@@ -7579,8 +7579,7 @@ static void ggml_cuda_op_mul_mat_cublas(
75797579
75807580 const int compute_capability = g_device_caps[id].cc ;
75817581
7582- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized (src0->type )) && ggml_is_contiguous (src0) && row_diff == src0->ne [1 ] && dst->op_params [0 ] == GGML_PREC_DEFAULT) {
7583- // printf("this branch\n");
7582+ if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized (src0->type )) && ggml_is_contiguous (src0) && row_diff == src0->ne [1 ]) {
75847583 // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
75857584 cuda_pool_alloc<half> src0_as_f16;
75867585 if (src0->type != GGML_TYPE_F16) {
@@ -7601,23 +7600,44 @@ static void ggml_cuda_op_mul_mat_cublas(
76017600 to_fp16_cuda (src1_ddf_i, src1_as_f16.get (), ne, stream);
76027601 }
76037602 const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get ();
7604- cuda_pool_alloc<half> dst_f16 (row_diff*src1_ncols);
76057603
7606- const half alpha_f16 = 1 .0f ;
7607- const half beta_f16 = 0 .0f ;
7608-
7609- CUBLAS_CHECK (cublasSetStream (g_cublas_handles[id], stream));
7610- CUBLAS_CHECK (
7611- cublasGemmEx (g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7612- row_diff, src1_ncols, ne10,
7613- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
7614- src1_ptr, CUDA_R_16F, ne10,
7615- &beta_f16, dst_f16.get (), CUDA_R_16F, ldc,
7616- CUBLAS_COMPUTE_16F,
7617- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7618-
7619- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda (GGML_TYPE_F16);
7620- to_fp32_cuda (dst_f16.get (), dst_dd_i, row_diff*src1_ncols, stream);
7604+ switch (dst->op_params [0 ]) {
7605+ case GGML_PREC_DEFAULT:
7606+ {
7607+ cuda_pool_alloc<half> dst_f16 (row_diff*src1_ncols);
7608+
7609+ const half alpha_f16 = 1 .0f ;
7610+ const half beta_f16 = 0 .0f ;
7611+
7612+ CUBLAS_CHECK (cublasSetStream (g_cublas_handles[id], stream));
7613+ CUBLAS_CHECK (
7614+ cublasGemmEx (g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7615+ row_diff, src1_ncols, ne10,
7616+ &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
7617+ src1_ptr, CUDA_R_16F, ne10,
7618+ &beta_f16, dst_f16.get (), CUDA_R_16F, ldc,
7619+ CUBLAS_COMPUTE_16F,
7620+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7621+
7622+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda (GGML_TYPE_F16);
7623+ to_fp32_cuda (dst_f16.get (), dst_dd_i, row_diff*src1_ncols, stream);
7624+ } break ;
7625+ case GGML_PREC_F32:
7626+ {
7627+ const float alpha_f32 = 1 .0f ;
7628+ const float beta_f32 = 0 .0f ;
7629+
7630+ CUBLAS_CHECK (cublasSetStream (g_cublas_handles[id], stream));
7631+ CUBLAS_CHECK (
7632+ cublasGemmEx (g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
7633+ row_diff, src1_ncols, ne10,
7634+ &alpha_f32, src0_ptr, CUDA_R_16F, ne00,
7635+ src1_ptr, CUDA_R_16F, ne10,
7636+ &beta_f32, dst_dd_i, CUDA_R_32F, ldc,
7637+ CUBLAS_COMPUTE_32F,
7638+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
7639+ } break ;
7640+ }
76217641 } else {
76227642 cuda_pool_alloc<float > src0_ddq_as_f32;
76237643 cuda_pool_alloc<float > src1_ddq_as_f32;
@@ -7635,7 +7655,7 @@ static void ggml_cuda_op_mul_mat_cublas(
76357655 to_fp32_cuda (src1_ddf_i, src1_ddq_as_f32.get (), src1_ncols*ne10, stream);
76367656 }
76377657
7638- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get ();
7658+ const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get ();
76397659 const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get ();
76407660
76417661 const float alpha = 1 .0f ;
@@ -9234,6 +9254,20 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
92349254}
92359255
92369256void ggml_cuda_free_data (struct ggml_tensor * tensor) {
9257+ // print current mem usage using cudaMemGetInfo
9258+ // TODO: this is a hack - need better solution
9259+ {
9260+ size_t free ;
9261+ size_t total;
9262+ CUDA_CHECK (cudaMemGetInfo (&free , &total));
9263+
9264+ static size_t used = 0 ;
9265+ if (used < total - free ) {
9266+ printf (" CUDA: used %zu MB, free %zu MB\n " , (total - free )/1024 /1024 , free /1024 /1024 );
9267+ used = total - free ;
9268+ }
9269+ }
9270+
92379271 if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
92389272 return ;
92399273 }
0 commit comments