123123
124124#define GGML_CUDA_MAX_NODES 8192
125125
126- // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
127- // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
128- // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
129- // - 7B quantum model: +100-200 MB
130- // - 13B quantum model: +200-400 MB
131- //
132- // #define GGML_CUDA_FORCE_MMQ
133-
134- // TODO: improve this to be correct for more hardware
135- // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
136- // probably other such cases, and not sure what happens on AMD hardware
137- #if !defined(GGML_CUDA_FORCE_MMQ)
138- #define CUDA_USE_TENSOR_CORES
139- #endif
140-
141- // max batch size to use MMQ kernels when tensor cores are available
142- #define MMQ_MAX_BATCH_SIZE 32
143-
144126#if defined(GGML_USE_HIPBLAS)
145127#define __CUDA_ARCH__ 1300
146128
@@ -207,6 +189,23 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
207189}
208190#endif // defined(GGML_USE_HIPBLAS)
209191
192+ // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
193+ // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
194+ // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
195+ // - 7B quantum model: +100-200 MB
196+ // - 13B quantum model: +200-400 MB
197+ //
198+ // #define GGML_CUDA_FORCE_MMQ
199+
200+ // TODO: improve this to be correct for more hardware
201+ // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
202+ #if !defined(GGML_CUDA_FORCE_MMQ) && (!defined(GGML_USE_HIPBLAS) || defined(RDNA3))
203+ #define CUDA_USE_TENSOR_CORES
204+ #endif
205+
206+ // max batch size to use MMQ kernels when tensor cores are available
207+ #define MMQ_MAX_BATCH_SIZE 32
208+
210209#if defined(_MSC_VER)
211210#pragma warning(disable: 4244 4267) // possible loss of data
212211#endif
@@ -8661,11 +8660,26 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
86618660 }
86628661 }
86638662
8664- #ifdef CUDA_USE_TENSOR_CORES
8665- const bool use_tensor_cores = true ;
8663+ #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
8664+ const bool fp16_performance_good = true ;
8665+
8666+ #ifdef RDNA3
8667+ const bool use_mul_mat_q = false ;
86668668#else
8667- const bool use_tensor_cores = false ;
8668- #endif
8669+ const bool use_mul_mat_q = true ;
8670+ #endif // RDNA3
8671+
8672+ #else
8673+
8674+ const bool fp16_performance_good = min_compute_capability >= CC_VOLTA;
8675+ bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized (src0->type );
8676+ #ifdef CUDA_USE_TENSOR_CORES
8677+ // when tensor cores are available, use them for large batch size
8678+ // ref: https://github.com/ggerganov/llama.cpp/pull/3776
8679+ use_mul_mat_q = use_mul_mat_q && !(fp16_performance_good && src1->ne [1 ] > MMQ_MAX_BATCH_SIZE);
8680+ #endif // CUDA_USE_TENSOR_CORES
8681+
8682+ #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
86698683
86708684 // debug helpers
86718685 // printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
@@ -8675,13 +8689,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
86758689 // printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
86768690 // printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
86778691
8678- if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted (src0) && ggml_is_permuted (src1) && src1->ne [1 ] == 1 ) {
8692+ if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted (src0) && ggml_is_permuted (src1) && src1->ne [1 ] == 1 ) {
86798693 // KQ single-batch
86808694 ggml_cuda_mul_mat_vec_p021 (src0, src1, dst);
8681- } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous (src0) && !ggml_is_transposed (src1) && src1->ne [1 ] == 1 ) {
8695+ } else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous (src0) && !ggml_is_transposed (src1) && src1->ne [1 ] == 1 ) {
86828696 // KQV single-batch
86838697 ggml_cuda_mul_mat_vec_nc (src0, src1, dst);
8684- } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_transposed (src0) && !ggml_is_transposed (src1)) {
8698+ } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed (src0) && !ggml_is_transposed (src1)) {
86858699 // KQ + KQV multi-batch
86868700 ggml_cuda_mul_mat_mat_batched_cublas (src0, src1, dst);
86878701 } else if (src0->type == GGML_TYPE_F32) {
@@ -8701,14 +8715,6 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
87018715 ggml_cuda_op_mul_mat (src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false );
87028716 }
87038717 } else {
8704- bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized (src0->type );
8705-
8706- // when tensor cores are available, use them for large batch size
8707- // ref: https://github.com/ggerganov/llama.cpp/pull/3776
8708- if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne [1 ] > MMQ_MAX_BATCH_SIZE) {
8709- use_mul_mat_q = false ;
8710- }
8711-
87128718 if (use_mul_mat_q) {
87138719 ggml_cuda_op_mul_mat (src0, src1, dst, ggml_cuda_op_mul_mat_q, true );
87148720 } else {
0 commit comments