diff --git a/packages/backend/src/assets/ai.json b/packages/backend/src/assets/ai.json index 58dfd649c..44a4b214f 100644 --- a/packages/backend/src/assets/ai.json +++ b/packages/backend/src/assets/ai.json @@ -6,7 +6,7 @@ "description": "This recipe provides a blueprint for developers to create their own AI-powered chat applications using Streamlit.", "name": "ChatBot", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/chatbot", @@ -28,7 +28,7 @@ "description": "This recipe provides a blueprint for developers to create their own AI-powered chat applications with the pydantic framework using Streamlit", "name": "Chatbot PydanticAI", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/chatbot-pydantic-ai", @@ -43,7 +43,7 @@ "description": "This recipe shows how ReAct can be used to create an intelligent music discovery assistant with Spotify API.", "name": "ReAct Agent Application", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/agents", @@ -65,7 +65,7 @@ "description": "This recipe guides into creating custom LLM-powered summarization applications using Streamlit.", "name": "Summarizer", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/summarizer", @@ -88,7 +88,7 @@ "description": "This recipes showcases how to leverage LLM to build your own custom code generation application.", "name": "Code Generation", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "generator", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/codegen", @@ -109,7 +109,7 @@ "description": "This application illustrates how to integrate RAG (Retrieval Augmented Generation) into LLM applications enabling to interact with your own documents.", "name": "RAG Chatbot", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/rag", @@ -131,7 +131,7 @@ "description": "This application illustrates how to integrate RAG (Retrieval Augmented Generation) into LLM applications written in Node.js enabling to interact with your own documents.", "name": "Node.js RAG Chatbot", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/rag-nodejs", @@ -153,7 +153,7 @@ "description": "This is a Java Quarkus-based recipe demonstrating how to create an AI-powered chat applications.", "name": "Java-based ChatBot (Quarkus)", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/chatbot-java-quarkus", @@ -175,7 +175,7 @@ "description": "This is a NodeJS based recipe demonstrating how to create an AI-powered chat applications.", "name": "Node.js based ChatBot", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/chatbot-nodejs", @@ -197,7 +197,7 @@ "description": "This recipes guides into multiple function calling use cases, showing the ability to structure data and chain multiple tasks, using Streamlit.", "name": "Function calling", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/function_calling", @@ -215,7 +215,7 @@ "description": "This recipes guides into multiple function calling use cases, showing the ability to structure data and chain multiple tasks, using Streamlit.", "name": "Node.js Function calling", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/function-calling-nodejs", @@ -233,7 +233,7 @@ "description": "This demo provides a recipe to build out a custom Graph RAG (Graph Retrieval Augmented Generation) application using the repo LightRag which abstracts Microsoft's GraphRag implementation. It consists of two main components; the Model Service, and the AI Application with a built in Database.", "name": "Graph RAG Chat Application", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "natural-language-processing", "categories": ["natural-language-processing"], "basedir": "recipes/natural_language_processing/graph-rag", @@ -248,7 +248,7 @@ "description": "This application demonstrate how to use LLM for transcripting an audio into text.", "name": "Audio to Text", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "generator", "categories": ["audio"], "basedir": "recipes/audio/audio_to_text", @@ -263,7 +263,7 @@ "description": "This recipe illustrates how to use LLM to interact with images and build object detection applications.", "name": "Object Detection", "repository": "https://github.com/containers/ai-lab-recipes", - "ref": "v1.7.0.1", + "ref": "v1.7.0.2", "icon": "generator", "categories": ["computer-vision"], "basedir": "recipes/computer_vision/object_detection",