How to train xtts-v2 from scratch? #4318
Unanswered
YangGao1001
asked this question in
General Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I want to train xtts-v2 from scratch using my own dataset. Which training script should I use?
I tried using the train_gpt_xtts.py under the path recipes/ljSpeech/xtts-v2 and changed the xtts_checkpoint to None, but the final trained model parameters could not generate normal sound, only weak metal buzzing. May I ask where the problem lies?
Here are my training code and inference code.
`import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2"
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig
from TTS.tts.models.xtts import XttsAudioConfig
from TTS.utils.manage import ModelManager
from TTS .tts.datasets.formatters import Emilia # gy
Logging parameters
RUN_NAME = "XTTS-v2-train-Emilia-JA"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(file)), "run", "training-Emilia-JA")
OUT_PATH = "/data/gy/xtts_v2/run/training-Emilia-JA"
Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False # gy
START_WITH_EVAL = True # if True it will star with evaluation
BATCH_SIZE = 3 # set here the batch size
GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps
Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="Emilia",
dataset_name="Emilia_JA",
path="/data/gy/DataSet/Amphion___Emilia/raw/JA",
meta_file_train_list=["/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00000.jsonl",
"/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00001.jsonl",
"/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00002.jsonl",
"/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00003.jsonl",
"/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00004.jsonl"],
meta_file_val_list=["/data/gy/DataSet/Amphion___Emilia//raw/JA/JA_B00005.jsonl"],
language="ja",
)
Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
CHECKPOINTS_OUT_PATH = "/home/gaoyang/code/coqui-ai-TTS/coqui/XTTS-v2"
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, "dvae.pth")
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, "mel_stats.pth")
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, "vocab.json") # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, "model.pth") # model.pth file
Training sentences generations
SPEAKER_REFERENCE = [
"/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00005/JA_B00005_S00215/mp3/JA_B00005_S00215_W000000.wav" # speaker reference to be used in training test sentences
]
LANGUAGE = config_dataset.language
def main():
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=255995, # ~11.6 seconds
max_text_length=200,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=None, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
eval_split_size=0.1, # gy
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=10000,
save_n_checkpoints=3,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
test_sentences=[
{
"text": "乾杯!それは知っていて、寂しさは秋草に向かって、悲風は千里に来ます",
"speaker_wav": SPEAKER_REFERENCE,
"language": LANGUAGE,
},
{
"text": "私の父は天地の間で初めて私を愛してくれた人です",
"speaker_wav": SPEAKER_REFERENCE,
"language": LANGUAGE,
},
],
)
if name == "main":
main()
`
`import os
import torch
import torchaudio
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import csv
print("Loading model...")
config = XttsConfig()
config.load_json("/data/gy/xtts_v2/run/training-Emilia-JA/XTTS-v2-train-Emilia-JA-July-21-2025_02+45PM-0000000/config.json")
model = Xtts.init_from_config(config)
checkpoint = model.load_checkpoint(config, checkpoint_dir="/data/gy/xtts_v2/run/training-Emilia-JA/XTTS-v2-train-Emilia-JA-July-21-2025_02+45PM-0000000", use_deepspeed=False)
model.cuda()
输入文本文件路径
input_text_file = "/home/gaoyang/code/coqui-ai-TTS/demos/text/JA/text.txt"
输出音频文件夹路径
output_dir = "/data/gy/xtts_v2/run/training-Emilia-JA/XTTS-v2-train-Emilia-JA-July-21-2025_02+45PM-0000000/test/ja_ja/best_model_628943"
参考音频路径(统一使用一个参考音频)
ref_wav_path = "/data/gy/DataSet/Amphion___Emilia/raw/JA/JA_B00001/JA_B00001_S00000/mp3/JA_B00001_S00000_W000002.wav"
print("Computing speaker latents...")
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path = ref_wav_path)
创建输出目录(如果不存在)
os.makedirs(output_dir, exist_ok=True)
CSV 文件路径
csv_path = os.path.join(output_dir, "custom_generated_sentences.csv")
打开 CSV 文件并写入表头
with open(csv_path, 'w', encoding='utf-8', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(["speaker_reference", "text", "generated_wav", "language"])
print("🎉 所有音频生成和 CSV 写入完成,输出目录:", output_dir)`
Beta Was this translation helpful? Give feedback.
All reactions