Md Faizal Karim1, Mohammed Saad Hashmi1, Shreya Bollimuntha1, Mahesh Reddy Tapeti1, Gaurav Singh1, Nagamanikandan Govindan2, K Madhava Krishna1
1 Robotics Research Center, IIIT Hyderabad
2 IIITDM Kancheepuram
Download the dataset from [Link].
>> unzip -l dg16m.zip
├── dg16m/
│ ├── dg16m/grasps
│ │── dg16m/grasps/554fa306799d623af7248d9dbed7a7b8.h5
│ │── dg16m/grasps/c2ad96f56ec726d270a43c2d978e502e.h5
│ │── .....
│ │── dg16m/grasps/c8440e1075b1b44522de187cba227ff8.h5
└── ├── dg16m/meshes
│── dg16m/meshes/554fa306799d623af7248d9dbed7a7b8.obj
│── dg16m/meshes/c2ad96f56ec726d270a43c2d978e502e.obj
│── .....
│── dg16m/meshes/c8440e1075b1b44522de187cba227ff8.obj
./de731d4ac7341e15c58e834f0b160845.h5
├── grasps
│ ├── contact_forces (4000, 4, 3)
│ ├── contact_points (4000, 4, 3)
│ ├── fc_passing_indices (2000)
│ ├── fc_failed_indices (2000)
│ ├── grasps (4000, 2, 4, 4)
│ └── loss_values (4000)
└── object/
├── file (str)
└── scale (float)Note: Some objects may have passing/failing grasps < 2000. Use the fc_passing_indices and fc_failed_indices to sort the grasps.
pip install -r requirements.txt
cd grasp_generation/meshpy
pip install -e .
We first sample 500 single arm antipodal grasps and create all possible cominations to create dual-arm grasp candidates (along with distance pruning to remove extremely close pairs). They are then passed through the optimizer to find the force-closure valid dual-arm grasp pairs. Finally, we save 2000 valid and 2000 invalid grasp pairs in the dataset. These numbers can be changed in the code for further experimentation.
cd grasp_generation/scripts
python3 generate_dg16m.py --meshes_path <PATH_TO_MESHES> --scaled_meshes <SAVE_PATH> --num_workers 16
Note: Change the number of CPU workers based on the system. The workers are used to parallelize the grasp generation and then run the CVXPY optimization in parallel using multiprocessing.
Use viz_grasps.ipynb to vizualize the grasps.
Our codebase in built upon the existing works of DA2 Dataset and PhyGrasp. We thank the authors for releasing the code.
@article{DG16M,
title={DG16M: A Large-Scale Dataset for Dual-Arm Grasping with Force-Optimized Grasps},
author={Md Faizal Karim and Mohammed Saad Hashmi and Shreya Bollimuntha and Mahesh Reddy Tapeti and Gaurav Singh and Nagamanikandan Govindan and K Madhava Krishna},
year={2025},
eprint={2503.08358},
url={https://arxiv.org/abs/2503.08358},
}
