|
| 1 | +import { beforeAll, describe, expect, it } from "vitest"; |
| 2 | +import { OpenRouter } from "../../src/sdk/sdk.js"; |
| 3 | + |
| 4 | +describe("Embeddings E2E Tests", () => { |
| 5 | + let client: OpenRouter; |
| 6 | + |
| 7 | + beforeAll(() => { |
| 8 | + const apiKey = process.env.OPENROUTER_API_KEY; |
| 9 | + if (!apiKey) { |
| 10 | + throw new Error( |
| 11 | + "OPENROUTER_API_KEY environment variable is required for e2e tests" |
| 12 | + ); |
| 13 | + } |
| 14 | + |
| 15 | + client = new OpenRouter({ |
| 16 | + apiKey, |
| 17 | + }); |
| 18 | + }); |
| 19 | + |
| 20 | + describe("embeddings.generate()", () => { |
| 21 | + it("should successfully generate embeddings for a single text input", async () => { |
| 22 | + const response = await client.embeddings.generate({ |
| 23 | + input: "The quick brown fox jumps over the lazy dog", |
| 24 | + model: "openai/text-embedding-3-small", |
| 25 | + }); |
| 26 | + |
| 27 | + expect(response).toBeDefined(); |
| 28 | + |
| 29 | + // Check if response is an object (not a string) |
| 30 | + if (typeof response === "object") { |
| 31 | + expect(response.data).toBeDefined(); |
| 32 | + expect(Array.isArray(response.data)).toBe(true); |
| 33 | + expect(response.data.length).toBeGreaterThan(0); |
| 34 | + |
| 35 | + const firstEmbedding = response.data[0]; |
| 36 | + expect(firstEmbedding).toBeDefined(); |
| 37 | + expect(firstEmbedding?.embedding).toBeDefined(); |
| 38 | + |
| 39 | + // Handle both array and base64 string embeddings |
| 40 | + if (Array.isArray(firstEmbedding?.embedding)) { |
| 41 | + expect(firstEmbedding.embedding.length).toBeGreaterThan(0); |
| 42 | + // Verify embedding values are numbers |
| 43 | + const firstValue = firstEmbedding.embedding[0]; |
| 44 | + expect(typeof firstValue).toBe("number"); |
| 45 | + } else { |
| 46 | + expect(typeof firstEmbedding?.embedding).toBe("string"); |
| 47 | + } |
| 48 | + |
| 49 | + // Verify usage information if available |
| 50 | + if (response.usage) { |
| 51 | + expect(response.usage.totalTokens).toBeGreaterThan(0); |
| 52 | + } |
| 53 | + } |
| 54 | + }); |
| 55 | + |
| 56 | + it("should generate embeddings for multiple text inputs", async () => { |
| 57 | + const inputs = [ |
| 58 | + "Hello, world!", |
| 59 | + "OpenRouter is amazing", |
| 60 | + "Embeddings are vector representations of text", |
| 61 | + ]; |
| 62 | + |
| 63 | + const response = await client.embeddings.generate({ |
| 64 | + input: inputs, |
| 65 | + model: "openai/text-embedding-3-small", |
| 66 | + }); |
| 67 | + |
| 68 | + expect(response).toBeDefined(); |
| 69 | + |
| 70 | + if (typeof response === "object") { |
| 71 | + expect(response.data).toBeDefined(); |
| 72 | + expect(Array.isArray(response.data)).toBe(true); |
| 73 | + expect(response.data.length).toBe(inputs.length); |
| 74 | + |
| 75 | + // Verify each embedding |
| 76 | + response.data.forEach((embedding, index) => { |
| 77 | + expect(embedding).toBeDefined(); |
| 78 | + expect(embedding?.embedding).toBeDefined(); |
| 79 | + |
| 80 | + if (Array.isArray(embedding?.embedding)) { |
| 81 | + expect(embedding.embedding.length).toBeGreaterThan(0); |
| 82 | + } else { |
| 83 | + expect(typeof embedding?.embedding).toBe("string"); |
| 84 | + } |
| 85 | + |
| 86 | + expect(embedding?.index).toBe(index); |
| 87 | + }); |
| 88 | + } |
| 89 | + }); |
| 90 | + |
| 91 | + it("should generate consistent embedding dimensions", async () => { |
| 92 | + const response = await client.embeddings.generate({ |
| 93 | + input: ["First text", "Second text"], |
| 94 | + model: "openai/text-embedding-3-small", |
| 95 | + }); |
| 96 | + |
| 97 | + expect(response).toBeDefined(); |
| 98 | + |
| 99 | + if (typeof response === "object") { |
| 100 | + expect(response.data.length).toBe(2); |
| 101 | + |
| 102 | + const firstEmbedding = response.data[0]?.embedding; |
| 103 | + const secondEmbedding = response.data[1]?.embedding; |
| 104 | + |
| 105 | + // Only check dimensions if both are arrays |
| 106 | + if (Array.isArray(firstEmbedding) && Array.isArray(secondEmbedding)) { |
| 107 | + const firstDimension = firstEmbedding.length; |
| 108 | + const secondDimension = secondEmbedding.length; |
| 109 | + |
| 110 | + expect(firstDimension).toBe(secondDimension); |
| 111 | + expect(firstDimension).toBeGreaterThan(0); |
| 112 | + } |
| 113 | + } |
| 114 | + }); |
| 115 | + |
| 116 | + it("should handle empty string input gracefully", async () => { |
| 117 | + const response = await client.embeddings.generate({ |
| 118 | + input: "", |
| 119 | + model: "openai/text-embedding-3-small", |
| 120 | + }); |
| 121 | + |
| 122 | + expect(response).toBeDefined(); |
| 123 | + |
| 124 | + if (typeof response === "object") { |
| 125 | + expect(response.data).toBeDefined(); |
| 126 | + expect(Array.isArray(response.data)).toBe(true); |
| 127 | + |
| 128 | + if (response.data.length > 0) { |
| 129 | + const embedding = response.data[0]; |
| 130 | + expect(embedding?.embedding).toBeDefined(); |
| 131 | + } |
| 132 | + } |
| 133 | + }); |
| 134 | + |
| 135 | + it("should include model information in response", async () => { |
| 136 | + const modelName = "openai/text-embedding-3-small"; |
| 137 | + const response = await client.embeddings.generate({ |
| 138 | + input: "Test input for model verification", |
| 139 | + model: modelName, |
| 140 | + }); |
| 141 | + |
| 142 | + expect(response).toBeDefined(); |
| 143 | + |
| 144 | + if (typeof response === "object") { |
| 145 | + expect(response.model).toBeDefined(); |
| 146 | + expect(typeof response.model).toBe("string"); |
| 147 | + |
| 148 | + if (response.usage) { |
| 149 | + expect(response.usage.promptTokens).toBeDefined(); |
| 150 | + expect(response.usage.totalTokens).toBeDefined(); |
| 151 | + expect(typeof response.usage.promptTokens).toBe("number"); |
| 152 | + expect(typeof response.usage.totalTokens).toBe("number"); |
| 153 | + expect(response.usage.totalTokens).toBeGreaterThan(0); |
| 154 | + } |
| 155 | + } |
| 156 | + }); |
| 157 | + }); |
| 158 | +}); |
0 commit comments