Skip to content
This repository was archived by the owner on Nov 19, 2020. It is now read-only.

Classification

cesarsouza edited this page Nov 30, 2014 · 35 revisions

Standard classification problems

In a classification problem, we would typically have some input vectors x and some desired output labels y. Let's consider then a simple classification problem called the yin-yang problem. In this problem, we have to classes of elements. Elements belonging to the positive class, shown in blue; and elements belonging to the negative class, shown in red.

This data can be downloaded in Excel format here. In order to load this data into an application, let's use the ExcelReader class together with some extensions methods from the Accord.Math namespace. Add the following using namespace clauses on top of your source file:

using Accord.Controls;
using Accord.IO;
using Accord.Math;

Then, let's write the following code:

// Read the Excel worksheet into a DataTable
DataTable table = new ExcelReader("examples.xls").GetWorksheet("Sheet1");

// Convert the DataTable to input and output vectors
double[][] inputs = table.ToArray<double>("X", "Y");
int[] outputs = table.Columns["G"].ToArray<int>();

// Plot the data
ScatterplotBox.Show("Yin-Yang", inputs, outputs).Hold();

After we run and execute this code, we will get the following scatter plot shown on the screen:

Models

Naive Bayes

// In our problem, we have 2 classes (samples can be either
// positive or negative), and 2 inputs (x and y coordinates).

var nb = new NaiveBayes<NormalDistribution>(classes: 2,
    inputs: 2, prior: new NormalDistribution());

// The Naive Bayes expects the class labels to 
// range from 0 to k, so we convert -1 to be 0:
//
outputs = outputs.Apply(x => x < 0 ? 0 : x);

// Estimate the Naive Bayes
double error = nb.Estimate(inputs, outputs);

// Classify the samples using the model
int[] answers = inputs.Apply(nb.Compute);

// Plot the results
ScatterplotBox.Show("Expected results", inputs, outputs);
ScatterplotBox.Show("Naive Bayes results", inputs, answers)
    .Hold();

Support Vector Machines

Decision Trees

// In our problem, we have 2 classes (samples can be either
// positive or negative), and 2 continuous-valued inputs.
DecisionTree tree = new DecisionTree(attributes: new[] 
{
    DecisionVariable.Continuous("X"),
    DecisionVariable.Continuous("Y")
}, outputClasses: 2);

C45Learning teacher = new C45Learning(tree);

// The C4.5 algorithm expects the class labels to
// range from 0 to k, so we convert -1 to be zero:
//
outputs = outputs.Apply(x => x < 0 ? 0 : x);

double error = teacher.Run(inputs, outputs);

// Classify the samples using the model
int[] answers = inputs.Apply(tree.Compute);

// Plot the results
ScatterplotBox.Show("Expected results", inputs, outputs);
ScatterplotBox.Show("Decision Tree results", inputs, answers)
    .Hold();

Neural Networks

Logistic Regresssion

Variations

Multi-label problems

Sequence classification

How do I classify sequences with hidden Markov Models?

  1. Accord.NET Framework
  2. Getting started
  3. Published books
  4. How to use
  5. Sample applications

Help improve this wiki! Those pages can be edited by anyone that would like to contribute examples and documentation to the framework.

Have you found this software useful? Consider donating only U$10 so it can get even better! This software is completely free and will always stay free. Enjoy!

Clone this wiki locally