|
| 1 | +# Copyright 2020 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +# Lint as: python3 |
| 16 | +"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization.""" |
| 17 | +import os |
| 18 | +import numpy as np |
| 19 | +from copy import deepcopy |
| 20 | +from functools import wraps |
| 21 | +from urllib.parse import urlparse |
| 22 | +from collections import OrderedDict # pylint: disable=g-importing-member |
| 23 | + |
| 24 | +import torch |
| 25 | +import torch.nn as nn |
| 26 | +import torch.nn.functional as F |
| 27 | + |
| 28 | +from pytorch_tools.modules.weight_standartization import WS_Conv2d as StdConv2d |
| 29 | + |
| 30 | + |
| 31 | +def conv3x3(cin, cout, stride=1, groups=1, bias=False): |
| 32 | + return StdConv2d(cin, cout, kernel_size=3, stride=stride, |
| 33 | + padding=1, bias=bias, groups=groups) |
| 34 | + |
| 35 | + |
| 36 | +def conv1x1(cin, cout, stride=1, bias=False): |
| 37 | + return StdConv2d(cin, cout, kernel_size=1, stride=stride, |
| 38 | + padding=0, bias=bias) |
| 39 | + |
| 40 | + |
| 41 | +def tf2th(conv_weights): |
| 42 | + """Possibly convert HWIO to OIHW.""" |
| 43 | + if conv_weights.ndim == 4: |
| 44 | + conv_weights = conv_weights.transpose([3, 2, 0, 1]) |
| 45 | + return torch.from_numpy(conv_weights) |
| 46 | + |
| 47 | + |
| 48 | +class PreActBottleneck(nn.Module): |
| 49 | + """Pre-activation (v2) bottleneck block. |
| 50 | +
|
| 51 | + Follows the implementation of "Identity Mappings in Deep Residual Networks": |
| 52 | + https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua |
| 53 | +
|
| 54 | + Except it puts the stride on 3x3 conv when available. |
| 55 | + """ |
| 56 | + |
| 57 | + def __init__(self, cin, cout=None, cmid=None, stride=1): |
| 58 | + super().__init__() |
| 59 | + cout = cout or cin |
| 60 | + cmid = cmid or cout//4 |
| 61 | + |
| 62 | + self.gn1 = nn.GroupNorm(32, cin) |
| 63 | + self.conv1 = conv1x1(cin, cmid) |
| 64 | + self.gn2 = nn.GroupNorm(32, cmid) |
| 65 | + self.conv2 = conv3x3(cmid, cmid, stride) # Original code has it on conv1!! |
| 66 | + self.gn3 = nn.GroupNorm(32, cmid) |
| 67 | + self.conv3 = conv1x1(cmid, cout) |
| 68 | + self.relu = nn.ReLU(inplace=True) |
| 69 | + |
| 70 | + if (stride != 1 or cin != cout): |
| 71 | + # Projection also with pre-activation according to paper. |
| 72 | + self.downsample = conv1x1(cin, cout, stride) |
| 73 | + |
| 74 | + def forward(self, x): |
| 75 | + out = self.relu(self.gn1(x)) |
| 76 | + |
| 77 | + # Residual branch |
| 78 | + residual = x |
| 79 | + if hasattr(self, 'downsample'): |
| 80 | + residual = self.downsample(out) |
| 81 | + |
| 82 | + # Unit's branch |
| 83 | + out = self.conv1(out) |
| 84 | + out = self.conv2(self.relu(self.gn2(out))) |
| 85 | + out = self.conv3(self.relu(self.gn3(out))) |
| 86 | + |
| 87 | + return out + residual |
| 88 | + |
| 89 | + def load_from(self, weights, prefix=''): |
| 90 | + convname = 'standardized_conv2d' |
| 91 | + with torch.no_grad(): |
| 92 | + self.conv1.weight.copy_(tf2th(weights[f'{prefix}a/{convname}/kernel'])) |
| 93 | + self.conv2.weight.copy_(tf2th(weights[f'{prefix}b/{convname}/kernel'])) |
| 94 | + self.conv3.weight.copy_(tf2th(weights[f'{prefix}c/{convname}/kernel'])) |
| 95 | + self.gn1.weight.copy_(tf2th(weights[f'{prefix}a/group_norm/gamma'])) |
| 96 | + self.gn2.weight.copy_(tf2th(weights[f'{prefix}b/group_norm/gamma'])) |
| 97 | + self.gn3.weight.copy_(tf2th(weights[f'{prefix}c/group_norm/gamma'])) |
| 98 | + self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta'])) |
| 99 | + self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta'])) |
| 100 | + self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta'])) |
| 101 | + if hasattr(self, 'downsample'): |
| 102 | + w = weights[f'{prefix}a/proj/{convname}/kernel'] |
| 103 | + self.downsample.weight.copy_(tf2th(w)) |
| 104 | + |
| 105 | +# this models are designed for trasfer learning only! not for training from scratch |
| 106 | +class ResNetV2(nn.Module): |
| 107 | + """ |
| 108 | + Implementation of Pre-activation (v2) ResNet mode. |
| 109 | + Used to create Bit-M-50/101/152x1/2/3/4 models |
| 110 | + |
| 111 | + Args: |
| 112 | + num_classes (int): Number of classification classes. Defaults to 5 |
| 113 | + """ |
| 114 | + |
| 115 | + def __init__( |
| 116 | + self, |
| 117 | + block_units, |
| 118 | + width_factor, |
| 119 | + # in_channels=3, # TODO: add later |
| 120 | + num_classes=5, # just a random number |
| 121 | + # encoder=False, # TODO: add later |
| 122 | + ): |
| 123 | + super().__init__() |
| 124 | + wf = width_factor # shortcut 'cause we'll use it a lot. |
| 125 | + |
| 126 | + # The following will be unreadable if we split lines. |
| 127 | + # pylint: disable=line-too-long |
| 128 | + self.root = nn.Sequential(OrderedDict([ |
| 129 | + ('conv', StdConv2d(3, 64*wf, kernel_size=7, stride=2, padding=3, bias=False)), |
| 130 | + ('pad', nn.ConstantPad2d(1, 0)), |
| 131 | + ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0)), |
| 132 | + # The following is subtly not the same! |
| 133 | + # ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), |
| 134 | + ])) |
| 135 | + |
| 136 | + self.body = nn.Sequential(OrderedDict([ |
| 137 | + ('block1', nn.Sequential(OrderedDict( |
| 138 | + [('unit01', PreActBottleneck(cin=64*wf, cout=256*wf, cmid=64*wf))] + |
| 139 | + [(f'unit{i:02d}', PreActBottleneck(cin=256*wf, cout=256*wf, cmid=64*wf)) for i in range(2, block_units[0] + 1)], |
| 140 | + ))), |
| 141 | + ('block2', nn.Sequential(OrderedDict( |
| 142 | + [('unit01', PreActBottleneck(cin=256*wf, cout=512*wf, cmid=128*wf, stride=2))] + |
| 143 | + [(f'unit{i:02d}', PreActBottleneck(cin=512*wf, cout=512*wf, cmid=128*wf)) for i in range(2, block_units[1] + 1)], |
| 144 | + ))), |
| 145 | + ('block3', nn.Sequential(OrderedDict( |
| 146 | + [('unit01', PreActBottleneck(cin=512*wf, cout=1024*wf, cmid=256*wf, stride=2))] + |
| 147 | + [(f'unit{i:02d}', PreActBottleneck(cin=1024*wf, cout=1024*wf, cmid=256*wf)) for i in range(2, block_units[2] + 1)], |
| 148 | + ))), |
| 149 | + ('block4', nn.Sequential(OrderedDict( |
| 150 | + [('unit01', PreActBottleneck(cin=1024*wf, cout=2048*wf, cmid=512*wf, stride=2))] + |
| 151 | + [(f'unit{i:02d}', PreActBottleneck(cin=2048*wf, cout=2048*wf, cmid=512*wf)) for i in range(2, block_units[3] + 1)], |
| 152 | + ))), |
| 153 | + ])) |
| 154 | + # pylint: enable=line-too-long |
| 155 | + |
| 156 | + self.head = nn.Sequential(OrderedDict([ |
| 157 | + ('gn', nn.GroupNorm(32, 2048*wf)), |
| 158 | + ('relu', nn.ReLU(inplace=True)), |
| 159 | + ('avg', nn.AdaptiveAvgPool2d(output_size=1)), |
| 160 | + ('conv', nn.Conv2d(2048*wf, num_classes, kernel_size=1, bias=True)), |
| 161 | + ])) |
| 162 | + |
| 163 | + def features(self, x): |
| 164 | + return self.body(self.root(x)) |
| 165 | + |
| 166 | + def logits(self, x): |
| 167 | + return self.head(x) |
| 168 | + |
| 169 | + def forward(self, x): |
| 170 | + x = self.logits(self.features(x)) |
| 171 | + assert x.shape[-2:] == (1, 1) # We should have no spatial shape left. |
| 172 | + return x[...,0,0] |
| 173 | + |
| 174 | + def load_from(self, weights, prefix='resnet/'): |
| 175 | + with torch.no_grad(): |
| 176 | + self.root.conv.weight.copy_(tf2th(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) # pylint: disable=line-too-long |
| 177 | + self.head.gn.weight.copy_(tf2th(weights[f'{prefix}group_norm/gamma'])) |
| 178 | + self.head.gn.bias.copy_(tf2th(weights[f'{prefix}group_norm/beta'])) |
| 179 | + # always zero_head |
| 180 | + nn.init.zeros_(self.head.conv.weight) |
| 181 | + nn.init.zeros_(self.head.conv.bias) |
| 182 | + |
| 183 | + for bname, block in self.body.named_children(): |
| 184 | + for uname, unit in block.named_children(): |
| 185 | + unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/') |
| 186 | + |
| 187 | + |
| 188 | + |
| 189 | + |
| 190 | +KNOWN_MODELS = OrderedDict([ |
| 191 | + ('BiT-M-R50x1', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 1, *a, **kw)), |
| 192 | + ('BiT-M-R50x3', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 3, *a, **kw)), |
| 193 | + ('BiT-M-R101x1', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 1, *a, **kw)), |
| 194 | + ('BiT-M-R101x3', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 3, *a, **kw)), |
| 195 | + ('BiT-M-R152x2', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 2, *a, **kw)), |
| 196 | + ('BiT-M-R152x4', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 4, *a, **kw)), |
| 197 | + |
| 198 | + ('BiT-S-R50x1', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 1, *a, **kw)), |
| 199 | + ('BiT-S-R50x3', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 3, *a, **kw)), |
| 200 | + ('BiT-S-R101x1', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 1, *a, **kw)), |
| 201 | + ('BiT-S-R101x3', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 3, *a, **kw)), |
| 202 | + ('BiT-S-R152x2', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 2, *a, **kw)), |
| 203 | + ('BiT-S-R152x4', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 4, *a, **kw)), |
| 204 | +]) |
| 205 | + |
| 206 | + |
| 207 | +PRETRAIN_SETTINGS = { |
| 208 | + "input_space": "RGB", |
| 209 | + "input_size": [3, 448, 448], |
| 210 | + "input_range": [0, 1], |
| 211 | + "mean": [0.5, 0.5, 0.5], |
| 212 | + "std": [0.5, 0.5, 0.5], |
| 213 | + "num_classes": None, |
| 214 | +} |
| 215 | + |
| 216 | +# fmt: off |
| 217 | +CFGS = { |
| 218 | + # weights are loaded by default |
| 219 | + "bit_m_50x1": { |
| 220 | + "default": { |
| 221 | + "params": {"block_units": [3, 4, 6, 3], "width_factor": 1}, |
| 222 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R50x1.npz", |
| 223 | + **PRETRAIN_SETTINGS |
| 224 | + }, |
| 225 | + }, |
| 226 | + "bit_m_50x3": { |
| 227 | + "default": { |
| 228 | + "params": {"block_units": [3, 4, 6, 3], "width_factor": 3}, |
| 229 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R50x3.npz", |
| 230 | + **PRETRAIN_SETTINGS, |
| 231 | + }, |
| 232 | + }, |
| 233 | + "bit_m_101x1": { |
| 234 | + "default": { |
| 235 | + "params": {"block_units": [3, 4, 23, 3], "width_factor": 1}, |
| 236 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R101x1.npz", |
| 237 | + **PPRETRAIN_SETTINGS, |
| 238 | + }, |
| 239 | + }, |
| 240 | + "bit_m_101x3": { |
| 241 | + "default": { |
| 242 | + "params": {"block_units": [3, 4, 23, 3], "width_factor": 3}, |
| 243 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R101x3.npz", |
| 244 | + **PPRETRAIN_SETTINGS, |
| 245 | + }, |
| 246 | + }, |
| 247 | + "bit_m_152x2": { |
| 248 | + "default": { |
| 249 | + "params": {"block_units": [3, 8, 36, 3], "width_factor": 2}, |
| 250 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R152x2.npz", |
| 251 | + **PPRETRAIN_SETTINGS, |
| 252 | + }, |
| 253 | + }, |
| 254 | + "bit_m_152x4": { |
| 255 | + "default": { |
| 256 | + "params": {"block_units": [3, 8, 36, 3], "width_factor": 4}, |
| 257 | + "url": "https://storage.googleapis.com/bit_models/BiT-M-R152x4.npz", |
| 258 | + **PPRETRAIN_SETTINGS |
| 259 | + }, |
| 260 | + }, |
| 261 | +} |
| 262 | + |
| 263 | +# fmt: on |
| 264 | +def _bit_resnet(arch, pretrained=None, **kwargs): |
| 265 | + cfgs = deepcopy(CFGS) |
| 266 | + cfg_settings = cfgs[arch]["default"] |
| 267 | + cfg_params = cfg_settings.pop("params") |
| 268 | + cfg_url = cfg_settings.pop("url") |
| 269 | + kwargs.pop("pretrained", None) |
| 270 | + kwargs.update(cfg_params) |
| 271 | + model = ResNetV2(**kwargs) |
| 272 | + # load weights to torch checkpoints folder |
| 273 | + try: |
| 274 | + torch.hub.load_state_dict_from_url(cfg_url) |
| 275 | + except RuntimeError: |
| 276 | + pass # to avoid RuntimeError: Only one file(not dir) is allowed in the zipfile |
| 277 | + filename = os.path.basename(urlparse(cfg_url).path) |
| 278 | + torch_home = torch.hub._get_torch_home() |
| 279 | + cached_file = os.path.join(torch_home, 'checkpoints', filename) |
| 280 | + weights = np.load(cached_file) |
| 281 | + model.load_from(weights) |
| 282 | + return model |
| 283 | + |
| 284 | +# only want M versions of models for fine-tuning |
| 285 | +@wraps(ResNetV2) |
| 286 | +def bit_m_50x1(**kwargs): |
| 287 | + return _bit_resnet("bit_m_50x1", **kwargs) |
| 288 | + |
| 289 | +@wraps(ResNetV2) |
| 290 | +def bit_m_50x3(**kwargs): |
| 291 | + return _bit_resnet("bit_m_50x3", **kwargs) |
| 292 | + |
| 293 | +@wraps(ResNetV2) |
| 294 | +def bit_m_101x1(**kwargs): |
| 295 | + return _bit_resnet("bit_m_101x1", **kwargs) |
| 296 | + |
| 297 | +@wraps(ResNetV2) |
| 298 | +def bit_m_101x3(**kwargs): |
| 299 | + return _bit_resnet("bit_m_101x3", **kwargs) |
| 300 | + |
| 301 | +@wraps(ResNetV2) |
| 302 | +def bit_m_152x2(**kwargs): |
| 303 | + return _bit_resnet("bit_m_152x2", **kwargs) |
| 304 | + |
| 305 | +@wraps(ResNetV2) |
| 306 | +def bit_m_152x4(**kwargs): |
| 307 | + return _bit_resnet("bit_m_152x4", **kwargs) |
| 308 | + |
| 309 | + |
| 310 | + |
0 commit comments