Skip to content

Commit 6598b85

Browse files
Support diffsynth inpaint controlnet (model patch).
1 parent 9fa1036 commit 6598b85

File tree

1 file changed

+31
-8
lines changed

1 file changed

+31
-8
lines changed

comfy_extras/nodes_model_patch.py

Lines changed: 31 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,7 @@ def __init__(
3535
device=None, dtype=None, operations=None
3636
):
3737
super().__init__()
38+
self.additional_in_dim = additional_in_dim
3839
self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype)
3940
self.controlnet_blocks = torch.nn.ModuleList(
4041
[
@@ -44,7 +45,7 @@ def __init__(
4445
)
4546

4647
def process_input_latent_image(self, latent_image):
47-
latent_image = comfy.latent_formats.Wan21().process_in(latent_image)
48+
latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16])
4849
patch_size = 2
4950
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size))
5051
orig_shape = hidden_states.shape
@@ -73,19 +74,33 @@ def load_model_patch(self, name):
7374
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
7475
dtype = comfy.utils.weight_dtype(sd)
7576
# TODO: this node will work with more types of model patches
76-
model = QwenImageBlockWiseControlNet(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
77+
additional_in_dim = sd["img_in.weight"].shape[1] - 64
78+
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
7779
model.load_state_dict(sd)
7880
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
7981
return (model,)
8082

8183

8284
class DiffSynthCnetPatch:
83-
def __init__(self, model_patch, vae, image, strength):
84-
self.encoded_image = model_patch.model.process_input_latent_image(vae.encode(image))
85+
def __init__(self, model_patch, vae, image, strength, mask=None):
8586
self.model_patch = model_patch
8687
self.vae = vae
8788
self.image = image
8889
self.strength = strength
90+
self.mask = mask
91+
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
92+
93+
def encode_latent_cond(self, image):
94+
latent_image = self.vae.encode(image)
95+
if self.model_patch.model.additional_in_dim > 0:
96+
if self.mask is None:
97+
mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4]
98+
else:
99+
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
100+
101+
return torch.cat([latent_image, mask_], dim=1)
102+
else:
103+
return latent_image
89104

90105
def __call__(self, kwargs):
91106
x = kwargs.get("x")
@@ -95,7 +110,7 @@ def __call__(self, kwargs):
95110
spacial_compression = self.vae.spacial_compression_encode()
96111
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
97112
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
98-
self.encoded_image = self.model_patch.model.process_input_latent_image(self.vae.encode(image_scaled.movedim(1, -1)))
113+
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
99114
comfy.model_management.load_models_gpu(loaded_models)
100115

101116
img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength)
@@ -118,17 +133,25 @@ def INPUT_TYPES(s):
118133
"vae": ("VAE",),
119134
"image": ("IMAGE",),
120135
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
121-
}}
136+
},
137+
"optional": {"mask": ("MASK",)}}
122138
RETURN_TYPES = ("MODEL",)
123139
FUNCTION = "diffsynth_controlnet"
124140
EXPERIMENTAL = True
125141

126142
CATEGORY = "advanced/loaders/qwen"
127143

128-
def diffsynth_controlnet(self, model, model_patch, vae, image, strength):
144+
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
129145
model_patched = model.clone()
130146
image = image[:, :, :, :3]
131-
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength))
147+
if mask is not None:
148+
if mask.ndim == 3:
149+
mask = mask.unsqueeze(1)
150+
if mask.ndim == 4:
151+
mask = mask.unsqueeze(2)
152+
mask = 1.0 - mask
153+
154+
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
132155
return (model_patched,)
133156

134157

0 commit comments

Comments
 (0)