@@ -108,7 +108,7 @@ SciMLBase.EnsembleAnalysis.componentwise_vectors_timepoint
108108
109109The available functions for time steps are:
110110
111- ``` docs
111+ ``` @ docs
112112SciMLBase.EnsembleAnalysis.timestep_mean
113113SciMLBase.EnsembleAnalysis.timestep_median
114114SciMLBase.EnsembleAnalysis.timestep_quantile
@@ -151,14 +151,15 @@ timeseries_steps_weighted_meancov
151151
152152The available functions for the time points are:
153153
154- ``` docs
154+ ``` @ docs
155155SciMLBase.EnsembleAnalysis.timeseries_point_mean
156156SciMLBase.EnsembleAnalysis.timeseries_point_median
157157SciMLBase.EnsembleAnalysis.timeseries_point_quantile
158158SciMLBase.EnsembleAnalysis.timeseries_point_meanvar
159159SciMLBase.EnsembleAnalysis.timeseries_point_meancov
160160SciMLBase.EnsembleAnalysis.timeseries_point_meancor
161161SciMLBase.EnsembleAnalysis.timeseries_point_weighted_meancov
162+ ```
162163
163164### EnsembleSummary
164165
@@ -197,6 +198,12 @@ prob = ODEProblem((u, p, t) -> 1.01u, 0.5, (0.0, 1.0))
197198For our ensemble simulation, we would like to change the initial condition around.
198199This is done through the ` prob_func ` . This function takes in the base problem
199200and modifies it to create the new problem that the trajectory actually solves.
201+ The ` prob_func ` has the signature ` prob_func(prob, i, repeat) ` where:
202+
203+ - ` prob ` is the base problem to be modified
204+ - ` i ` is the unique trajectory index (` 1 ` to ` trajectories ` )
205+ - ` repeat ` is the repeat iteration number (starts at ` 1 ` , increments if ` output_func ` returned ` rerun=true ` )
206+
200207Here, we will take the base problem, multiply the initial condition by a ` rand() ` ,
201208and use that for calculating the trajectory:
202209
0 commit comments