Skip to content

Commit bf06d65

Browse files
committed
batched : add bench tool
1 parent 8e6716a commit bf06d65

File tree

4 files changed

+205
-1
lines changed

4 files changed

+205
-1
lines changed

examples/CMakeLists.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,7 @@ else()
2525
add_subdirectory(convert-llama2c-to-ggml)
2626
add_subdirectory(simple)
2727
add_subdirectory(batched)
28+
add_subdirectory(batched-bench)
2829
add_subdirectory(speculative)
2930
add_subdirectory(parallel)
3031
add_subdirectory(embd-input)
Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
set(TARGET batched-bench)
2+
add_executable(${TARGET} batched-bench.cpp)
3+
install(TARGETS ${TARGET} RUNTIME)
4+
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5+
target_compile_features(${TARGET} PRIVATE cxx_std_11)
Lines changed: 198 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,198 @@
1+
#include "common.h"
2+
#include "llama.h"
3+
4+
#include <algorithm>
5+
#include <cmath>
6+
#include <cstdio>
7+
#include <string>
8+
#include <vector>
9+
10+
int main(int argc, char ** argv) {
11+
gpt_params params;
12+
13+
if (argc == 1 || argv[1][0] == '-') {
14+
printf("usage: %s MODEL_PATH [IS_PP_SHARED] [NGL]\n" , argv[0]);
15+
return 1 ;
16+
}
17+
18+
int is_pp_shared = 0;
19+
int n_gpu_layers = 0;
20+
21+
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
22+
std::vector<int> n_tg = { 128, 256, 512, };
23+
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
24+
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
25+
26+
const int32_t n_ctx_max = 16*1024;
27+
28+
if (argc >= 2) {
29+
params.model = argv[1];
30+
}
31+
32+
if (argc >= 3) {
33+
is_pp_shared = std::atoi(argv[2]);
34+
}
35+
36+
if (argc >= 4) {
37+
n_gpu_layers = std::atoi(argv[3]);
38+
}
39+
40+
// init LLM
41+
42+
llama_backend_init(params.numa);
43+
44+
// initialize the model
45+
46+
llama_model_params model_params = llama_model_default_params();
47+
48+
model_params.n_gpu_layers = n_gpu_layers;
49+
50+
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
51+
52+
if (model == NULL) {
53+
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
54+
return 1;
55+
}
56+
57+
llama_context_params ctx_params = llama_context_default_params();
58+
59+
ctx_params.seed = 1234;
60+
ctx_params.n_ctx = n_ctx_max;
61+
ctx_params.n_batch = 512;
62+
ctx_params.n_threads = params.n_threads;
63+
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
64+
65+
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
66+
67+
if (ctx == NULL) {
68+
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
69+
return 1;
70+
}
71+
72+
llama_batch batch = llama_batch_init(n_ctx_max, 0);
73+
74+
// decode in batches of ctx_params.n_batch tokens
75+
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
76+
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
77+
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
78+
79+
llama_batch batch_view = {
80+
n_tokens,
81+
batch.token + i,
82+
nullptr,
83+
batch.pos + i,
84+
batch.seq_id + i,
85+
batch.logits + i,
86+
0, 0, 0, // unused
87+
};
88+
89+
const int ret = llama_decode(ctx, batch_view);
90+
if (ret != 0) {
91+
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
92+
return false;
93+
}
94+
}
95+
96+
return true;
97+
};
98+
99+
// warm up
100+
{
101+
batch.n_tokens = 16;
102+
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
103+
LOG_TEE("%s: llama_decode() failed\n", __func__);
104+
return 1;
105+
}
106+
}
107+
108+
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
109+
LOG_TEE("|%6s-+-%6s-+-%4s-+-%6s-+-%8s-+-%8s-+-%8s-+-%8s-+-%8s-+-%8s-|\n", "------", "------", "----", "--------", "--------", "--------", "--------", "--------", "--------", "--------");
110+
111+
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
112+
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
113+
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
114+
const int pp = n_pp[i_pp];
115+
const int tg = n_tg[i_tg];
116+
const int pl = n_pl[i_pl];
117+
118+
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
119+
120+
if (n_ctx_req > n_ctx_max) {
121+
continue;
122+
}
123+
124+
batch.n_tokens = is_pp_shared ? pp : pl*pp;
125+
126+
for (int i = 0; i < batch.n_tokens; ++i) {
127+
batch.token[i] = 0;
128+
batch.pos[i] = i;
129+
batch.seq_id[i] = 0;
130+
batch.logits[i] = false;
131+
}
132+
batch.logits[batch.n_tokens - 1] = true;
133+
134+
const auto t_pp_start = ggml_time_us();
135+
136+
llama_kv_cache_tokens_rm(ctx, -1, -1);
137+
138+
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
139+
LOG_TEE("%s: llama_decode() failed\n", __func__);
140+
return 1;
141+
}
142+
143+
if (is_pp_shared) {
144+
for (int32_t i = 1; i < pl; ++i) {
145+
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
146+
}
147+
}
148+
149+
const auto t_pp_end = ggml_time_us();
150+
151+
const auto t_tg_start = ggml_time_us();
152+
153+
for (int i = 0; i < tg; ++i) {
154+
batch.n_tokens = pl;
155+
156+
for (int j = 0; j < pl; ++j) {
157+
batch.token[j] = 0;
158+
batch.pos[j] = pp + i;
159+
batch.seq_id[j] = j;
160+
batch.logits[j] = true;
161+
}
162+
163+
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
164+
LOG_TEE("%s: llama_decode() failed\n", __func__);
165+
return 1;
166+
}
167+
}
168+
169+
const auto t_tg_end = ggml_time_us();
170+
171+
const int32_t n_kv = n_ctx_req;
172+
173+
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
174+
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
175+
const float t = t_pp + t_tg;
176+
177+
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
178+
const float speed_tg = pl*tg / t_tg;
179+
const float speed = n_kv / t;
180+
181+
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
182+
}
183+
}
184+
}
185+
186+
llama_print_timings(ctx);
187+
188+
llama_batch_free(batch);
189+
190+
llama_free(ctx);
191+
llama_free_model(model);
192+
193+
llama_backend_free();
194+
195+
fprintf(stderr, "\n\n");
196+
197+
return 0;
198+
}

examples/batched/batched.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
6666
ctx_params.seed = 1234;
6767
ctx_params.n_ctx = n_kv_req;
6868
ctx_params.n_batch = std::max(n_len, n_parallel);
69-
ctx_params.n_threads = params.n_threads;
69+
ctx_params.n_threads = params.n_threads;
7070
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
7171

7272
llama_context * ctx = llama_new_context_with_model(model, ctx_params);

0 commit comments

Comments
 (0)