@@ -62,24 +62,24 @@ See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on tr
6262<details  open >
6363<summary >Install</summary >
6464
65- [ ** Python>=3.6.0** ] ( https://www.python.org/ )  is required with all
66- [ requirements.txt] ( https://github.com/ultralytics/yolov5/blob/master/requirements.txt )  installed including
67- [ ** PyTorch>=1.7** ] ( https://pytorch.org/get-started/locally/ ) :
68- <!--  $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev --> 
65+ Clone repo and install [ requirements.txt] ( https://github.com/ultralytics/yolov5/blob/master/requirements.txt )  in a
66+ [ ** Python>=3.6.0** ] ( https://www.python.org/ )  environment, including
67+ [ ** PyTorch>=1.7** ] ( https://pytorch.org/get-started/locally/ ) .
6968
7069``` bash 
71- $  git clone https://github.com/ultralytics/yolov5
72- $  cd  yolov5
73- $  pip install -r requirements.txt
70+ git clone https://github.com/ultralytics/yolov5   #  clone 
71+ cd  yolov5
72+ pip install -r requirements.txt   #  install 
7473``` 
7574
7675</details >
7776
7877<details  open >
7978<summary >Inference</summary >
8079
81- Inference with YOLOv5 and [ PyTorch Hub] ( https://github.com/ultralytics/yolov5/issues/36 ) . Models automatically download
82- from the [ latest YOLOv5 release] ( https://github.com/ultralytics/yolov5/releases ) .
80+ Inference with YOLOv5 and [ PyTorch Hub] ( https://github.com/ultralytics/yolov5/issues/36 ) 
81+ . [ Models] ( https://github.com/ultralytics/yolov5/tree/master/models )  download automatically from the latest
82+ YOLOv5 [ release] ( https://github.com/ultralytics/yolov5/releases ) .
8383
8484``` python 
8585import  torch
@@ -104,34 +104,38 @@ results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
104104<details >
105105<summary >Inference with detect.py</summary >
106106
107- ` detect.py `  runs inference on a variety of sources, downloading models automatically from
108- the [ latest YOLOv5 release] ( https://github.com/ultralytics/yolov5/releases )  and saving results to ` runs/detect ` .
107+ ` detect.py `  runs inference on a variety of sources, downloading [ models] ( https://github.com/ultralytics/yolov5/tree/master/models )  automatically from
108+ the latest YOLOv5 [ release] ( https://github.com/ultralytics/yolov5/releases )  and saving results to ` runs/detect ` .
109109
110110``` bash 
111- $  python detect.py --source 0  #  webcam
112-                              img.jpg  #  image
113-                              vid.mp4  #  video
114-                              path/  #  directory
115-                              path/* .jpg  #  glob
116-                              ' https://youtu.be/Zgi9g1ksQHc'    #  YouTube
117-                              ' rtsp://example.com/media.mp4'    #  RTSP, RTMP, HTTP stream
111+ python detect.py --source 0  #  webcam
112+                           img.jpg  #  image
113+                           vid.mp4  #  video
114+                           path/  #  directory
115+                           path/* .jpg  #  glob
116+                           ' https://youtu.be/Zgi9g1ksQHc'    #  YouTube
117+                           ' rtsp://example.com/media.mp4'    #  RTSP, RTMP, HTTP stream
118118``` 
119119
120120</details >
121121
122122<details >
123123<summary >Training</summary >
124124
125- Run commands below to reproduce results
126- on [ COCO] ( https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh )  dataset (dataset auto-downloads on
127- first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
128- largest ` --batch-size `  your GPU allows (batch sizes shown for 16 GB devices).
125+ The commands below reproduce YOLOv5 [ COCO] ( https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh ) 
126+ results. [ Models] ( https://github.com/ultralytics/yolov5/tree/master/models ) 
127+ and [ datasets] ( https://github.com/ultralytics/yolov5/tree/master/data )  download automatically from the latest
128+ YOLOv5 [ release] ( https://github.com/ultralytics/yolov5/releases ) . Training times for YOLOv5n/s/m/l/x are
129+ 1/2/4/6/8 days on a V100 GPU ([ Multi-GPU] ( https://github.com/ultralytics/yolov5/issues/475 )  times faster). Use the
130+ largest ` --batch-size `  possible, or pass ` --batch-size -1 `  for
131+ YOLOv5 [ AutoBatch] ( https://github.com/ultralytics/yolov5/pull/5092 ) . Batch sizes shown for V100-16GB.
129132
130133``` bash 
131- $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights ' '   --batch-size 64
132-                                          yolov5m                                40
133-                                          yolov5l                                24
134-                                          yolov5x                                16
134+ python train.py --data coco.yaml --cfg yolov5n.yaml --weights ' '   --batch-size 128
135+                                        yolov5s                                64
136+                                        yolov5m                                40
137+                                        yolov5l                                24
138+                                        yolov5x                                16
135139``` 
136140
137141<img  width =" 800 "  src =" https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png " >
@@ -225,6 +229,7 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
225229### Pretrained Checkpoints  
226230
227231[ assets ] : https://github.com/ultralytics/yolov5/releases 
232+ 
228233[ TTA ] : https://github.com/ultralytics/yolov5/issues/303 
229234
230235|Model |size<br ><sup >(pixels) |mAP<sup >val<br >0.5:0.95 |mAP<sup >val<br >0.5 |Speed<br ><sup >CPU b1<br >(ms) |Speed<br ><sup >V100 b1<br >(ms) |Speed<br ><sup >V100 b32<br >(ms) |params<br ><sup >(M) |FLOPs<br ><sup >@640   (B)
@@ -257,7 +262,6 @@ We love your input! We want to make contributing to YOLOv5 as easy and transpare
257262
258263<a  href =" https://github.com/ultralytics/yolov5/graphs/contributors " ><img  src =" https://opencollective.com/ultralytics/contributors.svg?width=990 "  /></a >
259264
260- 
261265## <div  align =" center " >Contact</div >  
262266
263267For YOLOv5 bugs and feature requests please visit [ GitHub Issues] ( https://github.com/ultralytics/yolov5/issues ) . For business inquiries or
0 commit comments