated_stddev=d_unmit_with_coefficient, |
| 264 | + calibration_result=( |
| 265 | + calibration_results[tuple(qubits_sorted)] |
| 266 | + if disable_readout_mitigation is False |
| 267 | + else None |
| 268 | + ), |
| 269 | + ) |
| 270 | + ) |
| 271 | + |
| 272 | + return pauli_measurement_results |
| 273 | + |
| 274 | + |
| 275 | +def measure_pauli_strings( |
| 276 | + circuits_to_pauli: Dict[circuits.FrozenCircuit, list[ops.PauliString]], |
| 277 | + sampler: work.Sampler, |
| 278 | + pauli_repetitions: int, |
| 279 | + readout_repetitions: int, |
| 280 | + num_random_bitstrings: int, |
| 281 | + rng_or_seed: Union[np.random.Generator, int], |
| 282 | +) -> List[CircuitToPauliStringsMeasurementResult]: |
| 283 | + """Measures expectation values of Pauli strings on given circuits with/without |
| 284 | + readout error mitigation. |
| 285 | +
|
| 286 | + This function takes a list of circuits and corresponding List[Pauli string] to measure. |
| 287 | + For each circuit-List[Pauli string] pair, it: |
| 288 | + 1. Constructs circuits to measure the Pauli string expectation value by |
| 289 | + adding basis change moments and measurement operations. |
| 290 | + 2. Runs shuffled readout benchmarking on these circuits to calibrate readout errors. |
| 291 | + 3. Mitigates readout errors using the calibrated confusion matrices. |
| 292 | + 4. Calculates and returns both error-mitigated and unmitigatedexpectation values for |
| 293 | + each Pauli string. |
| 294 | +
|
| 295 | + Args: |
| 296 | + circuits_to_pauli: A dictionary mapping circuits to a list of Pauli strings |
| 297 | + to measure. |
| 298 | + sampler: The sampler to use. |
| 299 | + pauli_repetitions: The number of repetitions for each circuit when measuring |
| 300 | + Pauli strings. |
| 301 | + readout_repetitions: The number of repetitions for readout calibration |
| 302 | + in the shuffled benchmarking. |
| 303 | + num_random_bitstrings: The number of random bitstrings to use in shuffled |
| 304 | + benchmarking. |
| 305 | + rng_or_seed: A random number generator or seed for the shuffled benchmarking. |
| 306 | +
|
| 307 | + Returns: |
| 308 | + A list of CircuitToPauliStringsMeasurementResult objects, where each object contains: |
| 309 | + - The circuit that was measured. |
| 310 | + - A list of PauliStringMeasurementResult objects. |
| 311 | + - The calibration result for single-qubit readout errors. |
| 312 | + """ |
| 313 | + |
| 314 | + _validate_input( |
| 315 | + circuits_to_pauli, |
| 316 | + pauli_repetitions, |
| 317 | + readout_repetitions, |
| 318 | + num_random_bitstrings, |
| 319 | + rng_or_seed, |
| 320 | + ) |
| 321 | + |
| 322 | + # Extract unique qubit tuples from input pauli strings |
| 323 | + unique_qubit_tuples = set() |
| 324 | + for pauli_strings in circuits_to_pauli.values(): |
| 325 | + for pauli_string in pauli_strings: |
| 326 | + unique_qubit_tuples.add(tuple(sorted(pauli_string.qubits))) |
| 327 | + # qubits_list is a list of qubit tuples |
| 328 | + qubits_list = sorted(unique_qubit_tuples) |
| 329 | + |
| 330 | + # Build the basis-change circuits for each Pauli string |
| 331 | + pauli_measurement_circuits = list[circuits.Circuit]() |
| 332 | + for input_circuit, pauli_strings in circuits_to_pauli.items(): |
| 333 | + qid_list = list(sorted(input_circuit.all_qubits())) |
| 334 | + basis_change_circuits = [] |
| 335 | + input_circuit_unfrozen = input_circuit.unfreeze() |
| 336 | + for pauli_string in pauli_strings: |
| 337 | + basis_change_circuit = ( |
| 338 | + input_circuit_unfrozen |
| 339 | + + _pauli_string_to_basis_change_ops(pauli_string, qid_list) |
| 340 | + + ops.measure(*qid_list, key="m") |
| 341 | + ) |
| 342 | + basis_change_circuits.append(basis_change_circuit) |
| 343 | + pauli_measurement_circuits.extend(basis_change_circuits) |
| 344 | + |
| 345 | + # Run shuffled benchmarking for readout calibration |
| 346 | + circuits_results, calibration_results = run_shuffled_with_readout_benchmarking( |
| 347 | + input_circuits=pauli_measurement_circuits, |
| 348 | + sampler=sampler, |
| 349 | + circuit_repetitions=pauli_repetitions, |
| 350 | + rng_or_seed=rng_or_seed, |
| 351 | + qubits=[list(qubits) for qubits in qubits_list], |
| 352 | + num_random_bitstrings=num_random_bitstrings, |
| 353 | + readout_repetitions=readout_repetitions, |
| 354 | + ) |
| 355 | + |
| 356 | + # Process the results to calculate expectation values |
| 357 | + results: List[CircuitToPauliStringsMeasurementResult] = [] |
| 358 | + circuit_result_index = 0 |
| 359 | + for input_circuit, pauli_strings in circuits_to_pauli.items(): |
| 360 | + qubits_in_circuit = tuple(sorted(input_circuit.all_qubits())) |
| 361 | + |
| 362 | + disable_readout_mitigation = False if num_random_bitstrings != 0 else True |
| 363 | + pauli_measurement_results = _process_pauli_measurement_results( |
| 364 | + list(qubits_in_circuit), |
| 365 | + pauli_strings, |
| 366 | + circuits_results[circuit_result_index : circuit_result_index + len(pauli_strings)], |
| 367 | + calibration_results, |
| 368 | + pauli_repetitions, |
| 369 | + time.time(), |
| 370 | + disable_readout_mitigation, |
| 371 | + ) |
| 372 | + results.append( |
| 373 | + CircuitToPauliStringsMeasurementResult( |
| 374 | + circuit=input_circuit, results=pauli_measurement_results |
| 375 | + ) |
| 376 | + ) |
| 377 | + |
| 378 | + circuit_result_index += len(pauli_strings) |
| 379 | + return results |
0 commit comments