|
1 | 1 | {
|
2 |
| - "model": "Tacotron2", |
3 |
| - "run_name": "ljspeech-ddc", |
4 |
| - "run_description": "tacotron2 with DDC and differential spectral loss.", |
5 |
| - |
6 |
| - // AUDIO PARAMETERS |
7 |
| - "audio":{ |
8 |
| - // stft parameters |
9 |
| - "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. |
10 |
| - "win_length": 1024, // stft window length in ms. |
11 |
| - "hop_length": 256, // stft window hop-lengh in ms. |
12 |
| - "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. |
13 |
| - "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. |
14 |
| - |
15 |
| - // Audio processing parameters |
16 |
| - "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. |
17 |
| - "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. |
18 |
| - "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. |
19 |
| - |
20 |
| - // Silence trimming |
21 |
| - "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) |
22 |
| - "trim_db": 60, // threshold for timming silence. Set this according to your dataset. |
23 |
| - |
24 |
| - // Griffin-Lim |
25 |
| - "power": 1.5, // value to sharpen wav signals after GL algorithm. |
26 |
| - "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. |
27 |
| - |
28 |
| - // MelSpectrogram parameters |
29 |
| - "num_mels": 80, // size of the mel spec frame. |
30 |
| - "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! |
31 |
| - "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! |
| 2 | + "attention_heads": 4, |
| 3 | + "attention_norm": "sigmoid", |
| 4 | + "attention_type": "original", |
| 5 | + "audio_config": { |
| 6 | + "clip_norm": true, |
| 7 | + "do_trim_silence": true, |
| 8 | + "fft_size": 1024, |
| 9 | + "frame_length_ms": null, |
| 10 | + "frame_shift_ms": null, |
| 11 | + "griffin_lim_iters": 60, |
| 12 | + "hop_length": 256, |
| 13 | + "max_norm": 4, |
| 14 | + "mel_fmax": 7600, |
| 15 | + "mel_fmin": 50, |
| 16 | + "min_level_db": -100, |
| 17 | + "num_mels": 80, |
| 18 | + "power": 1.5, |
| 19 | + "preemphasis": 0, |
| 20 | + "ref_level_db": 20, |
| 21 | + "sample_rate": 22050, |
| 22 | + "signal_norm": true, |
32 | 23 | "spec_gain": 1,
|
33 |
| - |
34 |
| - // Normalization parameters |
35 |
| - "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. |
36 |
| - "min_level_db": -100, // lower bound for normalization |
37 |
| - "symmetric_norm": true, // move normalization to range [-1, 1] |
38 |
| - "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] |
39 |
| - "clip_norm": true, // clip normalized values into the range. |
40 |
| - "stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored |
| 24 | + "stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy", |
| 25 | + "symmetric_norm": true, |
| 26 | + "trim_db": 60, |
| 27 | + "win_length": 1024 |
41 | 28 | },
|
42 |
| - |
43 |
| - // VOCABULARY PARAMETERS |
44 |
| - // if custom character set is not defined, |
45 |
| - // default set in symbols.py is used |
46 |
| - // "characters":{ |
47 |
| - // "pad": "_", |
48 |
| - // "eos": "~", |
49 |
| - // "bos": "^", |
50 |
| - // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", |
51 |
| - // "punctuations":"!'(),-.:;? ", |
52 |
| - // "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ" |
53 |
| - // }, |
54 |
| - |
55 |
| - // DISTRIBUTED TRAINING |
56 |
| - "distributed":{ |
57 |
| - "backend": "nccl", |
58 |
| - "url": "tcp:\/\/localhost:54321" |
59 |
| - }, |
60 |
| - |
61 |
| - "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. |
62 |
| - |
63 |
| - // TRAINING |
64 |
| - "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. |
65 |
| - "eval_batch_size":16, |
66 |
| - "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. |
67 |
| - "gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. |
68 |
| - "mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate. |
69 |
| - |
70 |
| - // LOSS SETTINGS |
71 |
| - "loss_masking": true, // enable / disable loss masking against the sequence padding. |
72 |
| - "decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled |
73 |
| - "postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled |
74 |
| - "postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled |
75 |
| - "decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled |
76 |
| - "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled |
77 |
| - "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled |
78 |
| - "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. |
79 |
| - "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. |
80 |
| - |
81 |
| - |
82 |
| - // VALIDATION |
83 |
| - "run_eval": true, |
84 |
| - "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. |
85 |
| - "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. |
86 |
| - |
87 |
| - // OPTIMIZER |
88 |
| - "noam_schedule": false, // use noam warmup and lr schedule. |
89 |
| - "grad_clip": 1.0, // upper limit for gradients for clipping. |
90 |
| - "epochs": 1000, // total number of epochs to train. |
91 |
| - "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. |
92 |
| - "wd": 0.000001, // Weight decay weight. |
93 |
| - "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" |
94 |
| - "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. |
95 |
| - |
96 |
| - // TACOTRON PRENET |
97 |
| - "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. |
98 |
| - "prenet_type": "original", // "original" or "bn". |
99 |
| - "prenet_dropout": true, // enable/disable dropout at prenet. |
100 |
| - |
101 |
| - // TACOTRON ATTENTION |
102 |
| - "attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' |
103 |
| - "attention_heads": 4, // number of attention heads (only for 'graves') |
104 |
| - "attention_norm": "sigmoid", // softmax or sigmoid. |
105 |
| - "windowing": false, // Enables attention windowing. Used only in eval mode. |
106 |
| - "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. |
107 |
| - "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. |
108 |
| - "transition_agent": false, // enable/disable transition agent of forward attention. |
109 |
| - "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. |
110 |
| - "bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. |
111 |
| - "double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ |
112 |
| - "ddc_r": 7, // reduction rate for coarse decoder. |
113 |
| - |
114 |
| - // STOPNET |
115 |
| - "stopnet": true, // Train stopnet predicting the end of synthesis. |
116 |
| - "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. |
117 |
| - |
118 |
| - // TENSORBOARD and LOGGING |
119 |
| - "print_step": 25, // Number of steps to log training on console. |
120 |
| - "tb_plot_step": 100, // Number of steps to plot TB training figures. |
121 |
| - "print_eval": false, // If True, it prints intermediate loss values in evalulation. |
122 |
| - "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. |
123 |
| - "checkpoint": true, // If true, it saves checkpoints per "save_step" |
124 |
| - "keep_all_best": false, // If true, keeps all best_models after keep_after steps |
125 |
| - "keep_after": 10000, // Global step after which to keep best models if keep_all_best is true |
126 |
| - "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. |
127 |
| - |
128 |
| - // DATA LOADING |
129 |
| - "text_cleaner": "phoneme_cleaners", |
130 |
| - "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. |
131 |
| - "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. |
132 |
| - "num_val_loader_workers": 4, // number of evaluation data loader processes. |
133 |
| - "batch_group_size": 4, //Number of batches to shuffle after bucketing. |
134 |
| - "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training |
135 |
| - "max_seq_len": 153, // DATASET-RELATED: maximum text length |
136 |
| - "compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage. |
137 |
| - "use_noise_augment": true, |
138 |
| - |
139 |
| - // PATHS |
140 |
| - "output_path": "/home/erogol/Models/LJSpeech/", |
141 |
| - |
142 |
| - // PHONEMES |
143 |
| - "phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. |
144 |
| - "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. |
145 |
| - "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages |
146 |
| - |
147 |
| - // MULTI-SPEAKER and GST |
148 |
| - "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. |
149 |
| - "use_gst": false, // use global style tokens |
150 |
| - "use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 |
151 |
| - "external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 |
152 |
| - "gst": { // gst parameter if gst is enabled |
153 |
| - "gst_style_input": null, // Condition the style input either on a |
154 |
| - // -> wave file [path to wave] or |
155 |
| - // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} |
156 |
| - // with the dictionary being len(dict) <= len(gst_num_style_tokens). |
157 |
| - "gst_embedding_dim": 512, |
158 |
| - "gst_num_heads": 4, |
159 |
| - "gst_num_style_tokens": 10, |
160 |
| - "gst_use_speaker_embedding": false |
161 |
| - }, |
162 |
| - |
163 |
| - // DATASETS |
164 |
| - "datasets": // List of datasets. They all merged and they get different speaker_ids. |
| 29 | + "bidirectional_decoder": false, |
| 30 | + "compute_input_seq_cache": false, |
| 31 | + "ddc_r": 7, |
| 32 | + "decoder_diff_spec_alpha": 0.25, |
| 33 | + "decoder_loss_alpha": 0.5, |
| 34 | + "decoder_ssim_alpha": 0.5, |
| 35 | + "double_decoder_consistency": true, |
| 36 | + "enable_eos_bos_chars": false, |
| 37 | + "forward_attn_mask": false, |
| 38 | + "ga_alpha": 5, |
| 39 | + "grad_clip": 1, |
| 40 | + "gradual_training": [ |
| 41 | + [ |
| 42 | + 0, |
| 43 | + 7, |
| 44 | + 64 |
| 45 | + ], |
| 46 | + [ |
| 47 | + 1, |
| 48 | + 5, |
| 49 | + 64 |
| 50 | + ], |
| 51 | + [ |
| 52 | + 50000, |
| 53 | + 3, |
| 54 | + 32 |
| 55 | + ], |
165 | 56 | [
|
| 57 | + 130000, |
| 58 | + 2, |
| 59 | + 32 |
| 60 | + ], |
| 61 | + [ |
| 62 | + 290000, |
| 63 | + 1, |
| 64 | + 32 |
| 65 | + ] |
| 66 | + ], |
| 67 | + "location_attn": true, |
| 68 | + "lr": 0.0001, |
| 69 | + "memory_size": -1, |
| 70 | + "noam_schedule": false, |
| 71 | + "phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", |
| 72 | + "phoneme_language": "en-us", |
| 73 | + "postnet_diff_spec_alpha": 0.25, |
| 74 | + "postnet_loss_alpha": 0.25, |
| 75 | + "postnet_ssim_alpha": 0.25, |
| 76 | + "prenet_dropout": false, |
| 77 | + "prenet_type": "original", |
| 78 | + "r": 7, |
| 79 | + "separate_stopnet": true, |
| 80 | + "seq_len_norm": false, |
| 81 | + "stopnet": true, |
| 82 | + "stopnet_pos_weight": 15, |
| 83 | + "test_sentences_file": null, |
| 84 | + "text_cleaner": "phoneme_cleaners", |
| 85 | + "training_config": { |
| 86 | + "batch_group_size": 4, |
| 87 | + "batch_size": 32, |
| 88 | + "checkpoint": true, |
| 89 | + "datasets": [ |
166 | 90 | {
|
| 91 | + "meta_file_train": "metadata.csv", |
| 92 | + "meta_file_val": null, |
167 | 93 | "name": "ljspeech",
|
168 |
| - "path": "/home/erogol/Data/LJSpeech-1.1/", |
169 |
| - "meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers |
170 |
| - "meta_file_val": null |
| 94 | + "path": "/home/erogol/Data/LJSpeech-1.1/" |
171 | 95 | }
|
172 |
| - ] |
| 96 | + ], |
| 97 | + "epochs": 1000, |
| 98 | + "eval_batch_size": 16, |
| 99 | + "keep_after": 10000, |
| 100 | + "keep_all_best": false, |
| 101 | + "loss_masking": true, |
| 102 | + "max_seq_len": 153, |
| 103 | + "min_seq_len": 6, |
| 104 | + "mixed_precision": true, |
| 105 | + "model": "Tacotron2", |
| 106 | + "num_loader_workers": 4, |
| 107 | + "num_val_loader_workers": 4, |
| 108 | + "output_path": "/home/erogol/Models/LJSpeech/", |
| 109 | + "print_eval": false, |
| 110 | + "print_step": 25, |
| 111 | + "run_description": "tacotron2 with DDC and differential spectral loss.", |
| 112 | + "run_eval": true, |
| 113 | + "run_name": "ljspeech-ddc", |
| 114 | + "save_step": 10000, |
| 115 | + "tb_model_param_stats": false, |
| 116 | + "tb_plot_step": 100, |
| 117 | + "test_delay_epochs": 10, |
| 118 | + "use_noise_augment": true |
| 119 | + }, |
| 120 | + "transition_agent": false, |
| 121 | + "use_forward_attn": false, |
| 122 | + "use_phonemes": true, |
| 123 | + "warmup_steps": 4000, |
| 124 | + "wd": 0.000001, |
| 125 | + "windowing": false |
173 | 126 | }
|
0 commit comments