|  | 
|  | 1 | +# Objects365 Dataset | 
|  | 2 | + | 
|  | 3 | +> [Objects365 Dataset](https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf) | 
|  | 4 | +
 | 
|  | 5 | +<!-- [DATASET] --> | 
|  | 6 | + | 
|  | 7 | +## Abstract | 
|  | 8 | + | 
|  | 9 | +<!-- [ABSTRACT] --> | 
|  | 10 | + | 
|  | 11 | +#### Objects365 Dataset V1 | 
|  | 12 | + | 
|  | 13 | +[Objects365 Dataset V1](http://www.objects365.org/overview.html) is a brand new dataset, | 
|  | 14 | +designed to spur object detection research with a focus on diverse objects in the Wild. | 
|  | 15 | +It has 365 object categories over 600K training images. More than 10 million, high-quality bounding boxes are manually labeled through a three-step, carefully designed annotation pipeline. It is the largest object detection dataset (with full annotation) so far and establishes a more challenging benchmark for the community. Objects365 can serve as a better feature learning dataset for localization-sensitive tasks like object detection | 
|  | 16 | +and semantic segmentation. | 
|  | 17 | + | 
|  | 18 | +<!-- [IMAGE] --> | 
|  | 19 | + | 
|  | 20 | +<div align=center> | 
|  | 21 | +<img src="https://user-images.githubusercontent.com/48282753/208368046-b7573022-06c9-4a99-af17-a6ac7407e3d8.png" height="400"/> | 
|  | 22 | +</div> | 
|  | 23 | + | 
|  | 24 | +#### Objects365 Dataset V2 | 
|  | 25 | + | 
|  | 26 | +[Objects365 Dataset V2](http://www.objects365.org/overview.html) is based on the V1 release of the Objects365 dataset. | 
|  | 27 | +Objects 365 annotated 365 object classes on more than 1800k images, with more than 29 million bounding boxes in the training set, surpassing PASCAL VOC, ImageNet, and COCO datasets. | 
|  | 28 | +Objects 365 includes 11 categories of people, clothing, living room, bathroom, kitchen, office/medical, electrical appliances, transportation, food, animals, sports/musical instruments, and each category has dozens of subcategories. | 
|  | 29 | + | 
|  | 30 | +## Citation | 
|  | 31 | + | 
|  | 32 | +``` | 
|  | 33 | +@inproceedings{shao2019objects365, | 
|  | 34 | +  title={Objects365: A large-scale, high-quality dataset for object detection}, | 
|  | 35 | +  author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Zhang, Xiangyu and Li, Jing and Sun, Jian}, | 
|  | 36 | +  booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, | 
|  | 37 | +  pages={8430--8439}, | 
|  | 38 | +  year={2019} | 
|  | 39 | +} | 
|  | 40 | +``` | 
|  | 41 | + | 
|  | 42 | +## Prepare Dataset | 
|  | 43 | + | 
|  | 44 | +1. You need to download and extract Objects365 dataset. Users can download Objects365 V2 by using `tools/misc/download_dataset.py`. | 
|  | 45 | + | 
|  | 46 | +   **Usage** | 
|  | 47 | + | 
|  | 48 | +   ```shell | 
|  | 49 | +   python tools/misc/download_dataset.py --dataset-name objects365v2 \ | 
|  | 50 | +   --save-dir ${SAVING PATH} \ | 
|  | 51 | +   --unzip \ | 
|  | 52 | +   --delete  # Optional, delete the download zip file | 
|  | 53 | +   ``` | 
|  | 54 | + | 
|  | 55 | +   **Note:** There is no download link for Objects365 V1 right now. If you would like to download Objects365-V1, please visit [official website](http://www.objects365.org/) to concat the author. | 
|  | 56 | + | 
|  | 57 | +2. The directory should be like this: | 
|  | 58 | + | 
|  | 59 | +   ```none | 
|  | 60 | +   mmdetection | 
|  | 61 | +   ├── mmdet | 
|  | 62 | +   ├── tools | 
|  | 63 | +   ├── configs | 
|  | 64 | +   ├── data | 
|  | 65 | +   │   ├── Objects365 | 
|  | 66 | +   │   │   ├── Obj365_v1 | 
|  | 67 | +   │   │   │   ├── annotations | 
|  | 68 | +   │   │   │   │   ├── objects365_train.json | 
|  | 69 | +   │   │   │   │   ├── objects365_val.json | 
|  | 70 | +   │   │   │   ├── train        # training images | 
|  | 71 | +   │   │   │   ├── val          # validation images | 
|  | 72 | +   │   │   ├── Obj365_v2 | 
|  | 73 | +   │   │   │   ├── annotations | 
|  | 74 | +   │   │   │   │   ├── zhiyuan_objv2_train.json | 
|  | 75 | +   │   │   │   │   ├── zhiyuan_objv2_val.json | 
|  | 76 | +   │   │   │   ├── train        # training images | 
|  | 77 | +   │   │   │   │   ├── patch0 | 
|  | 78 | +   │   │   │   │   ├── patch1 | 
|  | 79 | +   │   │   │   │   ├── ... | 
|  | 80 | +   │   │   │   ├── val          # validation images | 
|  | 81 | +   │   │   │   │   ├── patch0 | 
|  | 82 | +   │   │   │   │   ├── patch1 | 
|  | 83 | +   │   │   │   │   ├── ... | 
|  | 84 | +   ``` | 
|  | 85 | + | 
|  | 86 | +## Results and Models | 
|  | 87 | + | 
|  | 88 | +### Objects365 V1 | 
|  | 89 | + | 
|  | 90 | +| Architecture | Backbone |  Style  | Lr schd | Mem (GB) | box AP |                                                              Config                                                              |                                                                                                                                                                                Download                                                                                                                                                                                | | 
|  | 91 | +| :----------: | :------: | :-----: | :-----: | :------: | :----: | :------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | 
|  | 92 | +| Faster R-CNN |   R-50   | pytorch |   1x    |    -     |  19.6  |   [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/faster-rcnn_r50_fpn_16xb4-1x_objects365v1.py)   |           [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1/faster_rcnn_r50_fpn_16x4_1x_obj365v1_20221219_181226-9ff10f95.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1/faster_rcnn_r50_fpn_16x4_1x_obj365v1_20221219_181226.log.json)           | | 
|  | 93 | +| Faster R-CNN |   R-50   | pytorch |  1350K  |    -     |  22.3  | [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/faster-rcnn_r50-syncbn_fpn_1350k_objects365v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1_20220510_142457-337d8965.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1_20220510_142457.log.json) | | 
|  | 94 | +|  Retinanet   |   R-50   | pytorch |   1x    |    -     |  14.8  |       [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/retinanet_r50_fpn_1x_objects365v1.py)       |                         [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v1/retinanet_r50_fpn_1x_obj365v1_20221219_181859-ba3e3dd5.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v1/retinanet_r50_fpn_1x_obj365v1_20221219_181859.log.json)                         | | 
|  | 95 | +|  Retinanet   |   R-50   | pytorch |  1350K  |    -     |  18.0  |  [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/retinanet_r50-syncbn_fpn_1350k_objects365v1.py)  |     [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1/retinanet_r50_fpn_syncbn_1350k_obj365v1_20220513_111237-7517c576.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1/retinanet_r50_fpn_syncbn_1350k_obj365v1_20220513_111237.log.json)     | | 
|  | 96 | + | 
|  | 97 | +### Objects365 V2 | 
|  | 98 | + | 
|  | 99 | +| Architecture | Backbone |  Style  | Lr schd | Mem (GB) | box AP |                                                            Config                                                            |                                                                                                                                                                      Download                                                                                                                                                                      | | 
|  | 100 | +| :----------: | :------: | :-----: | :-----: | :------: | :----: | :--------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | 
|  | 101 | +| Faster R-CNN |   R-50   | pytorch |   1x    |    -     |  19.8  | [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/faster-rcnn_r50_fpn_16xb4-1x_objects365v2.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2/faster_rcnn_r50_fpn_16x4_1x_obj365v2_20221220_175040-5910b015.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2/faster_rcnn_r50_fpn_16x4_1x_obj365v2_20221220_175040.log.json) | | 
|  | 102 | +|  Retinanet   |   R-50   | pytorch |   1x    |    -     |  16.7  |     [config](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/objects365/retinanet_r50_fpn_1x_objects365v2.py)     |               [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v2/retinanet_r50_fpn_1x_obj365v2_20221223_122105-d9b191f1.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v2/retinanet_r50_fpn_1x_obj365v2_20221223_122105.log.json)               | | 
0 commit comments