|
| 1 | +import sys |
| 2 | +import os |
| 3 | +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) |
| 4 | +import torch |
| 5 | +from torch.utils.data import DataLoader |
| 6 | +from tqdm import tqdm |
| 7 | +from datasets import load_dataset |
| 8 | +from sklearn.metrics import precision_recall_fscore_support |
| 9 | +import torch.nn.functional as F |
| 10 | + |
| 11 | +from ldm.modules.encoders.modules import FrozenCLIPEmbedder |
| 12 | + |
| 13 | +# === Config === |
| 14 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 15 | +batch_size = 32 |
| 16 | +epochs = 3 |
| 17 | +lr = 1e-5 |
| 18 | +max_length = 77 |
| 19 | +save_dir = "./checkpoints" |
| 20 | +os.makedirs(save_dir, exist_ok=True) |
| 21 | +save_every_n_steps = 1000 # Save every 1000 batches |
| 22 | + |
| 23 | +# === Dataset === |
| 24 | +class CocoCountingDataset(torch.utils.data.Dataset): |
| 25 | + def __init__(self, split="train", tokenizer=None, max_length=77): |
| 26 | + self.dataset = load_dataset("conceptual_captions", split=split) |
| 27 | + self.tokenizer = tokenizer |
| 28 | + self.max_length = max_length |
| 29 | + self.number_words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten'] |
| 30 | + |
| 31 | + def __len__(self): |
| 32 | + return len(self.dataset) |
| 33 | + |
| 34 | + def __getitem__(self, idx): |
| 35 | + caption = self.dataset[idx]['caption'].lower() |
| 36 | + label = int(any(word in caption for word in self.number_words)) # label 1 if counting word exists |
| 37 | + |
| 38 | + if label == 0: |
| 39 | + caption = "one object." |
| 40 | + |
| 41 | + encoding = self.tokenizer(caption, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt") |
| 42 | + input_ids = encoding["input_ids"].squeeze(0) |
| 43 | + attention_mask = encoding["attention_mask"].squeeze(0) |
| 44 | + return input_ids, attention_mask, label |
| 45 | + |
| 46 | +# === Model === |
| 47 | +model = FrozenCLIPEmbedder(version="openai/clip-vit-large-patch14", device=device, max_length=max_length) |
| 48 | + |
| 49 | +for param in model.transformer.parameters(): |
| 50 | + param.requires_grad = True |
| 51 | + |
| 52 | +model = model.to(device) |
| 53 | +optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, model.transformer.parameters()), lr=lr) |
| 54 | + |
| 55 | +# === Dataloader === |
| 56 | +dataset = CocoCountingDataset(split="train", tokenizer=model.tokenizer, max_length=max_length) |
| 57 | +dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) |
| 58 | + |
| 59 | +# === Training === |
| 60 | +model.train() |
| 61 | +global_step = 0 |
| 62 | +for epoch in range(epochs): |
| 63 | + total_loss = 0 |
| 64 | + preds, targets = [], [] |
| 65 | + |
| 66 | + for batch_idx, (input_ids, attention_mask, labels) in enumerate(tqdm(dataloader)): |
| 67 | + input_ids = input_ids.to(device) |
| 68 | + attention_mask = attention_mask.to(device) |
| 69 | + labels = labels.to(device) |
| 70 | + |
| 71 | + outputs = model.transformer(input_ids=input_ids, attention_mask=attention_mask) |
| 72 | + embeddings = outputs.last_hidden_state |
| 73 | + |
| 74 | + loss = torch.mean(torch.norm(embeddings, dim=-1)) |
| 75 | + |
| 76 | + optimizer.zero_grad() |
| 77 | + loss.backward() |
| 78 | + optimizer.step() |
| 79 | + |
| 80 | + total_loss += loss.item() |
| 81 | + |
| 82 | + # Mock "classification" for precision/recall: use embedding norm as pseudo-score |
| 83 | + scores = torch.norm(embeddings[:, 0, :], dim=-1) # CLS token norm |
| 84 | + pred_labels = (scores > scores.mean()).long() |
| 85 | + |
| 86 | + preds.extend(pred_labels.cpu().tolist()) |
| 87 | + targets.extend(labels.cpu().tolist()) |
| 88 | + |
| 89 | + global_step += 1 |
| 90 | + |
| 91 | + # === Save checkpoint mid-epoch |
| 92 | + if global_step % save_every_n_steps == 0: |
| 93 | + checkpoint_path = os.path.join(save_dir, f"clip_rope_step{global_step}.pth") |
| 94 | + torch.save(model.transformer.state_dict(), checkpoint_path) |
| 95 | + print(f"[Checkpoint] Saved at step {global_step}") |
| 96 | + |
| 97 | + # === End of epoch logging === |
| 98 | + precision, recall, f1, _ = precision_recall_fscore_support(targets, preds, average='binary') |
| 99 | + print(f"Epoch {epoch+1}/{epochs}: Loss={total_loss/len(dataloader):.4f}") |
| 100 | + print(f"Precision: {precision:.4f} Recall: {recall:.4f} F1: {f1:.4f}") |
| 101 | + |
| 102 | + # Save after each epoch |
| 103 | + checkpoint_path = os.path.join(save_dir, f"clip_rope_epoch{epoch+1}.pth") |
| 104 | + torch.save(model.transformer.state_dict(), checkpoint_path) |
| 105 | + print(f"[Checkpoint] Saved model after epoch {epoch+1}") |
| 106 | + |
| 107 | +# === Final Save === |
| 108 | +torch.save(model.transformer.state_dict(), "./clip_rope_finetuned_final.pth") |
| 109 | +print("[Final Save] Fine-tuned text encoder saved!") |
0 commit comments