|
31 | 31 | from aesara.tensor.random.basic import MultinomialRV, dirichlet, multivariate_normal |
32 | 32 | from aesara.tensor.random.op import RandomVariable, default_shape_from_params |
33 | 33 | from aesara.tensor.random.utils import broadcast_params |
34 | | -from aesara.tensor.slinalg import ( |
35 | | - Cholesky, |
36 | | - Solve, |
37 | | - solve_lower_triangular, |
38 | | - solve_upper_triangular, |
39 | | -) |
| 34 | +from aesara.tensor.slinalg import Cholesky |
| 35 | +from aesara.tensor.slinalg import solve_lower_triangular as solve_lower |
| 36 | +from aesara.tensor.slinalg import solve_upper_triangular as solve_upper |
40 | 37 | from aesara.tensor.type import TensorType |
41 | 38 | from scipy import linalg, stats |
42 | 39 |
|
|
66 | 63 | "CAR", |
67 | 64 | ] |
68 | 65 |
|
69 | | -solve_lower = Solve(A_structure="lower_triangular") |
70 | 66 | # Step methods and advi do not catch LinAlgErrors at the |
71 | 67 | # moment. We work around that by using a cholesky op |
72 | 68 | # that returns a nan as first entry instead of raising |
@@ -1716,10 +1712,10 @@ def logp(value, mu, rowchol, colchol): |
1716 | 1712 | delta = value - mu |
1717 | 1713 |
|
1718 | 1714 | # Find exponent piece by piece |
1719 | | - right_quaddist = solve_lower_triangular(rowchol, delta) |
| 1715 | + right_quaddist = solve_lower(rowchol, delta) |
1720 | 1716 | quaddist = at.nlinalg.matrix_dot(right_quaddist.T, right_quaddist) |
1721 | | - quaddist = solve_lower_triangular(colchol, quaddist) |
1722 | | - quaddist = solve_upper_triangular(colchol.T, quaddist) |
| 1717 | + quaddist = solve_lower(colchol, quaddist) |
| 1718 | + quaddist = solve_upper(colchol.T, quaddist) |
1723 | 1719 | trquaddist = at.nlinalg.trace(quaddist) |
1724 | 1720 |
|
1725 | 1721 | coldiag = at.diag(colchol) |
|
0 commit comments