@@ -323,11 +323,6 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
323323 np .percentile (func , 25 , axis = 3 )) / 1.349
324324 func_sd [mask <= 0 ] = 0
325325
326- # ar1_img = np.zeros_like(func_sd)
327- # ar1_img[idx] = diff_SDhat
328- nb .Nifti1Image (func_sd , nb .load (in_mask ).get_affine ()).to_filename ('func_sd.nii.gz' )
329-
330-
331326 if remove_zerovariance :
332327 # Remove zero-variance voxels across time axis
333328 mask = zero_variance (func , mask )
@@ -342,8 +337,8 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
342337 ar1 = np .apply_along_axis (AR_est_YW , 1 , mfunc , 1 )[:, 0 ]
343338
344339 # Compute (predicted) standard deviation of temporal difference time series
345- diff_SDhat = np .squeeze (np .sqrt (((1 - ar1 ) * 2 ).tolist ())) * func_sd [mask > 0 ].reshape (- 1 )
346- diff_sd_mean = diff_SDhat .mean ()
340+ diff_sdhat = np .squeeze (np .sqrt (((1 - ar1 ) * 2 ).tolist ())) * func_sd [mask > 0 ].reshape (- 1 )
341+ diff_sd_mean = diff_sdhat .mean ()
347342
348343 # Compute temporal difference time series
349344 func_diff = np .diff (mfunc , axis = 1 )
@@ -355,7 +350,7 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
355350 dvars_stdz = dvars_nstd / diff_sd_mean
356351
357352 # voxelwise standardization
358- diff_vx_stdz = func_diff / np .array ([diff_SDhat ] * func_diff .shape [- 1 ]).T
353+ diff_vx_stdz = func_diff / np .array ([diff_sdhat ] * func_diff .shape [- 1 ]).T
359354 dvars_vx_stdz = diff_vx_stdz .std (axis = 0 , ddof = 1 )
360355
361356 return (dvars_stdz , dvars_nstd , dvars_vx_stdz )
0 commit comments