"
]
@@ -969,10 +1061,19 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 7,
"id": "67f37e4f-a889-4676-9797-82d7c13fbe94",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\akeeste\\Documents\\Software\\GitHub\\MHKiT-Python\\mhkit\\dolfyn\\adp\\clean.py:90: UserWarning: The 'range_offset' is either already known or can be calculated from 'bin1_dist_m': 0.07000000029802322 m. If you would like to override this value with 0 m, ignore this warning. If you do not want to override this value, you do not need to use this function.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
"source": [
"# Adjust the range offset, included here for reference\n",
"offset = 0\n",
@@ -992,23 +1093,23 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"id": "87eb43c7-486f-497f-b1b6-dd93330a2d18",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHXCAYAAABQ5DVtAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dc5d+fO7EUSQth7iYJWRBmJrbtYWhy1tv5q3VZbrduiVq1bv1prq9Vqh3W3gqLgVhQQUXYgZO/k3pu7xzm/P65EI6CEAEHzfvI4D3LPfN+bm5t3PufzeX8UXdd1hBBCCCEGILW/AxBCCCGE6C+SCAkhhBBiwJJESAghhBADliRCQgghhBiwJBESQgghxIAliZAQQgghBixJhIQQQggxYEkiJIQQQogBSxIhIYQQQgxYkggJ8Q2uv/56FEWhra2tv0P5znnjjTdQFKV7Wbly5V6dx+PxdJ/j/PPP38dRCiG+yyQREkL0yauvvsrZZ5/N2LFjMRgMDB48uNfn+N3vfscTTzzBkCFDutc1NjZyxRVXMGvWLJxOJ4qi8MYbb+zy+IcffpgnnnhiL5+BEGIgk0RICNEnTz31FE899RRut5uCgoK9OsecOXM47bTTyMjI6F63adMmbr31Vurr6xk3btzXHn/qqady2mmn7dW1hRADmyRCQog+ufnmm/H7/bz77rtMmDBhn513ypQptLe3s3nzZi699NJ9dl4hhPgySYSE2ENtbW2ceuqpuFwuMjMzueiii4hEIjvt9/e//50pU6Zgs9nIyMhgwYIF1NbW9tjn7bffZv78+RQXF2OxWCgqKuKSSy4hHA732O+nP/0pDoeDmpoafvCDH+BwOCgsLOSBBx4A4NNPP+Xoo4/GbrdTUlLCU089tf9egN0oKCjAZDLt8/M6nc4eLURCCLE/SCIkxB469dRTiUQi3HLLLRx77LHce++9nHPOOT32uemmmzjjjDMYNmwYd955JxdffDGvv/46Rx55JF6vt3u/p59+mlAoxLnnnst9993HvHnzuO+++zjjjDN2um4ymaSiooKioiJuu+02Bg8ezPnnn89jjz1GeXk5U6dO5dZbb8XpdHLGGWdQVVX1jc+ls7OTtra2b1xCoVCfXzchhDio6UKIr3XdddfpgH788cf3WP+rX/1KB/RPPvlE13Vd3759u24wGPSbbrqpx36ffvqpbjQae6wPhUI7XeeWW27RFUXRq6uru9edeeaZOqDffPPN3es6Ozt1m82mK4qi//Of/+xev3HjRh3Qr7vuum98TiUlJTrwjcuenOvLvv/97+slJSV7vP/y5ct1QF++fPnX7vf000/v0X6Aft555+3x9YUQwnjgUy8hvp3OO++8Ho8vuOAC/u///o+XX36Z8ePH8+yzz6JpGqeeemqPofZ5eXkMGzaM5cuX87vf/Q4Am83WvT0YDBIOh5kxYwa6rvPxxx9TXFzc41o///nPu7/2eDyMGDGCyspKTj311O71I0aMwOPxsG3btm98Lk8++eROt+F25cujuIQQ4rtIEiEh9tCwYcN6PC4rK0NVVbZv3w7Ali1b0HV9p/12+HI/mpqaGq699lpefPFFOjs7e+zn8/l6PLZarWRnZ/dY53a7GTRoEIqi7LT+q+fblcMPP/wb9xFCiIFAEiEh9tJXkxBN01AUhcWLF2MwGHba3+FwAKk+P3PmzKGjo4Pf/va3jBw5ErvdTn19PT/96U/RNK3Hcbs619et13X9G2NvbW0lmUx+434Oh6M7biGE+C6SREiIPbRlyxZKS0u7H1dWVqJpWncBwbKyMnRdp7S0lOHDh+/2PJ9++imbN2/mb3/7W4/O0UuXLt1vsX/VIYccQnV19Tfud91113H99dfv/4CEEKKfSCIkxB564IEHmDt3bvfj++67D4CKigoATj75ZK688kpuuOEG/v73v/doMdJ1nY6ODjIzM7tbcr7ccqPrOvfcc8+BeBqA9BESQogdJBESYg9VVVVx/PHHU15ezvvvv8/f//53fvKTn3QXESwrK2PRokVceeWVbN++nRNPPBGn00lVVRXPPfcc55xzDpdddhkjR46krKyMyy67jPr6elwuF88888we9e3ZV/ZlH6G1a9fy4osvAqlWMp/Px6JFiwCYMGECxx133F6fe8d51q1bB8ATTzzBO++8A8DVV1/dl7CFEAKQREiIPfavf/2La6+9liuuuAKj0cj555/P7bff3mOfK664guHDh3PXXXdxww03AFBUVMTcuXM5/vjjgVSn6ZdeeokLL7yQW265BavVykknncT555+/TyszHyirV6/mmmuu6bFux+MzzzyzT4nQV8/717/+tftrSYSEEPuCou9Jz0ohhNgP3njjDWbNmsXzzz/P4YcfjsfjwWjs/d9nHR0daJpGdnY25513Hvfff/9+iFYI8V0klaWFEP3uxBNPJDs7mzVr1uzV8UOGDNmpxIAQQuwJuTUmhOg3EyZM6DFabsSIEXt1nhdeeIF4PA6kbkUKIcSekltjQgghhBiw5NaYEEIIIQYsSYSEEEIIMWBJIiSEEEKIAes731la0zQaGhpwOp07zQ0lhBBCfJmu63R1dVFQUICq7r+2gkgkQiwW6/N5zGYzVqt1H0Q0cH3nE6GGhgYZRSKEEKJXamtrGTRo0H45dyQSobTEQVPLN098/E3y8vKoqqqSZKgPvvOJkNPpBFJvapfL1c/RHHxOGfZrntlyR3+H8Y1Oyv45z7U+0t9hCCEOYicPvpBnt9/bp3P4/X6Kioq6f3fsD7FYjKaWJFWrSnA5977Vyd+lUTqlmlgsJolQH/RrIvTWW29x++23s2rVKhobG3nuuec48cQTAYjH41x99dW8/PLLbNu2DbfbzezZs/nDH/5AQUHBHl9jx+0wl8slidAuGFXzt+J1MSqmb0WcQoj+sy8/zw5EVwqXU+1TIiT2jX79DgSDQSZMmMADDzyw07ZQKNQ9h9Hq1at59tln2bRpU/d8TUIIIcS3WVLX+ryIvuvXFqGKigoqKip2uc3tdveoOAtw//33M23aNGpqaiguLj4QIQohhBD7hYaOxt7XNO7LseIL36o+Qj6fD0VR8Hg8u90nGo0SjUa7H/v9/gMQmRBCCCG+jb41NycjkQi//e1v+fGPf/y194BvueUW3G539yIjxoQQQhyMtH3wT/TdtyIRisfjnHrqqei6zoMPPvi1+1555ZX4fL7upba29gBFKYQQQuy5pK73eRF9d9AnQjuSoOrqapYuXfqNIwIsFkv3CDEZKfbNFjfu3FF9f5lrWrDXx74SebL763n2MwCoyD+vzzEJcbCrKL54l+vnqPN7dZ7e7v9tU+46i013l/bpHPOsC/dRNOLb5KDuI7QjCdqyZQvLly8nMzOzv0MSQggh9gnpLH1w6NdEKBAIUFlZ2f24qqqKNWvWkJGRQX5+Pj/84Q9ZvXo1//3vf0kmkzQ1NQGQkZGB2Wzur7CFEEKIPtPQSUoi1O/6NRFauXIls2bN6n586aWXAnDmmWdy/fXX8+KLLwIwceLEHsctX76co4466kCFKYQQQuxz0iJ0cOjXROioo45C/5rOXl+3TQghhBCirw7qPkJCCCHEd1VfR37JqLF9QxIhIYQQoh9ony99OV703UE/fF4IIYQQYn+RREj0WUXuuXu036vxf+6T670SfDx1TW3Xfw+Vu87aJ9cR4mCwuOZu4Iu6WXNNCyjPOgfD+FFUFF+8x/WBlmpP768Q+6wv9Xt2PP8l/kfJXWzm6GP+sNfn+nK9sgMh+fmosb4svfHWW29x3HHHUVBQgKIoPP/88zvts2HDBo4//njcbjd2u51DDjmEmpqa7u2RSITzzjuPzMxMHA4Hp5xyCs3NzX19KfqVJEJCCCFEP0jqfV96IxgMMmHCBB54YNeFdLdu3coRRxzByJEjeeONN1i7di3XXHMNVqu1e59LLrmEl156iaeffpo333yThoYGTj755L68DP1O+ggJIYQQA0BFRQUVFRW73X7VVVdx7LHHctttt3WvKysr6/7a5/Pxl7/8haeeeoqjjz4agEcffZRRo0bxwQcfcNhhh+2/4PcjaRESQggh+oG2DxYAv9/fY4lGo72PRdP43//+x/Dhw5k3bx45OTkceuihPW6frVq1ing8zuzZs7vXjRw5kuLiYt5///1eX/NgIYmQEEII0Q80FJJ9WDQUAIqKinC73d3LLbfc0utYWlpaCAQC/OEPf6C8vJxXX32Vk046iZNPPpk333wTgKamJsxmMx6Pp8exubm53TM/fBvJrTEhhBDiW6y2trbHBOMWi6XX59A+H3xywgkncMkllwCpWR3ee+89HnroIWbOnLlvgj0ISSIkhBBC9ANNTy19OR7A5XL1SIT2RlZWFkajkdGjR/dYP2rUKN555x0A8vLyiMVieL3eHq1Czc3N5OXl9en6/UlujQkhhBD9oC+3xXYs+4rZbOaQQw5h06ZNPdZv3ryZkpISAKZMmYLJZOL111/v3r5p0yZqamqYPn36PovlQJMWoV0od53FEv+j/R3Gt8bi5gf327nnWRfusrbHjmvOUef3qI9SkX8eeiy23+IR4kAoT/852ohiXv3g2tTjrHPQfH7K03++z+pxwc4/P/2lL/V7vhy/8x8fUP37GfsipAOir8lMb48NBAJUVlZ2P66qqmLNmjVkZGRQXFzM5Zdfzo9+9COOPPJIZs2axZIlS3jppZd44403AHC73Zx99tlceumlZGRk4HK5uOCCC5g+ffq3dsQYSCIkhBBCDAgrV65k1qxZ3Y8vvfRSAM4880wee+wxTjrpJB566CFuueUWLrzwQkaMGMEzzzzDEUcc0X3MXXfdhaqqnHLKKUSjUebNm8f//d//HfDnsi9JIiSEEEL0A01X0PS9bxHq7bFHHXUU+jdM1Pqzn/2Mn/3sZ7vdbrVaeeCBB3ZblPHbSBIhIYQQoh8c6FtjYteks7QQQgghBixpERJCCCH6QRKVZB/aI5L7MJaBTBIhIYQQoh/ofewjpPfhWPEFuTW2CwfD0Pk56vzvxDW+zjzrwm/c55uG1e409FfTuo/Zk/MLsTf29c9OxagrKXedlfp66OVQlIfBF6Z8zFWpch5tD/Nq/J8s6Xxkn173QA+dn2tasEf7zbOf0etzz7MuJDF7KpuvuqTH92eOOp+K3HN7fT4xcEiLkBBCCNEPpLP0wUESISGEEKIfJHWVpN6HPkJ9mJ5DfEFujQkhhBBiwJIWISGEEKIfaChofWiP0JAmoX1BEiEhhBCiH0gfoYODJEJCCCFEP+h7HyFpEdoXpI+QEEIIIQYsSYT6WUXppbtcbxwyeLfHlKf/fK+u9dW6OjtqiFQMurBfau58U42gb/LV12GedSGLmx/82vNXDL28T9f8rvg21Vjam5o9+/P5zVHn97r+zu7q2FQUX0xF6aVoNfUoOVlUDP8tyepalqxdxOINt7Bk3U19jvVA+7prvhr/5x6d45Xg472+7iuRJ4m5DFQMupCl2tPdcSzVnu7xufBle/tZuq+k+gj1bRF9J7fGhBBCiH6g9XGKDeksvW9Ii5AQQgghBixpERJCCCH6gXSWPjhIIiSEEEL0Aw1V6ggdBOTWmBBCCCEGLGkREkIIIfpBUldI6n0oqNiHY8UXJBESQggh+kGyj6PGknJrbJ+QW2P7WUX+eQCUu85ijjqfiuKLKXedRXnWOQDozrQv9h10IRXFFwOwuPL2Huf5cm2OJZ2P7HSdHef76tc7rg2pOhu7qq+iRyJf/xyKL95tXZYdce24xrwp13Wv+6YaJjue61e/3lNffh0q8s/jlciTu73m1LPvZOaxt+30uu4L/VGrpa/6WsPpQOptzR7Yv89vb+LBYtlp1dHH/IHFNXcTGZZLoGI8iytvZ/HmW3k1/k8qRl3ZXeNmif/R/RJrxfDf7vV59/aaPa6/Fz/zOz6H5tnPoNx1FnNNC3psf/c/l7HlglJmz7wZw/hRu7/255/Lu/osFQOPtAgJIYQQ/UDTVbQ+jBrTZNTYPiGJkBBCCNEP5NbYwUESISGEEKIfaPStw7O270IZ0KSPkBBCCCEGLGkREkIIIfpB3wsqSlvGviCJkBBCCNEP+j7FhiRC+4K8ikIIIYQYsCQR2scqRl3Z4/HixgeAVC0QQ0Y6xOMs8T/KkraHKZ94LUqHP3Xc0MvRgyF0rw9I1cuYZz8jtS3/vF3W5qgovpiKQRdSPv5qlrQ93L3+y1/vuDak6t3sqr7KkraHv7buyuKau1HMZmbNvXWnbTviWuJ/lIrii1GbO7vXLdWepnz81bs8Z0XppSyuubvHNXYod51FRe65u41nV7ROL/OsC3u8ThWll3Z/nf12M9Zln+w2nr5Yqj3dXUdJDCy7ep+WT7yW8qxzmGddyBx1fuq9Ybel9h90Yfd7RTMplI+/muWv/pZ3/3NZj3Ms3nBLr2rcfF0tq11tK3edxeLNt3bH9OU6YeXpP++u8TPXtIDyrHP2y8/Nl3/md3zW7e7xDorZzDzrQl4JPp76TM3P22mfvCmNVP7UCHVNPdbPUedTPuYq5tnP6P5c3pUT3Lu+9v6gofR5EX0nt8aEEEKIfiC3xg4O8ioKIYQQYsCSFiEhhBCiH/S9oKK0ZewLkggJIYQQ/UDTFbS+FFSU2ef3CUknhRBCCDFgSYuQEEII0Q+0Pt4ak4KK+4YkQkIIIUQ/6Pvs85II7QvyKu4jO2qDLN5wyxfrPq8lUjHqyu5aPx2zy5h57G0AdA11gapyzKxbSFbXApCYNIyK/PNQ83NR83OpKL4YPR7f6XrzrAtZXHM3eoaLJWsXda+fa1qwy/gqhl5OfO5Uysdfzczjbqc865zU/66zmDNjEXOOuGnnYz6vJTLzuNvRRwzGur2DiuG/pWLUlTvVS5p25p1gNlH7k9JUvY6sc754HcZctVO9lcVVd1I+8dpdxrrE/yiLmx8E4PAf/jF1DtdZPWqd7MRg4JXIk5Sn/7zHNSqKL6Zi6OUkclxok0fROSEjFU/+ebs/117YUatJfDfsro7NVy1ufnCnfZesuRHF40YtLSZ63DSS44cSKfJQPvFamo8rZYn/UcqzzsHyxlqUrhBAj/ftDjt+xuZNuW63199RI2hXdcZ22NW2Jf5Hu49NDsrqriM2b8p1JMYPIVaWC4BhaCkU5EBDS/exe1tT6Ms/vxVDL+/xnF8JPp5aP/y3qXpnwcd71D/68jVbz5wKfP7co1Eqii/u3nfelOvofC2f7LeMKFbrTjEo0Rjh2eNSn2GDLtzl5+ULvsf36vntjSRKnxfRd5IICSGEEGLA6tdE6K233uK4446joKAARVF4/vnne2zXdZ1rr72W/Px8bDYbs2fPZsuWLf0TrBBCCLEP7bg11pdF9F2/vorBYJAJEybwwAO7Lnd+2223ce+99/LQQw+xYsUK7HY78+bNIxKJHOBIhRBCiH0rSV9vj4l9oV87S1dUVFBRUbHLbbquc/fdd3P11VdzwgknAPD444+Tm5vL888/z4IFu+4LI4QQQgixpw7adrWqqiqampqYPXt29zq3282hhx7K+++/v9vjotEofr+/xyKEEEIcbOTW2MHhoH0Vm5pSMwfn5ub2WJ+bm9u9bVduueUW3G5391JUVLRf4xRCCCH2xo5JV/uyiL77zr2KV155JT6fr3upra3t75CEEEIIcZA6aBOhvLw8AJqbm3usb25u7t62KxaLBZfL1WPZlbmmBd21f/aFXdWRaT1pFAC6yYBuMjBHnU/6Jx1Aqt6F68M6fIcVoUaT6IeOI3zECJIWA9HRRbQePYjgmBwW19yN4nEDX6nfYTBQUXwx8Uw7FfnnpWoWfV5vpCL/PCqKL2beITd0766lOzB7owAYAwl8c0agq6m42yfYSVoMPep2ACyuuRuAQJ6RZJoJ//hswkMyiBa4e9RLAvjwb5eyuPJ2nLUasfJDUAwG5h52IwBKPEFo2hDmzFhEuessyl1nMWvuregbt+50za+y16XqrFBUwCuRJ7v3/3KdoopBF6KYzanvQ+cjOz2HxZW30znCRsxjxtYaxzsxA60gi9kzb07VRSq99GtjEAPPjro232SOOh+1uJA56nzmmhYwa+6tVIy6kuCYHAiGMfkTLH3nKqyf1rBkzY2sfvASAJa0PcwrkSfRnWmpx5+/b3fU1ip3ncXiDbdQnnUOr6y6oftaX/4fwJCRvssaRLBzTbGK/POoyD+vu56P/r1JzDUtwFD9xWesbjKgqwpxV6r7aOfkLIDuz6A5MxahtHZ21wX78mforn6Wv1z/a0etormH3YjmTuvxszpnxiLmWReiOa0kZqfqnS3Vnqai+GLKXWd110pTcrKwdmqpumeHTcB79FC09g4Ss6em6q81tHHaGUtRE6Dlpqee9+f1mAwZ6SyuvB01qtExNZvFdfeiGAypfYZe3h3LKWWX7PL13B90FLQ+LLrUEdonDtpEqLS0lLy8PF5//fXudX6/nxUrVjB9+vR+jEwIIYToO7k1dnDo11FjgUCAysrK7sdVVVWsWbOGjIwMiouLufjii1m0aBHDhg2jtLSUa665hoKCAk488cT+C1oIIYQQ3xn9mgitXLmSWbNmdT++9NLULYozzzyTxx57jN/85jcEg0HOOeccvF4vRxxxBEuWLMG6i9LpQgghxLeJpito+t7f3urLseIL/dqudtRRR6Hr+k7LY489BoCiKNx44400NTURiUR47bXXGD58eH+GLIQQQuwTyc9nn+/L0hvfNJvDl/3yl79EURTuvvvuHus7OjpYuHAhLpcLj8fD2WefTSAQ2Itnf/CQG4xCCCFEP9jRItSXpTe+aTaHHZ577jk++OADCgoKdtq2cOFC1q1bx9KlS/nvf//LW2+9xTnnnLOLs3x79OutMSGEEEIcGF83m8MO9fX1XHDBBbzyyit8//vf77Ftw4YNLFmyhI8++oipU6cCcN9993Hsscfyxz/+cZeJ07eBtAgJIYQQ/UBD7fMC7DSbQjQa3bt4NI3TTz+dyy+/nDFjxuy0/f3338fj8XQnQQCzZ89GVVVWrFixdy/CQWDAJkKGoaXoyZ2nrNtRc2JfsLckSEwfS/uUDFoO82AcMRTfmHRqyw3UVngITiokaVEIFVjpHGGjbYyRmMuApbodzawQzkjV9tHbOwFIOr7oJK7YrHgPLyLuMhKaVEJnxUjiHhuxYyaRKCtAa+/AO9IJwDGzbqGmwkWg2E6wzEPHaCsdo1TCGQYq8s8jkgktUyws1Z5m3pTrUrU7Jl7bXYfIUxmh6VAb/sEGTIEEy16/gvKsc5gzY1F3PDNOvYOjym/Fs6oFQ1SDDA9Jm4lEehrBUVmoUQ1jZ7C73pKl3o/isLNUe3qn1608/efddUp8wxwALFl3ExWjruyu+7Gk7eHuuiWL6+5FD4eZeextVOSf132euYfdyJEn3M7cw24kc42PtA1NWJuCeD7tRLOZiXlMtE/PpXZ+EfMOuaHX9YS+qQaS+Pb7uu9xxagr8Z0+neajcjCOGIrqdhFzGdAcVoI5RojHaZ1oZfqP72BxY+pWxOyZN1OedQ7l6T9nnv0MfGPSu883z34G2rrNAISPGEVF/nksaXu4e/tS7WnKXWf1/JkZlIceDqfiGXQh5WOu6t70avyfqfWf/ywl29rRs9NT9bhmLCKcbUYxm4mMK05d37qQ4KA01LiGoqU+N2IOlZofZNI6Mz8Vw3tXE5w2GG1QDhXFF8Pgwu7ntauf5SX+R7vrB8054iYADFWN6Gs3MWvurd37qfEkyUPHECp2Eig0sWTtolR9JLsNilKtDPMOuYFYUQYthyhoJpWOMXbMviSK2Yx1S3PqeVgtvH7uEbRM04nk2gG6a54lOzo5bOEdRDKN6OrnNZDGDKVi0IXoXh/lY65inv0M/DNKd/s939eSutLnBaCoqKjHjAq33HLLN1x512699VaMRiMXXnjhLrc3NTWRk5PTY53RaCQjI+NrZ3w42MmtMSGEEOJbrLa2tkfxYIvF0utzrFq1invuuYfVq1ejKANrNNqAbRESQggh+tO+6iz91dkU9iYRevvtt2lpaaG4uBij0YjRaKS6uppf//rXDB48GEjN+NDS0tLjuEQiQUdHx9fO+HCwkxYhIYQQoh/ofZxBXt+HlaVPP/10Zs+e3WPdvHnzOP300znrrNRUKtOnT8fr9bJq1SqmTJkCwLJly9A0jUMPPXSfxXKgSSIkhBBCDADfNJtDZmZmj/1NJhN5eXmMGDECgFGjRlFeXs4vfvELHnroIeLxOOeffz4LFiz41o4YA0mEhBBCiH6RRCHZh4lTe3vsN83msCeefPJJzj//fI455hhUVeWUU07h3nvv7VUcBxtJhIQQQoh+oOl9myZD03u3/47ZHPbU9u3bd1qXkZHBU0891bsLH+QGVGfpLw+P1uubeCX4eI/tc00LSGyq/OphPc8xaNfDCncl4jGQtKgkrak3eiLdjmZUSP9UxRgENarROVLB2h7HP0Sh+NkmEjaV5jkF+AdDMF9hqfY0eiyWuq6qUJ51Dof/8I+0zB+FpTNBPE3FO8yEtT2Bd6iFzhFm2sel8UrwcTzrfVQMvZyG71lxb9UI5qs0HmbA0ZAEBTJXdaB1egnlawRKNOZZF6LZzBCPEy5w0DbRxTGzbqHqeAuBEg1TEOqOTuPwH/6R0OHDMAQiQGrYrcWboGWqmeZj8rBsacI3Lou4y0jToTbSlq8n5jIQKk0NFdaTSbwTM0iMGbzz61t8MYrZBM7UsHl7Q4yjym+lovRSEpmO7iHB86ZclxpOPP7q7mNt729Gz/2iaTdpM2HyJzA0dOAf7iJRmEnL9HRCpW4M/nBqW0wnMDZK0wwXWoaTo4/5wx5/f3c1XHjH6yH6174qbbDje/zlshoVxRdTUXopodJ0LH4Ni1cjludCD0cwRnXaxzvJeaWaxY0PkLU2imuzPzVkPusckhYDejgCRXkwugzPstTnTfn4q1EzM1AmjgJIlaDg8yHefPGe2lF+YkdMS9bciFpanBqiX3cvSijMHHV+9/7zrAvRk0nmqPMJnHQIijc1FUIs00LncAORo8fhKzMz97AbiR05Hucbm2kfk0bjYUY6R1pBhZLHqzB36cw54ibGX3IX1uYwDTM9LK65u3v4/2tv/o6KQRdSMfTyHsPid8Qwe+bNqCvXp35enQ4MQ0uJuQypMh1TrqN1qgs1msC+1YutI5kqg1GUh+awEs9JfRZEsm0omo6tUSGUZ8Y/5PMLFOURHZKD5aMt6M40jG1Bxk+qYvspqRIAX+Z56TN0VSGRprDE/yjKlhpiw/JZ0vYwSocXxWBA3bmqiviOkxYhIYQQoh9ofews3ZdjxRckERJCCCH6gYaC1oc+Qn05VnxBEiEhhBCiH3y5OvTeHi/6TtrVhBBCCDFgSYuQEEII0Q+kj9DBQRIhIYQQoh9oKH0bPi99hPYJSYSEEEIIccBs2bKF5cuX09LSgqZpPbZde+21BzweRe9NdaVvIb/fj9vtxufzdc/OW1F8MaGxBdg+rIRYvEdtjt2Zo85nqfY0c00LMAwtZfGGL+pTzDz2Nt58+Tfdj8vHX42+uYqqa6bi3A6hfAiXxsldZqT5MB1XpUrcCekbNZqOAOdWFf8hEQz1VjLW6wQKFWytECyEjPWp+j9ZayN0jrSS/aGXWGYaHaPMWDt0vMMV7A2p6yasYIyA9oMOEm9mYPaBboTOsUns1QYUDQpf9/LKqhuYM2MRZz3+Em94R/J27RDCLXYKXlfoGqRiCkOwAOx14K6K0fDLKNY3nXSVaWgWHecmA45GDWt7ApM/yqsfXMuEi+5CM4Cig7M2SSjX0P16KBpY2zVMgSS2dzag2NPwfW8IiqbjrPSzZM2NqRpPBgOYjOj1TegjBhNLt2IMxAkVWHGta0dLM+Mf7sL14ieoxYUQDIPdBl4/WkEWqCpqZwC9vRM9HKbhV1Mp+NPHJKeOpH6mjYK3I2gmFe8wM7lvt9M13IOjOsim861YaszoKqRv1LE3xNBMCm8s+e3XvifmmhZ01zXak/eO+ParGHo50ZJM6mdaGPKPFvTWdiJTy7Ctb2Rxzd1M//EdhHJUDDHI/V813sOLMAc0LK1hohlWbHV+lEic8JAMbNs6wOdP1b7aXs8S/6NUDL2cxZW3c8ysWzBvrCNZkouhrQu6AuixOEs6H+mOZdyld1Hwth81EKH5qBxWP3gJRx/zB5a9fgUVQy9HT7MQz7Rj3trM4pq7qRj+W8JDMrC0hmg5zIOSgEg2FC4L0jHGjrM2RtxhIJxtIOYEcxfE7eAfFWfwM4BBIZRlIOZSyF4T5rU3f8ehp99Jxjt1hEblYQwn8Q61kvlpFwZfmESmg6XvXAXAlF/cRcaGEMYWP7FCD2pcw7i1AexpNB9TQPrmCC1TrKQ16wTzFfLfC2Hwh+ka7iHmVFETYPEnSZoUYk4Vf6mCboCYR6NkiUbayu3gcREamkHUpRLKUYlkQcniEMb6dhZX3ck860LUdA/BaYNpG2ek5LEqtLZ2On80Bc+mAIaqRhpPHY4eirD2r7/r8TtjX9vxe2n+62dgspv3+jzxYIynj3l8v8a6r/35z3/m3HPPJSsri7y8vB4z3SuKwurVqw94TNIiJIQQQvSDL88gv7fHf9ssWrSIm266id/+9uv/0DyQpKeVEEIIIQ6Izs5O5s/fN5Xf9xVJhIQQQoh+sGPUWF+Wb5v58+fz6quv9ncYPcitMSGEEKIfDMRbY0OHDuWaa67hgw8+YNy4cZhMph7bL7xwz+fz3FckERJCCCHEAfHwww/jcDh48803efPNN3tsUxRFEiEhhBBioBiIc41VVVX1dwg7kURICCGE6AcD8dbYl+2o3vPlIfT94dvX02ovnZT9cwAqRl2JlptO2sfV6CX5KDlZu9y/POucHo931IGJlk9Bb20HUvVhANKqOplrWtC9r+INoBYPIjYoRvvUJHGnDhEV7zAFzBrRDEhaoG2CCkmF2FF+rJut2Jqh5Ygkhgh4jwlj8kMkUyVuh6ZDrcRt4B3tJpJpJJIJUY+CrQU6xmp0jtaIpqfq//i2eXBt1/BURsl7oYqRD3oxfa+DuAM89zfzSU0RN/zjrzz06x/yyT0TcD3r5NDxlbjf3kbhI2vJfnQl7kodT2UUgHi1g8jMLkgqWBsNhAp1zL4kXUUm2sc5GXfpXfiGa0SyIZoOztc34t4awxDRsXZoWNs1uopVukpMKDlZhCcUE8xPvfXCRU7mWReiO9PwT8xl8YZbWOJ/lNAgO5aPttA+wY5/sAGtph7dZMDzxjaUsmKSbhtYLfjGpb5/LYd58A91sO3MApZ0PoKak421U6f5Z5PQ1VRdpkimiZbJZgKDoPXQTJyvriPhMDPy4i2YO8FdqeMrUwgWmDF7o5S7zurxff6qHTWEduy3O9/mGkLzrAv77drHzLrlm3faSzue1+6+txVDL+eo8ltTX4+6kllzb+XwH/6RllkF1M62oCYgVJpOcmQJpkCC6tNKGH/JXfhLVDQDZH/opbmihEC+SijLgFpZh9kfJ1Tqpn16LoaohndKDprPj24yoOTlUDHoQhI57u4Y9HgcQ1UjiytvZ3Hzg+hDCqkovpiKoZcDkNaqoxsUqk/JQVdh+o/vwPzJNuZNuY5tZxSgNLdjrveidwWYo86n7gd5AMQy04hkQtIKhhC0T7ATKIJoupHmQwx0FUPXiDgA4WxQLUlMwQQJi0LmM59ib9RonmKjfMxVZKxspe6kIt58+Te0jbfSPlGj/igniXQ7uiH1y232zJsxBzSapqXhm5hDsMBMy5Q0qs8eSvOcAlChbbyV7I+jxNMU4g5onJGGbjHhG2LAtT1KzKWQNCkkbCqt0zT0z8uUeQZ76RhhJFmSSyzPRfsoI/aGGPknVuOc3EbTtDR0ZxqzZ96MNnU0aBreIUaUBLTOG0zX8ZNJa46TtJkIHjYERYPOUT0L/O1POxKhvizfRo8//jjjxo3DZrNhs9kYP348TzzxRL/FIy1CQgghhDgg7rzzTq655hrOP/98Dj/8cADeeecdfvnLX9LW1sYll1xywGOSREgIIYToBwPx1th9993Hgw8+yBlnnNG97vjjj2fMmDFcf/31kggJIYQQA8VATIQaGxuZMWPGTutnzJhBY2NjP0Q0gPoICSGEEKJ/DR06lH//+987rf/Xv/7FsGHD+iEiaRESQggh+oVO34bAfxtnTL/hhhv40Y9+xFtvvdXdR+jdd9/l9ddf32WCdCBIIiSEEEL0g4F4a+yUU05hxYoV3HXXXTz//PMAjBo1ig8//JBJkyb1S0ySCAkhhBDigJkyZQp///vf+zuMboq+o6LRd5Tf78ftduPz+fjh3LsxtHURK8qgc6QVz+YoakLjtTd/173/4T/8I47Fa1FsVpa0PbzT+Wacegfuj+rRMpyoDW3owRCtPxrPqj9/0dN97G/uovB1L5vOcYItgcGskfSZSas1ECpKYnDHGFnQxOZ3S0ladSyDu3A966R5hobijKN3mTCkx7CstXWf09qZqhFU+EYU/2AzHWPBuV3BOz7OyP8LEh7k4K0XLmfamXfS8f0Q3yvdSqY5xKVZbxPU4fiHLydtehuBj7Jw1IJvuE4iN4bNGSUaNmGqtPHOz//IMavOZtagLby6fSTXjHuZO7bMJp4wkJEWYvvGfHDGyV5uJnNVB0ooSvWpBbiqNdomKhQuTxBzG2g8WiOt2kjhGyHax6QRt0PcBYoG2Z8kaJ5iJGHXSV8PkUyFon9WE5xUSCjLgHtbFPPWZmJluYSzzRijGtXH6wxarGKvC1F9rJMhj1QTHp2PtaGLUKmbtHe3EJ1chq/UTPZKLwBqcyfVZ5SStS6B/eN6Gk4qQU2AoyFJ1yADZr+Oe0sI49Z6mn44nLTmJJpJwVkVpOoEJ2YfBMsSjLp2O7GRg3h9+ZVAqv7MK5EnmWc/g8S0Ud3rd6U8/ecs6Xxkp/UV+eexuPGBXr+Xxd6Zo87HkJGOHgjySuTJHtvKx1zFknU3dT+uGHo5RKJgMqJlONHXbsL7k2mYghr2uhCRXBsNC6NkvWBD0SDqUbE3JWmZbCDrkySRdAOBIsham8QQ12mdYCT/3Sgmf5RXPrqOKb+4i4x1QRIOE0mbiq0ugBqKkXTb0I0GYi4T7WNNmILgqklgaQ2jxJNEcu2Es42kr+8i4TBj/HADan4umIy0HJFD1lMfE549DgDba5/iPXkizpoIps311C0ciqNeQzMqRDIUAsU6uSt0mo4Aa5OKMQwJG2SviVM/04S1HeyNOnGHQudoDdJjXDXtZVoTTqpC2ZyXs4zTPzmLKXm1XJ73Kve3zqLI2sF/qicRCFtwp0W4acRzNCTSCWoWHtr8PQrP8xOYMgiTP0Ek04QxqmFpjRIosfH+P37NIWfdiTGi0zwdNHcCxaBhaLRg6lJQEql4kmaFcC5oJsj7MEH1DzWIqRg7jBiiYPaD2Qe6mqpnNvQHW6nrcmP4ZyZJs4KzNobt4+3ULRyOqyZJoNBA1toInSOtZH3cRdsEJ4FiiFhC1F5+NT6fD5fLtV/ekzt+Lx3133Mx2i17fZ5EMMobP3hwv8a6L/j9/u74/H7/1+7bH89DWoSEEEKIfjBQbo2lp6fT2NhITk4OHo9nl5WkdV1HURSSyeQBj08SISGEEELsN8uWLSMjIwOA5cuX93M0O5NESAghhOgHA6VFaObMmd1fl5aWUlRUtFOrkK7r1NbWHujQAKkjJIQQQvQLXVf6vHzblJaW0trautP6jo4OSktL+yEiaRESQggh+oWG0qc6Qn05tr/s6Av0VYFAAKvV2g8RSSIkhBBCiP3s0ksvBUBRFK655hrS0tK6tyWTSVasWMHEiRP7JTZJhIQQQoh+MFD6CAF8/PHHQKpF6NNPP8VsNndvM5vNTJgwgcsuu6xfYhswdYRmD7mIRFk+5vYQ3tFuIhkKkUzI+yBOWlUnWpoZJanTMj2d1Q/uPPttRemlLK66k1lzb8W6sRE9FELJzsQ/JhNDXOetFy6n3HUWSk4WrTPzURPQfGQCAEVTGDOili0t2ZhMScLbXJh9CooGMbeOtVXBcHgn8YSBSNCMod5KIieOucFE+kadcJZC0gKWToi5ofB1L8q2eoJHjaR+foxHZzzGvzqm8f+y3sSkaPx03Zno/8oiY62PQKmTjtEGMo9sxP+/fOwVzXQE0oh2WcjM8dPe6oSwkREj6+h4rBh/qYKrSqf1MI3il3WaphlhRACDQSOZVDGZktw9/l8MNvm4bPvJtN09mLSmKFvONkFEZch/ErRMsRAYFcfmCaN85MIUhMTRPqIb3diaIeuzGFWnGFCjCmX/jpBIM2JZvZWac0ZR/OA6lLxsts/PwVGr0z5Jh6RC5lowd2mEsw1kfhoikWYkkmkknKXi2RLDX2pGM4JnS4xIphHX1iDbj3OS+ZmGZ1ULTXPyMPt1gvkKtlYdc5eGa00ziytv57CFd+AvUcn+NEHComBtj7N1gQk1qjDirnrqTinCUa/h2uxHiSS6684cevqduP/5Ia/G/9njvTLPuhAtFsOYm4NWkIVmM7P0nav2/5t9N3ZXz2hP7aidtNN5XWexxP9oX0LbJ+ao81mqPd3jscHhIDFpGKZGH8TjJHM9RDOsvPnyb6gYdCHE4yxufpDJ/+8ucv9XhdbWju+UyXhe2UR42lDiDgNJi4JnYxfNh7kIZ6fq1KBBwgFxO2SsT9W2SaSBb3SSUddX0fKDoZhCGoFCFUe9hr0hxrazYchfwOiP0HSEB8+WONF0A2ocTIEkwXwjmWu70EwGYpkWYg4VW0sc3xALiTTIf60NzWlBiSfRbGbUcAxlSw1Vl42n6PUwSYuBYL6JSIZC4ZIWvBOzSFgVdBUc9XE0i0rrBCNJC+S/G6d1oolopo5m1nFUqYQKddybUzV64nbIXqNxxU1PcM264zlh8Kd82FHCpo2DSKs2EMnT0AxgaVeJFMaxV6XqDvmG6lAYQW+xYN+uEksHaxtoBugq05h76FqO8mxkbaiIf78xHT0jhusjK4PnbwXgk3WDsbQYGPyiH7XNh39KAQCBQgOQ+txzVusEChUSdjBEITk+AJscqe0FcTI+NJGwQu6KIDXldiyTOgmFzRg22knYdfLe10hrimJs8lJ3fOr8WZ/F6BhlJu6EmBMSniRKW4ztV191QOoITXvuoj7XEfrwpHsO+jpCX3bWWWdxzz33HFTxSouQEEIIIQ6IRx/t/z+evkoSISGEEKIfDKRbY1+2cuVK/v3vf1NTU0MsFuux7dlnnz3g8cjweSGEEKIfDMTh8//85z+ZMWMGGzZs4LnnniMej7Nu3TqWLVuG2+3ul5gkERJCCCHEAXHzzTdz11138dJLL2E2m7nnnnvYuHEjp556KsXFxf0SkyRCQgghRD/QP781trfLt7FFaOvWrXz/+98HUqPFgsEgiqJwySWX8PDDO090fiBIIiSEEEL0Ax3Q9T4s/f0E9kJ6ejpdXV0AFBYW8tlnnwHg9XoJhUL9EpN0lhZCCCHEAXHkkUeydOlSxo0bx/z587noootYtmwZS5cu5ZhjjumXmAZMHaGjJ/yWrb/Ipmx0PaG4mcCSXNJadZoP0zGGFHJXaJj9SUK5JjJWthItcGP+aBNL/I8yz7oQ7/wprHjiUobeeheF7ySIulQcdVFCuRYajtHJe0shfdk26hYOxdQFHeM1HNUqsWkBYiETxkYLru2gGSGcDUP+0UI8x4mxLQgGBbbXo40u5dUPrqU86xwiU8tonmYm+5MENeUKjioDoXwdNQEnzl3BZPt2lnaOZlVTEdrb6TjqNcwBjZofgHODkcT3/Bw2aDu5li6W1I6ixN1JY8BFJG4kIy1ERyiNQJeV4twOACzGBFWtmRgMGuY3XERmdhENmMnM7sLrs1OU3cH2mhwMtgTJdgvOrSpdI5KcPuNdzkhfwe1Nc4jrKoe4tvPX244j66MONv6/dEx+lYz1Oh2jFZJ2Dc2iY6s3EC5MQkIhrV7F3ph6XgmrgqM+jtkfp/mQNDQTxB0QLYlR+iQ0fM9M6TOdKKEooaGZhHKNJNIUTAGd9M98+Ie7aBuvkr5Rx1kTxRCOE822YWkNE81IlW4P5RpxbY8SdxmxvbIGtbSYwMhMHOtaSWQ5SThMWJq68I1Jx1emYmuG+PGdeB5xEswxkvNOC5rDyisfXcfEC+4i56Mu1PVVX1tPZ+5hN6J8WskrwccPxFu+21fr60DfawodCBVDLwdVhVCYxXX3dq//auxzD7sRZc0mGDccpbIWLRBAP3QcS9+5inlTriNU7CSUZcAc0Ig5VIwRnYzl2yEeJ1FWiLGujfDofLqKzGRsSNWmahtrJpwLmllHjSnEs+J41poIFOsoCQVHXarWTvELLSzecAvjLruLrlINV6WKZgIlAbmrwjQcbiN7TZxIppHmGRoZaw0oCTCFNBQNzL4kcYcB17oO6r6fhbNWo2O0inO7TlpbkkCBkWAB5H2YQIlrqHEdYzBGwm5G0XSM/gj1x3hQEmBv1vCXqFg7IftDL22TPYSzIZau46hJ1RPybEtQd5QBJaGQvUaj8Sgd1RlD1xT0uIH8Vw20TlawNSqceNZbPLn8CBylPsblNPLeliEYa63EcuIoRp38/E68QRsmY5Jo3EiGI4TLEqEtZMdpjtIVs2A2JElqKi216WQO8uL7LJOsNToxl0rMCeFcHftwL6H16eR/kCR0TieDnD5GuZo4I/19/uObwjN/nkXBc9Vo2W7Uhja2nTsUsxc+vTNV523OjEVEsy0E8ox0zIhh22rGXq/TORqUhIJpuJ9Qh43i/6rUzgVHlQF7o461PUFXkYlgIUSL4tiqTOgqJOw65k6FiCVC1fW/OyB1hCb859cY0va+jlAyFOWTH97xraoj1NHRQSQSoaCgAE3TuO2223jvvfcYNmwYV199Nenp6Qc8JmkREkIIIfpBX0d+fRv7CGVkZHR/raoqV1xxRT9G83kc/R3A10kmk1xzzTWUlpZis9koKyvj97//Pd/xRiwhhBADQF86Sve1BtGB5Pf793jpDwd1i9Ctt97Kgw8+yN/+9jfGjBnDypUrOeuss3C73Vx44YX9HZ4QQgghvoHH49nljPNftmNW+mQyeYCi+sJBnQi99957nHDCCd1D7QYPHsw//vEPPvzww36OTAghhOibHaO/+nL8t8Hy5cv7O4SvdVAnQjNmzODhhx9m8+bNDB8+nE8++YR33nmHO++8c7fHRKNRotFo9+P+amoTQgghvs5A6SM0c+bM/g7hax3UfYSuuOIKFixYwMiRIzGZTEyaNImLL76YhQsX7vaYW265Bbfb3b0UFRUdwIiFEEII8XXefvttTjvtNGbMmEF9fT0ATzzxBO+8806/xHNQJ0L//ve/efLJJ3nqqadYvXo1f/vb3/jjH//I3/72t90ec+WVV+Lz+bqX2traAxixEEIIsWcG4lxjzzzzDPPmzcNms7F69eruOzg+n4+bb765X2I6qOsIFRUVccUVV3Deeed1r1u0aBF///vf2bhx4x6dY0e9hlG/upnQWBMZawyUnrmFIzM20xZ38o+Xj0SzaaR/qhLJhMI3uoi7LBgDcZa+dzXl46+G7fUwpIhInp3OEWaSFhj0aicAoRInNccqZH+gkvnMp8QOGUHtbAtaaZjCf5hoG2MkOj5MUXYHw92t2AwxDnVu4yhbLfVJMx41xvpYDqPNLWSrBuJoxD//lrwcLOO2tXMpSPdxWtEKXmqZwMaWHAyrnbiqNFq+H8VUaUMfHcBpj5Bn7yLH1sW71UOoKFvPh60l5KQFAGgJOXBZImxtzmJQppdmvxNV1XHZIlgMCTpCaWQ7ArQGHKnXrcPOocOr+Li+kIJ0H3XtHpIxA5ZKK5H8JGpUgawoWtxA4UsGmn4Yw7jFRrQkyj1H/JN7q49GX5RD7WwL8YIYhjYTyYwEqiWBfaWNYJGOZtZxblWJecBRC4EiMETAUa/jK1NIWiCRFwNFh7CRzJUGoung2q5hbY8TTTcSyk3VZ+kcq5H7AXSOUHFV6RgjOu2nhLC+68CzLUHzFCOGCGRuSKJoOm3jjBQ/tAG9tJD6WS4sneCoj6ObFGIOlVCOSiQLDFEI5ydR4wqWNhUlASXPpWoJNR7hwhSAVX++pMd7rqL0UhZXfXH7ds4RN9E0LY3897pQK+tY0nZgysjPO+QGXvnoui8eWxeipnvQg6nqrV9X++jLelt7aFf1i/bkGIPbzZLORygffzVL1i7aaZ+KoZejNTajmM3o4TCJ6WMxdYahuoHwESMI5hjoKlGw10PMDZZO6JgZQWm1YOpKvZ9sranvqfeQKO5VFrJOrGXr+kKyVyp0jIWkQ0ONKhgLQmhbHVg6IVygYWlTSWsE97YoxmAMXVXpHJVG1K2gGyFpTdUIi3s0PBtUTAGdQKGCMQzBQTppDQqFLzWw/ScF5KyM0znChMWr4y9VyFqbJGFTiTsUIpmQszJGONtEKFvBGIWEBfLf66Kr1M77//g1R55wO7a6AG2TPagJHc2oYPFpRDJVggWQszpJ+ygDaiJVr8fWrFD4upfaeR5CJUnc6w1oBugaliT3PRXPxi5UXwh8fjJeTLDyldFEc5NkrjTQPjVJ2fAGqhqzOHnMJzRGXLRF7FgNCTIsQZZvGAFdJmZN+4w3twwjPT1IKGLmsEHbaQk72daeSXFGJ80BJ6GwmRxPF41tHpIxlczsLgY5fUSSqR4a298qwbldx1Efx19ipuj0rTxY+iwmRcGEylNdQ5lj30T881/+L3RNwKQk+cvGGQy+qBPzUwkq/1tGfGoAZb2DiXM2MSO9kgJTJ1c/dRr6qAD25Q66isG1DboGp/4PFIO1DXwjk2BPkPTHqLvgugNSR2jEU1f0uY7Qpp/8YY9jfeutt7j99ttZtWoVjY2NPPfcc5x44okAxONxrr76al5++WW2bduG2+1m9uzZ/OEPf6CgoKD7HB0dHVxwwQW89NJLqKrKKaecwj333IPD4dijmCdNmsQll1zCGWecgdPp5JNPPmHIkCF8/PHHVFRU0NTUtFevRV8c1C1CoVAIVe0ZosFgQNO0fopICCGE+HYKBoNMmDCBBx54YKdtoVCI1atXc80117B69WqeffZZNm3axPHHH99jv4ULF7Ju3TqWLl3Kf//7X9566y3OOeecPY5h06ZNHHnkkTutd7vdeL3eXj+nfeGg7ix93HHHcdNNN1FcXMyYMWP4+OOPufPOO/nZz37W36EJIYQQfXKgR41VVFRQUVGxy21ut5ulS5f2WHf//fczbdo0ampqKC4uZsOGDSxZsoSPPvqIqVOnAnDfffdx7LHH8sc//rFHy9Hu5OXlUVlZyeDBg3usf+eddxgyZEjvntA+clAnQvfddx/XXHMNv/rVr2hpaaGgoID/9//+H9dee21/hyaEEEL0SSoR6suosdT/Xx0dbbFYsFj2/pbbDj6fD0VR8Hg8ALz//vt4PJ7uJAhg9uzZqKrKihUrOOmkk77xnL/4xS+46KKL+Otf/4qiKDQ0NPD+++9z2WWXcc011/Q55r1xUCdCTqeTu+++m7vvvru/QxFCCCEOSl8dHX3ddddx/fXX9+mckUiE3/72t/z4xz/u7n/U1NRETk5Oj/2MRiMZGRl73LfniiuuQNM0jjnmGEKhEEceeSQWi4XLLruMCy64oE8x762DOhESQgghvqv2VR2h2traHp2l+9oaFI/HOfXUU9F1nQcffLBP5/qyZDLJu+++y3nnncfll19OZWUlgUCA0aNH73Fn6/1BEiEhhBCiH+ifL305HsDlcu2zEW47kqDq6mqWLVvW47x5eXm0tLT02D+RSNDR0UFeXt43nttgMDB37lw2bNiAx+Nh9OjR+yTmvhowiVAkB5SEQsfUBB2VxbQXplGzLh+lJIz7bRu6EYJFGs47m/jk7WG4K80cM+sWzKEoydGltE1woiZ0/EM1rK0qbVM8mEI6XUUqaEmsXo2qy8cTzdAwZgcZsuATTttUT1w34E2m8fCz5WzPyMPcYWBJchr3btII5qoESjVG/MVH/dHpOOs0AoUqigYJW2rYrq5ATa2dB549Gf3YDhIxI4PnVFPVmkm6PUJoXJzvD1nPS1vHgL2Lj1sGMSqvme3BTIqdXgJxM0OdrWxuzQYg2xNgdHqqCbMrZqGxMR2DJUlOhp+6Tg8T8xtYWV0MMZWErmK1xDmtaAV/51AaOt1Eh0awO6MEfVZstjhapQ3rebXMc7fgK7Wx7u+jeWrYYSQ1lRv+8lfOXP5zPCvNRNPB2Ggimm7C4tOJZCtYOhW6RiQxeg10DYaM9Rodo1UChQrRwVEs2y0Yqs24p7USWpZNKD81vN4U1tj+AzPWVoWsdQmaphlxVar4S8FVpZM0K9g6kiSr7USygG3g3qoTzlboHGb4fPg9LGl7mLmH3UjcAYoGxsokcZORhFUhc12MqoVgqTZjDKiYhnYRxYG1SWXraTkYohC3g2ezzhx1PsYhg1lceTvHzLoFU5oNSA33pivA0uYHmTX3VqpOcDL0XhMVxRezuObuffberhh15U7rFm+4haYZqQ+weVOug3WVxA8fx7LXr2Ce/Qz4fD6fXQ2NL886J/XamBbwavyfLOl8hIrcc9ECQVSHncXNO/+FWFF8MVpuOkplLYaxI3r9HBSDgSWdj3Do6XeyYu2i1GsXibK47l7KXWeh2KygqijDBoOmERnkQk3oRPLseL83BrNfJ+pWiHs0OoqS5Bd20LYql9zFZrpO9RPsSCMzz0fgoyziTh2DWUMzQMtLRTAxSvskEyavStKqoOREibXbSPOlhsU7t6rkveOlqyz1enaOSv3l6qyN4x1uJp4VxxA0oEYV9IwY/sFW7A0Kg5Z6aTnMQ85HOppJp7GiACUB9TNN2Joh5kr9Na+ZFNI/6aDqh5lY26F5mploloYaBXOnQtIGjTOcmLvgkLPuJDbYiK1BJZQP0SwdzaDj2agSzgazD5ImhUh26lekvVaha0KMKrcHYxCMfpXA9DA5L1hI36rTPkoh7/+10hJycPbgz7jzsZNhahenD/uY10pHMMXhx6hoeNOD/OedaYwYW8v2N0uwTOqkzuhmcGEbBlWjyp/JsMIWajrS+f6Q9axsK6Kh002aLUYwbmZGfhVrOwqwm2KcOfYD6iLpbO3KpKozgyl5tWzszGXQEbVsH5aFV9XIy2hn3btlnPjny2iZlnp+nRPj3NVyPKYuSGvW0cwKHYfFUAwarn9FWLFxCMUbErSpDhz1Op9GRvBR3jCGTajlFz9cwv8tmUc4G5w1oJkhadfwHhOFeiu+yXFGDG6kcmUx1gJfr9+/e+tgqyy9IwnasmULy5cvJzMzs8f26dOn4/V6WbVqFVOmTAFg2bJlaJrGoYceukfXGDt2LNu2baO0tHSfxt4XAyYREkIIIQayQCBAZWVl9+OqqirWrFlDRkYG+fn5/PCHP2T16tX897//JZlMdvf7ycjIwGw2M2rUKMrLy/nFL37BQw89RDwe5/zzz2fBggV7NGIMUrUAL7vsMn7/+98zZcoU7HZ7j+37q3bT15FESAghhOgP++re2B5auXIls2bN6n586aWXAnDmmWdy/fXX8+KLLwIwceLEHsctX76co446CoAnn3yS888/n2OOOaa7oOK99967xzEce+yxABx//PE9ZqSX2eeFEEKIgaav02T08tijjjqKr5tMYk8mmsjIyOCpp57q1XW/7GCciV4SISGEEELsd/F4nBtvvJGHHnqIYcOG9Xc43SQREkIIIfrBga4s3d9MJhNr167t7zB2clDPNSaEEEJ8Vw3E2edPO+00/vKXv/R3GD1Ii5AQQgghDohEIsFf//pXXnvttV2OGrvzzjsPeEwDJhFK2DVM2VG0hIIeNFHbmoHJq2JosaHGwDtSx9Kusvk/wyg7oZrNhbl4j9FJW1lAzqoIwUHgrkzVIrK2Q+docG1TMURBccbpGGHFuV1HSaqUjG1j06NT+dNVh9EyRSXhSaKWhrHZ4qQNjpGVFiQ4w8z8vI282z6EyB1Ghlg6+KyuALMlTixqIj/LS7aikZsWYG1TPvZxQeqb0klzRgnGzQDEEwYAXto6hpE5LbRH0rCZ4mRYgnzYUEK6PUSJs5O6cDqzSrbQHnUw3NHM2y1lNHS6KcrspB0XU0tqWFldTKYnAMDQ/Bai2Uashjijslq4d9MsIlETpdntWA0JKtuzcKWHiCcMDPpeLVnWEK9sHk0iaGTij7ayZukIEsPDnN1+Bk8d/RD3jJxL4x/KMHvjbDvFQvDzWkkFb0fw/iaAN5CJeyM0zU5CCJJWhbSNFmITg+iaSlfYQmhEHGu9iXgmGEJJtAyNCCY6RhhJODUsU9oJr8omlKugq9AxFaz1CuGiOIE8Exa/RtcwDUNABVRMwdT7Qg3FyPxMI2lRUOMaalTD3qhj3diIwZJD0gJJq06iwQE2jVCJji0nSDRsQosa0cf7qCucQdGrXQDEPCZMqxqYZz+DV4KPM0edD0DSplL6Qhfbzh1K3gdxyl1nAbDE/yjHzLqF15dfyRx1Pku1p3v93tbSzLtcb4ik/n9l1Q1UDP8tJm+Y7530R0yHjcYYjAEQnj68e/+K4osJTiokbVAeR5XfisWQen9VjLqSRGsbxoJ8sFqYo87HkJGeurbPz6vxf5IsyODVD1JzAJan/7zXz8GQn0f5mKtw5DhSdZFMRrS6BgCUnCwC43JRNJ1gjpHMT7tQEzrN08yoMdCMEHMqxCYGMao68cY0gotzMTrB2p6gqcGBGlfoclpJawVDRMFYYyOcA66JbXheziLmTNUMAsj6n5XWyRDJ0zB5VTQDJFxWLN4EcZeRSLpCwZte2iZ70I061gYTugqmLogU6SRcSSJRAw0zPYRzU58V9lqVcK6OGlNQE6lrBfI1bI0q/hKV5mkZGIsCRDY4iBTEsdWa0Md3wUonGes1gnkq0XTQjAqhkiSGmAslAdYmlVBpgqRJJWHXiWbqhPIV7LUKsXQIFeq4V5vRTOAfFcfijqJtddA6WeeMirfxJ208uyxV/+XOt04m55h6alszUvXPgjYS/8ih9cgErqwAI8bW4jFHGHn0VtZuL6Qwr5MJGfW82TCU2YM283FHIaEOGytdRRhUDac9gtdnx9tuJxw3kZUWJJow8kLtOAyKTrotxLDMNrb4svEGbRTk+plaUgPAis/KGHFYNVspwZgdwlwWYqLDT2Ohi3yHH1/USkcoDWPYTLLZRqU3k7QtJup+FMa+0oi/VEEbG0CptpNlDXL/O7P5f/Ne408rjySSbcK9WcW5VcXnNGJMKBhbTFRactByo71+7/aJrvS6w/NOx3/LfPbZZ0yePBmAzZs399j25VFkB9KASYSEEEKIg8lA6yMEB+eoMekjJIQQQogDrq6ujrq6uv4OY89ahPaml/fo0aMxGqXBSQghhNilA1xQ8WCgaRqLFi3ijjvuIBBIdcdwOp38+te/5qqrrkJVD3z7zB5lKhMnTkRRlD0qtgSgqiqbN29myJAhfQpOCCGE+K462OYaOxCuuuoq/vKXv/CHP/yBww8/HIB33nmH66+/nkgkwk033XTAY9rjJpsVK1aQnZ39jfvpus7YsWP7FJQQQggxIHwLW3X64m9/+xuPPPIIxx9/fPe68ePHU1hYyK9+9auDNxGaOXMmQ4cOxePx7NFJjzzySGw2W1/iEkIIIcR3TEdHByNHjtxp/ciRI+no6OiHiPaws/Ty5cv3OAkCePnll8nPz9/bmIQQQojvvIFYUHHChAncf//9O62///77mTBhQj9ENJCGzzsSXDn5Nf6y/XBGpjezbO0oMqe1Mj23inDSjFFNsnj9GKJBE5s+KwKjTtomA5Fs8A61YgiDroJu1OmYnMDoNRJ1g3F6J1qLA/c2jZZDFBI5MbQrszjhgTV8mF/CIEOCupWFzD1kPVu7sjAqGq0hB7GkgRdqxxGKmDmh7FNerh6N0xkmMy2IUdWIJoxEk0YyLQGctiiZ1hB+txV/k5OxY5uwm2JEE0YybSGaQw6shgThuImklsptB6d3UNmWRX1TOlZ7jEimkW3tmUSyjYxObyIUN2NUNcz2GDVdHnIy/AB4Y1aOyk7VdnilcTQWY4J8l5+CNB+DrF7ebinDZExiUDWGZbYRiJtZsbmUH05czfKGoWRYgpx60lu81jiCSVl1LHzxPNTsKOf+4TW2hbOp/d8UDJFU7Zcn/n4fPzn7IhIjFCLpYGoykSiKYK21omigNdnQDBAPWbHEFKL5CczpEbzDHRDQUGMKcSdoBuh6LxtLALpGJHFsNWDsMBJ36hi9RuJO6Jisoxs1klaF0CAdzwaV8vFX0zEpg3C2QtIKcUcamjFVf6djZAmWteCu0mg8AtLqVaKZCo4ahbyRnWzaVsAJEz/mnaYhRLM02iY5OWzhHViiGi0Lx2NrTTLPuhDDqOHMsy4k/OMpxNPsFL0epvaiBHmMwtKRKvTz+vIrAXZZQ6g86xyWtD38tW/tQKlzp3VzZizCVmBljjqf+NypBA/PJViYqrFkazVgazVSPv5qDNkOjjzhdgxhDX10Ppb2GJ3jPKR/6oWRZVQMvZyWWQXkBMMEJxXiG2wknFNA9sdJEjYVz9OrAIhmWLuvrTgdu41/jjofxWDg1fg/AajIPZdkaT5tFSXkvt5AYJAFBy68Q6148lwABMfk0DXIQM5HXQTyUs+16TAz4fwkqOAZ5ONHpat4o3U4GysLsPhV/MOTuDcaaJxhBjWJGlYxrnbgqklQ8wMw+A1krYF2NYvE+ATpa4z4M3WsrSpNR8VRNIXctwwkzTrBQoWO0VacdQkiHpXA5AgNeNDMYAwqRLOTKAmFaF4SQ6MVR6NCzJ2qFZTISICWen9ZWxUi2TrmLgVTEMLpMUyVVnyTYxT8z0iD1YZ9vA/TRjeR/CSGKgdYoWWqQtKqYelQ0YxgbUzVd0rYU59JalglOiOAcYODpEMjmZVAbzYTKYijqGD+zIhvqIK13kTR4wmqzg0zsqCJJ16axZAZ1WiZMQYXttHQ6SaaNHLhxGXc99KxOEZ34vt+EJclTr7Lj1HRWNuUT3FGJ6pRp9Dup7IrG481TGPERVJTcWSFMKgaI9wtvLx+EiPG1gJQ2ZiD05yq0WMzxekMptGyNZMRY2vxh60Mz27FZQqTaQ7RGHFhzwlS1ZqJabgfizlBkcvLdl868YSBwjQvLaFBhMJmzh77Hv9xTqK9xcWov1ez5bwSItmgmXWUrQ6SeTHeXT2CQcNaeKN1ODZnlDCgmSwEizUAstdotJwQZd7w9byyeTThmi/ev/vdAOwsfdttt/H973+f1157jenTpwPw/vvvU1tby8svv9wvMfU6EdJ1nf/85z8sX76clpYWNE3rsf3ZZ5/dZ8EJIYQQ4rtj5syZbN68mQceeICNGzcCcPLJJ/OrX/2KgoKCfomp14nQxRdfzJ/+9CdmzZpFbm5uv1WCFEIIIb7dlM+Xvhz/7VNQUNAvnaJ3p9eJ0BNPPMGzzz7Lscceuz/iEUIIIQaGAXRrbMuWLVx77bX86U9/wuVy9djm8/k499xzWbRoUb+U3el15SK32y31gYQQQgixx26//XaKiop2SoIglVcUFRVx++2390Nke5EIXX/99dxwww2Ew+H9EY8QQggxMOj7YPmWePPNN5k/f/5ut5966qksW7bsAEb0hV7fGjv11FP5xz/+QU5ODoMHD8ZkMvXYvnr16n0WnBBCCPGdNYBmn6+pqSEnJ2e327OysqitrT2AEX2h14nQmWeeyapVqzjttNOks7QQQgghvpHb7Wbr1q2UlJTscntlZeUub5sdCIq+pxOIfc5ut/PKK69wxBFH7K+Y9im/35/q13T1zWgjwFBvxT2+jVDEzJDMdj7bMghrgwmzD7rKkpizw9jedtBVpuHcqhK3p84TS9dJuDRIKFhbVaJDI5iqrSStOjnjWvC9kUtoRAwCRkaMrWXT9nwOHV4FwMfLRpBzaCNJTaXdb+eQohpWVJeQl+GnYX0ual6YbE+AWNJAe4uLQ4dXUeXLoKXRw88OeYcXasfRuTETLTPGsWM/oz3q4OP6Qpz2CPGEAbslhsWQoNHnIt/tp7Y1g2RMZVBBB5nWEJXtWYS6LEwrq6Y55KDZ7yTNGqOj3UFJfjuFDh/VXek0tnkYmt/Cpuo87O4ImqYwd/BGltcNI6mpDPJ4iSZSdYjCSRMxzYhZTfBhQwnZjgBdMQuDnD4+2VpEfn4nzetyyB3TQk5agKrODPwddsz2GK8e9n881HE4/1w1jRFDGlAXxGkrLyOSrhDNhIz1GoFClaQVkhaIZSXBrGGpNWH2QmByBC1qwF5lImGDWE4CoztKMmbAvM2KIQahkgRpVUYi2TpqLJWsazYNNayScGgYAyruSgh/PmtMJE+j7N8RauamYW9MrU9awLNZp3086CYdsqLY1tqITAyTjBrQEwoGWwLTVhuubTqGmE7nSBV0yPk4SSjLgKM+TiJNJWlR8JWpDH6qgbbv5aOrkP1eKwTDLK65G4B5h9zAKx9d1+P9O0edjzE7i8XNDzL9x3fg+NcHO73Hq26ZsdM6QwzSmuDjBy5h8N9uhZiKtd6IMQRxB0TzU69PWrNOWlsSJa7jLzWRsIAxCnE7xJ1Q+EaUxsMtRNN1TF0K9kYwBXTMAQ01qtE62cT6RZdQkXsuoWlDSNvQgu6woTS2ogWCeE+eyIonLgWgYujlLK78og9AReml6F0BYhOGUFNupuz6NejjhqKur8J73Fh0VSHjta2EJxRjW9+If9ogGo9UKPlvguapZnKOqWd7fRboCopBQ4saMHqNWNoVQiVJrI0GdBUUDUx+6BqWxLnFQNeEGPlLjEQ9KoljO/G1OHBuMqGrEBobQQ+awJokbZMZcxeoCfAPBnclJNLAGIJQ/uevUVYcNWTA1qgSHh1B6TCT/qmKfwjEXRquSjX1HnVD/gdJGg8zkD2pmeZ1OagxBVszxDyQtTZJx2gDMbdO0qpjiKTes2afQrg0juo14tyeqpulxsDsg0gm2Bt1WmcksTQZSZohkR/FvcpCoFjH0q6QsIMhCjkr47SPNbHwp0t5ZO0ROJ1hzIYkwaiZoZltOExR2iKpD7tNmwvRVZ2sAh9mQ6pmWKY1RIYlyKqmIuIJA8UZnTQHnISjJrJdAYa5W8k0h9jSlY3DFCUQt1DtS8fXmUZJfjuhuBlfyMrUwlraInaiCSOlrna2+LLJTQvQHk6jrt1DotWGZ7AXjzXM1KxaakPpfLi1hBnDtpFv9fNxRyFjPY1sD2bii1oJxc2MyWykIeTmsuJXOG/VTyjNbqdyZTFKQmHQ1Hq212VjsCQZnNtG1aeFqGEVvSRMssuE0WvAUBYg2m5DsSXIyAxgi/t594T78fl8++0X847fS4PuvwHVZv3mA3ZDC0eoO/+6/RrrvnLqqacSj8d57rnndrn9hBNOwGw28/TTO9dT29963Udod52dhBBCCNELA6iP0JVXXsnixYv54Q9/yIcffojP58Pn87FixQpOOeUUXnnlFa688sp+ia3XidAdd9zBb37zG7Zv374fwhFCCCEGiB19hPqyfEtMmjSJ//znP7z11ltMnz6djIwMMjIymDFjBm+//Tb//ve/mTx5cr/E1us+QqeddhqhUIiysjLS0tJ26izdX5OmCSGEEOLg9YMf/IDq6mqWLFlCZWUluq4zfPhw5s6dS1paWr/F1etE6O67794PYQghhBADi6Knlr4c/21js9k46aST+juMHvZq1JgQQggh+mgAVZY+mO1RHyG/39+rk3Z1de1VMEIIIYQQB9IeJULp6em0tLTs8UkLCwvZtm3bXgclhBBCfOcNoM7SB7M9ujWm6zqPPPIIDodjj04aj8f7FNT+oCZg4pBaPrXmp+pnfOJiKy6sKugGiKaDe6MBS2mYltE2cko6KD2kg00d2Xi3e1LncMbQ2y1EMzUslVYihQnMLUYamzwwIsbgQa1EH8lns1bE4NGNRJJGxrvrKT2ujQ3+PIyqhsWQAGBQpheDqpE1vJ12r4NxGY3Uh9wMHd5OlS+DIpeXYemtvFA7DpspzhFHfURTxM0QWysrmkuwWuIMcvrwRa1k2kJ8UleAxZI6d1F2B7WtGbR32clNCxCPGxg/uJ76oItMa4h5I9bzYt14Thm3BpsaY3Mgl2HuVuqb0smyBqlKi3Nc6WcsrR/B8rphxBMGcl1deMwRmhMOtnZlUdWaSVFmJ9GkkcMLq3j10zFMGFZDS8hBfn4nOWkBGAMj05t5661xGEsDGCxJktV2ZjVehpIZZUxZHRvq8rjr3X+Tpizjuc4pvLZ4Cgmrwme3XcKcI26iZUoajhoDGRtj6GqSquMteN634p0eIWk24dmsE243knAYSeRqAERGhzFV21A0sNcr+EfF8aw1oc/2kdRUMiwxvKuyCRaCs1onWKiQtCdJpBmJlsQAM6YAhIsSJOqMpNVD16gkxA0oGiRjKgZLEmONjXhZAnWsn4wjO6lszMG6xkZwVIy2hBl7vY53mImstRFiHhMZ65O0H56PMaJz9g3P8393nYx7awyAOUfcxNIv1RDaUXNnqfY0k8+9CwCzL4k6afQu3tw7t48nreAbClN+cReDF7QSTRqxDEnQ+F4hE2dvotKbSafdjnF6hPC76QSLNIwhHWNQwV8Ux1pvIu7Q2foTFTWkoaUlUfITeD0WAHJWKLQcaUSNwaGn34n//w3HUavD8Gx0k0J0nIeM9xtp/XwQyLwp16G0tHXHd1T5rVha2lAzM6g/yoJaGkDNzKBuhpOCeDGtkxUGvZ4gNHUw20/USasuIVwaRwkYiFzWyaHpzXzYUILrYwuBUg1ri0ooX0PPj6D7bBi9BgCimRo4EsTbTBhCKrZ2neQWM95hEM3SsGkqBr8RzQioYGi0kMyPojZbSFoh4AZLJxS/GqX6WDOW9lQtn3BhkozVBqyrDDTM0QgVAj4zalwhmp6qIWRpV4l+rwtV0VHXu6ifpaDZEjRvzEbLiKO0mUhaFaKZGm0TDEQHpT43HRtMhCeHSQSNaGYDZmcUxwcm/EN1rK0K5i7wDdfRVYilg8EZx7zBSDgXMt+2EHdAMk2j5P4GtMZmNj4wgTEnrsVljPD4pkNRaq10FcGFE5fxly0zqOtyM9TTjsccAcCWFSLUYSOeMDDI6WPt9kJKhnXybvUQijI7GetppC6czrhBm1neMJQSZydV/kwajG6qWjM5fthnLO8YSjRmZHRxI01BJ/GEAVXRMasJ2kJ2kprKxMJaGkJuXKYw09O38lFaKZXOTEIRM6U57Ty3YQI/GPEpepeJT1vyebezjEEFHXzYWpKqTbY9B5MzxkY1l5YOF7+/82dsfuFyJv7vGiiMkEwoNPuduNaYCU0PEoqbWXTsv3nHP4zl1cMI+8zEMxKMyGpjYywPjzuI2ZCkpjqrd79c+kJujR0U9igRKi4u5s9//vMenzQvL2+n0WRCCCGEGHh6072mP+oU7lEiJDWDhBBCiH1sgLQIeTyeb5yOS9d1FEUhmUweoKi+0OtRY0IIIYTYBwZIIrR8+fL+DuFrSSIkhBBCiP1m5syZ/R3C15JESAghhOgPfR359S0eNRYKhaipqSEWi/VYP378+AMeiyRCQgghRD8YiJWlW1tbOeuss1i8ePEut++uj9DJJ5/c62s99NBD5OTkfON+vZ50VQghhBD7wACafX6Hiy++GK/Xy4oVK7DZbCxZsoS//e1vDBs2jBdffHG3xz3//POYzWbcbvceLf/73/8IBAJ7FJOi63qvX8q3336bP/3pT2zdupX//Oc/FBYW8sQTT1BaWsoRRxzR29PtV36/H7fbTdEdv8darOO0R2hvcaEYNFwfWRl0ShXrNhWRVmUknK+RMbQDg6LjDdjQtqbqJuklYYybbbintdIVtpBMqsRCJsy1Fgyj/ZxQ9ikvV48mGLSiazBz2BY6onbqutyEImY89jAuSwSPOUIkacRqSNAccrC9LhuDJYndHmFUVgsf1xfitEdIaiol7k4CcTPFjk7eriqjJLuDLGuISNJIJGlka3MWbmeYPHsXCV2lxN5JdTAdjznCpo5sStydOExR2iJ2Rrqa8Ses2AxxqgMZbO/MoGLwBvxxK69XjiAnw0+Bw8+a94eSM66FjkAa+W4/DZ1uRuU1s7k1mzRrDJspTmObhyPLtrCuPZ9I3Iiq6jgsUfxha3e9IQC3JVWTpK7LzfisBpavHEPm4E481jB1nR6iXRZGDG6kOeDEv9WDo0rFNzbOiZM/5gjXZiZaGnmhaxz3f3g0zk/MFLzt55WPrmPwg3/E6Deg2TRcW1S8h0QxNlpwj2+jo92BHjZCTMXsVUmk6Zh9ConRQRJhEwSMmL0qhijE7WAKpv43d4ExCGa/TscEHXOHirNap/UwDfd6A3E7oELSDEkLJAsjqEYdLaGQ9pmV4Ig4qtdIwbgmjIrG9o35oOqYvKm6Q8YgRPI0jF0qShJMgVRtmnMvf5YHbz+ZrKc+hmSSVyJP9njvlo+/miVrFzHixrsoeCeGGteIeXYuSxHKMuy8Lh+UBBS94qXpCA/BglQtLc9mnVCuQmxaADY5iObFMdoTKLVWElkJMvN8ZKUFaQvZ6Wh3oHSY0ZxJjPYYho12AKLZSTJXGzBGUucyREGNgWYG79gkro0GdAOkb0lQd4zKtgt/TUXuuSxufpDy9J9DSQHhIidqVMM7zExXMRiikLFBQzMqdJUoaEaI5CdB1TF2GEnkxZg1eiPD7c181lXIB1WlaAkFpzuMv86FGlcweVX00QGU9Q7MXggV6ugmHZNXJVoUh4SCY4uRcK6OGlPQjamPvkRWAkutCd0Azu1gnt9MY2M6ikEj400r4exUXSY1AeHSOKg6jnVmguNT73GDOUmaLUY0bsSdFqFtcyb2GpWuEam6XkZ3lES7FTQF3ZrEscVEcFQMxaChNlswD+kisdGFZtYxlAQpzW5n07YCzM4osU4r5hYjZl/q+xnzpOqexbKSqCGV9PUKbYfFcX9mIq1FI+ZSMftT/0/42Vouz3uVP7UdyQvvTSV/WCutXgdHD9nCmzVlWEwJ4gkDadYY47MaWNtWgNmQJMMaotbnwW6JEYyaKXJ7sRoTbPel09Hu4LQJH/JSzVgMqobZkGRSVh1phjhPr5yC0Z5gYnEdCU3lk3WDsWSHiAbM2JxRAA4btJ03twyjfOR66kMeqjozALBbYhQ7vdR0eShw+Fm9rQhzWpxsV4D2Ljthv5X8/E7STDHaQ3Ym5dQRSlhY25RPcUYnWdYg9QE3Pyj4lLfbhwHQEnLQUJtBVoGPUMRM2G/F7gkzs6iStR0F1NVnYrAk0VsspNWpRDLBPb6N1k02ai+5Bp/Pt9+Gcu/4vVR86yJUm3Wvz6OFI9T89ur9Guu+lp+fzwsvvMC0adNwuVysXLmS4cOH8+KLL3Lbbbfxzjvv7PI4VVVpamraoxYeAKfTySeffMKQIUO+cd9etwg988wzzJs3D5vNxscff0w0mnqD+3w+br755t6eTgghhBADRDAY7E5m0tPTaW1tBWDcuHGsXr16t8ctX76cjIyMPb7O4sWLKSws3KN9e50ILVq0iIceeog///nPPYomHn744V/7JIQQQgjxBYUv+gnt1dLfT2AvjBgxgk2bNgEwYcIE/vSnP1FfX89DDz1Efn7+bo+bOXMmRuOed2s+4ogjsFgse7RvrztLb9q0iSOPPHKn9W63G6/X29vTCSGEEGKAuOiii2hsbATguuuuo7y8nCeffBKz2cxjjz3Wp3MnEgkaGhooLi7u1XG9ToTy8vKorKxk8ODBPda/8847e3QvTgghhBAMyOHzp512WvfXU6ZMobq6mo0bN1JcXExWVt/meVu3bh2TJ0/udXXqXt8a+8UvfsFFF13EihUrUBSFhoYGnnzySS677DLOPffc3p5OCCGEGJgG4Kixr0pLS2Py5Ml9ToL6otctQldccQWapnHMMccQCoU48sgjsVgsXHbZZVxwwQX7I0YhhBBCfAckk0kee+wxXn/9dVpaWtA0rcf2ZcuW7fbYyZMnf+25w+HwXsXU60RIURSuuuoqLr/8ciorKwkEAowePRqHw7FXAQghhBAD0gCZa+zLLrroIh577DG+//3vM3bs2G+cjPXL1q9fz4IFCygtLd3l9sbGRjZv3tzrmPaqjtC3yY56DUP+9jt0ox2jOYnTHiGeMGB8OZ1wdqqWTNlh1WxeW4SjSiU6I0COp4tw3ER7kztVl6bNgHNyG2ZDEpclgj9qpdjpZUNbDi5bhPqmdKpOu5LBj/+BQ4dtpzmUSgxrWzPwuIO0NbgpKOogljTQXpPOhDHbgVSti3DcxI9KV/FG63AqG3P4+fh3+E/1JAY5fQD4olYOy97Ov9ZO4ZRxa6gNpTPG2YBJTVAbyWBtRwFuc4SmoJMp2XXEdZWWsJPJ6bWs78onEDfTFrIzPquBVU1FqKrOiIxW2iJpjPU0sj2YidWQYFNHNt52O670EFPyatniy07VxanJweYJU5zRSZ3XQ/JjN3nfq6crZiErLUhBmo/l60eSk+ujyOXFqGjUdHkIRs2oqk48YWBkdgvt4TTq2j0kwiYmlNUSSRq7ayvVdbnJSgsyKb2Of358CASMuIp9+BtcHHvIGs7Keoc3gyN4eN0RZP/ThqOqC81iAlWh7ug0tIldGFY7sTVD12BQkhAbEsGx2krXsCS6WcPoNWIe0kW01kHSnsTSZCLh1FByohiMSbStDtKaIHhoqm6UokHcqZPMjpG71Ezz7DgGSxLjFhvuQ1ppqc5AiSmkFXcRrnYyamI166oKUTtMTJ+xgQ+qSlGrbOSsSlI/SyGtXkUzg2aiRy0jzxYNW0ucZa9fwZwZi1j63tXMOeImjE1ekllOts53MPSfXdTOcVHw7s5/8XQOt+3yvR/OhqI7V7L191MwBhXUGESyddLXK5hCGrbWBNZtbTR8v4DsNWEap9vwVCZxrWtn249Tw1vNfoi5wFWVqhmkxgAV1HiqplIoP1WrKT4yTNndCXSjgdZJaSRNYO3UCRYqFD+wDory0NLMGBo6aDyhBPfWOKFcI9GTvRiWpOMdqWFtVQmVxCl4zUDTjNSoGEepj9L0DqyGBCtWD6NsdD11nR4SVQ6MpQFG5rSwriGPvAw/TR/nkb4ejBGdhtlJFBVca03EncAkP5GgGetmK84ZrXhXZZO+UadlXhQ9qWLfYCaRBvZG6JiYql9kbjGiq2Ac6YePXYSHRjHVW4hnJEmrNRAaFsO+wUy4IFUjShsWRFV1Yu021JCaqgsUUUh4Eti3mkhMDmC1xPHXuFGToOSkSo+YNtpIn9FM+0e5xAalzqmZwRBJ1WYyhFL1gwyx1DpHvYYppKHEdd58+TcMv+kuRs3cyo/yPuIQay3/8U/kg44hbHizDGMQbN9rIxC2EAuZqBi9jte2jeD4YZ/xWt1wMtOCNHjdeOxhGmozmDiihs/qChia38I4TyPvNqd+4bgsEY7N/YxlbSOp6swgnjDgsYexGBLUtmYwsqCJSNKIwxSjrssNgEHRKXJ5+bQhn6jPQungFizGBI1+F/7ONOzuCIM8XrY2ZzEo0wuAxZiqvVTVmklF2Xo+8+ZjVFMtBptrc9E1hWPHfkY4aWJVUxGRqAmDQaM4o5PKxhyyX7LQMVol5tEw54YwrnagH+In3GXBnBanIN1HV8zCuWVvcce62UTDJhzOCJGoiUxXkGKnl8mmjVxxyJsHpI7Q4JtuQrX2oY5QJML2q676VtURysrK4vHHH+fYY4/t9bFTp07l7LPP3m03nDVr1jBlypRe9xHqdYvQSSedtMsMTlEUrFYrQ4cO5Sc/+QkjRozo7amFEEKIgWMAtgiZzWaGDh26V8cefvjh3UPvd8XpdO5yVPs36XVnabfbzbJly1i9ejWKoqAoCh9//DHLli0jkUjwr3/9iwkTJvDuu+/2Ophdqa+v57TTTiMzMxObzca4ceNYuXLlPjm3EEIIIQ6cX//619xzzz3szc2oe+65h7vvvnu328vKyli+fHmvz9vrRCgvL4+f/OQnbNu2jWeeeYZnnnmGrVu3ctppp1FWVsaGDRs488wz+e1vf9vrYL6qs7OTww8/HJPJxOLFi1m/fj133HEH6enpfT63EEII0a8O8Kixt956i+OOO46CggIUReH555/vGY6uc+2115Kfn4/NZmP27Nls2bKlxz4dHR0sXLgQl8uFx+Ph7LPP3uM5vSBVaufJJ5+krKyM4447jpNPPrnHsjtr167dqWP111m3bh2JRGKP9u11IvSXv/yFiy++GFX94lBVVbngggt4+OGHURSF888/n88++6y3p97JrbfeSlFREY8++ijTpk2jtLSUuXPnUlZW1udzCyGEEP2pT1Wl92Lm+mAwyIQJE3jggQd2uf22227j3nvv5aGHHmLFihXY7XbmzZtHJBLp3mfhwoWsW7eOpUuX8t///pe33nqLc845Z49j8Hg8nHTSScycOZOsrKydJkvdnUmTJtHe3r7H15k+fTo1NTV7tG+v+wglEgk2btzI8OHDe6zfuHFjdwclq9Xaq57gu/Piiy8yb9485s+fz5tvvklhYSG/+tWv+MUvfrHbY6LRaPf8Z5DqlCaEEEIMdBUVFVRUVOxym67r3H333Vx99dWccMIJADz++OPk5uby/PPPs2DBAjZs2MCSJUv46KOPmDp1KgD33Xcfxx57LH/84x8pKCj4xhgeffTRvYpd13WuueYa0tLS9mj/WCy2x+fudSJ0+umnc/bZZ/O73/2OQw45BICPPvqIm2++mTPOOAOAN998kzFjxvT21DvZtm0bDz74IJdeeim/+93v+Oijj7jwwgsxm82ceeaZuzzmlltu4YYbbujztYUQQoj9ah9Vlv7qH/wWi2WP59naoaqqiqamJmbPnt29zu12c+ihh/L++++zYMEC3n//fTweT3cSBDB79mxUVWXFihWcdNJJe/9cvsGRRx75tR2lv2r69OnYbLseUftVvU6E7rrrLnJzc7nttttobm4GIDc3l0suuaS7X9DcuXMpLy/v7al3omkaU6dO7Z7VftKkSXz22Wc89NBDu02ErrzySi699NLux36/n6Kioj7HIoQQQuxT+2jU2Fd/x1133XVcf/31vTpVU1MTkPp9/mW5ubnd25qamrpnjt/BaDSSkZHRvc83mTRp0jeOPP/pT3/KrFmzemx/44039vSp9Fqv+wgZDAauuuoqGhsb8Xq9eL1eGhsb+d3vfofBYACguLiYQYMG9Tm4/Px8Ro8e3WPdqFGjvva+n8ViweVy9Vh2KM1v45Ci1LG+Fge+mWEiwyO4x7exeW0RJaMb6RqVIPOZNOq25mBQdAy2BCQU4iURulZn0dLhIpow0v5RLh9VFTMss41Ma4iMN60srRqFJzNIIG6mI5RqvvO4g5gNSYYOacJiSOD12Tl0fCVVnRl8VldATlqAEncnrzSOZk7OBg4rreKDjiGYDUmqfemsa8ijK2ahI2YnL8fHi1vGEkkaqQpn4kukUR3IwG6KYTUmcJqj+OI2agLpOEwxVncWsXpVGR5zhEFOH6GEhWjciEHVcJvCGFWN12pGsLElh0jSiM0Ux+aMYjImeWvrMIa5W2n0uVgw5UMgVcfDao6T9716LMYE7S2p13b5hhEYbXGm5tQQiJuZ6K7BZYlQ5PbS1WXDbonREHCRaQsxpagOsz3GZ3UFlDnbqPRmMtjeTiBsYaSrmafXT6asuBmMOnZLjDGjaninfgj/76aL+MvGGYzKa8Z0bhOX/eff/OCvbxC/oROzD6xvOklr1EnfHKbskVoK34wy+PFUTShzhwEloZLwJAj7rViKAljcUZJlYYxdKpa1NhINaWhmHf/4OMl2C47aVL0fXQW6TISyFcz2GMmwkaRVx7sqG6zJVJ2ZZW6MBSHWf1KCxRmleHwDkaSJkQVNxHLitE0wkFavomip2jsAlk5IFka496yHiacpRNONHHr6nSx972oAlBWfEi3JpHOUg7RGhU0/dZCwQ8Phtp2WSCa7XNKadWJHjsdep2Dyg60V1ATEnBDMV/GVmfFNziNpgaTFgMUHLVMMLN5wC6YAFL8aIpoO+e/FaJ2Ruu0d86RqByUtYGvVSboS6CoYttpQ11ex5Uwz4WwwhcHcpaGrEDl0GLrFhHeEA+/hReS/1kL9TBP20xrQ3k7V8jJ3qmQe2YjFHaXxSB3SY5gGBTksv5rK9ixWrB6Gbk1SvXIQ0UY7en6EfLefNZuKSXRaaWjxkHBo+L4fpPFoDUX7/C/l4UnCuRpOWxSlw4zZB+3rsojmxfGelOrgaWgzESxNEi2K494awzPIR+YgL5oR4hlJwm1phHM10jZaUIYFsDYaCI+MYGowExydug2vxsHtDBP1WTC3GdAyYyjuVNO8oikEy+KYVjqwmhLYmlVcZV6SnWYMW20kLRB4NRezD+wbzKgJSN+oYWvVGfRaFxlbEjhqwdqeqjtl+XkjM36/gpPvfJUXtk3k8Llr2dyazfX/WsCcF36NL5HG2u2FFBxWzxEnr2GQ04fFlMBqj9EccZFmi7GyrYhA0MK2+mwAMqwhHFkhBtvbMRiTlDnbeHHLWJrbXBQ7vUxKryOkmRlsb2dYZlvq58iQwG2JMDS/hYSu4jDFWLu9kFDEjNMcxWxMMNrZiNUSp6Cog+jndYbyXX6M1gTBJgdVrZnMHbqRaNKI3RSjzNlGTUc6FWXrWVI1ilDcTE1HOtGEkZL8dgYXtrG8ehjr2vOZNWgLVksckzFJW8hOToYf688a0YYFcRX7KM1uJzE5QKjDhtGaIBYykZsWwLs+k9vWziXc4GDRtBcIdFnJ8XRhUDWaQw5ebRnV+19W/ay2thafz9e9XHnllf0d0m6Vl5ezbds27HY7s2bNYtasWTgcDrZu3cohhxxCY2Mjs2fP5oUXXjhgMfW6RejL9ncBp13VDNi8eTMlJSX79bpCCCHE/rY3HZ6/ejyw0x/9eyMvLw+A5uZm8vPzu9c3NzczceLE7n1aWlp6HJdIJOjo6Og+/pu0tbXx61//mmuuuabH+kWLFlFdXc2rr77Kddddx+9///vuvkr7W69bhJqbmzn99NMpKCjAaDRiMBh6LPvSJZdcwgcffMDNN99MZWUlTz31FA8//DDnnXfePr2OEEIIccAdRJOulpaWkpeXx+uvv969zu/3s2LFCqZPnw6k+t14vV5WrVrVvc+yZcvQNI1DDz10j67z73//mx//+Mc7rV+wYAH//ve/Afjxj3/cq/5AfdXrFqGf/vSn1NTUcM0115Cfn79PRoftziGHHMJzzz3HlVdeyY033khpaSl33303Cxcu3G/XFEIIIb6LAoEAlZWV3Y+rqqpYs2YNGRkZFBcXc/HFF7No0SKGDRtGaWkp11xzDQUFBZx44olAqmtKeXk5v/jFL3jooYeIx+Ocf/75LFiwYI9GjEFqVPl77723U3Xp9957D+vn041omtb99YHQ60TonXfe4e233+5uKtvffvCDH/CDH/zggFxLCCGEOGD6eGusty1CK1eu7NEJecfAojPPPJPHHnuM3/zmNwSDQc455xy8Xi9HHHEES5Ys6ZGUPPnkk5x//vkcc8wxqKrKKaecwr333rvHMVxwwQX88pe/ZNWqVT1Gnj/yyCP87ne/A+CVV145YDkG7EUiVFRUtFelsYUQQgjxJQd4rrGjjjrqa39/K4rCjTfeyI033rjbfTIyMnjqqad6d+EvufrqqyktLeX+++/niSeeAGDEiBH8+c9/5ic/+QkAv/zlL3c7ser+0OtE6O677+aKK67gT3/6E4MHD94PIQkhhBADwACcdBVS1am/rovLntb/2VcUvZfNO+np6YRCIRKJBGlpaZhMph7bOzo69mmAfeX3+1NFoZ6/kKaOQgYXt9ARSsPX4kC1JMnO6qK53oO9ykTCBtG8ONb0CA5blPZtGWDWyBzkpb0mHcUeZ87IjSzbNowpRXVsaMvBX+dixOg66v9XgpKA8GFBTKYkTluUpK4QipgJt9iZMGY7dV1uPNYwM7KqeK1xBO1+O057hENzq0kzxFnZVkSz30mBx0eD181hg7bzYUMJ2Y4AR+duZnHDaMZlNPLqx2MZPKSZ4e5W3qwpY3BmB1vqc0hPDxKJmch2BBid3sR7jaXkOrrwmCPUdHlwWVJl0oNxM7lpAda8P5Sxh25j7fZCCvM6ybSGcJiiJLRUp/c0Y5QqfyYdoTRGZbUQiJuxGlNzt2ztzAQgFDbjtEfoClo5beRH1EXSqQ6mU5DmY2NnLgZVw2JIUJG3jm3hbF7ZPJr8LC+zcrfwXlspRlVje3sG7rQI+Q4/7ZE0vl/wGf/YOpWMtBCNPhfHDN4MwPrOPAyqRoPXjeF9FzE3xAbFKCtuJhQ3c3rJCsxKgjQ1hl2N8nbXCD45bzydI2x0TNCxtKloE7twp0Xoei8bYwC6RiQxtxmIZSUxdRiwtaSGuIdzdTSrlhpOYE2S9ZaJrhKFaEkMNAUMGq70EMHNHrTcKOYqK9HiGJ6sANGYkQKPD6Oqsak6D8t2C0kLGKKpIflqPHUN3aiTTNO4Yfaz3HvbfGJOsDdrGKI6odzU9yBYAHGXRlq9SmJaF8ktzp3e48m0neffsdeqBMdHKH7KQMP3TKQ1gX+oxv9n78/j3Drru///pbNo3zWSRrOvnvEy3mMncSALIZCkJKy9aaFAusBNQymUL5RCgcJNCdCW0lJutlIgLRAoBZKUQEhCyEJix068jz2efdVIo33X0TlHvz+GDOQ27a/BScbB1/PxOA97jraPpDPSNdfyPu5piXLP6vVdMxLS6qp48lt0nNMK1ZhJ33c15q+2r0YDVFcvr0ZNrNEK1sfcNDxgKqBFGig5hcihJsndFjb8wxynPxalaUg4Jq2YCuiuJhbdgncGrAWTpmRhZSe87IqD/ODHe3AtgcVc3bLbdZpSE6kiQ0BDXrSjt2rEYlkyJSeSpUkl40BNqTS7q+hlBcW1ejzaHRr10z6a3VUssw4Mp8me3eMcv3MIzQfBbStkjrcg95cwxj3orRqOSSvV3gZUZORQHRbtSJoFiwm6s4lcs6CWoTpco9mQkYqr74lpa6IEargfclEYNGkGNZoNmaYJvkiJYt6BZcWGGdJQ4jZ0rwFOA+uClc5L55mOt6BOOMACahG8Mya2nM7ClVaU4QIhT5mLw7MMO5bYZp8nZzh4tDzI7fMj9Piy5Op25tMB9CUnSlsFi9SkJ5QhW12N7JAlk1zZwfV9o0yXQ6SrTtrdeVI1FxPx1QwYU7ews2+eJx7vx9OTZ1frPEsVHy32Mgfnu7DbGoTdJSoNK+W6lY0tSfaP9mHz1bHbGkhSk25flnjJS62h0OnLMZ/343XUUCwmmYqTa7rGuHNyM5KliSQ1efPQw9w2t5uIs0SPK82JXIwdwUUejPezORRnPB+mVLcxFFwhUXGzkPazt3uWxZKPomZDtjRJ59wMxJIs5PwMh5PM5APUtNXvoErRRl/7CpPzEQa+bJL8/2p4HTUWFkN4g2V6AxkWij5aXUUAfjt2iJ/lB0nUPMx+q5/ivirbuxaoFnV++NIvkc/nn7WV0U9+L/W9/2PI5zAXxqjVmPrr9z2rtV4Ifq0eIUEQBEEQzs0ztXz+fBcMBjlz5gwtLS0EAoH/dpHVenSmPO2G0H+V6CwIgiAIgvD/+vu//3s8ntXe7POxM+WcAhVrtdpZJzYT3XOCIAiCIDzplztQzsfOlKfdECqXy/z5n/853/72t0mn02dd/uQZ6AVBEARB+G9cQJOldV3HMIynnAw2kUjw+c9/nnK5zA033MBll122LrU97WTp97znPfzkJz/hc5/7HDabjX/+53/mwx/+MG1tbdx6663PRo2CIAiC8BvnyTlC57I9X/zRH/0Rb3/729d+LhaLXHTRRXz2s5/l7rvv5sorr+Suu+5al9qedkPozjvv5P/+3//Lq171KhRF4QUveAF/+Zd/ycc+9jG+/vWvPxs1CoIgCILwPPazn/2MV73qVWs/33rrrRiGwfj4OEePHuXP/uzP+Ju/+Zt1qe1pN4QymQx9fX3A6nygJ2d4X3bZZTz44IPPbHWCIAiC8JvsPDjP2HNhcXGRwcHBtZ/vu+8+XvWqV+Hz+YDVuUMnT55cl9qe9hyhvr4+pqen6erqYnh4mG9/+9vs2bOHO++8E7/f/yyU+MxocxXJNOrMxkNs6EygKgYtzjJjpzuQXA2qwwa+QAWqVrbHljgw3sO2bdOka04W5lvwthUol+0cz8Toj6aYyIUYicTZX7aT+WoXLa9fZO5YG15Xnf5AmvF0CzFvgYm8i7e84Cc8nBrAY61TaVj51thObhg8wQ/KmwC4b2YD9RUnHf1JdrYtcHC+C61o46flDah2HVky+eqxiyFhZznsQ/Y0KGo28g0Hl3ZO45AbjNXbkC1NBkIpTiy0UTcUHGqDQt1OoW5Hlkx0U6LSsDISjPP4SgcDu+dwq3UkpUnUWaLUsHL8iV6iwyu0uQvsX+hha2uc+ZUg02oQj62GIplcHJzi+FKMHe2LLJa9uFSNFmeZf3l8H0M9ceq6wkPT/ezqXODwYjvX9o/yn0sj6E2JSLCAYUok6l5yNQdW2aAnlGF6JURi0U9vT5Kvnr6YoLvCS2KjHHF2kW84sEo6PluNo0d78XblsV+1QjXnpiecodKwspz08Yn5awkdUslsMRnaMs/YiU5iH1yhaVTo/aQbpaSxWPOS7HfiADQ/OBZlbFlgqIrnkJv8ALi3ZKgVHZC3gt1AUg0qMSvNTSWkeRem3cSaUSmvWLHoFpplFcPeZFv/PMdm2mkaEvOGtJrv0p7iJbtH+croJdQTTpSKBWm4iD7lQdIsgMQnvvIa/vkvP8OffPRPKHZKSBoYTrBeksEoOjDLCuWNOvK0G9fy2ce2Wjr775nsiIklYyW5W8KwN9GuKGI94aXS3lzNvakqVGMWLLoF3W1iiyvoLmham2h+FWseikMNGpoEElhDVayPualsr2KWVdAkog8q5G8swUgFy+EouBw0DQlLQaHeYiKXJax9RbS6Ss5hI/Zgk9RWiddd/SDf+9cXIruh4YHIlYvMxkOQt7J92zQbvcvcdvgiwjsSpAsuVo5GsOgWdl81yklrK47OBstJH4pLx+8rk826qMx5oL0GugWcJu5ZiSPZIbRNNZpVhfxjYfSogXTKA4NlFMCat1KVmijhKpLUxDFnIbe1gUWTsOgWGt4m9hWJZt4KShOpKqH7DaS6BUOTyW0ysKVkpNRq5lJTgqLNgfegHc0H/sdUlJqBazLHj459lGtjN1N9qIvBdA0pm+XUB1ro6Ynzyd7/oNxUOVjt49bpvaSLLu7IbeEOtqBrMvZRB5ErFymW7diDDSbnuunpWCFjaxDzFijU7ZQbVpLTQVCaRDqz7Gxb4HuntvGigTHSVSd9zhQnU62waMfSWSHcUmE83ULflkUMU+KR+V7qJSuJUBldk/H6i1QaViLOEjWbwoFjAyg+Da1spS2Qx6bo6KaELJnEvAUA7KpOMudhMLJCvOHlcKadl/WvfrF95+E93ObYjVPVqBkKjaaMIpncMb4FWTbZv9DDpmiCdleBsUyY/kCaosfG/uleQv4SHmud+ZUgu7vnOLzYTqOmUAsoDPjTpGpOVkpuVLtOq7NIOuRi4rf92A47KO3KYPPUqdVVZvMBcjN+Gl0y+aSb+byfStXKrs4F3vOnt/HxUy8hXXUiG+Vn5TvoV7qA5gjZ7Xaq1eraz/v3739KD5DdbqdUKq1HaU+/R+imm27i6NGjALz3ve/ls5/9LHa7nXe+8528+93vfsYLFARBEATh+W379u1rp9R46KGHSCQSXHXVVWuXT05O/o9P3PpMe9o9Qu985zvX/n/11Vdz+vRpHn/8cQYGBti6deszWpwgCIIg/Ka6UAIVAT74wQ9y7bXX8u1vf5t4PM6b3vQmYrHY2uXf+9732Ldv37rU9rQaQo1Gg5e+9KV8/vOfXxvr6+7upru7+1kpThAEQRB+Y11AQ2OXX345jz/+OD/+8Y9pbW3lNa95zVMu3759O3v27FmX2p5WQ0hVVY4dO/Zs1SIIgiAIF4wLqUcIYOPGjWzcuPFXXvbmN7/5Oa7mF572HKHXv/71fPnLX342ahEEQRAEQXhOPe05Qrqu8y//8i/ce++97Nq1C5fL9ZTLP/WpTz1jxQmCIAjCb6wLaGjsfPa0G0InTpxg586dAJw5c+Ypl/13Z5QVBEEQBOGXiIbQecHSbDZ/o1/KQqGAz+ej58sfwB6QqVdVjKqCZDPojqWpGwpeW425TAAAj6NOuW6lWrZillUUXx1VNTCbFiRLE7+ritdWo9ywcn3bCb56+mL+acc3ef/YK0jG/XR0phj0rTCeDzPoWwEgU3dxdLKTno4VbIrO2EyMt+35CQdzvUzkQrQ4V3MrTk+00daZQTNkrusY5a6FTXisdeqGQsRZ4vgTvYzsnMYu6xxebGdja4J2Z47ZUpCJVAsAHYEck/MRrM4GnaEsdlnn5HQ7r97+BNPlEOmqk6WsD33eRdvIMoO+FZYqPsoNKwAuVUM3JeqGQrroolqwM9QTRzclphbDXDo4xcH5LnrD6bXXTFUMinkHrZE8fb40+6d78XiqvLTzFLc9ejHbNs/Q7szxg8NbsdRkUJp42wp4HTXSRRc2q86HN97J30xdQ7bsRFUMou4i0ysh2gJ5XKqGXdFJV53kag4qVSumaeH6wZMsVAMslbxEnCV6XGlSmpupfIg2d4H5gp/KT8KUt9Z48fBpgtYyPqXCv37jxbQ+Wse2lGf+ZRG0PSUso24MR5PmzweL2x80mLvOslZn/GgrcncZfX61BzS6OUnidBhbZ4lqwY6UX/2bwtZZwmnXSM8FsIaqGLMu7AMF6nWFf7zoNt76kzdgMS14xhQabqj11XFM2JBr8JW3/QOv/+qforuaNNUmH73u29yT3cT9JzYiZxSseQtdnzx01jFu6e85a9/YX7iRF+2YDhNbZwmtrmJkrUg+DUvcjtHSoKlbUFMq1iIoe7MU5nxIBjiWJMq9BtaUjNZigG7BYkL3pjgzZ1pXH0Bp4jmloPlB31DFamug/MyL5fIs5bIdZdyBbXuWUtFO07RgnbLzod+9ja8v7eXk8W6adgOLahJ81Ebv742zVPISn27BFq7QNC1oRRs2X42gu4JhSqQybsyGDCUFR9vqa5xa8tHSlid/IoTcXyLmKxDPe7E+7KG4TcMimzSN1TdUUg2UaQeN7hpmXcaiS6BbsOYkzMEyNptOOecATQKbgTdQoTIaoNldxdQtBEMl0jMBpIYF06eDJuGcVui8O8fc9X7CR3VsaQ25UGXmlSG0DVVsjgbv3XI3qsWgR11BtZgcrPay3T7LTCPM1xYvoVC3kz4YxVTAtzWFx1rHpugkSh6GgivkNDtjZ9rp6UswsxBey+mqGwqaIWOVDQpVO+Wcg70bppkr+rHJOjZF5/REG+6WCuUlN96O1Ry04bZlTi+18ltDx6kaVhK11TOClxpWFrJ+GjUFr6+K21bnyug4d85tIeQsM5NoWc1sGg/SDGq8eedDHMl3EbKV0E2Zh+b7uL5vlOlyiMfHV3OOos7VTJhTqQjAWt7Qk8/tRLJ19bOj6MDlqnFZ+xRVQ+VYqg2rbBC0Vzgx3sHujTPUdAW9KbEjsMADywM4VY1czcGVbRPcMb4Fu63BjT3HuTc+xHAgQUW3MZ0Pksq4Gela4sRCG8NtyyiSiV3WeWyym+5YmvmVILJiYE660f0GSqCGeUpm+q/eRz6ff9ZOIv7k99KGP/sYss3+a9+PUa9x5lPPbq0XgnM6+7wgCIIgCL+eC22yNMDBgwcxTZO9e/c+Zf+BAweQZZndu3c/5zU97cnSgiAIgiA8A87l9BrPw9NsANx8883Mz8+ftX9xcZGbb755HSoSDSFBEARBEJ4jo6Oja/OMf9mOHTsYHR1dh4pEQ0gQBEEQ1scF2CNks9lIJBJn7Y/H4yjK+szWEQ0hQRAEQVgHT84ROpft+eaaa67hL/7iL8jn82v7crkc73vf+3jxi1+8LjWJydKCIAiCIDwn/vZv/5YXvvCFdHd3s2PHDgCOHDlCNBpdOynrc000hARBEARhPVyAOULt7e0cO3aMr3/96xw9ehSHw8FNN93E7/zO76Cq6rrUdMHkCG267T00ZDeqatDhz9HmzPOTYxuxKE1isSzxeABJNSBlw9ZZwu+qohkysqVJruRASztAtxDqy9DhyZOv26kbCqUfRdFfUKCScSDZDDZ0JkhVXPjtVZZyPrqC2bXcjLmiH4CIs0Sy4iZdcGHoMgOxJAB2Wcet1knVXBTqq9kS8XiAoZ445YaVeMpPTzTFfDpAbzhNvODlmq4xfjw3RKcvx3LZQybtpllUsYarRPxFXKoGgFvVmMyGuDQ2TdVQ2b/Qw4bwCtPZ4Fq+R11XyNUcONQGubKDelVlsD3JiD/OD6Y2sSmaYKnkJVNyEvMVyFRWM3+yWRfRlgJOVaPLneVYqo0r2ya4f2kAv73K5EwrNl8Nt6NOQ5e5rnuUjOZif7yby9qnuPvMJvy+1Syl1JIPd0uF7a2La3lFE/EIzaQNWuq0RXJ0e7L87MgQFlcDq7PBS3tPcTTTjk3RUSwmi0UfuTkfsf4Uw4EEmbqLU8tR7LYGlaqVodYk7+i8h6O1Lr75qZfS8kSOUq+HlR0ynhko9oDW1qBpgi9SonzGj9xdRltxIFckaK/h95VJz63mKHnbCjTvD1DcXqenPYXelFhc/nkula9KMe9AnbWje0xeeflj/HBmI+VlNzh0rM4G5qSbptLEYsIbrv0pqqSjWgxundhL0FlhIe1HHnMR3Jug8oPoWcd4LXT2ca/11bBO2fFONyl1Wqh0N3DMqzhWILvVwD0po1Qhu72BpSbTtBuEHlMpdUG9tYHvhEqxz6TpNpByCmawASWFoS3znJmPIlsNzEUn7oEctbqKVlFR4jb0oA66Bee8TKVXR/Y0MDSJ39txgH89dAlWTx2taIPa6qj8xr9LcOqdrWvZQA61QaG6euwXsk6cp200LypQW3AjheuwaEfuLmPMuujcvsRS1ofTsXqMl8o25DEX9Y4GSE2sLg0t7cAWrlAv2sC0IGcUmmoT09YEu/GLsYWyglyRMNwmAHJJwvAaKDkZUwFHX4Fy3o4lryJpFgyniVKS8G1JI307xMve9VMaTRmAbluK7y3vwG+rcvDeTdi3ZiksrGa8eDsKFJY9OFoq7GxbYLnioVi30+nN8fjxPhyRMhvCK8zmA1SqVpwOjW5flhMLbTRNMHUJi9QkGCphlQ12tCzwSLyXoeAKTqXOsVQb6aSXoZ44V4TPcKYcZaniI17woioGVtnAa6sx7E2wXPNxaLYLo6pg89W4tHOa6UKIXM3By7pO8M1Tu7hm4DSTxRbsss7RqQ5kq8n2rgVKDSuKxWQ+76fTl2M8GaZRU+iOpXGpGvN5/9rnykR8NUdouG2Zdmcer1rjB1ObuKbnNAXdzk/HNrC1ZxGAQc8Kx3MxzsxHef22x3go2U/IUaHUsDKXCWAYEh5XjQF/ms2eJf7t9EVE/EWizhK6KREvrb7OpQfDlPsbSDaD9tYshaqdXa3zZOouprNBDFPC66hRrluxqzpv6n2UuOZnqtIClQrfuOobz0mO0Ma3nXuO0Kl/EjlC50r0CAmCIAjCerhAeoTuuOMOrr32WlRV5Y477vhvr3vDDTc8R1X9gmgICYIgCILwrHn5y1/O8vIykUiEl7/85f/l9SwWC4ZhPHeF/ZxoCAmCIAjCerhAeoRM0/yV/z9fiOXzgiAIgrAOLM/A9nxz6623Uq/Xz9qvaRq33nrrOlQkGkKCIAiCIDxHbrrppqdkCD2pWCxy0003rUNFYmhMEARBENbHBTI09suazSYWy9l9WQsLC/h8vnWoSDSEBEEQBGFdXEhnn9+xYwcWiwWLxcKLXvSip5xOwzAMpqeneelLX7outV0wOUK9H/lrvDur7IgssMGV4ESxnUcnexlsTxIveClkXFhkk9dve4xvnLyIkL+ELJlUGypuW5352RacwSqqYnBjz3HuWtiE7StB/vnvPsWnE1fz49GNODx1VGV1xvtl7VMcTnVQbajIkklDl7msfYp7p4bY2JrgdDKCz1nDaFqwygbJjJdYS44/7b2Pf154AXVdIVHw0BXMMv5EF11bl5hfCWKkbezdOc6pVAS7qrM5FOd0NopN1pElk2LdTq8vQ68rxfFcGzVDwTAlXKrGYtFHIe/AqCpcv+MYd5/ZhFGXsXnqxHyFtevkZvxrjwGwsSXJRC6E317FLuusVNzkSg6cDo1K1YpFahL2lihU7XT6cpQbVny2Gumak5WCmz/e9CCfOXYFTofGGwYOcE9yI6mKi3zRgc2m0xPIsFJxszkUZ/9CD1d2jzNbClJuWMnVHLR78pxeaiUSLGCTdeqGQq7sQJKaeB01ANIFF7Js0ubPs5TzsbU1Tqs9z+lCFLeqka466fWmWar4mEkH0RZdeHry3NhzHJ9S4dFsP0uf6cc9W2XxKhfl3gYW0wKahByqY6RtWHwazbIKdgPZZmDqFqSEDaW3RH3FSVMxsShNLAWFpgT9mxaZSbTQNOGi3jlymp2ZdJDXbTjEbbddSX1LFfW0g1rYxLko0byoQDXlRC7I0F7D46mSzzppVhUkVwNp3oF74exjXL4udda+Ss2KNuVB9+u0tOXxWOu8vvMAf/3YdYRbiuRKDtoCeYqaDYCGLlPMO9jZN88TU504PXUaDRldk7FI0DTB7akhSU26fVmms0FcNm3tfSgvePBMSlT2VAHQywpyeTVXR81J2HZkGQyleHy8G6tLQ5ZNamUrAE1DIhQpkE56URwNTF3CbMiEIgU81jozE60ASHULSlsFrWzFIq9OuGwWVZrW1dfdNmvFtiNLadqH6dNxTFqpbahhyVhRO8qEvSXiKf9qBlTSi5RX6NocZyHtRxp3oflN3LMSxiWruWADfcssZP3UV5xgNZGKMhgW/KctWEwIf+sYK99qo8OT5+hkJ9eNHOeu4yMojgYdoRw+W42asfph3+9JMVsKMp/3E3RWyFScbGxJUjMUprNBADp9OU4vteL3lWlxllEsJlPpENWCnaGeOLCa9VU3FLo8OQ6c6CfUkSOXd7GlY4mjp7p55wvu5rMnLifkLRNf9jPUvbyWSdbmLnBiuZXd7fPUDJXd/hm+ObkbVTHo8OSZzgYZicRZLPmoNKxsDsUZz4dZznjZ3LbMbD5AbsaPNVphR/siOc1OmzOPZioslnwkCh6i3iI2RWdPcJZHUr1MzkXp70ownw7gd1eJuQssFH1rWWxFzYbHWifqLLHBneD+xCBLST+vGznIdya2A6zlKoWcZXI1By9uH+P2yRFqZSuXDk4xng2TKzkwdJlIsMDVsTFGizF2+2f4yvdejH1rlqCzgkvVODndjje4mllWPxyg4V/N9vrOw3uwxVaPkYucY3x63x3PSY7Q5v997jlCJz///MgR+vCHP7z277ve9S7cbvfaZVarlZ6eHl71qldhtVqf89pEj5AgCIIgrIcLaGjsQx/6EAA9PT289rWvxWazrXNFvyAmSwuCIAjCermAzjwPcNVVV7GysrL282OPPcY73vEOvvjFL65bTaIhJAiCIAjCc+J3f/d3uf/++wFYXl7m6quv5rHHHuP9738/H/nIR9alJtEQEgRBEIR18ORk6XPZnm9OnDjBnj17APj2t7/NyMgIjzzyCF//+tf56le/ui41iTlCgiAIgrAeLqA5Qk9qNBpr84PuvffetXOLDQ8PE4/H16Um0SMkCIIgCOvgQuwR2rx5M5///Od56KGHuOeee9aWzC8tLREKhdalJtEQEgRBEAThOfGJT3yCL3zhC1xxxRX8zu/8Dtu2bQNWz1D/5JDZc+2CyRG6OvKHlK4aptgp4Zk3kf8gQfxoK/aV1YTLcr+ONVDDmHVhuFczSkJdWVqcZeyyzvG5NnpjKa6Onubu+CZmTsf4xm99lg/P3MBkogVJahLxF9F0hXLdiqoY3NT/KGOVVg4kuunw5AnaypzORilU7WyJLJOouMlUnKiKwYA/jVOpczjZwY7IAoWGgyNzHQzEkrTYy0zlQ1QbKi/rOsG98SEyJSc2VQdAVQze0HuAHyc3oUgmimRS0xVmskHKOQdWl0ZnKAvA1GIYSWkiKwYbWxMcnezEGyxzZcc4tx/fhrxipRmr8dLhUe6+fycvfOFxTqZjXBKdZrnmY67oJ11wMRhZwW+rUmrYcKt1Hhnv490X/ZiDhR6SVQ/lhpWZhTB7N0wTspU4lOwiORli27Zpjs208+Lh02xwLfOfSyMUNRvZrItoS4EuT45Sw8rJmTZuHDnK/QuDbGxJrr2fc0U/O1oWOJzqoMuTI1Vz4rfVKDWsa69TuW7FZdMo161IUpMdkQV+un8LrUMrJDNe/L4yW1uW+NlsH1rRhvuUCoBxSYEv7/waNz3+JqJfc2CoFjKbZGobamt5NYpLR1YM7LYGYXeJhYc6MRxN5P7VLKFdI1M88Xg/9hWJ2oYaql1Hlk36QmnGk2GcDo1c2sWRqz/Lrm++E/tAgfppH+qGAo0JD7qzyd6d4xx6ZAO7Lz3D4cV2muNuzN4qRlFFqp79t8vll5w4a59XqaFKJr8ffJhyU+WO/A6mKi3sn+5le9cCuilx9GQPPQPLVBpWaneHqQdWb9vcVMI0LehZO55xmeKQTv9AnKWcj2rBDpYmkmJiFq287YX3cE9yI2OnO2gqJs5gFW3Kg6RZaLRpxGJZ0gUXG1sT9LjS3P7IblwdRcpLbjoGk5TqNsx7g/S+apKjJ3vYvHGOk9PtRKJ5MgUnHaEcM4st2Nwa9ZIVDImhviWmHulGizSQCwqWWA2rrYFWVzHqMv1dCbLf7iS30QTDgjW/mvtTC5sERiUyF2tQk5EqEmawgdWlUc/bUFw6Rl2mqVtwzKs0hqtYRx0opdW/vMNHaqjJEtmdIQq9Ft71+u9yT3ozY5kwfnuVuqFQbag41AblupWYt8BcJoDZtHBp5zQd9hzH8u2cWo6iJZzs232aUsNG1F4kUfOgm6vv7Uw2SK1qxdQtBEMltrYsAfD4cicum8aOlgUeiffit1eJOkvkNDu6KVFpWFmaX80kunjTFMeWY1SLNvYOzjCdD1Ks2rBZdaLuImfmo6j21c8Pu61BzFugrits8K3wWKKLbl+WZMVN+mCUzkvnqRsKIXuFfN1OouBhQ3iF6WyQmLeAW9V4/GQve7dMkqi41/K6JhMttAYLLJ6K0rdlEUUy1/YVqnaCzspaJpjHUSfgqNDmzDOeD3N92wn2Z/o4sxIm6i0i//xzzW+tkdPs2GWd2XyAl3Wd4F8P78UbqNDQZaLeIi5VYz7v57btX2ZR9/Le068kX3Swt3uWQ4udBN0VynUrQWeFdnee05kI6RUPAK/dfohvHdrEzB/8n+ckR2jkDz6GbD2HHCGtxvEvPz9yhH6ZYRgUCgUCgcDavpmZGZxOJ5FI5DmvR8wREgRBEIR1cCElS/8yWZaf0giC1Xyh9SIaQoIgCIIgPCd6e3t/5bnGnjQ1NfUcVrNKNIQEQRAEYT1cgKvG3vGOdzzl50ajweHDh/nRj37Eu9/97nWpSTSEBEEQBGE9XIANoT/90z/9lfs/+9nPcujQoee4mlVi1ZggCIIgCOvq2muv5T/+4z/W5bFFj5AgCIIgrIMLdbL0r/Kd73yHYDC4Lo8teoQEQRAEYT2cywlXf41hNcMw+MAHPkBvby8Oh4P+/n7+z//5P/xyik6z2eSDH/wgsVgMh8PB1Vdfzfj4+Dk+0V/YsWMHO3fuXNt27NhBLBbjfe97H+973/uescd5Oi6YHKHPPXERE1IvV3lPMqOFuX1bG7nX7CK5p4m9o0Ql40Auywx+rcDc9X50B5i9VUzdgjJvx7Q2iYwkWZoPEjqksvsPjnD4s9vY8sfHccgNqoZKRbdxJN7G9tgSNUPh+FwbF/XO0WrPczTTDsBKyU05b2eoe5mxmRjb+udxq3Wm8iGC9grtzjz3TQyxu3sOgIlciHTSy1BPHMViEnEUWar4KNTt2GSdeN5L0F1BlkxWCm56Qhla7GVi9gI/nNnIvvZpzuTDxPNetseW2D/ah0VpsnfDNNt9c6QbHg6lOrEpOhPxCLu759jgTqy+drqdx1a6WU766GtfYciX5K7jI1w3cpzDqQ4izhK6KeFWNRIVNxt8K9x7ZoimaaE1kmdHywL3zw4S9Rbp9aY5nY0yHEjw0HQ/v7PxcRpNme+e2YaqGgyHkwy6kxxMd3FRaI6D6S6mFsM4PXVM04KqGHT6cmRqTpIZLy/ZMMpYPsL8I52oW/LYrQ1anGWyVSe9vgyJipuFtJ+h1tUMoplsEFkysas66Zyb3d1zKJJBzVBZKnmJxwPINoNm0kbbpgTtrgJvbH2YW/7sTZgypLbJGPYmwZEUyckQcqiOPOlAa2ugpBSk3jJtgTzTMxFsyyqenSnSSS+yzcDjqdLQZVq9BWYSLbhcNSqjAW597Wd4/x+9henXQShSoFi2Y+gyRlVBzii4NuSQpCa5lBs5pWI4TSyexlnHuGXFdta+6OYk8fEwUqBO07Rgd2nUyla29ixSMxTOzEexSE0u6Z/Gp1bptGcIK0XCSpEV3UNYKfJQcQjFYqBaDKqmlelyiJquUDMUutxZlio+Tk+0sXvjDKWGdS3jZWyqjY7OFAtLQdRFG9JQkcaCC9NjEInlSOfcaxk5w8Ek1wRP8pW5S4nnvdhUnXzSjWtSpTLYwNtSwq7qpDJuXjo8yoFEN+llH2gS1pS89t5nsy7MuoLnuEq5x8Q1J2HNg3+ihu6QQbZQaZEJHssTf6Gf8JEapQ4b7oU6UsNk9lon7Q9oGA4JiwmOqRzVbh+prSq+KZPcgMTeVxxjn2+CsFLk++kda7+H5bqVTl8OvSnht9Y4ON2FzbH6PqmKgWFKlBc84Nb5/V0/4yeJDWQqTgB6AxnydTt1QyFdcKFVVFy+Gl5HjXg8wFBPnLGZGD0dq2fr9tlqLBR9ONQGhaqdfNLNy3ce5s5TI6h2HbejTr7oIOit8P4Nd/F/56+gritsCy7yn2MjDLctU25Y0ZsSKwU39ZIVm1vjRT1nmCy24LfWSFTcTM9EaOvMsC86zfFcjBF/nOO5GPGCF5dNQzNkMmk3Hl8VYC2v63Cyg4YuA9Dhz1Go2/HaakzEI2zvWiBddVI3FOLjYSw+jdZIni5PjrFMmMKkn43bZ9kZmOeRVO/a5+VIJM54NozRtJAvOmDWyeZLpgjaysBqZta9c0PYrauvuVU2iDhLjN/VT/SQhv3oDJVdvST/qEq1aMMiNbE6GwxHkmz1LfLNu16Ic1OWQspNqDVPOWcy9rsff05yhLa94dxzhI7e+j/PEfrYxz7Gpz71Kb72ta+xefNmDh06xE033cRf//Vf8/a3vx1YDTy85ZZb+NrXvkZvby8f+MAHOH78OKOjo9jtv36tT/rwhz/8lJ8lSSIcDnPFFVcwPDx8zvf/6xBDY4IgCIKwDizNJpZz6It4urd95JFHuPHGG7n++uuB1eyeb37zmzz22GPAam/Qpz/9af7yL/+SG2+8EYBbb72VaDTK97//fV772tf+2rU+6UMf+tA538cz7Xk1NPbxj38ci8Vy1vI7QRAEQXjeeYaGxgqFwlO2er3+Kx/u0ksv5b777uPMmTMAHD16lIcffphrr70WgOnpaZaXl7n66qvXbuPz+di7dy+PPvroM/a0DcPgP/7jP/joRz/KRz/6Ub73ve9hGMYzdv9P1/OmR+jgwYN84QtfYOvWretdiiAIgiCcs2dqsnRnZ+dT9n/oQx/ir/7qr866/nvf+14KhQLDw8PIsoxhGPz1X/81r3vd6wBYXl4GIBqNPuV20Wh07bJzNTExwXXXXcfi4iJDQ0MA3HLLLXR2dvKDH/yA/v7+Z+Rxno7nRUOoVCrxute9ji996Ut89KMfXe9yBEEQBOG8MT8//5Q5Qjbb2fMGAb797W/z9a9/nW984xts3ryZI0eO8I53vIO2tjbe+MY3Pie1vv3tb6e/v5/9+/evrRJLp9O8/vWv5+1vfzs/+MEPnpM6ftnzoiF08803c/3113P11Vf//20I1ev1p3QLFgqFZ7s8QRAEQXj6nqFARa/X+z+aLP3ud7+b9773vWtzfUZGRpidneWWW27hjW98I62trQAkEglisdja7RKJBNu3bz+HQn/hgQceeEojCCAUCvHxj3+cffv2PSOP8XSd93OEbrvtNp544gluueWW/9H1b7nlFnw+39r2/3YZCoIgCML54MmhsXPZno5KpYIkPfVrX5ZlTNMEVs8D1trayn333bd2eaFQ4MCBA1xyySXn/HxhtbeqWCyetb9UKmG1Wp+Rx3i6zuvl8/Pz8+zevZt77rlnbW7QFVdcwfbt2/n0pz/9K2/zq3qEOjs76fybj6JaHDgSFhoXF/m33f9CoynxifnraHfm8Co1psstfKLzdl5xy3tQS01Cj62gtXpR02Wy24JIepOut4/zh60P8Ic/uYm2zgyJlJfLB8fRTIVc3UHEUWQ8H+bi8CyHUp0sZX3saF8EYLHsxTAlhgMJTmejOFUNRTJRLCYTqRZ+e/AwT2Q715bhhmwlHl7sw2XT2BedXlu+bFd0Dp3qwRcpYZgSA6EUuimhSCbxkpeAo0K/J8XDi32E3SVa7BUOnOjnyu2jPDg5iKwYXNEzwWOJLvz2KrJkkqs5SM8E2DayuhTarWqUGqsHpVvVWCj6yBcdOB0aN/YcJ1H3ciTVTq2hcF33KKcKrWvLgJ9c3v7wYh+GKbGvfZp8w8F23xz/fOwyIsECXluNbleWI6l2dkfmuOv4CP1dCQxTotKwkis50NIOtm2eQZFMovYCBxLdbG1ZIlN3EbSV12ILklUP48kwF3XO8cRSB13BLLopMbsSZKg1Sbc7w2i2laJmI7XkwxmsYrPqAPjtVUKOCseXYmgrDno2LHNV9Axt1iwf/dnLuG7bMUJqmW/e9UL8Z5qEjhUxnCoz1zmwpyF6sMbka1UApLoFU4am3cCiNLHIJnaXRshTxjAlkhnv2nPPVp1U7w3z3Xf8DS++/V1gNQl15KhpKnZrA4fawGetkak5iS8GQbfgaKn8ymPeGD37L0GtQ8Plr6IqBkPBFY4tx/A46miGjENtkC64uLpvjHTdzXR+NVogU3LidtSRLU22tyzy45ObUBwNJKmJx1VjwJ9mruhfi2oIuiukCy56w2kKdTuGKbG9ZZGH5vuoFuxgWtg1NMNMPkAm7aY1kkczZLJZFxYJXjQwxpl8mJmJVpRADZtNR5ZMCik33pbS6msqNcmlXdC04PDW0KY8bNk7xfEnemkGNZpFFUwLwRMStpyJNW+Q3K2i+Zr4N6V51+C9rOge/n1hJ9WGytaWJVSLyUPzfVzZPc6Qc5lHsgP8YesDHKr24pOrtKtZyubq0MKBYh9epcZUpYXliofCrR3YXrfM8uMxuvfMMzkRo38gznw6gKHLWCSTawZOk667cSp1jqXaaHUVWSz6aPfkAVgue8hmXbg9NXoDGWqGQqLkYUdkgZC1wneO7OSde+/hsXwvTyx14LRrVGpWVMWg3lCorzjZvHEORTJJVtzEx8PEBlewyTqZipPL2qc4nOrAqWr4bTXSVSdLWR9X9EzgVWucykdRJJPpbBBVMejw5EnXnJTqNuqaQrVgJxLNY1V0DFOiy5NjOh/EquiU6jai7iI7AguMlyJ41SqPLXVTzjhx+KtsiibWHg9AK1tx+au8rPcEd05vYSCUImovokgGP54YxvfzaIneQIbpbBCXTaPLk6NmKOimxFQ6RNRbZDYeWlvyPp0NsrEluXadJ5+Ly6YhSybpB2Owo8DOtgWWKx7+Y+jfub3cyb/ddD1z1zgJXpxgOelDUpo0TTCLVjr6kxSqdsplO/2+Oe657gvPyfL5nb/z1+e8fP6Jb77/f1zrm970Ju69916+8IUvsHnzZg4fPsyb3/xmfv/3f59PfOITwOry+Y9//ONPWT5/7NixZ2z5/Bve8AaeeOIJvvzlL7Nnzx4ADhw4wB/90R+xa9cuvvrVr57zYzxd5/XQ2OOPP04ymWTnzp1r+wzD4MEHH+Sf/umfqNfryLL8lNvYbLb/cnxUEARBEM4bz/G5xj7zmc/wgQ98gD/+4z8mmUzS1tbGW97yFj74wQ+uXec973kP5XKZN7/5zeRyOS677DJ+9KMfPSONIIB//Md/5I1vfCOXXHIJqrr6R6Su69xwww38wz/8wzPyGE/Xed0QetGLXsTx48efsu+mm25ieHiYP//zPz+rESQIgiAIzxfP9Sk2PB4Pn/70p//LERUAi8XCRz7yET7ykY/8+oX9N/x+P7fffjsTExOcOnUKgI0bNzIwMPCsPN7/xHndEPJ4PGzZsuUp+1wuF6FQ6Kz9giAIgiA8PwwMDKxr4+eXnfeTpQVBEAThN9JzfK6x88GrXvWqtflIv+yTn/wkr3nNa9ahovO8R+hX+elPf7reJQiCIAjCM+I36Qzy/xMPPvjgrwx7vPbaa/m7v/u7574gRI+QIAiCIAjPkf9qmbyqquuW+ycaQoIgCIKwHprNc9+eZ0ZGRvjWt7511v7bbruNTZs2rUNF53mO0DPhybyGa3/0R0wUO2kL5JlfCRK4x05qj4ns0xiIJZl+uJuG16RpN/m9ix/hiWwn7+n6EX6pykmtjRXdQ6Mp829Te6jWVS7tnAYgU3ex0bvM/pUe6oZCfDbEto2zLBR9pJZ89PYkiee9DLSkUCST2XyAS2PTTBZbiBe8NHSZqLeIS9XIa6tZLADlupVrusaoGCo/nhjmmoHTPDA/wOWdE4zlIyiSSV1X2N0yz70LG2j35JnJBunw5+h2ZTmeiRFxljg+14ZFArtDo8Ofo64ra7lBra4imZoTzZBp6DJeR41S3UZDlzFNC1tb4yyWvSgWk6Wsj5C3jGbIZNJumg2Znq4kIcdqts3plQiNhkxnKMt8OoDfXSWdc+Ny1ag3FGK+Artb5vneqW34fWUua51iohjm1EIrg+1J/NYaOc3O9EqIHe2LHBjvweGpYxgSfnd1NVeoouINVLg4NstsOYBb1fCqVU6mY2wOxZkuhJiZi9Dfs0ylYaVctzIYSnFiuZXhSJJTy1F2tC/iU6v8bLGXPW2za+/h0VPd7N0yyaHZLoyslSt3n2T/Qg+qYlBY8mINVdnXPcUfR+/nbxdfyuGfDKFUIXhFnObnI+T7ZOoBkHTY8qJxjsx1YJl1sOuFYxw4NkBHf5J4yo+sGDRqCq2RPNWGSn7Kz+uveJi7FzeiGTL6A0FK/QZKTkb+eRxWPaazbeNqrcmK+6xjfE949qx9P54ZRpKa7Gmb5YHxQUa6lgCoGQpzmQBm04JWUWmN5ElmVvNHZMXA0GUUq0497qJnOM7F4RlunxzB46iTTPjY3LtIuWElUfCws22BqXyI5bEwzq4iYXcJn62GXda5yD/NV7/yUiodJqZjNSOpWLajla3EYllsss5sPERf+wqKZJKquFaPK0NCyisYLoNAaxHTtFDMO2gaEhbZxDpthyY0ZXAvwBOfeycvuejDjL3NznUjx3HKDbxylYLh4HCmnYmpVuSyzMjOaRaKPtIrHvo7k+RqDjJpN8q8HeumPGF3ieR97VS6DZqKic1XR5ZNVMXgxp7j/Osj+9YyrZZKXpIZL7u759g/2ocvUsKu6gQcFVIVFx5rndl4iGbeircrT62u4nHVAHCoDS4Oz3L/0gB+e5VKw8rSfBBfpMRl7VPcfWYTL+wfZ/9CD35XlWTGS2c4g89WQzcl5vN+XDaNXNmB31UlfTCKZ2cKq2xwdWyMe+NDeG01CnU7be4C4+kWvI4ag74VNruXuH9liG53hgOJbhxqA8ViYlN0UhUXL24f467ZTat5UK2LXBk4zZIW4Jvju4h6i2zwreBVaxxKdRJyVIjaC8yWgqxU3GiGjNtWJ+oska46sSk6Yyc68XblKeYdeHxVXDZtLXcqW3WSTHrZOzhDTrNT1xXieS8dgRwt9gqJinvt8zTUkWPAnyan2dkRWOC7Z7YR8pbx2mrEC14kqUmx6OAlG0bXPhsBWuxldFNm4e8GiO+T+N6r/p7Xf/rP0N2gVMBx9Qoxd4GjJ3uwhSs4bA389ipTJ33M/+kHn5Mcod2v/iiK+usvS9cbNQ595y+f1VqfaXfeeSevfOUr+d3f/V2uuuoqAO677z6++c1v8u///u+8/OUvf85ret7NERIEQRCE3wjPcY7Q+eBlL3sZ3//+9/nYxz7Gd77zHRwOB1u3buXee+/l8ssvX5eaRENIEARBEITnzPXXX8/1119/1v4TJ06sSzSOmCMkCIIgCOvAYp779nxXLBb54he/yJ49e9i2bdu61CAaQoIgCIKwHi7AHKEnPfjgg7zhDW8gFovxt3/7t1x11VXs379/XWoRQ2OCIAiCIDzrlpeX+epXv8qXv/xlCoUCv/3bv029Xuf73//+uq0YA9EjJAiCIAjr4slzjZ3L9nzxspe9jKGhIY4dO8anP/1plpaW+MxnPrPeZQGiR0gQBEEQ1se5ZgE9j9JvfvjDH/L2t7+dt771rQwODq53OU9xwfQILZW8eFw1er1pdnfPkd7exNtWoGnC2OkO9l1zjEv3nKajd4U757Ywn/fzxrvfzI0//FP+4oFX8ff3XctnH7+Chi4T8xX42Wwf+xd6aHfm+PfRnVQaVl7bdYgrt4+yUPTR0GXaOjNsCy5Sy9opN6wsFH1cGpvmgfkBCnU7qmLgd1XRmxLd7gyGKbGjZYGIs4QkNZmvBLjr+AiyYjKabWU4nOSuE1twqxp+a42Qo8L9SwOYpoX5vJ9a1UqbM89kMUSXJ8fRkz1cPjhOJFgg7C4xEY/gUjUUyaRYtjPgWSFXdpDLuxiJxHGpGtW6iqoYACQqbtJFFz5bjav7xtAMmZqm0t6aZe/wFC5V4+hCGx2OLFsiy+zrnqLVWcTvrhJwVLA7NHoDGWK+AnVD4Xguxu7uOTzWOo8meqkZCpcPjpMoeQBwqxoXdc5x8OAgV24cI+ot0htOk0z4VnNYqgoum8ZkMUSbM49uSixVfBhNCw65QabiZNvgHJPzEbo8OWp1lVLDypbWZZIVNyNtcSZyIRpNiUZDZroQ4v7RYYK2Mt7WIvtH+7i4d5qeDcs8ttTN1tY4G1uS+DvyhLxlTmej/N6//CmJipv/dcODvPhVj9HuKrD4kiaGHfq/mab3H06x8LkBlDMOkJocibeB3aDaUAHQ0g7CLUUAikUHnp4898aHkCWTD2+8k9JmDewGZmeVhqeJZ7ZJrDvNdDZIsuKmXLeetRV0+1mbVlfZ0zbLY0vdvHR4lIl0CwAT8QivHjjC7vZ5PL4q8WU/neEMelmhUVMI+UvomkLTbuCz1fjumW1odRWjaSEUKbBSceNSNfpCaZ5Y6iA+3cKGrfN4HTVmFluYSLdw8OAg9yQ38orfe5CRndNgM8ik3XSGstx11T8iSyaZihOASsNKXVfITASREjYsskkzqCHZDKLuIqpisKkrDkDXtxQ6flKj7WGN0AkT/bost09t50Pf+Rr9XQnuPrOJ/SvdfPnAZfxgahPpiguAwGCGU8tRenxZLFITw5QoVW28auQIzf4yqmLgUjWs+zL0b1hieGCJizrn8LuqdPpyPJbpBuD4XBvj6RbKdSsv2TDK4cV2enuSDIZSZApOxk50siu8gM9Wo1lUGdoyj6oYmKaFvdFZPNY67a4C48UwNU3FMCW6PDmGB5boDWRI191YbQ1+cmwjG8IrOFWN12x6Apuic3KplcWij40tScp1K/Wqyr7oNEZ/FYfaoFy3cqYUpc1doN+TYkfLAksl72q2k7XGeD7M/StDKJLJZLGFvdFZFsairJTcjM3E8FjrjJciFGd8dPhznEy18u/xXTywMoDHUWcp66PRlBgvhslUnMwX/BxOdaA3JV7Sfoqou7iaN1byUjcU2px5/D05VMVgZ9/q67Cc9GG3NZhJB0nn3OwdnKHVnl/9XdBsxHwFWuwVfGoVgPh0C6GOHFbZ4MCxAVIVF6rFIOIvUm2oZKtOdrXOY5oWtnQsMVsKrmYQlTxkq06m8iGOxNvoeNcEL7viIG+/+e284PWPA9D6qUfIPxbm6FQHSkHC0CWi7iLzK0Hefdldz+6X0QXq4YcfplgssmvXLvbu3cs//dM/kUql1rss4AJqCAmCIAjC+eRCGhq7+OKL+dKXvkQ8Huctb3kLt912G21tbZimyT333EOxWFy32kRDSBAEQRDWwwW4aszlcvH7v//7PPzwwxw/fpx3vetdfPzjHycSiXDDDTesS02iISQIgiAIwnNuaGiIT37ykywsLPDNb35z3eoQk6UFQRAEYR2c6/DW82lo7L8jyzIvf/nL1+U8YyAaQoIgCIKwPi6gVWPnM9EQEgRBEIR1IHqEzg9ijpAgCIIgCBcsS7P5m923VigU8Pl89H3tffzujlHSDReHkl04VQ2Aq6Jn+JcnLqWnPYXPVuP4XBu9sRSVhhWvrUabM88j872EvSWA1Rwei4kimdhlnZqhMOhZIa05mS6EyFScuGyr993lyXEqFcHrqNHtyXJkuX0118NW49RylLZAfi1PpVZXGWmLY5cbLJZ8zK8EecXGo3znyE4c3hqS1GQ4nGQmH6ChywSdFWyKjt9ao9OZZbwYJl7ykis56A2n6fekuHdqiB3tixxebMfjqtHQZUYicabyIby2GuWGlZC9Qs1QSFVcWGWDdMGFLJsYxi/ayL3hNOWGFU1X6PVlSFTczMZDBEMlrLJBxFni1HIU07QQ9pcYDiR4fLkTSWqyI7JApu4iWXGTKzvYEF7BLuuEbCUOpzpIZrxEggXiky3E+lN0eXLoTYlExY1iMQk5KiyVvPT50hxPxrisfYrJYgtjpzu4cc/j3HFyK5LSZHf3HKWGlW53htlSkKl0iFcPHOE7E9vxu6okM16Mukx/V4KVkptOX468ZmdXaJ7bH9tFqCvLlW0T/HhuCFUx8FjrFDUblZqVK7vHuevEFly+GgOhFAtFHy3OMmOzrdhmbPRcPguAXdZ5S/tPebQ0yE8+vI/M68qEPGXSRRfVZRc4Dbb1z3Nspp3uWJq6obCSc6NXVSyySXcsTa83ze+27Ge03s58PcRO1wwA77vvNbzlBT/hW9O7zjrGd0QWztp3/+gwloJC35ZFLm2Z5kwpyoFjA8R6UyQzXjrDGaLOEocX27HbGgBsbEmyWPZik3VyNQeZtJv377mLr85dQjLnWbtvu61B2F1iIeuHEx5sO7LYVZ2ws8Ry2YNhSuTSLixSk609i7wscpTj5Q5uP74Nq7PBjvZFjsTb0DUFv69MLu/iD7c+zFdGL0GWTSSpSf20j5ZjJoEHZtEGY+QG7BRfUuKizjlubr2Pv1t8KbopcWSsC9mh0xbJsVJw89LeU9w7N4Td2qDFWWbEHyetOel1pPnx8jCGKaEZMumkl+tGjnMs08bW4BKHUx20uQscX4rRGcqyxR9nphzi1HKUkLfM1bExjuXbOTrVgaSYdEUzJAoeXj1whG+cvIiBWBK7rKNIJr2uNKfyUcoNK5mKE6+jRrWhklrysWVwAb0p0e9JMVsKsjMwz62PXcLwwBLlhpXF5QA7++YZT7eQT7r535f8lLvjm9CbErtC82vPraHLeB01royOc/vMCKpiUKlZ8buqaIYMgFU2MMzVnJ+Fmp/pQoi6oSBLJu2uAq32PDPlEEcnO7G6NBo1hdZInsTJCC+9/AkOpzrYF52m05bmrsTqGcHPzEdxeuprn2NRe5GfzgxQz9uItufYHIrzs9k+GHPTdvEiKyU3e9pmSVY9uFWNU6kILptGxFnixEIbL9kwyl1Ht7J3eIq5op90wcXG1gQT6RbeufE+/j2+iz3BWdINFwcS3dQ0lXLOgb+lRPF0gN+66iA/nNxEZyjL5EwrDn+VNn+e+XQAu62BXdXx2Gr4bTVKP8+sKmo2Pj78Xf7wJzcx9KUaY39kx7asorU18BxXufY19/E3l/6AfD6P1+v9tb97/jtPfi9d8tKPoKj2X/t+9EaNR3/0wWe11guBGBoTBEEQhHUghsbOD2JoTBAEQRCEC5boERIEQRCE9WA2V7dzub1wzkRDSBAEQRDWw7mmQ4t20DNCDI0JgiAIgnDBEj1CgiAIgrAOLJzjZOlnrJILm2gICYIgCMJ6EMnS54ULJkdoy7ffzYb2EqOJKKpiMBKJk6q5KDesGKZEPB7gLRc9wP5MH8dm2iFrZcPWeSbiEay2BlFvkaizxIEzvWzuXaTdmSdqK3DXwibe0HuA2+Z2s6NlgdlSELuiY5cb/OzYBlyRMj2BDHpTolC3E48H2Ny7yOhcjGbeSqgvQ2YiSPemOHVDIVd2EPKUqTZUhoNJFks+cjUH2WUPvkiJmLcAQF1fzQPp96Q5kmonmfDx6u1PMF4MU2pYscs6i0UfsmSSngqybds009kgDV2mmnLSPxBnR3CR+5cG1jJJXKpGvyfFZLEFgETJQ7snz4BnhYliGLeqscGd4LtT2xgIpTi51Mq2jiWOL8UwdBnrz/NoGg0ZU5cYbE/it9aYyIXwWOtUGlYCjgp+a42aoVBqWFnI+gl7SygWE5eqcXKyg1BrngF/mpqhYJd1TqUiXNkxzn+OjRAJFog4S2vZR62uIm5Vo9SwojclUhUXsqXJJdFp7l8Y5NW9R/jO9HaKeQcbOhNruUvfObqDXQNz5Op2Jk+3sW1khqPHe9g2MgPAbD5AqWyjP5piMtHC5rZlALb6Fvnu1DYqRRu+QIVc2gVlBUwLTbuBRWly3chxEjUvS5/pp+6XsOigO0G7okCtbMWsy1hUE9lqYrU1cNo10kkvoUiBUtWGoUs0TYnXbHqC757ZhsdVI5N24wtUuLxt4qxj/P6FwbP29QYynFhoA6AznGGl5KZeV9jctky65qTdVSBRcTNzOsbQlnn81hrT+SDJpBeXr0bAVaHaUCmW7bQF8ixlfQB4XDVyeRcAL9kwyoFEN1tblnhouh9Dk2kaEns3TLNYXs00USzmU47r+dkWdm+c4cRyKx2BHLmaA7+9ynw6gJZwYs1J9NxZZPxtKnv6Z/lE5+0crLfx/dROUjUX0w93Y9lY5EU9ZwipZUaLMZZKXro8OY4tx6gW7Ng8dep5O7+3+1EWan40U2E8G6bTmyNXt5OuuIi6i6ufD3U7e8KzPLA0wI7IAoWGY+0zQlUMapoKwPbWRU5nIsiWJmFnCb0pMfNAN749K9QaCjFvgRtbj/IPJ6/kpb2nuOPkVrpjaWTJxK1q9LjSzJRDnFkJsyG8wtHJTtAkOnpXSOY86JpMWyTHJn+CB+b6cTvqpJOrr2FHe5rF5QCtkTx9vjQnU63kFnz4O/JUqlZk2eQFnVMcSbWzkvLQGsmvZaCdTMd4Sfspvju1jT1ts5zORuny5HhssptwS5GYu0C+bqduKPT50uzwzvGfSyP0etNMF0LYFB3FYlJuWEkUPBijXkIXJTBMiXTOjaFJ+ENl/PYqelPCJutMzkXZ1j+PXdY5Em8j7C2h6Qq1hkJDl7m+b5Qfzw1hmBJ72mZ5bKmb7a2LlBo2jox10daZWcuykiWTDk+edmeO0Wzr6rHtTVPRbUzkQvjtVXI1Bw19NTtpV+s84/kwisVkpeTG66gRcZbI1+1kKk42tiQ5cKaX4H4rlhtSfHDoB3zgM2/k2N+/kxdLr6HwuktomDUOf+P9z0mO0L4X/RWKcg45QnqNn933VyJH6ByJHiFBEARBWAciR+j8IBpCgiAIgrAexKqx84JoCAmCIAjCOrA0m1jOYXbKudxW+AWxfF4QBEEQhAuW6BESBEEQhPVg/nw7l9sL50w0hARBEARhHYihsfODGBoTBEEQBOGCdcE0hEpFOzVdYWtrnI0tSaySTrlhxaVqJE6H8beU+OnKBmqGgtNTZ8/ucSbiEfy+Mn+y6acUNRuLZS97N0wzngxTNqx84+RF5PIu/v6xq4k4SyRqXhTJRLGYHE/G8LcVCLgqlBtW/NYa6YILf0uJqXSI1kieoS3zWGUDNVZhd8s8miET9RZJF13sjc6yWPKxlPVhmhZ6e5IEnRV0U2Ih50dvSkyeaSPfcFBrKKt1FcPUDIWFrH/1Me1VslkX/ZsWARgMpYh6i2BaWHiokx/ObKShyxRnfCxMhzk90cZixU+26qTcsCJLJmPLER5e7sOtavjUKt+d2kY558Au6wS9FXJ1Ox5XDZerhlZXURWD/mgKo6qwJzjLqVQEj7VOpuJkd2SOsdMdLJa9HJ3qYHYliKFLhOwV2t15FMkkEsvhsdY5cKaXeMlLpzOLJDW589QIIX+JdMHFsZl2FnJ+enxZlsseJnIhIo4iM+kgxbKdgKPC6UKU3+k/xE8SGyiX7ezsm8etaswV/dy7sIFrNp3Cq1YZ8iXxdhRI15yEerJMZ4Pk63ZM04LNpnNmPkrYXyJoK5OuOWk0ZXoCGQCKRQcdbRl6Nizz6sseY8vgAkM9cQ6nOnhh8Axdbx/nE+/5Ih9/3xfRriggHfDS+gMrLftVQuEiPdEUfleV1JIPh7dGasnHKwaO4XRoGHWZ7/xwH/u6p5AtzdXMopSbiWL4rK2w5D1ry9ft2I84MDSJomajw59DPu3izEqYpaSfiVwIAItPY3olxFzRj8dWwzpvwzQtDPpWGPCnCXnLbAsuopWttAXypFc8mCs2jLyVuw5sxzAl7h8dpjucQVKahCIFji3HSOY8uFSNombDJuuYTQuKxURx6ez2z2BTdWYSLVhlg4WsH0OX8Z2ROPP+d/Lbt97DTdsf5eB0F9d+8T188NgNWCUdAKO/CkCi5mWh5mc83UJ8uoUXh04iSU062tPU83a2Dc5RNa08MD7IYmk1AylqL1BpWNncssx10RPUdYVC1c7tR3YgSyYPTg5yZK4Dp10j6KxQLNupTnnZ1z7NE0sddHjyXBKd5uR0O3OZALF9iyQTPipVK3OZAJ8/8wJe1HOGH05uwqzLZCpOJqZaObHQxkw5RL5up9GQUSQTq0sj0pllkz+Bx1XDbMhky06OpNoZjiQBuG7kOB3taUp1G62RPPHpFhZLq58Hr774IA1dplFT8LuqpDUXvb7V9+Dy1glm0kEKDQeZgpM757bQ4c/x+HIn6YKLmqHgC1RIJr3UDIVMxclwIIFuyvzn0ggviEySqbuYmYvQ5syzXPYwM9HK1tY4DJUI2ivkSg78vjLb+haIuovE8162BpeoNKxcN3IcgMWyl93t87S7CoSdJYLOCld2j7N/pZveQIbahJelio89bbNs8Sxil3Wu2nqKdGH1sfNZJ9d1jJKuOZktBVnK+rApOg9ODjKWCQMwtRjGY61TbyhUqlaSVQ+GKTEbD/HKvqMMBxLUDIWlrI+wu8SpVIShnjj6dVkMU+I9//ZGrnnTfszlDfzD7CP88Qe/w/v+/F+fo28lfrFq7Fw24ZyJoTFBEARBWA8iWfq8cMH0CAmCIAiCIPy/RI+QIAiCIKwDkSx9fhANIUEQBEFYD2Jo7LwghsYEQRAEQbhgiR4hQRAEQVgHFnN1O5fbC+dONIQEQRAEYT2IobHzgqXZ/M1+JQuFAj6fj76vvY/dg2kmciGu6xhltBhDNyVOLUfZ2JpYy/85lYoQ8xYYO93BrpEpnpjqJBgqAdDhyTObD+C21Ymn/Ph9ZUpVG2FviXZXAUUyOJlqxaE2WE76aI3kKdetxLwFJuIRdnfPkdPsTK+E2Nc9RbLqYbnsodVV5OR0O9eNHOfeH+5C3lSgWrSxrW+BeMlLwFFhIeenUrThC1SwygZOVQMgU3FSqVpxOlZ/LuYdmHWZ3RtneHyii72DMxya7QJguG2ZcsPKQtqPz1PFY60DsJT1sa97itPZKDZZx2er0e7McfeZTVhtDfyuKpohU6lZ2RRN0OtKUzFU7jqxhV0DcygWkw3uBA8l+4k6SxxbjtHmz5OuuNZeq5C/RGLRj0WT6NmwzO6WeX44s5FyzsG2/nnsss5ELsSNncdZ1rwkal7mC36MpoWGLlPIuIhE8zhVjZWSGwBZMgm7S0zHWxjpWmI6G6Q3kGE6G2RjS5KJXAi/vYpd1nGrGieSrYTdJZb2t2P0V7HaGqiKwWXtUxxOdbA0H2T70BwT6RYGQimOzbTTGsljk3XqhoJhSuRKDq7omWC2HMAu6+Trdl4SG+WOha30+dL41Co/HN3MtZtOcjjVQcRZ4shYF4HWIkPBFd7X/gNu/OnNbPxImlMfaEG2GWzpWGLpy31kXlLD0CR62lPE814MXWJbxxJH5jowiiqSq4HttOOsY1wpnX3c2/JNlFoTe1pHrpvoDpncoIopQzXWRG/RUVIKoWPQcFqohaHc28Cir46WW0NVtLIVKa8gtVbx3u/CvaQTv1jBuQyyBrUAaIEmvjMWSl2g+U3sKxLVgTreQIWNLUlqhsLRo73IoTqRYIF4PEBHe5rEwRjtexYpajYqNSuRLzlYeIPOp/Z8mz996He4ctNp7j+xEaQmPR0rFDUb+aIDVTXwu6oYpkRyNkjPwDIrJTdXd43xeLqTakOlw5NnOhukNOFncOfc6mtkMZlKh/A46mxvWeSBuX7C3hKlug1ZMsnlXezunqPTmeVUPopb1UhU3GwLLnI0085cIkhvLMVKyc1gKEXIWl47Bo7NtLOhM0Gi5OHS2DSLFf/a789ALEldV9gUWOZHpzehTDtgqMSO9kVOpSJ4HTWizhJRe4G7jo8w1BOnULeznPSh2nVU1WAglKLUsDI5F2XvhmlOpSIUUm4c/ioeR51Ob47xdAsum4ZhSsTcBRTJ5PHjfdjCFXpCGVIVF1bZYEfLAscybUSdJRSLydG7h6gP1JCUJnaHRthdotKwUmsoFDIuNvcuUjMUZhItbOlYIllxU6jacdk0ZMnEMCVWUh48viqFjItXb3+CQ6lOfLYaQVuZ8XyYdleBRMWNLJnMJFow6jId7WmyZSeyZKIqBpWalTZ/npWSG1UxyKTdbOhMML0SYmNrgtPJCGFviaizhG5KHBnr4s/2/Zjb5nYTn2yhZ8My0zMRbL46dluDwpKXjv4k2bKTRkPGbmtgV3VqDYWGLqMqBp2+HG5V40i8DeUxD00JqjGTvv4JfnL958nn83i93mfw2+gXnvxeuuKi96Mo9l/7fnS9xk8P/vWzWuuFQMwREgRBEAThgiWGxgRBEARhHYhzjZ0fRI+QIAiCIKyHJ+cIncv2NC0uLvL617+eUCiEw+FgZGSEQ4cO/VJJTT74wQ8Si8VwOBxcffXVjI+PP5PP+rwjGkKCIAiCcAHIZrPs27cPVVX54Q9/yOjoKH/3d39HIBBYu84nP/lJ/vEf/5HPf/7zHDhwAJfLxUte8hJqtdo6Vv7sEkNjgiAIgrAemsC5LIF/mh1Cn/jEJ+js7OQrX/nK2r7e3t5f3F2zyac//Wn+8i//khtvvBGAW2+9lWg0yve//31e+9rXnkOx5y/RIyQIgiAI6+DJOULnssHqKrRf3ur1+q98vDvuuIPdu3fzmte8hkgkwo4dO/jSl760dvn09DTLy8tcffXVa/t8Ph979+7l0UcffXZfjHV0wTSE/teGJ1gse2lxlvnGyYsoNawkK6vLsHtcaQ7PdFAzFFw2Db+1hretQKlhBaDVVaRSs5Kv23Hb6iRzHuwOjR5flt3t87hUDadSJ1VzcXnbBMnjEXyBCuW6ldKEn7lMgFhLjsOL7fittdXloNkoimSSzbqwKzr9XQnSdTcbL5/EadegqrBQ9AFQqNvZ1z5NdyxNseig05uj0rBiU3RcNo2gt7K6NLSuctP2R2lpy1NqWOlpT7FY9uLxVNndPcdMNkjdUJAVE6tsMLMQBsAiNcnUXWvLxPN1O4maFyNv5eKOGQpVOx2ePCFPmZl8gFP5KMcybewamKPUsHIi2cqZUpSZiVZSNSceR50hX5Kh4ArVb8WIteTYHZnj4k1TSL7VZbf3Lw3gsmm8evsTpGtO5op+slkXXztxMYeSXeimhMdWw2+vUqurbOufp9ZQcKkataoVVTG4sec46YoLm6PBsZl2ADZ6l3HZNDa4E6STXlrsFabSIeaKfqqzHhIFDyNXro53bwivsLElycOLfRimxMWbpojaiwBE7UW29ixSrlvp9aZZTvoIOCrcMHiCM/kwE/EIp5aj+Gw1vjJ6CdWGyulMhEfivezsm+dYpg3DlFgo+rh40xR+e5UTyVZe+/gf0tOe4ssPfB3HpJXI7TaOnuwh85IaHk8VmhZsik59xYmsmJQaVmTFwFKTUKYddP9H6qztJW/cf9b2qnfdyxdu+TTv/L/f5F//7TO0fmCK33/rD+h75SR6i06sPYPUWyZ1fQ3zhgzV4Rr+Yyr+EzJyScLxkBvPUSumrYkkNbG9IsGOv3qC9j2L9LxmEsMKtS1VNl8yxavfeQ/brx6j6TYInDZxnrahKgYHzvRyZiWMHKpj6pbV37WOFeZnW3BsyZK8r53In2hYf+rlHz//GYyqwvs//0Z6OlY4nOzA6qljkU0W0n5KVRu7OhcwmxZssk7qTIimYlI3FAZCKSaKYa6MjuOx1pnOBrGrOm968U+p6wp1XSHiWH1fA44Ko7koTdPC4nIAv72K317lFRuPMlf0890H9rBc9nDgTC9RZ4nHVrpXl5pbDXI1B4OhFKOJKI+vdACsHqe+KiP+OFbZ4O4zmzi1vPr7YdRlxmZibAsuMpaPYHM0ULfk2dG+yOHFduyqTvxoK7opcd/MBmyeOv2eFLJkYndptAXy7Gmb5ejxHop1O9v653EqdVTFwOGv0mjIBBwVlkpeRiJxIs4Sm0NxgrYy8wU/r71kPy/rP0mLvcyu8AJeW41DyS6SOQ/pqhMAc0uJGzYfYyCWRFUMfLYameMtVKpW9g1P4FY1lgteXtg/TtBWply3Iksmm0Nx9oRnGQyssLNvnl2t82zrnyekFlkpuWl35nhsqRvFYjKRC5GpOJldCaKXFSLRPIvLq0MxYXeJhi4T9a6+PzFvgex4kGZZJV7w0qgp2GUdn7PGZZEpji/FOLHQhj1Q48HMBry2GnJAo9ebRnHpeFw1egMZsBvMz7bgdax+3jZ0mXLdiiQ1cdo1egMZJlIt+NQqPaEMpcEG1n0Ztu6YplD/9Zezr5fOzk58Pt/adsstt/zK601NTfG5z32OwcFB7r77bt761rfy9re/na997WsALC8vAxCNRp9yu2g0unbZbyIxNCYIgiAI66HJOQYqrv4zPz//lBwhm832K69umia7d+/mYx/7GAA7duzgxIkTfP7zn+eNb3zjr1/H89wF0yMkCIIgCOeVZ2jVmNfrfcr2XzWEYrEYmzZtesq+jRs3Mje3Gjza2toKQCKReMp1EonE2mW/ic7rhtAtt9zCRRddhMfjIRKJ8PKXv5yxsbH1LksQBEEQnnf27dt31nfomTNn6O7uBlYnTre2tnLfffetXV4oFDhw4ACXXHLJc1rrc+m8bgg98MAD3Hzzzezfv5977rmHRqPBNddcQ7lcXu/SBEEQBOHcmM/A9jS8853vZP/+/XzsYx9jYmKCb3zjG3zxi1/k5ptvBsBisfCOd7yDj370o9xxxx0cP36cN7zhDbS1tfHyl7/83J/veeq8niP0ox/96Ck/f/WrXyUSifD444/zwhe+cJ2qEgRBEIRz91wnS1900UV873vf4y/+4i/4yEc+Qm9vL5/+9Kd53etet3ad97znPZTLZd785jeTy+W47LLL+NGPfoTd/vybRP4/dV43hP5f+XwegGAw+F9ep16vP2XpYKFQeNbrEgRBEISnbR3OPv9bv/Vb/NZv/dZ/ebnFYuEjH/kIH/nIR379up5nzuuhsV9mmibveMc72LdvH1u2bPkvr3fLLbc8ZRlhZ2fnc1ilIAiCIAjPJ5Zm8/lx1ra3vvWt/PCHP+Thhx+mo6Pjv7zer+oR6uzs5MV3vYWAHxIVN+3uPKWGjWTFTcRZ4uhkJz0dKyxlfbQF8vhsNY6e6ua6XUc5nOog4ixRMxS6XVlmywHqusJLYqN8c3I3QWeF2XiIZlll88Y5RudiNMsqV+48yensahZDm7vAfMHP5lCcZNXDSsWNx7YaV95ir5CouLk4PMN8NYBV0nlgfBDFaqCVrQz1xCnU7SzNB/FFSlSqq9lGm9uWqRkKY6c78LYVUBVjNUNlJsJA3zKGKSFLJpWfZyGV61au6x7lcLaDEX+cH0xtoiuYZTLRAtMu+i+epd+T4q7jI8g2A5erRqcvR6bmRJZMVgpuhiNJdFPi9MEe/JvSpJNeYrEsI8E4Pz65iZ6OFTYFlnl4sY/CsgdroIbHVaPDk+fkUitDrUn0psSOwAIH012r75ehMOhb4fHlTlTFYDiY5OB8FzcMnuCO8S1c3TfGXQe3A+DvWO0RvDQ2jVNurD2HbleWh+b7uLhjBoAHJwdxuWqr2UoNhSs7xlmu+Tg028UL+8ep6KsrKg6M9zDUvUxdVyhqNqyywb7oNPGal1TNRV1f7TCN/6ydetTA1VpiOLz6GtQMhbHRDqzhKqpqsCWymrGhSAYPnxhkoG/15yFfkvtmNtARyOFWNeyyzqHZLppxO73bF/hg73/ytn98K945A80jkR+wYPRXMfJWJI+GRQKjqhD5qULihTpHr/3MWcf8Cx+/6ax9paIdm6NBJePAe1KlvLtK07TQGslTrlvxOmq4VI26rpAoeHj1wBHujQ9xQ8cxAPZn+gjayhQaDkYTUQxDQp93oRYtSCMFNkVXV5U8MdWJZcXGRRefYa7o53/3PkijKfPvr7saqVRj/E0RkJo0O2uYuoXAz+xEHkxx+m0B3nPVD9hsW+S72V0czbQzPRPhDXse5TsT27myexzVYnDnqRGiLau9urJkEk/5GYglV/OBDIWgvYJb1VAkgyeWOnDaNTo8eRaKPhxqA5eqoZsSQ74k988Ocn3fKD+eG8IwJSpFG82GjOzQ8fvKpFc8XLflBE65wfFcjH5PCoDDqQ52tCygmzK9zhX++dhlvGLjUQ6lOvHZakTtRRTJ4ECim2x2NdfqBZ1TLFZ8nJxpQ7aa+H1lrmybYLwYpseVpqDbuX90mCs3neZns31sbE2QrLjp86U5nowBqxk7l4cneDzXhVutczwZo5Bx0d+1+tr3e9LMlgO02MscWuxkOJLkzEqYF3ROMVsOMHGoi8hIkkLVjmlacNo1rLLBcGD19r2ONGPlKD61imoxqBpWFis+lsseslkXZtFKrDdFny/NYsmHz1ZjIt3C5Z0TzJaCKJLJqeUohi5jZK1ct/cI6bqbA2d66WhP41I1AMZmW5GtJh5PFVkycagNAEL2CkFbmftPbGRz/wJ5zU6hasdl0xgJxvGqNQoNO/dNDGEUVfZumWSx7MWlapQbVuIpP53hDEXNhmFK1LXV31dVMfA6ahSqdsLuEgCVhhWnqtHlzjJXCjCTaOElG0Zxyg2+d+9e/JvSWGUDm6yzx3mav7n0B+Tz+acsSX8mFQoFfD4fL9r0/6HIv3qF1/+EbtS5b/Rvn9VaLwTPi6Gxt73tbfznf/4nDz744H/bCILV/IT/aumgIAiCIJw31mFoTDjbed0Qajab/Mmf/Anf+973+OlPf/qUc6IIgiAIgiCcq/O6IXTzzTfzjW98g9tvvx2Px7MW8e3z+XA4HOtcnSAIgiCcAxOwnOPthXN2Xk+W/tznPkc+n+eKK64gFoutbd/61rfWuzRBEARBOCfP1ElXhXNzXvcIPU/mcQuCIAiC8Dx1XjeEBEEQBOE3lpgsfV4QDSFBEARBWA9mEyzn0JgxRUPomfC8yRH6dT2Z1/AHD/w2h8sDDPjT1AwFt1rnZKqVoeAKh2a7+NSeb/P301eTKHjYEF5ho3eZ/Ss9AFwVPcM3x3fRFcziVjVm8gGu6xjlTCnK/tG+tcwYRTKZTLTg81SxygaaIbM3OstotpWVkptK0YakNIm15DBMiULVznA4yWgiitm0cGnnNPePDuPw1tDqKp3hDD5bjelsEFUxqNSsVIs2rM4GNwyewCFp3LWwCcOUyKXcbOufJ11zErJXsMs6B070s2/rGTodWQ5nO5jLBNgQXiFdcxJ1llgqecmVVyedX9wxw3g+zOJygA2dCc7MRwm3FNkdmWM0u3rW4VzNQbcvC8B0Nshl7VMsVvwcHe9i7/AUOc1OvyfFsUwbC2NReobjRJ0lpvNBYu4CbrWOT61yINFNJu1mQ2eCYW+CRxO9eGw15tMBQt4yO1oWGMtHmF0J4vNUKVVtOGwNNrcs8+hkL4rVoDecps2ZZ7oQot2dZyofYjnpQ1KaeDxVcnM+Yv0pZMkkmfNQz9uwaBLejgIx72ouTV1XcKkablVjLBOm25fl+Fwbg+1JCnX7Wt6KZirsn+4lEizwZ/338J5HX013LM3F4RlunxxBq6sYeSvbNs9QalhpdRY5noxhV3Ve0n6Kh5L92BSdiXiEnmiKlZIbr6PG/GwLFl2iZ2CZjw18l0cqg3zxuy/FVGDgm1nSO/wApLfCy644yEw5xPEnzl452fwVky3Dg2kGAytM5UNohkyxbOd/DT3BrY9dgmQzUO06IW+Z5aSPYKhEvujA0GQ8viqGKbGnbXYtz6otkMem6NhlnaCtjGoxaTSltdfF46lS1xT6Qmn8tioHZrt5+dBx3hZ6kOsffwv6UR9awKRpN3nnC+5m0LbMe0+8klpdxdBlZMUAoDecpvzz3Kuos8SRuQ6Musy2/nnOrITXfv+i9gKj2VaizhInkq0Mh5MMupMcTHexkPXz0t5T/GB8M93hDIpk4lY1el1pfjizkUZDxm5r0OnLUW5YydUc5FJurC6NtkAevSkRslc4sxJGkpq4bBq9vgyPz3egV1VsntWMsoGWFOWGlaWsj4s659BNmUTFzVwiyEjX0trvSOW0n12XrWYsVRsqV3ecYbocYjQRxe+qEl/2s61vgWMz7Xh8VVw2jULVvlZnvaFQL9roaE/js9bQmxJjMzG29c8TL3l5RdcR7o5v4gWRybXPgvyUn9df8TD/dnQPFqlJ07Swp3+WmqFwcqmVvd2zpGouxmZi9HSsAFDUbJSqNrbHlshpdnRTosVeIVVzUqzb0QwZt61OoWqnVlcxTQt63kaoI0eLs8yOwAL/ProTv69MhyfP6WSEmK+wlmWmGTJ+exVFMvFbVzPUcpqduq6wu2WeiqGSrrupGQqz+QBRdxHdlNgRXOSO8S04HRohZ5nZlSDbOpZIV51kKk56AxnOrITR6irbuxZ4fHz15KFPZi2tlNxIUpNuX5YeV5qjmXba3XkOznehla28evsTPBjvx6lq6E0Jm6yzy37mOcsRurr/HeecI3Tv5KdFjtA5Ej1CgiAIgrAexNDYeUE0hARBEARhXZxjQwjREHomiIaQIAiCIKwH0SN0Xjivc4QEQRAEQRCeTaJHSBAEQRDWg9nknIa3xKqxZ4RoCAmCIAjCemiaq9u53F44Z2JoTBAEQRCEC9YFkyO09/tvx+5WKWo2slkXXdEMC2k/uzoXOJWKcE3XGPcvDeCx1rk4PMN3Tm9nqDXJfN7PZe1TzJaC6E2JeMFLQ5e5vm+UiqFSNVQccoNOe4YfLG0hXXSt5oNMtoDTIBQprOb/5BzsGppBsZgkKm4AFtJ+OkI59KaES9UY8ce5f2mAmqYSdpeYOR1j88gsec1OtaHisdaRJZPJ+Qi7BuZQLCapmpNczUF6wY8rUmYglGI6GwRAVQwG/GkOzXaxpWOJMythqkkXPQPLvCAyyTdOXsRALEmq4uLKtgnmKwFKDSuLRR+XxqaZLLbgt9aYyIW4rHWKB5YGyKXcuPxVvI4ahaqdatnKYHuS/6/rbm5+/Hd5/fBBpqshHlvqpieQ4eR0O7+3cz//dnQP3bE0dUOhXLcyEolTatiwyzpjmTCmaeGy9ikOJbswmhY81johRwWAI3MdhPwlZMmkXLdSq6vYbQ1KRTtuT41i3sGrRo5wKNVJouAh5CmTzHm4qHOOnx0ZYu/WCXpdKW6fHGFn2wI/OzKEq7WENurDMlgi5C1TqNoJuCqE7BVOLUe5um8MgIcX+2joMi/onOInU4MYmkzTkOjpWGEp66MtkCdR8NDmz+NWNdqdOQDuOj7CUE8cxWLS7c7ww9HNBEMlHGqDZM7DKzcc5WC6C0UymV4JARDxF2l3FQjZSjjlBorFwKdU2J/pYzobXM2UWXGedYxv2zxz1r52Z47Fip9BzwoOSePe+BAAl7dOcOf0FmTJpFZX2dc9xbFUGx5rnbqhsCc8y8PLfXR48gRtZcbzYQpVO15HDcViYlN05jIBdrYtkKs7GE+G0cpWZJtBrCVHtaGSngrSv2mRqcUwdpfG9X2j/CzRS5cnR06zM70SIuQtoxkyHZ48dlnn2HIMp10jNxqiZ+cC8+kAV/eNreZUTXauPqmKvJYNFU/52d61QKlhpVC3Y5N1EgUPV3aPUzVUlio+6rpCpuLkmq4xKoa69r70dyXI1RxsbVkiZK1wx/gWGjWFK4bO8NOxDQRDJXJ5FyF/iXzFjq4p2B0aPYEMec1Ou6tAqz2PQ25QNVR+OLmJHe2LOJU6x1JtVGpWJKlJoyFzRc8EDlmjz7HCZ45dAUBHKMfF4Rn2r/SQqTgpl+0043YCw+nVTLCkh839C8zn/UhSE7+9yqbAMvdODXFR5xwuWeOnMwM0agqqXactkCfqLHFsOUa1YGeoJ85cJoDTrjHgT5OqObk6epq745soajZyeRe7u+eYK/rXXje/q0p8NkT/QJx0xYUsmciWJvmKne2xJVI1J5Nn2sBu0NGeZldonuWaj1OpCA1dpi+UZrnsocOTJ11zYpgSw4EE4/kw6aKLa3pOc//CILW6uvbeV2pWVMWgmHfQNC14AxVUxcBjrVNpWEmdCXH5JSf42WwfqmogSybXdI3x47khNrYkyWl2xmZbsTobtAXy1A0Fm6xTNxSC9grLZQ/ppBebp47089DCra1xpvNBBgMrHJzvolFT6I6lAXCpGvN5P8UVmPmD//Pc5Ah1vhVFOoccIbPOvfOfEzlC50gMjQmCIAjCehBzhM4LYmhMEARBEIQLlugREgRBEIT1IHKEzguiISQIgiAI66HJOTaEnrFKLmhiaEwQBEEQhAuW6BESBEEQhPUghsbOC6IhJAiCIAjrwTSBcwhFNEWg4jPhghkaa3MVKWo2rusYxSJB3VCQpCalhpWGLvP9sRFkSxOXqnHbkd04HRoDnhUAFit+Ti+1MuKP0+nL4bRrpDUn+YYDzVR4eLGPLxx6IVFniQ3h1dt4OwqEIgXSKx6u7xtl19AMh071cGi2i9l4iNl4CEOTSRQ8tLsKFOp27pzczN7oLF5HjUrDytCWeabSIVYKbjzWOvMrQQxTYnPPEk9MdTKRC2GYEg61QagjR6Mhk645ubJjHJdNw6E2OBJvIxIskKy4edfme/G2FZAlk+9MbF/LEOrw5LlzcjOpmpNMzUm7J0+i5sVvrTGWCTMcTHLHya3Iksm2/nm2RJapNlSGw0m6ohlSFRfvH3sFr9xwlP9c2MLpbJSwu0S7Mw9AuuFiQ2eCSsNKxFmiVlf52ZEh7LLO4cV2ikUHnb4cVUNFlkwcaoOiZmM83cLxpRh+XxmnqpErO2joMqpqoCoGg+1JClknFqlJSC0iSyaGsZrJ5HdXGXIlUHIyva4U+1d6uLhjhieWOugZWEaWTJThAoYuU22o2K0NFsaiTGeD7GhfJF1380i8F5dNY0N4hXtOD/PyoeM0yyp7N0xTNxScDo2os0RXMMuQL0m+bqfTniFdd/Pq7U8w7E1QMxQOJLoJhkrIliZbg0tc0TNBRnPRYq9wZj5Ko6YgyyYhe4VExU267ma8GOa2Ry/mTDnK6WQEw5QIe0uEurJnbaeTkbO2qqESL3l5MN7PY5luynUrKzk33z6xE1kyV/Np3FWOpdpocZZZyvpwqhoPLA3Q4clTMxQeX+6k2lAZicTXMoQANkUTLJZ8nF5q5YbBE9g8dbZ3LaBYTLa2LOHqKOJWNVojq+//8VyMNncBRTIYO9MOQJcnR0OXSVbcHF5s5/q+UQxTYmD3HOmKC7+7yo8nhklW3MRiWbb1z3Pd3iPkyg5cqsYL+8c5vRJh2JtgOJAAoJJxcP/sII8vd5KquJhZCKMqBiG1yIFEN5PFFnYNzjKfDtDQZX4228fhTDuv3HAUq7PBeD5Ms6pQqVlxuWoMBlZo1BT8vjLVspXxZBiXqnFwuov7FwY5VWjlxzPD3LzlAQCmCyGsskFXMEurt4DHVWOx4uOxlW5+nNxE0FthW8cSsmTyrWO7mFkIs7ElidXWQOksI1ualE4EuXH7YRTJxDAlGrrMb7Udxyk36A2nGc+GaTQlVNVgU1ccu63BK9qPoDcltLqK1aVRblgBGA4mORJvw61q/POxy1gpuWlxlokEC5xKRbg6Nrb2ni4nffQPxKk0rHT7srS6ivT6MnQEVrOfAK7ceZIrN52m2lC5f2GQnGbHruqoikHEUWTAn17NITsVXX0/dBuFqp2LO2Z4NLH6u+R3V2lzFxjwp7m4Y4ZdrfM4PXV62lPEvAW2tiyRqTgpVm10bY4zXQjhcdWon/EyGEqxf6Ubr6PGwekuTk+00dGWYWNrYu1zPldz4FQ1lssetrYsAfCinjN0BbNsCK8wlgmTfyxMzVDxu6tIShObolPUbJxeaqWw7MHpqj8bX0G/2pM9QueyCefsgmkICYIgCIIg/L/E0JggCIIgrAcxR+i8IBpCgiAIgrAeRLL0eUEMjQmCIAiCcMESPUKCIAiCsA6aTZNm89df+XUutxV+QTSEBEEQBGE9NJvnNrwl5gg9I8TQmCAIgiAIF6wLpiG01z+Fx1rn/sQgr9n0BIYpoWsyimTSFczSHc7wwtgkimTS35mkVlf58cwwlaqVoK1MZzhDvObl5GQHl7VOMV0Ikaq5SNVcBJ0Vbhw5Sq8rTb5up81dQFUMrLLBP1x2G9PlEIcPDNDbk2R39xytkTytkTyv3/YYNqtOpzOLU9V4Uc8Z7p8dJGivYDQtzKSDaHWV1204RNRZwu8rsymwTKbmxOOrkp4LEHWWGPSt0OoqYrc1uDg8y0QxTMRZAqBeshJfDOK11fjoPS9nY0uSuqGgKgYA6akg09kgNlWnWLfjVDXGliOcuG8QvSlRyDuoGSp2l0aHJ7+W+3J52wSJihuborO1ZYl8xc50uYWYu0CfL71635qLWCzL4VQHYzMxkgkfUXsRi9TkLS/4CaWGFS3hRLHqKJJJRbcBrOYA2au4bBp2W4MWZxlZMtHqKpWMA1ky2RVeYDLRwo0jR2kJlrg7vomlnI993VMU6nYuiU5z+/wI17z4cY7n2pAlk0LDwe8MPk5Rs9HQZba2xhluWyaX9NDhyXPlnhNc0zXGwekuALp9WVZybpIVN62RPNPlED0Dy8wV/QTtFRxqg0TFzdhsK5PFFgDujm/i/9fevYdFVe3/A3/PfYbLcL8NclEMMVQ0C+J4LxLLx1I7ZaamRRdPWqll2TePaJ2y1FLrsdPRY5pPdUor69fRPJniNbwho4iIgCiiDCoIw9z3zHx+f4yMjQOKVww+r+eZR2fttddea+01ez6sfZn8U9HIOd0Zv5TdCT+Zq98cTjGi/PT4tTQJJ4xBqLH5wk5ixEXVoFP0WdisMnRV69AvvAwBMjPifWsQHleLWqsv7o8/ig6BdTALMtTW+Hm9ogL0Xi+VRIDNIYFFkKKyLhBRaj1kMgcG3FGCR+ILEBdwHrV6H4T6GFFaFQ6RmFBj8kX9eR8YBDl6BVXi3qgTqDmjhs7kjwabAnqrEufNPiipCYWvzIaXe27G9wU9IRYRSmpC0WBTQC21wHDOByfqg5ARVYwIdQPOmXxhd7oONdIAK0LURhz4XxfoK9XoFVqJ55N34LsDvdArvBJ9Qo7hL1HluDu8AskaHRQSO+qMKtRYfLDjVCfXmLZLkVPUBZFqPXIq74BM5ESdRQWprx0Tu26HWmWBv9yKtMRy9z6RSxxQSuyoNvmhT9wxdAyqRUanYpw4G4ytus6ICtAjwseAQT0PQyF3PVtn78lYiKVOyCUOdO2gg2CR4pzJF37+FgT7mGC48LyePfUdse9ELCJ8DOgUUIPKukAcOxUGk0UOP5kNfSJc9bAIUkhFTvjJbIiLqkFaYjkMghyD44+gu6YKMeo6DH4gDzmVd+CMyQ99ossRqdZjb11H/FyWjNKqcABAiNwEi1mO7oGnIZM6cNIagrLzIeifUIIQtRFndkdhaKfDSA0oh7XKF0fOhKN/QgmUcgEJ/udQo/dFx6BarK+8E+VnQ5AYdhYPJB1B5flA+MhsqGwIgFGQ45zFB4EKC5QS17HhyPkIlOtD0MG/Hh2DaqGU2OEgERrqXc9Tszik0OnViOxyFmZBBotDir921GJ7eQIazArUGV2f3cPVEdh9pBPydDGotfrCYpbj+KlQHD0ZgVqrL/pGH4PFKHd9FhQW1zO0Us6g4HQUzIIM540+6B57GkN7HURlSTgOFMYjwscAh1MMk1mOY6fC0DusEuX6ECTEVmPryc4oPhGJeqsSKpmAgNSziFDqIZfaQWcUMApyqGQCnHYR5EEWCPZb+LXIzxG6LfCpMcYYY6w1OJ2A6Dqu8+FrhG6IdjMjxBhjjDF2KZ4RYowxxloDXedzhPjU2A3BgRBjjDHWCsjpBF3HqTG+ff7G4ECIMcYYaw08I3Rb4GuEGGOMMdZu8YwQY4wx1hqcBIh4Rqi1tZsZoV/PdIXVIcVQzSGUG0NxtiQEveIrUW9VQipyolfwKdTYfDAs/ADKDkejY1gNOoXUQKGwo9bqi2i/egBAVHQtcirvQEd1DR6JPAClxI6U4FPQ25U4aQpCSvApnDao4S+3ItzHgBkHRiBCqceQAftRa/JBtckPdUYVeoVWwuyUI8KvAb9VJsIkyLF+b0/0izmGepsSnQNrMCC2DM6zCvynpDcsDikifRuw/kAPmAUZ1CoLVOFGWByuWDZQYcbExO3YVpUAi0MKpcSOs3o/jOu1G0/03oOK2iCEJ9Sg6Fw4egSfRtfQM3go4hCSu5+AxSrDvVEnEOWnxz0hFRjepQB/GXIQBkGO7rGnUW3yg4/S9XwRhcSOO8LPQiZ2wizIUFoVDr2gQrCfCecsPlBK7Cg8F4kIHwPKzodAInbi4Q4HMTl1M57otRcCiaFSCNDWx6JYF45BqYcwLKEQ5eeDUdEQCN0Z1zNMSo9FQiGxQ7BLECi3oM6igsMsRbc7KhHmZ0C9oILdLMNPB3vCQSIAgMUox2lTAGL963DcGIJI3wbUWP1w7LeOCFWacEgXiWJjBNIiTkATWI9qkx8Kj2uQckcFlBLXfv61ogtkSjsqGgKhlNgRF1YLtcIChcTufhZOUlA1ai0+CPcxoFrvj4SYM7A7xeiorkGDTQGJxAl/uRUSiRMWhxRHz4ZBInaisiEAyRodktTVOFwdgRR1JSRiJ7oEnIHTLkKA1ASBJDhcF4H/V9gDUX563OF/FmaHDEqJHQ91OIxHu2u9Xr4ym9errCEUcokDYjHBWK/EizFb4K+yoqQ+DEcNEQCAhIhzqNKr0T+hBFEBegQqzXg4+SCUEjt+KuuOjUeSEBKuR0bEEcQHnMfbd/yE5JAqWKwySMVOLNyeiQeSjqBTSA2i1HqE+hhRaQ5CRHQdMjocxU/Hu8PqkKJv5DEUVGiw92QskjU61Bp8kJJZjJTux/Hrxt4oNGgQFVmHcn0I9A4ViuvD8XtVRxTpIlCt90eEugFDNYcAAD5KG6rq1RjUtRj3hFRgUIcSbDneGSqZgJ6xldh8LgkOpxj9wstgubDt0+cDoPHTI963BjUNvjhyPgI9Ak6hrCEUw7sUICmo2v25rbX6Ql+vQrCPCXeEn4X9vBJGq+t5QakJJxCoNKNv9DFIxE6UHY7GoLgS6Ez+6J9QgqJz4Sg5Hwa1yoLUhBNIDDuLEIUBJ01BuCvoJIJ9TLCTGBHKBqQEn4KdxNAZ/fHz9rtxoFKDGrMP7E4JAOBsnR+056IRqjShvD4Yf4kpR5JGh/s0R/HdgV6wG6XQ25WQiAgnTUGI8GuAWmpBrH8dug4og8khw6ryNAxKPQSpxIlyfQh6h1XihCEYvaJPod6qRHzAeXSNrMYZkx9+LbwTSeFn4HCKYTArcPp8ABxOMfKK43GH/1nYHBL4yGxosClQb1Xi6NkwAMBf4/LxcPJB/F7SCX4yK8L8DFArLIjwa4DFIcUPJ1IQ4G9GoK8ZNqsMVbpAJIadhW+wCfpzrmd0hQfrER99DqKzCkT71KHG6oe4qBp8V9oT9VYlApVmpIadgI/KhgajEgBQb1XC7JABUsIjqXk4Z/FBjLoOEokTcVE1OFofBl+ZDSf2xKBzyDkkx59GSvApnKlVIzmkCqdMgTir98OA9EMwCzL4ymy4q9NJBPqZkRR+9lZ8JbkQuW6Bv+YXB0I3QrsJhBhjjDHGLsWnxhhjjLFWQE4CXcepMeIZoRuCAyHGGGOsNZATAD9ZurXxqTHGGGOMtVs8I8QYY4y1Aj41dnvgQIgxxhhrDXxq7LbQ5gOhxojZbrLBLrHCYhAgGG1wmi0QjDbYzRIIMgFWiQCbzQazxA6n2QK70QoSERwmKwSlDYLM5irHaIXDRrAZbDCL7RCMNlhJgM0uhuAQwWoXYDdaIZHYIdhtcJgssBkEAIDDZIWdrHCYZLAZBEgkrrwOkxx2qQCn2QKbwQa70QoBNtikrno6TBfq6hRfeG+F3W6FwySBYLTBJtggkBNmqR0Oo2uZ4HBt22oQIJATDpMFDqcNDrsDNoMAwWaDReaqv6uONghWG6xiAXZywmazwW62QpA4YLdI4LC7PnB2weruL4fJCueFOtiNVthltgvbtUJQ2Nz1tBgEOEROWAUBNuvF5c4L27XKhQt5be6+b/zXYZJdqKP14j5zOCA4XHnd/SpcXEcQbBAcTtidYggyGxxWi7udgtEGm/RCv1/oT8Foc+0vhxMOkxUOwQ67yApBbIPdIgHETtjtDgh2G+xWEWziC/uIXGXaZVYAgA2uejosTtglrrrbFdYLfe8aA4LYNV4cJgssBlc9bBLXvrcYBPf4aayXVeQal4JNBqtEgNUp8hrjgtHmleYgERxmCRxOCZxmCUwNDtfYkNoh4EL/OBxwmKzuMQcAVrng7iun2dUfjZ8ZY4MDNsPFfmwcr4LZ5n6EgSAT4DBaYTVc3KdWlQCnyQKH3eGxHwSHE07LxTEvkdhhVV7YN2YpHGYnIHG6P7cOkxViqQMOs+vzZxUEWB1w7QOJFYLI9Rmxm1zbb/xsNm7P6nD93w7XcrvRCqvU1b/WC2NCINe4tBtd47zx8yZIXccAu0UCm+TiPrI17sPGfS+1g8ROCGJX+2xO12fNigvlO22w2WwQSwQIlgvj2mIBTBbYlVbYJI1j3QmHxLVdh9EKm8IGweKqp9NsAQli2AyuvhakNthtIljFAgTrxe027luHyQq7yFW2YL7QDpOrLo395f5sWUVwmCwgpwh2uSvdvS/JCodVDLtw8XNpkQuwWoWL6xutkEjtF8ehSe76/IgdcJoscAriP3yexe5xJ5HYL4wFV3/ZTRc+P5KL49JhssJhdkIsc7raI7a562c3Wt3H28Z1BJkAp+XisdMqEtzHHMEmcx/3GtvWOHYFic3ju+NmskO4rgdL2yHcuMq0YyJq43NrlZWViImJae1qMMYY+xM5efIkOnTocFPKtlgs6NixI3Q63XWXFRkZifLyciiVyhtQs/apzQdCTqcTp0+fhr+/P0Qi77+m2xK9Xo+YmBicPHkSarW6tavDmAcen+x21zhGDx8+jC5dukAsvnn3E1ksFths3rO5V0sul3MQdJ3a/KkxsVh806L625VareYvGnbb4vHJbnfR0dE3NQgCAKVSyQHMbYJvn2eMMcZYu8WBEGOMMcbaLQ6E2hCFQoHs7GwoFIrWrgpjXnh8stsdj9H2qc1fLM0YY4wx1hyeEWKMMcZYu8WBEGOMMcbaLQ6EGGOMMdZucSDEGGOMsXaLA6HbxLZt2zBs2DBoNBqIRCL8+OOPzeadOHEiRCIRFi1adNkyd+zYgT59+iAkJAQqlQpJSUlYuHChV74lS5YgPj4eSqUSaWlp2LNnz3W2hrU1rTU+Z8+eDZFI5PFKSkq6AS1ibc3NGKN/tHPnTkilUvTs2dNrGR9D/9w4ELpNGI1GpKSkYMmSJZfNt3btWuzatQsajeaKZfr6+mLy5MnYtm0bioqKMHPmTMycORNLly515/n2228xbdo0ZGdnY//+/UhJSUFmZibOnDlz3W1ibUdrjU8ASE5ORlVVlfu1Y8eO62oLa5tuxhhtVFdXh6eeegr333+/1zI+hrYBxG47AGjt2rVe6ZWVlRQdHU2HDh2iuLg4Wrhw4VWXPWLECBo7dqz7fWpqKk2aNMn93uFwkEajoblz515L1Vk7cCvHZ3Z2NqWkpFx7ZVm7dKPH6KhRo2jmzJlNjkc+hv758YzQn4TT6cS4ceMwffp0JCcnN5ln4MCBmDBhQrNl5Ofn4/fff8eAAQMAADabDXl5ecjIyHDnEYvFyMjIQG5u7g2tP2vbbsb4bFRSUgKNRoNOnTphzJgxqKiouJFVZ+3EtY7RFStW4NixY8jOzvbKz8fQtoEDoT+JDz74AFKpFC+//HKzeWJjYxEVFeWV3qFDBygUCtx9992YNGkSnn32WQDAuXPn4HA4EBER4ZE/IiICOp3uxjaAtWk3Y3wCQFpaGlauXIkNGzbgn//8J8rLy9GvXz80NDTclHawtutaxmhJSQlmzJiBL7/8ElKp92+U8zG0bWjzvz7fFuTl5WHx4sXYv38/RCJRs/lWrVrVZPr27dthMBiwa9cuzJgxA507d8bo0aNvVnVZO3Mzx+eDDz7oztejRw+kpaUhLi4Oq1evRlZW1o1tCGuzrmWMOhwOPPnkk5gzZw4SExNvRTVZK+FA6E9g+/btOHPmDGJjY91pDocDr776KhYtWoTjx49fdv2OHTsCALp3747q6mrMnj0bo0ePRmhoKCQSCaqrqz3yV1dXIzIy8oa3g7VNN2t8NiUwMBCJiYkoLS29YfVnbd+1jNGGhgbs27cP+fn5mDx5MgDX6TUiglQqxa+//oq+ffvyMbQN4FNjfwLjxo3DwYMHodVq3S+NRoPp06fjf//731WV5XQ6YbVaAQByuRy9e/fGpk2bPJZv2rQJ6enpN7QNrO26WeOzKQaDAWVlZU2eYmOsOdcyRtVqNQoKCjzWmThxIrp06QKtVou0tDQ+hrYRPCN0mzAYDB5/5ZaXl0Or1SI4OBixsbEICQnxyC+TyRAZGYkuXbq405566ilER0dj7ty5AFzPtoiNjXU/d2Xbtm1YsGCBxznyadOmYfz48bj77ruRmpqKRYsWwWg04umnn76ZzWV/Mq01Pl977TUMGzYMcXFxOH36NLKzsyGRSPjULvNyo8eoWCxGt27dPNYJDw+HUqn0SOdj6J8fB0K3iX379mHQoEHu99OmTQMAjB8/HitXrmxRGRUVFRCLL07yOZ1OvPnmmygvL4dUKkVCQgI++OADvPDCC+48o0aNwtmzZzFr1izodDr07NkTGzZs8Lr4j7VvrTU+KysrMXr0aNTU1CAsLAx9+/bFrl27EBYWdmMaxtqMmzFGW4KPoX9+IiKi1q4EY4wxxlhr4GuEGGOMMdZucSDEGGOMsXaLAyHGGGOMtVscCDHGGGOs3eJAiDHGGGPtFgdCjDHGGGu3OBBijDHGWLvFgRC7qSZMmIDhw4ff8u2uXLkSIpEIIpEIU6ZMueXbv5FWrlyJwMDAm1J2fHw8Fi1adFPKZjfH3Llzcc8998Df3x/h4eEYPnw4iouLPfJYLBZMmjQJISEh8PPzw6OPPur1e1gvv/wyevfuDYVCgZ49eza5rYMHD6Jfv35QKpWIiYnBvHnzrqqeEokE8+fPv+o2Xo+lS5di4MCBUKvVEIlEqKur88pTW1uLMWPGQK1WIzAwEFlZWTAYDLe0nuz2wYEQu2aNgUZzr9mzZ2Px4sUtfqrrjaZWq1FVVYV33nmnVbb/Z7B37148//zzrVqHbdu2YdiwYdBoNBCJRPjxxx+98lRXV2PChAnQaDTw8fHBkCFDUFJS4l5+/PjxZsfhmjVr3PkqKiowdOhQ+Pj4IDw8HNOnT4fdbr9iHdesWYOkpCQolUp0794d69ev91j+ww8/YPDgwQgJCYFIJIJWq21R26/0hWyxWDBhwgR0794dUqkUw4cPx9atWzFp0iTs2rULGzduhCAIGDx4MIxGo3u9qVOn4ueff8aaNWuwdetWnD59GiNHjvTa/jPPPINRo0Y1WTe9Xo/BgwcjLi4OeXl5mD9/PmbPno2lS5e2qG2ff/45Xn/9dXz++ectyn+jmEwmDBkyBP/3f//XbJ4xY8agsLAQGzduxH//+19s27at1T8HrBURY9eoqqrK/Vq0aBGp1WqPtIaGhlar24oVKyggIKDVtn8jtaW2NGX9+vX01ltv0Q8//EAAaO3atR7LnU4n3XvvvdSvXz/as2cPHTlyhJ5//nmKjY0lg8FARER2u91j7FVVVdGcOXPIz8/PPQ7tdjt169aNMjIyKD8/n9avX0+hoaH05ptvXrZ+O3fuJIlEQvPmzaPDhw/TzJkzSSaTUUFBgTvPqlWraM6cObRs2TICQPn5+S1q+5AhQyglJYV27dpF27dvp86dO9Po0aPdyw0GA02cOJGWLl1KmZmZ9Mgjj3iVcebMGQJAW7duJSKiuro6kslktGbNGneeoqIiAkC5uble62dnZ1NKSopX+qeffkpBQUFktVrdaW+88QZ16dLliu3asmULRUdHk81mI41GQzt37vRYPn78eK+2vPLKKzRgwAD3e71eT08++ST5+PhQZGQkffTRRzRgwAB65ZVXrrh9IqKcnBwCQOfPn/dIP3z4MAGgvXv3utN++eUXEolEdOrUqRaVzdoWDoTYDdHcl/WlB7wBAwbQ5MmT6ZVXXqHAwEAKDw+npUuXksFgoAkTJpCfnx8lJCTQ+vXrPcopKCigIUOGkK+vL4WHh9PYsWPp7NmzV12fJUuWUOfOnUmhUFB4eDg9+uij7mUOh4Pee+89io+PJ6VSST169PD4MiEiOnToEA0dOpT8/f3Jz8+P+vbtS6Wlpe7158yZQ9HR0SSXyyklJYV++eUX97rl5eUEgL7//nsaOHAgqVQq6tGjB/3+++9edY+JiSGVSkXDhw+nBQsWeLRFq9XSwIEDyc/Pj/z9/emuu+7yOKj/kdPppOzsbIqJiSG5XE5RUVH00ksvuZfHxcXRwoUL3e8B0LJly2j48OGkUqmoc+fO9NNPP7W4D4iIli1bRklJSaRQKKhLly60ZMmSJuvWlKYCoeLiYgJAhw4dcqc5HA4KCwujZcuWNVtWz5496ZlnnnG/X79+PYnFYtLpdO60f/7zn6RWqz2+7C/1+OOP09ChQz3S0tLS6IUXXvDK27iPWxIIXe0XclPBAxFRSUkJAXAHZps2bWoyAIiNjaWPPvrIa/3mAqFx48Z5bW/z5s0EgGpray/btnHjxtFrr71GRESvvvqqx35ori2XBkLPPvssxcXF0W+//UYFBQU0YsQI8vf3v+5AaPny5RQYGOiRJggCSSQS+uGHH1pUNmtb+NQYu+W++OILhIaGYs+ePXjppZfwt7/9DY899hj+8pe/YP/+/Rg8eDDGjRsHk8kEAKirq8N9992HXr16Yd++fdiwYQOqq6vx+OOPX9V29+3bh5dffhlvv/02iouLsWHDBvTv39+9fO7cuVi1ahU+++wzFBYWYurUqRg7diy2bt0KADh16hT69+8PhUKBzZs3Iy8vD88884z71MrixYvx4YcfYsGCBTh48CAyMzPx8MMPe5zCAYC33noLr732GrRaLRITEzF69Gh3Gbt370ZWVhYmT54MrVaLQYMG4R//+IfH+mPGjEGHDh2wd+9e5OXlYcaMGZDJZE22+fvvv8fChQvxr3/9CyUlJfjxxx/RvXv3y/bTnDlz8Pjjj+PgwYN46KGHMGbMGNTW1raoD7766ivMmjUL7777LoqKivDee+/h73//O7744ouW7iYvVqsVAKBUKt1pYrEYCoUCO3bsaHKdvLw8aLVaZGVludNyc3PRvXt3jx/DzMzMhF6vR2FhYbPbz83NRUZGhkdaZmYmcnNzr6k9fyw3MDAQd999tzstIyMDYrEYu3fvblEZTqcTU6ZMQZ8+fdy/iK7T6SCXy72uK4uIiIBOp2tx/XQ6ndcPhza+v1w5er0e3333HcaOHQsAGDt2LFavXn1V1+A0NDTgiy++wIIFC3D//fejW7duWLFiBRwOR4vLaI5Op0N4eLhHmlQqRXBw8FX1D2tDWjsSY23D1cwI9e3b1/3ebreTr68vjRs3zp1WVVXlMY3/zjvv0ODBgz3KPXnyJAGg4uLiFtfn+++/J7VaTXq93iu/xWIhHx8fr9mZrKws96mKN998kzp27Eg2m63JbWo0Gnr33Xc90u655x568cUXiejibMG///1v9/LCwkICQEVFRURENHr0aHrooYc8yhg1apRHW/z9/WnlypVN1uFSH374ISUmJjZb56ZmhGbOnOl+bzAYCIB7ZutKfZCQkEBff/21R9o777xD6enpLaovmpgRstlsFBsbS4899hjV1taS1Wql999/nwB4jYtGf/vb36hr164eac8995xXfqPRSAC8ZiD/SCaTebVpyZIlFB4e7pX3amaE3n33XUpMTPRKDwsLo08//dQrvalZlIkTJ1JcXBydPHnSnfbVV1+RXC73Wv+ee+6h119/3Su9uRmhBx54gJ5//nmPtMbxevjwYdq2bRv5+vq6X19++SUREX322WfUrVs3j/WSk5M9xv2VZoS0Wi0BoBMnTnjk6dWrl3tG6N133/XY/qV5m5sRutp+Z20fzwixW65Hjx7u/0skEoSEhHjMUjT+1XnmzBkAwIEDB5CTkwM/Pz/3KykpCQBQVlbW4u0+8MADiIuLQ6dOnTBu3Dh89dVX7lmn0tJSmEwmPPDAAx7bWbVqlXsbWq0W/fr1a3L2Ra/X4/Tp0+jTp49Hep8+fVBUVNRs+6OiojzaWlRUhLS0NI/86enpHu+nTZuGZ599FhkZGXj//fcv2wePPfYYzGYzOnXqhOeeew5r16694sXBf6yfr68v1Gq1u36X6wOj0YiysjJkZWV59OE//vGPq9pPl5LJZPjhhx9w9OhRBAcHw8fHBzk5OXjwwQchFnsfwsxmM77++muP2aCWqKio8Kj3e++9d811vtTEiRM9yr4RJk+ejP/+97/IyclBhw4d3OmRkZGw2Wxed0tVV1cjMjKyxeVHRkZ63WnW+D4yMhJ33303tFqt+/Xwww8DAJYvX47CwkJIpVL36/Dhwx4XTYvFYhCRR9mCILS4boCrT/+4fY1G0+J2NY7nRna7HbW1tVfVP6ztkLZ2BVj7c+mXqEgk8kgTO+glDQAADIVJREFUiUQAXNP+AGAwGDBs2DB88MEHXmU1BhIt4e/vj/3792PLli349ddfMWvWLMyePRt79+51T9uvW7cO0dHRHuspFAoAgEqlavG2LudybW2J2bNn48knn8S6devwyy+/IDs7G9988w1GjBjhlTcmJgbFxcX47bffsHHjRrz44ouYP38+tm7d2uzptKb2T2P9LtcHjX24bNkyr2BOIpG0uH1N6d27N7RaLerr62Gz2RAWFoa0tDSP00qNvvvuO5hMJjz11FMe6ZGRkdizZ49H2h+/2DUajcfdXsHBwe5lTQUEV/Ol+fbbb+O1117zqs+1fCETEV566SWsXbsWW7ZsQceOHT2W9+7dGzKZDJs2bcKjjz4KACguLkZFRYVXUH056enpeOuttyAIgntMbNy4EV26dEFQUBAAoHPnzh7rFBQUYN++fdiyZYu7/wDX3XEDBw7EkSNHkJSUhLCwMBw6dMhjXa1W695Op06dIJPJsHfvXsTGxgIA6uvrcfToUffp7ODgYI9tXE276urqkJeXh969ewMANm/eDKfT6TVuWfvAM0LstnfXXXehsLAQ8fHx6Ny5s8fL19f3qsqSSqXIyMjAvHnzcPDgQRw/fhybN2/GnXfeCYVCgYqKCq9txMTEAHDNlGzfvr3Jv1zVajU0Gg127tzpkb5z507ceeedLa5f165dva4P2bVrl1e+xMRETJ06Fb/++itGjhyJFStWNFumSqXCsGHD8PHHH2PLli3Izc1FQUFBi+v0R5frg4iICGg0Ghw7dsyrDy/9sr5WAQEBCAsLQ0lJCfbt24dHHnnEK8/y5cvx8MMPIywszCM9PT0dBQUFHsHHxo0boVarceedd0IqlXrUufFLNj09HZs2bfIoa+PGjVcVVISHh3uU3Vhu4xdyo5Z8IU+aNAlffvklvv76a/j7+0On00Gn08FsNrv7KCsrC9OmTUNOTg7y8vLw9NNPIz09Hffee6+7nNLSUmi1Wve6jTMrNpsNAPDkk09CLpcjKysLhYWF+Pbbb7F48WJMmzat2botX74cqamp6N+/P7p16+Z+9e/fH/fccw+WL18OALjvvvuwb98+rFq1CiUlJcjOzvYIjPz9/TF+/HhMnz4dOTk5KCwsRFZWFsRisfuPh+bodDpotVqUlpYCcAVnWq3WfZ1b165dMWTIEDz33HPYs2cPdu7cicmTJ+OJJ55o8awSa2Na+9wcaxuu5hqhS+/6uPQ6FSLPa0VOnTpFYWFh9Ne//pX27NlDpaWltGHDBpowYQLZ7fYW1+fnn3+mxYsXU35+Ph0/fpw+/fRTEovF7ruR3nrrLQoJCaGVK1dSaWkp5eXl0ccff+y+HufcuXMUEhJCI0eOpL1799LRo0dp1apVdOTIESIiWrhwIanVavrmm2/oyJEj9MYbb5BMJqOjR48SUdPXj5w/f54AUE5ODhER5ebmklgspvnz59PRo0fpk08+ocDAQHdbTCYTTZo0iXJycuj48eO0Y8cOSkhIaPLaj8Z++Pe//00FBQVUVlZGM2fOJJVKRefOnWuy79HENToBAQG0YsWKFvXBsmXLSKVS0eLFi6m4uJgOHjxIn3/+OX344YdN1o+IqKGhgfLz8yk/P58A0EcffUT5+fke13ysXr2acnJyqKysjH788UeKi4ujkSNHepVVUlJCIpHI4269Ro23zw8ePJi0Wi1t2LCBwsLCWnT7vFQqpQULFlBRURFlZ2d73T5fU1ND+fn5tG7dOgJA33zzDeXn51NVVdVlyx4yZAj16tWLdu/eTTt27KA77rjD4/Z5Itd1Ofn5+TRs2DAaOHAgAWjy1biPiIjMZjO9+OKLFBQURD4+PjRixAivugwYMKDJcsrLy915Dhw4QH379iWFQkHR0dH0/vvvN9sWq9VKISEhNG/evCaXf/DBBxQeHu6+vmzWrFkUERFBAQEBNHXqVJo8efIVb59PTU2lGTNmXLZPs7Ozr9g/NTU1NHr0aPLz8yO1Wk1PP/10qz7ug7UuDoTYDXEzAyEioqNHj9KIESMoMDCQVCoVJSUl0ZQpU8jpdLa4Ptu3b6cBAwZQUFCQ+9b1b7/91r3c6XTSokWLqEuXLiSTySgsLIwyMzPdz2chcn0xDB48mHx8fMjf35/69etHZWVlROS6pXv27NkUHR1NMpms2dvnLxcIEblu7+3QoQOpVCoaNmyYx+3zVquVnnjiCfft8BqNhiZPnkxms7nJfli7di2lpaWRWq0mX19fuvfee+m3335rtu+vFAhdqQ+IXBfr9uzZk+RyOQUFBVH//v0ve1ty40Wtl77Gjx/vzrN48WLq0KEDyWQyio2NpZkzZzZ5y/ubb75JMTEx5HA4mtzW8ePH6cEHHySVSkWhoaH06quvkiAIzdat0erVqykxMZHkcjklJyfTunXrPJavWLGiyTZkZ2dfttyWfCHHxcU1WXZ7YzAYKCAgwOOia8ZuBBHRJVesMdYGrFy5ElOmTGny8fqMsdtffn4+jhw5gtTUVNTX1+Ptt9/Gli1bUFpaitDQ0NauHmtD+Boh1mbV19fDz88Pb7zxRmtXhTF2DRYsWICUlBRkZGTAaDRi+/btHASxG45nhFib1NDQ4L7TJzAwkA+ejDHGmsSBEGOMMcbaLT41xhhjjLF2iwMhxhhjjLVbHAgxxm6p+Ph4iEQiiEQivquPMdbqOBBirJUtWbIE8fHxUCqVSEtL8/gZCIvFgkmTJiEkJAR+fn549NFHvX7uoSlr1qxBUlISlEolunfvjvXr13ssJyLMmjULUVFRUKlUyMjIQElJyRXL3bJlC+666y4oFAp07twZK1euvKr2AMDevXvx/fffX3FbjDF2K3AgxFgr+vbbbzFt2jRkZ2dj//79SElJQWZmpvtnIKZOnYqff/4Za9aswdatW3H69GmMHDnysmX+/vvvGD16NLKyspCfn4/hw4dj+PDhHj9hMG/ePHz88cf47LPPsHv3bvj6+iIzMxMWi6XZcsvLyzF06FAMGjQIWq0WU6ZMwbPPPov//e9/LW4PAISFhV3Tb0QxxthN0YoPc2Ss3UtNTaVJkya53zscDtJoNDR37lyqq6sjmUxGa9ascS8vKioiAJSbm9tsmY8//jgNHTrUIy0tLY1eeOEFInI9QTsyMpLmz5/vXl5XV0cKhYL+85//NFvu66+/TsnJyR5po0aNoszMzBa1548anyZ9/vz5ZrfHGGO3As8IMdZKbDYb8vLykJGR4U4Ti8XIyMhAbm4u8vLyIAiCx/KkpCTExsYiNzfXnRYfH4/Zs2e73+fm5nqsAwCZmZnudcrLy6HT6TzyBAQEIC0tzaPcgQMHYsKECS0u90rtYYyx2xEHQoy1knPnzsHhcCAiIsIjPSIiwv2L4nK5HIGBgU0ub5SQkODxwEidTtdsmY3LG9MuV25sbCyioqKuWK5er4fZbL5iexhj7HYkbe0KMMauz6ZNm25KuatWrbop5TLG2O2EZ4QYayWhoaGQSCRed4FVV1cjMjISkZGRsNlsXreYNy5vTmRkZLNlNi5vTLsR5arVaqhUqiu2hzHGbkccCDHWSuRyOXr37u0xo+N0OrFp0yakp6ejd+/ekMlkHsuLi4tRUVGB9PT0ZstNT0/3miXauHGje52OHTsiMjLSI49er8fu3buvq9wrtYcxxm5LrX21NmPt2TfffEMKhYJWrlxJhw8fpueff54CAwNJp9MREdHEiRMpNjaWNm/eTPv27aP09HRKT0/3KOO+++6jTz75xP1+586dJJVKacGCBVRUVETZ2dkkk8mooKDAnef999+nwMBA+umnn+jgwYP0yCOPUMeOHclsNrvzjBs3jmbMmOF+f+zYMfLx8aHp06dTUVERLVmyhCQSCW3YsKHF7WnEd40xxm4XHAgx1so++eQTio2NJblcTqmpqbRr1y73MrPZTC+++CIFBQWRj48PjRgxgqqqqjzWj4uLo+zsbI+01atXU2JiIsnlckpOTqZ169Z5LHc6nfT3v/+dIiIiSKFQ0P3330/FxcUeeQYMGEDjx4/3SMvJyaGePXuSXC6nTp060YoVK66qPX8shwMhxtjtgH99njF2y23ZsgWDBg3C+fPnve6KY4yxW4nvGmOM3VLJyck4duxYa1eDMcYAADwjxBi7pU6cOAFBEAAAnTp1gljM92wwxloPB0KMMcYYa7f4TzHGGGOMtVscCDHGGGOs3eJAiDHGGGPtFgdCjDHGGGu3OBBijDHGWLvFgRBjjDHG2i0OhBhjjDHWbnEgxBhjjLF26/8D9JHskabsKdUAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHXCAYAAABQ5DVtAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+vpJREFUeJzsnQd4HNW1x/8z2/tKq95l2ZZ77xTbYFzoPQQIhJDwQigBAgFC50FooYdAEvIgJCGEJBAg4EIxxVTbuFdJVu9te9+Z992zkSI3sC3Zkqzz8zff7k69OzszOr73nt+VVFVVwTAMwzAMMwSR+7sADMMwDMMw/QUHQgzDMAzDDFk4EGIYhmEYZsjCgRDDMAzDMEMWDoQYhmEYhhmycCDEMAzDMMyQhQMhhmEYhmGGLBwIMQzDMAwzZOFAiGEYhmGYIQsHQgzzLdx9992QJAltbW39XZSjjg8//JDObde0Zs2aQ9qP0+ns3sfVV1/d5+VkGObohQMhhmF6xYoVK3D55Zdj3Lhx0Gg0KCoqOuh9/OIXv8Cf/vQnDBs2rHteY2MjbrnlFsyfPx82m42CHBE47Yvf/e53tD3DMMzBwoEQwzC94uWXX6bJ4XAgJyfnkPZx0kkn4eKLL0Zqamr3vB07duChhx5CfX09xo8f/43bn3/++bQ9wzDMwcKBEMMwveKXv/wlvF4vPv30U0ycOLHP9jt16lS0t7dj586duOGGG/psvwzDMD3hQIhhDhDRR0jUPNjtdrhcLvz0pz9FOBzea70///nP9EfcZDJRDccFF1yA2tra3db55JNPcN5556GgoAAGgwH5+fm4/vrrEQqFdlvv+9//PqxWK2pqanDqqafS+9zcXDzzzDO0fNOmTTjhhBNgsVhQWFhINTNHGlELpNPp+ny/ojmsZw0RwzDM4YADIYY5QEQQJAKfBx54ACeffDKeeuopXHHFFbutc//99+OSSy7BiBEj8Nhjj+G6667D+++/j+OPPx5ut7t7vb///e8IBoO48sor8fTTT2PRokX0Krbdk0QigSVLllCw9PDDD1MfHNEh+MUXX8TixYsxbdo0akISgYPYvrKy8lu/S2dnJwV23zaJMjIMwxzVqAzDfCN33XWXKm6V008/fbf5P/nJT2j+hg0b6HNVVZWq0WjU+++/f7f1Nm3apGq12t3mB4PBvY7zwAMPqJIkqdXV1d3zLr30UjrGL3/5y+55nZ2dqslkonVfeeWV7vnbt2+ndUV5v43CwkJa99umA9lXT0455RTa94GycuVKOo54/Sb+/ve/H9B6Yp2rrrrqgI/PMAyj7e9AjGEGC1ddddVun6+55hr85je/wTvvvIMJEybgtddeg6IoVHPUM9U+KyuLaohWrlxJ2VEC0WzWRSAQoCaxOXPmiP+YYN26ddRk1pMf/vCHu6WKl5aWory8nI7VhZgnlu3atetbv8tf/vKXvZrh9kXPLC6GYZijEQ6EGOYAEcFMT0pKSiDLMqqqquhzWVkZBTJ7rtdFz340os/PnXfeiTfffJOaqXri8Xh2+2w0GpGenr7bPJGhlZeXRynle87fc3/74phjjvnWdRiGYYYCHAgxzCGyZxAiaoPEvKVLl5JPZ09ER+euPj8iXbyjowM333wzRo0aRZ2dRZq46Bwt9tOTfe3rm+YnW4i+mdbWVirHtyHK3FVuhmGYoxEOhBjmABE1PsXFxd2fRdOUCFq6BIKihkgEIWKdkSNH7nc/ItNLpIT/8Y9/3K1z9LvvvosjxfTp01FdXf2t6911111k1mYYhjla4UCIYQ4QkbK+cOHC7s8iy0sgMroEZ599Nm699Vbcc889lELfs8ZIBEiiBkik3XfV5PSsuRHvn3zyySP2XbiPEMMwTBIOhBjmABFp6aeffjqlrH/++ecU7Fx44YXdEkFRI3TfffdRMCT6DZ155pmU0i62e/311ynV/sYbb6SmMLGueC+aw4SX6J///OcB9e3pK/qyj9DGjRupr1NXLZno4yTOg0Ccm9NOO+2Q9921ny1bttCrGEZj1apV9P7222/vg9IzDDPU4UCIYQ6Qv/3tb9TBWYx/pdVqyeXzyCOP7LaOWCaaxR5//HGqGRII/4+oSRJBVFen6bfeegvXXnstOYlEZ+izzjqL9teXZuYjxddff4077rhjt3ldny+99NJeBUJ77vf//u//ut9zIMQwTF8giRz6PtkTwzDMQSIGURWDqv7rX/+iWiqR/i+CzINFNDuK/loiu05oDn79618flvIyDHP0wWZphmH6HdGMKIKY9evXH9L2oi/TnooBhmGYA4GbxhiG6TdEU2DPbDkhhTwU3njjDcRise6mSIZhmAOFm8YYhmEYhhmycNMYwzAMwzBDFg6EGIZhGIYZsnAgxDAMwzDMkOWo7ywtUmobGhpIbLfn2FAMwzAM0xPRbdbn8yEnJ4cGVT5chMNhRKPRXu9Hr9eTi4w5dI76QEgEQZxFwjAMwxwMtbW1yMvLO2xBUHGhFU0t3z7w8beRlZVF9noOhg6doz4QEjVBXRe1GMqA2Z1zRvwM/yx7FAOds9J/iNdbn+/vYjAMM4A5u+havFb1VK/24fV66T/PXX87DgeiJkgEQZVrC2G3HXqtk9enoHhqNe2PA6FBGgh9/PHHNETB2rVr0djYSOMxCbGaQDhBhEL/nXfewa5du+BwOLBgwQI8+OCDVGV5oHQ1h4kgiAOhvdHK+kFxXrSSblCUk2GYo+N5diS6UoggqDeBENM39OsvEAgESKgmRvXek2Aw2D2GkXh97bXXsGPHju7xmhiGYRhmMJNQlV5PzCCvEVqyZAlN+0LUAPU0zgrE+EEzZsxATU0NCgoKjlApGYZhGKbvUaDS1JvtmSHWR8jj8VB1pRiYcX9EIhGaerb3MgzDMAzD7ItB0zgpetnffPPN+O53v/uNbcAPPPAA1SZ1TZwxxjAMwwxElD74xwyRQEh0nD7//PPJ7/Dss89+47q33nor1Rx1TSJbjGEYhmEGGglV7fXEDIFAqCsIqq6upj5D35YRYDAYujPEOFPs21nauHdH9cPFQt0Fh7zt8vBfut8vslxCr0uyr+qTcjHMQGZJwXX7nH+SfN5B7edg1x9sLLZfhh1PFPdqH4uMF/VZeZjBg3YwBEFlZWVYuXIlXC5XfxeJYRiGYfoE7iw9MOjXQMjv96O8vLz7s7Bjrl+/HqmpqcjOzsa5555LqfP//ve/kUgk0NTUROuJ5UIrzjAMwzCDFRHIJDgQGtqB0Jo1azB//vzuzzfccAO9Xnrppbj77rvx5ptv0udJkybttp2oHZo3b94RLi3DMAzD9B1cIzQw6NdASAQzogP0/vimZQzDMAzDMEd1HyGGYRiGOVrpbeYXZ431DRwIMQzDMEw/ICxAvTEBsUVoiKTPMwzDMAzDHC44EGJ6zZLMKw9ovRWxV/rkeMsDLyWPqSj79YkwzNHC0pondvNmCR/X4rQroJkwmhxDB+oHelf5OwYqvfH3dH3/Zd4XkLlUjxNOfLBPfGVHApEx1tvpYPj4449x2mmnIScnh4ar+te//rXXOtu2baPBzcXIDBaLBdOnT6fxPXuO8nDVVVeRzsZqteKcc85Bc3MzBjMcCDEMwzBMP5BQez8dDIFAABMnTsQzz+xbpFtRUYFjjz0Wo0aNwocffoiNGzfijjvugNFo7F7n+uuvx1tvvYW///3v+Oijj9DQ0ICzzz4bgxnuI8QwDMMwQ4AlS5bQtD9uu+02nHzyyXj44Ye755WUlHS/F8NW/eEPf8DLL7+ME044gea98MILGD16NL744gvMmjULgxGuEWIYhmGYfuws3ZtJ4PV6d5sikcjBl0VR8Pbbb2PkyJFYtGgRMjIyMHPmzN2az9auXUsjPixYsKB7nqg9KigowOeff47BCgdCDMMwDNMPKJCQ6MUkthfk5+dTn56u6YEHHjjosrS0tNBoDw8++CAWL16MFStW4KyzzqJmL9EEJhCjO4hRHZxO527bZmZmdo/8MBjhpjGGYRiGGcTU1tbuNsC4GHz8UGqEBGeccQb1A+oa1eGzzz7Dc889h7lz5+JohQMhhmEYhukHFDU59WZ7gQiCegZCh0JaWhq0Wi3GjBmz23zR/2fVqlX0PisrC9FoFG63e7daIZE1JpYNVrhpjGEYhmH6gd40i3VNfYVer6dU+R07duw2f+fOnSgsLKT3U6dOhU6nw/vvv9+9XKwv0utnz56NwQrXCO3HQyOcFMyBsbT52cPqF9mX26PrmMIh0tOPIlwrajR62MrDMEeCxSk/hFJagBVf3Jn8nHYFFI+X5veVj2tf909/0Rt/T8/y2/76Bar/dw4GC70NZg52W9EHqLy8vPtzZWUl1q9fj9TUVOrwfNNNN+E73/kOjj/+eBoQfdmyZZQqL1LpBaL/0eWXX04DpIttRC3UNddcQ0HQYM0YE3AgxDAMwzBDgDVr1lCA04UIaASXXnopXnzxReocLfoDic7W1157LUpLS/HPf/6T3EJdPP7445BlmUSKIjtNZJj95je/wWCGAyGGYRiG6QcUVaKpN9sfDPPmzYP6LQO1/uAHP6Bpfwi5ohAy7k/KOBjhQIhhGIZhhkDTGLNvuLM0wzAMwzBDFq4RYhiGYZh+IAGZpkPfnukLOBBiGIZhmH5A7WUfIbE903u4aWwfDITUeZHWejQc49tS43ubVrtX6q+idG9zIPtnmIFw7ywZfStpO+j98JuA/CxoPCEsHntbUufR9jtKm1/W+XyfHvdIp84v1F1wQOstslxy0PsW93t8wTTsvO363X4f8X5J5pUHvT9m6MA1QgzDMAzTD3Bn6YEBB0IMwzAM0w8kVJmmQ9++T4szZOGmMYZhGIZhhixcI8QwDMMw/YACCUov6iMUcJVQX8CBEMMwDMP0A9xHaGDAgRDDMAzDDMo+Qlwj1BdwHyGGYRiGYYYsHAj1M0uKk6P/7ol2WNF+t1mc8sNDOtaeXp0uh8iSvGv7xbnzbY6gb2PP8yC+w9LmZ79x/+RoYQaVY+lQnD2H8/uJ8hysf2d/HpslBdfRM0CpqYeUkYYlI29GoroWyzbeh6XbHsCyLff3uqxHmm86pnAhHQjLAy8d9HHF/R61a+h5Jn6frnKI9z2fC33xLO3bPkK9m5jew01jDMMwDNMPKL0cYoM7S/cNXCPEMAzDMMyQhWuEGIZhGKYf4M7SAwMOhBiGYRimn5rG2CPU/3DTGMMwDMMwQxauEWIYhmGYfiChSjT1Znum93AgxDAMwzD9QKKXWWMJbhrrE7hp7DCzJPsqel1sv4y8FsIbIt4vTruC5qs283/XzbuWlguWlj+yXzfHss7n9zpO1/72fN917C7Pxr78Kmo4/M3foeC6/XpZusrVdYxFU+/qnvdtDpOu77rn+wOl53kQ51l8v/0dc9rlj2HuyQ/vdV77gv5wtfS3w+lIcrDOnsP9/Q6lPDAY9pp1wokPYmnNEwiPyIR/yQS6NpfufIhcO0tG39rtuFnmfeGwlFU4i/rz/BzKPd/1HFpkuYSeOQt1F+y2/NN/3Iiya4qxYO4voZkw+lufy/t6ljJDD64RYhiGYZh+QFFlmg59e64R6gs4EGIYhmGYfoCbxgYGHAgxDMMwTD+g9LLDs9ie6T3cR4hhGIZhmCEL1wgxDMMwzKAUKnJdRl/AgRDDMAzDDMohNjgQ6gv4LDIMwzAMM2ThQKiPEf6PnixtfKbbBaJJTQFiMXq/rO13WDzpTkgd3uR2w2+CGghCdXu6fRnClUHLsq/ap5tDeDiEe2jxhNtpf130fN917C7fzb78KmL9b/KuCNeJpNdj/sKH9lrWVS5xDFEeubmze554FWXb53kqvoH22/MYXQg/yJLMK3EwKJ1uOmc9z5M4RhfpnzTD+MGG/ZanN9D3/I9HiRla7Os6Ffe1cHmJ61Hcc3RtWEzJ9cX9+p9rRdFJdD2uXHEz+W96snTbAwfluPkml9W+lokyCGdRV5l6esKEv6jL8SM8PeK7HI77puc93/Ws29/nLsRzSJR1eeCl5DM1O2uvdbKmNqL8+1qgrmm3+fRbjL2N9t31XN4XZzj2fezDgQKp1xPTe7hpjGEYhmH6AW4aGxjwWWQYhmEYZsjCNUIMwzAMMyiFilyX0RdwIMQwDMMw/YCiSjT1Znum93A4yTAMwzDMkIVrhBiGYRimHxBCxN40b7FQsW/gQIhhGIZhBuXo8xwI9QV8FvuILjeI8H90z/uPS0S4hbpcPx0LSjD35IdpuW+4HZBlnDj/ASSqa2lefPII8gbJ2Zk0CZ+HGovtdTyxX+HhUFPtWLbxvu75wvuxL4SnKLZwGpVj7mmPUNno1X4ZTppzH0469v69t/mPS0Ssp5YWwVjVgSUjb6bvs6cvacaljwF6HWovLE76OtKu+O95GHvbXr6VpZWPkW9lXwg/yNLmZ+n9Mef+qvv89nSd7IVGQy4k4UDpeQxyLQ2/CfEMO5Qpo9E5MTVZnuyr0Jd0uZqYo4P9eWz2RFyne667bP29kJwOyMUFiJw2A4kJwxHOd9L13nxaMV0r4v4wfLgRki9I2/S8brvouscWTb3rWx1B+/KMdbGvZaIMXdsm8tK6PWLiWPEJwxAtyaTPmuHFQE4G0NDSve2hOoV63r/inuz5nYUXiOaPvDnpOwu8tJv/qOcxWy+d9t/vHonQPd61rih/53vZSP9YC8lo3KsMUiSK0ILxyWdY3rX7fF6+4UmW5UiQgNTriek9HAgxDMMwDDNk6ddA6OOPP8Zpp52GnJwcSJKEf/3rX7stV1UVd955J7Kzs2EymbBgwQKUlZX1W3kZhmEYpq+bxnozMb2nX89iIBDAxIkT8cwz+9adP/zww3jqqafw3HPP4csvv4TFYsGiRYsQDoePeFkZhmEYpi9J9Lp5jBn0naWXLFlC074QtUFPPPEEbr/9dpxxxhk076WXXkJmZibVHF1wwb77wjAMwzAMwxwoA7ZerbKyEk1NTdQc1oXD4cDMmTPx+eef73e7SCQCr9e728QwDMMwAw1uGhsYDNizKIIggagB6on43LVsXzzwwAMUMHVN+fn5h72sDMMwDHOog672ZmJ6z1F3Fm+99VZ4PJ7uqbY2mZbOMAzDMAwzaAKhrKwsem1ubt5tvvjctWxfGAwG2O323aZ9IfwRXe6fw+WRaT1rNL2qOg1NwnWRsqGj23dh/6oOnln5kCMJqDPHI3RsKRIGDSJj8tF6Qh4CYzPIFSScJHv5OzQa8mfEXBZy4pCz6D++EfFZLFs0/Z7u1ZUUK/TuCL3X+uPwnFQK8Z8JUe72iRY6bk9vh0AcW+DP0iJh1sE7IR2hYamI5Dh28yUJvvrjDVha/ghstQqii6dD0miwcNa9tEyKxRGcMYx8ReKci2n+woegbq/Y65h7YqlLelaQn0Ouk671e3qKhA9E0uuTv0Pn83t9B1GuzlITok49TK0xuCelQslJw4K5v0x6kYpv+MYyMEOPLq/NtyGuR7kgl17FM0Vc18JRI+5dBELQeeN4d9VtMG6qIb/Q189eT9sJp5i4nlWbebfrtsutJe4RcY+J63z52uR93HXt97xnNKkp+3QQCfZ05NBzIfuqbp+PetxkWkdT/d9nLD2rZAkxe7L7aOeUNHrtegaJe1hq7ez2gvV8hu7rXu7p/+pyFYnnguIw73aviv2K9RSbEfEFSd+Z8B+J55jYR5crTcpIg7FTSXrPZk2E+4ThUNo7aBvyrzW04eJL3oUcB5TMlN18TOJciWeBHFHQMS0dS+ueoucUrTP8pu6ynFOS/I2OBCokKL2YxPbMURwIFRcXU8Dz/vvvd88T/X1E9tjs2bP7tWwMwzAM01u4aWxg0K9ZY36/H+Xl5bt1kF6/fj1SU1NRUFCA6667Dvfddx9GjBhBgdEdd9xBzqEzzzyzP4vNMAzDMMxRQr8GQmvWrMH8+fO7P99wQ7KJ4tJLL8WLL76In//85+QauuKKK+B2u3Hsscdi2bJlMO5Dnc4wDMMwgwlFlWjqzfZM7+nXerV58+aRL2jPSQRBAmGbvvfeeylLTEgU33vvPYwcObI/i8wwDMMwfYIYeb63U1+O5tCTH//4x7SO8Pn1pKOjAxdddBH1v3U6nbj88supdWcwww2MDMMwDNOPNUK9mfpyNIcuXn/9dXzxxRcUMO2JCIK2bNmCd999F//+978puBKtNoOZfm0aYxiGYRim/0dz6KK+vh7XXHMNli9fjlNOOQU92bZtG3VPWb16NaZNm0bznn76aZx88sn41a9+tc/AaTDANUIMwzAM0w8okHs9CfYcTUGMsHBI5VEUfO9738NNN92EsWPH7rVcjOogmsO6giCBGP1BlmXK6B6sDNlASDO8GGpi7yHrupwTfYGlJY747HFon5qKlllOaEuHwzM2BbWLNahd4kRgci4SBgnBHCN5btrGahG1a2CoboeilxBKTbp91PZO2l/C+t9O4pLJCPcx+eT7CE4uROeSUYg5TYieOBnxkhxya7hH2WjdE+c/gJoldvgLLAiUONExxoiO0TLtX7g3wi6gZaqBvB3CRUTujkl3dnuInOVhNM00wVukgc4fxwfv30J+E+H+6GLO+Y9i3uKH4FzbAk1EAVKdSJh0iKeYERidRu4ObWeg27dkqPdCslromHsivChdnhLPCCu9LttyP/02Xd4P4WHp8pYIH4gaCmHuyQ/T9+lC+EqOP+MRenWt98C8rQnGpgCcmzqhmPSIOnVon52J2vPy6bserE/o2xxIzODnm35jcT16vjcbzfMy6N6WHXa6fxWrEYEMLRCLoXWSEbO/+yiWNiabIoS7Stw74hpfZLmEngddiM/Klp30PnTsaLqWxXXehbhXhFNnt3smL4uufSpP3rVYPPa27kUrYq8k5//nXkq0tUNNT0n6uObch1C6nvxb4fEFyeMbL0Igzww5pkBSks+NqFVGzakutM7NTpbhs9sRmFEEJS+DnhMoyu3+Xvu6l8X93uUPIvePePZWNkLduIOcS13IsQQSM8ciWGCDP1dH3iDyI1lM5BCj8k2/B9H8VLRMl6DoZHSMtUDvSdB3MJY1J7+H0YD3rzwWLTNUhDMttF2X8yzR0YlZFz2KsEtLDjVyII0dTudNdXvo3InfwDunGEeKhCr1ehKIERR6jqggRlg4FB566CFotVpce+21+1wu+utmZGTsNk+sLzK9v2nEh4EON40xDMMwzCBGjKDQUx4sxMIHy9q1a/Hkk0/i66+/pk7SQ4khWyPEMAzDMEdDZ+k9R1M4lEDok08+QUtLCzn8RC2PmKqrq/Gzn/0MRUVFtI6QHIt1ehKPxymT7JtGfBjocI0QwzAMw/QDai9HkBfb9xXf+973qL9PTxYtWkTzL7ssOZSKGNVBOP1E7dHUqVNp3gcffEB9i2bOnInBCgdCDMMwDDME+LbRHFwu127r63Q6qukpLS2lz6NHj8bixYvxox/9CM899xxisRiuvvpqXHDBBYM2Y0zAgRDDMAzD9AMJSDT1Zvu+HM3hQPjLX/5Cwc+JJ55I2WLnnHMOnnrqKQxmOBBiGIZhmH5AUXs3TIbY/lBGczhQqqqq9ponao9efvllHE0Mqc7SPdOj1fomLA+8tNvyhboLEN9R/s37yNt3WuG+CDs1SBhkJIzJCz2eYoGilZCySYY2AEop7xwlwdgeg3eYhILXmhA3yWg+KQfeIiCQLVFKqhqNJo8rS5R6e8y5v0LLeaNh6IwjZpbhHqGDsT0O93ADOkv1aB9vpu/m3OrBkuE3oeE4IxwVCgLZMhpnaWBtSED8R8K1tgNKpxvBbAX+QoXSZ0VauUj7DeVY0TbJTim0lacbaLkuANSdYKbjB48ZAY0/TN9LbGdwx9EyTY/mE7NgKGuCZ3wapfaLtHvzyq2UVhwsTqYKC22Be1Iq4mOL9j6/BddB0usAWzJt3tIQpbR88dvFXdbulGCR5k/pxBNu797W9PlOqJn/rdoV6fs6bxyahg54R9oRz3WhZXYKgsUOaLyh5LKoCv+4CJrm2KGk2nDCiQ8e8O+7r3ThrvPB9C99pTbo+o17ajXENSquR3E9G7wKDG4F0Sw71FAY2oiK9gk2ZCyvppT5tI0R2Hd6kynzaVcgYdDQesjPAsaUwPlB8nkjrmPZlQpp0mj6TAoK/CfFu8c11aWf6CrTsvX3Qi4uSKbo1z0FKRii7961vngV95uY5z9rOiR3ciiEqMuAzpEahE8YD0+JnhQT0eMnwPbhTrSPNaNxlhado4z0F6LwpUrofSqlv0+4/nEYm0NomOvE0ponutP/3/voF/SMEs+bnmnxXWUQ6fXymq3J+9VmJX2JeCaQpmPqXWidZoccicNS4YapI5HUYORnkYoglpF8FoTTTZAUFaZGCcEsPbzD/nOA/CxEhmXAsLoMqs0MbVsAEyZXouqcpAKgJ863NkOVJcTNEp1LqawG0RHZpCmQOtyk55D3tqowRzlcI8QwDMMw/YDSy87SvdmW+S8cCDEMwzBMP6BAoqk32zO9hwMhhmEYhukHetqhD3V7pvdwvRrDMAzDMEMWrhFiGIZhmH6A+wgNDDgQYhiGYZj+6iPUm/R57iPUJ3AgxDAMwzDMEaOsrAwrV66kccvE8Bw9ufPOO3GkkdSDsSsNQrxeLxwOBzweT/fovMIDEhyXA9NX5UA0tpubY38ID4dwigjXkHBgLN32Xz/F3JMfxkfv/Lz7s3BlqDsrUXnHNNiqgGA2ECqOIfMDLZpnqbCXy4jZgJTtCpqOBWwVMrzTw9DUG5G6VYU/V4KpFQjkAqlbk/6ftI1h8nqkf+VG1GVGx2g9jB0q3CMlWBqSx40bAW0YUE7tQPyjVOg9gKoFOsclYKnWQFKA3PfdWL72Hpw05z5c9tJb+NA9Cp/UDkOoxYKc9yX48mToQkAgB7DUAY7KKBp+HIHxIxt8JQoUgwrbDg2sjQq5i3TeCFZ8cScm/vRxKBpxQQG22gSCmZru8yGOa2xXoPMnYFq1DZLFDM9xw8gJYiv3kguFHE8aDaDTkuNJLS1CNMUIrT+GYI4R9i3tUMx68gHZ39wAuSAXCIQAiwlwe6HkpAGyDLnTD7W9E2oohIafTEPOb9chMW0U6ueakPNJGIpOeJf0yPykHb6RTlirA9hxtRGGGj1ELXPKdpXcRYpOwofLbv7Ga0JcC11eowO5dpjBj/DkRApdqJ9rwLC/tkBtbUd4WglMWxvJqyN8PsEMGZookPl2NdzH5EPvV2BoDSGSaoSpzgspHENoWCpMuzoAjzfpvqqqp+eQ2P/S8kfIf6PfXodEYSY0bT7A54cqnlWdz3eXZfwNjyPnEy9kfxjN8zLw9bPXkwfrg/dvof2oZgNiLgv0Fc1UtiUjb6bjGlqDaJnlhBQXbh4g94MAOsZaYKuNImbVIJSuQdQG6H1AzAJ4R8dQ9E8hN5IQTNMgapeQvj5E7qCZ33sMqavqEBydBW0oAfdwI1ybfNB4QuT9enfVbVTWqT96HKnbgtC2eBHNdUKOKdBWNAAWM5pPzEHKzjBaphphblbJn5b9WZBcX+IejdpkyHHA4E0goZPos7dYgqoBok4FhcsUmNdUAU47gsNTEbHL9BuE04DCpUFo69uxtPIx8hnJKU4EZhShbbwWhS9WQmlrR+d3psK5ww9NZSMazx8JNRjGxv/7xW5/Mw7X36Xz3r8EOov+kPcTC0Tx9xNfOqxl7Wt+//vf48orr0RaWhoN39FzpHvx/uuvv8aRhmuEGIZhGKYf6DmC/KFuP9i47777cP/99+Pmm7/5P5pHEu5pxTAMwzDMEaGzsxPnndc35ve+ggMhhmEYhunHrLHeTION8847DytWrMBAgpvGGIZhGKYfGIpNY8OHD8cdd9yBL774AuPHj4dOp9tt+bXXHvh4nn0FB0IMwzAMwxwRfve738FqteKjjz6iqSeiszQHQgzDMAwzRBiKY41VVlZioMGBEMMwDMP0A0OxaawnXfaenin0/cHg62l1iJyV/kN6XTL6ViiZKTCvq4ZamA0pI22f6y9Ou2K3z10emMjiqeQO6fLDCMyVneSU6UJy+yEX5CGaF0X7tARiNhUIC3+NBOgVRFKBhAFomygDCQnReV4YdxphagZajk1AEwbcJ4ag8wJhl0wuj6aZRsSEMmeMA2GXFmEXEHFKMLUAHeMUdI5REElJ+n88u5ywVylwlkeQ9UYlRj3rhu64DsSsgPPXzdhQk497/vp/eO5n52LDkxNhf82GmRPK4fhkF3Kf34j0F9bAUa7S9oJYtRXhuT4qq7FRg2CuCr0nAV++Du3jbeQz8YxUyEkiymB7fzscFVFowiqMHcI3pMBXIMNXqKPzHZpYQG4kQSjfRn4P1WaGd1Im+ZmETyWYZ4FhdRnaJ1rgLdJAqamHqtPA+eEuSCUFSDhMgNEAz/jk7ye8KN7hVuy6NIdcK3JGOoydKpp/MBmqnPQyhV06tEzRw58HtM50wbZiC+JWPUZdVwZ9J+g7e0okBHL00LsjWGy/bLffeU+6HEJd6+2PwewQEr9NfyFcOof7e+3vtxUennmLH0q+H30r5i98CMec+yu0zM9B7QIDeW2CxSlIjCqEzh9H9cWFmHD94/AWyuTTEr6v5iWF8GfL5N6Ry+ug98YQLHagfXYmNBEF7qkZUIRHSKeBlJWBJXnXIp7h6C6DGouR20Z4hZY2Pwt1WC450ETZBOZWFapGQvU5GeTAEg4j/YZdWDT1Luy6JAdSczv09W6oPj99z7pTs2g74SETz4+EEdAEQfeYP1/cu1o0T9fAVwD4SmO0bigdkA0J6AJxxA0SXP/cBEujguapJiweextS17Si7qx88qi1TTCifZKC+nk2xFMsVDbBgrm/JJdS0wwzPJMy6P5qmWpG9eXD0XxSDv0VEtumr4sgZpboOdU4xwzVoINnmAb2qgi5i4RDKG6S0TpDIYeQwFnkRkeplnxL0Sw72kdryQOWfWY1bFPa6Jji2SLKoEwbAygK3MO05FBqXVQE3+lTYG6OIWHSITBLuM2AztG7C/6ORCDUm2kw8tJLL1H/IJPJRNOECRPwpz/9qd/KwzVCDMMwDMMcER577DHqLH311VfjmGOOoXmrVq3Cj3/8Y7S1teH666/HkYYDIYZhGIbpB4Zi09jTTz+NZ599Fpdcckn3vNNPPx1jx47F3XffzYEQwzAMwwwVhmIg1NjYiDlz5uw1X8wTy/qDIdNHiGEYhmGY/vcIvfrqq3vN/9vf/oYRI0b0S5m4RohhGIZh+gG1lynwg3HE9HvuuQff+c538PHHH3f3Efr000/x/vvv7zNAOhJwIMQwDMMw/cBQbBo755xz8OWXX+Lxxx/Hv/71L5o3evRofPXVV5g8eXK/lIkDIYZhGIZhjhhTp07Fn//8ZwwUJLXLaHSU4vV64XA44PF4cO7CJ6Bp8yGan4rOUUY4d0YgxxW899EvutcXrhDr0o2QTEYsa/vdXvubc/6jcKyuh5Jqg9zQBjUQROt3JmDt7//b033czx9H7vtu7LjCBpji0OgVJDx6mGs1COYnoHFEMSqnCTs/LUbCqMJQ5COXT/McBZItBtWngyYlCsNGU/c+jZ1JR1DuhxF4i/ToGAfYqiS4J8Qw6jcBhPKs+PiNmzDj0sfQcUoQxxVXwKUP4oa0TxBQgdN/dxPMs9vgX50Gay3gGakinhmFyRZBJKSDrtyEVT/8FU5ceznm55VhRdUo3DH+HTxatgCxuAap5iCqtmcDthjSV+rhWtsBKRhB9fk5sFcraJskIXdlHFGHBo0nKDBXa5H7YRDtY83kQYrZQY6O9A1xNE/VIm5RkbJVuH0k5L9SjcDkXPKtOHZFoK9oRrQkE6F0PbQRBdWnq8hbKsNSF0T1yTYMe74aoTHZMDb4yMti/rQMkSkl8BTrkb7GTedLbu5E9SXFSNsSh2VdPRrOKiT3i7UhAV+eBnqvCkdZENqKejSdOxLm5gQUnQRbZQCVZ9ig9wCBkjhG31mF6Kg8vL/y1m7/zPLwX7DIcgniM0Z3z98Xi1N+SE6jPVmSfRWWNj7Ti6uaORiEQ0eTmgLVH6DfrifChbNsy/3dn8nRE44AOi3d4+rGHXBfOAO6gELXXzjThIaLIkh7w0TXc8Qpw9KUQMsUDdI2JBBO0ZCTJ21jApqYitaJWmR/GoHOG8Hy1Xdh6o8eR+qWAOJWHRImGaY6P+RglLxYqlaDqF2H9nE66AKAvSYOQ2sIUiyBcKYFoXQtUrb6yH2l/Wob5OxMKmfLsRlIe3kdQgvG03cwvbcJ7rMnwVYThm5nPeouGg5rvQJFKyGcKsFfoCLzSxVNxwLGJhnaEBA3AenrY6ifq4OxHbA0qohZJfKTISWK22a8g9a4DZXBdFyV8QG+t+EyTM2qxU1ZK/Dr1vnIN3bgH9WT4Q8Z4DCHcX/p62iIpyCgGPDczuOQe5UX/ql50Hnj5PMS97WhNQJ/oQmf//VnmH7ZY9CGVTTPBhRHHJJGgabRAJ1PIuePKE9CLyGUCSg6IOurOKrPVYCoDG2HFpoIoPeC7lvhVBI+s+GnVqDO54DmFRdta6uNwrSuCnUXjYS9JgF/rgZpG8P0tyBtnQ9tE23wFwBhQxC1N91OfzPsdvth/bs0799XQmsxHPJ+4oEIPjz12cNa1r76vl3lE++/if74HlwjxDAMwzD9wFBpGktJSaGMsIyMDDidzn2apEWdjJifSCSOePk4EGIYhmEY5rDxwQcfIDU1ld6vXLkSAw0OhBiGYRimHxgqNUJz587tfl9cXIz8/Py9aoVEjVBtbW0/lI49QgzDMAzTL6iq1OtpsFFcXIzW1ta95nd0dNCy/oBrhBiGYRimHxAOod54hHqzbX+h/qcv0J74/X4YjcZ+KRMHQgzDMAzDHFZuuOEGehVBkBh01Ww2dy8THaSFW2jSpEnoDzgQYhiGYZh+YKj0ERKsW7euu0Zo06ZN0Ov16EK8nzhxIm688Ub0B0PGI7Rg2E8RL8mGvj0I9xgH+TTCLiDrixjMlZ1QzHpICRUts1Pw9bN7j367pPgGLK18DPMXPgTj9kaowSCkdBe8Y13kCxEOn8X2yyBlpKF1bjY5a5qPj9O2kiJhbGktylrSodMlENplh94jkYck6lBhbJWgOaaTfD3hgB6aeiPiGTHoG3RI2a4ilCYhYQAMnWJ9kKNI2lWPwLxRqD8vihfmvIi/dczA/6R9BJ2k4PtbLoX6tzSkbvTAX2xDxxgNXMc3wvt2NixLmtHhNyPiM8CV4UV7qw0IaVE6qg4dLxbAWyzBXqmidZaCgndUNM3QAqV+aDQKEgmZyv/EhL+hSOfBjVVno+2JIpibIii7XAeEZQz7RxwtUw3wj47B5AxBWm0nJ0r8BA8i2x0wNQNpm6OoPEcDOSKh5NUw4mYtDF9XoOaK0Sh4dgukrHRUnZcBa62K9skqkJDg2gjofQpC6Rq4NgVpm7BLi1CaDGdZFN5iPRQt6L2Yb68IoOo0G1ybFTjXtqDppCxyBwWyJZhaVdqXfX0zlpY/glkXPQpvoYz0TXHEDRKM7TFUXKCj8pU+Xo+6c/LJw2Lf6YUUjnd7Z2Z+7zE4XvkKK2Kv7HatCNeQEo1Cm5kBJScNikmPd1fdhv5ifz6jA6XLnbTXfu2XYZn3BQwET9C7yt93+6yxWhGfPAK6Rg8QiyGR6UQk1YiP3vk5luRdS/OWNj+LKf/zODLfroTS1g7POVPgXL4DoRnDEbNqkDBIcG73oXmWHaH0pKcGChC3gtxYqVuTbpu4GfCMSWD03ZVoOXU4dEEF/lyZrhlLQxS7LgeG/QHQesNoOtYJZ1kMkRQN5Big8ycQyNbCtdEHRadB1GVA1CrD1BKDZ5iB9p39XhsUm4F8QuJakkNRSGU1qLxxAvLfDyFh0CCQraNnWu6yFrgnpSFulMinY62PQTHI5DMSz5DsT2NonaRDxKVC0auwVsoI5qpw7Ew6esT3Sl+v4Jb7/4Q7tpyOM4o24auOQuzYngdztQbhLAWKBjC0ywjnxmCpTHqHPMNVIDcMtcUAS5WMaApgbAOt6ytRsHDmRsxzbsfGYD5e/XA21NQo7KuNKDqvgn6zDVuKYGjRoOhNL+Q2D7xTc2i+cP0IxHPPVq3CnyshbgF5gxIT/MAOa3J5TgypX+kQNwKZXwZQs9gCw+ROBEN6aLZbyFuW9blCzyptkxt1pyf3L55FHaP1iNmAqA2IOxOQ2qKouv22I+IRmvH6T3vtEfrqrCcHvEeoJ5dddhmefPLJAVVerhFiGIZhGOaI8MIL/f+fpz3hQIhhGIZh+oGh1DTWkzVr1tAAqzU1NYhGo7ste+2113Ck4fR5hmEYhukHhmL6/CuvvII5c+Zg27ZteP311xGLxbBlyxaSLormwv6AAyGGYRiGYY4Iv/zlL2nk+bfeeos6SYv+Qtu3b8f555+PgoIC9AccCDEMwzBMPyBqdJReTIOxRqiiogKnnHIKvReBUCAQoJT666+/Hr/73d4DnR8JOBBiGIZhmH5ApGyLvO1DnjD4SElJgc/no/e5ubnYvHkzvXe73QgGg/1SJu4szTAMwzDMEeH444/Hu+++i/Hjx+O8887DT3/6U+ofJOadeOKJ6A+GjEfohIk3o+JH6SgZU49gTA//skyYW1U0z1KhDUrI/FKB3ptAMFOH1DWtiOQ4oF+9gzwpwqPiPm8qvvzTDRj+0OPIXRVHxC7DWhdBMNOAhhNVZH0sIeWDXai7aDh0PqBjggJrtYzoDD+iQR20jQbYq0CuG+EkGfbXFsQybNC2BQCNBFTVQxlTjBVf3InFaVcgPK0EzTP0SN8QR81iCdZKDYLZKvmJzlz4JaZYqvBu5xisbcqH8kkKOUv0fgU1pwK2bVrEj/NiVl4VMg0+LKsdjUJHJxr9doRjWqSag+gImuH3GVGQ2UHnyaCNo7LVRb4g/Yd2hOf6EPHr4Ur3we2xID+9A1U1GdCY4ki0G2CrkOErTeB7cz7FJSlf4pGmkxBTZUy3V+H/Hj4Naas7sP1/UqDzyuRb6RgjIWFRoBhUmOo1COUmgLgEc70MS2Pyewn3ifCe6L0xNE83Q9EBMSsQKYyi+C9Aw3F6FP+zE1IwguBwF4KZWsTNEnR+FSmbPfCOtKNtgkzuJVtNBJpQDJF0EwytIXLICMQ29qoIYnYtTMvXQy4ugH+UC9YtrYin2RC36mBo8sEzNgWeEpm8R7HTO+F83oZAhhYZq1qgWI1YvvouTLrmcWSs9kHeWvmNPp2Fs+6FtKkcywMvoT/9On3hFDoSLBl+EyDLQDCEpXVP7bfsdF7X7wDGj4RUXgvF74c6czw5mxZNvQvBAhuCaRq6L4SbRxtWkbqyihxC8ZJcaOvaEBqTDV++Hqnbkm6qtnF68ukIx44clRBLi8G5UQd/gQopLsFal3TtFLzRgqXbHsD4Gx+Hr1iBvVym61WKA5lrQ2g4xoT09TFyWjXPUZC6UUPLhGNI+MP0ngS5iuxbOlB3ShpstQo6xsiwVakwtyXgz9EikANkfRWHFFMgx1RoA1HELXpIikpOovoTnbRPS7NCHixjJ5D+lRttU5z0jImmqLDWJH1Czl1x1M0TZZDIE9Q4T4Vsi0JVJKgxDbJXaNA6RYKpUcKZl32Mv6w8FtZiD8ZnNOKzsmHQ1hoRzYhB0qrIzu6EO2CCTptARDxPrEHYDWG0BS2w6SPwRQ3QaxJIKDJaalPgynPDs9mFtPUqonaZfD2hTBWWkW4Et6Yg+4sEgld0Is/mwWh7Ey5J+Rz/8EzFP38/HzmvV0NJd0BuaMOuK4dD7wY2PZb0vJ005z5E0g3wZ2nRMScKU4UelnoVnWPE7yBBN9KLYIcJBf+WUbsQ9AwVzxpjexy+fB0CuUAkPwZTpY7OkXAN6TslhA1hVN79iyPiEZr4j59BYz50j1AiGMGGcx8dVB6hjo4OhMNh5OTkQFEUPPzww/jss88wYsQI3H777VRjNCBrhLrU2AeD+EKpqamHUiaGYRiGOerpbebXYOwjlNojLpBlGbfccgv6mwMKhJ544gnMnj17NyX2N7Fq1SpcffXVvQ6ExPgjd999N/785z+jqamJIsjvf//7FGTta9A2hmEYhhksiA7P0hDwCHm9Qst+YPRHzdYB9xES+f4ZGRkHtK7NZkNf8NBDD+HZZ5/FH//4R4wdO5YkTELPLaoUr7322j45BsMwDMMwhw+n0/mtlRddo9KLCpABGQgJJfbBiI5++9vfIjMzE71FtBueccYZ3al2RUVF+Otf/4qvvvqq1/tmGIZhmP6kK/urN9sPBlauXImBzAEFQpdeeulB7fTCCy9EXyDsk8IrsHPnTowcORIbNmygZrfHHntsv9tEIhGaDqVKjmEYhmGOFEOlj9DcuXMxkOmVR8jv91Og0XPqS0QnqgsuuACjRo2CTqfD5MmTcd111+Giiy7a7zYPPPAA1V51Tfn5+X1aJoZhGIZhDp1PPvkEF198MVV21NfX07w//elPVNExKAKhyspKaqqyWCwUaIhUNzGJNsC+TnsTg7L95S9/wcsvv4yvv/6a+gr96le/otf9ceutt1IqYddUW1vbp2ViGIZhmL5gKI419s9//hOLFi2CyWSiv+tdLTji77UYfmNQeISOOeYY6tQkJEiiH9CeHaD6sgpM1OaIWqGrrrqqe959991HWWRibJKD8TWM/skvERynQ+p6DYovLcPxqTvRFrPhr+8cD8WkIGWTjLALyP3Qh5jdAK0/hnc/ux2LJ9xOjh8My0c4y4LOUj0SBiBvRSftP1hoQ83JEtK/kOH65yZEp5eidoEBSnEIuX/VoW2sFpEJIfLwjHS0wqSJYqZtF+aZalGf0MMpR7E1moEx+hakyxrEoCD2n5/knUAJHt64EDkpHlyc/yXeapmI7S0Z0Hxtg71SQcspEejKTVDH+GGzhJFl8SHD5MOn1cOwpGQrvmotRIbZT/tqCVrJ9VHRnIY8lxvNXhtkWYXdFIZBEyevULrVj1a/NXneOiyYObIS6+pz6fh17U4kohoYyo0IZycgRyQgLQIlpkHuWxo0nRuFtsyESGEETx77Cp6qPgHqfRl0LmI5UWjadEikxiEb4rCsMSGQr5KrRfiIok7AWgv48wFNGLDWq/CUSHSe41lRcZUCIS1cazSIpAD2KgXG9hgiKVoEM5N+ls5xCjK/ADpLZdgrVXLGtJ8ThPFTKzlUmqdqad+ubQnysLSN16LguW1Qi3NRP98OQ6c4bgyqTiLnTDBDRjgN0ESAkPi+MQmGNpmOVfh60iXUeKwdOj+w9vdJr0kXS4pvwNLK/zbfnnTs/WiaYUb2Zz7I5XVY1nZkNPKLpt9DvqPuz8aLIKc4oQaS9tZvch/1xj20L3/RgWyjcTjoOOKeW7bxvn36hZTGZkh6PdRQCPHZ46DrDAHVDQgdW4pAhga+QgmWeiDqAP2mHXPDkFoN0PmS15OpNfmbuqdH4FhrQNqZtajYmov0NRI6xgEJq0LXtjYnCKXCSvsI5Sj025sbAceuCPl8VFlG52gzIg4JqhZIGJOOsJhTgXObTG4rf64EbQgI5KkwN0jIfasBVRfmIGNNDJ2lOhjcKrzFEtI2JhA3yYhZJXoGZayJIpSuQzBdgjYCxA2ga8dXbMHnf/0Zjj/jEZjq/OQLkuMqFK0Eg0dB2CWTeyjj6wTaR2vIzSV8PaZmCbnvu1G7yIlgYQKOrRooGsA3IoHMz2Q4t/sge4KAx4vUN+NYs3wMIpkJut/apyVQMrIBlY1pOHvsBjSG7WgLW2DUxJFqCGDltlLAp8P8GZvxUdkIpKQEEAzryWHWErJhV7sLBamdaPbbEAzpkeH0obFNPEtkcpQJd1A4keyhUfVxIXmUxH3oLdQj/3sVeLb4NegkCTrIeNk3HCdZdiD2nz/+b/gmQicl8Iftc1D0007oX46j/N8liE3zQ9pqxaSTdmBOSjlydJ24/eWLoY72w7LSCl8BYN8F+IqSr/4CwNgGeEYlAEscCW8UddfcdUQ8QqUv39Jrj9COCx884LJ+/PHHeOSRR7B27Vo0NjZSEtSZZ55Jy8TgpyIj+5133sGuXbuofAsWLMCDDz5IGds9PUDXXHMNjRUm0t/POeccGi/Mak3+7fg2RMuOGE7jkksuocQq0eVl2LBhWLduHZYsWUIZ4gPeLC0KLU5iaWkpDjdCty1OdE80Gg1JmBiGYRiGOXDEuF4TJ07ED37wA5x99tl7/b39+uuvcccdd9A6nZ2dVOFx+umnU8Z2F6JrigiihAlaBE8ik/uKK66glpsDYceOHWSX3hMReIlhNvqDgw6Epk+fTs1NRyIQOu2003D//ffTiLQifV5EjKKjtPgRGYZhGGYwc6SzxkSNi5j2hcPhoOCmJ7/+9a8xY8YM1NTU0N/hbdu2YdmyZVi9ejWmTZtG6zz99NM4+eSTqdtKz5qj/ZGVlYXy8nLKAu+J6B8kaoYGRSD0/PPP48c//jF1cBo3bhx1Yu7JhAkT+qxw4gSL6PQnP/kJWlpa6CT/z//8D+68884+OwbDMAzD9F8g1JusseTrnolKBoOBpt4imtxE9xfRB1jw+eef0/uuIEggms9Ey82XX36Js84661v3+aMf/Yhqmv7v//6P9t3Q0ED7vfHGG+nv/aAIhFpbW1FRUUHVYV2IL3M4ZEii/VBYrcXEMAzDMMze7Jkdfdddd9GoDL0hHA7j5ptvxne/+93u/kei/86eYmWtVkujSBxo3x7R71d0bxEDrIrmONFMJoI2EQiJvkeDIhASzVKis5MQG+6rszTDMAzDMEfOIyS6q/TsLN3b2qBYLIbzzz+fKjjE6A59hago+fTTTykB6qabbqImMqHhGTNmzAF3th4QgVB1dTXefPNNDB8+/PCUiGEYhmGGAKJlqzdy6K5tRRDUVxlusf8EQeJv/QcffLDbfkX/HtFNpSfxeJwyycSyb0MkOy1cuJD6GokmNhEADQQOOhA64YQTKHNssAVC4QxAikvomBZHR3kB2nPNqNmSDakwBMcnJkqBDeQrsD3WhA2fjICjXI8T5z8AfTCCxJhitE20Uaqqd7gCY6uMtqlO6IIqfPkyoCRgdCuovGkCIqkKtOkBDLtgAy7eUY+YqoE7YcbvXluMqtQs6Ds0WJaYgad2KAhkyvAXKyj9gwf1J6TAVqfAnytDUoC4KZm2KwL+mloLnnntbKgndyAe1aLopGpUtrqQYgkjOD6GU4ZtxVsVYwGLD+ta8jA6qxlVARcKbG74Y3oMt7ViZ2s6nYd0px9jUpJVmL6oAY2NKdAYEshI9aKu04lJ2Q1YU10ARGXEVRlGQ4xS9/+MmWjodCAyPAyLLYKAxwiTKQal3ATjVbVY5GiBp9iELX8eg5dHzEJCkXHPH/4Pl678IZxr9JT2rm3UIZKig8GjIpwuwdApwVeagNatoVTW1K0KOsbIlHYcKYrAUGWAploPx4xWBD9IRzA7mV6vCymoOlUPY6uEtC1xNM3Qwl4uw1sMSp1P6CWYOhJIVFsoBR67AEeFilC6hM4Rmv+k34PS2BfOuhcxK+ica8sTiOm0iBsluLZEUXkRYKjWQ+uXoRvuQwRWGJtkVFycQSnYMQvg3KlS6rd2WBGWlj9C14zObOpO94bPj3ebn8X8hQ+h8gwbhj+lw5KC67C0pu+ae5eMvnWveUu3PYCmOckH2KKpdwFbyhE7Zjw+eP8WLLJcIv5rtt/U+MVpVyTPje4CrIi9QsuXZF4JxR+AbLVgafPe/0MU30nJTIFUXgvNuINPpJA0GjrOzO89hi833pc8d+EIltY9hcX2yyCZjGKoakgjigBFQTjPTvejUFq4jxsLvVelVHaRvt6Rn0B2bgfa1mYic6kevvO9CHSY4crywL86DTGbCo1eoRTylrfygUkRtE/WQeeWkTBKkDIiiLabYPYk0+KF4iFrlRu+kuT57Byd/J+rrTYG90g9YmkxaAIaSrtXU6PwFhlhaZCQ964bLbOcyFitQtGpaFySQ/qF+rk6mJqBqD35v3lFJyFlQwcqz3XRddk8Q49ImkjjB/SdEhImoHGODXofMP2yxxAt0sLUINP9EElToWhUOLfLCKUDelFmnYRwevJPpKVWgm9iFJUOJ7QBQOuV4Z8dQsYbBqRUqGgfLSHrf1pJr3F50WY89uLZwDQfvjdiHd4rLsVUqxdaSYE7JYB/rJqB0nG1qPqoEIbJnajTOlCU2waNrKDS68KI3BbUdKTQ82hNWz49L8ymKAIxPeZkV2JjRw4suiguHfcF6sIpqPC5UNmZiqlZtdjemYm8Y2tRNSINbllBVmo7tnxagjN/fyNaZiS/X+ekGB5vOR06H2BuFvoNCR2zopA0Cux/C+PL7cNQsC2ONtlKCo5N4VKszhqBERNr8aNzl+E3yxbRObLVAIoeSFgUuE+MAPVGeKbEUFrUiPI1BTDmeDBUzdKx/wRBZWVlNCyGy+XabbkYfF1kdonM8alTp9I8ESyJpq6ZM2ce0DFE32KRnl9cXIyBgvZQMrmEA2DTpk0YP378Xp2lRaodwzAMwzADC9EMJZqjegqS169fT318srOzce6551IK/b///W9qxurq9yOW6/V6jB49GosXL6YOz8899xwFTldffTWNAHEgGWNdLkDRH+h///d/KZgScuZBM/p8FyJjTHDvvffutay/Ro5lGIZhmCHbNnaACB/Q/Pnzuz/fcMMN3eOJis7VotuLYNKkSbttJ2qH5s2bR+/FaA8i+BGdnbuEik899dQBl0Gk2ndVmvTsYzzgR5/vCcsMGYZhGKYP6O0wGQe5rQhmvmkwCfUAxESiduhA5YmDZST6gw6EGIZhGIZhDhbRlCZak0Sz2ogRIzBQOKBBV0W1l3AKHCjiS/p8vt6Ui2EYhmGGhFm6N9NgQqfTYePGjRhoHFAgJDpHH0xg8/Of/5zEiwzDMAzD7JuhOPr8xRdfjD/84Q8YdE1jot1QdIwSBskDIRQK9bZcDMMwDMMcZcTjcRpe47333ttn1pgYT/RIc0CRjdB1HwxnnHEGdagaSMQtCnTpEShxCWpAh9rWVPKGaFpMkKOAe5QKQ7uMnf8YgZIzqrEzNxPuE1WY1+QgY20YgTzAUZ50EQnXR+cYwL5LJp+MZIuho9QIW5UKKSGjcFwbdrwwDb+9bRZapsqIOxOQi0Pk3TEXRZFmDiAwR4/zsrbj0/ZhCD+qxTBDBzbX5UBviCEa0SE7zY10SUGm2Y+NTdmwjA+gvikFZuHwienpO8XiGnoVDqFRGS1oD5th0sWQagjgq4ZCpFiCKLR1oi6UgvmFZWiPWDHS2oxPWkrI8ZHv6kQ77JhWWEPuIJfTT/sbnt2CSLoWRk0Mo9Na8NSO+QhHdChOb4dRE0d5exrsKUE6ft5xtUgzBrF85xjEA1pM+k4F1r9bivjIEC5vvwQvn/Acnhy1EI0PlkDvjmHXOQYE/uNKyvkkDPfP/XD7XXBsB5oWJICgcLdIMG83IDopAFWR4QsZECyNwVivQ8wFaIIJKKkKwtCho1SLuE2BYWo7QmvTEcyUoMpAxzTAWC8hlB+DP0sHg1eBb4QCjV9UgsrQBZLXhRyMwrVZQcIgQY4Jd4sCS6MK4/ZGaAwZSBhEeVTEG6yASUGwUIUpI4BISAclooU6wYO63DnIX5GsMY06ddCtbSBXz/LAS+QYEiRMMorf8GHXlcOR9UWM3DiCZd4XyD30/spbad13lb8f9LWtmJPXw54I55Jg+dp7sGTkzdC5QzjurF9BN2sMtIEoLQvNHrmbCygwORfmvCzMW/wQDBpNt6co3toGbU42YDRQOTWpKclje7zkGkrkpGLFF3d2u4kOFk12FhaPvQ3WDGvSi6TTQqlroGVSRhr84zMhKSoCGVq4NvnIISR8O+LeVbRA1CbR9aKVVcQazQgszYTWBhjb42hqsEKOSfDZjDC3ivMiQVtjQigDsE9qg/OdNERtSWeQIO1tI1qnAOEshZ4RwjcUtxthcMcRs2sRTpGQ85EbbVOcULUqjA06uuaE3yacryJuTyAc0aBhrhOhzOSzwlIrI5SpQo5KkOPJY/mzFZgaZXgLZTTPSIU234/wNivCOTGYanVQJ/iANTbyawWyZHJxKVoJwcIENFE7OYmE1ypYHEdCJyNuURFxqQhmS+QPiqYAwVwVjq/1UHSAd3QMBkcESoUVrVNUXLLkE3gTJrz2QdL/8tjHZyPjxHp6NpL/LGBC/K8ZaD0+DnuanxxCTn0Yo06owMaqXORmdWJiaj0+ahiOBXk7sa4jF8EOE9bY88ktZLOE4fZY4G63IBTT0XMvEtfijdrx0EgqUkxBjHC1ocyTTsfKyfTSs0jw5eYSlM6qRgUKoU0PQl8SxCSrF425dmRbvfBEjOgImqEN6ZFoNqHc7YK5TIe674RgWaOFt1iCMs4PqdqCNGMAv161AP+z6D38ds3xCKfr4Ngpkx/KY9NCG5egbdGh3JABJTOCI4qo0TmCnaUHAps3b8aUKVPo/c6dO3db1l8jVRyWQIhhGIZhmIE1+vxAYOUAzBo7oD5CDMMwDMMwfUldXR1N/Q0HQgzDMAzTn0LF3kyDDEVRKIXe4XCgsLCQJjHumDBN95enkD1CDMMwDNMPDLSxxo4Et912G2WNPfjggzjmmGNo3qpVq8hsLTQ9999/P440HAgxDMMwTH8xCGt1esMf//hHPP/887uNSzphwgTk5ubiJz/5Sb8EQofcNBaNRrFjxw5KhWMYhmEYhvk2Ojo6MGrUqL3mi3liWX9w0IFQMBjE5ZdfDrPZjLFjx6KmJpnueM0111BVF8MwDMMw385QFCpOnDgRv/71r/eaL+aJZf3BQTeN3XrrrdiwYQM+/PBDLF68uHv+ggULqI3vlltuwYDEGsetU97DH6qOwaiUZnywcTRcM1oxO7MSoYQeWjmBpVvHIhLQYcfmfECrwrxDg3A64B5uhCYEcoUIb0jHlDi0bi0iDkA7uxNKixWOXQpapkuIZ0Sh3JqGM55Zj6+yC5GniaNuTS4WTt+KCl8atJKC1qAV0YSGfBrBsB5nlGzCO9VjYLOF4DILF4pCvo1IQguXwQ+bKQKXMQivwwhvkw3jxjXBoovSOi5TEM1BK/l9hKsjoSRj26KUDpS3pZF7yGiJIuzSYle7C+F0LcakNCEYE99Zgd4SRY3PiYxUL23njhoxLz3pdljeOAYGbRzZdi9yzB7kGd3kINJpE+QJEQ4Qf0yPL3cW49xJX2Nlw3ByGJ1/1sd4r7EUk9PqcNGbV0FOj+DKB9/DrlA6at+eSn4b4X7505+fxoWX/xTxUgnhFEDXpEM8PwxjrZE8Q0qTiRwusaARhqiESHYc+pQw3COtgF8hJ0vMBlrH91k6DH7AV5qAtUIDbYcWMZtKv5NYp2OKClWrkKMomKfCuU3G4gm3o2NyKkLpEnldYlYzlUuUr2NUIQwbAUelgsZjAXO9jIhLgrVGQtaoTuzYlYMzJq3DqqZhiKQpaJtsw6yLHoUhoqDlogkwtSawyHgRNKNH0mvou1MRM1uQ/34ItT+NIwujYehIin6EQ0iwL4fQ4rQrsKztd994afuLbXvNO2nOfTDlGMn5E1s4DYFjMhHITTqWTK0amFq19P016VYcf8Yj0IQUqGOyYWiPonO8Eymb3MCoEiwZfhNa5ucgIxAix5CnSItQRg7S1yUQN8lw/n0tHS+SavyvC8Rm3W/5RXkkjYbcQ4IlmVciUZyNtiWFyHy/Af48A6yw0z3nzLLTOoGxGfDlaZCx2gd/VvK7Ns3SI5SdoP/KOfM8+E7xWnzYOhLby3Ng8MrwjkzAsV2Dxjl6QE5ADsnQfm2FvSaOmlMBjVeDtPVAu5yG+IQ4UtZr4XWpMLbKaJoXg6RIyPxYg4RepfPWMcYIW10cYacM/5QwGuCEoge0AQmR9AT5xSJZCWgajbA2Sog6kq6geGocUJLXl7FVQjhdhd4nkccqlBKFrtwIz5Qoct7WosFogmWCB7rtDoSzE9BUWgEj0DJNbK/A0CHT9WlsTPqd4pbkM0l8t8gcP7TbrEhYFSTS4lCb9eQjkmRAv1kLz3CJPFz5L8VReWUIo3Ka8Ke35mPYnGooriiKctvILSaeOddO+gBPv3UyrGM64TklALshRs8A8ewSTrOC1E7IWhW5Fi/KfelwGkNoDNvp2WNNC9KzodTRgne2Tib3kKC8MQM2fdLRI1xnnQEzWipctNwbMmJkeivsuhBc+iDty5IRQGWrC7qRXhj0ceTb3ajypJC7LNfsRkswD8GQHpeP+wz/sE1Ge4sdo/9cjbKrCumZrehVSBVWJLKi+PTrUuSNaKHrw2SLQOh+FZ0BgYJkx9z09Qpazohg0cit5EML1fz3+j3aRp8fCDz88MM45ZRTSKg4e/Zsmvf555+jtrYW77zzzuCoEfrXv/5Fkduxxx67m/xI1A5VVFT0dfkYhmEYhjlKmDt3LokUzzrrLLjdbprOPvts6mpz3HHHDY4aITGGWEZGxl7zA4FAv1khGYZhGGbwIf5m9ubv5uD8m5uTk9MvnaL7rEZo2rRpePvtt7s/dwU/ohd4VzUXwzAMwzDfwhDyCJWVleG73/0uvN5kN4yeeDweXHjhhdi1a9fgqBH65S9/iSVLlmDr1q2UMfbkk0/S+88++wwfffTR4SklwzAMwzCDlkceeQT5+fmw25N9/3oi5IpimVjn2WefHfg1QqJv0Pr16ykIGj9+PFasWEFNZaKzkxhJlmEYhmGYA2AI1Qh99NFHOO+85CDU++L888/HBx98gP7gkISKJSUl+P3vf9/3pWEYhmGYocIQGn2+pqZmn/2Lu0hLS6PMsUERCO2rfa+rr5DBYIBer++LcjEMwzAMc5TgcDgos1yMLbYvysvL99lsdiSQVFU9qMo1WZa/MTssLy8P3//+93HXXXfRuv2NCNzEDzDs9l9CKQU09UY4JrSRv2eYqx2by/JgbNBB7wF8JQno00MwfWKFr0SBrUJGzJLcTzRFRdyuAHGJXCOR4WHoqo1IGFVkjG+B58NMBEujgF9LbowdVdmYObKStl33QSkyZjaSZ6Pda8H0/Bp8WV2IrFQvGrZmQs4KId3pJ7eQ8GGI7So9qWhpdOIH01eRb6hzu4t8HyeP24z2iBXr6nNhs4TJq2ExRGHQxNHosSPb4UVtayoSURl5OR3kHypvT0PQZ8CMkmpyDjV7bTAbo+hot6Iwux25Vg+qfSlobHNieHYLdlRnweIIQ1EkLCzajpV1I6jseU43uYuEhyiU0CGqaKGX4/iqoRDpVj98UQPybB5sqMhHdnYnmrdkIHNsCzLMflR2psLbYSFv0YpZv8FzHcfglbUzUDqsAfIFMbQtLkE4RULEBaRuVeDPlcm9kjAA0bQEoFdgqNVB7wZ5XJSIBpZKHeImIJoRh9YRQSKqgX6XEZooECyMw1ypJW+L8A0JFJNCzpW4VYHWL8NRDoTSk79vOEtByath1Cw0w9KYnC+O7dypon0CoOpUIC0C00YTwpNCSEQ0UOMSNKY4dBUm2Hep0ERVdI4SsikgY10CwTQNrPUxxM0yEgYJnhIZRS83oO24bPK/pH/WCgRCWFrzBJVh0fR7sHz1Xbtdv8K7o01Pw9LmZzH7u4/C+rcv9rrGKx+Ys9c8cQ7MTcC6Z65H0R8fAqIyjPVaaIPClwRyMonzY25WYW5LQIqp8BbrEDcA2gjouhf+pdwPI2g8xoBIigqdT6Jzo/Or0AuPU0RB6xQdtt53PfmAgjOGwbytBarVBKmxFYo/APfZk/Dln26gMgkn0dLyR7rLuKT4Bqg+P6ITh6FmsR4ld6+HOn445K2VcJ82DqosIfW9CoQmFsC0tRHeGXloPF5C4b/jaJ6mR8aJ9aiqT6P/FUsaha4J4Y0ytEsIFibItyPOs3BS6byAb0QCtjINfBOjyF6mRcQpI35yJzwtVth26Gjd4Lgw1IAOMCZg3qGH3gfIccBbBLpe4mbQOQxm/+ccpcUgBzUwNcoIjQlD6tAjZZMM7zAgZldgL5eT16gDyP4igcZZGqRPbqZ7Q1yXpmYg6gTSNibQMUaDqEOlZ4omnLxm9R4JoeIYZLcWtqqkN0uOivlA2AVYGlW0zknA0KRFQg/EsyNwrDXAX6DSeRCuIU0EyFgTQ/s4HS76/rt4fuOx5CzTaxIIRPQY7mqDVRdBWzj5sNuxMxeqrCItx0PrCC+QeI4IR9japnx65giXULPfhlBEh3S7HyMcreQAKvOl0778MQOqPSnwdJrpGSO8ZZ6gEdNya+k44jlSbG9HmScdmWY/2kNm1LU7EW81wVnkJjfRtLRa1AZT8FVFIeaM2IVsoxfrOnIxztmIqoALnoiR9jvW1YiGoAM3FizHVWsvRHF6O8rXFJDbKW9aParq0qExJFCU2YbKTbn0DFALQ0j4dNC6NdCU+BFpN0EyxZHq8sMU8+LTM35NHXgP1x/mrr9Leb++B7Lpvw6ug0UJhVF39V2Htax9hWj6isVieP311/e5/IwzzqCKlL//fW+f2oCrEXrxxRdp0DQR7MyYMYPmffXVVzR+yO23307p9b/61a+odugXv/jF4SgzwzAMwwx+hpBQ8dZbb6XM8nPPPRc///nPUVpaSvO3b99OksXly5dT0lV/cNCBkAh4Hn30UYruujjttNOo4/Rvf/tbvP/++ygoKCBHAAdCDMMwDLMfhlAfocmTJ+Mf//gHfvCDH+xVK+RyufDqq69iypQpgyMQEhHbc889t88vKTLHujLLusYgYxiGYRiGOfXUU1FdXY1ly5ZRnyDRM2fkyJFYuHAhjV/aXxx0ICRy/f/whz/sNcCqmCeWCdrb25GSktJ3pWQYhmGYowxJTU692X6wYTKZaHiNgcRBB0Ki/49wASxduhTTp0+neWvWrKF2PlHtJVi9ejW+853v9H1pGYZhGOZoYQj1ERrIHHQgdPrpp1PQI/oDiYHTBMI0LQZjLSoqos9XXnll35eUYRiGYRhmIAgVi4uL92oaYxiGYRjmIBhCnaWPukDI7XZTynxLSwsURdlt2SWXXIKBiHCBTBpWi03G7KQ/Y4MdFbDDKLQvGiCSAji2a2AoDqFljAkZhR0ont6BHR3pcFc5k/uwRaG2GxBxKTCUGxHOjUPfokVjkxMojaIorxWR57OxU8lH0ZhGhBNaTHDUo/i0NmzzZkErK+T7EeS53OTnSBvZjna3FeNTG1EfdGD4yHZyCOXb3RiR0koOIZMuhmPnrUZT2IFhplZ82VwIoyFGzh7h0nCZgthQlwODIbnv/PQOcgm1+yzk6IjFNJhQVI/6gJ18IItKt+LNugk4Z/x6mOQodvozyQNS35SCNGMAleYYTivejHfrS8khJLwhmXYfnPowmuNWVPjSUNnqQr6rE5GEFsfkVmLFprGYOKIGLUErOYSEOwhjgVEpzfj44/HQFvvJ5ZGotmB+442QXBGMLanDtrosPP7pqzBLH+D1zql4b+lUxI0SNj98PU469n60TDXDWqNB6vYoVDmBytMNcH5uhHt2GAm9jjw/oXYt4lYt4pnJazE8JgRdtYn8MZZ6Cd7RMTg36qAu8JAPKdUQhXttOgK5gK1aRSBXQsKSQNysRaQwKuwt0PmBUH4c8TotzPWAb3QCiGlon8LRJL6LtsaEWEkc8jgvUo/vRHljBozrTQiMjqItroelXoV7hA5pG8OIOnVI3ZpA+zHZ0IZVXH7Pv/Cbx8+Go0IcD/Rd3+3hEOpy7ryr/B1Trnyc5uk9CciTx+zj4t67flw4mDzDgak/ehxFF7TS72QYFkfjZ7mYtGAHyt0udFos0M4OI/RpCgL5CrRBFdqABG9+DMZ6HWJWFRUXypCDChRzAlJ2HG6ngfaf8aWEluO15LSZ+b3H4P2fkbDWqsDIdKg6CZHxTqR+3ojW/ySBLJp6F6SWtu7yzVv8EAwtbZBdqaifZ4Bc7Kf3dXNsyIkVoHWKhLz34whOK0LVmSrM1YXk05H8GoRv7MTMlGbyV9nXGeAvVmBskRHMVqBmh6F6TOSHEYh7FdY4Ym06aIIyTO0qEmV6uEcAkTQFJkWGxquFIp6EMqBpNCCRHYHcbKBz6HcAhk6gYEUE1Sfryc0jXD6h3ARSv9bAuFaDhpMUBHPFyJF6yDGJniXCIWRolxE5zgdZUiFvtaN+vgTFFEfz9nQoqTFIbTokjMKdpaBtogaRvBiV2bpNh9CUEOIBLRS9BnpbBNYvdPAOV2Fslcht5BmpkvcomgJobDHot2kRygRcnxjIE5UwKyj8dQOUxmZsf2Yixp65EXZtGC/tmAmp1ghfPnDtpA/wh7I5qPM5MNzZTve3wJQWRLDDRPe9eMZsrMpF4YhOfFo9jO554fGpC6VgfN5OrGwYjkJbJyq9LjRoHfRcOH3EZqzsGI5IVIsxBY1oCthoX+I8CO9YW9BC9+Gk3Fry/9h1IcxOqcBqczHKbS5yvBVntOP1bRNxaukmqD4dNrVk49POEnKjfdVamHSTVWVAZ4tiu5yJlg47/vexH2DnGzdh0tt3ALlhJOISOdPs6/UIzg6Qc+i+k1/FKu8IrKwegZBHj1hqHKVpbdgezYLTEaC/DTXVaThicNPY4AyE3nrrLVx00UXw+/0kcOopVxTvB2ogxDAMwzDMkce7nxEp9kV/iCEPOhD62c9+Rh4AMQp9f6a7MQzDMMygZojUCDmdzm8ckUIgUunFOolEAgM+EKqvr8e1117LQRDDMAzD9IYhEgitXLkSA5mDDoQWLVpE6fLDhg07PCViGIZhGOaoYe7cuTiqAqFTTjkFN910E7Zu3UrDauh0ur3S6xmGYRiG+RaGcNZYMBikESii0WTCSBcTJkwY+IHQj370I3q9995791rWX+17DMMwDDPYGIpm6dbWVlx22WUkZd4X+4shzj777IM+lhgOLCMj41vXkw92xyJdfn8TB0EMwzAMc5B9hHozDTKuu+46UvB8+eWXNNyGGHdMDOY+YsQIvPnmm/vdTkib9Xo9HA7HAU1vv/02ZbcfCJIqumof5Wl74qTkP/q/MBaosFnCaG+xQ9IosK82Iu+cSmzZkQ9zpRahbAWpwzugkVS4/SYoFVbah1oYgnanCY4ZrfCFDEgkZESDOuhrDdCM8eKMkk14p3oMAgEjVAWYO6IMHREL+TmEE8NpCcFuCJOnQ7iFjJo4moNWVNWlk4/GYgljdFoL1tXnUvmEY6PQ0Ql/TI8Cayc+qSxBYXoH0oxB2l5MFc1pcNhCyLL4EFdlFFo6UR1IoWMI95HY3qqLoC1swSh7M7xxI0yaGKr9qajqTMWSom3wxox4v7wUGale5Fi9WP/5cGSMb0GH34xshxcNnQ6MzmrGztZ0mI1R8hk1tjlxfEkZtrRnIxzTQpZVWA0ReEPGbt+QwGFIOknEOZiQ1oCVa8bCVdQJpzGEuk4nIj4DSosa0ey3wVvhhLVShmdcDGdOWYdj7TsxydCIN3zj8euvToBtgx45n3ixfPVdKHr2V9B6NVBMCuxlMtzTI9A2GuCY0IaOdivUkBaIytC7ZcTNKvQeCfExAcRDOsCvpfmaCBCzALpA8lV4WbQBQO9V0TFRhb5DJr9Q6ywFjq0aWkf8lyGhBxIGIJEbhqxVocQlmDcbESiNQXZrkTO+CVpJQdX2bHL76NxJ75DYdzhLgdYnQ0qAHEXCTXPlTa/h2UfORtrL68R/g7A8/Jfdrt3FE27Hso33ofTex5GzKgo5ppCPaE+CaZq952UDUhzIX+5G07FOBHKSLi3hXQpmSojO8AM7rIhkxaC1xMktE0+Lw5XlQZo5QK4XcT6lDj0UWwJaSxSa7eJEAJH0BFxfa8iHJPYlzqfwCSl6wD0uAft2Dbm5UsriqDtRxq5rf4YlmVdiafOzWJzyQ6AwB6F8G+SIAvcIPXwFoH2kblOgaCX4CiXy+oSzE3QetR1axLOimD9mO0ZamrHZl4svKovp/NscIXjr7OTv0bllqGP8kLZaoXcDwVwVqk78DjIi+TEgLsFaJnw7KuSoBFWbfPSJ722o1VGZbVWA/rxmNDam0DMi9SMjQulJL5M4f8JlJMpk3aJHYELyGtfoEzCboojEtHCYw2jb6YKlRoavNOn10joiiLcbAUWCakzAWqYj15TYv/AV6Yf5EN9uh6JXoSkMoDi9HTt25ZA/KNppJFeZ3pP8PaPOpPcsmpaAHJSRslVC26wYHJt1MLcoiNpl6L3J14k/2Iibslbgt23H443PpiF7RCta3VacMKwMH9WUwKCL0z0r7m1xj25syyGPTqoxiFqPExZDFIGIHvkON4zaOKo8KXRNXDzxK7xVM448aGL9yWl1MGti+PuaqXQtTSqoQ1yRsWFLEQzpQUT8ephsEToXs/Kq8FHZCCwetRX1QScqO1NpvjhWgc2NGp+TnkVf78qH3hxDut1PPrSQ10h+MrMuivagBZMz6hCMG7CxKRsFqZ3kP6v3O3BqziZ80j6C9imcZg21qUjL8dBzWOzD4gxhbn45NnbkoK7eRc9ftcUAc52MsAv0HGndYULt9XfA4/EctlTurr9LBQ/dB9lkPOT9KKEwam6+/bCWta/Jzs7GG2+8gRkzZlCZRZ9jMfCqCIIefvhhrFq1ap/bybKMpqamA6rhEdhsNmzYsOGA+jMfklAxEAjgo48+2mf7nsgoYxiGYRiG2Vf80BXMiMHZRVOZCIREn+Ovv/4a35R5lpqaDJwPBNH0lpsrTKfo+0Bo3bp1OPnkk6mjk/hComBtbW2UTi++HAdCDMMwDPPtiK7OveojhMFHaWkpduzYQWOTTpw4kcYtFe9Ffx5RW9RXmWfHHnvsAa970H2Err/+epx22mno7Oyk9r0vvvgC1dXVmDp1Ko1MzzAMwzAMsy9++tOforGxkd7fddddVHNTUFCAp556ikTNvSEej1NL1cFy0DVC69evpwhOtNdpNBpEIhFqgxNte5deeukh9exmGIZhmCHHEEyfv/jii7vfiwoUUZGyfft2CobS0no3ztuWLVswZcqUg07cOugaIeENEkGQQDSFdUVfouNXbW3twe6OYRiGYYYmQzBrbE9EtxoRvPQ2COoNB10jNHnyZKxevZpS3USb3Z133kl9hP70pz9h3Lhxh6eUDMMwDMMMehKJBF588UW8//77aGlpIfVOTz744IP9bisCpm8iFAodmUBItOH5fMkU6fvvv59Gm7/yyispMPrDH/5wSIVgGIZhmCHHEBlrbM8+QiIQEqNUiMqTbxuMtSdiRIsLLrgAxcXF+1wu+h7t3LkTB8uQ8QgN++MvoGot0OoT5OoR/gztOynkCBGemJJZ1di5MZ98NpE5fmQ4fQjFdGhvciS9NG0a2Ka0kTdDOIG8ESN5L7a1ZcBuCqO+KQWVF9+KopcexMwRVeQJEtS2psLpCKCtwYGc/A5EExq016Rg4tiqbteFOM53itfiw9aRKG/MwA8nrMI/qicjz+ahdTwRI2alV+FvG6finPHrURtMwVhbA3RyHLXhVHJiOPRhNAVsmJpeh5gqoyVkw5SUWmz1ZZOPSHhhhCtkbVM+uX9KU1vRFjZjnLMRVQEXuY2Ef8jdboE9JYipWbUo86QnvTg1GTA5Q+TrqHM7kVjnQNZx9fBFDeScyTF7sHLrKGRkepBvd9M2wgciHCTiWOJcj0pvQXvIjLp2Jzl9JpbUkg+py60kfENiX5NT6vDKuunk/LEXeOBtsOPk6etxWdoqfBQoxe+2HIv0V0ywVvqgGHSALKHuBDOUST5ovrbB1Az4ikC+nuiwMKxfG+EbkYCqV6B1a8nZEqm1ImFJwNCkQ9ymQMqIQKNNkDfK3AQEZia9UcIBFLOpSKRHkfmuHs0LYuQd0ZaZ4JjeipbqVEhRCeYCH0LVNoyeVI0tlbmQO3SYPWcbuW7kShMy1iZQP1+CuV4m146iw24uI2eZAlNLDB+8fwtOmnMf3v3sdpx07P3QNrmRSLOh4jwrhr/iQ+1JduR8uvf/eDpHmvZ57YtrO/+xNaj436nQBiRy/YTTVXLP6IIKTK1xGHe1oeGUHKSvD6FxtgnO8gTsW9qx67vJ9Fa9F4jaAXtl0hkk9iEa1OVY0qkUzE66mmKjQih5Ig5Vq0HrZDMSOsDYqSKQK6HgmS1AfhYUsx6ahg40nlEIR0UMwUwtIme7oVmWAvcoBcZWGcHCGHLe06BpTjKbxlrsQXFKB12fX349AiVj6slDFa+0Qlvsx6iMFmxpyEJWqhdN67KQshXkN2pYkIAkA/aNOsRsoirbi3BAD+NOI2xzWuFem46U7SpaFkWgJmRYtukRNwOWRqBjUtJfJPw9qgxoR3mBdXaEhkegqzcglpqAuVaD4IgobRfKSTqilBEBut6j7SZy/JAXKCwh7ozDUqFDfIofRkMM3hoH5ATouhPotpuQMqcZ7aszEc1L7lNcJ5pw0s2kCSb9QZpocp61XqHfT4qp+Oidn2Pk/Y9j9NwKfCdrNaYba/EP7yR80TEM2z4qIYeV6bg2+EMGcp8tGbMF7+0qxekjNuO9upFwmQNocDvIdSacO5NKa7C5LgfDs1sw3tmIT5uTf3DEM+/kzM34oG0UuX/EPS22MWji9IwbldNE97FVF6V7WSB8bOJ5sKkhGxGPAcVFLTBo42j02uHtNMPiCCPP6SYnWp7LTduI5YLKVheWlGzFZnc2tHKyxmBnbSZURcLJ4zYjlNDRsywc0UGjUejZJJ6d6W8Z0DFGRtSpQJ8ZhPZrK9TpXoR8BvIS5aR46Ll1ZcnHeHTLAkRCOlhtYdqPyx6gZ/oU3XbcMv2jI+IRKrr/fsjGXniEwmFU3XbboPIIpaWl4aWXXqLs84Nl2rRpuPzyy6nyZX99mEW/o8PeR2h/iPz/U089ta92xzAMwzBHN0Owj5Ber8fw4cMPadtjjjmGUu+/SaJ4/PHHH/R+DyoQWr58OW688Ub84he/wK5du2ie6O195plnYvr06Xu19fUF9fX11Mvc5XJRur6QLgkTJcMwDMMwg4uf/exnePLJJ3EojVFiuyeeeGK/y0tKSki8eNgCIdH/Z8mSJdS299BDD2HWrFn485//jNmzZyMrKwubN2/GO++8g75EuIpEBCgy1YRrQLQPPvroo2SjZBiGYZhBzRGuEfr444/JA5iTk0N9c8T4XT0RwYlIgBJiQ1HxsGDBApSVle22TkdHBy666CJqinM6ndRUdaBjegnEEBp/+ctfKGgRZRHKnZ7T/ti4ceNBVbaIVHrhFerTQEhEYiIAEhlir776Kr3+5je/waZNm8gIOXr0aPQ14nj5+fl44YUXaFwS0UFq4cKFdAIZhmEY5mgYfb4308EgRoMQNudnnnlmn8sffvhhEhuKv+liUFSLxYJFixYhHE6OqycQQZAIMt599138+9//puDqiiuuOOAyiODprLPOoqxz0V9oz8FSvyljvb29/YCPIyppDlSueMBZYxUVFTjvvPPovYjatFotHnnkEeTl5eFwIQZhEz+COK4Y20yMG/KTn/wEP/rRj/a7jRA8iqlnpzSGYRiGGeqIVh0x7QtVVanZ6fbbb8cZZ5xB80Sn5szMTKo5Etla27Zto9HihUJHdFwWPP3009TxWYwsIWqavg1RsXEoiPLdcccd5B06EPYcB7VPAiGRn99VAFGlZjAYvnFckL5A9EN69tlnccMNN1C/JHHyxVhmorOVsFjviwceeAD33HPPYS0XwzAMwwwUs/Se/+EXf5/FdDBUVlbS6O6iOawLUUMzc+ZMfP755xQIiVdRo9MVBAnE+kKyLGqQRE3P4UJ0gv6mjtL7qhESzXt97hF6/vnnYbUm08JF25voL7SnDbIvB10V7YHihHeNPyKqxkRfJFFtt79A6NZbb6XAqQtxgYjmNYZhGIY5Gj1Ce/6NE2N43X333Qe1q6amJnoVNUA9EZ+7lonXrpHjuxCtQ2Lw9a51vg3xd3xf7iAxz2g0UkbZ97//fcyfP3+35R9++CEOFwccCIlxQH7/+993fxYdpIVNes8v0peBkKhxGjNmzG7zRF+kf/7zn/vd5psi4eLsNmSZfdjekQFPixXauSEocQmpLj85hArHNKLKmInsf5pRN8+EjMIOaExxJIIGxArD8H2dhkRJCIb0ODk/movtmFxUh7giI/RRNt49ZjScrnPJ29MRNCPVHCSHkHAPDR/WhIQio6XDjpkTysk/FAgYMS6vgcq2vHEMTs3ZhDRjgBwgYptqTwr8AQMcthA6ohZkZXjwZtk4jM5qRmXIhUyDD9X+VFh0URi1cdj0EXhiJvIDpRmD+LozH1s3FGLGtDLysATjBkRiWlhNETh0IbijRrxXU4p4QiYfi0kXQ8QWgU6bwMcVI3B8SRk+qy3GBVO/whsV48njIc6V7bh68n1U1aUjrSiAldtKoTXFMC2jBhW+NMxL30n7TjUGsb0hCy6nHw1+O3KsXmTm+7GuPpdcJYtGbsWXzYU4NmsXtrdk0Ovft05BSUEzKnbmwGKIIn90DVbVD8MXv52K0GIvfXfPlUbcOOxtbI3k4vX6SdC/aQY+skHnV+EsDyPjvTZEhmVAXSWj/go/9DusiKaBfC4JrxGmfD8SCRkJSxzaChO0TSaEsxRAr8I7IQ60G+CsTfqIhEcGPh2C6RL0liiiPgMko0oeGuRFoca10H7ggPY4P51rQ24A2XmtCCd05FbZHMhD20QdzPUgL5Fw74hXQycQHhnGs8e8hFvv+xHkFC1mfu8xfPnZ7cl76ctNiBw/Cb4CPcyNEnZ83wq9G2g4Zu//4Yj97Qtzs4ro8RNgqZOgaAC9D4imAFEbEHXIiNr1iDizqEwJgwYGD9AyVYNP//EAxv38cWR/FkT1EjNyPomi6hwZlgot+WziFhWmZgmmVhW+0jhUnw6aChPkrRux/dExMDQmfTx6nwK/rEF45ggY2sNwl1qhKbYg+70WlH0/A3nT6hFanotoOqDvlOE6vhEJtw2Nx5sg2WLQmWOYlV2NT+uLEaizQTUmUL0mD3GzCjk7jGyHF+t3FECKy2iIy1CsCjynhBDtNEJSJHIBeUcmAEVChilC/ii9B2jfkoZ4Vgzu0WEgqIOmTYdAcQLQK8hZpUI51Q+NrMDTkYa4M4FYmxnIVGDebki6gDZbERoVhq7WiMCYCGS3jrxKNluIfGGGNg2i+RFIsgqEDVSWQEkM1jVWGOe1ItYswzCzA+4aB/QdGjr//hWZ0MuAzqeHHAccuxTELBJStvkRSTfBn6WF+p+nteGHjeQVy9a78caul3HMwsn4oq4Id390AflzLjjuc2ysykXhrHqMdLSiOWxDZTwVskVFc9gOsymKNW359GzxdJphtETpXvWmGVFkacc2bSZKbG30rIlHNZheXINiSxuCip6WC6/P2rJCZNp9cBjCMGS3IK7K5BASxxX7E8vEvDG2RpQZ0uDKDyCS0MJlCiLb7kUwpEegyYrKmAYLh2/HurY8KkOhtQMrq0eQQ2hZ5WikWoNwB0y0v8LsZP8QsdxmimB+XhlW1o2gecKTlpHqheEHcSjtTthNUTpO5RQg0mGCzhYlj1Jmrh+163PwcGAhos1m/HLRq7j9qzOQk5H0GAn/24qI6O/6EQYTYnirnh6hg60NOpIsXryYWnpEBrjo+ysQrT2iM7QIgERSlKhleu2117qb6A43BxwIVVUlBYBHkn05A4Q1srCw8IiXhWEYhmH6kkPp8Lzn9gIRBPVWqJiVlUWvzc3Nu3V7EZ8nTZrUvY4YFqMnonVIZJJ1bf9tiEQrkUIv+vv05L777qMBWFesWEE1Wv/7v/97xAKhPhMqHg6uv/56fPHFF9Q0Vl5ejpdffhm/+93vcNVVV/V30RiGYRjmqBEqFhcXUzAjxgDr2bVE9P0R/W0E4tXtdmPt2rW7jQ0murGIvkQHgsg6/+53v7vXfNEHSSwTiOUH0x+otxz0WGNHEiFpfP3116nfz7333ks/lOjVLtL3GIZhGIY5cITvR1Qq9OwgvX79eurjI7q/XHfddVQzI8YOFX9vRa2NyAQT0uSurimiaUtkbou+urFYDFdffTUFMQeSMSYQ/YA+++yzvezSYp5YJhCBVdd7DPVASCCG7eChOxiGYZijjl42jR1sjZAYlaFnJ+SuxKJLL72Ukp9+/vOfk2tIeIFEzc+xxx5L6fI9gxIhQxTBz4knnkjZYueccw65hw6Ua665Bj/+8Y+pVklUdnT1ERLJWCI7vGsUi67muCPBgA+EGIZhGOao5AiPPj9v3rxvHNpCkiRqfRHT/hC1R6KbyqEiPEWitunXv/51d8JVaWkpJWNdeOGF9FkESvsbWPVwwIEQwzAMwwyBQGigcNFFF31jF5cD9f/0FZJ6CCOfCcu0sEOKVzH0hvAKiLHARBvj2LFjMZAQnb1ICvWva9HUkYuighZKbRfp87IhgfQ0H5rrnbBU6hA3AZGsGIwpYUoxb9+VSim1rjw32mtSIFliOGnUdnywawSm5tdRCry3zo7SMXWof7sQUhwIzQpAp0tQemdClRAM6xFqsWDi2CrU+RxwGkOYk1aJ9xpL0e61wGYJY2ZmNcyaGKW0NnttyHF60OB2YFZeFb5qKES61Y8TMndiacMYjE9txIp141A0rJlSYz+qKUGRqwNl9RlISQkgHNXR+mNSmvBZYzEyrT449WHU+JywG5Ka9EBMj0yzH+s/H45xM3dRymtuVidcxiCsugjiItdapF9rI6j0uuh8jU5rIS2ASNMXVHS66FWkwYrv4AsYcfGo1agLp6A6kIIcswfbOzMpDdmgiWNJ1hbsCqVj+c4xyE5zY35mGT5rK6ZU3Kr2VDjMYWRbvWgPm3FKzmb8tWIa6QcaPXacWLSTjrW1M4v2J86N5nM7og4gmheldPtgTI/vFX4JvRSHWY7CIkfwia8UG66agM5SEzomqjC0yVAm+ehYvs/SofUDvtIE9CLdOS0BXYcGppZkinsoU4ViVJLpBMYE0j7WwVcoIVIYpXRsaBTYU4II7HRCyYxAX2lEpCAKZ5ofkaiWfkPx3XZUZ8FQZaB9aiKAogOlWovPqlZFwqzgngWv4amHz6O0dkuzAk1ERTAz+RsEcoCYXYG5XkZ8hg+JMtte17jYx55YamUEJoRR8LIGDcfpYG4CvMMVWCtlBIqS61uqZMiJ5PqecXGYK7UIZSsY9loUtQuMpA7QhpLLQ5kK9JlB6L+yImYDFC0QzYhB69YiY42KlmkSRj5Zg+2/zISakGGq0NM6ItVeikuwVwF6rwJVltA6BTht3mq8vWIGLA3J9H8xdU6KQ5VVyEENkBKFpt6IeFYU2dmd6PCbIUsqgiIVuk0HtTCEeEALrSV5PRpNUUS2O2i+VG2icyK0EZveKqXrJHViKzo2pUFT4qdzKPYryhgqjgFBDTSuCFBvhByVqCwiRV8TlqALgFLl1ZgGsi/5mygGFVrxjPjEAu8IBWpqlJarCuDI8MPnMUFqNUBxRaFtNCBuTwDmBPR1euTPqUVlYxp05SZAEunygL1KgcEdR918PbSjvHDZApiVXo1RpgZMNNbCnTDh88AIvFE7HkWOTrgjRtS2pyDeYIY2J0hp+uIZ0BlKCm/FPSJSzk8ZthWVARfaQ2bkWj1oC1tQ3ph0wAhtyJRhtfh6bQlsRR5MzapFQ9BB+o7VtQUwGmL0HBH3VSCip/v/i63DYHBEaJksqyh0dKLRb0c4pkW+w41aj0hbD0MrKfTMWFiwA29VjKXfTax/RekqvFIzDRlmP6Xhb3ZnY3JqPT5uLMFYVyPKPOnwRwwoTW2lNPa6didmFlaj3u+AL2qARlLR7rZieHYL6txOjEpvQZUnhZ559CzyGTAstxUVtRkY/gcFLTeGqTx19S7YUwMoTumgZ3CWxUfrn5+9Bp96RpBeoPpvJfAdE8KkgjqEfHEsXfx7eDyeXmdifdvfpWG3/RKaXvSFSYTD2HX/Lw5rWYcCB501Joa6EPn/oie5yPPvGmxtw4YNlPLGMAzDMMzAG2usv0hNTaW0eYEYNF183t/UHxx009gtt9xCvcpFJyub7b//Oz3hhBOozY9hGIZhGKaLxx9/vDteEJnfA42DDoTEaPP76iglmse6Ij6GYRiGYRhBzyGx9jc81qAKhMSAa42NjdTruyfr1q2j0eEZhmEYhjkAhlBn6Xg8jkQisdvwH8JaLXxEImX/9NNPp3T9QdFHSIiTbr75ZhpgTaTaCfHRp59+ihtvvBGXXHLJ4SklwzAMwxxlDJU+QgIhYew5FqnP5yOP0DPPPEPeIOE3eueddzAoAiEx3MWoUaNotFvRUVoMinr88cdjzpw55AdgGIZhGIbpiagwEfLFLl566SWqISorK6NkK9Hv+JFHHsGgaBrT6/UkPhLq7c2bN1MwNHnyZFJyMwzDMAxzEAyiWp3eUF9fv1ucIMY0E4GR0Ah09R0SWp7+4JA8QoOJLl/DWe9ehs3uYsTCWozMb0Zb0II0cwA7tueRH0jgSAmSF2dybj2+LCvCxGF15LWpq02DPc2PQMCIjFQv+XjE9qNSW/BFZTFSlxthubgBNRtzYB/ZiZKUdpS1pyHb7iVvxw8nrMKqtuHk74kktOQPOn3EZry9awzMxij8IQMirWbklbSg0NZJHo+ozwBJl4DOGEe+q5PcI2g2Qk2PQNaqcDoCGO5sJ9ePSRPDOxsmICPbTS6ezXU5VM6edPl8hBdEuIjWtubR9xfeEPEdhD9DeILKNuQjc1QrcqxebG3OxISsRqypLoDL6YfNEIZVF8Ws1F14YetsOk/1ATssuigdY0dVNkqLGhGJa8kBIlxL6+pzsaRkKzZ05CKuykgoyUrIrjLoNQk6n5WtLkQ8BhQXtZA7KNUaxOl5G7HeUwCtnIBejqMjYsGGDcWwF3hg1MXJKZKf3kHntKnFASWigWuNDh3jFJSOq8WOzfnIHtGKaEID58NWaP1R1M+3w1+SgKleQ54bOQ4YOoHgXD9sy63wDAes4zrg85mQ8OjJISTrEjBuNSE+yY94rYX8QvoODRLGpCMn7kxA65UxdnbSySQ8OnpLlPwu2Q4vFmVvpfMVbTZDG5SgG+5DdJeNnDWKXoWhXcLz//M0rrnvGoRdgBwVbiBAPztZDuHLkbQqNG06WOqkva5xXdJgsRud45OuIOFOiqSoMBT5oGy2kx9HeI/UkBZatyZZfqsCfacMVQPyKeUvAzpHaOArjUGKylRvrHeFyCEUnBSCEtABURkZX0nwnOGn36p1XSZGvNiCbbc4IXm1VGWvCcjkxYlGdFBbDMj+WEXbBA3OP+tjvP6n4xGzApookDG/HtWNLqgePSZOrMRoexNeWTed/EHiXlEqLVTOGSdsxZa2LJh0Mfq9u+6Dzk4L1HYDuYeSX14Pa7WMqB2IDgvTdzU0ahHJTDqjlBEBWs3yqQWeKVFoTUkvjukTK9wTkt9ZHE94lGwVMnwlCqBV6XyJ31qOSEl3kE8HQ5uGvFBiXTGJ49lXG8ld5CxToA2rsFS4sWzjfViSfRVCEwtgaA9D7vRj2x1pdL88XPxPBFQdVoeG4aXKmeQeSySS90k8qqFrT5yjhk4HpufX4NPtw1GU10quHvGM8UaMdH/XlWVQOTPyOzEipZXu6xOH78BOTzqOy6jAWzXj4NueAik/iFR7kPw/whUk7klxz0X8ejhdAXg9JuRkuGm+cP6EE1p6TmocUSQiGjq2QRtP+oLCZrp/xfvWoBVuvwkjMlpR3paGvBQ3eYIE/1g1g+5Fsy5Kfq0SWxsqfGl032s0yWt1TGYz7WdHRzo9Q4UjyO2x0LNHbFfbmopphTX0TBHP8TEFjfQ8agub0eq3IhzR0fkR14i7yglDuwzT1A6ExPWnSDCbojRfPD+ER044n8TzXjynzkhfhwe3LSJ3mSYSwAenPHdEPELDb/4lNIZeeIQiYZQ/NDg8Qi6XC5988gm1IgnE2GSiBqhLrLhr1y6MGzcOwWBwYNYIdY1HciA89thjvSkPwzAMwzBHGZMmTaIhNR544AEKiERHaaHd6UIImg904NZ+CYRERtiBIDpPMwzDMAzz7fS2w/Ng6ix95513YsmSJXj11Vcp8/z73/8+srOzu5e//vrrOOaYYwZuILRy5crDXxKGYRiGGUoMofT5uXPn0ojzK1asQFZWFs4777y9aoxmzJjRL2XjQVcZhmEYph8YSjVCgtGjR9O0L6644gr0FwcUCJ199tl48cUXqTOWeP9NiPHHGIZhGIZhBgMHFAiJ3u1d/X9EMMR9gRiGYRimlwyhprFBHwidddZZMBqTKX6iZohhGIZhmF7CgdCA4IA8QhqNhobUSE9Pp/eix7cYZHUw0OVrKPrDHTCmaBAJ6ZAIaSEbEijMbicHjfBg1HSk0Po2UwSBiB6hgJ58KVpHBDpdAooqQZZUOC0hWl84gU7J2YwXt8/Cryf/FbftOAstjU7k5bdhhKMVZZ50ehWQ/6Yiv9u/IXw7V8/4AKvdxSh3u8jnI9henoOc/A7y3pyctxXv1I2BTR+hMgqfx6avizF+SiWMmji5NEZnNSPX7Ea1P5W8HQLh7qiozYDeHCP/kFh3S2Uuzp30NSoDLrSHzOQjET6cnPFNVMaGoIO+j0A4geKKnPQd+SwIeY3kOhHzdtWnY86IXeQ5Kk5v7z5nOm0CPo8JWRkeDHO0k7/EZgthcf42vPL5LEwcW0XlfHvdBEhhDblO7Dle2E1hOoZBH8c9o9/CI7sWojNgpv1lWn3kGMlJ8VCZjNo4ld0dNpH7Q1EknDJiC+pCKWjw2+n8FFna0Ra1YpfHRR6kWq8TwQ/SEZgQxkmjtiNVH4BDG8SfXj4JWZ9HYGjwoPa0DERn+CFttSJhUskFI8j9OIGak6XucjZuyIKmMEDnTZA5tgXN29NhyPfTOZI9yf9TiM/CDdVek0LunUS1BcbhXkQiWjw1/RVc+cElkBQJth1a8uiEh0VgKjdAEwZeuPpJXPziTxG3qFB1Ku47+VW82zkGKzePhqZDC71HQsHDa/a6xqWSor3m7bjVCk29EYpJoTIJl0+iUw/ZEYXUaEQiLQY1LkHXpoPeB2hndsJb44CcAEwNMgLFSeeO8AohLkFSgMIxjajamZU8gFaFbZsWUScQHxmC3hCD9lM7pLmd5NvSlplgmNQJv89IDhf9LiPuuvAV/KVhJrZsKoRqTEDSKUj93IDi75XRb9hYmQZDepDWFx4tgyNMjiLhs2nrsEKJaQC/Fqac5Dlua3AgLccDz2YXNCV+cjYJH45+lQ2+iVFIGoWcTgLhgtJWmhArDJNvSorL9L30bpm8QgZDHAG3ifxIMCRgF06xrSlQC0NQ4hJSXX60V6VAjklQHHFaz1ypRf5yN2pOcSJ9QxyG9ig03hCqznYhOjIEgymGW8Yth05KoEjXCp2kYHWoGJOM1aiKpeOP9bPJAdS+OpOcVo4JbXS/i2dEs9+G0tRWuKNG7NiZi6JhzaiqS+/2dIn7UzwnhIfLGzJS2WeOrESNz0m+MLEP8TyxpgURaLDCnuel32VUThO2N2Th1NJNCCX0aA4nRwQXDrG6Tif5eeyOEKyGCOZnlpF7yGUOoKo5LelsKkslh9IVUz4hx5fL4Edc0eCT2mE4ZdhWesasLSukZ12mOSm42taW/FshnEeCru+2uSUr+ezwmWCxhHFs7i6EEjpsbMuh75VqDGJzWR6mja5COK4lD9nklDp81DScvELiWTA/pxxvlo2D0RDDGUWb8F5jKUalNCMYN6DSk0rXzfiCBnKrie8uHEbimfhVRSE9/4WbSKNNQKmwJn1gKWEo2zSovPvwunm6/i6NvKH3HqGdjw0Oj9BA5oCG2BAB0BdffEHvRdzETWMMwzAM0zuG0lhjXaxevRpffvkl9kTMW7Nm7//oDZhA6Mc//jHOOOMMqg0SQZBIfRPv9zUxDMMwDHMQTWO9mQYZV111FWpra/c5BIdYNmD7CN1999006nx5eTlOP/10Gg/E6XQe/tIxDMMwDHPUsHXrVkyZMmWv+WLMUrFsQHuExIjzYrrrrrtIhGQ2mw9vyRiGYRjmaGYIdpY2GAw0vMawYcN2my/6Hmu12oHbNNYTEQiJIKi1tRWrVq2iSbxnGIZhGObAGYp9hBYuXIhbb72VOnh34Xa78Ytf/AInnXRSv5TpoMMvMTLs1VdfTYOnJRIJmif6Bl1yySV4+umnuaaIYRiGYZh98qtf/QrHH388CgsLqTlMsH79emRmZlJcMShqhK6//np89NFHePPNNymKE9Mbb7xB8372s58dnlIyDMMwzNHGEOwsnZubi40bN+Lhhx/GmDFjMHXqVDz55JPYtGkT8vPzB65HqCdpaWn4xz/+gXnz5u01MOv5558/4JrJunwNY175OWIaKzmB8pxu5Jg9+GDjaEhaFdnZnWhsTCHXCNoM5F0RviDh6dBIKtx+E6LtJvKOuIZ1IM/mgSdiJJeHf1km4sd5EewwkZtoZH4z2oIWOI0hNLgdKEjt7PZmCMeHQDhvWoJWtHstSMQ1GJ7dQvOF38Kqi6AtbCG/iECUS7hDhOensc2Josw21LankMen0WvHwoIdWFFTinyHG00BGzrarVB9OujTQ8hw+sjBI7DqoqjodGFOdiW5Or6oK8LI9FZUdqZ2+z2En0S4OUy6GNwBEzmXRuS2YLyzEW/vGoMxmc3ke+nwm8nZ0hFMOn86Oy3ITPOS26PA2kkeEOH3WNkwnM5DRVUWOWGspghicQ1OLtyKjqgFXzQWkjtk+c4x5CgRCDeMcJ9Myqrv9hWVN2ZAbTEAaRHkZLhRaOvEp+tLIVli5EtaXLwNGzpyyZ2ilRTU+xxw1ziQXdJGThHhcdrWlEmuEeEgKs1qwXX572JDuAB/fWwx0r52w19sQ+tkDWxVgK8IiObEoCqAI8OPwE4nOYSirSZogjKQG6byCleQQLiG1JUp8E2KoCi3jXwn9U3/8VI5QuRY0lUbEbcpOHvuV1haNRqBJitgilP5hcNE1ark6rlkyYfQyXFyz7xUPhOp5iDq2p3Q7LAgdWYzgm9n7nWNh117X/fRYWFy99grVfjzJQQLYzDV6mBqBTonJGCt0EAbAjonxcjtJLw+rq908BcAkawYHJt18A1ToFoTkN1aKKkxcviUjqvFztpMaPQJKPVmWIe7EY7oEA3qoG00IJ4ap/vEXKtBsDgOjS2GRFTG9yZ/iT+tmQ29LUKOIIST/wcb/Wgztl2f1e0GEtee8OLQvdtphnm7Aep0L8J1VsjpEaDeSL+F8DPlT2ogJ5bZlLzG/QEDnadIXgyQVegtUbpvhZsoIo6pSORjEo4mxaACxsR/2xYCWvptE1aFPmr8MhL2BLRuDTl+TMO8CHiMkDw6yFEJCbMCrV+GY1w75FddOO1nHyKmJrNmCw1teL1pMpyGEFa/NwbGCZ3w1iUdL8Ln422ywZQWxJScOjQFbfBFjMi3u7F20zCYMgJ0X1Z7UuhaFd+t0NFJHhxxPSpxGZKsktdIuHYmp9Xhs8Zier6YtRG699pb7PTMmJe+EzsDmeQJE88Kca+KbYQHbZS9GU1hB9ZUF5BXTdyfc/IrUel10TPgtILN+Ou2qVg4fDsqfGn0bNqwKw8avYJJBXXkHRL3Wq3HSc+espZ0chAJN4945oj5Xc8Vcf8KhMcn1+yBXRem58nCou3wxo34cMdITCiqp3VG2FqxyZ1N19jFE7/CJy0lcJmCdDzhLUskZNgsYQx3tmOsrQF/3j6dnnPCWSRcZ43+5Hn2f5yOQEmMnsm5WZ10TU3NqqVngXjmCTeV8IMJZ5xRF8f3iz9HY9SJXcE00eyBl094+Yh4hEZf3XuP0LZfs0eoX5rGRBXWngjBoljGMAzDMMwBMEQ6S7/55ptYsmQJdDodvf8mRGb6gA+EZs+eTR2mX3rppe5hN0KhEO655x5axjAMwzAM08WZZ55Jo1OIChPxfn8IT2FX3+MBHQg98cQTWLx4MfLy8jBx4kSat2HDBgqKli9ffjjKyDAMwzBHH0OkRkhRlH2+HygcdGfp8ePHo6ysDA888AAmTZpE04MPPkjzxo4de3hKyTAMwzBHGVIfTIONl156CZFIZK/50WiUlvUHB1UjFIvFSKr473//Gz/60Y8OX6kYhmEYhjnquOyyy6hVac+B230+Hy0TKp4BHQiJjk7hcPjwlYZhGIZhhgpDpGmsJ/sbuL2uro4y6fqDg+4jJAZFe+ihh/D888/3mw6bYRiGYQY7vbVDDyaz9OTJkykAEtOJJ564W/wgOkhXVlZSTdGg8AidddZZeP/992G1Wqm/kMVi2W35a6+9hoFEl6+h+N77YZ8SwuSMOoy0NGOzLxefVxSTJ0c4NrwdFkgahdwVL2+ZDpfTD42sIBTTwWqIoLY6DebUELk4zijahHfqxsDwQiqef/QxPNG8ACu2jobJFqHlAuHHWdeWR9uL/Qh/jpj33q5SjM5qxvaWDDjMYSRUidweLR12ZKe58dPi9/F83XHk9Gn22shDVPZ1AQomNKC2NRWJdgNmTinDtrYM8l+MdTVie2cmDJo4HUc4SYodHSi2tGGTOwfhhJacGcLtIfw6Xo+JvCGnTN5I/p5ERAODLUJeoK513FXO7mMIRqe1oNztIieQ8Im0Bq3kVhKOE+E6EV6TdLufXB3CKSKcRw5DGO1hM1q9VvxkzMd4euM8Wv+S4V/i3ZbR5Fry+EwwGOIoSumgfYrvIvxG8wvLUO1Ppf0Ip0muzYPtDVnISPXS9xT+JuE5kmWVXCAC4WTSaBTkOD3kb5qQ1YgsowfbvZnkUGoPmVFsbyenSlV7KqL1FtiKPPRbOrRBfN5ZgoanS2CtDqH+BAsCxTFIigREZWhcETrvkiMKNaAj/4zGkIASlyA3G6At9iPSaoaqVchLJXm1UGWgZEw9qprTyP8yvbgG7qiRjn3RyDV45ZX5iIwLQbfdhHC6AnO9TL6cUJsZGq+GXEU2WwieTjPUkBayJQa51gRr3d7XuObktr3mBcN6RHfZEHfGkZbjgU0fwcX5X+L+r05GepqPfr+cFA98UQOtL65P4TuaMqwWX+/Kh9kWQSymQTyqgSSDvoPVFqZzLrw2wsViMUS7f4dAnQ22ChnBGSHaX1x4eQJJr47OLcMwuRMjXG1YW1ZIfh/xW4UDelquJmS4Mrzkv9GaYuTKUWIamifKXVWeRevJEQnanCCiAT3dq7StTwdVnzzvhmo9Hcdf6YDiiMNUoUd4ZBhShx66vABdo8LFRQ6oFjtkjxYFYxvJ0ySXWRB1KrBWy0jMTnrBhg9rQl2nk35b6BXIPg2QkODcLpHzKf1vG9H6txzyim2oyMfJ4zfhnU3j6Tvkudx0D4j7T1Bia6NrWvh1hBtKOLjEfSWWi3MpEPeOuM5F+dLMAfL07Gp3IeQ1khdIIJ4L4vovsLnx5eYSuPLccHssGJfXgA3bCnH9ccvxzOa5cNkDaGxyorSwqdtJlmP1YnNTFqbl1iKc0GGaswp/rZhGzyzxHUQ5xmc0ot7vQDCmp/uxzJOOpg47xuY0kdtIPBv0mUFMzq2n61n42KKKlrYRz6tMu498XjNSq/FZWzEqajJRUtBM7jOnNYRsqxd1Pke3i01cf+I3Fh6gkdZmrGwegYYWJy4avxr/KJ9E5e7yKrnMAXoenJS7A29UjKfrZ86IXSjrTKfrWTjZxDNiQfYObPVl0/d74fWTyOMkzrl4vm2pzIU9Neksi6xLQcyZdHv9Y9UMGLKT18h08w48ccybR8QjNPbHvfcIbXlucHiE7rnnnu5XIV8WMUQXer0eRUVFOOecc+j9keagq3TEqPOisAzDMAzD9IIh1DR211130asIeC644AIafHWgcNCB0AsvvHB4SsIwDMMwQ41BFMz0BSeccAKNQCEUPIKvvvoKL7/8Mg23ccUVV2BAp8+L3H/RN+iYY47B9OnTccstt5BIkWEYhmEY5kC48MILaUgugZAsLliwgIKh2267Dffeey8GdCB0//334xe/+AW164lB08QgaaLjNMMwDMMwh95ZujfTYGPz5s2YMWMGvX/11Vepr/Fnn32Gv/zlL3jxxRcHdiAkREe/+c1vyB79r3/9C2+99RYVfCBaIhmGYRhmwDMER5+PxWLd/YPee++97rHFhKOwsTGZFDBgA6GamhqcfPLJ3Z9FdZZIg2toaDhcZWMYhmGYo5ahWCM0duxYPPfcc/jkk0/w7rvvdqfMi1jC5XIN7EAoHo93D7LaU7AoojuGYRiGYZhvQ/Q1/u1vf4t58+bhu9/9bveYpWJU+q4mswHrEZJlGUuWLNkt5U00j4ke4D1dQgPVI7Qg44fwnzAKvnwZtloFmsub0bghC8bWpOEyUBKHPiWMRLUFCWuyuc9V0Ek+D+HO2VSTg+LsNizI3I7ljWNQtT0bL5/6DO6pOh0VzWnkUslw+hCNaxGI6MnNcVnJ59gRzMKXzYXkzUg1BMj5I3w74zKa0By0kk9ErDvc2Q6zNoJ1LXnkOvLGTFhfk4fh2S1IMwawy+MiJ9FpBZvxXmMpOvxmGHRxKqfY/pLiL7GiZQy0skJTOK79//bOAzzSqt7/32R6JplJMum9brZ3dlmWtoCAcKWoKAoI2FBBFAtiAztYQb1cvXgV5a9SpYj03pftNbvZ9F4nyWSSTJ/5P99fnJhtsJBlk938Ps8zm5133nL6nDnvOZ8XTQPpGBm0ibel0DUg+za0ZyLRGIPBGBGfEf0n9GqsKajFI9sXwdBrRizXj7NnV+OpF5bi5JO3Y6c7F6uyG9Hld6LFmyrOnsqsXqRafBgOWZBsCuD12jJ8/binsX6oBD2+FHEANbVlYuWsRrgsw9jQU4SeehcWLWrEtqZ8vG/2bsyyd+FfHQvEJTIwYEd2xpD4UYZDZuxsysP5C7bihbZK8a3E4fWXZLSJo4n79vmTkGrxyzHxdGL603HDv8wXpueLa+cjp6pXfE30tCzM6MBrzWUIei1I3mWSc9Mf88elf8GVG69A9l9siJgS0D/XIC6auK/GaA9L2lktIWQmD6PtlUJEbDEYysdcQssWNGDTxnJYexPlOJM1LM6cMpcbtT2Z4lIadNux5Yzbsezu62CtGEJgtxOmWUMI1aUgnBQTh9OG12dh+Ql7sLk9H7HaZERLfYh4TUj07f/b5ZRVO/bb5jD6YUqM4pPpr2IkZsI/PUvQMJqBtY2lWFzUhnA0EVt3lqCkokucMf6nMhFIGzs2NncY0WgCwgNWpNQa4K0Ko7yiU/xMdNrwZ2iiMYqo14xrTn5GvFA1uwvEo0TXFv1FicEEhPKCyM0dkPLCslZid+OR15fDXuDFSEcyCip7MBywIPpsOko/VC/hmTenRVwvWdke9A8liY+nqT0DluQgAsNmIJKIqrIONLxejGBWCIYhIxJy/TBbQggGTOLFordm4L5CDM6JivfH7Bnz/tDXlFadiP7jg4DfgMTRRETTQ1I/Ah6L5C2Pj4UTYGs1ITTbB3O1DcbhsV/emVv8MPUMY2CpC0OlCfjqpQ/iGfc81PRnimOLfh/WUZspJGUv1zGElv40RGMJOKGwEQXWQWzz5GNXVzaC3UlYvXy31J9sqxfd/hTJE8J66/eZxVOV7hqWsko2dhVKuWb5f72zVK5J/w59PjyW+djROuYkOn5uA7Z15cLntWBlZRMaPenw+iywmMPITvZiT2u2lE3Cssyw0lE0y9mLdd1F4orqGU2Ge302Ck9olbi5rKPi/qEviG4feod4HD1dG3eWYuX8emnT4r4utos56UNo35WNsvnt0i7Ft7ENpNsn7gRLsQWQZhsVLxHdRefm7cDa/jLs6c0UNxEdaTw+1eyX+LJNpluI7eH/27wSjrRRcWFxX/qC6Gu6Z/Ef0R524IbdHxRn2criZmxoL0R68qjkD6+fn+zB7v4suHtTJC0uXrwB926Yi6ZP/fCIeIQWfOonMJgn4REK+rH9j0eHR2giFCgyDdLS/t3osNw3NSEpKWm/R29Mq+Xzl19++X7bLr300sMdHkVRFEWZEcwks/REDAbDXp2guF9oqjjkjpD6gxRFURRFmQylpaUHfNZYnIaGBhxp9GFhiqIoijIVzCCzdJwvf/nLmAjnGW/evBlPPvkkvv71r2Mq0I6QoiiKokwFM7Aj9KUvfemA22+//XZs2LAB03rVmKIoiqIoynsBF2P94x//wFSgI0KKoiiKMgXM1MnSB+KBBx5AevrYqscjjY4IKYqiKMoMMEtz2fp3v/tdmbBss9lQXl6OH/7wh5ho0eH/b7zxRuTm5so+lCfX1tYetigvWbIES5cuHX/xPa/FR3jxNa09QkcrcV/D7zYdh7rEUpzm2ImmYCYeWZSHwYuWoWdFDNaCYYz222AYMaDyL0NoOTcVYRvE3UKXh7HViqg5hqwFPeLpcG0wYfmntmDz7Ysw/wvbYTOE4IuYMBq2YEtnHhbndsAfMYp76LjSFuRYPdjany/h6R1OxojHiqriLtQ05WJReat4eOi/SbeOIj/Jg+fqqrC8uEX2rxt0wd3jQFVJJ4wJUWTZvOLoGApYYTGE0elxiBeDno3eoWSUuPrFp5NrHcITTXOwOr8RezyZsh/Dtba6DAnGmPh9Fjtb4A6lYENfISzGMOo6s+S6s5K7x9IubMW63mJ09ThRlt+LKmcPHt++AOcs2C4en6ykYfGX0CNCfwgdJM/uqUIsmoCcLI/4Tl5orhS3B90idCjNTuvGK43l+NicjQjFDHhwzyKYTBHMzuxBZXIP1ruLcJyrRf7SeZSUEhCnDV1Jhc5B9PuTxAV01qxq1Hiy0Pp6IUzzPbCaQ+J8GvAlodTZL+Fpc6eiKqdn3M3CNLKawnAPJks8jYkR+CMmdAw70NmZBoMlgliPBXlzu5FvH8LlOa/i5q9cgagB6FtkQMQaQ/qCPvEhGVwBGOptCOaFYOwzIrF0BHlpHjQ2ZcHSZULK0j7JN54zJcUnjpMcxxCaujNgt/sxWp2Guy7+Lb79mavQeAngyhqCd8SKSNiAiM8IQ78R9lmD4kEa7EuGoc+ESFIUCSn7C0wTev/j9oqTPa8HnbWZSEwLSH5Y7UH4R8xYWNIuZZMemYTEGFaVN8Jp8qHQ2o9Mo1deveEU+fuKtwrGhAhMCRH4omY0jrjET8Xji5IHpBzursvD8jlN4nGKO15qGvJQUNiHto50mNotSKzyItRmRzQlgqzcQUn/uCNndnoPzkzfiTtbTpAySjeWpycZ9noTRitDcGQMS5719SeL24pOLneXEwgmwtxnGM97eqiiASNStpswUhKFvSURZg+QWudH2GYADAkYzTAgfZsHnSenihNouMCC5LYAEkNRNL8/CfkvBRGxJYpzyNYwCF+xE30LTXA2RDFYkYiVF27DamedpM3D7iXj9ZBOGpbNcCxR0mB9YxEstrF8YrmNRBMx0pYCJIfxyWWv4fnuWeIPI6Vp/eLmoU+HvqXgqAl2px8Om1/KJOs924mSgl7Z32nxo83rFFcRXTxMqwuWbsajuxaIFyjZFhBnTrpjFN+e9Tj+p/VU8QMtSm/Hv2oWYHZelzi+GFa2F3Qz0dF0eske1HszJPysOyzHeYX9WJ3diO2DuViQ2il/O4cc4jIKRgzodycjxTn24O24r4seNJZ1UpA6KOnjsPilbaG/yu1LkriybCY4g9JO0AdGF9NQfSrmLG7G0rRWvN5XOt5eLsjqRO1AJiKxBIkbmpMwb1WDeNnizqxnW6qkHBCzISJtU+3j5cjeEIR1axNGl5Wi5zM+8Sqx3JuTQpid1YOFznbc/fjJSJo7gKG+ZLhyPBgZjKLm47ccEY/Qok9M3iO09a5D9wj95Cc/wa9+9Sv85S9/EcMz5+RceeWV8izRa6+9dlx4ePPNN8s+7DCx47R9+3ZUV1fvJ1V+N3z/+9/fz1GYmZkpgkU+ZmMq0FtjiqIoijIFJMRi8prM8e8EPtz0/PPPx7nnnjvu7rn77rvl6e+E4yK33XYbvvOd78h+8eeMZmdnyzNGL774YkyWm266CdONo+rW2C233CL+gX2X3ymKoijKTL01xhGmia9AIHDAy51wwgl47rnnsGfPHnm/detWvPrqqzJRmTQ2NqKrq0tuh8XhyNXKlSvxxhtvHLZo8xYdJ0b/6Ec/ktdDDz0k26aKo2ZEaP369fJ8koULF051UBRFURRl2kyWLiws3G/U5Xvf+95++99www3SUeItKNqd2fn48Y9/jEsuuUQ+ZyeIcARoInwf/2yy1NXVyQPc29vbUVVVJdt4K45xeOyxx2Te0pHmqOgIDQ8PS0b94Q9/kN6joiiKoihjtLa27jVHaOIzQSdy33334W9/+xv+/ve/yxyhLVu2yB2WvLy8Az5G672Ac5HY2Vm7du34KjG32y2P7OJn7AwdaY6KjtDVV18t9zQ5XPd2HSEOCU4cFmTvV1EURVGOVaEiO0GHMlma5maOCsXn+ixYsADNzc0yIsOOUE5Ojmzv7u6WlVxx+H7x4sU4HLz00kt7dYKIy+WSqS+rV6/GVDDt5wjdc8892LRpk2TUocD9eE8z/tp3yFBRFEVRptOtscm83gmjo6OySmsiBoMB0WhU/s9VYuwMcR7RxMGEN998E6tWrTosceZoldfrPeCdH7PZjKlgWi+f53Df8uXL8cwzz4zPDeISO/ZMObP9UEeE2Bkq/PmPYEqwwdadgNDxXvx1+Z8QiiXip63nID9pUJZgNo5k4KeFj+DCm6+HaTgG17peBHMcMLlHMLAoHYnhGIqurcWnc17Cp5+/UpaXdvc5cEplLYJRIwYDNlneXuvJxPGZzbIsvWPAiSX57RKW9hGHLKXlEnIuJU8yBWFMjMqy+Lq+DHykcjM2DRSOL8N1WYbxanuZLFflMtb48mWrMYwNu0rgzBqW81W4+mQZO8/VOexAmm0U5Sl9cmxm8jAyrKN4c0c51iyuxsv1lTAYIzi1pA7ruouQavXJsvJBvw3upjQsWjC2FJpL4vmX8P9cssulq0m2IM4v2Y7ugANb+vLhDxlxTnE1dg3ljC8Dji9v5/UZPi7h94Rsslz//7adiKz0IVlSW2wfkHMsz2qRZfnlRd2y/2jIjMFhG4JuGxbNa5J4ZVuHZOn0wowO9AfssnQ2ri3o8aWgticTxxW2YFNHAYrSByQ9mnvTZfl8cXI/qgdy4A1a0NfhRFK6DxZzWOLG+Ltso9jekYtgrw0ls7pwWvYe5JkH8KPXPoBzFm2DyzQiS2xT98Tg2uZFJMmEpnNssLqB7PV+1F9sknMlBhJkqX3MGhFFQYIhKsvWXSkjEi+mSzzuXObvezYTD37553jfI18FzFG4CgbhD5pkGTCXRzvNftEFdLanA+EE2DJGD1jmI9X7/xIMFgRhT/XJ8u2q9F5s68pFii0gy555bi7VPqOsBu5AMho9Y2qB/uEkWX5tSIhhcUY7nt45F0ZbSJZGp9j9qEh1o8WbOq5qoLaB5ynNdMsyacaRx73SWgbfkBWIJmBZVROaPGmy1JpLpXl9LnVPSAROr6gRtUNTXQ6MaX5YLGE5N5cxc9m8pCn1AW47EEuAzeFHsCEF81c2YPumUsTSg4h5TXKd9B2JsAxGYfZE0LPchKAzhtS5bny18lnRAdzfthS+kEnKjykhKmFcU1yLqqQuvD5QIXV6g68UToMP+aYBjETHbi286S2TtqFhNANdoykYuqsAlku60LUxF8UrWlFfl4vyik60utNEfZCQGMWZFbslXZOMAWzry0OO3Yt2rxP5KR45Z9dIiqRBcopfls9TR9A9nCLLz13mUTywZSmuW/kM1nlKpTwnWYMY9ZslLwMhIwK9SZg3h/qHKHpGk2Upem5lr+g0uCz/xPwG0VuwfUm1+GXJOtsh1nmHyY9dnmw5tnEgXc5ZkOKB25+E4YAFgaBR8i4r2wOzMSx5yuXtLCN8z32yk71YktaG2uEsOEw+rOsoxkh/EmypPszN7h6/npTDEbOUww+U7sCjjfOlrcq2ekVd8XTdbDj/rZZgOjA8bOt4PaYJ63CD2yX6jeZO1/iSd+43J6NnfJ94XHgsy4/75VxgyRCW5rVJnv2j6n48MlKIv155LlrOTEL68d2iBEk0xhCLAlGvGQXlPaIjGBmxotzZgmfO+d8jsnx+6cd+POnl85vu/vYhh/WKK67As88+K/NteWuMz/j67Gc/i09+8pOybJ7wL0dnJi6f37Zt22FbPv+JT3xCBjf++Mc/YsWKFbKNHa3PfOYzWLZsGf785z/jSDOtb41t3LgRPT09Il2Kw8ldL7/8Mv77v/9bOjzsze7b2zzY/VFFURRFmanPGvvtb38rHZsvfOEL8t3KuUFXXXWVCBTjXH/99RgZGZEO0uDgIE488UR5IOrh6ASR3/zmN3IbjiNMJtPYj8hwOIzzzjsPv/71rzEVTOuO0Omnny4ip4lQ/sQZ79/4xjf26wQpiqIoytHCkX7ERkpKitxNOdgdFUJFzQ9+8AN5vRekpqbikUcekdVju3btkm1z5sxBRUUFpopp3RFips2fP3+vbXa7XSZW7btdURRFUZSjg4qKiint/BxVk6UVRVEU5ZjkCD9rbDrwoQ99aHw+0kR+9rOf4aKLLpqSME3rEaED8eKLL051EBRFURTlsHAsPUH+UOAc3wPJHmm3/uUvf4mpQEeEFEVRFEU5IhxsmTwnTk+V9087QoqiKIoyFdBeM9nXUcaCBQtw7733HtAZOHfu3CkJ07T2CB1OX8P7n/wM6ryFyEvzoLU3HWnPWNG3IgqDM4iK3B40vlqMkCOKmDWKy45/XXw+1xc9idREH3YG88RFEooZ8NeGFfAFTDihsFHOT6fNHEcX1vaWiEOns9mFRXOaxbtDZ01pSQ86PQ5UZPSJ76LZk4YTchtR781A55BDHBr0ZNhNQXiCYy4WMhIw48yiGoxGTOLboJvkpdYKnFJYhxpPlpwrEDZieUYrnm2bJY6SpoF0FKQOip9ne38uspKGsb0lT5wtVltQPuMxcW8Q/Sb01NDtwnA4bH7xhPD/0WgCFuZ0ivuIniN6QVyOEdmXTphYyICSoh5x8JDdvVkIhQwodA2IUyU12Qf3YDLsdr+4T3KdQxLWh3YtQqpzBCfmNKDOm4ldbTmozO8Rb9Jg0IrGXpd4l96sLYEtJYBIJFHOJV6hURMcaaM4PrcZzSNp4jeix2SnOxfzXJ1oHHKhqSUL5SVd4iJiGla6+rCjK0f8I7u6suXcTpMPr7WXYkVe83gebt1VjJXz67GhuQiRATPWLN+JtW0l4lkZ6nDA7PJhdXEDvpD9An7RfjY2P18Fow9IP7UTsd9nwVNmQCANSAwD80+vxZaWAiQ027Ds5Bq8ua1CPCWdfanicAr5jeLUodfG05CKS099FU+1z5G0Db+UjuHyCIyDBhj+rcMK5IalTBF6Y/ZlRebYZxN5umm2OHgYx5dqK7GgqEO2073S0p+GaCxB0pPhoN+IMGx04RjNYQQ67SiZ3YnjM5vwSP0CcRD1dDsxr7QdIyEzuodSxNPS4HGhqyYTSUVecVY5LX5YDWEcl9qIP995NkYLoojaxhxJ3hGreGVycwfEeUM3TFl+r5TlvlH7WLmKJCLRY0TEHkFajlfKoddjk+30MpkbrTIvImYAktuATb+7Dmcd933UXGPFOQu2I8kQgsPgw1DEhs39+ahryIFhxIAFSxulTrp7U1Be2CPln9cztlphnuuRsPc8l4/R4ghixigsTqo5opL/9Gb9v9dXjzutOoYdkmbLi1uwtrpMfF5WU1j8XYxHijkgcYt5zHAUeeAPmMTDROhwomPshY4KcVixnHa0pss56P95as9cnFxeK2Uv1e6T6xRm9ku60pnT6kkVX87giE0+d6/PRsrSPpgNEZyRW4NnO6vEU0WvU17yEGrdGVKvK529mJfcgRd6q8SrRScXw8K6bTGGJdzvy6/B481zx3xQOe1Yk7YbHcE03F27TNqoWc5e8RDRj8Z6T7dX83A6ekeTpewmWwLIThoWjxDPWbOjUOLP/Etx+iTcce8UPVo9PQ6srGySes92ie1kQdqgeM+6R5PH21OWHTqsuB/9RQ/uWSRtEePJNpTl3Ou1ibss3jaSDOsIwlED2n5Zgc7ViXjoQ7fi0tu+gnAyYBwFbGf0Ijd5CFt3lsCSOQqbJSR50rDTidYv3XhEPELLP/wjGE3vfll6OOTHhge+856G9XDz6KOP4oMf/CA+/vGP47TTTpNtFDjefffduP/++3HBBRfgSHPUzRFSFEVRlGOCI+wRmg584AMfwMMPP4yf/OQneOCBB2Cz2USYTNHjKaecMiVh0o6QoiiKoihHDD47lK992bFjx5SocXSOkKIoiqJMAQnRyb+OdrxeL+644w553MaiRYumJAzaEVIURVGUqWAGeoQmLqPnc8f4lPtf/OIXMl+IT6WfCvTWmKIoiqIo7zldXV3yUFU+cJUTxj/ykY/IM0M5Z2iqVowRHRFSFEVRlCl81thkXkfTJOmqqip5kj2fddbR0SEPgZ0O6IiQoiiKokwFk3UBHUX2myeeeALXXnstPv/5z6OyshLTiRkzIkT3B10epQ63+D/ci2Nw5A0hFgVqdhdg9ZnbcMKK3Sgo7cWjLfPF13H5U5/F+U98Cd986UO49bn34/aNp4pjh06c15rLxPWRnzSI+6uXig/k4qINWLO4Wnwl3C+vsB+L0tvhH7CKe4Xb6RCiD4ieDzpK6AIJxxLF7UF/x5KMNvH/0I3ROpqGx7cvgMEYRfVADmZn9uDxHfPFn0PvDl0e9JHQtcLw+n1m5CV5UO91oShlUPwYp1TWIit9SDwpdZ1Z4iuiZ4NOl4qUXvGRDHrsWJDVKZ/RkcRwEbo83F67OEzOKKsRV4g/aEJ+zgBWzm6Q/be25aHANoD5WV3i2clJ8or3h04VuotK0/olvegE2T6YK2lPz8ob3aXitGH4uodT5HqM13GFLVi/vhJr5tSIu4TOEfprxMPiM4qLhPFjPOlV6Rh1IhJLgM0QQv9oEhZVtqC+NUviT3/LcMiM+Tld4t9ZkNeJukEXQrFEcR7RO/RC9WykW0bgyPGKE+b40kaUzOrCuo5i8SjNyehBaoFHvCW7B7Jx2Z++JOny0fNexvs+tA759iG0nxVDxAqU3+1G6a93oe13FTDusQGJMWzpzAOsEXEGkaDbhswMr/yf7pOUEo+4X+h2+v6cRzE8Lyj7Rwt9CKXEkNIcQ26xG40D6RIHupH2fQ2Frfu9ggGTOIQYj7NnV6POnSHXZBn4cMUWLM9vFbdLZ1eqeGrCI0bxG7lShxEOGhGzRiTf6WzhuZjGrqwhccYw38tcbmzqKEBnYwZmLWwVV01Te4Zch/n3TM8cXHjZy+LvgSUizh46ph4/7TcSV+YVYb2hQ6a/Lh2J3RZxBcXSg0i0RJCd7JWyOLeoU/YtuteIguf9yHs1CNeOKMLnDOCRhsW46YG/oLyoWxw8a3uL8cc3T8RjDXPhHrXLcWmV/eKQKnEOICExJvVs2GfBhxZsQax8RK7BOJlX96N8VgdmV3RIOWTdLHQOYl1/sZyHTi56eZjmdNZsbs8XTxhdVf1DSeLNWZbZJukW85pQNb9Vzs36uTK7Wco9y0utN1PqEcPBcsrrsZ64A8kwW0J4ftsczMrsRZIpiIvmbhInz86OHLR7nVIeef2Az4TV2Y2IlPvEB8Rte4azxR1UntIn7QjbPHE7mf2o9WSKQ4h1nw4zhqetJhu9w8moacqVsNUOZ8Hb5BTf2M6+HNzfuQwv9VaIQ4oeMdYbhp151zqUis19BdJ2nZW/S/JKfGPDDqnrrJ+pJYMS/6VlY+nQ1eOE1RJCkztdHGN0COVYPWN1IWiRdoIOIXq+CMsWHUJ0JNHFRdeRKSGCrFSv1Ce6iJbltEr6zi/oEKeROIiGU+QzOq5Y/wq+WocPnLoe1159LU66dKOcO+dXr8OzLhNbGwpgHEpEJJwocaBj7usnPn4Ev5lmDq+++qpMjF62bBlWrlyJ//7v/0ZfXx+mAzOmI6QoiqIo04mZdGvs+OOPxx/+8Ad0dnbiqquuEpN0Xl4eotEonnnmGekkTRXaEVIURVGUqWAGrhqz2+345Cc/KSNE27dvx1e/+lXccsstyMrKwnnnnTclYdKOkKIoiqIoRxxOnv7Zz36GtrY2ecTGVKGTpRVFURRlCpjs7a2j6dbYW2EwGOQZY1PxnDGiHSFFURRFmQpm0Kqx6Yx2hBRFURRlCtARoemBzhFSFEVRFGXGkhCLHdtja9R4O51OlP3lW/j4kmq4Q3Zs6CkSRwc5LXsP/rTpBJTk94n/g66Q0tw+8Zs4LH7xYbzeWopMx7DsLx6ehKj4OKyGsLhwKlN64Q4miZeGjg26bggdIbv6ssSxUpwygC1d+WNeD4tfvCZ5aZ5xnwqdN/TcWA0htA87xWdx4ZyteGDLUtgcfvEK0SPU5EkTR1F60qj4RegTKkwaEL9H57ADg8M2ce/QJfJsQxWW5LeL74QeHh5HXxD9Gowb3UYu66jEgY4O+jrcQ3YYDFFEIv/pI/N83DcYNqLU2S8eneZOF9Jdw3IMvUeMD30emanDmJ3WjY1dhRLmJVlt6A/YxYFDZxH9KEw3l2VYPCQ9/Q7xHHXWZyC3vE/SjG4SXoPpTFcS3SRlTje29+TixPwG8aDQ/XT+io34586FSDTGxE9EZxB9TPSJNLhd4st5oG6x+GB4nUjAIL4ZulPoh/EErVjmasUj65bBVTSANXl1eLqlSpwn9KrQbTLqN2NNca34m+xOPypcfeKDykgaQU1zDixNFpSc0izpxHhdlf8i3hiuxPPfX43+S0bgShkRF5Ovyw4kRbCovBXbmvJRnOsW30rvYDLCPpP4c7iNnquPZ6xFdSAfrQEXltqb5Nzfeu4iXHXS87i3cdl+ZZxpvC/0IyUMGVE2vx0nZDSKY4YultzSPkkLuoOyk4albNDtQuioaR9xwGIIY9BvE/fPt1c8jj+3rELP4JjrSeJpCUk5bhtIBXakwLJkAFZTGJlJw+gaSRE/zqDbLs6ehSXt+EDWVmwfKcAj2xfBnBSSMkm/C31Fqc4R8Vh9euGruLN6lZQ9lpvAbicytkWR9lIzgpW5GKywwnvWsPh9rs55Dr9sP1s8UltqimCwhZGXNYjeoWScXboLz7ZUwWoOSR4tSO2Uullqc+PprtkSNvqw3D0OnLNgO7b152FheoeURTp4tnfkiu9ofmonmkZcUq7pkDojtwbbPPninUk0RlGU3Y/uoRQpY3/feRwqcnsk/9kulNrd2OXJljrD+s36T+9NX4cT8yvbpHyzfrKcLk1rxV3rVolLiPu3d6WJd4e+Ik9PMj636kU81TlXjmFZjceNdZnnXZNdi0eaFkiZZVllWWf8COsm40vPT5s/Vdonljl6nOgzosOHcdxaXwizPSgeqZwsD7p3ZuHsUzZJmtBVVGhx4/HusSeC72nNRlJKYLwdy7Z68WJTBQIeC7LzBzHP1SmONdQkI+/4dqlr9Fn1+FLEE8b2kO0j24wdbXniY3p860LxkrV4U6X9mZPTLT6q6+Y8Jy6jFenN0m6/2V0s/qWRQRtSM4bh3Z2G/zptPZ6onyt5Vt+UA1uqD3mpHrS606ScslymWPxItfilfaCzivX6ltkP4tPPX4mqP/hR8xkrLF0mBPNCSNluwvsveg4/P+ExeDweOBwOvJffS6vO/gGMJuu7Pk845McbT974noZ1JqC3xhRFURRlCtBbY9MDvTWmKIqiKMqMRUeEFEVRFGUqiMbGXpM5Xpk02hFSFEVRlKlgsnZo7QcdFvTWmKIoiqIoMxYdEVIURVGUKSBhkhOeebwyebQjpCiKoihTgZqlpwUzxiM0/76vY1b+MKq7s8W5QZ9On98u7g66Njo703DVcS9hbX+ZeF4wYMasha2o68yC2RJCtsMr3pU395RiXmk78pM8yLYM4fG2ufhE6Zu4p2U5lmS0iRvEagyLD+i1bbNgzxpBSVq/eECGAla5Do+vbslFzGOGq6wf/XXpKJ7bKY4PunbonqF3ZHZ6jziF6HQZ6EqBM2sYuY4hiRd9GPSBlKe4saUvHz3dTnx48SbxCdGXQadJu9cp+7gb0rFoUSMaB9LFP+LrS0J5RSeWpLfjhY6KcScJHUn0m9DTQ7qHU5Cf4kFFSi/qvJniAZmV3I0HGxaJT2dnRw4WFXSIeyUSNkg6kVDIgGg4EZX5PeI5qht0iZeHbqY026hso7uI4aSLho4mOoN4/Z31BXDleFCR6pZ9GA+6R9YU1OJfNQvEOUQHSdx9lGP3Srh4LqYxtxkSYliV3YgX2irx4dIteKBxMbweG2YVdo97lx7YugTLKlowGLCifnceFi1owtbtJfKXNHvSMDxiQXl2H+q7MzAvr0u2L3S2S/xHvRY400bFl4MRIxBNQMwaQYIxJn6abr8DHb8tRyA1EQlhIJwEBE8dgn/EjGjAgARTFAZzVNIsyRoUr40rawjDPgsi4UTEoom4aO4mPLhnkTig6PTh9U7Jq9uvjDOe+1Ka1i+eFkJnEH0ugYBR4uH2J4lHhq6mpt25qJrfKunS6ElHT49DfElp9lEpg94Rq/iuOgacci6Ghd4fQgcM3S4LMzrwSmM5IkEDYpFErJzVKD4iwnydWK5bmzOwfE4TdnTloCBtUMp2qtUn3pdgdxLMg4koedSL2mtMWFHejJ8WPoL1gTw83LdU6mvjq8VImOPF6SV74DKNoNqbK54p+qe2deXCN2SFJSWAgMeKy5a/If6cYNSI2oFMFDoGJb/do3ZkJ3vH2oeAFSsym/FSR4X4mIZCtvE2gi96a8jinHbs7s+SskVfEsta00vFcK7ohT9klHp5fs5W/HrnGnEZ0W9FLxTrH8tnid0tzp49vZni0qK7B8FEFJT2iqMpHDSIC2luajdeailHsi0gZYIU5LvFL0THD31aO/tyMNjmRGqBB6M+s7iXTipskHagty9F9os70Ha6c8UjxDJLn8/ugWxJq3X1xcjM8CI3eQiegFXyiOde4mjBvzoWiM+K3iG6ypiHbCfpTYpUO+A6rlvaTPdgMiLBRKS6RiQPmSZ0UNW3ZIsvi3WXvijWbzrImE5sa84tqxZfF8/BMK3rKJb0HQ5ZxAuVV9g/7rJi+hWkeJCfNIjqgZyxsu1wYzRskXaF1+V+PC9ZltOKWk+mhJllnu0a2wvGkU4nurLYhqevNSPhvD7cWPUYvvvby7Ht1uvwvsSLMHTJKoSifmz++7ePiEdo9enfg9E4CY9Q2I/XnvueeoQmiY4IKYqiKMoUoB6h6YF2hBRFURRlKtBVY9MC7QgpiqIoyhSQEIvJazLHK5NHl88riqIoijJj0REhRVEURZkKov9+TeZ4ZdJoR0hRFEVRpgC9NTY90FtjiqIoiqLMWGZMR2jYa4U/bMTCnE5xSZgTw+LGoLume3cmUjOG8WLvLPHTJKUEsGJ5rTiEUp0j+OLcF+ENWsSNQkdKbU8mRiJm/H3nceJUuXXdGeKqoDvGmBgVh8X2nlyk5g2Jj4XXoafFPWSX6zS4XeL6oL/FbIjAlDuK5RmtCEYM4itye+1Ymd0sDiH6W6LRBJSW9CA9aRThaCLaBlPF2VG/Jw+ekE38HBIub6aEn24euabVh4EBO8rntksaVLr65Px03rS9UognmuaIf8Pb5ERbYyZ21+WhfTQVA74kOZ4Oj5quLLzaVSYuFKfJJz6SkUGbOELSHaPiZaFbxm73IxgwiXuF7p2Iz4gV6c3iAKJDiA6P5VktqNldIOm4taEAzb3p4sxxWUeRn+yRtMvKHZT96froHHaI8ycxMYZHdy2AK3VY0pCeJ6ZBiXMAXSMp4hPJsnnR5E4X7w1dRbuHsvGx8g14vnsWRkasWFrWKnFo8abi2bZZOHPuLjhMPlQ5e+AoGBK3jqtkQFxLdI4wzS2WMPa0ZiMzdRjplhHZJxQziBeKeL02FOT1o2RWFz584jrMr2xDVUknNvcV4OT0PSi6thY/vf4O3PKtO8QhlPimAzmPmZGx1gRXphcl2X1ItfvQ1+GEzeGXvxdWbEOSLYhIwIAHnliN1cUN4q4RZ1Ffsvic9n0NdTj2ezEO1i028byw7BakDsKw2y4em46eVEkzkuAMorHXJemSYvHD3GqRuFc6e8Xl5HKMYFF6O4IjZvEJuXtTEO21IOIx4/E3F4sL5oXq2SjO7EeiMSYuJPp86MZh3eK16YSJxhKkXhjtYSxPbYLFFEZTd4aUf5ZXeqicexKx59vX4SN3PYMrF7+B9Y1FeP8d1+PGbedJfSWRcp/8ZV2jI6jWnYHOxgy8z7VTygmdO3QILapsgS9qxku1lVKPSLZ1SFxW8zK6cE72DnFxDfmseGTLEinrL9dXYktLgXidWNdYlnwNDqzOb8SmjgLx2dBPtbMxHy39achd3S7+Lrp8+P73e04Sv9ET9XPFFcUyX9eQIz4nOoSYJ3RssZyb7UFkFQ6IN4j1JxoyYGAkSVxAs7N6JLz0UTE+wwGLtBeMJ+PC/Pnw8eul7ob8RilD7qAdpc6xPDglp07qAp1I/UNJeLRlvuT/xq5CqT9sI1ie6Izi/xnO2WndCEcN4hA6Kase/QE7mlqyxEXEOtZUlyNtJ6qGkW4dxeCwTdrGRWVt4mTq9DiwML1D0pfhJqzny/NbxVlF9xLTdE1xLdb2Fovnyl/nQMeoU1xC81PapU05beEuCSOv7RlIwjkF1VLv6GdjW0ivEfOppj9TrtHQnintRSBklHzo8aVImWzudOGDZVslXowjj81MHpb2iHU0fM6A7Hf9Xy/HmVesRbRrFn7d/Dq+cOMD+NY3/t+RXzU2mZcyafTWmKIoiqJMBWqWnhbMmBEhRVEURVGUfdERIUVRFEWZAtQsPT3QjpCiKIqiTAV6a2xaoLfGFEVRFEWZseiIkKIoiqJMAQnRsddkjlcmj3aEFEVRFGUq0Ftj04KEWOzYTsmhoSE4nU6U/eVbWF7pFn8K3RTV3lxx8uzqysacnO5x/w89E7mOIfHdLFvQgE0NhUh3Dcu56BFp9qQh2RJAZ1+qeDSGfRZkOobFlWFMjGBnXw5sphC6epzi/hgJmOV8dBItL27BYNAq3hb6Yei8oKMjx+4VNwn9G88+sQyGuUPweS3i6KBLh14cenNGvRbxf9C9kmQKSpjoAKE/g+4Z4vXYxGGyfE4TNtYVYWVlEzY0F8lns/O6xA/U5k6FM8Un/g1CxwbDs3sgW5wvTosf+UmDeGrPXJgtIfGU0HE06jdjbnY3Su1ujEZMeHzHfCyraJF0m5XcjVd6ypGdNCwembxUD9yj9vG0ogOouz0VCcFE8e7Qm0SPEZ1Ei8pbxSHCvDm/cDu6gg7xxLQOpSISSxBfylC/HVnZHol373CyhJvuF7pBGjszsKCoQxxA9JPwL11RPB9dSjw3HUI7enJk/461+eKjYdzoPToxv0HcPx2t6Vhc1YI6dwYqXH3iK2IeMk0CEaN4R+hPObWkDs0jaXJeumHOyq3GP9sWoszpFtfSE9Xz8P65O+Wc9EttqSlCWo4XVem9+Fb+Yzj/xasx5wdu7PpuBgyWCOYXdKDjj2XoP8sv3p+S/D7xstCxtKigQ9w2Ea8JifYQLLtt+5Vx41jx3AuLJwajPwarOwxDIIqwzYDBShOiBsCXG0M4IwxjnxGubUAoKQH+TGCkNISE8NjdcrPLJ+6gRI8RiTk+OF6wI7kjjM7jjUjqAgxBwJ8GBNNicO5JwHAREEyNwtqbCF9FAI60UckDOly2bi2FwRVAVvoQOjvTxI3TvT4X+SvaxTPEcpX1BxvaPhHGr1bchy+98jGsmbsbL+yYAyTGUFLQK/t5vDaYTBEpj8yLnuZ0lFR0SXk4o6gGG92F8IVMUk9ZBobrUlG5tGUsjRKi4u9KsQWwOKMdL7WUS72lo4fliD4w1k96q3Z5sqW8dI8mi0Npa38+WrrTUZrbJ9eij8tlHhkvAywnswq70T2cghNyG8XFFa8/Fbk94iuam9aFJ3fPhbHRJi6eJfnt0tY4bH6pM3QcPb59gThuhgJWaT9M1rDEl2VxOGRGfUu2+MJ43FBfMmypPolPoWNQfEp2S1DSJTeZbVEUG7eXwZI5ihJXP/pG7dJuLMlow7b+PLkm02TrU1UIVPjFP2S1BaV+0AVENxnr3LzSdslDOp9YTntGk8W9xGsx3Xi93r4UpDh9sv+HF2/Chr5CaUPo3qr1ZErbyLTk/jwPHVksA/QmcRvrIMsA2wymL9/3u5MlTdlWsn3e3ZMl+cVws91mnfrK6qdxT8tydNZnSJvS2JQFizMAqyUkLq2C8h65Bt1N3GY1hSVebE94jULnoOTzls48GNelIJbIuhFFWXkdnj/39/B4PHA4HO/p99Kpx30bRqP1XZ8nHPbjxfU/fk/DOhPQOUKKoiiKosxY9NaYoiiKokwB+qyx6YGOCCmKoijKVM4RmszrHdLe3o5LL70ULpcLNpsNCxYswIYNGyYEKYYbb7wRubm58vkZZ5yB2tpaHMtoR0hRFEVRZgADAwNYvXo1TCYTnnjiCVRXV+OXv/wl0tLSxvf52c9+ht/85jf4/e9/jzfffBN2ux1nnXUW/H4/jlX01piiKIqiTAUc0JnMEvh3OCD005/+FIWFhbjzzjvHt5WWlv7ndLEYbrvtNnznO9/B+eefL9vuuusuZGdn4+GHH8bFF1+MYxEdEVIURVGUKZwjNJlXfBXaxFcgMLYieF/++c9/Yvny5bjooouQlZWFJUuW4A9/+MP4542Njejq6pLbYXG4um3lypV44403cKwyYzpCH521Ce0jDmQkjeDvO4+T5ahcCkpK7G5sbiqQZaJcFppq9sORNyT7EC5v5/JOLpXmcvCewRRZalriHMDy/FbYTUEkGQPo89txSl4derZnyTJ3Lp3nEt6W/jTkZgxic3u+nFuWgw5kyxLXgQE7rMYwyou64Q4kY84p9UiyBgGfEW1ep1yfy2lX5zeiONcNr9cmy2W5xNViDEt40x2jY0tDAyZcufgNZOR5JOxchs04p6T4ZGlw00C6LAM3GKOylLapLVPOn5AYQ3/APr5MnPHk8vWIx4zjC5pkuSyXJLtSRtDkSZPlxVyCy6XzvA6Xpe8ZzkZTXQ76/EmypLfK2SPLxX335krcl2e14Pi5DUh0ji27faGjQsLO5bZufxJavKmSFn/ZcTw29BTJEtkUi1+WvzNeXGLPpa9Ma7/PLMtfzy/ZLkv0LbaQLGEmcxxdcl4u53f3OJBhHZVl0zy/rzkF3UMpWLBm7H73rMxeWeL9anuZLANm+LKtXvmMfxeWtEseljrcspyZGoPzKndgjydTdAhUL3CZ8J3Vq2TZ9u7+LLzeWYqlZa2SPjwn85DnZTyYThdv/LTkyx9f+hts9WZkPWLB1p0lsnSe+YRYguRroDdJ8onpazBGkOBPlKXXxf/o2+911uVr93t96KvP4n9vvg3X/c/d+H9//S1yvtuAT37+MZR9sF6Wzufm9yOxdAR95/oRPa8fvtl+pG4zIXWHAYbhRNheSUbKVjOilhgSE2OwXNiNJd/bJEveSy6qR8QM+Of7MG9VAz583TNYfEYNYskRpO2OImm3RfLnzT2l2NObKUvno+GEsbpW0IvW5gzY5g+g57l8ZH0xCPOLDvzm979FxGfEt39/ueyzuacA5pQAEgxR0T1QU7GssA1Rpo8hjL49LsSMUSmvXF5e583EmuxaUUJw6TzrwxXve1GWrvOVZRvLV+Zh9WA2YtEEtHelSb7wdeGcrVJGHnxphSgtGHYu1V7XWzy21NwcwaDfJkvnq7uzsbG3QM4n5dTpw4LUTqlTXDLPciH5HzCgpilXluDXeLKknJrme2TpPNsChrFza46c47mmWbCkBFCe0if1w2oPIi/NgxV5zdi6vQTegFXqANsZpi2XznNZOOPTMezAgqxOUTXMc3XKsnWqJy5etRYfKN+JDOsIlmW2wWHxS91i++X2JUn4o/OHcd68bbLMn+dlee7fniFKjtWz62R5edeQAyeX18p5WR8YPl5nRWYzKtN6pbwvy2mV8LlMXlkCT33Auo5iWaJPjQU1H8296QiPGEWDwbQnXK7P5ezZjrH8oWpkoDYdsRETOoccCPmNoihwJvlxYlYDtnfkYkdbHqxpfrzcP0viZEgLSh012sNIsftFoQFrRMoZ9QRsb3kNhp1lme0r96nryxDdBfUCw5UhmFf3Y+GSRmlvjzY4ysMOS/x18803H3C/hoYG/O53v0NlZSWeeuopfP7zn8e1116Lv/zlL/I5O0GEI0AT4fv4Z8ciemtMURRFUaYCDuhMSqg49qe1tXUvj5DFYjng7tFoVEaEfvKTn8h7jgjt2LFD5gNdfvnlmKnMmBEhRVEURTkWV42xEzTxdbCOEFeCzZ07d69tc+bMQUvLmHg0JydH/nZ3d++1D9/HPzsWmdYdIQ7vHXfccUhJSZH7mRdccAFqamqmOliKoiiKctTBFWP7fofu2bMHxcXF4xOn2eF57rnnxj/nnCOuHlu1ahWOVaZ1R+ill17C1VdfjbVr1+KZZ55BKBTCmWeeiZGRkakOmqIoiqJMjuhheL0DrrvuOvk+5a2xuro6/P3vf8cdd9wh37MkISEBX/7yl/GjH/1IJlZv374dn/jEJ5CXlycDEccq03qO0JNPPrnX+z//+c8yMrRx40acfPLJUxYuRVEURTnazNK8w/LQQw/hm9/8Jn7wgx/ICNBtt92GSy65ZHyf66+/XgYbPvvZz2JwcBAnnniifBdbrUffJPJjoiO0L3ywHElPTz/oPlw2OHHpIIf1FEVRFGXaMQVPn/+v//oveR2MhIQE6STxNVOY1rfG9p3tziE73uOcP3/+W84rmriMkMsKFUVRFEVRDkRCjCrJowD6DqgEf/XVV1FQMObwONQRIXaG3vf4VUhLBbpHk5GfTM+ORTxCdG9srS8Ud0nHgFPcHXRpbN1VjHOWbcXmvgLZh46hYvsAmkfSxEtyVm417q5fjvSkUTR3usR7MW9OC6pbcuX/a5buFFcQyUseEq8H3Rs9vhT0jiaLI4fQc8MwHZ/ZhFZfGsyJYbxUWynekuCIGVUlneK16GhNhzNrWPweZF5el4SpZneBOI/oABGHSlMWKsq6xGFD3wd9Q4QOjXOKq7F5oECcJ481zEVR+gDquzOARjvKj28Wh8nj2xfAYInAbvej0DmIfn+SnKd3KBmzs3rEebJ7fQlS57rF05ObO4AF6Z14eudcScO5aV3i5RnqSoE5zS9eDzqIdnbkoCqnB+FYIpaktWG9u2gsvyJGVDp7sbGrUOIwO70H61uLxNfzz9r5OKOsBo+vXyz7phaMjQiekNuIJENoPA7Ml1day8R5RF6ur5Twi1spZMSaglp0+Z3Y0FwkPpTR8NiKijdrS1BV3CX56Q1axAOzOrsRnX6HOKG4nXS+lo9AdgT2nGHMzhxLA0n76gKYM30wmSKYnzXm2DAmRvDqjkrJA0KfEh0xBWmD4mShE4XhiHVaUbq4DTeW/gvX/ObzcLREEExJhKciAZFynzicElOCSEiE+HWyXjSi++Qwtr7/t/uV+ZM3XrnftmGvVbw1o/02OHaaMLLcJ+6cnCyPlAX6VehkYhzpVvpwxRY821mF8wq2yfFr+8vEGzMUsok3JxJJRLjVDpM3AYkLhjA3e2xVyaaGQiT0WnDc8XvEw/O50pcRihlw/yVnIHHYj9orsoDEGGKFfnEJpb1mRdbLfdh9TRquP+0xzLO048GBZdjany9l9xMr3sADdYuxprgWpoQIHt21ANkZY6O6LIedfanivBE/UMSIdOuopCvTfVNHgThiWN7ob7KZQhJH5hfz4YXmSpxbVo2nW6qkfox6LYiFDDDYwkh1jsDdm4Jz5u+QsrV9MFfqA2EbsCSjDeGoAaVJvfi/bSeKd2hDX6G0FXRO8fpvdheLC4vpflJhA9pHndjZlAeDOSrnX5NXh1pvpnjLhsJWvFA9G2vm7sZrzWXiumF7VOZ0Y3tP7rhj55TMOmwcLEKyKSDbh/rt4hwj5SluaY/oCdrQXij1k94mXpvb6zYUIWtBj3jAotEESRuW8dlpY8eX2tyoGckWlw7T2hcxS5jpUWI8ol4zckv7JEztw06Ja507A6cU1qF5OF08aHQmRcIGRAbMOGflFnGh0cFUkO+WtCc1zTmSBvRkMQ+ZL8RlHZUy9sKOOZhX3gZP0CphpQeMbYrD5MdQyIrn6qoQ8Zqwcn69eNF43pGQWcpCYWa/1F3mZyA4Vl/ZjrB881xMQ8J2MMkURFHyAFqG09DUnYGzZlVLXj/07Eppz5g2dFStSNqNn5/wmNyBmLgk/XDC7yX+UD997tdgNBx4hdehEI4E8Fz1L97TsM4EjopbY9dccw3+9a9/4eWXX37LThDhssGDLR1UFEVRlJl8a0w5yjpCHKz64he/KJO7Xnzxxb2eiaIoiqIoinJMd4S4pI/L+x555BFxCcUV3xxStNlsUx08RVEURXn3cPl7wiSPV47tydJ8JgrvfZ566qlixIy/7r333qkOmqIoiqJMi4euKsfwiNBRMo9bURRFUZSjlGndEVIURVGUYxadLD0t0I6QoiiKokwF0Rjvj03ueGXmeIQm62v41EsfweaRClSkusUBQy/Hzr4cVKX3itflVyvuw62NZ4hTZVZmL+Y4urC2t0TOcVr2Htxdu0ycNXSWNHnScE5BNfYMZ2Ntddm4M4ZeDXp5nCk+cVIEIwaszG5G9UAOeoeTxVuSaIwhN2NQvBf0XNBLQ09LNJaAEwobxS1ic/gRDJjEkUF3R+NAurgxRv1m+LwWmJNC4tmxJQbxeNtcOddgXzIWlbfC7U8SPwd9NW/uKMfqhXtQaBsQf1BLf5rEjftkJw2jY9iBwZGxSed08NR6MtHelYZZhd3Y05qNzAwvlme1SPjJoN+GYueA/J9hOjGfrpRUbK0twsrZDRgMWsW9sq0/D2012SiZ3SnXafSkIzd5SNKczhL6VvrdyXKd2Y5uvNFdKl6lVncaXI4RcbbUeLLQ3JsuaTnss8BmCWFeRhfeqC8Vx1Jppht5SR40DrnEC9XgcaGrxynpS1/JYIsTueV94i3pGUxBwGNBQjARjoIh5DrGvDR00dBJwjyt6c+UuG1vyUNlfo+4m+K+lWDUiLWNpchKH8JXyp/B9W98GMW5bnE/PVK/QPKK3p9F85owHDIjJ8krzhd6jM7K34VXesphMYZR15mFkuw+KQv0nLQ2ZyAhnIiSii78pOJBvD5aiTsePBtRI1Bx9wDcS1Ll+u6FwAdOXY+mERe2b9p/5WTsAJMtMyvdqEzrlXRhOfSOWPHRqk24a90qJFoiMFnDktZMs3TXMDxeGyJBA1KcPilPK/Kax31WdGsx/CxT9L6YEqIIxRLH04XpTYdLmcuNVIsPbzYX44Kq7bjG9TLO3XgVwludCKZFEbNGcd1JT6HS0oUbdnwQfqZb2ACDMSJhZp7SD0NYbra0FCASMEi5ph8nXv+yrUNSJrnPjp4cqUOVyT3ipmobSMXZpbvwWO08FGf2S53kMaV2N55omoNQyACrJSSOLF6LZZp1x2wPSjzpuWL94fUSE2PitCl19mNjawHCPhMsKWOOsoqMPjme7rHjClvEMUQfWEt3OhYUdYzXkdHdqVh24phjyRcy4YyCPWgccUmdT7X70NmVikVlbdjWlC9pz+uxXYiHMxAyIuC1iJfHafZL+GqaciVNOocduLBoC57qnIuTsurH2wJPQyouPfVV/HXrCiTQ4RRNwIryZmn36PNaWdwsniyeh+4vQhcP69ni3A6px3Qv0XHW50+CN2CVMpRsCUjYmG/0EoU9FrgKBpGRNCJusPurl4oviR6n3T1ZyHUOjbvMeHyq1Sf5kWoec6jxOqyDyzNaMRoxiYOIYWz2pCE72SthWJLeLj6xJFsQrqQRaRMWFXTA7UtC/2gSStP6Ja9YBxcXtWFj7djDQ+OuJdY15iPrNv1N9FWxvaCrjJ62Dy/ehJc7y8UxxLSlR2iZdc8R8widUf7lSXuEnq2/TT1Ck0RHhBRFURRlKtBbY9MC7QgpiqIoypQwyY4Qj1cmjXaEFEVRFGUq0BGhacG09ggpiqIoiqK8l+iIkKIoiqJMBbLqS1eNTTXaEVIURVGUqSAWHXtN5nhl0uitMUVRFEVRZiwzxiO08uFrYU02iS9jYMCOoux+tLlTsaywDbv6snBmUQ1e6KhAijkgfpgHdi9GVU4PWj2p4stpHk4Xz0TnkAOhsAHnllWL+8IXMcFmCKHQ2o/HOubD7bWP+UHqM4CkCFxZQ2P+n0EbllU1wZgQFd8I4fULXINyXvpsFqR2Shj8QRMyk4fRtDsX8xY0wxO0ioOEYaOXo741C8sqWuRc9HzQheJuS4U9awQVrj7xlxC6h+hNoidpfkGH+DZ8PXbx1tA78vedx6Eitwd9o3asyatD62iaeHDavU6ckNuIem+GOD/qBl04MacBL3VUiHPFnuoTDw6dIr4Rs3h3vlb0FK7e+HFcOns9Gn0urOsoRklaP3Y25uOypWvFaUL3TiBixEjAjAVZnRgOWcRNQ4cPvSRM5w09RYjEEiSuLtuoxIM+GVfqsMSdx9JjQsfKsNeK5BQ/vB4bPrRgCzb0FYoHypUyIu4g+l1e21KFlQvrUGrvE+fP0rw22WbPGUaw2omEymHx6TAuafZRccjs6srGGWU1cu1X28skv08qbMDzDZXi2olFEsW/QocM3TO8Zl6qR3w1+UmDctzj2xegqqRT8qg4uR9PVM8TX4/NFJKwfXDWVvHe0KvS2OuSY7JSvci3D8FlGUaSIQRjQgRO4yjW9pdJnopTpjdpvzJOf9G+MBx0PFWm9Ipv6tnOKtl+Sk4dHm2cL2nJdFxd3IBtfXmS3sybFZnNeLWrTFwwdAbRLcW0YX4zLvQJ0UfFdBwM2FDbkyk+FoMlIn4sllN3QzrK57ajoT0TVntQ6spr3aUoShkUdwzjyzSnW4bXYRnY1pWLJGsQg9UulCxtE6cU80A8VfWFY5EaNYy7oTr7UsUbw/JK5xP9L8yHNcW1Uic7Rp3iqKFrhnWbdTWeL3TMsM4szOiAyzwqnpqQ34hTq/bgxZpZkk+DHruUOc+oFeGgEVZbUMoz6yLzKMfqkXrPaz1RPxdL8tuRZAxIWrK+011DF9CpJXWwGYIos/Xit9tOlTCwzrONoaeM4RsZsSLWaUXabPeYE6wnBfPK26Tt4Xno35mb1oVnG6qkTNsNQbzYVCFhpg+KZZBOJaahb8gq5Y55xPRk/WcbcUb2bvENsf1j3JYXt4jbKJ5u0mY1u1Be0Qn3qF3S2JAQk/jTLcRz1O/JA6wRcRotc7Wiy++UtpP1gw6prpEUyU96yhgPerhYftgmnlmyGy+0VUqZi+c904ltFOsvXUeOtFF5z7JI91DfHhdOWbUDrzWXwWSKSJiYl0+3VGFORo+UpZrmHPGqMQ1Yfhkf/k23jkp43D0OcT8l/ltauDCnU7xmdGzRJcQ0ZLtE2AYzzb29QNOnfnhkPEKFn4cxcRIeoWgAz7aOPZNTPULvHr01piiKoihTgc4RmhborTFFURRFUWYsOiKkKIqiKFOBeoSmBdoRUhRFUZSpQO6MTaYjdDgDM3PRW2OKoiiKosxYdERIURRFUaYCvTU2LdCOkKIoiqJMBVEKEaOTPF6ZLDPm1lie3SsOjXMKqpGQCHFN0NFBDwk9GA/XLBBvBl0S92xZjiRbEBUpvXIsXSa7O3LE81PoHBQ/hzuYBE/IhmDUKK6Z/91wsrg8ZmWOHeMoGBKHkLs3RTwqdAht2FUiTp/mTpe86KShw4NeErpQHq2fh5XZzeJsoUejan4rGtwu9A4li1ujtTdd/BzzSjqwqaFQ/D58TzeNq2BQvCV0eKwpqIXdEpTtWzrzkJU+hJ7RZHx13rNw5A2Jj+OBusXjDiG6P3htukL6/UnIT/Gg2+8QhxAdP7PTe/DPnQvluEXlrZif1SW+mNmZPeJj4jm+XXOhuHH+1TYfuweyxYOUn+SRtHCH7JhV2C1xykoaFpcIXT70x2xuz4fXa5N0pZOF12C4mVe17gxs78hFqnMESaYgBkdskld0itA3Qn/R0EASEhJjcJm8cmwkMuZkSk32ocreDeOgQRxCdLYcX9CETR0F4lHivsbZQ4iEDRIXqzmEtpps8fXQCeMOJOP1zlJJR+bpM7tn44Kq7YiNmLByVqOUH5YR5nlR+gCqnD3wBKzik+KxH168CbMd3fBHjHizu1jcNCxfC9M7xC3TH7QjwzqKPa3Z4jIxGKLiMKJjisfXejNxzxvHY89INnb3ZEk+ZzqG4Soa2O/Fz/d9MS07hx14ubMc6/qLxb/UO5iM+3YslbiLnybZJ96bjKQRcSIxjemKYnlguDd2FUra0PkUdwiRudndaB92Sp04r3KHeFro9OE+dPPYC7ziVMrJGsv/7YO5yEsegjExgpo9+bKNTiHmJcslywDrCONYsbxFPDYM29N1s+Xz3NwBKXfnrNwiZYD5e3J5LXb3Zkka01dDRvtteKG5UsLNMtnUlinlhGWDeUAv1rLKZnEU8dr002zuz5dySxcNnTcxn1H8Nna7X1wzzBuWP/qy6Ezitdc3FokTZ9dQDp5umo2r578k128ccsFsiEh5yHEMIcXuR/uoE+t6i/F0z1ykO0axqKBD0v/ebcskfPThmC0hGAtHpHwM70jH+Ys3i1+K6cFw/lfedvFKlWa6UTuQiVAsUerA3KJO8WldmL9FXGTBgAlmexAjIbOEh/WW9Z958X/bTkTvcLLkNdsD+n/OyK0Zz9OuHqc4hFhHi50DyLF7UersR0HamPuJrFm6E2vm7pYywfhzu9UUljTOsnnFWSQesl3ZY/kRtoiDivXuje6xusR8ZVngvty+LKcVSSkBlOT3IdcxJOWHbiWvz4KieZ2SpkzHwB4HKl2sx8XSPjIPdtfloSCvH3NyxvKf0A/FckyHEM9FTi/ZI3nCesz2zLMuE/6IScKSaIxJGrC9YXke6kpBkj2AIz4iNJmXMmlmTEdIURRFURRlX/TWmKIoiqJMBTpHaFqgHSFFURRFmQrULD0t0FtjiqIoiqLMWHRESFEURVGmgFgsKq/JHK9MHu0IKYqiKMpUwDk+k7m9pXOEDgt6a0xRFEVRlBnLjOkIrUxtEBfPC92VuGjuJnF0hIMG8XXQMVGc2Y+Tc+vlfXlhj7hu6AgZ9ZmRbhlBYWY/Ov0O7KwvwIk5DeK36PPb5ZWeNIrzF2xFqd0tLhl6MujWoFPk1yfeg8YRFza/WYHSkh4sL24Rvwpfly5aB4s5jMKkAXFf0HdBD0q6dRSRWAKa3OniBrlk1gbx1dBnMjetS1w/KU4f3C1psr3S2SveDzpFjs9sRp03U3w9JDBsRmd7OhwWP370zAXiLaEDh+Ej7oZ0cedYTGF4A1YJR01XFnY8VylukiGPTZwbVntQ/DJx78speXXivKGDg74Oz6gVjSMZyE0eQpnTPXbuoF0cMJv7ClDTlIuebieyrV7x/lx10vPiHAl2J8FoDku60ztCxANk9Yl3hHGi+4TuFaYFXTH8/7LMNtR3Z0i6Z6QP46nOuegYdGJ1cYM4mVZlN+KR1gU4830bsX0wT44ZCtnwscqN4gyhn2VhTidm53VhsCdF4rZmxQ6cWVQjjhJCnwrdO4wz84v5SAdRizdV8oi+I6ZBTXOOOGoIw8H0eaGjAk/UzxWHC8/N8sa0oRuneSRN0obpW5zrRll+r8RtjqMLJ2XVw2nyocTuRlZxP/oDdikXBamD4m/pdyfv98p1Du33shlCCEYM8IeMaBtMFUcL3TOnVNbi/JLtErf+oSRJ27rOLMkT+ns8A0mSL0vS2nB8bjPcPQ50jaZImjFdB3xJ4ndiHl27+Hn8Y/tiJCbEZBv3cRj9GO5LQrMnTTw12Q6vOH3C0bGmxugMwOUYwdanqjDU5sCSjDZ8dt6reGDrEizJasNqVwNOyG3E8qwWzMvrgsUQFncQ/Vj0dUmZDhvxwq4qcfXQZ2NKiIo/xmgP43NzXhHPDOs6fU/xPGFdpLeK+cUyUprWjzPKatDcm46XuiokzViX1iyuljpJ1rcWIdEYlWPnFHSJU4hxSU7xS51nOpF1nlLxg/F4ln2md0N7pviImP+rs8fCwbyga4nbmO8MH89xZsluLMjrRKFjUMor48Qytzq/UeK4frBUPF/MJ+Iyj8LvM2NBaofU49aAC/UDLnErMW173swVL9MKZyMCnXbxSvEzurLKU/rgHrJL/B9vm4vGXpf4dd43ezfaBlKl/rd5neIiolcs1eKXdGPbQD8Y2z2WZx7P7WynvJ4xnxrdU11DDuRU9UpZ5fsPl27BK43l4gViPrIeVndn483dZeJ7YvlmXJraM8Spxfcn5jfAP2IeqwsW/5hDa1GPOMV43oGRJCwo6sC5S7ahrTYLW3eWSNpzP7bXTHu2DwxreVE3XmqtkDrKtpl11rmiF9nWIZiNYcR6LBJXbo+GE2BO8yMUPoJfi+oRmhborTFFURRFmQpohk6YxDwfnSN0WJgxI0KKoiiKoij7oiNCiqIoijIVyK0tnSw91WhHSFEURVGmgFg0itgkbo3p8vnDg3aEFEVRFGUq0BGhaYHOEVIURVEUZcaiI0KKoiiKMhVQppigI0JTzYwZEXq6Z474c87N2yG+m95aF5aUtIlbgm6PJentcAeT8IGsraivzkdpphtlLjcslrC4LfKTPXKe3Px+8XyUOtw4P2eruDQWpbdjKGxF62ia/L9j2CEeE7p8bth6oTgrzj5lE/pHk8RjQp8G/Sm+qBnZyV482zYLoyEzHl+/GCcVNsATtKIi1Y1TiuoR7bXg7tpl4uSgK+jxrQvFpUFXii1rRLaTVIsPn5v1Cl7uLJdtDFfvUDIuW/ImLl62Di39acgqd2NXXxYWpneIT+ic7B2Yt6BZnEl0xtBzc5yrBRdUbccJZ28Txwl9HQxzknXML0KvS2VWL0yJUQkH3Sb086Qnj4p3hNfd2ZcjXg+6TegNOa9gG65Z8TwuXrIeoVgibJYQtniKxFdEd88HyneKy4h+nq6eMYdJXUOOXIu+n1SzXzwxEZ8R8yvbkJk8DE/IhrDPhEe2LRaXCaF7pGPUiaKUQTSNuCS93IFkNDxbigzrKHZ05aBmJBsrs5uRl+qReO1sysOiyhYJN/P56ZYqmKxhCQu30S9FBxPDEnfhzE7rFpcT87d7KEW8U/yMZYIuHYMhKvnPv8yLPb2Zkg5MP7pxZju6xaWyyNEm26ucPeIwcRpHEYoZUD2YjX/uXCj5UZnSCx89ToYwzimoxocWbNnvRafPvi96jei/SUyMYcRjxRcKX0SKLYBaTyb2DGdLPMqz+9A55BDHDD06dDedN2+bXOuR+gV4ZvdsuLKGcEb2bpQ4B/CDykcwz9Up5YXep1tfOUv8M6wn9BTRSdTmS0N2/iDOKNiDR5oWSJ2jd2t7S554eRj//uEkLDqrBosWNOHpZ5Zh53AecnMGxfsyFLGhxpOF1ztLsasrW9KXLiLWW8Jy2OlxYM2cGimrawpq8WJThXhgFhe14fm+2eKToYPG/+9rdww4xe1FN5PbaxcfzkJnu6QRyzrzM15vWQbozqIniOU8PGDFSGDMF7SivFnSiJ4b5hvbiTXFteJZYhqybtUOZErd5L7087gsw9IuLE1rlXPSHUWXFq/H/3eNpODRV5Zja1se3L4khKMGuRb9VVv68qXcNnrScUJhozivTsvbI86l8IhR2hxDQkzOz3aEDieW/Tmn1GM0YsJdjSulfhkNUUlbunWah9OxJL9d2j3m6ZycbnEWPb1zLmZn9UjaDfsskmb8/8aaEimDdFLRMcTyzWNZpsmHizdLmXm9tgzJpoDUTdYXhofp/2DzIjhTfEi1+8SV1dmVKuliTx/FUN+YoysrfQgl+X1I6LUgP2lQ6iw9Sw/ULZZrMc1XZDYjyRaEd8Qq1+V21gsYYzh/xUZpe+hhYp3jsXs8mVIPmtcVosLVh3klHZLmPf0OKcPto6nSPp6yaoe0Y9x3aVkrUpN9mJ3Ve+S+mMQFFJ3ESztCh4MZ0xFSFEVRFEXZF701piiKoihTQCwaQ2wSt8ZiOiJ0WNCOkKIoiqJMBbL8Xc3SU43eGlMURVEUZcaiI0KKoiiKMgXorbHpgXaEFEVRFGUq0Ftj04JjviMU7zGHR4MIGwLwD4cQGgki6vPL37DPgJAphIAhhGAwCJ8hLJ+FRwLSU4+MBhCyBhEyBcfOMxJAJBhDcDgIX2JYzhGIhRAMJyIUSUAgHJJ9DLL0O4jIqB/B4ZAcy3OFYwFERk2yzWAY2zcyakbYGJLr8rzcFkIQQeNYOHkOCWs08d/vAwiHeZxBtgdDQYRiUfiMYURGxj4LRcauHWB8Y1H5fyQaRCQckWuHgkH4TWPhHwtjEKFAEIHEEMKxqKRF2BdAyBBB2G9AJDxW4cKhwHh6MRzRf4eBYQ6bgv++bgAhy9hfhoVpHkmIIhAKIRj4z+fRf183YB47Vzg8Fl+eK/6XaTUWxrFtcq1IRK7D9+PpGvrPMSGmRyQq6cV8iwTGjounY9D473T/d3pym+RXhOkUQCQURjghgFBiUOKOxCjC4YjkZziQgCC38zqxsXOGTQEJRxBj4Yz4o1LWGPawJfDvtB8rAzwnywu3MV14nqBhLO/5Pl5+4uEKJIyVy1DQJGkeiI6pAibC/faFSoGIz4BI1ICoz4BRb2SsbBjDUrYkfSIRCW+8zBHmRTytor6x9IjXmREvy85/0jFeXkO+4LjCgGWD12G5i+dpwBaSvGbZm5gPDEPU/58yzzwIWP+dNz4jIr4oYBhLSylDowEkGiOI+MbqH8tTIML898s+oYSxOhIeHbt+vG7GrxeIjP0/jLHPeZ2AcSx9+Teepwyr/N80li9SXo1jbQDLA/MrnkfBeB7G894YRiwxKvnM+AWjY3WNNVrOGQ3K9RINIYT8/y7Xfj/Aa1pZFuJlPYoI42QMSnoGLUHZn+HkdWOhRLk2P+M+4WCC1F3W4fh143kr+ZAwdm7mlcSDcYr+J73G61YgQdIoFk1A2Dy2fTwv2XYFEqWuxeul3xxCIDAWpng7YDCG/1MOR81j9ScxIukaDSVOqM+J4+WOeT9WFsbSi2GS+mP4T7mU9PVFkWiKjsUncawMxvMy3t7Gj5H88/+n7WRdirc5rE/xdi8et3jZDRmCR2y0hbVxMmJpOV6ZNAmxY3xsra2tDYWFhVMdDEVRFOUoorW1FQUFBe/Juf1+P0pLS9HV1TXpc+Xk5KCxsRFW65hjSXnnHPMdoWg0io6ODqSkpCAhYf9f08cSQ0ND0uljBXY4HFMdHEXZCy2fytFSRqurq1FVVYXExPduPRE7QxwdnCxms1k7QZPkmL81xoL8XvXqpyv8ktEvGmW6ouVTme7k5+e/p50gws6LdmCmB7p8XlEURVGUGYt2hBRFURRFmbFoR+gYwmKx4KabbpK/ijLd0PKpTHe0jM5MjvnJ0oqiKIqiKAdDR4QURVEURZmxaEdIURRFUZQZi3aEFEVRFEWZsWhHSFEURVGUGYt2hKYJL7/8Mj7wgQ8gLy9PDNgPP/zwQff93Oc+J/vcdtttb3nOV199FatXr4bL5YLNZsPs2bNx66237rff7bffjpKSEpF7rVy5EuvWrTsscVKOHaaqfH7ve9+Tc018cT9FORJldCKvvfYajEYjFi9evN9n2oYe3WhHaJowMjKCRYsWSYV6Kx566CGsXbtWKvvbYbfbcc0110gDsWvXLnznO9+R1x133DG+z7333ouvfOUrsmR006ZNEoazzjoLPT09hyVeyrHBVJVPMm/ePHR2do6/2IFSlCNRRuMMDg7iE5/4BE4//fT9PtM29BiAy+eV6QWz5aGHHtpve1tbWyw/Pz+2Y8eOWHFxcezWW299x+e+8MILY5deeun4+xUrVsSuvvrq8feRSCSWl5cXu/nmmycRA+VY5kiWz5tuuim2aNGiSYdZmVkc7jL60Y9+NPad73zngOVR29CjHx0ROooeHnvZZZfh61//uvxCPhCnnnoqrrjiioOeY/PmzXj99ddxyimnyHs+8G/jxo0444wzxvfh83X4/o033ngPYqEcq7wX5TNObW2t/HovKyvDJZdcgpaWlsMefuXY592W0TvvvBMNDQ0y4rMv2oYeG2hH6Cjhpz/9qdyfvvbaaw+6T1FREXJzc/fbzofO0pS6fPlyXH311fj0pz8t2/v6+hCJRJCdnb3X/nzf1dX1HsRCOVZ5L8on4XyLP//5z3jyySfxu9/9Do2NjTjppJPg9Xrfs7goxybvpoyyE37DDTfgr3/9qxy7L9qGHhsc80+fPxbgL45f//rXcv+ZE/wOxl133XXA7a+88gqGh4flvjgrdUVFBT72sY+9hyFWZhLvZfl8//vfP77fwoULpWNUXFyM++67D5/61Kfeg9goxyLvpoyyg/Pxj38c3//+9zFr1qwjFFJlKtCO0FEAvyg48Y6/ViZW0q9+9auy6qGpqektjy8tLZW/CxYsQHd3t6zE4RdNRkYGDAaDbJsI3+fk5LxHsVGONd6r8nkgUlNT5Uuprq7uMMdCOZZ5N2WUo44bNmyQW7ac1B+/vcYpSBwdevrpp3HiiSdqG3oMoLfGjgJ4X3vbtm3YsmXL+ItzJniv+6mnnnpH52JFDgQC8n+z2Yxly5bhueee2+tzvl+1atVhj4dybPJelc8DwZGj+vr6A95iU5TDWUYdDge2b9++1zFcdl9VVSX/5+iktqHHBjoiNE1gAz/xVy7nQrCypaeny68YulYmYjKZ5BcHK2UcLu/Mz8/HzTffLO+5jJTHxr0rXKb8i1/8Yq975Fz2efnll8v8jBUrVsivIy5DvfLKK49ArJWjhakqn1/72tfEDcPbYR0dHTJhlb/A9dau8l6XUU56nj9//l7HZGVliSto4nZtQ49+tCM0TeAQ7Jo1a/aqXIQVjJNFDwWupmHlnfjL5Jvf/KY0CBzKLS8vlwmDV1111fg+H/3oR9Hb24sbb7xRJvdRFsaJqftO/lNmNlNVPtva2qTT43a7kZmZKbciOJeI/1eU97qMHgrahh79JHAN/VQHQlEURVEUZSrQOUKKoiiKosxYtCOkKIqiKMqMRTtCiqIoiqLMWLQjpCiKoijKjEU7QoqiKIqizFi0I6QoiqIoyoxFO0KKoiiKosxYtCOkvKdcccUVuOCCC474dSlQ48MV+fryl7+MoxnGhc/Yei8oKSkRE65y9EDr8XHHHYeUlBQxHbN+1dTU7LWP3+/H1VdfLTbl5ORkfOhDH9rveVg0ePPxEBaLRSSAB4KPpTjppJPEplxYWIif/exn7yictID//Oc/x5HkjjvuwKmnniqPyGD9Hxwc3G+f/v5+XHLJJbIP6xYf4EsztTIz0Y6Q8q6JdzQO9uLDM/nE50O1uh5u2Mh1dnbihz/84ZRc/2hg/fr1+OxnPzulYeCjNfgYDT77ieXm4Ycf3m8ffomzU819kpKScPbZZ6O2tnb8cz4082Dl8P7779/LHHzuuefKOdiJ4LOmwuHw24aR5+CjQNgh4MNhH3/88b0+f/DBB3HmmWdKx4PX5KMdDoW3+0Jmh4bx5jVp32an56WXXpJODg3bzzzzDEKhkFybj3WIc9111+HRRx+VcHN/Pp7kgx/84H7X/+QnPylm5AMxNDQk5+XjTfj0dnZoWKfZ0TgU/vSnP+H666+Xv0eS0dFRKR/f+ta3DroP03znzp2Sfv/617+kDE51PVCmEJqlFeXd0NnZOf667bbbYg6HY69tXq93ysJ25513xpxOZ+xY4FiKy4F4/PHHY9/+9rdjDz74IC33sYceemivz6PRaOz444+PnXTSSbF169bFdu/eHfvsZz8bKyoqig0PD8s+4XB4r7LH1/e///1YcnLyeDnkPvPnz4+dccYZsc2bN8t1MzIyYt/85jffMnyvvfZazGAwxH72s5/FqqurY9/5zndiJpMptn379vF97rrrLrneH/7wB4kDz38onH322bFFixbF1q5dG3vllVdiFRUVsY997GPjnzN+n/vc52J33HFH7Kyzzoqdf/75+52jp6dHrvnSSy/J+8HBQQnf/fffP77Prl27ZJ833nhjv+NvuukmCcO+/M///E8sLS0tFggExrd94xvfiFVVVb1tvF588cVYfn5+LBgMxvLy8iQNJ3L55ZfvF5cvfelLsVNOOWX8/dDQUOzjH/94LCkpKZaTkxP71a9+JZ9zv0PhhRdekDgPDAzstZ15yO3r168f3/bEE0/EEhISYu3t7Yd0buXYQjtCynv6Zb1vg8eG7JprrpHGLDU1NZaVlSWNPBv8K664Qr64ysvL5UtqIvzS4ZeG3W6XYy699NJYb2/vOw7P7bffLl82FotFzvOhD31o/LNIJBL7yU9+EispKYlZrdbYwoUL9/oyITt27Iide+65sZSUFAnriSeeGKurqxs/nl+G/AIwm83y5cIGNk5jY6M0wP/4xz9ip556asxms8k1Xn/99f3CXlhYKJ9fcMEFsV/84hd7xWXLli1yPK/PcCxdunSvRn3fTgS/6Hg+hik3Nzf2xS9+cfzz4uLi2K233jr+nuHjlzmvy+szrR555JFDTgPC42fPni1pzC9NpvmhcqCOUE1NjWzndeMwrTMzM+VaB2Px4sWxT37yk+PvWaYSExNjXV1d49t+97vfSQd+4pf9vnzkIx+R+E5k5cqVsauuumq/feN5fCgdoXf6hXygzgOpra2V88Q7Zs8999wBOwDsOLIzcagdocsuu2y/6z3//PNy7v7+/reMG4/92te+Jv//6le/ulc+HGpH6NOf/rSUz2effVbiduGFF0qZm2xH6I9//KO0PRMJhULS2WVnXJl56K0x5Yjzl7/8BRkZGVi3bh2++MUv4vOf/zwuuuginHDCCdi0aZMMx1922WUyxE14j/+0007DkiVL5MGKfKAhb5V85CMfeUfX5bGcF/GDH/xA5lTwPCeffPJecxruuusu/P73v5dhc95euPTSS+XWAmlvb5f9Oafi+eefl9sFvLUQv7XC24C//OUv5QnqnFtx1lln4bzzztvrFg759re/LU9V5+2TWbNmyUNF4+d488035fbINddcI5/zIZI/+tGP9hvWLygokNtaDMMNN9wgT9I+EP/4xz9w66234n//938lHLztxNssb8X3v/99SVvG4ZxzzpHr8RbOoaTB3/72N3n45I9//GPs2rULP/nJT/Dd735X8vzdEggE5C9vS8XhgzEZhldfffWAxzBcTD+mZZw33nhD4j7xYZjMI94CYn4fDB53xhln7LWNx3H7ZODxvB3Gp5bH4XUYN5aDQ4EPruUcuNWrV48/EZ0P/jSbzfvNK2O8+dmhwn33fXBo/P1bnYfp+cADD0jdIfx73333vaM5OF6vV8oM69Lpp58ucbvzzjsRiUQwWRh23hadCG878in17yR9lGOIqe6JKTNvRIgjCHF4u4KjPPwFGYe3NSYO4//whz+MnXnmmXudt7W1VfbhaMGhhocjMfz1zyH3ffH7/TIEv+/ozKc+9anxWxW8hVJaWirD/QeCtwB+/OMf77XtuOOOi33hC1/Ya7Tg//7v/8Y/37lzp2zjrQvCa51zzjl7neOjH/3oXnHhr+I///nPsUPhl7/8ZWzWrFkHDfOBRoR46ycOR+q4LT6y9XZpwNG8v//973ttY/6tWrXqXY8I8VoczbjoootkJIKjN7fccovsu2+5iPP5z38+NmfOnL22feYzn9lv/5GRETnPviOQE+Ftpn3jxFEujihOZkSIZYV5sy8c6eJtqX050CgKb5sxD1kf4vztb3+T0b99YVm8/vrrD3lE6H3ve5/cgpxIvLxyNOvll1+Wuht//fWvf5V9fv/738styInMmzdvr3L/diNCHPXkdZqbm/faZ8mSJeMjQky/idffd9+DjQi903RXjn10REg54ixcuHD8/1xVwgmmE0cp4r86e3p65O/WrVvxwgsvyOqX+IsTV0l9ff0hX/d973ufTPwsKyuTESeOXsRHnerq6uT/3GfidThCFL8GRxi4guZAoy/8FcwJqfxlPhG+58jIweKfm5u7V1y578qVK/faf9WqVXu9/8pXvoJPf/rTMnpwyy23vGUacKTN5/NJnD/zmc/goYceetvJwRPDZ7fbZSJvPHxvlQacrMuwcBRmYhpyROud5NO+8FqcjLxnzx751c6JziwP73//+2X0ZF8Y37///e97jQYdCpxIPTHcHM06XHzuc5/b69yHA44acqIv04IjhHFycnIQDAb3Wy3FUVR+dqhw331XmsXf8zOOZLE8xF8c/SR//OMfZYSNoyzxV3V19V6TpplvY/3e/8BJ3+80TSdenxPpDzVe8fIch3WCo57vJH2UYwfjVAdAmXns+yXKVTYTt/F9fNifcEidq4p++tOf7neueEfiUOByY956e/HFF/H000/LLRyuguEtpviw/WOPPYb8/Py9juMtGGKz2XA4eKu4HgoM88c//nEJ6xNPPIGbbroJ99xzDy688ML99uWSZ94GfPbZZ2WFzBe+8AVZ/cPbfQe7nXag/ImH763SIJ6Gf/jDH/brzLHDOxm4zJtfdh6PR77kMzMz5RoTbyvF4W0Zdmo/8YlP7LWdX3K8HXuwL3Z+kU5c7cVO11t1CN7JlyZvx/J26OH4QmYHgreU2allWS4tLd0vrZiHzz33nCybJywD7Ojt26l+K7gvb+OygxIvEyxDVVVVSEtLk/cVFRV7HbN9+3a5Bc1wxdOPME5c0r579275EcP827Fjx17HMu3j12HHnf9n3SwqKpJtzHt2huO3s3n+idd4J/FiJ5G3T5lWhLd5Wcb3LbfKzEBHhJRpz9KlS+UXJp03bHgnvjhi8U7gr1OOpNCHwjkwXHbNRnDu3LnS4eGXxb7XYGciPlLyyiuvHPCXK0dN+EX62muv7bWd73nuQ2XOnDn7zQ/hMul94dwizmFih47Lojl/4mCw88KO5G9+8xv5guLcFH5hvRveKg04ksc0aGho2C8N9/2yfrc4nU75EuV8J37hnn/++fvtwxEJjk5wv32/ABnviZ0PfrEz75hHLBsTwxz/kuVx7FRMhMe9k04F56RMPPe+X8hxDuULmUvn//rXv8qoFzv3nNfCF0fC4mnE0TCOHHK0iOe/8sor5XrHH3/8+Hk4CsrOR/zY+MgKO5qEnW3ONeK5WP/uvfdemQfH8x4Mpv2KFSuks8J5PfEX39N9xM8J5/wx/zjiyrxkZ35ix4jxuvzyy0VvwDjw+gwHR5LiPx4OBuPDeDB+hHnO9/F5bqxjXF7PEVJ2jFlHObp28cUXH/KoknKMMdX35pSZN0do31Uf+85T2XeuCFfQ8P79hz/8YVk+zRVKTz75pKwy4xyjQw3Po48+Gvv1r38t8zeamppkPgBXEcVXI3EJt8vlkvk3vMbGjRtjv/nNb8bn4/T19cnnH/zgB2Wlz549e2TZNJdzE8aBc5Duuece2calxpxfwv0ONn+E8xe4jfMZCOdFMUw///nP5bjf/va3ssIlHpfR0dHY1VdfLfszDq+++qrMyznQ3I94OnBuBlfd1NfXy/wfrgZjXA6U9geao8Nr8zyHkgZcxcXzM505f2vbtm2xP/3pTzJX6WBweTvThC9enyub+P+Jcz7uu+8+iTPj8PDDD0u4GYYDraDiqquJq/XixJfPc54Q56CwDLFcHcryeaPRKKv3OJeLc2r2XT7vdrslzI899pjEgWWA7znf7a3gSkjOe3nzzTclLysrK/daPh+fl8NzfeADH5DVgjz/gV7xPCI+n0/mpnH5O+e+ccXVvmFhXTzQeVhO42zdulXm9HEFIFdDcm7WweDcLZYNagYOxE9/+lOZVxWfX3bjjTfGsrOzpXxdd911spr07ZbPr1ixInbDDTe8ZZoyf94ufZhfTGeuemSdvfLKK6dU96FMLdoRUqZ9R4jwC5eNOTsF/KLl8uwvf/nLsjz8UMNDTwuvzy+H+NL1e++9d/xznos+JC755hcdvyTpbon7WeJfDPwiZePMSct02/DLOb6k+3vf+558YfD4gy2ff6uOUHx5b0FBgYSRX34Tl8/zy+biiy8eXw7PCdr8AuEX34FgGnKpNxt7Tiilj4fLkQ+W9m/XEXq7NIhP1uXSdYaPaX3yySe/5bLk+KTWfV8sO3HYsWKaMF05cZodugMteWenhmnDvDgQ7Dy+//3vl7SlQ4hLu7l0+u1gR4wTbBknTvxlh2ciTJ8DxYFfym/FoXwhM48OdO6ZBifusyxOnHStKIeDBP4z1aNSinK4oc2ay4oPpNdXFGX6s3nzZplTxFttnB/EeVa8tctbXtRvKMrhQucIKccsbDy5Qucb3/jGVAdFUZR3AT1CixYtknl9XJXI+WnaCVIONzoipByTUMgWX+lDsZw2noqiKMqB0I6QoiiKoigzFr01piiKoijKjEU7QoqiKIqizFi0I6QoyhGFYkxK8fjSVX2Kokw12hFSlCnm9ttvl84Bn65Oo/DEx0D4/X4xCfN5bFwBx0cm7Pu4hwNx//33y6MMeE4+x+3xxx/f63NODeQjRviIEpqnuSqHht+3g8uXafqmhZuGZGoK3kl8CB+b8I9//ONtr6UoinIk0I6QokwhfGwBH1nARwzwOWhcKnzWWWeNPwaCj9F49NFHpWPD54Pxwa58pMZb8frrr+NjH/uYPJKALpYLLrhAXhMfYcBHjPCRG7///e/lkR58VAmvy47XwWhsbMS5556LNWvWyCML6Gniw1+feuqpQ44P4aMv3s0zohRFUd4TDouWUVGUdwUfGcBHZsShEZm26Jtvvjk2ODgoJuX7779//HM+4oHVlo/iOBgf+chHYueee+5e22iXvuqqq8YN2nxkAR/jEYfX4mMU7r777oOel4/xoFV5Ih/96EfFvn0o8TmQTZpmbUVRlKlER4QUZYrgwy35QEzelorDh0ryPR+Mys/4cNOJn/N2F5/Gzc/j8DYUn0gfh59NPIZwVCZ+DEd2+GDKifvwQZ28jTXxvHxa+BVXXHHI5327+CiKokxHtCOkKFNEX18fIpGIPLV9Inwff6I4n/5NIeSBPo9TXl6+lzCSnx3snPHP49ve6rzscHEO0dudd2hoSJ5e/nbxURRFmY4YpzoAiqJMjueee+49Oe9dd931npxXURRlOqEjQooyRXAUx2Aw7LcKjO9zcnLkxdtN+y4xj39+MPjZwc4Z/zy+7XCc1+FwyMqzt4uPoijKdEQ7QooyRfC217Jly/Ya0YlGo/J+1apV8pnJZNrr85qaGrS0tMjnB4Of7TtK9Mwzz4wfU1paKh2Tifvw9hZXj03mvG8XH0VRlGnJlE7VVpQZzj333COrtf785z/HqqurY5/97Gdjqampsa6uLvn8c5/7XKyoqCj2/PPPxzZs2BBbtWqVvCZy2mmnxX7729+Ov3/ttddiRqMx9otf/EJWmd10002y+mz79u3j+9xyyy1ynUceeSS2bdu22Pnnnx8rLS2N+Xy+8X0uu+yy2A033DD+vqGhIZaUlBT7+te/Lue9/fbbYwaDIfbkk08ecnzi6KoxRVGmC9oRUpQphp0YdnbMZrMsP1+7du34Z+yYfOELX4ilpaVJJ+TCCy+MdXZ27nV8cXGxdHYmct9998VmzZol5+SS98cee2yvz7mE/rvf/W4sOztbOi6nn356rKamZq99TjnllNjll1++Xwdm8eLFct6ysrLYnXfe+Y7iM/E82hFSFGU6oE+fVxTliENDNcWMAwMD+62KUxRFOZLoqjFFUY4o8+bNQ0NDw1QHQ1EURdARIUVRjijNzc0iiiRlZWUiXVQURZkqtCOkKIqiKMqMRX+KKYqiKIoyY9GOkKIoiqIoMxbtCCmKoiiKMmPRjpCiKIqiKDMW7QgpiqIoijJj0Y6QoiiKoigzFu0IKYqiKIoyY9GOkKIoiqIomKn8f6/QQs2Mw/ExAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
@@ -1037,7 +1138,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 9,
"id": "88c8358f-d05f-47c9-9ce3-66f5c9a491e7",
"metadata": {},
"outputs": [],
@@ -1078,7 +1179,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 10,
"id": "609dc780-401c-4814-a3ca-46d0bcdcb3be",
"metadata": {},
"outputs": [
@@ -1246,7 +1347,7 @@
"[22018 rows x 6 columns]"
]
},
- "execution_count": 11,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -1290,7 +1391,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"id": "7902c289",
"metadata": {},
"outputs": [
@@ -1298,12 +1399,10 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "C:\\Users\\sterl\\AppData\\Local\\Temp\\ipykernel_4716\\1528100513.py:7: SettingWithCopyWarning: \n",
- "A value is trying to be set on a copy of a slice from a DataFrame.\n",
- "Try using .loc[row_indexer,col_indexer] = value instead\n",
- "\n",
- "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
- " ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n"
+ "C:\\Users\\akeeste\\AppData\\Local\\Temp\\ipykernel_31724\\3234039020.py:7: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '[0. 0. 0. ... 1. 1. 1.]' has dtype incompatible with float32, please explicitly cast to a compatible dtype first.\n",
+ " ADCP_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n",
+ "C:\\Users\\akeeste\\AppData\\Local\\Temp\\ipykernel_31724\\3234039020.py:9: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '[0. 0. 0. ... 1.48387099 1.48387099 1.48387099]' has dtype incompatible with float32, please explicitly cast to a compatible dtype first.\n",
+ " ADCP_ideal_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n"
]
}
],
@@ -1314,30 +1413,17 @@
"# Normalize the data to avoid precision issues\n",
"min_coords = ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]].min()\n",
"max_coords = ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]].max()\n",
- "ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n",
+ "ADCP_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n",
"\n",
- "ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)\n"
+ "ADCP_ideal_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] - min_coords) / (max_coords - min_coords)"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 12,
"id": "767587a8-2248-4ad5-850e-68e7dda56441",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\sterl\\AppData\\Local\\Temp\\ipykernel_4716\\1835236727.py:33: SettingWithCopyWarning: \n",
- "A value is trying to be set on a copy of a slice from a DataFrame.\n",
- "Try using .loc[row_indexer,col_indexer] = value instead\n",
- "\n",
- "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
- " ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] * (max_coords - min_coords) + min_coords)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Project velocity onto ideal tansect\n",
"ADCP_ideal = pd.DataFrame()\n",
@@ -1371,9 +1457,8 @@
")\n",
"\n",
"# Denormalize the ideal points for plotting\n",
- "ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] * (max_coords - min_coords) + min_coords)\n",
- "ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] = ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] * (max_coords - min_coords) + min_coords\n",
- "\n"
+ "ADCP_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = (ADCP_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] * (max_coords - min_coords) + min_coords)\n",
+ "ADCP_ideal_points.loc[:,[\"utm_x\", \"utm_y\", \"waterdepth\"]] = ADCP_ideal_points[[\"utm_x\", \"utm_y\", \"waterdepth\"]] * (max_coords - min_coords) + min_coords"
]
},
{
@@ -1386,7 +1471,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 13,
"id": "c70be4c3-3082-4ec0-bacf-e40592838abd",
"metadata": {},
"outputs": [
@@ -1406,13 +1491,13 @@
" Text(401100.0, 0, '401,100')])"
]
},
- "execution_count": 14,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAG/CAYAAADSENFhAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgsV1nv/11DDT3s4exz9jkn8wAEiBBAQEhECKIM4gPRCw8CAkGGqz9AQhBIFATNxeAVLhdBEIIQFQKXQYbLpCAmKiQoXJApYUpyzslwxj327q5prfX7o4auqq7urup5712f5+ln166urlpVtarW+653IkophZKSkpKSkpKSkpKSkjFAp92AkpKSkpKSkpKSkpKdS6lwlJSUlJSUlJSUlJSMjVLhKCkpKSkpKSkpKSkZG6XCUVJSUlJSUlJSUlIyNkqFo6SkpKSkpKSkpKRkbJQKR0lJSUlJSUlJSUnJ2CgVjpKSkpKSkpKSkpKSsVEqHCUlJSUlJSUlJSUlY6NUOEpKSkpKSkpKSkpKxkapcJSUlJSUlJSUlJSUjI1to3C8+c1vxiWXXIJqtYrFxcVpN6ekpKSkpKSkpKRkrLznPe/BRRddhPn5eczPz+Piiy/GF7/4xZ6/+fjHP44HPOABME0TD37wg/GFL3xhQq3tzrZROBzHwTOf+Uz83u/93rSbUlJSUlJSUlJSUjJ2zjzzTLzlLW/Bt771LXzzm9/EL//yL+PpT386fvCDH2Ru//Wvfx3Pfvaz8aIXvQjf/va3cdlll+Gyyy7D97///Qm3PAlRSqmptqAg119/Pa644gqsra1NuyklJSUlJSUlJSUlE2VpaQl/8Rd/gRe96EUd3z3rWc/C1tYWPve5z0XrHv3oR+OhD30o/vqv/3qSzUzAp3bkCWDbNmzbjv6XUmJlZQV79+4FIWSKLSspKSkpKSkpKclCKYXNzU2cfvrpoHT2nHEsy4LjOAP/XinVIYcahgHDMHr+TgiBj3/849ja2sLFF1+cuc3NN9+MK6+8MrHuSU96Ej796U8P3N5RsKMVjmuvvRZ/8id/Mu1mlJSUlJSUlJSUFOTIkSM488wzp92MBJZl4bxz6jh6XAy8j3q9jkajkVj3xje+EW9605syt//e976Hiy++GJZloV6v41Of+hQuvPDCzG2PHj2KAwcOJNYdOHAAR48eHbi9o2CqCsdVV12FP//zP++5za233ooHPOABA+3/6quvTmh56+vrOPvss3HkyBHMz88X2td/e8SboPTgcgVaqdQZWCOwoGxu+X8pgWq2ACmj3xJdb++IMUDn/t9wXyLYVkkg7eHGOSAVQGOasKZFi4onNX+lc0iDgwgJYXJQV0Jq7W2EyaJlydv7FHps2QjOTyMgQXM8gwCxJshYz5FBcxQQRQVJDXDn/GV3MXgoBQG4Air+/4RKMM1f1nQBIQlM3YMn/DbWdAcidlDmHwGcCRDSvk41zZ9loME6jUpw2r7+UTsViT4bjj+L4HgcTUeH41EoFZy3yyC89jULj8U0AcZldK4VwwMAGMxDRWvPdOhMYK/ZRJU6MJkLRzJI5e+vJdv3TigKRyYfQUewxP86E3AEg8k8OJKhyh14kgXHdaPtKBQ0KsBJ8gVIU4a88BrGr6sT7M+WHG6qPZRIeJKBUxGdg1QElChwKqAR/xosaBYM6i9XqAONetjPNxP7qlMLc7Tl7wMUVdK+Zo7y29BSBigk3OB/V3EIUHigEOHxQaJlVzFI0KhtAgQMKnF+UlEY1IUdu/YVaoMShZbUUaF+O7aECY0IbAoDKnYMqQh06sFTDC2pwyD+dbeVBopkP6sxGy3pP+/zvIkNr4p53sSWZ2KeW2gII/iuBS24V5wI1Kj/HjHgYY7516hKHGhE4KSYwwJt4oSYg0lc3OstRr8FgFVRi+6fF1y3VbcKjUq0hAZOBFR0vUh0TeJIdFp8RbAtC/q/K1nH9uE9t6QGAgUKBRG8BCyhQade4lhe7JqG/ciTNHpeOZHQmb9Pk7pRfw77sSfbfcCVLGpHuB0jChXqgRCJSuz5CO+xv19//3t4A+uiCoO42BCV6PtF3oROPKyLarRuH9/EqldPXB8e9H1KFKQi0T2xlYYqtUGh0JAmAL/vZxH2cwDRdQuvT7ScWE8xz5rRPQ/3vRG0tcYsnHLr2MO3sOLV4UoGW7X7ffQbZuGEMwep/GdXKoJVtwqhSPs5jz0DAOBJhnmt5fdX7qIlNDAoMCqi9jqSdRyLEn8IAwAzuLfx/rsVPBNbnp64JpbQYAfvw02nPevrCQalSOaxdCpgaC4oFOq6E/Wr8B4Bfh8Lf2syD5bg0XLT0yAVgcmDfu1xuLJ9DbqNK4yoqK1CJp+tsM+rWJ8Pt1GKQIBAKQJCVLQNAEhJom3iCEkgZXv7sA3+gv8dD8bVaB+SQAoaLStJAQmAKSiHgnidFgTiEkABJNgHkQgGeYAIAiIBryZBJIGoeyAeARQBa/r7JgpQFFDBkKJiYzb1CBQFWCt5brwBBI8nZMvCj6/7U8zNzXW0bdo4joOjxwUOfetczM8Vt75sbEqc8/A7O2TRXtaN+9///vjOd76D9fV1fOITn8ALXvAC3HTTTV2VjllkqgrHq1/9alx++eU9tzn//PMH3n8381QY6V8EzgwollI4GI/0BtBgcKMUigpfeQggNKZwUAZQzf8b7kv1UDgoB5BSOAQA3R9EFEspHIxDcg2ESBDOQZWEjCklhMeEBq29T5KxLPS2wqH0pMJBYj2HBKcXVziIBggzOIVKF4WDSdDgxaiYAiMKkkqw8Dg6RXxICQWftMLBg/a2FQ7RV+Hgmt8vpMfBuA7msfaL3WVQbqfCQfWkwsEM/55zzqI2hO3TTA86AwyGSDuTikKI9uDvKQqVEvBVSuHQmIASDBqjUJJB4wAJBkudtY9JSVLhCAdYSpL9KUvhCNunBE9qkvAVDtJD4dADU7ehCRhBHzWpgkYJKjy5rypjqAX9XoCiRtrnqgVCBlEMFCSmcDAIUP9vhiDEg+/7KxwKJHZuFSpAiYKSHJWgrwjBYckKzNQxpCIwqN8mKTUY4a4zFA6TSchAsTG5BtvTYHINnqfB5B5cEX7nQgveIxohqFD/vplEQZEqatRGjTBoRKEp/Ou2JRhMIlFxefRbAGgFAhORWnTdDFeDRiWE0KCR9vUh0TnlVzgA/9kjcYUj+E4P3j9CaKBQvgKh2us0ShPHIhkKB0kpHFqwT52RRH8GABq0QYJAB2AH585pW+HQKQEl0n/2wvtCVWzZ/1vhHLbgMImCE3suK5xDJ+19h+taXrI/h498W+EIBDPF/f4FhQo8bEoTFZo91PIcCodIKRwVxqN7DgAVyuEE/1cYh+lqqHAOw9P865WhcBhMQHd84drQfIVBd/WkwqFIdC8B/72j6/47xoUOnSgwKHBKYwJv53nGhX2DhX2+vd/wmXADhQPBPRZCgwjvr9Yexy3bgM4EmOhUOBgT4Br1J2D0pIIQ31oL2qMxGh1DYxRaoHBowZgpPA4V6/fdxhVOZLQfklI4kKFwhNtI5QvpcYWDqFDAz1Y4IAmIpAmFI/yNkgSQJJrIC/chJQFChUOkFA7WReHggcIhuisctCJBBIGqtBUOKrsoHLFnkLq+wkFT58bcmGgUiA2z7P5enyOozxVvX/i+LSKL6rqO+973vgCAhz/84fjP//xPvOMd78B73/vejm0PHjyIY8eOJdYdO3YMBw8eLNzWUTJVhWN5eRnLy8vTbEJulKFFyoAiBEQpECHg7amCrzY7tif19gwUXF8wVQf3gbQcgFHACdZVdJCGP/ulqhWQmMIh6iZYw4r+qviDF7wQ4xYOFWg/ihEoxkAdAWmw9vQSACLay0wqKBrMNLQnAyMlg1sKTqC9c1uBt1Tb+hH0HHuRgAWTd8IEqO1bN6iDtoIiCJQRE2msoO0aAYIXo7Olw6jbaG35A4tyGFqmB8oCYdBh0Kt+IxmVoc4Hx+E4f//JxLU/tjWHM+bW/eVmHQeqvtnyeNOfoWy5Gipa+4Q1LkCpjCwrTjM5QBtV11cwqAQP2qNxAS0UkpiAI3g0MwsgEL7aM/W+wORvX2FuMPMs4SGlYMZwJIMjGShRsASHVARNTwclKlinRYJ/OPPbUv6scoW5oERhyzNAiYRGJDgVsCUHJTIhBLaEBktosDweDajhTOSGY8ISPPq/yv3rtuEaWDKa8CTDSbuGhmuirlmY5xYuMLPNtpuiggfo/kvwiLeI03kDS5TipJAQIJijEv/PPoD9bBMm8bAmK9CIhzXpz966iuNUapY5ukeBBUMjImHJ8K99p5CwKU2YxIOrGJpSj+6TSV1Ywe/jQl9T6jBpu8+Es8Z2SsBac6twg2v7s8YyPEUxr1lYsavwFMUj9hzG7c19eNj8Ydxt7wEANISBc81TAIDzjOOQioJB4ifOAZylnYKjGARIZAWJzw7PsRY04sFWGuY0C2uiip9YB2FQD6fp/jNgKQ5b+gpBU+pgkDjhzEXWCYFQEaeQILAFByUq6nth3/ZigtdJq4oqdyEVwWnVDf+eNhZR0VwsGf77UA/2HwpZUhFQqIRy48m2sCoVgaNY9By1hIY5LhL74FSAQaElNSxqLUAD9msbaAZWpbusPThorCfuu1Q0MVPflDooFA7Z+8CIxLpqWzIAYNWroUodX8EMrGMrXj3a3zLfhBZYQAziYpE1sSkrMImDE948TOJimW9GyuimY+KgtgZLanBVsr+cEnWYxE1YOmypQQRKd9j2eD87bC+BEQVXUhjUS1iwD9t7IRXBEm+gIUy40lf43JSCueZWIuUitIq1hBb1g/Cae4pGVledCZyyazhg+vfboB4ON5dQZQ6WdN/Cv+W1FQMJghpzoBEPjKjo+rHUJMgp23+mjzXrmNPtyPqw0qyCBULqlu3fXxq8n2wvGOsUAY0Jso5g0JhAzbDgSJawqPl9mYFTCUcw7K9swZEMG44BVzJoVEAp33JGHAUetNcIrB22xzsmcEI8RSNrtMYEXOFb30IlPGHRCK1BIqnAS+ErEa7HovHNX24fM7JoBEqDUoBueBAehXQpqCYh7HZfYcF45dkckASwKRRTIA71x+eaB9pkvlKROjWlKfAGRfj6DBUOe1nAPMpAFEAEhVdVMO7V4OwTIA7xFQVFQD1AGArEBaShANJWOiTaikwcacQsHNvA4V8oCdF9CO/5u2GRUiZilONcfPHF+Od//mdcccUV0bovf/nLXWM+JsU2uKU+hw8fxsrKCg4fPgwhBL7zne8AAO573/uiXs8WQsaJqBugLd9MLxYqYIECIeeqoGkrRVz5CFCVttVD7J8H3bKB4fvg0KQnU5jd+2ky1hQ8c/AZCC8U7ilgN3QQVvzpvfPUEmqmAxYOaFTh7s0FWB5H3bBxrFmPXtQtNymMxoVKU3dhORrMmhOZorOID3BpTO5Fwnm4f4N6kUBR43YwS+krHeNi0/XNS/EBsiU0aCnhOy2IhDQ9DZbg0KlIrNtydV+Q0BxsOGbmjF/IXp70T/154xjWAmHiUcYaVjJ+ehZfSQhfaeZYCwwSW9IXbHy3JgVLaZmKhUHdnvvLIj3bb1AvEmhD3PQsZk7+Y+Uc7DO38O2Ns3GGueYfL9YHT3jz2MsaXX7ts8i2ouX47HfI/cyjaMregYc1bicUiGH48fpy5NYYJ0s4y7KkAEj0NS9yd4m5DKb2VYkpf3HONld6tlWjXodCOkoOausd687Xj3fd3gzc8zQiIkW3KCfduq94xPrRYXvvQPvKw7rru59tema0bs2tJo7fj1CBOmot9NzOEQw6y+8nX9PzB/Gu2JVCbQaQcP8bFKlIhyPDMDgWzxw3hc38Sb0ekPXufY41s99x5vEB3xtp5w0XUDy10iEQ4avLw8wjoSB7TBr2+l0Rrr76ajzlKU/B2Wefjc3NTdxwww248cYb8Y//+I8AgOc///k444wzcO211wIAXvnKV+Jxj3sc3va2t+GpT30qPvrRj+Kb3/wm3ve+9xVu6yjZNgrHH//xH+Nv//Zvo/8f9rCHAQD+5V/+BZdeeumUWpVEzlX7bzQgceuGnDNAW9kD7rjIkOX6wmy0Xx45kTYDNQYPxCqCm2GSH4QOk3dJB+drJ/tvNGbScRzD7cvrsG4UVWyyWPVq2MsaWBOdkxTTZFTKyW6jRu1IOZ4mGpGJyQWdekNNeHiSJSy6aboplqNAShpZOgYhHScX4koWWTVmGZlhGeiLR4EeE2UAfIvHgIqQs3cyY/Zu5fjx43j+85+Pe++9FwsLC7jooovwj//4j/jVX/1VAP6EfDyT1yWXXIIbbrgBr3/96/GHf/iHuN/97odPf/rTeNCDHjStUwCwjRSO66+/Htdff/20m5GfuVo7kLwHsqr33abn7w0N1J6s8tENvgXI4U6nEI7T7r5blo75SnZg5nbBZG4UwLibWGIEJwqOV3kEOaPLLDgAmGQbTJ/NKA13gg/5hDG79BkB0rNK7l622bc/mtSFO+DzLeC72e10Nh0jcmEqSty6UdRyMSg6FZnB68OiVBQqGsV3jIosV6aSwZCQAz2VRX/1N3/zNz2/v/HGGzvWPfOZz8Qzn/nMQscZN7OX3HgbIGvFB1xVnf4sl9I6b3cXj5qupF2s6ATkNuG0X+iu3X/A3rTa17pht5e3nJ0hKHXzIy5KN3eqOOMYTLOYG9JNYTtx0pot60UIJTLyLx+1wOYVfNHE3al6sV/b6Fh3IMOtaRwsp7KwTYK0a18R0u6UvdBzvNitLhaScVo3poUdSxjgDehOWZRebr1jY0yHJN7O6xMAIJQa+LMbKRWOGUTUzf4bdUFWdt8MeZxmTqUi7k5VxEe4pDijdKcKfd5njV7uVJOabc1DlXb6uLNB/SgmTJ52nq6vdv1OG8PsyDxrW1XnuqS+HZa0614vtpMVJB6/cdJKuiOvW5X05tuCUU0G7Rh2+OUIYzgG+exGSoUjJ+l6F7mYy57JzHKjkjUDstZpBemmfMT3IY0uM03GZGanuZWyesRkQhZLohAFiMUFMKuHoGZlD7S2NT5LBQ+UD86TSkiWyNhLkGzEsrV0E0bjdQLCGd26ZsfWJQWkvINZurZHP7rNVPZiK3CrGcQF7GAQ4LjUp3rsYlCzY44UF+Ti7lRaqjZJ/P+4a9W4BO81J1t4OmYn0yGueP774oi71H1fGbEd3dyAAEQ1PbLgtL+i7aTub9ydqum1+83WEG5WYb8eRjHb18XasBCcf69rFJJnm7xWjbDeDADoOd334srCKOKB+mGkFLBKF6vSLAvRoatRnmDxdOxGVgyfm7Lopv/PQs/xHPUiT78vGicYz1Ql7SCjl5t83w5qdejalHg3meE+M0okFMQAn1LhKJk4cgBLhpybvGsWKQ0AEb0yVG0n8rhTxYkLl7sZI4eFZRAFbieSVlbyktedatzsxDifIm5VgzAOd6pE+tgJuTP1Y1JuVVNhdgyyJTuMHfzUlMTJit8YlDCOY5rxG/GA8X40bGPHxG9MglHGbYw7OxUdw0xRr2DzLCYxG52XpVQq4lnIkLQd6GXdWGSddZZ2M7OWsaxIKtyS7cEkk88MQ+lSVYxS4Rg3XdyqRk03t6rdSjxwfFDSblXjoteM7rDm+t1IUYVh8OOMTuO+0xqubsK44gfi7JTsVGkXu3ERFmqM08vFbVKMy8oRdyMdN7OQinzS7+ZZOOeSJGXQeDFKhWMCTCpD1XYPGFfObM2c5WVU9TxKemOS2ZvJnCXrxm5gUsrCMCzS7W0RiWeomuX4jVmGjSnr3kA1OAah1G1yIYf47Ea2t4Q6QRSnULEgV8ljedlTte3VfB0krsH2CI5VrP0dkTIROC5NBkX9J19UOUDbbwHW6pxd9arJ28ns3oOzW2Ngdu+uX2R8F0Y7VowoIKqxprePQZzwHAhIk/iBZi0KudeflaZbDNhiAA2KDe5pN0A02+cXr6xqzHfOJFotHRaAubkWmkGQedVMCqyepGBBKlBC+rvnaFwk8qNnsdrys62cVu9M1xlW5g2P0y1IsyicyEIDhMwZv3FOfRWHGnsAAAermzjeqkdpUwE/Z35F6zwHLfB9dxRDM1Zor0YEakRgUwJZBXBdBSxSFycCBY4ShTniYE2YWI5V3z7i+m2qURv30+/CCVGDUBQ/tM8AAPy8eSfudPdF26+IejTbXKM2NkU7iPtuZw9+tLEf59b8CtUiuJBHtvbgooW7O9p4wpkL2upfw/g9PNRYgsk9OIJhzamgztv9zRIcUhGIwPf77sYCzpnrzKh0t72I8ysnEut+bJ0GoC1s39c42nnxUuzjGzjpJYPSWWxmO164kFPRHgGpB4N68BSD53W3aFS5f97xgNcFw+pwx4vHcZjMjQTYDTcZv7ZkZAvp4Ww8jf4qUCKwhzexITqD8RcC9ycKhWOp808jFQEjwBzrtA65isGgLs7UV6ARAYO42BtzV2OQ0f3QINBUOhZZC83YLP9c0OdWRDWR+GAT3TMwSUUhQKARkVBmW0KL+tqWZ2Bes7AljGgbg3poCAMbnok68/tduJ8sTtl17NH714lKto10rbK94ZqY16zoPoW4imKROV0zbXmKYsPxr1kY/xFmqCLEv85CUWhcwPU6lfsz59czUy5XuQupSNQfKVHQmYBORXQ8wA8KZ7G+5UraoWTFEyLEU9VawbgfT+5hB/1d62P92GyZYMw/rpaypHvBeUpJIEXy3KQX+18RUK33ceRm8P6VBARBoLgCiCRRkLfKqFIehzf9sTy8tf1ykqhg7E7cFuLLBKX6urspFY4iUACERA+SN2eAKIC4EnKuCmX6l5M4HpSevLSk5UBWDYAzX3HhPFImQpRGQRwBpTN4SzUQT0Hp/jZEKv9hDX7j1TWg3tuNyqsE2Sl4+zieSUFd/7EXJomUqLAtXpVE3/sHbv/WXiDgTRVsD4jgPSw1ArfuZ68IvVnc+FgvCKAlByJm+dcxvJZ0VYMKArKJJNGyWteBMLsVb+9DeRQk+N9u+A05sWlEL2AS7HezYYIF27VsDToXoFRCBAMRS41hjCroWnsA4cGgEAaLK9We9VMKkbIiJEUr5njacHXotO1OR4nEmlNJCFa25NCZhxq3E+tM5sKRPBLW4oGYofuVVARz3O6oFhzOTi7rDVCiwCCx4fkDeIVIUKKwT2tg1Wu3rcJcnGGsQSiKptRxqOlnSTph1VHlbs8AybAyr848zHMLe7Sk4HjYW8LZfCX6/2fuIu6jreGIV8FZvIWjwsBBZmNNMtQC4WiJ2XAViYT/GnUgQGESD5tSx0G+jjnq4EQsY9NBvokz+K2409vT0ca0a4ulOJoiaXW8c2sJ59ZWcGRrD86q+YrAd9bOBIDof2QIiutud+GxEQjsWdWLa5qDpqfjXrUACQIKBUdy6NTD3fYe3G3753GI7YNJXawH93Cf1sAhZzmxr2pwfoz4QrBJXdwVZLqSkqLOLDAouIqhKdp9VCMCGhOQoMhyDtujNyEVwaZnosachGDnCIZF3XcPiisZUhGctGrQqUgIYlWWVPbnNQuLWhOuYlh12ilR57gFL6fVaJ61sMCakcIQKhtNacCkLg5wX+nfw7dgSw1C+c8TJRJWoAgLRWFJLVeGqi1pgEFG27qK+YoBWOTSdjpf84XkmPPAIm1BIwJbwftBiwWjm5QmFAuNeIDiECBwJYctOWzlt7UlNLiKgVOBU04yjexd1iLmeVJx2vIM1LjdNQvSqlNDldtYD7KoVbkDTiSaQkeVOdF7yFI8oWg4koFTCU4kPEUTfaoXlChIRYIPTbQrvryn0sSGbUKmLMcaF1E7FswWmm77+Yr3zUXdvw6W4JFiHCa9sARHXXMgFUHT00CV3wcq3IUtODQmokkBW3AoRaLMhd2wBEfT1aEzD5arwdT8fYU1oJTy3aE0LtCytYSC4XoMrsvAmITnMUhJ/GWXgbIuk4GKRDN70mVQLvEFegJ4dvyakeQ8VIZ1hAh/vGUW6cg+xZyk0kBtQBr+eiIAKIA3/EKCtk4AqkAdAhpMKkotQ71QoTxDMgsQUhfwqv7fnN1qqoRZpwb53W6kdKnawcisaeQR4dZHu+9pekrkSX1YMjxuF8FnZYLV1S1Zxjp1Iz47nafw27QZR12NnUBjipIamyEXrHiMRTrF+LD0S2Xbcsf0npmdy1uMAtkdJxSCNxKEGvyzGykVjilD7dG8CCUjhauG7yhyBNTNkj9yvC2hq1XXbbftKDM6ihY0O3fM2bEA4J7mQsc6yxtMecpTE2Pa7C3ogjMq0m46wwq1buATInIMf8MoqDo676m+DWJQBmFeG3/SglmjOeEkCtId7wBf5LHKyIdQnB0wrJUxHMXYzSLqeHFnd2CJWz6E2e4CXrW/0J5nm5ETFCgiqReu8sruOw7Oqa7036gAh73uheyGYW8QnLvMRisIH9nqdMsallHPsIasp+IYjrmdStCssajNXlB1L8VC7LDsQP0mOIZlVFaOBdN32asbduL/LLLcFncb40h8RANPyNDqUF7mkmEoJbYpQpv9bYfUG/4tInmxAdOrdG7vjNiFqh/b7cUm5OivT94iWvEYkHGyaOy+WcxByApinSTbQenoBZ+AFYDN0AtmmMxbWxNMRZvFpIs01vTJvOt6kacy+HZl4k4AGcfbTmVvJPxYw6KfcRTI3A6UCsd2QwZPaGy8lGw6nTeM4wgS92TiVTvfKMxKtneGxv5MRlldfMWuZq6PzzpOorDWXm0zWj7DWBvJPuMB42nXkbiV42fuIgDgqOguLMUrobMCtvdzeTvzUz+3qsOt4paXu1NuVBvO4LPFgwhrJ916tJy2boyLuVgwcuhWFQaMj4I9erPjOKPGUsVd3bq58eVxs4r/dlCFoqhStJHDcpHXuhEPBE8LR90yVU2a+dQESFErRxhQbgxpfczrWpWVZStEiN6i2MDuVD1Eg2H1eprOUj6GSbdZR6rBP7uRUuHISTwlLmt5fVPOAujqVkWt7HoC1GlvT8RgL/X05Oo4A8e74dWz19PmEIK0N7rziBdQGjZgvNtMRa/MTiHNHmlHs8g7oC5q2cLgXq2Y69Gy2ej6XU3z+/C4XIV6USPFBPW8RfHu3BqP69cgFFE67w0UuGmyv+L3lWn0B6C721OzT8ni+Gz1pBIKFC3SSFOKz6xV+s6im1tVtzi6+ZTlIq1MjIqi/ZPMUNzfpOh3yoXiNzIey45hbBtf4kGsG+FnN1IqHBOEOLOZVUWYtFBsxrjiOMgASoXyaO+A8YLm73G4Ro2DUfgsx60cs8JmvyTvBeln5bhja7gK30BxK0eorM0S6cDsUVN0Fjl0q+rXLksllQR3AEvGbqGfdaPoBMgsMu5Yjkm6U8kyRrFkh1H26G1OXneqYeI4Jh2/0Yt04HgW6WJJwp39GUFgsGDOURUPLNlejMudysiRanbQbFVxy9uwgePbMSXuds9QVVTYnqUUuUUoYtVIu1PlrTBOe2znpcarXu5UaoSW/zizEMuxHSgtHMUoFY4RQqyMQXCGs1WNgl71OLLiNyaFGHMKwTRZrlVrQ/j3j5K4cLdP6+4mFWfUmap2OsPEckyCTTG99k06sHgYRu1WlZUaFyjuVlWUdC2OcWemGhXdrH+9MlTlpZc7VR4X2JKSNO1ClsU/u5HS/lwQ2nKhNAYIBdb0ICvtS0ikBGnmcJcQCggmMYgrAKP3baCegkpZMtL/A8l4Dam1X6AkI0IpHdvh1tr/M7uYohAWrR4kuwRRAEh3z6f4TEu4SDwKxTLaGHeHUiShdLCwAvkIpm4M7g9cXtqSIglYjwDzDdsf9HUqourMZjroZsgnMpxF1ohI1Bk43fSDqWXqeHu1zcS60/S1yO/dlhxzdQs/3tgPShRM5uKM+jqONBZ7tkEnAoecfQCSLjGHnH14iHm46+++Yx8E0J4ZPb+HO1RTan4wbnC5477h3WaS08KkIxksj+euz3JoawmOYPjZ5t6oGrGut48VVjMOY4Qqmi9oN8KKyFQCVMISPCH8xOuseJLBoB42PBNLXSwJdzvJtL31oNL2IXtftK7KfEfrptDRFHrPc/RjBCYncIUVp90+FcU5EbADF7uwj9a4DVtwoItecE8QzxJuX6U2Vr1aX9eseFtcwTDHLFhKgwCN7nVWNfIT3jwA4CztVMd3x4UfzLY3SNu8pTpdlpbZBk6I+URgeTj7aQTHC6vMx1nUWpHQ4iqWsEyF10wLarvkrdwuQXJXDQ+pMQc15kTHPKBvJL4/5swHbZEdcTYLegurTjWq/J25f90ZOKOPydzE+YSFAJueFgWMm9yLju1JCi9WAV0qEiki4TMdz0AXbpd+tjastnInJRl9HIggAAgQjIFExqqEp4+VquZN3OD/RAVx//d5jIbhGB8ZaDJOLetRo3ZwTXNOQrJmZmH0mWNQa8VutXCUCkdeiK8cKEKgSLuz0JbXMVYTmXzilAtAShAPUNx/+RPHA7j/Q2q5UdYppTFQ24PUGIhSUW5tRWmUaDuubCitU1BIu0+51dhLkrffSUInHS8MRdtWC7dOEMYnSo5EAFjWRKBXa2+jKECCFxi1KUjTbwPfIlAM/n6Jau+TKSgSvDxzZIUKX2qKxszKBJB2cIIUvhZDFAhVEB4F09v3pR043j4WowocMjEIhYOJyV00XR1VzYnM6POmhaarw+QurEDYNLkLpQiUIrA9jjWY2LBNKEUic/u6bcLgXqYQ2PR0VLkDTmRiZjgUSjkVkIqCEhkNxAwK89yKiseFwotGBBiRoFBoeCbq3IoEq4VYipHQPSVUUFbdGmzZFsQXDV+JsYQGk7mY02xUuYtFvYUad7AAXwASwWAdKhtpTrpz+C+cjXWvCo0InKmvYF1UcUBbB4OEFnSYE94clvkm/p91NoC2MMegcFzM4Qy+CgaFI94SzuWncFTM4XS+AQaFo6IOMxZUfthbggBFlTqwpIZNaeIeaw84FdhvbGLDMXGgsolDjaQQv7/SgFQEx1t1/GRjGfsrDTjCv3ZLRgueoli1KrB6VEmPFwFs2EZ0vxbNFizBseH6gsm6bWJvpYmmp2FesyPhbcWpYQU1VJh/rwzqQSqKCnMgg3tFIdEUOu7FIgBgjlnYFCYYVIdVQyiaWexOptaFxwEQe+aT77SwrzGicHp1I+gbHhquHinWS6YvnTiSYYluoSH06FwoUWh5WuQSWGMOpKLYEjpqrN03W0LzlYzgmlAhYUuOQ6292KttoUkMrHtVLHD/WLbUIkEdADalCVcx0OB8JAiEotFz4H+XfA4ZkZGCohER7XNdVKPncFNWoudsTVRxStRxhrYaBXjrxIttm7wPTWVE166pDAhFYCstet40CDDIKD5lgbfQFDoWuP8cnnTrfrsDxW2/7sdiHbXnsai1sOL4M0DzmoU111dW0rENMhjDLKFF1yWEQsGRDBvSTAjfnEp4kkKnoqNQ5bLRgJFK5lAPso7VuYVmkJFOKgJKFE65fhv36E24kkEqEinh0THhC/zhjHCYHWvRsCAViRSI9HuUUxFd+/g71N8P7bB0cNKeBGh4OuqaE00SAEBdc7DpGDC4B9dpZ9YL3/VNV4dSgBNkodKZgCMYpCTgTML1WPucJIXt+OfEqASUr5QA/phEiIICASGAzJK4w0kuovxxL2uoVCQh9BOX+M+x8odGRQDi+mNtN4j0x28i2tmsiPTHfW7743fYBYxVQBjBBMwGAAJ4FYB6JKrfIUy/oaxFwFv+cbXNTuWEt9oTnmZzm/pZlXSltCMWQLHZigUoGpcxLoaxDuYtWZBp0Zgi1TEF/upDVJxuicHdQdJCUbR+AFeMldDkNWKOi3b+5aNi8rUm9pnFTXihIjoJpmmm33CnWw9iXNhjzly1MQZXt26WsXFRYd3fhaGSNArG4fZEt1vwQN4U7UPEdkRKQJddlN5nbQTowJ/dyO486zGitKRSEk+nCwDE2z4xHXmyL/ay1pNhbKKzoUttWxo9alwAgwcdD5rJ5qTbo1jLDmAYRXGapK0bk2bahevSjLog4FFveMW42lHwoBjDpv4ehPoYa6qMg3RtkXqfCSV9Gumfd+CYOOUaqUOjBozfUFOcHJom2/x2b38UH+4WTKLfjjhT6XjoFgMywqJ942a7Cq3jIF17YBDixQZ3GnmuTxjHASTd7IZl3R1PhqytLvEDgyol/WpwTJpTokuBIvjubkXYn4qV6MWwGcGyGEctkHGnZh6ExYL1QHTuP1866/6c9cpQtVNJF/vdKZRZqopRKhwTJIzfyGRIxaMnGX07rkQonlRc+ikxOWMQR8ZucafabayLZNX1MAB3kszrw8/EzrKiWO3h7hInnjjAVSyKmZgm3RSQfozbDWpUnOpWIbUAYfzGLDFK68ak3QSnVbiyG5OeMJuGzrfdrRwl+Slv9YCQVKChMjql8IQ7lZZ/AJfa4BJ9Oq5jUmNvkXFh6MmxEWb9IKl2a8HsU7xQmcmLpfXUYrNbvfyOhxlM09mm8tBIxWMUcauyRGeGp7zE3anWvWqPLdus9JgN7sbRAX6TRVg1O4slY3if9DVrcAtB1ixwWqmYY9vLnWUUdOtXaeUj7V4UDzju5U6VR4m5293Td5simCT7vZMntfW8luwD3awcNZ6tkE5aiR40E1VRilhR4m5VYWZCYPzuVJRltHHAyxNlpcJghXWzKGtrthGKDvzZjezOsx4A4k7PDBp3uwqzUsUVi2m5A3azdMSfpXgcR5gar9f2k2JaPpTdUiTGB/h4RpnEck4hoDXgzPCgVIJUJHEFapSB40e9xcT/d3v9Bbu4O1U6HWcWByuDzRQPI5idstpCcjMWXJ5W7roxCrezPMRdmkJ3qo0ublVbqUJo4Xmt2ONJJJCXfil48xJ30+rVx+922/2vVxxHvDI6m9D9zKKXJaxI9e4i1g19hoo3DlOh3NTyTUjFiwLGl+mAFvxRWD/ynHavRyccu3lKny0adhSXAWaoW/RFgkCCDvApXapKCjBs7MV2YaqeFSSnO9UUn9249aOoJWRWGGWGqklzVAwXjL7fGL1LipfSoBv2bAVGzxqzFjgOjE5B6cYo3KmKkieWo6gS0CtD1ThIW4zTz1rJ4GQpH6N+DHZaLEcZw1GM8mkdE+nsVAkyivaNnXgNjVT8RrScI45j0vEbvSjHmjahz33R1Lhxt6rGGFJ0TiM71awEi08yJe4gTCtD1YpTi+pDhKTjNQaN3xiUUWenGjV50sseNPIHko+DftaNQRMWzFJV5lnMTpWnblXhQ04hLK0cz3c+5S0eEqWPUAIfwmqiyOzU5ZgJMuQHIYpdX2PEg0u3gXPc/tKzlq0HKB5n0CvDT1HyuqbtVAYV/MaVnWq7kK5U348sV6pR9uNe8OAez/F8sRyDEM9UNSn3vlkmzFA1M4woZmNU7DTrBlDGcBRld571LmGcAeOzZOkYlnTgeMlkWRP5AslLxssgiQimyYY3mwrQsT61N4q4Uw1bg2OnM8sZ4rIYSUrcbZTqfafjx3AM9tmNlPkGCqI0BlnhUIwACqCuBAiBIgSyooF4MtudSkiAM8D1/L8AoBSI57+AFAWI4wE6BxECSmNRGl3iSd+SQgmIUIACSBjbEHvfEhkLJKcqykqh2RJulca2C7dB2xLAkt/5G3T6dYYySWI9aX8Xjo/CBPR1wKsCzCGQmv+91NpJphTxTbfEI5A6wDxA6gB1CKSe8VJNv2iJAhTxg+fCU5cEoABhEkqSjsC6eLA4ZzJhddCDTCSMSChFoDEBV7Iop7pUblQgyvY4DO5lWi2q3AW4i3XbhM4Emm4yWJxRGQUpmiw77sNTFJ5koFR15LwPX1YyCMjPqpZrS45Tbg0MCpwKsPD4Eh1VTo0g6FsoipPuHAzqYb++gbttPzjblQyPWLwTh1p7AQBHtvbgtMo6KszFueZJrHo17Nc2cNydj44BAOteBQwyUYSwBV8LXuLJasinRB0MEie8eayLajQLT4kEg8QBbT2x/ZqoYpG1Z2tPiBq2pH+cM/gq1mRbibGkBlcxzDELc8zC6doaVrw6XMVQpXa0fG71VMf9vH/9GCypQSqCQ829WLErePTeO+Eqhv+wzkmk1W16GqrcxbrDsMdsRUHhjvDv35xuJzJUOR7HyVYN84aFLVeHwbxoH2m0Hi4/TaFjgbdwl9MOpj/mzGOf3sC91gIuqB2LZtS+v3E6lo0GXEVxT3MB+0z/PsQD1RtB4LdUBKeaNdQNv56HG5xHeD7rm6dDev5+jYoLq6lDr7hYqjextlXBlu3vZ173f79i1+BIhv1mAw3Xd9+TIKgyJ+rjVW6DUwFdhc+iwqLWwkawfZ07kC4FJQrzvAWNCH8f1EFT6nAVA4WCq1giIxUlKnI7lIpEAdrhsxC3XoRCPos9VwZ1IRVBM+hjc8zCuqhGWa7udRbhKoaftA7AoB4YJDQqsOpWsUdrglba9++k13Yz3BQm5piFptRxmrYGBglbaZCgUf8EkjElS9zPUrXMNyEUjdJLUyKhEYHNwDVynrUyY1FcxeA41USGqhq3UeM2pKLYEjoarhEJ85So6Llwesw0NTOKjW54Jua55d8PxbDmVlAPjtsSGk5adVS5C05FVFQ0zIDnSRodN56uNlzvSZpZoM8R/n3mVPjvUKLgSBadjyU4dCYgFYEVbBvu3xEMVe7CEhyUKOhUwFHt38ZjSCxPgytYNG60XA0VzYVS/vggJAVnEpRKeC4Ho4CMnRMhCkqRaGygwVglPOpPghH4Y1hs7FBxQZX4coCSviwCAMShUFpse02BuMT/xIYJIkjPZI8kIVcA1PXHbt7yXbK5DQjd/05RQNsEKif9dYA/tjPHlwecxfa+jNVg/FeAlhwC/GvgKSgKfPP9V2JjYwMLH/mj7o2cAeSAVcPldqtwPyJKhSMnkRLA+ncu4gmAdgqiRBab3aAtB9LUQFwJwqmv5AQwW0IYxTs69dqWDyJVYp9AWwlQDKASEAUsGXyrve9YzbGhIB6B4p0PZxRMnlZCYkHmlLevNyG+UmK7HIbmDxCcSlCiwJnomrUqb82Num5DKpIQchYMC45k0JgAIxJC0UzlYFhaQkuk97SJhFEw+LPX7PZ8yi3jrNoqAOBc82ShY8Q5FionSM7iatRLCHohK8GssEnbwviWNECphKtYQvlIU6M2NuXws+HnVE/hrOpq9P9ptaTP/MHqJjYcE7UcfebkVg0GF5n9SyoSpe/sdx/X3CoWtSaaPWIejjuTjaNZ20pe63g2rjndxopdhc7EUM9Cuk/mIS44x8kSyrP6YJhRalOaUaKFu+09iWevG7e2zojiRLq5tIX7zDq2QV0wyET/70Y/q8ge3sQe3oxcLSvUhZt6/uuaHQnucULBO4xlCM+9n5teqHiEaEREkw9A/8xsYfYzT1EYzIuUAUvwjirhvfrVuOJBwkmgLUeHNoDVJa549ITE/ipkBlsSOza5mNFdaJAqN5rDkMFyH/Fk0DAnrUBo0X9+4MrBDlKyLdheNvQdCLFGl9mIudPTmoe1/FNnsiZGjYtMQWHQ4FE7Y3BOMw5lYxwspHMcjoH4wN/LvDyKytgAsMyTo144SzwM+/SMKbqcVPXhn/tGxoxyFiedyWdE2s2MMuuWpWYn8UA69qnSxTo7q8xS8HkWUk63fSMsb5VJjrwH244yhqMYu/OsZ5kB78igsw/TVFJGStxczGTXHOWcbS+f33Ezidz/9VGZuwqwzIZXKIZlr5lfcRt1goK8nLSStSSONXsrJyuNKhqtwQVqp4jJdETksUCExK0D/YrE9RMa0kUGAUTuTtuFItduFqrTx0m7oo6ScWegUxmXXU1ZIUmT9XiMMkvyK1/5ytHtbEwMVoODTi1D4LTZFmd955134kUvehHOO+88VCoV3Oc+98Eb3/hGOM4MB9TJwQV54o5XKM6yyqfXhf+nPTrS200im2RUITVWRHAS1Q7dCQhHox4Ui1TSHcXvpskc9afManQwhaZa4He9CqP1Y6kyfovROFlvTV5InqXZc6OPG9OwM+fbTQmJU+TcN4as69Ot5ka6NkfJ4EShfmPUHbtZOr71vldFy7fccguuv/768TViRAhFBv7sRmZrSqILt912G6SUeO9734v73ve++P73v4+XvOQl2Nrawlvf+taJtEFps5eWidkSXnX07aKimDw/jDsVdciOy79tCZ4IchwHvp9/tlLLRmQbP8NYjQLHe7GHd7oWVZnTM65gEiyzBk6MOQ3pPn0LJ52klaCuOWN338jrTtWN463JxHV0i41Ko1MPzgzNkI/KlW87w6konLnMlrxw/FjJBJmyQ0Met6qNjQ1cfPHF429MycTZFqLek5/8ZHzwgx/EE5/4RJx//vl42tOehj/4gz/AP/zDP0ylPSoM2IpBsmygcez2bCppdc6sEif5kqZW50ub2tmDYK/JaSom+4ZJe8/EwwHyyMGzmAXS8roLQvHYjSwXinosE0w6KDDMfpXXyjGsQGakIgiLulOdUzkVLZ9f6QwYz1I8QuJuVVqO1JBxi0s8ULafILh3CFeq8Di9BKb0NRzoODx7/2HGnSrv/hBkBTivue2g7GNOOxj/Xqt3etZurLay0xSvNMabvrjKO9+Li1p/CSXhBpV6MecJ4A2Vw1GmoE0rhKte+9qteLX05iPBLpgHvduzxEds7Yz3TwBRxrE1J19/yuO+lNfK4cTetXH3PitHDF6YvS3dnpab/N/uMV5kIUV/pTyPO1U0vOSdcMq5WfqxiL8eR6WXh9YNKSUWFgZ7b00DEWSpGuSzG9m2Z72+vo6lpd4VhW3bxsbGRuIzUYZwqwohbrGX/yAxGdshjoPkLGJEWP/rpXUp0JQ3YLzogLKdmETA+HZh3DO1c0bxTEslw1EkJqEoo4hhKKo0TJqpVNreIbje+LwkCBtdvx538HgvzjnnnGj55S9/+fQakhOp6MCf3ci2POuf/vSneOc734n//t//e8/trr32WiwsLESfs846a0It7IKV7TM+ykxV3WBO8i2SJ44jWt8ljmMqbv+94jgyXpTx4PFBAsYHieNoDRlQGPdVnhU3k6xUncOSN1PVMPQLHg/rKgzDMNmqBmEQd6rjdn8Xqn4B45MmHscxygrZwzDtWKdegerjdAMrkqFqWMWrl0U5jjPGoPCS0dLLlepb73sVNjc3QQjBXXfdBcBXPN785jdPqHWDU1o4ijHVs77qqqtACOn5ue222xK/ufvuu/HkJz8Zz3zmM/GSl7yk5/6vvvpqrK+vR58jR46M83SmwjaM9S3JYJwZVbKYRHaqNNPIVlXSn3Smqt3IJCp6r8cqo/dyq7LUbEwyTIPQbWkQRhU83su9atzZqbKYlexU4zL4vv/978f8/Hxi3c9+9rPxHKxkqkz1zfbqV78al19+ec9tzj///Gj5nnvuweMf/3hccskleN/73td3/4ZhwDBGlxN9IKTKLAJYMvnaGyXTxZ5yTYFlvoET3nz/DQcgK3gc8FPjDiNEzQrjylSlb9MAY3eClkdLaUNZL8Kio+MiK0HCqIPHu2Wo2mlMuxZHyDBuVcwB8pSiEa6N/7r+arzkuva6Zz/72bjhhhsGP/iEkcBAGad26zzxVBWO5eVlLC8v59r27rvvxuMf/3g8/OEPxwc/+EFQOr0XUFaF7gTd0vU2W0AtJZQ0fHcMAkAtzoOuBu4ZnIEAEIvJ7aktQES7uwqz/8w4EQpMKDAbcOba22tNBc/0z4NbCor6Lwup+evyWLZZzFQaji/M9oPJnAzZzqtJMCu4dsGDqgK3J6IAb06CbRW4twpgZnswZlzAtTsbfmDPZhTct2C2IBRFhftuAZQozGs2jreKz/SG+8hiydhCwy0uqIUDeJiJylM0CuT0FO3qhx66e7iSwQWDIxlq3AEPBmtD89vaElrC2nBHcxnnVU/ApG7CdUqA4AxjFYda+xLHuW/1eFTZe1NUouNqRKBKHVjwBaQF3oqqGQOAkBRuH6NqN9ctjQi4imHFq0EjAiZ1YSkNTWngIF/r2L5Xlig64OveoF5iv5yKTMtUKER7kmHNad9/jQnUDRueYGBBlXvAD9Kt6i506kFmvNeW9UYi8LabNawVVGu+s7UXFeaiEYz6Zsz9peHqaLhLMJmHLad9b1aa7f07guHo5hz21313NMftfJ7WN5PVxFsb7fP0PAbX4pC10VoNFrVmlL/eljyyShx356OEBVlB9WnCPhn+viGM3NY3k7hdj6ERAVvygd2umsJIxJGFSkaV2tExNSIi90ODuFiRvd3gwn3E1RWNiiiDnEYEQAFXdPY7vzJ7cl2FuXAEHzitpy05mp6BddfvP5uOgU3HwN6M1NEtT8usTxPP0Jd+zh3BsO6YqAUJGOo9EjDc25jHgfqmv7w5j5rub+t4DAfrm1i3TRhBggedZBeKHRR73YC56Mdwea3YRIzFAF1CKYAaXZTMoBnslAZhSsBMVVp3/Xspeay9FFEnIAKJzJC81elOzZuAWwdyPE4DsXrrN3HXPyYVix/84Ae48MILx3PAMTFoTY3dWodjW9hu7777blx66aU455xz8Na3vhUnTpyIvjt48OBE2kBbLkQtqbYTqXwLRpAJitpudjxGywKE9C0dTf/FSppNgMWeZl0DabYATwBa8AKSEnTLjvatAmFEGe3fsVb7hayY/334rTCDF4/Wfikb6wLCoIBSkDqJCvVkyTDUAULX+vSsRaKEQUbWLgDgVtgO3/UrnBQUpmorHTHCl1vco0BpwY6rHpQXnF/Fgwxeqkbdgecku7FecVGv2H2D9KrcRTNmIj9Y3cSGY6KuOdhw/ZOd12ysOSbq3ImWjYwsQ6dVN7FiV6JB6YC5CVdRVLmD8+ZWsOZUIBWJMlOF2XQoUQkBxR/kO69Nex2F3+0IPLTPj1MBSigcwVHlDpqe3uF3Hff9jy+fbq7BlhoawgQnAgc0P7lCKKws65uoM/9mZmWnmqMWJAic2I2zpJbILhUSznqGL1ypgKYg0bFcxVBlvoBlEhdSETjgsKWGBdaMBK94DQ0BCqoUFmkzmsllsRnhM/gaBAi2pIE52sKWNLAp/XslQKBRDxq8xKx1fHbWUwxCCWx4JirMxYZnQiqCCnMhYrEne/QmLNHuTw3PF+p0KnCwthn5nJvchaco9NT98SRDlTuoBdmaDOpFKY4XtSakImgIA1XNjTL9uMH5nnLbynKFudiMKbpSEWw4JjacTuW3wl20PA013UkoIAYXWGtVYMeUDRE8f5omIgFVMz3YWzp4xYUUFPaWDigCwiQ8h4PrHla3qjB1F/NBkLxUBBQKlKhIkTaYBx7cs7AvtIQOBMpS2F9O2HVIReAqii1ioMKcKOtZfBa/JXW4kqICt33dmIuGp0fxB8eceVSCPppWIlzFYBAJSiR04vcFRiVcxcCgIEMlO7iHoQBfYW6k+IXPGIUCI8oXThSi8wyVZwCoMwvN2DMpQDqU71BBils7TOLCRtJyaNKkUiQU7Wsh0cLJiuCcvJgCQokEJ20Fua5Z0W/CeA1f0Uq2N/6dBImuNeD3gdB1SYLgVJAZTYKAEYlNx8iVYSxNw9VR0xy0XA0VzcVJq+qfPxXRO1QoGi3fszGPiuZFbQrPYdNJjvXh/65gsGPjipQ0GmcU/DTQShIIl0IpgqYyoBQB5RLSpaBcRi5S9pYOZTPfmqAnlQZi0UjZI15KOFVIFrptMbAWgTQUiCCgNoE0FWiQaIUI/8MsAqkFy057fTe45U8eho9VfHvm+pOVwvDnDYkChA7U75FQDHCrBN98/5WZ+33e856HD8WUjWc84xn4+Mc/3r0hM8ygVcN3a6XxbaFwfPnLX8ZPf/pT/PSnP8WZZ56Z+E71S0dbMnHyWv9FRYK1pv/gzWvDxRYs6tsv29CaW51oIK41xew7a7KCOTr+e7SaM83ndsTQPbhuGaQbElrcQsZVd6ZIccpp4ikWKWbjwGBeIgV5HvIGn88M1uSfL8U6x+tRVgtP89znPjfhMvW9730PD3rQg8Z3wJKZYvrSXg4uv/xyKKUyP9NGaX0uYWv7CaNFmJEkSj2ZM2d70O6XIq9oXvwsC8lWHqfaGWNTdndHW/FmK6PSpJnXBn+vpItSDjKTPEk2BnBLnCa9Mjj1qlUTMokA9kEo0k+mUThxlLFSvYLDjS5p1acBs/q4qLYGjwlJ6490yPT5L33pSxPKRqvV2vbKhgQZ+LMb2RYKx05ACQHlxp7gWBwGxBABgV2KAfZuTPcXxzRzcHel2r5urNJ9Fs2sBH67ldEoGINaPqo94jpKRs+pHsrHmqx0/W7SDJsueZYwzPH28VZBa8HqkMX04i5p/TC65Q+fMnmF/GGFnbjb4DQZZ02VkFFlvhoG0ie5yjBKRce+xqTrfuELX8B117Wjwy3Lgmlur4mELEKXqkE+Rbj22mvxyEc+EnNzc9i/fz8uu+wy/OhHP+r5m+uvv74j6+u0r/n0n6aSidFtopxIhTyTV+OeCBXVZANldbgDVvXugkHeIn/TZBQD6pbXXXBLVwAuwprI/9tJuVOdEP1rTXRj2KxD03Sn6jWjXrK7mAVlaBrWjVHhDFmcTxRwO1Tu7hC/LMvCU5/61Oj/tbW16WcPHRGTqsNx00034WUvexluueUWfPnLX4brunjiE5+Ira3eFtP5+Xnce++90efQoUPDnO7QbAOHmG3MMO5UjgPwwW4PkQpqzKl4qZdypwoOlx5rutUoE+YsmlKAed3qcHGKWzoWdSuReWhUSEVHVlSs2wzkilPDUo4idcfc+ShwvAgNkbwuwygattSmXmQtiw1v+HtfZIa5knKvqTM7Si88r1k4lVJ0iigf6QxrYeB4UZcRbqSsjn0UZTMj6cK4aAktSgDQLDAz7yoGA6MT3udZCxvCt7bNMQubonc/8rNhjX54HtS64SmKWRYRi7pTNWMJElouB8m4LBIE3dQHg4soeFxKAhorMCsyFAnZT7lwigmgNMOVKgwK79jWIVAjrESeOKYNyOAVpHWpsbpnz55o+Rvf+AYWFhbG0pZpIBXpmRGx1++K8KUvfSnx//XXX4/9+/fjW9/6Fh772Md2/R0hZGKJlfKwO1TsCUCGcIsCADjdBzfitfcdPw7xfIGsm1vVsD6Xk0BUZk+oHJQlw88RvGwk37yh4KwPUOk8uZ/x3M97rMXM9XE3lV4uK+sFrB29GHX11Sx3qq1YZfFu6U2HrZTcTFmVuhUSS69PZxWbNaqVpPKjpRWNDNIZ5PpuP648nCmyYpqKuFXlYZBCl93iNwaxGhRV2MWY/MrDrGtFiMeLmCNyUXUKBp2nYXRCY5Xdfg+SIJC8n1tVXuJdMm0My+tOxXLIFWGGqr/8y7+EZfkTr095ylPwC7/wC/kOUtKT9fV1AMDS0lLP7RqNBs455xycddZZePrTn44f/OAHk2heV0qFo2S2yRm/EWIaoxmc8sZvzEqGqkErlQ/jVpWHaWanKkqvGg6NbqY67OzsVICfoWqSxOM3BgkYb8nRZovq528dpriuFnCAn2Pt98YCbwa/H29yi3EFqsaVxO3sTlXSnaKeeocOHcIznvEMvPKVr4zWff7znx9xq6aPHNCdKkzzvbGxkfjYdv93gJQSV1xxBX7xF3+xZ9D9/e9/f3zgAx/AZz7zGXzoQx+ClBKXXHIJ7rrrrpGdf1FKl6pxMag7lZzsjD+JVXbKM4FORXbNjmmgV9tvQbMye5ldKswtlB3Kd6safMAedgZvVrDlcJWV+7E5Q4HkIY5gI6+6HU/VWtccNFy9I0PVNBm3RSesaVM0AD0vBnXhivwvwzwZqnYqlRHElnRLjTvK7FRFMLhAq6Ar1CzAHCTreIz4lbB+7Ke44IIL4MQKIP/4xz8GyfJb2+ZIRftmmez2OwA466yzEuvf+MY34k1velPP377sZS/D97//ffz7v/97z+0uvvhiXHzxxdH/l1xyCR74wAfive99L6655prCbR4FO0NCmXFU2l1qRBmq4jBbwKt27/jjcIfviONI0WNSuHPb+mgDxkPigeMVzY2qjUff74KMUnGlZ9j6G2FBNMAPHO9WGbwIvVzFNqWJhXg5+5xMKjvVTrdupKlWnL4FNbczp9wa9mqzoRiMsgbHJNJwzrp1Y2IuUWOCOARKH+x9m1VoN/F9l/k6yYplrlRK4dC3PpNQNj75yU/ifve7X/6dbCMEyECuiOFvjhw5gvn5+Wh9v2D6l7/85fjc5z6Hf/3Xf+2oSdcPTdPwsIc9DD/96U8Lt3dUlApHH+K1PohSUIGWzrZcgJGOFLNKZyC2AsxYxwkUDlKrAm5OAVfXB7J2xC0WfbcVfuEfydoPjGQAEQqKEf/7EfUQqSm/JGmebfc4IAAoL37+85W2ZckLZh/DCscbtu+ecbC6CcCvAJ3lsmGmAm/jPvk69bCoW9HsbOjKxKmAJxn2m41ocHckR43bUeXhOOHsazp4zBE8c+bXUxRQ6KhOnYd4Ww3qoSX0RCVtADhqz6POnaith+USFrgv6K96VeyLRQTebe+JKmCfoa9G67NcktLVxsMZd4O4UfBzHizFkQ41XPHqmdXM+2HH3LyKzE5RotBLv1pzKrktCKtbVRyc7wzMt4QGS2jYG8QBZV2/eswdp16xcNzJn53rjOpatPyzzX25f5emajpRNeosKx7lElwTqJltwaPKXehMJOrKGANaXNacakesFOAH9WtdBMtN1+yIJzhuz6GaWneXWMSy3oj682naGjZFJSFYCJDc/shmqpp5mEnKoC7Wve4KqxU8HwxBJfXgiDXit3dTVsAgo/26ikEomuuZiCc/sCVHPSZxrju+sh4mx9hndipgltCgcRun7DoW9HwTApRI1JmDpmdEkwyEKDAoKEXAqARDewIinpI2jH8zmQcJErmxdaMZs3qYWv/rIQRFQxhgzL/WEhJxu4krGdwcpn3h0I5xS7kUZICxrB+hEiFSSggVAN0iuTwR9PVgXyndNj6RqDVUx7purNz9PTTX743+v+GGG/Cbv/mb/X+4S5mfn08oHN1QSuEVr3gFPvWpT+HGG2/EeeedV/hYQgh873vfw6/92q8N0tSRUCocfaDUf+k9+tGPxte+9jVQSvHEX/jT5DZOMGhKiax0F2R5L7AVzCrvCcSmRtPfljGgXm27YOkawGh7GYDiDLKigdgCijFIg4M6AkpjkLHCg4oTBGMTFCVQlEDqFL5MlXwpCZNGyklYbTQh+yoAzF8XzXCQ1F/4Vo7wf0WT34Xyp9TD5ZjyJv0dS01BEkBpfsMJBZSX/YJWkkAz/Wtt1NpvyLhQ4wkGHgxOOvfAiASFggTBotHCopEcHOMF1KQiHbPtjmQwmQtLaNCph6bQYTIXTU9HlTvgVKDhGqhTAU4F1pwKdCawR29bERhR4FRGg2Sv2UZPUUhJfBcbJtD0tKhdJvMi9wGTe9H6+H6zBuJ5bmHDMyPFY1nfxIlASF3St7Di+MGyIqX8rHuVKPPUSbeOVa+GhqcnMiGtB5l3rAzN1KQuBEhCwF/gLVjSPycezIiGAlX4VyMCIsja5UqOVVUDJRInPb/N8WDYpjRAicSKqEMjAke9Rf/YpFPIcBVLKEWuYjCoC6moPzsrAUkIXMnAiIRQFE2hg0IChKJCHXiS+ffZrcCWPNFfFvUW1pwKHMGwbpuwBYftcZBgm6alw3UZjCDYuunqaLo6NCb8fhrcY0/RSDm0pOZfR0XBiIRBvUT/0YjAXm0LVWajERMiD+gbkYDqKebf24qftWlZb+CEU8fpVV/hsYQGJ5BODlQbiSxslZiF0Aqsg1oqi5VheBCCAlzCpf5+NE1AATC4B9vjHZmp0kI+hYpcn0Il3JE8ate9rfmgrRxSEczrNk7YdSzqTWgp860r224OrqLwVFtY3PIMrDrt4HCpCCyhdUwybHhm5JJ2WO7FPq0RPQt1ZqEpjOi+aNSFDI4RCvth8LdBPbiKQSMiM2XtAm8mno8qddAQZkKpBNqWvrAN4TZNmVT2Vr0qFngLq24V89yCVATNHjEt624FnmSQisKRLDMW7KRVgysY9pj+uzNMdtD0dOhUYNM1/euXIeDOcwstqUPG7pHJXH8CBf57zPJ4h/WBEgWdiY73cT9lwxEcG7YJCgVCfKWlYRvRMygCJUZKkvifEhUpG4DfHx2PwwGHCN7HdcOJMlOFNFs6lPD3JQUFFIEMU+Mq+N8Rf0yDJJA2AyRpexwoAIr4Y2xwWkQBkCQKHk/MDTX9deHvFfEVj/AyURtRZG6oQxIJQPr7pY4/1hPRO809t+JjtT+2Uw+gngRRwM03vDrzd3G3qa985St4whOe0P0gO4BhXary8rKXvQw33HADPvOZz2Bubg5Hjx4FACwsLKBS8cfg5z//+TjjjDNw7bXXAgD+9E//FI9+9KNx3/veF2tra/iLv/gLHDp0CC9+8YsLt3dUlApHTm655RYwxvC///f/HmwHczVfySgZCDVA6rk8UCIHemHsJAZNP2sLjvoUvWtG4c41KItaC2vu6N22vB59sWixqFnBmEAa3Mq4KpaNGXsESRXWvUpkjZwGRd4fw2aAK5ksRcLK3vWud0XLn/70p3e8sgEAAoNldyvqp/Ce97wHAHDppZcm1n/wgx/E5ZdfDgA4fPhwNEEOAKurq3jJS16Co0ePYs+ePXj4wx+Or3/967jwwgsLt3dUlE9/H2zbxvnnn4+7774bAHDFFVfggec+DWcuPzzfDgYscCNrJqid311EVKZzKxUbTXwIcWlk5QCCGaEhzNCTqEK7HVnWN6PlXjU5DOqNTDgwqNshWFWZE9UiGOWxQiylZVo5xsUgudiHZdI+8xoThYKkizKOfrCdSVs61kVlICW7JbSBikM2HAN1fbyZs+JwKoeq7J1OmuEIlhgHxjVpNRQz0CbqwbeuDNmUV7ziFdHy05/+9OF2tk2YlIVDqf7P/Y033pj4/+1vfzve/va3FzrOuNmeU2YTRNd13HXXXfiTP/mTaN2td352bMdTc5MNQhV6+y0TfwbiHjIz8E4shNdDKCoSJO6MIB3X5gBpPQeBEjV0lqNes6TTEKinRZH0ptuNs8zV/htNgGaf7G1OoHgMI4C6E7QI5fHvHzW9auMUZc0ZvbUuHkvTLa5mO7PVzDmZuAPmvvpNKn7yk5+Mlv/hH/5hzK0p2a6UCkdOXvva1067CSNDmNvrtmfNTO3kTDkhTW/yNSwGKVa22ymqjNn2eGfxuymO+7qVAp4Cc7HYqVGkTM3LOLI1DVprJsudqle8xbjZiMXuxON4ps12nexQMtnuQT0BtoMn5TOe8Yxo+Td+4zem2JLJIhQd+LMb2Z1nPQCalhwcpMwxm9zLnapeTf4dgm7uVKNWLEb13iexFzERsz+YWKksU+n/Q+ID9jDpUicxwPZypwphQ7ilpTPlxANmB8ksNQhWRhaseDXzQWNX+iFyzspvtJJC3YaT/b7IEmjj7lTjLBiXziKlsfZxw/hQIfqfbzpZwyxRtGhmGLhdhGGqeG/K5PHyHj+eiSorU956zhikQdzoulk08rjMdXOH7fVezFODaJD3avw3DXt6yuAw5JZtc7zus27Nl770pWj5fe97X86D7QwUCOQAHzWBNNWzSKlw9MFxHLz//e/HAx/4wMT6u0/+v5EeR1W7v/zlXFsQkTX/pSeM8c3wK5rvYehWmDmUt0ZdUGiS5HWniqfM7cckcuEDgB4TEhe0tqB3wNjM2jw3WUW3gLbwm5WFpx9hNp+Ofcbcw4ooBt2EiizlYxDSaVXzCjGWU+z4k3IHmue+pSGeYnbY2jTxbD/TYFbityb1vE+DIsK7O4Rb3LigtN1HOCseC5V2p5Je3B954GYFv89xbTM26TYej5unPOUp0fJLXvKS6TRiSpQWjmLszrMugBACf/RHf4Sf/OQnifW3HfpCcsMRVghX1cECzQFAaNm3VPLON1Q8fiM+iZpVe2MSVm3idrZ9lIF+cUGqxrefn74VE/in7WbQTfmYNYooGpOyvJQkSc/+OwUDx+MZqrZLrMAoslMVJcvKMSxZEzPb5R5sJ4rKpwOHFGUoS72O/ZnPfCZa/l//638NeNCS3UKpcPShUqngmmuuwVvf+lacOnUq9k2faYwBslNlBYyrSu9BYlrZqaaFiM0k5Ynj4MHgx8fkPrNTWNbH79/fywKSLkSYh2HcVPLSK6ZlUZuOm1De7FRLfHwVs/O6jRWlSD+YFUvGLLDujT7oe7uQx51qphhRt43mnMYkxeV5FC+77LJo+VWvetV4GjLDhMV7B/nsRrbZkzodXvrSl3b9jojY24PSjsrjO42d+JykC/6NIjvVNNGpt/0G4R3CqAaSaSkzaXQqxmrNqgTFIXsxTKaqnvtVtG/F6lFiS20gt8Np0nCMKI5nwzEw3ydN7m6wbuTOTjViFB1NCvpRcc0110TLH/3oR6fYkukhQBNxgUV+txvZnWc9IpTq8vQPWHtjOzGovyiR+QWyWcub3hTbM2iwKDstU9Wo4je2A+PIUJUOHM9LvZLdj+IZqnYjRdypBglQTxO3GuVxq5p0hip9gBiKoozLIpebGZ2HzLRidGlrXNm544478Md//MfR/8961rNG27BtQmnhKEY5DVqQj3zkI3j2s58NADh14kfYXz3P/yJM2aIUZD1D4SAEqBlQnALhg7tYjSwiitHoQVeabykR8/5+qO2/FZxl3+VKcgKiAK/KobRYxifX34HQKKRBIz/OcPJecgKpkchKQWTKP5P466irou3C3yqCKFCNqOQ7ya35cR/MBiQHqAvAAqI08Qogwo8TIV5wTApAkuglFj1/NgV0CSIIVBjTEQvwAw/cqoLAVNvhkIqABTNrLNhhOMC4YNCpP6Dx4G88fiOsB+BIv0iUk8rI0qvys//79gBuCQ6TebA8jrrmwBYcjuTwFIUnKTiVkCDwJIUM+osnacK64kkKT1E4gkWBZVIRzAUzi1uuDkZl1C5KFCgUTO6Bo+1mUg+EOltyLGotaFSiSh3YkqPOrUQBsX2aH0zOoGBR/5XgSo6m1MEg0VRtRUsjElIRCJDEPsJljQhUqRMFescLHK2LSiJIPDxuyAJvRttrxIMAhcZasKWGKrXhxrTc8DwZJOaYhRPeHHTiAQRwsoKQgMTvo/NVPGq7AEGVOnAVg0YENCJgSQ11ZkOCRAUMTepGmaPSGctanoaWo4EH/bPRNKBpnQKVbXNIj6K1pWNxsYkF01cUjjXrOFBtKwfxTENh8baW0BJKoRb067iyES4v8S24qt2XDltL2Kc3UOcOtOAehYkFwufEEQycSN/SR4Cmq8Py2te0aekQgoJSBdfhidQ1lCooRaCCa7raqOLgwgYOr+3B3toWTjT9vrRqVXBabQOW0LBHbwIAtgKF3sqwqIQDdOgiGd5/T7Io85Ebsy5LRWBLDo1IiOC3WUHcOvNQC2JA4oH6BvWw6laxX9+EJTVQIhPWkCqzsO5VEs8uJSpRj0Ojwj9mECTKiOxQNo5YeyKFYMWpocZtrDo1XDR/F+5o7cOx1hwcybDfbOCe5jxOr27g9o29OLO+DgC4aP6uaF/rXgU/XD+Y2P8D5o8BAO5o7I3WXbhwFD9a359od/i+jF/7RbOFNavtqiUVwZptZioIGhVwFcNJq55YT6GwpG/BlRQ/3tyPOnew5phY1C3Ug/ewBAGFwoZroMrdxDs3fB+HVujw2OE7VWcCOvMS151CgVEFEesPJvdAiIIXZFTTuV/EUmMiOndGg3ebbL93wzbYQdIH10n2TeHExgePQsWzLlKViEskHoHS/DZRh4JaBF69c9KSWgRUIJIT9PX2WEoEoDX8/91YGZbQezI+XHl1wDgFmCsKRAH2AgGzAWNDwqkF5xi82hUHvv1XbZeoX7g8Ox7j5htejUajgbm5uWjd4cOHM7ctKUlTKhwFeeYznxkpHN++/SN40oP+EABAPAlFCECDZT66GRVRTQ5SRKq2ghNDaSQzw1RWwPiweNXe5l0xqEuxCoLHafY0ixIEhBWbLuIpM/+i1sLGCAryxZWNcNmRrGu8yDCuIS23/8xkqPA4kqPCXOjUy5zRbAoDc6z/LHOooIRCeEvoiYxRlYIF8hZYKyHgS0WHSk1bo3Yk+B/k6x3pQ0MYZMKErREPbhelJE2YLatoZVhPUKw3/YfAagWZ5RwK5TBfEHEo6Lx//RpNI1KUDc0/3uHmEurcxqLWzH1MS2rRfkKO2gs4aKx3bHvMmvMFQcVwb2s+SqgQdydsOAaq2uDJFbwc6XIB4Geb+7DfHH8MEScyUhwkCGg3C3UGDBmCIVGFZiqFotjI8WKkROKO1r5c+7xl5Tzc05iPhOQD9aQSf9M99+1Yn1ZK+sGoTFgIbI9jTrfbEzl9nuHj9lwiZXg3TOZBKgJOZNeJnrjiOzsxPKTDKkAEATJSvtMmheKxiRorNmHo9e9L8TmTcL6m22XQOh/7DuJKRpz/uP7KzPWWZSWUjauuugpnnXVW/wPtUCQo5ACOQoP8ZiewO896CBgbgX9/edVngm7CQtZgNy4/8l7tGCfp2f7dwDgElFDomjQNMR23zaZV3K2w6Q7nijgJl5tR0c83m2YoLrOEOaD73LTRRvwcjvpdQdz+7/henqxjzP+Qm0OHDqFSaSvMT3rSk/Bnf/ZnU2zR9BGKDPzZjZSi7yyRlVu7T02MQSaIqZf9Mu2W/Cb9bBTMWjla0pcjLD7WRyGobsM0uDuNvEpO2upR1AqyyPJbBdIUyXy15XUK/VP3FR8xm/bsVJweN1rBfjbNNMp3NRZ6fn+sMdfz+zjuNk+SMUlYhnvkWI4zppwRg84z3XTTTTj33HOj/1/4whfiS1/6EkiGp8VuoozhKMbOGh0nRNzKIaX/AlKpB494+QcvRad7G7LGWepOwVzdbVapQKB5P7Zj/Y2QaRcSK+pCVQQ2hajKuHLRS9Ho5041LStHic9mLM4lrQSOooBiOtaopE05kTM99I32srFa/Pffui5fGtu//uu/xqWXXhr9/4EPfAAf+MAHih+wZNdTKhwD8NWvfjVavmfte8kvR2UxzzFzUNTq22sCL2dq/wThWJ52h89KwpJYl+51M6LsxwPG+wWLh2T5L9cH8HsPZzzyHncQF6+0//gwblXxWhDjcs8K/eZNkpxJ7ladvMg++7EdXM6KuFUddeaHPl7anUp2mQjwnOxrd2rLj3JdjQUir9idtYei/U9gFjAMxC9CnvinXqTdquwcJuPjQTD2kcZiz+3ilo348koz+zpbXr6MWSwWB7fHLDb9nid+A+ivuGf1h/g7e1RuVWyQ1L55ioPHdkut7j/gXQy0cbcqbSN7mzTmSlJI0DeKCQ0vfOEL8Xu/93vR/7fccgte+MIXFtrHTkYpCjnAR5WVxkvy8tjHPjZa/sE9X+ix5WTopkiUE6+jIS3cdxOEisx0T0KYKlJZOJ5lKk4RX+a4JSBtFYgL8JMo2Bd3q0oHUo+D+L1PZzoDAGG315Egs42w2oJmw2orDxtOd0UiSzhdddvC5Em33vF9N1acGo5ZviKy4SaPuWbnz/qgMoJjAaDRKJY5Iq9gOk5Ct6pR15PQCha2PGXX+m9UUpgwe1ycPAoGi/1uHG5VrNX5DHVTPPJgnuq/TS/uvPNOEEJw/fXXR+vuuusuPOpRjxpuxzsMATLwZzdSKhxjpIhb1aTpFseRZmbiN3K4Ve00//lB2U5F/4pmf0pTpclIy4Uh4jfSbAcrR8nu5p5GfstVNyvHLNIv81XJ6HFdF5/+9Kexf/9+nHfeeYnvms0mzjjjjCm1bHaRatA4jmm3fDqUEtqA6HrbvUDI7ZnZA5ityqWFyTFJoMUy3Mx6/EY873tRwt9k1TDoRbK2xXbuDMAcnW5BuWnEcgyarapoMb9BslP1ot+scvgsTCNDVdHg8UFceWY5W9V2yVSVZSUedbaqQSChxW8Mt3gc2aruvfdePP3pT4eu6/iN3/gNnDhxIvruGc94BqSUiexUJSWDUiocA/KRj3wkWl5r3tV1u35Wjo6A8QEtbf3GyHHJkrPqiuh4w89O542nKOnNOCwFNdq/Gvow2apKZpP6jE8aAP1T425XFo3dXSE+ThG3ql4pcakzPdeatbU17Nu3D6effjo++9nPJr57+MMfjltvvRUf//jHd30mql4MEr8RfnYju/OsR8BDHvKQaPlk4/YptmR8MGeCdr88sQIjzFZlFPSpLpk+00xDKlIDRFZK3HFTJCYHAI47+VOjluwceqXELepW1a3wY9wKwmfAqjAsAwWKj4FetThGhVIKd970EezZswenTiWDPf7u7/4OjUYD3/zmN/GABzxg/I3Z5kiQgT+7ke3j7D1jnH/++dHynSdvwf33/zKIlAAhfvitagvQxBVQWsYsr1JAUGdDsXYHDGtvkLSjX6yPhtbkhFVZ+b9RBFGWKyoACBVVG0/I2TEhXzICIv1sUvG44biM51XQrqiq2rsIZTGhJ/cf7ocC8MLq4NRvNHX8yqpSD9bHZCniEn+fggFGbCBgEtKlgCJgNSdqR3ipOZMJdySdJwfCLU/HHLex4Zo4Ydc7An1Di0Y8SDweNB2a8BuOgXnDAiUKTU+DzgQ8SaPfbbgGVltVLFcbqHIXx1t1bDkGDtQ602vG3QLSFdEZkeBUwpM0+pvelhMZ7UMqEgkCm67pV1UmCkdae3CauYE1t4IK9R/5eIrbBR6eq4QbBOk0pR5VGo8Hkm94ZjQ7c8DYiHL4byqzI3uPVLTDurHAWtjLGhCg2BTJIGFGJAziQoJ2CPjx/WjEg600GKRTAUkfs0ZtbEkDDWGiziw0pZEI2AurrjeC1KpNqcMIKrRLRaNtq8zFPJLZeW7b2A831t/WguxLLVtHC4BnMxAKeE0euVkQSfznWAHEpZCMwQPAKhINywAhvluIyVx4iuKkU8c+PVmFuyWS7k1bQseKU/MHMkVwT2sRF837VtfbG3txV2sRUhEcDPJonnT8wPK7thYgFI36z5pVgRlUHLc8Dp0JOIJ1uPhxJiGCKuK64cKxNXBNQCkCt+X3HxmrMr7RNEGIwoH5TViehqarY86wcLxVB6cStsejLEyW0BLPZTgwn1bdgFAEDdcM7offf8Nq35ueiQXNvz+hMph2EfQUBQ3ONQxQp0ShxpxEMH7DM8CpgCcZ6qk+vSEqYETCkhpcxSAVwTFrHqcF1dzX3ErUhvvUfNeUu6w9WNK3OrKrUciorVsw4CmKU3YdjmTRe8cSPHruFw0LR7fmou/uaiyAQkEoGq2Lv08O1DdxdHOub8JDy9Ui19MVq4ol07cMciLhwL/3TVdH09Wx2CVDVVjIrJFKPrBum1G/VIqgzh00HAOLun9dT1pVzOs2PEmxZldQ1ZzoHbZhm1FcnispWHCO8XdylqIgQcCgov6rMwHORLSvcFxg1H93xvenAh97EbSXEQlGFTzR6cLFNAHpEaigQrgSpO1OlYGigL5O/HcAgrFVAvZe/3ut4Y+ZVADEA0AAcwWJKubcUuCWwtaB4Fw2ADemX/7wz/xUtz/3urfjB3/+Kjz41W/H997mr3vIK9+OEyu34o4vvD/Rrsc+9rH41Kc+haWlpa5tL8lm0CJ+u7XwX6lwDAghBI985CPxn//5nwCAT3zjajzzkW/2vwwUj8zfCeUrFzlsS5IHG8W2zd1PQymcJJWXvoUERXc3Keb4SkXX33aZJFIU0DYo3PnODajjKx3MolBcAZL4f/vgOQyUS1Da3tYTFFpMybA8Hg1I3fLFO32KXklFYAseBTGSYHCKC2e9Yi7uaixE2zVcPVIUdCoyfZA5kZDBPQoFDZXaLitzVCh4dSMUhIoQxgccbi1l+vyvuVUs674SJRWBqxgM6kKAQCMCi6yJKrWx4rUzJ/VzN5FdvteI8BWSVBpTViCLVlr5aXgmKFE47s5nKi9p7rEXYFAPa241d5Yx0SVFbMd2ksLUs9sQKj5+sGE+o/R/rJ7bEVPyrbWzo/7eLa3ylmNEg+EgsURxlAQci6NWt+EJimMbc1io+oJmmI61rndO6cb7cp0nv69rFuqaBS/jufUkS9wXqVi0r17Z1u5tzWPJyHa/W/VqMIJZl3i8DCMSJ5w65rl/PhteZ4atdc9/5kKl6bC1BJ4j/zglCo5gWHeyn9klsxmd53GvMyvZ3qrv6H90cy7aX1yBP7FVh8E9CEkhFAEjCq5gkdIRV3i6vaPi5yUVBSUSp+z+GdLCgoXHWnXMadnT+Zs9srTlQWcian81FgMUjgVCUn850Vf6P8+G5uVz1RV+HAcRJDEmEuEX3kuPk+ZxUrggX+2ojMb0r73rDzq+/8Gf+0pGqGwopXDXh/4HVlZWEtsdPXoUBw4cKHbwkpIBKV2qhuB3fud3ouW///u/H2wnOeWldGHBku1HOAgOUkNjkgwaiLybCK1hWiqo2R1B7BAwmbTJvaBTKMS4ExlE0d/ODBJw3isN9KQYOMPhNhiWpZSglCaUjS984QtQSpXKxpCUMRzF2J1nPSIe//jHR8u///u/P5U2FC3+t1vIyrc+TlrucFl80u5UgxBm9OkV7N7Kqso4ZpZ4o+f36dS2w2JN4RynxSCVtIexXIzzucpbMDPLujEqGqnYnHusxcL72MywdswSdWMCgQK7gLjb4CTg1mCD/f3vf//E/47j4ClPecoomrTrkSiSCjf22Q6a6hjYNgrH0572NJx99tkwTROnnXYanve85+Gee+6ZapsuuOCCaNnzcs7syNkITsuUU4JnIFOJydh+nMpO6OcKO3XgjJlfr4cAZbnDCZ/TqO2RZ5awzFPfpil9ZW9TTkfQS1s5slCsnBmI4/ZReooUnJwGp5z8BRZHyb5K97yo07aKhYwjrW7L7nyPz0qgdyEKNHkUOTKuuOIK/PSnPwUAmKYJIQQ0bfdMyIwbNWDAuCoVjtnm8Y9/PD72sY/hRz/6ET75yU/iZz/7GZ7xjGdMtU2EENzvfveL/ldqxgbJMbhhsdnPSpnJij36olfDWjX6MajVYxaUkXGmpHVVO/QsVDZKSrYb08h0VsS6sVqg2vwsMevK6qT4yle+gne84x3R/1tbW6DpNPwlJRNk2/S+V73qVXj0ox+Nc845B5dccgmuuuoq3HLLLXDd6aXKBIArr7wyWm66q4lsU3Hi9ThyVSDP2E3HBFaGRWIak1zpDLMslsgkK0aSdlFaSIGc5KM0Z+dxMQndlHpV8d4KfJFXW9nKTctrzyzF3Z7iioXJu88ODuN2NWxWjHQA61rw/ym3llhvd3FnCt2q9rKke1WY2WqcblUNUczyUTT9bBoypMDTy7Uonnkp7k7Vz0TfLzlCHtLuVCz4n+vtPquZyf5rVNrv56rpn5ee6uNGjz4P5EthrffZppubYZitCki6U6WVgdVYP1/1kn0+Tjd3qhWn+2/yuFfMZwTXhxyod2a/A4B9tcGrxDVGGFeRx/KyllJuNuz2ddy0gkxe9vCTC8NYrBMJCXqMP90yVRGv+3WIMjp2MZYWdae69dZb8au/+qvR/xsbG6WyMQYGqzJOZsYaOWm2ZQ9cWVnBhz/8YVxyySVTNw8+8YlPjJZPbt0xxZZsX6ZZ/KgX03Cn2s2kM0WxMVhqho3vWHOzlck8blW96JahahrMSsD4KGaqZ6HydBbdrBvDnvNyrXe8VJoiWd6ySMe8hEyiWnleoS2d5a8XIlXrKZ2ee1SMs6TQd7/7XVx44YXR/7fccgvm5sqaPOOgDBovxrY669e97nWo1WrYu3cvDh8+jM985jM9t7dtGxsbG4nPqDnvvPOi5TtOfWOwnfR55486Q1Wv+I3o33ibJhy/0UEYx7FLZwUmQTiwpjNUrbjdZ2Z3Ev1csxre9nDdciSH1cMKtxuo8e0ZFJ3XFTIuaO8voGD0c6fqF1fTjV5JKnYikw4WL8J1112XKEr88Y9/HI961KOm2KKdTWnhKMZUn5yrrroKhJCen9tuuy3a/jWveQ2+/e1v45/+6Z/AGMPzn//8nnET1157LRYWFqLPWWedNfJzIIRgcXERAGB5o1docrdjggrArMRxSK/dfXsFjs8yo8hOVZRpZKoC+merGjWTzlY1aErcQQSYrOxUebI39XMf7DbDPu6sb6POUFVU6eg2U5+XLMvXTkiJ63a53k2v/7MVt3IUsTJMm7T76ahSXQ9KL3eqr33Cr8HhOA4WFhbw0pe+NPruQx/60NTjXEtK4kx1KuzVr341Lr/88p7bxCt679u3D/v27cMFF1yABz7wgTjrrLNwyy234OKLL8787dVXX52IsdjY2BiL0vFHf/RHeM1rXgMAcIUFjc1AWsRtVreDeASKjldrWrGrmJvy7Oes1+DIw4pd3ZaBmfFYjmZZa2Ri6JoHr1fF0AliCQ0mm6772qwHi4+Souk/1y2/2vi42UnusjfeeGMiRT8A/PSnP8V97nOfKbVo9xBmnRrkd7uRqSocy8vLWF5eHui3Mkgva9vdX6SGYcAwxv9y/63f+q1I4Ti5+TOctvhzfX9DXN+3WBmje/FJTqLqox3fBcHs6QDzInJjPABcjxlznPnObetHFDbOaz9UigF8i4K6gDA7D8qbgNQJPK7AtiikrnJVHJeSgMZSjuoxX/qsh/pULHjTEryr4Jw1IG06RjRTFwa6tlwdlZwDpOPxzIrdaUzmwWQe1oKA1rkgYFQqklBYQheMpqdFQaVNT8O6Y+KM2nisbSt2+/qdcmpYNjoDVpd5dhBryCLbSvxlkDjuzWNvYAE54WV0qC78vHkI/886p+c29SAwPR3su8Bb2EwFlEtFYEv/tUiJQktokb9thTnwFEXDzX6n8LAOSsxiUVtowWrpkIJANf39kroLtamB77GgaQKtRuf+9un+tVnWN2FLjlWvPYNOiYSR4X4jFeniL9kbpQhcwXpWq5eKFE5Durg4fKaysJJ3UatchbmgREUWkfC8HMmiAPqGq/e0rJwIKmefVz0BALhjax/OqfnF03647hdMO7lVwyMPHinUtl6s2BVUuYujW3M4f2Gl4/ump3XERziC4ZyF1Wg52peVHW8kJE2835Rqz085guHEln/eNd2JEiB4gnZYucJr2ivm5z7zJ/GT9fYY36uPndysgQCoLrTvyfGVIPZAAZVae70rKXQmYHk8M9FGVE08gzD4vGZk3/vNZuqdIAgMwz+GvZ78jugCpBG8LwQBb7SrhkfjnATMk/45uyPMpqyUxOMf/3jceOON0brHPe5x+Jd/+ReQbTbhuF0Z1D1qt7pUbQtn32984xv4z//8TzzmMY/Bnj178LOf/QxveMMbcJ/73KerdWOSnHnmmdFyq/JDfOl7n8aTL3p9ciMpQVwFCAVoDFAKilPQUPFQFIoQEKUgAShKQKAAStoxHpJAUSQyYaX7raIk+Jvd1vhEo2Ikygsuma98SI6OmJJI0ehiWa7doyA1AiIAc0XArfkHrx9RYA7gVgk226EuYFYwUDntdlIBSB3gTf87CYC4sZNzGWRVgITb636jpKCgkaCXbOD+WgOWx+FJiv2Vrci3vc7tKMuSVAScSliCw/baj8OWo4MFFhfL49CogJA0UlBasfoeVux31pYv1FKqcPvKXlCiYGncV4QUiQZCCpVQjgA/0w4nEpbQQIlClbtRG6NtmIj+twSPhA9HMqzaFcxpvuLRcHVsugYoFBYMC5xqoFCwBEeVu7Bjfv5rrIpTTg179GaUockK/oYCzKZj4J6t+ag9Vc3BomHBlhz32Au4b/UELKlhjllYE1Us803UMjJPmbSV+F+DgE4E9vMNiMDDc4k1sEibWJO+wCQzPD9P52vR8hJr4FztFO5090KAJly3DrJ1rMkqjrh7scCaWOJbuMNexj5tE8edeQhQcCJgEBnFcRjUgy05pCLQiIStKCiRHTPT3XzeQ0FHq6Xu7x4LlCrYLQ1sj435uoWWrWFxaQsH6puwPY6a5uCsmi88LuttxW0Pb8INJJmNHoXlOJHwguvV9DRIEFiCw/I4rOB1L5QvcEpFMhVuoWjfgH3TcCPlOwy09QQDYxKs5iQyddV0BzXdF+40KlDlLqROoDMRHT9udciKZahQFwIELObPaUseZe3SiASnAvOaFZxD+5nhVCSUQMB/PuJ/qZe8DnHB/paV81Hl/nHv2Nrb0bavHTkPVdOJhHgpCWjw7qBEYW2tir17GmBU4eR6DafvXY9+S6FwolH33wlUYbnWiNyVGp7ut4H5z9y6bYJRiSp3seEamA+edUtwrFoV7DFbWA8mKRZ0/zpUNK9jQiR8zsJ+6gmKbp7JLVdDQxqo6Q4cj2HNqgCx7hdeF4N68Gj281DTnGiiRCqCKnex5eq4tzHvC2zSfy9yJuG6DPesLUB4FOuoQEkCQhWkoLBaOlyXgVLlZ0gLxrL05FDY9xyPRbFprsegcYEtS4eh+ff16IkFGBU3Gu66uX0Jh8FSBKKpARYFzFjGyRMGVDhJlppI4w3iT+jFVv/49a/KvtAFUErh3e9+N17+8pcn1n/lK1/BE57whKH3X5KfUuEoxrawK1arVfzDP/wDnvCEJ+D+978/XvSiF+Giiy7CTTfdNBELRh7m531h7Cc/+cnYjzUDZRYQTBoPv5+YTBpPlzurmauA3fuyKNle9EqxPAnSQv5uYWM127Jwcn13JGAoGQ9ra2t4zGMeA0ppQtlYWFiAZVmlslEy82yLEeHBD34wvvrVr+LUqVOwLAt33HEH3vOe9+CMM86YdtMi3vzmN0fLjjM6H9RudT06tqNIZpoao0l1FhSenUa/OgJFWXdmII4ohqMGC7xM1+04yNa7bNlJkW2HZRif3G51FIpS48XfO0WU50H93ksFfbpYOQK8uzFtpXUUZFnrevVl1+rj+GFl/5Y3xtPPNzc3cckll2DPnj342te+lvjuc5/7HNbW1mZm4nW3UWapKsa2UDi2Ay95yUui5euuuw5f+u7/mGJr+pBTGcmr7EwS1UPZCU3lceIDZtHc8Omc7NNkXC+oftl5tkOK1XO1UxM5Tj+lopLR/8bBotbqv9EASEWGLhA5zLGzoBOa3Rjk+Tq5VVosAHSNS+OxGii9ChfuNEZl/T9x4gQuvfRSzM/P4+abb47WV6tV/N//+3+hlMJTn/rU0RysZCBKhaMYpcIxIuIzDGnfym4Q0T8oOs82wyL7yJSz8Gx0xKR0uSxsTJmuuqWH3K2MI8sLw2yazvoVj5u1jCPVASwds0ieCuP9tuMzWvhvVgkLAeYpmLhT+lkv+lo7xsTnP/957N+/HzfddFO07rTTTsOxY8ewtbWFX//1X59Ku0qSKLQzVRX5bL8cj6OhVDhGyC/90i8N/Fvi5RO2ogm/eLapnHdRjfjdGZ/JoW67QdqW38h4vQ59bbTHHpa6NvoZtzAIkxZUekbtTlWUeOaubgyjcHVzp9KQTxhcZsUzbqXdqc7KYQWp0skIUEalWFrWBd7fopFXOM9LvMJyPKA4rmh2i9HIM3s36rTK47aENIcs/Liy3k5PdGy9e9XnMEMUAJxqjs6CMoxbVRjwX4S4ohfPBBYmwuiF8MYvllitYvdTNFPXL+ZWxbZG196VlRUsLS0lFIqFhQUcPnwY99xzD/bv3z+yY5UMT2nhKEapcIyQd7/73dHyzTffnHSryjEektjI3i29bf+dxJdH36nHMa53CxyfRYq+KPQh3GwGKQrYLXYjzMaTWJfhTtUt5WsvlvV2nIVBfYGiW+VuZ9Ra7xDkEeT7kWXdMPXxKZD14GEZ1K1qXAXYuhXezBM4nrfC9rDIPjMz8We7V4HEU63soPA4ayujdbdatdtFBFfs0RQUHNRKuemMLl4grnh26ytqzK6tTlqZmAJf+MIXQAjB3r17sbq6Gq3/zGc+g7W1tbHUDyspmTSlwjFCHvSgB0XLv/u7v9u5wQTco3KzjfN094rjyKJf4GMvJWKW4jhK+nOBdnwk+xmlxUA3XGjG9g++HYaiivqoLTaTYr1LhqpunGgMV5ihiPIxjJWjCNN2Y5vFquY8FdchpcTHPvYxHDhwAISQjliMX/qlX4LneXja0542wVaWFKW0cBSjVDhGzMLCAgDgu9/97kSON0CdrwTx+I34vtIB49N8PrqeY0x/ywoY3w5M251q3OTNTlUlnaatdIaqvPTLTlVPRXWadLDK07MWu9ENCtXTWjbI4Od6o49pmsVB2MtpBVjfLGZ16OVWNSirVnHLx25NXTwSumSrSqPFktB9+ctfBiEEjDE861nPwvHjyQmS5zznOWg2m/jXf/1XMFbGDc46pcJRjPJtM2Le//73R8v33HNP/2xV3SoujZhxebKMIiNHvG1dPHEKMa7A8aJwNrsBq/2yU+UVtCbJJNPcTpt40b9ujCtb1awxqUxVwGwqPaPE8jQ4AyqL6UrjmduUQfpdadz5YzzxiU/sWH//+98f//Vf/wWlFD784Q+jUhmNy1zJ+CkVjmLMnlSxzflv/+2/RcuvetXwVUWBHpmqJixXl/U3Rkte60a3l9OkXlp5U+OmLQWD1t6YRZx+qdwCJpUatxs7wWK2HdypRpESdxxWjlGQJ0PVjmIMr9H0RJy7tYnD/+evo/+f/OQnY319HUop3HbbbbjoootG34iSkhljdiI4dwgkFhvxsY99DP/n//yfyMrx5J/7I/8LIYAe5lIiFIhUUIRA8WB/kgCMRt9LzV9PYkJnpH+kAseZLaOYDV9uUtGGoRIhAvdeIgHJ+7+B41mpWCBn6hsemOXv0Fj3YC9wKErgVQioC5gnAGsZCOVS6gLUA+AFblMKUMz/UAGkk5UQiwFVATAJwvzjMyahcQGpSMKiwKiK6m5UuRMJYlJRLGpNuIphjls4Zbd9qO3Y4xAPcZGSgDMJqUhkkEqHwFCiQKFgcC9ytQndFZQiUIpAC9rXLxjcZK6/Dwl4oOBURhYHnbb34SmKZuCX7QgGRiQoCEgQiBkeZ1FvYc2pYI/exKpTxR59CyfstrCzR2/ihFXHCcu/Fg3XQMPVQYmCHSgbjEo4Hg/OXcFTFI5gWK75bk+bwgSDxKHWXnAqcFDfwBY3cLrWDoB0FMOmqOMMbQW32adDIwIH+RrWRA3304+CQoFCYI76o7VQFGuyCp14CevGQbaOGnGxKXUsMg/NIIPW/fQTkIrgDL4VbXvEm8M8tXDUW8BZ+go2hImDfB2b0oQttUhJ2q9vYN2roiHalh9KFJb1DUhF4CoGCYoN14ROPTQ9A6dVNxPKmKMxrAYBxYwqeIKCEAXH4WBMwrU49KoLp6lhbqEFTiUoVVhtVXHG3DqkIjC5B420+/FcILns09rXOc6i1sJJpw47pRBVuYOGa4BCwQmuT+jb7goGpUgiPinen9vrCWTQ7xiVUZCxkBScSbgeg+sx0KCfEaIiJZhRBY0LVDQ3EmDrmgOTeeBUQCoaPZOeotHzk54hp1GaVg80lnlDgkb1H1xJoYUZ4oJtBPxz9lLZ1TiVsDwOk3twBIvam86aJRWJnrlwm3u25jOtA61NE9x0o/gNekoHCLBxSgf2W1ArBpQClOYfw+Wx5CCGiJ5XQhUIU2jZ/jOtc4G75QI4lRCKQGcCVerAlQxV7sISHFXuRu8AoB28v+ka8ASFzgUsL9k3hKTR+YbHplD+O0f5qXGF8t8jYUC/BIEULMrEV+dO9BsKBVtyLGotNESniZpCYc0xUeUuPEWxFrh+uR6DFZwrDawnTktr++8qgHB/vXIphCBgdQEpCTyPw9SzXSFXtyqwGzr0mv+sEaJANQld9+C0NNgNHUyXoEzBbmmQFoO9poM6BGrZBgjgHa4BxB9KqQtQJ+jXqeSGt/6pP6l4wZvf3nneHsC3ACUFbn3/G6P1f//3f4/f/u3fzmx7yfYiHNsH+d1upFQ4xsBb3vIWXHXVVQCAZrOJajUjkFApwJNRZiqlMRA3GGwpBXIU3UtnlqSegmQE1FMA2kpJHrit4Bn+G5ZbCuG4QWMKCHUUFB3sQdE3AWcOIF5M4XCQaWMjwlc69HUKd74tZCgjh0k/w40pbglY1JqF294LSlQ0aBfFkwx6qmhWKAiEbQ4VjHB92tWJUzlSS0ceVyohaSR4bHi+AJzl3nOvs5j4XyMCJnFxt7vUsW1T6aCBIixBcUrUsMzabkWUqKhOh0m6z8AuMwGry+2wZDJots4s1JkFO7Z+r7YFN7DMpIX4OFVuo9nHLW0YjjrzmOdWpHAAfuYvRmSiXsmdrb2osLbgFVpiVuwKTOZhy9WhMQFXMNiCd01HGxb865W5KOH92aXLMSph6t5QMR5FXai0AbK5tY/V/dltuDqq3M3cptkyIGPxD94pE9TpvHbqlNF9Bn1Erp+uZBOxdoYK3nKlrdDXWDL2ypG8r5XNE7TDPcu1eOZ1khYDiV1Wp+Erc7ziotHynz+nqUGrtI/Z7X1sW+3nXDjMn+DyCEhc8T412DP94z/q7s3wnOc8Bz8Mlq+44opS2dhBhHU1BvndbqR0qRoDV155ZbR8zTXXTLEl42dQBaT7Dke7u93Iktnft3/Z6B8jMGucErNb2dkpC0OODTbimh3bFZZTsTJ71LpgREGf4diyncZ1112Hj3zkI9H/b3vb26bYmpJRU8ZwFKNUOMaAprVnUt7ylreM9VjELTYY827Tv/CtHFn4FpMZwct+UNOWjdAVYFI5/gfFyRkfEWKy8fi3L5u9M0K5PeoSTJo1mW8W8oiXz0feGDBLVS80PltCnV2wn/VimkkZ5HYeskTs3TWGa1jJUVQvTR7XjmZQw8frkxJxxS2WEniUuK3JO2uE7lTdeMMb3oCXvvSl0f/f/e53Qek27r8lJUNS9v4xEX/RSOkLvV/6wZu7bh+vNE7keIRk5mTvlzqdgx+bgQJ8igKki4KhxO6cIdhupN2qdiK9rBt24KPuObOjsPVjVCV6KlpbAI5Xm+5HvwJ9aWieqqozTCj0h3FpRZnT7P4bYXSWon5JJPImWNip3HvvvSCE4H/8j3aGyltuuQUPfvCDp9iqknEQxnAM8inCtddei0c+8pGYm5vD/v37cdlll+FHP/pR3999/OMfxwMe8ACYpokHP/jB+MIXvjDoqY6EUuEYE3HLxt/8zd8MvB9S0LowbmtE0QroA1dMnyHi/sbDCmPuBF1vloy2a9UBs9OFKo9blcH6+0aHnHCKZ9056i12359o729FjG72dJrZs+JVjbfs7BzQ7ojal1URetDq0qMmHqcxKSvkJNPrJhjBKzCuLPTKIlXT28pHpUtQdRZxn3KRIQxZ7uBFA+PFCdditUJsJ59ikrfQa2Erx6i9gZXCS1/6Upx++umJ9ffeey8e9ahHjfZgJTPBpFyqbrrpJrzsZS/DLbfcgi9/+ctwXRdPfOITsbW11fU3X//61/HsZz8bL3rRi/Dtb38bl112GS677DJ8//vfH/a0B2Y2Rp8dyJ49e6LluLWjAy//IEhETPCNDWK93KpoQZerIsTjN8LUvaLSXVhyY/Jo5MUyJRkgfOCrvD3zWiswC5uFUO2sVCF5ZjLyuFXpOVNV7skRvzFK7m0t9N8mZuU45s1nbnO8y/pByetO1Y28xQCzrBuDVKdvuN0L0FhdiuiccjtjWppjqCYdVzS7uVOFLo15ajVMinSGqpB0wGa3wPGsWAc95ipH+5xrV/2mhzsVHZO72rjiYDa7JE4YyMqRo4kq9mw5rWJ9XabTHubAWGkfzzjVXp92p3rHO94BSimuu+66aN3rXvc6KKVw8ODBwsct2R5MysLxpS99CZdffjl+7ud+Dg95yENw/fXX4/Dhw/jWt77V9TfveMc78OQnPxmvec1r8MAHPhDXXHMNfv7nfx7vete7hj3tgSkVjjHyK7/yK9NuQia94ji6MVNxHCm6Fdib9fiNfuzGIlorot5/o5IELTF6JWPaFHWrKtkdDOp2lhfWKiYIfuhDHwIhBFdccUVi/dGjR8cev1my/dnY2Eh8bDufe+T6up8mfmmpM+NjyM0339whgz7pSU/CzTffPHiDh6TwNMQdd9yBf/u3f8OhQ4fQbDaxvLyMhz3sYbj44othmmb/Hewi3v3ud+OCCy4AAHzlK1+ZqgJSJH6j/Zuwbsd0IR6B4p3tVIIAGZOY3RSN7VBQbNIsG5vwUi48JvdgCQ6TebmL/s0Sw1g3TOrOVID8JFGKgMZqacwCs5ChKl4HZxaoFgwOn9Y1zJMiNw9EEqgMRUOJznvitvxaN+Pm85//PH7913+9Y/1Xv/pVPP7xjx/78UtmAzVgxqnQwnHWWWcl1r/xjW/Em970pp6/lVLiiiuuwC/+4i/iQQ96UNftjh49igMHDiTWHThwAEePHi3c3lGRW5r48Ic/jHe84x345je/iQMHDuD0009HpVLBysoKfvazn8E0TTz3uc/F6173OpxzzjnjbPO24X73u1+0/Du/8zs4fPhwz+2JJ6H4YAMbcRVUgbobw7AT4jLGhRhwZtYRvKMmR0ivWgHdyJMad1DUALf/XmcRZ8d9EgbklKihRvPNAo2bKrex4Y6vFkcvstypNtxKxpadxAu/FWHQ7FRFAsZ3PNss2UU6u1m/TFWzRDxealQ0D9+Ow3/7LqRVjU9/+tN4+tOfPvLjlcw2CoONh+FPjhw5gvn5tjuxYfQfT172spfh+9//Pv793/+9+IGnTC6F42EPexh0Xcfll1+OT37ykx1amW3buPnmm/HRj34Uj3jEI/Dud78bz3zmM8fS4O3G+eefj9tvvx1Hjhxpr2Ssby8lnoTSWLCsoPTZGqj61d9w68VnxuMT7bM8ro0qi0/J7DGqgO3tDiGDDaSjpIhbFYWcyZS5RGTPzqfZbpWHfQvoaCwJMsNSMQ4GLdAKAPaxo/jJO/9nx/oPfvCDuPzyy4doVcl2RoKADFH4b35+PqFw9OPlL385Pve5z+Ff//VfceaZZ/bc9uDBgzh27Fhi3bFjx6YaU5RLKnzLW96CJz3pSV2/NwwDl156KS699FK8+c1vxp133jmq9m17PvCBD+DSSy8FANx2223RekUpiEZAHA9wBZTeeSuIUlCBdEukAgjxFRFGAA9QnCSsDQokCiZXJBkwTm0ZHDeoYG0D0qAIx7nwAeCtZIXysKhz2rVKxmJcXUoAEDDHj/UIA8eFQeBWKRQD0inapQYIvR08npDzYuOCNGPuURluVUC+mVdPMjCiYKDTilDlDihRQQCwA50JMCqj2T0Wc6dQisDkLixPAyEKdd0GJQoNx4gGtHD2eLmyhWPNul8lm8goCDVeSyMetD7Prahyd+iKEAaU69SLTLcm82AyF4t6E1JRUCKx5iQv8LKxCUoU9geZqFxFUecO5jULadaCmfGzq6sQIGgJDU7gVjSv2wBsrNl+uzZtEzoXUIpg1a5gQbdwZGsPTvC5qFJ4lTu4S+7Bkr6ViC/4UfMg6syOBMkq9c/9XPME7nSWcRC+X+rPnP3QiAedCAhQNKWBJdauE7Imq9iUJigUlpiNNem3f4k1caeX7da5JqpwFQMlCk2pw1UMttRQZxZW3Rrq3MKGqGAP30oEjNuSw1UMJ+065oJr167mXYXlJR+MpqPBExQuACFoFKiqBAUkQLiE8ig21ytY3reJta0KLMrBqAGNCViegCM59un++a6LCgzqYlOYYETCklrCuhEGRm84ZtSvwsDx8JlupQLJKVFB3FP7oZOxYFyTt/tn02n/tmb49yvMrsWYhIgJi/MVC4z6Lllcbz+3lChYgmO+R/pWChW4c9Gu0dahQtFLsSiidHAqIRXpcJdSisAIrkGewHHFAWkSSFOCbnDIugDdal9bNe8BNo0mUaje/n1c0ZirW3A9hprhQCk/y5SQNCrkN6/bsARHlbvRPV7UW5AgcCQLntV25hxP0qgPpDOWUcEgpF8lmUJF2fOUarepZWuoGG6U2Sy8To7Hsdny33eEAHtqTXAicUZ9veNaOZLj+OZc9O4SgkJKEqWJZpqEcBhocE2VQ0EEAUwJNJnfehUklHIpYPrbeUHVcPtY8r3HWhTSMaEpwD3TBl3VoJYcSDd8DgnufP5VAIBz//bPE1XGb3+VX7D3/Hf8r2h5bW0New+eBmkn35tve9vbEgV+S0rGiVIKr3jFK/CpT30KN954I84777y+v7n44ovxz//8z4n4oi9/+cu4+OKLx9jS3uRSOHopG2n27t2LvXv3DtygncbjHve4aPl3f/d3YbLHAFKCENJ1qlyFxYGEAnhyG8XyadNEqChzVFHiv1PB8annKwm9aC1RmGu+sBBXUJwgDpjI3vU9pOZbNkRF9cxYQrmMggc1LSkQZKWM9CSLsufYKc2JEjmxvPHzWn8XnHluBUKu3wfqmgVGFOxgRjEMJE9n4FnUm2BERUJ/uA3L4UO9qPnuV3H3iSWjCU9RWKmAZJ17kUDSLyh/xamhkqOgy+32flCi8BPnIHTiJc4h2peoQyMeNCLAYsc94s2BBduvBUK5Rjwc9RYSv82Lq1jkFrfi1rCkJdMOrjrVrq5vRVnbqqBeseHlnOHdFL4yle7DcRzJovtiMC93wT+tSxXrpWoTVkphCRUPAKhoDlqujormQCgKxxvuWeqV8rUXWYqGQb3Ma6VTEQnj3VzLPEnBqYy+l4pgf7WB1SCta7Vio5WR1ljUBIgCFFe+u0WfyRAWKB+Gkc9aECqV83pSAN5nbg31HhtF7M73TxxENZaKd7VRhVQEhua32bY5OE/2MxEo5NJLvs/IBk9ahkLFwKGJa9qrxXRFB4gCP2JC1Pzj3vH7r46+v/MFr8v83e2vvBJKKTzvec/Dhz/84cR3r3vd63Dttdf643fJrmeQjFPh74rwspe9DDfccAM+85nPYG5uLorDWFhYQKXiv5Oe//zn44wzzsC1114LAHjlK1+Jxz3ucXjb296Gpz71qfjoRz+Kb37zm3jf+95XuL2jYuA31PHjx3H8+PGoqF3IRRddNHSjdio33XQTlLoRT77o9dE6xcjAikEW8QnCUe+7H8NmspI81nYOkCnFeOdJLVrT7agCLwAsGi2sO7sjaUJo4Zk0GpmdrF0r9niqKoeC5EmnHlk5RkER5WPUbDhGpqWgZDxkKQ8V7nZYusbJamN6Vce7cXtM2ejFhz70ITzvec9LrHviE5+Iz3/+8+B8+yXRKBkfUhGQARSOosr9e97zHgCIvGVC4i59hw8fTlSyv+SSS3DDDTfg9a9/Pf7wD/8Q97vf/fDpT3+6Z6D5uCn89HzrW9/CC17wAtx6661QgZMvIQRKKRBCIEQ5sKT54Ac/iBe+8IUAgJMnT3bdTmnJ2I4iAeR5LR+jQPLtNbszKl/jQThQbeBEqzPAN80873R1GgWuotBSlghb8Kign1CkaxabtHVjELrNMscxqQunS62JknzUNbtr3Yk03dJIF2FaSue46TbzaHJvJNm7aMUbSSHAadGyNcxVZiNpQxrWGi4W5NZbb8WFF17Ysf7YsWPYv3//UPsu2Zn4LoiD/a7Y9v1/cOONN3ase+YznzlT8dSFn9Df+Z3fwQUXXICvf/3ruP3223HHHXck/pZ08oIXvCBafu1rXzvx42fJk6GrVK84urgSM7X0uKkxnhpts4eu9zaBpAt8FcUYketMST5q1B7IiiFGUDL4VFCVct3Ll+lpGIg2XH2YXsrpJGrPmAXTsg4KpyKz6vXMMqTAm4e8BUCzqIzpvq1uJa0ZI7Vu9BifyAAFNrPY2trCueee26Fs3HjjjVBKlcpGScmIKPyGvP322/E//+f/xKMe9Sice+65OOeccxKfkk7i/p4f/OAHp9iSku1G0Rz6wypZO52m7F7Re9qwAZUFus0LXOaFQib+5qFb7R3eJWYlD8OmhqVdkl8AgMZ3r4eAcvpf134xMYWOpxSuvPJK1Ot1HDp0KFp/zTXXQCmViL8sKcliUpXGdwqF35xPeMIT8F//9V/jaMuO5g1veEO0LOVgM+dxi4OKuTWl3ani4+GkXK3i8Ruh/ONW+3evfoHok8TpUvCNxYSTXrO7C4H//V6zmVi/XNnK2hwLuh+sPS53qn50mz2uxFzQ4jPmcT/88Dqkg27DrFtxQS++XI+dq9YjSEdPWTp6bZvFHB3ummbVuShCekChIxIkWQFhux9p1yo9lp0qvtzPolEZss7GrCjJRYUAU+9+XRLZ9QDAKHbfKj323Y10kb1Blar0dbCdpHl7s1Ws9kz8966besdm6A8kh+KRpqg71cbGBiilePvb3x6t+4Vf+AXYto3Xv/71PX5ZUtKmVDiKUdhR5v3vfz9e8IIX4Pvf/z4e9KAHQdOSEuPTnva0kTVuJ/GHf/iHuOaaawAAd5y8Bfc58EtTbtFgjCJ+Q2rtdLi92K1u/Qb14IreM/F8CNeKkjYNsT0D/eMplCdJXPkYVtGYdYpWF1f6eIIzRlnpPB48zqhKpEMeBbMYLJ5GKYWFhYXEukOHDuHss8+eUotKtiuTChrfKRQW6W6++WZ87Wtfwxe/+MWO78qg8e6YZls4+OmxmxIKh2IkKvKnuJ+vPx4wrkYg5BOFqOZGen+ZMR6zEL8RQgCofPEb6Yrd8dnTrHSr/Zhmdp84nIrMoODd4k6z3fA8BkIUKJdRLY5pwIiEDIrcGMzbNoHeeRVqoQhAZq/gXz8oV5Ce/27KmxK3G5xIOCMoWEmJ2l4xMwMSz+TzuMc9Dl/96lcT60pKdis///M/X2h7Qgg++9nP4owzzsi1fWFJ6hWveAV++7d/G294wxtw4MCBoj/f1Tz3uc+N8nqHWb2GZZLZqUpGzyTcqdyYj12oPGUJFpwKiDFpl3myVY2aOWphU47OCrDqjGf2NqwRU5R5bqHpFXNvycpQxZmA18WdcNR4ioKj2KRUr0xqo2ISLg60MhtJKCrcxeYA97tlD66s2vb4nv0i7lSvfOUro+UHPOABmZl9SkryMqksVZPiO9/5Dl796lejXu9fu0ophbe85S2w7fxZ6wq/BU6dOoVXvepVpbIxAG9729sihePetR/g9KUHT7lFoyErfmNQRGVGn8SAsDLvMNQ1G40+BQB3OmGV8ZAanc1Um1mMqwbHrFMkO1U8BmRXwCQwBqVtUhnBtgOJQoA5YE0CUfN/wzcovva1r+Ev//Ivo+9/+MMfjrR9JbsPX+EYpPDfGBozIl7zmtfkzsz2tre9rdC+C9sRf/M3fxP/8i//UvRnJUBCSfv+Xf83e6MuAjt1C0rytPMh6DVJyC0JbklUTrowT3nBMRWYo6A1/U+3+A3mtj/UU6Cevz1zg4/tx22k436p247lCD0CqNPl4c35TGtUdARleYp2zSwjFR1YgahqDub1pKB83txKtHyf2onE32Vzs+8+Deb1TMdrUA8G9VBnThSM3S0TT153q9DqEXfZangGKNoFxEzmVwBfSFU4tgQHTVU470XeYO5qhgLCiBw4k1NIQ5hR3MaqW8Wh1lL03d2ttl/3va2Fjt+u2FWs2BW0XC36xNmwe1tTKgvJc1+otrBg+p95I/ldWOHcCrIq2JKDQWLVSyo7JnOhUwGdCnAqUOVuIri/GhNYGZVjSY3KqQSnEiKIMxjlYLri1LDi1HDKqeKEk5x1a3g6WkLDhmvCFjy366Mjmf8RrGuiiH7Ug2rr9VhNivn9DWjzNviCDW2+vwLdK1sVhcqsur4RTFR4kvmfPhmzsvrpSquYwhzPnNXNGnfP6gJalg4haOKThdPUID0afbKgNgG1up9b0ZS47voqHvOYx0T/r62tldXCS4ZmpwWN33HHHVheXs69/Q9/+MNC2WkLWzguuOACXH311fj3f/93PPjBD+4IGv/93//9orvcVVx88cW4+eaboZTAl77zp9H6Jz38jSBCQentW0KUgqIERAJSoyBCgbgyEr6JJwEzdgtdXymgnoI0/O1VSvFgrgQCmUNo3eNEeEslYjd4S4I5Cs6c/xtmKzh1f5m6ClIL6noIlenmxYLxNyxMz7cAEUzycwtwdEDfAJwFQNsgcOf8wZg2KWTdH/BkbAALs50Q4gs4NSM5Yy5BOgKzQpeeUBCXwWCdta0bE745keBMggQam8m9RPamxUAID7PELBsNnFlZgwTFebVTkKB40OJRCBBcMHcClEjs0xugRHV1FVnUWpCKgBIFTzIIEMgMxaLO/PPWmBO5ToWF/tyUMNLwdFSYGwkrWTjBNTKZiw3HhMk6C56FlYw1JiKB1pEsUSOAEokKcxJ1NfabGwCABdZElTrQiNdh2dCIgAzmQUzq+ilQY4dPZ2kSwTkKAIwQSEVxStSwJdsWJEdxrHq1hAK2HhPcjznz0f0+bs/hHrkIADhh1XHCqsPpUVAvHROhcQFKFXRNQEoCIWkkgCtFUKn757tQtRLZzwBg0bCgx2pPtIQGg3poCgNNqaNKHdSZjVaXhALxjGFV7kIqv1/PBUpxKFxrVETbhsptuE7T2/crvjxndCqKrmDQUi5ajEoIyeB47ZeHYgRCUaxbFVQ0B5zqaLo65g0LFCrKphS2qelpWDL8TG86FVhzKqBEYVFv4meNfeBEYo/ezFSoQ6XDVTR63h3Jo/4eVzDCeK+GbXQI0lrg9mV5HDoT0bU0uAcmKSxPg8E9CEVRn7PgZQjX2sEmKqYDQvxMTZSqjrS3Fc2FkBSMSjAqO5R3TqX/rqGdgabh+XuKwpHcf08RiTXHjK5lWOQzXmU8PKbfN0liJopRFRUZ40zCcXl0bqGQFL57tbCPCxq9G9N4DgMUoAIFIUvQIuvcjzGkABEkMelGgzgXJQAqKECAyj0Ezh7gJ1e9KvOYae6++26ceeaZ0f9f/epXO4LGS0pKULi0xVlnnVVo+4GyVNXrddx000246aabEt8RQkqFow/vfe97cdFFFwEAvv71r+OSSy6ZcovGh7EuYS9sz2A8CjUz6TonzZand6S7DRm2BkEWbJcEqw6CqxgM5HdPokTNRCXrScRd7AY8SQeO8SkBPvCBD+BFL3pR9P8f//Ef4/GPf/wUW1Syk1AY7HW7Hd6MX/rSl1Cv1yPL4F/91V/huuuuw4UXXoi/+qu/wp49ewrvs7D0cMcdd3T9lJXG+/PgB7fjNl784hdPsSUlu5VppNTNcg/pRpHCbt2YdExINwVtnDT6pE4eJe6I4hNa7ujavDmFtMDD0Ktux06H5C3YNyLdanV1FYSQhLJx1VVX4U1vetNoDlBSgp3nUhXnNa95DTY2fK+E733ve3j1q1+NX/u1X8Mdd9yBK6+8cqB9bs/p521OGMtx6623jnS/1Cv2ttYayQGQt2LuFJtebH2s+NtmbLkxmZk32ugv7GzZbUEmbpnYSfmutZQLSfr/7cYsBop7gX9/+3+auZyHak4BszojgcGTelaaPZSORvBd0cD8YTOgZblEFSFtheiWtjtORUvG10yKdExHFnSAit6D/KYXZMB5kc985jNYWlpKrPvGN76Ba6+9tozbKBktaojPjHPHHXfgwgsvBAB88pOfxK//+q/jz/7sz/BXf/VXmWUx8pDrLfuWt7wFrVYr1w6/8Y1v4POf//xAjcmDbdt46EMfCkIIvvOd74ztOOPkAx/4QLR85513dnxP5HgGH2YJ8M3tU6yL2anBoTWZ1J0hRYPJJ+WCNQpFoywcmKRXnEY/pmHd2ElsOLs7Y9swNL3xWbmMKWUaG+b1dv311+Oyyy6L/n/xi18MKSV+4Rd+YfiGlZTsInRdR7Ppx9J95StfwROf+EQAwNLSUmT5KEouheOHP/whzj77bPx//9//hy9+8Ys4ceJE9J3nefjud7+Ld7/73bjkkkvwrGc9C3NzcwM1Jg+vfe1rcfrpp49t/5Pg137t16Lll7/85QD8YOt+kFimKtLFmhFPUQsARE5GGKJuLDVu7FyM9c528q3Y8gjKUHjeeBWRonEL3bJGFWUWBFmrYNHDLAGoiDvVsIiY0jeLFpRBaIhOgXyS7lQhcbeqUblYbfVxsVpzKiM5zrSp5Cjul37ew6xf/d4/lshfHyNu3RhV9XJWIMakI7jcbvejYedR3vrWt+KFL3xh9P+//du/4brrriutGiXjY1B3qm3gefGYxzwGV155Ja655hr8x3/8B5761KcCAH784x8nkjAUIdcb5+/+7u/wla98Ba7r4jnPeQ4OHjwIXdcxNzcHwzDwsIc9DB/4wAfw/Oc/H7fddhse+9jHDtSYfnzxi1/EP/3TP+Gtb33rWPY/DUZlDSrqTjUVpi8/94SPya0hHpMw7srgvawfvRShotXUw+2bPSpXyyEDzOPXbdh0uCHuEJaMLLophWZsdjidQc3M4W7TjSzloxvptg2iwIocQmm3vjNsIoBh652kBfF4X81SdLq5VaVT54bvCZ0PrkjH3alGSb9zHIR0Zi1Nm6x1lLjtfmSczO5Tf/AHf4DXvOY10f+33XZbIg1uSck4CAv/DfKZdd71rneBc45PfOITeM973hNVE//iF7+IJz/5yQPtM7eU8ZCHPATXXXcd3vve9+K73/0uDh06hFarhX379uGhD30o9u3bN1AD8nLs2DG85CUvwac//WlUq/kGItu2E1UQBzUDjYN3vvOdeMUrXgGgf7uIkFB0POE2WsOFW9cS8Rtx4vEbIfqmhND9F/8k4zhkrf9Alzd+I68wvJOzVXEqOtLjbvVw0dhy9bG5WYwiU5VQtEMxqVEbm3JnzJLnJUxbPAxhSubtSEtq4IMGAOxg8sRubEee9axn4WMf+1j0/9GjR8vCxCUTYdAA8FkOGv/qV7+Kxz3ucTj77LPxuc99ruP7t7/97QPvu7AUSynFQx/6UDz96U/Hb/3Wb+FXfuVXxq5sKKVw+eWX43d/93fxiEc8Ivfvrr32WiwsLESfojmDx8nv/d7vRcuvf/3ru243Dpeo7RTH0UEsjkOmZiTjgeNxQjeffn76+hhcf0aRcSkvow4i19nw12MU7lSjsm5MglFcs35Mw50qZFSuVFk0RpjBqlutkp1CL8viOJh2al7WouCNpJCmlMKjHvWohLKxublZKhslJUPw4he/GMvLy3jOc56Dj33sY9jc7F+wOC9TzVJ11VVXgRDS83Pbbbfhne98JzY3N3H11VcX2v/VV1+N9fX16HPkyJExnUlxGGsP3O985zuzN8oR1wHkc6di1vaa8esIGB8D43ZvmhVGFVMS0pqwsFMyOcaRqSqPW9agjDo17rDZqoD+GarG5U7Vi0GtG2l3qlnBXV0BpRT/8R//Ea2zbRv1er3Hr0pKRkwYjzHIZ0a5/fbbceONN+LCCy/EW9/6Vuzfvx+/+qu/ine+8504fPjwUPseLpfgkLz61a/G5Zdf3nOb888/H1/96ldx8803wzCS/suPeMQj8NznPhd/+7d/m/lbwzA6fjNLvOpVr4rMU1JJUJJvsMuq5A0AQqeFAu9Yyx8YqSPgzRWbEWR2WxkSRkb12JiyxC3AyTneaZsACCALTlDmjQusMCdKoblXb+KUU/VL3PaAZ1zUUDDzJIUMDh4Ja1p2RjdWMIgl7WYUVg6PpwA1qJc54x1WIO9H6FZ13J5D09OiANWw0nPIml2BRgVWW747o849rFsVLJj5steNmqIZxPKyR9+Cp/zJgBNWHYuGf34rdhVLwXLcxe7oVv4EGXXTRkV30bDb76RRp8RteppfFRsEelA9PI8SwakcWRBxP1quBkIU5o3wfx0tV8+sZt6NI83F6Ll0mP88HDS7u6bevu6nSQ2Vn3mzfayNVqfScmAhOatnCQ6dCthBBfVwP90qbAOAGQSKU9Kups4yLGCMyo6K32EfS9uTHMGAjHdpaB1qxDJ+uYJ1TbfbsIyuykQ6va0Ve3nbLp9oCt80zSN34PDfdk7Qua4LzqcqzpTsQgaNx5j1GI6LLroIF110EV7/+tfjnnvuwWc/+1l89rOfxWtf+1rc//73x9Oe9jQ87WlPK+RxBABEqVk/deDw4cOJOId77rkHT3rSk/CJT3wCj3rUo3JHzG9sbGBhYQHr6+uYn58fV3Nz02g0ooxeb3/723HFFVckvn/CL18LKMBZ4AAh0DZ8BcGd5yBSgTf8ASNUQNJys6KBoEEAZgUDnuWBbfnCqNJY9HvF2j+Wmr8sjeRwJ2OKjjDb24duX8xuP32KEijub99cZpCcQOqA0ADqwbetyWAZgDAAyQGvDlAXCCcuhenvT9QklNbuqrTSnkWs1v04nfmKhSWzGWVWOru+iqZnYK/RQCsWQGpQD3u1LdhKwx6+haP2AmzJsag1cai5F45koERhxfJ9/5UiMLgH2+MwuAdKVBTbEQp1QFsxqWsWHMmxT29ACwbnDdeEQb1IadCIhAABg8pMUWtLDqkIDOpF8SYtqUVBzwb1sCV0VJgbKSUN10Rd6xTaWNBewLfqpIXQVafm36eYwuEIBltwcCKjY4ZCVvy3puaCQkFjAibz74nJPJjMF7aW9HZKsjqzscB9ob0aZJBa4lvQiP87S2rQiYBJ20I4hUy4VDHIhLLBiASDgklcOIrBpB42pYGj3mK0zQlvDjVqY8Wrww2UCUtqWPr/2TvvOCnq+/+/PtO2XIc7ehPFFhUVCxCVYsVKEksiBnv7fW1gxURRMUJULGli7EaNaEgECxgLWBB7j10BASnHwd3e1imfz++P2Z2d2Xbbd+/u83w85rEzn5n5zGfqft6fd5MC2Kg2QGOiJcRRRtCi+LEx0gCNimhx+WEwgk3hejQrAWwK16Ovy4/WSJ11zew4BNHofMxeV6NmB9CggtVR9UgaJIFa5nySQBHWJUgChSSY5xq7lkFDgSLo8Gsuh+mWX1Osa08ZAWUEQV2GW9Ith+fYPRcIs55XykhKQcO+3j4fo16JwKe6UK9EIIChXXWjXokgrEvoUM0XtyPogRB99hMHAwTCrPMXbe2Jlcm2c4vd61gn1955lwgFZcQS2tpVN3QqoFZWoVLROq+tgRpougiPS4NBBQRDCiTJQCjgguzWk4QGLSyhvsF8ThujArVL0kEZgWaICNvueWfYZbXfoPET1XURbpcGVZMgitQKHBDRxZT5WezXhDESP1/Ey2PHUUQDAljK6FV2gUPVxfi7m0FzE7u3NNp++/UgBNCiUQBVnwtKfQSGFq2zU4ZQGz8XIjBQPcVxtimgHgrJJ+L7PBOGRSIRNDc3w+/3O8ovu+yygmzKOdVLtfXX7MTaNvy+6yB4c9ey0mAYa8+dU5XnlolAIIClS5diyZIleOGFFzBz5kxce+21We/fLYYEhg0b5liOqU133HHHvMNzVQN29e+MGTOSBA5O9ZPoXNvT8lsUO6pTNoSp7BA6qpl6OQKfVr1a1Gokk1YgF+xCkL+E+Sg4leXzzz/Hnnvu6Si76KKLcMcdd0CWuXknh1MuampqcOKJJ+LEE0+EYRjYtm1bTvt3C4GjJ3PCCSdg8eLFlW5Gr6TJnhAkC0plSqBTsVsJKsWIgpQtFALEPBzvB0jtDi1HT0M1xJI4qCuCkXPemVJTzPcuGMosmGjh3P8SVV3MKkRupMT5gjJBCCtpZBwjKEGqLf4gwTvvvIOxY8daywcffDCWL1/u8IHkcCpFT4xSZee9997D8uXLsWXLFlBbQmpCCObPn4+Wlpac6sv56xoIBDBv3jy88sorSY0ATIeTUjNixAh0A0uwrPjzn/9sCRyLFy/GCSecULZjM0JA0lxHu4lVpTFqMuSW8Jh/cvWeuCmRW9QtsyqvlF3yt0Y5mFTWxx2yzKqyJWzIlglMsYhQqeiO36nwa4ojf0Qx2KrWolnxd7ldmOY2UikSCqPCHeN6OYSg7tRuKIJRUNbyYhLWpaxC2+biv1ErV3+EO7+mlCVaWDBbx7QykZgvpKh1d5Zfg/Tpp586hI1///vf+MUvflH2dnA4GekZXdEkbrnlFvz+97/HLrvsgv79+zsSaOabTDNngeOcc87Ba6+9ht/+9rcYOHAgz+JZIPZQvWeddRba2toq2JrsYHJl7jmRKFgqG+EcaJRDDn+OnkAhOSzaIrVQqWj5AIR1KSuho5xajkyIYGUNPZyKRLOqSuavKEZo2WoSmqoBnQmI3d1wlUVoyyVfSldaDjUiQ8kiI3ommCqCKIULe5999hlGjx5tLb/22mslSyjM4eRLT9Zw3H333XjwwQe7DOyUCzkLHEuXLsXzzz+Pn//850VrRG9nzz33xGeffZbSHk5tSH+L9FrRchy3Y7gFy0ncjhgu/Sh5IlptCgGhepQnWWFPdpfNn7tqiyLl1xXUSuaosGYbkTcSkgnGzKrSmVeFstQA+DQP6tNEySoFhUaL2qbXoL/cUZLjxcyqaoT0Wq6BSgd+jPRJLnd14MdQcnmxCeky6pTMWrh0WjO7WVXYkCyhMRWphEMpC1Mlu7bQTr2tzfUZ2k+pALHCORxihCK2aEvReS0kQfGa1zYfc6pMhCNyUsQnAFbwiXwotuZG08Uu708xtBtCKPuP/tKlS3H00Udbyy+++CIXNjjVCUN+Go5uoBURBKHo/fycu35NTU3o06f0f8S9ifvvv9+a/+ijjzJuq9Wn/lPUvalvJVUqIEnnqPVKFUqf8QFWAM4QuIWyXfUWra5U2EfF/TZTo61qPDjCRrUh+/qiD0ExTady9dspFl35RZQ7kVs+ZGtOpedg2lOtlrGBYO6BADStsHc1MV9JKTSI2TrshzP4uhi+0jyrjDEce+yxDmHjueeewxFHHFGS43E4nPTMmDEDf/3rX4taZ85fyDlz5uD666/HI488Aq+3tB2Y3sIBBxxgzZ933nl47733ynp8Jjj/6LqL/0YmMo325kIfdyhrM5VYON3uQlukZyXJcqfwcxkgteMHtV+X+w52tWNDpDHvY/NoVaUlkwlfpghVvnBxEwOWAt0QsnI67y7kY1b14IMP4uyzz3aUvfXWWxg3blwxm8bhFBkSnfLZr7q54oorcMwxx2DHHXfE7rvvnhQR7t///nfOdWYlcOyzzz4OX43vvvsO/fv3x4gRI5Ia8eGHH+bcCI4ZbiwQCOD9998v63FZjtqISvlvxLD7caRyGE+HR9TK4nhdCDq3m7cIU7lkmeC9gprWSX2Ay5dRozLA7XOYxlWaYjoKx3KBVINvToxiRaiSJcPKJ5GKQs2p1C4iUCVGqEo0q8qUpK/aMYL5XbuNGzdi/vz5mD9/vqOcEIJgMAi3u/qFRU4vpwebVF1yySVYvnw5Jk2ahL59+xbFXzurL8XUqVMLPhAnMw899BBOPvlkAGZiw0GDBmW9bzpzKjuV8N/gVAfbVS/6KpUxJYqxVa1FrSe1rX+uEaqqlXo50i1Mo/KhO0Sn4mRHqUPkAum1HIZh4Nxzz8VDDz2Ucr+XX34Zhx56aEnbxuEUjR4scDzyyCNYtGgRjjnmmKLVmZXAMXv27KIdkJOaE0880ZqfMWMGFi5cmNV+eq1z5MyeAbzSpHQYzwKjgpYp/VydWB9qzGmfUuVEKIR21YtGJTnUb4xEcyq7Y3C24VQrbT4mZqkBGalsycqsKhfK6ZhfCRTBsJ6JfM0TaZahdrsj1RYStztANQ2SlLrL8cQTT+A3v/lNmVvE4XDS0adPH+y4445FrTNnXejIkSPx3nvvoW/fvo7y9vZ27LvvvmXJw9ETsaurnnrqKSxcuBCGIiDWp2PE6TBuH6BiQvJoleEWwAQCQhmozQwq0uyCWGv+WVLJLFe2qwj1j6uvY+WuDmdHw25OFWyJCzpqPeBpY7BbLFEJkMJm45lIwESAGIAYXQeYVox6NM2FFu3/UtncjonmJGgE1O3sWBKJQpTNDr7XrTrME2Ijse4UJlReQUWEyaiVVGudwQS0KJ3wG9mFNbXMTUh82S5sKIIBNdpR+ynUiL4uP/y6ApegQyAUtWJ8lD/CUndaIobkMGuJUAnhaChflYqol8PYHK6DW9TRGTXD2hr2QqMiDCpgE+oAAOt9DRjW0A4g7jC+2t8XfVxOQSTmoxLWZWvkkxDmMPEghEESDeiGCEXSoeqpPx12x/F21ePorG7XzTasCfdFvRRGnRjGDq5WbNYaIBNzuxap09p+s9aAOtE0l5OJgU7DfEb7SH50Gh40igF0Ug9aJB/AgDa9FgMkM+JVkMXv5xq1GTVCBH0kMx+IW9QgEx1eQQUFQbNslg92tcMrqBAIRZAq2LlmMwwmgIKgqTYICoKgoaCGMOhMRFsKJ3yvpCFsSFAN058nnSOwQQWIAoVL1K1tg7psmTX1cQXgETXs4t2E74L9YUSP3SCH4Lf5iuhMgEAYFMFAUJehURGqLqHGFjlqe8gLl6Rb97bBbQpLnapZT1BVMLDW52hn2DCFztj9tN/HTKFYdUPE5tZ6iLbRba9HhapJcLs0hCIyRIHCregwKIEkUojR4b7Y9UiHQBgkgYIy4jAli4Wq1Q0BhJgDAIYhwC3HI3v52r3W+StRU0zml0FqzHnqs/mBMIDVaWCeuLO/aojoCHugG8lClKELECUKPSKaplkMAAGIwCCIDKLH/CYFQy54bVq+RLMq3RCgGwJEgcWvse3TLgnUitKmiAYUxIXC2CBBzClcIAyiIAAw74NBnO32h1zWPVTV+LusRmTLkT+4pQagBGAAMcyG6B01gNewHMft5lRG0Pk9s2s59O3tWD/7Zsf65557DkceeWRaIYTDqXoYcXbGctmvyrnhhhswe/ZsPPTQQ0Xz1875TV+zZg0MI3k0NxKJYP369UVpVG9l3rx5uOaaawAAwWAQK5ZdjUNOuM1ab39GY//3UohCqzH/fHWvGP+DsvUHdI+ASHN6tUHHKC+UzuTR4kiD5IhyFexHoHR0PaqteQhEjVmCC2AKEQVbzqQIMZkNlBH0lU2TIheJd0LCVIZMzGc5ZChZ2+bHOgNdhWh1ixp0JqJGjIBmWbeLaIhEX8sIlVLutzVcA0mg8GkuhDQZFARymkzlmwJ1lgmFIupQRAPtanIyQy2F/4hBhaSOpUdWYTABiq2jlGh7rlLR6jh3xepIC7xC3FznJ60J3hRhbNsNb1LG8U7adVLGdWo8ol6AulKGyG2SAhBBYUBAJIeHVCYUDQmajg7NbFMs5GyiwOHYXzBQK6tmorro9apX0vsjNWXQWCUSUNO/7/7oOnvEopgpmEAYBMLgV12od5lt6VRd6IQLfd1Ba5t0GDT5jzQQcENWdASCLggpQrDGBI9UxIR5AQw0R0fLzpApoBoJQkKk3SwnAFinDHW7AsjJ5+Rr9yLilVHjiUAXnO9HOEHDoYbSPzfhkGKdt5oQycp+vWLnal6P0msPdV0AjfrDMUrAoteJaeZvuqstdsavxfeXz+zyOGvWrMEOO+xgLZ900klYuHAhz+HF6fYwll+kvWqNzmfnT3/6E77//vui+mtnLXAsWbLEmn/xxRfR0BAPb2kYBl555RXHR4WTOzNnzrQEjjlz5mDu3LlZ7SeGaVWZUsVgApCr36+gmftxqh+R0JLbgncabkvLUe1UU0LJUiRm7Ii40eDqHvcib7pBR6Ar7AKhJNIkrUwm5/lcyEbY+P7777HTTjtZy/fddx/OOeecohyfw6k4PdiHoxS+21kLHLGDE0Jw+umnO9bJsowRI0YkRZvg5IZdgpw3b17WAkc2aF4BctDs/UcaJbjazRHqUHNh6uxIk6m9KCVCWEgyqwK6xTvLyZMwk5M0Grli127Y6aTuvOoulXN7H1coJ2fzwd52bAg2lqQtlSQbnyC7EMUYyTqvBKe8qKqKu+++G1dddZVVdv/99yeFvuVwONVJKXy3sx5LppSCUophw4Zhy5Yt1jKlFJFIBF9//TWOPfbYojewt3HeeedZ85SWL0xipDH5UQj3jZeF+nYP9XeqXAiUCQjS/LLltkcyh2YspuO03dyLkx+tRn1J6tW6WSbKXLUb/khpIzUkmjXFKDRTPaf6ePnllzF69GiHsHHttddyYYPT84j5cOQz9UJyNl5ZvXo1mpubS9EWDkzNRowHHngg6/3EcLJwQmjx/8zVhtQvSkwg0Tz5OFAV0qLCyFcQSUUqv4UaMXUo2FLRVT6AQqh0VKoY23RnhK1WPXshI0AL71in6sx3ZU6VzscmHYNcHdb8Tt7NGbfN1l8mbHP0D6j5PfcdXQjgHYGu/WoqSqY/+gIf73zMCzNF8ipFPpR8zalYFj4l3377Lerq6nD44Yfjq6++sspPP/103HzzzRn25HC6J4TlP1Ujffr0wdatW7PeftiwYVi7dm3W2+dlT/PKK6/gzjvvxJdffgkA2G233XDZZZfhsMMOy6c6jo2mpiZr/rzzzgNjzHIcVzp1qHXxWyaFKpsoKtLU9Tap/DFiUaiKhT3SSyHoTISUwj4sMZpMKUil3ZAJRaSIDi2qIRU9fG+mZGX2Y3ml1HkcYsn9wkyGu4gannTmVImozHyfDNvYS6W0Gf08nVY0sq4olllVME/Boz3iRmPUn8OvKWnzdFBdACnwEc5GC5IqelQ6CI1/l4henpFGSgmELoJeGExIG+rZLuxnK/hLopExaEGx+OCDD7DffvulXDdt2jQsWLAAlFJoGtfgcuLIsgxR7F6a4yR6mA9He3s7li5d6vDRzkRbW1vKIFLpyFng+Nvf/oZLL70UJ554Ii699FIAwNtvv42jjz4ad955J/7v//4v1yo5CRx22GF4+eWX89pXVBkMJfWfaKIfh+7uPmo904+junJdZMIrqSXN2KxXOMdBtjkwegPV5CyeL/YIUH5bhKvODNGuqhGjSO8cVUUIKRLXJR1PE0G6SYbwYjmL29m0aVOSsDF27FjMmjULhx56KLxeLzZt2oT29vaiH5vT/WlsbMSAAQN4xLIqItFHu5jkLHDccsstuPPOO3HRRRdZZZdccgl+/vOf45ZbbuECRxG45557MGrUKACmNilbxDAFxPxf3EijAFd7dMS5G/pvpMIeVjZIFUcI1q7oyn+jWihUsEkVErc3kktI3GyRRQOaUZnrazACsVp199VGhssUVmXIbtM0shod1YvqB0OJae/RxTfl+8tngjGGgQMHWmVHHHEEli5dCkGIf3M3btyI9vZ29OvXD16vl3csOQAAxhiCwSC2bNkCAI7nqFvRw/JwlNpvOGeBo729HUcddVRS+RFHHIGrr766KI3q7djDCJ555pkYsc/FOddRCv+NGGoDgRRILs/Lf6ME+DQX3GL3Ud935SxeiEBhUAFSlmZU2dqg56rdSGdOFcPoIr9Cp+GuGv+RXMg2NK2ap8A32NuOtYHsTMd6KqUOy1wIJM+8Qd0BVVWxzz77WMuHHnooli1b5hAoDMOwhI3ERMEcjsdj+ntt2bIF/fr1657mVT3MpKrU5GyXcfzxx+M///lPUvnixYt5lKoiMnLkSADAunXrKtyS1GTjv1HN2J3FEx3HM2k2Km3KlC3hdJnAKzTangvhNBnYC6EYzuKpKLY5VbOSQpIvAiGt63aWKlJVqmR/nNKQSjCXRFo0cyrGGPwffwyXy4UvvvjCKn/ppZeStBcxn41iZSnm9Dxiz0a39e9hBUy9kJw1HLvvvjv+8Ic/YMWKFRg3bhwA04dj5cqVuPzyy/GnP/3J2vaSSy4pXkt7GQ8++CAmTpwIAPj7H4/DrrvuiiP3uwHydiAwrBbe9QEw2fwTYWK8E2y4RIhBQKuL/8FIIQomEAgGQ6Q+Xu7ZqiMwwHwEYv9TgQHROqNVBluItZzOfznmY6vXAHGLJQIpYlbKCABiOmvS6BMX882W/WYGcrtLthhC/IW0HZQ2AsQng/SJR37avr0Gsju+dyTa0V69tS+a6/2QBQONrjC+9TVjgLcTgNmpq5EiaFVr0am7IRGKYZ5tWO8bhLBh7m8XOigIQroMkVArg7SVbdyeZEswoAiGFZFoiHs7BDBEqOTYzm+4LNOuds2DGtv9q41GtQoZCsKGDLeoYX2gAf08AatdAdUFUaCI6BJEQuGSdUQMCZ1hV0qncN0QLefuZncQ7aobbtGWKTyqsRAFajmZyqJhnaN9lN5gAigzM5trVIQsGDCYAAEMokAhEAadCpAIRa2UPkLXNrUGVDbrFQiDCIogVVArRtAsm/cpFo0qQiUMdm3HNqMGYsKXOpYpXojm1dim12Cz5nR4E2waGY2JkIkBjUkAVGvZDmUCKBNg2J89RswpOkajUQEBI9nhOrZdKmKmOJQR637EnidFMKzIVFvVGgiEYd/atfAKKgxGsG+tGQnk/c4Rjjr7uOLZxwXCEIrm81AkHQYVrIAHwWhm7JAmQY8KnUESb79IGFRDxPaQF4pogESzjau6CJesQyLUMr3bEqyFKFC0hmrgkTRQRtAaqoGqS9BVEUwToamiNcJPdTFqphM9lsuAqkqQJAoqmdezJvo+xJ6pGLUJ2jGf5oIiGNCpme2+M/ouxJzGBTAosoYgk+F1GwhFZBDCQEQGGAAIg1BvQA9KAAOYAsCjg6nODrngMsz1MB2+AxEFJPouJJqpMSqgviGIUNi8nh63io7tNeY6BsT64ak0HhE1GrRAF6G4NBiGALdLgz8swqXoUA0Rje54NnudCfAmaG8lwUzAqaX4QG/ZVg9RSv4m0ISM8KtPm4URj/zRUbbmvCsdy6qq4vDDD8frr7/uKNc0LaOpFDej4qSDPxu9i5wFjgceeABNTU344osvHCMcjY2NjjCuhBAucBTAhAkTrPmzzz4bK1eutJZrfvR3ub89TK7uNf9MaYJ/R0zYAABDzu3FtwfyifXXpGBcoEiqM9bZiACpLGjkTrNOKqc3byQ+s9PEtrmg1+vQAZA8R08DunM094dgPNSzJFBQRrq0vZdszqJdmfzEOu92Ikby6/ddoB/q5Hg255+CZsjXVPlFYoQ0GYwRMEYQ0SVLi0EIYDAGr6JCItTKEt3sDsCfpr7EqFOxzjNjpMtYfonntzVcg0aXrbMU7bC6BB2ZYn5t1eqgMdHhb7Ndr3EIDol0GOlHUSNUTrlvTLMVi0rVlWmXTIyso4YpgmFdu3Q2/7HITmFdwmBvB9q0GvSVA9irfj2ChvP+dBoe1IkhtCh+RGwvWchQoNva5JE0eCTNEjwyoekiFFmHbgiQEk5LNUS4s4jMlihcyW4dkUjXfyuMCkAeyRfThQAWo515g6a/h5LLgB7JfqSfpagrJpSL0U4+UVJfo4amAEJhBV6PilBELsj066f2BnjdqiXobIf5rg2s9SVdD3u440wRqr47+fdJZWtOT28SvX37dvTp4zTfGz16NJ599llIUmHJYzmcbgs3qcqJnL8Uq1evLkU7OClwu90Ih8N46623st5H0AxQuXJmM4JmCg357NcNrH16DG5Rt7Q5laJd86JRDmbcxt65LgRTq8EfsIpAAfBLXxY6A27U1YS73jAHli5diqOPPtpR9vLLL2Py5Mm9aoSaEIL//Oc/mDp1almPu2LFCkyaNAnbt29HY2NjWY/N6YIe5jReavI2SFdVFV9//TV0vbT5CXozTzzxhDWflaDH4mKzGCmd3bRcGjPzXkvAKK7tfKZkYplITE7XHR21AcArdJ1sMZO2JFsUoXd9+3JNXtgVul4efygphUlRb+abE6/LarvVq1eDEOIQNq644gpQSnHooYf2KmEDMCNuTZkypdLNyJsRI0bgrrvucpQ9/PDDXIgpgJ6W+M/OhAkT8OijjyIUCnW9cZbk/MUPBoM4++yz4fV68bOf/Qw//vgjAODiiy92ZMnmFI59JOX8888vuD5Bjz/lcoDC5XM+9UogwT4+UD1vhb1/SAwCBOJDpmrAaUsfDKdPZqbmMGIuFzlJXrWSLmlbMWiPVHnmaRuJ/iHlIJ1zf7GwJ6wUs4iaVOzEkIUiFVnIyQbBU3xB0iV3D+FUVVX8+c9/BiHEClwSY8WKFbjtttt6naChqub3ccCAAXC5SpeXxjCMkocl5XRfXn/9dRx33HEYNGgQCCF45plnMm6/YsUKEEKSpk2bNmV1vH322QdXXHEFBgwYgHPPPRdvv/12weeQs8Axa9YsfPLJJ1ixYgXc7rhj7WGHHYaFCxcW3CBOHPuH/aWXXirLMROFkN6AXqRs3rkIM9WA3XE8RqbM4T2BRAfxQilEy+HX8svy3VtIfD6VFM8rkJ/mRXQXRwAoRJAoZWLQdKTTbqxcuRKEELhcriTfy/PPPx+UUodfYU9m4sSJuOiii3DZZZehubkZRx55JAA4Onnjx49PSgPQ2toKWZYtp/pIJIIrrrgCgwcPRk1NDQ488ECsWLHC2j6mXViyZAl23313uFwuawA3FStXrsRee+0Ft9uNsWPH4vPPP3esX7RoEX72s5/B5XJhxIgRmD9/vuOc1q5dixkzZlgdzxUrVuDMM89ER0eHVXbDDTcAMH12pk+fjqamJni9XkyZMgXffvttUtufe+457LLLLvB6vTjxxBMRDAbxyCOPYMSIEWhqasIll1ySUybqbkcZo1QFAgGMHj0af/3rX3Pa7+uvv8bGjRutqV+/flntd9ddd+Gnn37CQw89hC1btuCQQw7B7rvvjttvvx2bN2/O/QSQh8DxzDPP4C9/+QsOOuggR4f4Zz/7Gb7//vu8GsFJz6OPPmrN/33RmY51RLO9yKy8goLiS78s2IKopMwHklBkbW/r60oZtHhMLM25ZuvTkI2pUaqOqN0fwac7R/7tZlWdminIb0vQDviySESYzjk15jBeCHYn1FjEIiNHYS1VZCfAjNyVVRtSOHbbzaPc0YfJblblEtKHXBTzcFzOh1ySKyY6jKfDp3f9PGTS0ilyYoe+645BrHOf2Ml3pRAGHE7XGV6ZWMdbLYK2R0oIIuFxdRFuM0GbYddukOh3JrHObPG4zZFxt5K+DboWfy4Mw/kuxSJYJdIeyE5r6A90/RyFw2EMGzYMBx10UNK66dOnQ1VVLFiwoGhaDcYYAoFA2SeW4//jI488AkVRsHLlSixYsCBp/bRp0/Dkk0866l24cCEGDRqEgw8+GABw0UUXYdWqVXjyySfx6aef4qSTTsJRRx3l6LgHg0H88Y9/xP3334///e9/GTuDV155JebPn4/33nsPLS0tOO6446xwsh988AFOPvlk/PrXv8Znn32GG264Addddx0efvhhAMC///1vDBkyBDfddJPV8Rw/fjzuuusu1NfXW2VXXHEFAOCMM87A+++/jyVLlmDVqlVgjOHoo492hK8NBoP405/+hCeffBLLli3DihUr8Itf/AIvvPACXnjhBfzjH//Avffei3/96185XXtOaqZMmYKbb74Zv/jFL3Lar1+/fhgwYIA12RNzdoUkSfjlL3+JxYsXY/369Tj11FNx3XXXYejQoZg6dSpeffXVnNqS8xe+tbU15UsRCAR6naq1HPzmN7/B9OnTAQCXXnopgL273EfQDDBRgBihMFzFtZPm/hs9i0zO4/mMwKbKU9Ie8TiiVTnWaV70KVHuiZ7CVr0+43qJ0KJp6Xo6kssANQq7VqJAQdMIkDEhoysqod2wo6oqpk+fnmSVcOGFF+L2228vWe6MYDCI2traktSdCb/fj5qamqy3HzVqFG699da0608++WRcdtllePPNNy0B44knnsBvfvMbEELw448/4qGHHsKPP/6IQYMGATD9X5YtW4aHHnoIt9xyCwAzpPDf/vY3jB49uss2zZ49G4cffjgAUyAaMmQI/vOf/+Dkk0/GHXfcgUMPPRTXXWdqsHbeeWd88cUXuO2223DGGWegT58+EEURdXV1GDBggFVnQ0MDCCGOsm+//RZLlizBypUrMX78eADA448/jqFDh+KZZ57BSSedZLX9nnvuwY477ggAOPHEE/GPf/wDmzdvRm1tLXbffXdMmjQJy5cvxymnnJLdhe9mEOTnj1HOt3/vvfdGJBLBHnvsgRtuuAE///nPc67j3XffxUMPPYQnn3wS/fr1wxlnnIENGzbg2GOPxf/7f/8Pt99+e1b15Pzl3W+//fD8889byzEh4/7777fycnCKhz3k4OLFi/OuJ9F/I0bMhCqT/4bcdRTekpLkv5GBRP+NgBof5bObPPnTjLQnUq1+HJES2/5znGTSalWT83gp/XHKSSpzv2oiX61HJfnmxOvw008/YejQoXC5XA5h44ADDkA4HMbf/vY3nqgPwJgxYzKub2lpwRFHHIHHH38cgOlgv2rVKkybNg0A8Nlnn8EwDOy8886ora21ptdee81hCaIoCvbaa6+s2mTvX/Xp0we77LILvvzySwDAl19+mdSR/PnPf45vv/02Z5OmL7/8EpIk4cADD7TK+vbt6zgeYCbtiwkbANC/f3+MGDHCIVD2798fW7Zsyen4vQmfz+eYIpGuA55ky8CBA7FgwQIsWrQIixYtwtChQzFx4kR8+OGHWe2/ZcsWzJ8/H3vssQcOPvhgtLa24p///CfWrFmDG2+8Effffz/++9//ptQApiPnXsstt9yCKVOm4IsvvoCu67j77rvxxRdf4K233sJrr72Wa3WcLHjsscdw2mmnAQAC4a2ocTc7NyizOVXVEBCBevOPXw0oUGq6d2crn2hVGhV7rN9FoSFxvUIEwRJlGM+HWP6GYpCNOVUmpCwFaSVFhKdiR6vqCkkwrBwuimhYeWaKTSmcxasFfXsnmpqa0N7enrTuyy+/xK677lqWdni9Xvj95R/BylWIykYbMm3aNFxyySX485//jCeeeAJ77rkn9txzTwCmRkUURXzwwQcQRefzau+QezyebmsZIsvO+PeEkJRlPdoRvsCwuEOHDnUUz5492/KjKZRddtkFu+yyi7U8fvx4fP/997jzzjvxj3/8o8v9hwwZgh133BFnnXUWzjjjDLS0tCRts9dee2H//ffPuk05/6MfdNBB+PjjjzFv3jzsueee+O9//4t9990Xq1atsl42TnH59a9/bQkcK//3VxwxZnaFW2Si+AA1s7VHzhADYHzwvqhIOYaALYUA0x7xoMbbvQXCTCiCXpSgAW1aDVqU4nfIsolQxSktrmiSxVKbU9lzcehtHVh9+V1gEee7F7NUyNaBtFgQQnIybapmTjjhBJx33nlYtmwZnnjiCcv0GTAj/BiGgS1btlgmV4Xy9ttvY9iwYQBMp+5vvvkGu+22GwBgt912cyQHBkwn85133tkSeBRFSdJ2pCrbbbfdoOs63nnnHcukqq2tDV9//TV23333opxLj6HAxH/r1q1DfX28E1XKKGiAqcl88803s9r2lVde6fLZra+vx/Lly7M+fl7/kDvuuCPuu+++fHbl5EHiCEk2EIOCiabFnNKpWw7ZkYb8RgdlvzO7eCqoDMSSQzMJILb/ON32HyNFTfap5HQwT1VfV7Ac7bFLZf5SKyWrQpuiJ+o3zNHooKGAMlJwh8NgJJ69OkNdTZ4gOsKmg+kw73YAwKaw+XEb5Gm3tnMJOr70DUCn6vzYuUTdyoZOCCsoW3Kl8AoRhJn5ICVGqLJrPzQmWg7wGhMt5/MYPt2NWrF46u586DSSnYUtJ26Yv0Fdscpj6zRb1j3GiJUlOxO5hsftCHscZmdEFcAU86PDKAHsDuSuzHXnY07lljSEE7Krh9M4XQsitQIgCDIF1ZK/IULUYTyXZ16WDeiGmLX2yE6xldRMN7B+1j2I/PCTo/zwww/H4sWL4fF0n3DV1UpNTQ2mTp2K6667Dl9++SV+85vfWOt23nlnTJs2DdOnT8f8+fOxzz77oLW1Fa+88gr22msvHHPMMTkf76abbkLfvn3Rv39//O53v0Nzc7MVOv/yyy/H/vvvjzlz5uCUU07BqlWr8Je//AV/+9vfrP1HjBiB119/Hb/+9a/hcrnQ3NyMESNGwO/345VXXsHo0aPh9XoxatQonHDCCTj33HNx7733oq6uDtdccw0GDx6ME044oeDr1qMoUOCor693CByl5uOPP8bAgQOz2nb27Nn497//nZSnxefz5eUwDuQhcHR0dOCll17CmjVrrFjdhx56aFkvWm9kv/32w/vvvw8AuHLeQTjssMMAAEeMm5MyEhQTzT9KMWyAyfE/1JqfVDCRINQiQQqb+4kqQcwHMtJEwAgQ61sxAsvDSasBYoOvsT9IQk1H8pgwYtdO6F4AINDqALB45Klo/xvEAKgCaF5zf1E192FiVNMRbXbsl2gkfgxKAJGB6WYZERlUvwLJY3YUJYkiqJqdr9aQKe0EdRlByNaIP2WCZaqhUhFuUTfNNRL6GB7JrFMgzNEZqpfDCBuyJcS0uPwIGjLqJWdEqCYpgO1RicsrqvAbLstcKJLgsB2Mdpq2RTzWOs0QEVBdkEUD/ki8k+yWdIR1CR5ZQ0iTrZwLnmhUnEZXGM1uZybvvRvWYYtah0TqlTAEwiynb4EwBPX4tYo5Jau6ZAlMsmjAY/MZ0KlgXaOYI7q949oaqYVEKPyCAmpzcvbpbohgoAzwwwWRMNSKYWhUhEAYZGLAYAJkYlgRqeqEMMJMRk00GpVMDMjEgJuoCDgECckSOABYxw1SBRoT4RVUdBpua95neKBRAVQkaNNqQJkACoIaMYIfQ31QExUsI1TC1nBtkvAY1GWohuTIr2FQwYpAZEQ73opsCgT+iAuKZEClIhTBQL0ShkvQ4RJ0fBMagGbZD42JkImBzuiL4zdc8c697dWXCIUiGPBKGigjCOoyaFTAkASKkCqDEIaIJsEl6wiGFbgUHaLAYCR2rBkBBIpI9PmiNrMPVZdQo0QcwnOdK4z2sAfUECDXqtD9HoBE77FMQTQBTKYAA4ywBBAGQQJC4agwGDXdooxAsJ2UJFD4VBcaXWFs9jdCM0TUKhG0hz2oUyJo66xBnScCnZqag9h3KSYoRMIKGAMUlw7KCLSwBEkxQARAqDXfE1GhoCKzhAwAoDqBIJnLEc28lzHNn6aJkGUDgmAKLoYuwK+5wQwCT40KX7sXjBF468IIBVzw1kYQCihg9oGCKD+cei2KzX333YfzzjvPUTZlyhQ888wzUBQeirmYTJs2DUcffTQOOeQQS/sQ46GHHsLNN9+Myy+/HBs2bEBzczPGjh2LY489Nq9jzZs3D5deeim+/fZb7L333nj22Wet+7nvvvviqaeewvXXX485c+Zg4MCBuOmmm3DGGWdY+9900004//zzseOOOyISiYAxhvHjx+OCCy7AKaecgra2Nsuk56GHHsKll16KY489Fqqq4pBDDsELL7yQZDLFKR9+vx/fffedtbx69Wp8/PHH6NOnD4YNG4ZZs2Zhw4YNVmTTu+66CzvssAN+9rOfIRwO4/7778err76K//73v1kd77XXXrNy0NgJh8N444038jqHnASOxx57DBdddBF8PmdM1IaGBixYsKDHRiKoBlatWmW97IcffnjOYf7KhVqfHDI3X6QQoPeQgTivoCKYpaN6OXFVkcNzdyRsSEV1cM7V/I3DibF27VqMGDHCUTZixAh8/vnnPcaMqRzYc2XYSfWfO2XKlLT/xbIs48Ybb8SNN96Ycv0ZZ5zhEAjSMXHiROsYmYSVX/3qV/jVr36Vdv3YsWPxySefJJXfc889uOeeexxlTU1NjpD8iaRq+w033JDkfxALy9tTyTdreD77vP/++5g0aZK1PHPmTADA6aefjocffhgbN2505HFRVdUSdr1eL/baay+8/PLLjjpS8emnnwIwn/cvvvjCkSjQMAwsW7YMgwcPzv0EkIPA8eGHH+LMM8/EtGnTMGPGDOy6665Wg+666y789re/xa677ppVeDdO7tijVeWFABQ75YCWPFBeNdR5wjnniKhWZNFw5MDoCo+kIaSXZiSqHOE8a8XCc4ZwsiOiSlauClWTLO0YkDoSWj65MrqKLFctUIM4tBzdBUopjjzySLz88suO8g8//BD77LNPhVrF4fQCCjSpygW74JmKROHuqquuwlVXXZXzcfbee28rEeTkyZOT1ns8Hvz5z3/OuV4gh7C4f/7znzF16lQ8/PDDGD16NFwuF9xuN/bdd188+uijOP7443H33Xfn1QhOdvzxj3+05m+++WYAwH9Xpc4cmy2hPnH77kijzWyiPnUnQS1/CHUHtCZDIrNuHqUqU+jVdOF53VL+o+vl0G5kI6B4xS6Ss+WJVsToA7lGhQpFnAJfzHSoGBTjeqkaj8xQCJpWeKSsYphTPfHEExBF0SFszJo1C4wxLmxwOKWmjJnGy8Xq1avx/fffgzGGd999F6tXr7amDRs2wOfz4ayzzsqr7qwFjpUrV+L8889Pu/6CCy7I2vs9H0aMGGFJXbFp3rx5JTteNWKXVmMJfoqBXdBIRSWFDKrk/2a6UnTGG5UMKcxTHb9KHaULETSqiUR/l1xJdASvBF1lqA+Gqs+ULhfCFcr5ki6ZYXuo/HaWhh4NKNCFoBEKlOde//e//wUhxMr7AACNjY3o7Oy0kspxOBxOrgwfPhwjRowApRT77bcfhg8fbk0DBw7MK4hRjKz/SX766SfsvPPOadfvvPPO2LBhQ94NyYabbroJ5557rrVcV1fFNj1lwDCMrm9+HjG+Ces6tHQmcyq7H4d9O91jcxx3AVLQdBi36sxDsCESBdOLZzqliEbGDmQ1ZHUup7DhkvSKJRl0CTq0aDQCrxhxOJp3RTG1G5WmEKEqpjULqYVrWOzmVInBDhzbdSpdj2RlKcj71OzCRPqDLng9hWs4i2lWFex0gwgsbyGEMYa1a9di+fLlWL58OV599dW0/7FvvvlmXhmEORxO/pTTh6McLFmyBFOmTIEsy1iyZEnGbY8//vic68/6XzkYDMLtTm9W4HK5EA6X1va6rq4OAwYMKOkxqp0vv/zSir191VVXYf78+fjvqutwxLg51jZMElLHWSyBHwcAqHWA0ln8etPB3AZIuDCThkzmS7nQIIcQMmS0uJy5EwYq7UnbesV4h6heDsOnxd8ne3skgSIa5RQioTn5otS6UodurZEiCOjxzluiOZUZactc75b0LpOrxUy87BGp6pWIo4MoCbFoYCSr610jRbJK9ucVUncs3aTrDmeYSXCTwgS27WoNvCnCIGdLJKxAkU3J27y35rWMXSONiXAhdRvFqFO5V9QQNKonYkxiSNpcKKbfRCDoQo03Gkks7Ozoa2Fb5DBNgCBFn880PiZUJxBLdIlTmVO1tbWhubk5xdbpueWWW3DNNddUdfK4ag1wwqk83f7ZKDDxX7UxdepUbNq0Cf369bNCLqeCEJJzBnsgxyhVL774IhoaGlKuS5XBtNjMmzcPc+bMwbBhw3DqqadixowZGZ2pI5GII1V8YnSt7og9I+wdd9yB+fPnF6XeVGZVlfTjoEo8pwdVGAS1dC+oJJhhSTm9G58tz8V2PbfMxMWOVlVuEn06VEMsWCgnKgHL0yQyFy1iZ6hy2eQjkcI1aR0dHRg8eDACgUBW20+dOhU33XRT1SfajUVVDAaDPO8HJyXBoBm2vduG2y2j03g5sGeFL0WG+Jy+lqeffnrG9aUcZbnkkkuw7777ok+fPnjrrbcwa9YsbNy4EXfccUfafebOnZs2JF13ZvHixVYCnmXLluGoo47Kqx67w3h3IMlh3Bvv4NkdxmMjnIBpEhRUFXgVtSL+G9XgY1AMJEIt86ZqpytzqiCNj3zHclsUi46wBx45d6fuoKZUhcAS1iS45eR25BOdqruSTuNRCu6//36HmXCMM888E0cddRQmTJiA/v37l609xUQURTQ2NmLLli0AAK/XW9WaGE75YIwhGAxiy5YtaGxsLMgvgNN9yPpfpBTSzjXXXOOIvJSKL7/8ErvuuqsVcxgA9tprLyiKgvPPPx9z585Nmw5+1qxZjv18Ph+GDh1anMZXkOOOO86aj8UBTzSryoRek/vLXc0hcKuBoCHnHT0o1UiyJFBECpBVYskKU1GJ3BvV6nxfTLpyHi82XlGDmoUJGic1VI+bVZWTH069FpFIBIMHD0ZbW5tVftRRR2Hx4sU9KjlfzAQ6JnRwOHYaGxu7tZl8T/PhsHPJJZdgp512wiWXXOIo/8tf/oLvvvsOd911V851VvTf6vLLL+8y8c3IkSNTlh944IHQdR1r1qzBLrvsknIbl8uVVhjpzhBCcMEFF2DBggUAgB9++CHtdSoXqfw4iimkFBKtqtgU6jheL4URoj2nU5EvhUaoypVya2hCEdnKcZENiRq4WjF/P5HuTKWDMmSLqub39/naa69h4sSJjrJvvvkGo0aNKkKrqgtCCAYOHIh+/fpB00oT/prTPZFluftrNnqYSZWdRYsWpXQcHz9+PObNm9f9BI6Wlha0tLTkte/HH38MQRDQr1+/IreqezB37lxL4PjFL36BTz75BP9ddR0mHWlqjMSwAd0jwvAIIEb86da9AphgjjbrtuSzTAAMGUjrC0sBw7Z9qkFytQ5gEkBlMwpVrH9HqOkjRQwg0mhGp2KCKZBYA9+CWQbEy6gCINXAOAGYx7ACcIkeHZSaC7U1ySfQ12vaRrerph1xP3fcwVsS4g67ejS5niIYDufnmAaiVlahUhFeSbUclzUmoNnlR4RKqBXDcBEN/aIhukRQiKCQiQEx6kDdabghEwOUaGhRNGzXvY5R6lo5Ho3JHo7ULWmgjECxmd0wRqAzARKhqFMi0fOhoIxAM0TUyqp5XkyACIp6KQSNifAbLkdnP6Z9qJUjCEcdkVUqWk7fYrROQpgjCaFb0iAJFM2yeX0lQtGoBKFTEToT0CCHHI7qft2FId7taNc8juPvX/MD2gzTMahF8qHD8GK92gcAsF/NanwbMU1KhitbIUSdpsVo9IM6IYwwkyESCjfRoDER7UZyVuWYsEGZYGV8NyAgFD1fygS4RB1BQ7bM4DqjuTf0qH+PzgTrGQpGnaTtztKx6+QLxc20QhEZtd4I/EEXwhEZlBLU1IThD7hQXxuGEr2eUkKeFb/hgt9wOUzyfgz2QX+3z3FNAVjnoxoiVCrCLeoQCENnxGyHP6zAoAIMXQCL3mtCGASBAQQI2JyrXbKOsCbBoAJEgYIQhlQvIWUEokDRqbutZ5sxArVTgdgpmUN4lIBEAEYImAAQXQREBqgA3BRUFWEEZQhuHT5VjLYL1vCf7pch1Zqd1B8ZAYsqI6ghoG9zJ9Z8MwCeAeazp7Z5oMIDUKCjzTxvISyAus2dIoYLzGXOax0yUGe+R1QXQASG1dNmOc5vh8fmAoiHwwVMAYPYhia/O/n32OkpMx/S96f8DiOfMMPRrj7NWVeMSCSCk08+GROX/M4qGzduHFauXNnjTY1EUez+nUsOJ5E8NRzdQeBoa2tL6bNdX1+PrVu35lVnt9DHr1q1Cu+88w4mTZqEuro6rFq1CjNmzMBpp52GpqamSjevIjQ2NmLnnXfGN998g08//RRtbW3o27evtT7SJENQ0z/Vmjf1H5zuMoUJqsQFgBiCGhUCABj2AfrodhmD/0QPl+3LmXKQM4f/ZI2KCEQUNNclO2K2qx7UymYHPagrUITsbJfChoQ+rqC1rDMBitUBNk9MIAx+w40GMZiyjlyolVXoTOgyYhQAq9OXD+tCTXBHzcHcomYJHV2Rq1PxEE87AGC4ZxuGKaYpybaocNBX9FtCBwBrPQCMcm2Gr0BfC5kYDt+NVMRCvQYMFwybCZgkGJbQYSedCVWtO4L2gAe17ohD+ABgdVjtfkYxNoXqUCvHfZHq5LhQ9mOwT8a22/GpLnSEPZbAmAuaLpqCSJYkPnflyirettVUnwbbvPkdMxi/d6vPvyJpdTqhIZHvTv69NZ8pkd/zzz+PY4891lG2ePHivEJLcjgcTqnZaaedsGzZMlx00UWO8qVLl+ZtUdMtBA6Xy4Unn3wSN9xwAyKRCHbYYQfMmDHD4Z/RG1mxYgUGDRoEADjmmGPw9ttvV7hF1YNaQCZgv5abuVOESpbAkY4gTW/apwh62Wzxt6iVccYZ5tkGn95zI9UUIvBxioMQEkBd1XMfGGOYM2cOZs+enbSutbU15xC4HA6nyujBJlUzZ87ERRddhNbWVkyePBkA8Morr2D+/Pl5mVMBOQochmFg5cqV2GuvvdDY2JjXAfNh33335Z3pFAwcOBDDhw/H2rVr8c4771gh5kqBoFU+dLQQEkA96TsURgFCRqnQmFi2SFURQ8roLJ6KzRGnAOLXXClHxlmlb34CbkFDmKbWxPSV/GjT08dulgUDWpWFQZaz1LIlsj7QgD5u0/dje8SDGrnw5HfVgO5Pvre0U4FQl935CeHs/EDWpNBuFMq6detwxBFH4Kuvvkpad9ddd+Hiiy+GIHQPPxUOh5OBHixwnHXWWYhEIvjDH/6AOXPMgEQjRozAPffcg+nTp+dVZ05fPVEUccQRR2D79u15HYxTfN5//31rPl14XMOV+jaLKXx2hRz9+nLdPl+yzdUWCGYOEpDKPCmVaUyhHewOI7c8DpzikKtwV4yIXVy7UTg0XBwNnxhyfuuyFTwKhTGGBQsWgBCCYcOGJQkbDz30EBhjuPTSS7mwweH0EGJRqvKZugMXXngh1q9fj82bN8Pn8+GHH37IW9gAchQ4AGCPPfbADz/8kPcBOcWlubnZCiv3xhtvwDDiEoDhKf4fW5okz85tshBCSBZ9tGyFGRrJfbTar+UXvSzTfh0FmAwpto6vkMXFSScQhfLM+JyN34aUpl2p9m2Q4xGXhnm2WfMj3Pk5m9Wnko6juEl+Um85Q/XWpvDZSCQWtMDO+pDTR21jKHXi1Rgd4czPoN3pORefqESyErKy9AUplrDRFSRS3O9hJBLB/PnzQQiBIAi48MILHet33XVX/Pjjj2CMdRmNkcPhcKqR1tZWfP311/j444/zdhaPkfMX+Oabb8YVV1yB5557Dhs3boTP53NMnPLz8ccfW/Mu8lpF2pBKOMhmsNkeGVXKwSKM6NVl4pMPEZZ/Jz9Xfookd1QTzalSkaoTXC4axdSZl2uErjvvfSV/l9vkg5IQTaoQ7UZiXXb8etcC8fpA/J5uDqY2IQup2QughWYWLxQjVN0uhe3t7Xj++edx2GGHgRACt9uNK65INsm66aabQCnFl19+2SPyPnE4nN5HIBDAWWedhYEDB+KQQw7BIYccgoEDB+Lss8/O23w/597E0UcfjU8++QTHH388hgwZgqamJjQ1NaGxsbHXRoyqNP3797eu/csvvwxNyy2jdleUy2yqGsjVYbycVLpDaCdfn4NE+tiEir5iaYSE3oYvUtzs6blAvIWbqKXy3zA6bO9loHyCyaZNm/CrX/0KhBA0NTXh2GOPxSuvvJK03bHHHosNGzaAMYbrrruux4e55XA4iPtw5DNVOTNnzsRrr72GZ599Fu3t7Whvb8fixYvx2muv4fLLL8+rzpy/3MuXL8/rQJzS8umnn1qjae+vugv7H/k7x3rDJUCMJI/GimEgFnHULlgImplLIxOV8N8QQgKM2mhnNyQCHnPe7jAeCLogy+ZOHSE3+tWaHdlM4WXDupTkLM2iuSfKhSLoCKB6BZ58sJtTlZuunMfLQa0nktEfSDXEjJqOHo0mZGXW5RA20iCEiqOJY4xhxYoVuO2227B06dKM286bNw+XXnop3O7KCXgcDqdy9ORM44sWLcK//vUvR5LSo48+Gh6PByeffDLuueeenOvMWeCYMGFCzgfhlJ4hQ4Zg3LhxWLVqFSLhDgSCrfDWlSYpoqDGhZTuQGfEjTpXebNaVzvZmFOlgztJVx67OVVvgnYWVyCPRCJ44IEHMG/ePKxbty7jtnfccQdOPfVU9O/fv6ht4HA43ZhuIDzkQzAYTPmt69evX/lMqgDTOfm0007D+PHjsWHDBgDAP/7xD7z55pt5NYJTHOzap49euq1sxy1U05EqUFC1mnGpVMzb4byURNIkocuHbBINJpJtssBi4s7xISkkPHE5HcyB6jKf64kE3v8Eay+4Em63G//3f/+XVti48sorsX37djDGMGPGDC5scDicXsG4ceMwe/ZshMPxwdpQKIQbb7wR48aNy6vOnHspixYtwm9/+1tMmzYNH374ISIR04Gzo6MDt9xyC1544YW8GsIpHJfLhVmzZmHu3LkAgK0bPkXz4L0g6AxvLjKdG8edOh9vP2YmTBxz3p2O/eUQoEWjuYph06QqXZ9ODtjyckR/7bnrYibMJOzMGk6MeIQqKQzEUikIqrmdFDSPqTZGj9MZ7+gZ1JwXwgKYyEAVBqYJpn6yIfWoezDkAqUCAhEFtW6ns3GtHEFrqAYSoUn5CwJqfCRVEs2666NaEr+mgDICgTAoogGPqMGnu6EzARFZwmBXOwAzNG5ixnGNOTvziQkDFcFA2JAhEJbU6dSoCIMKMKgAQhh0Q4DBBFBGwBhAqQBRpPBHXDAMAduCXhDCUOeOwCe5sD7QiFH1rQCATaF6q96YgGFEHcR1JqCvO5jkz0IIc/huaIYIiVAIhFrZ2mtFFZJsoFaMwCua19sbDW1WK4Vz7vSr0eu1WWtAi9SZ5DC+zajFOq0PBsntGCC1453gjmgQ4z5MGyJN6KckB7OQBQMGFSCCIgIJHlFFhEoQAIgCs7KLb9O8UAQdEqEI6gooCBTRMAUQA3CJTmnZI8dfGJesI6TJUEQDYV1CjTcCUaCQBWoJMLUu83x8ETcU0cBGTUFIk7BTnzZsDsfv0ep2M9N47D4LUS0TYwRtgRrUe8xnM6jKkCXzGvvD5v3TDdF8nsTo88QYQMz7aRej7OaDXQk8BhVgMAIBDKLAoBoitrWZ5mvMRSH6BcQe9ViwKkEl0OoNSAEBVI1+FAgD0Ym1LdkqQ7JHt9ouQVGJ+a0hgNZkwLtORHBXHbWrRejR75XaGN9nzYVXYOSddziWAWDEfbeBBQ2su+p6MDX5w9bY2Igrr7wSF1xwAfr0yT6zO4fD6aX04Dwcd999N4488kgMGTIEo0ePBgB88skncLvdePHFF/OqkzDGcjr1ffbZBzNmzMD06dNRV1eHTz75BCNHjsRHH32EKVOmYNOmTXk1pBz4fD40NDSgo6MD9fX1Xe/QTbE7LFJKUzow7nfOHWCCWU4MBioTU3BgTsEBBFZnwD7Iy8TMAkesjBiZBY7YPCNx4YMJAI32dXVbOgu7T4klcAgACANTzMeYKGaFgmx2ukSJwu0yOxcxgcMbFS4MKkBnAiRCoTMBqi5Z5kK6EW90TOCQRQMioWCMoEZWLYEDAGqlCHQmoEEOWbkdIlTCAMUHMdopB4Cg7SQiVELIcHbqfbobYUOGzgQrQlSs45+twAEAhmFuExM4YgkB3dEOsm67KakEDolQUJgdSntHNOaPIIsG3KIOr6RZAodHVCETCklILXDEhI06IQSFGBAIhYi4oNhu1KBODKUU1GICh52ftCYMkrdbAgcArFX7JgkcDVLIEvSM6HlTEEfyP42JiEQfYMoES+DwR+8PjV5nnQmgTIBKRYQNKSmKlxa9lhHDfJaCqmIJHAAcAodAGBRJh6pL0KgARTTAGEFIk0yhBgSMEYRVCUr0eU4lcMR+Y/cpdh9jX/aYwGFpaRhSChyxOgkxBY7Y8wPE34EYImFpBQ4EJIfAQWwCh+FiEPT4+50ocAgqAEbAbEKHaBM4mAAoHea3QPbHvw9f3TADXfHOO+9g7NixjrIbb7wRV199NVyu6tNacji9mWrur8XaNuqqWyC6crcvNyJhfHvrtVV5bnaCwSAef/xxK6/QbrvthmnTpsHjyS8FQM4ajq+//hqHHHJIUnlDQwPa29vzagSnuLz00ks4/PDDAQDTp0/HP/7xjwq3iJNIuU10ioncTZ2cw1QuWtb3mAZAEmhFQwdzuoYxhunTp+Oxxx6zyg499FC8+OKLEMXqyjjP4XC6ET1YwwEAXq8X5557btHqy1ngGDBgAL777juMGDHCUf7mm29i5MiRxWoXpwAOO+wwa/6xxx7DXXfdhb59+3a5X6I2Iv2GBTSuLHSTtzkBw3ZhJUKh5+diVRRoEW9ykCqWlqOcbIiUP0x3TCtU8uPYtBxdkWQelcet1Q0hScvRHVi1ahXGjx/vKHvxxRdxxBFHVKhFHA6HU50sWbIk622PP/74nOvPWeA499xzcemll+LBBx8EIQQ//fQTVq1ahSuuuALXXXddzg3glIbW1la0tLQAMLORp7OcI0b6zhGhpukUMeJmVY71zGlmVQoENW5+IegJfiI6sUypsqEUIUjDugS3VHjugd6KAdOPot2oqXRT4BE1hPJwfq82LYcoUMusKhdiZlmMmYKTWEHHdUKdZlW5sm3bNgwYMACa5vTV8Pl8qKvLP0Ibh8PhxOhpYXGnTp2a1XaEEBhG7n2pnP+VrrnmGpx66qk49NBD4ff7ccghh+Ccc87B+eefj4svvjjnBnBKQ3NzM04++WRrmedPqT6yMe+plo4sj5pUevKJDgYgY56PbClVvhlBK706NNF/49FHH0Xfvn0dwsaCBQvAGOPCBofDKR49LPEfpTSrKR9hA8hD4CCE4He/+x22bduGzz//HG+//TZaW1sxZ86cvBrAKR1PPvmkNT958uSSHiuVKVZif9q+bE9UHXMczynKqe2FJTS3Tk2i/4TdgTo2MmykcKrOhJ6VLVp6jC7sXOwOzvliD50bc2KOL5sj+/mcB43uIxNqK3OeT5DGneM7qelw1mmkdzzbZkvYt1lLn3NinRaPJrRWjZsN2s2p7McGnJHCUmVMl4qURT0dmk2IVPXUSuZItDysOtdrerztNEdhNFFozPatiQk09kAKhu3+Ot6PNFnABZUkLEfboMfLSRFCYZ977rk4/fTTreWpU6fCMAycf/75hVfO4XA4dnqYwJEOe2jcQsi5d3HWWWehs7MTiqJg9913xwEHHIDa2loEAgGcddZZRWkUpzgQQvDUU09Zy1dccUURKi28iu5MtqPJEVq8vBi5tkPVeq4j7Ca9OhPeJWap5xROrgMJBx98MO6//35r+X//+x/+85//QBCqQ0vI4XA43QXDMDBnzhwMHjwYtbW1+OGHHwAA1113HR544IG86sz5S/zII48gFAollYdCITz66KN5NYJTOk466SRrfv78+QgEAtZyV/4bjuU0g76lsrSxazvs/sapkgQ6SRjFLcAOnMNJREp8MbIgUZvEKT6HH364I/FsMBjE7rvvXsEWcTicnk7MhyOfqdr5wx/+gIcffhi33norFCVuJbDHHns4BnZyIWuBw+fzoaOjA4wxdHZ2wufzWdP27dvxwgsvoF+/fnk1glNa1q5da83vtNNOFWxJ6bCbZgAA1VI/2rnYyRsFmkllfZwKqY0SO8LFMNsqFz9p6SNQlSs6lVdy2gAlajkiWvcTNLrS4NnNqipBqmBnZ511Fl5++WVrWdf1vOPEczgcTtb0YJOqRx99FH//+98xbdo0R/jw0aNHW3k5ciXrf8TGxkYQQkAIwc4775y0nhCCG2+8Ma9GcErLsGHDcMghh+D111/Hpk2b8OGHHxa1/qL2y7uhyVZYl+AWMxugUyZYyf8qSafqQp3izNZd6ZwgmSJUterFSYoUprlHn8qXYoYUzpfc0rmWlkT/jVzoyqxq6/JleOj1/1rLuq7z3BocDqc89OA8HBs2bEg5QE0pTYr+ly1ZCxzLly8HYwyTJ0/GokWL0KdP3FlTURQMHz4cgwYNyqsRnNLz6quvQpLM2z1mzBgwxrDf2XckbSeqDFRK8yefoljQnAJHKuFD0KNZxKP7Z+OTy0h6QUYKmI1hkvmrNkUzJOsEUFLv49g/OhItiAZ0PZaVOfU5iwIDtXV6IoYEVzRbt0rFJEdcnYpWpvF80JkARdARNmQoggE1hdbBoAQGEyDaBBhVkyCJFMGQAsMQ4PXkl/fCug4pdL5CNLs0YF5D+7nXS107ldnzcfykNSVlE8/EmkiLlWn8rc74R3Coe1vStj8EmzHSu9Va3hQxhZYWxZ/xGBvDDWiUzTb9FGpEP5d5vKBuZqGOCWbpIna1h+Oj6jGnb4MSRzZwwzDzZ+iAFaJZFJilOZCjz6ami5Cl+IuiaiIU2YBuiKA0fnxBoFZmcHu2cWJ7nO0ZyGPzjBJQRiyTw2KKSFKnAEbiEaqIjui7CkgBAuoq/N9W9gOb31yKtlUvWWWhUIgLGxwOh1MEdt99d7zxxhsYPny4o/xf//oX9tlnn7zqzFrgmDBhAgBg9erVGDp0KHfE62aIooi//e1v+H//7/8BAG6//Xa8/0DciXz/M6PCBwFE2wB4bKSUCU5zhtiAsV0osPw8urBRNFxRQYWY+T3s+cSoaAokibsLKqxekRQAtNp4uRAmMDwARAb4JSs3Bw1IYM1hGFGBwaAC+td2gjJiCR0xm3x75CKBMEeYUJEwK3pVLMt2QFNQI6vWaLZdSxCIdlDrZbMTbjABsqBDoxJkYkBjcUElkzlVTNiI1U0ZceRX0KgISokVucgewSgSjW5EBAbdEOGL5mZwyTraAjVWZ7bDVr8sGFAkpzQoRgWL2PWqdwehUhESoVBEHR5Rg0fQIAkGdCpCEgx4BRVeUQVlQlLo3wiVYYBABEMndaOTuqEx0dIArVf7QCQUGhOxUWuEwQRQRuAiGt7275iUG+KHkJlr5rPOIdH7ah5vsxrXjEjEQEB3QSAMMjEgEIZO3Y1GOYSIIcOnua17RZkALXo9/IYCygSEDQmUEbijgmbYkODXlCTNkECYo0wSKAiJ3x9RpDCigoUY7eiLCT5GvpDLmveHXGA2YVdPYw7IGABi3sd8c2fYBe7YPKWmAEOpANH2knZ2emAEJUg1unlsBtB2xdRGMACUWAJP7PYTmwweE0S+u9IZzjZbKKXYe++9sfWzz6yy7du3w+1251Ufh8Ph5ENPy8Nh5/rrr8fpp5+ODRs2gFKKf//73/j666/x6KOP4rnnnsurzpylhuHDh0MQBASDQXz11Vf49NNPHROnernwwgut+SuvvDJvtVgipAx570ppjSRnmQww3XaxjiiHAxQnL0ahiD00ataLL74IURTxmU3YaGtrQ2NjY+UaxeFweic92IfjhBNOwLPPPouXX34ZNTU1uP766/Hll1/i2WefxeGHH55XnTl7Nba2tuLMM8/E0qVLU67PNyEIpzx8/vnn2GOPPQAAY8eOxQcffFDhFpUGUoaEY5zqJaArqJHyMyvLB9Uov4N4vsn67FoTRokjkhtlJGOSx1AwC5vFEvD2229j3LhxjrL6+nps376da9s5HE5F6MkaDsAMNf7SSy91vWGW5Pylvuyyy9De3o533nkHHo8Hy5YtwyOPPIJRo0ZhyZIlRWsYpzT87Gc/sxyBPvzwQ6xZs6ayDcoR0RaR2W7iJYYKEzCUbq6lqIZR9VSUwlHebv5WCrarXmvepznNdHyaK3HzlIhVECCgJ/DOO+9g1KhRScLG448/jo6ODi5scDgcTgk455xzsGLFiqLWmfPX+tVXX8Udd9yB/fbbD4IgYPjw4TjttNNw6623Yu7cuUVtHKc02M0RRo0aBQB476GZVpmoZRa/7X2pUvWr7Mmhsz5Giu20YPmiE5WLUobrrXTEqu5IV9oNSeTCRy6oqoonnngCY8eOxdixY/Hdd99Z6+68804wxnDqqadWsIUcDoeDHm1S1draiqOOOgpDhw7FlVdeiY8//rjgOnPuuQQCASvfRlNTE1pbWwEAe+65Z9HDrXJKg9vtxgknnADADCO5adOmtNsKXQgfMSw/joTN7f1X+8C0PUqpkYdMIGcOOJSRSmWFdgu5+8zkk2guFXZn82LiyfGcMjnJU5sglU6oinTRuddtUb0CuhL9zU4rUW4SHcZzIV9zqlyhtucm0ZxKD5j3grbHy8Wg875Z73wWcmwwGMTNN9+MIUOGYNq0aXjnnXesdUOHDkVHRwcuu+yy3E6Aw+FwSkUPFjgWL16MjRs34rrrrsN7772HMWPG4Gc/+xluueWWvC1jcu6F7LLLLvj6668BmAlA7r33XmzYsAELFizAwIED82oEp/wsXLjQmt9///0r2JLKYncEd8vOznMsRGkmm/YYiYJBLLwqADTLnSn3SWcaVI48DvaIVsXEmyIzWyazKpqltibCiqOpate8tvl4GNtE06lsSafdyEeYIL1JuZTwSGzevBk77bQTrrvuOmsQK8bs2bOxZs0a1NcXJycLh8PhFANSwNQdaGpqwnnnnYcVK1Zg7dq1OOOMM/CPf/wj7wTSOXs6Xnrppdi4cSMA84/gqKOOwuOPPw5FUfDwww/n1QhO+XG5XBg7dizefvttrF+/Hlu2bKl0k1Ji76va/TfywSMXJyqXnXJGqLILProhQChghDwf7OfqlVToZcrE3hWhqIosMSwtYGo5iqUlqhZKrd2g0Xwe5fpTXLx4MaZOneooa2howPnnn49zzz037z83DofD4RSOpml4//338c4772DNmjXo379/XvVkLXCsXr0aO+ywA0477TSrbMyYMVi7di2++uorDBs2DM3NzXk1glMZnn/+efTt2xcAcPTRR+P999/H/meZ+ThEjcGQo4nONAbDFU3iVQb/jWIT7PDA21CgtFJmUiX8K5RMmppqykxdajr14uRrSKXdqFbn/RgsQ+buTP47pYpOdcopp+Cpp56ylgcPHozbb78dv/jFL+ByVacpHIfD4QDo0ZnGATPh9xNPPIFFixaBUopf/vKXeO655zB58uS86sta4Nhxxx0xfPhwTJo0CZMnT8bEiRMxZMgQeL1e7LvvvnkdnFNZ+vTpgxEjRmDNmjX44IMPQGl6CYJQpw9GNlSq78VD4jpJzFrdVXkpKEW0Kk725BMMgDJSMi2H7u8ESbAhe/3113HwwQeX6IgcDodTXHpyWNzBgwdj27ZtOOqoo/D3v/8dxx13XMGDQFkLHK+++ipWrFiBFStW4J///CdUVcXIkSMxefJkTJo0CZMmTcpbzcKpHC+88AJ23313AGZSrURi/UQxwkC9mbsfogak8s+ltqeMibCke8Mdr58RM8M4AOj28hRWO3IAUOsAMeyMZiXoxKoLAJiU+a3O1AmTMziWE8JKNpItRC+OJFDoCY7emRy/u2qTbgiOLOJ6NON17FeR4+ZSlBHYZUu3qGflxwKYvhYSKb0QozERMjEgEwMhOP076qRI0vYhQ0ZruM5ablBC2Byqw+aQWaZSEQM8cV+bjcE6UFaPFk/AKlvrawIAGIyg0R1CWJfglpwmdYGI+UBSRlDjypwHZFunF33qgugMuyBFfYkkkcbvjSY6MnzHiITi5+v2FifXiKZKEGWzDYwSxAyqYjk6JMWArhZH67bttZfR9t8XHGWBQABerzfNHhwOh1OF9GANxw033ICTTjqpqElVCWO5G1OEw2G89dZblgDy7rvvQtM07Lrrrvjf//5XtMYVG5/Ph4aGBnR0dHAHRBuxkcbDDz8cnc1Hmh12QmDYQ9MaplQeK6OyPfxUtFwwO/uEmoJCbFsmAoJuEw6iLylhgKCZEauIDjApLiwQw6wvFv1KjJh1AGb9htuMbkUVQI/6/ur1ZueMEYDoxNyuxfTbUGpU9KkNwi1pqJHNTlp7xAO3pCGguizhQ5F0MEaszr1GBSjRzqA3up8kUHglDQJhcIsaFEGHRzSP4xJ0NEmmw7hb0NBH8sNFzHWd1AMRFJ3UDREM2/QaaEx0OC/HIioFoxdPpwLChmT+6vGOZliXoBsCdEMEjZrJMEZAKYER7bDGfDyIwCy7f/PWOl95l6JDFCgU0bAyVHskzTpXiVAIhEERDCiibvlEqFREjaSiQ/Wgr8uPkKGgxWWGD3MRDQ1S9mZssehVkWj4MoMJcAsagoYCl6AjSBVQRuAVVXToHut+1UthtGteNMpBtKq16CsH0KrWJdXfocX3oSDQqWAtd6ou6EyAR9LgV11wSxoMJiCkyqAgYIzAJekwqICwJjm0QonO96GwArdLs+q2f111Q4TaqUBwGZBkwxImIiEZitt8uCkj0MKS1cEXRAaqExCRWU7lRliEoMTbQOxyaCrBkBEwBlDNbKuQoNUiCXIsESgIiT4nttf8m19dl1x3DrS3t6OpqclRNnv2bNxwww0F1cvhcHoe1dxfi7XtZ+ffAtGVu4muEQnjf/deW5XnVkrySo/rdrsxefJkHHTQQZg0aRKWLl2Ke++9F1999VWx28cpIy+99BLG/ubIihybyt1DzdjTcCnVkfBQBMsYMhcAvGJ+o/kdUYFOEgxH2NxcUY3c9g2HFLjcubVZC0ndJ4RJDixYsAAXXniho+zHH3/E0KFDK9QiDofDKQK835I1OYWZUVUVr7/+Om688UZMmjQJjY2NuOCCC7B9+3b85S9/werVq0vVTk4JOfLIzEIGMeLmTrmQR9qJokD0rntsQb16EgI2ysV3aC93BKti4Up4aFxCaQSiRHO1noYRTj+WRG1aGWpkdx3y1W74/X4QQhzCxnnnnQfGGBc2OBxOtybmw5HP1BvJWsMxefJkvPPOO9hhhx0wYcIEnH/++XjiiSd47o0ewIUXXmj5b1BDB5HSPxaiCoepVTkQk03yzXItbqZF08gPxCdBHhhMvbILtAp2ShVBh0q7zmCt5zjqXklifhc9hbAqWyZo5YaqTrOqauTRRx/F6aef7ij7+uuvsfPOO1eoRRwOh1NEerAPRynIukf1xhtvoG/fvpg8eTIOPfRQHH744WUXNp5//nkceOCB8Hg8aGpqSordzsmPY445xprftu7Tsh7bLih00b/ukaYmlaQazKlKHb3Kk6cZFid/AoEA3G63Q9g4+eSTwRjjwgaHw+Hkweuvv47jjjsOgwYNAiEEzzzzTJf7rFixAvvuuy9cLhd22mmniufKy1rgaG9vx9///nd4vV788Y9/xKBBg7Dnnnvioosuwr/+9a+k7LDFZtGiRfjtb3+LM888E5988glWrlyJU089taTH7C1INo3G5u9W5aXui/XrMvUfib1/m43wkKauYuabC6jFifUvZhiyiGXJFtOdEJxmVVI+9msloqtwqh2qx7HcGqlNuV26rOrFIJbVva8c6GLL4hPR8nKD65JiRYSKEXMYz5Z88rIwxnDxxRejtrYWkUhcLfnpp59i4cKFuVfI4XA4VUw5TaoCgQBGjx6Nv/71r1ltv3r1ahxzzDGYNGkSPv74Y1x22WU455xzUkYjLRdZ/1vW1NTgqKOOwlFHHQUA6OzsxJtvvonly5fj1ltvxbRp0zBq1Ch8/vnnRW+kruu49NJLcdttt+Hss8+2ymPhXDnFo7PV6YeTzgJGUBmo0rXUIGhAtVn9lNp/ozuYDmXSbshZCDz5JiY0QDIKZzHcGRyAasUIfFkk74tpN9yihrBRWZ+dkN8F2ZN8zcNBBYQwqGHJilSVCUONS9sxsyojJEFMUXcSDBkFfcYAkocWkVKKa665BrfddpujfMqUKXj++eeT8m1wOBxOj6CMJlVTpkzBlClTst5+wYIF2GGHHTB//nwAwG677YY333wTd955Z5d+u6Ui77Himpoa9OnTB3369EFTUxMkScKXX35ZzLZZfPjhh9iwYQMEQcA+++yDgQMHYsqUKV0KN5FIBD6fzzFxUvOLX/wi623LaaWSzn/DjmWWZRSvY5Pov2G31Zd4EruSkI0gUkzCKTKF50OptBzFwIh03Taa53vj8/lwyCGHQBTFJGHj22+/xQsvvMCFDQ6H02MpVMOR2D+1a4YLZdWqVTjssMMcZUceeSRWrVpVtGPkStYCB6UU7777Lm699VZMmTIFjY2NGD9+PP72t79hwIAB+Otf/4offvihJI2M1XvDDTfg97//PZ577jk0NTVh4sSJ2LZtW9r95s6di4aGBmviUVHSc8EFF1jzhhYpqtlSUSmg/xJLylatFBKtKjG3RrHJJ1N1jFKZU9VL4ZLUG9IKf07CofI8azTB9MoIxQWMriJVZRuhKpEtW7Zgp512QkNDA9544w3HujfffBOMMey000551c3hcDi9haFDhzr6qHPnzi1a3Zs2bUpKxt2/f3/4fD6EQsWPjJkNWQ/NNTY2IhAIYMCAAZg0aRLuvPNOTJw4ETvuuGPeB7/mmmvwxz/+MeM2X375JSg1R5R/97vf4Ve/+hUA4KGHHsKQIUPw9NNP4/zzz0+576xZszBz5kxr2efzcaEjDXZJuO3Hj9G8y9gu98nWrCobSmji3+voKiRuNTiLZ8IlaKBMgFGA1FtuZ/GIJsElZ39dI+1uePvmFz2tkvy///f/cM899zjKmpub8e6772KHHXaoUKs4HA6nAhRoUrVu3TpH4j+Xqzg+pdVK1gLHbbfdhkmTJhU1ysjll1+OM844I+M2I0eOxMaNGwE4fTZcLhdGjhyJH3/8Me2+Lperx9/AYiEI8c7d5u9WoXmXsWn9N3oyqi5BFlOfOGUEQoGahCDlz2OMUkeoSoUkGF2GG86GsFo9eVzKwTvvvIOxY52DEPvssw9ef/111NamDhTA4XA4PZoCBY76+vqSZRofMGAANm/e7CjbvHkz6uvr4fF40uxVWrL+502nRSiElpYWtLS0dLndmDFj4HK58PXXX+Oggw4CAGiahjVr1mD48OFFb1dvJ7BtvWlSlfAiCXq8gEpxzUas3yhoQMzyhlAg5qcr6KbzOTEAaAnhb9MMYhNm1kVtliksehzRZkmj1wBMNNvFJAZiEMvsirqSvwQ6E2BETUl0QwAFgUEFKFEhQzVE6FSASChotKKY/4ZGRdTI5si5IhigjMAjavBEHZxFMHgFc73GRGiGCIFQeAUVXkGFET3ZmK9CnZhsErQBjda8Iuiol02HZ52K+CmFs3vf2gC2dtagX50fvogbBiXwKhr8YRcoI/AqKigI1KifQTrTK5EwS9CqlVW4Rd1yDBcIg07Na6VTESqToDPByrytMwF+XYFX0qBEE/X5DRcapFCSOZVfd6NBCkW3MR2/a8UwaFSboVEJQarAK6jWbwwhet1kQYNb0RCmMrxRJ58IlSESwCuoaFXrHOZWWyJ10JkAMAE/+eshEAZfyI16Txg/bGqBrOhgANSgjP4tpp/Xj+ubAQaIbgN1dSGENBk+nweMEvTp4095DSOaBC0ow+3SYIRFMEqsaE9UFaHq5jkaAfM+hto9gE5AoxqpcGf0YY/dI0ZAVWI+12EBVGZITPshhARQFwPrkMBEBkEnoJ0SBEpAJQbU6TBUEQgLgCu9gEcNgtXTZjnKdv7XHDCDov+fXsLYldc71m3YsAGDBg1KWx+Hw+H0dPKNOFWOxH/jxo3DCy+84Ch76aWXMG7cuNIfPA3V6+1oo76+HhdccAFmz56NoUOHYvjw4ZaT4kknnVTh1vUcpk2bhscffzxeYLOWolJqZ/FMWpBYsCNrECCF9VWsPxoTMLJBq3UKIoUggMGAmXnaoCRllB7GCESBwiXq0KkAr2IKGPbwtR5RhUvQrehKAqFwEx2G7aRbJB86DXNkIcxkaCnCd42uX4ctaj1ChoJ6KYSfIg3WukE1PoQNCSoV4ZY01Moqtkc8aPCanet6VxjbQ12PXDAG6xwAoI87CAoCASylBkciFILIsnaWb1O9qJfC2KbXpAwFvEWrh0dQIUbr26LWozab6AA2wukyPQLo74oHh2hV46Pv28LOaxPSkuvYtLkhKZpUZ6cHejAeCWrbtlrQsAjBZYDZgwvEHAG31oBEhQi7TwUYAVTBXKcRwJNwrRNeAqIWwVwxJAIGAIkBEQFrzrsy611XTrgA/fr1w3e2sgcffBBnnnlm4e3icDgcTtb4/X589138a7x69Wp8/PHH6NOnD4YNG4ZZs2Zhw4YNePTRRwGYfrl/+ctfcNVVV+Gss87Cq6++iqeeegrPP/98pU6hewgcgGnSJUkSfvvb3yIUCuHAAw/Eq6++iqampko3rcdwwQUXWAKHHglCcnmz3rcYPhjlkPorhRxNQiITHRor/WvnUbSqd5LPlQiVtIFj1QAAUuFJREFU4BKq2/+knAghp3qwmO/Pa6+9hokTJ1rLXq8XmzZtQl1dXfEOwuFwON2ZMobFff/99zFp0iRrOeaffPrpp+Phhx/Gxo0bHS4GO+ywA55//nnMmDEDd999N4YMGYL777+/YiFxgW4kcMiyjNtvvx233357pZvSY/n5z39uzbf98AH673ZwBVvTNWpdXIvSW+jjCmJTqPBOH2Ok5JGtKo1du5EJTZUgZeFIbwQlCO70DxwzCIhYPdeUsPz+C2+55Rb87ne/s5avvfZa/OEPfyhewzgcDqcHQBgDySNLaj77TJw4ESzDfqmyiE+cOBEfffRRzscqFd1G4OCUHnvM/C1fr3IIHHbTKbv/RqmIWZYYrixzccT8NQjy62WlQACz/DjKQVdO1A1KCFqeCfe6PHaJcmAYEDJmWC82wRxs7fzBMjnwd5Fwr5QQjYBFzbuyMac64IAD8N5771nLb775pmMggsPhcDhRyqjh6AlwgYOTknDH5q43itLdQtqKAoVBcwu5alAB6GbnWUnyMX3yG66cfTmqhogAFKrdyCHXSaI5VaEEg0HU1NQ4ylpbW9Hc3FzU43A4HE5PoZqdxquRak3vxqkQ55xzTkH7J71IafpQse1IHib5ms2iqBihe+1ZxPMNe5upg10jJHeilYQTT6fdaFFSR0TKB1lyXiyWRQdXycFmTclCyIgwp6N20EitkbBrKjJpLYJGai2F3ZxKz0IrpAbj7dJCmUPe0lDX4zSMFqbSIGryp1mIpK9TsDmYEz23Y3/55ZcOYcPlcsEwDC5scDgcDqdocIGD48CecVwLdVawJd0buUJJTOzRp4pJthGqUmH09M9MpIvzq5A5VTY88MADjvxGZ511FsLhsCMvD4fD4XBSwAqYeiHcpIrjYMyYMdb81u/ew8A9J6f13yiHLwfg9ONQozlyVJuWIynfhs2Pg9XHR93dcu6d8VL5NhRCoxJG2Cjdq+uVNNAczHvKTaaQuL2BYphTGYaB/fff3+FQ+PTTT+PEE08suG4Oh8PpDXCTqtzgw1ictGz5+q0ut+kO/htqoHLhYcUsBJZKZNyOYTer8kql0Y6Um2yjU/VGfD4fzj33XEiS5BA2vv/+ey5scDgcTi5wDUdOcA0HJwlZlqFpGtTA9rzrIDR/YaQc0r8oUOhGbvJ2UFPglVNkP8wRmehJvgzlQhAY8ojIVzBdRavyp/HFSCRCpbz8bBKT/hWNBHMqZhSoGTJQ9K8yoxTT13U6otDFaG5uxqZNmyCK3WDkgMPhcDjdFi5wcJK48MIL8ac//SmrbdVaQIwOjAsJA+RGtE8tGHDYsafqL+oeQAqZDuGKD9CjPqxdBS0y3Nl3PjtDbrjk9E7YotB1XX7VhVpZhUAoKMtOYFkdaUE/2cx+HTNV2qrXwStkJ7w0yCEAgM5EyIIBWTAQNmqh2pyhZdG0e4uF8RUIQ507AiPqvNzgDYExYh3frtlQqYhGJYwGJYRwmhwflJGkjn7YkOAW9ZSO5em0DH2VIN7cNBKSaKC/17wXraEajG1e49jue38LAGDP+g14u3UEAODnLT/gu0C/6PmZwstONa0AgK/9/SEQhlE1W/Ctr8VRV3vYg+3ba6C4TfO6vnUBZ6N+ckMAQGVmWuM1FC+5oOjRrdEsGjE/t0KtBro9hdYtdhkzOJznYk6lbW3DT3+8Eywcxs0p1r/44os44ogjsq6Pw+FwOHG4SVVucIGDk8T5559vCRxBowNKbWN0jT0SDpLUgoZii+xp6zNpNeayoJq/his+b9+ORp9Gww1Q2RRg9Giyc90L6DXM2p7ZQ5DaZu3+JobHALR4BxwAtvpq4Yo6VlMqIBSW4XLpjlF/VZXgctk7naZgIIlmJ9evKWgLeyELBgRCYYgERrRh9VIYMjEQpjK8YgRuoqNBDGFrNLRWHyku8LgEDVvUejRIIassTGXUihG4BB3tmhceUYXOREQMCS7RbFPEkKAIBhTBgFvUETYk6FRAUFNAGbGEDwBQpNTO63WusGO5QTHb0Bj9pSCQooJEUFegCAZ8mguKYEC3hRSWBGoJMTEBzKd5UC+HkMj6QCO2RWqSyls8AXwfMIWEtpDXKgOA/3UOsraLCRubg05hZmOgHgNrTIHu20A/dEbcSecXI9zpwiZVgtGugCkUQkB02JUKKgFaZTCZgagETDalZhEwn7NOCZJhau+onpDpO/rLRGYmAIwKsIJEQXUBgkuHWEth6AKERtVMvuhmMEJS0rtkWdkZBGJQAAQGohMwAfju6hkpzy1Ga2sr+vXrl3LdH/7wB1x55ZWQ5d7tB8PhcDgFw/Nw5AT34eAkYY9a0/bl22m3M9zR317UdwmqhZ/sVr3wTOE9gUTBId9tskUNd4PxlQK/yNdff32SsDF58mS0tbWBMYZrr72WCxscDodTJGJajlym3ko3+AfmVJKtX7yFgfsfVelmxCli1uZQuDo6Xh26x6HlKAaaIab1dbBrQMrF+kBjWY+XScvRE+ns7ER9fb2j7MQTT8Q///lPSBL/zHM4HA6nsvB/Ik5KGhoa0NHRAT1UvMRznOLg09zQqVDWqFK0mpNJRNngb8Dg2o78K8hwikQDWOLXUieAVPnhqvXr12Po0KGOso0bN2LAgAEVahGHw+H0AhhDXlFYKhG5pQrgJlWclNgTACaSReLmomMk5tqIwkTm9OeIlUvMka05YsskHQpnHyZXVTPL5FtClQ/BGtaLN24g5ZBZPEYuUaM2B7g5WTHRNM0hbJx99tlgjHFhg8PhcEpMPuZUvdmsigscnJScf/751nykozVpfcx/w1rOwjqJKqnn025fHRZPJWO7Hneg7tCLF7ZVM1JLhKSAr1xQz/9m5GNO1RpKdi4HUjuM29ngb7DmOyPmQ9ru8zq2MSLm9RECRZCc9WS1CEkhAAtSPCSwKHWddyWVUJ8YFI0xBkWJv0jz5s3D/fff32XdHA6HwykCPA9HTnCBg5OSHXbYwZrf+kV6x/FEchUqADNqFVAdAkYqjYYv5E6xZWZ8enyfDiN7YcKXsK29nmqiq0znPi27c44JEOkEjHIiqLYobGpq+ypSRPcXkkUY5kycdtpp1vxxxx2Hq6++utAmcTgcDodTErjAwemSrV90nXG8lCSZU2Xqp1Vw5KBTK0w4KKaWo1jolbCf626k0HKUmrfeegtPPPGEtbxkyZKyt4HD4XB6M4TmP/VGuMDBScvAgQMBAFSLZ9+rpv6n3XfDMW9z5LX7ceRKV/4bqdiaJuFdsehQq08oyUS5o1MlEjOryheSYw7AVP5ExUZVVfz85z+3ljs6CnCU53A4HE5+cJOqnOACByctmRzHuyPpHMfzESzypdI5OLIJiZuP43ivpwAtB8nCp8NOc3OzNf/cc88lhcPlcDgcTunhTuO5wQUOTlrOPvtsaz60baNjHRPMSVTjZVqt6behRwf5qQzoJTDNZzmGIk2n5dArkAhufbjJmgDgp0iDY0qkI4UvRMyBe3OoFm1hL4xEb2IAqs1xPKTJCKrZR+aK0a564NcVh79GR4LGwK8p8GtKklP5tnByu7PRNrQn7Lc95MH2kAfbgl58ubUftgW9aAvUWFOMROdxO3pABvWbU1cIGoGgpRceiJFBsFBoSodxq26JgjGAGub9orbnT/RL6b/GNl+PjrfeQGdnJwBgwoQJOOaYY9K3h8PhcDicKoHn4eCkZfDgwdb8oS1B/OUvMwAAoy+907EdEwAmm1I7IwCYKXxY68X4LxPjZllUNm0ZmRitg8TLAVOwYJTE8yPY+3oMQLRzxwSARASzDgkAIzDqdJCoYMJ0AgTNRz3SroC5KEAJ4NEtoUOPOG3Fgmp8mYgC2iK1kGRz5H+D3gAx2gmUJQNhXYYsGNCoiHpX2PLl2BRuQJ1sJp8LGTI8omb9ArCEjhgqldCmetEGL3QqQmcCBMLQqbmhMwFBQ4FOBUgChRq9iAIYKAiCmgLNEM0ObfRCqYYIRAWPiCaBEAaRMIQ1CYMb4mY49XIEnZobkmBAjQoXPs0FyggkgSKiS6AgEKJ64LZQjRXxyiurCKguq67YvEdWsaazDzQqIqJJ0WuqQBQoDCpAimpaJJFidXsfUEYQiApF7WEPGDOFDULShyynjKAtUAPKCBiDta2ux++dFrF94hgB6TSXiUEscylBI3EVd/QZE6IaC0biZlV2u9uMNrjRZyPmFE6idWohCZLbrIxsdAN9dJCf3ECNWZmrVbTq1moYvr9ipqPajRs3YtA18bLly5dnaASHw+FwSgrPw5ETXMPByYoFCxaUtP5cbeW7M6FsYghngdjNPM+8itr1Rt0VpfT3YtCgQdb86tWrQUj1J2PkcDicngo3qcoNLnBwMjJy5EgAgGHE7fo/uXtGpZpTEIU4kJcalZZG2ajplffyd8mVkSYd2o1uzhlnnGHNz5kzByNGjKhYWzgcDocD7jSeI9XbA+NUBRdeeGGlmwCSxiGXRGyPrxwfYTbq4h1cVuaQpcXM+s0pD0kJ9Ur4yDCa+yf322+/xSOPPGIt//73vy9mkzgcDofDKTlc4OBkxD6y+t5771WuIQCESPlNSApNzlYIQhXoXe3O59TmRMOK0CuXxOo1Ccvp9EpoTsUYw84772wt+3y+kh2Lw+FwONnDTapygwscnIzYQ3Bm8uMgWnQm8UWyLafL0py2vFTaCVo+wcXur5HOd6PY5lRCGn1tWC1tKne78zgAR/Qsu1mVKJSmg273w7ObU1VCaCQ5/qPIPuczKQfM5QcffNAq+8Mf/oC6usqGVeZwOBxOlJjTeD5TL4QLHJyssXd+CvHjSOfrLGQw9S+Z8GE/RoaOqZDDaLxPc3W9EVILIOXK7L095HUsx8LaJoa37YpEISNfUgkh6Xyic+3M22Hp7nG+j1eW2g1Dz/1TyxjDOeecYy3PmjUr5zo4HA6HUxq4hiM3uMDB6ZI99tij0k1Ii8OPA+n9NzI6jBdBltHKnIJdKpGWoLtBS+lwUSKMbdnlRPnDH/5gzT/33HM8KhWHw+Fwui1c4OB0yVVXXWXNt7e3V64h6MKPQy5uJ7wcpjhdmVN1xw51OsoVraok0anKfBuYYeC6666zlnmCPw6Hw6kyeJSqnOACB6dLTj31VGv+lltusea7a3hcC6N4j3+u0amKlYsjG9KFxk00qyon1ewwnjUldBZfs2C+Nf/++++X7DgcDofDyQ9uUpUbXODgdIkoxjust912W/Y79tKXqidT7EhVqahkdK5qUCh1fvkZ1NZNAIAdd9wRY8aMqXCLOBwOh5MEZflPvRCeNICTFSeffDKeeuopAIDf70dtbS0Ap5Zjj6vutOalEBDuE99f9pu/YhjQagApDISbASlolgsqYLjjORFiv6IKGDG/5Ghn0LNFgNoQLWOAFos6RQEmMbCYH4fIwDSzIkYAIerTwaToy06YVScRzHkiMjBKnI7JDKC6AEjmiLZuiNAN09HZsG0b1iUoog7KCNpVN9yijlrBQMiQIYBZ5lOSYIblUg3J0YG3MACdClCi20mCATXqzB02zDo6I25IogGDChAFCl/IDVGkoNFrYVABqirB7dIQUSUYUS1HOCyjxhtBZ9i8qJ1hF5pqgpAIBWUEnZoLnZoLlBF4JA1hmxN5KvOuoC3ylRA1QRMFCmgKAhGnr4JumG0CAJdLs5zCvYqKoKrArWhQNRGMEXhcGoJhBWpYAmMEstu8p25Fg2+7F1J0WQ/JEN06jJAEwWWAhiVATPiYR58lohIwkYEJDIQCTCRR9TaDefOZI4IZI2aAAyvYFmHx51NEcrSz2GMVfR5WT5uFHZ+8BdQQ8MNvrsUOj8+1/DcMD4W43bwWay64wqriqaeewinXz7SW33nnnaRrzuFwOBxOd4MLHJysuOiiiyyB4/nnn8cpp5yStI2gA3aXhJiQkc7+XQokrxMjNgGjDJCY0JHYd7R1rruKihQzWZIlA76IG83egLXOr7lQL4cd2+caiapd9UBKF9oLgD+S/oKFI3JS+400yecSI1SF0kSsytevJCZsJB1XNTvh9rC9wXCyY7UWkvLTmgVFICoMEUrSRkkzN0DBmjmmC1hzxtUAgO9/fa1VvnpacpQpTdPwr3/9C/Pnz8fbb7/tWLdo0SL07du3sMZwOBwOpzTk64/ROxUc3KSKkx3777+/NW/346haEke5S4yQo4O5kLHXWziaVvqoWYWEEo9E4sJFOkGkW2G7/zFhIxWMMdx///0ghIAQAkVRcNJJJyUJG++//z5++ctflqy5HA6HwykMgjx9OCrd8ArBBQ5OVrjdbsuM6tNPP0UgEOhij+IhRmzzQdsKe1JBzTbfmboDS6XyDyt4JbWo9UWM4nbOJTFN1sUqRw93LyGlo6MDBx10EARBwLnnnpt2uzvuuAOGYXC/DQ6Hw6l2eOK/nOgWAseKFSusEcHE6b333qt083oNl1xyiTX/wgsvFL1+obh987KTzlSpWPi17PI39Bb0sKklMTIJH8HCNT1CVzJZBu1WZ2cn9t57bzQ2NmLlypWOdQceeCAWLlyISCQCxhgYY5gxYwYEoVt8ljkcDofDyZpuMUw4fvx4bNy40VF23XXX4ZVXXsF+++1XoVb1Pg4++GBr/l//+hdOOumkvOqRwl1vU1ZS9BcZJWnzcFCDQCiCyZZAWNXk2dCZAJkk96wJYSWLRpUPaih9OGGaSfAwzHNIsmQr4am9+uqrOPTQQx1lLS0teP3117HrrruW7sAcDofDKTn5hrjlYXGrGEVRMGDAAGvq27cvFi9ejDPPPJNn3y0j48ePt+afeuopBIPBlNtJIfNXTrC6EtMIGnaTqWxROnLfxyKT+0QRPgSqER9Vz+TsnQo9QUsSzsOEStWS92EpmlEMc6pC82lk8t9QbQn8tBKbULEcfHCY/Ral2e/OO+90CBs77bQTOjo6sGXLFi5scDgcTk+AJ/7LiW4hcCSyZMkStLW14cwzz8y4XSQSgc/nc0yc/Kmvr8c+++xjLS9btqxsx85HKElFvn4cxRrll7q0z+kedAsT1CKYU+XDtddei5kz46FtX331VXz77beor6+vSHs4HA6HU3wIY3lPvZFuKXA88MADOPLIIzFkyJCM282dOxcNDQ3WNHTo0DK1sOdyyCGHWPNPP/10yY6TSsAQUytUHA7jSeukHpDRuhcQiVSRdWe2smUK7Ubg7Y8xd+5ca3nz5s2YNGlSkRrG4XA4HE73pKICxzXXXJPWGTw2ffXVV4591q9fjxdffBFnn312l/XPmjULHR0d1rRu3bpSnUqv4Re/+IU1/+STTyIUChWlXlaFoi9LTOzWg+iu0amypgLaDaOjE1vvfdJaXr9+Pfr161f2dnA4HA6nDNACpl5IRYcVL7/8cpxxxhkZtxk5cqRj+aGHHkLfvn1x/PHHd1m/y+WCy1XGLHK9gAkTJmDSpElYvnw5AODFF1/E1KlTK9uoKiKbSFWlzsHBqQzbF71ozV955ZUYPHhwBVvD4XA4nFKSr3lUbzWpqqjA0dLSgpaWlqy3Z4zhoYcewvTp0yHL6aPVcErLLbfcgnHjxgEAbr75ZofAISUoPOQAIEacmW7UuviCqz1aVhtfr/gAKpoZx4keL7f66dHdxWgYXcNNAAYwkYFEtRJUNTv+RKZRsypzxFvQCajHrIhRAqaKIDIFUwVn6Ahbe2P+G4wKIAKFIDKIAgVjxMriLUd9M2JO1CFdhkAYtkZqoFMBfVzmhdGpiLAhQacChIRQFX5Nsco0KsIfccEl6TCogBolbmMWMSR0BN1wKfGL09nhgSBRUE0EESmYJsSTHzJAkCgYBRgTEIlI0KW4YKREtR0+3Y1GbwghVYZLNusOabKVATxWFlYlyJJhXZu4fwuDqolgTEKdx2xvZ7snfoIR8x6QsAChXxiBbV6zXCNgEoO+3W3WIlEQTQCTmHlLGACdxG4h4NGBTjmePdwgptN3tB2C5tRMCapZP9EJqNsm7AnMil4FAFSG5ZzCJAZBI6ASgxAhVt3fXz4Tqfj444+xz3lXWctXX50++R+Hw+FwegA803hOVJHhdNe8+uqrWL16Nc4555xKN6VXM3bsWLS0tKC1tRUffPABwuEw3G43Pr1jRnyb0+6I9dFAJZgvWHRZDjAwgVgCg1kW3c7WV5Q7AZbCMkbQTYEkEULjpllEFcAUagoUarzSjNGIGEmKV8cogSDSioeG3eyriwszYQWSZMDX4YEo06wcuKkeFcBEBjGDX0soKlxsD3jhVjI4x0SJXZeIJkGicTOttvZayDaBKBHDpwD5JmIM5f/ZIropnBKdAMQUUkHQ5R+AKcymWccYLrvsMmv5+uuvR9++ffNuI4fD4XA4PY0qtJxPzwMPPIDx48fzsJJVwEsvvWTN33rrrflV0ossi9RUElKVEtbKpD2MVODzU4KRpSVLluC1116zlmfMmJFhaw6Hw+H0CHim8ZzoVgLHE088kZStl1MZRo8ebc3Pnj27gi3JDIkIEPTyaScSzaSypVJZxPNtb/YU8dpn8HMnFXLwV1XVEUjhtttuQ2NjY0XawuFwOJzyEUv8l8/UG+lWAgenuli6dKk1f9ttt5XnoAX0K7mvdmqCanbCTiRFQsFiQbTKf4qYGPffyJY777wTLDpate+++3LtBofD4fQWyqzh+Otf/4oRI0bA7XbjwAMPxLvvvpt224cffjgp6qvb7c73TItC5f/lOd2Wo446ypq/6qqrrI5XT4T01iGJIkPCRfjklCmiL5Uz3/OtW7fimmuusZafeeYZiGL3MZ3jcDgcTv4Qmv+UKwsXLsTMmTMxe/ZsfPjhhxg9ejSOPPJIbNmyJe0+9fX12LhxozWtXbu2gLMtHC5wcApi1apV1vyVV16ZtD5dfg1C8+/AF+wOkTCazuzLXTiHC6Kz3TFHbjtGmpNO58eRaE4V1rv2odD1wju2XZlTxaJTpUJLc3zNpgXR1Nh8fmopEjOFM9LvT2zrMp0OSWNWZ+2fRxPtCf0WLlzIE4tyOBwOpyTccccdOPfcc3HmmWdi9913x4IFC+D1evHggw+m3YcQggEDBlhT//79y9jiZLjAwSmIsWPHWvPz588HpTmK7tzMKSMRvfoDyRVkalUJx/EisHLlSnz++ecAzFxBJ598coVbxOFwOJyyUiaTKlVV8cEHH+Cwww6zygRBwGGHHeYY9E3E7/dj+PDhGDp0KE444QT873//y/tUi0H3/LfnVBX2h/jXv/513vXY1YwpR6sTRqFJGtOaVKFvuf9GdpQtQlU3grqczxOlFAcddJC1/Mknn5S7SRwOh8OpNKyACYDP53NMkUgk8QgATPNdwzCSNBT9+/fHpk2bUu6zyy674MEHH8TixYvx2GOPgVKK8ePHY/369QWedP5wgYNTMLvvvrs1//TTT+PTTz8tfyMy5deoEO1hT5fb5BqdKtHMycjD2VoNymWITpVI9jZL1eBAnokxY8ZY8wsXLkRtbW2GrTkcDofTE4llGs9nAoChQ4eioaHBmubOnVu0to0bNw7Tp0/H3nvvjQkTJuDf//43WlpacO+99xbtGLlS/fYanG5Be3u7FQ509OjROOA3t4LJ3IG2bGTyPUmR0DBfShmpqjvwwgsv4OOPPwYADBs2jJtScTgcDicv1q1bh/r6emvZ5XKl3K65uRmiKGLz5s2O8s2bN2PAgAFZHUuWZeyzzz747rvv8m9wgVT3UCKn29DQ0IAnn3zSWv70+YQwudkOcJdx4F0IpBCIQiIQzL5TzRhxZCFXbc7UuiFga6AGQFyTsTlYi45I7qHpwqH0mhA94FxHQxKYLoCp2b/esdC4mi5C00XohgDdSN7fMAQY1JzCqoxwJL0JlrHd2S6xU4SgEQhaGgfuNOUATKGJEUAnJcurQljmkLhM13HMMcdYyz/88ENJ2sHhcDicbkCBPhz19fWOKZ3AoSgKxowZg1deecUqo5TilVdewbhx47JqqmEY+OyzzzBw4MDCzztPevdwJaeonHLKKbj++uvxzTffIOxrxXuPXo7f/OY3mDlzJvbbb7+ytGHnm+8EQKDXMSAaglUKEhADUJsomMJMoSaaKE5ql0AVBqIRUBeNi+C2RHLUECEoBhgDqEHAqABBYaAJWgUKAgEMBhVAGYFL1hHRJIR0GbJgOMyn2iOmuZVmOIWekCqDEAY1qkmgjMDQzUb5/W4wSsAMYgpwjMSd7g0CQ5OSNB1ME0AIABEAzHMXFSMpypUkGaC2KFqiQGFQAf6QC6JAQanZBiFaThA1RY1eS2oI0MJmm7WwZB4XAFIJdQAEvwiIzNK+xAJ7EY2YpxDTyFCSclhEDBOYJwYIEQLCAEMx9xHV+DWQggCVADECMBEwXLZ1fsDwAEwk0D3mvoQBP1xyeco2Nzc3W/NvvPEGD4HL4XA4vRmG/ALf5DGwOnPmTJx++unYb7/9cMABB+Cuu+5CIBDAmWeeCQCYPn06Bg8ebJll3XTTTRg7dix22mkntLe347bbbsPatWtxzjnn5NHg4sAFDk5R+fTTTx3JZf75z3/in//8JwDggw8+wL777mutC4VCiEQi+PTTTzFy5EgMGTKk7O3NBWaQaMc9PaSLwXeNipCFMiWSyBKvJ2IJOJkQBOeXlXURQjgRw0MhhtJoXRiKmpS82CxcuBBtbW0AgIMPPtjhNM7hcDic3ofdHyPX/XLllFNOQWtrK66//nps2rQJe++9N5YtW2Y5kv/4448QhPj/6/bt23Huuedi06ZNaGpqwpgxY/DWW285fG7LDRc4OEXF5XKhra0Nv/zlL/Haa6851o0ZMwYNDQ0YNWoU3n///aR9Tz/9dDz44IOOl6aUZDLtYV37e3NyJN31LhVSsDj1BINBR/S1xOeaw+FwOJxSc9FFF+Giiy5KuW7FihWO5TvvvBN33nlnGVqVPdyHg1N0+vTpgxUrVoAxBsYY7rvvPmtdR0dHSmEDAB555BGIooinn366oOPbFQhSsLLD5i5Zz3rbUIZEe+Wgt2ZTF9TM62tqaqz5jz76CKQrNRaHw+Fwej4xu+Kcp0o3vDJwgYNTcs455xxEIhHssccejvKLL74YS5cuxQMPPOAoP/nkk0EIwWGHHYbVq1cXrR1CpHt3FFmGjNv5oihOgSjRbKq3Yw8h+Mtf/hJ777135RrD4XA4nOqhTIn/egrcpIpTFhRFwWeffYaNGzfC7XajqanJsf6ss87CkiVLcMIJJ1hlr7zyCkaOHIl+/frh3XffxfDhw8vX4JAIeOKqEqqKIBIFo04ZXdNFyJIBmuCAUKw8F4YmFi2kLSxX72QUWYemZ+cEbT/TbAf7U5pT5egDkgt2cyoxdS4lc10IoGkCgLW3t+OCCy6wlhctWlSk1nE4HA6n20ORn+9hLx3X4xoOTlkZOHBgkrAR4/jjjwdjDKtWrYKixHuBW7ZswYgRI1BfX188jYdNW5AxHGuJSBWdKkY15rrIVvPBYtG9iiEjlSAIVDq/DjGF9sv+nH799dfFbwyHw+FwOL0ELnBwqo6xY8ciEolg06ZNOOSQQ6zyzs5OjBw5EoQQ/Oc//wFLoZYs1H+jEsJHXhShQ59oTpWKcmckz0XpQTSSZCYnhYpz/66//npr/rzzzsPOO+9clHo5HA6H0zMoNNN4b4MLHJyqpX///njttdfQ3t6OI4880rHul7/8JQRBACEE5557LlS1C8/ffAhVeZ6FRKVDlcpKxY5OlU4ojGkpColO9cMll+Prr7/GnDlzrDK7HweHw+FwOAC4D0eOcIGDU/U0NDRg2bJl0HUdl1xySdL6+++/Hy6XCyeffDKYYao4xCKNdBcTnaZ+3SodnYoTJxKJYNddd7WWN2/eXMHWcDgcDqdq4QJHTlSfsTiHkwZRFHH33Xfj7rvvRltbG2699Vbceuut1noznK4ZUrdu7zGQ+zRD72iHtn0b9PZt0Nq3A5TCs8eu6Dv9VIhiTZojlRYtmtHbF3LDo2gVaUMmc6reHKnKnrTywQcfRL9+/SrYGg6Hw+FwegaEpTKE76H4fD40NDSgo6MD9fX1lW4Op0isXr0aI0eOzGvfDz/8EPvssw8AYIc/z7fKmRx/LdZccIW5/rG5WH3aLADAqKdvxrcn/d7aZtTTNwMAtLAEd40KNSKhvj6EYEiB1xM396p3h9Ee9MCgAnRDgCI5s46rumg5XhvRqFHMFglDcZmCgmEIqK8NoTPgBhHMtg5s8GFjRz3C28yshZ4+IQBxAYIQQJYMNLpDjmP29QTRGqqBR9LQETb3pYygzhVGZ8QNxuCIwuWRNfhCbjBGoBsCDEMAjbaZGgKoFjdFE9rjYxrUdk3hpkBIADGIwxSMaASEAoaXxv1UGIGgEhAGGC4G2WdqigQdoNHqCY3/fn3dDGTLbteZiZG+nDMDI0eOtIISnHTSSXjqqaeyrofD4XA4xaOa+2uxth262+WQRFfO++tGBK98Ob8qz62UcA0Hp9uzww47gDGGjRs34uqrr8Y//vGPrPfdd999AQDvvvsuVl98ecZtY8IGAIewkQsdofgIuiRSaLqY5P9NKQGjAhgFGCOQFAOGnr314w47mGZAmzq6/pANrPFBpek/AzVKBP5I7h/UGKRfBLo/bjJWqFO+oDr3F2OyHDOnr27MXtgATEGDMYaddtrJEjY8Hg8XNjgcDoeTGR4WNye4DwenxzBw4EA8+uijVobzdFMoFML06dMd+x5wwAEghOCOO+4ApaX5GgRDqRM+lNrbZGCDr8RH6L4Eg0EIgoDvv//eKgsEAhVsEYfD4XC6AzxKVW5wgYPT63C73XjkkUdAKcXVV1/tWHf55ZdDFEU0NDRgxYoVlWlgBWjxpO9k1yiFRQCTatP7qTAp/YdX0Esrii1atAg1NXE/Hq/XC0opSLbZDDkcDofD4WQFFzg4vRZCCObNmwdKKW677TbHOp/Ph0mTJoEQggMOOKBHRisaWFNlmo8sBn0cJlUJ22drTrV582YQQnDiiSdaZcceeyz8fj8XNjgcDoeTHTxKVU5wgYPT6yGE4IorrgBjDGvXrsX48eMd69977z0MGDAAhBB8/PHHpWlDSWotHpm0HKJYfBM0UgLtBmMM06ZNw4ABAxzlr7/+Op599lkubHA4HA4neyjLf+qFcIGDw7ExbNgwrFy5EowxrFq1Ci0tLY71++yzD6ZMmZKU5TwfJ3LD6Pr1Izlm+s7krzGksT2+XRrtRp0rnNPxEhFswofoiofezWRW1WWdRRA+li5dCkEQ8MQTT1hl5513HhhjOPjggwuun8PhcDi9DK7hyAkucHA4aRg7diy2bNkCTdNw6aWXWuXLli2DIAh4//33K9Y2j7sEmdXLQY3R9TZF5KeffgIhBEcffbSjvK2tjWcQ53A4HA6nTHCBg8PpAkmScNdddyEUCsHlioeI3X///eF2u9Ha2urYPhxIHY2qKzKN44tSYWZLvS1Sld/vxy677ILBgwc7yl944QUwxtCnT58KtYzD4XA4PYN8tRtcw8HhcDLgdrsRDofx0EMPWWWRSAT9+vXDKaeckmRmVa1Uylk8H7OqXM2pdF3Hsccei7q6OnzzzTdW+bnnngtKKaZMmZJzGzgcDofDSYKbVOUEFzg4nBw544wzoOs6TjjhBKvsqaeewvenXA/D569gy0pLoeFxE2GK7aNb4PeXUYrTTjsNsizj+eeft8r33ntvBAIB/P3vf+dO4RwOh8MpHtxpPCe4wMHh5IEoinjmmWewfft2R/n6i/6A0BdmErlOv9tyDLcn/fv0uJus+XCH2zEBgB5QYGgCaEQC1QVoQdnMPm4kd5gHNPnQv6ETw/psh0fWUKdE0OAKo8EVxsDGDgxs7EC9EkG9EoFb1KGIBtpVj2P6ZmsLtoU9CGgKftzWBEIY6lxh/PBTC7YFvdgW9OLH9c1o89fAI5taikDAjc52D0LRSRDMD6je4QIigsNh3M6a6dG8JyHnp2f1xZdDjJZ9f/lMR34OKpvmZN/PnJlUH9VUrHt0Ab6ZcwUef/xxq7ympgZbtmzBRx99BK/Xm7ItHA6Hw+FwyoNU6QZwON2ZxsZGMMZwww034MYbbwQAbJl3PxYsWIDzzz8/7X6RrxugtySbGEU2ewF3dv4asmBu5xJTd+77uEOgLL9RfV/YnbJ8/eoWgBKIDU5th7rN7XBC+f6U36Wte82FV6Qs/+6qGV1uM2fYAFx88cVoa2tLW/8333yDUaNGpV3P4XA4HE7BMGpO+ezXC+EaDg6nCNxwww145513rOULLrgA119/fQVblJ7N/rpKNyFnVFVFY2MjTj311JTCRkNDA9auXQvGGBc2OBwOh1N6uA9HTnCBg8MpEgcccAA2bNhgLc+ZMwfXXXdd9hWEba+jXtxXszVU0/U2vtqU5b5tXe9bSrZv3w6Xy4WOjo6kdccddxza2trQ3t6OYcOGVaB1HA6Hw+mVcB+OnOg2Asc333yDE044Ac3Nzaivr8dBBx2E5cuXV7pZHI6DQYMGOfw6br75Zvztb38ruF6qdZtXtWAWL14Mr9cLQggIIY4Qts3NzWhtbYWu62CMYcmSJTzELYfD4XA4VU636cUce+yx0HUdr776Kj744AOMHj0axx57LDZt2lTppnE4DhobG9He3m4t/9///R9ef/31pO2kVjnvY4QjqffdmoUmAyjcrMrYll+ukUw8++yzIIRg6tSpCIVCSevHjh2LTZs2obm5GaIoFv34HA6Hw+FkDTepyoluIXBs3boV3377La655hrstddeGDVqFObNm4dgMIjPP/+80s3jcJJoaGhwmFdNmDAB69evT79DOM2raBTvFd0STG0yBQBb/fF1bb640OLriEd48m9NHe1J2mIKP8qW/GJQxLKBH3/88UnrhgwZggkTJuCzzz7DqlWruKDB4XA4nOqAIU+Bo9INrwzdQuDo27cvdtllFzz66KMIBALQdR333nsv+vXrhzFjxqTdLxKJwOfzOSYOp1wMGjQIq1atspaHDh0KVS1uLovuzEcffYR+/folZQN/6qmnwBgDYwzr1q3DihUrsMcee1SolRwOh8PhpIBrOHKiW4TFJYTg5ZdfxtSpU1FXVwdBENCvXz8sW7YMTU1NafebO3euFaqUw6kEY8eOxT333IMLL7wQAOByuWAYRoVbZbLZX4f+tZ0lqz8cDmPdunXw+Xzo6OhAa2srXn75ZSxatCgpfwkAnH322bjvvvt4gj4Oh8PhcHoYFdVwXHPNNZZjaLrpq6++AmMM//d//4d+/frhjTfewLvvvoupU6fiuOOOw8aNG9PWP2vWLHR0dFjTunXrynh2HI7JBRdcgFNPPdValmUZzD7Ckc6cqoJs8xUWmWrp0qXo168fdt55Z+y333449NBD8etf/xr3339/krBxwAEHoLW1Fffffz8XNjgcDofTPaA0/6kXQhirnG6ntbU1YwIvABg5ciTeeOMNHHHEEdi+fTvq6+utdaNGjcLZZ5+Na665Jqvj+Xw+NDQ0oKOjw1EPh1MOdtttN3z11VfW8si5t8PobyQLHImJ/wQGIkaT/HnNZIGUEvSpC0KRdCvxnyRQtIc96Of1Y3vEgxZPAJQRKySuQQUYVIBO48frX9uJ9e2NAABVN/0jGCUwDAE0GpqXWb8EhBKAEsAAUKsDhgBpiwy9SYfSKiHSN4L1V8wBDQQzXovBgwfj0UcfxeTJk7O8ehwOh8PpLVRzfy3WtsNazoYk5B5ARacqXm59oCrPrZRU1KSqpaUFLS0tXW4XDJqdF0FwdswEQQDtpZIip/vxxRdfoKWlxRKyf5h1BYbcfT1EOf+IUR0hN/rV+vPev5hJANWtrfjx93MdZY2NjTjiiCMwYcIETJw4EbvtthvXYnA4HA6n+5OvPwb34ahexo0bh6amJpx++um4/vrr4fF4cN9992H16tU45phjKt08DicrCCHYunUrxo8fbzmTr7/0Jjz++OMOk6vuyH333Yfz7rrKWt5zzz2xcOFC7LrrrlzA4HA4HA6nl1N9xuMpaG5uxrJly+D3+zF58mTst99+ePPNN7F48WKMHj260s3jcHLirbfewpw5c6zladOmYdSoUV2aF1Yr48ePx3nnnWctP/LII/j000+5NoPD4XA4PReeaTwnKurDUW6q2SaQ0/v46KOPsO+++zrKHn74YUyfPr1bdNS3b9+elOV79erVGDFiRGUaxOFwOJweQTX312JtO7Tp9Lx9OF7Z/khVnlsp6RYaDg6nJ7LPPvsgEAhg+PDhVtkZZ5wBQRBwyimn4L333qtg65x0dHRg4cKFuOKKK3D88cejvr7eIWzU1tZC13UubHA4HA6nd8Dy1G70nnF+B1zg4HAqiNfrxerVqzFv3jxH+VNPPYUDDjgAhBC89NJLZW8XYwz/+te/0K9fPxBC0NjYiF//+teYP38+nn32WXR2xvN3XHXVVejs7ORZwDkcDofTe+CJ/3KCCxwcToUhhODqq6/GO++8g+nTpyetP+KIIzBx4sSSR2QzDANLly6FKIoQBAEnnXQSWltb025fW1uLL774An/84x9L2i4Oh8PhcDjdGy5wcDhVwgEHHIBHHnkEjDEYhoFbbrnFWvfaa69BFEU8+uijJTk2YwzHHnssjj766CTBZpdddsGSJUuwZcsWRCIRMMbAGENnZyd22223krSHw+FwOJyqhif+ywkucHA4VYggCJg1axY6OzvR0NBglZ9++ukghODkk0+G359//o1Efve732HZsmXW8sSJE7FlyxYwxvDVV1/huOOOQ0tLCxQldwc5DofD4XB6HNykKie4wMHhVDG1tbVob2/H0qVLHeVPP/006urqQAjB4sWLCzrGvffei7lz4wn7Vq5cieXLl2eVlJPD4XA4nN4IozTvqTfCBQ4Opxtw1FFHgTGG5cuXJ62bOnUqCCEOoSEbGGOYN28eLrjgAqtsw4YNGD9+fMHt5XA4HA6Hw4nBBQ4OpxsxceJEMMYQCoVwzjnnONZde+21GD58OH788ccu6wmFQjj22GMxa9Ysq+zjjz/GoEGDit5mDofD4XB6HNykKie4wMHhdEPcbjfuu+++JK3Hjz/+iN/+9rfIlM/z66+/htfrxQsvvGCV3X777Rg9enRJ28zhcDgcTo+BZxrPCS5wcDjdnIkTJzq0Gq+//joWLVqUtF0oFMLhhx+OXXfd1VH+zDPPYObMmSVvJ4fD4XA4PQbGAEbzmLjAweFwuilDhw7FY489Zi2fdNJJCAQCAIAffvgB/fv3h9frxcsvv2xtM2fOHOi6jhNOOAGEkLK3mcPhcDgcTu9AqnQDOBxOcTj11FPx5JNP4rnnngNgRrhKRV1dHdauXYumpqZyNo/D4XA4nB4DowyM5K6tyGTy3JPhGg4Op4dACMEjjzwCURRTrh83bhy2bt0Kn8/HhQ0Oh8PhcAohL3Oq6JQHf/3rXzFixAi43W4ceOCBePfddzNu//TTT2PXXXeF2+3Gnnvu6fDbrARc4OBwehB9+vSBpmmYMGGCVXb22WdD0zS89dZb6Nu3bwVbx+FwOBxOz4BRlveUKwsXLsTMmTMxe/ZsfPjhhxg9ejSOPPJIbNmyJeX2b731Fn7zm9/g7LPPxkcffYSpU6di6tSp+Pzzzws97bwhrBfpdnw+HxoaGtDR0YH6+vpKN4fDKRmdnZ1YsWIFDjvsMHg8nko3h8PhcDicrKnm/lqsbRPJLyAROef9daZhBftPTud24IEHYv/998df/vIXAAClFEOHDsXFF1+Ma665Jmn7U045BYFAwDKxBoCxY8di7733xoIFC3JuczHoVT4cMdnK5/NVuCUcTumZMGECNE2DpmmVbgqHw+FwOFkT66dV85i4ziJ5mUfpMP+TE/uiLpcLLpcraXtVVfHBBx848mYJgoDDDjsMq1atSnmMVatWJUWfPPLII/HMM8/k3N5i0asEjs7OTgBmRB8Oh8PhcDgcTvXS2dmJhoaGSjfDgaIoGDBgAN7clL9PRG1tbVJfdPbs2bjhhhuStt26dSsMw0D//v0d5f3798dXX32Vsv5Nmzal3H7Tpk15t7lQepXAMWjQIKxbtw51dXXdIgyoz+fD0KFDsW7duqpTKfYU+DUuLfz6lh5+jUsLv76lh1/j0tIdry9jDJ2dnRg0aFClm5KE2+3G6tWroapq3nUwxpL6oam0Gz2JXiVwCIKAIUOGVLoZOVNfX99tPhLdFX6NSwu/vqWHX+PSwq9v6eHXuLR0t+tbbZoNO263G263uyzHam5uhiiK2Lx5s6N88+bNGDBgQMp9BgwYkNP25YBHqeJwOBwOh8PhcKoQRVEwZswYvPLKK1YZpRSvvPIKxo0bl3KfcePGObYHgJdeeint9uWgV2k4OBwOh8PhcDic7sTMmTNx+umnY7/99sMBBxyAu+66C4FAAGeeeSYAYPr06Rg8eDDmzp0LALj00ksxYcIEzJ8/H8cccwyefPJJvP/++/j73/9esXPgAkcV43K5MHv27B5v11dJ+DUuLfz6lh5+jUsLv76lh1/j0sKvb/fnlFNOQWtrK66//nps2rQJe++9N5YtW2Y5hv/4448QhLjR0vjx4/HEE0/g97//Pa699lqMGjUKzzzzDPbYY49KnULvysPB4XA4HA6Hw+Fwygv34eBwOBwOh8PhcDglgwscHA6Hw+FwOBwOp2RwgYPD4XA4HA6Hw+GUDC5wcDgcDofD4XA4nJLBBQ4Oh8PhcDgcDodTMrjA0YPhAchKC7++HA6HU3n4t7i08OvLKQZc4OiBxD4OhJAKt6Rnwq8vh8PhVB7+LS4t/PpyiglP/NfD8Pv9uPHGG7Fu3TrssMMOOPzwwzF58uRKN6vHwK9v6fH7/fjzn/+MtWvXYsyYMdh3330xZsyYSjerR8GvcWnh17f08G9xaeHXl1NseOK/HkQgEMDo0aMxatQo1NbWwufzYcWKFZg7dy5mzpxZ6eZ1e/j1LT1+vx977703hg4dCsMwEAqF8NNPP+G2227DqaeeWunm9Qj4NS4t/PqWHv4tLi38+nJKAddw9CAWLFiApqYmPPPMM3C5XGhra8Njjz2Gy/9/e3ceVWWZxwH8+15AuOAGgolaoigqLgnmXoLbYHjIUEkd9WhTmVpNSTXjRiUuOeXCpCPZokk0Slma4zJli2tpCYrgVloorgjKzoXL5Td/cHzzDiooPF4vfj/neNTnvffy3O95z/vwu8/zPvfll5GTk4PZs2fbuot2jfmq99Zbb8Hb2xtbtmyB0WjEkSNH8NFHH2Hs2LEoLCzE008/besu2j1mrBbzVY/XYrWYL6nAgqMWycjIQP369eHs7AwAaNSoEV588UXUr18fTz31FJo1a4aJEyfauJf2i/mqd+bMGXh7e8NoNAIA/P39MXPmTLi6umLSpEnw8PDAsGHDbNxL+8aM1WK+6vFarBbzJSWEao24uDipV6+epKamVjg2e/Zs8fb2liNHjtigZ7UD81Vv4cKF4uvrK6dOnbJqv3TpkkyaNEm6d+8uZ86csVHvagdmrBbzVY/XYrWYL6nAXarsWFFREfbs2aP/v1evXujZsyf+8Y9/4LfffgPwxy4Tw4cPh5OTk95Ot475qte1a1e4u7vjgw8+wKVLl/R2T09PjBgxAmlpaTh//rwNe2j/mHHNKisrs/q7e/fuzLeGcay7s5gvqcCCw07l5uYiKCgIK1euxMmTJwEArVu3RkREBI4cOYKFCxfil19+0beza926NRo2bIi8vDxbdttu5OfnIzIyEqNHj8Zzzz2HkpIStG7dGiNGjGC+NaSwsBBxcXGIi4vDpk2bAADBwcEYOnQo4uPjsWrVKpw7d05/fEBAABo2bIjs7Gwb9dj+mEwmbNu2DV9++SX27dsHoDzj0NBQfPLJJ8y4mvLy8vDwww9j69atMBjKh9NHHnkEYWFhzLeGcKxTi2Md3TG2nWCh21FQUCD+/v7y+OOPS05OjpSVlVkdj4mJke7du8ujjz4qu3fvlvT0dHnvvffE3d1dkpKSbNRr+5Gbmytt27aVAQMGyMSJE8XT01PGjRunH1+4cKH06NGD+VZDbm6utGnTRgIDA+X+++8XDw8PCQsLk/Pnz4uIyLRp08TPz0+mTJkiKSkpkpubKytWrBAvLy9O5VdRTk6OBAYGSo8ePaR+/frStWtXeeedd/Tjr7zyirRt25YZV8Pbb78tmqaJm5ub/Oc//7E69vLLL/McriaOdWpxrKM7iQWHHVqzZo0MHDhQv/jGxcXJwoULJTo6WrKyskREZMOGDTJs2DDRNE3at28vTZo0kbVr19qy23ahtLRUwsPDZfjw4XrbypUr5YknnrAa7NavXy/h4eHM9zZYLBYZNWqUhIaGSklJiZw9e1Z2794tPj4+EhAQIL/88ouIiCxevFj69esnDg4OEhgYKO7u7sy4igoKCiQwMFAiIiIkIyNDDhw4IC+99JI89thjcvnyZf1xixcvlv79+zPj27R+/XoZOXKkREVFiaOjo2zcuNHqeGxsLM/hauBYpw7HOrrTuEuVHTp16hREBJqmYfTo0UhJSYGXlxcOHTqEdevWYcmSJRg6dChCQ0ORkpICTdPg5uYGPz8/fnNoJUwmEzIzM6124Lh48SKOHz+OIUOGwGg0YurUqXj88ccRFhaG5ORk5nuLDAYDcnJy8PDDD8PJyQlNmzZF06ZNsX//fvTq1Qtjx47F9u3bMXXqVIwcORJHjhwBANx3333o1KmTfu7Tjb377rto2LAhli9fDk9PT3h5eSEzMxNDhgzBxYsX4e7uDgCYOnUqxowZg0OHDgFgxrfKx8cHv/32G95++21cuHABw4cPx549e3DkyBE4ODhg0qRJCA8PR0pKCgDme6s41qnDsY7uNBYcdsjZ2RkGgwGpqak4ffo0Nm3ahObNmwMA+vfvj1dffRV79+6Fk5MTAgMDrZ7Li8PNGQwGnDp1Ctu2bUNQUBC2b9+OWbNmYeLEiejQoQPi4uIwefJk/Pe//0WzZs2Y720QEWRmZuL48eN6m9lsRqNGjbBjxw507doVzz//PD788EO9GKGqs1gscHd3x8CBA9GwYUO9vVu3bmjatClMJpP+OAcHBzRu3BgDBw60UW/tm4eHB8rKylC3bl3ExMTAw8MDvXr1QllZmX7PDPO9fRzr1OFYR3ecraZW6Pb9/vvv4urqKr1795bBgwdLYWGhWCwWESlfk2k0GmXdunU27qX92rp1q7i5uUlwcLA0aNBA5syZY3Xc1dVVFi9ebKPe1Q4JCQnSuHFjWbVqld5WXFwsIuXLJvz8/OTkyZMV1mxT1aSlpUlRUZGIiJ5haWmp+Pn5yb59+/THHT582Cb9s3elpaX6vwcOHKhnOn36dKlTp444ODjIV199JSLCc7gaONapxbGO7iTuUnWXKy4uxi+//IKDBw+itLQUQPk0flRUFH799VdkZWWhTp06MBgMKCsrg8lkQvv27eHl5WXjntuHa/M1m80AgMGDByM9PR0JCQno3Lmz/ulkUVERcnNz8eCDD+K+++6zZbftislkQmJiInbs2KF/ut6/f3+EhYUhNjYWCQkJAIA6deoAALy8vJCfnw9HR0d+ilZFVzPevn07TCYTWrRoARcXF5SVlUHTNIgIcnJycOXKFf08j4+PR5cuXXD06FF9eQRd3/+fww4ODlbHz5w5g2XLliEmJgarVq3CX//6VwwePBibNm3iOVxF17tOcKyrOdfLl2Md3UlcUnUXy83NxeDBg1FYWIi8vDw4Ojpi0aJFGDBgAP7yl78gIyMDMTExmDJlChYsWACDwYBvv/0WmZmZ+hpturEb5duzZ094enrCZDLhwoUL2Lt3L3r27Amj0Ygvv/wSaWlp8PPzs3X37cLVLS0LCgpw+fJlGI1GzJkzBxEREfjb3/6GWbNm4a233kJmZiaee+45WCwWnD17Fg0aNOAvalX0/xm7uroiOjoaISEh8Pb2BlC+jM3R0REODg5wd3fH559/jvHjx+Pjjz9G+/btbfwO7m43ynfgwIFo3rw5Hn30Ubz44ovIzs7G2rVr8dhjjyE0NPS6hQld340yHjp0KJ555hmOddVU2TnMsY7uCBvPsNANFBUVyUMPPSRjx46V1NRUOXHihIwYMULq1asnc+fOlezsbMnKypKYmBipV6+etGjRQh588EFp1KiRJCQk2Lr7d70b5dugQQOZO3eupKeni4jIG2+8IY0bN5YBAwbImDFjxN3dXT799FMb994+lJSUyIABAyQiIkKOHz8uaWlp8uyzz0qrVq3klVdekStXrsiJEyckMjJSXF1dpVOnThIcHCxubm48h6voRhn7+vrKK6+8ImlpafpjLRaL9OzZU55++mkxGAwSHx8vIuVLfrjs5/oqy/fixYuyZ88eCQgIkC1btlg912w2iwiXVFWmsutERkaGZGdnc6y7TZWdwydOnBCR8rHOy8uLYx0pw4LjLrV7927p3r27/ouviMjPP/8sbm5u4uPjI0uWLNHb09PT5f3335fPPvtM9u/fLyIc5Cpzs3xbtWql55uWliZxcXEyePBgiYyMlG+++UZEmG9VZGRkSPv27WX9+vVW7QsWLBB/f3+ZMWOGmEwmKSwslAMHDsiMGTPknXfekZ07d4oIM66Km2XcsWNHmTlzpr59aEZGhhiNRtE0TT777DMRYbFRmZvl26FDB5kxY4aIiNVWw3RrqpJxXl6eiHCsux1VuUYUFhbKuXPnONaRUlxSdZc6c+YMjh49arU+tUGDBggLC4OI4LXXXkNERASaNWuG5s2b4+mnn7Z6Ppej3FxV823RogXGjRuHMWPGQNM0fT08Vc5sNqOsrAz5+fkAytcQu7i44O9//zvMZjOWL1+O4OBgDBo0CF26dEGXLl1s22E7VFnG7777LoKCgjBo0CC4uLhg4sSJGDJkCAYNGsRtLavgVs7hsrIy/dvGqeoqyzg2NlbPmGPdratKvlevERzrSCVNeEbdlS5cuIDg4GAEBQXhzTffhMlkQv/+/fHII4/g/fffR0BAAB577DHMnj3b1l21S1XJNywsDNHR0dwzvxqGDx+Oo0eP4vDhw9A0DcXFxXB2dgYAhIeHIyMjA3v27LFxL+3brWScn5+PunXrsti4BTyH1WPGalWW78WLF/HDDz/YuJdU2/HjmLuUu7s7IiMjsWPHDrRu3RoBAQHw8/PD+++/DwBo1KgRLl26ZONe2q+q5JuZmQmAv5TdjrKyMgBATEwMzGYzBg0aBKB8X/2ruyQNGjQIJpMJJSUlNuunPbuVjIuLiwEAdevWBQD9E0y6MZ7D6jFjtaqab3FxMfMl5Vhw3KWcnZ0xYcIEfPfdd1i5ciXi4+OxceNGAOVf2OXp6QlfX18A4LTnbWC+al1dWtKsWTO88847OHHiBPr164e8vDw4OTkBADIzM+Hm5oaSkhJmfBtuJWOz2cyMbxHPYfWYsVrMl+4mXFJ1F7i6ZKcqS3fMZjM+/vhjREZGYvPmzejTp88d6qX9Yr62ZTabsWvXLrzwwgvIy8tD7969Ua9ePaxevRoJCQkIDw+3dRftHjNWi/mqx4zVYr5kayw4bMhisejrKY1GY6WP//XXX7Fs2TLEx8dj+fLlGDly5B3opf1ivneOxWKp9DsHSkpKEB0djdOnT8PJyQlPPPEEQkJCeI9MFTFjtZivesxYLeZLdzMWHDaSl5eHiRMnIj09HW5ubggJCUFkZGSlz1u1ahVatWqFoKAg3vh5E8xXvYKCAnzxxRcYN24cANx0l57/H8yunXUCmPGNMGO1mK96zFgt5kv2gvdw2EBhYSG6desGk8mEkJAQ+Pv7Y+bMmRgxYgR+//13q8devenr6g1eTz75JIKCgvTjvEBUxHzVKygoQJ8+fTB+/HjMmzcPQPl64at5XqusrAyapqGoqEhvu3aAY8bXx4zVYr7qMWO1mC/ZExYcNrB161YYDAasXLkSUVFRWLJkCfbs2YMdO3Zg8uTJOHv2LIDyi4HBYMDevXsRGxsLAFYXEl4gro/5qmU2m/HSSy+hXr16eOGFF/DJJ58gOjoawPUHO4PBgB9//BFRUVF6YcfvK7g5ZqwW81WPGavFfMne8GyzgdzcXBQXF8Pd3R1A+YUjMDAQP/74IxITEzFjxgwAf/zC++233+Kll17C0aNHeYGoAuarVlFRESwWC5588km8+uqrGDVqFNasWaN/J8z1Brtjx45h8eLF+Pnnn23RZbvDjNVivuoxY7WYL9mdGvzWcqqi5ORkcXR0lI8//lhvKykpERGR7777ToxGo3z++ef6MYvFIuPGjZPVq1ff8b7aI+arjsViERGRrKwsKSgoEBGRM2fOyOuvvy7t2rWT119/XX9saWmplJWV6f9/4YUXZPbs2VZtVBEzVov5qseM1WK+ZI8cbV3w3IvatWuHyZMnY8mSJfDy8kJISAicnJwgIujWrRv8/f1x/Phx/fEGgwEhISHo37+/DXttP5ivOldngDw8PACU74rSrFkzPPvsswCAhIQEaJqG119/HTExMcjKysLcuXNhMBgwbNgwtG/fnkvVKsGM1WK+6jFjtZgv2SMWHIrl5+fjtddeQ35+PgwGA15++WW0adMGzzzzDNLS0jB//nxYLBaEhoZC0zTUrVsXXl5eKC0tBfDHNndjxoyx8Tu5OzFf9a6X8QMPPABnZ2d9hxNvb299sFu3bh127tyJ77//Hh999JE+OAYHB9vwXdzdmLFazFc9ZqwW8yW7Z8PZlVovPz9fWrZsKcHBwTJmzBjp0KGDPPDAA7JkyRIxmUzy008/ybBhw6RVq1ayaNEi2b59uyxdulSMRqPs2LHD1t2/6zFf9a6XsY+PjyxevFgyMjJE5I/pfRGRc+fOSXBwsGiaJhs2bBAR4dR9JZixWsxXPWasFvOl2oAFh0Jz5syRvn37WrU999xz4u/vL2+88YYUFxfLiRMnZO7cueLu7i5+fn7Srl07+fTTT23UY/vCfNW7UcYdO3aU1157TTIzM62OrVixQjRNky+++EJEygc5DnQ3x4zVYr7qMWO1mC/VBtySRyGTyYSysjKYTCZYLBYAwLJlyxAWFoY1a9Zg7dq18PX1xcyZM3Hy5Ens3LkT3333HSIiIiDlxaCN38Hdjfmqd6OMhwwZgnXr1mHTpk0AyrcYLiwsxLZt25CQkIDw8HB+mVQVMWO1mK96zFgt5ku1gi2qnNrs2k8R5s6dK76+vpKfny8iIiaTST82duxYadWqlRQWFt7xPtoz5qverWTs6+trlfHV4/xE7eaYsVrMVz1mrBbzpdqGBUcNysvLk2nTpsnevXtFRKSoqEiaN28u4eHh+mOKiopEpHxNpoeHh8THx9ukr/aI+apXnYw5uFUNM1aL+arHjNVivlQbcUlVDRERTJ06FW+99RY+/PBD7Nu3Dy4uLnjvvfewY8cOfRckFxcXAEBBQQG8vb31L6ejm2O+6lU3Y03TOG1fCWasFvNVjxmrxXyptmLBUUM0TYOrqyvatGmD1NRULFu2DAcOHMCjjz6Kf/3rX9i5cyf69euH1NRUnDhxAl999RXOnz+PJk2a2LrrdoH5qseM1WPGajFf9ZixWsyXaitNhHfOVpeIQNM0rFmzBpcuXUK7du0wbdo0dOjQAf/85z+xefNm+Pr64vnnn0dGRgYcHR1hNpuxaNEijBo1ytbdv+sxX/WYsXrMWC3mqx4zVov5Um3GL/6rAVenL+vXr48VK1Zg+/btyMrKwtKlSzFw4EAcPHgQx44dQ1JSEr7//ns4OzvD3d0d7du35w4SVcB81WPG6jFjtZivesxYLeZLtRkLjhoiImjRogWKi4sBAKNHj8bGjRvx2WefITg4GAUFBQCAfv36WT2PF4eqYb7qMWP1mLFazFc9ZqwW86Xaivdw1BBN09CuXTs4OTkhOzsbc+fOxcaNGxEZGQmTyYT58+cjMTHR1t20W8xXPWasHjNWi/mqx4zVYr5UW3GGowaVlpbC0dERoaGhOHToENauXYuwsDD8+9//xttvvw1HR8ZdHcxXPWasHjNWi/mqx4zVYr5UK92JvXfvJcuWLRMfHx/ZsGGDVfu5c+ds1KPahfmqx4zVY8ZqMV/1mLFazJdqG+5SVcMKCgpw6dIl+Pj4APhj14mrf1P1MF/1mLF6zFgt5qseM1aL+VJtw4KDiIiIiIiU4U3jRERERESkDAsOIiIiIiJShgUHEREREREpw4KDiIiIiIiUYcFBRERERETKsOAgIiIiIiJlWHAQEREREZEyLDiIiIiIiEgZFhxERERERKQMCw4iolouKysLjRs3RlpaWrVeZ9SoUVi0aFHNdIqIiO4ZLDiIiGqQiKBhw4ZYunRphWNTpkxB9+7d8dVXX0HTtJv++frrrxEUFARN0zB//vwKP6NHjx7QNA3R0dGV9mnevHkYOnQofHx8qvXeZs2ahXnz5iEnJ6dar0NERPcWFhxERDXo5MmTyMnJwUMPPVThWGJiIrp27Yq+ffvi/Pnz+p9GjRohKirKqm3AgAE4cOAAWrRogZSUFKvXWb16Nc6dOwcACAwMvGl/CgsL8eGHH+Kpp56q9nvr2LEjfH19ER8fX+3XIiKiewcLDiKiGpSYmAhHR0d06dLFqt1sNuPQoUPo2rUrjEYjmjRpgiZNmsBisSArKwuPPPKI3takSROcPHkSeXl5GD9+vFXBkZeXh+nTp2PChAkAgK5du960P1u2bIGzszN69uxp1Z6WlgZN0/D555+jb9++MBqN6NatG06fPo1du3ahZ8+ecHV1xYABA5Cdna0/LywsDGvXrq1WRkREdG9hwUFEVIMSExPh7+8Po9Fo1X748GGYTKYKBcKBAwcAVJypSExMhKurK0aPHo3jx4+jpKQEADBnzhw89NBD8PLyQpMmTeDt7X3T/uzateu6RUlycjIAIDY2FvPnz8cPP/yAixcvYuzYsViwYAGWLVuG77//HsnJyVi1apX+vO7du+Onn35CcXFxFRMhIqJ7naOtO0BEVJskJibecDmVs7MzOnbsaNWelJSE+++/H40aNarQ3rlzZ7Rt2xYuLi44duwYjEYjYmNjkZSUhHnz5lW6nAoATp06haZNm1ZoP3jwIDw8PJCQkKD/7KCgIOzevRuHDx+Gq6srAKBbt264cOGC/rymTZuipKQEFy5cQIsWLSoPhIiI7nmc4SAiqkFJSUk3LDg6deoEJyenCo+/XuFwtV3TNHTu3BkpKSmYOnUqJk+ejDZt2uj3g1SmqKgILi4uFdqTk5MRHh5uVeicPn0aI0eO1IuNq20tW7bU/3915qawsLDSn01ERASw4CAiqjHp6enIzs5Ghw4dKhz75ptv0Lt37wrtlRUcANClSxfExMRg//79iIqKgslkwrFjx6ye16dPH+zbtw8A8NRTT2HJkiUAAE9PT1y5cqXC6x88eBA9evSwaktOTra618NkMuH48eN48MEH9bbLly8DALy8vG4cBBER0TVYcBAR1RCz2QwAyM/Pt2rftm0bfv31V4wcOdKqPTMzE+np6RUKjt9++w3Z2dl6e0BAAPbv348333wT9erVQ3JyMkpLS61mOKKiorBgwQIsXrwYBoMBU6dO1Z975MgRq9fPzc1FWloaAgIC9Lbff/8dOTk5Vm0pKSkQEXTq1ElvS01NRfPmzeHp6XnL+RAR0b2JBQcRUQ1p2bIl2rVrh+nTp+Pbb79FcnIy3nvvPfz5z3/GhAkTKsxwJCUlAbj+DeN16tTR7/cYP348Ll26pO9MlZSUBC8vL9x///36cwYPHozTp09j8+bNWL58ud4eEhKCw4cPW81yJCcnw8HBwep+kqv3dFx7X8bBgwfh6+uLunXr6m27du3Cn/70p9uNiIiI7kEsOIiIaoimadi8eTN8fX0xcuRI9O3bFytWrMD8+fPxwQcfVHj8gQMHcN9991W4qTspKQkdO3bU7/dwcnKCp6cnNE3Tj187EwEAP//8My5fvowGDRpY3SfSqVMnBAYG4tNPP9XbkpOT9ZvRr237/9dMTk62Wk5lMpmwYcMGPPPMM7caDRER3cM0ERFbd4KIiG7f2bNnERoaig0bNmD48OGIi4uzmr3YvHkzXn31VaSmpsJguP3PmWJjY7F+/Xp8/fXXNdFtIiK6R3CGg4jIjhUVFSEiIgJLly5Fy5YtMX36dMyZM8fqMUOGDMHEiRNx9uzZav0sJycnLF26tFqvQURE9x7OcBARERERkTKc4SAiIiIiImVYcBARERERkTIsOIiIiIiISBkWHEREREREpAwLDiIiIiIiUoYFBxERERERKcOCg4iIiIiIlGHBQUREREREyrDgICIiIiIiZVhwEBERERGRMiw4iIiIiIhIGRYcRERERESkzP8A0YEp1NuN8OwAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAG/CAYAAADSENFhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfQe47FZ19Vadesu7r7oXMC2U0DEkdEwxoSQhhN4CgZ/eTTWE4iS0kBBML6EGML0lVFNNML3YFONuv3rrVNX/W0c6mjMazYyk0bR7te6n72o0GtUjnb3P3mttyXVdl3LkyJEjR44cOXLkyJFjDJDHsdEcOXLkyJEjR44cOXLkAHKHI0eOHDly5MiRI0eOHGND7nDkyJEjR44cOXLkyJFjbMgdjhw5cuTIkSNHjhw5cowNucORI0eOHDly5MiRI0eOsSF3OHLkyJEjR44cOXLkyDE25A5Hjhw5cuTIkSNHjhw5xobc4ciRI0eOHDly5MiRI8fYkDscOXLkyJEjR44cOXLkGBtyhyNHjhw5cuTIkSNHjhxjw9w4HK973evozne+M5XLZVpeXp724eTIkSNHjhw5cuTIMVacf/75dMtb3pIWFxfZdOaZZ9JXvvKVgb/55Cc/STe5yU2oWCzSLW5xC/ryl79M08bcOByGYdDDHvYwetrTnjbtQ8mRI0eOHDly5MiRY+w48cQT6Z//+Z/pJz/5CV188cV0z3vekx784AfTb37zm8j1f/CDH9AjHvEIetKTnkQ/+9nP6CEPeQibfv3rX9M0Ibmu69Ic4QMf+AA95znPofX19WkfSo4cOXLkyJEjR44cE8XKygq94Q1vYE5FGA9/+MOpXq/TF7/4xWDZne50J/rzP/9zesc73kHTgkrbGO12m00cjuPQ6uoq7d69myRJmuqx5ciRI0eOHDly5OgFxsK3trbo+OOPJ1mevWScVqvFMm9GOT8pZIcWCgU2DYJt2yxdCg4FUqui8MMf/pCe97zndS27733vS5/97GdpmtjWDsd5551Hr371q6d9GDly5MiRI0eOHDkS4uqrr2YpRbPmbJx2SpUOHrZTb6NarVKtVutadu6559KrXvWqyPV/9atfMQcD+8ZvP/OZz9DNbnazyHUPHjxI+/fv71qGz1i+Yx2Oc845h/7lX/5l4DqXXHIJI76kwUte8pIuL29jY4NOPvlk1oBBvEmCv7ndq8jV/cvle6WOrpBS8yMoW3XvvyyR22ginBL8VtL1zoYUhQjbwX++Ldtf13Xg9nbvWFWJHJdtN4CmBbOu2u354xidgkqS7ZBdVEk2HXK0zjp20d8vjl/tbNPWhfmCf36aRJJ/OBaWCYfgCC3H8Q+HrSp3lpkL3ry57D+UtkSkukQl77MkO6Ro3rym22Q7EhV1iyzbO8aKbpAt7FTx9kCqYpPEDwzrad4og+wv02SHVLlz/YPjdKVg2jS8UQTDUqlh6GRYMrmuf96mQrbVuWZ8XzhWRfW2iyWlgsXmC4pFJf8YAF2xaXexQWXZoKJikuEo5Lje9pr8YuFyuDIZ4oXE8fjnLm4Ly4qKxbZTVg2yHG+dgmIG68nkkibbpErdL0Cx2YjXULyu2C7QdlQyQ8cjSw7bnyrbwTng+uFaY5kmeddgSWtRQfbmS7JBmmzRPnWra1tVuUULctPbBslUljrXzHC9Y2i6BZLJIdP/bLoq2SSTRTK7Xt5vpWAe62Fb/NhwXjhH8fzwXUE2qS1c+5LcZufQdHR2vEDdLpIm2bRlF8gV9oHz1WWLLFdh6xck77q3XY0dq4iK0mbrAItqgzatMvtft4q0qLaoZnvtblFtsn0BuGcV2XuPFMiiBcW7Rrg+WOeovUBLcoOO2AtUlEy63loOfgus2ZXg/uEY2TKzzJ6Dpq2x7bvB9fLbuP85uEbiw+3D9tdV/PZv+u1EXJ/f85ajkUQua4e4X2yZrbHrJu7LEq4pb0eWIwfPqyo5pCveNouyGbRn3o6xLt8/jocfB18Px1qSLZIkh0rC88Hvsbddb/u71Bpt2GV2PzftUvD9stogXbLYdxx71C1as6pd10f12z7OAefC7wnaRRnti1yqOcWg7UeBt3N2vQVKJbbXudbicpkWlUZwz/m2N/1jrSgtOmZWaZdap1Wryq4RjieMqtKiI8YC61rw7GJ/aDO458FzLjwD3rVXaFFreu1VNVnbwrOmsHeD1PUuEYF7h/2wa+/fW7H91v1nom7pXdcE7aftvw+3/Pc1Ow5bYe/qqH3psk0FzWTXvqobQbvi94i3Mf5bHE/LVoP5hqWx9Yqq364tvBM716Bfv4J2x4/VFtZnx+tfQ1do83wdLMO7Cv/Rz/B12HYd7z/vlzjQT+I7vj4/Bm/G+071+9VgG1hu+/t0JHKxf5yK4pJryCQJ/R2HZEqso5P8bUhY37+Pki2xz1bFYd/bVYskC+tLpDS8beO1gVN3/S7FFfps2ZLYd0qz+9zUGr7zT6XZot+/+59oYcE3JGYIiGzA2bjyJ6fS4kLy6MvmlkOn3PaKHlt0UHTjxje+Mf385z9nduynPvUpetzjHkcXXnhhX6djFjFVh+P5z38+Pf7xjx+4zumnn556+/3CU5zpnwSqUiBXCTkcihr4DST7nZsskyvbnvPgQ5IFh0NWiGTN+8+35Q5wOGTsM+Rw4F2ie52Iq4QcDkUlR9VYhyupKsmuQ47glEiqYDRonW1KEfNwQvg7woVDIhyCJLQcSe91OCQNzo1/CqU+DofikOy/GF3FZS9tB04I348uk9ilcMMn7HCo/vF2HA57qMOhal67cCyVFFUnxfI6MQZTIdfsdThkvdvhUArePVdVJTgGfnxa0SJdgVPQ8c7Qkdu21tURuSED3w05HJpis2WagnUV0lS8+L119OBCeecuOhy8g+XXZJDDwY/PRccb4XBIAxwO3Q91FzSbCn4bLco4FolKcJYFlBWFKn67h3FVkTrnqvlGhuQqJMOYDBwOha3L/kcYQqr//XCHwyVJOLeSbLNzwPUv+W3FtlVqOSUqhvaB88W5MefG0cj3x4kiHI6i4rB12LyqUdvS2H+L/bfI9O9/UTVJ898j+I/jYctxTFKZOSC4PprkUsP2rlsdjicMaVMNfgs0fYNJcrTguhVMjTkcaG+a1Lk+UnBO8R0O/uzxdsevCaD77x/sB0YecyD4vcC+5c6+u/ffMb6kkMOBtu5tW+pqz+y/fww4Xrx22v65oy3y49RlbNfxnj1+X+TOc1D0DwftE7/HNTeE5xLL8brj2+bLmlZ3e+aPfMfh8A0zF20KrdKlElm05RSpxN7jvUD7HeZwdC+XqaSowT1nxyarZPif8V3R1NjxFizNu14RDkdBsUk3POMazy5zqk292+FwpeBesvNyFNJ17x1jkk665LJnTWX3mBu8vecpGvsF/52FNsnBnwnTdzjIv8doP3gm2XXy39dAq11gAzFK6F0JKIpNqiZ7AzB6t4Mgrq35x4O2xveBec13ODS/z7Qtlb13Ofr1K2i3fDtoz12IcDj4Ouy6uN0Oh+Qfm9TH4YBTgd+LDgf/DZwJfM8H8vg2mOPBHQ475HAofRwO1Xc47P4Oh1xy2Lxb6jgcstPH4RCeQdn0HA45dG4YIwhMI99smOX09+qCxKakcPz3bRJbVNd1uuENb8jmb3vb29KPf/xjeutb30rvfOc7e9Y9cOAAHTp0qGsZPmP5jnU49u7dy6Z5gFvQAmfAlfBScEmybbJ2lUlda/SsL1U7I1Bkeoape2APSU2DCB2q4S8r6STVvNEvt1xi2+Wwq0VSaq3gP/YbwH8hihEO1/d+XEVi87Jhk4Nelw8vsYe4M684LrmyP9LQGQwMnAy15ZLhe+9q2yW16XaiH37LaS9LpPiDd3AwMFALe4sNKPLDxQupIJg0Lf/Y0WP7L0ajrlOh2qZm3etYXEOhZtEiWfGNQUMhvewdpCI73Ocjw1Dp9H1Hu679ofoCnbCw4c03qrS/7IUtDze8EcomOmStc8KaapMsO0FkxWh0d9CFsuk5GIic+MeD38CgY9eGRSHUYGQW8Iyvzki9ZzB562Pk1Rt5dsjib/AIYBQOE36LUTh0Tg1LZ5+9ZVpg+POR36brjSpjH/iubhXYcWgSoj42GwXHZ9EIxLFgWxjN4x0qH4ncNIps3/xzWfWu26ZZoJVCg416Hm1XqGYWqaq12Cj+jYrRYdstu0Q30b2X4NXWMh2v1mhFlukoonEk0YLs0E/b+2mfskVFyaJ1p8QiKOtOOYh2HAuNMgf3yI9gYORUjGR4177XSIARiH3g/jQcPbhPGFXHaH3Y6MM6+I6DjxrjeopYN8tk+tf2stpeZrAtai1abZfZ/O12XUV/auyhWy9eRde2d7H1EPU4tXiMzZ9WOMzuDcbu/2Dsp5O0Yyz6g+vDoyDi6DCiIbhGOJ4FrUXrdpn+0DrAIg/H6d4z0HJVdk3QJnEe2DZGt3l0Atv2HAC4TxIztNF2eNvjbZtH1oCjrTJrC/jdceVN757WltlzhXYBoB3y6xg4wOR2OTdot8GILkatXSV4jtAuF1S7x8mFkYtI4bLWJNKI9mmb7LyAa1q76EBho+u+M0dfaO9YF8dxZXsPKZJDG24nkgGsWRUWnWQOph8dQ7SAb2+vusWuOY+OLCsN2oKjKhl0xFpkUSisw53RLaNIB7R11q7QhkUcs6tsfTHSgXuFe8L3j2MX29lV7RXmWGHkHfdQjGBf1d7NrtWKWqOaXWTrYBu8TXbaaSlwLnhUDNebtwN+zdFmedQVRv6xdoX2F737jX1f1VihsmLQiu5F+PG+4cB9riiI0lnsePn14wNHwTVoV4N39YLeDqIPq40yKb6RWm979xfvaXaNLL+vQ7sQDFkcKwZpKoUW244YUfPaMgZPHPZ/X6nO1kG0G5EgDNhge5iXDJe9n9l5+tGOtuU9F1HAfng0Gvs3bS/6xp3wrogGjwYJDhO77rbnRJiWEvRv3nxnn0FEw3caYC7oBYtF5B1TJllzyG532ori91cWlsHpaMtscE8yZK9/rlgkNxTPqQidmqu5pNZkz9EQHI72XpuKBxVmJ0i2TFbZpcL1Ghl7bJIMyXMUcL0tZEu4hICwU8DKHacDm+KOjAinIEQ45iDh33YdEkyqRL8bFeAkixxlEUi9+sY3vsEElji+9rWv9eV8TApzcEs9XHXVVYzwjf8gzSC0BMDjQz7bpGFXCyTDecD8UokU34FwFsokh6MUovPhA45GsK19iyTXYanT1BEeTFHag5+mwrpLVjH9CITFjXuZqF3TSVKSP71XHFuhStFgxgOATurarSVmQFcLbdaR8Rc1nA0RolFZ1E1qGRoVK0YQio6C2MGFgVFsbpzz7aNj5gZFRW37o5Se0zEubJleeEnsILE/OB4iwoYIB1IL4GggRUFcVjd1z5DQDOaMRI34cexGfFzAbQqHaN03Ju5YWKfViJ+epK52GV9hwMBGV15HzxSkNbnUwv8IxwLG4qDtRSE82o/7xw1aDjHNIgn+b/UU2lOs0882T6YTius9bRAG626l+7qFsazUI0e/Oc4oHqSGf336Ae1QdCBGwe839gZpjSKijLOoSAogtjV+XEhH7LetkuD8iTi5uDrwWJHqF3ZIs8QBzXN2RJyuH+67PpwNdlySHTi6SXHUrHqOh9CO4HiMCxuml362ZRW7HG1x/8PAHaiDraWB68EohyEfF0jDjYvVdinRMQNi+l9aYJ9ZaoMaLTWy37TbijeoNwDSRv82x1KjIlA8nPK9EU7eMDFgGlpoSORn2BF1utGZhcMGUJLfTCfhb0APuP/9788oASDSf/SjH6Vvf/vb9D//8z/s+8c+9rF0wgknMN4y8OxnP5vudre70Zve9CY6++yz6eMf/ziT033Xu95F08TcOByvfOUr6YMf/GDw+da3vjX7/61vfYvufve70ywAzsa4IEY3nAU4O9Ed7rgQYcsNhdLGCEey3zhtheRCeiJWEmAUKgv0hLxz9OB0rTsKNQ2EeRyjbQuGa/frM6ljEwWMrsPhWBdy9GcBWTknOw2ISnHneJrAQIM4uIDo0ygDHmgPYkQ3rmOZBRxHDiIdaRDmyXEgssGjGrMMRDcSAylTAwbKGLDZlI6QsXsyffZOxeHDh5lTcf3119PS0hIrAghn4z73uQ/7HgPxopIXimTDKXn5y19OL33pS+mMM85gClU3v/nNp3gWc+RwoP4GprnBQqVDJB8Ap9w9cpoUTkEjuT1Z56Mf1DqI9JPbH9KpOOotnRZL0cTMeQFGdDmBcSdhRZHoiJ29IQcHox+QTpUjHWrmBB/yCUNMmxOBFKdBMa3dytbQ9ohtmymfb0SyENnb7gA5nKcwJYUY3UgauUgLROWiyOujAhEQPsbI+R1ZISqVKUc6OOwv3e+S4L3vfe/A7xHtCAOFsjHNEmZP3HgO4FSSd7huefqjXK6Q6xssS9gCwilWPN9ynAB/g8MU8lP7YavVuda1dme+bmwPQ6lfHnFS9EunEjGOzjQK4G/sFBxtzVb0ggMpaTy/PGuDTSQfx4GYTjUI4G+EsT8irWkcAE9j0gin9iVBOJ1yEDj/ZhDA+5p0dGNaAH+Dg/Plxo1Bab1jw5h2yQjl2xC266aediJyh2MGAZJ4WjilnTdCLgISt0nTqZLkCOeYbjoVz3mfNQxKp5rUaGscgAwdBlcum3XEOc7j9bWB/I2sscgVM5jTPJ4Iazh1bxDmKQoi8jcgQiBio9WRKd6Jg0HbBtv8cnAOR5ppJyJ3OGIiXO8idlpVzDQqp1JgU1znQ9wG0qoi1xF1IccIqFmJELMSwOPgCAhiogHWGmCotaI72nZrfJEKKE6x/746DoeU0JCsCWot/YxRsU4AH9Gtap0LJpLPk3Rm4doeaUcqBwHkce+3yR3cAz7BEQpVg7Ds1+xYkJIbcmI6lajqFP4splaNy/BeN6KNp0PtbjnEVct7X1xtrvTfVgS3o18aEMBrekSBS8kOApdbjUqngohAuD2kAW/XozhmqJMRhSX//AddI44468SNavB6MwBqeiR1FrLgAw0DVymLeh/NixHNU43ikMXD3I0oDp9YaybqcxREYY00iNPuk/IERaUq8CLZNgSp91GiDn0PRWwmM9xmsgQcBzvF5OQOR45Jw0kRyQBhfNII2Ws7GoMUquYJcdKpRIjG5U4GL/qXtQO3HRF2VrJOpxo3tiPPJ0laVRqMI52qSz52QulMwzCptKqpYHYCsjm2GbbxU5NjGH8jLTiPY5r8DZEwPgzgcWwX/sYkkCVvY9zqVJDEzRqDyOZRmMRodFyg/oKIWVBImgcMim6gzkaO2VUsSyKFm2M+MEnxmVGQp1QlQ+5wjBt90qqyRr+0qp0KkTieFuG0qnFh0IjuqOH6nYikDkP6/WTncV/RGq1uwrj4A9tRnSqcYjcu8EKNcVPc5j3KIaaRjhuzIEU+6XfzLJxzjm7kpPFkyB2OCWBSClXzThhHdfF5RFb1PHIMBio5zxpmKbqxEzApZ2EULMvzHRERFapmmb8xy1DGpLqXqgZHGuS+TSw4I0w7EfNtoU6YNO4KJFdHFXTZQ7Xt3cUqSaIHO4Ac6yqd7yTH6SKOO0WFXNl78u2yird/8J3S7B1dtbCOAKU9uHM2Kwop7cFNP0n/jiJ/vH/C/6DGmt7Zh2Twc5BIakge0awpk7PbG5WW6woRJtkvNrircwB2o3N+YmXVwmLvSGKrqRPGfBcWmtTwSeblotGTh6v4UqDQPB+WnqOpdpc+ehTWmp7aynHVXrlOXpmX76cfSTMpWLGqBB0EKp3HwSnVNbqytovNHyhv0eFmNZBN5Zr5Ja33HDQ/991wFWoIhfYqks2mLQfr9O7PdGGsmXTEd+Bg7CxIBq3bRdorVN++2twVjCCfoV9DR+wK2a5Mv22fwJbfpngFXWHuCdZftavBaDP+b9kdEve1xi763eY+OrWyGtRbYPuo76JbLl3bc4xHjAX/WOWee3hlbYVVmkfOOYjiVbXT3kCuBznU9nO/r60t0SkLvYpK17aX6fTSka5lv28d519X71m4YeEgDcMedZOOWt2kdLT1qMKFjDzOv5It9p3lKmRZ/SMaZdXsIbwuFVo96XgijwORPG7Abprd/LWVQmPgaDyvIo/fy5JNu9QGbQr3MTgGP/0Jz9ih0PmHgWNXJEQdWpGOJCJlJ+qr7LqDu7NbSFcDwZvfD41sarg6LStNagij/At+m1u1y13CB1tUGvhsog1i26IziyJ9vK3VrQItai2q24VgHdyzml2gTatIVcVrd3w7UTjWrtIufXidqO5jk/pW2cb9xDHx+8SB52RZMfoqbUEuedModPE/uEIV3rO4zni28e41rV7n/sTFjUjJZbRPHC9vj2g3UCNEVILvjx2fowTPBdYxUVQw5GSJggiiVG3L7/dFcY+23961IdGPrWaRFMXbL86t65r454l9OXb3uTko4MfhSiRrg/fjbPnvX0diV5cRxdGH4Ty4hktElXIRasPry/mtHaZJgtuBdbtui+TZBLn7urOROxxJgAdIkoIHyVoosIdIMh1WZdwtepdTMixy9e5LKzUNchDpUOFEyMjXCZwJkWchGTa5ukLWSoUkyyVX99aRHNd7WP3fWFUNkkYDD9cq+eoUamc/VlEmGZYdOqQizsU7GX4sVlkKvvd23Plte0kiteF9h2tg++9hR5PIrHrqFTybxRT7eozKaN0dkdLyriO/lvKaRq5PyMbLkM+7GzoRV7dSO9twLZkk/3O75h3Ika1C8AKW/O1u1Yqk+Os12xrpqs2q1Np+R6SE+jBFdknXOh2I6ncKnCwOh4N3SJjnzgoMyaaQeIr0E13upNOhI4YRKhpW6IRRrbeitruWwTCD0hQ31kQiJk+/Qme6oLZ7qgXz0cm9eo0dJzrsTcvrwEuSw5bt0WqsojUHDJkTCuusY4fO/5UNTyXpSKvKOu5BBElemRfnsai2aJfWbTheZa3QyapnzAOXmct0A22drrZKdJLapIN2gQ4obVp3FOaMACtKm0wY5/55V2SDFT4DiXfL0emAukELssEcDY4D6hadoF5CV1ieMzIotaXlqtSAdyzgivoKczrgaJxU8RyBn6+fyP7zzxRhKG6Y/Y3Hmm+wR1UvrmgGNSydrneX2P2FgYx7jvt3bXsXm4ArlT2MX7Dh30PcuyuNvV3bKvvnB8MJBibWv8ZXugLJtqq0mAIXjNMGf2h9B0ZTbHJIpqjksF16g7UzOMoVxegy7OBULeteepDoZGB91BmBYScaYmXfCOaAcbqsNdgxrRkdSdQFtcWcnThYVJrMweAOA3c2Gk6BXYP9quf071LrrMK87arBs9jyHWG0eczHUagCHwbPE18Xx84cA1KClLbj1XXPSBaSB6C2hvXq/vuBO+RAUZa7HAv2nauytm86KnsftF3vWPGsY104iMeEawZc01pmz1/X8VoF9m7pp4K0ZlSorLZpw1dRK6sGa6toI7hf/D2E50V0NHC/8Rnrok2IbWoQ8O7BsXiT3HVc4vyuUoM220VyQpFjGOb8OJaKTWr4jgA/juB6663AyeeOMRe9wLKqZrD9YRle62gDJdVkzgKeBz4ogM9IY+LKhf2AbeJY8A5smRoVNW9bvAYU+glsB8ePPkh0MOBEmabCnA84GnAy2LypkOz3PT3AteLKbqZCronPXldt+YpUHjwnI0BEdASvXPS3rD8OfY1HVnQa8JoBJQzL2avaJYIPjkKCbdgpskuyIbGJHZsW4V74O8E+owoQ4tGyyt7/mM1qquCqU2l+txORp1RtY8ARGBfMarbbnmamRBzpwxyjA05EFFYnWF2dG5o5eiGOTscp/DZtjKOuxnZAbYqWmjJDKVgixyIsMT4qhknZNs0xvWdm5/ImQwJ1xwlR8DIBglxpp52I3OGYMuR2Ni9CR+lEXnYkYhDqZikfWTwWnmrVd9257WWyQ9KCZqeOWR0LuK7RKVzG0RIqEidBnJoY08buhCk4WSGcpjOqUYvIASBGIcbhoOrUe0/1OeCgpAEiVjsNPMIyKTihOhpZI8ljFaGHkBzboFvLORzJsJNN1PHCtOci8mEXO00A6VTDEGedzOEXKJJCL1ykVeXIHqeUOylQWQBpVePAbp+cu1fJ1hBGWlXWyHqElWMjxGM4ZPY6QbMGpFLNGgY5FiJvaTtg2ADHrEQ5kDYFVAvtrs9RiEpb3GkYh/CRbHRHHfLLnGMU5BbbFCE3hscOZWv0twgI7klglXrXNzJOoRqGeXux2QKZcNJFtEQOyDixXNh5o5hpEEVinSTmwekYBHUCUQCRQD/PylvgaUwTky7SWNEn864btTL4vGLiSQAR+5unsjfoo+0Uk7NDZcByh2Pe4PhPqNOdTjUNcB6HL9wTCavc+0YBQU3EDPX9Y68uvtruJntGjTpOorDWbm0rmAdhPAuIhPFw6ogY5QBxHABhPE4ldBCe4+JUdS12WtVVzeSRl2tDaVSbRnGixtpRqDP0iW6MCyByh9OqOGE8C4CcHt5P1gDxOas0vjhpVuJv0zoUSZ0iKFRlFd0QieBh46ifUtWksRgaAEka5eCE8sKI0ce4qVVRKlscdkiNKrN0qgGmwah+PY9+BBjDoNs8mGNpp52I3OGICVESF5K0wyRnB6VVya3oegKy0VlfstO91MODq+MkjveD1bGJuiA3lJHTqrIuoDQqYbzfSMUgZScOqBQlQdwOdVmLNgZ3a8lSj/YWu6tWh1WWxpkqNAgVyRxLUTwoVc0Kkjid1/sO3DSxr1SbWnsYlPYE1bW4o9WTEhRIWqRRDjk+s1bpO0laVT8e3WIochF2JrJC0vYpzRDvb1IYdsqJ+BsRj2VPNzbHlzhNdMP2p52I3OGYICCXO4sAjyMJN2NcPA6mEZ4QjMcxKMSdMPw9jtSocSCLnGUxyjEr2Bom8p4Qw6Icl9dHq/CdJsrBnbVZQpiYnTWSjiLztKphx9XyJWM5zBSRjJ2CYdGNpAMgs4hxczkmmU7VVXMjR45tgLxFzzniplONwuOYNH9jEMLE8SiEiyXZ5uyPCKYlc2ZVPDDHfGFc6VQoIDcutSox8jYqcXweJXHnXaEqqbE9SxK544pqhNOp4lYYRy2ofkANjrjpVG6Gkf9Z43LMA/IIRzLkDkeGkFrWXKlVjbseRxR/Y1KwxywhGCe1an2E/P4sIRp3KBw3DaWq7Y5RuByTwJZd3DHE4lGQdVpVlDRumrSqUWtxjFuZKiv0i/4NUqjKIp0qTgpsjhxhdApZJp92IvL4c0LITZNcTWGVW5SGRU6pcwklxyGpESNdAlVf/EEMCQ5JQR2qVOWGIhnhz2G+hqN1XqCoUj5oXcCsdD4r7WSOAi9anUZdgo2kSP0zn8SRFj4rWTK5SsQxiulQqFQtOB0Kr0CewdBNQfU6LiscSUHF1gEEc1TP5QWpeHXmYph0M+ITyUeRQVQV6wwcX/TI1KjwG06rEpcdp68Hee+ocrxQbdHvN/ex3GsYjidUN+jq2vLQkdwrjT09KTFYdqviVX1/9/P2ga6R0dMHpEM1HM0j47q9ueH9RpLDxiTuAepmxK3PcmV9hVXYvmxrd1CNWNc7++LVjDlHqKSZQdX5gGwrO6wysWj8iHVWkJ+PKAMIwCt9IgnXGt2yvagkzo6v7V1zoKy0A/IvpkHn6HEEJmdw8YrTYoXtfmlVaIMAb6NQZEMVZ+rjF1zn81n4+qjCvmZVhqZmicdi2gqrXo50LTxD/F5HVSM/Yi2y/ydpx3q+O2x7ZLbdvmxz3e1NWdqrbNIRe7GLWM5HPwv+/niV+fBzzo0WHLsYmeLXTPNru8St3I5Bk7hVwzlQgR4T3+d+3avuznHI8K6PJjs9PJslvcmqzPPK35Hb143Uij54X4nnwwsB4jnlhPGiagX7htMBhTn+Gf+5I8KfaVGBjq8XfrY2Wx3nDpXDM+eBsArdEpHfB6Jqd3D5wvsKVfOWUJWcHXRnmdz2fh8naMj7+CBAE3FqUY8a9gE4MQchsZ+IQuQzh7TRCnuHRjhyhyMuJM85cCU8nJ3GIjetnr4ajocIF+82OCMWkasqHT6H6v1QbpmB6hScGRQDdDSFJNcNtLUZad3/IDobruBY9EufMsvCS1LtvJNsHZZ+92/xPuVRC/zn/ETWnwibjRoIZI6H1NkOzpedX1smqeEdg1qXCP0f2y4OhG9TcdlLj708Y6hC8Zca9hOElSUip+2fIHbHNuiSJLtkWzIpuhNBHO/sC86CSk5XJ8Q7k6JqsvB5WTOCMPpiscXm8V3LNzYxj21jalsqrVORORr4zMPtG+0ic1qijEDkUZdVg+UiiyPD3ChFgTgYUzCgeEcMFadFtRUUj+PGC/5D6Qa/rVlFqqqtwLBaEiRGeHoKd1DWzAozIPjxLRc8J6Zla+yYFrQ267ChVFRRDVryDSDb76y5sxHGUXOBfkEn04ZVZsd2or5KG3aZ9msbTNVH8xvMEWuB9qpb9NPWyV3GHM7zsL1AJ6hrbP5qa4VOVY/RQXuBjlc32bKDdpWKAqkc6lg4r7JsMIdjyynSda1d7FrtK2yxyMT+0hZdWdvVQ4LGuRxuVukPm3vZZzgbwEqhyQyPtVaJOQ/9IBYBrLULwf1aLjbZ7zbNYtAedpcazBBa1NqB8bZqVGiVKlRSvHsFoxL3Hp9xV7124TCj6nryDG0Yyohm4FqEoxq4P1HF7vi2OPh+GIJnvvudxtsanMPjy5t+27CYc8Ud65ViI3DsVuQ6G3Xn54K21bS0ICUQRiv2Wbd1Ns/RtDXPyfCviWw7bP7K5m4mgtCQCqw9LanevtqOFhjqAO432rzsnw+TsXTl4Dnwvut+Dtkz479g0E75NtFW+XO45ZSC52zdLtMxu0onaGsBwVuXLGHd7vvQcAvBtcM8DPG2qwXPG9wcPA+cn7KkNtk9xn+uVMaO23fc9ukeF+tge5E9h2g3vBjfulmK5DY4fh+G+8avCweOG/ds0yl2Gd9wmGGAw3APF6rcW6hRISTmgPcN/9/wFemwHRz3MbMSKJRBuAPLuRMe7JM8g5+PCHN1LMhz4zN3IMLvURwbv/biO9TbjtwT6cC14YMANUtnDhAfJGDHrxm0ZRTYO9s0Osp6/F2PPgBNyPBVqHTFZu8KOBuq4jB1quCcHJnahndOrD+AYpE/UIZtwTlxCf+RGhxhlPJBLqyHfi+qq8R2nJCTgU2hu3X9btH0+tp+wO/xOkYT574wlqHfhwo7+m/eBAprRHbBH4CBvykhJRsOjBTU77CL3oEqTYnUprdfUAjDzgmaOB/wLDbmNM8qR1/kccQEcJXZ4gIk5WWMC6NEB+OWLIiMaEwRcDzGAd6JpgGMs7QIG0WjpGKs8pBXxoCzwXHQnnytiT2+AZ0E3BGdBKYZpt80p1sPYlyAszFObI4h1a1fZGxc4E5kFLiTlAXGkfYkRhfnAnEl2kfgdgROQJ9N5NlnHbAIaMppJ2JnnvUYwdKt+sjpApI1P5yOOOqLg6L10igx0dnwpeYWtQE1LkYhHadVskF0YztjFEdxmghHNyaNaReuG3dBwIPW6I4xonOjYFTp7zTg0Y15Qbi2CKIag6BPQ/55G/aJU66ROjLclPwNd4dyOOb8ds8/XD+tKvXvJ9BuM1YqHQ/6cUAyLNo3bsyr0ToOhGsPpIFYbHAnXh/O4win2Y2KDT9NJ2sgnSpLp2RYDY5JA2lX/YA0ryTYF+JKDMKoimBRGEctkHFLM6cB0reSQFftIK0qjULVdkW42O92Qa5SlQy5wzFBcP5GJEZ0PAZCGuxEQLpedFyGOTExOYiZYaekU+00ICc+ioA7SSzqrW3tKJYHpLuIEIUDwA/gnIlpop8DMu00qKxwrF+F1ATg/I1ZQpbRjUmnCU6rcGU/THrAbBo+37xHOXLER36rUwKEbhFuodcK70qn0uJ34CCMZ8XrmFTfm6RfGHlwLEPVD4H/H6iphAuVgRyYBJowujUo73iUzjSsNhUHII6nTavi5FIOrrKVNJ0KBN84WB0wGtwPIIxnWTU7CiCMj4r1VinTUeCwUwHi+E5Dv3YVdj7C6UUi4XhQOlUcJ+Zas1t4YFSI4gci4khbgzAeJ8oB0YdZcKLTKlGNM4oiplVxZcJJpFPJSsQxprw8gSpVysK6Uchra4aEOFJOOxE786xTQDKdmUi74qpUomMxrXTAfpEO8VkSeRxcGm/Q+pPCtHIo+0kkih28qCjTNR/TCGimHBlOi5IvRSI6UFkSxw9a3TK811q7EqVTheU4o3CglG6keBTD7Fir3COpG+XcjTPtLA7ElCaeTrXZJ62qHiqExs9rtT0eIYG4GCbBmyZNa1Abv9ZcicXjECujQ5lqFiNhSap3J4lu6DNUvHGUCuVFX/56GMSigOK8nDKCn0X0I85pD3p0eN/ti8QFSEo7Em2AGWoWsRxl8OCSTxLtROQOx5S4F/OCqWZWQPUvzst4is+uGP1IGgmZFWSpUDVpQBJ3FEAaN2uIWv1cEjfH/BDHs3RQxplOlRRxuBxJnYBBClXjQDhiHH7WcmTrfGT9GGw3LkfO4UiG/GkdE8LqVF2IKNo3dkj9+RvBfAwex6T5G4OQ9zUd8Jz7pNK4YlpVbQwSndNQp5oVsvgkJXHnSaEKdSJ4fYh+fI20/I1ZUafKGnHkZQ8U4hPJx4Fh0Y20ggWzVJV5FtWp4tStSrzLKdDS8v58+yO/xSPC1TO0wEeImuCdPCt1OWYCEfaDHaoMPgwijyML9Os4x50vPWtqPWl4BoMUfpIibmradkVaw29c6lTzgnCl+mGISqXKsh0Pq9IOLIScgCwVq0Slqkml980yuELVzCAjzkZW2G7RDSDncCTDzjzrHYJxEsZnKdKRNXE8x2SBSs05po80QgTTxCbKGc8gDg2pvZEknWrUGhzbHbOsEDc2Sdw5knrf7vA4HOmmnYhcbyBFYT+npJKLtCiXSAaZXJLIlSRyShpJlhOdTmU7RJDFNS3vP9uYy9ZnszKRZFgYJiHJttl+uIwu2yYiKbJEku2y/Uqc2yC8byVHIJLL2Lb3WWs7ZJY7x8SzB5h9wd9//iF1ZRZgP6H3I7dJupZLne94/4jsHH2DCOIxiiEx5wff4z/nTWPAHwNxOE4MwiOggP8y1tfd4S9abMiVPPIcP3VcA1xLxSHX8b8Tj1+IMqiK0xV10H0lEqRXYD2oTUHVhmuqO64ZFIhqWypTLomKWpTB5VBN2mgX2W8bZjdZHIRBTlIsKtG8D+QmYwRRlt0ezXv+snJ8Qn5UtVykWB0zK6SQy0b0Fb5/x6uOKqLgk74x6oIUqIJsMZ3/a9seORvX4HbLV9CVzd3s89X1XXRcaYNKikmnFo/SmlWhfdomHTZ9WVu/bWxYJUaEFYsQNsnzglfUes/IL9aFNC7kcvkoPFRlsHy/ttHjpCwrndHaI3aF6o63nxPUNVp3yl0j08jJR1QF0/HaOq1aVbasLLeD+VPLx3ru542rh9jvsfzKxm5abZfoTruvYOv/X+uULlldEKRx7zcMhXYVmwEp3LC9+7egt7sUqgxLpaPNCi0WWoxsjYga30YY2oCUn4ats5Sba4wOmf6QsUh79Bpd31qiG1UOBSNqv948nvYWamS6Ml3XWKI9xXoPUb3mE79xzscaFaoWvHoepn8e/Hw2to4nx/K2WyiZ1GropJdMWqk2aL1eonrb286i3g6I41A321esUc0sBm0ZhGXexstqm7VX3eXPokvLWpM2/fWrqkGOKTN1qUW1ydoJ24ZssEge7gueB/wXFamwPk87xHlxgjZ/FsToBTfy8eyIzwh+1/DbGNoR2ilXubreWGb7/ENzP3t+sH1NtmnNLNMurUFyqXP/jlqdNMMtu8i2hWM/Tltnv2u7Gkt34+2TXXthhGdF9VSq9qpb7L5yeWk8K7ge2Ca77kozkouCZYZR7lKoqqhtNsHpRDpbzSwExjzOkT8XxoCRpkZEsdFNq0iLasu7H67CUulwD3n659FWlbV33HNeVJQr4IGvwfcrytXy5fgfVaDPsL37jG2yd6jksm3y82nZKnsvYxuYF7ePto3jwXL8Dr/BOfPfihwSpEzimeD9RtPUqKSZ6NZZ/2A7Mutj4GRYpkoK+j/hnNAnoJ/hfQPe9YBtyd4gGEwM9GFC3+GKhir6T8Vl6/CmKhkyuZqwvuYypSo2ud1iLoPEHsUgKF496CLwiCCzD4+R2iZC1iO+w6tF2yIqHfWWsf1K6Pc9e8AQND8Ka37/7xJp3V2Adw0sl23v4vc8jzY3N2npYy+jWYaTsmq4M28V7jNC7nDEROAE4K0xbF1UE5d7DVHJSTa6ITcNcooaU8iSVNlzcnwobYfsQvKGDk4g71slx+3apugEoF+Bbe3bFrEAG5JvW6g5NhLgjLhq78MZkMnDTohAMpfVzvVmL22JqG2qVNC8DgLOAzoVVbH7qlbFrblR1dFZS11GzlKhxTo6OC5wYmAcRDkHowIdtyjv2ZYcZvRkNboNg0HESZU19h/ORloc4s5JaBRXY8Za7zWCUwAUfecIgIOBzhyGjOh8hFGR27TljD4afkr5GJ1U9s4dOK7SnTN/oLxFm0aRKjHazNF6hQqqHdm+0I64fOew+7hullmaDJyOfjhsTJZHA2ejnxoXnK7VdpkZfKM8C+E2GQei4SwiyiiPaoNcUQoiC1xoAU65+Oz1wyXNEwKeSL+UNr7NqH3D4YEzIrb/tFGRXWqDTTzVEipzcEBFVLV2YLiL4IY35zLwcx+WpscdDw6szwcf4iizcfUzDMTAMefOAByDcJXwQe1qXHwQPghUN3TmaCaF6HgMhCT8Z4Z7hJ3RFgYXI5qL7EvlBmMYjj8/xDxJS3PSElCLfvy+56XbSY65wHzF0LchpFZ2ykaKOT2vedTIP6Iak4Sm2pGGQlryaDuicw5jHM7GOLAU1jgcA8SOf1B4OYvK2MBetbvX46PEo2CPHjFEFxNlffTnXowcDcJRY/KKSDsZWaputdzZER4Ic58Q4ZwnzBL5PAqOkKEwDWRY3ioSMXQP5g45hyMZduZZb8M7knb0YZpOSqYQw8WK01ejHNGMHDRR7f9qVuGuBNirjO5QjIrdxcbUBAri4miru5bEocZg52S1VqZaM71BzdOxJok4EYio6MCwInHDjIZwkUGApzvNC5Jcu1moTi8inIo6Twp0obrC3rIpOyRhRD0eWaokP/vZz6ZZR7oaHPLUFAKnjbk46yuuuIKe9KQn0WmnnUalUolucIMb0LnnnkuGMcOEOie9IS+Z4zWKo6Ly4WX8czijI7zeJNQkgwqpQhHBSVQ75Dnr89QpJqmkm8XvpokFuRmkTKUBz4+Pte4IPelKafwRo3Fiozl5I3mWRs85x2lcI+fz5oSkPXekVY2CfjU3wrU5cqRHQPVTJx/p+Mm7nhvMX3TRRfSBD3yAZh0oKpt22omYrSGJPrj00kvJcRx65zvfSTe84Q3p17/+NT35yU+mer1Ob3zjGydyDOBvzBrA47DK2R8XIudJnodR0qmQSrXdoovIKxZJjuOAl+cf7dQGBPERcUJhLSCOD8KuEAGcG+iDeAWTinIcGbMMKdKqjhrdUQIQWcedvhE3naofDjcnw+vox42KKjhnzNAIeVapfPMMpFAlVS5DlCMpfyzHBDHlhIY4aVUgi5955pmTOJwcE8ZcmHr3u9/96P3vfz+dddZZdPrpp9ODHvQgesELXkCf/vSnp3I8rA/tEUwa8iS3O6OpUrN3ZJUpVAmQW70vbbkd3QkOGpyWoWo1QYSzZ0Q6QBw7eBZVIFuWGou7EZVCwRVZgDApkKtfxY1yjGqQFUIMwqTpVKeUjgXzp0OSJIbjEZVWpcWQhhQjLiJRdpghuHuEVCq+n0EGU/gaptqPr2oTBlfcKQttJg7BGcRxUZ2KAwpVabDWLPdNpxonoFAVBhSqEqVBhV7McQi83DnMUoI27BCuQa7Px6rV7aBmhXZCHfR+zxJX0MsKYvsEuOLYulHOLH0pbpSDK2CxeSGCzdWqBoGrt4WPB+pUIqBQlQRcbXAQ4qRTBd1L3AGnmKuFHwvx9ZiVX86jGxhYXlpK996aBiB9kXbaiZjbs97Y2KCVlcEVhdvtNvOWxWle0qo4oFA1bk7GPPA4grSqYespTizCeBTiEsaTdijzhEkQxucF4x6pXSgkV1rKMTlOQlJkwWFI6jTsiErb2wSmNb4siUAmP4ttTdEcOOWUU4L5ZzzjGTTrQAQw7bQTMZdn/cc//pH+4z/+g/7xH/9x4HrnnXce85b5dNJJJ9FU0WqPXamqHxTDTczjCJb34XFMJe1/EI8j4kUpksfTEMbT8DiaIxIKxVzlWUkziZLqnJRS1TjJ47yuwrTUqiaVTnW4PTyFahhhfJo8jiwrZI+CaXOdBhHVx5kGlkShalTHa1BEuV+0IsdsY1AqFaIbW1tbJEkSXXPNNYHj8brXvY5mHXmEIxmmetbnnHMOa2SDJvA3RFx77bUsxephD3sY43EMwkte8hIWCeHT1VdfTdsNc8j1zTFhRZVpqVPNglpVjuRKVTsRk6jojUKYcdKqWn69j50InraUBlmRxwelV41bnSoKs6JONa6A73ve8x5aXOykggKXXXbZeHaWY6qY6pvt+c9/Pj3+8Y8fuA44GxzXXXcd3eMe96A73/nO9K53vWvo9guFApumCqRVRRQBzDH52hs5pgtUUJ4mUIsDlcwnRR7n0rijGFHbXakKZPF5hDnByCNqcYwSveBFR8eFKIGErMnj/RSqthumXYsji7QqCPrFKUVjm236xQdeQk9+d2fZIx7xCProRz9K8wIM26VRnHJoZ2KqDsfevXvZFAeIbMDZuO1tb8sI5LI8vRdQVIXuLvST6200iSoho6TmpWMwHvryIslrfnqGqrBl9nKlhzgu2Z3maheHj4xLtksKpjaRsdBZX2u4ZBW981BbLlOLwsvC0bxlcSLbihAq5f0L9oP+UeCvBrAqDikt/9r5D6rrpz3hJWctOKTUE9xbl0gpdjpjRbXJbPce+P5dWwG5b6nYZB1wSTWDvO5FrU2Hm8lHevk2orBSqFPNJ0im6cC5EhU6W07kxHy/PHSe7gHyOuoSI+Wgohqk+p11QTODyuRitOHyxl46rXyEkabF1CmbJKZUdWVzT9d+blg+HFT23rJLwX5hFGGkuEWegbSkNoNqxmx7jkzmkKBqv9QtbA+EaYwMYx7HCkMMKVEH1PW+1zDyOqV83cOAEreLNJOoyBQ3ovHdutG5/6g4Xy20ybIVUvwq92w7ksMKAeJ3TsR7ba9e6yLe9ouG4b4CVzR3s5SXmt/rF4X0Fzg/NXOFqaihKjLHaqPcRaY9uLVA+6peOpph9j5PG1vd1cSbm53ztCyFzJZKTiXbqAHSqrh+PQxaHpU4bC4GggVRpPoweJvkv0eKWtzoW1Ey++4D7RLHlTbtqmEXunhk3MmAfDPfJ5bx9EMIGKw6g9Pg+DbsEJGeK8ix72Wkjsp9KrN3L0O7QgXytLKeuD4Nq0Abptd+towCm3ZHSEcjNTWqPo2o0Bd+ztF2N4wiVXwBBlG0I4zra4u0v7rlzW8tUkX31jUshQ5Ut2ijXaSCL/CgS9GFYtOivVGg4rLH4bKawkBMSyHSHVaHQy70cTL9w1COaWQXHSJMAmTTu5eOKhwvFvmbwy0X/TekO4XTqUHlM6tEMR6nVFi75GK65n+6HYvf/OY3dLOb3YzmCWlrajg7NKVqLmK3cDbufve7s7w+yOAeOXIk+O7AgQMTOQa5aZJdKfQ4HuyN7CtByW0zmo/RbMHa8iIdDe/FKuG/IjzNukYSHBLLJtL8F5DjkFxvB9t2fWPELXR+pzQ7L2RX8b7n39pF/8XjOxBAYcMmuyCzykKOLgWFeqJsGNYfS9GjFl0lDCJUuwDV58RCZh79KB8UtItux+kQwF9uYkaBq/kbLlvkWv75lSxy/JdqoWqQZXQ3Y71kUrXUHkrSK6smNYQQ+YHyFm0aRaYWtGl6JwtHBEYjOi4+zzshEceVt2i1DePbO979xS0yXZkpDp22sErrRol1jlyZiqvpYH3RQPE6+d5r01kGwpn32QrutGf8ypLMjAHss2HpPXnXYu6/OH98cZ2RVWt2kVTJpv3aZpexslffoqrS6qtOtSC3mBFkCDeu5Whd6lIcfNSTv3BxLg1bCvYFw6qseAYWjDucp0EqO74lpREYXmINDeTDyq5Ly3IjGMlVhBHhE9R15jzVnQKr3YH/W453r7Bcky3SyOoatRZHZy1XIdu1WR0BGFz4j+PCPH7PsUtvUMs3+tk1tjyjTpdtOlDZCnLOi6rJHEcsFwFHAveu4qs14Ri4xDEztl2J3beyZgZKP2hjwDGz4yzjuLYERxe/Q7vGFOUww7CDsSU6IAXVpvVmidqCs2H7z5+m2YGBqhUtatd1UksmObbM5jGQAPEGPJeqbtFavUxF3aRFnyTPDEZCu3cDRxqGJdoe26b/vwmj2HeWeHs50q6y3+O861KBSooRqJ6Jo/hNRyfTkalEZue6MSdMD/gHUPQq+W007ETgc0GCU+iQLnltAU4ilsMpdriT7d9DbsBj29zx488YzhX3kRknLhxM7zfceQbwfMHhCK41ST3ON3eQxGgHnpE2dUcO8dyJ54PrMixCovHBCv+cLMEBwTXAfeLvtqrWCn7D+Rqeo9V9vOJ3eD/waw3gnvDUJXx3zFdGwzycLjghcRTGwoBDDWcDg0slzaSjrbJ3/kzi13tW8ZnPX7e5SCXN6nFksH8R/DM4fW2hX3EwiOJ/dn0ZaKRA2abM5htugf2XVYf1WfjPU6TwrLhtxYsm6N1Og9Ty2gqb95+7AGxHwrpNhZSmRE7BJcmWSG5L5BRdkn2hFdx6TOhzoUnA5o3O8n5A/w0/nD9W4voQmsFgJZosLiXOAY9A9TqH9eNmWaKL3/O8yO0+5jGPoQ8Lzsbf/u3f0ic/+UmaR6StGm7vkIjdXDocX/va1xhRHNOJJ57Y9Z07TI42x8QRN/pvlxxSmtN/8OBIjIJlff7UhjBiPkkiLhyQaWHdKTGnaNxYiynzOY8o6BaZZk7SDUfcxl13JklxymkCTjl3zMYBOKSiBHmW5POZAaIbEwaacLi/zrJaeBiPetSjulKmfvWrX9HNb37z8e0wx0xh+tZeDIDnAcciapo2XG3IJUR0YxtjRkSUBmKhONud9jCJvKS6+FERknqcpNoZw5bTPx1t1ZotRaVJY9EfZU6DcFHKNCPJkwSP5swLBik4DapVM0kCexokaSfTKJyYJVdqEDkc0b9ZgdIakqLaTM8JCfuP8ojy+U95ylO6nI1mszn3zgYicmmnnYi5cDi2A1zbJtcUnmCBh0H2CITAPsUABx+MO5Ma3H1R7lw3pFP1Q7Hk5+2W2lONfCBVK8fkcGyA84HoxqxgVLnkWUKhON42ztKpEmBtxGJ6YkraMBT66YdPGXGN/FGNHTFtcLvWVMla+WoUSEPEVUZxKnq2NSZf98tf/jK9+90ddnir1aJicb4GEgalVKWZkgAlHm5/+9vTwsIC7du3jx7ykIfQ7373u4G/+cAHPtCj+jrtaz79pynHxNBvoBxclDiDV+MeCLXL3QfolEfbIYi4/RC3yN+8d6h1n0cQpwJwEqzb5ZlLpzpiD681MS7VoWmmUw0aUc+xszALztA0ohtZAYTxUWAnSDt0fR7idgeci7PPPjv4vL6+Pn310Dmrw3HhhRfS05/+dLrooosYxcA0TTrrrLOoXh8cMYXc8PXXXx9MV155JU0Tc5AQM8cYJZ0KSleqml5Fa8xSvODUdtlo/u7CfU2/GmUgjs8iFvVWT4qTGOkAX0NUHsoK2GdWRcX6jUCuGhVaiVGk7pC5GBDHkwCk86wcDZDEp11kLQogjI+KJCPMpVB6DdSUuLww0qqOhRydJM5HWGGNE8eTpoyohVDUcYijXIwQXRgXQODmAgCNBCPzjDTOKNTZYFFp0qbtRdsWlBZthZ6VaDWs7LvntNENiBzMsomYNJ2qIQgkNE2VpIjLwgjsfX6PZ4STxyFlKwsFZkEY79nWMOfCSGaAyhGpVJwU3rOuIZGbYSXyrn22MTDozWt9aqzu2rUrmP/Rj37EijBvFyB9eZAi4qDfJcFXv/rVnugFIh0/+clP6K53vWvf3yGqMSlhpTjYGS72BCCNkBbFYPTv3CQoV0XsR7KcgWlVo+ZcTgIgjm8XrBQ8jeC9he43LzecuULVrKUQXNdaHpqmMihlZSNBtGMQsq6+GpVOBYUqjn7ypqNWSoZCWJxCYuHlYVWxWUPZT1nk0MKORgTCCnJD1x+XDmcMTlOStKpxFbrsx99IEzVI6rCLimtZgquupeWLQNUtC0DBbxRApWwiaHfeg5JPJB+WVhUXYpMMB8PiplNBoWoYuELVv//7v7MIB3D/+9+f7nCHOyQ53Bx9gELWwMrKCg1CrVZj6q4nnXQSPfjBD2bSw9NE7nDkmG3E5G9wFAvmRPkbs6JQlbZS+ShpVbOuTpUUg2o4iDLCO0mdiitUTRIifyMNYRySuFliWL41l7iGUlVcIMrBsYSiB+z34xW3GBdRVXQS5zmdKkd/JM3UQ+oO5G6f/exnB8u+9KUv0XaDkzKdyvFN783Nza6p3R7+DnAch57znOfQXe5yl4Gk+xvf+Mb0vve9jz73uc/Rhz/8YfY7FM2+5ppraFrIU6pmLZ3KmeyIP6slwudjDKBj4CmlbZs59LLZQxifJSC9JYk6lJdWZU9tBG9WgHSqcRouqMExa0DBsqyrbotSragtg7STsELVNDHuiA6vaZOUgJ6EL4G6DHERR6Fqu0KswZG1NG6W6lSJjke1qZkwFWoWwPxisY5Hxq+EjUN/pBvd6EZkCAWQf//737P0nu0G9NnDVCb7/Q5A5EHEueeeS6961atoEMDl+PWvf03f+973Bq535plnsokDzsZNb3pTeuc730mvec1raBrYHhbKjMMNp0tlpFAlAmlVVrl/wx9HOnwPjyOEAYPCvetWsyWMRxHHUQiKVxvfSYpSotMzav0NXhCNbcsu960MnlWqGKRxl8Ry9jExKXWq7R7diEqrGlZQc56BtKrd2mw4BlnW4JiEDOesRzcmlhI1JiCtytXTvW+jCu12fd9nvA6Di0kyeVGq4MqffK7L2bjgggvojDPOoO0IpCGmSUW0/d9cffXVjNjNMYxM/4xnPIO++MUv0ne+852emnTDoGka3frWt2b17KaF3OEYArHWh4TaH76XrtRNSB31SMy6ukJS20VuT2eh73BIlTKRGdPA1fVU0Q4xYjF0Xdsr/OPgPMQXjO2Sq0je9xm1EAcVw2MSpZxdBnscUZU1KRZLnciS5Y8+8grHm+1iUFEcQKXnqJSNYoh4K+bkYxQaaVR8dJanMuEz5vcVa0Hnbjgqy1/mlYejRl/D5DFEKaJGfkHahG0frk4dB+KxgkCLEV+xkjZwsL3IqqnzY73KWaEl1TP016wy7REYgde2dwUVsE/Q1wamJIWrjfMR9wIqJPvk5zhouSotRdTiiKpmHieCwpFkdIo5RgMeL1STjxtBQPXtA4ubkYR/TLt9HlDU9eNV34FqqUWHjfjqXCeU14P5y7b2UFqUi0ZQjToqiodnV9VsqhSNLucePCaxrgxGrdNg3Sj3cKU4qZ9XHg8D1dfDfILD7QUqh5ZdYy/TXr0WtOfjtHXasktdhgXm47Ycfg/59riSFP5vWP0d1pb/fCjkV1L391iR2kGkDt/x7eI/0r/iPBOi+AE4S1XB4twwPGedi2PsKfY6YGijmtqmY+0qLenN2JwS7KdhFYJBBkly2aAFqnHDIcCZ8O9ESVrOf8PzhfcrT2Prh4YQ9Shqw6+HbcssbVJRvGvtkENi3MR0FDYN3Y7hVRMPq1FJKfqyuE6EHXJC8LqX61KsTAR9o5fbAYgDiVrN234catvqtb+ixsb1wWfU3fjrv/7r4T/coVhcXOxyOAbZoc985jPpM5/5DH3729+m0047LfG+bNtmhRYf8IAH0LSQOxxDIMveS+9Od7oTff/732efz7rDP3WvY/idJhyEiLChtHc3Ud0fVd7lm021hreuohBVy50ULF3DUExnHo1NVcgpaSS1bXIVhZyCSrJhk6sp5AiFB11VwpvSm5clNjm6TJ5N1f1Ssoty4JzwaqNdti++UrxlwQgH/15Yj9mt/me2H+E7bn8ipdqbF5w3x9swHBHMupp34BLsaiv6Be06EmlF71oXKp03pGjUwMlQ/c5JVy0mf4vOCZ3UcqHJpn4F1GD8h0fbDUdhDgg6WDgbMPjwGU5IWTWYMV8zC1SVbTYPoxOd4y69E0WAca7K3nGw/QwYEYFjAdUTlmKj2NSwtOC40Nny9AEo/fDl4najOuJFtcUMDO547NW36IhvpEK1CupVgB1yfjasUqA8ddSsMuJ4zdK7lJA2fOUdOARhwPCBYSYa+HBiwOvAsav+iCg3qPh/jJTCcIKBArnaNbfC5o9aCz1k2IYD48WhVbvKfnfQWg5UfsKAQSY6RSxaI5vM6WCjsw6RI0nMsEC7wTHgfiPjFg0TilFw2th9NkvMUBPby7LeZPcf926jXWTpH20LCjjeOo2Wzqp1F3yyNYwiTJpie+3Uv8doA9w5xLVi19GV2TpYJrYfHDdG5JH/XxOMyP36ZmCgIsee3duSp9oEY/qIUaXjy57Dg7aNds5+V651qbCVhAhhy48OaiEVK5wPDDZSHTJlbzuaZrOWWFAtdg3CylRhIx/tlqc+cSccDjs/ruubiwHRHt8v6m060q7Sst4gLRS+NZ1OmoOJa4n77m8HztGa3975vnD+4UEGPC88Je0qZzdzuPmzAIevYReC+6KxNuTtgxv7nPyN+4V2hvsUJVkL/ob4fOB32I/oVIqRPn4MfB20fxEYHMAztmaW2XOP82sM4LRsmCXW1nC9cK2juGBHWxWWOrar2OwSO8A7EAMgcOTY9YswcHEM4NQ4wj3CumwAxX+PoSJ4OPqAZwHvv/D7eJizgQEbDCxhHXSvcFpq7ULwDNq+E4N3rPgZ++HOBvtMLhmWSgapZPvv42rBCJSpOBpNnVzb25aDZwCDSFwaF+MT+A79myXj5UJOGyN8UifjAIflSl4f658Wm8fx+eTxrrGhhreM/x6PChwPfplYUMw3CbgPydbFK8yFreL19ZgGjV2pLbGv9vp2HIdsOWw7P/zo8yN/J6ZNff3rX6d73etetJ0xakpVXCCNCs4b+BioxXHw4EG2HIpfpZLXBz/2sY+lE044gdXsAP7pn/6J2a03vOENmRTxG97wBsat+Yd/+AeaFnKHIyagf6woCv3bv/1bug0sVDwnI0cqYARsHICxmuaFsZ2QVn4WBnV1itk1WaRzpcWy1mROR9bghlgUkhaLmhXA6Rg3SuOqWDZmiM5GWmBggEcjZ/39MaoCXI7JIgmt7G1ve1sw/9nPfnbbOxsAfLZ0KVXJcP7557P/d7/73buWv//976fHP/7xbP6qq64KBsiBtbU1evKTn8ycE0gT3/a2t6Uf/OAHdLOb3YymhfzpHwKoBpx++ul07bXXss9QB7jpqQ+iE/feNt4GUha4cSpFktvx00Xs0nRuJYuOZBAtlkw5iHKw7WJEaIQw9CSq0M4jEN3gGFSTAyOzWRkHGNkNG1YYPea1CLLcl5iOEhXlGBfSaLHPW848IjFJSNJJMY52MM8IRzoQTUzjZCOqlaY4ZM0oUFUfr3KWCESBR6nsHRbNQFRC7AfGNWg1EmbgmJhTgcs04qEg5YcDEqw7AZOKcLih1P0oINVKxFve8hY2zRLmc8hsgtB1ncmIvfrVrw6WXXLF58e2P3dhsiRUW++8ZcRnQMyQmYF3YiJw7kYUkpDEeTrHKEC6wSTAUhBGVDkaNEo6DYN6WkgibzpvOKnY4dxME8jjHwSkUwGjGKBIp5oU4uT3Z41BtXGSAqmAWUPk0vTj1cwz6o2Yg4nbYOxr2KAiiOEcn/70p8d/QDnmErnDERMvetGLaLsA/I15QtTI1HZWyuEAf2PSSFOsbKcjqTPWbo93FL+f4ygS/6eNBYE7lYVk6jTVmtLWmolKpxrEtxg3NgXujsjjmTbmdbADnEMRaTMB5iGTEjU3OB760IfSTgHSXNNOOxE786xTAJJiIhzHGi2dCkRx8f8I6JdOlbVjkdV7nxHG+bxPuJtlgFQ66HNUhz2KXOokOthB6VQcXIkqDcJKOSJhNo2yVBpwlZ9+1czTcleGgRNRh2Gz2W3UbRqF2AatmE41zoJxYRUppFVxcH4oI4wPQVisYZaQtGgmJ25Pqoo3CONp9i8qUUUp5YEwHgdp0uj6RTTipMz1S4cd9F6MU4MozXtV/E2tPT1ncBTEtm1jvO6jbs1Xv/rVYP5d73oX7SS4JLFBjKSTOwGZ6llE7nAMAfSk3/Oe97CCKSKuPfrTTPfjlvu//J2FjiHiVLyXnl0Y3wg/1K1irdfnELi9lXVBoUkibjqVKJk7C1r4gC4YiUtax9DbX+jwN9IgquiWaPxGqfAMA1fz6dmmkB6WxDHoZ1REOR9pEJZVjWvEtAxtJtOBoCIEiBKzo9amEdV+poFZ4W9N6nmfBpIY71ANmzXIcqeNcFXDUdKpHHAOOUZtfnGurRS/Px437n//+wfzICnvJOQRjmTYmWedULv4ZS97Gf3hD3/oWn7plV8eW4Vwt5yOaA7YgkyuCAeSuQP4G+IgalTtjUlEtUEc79lvhjsWDamKOn95+lyOchbSDPo5H7OGJI7GpCIvOQaP/nP+RhqFqnnhCmShTpUUUVGOcQzMzMs9mCcktU9TU4rcZPuGTCvHm9/85pQ7zbFTkDscQwCNY5SBf+Mb30jHjh2j2MMYKdSpogjjbkmbSXWqacEWRpLi8DigfML+jyl9ZrsAtRnGjUERkHAhwnGnqWTBaYE07jQQV51qRR1fxey4aWNJkaQdzEokYxYAadydijjpVDOFjJptMOY0JisuzqP4kIc8JJh/7nOfSzsNvHhvmmknYs6e1OngKU95St/vUJU7ADSQY8iXzTO243MSLviXhTrVNAG1qrnrhLcJsupIpuXMhIHCbuOMZoEwPsxxHEWpauB2UVxyghJCiGqkSTucJiCNy3k84Bih4OIg7IToRmx1qoyBSMMsjZthIJbj4x//OO1EgBMo8gKT/G4nYmeedUZwXSfT2hvzhLT5oiJhfOg+Zsy7QdXhnYDtplSVFX9jHjAOhaowcTwuqqX2UIWqnYgk6VRpCOqDokZx0qomrVCFiuLjxrgicrExo+OQkVGMPscqOjuXX345vfKVrww+P/zhD6ediDzCkQz5MGhCfOxjH6NHPOIRbP7Ykd/RvvJp3ZItrktONcLhwPeVArmqDDahh+VyEBFxFURH/E2Ah+G6ZC9625Hb3lvB2FsO+BgYkLfKKrmaoPhkugGPwynIQR4nH7zH7xxNCqIUeIF05WdK3jLZdIP1+G/Zb/jv3O53klnxeB+wU5F+zQbxWkSBTLyLSJDHEwGRnO0TkyMFL7Hg+WvLRLrD1KtczukQCH5osSytyiemtg2VPbyKP7Km+BvkHYxJChulZT/1/4v8DV4PAFENRDlQLCpu5Wfv91oXx6KoWNSyVKpqBhsZRj46toFRWqR3gUiKecdvL5gXoyv4jPVxHJxYhvNb8EcW66bOzpUfF36LUdqiarGHmW+r6ht1UIXBaDlGHkHQxueq2uoqILZH88jkWNaSvVeC6ahMolMhhxpux9HSWGV2iY1Ki9vg80j3wX440VsscITCZSJJnO+XY0ltBOtrksVGgTSlyQy0stwmU/By+Xni+BaUFh2xFkhH45KIjCgSEiNid99bdr6uGhw7zgnHh/VwHpigEAUHDPeNFzAE14MrR4UVy5qWRk1DI9Vvn7VGgTTNjpTGBdG0WddpeblBS0XPUTjUqNL+ci1SaYgXb4PRKDqFmt+uRWeDzyOtCufD29JVrRXao9eoqhrsXrJ1/WgKf07Q9pCCyCJ9ElHD1Fmb5mi0dKZMBeKtaahd0jVYhoEC17+ma7UyHVjapKvWd9HuSp2ONLy2tNYq0XGVTXb9dukNtqzuO/QiV4mDd9A8RZLffyhMceUjU4guY30sxzna/m+jSNwQWKj4HBCRqA8jfc0s0z59i91rtGcxGlJWWiyNSXx2MS/W48B9Yfv0SaJ4N4WdjatbuwKHYNWoMFGCNaNCt1y8hi5v7qFDzQV2H/YVa3RdY5GOL2/SnzZ304nVDfYbrMeB4/ntxoGu7d9k8RD7f3ltd7DsZksH6Xcb+7qOm78vxWu/XGzSeqvUdU3X28VIBwHninZ2tFXtWo5rBkU8EMd/v7WPtTs4NMt6i83z+4L1Ns0C49mJ71z+PuZRaL5v/k7FZ9xD8bpjW4rski20B7wfJckly1dU01WviCVU1/i5473K3m3+Z97mcAxtX/SBtXcBtiH0D5ZMrqi6KLtdvETJksjVvGOSDZnklkRWtXfQEsvZo+h/pW90+lL0oxg7wGf0uxw8e1LsrqwqUeEYUXHVZY9oe0lifXRh0yGj4p+j/2rHK/Nn/9lJibrD46P5GD/86POpVqvRwsJCsAwVrnPkiIPc4UiIhz3sYYHD8bM/fYzue/OXsnnJcsiFESn783AsMoJd7u6kJAcWfG/nCecjSmEqijA+Kqzy4PCunTalGKeGl7ToZIhf2xJJSrLhIm6kcMAA38ygIJ/obPB5GAf9+CKjpIY0zeEjk9zhgZMD4xSpVVEjmg27wIz0YeAOCjfCm7bepRglknXjYElpdhn4cC5GkaatyO3A8D+gbvTIh3LAKRFD2HBmzD5OST+1rKSVYWHYbDS8h6DV9JXlDJlcQ/EMERgci0bglHBHuaB5+7uqsUJVtU3LmmeMxwGuBd8Ox8H2Eh0oeMapiEOtBc8QdBW6vrkYCCqI6YRIpylr6cUVuHE3DJdt7WEG9biB55I7DszI7Reh7tOGwoABnGSkEk7HZowXI44RzkYcXLR6Gl1XWwyM5P3Vbif+wutu2LM87JQMAwxxMULQtlQ2ABIM5Ax5hg+3F7okw/sB7y5cT2yv30CP6PjODocHTmVoCRyPCMl3uSGTqwoDNS1hwNAa3pbEMRM+XtPvMmi9j30PRCdDxP994HmRy1utVpezcc4559BJJ51EOxV4m2BK87udiJ151iNAUTLI78+v+kygn7EQ1dmNK4980HGME+HR/p2AcRgo3OiaNGr2dNI2Ed1I/BtTn/mUm6wwLDcb5sksA0b/PIJH+Wb1XSGZw9/xgzJZx6j/EBtXXnklE9HhuO9970uvf/3raScD0dO0005EbvrOEqTkNTHSDBDLVvTLtJ/4TfjZSKhamS3Cl4MXHxviEJTnUAZ3uyGukxOOeiSNgiwr8aMCoyhf1f10vJnKFc8YW+3ZqTg9bvAUs3mQUb6mtjTw+0O1zij0MIjpSDkGQ4lIjxzLfsakGZF2nOnCCy+kU089Nfj8hCc8gRX8kyIyLXYScg5HMmyv3nEKUQ7H8V5ALJ1KANKq4sKFutUUEdXPgscx+QPps88ERPNhmMf6G7NSSCxpClUSiHyQSUF0LgY5GsPSqaYV5cjhYUvguYSdwCwKKIa5Rjk6yAdypgd9szNfWEv++5+8O56M7Tve8Q66+93vHnx+3/vex6YcOZIidzhS4Jvf/GYwf936r7q/zCpiHmPkIGnUd9AAXkxp/y7wvjycDh8lwtK1LNzqZsTZFwnjw8jiHFH5yyCMJwUf8Yi73zQpXuH88VHSqsRaEONKz+J580XJjFWdPMk2t0PKWZK0qoPGYubpVE6fgQALPJUIHKtXAsI4x2q7t/ZQsP0JjAJyIn4SxOE/JUmr4qT3QTjsk7Gvri3HjmyI86uN6OvcEnhog8BFOYBdvsBBXMThb8Rx3KPag/jOziqtSjzX2IhTHNzpJob3g9oYnlalCc7GIIAwLkLfTGY0IJLxtKc9Lfh80UUXsWU5PLiuzAakkk5uXmk8R1zc9a53DeZ/c12o4vgU0M+RyAdes0HYuO9nCCUZ6Z6EMZWksrCoMpU2l1mMBISjAqIBP4mCfWJaVZhIPQ6I9z6sdAbY7c4yEMbZslbH0Ky1Os4D6h30Q5RxCjUljqNmt0rQIEAV6VDLc0SgECRivR1f9aFLmUdArVYai2E6ibSqrOtJcPGBuDjWFiSIcmQGrh6X1MFQhN+NI61KaUqxHY84KIo1ilPgiiuuYOlSH/jAB4Jl11xzDd3xjnccbcPbDOjL0k47EbnDMUYkSauaNPrxOGaWvxEjrWq75c+nxTwV/Uuq/hQG5HJFLI3A35jHKEeOnQ0oVMVFvyjHLGKY8lWO7GGaJn32s5+lffv20Wmn+XL/PhqNBp1wwglTO7ZZBQRD03E4aEcit9BSQtc76QW2M5/KHsBcv9djDBJAZ31e+Bui7ntS8N9E1TAYhO7aFvPcGIgW5OkWlJsGlyOtWlXSYn5p1KkGYdioMn8WpqFQlZQ8niaVZ5bVquZFqSoqSpy1WlUaMElcYAy3eBxqVddffz09+MEPZjbNQx/6UDpy5Ejw3d/+7d+S4zhd6lQ5cqRF7nCMUACQY73RKb6UNMrRQxhPGWkb1keOy5ac1VREwxp9dDounyLH5CMFqMExTrWqHLMJXixunqVx5xXLhZ1dIV5EkrSqQZK4sjG91Jr19XXas2cPHX/88fT5z3++67vb3va2dMkll9AnP/nJHa9ENQhp+BuOP+1E7MyzzgC3utWtgvmjtT/RdoRiTDDuF4crkKFaFa/um2N+ME0ZUl6pe5Ak7ixxcoDDRnxp1BzbB4MkcZOmVfUr/ChGQdQZiCpMhSg+BgyqxZEVXNelKy78GO3atYuOHesme/zXf/0XqyR+8cUX001ucpPxH8ycA8qRaaediPlJ9p4xnH766cH8FUcvohvvuydJjsPUpZjp7HYMaMm0ydUiRnmxjl9nw1WkntobrKK4CKGN8mhyV1QZVbod11vmj0qwvsB2g2rjXXa2YOQ7isSiIFCTEnnDoo1nIarKf+J2NsFtMVvv3j7fDr62eHVwfHAlgtAQKqs6ur9c6x4RYttEmlBB6AgUhxxUIXclUip+R4j9ux1CoJiOpKvdHWHd0mlBbbMq40fa1R6iL49oiCRxkTTNQ/iowLxYaLHvUGEcaR/4Df8dCLhrzTLtLddYBefDzSrVjQLtr2wNTAsIV0QH2RnLsF3+P7wucp35NvCfGwJbZtGrqiy5dHVzFx1X3KR1s0QlWe2RuF3y3wJY3/RJOg1HDyqNi0TyTasYjM7sL2wGGv5bbrFHvQfrhaMbqDa+W6mxUeAtu9hzvgXJZFVYwwa+uB1UCm+7Glu393p27xORkLpToJpdpKrSooZT6CLs8arrNV9aFecNZxTGPbbF1y0rJi1StzrPpZv7yBTa27qvvtRs62xNq62QJBNZDTVIs5DgNEv+s2rK5CgK4Y4pJYcRx/HYIi2kqJisPR41qrRH767CjYrvIuq2zgjgrCNzJbquuUy3XPSirn+q7aZrmsts+QFfRxPbBK6pL7HrzNsPjr/oVxxHRWe0azwX4RQ/PGe2X0VcL5hktDVSNZtcVyKz6bUfR6gyvtkokiS5tH9xi6kioRDgQqHFngu0Y1Su5ipMLVvrei55x3xceZMVy6qZ3n0q++2XV/uGNO6S1uxyBsMpgriesn+unKCO31cUr51z1KwCM6ItR2FtJqz0hnaKqu5oZ9g3iPfH+dXc8YzxY7hBxUtNuaa1i1V1D6urIa2KH2udCuz4jrWrrNo7f+8gRZI/94gwHKwvBN+hFgeqpuMe8mXi+wTVxQ9uLQwVPGyZWpB6utoq00qxEbxbDPLuPe4ZpuU+ClW8kFktJD6w0S4G7RLtAxEqvD+Xde+6Hm2VaVFvs3OEUAEcHP4O22wXA16e6cik+OcovpOjHAXsDyIYvP3iv6rYwbZ4v4Df4rjE7eEYsQzng3nca0V2ybJ7U7gQ5XAsiVy/QjjEE4J0qgjglaZvoJ/1+2I8ag5Re7f3vVbz+kw0fwmXQILKlNDn4p60XDbV9/vnsklkCv7lb1/vSd3+2YvfQr/5l+fSLZ7/FvrVm7xlt3r2W+jI6iV0+Zff0yOC85nPfIZWVlb6HnuOaKQt4mfv0DocucOREggz3v72t6cf//jH7POnfvQSetjtX+d96Tsekb+zXc+5iBFbclR/JWHd2O2UW+FSt/MytJCg3T9NCn18yNbp/m2fQSJsT9uUyVx0IkPKcDqUlkyuCgaW5P0fAkhvyqpDstxZ17Jl0gQnA0YT75D66cWjcx8EdDJtWw1IjDCcwsbZIM4FjAK+Xs3UA0cBRlVUDjJzIPx7xA0NdHzDlKO44dUP3BBKww+4qrkSmfO/bpZpr+45Udg3DLCCbDIjHU4KUppA6l61qrHTTeBsRAHbYw5JSMaUGyFxEHZ+4GTguh02FyOdlzCuay8xZwTnHVdlzO4jEduzniNTUY8+Bu74eGTDeEHp/1s7tYdT8pP1k4P23k9WGY6xPQKXSITrEBktlSrVNns2D20u0FK51SXHWtXbA9tyVe3+vqq12ARnIAwsE++L43qGe9ioDOP65iKtFKLT79asCmvTYb4M2uIRo0qLaitwxMPYYCM0HafpqtYKqTH0x3GsuPYbRvQzC4eAn+dh4dni2F32Ev3hbPDtiQ78kXqVCqrF2hzuNZ4hOM7c6RAdnn7vKPG80Cbh3MFZiluw8FCzSgta9HD+1gCVtjiAg8GPvyxwgHhfgPNm811tZfjzXNCseKm6cBh850PsE1nfqvT2k8XDUuKCfJWDTtCnf/9tL+j5Hs4GwJ0NRDWu+fBraXUVHkwHBw8epP379yfbeY4cKZGnVI2AJz7xicH8hz70oXQbiWkvhQsL5pg/8E4wTQ2NeSAi7yTwaJgoSgCYGXCHgGlXosXIeY7RkcbRn2ekIZwPkoGeFFIrHM5BtwzStyzLXc7Gl7/8ZeaE5M7GaMg5HMmwM886I9zjHvcI5p/1rGdN5RiSFv/byXrr40TTHE3FJ5xOlQZc0WcQ2b0ZVZVxzFhRu1OChknbjgqku+wUpKmkPUrkYpzPVdyCmVHRjayAdCoR17UGF9obVvl8FlEtTIAosAMgpg1OAkilSoMb3/jGXZ8Nw6D73//+GR3VzgZPF0w80Rx4qjvZ4XjQgx5EJ598MhWLRTruuOPoMY95DF133XVTPaYb3ehGwbxlxRzZQbrVDCDSTpEGODHyZJ0dnudK7dCOI0Z+rQEGFPKTR8E0anvEGSXMdeo7AO8C2HKmY+iFoxxRcDmHKQeDyH2JQpKCk9PAMZ8HM2nsKdVnNio2TlndZlubWaJ3IiQ45Cw0Mp7znOfQH//4RzYP28m2bdK0nTMgM264KQnjbu5wzH404ROf+AT97ne/owsuuIAuu+wyphE9bR7HGWecEXxGiHKmMIY0LIFrPFdYbZdnLqoxrqjHLDgj45SkNV21x9nIkWPeMA2lsyTRjbUE1eZnCbPurE4KX//61+mtb31r8Ller7PUqhw5poW5aX3Pfe5z6U53uhOdcsopdOc735nOOeccuuiii1h1zGniec97XjDfMNe61Kb61eOIVYE8YjM9A1gREYlpDHKFFWYVQcgkiiMZEmvprJtAkzzLcHacFBOepjSoijcItwAUqqLQ9Imy4vbCjkVRtcaSdjWqKkaYwLrufz5mVrqWt/ukM/G0KihUieDKVuNMq4JC1TjlZ8PgwgLjSC0SlZfEdKphIfph4ghp0qkU/7Oqd9qsVuxuv4VS5/1cLnrnpYfaOAjMo0pY60PW6ZdmyNWqwulUYWdgTWjnIJInTaeCilg/xEmvgJJTP0CNKgp7KumrxEFJKivEibxAoUoEFKo4tlq+kld79MGFUSLWXYIEA/qffkpVUGXs/xvvfz+F4aTpVKihcZ/73Cf4vLm5mTsbY0C6KuPSzEQjJ425bIEgP33kIx9hjse0w4NnnXVWMH+0fvlUj2VeMc3iR7OWTrWTEVaKghJQ1hiV3wGFqrRpVYPQT6FqJxPGsxipnoXK00miG6Oe897KYL5UGElU3uJwXiZZrTyu0RZW+RsEO1TrKSzPnRXGWVLol7/8Jd3sZjcLPmNgdmEhr8kzDuSk8WSYq7N+8YtfTJVKhXbv3k1XXXUVfe5znxu4frvdZp69OGWN0047LZi//NiP0m3EnaxC1SD+RvDRnR5/owecx7FDRwUmAd6xhhWqVkMRjO2KYalZNWs+UrcMR2W1G3YyKiEp3XlB3FRI0dDel8DBGJZONYxX0w+DRCq2IyZNFk+Cd7/73V1FiVEp/I53vONUj2k7I49wJMNUnxykRYEHMWi69NJLg/Vf+MIX0s9+9jP63//9X1IUhR772McO5E2cd955tLS0FEwnnXRS5ueAY1xe9pRMWlb2Dk3s45igAzArPA7HkmMRx2cZWahTJcU0lKriqFVljUmrVaWVxE1jwESpU8VRbxqWPthvhH3cqm9ZK1QldTr6jdSPEvnaDpK4vLBnGCh4OgxilCNJlGHaCKefZiV1nRaD0qm+/6kXBMpTsHGe8pSnBN99+MMfnjrPNUcOEVMdCnv+859Pj3/842NX9N6zZw+boA5105velDkQCBeeeeaZkb99yUte0sWxQIRjHE7Hy172MuYMAabdIk2ZAVnEOavbgfxWVyjiNy7iOCqNTxOzXoMj7nWcR2KmyOVAhfEck4GuWWQNqhg6QaCSOaq4TxOzThbPEknlPzdaXrXxcWM7pct++9vf7pLoB6BMdYMb3GBqx7RTwFWn0vxuJ2KqDsfevXvZlLaYDU+b6odCocCmcePv//7vA4fj6NZldNzynw39jWR6ucVuIbsXn6Oismm0Iej4ZPYwwTyJ3SgSwHUhmGMs9q5bvdqlzdM6DxUqqap1meWu2sXenaoNIkeXyFJdUuoyqz4ep+K440gkC5KjvBZFv4f6mEDeROpJP8M5qkNCBVw+UseJrlCqKsXsIA1LjazYHTUyiGndJ7Qu+IRRhGFFh4WnYGC0kZNKMb9hFOmEyniibavtSte13FvoJazuVaNJrBzLSr3rv0IOHbYWabcfATliRTSoPrhN8Ur6aeuUgetUfWJ6mOy7pDZpK0QoZ5XlHe+1iLYBAjnPty0pBksfqZnR7xSV10ERIhaVpSa1mjo5tkRuw9uuVDXJ3dJI3dUiTbOpWevd3h7duzao5I7jWbPKXcTxQkT6DQvTp0hvQZtGOs2gavVYnlSGdHl5dKUyXsk7aVSupJjsfHhEhJ8XyPOcQF8z9YGRlSN+5ezTykfY/8vre+iUilc87bcbXsG0o/UK3f7A1ZQVVtslKqsmHawv0OlL3VWh+fMd5kcganXK0lowH2yrFc03YhXGhfcIkgT4+BR+j0rkQEU3AgEEtOlwlItf00GcnxssHqU/bHT6+EFt7OhWhb2xy0ude3J41eceuESlSme56cjsXd+y1EihjaCaeAQ4+bxSiL73W43QO8GWqFDw9tHe6P5O0m2Sav77wpZIrXWqhgf9nENUPOqds5mhmrLrOszRgMPBcbe73Y2+9a1vscyLHONH2vQoZ44iflliLpJ9f/SjH9GPf/xj+ou/+AvatWsXk8R9xStewTz4ftGNSeLEE08M5pul39JXf/VZut8tX969kuOQZLqI14Jhyt7yrgoD3Hc8XJlxNSTXZVLdriwxtWaSYUTwbSAKAONdMORD7Ra/8/5HH6s40Mi247+T0Qejb2G2ltvH0egTWa5c55KjSWy94qpNZkUOnA6kX5llibY6VBdSWn5HZXSOE9xOpNGrDe87HJZkCidnKuSUbZL4+rodpKPIgaHXfYDIb0aHBCN9X6ke5LZX1XagsoQHH2lN+K5tdR6HuqGT4kdcsA2QT9GJcQelKdT3wPfBfN0zamXZpT+t7mbrtzTVc4RcKegI0UmLzhFX2oETgVFY/A6GBz/GYB3FDj7jmLnxASMKMpYLWjswprbMAtvPUqFFqqyxefwG220Lef7rSpk5D7v0RqDQhGNg2/WvKZyt6+qeI4D9YxRyudBixvB17SW6YfkIS2GC6tS6XWZORyVCeaooN7tJvWSTLtm0T90k28/wXFFqtCw3aN3xDCZcrTCOV9eDeax/qnaMrjB3s22IqVsHlA22navN3bSkNGhFrdPl7b20R9uiw8YiW1+VbGbAcx4HVJFwXjhPTXKo7eK+Oz0j0/1y3rmho1VC93dXi7WLdlMjZVebFqstVl9geaXOlIbQ/iqaQSdV1gJng2OX2iDTt2Q2BxSWQ/ux/OsF4xRON+452mjLf92Dr4N2iPOLcrjx/TDCfrFgBs43J9ri+YNylVLpGKrccMXErolss/aHwQW0Zb5/MeoQxWUoySbZJJEi5HPiHnHVLtwnVbZpUWv1pMVguegE8udD/C9bbl/D/qLV06msevu9vL6759i+f/VpTIGLG/FsEMR/d+D81tfLtHtXjb1Pjm5U6PjdG8Fv8UweqVW9d4LsMtI3T1cCb4gdg+I9cxvtIlsP12/TLNCi/6zj/q61SrSr2GSDDcCS7l2Hkmb1DIjw54y3U1ybfpnJeM/VnAK7f4al0HqrRCQ0P35d8MxYcvTzgDbNB0rYu0M1qW7qdH1t0TPYHO+9CIfGNBW6bn2JbEumDSqR60gkyS57z8Nxx/e4TkwhTY8eHOJtD8fLuWlIi9JUm+otnQqad18PHlliKmrukLQv21CohXd3QyNqyURFQXHySIENjLFBstBAGpwPdijC4t+//Lk0KpBG/va3v52e8Yxn9Mjg3ute9xp5+zniI3c4kmEu4orlcpk+/elPs4cJVTOf9KQn0S1veUu68MILJxLBiIPFRc8Y+8Mf/jD2fc1AmQXyB41H3047Wi53VpWrdvLLIsd8YZDE8iQQNvJ3CjbXoiMLcDZy5EiL9fV1NugKeVvR2QB3o9Vq5c5GjpnHXPQIt7jFLeib3/wmHTt2jD1Yl19+OZ1//vl0wgkn0Kzgda97XTAPAldW6FfXo2c93Elx1TGGVGfB4dluGFZHICn4SOeswOB5BgkRrtuBiEVcJFl3VIySk9uvjkJSVPzR5nE5z2nz3nMHfbpoxSB4z6rTmgWionWD2rLZGpL4gShHBBDRGAe2trZYCQBkd3z/+9/v+u6LX/wic0RmZeB1pyFXqdqGDsc84MlPfnKXNN1Xf/lamlnEdEbiOjuThDvA2eGh8n4dZlJt+LAm+zQxrhfUMHWeeZBYRTrVLDgVSF+ZBJa17rS0LNvYqAUiR9n3sEKH09j/IIC/kYP68tKQyhancOF2Q1bR/yNHjtDd7353lj3xwx/+sCvj4wtf+AJLrTr77LOz2VmOVMgdjmTIHY6MII4whHMr+0ECnyODdUaFz5Hti1l4Nno4KX0uC+ddTEoecqdiHCovII/PIoYVj5s1xRGeVz/viFNhfNh6otGbI34hwDgFE7dLOxuEodGOMeFLX/oS7du3j6WNcxx33HF06NAhqtfr9MAHPnAqx5WjG66gVJVkcmlnInc4MsRf/uVfpv6tZMUztoIBP1FtKuZddNXxjeTIIMT70OpOT70OvcPxnQlUfcJlluAkTE4YnVY6VVKIyl3jcLj6pVOBMB4He5XkilvhdKqTYkRByiKJaIwAUTUJoKY1dJsZtyGxwrJIKBYdzX4cjTijd1nLKo87EtIYsfDj6kZHnujQRv+qz1whCjjWqMxEWhUn/CeB6OiJSmBcCGMQQBgfN0BATwJGGO/aQOcYQRjPCqurq7SystLlUICjgULH1113HXNCcswO8ghHMuQOR4aAcgQHQqBdaVUx+kMoVAXzfeRth29EnM++UY+jX+9HHJ9FJH1RoAbBJIsC9uNucDWeYelU/SRfB2Gv3uFZFKB7PKByt5G11zsC4hjywxAV3Sjq43Mgq/7DkjatalwF2PoV3oxDHI9bYXtUcHnj/t9LsQokHmtGk8JFrK9mm24FBTpROneaUUoo1mUF0fHs11agVDVOGGFnYgr48pe/zKRsd+/eTWtrnkod8LnPfY5xNMZRPyxHjkkjdzgyxM1vfvNg/qlPfWrvChNIj4qNOdbpHsTjSEN8HOREzBKPI8dw3Eg7nMl2sowY6AWTNF/Hf6ciqaOedcRmUtjoo1DVD5DEHQVJnI9RohxJMO00tlmsau6Xk+mqI/aJT3yC9u/fzxyNMBcD2RKWZdGDHvSgyR5ojkTIIxzJkDscGQPhT+CXv/zlRPaXos5XX/6GuK0wYXyaz0ffc3QHE8bnAdNOp5oVdaqyZAxVqMpKnYoXAuQo+lGZpJg17kY/oNbDoGhZms4PdQ2yxix2wmKhzUHY2EoWdRiUVpUWqMWRFDtVujgT9FGrCkMTROi+9rWvMQdDURR6+MMfTocPdw+QPPKRj6RGo0Hf+c532Do5Zhu5w5EM+dsmY7znPe8J5pFzOVStql/FpYwxrkyWLBQ5xGPrk4mTCOMijicFrzw9iximThXX0JokJilzO22IRf8mrVY1a5iUUhWw3Q0BRDlQEC8NwpXGI9fJSfp9Ubvi93TWWWf1LEdtsV/84hdMdeojH/kIlUrZpMzlGD9yhyMZZs+qmHP8zd/8TTD/3OeOXlV0oFLVhO3qvP7GdKIb/V5Ok3ppxZXGDUcK0tbemEUYw6TcJiyNu50jZvOQTpWFJO44ohxZII5C1baCNP6BOLO+RVf99zuCz/e73/1oY2ODORmXXnopK2ScI8d2x+wwOLcJEC7lQI7mf//3fwdRjvv92cu8L2ybaEC4FA4GSOOuJJGr+tsDl0CRg+8dzVsuCUan24c4rrSdgLPh2U18TSlwImw/vRefHb7PARBVqRTfztQ3LVJa3gYLGxa1l1RyZYmskkSwRYtHiFp78Vu+DSJmW1h+2pSLVC5vQp8XFiuRWgpRGdfOIUnx9q8oDmmqzYxvMaKAKAevuwH5Rm6IgTi6rDXIdBVaUFt0rN3JoW4Lj4NIcXEcbNth++ABqTAFBuRHpK4UVCtIteHpCsgpxqT5xzeMDF5UTG8bDi6NzNbnEQfdNwbYMlemhp+XDZIrClzJuKc+EZPvZ1lv0rpRol16g9aMMu3S63Sk3TF2sPxIq8omThwHyRzn1PadDShwGZY3j+1j39jn3oqX9rRlF5ms7ZXN3WyU84C+SXW1QMdra10OyJZdpRO0Vbq0fTxpkk0H1HVatyt0hn6QXT+ZbFqQW4FS0rpTJl2yuqIbmK9IJm05Oi0rFjV8Ba0z9CPsHp2g1oN1r7YWaFFu0UFriU7SV2nTLtIBdYO2nCK1HS1wkvbpm7RhlalmdyI/OP+9+ibbJtoLru6mWWRtqWEV6LjyVpczZmgKrfmEYrQ/3H9cK8NQWTuFxKZeNhlJdWGpye4PFM3wmxMWNth+wDfCdeFY8C2XPVrnOoejHEeNKrVDDhHaPO4jrqnhXx+e227aCpsX+Ulie+4sl8jx2x3uPycZ4z+eB6RVYZL9doZz5U4wzh/PZUkzAwMWakV4JtE+8BzyZxJtiT8/4RFyTirWZDwJnecG94LXfzAdmTSuEOevY5N3zlZIXQ3XvGWp7Dqj/fLjDatmYTl/5vg619UXI6MDza0iqUUz4G/Ix3T2Dt7E/30tclcL7L3hat4+TFUQBynYwfMqyS57rzXb3jOtqzZd6yyxY0Z9FF2xmZIaFOOg9oS2h//8HcDO1ye7b5kF1v6wDZyvCNw/fr5837j27J3jetK42B++44R+JueJd4x/nauqEfwG/9H+0BZrdm+IGt+vG0V2rLjX637qF9pOyz9X2Y+eGE2tk7/rEkmqt9w1ZbJtiZSqzd7HFu6hHp0KuVYvUbumk17xnjWch6w5pOsW2z6+U3SHZMWldlMjp6VQe10n2ZDI3dtm9866qsL+S7yfMvx2HRI3vOSfvEHFG73uLb3nbRHhVeQ6Nl3ynnOD5R/60Ifo0Y9+dOSx55gv8L49ze92InKHYwz453/+ZzrnnHPYPPIxUainB+iBLCdQpnI1hSTT72xlGW/9ofsJK0vKlkuOIrH/eFtzpyQO1LZLVsF7w6otl3i/IQsOiGy4zIFIA2SIGAuQ/xUcDiM6xgZ7C06HviGTudgxMtyCkyqNSYwEwNnIEui4eaedFDCG9FDRLG4I8GPmDgZfHk51gjGSZaQjTioVDBZueGxaxb7pPdcby12fYUgXJZOuNVd61m24OjNMuDF5zK7QXqWTVoTz53U6ioJBHsZexaZWn9vRcrQeLgcmOB4cu7U6cy6AsBEvoqy2mdMxLhw0FmlRbQUOB1f+glMp1iu5ormbStzjFyIxIBPDuK+bOnN04WTAeewnR8sL/g1SLurK/uzT5NAuoNI1CscjaQoVdzbS7av/swunG0Zy1DqNZoEcgf9gHSuSbPReO/dYof8Iekapn3BAJhHt5A7e3lLHoa+I2ud++xsWZYMjFE7PYvUuIk4BzoAkXFaj5jlzasmkWtN7/uBUaKXOPvu9j9utznNuGxjZInItDLoJjjfuVwr8/mX9sxnAy/itP/+c5zwndza2EXhdjTS/24nIU6rGgOc973nB/Gte8xrazkjrgPTfYLab24lYKQ7P7d9bGM4RmDXACZlV8ChCjvEVo9vp4E7+MBQH1LrAtUSkJMdk8O53v5s+9rGPBZ/f9KY3TfV4cmSLnMORDLnDMQZomtYV7RgnJCG1KQ4Qvej7XTv6Oy9iMiOwpFiRDZ4KMCmN/7QwYvIjOHiaWNbYWxysCIUR8lnBuhNvFBLpVHHAa4dkCaQTzRJ4alwWmKYoA6JfcwtbeHeN4RqWYhTVS5Pa0fBr+CAdahBWzWSSwFnCbE4+WYOnU/XDK17xCnrKU54SfIZypYzshRw5dijy1j8miC8aaG4DX/3N62JVGpf89bOGYkRvF6lSvevS1IH+TerjYLhi551jZhFOq9qOGBTdaPs56hZSOOYEWZXoAX8jqtr0qAX6whC5HfMIbvRzXlpSLGghYsGYI0XDRCTiCixsV1x//fWMy/na13YUKi+66CK6xS1uMdXjyjE+DkeaKQnOO+88uv3tb08LCwus2vxDHvIQ+t3vfjf0d5/85CfpJje5CRWLRdb+UGBymsgdjjFBjGy8973vTb0dKWF0YdzRiKQV0FNXTJ8hiPnGoxpjyLeeFFYKndSq/cWtVGlVPG8bGMZVOQKSTkIctPo7JEfszvZW7exGT6epniVWNa63ozWgOYdkVERVhE5bXTpriDyNSUUhJymv24UMXoGiszBIRaqid5yPUh9S9bCccs7nEdEytUyKE3LCONA21EwLvSaOcmSdDey6bKDx+OOP73FA7njHO2a7sxw7KqXqwgsvpKc//enMcUUtF9M0mcRyvd7hU4Xxgx/8gB7xiEfQk570JPrZz37GnBRMv/71r2lamI3eZxti165dkdGOHgiRjWGQbMHwdeOlVYlqUuPkb3DpXrvU31gyBXs0yGKZkg3AH3io+XBUEozCRgGqSoA4ehFnJCNOWhUnjw/Drhj8jSxxfXMpUZTjkLUYuc7hPsvTIm46VT/ELQYYFd1IU50eBOV+aPUponPM7OW0iIpFWUF0NPulU/GUxji1GiaFsEJVP8JmP+J4FNcBqk/B74aca1//ZkA6FVTL5okHs9VHOCFVlCPGIbrCs8UUrRLACcsexkBhtbO/wrH+6VRvfetbWboUOBscL37xi5kTcuDAgcT7zTEfmFSE46tf/So9/vGPpz/7sz+jW93qVvSBD3yArrrqKvrJT37S9zdok5BffuELX0g3velNGZ/4Nre5Db3tbW+jaSF3OMaIe9/73jSLGMTj6IeZ4nHELLA36/yNYdiJRbRW7Y5McY54aHJN622EpGlVOXYG0qadxYXSTGYIfvjDH2bpU1CfEnHw4MGx8zdzzD82Nze7pnY7XnokargAKyu9io8cP/zhD3ts0Pve975s+bSQeBji8ssvp+9+97t05ZVXMsnXvXv30q1vfWs688wzWZ5Yjg7e/va3041udCM2//Wvf32qDkgS/kbnN7xux3QBHocraNd38TiU+I7GPBQUmzSQVmWFUnhQowB52iCoxy36N0sYJbqByMYsEeQnCYy6YbR/lhRUZkGhSqyDMwuAVO88XMM4ErlxANlaN8LRcAVZYjGtCrVuxo0vfelL9MAHPrBn+Te/+U26xz3uMfb955idd2aa96Xr/+akk07qWn7uuefSq171qoG/BScYDu5d7nIXuvnNb953PTi9+/fv71qGz1g+LcS2Jj7ykY+wEM3FF1/MDhp5iqVSiVZXV+myyy5jzsajHvUoFkY85ZRTxnvUc4IzzjgjmH/iE5/IQmCDAOK4q6br2JBW5SaouzEKtgMvY1zgaVVJgbSqcE2OOLUCRpHGTYuuegwxgbSqk8WchBGkcStyvFGgcQO1ODbN8dXiGISodKpNs5MfPwhi4bdJqFMlIYxve8yZ2EVY3WyYUtUsQeRLZYXGVX+iqz74Ngq7Gp/97GfpwQ9+cOb7yzHbYBXPUrwWXf//1VdfTYuLnXTiQmF4fwIuB3gY3/ve92jeEMvhQARD13WWQ3bBBRf0eGUIAyFM8/GPf5xud7vbsZH9hz3sYeM65rnC6aefTn/6059YwwqAKuNDWilzPjQlII67ujRX9TfMavKRcXGgfZb7taxUfHLMHrIibM870MbTdKTTSquCUtUsSuZKdvTo/LxXHvYioNlEEsQCiuNE2gKtQPvQQfrDf/xrz/L3v//9zC7KsTMBPhj+0vwOgLMhOhzD8IxnPIO++MUv0ne+8x068cQTB64L7tChQ4e6luHzNDlFsaxC5CIi96sf4JXd/e53Z9PrXvc6uuKKK7I8xrnG+973PnZdgEsvvTRY7soySZpEkmGhyAG5eu+tQBVy17duWVRBkjxHBFXILSJXRZXUzkvURdP3P6L/EgnjctvpchQgZuIUZLae+ACoze4K5byoczi1yhE4ribbpsRSsMD14MRxuyCRWZaZIxGWaEdxZ1Qz59zcLjtP6BecopAeFZFWFXfkFQRSpBYUcOFCAHEcI74eAdhgZFEU2eKje4qQTgHDAIW1WpbGOrCq3ma/rRmFoEPjo8eoyHuoUfWqZEtOQEIVa2mIpHVUluaVu3kqAieU4zMP3eL36OyX9QYzyqC+s26Ue1KlsN99vhKV6cpUVQ1a1DqVqznW/ZHxk8trZJPEOAGGn1a0yFRv2rTe9o5rq11kxFlch7V2iZb0Fl1d30VH1IWgUjjO6RpnF63o9S5+we8aB6iqtANDssxKzROdWjxCVxh76QB5eamXGftIkyzSJZtskqnhFGhF6dQJWXfKtOUU2f5WlDatO97xrygNusK/fj3naJeZM4FrgordmEeFcVQaXzMrVMW1t0u0S613EcZRbRzrHm1XacG/dp1q3mVqWd0PRsPQWCVlbMG25YCoytI/HCJJdci1ZNraKNHePVu0Xi9RS1ZJkQusInjLstn29+je+W7YJVYnZMsusjaEaulidIMTozeNYtCuOHGcP9PNEJEc18DjPXUeOkcg4yKlTjwfjkrB6FLXUhSHnSPHYqnFnkW0U1V3uvYHA3VxgHwr7qWXzgUt7OiUSO5QDHIskjgdSJXCsYbTpdC2C/41iEMcB6ffKUrsXSVvquRUbZLrnWvrLlpEbTkYRJF1O9LRWKi2WIV2XGc4e1CZQjSKF/LDs4jriJQqfo+X9Sa7z3h3ec9qRzkH58XbQFixTLYVJm6A73HtuXoe9suPqdnWqFTwjgHg18mwVNpqeu87dE+7Kg2WxnpC1Xt+RaAtH95aCN5d7JlwpEAmWtEcVvVb9q+pa8jMSSO89xuKd/To+vDflImK3nqWXzW8faj7vac0ZXKMImkukXlim+Q1jdwVgxz81k/DveKx57D5Uz/4L11Vxv/0XK9g7+lvfXMwv76+TrsPHEdOu/u9iQJ+YoHfHDnGCdd16ZnPfCZ95jOfoW9/+9t02mmnDf0NaA7f+MY3uvhFULjC8pl2OAY5G2Hs3r2bTTk83O1udwvmn/rUp1JR+Qv07oxo1m+oHM4IA5Sf1O51mLMRA1CN4spRSSH+Dk4NAPsXTsIgNFdkKq47PQ6K4fOAYUcMqu+B7aNTtkvo9fqvJ6tOQB7UtG6DIEoyEkYZV8+BAdm1LcmZmG48DK5hKThwOjwj12sDVa3FHCU4P3AyOJE8rMAD5wPrcaOfr6PEyKFe1po96RMrhQZLn2iFCMm6agUGyTBS/qpRoVKMgi5/au9jxuYfjAOkS1bXOQTbsqvMCdEkmxneIl9D8ddf941yrHfQWkpFRIdzwdPiVs0KrWjdsoNrRrlv6ltSwNmoltrMQYkDOB1RbVgEDE9+XyBpHLfgn9anivVKucGcaxHc8QBKmkFNU2f/cd1gjI6CQZKvgxDlaICzFXWtoPjGjfF+qWX4Hg4J/x4G875yjdZ8WddyqU3NCFlju2KzQR9wzli6xZDBEMV3PgqFeNEC7lQu6t0G8J5ifaT3WBbcnV8fOUBlQYp3rVZm2yxo3jG32yqpanc7s32H3LG632fSptodGeKOgQHHrbN80BHLqzqTc1SvLpJd8fZ7+bOeH3x/xeNeHPm7Pz37eczAe8xjHsNSyUUgZRw1EVj/nWPHI43iFJD0N0ij+uhHP0qf+9znWC0OzsNYWlpi1AbgsY99LJ1wwgmsfQLPfvazmf0J5/jss89mGUigRLzrXe+iaSH1G+rw4cNs4kXtOG55y1tmcVzbEtBSdt1v0/1u+fIuByKtYxAFcYAw622PW8kK/WVw7JifEsc7jrQo9O55BV5gudCkDWNniCbwCM+kAWdjVoDoxjjADcmjRjWIcmSBJM5H1tg0CpGRghzjQZTzgCrk4UjXOAFnY9bwJ8HZGKY8BWdDBGoegCiuqvMnopFjfMBzJqVwOJyEvzn//PPZf54tE5XSB46wWMn+zne+M3NSXv7yl9NLX/pSxikG12gQ0XzcSPz0QPf3cY97HF1yySVsFACAt495/LftvGMJA43iCU94Aps/evRo3/UYZ0NInE5CII8b+cgCTijqMuvIKtc4DfaXa3Sk2UvwjYpsjAOIlGihSAQMT17QD0W++qnYhKMbadBvlFkEUpiMPrUmcsRDVWv3rTsRV0Z6HpzOcaPfyCPSzLJQ75JLyIWluQXSrBZKsyHaEAbSqUYBbJqb3exmPcuR947qzjlyhOGlIKb7XRJwW3sQkGoVBrjUs8SnTvyEQm0JUq+oYggyNGRyxf85egEHjeNFL3rRxPcfZU/yVKlBPDrRiZmaPG6oj5cLnbCHrg8OgYQLfCWFWGU7x/gB9ak0UQzwTkbFMb8q5YYVT+lpFEjaaPVhBjmnk6g9wzkF4wbSB6OqXs8sRjR44yBuAdAoIMoxDqzVy+OLbgzon0T+xShAteZTTz21x9mAAQdDL3c2cuTIBonfkHAq/vVf/5XueMc7socUErjilKMXYr4noh05coxLQ39UJ2u7A4TxWYXITUkC8JB2AsC6EP/HQb/aO+BnpMWo0rByH/ELQBMI6TsNIIwPXSfDSuxwJkD8rlarrK4YByoy4zuRf5kjxzQrjW8XJH5z3ute96Jf/OIX4zmabYxXvOIVwbzjpBs5FyMOPEIRXs4+y5NPtRL5G9z+gULVMAwjok8SXJkpDChWxRndhWITsLvY6FoOtaro9ZtjTacahn6jxyUhBU0cMRfz8Pl1CJNuueqWaOiJ81CD4gC5ux+gUCVi0LpRWJBbmde5SIJwh8JVeEaFksDYTppaBUGAqPlhEQ0QxkfBrDjJSY2AokCQDqNLXQ8oJLtvUKhKinCRvbROVfg6tI3u8DYUqpJA/L1pht6xEf6DFMPxGDWdClWdke/+lre8JVh2hzvcgUn8I+c9R444yB2OZEicKPOe97yHpQih8AjIJ5rWbTE+6EEPSrrJHQGQdjByAlx+9CK6wf6/pHlEFvwNOBmC8mhf7NS0fhjoJjSDB4CrVeUYDTVf+WneIEooTxKi8zGqozHrSFpd3NXdma90LpLHmYRxRmlJs0wWDwPRC6j7iECE4+STT57aMeWYT0yKNL5dkNikQ4G/73//+/SVr3yl57ucNN4fqMTO8cdDF3Y5HIhC8CJ/jCjudBPGxWhGWjCpRil6e5Ecj1ngb3DgUNx4/I1wxW5x9DRKbnWW1X3CDkYUKXinpNPMGyxLYXUKIOHMa3FMK03L8YvcoC3PC9E7rkPNonTS7BX8i5NW5VhSIkncfkAU0sigYCWilXPFmUkJUckHaVPf/OY3u5blyLFTcZvb3CbR+rD5P//5zzM53jhIbEmh+MijH/1oliK0f//+pD/f0XjUox4V6HpzVa9RMUl1qhzZYxLpVLymB8CdpyjDgpF0x+RdxlGryhpIq0KBwKyAGhzjAK8Rk6btNKxk6S1RClVYZvVJJ8wa4D+olGxQapCSWlaYRIoDU6iaASDKsZXifkOhKi1Qg2NcSJJOhdoEHDe5yU0ilX1y5Jg1lapJ4ec//zk9//nPZ7ymYYANi6LgSEOMi8RvgWPHjtFzn/vc3NlIARRg4Q7H9eu/oeNXbkHbAVH8jbRgRf9mGLwy76gSprUhBQC3O3iVcVGhal4wrhocs44k6lQiB2RHAE7jGJy2SSmCzQO6CgHGgNKQyK54v1E3ZZaZ8e///u/B97/97W8zP8YcO9HhSFP4j2YWL3zhC2Mrs8GmTYLEccS//uu/pm9961tJf5YDNRkEJ+3X13wheqU+BrtsJrTk5d6HYNAgodpy2FQ6alLxmGcsyKZLiuGS1vCmfvwNcIz5BOcDE9ZXTH9qe7yNMO8XPA7O5eAZAbLR5+GV4lcqDpOyMKraT1nGceXUDkRZM2hR7zaUT1tYDeZvUDnS9X9vcWvoNpH2MkiOF5ECTFXFCMjY/ZR44qZb8aiHmLJVswrsuvBcU1Q4xmdOjOdo2SpLxYh7DeOSucsRDgjSg9IqOYmcDc7bWDPLdGVzJfju2mYnr/t6YV50NFbbJWqaWjCJ2GwPjqaUlrrPfancpKWiNy0Wur/jFc5bvqoCokMgjK9Z5Z4aM5BKxYQIVVk1u8j9+CyKH4xDGhUcA0y2zzPIsjNFtXpMx4wyHTG6R91qlk5NW6NNs8jacNzUR1RjZ5PtTWlQ9auto1I8x+K+GmmLbVKX2uz/KGpVeJ6iqq5v+gMVeFbZNEQxK6qdrjaTOcyicla/aNx1a0vUbOlk23LXFAWjobE0Qz5FQW5LJLfkzCRxzY01+ou/+Ivg8/r6el4tPMfI2G6k8csvv5z27t0be3047UnUaRNHOFCD4yUveQl973vfo1vc4hY9pPFnPetZSTe5o3DmmWcyHozr2vTVn/9TsPy+tz2XVQV39c4tkVyXXFliUQNHk9n3EhwPv61KloMhsM7GTc8pgMHvFLz18XsRCn7v2xy21p8nojaxLfGzw5wPY8H7jdJ2yajKgWPiaH5dD+wzIs0LTgfAC9OrdSLbH+RHVpGhE+mbRMYSkbYpkbngdcZyQyan6nV4jtCBcbUT9BkwcCq+ASBGIsLELJ7Sww1xOBv91jUF4xs50uhokZPPi4CJ6k3LvhHOVWL2Fmp0YmmdHJLptMox9v/mywdZvYgbLRxh+0cVaRjq/VJFlrUmOyasA8MCv3UiHAs4HoCmGEHqFC/0J6ZScQMNClTcWImC4V8jGLKbRpE5GuFrwysZa4pn4Hq/U7pqBOAcS4rRVVdjX3GT/V9SGizCAeWpcGQD6+N6sWOQTU8CVeqv0mT754i9KBLuo0zH7ArVnU4ECUUF16xKlwO2IRjuh4zF4H4fbi/Qdc4ymz/SqrIJ59YPYU4EjDNZdknXbEbIhRHODXB0MqWqd75L5VaX+hmwXGixa8jT3WBMw5ls2AUm54trVlXa1OwjKCAqhuG+4B5hWvCdYm5cw5Dl63Lnli/T9M79EucXQg4RYNoKawMicE42jHmr8/LA+wD3aaNVYkRzVdapYerMyYJhzdWU+DE1LI1WCp7SG67HulFi3y3rDbqstoc9e7v0RqRDzZ0OtH3+vKNN8/YuOhic71VrF3oMac1P+2pZWMcOrmVBtUhxZHbfMY/zqi60yIowrrUDDSoVDfaOglIT2kVY9rakmayN4LphCjvvzJnDeYLa1/McescMpwPnyN5TkkPrRjG4lrzIp1hlnO/Ta5vgwHT2ByI5LzKGa2KYanBu3Eji716Nt3FbDt6NYVgGitkSub6DEGVoSRuqxzGU0X9IXYNuss9zcW0iGcchEZWuk8jYRfSHc55LcXDttdfSiSeeGHwGZyNMGs+RIwclLm1x0kknjV+lCvldF154IZtEYMQgdzgG453vfCfd8pa3ZPMonojy89sVhQ2H2kvzScZjo/szItc5adQtvUfuNqsaBFFQdghZNQ1MV6ECxU9PYvdtBsL1k+Bd7ARAnSotxycH0fve9z560pOeFHx+5StfSfe4xz2mekw5tg/whkvzlnNp9vHVr36V2fo8Mvif//mf9O53v5sVyMT8rl27Em9TThNy6TfllcaHA1Ehjn/4h3+Y6rHk2JmYhqRuVHpIPyQp7NYPk+aE9HPQxonaEOnkLIFoRhZomtkd89YUZIFHwaC6HdsdUtyCfRn5Vmtra2wAVHQ2zjnnHHrVq16VzQ5y5NiGKVVhLgfq1QC/+tWvGJn8AQ94ALP1UTAzDeZz+HmbcDkuueSSTLcrI8UqAbRadweoNoV0ii2rK52KQ98S5muTGXmTa8ONnXq7Y8iIkYntpHfNU6X6fZ43zCJRHKk3YgqVWP8gaS2EckwDU+RZTBOTelaQTtUPNf+7pMT8URXQolKikiAchegn2y0CqU0c4fS6cSLM6YgC0r+SIs1vBiFU+zM2Pve5z9HKSoebBfzoRz+i8847L+dt5BhPiCPNNOOAY4FoBnDBBRfQAx/4QHr961/PohtRZTHiINZbFtJXzaZXFXkY8GB/6UtfonEBElx//ud/zl4ckPCa1zAvxxVXXNHzvcSJDhlDadmkbs1PsS6lHeocmpOR7uRISiafVApWFo5GXjiwG4N4GrMY3dhO2DR2tmLbKGhY44tygaMyDYzyevvABz5AD3nIQ7qyCBzHYVXEc+TIER+6rlOj4XHpvv71r9NZZ53F5uHM88jHWBwOMNFRhfP//b//xzybI0c81R3Asiz65S9/SW9/+9sZH+HhD384LSws0Ljwohe9iI4//niaZyAsxfGMZzwjIFsPAyOM8/k+0QxRopat50zGGAJxPNincC7gcYQBwngw38qmyNo4kZS30E81ah4NWahQjWoAJUmnGhUg189yBCUNalxdYUrpVFFpVVmlWNWHpFiBML4dUIpR3C/8vHPVr2Hvn5atpYpuZFW9XEnAMekhl7c77WjUcZQ3vvGN9IQnPCH4/N3vfpflnOdRjRxjQ9p0Knf22yS4G0ides1rXkP/93//R2effTZb/vvf/75LhCEJYr1x/uu//ot5OKZp0iMf+Ug6cOAA837gWBQKBbr1rW/NRu0f+9jH0qWXXkp3vetdaRyAs/O///u/7MWyXZBVNChpOtVUMH37eSC4Wk7WEDkJ464MPij6McgRSlpNna8PRaF+4CpgWVy3UeVwo9THxukUQsmMI6ygVoyRbpPE+Yh7bGkcWG70DkK/tjOqEMCo9U7ChrjYVqMcnX5pVWHpXP6e0EOKU0kgplNliWHnmAZhZS2oU00SktlpR4Wj0W3qBS94Acs554AdIsrg5sgxzsJ/aaZZx9ve9jZSVZU+9alP0fnnnx9UE4cdfr/73S/VNmNbGbe61a3YaAFUlhDRuPLKK1ma1Z49e1iKE/6PE4cOHaInP/nJ9NnPfpbK5XLs9CuxCmLaMNA48B//8R+sanuc45Jsh1x5PHQb8DjMqtbF3xAh8jdEHoetSxPncTiV4R1dXP5GXGN4O6tVIa0qLI8Lhap+gAEzrjSLLJSqIFEadkwQ5dhytscoeVxw2eJRwCWZ5xFNRyM1LQFgGyMOd2MegayKT3ziE8HngwcP5oWJc0wEaQng7gxHOCAbfbe73Y1lNX3xi1/s+f4tb3lL6m0ntmJlWWYOxoMf/GD6+7//e7r3ve89dmcDuuCPf/zj6alPfSrd7na3i/07kMSgt82npJrB48TTnva0YP7lL3953/XGkRI1TzyOHgg8DrEuR5g4HpXmMyxPX6wjkRWyUFyKi6xJ5GIBubTIIp0qq+jGJJDFNRuGaaRTZZ1KNYgwngX61SrZLhgUWRwHpi3NqzRlUmtSj11wxzvescvZ2Nrayp2NHDlGAHhPKP6HbCY8W3imssJUVaogU4f8ykETQqOIBuCkUXAwCbD+xsZGMF199dU0K1CUTseN84tEDF5H3HQqEMbnCT2E8TFg3OlNs4KsOCUcYhGxHNsL41CqipOWNSvSuKOqVcVRqBpXOtU4ohvhdKpZgbm2ygY/kVvOgWwG1A3IkWNi4HyMNNOMAuUtvv3tbzOFKtAX9u3bR/e5z32YnXrVVVeNtO3RtARHBHR9EbkYhNNPP52FeFCdG3wREYh2POpRj6IPfvCDkb/F+uHfzBKe+9znBuEpx0WV2XidXVQlb8DW5UTEO6XpdYyyYZO1kGxEEJXGg/0WIqrHCs4SqyQes7/T4Eyj2GzCAcq4vEBUv+YSmrv1Bh0zyl6J2wEQq4qHDTMQLx1/54GxpkUruikJSSzhNCNeOVyUAIUzETXizSuQx02rQoVtjJpygiqv9Myx3i6xaMVa00tn1FWLVY5eKsZTr5u2glhc7NLrZLneYACqjC8XmgGfYMWfF1PsDtbjC2RUi20q6SarbD0uSVzcQ1YVmyQWsYubXgVeQlYk4jjGL8jDi4VObQ5MUdXM++HqxnLwXBqK9zwc8CvZR+FPGytdzs9isbOvzWav07J/aatHPAHXs+1XUOfb6VdhGyj6RHHcA877UCIiYJDEDVf85m1MieKTaP2jQzVB8QvRqH5yu7VWoa8zEZa3bQkv77apTlTCN4zG1ZfTVR/sHaADvxT55jlyTBJp+RjujGerojg1JmTfXHfddfT5z3+eTRBtuvGNb0wPetCD2JQk4wiQXMQlZxzwqkSeAy7Afe97X0ZmQUg1LmMe20BqFaIdi4uLNG3UarVA0QuOx3Oe85yu7+91z/MY0dpYUplFrW16DoK5qLJUK7VmdzkgYbvZlX1DQ0KEw+/wWhYpdc8YdTUl+L2rdH7saN68U+ju7hzB0bGLck/aF3NC/OaEfbuqt35jr0KOKjEnAjxONuCOnzv+PHNaiGBHW1UoXhHxgUu76G3Prjjkap2mKpc6o4jlqsfTWSy1aKXYCJSVTq6uUcMq0O5CjZoCgRRG+m6tTm1Xo11qnQ62l5gRv6w16MrGbpZ6BSNhteXl/sMYAHcBxgb+4zvO7eBGHcANoKrWIsNRaY9eI83vnDfNItsvdxqQ/gRFJTghURK1OB4YivgN55sgN52TnrG8butUUszAKamZRbbvKMeFG+iI6oSN0DWj4t0nweGAYQMyMM6J75MbWeJvi5rJtq0pNhUV757gf1HxjK0VvSNJVlXatKR6RnvZV5BaUeukSd7vWo5GumRTEQ2A32dyulKqFHK6nA18h2tYlEwyXIWKskVbToEOWsvBOkesBcblWLWqrHI33xf2fb2xxJZxJw7ntlev0fXtJXbeews1dn0PthZpj15n/9GejrQXIlNbuhxRf57n62J7MNZwHbmhWlJNZozydD7MtyyV/ceEc+XXsmHrpMPBNAtdqVswNvm1Z86GK7HjAnGdE575PWdt1983Pkc5GuL34jzHot5mUrb4j+NbN4psHse9YXgP7kajRLLf9sODAdgmP3/WNv15vgxtqXP//fX8bYnGO9omjos7bTgOnEtVM9gzzM/raL1CpqUwpShc+0ZTJ1W1qVkvkFa0epwGs6XS4pLXTpd9hxrPPfYFI74l3POtViE4ftuRupTz4HAYMNAVJxAOaFtKZH0W8ZqgvQTnS53lfD+491gepV4lOhyGpXSe3QGRG35vHf/4xeuBe4drx7a3WSB9sU226W9zSyO5anYV93OsiP2s6uSUHFI3FbosZcEwRC+Quo0+UwT6zFFyynPMLmbNXos6tlPe/QqSy8mjrE6jRVc++TUzeW6DUK/XGWkczseXv/xlpmL10pe+NPbv52JIAOQVETxseoMb3CC1PNcsQAz/ItoRdjhyzD7C5NrtVt8ia1WnOIAzIDods4xFrU2b5uxGUWcRg6ICSSA6QbUx1qPIMV38+te/plvc4hZdyyAn/+Y3v5k0LU/vzJFjUqhUKvS3f/u3bLJtm1ZXVxP9fi4cju0MkO9RGTXH5IHoRhKMK5UAKU3z5KhkoYIUFxjjR1QjKQ6o611Rju0GRC7GQVBHpCVp3ZlxI8vnDtGNQUB0IykQSYgjkYvoxjSdvHEq49gNlVQh2pEVUEj4Tne6U/D5L//yL+lb3/pWFwcyR45pYTuqVIn48Y9/zJ63w4cPswKaHOBXv+lNb2Lk8iRQ04RUUHn8G9/4Rs9BcMLJuHHqqacyhYrtABBxuMOB/3BAJgUXxPw+11FMsZo2kE7VD4WSGaRTcSC9hKdVldV4xd+QThXGSrEZpFUl0f7nKTBZAek+WRO/o8BSczKWvT1qVFlqWZyoRhIglQoyuNPEotZkKXthg32UquVZAilOcaRtk/A3kK4060A7noRaWCMuMW1CCNcLyXTbW5OPIEF+X3Q2Pv3pT9NDH/rQiR9HjhwDsT1M0R68/vWvZxwOcDag/CYW0ExbTFNNI5l14YUX0mMe8xg67rjj8iqeI0KU6n3iE59Ix44do1mHq03nnkuqQ25UjnACLGvNLj7HdsAoNSyOtavMQOYcABipcZyOSUY5BgH8jUlKD8dJq5pm/YospGVnyWmaBSDiw++uyN+YBSSplzIsymG0NdJjVEQfBNdQSNJHd/Z+9atfsdpfHLA5xlVQOEeOtNjOEY63vvWtrKD3MGGnsTocIIygOvZd7nKXzA5ipwP5qXjBRuXDMcJ4H1hVJSCOiwChm5PERYAwPmmY1QgHYXaCJ7EgFruL07mDMC7mlldVb1SYE8YBEMaj0qr6pVeBMB4Hm2aJjbzPi1rUqlWh/drGWPbH06pAGO+H4/QNuqq90ru8sEFXNXuXZw1IDC/o7VRRMzGtChE97jRGIco55OTrQRCjhSJAEo+a79mvIzPS9Cyg2RbUlvx5s6mSXjZTp1MNQqut9Sg+sX374hNpkHXkBoTwYfcni+iG3JQT2RgPeMADgs//8z//kzsbOWYTeLzd7RkVkWU5czs/sem3a9cuWlkZf0e8k/Ce97wnmP/Zz342cF0oVEXBKkffSsevCD5RJIx6RUnp+2JCOx6iBO6oWIME8BghjorXhFQjpFVxQBUq9vb8RpBl6lRS3k5WGMaLmHQhtzSIm05lJUjtmdXM2HojuRCAaaqZ1isZRwQxLmG/NYDrYm+Op60iTfqBD3xgl7OBSsdnnXXWWPaXI0eO/oCQ0X/+539Slkj8hnzNa15Dr3zlK1nti3J5vAbMTsEd7nCHYP4pT3kKI+pMEq4szyV/YxAGjfYmAXgccdNUuJzuvADpVNsJkMSNinL8ydg39LcnFNbp2nZ6knmuVjVeDErhG6RQtdnKtjDgOIBig3FI5/OCNGlVSN140pOe1LXsBz/4AZ155pkZH12OHFkC76Q0AwMSzTpe8IIX0Nlnn83UYFEEMKwIB07VWByOW9/61l1cjT/+8Y+MRALydvggfvrTnyY+iBye3BgI+RdffPFE9wvi+DzwN6J4HFGE8X5AvYpJEK9HAdKpcnRI5OOqBF+Wjb4k9QOFzYERFRSXE1PjthNRmNcCmQVuTtYKVShyx+tJRGHUdCooVSVRqAqnVQ0q0jfrgEJVGlx//fVM6QaTCNgajUaDisXZdxZz7HBs45SqZz3rWUyh6h73uAft3r07E752rDfFQx7ykJF3lGMw3v/+99Pf/d3fBYUNjz/++Ni/7ZdONW3+Ro7ZAFKpdgsF+KYBpFVVS+1MFKpmFYhyzENqVBrMgzpVjtmQyB0U5YB2/5Of/GTW30Xh61//Ot3rXvca67HlyJEZtrHD8cEPfpAuuOACFuXICrEcjnPPPTezHeaIBgqpiLlz//3f/x3rdyCOixArgE8bkYTxGEDV8WlhX2GLrmkuz0RNhFGwbpRpWe+V+u2XTiUSg+PKqU47fUysQD4Ip+uHY6VVJcEkifnTAKIdvE2kTU8EYXy7YtYkcecBjmmSqkabHB/96EfpEY94xMSPKUeOHNEAVxvpVFkicSz09NNPZxwDhFhErK+v021uc5uJ1OHYjhDDVZ/4xCeYw2HrMnGbDgNSImFcHKBy5d7RKjgeWC45LjlCGlR7T4GUqtdZOqq3XF8zqLm/E77mywsbVt90qsbejqNjLBKVjrkkZiyB66y2vIN3FYmRwCUbMqbed+yc4TD5ZS5M3/7FYDfWw/qYZFMip+j0pFUpmmfgl4tGV3oCH4ktRqRQIZWm7WpMNYp/h/SZvfoW1QQvZ5AhHaSbSJ3PorPBJEV9Q+265jLtLtRYjjn2hxShqtIZ5cexRKFtq11pLSCOQ6mIXWtHoUWtRYdaC8wQ3PLTsI62yqwqOIinB2mBLbtmc4lOXlrvIoxfXttNK4VuR4RzVCD5yUc+MQoqpnjgs6rYjBCsqxYZljqUOL5ulLqM1TXLO4YrWrtpUW3RgtKi0wpH6JC5RJrkrbdX3QrWx3KsA2iSTVu210ZX1Bpt2SVaVuq05ZRor7rJRoyOWVU6oHqKVw23cz+vMPYwpSr8jrcN7A/twSGJ9mi1gMeBZbhPDUenG1UOsfaBdXZVG+x/w9apIrlkuQodiyDhl1WTGepwQtGO+hGBsRzXt6BYwbqIjvC0ppVCnaUB3rh8kP7Y2M9UzbDvJQ2cokIXGR2/xe/we7QB3JuKoBy11iyz54Pf26Wi5yxtGd52GoZOx1U3u44T54Dt8vsp3sdBUqxoH4eOLJIijG6XSwYZpkrFgsmUonDeRd0i25FIVRwmbQzw69EP2CeUtbB/MZWMS9WCC4HXKL6zbZmKWkfZa3O9HJy/7qdiujWNpIo372wKPBCXyF0wyS11yP7Y5karxPYRhm3JpKgOWW3FS83C6UhEkuySrLiklLx3UqNZoLIQ5QunVWHbmBTZ7Vxj4dWOc+cqbXjn6NRxCvkgASeFY15h3DzvPthS93HXmoXgHhqG2iWNy4n8jcMVIkdi5yPZ3oFYGxWish0Qx8V0Kruh9Y1yWGvrdM25r+36HoTw+973vn2dkBw5Zh54p6SJFrqzk7baD6961atYsAHRyKz42omf9CuuuIKFRcNot9t0zTXXZHJQOxUoqHjOOeeweeSwfvurL6a7PvgNkW2U9/dq0yGz4nW+VhlWPV+5s65Vkpmj0Q8bZ5RJ3+odLW4vqV0qV419Eukbw0e1zZJEiukGjgs7XttzJkZChMRkHKDz3q15KUUFyexK5YEhCzRtPXZuPjcGhkm0wrCFYVpR2uTE3DaOr+0/lnA0on53tFVhxgdIyk1TY4aw1qdS+cH6QpBCoSsWM1TgCIQBQzUMGMVhw7KkGcwIh9PBEc49h5HKDedhuLy9lxn5HNeZu6gcIWO7bpd7Ko7D2RiGq42Ool7dKURK5EK5Ctu2SaZ2gkaqSQ5zAERsmKUuydmww9H1e9lmDjIrVOdfr0W9Px9p14CIVRh135mIQs3/TlQs4qlgrF1LLltnsdAKHJMtKtDuYmOoQw4noudY6kXSdIspP8kREqzc8YgCd+bxrKGdJ8FW03NQ4XyIaK97y7E1d0sjY00n0nrPCU5Ku6xRpdQmS+5+PlqhCIfR1AYqPvHzhuPV73rxc/Wux/ijh5Ylk+Pz4VxHIte/Tq7p/e93tZWtzrW47PnPi2UznHbaacHnhz3sYWxALa/hlWPeAec8jdKeOwcpVf/+7/9Ol112WaZ87dgOx+c///kuXeylpY68JRwQVB4XXyo5kuN5z3te4HBADey8886L9TvU3JilVCoO2MpJeb+y6f0ux+wDKU3jzgVHVINHOWYds1RQchyFGTfaRVrynZBtizkwBIZBdAjhyIWjMoPI80kQx9mAwXLDG94w+Pzud7+bFQ/OkWNbYBtzOB4yBu62mnTnGJV43OMe1/UdPB94QGG1iRzJIHqQiHbEdTjiwCzLpDU867+9rFJh3Ruhbu4ZLZzd3uVFL8YJuSX3pFXNyTObIyVartYT0UgKMbohYsspptr2uMjtK4VmIrL5CeV1uraRXsJ3VhGHEyQ6UXB249aVyDFZGIbBKhW/6EUv6qo3FZa+zZEjx2xiHNzt2GPJjuOw6eSTT6bDhw8HnzEhnep3v/sdK9qTYzSgDgcHru2k0F7ubQqt3Z1lzd3zEf6OqoWAtCTk5KfBers4MeK0mO6VIx2O2Itj2a45Z5Uok0Y3au3xKjWE05qyqlSfY/YApalb3epWXc7GS1/60tzZyLF9ORxpph2IxMkrl19+Oe3Zs2c8R5ODRTY43vve98b+HdKqwgBhPGsYS9EPCndIwN9IjCnaHGkdkShE8RbA35gkhtUDGAXTVqXiWLW6FbaOWPGdDPA4xmHMD0un6sex6YfjCx75Hbhh+dDAdePyZUAs5qgbeuq0qoHf14fzaqaKQR39iM07TXrhICWvcdRDSZtO5cbglPzhD3+ghYUFus997kOXXnppsBwZEa99bTdhPEeO7QCm65BymlVlqqNHj8ZeHwGIK6+8Mvb6qfJpwNd4y1veQpdccgn7fNOb3pSe85zn0L3vfe80m8shYNeuXV3RDtd1A+K4vmWRsdC5ZSCMTxNIpxqGKD4GV6HKCqLSyygAwVuNyA8Lq8mMA1HRDZCS2xkSWqCelbV876BiZeK+ymp0HQde3A8pVMUMIzz90qnCMFzveQJhfNrRjH2lrUCNbFJpVVCoShv5W/b5HCC996vTAVJySCApMeJEQaLUo/oBTY4/VpI1mZFGx5FIHiJ6ATGGflLPorMf1/GHqtwg0YKs8JOf/IRud7vbRX73qEc9it7xjnewaL1p5hHcHN0p5IoyX5Hj7c7hWF9fp6985StdHO1BOHbsWKSIVGYOx9vf/nZ69rOfzepG4D9w0UUX0QMe8ADmhDz96U9PuskcIcBxQ1g6DRTDJVtQlhrE47CK8xPW83gcs1XrYhBgYI+zYrM15RoHcWtg7ATMElk8LUQFKK5iJUrnzgvsjJ45x1BIjihc17M/UyFpTiqEZ0UWF3Hw4MEeZ+NOd7oTveQlL2EF/CCniXVgyOTIEcby8jIdOHAgVyybIYQ52lkiscPx+te/njkWz3jGM7pKoN/lLndh3+UOx+g4//zz6YwzzgiiSYnSqhRpJB5HYd2ZW/5GFERZWaRPiRKso/I3ZgWjOjZRkrg7EUkkceNCU2wyhZoRkza+lVmN3c8aBlwmSOBqxfbMEtUz5cFAphfnN+SdAoUqRN+PO+64YNlZZ53FRkdlVv/Dw/XXX8+cjX379jHnIzcscwBoO5D+Bx8YENvRXGGb1eFwxswbTuxw4OVxv/vdr2c5XjYvfvGLszquHQ1RRvAJT3gCnXrrZybexjj4GyKPQ/XKWnQhFX9jTMRx1MCYFwwji4/iUCClAqkVWeagJ41u9Eun4kBRu2HSuLPCHxmHNK1YLDEJkFZ1ZT1e6th2xbhlmUcBCv9tZxWqW9/61sFnRDO++tWvdjkUSLXgzka4UHCOHKWSx/eC04E2MpfpVdsspWrcSJyX8aAHPYg+85nP9Cz/3Oc+l6tUZQhUdAeuvvpqmkXE4W/MMkSyeJg4PiiyMe1UprgQCcIixArNswrwObJGFmTxSaRT7dEjPPkMgAKR01Kqiir2l2M8iHLMUYsjq3QqjEzXfv5zKhQK9Nvf/jZY/rWvfa0nesE5G1lVKc6x/cDbxtzye9wRph2IxBGOm93sZvS6172Ovv3tb9OZZ54ZcDi+//3v0/Of/3xWnVBMtcqRDu973/vo7ne/O5t/17/8Fd3kJjeh+97uVaStEdVPrlL5mjq5mteJuErHCLYLCikNInNB6SKXu7JEsu1Se7GzvHTUovoBrwnwfqp+wN+mv8nGXin43I+/zDm2VoWok7Ekkdr2NsoGIRGpd4gcv8VxbrZW8yqQi5RspSk8kMJOnWUiaVMjaaWj/LS2ViGtaHURvIHLj+6mPYs1pg4EcusfNvfQgfJWYNRV1DYdMaq0ZRVJlRw6ubRK12weTy1b7XE6kN/etDQ2ss8rSAfVxsUiW7LNFIO4ItGJxTWW7oCK4eJ6NbsQpHatmyWqCPev6qtaofI5CMSI1FxTX6J9pXpwXKgiDbI2zhXHVNAsatsqbbUKkaRwy1YCcveeYoPWjSIVFasnYoF1OMkUqUD8HMVRehBb8RnniFQs/McynCd+j/XhlOGaVtX+Cl2rRoUczdsufoO6GHD8cP57tK0uNSpcvxMKa7RqV0gJval5pXjZr6uxalXokLkUSUznhHD8xmRkcSP4HE7Dw4Tz6iyTvMkfozEdmep2L+GarxcFnoqD7/n94O0J7YYrUx01Kuya3KZ6JWsnSI3CPHDx1qld21wpdKqP4zdop2x7qsXuJRc8aPiVsZumytoD0JA6x4/UKzija80ya0M4VnA5oHqG9oX7yVPvDjeq7PiPNCtUUk12Ppg3LJUsQyHXVMg0wG3wzxfGLkvT8fdVsMkwVFJVhxzVu54V/3ngbYqjGoqOIXqJa4U2hnMExwTHwknjaIe6ZlLD1ahctKnZ1ti5SFBZwmbxzC7aZDVUdjwuLkHJItfoNsjlApQtvEMG4bve1tl22L0LGfWuI9PiUoOaLe96looGbaxVvO+gSCP1j3i0DV+0wFJIL5hMPrhYMKnWUqigW+yeLBc71ewtV6ZyKHqLNoRIjxnxgj68ukiK2vtOwDmJuPzRL6FTP/gvXcuueMoLe6IaUKD6zne+07UcxuKgVKk8jSpHP+RtY2chscMBqVYoKWF0QxzhAPlHlHFFQ8odjvS4293uFsxDvxwOHUflqloimVyr7HWmTojfwZ0NwPaNv7gQhXy4vaY2Og5Fzza5sQEbNGJXsDGxTTgf/bIk4GywTa0WyFq0mJMipRw9rVvdo7l/auzp6sBhWAzLvefGIjAs5Ycb7yLgJITxx/o+WtA61Zyvayz2rS8ijl7D4MAEA5NHMfAut12XyrrBDEZeJXpPsU61PtsLq05x45mlrgw5x/D5HW1VaLkgGEu+wVqQvXvXD0fNBeYIiHybNQtGeP97vWGXB3Izon7LI1tclWpYahcck7iqYTCK+bXrl/PPlZ0QjTqhvEHHzArt1up0y8VrqGF3358tu0QLSpP26jXmgHHAMYURygEHABN3PAYBo966ZjFj3bf7A6ANFWMos4WdKzj/7fbwbgVGOlz5pOgnAaz4xrwdMqRFqAWbrHb8kX43YlvcKcd/xufQo6/R0q46c0DKJYM5PaOkfl23vkTlohE4Omv+s3ZcdbPneohyx4MUqv74dy/vWXbF4/qnRK+trTHJTBGotfGFL3yBVHW04rE5cswt8pSqRFDT1OHIMRkUi0VqtVr0gx/8IPZvZNMmx498TAOy6TkNaX43B9k+2waIcPBozrSwbpZpWeuM0EdBNK5HgRfVyBvYVAC/Ir/0E8FWvUgLlc6ARRYAERwqlCKgonjPe95zR41Q41yRTv6QhzxkovtFNsk97nEP5vRhYDfHDGGbkcbHjdQJ6Qivorq4ZY23PsFOxkc/+tFkjh7i9z6U9vjyprXxpJnvWNRDo9mjYlAxsSTF6eaRqA2U5eHFFgdFS+JCl3fWuy9p8cJhsKzJ8KHUiJSinYzf/+0rYq2HPgdGtuhsvOAFL2BKNiCJ7yRngytu3f/+96d5xamnnkr/9m//1rXsAx/4QO7EjIDtVvgvnGXzX//1X9RsdrIURkXiNz6kzJDiA7LPn/3Zn9FVV13Flj/zmc/sqpKdY3SIIyn/+I//OPL2ZKvTyrW6Q4XN7lav10P58aHP04RoH0q2RFTvDJka9e5c+oafSx0FI8GIOXgMOwH9irZlgfX2jFeeFhDmh0yT3J8VxIKVPO1oELIuDDkqwIuaNORS9o4keDDzAAwk/sd//AdzJrhwiTjS/oY3vGHHORq4JgDqRYAsPy5A1WvcsqQ55hff+c536K/+6q/o+OOPZ8/gZz/72YHr43nFeuEJdXHiACp0GGBAu3/yk5/MuNoTdzhQ0OcXv/gFOxmk/IjF6v77v/975APK0YH4YocKyCQQdkJ2AsQc+FGQxJmZBYjE8TiVw7cDwgTxaUY5UKE7R/z2qUe017SRF0UQmpiWIzHOwqBJoxvgCKK/gUEd5l5isAuGsMgr3M6AWAvqjD3nOc+hPXv20H3ve1+2XDTy7nznO/eUAThy5Airns1J9e12mxlsJ5xwAlUqFbrjHe/I7KZwdOHzn/88E+PBtecDuP3u0S1veUtmd6G44q9//euu7y+44AI2CIztIJrxpje9qeucrrzySnruc58bGJ44Fsjub2xsBMte9apXsfWRvvXYxz6W8XUxuIzIzh/+8IeeY//iF79IN77xjdk6KAaNAekPfvCDbP/4LdpSkkrUc4cJqlTV63XGm/rP//zPRL9DJhKic3yCBHEcIBp23XXX0fvf/34mXXzXu96VtdM3vvGNdOjQock4HHjg3va2t9Ff/MVfdBnEaOiXXXZZqoPI0R8IaXG864IndH0nmXZkOtUkoG/2/ww+xsB6IKFFwfqCrasOiOK5UJwZA+JyGuKkGkUZoiIfYdMq9U2r2jI9R341FB3YjFGIsB85lRPGR4FIQuWKRaKSUxxEKTtx5a5YxxBB7BbTo4p+YxLTqgpigwwB6liTQJLiimHCeD9sWsWRonQgjCeNbnDjPmzkFyKcgS7StTvc8IbK1aiABKyIUmGI3GYomiFGN5iyVcQ24wJqVUBR738MltlpF1CoilKwCmO9Hi9qWKsPb0fgCJ588smsPw8DBidG99/xjndkFtWArC4Mp0lP2G8SwGjWdZ0Z+Tj/MB71qEfRxz/+8a7tYsAVo89/+Zd/yT7DafnhD3/I1vvlL39JD3vYw1gNM9Fwh4H+L//yL/Se97yHfvOb3ww0Bl/4whcyJ+LHP/4x7d27l412cznZn/zkJ/R3f/d39Pd///f0q1/9ijkOr3jFK5hjAHz605+mE088kf7pn/4pMDzhNMGoXFxcDJbBQQIe//jH08UXX8ycIZwDzhOpdaJ8LY4dqqQ4P9RggQPz0Ic+lL785S+z6UMf+hC9853vpE996lOJrn2OaMDpe+1rX8uucRKgTSFKwSexMOcwQBDir//6r1nZi2uuuYYe+chHsnZ10kknsQycb37zm4mOJfEbHl581EOBh3qnhVongUc84hHsxQ88+9nPJqI/j0Uch1QueBx2Ids86Zy/sXPI42lGYKPqlCCtSlSr6vrOLNPKmGpPbBcctTylsn6AAllWUbrtDihVOSHDPikQBXT6OJDcyZjF6IYIOBLoV8JZCU972tPYCOa4amfASK1WPbnrSaJWq7EoQ1ycccYZ9K//+q99v4dxjwjI9773vcDBAOcS/TXsIEQqMDKM/3BCABjzMMyx/PWvfz1bBgP+7W9/Oxu5HoZzzz2XyRJzhwgOBEjsOJY3v/nNjFcDYxC40Y1uxFREkQIH5wEKYyist7CwwIxOjqWlJXa84jI4RHA04GzBKQE+8pGPMCMTA85wnPixn3/++XSDG9yAfUaEA04GRr9xjzEaDrL7t771LXr4wx9O2xFM8T/F+KdEk8Of//mfs2jbzW9+c+aI3uUud0m8jf/7v/9j7RbOJex/tKlrr72W1d77f//v/7F3RhwkfvPe7na3oy996UvBZ+5kwEPndTlyZAdRchBeZlb8jXAK1SD+BmplzBR/YwDC/A3UrIhKear1GWmfFx4HrzeSYzIYFNWaJfL4OPk40073myWkjXpME0inQooEDEek3YjOxh3ucAcW7YDxmxfqI7rtbW878HtEGM466yxmiHOCPSIBiHwAiDIglQiGP4xvPl144YVdmSCIoiBNKg5E+woOBFKZLrnkEvYZ/8OGJD7DeUia0oRtwe5AChgHKsWL+wPQTrizAezfv5+lUokOJZYhHSdHNDY3N7smOAZZ4bjjjmPROaTaYcJzj9S6n/70p7F+j/uGiBocFTjVCDZ87GMfoyuuuIJe/epXM5v/f//3fyMjgP2Q2GqBZ47QDrxnKFS99a1vZfOQbsXDlCN7fPjDH6ZHP/rRbL7eOkqVYqdmxDTSqWYGII4vOgFxXK8YO06tCqk625V3MaokLtKqGmOqMJ4GvH5DFoiTTjUIakxHWo9QeMparSoOcZzXcEHaF68zMw9k8VmBtbbFcurX19d7voMRicKykwCMVEQbJo2kTlScaAicC3AUQLJHdOMWt7gFmwCcIyIKSHXCfxGiQV4qleY2MwR8FRE4j6hl25oIP6Is7kknndQTxeI8mlEBBxETB6JVcHbf8pa3sEjUMCCCBofyiU98IotowMkOA87y7W9/+9jHlLhHR67nz3/+c6ZIhYcLHs5tbnMb5t3zhy1HtkBeJnc4vv+b/6SzbnsuzQLA2zAGZ3skBji9rAh0jsyAlJskGIcDg7SqSnm+HcJBQJQjC9EAFP9Dcb+sEUehKsd4UfCLLI47nUqsxWEd26DLn/9v5LaNyEyFuATSrAADNElq0yzjwQ9+MD3lKU9haVJwOHjqM1f4QWQBo8Q85WpUQCUIfBtO6v79739PN73pTdln/BeLAwP4jAgLd3gQTQlHO6KWYVsYTP7Rj34UpFQdO3aMkY+RJpUju8J/V199NePQcIxTBY1HMpEGGAff+MY3hrZdHDtS5uIiVQ8Jr+fd7353mp/mSIHwCEkcSLbDeByAvmUFhOz2UrrRQaRVDaubhoJ/vDg0nAZJ6OMsoY9R/ZR92GcD+LyxCgi6CfOxx5X+UlV7Q6G7/BOt2d5odMPWmbExqsFho8IxT/EZsK1dpQZttDyC6cll1CcmOtjyXm7Hlzojnaj8fcnmAdoS0s/YcsUKqqFjf6NUS54WEOVouVqkQpUY/UBRQE6Axzwnn4sRhaqSXbg7DVBtvC+Jm7z/DUsPlvPvTKHqHu4hr5KdpTwu2pmYdiYZMrm60yGPiwTygp15OlVRNakVqq7e6kO6lhWvWjib1xxyzN53iOwTxpO0eU2zybKV2NGjcQapXcuma15yPrX/dF3XcnAAkJqLkfUcowGOE4iz4E0gSgT+BgcMfURA4IQgLQUOCFJSYMRhVPjss89OvD8QvpHahDSll73sZUxBi0vnP//5z2cjza95zWsYXwIDwBD3QYocB9KdoKCFAUwYtvg9liEag+MCjwSRIPBX4ExBChWkb/A+zjnnHKa2heU5snM4FhcXuxyOcQPBAqRaxQGiLRAbCNdpQepXGsJ4KocDEmqQaEUeF9fqBllpkhdtJwIjUlCNAF74z3/BZIiBs858TaQSlKt4HaXSssnVOh1q5TqDfdfcq5La8n6nGBJxDmR7l8RsWG5bsf7W73PNChEffOUdJAbPQSTnzogYnbBYFFsic8F7wLjylG9/s2iGoxOZZe/3iuH9BvMs0uEfNv8vmVJnHzBgFJdcSwoUZYyaTmrJMxRV1aGG4RlfR5qet9OwNGqQFoz4O64cpGoYjsIMHZauEbIxSqq3TRhUojG0qLWoZWuBE7O3UKOGrdGi2upxPNZ8j6usGEyRiacLcYOeA8fIFar4d6atMC4K+CS1dsdILqoWq+NQ0kxqmlpQc6Hkq+IsF1q0p9hdyfvPl66mwwZuSDcW9RY7P076xjyOhV8rTkqGkhB3mHA8JYEzgN/ya8SJ6KLheqRdZduryXC85C5jHjUw0IxrVCBFcqmqtFi6GLYHRwHOAP5zRaoFucUciYqvRoXvMBUlg+pdjoQaOBwA32/D0ZljUZYN2rKLwfymXSLTkclRJBZtwPoOSVRR2nRVc4UqvmOJ+3e0Ve1xHnHNDFvtqq8B45YrENm+4a1rnkOA+4m0JbQ/XbbZfYADiOn3zQO0R6uxY8O54TgBtJ/AuBcefVxbbKOsmuy4cCyO72CoskNNQ2OOY9tU2Wg7+E4F3WLRDzixXcBn2WFcIbQvR0j7QBuo6O0u53mh0KL1VokRsrWqQVatRCT591hzSDJlcjWHHa/dwmiES7JK1Gz5zqCfuoXtycJJ4bg3jQJry4dqy+xZqOpttq8FvU3Htiq0UGqztoff8vcSdxTaLZ0t0wsW+95sqaTqNjs0ueo9J4rukKO4gZPBjsOSSFa9z7heYuTPNBXmXMiy57jYlkw1s0iuLVGpYtDmepntv7zQoma9QOVqm5p1HIcwUODjT498KWUNDAZi5F0E0qBB+MWIdo7sAKcC6k2QDOXRBw6QbKEqBGcABFsY+JCzBdE2DZBVAuEY8DJABP7CF74Q3E9kmXziE5+gV77ylczpgFEJBwWpMBz4DIljDBiDKwDlKUQwnvrUpzInBVEMntKDY8e+cKwQGMD5QXkqnDKVY3Ko1Wr0xz/+MfgM3hAcCPB50PZQsgLtjCubQoHstNNOYwqy4GeBcwEnAVlJcQCKBK9BIwLb+u53v5vqHNSkXAJIvcHDEQGlAxBHtqsSwSwAIxb8YccoVVKZv0kBKVZhydy0gIMSUo+dW8CYRYRj1gDDNkd6wLHKkuCcNP0tRw4O1FnAiLUIfEa9hu2SxjQJiLUyRET1uXDk+vXF6K9BrsUUBTgDokPQDyD68n0Mclb+5m/+hk39AGcHNdTCgNIUJhHg+4iS/HGOHY5KmH/AZXm3K9JWDZdS/AYDzlD94nje857H/j/ucY9j1xmyxmIdFzgL3NlF5AqRta9//etd24gCJJwBtDnws8VCgUi/Qwohol1jdTjAbEeRGHj0KB4Dkhk/IHhSj3nMY9iyOPJuOUZTq0oFDDZmbMuwyMWMYqHUSlwjYlaBSIJYA2MYEJFphtJLssIk5DwR3cgxGaDWA69VYZhqEB3rp4SWplbGMGW5WYFjS11RjnkBSLkoTgdjItxnI5UnR44cs5lSlQSi4xmFsHP3ohe9iE1JgegZLwR5z3ves+d7pGNCKCENYlsx2AHytnBScCqQA4iKlwjlwRN+0IMexBSrcowPKBDEgVAt8L8/jK4cGxfNlU5+d3tZSJtYjDYSjMlLqHfBqQwoZDbnKlWDpFf7yfMirWqWoxtxHJSyMqQ4W0ognSorJFWFara7HT6eOpQFsrhecC5ypAfSqkZFFulUICuD4yc6G0itgGGSOxs5cmyfSuOTAlK1oGaFdwjqb+AznxAtQYYTlKvG6nBA8QD5f/2APMC47Pc0QGiYe118Qk7jToLorfICP1lAdDRmzclw9PRPJuc0iFjWm8n2P6NE6VEcjVlCmO+SFGEi+DQwrEJ9ozl7qXRJIPJRJol+xQzXm5PPswRPI46jAa7GJIA8bPSBvO4DAHLn1tZWUFQuR44cOZLilFNOYfY2IqfgDuMzn8ANSiNixBG7J0HBICgv9AO+g/czToD0BOUEDqgn7GQgn27ozU+h8Y2B9mF29qB0KpHHIa4HPkZAHC8QqQ2PMB5sM4VjI6kOub4xkAVAch5kQM5CVedJOhtw2qZVZBARGBCmgbICkrI8lejGtDGKU8WjZiCMjwoxnSosdtC13pY+fCQrpiMPwngc1BoFKpeMmUqramwVSZLd1E4IRhjBy4DsJCYQPvv1sRjsS1NBOEeOHPPB4ZgEUGEevCTwjzA/CMhqSorYvXKj0WApVP2AFCuw18cJOBgHDhygnQzI73HtbUQ8ILmHtCqoVXG4qhytszgGHgcA0SN9iyYGt2iT1FLGlr6UBEtak5q2xhSqRByn9xbYgkKVqHC1aRYjjwfKPL7KKSmSk4iLUi1ES7dCXaluFfqmU3lKW4XAoRlWXI2neImKVIt6u8tAZOfBlYdiXG8cY5xifyDgRwEKVcPQclUqSqM5bGtGhcoRMshxAeUkXfM8b+/eeteSXyM4WQWKPka0B55WBUW0WUFYkjYJsuRN1BsFqpR9JbFWt6EPhSoO25RJVv322YdjAqUqZUyXOCqdCipBUDJKAkQzIFk6y8XjZlXgJMf0MfdtY8TCf7MG0CZAEkd9Hi65HAW8b5JWsAcSDQP+z//8D1OkikJUBdOsgRQqSL5BAuyRj3wkI68PIlND+k0sFR9W15pHiBVh3/zmNzOHY1xpVdPkcUAul9uVSKuSDWmslYwhS5pjZwOSuBxrnqbz1NSqJo0wpwMO56hOuWRI5KZMiUwSRdxqTq+afLs9eiQNUvNQfanX/QJFQwBDANH+WS+0y1UVMViZ1/3IEQW0DWBu5XYnSBqfBMSq8OOoEJ/obQn5rUEY5yjLs571LEZQh+bwD37wA0aMgwwYjO5+OO+88/pK0s0zULiJF+CBRNn97ne/kQnj84AewnjZiiSM8xFOnhKEehxl3ZgKf2MWOAZZAKlkPL1p1jEsnQo1ODh4bYusgAJ4qFuRFA1TnwmHpWWqVNSsTNSp5hX9Ih7jALTxxTRhDihC4r1+t7vdjRV6m0cg3Re8ElTbBiDNOcuRmByTjWzA2UDbQBsZhReQY34QuxcZh7eDULCovNQvhQij+lxzGICeMAregMQOp6JfOXg4JeLvEOE46aSTaN7xV3/1Vz064OG0qkGwKsq2ksCdBSC9Ja16UNRIMtKR2iP4KrxY4azU3phV8v0kyeNZA+3NiJGCliMajtVJq5okkE6FyDuiGkij4oCDgcGk7VScj6dAc6cjRw4RcDbmOU1+u3E4woP8N7zhDdl/EahgjwKEKIeRFFPtrVCUZFjhG1Qyj8Id73hHsiyLVTy/8Y1vHLkOHJF+zsg8A6NEUAVDsUXgT3/6U9/rNClE8TiydFJGUavKGqMSx6HM1BRG2XcqRlWoSopJR2ggjctrXMRBOAJXVdLzROYZ0xZliAvDSNd9ooIvNPVF/P73v6czzjiDtmNfBWUb5ISb5njkr3PMJ5BGNfeRjW2WUiXiggsuiCSOozo96A1z53Ds3buXTWmAku6yLLMX2U4EIjvc4XjoQx/KKogiynGP+3oRI6Vlk1VSyC7JJNmd1m2VZXJlb7TZEorPoo8HB7UvFxY8ZmH9qEFyOB3IZnE0T4WK23fguWKAG9lF7WVPnQr7g0MSDHyD5+7bGXwZs8mjBsbB0yrZgQCXUrLIcbwP1UrvCewue7nR64aXR7yvWOvib7DdSy5ZfnE9Xba7yM88AlHVDMb1KKtGQFw2XZn2FGqM7IyCdQXJpH2+RJdCDpuQVqX4BGqk8OCzI5m0VzcZV0Acpa5qHTUmUY60qJosSqALaTeuKzHjDA7Qgt4OIiNYz7QVdrzsvFyZHcei2mRGd80udBn7PPqAfbd8IjLOk5O+cexYR5LcriKEOCass0fzri+OY1lvkOUobJ8g1ItE9ZpVoBPLa7Rulrr2f/vKn+iY7RGD9qqbtGGX6RpjhX2+XeVy+kPbSyk5RT9Ksk+axvkAC3KLWq7GyNRFyWTnty421JCzgWvLK77bJDPCP19eUCwWqeJpcFt+7Q2cD/vvykEbavgkaZEsza/TZrPY5XRUy22motRqa6ydViotqtULtFhtMVU0XE81VGcF9wiTmJJ3VWOF9hc3u64pOxb/fMC7wH1Dahbu+1bbO45aS2f7gLQr2gyAeynLGJ4jqgvk6oJmsbQqrI/zwXpRDyHOE9/jGvG2jW1DoUrZUr0hPEciqY3nWWLPtmQpRCCI49EpOuQYCtkNjeSiRZuGd43ZM+0/b1ZNI7XqGalXuRK5fjDCsWXavWeLrvj9ASod8NqecaxEBpXYe2rjmHfecksmp+j9qG0XyC148+aGRrRgBVEOKEld/qiXdJ3faR8+z2sjggIeHAzvenj449+9nG74Ca8e0mUPfxmd/lFPjvbyR3dviwNRjb/7u7+ju3/+ZcGyM888k0nOb/dUIxiWc29c5sgRRsoIB82Bw4HoaxRne3FxkY4ePZpqm3MRj//hD39IP/rRj1hJdihV4TMI449+9KNp165dtFNDkZAixsgYStGjcezevTv4vr1LI9no36rNcnQHB1sGzgSM/fBAI2xsPjDv2zj+F96/geI//u7iPpyRg5wJ+mTTUaje1mnPQi8RE0YjjGugYenMwYibMrNS8Ehu3ADVAwPYOzEYejW7SEtKZ720gMOAfQxTjGL7942+NLi6uYuKfjoY/nOnYxiSkopPLHnCEqeUVulk3UslWfWdg91KLXA6AP49cEbhEG2OyLWA4S5yN6LApV7rdoFsIQUMTil3OuKkUFWLbVqvl9h/0fkAuMEq8ow4DjYX2D3nWNBaXc5GXMBZBpeEO4xJYFqK54jERLjdTaqq+LGjXvi0caycbp+Nzr27/B9f0PN1P6chDDgdcQr5felLX6IHPvCBXcuQPpVGWjJHjhw5xg2kU4Ej/IxnPKNr+Ve+8pXUGTVz4XAgLerjH/84vepVr2KjRKeddhpzOER+xk7Et7/9bTr++OPZ/Nlnn00XXXTRtA9pZmCMUAm4ZiZLd0J0gzsc/dBw+qf2QZJ2Urn4hxGGmgJOLq3SJgqxbFOM4vDlyAZyUybHj2LMAsCtg6riueee2/PdkSNHEkvg5siRY8awjVOqnve85zFnA++qe97znmzZN77xDaaMmiadCkhk5UB3F+FfkLYxwj4pQJ0qN6Z7gdxYVH9EcShEgLjE3Dggm9OXjmYGRam/QWGP4GSMC0jlmZRSFUboB5HFo3Co3e2A1MxC5Mg4T8WZFRRlk1rI3YvAbrVGx6z+2s2abLMI2CwBx5QG19SXaKXocT/W2iWqCBGSeQbSqcJwUFBwId75IZ0qDq6IiG6MiquvvprOOussuvTSS3u+Q0f9zGc+k6UD58iRY86xjR2OJz7xiWyA/3Wvex0bOAFQgfz888+nxz72sam2meithxxMvEjX1tZS7SxH9rj44ouD+X7yuHYh+jYrrWjHIgmSrp8WcWu1ofDXIESlJ0WlxoxqYIOHkGPySOrcZaHYlUc3RocjFOUbBUpTTuV4ZBHNAKcOXAzUiQo7G+9///vZOs9+9rNzZyNHjm0CrlKVZpoHPO1pT6NrrrmGDh06xFReIVCU1tkAEr/5bn7zm7Od5pgNICzPZeW++93vkm13PAAQxrNGnyLPiZ0Qn/ow8nYAp518tBoj+Wkw6HcbI6QMeZW+PXBi9CD0c4iaKSs+x+FtgBQe97cgjIvpVBynFtORzRajvGMfIIvPulQviOPDwEULRFzT7OaoXd+MLrzKAe7GIIik5yScqFROVkwuSFbOxjBI7Wzfhxj9Q3oBnAw4EeicRUDO/aqrrmKOxjA1xhw5cuSYRSCl6ne/+x0TakpLFudI/AZ+7WtfSy94wQvoi1/8Iiu8B69HnHJMHmgIHAXpwqkcQ5RzEGewWVRGhXpVXEjWbKX4pEHbTW/kJ8V17aWh6VRxjeBJYVmJrrxckYcb70irGgegKpVVdCO8LRFQ9IqTTsVxqBGdQtY04jugo1YWHxV2c7Yphevr64z8fe9735s5GcVikfWFYaAKOOpWoYbUdqj7lCNHjp2Her3O0qqQun/Xu96VTZh/0pOelDp9P7E18YAHPIBJsEJd48QTT2QqUZjA6dipilHTBirR8mv/9a9/nUwzWUXtWUmbmgUkJYxPEtM2CLPgHISxIjgVUKrKMTo2fTncaUAqW2Phb9gbwnNZn5xjcvDgQfqbv/kb5mDgHQulKRAnw8Dya6+9lkUzXvGKV2x7mdscOXIIHI400xyQxlEz6Atf+AIbbMEEZT0sQw29NEj85v7Wt76Vakc5xgtI4/LRtIt/+G90+/t2tN45j0Np947GIlOFK46KjgXmUUtj1vgbII7bVd/YbSpEJbuHMA4eh6Z5P9poFmlf1TNkB8nLouZFmCyNtKWuFJQxA2lVdZpdhycNxHSqSWMYeXwSqJbaA/lAaJODIh3bGiaKcwxfrcvZ6AO8F7IAHAao/73hDW9g8o+DgOJX4GQg0pEjR46dh+1cafyCCy6gT33qU11FShFwKJVKrJ4QyONjdzjudre7Jd5JjvED0SYUkUKNknZrg+qNI1ReGE9RRPA4RiyLMFGgANpCYbJVrWcdcdKp+iEnSU8fYjrVTgKUqrLmYbz3ve9lzgPUpQbhzW9+Mz3ykY9kEeUcOXLkYJgD5yENkDYV9a5Dse2JpVRxcjKK7qHEOcLIwIc+9CH63ve+l+ogcmQDMfr0s6+9YWL7HTXSESUUNKtpXKjknJZwPk7wonVZIE6hwTDiFgvMWho3CUaRJ54kwXzW0ue2I+oX/4KufOoLWXTi6U9/el9n44UvfCFTZUTkA7WfcmcjR44cOwFnnnkmqyHUanUGa5vNJr361a9m36WBmibM8pjHPIYe9ahH0U9/+lM2QgRsbGzQ61//evryl7+c6kByZFMg8SUveQmdd9557PPRa39Je064JcmWS9+7wCM3nvnIN9FFH/YKJt72KW/p+j2EhcyykGqFquN9bDqtLtTl8P+Ltet4CrPU6q4aDpuP86BBGOelFBA1wXogjmOfhl/mRdvqGHq2IwVSl67ikqO75LK0DJdoKXrUvdEskOPIrOo4Kj+LQLXxI80KI2aH6xfUjc5Iqqp42170oyTgecAAhVGIdJiSYtKmVWRVwduaSicU1gNp3HDFcdTlEBEuGIiq5zDese2w0YnaEbYjswmpXpYtk+3K7Fhcl9h5KopDtXaBbFum1UaZrbeAitdqga6pL9MZi0fYtg42F3scDGwXwHnsLjZ6+CzYlsjdMG2FXTuoavFq7VXFIFWzqaq0qax417vsS5tV1VZio9/wr9chc4n2qls9hPFVu0pXmyt0vLZOB9R1+lHjBrSkdDhM17Z30T69V8wC54HzVcihNqlUUgxWwBFXQJHd/9/eeYBJUWVv/3ScPGQEAUXMaRExoKti2jX9jStiDivG1V3FnDCg4qqArq45rznsKuYPA+YAJsyKgpLz5M5d3/Pe7qqp7unu6VSd5v09T8103Qp9+3R11T33JKO6+JpArXJ1w+dEVfqw2NR3rhSQkEiVI1ZbrnF1/mCqXEHxBFxqf7jsobo4rEMue9hQYOqrfEbcBfZbGnCLJ+CUjfquluXezu9oflOk0rj+PdujVia4a61ur5PGmsi12eF3icsZkXGbN/L9BUOOyPXkiF5POIkt8n2a1Siz+2B3Co+6DvEbEE3JC9fQmtUR9zWtKiyONvxGo+eKnsrut0mgMSTOdruE/dGbAvoQtBn72la5xGnObrXWKW6/LXKvsYkE+oSkdqFDOjYLSv18hwSj9yt/785jFpxxvoyYPi1mHQy/9ybROkKy8MJJovm73tgQhwgF4/TTT5e+fdOv7E4I6aFUcB2OW2+9VfbZZx/lPTNy5EjVhvhtTNK8/vrrWZ3TpmHqJgNGjRqlZnqQi7ehoUF1AGXOv/jiC9lvv/1UkF2pgixavXr1UspRY2Pnw7zSMAcsIltKogDG7SZME80eabeFNAm7MAKJ/BBiil7bxBgMmCd50ZZK4dDbML5MpXDor3EuXfnA/uHoWFcfUABzTImhcODcNk00d+QytrkjJ7S7IoMuhzMs1VWRwYWucNRGlQsMmjC4xmAS//1Bp+EuhMF8vMLhcoTEYQurQR4UFF3hUOd2+tQ5kA5Wr+2AAewgd4s6Rk9122H6ENjuCcUO6qG4QOHAufQMUfrAP12FQ322UGQfXeHQCwJWRwfIOH8qhQMyweAaA0rzQFSPR4AscK5aZ8BQODBod9nCarCeSOHQlY0Gu0fctpA6DgN+naZQnTQ4PAkVNV3hMLMk0EfWda01FA7wm79fF4Wjl9NjKHqQF8BnMxf/w3Z8H2obPn9U4WiLfj/hqJwhG7yGpQv1W+KzeEEJU99tKHItdfjdhsIBzAqHun6cQXXdBcJ2tR/kC4VDKTWC79UmXr9T3NHrOZHCof/Xvyf9e9Tv7LrCYVhp0J5A4dDPidsF9tevH/NvQMdh05IqHAjqNiscNpPCEarSlEVT/33HKxzqUsH1bFI6HCaFA1+fuzlyL3C1dd4ffrjqXOkOFEcdM2ZMTBtm6y666CI1WUMIKR1Kebym923jC68XR1Xm/uUhn1d+vvHSkvxsZuA69dhjjxl1hTbffHNlbEAcR0EsHMjHi/RY8UD4iGInxWfmzJnypz/9Sb2GYgh3N1JaFNpFJ59A2ShHUJk8X1XfdQsAEg0UM3Uw6R7MqeE++Oijjxpte+21l5qlQzFbQgjJigq2cIDa2lo55ZRTJF9krHCgyNy8efNUiXMziN+ApYMUH+SJ18FD9pZbbpF+/fp1e1y8NSL5jlLilMmvOY6QSbDK6pJdiFVewOx6vugIuw0rRyGBdaPQ6FYhy9/HZOXoji7uUVl8tbCmxVs5ygEk0UCsoRkoGn/+85+L1idCCClFZsyYkfa+KI1hucIBbQepAB944AHlqrNkyRJ1U0cBJOQfJ6VTHXLAgAFGNfJknnNwp0oGvIDg6qAUkQQTgRjHWD1Rj3Gq7n6hXDHMcSJwxYi6UqWDFSlI4SpT7cy99kBPJSSROAq4UxUbxOJ4sgh+LzUrB9y2dLeqTNDdspTbltiU21SxsIVj3aoyZc2aNWpyLBAIdHGFgCswIYTkSqWlxT3kkEPS2g9j/1Ao87FUxk+liy++WKUGhEm6ra1NuVdNmDBBTjvtNDn77LMz7gCxBigZyJWsw/oppUc67j2lMpBl1iTrySY7GEhV5yNdrKo3Yw9Ybw6Nj9945JFHlEXXrGzcddddatKFygYhJG9UWOG/cDic1pKNsgEyHs1As7nsssvUDNI333wjH3/8sZpNnzx5clYdINbx5JNPGq/33HNPS98rkStW/HjavG4uVK0HjmeU5VSLnQ3NJX7CHECtzwzrwcXpDgTN58jVnSoR5gDnfKTO1YOYO9ddWX8OBFEDBIx3ttm6uFXptIYjAWetoeSBZ2tMBfsQMJ4MBIzrIGA8kTuV+b3jM4UlqpiOgHErQYC4DgLGE+GLtiNgPObYoCPGrSoXpdGWoUJjTqSAgPGEv48kVcARMB67Hu1DsLPdlodU2LDAn3DCCTEzdng4YkKMEELySoUpHMkwp8bNhYxHF3/961+ltbVV3G63bLHFFrLDDjtIfX29tLe3q22kdIBy+PTTTxvrcHvL/aTSo0l3NlnPeFSMfvhNVdcrjWXB0ix4F1+lnuROphMJu+66q9x3333G+rfffiv/+9//xG4vDSshIYSUC5iogSFhyJAhaoz/66+/qnaETqBYajZkfCd++OGHVfGPeNAGUzYpLcaNG2e8njp1qlIM043fiFlPMulrlaeN2dphjjdOVCQwlrhZ3Bz8wAmJB8H8mRJvTSL5B1n5zIVnkc4RE2KEEGJ1DEc2S6lz3XXXyUMPPSQ33nijMjDobLXVVjETO5YoHAi2Q85g+MHCwoF1fUElVhT8Q8lzUnr89ttvxuuNNtpIKhGzawYIoyBgjn7yZrcqK+nOncoq4gfC+XDbKhSowVHs7FSoQZLKyuELOCvOgmd2qyoGiZKdwbL+xhtvGOvBYDDrPPGEEJI2FexS9cgjj8g999yj6m6Y04ejCKBelyNT0n4iogorXHSwbLLJJl22ox1FlEjpsd5666ng/nfffVcVZkSF+HyS13F5GbpsqUxVjkC3cQ568b9i0uqvkga3r6RqgqTKULUy2Ji3GhzlmFI4WzIr52ot8fEb+XSrWvX2a/Lgu/8vRtlgbQ1CSEGo4DocixcvTjhBjaDx+Ox/eVc4kOUI1g0EHz/33HPSt29nsCbMLeuvv76su+66WXWCWM9bb70lTmfk6x49erT6Lrc7eVqX/Rx+TcLOJA95W2LXJ7PCkUj5UOlsXZ3HpxOTizFwMkXGqbzCbKKpj2MTf59wp5UjNj448fHRmWi7IyTBoF6VOfFnRhXlsGnQg8Drqmi1blSbjg/ERXVqvdJ4NiBo220PqmrjqN6N94gnFLYp6wsqmOv4A05VJ6HD41ZVxmtrsqt7Ycghgc0Xn1UPFoYMzZ+9EWXjM6jHAQtFfDXxVCzwDTAqjX/Y2nkTHFa9psu+v3b0lxG1q4z1Zb6I0jLA3ZbyPZZ6e0lvV6RPSzy9ZWBV5P06glUxilmyjF1N3pouQd/4rszVwPHdoH4GrhA9RTOuMd1ygCrkenC4yxmKictBtXFUDQ+HO98f59Irg5urjaNNx1yBXH+thW3q8+guh/lUkZytdvX71TNU2YIS/a3it2uTcFXuT1tUGV/+/quy+qOZMW69VDYIISR34JL63nvvqbG9mWeffVZGjRplrcIxduxY9X/+/PkybNgwBuKVGXgQ33HHHXLmmWeq9Ztvvlnm3N8ZRL79SVHlwybi8HWdKcXg3+zOoE8Ym5UCI86jGx/FUFVUUYFS4RAx1xPD+BoKSfzh6r1tnQpHoL6z3e61iUp45NBE2pxGbY5wu1O0/l416FPvG7bLOvWtaqClKx26T745cxEGb+Y0oahHoGev0qtstwfcUufyG7PZZitBe3SA2uiKDMKhHLjsQQmEnSoVLt5LH7SmcqfSlQ393Phvrq8AFygoQ3rmInMGI180uxEGlBiktkRrM1S5grK6vc4YzDabzo+MTW7TIFd99qhiocursbpD9QtyczuCqnZFjT2gMjtB2cJ/KBW1Dr+y6sSn/vWFXeozO0ST1nC1WiAP3QK0yN9XKVJoWxrorWSH/lXZAvJx24ZdakP86onUmvm6dWj0e42833J/p2XEaQup7wSfA/3B/9ZgtfR2ecQXcklLoNr4rtCPQFQebSG3WveGnOrc1VFFE+ttAWyLy7xk02LaIDNYfvXvxeFAOkG7oWSY/+u0eCLXjnp/T5VSDHTwPSZC/UZtke8x29oZZoVbf41rC78DZMNC33VaW2sk1OEUZ10w8t6o29HkjlgjsK6Oi+yrf/1QOnR0RWTeBbHpbNMFM2zbbLONrPr6a6MNbr3V1dVZnY8QQrKh0upwmJk0aZLK+AdLB+65//3vf+XHH39UrlYvvfSSZEPGWgO0HSgbCMqDH9fcuXNjFlK6nHHGGcbrCy64IGuzWDzmwYRVWOmNpCsR2e6nD0QJyVddjFyBoliJoEo4Jk++Nikbq1evVi6/hBBSUCo4huPggw+WF198UcXH1dXVKQXk+++/V21I0pENGUc1oubGSSedJK+++mrC7dkWBCGFAbVTkGUAjBkzRj777DOpRGwFKDhGSpf2oFvqnNm5lWWD31TjpFBkW6zPbDXBa3MmN1hJUhV59HSk4bNoAaj3tNNOO8W0NTY2KssGre2EkGJQyRYOPdX4zJmdbqu5kvGd+pxzzpGmpib55JNPVCaQ1157TaXK3XjjjWXGjBl56xixhi233NIIBELw+IIFC6SccJgyMptdvBye3BQMuAeVM6Uwq54IKwLlze5vVrDWX2u8hruVmZZAp8tTKszxNSR78JzBsyVe2XjsscdU1kQqG4QQkn8mTJggs2bNyus57dkEH0+bNk222247dbOHi9Wxxx6rcvVOmTIlr50j1mB2R8DDHMx+cKLR5gikVr/NYymrxlXm4tBpv0eC/QIdhctOVCisTNdb7IxV5Uh31g0E85P08fv98vjjjysLLJZ58+YZ26ZPn64SXhx99NFF7SMhhFSyS9XKlStl3333VTHbcMH/8ssvcz5nxiMXFI7T62306dNHdQpsvfXWeU+3SqwBwZXwz9PTSCJVbjLs3SgfXeI44nY3j1/NE9PmLKUhV3ZZasqtKnS1uZqhhYXmEmEONs8nCBjPqB8pguQRoN2dUoUsYalA4LrZrSryPz2rRKGJDxgvhDtVpiBgPJk7VbA98l0gYFzH0RH7vRm/+TT0WMQFXnvttTJ06FCV+x3WDR089GDRgIWdEEJKggpWOF544QVZunSpqiw+e/Zsld0UHjLXX3991p4xGY9CNt10UxWprhcAufvuu1UU+1133SWDBw/OqhOk8Dz11FPG6+233156KuZA8GpX7OBZT1Gayqc9mWKgp1cF/V2R9KrpugYVoo6DOaNVPtHT3qbrVmVWMlLh0/JjqWoKdLpLNQVqkrpO5WrdyEaZMKeyrXjiLonly5crV0883PRJLJ0rr7xSPeAQs0EIIaWCLYelHIBR4dRTT1WuVSggfeKJJ8p//vOfrAtIZxzp+I9//ENpPfqDACYX+NOiFgfKoJPyoKqqSrkrIBhz0aJFsmLFCilFzGNVc/xGNtTEKRT5oJAZqsyKD+o22HOYIc/1s9Y6/apmSCngiZrI4tPS6laOfFmJSgWrrRuqPgdSQ0vhZtIOOeSQmLZevXrJaaedJqecckrWDzdCCCG5g4ymc+bMUVZnTP6ss8461iocqL+xwQYbqHgNHZhYoPUgPS6qWffv3z+rTpDi8PLLL0u/fv3U6/33319dUNv/dZoRxxFyRQud4XWVrWDxG/mmo7lGanvlqK0UmEQF/3IllaWmlCpTWw1qcOSDRNaNUg3eT5ShKpP4HauyU40fP16efvppY33IkCGqRtChhx6qJkUIIaRkqeBK43rBb8TTodg3anEcdthhqgYHCoBbqnBsuOGGKkB8jz32UG+2++67K1/b2tpa2XbbbbN6c1JcUC1++PDhSmNFelxcUMmAcpFpcqBijb2YEjeW+KrV3bWXS7YqYm0yAGXpsKQ3IsG2VlUU0cy7776r0jASQkg5UMlpcYcMGSJr1qxRXkz33HOPHHjggTlPAjkzyU4FPy4sTzzxhMokMmLECKV8QAnBkq2ZhRSPV155RZWw14tqxaOPEx0+TcK1qYcfjoBIovjcsOkqU0pL9McWqu48P8ZD0SLREjS3J/DacbWL+BtEHN7YbFb2YKR/+thKc2pZD8L0+I1EwN3Eqplse1Q4CGwPxgV6pwr87q5PcMEyVxHHuvm/29XpLqUqVse5UqUTx6LHWqCyt9Ug/gVVw7F4JDa+o8HpS+h2tdLbYKz3cntkuadBLbpFaVBNZ6zN0o4GCWuNMqCm3Wj7raWP+h/SbNK72iPeoFOqnbEude0+tyHDuqrUdUDWtNZK34YOafVWiTMaS4SMVsZ3E3DEVPjW8Xk6P291bX5qjQT8TnG4QoYVRHeo0mt0ON0hCfrzY3Vb884bsvr/vdIlGQkmrwghpGyoYAvHVVddJePGjctrUVWbhhyDGeL1euXDDz80FJBPP/1U+Xhtttlm8u2330qp0tLSonyDke2EAYid6DONqB7Z2n+fyIDdZpOQOTVtKKKV623hqLuVQm+3Rwb7yhpi79wXSoY9aFIOoj9SnA9JjpCxClmuNGensqDGrPbO7FcOX+Qcals4oqzAdR/nDEZjf4ONkcGZ6kPQFtlvQCRuw13nl771HVLtDEidKzJIa/LVqPV2f5WhfLidQTVw1wf3gbBd3NHBYG30OCgDtc6AGoRXOwLitgelBtoWYmPsQenj7DCyUvV1tkmVLbKtNVwjDglLa7haHKLJmmCdGjibg5f1jEodUeFB6fCGnJH/wc6BJga7GJgGQw4JR91k0G+8DkUHrHqMBwaNut9/5KuN/clXuYOqMjU+p16husYZMD4rYiDwWd32kKpXosdEYJCO4nrN/hrpV9UmnpBbBlRF0ofhM/dyejLOXuWLpi9DlirID3KATDvCbvUd1Tr80hysMb6vRqdXBYIjSH+lv176udplJbTROJoDnccgKB/y1Ndb/VUqHgWfuc1fpa4JvL/H71L7Qq5VzqC6JrwBZ4xVKD743uN1S3VVwDi3+e6K78rf6hZ7VUicrpChTECBcFdHLm4cF/A6jQG+3aFJGNeyA99hVFZeh9jdnX2wmfXQRIqhhs8gEg5E+mqPs2rFHK/Ww+q91HVi+pn/9JcrJBdQvwlBiGYQB4gHGyGElMt4Te/blqddL46qzF10Qz6vfHv3pSX52azEmW1aVVg2dtllF2XZQNVxZKtCLAcpX1BRcsxR+xTlvZXSUQZaf6UBZaMUgAKWKmUugLKRDVA2gNMeikmbmyn+UGbHej1uqarOrM8Bj7N8UphkALIYnnHGGTFtv//+u0p3SwghZQvHLWmTUZoZuFHBz/bqq69WigZMLaeffrqsXbtWbr/9dhVYTsqPffZJrWTA2qC7O2VCFmUn8gKsG93RYbIWFJvervwHtBc6g1W+qIq7aGDdsIJ4d7VKI+RNPpcUNlllwlFrWHdka91oa2tTFlSzsoE0izCsU9kghFRCDEc2S08kbQsHLBpIiYVMVWPHjlUpCxG9ztob5Q8GA3r8RjgUFJsz+WWBSWazq1UhgDtVwna4YxkuXon3sbU4xTW4syZGJsCdqljATctvDn5JQMTf35p6GlbGXVQKXr/LcEErNGF/rFtVKfLII4/ICSecENOGGk6bbLJJ0fpECCF5o4JjOKwg7RHVe++9p1KoQvHYa6+9lL9/oZUNpHHdcccdpaamRvkCx+duJ9lxwAEHGK/XLJxb0Pc2KwrdjK8r0tWkp7tTWZ29qiZLNyySPQgAh9utWdk44ogjlFWDygYhhGQOvIuQKWrddddVVuPnn3++22MQY40sssguhXpGxa6VZ88k4A+psZBJ5J///Kf60FtvvbWcddZZ8uyzz3apDptvkAf4uOOOk5NOOkm++uor+eCDD+Too4+29D17Ck6TRWP5vI+yMvfp47pU40c9ADyyksZJk5wrn/XmEDCerxiE7qpkI2A8HbcqxBqUSzpVBIybWemrz6iqej7Qq7ojYLzQ+AJZhcF1S74yQunoAePpkk1dFigUZ599ttTX14vP12mWnDt3rjz11FOZn5AQQkqYQrpUtbe3y8iRI+Xf//53WvsjxAGTyQh/+PLLL+Wcc86RCRMmJMxGWijSflrW1dWpfLxYQGtrq7z//vuqMMiNN94oxxxzjGy88cbyzTff5L2TwWBQVTi/6aab5OSTTzba9XSuJH+0royNw0nmAWP3axJ2d681wCW/1Lx+rI7fKAfXoVTWDVcaCk+2hQkRGJ5KOdNBhqpk1Dt80pJG8T7duoFMYt5oNfJi4WmrEldNV5l7O9wqG5Tf6zQyVaUi5Ld3casKeZziSHDuLkDsttRKRlxpjLRA/Z6LL75Y3Z/N7LfffsoqHV9vgxBCKoICulTtt99+askkUQdCIKZOnarWN998czVmnz59erdxu1aR9VwxFBAUjsMC9ybMkn///fdiBZ9//rksXrxY7Ha7jBo1SrlyQfDdKTeYZUP6MvNCEoPKvulSSC+VZPEbCd2yQvkb2MTHb5h99fW0sCS/pKOI5BOkGy5lK0c+CPm671s4y98N7qe77babOByOLsrGzz//rGr8UNkghFQquVo4WuLGp2bLcK589NFHsvfee8e0QdFAe7GwZzKLhXobsGZgsI8MVTvvvLPccccdMmjQIGXm+fXXXy3ppH5e5Gu//PLLVWl1KDmodo5KiMmYMmWKypWsL8yKkhxkG9MJBXx5dVvKKzmMX/SibKVKLtmq4mtrlEKlaqvdqVCDwwo8gdyvE6TELQSwcpiBtSPdTFXpZqiKZ8WKFcofGPdUxPaZwQwaXKuwnRBCSHKGDRsWM0bFmDVfLFu2rEsxbqxDsfF48p8ZMx3SnpqDggEfMigX8AmDWQYD/g033DDrN4cZHvEgqYDVBMoOuOyyy+Qvf/mLev3ggw/K0KFD5ZlnnlEZsxJxySWXyMSJE411CJpKR2LMmvDq37+U/puO6faYdN2q0sFCF/8eR3cpcUshWLy71Lhhza6K75VLsDisHFWmau3d7t9ULbX9ssueVkzOPPNMufPOO2Pa+vfvryajYL4nhJAeQ44uVQsXLowp/Ifg7kombYUDJnMoGvnMMnLeeefJiSeemHKfESNGyNKlS7vEbOCLwTYUj0oG9qn0LzBfwF3NHDgOhaPEwxAswR90iitaWTzRLD8qbudCR5jXY6EyVCUCAfndpRtONyVuTwIp0ceMiZ2EgHsrMqcgSJwQQnocOSocjY2NllUah3Fg+fLlMW1Yx/sh02sxSPvJm8yKkAsDBgxQS3eMHj1aKQ7I4Y7q5iAQCMiCBQtk/fXXz3u/ejrtaxZFXKrifkj2YGdD2Nlp2dDHjYjz1T1v0KbH6aJ2G5QXpcCgdob5qksyiY1xPc6l19kAWvR9HCZPmmAdrCORfmlOTWzwR4/2IVzV9U4QxMx51JUkGLJLWGwSCtvFHVUyUE0aReEctrDaZo7fCIQdUueKzJy77SGlgNQ4AlITDXBGDEKt3W+4EQVCDjWoRhuWUPTD6rEKDeYPEmWx9I6pxdHoigQ8o0L2kgTB7v3q22VVa50MbGiTFl+1hMI2qXUHpM1bpfpX6/arz+GPxhkkc71y2DRD0ap3+aXagTogEbMTlCzIBOdBP/yaU8lRr7yN121Bt9Q6A6rPoC1UJb2cni7uVG3BatUe2ScS+F3v8CqLRkTGTukIu5W89P869qjcXPaAVLsD4g27pDYa5OMLu8RhE7X/Sn9DjLvVCl+D6iMu6iVtjerztHiqpbHGK78uGyAud1Cd2d/hknUGROK8fl/UX13/juqQNDR4xBNwSUtLjWhhm/Tt25bUyhHocEl1VUBCXofaV8/2BNcnfzDyGUPtke/R01QjErRJOGqR8rZGL3b9O9JsEvbbIte11y5hlybxZT/sHru6zrVmp/od2HG+VqfYwzYJOzWRhqCE4HbltYtUhVPGccw/5pKYtk2enSxaKCzr/GumjPlgUsw2xNQhUyEhhPRUss04ZStAuOJOO+2k4ujMzJw5U7UXi9KNdjQBjQwxBldeeaVyiYKSoQcpjhs3rtjdqxiQaeyxxx7rbDB5S0FJSOSlksoKoic7MiYBEnhf6eNRXcFIh0B9rCKSCxjEopsYUGOwnijGVdNsSumocgTVfhjQx6evhQsPqmLr2ZWgaFTbgiork84AZ4u0hiIzC17NpRSSeEY2LpQV/kbxhNzS6PTIEl8vY9u6dS0q0BmKQLUzoBSDtb4a6VUbGVw3Vnllraf7mQsMgvXPAPpWdyhlArJIZMFBkLzdoaUdLL/aX6sG/GuCdQlTAa8INEqN3a+UOrXub1SZpzIBykYy1qnqTA6x0t85+77GGysbKBHxLFveq0s2qdbWGgl2dGaCWrOmXsJeh9irQqKZkwvogYCr6sQWVSLMMRXqAvfbI9sCNpGaOFnH/Qhs/jy4K3ocSA0mAuXDZ5cFp16Q9qEfjD1dBg4cKPNMbQ888IBKTU4IIaRwtLW1ybx582LS3iLdLRI3rbfeeiqEABNBKLgKMGa+/fbb5cILL5S//vWv8tZbb8nTTz+tMgcWi7JQOAAUDGTCQi0OBLygACAEiOBxkh9wgeoKR9DXIc6q2oLGYBRC6y8WrmgREvwPaNb/7GrcgZIPks8UX9iplDrSad2w6vfzzjvvqBg9HdRfQhBiQ0ND/t6EEELKmQKmxZ0zZ44Ka9DR45NRYBUF/RB6YA4xQEwdlItzzz1Xbr31VhXzfN999xUtJW5ZKRwul0tuvvlmtRBr+OMf/2i8Xv3rZ7LO5rtKKeNv6LSi9BT6VnXIMk/ugz5YbazObFVszNaNVAT8TnGmEUgf6nCKvTr5BaeFbGKLuveVAspgksVx119/vUrQoXPppZfKddddl9e+EUJIuWPTNLVkc1ymYAIIGQCTkaiKOI754osvpFQoG4WDWI85Z/6KHz+KUTjMrlPm+A2r0D1LQlVp1uLQ4zVwXJ7GfHAx0uM4SiGIupfbo+JILHlvi2pgIG4lVYX1fIO4j3Rp6yhQAH83BfesxBawiRZ170rHnWqHHXaQ2bNnx6S5NU9EEEIIKbyFoxKgwkES4m2OzW5QSSltEY+BQPFMUPuX2ecsJtm4PiHQPNNYjpLBh+sjx6dIBrVO4t2pcqWjo0MVczWzcuVKlfKWEEJIeQWNlyKlWt6NFIkJEybkdHyXH5It9X7R0IaMCJg8ivKRutdcRTzbtLepBth19q6DaHfcB09m3RjgTpwRKRtczlAXt6ruQDaudNEzVKXCp8UGaneE3N1aKlJZLTpgAuvGnQqZtboDGap0Ap7UKW/D5kDwJCBDVS7Y/F1vzXZf8nPaTQHmtmBm741aR2ZlAxkBQ6EQlQ1CCCF5gwoHSVpxPOBpLWpfyhlXkYqYmLNP5ZN0M1QlQk8HXLHAupGKIrlTpcP9998fU98I2Uy8Xm9MXR5CCCEpXKqyWXogdKkiXWqe6KyaN1sGb71n0viNQsRyxMdx+Bs7A8aNfsTX2zDFcWiNnbPu1a5AycQ25EJvt1elx7UK1NNADY9SJVVK3J5APtypYMHYfvvtYwIKn3nmGTn88MNzPjchhPQE6FKVGZzGIklZ8eOHFRG/4W8vXnpYvchfqVXcTuRWBUWjJ2Wn6om0tLTIKaecolKMm5WNX375hcoGIYRkAi0cGUELB0mYghiV3P3ta7M+B8bQ2SojhdD+EbeBSuOZ0BFwS2200nguoBZHfCxDobDbNaP6dSHpLlsVAsbTrcWRTZxNfNE/q9ypkBo3J1SRPskrWjgsxy9sjclCp4M4DdTXcDjKYOaAEEJI2UKFg3ThjDPOkH/9619p7YvJZEd0YjxaZNsgFB1Tq7hj01gn0XgxWCPi9EQCwt0tIsFoDGt3SYtC1ekPPls91VLlSh6E7YimD01Fm79KVfiGVSKspaewzPcNkIGuSPVr3VVpVbBBau3pKS+9XB71P6g5xGUPqcUbqlcVx3Vcjojfm57GF4Pyhmqfqp6uzlHrUdYM/f3Nlg2cB25aSLvrTVLjA8fFD/Th1lXtCCYMLE9mZejn7pD3l40QpyMk69RGvouVnjoZ039BzH6/tA1Q/7duXCwfrxyuXv9xwK8yr31g9PNFlJeN6laq/z+2raP6t3HdCvm5JXKsTpO3RtaurRN3dcS9rl9De2ynllQrU2/YpUW88Xrlr7igqk4eFVvYF7nd2usDEl6bwOqmizFFwHkm7lSBVatlyT+ni+b1yrUJtr/++uvy5z//Oe3zEUII6YQuVZlBhYN04bTTTjMUjo5Qs7jre0e3mDPhdDULIuGQMY41jZkCUB5syKQT+Y/JbP21eb9w9GoMVWPwF1FggtFi5/gfrMOvO7KumVOQml6a401CNSGRQOcAHKxqqZeqaGB1OGwXj9clVVXBmFl/v9+p2kwt6q/TERnktgXcstpbqwb+GPiGHDYJRTvW6PSqgHHEGdQ6fFJtC0ovh0dWRVNr9XV2KjxV9oCs8DdKL2haUXAcUsMi61VToFZqHH6laPhCTqlyRPqE1xjkY8GAHwP/YNiuLDBQDHTlA7jjMlPpNFR5Y9ahbIDe0f9QXJxRRaIj6Fbv1RKoUv/xXjpOOxSvyGfXFbCWQI00RpUkM4vae8saX2zqVTCgpl1+aY8oCas9tUYb+LZ1XWM/XdlY3hGrzCxtb5TBdRGF7uf2gdLqq+7y+Qz5tlbJMr9TQk1u0dxhsbc7YvxKVbanlS7RoHz4baK5IlqzUu1wjbQ6BSKF9S4cjKv0LZ3XpioAGFVg7c6w2tdeFRRHfVhCeN3bHym+WK1JCFmv4sOQdGNQyCaODrs6F7JPQcTzLjpXUoF0tgMHRmQVDwr4XXDBBcqKSQghJAdYhyMjGMNBumDOWrP6+4+T7gfFQP3vQWOXDn/uHxbWDdJVcch2n3Txe50Vf0eeNGlSF2Vjzz33lNWrV6sqtagaTmWDEELya+XIZOmplMETmBSTVd99KIO331dKhjxWbYZ1oxRoDtbEWDnyQSDkSBrrYLaAFApYNwpJKitHJdLa2iqNjdEUblEQBP7EE0+oAHFCCCGkmPBJRBLSq1cvaW5ulqAnf4XnSH5oCVQrt6ZCZpXSY0NKmcVtvWRIfXP2J0jxEW0BES3+bokCe87iT1ctWrRIhg0bFtO2dOlSGTRoUNH6RAghFQ98sbPJwqIV/7lRDOhSRbotABhPGoWb804ovtaGyV8+Jp5Db3fCB7/z8vaZKkl7vOmnyUU8RypWeIqfgtUbzN+8gR63kQmZZI1a3k53snyCbHJmZePkk09WrlNUNgghpPTcqWw92K2KCgdJGjiu42uOZAJKFL9hrKfhnRR2J36ddP/S8HiyjLV6Kq6oW1U+3akSYcvhLtcRdBXUnQqZqxKRKGA83sphdqsCTS3RzANRQr6IfBAwnjOwcsShAsbjQOC4jsP0OhOlPj4pGhQLt7vzh3TDDTfIfffdl0anCSGE5AzrcGQEFQ6SkA022MB4veq75IHjuSoVQC/BUAoKRiKLRosnTrtKg5Zg5zHNofSViZa4fc3nKSW6q3SOTFXpoCsQyRSMQqIyVEVBhqpEmLOg5YotjTTMqTj22GON1wceeKBcdNFFeegVIYQQkn+ocJC0AseLSRd3qlTjtCLOHLQGclMO8mnlyBfBYvjPlRsJrBxW8+GHH8rjjz9urM+YMaPgfSCEkJ4M0pdnu/REqHCQpAwePFj9Dwc6q++V0vjTHLsR89oUyGuO48iU7uI3ErEqScG7fNHsLz2lpJSyU8Wju1Vli6o3kwGJ4onyjd/vlz/+8Y/GOpI7EEIIKTB0qcoIKhwkq8DxciRZ4Hg2ikW51uBIJyVuNoHjPZ4crBy2NGI6zPTv3994/dJLL3VJh0sIIcR6GDSeGVQ4SFKQ8UbHs2ZplwBWLI5IEW5FoD4StxGs74zJMMVF5w2zBSMdklk5gkUoBLfI28dYwBJfr5glnuYEsRB6APdyT72qeB6KjyaGEmUKHPcEXNLhTz8zl06Tv0bagu6YeI3mOIsBqq5jiQ8qX+Otycra0BR33FpPjVrWdNTK96sGqv+r2+uMJVnwuJlgu0vCbZGlO+wBm1qSYQulUCzc4YQB48a5nWGVDTEcinxfYdP152hzJr8bm2I9mj98T9XcAGPHjpUDDjgg1cchhBBCSgLW4SBJGTJkiPF6rwEdcvvt56rXI/8xvavy4Ypo7RrGY1pE+TC2Ozr/Y9HdsqCQwJdRteMcttjgcSgWWtjWWR/BPNbDGCw6uMOxNp89cg5c0ZpNQg1BsUUVEw2zzx2RS93X5BatKiyC89YEDaUjGM1cpNPh71y3Oeyy2lcvTldk5n9xsJc4ooNAlzMk3qBLXPaQBMIOaazyGrEcy7y9pMEVKT7nCbmkxhEw/gNd6dDxh52y2l8rq6VWxU4ENbtKOYvz4XVHyK3qbzjtYfFHhWgXTdXI6Ai4VXYqNaCNCkopHVHFwxdwqixVDpsm3oBThvTqdMNpdPnUe8Cy4Y8qFy2BKglrNvVevqBTnRPvBVZ76oyMV7Uuv7T7o1H/IsbrGpdfFrT2VTLBe0dk6haHPSwhfIaopcXpCMv8pr7qvdqjShGUDnwOKBo2W/KU5TgGSgf+Yx9932Cw87sL+Ey3OM0mtlanoTjo7lJKwdBirzF71GKBa1Lfz+x3m9IHN3pt6EHh6Jfqi8cpzurIyWxLq0X6BsW2pFqkLnKyqpUO49yBOk1+OX9il9oa617c2fb222+n6AQhhBBLYR2OjKCFg6TFXXfdZen5M/WVL2egdOQDR5lFntW6TeawSsNt/Xex7rrrGq/nz58vNl2TIYQQUnDoUpUZVDhISkaMGKH+h0Kdfv1f3RqxdJQbuQSQWw2sG1YQMM32F4sqV3G0yRjrRplz4oknGq8nT54sw4cPL2p/CCGkx8Og8Ywo3REYKQnOOOOMYndBbEkCcuFGZeDqnGGGO5WOcqcq06rfpDB0Kahn4SWjhTO/5f7888/y8MMPG+uXX355nntFCCGEWAsVDpL2zOrs2bOL2he7r/AuJLkWZ8sFxG8UG3PwuR4bArQ8jMoRv1GqZPTxLHSnQjXxTTbZxFhvaWmx7L0IIYSkD12qMoMKB0k7BWeqOA5bJA66q6lQ675Kc9J2q6wTCBgvQrxGstiNfLtT6cHd8Xj91pZyNwePA3P2LLNbFQLHrcAch2d2pyqG0qgH1aeLqyX2mnS1R9YfeOABo+26666ThobiplUmhBASFzSezdIDocJB0sY8+MkljiNZrLM9hau/ZcqH+T1SDEztGczGI8NTOiRSQApV2XutpzZmXU9rG5/eNlMlI1sSKSHJYqIzHcyb0ZJ9x9leXmlaN0JBe1bWjQkTJhjrl1xyScbnIIQQYg20cGQGFQ7SLVtttZWUKjFxHCniN1IGjOdBl0H610KCdLUkkhq33AitSa8mCiwa5gJ/zEpFCCGkXKHCQbrlwgsvNF43NTWVbhyHKXA8HxTCFac7d6pyHFAXO1uVJdmpCvw1aKGQXHHFFcY6C/wRQkiJwSxVGUGFg3TL0Ucfbby+/vrryz49rkG04nMxslPlqxZHLqlx492qCkkpB4yXQrD4grumGq/nzJlj2fsQQgjJDrpUZQYVDtItDkfngPWmm25K/8Ae+qOqZPKdqarUsnOVgkGp9fuvxb9ymXq94YYbyujRo4vdJUIIIfGEteyXHgiLBpC0OOKII+Tpp59Wr9va2qS+vr6LlWOrC6cbr50eEW/fzuNdbZH/Dq9IoE7E6RXx9hdxdkTa7X6RUHVnTQT9vwPtelxydDBYs8Iu/l7RNg3xE9ENYRHNqYmmx3E4NNECdmMgaY/GdGCfyPkw1WByn7KJ2HBM2BYbmIz7A4J+nZEZ7WDIIcFQJNA5ZNoXVg63I6jcoJr81VLtCEq9PaSsGcgcpbtPOe2RtFz+kDNmAG8QQvC4XdzR/bC/PxrM7Q1FztHqqxanIyShsF31o8VTLQ5HWMJRWaDd73dKdVVAfH6nhKJWDq/XJXW1Pmn1RoSK/33qOsRpC6t+twaq1ILXNc6AeE1B5IncuzpMma/sURc0FQAecEu7LzZWIRiK9AlUVQWMoHBUIO/wu6XaHRB/wKEUmZqqgHR43eL3OtW6qzrynWKflrW14oyuBz0ucVQHJeRxir0qJGGvU33vMUSvJZvfJhq+X7umEhdoDlvUvI0/+PLxRZsUKjRhP31axoZjo9scCbKd6ZdV9HqYf8wlsuGT10s4ZJdfj7pUNnhsihG/EaoJi2NtRBYLTj/fOAV+Y+MnTTTWP/nkky4yJ4QQQsoNKhwkLc466yxD4Xj55Zdl/PjxCbNMmUMSdCUjmf+7s73rNofPpGAUADU4RB/ix46mwXV3WZF0lyWXMyQtvmrpX4sPFqEtUCWNLm9Omaia/DVKIUhGmy+5wLw+V5f+QxlJRHyGKk+SjFXZxpXoykaX9/W7u6TthbIRT8DjzM5q1uEQiSpDNiiIqTyh8NFynHzSgnZZcOJF6vUvR15qtEMBiScQCMizzz4rU6dOlY8//jhm23PPPSf9+vXLrTOEEEKsIdt4DE16JHSpImmx/fbbJ4zjKFniZ7ktRp/dT3v/lKPe3AkErM+alUsqcZ/P1a0iUlaYvn9d2UiW6va+++5TGaewuN1uGTduXBdlA3Ebhx12mKVdJoQQkj1qrjKbGA7pmVDhIGlRXV1tuFHNnTtX2ts7Z/GtBlYP43XUBatLUcGA6XVr4gFsWHelKiC1Tn9ez+eLulTlC7hllSNBuE6VEc3NzbLLLruI3W6XU045Jel+06ZNk1AoxLgNQggpdVj4r/IUjlmzZhkzgvHL7Nmzi929HsPf//534/Urr7yS9/MjjqOcSeaqlC/aAunVb+gpBL0RK0kolfIBd6ociYbSpIXajZ0AADmPSURBVNgh+cOjtbVVttlmG+ndu7d88MEHMdt23HFHeeqpp8Tn8ynLB5Zzzz1XKSWEEEJIJVEW04Q777yzLF26NKYNOerffPNN2W677YrWr57GrrvuaryG3zlcQbIBAeMlRYLxogocTzKQDIdsYs+DyxayMZVKnY2gZheXrevIGvEfVmWjyga/J3k6YRUwnoxQ5DN08WSz8KO99dZbstdee8W0DRgwQN59913ZbLPNrHtjQgghlpNtiltbzzRwlIeFA37OgwYNMhYEUr7wwgty0kknsfpugRU/HQSQd3SY/ZskJkMVcMV5XSFDVXcuU+nibpbsSRU+kYcbgT/UOaueKtg7EchOZUbPSpXR+we6HqOFrXGnyrWeRqr4Db+pgF/AYhcqZK5Kf1/TSpLjpk+fHqNsbLTRRsqtasWKFVQ2CCGkEmDhv8pTOOKZMWOGrF69WikcqYCrQktLS8xCsqexsVFGjRplrL/22msFe+9slJJ8xnHka5ZfT4lb7pSFC2oe3Kmy4dJLL5WJEyfGWDp+/vln9fshhBBSGdg0LeulJ1KWCsf9998v++yzjwwdOjTlflOmTJFevXoZy7BhwwrWx0plt912M14/88wzBVUwYgLGJXHAeJdt0doZpLTxmawZRSdd3TKBdaP94y/VfUdn+fLlsscee+Sxc4QQQkj5UVSF4+KLL04aDK4vP/zwQ8wxixYtktdff11OPvnkbs9/ySWXKDcGfVm4cKGFn6ZncOihhxqvn3zySfF4ov5TORLjplIiII6jUinX7FSlbN0INbfKqrufjLlXDRw4sOD9IIQQUgDCOSw9kKJOK5533nly4oknptxnxIgRMesPPvigiuE46KCDuj1/VVWVWkj+GDt2rJqxffvtt9U6lL9DDjmk2N0qq0xVVtfgIMVh7XOvG68vuOACGTJkSFH7QwghxDqydY+y9VCXqqIqHMjYgiVdkDYSCsfxxx8vLlfybDXEWlD4b6eddlKvr7322hiFQw8Y10HguMMXW+nG39C5UtUUbYuU+FC4W0RQjBsVx23BznZjnB493BFNoxuqtqkgLM2hqUrSIOyPDPxtrnDUrSoy420P2iRcEzYsGJrfofbRsL85dYSta/yGFraLzR5WGaoc9rBq16t4u6KxGXoQNap0IwvVKl+dCgTvW+UxqowjEBxt2B6f9lZvC4QdqoJ4lTOolJg6ty+mFkdzR7VUuTuF09pcI3ZnWMIBh9gcYdEC9s7ih5qobQgc1zS7cl8KOjsVI3fU2tESrJbetR7x+F1S5Yqc2xNwGRXA9Tav36mqquuy6Yxv0cQfcIimOaWhJtLf1qaazg/oi3wHNq9d7AO90r6mNtIesInm1CS4tjpyFmdYbAG7alPiwBK06V+hSE1QpNXVWT08ZIsEfUf7YQ/EWqbs/sj5bfjuq03KHo6JZq9S1ww+ZvRBgP1xHsT82H24viL7/XJeZ2yGmS+//FJGnXqhsX7RRcmL/xFCCKkAWGk8I0rIcbp7EHw5f/58mTBhQrG70qMZM2aMUhRXrlwpn332mXi9XlUYcO60czv3OXaaPkaTsDP6A4uuu9o10ew2Q2GItEX3M40VXa1QIrq+vz0YUUjigUKiu2bZ/HbR3FAkHGLz29LLRoQOxykBUErsGMAXOTXs8paGTmXG6xanMyQtzTXigLKUxs0rHIwqYFCWUsS1QNkAa9trpdqdIjgmii4XX8ApznCnm9bqpnpxmRSieEItbpFsCzF6sr9tQenAtaj+4yWUMnyEbroSUWaTbNM0Oeecc4z1SZMmKSssIYQQQiKUoOd86mBxpGZlWsniM3PmTOP1jTfemN1JepBnkT+RhlSieAMFsh76inD70azJmvfOO+8Y6yjeRwghpMJhpfHKVTgef/zxLtV6SXEYOXKk8frKK6+UUsXmsys3qkIR7yZV6lXEs+1v+uRR9ini3HVXukLj9/tjEincdNNNqqo4IYSQnlH4L5ulJ1JWCgcpLV599dWYgVZByGFcyVjtxHT401N24DZlFYjZKDbKvSoav5EuKPAHlyqw7bbb0rpBCCE9hQJbOP7973/L8OHDlQv7jjvuKJ9++mnSfR966KEuWV9xXDEp/lOelC377ruv8frCCy80Bl6ViB4cTnIDAeM5U6CMvmFX6u981apVKrW3zvPPPy8OR/m4zhFCCMltEjPbJVOeeuopVVAWHiWff/658jJBPboVK1YkPQbFZpcuXWosv/32mxQTKhwkJz766KOYVKDp1tewhbMfwOccDhE3m64yOhkrqU0oyFBlRg/kNhNK8qGTxXHEu1N5g93HUASDDsvdqfTsVIkIJHn/gMkKEvA7czJLqcBuYMok1WUf07ZUH8c4V7Ljs+iiuaAfHgYsLEoIIcQKpk2bJqeccoqcdNJJssUWW8hdd90ltbW18sADDyQ9BlaNQYMGGcs666wjxYQKB8k5Y5XO1KlTJRzOUHWnm1NKfMHSTySXk6tVMQLH8wBiyb755hujVtARRxxR7C4RQgipQJcqv9+vMoLuvffeRpvdblfr5knfeNra2mT99ddXk2EHH3ywfPvtt1JMyvNpT0oK80V85JFHZn0es5kx4Wx13Cy0LYlrTaLUt4zfKLEMVWVEuCr2eoJSvcsuuxjrX331VRF6RQghpCTqcGSziEhLS0vM4vN11tuKd98NhUJdLBRYX7ZsWcJjNt10U2X9eOGFF+TRRx9Vzy1keV20aJEUCyocJGdg3tN55plnZO7cuYXvRKr6GkWiyWsqepeETLNTxbs5hbIItvZ3RIoSFhZbWQWQp2L06NExrlT19aaqlYQQQnpUpfFsFgDLQ69evYxlypQpki9QnBlFsrfZZhsZO3as/Pe//1X10+6++24pFqXvr0HKgqamJiMdKIKZdjjqRtFcDKAtGKliTxIUNMwWKzNVlQOvvPKKqioO1ltvPbpSEUIIyYqFCxeqwG6dqqqqhPv1799fJSRZvnx5TDvWEZuRDi6XS0aNGiXz5s2TYlHaU4mkbIB2/uSTTxrrc1++KbsJ7gJOvNvbEyhEHodIR/qDalTaNlch95uCqYMhu6xqr4uxZCzvqJdmX+ap6bye5JaQYHvstrDHKVrQLprfnnFqXASDY0HfscQTCtklFI4ssLZ4fcldsEJrY/vlaHWIPWBTSyJsSdoVkDGWoM2yuirQyVKlxNWCQTnggAOM9V9//dWSfhBCCKn8GI7GxsaYJZnC4Xa7lWX9zTffNNrgIoV1WDLSAS5ZX3/9tQwePFiKRc+eriR5Zfz48TJp0iT56aefxNuyUmY/cp4cddRRKpXbdtttV5A+bHLtdKXdBBs0kWgKVmeHTcV7+PuERXPjx45fa2TQ6mxyStitqcFuuCrcqYKbCsmFQw6xu0PqHhEO2UQL28Xu1iQcZ1UIi03soqnBOLZVuYLKIuAJusRlD8W4TzX5Iu5WgVCs0uPxu1QKXn/UkoDzhIKRTrW1VYsWtomGzEp4a7y/HpsSskkIx8T1CRm4bGhSbxP57A53qEuWK6czJGFTFi2HPaw+R5unSr0OhyN9sEfb1dtH77eQVThkl4A30mf8V++LlURKHc7T5hBBxq+o9UVP7IXvQX0E3SKD7yGB3uTw4rjIZ7X7bGr3EL5bbPN3ysDZIRJ2ijh8qLMhEqoybWsTCdWg3SbBmsixOM+vfz8v6SyTznvvvccUuIQQ0pNRz78sj8sQjKNOOOEENZbaYYcd5JZbbpH29naVtQrAfWrIkCGGW9Y111yjkvpstNFGygMFtdKQFnfChAlSLKhwkLyC+A1zcZknnnhCLQBZFlAcTcfj8aggKRyDTD9Dhw6VUkYN9LsZY0bHwEkJhB1K+Sglamt8hoKTCigbZsyWnXQI1YTF4bEnvwEXp1h4WiBWY/Xq1er1rrvuGhM0TgghpOdhjsfI9LhsJnRXrlypJnURKI7YjNdee80IJP/9999V5iqdtWvXqjS62LdPnz7KQvLhhx/GxNwWGiocJK/AJIiB2WGHHSbvvPNOzDZc8HC92njjjWXOnDldjoX2jqwK5h+NlaRy7dG6j/cmeZK3VcC6kQ86Ojpisq/FX9eEEEKI1Zx11llqScSsWbNi1qdPn66WUoIxHCTv9O3bV138qDyO5d577zW2NTc3J1Q2wMMPP6zcVJDpKhfMBgS4UxUTuFWlC9ypiklPraZu96feXlcXicMBX3zxhSqmRAghpIej+xVnvEiPhAoHsRz4DMJ1aquttoppP/vss+XVV1+V+++/P6YdmX8wqENRm/nz5+etH/D1L2eUS1eecbuDKd2mejrmFIKw2sGMTQghhBSq8F+lQJcqUhCQZQEZEpYuXapiPOBTaOavf/2rzJgxQ1XD1EEGBsR2DBw4UD799FNVMbNgIFtVTaepJOx3iM0ZVgHjZpDRyYWA67gAhHzVuQgFHHlLaRuNNE+4xe0Kqs+S7lmM17Yc3KkyjAHJ1p0KAePJcHhEwkkSgCHQ7vTTTzfWn3vuuXx2kRBCSDmD+blsHmNh6ZHQwkEKClKyxSsbOgcddJBywfroo4+UgqKzYsUKGT58uEoblzeLh8lakDIdq0Ukyk5VyrUu0rV8IItW5EUe3tRRuLgORwLrl/k6/fHHH/PfGUIIIaSHQIWDlBxI5QYXLGRX2G233Yz21tZWZfGAu9X//vc/pZzkO36jGMpHVmj5d6dKRKErkmdi9MB3Fe8m5/Tk5/tDJhCdU089VTbZZJO8nJcQQkhlkGul8Z4GFQ5SsiDdGzICwbVln332idkGf3pks4LygdRvfn83kb/ZulWVMvFGB1vPyE6VTCnUrRS5ZKdCDQ5YMyZPnpwwjoMQQghRMIYjI6hwkJIHqXSRbzoYDMrf//73Ltvvu+8+lY4XweZaKGLicORppjufBOPiP0olOxXpBJa1zTbbzFhfvnx5UftDCCGkRKHCkRGl5yxOSBKQMvfWW29VC2p93HjjjWrRiaTTjaTUbdhmtLj69pdgc5ME1q6RYNMaCTStFQmHpWarzaTf8UeLw9GZ7rSQoPgfaPFUS407UJQ+pHKn6smZqsxFK1ETBgkLCCGEEJIbNi2RI3yF0tLSombLUQsCAcikMkAgOWI7suHzzz+XUaNGqdcb3DbVaNdcnT+LBaefH9n+6BSZf+wl6vXGz1wrP4+73NgH6yDgdUp1nV/8Pqc0Nnqkw+OW2ppOd6/Gaq80ddRIKGyXYMgubmds1XF/0GEEXoeiWaM0UyYMd1VEUQiF7NJY75HW9mqx2SN9HdyrRZY2N4p3TaRqYU1fT4wCgYxSyKjVuzrSrtOvpkNWeuqkxhmQZm/k2LBmk4Yqr7T6qtVkjDkLV40roJQlVBrHZ0BfwtE+h/EambWi2Js65zTCJplKdVjEYxcbgvdtse5StrBIqDbcGaei2cTut6lkXaEqTVwtEUuRPSgSjp4ex+j/f7ziXEmXza+IFEb6fvK56hrSkxKMGzdOnn766bTPQwghpGeM1/S+7bX5eeJ0VGV8fDDkkze/n1qSn81KaOEgZc8GG2ygAsiRcveiiy6S//znP2kfu+2226r/SLs7/+zzUu6rKxvArGxkQrOncwbd6QirVLTxGj8G70i/C0UDg3qnOyShYPrejxtsEHEDWtbc/Y1scF2L+PVRewLq3D5p82V+Q9WxDfRJsM2Vt6B8KB5mHH5zASaRH65OX9nQFQ1cOxtttJGhbNTU1FDZIIQQkhqmxc0IxnCQikq5+8gjjxgVzpMtHo9Hjj/++Jhjd9hhBxWAPm3aNAmHrbkbwNqRCKujTWD5IInp6OhQyQd++eUXo629vb2ofSKEEFL6MEtVZlDhID3ST//hhx9WigUsImbOO+88FSsCc+msWbOkpzCgJvkgu86dWwYwZ33yOBXNmfzGaw9aq4qhkF9dXWccT21trbomoHgSQgghJH9Q4SA9Fgwsb7jhBjXIvOmmm7r4aO6xxx5qH1g/KjFbEdypSgotQ5equP3TdafCd4nv9fDDDzfa/u///k/a2tqobBBCCEkPZqnKCCocpMeDQeb555+v3K1+++032XnnnWO2z549WwYNGqT2+/LLL63pg5Q2qawcDkf+XdBsFlg38P0ec8wx6rs08+6778qLL75IZYMQQkj6hLXslx4IFQ5CTKy33nrywQcfqMHpRx99JAMGDIjZjoxW++23X5cq59kEkSO7U3fYMqz0nSpeY2jvpm6tG8hMlQt2k/LhiGbU6s6tqttz5kH5ePXVV1WsxuOPPx5TQRzf46677prz+QkhhPQwaOHICCochCRhzJgxsmLFCgkEAvKPf/zDaEcRQgxe58yZU7S+1VRbUFm9ENTFpgG2miVLlijLxf777x/TjjourCBOCCGEFAYqHIR0g9PplFtuuUVlt0JFc53tt99eBaCvXLkyZn9ve+JsVN2Rah7f4czNbamnZapCPMamm24qQ4YMiWl/5ZVXlFWjb9++ResbIYSQSiBb64YmPREqHISkCZQLr9crDz74oNHm8/lUNerx48d3cbMqVYoVLJ6NW1Wm7lTBYFAFgDc0NMhPP/1ktJ9yyikqOQDc4QghhJCcoUtVRlDhICRDTjzxRDWwPfjgg402FIr7ZfwkCbW0SaWSa3rceDS36aab4/1XC4fl2GOPFZfLJS+//LLRvs0226i6Gvfccw+DwgkhhOQPBo1nBBUOQrIAtTqef/55Wbt2bUz7orOuE893kSJyrW3VRmC4uejf3AOvMV57m6tjFhBsd0soYJewzynhoF0CHa5I9fFQ1wHzoD4tsk6vVlmv71qpcQWkwe2TXlVetQzu3ayWRrdPLdWOoLgdIWny18QsP60aIGu8NdIecMvva/qoQHUEj/+6ZICs6ahVy++L+svqtjr1HqC9vVpam2rEE13s9sgNNNhcJeKzxwSMm1lwfLTuiSf21oMq745o2y/nTYypzxF2RdzJfpk4scv5wgG/LHzkLvlp8vny2GOPGe2or4H4my+++ELV1yCEEEJI8XAW8b0JKXt69+6tXKmuuuoqufrqq1Xbihvuk7vuuktOO+20pMf5fuwlwQFdXYx8y2tFqtOL13DZI/tVORIP7vtWeySsZTer3+KNKD/xLJo/QCRsE0evWGuHf011TBDKL+MvS3ruBWecn7B93oXndrvP5PUGydlnn62CvpMBV6qNN9446XZCCCEkZ7RwZMnmuB4ILRyE5AEoHJ988omxfvrpp8ukSZOkFFne1iDlht/vV8rd0UcfnVDZQGV41FCB8kdlgxBCiOUwhiMjqHAQkidQkXzx4sXG+uTJk+WKK65I/wRe088xmN+f5kpPXff7tNQnbG9Z0/2xVgK3NWQHa25u7rLtwAMPVApIU1OTqqFCCCGEFATGcFSmwgE3CQTp9u/fXxobG2WXXXaRt99+u9jdIiSGddddNyau49prr5U77rgj5/OGA2XzU82ZF154QcVdIMgbizmFLX7/SEOMoH1YM2bMmMEUt4QQQkiJUzajGKS6xCDjrbfeks8++0xGjhyp2pYtW1bsrhESA1x/MOOu87e//U3efffdLvs5V7qyfg+vL/Gxq9KwZOTDrSq0JrtaI6l48cUXlYJxyCGHqJoniQox4vcOpQNB+4QQQkjRoEtV5Skcq1atkp9//lkuvvhi+cMf/qB8tG+44Qbp6OiQb775ptjdIyRhTIHZvWrs2LGyaNGi9NypzESzXOWDFR2JXabAqrbObatbOpWWlubODE9tqxJne3KuiCg/7hXOnKqBH3TQQV22DR06VMnu66+/lo8++oiKBiGEkNJA1fDLRuGQHklZKBz9+vVTVYMfeeQRlVMflo67775bFVwbPXp00uNQlK2lpSVmIaSQ7lUYJOsMGzZMBT+TCEhZi99wfDVw1DSBuxSWhQsXyqxZs2SrrbYqWj8JIYSQLtDCUXlpcTH7+cYbbyhXC1QQttvtaqDy2muvSZ8+fZIeN2XKFCNVKSHFAG5Ad955p5xxxhlqHcHPoVBISgG4Va1T32rZ+VGVHQoDFH0EfCP2Ar/j5557rkv9EnDyySfLvffeywJ9hBBCSIVRVAsHXKT0wNBkyw8//KBmOuEHDyXjvffek08//VQpH8hQs3Tp0qTnv+SSS9RAR18w+CGk0CBFLtK56qAaNq7pbt2pisgak1tVNrz66qvq97rJJpvIdtttJ3vttZcceeSRct9993VRNpDdC8oItlHZIIQQUhaEw9kvPRCbFjPyKSwYZKQq4AVGjBihlIw///nPaqCCDFU6iOXArCgUl3TATCt866F8mM9DSCHYfPPNlQKtM2LKzRJaJ9RV4Ygv/GfXxOaIFvmrjRQLROXxvg0d4nYGjcJ/TntYmrw1MrC2Tdb6amRATbsq/KenxA2F7WoJhjvfDxaORU291Wt/MBIfoYVtqkI6qpyrdeO/TWxhmyr8JzDS1AdVjAliOIJ9guJe6RRfP58sOn+yhNs7UsoCblRwkdxzzz2zlCYhhJBKpZTHa3rf9h5wsjjtmSdQCYb98sbK+0vys1WsS9WAAQPU0h0IDgdwpTKD9XAP1RRJ+fHdd9+p611Xsn+95HwZeuskcbiyzxjV7KmWgfVtJVEE0L9qpfx++ZQuGbswWYDA7913310pXbRiEEIIKXuyjcfQGMNRsuy0004qVuOEE05Q1ZtramqUr/f8+fPlgAMOKHb3CEkLDLSRcW3nnXc2gskX/eMaeeyxx2JcrsoR/B5PveVCY33rrbeWp556SjbbbDMqGIQQQkgPp/ScxxOAvPsIEG9ra1MuGPAJf//991WBMNTjIKSc+PDDD1UVcp1jjjlGuQd2515YqkCBOvXUU431hx9+WObOnUtrBiGEkMqFlcbLJ4aj0JSyTyDpmWlht91225i2hx56SI4//viyGKgjpiq+yjesjsOHDy9anwghhJQ/pTxe0/u2V58Tso7heHPtwyX52aSnWzgIqURGjRql6sqsv/76RtuJJ56oYpPGjx8vs2fPllIBN0a4SJ1//vmqQB9ukmZlo76+XtXHobJBCCGkR6Blad3Qesw8fwxUOAgpIrW1tcoqcMMNN3Qpfod0sbB0zJw5s+D9guHz2WefValt0QcEfyOt7dSpU+XFF1+U1tbO+h0XXnihWmcVcEIIIT0GFv7LCCochBQZDOgvuugi+eSTT5Q7VTzI8oQMT1ZnZENBQtTPgOIAK8u4ceNU6upkwKqBzFv//Oc/Le0XIYQQQsobKhyElAiwaCDgGtYFDP6vv/56Y9s777yjFAHUrrACvOf//d//yf77799Fsdl0001lxowZsmLFCvH5fGpfLLBqIDCcEEII6XGw8F9GUOEgpASBheGSSy5Rg3oEp+kgNTQsIkcccYTK2pYvLrvsMpUJTgcWFSgYUCxQrPDAAw9UNUTc7swD5AghhJCKgy5VGUGFg5ASBm5LTU1NytXJzDPPPCMNDQ1K+UB66Fy4++67ZcqUzoJ9H3zwgbz99ttpFeUkhBBCeiJaOJz10hOhwkFIGbDvvvsqawMUgXgOOeQQpXiYlYZ0wPkQrH766acbbYsXL1Z1NQghhBBC8gUVDkLKCLg6QVHweDwyYcKEmG2XXnqpSrH7+++/d3seHI+YDbht6Xz55Zey7rrrWtJvQgghpKKgS1VGUOEgpAyprq6We++9t4vVA8rGcccdp9qT8eOPP6p0vK+88orRdvPNN8vIkSMt7zchhBBSEbDSeEZQ4SCkAqweZqvGu+++K88991xCq8af/vQn2WyzzWLan3/+eZk4cWJB+koIIYRUBMpaEc5i0aQnQoWDkApg2LBh8uijjxrrqKGBKubg119/lXXWWUdZNd544w1jn8mTJ6vq4AcffLCKASGEEEIIsQKnJWclhBSco48+Wp588kl56aWXjAxXiUB2q99++0369OlT4B4SQgghlYEW1kSzZW6t0GjhIISUM7BSoHAgCgQmYqeddpJVq1ZJS0sLlQ1CCCEkF7JypwpHliz497//LcOHD1cxnDvuuKN8+umnKfdH+ny4UGP/rbfeOiZusxhQ4SCkgujbt68EAgEZO3as0XbyySertg8//FD69etX1P4RQgghFWPhyHLJlKeeekrFWl555ZXy+eefqyQv++yzjyrQmwg874866ij1/P/iiy9U+nws33zzjRQLm9aDbDuY2UXV5ubmZmlsbCx2dwixDFQonzVrluy9995SU1NT7O4QQgghFTFe0/u2u+1QcdpcGR8f1AIyS/tfRp8NFo3tt99ebr/9drUeDodV7ObZZ58tF198cZf9x48fr+I4dRdrMGbMGNlmm23krrvukmLQo2I4dN0KFwshlQ6sHLBsYCGEEELKBX2cVspz4kHNl5V7VFACCceiVVVVaonH7/fLZ599FlM3y263qwnFjz76KOF7oD0++yQsIshKWSycPW3WF0ArJIQQQgghpT1ugzWhlHC73TJo0CB5f1n2MRH19fVdxqJwl7rqqqu67IvYy1AopLJNmsH6Dz/8kPD8y5YtS7g/2otFj1I4UEV54cKFKktPOaQBhfaLCxJ9LjWTYqVAGVsL5Ws9lLG1UL7WQxlbSznKF5YNKBsYt5UaCMKeP3++sjzk8vlscePQRNaNSqJHKRwwQQ0dOlTKDdwgyuUmUa5QxtZC+VoPZWwtlK/1UMbWUm7yLTXLRrzSgaUQ9O/fX2WfXL58eUw71mFpSQTaM9m/EDBLFSGEEEIIISWI2+2W0aNHy5tvvmm0IWgc60h3nwi0m/cHM2fOTLp/IehRFg5CCCGEEELKiYkTJ8oJJ5wg2223neywww5yyy23qCxUJ510ktp+/PHHy5AhQ2TKlClq/R//+IdKHDN16lQ54IADVFHgOXPmyD333FO0z0CFo4SBPx+CiCrdr6+YUMbWQvlaD2VsLZSv9VDG1kL5lj/jx4+XlStXyqRJk1TgN9Lbvvbaa0Zg+O+//67CBnR23nlnefzxx+Xyyy+XSy+9VDbeeGOVoWqrrbYq2mfoUXU4CCGEEEIIIYWFMRyEEEIIIYQQy6DCQQghhBBCCLEMKhyEEEIIIYQQy6DCQQghhBBCCLEMKhyEEEIIIYQQy6DCUcEwAZm1UL6EEFJ8eC+2FsqX5AMqHBV8c7DZbMXuSkVC+RJCSPHhvdhaKF+ST1j4r8Joa2uTq6++WhYuXCgbbLCB/OlPf5I999yz2N2qGCjfwsj4tttuk99++01Gjx4t2267rfpP8gdlbC2Ur/XwXmwtlC/JNyz8V0GgzP3IkSNVRcn6+nppaWmRWbNmqVL3EydOLHb3yh7KtzAPOVRQHTZsmIRCIfF4PLJkyRK56aab5Oijjy529yoCythaKF/r4b3YWihfYgW0cFQQd911l/Tp00eVr6+qqpLVq1fLo48+Kuedd540Nzer2QqSPZSv9dx4440yePBgeeWVV6Smpka+++47eeihh+TYY4+Vjo4OmTBhQrG7WPZQxtZC+VoP78XWQvkSK6DCUUGsWLFCGhsb1Q0C9OvXT/7xj3+otpNPPlmGDBkip556arG7WbZQvtazaNEiNVjDQA1sscUWctlll0ltba2cfvrp0rdvXznssMOK3c2yhjK2FsrXengvthbKl1gCXKpIZfDII49oDQ0N2jfffNNl29VXX60NHjxY++6774rSt0qA8rWem2++Wdtwww213377LaZ95cqV2umnn67tsMMO2qJFi4rWv0qAMrYWytd6eC+2FsqXWAGzVJUx8A3+4IMPjPWddtpJxowZI//85z/l119/VW16iM5f/vIXcblcRjvJHMrXehBYC1P+fffdJytXrjTa+/fvL4cffrgsWLBAli5dWtQ+ljuUcX4Jh8Mx/3fYYQfKN8/wWVdYKF9iBVQ4yhQEcY0dO1YeeOAB+eWXX1TbRhttJOPGjVM+wzfffLP89NNPRjo7bOvdu7e0trYWueflE/iJ4LijjjpK/va3v4nf71cyxICB8s0P8Gd/5JFH1PLSSy+ptt13310OPvhg5S/84IMPqmBbnVGjRikZNzU1FbHX5YXX65WZM2fKCy+8IJ988okh4/33318ee+wxyjhH8HvfZZdd5NVXXxW7PfI43XXXXeXAAw+kfPMEn3XWwmcdKRiW2E2IpbS3t2tbbLGFdsghh2jNzc1aOByO2X7LLbcos/1+++2nvf/++9rChQu1e+65R+vTp4/2+eefF63f5UJLS4u26aabanvttZd26qmnav3799eOO+64GJeJHXfckfLNUcYbb7yxtu2222rDhg3T+vbtqx144IHa0qVL1faLL75Y22STTbQzzzxT+/rrr9X+d999tzZgwACa8tME9wbIF9dqY2OjNnr0aO1f//qXsf38889X1zllnD033XSTZrPZtLq6Ou3FF1+M2XbeeefxGs4RPuushc86UkiocJQhTzzxhLb33nsbN1/4W+LGcM0112irV69Wbc8//7x22GGHqYfh5ptvrg0aNEh78skni9zz0icYDGqHHnqo9pe//MVoe+CBB7Qjjjgi5mH3v//9T+1H+WZOKBTSjjzySG3//ffX/H6/tnjxYvUwGz58uDZq1Cjtp59+UvtNmzZN22OPPTSHw6EGznjIUcbpD9Qgs3HjxmkrVqzQvvjiC+2cc87RDjroIG3NmjXGfpDxnnvuSRlnCe4D48eP16644grN6XRqM2bMiNl+55138hrOAT7rrIPPOlJomKWqDEExKSiLMHHCDPr111/LgAEDZO7cufLss8/K9OnTlVsK3CawDfvV1dXJJptswsqhabigrFq1KiYDx/Lly+XHH3+UAw44QGWeOffcc+WQQw5RbhNfffUV5ZshcD1BakW4osAXeN1111XLnDlzlO8w0oci5zvkPH78eGXWB+uss45svfXWxrVPUqe1hNvDHXfcoWIHcH/AdY1rGNczYgwAZHzMMceoewegjDNj+PDhypcdNTaWLVum/NsRa4Br1uFwqKxUhx56qLoPA8o3M/issw4+60ihocJRhiBVHQZt33zzjfz+++/K/33o0KFqGyqBXnDBBfLxxx+rwRwq3JrhzSE1kCsecvB7h98wBr6XX365uilvueWWKt7gjDPOkNdee02lBqR8MwcPKjzo8GDTCQQCKvXiO++8o4KazzrrLLn//vsNZYSkD4rNQaHYe++9ldKhs/322ytZYqCh74dB8cCBA9W+JHOQ4hbB4iiOdsstt6h1KM1o02NmKN/s4bPOOvisIwWn4DYVkjPz58/XamtrtZ133lnbd999tY6ODuWmovtk1tTUaM8++2yxu1m2vPrqq8one/fdd9d69eqlTZ48OWY7ZA9XFJI9Tz31lDZw4EDtwQcfNNp8Pp/hNgHf919++aWLzzZJjwULFmgej0e91mUIFwrI9ZNPPjH2+/bbb4vWx3IGstSBy48u00suuURzu93Kher1119XbbyGs4fPOmvhs44UEmapKnF8Pp/KEPHll19KMBg0zPhXXHGF/Pzzz6oCqNvtVrMVmFXD7OXmm2+uzM4kM/lilh3su+++snDhQnnqqafkD3/4gzE7idSMyJgycuRI5RpB0gPX5GeffaasF/rsOmYnYaa/8847lZwBrmOAaxeZU5xOJ2fRMpQxZinxev3115fq6mp1T4AMYVWCG9vatWuN6xyZwLbZZhv5/vvvDfcIkt41DMuQGRT7u/3225WVA5mp/v73v6v7CGbkeQ1nf5/gs85a+fJZRwoJXapKGPzgcUNA+lCkoMMAbOrUqbLXXnvJX//6V1UNFA+4M888U2644QZ1I37zzTeVu4ruo00yly/yj8PvHTdl+GXDZI82+LQivSjy6MOHlaSf0rK9vV3WrFmjZDh58mSV0vLCCy9UJvwbb7xRXbNIyQg3n8WLF0uvXr04UMtSxqhofc0118g+++yjKl4DKBS4vjFQxr3hueeekxNOOEH+85//qEEbyVy+GJzBvWe//fZTVZiR6vbJJ5+Ugw46SMUUJFJMSGYyRnzGKaecwmedxdcwn3WkIBTUnkLSBu4Q2223nXbssceqap/z5s3TDj/8cFX989prr9WamppUlg6kBUTb+uuvr40cOVLr16+fclch2ckXZmXIF+n/wFVXXaVcf5A28JhjjlFZZp5++ulid78sQAYqyA2Zkn788Ufl5nPaaadpI0aMUClZ165dq+Q+ceJEZbrfeuutlWkfJn5ew7nJGJWuIWOs68AVZcyYMdqECRM0u92uPfroo4bLD91+spPv8uXLtQ8++EBlV3vllVdijg0EAuo/ZZvbfQJZ1vC847POmmsY92D9WYeUzXzWEaugwlGiIE0o8ovrA18we/ZsNRhD+tDp06cb7djn3nvv1Z555hltzpw5qo0PuezliwedLl/cnBFTAP9hDIzfeOMN1U75dg8GCkijiLSKZm644QaVW//SSy/VvF6v8stG2laso07Eu+++q/ajjHOT8VZbbaVddtllRvpQ7Aufd6S3xL0CUNnIXr5bbrmlumaBOdUwyb+MW1tbVRufddbcI3APXrJkCZ91xFLoUlWiwCcYvtVm/1S4mcDvHYripEmTlFsKskfAJDphwoSY4+mOkh/5whf+uOOOU6lDIVPdH550D2IF4GuNeAwAsz3iCi666CK1DSlbUfX6T3/6k4olwELyK2Okx4UrBWSMdmSgQcpLrDOtZX6vYeynVxsn+ZMx4rx0GfNZZ4189XsEn3XESmzQOix9B5IV8KfETRY3gilTpqibBAJtd911V7n33ntl1KhRylf46quvLnZXK1a+UD7g58qc+dmDugRQ7L799lslQwTpI9UlQH0C+GajbgEpjIwx6EAKVyob6cNr2Hoo4+LKF/U3Pvzww2J3k1Q4nI4pURAIN3HiRJVRYqONNlIDYARvYTAMULNg5cqVxe5mRcsXAYmAg7LMwYwaQKAnZtEwewbwkNOzJKENip7f7y9qX3uCjDHAAFA2gD6DSZLDa9h6KOPSkC/uD5QvsRoqHCUKbggnnniivPXWW/LAAw+oFJYzZsxQ25DJB1mUNtxwQ7VOI1XmUL7WoruWwOXvX//6l8ybN0/22GMPlQ0MRboAFDpUrcWDjjK2VsYYXFDGmcFr2HooY2uhfEkpQZeqEkB32UnHdQcDB6SyxOz8yy+/LH/84x8L1s9yhfItLpDpe++9J2effbZ60O28887S0NAgDz/8sMr/DpM+yQ3K2FooX+uhjK2F8iXFhgpHEcFMuu5PibzX3YHiRyguhdl4BCuOHz++IP0sVyjfwsq6u5oDmEFDTMzvv/+uZteOOOIIVSuCMTLpQRlbC+VrPZSxtVC+pJShwlEkMMOAjDGo8glzJn7wmFXvDlSxHTFihAp2ZuBncihf60ERqf/+978qswlIlaUn/mFmtjoByjgxlLG1UL7WQxlbC+VLygXGcBQBVLbefvvtVSAcBsJbbLGFXHbZZXL44YfL/PnzEwZ96QFeJ510khoM6/AG0RXKtzAPObiboVr1ddddp9rwkNPlaQZtkKPH4zHazA84yjgxlLG1UL7WQxlbC+VLygkqHEXg1VdfVTcFBCtfccUVMn36dJXyDxmTzjjjDFm8eLFxM8B+H3/8scqVDcw3Et4gEkP5WguUs3POOUf5/8If+LHHHlMm+mQPO7R99NFH6rvQFTvWK0gNZWwtlK/1UMbWQvmScoNXWxFoaWlRcQVIzQrw4992223VzeCzzz6TSy+9NGbA++abb6obC/Jo8wbRPZSvtWCGDL7CsAZdcMEFcuSRR8oTTzxh1IRJ9LD74YcfZNq0aTJ79uwi9bq8oIythfK1HsrYWihfUnZYW8icJOKrr77SnE6n9p///Mdo8/v96v9bb72l1dTUaM8995yxLRQKaccdd5z28MMPF6W/5Qblax2QFVi9erXW3t6uXi9atEi78sortc0220z91wkGg1o4HDbWzz77bO3qq6+OaSNdoYythfK1HsrYWihfUo44i63w9EQ222wz5doDV58BAwaoOANki4CLD2IPEHPw448/GvtjpgL7oBI26R7K1zp0C1Dfvn3Vf8ywIcf7aaedptaRXhGWoyuvvFIVm1q9erVce+216rjDDjtMNt98c7qqdQNlbC2Ur/VQxtZC+ZJyhAqHxbS1tcmkSZPUf/zYzzvvPNl4443llFNOkQULFsj111+vbhb777+/ugGgEjAGycFgMCbN3THHHFPsj1KSUL7FkfF6662niifqGU4GDx5sPOyeffZZeffdd+Xtt9+Whx56yHg47r777kX+JKULZWwtlK/1UMbWQvmSsqfYJpZKpq2tTdtggw203XffXTvmmGO0LbfcUltvvfW06dOna16vV/v000+1ww47TBsxYoQ2depUbdasWdptt92mXH7eeeedYne/5KF8iyPj4cOHa9OmTdNWrFgRY94HS5YsUfvabDbt+eefV2003aeGMrYWytd6KGNroXxJJUCFw0ImT56s7bbbbjFtf/vb37QttthCu+qqqzSfz6fNmzdPu/baa7U+ffpom2yyifK/fPrpp4vW53KC8i2ejLfaaitt0qRJ2qpVq2K23X333eoh99///td4yPFBlxrK2FooX+uhjK2F8iWVAFPyWAjqQCBLBP7DdQegkvWBBx6oskk8+eSTsuGGG6oaEb/88osyf7711lsybtw4ZR5lTcbUUL7Fk/EBBxygTPYvvfSSaoMsUf9k5syZyn/40EMPZTGpNKGMrYXytR7K2FooX1IRFFvjqTTMswiYWd9www2VORTAzUfn2GOPVa4+HR0dRelnuUL5lpaMsc0sY307Z9RSQxlbC+VrPZSxtVC+pNKgwpFHWltbtYsvvlj7+OOP1brH49GGDh2qHXroocY+aAO4cfTt21d79NFHi9bfcoPyLW0Z8+GWHpSxtVC+1kMZWwvlSyoRulTlCShv5557rtx4441y//33yyeffCLV1dVyzz33qArXehYktIH29naVUUIvTkdSQ/mWvoxhsqfZPjWUsbVQvtZDGVsL5UsqFSoceQI/8NraWpWS9ZtvvlH+lV988YXst99+8u9//1vFD+yxxx5q27x58+T111+XpUuXyqBBg4rd9bKA8rUeyth6KGNroXythzK2FsqXVCo2mDmK3YlyByLETQKByitXrlSF5y6++GLZcsst5dZbb5WXX35ZBS+fddZZsmLFCnE6nRIIBGTq1Kly5JFHFrv7JQ/laz2UsfVQxtZC+VoPZWwtlC+pZFj4Lw/o5svGxka5++67ZdasWaqy52233SZ77723fPnll/LDDz/I559/rorwoFAPzJ+o9skMEt1D+VoPZWw9lLG1UL7WQxlbC+VLKhkqHHkCP/b1119ffD6fWj/qqKNkxowZ8swzz6jKnvCzBDCFmuHNIT0oX+uhjK2HMrYWytd6KGNroXxJpcIYjjyBHzvMny6XS5qamuTaa69VN4mJEyeq3NnXX3+9fPbZZ8XuZtlC+VoPZWw9lLG1UL7WQxlbC+VLKhVaOPJIMBhUPpX777+/zJ07VxWeQxG6xx9/XG666Sa1jWQP5Ws9lLH1UMbWQvlaD2VsLZQvqUiKnZe30rj99tu14cOHa88//3xM+5IlS4rWp0qC8rUeyth6KGNroXythzK2FsqXVBrMUpVn4F+J7BLDhw+PyTqh/ye5QflaD2VsPZSxtVC+1kMZWwvlSyoNKhyEEEIIIYQQy2DQOCGEEEIIIcQyqHAQQgghhBBCLIMKByGEEEIIIcQyqHAQQgghhBBCLIMKByGEEEIIIcQyqHAQQgghhBBCLIMKByGEEEIIIcQyqHAQQgghhBBCLIMKByGEEEIIIcQyqHAQQkiFs3r1ahk4cKAsWLAgp/MceeSRMnXq1Lz1ixBCSM+ACgchhOQRTdOkd+/ectttt3XZduaZZ8oOO+wgr7/+uthstpTL//t//0/Gjh2rXl9//fVd3mPHHXdU26655ppu+3TdddfJwQcfLMOHD8/ps11++eXqXM3NzTmdhxBCSM+CCgchhOSRX375RQ3It9tuuy7bPvvsMxk9erTstttusnTpUmPp16+fXHHFFTFte+21l3zxxRey/vrry9dffx1znocffliWLFmiXm+77bYp+9PR0SH333+/nHzyyTl/tq222ko23HBDefTRR3M+FyGEkJ4DFQ5CCMkjUCqcTqdss802Me2BQEDmzp2rFI6amhoZNGiQWkKhkHJ52nXXXY02LFBcWltb5YQTTohRONB2ySWXyIknnqjWcb5UvPLKK1JVVSVjxoyJaYd7FSwkzz33nFKA0Kftt99efv/9d3nvvffU/rW1tUrxaWpqMo478MAD5cknn8yTtAghhPQEqHAQQkieFY4ttthCDeDNfPvtt+L1ersoCLBiJLJU4DwY8B911FHy448/it/vV+2TJ09W1pMBAwYoxWTw4MEp+wPlIZFS8tVXX6n/d955p3LZ+vDDD2X58uVy7LHHyg033CC33367vP3222q/Bx980DgOLmGffvqp+Hy+jGVDCCGkZ+IsdgcIIaSSgKKQzJ0Klga4JZn5/PPPZdiwYcqtKr79D3/4g2y66aZSXV0tP/zwg1JioCBgG2IpunOnAr/99pusu+66Xdq//PJL6du3rzz11FPGeyNm5P3331fKEZQdAKvHsmXLjONwLig/aIO7FyGEENIdtHAQQkgegTKQTOHYeuutxeVyddk/keKgt8PtCYoH3KrOPfdcOeOMM2TjjTc24kG6w+PxKIUlHlguDj300BhFB+5U48ePN5QNvW2DDTYw1nXLDWJDCCGEkHSgwkEIIXli4cKFKt5hyy237LLtjTfekJ133rlLe3cKB0A8yC233CJz5sxRweVwzYLFw3zcH//4R/nkk0/UawSIT58+Xb3u37+/rF27NqGFA5mu4pUQc6wH3gfuXCNHjjTa1qxZo/7DpYsQQghJByochBCSJxAYDtra2mLaZ86cKT///LOyHphZtWqVUlLiFY5ff/1VKS56+6hRo5SyMWXKFGloaFCKQTAYjLFwQBFB7MW0adPEbrcra4h+7HfffRdz/paWFhU0jm068+fPV9m1zG2wqiAFLywzOt98840MHTpUKTKEEEJIOlDhIISQPAHXo80220xlkXrzzTeVYnDPPffI0UcfrbJKxVs4YMVIFjDudruNeA9kqlq5cqWRmQrHwcKA2A+dfffdV7k/vfzyy3LHHXcY7fvss4+KyTBbOdAvh8MRE0+ix3SY4zLQhjS49fX1MUHof/7zn/MiL0IIIT0DKhyEEJInEG+BAT8G6bBmIN3s3XffrbJA3XfffV32R4aqddZZp0tQNxQKKAN6vAf+w6KA8+vbzZYIMHv2bOXu1KtXr5g4EVgnoNA8/fTTMQqHHoxubos/J9rM7lRwsXr++efllFNOyUFKhBBCeho2DfZyQgghZcvixYtl//33V8rAX/7yF3nkkUdirBdQgi644ALlDgV3q2xBhqz//e9/qgo6IYQQki60cBBCSBmDLFTjxo2T2267Tbl0wZ0LtTrMHHDAAXLqqacqxSQXYDnB+xBCCCGZQAsHIYQQQgghxDJo4SCEEEIIIYRYBhUOQgghhBBCiGVQ4SCEEEIIIYRYBhUOQgghhBBCiGVQ4SCEEEIIIYRYBhUOQgghhBBCiGVQ4SCEEEIIIYRYBhUOQgghhBBCiGVQ4SCEEEIIIYRYBhUOQgghhBBCiGVQ4SCEEEIIIYRYBhUOQgghhBBCiFjF/wfRgSnUnufyZgAAAABJRU5ErkJggg==",
"text/plain": [
"
"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# Create a contour plot of the error\n",
"# Plotting\n",
@@ -2343,21 +2312,10 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": null,
"id": "de8f93fc-8254-4181-817c-dae48b39456b",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "np.float64(0.888520413692259)"
- ]
- },
- "execution_count": 32,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# L inf\n",
"L_inf = np.nanmax(L1_Magnitude * error_filter)\n",
@@ -2401,7 +2359,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.12.7"
+ "version": "3.12.11"
}
},
"nbformat": 4,
diff --git a/examples/PacWave_resource_characterization_example.ipynb b/examples/PacWave_resource_characterization_example.ipynb
index f0484365d..e702d4d19 100644
--- a/examples/PacWave_resource_characterization_example.ipynb
+++ b/examples/PacWave_resource_characterization_example.ipynb
@@ -6,7 +6,7 @@
"source": [
"# PacWave Resource Assessment\n",
"\n",
- "This example notebook provides an example using MHKiT to perform a resource assessment similar to Dunkel et. al at the PACWAVE site following the IEC 62600-101 where applicable. PacWave is an open ocean, grid-connected, full-scale test facility consisting of two sites (PacWave-North & PacWave-South) for wave energy conversion technology testing located just a few miles from the deep-water port of Newport, Oregon. This example notebook performs a resource analysis using omni-directional wave data from a nearby NDBC buoy and replicates plots created by Dunkel et. al and prescribed by IEC TS 62600-101 using these data.\n",
+ "This example notebook provides an example using MHKiT to perform a resource assessment similar to Dunkel et. al at the PACWAVE site following the IEC 62600-101 Ed. 2.0 en 2024 where applicable. PacWave is an open ocean, grid-connected, full-scale test facility consisting of two sites (PacWave-North & PacWave-South) for wave energy conversion technology testing located just a few miles from the deep-water port of Newport, Oregon. This example notebook performs a resource analysis using omni-directional wave data from a nearby NDBC buoy and replicates plots created by Dunkel et. al and prescribed by IEC TS 62600-101 Ed. 2.0 en 2024 using these data.\n",
"\n",
"Note: this example notebook requires the Python package folium which is not a requirement of MHKiT and may need to be pip installed seperately.\n",
"\n",
@@ -1295,7 +1295,7 @@
"source": [
"## Monthly Cumulative Distribution\n",
"\n",
- "A cumulative distribution of the energy flux, as described in the IEC TS 62600-101 is created using MHKiT as shown below. The summer months have a lower maximum energy flux and are found left of the black data line representing the cumulative distribution of all collected data. April and October most closely follow the overall energy flux distribution while the winter months show less variation than the summer months in their distribution.\n"
+ "A cumulative distribution of the energy flux, as described in the IEC TS 62600-101 Ed. 2.0 en 2024 is created using MHKiT as shown below. The summer months have a lower maximum energy flux and are found left of the black data line representing the cumulative distribution of all collected data. April and October most closely follow the overall energy flux distribution while the winter months show less variation than the summer months in their distribution.\n"
]
},
{
diff --git a/examples/acoustics_example.ipynb b/examples/acoustics_example.ipynb
index fe73e44c7..0b53d6670 100644
--- a/examples/acoustics_example.ipynb
+++ b/examples/acoustics_example.ipynb
@@ -6,12 +6,12 @@
"source": [
"# Analyzing Passive Acoustic Data with MHKiT\n",
"\n",
- "The following example illustrates how to read and analyze some basic parameters for passive acoustics data. Functionality to analyze .wav files recorded using hydrophones has been integrated into MHKiT to support analysis based on the IEC-TS 62600-40 standard.\n",
+ "The following example illustrates how to read and analyze passive acoustics data collected by a hydrophone. This functionality has been primarily integrated into MHKiT to support analysis based on the IEC-TS 62600-40 technical standard for marine energy devices.\n",
"\n",
"The standard workflow for passive acoustics analysis is as follows:\n",
"\n",
- "1. Import .wav file\n",
- "2. Calibrate data\n",
+ "1. Import a .wav file\n",
+ "2. Calibrate pressure sensitivity\n",
"3. Calculate spectral density\n",
"4. Calculate other parameters\n",
"5. Create plots\n",
@@ -36,9 +36,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Read in Hydrophone Measurements\n",
+ "### Read Hydrophone Data\n",
"\n",
- "All hydrophone .wav files can be read in MHKiT using a base function called `read_hydrophone` from the acoustics.io submodule. Because the sampling frequency is so fast, measurements are stored in the lowest memory format possible and need to be scaled and transformed to return the measurements in units of voltage or pressure.\n",
+ "Hydrophones typically output a .wav file, which can be read in MHKiT using a base function called `read_hydrophone` from the acoustics.io submodule. Because a hydrophone's sampling frequency is so fast, measurements are stored in the lowest memory format possible and need to be scaled and transformed to return the measurements in physical units of voltage or pressure.\n",
"\n",
"The `read_hydrophone` function scales and transforms raw measurements given a few input parameters. Most parameters needed to convert the raw data are stored in the native .wav format header blocks, but two, the peak voltage (\"peak_voltage\") of the sensor's analog-to-digital converter (ADC) and file \"start_time\" (usually stored in the filename) are required. \n",
"\n",
@@ -87,11 +87,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "\"Smart\" hydrophones are those where the hydrophone element, pre-amplifier board, ADC, motherboard and memory card are sold in a single package. Companies that sell these often store metadata in the .wav file header, and MHKiT has a couple of wrapper functions for these hydrophones.\n",
+ "\"Smart\" hydrophones are those where the hydrophone element, pre-amplifier board, analog-to-digital converter (ADC), motherboard and memory card are sold in a single package. Companies that sell these often store metadata in the .wav file header.\n",
"\n",
- "OceanSonics icListen and OceanInstruments Soundtrap are two common smart hydrophone models, with examples as follows.\n",
+ "MHKiT has wrapper functions for OceanSonics icListen and OceanInstruments Soundtrap hydrophones, with examples as follows.\n",
"\n",
- "For icListen datafiles, only the filename is necessary to provide to return file contents in units of pressure. The stored sensitivity calibration value can be overridden by setting the \"sensitivity\" input, and to return measurements in units of voltage, set `sensitivity` to None and `use_metadata` to False."
+ "For icListen datafiles, only the filename is necessary to provide to return file contents in units of pressure. The stored sensitivity calibration value can be overridden by setting the \"sensitivity\" input to a predetermined value. If sensitivity calibration data is on hand, return measurements in units of voltage by setting `sensitivity` to None and `use_metadata` to False."
]
},
{
@@ -100,7 +100,9 @@
"metadata": {},
"outputs": [],
"source": [
+ "# Pressure output\n",
"P = acoustics.io.read_iclisten(\"data/acoustics/RBW_6661_20240601_053114.wav\")\n",
+ "# Voltage output\n",
"V = acoustics.io.read_iclisten(\n",
" \"data/acoustics/RBW_6661_20240601_053114.wav\", \n",
" sensitivity=None, \n",
@@ -112,7 +114,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "For Ocean Instruments Soundtrap datafiles, the filename and sensitivity should be provided to return the measurements in units of pressure. If the hydrophone has been calibrated, set the sensitivity to None to return the measurements in units of voltage."
+ "For Ocean Instruments Soundtrap datafiles, the filename and sensitivity should be provided to return the measurements in units of pressure. Again, if the hydrophone has been calibrated, set the sensitivity to None to return the measurements in units of voltage."
]
},
{
@@ -131,7 +133,7 @@
"source": [
"### Mean Square Sound Pressure Spectral Density\n",
"\n",
- "After the .wav file is read in, either in units of pressure or voltage, we calculate the mean square sound pressure spectral density (SPSD) of the timeseries using `sound_pressure_spectral_density`. This splits the timeseries into windows and uses fast Fourier transforms to convert the raw measurements into the frequency domain, with units of $Pa^2/Hz$ or $V^2/Hz$, depending on the input. The function takes the original datafile, the hydrophone's sampling rate (\"fs\"), which is stored as an attribute of the measurement timeseries, and a window size (\"bin_length\") in seconds as input.\n",
+ "After the .wav file is read, either in units of pressure or voltage, we calculate the mean square sound pressure spectral density (SPSD) of the time-series using `sound_pressure_spectral_density`. This splits the timeseries into windows and uses fast Fourier transforms to convert the raw measurements into the frequency domain, with units of $Pa^2/Hz$ or $V^2/Hz$, depending on the input. The function takes the original datafile, the hydrophone's sampling rate (\"fs\"), which is stored as an attribute of the measurement timeseries, and a window size (\"bin_length\") in seconds as input.\n",
"\n",
"The IEC-40 considers an acoustic sample to have a length of 1 second, so we'll set the bin length as such here."
]
@@ -143,7 +145,7 @@
"outputs": [],
"source": [
"# Create mean square spectral densities using 1 s bins.\n",
- "spsd = acoustics.sound_pressure_spectral_density(V, V.fs, bin_length=1)"
+ "spsd = acoustics.sound_pressure_spectral_density(V, fs=V.fs, bin_length=1)"
]
},
{
@@ -154,7 +156,7 @@
"\n",
"For conducting scientific-grade analysis, it is critical to use calibration curves to correct the SPSD calculations. Hydrophones should be calibrated (i.e., a sensitivity calibration curve should be generated for a hydrophone) every few years. The IEC-40 asks that a hydrophone be calibrated both before and after the test deployment.\n",
"\n",
- "A calibration curve consists of the hydrophone's sensitivity (in units of $dB$ rel $1$ $V^2/uPa^2$) vs frequency and should be applied to the spectral density we just calculated.\n",
+ "A calibration curve consists of the hydrophone's sensitivity (in units of $dB$ $rel$ $1$ $V^2/uPa^2$) vs frequency and should be applied to the spectral density we just calculated.\n",
"\n",
"The easiest way to apply a sensitivity calibration curve in MHKiT is to first copy the calibration data into a CSV file, where the left column contains the calibrated frequencies and the right column contains the sensitivity values. Here we use the function in the following codeblock to read in a CSV file created with the column headers \"Frequency\" and \"Analog Sensitivity\"."
]
@@ -217,9 +219,9 @@
"source": [
"### Mean Square Sound Pressure Spectral Density Level\n",
"\n",
- "We can use the function `sound_pressure_spectral_density_level` to calculate the mean square sound pressure spectral density levels (SPSDLs) from the calibrated SPSD. This function converts absolute pressure into relative pressure in log-space, the traditional means with which we measure sound, in units of decibels relative to 1 uPa ($dB$ rel $1$ $uPa$), the standard for underwater sound. \n",
+ "We can use the function `sound_pressure_spectral_density_level` to calculate the mean square sound pressure spectral density levels (SPSDLs) from the calibrated SPSD. This function converts absolute pressure into relative pressure in log-space, the traditional means with which we measure sound, in units of decibels relative to 1 uPa [dB rel 1 uPa], the standard for underwater sound. \n",
" \n",
- "Sidenote: Sound in air is measured in decibels relative to 20 uPa, the minimum sound pressure humans can hear. To convert between \"$dB$ rel $1$ $uPa$\" and \"$dB$ rel $20$ $uPa$\", one simply needs to subtract 26 dB from the \"$dB$ rel $1$ $uPa$\" value."
+ "Sidenote: Sound in air is measured in decibels relative to 20 uPa, the minimum sound pressure humans can hear. To convert between [dB rel 1 uPa] and [dB rel 20 uPa], one simply needs to subtract 26 dB from the [dB rel 1 uPa] value."
]
},
{
@@ -235,7 +237,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Now that the SPSDL is calculated, we can create spectrograms, or waterfall plots, using the `plot_spectrogram` function in the graphics submodule. While spectrograms aren't required by the IEC-40, they are useful to do quality control so we can avoid using contaminated soundbytes in further analysis (like the boat noise shown in this one).\n",
+ "Now that the SPSDL is calculated, we can create spectrograms, or waterfall plots, using the `plot_spectrogram` function in the graphics submodule. While spectrograms aren't required by the IEC-40, they are useful to do quality control so we can avoid using contaminated soundbytes in further analysis (i.e., we'd remove the boat noise shown here from further analysis of a marine energy device).\n",
"\n",
"To do this, we'll give the function the minimum and maximum frequencies to plot, as well as keyword arguments supplied to the matplotlib `pcolormesh` function. For these measurements, we're setting fmin = 10 Hz, the minimum specified by the IEC-40, and fmax = 48,000 Hz, the Nyquist frequency for these data. \n",
"\n",
@@ -268,7 +270,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHyCAYAAAD/ZVofAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Bm2XneCf6u/7xNn5WVWZVlu0x7g0YDaLgGAcKRlECRokBKxA4ozCiGErXShnZjhqGJ5QYZM9LOiNCMNBwJHAUpihSHFEkRBAESjUajG2iDaldd3mZW+szPu2v3j/fc81VL3NBw1QTIRZ4IBPqr78trzj33nOc87/M+r5EkScJ+22/7bb/tt/223/bbfntLM7/bF7Df9tt+22/7bb/tt/3257Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv+23P6Htg6T9tt/2237bb/ttv/1ntWeeeYaPfexjzM3NYRgGv/3bv/2W75Mk4Wd/9meZm5sjm83y5JNPcv78+bf8ZjQa8bf+1t9iYmKCfD7Pxz/+cVZXV7+Dd/Eft32QtN/2237bb/ttv+23/6zW6/W49957+cVf/MU/8ftf+IVf4B/9o3/EL/7iL/Liiy8yMzPDBz/4QTqdjv7NT//0T/Nbv/Vb/Nqv/RrPPvss3W6Xj370o0RR9J26jf+oGfsFbvfbfttv+22/7bf99nY1wzD4rd/6LT75yU8CwiLNzc3x0z/90/z9v//3AWGNpqen+fmf/3k++9nP0mq1mJyc5F/9q3/FD//wDwOwtrbGwsICv//7v8+HPvSh78q92N+Vs/45anEcs7a2RrFYxDCM7/bl7Lf9tt/22377/5OWJAmdToe5uTlM888ucDMcDvF9/20/bpIk/9G66Hkenuf9qY5z48YNNjY2eOqpp95ynPe85z0899xzfPazn+Xll18mCIK3/GZubo7Tp0/z3HPP7YOk71ZLkep+22/7bb/tt/32Z9FWVlY4cODAn8mxh8Mhhw7NsLHRetuPXSgU6Ha7b/m3//a//W/52Z/92T/VcTY2NgCYnp5+y79PT09z69Yt/RvXdalWq//Rb9K//26073mQVCwWAahlH+B+4wEA2vGIY9kcO34MQMkx2R4FABRsG8swuBE0AMgnWWISZtwsANv+iJLtsh32AJi081yPt6jGJQBm3Cy3gzYAZ3IlXhrscsarA3Bh2OCQU6URyLnOJc/xqPkEWcsCwI9j1mN5ESoUeMM4xwzLACxbdRISYhU8fTl5g/s4pe/Tj2NKjs0L0ZsADOImZXMGgBMssRV3OWDLNbbCgDeMc7zPeQSAb4aXWYqXWDM3pc/iEgnSNwftCufjWxw3FuUekhsU4yrZRHYac26OYRSzFcuLVibLKImY9TIArIz6lEz5bdG2yFuwMpT7n804fN2/yD3JUQA6sU9IxIJbAGAvCPBMS/XVKxyLT3HHugOAl+S53P9d7s9+CoAps8BW3GXWkue9Gw5Zs9Z43JX+C2LYGI0AqDsejdBnLuPKeAgSdsI+RUOuc48eB+0yVfmaOIHtkfTHKI6Yyji8MpK+mkqq1B2XLX8IgIHsyrKmvHqOadIKR+RNB4CMZdINQwAmXIdboz4Oco8BER2zxxl3EoCdUcjBnM3F3gCQsfX7vd8G4K/XP0kzgGf9iwB8NH+CXgBtOTSrYZt3VUqs9lHXA38weomzyX0ADJOQo/mMOk+CacBiXq79dg+WizDpycE+v3WVn5o8imXI4Cs6Aat9eR+mPB/TSHBN6Z/Vfoa1gcFDdbnm7ZHHpDfSv6+5AQfyXd5oVKQPvIDJrPz2RrfAwXyPl3dlnB7K+1hGwiiWHfqBfJeME1JwpK9vtWp0AunXE7UdOn4GR13HILQ5dfAmo6Hc4529CRwzJO/J30axyUa3zIHyHgDr7Qp5V3bqO/0crzWKPDEt353brRJjEKl3zzJgKd+nH8oz3gsc/V62fYP5XIipNuct32IUGzy3J/d4PJ+l7EDFk+vsBiZ3BuCq3/cjWMzLf/9G6zIHo0Xm1K7+st+gTpHr5m0APlw4zM4QUgJjdTBi0h0zALuBz54hepDTXp2SDan4YseHnCX/k7+NGcURFUf6c8sfcSArx2oHCWEcU3EsdY0Jozim5srnPT+iHwcULHlh5jIm3xpsy/0ZDT6YPcaLPZlPT7hVdvyA+YycZ3MU0YgHrFo3AHiPe4atYYBlyE1dNW5x0jikzhtSc5xx3wYRdc/i2kDmHhebuuPx7fgSAKWkzrsL8i5d6YRYhkEzluffN4dMJCXCRJ7D4ZzHS8NtjlgTANwMm5SSHAND5oyREXDMlnn8i/3f4wn3w3imSZD4fLn3Bb3O/Fk03/fZ2Ghx/dY/plTKvm3HbbcHHF7826ysrFAqlfS//2lZpLvbf8hK/UlM1X/Y/s/85s+yfc+DpLTz7+V+DmZzAHxjtEvOrlJTE8am7/Ny8jwAj8fvxTJNjrmCiNf9AQ4mk2rgDCOLKE54oCgvzM1ewEnrALWsvNSdMOGIKy9aGBvMM8mkJxNCJ5jkQrzGDPLiHrTuJUwsepFcY97ycBN5CUpmlu9336UnBD+CThgRqVnueHyauVyGC/3xLiATWSzFxwCoWxnakYCRr4x+nXd6n+J2JL89lamTDB/CQCa1w/FR+saIB2wBFBnLoOmLkK5kWxwaHaLmym/v8Y+CCROeDK1dPyJOYuatGgCTnsUohutDOdcBt0wjlOuY8Dxu9nyypixcq0Of92Xv1QvMs90v8Yj9YZJE+mvD2uKUOQ/Aw9HD9IyQh+0T+hof8v5Lvu0LaIoSiyPuBDcUQF3OVJiKSlwZyeeHCxV2fDnRdMZjs+tjo8CblVC1M1zym/Lb/BTDCL42ugzAU9lj1BVgMg3YHYXc6yzo62gHMaYh/eUYFtOupzMmXAuypqv7YBSZCn7Ca9EW08YES1l55jcHA1bMG+z6UwDMeHleGm7y7pKMxd/uv8InCwIKbcNgyoOP2PcC0A/Bs6CmTly0J+kGkFeLYAJ8JPNOtkYCfOa9PKsDAQXdxOcdlSJrfemfuaxBGMMLO/IcPl09S8UJWBvI54VcDycvv83bBq4Vs96Xlb3omByzIU7kXZvyEi60KuzKWoNddNnse7zRlAv9mTM7/PGdeTV2Aowkx/GiDPr5fEjWDkhbKTOk73vsDeT96QQ57puQxThOMpyabhApQNUdZHHCArms/P30oTu02iUCBWymJnfwr1Ux44LqzyxrHdnhnprYouLadANZOOZzBi3fZjorN9ENHDYHZW73TPV9wq80rgDw16pHaQcuWwO5h4IDeTvhsaqMtalMxPrA4o7ssVjIxWwbJnk1U++OQs41ZSy9P3uGnCXACeBDhRlea4bUk1kAjMSjaEOg3p95z6UXyegaxhF5M8upvCzeL3dbPOKW6SkQ7UchS3mb55sCot5ZKRIm8KXuCgDHnXm21MYxTuBAJkdRHj+tboBr2DwbvgHAY/ZZjmRyGkRe7g55KCusyp4/S8G2qFEB4Hy4xzF7mq8FFwB4b+YU5/3L3KfAe960yVm2BmDJcJmyIy/ferzLtJFnzRfAWbY89kYRVVPu8WDOZXsU8077LAC9KGalp8apZdOOAuYduY6iY3J50GHKlnFrGRbvyh9gqPo6a07zXPQGtUQ2mtusYEXSAYe9xwlik5zh6nf5O7HIl0rZtxUkjY9begtI+v+lzcxIP21sbDA7O6v/fWtrS7NLMzMz+L5Po9F4C5u0tbXF448//p91/v+c9j0PktJWsG1eHwhLMzS7rPZDPcAHScAH3Q/If0cRW+GAwJDZpGRk6SYjWr5Mcms0mKHCVwdCIdqGzUZ4mTPhYwC0jT5zRhmAqmtTtG3eaMvkOuG4PGotoAgsFs0MzSCm4oxj2b/b+RUAct5BzkZPapahZ4yYNAq4atuYs1yaQazZj4JtcTna1nHxRtLkgCGLyccLP8YwiuknMhySBEJiPakt5zKc7wcagG2PIiYVCOqFMdOuSzuQ2eOasc5MNMlAzSZxklC2Xc4lMuk9Ft5DP4q5bsrne9yHCWI51p1+SMl2WA+E3rhj3cYZHmaYyGT8uPP9OIZJL5K+fyK3wLNDmbTP2gcIg4SmYuFeC1/ldHIvF/v/DoAz5b/JME4wE7n/PT/ANgyWHXkWrgnHCgLOvjy4zFn7iAZys06Oa0GLJVt++0eDq9xvLuMhE9ILvV2qqMUUgxeSr3PGfwcA006WThTSNWTifjBX59nhCpWoAsABp0A/ijmck+f0L3b+Ke/M/gQAx415bhsNbqkFNWc6fCL3gJ6or/b7zBpVPU5/pHQfzzdkdc3ZeTaGIfeUFJsxSliuJLzWlN9ejra5151mUm6Zfgi3+yHvVWz4S7sJDyqq7OUGNH04rDbDQQwvNgYc8OT+PTPmSsfV4yVlUOSZZslYMbd7soCcrvTJOwFtX469NXQ5WR5xbk/u3zESBpHJpxalv/75hQP81WUBOqaRsN4rcCAvz6Xte7zeKFO0pUOOlE0uNSs8OrMG8BYAVcn12O2UiBPpy1qhQ6efY6Ulk/EjRy8xMbnLP/jSOwH4B+/osTS5yfO3DgNwvZvhU8cFFLf6eYLY1PdZdgKmMgPWBwL8Kq5P3jb5lb0tAP6r2iz/xeSy6quQpm8zn5PO2vMNFvMjXtyVB5G1TFwTKln5/oXdmHY85FhOjj2btRmo8x4qxPzazjqO2sw8wCRREnPCqwDCADaCgPmsfO+YBqix06RPy9hjuyubl+NuBcuAfijnnc/ZDCN4qCQP/VxrxNG8xxHm5FkAVVue6VTGpB/C2kBG4lzWwY/gwfAMIKzLStdiypR3JGvajNRgmfQsbvZiCpYcq8AU/SjiJMfUNcOT9n0MYzl2mMi5LYU5HMPkhfAqAPfZh7nld7HUFsQEvub/Fp/Iy8bhXH+PVeMKZ6L79fcpIxUnCRExkxn5/O1ek0WnRDeUDrvRDzhWyDBU190NI57KnKGlEOgJY4JhupsDhknEs9GzJMl3LisrSUKSJHxbj/d2tUOHDjEzM8OXv/xl7r9f+t/3fb72ta/x8z//8wA8+OCDOI7Dl7/8ZT71KXlm6+vrvPHGG/zCL/zC23Ytf9q2D5JUswy4L58ugtsYhkHFFgAyZdr65ZjK2NQTm3/b+S0ACu40h5MzXAx3ADhi1YkTuNr59wDcn/srPGC8k5EacIUkS0HR0qvDIROORwtZ2A5YHpcGHUwVkpl1cvSikKFikq6at6jlZBf0AI8wSiL2TGFCHslM04/gor87Po/pcsuUWO5iOMMkFeIU6JgNTZ23gpCa65CJZUJ8LdgkMkOGoYA3L3DJGS55WyaQfhTTCmTSipKEr/hf1v34mPkkGdvSgGoj7pCNbSbV7jbvGUSJwTt5EICGHxOo39Ycm1eCdZZMAW9JtEDNcfFUOG7dH3HRuM595hEAnhne4hiyIx3FCZOew9Wh7HyfsB/iSrTDB3KfAeBa0OLxUgVbMRorYYds7FIx5BV4sdVlx5K+uyc5jGcZzDnpLhJq5PQ9nTYOU3QM7g2VxsCCmifP6JvdXX4g9372FNLdCUYcL2RYZswsnrLnMRQFmJDwpd4/553xTwDwseJPkSacrkZNlu0aGbUi5G1ZNPZG8n3JdJnN2mwN5VwXo03dd3UPtkcGV7sqXFAweW4nJKdCt+8pTGMacL2bLmwmR4s2NxTxaJDQVhjj8bqDa8VMesIsPbed4ZNzNi9LtImiE1H1QvxILU5GQj+S81TcAAOwDBlrrhVxuV3UY/pstU1z5PFwXcIcGSviYKnJTQVeSi4kCtjc6hY538oQxQIYfmBpnalcT7NDWcfn3voORRWe2+kXybkyhjOuTxhZGiTlsgMcO+SQJYtYo1khmxnyX98nQKhYbnPlxiFmc/JunqxvMVTA7laryoFii7wj/eFHNo4ZUVPhuPOtPMuFIf/1nOyeu4HFja70x3zW4GIbZrNyHcMIWoFNXUUwXmvGnCpbbI/k+4N5m5mMyUV5zZnPCbsEcKll8uHSPJ271rKZjKuZ16WCgd1zySi2sOJCoPqqEufwIofXk68D8KDzfTR9mMzIef1YNg4DtcbfU/QIYjhckINtDhJSSHC7F7JKg1Is74tnZln1exzOCCjaGjqcyhV5YSgh6MDweSorTGs/hEnP5KtDATqnOMRS3uFSV8bDVMbmUjthN5C+DROXkmPxtGJxH7COcCqWcJtlGCx7Rb1pyFjwnvgHdN8cc2tc7G8Q23LlgyTkSEauOQFqsc31npxnwSoRJxIOB6jZDt/or+tjnbCm2RiGXDYktHnWXKLmym83hiEJCceTBwgTn5d4ne+F1u12uXr1qv5848YNXnnlFWq1GgcPHuSnf/qn+bmf+zmOHj3K0aNH+bmf+zlyuRw/+qM/CkC5XOYnf/In+Zmf+Rnq9Tq1Wo2/+3f/LmfOnOEDH/jAd+u29kFS2lb8Lot5mal6SYO9eIYbiVpwc7NsDNOZyKbsGvx4VV6+NzsDLpjnOB7fJ9/aBqZpcH/ur8j3wVd5v/dJrFgmnzVjjwOGTPIHMhleClY4aUk44dxok9PeNOdCYUcKocvRgktTJS3caj/LD5d+AhBQUHRcegNZBDaGIbZpMokAnbxt45gGBwOhBlaNHe53Z/UOLDuaJFCzacWxyVnjXdU9xhSeZejdXs42uDPwOad0NvfYU5SVSGJtEHHWeKfe6fYjaAYh/VhW2DweedtiIpTravqyW9seplMZ5Cw576bvc9KeYTOQRS40IjzT4PZImKXD2RzfaJ/jqarsMlu9GSx1Q50ooGh7HMnIeS6OmhSSHOct0WA9ad9Hy4elvNo5dmUytdLwk+FxbvQSAA/nF8na8KLSTRy1Jng++gqfyn4EgG6YcKHfYc8SlLCczLPhy/2+q1zHAG705aFNuR69EB2KmMs6BPF4J7w+DDiV/yHaCiifzub0857wi2Qsg3npWv516zxPuqfw1B8XHZteiGYa7zNnNeC80pH+nVAT994ITpQcPHW/rpXwWiPmZFkWvbIT8WbL0ufqhQZ9NeS/0H+THymfoukL23G0FBMkBqcqsoKW3YBeaDNUC/Dz21lOluWPh5HJXHbIclEWvW7gMOn57I6kQ766UeZEKaAVyHXMZHz6vkekwMwHZpv0QhXGK3S40/eounJs00iYreyx25FQwCs7k7x74RYbCmAdqm/RTtmdapNsbkAUynlevrnMkfoWL68L0H338hVGvstEXZ5pc6+KZwf4afittscbK0uA6KruZsNSQLhUkPniPTN9vrg6xftnBXSv9/OcVX3VDGwemwj13yRDk1tdm5NleehJ4lL3Qirq/VrtWfwPW3/I36x/HyB6sD0V6l4ztim506hHzFd6K8zFU6yZwmBZgwVGccLaQMbE7ajBI3kB61HisBk1eMqSjKGtYcxC3uROX8bNRjDgHdU8M1k5152+hWfBhNJKdQJT65UMLE4bk9wYCcLuhBGzTo6cWl3mnTwrA5+RKWOgElc0kDMNKDnw7kQ2Phf6HTJ+QTNLOyOD2axB3pax1wpitkY+niks5ihOCBTLlLVM+lGMrz7/ZufXyDrTnPWFHazZGb4v8zGGKuR4w7zFMUPmknYQEyZQUxvH236XU7kirw6a6h4q3McsHcUszWZN7vThflMAWi+MKKhN5FbS5rFCjdc6Icl30IowSaK3lbn60x7rpZde4r3vfa/+/Hf+zt8B4Md//Mf5whe+wN/7e3+PwWDA5z73ORqNBo8++ih/+Id/+Ba91j/+x/8Y27b51Kc+xWAw4P3vfz9f+MIXsNTm7rvRvud9ktrtNuVymU+WPkuowj7nuYGJyeFYdjvTGUdrcG4kO9zrTutQzOFMAT9OeDY6B8AP5h8giNFaoStdn9eMl/igIzHVVhjRj2WSX8h4dMMxWOiGEf0koGDK5LuQs+mHwh4AdIIETx143R9xOOfx2/1nATie3E/ecDS1fmfgU3UcTRc34xHzbo5zkQggZ6IZDikNViuIaYXj9NEDmQwXR00GKkR0yp7hjXCNRzMC5lYGPhkzXdQs2kHCSM1612MJ4zR8uccgiZl0Xf39XuhzuuTxZlvOt5h1tWaiFcQ0w5EOTc2bZdpRwMmiTJBBDHcGITcM2dEdY46u6stp1+Ol8DqHYln0MqZF1jJ5IxQmbdmY4lDB4tWWTNR1R3bcrurPVb/PrCP9sRb0eLhc0EzKysBnlIRkFetUtG3CRHbAAE0/YS4nx3mjPaJoOTQVC7dntjlkTDCltvN5G9qBhMoAPMNmOe/qXXnKEgHUPYObvYAjhZTxk79PAdfTzSZLdpm1QADW/cWCBn2pAuKiuomyYzObNbTmxDKg5iXUXRkfG0Mbx0xw1B/m7Zhriv2IYjhdCdgYyok9M2EYGRr4xIlBw7eZVZqcpzdzPFj3VV+FvLyX48Ga3G+UGASxybmGbEi2hzHHSiYLOfn9N3dcPnfqJsNAxrFlxrSGsiCeb1Y4Uuxgm9JHB6s7BKFNQTFH17en6QUO9x6Q3b1hJgyGch7PCdjtlDh6WMb/hStHqBU6fGtVEg7ed+wCvu9SKgtl43g+/tBjfVP0X35o8+0tYUOPlptUsj1utyRUNV9s0g88NnrCnBScAD8yudaVz7+51WBgyv0/5Czw1GyPb2wLg7GQj8mY4zkgBnJWzI2u3P/2CGYy6OfWjwRUgLA8GQtUhIgogY0BGihXXQPTgI4ax6YBk4qxGsUylrrqu9VBzKRnahAdAxU3oRfKgDiUD7jacdgcJvpYJTVYcjY4BjoMHCRwqTsgYLzIVs0M9l0p8K8mIp7+oeJJNgbo+SEh4UDO5N91JRz/HvckW6OQomL1i7bB9iiS0CHwcnyJRy3RIRZsg1sDn6vmNQCecE4yjBKK6jqfGV3lA9kj+r3e9n1OlaSfn+5ss2DUNOAaJZGeB9P27f6v8pfLfxOAFb+Hg6U3lmXLoagmatcUJu7V0TZREvBm/9/SarX+s3U9/99auoZt7PwPb7twe2biZ/5Mr/0vQttnklRbyIm4FyDqLpGxTB0SqbrQCeS/jxiTbIx8rQWquHCtG3EoPg7A7gimMvBvu68A8H3Z+9gcLutdVs3KMqmEhrt+xDCOmPHkc5zAUsbhhqJ8OwEEccKrvuwMK3FRA5v7yx7/W/OP+KvF9wOw58PBPDy719P35EYWeTW5bAQjLoV9jnEQgCYj/TsTMA2Dotq95WyY9gvcRBYfyzCwsDWbNuO5WhB9dRhzjDkmPTnPcFDj+rDLgiuLwOWgRTWpcTMUvdecWeS5dpMKch8ZC1QyF5OeyXrkM29K2HMma2ENDZ7pCSg668xym21qkTAFGdfEUVlhUZJwv3WIrDsOF7wUXuekyrrL2xbfanUIDJkhDzkZbg1GbMQSJp0zJimryfTNqMUXms/zg/kPAnCq5OLHrl4EOkFCGEekhvWeaXBJzbyTjsuNoM1A7ZrPOtNkLLitmCXXtEiShDVLdDMPWct8bbDCOzwB5EXH0MxAw0+YyzpsK+A0mzVIgHWVkfZAXnbky0VZjHeGaM1J3ZMxsZCT/hlGMJONuNqW5zSZTdgaGlpXE8bgupCxZJHYHVkcKcqDeWlX/ma5MFTX5VD3Yh26+s1Vg0dqJkPFjpwfNim0KgAcyFt85MA2GTsV+Ro8sz7DgzU51kRmSJQYuKZc+E9UR9xq1ugokHS43NBZc49ObWIYCS9vCTtqGTFFb8h6R851p5enGdhMNwS8HJjcIlbsVm+YYaa2SzCS4y4fWMG0Yk6o8GsY2dSndmg3ZOz1eznixCRU9zRRaXE2Vgt1ZsBWp6wzwbZ6JQahzWRWPRjgVrdCyZH++/56jdMVeQ5XOzE3ulmOqr7N2xHnW55euOseLBd8HTJ6YnLItW6G57rCSr27VKfmyrdbQxPHQGvBhhFkbTik1sk7ffjS6Nsci+4B4Eg+g5IcMQjhzc6IByoqlB11mDPLGmS7BrzejLmvKv+wPnAoOHC+I/PGQ9UMW/II8X3ZwNweydzzSCXP0XxWvy9lB2xzDKI8Czpt0XrFqOQFW8bSi4Md7MEED5kCfF4c3aEeV5lXG5h0w5iypwv9RXbjNPPYxcLQf3tj2KNqZZhWLMQj9hE2hjEFdZMV2+FmT/pyOilTdCwdBi4YFpYB7ypXAPi9znV+rPY5lMqAaTvHpXid07ZotFpBqIFbxjLohTEPZCbx4xFvjofFfvsL2PaZJIXCD+U/xHQsTEnNyuKZBh21emctW4eEhlFMxTW5pcJcD1U8gmSs7ZhR27orPfl+2vWwjPHL7Zrwq+3fB+Bh6/1UbYf5nHwZxND2hW0CcAwDyzD04r05GmevHS3abA4SbJU10QojTpUtrSG404/53d6vcjQjIOrK8Kt8svAjzCvGY2OAPhbIrvC5gQCfo+YsnmnQCuT+i7ZNxjJYUynyc57HnJqImwFsDCJms0pn1Q85VLD1xH27FzJIIl7lWwD4UZf3Oh9iuSi/v9mN37IDq3twoyt/bBkGfhxrMXrGguv9AQ9V5OS/27nFRCThgxdG/5aP5T/NurJemLbzFG1TX0fGkuPvKsAxiCKWi7behV/pxJpVihJohoG2AHBNWVTSBeTl0TqTcZWyLd+HcayzV5YLFt0AvRgNo4SaZ2jS/au9OzyamUcRk2z6Pm0GxIpLqpDTgummL+Pm7t19nMCN7niHnrctlgqJvs52MH6+jgkHlEC4YMe82jC15qToCGuUal9mszHdwKTgyDj2Y4OcAkxpYs5QaY7KjoiPW+pchwsB2yObgzkZHzd7Hg1fvjtZ9jmY7+qQ2Y1unlOVFhdbsjN9eHKLjp+hOVLCbTOm4Pi0VSJEJ7Q5Um4CsFDfJowsGl2h57PuiO1OmVJGVqFascPQd3ljUxauQ5U9OoqFWprcpFJr0u/mxn1X7HL+ithL3H/2Da5eXmZuRkLKbmbE7tYEex05VynXx7HlfWh2C1zanWJKgaKCN2S1U6ak9E/D0CZnhzRGSoxth1q/tNot0o8s3ZfTmRHXOjlu9ZTucNDjsUqeg3lZ+C0j4XbPZT4nn3uhyXXF8LWDhKW8westua40mSLNhIsSmM0mfG1brus9k54GAQ1fEiVOV+THt3vCUM0owfjuyKAxgin1np9v+TxYcyjaMia+shVyRMkTmn7CsRJsqASDpi+WEVkVFl7IJ2wPDQ2SJjPorDLPMuiHiZ6XdkfwUrDCcWNe9Y/JxiCiorLZ4kTmiJdaSsfp5nRo8s4g4ungi/xk9aOA6Iz6oege0789mDf5VkvCostekfCuOXAma3BHZXBWXIO8Lf0EwpStDUNqjkoyGQ2pO65m6muuw6Yv/dyixyOFGr0Q/GTErzf+2XeESVrf/vm3nUmanfz7+0zSd/sCvlvt85//PJ///Od1TZhiXCajxKU5y2Q2a7A1TDUHsV7kSo7JxjDUbNC3mz73VVydcXWzZzCXddg0RNuQC6dIkmQsJjRNfqQk2pY/HFzgdvurPBL8NQDeWy+wMUiYV4DjziDidtTkhCk74+WCpSeazUHCTNbQqdPHixY3uwlt9dLWXZufqP0Yu8q/54naj5Iw3nWCUNdyf5LR9oGiTEzbQzhaTPj9XTURORXCBAIVo85Y8GY70vczjCO9I1vKO/gxbCrN0cG8jWXYxG3xXDqQy1B0xuGDmLE+p+HHrPQjPAWKirZFmIClJrKMZRAS86Yy+3mqsKh3dvfkf0LCkWpI11yTy/0eJ/PCFExlEl5tRFTUJBclkpHzbwYC3j7oPqrF+QkJZ8qu7tuZbELTH4eqJuIKj9YyOlRxtRsxrRaopg+/0fktfrgkmjXbMPhqf4VHXWGKLg++zLtyP6Gf4yAJOOiUOKrmoIuthPMt+XI+a9EOYFul5R/M2TgmLCnx7KV2gBUZ3OyOQWQKxptByHLB5t81JNz4Q7UZlgqGZmX82MBPYLkgx35+x+R4KeFSS2mYgpAHa5Y6bsKNjsmpitywbSYsF/usKG+jqhIsv7QnoODB2pCZbJr+3ieITTJKIH2y3CaMDQ4VZGzd6ZboBI72UdoeuZxwR8zmZSH7xs0ZDhXlWDe2ZqjmupSVmNoPbWJgoyudd6NZ590nzvP+KdGSbW5NaibItGIcz8ccKOCS67O+PkNN6YhG/Syvbs0yMyl/63g+Mwtr2OtT6vcDDNV3/WEG00gYRvLMq1bIbL7Dek8A1US2z94gS1V5LgWxyS2lm2r6Ds3A1GAFJLS5qLRy91ZdrnXgtYbKHMsmDOPxZ8NAC7FPlCI6oYWjUOx8TsKgeSVM/ve7ezxCnbqaq843x+NjPgd91+ZyW/r9TMVgY2hwvinfn63GtAOT2+q9rrsu20N4RembDuc8DcaqrsxDKZi/EG1w1pnV13mjY+Ba47nnuUaXJ6oqG9SUkF46LdU8eIgFNkYypqLY5cGaQTMNkQ1l7jiSlff6ldE2/Whc++uztY/yT7Z+FYBPV3+UK70Bk448871wyBkno3WLX/Ff5N32QwC8EF3kkcEJnVk7jDM4hqGz3W72fA7lXW4roV7VdnFNk2n1fT9MOF0S0Pi/t57lbPR+euE4KWW//cVt+0ySQuF/qfxZrivB8KOFCrYJ/2TjnwLw12qfY2UoK2bBtFnIWZopeL3bpWh4LOZlElvph6yyy0cqEhIwjYRndvs8VpGXuuTE/Pqu7FZP2zNMeAZdtfgOo4SFvMENxUrZhkHZNWgp/54DOUPrd861+hzL5TS7AfBGt8t76nKe1xqRZIYon6ScIVR0CkCWi9ZY5xBKpt0RZR6Yt9GgB2AhZ+LHwhgBnK6YrPZT5iTmetfUAKMZhJp5AlgbjThZ8LilzFxe4yIfz59iW2kbymrHBvCltlDr3xh8AYAfr3+OvI22RLjZ87lsXuNe47jqn7GWoRsFTLkeVwIBpwetKgXLRMl52BnFlBxTZxHJ/SRaxAljLcekZ7Mx9LXeIG9ZPB+/ymdq4jn0le0+T01m2fXHouiVoYydhypZVvsJzWCccrSQc3i5L+GSB7J1+hG8Gchi/EBmkjiRxQHgTj/hhAJMw0iAWTrWEmQ3nO6M656EW9LvG37CstJA+pHB6y0fX5nhJSS8s57RGpP5XEjFCbndlxNnrIStoUnFGTMJWfVcXmwMOF7IavPMhZxP1g6ZUUzKub0aJSckVMkJrplo08ZWYJMkhgZB905sk3F8Vttp9tqI9V6BvCOrYNUb8JW1GQ3mFnI+BxSQmS01ybg+e4pJGgQuE4U2fcVC7fSLLNa28ZWB5OzUFtu7df0cotjkwLyEbpt7Far1PR1+y5W6RKFNrBgef+gRhja1WQl1b9w6QLsn71ZnmKWU7Wst1MruJLc7JR6aFy3UufUD1LwRe+q6clZITf12tVvkRjerWbcgMeiFFr4KCx4rdRiENuebci7bTMjZCUGcsjRj08qiI6BoQbFMe77NMDI0SzOTNfBj9Eai4sr8A8JI+TFcVhuOAzmb17tdDqgw+UzWoOomOqQ4ig2SZMwqWkbCG82xYDpMREsEElaruOPw2s5QGKntYfq34/HuGKK1e6MrwNfG5Egui5IKsTcS5imdE8NEQm13hgKi5jMuG8p8tuLYFGxDmwB3ooB7y54WiT/T3uX9lTrXVFJDkCRMK5lA3hHtXTq/OgZc7QaY6oZ3kx4LdlFn2S3nMnTDRCewvNJr6ezojCV/f641Ikx8nh38y+8Ik7S29XOUSpm38bhD5qb+wfc8k7QPktQA+8uVz1JTbrRvdPo8Usmx0h9rQez/wAvsgJqYnt+xGcWJDrNVXHitOV4gH65ZPLMz4mBWBm/dgy2ZL9lTC2ndldXoaDHmfMtgUqWTP9fd5R63zoxiUM+1RhzIyDVmLVnoUxHn8+0WDxbK44wTQ75PF71Xm+NrTFsaEpxwXFxT4ugA/67zv/C+3Gc4U5aZyo9E2Hm4kO6aJJUd4N6Kw81ewoKiy19uDjlVzHC+IzPio7UMwwgtmC5YDkt5S2sw4gSm1XvtWkLL3y0ujhJh8gBeTF5hOTrBhMp0eS25zrFkCYApz2ZlOOJhZcr39T3RRaWp+a4pu+jX1ZZ0Me9ggE41Tki4rywd7cfwtd4d3ptXQvV+xCiONcDsxxGeYWqm5UrHoKYm9U4oGraUhTINmTDTyTdvyz0piQqjWMJnhxQ7tDUcuxyD/F1HrXJLBZMvte/woZJcVyeA3VHMknouUYLWM9W9iD/ajLhXPcOJTESUGDQVsDvfCjmct8dsgBex2rP0dT5YG2IrYBPFJncGHvfXGgCs9gq4ZqzDTUFs8q2dCu+dEX2XZwdYKUgaZnHMGFsxSVFsEsam9jBy7ZAgsvj2jjJQzffJOz4FFboKI4spFW4bjDxaw3G4bKbc4I9vLPORE5LB2GiX6PuePtfRwzfwBzIeLDtiY3OKrCfHrdSaDAcZMll5/rlKmziw2VqTtP0otDDNWKf9D0YehxYFBI0GWVrtogZraagto8Jxw9BmtVegohg224y53ZPr3h3ZPFhvcbubV8/XYGdoMZWRazaMhF5o6dDVZCahHRiabT1ZGtIObDVWbIIE/bfXOhZLhZitoTzjgi0sTQqqHBMqzljPVHbHafxRbJC1Ey6IdJAgTrivKmAKYBiL6WWkwNpMNmDPl+sYhAa/1nmFT+bu08/majdgSW0cu4G8w+k4vd6N9VzUDSSMnc49hwoC3vbGkknqngBCkKzLvdHdOqyE12J5LvdbB7kaNHiqJgD8fDPmarLB+wryviSJML3pZui23+VBlVlVdhNe2Av0nPfH7W0+Up3gzZb8tmibBHGizTgXcxbPdQV0gbyLaV/2VTZrnIAfj/jl3e9MuO3Oxj9820HS/Mx/sw+S9kGSDLCfmv4sRVsm1JvdhAnPYEfpVyYzhqap276EpxbGczWdEM2M3AgbPFaocVOt9GGScKLk6Fj3UsHgvNIQzGRsvjG6xaeqIqZ+YTfgVNnVv6174zg+wMF8wku78g9522I2O54APVOuY8KTf7jQSpjMmBTVImgY8K1Gn9NFufCiLcJegI2hZNw9pEScd/qw4wdMuI6+B9swmL3rnlPx8BW/xf35Mg3Fdh0rwXrfGDM4Q9mlpZP8MIKaC7/dET+Nh6xlHWoaRgZXOjHHVXjlmUaHD0/maQZjc7imjzZwy9kGswpARomAm9SY8w3jZaZZ5kPlaX29GQuWi5F6ZiavN2Pt+1KwRcgMwtQcKpg6xLrShxfCq3y6JmLT7ZFJkojgFOAP2+vc70rm0yCKsQxDhzKbQcxs1tQ78hjlDaPmssYIjpQint2SH7Rjn4/MKD1OYNILDa4qI5ySY7Pt+yyoDMYb/SGHchltALiQN8hZ8t/nWwnvnpJwTNocI2FrKJ+rXoxlJDrs9WazSMmJ2BrKgMlYCdNZGSCeKSLtnD0G/9e7OU6UheG52i5wT6XFa6qUyHxuSMlJAUJC1g64ozK/7pu5w4WtWR2KGkY2lhFztS2DoOiE3Ds19qO5ujfJO45KJlSnU8A0Y+2bFEYWxXyPgSotEsUm//S1Y/ydh8Tpeei7lEsqnDb0KBS7mAq8ZctdurtlfZ6Jo7cJ+xla6wLWgsChWGlz9aqkeM9NbbG2JaG3JDG4uDfJGXWd3WGWvDek0Zd7jBMDx4y0R9Nap4yvRN+OGXOnl8NSGXqXWi6PTvQYqLCga8a0A4fd0VgJsTE0OJBLBfUmC7lQHSthe2RTctIweMwbTZeRmjMylizcTT9l5QzKSvTdDkzqXsRAgaDNocFCPtZMY8pQ1lT24wu7FqfKCR31+40BWpfYjyQEdpeXIgV7zCR1w4TprMEVNY4frllsDFMfqJiVnql/O5dLeH53xHVLMtTe7ZxiGCX0lCzCMgzKtoXKtqfsjs97oxtyg00+UhZQdK0Tk7FMvZH8vYEAuZbaoN0Y9ri/JGB1EIq4vKx+2wxEz3WtI9c5nZFMw3S+6QZQ9RKuKP+qKEEbXuYtk6WCwYVWRJD4fKn3v+6DpL/AbR8k3cUkLSrX42YgGpZUN1D3It5opIuLLPgps1T1Yr6xHXNMoRHTkO9Tr5uiA99uDsipLKyaY2tmyDJgYwi3BkItLWSyHMwnXFMh9pxtECdom4BhFLOktv6WKYvtlppdJj0JAaqNkLA9fZ97FG/dCURbc7OrxJQ5+IZyZ76vmCdMJCQFYkWwmHc0Tb82CDheclhSYtLntm3qiqEp2ELhrw3GuphBNKb453MJGwODpYL8w0rPpGCjQ4y7o0SLietewou7IQ/X5R4vt0W8njJuj9VNosTgN/dEZ/NjU1Pc6atsLS/mq9s+U4oNvB60eCBf4WnlfP6gvcipSoyp9ntf2RJdWeo5lL1LzzPpxVxsmzpk9ljd5PXmmEr0TIOKO9aG3OolTGfG+q6MBRvafdjkq707vEexUgBVN6GgBLAv7xkEcaLF6dMZQ4dQh5FcV8VVIlcz5lrH0iAxFZferTN7U2UfvW9KdD6XWtKXWVvu6456TkeKITkrZqUv46PoCANRvetcGwpQ3V/t41qRDoHtDDMcrTR4TqXHnyh16ASu9jY6WtnjzUZdPdMRE9k+N9sCSJbLDZLEwFPhtWfW5rm3tqcB6cYgx3y+y0RBVp/VZk2LuCeyfWbKDc1S3WnUmS41tReSbUa4dqiPbVsR1bqwX25myKifZXVNwOzBhVVylQ7XLohw+8iZi4T9DL6yDDCMhCQxSFJ/s7VZbVq5uLjC5vq01ig9fXOZpUIHVzFYOXfElUYdR32/WG5wcU9KEQWxiWUkNBUbdLra4On1CU6WZQ4YxSY7Q4epjNzD79yxOFa0mVfAqOKEnG/JQpixBMymwCZKYNKL2B2pjNYBPFgPdBbincE4ocJQv0/BSc0V1jKjQPbldoKBod9NMVaEqYzq+76pk0RS4LCuGPKD+YSMlbCtGK1BJOe7m2lJk0D+ykLCC7sZPV/YhoCqGWW2WXFFD1hWTNLm0KAboN/NjGUylUn1bzG/t9njtCq1MplJeLOVsJAbM60ZSza6IHO5ti2I4VrP10kTvVCA07W+gPmqLSVGTpTkWI4p15Vu/spOwpuKhXu4HtMMTNb6Bn4y4t98h4Tbd9b/m7cfJM3+w32QtA+SZIB9uv5ZLqo07fuLRdYGsTbi2xxFZNQithkMmHWzOvPraNGhHUhNJYB7qxY5O+FFkaCwmDe52PZ1YdMDWUczEFvDmI1gwEFPdjO7vs+k61JRQKekfErS5dkzx5qAlDlJ62kNItEgXe4rU8JCnms9H0/pag7mbZo+2mgtiBMWVFwnSETvU1VGao0gIG/ZlBRqmMxAxY11LaqD+ZiLrfF3N7ux9oWqOCb9CK39SYFEyjzdGHU5mSvo7y91Yu39ZBkGvTDiVEWOvT00tGgaZIK+2jHvAmDCxKQtZuwDAxK+S3d634oucppjLKliZbsjAbAp09YJx34yFRcmvYRXGnKikmNRccfA1zOlD76xI8/8RMnV4YFUg5W2pi+6qXTSjxL4Yv8Cf3NSTOxu9yyqXqKzhl7eM5nKpKnE8vuqO9ZNhbFBX4H3//fGF/jc1E/w9bYMtjmjzFOzKpTQc5jIRDpDbRQbhLFBmDpOWzHrA1svElOZGMuEuhuo/rD03waxwWxuoK/hjWaRdmBwuiwLyGKpRRhZ3FDi5KwdEipAUXJ8gtiiqEJPi7VtfuPyUU6Ve+oZyQX0lI6o5Pocn17TC/v17WkdxjpQ22G3U6JebOtr+drNZQ6pz/V8h3xmiKXKlLiuT1Nl0WW9Ee1enhNnxH9ne2UWLzPCV5ok2w7ZbVQ5fEIYzt070xTKHYY9QQDZQp87q5I195Wbh3liblWH9XqjDFPlJje3hbVs+y4l16eYkT5rDbMMtdWCSdP36CmGrxeazGR9mr6jP2ftmAXV303fxTFjvrEti98jdZ9/vyZ9++4pg5nMiLbquz3f5k7f0CVPeqFoklLZXTeECTU0617E5tDSAHwYGXxtr8NTE8KGLRYGfHs3x6IS9juGZKyl9fou+nt8ek7AyLWuhK4vK6boVNnmtaaPq7zUjhctDGNcPLfkxJqRmsmEXOvaep54sxUw6Tl6DrzTF5PLVDbwrd2QsmNzqCDjYxDBrd44s/jOICKvdhm2YfBieIt3uIuAgLReGHNEMdUX2zFnKmlWnWw4Uu3ThGfqxAyQd7Hkim4S4H2FebaHoiEF8Sx7rFgBYH0Q67nTj0f8632Q9Be6fc9mt/2Hreigsx5W+hEP1kwuq7n48F1ZZZCl7hlcCpsAOL0anmkwUgLZhm9ztQM5a0xbZ0yLRqSE346jF9vX4pv8pfohLWisuC6TXsJNlQ5cciU2v6UyPW6bm3yiLFlSTR9OlEJiVW/NM22ud2M+PiMvye4IjhdcXU+pE8iLflBl0eyO4A/71wF4t3eYkERXeZ+JXa52Qp2W+wtr/5KfmvwbWkezOxqn1ovHEpxWk83v7ezxzlJNT2rDyKDiRgzUovBkIU/Lh/9+TUTx/9f5z2kNUhBLGPFiS675UrzGR9x5LnZ89b2rxcMgYcFUC+Rack9pFkyalpxqCOrxNPWMpYHQZAZeaw11vbbf7D3DvTwKwHJRDC5TN2q5j7HYNIoFdDxYc9QzTnSI9LGai2fGrPSln9/0d3lnsa5ZqhvtkM9MHqep0udnczFX2qYOx5yLrvOXHAnxvN6MWcpbWmPyte4mPzw5yXXFBn5u6ieYysQ8Fgtrs5SPeHlPxsP91QDLTOgqJ2vDgO2RpdnATij6o3sqqmyHFTEIbXbVYl1yQs2UbI0cDuRjRtF4unik3mVOsT2eHfBvry/yxFQTEMCzWBYGp5gZ0Bzk8VU4aa9b5H2zm7SVe7drhdSyPS7vSZjrfLPEVL6t2SLLjBko+4DuIMtqp0xXpdZXc10enF7TOqXFxRV2NiepKtfszfVpzf5Uag0sKyJS95fNDbizPqNDd0tLtzlY7nD5vCQFzExuc/3GIvecFb3TqJvTv31ocgvPCVhRbNlkvsPaXp1vbcvn71u8hW1FXFf39OxWiSempK86gUveDhkogfjJSofGyNN9PZWRQsGp51Q7EL3SOyeH6u9tPjgjvx3FBg3fYaTucSrjM4w8dlQoK2uLJjEF1cvFgA1VhHh3ZFF0xsLsohOTM1xt67A58JjNxVztpONpxCAytcv6a9uBngNKTsLuyNAbyaId81jd0ccaRm81wcxYidYFtQOLZ3ubPKWKNAfETGfeKjC/0gk105izRGaQJnMEMdxTVkxZX8xtU52dH8MjxiLP+8Imt5MtPp57mIoKIR4uWFxopQArTWhQ86Oak18LJMnmLNMcdGIOJPJMJbyWaO1YiSw3eypT2raYz4mWzB/vb/7M25/n2m1/kds+k6RQ+I/VPktVhWpebQ1ZzGb0ohgn8DtdqRVkY/Oh/GFqagcWJPBmK+GASnkOE0ndT03YBqFQsmml7tRxGSTctj6IdYbVqbLNte64oG3VE1pXizi9cep8eqxUaPuV9iYfLk/rzxUn5nLb1CU9YhI+NJXlhkoXX8glvN6UH58oG7T9cTipE4q/Tup10/bFzycN3WVM+L2W7Kjem5faUVOp+NpMaPmGFm6/b8pla2hqmv6Xd69zJF6koEwub4Vt3l+tAJIJmJp2ggDBKBlngt3jTOLHsQZ6T7d2KScqC8gwOVpwudL11TVaHC1aeiKvum8VwL7W9Hmo5uDH44k8ZcOGkQigUzCbJPB/9H6THy39EACvDmTXmAqsg2RM4TeDmFNlg13lP7Q2iHFMQ2edvdaIOFW2KSl26HJbdGNp9t9ywdLXsTeCQZRwqjxeFKPE0AtbM5AQ5Z1+6kk0FrBd61jc7PucKMozO5gPKTshX16XQf19c0P+xa2IT8xk9bE9M9EGiE9vurxvRgDUH294fN/cgPVBWqnexzFjOorBOFxqEcYmUZL6fZlkrPFALXpDBsoccqrY4n967QgfmBEmaTbfYbNf0Av9ZGZAzvHxlLD7VqvGlY484/fMrlPO9bRf0WazypkTl7h8TbRim90ii9VdqiUBJF+7coIH5qTEz8LiCpYbcPWiCq+duMKzLzzM4w+cA8C0Q+yMT3tDwmKmFbGxMa3ZomxmyJoSl89PbjEcZvj1CycBeHx6m8lii0CxRRnXZ6NVpaNE354V8eymAKgPzm/Q9jOUXHk/3tirU/d8HYp6vZnnvmqXN1tyz0eLA766mdPM60IuoKVCdXPZEZtDVxf49WOTTmjSGKWbrIQpL+QVZR/gx3BIeWptDgyWi5EuB3MwP+JCa5zWn7dj7vRNlgqp1UdML7L48qaMiY/NOryoTEb9OGE+Z+pxmzFF6J3miYxiCUc9tyvPNC39AWIf0A3gSEkB8qFB3UtYURtF24BOmNBT1iYlR+rceXcdO934RCoJRKkGpFB3Mp5vJzOiPUyz8s5WTW6r8xgIg5wWQKh6CRdbkLfHDHDOHmf4lhyLmawwSABe4rCkIgKnqxEv75rUPeM7KtxeXfsHbzuTdGDu5/aZpO/2Bfx5aauDgElPZqKD2Qy/0vgl/saEFEd1DDgYKQbH7NIYoRfXog174YA55SDtWXAr2eEBptTnhG5o8Eu7vwHAT9b+sjYSvNYfciCT0YVj7/ThSNEkr0Ivg8jgfDPWlvwvNIa0DFlcnqrWyVkxeypb6Yg5yTAex9jrHm/x6HhnNc/t3vj715uJ9gDphzIpbKsd6GxW6OeaEoFf60r4LQ1z3S0mzyuBZjoRGYjnyXsnx5TPzV6EaSgmyTtC3RNRNsCMVWRDRXJqnkHOGmeGeaYAkHcVZHFqjMA1TeqqftT31Woa9PyPW1/kQecjLCpRc9aWBSU17bvVs0gYh/8eqzuazQHYGiZUVTrvhCcAMQXJl9oB//f5H9BA6HGnwiiCUlau47WGoUs0nCobXGqPw5oH8yYVdww4l/K2EszLdcUJXOr6ugByO8jpe0oB0pWOArb5hF4oO3cQYBoncKyk0vwTeL2p3LGLCZ3AYSmfHlfCZyeUVnl35PI3Fn3WBukOesgv3hrw/XXx5Pr++T7rylPo4XpEP7KY8OQhrw087q/vsaG+3xnkNPMDAnxWO3KiqVyPN/cmeHBaHMb90OYTC01d96yU7TOMbA2q/MimH7hcacp1PDi7StmTY1lmzEarqlmX5Zk1drcmtNfR/NSWFNdV/k3vPHyV2oSEIuPI4sLrx1iclevYuTPDVKFNc1vOM3VolTiwcVQR35s3D3Lk2DVtEWBaMcWKgK/nXz/LA8uXWS4qE8t8h+4wi61cw3dU2LGusv96gcvJsvz37jDH7V6OEwrQBonxlr4TLY/HdEb641wjx/3VQFsEBLFJXT2HMDF4o2lQUQkWVRemM4EO3VWcmGFsajbjaHGsmzlWSmgFFr/XFPH5p6xpzlaGrA/kftcHJtOZRIdfd30Hk4S/cSgNC9scV8Dm/7n6S3wm819ooGcg6f5pnbPFnMWbLSmUDHCtY/CmKsR9wqgznxMNHIitxdd3hjxczarPEV/aCDhblrE2jGRe2FRMT9EZhxCztjBa6TxV98QkM93AeSb8m+Y1PlqQOnG7o3FCyZ4fM58bb252RwZnKjG/vSOs5IM5KVyezqlLBZEB1BFgdE/F0RGBf7vZYsYocbOXEH4n2Zg4hDj4T//uT3O8/bbPJKUo/EP5/wtHi2O30hdaHQ66Ep9/bCJkpa+qmJuS8ZGmxhoGnNuLqSu/jdcGe3ygWtOu0SVHRL7pyzjphdzuCzZNX+aDeVUXrmtxvTdmbFxTdklpra71PjwTSkXpYlLjY5V5KUWhWpiMRbyTGZkEjhTlJH5s4EeG1jRtDKRQKcC1joTP0sKZ/Thk1vW0AeZMVo6b3oNliKgRJFx0u2ei/C+51o2ouRY3BrIo9I0hT5ZrvN6SxafiODh3ZcpdbEc8Fz0DwEke4cPTWS2uvtKx1EQnn+MEFvMGykCY2ewYsOXshH5o6FplGctiOmPqa04Zl61h6qJuSZhUpca8Ga1RjSuAAMqYsYai7MbYRsKeP9YzXe+PXbKrlqcdxB0DCk7MphJIl9yErcG43wehZPtdVtYDj9c9LrUTDZQ7QcyDyton1aPllDngxZbJ4UKij3W7J5qtqgofNH2LrhLxni4P+XerNu+RKAbdwGIUG1pnkbHgnkpfex1tDXKYRsKVjjyY15uJZjQfnxzyejOj668BDCOLiVRz43vUM0NyKqMtjCwNgtqBy1y+q8Mlk8UWtxpj76Ju4GpBeNo2hmNN1/sO3uSGEj1P5btMlpvsKBH4Xj9PlJg8ce8rAFy6uszC9Kb+W8f1GSogV5ncY9DJ688g4uwU+NxZnePImYt0tuTavNyAfrtAT3kjtToFMm5qcGji2CGOYt029mrkvaGuN9cdZSh6A0IVQt3sFbUb961OiZwd0lT9s1jo0BhlNAhaLLY5t1vXWYgHcwFFJ2RPAZ+8HXG1I/1TcWK+3Ri7/B8thgxjU9s8pNlraakZ20x09uJCLsAyEp39eKNrkbVgUjG+jiFeV6835byWAUeLkfa7eqPpjEuYmOI5dkyRDRdaCVMZU89bRTvGtRI2BnKuF1td3lGRufVWL+HV+AafmRTd0PbIIm8nrPbGDO9EZpxUkc47dbWBW+kbOrtzOmuwO3yrbvPGqMPHp2VMf3NHQuhXlU9S1R3rG8uu3MdY+iCZuemmam0Y8jX/d/lE/gfUdYklyhsqVW7CdbRVSd2T+XQqA6N4xP+0/p1hklZW/g6lkvef/oP/08cdsbDwj/aZpO/2Bfx5aUXbfIvA8d3VIlm1OP3mms/7J6SrRrHBnm/hqBTeKJYY9Kyy8y86Ykeflrg4mI9FFLkrC0zF9GjGwgZ9YDJHwzd4XqJJ1D1Yyrm6EnfdM6k4wiABPDHhMR+d0df8rb0hx5WmxjQga4ytCCzDIIplRwgSbnqzPRY1TmYMfb9Pjy7zwewx5rJpQVOLUQxT6n1r+7KwX+nIYvzYhMH/siulVd7X/zCnKuOsufmsxc1ewLvqAjjDOMfvtFc4bkl2V96Whf11RXkfLVpE7XcBMJexudFBOzvHifgppQxPO5AQWLoz3BmOQdLxsuzsAgXt7i06b/GQudG1qLlgqSK1hwsRloEGPlF7lhkVxuuEItzeVMxaKjJNeac9P+bxekZ7EhXtiE44Xuif2Q61YN4dCO1+oiSzez+SDD0DuYluCA/WYq6L5ycLeZOLarefs2VxSq0JHBPWBmNbiOvDLpZRYCaTZqQl3FGM1auNDE/NBvTT8hdZn69tuuwF0refXgr44lqeU5WMvofzLUfXVMtYLr5C3K81MtS9hHMNWWzeN7OHH1u67MaBQgc/snhlR8DMAxPb3OxV5TnU9qjluvzyJdFZ/fWTLaYLHfZUzbQY8RU6VJKbLnoDpkZZHW5z7FBbD0yUWmw0atpxO+eOKBc7ut6aZwfc3pjROqTpSoP5ZdGjDNoFRkOP2rR4OTV3asSRSXlJmCWv0CfoZbFVZpyTHVEt9cgr4TarszrTzXV9LCtmZVMQaDEzYLNdYVeVQJnOd7namNBgbxCafHChCcCN9Unqnk1FMTTdwOVaN6sz4UZxhaV8j2uKjTqQ7/G1zYoO79tGwn3Vnho7No/WbT32LrRsjpQiPT5e2TO5txrzSkPpn8pSfgegHThMeIkOkT1UG2KZMQ3FnF3p2MxkTQ6prNSyI3YSozANz8UajFzrmMxkDZ7elUF8T77ATDah5spzu9h2KDnj7LaTucLYtNE0eCpzmDuKTe4EcL4VafZ8KmPwvzV+j7+hSo30I7jc73EokPGzPQp4VGXDvtqMuRpv8v6iZDDGCQRxgUttudBHJmJu99Cml6v9scA6iGE+G2lGuOGbXPFbPFJUjKhns8QjxGrndLZq8NJuyFxW6RLNsaQChGF3zHGlhf32F7ftgyTVcjZv8UV6oTEW9f7ArMdXN9OyCjYX25Gu5XaoYHC8HLOqhLpNP6HiGtpD5NUGLOUNsqrkScYyeUx5c6z2JN6eFqGte+LRlGZf/FGjyaRR4APTMnF9eXPIPYrtutL1OZTL6J2OZ0osPk1pz1nivrynFk3TgJVkj4cdCV3tjiBRGpKP5I5RcseZYDXPIG+OAUgnTDiYT3BLatfZgRPWE+r+LZo+mikAlIncWLP14eLCWywR9kYGRxXzstZPOKvqR/mxMDFf35LvZrJwoTPk0ZrywVETq6sAaozBFV8WV7tTxrPg3rIsTK+3Qs5WbBoqHfpSd8Bjtaw+xrf3TI6Vxsecz413lUUHOqGh/WUO5IQJSgt6Hsia9ELIqrDfnm+xM0rFo6EOK4CEFkwDNobjsiV1D529c7kdE8UW99eEabjR9VgujvUZu6NxZpxjSJghDa8dLeYwjJibPTnf1gAWC+PMpjgR5gFEmH2qnGhm4GrH4RMLbZ22v9rLcawYaiB4rNThWkd2+/fnfUquT14Bl2quS3uY45U9Wcgr3gg/sphVxoyuHerwydV2maXY5K8srwLiMWSbETNFeW7dwCVJDLKKhRopkXYKkv74xjKPzor+batVYWeQp5KXxXgUOOw2K+wpf6KaKlmSZsbttMukxgvNvSr5fI+B0jfFkUmu0KenNEheqcvmrXkspUFyskP6zSKxElCXym0GCjBt7dWYn97UoTvfd9nqlDlUkRDSerdM1g6pKRR9K/C4rRzGZ7MBU9khRXW/zVGG05UObzRFtJayammG2s4wy8F8SFtph15pODpJouKEVN1QA/+SI0JnPSdYBk3f0p5uuyN416Tc3+2+qR3SAdqBzdbQ5mBermshHzPl+Wyo0kyd0KLkhFxuy+eZrGiWQMayH6PduheUp9M3VSbcyXLM8zuxNs0NYplPAAq2gR+PS6nkbZjK2FxU5VJu92J+vPxR3lSx7hNFlyPZPA3Fej8+YfHFbRkPp3JF9vpljhTlty/suCzmx5uKlZ6UIkrv+mDe5NtNQWcnClk6oakzaXMWFMjwP2/9LwD8zOxP8V57nvmcHOxO32I2a5NTK+jNu+op/lrn9/jB/EelDt5/wJL+mbY4hNj6T//uT3O8/bYPktI2mRGRNcDljs+8l9EmZS/v2ZxUWo6VXsKJksW3m7KoLSUet3umzrKqe/BmK9Y+QpZhECaSaQbCUlxVaabnkgu83zulJ0RJ3zW0TuAduVkG4ZgCzhi2Ttldzrs0FCAD2ZHn7URXot4dyXnTCfOPd3o8nJ9kpS+Lz5mKw4zSPWwMbZq+wXogO9TFfJ6vt1q8oyQ3vZQ3iBkLmYMECokAl/Nt8RaZVPR3KxBPkz/aEebsiVpelykAuZelwrjMwvGSeEVJX0E7gkcmUpAA756QcBRI7bYogRuKtcrb8M6yXKMUax2LOGuOjR+P++6eYpbV3vg6Xhpu4XSnOVkem+ulde5ytpT7KDrjRcQ1E3pqx151ReeRsnRf693Rrr5hkpC1Yx2OncjAdCbiZk8exOFCxLWOxcG8nKviSumUlnYvhqJaMILYYClvaNPPqUzCsVJCV5lrulbCa3sxliHHuq869rlJMN9iJHmj61JyxiGRxcKArWGGnaEsZLaZMIxMzXBsDbJMZWSMe2bMMLQpqIX9dqtGN3CYyQbqmm3mC22+uSXMSjUz4GxdGBvTSPj9lTk+fUpS719eXeSxQ9e4uHYAgCO1be60qwzDNKwTc7lV4XGVOff9J89rs8hOK0veDrQLtmuHbLYr3HtUkiqGgwz9QRY79SeaXaOhaq9Vag3ajTJDVSqkXt+j18njZmSAXD13itn5dbptASvDTp5g5DJSv+/08tSrkrE3PbHL7fVZ/o8bBwH4q8evkrEDApX9V/aGmCScVDqs7NqCtkRwzIRrnTz31XzdP23f5YlpoZNXu0UMY1wsVgCHpQ0jH52ItJP3G80CS/kR11TB23urIzqBq0HBqXLEnm9RVpliz26HtFVIcDYrof80G7IX2tS9hO1R+hwSdn2HV+WWmfBMyo6r559eaLCgAEPVDXl2y2NWgfl+JEkABwUz8fIe3Fe19Ls4kx3bWJSdiCA2+Ir68gOTGfqRwX1V+f5r2z79yGI5L9ddc0V31I/l3Ct9l7Ih4yMGJuyM1hXNZSX0dqU1TubYjYYccHPqWRjsmTLObvcdMpb9lqSaYRLw0zM/Rdo2h4nOOpzIwK1WxJlKKrswmFPJO0/2P0zVhZtdU2tX99tf3LavSVLx3J+Z/6w23ouBq6zxgxWZyKPE4LbgByYzEn+PVLcZGCwVDM1unG8lDKOIe5R1a9sXJ9drPXlRl3KuziD5VqvD6XxRf/ZMeL7RZ9aVHetyUWpwpbqaV5q+Tjv/ncYG31ea1TXWTpYNbvcMrUH68taQk4Wcjt33QoOSk7zFePBfNF4A4CerjxDGhl5gb/YMijZsqCK18zmT3SEcL4/1TWl44PWmwZlKogXkCUJzp2UEmr6ByVgnEMRi8vaHuzI5PVUv6UwW0xAWJ53kRxH8SvML/HeLf00dy8IyJHsubamPy9c24VjJ5ryaEJ+csggTQwOZnCVpxamZ4q1ewH3VsR1DlIyrp19o+zw1Y7KitGOOKSApFV/nbQEj6a6zMRozOGFsMJUJdRjvRtfgZFmKhaa/XR0EzGTkOe6MQo6VbM3Eld2Yhp96DCUE8TjrbntokLHGGqWMmeBaCRdbcq6cPTaerLoRTd/SppXDyCRMYCkvwGcQWawNHIpqAT1U6PHrt/K6YOfpiq+fcTOwmcmMNOs0nevx9Y0JHp5oArDWz7PSd/iR41cA6I88LUb+zWtLPD7V1D5Ixyc2scyYYl5eqBdvLnO4uqMBxpVGnQfmVvjWqmhUjlb2NKtUyvVZb9Y4UBMAlskMCUJH11srljp0OwXKVWGpmnsV8uo8xYkm7e0a1+4ImN3oFXny9GsaBE0c2MCwIlYvSabc7Z0p7jt5QYfyatM73Lkl80HGG9Ht59hW4vRD0+tcXZ/Xvkh5b0irn6ehrAmavqu1X64V0gtcBmEKThymcz1WVYkTgNt9lydVzbjfvDnNqfJYjPtKw+EvLcr9f2V9AssQ7VH6jBu+wYwKMbcCi2Olvg6hxcCOYjSrXkQnMDWgmM4kaiMkn2/2Ik6ULE6lgvORS8aKtQlmJzA161V0YjqBqcdaK7BY7aFr/5Udef9TptY0xmA+iA0GIUyrJIidkUneTnS2bVoYd0MV1r3td3miOk72APFLA7jQijhatPSceG9VLEgmPZkjvrppcqxk6b/NWHChJ+Njys5yqmLQvsu2QJ5dOn9GHMzbXFeivndOWkSJwf+4/ccA/Fjp/XouWcgnZK2E9YGJH4/4lzvfIU3Sjc+9/ZqkQ//0e16T9D0Lkj7/+c/z+c9/niiKuHz5Mj858Vk8SwZYzU3YGBo8M5D0YSuxeW9B4tyWIYzNVeWKfawkL3zKOrV8k50RmnU4URag86oy8DlSGIdibFNS+u8u2bE1CmnE8haXDI8npyy6YRpDH9dXO14yuNEVt+b0PFECWzpbKeHV5hjMLeTEPyR92nu+OHCDWBhMZ0ytsclZwsqkC7dtivHlcjE1eUQXtC27BhNeogveDqOEom1wQNHpv727w2lnkpdD6csD8TTvmrD53R0BSfflKvyLHfFM+r8d+JvKLFHOGyVyDekE2g5MLrcjfU/LRVuXOjhatNkdon1c1gbWW4z0LBMOFWRhAAGNw0jsGgBOlS1dgmEUG9hGwrYK1b3e8nlyyuaFnTQUYrExiDlaTI8ltZ/S49rGmHUzDFkUVKk7jpdj1gemFusHKq3/5T250GnP0n2XJMIIpsd2THhpN2ImY6tjhbzRtLVGqzGCQ8VUlBrw0q7HidK4P+pezDPb0l9/eSHGNmNudQWQ31tr8exWhfuV3uXVRl4zWPdVxRPnoWlxOn9te5rFYpsd5XRdzww4t1vlbE3AyY1OQbNQ/dBmMjugqFLeo8RkEDgkKugxW2wSJwabXQEclYwsypu9orqOIh85KGNnurZHp5fXqfa2FRFGli40axgJpXIbW7Fhm+vTVMpyTaYVE4U2k8u3Adi5fgDLjqjMCxixC336m3UMxcoN2kUMI9Yh6X43R38gfTU5tU1zr0pWhRfXtycYhQ7bKux3z8wdwmjM4m23y6yr+5nNd9gd5qiosizrvQLL1V1ut6r6HhwzZluxZw3f4Wy1QV8xbX5kaQD6qzeyPFI3mVXlYxLEsfs3V+WZf2LOZqXv8FA9LR+TZyKTaqFszrcszTQfzMf8xvYuHyxLOH7Sizhc7PC6AoklJ8IxE76wphi+ek1vDK92TM5WQm72xoEJ0xhnYbpmQs6K+fKGfD5ScFhRL/kTUwm3ujZXFfiYyzr0w4QlZRb5csMnSCIOeNL3limblHQzkM5dIIDGMQwm1PtwsyeGwGkJEz8WYJRuHL+y0+Xd1aL6rczhOZXyP5NR+ifl0TaTcVkuiBM/CDBb6Y2Z+2E0DotvDRMOFQzaAd9hkPRZSkX3P/0H/2eP2/FZOPRne+1/Edr3LEhKWzrAfnbpM+yonV+sMrlWlYD63VMRl9sySY1iCamlu6iyIxb06Y6saMPOXS7QM1kJG6U+J0V7XIAya8vuKjUiXMwbbAykbhrADh2eLNd4uiVpqCfcGqpmJGsD0UWl4bbNYcxeOOQvH5CJamPgsDU0mFSi3ittqRs3vAuAzKhMlq2hSZCMzd6CWO59VtHHUSJAoKW2gkcKJudacpMPVDzW++Mw1qWuuIYfLY5BQ9mNuabS2OdyCWt9Q4s4Z7NjXVDdizRbAWJaCeLCC+Ju7pnjnXPTt3i2IXqEJ+t5toaGzqi50om4p2Rpz5SaGzOKDZ7eFRBwf7FAPxoD1LKDnkx/cfvf8dern9ATsWTzGbre1iuNiPmsrc816UV8ZUvAx/fNWKwPbB32k+uOdImbtYGJY8JyQX6wPnC0uR3AxtDSYLUdoLLbxseaz4ZajJ0k8uxSncStnsW6An1TGYvHJgb0NGNh0g1NHSIrOwHbQ08nIDR9i2/shHx4VoGX3IAdtVBPZIb4kaXNIy826iwW21xtyQJ6pr5DGFtUc/IsXt+a5XhNwkdxYrI3yDNXkrhNxvWl9tmWbDrOzt/m+VuHOVoVPc9ap4xnRZxeuCljoFnhWkN0Q0frW1zZndLZjyen16lWmuw2BGDUqw0cz6e5J5/DyKKv7uHkvW/yx88+zgPLEpqrHtjk9Zfu5fT9Uuft5Rfv5/jhG7qf3cyQYOSSKcp4GbSLtBRgKFdbXL25yPykAKwgdBiNXFpKjF4tdOgOsuwq0NT1XcqqsO4ruzXeNXdHf1fPden5GQ041waS6TbljYFP1RvhKGB0pV3U9daydoxnJrrOWy80uL/W1b5SNTfEMhJu9uTlrNzl3F5yQpq+rcNBlgGX2wZtVUngS/0v8N8c/BvsjMasZt0N2RiOw3F3j9urHVsbvbYDCUH/takZ/dvVvq1ryl3qDnXB7xOliE5osqfmz5onLFJaX82PE53sAWNn7GsqiWQ+Z+k6mfNZW5Iz1JhOo+WpqeX5ts/h/Li2XcL4/S86sqFKNzcxYlRbVYDqxd2QimNzWBF+eZVNm5aQ8uOEE8rUsu1L3c+a8knaB0l/sdu+Jkm19b6ljRpndDFDmSC+uWNqIfaX+7eY7U1xr6oY3w1FuJyChBhhkU5V5PO1jvjtpEBgFBs825MF5ABVjhTHddBKTkwrMHlcCaRf3CtjmzBryuR8sJBwWelzzlRMXmlETHpptpbJkzmH57dlEgvihJksWow9jGNy1hjM+RH8QV9KMMxGc3xyNsPmYCygLjmmDj/d7gnIS9PUWwE8UXf1f1e98c7ucc8hZlwYMkwSyi5aaPnGsMWT5ZpmKS60IiaVfUKUWG8pktkLoRMkmn3rhfDF0VW+PxGfk14AD5dlsfndxib5OMdHpmSBWC5Y/E57hUdd8bcqOgabA4MPTOT1dU1bY31PPxKND8BP1j7BSi/WDE0YG2wOxxqlsxWb3bv0T+eaAfNeRv02oh+OTT8XcvB7GyOO52URnMkm5O2Yp5U4fTojwEgZpTPhxbocCNhMZUJeVqZ975wKOLfncl9VTnyn73AwP7ajmM4k2iW9HUiY+GBBgMsLOxVOlXvaY2hnmMEyEg32n9uJ+JHFkL9983kA/uGBdzGl9Do5Fe5aUeGls5ObXNidZKh0NtV8l5VGneZA+nY218NRAujtXg7bjMaCbCdgu13mhCoOOxh5TGYGTFdlI2CbEX3fo9eX/npu7QB3lP3GAwdvcsZd1c7XX7p+hB849Tqzc8JwDXs5zl08yelDUhz1tRvLHFShuWtvHuV9TzzHqKs2QoHNfe96gf6m+CS946mv4TdKhMPxItNtFzWT1NitcnVLFv2lwKGc6/Hbb5wF4F0HbpPPDMkrduiZm8s8cfAGfVVzzgTtOL47svj62rzWGDlmTC90tEXAKDb1bwG2Ry5BbOrU+9s9m6NFeR5vthwSJDMNYLXvcb2b02L93ZHNdNbX4ChnRWPTTm/I/7o24C/VhTmquBElx9Ei8L9V+gwFO2AuK9f18l6WmUyiQfWkF+pxt9IXlnpasVS90OEzM1Ogcrs2Bg69YJz99Xjd095N3dDkTn/sbTSXTVgLDT2ffr27w2JU0yVOMpYwODMqE7dow3JBrvkbnV0epI5ljMP3dS/RBaJPFEVTlda6qzix3nDsDCVrNTWqBQlrp1m795QdogTON+UmLMPgUrzGEzkJ39Y9NNDLWLAbBPxG65cY5/T92TcjDjFi8z/9wz/F8fbbPpOkUfjfO/BZ1voyqQWxLG4pCxHGYwH0aj+h7BocUk60vdDEMRKtOUm9iq6pCq5nyjY3e0IDA8zmxmaJJ8sht3s2t5Wd/dGixa1eQlktxhf7UqU69QhZ6Y0f1WTGoOImOpMnjOGl5oClrIC3XT9iuWDpiuE3eza9cOw3UnHGwC1MhO1KC+9uDwX0pcLMN1sWW6OQg4rS2B0ltEOZEO+vum8RRDd9OJCXNF6AP+j/Mp8o/ARVRY/4sdRPSjN0LrSgqCjuuidFdz80JRfS8k1ixtcZqOeQ7hCvdWPtc3SmImLrtLr4VCbhchsmFQBd6Ue8YxLO7cl1nConrPRN5tQOtR8ZehfZC+FsNWJHedXkbRGiPzUp1/XF7R4mBkezAtCWi2PNkYmI81PjyWOlmKlMoLUcv7a1x0OZSS3WH8XGW0Kui/mAa51xSPbuFGI/goLDW4p9eha6BEz1rp3+dCbglzea/HfH5Lq2BjkMI9EGkcuFLpfbBQ7kZYG908+Qs2KKyvvHNWNK7lhcvNLLs6RMG1d6BQ4V21pntFjd5WZjgpQf/PZemVnFWD2xcJMLW7NUFYAoehIay6pjl4sdwshmu1kBxtlvewpwlbwhRaXnubE7xaH6Fj3FDk1VG9zemubYQUnzt+yIW6vz2s/o4NJtWrvCKjlOQBxbVGZkg9Jvlmi3SmQUw1OotNjbmqA6KWBtbWWO6dlNCpPCgG1eW9DgrDa7zebtOWxlTXDxzgJnlm7gKy+j21vT1IttfNU/nWGWxkiFi4yEiVyXK8or6vTkBuudCq4yovTsgGutqn6vc3bI7sjFU8B5d+RocLI+gHdODjXwaYxsYgxtNulHJv1o7ISdtyK+uim//cTCiKudLEeKA3VcFz829SZlfWAy6SVcUZsdP465v4YOV3tmgq0A04WWZNSldgF/vOWzmM3o+eRCK+Kdk9BUf/ubzds8lRfN2SAUl/o0Lf/FVpf3TeS1Nmh3KIx7uulYKiQ4xrjSwN21LXshNPzxsaJEjj+r3rUXdgMO5lzNSm0MDDp3FYvO2WPWesJ12PZ9FpQ5rW3K3BNqcCdz3ost2YS8p57XIKlgw290zvPJwin8eMQ/3/oOOW5f+8m3nUk6sPy/fc8zSfsgSQ2wjxU/i2eqiui2wVQ20QvX3RWt1wcJs1lDh8gOF96a+eWYoulJQ24ZS4TKKb4PE3QZibsNGkEs+DMWurTGiZJLEKMrs4t5IPpv47sEjWeqco0NdR2zWSlimhq+dQKTb+4NeL8yP+oGpqa0DxcitkeWBm8LuYRbPYOlQhpekut/cnoc5hoqmn5vZLA+iLiWSOjhw+VZtoZSOwzEdG4Ui+AdhCZ//0zMta6qITUclyQwSehH48KSaUHOP2yLQeC789PsjBLmcimoilnpjfUIj0+G+riuKaHNVEOwXEzYGhq6/twohrlsxCsNAUKWMS51kIbhvu1L6vmPTs5yp2/qZ3i87LM+cHQIbXs4rmreT3w+MFHQwC5rJdzpm7zUk8X3pFej6IwNRHdVv49/L+nXIN5FQWxo+4BBKIVoU9+mSS/izsDS42N3ZHCyLNfxrR2P05VQ124D8Uoq2ilozlJzQzJWmtLsYZnoRXIm42MaabgxYTbf5Zby7pnIDFnt5SkoT6Fj1R12+kWtJxqFjmasVrtFzkytc21XGIsYg9l8R2t0jtS22emWqGQlrPWl2wffUuC16g1ZnJCxtdWqMFPdo1CUhanRqODYIc2ugFXLjMlnhhw8KQzpuRcewFfhxvtOn+fZcw8wX5bncOrRV1i7cJipRclAiwKL7l6F6gEZa53NGsHIJV8RYGgYiXbffuPSMRYmt+goo8lcZsi51UWWq0pQ7vr0Rx5XVO22hWKL31+R4rh5O+GhiV3t5WQaCbYZs6c8li638zw0scedntxTyfW51CpoLdHBfJed4Rhw9SOL68pccrHgc6Pr6k3ES80RP3QAncGYtWPuqGSEjAXnGj6fOpjq8Ex2huPQbxAbWEbCnUFayy/mUsvU888ftjf5WweEWfydOw6TnqUlBb1Q9JVpsendEUxlE/woZZfh9baM0++bsTi3Z3OilNppmKz2Y06WU1Ym4etbEafLY1PLtQF8I5Cw6bH4kPZJagUGr7dHnFbi5ZlMxMpdEYKsJeG8NLN2a4g2wf3K4CpPuEf0e3hr2OfD0x7flEfKqYrJlTY6OzRKxJg1nffrGdhUc/GGP2Qxm6UXxgSJz+91/vl3BiRd+fG3HyQd/eXveZC0H25TbSk/zuxwLVjrj/UtlmFoAHGqnNAJDS0s/GJrkw+VpzUzkCRS98hQZTjW+8KQpJlRZTfRE41nigt0ysJsDGSHlO5eRhH88eA6H7ck46bujb16Kq7E0FOh4XrfIGvfpX1yYiwjYV253L7QEufZNAvtQivkoIqnXelYzGUTdtWebM8Xb590wljMmxjA/7AhadzfnzulF+ZuIGaaP1CUUEScJOz5sfZ1qXpyX2MnW4vXGmOt0GJh7K6bdwxccyyCHkYGawM4gOy6d0YJE95YV3W7Z7KsGL3zLYvrXYc99ZymM2LcmIbMBqHBkWLIqyrl+U1/l6ODGkX1BlQ9uKaM9t45GbM+sLH88etxt7nk5bbLTDbmQM5X39l4aqGK8WjcpUkLbHm+n8hVACjYAWFiaOfjSS8CLPX/cs99FQ640nZYyI/3MLO5GD8yWNfG1xYrvVgb4DV9eGFHruPRiRFbQ5czKtPr2a0KR4ohW8rgsOyI/mtbLfxVL2Qh39P1xuqZAVeVs3XWirjRLmu92Ho/x8Mzd1hV3j+WGWObkQZVq90iS6UmAKcmNrm4PcOUMoD07ADPDjRz0htlmK/uklPi6w+qMh2pOHkUOuwqcJZRFgS+uuZ8rk+3lyevwoKWGZPNDUhUuCrj+Jw+IwVqg4HHQ8cuUp4VJqm1OsXMkduc+9YDun9HgcNJdd5vXz7OYn2bKyuS5n9obg1XMVSTpRZxYmog2B1kOVhq6M+vrR9godTkzIyA7OdWlvjYovhErXdL7AxyLKr+aY8y3OiUmMv19fN3rYibPXlOuaHDsVKPa8oJve452q9qGNn4kUlV+XXl7RATl+MqI20U59gdxbwiZBgP1w0eqMlzCGKT5YKhnbwHockfbg9Yzgrwe7AWcCDfI0gErIWxwXJRNk8Aj2an8WPpj1Pl1OdN0MizWwb3VU1d9ufXu7/Pj5of4VRFft8Y2ZwsyP3d6soGZqSAi2fCcsHU7/iFVsJ9VUdvnOqe2J48HEsNvqJn8Koypl3MGyxmPQ1WdocWi4WEjDUGXHk7IVI7gcQztXv/J4tHWBuMjWpXhyZrA4utSECy1cozjGM8VcT3cls2rIeU9vJm12BSFcmdzGSpuAkX5NX7zrU4hLcx3LbvkyRtn0lSKPynpj/LpJfWLTLYHsYs5MeixTQ2XfNEC9NSNG1Cgm0Y3KOKkF5um9Qz8Fy7CcBjxQpBDOd68sY8WChr9qjiSpHZ48XUlE0KTqYTRBgrnw8lfvFMSWEFYRWe7q1zvysC2AdqATd7Dn01rp8frPNkfpaXO/KSv6NSpB9K6QKAraHNLRW+m8yI/9CdfuqoDS/vGSwX5Lp+vX2BHy6fpKx0FN3Q1Gn4hgHPd/Z4qiYLph8ZBImAsvS8wwhuq+3cvVWLlm+8xZ02BZgVJ+J8y9alQ85WLYJ4DAoOFWU3mhaHXe+bLCt9RiewuN0ztfvwg7WYOwNLm9T1QoM32z5HlV9VyZHyMudV+vxMRjJcAEZxgmca3FeV83RCk62BoVm5iiPPKk3zz1nj0EMYG3RCg6zSN81kA7aGjtag+LHJMDL0blbKF4S62vpUZrzTrbgRd/qW1mtMZxJlaqlCt9mYbmBqn6msBWfUQnSt6zKfDXl6S377vumYqhtwpZPV/fGBuR0GYaphMxlGFjUVfhqGFluKsdgc2nRDgw/Nybb6V69P8IOLTWYKMqY3umX8yGRSAaGu72m2Y7myx51OmZpKj3fMiFqhQ1+l3ntOQKXY4eWbshGYzncJ7hKBF/N9bm+L19Fzm1N87PA1/vj2EgDvOXCbgwdX2d4UxuZ3rhznr7/jedotAVX1qR3WFINTqwlSGKi6bp43Il/uMOwJ+LDdgOqRFfrrAsiTxKTfLOrfd/s5Buqai7k+/WGGgwsK+KzPsNKoM6uAzyh06I4y2hupnuvqAr+j0KGU6euSJWFkcaNd0eaSM4UOfmSzooBhyfXJWCFtpW9q+i5ZxQZebucYRnBUmSdm7ZDbvSxf3pbn8KMHXNqBxde3ZSxOebauR3i20ud8K6cLtP7obJ5OYFH1xgtjFBuUVKbgztDDMBJd4uQr6xYfmJUx3RjZZKzxdzd7DvFdbFHZcpjPmbqkSMlFb2bKrjhdX+lIf9RcKdyczoHzOakpmW5Ye+HYGBZEe7c7SjdVUkw6zfidzUr2Xsr6z+ck4yydb4aRoTc0YSJJJSnLP+lJ2HxvNA7HeSa80pG+bZptDhlTuoLBit9j2xLG002y9I0O9xlHCBKf3+9+h5ikS3/17WeSjv/KPpP03b6APy8tY8HTiu44XsiSsUx+pyvMyVPZk3pHP4wMbBOOqjFTcRKagcG1rrwsQZKw1odTmQqAFihWVQFc14SlvEw8N3oOp8pwoZV6HZkkyZjCvTBscSpbVg7Wwh6ldYcKtslfnZzifFN+G6pdfjqZfLo4xdoAPjQpO8GGL/f4jFo0DxXQbNjGAE5VQp0J1Q0TXozfpN86DsBHCyfJWTGX2jKRTWbGWpmiJSGk1FNniIDI+4sSTonV/Zwqy7FvdOFUJeaPt6QPThY8XVh3PhtRcW1OlOTzM1sRzXjEByZz+jlVvYhXlK5oIS/CeRB7gKlsQlUBjD/ajKg44+y/YSTCzdfbslg/Xs/Qj0zNvPUjWFBhvFFs4Mfocg6nygkTCkiCTJ6LhZCYNNxm8nRHAMTnDhS52M6gCD52hg5+ZDBQZUqe24k4XHA4UZL7v9Z12BzYmvZv+obOfMtYMeeGJvfXUtGuxUIuoqL0XYNI6tg9VPdV37pakzSbDbnWtVlShn6/sxZwqpjjg3MSbhqENre7RWYUg+PYIa/uFTlVkZs838xr9vSRCXkvLijd0KlKRMEd6Qwty4i50S0yrZywXSvSobiu7zFXaDNVbgKwujdBrdLC6aqaaCpkVVAszYHJLaLYoq+0U9nMgIxiTr7/0HUqpTbff/QSICDolQsnOTwjIbNPP/wCoW8TKP2XP/CoVuS82UKP5k6NQ4+/AsBLX3wPR8sdKgsi+m6tTjPaK2EosOt3PXKlrmaHKhMNhspxu9Mu4tgh6+tKyH30BsEFm7bKUPOcQINPULYHYRryCtjqlZjKt1VfhfRCi8XSQPfXH6xOcEj5f3UCm05oaTF/aq0AIjZ+qD7iQlsG8clSwkJuyONVeS4Za4BjxnxS7J3YHRkayDR8h6Id82llMjQITYpORDtI3btDzjUc7pe9DwUnxDYSXt6T53KsBKEq4jyKDbJ2rPsqbye81oh5cjL1AhPvozTEvD6w72LpRbxedFJhdkI2NnSG5+2uwbGS1IcEmM4mxElWmz6u9MXPCWAmk7DSt7TkIGMJ855qPB0TdkcRjhKBHypEnG/JNS/kbM43Y0rOODw9itDay4zl8vxgnbOebEofyeZ5sxUwU5DfP1jPcKElQH/Sg1Ywy81eQJjctRv8M25GEmIkb6Nw+ztZnPfPcdtnkhQK/y+mPkvZkcnmxcaIMyWPyyorYilv6xfcMhLON229YOZsmM/Gmi5e7RtsDgPeNSUvjx8Z/MvGG7zblpprZ6sRG8NxSY4oGce5b/cMmkHEUl6+v9zxOXiX+aRnjtmOYyXRNqVx/3+08S9YyD3Bp8rHALjTl0khFWofyEmR1tT5OU4k7R1kUhtGhq5Vt9ozmM1Jyi9ImnqQjH2T/qC9ztCQHdXHi0eourEucfBmS5yxDys9U0q5F1IDRCuhF5rcUeyQZQhAA7jWEZfs9H5lFzj+3A4SJj1Dm9T1wnFIMGOJXuecYABtJPfP9r4OwP08xmN1R+simoFMgmmoM2ONDe7SsGsq1r/YjkmShAdr8u/fbsD7pse2EP/z1j/l/3bgb5K2nJ1o0LjStzhcCLilSod4prBvaWjimS2DB2um9q/697sNnizXdN98u+nzcVVbwzESbnQ9HaqczwkDdX91pPrH1tlqzUBcmtNnNpUZ4ccmK/3Uf8fgVHnIrd7YfO5UpatNDsvuOO0c4NxelcenZadccIfsDfL84kUJx/3texo0RxmdoZV1fF1mxLYiGr0CgWJOTh++xlfPn+HeWWFhNlpVhqHNg8cE+LSaZV5cWeKMcqseBQ5LB+W3wcjh737lYf7BQ2JaeWtvknquy0RpHNcIQlsv1vOLq6zelOzGUrHLM5dO8sn3PQ2A6YTEgU0wkPvPz+wyahTZvCWdPXfsJrffPMLMglxH6DtECpC72RGNrTobu8I6TVRa3NicYUJZJCSJwWqrxvKE6JsMI2GkRNw73RI3OiXKCkQ2fSnwW1chQ1eVbDm/M62PFSUGUwrMDkOLFZX5d299l9VukW6QbqJ8rndzegw8sx3yVw5GNFVIbWtoc1KF4n7x1pCPT1Q4XhZge7ldwDETiioz7lrXpeLEmgH9Z5sbLCezfHRePrcDm8tq0zSVFderdK4p2hLKrbrpRiDDznAMtvd8h2uKOZJMWilzItdhKrNWOZZlwNPNJh+bkElyeyQi8fMteX9ylqn1S8NIyptcbo83jEeKoS4efLFlsjYaMevKM7/kN3l/tQLIu58kUo4IRB6wkE94Xu0U3j3h8Uoj5mzV1NclxrapOa2k/IMwusNI+sOPR/zS9ndGuH3n4g+/7UzS/Il/s88kfbcv4M9LC+LxwhUlMZOZGNtI3WljXYT2dMWiFyY6Hfxyd4hrZrTodz6XMJVxiBN56Vf6Bg8Yp7QrrGEkOgR0qpK8pVTA0WJM1k5YVQBiJuNSdMZOtc80OjxSFoamaEdc7Y+oKYv949kP80PVmfECkRNhoasmm3N7cCne4CNlWQR+vX2eH8vcAwhj0QktNlVI8URZwjxpltVlf48H8zUudWWi/vTMFK83VU0rR4ziXmlLX83loB+Os8yiWOj159RkU7AclvJjU8swkcKcAO+e6vPNnZwWoxcd0UGkwGYqI3YEKUjohWO33ZvdhIJt8Eg9zQKyqLgRP5R/NyAM3q83bvGZKbn/GJtGPLYumPQC7SdjGvL7FDQ9ORVxs+fcZa6YcKXjaLfvv2V+jluqQO1MVryzUvC2PojJWI5mZe4pR+TtmKYK1XkmlJ2QbeV182OzRXrKAdOPDJZyLoNQ2Sd0LU6UAq4rcfq/2tzlB+tTupREOzC1IWbJibCNhJZiBqqJ6E/OKo1SN3DYGGS0a3YKcovKmDDn+Pz6Ddk1f2xhh/nsiKdViY/3zGyTtQM+c0SAsmEkHK5tM1TjeBC4dFV4qJwZsDSzzqoKmb14+QSPLF3n5VuHADg7t0Icm+wpb6OtVoWzM3fIqrBfo1dgY0P+9truFH/v/uvaj2ixtk0YWXiKXWm1i7p0CMDKjYMUlch7OPJ4ZOk6kdLKxZHJhddPcuTIDem7lWmCkcvUQQFFjdVppg+s8+abwqZOVRvk8vJibq9XcOyAe+4RYPfG+ZM6aw+ESZrMd/R1Xm3WdDmLpUKHMDZ1iZeSO8I2Y+2T1Ig8MnZISwGbMDF4dHqDl1XJFxBwBPDbt6alhqB6xx+sybMvKKAzSAI6gct/v3kOgH944IwOtx6wMpSciG/vjhe/2WzAmhJqn670afuO9hz62/OTxEmkgfP2yOKBuvT77sihHZj6vJ3QYrVnMJFJbS4C2oHDtxULNZ1JNAhaLkZsDa2xJ9qwiZ1YvLMi81zOSjjuVjRzVHQSOoGh0/wz5jiMFyPJH6mp4z/Z+CX+QeYndYJFzQPP9Ej9fCcyFW1p8EojYdIzdbmgIBa7lJNFuebXmzHHSpa2/egGoqdM56KMZfCtviwSTxYnKdgyt92dmPNn3uIY4reRuYrj//RvvgfaPkhSLWdDQy1cS1kbP0q0vb1hmDwxJW/i7shgMT/2/JhwPKIE/dvlgknOSrjcTkNC8vKlk83/sT6gZMgC8o4Jh5mMqwGDZcLz2ybL4woFbA3GQEA8gOQ8/cjk/nJOCw8/Xp2hFRi82pLd2tlyRpusARwq2CyZ85pZ+LHKPbooq2caVJyYN1Xavq2K8d4eySJ4wK4wm02YysiEcbtncKKceqCYbA1tzfY4SvB9piKzyc+tf5uP8ihlWxbQhZzsFNPJY3c03jVuj1zmc7H2cnptsEcvrOqCrwU7ph2gPahAwgIASeLhmTG3FVM2m4u5o/xbQADVO9xFHZ6suLA5irhXLSxbQ0eHRi+2fdaNBo9kVJX3ssFCblxq5Pd2GvzAVIU/2JC/PZyzqSpCJm8nBInBhip/MpWB+WxAQwGZpm+xMRz7QU14cKtnapD9jW2bB1R47U7f1IsIyGLoWTE51V+fm6/wSsPQgL3kjMHXgbzPS7suH5kXdiNKDE6UWzptP04M8nbEULEjvdDhZi/D0aIAgW9u13SWVJIYHCo1CRIBMr9xY4qH6iNclRk3le9iGonW3ewMchxXLEp7kKPVKWpm6WSlQTYzwLPkuXUHWaLYpKmMXJenNggjixWVDTddauqU/wcPXyUKLa7sCmiq5rscPLjK7paYTeazAwwz0ZqkKDapTChq0Uyw3QC7IPcXBzan7juPp1zCty4cJlsY+0h1OwUMI+GEKrWSJKZ24756+yB5b8ieMtPMuiO2O2WKqJDZMMulRp3jyiDz7uw+25Laa7+7Imzh41N9ik7AjhKjh4nBnV5Bh5FPlDvsDfLaAqDhO1xpynOYz4nOrKA0Srd6WSpO+Jaafb3I4u/N3AcIq5tmr31qccAzm0Vq3lh4HONwrCjzx9bQYxiZnCyLtvDZrRKHCwHrgzQDONahudSS4E2l73tyekDFsfWc99Kuq3VAIKWbnpiUa74zcDjXHPLDCyp5wy7TC8esdpDIu7qnQ2gGeyPRDIJ890JTnumcm+XmXUz0T019hlcaEVW1U+yGMTMZkx2l4at6MpcBnKnA/2vlfybTFg3bfzX5CTY6CWcqaYanSd2LNHu2lI95ejtgzlPaOhMez8szFgZJNov+dxBniE/S24fK9n2SpO2DJNXKbsKuYj+OlsQh+rjaZGWsWKdSX2zHHC6YuqBrLzSY9BKWC2kKq8T9U/fV2z3xHllQk4SDxbzKXmv4cG60ycdyMunnrYiTZVvvbkqOwX3VARdasvu70R1raPJ2wu92L/PXqpLlMZEJuNx2+cC0HPubO3KsFCcFMRwtBgyVedrW0NL+IqNYHG4eVqm0eTvCjwyOlGRxageGuByr3dt8LmJNZc0NIzF8TO35V/shS3lbMyMfyTzK5ihiPjsWnGcsNJsWJYbeJV7t2MxnY/JK0PPRiiwGKbB5bCKh7tk6VDefi7R3TTcE2zR1vTnDMCm7CV1Fn1/v+bxrwiZIUkARsTuydW23rJVox/EHaw6uOaUzaqLEoBWYGlS+t1KTcKaCnMdKoWbDMpbB7shgQjmdO2ZCL7LYVDa/iwWD+C7GZ2No8VKrxxGVVeSYBmUV5jxZTtjzLV0Q+V2TMTV3xPVEBsEfbbjcV4uZUUxKJ7B5oynXeLbqAy6rSphc9Xx6QV6HHvJ2SN0bck2lz++OTI4VR/RVuG0h53O0eJejcqvKEaUrqrgS0kkNIR075PW1BQ6q9Pr56q4GGxnXp3VXBtrN7WkK3pDj0/K3/WGGuZkN6iqEtN2qUMl3cVT2mx/aOAoEFEod3rx8lIeXxCyy3S3wwhunOaKONXlgnZ07M1iK0ajkBty6vgjAnWaNB09cIKvGfxzY5Oe22bogOpJCrUlra4KJimSkDX2XqWIPQ4GTyDeJFRvU9T0OTG4RKMDZH2aYrewRq76NE4P7p9dY71QAqBU6LFakb/KZIZYR8+PqcxSb+JGts/2C2MQ2E3YVaApik5vdPAsq+20QWhxQ2q9+u8QgtHTB22OlLmFscntPnumD5TwVx9dC77wdsqlKqySJwXJxvAjeRuadFJxNej5XOlm+tSOT4GMTXWwzpuzK+HitkWNRaStnMjEv7zm6JNDldpY321IRQI4lAD51Cn/nZKS1c66Z8FA1QzNQBWt7Br0w4WHFCEtCiaXD4q4p/ZtmWpbdhHdUZexc68Z0opCH63IPT29FvGPC0a7YB3ImM9mIqpf6So3lCsPI4J78D/LuvGyMtoYwnTHYu6s+Y2qqK9dl8HjdJTWLbIwM3ugISD6cyzLpwcu9HmHis9/+Yrd9TdJdBW63lD6hHUiWxGm1i6i5oaahG76YOD6zK5PWjxxwuDNwdEHGspuwOTCYzqbZbsJ8pOGXxsjQtcj82GClZ3BnqDJbPJe6Ny6Hcqps8PJexFJ+XHi3ftfObyYLl9syudxXNZnKBNrXZG9ksJiPuNUbx/5ns4kujmrdZYCZtxNudEzNhhTtmD3f1L99rRFxb9ViEI2F3pu+CnHQ4wPVmmbDXEvCb6nmwDJlYptSJVAGkcGUF+rrvNyOdEXvd03Y5O1Yp5Jf6Tj4kZjNARwriaCzq3ROlzoRj03If/uRQd6ONevS9MWEbikvC0GQGDy7lfBgTekoMgG3e67e7VbdSAPIX969zmcmD2mB+IGcwc5obLb5WjPkkbqly2NU3Ih/c0f6o2h4fP98wo2uqlRvyuR65q6acjPZWKf5J0ih2lTTNumF2skawDNjLint03El9p5WNcO2BhkGkcmmuuf5nIiAAQ7mB29xbp7IDNgZZsmrBXNn5DLh+RTVAmsZMY1RRicAzOZ63FAZVrsjh8enN7WL9qW9CebzXb1QLda3MYxEZ381B3kW6hJ6sKyIp68e5zFVZmTou9hWxOysCKa77SKWHdHpyMLu2CFD3+V3romr+ocXb2KqEM/5rVmOVHfIqVDczb1J3nHqdbrtMfVan9tipOrRebmhzl5zPB83N2CoSnbkJ5rs3Z7hS2/cC8BPfPrfELQKdNaFlcqWu4S+w/k3TgJweGGFZqMCQLXeeIsRZb+fpTvIMqEy6Cwz4uVrxyirENxat0RdZffNV3e5sDnLugIrTd9mPjeirJ7D5iDLwzN3uK5KsbhWxLm9EqcrAox6gUNDheLuqTa43S1qr6ucFXKjm2dRsWWWkXCrm9cO3De6LmWVGTqXHdELpbab/BaOFgdas3a5bVByxrrFIEl/I2NvFJv88h25pu+vVxlGhs6yLDm8pSzPfdWAQWTqrM2sHevNDYhw+/Wmo/+24iasqxqUjiGscGpiebUTkzFNTlfTzDpL65POVi2e2e3rRI/1gdiFpOVSyo6YY6aAS84t/9/yxagyNbHcGsj8kc7by8WYV/YMFvIqLG0n/MFum4YpbOF7Moc1G2ybMIgkC3YUj/gnG98ZTdLaax+nlCri347jdgLmzv7O97wmaR8k3SXc7vipKVvCja6hdw1L+VCzO1/fsnlsIuLr2/JG3FsRM8k0fJJqO6rK9+ZXt3a435vWO5abvZjjKntrd2RQ98QZGtBhljQUdbltkbUlDg/w/O6IBysyib3Q7PNIJZeSO7QDmQzSqu7nmybbvs+JYprynvDzd/4ZPzP7U4DQ11OK7RhEBn6kiSL8WMToN3vpzhgW8wlrauIyDbQpY5TIBJoyQyUn5kLL0oVVr3ctDuZjbqnsv7wDb7RHahcmO7h0IlrKB9zuOXdZJIjJZXps1xSBeZqmmzAO1XUCCUumfkP/fPsGP1A6ouu8tQMp4Jvqu2xDNANpiYKFXKjrWF3vWuRsdI2no8U0UyxS1yEarlTrEMbjBeJIMeZye2y692yjw7yT18/81UbEZtLlyUoFkDp0V9sWO4qXv6c8tgdwTBHEptXVO6FJxRlnEYGwb7MKkB8u9Lmuym4czA9ojFyOq+yu9V6B+XyXawr4LOR7xIlBQwGbODHIWJEuvLo7zHK7J2MtxuBUpU1WZZmVMwP2+nnmygIKPCcgSQztdbTdqOprtMyYjOtzXQmR75m/zYU7CzpdfuHAHbY2p9jrCtA5NLfG5dUFco4AkNRVOz3P3MS2LjSbyw7YbVa0fqnTz3Fk+YYucNtvF/ByQ91XXqGPr+6p3y5Qnt7FVt8niYGdGxIHY3I9aOcJFaPTbxfIq9DTpYtHOXr0GhcvCYs7N7VNEhu0FSuXttRxG+D5NUkxO1PfwbMDbQHgR3K+FHCv9Yo0fZeSEnYvFFts9/M8vZkyOn3tdXWo2GV3mNFhr6nMiIwV8oLSGWWtRM8HADe7Fg/UxuLpueyQS20ZL4v5EVc6Gc5WJMTeC22agU1GAdRrXYejxYDfXVMbR8fhlLI9mcgENHyHO315x9OakKk/09GihKrcuxIBUh+1ohPxzR2bpfzYEiNmbAEAApzSjN8vDs7zQe+U3jj1o5izFbn/YSQMUCpPSAuPp8XIK65Yu6yHco8nc0W21Utecy06Qcwz0bMAfKb6bl5rhrqY9GxWNr/pfNMKZO5JNUw7o7FbuWOKO/4wEuH2rzT2QdJf5LYfblPNNODBukxMl9oOM9lx+ZB2YKHsdzhbTdge2TxaH1eMb/sGE8rQbXVksDuKmVW7+A+UpgliKbgKwvhc747BRss3OKzm1vNNMT+7oNJST5QTSk6sDSHfO+lqM8kPTWe41pEdDsDvtFd4v7GoBZBFB2quq7NG/vX2Jv+Phc8yqQpnXunY2hgtY0lh2tRDaCqT0AxM+uqmj5ZkIsxYch1BbOiaRwawPQCUkVo/tPit3u/zX+c/DEh4bX1gagBmAB+Ysvm2koq8Ft/i3RkJiQwjkwO5QFPxaSbefHZcAsY24Iuj5wD4L+uPabH9b6xGLBczWhfxX00vcr6FFswezIf8640WVaSz5zwP0xiDrMsdW3tM1T15NmkJAj82OF0Z8ZuSZEWcJNQdiyl1z1e6Pu+flgPd6Fr0wphIpeI+VCqyOxI/LYCKY/POSpFbMk/zfGPIh6eznFJsQJwYOjvJj00yVqwXF9e0uNG1NStXciLurY40s9APbXZUyPhwIWEyM2JVgY+qN+JGp8RBFapxzJhfulLj/TOh/jyMLL65LVqZM5WOFq7fW9+hF7i8oQrJLuVddkcZCiqbrZgMSBKD51eWADg7uaHZwFHokHF9XeC228/R8j0W1P1220XOb85xWhkv+r7D1zemeN+chNDKtSaH1G/b3QKOE1BRY3hjaxLPCagr3VElbDEaZHQa/0uXT/D42VcBsDM+cWTiqFpkBSfCyo7wlUmj5USQ8Rk1pL/8fhav0KffVun0+QHNHembw4dusbM5xeK8iLz9kUuh3OFb1wU0nZld5dbupGZLDk9uajZnpVNmrtDR4UTHjOj6HutK5G0ZCYdLLb6tzrUx9Cg5Id83L/3XHHkczPfUeIiE0VPPuOE7HMgHPD7ZBKQYrmfGWs+UsSzOt5RbIuCZLocLMqE0fYcHa21ea8qxLrYSHq4nuvLYh+Z36PouH5kVgFqwR1xqy7H+970V3p89wr0qy3Jr6LI1NLSdxLm9kNMVmyRJ2eWEugo3r/QdDhXQm9Df3dvhiFWnrmiZlp9wMB9jKQuNB4cn+f+w95/BlmX5dR/4O/ae6+3zPl/6rDTlsnx7i0ajCRIACZIQRDN00IihESfGUJqJiRnFKATGSBwGKVKighRJiSQIqQGSQDe60R7VXV3V5dNnvsyXz5vr7fFnPux9982ab1IUCoSQ51O+fPede+zea6//+q/1Ne8tntWuAHAqb/KNlmBzXspXGUYxY298x0j47lFI1Zq48FdsnSlHnONqNuK7nijd/pnsKXaHOn8uJRo9/Bj2aJENavK+iEXztiz1z6chZyWKXTdksweIIOHdoc7XvXeIP8o2+jiED1GT9NhMUmyPmSSJwv+ztb+AG4kB82v1LmtWQWmSclak7PzDGGpOwpTMR2r6Jvd6utIklVMhP2nYHHviAXuybDAIJy7R1VSC94g9f8lOFLtx5E5YFRBZSD9pJLwk9IDc6hoKuJwtwuuNiKNE0FBfrJbJmxPhcpiIMNUx29HwRBr9GNxEj7T0f6c+4uVqWgmmG17MyfykLT1KhFB9TE2nDbjWludXMdCBrzfEcUxpWVazJgXZNRbEGplHjOZsPeHAFcGtAK/XDS6VJ0zInW6Wf9HaAuDPVpdwI02JK1O6oLJlhBwFK1Glt/E5/+u+iCv4C7WTvNfSVGZezRExJMfexACy5gTqGmhaokpVbqTTDSbnX3MitgaGAlT/vPsGf7X6tFopz6d1zhV9ee1M0mZMXTpqv98JeVIaaI63xWykSp2OLkJDxx5U54uRAknXOya9IGEzFOLiU3aJ52sBHbkKN7WEnBUp9vJRrUbBCjlwbTX5+JHGTNqnIoGNpokOw12pBUqbEUUrUIaQ9VFGlXF0LSFtBipPTNcSMrbHg3ZF3tOIGI152QJv6LFyx86kPDqDrHLQrpVbHDaq1CTD1RtkGXgOq/MCJP3e7fNcmNlTnWFRrLM0PWml3z2epiwz5MrlNs1mmblFAai+/ebTTGf6FOU5LK3skJc+SMPDKtnZOs17whJga3uRc09eUw7FN989z8WXfkJvV+gDDTOk3y7SlWXAqelj/u2bzwLwsy++yv2NNXU/V1e3ONibJZB6Lk1LMPRYaane3lmhLZ3ML1SPOR7mWJSg8W5ziqV8R3UDps2Ae50yp6RmaRgIi4Aj2f12s5PhOQmC2r7NyiN/++2DCuu5gJrUf/mRQTewSMv7WPcmLIOpi6ihSXeXxUtTI/7NrtjXhaLGw77G5+YngEyU/cTPUaLxa1vinP7s2ojdYZrrbXH+s2nYGYh3DmDKiVnOjHggy6DHnq5Ceg0toeGZ/OOmiJJ5Sj/JheJEC7SQifh7xzf400VhobIzEAubc0VxbbeHpmqaWUzrKlIIJsaUY/CiayLi6ZZ0jMiYGt/w3gHgc6krTKVQjTBuJIDQeNz2YjEu2lJ7eaGUKO8mcT3UP1nLxegadH39Iy237b/1+Q+dSZp76nceM0l/0Afw78rWCUxely0UrxSLaBrEjH1zDBZkUOzhSHjRjDVKwg8E5Sdyp2vjRgmfmJYsQ09jNRcr2tqSIAHg660DfqE6QyIl1NUULGR8NUl+dUfjqZLNruwuzluwJ/tdX60nOLrBJ6WnTskSqdzjl3o9L/yYxqWqXiACJsdO0H6sqdT7z884xEnCqqSOs6aBoSX4clKse8LaYNwZ4xgxv9cUg1ycZLjVhQtp0enT8CK+PrzHL9jr4rjsmM2+rlioaSfG0OBVWa48mdNUZMudbpZhpPGLlWVAtMaX7ARddtuVrIjvHEIo0UveNPnsnJgQ9kYiWbwSi5XfGw0RUzB29g1jaPqG6jZZy/kcjmx13/ZHJjvSmdfUNBazoMsJZH9k4EcTPdil5DKaBh+blp1xnqYAVtqMKVkhDSlcv1g0qaUCxq/avR6cL4UYMram4ZnsdOFcSRxYO9CJJOg5cEN+Ydlnc1CUz07MfGbAjGSp7veyRLGmdETi+ooTPvZsrrUTfnpBXJ8o0ZiT4AGg7qYpp1zWZIt8lGg0XIc3d2RHn5nwMakb+jdbc3xuvq58gPzQpOeluSCF22Fk8JODBdbL4v1xbJ89CaBW04fMTx/jyrLe7vE0R4MceSlEnpk+xvcnIpFPXHyPw8MpUrK0ZxoTcX4238dp++Rz4jw67SKWGXKwK0wdP/X0m7TrZRbOC3YgHDr0dwTosfNDAmkGCXD5Y6/jNgukZYDt0uIeSWhw/4FgNVeXt5k5e5/8kTiPh/dX+PKzrwPQbZVYO/FQZbn12gVMI8KV59EeZVmdPuDOvrCbWCs1+Of3xH5fXBqQsT2VKVdzRlhGiCRx+d7+HNVUoM75aJRhEJpqzDhdGHG7I5iQy5UWD3tFpqTeaTkTUk15qoPR0GNm0iN+Z09McFfKgdKkvd9Os5oNlBbupakRPzpO86V58bxc7zhcroRqLGp4Dh+frfPrD8X79cdX6jxfFSjoYT9DwYo4I0vsc2mPJMmo8aITGOwMHe72Jh2/48aOm52EC0VNNaCISKeYQ3m+3z2M+WL2IrMyu64biHL8eLFnakLyAGIhd+DGtJQBZIpqKuGGZOaTJGG6pnFKlr4HIfzFrNCk1V1wY/iWdx2A543zxGjcl50vn5jWSOmTioIfi0Xn9tBQ+xp31X33OOBT08JbLngEPD3e/nBuj0GS3Ew9IZDeRu92fNazNlOyhHa/b3A4kkxSAmGiKy+f9XzCG50BjiFWnLvDmKerKEYnSYQj89f62wDk4zyfLImB93OFOd5rxyxIp+fFTMidrs28LC+dyhl8tXufP14UHTjdAF6sjbvsdPIWzEpGph0YVO1QdZhsDy1sHb7VFBPbK8UiVXvSHnzsarwwJQbXm50MWTNRaeGWJvQ+W9K48ulKTM0RqeEAcWLyuSlxPfZGGi9NBdyRnkrTjsEp66Sqzx+MRLr2rDPp5uoFolMN4NXjiFN52baf9vFjnTebYl//rf8+f6V6hX2pQRrYJpfLEyZuLh3yP2+Lv+0lA57M5/hSVZSEDl2N03mf67GYfRYyQphdkcLVB/0URy5UU3L160Rq5fvPjo54wp5WLNP7bbhY0pWo82rVAiajXxRPGMC2Z5I1I9W95kYavcBQpasx2/MjCRKHUcAX5lBi7bItTD9BgFU3mrgtH3siKuRhXwZ4poUgdtoR4MTSYwWYHCPm55aHSiDsRjpF21NxId3A5NBNUbLG3mAa19qpD0wKdyXQuVQestnPszYtQNNhu0wpPaAt2R5dS1jO9ZQFQHuU5dJJ0To/HGTYO5pS10rTEhYKbX791lkAXpo94vzafSxZQksSjempOjt7wqPJsf2JP9HRFK1hjpmacDfX9Zh8oadAVhzpTC/vqRLa/VsnWV3fFJ81YnZunuRIlgyv1NoM2wWyqwLoFeaP0PSEtVXBYiaxxuCgii/tB5ZXtxQoqswdcbQ1TyiBzshLkc2MmK4K9kdrJtzYXebsvKjPep7N8zUBRvtumiTRcKUD91S+Q2c4Ydpenjnk2/szXJ0V72bRczj2bNaynrpPT5TbgABBYz8lgNPFDsduWrGJbmhyo53h07Piu+/3M0rr9Gy1r6JoQJTbnqz4HMlznHEiqilf7auc8rjWKvNkRdynrp/iWJX2E449g9N5cYx+rOPGE41jxoippQJeD8T1OKEts5Ibye/NcOAKt2wQ5qtuhBqLXpoyCOOEa1LYvZhN8GP418diXHs2V1LPfDUVkzN1zhTEOfznO3+P/+PCX+PF2qRT7q2mxg8iAXb/ZP45xRZvDyMulHR+Pn8BgFfbPZ4oZXlpSpzjPzre5SvFJb7XFCzm59M53EhTPmvTTsKGBIFl0+L9lsYgitSc8pFsSfThZrd9hG7h/y5vj0GS3Gw95nRGOtlWfNVmDoJBGL+03UCT+iXZXeEbPFfKcacrXoalrE6cxHx9KOjjj6VEsvQlXbAjT9VipXXKmomqvYufIx70wdDGrfjwucwJpUM6cEM2ZDv4uYJN0Ur4benV80TB5GBkKT+SKBGC60+UBAvR9KEfmiq7rWSbvF4fizbFPsYeO00fjr2EXiQG1OudFCdjR8WHzKYT/kHzHQD+D9OXOPYmVgMFS9Dd78ly3KWScNEer7gyhliBjTvJMgbqbw0t4Z/s9fi8zIH768XLWHrEb4yEmPI/Kb3AgWtRH4fYpuHj0+MOPZHYPR4wL5Z8fmtP51JJfHYYCZAzLpF9cibgVldnTloTbA4M3u2JyeQXZ2bIGJMB4rOzcODqH9BG5c0IW4IXQ09Iy38HpoYOyiLBMUTH2thL5mot4u2mzSdnxWRzp2vzk8ZED2fqCW0ZrGvpCZuDFFuSAHq6EtLxTebS4rOJ/PxYJP2fbm2qQX4tJ/Y/1qPMZ0a82yryyqxwzb7VqjCXGSrWquE5PFkZUZNeWKeLbXJSPB3EBlGi8XsPRMfZSqGDH5kcyqT61VKTmXyHnY4AVU8sPuSHN8VxXJjboZTro49jNRb3iQMDT4KEYmbAcb1KTjJLmpYQRiZNGXmy3ytxVup5LDPkpAQeAJWpBhv3V1mYEeW45nGVUqTTkz5Jt45nFUjqHVY48fy7LEhRs26FpDIjYink7h9WqZ57gHtXMD4LV68x2q9iSgAaByaeBJzjbrpCUUzU2dBgMMgylDlvU5UW09UGb24I9/tKekBHsjteYDFdbCsH7s1WjVp6oEqZg8DmcrmnBN3X2kVemT3gDWnGuZB2yUtxfd9PcbLQ5XWpX0oSjaLt4aTFC9V004SJTUOyeEky0ehtDRzm0j4j+R7aRsytrq3KYFEi8trGZXI30smaEU35bFZsn4WMLMcCjdhQUUVvNhyWszFLGQGE3mnlcHyLp01xbXshKgLpVD5Q+wThvN0LJl5GppZwu6erjrRuoGFp8CdmxD243kZ1lZVsjX/rfp//pPwCAH/n9F/gH+20eaVYUvtfyMCLA1E2vdsLWcqMS4QG77VC5qSd/4qdoxtoSgrxxfwSfgzrKfG9OwM4U4xoy8Xzrq8xJRdZiatzMi9sY7xY55sTAvfx9odwewyS5HY0MpiWXUL3ejYaE5M0P9aUq2vNSRiFmvJNimKNhXSI1DOyNdDZ6On82YooN6X0iF6oK+8fQ0MZpS1nPAwtpXQ1O0Mbx0jUS5+zYhxDoyyPcTZt8OPmuOQF/0Nrgz8pv+dOV3iLPBrY2gtF2ytA1tRYyISTzDUzJiOL97tDgycrI752KNvhjRRnC4ZiWdwoJko0ThfERXivZfLF1FPie3ui0+3eSACML+Qz7A51XpkS+77VHUeGiH0fuxpruYjvHMoVqq0rDUE7MPl0qaKCdO90DW4NXf5cWYgpr7WFg3hNdgr++sGAX5wTQO9uz+Ku3+an8gIUbg9tLhZR+7rVNTiZj1nLjleVGisZQ5UTZp0ENxIT88EIXFtT0SKDUGfaCRXF/247oWhZnJSi+YV0oLp1Thf63OzkVXlWB449Uwlkr3ccZtOJen6erAx5vZ7BkyvATqAznx6DE52ZtEdJxihkzYg4NJTXk6klFK1Qeer8ucp5/HjcZRgQxAYpVeaNeaLUoysnTC/WyJoBDcksLWb7/OCwwjNVMfFv9nLqe2OEIeL4WiWJxruNKouS4ck5IzrDLGel+HowSnOiIiwAHtanmc53lD6nuT9Fp5fHlMLlJNEII4PqvABvb7x1hTNLW8zI7rcwMjCl8WSu0kPXY+VHtLc7x/qJTTrNEgClSosk0dk4EIaAJyvHKpbkzMtv4taL3H5XuMyfOn8Hb5jGrIu/rZzdJOhlcOQ5vfP1Vzh75TqBzJAz7ECZSWayQw6PppQ792989+N87MxNdg5FqXLWDPnxg5M8LW0PesMMF2vi/DQSHjamWJEWCRoJ08U2D+oCBE1le7x9NKe6DrNmxCi0FKPjxzpDqUF6v1nGMWIWpEt61gzYH2UUwPdinZVsoO7bYtZVLOWBm2Kj7/B0RYCiiu3zufke/+COeH9+YcXjRierSsy2HjOdHjEIx++Iw7WWeIY/Pz9g2tEI5H25VPa52bHRNfFuVlMRMSgTVIDdoXhmr7VDLpdRpbn3Wibni5EySD32DE4XYvakn1nNStCZ2Jecysfcksa9g1DjT+U+phzru4HBkmGRf8SY0o80ph3x+fk0vNcWn326kmBopgJFqzmNvBUrU+DlbMJGT1MltYwpFpVVWW3YHmjqWvqxzeFIp2AnPHLKv++bFsdoH6LjtvbYcRt4DJI+sOXN8QNvsJ6fZACdLiQsyUnvrabFSjZRsRuGBjUmGptXpkK+dQinCrJ9Hg0NeKclXqDzRYsjqTGKkpTwF1E/Q9bUuStDbKspnStlnzcaUvRZCnmyKAbI32sO+IXqOoejiZ5pe2goQ8Rvthv87FT5EWEmWLqpWCw3gquSvegEFt85SPOpKfHZWx1hYTBmf0BQ6omc2A0N5QPlxxoND54t5uR+Eyx9QrUvZBLSRsLrDfH5T8/EfPfQYvmRlt/xwJTSRcr9mBmppuCCnlWlqrV8wvW2Tknmwu3rW/RCwVicyAVASenI3EgIRvvh2CxSRI+MJ5sHPYu1XMit7ljrEbE3EgPM5ZKFpSUKjNSckG4wAVRTKZ2iNYl/OHItpT3Y6OfohRqa1ByVrJCsGasV/Pj63e9LZ+xMwsWSrzr6Zp1A6Zv+9V7EL6+iWLd/e2TwubmEbx2In5+vaVRTEw1b0QqV5sSLdaJY5x9viZ//z2dFKO1Y63KpIkpDZaln8SOTF6fb6hj/+f6Q/2BVrqrzHd4/muOkFBObesSVWp1QnpNthph6xLdkd9fz89vqe1ZqR9w/nuHyumBWB4Ms01N1WtJzyNBj8tkBRzuivNbzbXzfYuAJcFIrdD7gqXNvY00xR6YRcXdjjSsvvAlANEqxd3+ZZQlAZpf2FEjyZdfawrwoGepGTGllD7dZVL+PPZvKaVFuM6WtQShZjsCzsWSzRiozojDs05V6pZ9+/ke8+vaTPHtOBGIP+xl6oalcw0vpAbtd8T1ZS4CW8Tmdnj7g1YcnFJPkhibHnqXyA7Nmwk4/zycXRLm+PcqqLsPlrBBMD8cls8DkmdoxP6mL751Pu8ymA7ZkmLAWGfjyWVrPhRSskIL0Z2p5KeJE4+eWxc9eZFC0IpXl1gsNdgcZSvaY8Yx5bko6w48cVbYFcPSY1awo18G4tGsxJ1nuljdhaJ6pGpzIDbneFsf4evCQirui7DemZKft2K/pTldjNQc/lvpRHY0Z21bXajkb8Lv74wWLwfXkIVOuYLC+ObrDS9ZpdZxurPFkRTZJtA2qDmr8dCPR0TZeCF1ri4iksabzQV+nF2ickr+/VEZZd7gRbA58rlYndiYfyRZHH3J32+NyG/wR7m77u3/37/J3/+7fJYoi7ty5w3+68r+j74tVtaGJbrA9V7z4X5qP2ZK5Xl4sJuSxtieStfdxOW5roNPxEy6XpRDXN0ibifLjea/tK8ftpUzC9+sePz0nBuLrHZM7wwEvV8SA4RgJJStkU4aj+tI1G8QEvTNMsdET+32mGtAOTMVCvNNyOHYntvpurFGwYsWO3O2Z5CREXsgEGBrK0G13FPLKlMb3jsQ5nMxZilofX5/xJL+eDzkcmcxIir8bGPQCTYGxGUd0pI3b6Q9d0cH1bkuu5jKa0v4sS5+k29Iu4WJJZ3ug8cKU2Nm7rRQL6VgxfItZXwGKg5GBromONxBGckGMKj9W7ZAE1LXsBaJDZjxZdYJJ2dPSxQp+/Lu5tMtGP8OO7LLbHvn87GKinoEk0VQXYcES4Z7XpQO3oQkvlbGz99ipfSwY74UGG70JVb8k7wWIzslX6wFdGXfx01N5cmZEXYpe32yGXClbLGXEhHGrayvzzGrKJ4h1UpJVeL+dZS3nMSu9jO5182hawulCV/5coJrymU5LI0I9ZiA1RsXUiNvtCpdk1EghM2TgOur6PGhXOV07xJYAbaM+w1pVMCemEbGwts29W6JUtzB3QL1eZSiZkpMnHzDqZSjNCZ3Rw9snaPQKLNQE0MlkhxwdC7FwudjFdjw2HorS9WylQb7UZShBQByJGBJdXlvDDJUdAHqM6fgY0hepvz1DqtRTvkh2fojfySnfpIfvnWFubVuVCb//w+eUt5Nj+2SzQ8U6xZFBFBr0ZSecaYYEgaX+1rZ97u8KEXc526c1yDElQ3njRCNJNPqS0dO0hAftCidKoq39XqvGudoh7ZE4x91BjjV5HH0/xU/qFSWwf9gr0vEtZTZ6r5tlGOmcL4p6z/YwrUpgcaLhRsYHIkxEuV/cl4odkTZiFqXdQBjr/NrDHFdr4/cpUO7t20Obj88e8/VdAc7WsmIseqclPvvZ2RDHiLjVld1tLlytTTRWDc/idEEw0bc7ORqepsabuz2DufTEisDQ4LcaTZYNARQvljTeb4vfvjIVM4wmGXL3+xa6NjGybfu68k0TPxvKR2proAvrEwlOlzIRm4NJVtuFUsRGz+BYhrXpwNmipkyEF7MR77XGYDXkE9MaeyMDP/b4B0cfTXfbwY8/TiH34fEe3X7I7HPfe9zd9gd9AH9Q26/8yq/wK7/yK+oBa3qToETHgCdKAety1fVOy1Y18VEkJrZx6GoMFMyJxmYtJ16mcbRE1oyJE1Ri/MtTporhADidc2hLGiJvwblsVpVm/s2uxYWi9UgafYBjiP3kTZOyHXKuNPEe6QcatwIx2w5CaZ4m2/oPRglXKhrXZTDtoz5Qc2mNQ9dUAwAIJuLF2lgELIzgvnUozvF8weBCSXrVjMRqaXz+cQIXii6/eyAzjQyoexo1CQ4WMhrHnsEVmZn23cOY56pjM7wRh67J+YI4xmEoHH/HeVGeNLwcszb9wMDUx+XEhJ2hpnRThoYIIpbs4NbQ4mzBZTEzETbf69lI5p0gmRiCgsizG7faD6MMKT1WgZ0XShr7I0sBo8Wsz/2xw7aRsNk3OF0YC7fFoJ03xReNW/bH3T0VO6KaMtjojcuoJr1g0v7880sxdyQLATG2nnAkz/Hj0zpl26NkjyecSct/N7DIWYEqgTxT7WLpMY4sXcXA89OHvC21Lk9UmhwOs3SlCLqSHikvn9vtCi8sPlRt+TcO5nHMiCU5kV+a3/6AceK5uR31s5PyGLQKLMiJvNspkMsOuHssSlPTzSL9QZa2zEErFrqYRkQ2Lybnw8MpylL743opwtDg1IkH4nwDkwebywRSv7PfL3BulGb5lPh997hCcU6AraMHi8ye3CKSjFKqMBDeSZIBadxboryyjyZBpevb6FaoWM1Xnn+d423BdlVm6qAn9BvimDOFPsf7M+qcR16KubkDNrcEizVTa/CwJz9reziWr/YbhiY/2l3mTEmI5fKpEVPpofKZso2Ie80plqVx51yi0ZB2AMulJtl2iboEUKaWsJgdUpSapY1elv2RMHMEwWruSkftM8UeB90896T1xMdnBpSdEUvSRwug7Tnq/Wp6Nq3Qp2SNO8MMBbhLts+9blF11iYIVvOyNHl80Lcpp2J+rSs6x/5s6bz6jo2eTcWOOZRlzTebEbOOqcrPSxnBLo8XKIYOh/pDPpuvimcgEd1xAAeuyUYv5hXxSLOUEdYd+9Lk8m7fV1pOECG1oYrpEYvS8Tv9ZlNnKoVaoP2kkWIunbAkjSqbvs5mX7h0i+PQuOWL9+FCqspGX8wjHyUDocXRh5zd9phJgj/CIOn/fzM0PmBXvzuyVJkna06cnI9d8dKNHWCn01CxE+re2PwMzhYjOpKm74c6K1mPK2Xx+xsdgwslMTCb0kpg3L0UxAZpAw5dcSAvTSW0fVT76+fn4B8eCN3Hn5+ZwY915XLbMGymnYgHkuGxdQG6xh4hlq6RMSau0paO0lGNg1tP5MSHm55OxogUY7M1EELE2zwE4FPpJaUpqLtQsFH7PRxpPOg7DEJxjoPQZDk7MUTsByLepC6jND4+jUrS3hpkud1NlD+VpmlU0hHvyBXaqXzC32+8w1+rXQEgbcTKpK8uQ3bH2qfl7Igb7YyKKQli2BykPgCizhYCbkrwen/g82zFkvc7IWYy2Gz2NVZzugIg9/sW1VSitGVJoiElZ8w6Hkduhh3Z3ZizhD/TmaK4h6PQpOAENGV5Yfx9n56N5ec9bnYy8pjFTsci7JLtszVIc0W22r/TsnEMg2er4lr3AtTK/3YnT9t31DNcsH02ejlOFUR3zjO1Y6J4supOmQEZM+D9lpjMvzJ1qEpeM/kOIy9FQbJM2ZTLj3aXWZ8SwGe7McVipc6dI9GKf6J6TEayGUFg4Xop0tK7x7Z9PC+lJl9NT1g5fV+VrjQ9IZ12aTUEU5DLTBibTL5PGFgqaqTby3Hq1IbKVFsbOZTmj3Bli7yVmoCR6ZU9+sdluvL88sUuU0/dJpbv2rt3T3N6mMaRx10ttwiHDk5FALTIt5i/IEqG7Yfz+G6K9zfXABHLMjt/QFsec6tboN0sk5KdZN+6eYHLM0K/1B5lqeW6ylPJNCKemdnDkWWvgecwCCySRDwf5ZTLKLRUaTOMdR5KZ++87bOcHVCXHXiallBzRgwlA7iSHbGej1UuXOw5LGbEMR2M0jw7dcSsI65HguhYy0g2MIh10magxPs93+avnQo5kOL18bsAAsjVXYu1nPieasqn6dmUVQbhiI1+ji9nRGnc1BL6wcR3ztITHkqGt2zDsRdxpjhmhE0MDc4UxwHjJr9kP6U0TG6kK1uPKIFOFOBK0PyNw4AXqrpaKBVsS1qhTADX2AblaKSRNjTGNkOruYTX6zEgFntTqXHHry6/F5YyE0+mzb7OL82JgWt7KN7Ztm/ixh8lTHq8/X5sf2TLbeNtzCT9xam/zLqkKnNWyOHIViWyzUHMc7KN9HBkUk1FquujHxrc6ep8J3gHgP9o+gl0LeFWd8z4CPaj8Eg8wFh0aMmYjTlZqmr5BgcjjYYsyD9d0RQzIX522RzIThVETMmTMqZkKhXx7aOIjG6ov40STU1GSSIiAL6+P27rt7grxn9OF0Q7+bikmDeFUDstB5eGJ9pyx0/KWi6kHUxo+rY/ETT2A1jJTQJfL5UE9T6S19I2EgpWxN86FG24P599UYGkiyWh1xjnukWxxkrOUzqi3aHN7nDikv0bw9/jK+mXAeELdbtrKAfyQShCZDfktbtU8jn2LMXC5E0xmD1bndB6Y3ZnLh2w0bMV0/aF+T67wzQ5yTrc66Uo2zEpeW2/fRjz0pQMPw10FrM+/3pX/u2sTtqMlBZkfC4Tc82Yhm+prLuMCWcK4ou7gcl82uUfPhB/8+U5m9XcQIl6i7bPj+sFVa6cS0/ic/6HvSF/diGthNuVlMvDfk7prNxI51R+QFZO5HnbpT6aMEmnyg0iucrWtYRCeki5JEpEe0dTxInO7aYogz23tMl+u6I+P1tsqWy2JNGxUj6bD0SJ7MzFWxxvzSkw4o4cosjAllqXrYNZTq09IJIg4n9+6xm+eFYwEIfNCqfWHxDKtvfRME2x2saQE3uvWaQ406BzKFiGqZPbHMlutZmz97GqXVrXRKND4NmkMiPyK9Jscr9KEmtYsjU99mwyJ/YIWwKQjI7KqnwWhSaaFguXbmDYztNulolk6apUbhMGpgrAHQwzioXTtZgEjZ4sr9VyXY76BXXtlit1UcqUIF0j4SeHcyxIoDib63K3Jc4va4YUbE/ZB4SR6EIcgwSAo1Fatf23A0tlCj5T7TEKTSX6f3Ful61umX3ZobecG3zAIqDh2azn+1xvCyDgGDHnpCFoXz4zfjz5bNM3FYAoWiHVlI8XjXMkdY6kBi9MRGncl6TFE+WI3aHBRl/c01N5kwtFlzebYpxLy3DsyXuU8GZTnP+FosF8OlB5dG40iWsCEVniGChD3uPA5zPTYwNQUX4bA65qSoScj8v1OlBNhdyVVicNT2g67ynrk8n4fuTqzGVijlwdP/b4bz6ictvhqy986OW2mZd+9Ee+3PYYJMkH7G+t/zmavgzZ1BJ+UA+5WLTlz5PPN7yJUSNA0xMC41WZiD2KdG50DJay4rIKfZNGXj67OStWIOmN1ogpy2E1J74gSURH2rijxNKEOeFYPPndQ4v1/LjLRbzI77XEz1fKMQUrUivnfmByt2fwdEVMuNtDmzDWWJcBlW40ESJvy666sdePDrzTinlB2tu82dD5xEzApgRRu0N4siKDUl2TXjjJVhrnJmXkCm13qNEPE06IxT1Zqc8au3u7EUocOd5+0hgLpA1WpOs4wNWaxoOerjL19kaojpLrHYuKjdIcWHqMF+sqeXwx41H3LMXOlFPhBwTBncBQrNxSNmbW8VSb8t2exXI2pCIn8gNXCO7HK9RhpCvw9Ux1SD+wuNGZhNIGsa7AScaIuNW1OJmfaIdanq3KK6Y+Ccc9W3A5dG11/3VNsFhnHwFRC5kRPTkZ3+ym2OyLz35uLiKINabHzIgz4karrPixA9fiSyvbNOXk7UYmtfRAtZ73A5u2BGMnii1WZg7YkaW5sR/S6bGYuFvggQRMAE+u3qc0JUTeoW8ReDadtmAsolinWOhy1KjKc0pYWXtI80gGy2ZGpHMDDndFaSubHVKVXWT94zKDXo7pFfFzfWeW0TBNbUaU1OzMiCTRyS0L4BMNHOWgnS530fSEd378pNiv43LhE69jSAfp0cNp7r59gbUzwogy8i1+9PYVXPkMfOr51wkl66QbEWFg0ZOAYfzO3ZdddacXt2m0ShRyonSVzQ8YSSPLTi/PzPQxW7vz6nrVSm31t1u9Ak/N7bAjPao6foqlfIeMLKmOwRUIwfz9doWSzK5LmwG1XFfdi6wVsN3PMy3LYm0vpZ6ztm+zORAlaID5bB9DS/gXD8RLX7bhaq3HTEZ6LHXKbA1TVOxJY8DJvGAltwdZ3mlZPFGaiLdXcwM2epPxdCXXVx5d77VTKt8tSDSmUhP/trtdnaervlpU7I5MHCPhvsxfO1sUoOuHx+K+VFOTd3he5k0+XxPndOzZHLv6I8An+cB7uzfSlS7zu50mPztdUuW26+2Es0WNRan3e6uRouag9rWQDomSiT/aoTtx5P9x0+XFaorDkfaRZrcd/eDqhw6Spl95/Y88SHpcbpPb602bZ2Sy9J2eyZfmNCKZu7PRN1X7as2BhYzLW02BBl6ZDmn7hupOGoSiLTUrX8Qpx2MQZlXafBhrarX/XDmNoScsZsQgNwoN1oxYgZFeBPlEVyWjq7VQaX+W7JCmb/KEFGa/epxQsmykzQcXSwGzaZ2GXHW/24p4eVqjKX9ueRNfk/m08Cr5alNMLn+iMstn5iZxF6s5Aah+pyOEu780U1XHca44xI0m+/ransmVsq5CaHOW8BN5FJC82Qz54pwEhoiJH2AqFdMOdFX3X8mF1F1TgaKbbbhcCdkfjX2EUNc1Y8LmIGFRej61PJN2oLMgWbo3mw7PVoWrMEA7sDmZ95Qx48m8y72eWK0euzpLmVgxS1lTMEB7I/HZGcfnt3YtArm+uFJGmcrtjxxmHY9ZeSNm0i7vtfIsyMH2SJYlxsBnd+hwr6cj7ZpYzUUKcHuxTsaIyUsGS9OE+/i4JJK3ArYGaZX6XrBs/sSymCC2h2mWpUgXBDg5ke/x6w/F5PsLqw16bloxFtOZPju9ohLjOkakSkT/4u4J/mTKpS4B1bnZPSwrYE92UfXcNPP5DiUJCu7sLjHdFYOqaUSkUj6WZDMqxS5v3zrHlTO3AagfVxl2c9zcFfqd5564xu7WIrWa0HdYKZ/ekQRURkQmN6S9L0CAriU4jkvzWPw+X+jhuSl8qbspre2SLgu6NHRtsgt1Lj3zrnheVg9ovH2a8hlRQt545zxnn3uHUaMEQPHcJp3Xnufn/+RviOO8uUZKXk87N2SwPUtfRrpM1Ro42SFPT4tj/s4bz7BeO8KS921/f4bZGSFk7/Zz9Hp5paPqew7F7EA5jJ+p1Bn5NssVIWQfuA5uMNEBPOiWFPu3VGhzYXqfdw4W5PVwMPVINZH8pF7l6lRdAaxBYCngb2gJS5kAU7JQR6MMDc/m4zPiWUoSjX5gsS71TYPQ4EKxxy3pEWXpiXp2Tha6pI0ceXlcr9Vz9IOCMoz84VGGIMkrJvqZ6pCCjK3xY4PDkaM0nrUUPOzbKingdN5jo59iUY4JdRe2BhYXpUP99+o+X5g15O9M1nITQ1VLS6jYsWKdDl2NU/mQXzsQwPhSpqgctD9dqvB6PWJVSg6+H/2AVuMqL8hy20w6IWMm/Pf1TQA+E50gb6LGvaw50QqupB3u9RLW84lgyVs83v4Qb49BktymUhOr+2oq4WbXYl3W2Bcyk1iR1+oGJ3IGpyWwfqdl8XzN5dtSqBwmCQuZROl57ED4dPxPEoD8tYUK77XEZ0/lQ45ck1E4FgjrHHsm6zkxqL3dSnE6P5noGp6tBsB/uRNyMmMzK1vxf2Yx5H7fZMaZZCLlzZg73XEruo6hTdiTh4MExxizUhYFK+FnykJT0vQ1Gp7NM9WhPGcTnRR/cU5MsHd7Jkuy+6Th2fRCg580xtdKRHhcrkyE3Q3PZFk6Boexzi+uhCrJfHdkqI60ubSPpVsqX+1wJHKZxvEfnUCUE8bM3qMxRWvZgNXsREAOYoAdd+vMp2O6gclidtL9tjVIqVLfze4k+DNvJfzWbobPzIpjzpght7pZbAnIjj2bT85EzMlJ85/ez/D5ebGjmx2bpUysdGb3ullOF4ZqcqraIbqGWtEfuTov1DwOJEuRJI/kQCWixX/82aYnJo+x+HYtN2AY6Ur0OutMJr2CFWLoMdfbYjX/2cUuB/08f+mcYH++tbPIM7UG1yXDs5yx6QYWl6YEEH7tYA67LcDHL5+/TWuQY0F2VR11SgBKMHyickw65SkgNF9qkpPaqN3jae7uLvPlqz8GwLBCTs3vqNLU9OwRg26O07MCkGUqHbytRYZSdxS0i7SlBmd1eQfbcUnJEkj7uEJl7ojX3xSeXS+d2yA13aJ7bxGAsJ9R5bPO/hQ3r53j9GmhK3KGKUpruxiySWL9yg0GB1Vyi9LPyIz5mc98m7bcV+3CBvd/KFioudVtpk4/ZMYSrNON33uGr/7oJP/7T34PgMvLm/zWzQv87OW3AdhuVynJLsLjXpF+I8VF6aGkaQnvba1xUuq70o7L9Z0VyhJwtiMT04iUN9KpcoPNjtA++aHJO8cznJSdcve6RZpuBks+A7OOT9dP0Xsk9mW8bQ9tqqlQAZuNXo71fJ+sBGsNN03e9hVzda7c4na7rFr3n6y0eUtqsKadgII1yfb75Gybf71dImtOfLZ0oCffzZ2BQ5TIcqMTULBCesFEw7ecHXFb6vL8WDTUjBd/40XQuIz8XMVWNigxgm39t7tiX5+cSTB0jTttTR6zGG8/WZZ2DGbMN6VT73PlDKcLhnr3/sPay3ixpkrqQaKxP9SxEnFOS5mIt5o652VPRdaM2R2OMxWFt1zJAvej9Bp6bAHw+7I9BklyyxioNu25dEzZ1lSJBODtprhUr0wHHHu2Ylmervjc6jqKan2+5nOrm1K0bMnWWMh4/AkEABmEkXK9/rWDAX9mPsNbMobjbDHi6+1j/pQtwMgwFM642+MyUCam6Yt/f3EmxfttFGOzmNEYRROQcDAyOF0YMZeRZniaiAf4wZFkbRyNpysCBL3eyKADjjlu7434/pHGaWkaspwVZbphOPYf8fnxsRh45zKwP4QLxUltv+FBR65+T+Qi9kYGPzwSg0s5JXynxkPHybyvRODtwGQh4xIjBtCyHbCQ0R9x+Q357qGhSnoVe+JOXfd0Tud9fnAgjvGlqRhdSxTTZOjC4+pqTYC3qZTQdHxjX+zM0sX/jbezhUlnyu4wTdaciMRLVkDLt+nIyecri6HqwFvIxLzfznJaljXrnsV/txnz0zOGuj5t32AqNelg64WT6JGSHdCQQaSOEdPyLYqyzJe3Qgw9Uff4VjfPpXKXXQkoADXJZc0AQ4+VM/wosOkFNh056b08c0g25bIuz2EqM8AeZZUT9GdW77MjtS9DL0UiW9VBeCqVM33W5gWw0fWInYNZpY1ZmDvAkyB4qthmttJQoCiVG7J1NMPKjAAFuUob0wqUs3USGpQLXVXCqs0ck5WAS9Nimkc1ZeLYH2Rhf5rza/cB4Yrd35zFkexREhl0tsR7l6u2ubK6R+uhKON5xyXae9OUFwUo7B+XKZ/cJpGCYswEM+Oy+76ITznYm+XMy8KPqX5zjWq5R/PesrruX157oEwt39hc56fO3sCT5cqZXId7ewJszZWaeIFFbyAApmWGpM1AaZZMI6Lr27wvP1+whZXDtbbY90uz+1yUDN9vPzjBUsalJQX2OqKkNic71FYKHXb6eTKyo/F6J8uyZDQvlXts9LKqE85v55nK9BUYCxKN41GaIynUDhONmfSIWIKbrOWznpd2EVpCnGiKhSxoMZ+b77Ejn8ulTML20ODZ6kDt66vb48WLzYVioJj3zYFJxbY4mZ8wWGeKvjLIfL2RZi0X8Vpd3KflrKbE6O3AZLOvc6UsntMwjoniSUPOINQ5XRgpRjilJ3xGem/0QmFNMF54LWQ8fnCUZmnSX8FcJuYzumDt3mzGrGY17stmwFN57QMSC0M3GEaJ6tJ7vP3h3R6DJLltDuClKTGA3OzYlG3h7ArCEPKy1ODsjSxmnYBWMm4dDZl1DK53pGNsO0UQw2pOvPT/ctfjTCbHgfRceroyyfE65xTZGsAJ+dk3Gzp/arqiSjEncjrHns7VqhgwdoYpVYoZRAZXq4Hy/XnYT7GQngjKHUPQzONXdKOnkTd1FQ7b8DS6ckJcz4n6eltqpdqxyZOViWfI99sdRmGR7aE4rs/Ph5wsSECVEgzOuEQ47wTomqlq+03fYMqJWchMfKOK1gQIvNcylL4pSTTeaGSx5EHrTOI5QDBtl8qaslAw9UR11Z3O+zR9k8/NiV++3Uox7RhU7UmS/WpOU6zdPzk64m8sF/nkjLi2+yNbAdCMEeNGuhKLfn6+TctLKdO+UWTQ9g1m0+OAW1sFhZ7KjljNxmxLAeyha/DLyyaBXJW93bS5XPHVSvhO1yFrJpTsSVdRT7KQZ4o9fnunRNocgyZR3ixZY+AX8z89LLCUHXfBeYwkY5WzfQaBrUTe28MiF0s9BXRaXpqGm1Fi25ab5mF/Ityu5rtMjwNtJZsxBi4FZ8hMrU69KcB8vV/gyrmbquzluSkFEMrVJhubK+SkD87hwwUquR4pGcRb350lmx/QleaSxWoLJ+0q4fawl6OyIIGMLIWNvYymZ0TeWrbaBgRbZDueAlztvWlqJ4U5ZPP+IumZJtNP3QJAsyJS1S66ZJrsco8k1jAKYiJvvXkS33WoyTy2r779NCunBRjb3Z9FNyJ8CQRnpo9JEo3dfQHIyimXertEWmqFso6rMuG+/c6TLBdaLM0KkPhb1y6zmusxWxGluoNmlZnMgKwtznEYpCilB3xWsnhJoikg84XVBwShSccVYGQQWJwotnivIcqR58stVvIdDgaiRLaWnYi857I9+oFFU4Kg56br+JHJkbQXKFg+GTNUIvDdYYayM1LPx+Ewx6wEY9/dn2Yx4/O398Q5/ZWZeaopXzFa63mXudDkWF6v9UKPz0lvuP92r84XF2xeOxas1JXyiPfbaebT4h3Y6BssZmK+Ixepn5nzOHJtLpXFs1i2J4ushic0QkowbofUXYuOHC+qKcGQH44Xw5mYA3ds3RISxKZaGH19z+FmtM9SVtzTjBHzO4c+Fwviej1R0sgYEXOSyd8dmcpCRNeEnvQfNW8QJxOd1u/3psXJh+qSrT3uzAMeC7eV6O0/P/HnVWutbcB6TnRDAYxCje+2BaX901N5UvrET6OaEm7M1dRER1KxfV5viH1Fseh8yMtOmDDRlKamYCVkjFiV+fqBhqZN7AbcSCNvRYrB2Og5Spg8m3a50ckqBmI27WPqseqSSRkRByNHTWxupDPr+LSDsTDXYE1OEHd6aRw9UeDtvZZBP4r59KzUVIwsZp1Jsv0w0lSe3Ml8zIzjc1fqec4WRrxWT/PClFhlHo5ShImmwJupJXSCCTbvB5PuvnJKtLiPz3dnaLKeC5Q2qBtorGUD/t6hKBn9B7NLSoh9pyesBroS6JTsiIY36cC7XBaT362umARavsYLtQEH7mRVOfZFyhgx046nVsbCHNJRIb0ruSHfO8zz8RmhJn3Yz3CodGM9ur6tvIsORmmm067qGgoSjaXMiO8ciOfjW95N/urUacqSLbrddThXFPfleifNem5yzzb7Op+Y6ascMFNLOF894nuSdfAjjTkZUbGY64kSh2T0spZPIeVyKCfMXmAxmx6q5wOg6AzZkqWctBmqSS6IdQw9puSIe7o8t0+nW+C7m6JT7NMn7jLyUlRl8OpgkCEru7FevXOWzzz1puoM29+ZE63qU0JzM+xn0fSEkbw+uVyfytIBBxuCpXHSLhkJsDqNMqNhmorUK+WmWjS3Z5k6LXRFbr0kvI/k+6Qbsep0m76wgdcs4HXFdXeKPcyMOwGNDxYYDjKc+IIoC/q7ZY5ur1KQAvTMTJPD6+J8q2u7hEOHgbQT0I2I337zGT519gYAzXYRx/bVu2gaEaWKEKYcHMyQTY8wJDOysb9A2vIxZORJ1nHZqM+on/uBzVKhTV+yRW0/xRlp6vnm/iLHns2zU0K4nrZ8HMunJXPvul6KpuewLj2WDoc52hLkrBc6XGtWWJFlvRPVY945WGDhEZ8kQ4upS9DkRiaOEaq8wh8fl7ggRe+Pdq0BnCk1ebdR43JV3OOjUZZ73axixC8UAxXofKnc4u1mhTnZYJDSYzqBpRZ3GTPkh8dZ5bhdTYn3emy/UU0Fik0G8a7eFEM1s2mNtAGrstR/s5viWtdjLS3e+U6QULLH5pExlp6o8cTQYaOnq/LilCN81MbJC44R0w0McipCyVbVhGkn5Df3PX52LoUb+/zfNv/hRyLcPv7WZQq5Dy8IpduPmPr0u4+F23/QB/DvytYPDVZyUhBrRgxCgykJfAaGoSIa3mvrrGZ9tcIytIT7fUOt/nuBhqHZ3OiKyepnFoSI+NCdtKXuj2T3Vlm4R499OwaBEAiOQcIgtIgTTUVN/Lg14ivz45WdI9K1nbHviU3NCZT/SJDYRLFo7Qdo+Sm6gcnrdfESFS2Nc9J7pGxH/PZ+yM8tSk2WY5AOdWUW1/AsvntoKAv/aWtSMnyz6eBGk/LikWtTTcG7LTG42rrINnu7Jc7/dCFmFGqUJdjbGRiqQ+VmJ8OsE5KW53+uEBEkmsqmOlsI8GKdvzgl2rrfaRm8IDtZ1nIag1Dnfl8c48dmIjQNdS1b/oTtGe/rVjfDmYKYzLeHadXdljN18lZIT17L1xsGX1nq8V/eF/v6BT3HWi5iazA+x0R1nJVTLmGs05ar/WPPJG+ZSnz9RsMhSdJ8ZVlM9C+7Kxy5kJdCVttIKXDyTLVHGOu8LmNpPj/f41o7x1l5zO+3swzDOXVOYQI1GTPSctOUUq7SM31zr8bl8pC6BIXnSm12BjklcvUiHS+u8HHZsaZrCbbUqzR6BeYrDaU5+sm9M1xeuc93DsT1+eNPddA6BdI5MWnuHE6zIzusvvD8a2iPxHBUKi2i0OD9uyIe4szSQzrdAour4nuP9mY5erCoylH9YYYpeQ63tlZ45olrqnQXByamFdLdEcaUdsZl89Y6fcmOXHr+LXVtksDEzg8VCzU6LnN4f4nFK4JZys80mJq+x863he6oMNWkurKv/r55bwlbutlHbopevUy+JsBHMEpxeWaPUB7XuKstlGNEqdLi/gPxzC7OHrC5t0Beek6lLZ+F6SPu7gjhejrlUcv0sWSJ7DdvrvJXqke0RpOS6rbUii1m+6wXA0YyLNjQTDpumq2+AMIl22cx2yeUbOHFuR1uHYouuvoow5lSW3XvdYZZdFAi741WlawVsFYWz2lzmONWu6RKv8/W2uo5vdMtsJobqLJvy0tTsEIOJVjzYp213IhZ2Z2w0XM4VxTn33DTnCt2udYSk3CMRt6MVFzQctbiTOGDLvSvt1zKprSqyNvKM2mjZ7CYTXihJq7dWLB9qytZTTvhRCbFqXwk92Xw46Z4HrpBioWMrhaobd8gY8Dpsjjf1+sWpwsx20NxXI4hxv6xfnIqFavxJUk0fnYuRcM38OKPMr3t8fb7sT0GSY9sY6Ykb4pAxvTYfyU0uCbN/0RLv6leiPfaKebTiarPv1bPspwNSeniJY5ikTY/LiFdKEYKFAwjnZudiXli2Ramh+PWfMeIKdkBd3viu39pxeXVYzEgPlP1OBzZqlXW0EX9/vgR9mQ166sukoJlcbNjcl6atO2NYKiodJP1jMmGXETGCRx7MXdkJ4uhJcyndYrWJLfpm/ti4PnEjM+Ra6nurF4oWm4XMxOaeTrt8pxcgdZdi6wZq6ynF6Z8pRHoBjDtoEpi3cBA01B+VQXLYhRpNKV9wPbI54IEMqKMF3GhJK5HGAufqLGWoeHZpM2IKJGTQmCQgCoBjL8D4HxpyO8dZfjcnCg3PUOGo5HD01lx7VN6wHKuR1rqf/6f17P81RPiurY8h9Vii4eSkWn5KW510yo49oWpmClnRFsyA1GiMe14aoV+rjBU3jT90GQ11+NYlq5KtsfZgk4/HE8gPm82bF6ZFsBoLjNQ5ZRqesi79SkFzj41KxiRiiwBeZHBfLavmILn5re535zif76/CsCVcp95WW7b6Rcw9JgTCzvyeYi5vbPMXzsrRM57BzOYRoQnBeWNYY55yV7sPlykPcjx5FUBWKLA5HB/hjmZA6cbMdOzR3z9tecBePHUbWqruxTkpOmPUrhSmH5x/R7DXo7Z80IwfXhzjVtbqzx7RXSsef0080u7ZGbEvs3ciHRT7qeXYdQqUFwVep7c0iGjXpau1CilckNat1eYPrMpjtNNsX93hZXn3xOfjzXuvndOXOdYI5Vxae0Le4G9oymW5vcVSHQHGfr9nArmHfazLMrympXySZkB1bK4PkYnxtAj5iUYyWaHGHqMaYxL210MPaYrQXfe9hWjN/RT3GhVFQD9xOoG7+8vspYX960f2JQzfXa6UmAdGczlBM3ihRZv1af49IpwJ99q1Wh4NoHMm1vI9un6tirldf0UFypN/HHJObQUSHqqdsxuv6C8nCw9ZmuYwpZj4HpeGF6+Vpd6t7khu/KeLmVGfP+wxPM1cczXO3mmHE9pFvuBQds3lWfbINSoWjaXSuL3jjGxY1nMCoa/K2Nlg0QjY8Sq2aXuCrPIXzsU1+DpbIULeUf+bUQv0PnBsbQbqSYY+kTj+XQ1oO6ZzEg22dCEUPyENHrdHDjMywXpsWcxCjUWMgFu/NGV20iiSbvdh7W/x9vjctuYqvwv1v8cW7IU0fZF2/fYr+iNRsgr0+LF2x/qnC4Eit3ZHjrUXY11man2bsvi6arPjtTouLHovBozKc9UJ3ljg1CnZEWUZRDkvhw4xtTznW6GKEF1u/mxrvxEtgY6p/OTgNaMKbyaxl0iMRpFK+Rd+b3nixHvtw0+MSMm1AM3RVuWpq6UhVnibx+I4/j0dIow1lQ57u1WhqcrA751IMDa6UKsMqC+vpflhSlfDSbvtUxOFybeRi9MCQAzDvGdcgR4u9OTQud0pHLTLpV7HLnOB4TLQaypPLrrnTTnCi4taWNwq2vwyRkxMbUDizDW1IpzbKB3vTMWjwbsjSzVil9NedRdR5XY8mbERn+8IoeKHSvh/hOlHnXXUWXRGcfDiwyVi/bN/awSbc6lgw902G0NTJ6tDpSX0ebAZikTcKrYFs9Ls0KSwJw8R11LFEjeGwm2cKz3WkgH2Eas2MIYuFBqK7B2o1VlVxrpPTfVppIeqLb9YWjR9m2enBaTtWP5HHRLlCSj4QUWbc+hIEHUwSBHTl7Drm9j6TErRQm08j3q3aLS0QAYRkSnJ96f2dkjLPlMv/rOFc7O71CTLfDv3zjHmRMP2N4RjMapc3e5fu0cSzK01skOeevGeZ699D4AVtqlsSuYojjWSaU8CtPiONxeliTWyEtQ1NmbonZmk+7WBPiY0h6hszVLfqbJvjSXXH3hXXoP58ivCdBklFyGd+b421/9MgD/8S/9S4b7NbLzx+oc/Y5gRo4fLmDbPqZkVb737hU++8JrJPK+bz1YplJqq0Dc+nFVld6C0MTQY45kTMn67B5vb62RlYuZleoxTspT9gJbzRrVTF+5d3eGWSKph1ys1EV8ypjROZ7F0GLWpH3A3fo0lfRIARs3NFWgccb2GPopclK43XEz5FMjVao7GmWopYfq2frGzhw/d2qDPQn+R6GpmiIORmmWs31uy2iZE/keCRr//YZ49l6a0uiHOl40fp+GKi7H0GNGofmBDLlBqKv3WEd0Ct/qTgx2g0RTGZSDUGejL87/5akIP9bVezrr+Dzop1SMUdZM2OhpfGxaPOMt36Qt0wbcWDTKrOcjtd8g1tiX49bLUy4JKJ+xr+3ZfHI2/MAibAwaHw4s/BgORjFB4vPb/f/moym3/e4TFLIfYrltEDH1mWt/5Mttj0GSfMD+s7W/QFYKZLuBycFIV2GhupaQkiv9+70Uy9lAvYgAr9c1XpKJ2G6sM5d2MR8xbdsbWUylxL6OPVOtOLaHFrY+CW/UEOWxsd3A9Y7DqbyvGC0/Mmg9EneykJkALj/WaXk6y2Nhd6h/QAs0bqffD8Sk8cvLExJxd5jijWbEKel4+V7H5UzOUflsWwNhNjk2kvsf9wd8qlQChEZg3OILovW8HZi0JKP1VLXLvV5O1fqDGEWPi+sjYkoAZp2IKEHl3o1Cg6wZKbCSJBpbg0nf/+XyQGmMMmaCH2nKc2oQGjhGrKh2NxKgdwyS5jNDjkZpVW4ahQZbw3GbfsxGX+c5GcJpaQmjyMCRA+IwNKikfO72xHc3PE2JNq/WhmTNkBttmTqf8RiExiPfo1NNhSxK7UeU6ASxrgTWvdBQwv2C7VOwPZX6PpXyafuWipF5abpBy3OUSNzSJqXamjPi8JESzd7I4mOzx5gyomIcMTKe9OaLLQaegydLN4fDLKuSDXJDi4zlsSiBznCYxrZ9mnJS9EILU49YP7EJQKdZYuGJuwAc3DpBZe6IQVN89tvvX+apxYfkpRFhHBscN8vMzx6qY81WOjy8c0Kc83SdbkcM0LWZIwadvHKyLlbbeENHxZakCgOCkYNT6ql9mVKInfgm9durzL5wTTwf9xZwplsk8rnU9ASjMCSRZfPDN85TXtvFkuGwh2+fUdooww7Y31zi3oEAY5/+/LfZu36SeOwxlXbZO5jBGkd8hCanzonrcbQzh67FpCQYNa2QXi/PkbzHjuUz9FOKEWwOs9zv5fnCKeErtduo8a4UZr84v0PPS5OR0SHf3F7iKyfvqbDcONHYaFdUa/7JUlPd9xtHc6zKTjuA7x3M8NnFXY4GAiQNQ4uaM1IgqjXK4Eam0h+dmzpQsTVtN8OdToFZubibyQwopQc05KLz1aPqB8a1jBlSk8dxOMzyfjvLBVl+a/sWbqwr41Zbj9kaOKr77W7PpGRPcidP5SeaTYCv7em8gXDz/w+nnmd/qLMsbQO8WKNkh/xIduZeKUcfGMdfrQecyonfleyEkhUr4DOMDIJY4wd1MX5UTJulrMaS7KzbHFhEj7A4y9kIQ0s+Uk1S/ZvnP3SQVPvsjccg6TFIEg/YX5n5y5wviMHkR8c2T5Qj1YFU90zVRVWxIwrWJND2esfEj1DdXm6kMesE6sW93XUIH/G+uVRylcHjINTJmjHLcpC/080pmhYgbURc6zjMpcfGgwb7I1mWKWosZzyud2S+lhNxIj9Qq8YjN0WUaCpKI0k0YialvPu9lMoEC2IN9xF36u2hxtlCpBitnaFD2pgwK++1TC6UxDHNp13eb2eVoDyINWYdXxkefv8ox5NlT4G7vZHBuaLHbQleaqmYohQ/Tjsj3Mhkoy8G+bm0T5Ro6j6803LIGDAjhd5t3+CU9JEKYp2Wb6kOvWNX42rVVce8NUixnPXUviw95tBNqVLFINTZk34r8+mEJ8pdyimx7wfdEm6sMyUnjAf9LG1fWCyMv/tRIDftjPjnm2IVfamsM+0EqoR4v2/wdMWdREnEOp3AVGC2YvvK60h0JyY48lm62S4w7fiqzb/pp1jO9ZQGpWJ7BPGYpTS5UDvigXRufmJmj76b5r78eRgZPFE9ZkcyGmdqh3iBxa2mKLecLDXV75JE44nZXXpS62ObIe1RlpzswMqlR/RHaR5IrUwQ61yYFnqepaVd4shQYmrb8djZXlAAoljoUpxpYEjWZevGSTQtIS8z5lqtEnlZxnKyQ44Oplk9LwDHqFXAzozo1QXAyNdahN7ExyFV6NOTwm0r5VM8sat8ZMxaD81KFLqPmg5RP60CbpPIoPVgXjFigWcz7It7WppqkpluKmape1zh6LhGXloVxIlONjug3hDXOmUFChQNR2mmZo7Z3xNdU/nsgE4vr9igYqFHHOm0pBlnPjtkt17j5KLQbP3WtctUx11zls/+IEdXMotfPnedH94/pcwmLT2mmukrr6OW51CRTNLtdol2YPLxOXGfDgc5DH3CYuZsD0OLseT1yKeH3DicJyVLiGuVOvvdEiBYp5Qeq+c2a/n8Fzcz/PlVdSso2D62/Nv9QU4tOF5vZPn8Qp09Cc7G7OXY3ysBSlasNJ/7Q42cNXH4NzUeCZPWOHJ1XpwWz85GL0vejDiSMgpLQ8U0gSjJd6QetGglNP2Jg3beFKzwNw7E71+ZEiz1fRlzVE0lXO8k/LFF8Q68epxRkoq5dIxjxGwNTPzY4x8efzSO249B0u/P9liTJLfVbEAvlCsw4L853uBFU4hLn6yENOTqfS7tsT9KqW6mj00LDcl7bTE4zzoxCShzwH4ooinGNvqn8oYKPz1f8ghjXQ0ItVRIxtBVKc+Ldcp2olZgp/IxF0tjetfix3VHBT/mzYiOb9OWAKxgheyObJr++LgCdkcWJVvsazET8GZTHONPLbS5281zsSxq9dVUFluPFcOVNmIavqns/H9xrc57cuV76KaYSom0bRDaqP2Rw2p2Urt/rZ7ipSkxmJh6wu/smZySMSV1bxKy6phCbJ1X+gODkhWqTpiMAacLLm/J1vyLJR9bDra7I4c4ESJ0AA1RDtuRbM+9XsyMo6sJZWdg8IXFOr+zK1blZws+aVOcw0LaZXeQUbEKGSNme2ipMqAfiwF0IlxNK2C7N7K4WD3m5WnxvaYm7s8YrM6mdfqhwZoEd3GiMZ1OVDdTlOhsPKIF6waGWkVrmiiTXq6IyTiIDcLYUALV7x8VeKLkye8ZcdAvqDJfkmjcb1f47qE4rr94doswNjhZEeWk7XaVkjPkdLkuj0vn8ryYmPdbFQ67JWZkG7rr2yyUGyp01bYDzq1vUtkWHjKZ9FBZALSbZWozR4wkwNjcXKZc6GLLQNdUxqVXLyuwOru0R/OwxnFdgJv5hX0O90W5zfdF0KsrWbrAsxn0ctSkb1LopnCKPbyu+K5Rq0B5LL7WY4JOjraMKZl5+iY3fvMlTjwhGJrIt3AqXYxHzFurZx/SuS/OyU57vHfnDABPpF1SpR4bN08BsH7uLkmscXAsAOb87CFWyle6o9+9cZGPnRTfo2sJzeMqTQlsi4UeI99W5bRbWyucnNul3heT0tcerPGVU3e5vimYtWlnxLRkIatSe7Qsn8PfvHmBTyw9ZLcjwZkRcqdZY13qv8qZvnLvfnFhm6GfoifZoPXqMQPP4YYU3D9TbPLj/UWekZ5MA9dRjBTAyLdpSvBlagmaluBIEGRoCSczGX5jRxzXv7/e4Rt7ZZ4sizEgb/kUJdB7eTpiq59nXRpivtuoMpt2udYWf/tkRed+3+CVaXHOc2mLjm/iGOPQ6xHHMn8uSjTOlzy1UEwSERM1J5n7MBb6v1vy+Th2J8HU44XsOD6qZIv4oBdqY3ookf8vfqrYEbOOqUr/jjHJttwf6aznYkp2osxqP5It/pA1SY/NJIHHIEltaSNCZipypRzxCXuZ96SdfJRMMnz8WGd7aHC2IPUachI6JTVJKSPmyLUVY7GeDwliXTl0B7FGQUZYtHyLY1fnSlkwSXd7aYqW+HtAfY8t93XsWWoV+WbToZwS4maAtVyf91tFtVLaGtrYOqzLTqjdkcPdXszztfHvLaRXJN/cL/Fk2eOunJwLVqTAh/hbC8eYdHJs9vNKE7A/Mmn6cLUqjsvQEo4eqc+/NDViEJr0w3EXiM/n5w0sbdx1Zykd1c12gRhN2SusZl2ud9KK0nYj6AUmZ+S1P3It1fk1lYKVnM/+aAwSRfr5+Hq8NBWRMyM6o7HoOcINTRXMuzmwlQ5iZ5Dl5ekuA1l62h46TDshRQl0CpbPe+08DcmOXa70uCcH3vl0wI1mjbXcpJw2CE1l6AeiLDZ2Qd7oZ3im1uC2NAschDqLWakT8a0P/PzV7RS/uDpQq/1BaPKN/SxfmBffNeuYSlxfSQ846OfVin3gORhawl86J9rl3zmepWJ7aJq4515kMJ3tKg8eTUs4aAsgvNUvCL8dWZo7t/KA1++e4eVLQtTsj1L4wzTT80Lv1Dysqe60armFlfY4lkDn5Nl7uL2sCqUdg5yhLMcNuzn26lPM1wR4c/IDljKb4pj0hOjBEvkFUfbr7U7juSmONwWQ2TyY42N/4ms48wLojXanMKQfU9DLgh6TlQsBQoMnvvJdwqYAwroVkkQGw20BolKVLkmkU5BC79FhhWefekd81ojwOzlmpsUx7txbZXZpj2nJ4hVm68rCAIRL9tgCYeilcANbgULTCJmtNtiUpbvzK5s020UsWRb97PIWG/UZpVmazvbxpXD/3b0lnlx8SCB/3h/kyKVHlDypw3LTLOW7/OhAsFZnij3lc3SyXMfQY6U50rWEKNY5IwFVY5BnFBoUMmJf+60KDc+m1Rubr07iPxwjomB7tCRo2uhn+OTMQDUg/N5hmT+1vqNKeX5s8JrM6nt2qkEY67RcufCR4vCfXpBJASmPhXRKlZQzhshkHMsXBqHJlGT7IlsTxpbyui9nXe700mqRYesJ9/sZqvZ4YakrPWQtFTKKLAVq+qHOmcLERbxghWStgGpKXOutgcMgRJlFXiq5agH2XltUHgpWhPtRAo04/pAdtz9KhPfv7vYYJMnNjQxVQmv7QsszzvVp+oaauAtWxHI24roMMJ11Es4VJxqIIzdNyQoVeBlGov11V+pDrlQGWFKU+c0DnV8+0eZtOUHomljNjAefKBFmldc7YoDQQfnrrORECv2Y/u0HNg1P47maHNRGDnNpV/kAHYxEJlpVlkjyZsSWFASvZgP8WP9AMv0gNFWXTDXl0A10XphqA/C7+yWmpKg9ZSS8NOXydnMcMyBSuS9IY5M40ThwTZXFpAHvtS1enhbHGSQayxIERIlGNzDVau63dlM8XZ0Mxk9WRrzRSHOxNO7Yi3h5KpTHEdEPTRbkqvHtpk3VttU5uZFOyoiVrYOmJRy5adUiPxZ2A1wue9zp5hQ4yUtd1KMr6aod8d0j6ZqdtlW5zTEibD1WLsijyOBGx1JU/CAUgG7cAr2aHfF+s8xF6aOz8wgA7QUGZ4pD5V3zpXmDO90cF2RuVcH2+cW1nmL1pp1ArZINLeb01CHXZcv3rWaNlXyXvXF5rdRkttSiI8GMF1r4kYkjJ2NDj7nfqsn7L6wE1mYEK+O6Di+cu6EYHtOI0PSEA1lCAlTp6RvXL/HTzhvKPHLj9joL8wfUDyXrsrbFg+unmZUAa3d/lvNnb3Mk99VvlBhIFqq2cMjM8h66BKum4zO9tqOy3dYXdvEOquoYMsuHSkzNIE39/pL6nW7EWLkR8dizS4+Fb5IE83ra+8C+0lMtAhlSe3h3hdnTmwSSwVhYF8CzUBX38PUfPctMqUVbggLH8snmxT0sVlsc7U6u02G9hqHH6rrf3l5mZfqQoWTiBp5DwXaZlyL5sQAcBJNY7xYVo3R+6oAfbq6rCJwrU4e8eTTD09KTKop1Bb62umWm0wOOZLSMY/n0/ZRaHL3TqPDxhR3l/O2YEeuFicHoteNZZZERmjol22NVAqwo0UhAOX8vZPsEkcG/2SkB8FMLXZ6S1+o3t2r89GJTCbmTROOrWxVSynMohY54tsf7Tumx0uWt50dsDSYAKmtOpBBBouHoiRKF+5HGTNpXjPCJ3JCcXOR6kc5SJlCgZ2tgcCIXcrcn9j2MdCqxzpG0cvnNZp0/PV1hQ46/R6ahciJnHRFTstG38B+zMX/ot8eaJFnP/TPlv4yti4FpMZswlQqUDsmLdablIL87dChakaqd32hncCMBDsTvNYqWKAsB3O87NLxJ18TWwFBhqGU74k7XVFb46zmfjb5N3pxkmXUDU5Vq8mbIj+tiUJuTDtYPeuKlfqrq4Ue6AmeWnpA1Y+YzYrLaG2ZxI115EPUfKeMcuib9UKNqT1YOd3s6L0yJc/7Ogc35ItjG+LgDFcMx7QTsjyzlzv1ESRzHWJN14NoUrYi0MXGnnkr5bEjzyZgJTb2W82l4pjLeDGKdrYGhwOrV2pCbnQzLWTGhOHqsOsyO3RTVlK9A4SjUmUn77Eg3XluH7x67nM2JQS9K4IsLbWWud6OdmQA5TYixx63DWTNhOeMzGtstaMLp945cVWfNSbafH+ucLnbZHUzyDEr2pCz4d+5aPJHPKDFpxQ6EWFWC8GknUCamuiYA64LsJPznmxmer2lcKHXkPRVakPGKfTHbV5PNzU6BC6WuAoHzhRY7nQrr0oiw3iuwUKuz3xBAYBDYOEaoWs9tIyTriGc4TjTy2YHy/YkjHdMMCcPJGqsy1VCanSg0cKSeLVdp840fvshnX3hN/M63ON6fJieZtsJ0k+PtOXJSg5SbapEkGoYU7nb3ptjbEyzLueff5vjOCkfymPPZIUvn7yqDyDgwON6f4cTzwhIg7Ke58cZlAK781Pfwj0t0ZKdcYf6IzNlD4p64dr3bS6SnW+jy2evvTLN5d42TF4WPkun4DI9L4trkh4xaBSzZkbi9scLahTv48nkY9bP4no0hAXoYGqTlPYxjnW6noDRIb22vomkJF+eEvULK9okTnZ70HEpZwQfCoaNYV/fICyyKuT4HTXE9Stk+P9xa46UV4Qz+a7fOstnX+Ni0uBeLuZ56HtKWz/12RZXIGp7DUzN77PfEOZ6d3aXRKygTS11L8CNDWVcs5jv4Yx+o9ICb9RnKUrP3zb0KH5/tKJZqb5BjGBpqIXGh1OamZE6bvsGJnEtR+jMduWnCWOduT7wDF4oem4MUV2ttAK61Cvx645iPZcV9fKo6VDmQFTvAlQJrECLv9XyoFh1HnkmcaMo0N4hhxhHn/07LopoSbDUI36N3WnCxNLn2c2lfaStBjANj4bcbTfRMByMoWsJE2It9/vOdj6a7rf5b6x++JulLG3/kNUmPQZJ8wH4q95e4WBqbjkWEscbeSIZwOjFdSctOy5dqLLa+3clxv6+rWjXAbDpSL+rhSGctF6rOqe1BzFVZ8lrODlVXEwgNTtmeuNHqiJLS5YqYFN9sFJV7bN2z+N2jkBMZ8fenCyELmRGDYNKhlzUjtfIJEo2NnqaiV9qPuF6v5/ocuWl1zJsDk9MFX4mN3Uhj2gkUjW1qiVqNHboGM46wFwD4wvyAzX5aXa+ZdMgoFPEqIMqSx55JwRobwJkKjJzOBxTsgH+9IwbiqZTOiVykVncpPaZoh4rWrrsGn5Yt2u82K/QCXQVSTjuBLI3KXLyCKPuN3btnnQBDSyhIbcw39vLU5K2opiKqqYA7MvT2lZkmh6OMAsZZM2BnkFNu1Sk95tXjtLwPEVMpX5VM275gg3YGMoQ27eNGBtNSQHvsOTzs26xIEf20I8woQeSp3W6Xud4W+/rETBfHjNiTTGQ/MDlZ6KlSzEa3qFqSg1hno+/w2QXB/gwDm3J6oIwFi5kBrm+rlu+Tc7u8vbXGRalDavby2LIkpmkJ391e4fnZffW3zX6emZJgAzKZIboRq+6vYTdHeVl89u7bF1g58ZChBDLZcofOUY2eBFSubzNTq5OWPmOaFhN4Nh05iS6euc/2TeF0DVDvFllfEREf7sih388qEfzU7BGlkzvEcqFArBPIJgCrMMBwfJq3VgGoPLHBve9c5fQXfgjAwY+eYOaZm0SSOTi8vs7c1eskki2KA4P+jijFFc8+xD8uMZSCcafYIxg5hPKeG1ZI6FvYEhjdvHZOOZlfWtgmlfIYyHsYRgaZtEt3fD0Cm5wz0UX13TQLU0e8v7UGgKlHTGUFoJydOmbrYA5N6mUsGR3TluxQ2hJi6et1ASim00Me9sRkt5Ad0HAdLknN0TsHC6SMiMsSrJlGxP3jGdXN9ntHJf7KU+8zkGWvoZ9SmrRxlt+1Y8GQLeZ6DAObvGStx+LvsXdYQQIiEOBsEJqqS/f5mQMOB3l+eCyOs2AlGJoIvQXo+hYlubAAMPREecXNZUZcb+coWuJ5GH9u/J5mjJj/ccfnUzVxfXqBphas/UBjORvwRkPsd8aBmhNRkAvUB/0UgxAV7J01RVJCT45z3UBjKiW+14s1HvQ1lrPgxR7/3/2PSLj9GCT9vmyPQZJ8wP7Lk/8+TV/oM7YGGq+7+1wwxUt/qZyQVUyI+YGIjoWMx/2+w4wziSU5GBlUU5MOpSSB1xri9xeKtlrJrGY9Dh7JDLtSHtL2LTWRZ8yEsj3pjLL0RK1W3m1ZfGxmyKE0YgxiEaTbkIP6gWvwfsfnxeq4k06jYMW80RQ7+PRMrL6nYkds9E0ulcZ6pxQpHc4UxeTbl/b749bZYRTzYm3CKr3bcijKwWbGCWn6JqfygsH6/lGOs4VAWSgcjmxWciN1nA3PpJqaOOTuDg2elMG7/cDC1mPF4HixTsaIuS/9jJ6qTPQ53z3McSofKSCXJPBEuc2uLHnEwO7QVvYLMaIENw4qLtsTzdC9XoqV3CQTKmvGlOyQ1+vi59OFmNXsSLFDe8O0clR/fqqFRsID6Rm0mu9zMMwobVAQ65RTk1DSxVwPLzJpSE3Ge+00F4py5Z/t8/3DGh+bEeWS39yu8anZLlVpJvjf3pnhF9faapLM2R7H0hcpZ/vURxnWpUlhkmgM/JQC0SvlBrYZcvdYTKBjb53uOLtLtmgDtIdZ5isNfPm3Qy/1AYYjmxnh+xYFWVIKQ4PpNTHZjloFQt+aBNxmXJz84AORHq16haULomNNt0IObp1g9vQmAD/49ivKLDL0LQwrJJaTc7tepjzVoHh6Wx1rf3NWdcoBhNLgMrd8iJbyiSVY1dM+SWBiLUkR/HYWPTeif1eUl+xiH7+TU9+VWzwilIAr8iy8bpZ+W5xDVWqqNjeFDmmq2iSV8siURGlq0CoqDVb9uEYYGQzk/S5mB2TSE1C0sb/AqwfT/PQJwQaZRoRthkro/tbDE5ySbGA+O8D3bRUB86/evcJLc7uK4ck7I17bXeaUBLNT+Y763p6XJp8aKc2RF1jU+wXV8n88yNP1bdUpd352l3y+pwTkg8BSnktvHE9zutCjLJ/L7V6Rgu2rZ+37RznyJnxqTjxjdTetFhyj0MSNDBZzAvjtDnK0PFuZoDZ9i7wZqff8nVaKq7WhEmcbWqIaF3qhgQ4K2LzdcjhbCKhJRvR2J8dCxmN7KMbM6JFGj35gkDZj7nVlM4IBU6mEmfTYBiVFw4OqXEjtj4SX3rs98cx/ZTatSvtRIsYqP9I+Uiap8W/WKGQ/vEDd7iCm+uUHj0HSY5AkHrD/19pfYDolHrA3GmlWshMPjbebEQsZMfCs5yKqKZ/7/XHrfUgnMNgaTB7O52sj3muLAfVMweNreybz0pK6ZMHmQFzyz8+PVCApCIfvIzelyk9BrPFv6l1+aV7qBoyIzYF4Sy1NTN7j8lndtfBiTTFNupaw0XNoylbZaSfhVH6kSjP7EqzAmBmyeSg9iObTEWkzYknqSt5slChYEfd64lgPRhFPVsT5tnwNDZT4fHOQlqsqcVymnvC3j67xH00/AcCrxzpfmPe5JVmarUHMx6bFZ3NWwP7IUYPcwciilgqZk5PIrW4eP0bpjn5wZPHStPi3H+nc6ZlYkpValD4l44HrYGQxmw4U09INTHJmRF0yYqcKPR7I7L7xNtY2WHrCg76BJ6n4Ly12iGJNtTxvD7I0JQ1/pwu/tN5QK/YfHducKcbKY6pkC1sDFR/iia6hkpyctgc5ZRZ5Ii8A1LgkuJAdkDaDD7h1N7yU6obcHzmqtPDJ5U3iWGcku5kOB3kyZkBDimtXiy1mSi02JUhaKDcwjYiGPO4o1inKUu3IS9H3HRYk4HpYn+byqTs83FmQ197k3Kl75OUkmMQa134s4j1Ggc3J5S0V/mqZIZVSB1uWrzUtxk57vPP+BQCee+l1Qtfm1779SQBeWH5AtSa0Lvv7M5y+fINIsgiZuQb9nWk02RmYmWsQuTZeSwBUK+ORXhGAIupm0KyQoCPepcbGErNP3aJzR+iUKi/fAy8hOJJtl7FGHJjYCwJgtN48qUqASaKjaTGaZC3dXpY4Mmg3S4Do0Htwb41aRXaVLR7SPxYdZ7oRYaV8Nu7KbrVqkzA0FNthWQGDQRZX3vNGr0AxM6Ajwe9MqUVBekwlic5wmOYn26sAPLv8gDe21liWXYhtN0M101fPwP1OiSckwLpWn+HJmT12pRv3WvUIP7CUNUMU67x9sMDFKaEVcwP7A3qoQnqoLACmsj16XpojeYwF2+NBL8+n1oQz+n67wk4/T1k2nRRsl4dSG2doCQduSpWrE4Q9xfjn/ZFJL4RFKS/oBsLR/2pVgJM40ajLBZehiTGyIt+l+738BwTmJSvk3ZbDJdllN5Q+bICyWqm7Yy0pPF0ZqTSAnBnxZsPiZWlEOV50jRdZJTtS8gVDS2gHJl1fx4s9/s7BR8MkNX5z5cMHSV95+EceJD0WbsstY0RK9PqTQZP5dElNbJ+c0fjWofh3LWWwlvfJmWOWIZR6G/HzGHCczAt0ogOfnY0Zygl2EOp8csaX/za51rZ5sixevAf9NFECp/PjUozNv7eQUe3hbmSoro6iHbA7dPihzM96vhazaAeKti7JAf1AFtmvVgP2RylqcpWdsyLFBNhGSCcwVf7YRj/F/+fBP+C/PvPnAVGLf9BPqU6wK2Wdlj/Jm7s57FO0pAA4FrX5cfDjtw5M/k9z57E08fOpvMn9vsO0tPd/suyqiAJDM6nagar7V+yIf7sf8/OLMpbDCrH0RIGXs0XUYFq0Aiw9UU7bB26Kih0ojdJ6foTOJM+p7pkUrFCV8pqeo/a7nh/w43pehVuu5UJenhrQkhPX37/n8EwpxZp0Qs+ZE0O703nRNTee9L681GVnkGFBAs6ub5M2QzZlC/hsesSDXo62XHXPpkdkjIkmqZxylWD8a7tlPjUr2Inxvs6UWtyWXWgfm99VE+JGY4r16rH6OUlgsdzAlaUXEKWecRt3bpjl7iMRFy+duKcMDlujDI4ZKsbivbtlgttnlb7l7MI2Vtrj/R89BcD5p96nXBDHuVZt8eDBijKL9NwUlu0rg8hMesiwn+VZGVvS3BKBtT91+W1xjIGlPJYuvPIGw/2aEm4P96tkZhoc3RCAo1cvM3Nhg1RZgIigm1VmkUE3Q+SmVLeblfLxGwUBjgDihPZb6woIZVYOSPppoqZ4rgedPFMnBWN1fG8Jw4yorouf33zzCldfeEN916CTJ+O4GOPcwJ2ZSXdbP0M23+fkWfG9b7x1hUq2p0DQ+80qL87vkB4DivQQ2wyJpdfz27vLvHBCsG6ul+KoU1Ilsu3GFOXUxINrqdRgu11V3kZXF7YU+HphaZPeKM1cvi2O2XU4GhRU6baUHvBTl9/m8EgI7Pd7JaayPdVZ97BdJZLnu9cr4kWmWoCVtISTxQ5b0k7gQa/Aer6rfJK2+gXFDJVSHoPQZC4zYS7fbBQ5kAuFj8+06Qa2Av+jyMCNDDZVbmI8CaKOIUpMxVLNpV3qns3WQDJrxYgnSp5a4M6nAzUejDtbxx5sUymfO700VXtiZXKykDAtF2y3O3lyZkxa3tdBZEw0Sa5F2kjYHCTK7fvx9od3ewyS5BYnGu9Jh7KfmykSxKhup/Wcx7MVMbis5MSkNmkrjXn1OKs0SQsZn4wRqc4PPxE2+XWpySlZiSoftX2TIJ4wFo6RoJMo8W015TMITVX2KdmR0tzU3RTdQOdTM2OdTIgbGcxJHcQgNFnO+spo7Z1WmqVMpIwsj1xDtanf7+VZSHtsSRp6Oevzj8//Mo4pBupXj4r0A1R77Fw5UpomQ4eXyxN9TjcQXiNj3dCFooYf6RzIbpSCHTOV8vnhsRioXj12+MT02IPE5/127gOO5F+eSwgktZbAB5K39VBXTFAQ2xSsiF/bEtfqF5Y9glhXmWyHo5TUNgiwcqYQU7Q9ZVXwVjM7CR5O2bxQ66oQ42vtDEuZoRrY/9K6R5T4/OhYAJ2zBZ8Dd2wFMSRv+3jybx/0s2SMmFsSFCykXY5GacVS9gOLc6U2X90SE0rDs9Bl+WxVS9Al6Ab4zJzQpo29jyw9ZhjYlMali8AmLw0w36rXmM93VTcTwO2jWU7IshrAUadEUa66AS5O73NT6kr2G1Wy8ndloJzr4ctn5+eeeI9bu0uclBqlXKHHzv1lcnICef8nl5X7dr+bxzQiClOCVXF7WZz8QJk02tkR/UYJuyiexVQnh1kYKhftpmwVH2/Xb5ydlPlSLuvn7qqg2fzJXe595yoLpx4AYKQ9gmPBWHT3piit7GNNSdH7rRNUTm9x9B2Rx1Y5vYWZEf5HAJoVYRYHDO6L7sC5p27x2m99CoAL52+RxBpHt1cB2O0XeOeNJzl7WgCfUS/D6pM3hO0AcLi5QF6W3lqtknLmBlECKxW7yhfpZy+9S77SVsxaLuXSGWapSh3S8tSRcjrX9Zi8M1IltIfdIhdqh2xKn6TVYpNapqdc1Aeew02ZzXZ5ep/WKKvE1X5kEsQ6BVkyK+b73HqwxkJVPC9Zy2e3W1TGpm5oKnByqtzgRmNKjQnT6UlsCIgFzFDGsQDkrUBlyNWHwqZiXJpLmwG6Bi9Py9zAQZaMGYH8Ww1Rzhq/14E+AScLaZ+S7dENxhYqKfJmzEhW0m91UzgG5KVmKW1ECiQ5hnDsH//uTi/Ndxp9Tqfz6ntPFWJud/Lyb4VcYZwO4Mc6m5KJj2JwDY0XaiK77Tcn65rf3y2OP2SfpMcWAPAYJKktSjSeroiHfBTCP2pd469PiwH01eMUl8rjqAxT1pzFy/Wgn+Z8MVCZWaPQoOWZSndk6TFupKnMn1tdeF6O+6aekLc0JdTuBToXigOuy5LAKBKgagwa7vZs1Up+Ku/S9A1lReBFFiVbeBqB8AkCFLM07Uxa4QHOFia6mKwZ0Q1MFS3S9k3cSOeBFJOezgd0A0NN7EmiUZOaq92hTsGOlTt3Sk/xW4cuPzsnANdRaJIzNTUY7Q81ur7DqYL4+9nA4FjqOC09xVQq5JsH4nvO5AUwGh+XF4uolf/r1jcA+JXaT3NaTqaj0KTpm/yJJbGz/VEKW09Yz41z8NKs5Dx2pWD2esfk+ZrBgezSW8qEXCr7al/vt/NqwOyHwt16HCVyu1NkMTtkayAmjJJtsSrtArzIIGUGvNEQpbvzRZdjz6YrdWdPlAWQOCMn4wfdktAdTQ/k/TI/MM6N/ZRATEzXO1l+ZlW0nD9oV9no5lUy+fN6REfe06odEMW6mphsI2alXOe+dNReLdfRtUS1dA/9FOYjwt3WIKf+drtbYnn2gI700crn+5ye22XrSLBSuhZTqbS4vbkKwJOXrmFJoW3zuEq51FGu2HGkc7g/ozq0MpkRpdlj5XQ96me59s0XWTsjSjWLF+/Q2RLAzSwMOXXiAW9cFwDizMkNjrbmyRfFORgPZ5k/scWbP34agKuf+CGWDBaePd3Cu1/A2xOdYLWFAw7fP0ntpBCBm1N9MmmPSGqW3N0amfVDzIy4r0locPlJ6Qs1TNM4qjGztAvAs8MHLD9xh71bgtGqzNSJ3ElDRjozInqkUSJOdI4OhQh8aWWHdr1MVoqZG60SvX6WbVmOerbUwu+bFOSCpt4uEUgAXs13GXop5W2VMUPeO55VbIcfmehaovRlhh7ztLy/9xrTPH/qFvd3hQYrZwoGalxSG44c7nTKqix2otjCMSOWSqLkqusx1w5EufVhp8xirseJsX1AvUbBCpXOKG2GVNNDjmSTwO/sFfjc3LgDLYdjxJwtCtCUsXyWMg51CfwMPeHVY4dVmY24khsRJqbyrRuEBl8/kGHAMyZvt1JckhYhjpGwPTRYy0thf8qnF5jqfXm9bqlA7KwpdKfjjM3VbMIT2TyO1EGfyAUUrFCxum+3HF6e7tGQjTe7I0MlI0SJxq2OTjVl4MYfnpD68fYHsz0GSXLrhCYNmS5/tTrirxrn8eVsdbXmqy6xhmdyoThgJKnllp/C1mNqsuut7pqkzYR2MM4ji3GMRDnIfmx6whStZEc4RkqFLFZTId3AoiIp3v/6+A5/eeq0oqL9RwJcO4EQPI9T7Vux0BKNNy/W+KeNTf76nBgEXzswmXYMTuXHJmwGnfHKz/HxY015kexJZ+5xm7quiW6x6x0xICxkIuYkezHrGPzWns3Fkijb3Owk/MysQ0OCAkcXIvKxnudMIcDUk0c61CArLRDu9y1WswFXyuOBZcxOiZ8dIyZjwN85IVb01zvw7f2M/B08V3PZlWyYKPtpSgC6N4JXZnsKRARJmmE40ZI9GAX86WVxcduByfnigP9pS+z7T652eatRUGAtbUbc7uT4/LyvrveY4t8fpvFCi6ekK3bTs6naAVlDdsE8kssFYmJ7eWYSy2BoCSelpuRHR9O8MrfPxp5gM9xY58hFCXN/YzvLX39im7WBYCFsI1QsS8vPEcW68tB50C2RG+Q5kNEiJ2sRcaKxJzUpz5y+RRhY/Hc/EQDj507fUd1Lp2uHbB/OUJOuyNl8nxt3TnFOiot1I2J/f5YnL4lcNCs7UuaQ5VoTK+XTb4ljrK7tUjN2OJJBs+88WOelYo9wWwCuTjfPyslNXMnCxJFBS8Z7eD+8zPSph3x68dvq+tmZEZbM60vV2uy/dZZnX/6xOI78kDvffAGAxVObpCod0meEEaW2UWXUzWNIYW7i6YI9KsnA5I1FdCtUHWx6q6DCbjUzohQa3LkhHLgX5/fRzIjqrPh9kmjEkc7GDeHIvby2pUDSwsoO/iiluveO9mbwQxNLlqKWlndo1qtcXRZsmKYl2EaIL8HywHNUwO3s0h4P769QyU182lYsX5VBe16a5dqREtzvSW0QCMDU7+fUs7RW2+fHD05yWXodtQc5LtaO6IzLsVJDVy23Adg/rqn8tX+6McWfP9VTgOpMsUPaCjiQz3TFGfFA6pcAvrLUJJHLxiNX56WpPnckO2ZJpnwcNn212qds29SciRjfj3USOb7OpV3+zIr4t05E08/woC8NM/MevSCl7DWavoWjx4p5er6G0ju+3shwOh8hpaPUnABNs8gY4441nTjR1LU9nQ84Gjkq8iRrJirWyTYSnq/5aFrCKJoc9+/79phJ+n3ZHoMkuc06LnE8nmB1ctako+JmJ6WYmCNXvCgPpYB6Netx7Nm81xIvYjUlSlBjcfFrdZtKCj4zJwbjlmeqF353KIIbx9b477VMLpYi7sgOi788dfoDNgFupNOXL6KuQcvTVIbR1VpA2fZxpPDyaJTmz9VWsHTxXeeKItF6XI4D6Icyi0qKiSeaHNF9tjuUMR0ZoaV6viZWs5uDDH9/T0wIf35mhrMFXYmtX5oSLbvI1tiCHeO5OrNpcS0PRpaw/O+I378w5Smh8v2+8FIZlzJBOJiPhZdZM1KdKSDYsjUp3C5aAUduSnXKvd+2uVobKp3EjAP3OkWWZQ7YzsBgLZfwREn8/VreImeJ83t7L8VyZhJabGgxi9lJHt3ByBFlV9ntNO0EakXZ8E1utsqKORuDtHFiuh8ZHLkpbH0sVvd5q15hVYrow0Sj5U3M8XQt4ZnaxEjwUjlWzMGvnN+j7WaYlaWL5ihLT5Yars4Iwe1YF/LK+h1u7y1yuSZAgh9YLE0dYcjV/7968xk+tvSQnzt9BxBp8+Mw3FFgYxkR27JUY5ohZ048YDQ28csNmJ09oieBkbc/zey6YGhuvXOBlZVtTHkdgn4af5hWrNTHnvkJvpvCyQvG5trBAqtnNnBkd2QwcphdEm3qN26cwckOCWXZr7y8j1Ppksh7HPbT5KodLOkynySa+ttUrc1wv0pe6v3M3IjZj72PvyNAULhXBT3GrZcAKK3tYpQGHN8RYC5f6fCjb3wcgGdffIPm8SNGk/kBYT+DJzvp8jNNHl4/pX7fOqpSnm6of49cR2mD3jlY4EtPvck/e+15+ZzE3KrPcEVaMYSRwb+6t8YvnhGlvPlKg6bsnNy4e4JCbqC0YycWdjmsV8mMs90cl+t7i6pD7eTcLkX5WT8yOeqU1D3+ycMTTGcGPKgLhsuPDRquw3OLgrXcaVX5/mGVq9JeYEUySgD/6fPX2G5MsS3PX9MSpvVYeR89apYKwjB1/C59caHOrz+s8bk5AeZnsn2OhjllkRElOp9fOOZ+VzxbOwOHmhOoBcvO0FHNGfOZEU9WuvzekQDkR67F2y2fS6WxsFvn1w7b/Htz4vffPTIoWmIhdLoQ8y/3XH5OMlwpCabGc4Ab6vixrmxStoYWy5mA7YH4eT2fqBLgbzc6fLpcYtYJ1IL4I9mSCJW0/aHs7zFIgsfdbaoz4D9e+Mt40TjnLMLWE8pSN/F2M8PuUDwwX5z3+c0dUyVN/98XnsbSEhU0O+XEdH1dAXrHSFjLjahL+r0d6Mw6k3bzd1oWV8qTxOuWbyqQ0PRN5tMew0fE2FuyHFBNhRhaogabd1pZVrMBh64AHGPrgZNy8tkapjiVH34g0mJMy99sF3CMmDcbY/GwWA2NReJ1z+RsYagiWHqhofxBQAisvyVD3F+a0tka6Lw8JSa5bx1kuVCanG/dNdkbwZKkz99rRVwqjzv/Yo49QwG/5axovZ84g/sMwon7eZRorEt/naZnU7ADpYX41kGW+UyihJfdwOBMsa/Ov+PbNH1LDbaWHiuWztZjptOTTsB+YNH2LWpS9Pu13TRLWY0ny+Ic84+0Ozd9oREaa4GO3LTwrpFi9JIdUrQCBfz8yKBke0r/5Mc6RdnuvT9MM+V45KSYNkp0glhXBoCj0KThOTwpw2R7XlqVS9KWj2lEH9CgjAJbsVjVfBcvsFTUyEyhTZJo6u+90FLdbQDValOxVO/dO8XJuV3acrIu5Abk8z0qJ0Qp5+G75yiW2upvSyv7jBolcQ6+xaCT50iyQwtzB0qfBNBrFxgMM+QkmM0VeqTLYgINXVt1loHoXnPbOfZkZtzS+iajbp7qqYfqu8ZC7N72DMWTO8RSw+a189j5oepeiwcWWiokkYuQqJ0lSTQC2cxx9GCRonSJDgOL6sV7+NJc0mvn6TWLJJLhOaxXOXXmHiPJhuVnGnzvBy+Kf6dc0pbP7JRYZDRaZeYX9rl7X/ggTZXaRKExEX1LMDnOXHMsX/lXFfM9jltl9bvlmQNubK9wdkF6XXWK7PdKSneUtV3qQ7G/YWhi6TGzstxazXe5sb/AqSnxIt88nGO52FL+TmkzpJByuS9/tvSYExIoufK5qksAVXGG7PYLTEmmKYx1Gm5aeZK5kaG0gAA7g4yKJrpU6XA0SqtOuFFoMp/tcaMlQGnaiLjecVjNyoXmyFKao7qXcLE8CenNGDFN31TjxYXigN2Ro2JMjj2bt5uyKaCYcOzprGbFzraHJvPpyYJ1LR8TxUIXCnCjI+QNY6Zp2gkoSVDYC2y+umNSMA2CxOc3uh9Rd9uvz1LIfIjdbcOY6s8dPO5u+4M+gH9XtloqJIjFANoPdfxYUw6xC5mIki0Hz0SjG/v8zYVnASEgNLVElbpsPaaLzlmZEH+zk2ZrkGajJ/Z1pRxypyu+J2dBwUKJnoNEox/qyrNnIe3RDkxKchXeDSzu98VxrOUC3m5lWcuJ/Z4ruPw/dm/x12Wrfcs3WM156hwqdsjdXgZbHxsgJhMQEI4ZpInT94N+SgXP5swIS494vSHzuFLQkyyypQuDtbMFAQJ1IhwDeuHY60nEeoyZlfW8y+VKwPcOxWD9p9dGqsV9EBqU7JiGFLnvj3Rudmyer03E6Rt9m7OFsc7IUfcvSDQxqcmfv7jQZRSa7I/GJUKP91p55WcVJxoFa2JMqYFyJz8cZfjxcUnpyhYzHperDQ5lB9LT1Zi6ayifpK1+Tq0wz5TaFFIu27K8MJ8Z8G6ryJPSENSNDG52cmrBt54fsT9Kc1HGTrQ9R7mIX6wOGEnRLUDRHlEfZulIJmkmM2Ct3OCBnEBO1Y6UZmLgOdxp1liVJbKOmyFjeeQlMB64Du8cLPDMgmB8DjplFWALHyzd2VZAp10kL12xq9ke1dlj5RrteSmGgwzcF6XdYqmtmKD7t0+Sm2pRl07Xs+tbou1fAk4nP8CpdJSf0fHBNKefe5fu9qQLb7wliU73uMLii8I3af/1C0ydfsj585sA6IWA4bcv0ZClvNq5B0RSc1a5epfE0zHnpcGh32V0d5rhhvgeZ7ZJ4pkMHwr9k26F6CkfqyDOw0m7mI6YXG/cOsNiP6uiRkLfojDV5HhHOIMvzB0w6OTx5MJo440nee7i+wA061Vs2+ft+4JpOjO7S6teYWVOMF6u69AcFFhdFoAzn+/heSnevH8SgCenD7m1K2wL7jWmCWOds7JN//bOMmkz+IAT+kKxyaaMl5nKd1iSQMULRAxNRk7szV6e83O7ygLimbUNOr28YqHcyGS23GRPCsyXCm0Fzr6+M8tiJuCcDPStj7Kcmzrgn9wSJqCfmWuSs3wK0lyyrMd0ZdnbjUxOFrps9R/JEEyPPqDFa3mTRoey7XO11mNXmlpOpSLekYz32aKIX6pIz7Yj1+CFqQ4PZFD1kZtiEOqkdHF9eoHO1ap4135U16mmUHEnF4ourzcc7gwF0LtQsvA0XQGw232X5yqOilRq+RbvSQbLj+BzswF5y2UU+fzGRyTc1uIY7UMkf7TH5Tbgf0MgaTgccu7cOX7+53+ev/W3/tb/4r9/s2HSCcQL86dXfe73M+THnRyRrlYjv3tgcTKTwtDEYFO0It5vO5wtTJysv9vucLogXvLFTEAl5VOyxM+iO0t8Z9aMMTRNsRkNz2Q16ylAIXKKEt6Uqfen8iFPVyer7moqVs7X97oaf6lyiQcSRC1lIpq+pSbvohXx7fqAPzYnO2H6Js/VxAu+N7Kw9YRbXfHZgmUQI8SJIMJgb3YdZiUmud2LeWVqYpYZI9g3gGPP4ELRVUzJy9M9/tmDNF+aH/sV2cwBJ6U26q1GHlNegKlUyO5Q56IsgT0cCF+SsXu1rcecLbjKn+jF6TbfOSgBcKUsPE3mZVREx7cJEw1NskN3ew6XSgNudQW9/o1mh7+6YlOXWrPlrKsCftOG0JHtjTR5/x3ylq8GyCDWWMn53JBp9Gu5kWIO73WKzKZtBUBTRsh6bsQPj8RxvjzT4mxhwFBOZFPOCD8yFMPzT+/n+dNrYmLeHuTYH9lckNmAbmhyu1vgFTmhHg1ytD0HW65mbxzNcbIy0cVcXdpUJbLZYovDbomyFAAXCz1eTHn0pUbJMQOOe0XOLm+KfTeqfO+hECJ/8ex1qrPHqpyk6zHeMK3a2tOZEZW5I7LLgoX43V//Ei+9JGJI1k7fp7k9q8pt9a15aosH3LkjJv2T6w8YHZd5dOtuz/CmFGe/9NJrpKT4WmslhPsGe6+JhcDU6YcYhQHduwI0ZKZaOLmh6lA7urbOwpcEOAke5jBrfYbXRTnJWayTPnFE+x1xjjs3T3LixbexJWt150dPsnp2g/SCuJ7pYp+9+8Is8uTqQ9rNErVFAU6iwGDQKpKRTQSZQh/0BE0+H6Vsn+MD8b3V6TpJrLEugU0mM2Q4zHAso1bKpQ4n1x/w/i2hd8o7IzQt4UkZNZIkGjN5AXyLuT6tbkGJ8VdKDaJYVxqkSrHD7b1Frp68DUCnW1BhuF5oUSt0lO4s67ikUh6NQwEoMrbH+4fzSnd0onJMu59TdgLb3ZKKIfmZ1R3utqqkJGN1Teby/dIZccwPWjXyls/7Mj7lSu0YXwqadS1RLCqILroHvYlFQD8w8WJNvdcJgtk15e+n0y7TztizzWIUWvRk2etgBD86LrLZF8/pZ+ZCeqHBV/fEcf7S8qRL9+MzIQ3PUpqoINE4XQgZhbLRow0/vdTiR0fiWf3FZZd3WoKNAhFaPW6qGYbCEsB4ZCH6ePvDu/1vptz2N//m3+Tu3bssLy//LwJJY6ry/33iL3Ag6eKzBZc3Gg5XZLdT1gwVMwLCU+nN5iR0di03KSfZRkxKj1U329ZQdGy9eiz+/ulKzN3eOO5DsDdjyjZnhRy5tgJkSSJiUMZlv1FoKlHi9jDh07PehDkIDQahzpwUou6OUuTNSL30B67ILVqSXSE3O7bKfxuGmgrXBaGz6gWmYqFAxGuM97U10HiuNokWuNMVDt0gcs/yVsyxK/6j7sILU74SX9/vGzxbnYCoQWhw5I5XdhDGUJNg7ETOJYh11V4fxBozTsDviOoSf3wpUoPQsWdStUPRLgy81XS4VPYUiCzZIRs9m4slwaQUbJ+3mwVV+hTie/G7e708F0ptJSY1tESwfPIcsmZMzgqVMaUf6yqbztBjQtmFJ+6xQdEKWMiPW56zhLHOUE4MLc9mNu2q/KlTsssHxLNVcIa8K9vy5zJCY5WX5TfbiMinRrx+IITdlp6Qlyv/MNFYK7TVin2p3GDopUhLJiHjuPRHaeWwvTR1xGCUZkeyUk+dvq1cst97sM7puV16Mo9ueqpOv5fDkt8VBBZza9uKEe03SqQlk6RbIboRM2jKVbabwkoFyoE68Gzuby+xOi86xXLVjkgyl89a6NqYsmT21rsXuXDqLr68VvlKB7vYV510jbsrWClfldiys3V6kpEqrO0TBwa69AmzToS0vr1EekqwH147jz9IW+59aQABAABJREFUK7YoXW2Lkpy0Jgj7GTIrUuf16hWy+T7ZaSFy7u3XyNbayjAyiQWrOWaSrm2tsigF0StrD9GtiM27a+pamnagdFbdToEwMjjqlAChM/LclAKzSaJRkc/Ind0llqrHH9A3Pbe0yXc3BYPz8tImh92SKgVfWXmg7Ad261Mik08+81vtCqaecEKaTT6oTzNfbLHdFs/D5ZX73Ntb5P9yQzwT//jFY9WhuN+qECU6aflc9tw0actXLNXrBwvMpkfKuiJrhsxIS4Pv783x4swRewO5QDFD7nVzTMv7MJcZcKdT5DuH4ri/tCDy2cbNLht9nSelXGEc0r0ihezvNgUbPNYsvVa3+OSMy5E3Zq410pItDmONN5oRX5iTovfQYC7tqkSD5eyIr+3meLoqfebMiF/b1rlaGY8vkWL8D1ybhYzL7U7mIzWTbP6L2odebqv8qfrjctsf9AF8GNvdu3e5desWX/7yl7l27dr/qn3sj0z1wuyNUkw7iWqfv9OzOZ0f60I0fnSc5pmqGAB+7yjFzY6JLRcMti7Az/niuKwjXGDPFsSl7gQ681LEbGgJmibYFxDht8/VJmxHhKZCdgGud2wa3jibTONGx1HgZKMfs5rVmRNjKS1fo5qK1YrM1iGlRwpkreRCxWBlUglN3yRvTtierBkrRsvSEmaciY7majXmdjcljyNmxonUQHS3Z2FomlpVnSuNa/bi+pm6hWNEvC6DeldyIRlj3DEiyovRI+AsbYYKhL7VyFC0dD4lKzFBnNCRwKVihyIBXE4C54sBRStQovBuYLKSDdiUmq4LZkDVjlRkwfV2ToX2ni4MaLhpFiUzEEmtjm9P4lEqtqe6jG51M5wvClBQdx2Wc33FFJlaQjHl8p1dAWSeqTVpeY7SZDR8g7V8yDCSeWy+rVbWlh7z4+OqAr5RojEKTbWCf6te5XKlxUXpZZMkmpq4trolBoFNWgKZt/cXqTkjHkpH6aem9ylkhsynJwLcvpvm/JLQ8wz6WSIJQMc2ASVpEOl7NkFosnBSfDZ0bTQt4a03rwDw5FPvEo+7F3dmcdKuAlDl+WPxeXmccaRz7sxdMtLr6L3XnuLis+/SOxSAI1tr853vvwTAZz7zXW795JJysnYqXZJYw6z01b5u31nn+Z/7HQDc7WmcirQ42K/i1Nok8p3e/Y1TzF69ji41KO2Hc6QyLhkJmup3l+l2ChRlmPDc595n8J4op43DeFPT4rOdnRmuvXmJ+WnBOhWqLVpHVUwJBF+5+hO6EkA5pT7+IE1RumaPAeJQgtX5E1ts3V1jRQrvo9Bg6DrqvupawtuS4Xv5iffY2Z1X7NBKoUMU67wiO+PGobTn5wQA7Q2yZGW59dt7c/x7l9/lH74l7tkvX7zOe7tL7LfFcZ6Z36Xbz3J2Vvzt2JvpHzzbBgSIWq2K873VqlKyfYah+Mxctk8U6/yzOwIIZgy4WD3mpCxnv72/qLrEXpk7wI9MxQ53fZtpx1eapF5gM5sesZwVk/T2UCdvxvSkRODYCxUbdK7YI0lgR3bV1ZwAP9KVXcvVakA7MNmWHa1L2Zhl2cjy/aMsn5wRiyUAHZ39kaOsO1ZyCc9UA9XN5sU6F4sGJSmNOByZzEsblI7vkDFE/JQ2Gcp+/7fH3W2/L9sfOEj6/ve/z6/+6q/y5ptvsr+/z1e/+lX+2B/7Yx/4zN/7e3+PX/3VX2V/f58LFy7wX/1X/xWvvPKK+v3f+Bt/g1/91V/lhz/84f/q49gfwU/Ni0lxb+TQDQx0TU6KEbzeGLeVxpg6ypRR0+BkIVKdYRs9jRkHxRyVbY1B6FCxxQO3nPUU+/Ggb/Nqu8flnJi4FjIxuyOHkWSS0kaCqSdKG1K2E65Id24v1tka2Jhyxf1cLWY+PVST82ImZGdgKw+iq1WRpj0nHWXH3kggrAVankYkQUCcaDR8nbu9cceajpZotOTqbSc0WXhEgyU6PcT5ncoHxImmAMa7rTxnCkNuSjPFa22NpyuOcqI1tUSF3R5IFm2czH2/77CUmQyYV2sDrrezSjwZxBpVyQwMQoOGb+FH4064mO1hmoX0WDPw/2PvP8Nty+7yTvQ345orx712zufsk1NFVZWkkoQiKIDBQdwmGhubbj/m8lw/xm5M4zYgw72NeW5fbAN2GxwwwSBo0yghIakkValU4Zw6dXLaOa+c5prxfhhjjV1l3Nf9XBcSmJpfqvZZa80151xzjvGO9//+39dmo2/xnmmxUv43d8f5jnkRXDu6BhcrYkI8cB22+jYnZZfU4dBGAxXEu5Rrcb1RVJEwJ3N99iRr4BgRw9BQHYmWHtH2EhyTAvPmUJbu5O+WsxJs9tKclUJn2wjZlZE2D4/vMp7q4sgVeoxG2M7TlVqQjCUCTUdC3uYgxZzUIBl6xINmiYW8mMh/a93kuxZt3n/iOgCr+xM82C5zRgacBqGhSi8AA9ehIrvqTDPAMEPVhj4xv4lTz7N5ZwGA6tQu9Y1JZqvi2o7YIwDb9kjluoqRaW4IVmxkFpkdr+P1kuoeP/vwK2zcWGb+vCgRmbkeT8rstmE7w/HzNwjktW5tVqk+doP954WfWfX8HfKTB+zKclxpaZOrX34EEC7g4SChfI/GTt9HTwVEMsT6S6+e5y/89V8n6oh956p1xk4+UH5H7RfmFOuk6TF3rpwivyQAxPbuOBff9rzyc7LzXcKdKrZkgOs7Y8pMcvPWEqlkn7//hUsA/PJ3/QEbtxeVm/mDW8vUOjlOFFcBEeKbTfdUF2KtWeCk/M3urc5TKbTYrQtgszy5xeduneYh6YVU62WYzDW5viOE7eOZjup2fLjcZKdW4UnJhhXLdaY7OdXyf9jMM1k5xH+NJs6PdAXWyqkuG5J1vDC2S9tNkZeNp5O5Jo1ehg/Oik7Ktpfg2d0JnpgQwO9k6UAtML66P44b6jwhAWbNFffCPakjulCu8dmtcc4VxO9WSrh8cqugEgyeGtMZk+PD/U6aYaRzUoLYtm8T6zH7AzHOXSq1+cJunqnkCJDp1AzZFJKJiGNNGf2mzYj13tG5tz0bXTsysawmIrb6urJQiIDP7Ihjnk/H7LomXoSykXlz+7O7fcNBUq/X48KFC3zf930f3/7t3/7HXv+N3/gNfviHf5h/+k//KU899RS/+Iu/yAc+8AGuX7/O3Nwcv/d7v8fKygorKyv/VSDpXCHkmX3BbngRPFzy1ariuZrGiYx4mL50EPBUxVSllomkjqXFSLNmxhxoenC2MOregqylMbJEvN5yOFMYsUEhl7JZzsgg2dFqe3cwqtfDv9mr8a6soE6WMj51b0RZh7I8JR7aqWTEswcZxbp0fYPFzJCqdENLmQHTKU35PW0NTFayMqJBjwBbRR9YWsTWwFDUc9Lw8CKdf9EUk8IT9jyLack6uRZXWkOOycirlBHy5YMUjiHboc2IfTepNATvnvD46qHDqbw4zowZ0vBGBm4DNvuOKvs5RswX9y2+Y34gz8niTKHH15SAXKekyU4fS2gKpB0RhnSrHgFSP9JImzGHEhR9y3SbrX6avcFI7xSr0Mww1jhX6HBHDtTnii1ut3Kqu+3lWonplEtD0vaerquOmWLCpe0lWJJgxdJD1jp5FXBr6hGbvRRjcl9niw3CSFfska7FTMjVfsoecrteUfdhLzB5bHpdgRlbPyqlgBC9jkovW+08STPAlZPc31zpUE51OZT+PADLxUPFQqQcV5VxAA7aeUqybVvTYl5ZXeKpi5cBaO2VVScXQLtRIFtoqy61+sYkaamj6nYzWAmP5qGYyCtz29y8fIbTDwutUOSbdGt5Ytl6H0YGs2fu4Et7hfb2mHousuM1+ntlYjmR5ed22fvqGSpnhPFkd3WSjQdznHzqRQA2Xj7FQ9/8BfE9A5srn38Lpy4JpjlRbtN48Ri5FSFcf+9bv4xmxKx++SIA5YkD4sMCjmSLnITH5uWT4nvLDU6//WuEUit3/umvUr87q8JwvU4a0wr49NULADw2u0pQE9c56QzodLJ87J0ihmX7/hxBaDCQ0TwTE3vMH1vl7k2h2UpYPqnkgKEE3dlUn2clkzST6dDuplX0zOduneaphXtsSiBk6SJ6aFoK8iuFpjKWHPoW5UKT+rpgezY2pxkv1tnbEKJ3PzQxzUB9byoxpBT0jgB5eGQ+u9Yq8ejCPV5aE/s67OZImD62fDbXOzk+ePw2X9sU+77RSvH2cQHAzxSaGFqMK+/D4+V9Pru+wDHJtDXcJFUnUM/PWjfD2YKvSv8RvKbkLty3fal3MvVIdQaDSA5YyflqfJlIeqpMbvkWWcvnfnfkuxbRDeDhkgBnD3oJJpyA51viuGZSScYSGhXnqJMuI8ttD7oJ9l1hK+C+kS35/6Utit9Y9ufreex/irdvOEj6wAc+wAc+8IH/09d/7ud+jr/6V/8qP/ADPwDAz//8z/OpT32Kf/bP/hkf+9jHeO655/j1X/91fuu3fotut4vv++RyOX78x3/8P7u/4XDIcHikp2m3xQrPfk0L+HQq5nLD4jFZUnvvhI6OeAA+29/j25wqn94Rk887xn1yls8D+XCdLQx57jChGI6lTAI/hmnJ4JwveipmQrAohmrFf9DJcLttcF7W2Fu+wd+ayVN2muJYPRtTlwNxqLOUCZV+CWAl56vy2s22SdXRuNcVP/GxXFuEQSKO+1h2qMpLhhbjRppy6Z7P9EiazlF4Y2LIl/fzfHdlVn7TUV7S6XyPsUQCSw6IP7Zxm5+eO86qnORWcl0+vZPjLVIk7kY6bx8/Kin6sca+OzKLtPEjjUXpGbTn5nh6fKi6U3JWwDA0VKba2UKLutTcbPUTXCo3aUuQ0A1MGp6lGL5RRttLNYHm5tI+jhEyI40Iu4GhBltDi9kdJOlKm4OaK0J316Uv0EJ6QCXZV+HEth6p8sErjQKWHrMpRc7zmT5RrJGUk4ulh5wuNrgu/Wo6vsVSrkVJliJem59282CC+WxLxYPsd3Pcr41Rke/9g60Sf3FhV/kqVZI9VptHnW59L6Fy//7nVzP86KlIlfnaXoLpYk0Bro3aGGcX7/ELzz4OwHefvc7+gZxszYBzcw/45POPAfDQzBrVqT01sReqNYbdJBkp3N7bnFRMkR+YDPopmqOstnqP6cld+jVRmul3MqSyXbpSNG9ZPjdeOM/KGcEkdVtZ9iVTMtVNEwQGpXFRXmw8mMa0fTy5LzPlsnzxOposgViWrwJtkyfqnPNfUKG0RqGHth5z53PifE9+6zNoOZOldwtrD/8gT+DaQh8FBH1HAQbPdRhKUCdOyiVdaSo9U+DaFMcP6FwV98fC6Tus3xCgJ4wMJue2FGhsdTLMzmyzK4XdKTdB4FsKGKZTfUwzZCAdqNOpPmekbuiV/UlOzK6pSJPz1R1u7k6TkVqgjDNgo1lmQYr5G+2cahAoZDtcXV9kKidA4FqzjKbFymftcJBmWYtpSR2aH5pknAFt6Vh/t1liUjrQP750h/16SYGTxfEdgsDky1IbNS3fNwJV3zy7zaY0nnxoZo07+5PqufUbZXJWwJzUcD2zOUcEiiFPmiHDUFeB0nkrZFyOnznLR9dilVjQCyBnxSoL09BiYo5ifYaRruKj2r7B1abN+eLR3HCvFzLuiN/8TL7H9sDhL0+J36HhGZzIe2qM7IcGmZHOLkpwKh/SC45KfW9uf3a3bzhI+v+1eZ7Hiy++yI/+6I++7t/f+973KtboYx/7GB/72McA+JVf+RVeffXV/1OANHr/P/yH//CP/bsGlBNiYMpbEbWhoTyIdqRGB+Dvz5XYGZgsZKQfjeGx3nPUiqITGLxnssuunEAqTkAQaQq81IY2JSksvd1OkrMjBQIKts+lUsgntsW+H69IywE5gPRDgz+U4GzM0VnMhBwMR7lvwogxlADieDZko2+zLJmlLdm+PgIgB0ObPVc8wEuZiOVsn+dllEbKSHK1aXEyJz77ia08T40N1DmEsabYDTc0GHOGChT9zcp5On6gVno7gyRpE+WEXXF8brVTLKbFYLTeT7CckaGatsdSzuUlOYFMpzxaMiIFIG1qWHrEQkas/n7lXobvmBOfzVkh15p5dvriveeLLn6ksSTPt+QM+OpBma7U2H9uz+AvzbsEEjy90nR4aky8Nw3sDpI8JLuqdC0mafp4kRjYI2C9m1XApx8aJOT1GHc8lnJNam5K/t4JEnrEi3IiP1fooGkwIcuAph7x1YMKF0tNdT1n5aSy1cuQCyzFfuVsD0OPlAHg9598IIGQuNYD32ZaBpY2+2ksI6Tuit/9nz61gW37tOS95gYmL27O87A0Czx0k/R6ab7zlAAnmUyXsC0m31y2i66HPL4oDA0jySKNhNtxqJOdPKQhu8wmFzcYtMT3zC6u023kWFwRbI9TahN6FhvSbLFQapCZqClg2GmKDiynIs6jdvWU0voUJ/fpNfK8cOU8AG95/AX815TQvE4KZ/oQoyh1JVeiIzH55UkyT7eJ98S13fjMQ8z9pWuYXxGfjboWO587w8Qjohzpd5NknqgxvCquvZUeHAGXYosvfPktfNP7hPN3/f4MyWyPngROg36KWqPAuxbFOV/52kVWjolOL9P2uXt7WflRzc9uUTss0ZVlrnHrgOx4jUZD7CsITXQjYnxSAKPAs8gH4hyWhg16vTTz0iA0l2/j2B53DgTzbBsBpWSPMVk2jUKda6uChbq6N0XG8tRxvO8dX+RgdVqB5qnqPlt746xJjVLdS/Do5CZTVfFduhaTlUkAnV4ayww4K/VLN7ZmmS3WFCBL2aKL8pQEd3BkERKEBq/U85yXFhl/uF3kw/N7/Msb4jifHu8IEbw8zq5vkTAinjsUn3/vZMALNXGfWnrMpVKbfRlHeL7gcyzf4hdvSy+whMF4Mlb6wS/uZ7jWFf+/kkpj6yiftZQZ8F0LGrekXcudTppywufluhiLdWDPtXlS+sHtNtN8TTb+jHSiWTPC+nrqeqL4DdYkvckkwZ9ykHR4eEgYhoyPv94zZXx8nN3d3f+/9vn3/t7f40d+5EfU3+12m9nZWWJQD08vMLF1QzE+FcdX+p1/u2rxLVMRRVsM6n+05/DEmMemNDxM6Bp3OmnFdpTskCDWVNfVnY6jHsS0GbGQ7nO1KSYUx4johzpPj4vXTS3kQTeh/HpqQ41TefH/p/Nd7nTSrEjrga5v0PZ0TuT7ct8B2mvKOi3fIow0RVvPpfuU7FHXmHiq/137iwB8R/h2LhY9JVyfTsXkbE+971PbWZWlVHF8/FhTKyZHi+mHuhJyVxIehoYSSLc9m3OFjtIkZE1LHdNvr6f4wJTJvuyMa/o2/QCVn+QYBl+r2RwOBTj5/mNdrkiXZxBAaVwK13uBwXKmr3xePr9TIYiP6PNiwqXlJbjdTsrrEaiOs0Fg4hiR6iI7dJP0fIui7AxreDYz6Z4CPo9WmsrXxTZCam6KlGyHLjt99gdplb83luqx188ohieIdM4U2tSHIz+nHqvSM+Zs6ZC9XoZ9OYHWho4q4wGst0pkLI+ZvFh1b7ZK7Mh28EuTm9zYn+Sc1KfUu1lablJ1Wc2VDrmyM6P2dWFyk3yxxeVbovX81d1pLkkAZZgBTnqgymnDQZJBJ6VAkpUcMqgVyM2ISbB2b1Z1t9nZPuvXT/DwithXe3McTYv5mizzvG+sRmenQkaWX9LVOqXWIUP5u15857OqI22wV8JKeJw/IYDcoJXh1t1lLiaFZim1sMP+106Tkvqf6fdeZmScdffjT3Nq/kv0V4U+J1tpEh16ZB+X4GPVIlNq4m4L9syZOsS7maC5JsTaY4/cZOX9YmE22BjjbW95XlkXaFpMdnFbMVo544D4toYhnwHXs1Wn4OrqHLMzW/zBS0Irtbiwjq7FzEm9jqbHtHbGmJgSfw8kQz3SeLkDR2mQRuLukVas28kwNbutwBzATrOkuuxubs0qb6/TY7ukHZdP3l0BRFlvvVFR97FphISRTlE+t0XHZWpij719cX/5oaE67l7aneYdx24TyzFgoXxAz3W4JO+9KNLZaRf4wq64tt+x/IBj+aa47qHBk+P7Suv0eMUmjjU+NCvYwrqbZBgaKsg6iDXm0x5PjYkxYrXnqBgnEKzvyL3b0GNerpV4VFwuJpIubmgod/x3jrd5elwc805fdBGPuky7gUHaDNXYO6oMnJf2JDfaFqfzR47amobSTaXNgPvdlGSSvo6O21GkmM83Zn9vgiT4Uw6SRpv2n7QIxHH8x/4N4Hu/93v/i/tKJBIkEok/9u8vNyxuyWyyjAV+dAQeWr7OurSff6pisudqTMhJbzZlMwgM9Xc/NMhbAdealnw9fF2cRtaMVAjtIBDC3bwULjc9g7m0q+z9C3aAY8Squ2nPTSjR8sv1DCdyrip7fWJvyF9bjFWm3GYvxVTSVQBs3PGpOkPqrw1Mle9NmgGaFvPTs6KckrParPfSFOyRE7hBz7foydXfB2daSljZGJrYRqxEzW6oEUSGEmaPJ12iGL4ozSOzFpzMHZV9plMDPr4xykjr8uxBjkslmSbfTJK3oJyQ18fXeawyVHqwF2t5hrLcKEqlhiqfvVh3CLIaD8nOrMlkhjFnyD97IL73IxNZFjM95tKGPGdfOYrnLJ9CwuVKXUyC50oNGm6SXTmAPjK2T88XYA/EwDyZGnW3JfEjXRlC3mqWRB6bnBTqbgqdWE0+Hc8mjHX1ecf0yUuzyGd2JjiR73JOdhEB1AYpMrL8tlQ6oO8lVBt/Nd3GNlLqvRPpjmJo8qkeS9ObrO2ILjvbCHjoNfqm8ck91tdnmJXfdbFSp1kvAAIEmIkhlmS/dCPi+VfPUpD6ll4vzcyJ+/zib34bAN/9TX/EUDKLdqbPyRN3VLdbZrxGfW2Kd1+4DMDzr57l6bd9RWWkjcTQo9JVb7eCKYF+77BAcXlTGU8604ecSw1Up5x3mKf60E11/sFORqXHn/3uLxF7kQJFvZfKaEZMdCBe1+yA/IVVDp8TuqPWzhjV83cY/6YbAISHJn5d3MPt7Sq5iUN1TvmpA1p3Z5X1gNd3GD++RmNdAKw41mjKe2n5+H3iSOP9F15W17Y7SOKNfLOsGvc2ZhULM16sk870FMgKQ0O11iecIZ945SLvPytAous6tGoF5VauazH1blaVCZOmz65stS8keziOy4dOXQMEG2TqIeclsKmO7/PxFx7jm88I7diN9XlqtZICMwnLV/qkp5fuvM4lfKtRxtAjWpJNnSsfkLGHPCYbIxzbIyXv/+c3FjC0WC1mys6AKNbU+LDRT1Ib6uQsMaCcLbTY6KVZkpqlgp1Q8Sd+pLPRS9OQwdyf2w/568c6rMq/v3LgsJyNFMv9+5s51X07nXS5100qT7JeIFz2jxhxm52+xoWSuC8vFYev0zweuiLoGsSCcLOvczLn40ZH9jBvbn82tz/VIKlSqWAYxh9jjfb39/8Yu/Rfuz01NuCmBEmmBguZUOWRJU0NQxOXatwRDMuoFl11ArYGpjJanE0N2B44VGWb/2ovwfliR+l/kmak8sX6oU7O9jnoiAnlYqnNTj+l2krdUGcu7dKXD+IgFAJlEMaTjddEZbyn6tD0A6py8Bn5Ay1lZDkh1th3E6qNP4gsunLgnTUDPr6e4WJpZBcgRIglORm7odR1yEGx5jrMSc3Jb66l+fDMkK8epuRn4bFyT4G3MNJ57tAkL7FZ1hS2BC/VxT6nUwEfmJKlt16Kh0tH4cEXi30Ohrbqqnuk3HqdUPlMoav+/0ZrxMaJgfpEzsfQ4I4sF9xsi/TvH1wYhQX7DEND2Q0UEi5XGuKYThcC9gcpVeY7HKSoJvuqRND1ErzaKFCRq8v1fkJ5LGUsn5ztsil1IhFArNH2jiaqpOmzOnLkTnc5HKRed14jgJU0BZgcmfQNfJuX63nebo98kgJsI+DlfdFV9dTMGoHUhRx08vR8m6Is3b2yO02uVuWhJVEys50hL906ocotpVKDyfF9bq0uiHvi2CqB1H1s7UxwZnqfgQyptVMDHjv7qooLGbYzaFrM3/jO/wCA305T3xGMw3CQZO+wTG5HTNzV6V2SmR737opyysVjd3AqLVZlGGyvlWXq0k1cadrnlFoEkk3JjDXYePkU4wsCSAW1HKbj4cnXs2NNYs/k3pcfAmBsco+eNHScSrxKHBmEErwNagW6e2WqT4nyWtRLMKxnqTwhQFZwkMFrZNGdI/NWS5Zf060MiWqDuuxmy9s+hePr1G+Ka6frEZFvMn5OXOs40oTBJNCqFfE8W7Eucazxa3cW+Y4lESUyBhybW6cuQZVt+4SBwea2AFyLi2v0JINzcFjm/WevEEgGdOjZ6FqshNttL8HFuQd0pY5oq5tjXILxMNLxPFsZTxYLLfpeQt0P91bneXRykx2pS7uwcpvDg7ICby/uzPB2WX5NOEM+ce0c02mx7xvNHB9eucWLUqg9r8WEka7yClv9tHKkz0srjZHfm2mEBKHBL98R2rr//tQuXS/ByzVxPTZ7aaJY43kJqjNmxLaUNviRxljC55i0qijaGRrDhBqrppI6mhazI9263zfVIyufpWf3i2gaik2+2kwymwpUGd3XNR4pezx7KJ7jU/kQR8ZIAcykY9Z74tlr+3n23AgNC+/rWm77xjFJQRDwEz/xE/y7f/fv2N3dZXJyku/93u/lx37sx9B1cU/Fccw//If/kF/6pV+i0Wjw+OOP8wu/8AucOXPmjTvmP4HtTzVIsm2bhx9+mM985jN827d9m/r3z3zmM3zkIx95Q78rjHTS8mqczPW5103SlBNb2xeu0yDYl45vsOu+xtl6CGOSnNodOCT0iKzcVyXh0/UtZV9/p5MECZKmki4b/aRq+a+5DhXH5YFc+fiRcOO+0xE7O5MPacpOMEOLWcm3eUWWJWqeTsrQ2ZMDaMYKVR0dwNEjtgeWCt6teabq8ghjjZSpsSIHl5utLAU7oC87o8aTA/YGSVUy00ENNI+WYW+QoOmJnT1RCbjbSSntk67FvHdqoESbhhbz5YM0S1JXlNBjpVeqOj6dwFQdZ44RMZ4ckpemS7ommLKRHiqUYbEgtAQruS73ugIsRTE0PJ36yAKhMqRge+zJAXU23cPUY+XPsttPU5Wu4ZYW0w5MxeAlTQGaRmXSxtBhLj1QoDGW/wbwoJvkWNaiKlmWQmTQ9mwqyaMctC/tTiggbBsB97opnhzfV3//+gMBML5vRYCB0Yq8nO7w7cfvKv1KrZfFNEKOS5aq0cvQk51OjaHD6bFdbuyLyfVUZY/dTl6ZODZqRRYr+2r1f3d9jrOnbjEl41EGrQyuFAsPfJvAtdlcF6WqucV1cjN73Pma0AZNzuyw/2CGe7LV/JELryjjyTjWmKzukx8/0sXsrM6ytLyq/l7/2hnKZVEGzM/s4bXSylyxvznO2prQOl16z5cpD/YxM+La1u7OUlra5GBtWl1bp9hm7rwAOoODoipT9dcmSE4eqlJU+bFbBPUUWllcS9NxMdwBmvQzC9dtkvP7xBKgu9sVmltCXF09ew/NChTw8fpJWi+dpLwofq/efolEocP2y4KVKs9t47Ykk1poY5gBbi+lzv9j3/3b7N5eUOfQauZxZFt7EBgEYQJfLhzu3lvk2LLwQWo38qztTDFVEezf2PgBD1bnmJQlVbuTQ9Ni5Y303odexJPmiJ+/cZZ3jO+RkuCk2cqz3clzXC6MDD3i2v4kS3JfvU6apOPy+TvinM6P7apy6+5BhfNje0or97vrRSzLZ1F+ttnNsNHJs1wU90DLTVKSiwovNCjaAzqeo/52A5NvnhbHceVwDEMXzzaI4N2KM+BQPgOAst/IJQKKiSG7Un+5NbDJWaF6xvddYbCbHt3znRQzKSk2zww5GFqKGTpXGJCxfDUWA7xYT/CITDx4sWbzlkqgnuONvsWEM2LHh9SGSU6MmKQjK7L/Zref+Zmf4Z//83/Or/7qr3LmzBleeOEFvu/7vo98Ps/f/tt/G4Cf/dmf5ed+7uf4lV/5FVZWVvjJn/xJ3vOe93Dr1i2y2ew3+Az+z7dvOEjqdrvcvXtX/f3gwQMuX75MqVRibm6OH/mRH+G7vuu7eOSRR3jiiSf4pV/6JdbX1/kbf+Nv/Fd97y/8wi/wC7/wC4SheGCGkU5Wdnc9X0uhI0whAT4zvMa3GwLtVh2hw3Gjo7LVUiYiKQdjXRPlmlFb+65r4xiRcpx2w6NQRBC5ZinZTp82A1nWkplZuuhKy8mk6ldbDpPSn+gP620W0kllqnZePtQjIfJGP8lSps+a7MiaTrmczB2Jrwehrgwek2bAE5UhXz0QgGsl5/K7mybfOiOOec9NEEQaNcnWLGf71OTkUbTFoDPSCDyzb/Ldy3V2+qMOE5NywuWX74uB7B1jFo9V+nTlCtYNdcWsHQwtMmaoPIX+aC9N3jaUfcDtVo6C7auB7G4nwYrMcev4Juu9NMsyduNg6BDHJudHOgFLdP6NSqif3CrwxNiAz+6K6/PW6pBj0l/F0CJiUKaNGz2RSj7yVFrKN/jizgSPj4nRbybdPTLe1CPGU10VyNkPdU7m22pyvl6vUE74qs1f12JKtmCEQICkYXj03kcnN1mXq27bCOh4Dk1ZPqkm+2KFLj+razFnZazIc/dWiGONpaLQdtxrVJjNNVndEoDCsTziWCMpJ2PH8rh1e5n5aeHB02nlVDbbQ4+JdvWF40J8POyl2Lu5xMyCYD/iWOhvTi+K1wedNAk5gc6cuE+/nscY+VntVihXD2nJwNt8uUkm31F6p95+iWS+iyvDYXMTh+zLiBLNCnBKLeVHVJzf4fIzj7G0KPROxUfu0r0xTWZJAE5nuUZxXoDE3X9VIXNuA60nmSELgnaaV/+ZAHqX/tozEPkMr4vBOg4N9CyAeN7S4/vYRXF/dNYmMBMeCZnrFscahu2rMmAca7TXJ8lKMb7fSxJJVtJKePTbGVY3xe8wP71NfXWK8pTURg1tdvaquFKXtjS7gWEFrB8IgHbx1A0C+ezs1sosz6/zycvCc+nixBZb7QKXSkcRJqlMnz0ZE7J1OMaxOWF5cHFqg1Y7hyWZ6VRywLHyvirP9r0Ej8/f55kHx9Rx7B9UOC/DlFOOq4AwQML0ubwnSrnfOtdgr1GinBWLru16mWPFQ9oS7FczbZX7dmV3kvPFBtW0eO9BL0vCCHl+R7z3u1fWuHwwoew4SnaAGx51BG/10kr/OAgMNoMUc5mjBYkX6UpbWrKFhmg0Bk4mPbYkaFzvacymYjXWPHeY5GLRUIu7csInjG3ScpHxcBn2XUtpMY9lh9yXHltR36FgiWDw4Z8T4fazzz7LRz7yEb7lW74FgIWFBf79v//3vPDCC4BgkX7+53+e//F//B/5C3/hLwDwq7/6q4yPj/Nrv/Zr/OAP/uAbeOBv7PYNjyX5/Oc/zzvf+c4/9u/f8z3fw6/8yq8AwkzyZ3/2Z9nZ2eHs2bP8k3/yT3j729/+hnz/yNL9Z5e/j54vHvq0GVH3DMXwWBrsyY6JC0X/dd4+IzZmUmYLXW6kSJsxGdkN5xgRTc9UobWDUOdrNalvGovYdU0ekTT+3U4GL9SwpVjQ0SOutUx6gfj7neMed+WDWE6E7LlHHiB5K2YYaTTkHPBIycUxQkWPDwKTX12L+YFFsa9+YKq29e1BgqVMXwXNfq1m8faqq85xpA+Yku601VRXBV0OI50H3SQXikJv8PndAifyHnk5Sb5UT3Ox2FcMmK4JZuqWBFzFRKAAwx/u5JlJRWp1NpfusjdIMfOabq9qsq/Ep5/ZHlPmmAk9ZinXoivPYXeQ5FrL4n1TTUAYMQIKYKTMAD/SFRs00lsBpIyA2tBhTsYbjL579Pentyu8Y6KBhrh+bS+h9EoLmR4TmTbP7YrJuWT75GxPabh0hA7leG6Ux2ZQdFxyjgCG+92ccsne7GZZzDVVa3Uh2cP1bbKSpVqvV2h5CR6VDst912Egz79abNBo59jpFABYLO+j65FiKAASiSFN6aQcxxqVSk1pX+zkEF9OLr5vYVn+60Jp3U6a//DcEwB89Okv8JmvPs5TUt8yfuE27fsCBNy/u8j8/AYvXz8NwDs++Bk2XzpFcUKANyvpkpzfw5PZdr3dClGos7oqctJOXbiuAEZq+oD+1phy0daMUMSXyIlKswPMcl+dX9QzMWSA6fB+DnumxcanRCnOMEPKyxtYJfkbazF6OiD25b7MGHe9TPKUaJH311JoElAYBZew6TDYEuBjf22Ksdkd5apdmNon9Cz6TfGMuAOH6rIAJ/2DIroRsrUuRPND32J+fkOVLptbVWqNItUxcX00Pca0fAVehn2HSN4PUaxh6CHtjgBUd/YnmcnXseQ97dgefdfhzqEAWI8u3VUu6iDKc2PjgoVyeyl6vSMxfqubQddiHFmOyuXbHNZKNKWb9dL0Jvsyby4IDeZnt2hLm4eDZoGNdoEnjwuB/a2NOR6088xL0JRNDBRIckOTMNLpSdY6ZQa0PVs9lyWnz14/o+w27nUdLhQ76nndGRyFXKeMkKozpCVBZNYMuNFOKWuTku3zUt1RXczrPY33T4mx5U4nTdvXeGu1CcArjbwypRTfm+FUvq0WaG3PxtIj/uPWyCJAY1pGPo2A1SDUcSOPH3vwL78+sSS/nCSXeuPKbe1+TOmvDdjY2Hjdsf/ndL3/+B//Y/75P//nfPrTn2ZlZYUrV67w3ve+l5//+Z/nox/9KPfv32d5eZmXXnqJS5cuqc995CMfoVAo8Ku/+qtv2HG/0ds3nEl6xzvewX8Jp/3QD/0QP/RDP/QnehyWFitW5mpT46FSRBiLB8LSY5YyoygRuNZyVMfVq82AD06HyvdnzIl4uQ6XSuJmjWQAbE3WrrNmxLfP9dVrdc9QJTJbj1jJ9dRE7kY6b6321UpovW+zmDkynrzc0Hn3hBRxGiGf3E7zcEkOkEbIC/U052VWWS8wOZay+J/XBWv30eKyKictZUQm2GiFdbEYMAgNtUqqDS1WckfAJow1xYwEkc5iZsCntgsAlGyxorPU6+I67Uix+mg/o++GI9+S6WREQo/xRlogN8n2IKHo8hjo+jbXDkflSFQUwFY/+brBthMYfHi2pvLXkmZIyzPJSJH8XLLPvXaedRlTspztK+boqwdlThc6/N66mAS+df4QQ4vpyIF9IS10RU1ZYkuaPosZMbmkzACNmPMyOuNwkCJnDzlTGDFFIYeDlMrI6g6S9L2EarV2zJBxaf632s7jWB5XZBnroarPF7an+ItnBBgpJvucnVtlY1/o86r5JjuSdTJaEcPAYl565Oh6xHajrITZzW6GhOUzNSWYgRdunMb1bA6ksPcdT3+ZruzeMi0fz02Qlm35e/dmiSKd73yXaIG3MgPecvymYoOCbpLLVwX7szCxQ2aixlJdMFRXPvcEy8fv05P6prwzJPYNDm4L/Upx6gAz5TImQWUcHd1rXiOrxNIAZqVD7/aMCqENu0mCAx1rUdzz7RfnyZ0Q4GRYy2Pm+sz+dVES0+oNwt0QY0pm6H1umvzpVQ5fFN19mfEaiYk6sRupc0rMCeDiPhgj8k2cCcEkln0DI+Hjj/x32mm21meYnhMiaCvhKXPMKNJp1orKqHP/oMLlG6dYmhDXx7Y9Jib2SEqH8vZ+icAzlb9Tp5OlL8eHTHKAH5gUi+J3mfctkokhGcmmvnzvOGfnVpmTx2UnPLwR8A0sdpolBnJfCcunP0zwsizPvmV6ndn5TVzJRH/l5mmKzkDdP3Gsk5GLm+4gyd3VeapFcU573SzVZI8b6+I3vdMqcL6yrwTnlhnwq7cFCB4tYkZBugvVXX762Qt8/wlx7W7VK1h6pErsMymP9V5K5aRNJ13VcHG/a7GY7bIlpQCvNhOcLwzJSaDnhgbvn25wtSHGhLSpKU+lsUTAq80jp/ymp1EbHgGwrBnyaiOnGmdGjR4PiUeEpn/UOeyGBuu9BF7E15dJ+hPaZmdnX/f3//Q//U/8xE/8xOv+7e/+3b9Lq9Xi5MmTGIZBGIb81E/9FB/96EcBlK74P9epvra29id38G/A9g0HSX9atlZgspAWD1PV0QljjTFZBvJjDWekXXFNVnJDbsvssoW0ScHu48q/0ybMpHSiWD7U6T45z2ZT6m5We4ZKrX6hlqKYiNUAULQDXjjMK0+mrBVSG9ocygDYYiJUD+Jvrht8z1JXdY2VEzEruZgH0jyy5hk8UuopgGUbEeUEvNeQpnZxrMTdQaRzrWVhyUVIzo7JWRGz0n9GdHlENKW5oq2HPJDaHxC5RW+pDNR7k2ao2Ke3jbdZ66aZkdf2YGhzLNdT3k8zmQ5XZEuzpgnwZ6scuCQnc31W5UA9lhB0+YxcsU0kBzjGEfh49qDERbkif6LaYruXVcCvZA9ZzLZ54bCsjnsl32DMEfu29Ig/2BQi1ccrPVqezUfmxCQYRjpN32RRghddi7nRKHJxTJR14lijINmue4dVet28WvkeKx5i6JFyRd7tZikmXLUiH3U17b9GY7EhyxiNockjlq9sHPZ6Wd43v0pb6iQSps+r6wsqQ+vazgyf3RETwF9c9ElansriKqc7zFX2FVOwOL/O4UGFQynMPTWzznCYYGpCgLe1a8dVVEY63+HmvWWyEiQ12zlOPXaFF54RRoxLsxtkSy3F+IRugkffImj25laVF7/0mNLNHDt5F9MZUp0W1+7ucxfJbI4z9bDoImvcmieTcpmWsSTDZpZQ3qd6YJAodFTH2pWPv4u5hXWCewJEZhZ2qF1fJNsSYMZzE3gHBfH75noE7RTGFTGRt2/PYSWHNL4k2KCph2+gTyWozghQNXg+hbtTJrgnJspRiC4IHVEcaUpcnj22RevmPLNPiC6z7v0pxif32JBaqvmlNQbSLLMwv42dcolk+X0h14V7C8ossttPMX9slfa++N0azQKFfAtdO7ITKMjOrjjWyOXbqnttvHrA/kGFgWR4zsyucdgoUpCg6bBWUo7s+90cbzl3lX1pYlksNgn2xzgnPZempndo1/PsHIr7YyrbYrq6z6EUlKfTPZVNNze3ye72hLovLy3cZ/twDF9mUn7T0h1u7U0pUXjS8vjOZQEKHctD12L6Uv+51yjxvStb6r1nKnt0PYer8pxutk3eVu1xryPNe4ttpf87XQz46kFVud+fMkNSZqBYuEM3wVbfoRccteWP8ioBzha01zDLQhM6Got6vsF0aqgYLDc0mEz1qTojK5icGmsfdE2yJvSDr3MsSfwGl9skefGfY5L+0+03fuM3+Lf/9t/ya7/2a5w5c4bLly/zwz/8w0xNTfE93/M96n3/VzvV/zRtb4Ikue0ODHRGeWuC3h65uu67uorR8CONB90ET4yJyfjQdXjQTatstoQes5D26Uladq2bZhhpXG6I1x8pHz2Ii5kAP9YoyBVW3UtQThx11R0MLUwt5lhWgJUw1hTd+/aqyUs1m0fLMsW75zCVHCpB9Gd20jh6kqIEejqQMmJl3OiGuipzZWyP1V6FvuxWvVDssNlLsTM4yiPzI53ZlJhgv7RfYEpqo56vaTxWDlUHXtoMCeOjVdW+67A9MFjKRPKzMReKGUVNh5GuVoUiZDdUJp5ty6QfGgqszWQ63G0VFABzjIBfuy8G8Q/NthmEqFXj7VYRS4uVPuFeJ0PdS3BStvhudrPUPUsxUTv9FA/JUk3RGVCINSUAtfSIS+VDbreK6lo6RsTVmphgJ6U2CATgXCodcvNQrJheOZhgo2+rPLpz5QMMPeKW7ECaSPVImAGXqmKlFcswXYDtbo7tVlExaYYW03GTdOWE4kc6acvn1V0BEs5PbShQOF055PL6PItSLGsaIa9uzzInPZU6vTRT0ztcviFyz+are2SzHSXkdj1bTaj56iGnjt/l2qvivSdX7rJ/Z57zF0V7eO78Go0XjmHJknP3oEhHlpomTzzgoFZW4MzrO0S+wZYMP52c28LOd5VLdmFlHa+WV91fvcMCxUUxoYZDC7+XVNqgTKqPYftKnH3ni4+w8s7n0SVLmVreY/OzgtqfuHQLI+OizwgwWprfANui9x9kiejVY0yUrhJ1pXdYt8z/9qn38Lf++18Rfx/k0bOyFKfF7K9NM3FSaH8OXl6hdGyD+qvCYTo3s0dte5wTjwnQtP7KSarS92jz6gql6iE9KeROpFympnZIyHv81s3j3Lq+wvysYLzK5TqNRoFI3hNj5RodWV7TtJjfe/lhPnxRaMZM22e8eoAvf7fNvSpL8xt02wKQt3ppXj2QnZAL93j26nlOTwtQWK8X0fWIuQnBLDbrRaozO6zvifen7CHX1haYKwkAur4zSUmCtTv3FklYvmIxa70sJ2bX+c0rFwFRjl4Z21W5cSl7SEPqk/x+hrl8nevytQtjuwx8WwGbgW+TSbhckCHOE8kMV5sZpR9tDBNck/da1gwp2r5a/BmaqBCMOovLiYCq4/NyQ3z3+6cb3JYlwo5vULIDxSSlTchagfI5MrQR8y/mhDgWtgCj7MzHyoOj8Oy8x0bfZioZMfxvwGsol8v9F0uFf+fv/B1+9Ed/lL/yV/4KAOfOnWNtbY2PfexjfM/3fA8TE+I+GnW+jbY/iU71N3p7EyTJzQ+hNhx1rAWsdpNKUJzQj8pHbR/OFzy2JaW71bdYyg7ZlzlO11o65YSBzIplOeNypeHwznExSTQ8k5YcxHJWgC4jMEA4bvcCgwP5kHuRRqhpPHsoHr5T+UAJC/uBiBEZtc6WE0JjMxImL2VER8hlWdaYSvrMpV310IexxnOH4rXjWY/ljMeqNMQMIp2aZ3BM2vk/6CYpJ47KY++bPmBbMiEPl2w6gc6BXDVWJRjwpUbnt7aH/NCSp/RO75uKcfSAgtTGxGi80hSvFSzo+gkMfVTWGhLFGtsSrBUTQ/xIUxqdppfgvVMCBL1UyzGXCnhVxn3UPYMnxuoKUPVeUwIUn7VwjIicBKhb/SR7ks3R5eujbTLlsdnNMSa7+3L2kPVOjo3+aPA1aHtH1PyDRoVTY2JS/N17S2TMSHWgtYZJolhjXppCpqwhSdtjrSEmifniIfsysmE81WUQWKozLo41+r5N3jnKdqv1sqzI0l0ca4pZ6/RSlJID5Yp8b3+CmVyDcem+vF8r4Q9tVT5JOgOiyKAhY1sWV+6zdncBgMOtCcpT+zz2XmE2OqznWH0wp/LZ+rcncbsp1bzgZHs0pGt6Y32ScrHJDZnrde74HZzxGoe3hIlhtt3hcKdKbk8wBY3DEuXqIQWZqZbxTVWKq565h5ly1QS69E3P03jlmPJWmo41NCvg2u8LveLp93+JqScEkPP2iwTdJN4tcd9mlreIXIPSMSE+N3J9+rcnSc6La5k5vcH/MP1r3Pm00F3NnrnDwWfFMSeLbcbmt5RQu9UsUAy3FViLY42x2R281hHbOmLZbNvnwf0FlZk3N71NIuVy84bY9/LSKmFg0pAt76VKje4gSVWWb33fYmpRXJud1Vnee+I6rtTl1HfH6Q0dZRkxVT3g3331cf7Gh/5AHMOdRd4/uav289DybaVJ8wOToW8dlQyHNvWdMRUfcn5ykwtLd1ndFoC8WmxgyG62ppuiQJ+JrLynHZdao8DJvFhIllNdks6QScnEur6txqleYLLZLvLYlPgd0o7LbjdHSy4EHpra4LduH1cs97lii6WMqxYOg8BkQbJ8EdD2LDUWXSyK+KOv1sXY9aFJnY2+w7Gs+PtyvaC6fzNWzN5rQM+/a3+Jn8g+Rm0ofqdyQoxZo4rAuWKLzV5ajYtN31KVh/WezbGsSwwMwqNx8098+wYKt/v9vmr1H22GYRDJcuPi4iITExN85jOfUZokz/P4whe+wM/8zM+8ccf8J7D9uQVJ/2l3W9YWLBDAi/U0OeuoDNaODbUaOV/waPombU/cEONJEaw6klU9XhnS8kzVcbEzsMXDK+n1ubSrWt41TeS3jTLj3FB0cjXkvgtWhKZBQbp7p4xIuWDPp4fc7zrKj8iPNK51LI5lxYOas0Lavs2y9EmK5f5HK6GCHTAmW1abUudxMjdQx1FNHGWVpYyIjX6SFSlkfOGwzIOu+N6LRZ+mZ7Ai2a4bbYfzhb5ivH74eMjtdlZlzE04PmXHVU7ZM6khl2ReUi8w+KM9eKQszzHb5narwHz6KOD2Rtvigny/Gxr8L+uifPI3pix2BkcD1aVSj1utPFVZqlrO9PEinVckaCxYIbsDi5ItWZlY47gEhV6kM5PuqRyr7V6Gjm8q3dm449PxDcUOLeTrXJPMUdlxaQwTPL8tSi2WDifyHdV1OJ5pcb9RUWCmWOzytY0FjskutPYgRSklyiPDwKKY7tKUjFaERnPocHJaTCieZ9P3EsoSoNHPUE6L3yib7mMaoXJFHs+20LRY6UTaXoJGP8PiuGAOfN+i3c2obreNe/PKOBDA7aSxW+L6mCmX+fkNbCnk37s3y9jCltILOaU2c+nb6rPdvTLHpoTGxLR82ttVTq4Ibdz+9jiV8QMFImZP3UMzQnZeEq3mAzfJ9HEhTI99k6DvqO8JPAu3l8TckgzFZI2glebkO0T+WtBKY5XF9UhM1fD2CuQfEwCDfBptvc9wW4AzzQ7QjJBITopmMUAzBiw+KkCWpsXEsgSm6TGGMySW93h1apdhI8tQgiajnsdOD5SP0sBNYMuOzXSsky012d8SryVSLgc7VXWta/sVppfXqEmQeev+EhvtAh2Zz7c0sc1/fOZtAJyb2EI3InpywTYzvYM/tOjKUvjQTfCRU9dUblzPdRSw8X0L0wy4ITvSspbHjGSJQOiGUpk+ln50D6QLHeZjwep96dZp3npCeEwZWkwU63jyGfd7aYqZLnPynjb0CF2LuC5ZrMnXdIOWEkPKqa46/6vbsxQSrgIrD2pVLhQ7aqFws1HmRssmKWeuM/mjcvzjY4e4YU4Fd7uhWOgtpsW9lbMHpF8jfchYofJCa/uGNO4V49iPTz/GtZbNI5Jd/vR2kvdPBcrK5TM7BdImVEdM9MBiqy/OqWjD1iBBw9Pwvp7Zbd9AkPShD32In/qpn2Jubo4zZ87w8ssv83M/93N8//d/PyDKbD/8wz/MT//0T3P8+HGOHz/OT//0T5NKpfjO7/zON/Cg3/jtG97d9o3eRp0B/2D+r1G2xaCnAxt9W1G6Gz2dh2ScRdIIWe0lGZMrkI2+TcqMudcRD9tbq33anqXAi6ULtudaSzzVl0oeL9YE4FrORpTsgGst8fdj5T6vNlMsyYc8ZYR0ApO7HfH60+NN/mCzAIiokO2BxoQ0rRxLBOy5pjKP/Pxektl0jCMHm36oM53yWOuO2I8QWz/KYtO0WA0YCT1WbtsgolSWM0N8ObCNJVxlugai1j8qEdY8i+nkkRO4GxpE8REQm04OsfRIGTM6esS+rOWnjJC1nsXJnDh/2wgZBKZazS1n+/iRrgbYnO0p0fdaN0nSjLggV9w7/TRbfYcl6amz3ksylx5wR7aWnym0udvOKBuEvD1UoOhOK8+xXFsZ2I1E3Teao2vfZ75Q5yU5wcxn2+xIZi1hhCq3D8QEcrrYUOxHL7DY6qWOtA6BwUqurTraAOoS2CTNgKQltEUAtX6GueIheVnm6PVTvLQ1x1PLApB4nq0CSftegrbnqMiS5iBNa+jw1JlXAdjcmsT1bWbGBXOyuTfO4symEklv746Tk6XKeitHtVRn5rz4nijUiYa20golyi2Gtbw6R7eTpiA9g0Zsiic1JKbjkZ7ZB1nWa92cp9/OkJbu5YlCB7+bJJL3R7+dISEnovzSFtZ4B0b+Xh0bzQrp3RXsRhxrZE9s0Lgiyl5Ooau8jaY/8MrrXLOtchu9GKIlpfv95TzJh9r0virASWKihp700UzxZVpaZ2Qr37tcwa3nyM6Ka7dzdYXCxAGenKzzC9u89LknWV5aVcfdWRMAIfAtdD0iMyUYvMM7cyRSLn/0slhdz+UbVEt1bFk27vXSRJHO7IoAipoRsntPiJ6dpMvQTVCT92Up32LrcIzj80II+/KdFR4+eYPdXQHgS4UmgbyuzXaO+/Ux5guCWcxlejiJIXc3RdddGOvMlg+4KUu5+cSAuptiQjrYO5an2LDF+XWu3z3GREEsWHqug6bFHEgWaizbQtdifvmaAGs/9s5n2ZbH5Ngem/WKYr8mCg026xUl8u4OHTa6WfYkU7+S62JoEXdlyfGRygHbstnA1COanq0c+XcGCbYHhooL2R4k6AWa0p5GQPM1koq3VtuqQpAwIuJY46pkuc8Xh7R9E1+CnqwZUk54qqs1oce05EJ4Z6AzlxayAzfy+On1X/r6dLf9U5tc8g3sbhvElH7I+7907J1Oh3/wD/4BH//4x9nf32dqaoqPfvSj/PiP/zi2La7hyEzyF3/xF19nJnn27Nk37Jj/JLY3QZK8wb6v8oOczUtnUEQp7H/fFD9u1jR4rCLdlXsWc2mf39sWk9wHJ3VutS0K0jYpjGE5M1ROrKOH6rIYPyjZOu+aFBPC3sBhz7X4al08xD+wFNDxLTqSLSpYAV6kK0ar5lncbInXTuRCrrcMjmdH+pyYXqAr0bcbapQTwZEoPOHyoJtRHk3FxFCVwOJYY9+1VOdXwQoYSw74o92iPM6Yi6XoNZ4hnuoKC2IRCNwPdfXZtBkqe4FRnf7jdUHz/3fVKn6kqePwY42BFFKWJdAbsUEjTcDITuDX15J8eNpnKS8u5s1GWbXl+5HoTBlpofxIp5hwlV+TbYTc6yRVlMjtdoblbF+VK2OEWzaMfJI0viYDSx+rNMglXKUFutvOMZUaUJDdcLeaRZrSN2oy6dENDGal+3Bj6JAyA9VxM5Puk7OHeBJkZuwh4WuAXzXT5lNrC+Ja2gGPjG9Tzosyxv/7axf4wQs3uCnB2Xi6w14vq1bZrWFSZcJV0h0W5jbYkH48acdl7bCqwlDb/RRtN8VJ6asUBCZRpFOoyImulSVTEN/rD22S+S66BMLh0CIYJmhLNnBsYQu3mVWWAdmxhur8ql1fpNfJKE1NrtiidHKVzgNxDoNOmur5O7TuCuat305TnDrAktlv29eO4UiQNHbmPv2dMh3ptlya3+be5dMsXZDRIYMEhsyRAygcX0fPS+8OgAi0kbXPMCZ6+CzexwWTlnwyJLrfVloo3QmJA43nf/N9AKycuKvE26bjEfQdFaxrVxvCVV0G/B5ujeM4riq/Oek+O5vifMuVOp6b4MG2+PvSQ1fYXZuhXJWsixkoI02Aw70xKuMHDCXwbjQK5LLSWNGzWN8fV4CikOmSSg2UYag3tHFdR/ldWZbPgSxHZ5IDErbH1qHQ1UWxRiV75Oe10yyRsodUZFl45Mw9isDJp3oM5b8lLJ/dVlGB5NnyAZv1CgP5+kPHbxOFOj/3FRF79P1nbtGSz2U528ayfF6S5diJTIe+l1CgCeBrB1Xlmq0TszNIMp48+l1Hz9ZCRuQpLsjw7I5MRshZIwf7gHLCZV0uaCwtZleCr62+xlImZFr+ptdbac4XO6x1R0kCMYvZLjekhsnSBOs0slhperbySTJ1mJWay0Ho8Xfv/29fF5BU+/+88SCp/D/8XwNJ/y1vf27Lbf/pNuYcsR0TjkfHNzmelblWyUANHgkjxjFCLuTFoHW1KUR9TVl6Xs4GpMxACWh1LeZgaPPuSTFwbfVt9VDvDEwWMx4rUs+yPQjYd00K9lGprpwI+L1NcVzvmwp5S0VOVLHGl/zbHEe0LFu68HY6J0WtrzbzXG7YKpE6wuFkzlei8bVuSgGqnOWzkjsKsO2HBjXX4UkpTn+5nsPSYpVj5BihosOnHY/P7Sb4jnkxmF5v5rjbsehKEfhCJiaM4cNFsZJeybX4xFaBM3kxcNU943XBwucKA3Ykk1L3hHD9IBSDzwemAqbTQqcDMJnqqzDYQWBwrlRXrw09m61+mhsyauZ8wWUq6TNqpDhbbDOW7vB7D8TE9vRETUWD2IbIhXufFM9eOayi9zKckfqdR8d73G5U0DXZVZQcoGniN1zKN7jeKKu4g81emjDWlMuvocVS+C2FyskephGSkdqhjYMq75wWpSnbDMgkB9zYEsf43Sfvc+9ggkvzQjD8by5f5MPL9xgrC0Dy+RtnOS5b/scrNaLQUPdtu59islBnbEKApM3rp5mr7CtNysTULnGsKcH1/a1pxLofEskBa7eXmF0WDIWVdLGzfdLS62ikzSm+hj1yd0UZy8n2KB3boLMhmAPT8QjaabLzAjSHd2do3JqnK4XMU2fuopkhh7cWxHkcXyM5L455uF1CNyIKU+LvyDcp5FtYspTV2y9RqDYUSMIM0WTToHe/gDXZRDPFDRA2DIyDbeyquG9piWgSc042FOyZ6MWQc4+LjLVEqc2wLmNZqg2MbpLepmCp9IRHOEhgSxA1sbwuAKV8ngaNnPIjSua6pEHpuTqHRdUtB6BbAWHfYX1jRv2OnWaOVem7dWbljirrJRJDTh+7hy8ZvWYrT61RYGLk3p7w2DmsKBPH+co+s9Ly4cHmDBOJGotTonz20v1jWEbIiWP3xG9ZbNJu5WjK0p1phIxXDhXgiiJd5f7ttgs8tHKLK3dW1HEBzMqmgaGbYPOgyofnxHcHocF92XV5bGGNW/cXlc4QRHnOkoudxiDFW8Z3lS9bbegQxBr/qzhM/vZyrKKawkjjibG6cr+39Igw1pQOcxCYNHB40B0Bo5gPz4ixJ206ND1DxQvNBSZf2s+qitNTYz3Wuml2+mJfi5mArYHDrCw5Z80APxbjwbH0kPW+jaXx34Rw+8/79iZIklvSiFiUq5Wb7RTDUGNGdnOFscarknatOjFfOXA4KSf5hXREGKN0RU3PoDa02Za+QDpQcQJeqB21TVr6yArfI2WEr9PkVJ2AWTlhXmtlCWONj8zILLdIVyWvlBHyd6aW2BnIEkeoc7F4ZNd/PNsjbyU4kKWqA1cjiuELeyl53DHbA3EcD5eEi/Uz++KzD5cFU+QYMuLCg6/WA947Ls4pihNKJ2TqEe8Y15QlQNYKmUu7qlV237WYTHosZEZhsEmeGOur1y+VWoo6X8z0sPSIE5I52epl6AaG0nfdbCdoeabKTEuZgWK3ZtJ9fuPBGB+ebQJCfG5qsaLad12bgh3gyYH9VivDo6bPqbw4j5drRd45Iyb5P9yY4Xyxo/KlFrNtCk5fsWP/+vY8b6n0ScrVbtryyMqSWN+3OVc+UKvqt8+tcudwnK9KkfxSrkUp1eUFWcb43E6F98/scigngfFckz35vT3PwbE9JdR+9WCCleIhNzZFueXds5sEocEzN4UnUTcwlXnksWMP6LePnK9NI+TG/qRidE4v3qfTznLQFiApn+twUC+yKEtE470UubJglbbWZhif3FOmjYmxJr2NKqlJGTXim8Sxhi1NUUeMEwjAdHBzkaxkqJq7FSbGGhzeEMyB5yZIZbvMXBRRIje//DAnnnyJgrQIaG9XFSMTDi1S87tc++RbATjx5EvkqnX2rgo4V5wRx1j5JpmZ1g+5+ztCeF0oNyiPtVTJzFhyoNtjsCbAm7YVkqi0lLGXZkPz2SUcaXug2QGJqrQPuDlPFOrokqF4+Y+e4C1/7dM0vrwgruXZB9z55JNMLQn904P788xJz6RPf+kp3vPUV8jK8zMOimzvjmPK0m4BCAOThQXx2b2dcTQtJozF7xaFBtmSeD66jZwwptwTgOrsw6/w3LOPMYHY9+21eVbm1wjls6ZpEetbgsFaWb5PGJjclzYFbzl9jW47gynL7N1WFtezWZgT+rdrd44T7BmkJADStJhpWartrTu8cvc4D50WGqWvvnqW4+M7pCSA6PeTtNwkp6SW7u7ONOfGBThb25imPXR459lXxHt7KQauQ0OyPS0vQTHZV5Yav7EZ8KOn+kxI644HXUeND1v9LMvZvgoITxkRL9ZNnhiT5eqhKJcV5SL0D9sHnO0KJs3SY6ZTHs8eCHB/ttDhYjFWGtBqSuS8/b50Aj9dgP1uQmlAP7dbYDp1VEJfSA/pB8bXN+D2G6hJ+m95exMkyS1tBniRZJKSPm3fZLMvGYtkwHJmZCIW4IYJ5Zu0PbBo+6hutvm0z/WWRdURN9i+q7GYCZlMjspkR+aQbqiLlu/X3ItxrPF8TUyYVSek4ri8LHUUy5kjY7TnD7NcLPZ50BGD/rsnh7zcSKk2/neMC2fwtZ44h4tFD02LVfaQcH4Wr312N8XJfMTbqmJQC2MNU4+VZukD0w0eGSRJWwK8tT2bEak7CEwsPWI2JQbPLx/kWM7AMQl0ZtI6MRq3JGORt302ew5Xm2IPb6umFcuStjz2+mmuSo3FxWKfk4UOX9oTwtySHZG3A8qyy+xaM6fo8TDSeajk87IsAT1WqeNHRwG2GiKa5NPb4lp+21xdxHJIZu10YcgLst25aAdMZVt8VuoznH6SqpMiKwHHO8bb5GyPwqjM5aZwZflM12LiWOOBBDpjXoIbrSzvnxETykYnx2Y3y1ulS/bk4TiGHjEmQeSL27OMSVAUxRr7rQI7UnMxk+mgazETsktolMI+J8uPJ1fucveuAB+v3jhBPtUjJcsSUajz+NIdrq6L16emdshkupyW0Rn9bgpdi2k3xHFnMz02V8UEmsn06HfTyh5gsF1RQmQQQm7diOhL3U2i1MKaEIApDgxazbwCPZWlTa58/i1MSrZj4uwdvEaO9rpgSk6+7QVC16axKcDL+Lm7Ss+TW9qifnWZ0+96TpyTb+JUmgpEpZZ3iDoO93/rYQC6vTTn/sofiftjP4mWjAi2xbNnVHqwOEPmoS15EjpoOv5dUQbyWmmK791meFV2fLZTWJJZLTx8j71nzpCXPllT1X36Vyvsygy5zMw+pUqNQJZyjq3cUy7hJ/e22V+fYnBbBPxWx/c5fuoOD+TfydSAu+tznFgS90etk6OSa1GUYv7MWB1XhvbeXF9grZ3nHccFwHzlhQssVHcJJCO+2i6w6G8rfVO9XuSL2/Ketj1MI2RCspA7O+OYRkgoP7t1UGV+cpsXbgin9HMLD3juzgpPnRJAaNBPqmy/6fIhg2GCr1wVES/VdJtOP6XKcVd2Zqgm+ypod2FsTzUU7Hdz5BKuKhG+tLbIUulQRfEUEy49L8GLdfH+ihlxrWkz4Rw5x7+2wORHutIh3uukKNmCYQJYzAy4100pS5HvGS/Tk+Nl1gy530kos97GMIGuxdxsS2Y6KlOyfZ4si9/0Rkvj4VJfLQ4vFY/Kf4YeMQhMdE1h8q/PFvEGg6Q3cF9/hrc3QZLcmr6lwkHDWCOI4V2TopxQc5P861XxsJzJJVjJHT2gc+khn9u1uCCdVzXgXMFXIuiMKXQ3r+2cW0wf1dvFe+TkExoQoR7UONb4g80sD5fF+8uOq9y4HUMMCO+eFAOCocUcy3oEckAIY42mb6oONjfUWc51uCNN7XRQrbOOkWAq6fK7G2Ig+uCMy7jjkZPsyNcOCyxnBypvLQJVi79aT3MyN1RC7qWML1pfZdnrhcM8k8mj6zFlBhzL9ThVkDoJPcKVq7Wr9SIXy3VFjzuGYH4elav5kUZoXZrWrfd0HpbdJ6YRUnYMZuRx3G3nGE+6SqPkGCF7A4cPzoh91YYOBdvjtvSQWc70VQu7ocUMfFuVF1e7BnGcoCW1InuuxSPlJl5PgNnbrRwXK+Je6XoJNC1W33vgJrlYalKRgtdAlsC+JMHKyWINywhU6WIp31CeMaeKNXLJvgJDC1Nb3N+aUe3gG/vjWEZASQKsV66fJCN1UpcPx7hYgYJsw37p/jKVVI/jMnvrzoNFqsUGOVu8HkU6s5LtANHBZcnJtXxsg8FhnvS0OMdhLUdvv8StrwiB9OPv/wLpiUP6e1L0XGrh74v7rLNVZf7cLeU43WvkWVp+oHLP+ntl/EFCOUx3N8bJLm4z+bgQmLsy+gPg2d//Jp76y39A/4EEY+U27dUJCscF6xLUM1izXZZ+QAjMgxt9QsmOagkfzdEJ5XEQGOjLBpolA223YqKhiTUv7qfgWpLgXqy644JmWumZOi8KsbUpQ5zz4zW8ToqSzPLTUy7DgYMpmwKuv3qSuUlx3edkp54nS+7JYpv7V08o5/N0pcmjcztsyo6082ev023kWH0grvXwhQucPi2MNhequ0zkGyp/rVpsUGsdCejnsy0RPSOBr6FHfHhFACrb9hgOE0rvNXAdokhnb0eA0/1ehrF+isfPie6+P3zpYd526ppyVV/dmlZGqHPVPcLBkRlqtdhg4DrUZSlc12IyCVexQ/OZXa7L+/+tx27R6mTZ2RG/6YWZdf7Rc2f53uNiUfGFnSqDUONsQYy5T435RLHGoVxo3mobvHdK/GYp06IXmLwsAdXjlR5ulFLP8Xo/yWzKVXYtbqirbjU3NLhQ7I16AljtJqk6PgUpDzuZb7PbT6kF7URSNJ+MxvWaZ7HZE89wxYmpOh62FhPGbyKNP+vbn1uQ9J9aACyke9TcUR6buPH/1V1Bvb5/yuWbxsUD4EcRY47LizXBWJzO9ziVP+qo+NKBwQenXQxNXNoIeLlu48tnZSET87vbYlB7quyQMSP14OWsgF5gUpVMSRzDYxWoSmbh9zfzignKWhEPeglWskexI16oMyEHvZZv0fQM3jMjaO3r9QrfdePL/IOpDwBQSHhH2WxaTMkZ8G3Sfd42RGdG0xu5igun2UvS++d+s6xa2ufTPg3P5Li0D6gNbQrWkSYracZUk65y2H65nmM25VGWk3nPTzCeEhPmW3MtbCNQ2qCdQYqLuT1eORAD96VSCy8y1L7ePdnm3z8QgOIvLdRoDh3Vpn+p1KLt28qK4KVaikulgerOSQzSJE2fMwUxodxuZ1VnnI4wm3xLVQzUy/00dS+hJp+nJw6YyDf4364JDcbfeuQKr2xIL590l6uHVaVf6nsJTCNU2qBRbMq7ZEfaXrPIbjenjgtQrsfphEsQGsrNu9PJ0hk6qpvJsTwmxw5Z35Wt1cU6G9Lg8gMnbpJ0BtzZEKW5SqrHsbl1vnDtHADvPH+FdiuHJoXeGwdV7Nd0NEaxRlKWfbevHaMys8tgV4Ag3Qqw0wMe/2bB0nQeTBGFBsUzQisVRxoHl4VWrtXI4+R6GLI0VVrahEhXnXH+IMGtu8ucOy9AUXZ+lxc+8TSP/8VPAXDnyinml4QW6sm/+AkGG2MY0rTSyPXJL20RykkvDgwGN8Yw16SgetEn6ohzqr+0Qq+VZfoREeliVAdohwfgiM96BzJ2JC2FuhN1jGJE97JguNIntwllGHJyoo5mBbjyeuQfW4exIv/Hjz8CwPsv3MEdOEw8IliXRycOlV1A0HfQrUCdw7CZ5dhD19i9vQBAou9ipQcsPibKT0E3idtNMS49iObnNzjcEVoo2/aZWF6ntSN+8wcbc1QybZW3FsUagW8q1mZ2ZptANpT0emn+9aun+euPCCNKywooVw/5xPNCXP3Bt36Zxm6FzQ3Bjr3/yWdxO2nu3hfHWc62FbBvdzPYZsDFRSEUcgcO1fF9Fb2ibcxyfPEBq+tigNk8qLI8Mjk1Q1KOq+7bcb3J9x/fZX5cjDWGFrHWyVMalfmIebVZ4BG5KFnKmuxLMXnds7hUrlGRpbgr9Swn8n0SckFXsIXuMpLcUxALIAnw7H6Vumeq3MiRx9zI9+0/rBb5wHSXjZ4YE58Y8+gFRwG4AHPpUSyJRi8wKNk+wdcTJL3JJP2JbG92t8nOgB8a/0FmU2IAudMxmErGKrssb4VKB1PzLMq2z6stafCYG0qmSNxRHd+k7h156Dyzb/KhmT53ZAv0hOMrs8iF9IAIFEMxmRyw0U+x2Tfl6z5bfUvpZmpDW2mSmp5OzhIWAuI1k6av8+RYExA076HrsCofakuDquMrhqPtm4qxOZlvMwwNxRSFsca9jqNEziU7ZDHbxVU6o4TqwNsdaIw5MdPS5dg2QvbdBPsyfLeciHioXONyrSSP0+BE7ojhqQ1tDLkaGwQGEdCQZnDvndnhc9sTytYgY/kMAlNlrHV9W3VzOWbIJ7eKyoH8+VqS90w26UtQcuAm2BqYynE8ZwnGa0GWql6tjSkwWk13iWJNaZDcwOKzW+NMp45AxCPj2yrnqumbXJIAC0Tm3Aj42UaAHxmMZY+6hPpeQnXKpSyPMNbJJmSpM9KVjmiUzZWSzugvri6zMrardEVrjQrzxUPVcWToEccXBVNxb3WemfF96k3ZgVapUa8XVQnkqzszvHV2lfwoaHfgMPQtxVrlCy0F7JL5Lna2pwTapuNhplwGhzIXr9ICPcKUAnx3p6zE1P2dMk6pTUe24ge+xe+/9DDf+cFPAPCVLz7JY4+8RG1LAOGxuR0SlaYCPiO2BiAaJGg8mKJ8+oH8Bx2j1OPgOeEEXrlwh/2XTpKtygk45eI8Ie6Pvd+cYvzDD/BePeocs+Y7RC3pqDzn0Ppshfx7xGcJQgYvZLAn5O8a6gz3BF0cxxqf/ezTPHJCsDKVUw8wMgPqrwj2p7CyzsHVY5RXBLiLhjadHenlVGoRepYqxe1tTZJMDajMicXM3n0BJPKyDNqsFZl/+BrrL4myV2n8UJXE6odlKuP7SnMUeBbX7i/jSK1cy01yenaNL98VgPXRuQfK+Xw4TJBIDFW323ilhufZJOUzcGtjnpWZDTw5Nh02C5hGSKMvhdx6SE7GgZSLTSzL55kbQhtXTLicXbqnrBt2tyded19v1MYoST+vcrFJOttle0s8S9l0j3Y3wxfWFwA4Xz5kr5/hUJb2JlN9rjVzyqV/EOo8LMOA7zSLGFqsHPujWON2J6m84nqBSdH2eFZmP14sumoxZ0n7gNzoGPsO445HIMfb9V6C0/kez8nP7g4iPjjjKnPfYWgo25PbHZsJJ6Qf6gwjj/9l6xe/Pt1tP2e98d1tP+K/2d32jT6APy3byfyA27IOnrXANmLluF2wPe7LVlBDi2n7JlVZxvIinU5g0JG5ZnkrpGCHytvnQzN9rjbTlBOj1nSNfVc6Bmdi/s2qybfPiH09X8uRNo8wazcwWMoOlRCx7WtcLIqJaCEdc+AmVIt/wQ7JWSFDWW5a7aU4lW8rZ9peYDKZ6vOszLKaS3u40idutZOhFxpUEyMA4XGmELIt244zVqA63wBW8i1ekYPrw6UhMcI/CqATiGiRU+MCFOwPUrxwWGbfFZ9/tNzD1kPScjD6w900b5daqEFgcKlc425LHOOXd8dZSA8VGzTSY43YGFOPlK+JBrx3qskLkuFbzoQUnQF9GTOhazFjiZBxObA3hg7HizWSsn26ZA9VKbKQcNkfpDkmO8XcwGI+M1Ts2VKuxe/cn+et4wJgPVk6UIaOXmBScVBt2XvdLJVUjy3ZzZOxhzxoF5iRJbJBYKEDD5qCtZyRnjIAnX6Km4fj6jc8Udnjpe1ZZYHgGAGmEZKXgCxh+fRkMOx4qU6nm2a8Ks7hlbvHObNwXxkNPjWzRsLyj4CgZzNePSCU4NdJ90lJwO3Wc2xcO05BMgNO1MNwhqqcFLg2kW/S2RCMVuWDmxz+vtC+DDopdtdmWLgkWJW9m0t8x9ueUf5Jb3/v5xkc5pm+IEpIzQfTWNmeAllh31HgrL1bIY40BtsCcEShzuDGIuOPC3ZouF1m8iO3iQ6l7q5oQCA+q+sRw6s2icfF+dV+u4zTS5J+XDJ4A5fsiQ3oyUkmYZOYqqFJke/uM6fJyW6+1PEdVq5tU5Zu3cPDAo4e48gS4vCgQPnYBvvXhc5o8qGb2DJI1eumXuf9NLmwyb1by4zNb6njHF/eUIaZRT3mxc8+pcrbz9xb4dEZAb483yLZyuLIsrmdHHJm6R79nuxmsz16vTSPLQiGL5vtYEhw0djIUarUWJM6vBFIrkit2DnnNjfvLXN65Y74HUKD+fO32L4hzunezvRRwG03zdTsFg9JO4l6K8fa1hQ5yUQaeoTr2by8I+6JG60Uf/Mxce0K1RovvXyeqZIAp412jj9aX+C0DMtNmD5eaCgrFUOLRTlclu+Xsj0+IwH247Is78lOufVeirmUx4EszR3LCrnBwyVx3NdaSTWejrYR0MmaIUkjxJbj2mbfpj60KSfE8/LWao/1XkrlwPnRkbZ0dxBzqSjGra+r43aM8hB7w/b35vYmSBpto4kYBPuRMkI2pHC7aHuKKao6Hht9h6zUEfUCnVP5tpqc/UjjXsdgKKnK+YzGydxARWuATsE+0id9/2KX52ujiI8eCSPklpxAFtID2WYqywd6xBf2xGD7zTNNNvsZ3jImHvJJM2B/kGJDgoYwEuLD/7glvvdbZ1yiGGWkFsYaJ2Qb8r1ORgnRAQ6GDr+7FfMXZVfdzsCm7ZucKTQBATDSIz+iWGMQGEo8+UItwdurfWL5L36sMeF4LGXEvjKWx912TmWqjSVQuW+GFvM7a1WeHhfHlZThlMelSd1GJ4f7mhVb2gyUjqjiDMgnBlwoitd25HWYkitWU0/jGCGTWXEOL63OE8YV1fJr6hFXGuKzj1VjFgs1tWq+1SxyqbrLntRYJE2fpydqqtW46ybR5Iiy1snT9S2qsiQ4kelwv1VUXXUnS0NMLSbviAnEDw0B4CTTdFO6EgMsFmq8ZfEuNSl6T6cGvO/8ZVal91F76GAaIdsSgJ2ef0Asu6B2Dir0vYToSkOIZRvNgmKlDtt5VutjnJwQk/PU9A72a8Sw7VpRdW8d7lSZXNzAlUacrf0KuhGRlCzLzS8+wtlv/zzWujgO7xVDdW+lfZN8N4k1Js4vXz9ydQao35/BSffZeFmwQb5vMew7jJ+S2p1OCqciPtu6scyJj3yJnc8LgfD4o9cJry0ql2y3noOXUPqn9NI2uvQUGvvgGnv/+yJj48JTaWv9Auff9UWQoPDyv3qacx/8Av6afE4jnYNrZ6meFyBh4u1XufY7TwNwPOWSSvXZluaIqUyP7BM7XP2cYGxm5zZxqg0V8dG8M0ey3ATAzve4/9knqErBtD5wOHbyDh//zDcB8OTybdAjDqSQ3TAi8ukejizBP54ckJRdYwnfpNvN8IlXL4jPzj3ANELGJsW19wYJCqUmz10XDE/a8piSZa7FpVVatSKXZJmz28hhezYt2WWn6THVfFOB7iA0eHD5FLWOYBQm8g2mjwmwdu3yGTzXUa7p9xoV3nn2FdVJZ5kBK2duUd0V98vM5iyXpcbqYT0k6wyUNmqnUeKJyW0VCN0ZJnFDQ8V/JE2fhfSAKw1xLyaNpMqU7AcWHd8ibY7ipCIsPVKNIc/sF3jXRF35JFWdkK5k4YahjqnHapxeyXW51sxgybXhSnaAH+lKiB1EOiu5DjtSjN72DRblmKaTwzECXqilvr4Bt29ufyLbm+U2SVX+qzN/hSASD8+NVoq0GTMtdQNN3+R2WzxMhgaPVfoqsiNthixkelyWHioNTyNtHoGR5w5tjmcj5UkUxhoVORndaqVwjJi+tPP3IphLBSTlQ501A5q+pbQwL9WtUYcyj5R93EhX4C1nBTQ9Sw0IYayRs3whBkewQzfbWaaSR5b9oy2K4UHP4mx+ZLFvs+vqZCWEztkRth6pMNikGbAlB4eub3As12VTrl5BuNVOyVVkxhoyCCzVLn+lVmEmfdROv9pNs5ITq/nG0CFne+xLDUXTN0kZEXuuOJD3zGxj6iGbkvEz9YiEBGu3W3nKCY8Zqe0x9Ag3sBSQOXQdjuVaioVKmj5BZFCWXUNeYPLigXRnTg0YS/V4SSagPz29wR+szTPhiHPIWj4VZ6C0UTnbU+X7vDPAsTxVWjD0iKvbM3TkoH++usPnNuY4W2wCcGJqkysbC5yZFKLpazsz1GRp4bHpdTQtVsGgY+kOA9+mL/dVTnXpeg6nFgSgaLdyahKbHtun2c7xVRmP8q5jt7FMX5XqQLRxJ+S9mM6LDLWWZJpmprd5sCb0TNPje0ycvYsrhfNWrkd7c1yZHk6+/RX0NGx/UuidCrO79KXhY3riEKvYUZ1vmdMbuKtj7NwSwt3y1B6JYkd5ClnFDkE7hS7L234nRU/GgaRKLZIzBxhV8ZsP72axyh0FknaeP0Pl+DrP/KEAM+/6tk9gLkgbj70YY84hfCBZprRP8/ISxXfJ7jZdJ9p3iaQhYOybaFaALt3vNT1WbVTRwCDqJhnKLlSnKhzV+1Jk7lSauIcF1XWnJzwVyhv2HG48d0mFGE9N7NHrpsnkxH3oDhycpKsYvUypyddeusTKjGBegsBQgMIdOKQyfRISNA37SXZ3jyJOSqUG1x8scfaYsETotjMKYA36SSrTe3Tl4u7K/WPs9NNqsfPtb3uGfjvDYORAnRgSx5oK4u22snSku/vy2Vts3V5U99b8uVtcfvZhmtKf6ez8KoYZkJLnePf2MhXJFKVzXQ72xshKgLFzUKHRz6hu0ZfreRwjpiz1ctWkACujWet2O8OJkejft9geHNmT+JHOvmsriwANESMyatbwIphMiv3GsYatR/zTrSYAPzyXpe1ZpOR4mjRCBqHB53bF/THmaEwlQ7VIW+9bipk/k/dIm8JH6evpuH34/3zjzSQrf+dNM8k3mSS5XW/mmU2JG2wq6dMNDBWO6oY6p/PiYYpijXLCZUuWAF5pmKSMpHJYzVomYwmPe13x+jdN9HnuMMWTY0eMxWhyPZEXMSSjh6tgxzhGxKEUkNc0Yab45QMxIlwoxspNtprs87ndEqdyR/V3S49Vy/vvbsHFQprljHj/87UcJ3OuqrEXbU91iGTMkAlH5+9tiMyrj80+RtI0FXjxIgM3MKnJzrpeL8lkchQMa/O/b+T5jnmxSrzbzmFqMfdk6cox0kyne6pzsJwQnkJbcjWXNkM1IF5upFjKWByTLr9hJ4ehxZyXE8yL++MsZrvsy9LWfKajSlGTqQFlZ8CajELoBSadwGBBel+NmKBxySyttorit5QgaaOTZ066ZDe9BNogxbJkITrDJKfyXQqyhLY/SHGvk2MxK67PZKHOrX0BAtpegplsS2l/gsjg1PiO0g3dqlV53+J91enTaOdYKh1wfUewQw8v3VUTU72bpe8llL+MpsVoWsxAgqi+KwDS6P07jRL/4rYoPfzU04JNeN9JUYrq9tLc3Z1UAuCpiT2iSFer/14rSzbf5lCKwk07YEF2u9mOy+GtBQXWy/ku5XN3ieSq29/L0dseY/xRUVKLQ51QAqhwkCB5sUsqEsdz/5OP43k2syeFyDc5Xmfvygr5SVEWNEMdr5XBkqWr5OyBAkmRL2JFgqZ4HuJII2yniGXJY/zcXeJQ57GHhRjZnHIJd2TDRS2PUW6iyXJJ++o8qTFpgw9gGuh5HSIJikyX7s1pkpG4r40JF39N3NO97TGyy1ukTwodUffaLJlLm6Q1cY5+K8Ph5gRLH/gqAO56mcNrMiol2yOb7nF/V7AsU+yRzvQ42BdAeOnsLfxeUl3rxt4Yy5NbNKTT8/ELN5SeKWcFuM2s0igBrDcqqsP16ZkdyukOzbr4TTOZrgIq27vjNDtZKrKEempmnWXPpifvrZ31aXKvuR+mqvvUmwWKsfTCMiIl3O7X868D3wArx+7TlKzUQb1IKjFU96lphPTkIst1HYLQUNqnfPr15a8w1tQ4DBBEGuu9FOMS3BcTgVqgTSRdVnJdpV9KmwFFO1Als7QZsNNPcly6ub92kVVzHbYHCb5vQtxrYRSyM7BIm+IcFzIDTD3iYkkGtmZ6GFpEV45rbqQrNl7TYvqhgU6M/vWsWb0p3P4T2d5kkiQK//tzf51pRwwubd+kaPu80hQP29vHW3x2R0y+T4716Aemih0ZTw653kxRccTDFsfwUl3nscoRo5M1QwVeDC1W6fF3OxHfPO2qdPpeYDKd7ioXaUOLqQ0t1Wa66xps9cX/v3tCaIFayiV8yINukn9ZF+WE/8fkcaqOy7ocQF5tmkw4ApiB0FntSsYmoUccDG12pLnkYtpnf2gqg0xLi1nMDCjK0lTDTbIpQeJ4cshkqsfNkbdR5YDr9YoS/daGllrZAfQDU4m7Ab79zFU+e/uUPKahiBeRILJoe/IcxQA6l+5STnVfxyQdAVmT/7iR40cuifLIQScvunvk4J2SdgZ190hbVkl1qQ/Earg5TKgy3lY/welCRxlETuQb3D4YV07gl8b2CSOdXelfNJdvqHLbM9vTBLHGeckUGXrEdKGuHLU7vTTtQQpTBodWCi126yVs6cCdSQ4UyxDHmsppA9FF9Mz6It926UUAbq0uALA0LdgQ2/bUSn9nc5Kk4yph7vT4HlbCV+nyuXybKNTpSTYgjjXyhZZKlC9P7Slvn8FBkdR4XblCm7k+Vz/9FLPzAkRlZ3exyh3cTTHRO3MHvPTb7xbX6oOfFx5D49JqoJPAb2QxXlPacw8LpGYFwKhfXyRdrSuhc+XMfR585SIAyx94jqh3JLxu3lhE0yJKj4rfvHdrivSJbULZVKFZAb37MsD1w0P8rwzQJKOrv2cW4/4d4pa47lo1DVFE//msuh7ptw146edFt9dDf/WPCDZlR14rTThIqI413QpAj3CkuWY8tFh77jx5WWJLV+vKYNOt5zBsX/lApQsdrl0/yYVLopvta197iEcffYn1O4Jpu7U3yenJLSW4tm3vdSXVhbkNmnXxm1YmDogjDW+UJ5ZyiUKdKzdFWPBCdVcB7Ey6RzI94PpdAd5mxg7I5dv0ZEk1mRrwyt3jvO1tXwFg4+Yym/UKkwUBGlPJoxLZ7l6Vy7vTnJXdrx03iWmEKlrEsT1m5ra4ceu4OI6pLb50SwjRz4xv0x8mlL7pzv4kW/0U52R36EE/w0yuoUrffqRTGzrKs0ywSqOxNaLuJdQzH8VQSnjck00zaTOi6gy50xHPccvTeEhaiAwCE0264YNg049l+2rcvtFK8dbxGn8kneRP5VwGoaFKe7fbSRxDjAGTScEk7boJ3MjjJ1b/xdeHSfqZPwEm6e++ySS9CZLkDfYTCz/AuMzwaHoWmharfLEw1tiS+qQT+T57g4Tq/HJDHUOLVZfZnY7NW6tNxXa0fZOEHiljxk5gKCO0UchrQ5YL+qHOvU7Mh2bEg7vaTdL0dVVzrzpDJSDv+joZK2LcOWr3Xe/bytRyOdMna3uqdDOV7tLzLcalYPjjD2Z5TDok//L9BBfyCU7lxKC3P7SZTQ2U0WLNdZhM9diSeUsle0hbrqDudBzeNXnAhgR2Ld8UuUaS1k9bHkFk8IktMZD/d8c3sI2A9ZYUMlsed6RQu+oMKDou/+qOKFs8ORZQcVz+cEfs+5unm9zvZFVJ8XihwZp0jJ7Ltl/XkXa9UWQyOeCUTLm/dzjOdK6htA4J02ezXSQvO+V0YuU3dG1vCtsIKUvdUBjr5Jw+X5DxIO+cWafWyyqDv+YgrUAOwP1WkYJsWT5W2WO/XVATxpmTt9nemFKr8IFnk7B8NqRwuzFM8O7Twpum1c5RLDbZlB4ynWGSSqZNT5YQp6v7uANHTRKW5SsdjBeYVMp1pTOKQp10qY02Slt/4QLnHrnCzl1hXTA2s0MwTCggVDp/l/0XBXgtHVsn6KYUsDm8O0dpfpsDGbQ687aXCRoZDNmJpidf7wMWdRwVaPvKJ97O3MKGakUfe+gWfi3Hpz7xHgDe/y2fpn9QVGxJ8dSq2k/9+iLpShNnSuiatGRA59qcylBLndwj2EsRtGUH0u0F5t4qYkWM8RiyaaJ18RvreY3mV+bInRG6mtYrSxSeuI8mnx/vQRbrLTbDZ6Sf11gLwiO2ZLhXVG38ZrFL1E3SlTEl6YlDvFZGve61Mty/KfRLEzIWZgRGEokhhclDmhIU7h1WOPXIK0JfBayvzrGwvMr+trgHppbW1Xsry5vs3l7g6qoAVBcW71Nv5pUFQLFcp9UskMkclfJGW67YIop0xULpRsign1Jg7PbaPJPFo6Bd0wzZ2BtXz4hte6rcVsi3OaiVmJV2I56boN3JKLF5GOm0+ylKEvDHMlAbYDBMcPNgQhmiNgcp9gcp1ZqvaTE3G2XmJWt7o1lgJdfmgXTpf7Vpcb4ojrnpGcylXcqjxdzQoR+Y6rODwFLdsAC/t1HirVXxjKfNgDiG56Qz/lurTV5t5nGlFKIXiKaTUXh12gxJm0cNLau9BCdzR4kNlg6OEeFGHv9o7Ze/PiDpHyfIOW8gSHJjKj86fBMk/XkFSa/1Sbp9+/brmKSUGTAMDdqjAUSLFavSCUQX2Oi19b7JhWKftqSLD4YmU8mjNv9XmzFPjwdKO6QBXz08GqwWs5Gqtzc8k/HkkE0ZCruYGVAb2tzrjpiUQNkDPFFps+8mVbDqQmaABkr7c7+TpeXrTMsyoGOEWFqsyN+tvqNKb2cKbW60cqo0lTQDPrVd4FvnxGruar1E0gwpyAF0uXjIF7ZEp8rDY4d8enNc2RQ40mNp1In2f2wWeVu1p8qTaTNiMtVXoayaFis2xzYC3MBkT5amZtJdHnSyajX3tpl1PrW2QHkUS2KEPJAi3U6g8aG5bWrys2vdDCcKTeoSrM5mW2x08kxnjgbMtOWp9xedAV+WyeQPVer8zlqFv31RdFw9qInJr5Q8KgU4lkdNMkl7/bQamB90crz/xHWl/ej10vQHDhsNAYIWK/ts1iscmxTsz8B12G0VOTYlWJkHO1OclG38nmfzyetneXxKlNvGyjUazYJq2//tKxf5wPFbPC+N+b7p7CvUJasQxRpT0zsMpPFmr5fCC0zVZVfNtCkXmkJrAxh6SK+XVoaIoW9SObEqPrtbYfP+HAunBWMTuAmy8zsK+MRDm8Mbi0pHM/X0Fba/IMTEpfltzMwAQ04guhPSvLykcs42by3h+6YSmCeLbZIzB3TuyvT5x9ZovyDAWP6tW/ReKivGRk8HYMKD/yjYnsVveZ6obeHK7rfk4i66FPKTTUOvTyxr21raJrinY8jOShaniW9ui5IbsPuJk0z8pQ3Cu7JDqxwSu+JaRQMDd6uCIZ9be7JB1HFw98W1N5JDzNSQ3SuCOUnluljJI7DarRcwR3ExdkAYGLiS8U1melgJj57Msisvb1C/P6OA8P5BhZwEPRPL69Q3JihOHah9t/dLRLK7K5npsbczzuSMWCjsb48rEBTFOsVyXZlHLp4Rvl0jxuvw/gwDN0lKdoPGsUYYGWTkvXe4N8Y9WWKeyDVxbI/5E6KL7tbVk4yVGspFe3VrmrmJHTzJEFtWwO1NseA4f+LW6/RNXTdJx02yKcvRF6o7JBNDvrqxIL4r1aOaafMluWDxIo0LsmT4O2sV3jPVVuU2NxSdxzdlPN93zLe438nyxX3xOz4xpqsGnIzlk5A2ACBAU9Oz1GJvs5eimPAUg3W7nWUs4Skrk3udFBWpWdwZWNxsxRzP6gyjIf/r7tfHAuBNkPQns/25BUmjbXSD/eTiX+XAFQ9qP4Dp1JEH0a5rsSsz0i4WPdq+oVLvB4FGORGqzqiTeZGbNtLvtHwDXUNZBCxlXFUiGwQ6OUvUvgH8GE7mXK7KMt9j5R4v1tOqG27COXooLT0SFgCS7ZpO9dgfpJSH0N4gxYt1m8fKR4nYNQngQISyjjqueoHJYq5FRw4QQaTzcj2nnK73BinCWONkUVDt9UFSeRt9eT/PE2Nt/sU9ccwfnhYxADNSWzAILNb7SXJy8D1drLHRyZORpawYTWkKjuXatL0EB7JckDZDCokhp2UH1m6zyHY3R0GeY2N4BPRylsdcoc6e1CTZRsi9dl6B2ScndnADi4wtPvuFrRkiNCZlycALDaalaeN6N4sfHYXS5myhoxoN3JcmtvjXN5f5qOzu2e7kmZNliEY/o0ppALlkn66bpP2a0E1Dj5gpSfdq3+KL6ws8IhmvppvipNQgXduYZzLXpCOBXjHdJYx0tUIfq9S4uz7HrDS93D4cU4zVRqvIYulQMVaVYoNWJ8uczAQLfItmvUhedizmZ/a59tWLnLwoNExuK6v0Su1GnoW3vcSeZJaKcztYha46x6CdJo405WnUWZvAka+bmT71u3OUjonv7W5WaTcKpKRQt9fOkC20laYlM14jUWkx2BGg0nQ8rLKY5dq35xj2k4w/ITqyvJ0iZqGrRN/oEUbFJ5a4Z3BvguT8nnwtJmymqd0UzFnl3D0GO2WyD4vr7m84WNMD3NsC6DinW8RuiJaX1g7XTQWC9tenmL10Q9kYOJUWXitNJDV+iVILzQ6IJVs2bGZVh17jziyNWknZKdgpFyKNtiyDprJdSufu8eALIlrFHSZYPHuboWTH7t9dpCxLuaYRUJg8xJfasMCzaDfy5IpS0xeYWAmPzXUBOJdP3+GuNECtlOpYCY/rdwXD9fDDlznYmGS3Lq+7HjI3vc3unlgghJFOMddW/k272xPKUfvMydsM+w5JqfXZXp9mr1mkLYO7Ly7e49PXz/K4tC4YDBOK7VpvVCgle1iSifVDk5abpCbveUuPmEh36Mh9uYFB2vJ57kCA/Z2BRls69f7lhQ4931IsbtuzaXq2as0fRjpjCU8tuvxIZ1fqP6eTHoNQV8+8Y4QYWqxK/bWhRcYMVXJA0oj4nW2fH14R5/HFvQKnZeOLY4Rqke1GHj/+dSq3Hfy084aDpLG/7/65B0lvCrfltpDpcEt6mUynYj61P+Dp8kgQ6LMoW9h/Z93mQlGnIj2UMqkQXYuZTYuHOmWEvFzPkJR+R2cLHdZ7KT7bEAzG8eyRc3PF8akNLc4XxYQSxRqbfYeJpDSmDEzGpSmZ+Nvgmky1f7TcY39okpR18K4vurtGRmrFxJC3VgPFcBWsgHHnyHPoU9s5lrPiexbSfRquozrWygmPmfSRv4cfaYw5Q+pSk5O2fG7KtvSV3JBbrQz/95MCJLxwWOJ0oc1/3CwAMJmEd07u82pdDGqtYZKkGSifpDjWVCzLajdLwfJ5tWnJfetUk31acpX526uTfGC6xstyQnm8eshLh2JQP1ao0/cSqovMcw1m011F639he4rHqwd8al2wEuNJj+lUT3mq5DMdNuWgP5fpYL9GU2HoETdrY5wui1LJ5d1pvv/MbXYkK7NUPlABtT3fJp8YKJ+ke7UxJjIdpmQ5oZDtsL4/zn3pIr5Q2aec8JRlwquNoop0ecuJG3hDG6d/9FskE0NcCWb3DypMFI9MLEVWm0AIKcdlam5LtXT3eikqpTpXrwugM8oG60hB8IO1ORbmNhWzFHim0jdNn76HnghUt5bfS6LpsSqJZU5tEfVMjCnpMcMu1qRgHPydLOOPX2O4LX4nt5fCNAKy0nNo9N+E9Jzqb1TxW2ksyTQZaVeBoPREjcYrK+hl8Zt99lfexcMnbyiNzsTbrqLpmmJLrWwP/VhB/HHQIB4OKS6KkpCW8LHSA4JN8TwZGRfvQZae1Jw457oM7+eVdYH9SBKebwIwW27RWp2iK9kebX2KmYducPOL4trOHX9A/i0bdF8STMvh+hT2rmC3DDNg5tRd+gfidwlcm0SmjysXVeW5be7+0WMKRGUijWE7TaoqfueF0KDTFL9ZYfKQa5fPcEYC2/peheJYDU8yKYFnEkcaHcmWbt5ZoCJNTzPFNltrM5w9IRikV6+cYXZil9HWdlMcHpaVJcXF6XVS6b5insaqB4xJD65f//JTvHv5Ng0Zf5JO91lwXDb2xXuTqT6LuZbS5WVSfVUWPjGxhabHPJB+TYeDFLO5JvNSk3R1Z4aGm8SR41oYW7zSKHJCMpMPl30VfhvFGg3PUguwYWiQs3w+L0O9v2mihx9r7PZlkkBmQME+skSxjSNT4K1+krpnqEaZOIZAZlqO3v8d05aKQDlXGLArF3erXZ2pZEzSjJT579dlizQVQv3G7O+N29Wf5e1NJkmi8H+89P2syfbnlZxPFB95abmhrko8/cCgYPuqzHOrDQ+VInalw/RGL+ZMAdV2+kJN472THp2ROVzC45WGeGjHnZDa0MCXX1Rzhd39CBTtDExmU6LTDqCc8Hn+UDyIS5mIiuMrx9d+ILxERp0cCSOk49lsyRr67bbBExVX7cvQUKJDS48IXuMaDvC1WoasJfbtGDHniw3a0iXa0CKlSSomhqx206rsdyLXx32NoNENDfqhQVmu7ta6KYJYU95PGcvjS/sFAN4+3sTSQxVL0vQSFOwhjgRRbc/mwE2oa9sPdY5L+n+3n2I+2+YFCZqeHN9TYANEa37HTSrwYuohrxyOMy2NGPcGKfJywEwYITdbORbSI9fsiNlCjbosr7mBydLYHh0JKi0z4J6MVbCNiJl8XemGUvaQjpvkDzbFJPCuyUPmSoe05WebroicGK2s95rFo07AVJdcqk9RMgdDV2RtjfKznn/1LKdm1lWnkK5HHEqNVjnbJpPpqfJKt5PBsnwF0Mdmd7hzfYXjp8Ukubs2Q3Vqly++IKI1njx/hZrsuJpaWid7dp3BfcEq6FaApsd0ZVkrM3XI5isrFCqyE8z2CeSkn5vbQbOP9Fr1mwvkZ3dprAp2o3LqATuXVwglWDX0EN2IyI9L52s94qXnHwLg8Xd+GbeeI7MgJnPNCkCPibqjfDYPo+Kz82lhRTDx1FX0rPxi24AgImrJJom7U2Qf3lGBt+aUR+xG+FL/Zpa6uOtjJE8IYKyN5QiuiWvZeTCFU2liV8Xv0l+dIDl9QP1VIYK2Eh7ZxW3a98U5DvtJMmPi2jS3qtjJIZ5kf26vz1POtpmdF+yhne2TKLWp3xZgPjtex+8nFEC9d+M4LakNXJzapt7MK8PQONbITx4o8Op20nTbWcpT4hyINGUAGkca2/fn2JbM0WNPfI29+7OY8lnT9ZDhMEEgAcj4zA6DTloxfomkq/7fH9rEkcZX7wiB+GSmRT7d47dvib/TZsi3nbl6tGC5c5KLkh0OQkN0t8kO14Tp4/q2YkuT9pDddkE1Xnx5d5zThbZ6tg+HttJ7nizW+PzOhHL/B/i57S3+zrQQ7xcSQ3YHSSUbaPqWaprJ2R5d32JNJhRcLLXxI53fWRfX+t0TPl/aT/D2cTFuGVrM1WaSh0qyC9MMVCOMF+q0fUNpkn5y/eujSTr4yeQbzyT92ODPPZP0JkiSN9jfmvhBHiqJwfzFeprzhYHqgijYobKv3+qbvLXaZEOyGwkjIow1HnTFwFR1QvxIo+HJuAMNakM4mQvlvnxut0f6nBhTj9WknzVD2r7JMTnx7/RT/NGeyWRyFPiKEnEXbQ/HDLgpV7MZM6SS8BQoKts+vcBQQC9jhhQTrkqtzpoh/2pTPPDnknkeq7hKhOgYIY4R8tyheO/xrM9kqq/8i06XDmnILrHNXhpDixUo+vKBSN4ewa1zhR7TmTZ7sjul6dkMAoMTsszzoJNTwvWsNC+80xED4NPjbUWNi+slzn2U1VRMuIoJKthDbjQLPDYhyiejDrERKHJ9m/vNkupgKyWOUrtBlP1GxnDftHSHH3xmnp+8II7xsJ/mmf0CF4pi9XqsUOdWvcJbF4X/zEsbC4xLEbehR3ihSfM1/kwjZgpgLNvi9sE4x2U+WxAapByXy1tiUuwFJo9Nrx/tKzBZbQgwcm5mnXY3zbycUNfWZpkYO6AhOwt1PeKOjEo5O7NGb5BUk+/G2ixdN6msCU4t3cdKePRHZoGBQWn8UJXYDNtXE3P7oETl2Dr7txYAuL81w5Pv+7xywm6sTzL55FXFFgWuza0ronvp0kc+Rzy0BKBBlMwSuS7dPfHe7OQhgWvTlkxLWbpND2XSvZ3vquOwqw30YsjWJ4XeKQxM5j/8Iq3npWbpbTsEa7r6Lr+WwyrJ7kAjIuonMAqCoYo9HSJNsV84Ntg2w2ePhkPNCDEKYhI0ltJ0/lAA0BtXTnP28ZexpSM5kU7QTrH6sjjnxYevEbi2YsN2Xz1GcUaU/cKhxf1bxzjxsBDnh4MEw26K3OyeunbdvTIZaU/Qr+Xx3AQ5ySQFro0t3ci9Tora7pjS89S7WWpuio986/8BwPN/+DbSCZeZWQFIep0M5qis5VuUp/f45DNPAfD0+Stoeqy0USM90cgZPAwMWs2CYnxKqa4C9l5gYhohvgRUCcvHtnzlwfXFW6eYybSV6DuX6XJbaoounbxBt53lizI6ZaV0SL2fpii1UHebJT63k+IvLwrQvNXL0PZNOtL2QQcVH/X0xAGt4RGbPJHqMQwNtfgNY43VnsFKVowjBdtX48vVZpK3Vps8JxMJ5jMecayxKrspewFcKg5fF2PihobqVF7KuGxJhiqMNZJmhCtjSX528+ujSTr4R6k3HiT9g/6bIOlNkCRusP/X8vfR8sXDlDIiVnuGEmsfz/psS91QORGggzJ8HIY6Xz4weGpM/L07sFjJDbjdFoDCMWKC17BShobSOh1KjdCojT1phLihoSjalmdSTvhqdbOcHdAYjoSFIV6kcyABxlxqiBvpamWUNgN2Bg4FKS4d7WNUJjwcmhyX4bgbfYdT+Taf3y0AcLYwpJgY0nqNiNENDTVARKAYic/vJTlXCFmRafNBpPGgm2EhcyRybns2q1KMfirfxQ0NdR62ETEpB8SWlyBne+p7GsME/dBgWtL0bc/mRHmfmgRcm92sKi+6ocFMuqtAUWfoUEj2uSEZnql0F0OLeVW2xK/k2vzBVoknKmLfk+kuDVmmeLGe40Pzm3RfwwZ9fHWa98muqqwzIOMMGEi2xLE9Vuvieyxd+D6NKP+802e3m1fO1td3ptnspbk4JkDSbHWP1d1J1ZWXS/ZJSXflWjvHMLBU2GejnSOVGCpR+Pb+GFGsq7JgNtVXYtoLS3fZ3J0gK69dFOnkcx3V7ZbMdVi/u8jsogBkhztV9holzp4TpRun1FalpzAwSRbbHEj2pzhxiGn7SuSbqDQxigPiQNwTw+0Sh3cEcJm4cIftl08qoXKq0CE9dYDXECAodXyHw6+eZCgBl+9bTF+4ReOeaAzw3ATjZ4SnklXucPjiCeXm3d0ee53XUfriIeGuTn9DMF7Zx/eI+7LF39YZ3CgSSyY1deaAsGagF8Oj16+WcJYFKxMcpIgGCQUanfkaw/WjgF896anSRuPWPLvbE+qZOP2u5wj7ztH1801K5wWgbl5bpNvMY41Yy9SAfjtDuiC7xjJ9/IGDJ6/HsO9gO0NV+qzvVajMiPvh6pWzJEyf6UkZBmsF2CmXvgSYyWyPTr3AptQVnTp1m9u3hAbpzENXcZsjmg22NqfYaZZ46LTwuuo0c2QLbb5yVbibP3nuFeoHZczR8zZMKNPKMNIZn9xjbU0An1RiSK2T4+w5sa8rV85SSHe5vie9oTJt1WU6X9mn3s2qa5dN9lmvVyhJhrcj9Un+a7SHQaQrTeTNVlaJr0sJjwM3ofSPuhbjR7pqoinZARFwoyW++2xhqFr+/VhjvWezKH3lPr1j8a7xUDHg2wOHsdcw9U3PpmAfyRterBXUuB7EGhPOkELCpR/6fOcrv/kmSPozvL2pSZJbEGvqJndDnZSB8j661rKoSBO6Q9ek6gTq4en6Fn9hzuWFmhhwJpyQy40kF4tiInulmWQyGaqHMWMFrHVHwuSITmAwJnPdGp7Nes/CNkbmkR32XUcFvGYtny/K+rpjmJzO+8rJu+FZ5KxA+TdFwK/vNcnF4v3fMhliarHS/3QDg3uyTOGGGi0voXKJvEjna4c5THnQIj9NV50eQ1lCA3jg9vhAOqIuAcNirkna8tmWIue6Z7GY6XJWTpKf2c7x7QsHTIxWirI8BGIF9kojx7IUAPdDg1caNmelyNnQIl49mFCAczrd5T+siYno/7YsV+LhqOyZIYx1Bbh6vk0h4apoFdMI+da5A9X9JrRE4jd9vNIkn+rxotRUXKwc8K3z25RlKzFAq5/m+V3B2nzo1DWmAzFZf3p9nm9evK+YrJ12gd1Bks17QjD7joV7mIfj6vVmO0cp01FO2WuNChkJ9E7OrfLMzTNMejLOYXobf2jz+RtnAZjLNTlz8jZN6W5tWQEFeV07nSyZ5ICyLIFdvnWCRi/D+bNi4nI7aUwjVOWXXLHF1MoqblOuut2ECk4dsT2TpwVYCQcJHlxb4dR7hIdO584sdr3LxjXRzTV39jalBaH9iQOd2Xe+iJaUWqe9FLrjYUnw0b8zSXZ6n9wor04G4aYkaChVNti5Kq7dzNteJr+wTW9bANLs9D6DWoHG7siIcZ+wk1Yi6bgd0Lkqy1Zn10k+GYInnqX7//pRJk8+IDkj/ZumpkkGD9j7rGCDxt5yAyPjok+ICTY61JRea9jMksruc/1TgoVZeeJliqdWcXcFiOquj5OZ2yMpAdzB7XlcKUS30y7pWCcjzTPr92cUSwSCKXIKHTTZqu4PbfIz+yrLrZraVOCmlOkQhAZ5yVLt3FokfI0Y30x4VI+vUZoV7OruvTmOH78nvyfBV165wLve/iXx95pBx7eJ5PPjeeL/z82uivMPDcrVQ567KkqZ5VSXsjSbHZ/c4/rt40xXxDk5SZdaJ0fki31NVw6IYl1lIX5ibYEFybKNDRP0vQSVzNGzlXcG/MubAnB9dGmfnD1UhrNpy6fnW+Tks7qQNmlLdlQDXq6bfOucYHX/5t1X+RbnrTxUOnLK3x04KmrkSiPB2YK4/589sHm07CuPpXeNi+y2yw3xPDw9ccj1RpGmbMAp2yEpw1DdcFF8FK+UMkLavsW+9En6em1xpCkLjzdmf2/Yrv5Mb28ySRKF/9r5v8SXJJW8M4h4ohIpFiaKNUXLHgwtppJDxYxMJj1anslaTw4IKVF+G5XQppMubnhU9nql4TAvReBt32DC8VVI7WovwYlcn+Eoy0yP2Ow55GQZqpzw+MNdQa2/d7LLei/JjFxhVlM9tnoZ1bF2o53gRG6ourscPeL/y95/BlmSpdeB4HHtz/1pHVpmRGpRKUpXd1er6kZ3o5sAgR5qgAK2BHY43F2Su2sjd9fGaNy1obDBzHAwHJAgCQqARDfQQDdai6rqrKqsyqzUGRlavRdPa9fu++N+70YV/+yfQgHYTjcrs4yKF/5c3nvu+c53ji6FGNJKumbL3JLfi4T3MT9NW+flMwDYHcUwFbPRJhH4uWwT96ml3ZT99znibg/Yqi+kE+66Ak6lXLQIvC3GRzAVj1sVBKHIzTMrloqy7iGvj7tEfOwP48chvpqDmHzMvNVG5vvKcRnN5jEkkhC9j5VbTbfQsExskj9NCAHnM21+rXOxEfaoM+5hz8DZ9AB3CTCcTI4Qk32EtK9TpUNsNYqYSHYAAI1BkpcqB56KqUSX+ya5gYxb9SIKY7+iSMAzi49xREJ2RQoQhCJfWcc1m2s3TN1GGAn4h+8wQfDfffoONqsTiFOpMG0OkMu14NM9brYzvD2820+gXKpxb5xOL4mp6UNuPNgbmJid3cftR6zMsddP4suf+zo2bjGQMLR1rJ5kLf+S6qF5WMLkOaZfknQXkAM4xJRoxTYExYdL3V83fvQ0Lj/P3NsDVwFCEXqZlUuUGRvejgGvR5lXhwWoMQcd6laae+kd2AcF6FNsQvWaSc4yaOU22u8uwSgxUHF4bxmTpzZ5VltssgG7muMThSBGME8yawW/loBo2hCfZQwVbm1BTAlAguJ0LBvQNERt6sp8VERstYagRZqloof2ayzcVVR8xEotHp0iKD5CW+X3rfN4FqIUQCbtWBiI3JhTjluo311GdpEdV/+gCNfS0CMBfbbQRK+d4uc8eXITVjMNhcpeo06Sl8JUw0LjoMz1XMlUD4rmwiQxfP+giOphmR9XKtlDg567BOnthlRC93wZI5cBFgC4cGINghhxJk0QIhzVClz47XkKOj12zJ2RiYXJQ9SbbN+5dAd/+PAMrpF1RTHXhCBEeP0Re44vz2/iDrX0TyXbWG8VMJcik0rNwfWDWWRpofDjRhJNG7hEUojVdAeWr0CXxh5uMd7NNvJlvNtK4KNjAGrHcDCK8Y61lisjiI67VqcMi2c8ZjRWXtulcX3sgzeOcYorHjquykGUHYjI6w4GBNC+ehjimSyxY6aD7aGGlYQFK3DxK2u/8aEwSbX/JvGBM0nF/67/hEn64z6APynbziCBWZO9eKdSAVKKh8c0oRY0j4upUworiY1Zp92hBjcEDz5sOCIy6rFza8NR0fck1B1agWgRCjR4+qEGVQxxs02tshkbj/sG/9uM6iOj+RywVCwdzxcotymQEJNCDr56rgYR4NEZZ1IRDkYauh47sHkzZPTzOFpCCzhlvRTvQRAiLszeHmpYSQao0ASriyHW+jGcoo6SgafhPGlqxmzLGBSqUoSzyR7ebTHAcS3PdAFj4bsXiox1csZsmo8BTfLnMz28UU/xQX1/lMCVXBc75PVTNnzcb2fwFK1YIwCTpHPQZQ+uL/PwyonYCENf5tdyp59CzdZwrciO+7VqCUEkYp/0HOv9BGbJJ+rZQgsbvSQ+O8sGeU3xcNDNwiaA2RoksNVPcN1E1TJwocSYk55lQBQiLkQ9GiZwpVThOVYzmSY2q5P4FjEmV3I9VKwYLlH5beDomKCOtUYvhURshL9zlbW894cGVqb20KLOwoEVg9xJ8e4/U7e58NbxFOzsT3HdSExzUDksY255GwBQDAV0GllMUeDp6YVN9Kt5LhJfPbWJAR1j9yiHuY++faw5GhjQZ2pcINy7fQLFq/c5WHn2C9/muiD7oABB9VC7zVim7T+YwtkL9zhoyJ/ZRH9rEoV5Vo7sP55GfX8CMwQqA1eBmmITut8xkVyoQC4xIDif6/E2ewBQpiyE1uAYJMnHVgzKMyr8d3yIFLAbAnA34lCeYeeA5gCCG0AosMnAvp6EsBFAe4VKUoeHMCbY34pKAH8Qg0dOzo3NGSSyHcRJV/Tg0Qk885nvY7Bbos/7aG0ycJYotKGbI9z8wdMAgFPnHjCXbJps00v7SGMfXRJ9d/dLKJxbh0NamR/eOYc/8+WvAACqN1d5uz8AyKoHJeag+pCBOd+TkU51eScZAC7yVjQXg+5xmSufbcMaxd5nPJkpN3gwb3NjBjcr0/g86Zvsps7Z0Ivn7uFofwK/uzUPAPjyqYf42Wd+jC7FoRzWipgqHWGK4obu7c+hQPFAI1djLvw0xglChLO5OlxiMX9moYfKIIl3qTyb1Gz0XA1Jld3biqVx09sJs4/1nsmjQvIx1kSySRFRp1NDmIqH1wjMpxSFyyYORjpWkgPMxYlNDyTc7mgoEujIaDYUMeSL0JEvww0kbgnw8zMBvJCNcT880jFtMhmD/Z/EtTzZ/vRtP7Eg6b1mkgDT6KSIh/VdAW82NFzOsQnGlH2s0YCYUSNIQoTFOJsgNSmEE4i8jOUR6zQu81Qs1n0xbuuv2yIedNm+kmqId9s6Ctpxh9pUzEXFYi/57Y6Cog5YAfv55XKLB7QejFi+U3Os7fEUtFwZKWKdSjELdiAhQ3PA/khBXhcxRSvSoS/zWn3NMqBLAQ5GxzoqN5CwTNllohCh6Mv4N5SQfi5l4kKWPTpBJCCtesjQai7py3ADEVMGZWCBCSjHDM+RrWF/JPMwXRbEywa52+0kTqdHvHPwM7P7qA6SmCOWS5N9nEp3uO5o1M3gcYcNeFcn9vHdgymcSrHBt2bH3ndfjiwNKdVHgkwfT6X7iMkeB3dp1cMPjthAfC1noe3K8IJxa7GImOxxJmm7m8G18iHS8WPrBoUGai+UkDYH3IBSl3zs9jJYyrAJ9ncer+DFchWfohLJ4SCBq6UKdyPeaxawT4G2KX2EMBS59snzZSiKx7/rqJ/CRjuPj5xiICqKBM4UxDQH07MH0Cira//RIsrlI7z2FvPfyZt9TBQaMAkY6uYISsxBNNapiMcEcywxep8PkqD4CAcx6OSjdbg5i2wzicQlpm9qX19G+hJls80dofdglpfPLs68jcOHi5gkBtRuJREGIroVVkIrXVjDw3snodJEP3XtLpwGA4Vu30Qs10H3x4z9Si3vobs+w8/RO4ghDER45ClkzFXRvcX2E+9UoJwUAJ+AkwgoEz1gh05SBqApiFT2wuiZHmKn2mj/qzR7Pq66aG8woBdLDTBoplE8S+cYHyIxV0WNutue//k/QP3GSRSusYig7t0Ffi1HnQQ0c4RT59jvQk+Ga2uYWWIH8s2vvoLnr74Nk0pwUSDB75lwyWn/8698mwMmRXMhyT7+4I1nAACfe+E19OsZlFe2AQD+SMc7Ny7yMphm2Dg8YCXihDmE78v8WcpO1CAIEYZtdq0Pa0U82p/FlbPs2Wq1MvipK2/xPDZVPX4OfVeBonj4qbldfp7DfhwOlaIA5iQ+1hJeWnwMi8rcYSAiZQy55xLAHO7HAMwLJeiSj8dUjZP2p3Al18Ztes5PJPu89PZ7u5NYSTjo0PvScTSs9XWuLbUDCXYg4RRFM+mkAQUARZQRRcAbDXadp2IhpoyQdw/vDRJ4s6HjExPsQMadcmOWu+vJeKPBjvlSNsSpVA/fPEzD/SBb8v9/bU8sAP5ItiflNqIq//OJX4IhsZd6ayDgUtbnpZyc6vEVQRAyELRLztdnUjbud3U0qFnqbCZAVvW4YWRCDrhOCGA6pHHHxMgHfmq6iXWirTUpxL/e8/Byng3y86aNpqNyFkujVn327whOKPDolHLMpmgSNvg0HRErCed9ZcKC5uGABOhl3eclsEvZNl6vZbnp2rThQRTAy14DT8HQlzBBHjyqFHIG5u2WgvNpnzNUphwgqx4LHN1AgiBE3AVXFUPm/i2Omafjlv/5VBu7vTRmqYy120tj5MvI0XF4oYiSMcAj8ifSxJCDMwCYSHSwSZ1gc6kW2pbJtQwAkI8NYRPIHHgqdMlHnQbrKBK4UacdSFhKt3CzzoCOJLDIlLEVQRgJyBsDTNLks1GZ4oN6zuzDCyTsUOxKwRjiG/slHgGTVF2Ukh3UqLQniSEGroarKw8BAN+6ex47BBIvZLu4uLCBDpVicpk2DmtFTBQY4PrdOxfwiaU1pNJsha4ZFo5oEnR9GbutPFIECi1PxerMLr7z4AwA4GyhiqXFbdhD9l031lexkKtxRiMIRZw8xcprer6Dw3vLmHvuXQBA59EcXrt1EZ/78/+RfbYfg9uNw1xlbNrw0STM0+zf/XdnEUUCZ51SK3sIHQXvfJvpeQ56aXz2s9/iWiTVsGBONbhxo15sQyRA1bi1AiPdhzFHGWHrUzBKLQZ2AIRDGX7XZOVAsKBZtch0QcEgBjHmQF4iVmVo4fG/fxoLL7EcPCnrQjBVtL87w8859oyHoMQYHfH+Q7ReZaLnMJCQf/Ehwu7xs9Vbm4VJztdyfoDenTnEZxkQ/jf/+mdxbZ65Ua9XJ/CZv/QfOSsXOAq+8b2P4NMf/SF9LzOmrDxiwCpXrsO1NWY6CWDYTnLx/dinKZEmF/mBAUkOMKIONV23EUuM0G2m2fXwFCSpwWI4MJHMdFGrsuu+eOEBKo8WUJxl9615WOIu7ACLvBlZMcyvMmD4u9//CF6i8OR0uYF+I8OB8N07pzE/ecA1XHuHE5gqHeHh7jy7b66KEwV2bbLZNh5sL+A+gZ5pc4ik5qBLi6owEjD0ZR5T8r8+KuPPLbT5e327ncAZMi7N6Rb6rop1iiyZjNnYGcY40GHdZgJmyftIESLsUkeaIYVIqcfJCB1XwZQxQkj+ZTVqgvnft9n9/jsnLewOEhwEVS0FGW3s9yZhxgzR95jj9j+pfDjdbbX/KvnBl9v+n72f+HLbE5BED9j/uPKX8M/32QNWFON4Ji+gahGdnLFQd46Tt48sFdPElDzo6VhOOLjZIn+NjItDS0Ga6GBFiFCxFL56qVgaf/GmYozCfbvFVljzpkehtiRSlEOMAhFrPXYcn5wYYkA0tCJEqNoqeiQk/MRkDbdbWV7KC8FCG8c2+jK9/O+QwHw1aXMAdbOtoagfPwZBxEpO96i1vGJJuJAZ8WgRTYw4u2MqLn5cy+FSlg1ilq8gAmCMnZ+HJk6mO/y7jkYm8rqFLpX2xl0iADDwZaQUD1M0IDZGJoJIxASJOiuDJNqOxsHMudIh9gkwDX0FUSRgJc8G36Gj41a9CIOAzYViBc3hccSJLIaoWwaukDB1v5XHNyh0dCHuYiI24gZ2+4MEysYIcyQ8rXYzuF7L4z87x1bZP9o4gWVy3NZkD7/5eA4ZYgcvZbsYegqu0iRZ76TheAovKfqkJ5kh8zxNc/Avb10CAHzpxBpSyT7qYx2RZSAZG8GiazcWko9LJPe2FzFPk088PkCnm0Iux47rn7/xDD42tYdChlrLrRgmZw5Rr7BJMp3t4LV7Z/HsSSbsTk/VYLXZwGgWW2jvTHCBcG1jFsWFfRgrZLfQ0SGlbbj7FMuRHKL2DvPIkRQf/U4SBRIPq6kBAkvjAa/Z2Spuv3kR564wACbIwfsct+OnDjBaY8BPzfThjzQOgjob08hffgT3KM3uaXoAKekiotK2WBABl6JTQkCQBYy7EYIKWNgtTeRCLELYlSGtsHcxUjXgoAYssDJZ5zdVDoI6W1NQDYuL3gUxAsSQh/Jqhg3ZsBGj+JTRXpF3nMULbXQOi8gtsVLu6CiLUS/OAcSzz72BKJAgE1MdejKOHs9x/c+J8w/gEbAd9eLYO5yARu/4/NI2rL6JNHX/9Y+y8BwVd7cYw/Xs1Ruo77Nr2e4lceLUY1jkGh5FAg/EBYDXbl/ARKLD/YqO+ik8fe4OHGus2Ymwd8j2NTdzgF43iWyene+gl0C3l8DEJAOzW9uzmJmswCDGz3cV3H7Ano+V2R1UakWkiLU2zSH2K2VU+uyehhFLANgje46F+ACHI5OPZ34o8n9HkQBFDFGkxdx48TVmi7aHOs6m+zy/7U47hRJ5KhnEKo0Xb4IQ4XbbQFZlP9/vCvjkhM2Ze0mIkFR83pW6O9S50WRO86AIERqO8qH6JB39l6kPHCSV/l/dn3iQ9BNbbvtPt51hDJdMNvnMmQE6rogXimwS+nYliRz7FYJIwKxp41abDVQ5LcL+SMWJxHFcSBAJ+LUao55f0BYxb4a43RmX60Kuzxn6MkIACXn8cjmoWjoOCJwtxCMk5ABn0uz3t9smz0gb+jLcUMCdDtvXlZyOhBzwDLGRr2CtZ+AjZQY46paBqsUAHQBUbRUPuux7PjUxQsXSUIqN3WUF7A4SvBOsrMcQAvy406qLdfLXebsJ/LmFLg/0zWkOhr6MQzK8i0khjkYmOiT6tkMRihiiQHqehXQLj0kELgsRkqrDGZy5+BCbfRNF8iDyQxGv1TV8YYYiHoZxPqhNJ7oII4HHkjzupnCpUOOC6I5lYnuQQJGuz94wjsn3tMzLYogvzjMxbcsykdIsXl5bSHbx41oBpTj73srIxPPlGt7cZqWcF5ceY5063bxQQtUO8XNLbEXuBRIkIYRDg2sQitAVF23Kqzszt431g2l0yMulfjSBn1pggCqXa8EaxVCncyolO0gl+vDGom/Fw4ODGVzLsxX9/jCOAgHM0nQFt7eWoFLzwZ89cwe6bnNmwA8k1CtFlCjXa9hJ4MLMNp/4VN1BeoU9w9ZhHlEk8A4rVXWh5rocjNjVLAyzwlve969fxNkvfZ89S5aMghLg6A3GYDkDA5LM4jQApteZmz5gAm8AW3dOopBv8o6v/p1Z9EjUXS43IVgqLykUP7WG1vcXkX2BOraqGtzDFCRawKDtQMyTA/sdA9olF/5j9p5KWRtCIQ77LSqvrbQBMYLzFnvX1OeB9utLyMbYNUhfdRG0GEDInNiDPDGAX2H37MEPruLUR95CPn+sDxrtFdHfYCyUmhogRs9SFAnodFKIHbFFhqy70AOL37e337iM0yuPkaJFhyiF8HwFJ86yHEFvGINA7HGnk8JTH72OoweMdaruTWJqaQeVxyx6xTBHiGd6uKiyvw394+F+t5tFqZ5FjBY7rq1hfX0BSbKMmMs0kM+2eN5aPGbhD966hlO0CFFkH5Ok7/NdGZatcfPRZKqH7qiMCfqulDlEt5PijtzXdxcwR/qkncokcokeXttkLN3ZQhX/6M4c/uISA1yHwziSiourFL1TH8UxGx/w4O6GrSAms2s7a47wqBvniyhNCnC3k0CO9KNl3cO77QTKOvu56wn4/SY7/1+YiqNmK1hJHjewzJnHRr6rSQa2mg77eSHu4GZb555LGdXnutQjS8VC3IIgHAvAP5QtFD/gcttPNH/CtydMEqHwP5/5JQgCQ0LTRgRdirBCK5/vVpO8VXToS5iK2Xi7xSablaQD/T1Bq24gIK0yQ0kAmDVtmIqHA6LAg0jgpbsf1QIsxhX0KTT9XDqAEx67UddsDUNf5KyVG4rc42PKCGDKIZ/03VBCUnXxlV22mn+xyMJxTxHQGceIjLvbvl+38YsLtBojbVOWJtQgEhCTAtygc5yKBUirHnekftBN4IUSG7QedbIQhAjzJKDeH8YRRgIsWpGWYjYGnoKYdKzZ8kORr/YERGgQwJo0B/jOYQEv0wTatGOQxJDru9Ka/b5ctCAS0aa/LZl9HPRTPDPvUrGKh80CH4y7jo6sPkKDwEkUAXHVxSzZC9ytTkGlfVu+gguTe1wblI4Nocg+HlBEw8n8ETqWyTvYNNnDfo9d97l0E9lUF4cNprHxAgmOr/Dut+ViFbvNAv/bbLwP11PwRoUxFh+d3+B2AGlzgPVGCWVi0g77KSznalyMnUz10OsmeUzJd3fn8coSdaSJITK5FlrkQC6KIQxjhAGBsXSmw1LgaeIUxQDpiQa6ZPLoeQov46iGBVHxoZePW9UB4Ogm0wYZ6T6MsUM2gKN7Szx0VTZsiJrLmbP+Xgnp09vwqXPQG8R4WQYAho00L7kBwPYb5zBzniZ5T8Y/+Hdfwn/zf/un7LOPJiHFHKhUyuzcn4esu0heZPqecChBKrPnHck4or0W6q+zDqvip9YQTU1i/1fZPS6e3oTXMxGbYRO/aPhwKynIFBn03snHruQgCBE3kwyHOkJP5potp5FGGIjcBNPtG8car1BgmWqkDexUC1BUl3comqk+GkdFHkuSnD6CKIXc3Ty1vM89pty+AWdooHLInstioQFFc7lg+vHhNF762I/Q2mb+RH4gQx93yQ0M3Nubg0l+XicXtnBUKxwznIGEfLYNSRx7IUnodJM8IHl1ch8FAtjuKIbGUQG/fod1Rq4mbVyZ2uVBzP1+HPl8k+fAxTSHLwoAIJ/u8C67SieLrx/k8cU5tm8/lHA0Mvmi6notj4W4hRkClYeDJLcA2BqouJrv8Y61nOaiZmvIELsuCxF2hjGuU3y9LuMcLUDTKht7xzLrufgAXVfjY0/fl9HzZJyh0nbfVdH3Zaz12HiTUCIMySdsIe6iZiuYNRxYgYu/vf7PPxwm6f+e+eCZpP++/RPPJD0BSe8xk3xMteyluI+mK6FIxov7o+PukPOZIZ/wAGBjoGMpbuNOh72Y86aHraGCpDLuHLOwMYghTYLq93Y7TMVsvFozcC3PBq7HfR2GFHFQdLujI6lEuEidQG1Hw+M+W0GdSY2wN9JRIso/JrFutCE50aZVH11P5n4ko0BCQbe5a7YgRHhEL3hZD5BRfd4Ztz00UbEkLJgMNB1YCs6nhzxYNohEbBOTlFY9xGSfD0xns0383l4ZX5hlg1zDMuEGEhI0sX+vmsGV7JDT1AB4iGRWdVCzYxxgjlO3x0LMf7zfxk9nyjifYYNv0RjgLgGZcowxP2367OlcHaIQ8ky0N6sTOJ1pY5N8mQQhgiEFvDNGEUPMUzltrV5COd7nHWoAcKuR5111P6qW8HShyUNq/UDiGVeVUQwvzezwmJIT+RpcX+ZltTerE5iND5HRLLqnMZyb3uVOyP2hiSGtkvPpLnZqJcxSJ+FWrYybrSy+tMpEv0Nbx0Sphia1XgPAiM7f0ByEkYAOdfvNTVTw1Tvn8eWnr7O/7ceRfU+EReBLMPMdtPZI2Jvt4F//4CMAgJ9/9nVo8RE3j/RtDUahzfPHEkv7kJIuN1uUkyNmtgigfuMkis/dh73LwJeku6jfX+RdVdm5Q+zdP4GJeVZ+kmIOvEEMiWXWRRX5EgLSjcjJEUY7ZcQIREOMIGgeZ6nKz96FmGFdawCgnvUAkb0P1g0d+okW3G022B/dW8LMp99BtDrPzv/VGpQpC5FFIKFlQDQcDuDEggj3EcXQTPQAGRAS7Lja357GqBdH8TwDqGOgMWbeGg8WYBDg1FJD1NdnYFKDgay7DEy9x0ZDS/d5Z2HtoIyJhT10qux5ys5UuE9Sr51COt/CW7eZ4ePzz76JYSuJNj0PqXQX1iiGTJEBWKtv4vY6E5+fmd+E66rHTFF8AFV3MKT3ujeIo1Ss8/sUSwwx7CRQb7L7uHTqMTYfMvYnm+7ijfUVTCU67LrLPubm9vCjd5kz+mKuDkX2ud4tjARuRHmzMo2VTIN7LllkUlntsmerbccgCSGPIQkiAVVbw6cXGHv4tY1lXCON3no3jb4vcQa8ZhnI6TZ6dI5jQ9wkjUW2L/NxaHtoYCE+5AulhOrid3aK+PgEA0WKGOJeJ4Uy6cHG/m+/vcPGkwuZkLNMRT2AIESYMUYYBS7++oPf/FBAUvX/mkFS/+C66Xp2iPLffwKSnoAkesD+ycpfghswlkEAoIgRemSGNvBFHFlssHh5og83kHiH2ihgqwid16N9xGQfb1KXREGPcDI55AOnHUhc5Nt2FahiyHUzACv7jOnig1EMdiBivc8+fyXn8pZTWYjwdlPBX1xmE6gkhHi3mYdCx9FyWbfGuHsrBPMuGpfMuq6MRUrt/nE9iTnTQ4lWmb+xqePTE8AC6QS2+3FU7WOd1VTM5oPLrXYcbgicSrLBo+kqEBHhAq2Eg0hA31O5LqCgW+i5GtcOrTVKXFOQUNz3uXkLQoRs7Jj+3u1m8LCX4J2Fed3iXXO/t2/iv37mPo9G2G3lURmZHNDOJXo4Gpn8PhR0CzXL4D9fmdrlf3v9YBaCEGGVdEaHgyREIeJmeElziLd2F/i+J80BEgR6AJbHtkjaoP1WHjO5OurdNACg5+iIqw7v0BOECI+bRZwsMP3GwI4dl/kmD7BbncDCNCsDDgZxSGLAHbdtS4csBwjomVA1F2s7rNQyU6jhsJnHZI5NIO1eEl3bgEPn+OzFWwh8mXdR2a0kjFILdoMdp+8q8KhEmFveg5wewGuxyVnUPAQjHe0dBqhKV+/DayZ5yUzWXbS3GHtRrZZw/ovfQ+MtpkHJP/0Qzn4WoyM2kRulFuS4hQffYy3xq8/cQhQKsAiApa9uIGgQS9tmLetjRsttJqGV2/BJ0yfn+7j1Hz+OC1/4HgCWqZa4yq5r2A4ROTLENGUwPixB/9kshLeZYF44OYnR131uNyC9lGcAi0CW/+0jbimgTFkI+0BArvpydoTQluDV2YQpKj6k5AgRgaTe+jQ3aQx8CZIcoEGgJ5nqwbZ0nrEniBGShRYGJLZOTdZR25rG7EvvAAB2f/gUuj12H+ZPbEKUQs7+ZecPUV2b53EgYSCi2c7wtv8Hm4u4dJ661Y7ySGU77/Nfsi0duSn23A6aaZiZLu7eYQA0bQ4QhiJUOs56N41CqgMAmFreQRiI2H3Myn7NfhJx3cI/u8+0UP/9l76JyvY0HpHjdlx1sDLNQLHrKmh00pwdNWI2dmolvHrErs/5TA/52JAvhiZiI8hihLo17sQNoLyHXX6vB9u3Dsq4ku8ioEVXz1PRcRU+rtVtnY81khChGLN4WG7JGOBGo8DdvNOqi7WeiSObff5j5R62BiYfjxXx2Npl6Es4GClYTjAm6f+y8etPQNKf4u2JJom2G80YrubYZL0z0DAR8zijcSY9gCGb9DsDRd3lIj3XEzBvOrhFXkeqJEGXAqSp+3Ui5uJ2O44RvceLcQ8pKmuxaBGBd6xlVQev1pKYMtiHM6qPyZiNlSQ7rt2hwWNH7FDE52d6fJL/xn4ZfgSkVQp7TPbhhhIXemtiSJ0ibLDWpZDrisqxgHXGUUnwZ2Y8ZDQbt4i2X4yPEAF42GOT4KwZctBzJjVCMTbC1w/YIHY+bcOLBO6gu9Vmepbx4LM3jGPoS1h5z7U/JBbqcT+Jv7y6hT6V0O60cnjGGGCrwyaB5Wwd+dgINSqZrfdS3K/pkxMS7lem8IA6wQoEBpdpIJcEBj7HovAU2RKcHfsbjQzO9kwYI+SNAdczTcZ7UGWfi0lbozjyusWZpKGtc9B4ozqFl5fWcHOfgZUzpUPcPZzBBOmZFgusfDIWyG7XS5hJdvjK2tRs/u9WJ43FmT0kqJR157VlLJSqqFMJLYoEJMwhUll2jpWDCUxm2Wd13cbSzB7XgczO7MMaGfhX7zBR+MWBiXi2g/tvsdV+pZfGmZkdlBbZ5LW+toQLL/+YHcfaLBITDc6M2AdFGIU2SleZyFtM+VCiPiSylPA6cZjEfg6351C7fhpFaoe3NsoQFf+4zCeFiHwJkzPsPliNFAQxgkTvyO43rqB4gpXPtFIbYtJD2D/+26BnQM6SFcNQw9mX3oRNsSTxC4eo/AFzJy9cfAR5OoS/z+6p8fEA6LaAFcYAhrerMJ/VAZk9A5HrAFsVgPQuCBOQrzBw4r/rIxzqqN5lTEqy0IKaGLGyGoD47BG6D+a5b5IzikGnBYmRb8PpJDBzijEhbt9A/tQWPBJQDxtpqKkBQCBJ0h1MP/UAh68xtig3eYTcJNuv3TeRnD6CTG373iCGajOHk6uM0VJNG7ppod9J8mdLz1Av/VEesu7CIyG278lIZrs42CCQfXIDD26exalV1uF4dDCBgaNBpAWNrrjc3d4d6rhz/xTmJsjZu5uB7an4W5cZIPMsDeWZQ96FuXc4gT55n4lChHy6g07/2AJgoVThfkQx2cPRMA6X3hc/FDHwZFj0+7lkF6Ox7tDR4IYSRsQ6ZbQAt9tJnCHWzgtFXMw38H1qVmg5AmeKKiMDihigE7J9fWO/DFOOOAj6V/sOriQFTBns/INIwCQZBQPAoaVx3eXYrLLnybDDD7GPPvqALQCiD3Bff4q3JyCJtpQCXn5SBJYDZNCA2XFV7A3HZSzACXWskrHiCaJ/KSIKaz0JWpplsgEM+Fi6hIc9WqHEbM4krY1U6FKE57Jsor/VyONUysXjPrn8ihGGvsTdmt1QhE4lj9pIQlLReHnpmUIHhyOTt+3fbCWxnLARp3JSXPFwMDJ41ltCCTl1vDnQcSJh8fp7QnVh+xLsgBgd+u9Shn1eFQP8xiYbXH/lZBf7wzgMkn6kqcxT6aUBAOv9OHQxRI5WWaoU4FSmjzZ5pjQdDaspNlCdTEf45u4cPjrFSi0z5hDrrQJMWr1Wemms9Y5XNE/l66jTfk7nj9B3YrhM3Vyv1XI4kx6gQuWmmOwjo9lwaAANQxFJ1cW/ecTKDy9P1DnQGXgKFDuGg3GpKtHjWiYAaDkacprNmaeOZUKn1etisotvb6zgI3NMfH19bx7nClUYZFXgBxJ+7dYZ/FlyXNZkD6VMC1+5zybzF6f2sEWr5rwxxO6jPOYbjAk4NbuDW1tLEMhCtBjvYdTKcp3JzNIObtxkoOdSuQ5npOOf32MMzl8MRUhiiJ89xcCKIETYfryI2Vl2HPt3sogiAUOanCfLR2hSoK0k+2huTaG4ug0AMBcrCC0V3Qfs90axBW25jWCHgVtJ83j47VMvvYHefglOlVr6p+pY/+7TWPncawCAN37zFZx7+iaP6ejtl5C//Aj1G+y4U8UGuvtsUlPqaSQXKgjIR6yzM4HSx+/z+zJaKyJ+eo91rQGwH+W547hc9AAXkC4wgAlZhn+9DeU825eYCODdF6Ccpiy3oxpCS4SgHXdOCT67x1LShVtPY+aTjN2p/vAc4ouH6B6wjj21PUJi4RDddWYnoBkW9jdZPMqpj1+HIEZobjFRd/HMBry+gQExZ6mZKpobM4iTiWP/oIhOMwOTBNZqaoDGOttXLD7E7Vev8nw+29JhaA56BIxTYhtRJCBbYmB+YnWLH2Mq24EghFCpHN9pZqD5NooEwB7eOoPllQ34NPHHDAvVTgYzkwwIyb0EUu8xsjQ1G+sHTFe3Mr0HIzHg2ijPUdE4KnAvpNXlDaxvMNYpm+pBkgLExj5rqR529qZ4QHQYCei4Gvq0uJPFEEV1hCJ71HA0jGNI7+GJdAvfOSwjR4x325GQ0wJUiHVaTPTxuJPBC1R+rFnGsd5RdRFEItckTRseJJGV5AHgY7k4luIWB0IPunG4gYClBLnfK/5xQgOA/9jfxp+XT8D5EM0ko0jgzNgHtb8n25NyG6cqfz7zSzgRZwNm1RawPnTwiwvsob/XNdFz2QOTUiNMxjx0aFWdVHy478k1G3gKNgc69y9KKgH6vsQ7Hx73RGgEKC5kHCwkeniH6vxhxNrrazb7wKzp4Z2WAoOgbFIBZozjLKCY7MMgLcuDbgKlmIsaaUxmDBs1Wz0ut0UCRCHixmpNR+Zu3Cklwqxp8/LR3kjFjOHyst/Ql7GY7OIOdVVdLtSwSZoBUYjghCJf6ekS8y4ax330PQUZzUGehJeHgwRGgcRjB3qeyh3Fg0hA11NwjtrhxxYAY3HpVj+JtOLhAUVafGZ2H9skJB0LNLs0iC0m+hj6Cj+HbGyIg34KGdJVxTUblUHyPfT6ECYd02Yni8l4H/fofJ8uH2KjncdcipUQu3YMQSTCp1WbLvuYotJcZxjH0FP5YKtKPixf4W7mBWMIQ3E4IBOECB3LRI4ciNdbBW48mTSH6I8MHmAqqx7azSxGNPGPHA0z5So2aXK60yzgZ6+yOJBOKw3THHLNiWGO0OsmMSK9UzrZQ8y0eBxGrtiArDmQSDsnai4OydCxOHuIVqWIyTMspNW3VTy4cR4XX/kRAMBppGAsHcHZY9ertTkN8z3dWYEncc8gr2/AqmeQWGDMUfXmKvxA5pEnTjMFdxRDapEB5aM7y5DGAabLu9CeluD8mHRCMQfWYR4GRZiMDgqIr+wjIIdlKW5zewD93ADW7QQUKqfVb5/AxOceACl2/tFuC9AE3vIP3wc2KjyZOuirCCmywu3G0a/lkCGX8CiQuLYLYDEuR+tzyJPn0M6DZSxdYmDOH+nQy00MtlmpsrI7hVyxgfQC29fBu6tIpHu81Fk4tw7rMM9Lmc5Ix61HDECuzuwi8CUMqD1+p1XA1dUHUKlLVUsO8D985XP4mVVWUkynu9jaZ+d3YmELkhzwctuDu6fgBjLOnnrIz2MMtgAmvv7e9iIPZhaFCDF6X06cXkP3KIcoYk/9r9+4jJ879QA6LdgO6kWkjCGmCJCPenHY9Bz+YH0Vlyf3uI2B68toDRLYoY7OpOJis5/AR6ZZl6EbyFhr5bmW8FE3jqJOHWaaA1UMOJN0ZGtYotIaAHx1L40/O99AzWLXa+jL0MVjZihB0SMA8HZLxZWcg4Y9ZqV82IHILUQMKUTXk1AmTeiBpWGKrvvuSENCZrFWVuDi//QhCbcrfzeHpPYBltucEBP/oPmk3PbHfQB/UrYTiZC3isYVAbqk4a0mm9jSaoQklbHmTQdrfR11Mo+cMxVWuiKXXy8SMGW4vKw1YVhIeAr2aGX98fIQdzvss1nVId3MODqEuWQX9bFw28CnJvs4ssZu1Qp+74B99q8uj6CIIUY0yc/FLfihiCXS66Q1BpLG+7K5qSM7pzeaPj4/xc7JCwVMmgMcUdt+EAmwAxHuWM8T72NvkOArJQAoEujxQhGG7PNy24mEh7ajoUaDy1P5Fo5GJnZIML2abSCuW/jaBtMrnE733mcsGUYmulRu2xrEoQgR+v5YJO7DDiR8aYmxNNvtPIqUFn6jZeKTi+v4X26zCWQUpHEh28LrNQZAX56wEVdcaMT4HPaTEATw3KeWHcP3yfX5zyxtwQ1k7gX1h7uzeGmiihaxSWl9BFXyUR+ylXHX0WE3GNvRdnSsZhvYIRAZRAImzAGuzrPySn/IdFFc3BuKsHwFO1RSXMo0eLnN9RQkjBFnQxqHE6j2U1idPOD3QZIDDAiAzcYH8N3jNv0glHgZ47WNFbyw/Ai1OmMSEuYQqm5DpX17jgrflbl2JpYYojTHvkfSPAyHBmTqIvMP8rj0099FSB2d5tkaOtfn0aIyxsy1u/DGQbmuAiXuYvvHjOFa+OgNyIbD2pUB5BYOmO/POPC3mkcQShC2KJ+vnsfq5TsAACXXh/1aGgLNA1LcxrCdgkJdZYkLuwg6KkRqfPA7JvTTDKwN3ijBPHmIMXotv3gHwaECYSYNABDLLoKJGUhb7D7B84FSHNZ10h3FLUjEHsuejPRMFUqWAVtB84HDLO9mc9oJlJZ3OJu2dPkuL1WGgciuDZXri5NHMIst9EjfNXlmHYGtYdRk74tdy6B5WMLM0+wabH/zeTz/PBPfe8MYB1MAcDG1geziPnrkQVXbmsbfeP51DHokZNcdzE0w4La7N43J8hEXpk8W6+j2EnCo9H1vcwkXTz3gfkZTuQZ+/unr/Bxl1YNFsU2VrRlIUgCJntufP30fyVQPb1JWWzY2RGniCPUKO67DVo7nD7649BjdfpxnyWVybdw/msS5ImOsuiMTz8b7aBFjHFNcJFUXNo17p9N9LhtIqy4sX8EGlT1LMRdtR+NjryQAb9VzyFFDjiqGfNF0v5OEKfvYG7HreS7toe0qOEvlyXudJFJKAHPs/zZiC+HxYqdqCVBE9rd9T0DPk6CKIWwq4X8oWyjy9+iD2d8Ht6s/zdtPLEj6T2NJHvVEvFRkT8W/PrTx905EeJsGqrTi8zLV1lDDQtzBEnWw6lIA9T2RHvO6g7qt8br00JdxaGnw6IFzQ5FTtC1XQ1G3UKGVjR0YmDcdTh8X9eB9K6VL2R7ckCF6ARG+fZhBjO7gvMlMLAvacTBtSvWxRuBNl0KUYg4HTb+w5HOTxrvNAt6q53iQbkJh5bG/vc3ciP/xwlMwZZ/X31u2wbvkqraCF8s1fGKCMSk7gwQM2ccEpb7bvgw7kDBBJYHr1QkIQoS8Pja5jLBDNHxadVEyhmgRSEqTWdu4I3Ap0UPH1XgnmSIGfLBcSbjYaRbwl1e32PmqLg47WU69r3UziMs+KgQEnyofoG/H8P0K25cphziTJpZhmIAihrxN/4snHmOjUeQi8ZwxQCHTxsBlPyc1mwuxF2Ufh90MZsg1fDLXQBBI2Kgy0epUpgnHU1AgYXu7m8Qzp+/xe3bn8QkOoGKKi5XJTT4RZlNdGLqNGNk+NDopBL6Ek1NMR9TuJSET0O/3EwgjAT16tl65fAO+q+D8MtOrWKMY/vfvfxRfOsMmX9ayDj5pyroLiZ6VUSODpUv3ERCDN+5ya62xso+0GSD34hriVcYWddenoYzZjEwfbjeOCbov3QfzSJ/b5OU3rdSG6vY5ta9oHgpzO3BJo7Owsom9e6wkunryCIGrwFhm3yMYIjqtNPKn2L6FuAwpdDFaZ5OxIEQI7rB7FL9WQ1gXIebIr8gNIZU1hO9ss/O/sgix38HwbXZcxqdFBDebUMtkVaGGEKfZcxraNgvSPcrw6+FTbAjA4lAQitAmWVln8zvXMHf5+B7v3Fnl3XxhIKKzV0Z6hrGFP/r2R3D5/B3+2W6lAEkM8M4fsE7DXLrDtU+DTgr9gYnpRabZMiaaWH/9EkpTVBKTAxjpHs+ya9byyBUZS3n73gSCUESZOsM0zUE22+adklOZJvqdJLJk7SGIERTNxbv3WJv/ZLbJy23tfgLFbAtDYrR0zUHgS9xF3iPz1PHni1NVvPr2U/wcE8YIlSZbZIktZimy1ji+h6bn8ZxE21fQdjRuITLyZaSV4zFPEQM+tiwlu6gM43ixzK5tyzZQGRncNqVixbi/mymH6HkKzhDT2PdlNByZM0frfRGfmhjheoM9l+fTNgzZ58kCJV1HzWbjVFknLy4xgvSTXaj5/4vtJxYk/fIv/zJ++Zd/mVOVC3HwF+L/MKegaYu8m6sYs1Eg/4lb7TgatoIMgZG7TQOnUsfMUdNRkVR8tIkeN6QAN5oRLlOXdtNR8WaT7esTZQ+HIxMrCUqMDwV4kcDr4N8/UvBSyePiwSgCN4M8HJnYt0K8XGKf1aUASwmfu2IrogI3FLg5WtPRsNYzuCW/G4o4pHDac9km9kclpKkUt5wYQBJC/IXkSwCAquWjqDvviweZNhmNHUQJfOegxB3F2WrsONNoLulg4Km8HDdlWMhoNl+kvLfu3fcUqKKGKrEb5ZiNmq0hRwzWwTAOUYjwHLEya9VJuLRS+9jiY9yrTPMV52E9jrji8Vw4U/GQUFwsEhAaOjoUKeDsYQSgTOdkeQoeddJ4ikoLrqdgLtOERjqrKBLw+HAaSZ2dc8c2OEhqD+PM24VYpr1eGh89cwfnKQ7ijYenIQoRUuSSvU9GmiEBwaORybvbZhJdDLoJ3q10Z28eC7kadioMcJmajdHIwPoRYyHOL2xg2D+OkRCECIcDBqrPiSF+6+0r+LOXbwAAjPgIXzh1nyfI97pJzJzcwN23mUB4WXMhWoyh6jbTMIstKFNswsRBAoIaIk1eNupUG95eAiEJtwUxgkY2DaLmQdIdSCSkb/fiMI7SvIsOoQina0Ih9ie7uA+7lYSaYNfW6ZqQqbQSdmWEngwhw47L3xCxeO02BwFQFAgZ6RhE6QIietD2/uNFCGKEqU/dYr8rJBElU4gmmG5I2tlE1HIQWxgLtYuQJwPApNia+gDREbuHyvk0pPQ+rA0GsKXkCIIcHMehtBOQDQedR0wEnUj14NF96RwUsXjlLgeBufPr6D2e4cDzmacZmDXSDERnJ5qwKzlkCUT1qnnoFMPRruegaw4GpP0ZtNIwzRGMEluw1CslJFwFMr0//ZGBwQ473y+/8k1Y7ST30XJsDbGYjTK5ZO/szCCZ6kF3jsv7kuphrkSAo5tCJs++p5Bp49bOAq6dYH5W9WYOhnnsyZUv1TDqxeGTpYZt6bi8wj57UClDUTwe8fPm1jJOFSvYaTFWN6HacAMZOpXcu3YMXU+GKbNn7ff2TTxfZOenSgFUMUCb9J9ByNjwsbDb8mUUdYuPGTEp5PmVihhBoQgUAJiP97GUDLFDnmVJBdAkH6dSFAnjSwgiAR1aHF9vevibK+y+/MFBFhmVNd74wocHkqJQOH4XPqD9Pdl+gkHSf7olFR89jz3w4w6ycebPWi+OClkA1O0Ql3Pggr+lBOuCGxtPvtlI4GLGQ90Zdz3E8NMzI17m0qUQL5fHbfnA3kjBFSpj/OFhEjOGiNNpBkaeyqpIKx70mE/fraNJL/WcaeHlkopJKje1HB1CJHBfpPW+geXEiHsQTRpDSILBwdyrNQHX8rTCtA3MGi4/p6EvI4oEPJNnx1WzY7ACCRaxR31P5kLsCWMEXdKwTVEJL5SOUDJkvq+uo0MRw+ME8EYRmuTjR7U0ALbqOkUeMk4goWgMcLrMSgKbjRLykcBb74eOjmKqgz3yIFrI11Cj1vrtegmWL/P237lEF+80Cpw5W0g3URskufbhjeokZuNDrJBoXBAiiCRAUcQQFUvmYm3BMmD5Cg85/tz8NsrZJhoU21KM93BIZpILuRrQB1TSRfzPWxlcnklwdghgnXZjHYkkRCjkm3iNMtUW002YBEaT8QG6/QTixODZgYS+ZXAtyF4nh6eW1mDQBPJ4b5anqcd1C34gYSHN2AwlZuPLT1/H/gG1YccsaLqD4gK5jO+WEbgKzl1l8SDDRpp3mKXzLezeXcGJacY69LYnkTE34ZCpoZweQCn24VXZhBKfOeKA6eEPr2D+9GN+7vFsB6LiQybD1Ec3zuHc537AxdaDhzPQ0n1UHrBybGHuAEufZ+WlyBPY3xH7W7+7AkVzkXuaTbgwskC3B/eQMcDqbBf+EbvO0x+/iXCowN5goCBmdNH6agm5z2wDAMLZeUSH65CWqcuq04G3o0GZobJyJQE5z95x9w0B2gUd0gFlgJ0XMXpV407fdiON1lEe5WWmo7nz1gWcI2+nzGwFbjeOFgmorW4cghDxaxkGIuy+yQXV+69dRLLQws76PACgXD6CQIuoiRM7cHrHDQXdZgaDgYnRTcb2pLMdKKaFgEp9Z5++yYXb/+Srn8NfeOoGjxLpttIoLO1i9y7rO9UUD8OhiXyJvXuDXgLNwxJ/jhcWd1A9YCCxPzIwl2ny2BG9n8Dt9RO8tB0GIvSYDZP0Qft7Uyjk2PfGNAftXhJNWlQsZ+vYbeXxmGwOlhICnlpcxzvkyP2gm0RZd7gg+rNTI2SJGToamVhKtzARo3eLsi6bxBbFFRe67GNIoMmPBB6PdCk7wMiXeZPI7iDBdUrs9yP8u+0ULlMHtBcKzCqGrsfPz/n42j5bCT9bGGFnEIMbivCiJ8LtP+3bE5BEmyxE/IVQpQCyEHEqtu0KUN7zvHihgLsd9nKJAJ4r9nGbBrk504MdSOiRfGcl4SOKBOTHoZSewl1az6UtTMY8bna2EA+xlBjiZotNNjOGi6qtocSIFQw8GUvUSvygG8fbrQA/O3tslNZ0ZF5vX0kOoUk+qgTOdgZx6FLIhdyfmYxwgsTGG90MDNmHRoOvE0j4FzsS/uoiO2lVDJHXbQ5ALF/h+UdDX8G0OeBBs5avYHeQ4F12bUdDUnVhUu1/LtHD4TCOLy9vs793dPSobJWPDdF1YnwgFhBhwuzjMa0qNSlA0zZ4mdDzZf5ZTfagSSrXVZUIPOpUMmuP4lClAL+zwcTI/3Pzu/i1E5c5e6hJATesU6UAs6bH2/YVKYAohkiobBDMJHvYrpW551Ap0UXeIIPLUg2/fm8VJ8k36u+dP0BnEOc+MBOJDmqDJCapJBJFAgaDOLr0DFxId3k5rddP4Ie78zhFeWuvPHMd2xvzcAj4LhWqOGrkodB9SxlDntUWSwwxaCe56PmdmxcwWzziWVyl2UM0Dko42qAOLN3h7s8AkJmrICCgoy+0oCWHcCsMCOauMVBiLjIw230wj/SFDa7ZEdSAf/bMF38A7yjJNTmepUPODrjZ5IVT30XkiIjIBNXumxAVHxat0ONPNxA2CMzfWIVRaOPxb14FACw8dwui6XBxdXTURtgVoV1m/8O6nuPPh3JSgLBvQaXokCiXQ+o/TwEHbLIWRgMIFyeBHnVsWS6UKXBLAKXURzggi4NBDHiXgUMAiA5dvPP6i7j6sdcBMMYlnW9BJ/fuM8EdnusmyQHSK7t44wcvAgC++KWvwekkcLTJ7sPEiR1omT6GVfZ5ADAn65ijVb0x0cBb33kBAHDx6k0opoUefTZdbCKdb/HJrdvMoP1wiRuMzgHc1PKLKw/heQpUWjRpmoO9+yc4O9RpZRCFAi+/SmIATXPg0L72dqZhkOh7rVXA03ObsMlCZAy82sQkqaoLUYgQJyuLyUCERYuEdw9n8PK5d6HU2Xu60yogJntYIXPJuOpguzKBPEUTPaeP4AYyGlRGFoSIh+HGFQ9v1Uq8ocKLUpCFiJfEmO4o5E02bUdFnEx/v38Ux8WMy5mhp/J1/NbWBM6l2T3wQgFfmB5hnRZKEzEXGwMNsyZ7jjUxxKUssfSBhKXECPc6JpwP0wLgyfZHsj0BSbTldRv79JI3HQ1pNUKKKPCOJ2JsV7aSFKGJAVSRDS5Tho/9oYHFOK3+FRc3W0lcyIxBkYztoY4amZCtJHwMqYTechXIQsSFy/c6AmYMCWWqqec0G81eHPe7Y6F3gH+2ySbTXz7RxZmUiN/eZQPRpydcPFdqY4ME0l4oYm+U4ExKMTZCZRhHhdqn7VBARmP7HfoSZDHEN/YYOLuc9TEXk/FGgw2IP7+0g+YojofEnGhSiFOZJv2tgu9V8zwPqedJSCoBB1x53UIEAXtUVmrYMRyMNEzbFNMSilz8+KiThRuIWOHxIDJ2h3FcIC+ksaB7QINi147BI+p86ClIqsd6rolkBzXLQJ0+u1I4wl47h7M0sf3e7Am8UzN5Jx0A6HTdU8YQWbPPwcjXtufxQqnOA263jiZgqA7P27IcDY/G5YGYhT+3sskn5512Dmcm93HYYuefNoZYLlaxQ2UPQYjgOCo+vsq6nzq9JOp0nQvpDtquzB237aGB6wezeHqS6VmmF3dg9RK8Q82yNQQ06bmWhiCUEKOS4OnldeztT8GmVfT24wXoqosElQFdW4OZ6kMj4b/bN+CQziYKJHQqeRRPM8F85IrY/PY1LP8Vpp3J5jaw87uXMXWF6W7EhA91qs2va+jJvJwULzfRfzTD960nhtByXYikh0sv7SOwVcyeYp10zoMYtEV2X5SYDWP5CEUqKY8OCki+3IT3kIDQlAWpALisMx/aZAviLDFDogJrJwnzaQIBvxND+oWbQIYc2EdDRLIMtBnYjSaKEAYD1uUGAJHPyw+x6TorbZBWzHdUPP8Xfx8RWWaImof6W2cg3CNGWnO5T1LgKmg/msNJEiZb9Qz0fAdF6oTrVfMw0j1+H81UH247gcouswxwN+dw6Wl2gs2dCUhywEGRlhxgcJTDwT5jCycmqpAlHyoB3zAU0asxoJ/NN+E5KgcrqupCVV0u3JfEAPVuhpeBTXMEQYx4t2TCHCI3yZ7LL0xW8fDBCtcc1WsF5AtNVDsMKO/VSjizugaLNJ7WyMDWITvGmWQH9zaXuLmk5Wg46KeRokWVJIbQZA8dYnV1mZWRx9qgz88e4RF9T0rxcDLVxQN6f7qujFnT4p5L57Nd+KHAu9+mjBHPVnu64OB+O8PB2TuNAlLKsXt6zVGQVj1kqDz/dkvDlBFhQIbDkqBwll+XQqhSgIU4M5P80LYnwu0/ku2JBcB7LADOpNhDXrNF2AGgU2PCSsLlLFPV0jEXH+J3dtng+8WZPpqOzhkJLxQwCkTsDNjDOmFE2BsKWE2SWaAc4tAap1Mzc8ndIft5Ie4iiAQ0SSQ+CgScTFo4oFiGpcQIu1TWmjJsSEKEOjFF630FE0aImxSv9ekJFw1H4aG1CcVD3dbh00tkByI2B+wEP1rq4XYngZhEBpmhgBnD4e3z41bacXvsXKKLbdLn2IGEaXOAgGhlU3Ex9FTugrveS0ISwM/pdLoPU3G5cWPPVfGIBMGfnD5EyzK5fimj21jvpnGSANnRKA5D9jmjFb6HXh47e08Sy9S1Y2jYMUwQo/Sgk0Y5ZvNzWE510HM17jlUjve4h9LRiAXnPuyye/zK/Bai94igBSFCdZjAXIpd7GKmjS3SBR2NTMwkupyxkcUAB2RCCQCrxQosR+NeWbrqIm6MYNMKXRJDbFIH2nKpgnY/wVmovXYO/2Yrg79zaYOfv6nbyBB7tL07gxGVDxK6hUyyhx6t5oeOjnK2iSZl+OXTHaSyHW40mC60YA8MKFRGbdbyfNKL5zqQdAcOxWGoqQFje8jbR6HSUJe6A6e/eBfBIbsvzlEGw1qWl48U00J1bR4Tp+kcPKYziggUDJpppGeqaGyyVvXJq/e5QZ7bTlAWHLv/ounAb8V5hEf20weImhbXLAWHPv9bu5JDbK4GMUXC7ZkpWH/gIPYypb67LhCGgEzrRtcDwhDBLvsuv52AOs2An7ObhX7VBbrs2fKrGqS0jc5NxlIGrgI91WddewAEKUB1h53P9OomupUCL01FkQDPUeEQ8CuubiMKJNQopLZ89jHcbhxD0nBFkQhROnaYDgMJ1SoFQi/uIPBkHFEX2dypdVjtJN+3kRxAI41ibWsajqPxhUC5fIRKpYzFkwyc9mpZyKqPA8qFO/PsO+jsTPJOOVEMOfhSNBeeo6JPnZS/cfc0fuX566jW2PNguRqW53fQbDCA5vkyUgkGRiuNPErZFmc8b20tYblQxQNy5z4/tYvDVg4PaZF1JleHLAb49j5bZNRsAZez7NnyKBNy3GASRQIORrH3dQvrUoRnC+x9adoxnrk5EXPhRQKXCWwNNFzLd3mQblp1ULVimKYuvOv1NC5khnxR1nZlmPLY9oV1xuU0F1bg4m8++pcfigXAwd+a+MAtAKb+ceWJBcAf9wH8SdnOp314IRswkkqEiVjIbeZr7/FA6Xoi7ncSeK7AVhR2IMOUfdSdcfCshQfdOE6l2O/X+jJOpwJsD9mLW9YF7FPSxqcmh3jcNzBlsIE4JvsIQhFnM2w13/cU5DSb19+Hvow8TRCG7EGTAl72ymkuYrKHVXqW/9/rAq4ldOgSO6dibISsKqBFk+jhQMFq0uPnUNB8/j2KyLyPJknIXLUYCJwj5uTrexO4SnolSYhwt5NGQKuOjObjYKRygfhysoff2c3hExMk5BUipPUR9glkaVKAOfrs7UYRJzMt7FO3m+RquNVWsZxi165kDLDXT/Est56n4AQ5arftGLK6hTeP2KB+uVCDIoY8PFcUInQ9hUfNyGIARQyxNW4f1mzOSuV0C+nYEL+7xwDFi46Ot2slHmdgKi6m3gOEuoM4suRzNNY7bJMFwMXJPZQjEbkEu157zQImM01kqbvt8c4cDrsZrEywdvu9ehHTBApv7C7gI6fuct+bfLaF2SzbL8DKguWZQ+xssgnV9lSuA7lfL+Oy5qBcIl8bKUC/m0SaBOPpfBuHe5Nwx52UC/sIA4mbOjaOCrw047sKfFfhGqV+JY/t3Rk8/f9gzNHo9yhWJs/OaXQzi+GYsTi/jigS4JJwWY5bmHvxJnwCxghFfP97z+LKacak5Zb3IGoeymfZZO02k7yV3lyoQMz66PyYgRE1NYAohUidZN1dozczMK4BsBy+b6fKjkNJjBB0TPgtKiGH+4gtRRD8NH02RJgvova/sOel/IV1eGsK5BKbgLVCF/bDLD8H56YKdZ79qVPLwNvWeMivnBzBrma5dkjP9lBwySfK0jEaGkhPsfvi9EyMBiZKy+wctm+eRr5cR3I8ka/NIT1TRZfYkYVrt2HXMvz8e/slHjtiTtbReDSPHJXMalvTKC7sw6WFVBhIaO2x9yOR7iEkwTcAPNxYQtoccDD3ew9P4ZWlx5ig5+fH330BhuogRxq+KBKgjYO4q0WUp6p4nVr+Pz51hJ2DSWToWTvqp/Dtdy/iY9RJqWguB24A8PBghrM/Xzh1H29uL+IMMW39kYGGZWKWuuwGroaaZeA8AfiGrXMmfi7RJY8yNo7tjgyUYzbXLC34MuxA5EaVQ1/GBJV92eLL5x3NQx/4+kEKJ5PjLmUJadXDq6SljMDGn7FfniJEcMLjiJOYFKJq6e/L6vyj3p4It/9oticgibb/T/UGPqownUBSEbDyHuCsS8dJ9ItxGw97MWSIf+v7MvxQwKzJgM3tdgK6FHHLgL2Rj6W4AJOutCpFuJZnk82RreFStov94bH40g1F7JJlvyJG6LoK7nfH9HDEDcveaKShvic9PQKwYDp41GMDwF+bseFFDvbJ96NazSOv+8iqY0YswpTBXoKqrWHeHHKDtr//SMFnCiZqNlu9Xcp2MfQU/PoaY0t+evZ4hVU2RggBbmrZcTWcSQ052yMJET410cOIOluOLB11+3iATKsu1zNVRgbiqo1ybGxEqeJS1oGpssG4MkjhZtvAcwU2ea9k65zBmky38L3tRZRJJ9GwTASRwMt+c/EhFnI13KcVquUr+E7lGHCcywJlMousdLJYaxbxUpHtq2vH8MryGnbIC2mxfAjPU1Bps0lz4Go8SDeuOrw7DQBq3TQSuoVm//iBsl0VG7usfX6meIRuP8EdlVt7Br51wK7zJ6cqsG2dG+89OpzG6uQ+PFr954oNVHaneElEEkMu+p5JdKGpLteQiEIEUQxh0HMqaw7i5hB71OF48HgB2XyTs0N3DmeQprgT19Ywde0uQuu4vHThhbeADQYKwmAKxuwRRINKU5qAgCZmQQ6h5bsc6IiKj+7DOSSXmWDcaaZw6cQaLz/mTm3BaSU5qDIn62jtTPLvBcD9eV5/5xKee+omJJqsRcWHtybg1jc/AQA4efEeL5fI+QHErIKozM4XFQveTgzSRXat8dpjiHEL+TNscoYRg1zo8HsW+RH3XHLW4hCkEGGXXXdBCpB+bheRz77r4b9/AclUD2WKbbH2C7wjLQoFFGcPoVD5zRtpyE7UeFv/4jPvwmmk0dhnYGbm6Tt47aufxDxFfiilPgZ77BwGm9M4rJZw4vQaHUeI9EyVaabASpmCEHHApcQt7L/FynZzmR6iSEBhosbPMZXuYmef/X7GGGF6cQcOSRDOrq5BiTkYEZuYma1w1/DJ2QMMOwk8f4piasQQw4GJt7aZ+P6jZ29DUnyMaFyTlWO/tUx8ANtT8bMXbgEA7mwvwJA9Hn8ShCKmEh3sdMmaINGFKgXYJllBTAr4WHO/nUNeZ635ABCTA8QVj7PWFUvByeQIu6Q76rkiJigZwYsUSELETYBXkqyz9jTpAQ+HjF1eIa2hLESQhAg6sd5Jxcc+Mf4/6Jp4oThCWnUw+hDLbU+E238025NyG1GV/8fyL2FrwCbynCahHIu4fqXpaHjQJediCZiLu7z+LCJCRvPRoxWFiIiXuAAm1I5JAU+e3hmYGNGLlVV9bA8VnEyyQT4mBajaGhdXv1FX8VzxuOxVsXRuPDlJ3zHOjLuUsTH0JXj0YK/1ZKwkfXRcYrBiHnqeDHOcESYH3BByvZdEz5NwSB18bTfEC4WA76ugMQF5mzr2PjpRxx6xPZsDHeczfa7niskBy2ZLspVf09bxdkvHF2bIj0X20LBMzoC91UhjmXyjDNmncqPKj1ESIvTHqzUxwqGlIEvWDBnN5eDMDSVMmn0+KQaRiPrIRIkEn3dbOaymO8jSzzeqUziZaeI7VE44n+5zfUJOH6HtxDAkMGIqHlQxwIBYIk3yIYsRJpNsAL1bLyNHGoqaZWDKHCBGHWd7/RRKpHECWEK6H0h8EjBjFgYjgxtISu8pY6xXplBOtWGSJ8zQiqGQb+LttVUAwEymicNuBqdnGQvxtbvnucYqZQyRy7QxJADu+TI0zYVM18txNCiKx0HTUa3AoyEAYGJ+j7tvD5ppdNspnjcmai6cdoKbRxrxITJL+9wrSM30+Sq0uzkFPTnk8RYAEHoSDAIgdicBo9SE22YgUi834TZTvGsrPnMEjwCElu/C65rv6xT0hrHjMt9n32Ut/+Sa7X2/ywXj+mWHsUU1dp/Crg75lATY7FpHxQJGX/dhfJKO8U4LX//NL+Kzf/W32c99DQKxuEHHhJQcoXWbdVz5noLU1BGfVLxBDJ6lo0rPlufLnO3pdlLMk4gYO0EIYfUS0EhMHMsxIDYWzT++fQqSGEKhiX9ycReVLQYov/roFH569QFKpGdqVQroDeK8ZPb22xfx9IvXsXGLdbuNHI0zibarojOM48I5xgYe7U+g2UtiYYaB12Yzi1SyB5WH5UoIfAn7VXZO9WECL1x+h84hQuDLePceY5LOnHiMarWEbJrdY89T8O/uXMCVPBsDZvM1bjw5tGJImEPusdSzDNSHCUzRu7XbzWKrH8cKaedk8ka7T2XiWdPG2y32t5+YaGGtl+QedVEkwJR9PO4zUDRjMDnDzRZ7j8+kPbzbZtf5RDLEcmLAGygkIYIpe/gPJKt4ZZI9N2O2vWErOLBELJN9y9ZAxvMFdm3/5ZaGL895+HbFgBc5+O3uP/1Qym17vzL1gZfbZv7Hgyfltj/uA/iTsk0bHoa+xn++1Q6wFB8DH3AzSF8EDkYqVqiTxw0kpFWHd6RdyTnouQrXKL3VlKBJClaS7OVrO8cP8f5QQdX2MUWOkA97Oq7k+tiglXJGYz5L4+6MpiPiSo7iK3om0mqAMyk2yLddBbtDCU/l2HHNGCJOJPvYo0nSDkQUNBeH1lj7EmGdctDsUIQuhXiRmJPf2zdQc2Reu7/VyiClBNBj7CJURiYP5T2TGsINJN69JwsRiu/phAN0nEu7eJWcr08lR+h5CmfmPjlV5YG1Y6A1LmsFIcttGke6rKZbWE0Dm+NSnRjy634hywDSGPT89MI2JCFEgqj2aVNHPt7DAzKidEMBXSeGKVpJ3moncYXysgQhQlYfIamS95Udw+7ARIdKdaYcYtYc4T7tK6m4WCBx9drmMkxXQ4nMJBclH4oU8Ky6jDFALtPBToUxGKrsY7edx2qZldtsV+WJ8EcjEzHFRbnMSjWPDqfRGiSwWGA/JxN9vHkwi2dzbbpuPUyR30x/aOL21tJxy3a+hrv7M3iaIirWDmYQ12zME/NUKtahmyNsrLNS1tR7QnhdW0Nxqor+EVvNdztp9AYmTl5kE6zTi0PJ9bH7DpuMZy8+RI/Yjnq1iClzB/Fpdn3uff8a7lan8OW//O/YPXYU+CMdR9uMlci5ChAKaNPzUjsoc/Cx9PS76OxMovwSK9tYG0UY81UkLjGQEPkR4APBj9lkLCU9VF67CAAoixtQCl3uuA0xQrBtIfrYJfbZ+gFin49BqLFrG7kyPvPnvgKvkubHqZJVh7rQR9CQuc4qf+UR9n7/Eiwq7U4u7iL0fZQm2L4k2edaIDPTRRRISJDH1N3vPIt8rgUtzd7rMBCxc2cVMycZIPUDCUNHR54sNMYACQD+xse/C8W0OKCcPr+G3VsnsfmQgbdyuo3ufgl56ja78egkUqSpiekOioUGZ+UeVKaRjQ15nAzAQm99WijUG6xTcJsYnedOPOLu3G8/PIkTE4cokbeTa2tIxgcYEfCxXRWfmNnBiVUS4490vt/ByMDb20tYpKaIN6sTeHl+EwcUN5TSbPzOYxH/bY5iSwIJj3pJvtAsxkZoOwTOpQAl3eGdre82cwgiAefo2kpihF/fMPGzs2yMfL1m4Gfm2LVZ66bwqBvHWo/t93LOw81WDHNE8tdsFafSPV7qd0IVRT3CDi2swwg4JH+3PzvrYXsYw9lMwAJujy/pH+32RLj9R7I9YZIIhf+Tlb+EvsdWDaYcoGopSCjsKXm7KeJMmn1eESMkFR+7QwZ6luIO0qqDDml9HvS09wm944qHIBI4K/GwZ/Dutqu5IbYHMSRoxS6LEdb7KjIUgVLWWevs2Jix6aiYppX/1jhFm87jcV9CTgOWqMsOAG53dHyk1AHAGJsr+S4OCIi4oYgmMUMLcQZwxoyVG4qYS/TwoE0t35qLvi/z30eRwNmdCcNCUnVwg0zp3miE+NKMh23KuVLFCE8X63yiq41MuKHIV2RlYknGm6m42CIqPaF4aLkqAmIlTDmAFUgo0d+sFKp4t8JYg6EvY8oc8kFsOdNAyhzimxvMrfmFqT1U+mnuFD5pDjBwVei06ozJHi+TuYGE2+00vkiGd41eChp11QCA4yu41yzgDLE2v/F4Cn/rIvvsyNEgChE22qwtO6db8EKRg6hx2W1snheGItYqUzhF2VR3dhcwkWD3LJfuID9dxfd//Az7m2QbshRwx/Gr8xuwbJ2LXE+VDrlOKpnqYb9S5hqSjeokzsxvokn3dMxopen3jVYWy6fX8OguxVBMVLG1x67t8uI24qUmZDJLHNUzUGI2S6sH4LRS8CyNT5q5EzsQTTIebaagz9cRjtjz4ndNqNNd7H7jCjvOQgtacsCfj6PHc5i5cp/reaJAgkW6ok41j9KZDWhk2uftaLCrOWj5Dn1WhHbKgrdJzONKBH9s0SQH7FhWGYASRMB6lEXsOfoeWQZUDa//1yw+5bn/8k1Eay0eHxL2dcjTxKq0AcgRQmq4CC0NbjvBWStBjCDpDvrUmv/e8pJR6ODRjXNYGntHiSEQinh0h133lTOP4Fkaj/9o13LIFJuciRv147x8piaG8AYxRCRUdkY62s0sd/Neu7+KE6vrePSQvQPLy1uwSUy+dziBQqYNhboOFdWFrHp48y4LWl4sHGHhqXv8OLq7ZWxsznOHbjMx4FonM9PDu++exSwZTYahiFY3hTNXbgNg2qjBwESBs2lp3NplOrrZVBsLc7v48b1zAJhFxm43i9O0aOgOTdxvFrl57e12BmX9OPvwK3sx/MIyA2db/SSmzSHPY2w6Gh73FS51CCJgJXFcjtMkHy3SJ2U0B5Yv85inBz0N86aHSWPsOxeHIQXoese8wtAXcI7MabO6hXcp67HpiMioIeJyADt08V9u/bMPh0n6mzMfPJP0P+09YZL+uA/gT8rWdDRULTbYpFURphyhTOzI+YzOS2BpxcfWUHufHuhr+0msptjvTyUdbA81GBK7tE5oQBaApsMmgaIeokDJ4l1PQV73OOukCBE2+j7m6a0OIhWVkYCzaTL1U489lYq6gyAUeUv/StLHjDHCQzJhK+ou5k2fm7Il1RB9T8GQBlRFiHg9PgRwZKmYIjO8g5GGlpvDGaLLg0jExsDACdJRjHwZRdL+7AxMfGS6icu5cVhuCknVxUQ4dgkXMPJUVGlVmdct7PcSHCS929bwuWm2mquMTFi+jDJFmEylWnh1f5YPVG1HQ0Z1+TX4F/dX8CzpkybMAWQx4MxZY5TAq5UpLJDWxw3YADg202zZMZzIHoM3N5D5wGuN4vj03DbuVajtOpRQNge8RFgfmUirLh622CT4C6t7+OpjNhE9Xz5CXLMxQeU1XXHRHsVh0zHHVAe2p/LyQndk4tKJNd7yLSBCklb7N7aWsDKIY6XEmBI9ZqPfj+MFsgtotjNImEO+CjdiFrarjKHabRYwnW3g5u4CAODS7BaGQxMbpKsyZB8nZ3dQo3DlXKaDdqWIf/uYMUn/1ak1nM0ypihxZhfuQQb7t5nR4PxL70CajPCtf/R5AMBzL1xH5sweOm8zDYqUHkI0CfiXm/D2DL7ClZMjWI+LmP0ci7zZ/dpl2PsTvMQ4cXoDUnYIZ5ddW28QQ6zMQMHRzhQCS4PDJDiQdBfxM3sIOmyiiwIREAVISfa8RN0IgsbeJWlWQeRYEFRqgninCONsFXBJQF7vQkjoeP6/+B4AwL8JSMUQHtlieMMYRJNKZLEQQiaGo99hjM3EK/fgNNLcVVxJDGE30tjcYkDg/DPvICAGV5tu4Ez8Te4L5bRSePutS3juM+x7EQoYPp7jHWzllW0oyRECes/FagCNOuOsZgqxXBc7d1j5dWppB56j8jDcUr7JrB2ILVRiNvbJSmBlZR3teg4idaFu7s3gxOIWlooM6Cxeu439Wyc5q+m6KlZW1jHosAWMFh9hQN2f9ccLmCky1gxgLGbCGOHRTWaQahpMk7d0kT23jzYX8QJF8UiyDzXm8BDrmckKho6ObXpO46qDk9kGbzAoaC5CgDeV/OIJi0cT9X0JQ0/hMoG44uEzU13cpoXB+UwbPVeFTAuJimVAo3+3HQ0dV0FAw/qV7BB9X0Zz3HUqRFDFiI/jpgzktICHgt9o5LjNy0vFHm62kihoHj5MOuaJcPuPZnvCJBEK/4fLfwVDn02wo0BEWfd42KEph1zQp0shqraCjnv8smTVY/2OSm7NG302+PzSShsHwzgHQkEk8In6zaaAK7noWDeke5gwLM4SbfQlXMvZqJFGJ4zAU6cHvoSYFPIQ2o4rwZRDuPRgT8QcrPWPy0lbAxWlmM+7u1g3G/mriBG8UEDFYoPN+cwQ36qYeLZAURuugrLuYJPS1a/l27xrbMxujVvr06qLjb6JkykGEg6GBqbNIR5Raa+oubg2vYMf780DAKq2ipOkX5LFEDeaaXyW0sIHjo6+p/Jrl1YdvNnI4WyasR8Z3UKL/JYKxgCG6mCLGJyZZBsdy+RBmj1y/n71iOlXZgwHi8kO7zqzXZW35StSgPVWgeevyWKAjXYe04mxuaTPmRiAtfGPNSPdoQlDc9AlU8udXhor2TrepOy2z568j7XKFO/gCyIBn1x5AIvE2fVeipcIc+kOkpkuJFrtP3p4AjOTFVSO2AQCsNyrHgHDmelDrG+ziTmuW4gbI+6D1Kjn8bg2gQExmmeKFSTMIdeG1FpZLC1uc9BoD2NIUOklPnsEt51Am4JTPU/B5Lk13oofWhoboOlvqw8XsfAX2IQY7lto3TrB0+Y9KklkrzCk4x5kICdH6K0z1srqm8jMVqBQOTvyRR7pYZysoPLd8yicYX5NXs+AFHOOu9/O11H5xhkUSTAtraTgv8uuZegoUMo9eDVyCf9oDv73m1DPsvc6SiYhNJpc2B3d34d3lIRMWV7Soo6oziZmQRc5mwQAzm4ekmHj61/5LADg6uoDpGeqnFk62pzh2XVy3MLb33qBa9BOX77DLBDoXew3MtDNEfZIyH7q2ZsIHIV3C5rFFg4fMiCboO7DeIExKddffRpPXbiDEbXpxxJDWH2TA/BuLwmPAEUu04HvS1z0D7D4lLEFhO8peOf+ae5WfbpYweNGEReI8dR0B40WAx/J+BC65kCgRUSrk0bcGKFN73wu3YGZHPB937t/EoszjO1KT9XQOShi75CBe0NzkE518eM1YtYKR3jcKOGQWEo/EjAfH/LmlmlzxBc3Kc2GH0jok3ZwIt7Dfj+FexS2nNd8lGI2KrSvtHq8QN0c6Bh4wBWSKwCs2eH1Ovuez0y10HM1vN0aN9UAkzEPr9fZ9TyTZhpTgI3FEzEXHU+GHbr4b7f/tw+FSdr5pbkPnEma+6c7T5ikP+4D+JOyOaHIhbuPe0BZBy5SAnTFinGaNan4KOseitSg1fNklGM2joh6HngSynqA82kGMJp2DI96OlIqG0ButwU8k6dVoi6hqI9wMDoOx1TEEDV7LLaO0HQVLCfGVHOCl1NSaoiKpfPf5XUB364kuPVA21XwVLbLmaRTKQuHloYpankda5QAVl47keqjHGODxzcO4/iZuTZnf9xAgCKGuJglDyJXw+0O++ynJxuwAxlxAgmG7GMxPuKttM8WWtgZJPA05aD91nYZEea4f1FOt/FqjX32k5MNfHr6ED2iwAeuip6nIkYTiir5OJXq4wGZJ346/R53YTuGkavBIeAiCBGadowH2k5TC/Fn55jIuWOZ2OyleXfc0FNRJoftP9iex0cnK7ydHgAS73EN//2tBfzcqQccJLm+jOGQDcSFdAeOo3J9Rj7ZRRiKeJ4mF1nxsTq5D4lYqlOzO/A8GRli7UxjxL2NZDIKHE96c9MHeGdtFQk6DlkMsNcs4MJJpjN68HiZh/Ie9dJImENUqxR/4Wg4WT7ARq3Mf28aFmIaabYmqtjfm+ICYwDHLf87ZQhSiBixclEvDnWyi8gj80TDweDxNFLPMXC78MwjdP+QgdXQk6HEbG4mmVnawOb3rmL4ncvse5+/Bb+d4IG49sDA4CiHwhJ1XUXgnXLhUEI81+GRJ2quBzHmcsG4u2WicHYdUo7Wfb4PjzLSRMVHOJKhPkUeOg+2oc4JgEWMZ3kCQlSHcMBYO6FsQKhFwLjDpzuEQBrFw989jcK5dcg0oVbX5rHw0zeQjbHrY1s6lPQAg112rSdWt47BZy2Di8/f4NdYkALIhg2btHWK5iK1vM+vh9VIQdI8WHSOvqdwsf29tRO4eO4e146tzO5AVHwutvYcFXuHE8jQIgQATj9LYmsxwqiegU/2JtXDMuSRgRRpxwbVHDLGAGk6p0ovjc++/AM0dhnYj0IBCxSsqxoWDjdnUZ5j9z+KRMTiw+N3s5+ALPu4/YgxXqVkBzqdw6Cewc3HKzgxwa676ypwHI2zPbarIqePkNPHGlAZDfvY+0gRQ87mPGxnMW0O8YAYrsNRDEnFx0eog69lxZBUXe6jlFRcXm47nRriYc/gDTZNW0cE4GqOPMBcDYbs4SLZsyhiiINRDBs+YzlLdg6GxI5j2rSxNYihrHsQngh7/tRvT0ASbUe2Agns5ZkxmbB33LauSSEeslI8irqAlitjhtqOo0hA1dK5kLAUc9GwFZ5lZgcCSjGfM1FfmPa40aIXmZCFCItxNhmVYxa+eZhGTmODfFb1sTlQOCiYiIHX25OKBzcQuHD5TGqIhXiIhs1+P2u6uNlKYcZgL31c8dDuxnC3My7PAU2XffaFUh1f3y9iQJjg5+ab+EeP4liIscnpqZwDJ5AwoO8uxyycolZYLxRxr5PEZTI0tAMZGc3GlRybFAeeigljxGMELmdtCACyBJL2emm8UCTnal+B7cvc96TvqcjrNpJkAWBqNoaeyjv7fu3+Ir4ww0p1s9kGmv0kN6YsGQbOlA4xoJXw43YOuhRw4OMGEjKagz8kI8KfX97i4bhnMz38oDLBWbvTuToORwZUum/ThgPHU/iq3A1kxIn9+c7jVTw7vQOBBuKDdg4Ny0CCBl8/kCAKEabIC8mydGTyLd4evV2d4CxDzzKwMHkAmQBG9aiIYrwHi1bKCzP7OKoV0CB2rJDsYmqJTVy7jxewc1RGSNYEC6UKNM3BCYlNRplcC4Evo0NeOVNLOzAzPdy9w8TX5y/e4Zqj/sYMBoM4lp5nE+zjr38E6XszMCiWBKGAWKGNyCVjxjBE6tMMJPa/nUJs5ggBiYuHm5NI59rQSUwLMYJk2NCJlZLjI/QPihAMKketJ3DjR08DAF74K19D4Cro7DDWIf/UI1g7JRgnmAj6wVdewulffAPDt9j1MD4JNDbYpA4AUy++i/pvM+ASLyvQphsQlhkbEmkmwmaA8PmL7Nr/T32o8RHMGbYwgCoj6rH7MPHR23D3M4DMJszyyjYe/NsXcPok06V1Gln0NqZ40Owb33seL3zhWwCA7vo0jKk6GvcYGxQGEjTD4oG+ohTi1jdfwFM/820AwP73L+H+zgJmSf+2uHqXx6FkF/fh9U209uh6LO5hcJTjnZO+q+DCc29j/x4rCy4/dY8H60oxB56loVljYDabbcO2dPQO2bXzHBWTxRq3kFhc2EG3UuB+Tr/1+6/gp1/6IQDA6sWRKzawTaVaM2ahXy3iOpV6r03vYDCIY3mKgahMqY7rNxhIvnbxXczl6pxJa/aTSIcDpGkh4IcSapaJNh1HWnUxn2rjB+TYbQUGXiaBfBQxc9sx0+yHIuxA5gG3PU/F7tDksCWheDiZZQP7O7USMmrAjWzfbun4zFQLW2SQuZLq4odHeWgks0irPoIIuGqycnVRDzlw67gKHveApCJ+qD5JiD5g4fZPdI3pePuJBUm/+qu/il/91V9FQGGZtzsBZIENgrOGDCHGsn0A1tZ+joyRRABdV4QosBXIwUhEGAEfK/f4viuWiqU46WhcBaoYYXs4zmeLkCZWqag7aDoq7+Z62E1CEYESRXzMxgfQJON4FRqIvJyWUF34kcFdXtOaDcPWkCIReNVmrfImMTzsvDycT48F5S62iLH4YbWAEwkXU6SFiasOfnFBw5B8X05mG7hVL8GmAaQtarxkWLMMLMZHXNTctHUsJDv4AYlWH/VD/BdnKtiljrRzhSocX8ERlZumE13Y5HT9TiOPlWQfPRLBD3wJs4rLzd9kKYAu+8iRxuJyVsQeMTiCECGKBOjkGi4IEb62sYTzVDLaHup4ttCETEAnpngoqH18krQQHctEglgVVfJR0GK4PMEGdVO3UR7FcUDfNZfsot5P8VV2Nt7nmqNnp3cwsGPHqeWOhguTe9gijYWmeLBdlbNQiuzj3Ycn+b4unHmAOrXWD20d8UwPwlgPZ+nQdIdbAHiuitn5XfTa7NoGvsRjJ0xjhFwo8oy4MBDRqOfRoXOYmN/DxoMTSFJLeLtShCT7eOoZphXqH2Vh0YRaOSpiaXUDrYfzAIAzF+/BWDyEQM/xwfcuYvrjN+Gsk3Fjtg+vxe6v7yoILQ0SvQ9vffMjeOmnv4nababhknUXUSjAJgsAs9xEGIgIauz6BJaGKx/5MQDA2c7CmGggQdo5v5mEkhoAGkX+fOxNRF0H5lMMgEZhGtN/nQG54GYXjbdXUXjuAf2tAVxZ4fOAny5BSwDiY1aqi8+oUM+G6H2X+VnFT+9BNI81GvW1OUxOdNg5xC0sXrnLy2uBL8MotTggmSkeYef6efaslBq48fWPYGaS3RdRCuHaOurkkr36M6+y/b/J2uktO4ZP/NzvYbTDwF1nZwLBBongPQWx+BA+vYs7d1aRL9V5eVb0FHT3i5x5qq7NcwuIwSCOvWaBP3eJZB+FmQqG7dTxOSQGMKlsXtmfRCbT4ef40ZP3OSianKpAECMUSdS9fziBkavhC9fe4M+ArHq4v3aCX78x42kPDCiyj4MmGy8EIUK1m+HHFYQiThaqvHw9cDVYnoqLZMZ6s5nB7oA9O01HxWTM5rEjVUvHxkDCsxSD54UiFhID7tNWt3X8uM7OdyXhQAc4C3U+w4TcY7PIDWq4OEXXY+grGPgans2P+HdvkD/VQtzCjKlgZyDDDY/d0Z9sfzq3J5okquf+n6d+CasJNuhvDHTMmw5K5CO0M0ggpKukSyFm432sUweWRN1nVaKtZSFC3xcxTQyOLgVQhIinS/dcldPDpuLBkH1sUElsLj6AG0rYpQ60yZiNpOryjixdCjBFsRuOr+BRN4U8lcz+8NDEpyePTRzHq6gxfSwKEcJIwJsUbwAAz5CW4TuVDJbiHmeWTiRGiMk+P86MZkMSQ27gZgcSTmbYKvmdRh6nUl28S4yEKkVYSgxgysfnCwBZ6kjrORpysREHRndaWaSprOOEItKKhzXyxfn41CHuNQvcbdcOZDRtHWmVTZIZ3ebanqV0C9/an8QlAkVOICOrW7zctphqY7eXxtVZpg0Z2Trawzgms5SCPjTRoCTy2WwDjqfgUYNNXGdKh3hQm8BipkHXVsJ2J4sLlKG22Sjh9BQrp3X6CchSwMGHLAe4s72A5RKbFD1fRrWb4T5Khupgs1XA1SXW7aSoLo930DUHnicjIDM8WfJhxEdoNxn74foyCvkmvneXTcCvXHsT3Sa7D6lch3cyAcD9rUXk4z0OZienKvi3P34Wq1Tm+9hnv83LVgADSbx7KdVHcqECl0KczfNVFsWRJZ1RheJKFtjE1vz+EnIvsXZv7yCG5v0FRFTWLJx/zKJCaEV+8OZZTFx4BIcYUS3bQ+PBAiZfYW3+g1sTaFKJJ1VsILG6x0XhYU+BaHqo/5gBisILDyBMpIERe9b8nYivrKW8Df/IgLLIJufgIILw7BzEKplHhiGcSy9C3WMgKpIVCIMewofsHZFyEYI625d4Ngeh1cbwLcYimFfq8HdlWBX2s2JaCFyFx7UA4IBp1EohMdHAj77LjGuvPnULziAGjxZk8VwXyZVd1N5m57S3P4nzL7wFicrktbtLKF1ijJVVyUHWXSgZ9n44jRRG9Qwc0n1lpo/g9ExuP2B34rx0K8kBavU891T6jW99Ar/wua+jtjXNj1mP2fBpTJDkAIrm4tYDdlz5eI8/481OGotL2/wc1rbmMZWv86idXL6F792+gGVqMOhYJi8RVw7LSJhD1Kgz7F6jhGdmtzgLdaF0CEGI8DZ1sc4leohrNh42GeN1KndshumHEg4HSR69JIshTNnDO/S+nMt04YYS7zQuG0Pu9B2TA5xKt6DROP37OzN4odTgDvpdV4UfCWiTKH48H1whe4X1Xgo7A4ptirso6jYGngIrcPG3Hv+LD0WTtP3XFpFUP0BNkhti/n/bfKJJ+uM+gD8pmxuAi/iezrdRswzOaNzvKrg7YAPNX5sX0LBjeNhjL8u13AhDX0aFtA0zRoB50+FMiy4FaLsqOvRi+qHA9U2zYoieqyJDQKdhx2DKPu+4qNsaup6CBLFBj/sGqjQATpsjaFLIyzifmmRmk6bMviejOei4Cq+/1x0FJ1N9XCJd0feqSQ6o3BAQBXBW6p2WiReKHR4MafkKGrbOqemeo+PtOluevTh5gO8dTOOV+W0AwPXDGZTMPvb7DFDtDw0MfREyxX/EZRZ+O44AudWW8IkJBnpM2cdyto4gYuDkaJjAYvLYZGRoK3i7peHLiwygxTUbGTKHlMQQX1zaxM3qFD9/U3WwQOfYsQ10PQVv7LDVb0z2cap0iNfIFbgQs6DR6vYHO4u4VKxy4fZms4CCMYRH5ddcogdDdbBG+p7VUoW7YG+183jmxEMoVD7qtNKIyR7ixBbalo5pqcFF4pIYIiZ72CbfpJWFbX6+ghBivTKFlz72IwDAq99/AaszuzxdXZECxBJDfJTiHuxhDA/2GfOx6GhQVRc6CaZXZ3bR6qQwQ7oRQQjxC5/+FgIqGR68u4pktguZDCXVmIM0efmEnoxRJYfkFQKC1+eQemobgkqapJgDt55G8IDE+2e2APKYuvH1j+D8M+/A+DgDNq3fmkHukzvovcqu3fRz78LaL8BcZoyP34ojlhjC2WSDcvyTNvR3WSdUFAkIegYQsHO6940XcPrl60jNso4sYSINiCIQZ8A4tDyoJ9n74dxLwWmmoMyx1nIxGQCPNoASm0DtU09DtAcIYwQi9rZhvWMgdo6y3gpFhHvsWRQ3j+DWEtymwH1kQCn3AMJbSraP9jsnue4msXDINVl6YojAUTBN71K/kUb5/GN0N9lzu785i0XTQpw8u/RaHvW1OZ5tBgDDXfZ+vHnjKbzw8R+i84iJ9a2+gVhihEfb8wCApzI9yJoLi1i6w71JpEif5DsypmcPUCMA+uc/8gP4tsr1TalcB6OeycX7W+sLWLlwHxNpcu9WfK6dW1reRGV/EknKYyumOvB9GV1qKFg4/xC3fhDnWYe7/SSWiLHJpjtwHI27Yp/M1aEoPi6SBcB3ducxY1i847WY6KIzMrFA72bHNtCmkroqBei4KroE7OJKgIGn4BxFmMhiBFn0eTn/1aMcj4TSxBANy8CDKjuui5kejkYmX2SWYiNYvszH5rjiQRFD3KfOuZgc4HSaHaMuBXirkcT5zBB+9CF2t0UfrEv2TzZ9crw9AUm0zZkuquOkaSnAq3Ud13LsBSnHIqySGeTWQMa04WCeVrOv1gyspnxcy41fEB+SGCGujLvO2N8VqMa+1otj4B0/yKIQ8bLe7kjGF2Zb2B+xcsupdA8jX+b1+ILGHLoBYMpgq5r9URoAsJJgq9ZxeW3oKZhPDNCiv72c6zO32fGqKu3yF/z5whD3OiZyGjunk0kHfihyU7ZbzSwWE0MOfE4WqrzttjpIYiU5QJ8GqsVkF0fEyACMPl9NDbg3SVxx0HZiHID93Hwbs8TQ/IsHJyCLIQ+NPF2o4nGziIekZ5k1HPzFE/vo0ncVUx3s0Yryq3t5/PKFhzziJKuPENctrhuaLVWRrRe5dmjo6LBdFbPU3RZTXA5czudrSBlDzrqU0m34gYRbBwyA5BI99O0YitSG3B4kkCG2a6VQxU5lEsvzTLuhaQ5yiR429li3UhQJSJsDbDXZPT47vYO77QyukrDdd2XUaXW7stRCXLN5i3cQini0N4sTlJhuWzpcS4NOjEUYiChRB978+Ye4+foVnFxlDNX1dy/g8skHSM4zMLJ5/QISyWOH8niqD7PYQmODrdglOYBNzFLxqYfYvn0SyfPsnBKre6zuLB+vWo0zdfiHDMALV6YRPdoGADzzl76Owb0p+DeoNHn1MdyHSRgzlCmX9hDtCWjeYOeYWjxA5uU9WLfZMxTtNeG22bUSxAhqsQ1pUuTXQ14V4bzGvlfZrkJYzkGwKUE+biPqsudOnXVYmG6XdFOLeeaDNMPeD/XgESCKiBSyE2hbkOMCwiZ7J0ShCWFsGi4B6hUFygE7h8p3z8Osd+GMmbixLoTYsqN3V3hWmyAHkGIORvRelqYqcBpp5K4wdujgK5MYNVPoUdlren4P3WYGAu2r3sght8Tu/3yxit5+iYNZiYTY155+m74/hGJa6DeOmcc+ad8S8SEePDqBc+fvAgB21xeQSAx4l2UyFKBoHp90JycrGDbT/OdMroWQ9EwAkMl0eJabZtgIPJm/m63tSfyNp25xRvSKbiNGth6tVgamOeLvZS7TxuO9Wc7onM20UYz3UKFy/WE3A0mI8IiCmmfMIS+Z3u8kUIq5OJvpAGCaRl0K0LCPvZC8UESOvutMesi90TKajYYdwyUCp5IQksibjR83WxloYgiZ7oMpe/hxPY0VSgtIqi7Xix6MYnim0MHhyIT9RLf9p357Um4jqvLvL/4iRNBgK7ISWn+cTO5JKOrHIbQ1W0OaVoZWICKvubCCcXBqiClzwEHAHx7kcC0/5CZleyMVL5UZ7Xy7lUXDlrmQcCnu4GsHEn5xmczyQhFrvTieKzFh4ld2JnA1xyabjGZDk33sUAksqbpoOhr3TdobCnhlsocM6XfSsSHuNUqo2ceu4qfISPDNRgaLcRv/YY/NAn95cYTdoYGUMgY2HtqOhqrNfn8l10aKBprdXhp53cIW1eyXUx1s9FJYpuDZt+oFrCZ7eIvKfJ+f38UPDqex1WcTyZ+Za/COPUGIEIQiZ/CGvsy74ACWn3RpYp9/vt5L8Ul+s5vBhDngK9LqyMBT5QNuCTCZ6KI6SGKJ6PmBHcNeL404lb3mc3W+yr61tYS44sClAXK+cISb+3O840YSQuiyjx065586e5sPtjuVCeSTXWyQ4eNMusmFtAATpi5MHPLJRlE8VOsFzFIchO8paJPGSNccdAdxLJ8koHPjMp6+fJMn2w/aSSiay8tiohTCoX9nJ+o42p3kLf65ch2DdhIDWv0XyjXoySHaJNTVTQuJqRocKqnJusuPMfFMHfadOE+1N1cOISgRvAN2/lJyhO/+u89zMfrqp17n5xvaKvxBDJX7jLGbf/kGxLKCsMreJ3ExiXC7y32DvHqKtcTTdzudBOIEMOR8H4ISYfCAsS7xVxyE9zv8u/CRMxDfeRdCIc7/V9SkzDRLAESge5uVcTIv7iBYXoF98lMAAOOtfw/IMvCIAZCx99KYtYkvHkLMUgTOZhrqxwwEb7P32O/E0dmZQHaFMW2jSg6+o/FSVRSJSE2xd1hUfESRAIWsBQbbZYw6x6WMeK6D5mEJGoH9eK4DLdNH/+DY9uHRGruWK8ubGPQSKBA7tvbuaaiKh6VLTFc1tg0Yh8m+ev8MXjrHWMfNnRkkjRF/l2ZObmBQz3K7gFo9j3y2hV3y3VpZ2oQgRNwpu1HPQR2XyR0VmuZyr6tuL4FHtTI+/Tx7DhTDwY9++BzmySk+leni9XvMQykXG+HUiXUu3B7243h1fRUzibH4WoImexjQmJDUbKTNAdfWPWrludRh3mTGtjECWF1HhxeKvLy2kOyg5+r46l4aAPC56S7/XQgmldigUv+VfAs3GlnESeN5MtWFHcj4nV023v6Z2Q6cQMb97nHu5mm6p3HF5fEoVuDi7278+odSbtv6hSUkiMH9ILa+G2Dh1zd+4sttT0ASPWD/YOkXkKBS1bQ5gB3IeKOeBsAiL9aJzbBDAUtxm7eU7/STaLkKKmREeTZlw4sEZEk3o0ohdgYmJB6t0eaT6+t1HX9hqcpjNqqWiuXkkDMafV9GSvF4ycwOJO56/VYzhheLA651+l8fJ/Arqx3s0+AxotTqHg0CkwQ2jqjLLK26aBHLdSFfw7f2p7hB5qVcC0NP5Suj5UwDv7k+i0+QULUc73IAEUUChp6KdVrZvTizg6Nemg++GWMASQyxRcaLZyb38e2NFe60ndEsvHrEJqJr+SaGvoI8iTaPhnEsZJq868wPRUhCxLu/UvoIVWK3ZjJNdEcmavTZojHAZjeDSyS+lsQQh53s8YCZbaBvx3inmKk6vMVfFEOIQoSDNtOYjJ2qx4DM9RQoss9XuwALsgWAhclDdHsJzhStlA6haQ5ixPaMiG0Yg4B6O4NyoYE2mfSVinVkZhkzcLQ+h2o9jzMXWLlp/f4Klk+vYX99nn3XU/fw6M0LPNstnWtjfYOBgJWVdT5FaXsAAQAASURBVAS+zCfIRL6No70pFKfZvluVAlrdFPIkgI0n+4hlerwlXJRCXiISxAhKagCHgK5ebCOwVK6TsRspxM8d8GvRvzkLmVgFfbYOvxWHeoIdY3AUYfM717D8U0yM7VZSkFNDiBnSGbVkeK0E9Gepw/GbCe6orRT7CEcy7n2d6XlOf+o1wJcg5ck80hOAs3MQXPbuCbaFoMSYsdBIQn79dYzWKBz2KIfC3ww4c+QVFxCJMrQ9BiKEXgfYOoJfPwZcErkri7MJREc9Xm5s/GAFrqXBIN+iWLGNUSXPr9+gmeZlLEVzkVnah0fjSeAq0PMd9PcYqI7lOpANGxJ1VgYjHf5Ih0q6o8FuCfFZBjb23zmF/HSVH199dwKZcgNHVELrDU2snn2IYYs9W6OhwUtkCyubeOfmeZxaZJ5TyXID/VoOFgFhQYwQT/a5CLxZLSBmWKhRmb0zMjFD7Kdl6yhPVrk7d6eRwciKIUYLNE1zcNTIIzc2pw2OJ/IwEiEKIS9XO56C7VaBSwHimg1dcTGk5o0gFPGok8URLQavFpp8LFIlH3HV4YCqbccQkz3OYjfsGCQhQpmMXg8GSdxqs/vwQrGDgadwK5eU4qMYs7gNSlp10HR05OmcbraSWIrbOCCT0JPJPt5sUv4gNY+sJCxYgYtfWfuNJyDpT/H2pNxGmyxEHIC0HR2/tWvgzy+w1UwYCZxJ2hpo8EIRNRIE9z0Zl3JNmDRJFmIWalaMt17HVQcCTB4t8vpRATHS/qwmAzzqZLlppRUAywBKVMa5d1jCxYyDnsdexPO5Bja6jDp/qdTHwFNwq80GvS9N2zgYxvGwxwaTedPDva4Bi5rbJMGAFwpo0+p2yhxyZuRus4BnC01uELnZS6GoW/gnO2zy+XtyGhczNjLkVXKrXoZCgOFsoYogFLmeyzQsyMMEB3pvVKZxKt2CTgPVtzdWcDbb4F5Ilq9wOwWAGcIdUrfKQrqJHx7M4AQxPNnYEG8clXkUy8vzXR73EUUsiy1DDJflqVhMtXnXmeMriGs28iR89wMJB/0ULs8xIbckBpzxeWtzGSnN4Qzf9ccnUTQGnC2aL1dgxId4uLHEn4+xtYCssHiTE0UGRmTZh6J4nFUAgP16kQ/k5+bZJFUjsDe3sIPdu8zZOp5g3zlOXhfFEEc7U5he3gYAHNw9gZm5PbTrDMxp8RHP5goDCbLq4S1asT+bvgXL1mCPcwGLTUysbvHJd+f6eTRreRy22L7On37IGYunP/9d2NUsYhPkgyFGCLomBNLJmCuHTNRGalZBjKCRS7YQi6CU+kAizf72qI/lP3MdYZtdDzk1hKAHsB5Q2/6VLuxDDcEj9l1qSuB6nbhdh36ihZVr77Lzv34es6/c4MyR9boB4UtPQ3/EGAxn9TL8HGt/j/2rX0Poy7zzTdvtwp16BXKLgWiEAWLf/SqiORIuyzIiR4RHlhKxl0OEBXY9UNmBvZVD7HyfX/fkbAUK2QX4Rwbi8xU07zPAmp6pcs+pB9cvITVdgz7Jzs+p5mA30si/wu7po9+4gulT6xgdsfuQPLnDuv0IFHQaWTSo+3H63Bok3YVIlhhFKYA7MJAiDc7itdtwWilUyXx0s1XAxy4zjyYtOcCJmV2o9LehJ8PMdJEss+NSEkN0tqZ4ptx0oQ27lUKewN7Zl95E5Q57TstLuzhcn0dxkgG2bKmB3sY8alTOz6e7sD0VLVpITU1WcXed3ZfF8iGqzRzmpsgnyVGxJIYYUoms78Twte0Z/IUzTFD/8GgSl4oVjOj9adkG7hET9/LUAfZ6adQJ6Kykuui4GkbEgH9lL4aLGXCQtJBuccZqs5vBarYOmxY3uhTACSTOZA99Babsc+nDrOnAiwTM0uKn76m4Rtl+LVfDGw0N86bIzX4/jC2KRN4g8cHs7yeaP+HbEyaJUPjfnvwlzJI3S15nrqxz1L0x8hUOKDquCjcQUbHYi7c5iPDJCQd7I/byGFKIiZjDdTVT5hBr3STv4Oq/J/unoDsIIwEPuuPIDh+aGHHGIiH7GAUStgZjTVKA7x6x4/i5OQ+6FGCSJv3rR2XMm0NeXjsamTi0dHhEYy8lhtgZGMiToDh6z7EUdQc9T+H2AinVQ9tRUSbRryBE2B8aiNOqcjXdwn/YZjT8iYSHl2Z2sNlik1xSddBzNQikFFgtVXD7cAYZYmmCSMDIVzBDKd9+KPHz/fruNF6eOOIA0w0kiAByNKh5gYTdXgZX5hiwsGwd9yi3LAhFLKSbcKhrLhkb4Yd7c/jPnmZtyI16DrrmYIOcr0UhgiwGMIjxc3yFAx1ddbHbyr8PgAlChFuHTFe0kG7hoJfCCfp9whzCp/v9+GgCZ2e3MaKOxGY/ibOnHuLbb12l6+MiHRvyNPYgFNHsJ3HhAmMw/oc/+DS+fIpNCGEkIJ3ucnPAwJdx69EqF6uvrK6jU88iS2Z5su7yTrBkro31tSUUyb8qke2wbisatEedBAJPRoI6HPfWFpDOdKDHGRD2XQXJacZYBLYG89kOKhTDkZk/gH66i8hmIEmYyCJ40IdUJHGxIiPqMiZEiEuAGcPOv2QOytMv3kQ4iEHKUlzMQQb60z6ct9gKWDvZg7MW58/E4KAInUxdZcNmvkqUCxcMdXh9A8ZJ8smxBKZJCgnejix4p1iArfzq64gCgeetBT0T2tUAYZqVpIa/HcBc2Yc4SboiUQD6I4Rdsv6YT8G/R0zjs2X4328y8AfA2c2+r4TW35iCrLucAXPbCTy4yTLRzr/4Ftpbk0iQh5KW78CuZTizGPkS/tW3PoEXqAvzzGd+hO6DeRhF9vkokCBTt5o/iCH0ZM7gCFKAwNa4UNsstuCPdF5SVXWHf7bXTqG8tIv777DMtLm5PfQ7SeRICuCMdBjpPhf2jzoJGOk+GgeMiTPMEfrUlbv8sTfRePcEdinrL59po7yyjfYuGyMEIcL+4QQPuO00smhSSdnQHLy+s4inZ7bZ95L/2DhKJQhF9CwDSeo0vl2dQlpzYHCLDZ2X0K8fzEITQw5sDoZx/GFFxazJnvlLmSHW+gbOUBt/3dGh07ieUFyoUsj1S5IQoWQMOev/dkvFqZSPLI3jPU9GSj3WbKliyIPIh76MV2sGTqX8D9Vxe/OvnPjAmaTFf/74J55JegKS6AH7u9O/hChiYGTGcJHTbHzjkD0Yn5nq8Y6InYGJMBKQIMBwMNJQ1D3uITRtjtBzVb6CWEx2cbed4b9vOiJKOq3A5RBDX8QiZaKNHWLHAOv1uoxfPrOPO+SxMxvvc81N3ujj1x7O4nPTbCWkigGOLANXqRV9rV5GQnH5ZNNzNQx9GbtEp5d1FxL9ru0qWE11ERE4GfkyVDHgbtRRBHihxNmikjHEP36QBgA8X5Dwsal9HPTZzyWzj394t4y/vsImX1UKIAkh0sax78l7y29bgzhmqQtoPt3EbjeLMgG/h80C3FBEkspaM8kOWpbJ229FAbi8xOItDo5KUGQfdWJkeq6KpOqiRF0wb1emkdVstInBmo73MfBUblWwO0ggTyzUicIRYrrNV8KKFECWAjSI4aoM40iqLje5/P+y99/htmVneSf6m2nlvNZeO+dwcj6VSyqplDMgIWxhBAYbtX2vfdv4umlsunF3gxr8uG13P5fGYDBgjNwmCZSFckmqeHI+++ycw8p5rZnuH2PssavcAQmKwnpc86+991p7hjFH+Mb7vd/7ZuM1diTCFwt2GB/cYmNHpE+S0SarhUM+Sbkb4mjfDqlETbatRmZwn+0VscDEYo1XlPwvboxyQRJxS+uD6LrL3VWBUEwPbpLKldjeEIHRbiXNmPTQCgRsAqEuDVny3TeyTW0/o0jermOiGy4RWb3kOwZWoklVqkT3OkFyU5In1QqReNM+ta9L/lK+jB60MYfEQmWvhzBiHVxpW+O1gwSekMrnjoN7v0l9QaJBY7vs35ph4A0yrRU3cA9FvnHKMcxES3FUzBEPP50S13m+R+Csh7skg5W4Q/POEOFx8cya7qOPRWh8Q1bGnd/Bl1pf3unT6MUdkGRrv67htQPocRGA6iNx3MExGr8lFtD4iTX0XEChY+6WhybHrT6WpPaFBIZEYcxIh141psQ3fceguDh6uNnpK2PIQPfWC+e4+IN/evjAnobbCLH0rAjm8iPbNIpJht98DYDCC0cJRNoUt0RwksxWCEjSsxG0eenZh1T/aJcTdFsh8kdXxKldnc1bs4ycEmNk7/4ED9ZF8cGxqSUlFAng2CaOcxhwlWtx8pkSUekTV68kMEyXmER1I31lbKkLVNvPsLYzyMSwSLmubg7h+bp6/oFMkZ1SlnGpqu15BjVZ7bpdyTA1sKWMdqu1OJc2x1Rpf70bxtRdZdUTDXVYe5m+00YtrQR1xyI9yj1T0QYSloPtayq1n4s0qHbCiozt+ZryYzyY+7Zlem0mUWWlEVeVcvlQj1yozdek2fJjfTVSwQ6f3xBj++FcXdEirhQjnE53aDrGa2pwu/TRuVc/SPp3868HSa8HSaKD/aPhj9EfEkFB1TbR8TmXFQv93UpKGR9GTY8bZYs39otBeqUUpeOKajEQpaLlbkgFSQHJbyn1LHXNYTnJOZ5O1zVYlIvLfM3j7YO2SvPkQ22xkMsgIWQ4CtHquQaj6aJyhD9AO8YkQmMZLuvVtNIM6XkGs5l9XpIl8vlQWymKNx2TsWiDeem1lAnYGJrP8T4BnxebcVLhJnsySDg2vM7HviqqkT4yJgKOA7L1ULzKbiPOnkzdZQJdBmJ1teOaHlnnT26c47gk+Rq6pzSDPrU8waN9JRWceb4mNJnkfZQacWq9EJNyAn1pc4xjUon4brGPi0PriifU6QUoNuOEZBBkGQ6pWIO6nAQ/tzLJ20fXuCbb71i6SEFWN8YsEVwdCD7Gwm0KLyOJ+77GSP8ubekBpWm+Sus5rsF2LcWofL5OL4Che/RJRKdej1Fvh8mnpXP57iDpSIPhQfGM7VaYoqxuy6YqpHIlpdzc2s2wtzVAQ6JUk1Or1CsJVeZfqyZIy+tcvn2CR85do7IvJvXs8C6l7TyGFNPsm1ul8GAMU/pNWcEewVgLV3r7xWc2Kd6QyNGRVfRIF2NAcuNuxgiOltCG5MTZ6eLXu+x9Q6h19z18F6ckFsHAbBt7OYA5KIOznRCebapqLWu6g7NioUl+0+4LJxj6wD38ulQo341h9slChu0EerSDOSQRq3AId62DkRZjwl6PYk138Mry85Pj+C+JhdsYN7HvGVjHZdC01ULPWfTmZXXbcQcCFn5IakuZJtrmNiRj6hmxRVuVvj5JpxGh/xHBFcPVWfv2WYZPiwo1PWjjNMKY0n/OrkYJjYv+0Lw3hN0MK85WZTNP/6kFmnKxjY3t0nsZGVg3PDTDVe2lh7u0NqUqdjtEMNGgIkndfXOrtPYyytLE6Vlomqf+t7jZr8ZhrRGjL1dUfdgwXMVXAkgna3i+xo7kIHm+xolTd5T3XijRBDkXPfOtxxjP7tPXL3WQSmleWpniDUcEIrq+20/PMZkdFRs4xzUVyXtlY5h4uK2KJj596zTn+naYlwUXA+EW/YmKSnUvFvtE8YzkVgYNF0d+NpUsi2rh9qHe10ItoczJ+8MtIqbDt/ZEKvNkqqE014KmzUv7eebkfdiezu8sRZiMHXAv4Q39NRVUlbshppJlVtWmzEKXvNPLJYvHcl3SwS4tt8ffuvOJ1yRIWvyRI696kDT9O/f/iw+SXuckyaPcg54nNYYCHkHd5w9WxWB6JNdVk0upZ3I6batgZSjsMhxpsyknm89tpng01+Hru+JcbxnoYfsa39oT//8PT22zLonanq8RMlyF6JxOa6SDXVUZt1CPc6tsMCjH/GjEViiKofu4vq5y5Nlghz9ci/OmfulzBXxtx+TD42KBiVk2v3F3gsf6xGLVF2lyRxKTCx2L5UaGGbmrDhkuHdfgukxl3a+FOJ2OMCC5Uv/s+TN8ZExM8k3HkDIG4rquL55tVH63aVvcKeUUj+jnbqT42FSPek9MtrVeQGk/ZQIuHffQlqTSC+D7GruyvcJWj5DhKFPOkOEqZesLgxs4rsGXV4QOUtfTOJctqUAHYKHUR12idI9Jj7LUQUVON0ziQKQy0mCzklECkOW6KPG/J9tjKrOP5+qkZKnx7aVplQLr2AHOTi3QlBox31qf4J1H7qjgxPV0OnZAqSBPDWyxttevCLGZVIW0RJksy2ZzbYRoQQQ61XqcyZll2vXDRTQY7Cp+x2T/Ns/fFOmTqEQRTckF82yTTjtEVxJk0419ut0gYWmHsbE2zOy524SHBbLk1sMq3eb3TOxmCC0gAjsz1QADaMnU7udm6PuvevQH7smbCmAi2sMrQmNtgERQVI01N/JER/ZwJApx7zcvcupvPQddWVqdqULXpnlHtHV4/JA8rZkeOAZeVQS+WqOJHoLOvGif0BPgrzXQjoqNgA/sX5W8mYF7mI8PQE1WTZVizH/6PCc+9A3x3dwo/q0NdBmA+cUm/vQwvW+I5whM9NBkJ848vQLBIK3nxfgJpOuMnL/LxhUhtDj60C2CUyWat8QzhAZKtBdFIOO7BtGRPSWeGc+VMRItxVnqFJIEkg10WVV186uPMnfmDmEpmeDWIuq7piR3980JaQbf1wgmmopn1trOYrdDGLIPDB5fZO++JPafvUN9N4PjiJTZ8u4g50/ePrQpGd4llC/jvSQ4bclshXbtUNpjfX5SlfHHAl1Mw1XWOs1WmHc+/CKFHRHMDWSKbBb6lAxCZTOvquRmp5cp7WdJyA3pmyYWeX5tkhmpx7TbjDGg+XQPpFQiTSzDVdW11/bzShA1EuhS74RJyNR+yOrx+ysZTsqigDxiI/m5suBdHUtElIp+X7hN3Dy0JanbAX58pqGKV+q2hePpzMtAcjgiuJMvFsTknAn6PCzTq/mQwWYrgq4FaL8uuP09f7yOJMko/Bcmf4KOe6B03aXjGqxJ/sIjfVWlPv21nTiP5trM18Qkfz5b40/WE6TEGGYubjMSbbIuF8mE5aj8NUC1ZxGThNcDbY2Dc5d7FuOxJvelOm826OCBCjDSwS7P7B7K5jcdg7g8l+trjEQb3K0eKoEPhTuKC1TpBXE8XZEao6bLpaL4+aNzG9wrHWqeaPJ8B1Uhw7Eav3gry8dm5ILajDIj5QN6rklftE6xdVBVZ6oqNBCaSjd3h8hJTkEm3KTUjrImlbJjpsOBalQ61BY6QvK7huZR7USUy3c60mCrllZ8p2ykoZCj+UI/QcNRCNap3B6up1OS6FC5G6Q/0lTXfevsPXbLGRVkOa5BQgrWtbpBgpbNJamLdHF4jVCwy25ZLMbFVoxcpK4g+lS0oYTzpsbXaTUiCg3qzxV55v4xHpdpwVojxsjoJhvrYiE3DZdAwKYmF5jB/j1q0qvvgCN0oFcUzVTxbJO9LYF+RaNNtnb6icv7TmUq7OyIxbg/v4/dCxCTPlZ7WwOvsKywuwH2dvIMjQqkJTG9SXc/RWNfepn5ukrVDR1dormXIXtOPINmeug5C7V1jkWh1cYRSgUY56JoRbHoEQzQu2UpzaDlF08z+85nVcm/U0ygGe5h5VjSw16NC3FGRPXbwREYqeKWQviSS2dNdyAcwtuQqdxKFPPxJG5WcGHs/7BK6J1S9ygQRF9bo3v3EP3zfU2hPRgevb0UAUm+1aM2zA2D5De1Pg+R4zJofn6GzPeXaD8jAnAj0sFthehIgn0g2ub+1ROc/4mvAdC8kqcrq9miA0XcroUjqw7dnoXrmKRPCJ5dZytH5Og2jZuC/2ZKjthBGjQ1vq2qCrvFBIF0XVXR7d+aITu7qtpu/7ljFPdyTD18A4ClF08z8waRmnObIeqbeSyJQnbqUcLJBpcuibTfudO3sMJdek1xn45tYVo2TSkC6fs6acmFu3TpHOfO3qQiEZpwpEW9mlA8vXorwkDfviIV1xtRhToV93IijSc5evuFLEHLVkbMqXCLeieseImtXpCeayqdtivFNOdlgBUyHTabMaUVZ2geQUnABnB9nZDhsCYDo5RlK2rDeLyG4+lq87taTxC3bKXRlrBc1pomwxEpqRGwKb4sO5CwHLJStsH1NW5VYoxEeq+pBMDCDx991ZGkmd+99zqS9Fd9A/+5HPbLlEq32kFm401mpNrzSiPOhqxAO5oQQc+T/QI+X2/GGI4IlAeETtJqI6ZUtDuuwYlMScG0/+pOnu8flQt7LcaTAztcK4gdV07yFuJyF1l3DKbjDZ7ZFQvFbFxjNCrOk7RsTM1XwchwuMXvrWSZjh+gUlUqL7NAObAHOTBcHLA6nEiJn1eqaYaiDaIyYFioZIiYh6m9ajfMkViAkCkm34v92zQlEtS0dbbqSZXWG0+WqHUiXC6KgKI/ElOilAD7zThXS2neKgUR7xbzTCXFJLfTjBM2HXZkWu9Pt5K8Z6SsNKZulTKcyhYpyXTTlzdGedf4CiB2mKlwky1Jrq53wiRCLWZkqu4Li7Mcy+4xLtNzV1Yn6Y82+OSaQJ7ePrLFFxYE6nAhv4vjGvTJ3Wq1FeXu7hAnpZxAqxckny5TlbtKXfM5flKgKJ5tYHeFRAAgxB8z+8p2odSOcmt3iHdefAkQi0Q6W1IcnEolSVuicgOxFrsbg4weXRTPtJfl2dsnODMmntm2LWaPLCg7iOdunua0rJZzbBPP19SOPRZrYIU7NKR9THpkl3IhozgopXsTBEJdQpIft7YwycQRcd3oU12sS5sq3easGzj3QljDsprni2Nk37SI70tO0u0qxqh4Z4XPjRHOVoieFAtq9HaTyvVpUqfEfRqRDka6TfO+QF2i7/HxV1q4dfFMgaEqXlOSh+f7CeaqWEelXMCey/7nxxSvKvZ+QNcxiiKYcYM9uuMXATArOzAxSTAiPutd8zGCPYxRybtLZQidDaBty4rWsoam62gt0R7hySoHefBwXxkcB0OOed/V0YM9ErOiT/f2U8yevkv9BfFMkaktXMnJMtN1WvfGicvvOpUYbs/i6mfeBMDs8XlWPv8QSbnwx46v017K0ycD1PZGnwqwwqN7bL9wktSQaNvskRW2rx9Bvy3aJze7hu9rVJbFtQfGN9m+Igj0gVCXYKTD+uIEAH35fT77zBt48ojQWKqXUgTDbaJSob+wlCcabdKWmxDbNlm+fBaAIxMrFDb7iUn+0uLKOD4afRLhSUSbVGsJFZDvFrI8WBKIlobP1Pj6odJ3os7X7x/jMVmcYTsmi+WsQmotw+FLm4M8khPtMx5rU5Wp/lovyHi8yo4Us53IFCk24zyQCJip+0QMT83rrq+xIuepkZhGrRdUc814vEbbsRiTPoG2r/FUf4OS5DSKSmiLniurmMOOQp3WmiGmYx3WWyG6r4tJfs8fryNJMgr/lSM/wk5bBCOaBjVbJy5L9c/nSkr6fqMVImYdGse6nnB6PlDUvl2NMxzusSfLTmu2zv26y0/OVgARVA3Jnf9KPYah+wxK5OQLmyk+PLXLVyVJcyzaJRPoKqJhxzWUTH5Ad/n3ywl+YkZMFpVuiPl6hDmZPsmFW/z2Qo4n8mIibzoGc4m6Kpc9lqypkv+RWJ1b5bQiUBuaj6EdWp5EAl2u7fer+3R9XaE7m80I+XBHBUkxy6bYCan7nK/F6A/1mJfSBG8b3iMVbnJX+qJVehYbrQORyhqXSwmeyItnilg9dHwaUgIhE27Sc0xlaHmQKgM4P7XAM/ePEVa7SJ9YoKve22xul04vQJ/kAj3YGmGxnlCWLw+PLSs0KBToUawn1HVn89vUWhFVORcNdlgq9SnC6LvHNkjKQDCbLbFfyKoS5tMXr7N8e466DOxOnLpDcatfKRsv7g9wce6eUitu1yN8855Icbz59HWq5STZvCwXb4fITm5y5VuiUi4nUSLFMxrdZntZBIma7lOqJhSXYyBbxDRdenL3a1oOkViTPYk8fXFphr/7A59SC7BmumzOS4L449cwUk00U5b4pwKQiNH6uvT1CncJnnFw18Qz+O0ARloEmJ2VPurbOeqy3w0eWSZyqqB80NB9Stdm6Xuz4PP4o0Os/P+GmHifKFX3Sia+FDjUgja9vRShNx5uaPylIs15EYzE39rEy+TwviEWY3MW2k+8H4DwC5/FHZ1GvyTkA7SESffOYfpo48Yck/9on5V/LhDViacvoc1lYFtshrT+NO68tCWJutSujasAM5QvY52E7mXRtsFTLRrPZbGkqa/btehJkUK3Z9FthdFlJVT+8Tusf+UC/UeX1HszYm3ufuVRAIZGN8k8/ABP6rDNf/Fxxk+JttpdGGfsiWs4UqbA6q/RXcvRkvpumu7TawfxJJLieToDZ8X/fvvTbyVs9YjIKrJsroTdtVSaeKOU4+yxuxR2ZcpsfBOnE2BXGvECioc3PLRDpx1Sgd0Xnn+UNxy9zbP3Rfrx6fNXMEM9JWXR6wXY3BP9brR/l2S+wPwdwXHUNB/HNdQmQ9d8Vss5RlPiPfzGnWmOJGxG5FzVcw1ldxIJdrm7N0hXzkUjsTov7fdxUgZrC7UEg5E2DblxmEhUlRTHRjNKwrIV4n2/kqLnafRLfhdAw7ZoOgepfo/djsUJWdHYdg3FjTrYvDYdk47X42eWXhvi9oOPHH/VkaTZT9z5Lx5Jej1Ikh3sfz/yI+x1RJA0EOqRD7eU9P0BNA9qM8m5rBi0q/UEN8ohBiPiE9eDsOlR7onOOhi22WwFeCJ/iDwdoFJz8Ta2p1OT6YOE5VDoHkK4+VCPRKCnUKDb1TBhKVTWH3LIhTrclam54XCPtVaAMWmsu9kOsNfReKJPDOK+cIuFWlIFb3PxQ7XdxXqU/lCP21WxQD6cbdByTPpkVciXt9KqWgNgJlEjJ+Hvq3uDnMzu0zwQcOuG6LkGX94WE/fTgy1m00UeSP5TxHDIhNs8K7VbxqJt8nJiKrQjxKweKRlw3ixlGQy3iclgKGr1CJo2E2MC0Xnm5ikVjIWtHrFQm5okbSbCLTarGXIRcZ8HonXLFXEf0+kC1U6EvNRJ2a6lyMiKmXo3TDzYZlGSR/c6QR4f2mBTcqOilk1/oqKuFQl0CUuovd6KMDKwQ1FWxlVbUaaGN9iUgpm5VIXnlmY5Jb2pQoEeC7uDHB8VvJJSNcmI1IzZ3h4glykpcrVhOpiBQwHLxQdTjI+vE5VciMLKMLbsS/FUjW/eOKMUxR97+BJXr5whJbliY5NrFHf6GD4m0KLS6hB9R5fpyfJxPdijJ7lP8cktFr95gZk3vyg+S9jggd8VC4YW8ARHSR5e3aQrq4CMcBc8ncCYWEB9W8PvGOhRmSJ69hiG6ZA6viI+l32sJDWG7szPcuq4IACnjq9gDHg896+FSvajP/Z5nN0Iay8IHtb0X78KvoffL9raS+bQbKnB1etCIIj7VYHg6JEuTjmm9IjS76/g3G5gihiT5uU00dP7ynrFK7v4bdG2WthBj2vqs+6dOG7XUnNEZGaX1kK/SoN53QBXnr8AiAD79LueoXhT8Mhq5STNdpg+aZQaSTTY2xpg8qKo/nM7QdyupQIudE8JUfquQa8ZIiAlEfRgDzydwopAjkLRFr12UBG3u50gQYlWh2NNuq0whYI06Y20CAR6DJwROdPdmzNceTDH29/1ZQDqm3nW10aYnBHSBHY3oJTes5Ob7MxPkJAcvbWVMXxfY3hE9ONyIUM43GFdjoFEuKWI2vVGlHS6wrfuiI3BhYkltos5telYKfax244QlkHlRKrEM1vDimC91w5zSkpxNLohtluHmnQBw6Uq504QBTkpy1FVuvP1oOJhjkYbxIMdpb+0044Q1D3mZVsHDJ/H+3eodsVmZ7MZZaUZYCIqxlfFNtluif5wMdui3LPouDodr8fPr/2b1yRImv9rJ171IGnu/7j9epD0epAkOtivH/8InicGxFIjxHS8fWgdoXtcLh0os1a5XEwyFD5MrzmeTlou1hutEMdTVaVsHbNseq7BpiQn36vqvHNIltXaFrav0ZYLw9mcQAxuy9TMbsdiNt4mK3d7TdtiS54nbrp0XJ2xmJhMKr0Ay40wF6T30Eo9xki0qRCelmtS6ASJSg6TpvmK6/TMXpDH+npKM+S5Qoi3DtaVIKSu+Sw1Isoe5XYpx+WSCLYuZGy22hZHJbfDQ+y4DvLzyWCHsGmTkQrlO9U0L+znaDqibd8/sa7aebuREFV7smy/1Qvyrb0sT8oAMxVuslZN0ycn0HS08QqLklulLNOS9KxpPplwU4krlhpx9ptxTkk9lnYnRLMTUujQYiWj9FUGkmUs0zmsBGpFmJ5Y5bnbYjFOBDokwi3uSzTs4tiySpHFIi2+/OAoT02I4OPuzhBPnb/K+qoo8e/LFdnezSv14VY7TDDQw5N8je1iVimKH51boFZKqoUtkqpjhroUpBZSvR5jt5bi1KxIxdx+MMvRSbGILayNMTawQ25MLFT13Sy+rym+UzJVxfN0nr0nKtIuTCxiWbbSZOp1gqQlcXvlziynfvgbdBdSAFRWB8k/cYfelthEBIaqENDQ0mKMNL6RIPZmWZF2w8N8NI5/R5wL06dxZ5TIuEiDGokerYV+ItPi88adUeJvLOBtSdXsgEf9luCGxY6vw+lJ7C/KCs7BCp2VPiKnpMhlOAgBC3pibLqjE3T+QKIMR3fRkmG8EXEuX9Op/rpN+lGh3dNbS6IHbYyECEYKLx0l/8FDFXHKdUgLJMRLZXC+XiRwWsprfDmDbjlsPhCBXf/oJpHBImZGtEHj3ijBrEzj2SZGqEdrWwQn1b0cnq/RP7OqPm+XE4SlNpQRtDFjbeqrgqOzv93P1KMCDXMaYaxkg5XnzojrTq3TrcWURIDn6uiGR1P6wLWbYYX2BBNNlm/PkZTjZejCXYp3J4lI8chOLUo4XVNcKiNgU93L0ZIFKoMT6+xKXl3f4C5ffekhTo2I6rVIuMXmbj/9MvBL5Up4rq74TLrh8TU5lh6dXCCTL1CVnpLVepx4tKkkAUqVJOFgV4mcHlTCHmx2blZinJVtFTYdVhtxhfJbusefbkV517Ak3xsutV6AmOQxur6m5ppLuwOMx5rMH2g/xevsdcLKOeFBPUbE8OiT48PUPZq2pTZpiUCXrkT8d1oRPFASAK+VTtLrQdJfzvE6J0keC7UYPtIfyPII6p5KVVwvR5HqAOy0wxxPNhXXp+vpBHSPFak/NBTu0nQsVfKvIQZL3Rbf/9GZHbZkzrzYszA0nwm5kJc7wvi1KtGAuUSLYjegkKZ0wFZE7ajpYPsWn99MAXAu0+XxfIF1SUx2fY31ZpRBiQbpCIj4wI/uaLKmzG+PJT2Slq3UZ49kPF7YHVBK1x3H4MmBHe5LNKjSM3hjXpx3KNrgpWIfmYA4V9h0yYU6qrS21gsQMFzWJDE8YLj8jTPXeGZBwOulVpTPb4qg8O1DFaq9gArOar0AbxnaURNjONhlKF5TBreLW6NKFyoTq/PegW1V+faHt0/yaH9PuacPZIps1ZPc2RCL5GCigu2aKkgCUdECkOgG2Sn2MSq5UiBQnWOSk/RLL57kvSMVxWM7sCkBqNTjnMtvq3TbcKLCt6+dpSPb/UGhn8fm7tKRnycTNXq9AAlJhN/Y7yMrTXfrlQSa7is/tt5egL7xTeXrFQp3GBjaURVtR4Y22ZfIwEjfHpFYU5GJDctB03wlEbCz049puDwyIwKseKaCa5tsbwrS8/Tpe0SfEv1yyrqL3/YJjIj2yMbaaAmTgCk1lroa2mCW7d8R/2uYDiGpmG0dt/AXttFnpI/YCy6Jxza5/x9EOunIX38erxugtSg90s6s423pNA90lU6ss7koXO5nx3cwNzYwZcm/nrEIh/fxWzJYeT5P8tF1mtfEucL5thKatB9/A4HFm7jRFADmpRdx7SN4FfH+W7tZEnNrtBbFM2RPL+BtOOgTYvFG13Bui8XVeMzFd3W8DfGe1h5cYPLkPBPSM81pHZLLQaTjOnviPNGpLdxa5DBVF22Rnlln6XkR6CTTVQKhDsG+CgCa4XHji09y5r1fF/8/UGTx2bMAZPqKaDtZ/uCWeP8/Gm/i9Eyl7q7pPqZlY0t0+neuneMfffiTAKzfmSURb6jxUV8dJNZXVtygO/OzPP7ur9GSlibtRpRnHxzhvOTDNUopVcavmw4PTT9gV/Y903CotKNcuS2C+b/xti/TrcS5vy7e48zwBiekIr2ue5T3sxRkocNgX4E/vH6W7zspyOaup7NZzFGQm05TD9N2LMbl2AwaDg05bjPhNg/qFqNSFPih/C7vGz0kboPgEr1UkD6T8S49ySOKmS7L9RhHk+Kd/oflFA9nXYyQ6FtB3Wcs1uSaTLGfy1TRLZ8tGTQ2HVP5Yu60DabjPYbCHdruISXgL/vwfU1t7F6t832vHYZh8MY3vpE//MM/JJPJqL/v7u4yNDSE63735YavB0nyiFkuxY7sFBYsNSJKX8PQYDImFqYXi0Eey3mqaiwbbvGlzUHOS/LolVKSsUiP6bjYvVS6QXxQyNP9Skbp7eSDPdZaQYqSDDhfD/DWwSK+5C8sN8IkLFfl39caUY5JBOKF/Sy5kM2FjEQZTEehKiBSYoVOWKWqBgJ1lqpp1qVOUMcxuFSUZo5Zcf4HFdGpHF9jNNIiaDjyujH2uyHFSarYpoK0/4/lPh7K2ozJ6pT+WJUru0MKwQKodYPKlqTWC/IfbpzhsbyAyFfrSd4zInacy/UEY7FDk9qHZx6wuj1ISD7DAU9oXqIhTw5tsCdTYPVegFndU3IBw5EOt0o55eukaT4hw2FKmmzqmk+xechJGYo2FM+q2IrheDp/IH3QfuzkHfZrSaXu/beOrlHpRJjLCzSk0Q5TlzB8PlHh1vaIUhBudYM8JPViAO4tT5LsL2LK3b0V7LG/ksWSu9uZkQ2uLwsy+dsufoX7L55RAZeu+eiaT1QqBm+tD5HNll72TB51uZgcuXiTletHmX2j4Pa0dzP8m8+8i6clsXt0fJ1gosn6PWG10W6HmHzopiorv33pNBcnD0QPw/S2kwSnxAKCp+G3HDoPpLjk9D7afonUqBg/4Te6OFJCiJ6NlgpQ/1PRPq1SkoS9y9wHhXWIsxYidmodtyIWOi0ehPEMUQSK4+zHOPYT4hmcBwb7XxgnfUSgLu1rMaxkA3NEopZPbuIVfWX5YQ++Ee3rom9Zuyug61irgpODDn3vXMLbE5Nm6q/ZsOhQelYgNmMXdyEeV9VtzkZQyRYYnTZeN0DjnsjN3d8d5Ni7vqX0mpxbeaz+Cq6sgDVzDVrzIjiPRx2M/iY9mSbvf9s9estR5t77bdG0TYv2ej+9ougfwXyZ83//eWgf9KA6Q1NiY5B4coe7v/0I/58P/zEAhcURkv1FhdK11/sFoXxatOU/uXCXP/mPHxDvzHR49Mx1VXEWn97g6mffxNHToq8GTZtOIUlclu3j6XxgfAtLIsY712eV0rsRsAlFW0zKOW97c5ALJ27zROKwYGNtfYQBGdiEwh3GZWpueWmCeLSlxk+/r/FQ/w49mSYrt2KkIw0mBkRQVa3H0XWPFzZEwHVAsAbh5fiBsR2lop+KNRjr32FLFsa4ns7tYh8XZQUjoLTRppJlLu/n2ZLz4/eP1vmXSz7/rwkxfwyGO3i+pszJLxVyPN6/w7f3pZSDZTIdE2vCRNRmpx3G0Dx07XXm9mt5+L5Pt9vl4sWLfOpTn+LkyZOv+OzPc7yebpNQ5d8b+BjXpQXBD45qFDoWOenXNpcsc1cGEPlQ5xVl+yCRIokUDEc6RF5Wig6w2bJUNZzna0q0cSzaYqMZYfogP98LkI80uSv5LPtdE12DAXkfR9OHthstx+RBLY4p+QZNx2Aq1mK9dXjdmfhhxVrPNan0AirF9vXdCB+UAne/t5JlLuExLMnDe50gCctRmiF9oa4iQ4Jw0/76lthxf+joPbbKWYX+BAyHhWqah4YE92O5lGO7HeHYge5JK0Yy2OGPVwWydD7bZU5Onk1boE4HnAFD83lQTXE0Lf63bVuMpEoK4bu9N6j4TH+wmuO9IxUsSWLuugZ7nTATMs2XkL5zB2Tntf08S9UUbz9+C4AXF2Y5IoOe69sjnB9eU07j2XiNuztDClm6sTdIzTZVwPHcxjgzyQogJuq+bImITIPOL04RNG1e2BbptqmEMAc+KjlJgUCP3MgOq/MiMGp1g0yMibZbWJkgEW4xNCpSZhtrw0wff6C4Lks3j7BfS3L6uKisc3omZVmto2k+nqeTk6XWu9v9lBpxpoYFGmbbFqVqkulZ8QyBeAunE1CO9I1ajCFJJg5mahgDHTY+dxaAgTMPKM2PEZN9OvpQhfa1GMER8Z6a80PCzw2BZjilCNacNAe+Y2JmGthycQkea1P5xhCuRF63N4Y49o5vKySmvZ0l/rR4h+u/M83IO6+iRcUC2nghR+yRgirrD0zU0KIBvIJEONIG3viE+HljHUJB/H2pdN7U0Y73w6qshNsLo719Du0FgWCUL8+Q+aEa/oJU6L5wFGNZpFAxDby9DtUbIoiOT26hWQ6OFIHsVWOYoR5bd8U77RvdfgWnCGBD+p6NnFgA3WPz1iwAueEdOvUofedFMOe1QrzwhaeYGl1X7XlQgRgd2mf98nGGToiUIZ6O0wnQkAKirmPgubqqSBucWKewIYLAVjtMvRWhX3Ir46ka7UaEz9wU7/ivv/nrlLb7MCXSlBnd5salM6qKs12NKT7T7IVb2I0wt68LXlE+U2KvlGFmelndh2Nb3F0R7XVkdBXzQIqiF6DZjLAhkeZ8osLXVyd5o+ToAWxJNXsQkgA7jQTpoGjP5VqKQcmzu1rMcDZTZkf6ajYdg/P5XVbl/4dMh2Sww44c1wHdZVKKvt4v5nF8TaXqXigkOJtuKjJ2xHBIBHqHVbuhHl1PVxvHB7W4UvoOmy5x0+G5QpSe1+U3C7/6mqTb7n341Kuebjv6eze/p9JthmGwsbHBL/7iL/Kbv/mb/M7v/A4f+MAHXkeSXo3D0OHt/QcVaUIXoyEn6mInwt2qmJiTls0zexHePVwBhFRMoRqnX+7AdWC9FVHByHSijqZF+YrkIDzWV2NUVrf90qLNP5zsUJe7JtfXSIRa5MNiUttuxxmJ9tiXcHmr0KeMZQcjbTquTrF14M1ms9sJ8lCfWBQ3GnEW6jEScjLSgcFIS3kTHUm4NGWVx9GkRzZgsy35TjfKGm/Ma+SlhsoLhThNG56SKuMdx2JMkkUf7A1yq5xQBsBNx2Ak2uLTSwKhCBkemy2DuaRokaDh8I2dHDHroH2qqlotYfUUmgPQ9Qz6w22qEmkrd4NM5vZYkCrZHdcgJhG9R3Md8tGaQqFivobr62zICXEIsZM8kC5wPZ2HhtZZ2BTBy4nBTcWDePOxW+wWcgqK/8rSLOfz26oiL2i41FqHlg5vnnqgoOlkqkqhkGVDklTTsTqW5fDOhEjFLO8OMtW3qdItnqfje5q61rDkfQEM5/eIJepocjdqGi73bhxjdEQEWCNTa+TqUcpyUcyPbdGQnIpwpE2xmKEmEatIuE0k3FbikUi0srQrFqe0X8QKd1W6JTe4R1CWf5fuTZDqbh6qPkc65J+4cyjg1dYIn6ribIiXGn90H0/ShLSkgbMWxr0q0xZTJZzdQ0VkP5Om24ywLvktZ97yHFrIxZiT8gp7nuADAcNPXQMHCInxEsqXab6UVV5l2bEq9ryF9j6RftLXF/CDYsHs3oxg/MAEZk8s8v6JMWjU0Prk5F/qYNy7RXdX/J6+sIDWimIX5IK6MI83KpAj5+tFjKhJRAaJmuXgtUJsycBn+Ow97GqMoWMiyLz+7AUG+0SDjD51hd5uirLcKA10AuiGx+AREVDg6ViRLh2pqm1GOgxmC+TPirRody9NbUe8s5i5Q6a/wBc+/zYA3nj+MstLE0qMNJas06jGlbzE5uK42swMT65T3slhy01XpK9MtZTiDbL0vryTo1RNqr7WLic4fvIeN26IQGhmbI3JE9Lu5ME49UaUqUkR2BimS70ZxZUbx0opjeMaHJWpum43qAobwsEu+7UkUWnxs1dL8VD/thI9vbY/wHY7oPwMO70AxU6IiqQKHM3u05bpttPpCrFAl7EDDzU7QKEVIyxV9+OBHluNuCq+SVs2a9VD9Dyoe6rybTDscKcaVfPR+UyVjWaMATnPXy2HOJfu8DlJdziWdNR3G7ZJNtjlHUMlWm6P35Rj4S/78H1NvetX63zfa4fv+xiGwf/6v/6vnDhxgh/6oR/iZ3/2Z/lbf+tv/bnP+V9skPTLv/zL/PIv/7KKLD0fhZZcLnn8jcm20r3Y64R474jo6ZvNGCeSDvflJJcP9hiLtrkqbRguZmvM1yKcSIqB+aAWJ2R4DIXFdS4VEzwlnbZ/ZDDJg7rJsCwzbbsG39oaUfc4He+w1AgpJdeXI1iurzEc6dIfPiw7TQe7qmpsLtHgWLLGmhQpjAZsOq6hqkTGoo4iHU7HGlwrJ7goSd8zcZ2o1aMhg7eLmSbZUJvt1oEwY0jxpLqezoO6zrGUmOQSno6heZzNiHOZustAKMKe/N8DVeu/PisWhc+tTPDWUYFuPChnMR1f6TM1bYuj2X1lPNsp9LNfSyrNqcFIk/tyBzoUbdCyg6qkNx1qMZkucEsGVNP5HVqdQ8Vp19cpN2PE5OR8e3tYtcep6QW2amlMiUqlJbH6gLO1Xk9yRPp0AdSaUSXoeG95koFUmT6JLDmuQTZfUCXwY7k9fF+jJQPSfF+BTj2quFSxbJUHdwWqMJjfI5Sq8+CGKKUOWDYzRxfoyKozux3E7lqKz7FZ6OPEEbFwbW8Oks2W2Jb94ciZO7TLCaXWvF/MslNLkZFcqL3NARzXYPyYQCWsaBtbpoRyj9yjeW+EkfcKlIVsiupn48RPiLSPFgB3G4z4Af8igL0r7ik44RPI1kRFHIAHdiVGVRqlDozcZHPjlEK0Vl88yfjDt7B3xYITGt5X/mu97QxWtoaeEgusXW8RObqNtX34LnxHx7or7zNg4cbEd4NzN3F7Hbo3RZ8OsiZSadJqxJwM4O3ZFO5PiLZ/SxUnnibQlNyYoycxluflVUy0J6YISmSpeSWLFW8xKCsFreE6ZqYhBDeBh/q+Qu2+SLfZ+0mCEyUu9ImqMc30aNwbJfGYCEZ6D6IYiRbNpSH1TJNveYn2ugiaoqd3iD4hgiB3pUd0ZI83G88D0G1GyGeLjLzxGiBUxXPxNp7cZF3/0hOqcjIsx3pAevn1qjEm3nCFdUkCz0+vMWgsK+kCTfMxIx1mxsQ77z93H+SCHK3FyM+usnlHbIwGZ1cZM1xio5KMfylOJNJSMhe+r5GRG5L8kWWSq0N89oqo/jua3Wcov09Hjo+3pu5Rb0aVcn442OVMfpu7RdGvS62oohmETIevbg0yITdwQ9EGG404RzJivl2tpgkZDoYM9lPhFisyQzCVLLNeSynduWOpCiGJioPQWAobLnel3MJAyGOnE+AJ6WAQ0D2KUq9sq21gaBEGwp3XFbf/Co+f/MmfZG5ujg996EN84xvf+HOf5/V0m4Qq/27/xxiLioFY7JpcLff44OiBPYZFTA7qrqujIXg5IErYd9tBTmVEKqbaDWHqHgvSwNHSfFwf1luSZ5NtUZGpBUv32etYnEofiJvptB1TqcBWbJN8sMdCXWrupBsU5Q5qJlGl45pcltyFrquRDnoMSvSn5xrcrQW5IN3WdztBUpZDUAZJ//NaiY/1iwBiONriW3tJUpboCo/0FdlrR5Tm0FozwkSsyb5EoRxPl2Jq8KAe4rG+CvmomLhXqxkMzVMBx7f2shxLtKjI4ORCfpvFck7t7iLmYUluxzXpizRUoOP7GgOJCrZsj51Gkhf2U+RC4r4eyu/yjEz7vXV0neVKln4pOhcJdFmrpl8Bp6eDHVYksX0s2qDaCxKR9zGZKbAnfZjy8Sq67vGc5D2czO6TjDRZl8T1M9MLLK6PqjJl2zFVsJHpL3Dv7pxKiw6kS2i6z7AMCj/7lTfxtkdexJKL05UXzzM5tMnqtlgUO47FjEyJdTtBAoEe8ZRUgTZcXrpxmiPSAys3soPTCSibknhfmXWpbTQ4sUFpu0+RawPhLp1mRFlURBIN1pbHSEguWXqgQHErT25YpBy3lscYnhbIQPI9ddx7NfS4JKe/NE0oUyM0LZ1pPWCyX5nHaukovgxk8DzcF0qKN+Q3PVoPBmnJftv3tge4++BJZE6zHPSwjX5AF9M17HXR76zJHs6Gjjku+ouzqGOO9ZTyd/2FfqJzW+hpqbA8cxS+KZAj7eExtPtL+LMTAPTGTxHYvIteEguoe7/J3pWjZGZE2wbPufiJJI1PiduobOYZ+m+kHcpzd9CHgjjLMrW7lyZ6tkD7dkp8rvl0SgnF74pM7lC+LgKI2MgeRqgHMo1lTltUv5KjKIPG9ECBQLStDHE7pQTx2Q0K1wRKlZrcBBlQO52ASL3K328+d54TF28QGhbvxSnH6ZQSKqi2gj1Wl0Sfnphdpl2NkZAbNrdn0SwllcREYbeP8RMPuHNZoHLHzt3C7VkKqagX0uSmRT9dvHqceiui1O0fv3iFvY1BmjL1PzyyxaU7x5mRvKK+wUO0dGd9iEyuyPa2mItsx6TVC6qUeqkToT9ax5L8yHIrxmI9obwf247FUk30pajpYHu6SplFLVttqEDMr7lIgw05zudrMaalormlu1wuJUgFxPdTlkMq0CMg57n5WpwzmRJXpEVQ3HIZirT59LrY/LxjqKmI266v0fU0Oq5G1+vxL7dem3TbnQ+dJW69iuk22+X4H1z7nkq3TU5OcunSJbLZrPrbwsIC73vf+5ifn3893fYXOWIWNKS551yihaGFSVgC5tdAWXS0NJOg4dJ2DwXL9jpBSjLvvy/L7CNycM0kanxjJ8tT/ZIL4UPTlSmvaI31Vkrxl26Ug1zIdIhLEm9/uMXVUpLpuAh8wqbDzV0RfG21czw9tKsI4SBsS/JS6+eF/TwXM00VgJzLFliopslIFemPZIcJGOJ/67bF909sqqqxlmNS7lncropd00S0p6xAAMZjdb61JyaLNw8UaDoWlY74bqUXIB08FGA7mWowmSoqRGe5kmWvE8SV6sxvnVhifl8sECOyHPfAl2mnkWC9klUBWNi0GYn21AQZtnq8QRrDFlsxJlNFVT4ftGxyvZZKLxzJ7rFZS/O4rIbbqGR484mbNGQwu1bIqx2p4xoM5/d5TD7DaqmPwWyBzr4YLsFwh/5UmVrz0ENtuygQrUhMkFCPT8pUy+IMx8dWcTpil/mWi5eZvz/DmNzRnz59m8X704wNiOeIxBusrwk0cbmUYzRZVk7snWaY0zMPVNprZ3mEaKxJWHJUdpZHmDwr0hIbt2eIxpoEXiaGZ1o2llSCD6Vr5BsFtnZE2zeaUUanVxU3aHRumZAU9XTvdUD3cUvinaU+3ELbLFB8RiBegXiL6DELbVS8Y3b3ICHtRB5sYqTBlyCTvRfH6QTIPSZ93nQTYyaG0RLv3C/1qFybUkhHcLSEKQsLnLUQ5piDNyRQGW08iPPMIl1ZORZ/ZBevjNJJ0l64jf8GkR7qfnKb8BENLyruK/TcFyERw9+XApEJn/yFuxgzoh/7xSa9E48Q+eviPcWuXYWmFFEKergbPcxx0R/cRofOnaRKoerhLpGgrd6TU4qRPCoCzp1Lx+k/taDuORrfIjrmUi8c8m6qW330nRKIXizRAl8jOSolE0I9fImqRMbKdBb7hD4SMDW9wvrdacbl77UNmR6WhR+1/QxnPvhVAFa/fJG+8U08udm7f+sop598iXYxJd5xukJ5o5+zbxUE+8ZGnpUHk2o8dW1LIUOJeB3HNTgt+3BlL0t+aIeglBNwWiFSoRZhOa5XFieUiGUs1qBaSSnNsb5ElYBlsyMRHNvTKbcjnJsW+k3bCynO9e2wIQs0DN1XRSNh06bWC7Isx/SpcIvtVhRTokMtx8TSXTVH1noBblQObEc8Hs5VCclgzPM1AoZLWab6xyJtNhpxBqUlTNs12G2HlbxAzDoMqMrdILlQm1uVJIch2uvHa3EsLy//n/42MzPD1atX2d3d/b/4jz/7eB1JklH4L079uPJu63maIksD2J5GRk48DcdkqR7kfFZMALVegLhlK4PbdMCmZpvED5AnT6dhGyqVNxZtq8qvhNVjuRFVqq6FTpCQ4dGVu7XTmRLbzZgSBLxTSahBmgj02GhGVOXbRjPCYESVwNB2TGbTRRrdA55RmqPJGpsHqtKGy2c3xc5nIqaz0vD40Pih5tJ8LchcQlaJBHpETZtVicJ0XJ203HFutIK8cXAH64AH0Auia76qODmokKtJdGg0UWahnGNMBkRdx1LlvZutMMdSFeXdVmpFKXTCzMqgKJ8uU63HeFamJJ8aW1HVbIbu4byMo5SO1fm1G8c4LdOAKWkcPJcTA8XzdCzTYVPC7Qd6VyB2nJ6vcXxYkGXLtTirlQwDkgTetgNsNWPqvlxPJy/Ta9vlDLOja9xZFYjOmbl5VtZGSMmJvN6KELBshobFrrrdiHJ3bZxxKYgXCndUZU8k3CI1vKeqIZvFFPVKgpBEC9Nj21Q3+lWqrtcNqJ913SOWrKs0X7cbVKgSCP5SeTuv/LcsWYn0ra+8EYCzx+4SGxKIROhNJvazbfYkEXnk+27hDw7CskAStHQUHBcvL0Uc42nMbUm8LVYgGYOmVGvfBnwNzTrc0XU2coSnxH04pYjg5RwUpdRb+KOCr7T1rzMEIx1yPyAnu7KsUrLkXs92IGjhl2VgeGQUbUd81zl2Gr1dR19bEfe4J9qiflcEXImLa2imRv0lca3ohwz05VX8UYHw+aEwvVFxU8HFy/i6oVAo6i0IB9Xzc20N7WgfWqUifjdNvA0pxTESxnkgJATEjehYo03sdYn2THfwyi61mwLxST68irsTEogZ4A8P4d8S7a7HYflPLjL+JuHH9s3/4z0M5/aZ+SFheeOsBTAybRp3pZzCmS28kmirredPMnj+HrUlaZcS7BEZ3WPtudOAUByv3R3DCIpx3q3FyFyc596n3gDAzONXaaxL2YbRXa595XGOnRNFEGaoh+fqNKRQ59bm4CsqbwOWrVTkHdtie7ufgNwYHozLgz7f7gZZK+eY6xfBquvp7FbSan7Jx2oKtU1GmjQ7IRqSdxgLdFiuZCnJ8ZQJ9JjJ7DMvU3XZUFvJi2w346SDHfX7tf0804kacTmfhK0e9U4YV1YDXi9mmUnUVWGMqbvsS0rBzUqc4UiPiOHSdnv8v+f/3WuCJN3+gXOvOpJ04o+ufk8hSX8Zx+tBkuxg/3z6b/KsdBv//55Z4X4xz27nMO3jylYaDHfZ6wQZlgFJVA7uAyKh7enM10MclaJ0hubz+NQDPidF+05lC3xb7t7P50rcLKVJyAXD0HxChsuErKIqtKK4vq50PhqOqWw0ZjL71DoRBUu3HYtksK2ClViozYNCP2V5X7lQm2y4xc2i4DY0HZ0zMkWYCjcxDVeV2q+VcjTtgCIi1m2LC0PrXJcVWn3hFgEZ/LTsAHvtiBJoK3aDvOfkdV6UOkiJQJeA4TCaF4tVqx2m1oqoSTNgOirQGUyVaHTCSvU2I1W9V2Waq9wNETRcnpgRlT+b+3nF/QERgBzoFXmeTr6vwEvzR2Xbeszkd/i9u4LfMxNvcSS3y2C/WJy/dOu0qpSbzu+wXuxjQla7FatJ+tJlSlKBPZOsslfKqMk4FW4qcchuN8h2OcPxGYEEPFieJBuvsSbb/czcPJVSSolPhoNdBsY3aUv+TyRVIzYhrjv/tYcZO7agiLr1epyhqTX13T958RHODWwyPLSj2iAuhTcf3DhGf36fel0EtkNTa9T302SmxAJbXhkmMVBAk/1l694UE09coyOVslulJLlHJNpzcpzOZ1pqwVy/foSp/7aAVhPP7KeyaK0G7mURVJl5G78nLUz6E/j7NbSsuGe/2IDhHKyIRVLLhal9vQ9TohKRh+s0vp0mMimeSYt6aAEZUCRjdF8y1D0b8Tb6qQxaSSJe03PozaoKIpy3PImbEkFO6HP/ES0dxR0XStdau47dP0lgWSzsrO+i9afwQ9IAt1Khd+IimifTYpuLdL4quS+T+1SuTilz2OjpbRpXR4g/Ihby1vUsO/MTjJwV7ed2ggQkKle8Pksw1iIkSfFWf4X28gDf/qbALd/ykT8R1iuzolLQ2YxipJp4bREI2MWk0r5qFJOYAYe21GgbOX8X3XLolaVXWawNnqbQouZOVgk6pof2aRRThOQmq1mN4zomrgzeRi/eYePKMUYfE8KVna0cbs/i/i0xnsbH14lKtG/59hyxWJOw5OU1anGp/SW5U46JadnKRzAQ6qq0XasZIRDoUZFj6/buEJbuKQPbsGkzndtjQRZNzPXtUG7GuLYvAp0zuf1XBGD3SzlOSr/GW/sDZEMdNQeOx6vcKmU5L+eicjuiKo1nE3W+vZfmbPqQ3zaWLHN5V6CjgxHBUT1AmvY6YZXWA4HiX5WaUsNhUYDScY3X1Jbk1veff9WDpJOfvPI9ESSl02k07c8mmpdKpe/63N9RkPQDP/AD3/WJ//W//tfk8/nv+v9e6+Plitu3pQ3FuUyDe7Uoj/TJBaeaJBk4CAIC9DxdKUZPRLsEdE8Rqg8EBk9KI1XheB8jL6Hm/33R5OdOCYj/XjnLciPAmwbFgtF2LBZqMaLSMy4V6DEQbfBZuWM7meyooMz3NabSBb6wKnac57NlCp2wuo+xWB3X11QQFQt0+cLGICeS0vPI07kn/dR+4tQdrm+NMin9kW7tD7DXDbDXkSnFiMNQuKM+XyznyMrnCVs9PF9jVeb5ByNNAoZDQgYcXdtiqZJVab7RdJHLW6NMSiRpo55UfkmpcJOA6VCXab9kpIntmGzICpSQ4ZCL1chLQcTlrSGasrKl55q0HZMxGWAWWzFOjS1zRwrY5WM1PF+j2Iqptj4hxSEBmp0QUZkCKNXjDOX3iUrdl/nFKYZy+xRkRY6m+aTidUIHKYN0DUemqQ52xgc2JclUFd1wceWk32jEsExbabcMZIr0T62rsv7i8jAtqdViGC6BgE1mWEzqt66e5OwbXlTfdVoh6ts5pZJ858ZxjhyXxO2VESbP38aS3lI3vvgkp9/1DDWp19OqxUj0lQimxf/qQRtzsIGzLdrHSLTgoJotqdH6/n9E6N/9M/H7RJru7Dk0R/KdHlyn/uUkxi/+qPh8/zrBz39atFU+in3vZVPMB85iPbiBOyo4Or6uozeraI5Ebh0HP5bAf14EmfrpAexhmdZ7/ht4dRH8AOi9NsaVyzAs5hnNsfFSGbSeaPvu+EmCD66Iz97xP4vnboo0qO+20c04XkeM0+gX/w2tN/0gZlmkY41WDTszRGBTBOTd6YcI3f2W+F/TQi/s03xOtFX4fWG0xVWcbdFvnUYYTfMJjop+qiVN/JZ8Z7sR3GYIMyX6lmZ4oPvoURGM2dtxjFibjqyGbexm6f/wFjRkynEdvKYYt2amgVuLYKTEO/aaQXxXF+cEvK5FrxwnNCDuY/5rD5OUEhgDD90Bw+P2ZwVyePIDX0czfW5/8ikABke2SJ9ZxN6XnMdyHN1yaMp0XO7MA3ZeEhu/1PAeVrxJUwbzuuHSqUfpSh/AZH+RQLxFURrtWsEeYZlCjozvULg+S1OmyHxfIxxp02qKMRAMdnlpYY6snCNyiSqZTFlVXpXLKcVZbHZDTI5sKNL3c4tz1GyLQRm8Ra0e6UhDpfZCVk/RBPbaEcbjVaWbtFSPMpuoq+vuNmMc699mSyLPvq/xz+5G+eiE6NsRwyEpx/y3dnM8nCvzYiH9mnKS/ksOkn77t39b/ez7Pn/n7/wd/sf/8X/8P8UgP/qjP/pdn/s7CpJ0XefDH/4w4XD4z/oqAJ/4xCe4e/cuU1NT3/UNvdbHQQf7N8c+wmJdTEzDkR7LjaASkMyH2sr9uemI1Nl5aSFS7oTZboUPuKN4vkCLFmVOfbMVJBt0mJLO0z927w4/M/A4ACPRFsuNKFkZgOXDLfbaEcV/WmpEGI10FNHbB8al/o6heYRMh21Z4u76GolAT+mH3K9kyIU6vCDVZeOmz5lMlT9aTQHwkamCcryOmA4DybKabP79/CQXMi0VkF0uJnl6aFcRqvfaYY7KipFsvPYK+DtguKqSDaDQDfDIwJbyQRtNVEiEWxRk2f9k/zbX1kRqKhNqETRtxTcYiNVp9YKcnBRVQwVp1xKXCuW1RkxVvYQCPWrtiFKr/tOFOd5/6oaaMEEEbAfptcFEhWikzbPLYrEejjYOd6+WjY7PeL/Ykab7ilQKGfZlkFRoxjkqU3EgLE7+aF4gZ//gvZ/n/q2jCqHSdY9wvMkdaeAZDvS4tjPM97/xmwC8cPkcjz18iVtSY+bc45fUYjJw7j4bl06oHXoo3iQ+s8nqN8+JdkjV8DxdpdSyQ3tKLiA2sUNrPa8WE7dnYXcDittSXBylWkkqDpPvaUKhWabdNM1XjvFDT9zAmIri3O+oZzaHXPyWWNj9roY+kYSi6OPEIzS/LXWQchXMCZvWVdHu4WP72OsxTLmwX/nkWzhy6h5BWcEZOO7QfCGhAsFArkqvIBbq8IkKRMM0vy36V3h0H7soggqA0q1pkmM7BB8RU5qXyeFb4v0b22u4/cPot8TzeiePYexugi42Av5GBa9joJ8Uk2r77LsJLj6LsbokX3IPb3JcPryJ1uuirYuKNL/jocVMXFmR57WCaJajghU97dK6JRAJPdjDCNho5iF/ya2HVaDj2wa9/RSWDKK8dpDAcBlX+ip67QAV2T8SI7v4vkZ7X1bwperUtvKEpe6aEbTRDU9JJOiGS1fSAiKpGkbAZm9ZoMPZ4V0ig0V8aeBaWxtkfztPXJ4rN7OGZrrUVkWhRKseIyEtTkKZGhu3Z4hL5CiSquO5Oo5EcLqtEI1GjPyISDHb7aDql712kHtrE0z2i88M0yUU7nBrQSB+w+kiPcckI5HaB+tjhKwe39oWbfC+2fvsVVOA2FSVmzGFpgdNm/1mXI1rgJ5nsCYDsLlEXemqBU2H+5W00nNbrScZidWpyHl/oR7jWPJQhHKxHiOo+0of72oJhqXS9+N9NcrdIK6v0XZ7/PTSv31NgqSb33fhVQ+STv3x5e+JIOk/PeLxONevX39VYpDvmLj9v/1v/9t3jAz9wR/8wZ/7hv6qjmf34zyWE4uAofm0HRTpudAJq5+jpkupZVI7mABcg6jpYknI1/U1VmoppiWiETYS2L7GXVmm/fHRh0kGDnlEYxLuBvjydoapmE1RBkVrTZ2BkM6MrJy6X0lxQ+reXMiWKHbC7Muy09lEHVN3lehlx9XZ64R4z6iU/9d81utJnurvqPs88Boqd0MYuseCnGzOptv0PJ2YJGtPRLtc3s8RlpP+dKLGvkRkPrM6zMVsjZIMoPpCHXTNV87cejXDNzZHeHJIpCLmSzlOBzukZRXabinDSKKs7vF+Ma/4SivVNLlwi7uS31PuhNhph5V+04n+LRYUv6DFWiOh1HbfPjPPv79yjuGI+H02XaTQijEjofjVYh/F3SGOZgSSkIo1WJEE8q1GnFSwy64MypZ3Bzk6tkJCBisHu91qRbyLRLzBW0dE0HT/1lFi4bYKznZKWbLxGjNTK6JvmS6Dg7vckWmLueF1PNdQE/vO/AQDc+K7muFhGg4tKePQd/4+7fU8V1ZEYPf4sdu4jkFSyi3ohktIBhuV++NomsfigpgkJibWCEZblKX5aWKggG54PPd1EbCHrR7HT99RBPPI2C4x6TfmlGPoAQtdpj+1sCRRnxD91OsfhqUHytvMDwQIDgjU0TiV4Oa/OMnxd0hF6bKB1V/H3hXfPf/BL4On4TZEe/nFNuHJDo7UJzImgoQi4lx+HTo3w8pqxC0FCB5rU39WvLf48B6BJwx8XSwU+toafk5WuZTraHlP6CwBerOGv1vDPyXd53craCfHsb8sgv9Q7FtotQq9e6I9zLdP4Gsy7ffcPPpcEmdD9HljoIOfzaIVZXWf5mNc6FPpR7/pYknJiMBcFz+XRWuJoMi5axCYbYIh7tleCBDoq9DbT4n3cL6CX4fdq+I+hz+yTP5h8fz1L0SJnVnHlH1csxyy0bZAAYGNb59l9KkrRN8sgsj6l6N0GtLeI9QjNFRg6hHxvL35II2NPDuron8cec+3yCUf0FuWXKl8ncadUToytZca2Fck/0BfheFji0ouAGDp/gzjUjcpkmgQCHVpyIpGTffJTovxsnlrlojVJSqLDxq1GI5hMjUg5oudYpZsosbtFdGPHz5znT957nE+IFXsG+2wGvOG7tF1LMUrioQ6ZF4mgttzTdLRBpX1CXHfhqO4kqlwi4v9W0o3yfM17pTTHJXB2XQMeq6OLXXYZhN1Wo7Jl1bEM390qqG4o7VekJDhUrMtPL73tIZeP155fEdB0te+9rVX+KD8WcfnP/95hoeH/9w39VdxjEU9ntmTyrRhOJ7qqgq1RKDHXWmF4XrwWF9RpbV22iGGI22V1opaNrfKCQYjYgLpuAYhw1W6ezHL5gC7a7k6hU5IpeJGIy4B3Scs895vH2owX4szJTWXWq7OmCwdP3C7npPCcSFJdjxQyS73DAbDHr/1QOz8pmI+g+Eea61D4crFhpggBkIOlwo5lV4DSFk+CTnoyz2TXNBWyFK5G1LK3sdTLWKBniI1bzUSDETrKq01lS7QdAbYlxYgmuZzeXuEE5KoXGpFWZa8meOZEo2X7fr2uwEGow1yMfGM04ObXFqe5ricQOf3BphMi0ne9zWmDJc/XhQBxHSszUN9RXoSaXp+Z5DBcEftYMOmzUSyw+iQCCLXtwaVbUKtF8DzNWWVkAo32S3kFNIWtGzWtwZZKImU2WPT88SlR95ONU2tHSEqCZ/JSJPtckalOVzbpFRKk5ZE7m43SGUvS0z+f3qgwO9/9p0AnBncYGRsk6B8p6vPnMd2LN7+pAg4Kjs5iuU0O8sCSXjo9E18WTVV3s9QriUYkc8XTtdolxPosk/XdkSa7vw5wTnRdJ+tpTF1n4W1IXIjIqDUgzbabo36HVHdFT+zxu71OdJlce6te0lmfjxE85vStiNgE3pI9rM7FWYfuoF/4CcWcHBLYYX+NO6NYreDRKRXmTXloJkG3XspAIp/mFI8qsBImZXrR4kuiPvITm5iDhWITEiEopgA3UTbFn2rdbsPSz6P8aZpEeS44v17L5Tg3RcxlyXvKhnGjSYx86I6xgvP4fRPEdz8gvi81UBblMiRruPcbGHkJbLmgf18i9a2QJrCuSrGg030qOQLLg4opMzd8tDr27QeiOB+8dp5jr7xkkJwfF/j6p8+zUM/8CUAnOUARgZWNuR8+gmpUQSEBjqsfe4iKWmVYUXb+K6htJ5SA/vsXzqKeV3Kbcg2Bli8cZTYYpO05LBphksoU2X0QEJkO83SZ04y/dBNAHa/dQLXMckfF8hadWWInuRsWqsD7CyP0CeRonohTb6vwN6WQM9WC3kevXgZW27oDMthf1601U4pSyraUP2yUEnh+joVmRJLhVs02mGyMkB//voZJhKVww1NM8ZZqV5/oIF2T47LSNXhcinBR0+IgOr5tUnSrShNif40egElZbJWTZMIdJWYZDbUYSbU4qU9SXVIl7lUyPA2qRO1XU+xWI/yk7NiznhuP8OzRdF2HxnTSAe7tFwDw3/t6tt8j1dXTPK7vPXNzU1++qd/ms9//vO0223m5ub4jd/4DS5cEBpYvu/zP/wP/wO/9mu/Rrlc5pFHHuGXf/mXOXHixKt2z38Zx+vEbQlV/rPpv0lIF4M+ajoUuwECEjmJvKwSLGrqvH2w+TIvsgCVnqXcoZcaEfqCNjsdS37fI2665OUiWLctpWxtexohw6MveFh1lA52FQS8UEtQtw1F7B4It1Xee70R50E9xFuHxILwydU8EzFXpe5SwS53K4clqyOxOvvtCNfKYmeYDXpKvTuge6oaD4TUwFozQkcuzknLIR2wFbH5biXFSlMsem/sr9JxTIZkIOP6Oo1ekJjc3W004tyvRnha3uduK4qh+SqonEiVuLonrRJcneFwh7gkkHddg1y4qXaKv3pngrcMHOqRnMoWKUv+Urkb5MLgBp9ZEjvOt45u0LYDimD+tc0hwqbHI5K0uVDJMBxtKN2kI6mSqpIxdI9UuMll6dX20OAGpuFyR/5+vH+Lu3uDqpTY9XV1j8VWjMnsHg/kJH5mbIXV3QFlavzWM9fY2BwkFReTfjTW5N7yJI888SIgnNsPSMxXnnmEc49forYlyfb1GM1WhJK859nxVfrPzLN/S6Qm2s0wrgwKK/U4QwO7itsxdHSJxm6WiPQY3FqYAIRVBcDag0nKjTinz4pFcXV+iuExEZzERvbYvT3N2N+QYoqdHu6WhyMJwoGnQqz87yNMfli606/qtCWnxgjYhKf3cCsyXdS1BG9G9j1rtIa9GVfVXru3pxl+8jr1+yIQSp5dQesXATe6Dp0uflP0Dy0ewi+3lfK3PzuBvn6YBiUYgLasdNM1CAZUBZr9pSrm+4fxTfnOd9fx7pUx5gTaUfl0gvBPTRN8VpTMO3sW+mMiNdX9TJ3QxD7ly6LdE1ObdEsJApLf5TTCWPFDTpdvm/SkZUkwU8OuxmhKCQ0jYKMbLgGphN7aT9GqxRh+8zXxv22TzedOMXBScLR811BE7PLqIEvrowxLH8RC6VDFGoRC+/jp+7QlgrO/3U9c9rtAuIthOrRqom0TAwV0y1Hnru9miWaqatG12yGSU5vs3hTPfHd1knPHhYp8YbePWKyh1NyLeznCobayQ0mmKjxz8wxvPif4YdF8if1FKa5pm/R6AYp1sQlt9oLcq6SYkvcZMh1cT2dQpsE2ylkWawmFJsetHvvyOo6nM5cusiKpDj1PZzxeY1nqKB3NFFipplmWHnxHkg325FxcdwySlqsskEKmTaEVY1vyA0OGS902seQ7XW8FaNjwZF7Me88VEpxLH2YFdM2n6xq03R7/YOG3XpN02/X3XSRufcfJoT/zqNsOZz596Tu693K5zLlz53jzm9/M3/k7f4d8Ps/i4iITExNMT4uN6y/90i/xC7/wC/zWb/0Wc3Nz/PzP/zzPPPMM9+/fJx6P/z+e/7s9/krSbQfH008/zVNPPcXP/dzPveLv5XKZD37wg3z1q1/9C9/UX8Wx2wkwGxNBUcc1CJuuQh3SwS7nMjKdFOyyUI/QL4OPfKhNyzWU8OJ0rCVMSA90lVwD39d4UfIqDA1GI1KrxnCVwivAZjuE7elKqHIuUcf2dDbkQmfoPnckL2Ys1uSxUIevbuXlueCJwS0WZSXYQKxGzzVYlBB400mRCNj0BUXAdSB+CeB4Bi8WUkxGpeCfr7HZMgjJ9PaJVIuVRlRVdrRcnQsZaXbbDZINdRRfaSBeVd5IAGvNMEeSLXXfg+E2NTvAuOQOtXpBVRlXtUMUJDEeYDpVwtRd9iR/6XjSZTRRIS9RunInzHG5i3x+bZJmN8TFnCSpyiqXg0q5U+kqhU5YCck9MbHI1Y1x3jorvag6IYIyWN0uZkknasxIUqcKaOR9Njph3nDsNiW5KF3eGuWcTBHOTi1z98EMKYkkdbpBZkfX+FdfPA/AxdEUa5WM8nJ749gyRyZW2LgvBnMo2CUgA+7J0Q125icIyPvyfY1stqS83Pa2+ln73JuYkMFM//Q6Owti8Rke3MH3NcUT6VbimNYhB6XWiNKfK7D2QKQyk4kayURNcYHG55YI94k+YjfD5KY2ICCQAEwTY7CB9qjoa9rGOqP/3QDet0X7mOMWVk1sCkJHK/g9cKVYZHCmjlvU8O1D7kSvHCd6RDzTSP9VODuNuSqJyvsxrLQsQ78ZwXrPBPqiCBh6d0wCx8MQkhYxd1YgFcCdFsKLvmlhrgp9HXd0Gu2FG3SfeETcl/Mt3EAINyL6g7m+iFNMoMVEX0u9eRt/tYt7UpTEb/+izui4CAqCYz2wUNpHRt5Fj+/RXs2rtrZrUaWTFMqXlYaSFu5h+k1CUgVbtxx8X2PvgUBW4pkKqeE9Lv3HtwNw/PxNhi7cpSVtSux2kLBMg8ayFR45saQCsPzkBnYriCXTb7rl4HYtynviPU1cuEVP8pMaxRSpY8uYsiikU4mTGN9WxruuY9CqJChK8cTPPJjj7+f/BDMg+sdjj7/Af/Mf3gfAx7//T9nbGKT/hOAO+p7Gi7dO0ifRn2SqQqEToi1TfY1anOUtseGIBTvEIy0+vSr65US0xxtHV9mWvMTn9vp41/gKjYOAK9RmZTtLRIpxZkOvlFRp9IJqnKZ0D9fT1Rxb74aIWjaP5sXmpucaTMYPpV4ChosuKQbX9vvJh9rKk3G1nmAi3uCmpDscTbTY6wRZkZIqTw+UqPYOrYoMzadim3S8/zKUkn7pl36J0dFRfvM3f1P9bWJiQv3s+z7/6l/9K/7JP/knqhDst3/7t+nv7+cTn/gEH/vYx/5C1/+pn/qpV/ze6/X4hV/4BZLJ5Cv+/i/+xb/4rs/9XQdJX//617l58yZXr17ld3/3d4lGo+qm/iLS33/Vx2S0TcgQE9dt6dlzUpInVxtRpqQy61Y7xHS8RUVqbziejuNp1OTvAd0jEeiyKEtLdzoWc4kWlm7J63SJH5jOegZ12zrcVWs+a60AIzKI+uJWiveNFjiVFQvOzWKWYzJH7voahuYzFpW6SZbNVj2p0J5WL8jlUoyxiJQosE1GoocozPVSRiFYlZ7FXLytCOKG7vGu4QJ1WTnWdkyeGNzkV+6IifyhrK1UwcNSMXtPVoXstSNkQx2F4JxOV+m5Oj3JuUiHOjQdi11J7g4aLleKYvJ890gB29OV/UmpHaXWCzB+oKnkpSi1owzGxe+7rSh1udPbbgdou3nSgUPk7Iur40zL3e2vL5n86tP3+I2rwnbh9KDJeLLEuiwldjxDcbIeG1nlGwtHePsJYUlRqqTUzhBgvZYiZPUUvP/Y+BJ/fE9IC/z1ZI2x/h22C4KoXqglaXVC/Oi0mJjXi30MxGo8dkwsuBtbg6THtll7TkDS4yOb7O+J/x0Y2qGvr8wffeXNADw+9YDMxBZduSjm+vcZTS6ztSQCo/WNIUZHRLARjLRxbZOWrBra3xOLbFhW5OWzJUqVFLNnRCqiVUwSjLVUX1xfmGBWlqmv3Zpj7PgC7EuOzfAAmufBJZF6aW9lCWzdQJ+Qdim3IDAog/BwCM1y8WWKg2QM9lsYF8T9aK0mUX2bygsiSAxnK4TiSwSSstrJ0Sl9SaBKmffsQGGX+ksCeYy924FOGz8iruuWuxhzGfS6uLa2vYPfJ9qyO3ySyMACodvPANCbPIXequImxeLsF7+K9Y5JfEuMj/qzOYIfm8KoiXRus5nFT4n+4W8J6QQ9I9FXy0KP28ryJf3BCqXfTxOUJHjf0QnIVJdTjqFbrqoSazWi5KfXyEvvtvLyMPHJLaZnDqrwDLyuxdUrot8+9OQLigvUlihQVwYfkWxVBUgAdiNMtxEhOyTQU03zVRVmYT9LfCuH3RbPa4Z6tLZz7G6I9HwiWSMYaZOTnnMfidfpVuK05LXazTA/9bBEDjsBRo4sMf+cLCiINUkEO5Rkyt3aHuAHH3tWaXjtbvere8yly1RqCX5QPi+Iuesg8f+GgR1u7A2SkuiYofnMJboqTXa9mFUuA1HLpueaSkwyZHjMJiuMy6IZHTGGn5fj66G+ovJ6DJs2282YcgrIBrtELZtViXDNpYus1VKqQGetGWKzrROW3Xomris7pYZtsdkKMhzpEnAPEfq/7MP3dXxf/7O/+F2cDwRS9fIjGAwSDAZf8bdPfepTvOMd7+AHf/AH+cY3vsHw8DB/9+/+Xf723/7bgBB53NnZ4e1vf/srzvPUU0/x7LPP/oWDpKtXr77i98cff5ylpaVX/O07kQj4vzr+XNjcl7/8ZT72sY/x6KOP8ulPf/oVEeP36hEwXFaaYkBEDI+5hPAzA6HAfRgUacQsW/n01O0Ajq+RlYvPXjtMuZ4gKwOQsViT5XqMMRn4ZEMdlffeaYeUGOTBsdkOKi2kuBnkeinDeenUPZesHhq2Rhss1JIE5MDseTqufxisRUyH0YjNpERBmo6F6+sqhTaXaKgquqjpcLsaZS4ugrFiN0Aq0FMWKOWehaln+KFJuWDI4AnEbsz2dM5Jsbe7hX7y0RqrkgBZty3G4zW222IneKWQZTLWVAFYMtDlqQExiZmGS7ETZkZyg9YaCfpCbX5nQew63zLQoGlbLFfEzvjhiSUKkjz9SL5AxzEZk1V3pUacp0cOS/x/7ozBpdUpPiDJpPu1JIPpEh3ZXv/LtRk+PCGu27UtZlIlHqyL4KMvUeX27pCSPTA0j+e3RnlESghslbI8La1Cri9PMZPfUUTtvZ08lWaMcSmfsFrJcnxyiWLxkON356UzCvHqdoPK7PYg9faINB0dO3+H/XuT3JLmweVuiDefvqbsHzxfU7o3e1sDXFmbYEIS6If7d7m2NMNUn1gwbdsiaNms3RHpk0ikTaMWJ3ggXZCoUd8UAeTUwzeE9UVYtJUfS+BdL2AMS/ucFwaIdQKYOxKJuzfJ5AeEoKFfbgvOzoE1xtIW1buTJHURFPR2MgTyhlLY9myT7kIcVy7eoYl90uN1eS7QkhHibxfvwb1Zx+taWHPiGc0zYdjbh4QYI17VQ3dEKsp89tP4b0yh7Un+TmwVfXEBs1+8N4bzuMk+zOdfACD6AxPoty9hHxML/9EfeR4cmXLwNJz9GGZObKJ660H0oI4tSc3tPwqRmN6keEeidEGb1q543+uLExx/57dUlaG1l6G5lyEgddfi/UV6xaSyNAkkG+zdneLCI0IwUtN9GtLQODFQYP7acaVvlrItbi3MKD/C2dklPE/n1k3B+TgbukppWwSnY7PLGEGbjVsiAJ05dxu3Z6lAJhhp0ygnyMj7rGzlqZeSDJ0QKN7ylRPEJK/O9zWuPH+BwawYe8Fwm3ulHG+YFN/t9ALs7+SVmGnPMdmS6HCk1KXcijEpNcmubozz0MQirpTI+PbOIGtNnXcNS8kR02Yu0CEg5677tWHGpHzCRG6PF9cnOJ6WOnPtCPFgm+2GmCNy4SYbzShvlCr9i9U0HbnxmUpUSQW7ROQG9r9baPIDmSFOp0WAcG0/z0S8AXKsaRq8bbCCKdHCu5UEefnObpRDPJ6v03bMV2QKvlePUWnsfHD83M/9HP/0n/7TV/xtaWmJX/mVX+Gnfuqn+Mf/+B/z4osv8vf//t8nGAzy0Y9+lJ0d0eb9/f2v+L/+/n5WV1f/wvf4ta997S98jv+7488VJA0ODvKNb3yDH//xH+ehhx7i93//9zl27NirfW+v6XGnGmNEmtAmAzbzNVHiCSKIOIB0x2NdNlsRHtRFoDMXh/5QVylLNx2DhmOwJCuSjic73KuZBHXR1Ed8Te2SwqbLs3txYuJUPNlfoNCxuFwS/3s00SUb6vCJJTFhvHekpmolVusJ8qG24k3ttcOkw21VhbfZjBDQfb64JSbUbNBHB2XM6ni6go77Qz1SlqfEI5uSRHpAXHctjXSwo6xXwqajdmvjsQa6hto1poMdXtgZUurfR9JFQlaPqOTRVG1T7PjkDu5uNamudybtU7EtRuV1Tc0nYLi8fVBMVCvNKO+aWuCGTFVdWxtnVhLA75f6mE6VuLkjq7cCPe6Us/yTNWEk+m+PPI6h+YqM3bQDNPcGlJXAh8YrShLB8Qye3+3nreMrAOzWUgxG66zKFMCR7B5vmlikIgNWXfOVwe0L2yP0Rets3heBXCrcxDIclbqd69theWNEITaJcItw6HDStyybSRlg2d0Azb0M/ZIQ+6XPvJ3hVIkTEyJosmWw3ZRlyrlEVZFp4/E6I/EqR48JHlGtmObUxLLimHS7QVxPp/oya5VAoIcjU739x5a5+g2RmhrvBkiN7tC+Iha2cGATF/AKAjnJHVvGSLTwuuJ/Rx++hZYV79tbq+NWooSl2SmuTnxyCz0u2j2cLeLVfVx534FsFbOvBeNyMl31FcoU6SsTPNWCfdHWxrCFd+IUflEE6HTa2PdCdGRlnG6FiEyLtutW4gRqVZxl0e+Myn1IBdDkLrn5XAztH85gyneuV0rc+jcPc+IfinSss2Zijouxo0cc3Jp+SJL1NNxWUPnxrd6dYTzUU9pYVrZKdUMaTz92ldr8GLER0W+DiSap6R2Wv/gwAOl8UZnJHhyRRINvflNUIZ49ch/3AJXTPebO36K+LZCRYKTDo4+9SLd2mDLrtkKE5MK/szh2GKg0w9jtkEIWjaDN6s0jyq/vwZ054tEWLSmQmOwvcvvaCRJ9IiDtOSaGTHlljq7gPZhBlxu2b986xWCkqfq872u4nk5FFmhsVdO87bwI+m7dnxM2SPKzuNXjxeUZxVmcS9R521hRaRtVuiEKnbBK1yctT1WcbZRy2J7Ov18UY28oopEIJFTl8ZX9PHPJKvdlBXDSshUtQkdwIJfr4rP/drzHRsvjltwon8tW2GuHOSILZVYbMbbbEULy3MORjpq3jyR7/OlWnLNp+zVNt3kv08V7tc4HsL6+/gpO0n+KIgF4nsfFixf5+Mc/DsC5c+e4ffs2v/Irv8JHP/pR9b3/FM3xff/PjfC8/Hj88cf5vu/7Pt7//vdz9OjRv/D5Xn5810HSwQMFg0F+93d/l5//+Z/nne98Jz/90z/9qt7Ya32EdF9VrOlA19NUkHSA/AAsN6LYnobUhiNiunx7P8qFjBioGiLIONg/dFyDsainghfH09Tu4zOb8GSfR0xONrfKadJBhxlpB3K9FGevYzEVE993fU0FMtlgB1P3WJTBSl+wx047zFpTdODjySYrjTAPS9+rdLDDnUqStpy4Sz2LjOQXBHSPgXBHpZMChk/TtpTIoy4lEA5+X6wlmZOyBE3b4mopwYD0kMuHukqdVnwe4NndAR7pE4vCVrsfQ/OVuKTja2Qlf+czGxn2Oi4ziQM0zCZo2tRtMUBPpCqsFPsUivfI4CYbcsJzfY1vbg/ypPSPul7ow/U1vvyIGDDPbkZxfY1RKTegaT6+r5EIiWfKm47iQWzWkrxpZF2Z1u7UUrR9i+NSPsD1dK5tjnFEWpwETVtVhf3gw8+zsTnEiRHBz3iwOs7E4DbPPhAl3GeG1tE0n35JEC3XEtzYHuHMkCAcf/vucU4NCYTK8zUqzRjHjohA59jI2itsS7rdII1mlJF+cR/7xQxWRbyH7MA+tmuo9Eq7HSLTV2RvR0om5EpUSilVZReNNvF9HeegfyyNsCnb4+HHvsj8556gf0wEI9b9OtrTR+Cl2wBUl4ZJzqwrjzWtP6Aq3QJpBy3Yo3xbBDpmwCb9zh18mY3z6j61m+OKuOw2Q/iOgdEUqIQehaZcqCJ9ZWj3VNWNsxCgd3kF64JU3N5xKT44Tkwu5LHHitgL4j4a+xnivYIyw+XoKP69dbSc6PPR80XczVtKiLL51N8k/Ymv416WnovvP0/j11cAwTEy83U8qV3kuwat3QyJIwKVOvKGyxiZJs3S4cJy4KEXGKzS3kuzfWBYO1Bg99snWZdVVPnJDeq7WeIySGrtZghnq5w7KtKi8f4SzYJ4L55tEsqXsVcE0urYFhkpLArQqMYJBHqU5QZm5ugDxY0yIx3MSIf97bx63wOjWyp4z6YrmIaDJ5FnV3LIDrSPfF9TPoCNtX6y8ZpCofLRBjMTqziyorGx38fg4A53pPZRxzW5PS8EQoOWTQqUUn7HNTk5sElBprn6ElUW9geUkfdDuQrj8ZqSL0kHbIUGWbrLydwuR+Vc3OoFuVVOE5Xza8sV7gUHFcD7blAV3Giaj+PpGLJ71B2T8VhLpfVAWBcd6OUdZAoOyv6jls1kVIzL+VqAN+TbdD0d97V0b/O0V7W6DXmuRCLxZxK3BwcHOX78+Cv+duzYMf7wD/8QgIEBkSLf2dlhcHBQfWdvb+//hC79eY6f/Mmf5NOf/jT/0//0PzE4OMgHPvAB3v/+9/Pkk0/+hYOw7zpI+k+L4X72Z3+WY8eO/bmULP9zOoYiHWU18qAWJ2L6VHpiMKWDXRVAzddCTMZ6JC3R8JlgBwjRkru7labF2fShEGPbMUlYmhrIccvmXk3sOH54osVuR1f6QytNi5NJm6YMyvIhh+WGyXhMTCA911Dw7UCszvO7AwzLfPxookKpHSUr0yW65jMQ7lF7WYBnexo1iRRst00uSv+5nmuQCbUVqmJXUxS6ATakYq6hwUC0wbqcuBxP50VJ6HzT4A6hapwh2Xa65lPpBtXkErV6PNS3z3N7YjK+mCtyvZRWXnan01VlaDsa8fjbx1f50toEAI/377DTiDMQkYrCvsZmK6oq8cqtGIMvM8WdfdlOaizWpC9a54HUUQoYHgPhNluSuJ2LNHlQzjIpxRcNvUVCBms3S2nSoQ6VTcn9ida5sjvEhFRRr7UjTKcLilC+0Yiryrip0XVi4TZL6wKiHsiUqDeiPHlEcJBWtoYZ6d/lxYVZ9R5nMvt8aUksIB86e4XLi2IBffjIXULBrrJzKFWThNphZeK7tN/P0eF1ms1DfZqwfA+7G4OcO3uThXvivEHLprDbp5CDULTF0v0jShQznqniuboiBV999iJPnRd5/t3nTjI4uU78iPiu+5ZH0at7aEG5oD5xn8bNYeJnZQXbUhldcnvMh5NorSZ9Q4JAXfjKDL0bhjAeAwLjDdyeRfiYaNvG1RGCVpXOunhvZqSjNHWMWBuySbS6TPM4uiA+p6RYYqVA/yO3acwLpNEdn0I7It7h4NklqLoKwXKyQ+idLQxTjEtvZExUuGWkanRjk6H/qoRWEZ/3/vAm4XGZGnd16rfHiI5JdEz3cHoW7Q2B+G4+mMRzdfqkL17h+qwyg/U6BsF0HXdXfLe2n0HXPU7IQBhPJ3dkRQlGxvqLWMkGCblgNfcyhGUKaOP+FIPddYXodNohjHBXfW4Guyzcm2VmWATd4VxVoYNzRxYo3p0+NOU1XDTDVUFRpZpg5sQ8O5Lo322H6c8VuXFHbDoysTorKyIdPTMnNgQHwftWPUF0u1+JvsYjLbrtsNrgHevfYltubvoiVaFOLhGus/E628UcV2S67agdIB+t8Va5mYkEuiyXDx3eh6MNxWHcbcWEmK1M7c+myuRDXTVnBnSPRLDLmtSgmol31cbP8zW22iEixgEy1CRguNySBScRwyNh2ZTl/NkX6lLqBijLTchBNR7AhUyLurSQ0vjuXee/F48nnniC+/fvv+Jv8/PzjI8LHuvk5CQDAwN86Utf4tw5kcI+4DH/0i/90l/4+j/2Yz/Gj/3Yj9HtdvnKV77Cn/zJn/BDP/RD2LbNe97zHj7wgQ/wjne8g0gk8mef7D85vusgaXl5mVwu94q/ffCDH+TIkSNcvnz5u76B/1yOuNXD9g7K/F1M1ycVFYvxQi3O8wUxSb1nWOwQkhKF2WhGKXbFAnxwfHk7wrmMo84VMFyFJK01w/SkVkvHNXA8TckD5MNtVhtRhTR1PJ0n8zU6ctd0oMEEoqrjxYLGG/NiYop3ItR6ARWc3avGOZspK3Rotx3h2wWH90u5laOJjpo81lsh1lshTqTE5JoNdil2gyrwsXSP9XqCljzXWKyBqYvOdq3Qx8l0jU25UB8EMGFTBol2gPlqklG5SOy2otQdXfGfQoZzqJpt+EI1WxJgl6ppttpBTqcr4vd6nIDuK3LlTjuiOFim7tEfq/PijtilzCRq3CzkeUjyhgqNBPvtCJOylHi/GWc42lD8qniorcyAj6eqPLPTxxul/sxeI8F4vMZXpaDdTKJGLlo/DFgjLTJSJ+qgJDvUFvf40soUZ4bWKUsx0ZDV45M3zjAtlYynhjd44cFRPnRWlEeXKikelkJ5AF97cJS/9ravADDibtNuhrFlQOb7mlqYACrtKHGp52WaDu1qTKFhtm3R6oRUSiQQb3Hh6F2q8r7MUI/SZj+FXRGcnH3ssiIim4kWvWKCwmWBhmWfEIvfgTCjNpoh2t0CGVRrJ0cIdKWf3KKNPzsMRfG8iYktrHwd/6w4F3vbZJ9ewt2VBNrhfTTrMD0ZGKvSuicrsHYyRB4LoMsgiR86g6EbdH5TIFqhadCTPuEhgUIZm0VlLFu+M0Fitk5NVvOl9BfQ0hremkRLnTX8WBStIRc73YBOG29DKtwndIw++dhrJmakQ3VeEsofekCoeljR2WyFmT72QKFjuuXwe598LwCxlx7ifX/tj8nIAMoI2Piuocj3I31luqWkQmnMSId7X3+Yo08LrlR9J6e4T1MXb1FdG6AteTLJbIUHz59lUJL3HdsiHm0pe51OKcGJ80LiAU9n5MQCO/MT6r49x1RaRtl0mfs3jzJ3Qix8v/eVp3nP+csMZQS3Lhzu0Jbl84FYi1YnxNCACBpP+JuUG4cl3cl4nViqSk5SEFqdEEE5PzQ7Qsj2IGg6d+IOO6WsQvEDhkvQsvEkibhtBwibjjKWvVPO8pYpEYBf2Rin3A2qVFw82GZ7P8cFST7vuQbVboiOjFsmYnVlrh2zekQMT3E8w5bNS/t9TEqHg712iP5oQ20ki90gtq9xVI6v5/YzinfqASk5D7+WnCTf19S4ebXO950e/+Af/AMef/xxPv7xj/PhD3+YF198kV/7tV/j137t1wCRgfqv/+v/mo9//OPMzs4yOzvLxz/+cSKRCB/5yEdetXsOBoO8+93v5t3vfje/+qu/ygsvvMCnPvUp/vv//r/nh3/4h3n66af5mZ/5GZ544onv+Jyv6yS9zLttSdqSeD6kAocCkE1HJ2BIDonlsPoyy5JsqIPna2rQOp7BfDWhBlvEdLFfVoYaNR1VYTYSbXGlmOAADQwZPjVbU2X6YcNjTA5SgInMPl+WC/VTI2t8cmmSE8kDrR6NfLilgobtdpig4dE90DoK2LieTkGWHju+RlLqL2ma4Csl5MC+VYlyItUkoB+gQTbFTljJHLxQSPBmqaj8eytZfmx2m2d3xUI2HW+y2ogcTi6dMHXHUOk2TfNp2QF25O7P0j21G1tpWjyZryoByPOjK6wV8vzHZbFwf2C0xFozptCyW5UYb5cLgq75lNsRVXa834zj+jo5qextuwZtx1LVKoORFjN9O6yVRMBf6wU5NyL4GDc2x7hbjTMhOSZnBjeIRVo82BK76m/tZXmsr0Ra6iQlo02F0GT6C1y/eQJLctQGcwX2Shml1l2sJwhZPXKZQ5VxgE/eENVLb51aICtlDOL5Ivurw+o78UyFRjlBsl+0/dqDSWzHVDv2YjVJUv7suAaOayi+UlKicQ25y+7PFtkrZRQadmHuPrrhKb5L31FBrAYRJKH5tNaksvWbqni5PNpdwY1q3hnCboaJSWRl+9qc0vWxRmtgA0HZyYfz+PN7StuodnOc+OwGWkgiPJJPVJMppOwT9+lIjoldixI7uo4nU8rmtOS8lMV76r71XQQfXEErSoXuqoOWlDyzNRNzqIc/KnYJ/o1N9IkY7oJ4L7X5MZIf8cCU+8ZrizhveQrt9y+J55hsgyNTJ0ELeyFAW5oBh4cKbFw6oUjNRqyNkenQWxMoRHMnS/LYCgBbz50ikS8R7hfvuFtKUN7oZ2dfRGCzxx7gvUweITG9idc9RIOdVkiR2hvFFHYvQE+On2Cwy9rOIEfnxH0EIm3qhbQSn6wvD6lqNk3zCSWaoB+m3/bnx1naFH18bmIFz9OVcnx2aI8rV0/zyONCz2t7YVzJS/Q6QZ6bP8oFyZWrN6NYpkNabm4+c+08P/Doc9xfEAUHlXaE2UGpqF3K4Ho6Kdk/LdNhp5qmJPup6+vErB4Z+flmLclc3y6flcUL75xY5sUtEayey2/T6gUpS97hWkOgznNp0R+2Ggk2mhFm5AbF80V1LQhbkud3+0gFxO9DkSZbUrAXYKcTwPdR0i8zyQo91+Clfck9DDjsSBPic5kay40ok7EmLbfH3777iddEJ+nyOx8j9irqJDVshwtfeO47vvfPfOYz/MzP/AwPHjxgcnKSn/qpn1LVbXAoJvmrv/qrrxCTPHny5Kt2z/9Px+LiIp/61KcYHR3lQx/60Hf8f99xkPSdmtz+0R/90Xd88f8cjoMO9sPpjzEZEwFG2PRoOjoDIRE0DEebCpG5UkyQCHik5S57KNJCw2dV7pxilk3IcFWA8cWtFA9lO0oLaKMZISQh3d2OyWIdHsmJBfVKyeJ40uWknFw2mzG22wEVYF3MlVR1m6l77HWCqlrtZKpKxHTYkTsjHbGLOUi3zSQrlDsh7tXEfY5GOioFmAt1RFpQIjTbrQgegtgIYHs6xW5A3fdItMml4qFeiONrSp3b8XQ8NFJSXHG7FSUXalOUi/VMqsRW/TAwjJg2e/Ke8+EWnq/RsA/Roa5rKELkrVqXyXCQnzwhJuNru0MKhXM8DdfXScjrxoNt1mppRdoEoek0JneZe60oiUBXaZvYns60RJm+sjnEeydWFD+j1o6QT1aoysDubrGPuXTxFTutF16mzLtUS/J9ZwQytFvIEQu3ub4hkAIPjTND6ypYiYQ6RMJtda5mK0IuJyb1diuM5+msyXOHrB4j/XvKM2t5YZKAZbO4L0virS4Xzl8DYGNpnHDoUGG8f2KTl148z/Sw0JXSdZdOJ0RUBrNmwMYwHSzJndlaGmPmDQIZdhphrGxNKFoDoZM1SCbwdyWxaDiPH4uj3ZCCh46GdlTck39vB30gRO+W6IfVlSGCsRax4yKFplk+pedniUn0xxqs4DUtjJzoe1o0gC/V/p3n6xipJqtfvQjA+Jsu09tNKbNY81gEL5Vh91fEe+r/WB3vBbEYm5MG3lYXbU5WFW4XxX2HxHvQl1fxpidpn/l+8V4+8b+ADn5bl/fhwbhAKf35HeztlKpYW1mc4NijV5XGUHigRLeYoL53mBZKySqx0soQkURDpbVq5RSRWJNGVYzLVK5ErZxSSNOt6yc49/gltu8LBCwcaWNItFbTfO4vTKsAOB5vUCynyMr5w7JsfE8jPSKC13/3uXfykaeFjt2fPvs4xwc2ychg/dL9o8wNbDE0JXhVq/NTZDJlljdE0HTm4jX2V4aJSmPal26fYEhWoY6ObVCvJPjmA5GKuzCySiTcPuRZJStYlq368WC6RESi1N+8f4yhWI17MoX2trm73N8aYUIWZKwW+7hfSZGS8+1IrE7QFBs+EEbVS1Is8kSmgKF77Mi5OBNus15PKKpEKtAlZLoYMsVuewYZudG5tp8nbjnquyAQoQ3pUBA2fKo9nSMJsRmydI+dTpC4THWOxepKmDake+x1A6Qs5zX1brv0jsdf9SDp4hef/Z70bns1j++4Rf9TUaZPfOITvO9973vVlTL/qo7xuM+01EK6X4swELZZbogBUuya5GXAdDLVpOMaCv2o9QKYuseYJMAGDYcX9nMqdTWXcKjapuLgtNxDVOlEqkHbjauA67E+j+12gBsyD17u6pR6cDolJsXtVpRRmdZxPB1L81mQYpE+Gj3PYFBOmOVuiOVGVF3r2d0+AoavBnXLNQjKAOLZ/QRn0i01QQR0j6DhquDk4WyDkOEpN+29dpij0h/qZiVKQPc5njwU4ux6ugrArpXDPNXfVeiZWU2z2wkqMqX7MvmEf3EvyvcPG8qmBaBqW1zMiGcaiwSxfZeK1GQK6B51iZwZusd0ukBdVuBd3R/gTG6PPRlUNuwAhu4pfaZ0sMMXN7MsNUXb/tTxgtJ2upgt03UsviEF72bjDfoSVTblZBw2XAqtKLsyuBuL1RU3LGQ49IfbbOyIICEeaVFrRpmWfKaOHUDXPWXTkvF0cn0F1tbFYhQK9BQBdqvQRyzUZlbKCwRCXXqdIMUdgTok43VK1aRKbY707fPg7py6bqsdVkrGD7ZGODKyRlAGlYsr40yMbCpCsW64VPYzSrgyEmlRXRiRn3lY2dqh9pGj4e+Wufsf3yDaI9Jm4l0v4ZREe1ijHZzLsgz75nH633AbpyWeN/fYPdxSWAktokNsSOgOqXPbJr0l+Y6fMNA2RYBh9vswmmP8ohhbzhdiBAbL6DnpIZfJoa+uMPBWea5FMEfFZ91zbyBQ/xLu4AQAWroPY32F7pv+gbiO+ev0Bmcxd64B4D56EXNzie3fEW0w9IF7tL8qRWAnfXrVGNEh8U4ndB+3ZxE/Kd5T48C+RVp+2M0wtlR57ju6LOQQXha8Jya3CUiUrlWLEU/VqO6KoOH4yXssXT+meGi5zI5SxS7t5jj70FWVFv2tP3kvP/KuLyrBUD3oEUq0WL8nUJcffOxZ2nKT9M43fIt2LUZApsEzkSapTJnrV4V45uzkMl+8eoH3PCLSfL16BNN0VDDXdQ1u74mg8dijV9ncGFJIc7kRZ6WQV2jxULZArRFTKem9aop56T94cWidXKbEquQKXl2bJBtq8bw0vR6MNhiJttTmJ2z1+LW7I7x3RPSBjiv030CgsvutGJclYf5tw23mModzQjZap9SKcalwGLxOyUKFM7l9pcIPsFhL0Bfq0pcR7fMbCxF+Yqau+E5xq8dY1H3FJuyAEN4X7FCxTfLhNi330E3hL/v4q0y3/edwfPazn+WTn/wkmUyGH//xH39FldtfROz6z51uezVlv/8qj4Mo/GfH/jbVnhgAwxGHvmBPDYD/eaXOTw6KtIyh+eRCh5VgmVCbQjuiahj6Qm1eLGSo26KDvWmgzM1ykvGD8uBmmFNpkccudYN0XIPn9g8q0lyyQZuSDMAGQl1FAARYaYZJyV3k+fwuL+wOKHXqfLDHC4UQf21KLCh3Kxmm4zW1u4mbDravqUq9l6t9b7XFjqgpnyllOdiepiT4J+M1Cp2wKpEfiLR4SVbYTMfbbLZCyiG75xnkwi2el8TUdNBhr2MpQuRK02A47JENiudwfU1JACQsl2ywQ+VlyrX5cJtPLItJ70emKmIylxPZt1enFGIFcHp4nWZHIFa/92Ca94xtsi4rtObrEaZjbaYO7A3qSSq9ABNy4k5HGmpSeHFniGywx6gkhY/md7mzPq7eeT7a4Mpev+KhHcnv0JZVP2vVNGdG1rixKZCj/midSieiBDBdT6fnmsRlIBiwbAq1pFIsT4eb9GfEPa7uDjAxsK38tarFNLFEXZX5/+nNM+jAiLSEycZr1GXgNty3x9WVKdZlib+p+zw1vsR9ubCdn1gkFO5QkxymvsFdVpfHmZheAYRq8gG60y3HiR1dpyvlJJxGhNipdRiV3MTNAv6JI+hbgv/lF5u07onrRB+rUPz8CPHxQx+4vWtzpMdFaX7onSH8G5tKPsBrhrAGaviyaKK7lcX4UTnZ/cfr2PUoIXlfesrGLQUU6sRgFq1zWDpPIEDr6+K8kTc5+LqOPSmgfc3pYV16js7THwDAqO2B52I+K4IC7+wxjOVFvDHxHp0v7yrjWDwNPerQXhRp4AP5ghUZjKTTFZL9RcKDUldsI68I0s1SgtyZB+xfk8a6mkdmbk2lF8PZCp5tKt5RuK9MdW2AklzYhybXWJ4X14lFWuyV05yWPKNGMUWnHVIyDqblkBvZYePBBCDScQdIUCjepLLTp0Qs9+fH2dnv47g8V2UrTyTRYHVJ+tEFu2yVslRlKisffaVpc7MapyQ1yxqdMCP9uypVF4s1aLUjlGRfy6UqXJGm1YuNGA/17TMi9c0ur0/w0MQSC5JbmAk3cTyDtkSXI4Gu4jACXNrPMyvTZ/FAh5Vairp8/sl4nUSwo6Q7QFStDcvNnu3pao4vy7n4jwXQyj8+VaDQjpIOinG6UE3jgZovyt0Qnq+pStu2q7+iGOWAO9r1evzixq+9JkjSS29/4lVHkh76029/TyBJn/jEJ/joRz/KO9/5TqrVKpcuXeLXf/3X+eEf/mEAdnd3GRoawnW/eyL9q9ei3+PHfkfnsZzYkVwtR9lomTySEwPiY0NZJuRCdFDVdXAkAj08oNY78GpzqPQ0TqUOxSXnEg125Q6k52k8kLu5pmMwFm3z/WMVQJDA67bJkEQlTN0jCkpttlGJEDHEQFyqZCj3DEUWTAR6DEeCiog4HGnxuY0c5zJikLddA1P3sGWVzJ1qiIekknfD1rF0nxOyjH29GSURsEkFDlytA0wky2qiKrQjPJwTSMFmK8o7J5a5IX3NYpaAwg+UrsOmQ8+NKeRovSW86A52nXHLRpOCCXerCQwtyICcxJbrMZ7bT/GYTEd+ci3D2wYDSmwxbh1aCtysxBlLxtiTgqBn0w3my1nFKXjDwB7r9QTbjUPie9S0FYfL9hIqfTAZr1PtBfnShnimnxjYYb8TVijdXjPG05OLimx6c2dYoXAn+3Yo1JIMy6Aol6pS2YocKlnLFOCYlCrY2c8RsnoMSEmArVKW3LD4LNNfYP7+DEVJrh4Z2mZ+YUo9o46Y9B99Uizsl567qKrs4qka07k9RpPi90yySq0RY07KGDRbEQrlNBMTAv3odUKkEjVKuyLwCQR6KrC5cvks53xN6QBFZzZxKwFK3xKBcP7tZdoTFwnfFNwXv6uxLW02+joBdMvFP/AE2+qj2YgSk8hKuLAPcR/9gAVOh/ZS/lChuhXC+7ei8ityvA7rPsaoaOvevTi+bWLKqrPWV3X0n/9ZzH/5TwEwj+mExsQ7dYYvoH35OmZCBHK94WN4T74NHDG2nKm3E3zptxRXythep3UlRWhCeuEtjpB7RGgm6WNJNn5nQtnH9D15l7UvXGRUBphG0CY8vE9zRSz0VrSNI0ntrUaUxtLQIcrUDlFdGlYB+o3nz/Pc9jA/eE6kOgOxFq5jKv2indURZk6I9mgUUwwdXVLk62S2gm64lCRPJje4B7qn0MSJxCYdWWDhexqOY6gUYaKvxOZuP889K6rfTs4s8IXnH+URSYr2fY0jEyuKs7a0OUJLErF9T2N5e4jxftFfHNegXEmSOEDXIx0ajUNi+8reAONyszKSqOCjcVtqn81l91jbz6tK01CgxxeXpzgu56ZKN0SxG+SUTMcBdOQ9xQNivjmYW6q9INutqBq3n9vM8LbBCmvyvnc6FiHJNZ2OtYhZNo9Lfa/nd/s5lSmroplhSdo+QK41zWc8UcGQCFitF1DXuVtNMhlrs9cJYrymOkm6Iri/Wuf7Xjn++T//5/zLf/kv+Xt/7+8B8Ad/8Af8zb/5N+l0OvzET/zEX+jcrwdJ8ni0r0rcEgtKXzCEh8a8FGU7mqhzVy5U+ZAt8tFt6XLuxzA0X/F1nt1PkLB8tauImw7LjSgTEhI+mm5zv5KW1+lxqxJhLCquW+kZ5EO2GuT7nRC+rxGWyEmpB6fTYvJwfI3hsK1IvUHDpeVqCoUZj9eYids8qIvF6EK2yk47rHRBep72Mk6SQ9s5FJccjXQYitXpymDk3y7EGIkkOJE6sDExOZcV93E6t8t8oV9VvqWDXbZbUcVRatgWPU/DkxPZ0YTNftdUQVO5G1STy1SsxVIjwnBUtGXX03msr6IkER7OufzeapjH+sQznUhVmK+Kez6VqtPohShKJKnjGpzI7ivuwno9yUiszppcMLZbYU5lC9RkewV8T8kFNGyLuXSRI1kxEX97/igJq4chA658tEEs1iQvz920AypIulvoZ68TVKq/2xsiYDpQ1DY0j512+HCXHW7T6QXYKomFzTJcCpsiVWdZDsVWjIvSSLRWThK0bJUWTAV9TuS3KW+IVI2he4QPuGG2xcjYJk2ZHnFdHV33GBwWCE6vE2RzW1wHYHF1jLYd4OjYijiX6WLLVO4bfvBz2MUERlS88+5OmsKDMYafugZA+2aOwNof0euId+G2gwyfFItraLqIsx1TxqjRdI2x83fYuyMQ6NrvZxg4f4+WLPmPzW3QKScwYyIg0wyX0LBAGbR4iMB4A2dV2ufE2nQ2+9j8hJBT6J9dJfSHP4svK0u9/Pj/n73/jpIkOc974V/a8r6qvZ3u8X5mZ70HFmYBAoQjSJEgCEGXEnkoklfilUjdc/SJ9+pIR4QuRJ1PdNAhAZK6JAgBBGEJu97v7I43Paa9ry7vKyszvz8iOnr3IyVggcWSOEL+NT1VlRkZGRnxxvM+7/OgRcX9G4U1/EAPPyAWyOC5x+me9eGnhIijV7mOPrdA71bBd/J1A/v6GbSmlON4xxZ+UrTRn90gNbKBId8lr2YyctdZ2tJfzU7VwNOxt4Vb62FWboqgcWB0lfBgQfVtvZBgPZ9jarfg2e3Zc4M9e24QlJYwwcECRsDBleTtgfFlavmUfMYmhu0w+VZBpu4sZrFSNYKLkmcWbtPYTBOVqGWplGRSBli+rxGMNVibE6nBTN8WB45cZmtZjIn8ZpbdmU1yo2K89Do2TsdmTVY/7t01pyxKwtEmEwNrxCTFQNc9bqyOYMtNTLAdIJUpslYSm4rJ/jXOSZmPZs/izqlrqtoNYCy3qZT0n1sZ4/6RJb4l1e/vG1olYgWVR6UOyg6kKTdx2+jQlUqUWzIl5qRQ5UjYY6MVVgK8Y5GOQoM3WyG6nk6xK3UAdYN2z1TE7oZjETB7NOUmJGo5lFphJSHQ6pk05GdHUiVeKqQZj7RovYHptv+Vj2vXrvHOd75T/f3+97+fbDbLu971LhzH4T3vec/3fO4fBUnyqHYDlDs7Ggo6Pnf0icn5qY0cBxMCVVpphnl8w+TtQ2KCLHct8o7Jbomc3NffYq0ZVoFOJig80bYVpluORVoiNIcGVoha/arkP94JYBuuEmI8XQjwlsEqZwpiQhgM+SpFlg62eGwtS8IWL/xotMbdfUU1QTQcCx8U+bzdM7lUtjmW2k6xGdysiTbdkWux0guoNOBcLUq7kuSLK+Lz9491SQdqivAI8KwkpZpahkZPoz8k7vd8KcHPHD3L7LpAYXw0MgFHQeCG5hMzPdoyqOh5GpdkABrQPYKGp1CXQ6kSUbtDwxGfH8luEDUzDEtU71Ixy2Fp2eJ6OvVuQJHP+02HZjeggqi9yTK1rq10ovqCHQKmw6S0Cym3w4rEmW9G0TWfijS4nU7naXYDKiV2x53PU8+nmJET95vveZqLZ0Qa52Ypy/5kWT2nuw+dZ329nyvSiPjOiZssXd9LWe6s690gw6kCGenJN/mOFyi/JAKIl88cYc/gCp4MQFvtILrmE5Upxly8wsvL44Ql0nj0xHlMyaubP3OAbH+eikQtV0oZDk3eVL5ZpuFSa4foe7dAkgr/NYtlOYpLtWfPDTpl8Vvd6lFb6SNzXCywdrjDYKpG9ZI0ZZ1eoTE3SLBPBIbV1RxJmU5rXh4kOJwnIrV7IkN5fMckLNM+yQPzOMUYPZm26G4kcTq24iwFcmV0yXfrXjapLUyTOip0eQAiD7QYy4oUkdexaD7wQYKf+XMAnNw41q4PAOC/8HHch3Zj3xR+fL3RKYz+NtqGSDe5w3fgTY5jzohzuVP70LMOzhPb+jcB9JD0AItpBLJlytfF889MFNHCBpUXRZA0dEue1rkU+RsiAMntWVCq6e1GmM0XjjB5q2jH8H1nqX35HsVvaq5lSZ66Sf2SrMJzdaxEHSTi02vbBOUzjk8v47VsXMkdNMJt9FCXrz0pypvv2HOVzOQKcRkoj91xno402nYqUcxwm6iUB9ANl3YtolK7A/FFFi7tVv5wuu4RzZVIy7+DkaYin+uGy7dmDvAzP/ZVADrNILccPU9Djp/M1BJzLx9kVFa4VutRjo2Lfn/ixl7OLkyyf0AQ7L9xczfHsnkiEklaadq8OVHhHZZ45qVGlKDRU1Inlu5xaEQUASxs9jMaKjMnEd6+oCgKmZD3OF+LsjtZUhunaKCt+ErDkTpztThvlwH5VjtE0NyRotA0qHSC6r0+X0pwa7bA41KM82Smwpr0kfzCUpRbMy6m7mH6bxyS5Puvr5jkDxMnKR6Ps7GxweTkpPq/+++/ny996Uu8853vZHl5+X/y6//58V1zkr74xS++6u+f+qmf4rd/+7f/hlrmu971ru+5MX8Xx3Y+938f+secSIsFdqUZIhfoKnRkINSiJDknCbtDz9OV91jVMZmOV3lElgO/ebDAUiNKWi5kQdOl2rXVjmSjFVLE5HxnG/WQiETPYHeswUtF6T3lw+FkS7UjoHssyPLnIUksj5ji8SXtHh1PZ6u9jQ65jIZb1CQKc6UaYDLiUHW2P3cU18lHeKytt8V3f2LfVV5YmlDXNTSf86UAbxsWi2ChHVSBTMTscboQJy1LZ0fCbQzdY1MiJYPhFgHDVQhP3O7SH6nx4saAOve2hUnHNfB8jZsyFbMv3uDH3vQozz0rdvu3HD/HEy+coj8qBQ83B9kjU2Sm4SpDXEAZ0m6nKl/YSnBbtowrIeSw6VDtBpR+VX+4odCgrmvi+ajvGppH0OypybXu2AxFq+yZmAdgYXlYiVSmgi2ysaqqhDu31UdfsE1STvoPvuevKc2M05ack27XZq2QVTyrhUKOGzKwe++xl7m6OEFM8iKmp+dYnB9V1UuhaIOFhVGlFJ4ON5SSt+saTN93mq0Lgr8SyYrfbKMbK+f20je5TGFRBLN2sEO5mFR+XANHd0rRvY6NnSvT/UnB37H+25epzw8o9eXsO5dZ/8sJ+m4V+k5ayMMtiudtjvWoPDXMprzO5J1n6RTjhA+IBdNZimIN13CWBMJnT9XxGx5aWvoGfmtEKVnrSYfm5UGF4JiSI6RHJDq6liK4rwySl9G5EiKwT0pkrEF3a6f4JHSwjLuhYUyLhe3Mfz7FsQ98G++UkGLQa0W8l9YxhuT0aFlKaqA9l8EIdtm6IiZkw+oRH9lg9ZJAywamF/E9DSMgtXKCHcVbqq9nSB2cpbUk5k2nFaCcTysUplJMkhnIK6X07O1X8doG5QsicG7VI+T2iNTbteeP0j+4QTAm7lEzXYpLg6xKM+NcqiTU3XeJIKKyllMLXzRdVka5AJ5rUNzK4GzzeQ5d4xuP3MepPSLFGAi1CUSbrM2LwK9SiyrNrf7sFo1GhNh2ab2r02yFMSXi2WoHMQ2XM8siqB6JVTibF/f/7iNn+LVvneKfHhRkoK1mlLpjKa7PLf3r9KeKzG+K+aLrGuQiNRXctHoW/TExH8xs9bPcDPLwlKiy/L9f3M3Dw20sOVcZusdiI8whifI2HFvNFxHL4S/mw/zEuHjGS80QQ6G24mHahktA99RG0dB9NlshilJVXNdQxRu1nsmVis2+uEPb6/Ibs3/4hnCSnn3TfUTN15GT1Otxx7cf/6HgJP34j/84R48e5Td/8zf/xmePPfYY73znO2m1Wt8TJ+m7DpJ0/TvnJzVN+54a8Xd5bA+w/7LnZ+m4Up033OLlQpxDSTH5lB1LwbJXyjEykowMYpHveJrS18gEurierhSnF5sh8m2dgOy+sUiX6zXxYu6OdYlbDl9cFhP1u0aabHVsanJxulrVOZ7uqYq0uN3liQ2xO7s926TpGspTzpVPcba+rdbtkbR7uHJn0fV0olZPVeU5nsYeuZu/Vo3i+zu+boVOgM22xT7pYl7u2oqfBHC+FOVIaue7k7GqgqGrXZuw2VOTS6Fr4fuwS07kYVNoLindKMtRO7CRSB0fjaJcfDOBNiHLYV2Z+tZ4dK2ft42JXUGzG1CBy1wtrgI3gAPpLS4UcoqkORwv8YW5CW6TXKrThRT7E3UFl/u+RkkGckHTxdTdVwnBLddjpGSgkwy0cTxDpep6nq4QqZZjc6GQ5ZZ+gRykYzWurg8rwnxCyg6cGhM76fVSmrVGjDt3Cz7P0ka/WgBysQovrY1wUPIvpifm6TkWNYkOhcMtej2D5bzYzQ5ltujISf8bN3fzvqNn0eSkHktXmLm6W6FO59ZGiNtdRSh3XIMDh65Sk4T8btemLp/LgbtPszUzQVgu5Ilj8/gdHX1CPBfnYg88nV5z23+tyvIzIthIj65RWcsp3SVN8/HdHS5Mr20T37uIHhEBRWcpTWM9o4jOsakV2nIDYoQ6oqpM6jEZ6TZ40F4QqGYrnyI2vq4I1pXLEyRPiTSWZuv4uTRaTy7cT1nogS6BXeKeWjNpgg/adB+XdiD5FNF/OoAhfeH808t4bclfK0cJnyjTE7EHesTBLYewpAmrW9IpX9hFYo9EOJ45ysR9gmPkFOIikDPlxujlDJrmK7+1wmofU7+8gH9Z3KPXsjEHOjQuimccOVlS/nNu2wZPV30ZyJaxd7dovCz6IzS+iZOPY4+JIKJ9M0N9VQRQwXiDXttW/nKRgS2caoRO/RVouuEqQcyLLx1h/6ErLN4QgeHk/hvUC2KsNGoRBncv8OhjdwNw54kzXLq8j1P3PwPAtReOkkxUKErEOBGvcWFenMf1dW7bd1khh4WtNH0Dm1yWtiWRQJuBXJ7FNcHv6k8XqTUinJUejfvSeYX4NhyLnqer9Nv+gVXqrRCXtkRAtjtVwPV0lTY/m+8nJ9/puXqE8WiTLTkHOJ7G4UyBv5wXv33bcIlrlThtKQQct1wcX2NSbiqekyre28c9/UXmajHaXpf/c+5HQdIP+nj88cd55pln+I3f+I2/9fPHHnuMP/7jP+aTn/zkaz73j8Qk5QD7QPIfcyAuAwhfYyDo0JA8mpFIUy2Q+VYYDViRSEnEdLE0nz9eEkHEw30RhsNtFiVSsK3iGpdlur6vMd8Qv03bQpdjG5AdDrVZaQVJy+92PJ2E5Sg0KBtsq3Ta4xtJjqaaKngpd226rqHOVXdMUrajqt/yHQtD85mSwcpGK8io5EmdKyU4kqq+wnolymi4rXhVm22b3bEdpCVo7JAjzxWTREyPcTlZxAMdLhXT7JZKtDcqCYKGp8r8PzMf54GBLkMyeLlejanKt5FInVbPVIaVQbP3Ks5S2zVJBNokZVpstZpSbfrrlQQfml5V7uKm7jEcKytD20SwSadnKZHHcjtM0NgmC8NXlwc4lGzK+3M5PListIyS0TrlelQFGKdXxrB0j/2SBJ2I1rm2JibtsfQWl9eHFDHVNFycnklaVv9ValGGB9epSM5FtRlG13zF3wgFOwTldexgh0C4xcxVsWAYuqd0lQAGD9ykttLHt8+cAODUxE1WpJ3DkUOX2VwdIC6vG4w1KK1nGT4qgrErT59k9/FLrF6VnmpWj0IpydRekdZYmRtlfK8IMNBFCnR5Rnx377ueAkDLiv5xrhosv7yfVL9IGcUPL9BZlATwgSLVq+PKHmW3NNwNydRcbWmA2PAmVk6Ml+qVMWZnpklIm4fxu8+w9KwIuEZvu4A56dN4MSnOMS6sUbZRK6Ovgz81jn9aBNGFc7tJ75sX93c4AJ6Hnxf94azE0N5zAKMi2tz5aoXQ3T5Ioq2/UUYLGqz/taisG3jHDERkAOF5tJ4LYaVEG8sz46SO3OA//ZePAPBLH/xLirMjSsohHK/TqkmLm73z9JpBFdg0q1GWVgcZHxVISjhZRbd6iiRfW+ljayPH2CHRb43NtApsEsMbNDbTJHaJ3zbXMhRW+0lkyuKemkGCkSYLcwLB2Xv8kpIPqG6m6T95BU0Kyi4+cQLf00hK37t2PczC8rAKQAYSJUbGVpiT1W7JWI2MVKSfvzlBsxtQJf6JZIVwssaK5DstFXLsHVlU/fG1mQPcLr0Kk7Ea9WaYm1siCLxSiXNrbouILVGZTohSJ6gkAJLBJuV2mOsSbU3ZDhmJzLddk1bPVBu0Rs+gL9hRc+B6O8BdA2vkpZed4+lqkxW3OxQ6QRryt62ewR2Dq0r2o+2aNN0deZKuZ/DXKzGOpcQcstQ0GQ5LZN7XCBqe2Dy6Dv/g/GfekCDpmQfvf92DpDsfeeyHIkj6QR4/4iTJ4y2DNXqeeHnarsHZks1EVEKrms/LkhdkaT5jkYZSlP7z+ShvGXT49b1ikbtW9dARnCYQ3Jdy11JIQsfTiJjivJ58mfrlolfqBNiXqPLspiBmZgIiANtWwt5qB5Vr9T19ZUqdIFdkWa3nw1CoQ0QSIGNmjz+aM3h4UEwCY5GWcuMGiJouy7I8PGx41ByLikSZblQ1EpZJQgZrU9Emw7GKmlwW65EdcTdJ5t02ftxohRl/hUq4pfvkOxYlCUsfSQlj2W2S+J54XaUiL5cTHEqVMXUxIVa7AfpCLcry3F1PJ98OMrXtTv0KB/sPTOSZKWUUJ+lGLUrE6lKXyErI6lJo7eySF+pRcsEOFflc7u0vEbXEdW9UUjwxP6XsDUBU2eTlhNkXahIyHa5KEcflhSA/fVIoM19ZmCQbavKUVOd+664bDPZv8tI1UfJ9rphk/vIkH5wU6FA2WqXQiBHs7QRJT8zsB+D2yRvMLowSkve0UMpyauAqXZmKePJb93Fo6gZ9MmgsVhIc2CMI05rhYuguyytiBz4yvMZWKUVgZgIA2+xRW8uSk1wZ39dJD25y5YK4djzcJCyr24xhjWd/500cOCII5M5mjBe/cQ/7ZcDTqkWYeOuLqjKsfTNHW/JRnHoIzzE4cPKCalenGsWXG5BmNYLTGaF1QQSCY7dd4PixedyiDMAKCcbfLPpWz9psfmUXkT6xkPeKUezJBoasJG1d6SM02kE7kAQgcxd0Py/FV9t1Gs/HiTwgy+MbZbSVm7SPvkk83zc/hdM/jlERz0XXdej16L9bWJ54eR3yYiOw9PgJ+nYvqIq95N4FnHyCf/TQt0Tf9pdJAysXxT3Fc0WSEpXtluJohktkRFyncy3I6NCa4pJ4rkEoV2LmGRH47rntHDdnJ5TKtqb5hGRay20HWFgYZVK+P3asSTxVUWR9y+4SzpXZJd9Vz9WV6e7c8gixbAldSoqEow06sgIPoNkIMzq0xuEh0c5uPYwdbTI8KMbE8uqgEiIdHNxA0zzlIbe0OEKiFSQSkdypRpNu1+a01D66dWCFv5AyBh+YniMVrxI2dyRBbKOnFOp7nkHdsenJjVOnZ2EbrvJK22yFFXL0+zNBfm1/VYlLTser1B1bCfnelSzS7AZU6n++EWCPRB2r3QA9T1cZg2rX5szmgFL3X2wEWW/rPDAgxlrDsfiZqU2uSE27I6kdM9y6Y+F4OtVugJb7w8Pr+dHxtx/fFZL0xS9+kbe//e1YlvWdvgrAV7/6VR544AFCodD33cAf9LEdhf9i/z/m9/OC8Pl/jX2IpqvjyZ7pehoDQfES24ZH3THISr5B29NfZelh6B6FTkBJ1N/RV2CtEVWE4es1k31xGchYPVaaAaU+nQk41B1TpXk22ybPlpo8KKu5bsttcaEoUw+aT6FrIH12KTsa++Md1lrbatVCOHKbZ3Qg0WChEVIealerYaWDNBB08Ngh6jmexnR8xzPO90VabE5Whu1LFZUO0qFUlUI7qK47EOpyvRZkLCLlAxyTyWhDBY01x+Z8OUjaFn8PhroqdTkc7lDsWmrnNxlt8MxmjOmYrJIxPD63rPGzEzuVMNdklVDa7jEdr7IkU3OTMTFZDku0LGx1MTRP6by0egKV2p58C+2gCrBG4iVeXB9Wk2/S7pIJtlQFzkYjJhEv0c7dqYIidde7NulQi5YMvkaSRa7mBxiSZHPX03E8g6hEJj83O8q7x1fV7yeym5yRGksa8JaTp1mVgU46WWZxfZDdu0Tqam5+DN/XlDDltrUIwPLKIG1nx9dtOLfJzPIYk31ikYvFa1iBLoZcnBqVGNVaDEfupNtdm6hcMEYmlogM5amviN1+6gM1tPwWnatSiiDUwbw9hbYkUlOFJ6ZJ7BO8mcKFaQKRJtFd4rP82b30nbqMkxcLmRHqUp0bpCylNabe/yKlpydI3SFtUWJhvFWxkGmmj9YXofGseMaR+zr40Rju8wLR0AIORv8rFqVEnN4lqcY90KP+8gCRIyIo1FIRaHdp3/Ww+Ly4jBtOoHlioTPKG+gXr+A3xDP2OqZKCdVuDBMZ3aRbEv1eXe0jmisqUcd2KY4VabEleViZoQ3FT9KtHnqgS1OKRVbzaVqtIOmcSNcGok3McJuuRJ7atQiZvfM018T3Y9M76Ufd6rF1fUwJgjbrERKZEuW8+PwTp0/wa295lCszIljLxiv0DYnnXymkCAQ7ary0GiFyEyu89PxJAAZSReKJKplpgfi8/NjtGLqnxkQ0WicuUaevP30n9x05R15yoZKJCuv5HHEZRD1xczf70lvKG/FmLc6eRBkQciJxu8Nzss17403idldxhY4OLnNmdVQh6HG7w0ojqqp6x2NVTOluYBkuZ/P9pLaLNyJ1NhpRRiRnaaGaxAN2SR5jy7HJy42Thpi7v7UmnukHJzfZbEZYkxmDpO0wHqtyTm6Wb9YN7so1lKF2yOyxKYOvXKBN1zModuw3NN321AMPvO5I0t2PPvpDhST9x//4H/m1X/u11/Wc31WQZBgG6+vr5HK57+qk8Xics2fP/lAITW4PsN/d+yE6rph8H9kweGigpzSFRiINZqpikKRsh1LX4qgU/NtqhVlpBV+luAxQlQtU0HCpOJZSt15v2So4GY82KXQCygzxTCmCpcG49IVLWA4Vx1L+a0PhFo9vyEAlLuxPtlNR50spao7OEZkCqDsWIcOlJCeboXCD/zYXZzwi9XwSbRW4jUSabLaDyqtuV7xCvhVWKcaOa6BrO4qymoYiIq80ouSCLW7I/jmQKvHf5/p456iYiJYaEZKWo1ShX9xK8rbRVX5fig3+zK6iMo3cbEaI2V2+sSp2Z3tiDgOhFkuSGzMRbXCzFlUonutrCjmrdgOMxCpclF5sCUtIKaSle7jr6zRfUap/thjn3oE8N+WucyDUYjwlKlueWRkjE+jQL33ftloRGj1TpTYL7SBjsaqaIEudoAqC5ispDuTW+cubYuzfkStS6gRVSmDbI64m76nZDZCM1FmWJc3T/WuUZMmypvlEgm3FobiyPsRAtEomLq717MIu7t51nZpE1JbLaU7tF+Tp5ZVB+rNbahG8cHOa246fpSPNUGcXRl9VwTee3aTnGpRlkDmc2yQzLHgx4cEC1blBxbFx6yE0w0WXC79TiRIY2aJ0RqTU4lMr6EHRV76r47UCLL10AID0YB63a5GQi++5b97FYP+mqpRKDgr17e1KOUyX4kWBOmRPztDdSKqqu1B/EU330WWQ0C3ECY4XwBbPxd2yaK+K8dBr28R/Wqf3iAio7BMG/kYZf79os379Jt7kON6zIojQrB7csw+9JL7ffbqNLlNT7c0UwYECbPMBWzbf/vqDPPiWR+XfAexEnbULQv3c8zWi8R2X+PjoBptXJwDodAIksyVCMkXmdWyCfSXakmReXunDtHtKV+mFZ09x4vg50Y5aBN/Xiciq1E49zONnj3PXwYviHoNtYVwsK7DyhTSH7xKoXHW5HzvcZu6aGKeupxOPNpg4LtDCy8+cYGBgU0lVLKwNMpzN48jg37IcTIlCBeXcd/GG6MtKJ8jx8VkCkmC/vpnj/zm7i4eHxbt4dHCZqgxObKPHpa1+liUFYU+8zlQmrz4P2x2eXxtWxR3ZUIOlWkLRHd48uqDGcKkdwvU1zhV3XCDu7Cvy/JaYT06kK3Q9Q23Y4nZXbXyajs2NapyAfF+iZo+E3eG/Xhfz2oenGqw0whySBr9XymnWWhZvk2lSU3e5URJjbaUZpC/YJW53abpd/uGlP/9RkPQGHL/+67/O5z//eWZmZl7X835XQZKu67z97W8nEAh8p68Cwuju6tWrb0iQVKvVePDBB3EcB9d1+eVf/uVXmep9p2N7gP2j3D9mKioG2FikwZVKjEJHVoJYQlMDYKNl0x/qqoAhbju8XAiTkMjIXX0F1poRpUEUMnssN4JMRrfz5obaBTmeTirQ4dm8GIAHE218hO0FiCAg37EVOXCzHVKIjQ5MRltKB2lXtM1SM8iAXJws3aPRMzkolWxX6nHSwZYKhB5Zy7JH+hD9t0WP9w5ZTMnFd00aO6rUVTWGpXvEX+EZda4UVm2erQeZkP0TNFwWG0GVhqt2LdZaFoOhHeQtY+/oO8XtLitS4C5m9Sh2LVXtty9RI2j0FCH7cilFJtBVSFupaynuU7UbYCJRVBOVqXvszW7wvDS/PJTJ0+2ZKnVn6j6FdpCyTDFaus98Q/z7lkyNmNVVgV2rZ+F4hpJmSATatHqWCpJSwZaqeokFW7Qdm6K0ThmMlXl2dUQZFTcci325dRZkUHRwSPBn8pWk+H2oqdCcbLrE4voAo30iWNkqpYiFmyTTZTE+egZLq4OEZEqg61h0JfoXMB18X2P/cbFgNraSVMpJXpJKx++490kKK/2UZXCr6x7RcBNbPnPf18lNiaqy0K5Nmjf7CY1Lk+II+A3Q5Vrk7Z5CX12B7eKORovGeakZ9HNTaF89jblbjNvS1/pI3b+sSM9zT5xk4rYLrJ8TaEduzwLBQ1UWPyfsMYZOXuHGkxLdGF8m+aYNWqelR9rREu4aVK8Knkzi2CyNa0NE3iueo3Z5XlmEBNIVfF8jsF+8h95mD68RQHuLCGT0WhF6PbSmeE5eOoubyOHb4v2y5i7iJ6U2z80bOMduw3xGEJO9Y4cwFm7SmxL8pV52nOCzf41fk0KVt96G/zkRvBrJBtxzCGNNIG2NxwNETpXxG9JB/sA+el9dJXBy27ZFxw9H0LbEe+xns7gvicBNv20IvVx8Fc/KvsWi9YSshn1XAn19jc45WYFluZg5MZd4txzFuH4FHMnL0zV6y5aSCIjc18E3TbS6NEyec/E7NtZ0V33fXZYWR/ODhAa36Mmq1MBYkfZcjsCIaHNrboDKak75123NjhCUnKtQos763AijR8TC1txM0+tahNPivQa4evYgafmeW5ZDINzm5uyEGC+pEiU5hgOWg2X2uCpJ3bcfEKnSlVWRFvc8nXonSFwWa8wWc2TkJqohg6QBGfC5vkbUcpRx+SOrffz0gatclOe+WYtwa25HZy1iOooLFbEciu0Qnq/Rcrv8wsyfviFB0pP3P/i6B0n3PPbI3/sgyfd9fv7nf55vfetbPPHEE4yOjr6u5/+ugqSPfOQjr/nEH/vYx8hms99To17L4bounU6HcDhMs9nk0KFDvPjii2Qyme/8Y3YG2O/t/RBfXBaz/r19GhHTJS8F3BJWjz65Kyp2bY5mN9mS/Jzx1BaXNwfZkjyR6XiVlUaUlFy4AoZLvhXiSlWWwFs+K02xuB5PdwgbrgpGyl0b19OZkd9NBTxipqs806pdW1mWJKwehY6lUJVtSYLtc602Q2igdmAgCNnbFiDPF9v8H/vFhHmmmGZPvEZbvuSXKhGGQo5C0obDTYrdgAqwXigEeOdIGRBmuDHLoS5/uydRouHYbMkKrZDZo9y1mYqLSe6ry31MRBwlLzAWbim0a2+yxAv5LF1vp4Ikbe/YtERMl7FoTSFPnZ6pUoIA660QQYm6WLpHJtjiK8tiHLxrdIu1ZkQRyJ/dTHF3f0H9dlgSrQGub/XTF64rDtOuTJ6LG0McH5bmn4Uc7Z5JTPb1XDXxKnuUoViVoaxYyEzTZXUzx1nJXwobLgf71piXwdyxsTlC4ZbiLA0lStjbKbB2kGyyjCHvt1qPEos01G6+UI0Tsrvs2itKnr2eyTefF3IJBwZWmd3q57Csontk5gAP7LnCFWm0e2TyJgtrQ0yNiXvqOSa9nom5zQ3xDCJSXyZz5Aa9apjqgkD/okN5Ag8n0Le1RzoOzkpIpZ8iR/K4mzvWEWg+Rk4SopsevqPhlkUQqYc6lC7tIiVNi9urWYqLAwzdLoI7v2tiTsnfVjosfu0Wxh4WaMjWk/uIDuWxs1K/KOXi751CuyL6QzM13G3/JtMWgYmsbqPVpns9hL2vq+7h/J/cx9QxgaSED2yiRWwaz4s0kJ2qqSAA3UM3PNqS36NpPoFUDWuwLE61nObKc8c5eJeoaOvWwkoMstsMkT11lc3nBLK2uDTC1PQswW2T3nAb39M484RQvj5y61l8T6O4JMZPor+g+EvXLu/l6P3P0VwTY6mwniMztKmkG+xIm+pmGlOmAQ3TZW1ZPMPH5qf4yTufZkWqykfDTVrtICkpL3FjcYyBVFGhQaVygmorrDzk4qEmTVmFOj09x//75N3cOSwi307PYv/ea1y8suOd1Z8scUWqah8dn2VDpq1cX6fcCiu1+3CwzRdm9jMlx14i0GarFebLcm5+00CL/nBDpcm/vZbiYEK08WB2k2vFrErNDUVqJMINzsjAZqNtk7Bc9ibFtR5fzzEdE/Nj0u7Sdg0lIHxLtkCpHVKbORCpvu0N21wtTtJylF7TYj2iNpmur7PaDPPFZZ2e3+XR1huTbnvivje97kHSvY9/++99kPS+972P5557jscff5zp6enX/fzfVY9+L2Vzb9RhGAbhsFjM2u02ruvyvRTsVRyL4+ltXaTmqz6zdI+ETC+VuzYzxSxlmaoKGj3KjsU2E2KpERUEaYkyBIweVcdkv0RtNjs2h5M7JMWVVlC9iEHDpewavEW6dn9lqZ91XydlS90XT1c+RdWuTcrWlJZPo2cQNl1e3NoZzBcrDs/7LwLwb0fuwfdht5wUImZAqYg7nsbprQQzNTG5TETgsQ2DD0+VRZtfQXgW7UahKuOxKhdLKXW/pU6IgegO4XmlGeHPlnq8Z1AsNhqCzD4QEfex1YrQkZP+Fxb7uCtXVxPPtUqcqOWoFNlm22KunuV4Wvy24Vjqutlgi5jZU/oqlu6zN7PJXTkRcGqaz2C4odSq+4I95mrxHY0qx2JMTtTZUIMrpYzyabq0MUTC7vCNmwLtSNoO/eGGsig42rfGf785AcCbB7dYrcWZrwiIv9kzsQ2XYZkWTYWazBZzzElrhM2ZA9i6x7gMImeLOfpl32w0YpiGy5as2Gv0LFK1lrJ/6PQsnlob5iekZcPLs1Oqqm6hkGPvwArfnpFprkCb84uTZGUK8dL8LjygUBDPJRRsU6wkXoVEbevt2OEW4cGCqqLqFOMEZ2bxJF/H7xmY6SZmTrw33bkYmiTxdksxQpOb+Nuxyc0+Qrs2VYoMwyOUqiqeTXU9y+CJqxjD0kfv9+7lxMOPA7D+8jHGHjrNp/+z8GN66JbTGLaDv50Gtn16j61Slc8pOrRFIDIvxtlXxzADSSKjkpj9pt1YmSL+nOhrLW5y+F9eRbHPexmo1gi/VRZZXOiwJdGuaKZCZGCL+GGBBjVv9qMZLmc/K0jgB+96ifHJBRVEbS4OEZTBeXpsnaVHT/LyrJjMJ9J5PNfg+adFcHt43wz1aozEtmlroEt7K0lXjjW3axGWxPVYuEnxxhhb0oZkZGKJRilOakzwrgpzw2wV0yp1dfK2l9Qi/w/f/WUWL+5hYEDMNZ9+/nY+/MBjypbm4N5rGFaPDRlUjY4tc/bKfuWDdndmS53r9IVD3Ds2jyUD7P7sFk+dOcHBEdE/pWqc+Xy/Kq+/uTbMmBSWnF0fpOFYPCN5eNPxCm1XV7SFS8U0+5Jl/sl+McaDVpeNWkLJhExEemoOqLVDNHomWdnXG80os9WkIm47ns5krMqy9LO8LVsiI98HH02peAPEJVq8na6fraTYbAeUPEvccik7lqqGm4jVFeVgNNKg0TP40GSbltvl0av86PgBHp///Of5xCc+8QMJkODvQXXbE088wcc+9jFeeukl1tbW+PznP8+P//iPv+o7v/u7v8vHPvYx1tbWOHjwIL/927/NPffcoz4vl8vcd999XL9+/XtGsDRgSqbE5ushMoEe16Se0aFEW5Gai12TuqPTJ4ncm60wYcPFsnYq1q7XQjTdbSFCn7anU5PVKTo+BWnmqWlQ6mrYuvhsq20SNHxiptjNHE018WUgBcLwdtunKBVoU+jEidvboo4u31gLcCItd3qWy6lsm3/g3g5AvecTMT1eKITk9yEZlQGD6ZILtrlnQEwmz25mOJzU+OqKWLj2xHosNk2Ccv34yck8JZm2ulJOYmm+KuPfbIWE4vg2+uGY/INRqErD36Tt83Q+ypuVv5KtfjsadonbHYUURUyXStd+lUfb/uCOganzCtfrzXaIoXBTSSBUuxYvbwypidzuBhS6BjAVr1HuBBgM75x72xPN0DzqjqnQuZFYhec2+olaO3pVDcdWhrfVdphReZ6VRpTbRufZlOmzSECMne3gwzJ67ErnOSdRl3uHlql3g0owstgKcfkVvKoLm4PctUsgI45jMpvvVymxZLjBWyZmleZM1zPUDrvtmqwUshyQ1irpWA3T7BGQCOfGVpaR4TXFI0l2G4yPL6kKpc3VfqrSRiI8WMDM1tnu3NKNUcKVDfSEjHwa4LUNeiUxbu2hCr6s6gnnmmBqlJ8XbUyemgVdw+gTfdu76dDYSlLYFPc8duAGlRsjJBAo1S0f/AaO5OFlpxdZ/vZxfuLn/kLc40oO+wR4y/IZJhL4XY/MQ2Jx9rYcnKuy9P6dy7RfCigekbGxQudFA3SRXtLzLoWvpBn4CYmG7D9F4MqLaHWZnmoFSErD2k49DLpP87oIIK68fIhUvMqRtwpphNUXDxCON4jtFeeyE3VVzbd4cQ9dx1L8t3o7RDDe4La7hLWI5wiCeHZEBMJrl6cIBDtEpHTH7I1JJuWmYvqel1g+fZCJA6KiMT8/zPDRGewhyVEqx+jbO09NEu5Ly/0Mj0sT4p5BvRXCkTYj7z/xErViQiluu47J4tyYMpNtLw0Ttds8eGAegFotpsykxzJ5NitJjhwSKBwgqj9XRNqj2bPYlc6TlZunSLCtDGwPjC2wsZWhIL0fI3aH3bEGYZnm6g+16YtVlHDleiVFX7TKTRmQHMvmlRXPXDnDastS7/xdIwvU2yFWZcFJ1THQNJ+ERH0TMjW+fWRDTRWcLVRSjCdK/L83pKdcrCd1kXaQ+UywxV+viHH7+WWNj+xqqfsdDTdxPEOl5N+Iw/O11/V6b2Tbv5/jV3/1V/nn//yfc/ToUU6dOvW6n//vPEhqNBocPXqUj3zkI7zvfe/7G5//xV/8Bb/6q7/K7/7u73LXXXfxB3/wB7z97W/n8uXLjEmH7mQyyblz59jY2OC9730v73//+/+GEvj20el06HR2UiPVqnhxm66h0jyNns5S02ZfXLww9Z6huCxTsQabraDyahuM1LlcSjEk01q65pO2baVsvdYMETFcHF2c2/c1VX3hA0MhVDrJNnxWWxrDYfHbm7UgQcNnOCzaG7W6tKRoo+f3iJiukhb43JLO+0c73Kht6zd5nC7EsSVJfG+8SalrMR0T9/TCloHjiQmi5oCpBbg125bXhXv7uwQNMTxu1k0moz2VbttoRpQopaX5GLqvSOCj4RaOp9MvkZMvr6TYFw+ooPIzW0V+fiSqKgdFib8IEmOWg6l7yl9tLFrjz+cyvHNE7PYHwk0K7aAia5uar/SaNtsB5mpRFQSFTZeKYyohzuFYmUywqSbQq6UM12o2bx4Ui4Kpe8oc+FIlwkDQUTtUgL5gV02uX15O8uNjJbYBy3OFDHu3ORO6x1o5ra5jGi6ZVJnnbuyR99tgJJfn544KW4pra8Mkg02lwXSzHuWugTU5HnoUWxEuyBTZvUfPslVNKFRho5pkvRVmMl4GYK4WY0JaeNQcizv3X1IVWfOLI/z14hjv2iXSWrV2iLW1fqYGBTpkB7r0upZK5dh2l1vvECjkk195E/f/1JconJH3cOdl/J6GLzl7esLH73oE+sUz9+tQOSOCotT9y3hbzo66swdexUDbLd5PfXWOvrffJHZWcm48jcT0shBKBMyjIfKPi/vP7Vlg6Nc9jIvimYZuCeDPrKEnxPvir5SxhoGwTIMFuliTclFr+ATui6IVpHjkMymCbzbpvSCeW/7CNEPvmcGdFeMp0Hic9sU4wUNS1Tuk4ciNTrsRItIMsnFTBAH7jl0icmAVLSE+76/P4XYsejKl2C4mCCZ3iNtDo6uqEs60HUKDW0q/yKmFccsxJepYrsaJuQ0m7xWpu3YrqAjkTjlKNF6jJ9W8o4kalfkhqmeEjEMg0MH3NM5eEX8fP3hZIUPDe+YotyIMB8X4v3BzmsNTN5TSt+fq5LIFopJQPjczxemNIQZy4jnpuseuSRGMXr62m75Ema7sn3IxpbTMAD4/O0kq2OLpdRGQncoVODIp9LgW1wbpTxe5W47/L97YzR19mzwieUQfOX6WS0vjJGThQyLYZLMeV1YjpXaI/+OiGCv/z+Equ1JbPC81y24W+lhphMkExHzb8XSulpNE5Zyw2oxwakCM/8tb/URMh4Kc523dw3ENbpUm4DfrQY4ka6oSue5YXCyluDUj7nMqaisHhYFQi+VGmKFwix4/XOLKP4zHxz/+cTKZDG9/+9t59NFHOXz48Ot6/r9XYpKapv0NJOm2227jxIkT/N7v/Z76v/379/PjP/7j/Pt//+//xjl+4Rd+gQcffJAPfOADf+s1/s2/+Td/q3T5f5r+OTbaYne/L96k7FhKjfVCOca9Ujjt8fUcgyFHBQXTsTqrzZDSBlprhhmL7hjihkyX9ZbFdie7nkZc+q3FTBdN85mpiJf81mwDU/eUllHbNaj3DLY6O7HsrqisOPN0MoGOStU9vZngSKrJtap0+fah7cHeuOQUdC2aPY1LFfH9hwZ6Kndf6Fgk7J0gyEMEIAXJo9ibqFHqBHhRolAPDFRZkOmiQscgaPhqh2XpHi8UogwE5UTUMjiY6CidpIpjsC/eVHYh7Z6heEXlroVteLTkrts2PHxf42pVtONYqs1IpM6KrMDKhVrkpeBjvWfQH2orwryO0DPaNvxt9Uz6ww0uFFOqL/tDHRVgzJQyiq/0rbUEcQsOS8X19VaQlO1Q6G6rmXeIWY6yqhmN1pQ8wp5EiUS4wbpMS2iaTyLYUiajVzYHSQXaVORvQ2aP+it2s1GrS2hbWNLqcnpjgHtHxWJUa4dIhBt0t9W7Y3VlIwGQTFaYWxY731S0xlo5rcaS62tcryQ4KUngC5UUpyZmlXXEdanrtCDv49bhRSXomBtbQ7d6FBfFwhWKNUnuXmT9rORR3XMOPQaejAOaNweV/k6vGSR6YEmhQWZCppGk8F5rto9uLUxXVt0tL4kFbv/tZ8QYyFQpX54Q93T0Jq2lHEEZ2NZvDtMoJug7IfIZ5pCLNzVN90viXQ2e6kJXagRtdfFbJnpU/P2Hv/1zfPTXPkXzqgjWwtMbdFcTmA8LRKPzuQLh40W8vORDeRrNeckrG9ugvZZh/ZpoVzxVIXVwFnNIjPm1rx5AN1yFyrk9g5BUt/d9jeuX9ygicm5ihcpajsSgaHMgWeMTf/5+PvzWb4pnnk8xcM8FnvkzIVVwYP+MCsA1w+Wll48pIvJg/yaBUJuORJ4DoTax4U0e/fqDADzw1kdwpLRARUoQbAtTGmaPcLxOKCdSzp5jsnBhL6N7BKettJojHG8oxM9xTJYl4tkXq5BNFxVXrueazG0MqPL66dQWrq+jyVnQcU0GpH2OYbg8fkOMIxDv7HZABLDVjGDpnrJ9OpJsMfUK/uBGI8ZnF8S8fWeux65YTVWDBo0ei/U4MxXRjneMLytUCaDYDbBXnisvbYSaci6qOxbj0RoLMjVX6Jgk7Z7aDC/UI2SDHbpyvul6usoQ3N63xWojynwjSMfr8v+s/MEbwkl69J43EzW/O5me7+ao9xweePJbf+85SdvHJz7xCX7zN3+TlZWV1/W8f+dI0v/s6Ha7vPTSS/z6r//6q/7/LW95C8/IypKNjQ1CoRDxeJxqtcoTTzzBL/zCL/wPz/kbv/Eb/LN/9s/U39VqldFRUQ69bS3i+hqFzk7Zfn+wp5CksXCXRs9gQBIaO67BStPC88XC3RfsUHNstXtpuwZVR2NPXPzd6hk8KeZDfmzYpePppAJi8uj5Gp+ZCzEQFI/llkyHcyWL8YhEJXSfZ/Mh+V34iYkaL2yJyW5X1OFaNcyKpFPdnu1yqWJTkcHJWlNnOubw0MBOTLytA7TQMHgg1lCVHo+v93MwUVOmtKVOgJVmgIR8/+qOpeT5v17J875shlpvO9AxeWhoSyFeKTsolW+lIGIjxHi8rEr1Wz2Dw1JOwfWjtF2DmFxgo5ZDoRNgj9JJcpmrxRWR/UwhqaxUXioGMXVf6VOlbZer1TAH5KJs6x6W7ilkLWb1iFtd/vSGWBTfPVpUJsTvHd+k6xpK+dtphhgIN4hJnbC43eVGNaGE5lo9S3nIPSoNZMPSU++ugTWulzKk5XcX6mHG4iWFUuUiNVXCDCLdts3BysUqgt8gx958JcVbd82ytCwCiW7Xwvc1rklS+MlIk5YMuDY2htiTWycljXO/fvEoP3HLi2xIntGDY4tsbOYU+TYdrqNpPpOS7xQMdPj8eaF0/dGxNYLDeUZ2S0f4rSjdUoyBY6Iiye8aVF4YJij94SJH1qAj7r8120f98iixk1I+YDMAuqdSVfV8iv43XaHwhEj77dp7g5dePkZxVgRtzELugEC/vI7J6adv5Y63PQZAsxwXCtWycrL0+C5Sxhy+Lxa20tf6SN2zoPpWs1y0qHimP/Xw1/H3TxN2RCoTHeyJKv5LAmkK9JtgGOgJidqsBAn1i3GqmR7hqQ2Gt3WRinG6+SSrz4s2a5rPwPGbSiLBbQRFuhLYePoQw0Pr1CVBuFsLk9s3hyaR6ee/fh8/fd/jyqi4t5oj/9x+whLFNANdVm6Kar50rkAuXmG+IJ7p6MgK7UaI/oMCpVm/OA0rfTzw1kcAmHv5oEqfTd9ygfkzB1TKLBpqoWk+ukRmr17axxfmJvjfpYr6xlaWeHtH92587yz+VVndmSqj6x7reWl5YnfJRqukJd8naHeZL+TYL4ndT83uVga2X5qb5B+depGCFGXs78sztzSCI4OVbX7jPX3inah0A9Q6QZUKH4pWGZLIYc0xuFxOMCj5biPRKuOxCl9fFe02dZdvrMV5+7AIUKNmj/MFMQ+d6l+j1gkRlLZaOsKvbTsgPZUr0OpZCvUeCLXJBlvckBIiI5EGsCNu60j9vO9s5vX6Hf4r6Aev1/l+mI6f//mf/64Ltl7L8ZqDpLm5uVc57f4gj62tLVzX/Rups/7+ftbXpfLr8jIf/ehH8X0f3/f5pV/6JY4cOfI/PGcgEPhbpQw6ns5GS3RH2nbYE6/ziBQWu7e/oQh6tuGSCbZ5fF28HEdSbTIBV6XfgmaPuN3hmuSkzNVtdkUdtaB+oxDj3j6pL2K4OJ5OSaYtDiV73NsXICuDFVPz2RW1+EZe7F5+acrFlQtA2hal8bslV6HZMxmLeNzdL7bzy/UYhgYh2a47ci2u1yJKTLLj6Xx2UUw07xlp0+qZeDJZdVTqruRkIGjIAHL7c0v3CEnV8H86GmW2rimz3HLXRAdlpfIXSz7/9/FVnl0Xwcit2SaXi1kWG+Lad/WVFHpxIJNnsxFlSnqVfX1uikLHUEKehY7NkcyW4veYus+ilA/YHetx3/gsVyS3IWC4DPcMXpLkWd8HrRzBkO99xHQZSxZ5lwyabMPlXFE8s3wnwduHt3ihKJ7xOyfmWasl2SXlFGaLWW4bXGZTEqrDVleJQd43uEks0FLps+eXxxmP7Vi+HEqVsQyXPjn5W2aPqdQKRWmzELK6LErS91yhj2SgraxUTo4s4HRsMjLwqdaj2K/Qgnp5dop+STY/smeG1dVBShLRPDG4TLsVJCltSuaWRhjp3yQnn1tyaJPr5/fTJxW41xeGeddBoZK9PjdCrBgnJjk5kSN5rJQJnnjGtW9lif9Yg8bXxSLhnI8QHBLfDfSXMMpR3C3pdZhsgw6hu8R3za+v4O3dQ2JdkqCX+rjrzU8oJMoarSrz29ZSP3c+/CjWHhF8DN6yIsrjN8VYSv5Ek87jEYK7pbXGs0lISJ2CqX60Zh2k4GXkVAEWC3jHBIrR+asixof3Yc8IBMuPJ2hPncAsi/7QS+L/AbobSZxahPCE+KxdjBM+XmRAvltuO0CvGlGpSyPgsPRtIWPQagXpH1kjLpWsA30l2qtZlRbdbESpl+Iq7RXPFSmu9TExNS/aYfUYGBX30KjEaHdtjk6KIDKUqOMWkkr0Mze9xIVnTzD3slDvftfD31TmwC986x46jsWR/QKFiw1vUl3ux5dB1Eyhj3/2pseYnxepzmiohaG7qtzeXh5QlXDb5fyDfeKerECXTz9/Ox+69wkAZm9OcnRyVnFcImaP/qwcS0vjNBoRVZxwfaufsUSRWWnbszezyaWtflakGvi+RI2lRpQD8l3UNZ8HBsQG5XwxwXS8rqp0q90gQaPHPz0ogrOA5fCBibxC37OhBhriOiu1JNeqUWXblA01idgd+iS63O6Z1BxLKYPbhss3VrOcyohAsO0aavMWNIXwZMQM03J3PC9/dPzgj7+NsvP9Hq85SJqenubee+/lox/9KO9///sJBoPf+Uff56Fpr45ofd9X/3fy5EnOnj37fV8jHehwRYrUdTyd1VqEO/vEoC90bM6VxKT10GCdcifAkZR4eUYidR5Zz3BUZnFilkmpE1BR+FR0W1Fa9NPbh6sU5G7kZi2MqftMSaRkthYhE3CUsFrMchmLtLmrJxaU+YbLkNwl5Ts2y/WYSpklAx02WyEacofl+hr7Ex2uVcW1HF+j6mhKFygV6PJOAUgQlmX6UemXVO8G6Lq6suwod02Gw+0dmJ+dHZKh+dyeK/Louojgh0M9rlUSKkX2f+zfotSKMConEMcz2OoZHJMGuY6nM1ff1hpJ0R+p84UboopoItKi7e7sXiOmS6tnKduBgO4re4K6Y/Pc0oSqbFmsR3F9mJDK35OxqkrTgagyXK6k+dZaEoD3jq9jKBPiHn+5kCUikbMrW/30hZp8aU5sDo6nK8yXM6RkWmC2klLWKo2epapnACbiFXquoSbusNljqZJSYqOW5mMbrtJjqXdt5VOVCdf59vIoAbmAvu/wORbWhtQuvNKM0HVNRVxdbUbIyNTL3MIYoUCHFVmxs9UOcczsqSAyE2zi+RoNaWvTaQcYGl6jKpWPw+EWUVk1tzA3zuD0Ao4sgV/72kHS04v0ZMrVjDbpPOkTkpVj9ZvDdOR48D1N8JFeUS4fzJZZ/oq4ztDBIsv/MUJ6VPy9tTyAv6Qp+YFsYBZNBuSrs2MkinH6c0L/pv5MlspaBtMS506MrROcKimCeXRsA2pyU/CURWj/FqTEs/GWa+hpC61aBiB0sECvXccdnhDtfPYyrU9fJvWgWGD9mEvjoug7S6aWr33zDjFeDl2jdSFBdVls5gzTJZQpY0r01HNMBg4JcvXSmf2Ut9JEtqswIy1apThdySvqi9Sp1WIquNV1j1x/XiE8nWqEakl81j+9QDxXpCEtfprlOOmJVWUJ06lE2HNght3uDmm8tr2p2DWH5xoqCPLnxknE6uQGRTp2KlXA9zUG+2UwF2qjGy7PzYp3MxZu0pIp0nC8zqXL+wjKcWiZQv1+2zOuP7vFxlaWGWk0e2RwmblVMfm8aWwe2+4yIZXgk7UYzW6ArHy3HNcgaLg8MCwI548sjzARbXFdjutMsE1czltjkTZrzbAy+671TCaiNdbqon8KbVFJfCgr7jHfiCmRV9Nw+foNg7t7ou9uzbq0HJthaQDto6E3YorYXe4GGA73yEnu5VItDvIZzVZS2LrHH8wJxP+NOvzXmbj9w4Yk/aCO1xwknTt3jj/6oz/in//zf84v/dIv8cEPfpCPfvSj3Hrrra9747LZrFL7fuWxubn5PyRmf6/H11djHE2Kha7n6fj+qwfJsZQIZKJWl812QCE0c7U4JzMuLak/VOjYPDgxy0tSxLDRMzlb8rgjJz6vOxZ1mcZquxp7oy3C8sW7WY8StRxC8vOQ4fFSMcyxlHiR/9uCxkcmJfzvaVyrBdkTExNEyHTQtKAicnc9jbZrkJb8p4DuMxZ2lE0JCM4PiCoGW/e4WhRwuaX5OL6myuNdXyNpd1XZ/7fXIxyQaYizpTC7YybHUmKy6LgGjq8x39gu408Qtx3Vl+vtADdrOoYmJfyDHaUw3uiZXC+nOFMU7coETI6nS5yXi8LeZJ2Q6Sivu0rXpiIRnKpjsjdR4aKE7UOmy2CwreQENlthhiN1lVIbCDdYrMd499im6o9tjaWQ6XJ3X1dVytV6JuNWl+GQWATWmmFGInUyslS/0zMpyFTEQj3MsUxRBS7XShk6ns6wChJ14oGOUiz/7PwAbxkqc1m2eyzSUFVzrq9zZ/8GK3KX/di1/RwbWFEpMk3z0TRf8Y72JksqkHV9nZGxFVbKIvgYiNQJBjrce1ioNZeLKRbWBpkaEUFAvpChUE4yJEvC47kim9JWY7OWYNoxSRydF+Nmtk9ViQGEDlfw6z08GRibwS4BmXr75ufewd13P0sgueM35rsGYcnhMyJtrIBDeEqgMpFCEtNyVIDh1MKqMmzylgvooS7OmvQfu7SHw+97lPa8GLeBgRJaLEBvQfSB39PpLUtT5jebUI+IijagWxkhMr2CtyBFC70AZmqO2jek1tMen+R7KzS+KQUkrR6W9F8LTNfovhhVprNmsEtzI40lU+yRgQK9ZpCGDBQ912BrXbYx2CGeKpM6KlJiXssW1Y+SjH/izhdZvzbB6KQICmobGaKSJwSwNj+qKhSLC0NE02WFSl1+8SjRTJmuRF3iIxvYmaqSLphZHeZt7/oaAI31LJvLg8TkuByeXqDbCCrytW30WFwcoSXfr1S0Rjpd4n6JLmqar3hUpeV+BjNb6h7S2QK22VPmysViCt/XuHNamisvj5GWxO5UvIptd3lG+hWmQy1so0dDpuur1SRj8RKN7rbC9hKm4aoxv1mP880VkW5+x/gyL2/2K96dqbtc2upnMCIC7kI3xr1DK0p8lUZMpTGLrQi/utvh5aIYO3XHwtJdrmyItHDDNZiK1llubBvrdhmLNBUnadu3DSBhdyh1gtybCdDxTF5c5UfHG3g0Gg0ef/xxFhcX6XZfjeT98i//8ms+32sOkg4dOsTHP/5xfuu3fosvfelLfOpTn+Luu+9m9+7dfPSjH+VDH/rQd21f8p0O27Y5efIk3/zmN3nPe96j/v+b3/wm7373u7+vc//O7/wOv/M7v4Mrc9ADQVSJ90CoRdLe8VCbiJfZkgrKUbtD002qICkbbNPzdHbLUuvrhT48X1N8pmCgw5sHA2qR7Lq6St3tT4hy9+s1gXB8OV/jl8ImCZlqiJg9MgFbcYP+t6k2DRkEvXVsga8ujCvo+MtLWd4xUlCkx8uFHNdrFvf2iYkqZPawDZeq1FQJGp56seN2h5TuUZQLvaW7WEAgJO5hLFGi2zOZSItJ8Xx5N6fkRLTZjLJQj3Dn6DwA5UaUejfAr+wXvx1Jb1FrhpXuS881OL82QlYiHn94PcO7RkSbA4ZLX7jOiX4xsDfqCc4Vk9ysiwlxNBxmPF5Wu7sj8aqaiE/P7ONaJcF+mYoKmQ6RQJugrCS0q0mSoYbyj8o3IxzM5Dl2XFSZFdf6SMhd4X+5MMW/e+gZ5VruOBaL6wM8fPgsAP/q27fxy4NlYvKeDsSr3JQVNbdP3qTTsRmdEumjiXyaxfUBFbyUW2FysQoFmWL8F3e9RN/UIifnxO/LlQRDMp1SLSYYv/8lNp4/CMDAHRdZf/YQMSmCeeXMIfbvvkFLIjrdrsUN2Y4H3/5tirMjajEqtiKcW5pguCz659hdp8msZ8jLiqOD97yIbrkYafH9hW/dwvQHRXVb6pECVryBWxF9F3xvit7X1tBlUICm4504iheUhsn5JZrHfx6At971BfRiheZbfhUAPX8OrVmmTxrJOpk7yL67Rc+8D4D4+/rx/9OjBN8rgsbO6CnC3/qcuL9b78bTDeyXRan99L+4i1ZzF8FrQkepc+JXsH/332CcEgsbL25g9knV9Lv+MXagn+pf/WcAor//Mzj//mOKSO6+427Y97PEfkz81H/0/0MvN0rkHjE+vMUm+pBM09tRYndu0HhJtNGIN7DqIUyZbjNTNWGDMi3L7V2dqAwofF+jNDeMPiDeY3/JJbV7iZScL858/R72H71MIC3GtZ2oc/mpWzj6HsErypXihFLis0unj5Bqhhg7IUrv9x25wgvPn1T8ybckn6a5kcaW7XrL27+liNtWqE041GRxTfRVshhnfb2fXFaMrYFcHt3wSI+LsdipRrEjLVWFd/7lw+yXqan0xCrtYhxPBgyVYhJN84lKZfjk0CbrN8ew5Xi569Rp6jK17bk6kWRNValO9q9hmCJVvn2sbOWUvlmnZ9FybMV5nMjkOSYlMlrtEJOtMI5sh6m77EqUqHV3JFSa3QAFKQRc7ASU3MhCPULNMTgox4Pj6fTHKuTlnNhoGQxEa1yQKJ3ni3Vie/Pn+hoLsiJxl+STuZ6Gu73TegOO/9U5SQBnzpzh4Ycfptls0mg0SKfTbG1tEQ6H6evr+56CpO+7uq3T6fC7v/u7/MZv/AbdbhfLsvjgBz/If/gP/4HBwcHv+Pt6vc6NG2KQHz9+nI9//OM88MADpNNpxsbG+Iu/+As+9KEP8fu///vccccdfOITn+C//tf/yqVLlxgfH/9+mg7sVAb8+10fVeTqzVYIQ/MVufZqNUguIF6mXbEGdcdSAcaj61H2J3qKbFxzTKXBAyI4CRiuMmycrYcZkzn8jVaA4XBbeaSVO0FeKEQYkMHJVLRO1bG5JhW4J6M7lhzDkTqurxN7RYrsXDFJX3CH5GzpHquy0kVHpMb6pOz+WjOkArcvLsc5nu6plyJiumSkSSMITaazxRQHk2Jy/sZqkiHZxranMRbuqsqwhmNxvRZiOCz6MhPoUOgEsGS7w2YPz9dw5LU+vljhtw+If18uZWi7OoOyjTFbWINsT4jP5VPc1VdQ4pZDkbqyBThfinFHX4GnpBhef9Ch3DXJBMRzOZzJs1xLqOCs2A7xQiGqJACykRprtSQgYPm2p6vqxmyoSds11e41andwfR1LGmt+7GIf/3i36JutdoiI6ZCQu9WLpRT3Di8pHlXY7rBaSRGQi8J8NcF4rEpOmnBe2hhSulh3D64QsByek6jknkSZLy/18S/ufU6MtWqMNallBLBUS3C4XyxqtXaIeKjJ08vj6rem7vLYmth1Pzi0xvTYIk9eEQHYZLIglJJ3i3cxki2zNS8CrmYzxMD4Cmvzgpi8751PUrk4SeKIqHyqXhhHNzxiR4V6t1sM4srUnOfqmNEWnkQoes0gRrCjxCZ79TDllT7lMZc7dIPi1QkVVLYbIQJyke978wytSxlWrwi7o6n3v4jf8+nOiudWXeon97ZZ3BXxWyPbo3NDfGbfZVD+qzhhGWAGbjPY+PQAmcPifv2OjXXMpPRl0Z/JnxTvkbYkKmWchTCaXOTdaoTS3BCmLblym1l23X6OstTUyZy4RvXKGGE5torXxlQ6zTBdBm6/SG1GPNPKZpZ4pkRTErlbzRCxZJWU9LZz2zadUgxHjonnLxzm/nufBmB5Zhd73vk0c18XKH4g2KHbsbEkehqMtPA8XVXW5ZcGSctgTdM8Oo0wa7LUfvfxS3zhaw9x/yERFG7ms3ieTn+f+H5+K4Nt9hSKWWpGuUV6yHWbQQzT5cwlIVxqGz0mh1Y4KwUzj+26QbMZZqMsgsp4qKmCMbdncnFhgnhgR/+s2gmq9HR/tMbNUka9t0Gjx7VKijHJvdNBobh94QaPr+fYIwVzx+NlXs73Mf1KuyXDZUT+dr6aICLfw2xIoELb82s00OaPZkYISxjh7j5hVbQmq+CilqPaBMKvbltw+EYlyWikjudrNN0uP3PhM29Idds373gbkdexuq3Rc3jo2a/90FS3Adx///3s2bOH3/u931PSQJZl8TM/8zP8yq/8Cu9973tf8zm/5yDp9OnT/NEf/RGf/vSniUQifPjDH+ajH/0oq6ur/Ot//a+p1Wq88MIL3/E8jz32GA888MDf+P8Pf/jDfOpTnwKEmORv/dZvsba2xqFDh/hP/+k/ce+9934vzf4bx/YA+y97fpaUva1ebZHv2FypiCDh6e4N/lFO8FECukfP11R1W6Fj03J1UnLCPFsK8JahMn8yu21Eq9PzYCwiJq6k3VWq0J6v8dV1l1uSYuI5mGxwqRwhKoUpT2aKLDeiLDTE5x1XY1iKFg6GWpi6x4YMGIpdk4TlqjLUni+4M9vcl+2AbLtE3tB89W8PuFGzOZQQL/lWxyJiekoQMm53qb9C3brZMxiOiAlivh7B9zXl6zYQFlyX7e9utkLELUdJIOTbAabjVcWlMnSPuCQef21hnL6goyaqpN0haLoKPWu7Bk/nQxxJij64bXCF5aqYeK+UYwyGuqzIxfiegXWK7TA5WWGTitSJRhqcW9gl798jHmjz1LpYJEzN53pN9McvHLrJ9UKfauOVcozpeEP1V0D3CJk95d+32Ihwp9QbanSDROw2y1ICIGI5HBhdoC2riC6vD3NsbI41WVVT7Qhj4W1dmfP5Aclhg3/2gS/w4lO3sX1kYlVSqbIyg3U9gwvzk6pqqFyL8bK0YHj3LS/wwuWDPHD3swCce/kIyUhdGesGLIfpA9d4+jmxwE4PrmBaO2KT8YEtZi8KUvPukxfRrR6dbduRXaug++gRMT40W8Pv+oqo5rd2bEfM22Noaxt0rok0Rf7aOAPHZmgsCwQrumsVY9zEW5XVouspAm+LUf+MrLy8tksJIKZO3sCtBFl/WdhdDN56Ce3UMJxdVL8N7S3iVaR+UwpKT08AkDg0R/XSOIlb5gFozfQRvr1B4SsipZi++wZa0GBbwKvyzAjx93TRirLc3OnRW5bpxCmN3nVhdAsQHNpCMzyMEfk+bXZpLfQRPiDQsu58XGkbaYGu8FwrSl2oghDpdLfEQl+5MULq5A16m6KvG+tZkidn2XxSBCD9D11Vli96ukdvLYSZkchFMYTXsVRVne8aaIEuvbIIwMxoi9qcuN/5mxNMTM0TmxRBte9rtNczijAeTNZoF+OsLYrxlO3P02kGiWakHlioTbsi2njjxiQHj13i2eeEkN9k/xpL+T7uuF9UIBfnxTW37VF03WNdBmfxWB3D7Ckj3a1yknObg5waEmN6uZzmwMgiMblBy2/kuLQ2zEO3ibWltJmhWhf3t1WPU2qHFG8oaPbYO7pISfLuKs0IV4tZ9qZEgOb5Gpac40J2h45jKZQpYnW5VkkpgnitE6TjGop7OF+PiXlA/m0bLj25iSp2bbXBarpd/rcrf/ajIOkNOpLJJM8//zx79+4lmUzy7LPPsn//fp5//nk+/OEPc/Xqa5c/f83pto9//ON88pOfZGZmhocffpg/+ZM/4eGHH0aX5paTk5P8wR/8Afu2PZO+w3H//fd/RxuRX/zFX+QXf/EXX2tTX9Ox2AwpDk7UdMnYDoeSol332sMsNaUFgw+PbLr87IT4XcM1XmXYenu2iaW7jEfE9/slsmOrcvuQgmPXW0F+ctSn63XV33f2FRX3Z70Vpu0ajEpUJmz2lMT+SjPMcLipPOJqPYNGT2dMGst+cdlmIhJks/NKDR6Hq1JHKWT4TEhEq9ARAdKW1EXSNIEAfXNNTBhvG+rSF2oqldu47bAu9YkGgh1CpsPMdtWLEWCrHSBl79y342vEJUfnQKrJV5Zy3JrdEZvblLuzkOlhaL7iApm6R8DoUZABxqVKiIOJHpOSrN3zDFU11hd0yATb6jl8Y3mQU9myKnn+69lpxiJNLskFY2+8iePpqg90zSdkiADrudVR9iTKigR/PFPi6c2MQqUOpUp0XJO05EaNxMvMliX/xNfIuAaLDXFPx7JbPHl9n+JFZEMN6s2wIljeqCSYjNXU5LwvvcW4vO7/+f++h1vSDR6Qu3vP1fnKuePcJu0elksZ2q6pLC++duEwUzExtpr1CJPZTZ5+VgRBw6kCrU6Aukw95Bsxqi8dIybTs4bhUqtF6cl0SuNGRKkc3zxzgFx/nrYk/UYm12gt9Cl0I3XPAnRdOrMChTFCXToFSdR+qUh5ZjfBhHhmsWyJq4/dSkQG2cF0lW7exJBbdjtTpfJnCUIZsSgGAx3s7XJ4KT2wXTVWOD9N38A1GguCn9hr2wTbBTQpqUEohKbt5DuSdy/h5sV4CB8t0Lrj/aRWPwOAe+IkfO0i2oMC/YgPV/Be2sLISj2nmTStvERCvBU6xTiGLKIwkl26ywmufP0YAJOHrtHYStKT3CCnFaQnpTgatSgT1mnVP73mIKXlfhpyvKSzBUovTVPeEn3ZN7lM+cUphfg4X7Ypy8qvsd1zXLu0l/FxEVCsrw4QDrUYPSnSb5rpcuYr9zO9R/CfuksDVCXJe3BwnWY1Su0lwQXKjK+xfH2CrCz5/+Tnf4x3HXuZmHzXAtEmV65PMyWLCMpzo+Tkd3uewdK1SQ7vFuT0jY0crZ7F5nWBYuaLKYJ2l6Z8j3OZIiO7RGBbzadpNCJsSk5ey7HpC7XUe7vWjLB2bT9H+wRnba6cYTqd5wvP3CnapXv0h3eEJeuOxURSBEGPShHWK/LcYdNlMl5R1InhWJlaR8xjL2/2c8/oAkZbjJenNvqZiLQUAqxpPh3XJC7n2+Fwkxe2kkxFdwxxl+Tz7g92SYda5JsRPP+NEwH4X1Vx+5WHZVmqqKu/v5/FxUX2799PIpFgcXHxezrnaw6Sfu/3fo9/+A//IR/5yEcYGBj4W78zNjbGH/7hH35PDfq7OipdGJSFel1Pp+tpfHVNTJBvH7AVxygbcHjfiKbQoNFwi5VmkH45YV6phLkz0Oa+/jIg0I+ep1NU32/z2IZYEE9l2lQdUwUFlyoGfcEgmxKan47X6Hk6jd621YStSmF3xRqsNMOqyqzq6Gy2NAxNXOf+fo+Wa7DZFt+IWz7XqjEOSSPNrmuwJhe59bZBvm1xKiN1XXx4sRBF2p5xvhwjY7sKtp6txeh420R0A48Q+yU36NH1JA8MlJVP02w9SED3iZjb6UeXQ8kOLxXFRHU01VRprCsVg7tzO3IJPU/nbCGt+F8TEYebdYukdGafrcWUeq7jazyfTypl75FIl2JHaCcB3Na3Qb0bICcDnZDZY60V5nRBWs8keyQlGhYwXP5iro/DErEaCrfIBXqKEPrFhWFuzVT56xWxOD80WCZs7tibdFyDh6SicKMdZFfSoSgn5lyswpm1EbXrHAi1GEtvMbMp3qWLpaRKx/6TYxcp1WIsrYq0dadncSi7waZEqUZSBXquwbVFsRi9eXRJkVIvLE4ylVvnQlEstiPpLaKhFhc2xbkO5daptMNKV2lubYhDe6/hyHGq6x5aQ/RdKNyi0wwyco8og++Volw/v5+9JwWJt3s9gmb3mD8j0I7c4AapkyKNVb0wTnQwr0rLrWiLjXKK+x58HoDyzDiRviKdLXFPRr1DdGRToTSNVohOVfRd5Mga5nADW6IZAL1FW5HEl548iZ2oE9oviM7dyybJN23IbwbxCy3aS+L+A50SgbmX0BNiQtWePU23mSBwWVTO+V0f/WAW75pAkoLjBSwZgKL76IaHIcnl9UvD9NoBBkcEKnP93H6mD18lvyBQmFiySr0qUJdgqE2vFFXcnm3j27ysZhs9cJ3C3LBKN0b2rFI5P8n4LhEYt2oR9t4nuGKn//o+xoZX2VjbKWKxLIfGquCEzlzew4X8gBoTgyOratFuNcNMvvs0rSsC0ayvZ8j0banz3DKwwup6v/qtFeiya3iZiORDVStxamUR6B0+epEL5w4RjYq5JZct0O7aBLcD4XoEXfMVV+hPXj7Bj+0S78cnLk3z4T0LqjKu0Q0wEK3wgkRESx2TH99zjf96QWy6f27/DQqNmJr3Ipaj9MwmU1t0ehYdmZ7fE6/x9ZU+3jUuUN5KO8RiLc6w3LDMV9KKS5puRig1ouq8x9MlfDSuyxTh7mSJ/nCdRVlEMRkvczytE5Pt7nqG0oo7kNmk0Iy+7kHLj47vfBw/fpzTp0+zZ88eHnjgAf71v/7XbG1t8ad/+qffsxL33yvF7b+L45WcpFWJaByQaacd/7EdDtILhRA1B6RzCCcyHXLBtkoRub6Ghq8WQYClVwQzuWBHQbY9T8fzdwKuTKBLqWvvTJBmjxu1ECFj2wDXU2msoVCbr66EeXhYTEQ1xyJuOXTldecbwtIkL4OkE+kGYdNRhriur6ngJGI5bLWD6h7rPZPlps2gFOl7fMPkjqynrFYGQ10FWS/XEpS6NklJkDY0n6VmiDultcaLGwMMh5usSeQpZHhMxitclIv3idymMs0sdGzGo3Wey4u/xyIOtZ6hUnmbbYu+oKP4TdlgS1W3CVXeCBNR8dm+eI10qMWs1Ksai9aIBtosyWsZmqfIogClTlBVwsXtDhvNiAp8ep7OhXKM+wbFhHqpmOb2wRWqUgTyXCHDSWnY2XVNJvvXKclFcbaUZb4R5qgUzIxYXb6yOMT7pO6N72u0HBtbtqXWDqmquW1z2+1KOV3z6E8XackAtNyIkozUaUu+WzTUoiU5I325LS7cnGY0I3b7n726j3dN3aQsx/hQusB8vp9xqUlVaUTYd/AqX33qbgBOjs8pUjzAVj5DWCJng3vnMKMtXBmwByfzbD27j9iwLBefKOI1xFjpFeIsn99DWKJB0UyZyJ5llY7TAl28RhCnIT0FTxRwN3waN8Qi2evYihCcfX8ef7FI/bLg8wT7SljjTfymCKK1TIjuZRN7UtqjdD0YFQGE80wLzfTQ5BjX3rIH4/IFvMkJ0bfra/i1NlpOIC1ubpDO5wrYEtFqrWUIT0hj4dUM1dUcQUlcTt65SG99Z7/ZWslhRVpKELPZCJORFWjhXEnxsgCcRogXnj3FoFSgtu0uA1OLKsAa2DPPC0/crlSkJ4ZXFJn62cfv5PiRi1y+ItKikyPLZPfOqyDJ9zQ03ceVAZkZ7BIdE/fgtQIY4TYVyaOyQh02FobZkBy3SKDN5J6brM4JNGZkep5uM8TmqujPRLJCfEAEVc1ignYjTFem6rLDGzzxwin2DYk0aakaI5OoqFTu9aUxrkktsMPZTXLJspIm0DWfjmNxcWsn8JtKlCjKd22xHuFwpsBV2c6OpzEsVbCn03muF/qURttYtMZaM8IBWfJv6B4912Cpuo0sOWS3jbYbMdabkVdZEbVcXW3C1lo2xzMlxYcsdGzW2wYPSu2wZzcz3J7bUQJ/aiPDiUyVptvlH11+Y9JtX7vt4dc93fa257/6Q5VuO336NLVajQceeIB8Ps+HP/xhnnrqKaanp/nkJz/J0aNHX/M5XzOS9MlPfpJoNPo3bD/++3//7zSbTT784Q+/5kb8XRz//9VtVyomNUdMRLoWJGL6Sm9jKtpWyElf0OdI0lHoTybQ4anNBLdld7yZFhthhiX5OGj2SNsOm9KL6uVihD3SKsT3NTTNV8FHyw1S7+lYMqLSAUuDPZJ4+dRmnKGQaG862OJUJkBeok5zdZM7+zqcLYjFJ2n7dF2NqZhYYG/WwoRM71UKsCstufgEPHQNlSIzNZ+BYE+RGt814lDvmbRlHyTtjoKsdc2n0dOJmOKzmmtwNF1kRipqP7ap8ZbBIINygc13gsyUU6QkCfYv54cU6na9FmLE19kVE/0TM3vErZ1JKxbt0XQNdksrgS8tDnK/FJJ7YiPF0ZSjdm7rrRCOZyiCeLkbYL0VZkyKOF6rpLAcm5ZcgMeidUW2r3Zt+sMNvrAo7uH2bIuw6Sti+1bHpNyKsCp1l+4bWWS9JhZXS/d45MYeZXcwFK1ytRphQwYnU8kO7xhbVVV3X7ixG8eDnz4oUiQdx1KWFdF4jUi5pRafRLzKF84f554xQZieHFnmySsH1W42kyxTl8Ho514+yftOvERV8jHeNLLCi6ujSiOmVIsRNB2uyh27oXkUXrxF6b70jawRkr5dhZujfO3mbu4YFIvzaPgKRrRFc02kGI2NNivLQ+yWpeq9fJjZZ44DsOfdTzPkzBIYEkG1U4jRvDmo+tJzTNbmRpk4Lu7fy3usPn2UuuSZ9I+sKcQi8tQWVixEWyJL1c00A+FLFM6JICHSV2RtZpL4TdF/fR/coPOkRHtW+8nce0NZp+gXz9OZjRMwBQTfPJMmfNzBvSEJwXaA0NssVv5AIBjbgQmISq9aJU7frVdEO54foVWNkt43L66VT5MMritJAKecoFES95C8bQ7n/CCtQlI80yNzDM0U6Jcinprm43YtonEZKMcb3PbA0wqJW740rQLK+z/4ZV78qzdz9Jazqi/bW0nKUuvq5towyVCDbFo8l6DThnmBpIVyJeqL/QRlFd35507wwvoQD01dV/dZzadV+m3x+iRDYytKodsracT7xBgvydRgqSY2Bu1OgEy4TkvOTeVWhOfXhnnH/kvqHt924CIAVxfHaW4GVPXalVKG6USZPjlfnC8maPSyNOX9hw0X2+gp4cZWzyQpy/jPbQyx2bFZakjqR7xCJtimKTdSlU6IqN1RMikxq0tJprkfXc+w2vR537jojxvVKKdyeeXnOB6v4Hq62sCmbIeb9R1D6bTtqrlnthbjULJBqROg5f7I4PaNOnzfJ5FIEA6H6fV65HI5vvrVr37f533NSNLevXv5/d///b9Btn788cf5+Z//eWZmZr7vRr2Rx3YU/ltTHyFiiEDmiysG9+Q0JQnQ6hk8tyUGzJ64TtJ2labOVLyqSm63D0t3lWz+ny563JcNEZGCeGHDUy94vh3kRi1AUCJF++NNNtsBhUrZhsdcPUBSah3tT1TZlItg19O5VLHYIw1rm66OqfkkJIF8rh6g5sC4JNcGDY+E7XCuFJbX6ij12O104WJj+9wwGHJYqIt7mI51KDsme+TE7foay3LnFzVdUoE2FyTXYU+8QbNnKm5Q0HBpu4YSsRwMt16FstUcixOyIutCfoCFRoA7pBN5qR1C13xeKIiJbCTcI2x46vtProxyq7TRMHSPWjukdnpTqQKVV/w9HKljaJ6C5g3dI9+MEJUBxrP5NLfKtE25azMeq7AkAx/H0xkIN9Sus9CMstGM8Oi66K+P7l1lcki06criOCGry6qE5XV8sqGmgukrXQtb95mMick4GWowMrDOX50Tqsi3Dy2RkmnNSKyB07HYkqjbQP+mSHNI8nU82uDG+k7AEbU7Svfl/OYguxIlhUAMZ/N8Y+YAR3OivxYqaXLhBmMSAdsqJ1iuJrlFpglzo2tE9wgkYO7bp4inKrTl+Bh52xn83RO0viSlG7IVUa12v0i3tT+9TmhSnNdvmbiNIPYBMda81Q6N2UGCWUkAPqLTedFQQpVWtIVTDwlrE6B6eoymDJKCkSapBxaU9lFnM0V4egO/IwP0mVGC2TKBPTKlfD2CNSD60muaaKaHPiHGkjvbQD+QRetKa5njb0ZvV9HGhUeau/EU1p99UVmeNG4MYck0qO8a2AOv8A97/iC5wzeoS2+7cK5EtxIF2fe9doCwDCAD02Wuf/Z20jK15fs6Tsdm4B6RuqxfHqVViZKYkDIQC4O8dOkgt50Uqc52LaJ0kbq1CPPXJ1Xa03NMuvUwixL9GRpew+nYKpjRDJe1GyI1O3L4Gp5jKt5UdTPN9aUxxVFrdIIcP3FOebxlxteYu7hHcYWymSIhqXWl6T7tepiaDJKi0Tr5rYzaCIRCbTa2Morf058qcmZRFMJUujaHc+tqDJuGi+9rLFbEmD9fivNzx8/w2DXBnTqQ3cD1dCUQaes76vW1TojZSpLB7UA/WqXW2UFmVyspzhZTHJNB4wtbaU7KjUDHNei6BotSIPPeoRXioSaLcrM3X48xGmkQtWTBTjtMtWszL4tqTmYqXJEbkrarcVuuwH+5mqDnd3m09YdvCJL01Vvf8bojSQ+/8JUfCiRpfn6ed7/73Vy8KILv0dFR/vIv/5ITJ0583+d+zUjSwsLC32pLMj4+/j0To/4+HEPhBnW5kN+aMRiP1tFlTdaSG+af7BOT2vObOYZDbYVQ5NshxqJV5mQaZzhS55euFfm1ITEZ/eaRMk+uBRnbzs8brgp0fF9jT6yjqqi2OjaD4ZYKQKbiVbbalgqatnk+AI9sGPyj3VsKGVpvhXE9XRGEGz2Dg4muClbOlyLMNyxWm+Lvh0cqyg6kP9ThdCHM3X1iMrF1l6VGhJD0HxsIN2nXojy1Ke4xbu2gbBtti326x0hYTB6rrSBhwyMuU1ePrkdJBSAuK/ZiVpeA2XsVXL69m7N1j9FwV6EumWCbatdmj0TDVloWk+k6N6To5WSsztm8qJK6c3iJohdhSJb3FpsRzhRTPJYXiN6/OuRTaIcV6rK9c92S5cP3DeSVTtSVSpi41VUmvJstEWxF7W2ulMFEvMzDMsi8UU5jyjSOrvksVpPMSs2U/Ykaj6z1E5TcqAdHlnFcUyFxMV8XKtryXF9fmFDWMQ8euMBmIcMTS2Is3Y9Ix+XiIsBwewYRq8vZLdEftw3sIFR3js9imC5bkuTb7gR49/GXeFqW/Fcci92hBq7ku/U8g8NDyxQkN8ZxLIZlqmGzmCbdv0VT+gTOf+UUyb4C3ab42wx2sUdKaJfFYh0cMNATYmSuPb2PvhNXKX1LpMhK61n6dy/Qa0rNoYstygsjxEcEwtXcSJM4MosWkpVk4TaW5M6F+4u4qxqtFXG/7XIM3fAI3S4W9pi+iN8x8Qo7+75tkje+BroPssBED7lgmrAmAo7gVz8Lu0fZlp4LnXkS77YhvKdFu6JHV1n9urA7yu6dpzk7pLhQwe1UokxlVW8OY9gOlU2RMgpGmpg1MR56F20m7z5DZ0su8okGCy8cUl52514+wvE7TlO4Jp65brjccetpJZEA7AiGdi0SsZpCmRqFpBCQXBLVZCvLQ0xMzZNfFOfudm0mT4lnNP/SIZLpEh0ZJJlWj4mBNZpybgraXcxgV5n0eq5OMllR6NjK8hCTkp+0sTjE0K5FFSTNLw9z4MAMm5Js/vS1fbzl1ItclGnB5+amuXVCWKmUqjGioZYK/KutMEGrq6x2fmyywI3VEVWg4vsaC5U04wkR+M2WM6xInt3J/lWSrR2F/nIrQtB02JSbnWSoybE06j0+nq4wLM9zfmOIQsdmTKbuNuoxglZX6c6luwEMzWO1Ie6x2LGJWT3ePCyC+YVqUtEAyq5O0OjxkakWTbfLo5d5Qw4fDZ/XUSfpdTzXD/r4l//yX9Jut/nTP/1TgsEgH/vYx/gn/+SffFcV9t/peM1BUl9fH+fPn2diYuJV/3/u3LkfiLncG3XMVBPskqjLWKTFVjvItFyM9lkOFwri3gaCXWzDVRNTLtQUELkMmubrMe61s+xPiZ1gpRNiKrZTVXVXX0EFPUHDpdTd8QM6mC5S7QSUUGPLEXnw7e+vNKIclBySwXCEZLDJ15fE4nPfwAZ1R8DcAMPdAEPRKpek+eV7dy2Qb8QUh0fTfEZlQGHpLhutABNywliqpugLdjiWFVB7ItxgqRHhzlwZEGrO22hQLtyg1A4xL8uBI6ZL3HKYlBUmB/rWuJofUJoijqezXI8pDtPBvjVeWpPGoIgg4xtrYuL+pYNbaESIy+/2hzTCZo+g7K/9I4vsk5Pii8vjTMbLit90anSekOXw1jExya3VkvRHamzISS5sd0gF2lyTnmmPrOX42YMifTIUTdB1TVWWH7a6RO22qkBzPJ1Oz1L6VoORneq0RKDF4YEVTDlxx+0OH9izrrhCnZ5FvRugX+5ub5Yy7EoWuUsK4i3nc1RlBdpjVw5xy+g8tw7spGLioSZ/eEEgNj938CrD2bwK0IqtiFJQDgQ6VOtRUpJMO5vvJxJpsk9WCbmejtMzVfpk1/AyvVdoQfWPrBG7VzzvU4OP4pRixKQQYThZJf7TOo3PivcjcNLh4u/dx9RJsYsLvjkIK+I6uWMzlC9PEJbmsLvumsdve2iD4jn1rvTof+iq4vRYsSbagSFYk0a7A0VC42LMtxdz2IfTxPaK5xK1e2jlKnjit/6pfRj5NbxZ6Ys3XKV9U6rIJ+qiPL4pxoMW1GBrC2xZtr9vN/rZK+gZEWC0T72ZwJVnMU6JdlY+F2DoIaELVL8wTK9tE5ABWGSggDXtUn9WzBGJfQsUL06RHhV94DRCRKbFfOBsJLnwjbsU+pO/tIvs8LrSpBrK5jFsh4YUCJ1+17OUXpjGkgFJNFMmOCI2bJ1qlP6pJXoylR/JlNm6PkYqI5CSmdlJNpYHGd4zp8aPldmhBTgdm7BUEb8ys5uJoRVi2yK5Eyu0y1HSuwSaaIY7FJcGVan+pc1BhiVRfWB8mcpGhoZEYaZ3zVMrJjDlRuTY8CL5tT6Vvjk8sEJYzgetdgCnZ5KW/Les5lGuxVTVWbdnstUKK7pDuZgjHegoDt+uZIEFiTrV2iHGEiVVJBENtDE0j4DkFhaaURLBFl1JsM5FagppTdgdmq7BnEQ0b8m2WKmk1Ya22TOoORbjEgE2NJ9Gz1QVsHF7Z1N1zOrioVF3LFruTsD+o+MHdzz55JP8+Z//OffdJ0Rpb731VsbHx2m1WoRCoe/w6//58ZqDpJ/8yZ/kl3/5l4nFYkqr6PHHH+dXfuVX+Mmf/MnvqzF/l8d4pKGsMhxPJ2L2eF6qU9+WK6ggaL1tE7F2tHwajkU00Oa4TAF9cW6CgRAUZJonGWhj6y73De4oTm8v+qvNEE3XYKUkXurVVpBn8/DWIfFQk3aXhXqYaclJGonWOL0hdmdHMluU22Fuyey4z1s65GQpseMJ9dXt3P61Yo5vrIV554iYJPPNHcdqz9cYDHV4QZrQhk2X3cmiuodCK8xgqMkZafiaC/RoyCAxHWwRs7pYEik5lCpxuZTClsKMMavLaLysghPP11huBJXo5YurowyEd0TZRpMFvrIikMorhRwJu8srE8LLjagq++8tTvLFJUHCfKC/wfVyWj2XmY0hsfOTPmqG5hO3DYUk9VyD86UU++TkfLWa4iUpvBg0ehi6r0Qsa12bhWpCTYIR0+FcMYUt7/lsyeR94+I5rNbjGLqnAt9qN0BxY4iiJFfnAm1sw+NLCyIwHAj2GHUNtWjEgi2FFOiaz1opzbrsu9F4GYA9krMVjTZ44cZujkidpDObA8xIJOgtU9dxeiaZlGiXXczy9LV99MlUhOdrHBifoyp3/49fOcRovMzRo2LxdlpBao+JxafXtQgma0rnptsM4T05T+ykRNZmbAaG11WJvP+1Kr4rUJTKao6Bey7g1USQ6G4afPPT7+H4fhGQ9t11md5qkPKM6PvE9BLVz5l4zgQA8b2LFE4LBELTfUJLM5ASY9e91MYpxQkdFgGYUdig9OU0kQGx8NlTdUJ3izZ7yUHaX6zTfV7aSAzn0SMdZXFibFxDm4iit0X/mC98ifq5UbrSRzH1EZfG58T7YSfqhEc3aS2LAMxphPA9jaBMwXXWMzx74QiHpAp9un+LXlEE0Ytn9zE0vEZdprGeunyIfX1rSmW92wrgtgNEZCqr8Oxe4hOrbF0R70QoUWfpcZFCCMfqhHMlPvO1hwBRcbV7fEGhg/3JEtmBPB0pVJncvUhjVlZKdmxsu0tRvj+DmS3KlQQR+S7OnDlIMl5la0MgtbbdpVROUJNo6+50XqF06wsjPD67W/mtpZI7JG2AF+ammUgUGZep8ezIOlcuiPSZ72v0PEMZL29sZXA9XSHgIHh92wHWvNwEbVdpHh9cVpuVhmNj6J5Cf26WMgxFayqVlww1MTSPl4pibI5GGlhyHhxLFllrhblTetUZuke1EaVfvpe65jNX2ymiGDId6t0AF4qi/46mSwqVXmlEMDSfwXCD5htocPu/suL2+vr6q2SHRkZGCIVCbGxs/A1A57UerzlI+rf/9t+ysLDAm970JkxT/NzzPH72Z3+Wf/fv/t331Zi/yyMdbLEhibjlrsVqy1BVbo2epRau4XCHK5Uok9Lk0tB08o0YoxI5sXR4LF/njpyYqAvtMB3XUPpGng9/OiuCjw9PNag5Fhm5m41ZDqPjKGPZm7UIy02dvqBYYEUFmyxTNx2ajk1b5vnv7t/iXDFNJrDt5dbjha0USVugDK6vcSrjKPPUtUZUCTwOhhtcqyQIyl2kofnUuwGekVVmKXtb/kBc29B9SlI3aqacZE+iovhKpU6QiOkq65XZWoRswFFBQ8WxmI43lEBk2OyxLqH2XYkyALdkxMu5P5PnfL6f3Umx0L+Yz3Fn/7ravQ3Gy/xSSuyq212bS1v97JXWKZ6v0+5Z7BkQi8+19SE8NAYS4lzVVph/cOI0l+aFuOSpTIsRyW3YaEYptGz2yQq+vkiVUKDD6RXB9VhrhskEHE4OLsvnNsJNWc12/9g8C6UsWYnovbgxwN5kWWm5OJ5Bq2fxM/sFdy+TKbK20UdHIk225fCi1Hd5/6HzLOf7OC51kS6vDXNgcIV7JcJ5Y2WEmmMrNOj+iZs8vzQBQK4/zzMXjtAvlY0BDg2sqH8H7S52sENWVlm97/hl5s/toyvRgEYtSlD6rUVHxMJR2BT8jL1vfxrN9vCmhKaQmdgk3lnFulXcgx9Pgi6JttUN/OgU5qq8tm5z67FzJKV3md/RMZJtIrJSqpNPEkxXCRwV49iv9QjIdFYgVRPKpy3xmRaA4ERe+ch58SSRoTyWTBv7bVTCQF9apLKyn5jku/lvOgYvnMZ8m1hsndw4xpUX0BsylXniOFHOsPKNY+I5zZ0nckh6HdYMNN0n2CfGUiiwidHvU3tRCpOG27zjg1+gPi/+Dqarqk0Td5zDbQQxpA/g3V2L7P45rj55i3hGP/Y4vWKUvmPi3JrVw3dMEkNiXJdX+mjIdPzw7ee5/shtfOhn/jsAzZUcZriNKwnT3Y5NMFFTRG+jr0WgI9oxOrWAHWnBnAjWLy+Oc8/tL+DK99ayHEKxJuljgsjduDGM2zNISr5cINhR1X1777vE1h8nOHpC6Hmt3BjnsZn9HJfvx1Rqi1i4qUQfS5f3qCDoC/PjvHN8UZnlDua2aHcCpHrifWl3bQbjW6zKlLKh+RyZmOXSwgTbx/bcHDR7nN3KKamSo4PL6JrP9bwIiqrdANlQQxWRDMUqfHFeBOcHugFiZo9NiUK1eia7EiUVnFU6Ie4YXmRVVuVtq+7HJW+15tiqGnZXssCjKyOst1N0vDcuSPpfmbitaZrSatw+dF3/jhqM39W5v1cJgGvXrnHu3DlCoRCHDx9+XSxC/i6ObdLbF06+m9W6eJn6Qi02WyGFWAy/wnS04xqUu7bikKw0A6QCPUXErXdtrlRijMsgyvc1MsE2AQk9/9VijjcPiol4JF5itpTlr5bEi/mesTobrSAJuWNv9EzChqtIzwOhtmqTpXsYmseKDDAs3cfxNEYk92m2FuFEtqBI5XG7w2ojyrzcGU9Fd4KChVqCRs8kK0UJXU/H9TXla6Tj03ZNHtsQ17qnr6VkCw6kStS7Nuelp9GDgxt0XZM5yXe6VrM5mmoqteqo2aPjGvTJHVrE6lJ3pLVIMcHvFJ7jY+OiTDNk9mg4ltIfiZg9Ch2bfrmw27pLVKJya40og5E6VySSEjQ89iTKnJNpUlv3mIzVSMnrXi1mCRmuQggF0iTLsj2dTKipSN7fXunnVLasTGkN3ePFzX7ukQiO72usSt5DxzVxPP1V8gLDsbJaFOYrabKhJnWZ9ozaHcJWh/NNQ66sAAEAAElEQVSy5Pmu0XmVDig2Yoxm8srOIWA6JCINxROxTAfXNSjIlGE83CSZKgOwvDpI0O6qAGqpmmI0XiIZ3Vl8lkoZ5XvV65lous8T0mj0TYfO05XPeOyO81x79Fb2vEnaoVwfxXN10j8lzlX+TBgr0qIreVjJw7No27Y1N3MERra4/jUh/rf3p59n6S8PM3zfWXGuK2PYiTqm5LR5joH2Cv7N+vndDN8t0lzLTx4nu2uJoLT7aK/kVCk9gJmso0cc9AHJ/7npoN8lXe4NC+35GZy86KvAbT5Uargi9kA7MYq+tKQCv943VtFMFzMnUU4XymdFQN1r26QP36Q6I84d37eA37FAPpfnvvAQR0+cpyP7Iza6ru7JqUSxUzWuPiGCon33nqa9maIoNbcCoRblYorRgyI4qa72EYw1sGVA0q1EldDk0OFr5K9OEpZIs2Z4BNMVHvuGKKrRNJ9EsMltPyVMbc9+9k3sv/WcPG8Op2Pz9BWRun3nQ4/SrYV58vRJAEZTBXxfY2hIpAyLWxny1YRCUrKpEqltCYByjFi2pALsF88f5sD4vBLyfO76Pq5Vo4owPZQoUZIb0oVagkO5dUXqDpgOq9UUlySXbjTcYm9mk+dlSr4v2CIbajIjjZuTdhdDXqc/Uufry0NqYzgVqzMSLykS+GozxOF0gbicA5YraeLS1ulMIctay+T9Uo9qsZIiYjlqHouYPUZjVVpyc5eL1LDMniKyzxT6KMl5ui/YodEz0YCW2+V/v/GpN4S4/cVb3vW6E7ffdfqLPxTEbV3XSSQSSkgSoFwuE4/HXxU8FbcV9F/D8b+sTtIrJQCuXbvGf5z6CENh0RVz9QiHUiWVujiWzauXcn+qQMuxVZ77UjHLeLRGTnJMrhT6OJDdUIJm5XaY1WaYY7Kq6Hx+QHkH6YiJbFvw70Q2z5Vymp6EsVO2Q0ESBEEs5NulsGOROo9vpIlIcvXRVAVdQ00YXU/k0Lddqvelt3A9XaWQtrlLsLPI63J8tXomEcuhLWH7Y2MLLEqCNAifuG2k5HIhx2C4wXSfuL+ea/CtuSkVrPU8ncODywq6jcXqPCYXYoA9qS2ekaasdwyucvy2l5k5I8jFYxNLLC8O89lrwsX89lyRsNVVqULHM7h3nygrvjS/iyPT19nMZ+VvF8mv9ROW6YNGI0K9FdppR7hJ39A6GysCSbAsh8sSKbr3ltO0ahHFv1ja7GdqdInstChMeP7Ru0hHa4q/Mz49r3ghlWKSmdUR3vRWYUi6OTNBbs8CC2fFPa8UssSCLY4/JPy3StdHWVwcYWJSnPvGjUkmJ8S/i/kM44dnKEnibWZqSaQn5OKrGS61zYxKe8wtjSgux0M/9QUas0Os3BxX9xcIdCjLgGrvnS9jJBvkTwuIuv++S2hBnfbVJCAqpcK376iiu/MdPHmP1q4ezsHjGBURYbT3PUDw8rfp9U8AYFS30ByJ9ly4Qftn/w3WtS8DYF4+i3PoJEZpQ53bS2Qxnjst/hjP4oej6GUxmTXu/ilav/YYAOkT1/BP7cMZEIGMGxtCDw0SOPPfANDv+ld4/9+PoqfkpBiL4IfFWPGDIbrDe9H/WPS7/p49mAvXoCeJyQOD+FZQnTv41JdpnUuhf1SQtQOXnoeG3PjUXLSQht8W754WNSARg5LYdHRuxPB7Bq5cNK1IS5DGESrYZn+T2hkx1kIDRapzgyT2iIDbqURwWwGCQyIAcasRPMdUwWB7K6l876xIi42ru0hJ/a61+VHGj15R190me28rX/ftnaMtU+Zu1xIinhVpjtwMkd43T/6iuH/DFF6O20Tt6OgGyy/vZ0uqVx+67YyqjHvi2dt46/u+Ql3KC2z71G0jj5GIsCoypNfhxlZWzY+VdogTe2fUb5Y2+ql3ggTl/Bq2O2SSZboyXV1vhUjFq0oN3jA8Ngti/uz2TNbrcfb2i8AuGOjw3Oxu9sm5N2h3qbdCasPi+RqX5eZkV6LEQjWpNm+m4eJ6uqqM+7Nru7g1W1PzqYfYTG7P5T1PV4Twds/C9zW+sJSl63X4k8IfvCFB0hdOvvt1D5Le/dIXfiiCpD/+4z/+rr73vUgUveYgyXVdPvWpT/Htb3+bzc1NPO/VNsePPPLIa27E3+WxPcA+Pv1zHEyJF+SbKwMcT1dpujsIxnb6yNJ8yo6lFLjjVpeaY6uX5WsrOVwPHhoSk/xKM0LU7PGi1C8aDrtKQ2lPZpM/uz5Jyt4Riyx3DbUTygW6RK0dy5O1Zlil7SzNZ6tjk5WTmKF7ryqtL3dt4pajgiodkVff5uystgJkpMfTQj3AUhN+YkLs9BxPZ7MVUlIFc7UoIdNlWPJZttqhV+mWdDydirRduGdohW8tj3IoKdMWvk6rZ6rvAxzJbvBXskz5tlxF6RNFLAfX05WoY7Vr0+iZild1tRJjNNxWKFbIdJW3UrEVwfF0LkpEazDUJWy4qu+eyUfoD/q8a0qkeQqNGBcKGQZlNcuZYozjafEMG47FweyG0kB5Zl06pctg9WY9wMFEkz0ytTdfSSshzrjdpuHYjEidpNlijsV6hJoMOO8ZWKfVsxTiNRRqMxovsyYlAoZiFdblv8cSRWrtEIX2Dr8tGWoQlf2haT6FWlwF7KFAR91vox2k07O4JkuYR6I1DkzOKkuLnmvQ7tqvcDHXuVbMckguKEMDGwRlyXs4WyLQX8KX93Dt0VsZHFsh9YDYdfv1HlouijsvU9ADBl5RtOn5P38bx+55ASsl+rZ6bYzo8KYqzS+/PEXyxE3a8yKd0iokiI2vK9FHc6iNuyXGVvnyBD3Hou9OUS7krMcxYi3Of1VwI4++7xEa14YwpRK2nSujp8Uz04IGaLoyvy1d2kX6HzroW1KqoFCHqVG0dakj9cgosakVjLR4V3sbUTypZ6ZpPprp4bbEOPR9DSvW5Ft/KeQDbjt+FrdnKnFNq7+MWxXB6/LpgwwdvoYjtZ5apTi+r5G9TXhKLT9yHN/XaUpUZuL4ZbqVKM++IJCnpXqMn/uQsFLB06nODfLcOYG87h9ZpH/3gko/lpb7SY1s0JBq5rHhTf78r94JwAfe8i3Wb44RlpuZS7NTDKUKZHPifapXY8RTFeUT+PTFwxwcWmZFeg6mInUGJH/nq2dPsD+zSZ/kv22WUsIMV6Kl2+jTvLTu2Z3dCZB9X6PWDvE7lwXf6/5+h93JkgpGuq5J3bEYlQbQS7UENcdSBrdztbhC8V8qpDmZKfKc1Il66+gKlws5VRmXDLSpdgPYMli7Vo1zQhanlNohWj2LcZmO32pGmcxssiI3xwu1OHuTRbXJTARbVNohZbC92Q6ouThkOqSCLVbqcVpul1+c+dMfBUk/xMdr5iT9yq/8Cp/61Kd4xzvewaFDh14Fb/0wH5ttG6si1YqDPQqdoPJyszRf+amFA210LJUCCxkuLxWDKm1zW7bGH88G6CsmAYiYHpWuyWhY7v50j2uyHPiLyxPc0+eoYKTQDtIX7KgArOZY1B2LoryW72sUJFJwW67AWiuoUkAd18D3NZbk5CpQKlMFRYPhBteqOwN9d6yutJyEVxv85xnx249MukTM3rbXJ5mAkBLYTr8FDVe1KW13qTmmstIoNKM4HtyQhOBcoCtkDyQv4lIZfH+AVEDcY8OxFCH6UjnOsXSZZ6UlxcFkg6DhsiZTiteqOr4fVOTKT88OEDbEd8+Xw9yaqXJbTqRiDM2n1NlREX/HSIFSJ8iLq6PyufS4e3iJuZKYuCejHdZk36UCXW6Wsqry5d6hZebKGZUyPVMKkAm2uCalCCzdoy8itY2CbdbWh1mTBFNbd4mYLpMxgbzNlNMMhZsckQrc2WiVRKzGddmOgOlwUHI5EskKy6uDjMlqx1I1TjzSUB5YW/U4+8bmWc+LdvRcQ1mWTPavsV7MqCKBXQOrGKargqJWJ8DE2DIrskx7enyJg/ZVdBkIrs6OKR2c0NQmXt2ivZ5W7YoM5fHr4rtuMYgxlcAYEX2NbVF5RPTz5PgimuZjSBmH9FsFN8ldFotg8o5Zrn7mHnbfK5Akz9XpFOJoEnnRE+todwgkJDO1xvKfT7PxlEAaE2PrPPPZ+7nn/X8NCGK3FWlh/KRAHo2XX4CYGDvO3qO44QTWF74h7ilVRd+ssg2furfcgtM3hT4qFsmU+SS96xpeTfIuHQNDpgRrN4dJHJulflagELHdSxixLvfcKwxdfU/DrcRoboj+Kp7fw8iRa4CwJclfnSQlJQ9M28EMt9FlHUUw0sLp2EzdIThr5ZsjNGpRju0VQdQDU8sULkuz7WiLZjXKqYMCTY0NbnHh2RMM9on3I1/IUKvGmLrjrGiXY/LjdwkkrVsLEwh0lGjnHXc+T2Uthyl11kLhFq16RFmL3H3kPJvrfQxnRBBlGK7iEb3z5IuYdo9laYZ74NBVzpw9rLTDnr2+l/19a9wyKVK7ptmjKd/pZ+anSAU6/Ia0sbmyOUjI6tJ0RLs+u5Dkgf624ouGTYdcqMlja2LMBw2ff78m5AT+7FCHds9iWHpd1jtBDmY3OSMtf/ojNYKuQVMGOhHTVRuMgGFTd2y2ZJWqoXlKswmEDt3prRyT8p2oVgMCbd/WjQp0VUXvy5uD6JqQCWi/GkP4gR4erzMn6YdIAuAHebzmIOnTn/40n/nMZ3j44Yd/EO35OzucVzjXJ6VC9lc2RAByLBahIwf7gYRGynaUYe2ZUoQjqY4SMAuaPe7ORQhLqLvsGORewVk6U0gRk8KS7xlr0nUNPrcggpefmSrQdU0+u5AE4GS6R8REye63eibZoFg8ao7NZKzOoqzemoxVuVyOY0thysWGwdGUo8jZi40opuYTkO16ajPOnZJMejjZw9A8yl3Rjnqvg+9rSlXc9YRi1LbCtKH5Svep2rWZTlRoyyAyEWwxHI6Qtne4Io5nkJCL7/vGWmgaxC0xuWSCLW5UBbqxO9bgW6spjqZEv58vRdifaKlA52BSp9w1+NqymPTu699JB71rfIVyO6x2ek9tJhgJ94jJ1ESha3F73waXSzsyFX86M8mH9wtkKVRJ8c1VsagdSJUotndSc5+4Ms7BZI9WTwTNH9q9yLVSloNyR7yt2wRwbm2Ew/2r3CiI9ORMJcpEtLXjTG64xOy2slkYshz++upBDkv7kOfXRuiT3LB9PZP5cob/H3v/HS3LdZ+Hgl/FruqcT/fJ+dxzc8K9F5kASQCkmEBRpERR1JBUsKWnQNtatmaNx8/rzRt7hkPLkmlbz7JMU5RJkQokYeYEgIj34uZ4cj6nc+7qylXzx969D2Bb1gMeCJE2ay2uxYs+XV1x729/v+/3fXU6cKdCHdTaUYTo54lgF4LoIkYBWKsTxjSNgri2OYm7ZhcQb8QBAAu7I+g5Eu6eJV1la9UB6KuTiNPntlWPI5ZsYnOZ6G4G0lVsbRC2j+N9JrQGAMeW0N7KIxEhz6WYM+Gv7uLbf/ReAMBbf/mv0KmTsk3u6DI8U0LxGZKbVCmnMXfuKgQaH1N5agIH3vMMij8gn2eOL0LbyCMyR8pP2987hWGLGCnqxSRCiTZiR2lLe8DH3cIzEEZo+HQdCLxZBbdIBMSdS8MITpKJWsI1iK0eECG/G0g34RUNOA+RGBbxyWchPiiD/xb1VRnw4ZkhyONkEm3d2b/HiXtW4RRUhKiY2iwnINsd1safmdpi7BsAxI6uoXWTdqdFO9heHWc6or2tIWQGKmh9new/oBrIHl5lLFVstAh+N4tt2g2ZObm4n68neNC0ECuJOT0FoyM7aNDy08TsGrq1GMq3pshxD5dQK5LfiSZaMM0AJAoSqluEyekWybMmUTa3nwsniQ4G8iW06OJPNxS0aNk75/EIR/fjcRZuzSEg2uhSG4OOLSGoGux92iwMsmsZlS3IgoMqZU+HIi2YtsRK/e8eacP1OUzR96NrqKjpQdxFPaoapoI/zpBrq0hdlHth1GgenuPFMMP5TD+61EgR2YFOtaZBDQZdKMYUHQLnMzuNthlAuRVnmqRzuQLu1DLMwy4qOTA9HlOUMa70wqzUfW5wG19cnsTD+Sp67n6m4w97+5+5u62/8Tz/3yVu+gkbr2Z71SBJlmVMT0+/6h/6Ud9mIxo6NgEckuShZgr4rRlK1aOJTbriSgcsKKLDnJp5zkdUtpgh5FIrjkxgP0NtNtJD05aYBmjWllh+mu6I2NAUPDBA9uV6PHa0ENo2+d2paAcVXWVsEABUae3+hU4QD2Q1WFSP0rFl5FULO9Sk7025Jra1EBbaZMA4lTTQtSV0aMmg54K98AcTDZyvpDAbJedgujwmIl3WdSZT1+wkZa1Sao8ZGE5EumhbAfzVFhkQ/96RFgK8hxhlhyxXQKGjMo1SzVAQl00G3jjOZ0za9UYUE2EHXTpAZhUiWg9RoDMS1JFVeMzTUMp/dXMc59JkEPrqnUHMx8BAUUr28IViG/9omlxr2+fQsRSm93qyFMIHJspYru1rrQ7GyTGvd6KomRIytBx5f1aHzHuMWWroIRzOFHGtRAb7syMbKFBafiCoodSOMxH4ybSFhqEyJ+zpgIGWobIS40JpEA9PrKBFrRvuGdpCkIKgjcoA0qqGmRGiUXp+cR5nppdRpW3Hg7kSLEtGj2qnRob3mI5qJlvAi4vzOEg72vquxH3m4NDwJpqdCCbnyAr+5o1DcByRRaI8fecwHj1NglR9j4NTDyNAc8yimgpBttFeJmxRFNvgQzbe+rG/AgDUX5xBaozoQlprQwgPVjBwN/FQiq7nYNSjsHfJdU8dXYG5lWQu0sZeGnKkx3RWwUgXrVtkEowfW4UU62LvaVJeSowW0CmkkeCpl0/UA6eoQIdcv8hjGmDte6RwigDEyKTHdVrgJB/OpwljI719GMLTL4AfJO+LV3YA3mfu3tdvHsTcJAFn3WuDUIcq0PdI6clzefCChyjN7tq8MYfJ0zchpGke36VhdgxqtoFhV4BKHbgHbCKYt3RyvmqiDaerYuUyYcvm7rtE7tf95F7YtSjSU9QJ/eo8FMWATMO1fY+DZQQYc9RaG0I8X8UuddnOxlYxQMNeF28eQDZVR3qSgNHPf/VteOddF2DS8SWZr+B7L55FmnqF5RJ1qIk29qiGL6TuW1WoQR1qtMPAu+vxzMcIAB6cXEa9FWXvz0ozyRYYtsdjLlnFl5dmAQCPzy3imc1JhOn3e46Ih2cWsF4iv5uLNZBP1VCgDRlD0Sb+M+1Qe1PexUCow5psYrKJdLjNTGLHYnVolsI+l3gPWdpR+/zWBGbidaZ37I9fc7SzdqmeRiJgItoP4nUkRCQbRbpI1RwJl2pksXc8EUBWcdEwFejuKzuufrL9cLcvfelLr/i3bdu4cuUKPvOZz+Cf/tN/+pr2+ao1SZ/85CextraGT33qU/9DlNr69dyPD/4q3pTri/AEPFVM4BC1AOA5H20aEun5HLKKyUpmWYXEd8zHyKq6Y4tQaIgrQLquXqgG8UCWgKSirrCsNsPlEJU93GqSF+lc2kbNFDFA24MDvIe2LbK2f4Hz8WKV/K4iADnVZY7bc7EWni4l0Y86Gw1ZaNoipmg3kwcO396LIEJL1vMxEzs9soqaChvQHBE1k5zjUNBEyZAZAJuN9NC2JWYvULcC+NYe+dt7M4Dm8JilpnSuz0HkPdT6OiOq52pa/X0bGA532GDk+RwkqhEQeB+ez2GLgrc+W9Vn+Da7QdRMAdPUJ8hwedTofmXex4lUHX+4GAcAPD5iIyTazMSyYapY74QR7+fT8R4CvMfATMNUUKcrdABIBiymXTBckWgOlH3X37WuwgItc9Em63JZrmcwEa8j9LJOuHo3ghUKorJqD7lIC6uNNLunKaXHDCTDL2PgZMGBwHs4fISUUyo7eXR7QUTpPVWDOpqNOIq0+61lqhijlgjn90bwwTd/f7/DaqiMWy+cZI7ce40USr0QZqiuaiBdQ6sdQYZaBrzc4XltcwRnf+pJiBPketgrMnjVhF0nE4QY76K7Noj4m8nE5ywDHl3N8wEbViOyf06JDio3p5F7gPgxaQuDkKIaWhuD7HfjM1sQcuT6eS0eAiVxlv/sDKbeeh71q6Scljy5BD7BM4dts5iAesZE+7vUXLCawNC7ybXzBwYAx4G/QktRL84j+9AdeC3qwH04C65aA2Ra2q5ogMwx5+/yN6bYOaSOrsCqxJleRxmqwirHsXeLLB4j8TYMTUVqggAS3xGYXUBnM4/Y4XW0b5GJ3TEDcB2BMTayZGPyzHXWti8qFrp7aSTPkG63pf98L/LjBNj8wdcew7uml5EbLLJ7bDYirMsskq9Cmaig/BzpYON5j9k6LFw9hGhYQ4Vq42an1tCoJRk4FUUHkuTApuOeohrodsKo0ZK9wHvI0pJxMKyhWU/Aop1fucEi5KCOyg4BNt9fPoC3HriFLl0IrNey2Kb//9zgNtp6kOn/qnoQIu3cBYDldgT3De6hRMFIQtERVXv4vWvkfrx3tMkWqADwZDGJo1RbmqF+SXE6BnRNBQPRJr5NbT9qpoCfnSWLhGe2xzAa1tj709DC0F9m/RKSLJR7Ydbmv9CKISh4jOWumTI0yjTfmytDtyVsaWEYroV/tPYf3hBN0l+cfC9CwuuoSXJtvO/yX/0PoUn63Oc+hy984Qv4yle+8qq/+6qZpGeffRZPPvkkvvGNb+DQoUOQpFfelL/6q7961Qfxo7DVTOBTC2Ql8HdnOzgQNRGgL8BAUMMKTZMfi7Twnb00TiWpG7NoIxUw9/OzKE3d/3vb4zAc3E+cj0oODtPB5dlSBtmAhdlRMjHuakEkZAdZ+nJvayE8VeJxOkUAx1hIR5DesZDoY0g10KAU91ongrjkMZNGw+Wh8B6aVFi40A7gnozBRIxb3RBmablkoR3ETERnqybX4xESFQYg/nIzhbmoC4ELsOs1H+szUj7mYl206XFYHg/PB6YpI+F4Akp6ADO0JNRzRcSUHkxannN9HluU3bjdknAkbrHSnMB5aJgKGwQPxltoWQGU6Gr3ULzJHLNHwxpKvRB++2CVnl8UFVNhFgFL7QhGgjqKlGnJqwaKusKM6LZ7Ks7SHDPbEyDxLp6kE9egaiMh25ihvkk3qlncna0xdmajkcY4HVx7joio2sMVqn2SBRfjsTpGI327hShcn98Hb4aKtXYcu5QB/MVTl/HEDdJRdTa/C1l0oFMPJtcVMDhUQIjmTRmtCLp7KivdpVUNKWoBcBZAdSfHYiZ2tocwmCvh5iqZyDORFgKijTwV6l5dn0JS1eBXyHOcTtaxWyLnP5ovwOmqEDrkufUdBZ2VIeJbBECckhCLbgD9tPm5APwyOV9M5yE8bUCnMRx6LYbM0WVwGTJJPv/H5/DAW59C5h5SBjQ2UwDvwyePJioXD0CNkWdn5hcuw14KQqXu01zAByQR3SVynJzoAloT0ceoO3WUh/YVqhuLdCAfdeEfJazUwOAWnDsKRIK34CkqoFlofI+UGJMPb8DP5+EvEkAiBSxUC4T9SugBBEar8HVyvsIAhy//h8fw2DlikRA/uwqvJZIoFADtxVHINvWcGi3Cd3i0aOdXenIbgmwzzyGzG8TCc6cwdZwGHjci6LXDCG5S0fMjL6B5g0zyH3/fVyDHNJg1MoHplQTix1Zx+z8TIXv61CK0hUEWQFtrR5FPk/udTdXB8y4GKBjZ3CTP6wD9PJxo4zvnz+DBo8Qy4OriAUwMFBGk4wfH+fiPV0iI8bFEC47HY7Qvei5lYNoSIiFyTveOrUHrBVlHWt0MsLGm0onBw/7iYCDYRT5RxyJlacfCPaSjLbQoGxRRdAQkG2dSZJxTRActanMyGmvgzXmfgSKB81DrhbFLy/khyYbAexikjTMRUWLvy1wnBt2RWIQJz/kYTtRQof/e60ax21NZVmTVSOFN+QqyVFCumQozzJV4F3VHxUjojTWT/Mn2129nz57FL//yL7+m775qJukjH/nIf/fzT3/606/pQP62NobCT/w0fI8M3DVDwWpXwUykn1wvw6YrLJ4jJZ0+GMqpPTxZTOOdY4QC//rWMEKih3EqZAYA3RUYOCn0gsyPqG3JeKEawHSE+nwoFlY7Cgu8vT9XQttSGI0r8cDxZBMAIPIu1toxFp0i8B5qhooyBQGaK+BwvMkCXtu2iKxiMs+hwWCPCZFfLKfBcUQTBBB2J6XoDPj0XBES5+N6k1yfh/MVdO19g0sArLMurRhwfQ7rHQJ88qoBH2D+TmVDxmOTqwxUrtUyTHx+rZbGbKzF/ImGY3VwnM/+9jtb45iLttlvzyYr6DIGxsBCPcP+djLWwO16mhlR+j6Hb+xkcW+WXK9+51g/iymp7OuGSr0wOM5nMS1L9QziAZOVTJ8rDGI60mHH8dipi1hbJ8zAdjsByxWQokDX8gRMpMpMr+F6PHKZKlZ2SQlmINqE5YjQKZi9Vs1ihE4uD5x5CVZPgaVTT6VEG/+fr78Vv/Po9wAAsdltXP3m/QjQZ3G3kcJt2qL9wMgmjj/2DAtZbS2MIRDVEJojGp3ech58wMLiBVK6yqRrcB0B2bkN8gzYIm5dOA4ASMWbUFQDmf8Huaf+n98EHzLAh8jv8gkBsPZr/dZ6BDLNlWx8PY34+3R41wljZVVjaG3lEKKakuBo6RUeQ73NHKKPNGFeIvfRakQReRMFZxUNnMJBv0MAhnq8BXfXZ1134pgH/XoEyiPkmfdFCbhOSmS+xUMYluHXaGdgWIB+I/mKoNru8jBiD5JJ0Kta4GZzcDNEZ+R9ZRHiwwRwubEMeEODp+y71vPfuwiexhq5VRXu++4B59EOvdIGIJN7yO9sAaKAfleEl87Af2kX6Bu55gT4yQQ4h1zbzjdDiJzdg7NHu1QDDtx2kP6oB+G+LJynqJHtUAf2dhQvfZforO750NdhlyOQ8gSgGasZVFYIGModXkH5ziRkyo6G0k0oQxUIA+S4nC0ZzeVRpn+qVlIYyJcQTNLxRjWxe5MgTNcTMDy3hqvnCWiantxAuxFjIb4/uHwKD517EXUKMnOzG6iukec/kmyhXkrjGwukvJikvkeH8oSFMywZPOezTjrf51AqZyC9rJwXpN2e7W4YC5Uc7pkhJdRaIw7X49n74Xo8emYADWoYGZQspsnre5P1O/LCAQMc52OHeiwNRRvomgo+u0LYsbtSFmyPe4UBb78BxfZ4DEda+M+bwzA9E/+6+MZYAPzFiZ9G8HVkknqujfdd+csfeyZJ13X87u/+Lr7xjW9gcXHxVX//Jz5J1CfpU7MfxnaPgJHhoAXL5Vk9WeCAMGU3SrqMTY3DOBWeJmUHN5oSfmqYxj/wLop6kNGwT2yH8dNjbfa7L1RiyKt9Ea+HiOiwlvcvbcUwH/OQoy3MiYCBr+7EcTBG9rWlCTiTJi91QHDhePw+Ld0JY1A18VSJ+uTkiQFmv7uppKtIBUxsURo/r5rsd7e6IciCxwIaU4qBpNLDtyldPhE2EZFsPFMmk+R42GWrsVvNEKYi+yaXPZcHD6BskEFnOmJgsa3g4TwZML+xm8bbhqpo0NVfUVcg04EmKVuomQEGSAXOx7MVAQ8NUONOXcJsRMckFUveqGYZ+BwIdl8hNPzqdg5H4jpGKINzvpzBSNBgrJTAeaiZCp4skeN832gXAu2oknmXtArTe9gwA+A5n3WO9EXgfQO8qh5k17JhBnB0YA9fXSOr/UdHt1DrhRlYzao9hGWTCURDdDC+Q2MWjuR3mHZDNwMoteOYoB5UiXQd/+qp+/Fr974AAGi3omh0IrhJvV6iksVW833TyXUaYzOcrEIJmGjSrsP/tDiFXzy4hDwt1dTKaYTDXZSqtAzIe1ijgvTDg9uQZQuDh0hporY6gqF33oRxm7wvysEWwHPwE3HyPP3ROMY+QMpp+uUowHvw6GSrDFbhtIMM2Bj1KOqFLMYfIZobfT2L9l4WmeNkMHOaYfBUGyYNdeA1JWjr5FqFD2yDz8rwO7RE6QBuW4YQJ8989bkDrA1fHmiCOzgAUPABUYJ/e78VnTuQgXe7Cp+WwuHx4B6eBneelussAQ71FHJ6CuREBz4t9Ur5NpqXpvD8ZQISHn7L0+Be1hklBk1mH+DZIipLYxg4tMp+RwjrsOm+O7tZeC6PxAQBs+3tAcghHaFxqvFaGEOPxoxIAQuOLcGmC5ViJY0jp6/BoDmKhZ08XI/H/L1E17Rx6TDLU9suD8DzOSzQRoYHxlchCi4rG08cXsLO4iSLOCk0klAki4WeWo6Iu86RjsR2MY0bq9O4THVCHzhyDR0thC1qPzGRLuPa3ggeOkwE9S8sHMQkLfNKogPTlrBLwUixF8ThdAltyo5WDRUBwUWWLlBcj4ftCZimIKrRjuIra4QdfOvwHoKyySJL+o7ZHbqQqhmkC7lIRfGjIYONJSUtgljAYMHbJ7JFVLQIG9cSio6wbKCsEbBQ1lXEZIstDk2PZ9KHqUQNX1wdwduGiHD7A9f+/A0BSV88/r7XHSS9/+pf/FiBpEQi8QoZkO/76HQ6CAaD+NM//VO8613vetX7fE0gyXEcPPXUU1hdXcUHP/hBRCIR7O3tIRqNIhwOv+qD+Nvc+g/Y/2/qI1AF8vKMRdq4WE2xzLChoMlq0yXqL9Rng8q6CllwMUZp176Tco2CgADv4VI9jEyATIrT0S5CtK59oZrCeEhnXWR3WkHMx3rMbmA03IH2MqH39UaYeSgNBQ0ERRtlSkNPRVtwPZ51ik1GW7jdSKBokEEuIXsQOR8x2uJrujyzONjTBZxI7rtiuz4Hy+VxkPqemK6ImqGw415qh5GnuqmmLeLNY+vYohqbWEDH04U8Ez3PxBvUg4Su1FwBV+oBvGukRn+LZ4zVYKgDzZYRpcwSx/loGSpuUt3EXLSNoyObKDX2Ay37187xBHg+hykqCP2jG3N4fLyAy1Rgrjs8TqfrSNDB9lo5D93l8c6DRFBca8bRogPztVoKusNjmuqsDud24Xo8/myBiEvfPbGJSLCH/+9FYhD5oaky83WJKToUyYJG7//06BaurU5Dpdfu47d4/N4hD+G+dYMjQRIcpu/wPB4jxwhA2Lk+i3CsgzjVtnCChwvffoDFP9y6egjzR+6gSDuf4skGtrbI/x/KF3F9ZQbjGSqQdUQEVR0NqikZn9iC3gmyyXrn6gEMHlpBhwqqDU1FbIDco/DsDuxKDDeeJV49p3/lSfhdB26dnGPpyhySv3cA6qVvkXNYa4M7QK67d7sKIeHBmyBMG+e54Op1VL9Kj3lmC53NPBJvJyDa2+jCqYchz1Gn60AAzgS57r4oQ3zuPNPNaEuD4CUHcozcJ+FNWXCLa3DOnCV/L6uQNkkZz0vl4MkKrNFz5G/VPPz/9RPgP3IcAMBbOtxgDMrzxCLAtzxwMg+3RH7LLCaZLYEyXoGnSayrzt1xYVVjMKn2KjKzA/A+9p4jZdP0zBYEqoWzNRVLlw/j2OPET667MAIhYEOdIGC19MJhJMZ3mSYpOFLG+tOnoNBFiRrWED9CWt7h8lh/+hQS1PaisDOIsfkVtGh7vOfy4DifGYgGVR0ByhzpPRW5iR1UqFGp73NIZGvs2sohA1o9Cu9l/maOLeLKGmGPjoyu4w6Nz5kb3EG1GWdu7mPH72DjykFmtuq4Alq9EK5QQ9pHppaZa3xHC8J2RCxQQD4Za+BTt/P42Aw5p2Swi/OFYbxpnDynlXYM+UQdS7Qc971CAqeS5FnJh7qvYJ4HEzXsNVJI07J4QwtjPFdAmZr3brcTGKdt+y0jiM12DOdGCfN4aWcMs8kKC652fR4BwUGVLnaGIy2sNJOw6W8dTlUQD5HzLzST8HwOhV4IumvhN5f+5Ccg6Q3a/ktTSZ7nkclkcPbsWSQSide0z1cNkjY3N/HYY49ha2sLpmliaWkJk5OT+O3f/m0YhoE//MM/fE0H8re19R+wfzb5MeTJmI9dXcGQarAXYEtTMUtbdjVbwjf2ZMzHyGcxyUNIdFkHmuXxcH3iLQQQzdJKJ4LnaPzBR6Y62KGiRYHzUTQkWC5lKEzgoVyX6ZealgzDFVinx2onCJMOYr5PxNm3WgRgfHB6C5utJAtSJfvb79CyPA63mhKmImRwSgf27QFsGkPSFx5yHF5x/jVTRtcWMER9YvJBjZ3vrhZGImDApKzKUjuEg/EOA0UVU0ZJF/EI9YX55s4A3jm6h9t0lVm3RAxQ5ux6Q8HJVI+tyK40grg73Ubb7oOoLqp6kHlUDYV6DLi9UEnhUKyDIVp+fK4wiLsyZVyiA7MqurhQlfGhKcIsfGMnC0UANMraH4kbzMahYZIOmCbV2IyHNTTNALaobiin2BgKaSyvLSo5mKYrUo+24fY9RnRbgg8OYYlcu/OVLI4l6+wca4aKti3hPjo4x2MtpgXiOB8zM6vwKUheWZmAZirM/b3jCHjz6AZjpQDCPgFAPNyFJNnYpSBxNFfEyu4wpodIWdiyZLiOAIWCfYC4F/fLL0pEQ51OtrVmHHOHF1hHlu9zcPUAxPB+SVka6sCt0hfI42BSA8NAuglOdiAMUT+ioovWrQkEs+R63XnxBManNtCu0Y69U7ehbWcRf5AwKY2nhhH7IHWR/1YbWjGFBLUjqF2eRWE3j6MffYb8biQM66IH+QwV7nU12CtkkhfCBsy9FJQ3Uefrrga/qgOB/nEp4GMGOIl+nlDhbjrgw+T54hQOvkU+c+sKeNVigMLrBVC+PsOuXfLIKvikA2uDTCx2OwR1mNoFlBLgeB8efbYsTUUw04AQJPehuzWA0FAV3R3y3P7gwl1450e/iI3v3gUASOSqSNxNnpU//cSHMJ2sIEX1f8lsFRzvw6TC7VCiBdcRYXTIeHN5cY4Fsv7Km5/EnTuzzLj0Lfe+gMp2ni0Gc9NbuH7hOA7ME3+n9ZUJJOL75pLn12ZwFwUuzU4Es4cWGVj3XB5LpUFwdISZzJRwuziECarb4zifaZtCoR5K1RQLzq0ZQeiOiGfLBIy8Jd9GUVcxS8/xCxtpfGxuBxs0Q03kPeSpK7YouLhTyzB7lpSiQxVtbPXtBUJdyIKDNfpd0+NxigaTux6PC8VBHKE+UD1bxpVaAseovOHru0n80sFVPEEZ4sPxDoKi/YrOY5mydDUjiKqhIK0Y6LkWfun2594QkPSFYz/zuoOkHzYL9uOwvSYzydOnT+PatWtIpfY9Zx5//HH80i/90ut6cG/klg7o6Dhk0hsNETbHYK7SHqrUwC8VMPGRaQ0XqBgyLDmomRKW2mTwOJO2kFcMpqvxwWEkqGMkSMMdzQBjcBTBw5Bqsck4EQDCksW0LhHJhuUKeK5CBrkHBzpo0EmwaJAW1NMp8mJeq+Sw1JExQXUiqYCFOBUqAqQz7FhyX0SoOQKyfQGjZGFXC0OkQbYxyYbIe9DMPigwkU70sEM7TO4048jT7zYsCVWTBAIDwCODNWx0IxilqyqB86E5AmPY5qMGPXcysR9JaMxqYCzs4HItiPfTFueGJaFjy4y1czwBn9ng8XOj5LuWK6BC78uZdB3bWhjzVLTZD9ztAz0VwCN5DYu0E+xUUkPblnA3DY99YnUaKnPNttCxZBygoInjfFKCs/ticw7PlhIYpdc6o+ps1dw0icFnnQqme66IHW3fAHNINdAy9wXjs6kyelYAKj3HbjfM7hnPe7h04wgL5c0m6zi/NoOTdGCPhTQ0u2HWbr1eyyJIW5RV28QaDfYESMdVrttgwaDDiRpWqgNIKuR6JcMdJGJtrFEB7/TkBl5YJQzO8aEtfOvZe/Ezv/k5ACTgFQADQuEj2+AG4tCv0W63oIEONVIUwz3IWR0X/u2jAIBDp68jOr0DnjKRh9/8AjjJYSaWQlRH9MgmuucJwwGPg/N9AqjsTgzhwSo8Wi5p1hI4+rHnYJ0gGhzhG8/Aag1Atghz4CeTEJOkTGVspaCe6QHUR8tPp4GoBa5LGwoupRA9sl8WR6sDYUxmKNrZU9j5qmMlOM0Q0/p0lzMIBA04tPzmOwLcosjiY/RGFO0iWRSkZjfBCR62LhCWKRZvknBf8WWarlYICtX+nJm/Da+j4DtUs/Phg09Au05KqG8+dhXpQ6tYeOoMANIZuLs5jMwAAWSuJaFayCIzTK7B2aM3cJb+xubaGIYHyih0CcukZhqwVscg0/K81QlCEh1sru1ncuo9FTdphtqjZ86zDkiO81HeGmRt+Z7PIR9pIk2ZaJv6c23sEX2X4UhMEJ136shlKiivk261mhlASZfxnjECVvol7z5j/GuH1uH5HFtI5sMtbNJSnch7GA51WbNK01QQlvfb9juWDJ6TGeu/3o6zkrnjChgK9VjXbVrt4YHBAhOM/+LsJnQrgEMxcs9dn4PA+ey4yi+TWAwEuzBdAZ9bD8H2Xz/Q8pPtb2d7Td1tzz33HGRZfsV/Hxsbw+7u7l/zrR/9LRawwJv7GpS2LSBLGY6aKWKSipq7towL1SRGKKsicD5yioUTKTLYbnUjUEUHUZ589+liGvfnqojL5OVb7qjIBMgLPhzS0LZk5OjLtaGp6NoyepSFGQh28Vw5hhMJk/62tO/snanhqUIak7QdPqvqsF4mJOw4IkTOh0P3xXEkQqQ/uOz2VOzSFaciBHCrKePxMTKRP1vK4HSqgaBIJkPNESGZAax0CCA5HNdQph1moyENFVPBveG+BQCPkOgwd+8BxURccrBFjeV4jpQk+wNV21JwgEaLXK9m8WCuhRtVsoru2AKGQz0Mx/oRH2m8PS9C4Cg4CWoY7OdBaWH8+baPI+kg/R1Cu48G+wJqHrbPIU4ngalEFQv1DNZqGfo5GDgZjDawVk8zZ17dEVHQAxBpuSWrkE7AfoktoWrMSC4b6uI/LA7j5ybJtRyWDYxFJBYX8mI1iH/88PN45tZhAMCxmQL+6IW78Tba3dPPjCL3zEc22kSI+kjZjoTBcJuV5rRekJVi+8fd930azZRxdGIV4RS9zpUk4rEWxmZJqUZvhxENd1kWV9dQkUo0MD25AQAIJlusA6+rq3jfL38evQUCukL36xAabQRE8sz7XcCvtBCcJBOIMK6Ce4lMzOI7RsCt6jh6H9EcBaYb6F4ZRpBqbLYvHMbEu1/C2jdJ193RyT0IaQeho+Rz7XoeAm2gCOfa4NIqrJvUuuLRF6G9lEMwR/U9B9MIHXThXCLPBPdIFrxA9hMYrsNZVCBQZsA9Nw3x5hUWaKvmduGXunAKZDEjDrjgeBv2LnWwD5oInabgY/ogeFECVyAAWy3U8ewTj+Khh39Azj9mwL37NELLRM8k3dQg3UdF3istcDERs2dISdX4gQ8p3wY3QH437JRQvj6D9DxhizKHV+DZxCsIANSTPTjrlDmpxeB0VRz+6afIcdVVTER67DidDQlKsg2X2jFE5rZhUdf02UQbZjuER4eeBQA014cweeomhBAB662VERy57yLuvEB0Viu1LN5y5gLGjpDjtjohvHiRqPNPHbqFzH13EPgW+XcwqmF5eRJRCvR2toYQCmk4dJCcAyd4AGXhGuUULEvGKB0DtrUwfvbQLXxnZQ4AcCBRx0y6jOdpruJosor1ahYH6EKhqYVxboqwXa1OBG09yCJ/EgELyXAHVSrUDksWBqJN9n5lbXlfsG3L4ODD8si/a0YQA6EOJtLkPa51oihpYazTcexYskHyMSlzPxpus9L+C5UI3ju+h78z10PPtfGtq3hDNg/7YPL12t9PttcAkjzP+2+6Vu7s7CASifw3vvHjsemOyMo4BV3CfKzHRL551cJlGgw5HjIxG+kxkDAdbeNyLQGDvniZgIHrjThOpMhENhfrwXJF1m6/3FEx9LJMtKFgj5WTMgEbrs+xCXWnG8WppMZ8hDgOwMu6pE4kuxDpMX5lK4YHBwzcaRMgE5V8ZBULZRpKeiZdQ9uSGUiqGhH2EsxEDJxKGmia/e+6MFyRdfAFBBeFnorREAEYUdlkx7SlhZAKWGy/t5sxHE40mUfJrhZmjBVAuuB2tTAOUgdd2XWg0/OfiLRR7IXQo0zbQ8O7aOpBlOiqU3MkDKoGmvQa3K4nmejb9Tl8YMTf10F4HJqmwli44wkTk7H9AXKhToJ5+9lLxxIddt07hgqR95h794amomZyOJMiQFDkPRS0MBNrG7bMrseLxTzenNPYdycGCmh2ImhQbcP92S6+cuUUA2t7xQFkFQsR+kw4rsBKHtVuFCutOHNrD8kmBlNV7NISYjzURakbYdEKN8p55gBcb0VxY2cUyW2y354tI672kKJ2CxuVAaTDbaTiTQBAZqSAP/jaY/jwKSLG3dwcQYgCt5HBAqxCAs1twmCEtFvYfOIURt9BBMFckIc7Owc8S4Td5iUJ8gDZr/+DDjrbWahDtN5s+VCHKhAoUTR0bBEYyWH6CJlA1546jYl7rsJukeNUR8pwuwSoOM0wAnENYpqaFrZVUs4r0yc5HIK/XUf5OtUCvScKYYCAde3JMMJ31+CNkslXvHkF9tHT8L9EWu3FpAYuFQbfJOfsNmXwc4MQKsTI09xLQR0k96H32RbCR7bhUE2W3Ynh3rsuMs1S+8YYAttr4GhunFbMI3yBaI5cLYmAUEf3BXJORjuE8uIEUqO065COM7eeJuzQ3KkbcK19cbZ1U4JNxcPBVAuF21MIUx2Z73MIpZpY/3MCbCxLBs95rMvs0hffjhwF2Jc2J/DIXS+xjLxQugm7E0Kddp3Fhku4/fxJXKJWFu+86wI8V8DqVeK5NHl4EcfnCGDSOmF0vnoWQ4eJl9O3v/EWnJxZQnmPgmpVx+buIKrLZH7o6/MAwHBEKKLDBNLHM0Xs1VMsEslxBfSsAIL0OG1HxNzgLlq0e/YLKyN4kJbTEgEdm50YkzrMp0vQDAWr9G8DvAee8xGSKWtry+x3Q5IN1+fRpaBpMl6D6UhYpwu2VLCLsGzhcIIce6EXQliyWbdwHmCGuS07jJapoqKr0N9AC4CfOG7/cLZXrUn6wAc+gFgshn/37/4dIpEIrl+/jkwmg3e/+90YHR39sbUA+IPZD+PTO2Sw/a3xAFTRxkuUXj8c1xjtu9kN4UiyjmXqg3QiW4TjCmhQ0a/uiLA9HmPRJgBC6YqcjwtVMlmnAvshs6mAg5opIk29jSYibTgezxiMtKrh+dIAdKpZejBXwUXafXQiWYfrc9igJbAgdcUeoKv/xXYUEuczI8qobGFHCzJDRInzMUzZnL1uFD1HhO72TS55jIU15sidUUy8VAsxgeStVpCFwUq8B90RUaGgked8jIQ0RKnmwHEF9BwRJSp4HIu0oTsScyyvU0ACEP1WWDZRoG35KUXHxWoa52h2Wd0IwvU45oZb0YMMnFUMBUHBZeyHwPmwXIGJwG/X0zCokzgAXKnHMBXW2d//+UYaPz9FM9IoxZ6ipSiO81HUIizkeDZB4mMcdr1EzNGV7Z3iINq2jK69n+13IFVBlP7O+Z0xhF7W0RgQHMRVjWk0RqY2sXiblLnGRnbRbkWZ9mWllMeR8XVIFGA5tohWO4o2LVfOTK0zgFXcy6HYSjCdRETRsVLLMjO80/O3USjkYNLjHM4XYegK4mlSIvFcHiIVG1t6AJYRYC7a5fVhjP8ve+AK1DPme9NI3b0IboimsV+04VBgIwYNiNkO+CQtO9CsNJh036thCBEdlSvknEPJNsSgwbQvy1cOYWKOMEWh0RJ8W2S2BkJUh+/wEAZpGXTqAISb1wGVenYdOQNplwA3N5UD9+QNCLO0scTz4Nc6aF8kDEXsrTVA0+FbZN/O6TPAV26heI0IlZWQjvTdBMh5XQnCVADOIm2CqMYAj2f3yWhFEIh2IUcoE7eXZqWpyNQunH4LP4D2zgBi43sQqfi8dWccgXgHErUQ0fYyqJfSGDtHxPqla7OI9zv2Ui0Ur8xh8BxpPtB3Mli4egjjEwTYdZqv1JFE4m0Wb9I1VBw/dQ09GghdLmaRTDYQpVqx+u4AOI7EngBASwvBsGUGyA8cWoRMj7FbSaBWTiMaa7/i9/ru7412FPFIBx26r1I7Do2OcZlgF0HZZE7vF9enMJmsMka079XW91Ha6cQwHGnBoN9/+Tte04NomApz89ZtGT1bhkafcZH3EBBcTNJmhqc3pnCaOtILvIdmL8SSBLKKibl0iQGFQieOdLCD3U6cHIcWxLFUlb1vEUXHYr/LVDYhCy42OyTg9h+sfvoN0SR97uj7X3dN0gevf/EnmqRX+4Xf+73fw0MPPYSDBw/CMAx88IMfxPLyMtLpND7/+c//MI7xDdkUwcX/Nk8Gss+sBFlUCEB8jla7fadrD3VDRYu29NZ6YdTNAGMoDI9HTtXZRL/eJeW1B3PUX4TzcacVZb+ZCAAiY44iWO0qqNGO5g9M9FDQecxGyMC03o4h1e+S8XistKOMSbnaUHEmpeHZchwAMBs1ERRcbPfIQLWry5gK69ilA9dUuMto6J4jYrWrsDLgbKyNYi/IhNx53sPRuMGYliM0eBYgoJEwSeTfMclG3VSgvMzHZLkdgUqP80Y9gfl4mzEty50Q837iOB//8tYA3j9GS2SugIjoYoOGth7OFHGzkkOS+qJUjAByKjmmE9kC1hpp5txbMhRi/EljFKYjOoZDBhts78+Z+OOlLN4xRL7/SL7LDC4l3kPDDKBqkEk/LlsQeQ+XKXOQVYPoWDKODRKjwdvFQZzfHgdAaPfZbBE79f1W+lI3gi0qFn1gahkC7+KlDaLBWGpFYfspFpzZ6oWwSL87kK6h1Qkzd+6ZVBmfvngKHzpGDP4SmRpsW2ID+Qs3jjKx7LV6HL/9nq+huEpAQCBgYmR0BzVqYlgsDmB4ZBftBmEubFtCJN6GpO53FirUy6hwYxaj77gEf54AmeRny+B6GnaeIHlrA0dWwGXCgEGubXN1FOm7aGlF9KEtDkIdIxPT8rfvhiTZSA4QdiN6YBPCsIBEm+jQOMGDNNSBb5JzOjpWhkv9uYS7UtC/aSP4AHk3vQ0dwnQEfoEcp7B0C86eAnGe+iZ95zlw47Q76Zk1ACEILQLuIYngYkFEj5KSmV8EcGAEXJEcp3T9Iry4x7r/5IkOEKCB0LYNv2KDj9B2+NUwOMFlTFL6sQ3oV8OQMuSdj6fazNtIyJrobuSYGD8xtwkx2UP1xQPkd1UDUqTHbA/UTAPD+SrMOhkzbqxO46EZAoKcdgjZg2vobRKGT060MXdkAS+8SETeM8Pb6HZDiFMAsrIygeE8AbZHji9i79I8FAp0kskG4kNllj8Xjrdw4doxxhbpZgDzR+7gxjVSJr554yBzlZ8+uITe9hAiFCTe2ZzAwQnagQcgEuzBtiUWt/PErTR+kfpxaaaCajfKAMZKJ4iCvh9jdKsZx5C6z3JngxoG4g3cotqophmAShccKbWHkGQzq46nCjm8/8ACexe/spXBobiFAbo4FDkfbbp4M1wR1+pJZoPyvWIIR/M2nt6cpJ/zGAi3mCa0aQtMzwQAm5UYsnQhtNWNYDzcQT74xppJej5e34Db/ynNgf7r7TVZAOi6js9//vO4fPkyPM/DyZMn8fM///NQVfVv/vKP2NZH4Z85/LN4pkRWLwIHzEZsTEXJyqhiqIxFyCoGorLJ8oDqloyh4H7b/p6uYCrSxbf24gCA94xW0LYC2KS17JPpCmrG/kry+UoUZ9Nk4Obho2kFkKalKtMVERAc5k3SNANMPJwIWEgGTKZfWmmHMBvtYol6qMxGu/DAMTCj2RKuNUI4TfO3Ora8n0VmyohIDp6vkIHo/qyO4XAHmzTcUeY9hCR7v43fEZEL7gfcJgIGrtDupPl4Bx1bQoP64kQlB6ORfVDUtmTIvIseHWDKRgDzdBBfpK3KfeuBkUQNG7UMO87v7qXxjpEiGzB9cAwULLcjuDtXxAXqCxSWHJR0GedoqQHYF1v2//9ON4JDVHNQ0SLMTFJzJLgehwr9nfWujCHVQYE6LL95sIK6oTI2qG3JrDSZjzRJ+Y3u6w9vj+Jnxus4NEIm451KFqYjMcpfsxR0LJlpiw5kC0wnsdlIYSaz7+XzjbVp3JUpM6F2sRvFibE11tZfbMcxPUDYnrYWQjLWQpeyTJVODIlgFzHapn1texzn5u5ge4+ASNOREA/te03NHr+N1etk4g4ESCfXxKlb7FicngKJOmGb9SjCR3ax8Bf3AwAi0Q6Gf5FM5I0n4ojObsGjZV9xoIfWxXG88BKxE3jkg1+G0wpBypDncvFr90GSbEy9nbhXI8CxLjGO84k1AB29G0+PIzxegDRJroefG4DPC8ScESQaRZql93tsCkJlD51vkvcw8nADXjYH7gZhmpz77oEvypBffJr8fYMwVDt/SWwe8mduYeMHRHMz/tBFCOMqnDtUw7g4BiXeQYBGfsgTHfiWD2OVsBJytsFKhivPn8DgxBaU5D7r0i1kGAuVPLoCPujA7ZDrdfXrD+L0rzwJt0TOw9jOQhkhz2z5pYOIDpbRLRHBdDjTgKCY+MF33gQAOHXkBhxbQpQG8fYqcVSoi7ztiMhkKygUyPuSzVSxVxzAEAVRtiUjM7XF9q0m2mgX0+jQjk7f56DRpontZgp3zS6w7j7blIl9RzPGzrHUTOAp+qwdTrSRD5N33nQkyKLDuuyGIk3UemF8bYf87s/PbEO3ZSaojsomjk6sYo2asbZMFRF5PwLI9Xj2t0lVh+mI7N0yHAEC77Mw7oSis3GJg4+g6LDxNCTZyMUaLGql2IlBER1oVBqgCA5UyWILzURAZ++l6/HQbBmK4EBzbbz38pfeECbpT4+8H0FB/pu/8H9y67kWPnTjfwwm6c6dO/ipn/oprK2t/c1//F9sr5pJAgBVVfHRj34UH/3oR1/L138ktpebSQLEXPD9E2SC6VgKkqqGBl1lzCaqzKW1aSo4X0njvgEyeXFcCHdaUYxQgfCBWAuy4OLRwSYAMpjs9VSMUabgZj3FIjvaVgAnEj1Wmum7VfcNylTRgeXySNAVmGZLOEZbVDVbxle2k/jABBkwJd5DzVAwTtuyByNtdE0FX9kmq6i3D9XxcF7HFzfIv3/pwBYuU9O1hbaIgzEfH5oiA2TXDsByBWQpYxMLEGasv0o5kKyyNtq4bCGu9qAIcQDEsO1kbhcLdGWoig5kwUEkQPZlOAkMhLoM+JxQe6zT5VyugLIWZvR5UNVR1oOYoKXL94yTyS9HfU92O3HWCXgyXcNyI8XKiWORFo5nLGzQzhfH4xEUbaYzC0kWZuJ1FlnwvWIUPztJ7n8q1EFY1dGjq8ZZLQLLFdBzyTlP53exVhzEKv3u6dwucwAut+OIqxpjf3714DauVgagrROBcCJgYCq3hzIVTEcCOrLRJpJUG6SEdEg0sLR7TYVhyYhSB+6I6GK1lcBZ2pHn+xxsW0I8QibnQ3dfxs4NwvakEw30dBUqvR5C1yOu3gTXICqb0HsqTr35OQDA+sUjuLY9hvsPExNIsx3CzF2kxGO1wihvDaJHO9YAIH5ylU3keiOKSKKJ6XuvAADETBeo0W6/8hQiUzsAfaZ9k4PRCeGhR4lPkDCpQPAc2AsERAxNbSKQasG3yN93bw6zzrfQgT14DQ4cXYuFBitwuiq0p8nEHTuzCe/D/wri5m8CAIyf+igclTzjXPE8hN0NhN9Fo3WaLvhmHcYjbwMAyNt34J3fA+bIvni9DfAyhh65Sv6e55Cb3SD74n34igLfJc9pINyDrakIz5Pn061K8PQADFrKKixMYPRuci2nzl6DENbh00WEmO9CUC3coh1qzVoCEw9cgk1d9pOxFvyeA6tMQIOcasGjgEuNdojp5cva0D1bxHByf2EQjHdg0ZzJUK7G7AGyJxew/P2zTAumN6JIxZvYpaBpZHgXTk+BQ3WaHOcjmq2jViPPwMjUJnbXiV7p1NQSdgo5pOkzHE20YBkBRGiHqWkEMJIt4T2045XnfKRpRmCtlkS7F8QUDa2OhDTU9RA+PEue8d1OHBx8zGcL7JyKlQwuU13ekVSNeY4lYy1slQcwTMcLiTZB9P3PYgEdw5kyLtB3URVthGjZX7dl7GhhDNNjjKsabpcGMdsv3VGw1U8SOJMrwHEFljgwHG0wKw7HFXC1msFaV4Ll7Wcx/rA3HxxbUL9e+/sfZbMsC5ubm6/pu6+aSfqTP/mT/+7nH/7wh1/TgfxtbX0U/lcnH0dKIZdivZmCxLsMnFyspmFQXVBKdsBzwAAFEP9hVcHvHq3gUpmAgvl4Ey9UUjhLDd5cj8duL4QtjQzOp1NNtKhYeCpex0YrgTst8hKfTLXRtmRE6IubVnsku4sCAcsVmFO1yHtIKftJ3LLg4EIph2Mp8ru6I2G9E0aYlsEsj4fEe4zxcD0eBb0v1HYwFOqiRtmxrNqDKLis/BQQHTiuwAaBxWYCWaXfyu9A4j1YtMx1pRZHSPTw4DBhEsrdKLUBIIOJZkuIyhbTCQDAAB2YbteTmI61WEksFWmj0Y1gjzJaY/E62kaQlTZFwcU12nZ8F3XA7n+mOxK6toSksu/l0zBUjFNh80YziY4jYoi2+auSjSD1Mnq2MIRzA0WW8M1xeEU21dXKAA4maqyb5c1j64yBWawOYLenYoZOEF/dTuDXji6z+6SbAVwp5/GmCcJgXNsbwVSiygBox1QxO0zKeK7Lo6ersOl9aOtBHJxdxu0lopPJxpqwHRFhCqJ6uop4nADwai2JpUoOD58i4uortw5ifnwdBcqWdgwV2VgTHr1ebT2Iw0duobRNyi2D0xswKSupJtpQRsrQN8kzrgxWIWb3xbfgOdjbCguyDZ1to/k9qs84tAm7EmVMEXjANwR0lgkTEByogw8ZDDR4pgTPFpkmSZ0ok9gTANrFDIKPerCeI8+enG8BHGDtEUARmNfhDQ/DP0+unzAVAHQalFtzwR0eRvfLBCSH38NDP/AAzP8nYayivxqGEx/A7t9vkvP//QGU/l6BidORT6H3PXIcoft1WFd9iHF63ddzUHJ1FC8T5m3o4auACGx9nbBlQ+euQ6D2G15TAh+34ZRomaecQHM3i9wJUtYSUz34LofqebKvyFAZdjsElz4D0dktEuMCYP3548gMFxCizFLp2ixEyUaPstaGoWB4egMCBd23LhzH3GECirR6DKJsI3WUPIe3vnkf/ujGHH5xnpQXJ6fXcePWPLIxcj2GZzbQKqUQSuwzYCIF4Hsr4xieX4FDS/u13QEMTG3jOo216Ru9Juh7/oOtCWaDciJVRSyoYZM6f7esAE4ObrNF1FI5h20thEm6EAhJFoYzFXxnmQjwj6QquEU7VE9kC7BcEXW6oLVcHiJlwQHCHo8kaii29k0FCxp9xkUHg5EW0+i1LQUJpcfe21hQwws7Y5iiPmy7WhgziRpW6XEPhjsoaftGyiPRJppGED3Xwi/c+MIbwiR99sgHXncm6Yd97K/X9vf+3t/7735eqVTwuc997r/ZdPY3ba8aJP2XrpW2baPX60GWZQSDQdTr9b/mmz+aW/8B++bZtyMskYEoGDAJZdrv9lL3X5a+e2x/8NAMBY1eGBla5271QswjCSCsRE2LIEwp4YBks6DHnUYKcbXHyiu3GymcyhZYflBAsiELDgpULHirGcNpGkBZ6oWIlxF9qaumhLxqYoqGsFqOiGeKOZxINvaPJdiFQQEXx/lMY/RsMYf78wUGMIpaBBUjgIO0E8b1eEznd7G4RyY2RXBwhxoaJmULA8Euuz4dS0E62GEt8apkoWsFEKciaFl0UGjHGVCcjNew3iQDzYam4nS6xjrFkuEOJNHBNh0EC70Q5lNl9ve7PRVDlMHzfA4HMkUmpl5vptC0ZEQowzOXLqGphxgQqvYIM9YXNg9EWqhSyr9uqDic20WdgqThTBkrhSHG8NUMFUdf9nk+UWf30LBkBAMmY5bqnQiCAZM9S6YtYShVZX40pVoK1ys5TNDBdyq/C5MyWJqhIB7p4DZtf97qhvGm8VU2gXx7dQZvm1vAcoG4D5+YWWIgKCDZ4DifAdueoUCWbAaKAgELkUiHgbtYvgLPFrG5RDQYmWwFLdpKPXp0AXu3puHQEunU/Zfw8o2THHCKi8YlypYdW0V3iT4r2QbEZBcetY/wTAm2pkKm4bjStAuvbMHYIve4U0zDsSQkx6nJnykh/BCZXLc/O4XcsWXwdNLvGz02LpLfjR1aBx/zgCFyDbBZAqeQ87WP3wVp/Q7QolSaJMIbnwBfJOyPX+qCG0nCXSAgQJhU0Pl+gjEpiXc14W+R94HLhuBuGVj+9t3k2RkuIBDvMINIdaQM35Tg0hIjH7DBUTZM28gjMrfNAGcg24C2NQCH/m3swCbMcgIXnyPM0rk3PwvP5RlDmMjUodHYkeRQCWq+CpsyRU43iM3FSXZPU6k6wqkmqjuEHao2ElBpg8D0yVsw6lEYtDmjWY8jFm9BCZP3dGN1HIODBVTK5L7khwso7w0gRkG4EuqxXLfoYAWLl45gbJKs1Dv1OD598RTeNUUA12J1ACeGN9Gj5bmOoTIBeKETRybUQYwuVqKRLha3R5knW0i0WbQSQIxe7z9wC1+4cgoAMBLsMeYopBjQDOUVZa+2EWRj81JlAMeGt1ClDDAHH1ttMp8FRQeT6RIUen06Wgjr9TSyFNhxnA/LEV+xMBJ4Dxt0bMqG28ydezRZxVY9DYn33pD8s5dLRl5vkPSLN//sxwIkCYKA48eP/7XH2e12cfny5dcEkl51ua3RaPxX/215eRl/9+/+XfzO7/zOqz6AH5Wt0I2iZ5OX52RuF2v1NHJhMpD3zABeLJAVdky2IXH+fr6WTervfQHgcjOJpiUxs0XLFWA4Ir6zSwbF+7L1V3jbNPUgLlEK+0y6hp4VwCYtP6UUA0HJYjX3Bwa7bKVzKFvAH9+exn1ZcowZVcd6J4wSHVzqpoIA7zHKtGPJaJgKtjQyUL1lZJuVosoGj2ovxLrqhmg5q2/BPxJtot3dXyXdrKeYYLyoK5hNl3CLlu5Sio6lRhohOlAtNOOomiIORGnLsytgLlnd91GyFLbSO5owoTsSVmiG3pviDWzQFlwAGI82UdaiGIr0Q2obbELgOQ+t3n7gaEi0kVJ0dg6lTgwLrRgTZh5JVREQbQa49rQwjtMOtUIvhJvFIeSok+/y3jAiio463f+RgT1sN1LI0uv05aUDeGSM+NoEAyY2ahlWMixpYciCxzL2EmoP13dHMUNp/KGBEiTR2T8PwUOY6obavSBWi4M4M0/a1O8P6rh9Zw6DaaIxeXR6Cb7HYZzqqjrtfauBfLyOxVIeszT3ra0HwRk+E9vGoh0US1mWgl5YGUMk1sbgCAENlcIAA3K+IyCZrzDnZrerwuoEETlFSiDdyzmE764hMkLOiY/5iL6Jegpt2eBms3Ap+yOlOpAP21j7UyL6Tu2WoKSb8PueU5M7sDshptEJHd4DGuT/508ugJMdmCU6sY110Hk2ybRAwgAH49xjUF78DuhFgDVzHAAgX/gBvJkZ8BqZuL3RUXBGD36DTM6YGwG6HXD3EEE9NtbRKqWQv5uUH9EW4FTJteUNHRzvY4OadaayVcTGK0y47VTD0HbTCA4QUMUrFoxdMplKIR1uOwipHyZtSrhzYx4nHjxP7uHyCDyXx9mHSBlUTLXRujWByYeIz5Tv8gjV9rU+QkIH6O+6egAB2UKIlvbViAYhYDMvrPkTNxEcJfdo69kTcGyRGU36HgfP49m1TCWa6LSiiFFdpqUHkMmVcfEmEW4fHNsAR5/p0soYouEuyrsEjEVjbfzC8avsGB/IVnBrbYqBlVhQY4HPI/EaRMFFgS66tuppFLQwA0YHsgVs1dMI0PFkPltAqZrGPC3thSSLLcgGknU8tTmBGG1umUnU8PWdLO7LkkVHQjFgWDKadEzoORLrbn2pkkHHklkw9XoniqGQhgUq+j6YKqNjKbg7R8aIW6VBRGQLg1EyHwq8x6wNFst5LLQiuDtbBs+9cW5DRLj9+u7vx2WbmZnBxz/+cXzoQx/6b35+9epVnDp16jXt+zVpkv7LbWZmBv/8n/9zfOhDH8LCwsLrscs3fFtsRTEZJg90tRtFQjHYhMJzPs7RQEXNVFAzgow5AMiE9OmbROD56FAZaVtmDEWJ+mk8mCMMkOWK7OELUUfst9DyStsIIqr2kKZsj0SFiAIFJD0rwFLe71V7eNtQDU9sk0n+p4YbOJKsQaGlOh8cJqNNGHT1nw91wHE+DtHafqMXxhSNCYjLJoL0fwDw1PYYTmXKLPwy2AvDcQU2CMwnGmwlWO2F4Hk8s0gQOB9ZtcfEkUdTVSw3kzhIf7fZC6GhB/HAEDnn7VaCdcJJvIetThRJOkD2gWhfbC3wHlLBLru2ns/hqxvEEfi+gSrR6FCmpGEqGJZe2ZI8H29ihYrDd7tRZNQe8zmZi9fx/W2yr2PJOhTRZueo0ms6SMtt5U6MgSAAOJpoMIZut5XE4ZENJqZumSoGow2WRB4OaXA9nk0S7U4EuhXA93YICE/tjWCGspRTuT2sNdIQ6PXp1OMYzRVwe5MEet595iJW78wwtiiZKzOwdWNvBG85cwElGlJ87Mgt1EtpZCdIF1mvHkN7bxA3aAbW+97+LfCCh/Wr5DkenV9hzMj1F08in6kiQrsQq8ujGHrfEvwomfhDB/ZgXEuycot7JwCR5t6JJ+PAZgkAue6+LaDx3Twm3k0m/e6VYVI2o5ITaaQNUe/AqRKwX3tuDun3kolduxBD9Mgm627Tno4iNFlA9RIpvYRCOpQrP4BzgAAw4cIVyMZ5umMRfLkAb4KAIK5Zg/EUB+nnyMApXr8MfyADv99CzXPIzq+BP0gmSRg6hDel2T1f/N+HcP+biBGj2YyAOzgM7yqZQMUzIYQulsFTw1n+YBrWEpnI42fXAccHpsj95gpFnLDPs064kODCrMdIaDA9Du62DyFDo1lWg0yjJWVacKphVuZ0DBmJTB2p+4m5IscD9nYIJl38RO4qQrtKziGaaCIyVoRRJuNJIKgjNruN5iJ5B1Z3hzA3voEoHbd4wcPe0jgOjm0AANLju5CpUena8ycQjbURHyPnbzYiCCVbzAJBKydx9q5L6FFLAtcRsLlLnrtaLwweYK7yDS2MU4Pb6Br7TUAJVYNGQ2qT8RY0LYhCkQDWqGzh6BAp7a8VBzES0jBEmaXzhSE8OlhlmiXbFbBYzrHFb98jrX/dI7KFuEqe27tjDfxgaxxzFIz9/asx/N6JJnvXNEdENqix97rVCyFD2eDtTgyn0zUyfzgvK0v/ZPuhbadOncKlS5f+WpDEcRxeQ48agNcJJAGE7trb23u9dveGbwHBZ11l6XAb5wvDCFJWpmlJyNOyTki0oQgOy88aUEnQ6QcmyGDy3b0sJsImM3E8EO1AERz2QuqOyPLGWmYACWW/td72eFwsDqFBKf57cwVst+NstaM7EkoG+azRC2OrG8EHaDBmVQ8iLIGtqlyPgyi40Om/F5txtG0BUakfkNtjiddz8QZKWgRxOphmFROmQ2JPAEDmXdyupzFH9Tw1Q0VW7Zs48vRvycR1pZ7EVLgLga5uLVdERLJZKUuzZdxpRZm2ShUdpGjobNsIIhfUsEIBhkttDvq6qoglwwOHEToI6raMI3TlO5YuY6E4xKJkVNHBs6UBbGkENLxtyEVZV9l9TKsaOpbCspvK3Sh0ankgCw4KWoSJvAXOx3cLcXxwmgzGXVuG73PMq2VbCyNHj6lmKCjXk7heIavqlU4AdjGBvErOYTbaQUiykKIGkYYlo2sq+OhdBDRsF3MYHyaA3NAVnBzZwI0FAgKOHboDOaijS92Ii5vD6Bgq82Da3RlkZb61TgiLCzOsvKJ3Qtgo5tHqUJFzpIPhTBkj1IPq6gunYDoSzt57AQBw6+JRVhbmOR/BSJeFtAqiA7+qo/ldAsAiUzKkVBsu9cpSZiqwd6mey/Ogr+53b8HjERyowS3S8pvLo3t7hDlwwya2AX2A1muHmLVAZG4bveU8ggHyzIfukmEvBVEuErYxubgKIWKh931SclZ/9SykZeIh1Pj+IBJvL4HfIyDRr2hQxgHuJo08OXmOdLfdIvcBrouF507hUJTkwgkpF/4Kuc5eT0FuDNBrcQBAMN2Ae74NcY5O7D2NlNhozI93s4aVhWMAgCMpYtoYdskioXN7BNWdHEbvI6J3uxOC3gojSL03ecWBY0nY+zphcHjBReY0WYhapTh8V4BNMwV9n4frCNj9Jvkty5SxUcxjMEn1kRVAyZP/7/QUFK7NMQBuGgGUdvez244cWESrHodAveIsI4DR4wswqBXB8rV5jFI/JlFwYBkB1FaJkFsNa9BaEXBlMr7sFHMYzhVZ0K5pS+jZ+wClrAfZwkcWHSxXBzBNhdzbjRS2uhFmJhmtpBGQbIwyg1UDJRo1ZLkCHI/HCg3LPZysoayH8CwVvR+OdyFwPotIGo012O/mgyqaZgBZSkZfKQyD58giFwDORYPYanHoB8yvdgPQnCRr3sgoBgp0jMuHurBcATvtxBtqAfA/s3D7k5/8JEzzrxfJHzt2DJ732li9Vw2SnnjiiVf82/d9FAoFfOpTn8K99977mg7iR2EbC3dhuOTluVgkq7x+4KkqBtiEudSOYlA1mIlhNtTFr863GevxcN6H6YpMC6OKDkKSxT4HgDBlSp4qpDEXlRHo7fsVDQU1JGVyW0paBAVdYe7equhiNEQehAuVNCbDPdyskwEgIjnYraVxq0W++7OTJTy5O8ha4EfDhHnpt7m/UEligJpY/qCYwVREh+mS4yjoAURlC5s0iTyt6IhKNmu9B8AYK1cPIRQwcJ623t+f38NOJwaPToqFXghDoS5jYyxXAA+f0ek85+MGBRRNS0JU2nffBYDj6QoTru9oYQyoPfbvni0zpsywSMttP7alYih4y/A2Y3hcn8etZhQpuqr8/l4O6YCDsSSZjQTOR8ch3/32Th451WbGk6Yr4EMz+50RUdnEF9az+IVpArCOZ4oMBHo+h1ovjCIFyR8+tIDP3j6AQ3RFer2RgEwZQgB4rpzCg/kyvnGTTGzPlgP4NWZTwGNyZBsDtCRy89Y8DsysYJwygKqiY2JwF9tF2pGUKzLfm8clBzznYa9GmAO54cD2BOTzBBQ9ef0YZtMlDA0SwDGmmLi9Psk6oQ4cucPEwkqyhcULx5ie6fADF+B7HHwqvhXnFMBxYS1QL7GWyEpP1gUHz3z/TTh7F9ExiWGd6JKoo7Yc65LON3rfPE3CypNnWMlx+IGr8DtkX3xOhnEtjFCEPoemhcqtORx4ywsASKkqPF5A6BfpvQDgLJL3Lv5BC/5qF/Y2+UzKA/ZDb4J8jXxXePoFXP7zt6CtvwUA8NAvfwVHP/QU3BoB3W5VROMW0WvFZ7YQHi6Dp6G0QsoFYiFoz1BgKLgwGjkkThNRNGQXp95HSoBWIYHwuxz0vkEtx3kP+flVcDIBAXojilC2jltfewAAkB0oo9uOsHihkUPL6K0RFqZbiyNzdBk27XYzOioSkzvoUgfuzk4ed527CLF/nBlAv0UmdSXdhL4+wgwgC7U0OoaKU4eIzYPeDaLbC2KtSH5rKr+LtYuHEaJNAn3tHwBslwdwaG4J9ep+lqdtSyjQZ+9iKYdEpMPGwEuFYRZFNJKqINsL4psb4wCAh4d3EJEsNKgIWhEc3D28icUyecZvVnKYobrL/tb3K8pFm+gaKhsfgrKJP7mVwmP5l7XmuwL6hELdUFkjiyI4SCg6Pk2ZtEcHmxgOd3CZntOTnRLePsyhTMfq+7J1RAMGtjv7pc/+fm83EhgO9aAIDjy8eg3MT7ZXv+VyuR/avl+1cJvn+Vf8m+M4ZDIZPPzww/jkJz+JfD7/uh7gD3vri94+NfthpBUyUE+lytioZ15hn9+PaPjyxjB+dmaNaZAiio5vb43h/jyZyHpWALLgsAHhYiWLoeC+s7MqWahQo0meI9i/b4a20EjiULKKFmV/Cr0gJiJtRgGHFAPnd8hLfCK3S9LY6cRVokGVJh28BiMtcPARpX5GNwrDGI01GLhp9MKsGyOl6Gha+4aY+VAHmi2jTM/xcKaIcjeKGGXaXs6iWK6AZFBjA5PAedjtRjFO6XPP59CzAgzMyAIBjWWqnRmKNLFDzSKPDW9ht5Zm3iWDsQZK7TjTMhi2zPxUAOLW2++Y0QwFjiewMmhAsiFwHi7SctKJbBG1XhgxakXAcT6uVrI4nqF6HlNhuoe4qqHQjrP70rNldCyZaacSSg/xUBdbVK8wmqyy+11uxTEzsoXd0gC9PiJGc0V0aOuwYclYrGXhUFAwFmlhNFtirE29FWNgZGZ+GauLUwzICKKDawsHMJXfz0jUekHIlOFZ3BvCCJ1A9loJHJ1YxUXKOh2fWIWhK5g4SSbB6sooNC2ERRo6eu+JK5BDBgLUQJJXTdz4JvE9OnjPZdRWRlgpT5RtxCd2EThFhg4vSctQdKXmv7SL3jaZqNWBOsRRizlZe3URdj2CFo04SR9bhttRmXmiOGgAIg9rmUxGni0iME7YHmM1g707k5j62B3ye6IIJz8G4QJhYS792Vsxf/ImpF8h5yyvXgd6+v6xiSK8HBmf+J1twPPhjZPSJb+1AT+bBVcmz4Ov0bI1/bp/9ij4GrkP5sxJKM9/G53z5NmK3FOCNzgIJ0OYlO6/KCDx8yZ8kbbP31wDl6YskyzBHZqAsEQ9p2JRuJlBCAtEd2ZvK+CDJoQUbYS4lEfkriLW/5J6NP3US+AUClACMqAZcMq0I2tpFLEDm+Bp8LLbkcHxPoR5Mt60vhZhbGBwpoDW1UkE8wSsCIoF3xWwd4V01aVG99AqZJgDt1aPIpKvQqR5lmYjAonajaxfncfU2WtYfJ4c48jUJsyuii71VIolm9jcHMHoKGHxXEfEtSUiRJ8YKEKWLVSoLlO3ZWy145ijTNJX1sdxLNHBCNX+pONNlBsJxkSlw23Glm5UBmC5AnPU/ouFA3jH5BrrDg0pBkrtOBKUub5eGnyFb9pIpI1ROh58/sZhnMtW2bjPcT4UycJ1Op7kgxqGEjWmg+Q4n+kOi90YPB8Qef8N7W779wc/+LoLt3/p9ud+LITbP8ztNZlJ/o+09R+w/9fExzAXJQPISLyGjUYaA1S46/kcMyls2jxCoo/DlBlY70RwJrdfZrxQHMRUtM3AikTF0/10doHzWHltsZHCsWwBt6mnkMR7aFoyRukq+s/W43j/eAtJCpJ0W8Y2LQGqgouOI7KWVIHzwHE+c6eOySZE3keAMkddW4bncwhQ2rqsqxin39VtCSU9yCJNbI+H7kisNX+nG0FctpiZZEDYj9XoA5pdalo4FWnDA/D9Apk4j8Z76LkCO07b4xGWTbb681/WYdYHcFUKIttWAB1bYqzMgWgHUdliWiGB99Ch7JYsuAiINtNV3SjnMZusso6T/32Jw3uzEZgUgJxJ11A1VAZWAryHDGUOr9VSOJmuoEiPI6nocDweRTog9jvs+iLPmqHiOnWFfvf4FhxPYMzZSj2DgwN7+8LUbgS2z6G/1DiSJuLONvVymRncgU67gDZrGZw9cgOVfjkpXUO1kmYgKhTsQQ3qeGmR6IimMkUEqTVFqxPBbjPJ7BRapoqTU0solMm+wqqO3UYKB0Y3yDk0EnhpdxRvniOTdSJbQ7VA/tZxRCQzNXRpV9XA5DaZICmwk0db4GQe/gApc2C9BG4oTu7hN6PYWxvFCG0tV8dKaN8ZRfQQYeb4wSD8sobt75IJNjFYgd4K77NYoR6iB8jfCuMBuBsm+BhlBuoyPE0BJ9KyYNDA2pN3YeaDtGQGwJ0mkz5/+SYwlWcakeqfpZF5+zogk+fXGZuBePs6+561GgQnuhBT5J3AWBre7SY7Dv2iwrRB8mALjYvTiB8j56hvZhE6XmUO3e2nMihtEjDa0UI4+WvPQb9InsvKyghG3nIZ3dsEYIH3oA7UsXeJmlieXIC2nUWAdgPqlQRk2oEWmttD8+okbJ0AhmCyBc8W0aVlwMyhNQhxDevfIZ1yAcVEgDaUtBsxKKoBlQrIb9+ZQzraQooyz9VSBgPDBfZbUlTD1uWDGD5E2LHCwgQkOgbEBmpwTBkeHfOqxQwkyWZ5c9u1DBqGisF+DFInxvyJ4koPuVSNdU7uVDJYb8cxR5kmzQrA8XgmV4gFDKiizZz1OW4/r3E6v4uVwhAUOj60TQWy4LKu1NV2FBnFZGzzZLyGZ+gi4UiygcVmnPnQyaKDai+MFQr0jqVqSIY62KaNHpotYTjSYnFUCaXHFkp/cGsQ7x3VMBhuQ3NsvOviE28ISPqj+dcfJP3ynZ+ApNdNk/TjvmUCJnhacA5INjRbQpdNwA5GKc18XNXRs2VsURYmp+owHQnPUxA1EtRxqxnHMdo+LwsONtpx7PX6OWgG88SJyhbWmynmip1We4jKFmTaAv/4aAcJpYcWFTF+t5DEfIxMetmghtDLspSK3QgSioF6v2U5YKKsq7jVIucwEbIxEelgp88eBQzcrpOJezzShcx7rMz1UjWOn55eww7tfksGTAQlC2WdHMdguM1o5pdqIbx9uIIcnZwXWzFEJQcPDJCVX90MYKcnw/XjAADdETAXa7EOv6qhoKiTF/vcQAWVXogdx81mECtdD792gKzu/uXtFH5p2sOTRQLAHsxVGRh1fR4NQ0FYJoNpzxWw3kwyUPhPD1jY6jqYoboqyxWRVnTm39SxJdZ2nJRtlHphlkc3GG5jrZVAinpDPbM3BJn3meD8a7tB/O5p4nNTbCWIEScVX094NTS1MPudA8kqIorOngHTlpCKtll2myC6jKGKKTo2NkYxQG0f6tUUgqqOIO1e4ngfF28fhNNPVO9GGEjSTAUxRcfMBOm663VDCAQNZkzZ1kJIhTpo0Db/jh7Ee86+iBBlDi4/fxcOzJIJsdOMotuKIEB9ceRYF7xqQZynA3KLh2944Hq0Y8vlgF1y/pFjTUyPFWFTcXHp/CFwnIeFLz4KADh86jp8N4nRd18l97HCI5Jy0blELATCB7dhlynzWu5AOJCEv0tb8d80C+GZBRb5Ad7H9DtegFsgwxp3bhz+92nJK8vBV1RwXfK+ZN61DW/PAk6PAwD0T1cR+uA0vCeJzqa2OI78IzcBlep9eAHCKLmHze9kcPPGIZw4exkAIB4fRKSyDX2TgEo50cHtz96LA+8geiY1V8cwZV2UN/lA02UC+fmf/gGsrQSUHGEA+YANYUKGukjACa9Y6FQT6NbJfRo4tgQhSjPTbo+guDmEwUlyzADASw5KtG0/Pb8OTvWRpYLq3ZUxNBpkPwLvITe9hb0lcv7HTl7HZ771VvxU/x7LFoxuEAr1RbJaYYyevI2XvncfAOAHe0P45Qd+QK6z6MLXOTSrtOsw2MPC1jgbmwaiTSSC+525z5Si+LUThElbqwzgPzw/it84RsTmDVNFRLKgUVC02YniWLawP17oQZwdW8N3KEPatARM0GvLFwfxn1YzeNsQWdwNhtuIqj18e4OwhQOqiYoRwAT1XJJFh/mZ7XQjzOkfAL64Oox3jZXw0Ci5L57HQ+A9DMfIs7fZTEHgPWYEPJbo4YlV0hRwb8ZBImBAFhzY/n4800+2H8/tVTNJf5Np08u3f/Ev/sWrPqA3enu5x0TdIC/53UNbeKkwzHRFCUVn4uK1Rpq9AAB5aQ/ld7FKdTUC5yEsm7hIHWHn403UDRWjVNgL7HdL3akOICTZSNAS0E43irBksXDY7U4UY5HWfmipFmG2+bbPYTbWYIyMKllwPZ5NzndKg8gGu+zzhqFA5D2WGzcb7SIe6Dt5y6gaChM9DwY1lA0VD0+TgatYTyKq9vAszSeTeQ+n8oQ67xoqJod2UKWASxRcaIbCvJ4GkzXoZoBpGBTZwm4jhSoFfgNBDf92kYCC//c9d7BTT2MkRXRCn715CFNhA4czpMxR7kZxz8kr+MtnyUCdDBgstqPUjmNioACFrpSfu3MQx4a30KHg9Dtb44hKDo7Qfa+1Ejie22X+RbNTawjQVfOXn3oQk/E6wpQpGh7ZxeLKFBNIez6HTLqGP32JrNB/9ZHvIEgFsb1CClsrE8jREpllBHBpeQ4VCjBrloSOzeO904R1OPrW52C3wizio3RtFmmaa1VZmEA0U99vp9+xoG8OIPg4ASfVP1bRaUaZE7QU6aF8iwzUQ2+5iq1vnkaD3u96N4K6se9sPH/uCrRiCrFpch+FnAFOEeANEXCif8WE/H8j/kyc5wJfv4UCNUuMpBuI/YwNOz/JPucOfBCuR66927iBwPZV9DehsAnt3p8nf2s2wet1yF/7Jvn3wUFgcw/cR/+YfPfi74NvVaEffQwAEFg/D2v4EABAHXwU9vX/A75MrqUTGwKfPMKcr8WVb0Cs7MB+gFiRyFIU/rd+l/zOo/8M/2c2rUly8YT6EqTqNoRtAjK9wWH4EnlW+E4d3OYOvDlSMuLuLIELyfCGCRvEl4vwK11ghvybK5bQeZ6wxeEj2+AiMvwsATL+7T1wog9jizAUysMyuEKJlSd9jUfzxiRCuX3BdXCGitwFoLeQZ/92OzK6a4OwqUls5l3b8Io9Is4C0Lo5wQwgQ7N7cKphLD1HGLy5+y+hvZ5HZIw8t2Kyi+pLB/DSLXLt7zl5BZ7LI35wg/6WyrRP4aEyrj11DkepjYFRjSM8s4Pii0Rs7tgStksDmBimonmfY/EmweC+2SsAXF2fwoVqHKdp51zfIqDPnpq2BEl0mBfSbiOFNLXisBwRTSOIFn2nZ1JlaKbCwNpKI42gaLPxdbMdwzx9H7baCTQtGfO0XB0KGK+wdrlRS+OeoW02Xqy1EiTInArIHY9HnI4PXVOBKlmwXBGaa+N9l//qDWGS/t38z0N9HZkk3bXwK3f+0//0TNKrBkkPPfQQLl++DMdxMDdH0PzS0hIEQcDJkyf3d8xx+P73v//6Hu3ruL08lmRpaQlfOPYzkDgysQ/H61iuZlkJaT7exDp1fa5bIk6na4zCtT0Bu70g5uJkFUJyeyQ8XYoDAB4dqmKnG2Ev00Izzko8cclBPtTF05QZefvIHp7ay2Mqsj8ZdxyRaUEOJOosob5PGd+hAtjRoImJaBNt2ipbMxTkQ12cr5DBNymTQSVKSwR1S8JhunJSRBuaLWORsgoZxURAcNlvTFDDx379PiJZ2KWM1K4ewHysgxIFATOxJixXYCu/tiXjUj2IBwbIoNcwAziSKbLBpmsHGHM0GqujZwWwSK0HFMHFwUyRhV/6IOxbk5otTieqKGvkvgzH6lirp3G1Qf59LtNA25LRpaByPlHD7Xoad1Fw969vTuJs2sRxCsBqvTBzHB+LNvHUXp51Ar59dgF3CsPMuHMk2kSxG8ETO+S3PjRZZY7jAuchrvaYOd61vREcyBRZ9IoouBhK1FChXTEbrQQOZQssU63ajLMOtae2x3A40WCRLul4C7F4E8UiuR6xaAfVeoJFwAzQ3wSAci+ER0+/hBZlIGLJJlr1OEK0vLK7lyOml7RkwnE+MiMF1rZd3xhEMEqOqbA1hAPveAaNK8S0MTxYxfa1OUz/NJkU689OITJWhDRLtTA7LvgIzVPTeejbGYSO0nYtSUTj+yOIzhH2w7dE8DEDxgYBDcpwFcZOGnKmSa7XfBDL/wdhXabf8wL8Q3Mwv0xW8+qxBvRrCdY5FxisoXT+ELLHCbj3TAlClJxPb20QodkdeDq5h2YxhdDZOmDTlX4iBl+U4N2mGp3pCMz5MwhcIGOYn0qBs8jkWvyzIciqicTPUX1buwVfUVD5PDmHQLiH8OQeO67GrUmkHyRMo1tUIGR1uGWa/bgwjuThVSYKl0M6RMViHWtKsg2zGWH3Rc7V0aVu5Z4tQpBt5qjtOwLq2zlEkjRY9+wq9MUss2ZYvTPDrCcmxsj1Vyk4v371CA4dXGCaJc8Wcfv2HA7MLQMAlpamceDQImp7FBhFOyykV4loKGwMs1Jds56A5/LMZ+uF1Vl8ay+EX5kn715AtNkiqqBFMB6rY4XG+EzGazAdiXWgWR6xHumX7x8dKqPcC+0bzqo6+9uhaAMbzRTLyXx0cgXLlQE2FgVFG7LgMnuSTKjDtJSVXggTiRpqtMQelImh8H/eIhq2u1JdHMnvoNkXlEsWRMFlICog2niemu2qoovRcAe6I6HnWvjorc//BCS9wZtlWVhfX8fU1BRE8f9awexVf/ud73wnIpEIPvOZzzD37UajgY985CO4//778ff//t//v3RAb9T267/+6/j1X/919oA9WUzi8VECGl7aG8FwuIMjtHTRNgM4mNz3OVppxVm323yqgqhsMG2O7QmIBkz83DTRUZiOhLSi4yoVJuZVE9t00DqQq8C0JTw+Qf7W8QQcjHeYZimtalhvx5l+ZaGRZGCsYSiwPQEP5giTElF0nC8MI0EHpqYtIuvxOBQjdPJAqMtq9ACQD3KwKLuz3Y3A9ngo1I8pJpvIhDpYoK20suiga0ss12hHCyNNS08S78H3CYADCEh4ppTGMaqhmEuVMRkXcZUa701HW1hrpFkbv+BIkGmLv0cF4f3MuHSwi0I7jsTLokVcj2dgzfN5ptdaqA4greh4dJiUFi5Wsrg3v7vvlO4JiEj7g/Pjow1sdcM4T7t3VMHDCWoHsFLPYCrSY+zf+c1JjMcakAXy3UovjLF4HT9HAcadZhyjtATWpILS/uA7GG6j1QsxvcJ4toiLm5MYoMxkImBgMFfCv36OuDe/daiADAWvb59egiC60GjeVk9XkMmbLFh0bHoD3W4IZ8bX2Of9rqBHTl3E5uYIXqJp6T/7wA9QbcbRo2DWcQU8tzmJN02TyfvWzhgOcz4D5IGAiZ0NwoSEwxoqF+ah0ZgS3+cxdu46tOuUPZVtVG5NIp8nmh7fVAGqG+JUD74jwFonE5cQMhCZ2WbJ9XzAgr01wDRKViGBlSuHcPTDNGh2UWPCdH0xi2CmAF6iwmXHQ2C4Cj5Gjtl3fKTnNtBaIsedencJXpqUWsKxVXh1EUKcvB+hsTqgBADqwNv5ZgiRu3ax/n3CDk7FzkMufRu9RQIKuN+6H/IXvgwAyJ65g/KFefgUzKLWhdfRkbmPjBGNC9PgwzYKTx2l14sDJ5O32DVk8KYBcYLaWrSq2HjmJPK0ezJ0ugKv4oEvkrF1+aWjGJ1Zh9naN0pt0dDZwVN3YFbjqK6R85UVE5npbezdIYDr1qcPYHZqDSK9fgPZfcNLNdbF+uIUOuvk+hw7cR2NQhbRDHmPSzt5zM8vgaNjwmC2AiXZgrNF3hfHlnBzjbCWIdlEy1ARp8akANEh9RsM5tIlHM456FBAodsyY2mDpgpFtnC5Ts5vIKjhWi2Ft1EWu9BMIiwbuCezz4grooNhKuT+/s4oxkMEQJ4vDGNA1XGESh12Gyl0bRmD1BfpajWNkOjidI4cV70XZgsQ2xNwpTTIyvFdK4CqHsQYFcGfGN5EV1dZcHWjF0Yu1sAyXdCdHdlgC9DpeB0lLYzlThiG9wZaAPgce39fr/39uG29Xg+/8Ru/gc985jMACIEzOTmJ3/zN38Tg4CD+0T/6R696n6+aSRoaGsK3v/1tHDp06BX//ebNm3jkkUd+7LyS+iDpn4z9MrIBmvvl8ggIHqNeV5pJTNJurZcqWUREFwfoZxvtOMYiLSzRPKDxcAeaIzEvpI4tI6X08Pt3COA4leRxmoY7KoKDf3Ung1+e3a+F93OOAOBmI4q47DJAMhGvsdXK2dweHE9gk77rc7jTjGOWtvSutiOoWQLuH6jS/fJwfZ6xNs+WY3g4RweTXghT0RYrIW6245iM19F+mSjacgVcrhKgl1MtJChlrYo2VloxSHTwPZCooaqHmNWA5QlY74RxLkdKApoVwHoniqU2Oe67M22U6aT/tgO3cGVzEkW9787N42iyzlZ+miNBsyXkKGMSV3vs/J8tZXA00Wa/27FlKC9jw1yPw2+t38RnD5KBvUJjXfKUquc5j4UYF3shBASXMTORgI6mHsIF2g58KN5GVN735FhtxzBCAWRC1WDYMroULIUlEx44PE/jQoKCh9lYGxu02+1YuoKgbLLutq6hYog6aq8WB3GjnmQTRksLIRbSkKCT0VeunMJj8zcZ8LEdkXX6bFWzGE2XsUctInLxBmLxFp67Q97bgVAHQdlk4biRWBuNWhJdui+B95AboJ1/nQgikQ4SE2Ry0SsJiAELHAW3omJBna+ie5Wsuh1DRiBGrt3zT96LB9/zLVRuEhZKClhI3b2I8jMHAQCZM3eIlqefxxc0IAQNoL/vGRmL/57YIygBE6PvuAR7m1w7IdoDfzQHLFOX8OfnEZ/a2e+UG7bhD1DH9u0i/A4HnCG5d1yvC1gm/DXyLjavTCFxzypg0uFwOg+sFtgy0js8j6d/i5TX7n/H91BbGGPdW9O/dBvOLZuZOqqTZXQXhtAqkHc+d3wRQpoCfRcwNjLkHEHYLo73IU+Se2pvhyHGNew9RwBWYrQAOaaheI3m9R1cg7ZH9hvM1nHnxRM4+s6nAADthTFIqsG6zrauHsDI0UVUlkhHrKaFMDRLyoffePJBvOfxr7KSmdENwvc59nwczu8gEDARpCXobjuMsbtuYusi+bynqyjRJpGH3vNN7F48BIMyvLvVNNKRfSPXcEhDT1dxm1qrtC0ZR6m57Eo9g8Fwm8kEDEuGbsmskSGq9NDQQ1il3mnjkS4cj2OGkbVeGBqzCAnicHI/Fsv2eFLao5+n1R4k3sUdCmxcn8Ojs6RT8uLmJIYjLba4ycUaaGhhbNFzPD2ygWo7xkCSYcuQBAdJ+v4EAiaubBBwersZxbFkE8PxOrqOjYef/c4bwiT927lfeN2ZpL+7+NkfKybpt37rt/Dcc8/hX/7Lf4nHHnsM169fx+TkJJ544gn8k3/yT3DlypVXvc9XzSS1222USqX/CiSVy2V0Op1XfQA/KtuxVBUGjSUxeioGgz0GVjKqjuvU82M60oHI+6jQTqdEgDhV9/VLW90IKqaEoNA3W+QQFG08PkK1AKKDOi3rjERa+MB4j3VnGK4IRXBYu/yJVOMV9PCNSo5599iuiK4VYDlxlssjq5hMIK6KLk6ENVZCu39kE8/tjKFkkH0dihmsY2Qq2kJQNnGH5hCFRAeZWBMLNC07q+qomwHcQyfNhqniuwVyrR4aaOPUQBEdek66I2GvpyJP2SBVdJCQbdaa/2I5jbeObCMuE1CpCA6OU12R5/FQRRsSR0DTwXQFvs9hkwqqw5KNeMDEBv33PbF95+/7BoCmqWCbMimnBvZQ74WxRstaD00u4+vpLG6Vyef3TC2hUEtjg3adZYMaszg4dWABF+4cZPvuWgoSwS7OZsgEWtWD6NgSZqlfUcNK4wSNhxEFF9lEA01q2ljuRjGb32UlAc8nOot8pAkAuFAcwumBPQYSDEfCBvWEiQR0PDa1zMzyThy9ifBICWsvEtDwobd+F2LQwNo1Uo7K5coolWjY58HbWFqZxAEq3A7G23jp8gkWhzJ5YAW+x6FDxbb91Pa+D05yhJQhASA2WIEYNCBSdtAzZQTfaoPrkr+1547Ca4QQytPyU20HPrUCefOZ78APR5FLkHgPbjgOd0nEwHtpua3mI3S2DesmYWLlk4CXzIPfI8DHzY9g7BiZyLRiChjJQTLJBOvUg3BGDgAjRCuVwffg1IIQ58iz5ix7ED1yvu7hQ+Av3QS3SoXcARnOugvhBLnW4XIZblWCEKWp8MffDhwH/ECcHDcn4r5PPw8A4L9hYOChW8gcJZob7cAvIxj9IpTb1M38A7+OyHf+PSI8NaqcPwGvSxZC3PlFcL96GkJ5g5z/V4uQ3xyGnSf3VNpehC+nkLeJsFkY4uCnUxg+QxaffjCFZJ28hzBMnDjyDKwFMhbF36fDyU+AN8h9yXc3ERitY/NpwlLe9798h5UXH7WfgzTURpgubhIjXdSemcXjP0N88MSBLsyNJBS6gDPXojDrUYyepscV7eFIiABZTuGRtxdZhtxE5Do40WWg0bNF6I0osjly3H3zTwAYCHYxPbqF5xcIaD47vYS9cgbDlLlvamHcbMRxd448jyQH0sRLFHCdG9xGky5uZjNF6GaAOYwfnNhCoxF/hR5ys5pFii4kEoqObaodTas9rDWTLJGgP171A7J1MwDP55jVSkQ24IPDErUEyIbaeLFCnpWxsIVCL4SE2kPP2feT+sn2w9++/OUv4wtf+ALOnTsHjttnwg4ePIjV1dXXtM9XDZIef/xxfOQjH8EnP/lJnDt3DgDw4osv4nd+53fw3ve+9zUdxI/CdrOewgODZFUZFG2oos1etl0thEEqMMyGuni+mMcUBSuuz4HjfGQp61AzVCQCJgq0RDIdbcP2BBygpoWKbGG1RldvdP81ythkFB3XGwnMUzboB6UUHhiosc/39ABjlQpaBHHZRIPqZIq6goRsI9v3MgKHkGgjTql205ZwtSHhXSNk0OtYMmNDXI/H1coAdPpCV0wZamEYe7S1eEML4Fiiw2r7AudjmmpOXJ9HUw+y3DeB85BX932hmqaCA6kKyz2Lyw5WGmnkKfPyjZ0s7qZUeihggAcYS2W5ItLhNpZoaeYX5nZwoTiEGC1zXS0OMTO4m80ITiRbzBX8ZiXHHNQB4l9U0iKsc/BLt45gUDVY+XGpFUeWXltjZRqGI6BJV7N1M4AxzmM6NIBk0H1uhQibf3Zqh618y70Q0t0eo6oLWhhqJYtsiNzT7+6MgOfAGD0ewGIti2HKaFX0IAPnBzMabhcHIfY9mHZz6DaiECkgL28NQhBdbFJwW23HMDu+QX53Nw/HE7C+TZjHVKuNXKyBRZqxd+F7o5hL1JBPkWf+s9cP4+/cfR4W1axs3J5hJcKZBy7Cs0UUzhNQICsmOn/KM03KAHXp5iLUELIBcD3iKO22RFjlIIwmWWVHGgW0ViYQ2Cbvi+8mUNnKY/RuUqozLwWw+PwYJg5Rpu7ZLoKTRGNTuHgEyfWngQDtDKzEEb74NBDoO04DRjEFnjpyCxGbmUEK2+tw7zoG4Sb5HXuTg3g6Aetpcs8dQ4VbjSNyhIC34IUvofi5PLJ/h3ZO1auwb1I939I01EQb4RS51kHti8DqNnyL/Fbwy/8GrYujqFMLhfF3vgC3TB2mAxwCT32Tld/apXEEujVIz5PyorUWh5QpQVsn981dlOA6IlTaZeaaDkITVAawOEosNCjb4z+jQR58Hs1LhC2tFUcxpJqsS9G8o6JHS3XrS5OYcAV86QfEC2sy1sBeN4ojNMam2ErgxKHbLFOvtj6EYjkDhZbzh8Z2WMCt3g3h2vokTkwR/VKtkUBAshkrKQourhaHsE5NL6/UXXx0mrz/UdnA1ZUZ5jFUqKRxvjiIMVq+tj0ehxNNlqGWCJgo9ULMJuV8YRinKLDp6CQuqs/ivrR0gFqqkGvngYMqWWzhBAApGrwtcB7yoS575ou0MtAfH3pWANVeCPPU7uXq7ig2tCBG6LyQVAW8iXpOKYKDUMBAVYug575xDeQ+/d/rub8ft61SqSCbzf5X/13TtFeAplezveo7+Id/+If4B//gH+BDH/oQbJvS2qKIj33sY/jEJz7xmg7iR2EbUAzWonqrGcd8rMU8ZuKyxTw+tttxjIc0pkni4KPcjbIW76hsoqCFWfnJcEXEAwbrMrN0ETn60jb1IFKKzhiLSi+Mk6kaEwi/fWQPAu8x0XhOsVCjpamMqkOVLMToZBuVLVR0la1mopKHewbKKNI29uLeMM6lDdZlFQ+YTGxc0onwvF+fL3TikHgXb6bdKALnYbWxn1s1Eq+hSo/j4MAent6cQJZ2lZWNIKYibUaBhyQbJvVhAoCuI2C7J7EV25vzAmO0XI9HJtICRw0jk8Eu7lRyOEm9akTBxUhIYyafuiMxW4K3Du8iFDCYkHIgqOGbO2mcSZPB9kolC8/nUDHJfTgS7yKp6ExLlgqYGKLszm4nDlV00KXnUDYCSAUC7B5ngxpkU8HpFBlALUdkwMbyeKiSxfybhkKkw7Cfg/fo6CZMR2K0vu6IGKatyv2tH3lj2DIBprQ7yfN4OI6I9RKZyBLBLnLZCqZpKbPeiqJKS4KmLaFjKhimZeFbe8MYjLSwS1PfHxjdwHYjhSgF828ZKkCUbAY6uY6P9DABG5svHkVAMSHQEpikmggPl6EXqQHgag7BRz34a5QRNGXsPk3KRenxXXguD4k+H3ohDbOnYneLgIDZM9eQP7jKzCetnopDb3uGXQs+6MCpk2PODRUJu3GKvJeeLQKSBIjkOW5enkLi/nWYK4TBCMwL4EtkUWDPHIa0eB2IULsA+HCvNeCacfK7nRBiR9fBJSiY6WqIDZfhXySg2/U4iEkCkoKpFsRwD+4GeV+EjA59OYPAKJkk/Q4HOdJD3KXt4y0eHrW58NpB3H7iJNK0LBRJtuCXmlh74iwAYOzcdTj18L4HExVW92Na9tamMEkNP/sia4nm5AlhHZzCoUFjOHjew+7NGSQytDOuG0R4mJZQrx/Cztoo7h4jerZQSEO8GcfsWdLdt/LVR9Gux1Ark/e+UEshn6pBpOUms6dAClDXfN7F3OAurq0R5nm1HcXDE6sMUAEEhI3RMfSdEzorC+/U07C9/UaP9WYKJzLlfTPeUg4hUcYhGuLcNRUMhDpYpe/IsXSZNW9EZANr7Th2qej9YLyDiWiTLUYl3gXP+bifnrNpS8z3aDhWx7c2x/FYaJ8R1m2p/+pB4gUcHdnExU0C9mMBA4ckm1mQWI7I5ouIoqNnBVDWg9DfwFiSn2zAXXfdha997Wv4jd/4DQBgwOiP/uiPcPfdd7+mfb5qkBQMBvFv/s2/wSc+8Qmsrq7C931MT08jFAr9zV/+Ed5SwR5eqpDJZz7exmCsAZ1O3gHBYcnRWVVDVQ8ywbDtCgiINtr0ZdMdCRPRJm7TSTGl9GC4ItbpSiilGGyiGg5pqBkqY1UUwcFmJ8p8k3LhNjqmimlqxKhKFvMn+vZeAu8Ydpnv0XSsiaGQiyydbEt6EBerGVb2G1B1DEWauEatCsKShe9TzcR92Tp0W8IyLetkVR07nShO0nNcb6ZQNWVU6cpRbMVZltKVwjDGI12EJTJALLbCGAkJiNMV2lY7jt2ewjrFjicb6DkSAzPrnSgpNwHQrQB2OjGm5+I4kqfXD5W8WhyCIrjMFygiW8wlva6H0DUVFmYJAIfjJhL03y1bwlBQgyxQrYNsomUGINPrk1Z7uE0ZvgPJKrbbcRY9kwlYUCWbMXqux6NhBjBJdRS2J+DZErm/5zJ1lGiHDABkg11IggNVJO+HYcso98L7wv90CZYrspLraLbE2pslwcGtVgjvmyFMgCC6+OadwzhGO/IyyQY0LQSLemOVtSjO0q6llY1xHBjaZnEWCUXHaiONY1TvFA72MOxzrJOuqodQr6ZQp6XMuelVOMa+vkFWTCRmCDtk1qKwGhEER8jEVb89geD2HXAhqiuKuJBpq7kU64IP2Oisk7KEZwtIz20wpo0TXdiNKHZWxgEAimJg4a8exb2/+DUAQO2FOcRnyDmFsnXs3ZrGiEoML6WoBr+lA2NxcoyxLq78x4dY6OjBY5fApcj5iKUt+NEonIt0Esz04B2dR3CTTJg3//UJnHlLAd4eZbCOjyIwugl+kNw3v9ZF8zxhaHjJgTJShjBA9W57HJTxCjyDllY8DrX1IaiUDeEPpuHR3w0MtXHy8FNo/oD6QI2WoC9mWZehXkqiV48xjVpqqgBPC6Bxh1yfdK6CNu24CuWq0Ir7i5foIQP2UghdjRzzzKmb2Lk1jQbtcJVbEWQo+Joa2Ybn8ixPjRc8jE1vYP0SkVHcd+wqOs0osjQSh+c86IaC5BABXJJqsMBaKWDhT86fwcdOEr3HUCeC3UaKLfbmc3vgOR8BCiIU2cI2ZT/T4Tb+ZGESp+lC6Ku7Co7GQ0jTyKS6JWIi0sV12vgxGSW6IZlen0I3ijZlP7OhNsYibXAgx2W6ArY7McTo76bDbdiOyFyye1aA+R5dLA5hPtbGU/2Q61QNg7EGA2trtQxSZoBlVNYNFVHZYhlzpi3hEmVpj6XLEHkXYckGz79xAbeez7HF2uu1vx+37Z/9s3+Gxx57DLdv34bjOPj93/993Lp1Cy+88AKefvrp17TP1+y4vbKygtXVVTzwwANQVRW+779mOutvc+uL3j5/7Gfg0eyyXLiDnhVAsR89ItnsgQmKNl6sJHFvlgwWAdGGKlnMAdb1eJR7YWZiKHAeRN7D83RFdk+2ygTSDUOFxO87cIdlk4mlAVLKkgVnv/U+oDOH2HvzBYQVHVdpbT6r9rDVjSD5MkFx25YxRQXnAdFGNNhDuRVn++7HnYiCC8cVUOiQzzRbQlLRGbO024ljMNJijNfF4hATKtueANvjWQda1wrgF24/ie+ePQGAaHIUcT+PTeB8WK7AQEI+vi+05Dkfjitgj1Ldl2pJ3J8rsrKn5QkwXQGzFCR8a30K75olYZ+1ThT5VBV1Ouj7PoeblRwDnD1HRC6osRXrYLSBgGRjm4LZpKphg5pnbnaDeHBoB7kMYQYWtsYgCi7mRkgH0g8WDsH1OQai7j98A71ukP1uox1lrcQHx9ZRrqUQphqtKztjSCk6Sz2XJRuhkAaRWjS0GjE2YVqWDMcV0KY6s9MPvYDG+iBr2+Y4H5ETW1j9Cil7K6oBj+apZaa3YdSj2N0kk3E00kG7E2H3/+6Hn0VnN8vMI8uro8iM7UIZJOfc28whepYwiZBEEtNBx3v/4Dj4bhv2VepPdE8KvhIEPHKtndQw+B4B9t5XViHdF4IXIb/Ld5okIoT+LXgBnKHDXSbXx+2okA8YcGeIzsrneQgtckzc9i68BmD87C+Q322Q+2FnycTO90oIfOUv4d17inx++yr8FLm/9sO/C6d+Ber1b5PjiqXA37wF7yDRMwkLC/DzWZhv+jg5Dp2AAylEur/kb/6vcDNkEuRMHc7AOCuRYWIYsCyAthp7sTSEhZuAQ6NYpiZgf4vcb+ltKfiSAv4mjSUZyYHbLcLruzccHgOubsGpk8UP//gshBcuMgDqGx68Dv2dnoLKrUkM/jQpczkzhyBevQTfIePF7rePIzm2xzrapFgX4iiZ5O3NAMSBHnoLBHyoY2XYpTi6e2ScUuLdV+jQrHICUqLDTEGViQrcJhmr7nzvHATew/S5qwCArcsHkcjUsLxMQOVgtgxRcnCe6o5y4RYLgJ6ItjCSqqBAw7ZHMmV84eYR3DNAWEndkTCarLLnNhHq4nJhmJWCJl/mPxeQbFwp53AiS8aHihbB2QO3cWdtkn23rQeZs3/HVNn4I/AeSs0EQnRR9cd3JvHbp26iQbWFLSOIZLALmb6bX12dxoODe6xrdzTchUhL+bojISxZSIU60Bwbb3n+W2+IcPsPZj/8ugu3f3PpT36shNsAaSL7xCc+gUuXLsHzPJw8eRL/8B/+Qxw5cuQ17e9Vg6RarYb3v//9ePLJJ8FxHJaXlzE5OYmPfexjiMfj+OQnP/maDuRva+s/YH9x8r2QQM3iQHwyqnTF4YNjZZ1EwERW1eDRhOQbtRTm4k106WrG8gTMJCtMWHgwUcO/Wcjizbm+T5ENnVK0U7EG1loJ1CgT8NDwFst1A4gIfCraYk7QYcnGUrsf/EgG4H5w6q4WRiJgYL27/3le7THDSNsTEA4Y2HtZIONXaNjnO4Y78H3uFcGy904t4QIVbicCBmyPR4ZS0VutBJZpd9bRRBNh2USH+jMJnIeeIzG9059vZHB32mCMzo4WguYKOErb3IOSxZgTxxVgvyzSw3JE7HajWKSOyo+N7kC3ZVQpeJX5/ciBsGxBs2W20gNIunhY6gfpkmPrJ1sbjoCEYjBRPM/5+G6BtvOmO8xJl1xLF47PMaF2x1ShOxI8+uYERQdb9B4dSpdxp5Zhxpwy70HgfBbjklJ0lHohDNGSa8NQMZststXtC4VBPH6IiJz/8tYR3JUpM2Dn0m6dfpn0vhOX0aik0KCdPwPpKgu7FXgPW60k7jlAWJfFjXEEJJsJ7A+Nr2F5exSH50jn3F+eP4fHT7+E3T3yfVFwMUMF03YvACmsI5Akx9zZzENrRJGkTs7dUgqJuU0UrxDftNyxZUhjhBnovDQEdagCIU4ZPhF48T++DbNUJ6PEu/BskYWwlpfHEEk24dLyUmJ+A/ouYR3UkRJKl+aRPUwEmNK0BWtBgXyGRtxs12HtJNh94wQXYpo8s3yMA0Iq/BplgAsRCGEd/EnakfdsA8JbhsC1m+TLsgzvUhHCCH0nPB8OIdJg7KURvrfBcuAKn4qA43zEqdjdbEbQbUSRGCYTffihLrRnyHUPvhWwX+xBLxFQEByqQN9LM6+j7VsziMbaiOaoviXbgNNVYdOwaTFo4KE/eAQA8IN/8DVoxTTCo+R3dy4eQmZsF+u3SBdeOKxBUQ3IVGvXqKQYQ+X7HCLxNhTqm6W3w1hbH8OTu8ROYD7WxtkDt7FALQJ0R0Jc6UGlJbTBwQL77tLtOdgvC7zt2QFkIi3W8n+zlkFMstmiQhYcxjT74BCUTdal2qSavH5pWxFclnFJjkOE4Yq4a2QDALBVy+AiLTHPRLrQHAkHaXPCTjuBrW4IU9RVu+eIODG8ifO0ZDaVqDE/M3LLbTTa++OvLDrYoWW9yUwJL25NYJjaCXRtGR1bQpuO3acGiijRMSBLF5C6LaPn2njflb/8CUh6AzbbtvErv/Ir+Mf/+B9jcnLyddvvqy63ffzjH4ckSdja2sL8/Dz77x/4wAfw8Y9//McOJPW33U4EJ7NN9u+yFmUTqudzWO+Shy8fJBk9/XbxM7kCdtsxBpoA4KXiEBNYD8Qb+M1DLgNcPUdiXhyKZGEy1sBWgUxML+wN41i6wvQp+WgTT6xOYY4yB/GAAcsjL+Ld2SralsIAxaF0CZ7PvSJTzfPBOuU0W4Yi2swbyXAF/NwEYcNU0cbzpSzupZ5LkuDi0sYk21dc1RBSDNyhWhhVdDBJxaKaIyEkWXiuTCantw6VsNCKYbdCXqozKRPxgMlcbo+pPYQCBtZo+dF0BaTpQJUMd7BUyUGnACUV7CIRMJBTKZPkiMhEWowBA4DSy0DfSLTBOl0sT4Dl8Qw0zsebkAWXCUTjiodqL4QxqtkxbBkfnCEgoGUEwUNl4vP1dhwHUhUsUV1WRtERlk127bdaCcQpKHyxmMfZgeIrJg3dkZCloKjQjoPDfnK54/Ho6iqbBKajHcaG/fShG7i0MclamB+cXkSjHWXRIt1mDK4nIESftYWtcVynzufvmF1A2wgyZ2PX55FL1sDRz7eKecyMbGGLaoMembvN2DAACKk6LDox1wsZjJy4g9odMmGmjqyg8L1zSPiEbVETbfABG4P3ElG0U4syXVBjLwN1pAS3TRcRlThGBgswaMmZl1xIqgGjTnUlySYE2YaaISDat0VmyuhpCrKHV1k7/FDyKhaeuxeHIs+Sv/VkyEMN6GukbGo2k4iPUEfkvQDEIwFwMo37CNjgD8bBtQnjJR0XgeVlgqYB+KkEhBkVMKj+qW7D08mzZGsqoBXAbxIma+CUAF61wQXIPax9ewhKSEf4LAE67rKP1s44ACC4dh1ON4voEeqjtp0ktgeB/bJM9uQCfAoSOdUCuioqG2TRNXRsEc/8379CPpMcuJbEYkqGT99CbzfDLCJ43kOrEcN2jSx2Zoe3wdHnXwnp0Dphdv8T0TayyTreQ5+tq7ujECQHcfpujoQ0OI7IxNiBsA6jQ961oXwRvNBX7wA3V6bR0YPI0xy0PgvfZ6J9n2NlrJZBrAf67E7TVDAYbjOm2QMRT395kzA2vzi3jooWQYuWFLu2jCEKsDNBDWmfY+VWmXdxd36XlZRFwYUsW8wmJKr2WIxPT1chiTZ2acs/zwHjyQpmqVC70orjwelFrBTIfUgqPXBQGWjqWQGk6Hix0UpgKNyG6/GsjP5GbP+z+yRJkoQvfelL+Mf/f/b+O9qW7K7vRT9VtXLOa+dwdjg5d/fp3C2pu4UkJCEQwdhg5PzgYRg2hjc8rm18wWAszOD5WcbGgI3NNWCCUUChJbWkzumcPn3yOTvnvVdOtVKtqnp/zLnn7ka+1wi32sh0jdGjz0611qqaNed3fn/f3/f7j/7RW3rebxgkPfnkk3zhC19gbGzsTd+fm5tjTU4a34pH6g2ZatFgh7SrK6OwRt/Lt0kR67YZ5em9EY7ExORpOTq1vo+TUlj4WmGItP9AC7NTS5EImnx2QTxc7x+tsSYfxKl4FdfVOJ+uAeDRbaE5kgv/aivIyWRdeYLomktats57DJtkoE1Z7tZGYzXW6yk1uYQ9lui0e0OH11ojoYSIIc9Apd5rmstdmQM377DXIhXsKMbG0B0qragCgn3H4IQ0ZGt0QtiOzgM5sai1LR+n02XuzolzXy7mmIhX2JWfyRcYUGjF1LkmEhUFbLZrKcZiVb66KXazw70AYa/FTPSAdUmETDXpbdVSSvcQ8NgMHEMlfK/XU9T6Xs7I3LPrlRTHklX6jhjya7UYIc9AgSyv7lC0xMKeDTc5FDR5VbKBQ8EO/Tc4n3dtD+utKPeMCGphNFrnqtRYTEVM4carC5DUsXwcGd3gltyhp0MtcpEGcbkYbZSzbDSS5OT7Ho0dRM28sDzHg/O32JKhtOV6nK9tjfP4pIzKcHQWC0OcmxNs0ITuMDsiSmQbhTydgVctJifnFlhcnVQlgcvFPNvNOGcnxLl03eHa+hQXTlxTX+9J48Dpu69SWRwnfUz8rpHqMzS+TVO6IOfuuYk+5MUpyMUo0cKRnZGp8V0YGAxkZ5Mv3SBQSuKXbt6BTJ32TpqeNFhNTO5gd/0svCKE34fvvaxYluZGnujkLp++Ikq53xXsMTm/TGdTWlcc20aL+1n6Q1HWWS7l+dB5wTqZ63niQ+s4MwLoGfkGWq2BPSNYF2PpDs70FNqC+Iz21QaeccCVi/mVado1MT7SMxu4wwcdNPadLrWb0yRPHLQYZx66hSuxfP3WLCMfEozeYD2AWUgpj6mrz93F6Ydf5mtfeBcAp+ZvY7eCyiXb5+h0ygk19qpLYyr89/ryDA8++izlVwWD98mX7uUH/9IfKPASHSoRjLfoy2ckkqjjCUgwspvFsXWSMdlJu3iYuWSZvDSFHY/VWF8fUz9PjxTQNIeLl84A4No6v/uSKPOey+0xM7HOndUp8Z6NAY1egIb0dMtJwLAv5N6splXH5kS6yG4tyWpdgKDD6QLNblAxSc8W4nxoYofHhmuA2FykgqYyiTUtL48eFoznjXWhJ9r/2XiyrMxVQWgew8EOJ+UzslLKcUx2Kd/cG6FleblHMlSdnp/fvDnHd02L3613g/gbMZU0kA12mEyWldyh1PMSkbrL2VgdXXOxXU35tL1zvD3HRz7yEf7oj/7oG4pP+x8d3zBIMk2TUCj0dd8vlUr4ZSvut+LRsw1MWTLabCQ4ObLJIeegzLEkdTKHYjV8us1rcud7Lt3jZKagdEZnsntYtsGW7NDKBDq8ujvKh8fF5NO1PQrI6JpLPGTSkLX9vu2hZwsGBOD+fAEHTemdPrU6zntHBVgb2Aam5SMfOQhrzATbyhMk5OvRtHxEJUhqN334DFuxIyFvj65kKJr9ACOxKjekTiDstTA0h5MywqNQTzCeLah6/RszjfoDDyFfj660D8gE26QiTdVCOxEx2WkmFFOy3khQ7vkIy0Xixe1xRvZNG319zF6Ae6UeIeDtE/L3eHJFaBvS/j667qgFI+bvqn9PpEpUWlGS0kjP37K5J7+rdnKWo5MMtZT/yZirEfb21WdKJ2qq/f3mzhiFTpCsZGh0zcVr2JyV12NoqMDS2oQqkY2mS0pXdq2cJW/5mJC+Li8uzNPfHuPMrNCNvLYwT9PycVgCvfF0EcpZZsYE4Gp3QhgSyMSCbaKJBsczYuzsbozw3uklhmUu3M2FWc7P32bkXaIjyTE9fOo/fxSAyWSJ3sBLQrZK//ZLF3j31DIdafh3NrfD1MQGcdntVFkdIeAZsLcjFqupw0scvk8yND2dWKeIbcpxeiNOYWuI6btFWVBPa5iP/w3Cn/kVxI30o22Ke9peGCdyoUTrazE57gbEprYp354C4Nln7+Ox7/g88fvFtS1+cY52M8KsDEDtVmLE3ytLszEf2k6Hv/bRPwKgU04QGi7jPSId28cO00+PceInBNA7WXme/mnR4h58GNrJB9FTQpfgNBYgkIGW1F1Nnse3dQVPXoxb9645eoEI3qLY+CXuXiTpkYxWXcN6PoJHemP5xlxS+QauFG5nZjaxSwE8QwLcpd69yn5t1ul5SR5dxTMh7v9p74t4Ym3lTh0bKYKj05Kt+nGfhS/cYeJucT0GbT8BGbqamVvHm68pwHVueJOlF86o/ML2YphwtEVWxoVouktHxhilxnfoVGOYsmz+yNwtKvU4dcm8enSbmbll+hLsXr92lFiwrUrjwWyVGQmgIoEOhWKGPQkgTo+tU9we55jcSDmuxh/cPsKppGDtLEdXms2XNqaYT5ZUt6uuO3gsH+syWuQHjyzS6ISIS31kx/Kx2ogr4fZYpMEtCY6y4aboNJadt36vhe3qqpPO7AZYLQyRlV12QY/F9bUpQDQ2DEcaypMM4EMTO6oLdcOMkIs01ObXo9ts1VNckKBqR5blABp9P4mgybVKhu7b2N32jnAbZmdn+Zmf+Rmef/55zp8//3UNZX/37/7db/ic3zBIevjhh/lP/+k/8TM/8zOAaLFzHIePf/zjvOtd7/qG38Cfl2MqUeYLa2JH9r2H79DqBNWO/lIpw7TsVNk2o2jAbFQ8LK4rqFbXKwZUqxdg04yoh9gBPJqrSneFbkAZT96qZJiK1ZmSHkob1TTZYIddKdT1ey0GtkG5LSafD0xsqbJdLtwi5Oux0RAP9V4nSMxrqcV6r5YQnW2yRKRrLmPROiV5rleKWWWjn/BarFQzzMjS00I1zYXxVUWtA7TaIVUii0uvEoDmwMNpyaKBtPffGaMhywUZf195SIEQpyf9vgMxeqDDncr+e4RnCwnuSovFZz+6JC87pbLBNi9tTiofpfFYlQlpOtfsBFmspRSz5tUdegOvKq89Or5GoxNiU4LXiLdPItBWn6nQijEixdS361HuG9plQzJ+k5k9Nusp5bb7ys2jRHw9huWu+/buqGJoLoxs0LO83JQT91Y7xGSiQlHqJjTNJWDYCqy9sj3ORKTJkmTPyp0QITk+5kc3eP7yaabl9XVdjVikxZ0lUW+fHtmmUklS/cNHAAiH25yUk/ZXF47w4QsvUpTGfe+bu830uessXxReR92+j+sLc5ySC2y5nCLk6zF9VGiFwkc2efW3hfYl6O9x5NGXWXtRsDsD24Nh2Mpzx5tt0P+pz+OfE5/JMFvc+awIIT78kWdxm6KLa/8oXJkjOSkWxftiTcytDKGBFNB6B+SPLFPfEIA9ObuBuyN1IE9FiRwdYATFwhOb26D42jzZoGDSDN8O3lfvMGjIfEMzwsV/LY1HP/ZZjLoHHhKAUr92HSZHVLnN3W2hDUWgLsaqlwUGw5NoVxbV+x4UpO7u7gSN/xIjc0aMLeuGg+YdcOtLosV47NAagbki7v762B0o05m1V06QHdshMSOuhyfZwrUMEhIIax6bfj1CUDJtmsfGJ8NeAVrbWWU82inHSU5VWZL3dGpmleXFaZWZlpvepLGboSFDjidGCnglK9epxui1A6qUaRgOiWhT6dvm5pYxa1Gq0oz2+LFbOLZOb0kwcZXlMc5KBvPq0iybrSjvku7VO+UMT+/Fld7vViPEkVhbbSTL3QiTsmN3X+e0KDtLpxJlBrbBpAT3l3dHGYsId3gQmqW7RjbYkqDE5xmoTuKu7SHs7RMLiY1gPNYg4Osr4BMNdMgHa6qDM+jtU5H+ZiFvn+AbGmf2Waj9ppGoRzDgshrL1UqSXKCPJTvaNs0Q53Pinhqaw9XiEGHPAF0b8HYd7/gkwa/92q+RSCS4ePEiFy9efNPPNE17e0DSxz/+cR599FFeffVV+v0+P/mTP8n169epVCo899xz3/Ab+PNy6LrDRw4Jqt0aeCibUZVG/+F0Ue3A29LRdV+oPCpbSC05IfQdg8loQ3n/zA9vcSbcZnFdGA/6dJs5Sfde35zk85t5PnZCnEPXXNKhpioh2Y5OLl4jbomJu9SKqQW0O/AynS+xJTvSHppYodyMUZYP/YlkVYlzQehidM3hsGy3n8nsqbDLejfEdiuqFu4jqSKVVlSxNLar4/UMOJoXC9vT69PcI3eJW40k9W5Q0eeZSIN8rEZETlR+f49aPc76vhlcqEUiZKqA20igwyNzokNtbW+Iv3V2Q4knb5ZzZDshxuXOLxev0Rl4uUvmjZlmmGvbAlzUen4emlmgI32hmp0QuuaonW/X8uHzDJiSQCga6HBpZ4y7RkV7+cA2FDM0GWnTsXyqVOn3WuTCDRZllt1YVDiU79P6iUBbaSx03aHWCZOXAG9RGtfdlJPpvbN3aLXCytbg0dk7WJZH/b0t42P2j7MzC7Tk7r7WihAKdtQOzzRDZHNFahWxCIQi5pvcjNfWxt8UnHvrpTOEpQbD8Nj4vBYl6dBdaUWZnVinJktofTOgPu9Hv++/Ub09qT5vbmSX6MwWxStCG9T62hmimSq2LKl1trLkJOPpdnS0Y3k0U7q1X5kldWgTS5aEqntZhuZXqa+K0l5kpIjd9xLJC8CuewfgE583cnILp2nglWaK/YUw2btuoQdkp1zTQZ+K41w98FE697AI4TWvjQiN0IZ4xsnGoW0qUKTFPdjjM2jbMn/uxDietQUGTfGMWOW4skSIFvdI37ODdU3cF++8Te9qWOlbLr12mnc/sk3vpox4CfUU2xMKt0k8vIlb3l88DWo3p7ElE+v0fPRaIVJnBPNYvzZNeKSIth9QPb6n3kfi5DKt18c58u6X5N96GW6Glei7sDJGIlMhlJAdavUIP/x7jwHwb7//8+K9S6ZjfWOMdt9PSjLTZj1KanRPhRzfvjXH7OyKKr+1zZCKIQl4LE5kd1WEiVFxeO9oibx8bs+Pdyk3Y+rctqMzkRXjwefrY5oh5QSfSVXwVZMqqPvx41dwXY2XF8UG1qs7BHx9opLRKZgRZZEynKhgdgPqWdpnhvfZ4lYvwHCuoEpwvYGXk2Pi+W+0wvi9ltqQeL0W0WhL3ZdsM0rFjCovpA/lt0UnrgRrkxGXrLQEub49xl0jG7S6QczB22cB8Ofp+Pmf/3n+4T/8h/zYj/0Yv/zLvwyA67r803/6T/nVX/1VqtUqFy5c4BOf+MTXpXf8zxwrKytv2bn2j28YJB07dowrV67wK7/yKxiGgWmafOd3fic/8iM/wrCMIvhWPK7ujTAZERNRPlonGWqprKF0oK3MESO+HsV2mKQsxdwsDlHp+ZiNiwe1OxBt6vudY7XeYXa7Pu6R7eSFTohQSSw+E8kSx7sBpRvxGTZL1QzDsousN/Dy3Noh1cY+Hq1T33fn9vV4fX1KOUgXm3FC3h4JucBeq6S4VTunOtbOZEq0LT+fvSFAxbdPrisWCkSnxz5zkvR3GU2WeWXzoMa/0YwxIrs2ZmMHGUdxf4fewKtE3q1ukHInhKcqFtTPbCT57umCEi4XWjFeKaZ5eFgsol9aPURcMloRr0VlU0R+AMrzaZ/B2aqmsV2N15bm1PXaD7rc3Bnl1vYYld6BMeVcssyKZHCmE2VcNF4r7AftNni5HCAXzKj7us8c+nSbUifEjOxm266l8BkDZiXjt28dsA8ibjXCnE0dmI2Ox2qqK8avOyxXMwpErmyPEA10eEr6sTwyusFWI8EJWW4byxZ5XpYXfYU89V5QeXKN5ffodgKqI2e3lmSllGNbTvonW7uKSTwztEWxGVfWAwFfn4FtsCuz3IK+HvFIiz+6IViIjxy/ii/QU6DJH+qqz9uTBqXBsDiXL9pG89ikDgmw363ECGRqCkTdunycM0+IUl3x1SMkaxvYbXE9djaHmc1VCEgN20iyQWVxgvwFWV7bzIjWc5n91l4dJpIT10bzaNSuHiIgu+yC0wUYaMqBu3sjju+DWTxjAmCUrh9S+WrjZ2/iDuUPmCOPB+dWFR4S7Jhx5zp2KIYvJ72wAGvmON6BAE3XvnCSqNSR+RNNfHMmz/8nwZw/fP8lfBNbDPVWASGuJhbBNyY2P25Po/DiMXVd8fsZFCUrlTAJD5V4VUaHnEm9RurMAv09cc1D+QqWGUTvivHz8tP3cu6uywDoEyFCzjaDsphrjJhJsxFV4CCerlEvJ7EkGxJP1PjlDwqjzk997WGO53bI58Q9jobaZJJVEm8IuK3fnFVl80fe92XqqyPEUzVxfQYGoyPib40rR1SZH2A0v0dxeZYlqdPbaocYCnaVcDvs7VOqHTRcBGWZHaC3l+elnVFOpARI3inkCPj6ZOQzsNGMs1nJqDJ6wDNQOkvH0Wn2gjhyDowEOrjugVyhM/DS7oR4elusU4+ObnN1U2wip5IlnlqZUUHVs9ldVrbGVUfvUjWDV7eVVsq0fNR7AeakT9LVwjBFaVOQ8HdZrWRZa4Xf1oDbPy/ltldeeYVf/dVf5dSpU2/6/r/4F/+CX/qlX+I//sf/yPz8PD/7sz/L448/zu3bt4lGo/83Z/tff3xDFgCWZfHEE0/w7/7dv2N+fv6b+b6+6ccnPvEJPvGJT2DbNnfu3OH3z34X1a6YEOaSZcL+AwfuzUaS/7oqJqLvnapju7oyMNM1l6BnoL4eDbfYMCOMSCblei3OuXRZUc3JcIt1WQJLBNpvMhJcbsQp9zzcmxeTTzLUYq8ZV4LqTLCtWKZkoEO9F1SLoqE5hLx9lSk3FGlyq5JhQu7elpoxLgxvKrO0Ys/gbEr8LB3o8OxelhNyx5kJmvQGXqVnCnj7FJtxxX54dZsVCaiOZ/aotCOKMZmN1bFdTYE5Q3O41YjyvslVQLh5X63GFWgEFJXe6oluvf3SVdvyE/BYigL/xZthPn7PtpqQC60YQQnOegMPzxXSvHdMMGW2o1PohNW1nU0VMXsB1TlYbUeIBdosy3sxGa+ojsWm5SPssViUpYcHRzcotGIqeqVvG+RC5puAc1y2NGuaq8ACwEYtjVe3ufu4AAH/9umHeO/EGmkJqlcLQxw/tMSlO4fVa++DM113qLfD5BMCUHT7PnLpsnK+1jSXRv0gpsTrHfDcHeH7c2pkg51aimPT0l2462dlZ4TJvNS0DTzc3BnjgVOi/BSMt9henmBkVtynxm6G7BGxK+sUkwy6PopSrzR9/jrlxXFMqRtJZiukzt2hdWtcfe7YA+I+mK9mCb+nx8qvCeAXipjkHrmh/HncgUH4yDaNK2JcBjI1cHR0WRayzQCehADnRrSPlvJDQADhS798D2d+epG1XxaL8fSHX8WZmUZrCRBlvdinJLVP2ePLuAMd3zHpIxYJ46xWhS8RoLca4Di4AVmqSw9h7G3Q+LT4jI7lIXZMXBs9aMNkBvML4v4bwR6BiTLtJfGZwnfXaDydJ/rtss19sYwlQY83X0MLutgV8bea7rL7yjHF2CTuW6Z5cZzytjhXIlPBn2jijYlzNVaGSd0jQKDb01n64gXmPvoiAFufO0WnHcTa7w7NlVhdnVBg/oPv+QqVDQEQho4t8cpX7lfsTizeIBxvKqfvbjNMYTdHOi1A08DykBrfxSyLz2E2Igp81ZsRVqppTktWptyIEQ50eXVLAJBRKQ1oviEwe/+5DPl6FNsRBYLiIZOFUl59ve/ndk3qJe+fXmJ5d5glmUKw1vLxg8cFE71VTdOyfNj7JUTdZSpZ4tduiLH3XVN73KikuEsy4iF/T83xa7UUu50gh6WlysDR36QfTQVNLhbyyrH/IzPLlFoxAhL4RQIdrku2+GR+m+16Er9ngGlbfPTSH74tFgC/OPOxt9wC4CeW/sM39N5brRbnzp3j3/ybf8PP/uzPcubMGX75l38Z13UZGRnhx3/8x/mpn/opAHq9Hvl8nl/4hV/gb//tv/2Wve+3+viGmCSv18u1a9e+JU0j/+TxIz/yI/zIj/yIGmARX4emjCjIxOpc2x5XNfVMsM3HZmW7vLeP42rKf6hvGzQtH0ekNmZgG4QMW/kqzUZbNPp+YnLsLpezSrTY7vvp2h4VdnrS16PVC6gyV8WM0rc9jEnaOhZsqwXYGniI+LtUpMYoF62z00gwJCe9rWYcQ3NV2cdydBbKOdXt1bG8CmC9XMzw/cev84z0RRo4OqdGNpQmqWv5mMwUuCSZpVPDm4rduVYcUiWr/fdxozDMlLQ5WKqmORpvKkYj2gtwV2ag2ue3mzFGpBbqTiXD2eFNBSJBUPn7PlF/85CIOPHK6xfzdxXA8nkt5rsHOrL9c+4fJTPKtWqC7zgidBPrtRRjqRJHPAI0xCIt5lMCUNxZPEQ+VeGwc7A71t9g+llrh4kF2+zJiXsyWWJqZhWAyGiBxvowhgQu4Y0u2eGCEsC+Z2yTTKLGnmzFf9dH/xhNd3mX3JVfevE8577taXFtv3wfd931mmoXtwpR2jtp4veIr9s3ctgDg5T0yTECPR6VepT8hesEv3KXKtXVmxH6tkeJev3BLkdcjV3pi5QdlIjFG8oLafvycfLnxbWK31WHcp3qHwgWyoh0GH7sCq4pFjrN72A9+ijh+wSY6/xWkc7D3wFAsPoHuIERpr9PZqYdPw8va4SOiR24lo4yuO1Twm3r1F149tbRGuJzeJtV3HFRimuf/yihl36H7nEhxj79C7ewUvOM/jMxtrqhb8dbWqdz8oNi7CSfZOScuC/9w3fh6gZdnyhH26l5PIev4o6/GwCnX8UTGMbnlW7NlYt4Q9eJv0uUstx6B/ew0IL1v1jGn+8SeVx6Dm1UwKcJZgtwTYi9vwVlyVpxcGhhcJs6nuPivnSe1Rh++ApOXQAIzacTe3iP7h8LcBY/sQIeVxlCenb69LdlR2a+wfip27h5cV/K5RTH3v2i6iSsro5y+uGXCb0sdvS64eCXz6Fm2Nz//Z/FronfbW9lCQ2X0WXjg6+QQNNc/LKEFpnZol9IkpgWZfZgOc7zL90NwCOPfxXvS2eYPi82ArHFccrlFGdkSX4oV8QeeCjKsrDPM+DHnhcA6lce2SUeMlVZvD/wkAmaZPY7WiVLekiWySv1GBF/l7tkN+jZrH7QvJEucntvhMMypscaeOhZXr5jQjxb1W6QB8bW1Sbr8u4oQ3LTVOgGOZqssiI3ew9MLlMzI4pdT2suMe8AQy59y5WsdO0X1y8eMknLTeVmLUW1F2AyVsO7b5r6NhwOKsHoLTsfCBD2xsPv9//fNmn9yI/8CB/4wAd47LHH+Nmf/Vn1/ZWVFXZ3d3niiSfedJ5HHnmE559//n8fkATwgz/4g/z6r/86//yf//Nvxvv5X3ZsNBIqDPb69hiHUkXV3qlrrioB7ZsG7gcfbrUDPDS8oxb9nuZlKl6lKMFLKtDmUinLlFxgJ+IV7kiRYszXo9QNEJcDrm97sF0NnxQbG7qD7egHGpReQOmGcvEar2xOkpelF9vRqXSD7KtZkv4utxppsjIuJRdukHQMVSZ7rZJkn0M8Gm+yWswrA8Skv4ehO4o50jWXxcKQElL7/X010YyEW1zZGWNRJoBPmBG22n7SckeeD5lE/F2e3C+R6S53D2+q3a2hudySSdqZQIdbxSGWpF7lo0dv8Asvn+CjUwesU6kdJRNqqutVb4rXmUiWmIzWWdgvc3ksar0AtyUblPX3ee/0sopDuFqNkwu3qHcPQjj/01dEEvuRmMlmI8HLsoxxItHmrtF11TWzXE9y3NsnKyfY5UpW3aPG1ePomssrsqxXt3Tu2RtWWoZkuMXVjSmOjYoS0s7Lx6nWEkrbkAq1uPykED0P5Yo89fx9zNwRi3PVjDCSLlGVJbFYssbNtWmOyNcuVVJc3BFt19/h7xNNNJTIu9ULcGxylZosc9y6fZT7jtxgS3p0FQsZfF4LY0n8/ez8EsXLgt1KlHeBDBFpyle5MU3qyCqW7JSye14i+Vdxy/ti4zzBlz4HCHNt89Mu9R3BcA1tv4TjGBQuCo813bDJPXKDnc+KrrPIS9s0i1mieTGS6ztzDN8nuujC7d/E/EoQ38tCT2OMm1C6DfLZ8h2JYd+pE14TYmu33qb2sgD2xpeW8IS6BO+Vlhidz4Gmw0Xhmt1+91/Bri/Ba18Sr9W3cOttGhcFOxY5skHrd2R223iPzd8+wui7L4vX6elYm3H8szXx9cCFYhXiYhzvfHpG6YS8zTpOz4N7U1zL8tJxwqWEckqPdAvUVkYPvKE6PuxWkAUJdPLDe0QPi7Fz+9MPMjS5heeqAJjTx++w8PRdSh956MRtll45SSwqX2ttWPkZrV86RjhqKgNMsxJn6eYcISkjiERb9Lp+PHJOtMoxHMvDtReF/UI40FWu8Z/97OPcPXuH1ddESTESaXFzb4QHjgrQtLI5ht9jqfnkys4YP3lUzFuvb04Q9/dUyTgfMpnJ7aoN2q1KhpBnwG5HPHuPTS0TCnYpVAXgsmyDRlWKr309DM3h2XXp5+XvMRKtMyo3TN56goVyjimpI80GOsqY9VCszsvFDFOypLxaytEeeBXwuVLMMx1tKPmCz7DZaEVVA8rlpVn1twFjgFd32GzG39bstm+WT9L4+Pibvv9P/sk/4ad/+qe/7vd/53d+h0uXLvHKK6983c92d8U4y+fzb/p+Pp//c28d9A2DpH6/z6/92q/xxS9+kbvuuuvrWux+6Zd+6S17c2/nEfNZeGXrQiLYZqWSoS2BwJ16gt2OAEknE012OkFMKeg7n66IDrS+zIgybPbMiAphFTVxjaRsYS20YjQk4Dqc2aPQCSmG4molxclURXVgjUSaaJrLngRc1Z6fUamLyAFTsZoqxQm3ap2LZbHYnkrWeM/otvJ6yoSavF7KUeuLW35XpsyOnJjMgReP7hCTpatM0GSnmlKlKU1zWWzECMpSXq0bUkG5Y5EmXt3mflki9Og2cV+QK3IS69sa9+cLvHtKsDQr5ZzITJLsWL0bJLQPMAdeqj0/Z1JVde3+ysyuYos0zeX57THVsZaLNMjJ97x/Dfd3P6V2mHrfz2EpNI35ezy3OcmmKUDig/ky/YFHldSi/i7DsmuqbnmZjde4IAmtTTPE1Z0xjso25VXTT8iT5oiMRxkxbK5IcHIku0vX8vHgvl9RI4mhO8qUT9NccuEGFdlx1GiFiUVMRiTzpuuO0qjtG0EuyOiDxx54AbvvVVEjazvDZCINelKHlU2XOSsnts2NUaJhk105lkajNVa2R1TYZ9zfpVA80HZ4DBuv11IePJVimlh8P3neiy/ZJDktM/ZKcTTfAEOa+BUXxwncruAZEq/tCfRxizK3LOfHs9Nl9IOiLd+pO1h7MVKzB+xj9cVZ0odXATDCXUKTuwyky3qwGVLCbGe5webt4xz+7ufF+Bi4GDkbpynRfruDHrUZzAgA5tlYVKybvRugeG0W3S9e15u14cwEmhTW+rZeR29WGIxKH6VLr6F5NOUEbhVjxO4W4MQdzhHbqKDFxLWyV734Jqq4o6Lc0n+mjf9kH+uGGI3+UJeBbCjo7Yp4D0166sTzZbxRk6o0i/TE2gSipgq2ba0OEczUiUqtTPzQFngOuKno9DaenPgMgV6dvLlDeVeA6MLKGPFEnZ58bWvgZeq8uA84OuXFcdauCCCczFQIBbqMHRbPabceJZqpqmDdTjGJY+scmhEl2JXlKYaknul2YYh646D1vt/3cmJ4kxdvifuQC7e4VhxSFho+w1b6pH43SNTfYVyWtdqWj4YZVsxzOtBlsRHhMVmu36ql+NLNNI/ka4Bo+9/vQMvG6uy2okxLFmqhnqBnG5yX7PqOGWU8VuM1WRbz6Q5zEkC9UsiT9luqWaMz8BIwBqr0f/fwJtV2RInCG30/AcPmsNQkpZsJoj4xVnbNKHF/lx0zojae38rHxsbGm8pt/z0WaWNjgx/7sR/jySefJBAIfN3P948/WYX6Vogz+4ZB0rVr1zh37hwAd+7cedPP/rx/2P+nIx4wuSVFrWeDJp2Blyn5cDUtH32508uHW7RtD8Ny0btaSZH295mX5bZ9a/qeLPtEAx2Ggz0FdHyGrR5i29FZagXIBWWnXKhDRea5AeyaEeK+nkL0DsJaH+Dqzhj5UEv9btDfI+nvKZF3wDOgb3uoStt8x9WZj9cOHLcHBx1VA0dXZpSACJn1Wgqc+L0WhxM11a3ywtYECVnWsWVMxv4Oy7R8pINtovLnHt3GdTX+622hYZsK90iHWvya1K+8d6SpOlVu1+NEPLZi66YyBaGHklEtlqNzOHEADH9tIcGPHi3K+5Dm2+Zusyt/N+rrkw622ZYg4fObCYaDA77viBiz9XaYG5WDsl7H8jEkJ+bZ7C7lZkwlfI+G2jhoLJQEWDmTahD0WNyWXx/N7SiWba8pWp/341ImExUGjnGQ/efrs1NLqcyofL5IxwyqdHU42MGZ3QDD0ZpaMNYXprEGHiUgPjq0iOGxuXVHlEl3WzHOSHPIVjuEZXm5IDsHX1o4wuHcjtrNf+rOEb4jW1Cv5ff32C5lqW/K+Axvn5RMj7fMIHbfq1iI/dKPuSkY0Ynvvw26BycnwJu3vozTEddOd3s0t6YJnBdjqfC5KfLvuUF/OQGA71CN2sooXuk5dPtTD3Lkh17BXRG/Hxkr4A7Ee9STMH3PFfDLyBjHwrySJfyI1C/dNjHmYhiXROuvMzOJ3peatWsx0nNreEdl6WAyj5WdwJWmn/4Xv0L/rgfwVAUQ1nw6nZvJg+tzqIFzWIxhvbRHeXuCwIIA87WlMXLvvoV9pSjvYJjBAqrsFUw2aMgg2kHXR6jnw5C2FoGhMp50m6FDByLvldszzJwQHZyRiT3sdgBLgpX68ijOohhbXq/FoBGidluwZekLt+lcC5MeEu+j3YgQzVTxtyVb6u+x8opg7DbKWWaGt9Q9NjwD4sk6O4viXJnRPQyfpUCSJ9SlsjHMp68JRutBaTUB8OiZy1g9Hz4J7hutMOu1FB45ThxXYyzSVF5Cw5GGCoEejTTwey3ScjNTasSJR1vsynL0ZKLMUKTBrix79WyDx4bLisH5zOo43zYuwPt6OYtHd1iTeqXpaIOov8uutADo2AY+Y6ACor+2Pcac/AwBw+FOw09OgqTuwINjaKQ84lmrtiMYmqPm8fFYDbPvpy67iVNBk5bUXA2FmyLQ17BxePvKbS5vbbltH4rHYrH/oSbp4sWLFAoFzp8/r75n2zZPP/00//pf/2tu3xbjeXd3900NXoVC4evYpbfqME2T3/3d36XT6fDEE08wNzf3P/6j/87xpwZJy8vLTE9P85WvfOXP9EJ/3o+Av88xuat4rTjEsWRZLbg9R2daOrM2egFi3r7yCXpwZJN6N6QARdgbwKs7vFo+6Bw7lt1Vfjz5cJMXd8UgmXcMpsI9RfkWun4mIybPFxIAHI51CXv7iiWZz+ypNvWu7aFvexQ4eX5jSpTq9ndkgxjpQFd5Ib1eyjERbim/Jr9hE5D18o6r0bV8fGlHPAh3p7vsdALq3MeGthg4hupWOZkuKkaiJct3NyRzdDpdptX3K4BhuzqG5nB3pgbAUiPKXivK98oSWqPvY0u6XhsaHEkXVY5T3/LiopGUjFY2XuNry3MstcTP/+HZFQU+7h/ZZKkwRE0K6KcTZW6WcyovajYqwOYNWdoDSPj66HIqeL2SUl5Yf3D7MJmARVaCt5l0kTulPMMSJHp0m+ulPOfkzrjSirImP8NsosKxiT0uyw61eNjEdnTletzuBkiHm6okYg8Mtoo5pfHyGDYjMh5mYW2SjuVTTsXRsMjiurIoHvb+1gQPnr3E1KjQfmTNGrYcS6lEja/cPMGjMrutbxtomkuttZ+5V6VSj6kIh3ozylCqTF26JJ8+foOC1CvNPnQRqxahviUms1/86gP8k498VnWZuQUTuxrEuSLed3tngsiUzDErxintZcnUxSQZzVdwqgbs+4jVdbL33sQqiGdt5v7LdF8Pq8X59RfOq3t873c+iW+uw2BDhiXHhEi++imxuUk+1ABdR5Omj67Hg5PbD3BdxbUM+utinPqjVbThDr6bl8VgSMbwLbwOElQ5VTB3MyRPydJd38X5imCh9CmLyR8vwjUxJ2RzN9n87BlGHxPnGmyF8B/tYN+Ugvpom6zs5jNyYp5w943wHehvJjFiYuy5lgDBwVEBdPrFBL5kk2BI/EHy8BodadOQOrKKZjj0lsTivPv0ScrlFPMzgvGql5MU1kcOzFeTddWBNZ3foWWGiSakIeRICc2wyUirgdbqMJYZVIyWN9whYXl4pCmYJkN3VImw3/FTqqTUOF2vpTiULvLbt8U4/eCkSTzQVoyPR7eV3nM0U6JSjyk95PnhTRZ2RijvZwzmdvB7LNUd2xt4GUqVeX1jSoyXaFcx3mnPgFYnSEWClSvVJKdTFcblvN7sBxg4BtfkPKbjsis3ZNPRBvNxh3UJsLy6QzLQUSa4X9jK8dhwiXlpVXB5d5TZRIVl2f33XDHI90pN2n9cGOZvHtlkKl79C2MB8J73vIerV6++6Xsf+9jHOHLkCD/1Uz/FoUOHGBoa4otf/CJnz4qSbb/f52tf+xq/8Au/8D/9+uvr6/zAD/wAly5d4t577+XXf/3Xefzxx1lYEE0OwWCQz33uczz88MPf8Ln/1CBpbm6OnZ0dcjmxe/ze7/1e/tW/+lffNBT4dh/dnk/peU6mi+JBlgu9prlKiL3V8WG78Ijcrb2wM8qJVEW1sLYsH6PRGo/IEtIXtoZIBTqqRX6hmmZUTniJQJtKz09VlkseGN2gbEb5zkOiRNCxfDy1PcR5aSa3XMmq3CFdczEMWzE2Ya/FtWpSgbnFRozjkTp3ZMnmXWPrdCyfmqj2O7MAZhIVSu0wD+XERD0Vr6pFG0RrbbETJLvfTu7tKxbmWKrE5zdGeM+omDy2W1GS/i570tSxa+ucSFUU4KpZBu8f2WRbsnZ5b19R76luiL1WVMWwBP09zF5AlQwXqmn6js5daTFhPrUxwazsCsqGWowny+oePrczyvFETb1uo+/jcKqkMqIM3eF2KU9C7hwXd2LMx8TCfVemQtBjMSqzp+7sjrBuBuntl6Y0l0dmb/OHsn3+vdNLHJ8XD6OuO1y/Pc8RKVpttkN4PQOG8mIC3doZIuDrk5Ddbf5gl5FMkUhcMCmhRJPiugDRI+kS6aEilT1xrbdLWbzGgMOyi8jn79M1Q+SOiziMxuoIUakx6RSSvC/8CpduCJ3IA/OCUdo31qv1/cwObzH9sGBddl89hj/Y5by8nq6rMza3CoD3hIfBi7YSo//Eo88Rnt3CaYtxu/3V04z8rRKetmzb/2Mw4tJs1fKoEg5A+O4y2C6tpQQAsZE6TsurWClPoI8v3iIwJq79sVM3iMyIa9kvJNHKNv4JwbqgQ/DdDsEdeX4HuicfwvsHUg91LsfgkBCKBhb+KXtfOkJERgBZLwXRP/Q4ni1x7doP/FUCNz6LlZsS96X0OVZXJujK/LqRh15Hk/lqg3UPHjax+2I8dLfT5E/fQYuI6TQ0vwOWjjs4KLU0VwQ4TySWefo3P8hD3/8ZcZ/WcoSO7KHlxfUwv+Ynf2hDeU750g3aGzl17Su3pujIrsKRXJXC1VnKssR+7N0v4l/u0JdasfTIHvbAQ0jm4Jm7aY4eFuPU8FmM58vcfE7s/P2RNo1iCo93vwzmJ398SX0Gu+/FrMQJy67dlnkgs1jaHCcdbSgw5qKxXs3wuJwTugMvHcunnnMQmxgAsx0kk6gxIjtLbxWHmE6U1SYrEW2yvDui/na1nsTvsVT323x2l89IveP3nLjC7cIwG3JcPj62RbUTUh1sjqtxo5xVTvqjIZuCmqc8GJpLQhrVBj0WPmOgNpUXMg2C3j5bkm336g43q2n1mb97qqg6mD8yUaNj+Xi5mHlbLQBc3mJNEn/6c0WjUU6cOPGm74XDYdLptPr+j//4j/NzP/dzzM3NMTc3x8/93M8RCoX4/u///v/p9/oTP/ET9Pt9fuVXfoXf+73f473vfS9zc3M8/fTT6LrOD//wD/PTP/3TPPXUU9/wuf/UIOlPOgV89rOf5ed//ue/4Rf883p8YWOcR/JigfDoDmFfj6Oy3uz1DHhBtrM+mBcPw74AWtdcTMunatc+3Wa1nlLxH+8f32ahluKsXDQvllMclQtivRsk4euzKwGY7egMHF0Bmc7Ay3fMLHNLdlHpmktWimcHjsGeGVU+SY2+n/lYg5oEa/cOb1FoxXhYamNulvKMRJo0JdMS8AyUmNiWQbBHZfurprnomqvKb88V4rxnuKwMMi3bw/2Sbh/YBicSJn+4KsDy3zy+iMewD8wVgUulNA8MizLGhWyZ371xnHsyYpIM+XqqnLZuRrgwvMm29G9Kx4UfU/gNk6vl6Kqz8Il0gbL826Vaikw3qIwYHxlbp9qOqMn1bLTOT706xE+fFgvsvlnkfmnvrx7e4OKeuM7HUhXiIVMBOa/u8NDIFl/YGFefodvzMy7BbqUVJVASk2Eo1ObIzBK3liSTFDLZaySIS/Hs2fc+w97r81SrCXntDSzLiz8sxstzL9zD6XlREkwd2mTQDuCXmWGRQIex8S0MyQ5qhkMg0aS9I95nsxajIwX0sVyFrhlkWrb8x7IVHMvgLgnuv/TcfTy7PKcEsOlYg047SHZM3KdB7w26g2oTSCnAMP7YJdy+jhER92HkXa9jJ8+i37oMQOL+BsgyljfawbEOwEL/jh/dOyBySJRIahdniE5vq0BbI9jHc28U904NgOjRddpLAjRGHmlAtw8Rce0GV3tozRrue8RCb7z6KjgDjFlxDRzAe0eAES3sY/iDt1W+nHZiGOsX/7/YHxaaHKNyh97kOQKLL4ifT6Q4ft8lTFkm04cCuBnxbycYwb12E1fOAbWNIYKNFskTMtB1z8SIaXizAgjrUZukzADDNnjgI19gUBL31J9q4HY0BlfE+PHFB9gdnwInnZ00ht8iIq+PN9JB25AbU90hGDU5+ajoHCy/dBjDM1AeVLWlMQzPAE9SjL3qlXliMhrE8AxwBwZJqTsL5KqEp3coviZKih7vAN1r05DgNTq+x+dfP8sLRTEG/uaxFRpN8RkOH1qh2wlQkzq7Y0NbmN0AGaktrNaEfcg+C96xfEyPiPvvMQbcXJtmdL/8LMHRhcMC1L++NMuJyVWurgqt2OnhTZ5aPcRpuYF5fWeMh4bFuQYDD9lQi++UbI/ZDZAOtRQzPRytEfH1VNu+prkqAPxmPco9mbJqwHm9lGUsbKpN6Ei0jke31SYrFfRQakfwyvn3mb0MZyWzut4KcyZT5HiiQdvugyD2vumH46r0m7fsfG/l8ZM/+ZN0Oh1++Id/WJlJPvnkk2+JR9LTTz/Npz71Ke655x7e//73k8lk+I3f+A1F4vwf/8f/wXve854/07m/YU3S/66Hrh10rCVDLXYaCdKyzXS5kuWcFO2W2lE0zaUk6eDxsIlpeRXrZDs6I5GDXdWXtob58KEVirIccyTWJCwftOcLaS5kqkoL83tLU5xKtNX7WG9F2WxFOScBVrUdUSDA77EYijS4KaljDbB7ASLy3Gu1FJqGmiAS/h7bragyaFxtRdWOar0V5nS6rLKX9kXn+2WObx/fJRroUJNdeR7dpiA1AmFfl3Sgw7uGxHuumhFuVNOqdOkxbN4zsaZy4nTgvRNrKmrlcjHHOWnnnwy2cV1Nvb7PZ/F6+YB5i/u7SuMDYtc5ITts1s0A86kS65L+3pMWCNektmE41OEfnayp+/Lv7qT5G3MVonLn3O77lYFdZ+Blq57iuuwE8+kOczFDGUaWOiG8tRRD0mhuIrdHc1+PYYZxXI0hGVnyyvo0hxJlslPiHpauH8Kxdfxy8m02I2IBKYgF+OjEGuWSeM83lw4xPbJNSzIHe40EiUZDLUbxaJP++kH5sNSIKyH2uOXlq3eOcveYYCV3VseotKJkJRDeNMPcP7qh9E6uq1FtxDAXxLgeHtllc2FKXI9rhznx8MtEZcnUaXvo7aaUd0+3kES7tYcvKbvdNn1UV4QQOX/3DYxQDwYHM257K0tIlpP8iSaO5VHC5XYrxKHRl+ltimsQvKfH4h+Jzrjj6ZcpXDvKyN+RESa5GlrIQ+8PJTsyAt4//BLMSQ3OzgrIcoc9cwTj1jWsspyQv9LGf8HAlj/333wBbTAAXeY13qlTWzvG0GNS6GwZsCBWOyMZhHgQe1VsSNLzawxaIQY3ZQNCIYe/V8XpyRLrcoLAkHwe0n2cTghzWzy3/a6fzLnbtFYFENzbHGb67qsHLJSj02lECMvuuOrKiAJMmuZS2B5S3kbeYJft5Qnycoyvrk5waGaVtjz3yPFFuqWE+FuPzeprx1SEydorJ4jEWuzJzsnD97xO8foh1ZW3e22Ws8ObDIfE8xXw9XlNbhyfyBfpdgKKTdc0l0S0qQTjiViDpZ1RNTaLnRDGrthE9QZefMaAFTm3jMaqfGFtkgkprh4Ot9gpZhiS7HI42OH+kU0VEF3ohFmWWqewv8v1cpa75Bzo8wxYKOe4Z1qUTK9uTNGyvAxJU9wX97LcLxneWjFG0/Kpzd1UtMVKM8Ih+fXLxQxH4k3FYLX6fry6TVGuAxoof6aHxtb5l69PMxOF3tvIJP15O7761a++6WtN0/jpn/7p/25n3P/sUSwWmZwUerpUKkUoFHpTlWtoaIhqtfpnOvefGiRpmvZ1wuxvZaH2nzweH9ug3hEL1VDcotH3k5Li7M7AoxZ5DZe25VNRGaVOmLFoXe0wXtoZJegJMiJ//vjYNjeKQ6qVdCTa4KtbYmE7lWi+yen5I9MbFM2o8kJyXY1koKv0TA3Lx7b02zmTEkG7k1IEfrOaxNB1duTPz0uzxleKYtI7FDWZSZYVqDqWKinGKugRk9u+ieFGI4lXd5RB5pHcDi9vTio/pFe2Jojv62T8HT63leEH9rtiLB/HkmUs56BUudeM4/ccaG4s26OA4Hy8zg9cFdfqN46l3kTJl6sJpqMthqQe4eLeEAFjoIBiKtDh6W2xuJ5N1yiaUdUq3LUNeo7OsARYM8kSn12d4tERAXZ//oEbrBSGKMiJPOLt89ktMdm+b7SKhsuppHioVltRttshBWabAw/juq1CjA3dUUxiLllF01wGUnMxEasxMbxDqyjObQ8MqrUEKbnLfm19mrMTK/ikkLdWSVDbDwo9foOXXz+tWq2D3j7FckqxZ3uNBKPJsprYZybXWV4bV2PnRHaXovR9ycbqRAIdTCni/dDJK3Q7ASXGrjai7LXi5MLiWpcLGWVaGfD12bk6T3JYLChG2uaF372fhz/8pHhfwyWRZ/bfZJ5WvEXujGDD9PiAwtfmyZwTmqRbz9zFxOyKsg8IHipg7cbISU+mxacu0FtMEpgRoOK5X3w/Fz4oKPIrX3iQU+99FhYEuGd6GNomthzzeEBPWAzGBb2vP/M62hFpNbGxxNJ/vYvxs+J1Kisj5MeuY7Sk4WMihlusKz1T9cocw99+E2tFdo+2gvi/XQAE9/ISbtfANybGQ/XVWYLZKpoEK+Ezewy2ffSrkgE8voFrifNqAY3WRp7IqLiWYaBfSOCXRq6joS6636Irrw+6g+GzaO/JMo+/jzd2kIVo6La6h4O+l6HJLYKypDjR8WMPDLaXBZjJje0QyktH7ZvTZIcP8vTWVyfweAecfL/w6LLKMTw+i0986gMAzMeaDEdrak44my9wWv7t4vIUhu4wIf2JPnX1DBekXg/ANcO0LZ8KqY35+lwpCVD0rulF6mZY5VculXO8d3JN6Zv6Aw+dvl8BsHCgSzjQ5aqMIxoONynJUt1T61OcTZfU/NkfeJiIVw80Wb4uEV+PiOxCm4+1lJ7p7nSLZKDD2r5P0tQSqWCcNbnp+rapFXTN5YYEbyutIO+dXFPaqe+YWWZPboT3mnE+OtkgFWhj2ha/vM3bcvxFzm77k11ybyU2+YbKbT/0Qz+k2v+63S5/5+/8na+zAPjDP/zDt+zNvZ3HV7fGeHxMTMxb1TQuB51q86ki12UnUzbYoTswqEjjyajXotoNEZGg4GiySrkbpCYf3PVWlLFIk5acXAzNpSt3HEHPgLVmnLQsH+21okR9fUXhappLLtRSpT3LMXhElq0Waykemb3N88uiHn86U8R2dF4qismn3gvQtw3OybLW83tZzIGHoAQnHcunBOEjoTatvl+JmDfNEEcTNdKSafra2iF2ux5yEqwFDVu1yg4cg7mopRbuTKRBwYyoIEifMaDcDXJKsmE3C8P4DFsxXtVegB/PC4r/SlnEhexHeIxPbPL63girUuie9fexXV0BknovyLl0Wf7bTzLQ5UxGCl5tDxutKBMytqTd93N/vkhEvu+lwhCG5nJEMisAHxwXILE78LDYjPEuqf2J+rtUOmGVezcsA4gjkoUK+XqqRGjoDrlUBb8EPaOZIpFkg470fiqVUxi6gymZp7umF7m2PsVIS7zPoVxRLQCHbYPDY+uY8vW2mnHOja+SknqmVjvEZiVDInhgL7Df8h8Pm1wv5Xn/+VcB6LUDNJpRVqW+ayhfoFhOKaB89PACw/Uoi5tCuD02tEtc5qdZHT++aBtfVCwoeHROHrnN7/6X7wLg+//Ob9H+gqOE3OiO6rjKHN7CbETIesQ9HZ3YxBdts3tnCoC8o2GZQQKSiQ0GOri2oRy57/+rn8W8ITYVpz/wNTAcpf1xN3bp3M4QukcADBw/ztg4ng2hM3J9Du0vih+FZltMP/4ymmyf9+92cG2NwXEhIjWaZfRul/4VMXAD8Sa1p8dIPCwWe6PYRd8Wn3/Q9GOkuuw3LrWqMZL3L6H5BHgfbPooXJ5n6AEhZHVtDccU86ZjCvasUxTjJXZyjf7tEYJjsiNtIweOjiVLm89ePMdQtM5wToCqnUKOE/saxZdPMTS+TWlThgHniwRzVdYvCR1apxtg9ux1zIZk+PpePvmp9wFwcmQDX6BHXQbYdvs+URZ7QXS/BcIdrJ6Pv/X4lwEwqzFurBxiTmabbW6NqAYDc3MUj2Hjys3LheFNXt0d5V65qTJ7AQqdoLLuODy0xbwELvuZbs+sivL0u+dusVHMqXHpuBq1bkh5o7U6Qdp9P7NSClE2o6Sk23215xd6SSlPOJ7bodP3Y8g5z++1KLcjqty22wmSlIz2aLROq+9Xwbudnh+z71da0quFYcYiTWVdUu758Bg2x2SnXM/yquaVu3N71JoBbPfNOYzvHN/c4x//439MKCTmyn6/zz/7Z/+MeFwA13a7/Wc+7586luRjH/vYn+qE/+E//Ic/85v5X3HsO27/1zMfJRsUD3E8ZPLCxpRqM/UbNi3JDIQMm2LPR0vqLL790DLWwENLBjJer6SYjraUZ0azH6BnG4TeUAffj+zYaAe5kNtTO5+LhTxj4TZ7UqN0JrtHvRukKn9/qx0gI8WjCX+PmXRBdUm1+34sx+AZGXA6HOyT8vUU4OgMvMymiqxJavpwbpfbBTGZ7HeA7Qv1Bo7G8ZFNbkrvH9PyUrO8ygbhZLrMP7wuJrGfOWrj1W0VSOkzBnx1J8PppFi4o74+I7GqMsGsdUN0Bx62pT7hbG6X7eZBjlOpG1BRKiPxKmUzqq6X7Wg8XYjxPYcE4Hoj0OsMvPiNASUpxNx3/L4lmbPRcIvPbWW4NyOo9vbAg+VqjEq2cLkZ5awM3exYPirdICkJqAzdYdeMMNhv4zcGhL2WEn3eO3EQqqjrDvFknYH0o9INh1iuwsI1oX2Jhk0cVycqNUpbO0PkMyVKsiwY8PXZkkDm6NQKzUaUdE5qXWyd/9/TD/JXjouOtb1akr7tUZPz9114kb5kxtrtEM12SJXTmu0QoUBXmfT5vcLcbz/kuNEJYVo+FfMSD7SZmRXs4Odeupcnzr9KfErqiFZGiY3t4R+R4c7FGDg6vgkB9AZ7ETz3CtCslcr0bgbRJNvRLYj3GjkmSldOPUBzbZiAZFK86Tqrz5xT13P2u1+mtyjOZXf8+NINjIx4tqovzuKLtFV7/dADV9FzPqyjZwDwvPoyblMyOGFHiKNl95q90sfp+PHOSsbiVgDfCYvBkpwO9Tc3U2u6izEuF7xOH3wG9p743crlObLfU8DdkYJyB1rXR1VnmP9Qg96y7JrKN2hcnVSA0v+QDqslehvi/hvhLoNWkN1bwgS0XE1w4v6L7NwUIKLX9TP3hNBNLTx5Hz5fH0eWsWzHIBJpMZBC5U4nwPD0huoUDA2X6JXFs1bcGGb8/A1aUt/kj5n0myHlC9WtRfFH2hRljEm/78N2dNrSC+nQzCq374j3lI41CIdNXl4QY3wo0sDQHVakkW0m2KbYDiudZrkbJCo3SSPxKkEplgb46sosJzMH1hQL1TSG5jIvmab1epLDuV2ekYaR940K7SGIaCLb1alJPd1YpIHt6szJXMRWK8yLG1PMvCHkej/uZDJaV4w+wOzwFq+szqhNFoDXsJWFRq0dxmvY3JIbx4jXUvrQTTPMVLRFItDGHFh86NVPvS2xJP/n1N8goL91sSRdp88/Xv21b+p7f6uORx999E/FHv1ZuvP/1EzStxr4+UaPTKQOtpiMK60oq6afB/NicdpsRfHIxXjVDHIk1iQgSxGXd0cxBwYh+fWZTJF4yOQ1CTAOxass1lJqMY/7u0pHMyp3JfsP52iozX9eDvGjR8VkG5WTyj5Yi/t6Ss/UtT34vRbbkg5erMdJ+/ucSjbU6/QGHmXUOBGo8PreCJuy86Nre5SnRszXf1OZy9AdOj0/Y9KZtt33QyOB4ZdsQLLMb9wvJuZCPUE2VqewJ0DPaKzKx04WaMuJqtUNstNIKJG462rkI01VjuwNvApALjVinM4UycjdXDpTwVOw6UvQ0Oj7+dFz1/DKhfy3Xj/DvOzGmk6U8Xst6vJ1b5aznM7t0JLajmigw4cndrkqxdjTUnOwb7/w4Ni6Msdb2hjnwsgmm5KVG8sWWLx9jDNy1+gxbMbHtqjJmIVYvEF8TOyq3YFBYzejvIRShzbplhLMnxbApl0Ri1SjKv4/OrxLcnqLZEt67OgOqZJgcK4uzHPm6E0iUs9itYJMhXuq62yov8Vrl0/y/fcLc0XH1hXYCgW6RENtGpKx0nWHVieIJcfaoek1gskGzz13LyCiJdyBQUcuop1WmJjsKvsrH/k0/VcdbAnA8t++hL1po0+I56XwtUOkfvV+/C/8tnitRhOtIT1yJibwjgzQa2IseX1t2Cgx2BMLm2e4RSK1jHtcgAK9ZjFSXMYr89pwXJy/9bj4TBefpPLpMYI/KITaqfwXxPdT0vT0qov5vv83OFKjc+pvM7jy7wDoTz2IZ/cydnIKAN/0JYwXLtN94MPivn3HXZjtDcKh3wPA/IqX8ImC8mRyTQuQZb1wAGdkFKMvGKvk0VW6z4UI3C1LZH1LGHBOST+0kkdpgaxGmE4jqkpk/p0N+ltJPDIOpL2VZXNxSrX8n3rXi1jNEGN3CffqXjFBd0sszNPnr7N++QhRKb6ulNL0+z4yY2Kc6t4BmmHjSpauU0hS2hKgYOTIMka4q8p+3VKCVjVGUG5mYuN7tLYzSujtuhr2wMNAapaefOVuPvSYKIOa5QStepQHTgjm7AuvnWc+VVQSAx2XoXCTIZlBqFXTygV7pZRjOlNQG8WhYEcF04Jw9N9rh5WGMey1qLSi3DsigM+S9EYCyIRMSu2wMnh0XY2+7VHaqJc2pphLVFTn7n++fYiET7zu/sZnRVoAxANtan0fc3KuWa5kGTj6mxjww+kCSQnwaj0/eQmKB47OV3aTfHC8x8B5K52L/p+Pb1YsybfC8Sf1T2/l8Y5wWx7tXoAhWU7o9Pw8MlRUnQ4hT1CxCEOBPnF/Ty3GAcPGHBjk5I7dawyomhH10H9ybYS5aF/tbqaSJf7TLbEDm4/1OZEqqWyy4ZDJjx7tUpW7teGEsLbfd3autKIq4ygeMqm0okoMeTJdYq0ZZ0yWXp7aHuZsqq5o60HbIObr80DsYNLbb1ldqKV4aHqRZ6VXyV2j6/g8AxU9Egu2yVg+ipI5+Q9Xj3F3RkzMU4kyN/eGlanlUjVDvtdS2Uutvp9G3698Tp7fy/P+6aoKg8yHzAMNFsKH6uqKmIgfsleUNgEg6u2zXsopQPfE+Lr6fF/amMCru6rjLGjY/P7SNI+NSFq+HaHR9zErTet6tsFsrKEAaMWMsnxLvK7taizVUhyWu9fLa9Ocze0oXVo8bGIPPIzOS+PGYorCktB9dDsBOj2/Er07tk4w0kaTO9DM+du0V4YU41Mup9B0V7VeR4bKFPYEOLtw90WWbs4xLgFXv+PnPYdvcPEVUSKan1ol6O1jNsUCksiVGZ8Q5aGdrWGmj99hTH6+QdeHbjgERwTwX3vxFPVKgrNHhUanvZcilK2pkppZj1K7Iz5T0ljFd84HA/GzvT+aITa2R+CY+Iz5k4t4rlZFFAfg9gPQEYyEvr2FvW5BVvoizR9GWy7TXBOLtb/exBPo4w9INs5nEJiyaV4Xrx1LrVH5+zLQ1T1EenqL4FO/L+7Tro7T8+I9Ie6x09MJvv7fcF4Q12DwxCkMswZA+Cv/Hsw2zn6XWb+HnvHh/9In5ej6JFo2zspviPJ1dnILN58WYm5g678dY/RvSiDs8+M8t85Alpi94w3Rsi9F3/QscR374tobM37i0pqh+3qY7KkFrLoAr/3lBJ/9zHt56OxrAETHd5nNXOaWbM3v7KUUEwTg2sabSnO9vo+YHB8TRxfxhLp0ZAit3Qph+CxK0t9q7OQdUoMD/6kTZ6+xdEN83onpdZrNKJkZee3aAfrdADdlrE02VicY6Kr5x28MKK4JPWC9EaVveVWw7kNzt7i9OaEMU0Fslp5bE+e6a2RDteWfmFzFNENclL5HJ/Y74xJingp3e6QdnVkZSntzZ4yQr8dTMqj7iall1RTj0W0CnoFisEKeAZajMyI74WYTFQzdUaLvM8mOYtFHY3Ve3RsiKWNYWv0APVtXTL1IO2gpVj8XbGPZHqXROpHdZa91wIi/a6jKYj35tsaSvHN8c453QJI8at0guit1Iqev8NQrdyvX5K5tUO7tG6G5lDoh1YEV9loMh5ts72tyQoKJCcuH71i8y3DI5MuyTdvQh3kwd7BQL9RSZKT2x9AdSp0Q12ti0ZtO+smHWgqsLNaTjMlS1EI1zWS0TkzqmQLePj+9scQ/GhWT3pGYiVe3seVi/XopzZl0RemOLFdXYMOjOxTrCQo98cB/afUQ87GGEq43u0G2zYh67Q8nKlyXwktDMlmvVcQO7Ltml9hrJBSTVO0FOD28qYDQaKjLciXLhOxWeaWQZ0Z6O53P7fHU1qiySEgnq9xZn1QOuqeye3QsnwKvkWCHGzJf76HhHXTNpSBFz/W+nw9ObvI7MovswVyTQ4kybcuvrr1peXFkiXEsWldu5C8WU5xN1VX5cTpV4qvrU9w3LJiVrWqa/sBDMCquz9rGKElpzdBsh5g7ukBTMgf9vo/KZkItLoOen9JulrCcqF/amOJ9qSquFAw/89RD6vPduX6YhXJOhXxGAx3GRndoyIm61/NzvZQnlxKL0eKtWaWFO3X4NpYZZH1FgI18vkixkMGzOAUIDUomVcGRn3l7N0esFqe63zkXa/KlS2Khfo+rkfYu4HTF+Oh3/HgiHdpfFItC+JE+rKxhl8W5+tUongkZMGx2cW0vzYtiod74v7LMv2cJc9/WYHwP1/JgbYkyoB7os/fKSUzZ0ReZ2SJ1SCzcm1fn0Qwb87JgUsJnSujNNuVPijHvj0UIPhDFMymuZTcxjLcrTRoDQbRuD60m3pdzvY7jH4DUB/a20xhrPYbmV8W5vj2K1ujS/JJ4H4mRApoM+nRWe3hGXGwZvaIFDHwP+WBHgDVrI4wv3aB1U4zNQLGOJyMYB3N3gqVn7+bs48+J322EeP+HPgdyrrnzwlkm55cZHhWgwLE8eMMdHPls2pZB+YrYzASiJguFYUYnxfWpbecIhDuqE073DqitjGLLe1xeGmdNNo0cnl9C9w6YmBa6Ic0QOZEN2XWXPrlIZ2mcVdnFmovXCAS71GTb/6nxNZoSnCfjDXTdZm1HnPu1whBHkhUVU9K2/MwMb6nO00YnRErOJdV6DF1zVdOI2Q2wVj9g3iOBDuloQ/l7ZUItfJ4Bj08KUF1vh8nJuaRmRkgFTdX9OhqviJBbCWRsR2elkeCC3MDlQ6ZKEdhtJJiL15UPnaE7TEZMdiXwmUtUaPX9KivT0BwRxivZspIZVZ5sdxoRTiQbXKv56b+NdMw3K7vtz/vx9/7e3/tT/+6fJTbtHZAkj/bAi44AQobPUk6rAFOxOprsehgKmey2w5TkpDUeFkzI/gOiay7NXkDV3HXNJRNu8kDu4FLv/2574OF4pkBTdkjUewFsR2cyLCbUvu2h0g2pwTodqyuvoplEhVo3xJYspyR8ff6vUwb1rsx86vt4tZTibhk78ODINj3Lq8BKZ+Dl8pYAEGm/RTTY5oQUMcf8XZVuDcI1O+K1FPNUaYdVLMtIvMpuI8H7JwT9fWlnjKVWgONx8fflno/PLM3xgOx8Sfu7TGcKbMpa/oX8rooo8BoD1ZIL4MjJbj9T7rcWxnkwa7IoXYOrfS+jMtW+UUvxqU0f3zUhvg57LDy6zQ/IRc/QHartiMqr2+n4yQX6KrtppxVjNCo+/wcmW6zXk+q+lNsRHp1YVaxdImgSi7R4+bLo75nMFAhI2l3XHBrFFBVpH5CIN4jHmqpEWCslaXWCVOVi84FzF2nUY4zkxGJ1av62+vy1SpLZ1IED+fjYFusbY0o3tFXIEfP1ubMlhN7RQIektK3otQM0qnFl1ZBJV9iopklIkWvBjJHPFVXLdzzWJBxv8rzUlZzxWjwkA0qtng+rHKMrgfC1lRnG//IC1vOCHXNDYZpPJoieFJ/Bn69SfUbs9BN3L8PAIDwr9EyHJ/Yw0javL4uF/n0PXKFxY4r4KaF/0pM6uVMLVKXw27V1gkelqL29jn+2ipYW184t2mhRA0Pu/v3ZGsZWSzE6ga9+BndcWiToOm69BwlxPbS7R9FX1mheFEAmOFxCC/bxSU8hKzmH+fs9/FI75B1tglxstbvGYG1dicDx+nAXCzAv/cxKJbrbGQV8GivD+Eriuq+tTDJ/7DYDWfZubGeJT+yq7rWAv0dwqMJv/5bwdPnrf/V3aG9l2ZOszcj8Kv64ePYqqyMcHd5ULGVqcpvaxhDVq6IRIp6q0e/4CUkDyNTkNmG5AXFdjZ2FSXIT4r5YHT/zF17HlptBqxyn3/fxLunYvrg1RqfnVxq3cj1OIiLG2k4xg8ewyUvbi+MDD6lIk63agfGi2Q5x74zoeCxVk4qh8XktNisZMpJpdhydc+OrChT12l7iIfNNrHY82mRDBkjn4jVW5IbNtHzkQi2VKzmRdPj85jg/cO4SAP/qtaN89/RBR1+r78Mr5x5Nc9FBaY6KbZG/Gd9vULENxhJvMA3uBQj5ekQ08dwPHEOJtIeCfZKBNh+c6NO2LX79IJ/7neObcLz22mtv+vrixYvYts3hw2Iuu3PnDoZhvCky5Rs53gFJ8hg4OodkecXqBOg7xhuYJA/D0lsD4FRuB0s+tLrmCo2KXGwXinl0DSJyMfIYNl/bGldsyaFUkafWpwB4eHSD3sDL61LbEvHazEQbxOTfWraHqWRJlXkGtsGUnMTr7TCJQFtpjjqWl4FtkA3vm00muCtTUTujSjtMLtKgIbOGwt4+ltxFH0sXuF0YYkzuyJq9IIlAW3WjeHVbGTiKrx3Vdu66GolgW1HY4YbF46NV2vI9d2yDu/M7FEyxwF6vxRiJV0nL92nZhjKLNHsBgt4+FSnq1jSHxXqS2X0NVytIc+BRwu5741UVq7FVTfP3T1rUJbDJRRroukNFToLZaB1Nc4nJ8t18qshiNcNzO6LsdzjexJGTXKkd5nBul0XZ0TgjNQ774nNDdwiGO+oadPs+NakPp8vsFDMMZw9mxn7fqyIcDI9NyN/jecmADRyDzWZcZbdF4k2q0icpP7FN6dpRFXlze/kQM+Mb6IWseh+nYnXlddPv+5SwdruQIxLsHNxDf59cpMGYZCiORU1eunhWldv6HT/LS1OclK3b40eWuPiSmFTuuu9V6htDSoP1xF/6JHRcPCFZXlppED0B2rC4x9ZLHgGOABzwjHSxq7Lzqx4GvcX7fkB0wfZ3U8RPLWMuCjDjWB7svhefTFTXvDZOXYCRdiWOb7nN4Jr4jKXVecYfuUR0Trxn1/LgpDLoGwKsOXMzOM/I7rTzSexSEGNchuW+tI3zxHn8K2Lh7lejeHpd3J50ZP/aCwQyYYyEbLcfz+NK8KW3GuDR+b1f/R4AvudH/wt2LYS3JbvsDIeNmzNKUD00vk1oXIyh0+MFrn7uISZnVwHwBXu0JHsDMP3wRaxynPefvAxA8dos4WRdsSHXXz3F8buEeWR8uCh+ZopnOpAS2rigtA8IZGoEWyH6prhee4uT+CWYt/o+NM1V5dfBygh6sIdXBsfuPneSz945wvfI7shj08sUS2kiEhg12webt2SsSaUeY68qxu1opsSt7TFlJ+H3WtTMCBEZ+xP098gNSQf6zRGmsnuKWa3V46SyZdVgMLANlso5zh8SXkfbhSyru8NEJXjZrGRUyTwXahEPmYztSwxsg6PxBn2ZX3k+1UPH5ZrUiyYDXWWumw62sRyDtGSZRjNF1gt51Umr4RL097go/7bS9/LA8LaKNcmGTJCb7JFwC68xwLR8akP8dhx/UTVJbxRj/9Iv/RLRaJTf/M3fJJkU81W1WuVjH/sYDz300J/p/H/q7rb/XY/9zoDPX3g/X94Uu9t/8G1f4ksv38PEG4TLHfngxfxdPLqtaFjb1dBwlRD5WinPfLKsdj62q+MzBmqHstuKMSkt+a8Vh5iM1tUDv9NIUOiElDV+NtTCdnS1GLf7fuUQG/b2Cfl6bEmGy5C6hP0y4F47TMRrsS19cZI+i0OJinroi2ZUdWcl/V1GonWelbld09EWqUBb7Yz6tsEXtjKqrf+x4bJ6H1PJEsVmXLFMjX6AuL+jQmh7toekv6tKSF5jQLkdUWVC29GVcD3o7bNcT6qw4Eigw8A2lFNvuRtiIl5Ru9m6GWZTMiWTiQq65qrAyRuVFMdSFSpyso37e3QGXiYlrb9WzRDzddW1vVTMcV6aWo5lC9SbUTUhpvxdDqWL6p6WWjGG4lXVGbZSSxOXnycdajE1scHOjmAVAr4+sXiDPQlsPr08w18+9boynwwFu9SbEaWtmplYVzETU8cWqO9k6ch7aHaCREJt4qmauC9dP5cX57hwSghmV2Vpbf/YbSQYkQBzo5am2fcpfVs0/OaW2LVCnpcKGT4qQZPXa1FtxNRnyA/vKaCXu/8GesYnuryAzu0UvnSDfll2cCWb6EGZCXdtGn+sRVN2oMVGiji2roTLxcVxEkMlLl08A8DDf/nTFF48RlT6+QRGSjRui8+VOLdEfyuJb0p8JrsUQPPY6OfFtXYu7qInLLS0AAnuXksF7Rppl87NJMF7xLO194cT5D+6ibMumZWeB2PExRkV91xbWMXtaOzn3Oi5AHRk80HfQQv7KD0pOqwSR1fwzPlwy5JZ+dIpXFcjJDv2QvkyuuxKrd2ZwHU1sveL69xdS2M1wmiy8cMXb3H9mbuZOyV+jqOztzpKWJZ2XUdTZd5eO8DOzhDHH3lZjI/NHGY9SnxYbPY0zaVTjdGT3mGW5VWA+uKdwzz22FcZtCXg3BwiOVQiOilA9M6lIziOQVOWPcvNGMV2hDHZ7bWfSQiC/er2/AqghwLdN5V+2j0/6/UUOclyvpF16vb8eD0DNmQX6nCigutqrEum2bR8hL19zswKXdqTV09z78QKOxKQVbtB1abfGXiZShVVM4uhuXh1WwEfa+Ch1IoxnhbXp26G1Sar1Q1S7YYYlZ9vqZohE2wfSB0acY6nSiTlZvn63gjTiTKv7IlN1plMUc0lmuZiaA6RYIfWYMBDX33qbelu+0eTf/Mt7277mbV//y3R3bZ/jI6O8uSTT3L8+PE3ff/atWs88cQTbG9/46ZV7zBJ8ii1I7xfil6blQQAO03xf11zlfC6O/AQ8/dU3tquFODm5MPTc3Se3h7mtFzIdmRpar9EstMOKZHzWKTJwDF4ZlMsAtlAj5BnoHZGhu7gMwZUpM5krx2mKMt8D49sEvD1SQUlY2N5WWlGuW/kwMRtx4yQk349muZi9v3clr4oD42vKUfxRjdEx/IxL7tkJlNFmp0Q9kCaNgZNHsj6SAU76tz72UqXd0eZjtVUFtx0usCNvRFV1us5ugJIAC/tjjAdbbEoqfij6QIta997K8RMoqIsAU7F6izuDbMhS2Rpf4+SGVV6hWiww4T8d7MXpDfwkJEM1UyswUItqTyoqr0A+VBL+TlttUPstEOclL4v57IF9T63S1m2mzEOSWbN0B1e3R5nXDJYx6eW2StlCEst2WyqyOiw7HzzWVSKaSU4b3WCmN0A+YwAZ38tXaZcTbInwd0vvxTn4/cvE5M7aX+oQ0YXILrfDLG6NaqA8K1GlO89dp1nXz8DiHE5nS6oKJJEtMnoCbGYrL52jGDbwifH3aHMHncKQweAWy6cE1OCden3vZxzDsBLpR4nKss0v3L5OP9oZJfwvg/SmRlKv2aQeZd4LV+mjhawuf2yKD+e+s6voPnFfUk+sErt+QmSs6Icu/6qmLxm3v8iAOOHS+w8eZLTJ0Vpr/TKETKnF9h+SRhCZgyb2BHhGo4GL3zpIR763j8W9yXXg9EcLIlz22YUHpyl9wcy8uZsF/2wWMTscJxgehvzy+L+p34qAZdvo8cl8o/6oW+hV8R96m+J3/PNi+fHyeUZPCUWdt8JC2e7R0CWrpyOH7fcpP7qFCDE+5ruMjQn3pdViWJK6wNvsEvPDLH7tPAjyhxfQtNcWjsCJATzFcYnNhnIecUT6NHuBJUoGkCXG65qOcWRC5eVrioyscfKU9N4/WLsNapxzE6Q8Un5PqoJ+hLYp0Ki5T+YEZu7DIIVbq6J6xUId3j52gmOTUjH9lqKRt+nNG/tvp8pWUK/uTlBOtRS7Gm7HeTVjSnVZVaQpey0bJpYKQyRlqysNfBg6I4yTDV0h57l5ciofM+Wl41yltVNwbwOy9Kb6n6L1tVm7vVKikyoxbB8bq8XhplNlpQesG9537RhTUZaXNoUZd2ZZImubXBTssd3j6/yysYUZ2UXXTTQwaPb6rmN+vq4aGp+rXZDdORnSvq7LDbiQpdlv30Bt64r/nsrz/etdjQaDfb29r4OJBUKBZrN5p/pnO8wSW/wSYp6xcI/O7rJr7x8nrRfPEwT4TYB+WANR2sEfH21A7EGHga2QV62j+8VsgzlC2r377oag4FH7eC2S1kVDbG/UO3X7v2eAbdrSe6RxovZdEXt3kEktXvlAz88tkNpN6tq+66rqZ8B+P1ict2PvwhHTKy+D+/+16k6AynEDabrIsBSio03t0ZIJ2vkZCdQfTuLprtYUq/Q6QZJSMfoditMJNZULe/lQgZ7YKDLxbhhhhkb2VGTmi/Q4/rtecakJ9Fg4GFX7gqPzCwRGymqmAVNd1m/fIRXZVeM62o8fOwagf1SjOYQkK3ipdVRhk/fVi7He8vjDGwPGalxWl+dIBFvMHxUtG03t3IEEk3VzeVYHnWtG9s5cnffQA/b6nr2VlOqTVvzDdCCg4MOrJNr+0w7TtOgX0goHQ3hIG7RRMuKxaX+5Qyh0SJGTJzLroXx5FtocbEo2tsDjFnxGfqvOngfjqIVxNhyc1m0tslgVDAY1/5BkpkTt4k+KBZvN5Gg/Tn5sg816b7iEz48AFslugtZdLmA+o+YoOkM1mQZ8GwcOzsCTwoGw8j1cI6JOBA7lsF38xKDaZnrde5Hxb27/G/E/49+FLtXROvVAAhlH+CNh+PY9LpiTHt9Gbjy6/SHheFhaPg9dJd/j8Ch7wag2yugbTzFIHNUfI7EadqmKN0FgpPo/+Xv0H78r4i/zT/Cnzza5jKh8KGv+776+c6X1ev+j45ur0DAn/vv/sx++ZfoTZ5X78NxbKyBAByey/8R96t30B+QHY/zj6A3xQ7WiY7gKd7BGjolrkfhOnbsID7BNQL4Ny5jh8TO3fX48F98BjcnQJQ1fAhd6g71ThOt1cSJi+fH9QUwLr0G06Pyb724lzbQ7hHjxcpO4t2RRpuvbNH/vg+jDSQI9Mfw7dxgkBJMmn/hVdxIDPspARI0wwFHU3YCerCHHpHeb+kglS+MknpQnrvv4jS82LLMZzVDhI4VVDRNdyVN8HhN/G7LRosYOFVZ3HE08Li4HTGvdbcztIpJ5f7uj7UIZOqsvyIWwaYZZmxCjK16OUH+0Iay2dA0l0opzeV1AYTOTKwRCrZpSj1gz/ISk+XDUKTNxuaI0iHOT6zRbEbV6/b7XoqNuNpkjGaKdLoBxSbXOmFla3Bzd4ShSAOzH6BtW3z0tT94W5ikfzjxt95yJunn1n/1W4pJ+sEf/EG+9rWv8S//5b/k3nuFvcmLL77IP/gH/4CHH36Y3/zN3/yGz/kXFiR94hOf4BOf+AS2bXPnzh0+f+H9DAbi4ZpIF7mxO6pKV1/YyvCIrNXv63H2YzWq3SCdwUHMxnSizGIlqzxCCp0QEW+fkAQwm2aEEck6GZpL3zYoSzGgX3cIey1Sso1/oZpmOGSqNtOJeJXFqjTOC7fIRutUZE282g2SDHTYlo7LPsMm5jswaatKB+4puWOzHZ1dyaoMhZu4rqbcup+YXKFiHtgLDMWrDGxDUc9Pb49xQkZ2/P5qhh+Y3VHltVI3SCbQwSNBk2l52e0EePeUWOjWKllmsrtKcwAonZTfY4lymyyJjeULrO4M05TXp9wNUu75eEg6Ya9UM3xmU3zeH5oTQGx/EosEOqxV0ypjbzLaoN7zKzYsH6thdgO8tCu0MBttL4+PFNXnvbY7yjGZ11doxllpxnhUZkC5rsbN3RHOHRKLwo31SSXw9Og2mUSN63KHGvV1OTqzrATS0bBJMNTBlv5Nd9YnCfl6TIyKRfSNUSGOrbO6O8yobGHuW158XkuZS9YrCZpmmIhkfMxOkJzczQcibTTDwSN3up5AH9fRaJcEo/G1S2d57IEXWLkt7Cjq7TAdy6cm+uGxHaLSQ2fQ9RGcLqDHpWnhnkZ3J01wXFwvx/RTvjmNKxmN5MymAGGAMzmF88wmxSuiAy2crGN1/LSksL3b83P4u5+n8JQAZLGxPS4/cw+HjwmtUGxuA/ZZyd0UN145zckHhU7Gk2jh9j0YKXHtt79ymszcujK1ZG4cJyxeR79yDff4YTZ/UYDV4TN30AwbTZbBjBEdAj7ciHgmnGsFNJ+De7dYjD///zrCB37y0+Lzb0vzVWsfMFhoQRctK8Zi76LGoBWisCIAR25mXUWn6N4Bht/Csx8t4ugM2n58uRogNgblS/NYkjH2hzp0zZAqoe0tjzN2RoS/mttZNMMhJJ3R+1KLtJ/7Vt7OEwh2SR9eBWDphTPKY8uxdcJjBZUvZ0Q7DGoRJQIvL0zS7/qVkP9wZg+PYbMkmZahSJ3RvChP245BLFljYUGMpWyySqGSUgxP2N9lfHKT67cEyJ6fXuX1O+LfZ4/eRNNc1mScTrMb5HYtxWxcXI90uEl/4FE+ST7DJhE0lT5wtxXDL9+z42rMD23zFZlC4NFczg9vkpR2Ar//+hmGgl2mpTWB62ok5Fy8Vs5iaC412SSRDnR4fi/LB6ZFF12pFcMceFU+G0DAYzMvXfj3G1EAvriV54OTm+yZUdp2n792/bffAUlv09Fut/mJn/gJfuM3fgPLkt3bHg9//a//dT7+8Y9/XULIn+b4CwuS9o/9AfaZuz9IXMYKGLpDsxtUWqFkrEFLRkMsl7PE/D3yktLtWV7MXkA9bOVmDJ/noEQ2HK1xs5RXraMty6c0SSDa2Muyxd2j2/g8A6WFOZPf5ovrU5yVLd6xQPug1BRq0+4GaO27Ubs6tqOrSBOfZ8BYfo/ra1OAACupYEdph/weixd3xI7zUdlOu7/Ydnt+Av4eL8jJ5p6pZS6uTTMiO1A2mnG2JQs2E22RDzcZlcxQoSLad1ekAeSp0Q0GtqHKb6VGXOXcgRCn738GQ3cwNIfsvplkusLLt48q8eN8dpdIqM2TtwUL8fj8TVala/jtWpJjybLKUzuUKFPthJmU+oNIxHxTDEfH8nG7lmTuDZPxvkB+KFXmtfVp8rJ0V5Mgblzet3bfz1I1zXEJoqyBR1H4HsOm3fMTk9cy4O/R6/sIytKcP9BjezfP3GEBuMq7WRqtCEOS8VreGFfg9MTRW1g9H+sbYjw0u0HC/q4SyauOH9kU0OkEFMPnujpXF+Y4MSNex+r7KFcTROXf3pH3fr/kum9MeliWaxd3RjkugW1qahuzkKJZE9c2mmigGw6pcwLIdNcFANzvDDOGutgFsdgYZ+M4Vyu88knB3MwfXmRteZKZo6JUV99Lk51fo3hHgMp4voxZjSsQOfptr9N4VTAyu2tjDE0elJOXb81y5vu+jLUjgI3VDAkvqHNinNa/NkTsw+K6a60WzmYHfUosthv/eYbcsWU8slNMDw/QAhpuV5pgdgwaN6ZI3CeugdvUaN0R9yF8aJveborgUTG2qs/P4NgGyRMCNPdLca4+d5eKEskdWVWC6Nt//CCpbJmQDEu+9PI5YsG2uh7NUhLX1WhIK4bRmTUGXR937gi95MTottI64Wh0mmF6svS/XcgyPb5JUJoaWh0/V28dZnZMXLPRe66x9rwoiVbqcWbmlvnCSxcA+O4f+D12Xz1GelrGB718mmjYVIxwv+9jYBt05GsB6lnKJatk8gWqRWlz4rHxGAO6UqPUaofIpCosbIj7GA10VKk6Emmxsj2qnvl2z4+uucpHqdYJMxSv8ps3xVz0N07epNv3cVX6rL3R7b5uhvEYNnHJDl3ZmOTU+JoqVZrdAO2+XzV3BL2WaiDxeS2a7RAbMl4oEzTJxupc3TcFTpaIhdrK/6zUiLNnRtg3eb4we4elLfFMhXw9mr0gmUiD1sDiXc986W0BSf+f8bceJP3zjW8tkLR/mKbJ0tISrusyOzv7ZwJH+8c7IEkOsC8/8ASdrrTRjzSEv4acBDTNVeWiPTOCOfDSlQvUcKjNUKSuDMz8xoC+YyhAoWsu3jfUwZcrWZ7ZEwPu0aEaABtSxHskUaPUCSlWKurtEwu0FTuy14rTljuogaMT8lhEZfksGWqhaa5a6ItmFNvVVK6Rrrk4rsZ1ueM5liyz+AaB481GgIRXvE7aP2Ai0lRaoKPJMkPJioopCXv7qisk7LUIevtsSR3RRjvIaLBLXoLGSifIUKSpBON3qhmmYzWe3RXg5qHhHbXY36im2Wp7VZnze868xosL87JzRAi7vZ4BJQmEWpZPhd8uVdMk/D0Votm3PXQHHuX1FPL16PQPJhBDd7i0N6ICgk3Lp7oZNc0lYNgKcK40Y3RtnffNClCwXU2z2Ypy99iBXmPfOK/T87NaS6tOSV1ziYZN1VVkmmEGtqFKo/sAa1+I6jVshlICjG2XM0wM7SrAUKolyGfKyp8mEjapN6Mq1uGNcSh7pQzVdkT5YrUsPycnVpQm5fXNCfqOwZx8nwPHYDRX4LZcyMZSJbJ5+Rl0B1+4o5gib6gHunMAiiJd6jemSH6b9Am64WBJr6/Q2Qq9G1F6sgxaWB8hM7rLxtIUIABeavwgADg+ukevEeH5V0U0ySMPPa/Kr55Ih8L1GZ6+IfRK3/WdgtnZli3vyXwRw2sTOStAgaaDK0s87vHD6JUi7pa4T4VnjpE5dxvjkJw8HQc6XfoLYgE1wl2QJSYAzWejD4lF39nuUb82TXjswK7CtXVe/OLDANzz8IvUN3Pk7hft8/Ur00Tk75pbGSITe2xfFOXE1Piu+nwAgakil3//PWRlJmG1lmB8eh2zLq5fYqSgYljWt0Y4NL3G7rZ4llKpKsGISU+W+uMjRZauHFEL+8lv/xoLT94HiHF6+PxVJRh3LA/tYlKJvDXN5TdevMDjEwf5a9FARzVGeHWbgmR3To+v0e4ECEk7jt++eoK/dPIaPcmGpVJVLi4cZiCv5T4DC7CyPcLM6Bab0kC1a/mYHt5mS7La6WgDsxs4CBjXXEK+ntpItPt+xTRPZQrc3htW+lBdcwj6+mTkJnNrL0/A11fsezx0EBR8vTDM+bE11qSAPOLr0ewFlI/SonTc3mehDM2haEbZk80vI2/ofp5MF1kqDmFaXjp2n79967feAUnfwsc7wm15FFpxjsoyhutq9CyvCpb1GQNq8kHMBNs4nbBqW5/N7tLt+xiSO5K25SPq6/OcDGUF+LapZRbL4qE/mt/G3Bf4Sfv9/c64Zi9IzNdTNPVYqkShnlAAK+rrko+IBXGzkWTg6CrcNOjvcWN3lLnMgQ9If+AhIoXLK9U02ZDJScmsdAdeVlpiV/iByU2GwwH1d+lQi1onzAUpWoxFWmyVstTkApsMtBk44vcDHosXdoe4OyvOmw2ZjKeLbJUz8ne71Loh1Q58YVz4Db1Xvq/tRpIJWV67N9gm4Our5PpiReQ07Tvq9gZeIm9gw4b8XRVhUu8Gifm7ymjxdi3BiVSFp7fF7u7+/C6tvl8xJ7VOmNl4TS0gAWPAmTnBumzsDuFy4Eiej9bVJA3C5+pYZk/pESYyBxl6rV6AkyMbB5N4N4DZCZLMism10YwyMbdCWbogN9sh0omaavP3ey2yY4KhCgS6hGItnn1NAIb3PPIMf/DkY4rBsm2D4eFdVZ7rmkEKZQHWsylhj7C/Ez6S3cV1NdWWfnpsnf9y/TiHEuLrdLTB9bUpNfYSiboSALuORmUnxw2p7Xjo3pfRdBfvEekqvusKA0PZIq95+8oluncjiuYdKL1Xqx2ieWeG+XPXAFEiqm3lSMpYF8sM8tSL93D/cSHk9mdr6rpf+/J95LIlPvge0fKraS61lVEmH70oxsurR/jUK/fwfQjdUfTuLZyanOI0HWe5iiarvKFUnc5anqAtgWDYor0wTK8RVueOHVtFj4sxYBeC6DmZg7iRxRdt48rP5Juo4/a0A51dO0CvE0QzBECLzW3gyHJbzwzRunyYkCy3Dbo+XDNIV7bxg2A1bq4JHdGj7/8Se9dnaMvF2FtOqE7JeNikWYuxUBRj6VEZHhyUAbieUJeZMze48qIYP+3VIVWq9Qa7OJYHv9T0mRs5NTZAzIEfOXyb/LAsqQ0MSsWDklK9G+LuGcF+tWQHnFfOiX/j3pdoNqI0ZUm9X/Awnigr4NdsRlW5LOLvsrQ1yrDsdqubYbrdgNpUBUMdZUwLMJIpUq4l1KbV77EUSNooZ+kMvGoOiAc6mL0AYckcfMqTRwABAABJREFUtfoBoqG2ajKpVoMMR8S1mopXqZmRAzuBeI1Rr8WLkk3f6QQ4kympDV0g0OdQdo89mSGXCprKN2qpMETE28N8g9j+bTneYuE2f6Hpk4PjHZAkD78x4KLUkZwa2qI38KpW0d+8dpRHh2XIKBrlnp8zWTF5rJWzhLx91cZuaC5Rf4ejslMsGWhTNSOqbn55e1xpbsx+gM1WlClZusvFamzVUsR9gg3Zqqbf5Hq6144wvq+F6vkZDpmK7arXxCS6330R8Fh0Bl5uS1G47Wp0bY/SJG20onxAli4WaynS/q5qy2/2gvTeEPa4VRKT8hkpKO/2fSQlXf7iXp6HRrYISkbr0s4YhuaooNmu7SEd6Cga2++10DSXhvz5eiuiXsej28T8XWIysy4ablOpx5RBYrEZZ6uaJidB5V4jwZ7cFT5bSHAm2aYqPVEeP7QoEsMHkv0wBkT9rmJwVpoxzIHBkbg413iyzLoEtpeLeebjNdoyqyvq75CMNHltS7AsE7EauuYqINQww+q8G8042VhdlSW8ngGG7lAuiAUmky3RqUcUo7PfqaO0VKE2xU3ZkWUbOI6hAOYLz18g7LVYlbq0ec+Alb1hzp8UFgALGxMKUFuFLH3bo6wJxsa32N0eYmRcaChKu1m+c25BAdCYLTy37r5X6H3alTi7G0KvlUjWyExs8+iMYBXqm3nyF65DQOp9cg5GpwNd6SMUtghI/53VZ84x+90v05FmiX6vRW5kV0VnmPUohXKKgRxvuZl1Hj5zWYW0etJtBmUxVlKJOjt7OdoSUMRTNZKygwyguJfliWPXVDhtfynCK196EIDTm5cJTurYe+K+RI5uYd4aobMpxrZZThBK1UneI4DyYC+C2/GhzYsFtnstQOSwGCutvTSa5uKVXYWa4aDpLrlJcW39qTobl04xJu0HCpeOkDkqykJ+ab0QlyHNrc0cnkCfmrzWm1vDHDt/lcSmAD7FW9OkprbJywaDzUtHFWMTDpt89fpJ3n/fC+oa2L0Dw1gj1qaxPsz4iADVg3ZAzSd230t4vIBH5t7ZS17C6ZrSUS3tjDIUryqWqtKKEgu2Scumk07RR1FaVXg9gzdpjnLxGq6rMTMlmNb1jTGSiRrL0rw2FWnS7BzoEFcbCbVJWK+nOBVpcU1qn2xXZ7sZV8zsTinD8zujnJHdoh3LS1LOF5FAh0TQVJ5s7b5fOGPLOSHgsVgoDCu2+cVCni05lqajTfqOoZ6Xuiny4iZV112cdLipjF3NXoBSK0ZFnvvVvRFqG+J+X8iV6NoeZlNFzMHb193moKkEgbfqfO8c74AkdVS6QSKyY83QHaKBDlW5AH/37Ip6OLzGgPO5HeWTlAuLxOuMXyxkt2StfD/Q1WPY+D2WonajndCbynj5kKkE1D6PSLHfn8g0zSXm7ypH6vFYTYXebrT9zCUqKoV6PlnGdVHZQj7Li0d3lfHijWqSo4mKeh9HNFf9+3zIxHE15UfUtnz4jYMSwFYzTtLfVe8rHW0oBua+oV0M3VHaBb9hc7GY475hsWBsNeJkwk0lvFws5yh0A4rRSvr6RLw9dd3D/q7qMMmmhFA9KScuv2dAb+BRMR0hX09pCr4z3CIZaVKTP1srZ5lIlTiV3Gf4/Oi4yh/o0elFmu2QWlC6fZ+KaZmP10iGWspdN+jv0WyHuO+Q2Dkv7oxyp5rmmGxxfrU4xAOy9DYVr/LllRkekC3MkVCbX3/tNN8+Jb4OBdtYlldpa7zbea5tTJEJiff5xo6Z4VwBxzE4cVawLreuHCUfqykgnE5XKDbiSgQ9li1SkVqW3sBLyNdTGrb19TES0SaFbbH49CwvxWacgrznyVAL29VZvCoE1KuVLEelsWQ4VWfQDmDvM6DTWzitIPo+cxTwY65kiY2Ie+52PGy9KLq3ph+5yGDXgyXLOB7PgKXFQ0yMi3NnprbYKWYISaPB0vI4luUhOy4X9nJICZGr9Rgzc8vsrAt2MDm3QeHajIotyWRLrK6PM3RMlHO6pQT3/3XZ7ue4aMkwg9fFZ9AihgiAleUm19HwRdssfkqUo7JjO8SOr9H4rNRbxVtUPiee7eShTarLY3hll6Un1aK9NEzo0IEHy/TYJlvPCv1P7vAqVkMsxv12kFCqrhy3k+/eonMpxuiMGD+tcoJuLYJfAqFOK0RpeZzUqNiUJbIVFu8IgXSlHuOJ868Sk4DrxlP3Mn10Ub2H1tIoHn8PjyzBmvUoFWkIOnPqFuUb0+QfEYzdJ1+4n488/AzJnGB7ErUErU6QKWmLEo816PX8mFKbOZ7bU5qjLy7Ncb9tcPbc6wBsL0/Q6gTxyrH4lc0JHjdsNX+0OkHlXWQ7Oo/M3WJJauTms7vs1ZLMywaCTKyO7ehv2iyaA50vSyb2h05dU92xA9vAY9jqWdpsJJhJF0lJnV7P8hIbeNRzfi5dpiVZpb4jTG33bUAGjkEqaPKCfF9nMkW8ngE1KVFYacZ4cHyVtFwj3jV/k9dkF242Wqfd8xMKdHEGB/PoO8e35vEOSJLHWLSmsts+uzTLvfk99TD1Bl7FGsSCfVYqGdISrMTDJrf3hpUjdTrQ5tm9PI8Mi0k+EW5RbsYU0zCSKquHOujtEvD1CcqFPRZsk+8F2JZfnxvZoN4OKwFx0Nfjq5KGf2J8k0S4RXefSeoGWTXDvGdiFYCrhWFCxoBjQ2JyDXv7XC1neVx2Sr22M8YhOfF4dJugr6+o5GOj62wUcwqsTMSrZBM11goHrcpmX0yQK404R1IlBSKPZneZtnwq1sXQXTYbSdYlJf/4oUXm5GQG0OwFCMtrFw50aXWCqszluBrHczvU2vs+UREOZ/aUtshr2MoHyOsZUGrEFXgrdoNEWlHlSRXwWEQCHXTpQF1pxWj3/Yq16tse9beTuT3WCnluVMWEeNLRafQDysRyKrtHLlpXpnVZf5dd+e/50Q1q3ZAaL+V6nB88cYOqZMx2i1kOn7hFTepKrm1M0R0YylLC6xmoz9TuhMjkCwzkbnV0eBfdsNW5F9YmSYZbRKUnV3VlgiNHhW5qa20MXXNp1cR9Gok12CzmmJ8W48OxdTTNZW5sQ94nm6FckZgsC86wwOefESzM9PnrFG5NkZkTTJIn0mHQCjJ4WtzjwEQN3RvCfFUAitD8DhPfJhmpW8MUVsaU9UKvHSA3sY0p27R3FiY5fuY6v/G5JwD469/+OfzpBq11MdaMyIHTez5fpNcOMHlcgFWn5yUQbitrhkopzezsior4CI8U0WQFya4b6AOTflV0UXl222gem0FLLPrpYyvofouQBNHeSAen4yX2oPC/cjsWVlOMQ8sMkpzdUJ1hdi0s7DRk+a27nWFgeQlJQb3VDBM+Ip2//RadUhyfFFd3Xw9T2xhS9hrRVB1fvMWl5+8G4NiR2+xtDZOWz0sg2SAuz+vYOvbAo7yNxqfX0d9Q2tS9AxavHiEeFfNHONbi+AeeBqC1MIY/1KW7JO7ZRx58ll4rqExQk7EGa3tDXL4tuttigTa7rRjjklm5Uxzi7KQQtX/o5BUCwa6KTtmrJTk2v6C0dO87tEjVjDAr9U3bu3llibJbSWO+obxWMyMkwi1ek2XiG5UME5GmElubAy+Pjuwon7XP3jnC3Xlxj/xeC7MbeJPBbKsb5JOvCauGiUiTkXiVBRljMvEG5/+Ar0/P8nKrKD7//bO3eW31EPOSafZJRnjfnPXM7AJfvX5SxRo1WhGVblA1I7iuRkpvKob47Tje8Un65hzvCLel6O3S++7FbIiJebWeIh3oKArYdnRGM4L52CzmmMjvUqhIoWnYpNSIK7FtuR4nHOiSlb5JVs9HtZYgK7UAjXpMRVA4js6zy3NMyvLR3Pg6rqtRkYaPkVAbv7+HKYXdDTOsmI9oqI3j6Dy5JGrmT8wsiPwhqU+5sTXOg6cvs7kxqj5rJNQmlhSv5Toadfk6AX+PxFBRhZ1uLE2SiNeVviURbZLKl6jsiYW9Uo8rUDSaKeLzWRgSBIbjTXY3RqhJUDA7s8LW5ojSO2RSFV5cOMK8dH4eGd1Rn8kb7Ao/Jsk69NoBOu0gwZBs8d7NM5QtkpClz14rRCgjJ+1LJxga2iMg3YjbshPr+rLYdc8Mb+HxDPCHxKK7t5NnfHpdtTx3GlGCMqRW010CqQZ9WU5p7qWJpGvKC0r3DvjUF9/NPdISIDVcpCsX0HBSLHJq5+voeOMHos7itVmGv+06eKW/VbOP29Ow9sS96FZi2BIUxebXMaJ9tIwU0lgWbmNAf1sAjH49Ao5OcFwAYc1r86v/9gcB+MuPfZn1hWmGRsV1DmWqbNyYY+ywWNh86TpOz0tXemMFpcP1vs6mU0iSeJ/4npNIoa+ssW+53rv/MQbJafwbQgtkVPfg9gbdD32veB/9NnpXGi2GEvBvnyZwQe6oq03czsGU07o1SvTeIva2GLd60oaBS2dBLGS+vzSKUZeWB79rEJnaxTgvACm6DitbB75AgSDWF4q09+S4/Y4GmtzJt+/5MOgefFuC7XB8QYxWFb0unlutVMYdysOCAI3OmRO4Hi+92XcD4ClcxVMT11lvVqDbQSvLTsJ0kv7MaTwN8T61ThOtbWLnJSC7con+PULUrbfr6M0qg/yU+Fl1B311BVy5mEYjOLGEuj56qYiz20YfEmPRyWTRbq6K1xmO4ZabuDNCJqB1O2itFvQFyHbrfbSAhrUhNUOzfYhI7VO3B74DzczgZp/ilTlSswLI1FZGadWjTFwQpdzGkuzckuOkV42yvig2bEceelU9GwB6qIvb8yoQqYe79IsJjKCMRGmE8Upg263EMHzWm8Trg3ZAPU+Dvpf1rREOHxHAeG15Er/XYk0CnTOHb6m/M5sRHEfHkM+0pruEIibPXhGs5uH8Djd2Rzkq2/bLzRgzcpPQ7QaIp2psb0m2MN7A47WU/svrGRCPNVSZfGF7jETQpCU3iydmF7mzIu5pPGQSDZtYlpfWYMC9X3r6bRFu/4PRv43/LRRu95w+H9/6d3/hhdvvgCQ5wD55/sOkgwdO1+2+X+XyBDy2Evz2LC+dgZchqSPaqKVZb4W5Z0g8eO2+n6uVtGqr/8zSLO+dXCUp3WZLtQMhds/yUu0cAJ9XS2m+5+gNNQFE/F0GtqHsBVbKOeWhZOgOq7WUqpk7rsZrxZxqlz+TKXG1nCYhwz+XWgHePbynXqvZD6iSWjrcJJOqUq4mALFr8nkt1uX72M+S22893yhn1XlC3h5+r6W0LUFvn7C/q0qK6/UkR3M7rFbEZJMLN7Bsj9JwOa7GiOwYaXaCbDYSKmIl7LFETpqkwIfTJVb2hqnLMtjsG0TqkVCbW1vjzMkyX7GWIODtK+1TImTSs7zqdcP+LsP5As2G9MVxdMXQdPs+bpXyyjE44OsTCZtclSLNudwOu7Wk0nt5NZeHpIj18vokR/M7PCt/16c73DO2RlhaAuQmt9G9A+oyr8txdHyBnvKJ6Vo+fuiq+N0/frBPwwwrQNrq+8lH6+p9ZhK1N/kk2bZBU5ZDYhETy/KQzohru7g6SdDXe5MA/djR23zt1bsAITx9enuYx8bFojE/v0hAOmzv3pkiGOqQlq7ZRqTDS59+NyHZVTdzdAFfvIUtXaKDk3sHHkIxC/PGiFoE7b6X3aUJhqS+yTKDBLNVdm+JUkU00SA+u8HiM2L3P3nyNv68GOP9YoJuLUpsXvwtukt7eUSVudyOj54EfSA6tvYZG+97k2htE1bEmHFMD8VLh/HJhbvdiJCe2eDyM/cAcPq+iziWh8CQuH6eOQM84jMNrltovoEIsQX8Q2WMs2m0kgBcgzWd1uoQ8TOr4tp/5j5mv0Pohpy6B95QOtp95Rj58zdp3BF6t/iRNQa1iDJ6be2l2dgY5fBp0Snni7fwjYiNTncly9qVwxz+yLPy6zSeSIfLTwoGcHxsi14nqDrHjp24pa6da+sMahF1X1pbOV6+fJq7T4lcuF47SKGYUc7xe7UkR2aXaEtGOBxt8fEvCTPPH73vZTzegQJKsaESg65PbbpKW3ls26AsY25yyararDVrMRZ3RjklY0faZgjL8qqMuIHt4cb6JLPS3VvXHOqtiOpwPXFoiaqct9bKWUYTFWUQubA9RtDbV/YChsemUE1yUTLiRxK1N1miJCMt6nJDequSJebtq6aaeNjE8NhKnF6px1mtZjgjLQgq9biSHFTbEXoDDxFfD3Ng8eGLn3xbQNLf/yaApH/5Dkh6p9y2f5iWn0uy7fQDh5bRNZe4XAQul1Oclwt1ImiS8/W5JgNKa30fx1IVJRYMeizOZIqqLHYqWWO9llKlKxD1boDNVpRzIxuYsrafC0QpN2ME9h/EdpiYv8sLUlA+GjIVQ7FSS5ENtlmQfkTzqRKzsYbSQv372yM8nOsxIwHIqXyXtWqatgQvE7Ga8v/RNJetQk6FoW7Xk9iuznC0Bhxk1y1LwbDl6IzJ1vvlWprxaJ0dWRK7a7TMSjmndAGHkiX2Ggl1rsVKlubAw3m5m6u0I8qgbipV5NjQNp9eFALQx8bX2GokVWTB8u4Izb6PTPCgdXcfnDU7IQ6PbPLJm8L8L+WzSPp7yqpB11y2WzEFIjPBNh7D5qbUkM2lC0qv1O37OJLZU14uP//yMd4/1qS/n+NUGCIVMhmS5TefMWBRir7HYjW2qmkekqUIj2Fza3dUZUJVGzGi4TYLO0Koe/rQIqW97Jtyn35pVgCovVqb3sCrhOuJcOtN2ox9wfdLK8JDZyxaPziP6bLXjKuuu3S0wcXNSU5K8X3A1+fq9aPqXOlog/dNd9mVpYr4kTUufeZd4r5MrbO7PYRHAu59tm4/0iQ0XsDp+FS0Rqca45b09bnvo5+n1wjjuvv2Cg6OqytX5H7HT62YUi3fkXoMsx5luyLG9YRtoPnFQrZ1Y4amGWZevn5zJ4Mv2KNyWbCpoWwVI9DDmxZj8+pnH1af/3D1FrH7StQuTwEQnd1CNxwKW6K8kh/bYf3KEXKyXdyXbuB0fNRuS/8mawtd3m/X9tPbTqhWfGttmPHoJXpbguG68fw55s/c4M6nhfN4wN+j9ooAgb6oSa8W5YsvCTD2/kefwen4MWsCrL/8Ox/i/guv0JSmn/VanOlDqyqmxB0Yyphy8bXjZDJl6pfEZ+o0orQaEVU29/gGGJ4WYakNwtF4/TOPApCINUjmyoQkK+s6GlcrKRLSEHKnmeDcoUXa0k4g7O/yyvXjnD8imJvNjVG+d16UUOuNmIhWkd1sk8DVhbn/P3v/GSxbdl4HgiuPz8yT3uf1/j5vy6MMHAEIIAGKFKWmBIlqhUQ1eyak7vkz0TGKoGYiWjNih6SIDlK2Q2pJbDVoJEokSJAwrCpUocyrqufN9T69N+fksTk/9s7vvicqRE10oUhOvxOBQN138+bxe397fctgIccKm4ERQlQfoMjR9VItQ+jwQTWPmGbgLW7rcKF4hHI7iTS/b4alomGGUOTo8k4zi6lIh8bIW9srcPh4GpQcVHtxKqBimoHfP5nBVyZ2JIMIBpaGs9wIVwz4FMStSC72GllM8fFyVu9BkVwkuQDnn9+6gK/MH2GTc0CX4i2kg0McVNnz8zgfMKYZ5GkG8RMkbo/Z/z7O73u6PS2SaDsehvEl7q4qCD5GrowIV0EsR08nJ1V2MB4HiEx8Pn+CSjdB7txRzUAm0SYZ6tCVcal4hC0+GX+nlMDPXmLRD/HgEH0zBJ2bVn5h/T4Oq3n6ORvr4PW9ZVzkSrpSP4YqRy/EwBj5WJsGC88XMPIk1Lqs8PnvLu2g2o/RcZ90mQPuLEfAwuqIEAnfF6DJNhUFlUEMpiuRISIAzGarqLZOFUomRzf6joz2KASLf9fN0gxOTA0v8mvXGymIB4dEIB55ItbiLfwel5MnFZfy0yamkxf5ICZLLqLKiIjaQdkmvtDkuCcO0bYr4ebhAl7lbty/ur2IzxX7ALhzseRgKtKl63Hcj6E4DqDAOQnxSJ8iCMKaiGY/ijYnm//1s4dom2GEQhzRSrRgWirSE6WQL2CPFxdx7ms1mTAsV4Y3DmCf+2hdm9+B7wtY5hPIcBhGLN5FjF9nYxiiSS6imbh5lMWPFlhhk8w1MBqGiHOydzyN/iiIy1O8WAmauHc4D4BB/nHNIBK4HjIQUyzU+HGGlRGmMzXM8vZssx3H3NwR9Bq7b3e/9TIpmZq1NJLJNuwJUhQb4MLle6ceO6aC1vYMFUKJ+RNc5W1QrxdisTf8b9VkF7VSHgp3Ag9GB5CjQxTAjRi7OiTNRpATuXuVNELr7FpNnd3B7R9cQ3WLPTvzP3IDfldDf48VnEqiDzFqwh+yfeVydeQ/x0jvAU3E2PAQu7rPfp5KIhXYgvSQvz+uhGS6iTsPufP3wy4kxUHiHCt27WYUe28xKf3M6h4E1YbEuWPNRhK+IWFYYfc4qg8AwYfGF1myYlP+XH9jBopu4Cf+/L8FAIwqSVitKJk4Xg2N4HsC3t9gBexcooGtrSWcv8YQHt+RiIMVCprwfQFNTsbPr+5j/3AaC3PsebAMDbtHM4REa8ke1q6x9lnp0SL02Sp232Xk8nSuhlttES8W2D2cirZhGEFonED+qDKF+50ossfsWnu+QGiyJHo46STx8vMsaHf30TIO+lEqkhqDKE46SYT4QnM8DqDM0a3pTB1BzSS7lc5AR9XQsT5xum6ksJaq0b4Wk3VE9QHqnC8IgGgRAs99u8l5RVcyFcyGzNMgXh4K/rhYYyJeqfTiyEW6tGANqyP0rSAenDCE90uzJ5AEDy/wxY9pqWgOI4RyK4qNBOd+tfsRxEJDqLIDV3hK3P6Tvj1tt3Gosv7/CiHCHbfH3ARt7J76hgQkvkIXPcovmnwmIPnEbRmPAxjbEqV++5aMgOSTEV9AGJNEGb5Af0/f5weIFyJqNsaeePrdj+1XCFoY26c1rm/JgDCm/Y49AfCFJ/YFwWf/DyAgu7SfQGCMgOKSimjsSBi7AoSgffrzY3b8guw+iWi4IkHtYz/wBD/Bn7RdJsfFP0vXVhjTZMuurw9vEHzib/7j6/X4PaHrKnns9/znsSdg7Ir0HQFhzO7dY1yhsSsgoLh0DSbePpPvov2oNj0T7Bg9Onb2XQH628m+njhO5XSgnOxH5BOdP1LgDoI08U3uweR7AHavAHaPBdUhrgf8AHt2JuiR6GM8OQf+N5N77A01SLr5xDPkOyIE2aP/FkMWfFOha+/xlo8UNeD1g/Q8ON0wlGyHsu3swwRE3aR9CZqNgMKfWVuEEHPhVkN0HILq0LlJ6QHM3Sy11BAYs8iTOV44t3Q6p95RDokz+6fH0YxAig3hceWYlO3D6wRPr5epkhnkznuXsPajb52ee18FBB8Bfv5uMwo504U3YJOkPGexXLEQOye3pJyeX8hC9/5pDIsctBB94QT2DkdmJQ+iPoJ5xJA1SbMpKsXvyXB7IXouBc3G/hvXsPDZG+z6DE79ytj1Y+cuJVmhU3r7IgrPMkWab8l0PSf3OhAY03jiOyKcXhjBOd5iHARhVthCJzRXwdhSIEyeQ0Nlzx6ZZz45uQcCY4w9kd7nQGBM94GNcR7lEfp9jX12wkkKWk9819iW6N35Tz7jQQuYjEWPva/sy9i5Td4TQXXovsAX/pPv+BP7Eny6po+P2xDGLJtuoiyWXfbcTRaSlgwxdKrwpXOYjIvCk9Po2BMQEH30Rj7y/+/2J9Ju+5vFj7/d9g9KT9ttT5Ekvn37V78COcAGqJEnIqGOCP0IKyNKkm4bOmxPhDTxtVFH2GqnqK2zGmujbQWf6FVHQgZ2ueFbMdYmCXc20mVW/3wVNbBV5uTMTRzj0R6qzRQhPIHHvHl8X0DPDCHJJf4TA0aTt9McX4TjC5iNMfh4ouSatB8CgTFO+HEsJBswbYVSul1PhKrY2ChN0zF/c3cRX15kq6jdVoZy4WbTNVTaSbR56+789AEanTi1FFORHmrdOLnzhiQHscdUZiNHIXXbcS+BtWyZHHENW4UkeqfmkckWWt0opdMfNDOUmTawNCRDA2xy084JV6vB9ysExtzgjV3rmhnCs1y2DwCHrTTij/mtuJ5I9785jEBXRkTS1CQHDUOHzQfn6WiHHNezoSGWCif4Do9OyQZNCIExcdomPLIJWtge6nB9kZR1suCRP8n67D4OykWSS1c7CQwdhVDLqXQDQsCHxp+PaiONwWNt3elMDQ1Ozl+YP8SN++foetmuhJEnIaufSrE1xcYhbyf81nESP//ZHwDg5qojlSTfzX4UkuDh2mffBsAy1Fp3lzDg/K70bIkEBKXNeUQTXfIH6tbSOKrmUOAqy9ziEY43FgEG+CA/d4zxWMDGv2UxJoVCFREuS9/Znce8K1K7b9CKI718eKo664cRED04Q+6arTiQOFF//Se/j/7NWVhczSZpbII/2J5nv3/uFroP5hFMdQAA/iMVAdEjEn33MI8UR4N8Q4Wk2vRdZk+H3hyjf8AQjGCqyxCtyWJLceD3udnoLkNiVB4tYpxkMH35EY7fvAwAeHCwgOeu3USAvx+C6ON4ex5LzzAEyLYUtO+z1p3nijAGYVKRiZKHeLqFXpOhLI4jIRwZUiFitqMksOhtziIg+nB4665ZS8NxJYrPqbaTaBo6lrjAosHDXW/w9tLVTA25OHvH7pzM4KUzDxAvssK2W85g62COuJf5ZBOC4GPjmPGugrJNz/TDahGXZg5Q4Sj1ZjuF68UjvMkR0UvpOvKJ1hP8yI+qRTzD7Sn0oInNKrumlidiMVnHLuc/vnTmPv7DrauI8HM+my0jqFpo8LHyuB9DlbfxgqKPz6w8wu0jtt8AxqiaIaxzpHomU0MobKBUYeN4JGSgNwwTZ8tyZDQnVi6ii48aGXx5ZQMD1wXwBp5uf3K3p0US37J6F47DJqeZEGuvTR56ITBGh2exiQEfieAIYz6RhdURPrP+APtl1k7baqewHG/B4O2WfKaOdzbXcYm3gRq9GE36PTOEG7UcXuTtFABIqBblFu2Vi5jLVeDxgqPVjRJ5+qCRxciT0OTE5LvtGL66vE0cmwuFYxy20qhyP6e4ZkCVHSS5pLXaTFGkh+cLGDkK9ngOWi7agWmpJHcNqhaWIqettwvTh+hxAmc82UZvGKZirdOPoDaMYo6bvw3MINLRLhUFiuRCVW0YfHAKayNSvimCh3uVKQoHTvD7cJOfU0ixYDoK5pIn9N2T6zFx8J2E0hq2CsuRiQvVGzFPpEmxUoy1sdfM4hwvlBxfJDsARXawX8/RfRIDPt6vFLHG20+y6CKvd/GdIwbFr6RruMgH7eFIQ62VxGs8wqTcTCH9mLnkWrr6BAo3l6tgpzxFESgRzaSYkU43Bs8XEObneHdnFVeyFSqqZcnBw+NZKpzPzRxQMW85Mn5/ax07fXad/8bMCXTFotaL5ciYDhtP2DpYrkyctv/nj3wfj3YYPyWfaEFR7NMCfRxAJGRQMSJl+9DzTYgcDXCGQUJZwvoQwegAh1uMo+f7AuanTqidZvXCCIUMUh0+ur+O+dkjTE1zY8awQS7YetCE74kYttkzLckORq0o3uT8nq/8zK/BqcfouPq1FKJ84t77zWcRiffoWYuuH8DYLSLMeUZWJwLHVBHiBYVnyZBCHkacO5VcPYSYZMccEMaovjOFWR40+9bvvYrpVgLFRfaOu4YGpxqntujdt69j9dwG+15bRmSuQj5JzZMcivE+gvrp+6Ulu+ifsKIgmOghW6zS9bRthaJnHEuBaQRR68YBAM++/C7qO7MYcoPEaKwHLTKE2WYogGtL0GK8OGvF0KylEeWcG9NSYbsS7vOC41KR8W+uTFpIgwiK6Tq+yIubVLaBdoMVNsVID4O+DrXN7mGrlcBcoYwSV4bdPZpHOjTAGh8D/87bV/GFKXZPpyIdbFcKKHAawPl0FTvNLKb5M19INdHoxLDOrU1Oqjmc4x5rABtPJ/YBcc1AtR9DgY9rrVYC83ofKzyPsNpKYqORQ5O/i59f2aDiLBvr4Mb+EoL8/bm+vIFGK0nGnSNLxcA4bYW3+xH0rSAi/HmKhAxMKaeZlFfGAdwtzcDwTv/th70xTtLHaCb5f+oe0+n2tEjiWyAwJn6PEBjD9kT6WeLJ0wBDWVxfJPTjfrWIbP+08DmfqaBjhvFhiU2gzwg+rvGgUIDxilJcLdYcBZEPniJWU/EW7lamaAUmCj6O61mK3vDHAXpJbV/EVLSNOi/kPjdzDNcTiZ8yUcit8wHC9wT0jRCZLaYiPfzvDxnv4esX7yAZ6+KIT5h7rTQSmkmRJkfNDHTZJvXGxGMHAFyHRYWccAK55UqYS9YJkXB8AYtSnVRmu90EXl3eIETr13YW8DPnmXLn7PQhbh/OY5ZzlBxXwvf2ljAfOQ1hjYQM1Hg8gij4dD2m0g3U2oknrAlOGhlSYN2uFbDMiz6AEb43u1HMxNn1kAWPvI4iqolctENhsNVWEi8Uj1HhJPG79TxW4i1c5CGlR50UGWJKoofKIEJIGsCQF/exNlfPPm2pRAcRqJJDA70g+DTpRYMGYqEhen12jxciPYQUCx/y1fxivoRcpEvXssXtJybfczlXQlpjk0Ag4OOgF6ciaWhppMwEgJemD9E2dMzyaI1HO0unoc29KHY7KcqtWpw6hv/Y+XkdVpQEOHp0/94Z5HjMRCLTgmOqWLrC7vFv/PaPYNYM4tIztwCwybrViSMjNemehuJ9GJzI/M6N66jwZ+dTi1sYmRpkzgUqvPIA5l4Wq1xZ2rq1gviZPaiTAm26Rk7fg2EYuZUDQpCcegyCaiNdYOfrOxJEyYXDW72+IzEE5rF2bukNxt/JX32E7kDHw3euAADOrWwhnOzRMSuhEaT4ALe+y1Rm11/4AA4vit65eRlfWP4tiBrns3ki2vtTSK2wYn2qlIdraIhzjtJv/safwqtXb1I7V9Us8jLK52twPRFneJxOY3cayakq0rxYFWQXVjdMbu+5mRO0uZN3MGIgmWlS8ZXNNNDrRrHOr62i2JiJ9FBtsL+NBA2omkXWJ9v38ri0MOFrSZg5t4XK5jwAxpXaOp4hVLtnK1jL9Wjh+D+8/CHe5JwrITDGYqZKRH3HF5HUDLzJz3ElU8XIUfCII0sr00fYKxWJnC2JHlb5IlNVLfT6Edh8kRnURlAlB9/fYUKQ52f3MJOv0Pu0UZrCNH+mLUfGxeIRZH7tyrUsdtppnOMCk0BgDD1kkJL04ckMZpMN4jB1hjpxo1xPRFLvQ5HcT9Rx+6lP0g9ne8pJ4v3c3372y/A99uLZnoiYZhKp7/EXYGBpiAYNgnTTwSGCsk0qCM8VYbsSoQWP6nmcy5UI6TjpJskW/3ePi/jrz35AEt2QasH1RHzElXM/9cqb+O77z1JIra6OcIejKi/O7eKgkYXH95MO99EbhSho1fVEiIJPL7EqO7hVmcIZLmt3fZGQAc8XEFZHVGBENBPvlmZwlaMykaCJvWYWK/znxwNaQyETtWaSJP+q5KBnhuh6aYoNVXaIQNwfBZkD+SSNvlokK4KgbGNp5gjvbTDy7NXFHVTqaeR45tO9w3k4voC1CSG0F8MHXBX1U5c/QrWRfqJIAEDGndOZGlxXeiLFPBQcocvDYv1xANv8nlZGKn50/SHqE78qzURnqFOL4KCZgTcWCC2bhAcDDEnaaGWQ4scR1wzcbWbwKid83jieQzZoUHDmYSeJhWSDUMvjQQQX+HVeXt9CaW+W2o/L8/toNVKENLqeiKg+xO0jRmR+fuURmpzQWu/HENUMONzyYHVpF+VSHgf8HA1Xwky0gxZXJa7mS+jxFHWAIXNpjpyNLBWaamGLt19feOYDlPZmsfoq49GMxwEIqoPmHaZoG3QjUHjuW2rhBO2DAg5PGEIRUi0EtRF52RxW8zAdBTmOJOy10vjiZ9/Axk2mUiwUqpQhlzi3i86DeTzaYGq2F37qWxj7AXTusvaTHLQQmqrD4f5WdlfHnVsX2Ge/8l2ICRN2mRW6Ti+M8HoJv/KLPw0A+Ik//28xPMyRZcCglEHy8haMfTZZh2Zqp1wW1YHXC5FppWupSD27AafG7tPgKIf4hV2YB6wgMdtRIoAbR1nY/RDlq/Urabx15yL+1J/6NgDmPxTKtajNJ+kmmg8W0GqwIkJRbBR4QTVsxCEpDjxeQHmuiOTyEcQ4X9A1o09wxQKiD7PMvmdQTyIU71HR+N7bz+KZZz+i9ttoEIKkOPjwPrsPHzSSuJpu4QJf8CVnKihvs+cuEuthPBagcsWa0dNxY3MdGS6K8HwBJ/0YXj3HWoaDgY4+R7sKuRparQT2+KIuH+nCsFUaex/V83hucYvG0995dA5fvXgTfV7oKIqNd3i+mhgYQxE9QsjFgI+ZYpl85lrdKN4qTeMq97xL6n1a7O00srg8t4dNTtSeSdXhuBItQDKpFsZ+gBzHm/0oknqf3ntJ9PBvOOn/M4UqIpqJSMjAwHXxwnff+EQ4Sf/X/M9CFdQ//A/+CzfLt/A/V55ykp4iSXyL60P8zjYbbH/m2odwXRF9/nJ5vkBFQbWtw3RlJCYtofAArieS/DMSMugFAoDlZB2VbgLnePK1KjvkmfNfp+todWIU2dEZhRDTTLzCTQotQ8NsrIWFBTYoVss5KnJk2cFivky5RPVeDGm9R0hRJtbBvdIMlvjnPV/AK8sbtJoLaiM6v3SyBdc9fRQ8T8RXzt+hVaai2thp5Aial2QHDudbOA5zI5+gXa4nomOGCUmpdBOIagbyvNDRFBvNfpQKtNlEAzkuDe73I7BGKnL82oX0IcJ9HSJHKB52Y7iYaNNE/oNqHl/kg/ZJNYepXJUMMDXFRjZfI/7ByFLhuBI5W//ygzP4bLGCOe7Wu18pEM9qLV2F55623wTBRyw0RDrDziGR6KDRTOJ7++x5+ZGlLexxRc3ZqUPkU01CO75x8xrOJtrE9Xht9SFKjQwN+gnNRCxyOljHNIMKvWYpB8NSib9TKhVg2gpdS8tSEYt38BxHywwjRAWUPw6gmK3B5BylVj2FWLSPF3kbq3xSQDzWRYo/A+NxALl0E23+HB92k1QkzZ/dwoOPLuCZi2ySqx8XkM7VceO3XwMAXH3tXUg5g85BUW1Sa0nRIaL5BjrbbCIrZBowTY0Cf69MVSHILg4esgLrxXP3MfYDmOPPfGz5mLyPxLQLLdnD1VfeY8fsiBCSLkI8BFfJtuG2IwieYYih+6F2isI6EryTBFyDr/xLWUihEWY5urjz/WtYeukjQmziq4fweiFoaf5cd3QoU+yzh9++jm4vgnSa3YdYsQ63oePwA1ZQLH35XYwtATt32KRZnClRwK2oOEhc28ZonxWrouThM8+/j/ID1toM6UM0SzkUz7DnelRJkTcRwNDCLCdEi5ILywgiFGfvpRrvY1jKANyDy7VlqLpBbb9gtk3WCxu7C5grlJHlflXn1zbROsnBnRCiRR/jcQDnF9i49fzVmzB6OtlAPC5UcB0Z0UwLA57H5zgyLs7uocQzH6czNST1Pjb25wGcZrsBgBoaIdAeU7sNAJpmiFrKV6YP0OrGqE16LVvGo8N5pHkhdONoHlc4h9PzBcRjPVhcSSmKHo5KBUzlGHFdt2X8zMvfx/4+40YVChUM+SLpmThrj19ZZ8pjywzC8wTab7vDDHSXuHLwbnkac4Uy3tlijuSvnb+Dn7nEFIgjS8XIVpiI52Nsf/1hm8//93F+39PtaZFEm6pY+PrlmwAY4VF+TMH1a/t5/N8/xdpWK76AsHaqcrAcGal4B/vcJ2c2UYLvC9RuSoUGmE3XKLBTUy168RxHRlC1iDwb1wcIBkcwOV+nUU8jk2qhxzkY43EAWS6PN0cak8hHJqZrIvSQQcVHMDjCUqpGBUUoOIKqWiSd7ZkhQrei+gD9YZgKCH8cgD8WqAADGFqyd8yQhKlMDQ5HjvaqeeSiHYoZuLe/hFcec/re50VSjBNiO40E0tEuOXIvLe5TO6DUSmF19oBaT0dHU5hfOESHe8Z8fm6PqWz4tX+leEItsYVCDbVSHjFuJDeyVJiDMFYWGYH+4GAGtichm2EFxxVulGhxZGm7m8BnV9kA2elH4PkCFRzZVAvH1SxG/L68vbmOq9MHFIdQaqeI2wQAWnBEn/3a2XvYqxbQ5kZ6e+00Lk4dUktAU2xYlnoaXyC5VGDFUh1slabpd0HVQjbToMnm3MoWPFfC5jFb/SZCA0oiL2aZbHpSvPvjANYKNZR4kOqHpRnI5WlE+H179swDlMs5KlgTsR49h91yBulEG+06Q048T8SgG8HZi6yFtvHuZZxLvYnYPCvA7K6O5h67//nLG/BsGVfOsGt7b2MVF888wojzhtr1JCxbQYhzg7TIEL4jweSFQWD31DFe3otAkF3yCRpVklDdLhUBTjMKJdeBtc1QhvBqCQoPbAWAzkEB0SI7v+k/u4XOtzN0DgBgNeKo7rBrOfvSLQz2C2R7EJ2uIlDkLR7ZQXGmRIRpNd9E6b3zSPAiun93FsF8CwleZEZmKjA4ghOaqmPwYAYuX2SUjoqwHBnrl5lirVdJI1mok9u7FBqhN9AxM8cKgaSlwObeRY1KBtFYj9yp7WEQqm6QQaSW7GHsB+hns5Yg24KZbBW2rWCLI3ZRfYBWN0Zt8fl8Gb916yoWeJF5JfwAimZB4ONJ/aiAUpO9t1m3g1B0gCAn1JcqOWRTTWRi7Px7Ax3toY4zS6zwK5dzmOWZcJ1GArYjI8cDaxutJC7N7lPB7fsCMsk2BD4mHJSLOOjFyDvtTLpKQpj3ahn89KVbdD+7Ax0Lc4ew+MJQ14doVDO4wSNPCrkaJK6sbXXiyOXqRHLv9Vm0iM7Hl5nZY1RKeTQ5D6tlK7BtBRc4F9F1JBJQuK6EqD6EothwnacWAH/St6ftNg5VHv3cDDSbTdzlwykIgn868R/O4/IiQ3fCsT4E0ac8rX4nCkW14fBJL6QPUa9mkM0zBEcQfQQCPn7vBiOXfvriLfLjkYMj9BsJaidokSE2H6xh5Qxzn1UiQ9j9MEHvgugRtO46Mo5PCuTlU0w0UZw9IVO6yXdONlm14bkShZR6rkifkVUbtZM8taaWpo8Qjvfpu0TJg+tI+N37zN7/Sxdv0fnatoJMoYp+Kw4A0ONdjMenUnxzEIJlqRjxYiQWZTyHIs+U08IGRL46HfXDMAZhBHlw6MHRFHLpJvp8tReJDKBH+6hXGDSfydeg8M+O+mE4lgKd55htP1phJnwTfkJ08MS17nei6A/DVDT1+xE65oEZhB40qZADgN12Gq+cZRKsRjOJ8ThAUHwhW8MOL1QuXbgP15bpGKOxHn7j1lUk+bP03OIWfuvBebzAuWKS6OGXN5bxM+cYCTiZbJOHUKOaQasfIRO+dieGSHiIGD/HSimPRj+Ktfl9AIA1UiFN2qDRIerlLB3/rZNZvHzm/mlB4cgI6QaRgH1fhCQ7CEVZkVUr5el6SJILRbHpuT3lo7G/Tc5U0DrK078/bgGRmK7Cs2R8+60XAQCvXr2JYKKHIUeHRsMgtLBJhe+N++fwygvvnbabNBulXbbyT2Ub6HeiiKXYBBldZtewdotxToKRIcLTNYhhNln1t6fI8kCJGPAsmXhDAJB99iF5KtXvLSP33H0YewwRdIZBOJaC5FlWZPumAjnPCuvu7XlEzx2g9i5TMMamaxh1IsRfkjSmfJso1IyeTnEWId1AIODTNdJzTXSPc7RwyqweICB6hNTc+v6zuPTih8T3SRZq6NV49mPEwO7OPNYvsAJU1k0IsvsE6XvsB8j0stlMYpoHLY/HAQREH23+u3B0gLEfoKLQthUkMk1UeUyHPw4gk6sTgvzdexfxqWVGRt8pT+Hc4g6OSuyz2WSLRftw0rNrS3h0OI8lzh2avN8AKzi7rThUjoZKiotAwMc2Xwisr26jcpLHzPI+uy+mhlopR47csVwT9oSo34kinmnB5kX0sK8jpBuI8XBgq6ejelika2/bMr3DxWIZguiTKtM2VbRaCUwtsOvVOMnhsJYj48rpZAOy7CLGC+G37l3EM9x1X9EsDPthKIqNvuPi0m9+8Im0234u9/G3236p+rTd9rRI4g/Y3a9dQ6vGJrqDbhIvrGwQlPrpi7dxzAcLy5WR1Pu0ativFNC3NTzHJ9BOK4FmL0qIz/e21vHS3C5xckTBJ/TDcWT8+qMz+DJvxQVVC81eFAW+qjqq5TCTreI2T5dez5+QlcByvozbR3OY4uqt2jCK+WQdu00GcVuehPVMBWHOE/A9AapqkQx35EmIKuwclqeP0evriHPlW7OdQCbdpMRwTbXwg90VGhRl2SHjQABQgyYNarpmotJNIMs5N5Nw2skq8vikgEjIwP96lzns/tVrH2HAWz7VXhyr00cUj7KwvIeNRys0geZSTQyGYRRnJmRKH7USm9QkycWN/SU8t8gGqsnfdDh3YWhpiGgmRRbIsouNo1nU+PEVwn2cX2OQ+9gPwDRCOKxwSbdsIxIyCFkSAmPUezFC3m7Vc/j8Crs2hqmha4TJ8mAm2kbLPG2XKKKHoGxjj5uCLsabyCbauMdd1RdSNSLye76Aka1Q22uvWsBsukZy6KBso5iuk+uv5cokIOhYGvJ6j57DkaXC8wX8gEucX1vYhqaN0OoylNJyZKiyQ5OG5cpPhHMW03V8uM9aQmdyJUzNHcPkCEY030AgMEZogSFr1ffOocOL5uWXbqKzPU3Far2WxvzaDinU7JGK4TBEcRD5TAO+J5CI4PLlOzjeZdemOHsCNTrEoM6ey1oli6XLD/DG91gu2me/8nuwuzoVGMF8C42HTFWnhVnbacIF+o3f+RH81E//Oo5unKd7nl04JtTF7ocgqg755IQWS3CbbKLon2SROL+D0juM75SYrkIKjbD7Ifuu5RdvonJnhRR7eq6JzhG7R9nzOxjVEsT98RzGX5S5l9DWwxUsr+7QwqFbTeHBwQJinJcY1kZYOMeeUy3bRv3uMqE7gugjGBs8kYOGx+5hY3cGYa5u6zQStPgBWNDsdK5KP0vyKaIJsIVBJt18osg+5M/dmZVtlE4KJFY5n6mgOoidKlxHQbxdLuIqH9dKgwgucuf3SHgIVbUI0e0NdGiKTWasiWgP3ccWK4rkotGPkonjTLGMRpO9S74vwB8HKAJKEH2UahkszLBiulLN4lE9j+eX2PUbDMMUJh2J9mEMQ0jyjM1GNYv+MESh1gAb937tHlsoZlQbr60+hMeLcH8sYMgRvge1Ai4WjiGJHgauixe/9/onUiT99R9CkfSPnhZJT9ttk00QfHKYfrlQRrcXJSj1X777PJ7LstVIOtqFIPi0YjccBUuZCvq8rdE3QuhbQWTBJqfXljehqRZSGuNgTCaFyT5fLpRp8gXYINDhrZmk3sfQCOEy5wUAwDPnGCy/ubOI1UwF6RQnah+JcD0Rr1fiAIC/cn4T39pdQoEPvqvJOhKBMTqcnH0mW0aQIxblepq5RvPJNxE0EBxYKM6wgaxWymMx3qIJNcv3CbDW06fWHlDsiio58MYBIjTO5SrYKk2j9xhny/VE/LVnWDjqyNTos2fm9yCrNmKPGcm1DR3LfAUaiffQ6sZopRhOdgntUxQb+XAfKj+nViuBk3YKM1wuPMlmmxRNquygmGhijt9X3xMoPy2TauGgXCBPpUy0i74RQo5zUEq1DG7UM/jc3D4A4MevfEhJ47mggRfOPIC9wzg2etCEptjYnPhkRXroj4Ko8hX7jCeh2k5iLtGgazppg1qOjDuNHK7xiW4uW0W5mcJ0koclGyE0H/OkOju3Ty2yjCPjzcMFnOHnENHYcVzPn9pNbBzPkiz7o/0lyIJPE5sqO4QM1fsx1FpJ1LgIYMoIIdHTT1FJS4Zny/A22PULJ05bYL29AjxXpJT7O+VppFIt4raEIgOoQRMJjg7FZyp4740XUOC8K7MXIWVgvxVHMNUlNGP5+l10D/Pkul5/tIBAYExtn/KtVcTz7Frtbyxh5do9KFm2n3y4j8FhDkmubgtN1fHo9WcxNXdM18e1VERnGYn++PtXiK8zc+0Byu+dh8YRkeBcFb1Hc8hw9HjsSBiPBRIPTHhQAGA1o2gc51G8sMl/jsG1FPzgA+bmvVo4gRw2iaOVzjSQjXQxv7TP7ku8D5sXpybPjuvwxUxx8RBato0Wz4ErnRSQzTQQ4e7n+fNb2LvBCruRrSCVaBPCNZuvIJZt4OE9pjqrDaNYzZUoENkaqRgMdIQ4T8+yVMzwd+f+5gquXrmNNI90Oa7kscpVYQATvlxJNRHiCtBr0y1axGjBEfq9COIcHbVtBbVuHL/KXdT/++cYBWJS+NTbCZQGURQ5ReGoVCCFbyo0wGEvgWe4bcHW8QxCioUgJ+OnHQnPRfooc8VeWBshnuTu/qqNXjdKooDpXA2i4JFYYS5dgyw7+K+usHHroFzE0AidcgvjHXLnXog30TeDrHD6BNVtT7cfzvYUSeJV+LufewXZKJtwT6o5BFWLVEWJ8IC8awLCGL4n0EpnPA5AEj2kEh0ADML1xwI+5NltRb2HXLxNKjPHlZBJnErRN0rTWOSxI7o+wH5pCs5jcvFo0MDiMoP83/jgOj7zIgvKrBxMQwj4RL7eaORwdXYfbW7ol4j20epG0eUmj1fPPsBoGMReiXE8lmaOSPVhjlTWf+dFYihsQNEs4lw82F7G2vw+6lxhIwo+knxw8VwRg8dWejeO5vHs7B6qHZ49ZQWxki1TMXP3aB4vXbyNX3v3BQBM1r6QZQjEb26cwWKkj1X+89zqLhrHeVqxThQvEyQuGDJh8IIzM13G3uYSTezhoAnPE/ERR06++Py7aNdSFKx55+E6UpEemn0euhnrEJLW7sRhWCop9rqjIIqxNq0qVc3CL9+8gp88w/gskuSiwiXM8fAA1U4CCzxo94RbOEwm+uFIQyrWhc7bWq4twbYVgvl9T0CIe+aYwyBk2SEZtmmrkEUXNS5/VkQPpaGOL19nKrOT4yJdG88TUWknMcWVPIri4DfvXcR1PnllEm2YI43UfnrQhONKxMEAQIG+quhCkxy6/pLooTPUscrRwfjCCbkdA8zU8eghQ50KC0cwOlEEo2zi6tbSUDSLiub+MAQhMMbyWVY0jPphBBM99KvseiYWTmB32fPljhTYIw0657cFp+qo3lxDmN9TfbH0hDP62BXQ3WeT7c7uPJYW99HvsP1mZsvoVlNI8CJoUE0hOl3FkLefQuk2Nj68gCXe+pZCI9R3WPGRnCnD7ocIHYsvnGBYyhAaJGoWdm6dpYJLjQ7J6ykg+vBsmdCfSUt7QnSvbs9BC47IMNPs6lCCFhSOCDdLOeRX9wEAB3fWMHNui9yn+7UUss88wOiE228MgnAtFWFeKA5KGTSqPNVedtAb6FTYDIcsaHuHe6WtTx3B9SRSeL5TLuKvfOb30aywvw8ExtR+BYB+X6dn56iWw0LxBCdVtjDQFBuy5OJ9/i6uJJpY4bEj2/vzyCVahKSuZMuQRA9B3qr7wdYaLnFiNgDUunGYjkIq3ky6SfdhOAxBEHxCQx9Wi3hh9SH0BFel7s7hpJNElFubFFINMlsVAmMcdpP49LUPAAC37p3DfL5Mara+GXzCZ67ZiTPfNT7u9/s6DP4uTRDmCZL08uvf+0SQpJ/N/iyUjxFJsn0L/7j2FEl6WiTxB+yjLz2PRIhdisFARzg8pMl/wlEBgN16Dulwn1oRlivDdBQKh10oltBsx+lFzSZbkGUHMo8OMAYhQmSK+Sra7TgS/EWTVRu+J2Bjl7XXLpx7CFFx8PAuW91FOQoDnErcJ736jXvriIaHyBRYwWWPNIiSixOetRSP9RCODIgQK0oupWcft9JYLpyc8oxcCVPTJeJJ9NoxaNoId/bYxHd1bQN3t9iKKxvtIJNuUhbTxHogys0Cx34AsUQXJucNqHyCTOfY5L2/P4upAiuKBNFDrZqldpptquj3I0Qgzxcr6LVjpNCbnj/CB7cZ/P3Ci+/h4c3ziPNVpB4doFFPQefHIcsOhsMwKfTK5RwKhSra3J04lW1ge3eefW+uhnorQde6kGnAcSSk8uyYq8cFDMwg5hcYCtOuJwmmv3HnInR1RCqYsR+AKLvEYZs8W85jrTt/HECIH+fR0RSmiux6dFpxRKJ9QmVEyUMgMKYw0EszBzBHKrVyp3JVuFzyL8sOJNnB/iGXNBfLECUXJh/0SzXmITX523ymgUo9jTznaB1W8pSeHo31cFzOI8ELnVY3imK2jn/1EUM/fvLMA0RjPaSWOX9jaxZ9XqznpstQ430ico/HASiaBT3DiuwhV0RNULyl5V1o8QHxaDxXJCdnZxiEPVKp0Cms7UGOGHjjm58DALzyxe/BNTQMeIGVXN/HYJ+1ySMrRxDCDrwWe/6bj+YQEMZPpNrLQQuhHEOldt+/iNnzm9DybDIeVZKQOXLU3S9CUhzi76TO7ME4yUDmER/vvP4irl27RW2vk80FepaKsyeIrh6Sa7ak2QgX62hvs/MfdCPILhxjwEnyasiEHLRgD9kiy3VkRHjRExDGGFRS6PBnuD8MY+X8BrmMj3gBVjlg1z5brECLs+L8B289TwoxAJhbPECrmiZukGWp0KN9QgtFyYUoeVB5Ad8s5eiZbdbSKLeT9Lwk4h1UG2kqKMLRAVr1FC1gfu3hWfwEV5ElM014joS9I4bYrC7votuKP4H4Oq6EEKc3JNIteI6EKjeqHIyCmOLeXp4nYmgGyYi0WUvD9wVki2xMrJVycD0Rc6usuPdsGb/9DlusfeXl7+PtG9cR523Ncxce4HB7AQ2+iFqZOXyiPamFTWxsL2HIkfnLa4/Iv6prhJGLt+F64tMi6f8PtqftNr75vgCBJzaPxwEMh2EkeXvFrWbpBZ9NNhAOGQSz9odhKKKL9ER1ZgSRz9bxfZ5G7/Ok9sm210lRG2//eAq5ZAv/3beeBwD8P57ZxEk7RbySBw/XMJWtYbfNJgx9YGOWt1qCig3LVoi0aDoKMAQSfPJtNpIwLZVM11KJNvb3Z6m1lY6fIifhkAHDDCKVZhPCuw/OIRHrkaJEVS34voizs0zBtbk3T+fzoFrE56dPoXXDVlFMNiHyv+2bYaAde8LwsJivkrpJllwiUrYaKfz2zjJe4DYGF849REAY44Ar5e5vrELXTMxxpc/GoxVqPX3zu6+RnHuyiYJPrr+x8BDNfpSIlkHVgjEI0X1t1VPUbg0EfGSSbbpWrU4MkujRKtr1RETCp9LqeKqNQYcVvmdmD2AYQZTLPHQ0V8OwpxPEHwmakCWH2oJHpQJU2cExX3UX03VqTUmSC8eRYXKug+cLGI8DFDVj2zJ8X8BH3CV5ggYBLFR0IVem2IR2O45opI8uL17mp09gDEMUY+J7AvSgSaq8xaljQrAOd5eQ1nsweVEQCIxRrqfxs6++yf7WF5BcPYTDM9QyZ3ch8pZPvxWDluyR+eRhJY98som9g1m6LwMziAxv4UqajVHnFJmcyLkBYHtzCRdfvvHEPTbKKbLX8B0JarZN3j+iPqLCpnVvCbH5EkWFeK4EWbUx/wXu9eQFYB2msfs+K7pr3TjWl6pwKuz9GbsiZaJFZ6ow6gkqVqxWFKN+GN9882UAwI888z7Mro74HEOpZNlBbpr9txrvwzjIU4SLVVNhbi1QOy0VNuAaGpG+XVvGsBNBYppN9LffeQZZjgZNzFQnth/rK9sYNOOIaVW6PmNPQIJf22E3ghZXkl5c20AgMKZCb2drEclYF0HurN/uxPHm9hpe5vyddKEGx1JwssMQH88XEOTvS3HhELo+oNbdcSWPWHhIY2SvHUNnoFNb+CfWHxKp+97GKqJBA+k4G4veuHUFi8k6WryFFgiMUYi3yHUeAA6OTw13M7EOEjy2plVlRdEmt3IppBvoDXQq7IYjDRuNHLWzE9EeXuDnZw1DWCse44TbFrx94zouLW0jwtXDouTh/u4ShZ5rio2wyswqAWbPMUHlANYVCEYM9O1TtO2HvY35/z7O73u6PS2SaEtkm7hzn/FK1mcP8N2H5/AZvqoKhww85ITnq6sbMI0grXTikT7G4wDlWgGsUJrnE1nLDKMYaxMnZfRYJth0roZ2N4r/4TqD9G1XwurUKbQ8aVFd4fLyzkBHgiMh/UEYsuzC4MqvtcVd3NpYR5Crqka28gT5ttFKopCtkbpr0IvgI+5E+34jjv/Lyz9AnQ+gr1z9EJYRRIO31+KxLo6rWSIBLxRPCGq3RipOjouEfsT7YXKtBTi3RRiT2m97dx7vPDxLhm83qgX82ES2vnCIr4wDiHI0yLVlNOopGlwLqSZq7QRkPsAuzB/S+byoD/D+1hp5ogz7YaRzdUJKBmYQmWiX5MCpbAO1ShZxPjhv7M+jwF2iRcmDaSi4/1gLoNJJYJUjfoLgs1beA6Zumk42Tl3SRQ/d4alPlOtIaLQTiHAkcr+ZweVYl0jxAKCHDCLcL88fUKECsKJieZahUvVGCorkUrvW9SS0BhHKlzpqZnCW86RGtoJGJ47spJ1ihBCO9XHEyejpcQDtXpSc4/VYH91+BF1OZO8Ow6eE+WjnCd7ccS+BoOTgYpZ9t5LqoXpzDXkevCqEXZi3WME0MjWopQwp9qYyNYgiM/kDAD3Zwf27Z0+VUCMFguxBk9mkGIr3yCX6zJV73BmbXevgTB2B4zTe/YC9t1949Q5G+xlsfMB4N8sXHlG46+0bl3El14Q2y9BAqZTB+/fO4wsr7H3zLRlyoo+VV1i7Jbc7hb1vPYs493MaPxZ+6jsSxp4Ahfsz+UMN3Vac3O6H3QhSc2X6fEg3iEfV352Golmk0ANYO+7We8y9e31ti7XnOI8pEBg/of577qX3WdYdmFVJJlvHYo6JBgTVRv8kSxwoz5ahRgdEVndHCiFUnVYCnisiyNt4iWgPzU4c2QW2gEunm/jJtR0imH/zBy/itXN3iWYwed4B1iKN5xvo8e8eVDXE9QEhvgrnny3x53hzfx4FkT2zC4USUwTzxUxUsRCL9IlQbTsyHlWLiHJHf88XkAgNMDPN2pOmEaLFy0E1z75v8s4Pw5iZO4LAx4jxOIDpSJeOvf+YeWp24RijYQhF7kkmih5Tt3Grgm4zgalEk9zwJdGDKjukju10YuhyLul+KwPPF5AX6hg5n1yRxGJJPt7ve7o9LZJo8z0RF5dZsTIyNWSDBqmuPP80hqNSzUIQfLzPlRxXsmWEtREZRN48WMTV+R36/LX1h+i0EnhhlUm8h8Mw8U8mXhwF3m4yjRAarQS1n1qtBEJBkyDwjOygz9sDEX2IcKyPBh8gYtkGNMnBBnfkfm7lERxHJkO3WKQPwwzB5y3Ex+Xt61EDxiB06hrdjcB1Jew02OS0JnpI6AO8vs3Ufp9ZfUgT1eubZ/DFSzepwEom27BGKp1juZ3EyswhkUtn8hUU/ToVAj+eq6HHC73GgzV4voAMb8UJog9R8LG+yuwXtrcZR2aijHIdmdolimLj/PQRSjVWJKZiXQz7Og2Ckuhho1rEc+uMRzQaBmGMNIQsNkmkIj2UuQXCyFYQ1Qe4yleZhhmCLHrUnhzZCnpmiFyiR7ZCiEw8PEAm0cYjTuIMx/rQBzq1RxfSNTiOTFwoTbahKA7meKFTqWSpsL1fLWIlVaPWQrUXx1y6Rl5X87NHaHWjyHBibihs4Fu32WR7Nl3Fg0YOc5x8r2oW1OjwMbSM5RFOiO21ShYez1UDGPI0mZhTqRb2jqcp4iUdHGI2V8E+N0uceFeFOHpkGxoV+NmlQ4xdkUwMW90Y3j6exU89+z4A4Hh3DsuL++QFlg4bUCJDdHlhtHs0g8UZVsjU9qYx8+w9hCb2EkcZhJaq+EyIuVWP9jMQVBvnXmPf7ZkKfB4zsra6A7XYhHXM/cvO7OELq4cQo+x6OPzfJ2n0wVQXiRd3YG2fFrODMrsP8TN76D6aQ+seaz/HZisI68NTU8fYECcPlpCdZQira0tIre2zYxopGLVi0HjAbecoj+jiCeb5pN+oZjEd36WiSs9UIesmHVft/hJ2uSfbK6++Dd8TqDWZXDxGfOEEFr/WnivC6unoV1mhc3trFS+/zEOL/QAq1ewpKd4MYm6qhC4/x6A+RL+RIB7iC0ub0MImFhbZgm1vd45apuXtOXQ7cWzz48rqPYTDQ0iTLD9bgR40CTHWZJta6BulKXRtFZ/j/kZB7kE3WSiVallcmD4kFFMSPYTDBrWNR6ZGhdvKzCEq9QyiHHUyLBWjYYj2W8iyhdrElT6TblLg76Q1GeGLUFU30dvW6T4k8g3sbS6S637XCEMUfKIZzM4eo8YXqAnNQCrRQb8X4QG3T7c/ydvTIolvRj+ESou1LXKpJsLyaaCnHjKQeiwKwrEVXOLp2KrsYLOeh8ZbZFfnd1BqZGjlbZlBZApVHHKXV1lyqYCYFEgkj24mkU60iXNyZXYPg2EYMc4FAUCEaQDY2FxCm8vLk5km0tEuqYJcT4Ki2uQaXWpkEFQs4lbNzx5jsM0UNIVIB7LsYIOTNl+Id2CYQaxxkq9hqUjGuvgMN1vcrRSxPMVWWPPRDixLJUdpx5FhmEHkODcqoplwHJkIoKmIgFIrhekMm5xdV6Rz2jqYw0KxhNuP2OT7/LMfoN6LnZq0+SIiQYMKLD3WR6vOBvF2J4ZH9TxFH9zZZq24CVzebMdxcXaPCo6hpeG7x9P4s5MgzWIF23fYxDx0FMwKPpGxY6EhbFciw0NdHyIv1omzNh4HUMixAXhkauz8uQWCZQQxHGlkntdrx1hBwd29o+Ehc07mz0BCH1CBUQj30RpGUObtlKtTh5Blh+JjWo0U5qZP8HffYB5E//2L7+Ml7udlWQpeWd4gzlVuqoyjR0tUnIVDBjKRLrUxXFdCOtOkz7ueiKHFrrPcdXGnnsMFnqkXVkfwPBHH3DD1hRffQ2l7HrGz+wAAf6iix00grU4EguQSMlLI1fCq6FE7KRQ0EQiMyftJiRgY1pKkUBtYGmLcALJxZx3tjblTUnNPR3CuBoervUTNgqjZEBPsPm3/+5eRn+PO36qFzt1FJJ9hCyGvryAgeTCP2PMAMBPMNnerTs2VMTYBgXMJna4OdUK27+gYdGK0YFFCJnaPZvDsGdZ+vP29F3D22l3c/4C17i688BE6O4xzE5svwTFV3LnD2vGVQQSfD5m4xR3JX7z+EXxPoFbn1tEsnn/lHVTvs3c1Vazi1Tm2n34ljXCqg/gcL8YMDUqqC2vAjShlB3qxgWGFPcdX1h/CHbFJ//bWKlaKx/SMn79wH81SjoQNm5vLmJs+IfWsbSkw+yF8wBdK56cPMOqywiIUNtDrRrHGvb8CgTE63RjlOdq+iNlEA4Mee44tV0ajyf728uI2LEtFg7/HXSOMWGiIjYmqLFVHfxjCiKs080nmm1aYYkjkrb0lvPYcK4q/9+6zeGZ5Ew2eL5dJtHFUKmCde5ApQQvDnk42GNcdmdq8vicglurQQsz1RUxla2jwnEi546JYLFPo82yugmiyi60thuoZg1NUKho0cGd/ET1bgfkJBtw+zW774WxPiduc9Pat5/4UUpy4nU62sHty6nRcGURxlkunRcmDLDmo8vgLAGShDwCrcwc4LudJGTWdqSEcGaBSYRPwYBSkCfJ+rYBz2TJNerpmwvVELK+zgbxxkkck3iPS7+FJEQucEDzhNHw4icZ4/j0ywQRYrlnLCOOlK0xCWyvlkco2sLvHWkira9tkAJmcqsLonJopmkYIwZBBeVHhsIHhMEQSZ0H00OArKFFgZOJJ4TcYsBXWhM816EUYr2CNqVl6pQwGvQgRl2XZwV6VrUB1ZYSBrZFyZeHiI/zW734WeR5TMpWuIxgykVpiyILd1cl9+KN753Dtwl2UOVHd9USkUy26HpLiwByEoYW5hNnQniAQP+4tYzQSEESPAlvl4AhSaEQGh3Y/DEmzaNXdbscpsiQQ8GGPVBzyVfWZtU302nHynPFcCWrQJCROED3Yo1MOihoaoccLFc8TEM+0oHLUwWzGUTnJY+E8Q7jMdpSKD4BJ7/c22SA+NV1C6aRATs3dZgLRZJdcs/NLh3ANjf5eUlzohTpMTqRulTNIT7OFwKAZx0k5T1wwSXYQWz6Gy1Eadb6F8ZlFwGfnIPQ6GEts/VX737KIL5xAvcberXG9h8HdUxftyJUS/CEgJLjfTNuD39UgZrk/jQ8EUtxnShIxbvaBAn/3yk1grgjY7H3CfgPOqy9DNHh219EOzGe+yI5p1IPUOILQ77Brd/FHIJgtKGV2LX01BLF6BCjsXfTDUTjZeagbjLMUGAzhzbFrO/qVOsJXm/Cq7JzEWQ3uhg9phZ+U68HeVCHxDDV/qEKIsUI/IIwBEeh+NM/u2UwNUs6g6wEf8DoKoR8B2YMQG2Nsc++sjgIhyJ6lQBiANYY/4mKOoIeAFoC1e0qyFWQPnsnGJznTRUDhXKeGjlEtQQWVqhsQgxa9B4LswnckyAmevzYIwjNVWBxx0WerpGYMKC4qN86SUvCdN17E+bVN1Dl3SlVsiKKHKA+EHg2DpG58Y38Jn1t5RFl+vi9AUWw84OrguXQNWnBEHMdGKwnXE3HS42hQuI8M5xmGggZsWyHBicuz1/KcCqCETFSPplDhRdS59U0a88bjAAbdCG7y8fSl83fRaSVgcBpFKtGBKLm4sckWcC9euANR8nDvISsaNdkm5DUWHsL1RNwpT8P0bPw3G//qEyFu/5X0x0/c/l8aT4nbT4sk/oBt/rlz6FYZ2hMIjDE1XUKXFxGJTJPM3SZ994kpW72cQ7WToKy241Ya08kGKdYk2YEWGVJ0gKqb9N+C6GHYO217VZsp5FJNcqT1XBG9bhQprpza3ZujXK9Q0EQqX6d+vCh5SOTqeHSfvcSFTAM659sATO0miB4VXMHIEGqUy8UtGW++8xyeu8BQmHC2hZ1bZ6mFqHC37iNOLj6ztokbd9gqORftYOnMFpol9rtuL4JErIdtHmFy5eI9jAankLdjyRAlj5ydjZ6OLic9RyJ9JOdL1GqJFevoV5NP5MQZZhBzZxha4o5UclDWwgZ2thexdp6tGlvlLBTFfsJh+6iWw8XzrN3mORJTTnFyrd3VUT/i7sK+gFiyQ0pAfxxAJN4jAqg1CGHYjSC3zlQyWzcuUpHUbiYQjfXIm8boRDHshwkp8X3mn2M8Fqwbifdg8hiKRiuJJL9v0UwLv/P2izjDA2/jsd4T8nBRcuGYKnzeMhkNg3Sdw4kePFsmR+2AMIYkO8RP8R0JVi9MKKYg+Lj7aA0X1rkpZl+nCAvbVhAMGUiusgLdasQh6QaRoNV8E2LEptgOb8uEuMIKKOeei1EtgfAiOwd/qMIdBCEnOToaGGP395/B0pfeZT+KYzjlKMDPQwhaCMi8oNQ8tg9ejI3bQwQiGsZ8AHd+YEJ+XgH2G3xfMoRrDB0NdNpAdwivzZWCeRHe0irE7Uf8OARAU+Af83eiE4Z8VcG4zAr2/s1ZRF/iAoWIDtgOxl1e3LhjFnSl8Jwua4xAXAF4JIVXEyEu8IWUEABsB16J/U6cVgDLZv8OALaHsTuGtcvGGSk+gFT0MB5we4VqBHKBXbuAJmDsjuF3+TmlxrD3whC4FYE/1CDGh6h/wMYELTKEPlul+7/3/kXMX2MmuPAFCKpDRYOc7cPrK/C4dYFnyVBzbQz32DuiproQQ2w/Y0/AqJYgwnznKA/Xlgh1uji7h0S2iUGb3SfXlSgA2fcEBHWDYozy+RqajSS13BXNQuWoiAhH0+uNFIpTZYyGp2jZ5B3/O99+FT97+R7SXIXaa8WgBUfUBp2ERW9yBPTHnn+XBCSJ6SrckYLuxHqiWMeox+woABbNU6unyRIiwBc59X123Il8g4KER4MQIpk2+vUE+o6Hc//25idSJP3lH0KR9M+fFklP222Trd+JEnKUzdXQaSaIV3S4P0u/kyUXfSOEoniK2ACggiJuDtEZ6ohx8zMx6OFoZx7/zdusaPhfPr2HDe5VdHb6EKGwQS/5fqUALTgiWFqPDjAwgzjm7aebzRTOT0i7TRFXVYuIl4cnRXS6USi8x97tRXBrbwkXeQCs60gYGKdqpketNM6neUssZODC/B4NGNZBEaLg04qsXM2iY4YJ4TEHYRT5f6fTTXz7rRcR5XyVswu7qNYyJAc2ejpk1YbKERyjlEOtmYLKOUqHrTSePc8G6s3tRRZ4ySfI5kEBg4GOHIfWlYiB441FQnDu7iyjzInGf/rVN5g7Lx/kXEeiGA+AFQFDR8Hd+8xOYSpdZ4M1n1D+529/Fs9y9CsX7aDaTlLhGwyZaNeT6O8znpEkerhXmUKxxFCr1fl9UroNRxoy+Rr6PG9uOAxDCPiE/AVDBkTVhcERsFo3jhXVIiROlR1sHLFifckVkdRMylOr1dN4e3OdfGOaffbM9nhbTBNd8jKKm4wX1OF2E7FoH9FUGwY/rnC2hU4jSU7Huj7AbLaKu4/YxFZItHDcYuc7nWyg041SQXVczmN5eQ9hTtwOCGNUvn8B+ZdZkS2EAece9645ykJN9GFV2H5HrdgTsRz9kyyW//S7+N4/+ioA4KXPvQl1pkUBsO4gCIu/D7Gz+wjYDobvxNn5Fi0IvonAkC0ceoeriAolyByoqt9chfyAvVvxsxbcTpwiO8KVFqw3BgjPsOIlEBjDakQQXOAFaHKI8ckAY5M7bs9VWCEFwL0/gpgcwR9y01NHxNiRIM9x+fxuFNKoR55N3iAI7LNnSYi58FoKPE7y9Toe5CkTbp1N+h6X+k+iVcaOBOtRGB5XPLqGBinJFhjwfPgjER5XFXo91hYUODooyC4aH609gZZO0A5vpGD24iO4HEkSNQuuodJi0G3o8C2ZPKoE2YXdjELmC6vW9ixSKwf8uhcgqRY5nfueAMtSyQTX9wT8/o3ruDS7DwAwzCAs3n6fmztCp5nArQq7aV+ZOYEo+BjwVp7N23CTduRStoJaJUutLUFUkUswlP+/vX4LAyNE76IkuSxHjh9XNNZDOlfHTU4r6LViJLiJFeqoHRYp6Fvrmnjz9mW8yvM8u50YovoAjWP2t0MjBNcTyW6gV0/C4fsx+YLUNIIYfYLZbU+J2z+c7U88knR0dISvf/3rqNVqkCQJf+tv/S38mT/zZ/6L/35Shb/16U9DGfMMoFEQfUtDKsQGI9NRSOp50E0iExoSaXevmUVItomj0+lGkc/XYPDBp9TIIB095X5YlooBJx1Oz5xgb28Os9w2/+h4CsfdJF68wNKk+50ogiGTyIHVfowsAAKBMWrdOCIaK5Img99+hw0qBb2HrXYKz8+yNpcoedBUi9y+ZdmhPLXOUEd5EMW1eTaoqZqFRjNJSrrjahZzUyV0OOIjiR7B44LgQwuOSK01HGnIJNpUYPYGOqL6ACIvAibtrm9/xBRJl6cOiaS5e8KStScy9anpEkbDIKEyo34Y3751FV/ipN9eK0bfqwZN1KpZMu0s9WOYibWp7RkLDfH3bq7h7/34d+j63b57DgvFEh3XpBUpiR4KuRqdbyhowrJUWs2OTA2VVgo6v/axaJ8ibK5MH2BkKyS9z8+dYNiOEo9qPA5gozSNszNsgik30swlmF/7eLqNygkbiI2RhmSsizIPEk3ofTiuhDt8QinqfaxOH2HnhP1cSLSIkD+wNcxmavTcjf0AXE8iSf1GZQpzyTpxlH6/nMPXL94jM9KOGcZSnl8bbYSto1nk4xwds1RMT5WouO80kph78TY8g323nOmh/5CTuIdBHB9NYf0Z9kybzRg2N5axMM/bxl3Wep0cp57o4XfeeYGUYqpqUdtPEH2oyS5N3L4jwbNlaDys2O6H0G8kEOWKNMdUKT7H9wQEEz2E5tl3jY6yUNMdSLPsHOydEMxqEpEzbL9uS0ft/hKyZ9giw6yfLpoC3K9qQkaXFAeWESTvsFc+/zoG5Qw0jjaPPRF73EE7V6ginOrg7geX2M8cOZ60n47rGVy7egs+n6zV6BCdkyxx6Wbnj2gxE070IGkWFVCi6qBxWEScW3m8fuMZJDQDZ1YY8vq/v/MCfpRz9hrtBNKJNgVVyxIzl8zwhYIWNjAahlDjnBxJ9DCztI9DztnRw0N0ucI3lWij24tCm+SvyS7qzSSmuYJxZGp4eDyLda7c3SmftlvDygjb7TSe5eNUKGTCtmU0eXGvSC6i+oCk+SHFwlShAocr2NSgSeKNwTCM9lDH+vIOPVuuJ5HtR7cTR7ZYQfmQ7d+wVOI6nb9wH7dvX8A091yyLJUpWufYe3pUKmB+9pjsSMLaCJLokdpNlRwSRQRDJurNJCr9GAzPxl+4+yufCJL0l1IfP5L0vzafIkl/4oukcrmMarWKy5cvo1ar4erVq9jY2EA4HP7D/xinD9iDn7yMscEm+nSuRq0WgCk9JsTrQqECywwSEuB6IvLFCgWa5qZYUOKkDRZNdHH70Tr5+Xi+QDlVq8u7eLC5gtk8G7i3jmdwbnGHVkIAUH+M+ySJHhF8l9e38eDeOqlifE8gVAQAquUcPF/A21zG/lzhGHrQRJ4bNf7r11/DV86ziatUyyAV7dFEFYoOYBlBRPgK1DFVjAYhiJyvYAzCFDrreiJMWyHlkx4ykJ6qUktRkh1876OreHGNkb4nhmwTTlIkfmpop+oGRv0wmlwpNwk0naBlwcgQYz9ABnfDvk52Cnq8i147jl1eMKzN70MNjvC/vf0SAOCnX3obriOTL8xeqYhYaIgYL9BC+hC3Nhhit5Qv4a3dFVzhflbf2l3CX3jmBl6/z6TlZ7Nl+OMA2R4AeMJBupCrIRSfTJACaid5irFRVYsMFQFgY3cRC8UTQnzCIQNZTsQ92FhEKt0i3ySbJ49P1I5acATXkanwTWUbuHGfEYJffv59vPP+dYp00YIj3NtdIosJy2JhuG2OaARVC5YjI8uJ/6Lk4cEeNzVd2cTO/hzWVtnk49oSHu0sYZEvDDyf2VpMfLWyZ3epFXfv3SuYKlQQn2HXyhupuH/rHFk16Ikegpk22rxtEZ+pwGzG0OW8rOzSIYW7HtezWJk7QIx7Bg2qzKBwUrzEFk/gGRq9P+WNBcxeZ7YE8AMYeyLUdfa8OXtBuIYKh7eTwosljC0ZW29eB8BMMB83cew0klj8sffYfm/PQI4MCQ3rHBQQTnWgpth3b711FbF49zRcWR+iyn2zFi89RGu/SAVmKM7MQn/t9dcAAD/52utolnKIcVdxUXHQqydJeVo8xwoegLWIB804tVTjhQbsoUaF4d7uHKL6EBH+jJ+U89hqsnFqNV3FwuI+fum7nwYAPJ+rIxftYIYbpO5sLUIPmuTnBTDDzUn76c4HlzBbKNM9fPBgjQqOxakTbJ9MY50jR2poBElxUOLFSUQ/9TwSBA+C6FMROL+0j3YtReKF4TAMWXboZ0lxEZuqovSIPZu7lSIF59q2gu4wjNU1do08R4LR15Hg0TP1owIS2SYdx+P5g0rQQq8VQ4bzqkq7s08E4O610vjUxTv47Q/Z8/GpxS0oikMt6cn1BZiKrttjKO/AdfHCd9/4RIqkv/hDKJL+5dMi6U9+kfQfbxcvXsQ3v/lNzMzM/Bd9fvKAHfy1BYTA06PbUXiuRC9AONFF/Zj34lULiekqtXzK1Sz0oIlQ6Mlk64m01PdE3Ng4g1euM/+VYTeCQf+UhyRJLkG8iXQLzVqaOEieIyEYGVL/XU91UD9kxzFBUCYTU3K+BKsTIc6Ry6MPJm0cSXFwuDeLWT4ICpJL/KW5mRMiDgNsxT4eB4jrsrG7gOXZQ4T5ADloxqBzbsuoH4YkO1QkJtNNlMt5rFxkRVFAGMPuh2i13y+n4VgKTRLdVhw+H9R1fQBJcVDmobVzy/vsHHhxZvV0BAI+cZRSZ/dQuckQnE6XGT5meeEy7EZgjoJE+MzMlCFpNkQ+6Jv1BIyeTtwoz5VoAuicZBFJt4kULioO2pU0tR9DYQO+L1ARMZetUgaUKHkY+wGKnVAiBj56/yquv8Du/6ijQ4kYdE6eqT5xrcXHzDUn4aSTiI5uh5nyFXn7zTQ1xBJd4pEEhDEqk2I9W2cctAlBfuIV8xg533WkU+WgJ2HsByiGYeHcJnbvsWtb78WwMnOIJC90qrszSBWrpyHH/DvjV1kRFUgH4Txi5zM4zsIxVWrNuYYGNd7Hwe0z/LqLKMye5skFM20Myhk6zuhcmQoZ35GgprroHfB3UTdwsLmIdS75L314FsUrjyAm2STceG8dOnfQVnNtGEdZKDzHS4oN0bm/gMjMKUdnWEkhnGefb+7MYDDQSXru+wIu/+R36Tj792ehRE4J14LsYtRiE4kg+uiU04TuJmcqLCwXQOnhIlTNoiLZ9wQcn5z6jGmRIQTRo9bV5FmRuJt3b68Am6OleqYFux+CwDlbwVQHZjOO/S2G9qQSbXi+SPFCsuyixsNgV85sMs4afz5C8T4ax3nybxr7AWjJHuXEebYMsx/Cz7/+HADgf/zSm1SQXz/zAJYZRITz7jxHws0HZ/HC84z03q8nEMk1ydjTG6kYNuLsebBlxKarVFQ7pgqjp6PEhS4hbYR0pkFCh5PjIjLpJr23vWYCMT5eDlpxjP3AqTltK4FMtkEo7sQXajI2W2aQkO3RMARZsem9rdcySGeaUPj7USvlIYj+E6aWrVYCKn+vNNWiMfTf37mCH7twG/vlAoaugx/74D88LZL+BG9/5EXSm2++iV/4hV/Ahx9+iHK5jH/37/4dvva1rz3xmV/6pV/CL/zCL6BcLuPcuXP4B//gH+Dll1/+A9/1wQcf4Gd+5mdw7969/+L9Tx6wOz92DZUKm/SSeh9BzSIvD1ly8R1uvPjVizdxWC7QxP6gmcHZVJ3QINuWEQiMaYUe1YdI52rY4S6w+UwdId7Xr5zkoakW5QfpQRPdYZiyf2ZmTuBYCrWyBMGHyldUguCj0kwhwY0Yw2EDniegN2m3jIIIqyOEuEmfZSkQBB9lnj5/YWWTeDKPTmYQDxpYWWSQ9yRCIMd9XvqNOKqNNMncb22v4OoqJ/gOWcjjhJi8ubMIXTPJtuDu/gLykS4iHIp2XAkzC4d48IBNwPPTJzSID4dhpLINtPlAHot3cHQ8hSZ3351KNHHSTuHKGVaAWYZGXizDQRieJxJi8+B4FrPJBq0EPV9ANtnCJvcvWp06wsbxLFa4bLndiyLFYfneQEe9H6Pg1PZAR0IfUJTKJDZh4tybTbQR4oPt+xtnMBNvYmFxHwBzkH5w5yxl6E0lmugaYSzPs99/+OgM5lJ1IvoLoo837zLEKq/3MZWu0yr6rY2zWIg3kebHqSgOmu04OpyXlY+3ccBDivOxNt4+nsOfe+ltdsxN5ns0oCyqEGTRJQ7b9MwJ/sdvv4r/20sMLWm0koRaOp6EfLIJk0/OoaCJdi9KarfRMIj8xS1IafYsfvgrnycCvSC7qOzMIjPDVujBTBuDkyy+yeMgvvraGyjtzuKIm2memd+Dop1ytGxTpeI0MV1Fv5pEpMAmRSXRhzfUqKAAmCxe4bEc8AOEKqnRIVpHecR40aSvHMNt6+jwuJQJKX1wyCbnyMoRqh+eQZS7aqvJHhxOrpdCI/QOCtT2khQXgYCPxBJ7lmoPFuF6ErW9IIyhcLK9Ehti7Apo7zKOohYZoltNUabi2uIufE/E1gFDgBeKJwjH+lTM6LkmDu6ydyee6MB1JETS7HmwBkFYZpDa6I4jQRR8xLgQwLEVCukdGiG0BhHK9vPHAlLZBoVHT+KAJtyf/NwJK7q5hcD7ty9hnTvwj0wNuj6gjLR798+gkDoNbG7xBczEUiUR7RGC7DkSRaAAjGIwGp2GXjs8ImmyMBqPAxj0dXrPBcGnBWMg4GM4DOMRb0cvpGrQFBsPy+xa92wFzy/sUFtQVmx6tgBGCp+0ycPhIVxXIs6eotho96LomZzDJfioDiNo8t8/VzxCtRcHAEQ1A2FtBE2xMXBdPP+dNz+RIukvJD/+Iulft54WSX/kxO3hcIhLly7hL//lv4yf+Imf+AO//8Y3voG/+Tf/Jn7pl34JL730Ev7xP/7H+NKXvoQHDx5gdnaWPtdsNvEX/+JfxD/7Z//sP7s/y7JgWacQcq/H4eO9JVyfmxQ6CgxTI5NHz5Uww1cQ7U4cCX1AL/Fnkk1o2ohiF6KJLoY9HelJurTsoNM4hcvf3VonO4FsvoZaJYtlHmD7/ZtXMJ+sI865QL12DI4jU3BkqxtDmE/GB+UCeSKxY5bhuhK1n2bzZYiSRyuy424Seb2LeR4ea5lBannFgwYsR6YBEmAO1c17XCmXbsDzBexxxZoYGNNqbWCEoCk2ZcSpkoNw0ESTGy9Ox1tIJ1t4d4tLZ9cfwLEU/IDzEqKPRbykUi1USnnyI6pVsyj34ihw/hcAnJvfxfduMcPESXgwwHyiHmyukC/UpYVdbB7P0PnuVIo42E3i6hy71o12AivFY9zYZ7Lu8/kTUtwoIxczqTr6vKCYLZThehK16j44WMSl4hF63Hzy+zur1JqbiTeRTTXxgBOgV5d2kUs1MauxglMQfcTtLpnhCQDi8S5N5t1ODAm+ep1K17FdnsIB5w0tRLtIRPqE/gyHYaSTLWo3GZaKC0us1VCrp/FTz79DZqPjcQCBwJiI+4VUAwfVPBSJFTajYRB/dumA7oUsuVRgH9azdJ8B4JsPz+HVuT1yHL9+4R6Gx1kI1cdQCl5AdippBEOnis6JAurVddYGu3/7HLLJFp65ygiy+1uLWHv2NhGK9UIdZp0tEiTdgLk3jS7n9zQ6MVx79V2MOQoXXKjA6umwOXFZ4QaaAGD1wsisHmDEEYyxqcAdhBDmba2xH4DT1RF/hvNZ7k8h//w9DLbYMy/ILjlZq8keJM2GwidYSXYgKg6pvRLTVfQqabSqrG2cmSnD4OcwrCURmaohxOXwrqEhtXCCR4fzABgSqQQt4hoqmgWjp8Pgk3O5lCey8M7uPITAmDhYR8dTyHP/MQBIpVsYmRqOSwx5S8a6CEdOkZB0ugmJE7XtkYrSUZF8xWLxDsZjgdB0oxNhiyFeZF5Zf0iFy1v7S/jU/A62uOAgHhpClDyE+XeNxwE8PJnBPDcujSa6ZD3hODJqXJIPAMGw+YTPmqTZCAR8Qsh9T0BvGKbz1MImvZei5EG2HSxxQYrtShBFD89wI99b2ys8UJkVVcNhCDpfZLqu9IRqzjBCiCfbVIC5rghVdtDvsuNeLx5jKl0nhMs0gpSFNzd3hEY1A9uRYbsBfFLbU5+kH872R44kPb4FAoE/gCQ999xzuHr1Kv7hP/yH9G9nzpzB1772Nfydv/N3ALDC5/Of/zz+6l/9q/j617/+n93Hz//8z+Nv/+2//Qf+/bef/TLyEd4C8QUYlkoxHIHAmGITgvoQ7XqKojdqzSSK+SpNLopmwbEU3NxiyNP61BEi8R6RgqfzFUgKd6LlXJPJSnBvcxHZTIP4LT0+MT2eej+Bg8vlPIpTZWrTaGED9x+s03GE1RELqp1wP1JdNE5yGHJ32kKxQkGhgcAYtVYSh102kF9f2IHjyEjwlXAgMIbvCbQvy1IJ/Wl04rjwzG3s3WPnW5gu4YCfKwAyYJsQ30XBx+LSPsq8fTkxEwRY6zEUHRJsXSvlaXIHgEyhhnY9SYZ3e/uzSPH8OT06gBoy0eEWDb4vIJlrYJcTTYXAGPlcjQifzXYc+VyN5MGVg2lkp1hBZfR0ImoCQKOeQiLRwZBzyYKaCcM4tTXwXJH8mFLZBoy+Tiv2di+Kaj+GGJ/0zl+4j+rRFKGUlW4CMc1AgqshG504YuHTUN7+MEymjpGgge1GDs8sMRmyGjQRKTTwwdvPAgAU0UWcD/qBwBjNXhTnLjDLA1F1sHXnDN2X404Sz5x5SPdR0SycHBepiFpf2YbJC5W90hTyyRaFJ//ue8/ha3/q92DU4+we5lr48M3nye9rZfro1HH7/A4qt1cIZRgNQ/BckfLowvoQlqUSOVsKjVDfnkH+PCv2jm+tUwuo145j5hlWkAGsRSbILrVx1FwbdjMKjxf7AcmjFpik2QydEiaowxhmO0oRN+9+cA2f/3P/AcYBa/XqZ49g7OQQXGDoae0HZ2ky1sImkuv7GNXY+zKoJxBO9ihYtvRwEalilTyrAGD1MrsPkm5g1IgjPM2+d+8HlxEIjNGfPFuqhVS2QQ7kwZD5BIctmOhB4d5Fw+Msy8bj5+/aMoaDMNKcgzPsRhjSwseqcKqD7btssVKcKsMchMkQc+naPQxKGVR4q7swXUavFaNctPLhFHJTZfJH8z2BkMbZhUPcf7COYvrUKb/f1wk5Wlzfhu+J+OXffw0A8LmlTXo+EtkmjJ6Ouzus8BUCY8xlq8jyrLvy/jTCYYPeJ0nykJot4d6HzIJkZWUHt++zYv3qldswOtEnWvmTew0wXp6s2k/4zhV4rIgaNFEu55HnXnC9bhTxZJuKRN8TUT4pkGluKGwgGBlSITyyVEKo3t9bRkId4dq5++jbHta+ce8TQZL+fOLjR5J+uf0USfpjXSTZto1QKIRf/dVfxY//+I/T5/7G3/gbuHXrFt544w2Mx2P89E//NNbW1vDzP//zf+g+/lNI0szMDDb+7HlUjtiLWszWMRyGSHUliD5Ngo/2FnDl4j0aMGXVhqTaqPKk7Uish4AwJvJxJl+DXqyT9NgyNJpca/U0av0YkWujiS60yBCudWpOKYdNvPMDxgO4fukODC6H1sKsYJpwN7T4AMNGHGFecJW35pCeqlDbwnMlWIMgoty92OpEaLVv9kOQFJcmzInhIZGPxwH0aqdy8d5AR5lDyxfmd6EneqhzYmoq24DRC5OPlCB7aJzkTu3+QyPU+EAMMKLz2gW20lOTXRjVJOTQKV+jW87QdzmWgvE4QMVdpx9BjBcFheUDjD2RJLq2rUAUPHgc4cvPHaNTySDKJ9xGOYtYsoMg56iYXZ24CuXjIpLJNsJ8td+tppA7t4Mhd2PuNhO4fzCPFzn68TjRNBQdwPdESrVfObsJx9TQ4dJ7PdqH74mo8MmGxcUEUeTxId1mgloAimIjvXiMzY+YA/vUdAmWqeGYE0SXFvcp6RwADhpZitaJFerYf7BC1hWZQg3hbIvaJZJmo7I5T22OXjuGZKGOIfeyabUSZGvx4f4Sri9s04QpaTYCoofKDkMOEpkmQpkOlCy3p+iGCVUJSB52X79O918JskXExBJCS/ZgNuNUGO9tLqFQqGBjl7WnL55/QHy2nZtnsXTtHo7vsoI8v3SI1lEBKd4Wrh9MIbd8QJlqnYcLkPjEFcq14BoavMcCc0PzZVgVVlQriT6EsAVvwArSwWEe8Wu7uP9rrwIAVl/6CCe3OLJ6ZgeeLWOX86rOfPZdbL9xnXhp4WQP1iD0BA9rMjHvbCzh3HO36L3tHOVZuyp2eh8SmSYtSCbXW+GFkNGMIcp5VM1t9oxN3Mm1ZA+9UgYxzh3bv3kWweAIm8fsc88/9wEZQHbLGWzsz2OGq7mmL2yivjkHmXOnZNVGvxMlhNP3BYT1IRUgR4fTCPJrO72yD9eWofH3pbU7Dc8VibOmhQ3Ypkou4meu3oPFeWYCTyCY+J1N9j3hWQUCPhxTo+Jt4dwmmodFPDiYB8ByNuP8uZxw4yYolRYZoldPEtoz8fuajGuC7KJTYu+holnsnLliMRzrYzwWyBLB7Oq4t7OMMxyJbrYTyKSbZKDZr6TJaqF5UICsOojmG+hZPmZ+6egTKZL+qx9CkfRvnhZJf/Tttv/c1mg04HkecrncE/+ey+VQqbCB4O2338Y3vvENXLx4Eb/xG78BAPhX/+pf4cKFC//J71RVFar6Bx+kvf1ZLBV4ATFSYTsy/vVHTMnw1157g8z+0pEevvXu8yTZFgQfv373Emb56v9TZ+9jZGrkOB0QxhhW0nj/HpvoLszvYfuQQfghxYImORSkujiq4uGtIi5xefjQCEIQfCzk2Ito9HSyA5hI1CcTpL0rIaYPsLXDkJNCuoH6cYEmp1KpANuVEK6dJtlPVnrZVBPDfpik5v44QD5HAJPOOo5ERWNjEMV5HqRqjoJwaqcSbt8T0GwnaID8wdYaPnP5JiFpmmIjlz3NbmsMoliYKIjKaUiKi1aZnWMk3sNwGCaiu+MyjoXBi7WYPiAuUGVnFo4jI8lNHesHSQRVi4qE333rJaxny2hxWb/lyPA8Ee998Ay7b8sbqHAl4WyhDM8VUd7j+WvhIRob8ySfN8wgFjNVnByw+ziyFXR4PMxMinGIJvytB3fOIhIy8C+5P9Onsi1cWtgl/oJpK/DHAkzOWYtFBrjHJ7VzxWO888aLuHiGFZE/uHMJM/EmITb2SIXjSjjk5nhiYExZW/d3l3BxdQPfvnUVAPCaPiBeEgDU2wkYtorckA3sAzOInfIU1mYYNycQGOMdzsM7my1jNNJoYXDj1iU8c/k2Uty0bzwOoF9OIz3Nw0F1E06TXeeNDy4gGe8Q/61QaEAFU54BQEYYY9QP02S8cvEhepU0cfyUiIE2J2pPLx7A6YWRnmJFgqg4iGUbGPBWVqrI/t08YuNF4uI2OUw75TjGnkhoj90Pwe2GqYVmdSKwDI2KgHY9hcjSMc78CMs6M48zmOZKuXvffQHrz93C2osfAQBaDxagRwZU2CixAeyhhvfffB4AcPHifUR5kO6sqSIgevAm6GCmDbeUwT5Xz5qOgmDIRHyKPT/9ahJywCf0SEn0sfODywCY789bD86fIov9MN55eBYv8WLBdmSMxwGkwjwweqSQoeNopOHK5btUfLmDEN54dA4JHng8FW+hUKigxFt18WgPvi9gj7/HCwsHKJ+w31X3p3DrcAHXeCROLNXGr7/1KVziJqhaL4J0uolcmj0fxxuLdL8VxYYsO4T2xAsNdKspqBzhG48DqJZz1IJvHhaRnKpihfPQkoUaOeGXDqcgCj5xBysH06i0k8jz4OrxOABFsXH3FhuLg4pNNIh8to7joymsnGdcy349gfu7S4gHT9uTc9kq/bfNUbQm57S9tXEWWf7ZlZlDVKsZmMMgBo4L4DS0/On2J2/7Y10kTbZA4Mm+7ng8pn/71Kc+Bd/3/1N/9v/TtrhwALfPJpujZgaZSBc/tsJemPuPVon7MrIVzMdaSBXZIGYbGj43v0stsVvbKzg/t3+qJhoL6HeiuLLC4g8e7S3gzCLzXvF9AY1mkqTUW0ezuL6wjTBXbiiKTbEfAEOe4rxQsS0FyWSb3Kptl5lFToqCajOF7iiEFf5zLluHrNpo8KiAWjdOqfeS7KLRSlKQqG0rkEQXQ16cbJSmcHlxG3f2WPvgpWc+xMH2PADg32+v4KfOPMAWz1o6v7iDoaWhcsAmrucWObLBr08k0ocou1B8dn3WZg7R4qhbMGRi2A9T60GWHbS6UUqy930BouQhH2ODYCAwhsE5BK9vryGpjnCRo0GZVAuy7FBb52z+BJpqUTL5/OwR9g5mcYbzFyTJwwyfmKuNNBTJRZ9/Vo8M0O9FoHOOxebJDNJ6D0ne6ivOnBCX4Z1HZ/Gp83fIFVuq5CCJHv76dTahxjMtdJsJLOa507ctY7eRI+M9UXKxkqnS+WdjHeJ7zSYaSCXaSHGS9ySEduI/Y5hBCiy9cvYB3rp9GV+8zhRGrQZDuybXIxIyMDd9QkW2LLu4W8/jDFcDfnt3GV/lnjqy7KDbi+Jv/iYTS/xPX3gXZj+MBi/IZpf3YLbi6N5hhV4o16K21vQsI/z+8hsMkfmaarHAYN5+3XqwipWzmyjtnvILQ9EBHeed9y/j4rO3ADBekaz3oSicR2JoEGWPrC9CcxWU3z+H5DzPHNzPUytOKbThHmRJ3SgYGvpHeUKwBNFHav2A3KrN98PwTRXNjXkAwLAfRpqjcNMzJ7C7OsXF+J6AzOoB3v72KwCAl1YPsLc7jxXusSMHR3A77F2KL5xgWEnDd0Ta73gsIM1b+3qsD8dS0Of8Lt8TUdqbRYFc1UOYOcOelc1bZ/HKhdtUnJUqOaRDQ9T4QsrzBXR7MaIN9FsxatvZtoKPbl7EXZ7d9udfehufvXCbRCLVTgI5r44Fzpd89HAViUif2sKPtpYxX2Top57o4TJAHKTaSR6fXXuAoxorVn//eBZfFnzKaJREF7LGM/EcGZV6Bjm+qNy6t4a1a3fR2D0NiC5Mlwk9DkUG2Hu4TK0+ueJS6zoW7aHeTNFCAGAinMnC6cP757AeHJEwxnYlatf3exFIooeTbVYE3jyeQ1Hv0XgLAP1hmPZVzFeZ/QTvClyf26Vug2GEcNhKI2OpGLqnFgE/7M3Hx2wm+fF91Z/o7Y91kZROpyGKIqFGk61Wq/0BdOn/6KbF+/A9NjlfPvMQkuIQ9BrRh/D4ymch2yCuBsCg4Uy6iX3uz/Ps+XvotuI44u2WueV9BEMGtQ8UyYXG4y3q5Rz6ZoiUYJpsw3FlguKFwBjhWJ9abNlMAzZvxUmSi1C8Rxyb7+ys4nNLmzQAxOJdxpXh7bZQvA/4ASR4u2m3niPVi2kEkYh3icRZrmYxchTMcD7Thfk9BAJjLPLJ2zFVshL4b/kkOBmIHEuBGPBp9ToYhhFLtQn98ccB5CMVhFOsyGwd5bFbY9duZeYQerRPhPJwvI9Z0SfyeVgbYaM0BZkPRucXdrDP3XP9cQDPLG/S+foeI50KHH7uGyFkcnVSd4XifVg7Mt1HzxPg+9xtV7ERjfQJaQsExojGeuTPU713EZfXHtG+AFDYreMLCMYGpzE0skPcLoCrtTwBaY40OZYCRXHQ4wWpojgY8Xuqh4eIRXtQOfqxtbuA1tEsPI7SLeZL8HyROFqBwJiKHs8VkQ4NoHHicnAQQrcXRZxPCrJqo1LJweT35WatgOv5E2pNfHF5E8d1NtmuL+8gOhbw//nsDfrbYV9HkXtuibIHNWjS+yJpNiEFnivC6IXxAjeHHI00iIKHJOfNnNSzEBWHJr1YoY7a3jQ9A8tLeyhxnyRzpGHh3Ok9NttRiLILabIgcSSE431aVJjtKKW7J1M9aPkWOg/Yd6mc+zaR/JvNOHxHxNhlxVl6+RABySNX6UhXh8gLKDlkQVBPs7q0yBBGNYl05NTza3b2mFrfVi+MKp/0c4tHzAAywM7P6ESxXy7QIkzVDbSbSczyfL6tD89j4dwmXI7i6ZkWXdueGUKoE6c2XybZhtSNYopz6W7dO4epVIMKUkWzUOdIcmG6jFgvih+fZp8VRA+xYh2b++z6XD5/H4LoE/LkjQVkpyrY5jyr1GPn2msmOF9y0tqtottMEPn8y8ubCIcN4kaFdINa2xgCqXiHFHnxaA+uoZEPnSQ76HWjKMyzhYAoexjtKSj34wCYSMDgBZTrSAgExniXq0NffeE9tMpZul5Xzz7A1u4CVpfYIvXB5grC3LOpVMkhl26gzw0yz2TLyGYaRDEQBQ/NbgwKH19HpgZZdql9Lwg+tdANWyWS+tj95By3n24/nO2PdZGkKAquXbuGb3/7209wkr797W/jq1/96v+h7/7FX/xF/OIv/iI8j00Kv/adz+Cnnr1Nv3dtGQk+KW7cPkuSbsdSUKlnSK2VDQ2QjXVIVdXvRNHuRQla3niwipGj0O/bQ51UZCeNNC6sbxBS4PoikukmtTWimRb6jThqvA00Vazg9iYrtq4ubkNN9PHgBmsJBkUPqmqRNDac6GLQiuND7gT96RffgedKeLjD/n45V6aWl20rsByZ2kmJaI+puezTXK+APKZC5+BghlLttcgQRieKZoOtfI2RhoW5Q+wdMGRgONLQqGZp8s5PVRihlHMjXFfCQoFNtoOBjkKyi+oOW80mM03U6mkscxPDylERhWiHVFadbgzXr7B7dr4fhj1S8esfMeXbmUQbmUgXs/On7aPRMEQFyKAZhybb1LoajwM0ULcHEUwvHlCaeLsdhxAY4/CE3adX1h4iIIyJXJvMNciP6Xz+BMNWDCr3zcoVqoQyAaDoggkB1hypqPXiePElll12vLGIKa6q/GBzHanQgOJRdM3EVLZG3LGPDhZxNn+Cnd15ACy0+JhHp2RmyjAdBbUDdsx9bi2xw1t5hVQTuVydkBRvLOBmtUgO5ZGgcWoW6UxsFNh+f+/D6zibLRPa448DSCbbyJ1hqIM7UqBwFVt4vozDty8TwhVLdjDoRsij6/K123BHCnTOfxo248gtHaHN8/vG4wBmrzLSs9MLwx6ECB2SFIcRtyceQjtTGI8FtPg55y9vIMA5NnYtgVEngtgyP6eRguBcFW6bIzxXdhHQAui8y5AEfb4CIWzBPMjSvRvxInDsCRj7OnksBdNd1B7NU3HS3JzDeBwgL6BwtoUZ3j5rbc8wzh8vfIORIc6tb+IHt5gDdyLdQjzZpuJufm0HnZMs4tz2AL5Ak/7a4i7ic2WU7jMupWWptOACQKjyRD02qubJffvhxgrOrm8QL9EeaRgeRLDKrSksI4hOO35q1BkaonpcQMtg12tpeZdsTWqDKF5+/n3cucWKk0ysg0YvhnNnWZs4IHoQZY/Qwq1yEUtcdRoIjJHMNPHP3/oUAODVqSN0elFCZZKLxxjcWad7LCoOcukmdN5+s40gEjx/0eqG4fkiqTKHrdgTQd21bhxhdUT8sOlMjZCz5fUt7G4sk0gim2jjpJwnWxAtYuLsxQe0+Om24vA8gcZqQfRQ4MIGUXLRqqcgyw7Gn2AsyZj/7+P8vqfbHwPi9mAwwPY2e3GvXLmCv/f3/h4+/elPI5lMYnZ2Ft/4xjfw9a9/Hf/oH/0jvPDCC/gn/+Sf4J/+03+K+/fvY25u7g/59j98ezyWxLPYIFjM1tHuxGiAaA91iq+oNlKYylWxe8LaS7HQEKLgnw4m0R6a7QTmlvcBMMVaVB+QYWQoZNB/W5aKvhEiqF2SXGwczcHgzrXPnb2Ht+5dJMuAWLwLm0/yYz8ART1tn1RaKcTDA5qM4rEeBoMwKS4CgTHMkQadr5yEwJiULaalQpZc3K2cxgVM6T2cW2Wtsmo5B38cQJSTpD3vVM01HgdQbSUR4YOWPw4wtIyrQGTZgePIkPkKzLJUiJKH/3CXqVO+fOY+oTtRfQDLUklJ2Ggl4HoiSn12X1YyVRYIy1t3lWYKc1PsvtTqaWiKTRYJ/+LDa/jq8hYdsyw7eHiwQDJdAGgOI4io7LgLmQZlps1lq9itFKgltlspQJUchBR2LXPpJlxHomtwUM3j7DJ7hvcOZjE3fUII342dFTy7vEGp5tlIF5piU3zK9FQZ5jBIJo7RyAAqv5aWGUSvr5NXTTTWQ7OZJIUNwApYiaM/nifQ90zaqVnO0/ng7nmcmT2gIu3tnVV85uxdBLkhYuUk/8T3jscBek77RghLK7vY35kHAGRSTYTjfWrzqNEBgrkWxCQ77kAmDP+YGwf2QrCaUfQqrKXqueITaE/07D7ad5YR4WTj+qMFmEaQfh8MmSi8yNp+Yz+A5s1VJNf3AbBcN7MZR+wiK868VhhifAghzSbBcec0dBfGCBACGGdZ0RMY9DEOhREos/2Op4rwb5UgFnnR8ICZfIq82BseZx/jM4XhOyIVGI6lwHNFJLgoQtSYq/qE7xQIjMk8dMQXCCOORksK4+NM2uDxZAdaZIg+L7By53bw9u++hpe+8DoA4O6bz2KGk/xFycNoGCT0zxiEEE10qXjvDXTMzh+iwxcwimJT4S9LLhbOb6K6w4pmLThCpx3HzCq7ltX9KWjBEXHcovoAvYGOFB+rLEuFxZ/x/FQFlZM8DrjX1V4/ir/4+e/g7XeZ6rIQb0GVHeTn2HEf784iy1VkACNaC+R1NEavGyVkWlZtDNpRVOrsu1fPbsDoRElUsbexhPkVhgwJoo+Ne+v4AfdC+9OXP4Ks2rjLlcazmRre3VvCGkex52ZOSL3WqGYQDg8JEY5E+jDM0xw401KRSTXpOPSgiZGt0HjbHwXJfkWTbSiSi54ZwtB18NUP//0nQtz+M/GfhRz4+IjbztjCr3aeErf/yIuk119/HZ/+9Kf/wL//pb/0l/Av/sW/AMDMJP/u3/27KJfLOH/+PP7+3//7eOWVVz6W/U8esA+/+ALyaTawl0t5jGwFfYsVIFOJJmVcLUwfw7YU4rZkcnUYgzBFRZQqOczOHpOHyK3tFWx3Y/iJqx8CYDDt5G/jsS4CgTH2uZGcLLqYmzk1VxQlD64t0SDYaccpYmA8DmD7eIZS2zvNBLzHFDGhkAHHkeF6bCBP52roteNw+SQZCIyppREIjJEpVGnQ91wJjXoKc6ts8OlU0lA0C0fH7Dhz6QYNakelAlTZQZrzhhqtJGZmj6kVUSnlkc3VaKBanjqGJLoULJnK1wnS7/aimF48xJ07zMl3bXEXR8dTKOY5orc/j+XpIxrIEqk2dnlbc31tC/ZIO5Xs+qzdNvHl6TcSLFGcq2RKnSTalkacKcMM4k6Jfden1h5gOAxTu80YaZgulum+9PsRVDoJKiKHPR1Bjm7oqQ4k3SA1oxYZQkt3aMIctaOwjFOnX4BNsoeczB8JG4RK9QY6pqZLVIypuoGAdOrGbHSiGPsB/PqHjHy+EuvgLFffhGN9KOERBs0434eMwUCn59T3BQRDp5lhkUgfStBCm0+o2akKNC7bL28sIL98CIW7rMMXIM8MgRiP7vHH8A5HCFxnixYvloFg84LLtRFwLAQ2OA+vL0JMjTGeYqTfQK8LSBLQZ8Ws3/TgdcIQOHIgnE0jMOLk4vsOpDUBY53d/4DrAN0enPMsB1AwehCP9uFnOQoV1BGw2HUef3CA8asXEeD8xYDZh3BwAPs641kJowHE+gm8DHvGx5ICwehB6LOiALYFaMHTY+4OgFScn78Pf78LYZpdj7GmITAYAhZvA04VEThgKNPYHCMQDMDngI8Q4f8Wk+haQggAsSg/DhmBcg2IcDRyaMLvsiF7bEkIBF0ij3idMFxDhcxJ3uZRDo6pUjtS1k3YXIASzLQhJQfwh3xSlTzGr5moYXsh9qxx1NuoJ6BGBzjkVh+pbIPeB1U3oT2WqSeHTeaqze0XOq0E2UcAwNHBDBbWGDrcbyQgCD507lelxAb4D7/1RVzgIc7h8BCdbgwFHnJtDkIIx/p4uMGOY3Vpl9Aca6QipBuPZQomkJ6qoMIFFr1hGPPzh6ft2EGI4oDyxQp67Rgt0GxLwYOjOcrvBJg9w8R81fVEBAJjfHDCFlZfeeZ9fMDFOXNpVoRt1/KfaHbb0yLph7P9kbfbXnvtNfxhddrP/dzP4ed+7ud+qMcxNEOwTc51sFSc9ON4dpkVICfVHCK8XTbpRT+qMkg/og8RDJ2+mKrsoFHNIM7JtblIF7piEa/G9iTEw6deNoYZwlabrdauTx1i2A9T8TIJe5ys6OOJDsHDqmJjLlehYuykkUEsNCRuhx4ZwLcESCJ7qe2RBmukYodzeM7OHlBoZFC2EbcUUqSVyznEoz0qdEQ+gEY5CuX5Iko1VgTE9QGa/Sj+zU02Uf3k+TsYjwPEbwqHDNzfWqHsOtMIQtNGKHElnapaRAhPh/tMgcNbYPuHM+iYYYQ7bOCKBg3iBwGAOQwiyYvGg705hEMmrfziyQ68wJhS3E0jCN8T0ODF7krxGCHdwLB/mtE3KZjMURCpbAMPNllg6VS6DiVoEXk0Fu9C1wd0z2OpNhSe2g7BpwIJYL4/ni2T9HzYYaGbj5tHAiCCqOtKCHF0R4/2mXs056gN2zFoYYMkzuYwiNFIw+f5c7pTy+Oowu7vpZkKxp6IAeezSbILXR9QyywcGaBRT+MBRw9fSd9GIDCm4GI5bGLA41AyM2UIqg3wolEIWvCHgBDh7605gpgLYDxg90VQQxCanEd40AAWcnCOuPfXYQHxlUNIKR7M3BzAa2gQgrx4CY/hlRUE+LUN9HoY99m1FRNjYChQoQPXwziTQcDlLvTDHsbRKAI+l48Pu8Dks88uAPYIgskNDiUZ/swMxB4PjPYcjBUVgsnvQywLT09A3GPPxDidxlhg1y7gehi749OiaWRCyGus2AMARQXMUx4afJ8VPgCcmg5lxURAZe/leJJmJD/Gjzt0IEb4cfse7AMd4qTdlDodK51WBEqhfbobR4SkmwjwQkdJ9ABEKYrF9wRqF/mOhJAnUvEuyC7E0CmS6PRDUBJ92m+gEcPYE8kZPSCMaWzptBKYCZvocONSQfCQWT3A5M2SVRuuI9P7UiieFi7ZYgX7O/MUpDu7cIjnljep9a0nenAfiwwSRA/BVBcLnEu1tbOAS8/cYsdsarh56wKF0o7HAYzHAinRbE+CKLkU6yJKHrVIfU9EfximMU9VLcwmG6R+6xphJJQ+SpzorkoOsok2LnOUv1LKkxJOVS20e1HYvgjbP124/rC38fhjbrc97bcB+GOAJP1Rb5Mq/PaPXoczZC/qQSuD2USDfEDeOVhEnPNgBo4MXXawnGGTgOuJiOoDirvoOwrO5EoUM3F7ZxnL+TIsXswcttK4MM9W+6VaBn0rSC/XdLGMR3sLaHA5+WKyjpBqoc2Rk/cqRfwIl/v2jRCSsR758xxW8sjGOtitnxLas3qPeuohfYhBL4IHxzyoN9qhiVlRHNRbCXR5vEUqwuS+1mODy3Sm9pjnkkho2L/bWsVPX7hDBVc+0UIwOEKZD3oAU9lMVmDZVAv1VoKUYQBzvwaA7VYG3jiAC3zgScR66PX105WfpaJjhslFWxQ9imGxHRm5dJP8UyKaCUV0iWOTTzbx0cECBe3WmymYtoIwbzFNCMwA0DLDyEW6xE/ojEJQRZdQmlYnjkh4SC1ENTTCN7mVwOfO3sVhpUCFsMADWP8ZR8f+2hXWOnrAn5fLCzv4cHcZ5/nKudRKYZ/bAzw/u4dUtoEOL4wPajmUhzrOZk75HL4vED9DVS28t8sKu6Lew0y2ihK/L/PFEwwGOj0vlqVClh0yFzUtFX0riJXpI7rHdX5fHjaz+NFn3yO5uBw2YXUixA0adSMIJnoILrDjcqpxMnEMZtpobs0R4nf2/CPYhkaZar1SFgdHU5jjLSRjEIJhBolgbpghTJ9hrcxhLQlVN0jYYA1DCCW70Cb+TIMgPFNFQDot9CYO2wCgZdtwONqhpLoIiD6kIkcaPyxAVBz6WzXfRkDxaV/2SYKUTELQwqiSQog79A/3CvBcCSb/7tz1hxjbEplNTvYNsNiTUK6F7j5bZOn5JiD4kLivVPXuMsZ+AJlVNtF3DgrQM21CD8WgBYvzlYadCMq1LGa4A7fnitCTHbLQSE9XYBtBik8ZmRotwH790Rl8dvqI4oLSmQYa9TS1q0XBgxY2cfsR94aKtxDURlREjMcBimY6rmcwny8TFcByZAQ1i8jWN25cRUixsLjAzqlWydI7fac0g5loh8jUg24ExXPbePTeZQDA7PwhJM1G/Yghj4W1PezdWUeMq+ze2jiLn/jTv8n224rB7OoUTr55PIOIapKYJRIewrYVem9F0SOuZKMThyR6aPEIpIhqwh8HaPxIhAfMdJe/mzOpOsrtJPKccG+7El0b1xNxt1bAarKBoevgy+//1ieCJP1k7ONHkn6t+xRJ+iNHkv64bGrQQjbBBpvhSCMuCwCYroRnptkLvlvP4bnz9zDospcpHBlAlDxc487N5iAMWbHx1gMGvX76yke4+eAslnlGWGR46sZsexKS4T4VDKYRhOXK5HuyVyqiNYzA4S9ySrXJL6Q7DCMS6VPkQCw0RHcYxtU1hip02zGG6PDixBgwhGqiUNNUi9p4vb6Ok24Sa7w4yRSqeLSxghAvEt2RCFU7/XyzkcSjGtvvn1l/iFIzjV3u1j2bqyAUGUDhsSS5bB3ByBA7W4zkadsySt0E8Wwi4SHJip+J9tDsxmiwubW3hOfP3yWi+7gbw+X5QyK6BzWLvkdTbAiCR3lS72+vIBceQOar3d/dPIOvXf6IPJdSiQ4EwUOTFwJnLz7AIQ8GNWwVkuihNGADw6fWHkANjcjrKa4PUGpkiJg67ETw2upDfi0jeL9SwI9fZITyd7bWcLF4hL96ieUJioKHWLKDM3zybbQSuLa4jd/jz8tUeIAvc9n+tz68jmvjAA3kNSOMab1Hg74kegiHDVIC7VcKKHEyvuULaJhhPM+Lwk4nhoEZhNVl9yUb60BRHOjcbsK1JXR7UZpAvvPwHM5y7sZPfeHbOHy4TKvqoDZCPN3CiL8Dri1h89ZZnJnI61UH33mbZbP9+H/9KwhG+5QY32/E4boSxYE4loxEtI+7W6y4u37pDmKeSEhbauGEYkcqpTxi0T4dh6paTygMBdFHt55Aap1nitUS0LjCDMIYdjsCg5Ov5cgQ9jAI+OzZ09JdbL11FTPr3P+sHoPvSGS++bjcGyMFarKL/TeZB1Vmpgx9ukaKrf72FATRh8rbkye31xBpnzp/l++uIr3ICoh+OY3odBXv/s5r7Pxffg+PblxEBuwcXEdGt5wh6T4GIcpxsywVK2e20OZ8r5A+RKucJQuRUT+M0kkBGS6vb/eiNNb8tVe+j3sbq4iAFUXGIIxopI8gV942qszEdY17tk24gqdkfQEhjq4nwgMkC3UMuDeWYitQNYsMds8s7kIQPXpvs5kGfu8uI6r/xKdfx8HmIuXtqZaCUSv2hIx/5+EKWRFIGlOeThzcc6EBLH5PXVvG67eu0Pj53DMfwuhE8O8/YNyoL567i8xMmVAsVbIoR3OrNI1r5+6jzYvClZVd9DvRU2+0kYajdgqzHBGXJBczmRr50A16EWrV+Z6AubkjWIaG/idI3Pbx8cr2n1oAsO3/tEXSf6xuq1RySCyxgXwyCU0mjE8vbiHCVSPTjgxJdii8steOQ4/26aUORQboNBNYzUxy30TMpmsU6GiezJBJ32qqhpg+ILJtJltHPtYmF+TSZhTPLWyTad/u9gJlCSmSC1F24fAJpJCt4biSR5D/7a+8/yy+fOY+Wjw8V5UdhEImZGXi3xSgLLaZXBWxfpSUX46lIKEPCEnqWRparQRxdGKRPgqcAK1pIyzoA0xz515VsyApDjI8V04LGxgNQsQrKlezuLK0RVypRitBRVJvoGNlZQdv3WSTz0y8CcvQaIUaCprQokMiSI79ACK8BTjkQbsh/vOzy1sYDMJQeNvvOcmFaQTR6LEB9UyhClFxcFJlyJuoOIhyn5egNkIi08QMD3D9vRvP4rULdwgNE0UPjieiXWPQezBkUmSJ64n4s9dv0Er5ucUtROI9yjkLyjZzVJ7kfokePFfEOh98hcCYOEiHQw3PCj6ZeH46xZ65SdtCVm3GuTph53Ax9wjTnGgrSw6CYROuzcnFroS4PqDWQyzehetI5Of04N46sok22ry4/ezaA3zEc+0ugZF+J606LTiCPdIQn2OLis5BEfFYj4qZYSmOL3z6TbpHjZM8EpyI26qlMbJUKj5OqjnMFMso8jBhSbXhmCo8l/2+sTtNsRvzazswOhGovAXUb8QhhUaniI0vYNjXkeFS/dpBEYVJnMdKDRtvXUO+yN5Lea4P63aE3ttRI4ZssUoEawg+WvtF5K6wRcfYEzDYZwuD8TgAu6tj6jybjLtHeQSLDdi8gOi1YtBjfSJ667E+3uOy9JVCCdNruzA5V0xSHHQOCuRl1DlicUOTNlijmcTKpYdEfA9G+1RszK/sQkv2UD1kP8uWg+zCMSkDP9pZxWyiQXyfxbBBzvjdVpyNIfxZkyQXouRB495PheAIguhj6x5DQM+vbUIQfCqS3t9fxGtnWOEviR7alTQSPAz4xkeXcWFliwrwULwH3xMRekwYEOa2BKN+GMlkGw3+DMeSHajRAW5zOsPC6i6i+oBEA6uxAVqdODLL7N2MaCZk/gx3NudwfWGb0NLaYRGpYg2f5QuYoD5Er5bErUO22Lk0fUgK5vlMFXLQolDrYKIHQfTQ5C1EAEiFBqTCPK5nIQo+cfw6/QimHsvF29mdx+LCARS+iPskNn8M+B9jw+3j9Fz6k7w9bbdxqPJ3n/8Szi2yAfR3bl5DNmhgjntd1LpxnF9jviWVUh65QpViJ2ZnjtHvRslv4/V7F/HF59+lTJ9qK4npXA0mX+HrkQFB+L4vQlZsMkQUBB+lRgZn+L42N5cR1wdI8MnR98QnyMMDM0gtQVHwIUoeQdy2EYRlaPhwk1kATFp8kwGk34vA4VynSXEwif/4/s0rKEQ61MYJaiOUGhmkuQv3ZrWIq0vsGE+qOYzHAToO3xcQj/aomDuuZhHWRqRI6/ZZnlSStwEHA50QqnSu9oRc3vcEJGcr2OWp53uNLF66cpNW0q4tE6cnGutBT3ZgcmfnbjsGUfSQ4OGfjqXAGISe8P5xbZkKsLc21/HZCwz9ubm1imfO3UerzgqOUMhANNNCs8R5ZdwyIc8Lv/3DGUT54NkaRBBWR5hb5Mjj9gJy6QapiixHRki1oPJCJ5Fqod1MnmaoKTatSLcPZxFWR1REjiwVyWSbPntcyWP93Aa+9QOG2vzIM++fRs0MwjBNjTgkYsCnZxgAStwteWKncNjIYrl4DFU7VUM2m+yYu0YY+WSTrt3q/D5Ln+cKI98TIMinE+ygkoLKEQk11cWoEadokcqDJXzz3kW8wh3rO0Mdc4USFZn5uWPcvn2Bim5B9FHhrdtLL3yInVtnscRz0MxmDKNhCNnz7LtufvslLC7tI3mdnedoP0NEZX22CiEywuiQ82ZkF3KqB7sxQZYMiAkT1hE757e/8wpe/Oz3iYdl90MITbHxYHiU5SaQ7D2eFEM9HnEhyQ6CiR5Mjh7VK1nyJ5twytzHfKFGnQjd01YjhXSuTkh1slBDr34aAOs4MvKr++y/B0EMWnESK2zsLmKheEJFZaueQiTapzFAET0KQNbCBnxPJHl8JNKHIHrEcez8f9n7z2DLsvQ6DFzHm+v9vc+/l++lz6wsX11VbYBGN0CCMAQVFMGhFFQMBxyxQUkRjOHEBIchMIJBDPmDwYgJjSI40oAciZAhBQogKADsBsB21eVNVvp83l3v7/Fufux9v5sJhkQopruBZueuP/XyvXffOfvss/f3rW99a41zqFS7mHJiv8yDxxH/ulQYwubJXb44hOcYODhngc3O+hGmkwxq3C7GGadhzVLo8YRtfeWMJEBOz5awvn5CiuyFWhfDdoWCDyNjIUkE/N57rJz95Te/DW9mkuaSIMWEpKWyM6imS+twdFKHNU3R+3T/cBMrxR6Oeuw51bIjbOxwscy7l7BSb1FDiSRF0A0XFi/d7TaXIQgJnrvI1tZ8D/9//OvXAQB/7fX3IYqLgOi42cCli3uY+hF2fvXe96Xc9rPZvwxFUP/tv/CHHEHi43+ePCu3PQuS+AJ79OeuobHB0aHTGuJIIq2bfquClRs8KLizg8alA4xOGEE2W+8hsAxqh5bkEJIakBdRujLEyYMLJJUvq8GCEK0GT5ULnHEaw34Rq1dZhto/WEZhpY1xk7cHr7YQ801seF5BFEuo8LZaUQnR3l2nDRRgL7LHibuSHCKORGg5FqzMWgtlWqMwIeQDACatMlLFMWXVSSihfbSMYpVlinO/LYCZaOaqPcT8cA59BYrh0f2rugctbdPhnUQizo+Xsc55JnEgE+GzeukAv/evfgSfe/M7AIDIU6DlLIy5oalmulBSDh1Kkavh9CEr4y1tH0IrTuBxLszH7z2PRqmHpcuM6yBpAb7ztc+SCnJ55xiRp+DwNoPX84URMtx7KXRVqBkbLldJltQARnUIhyMWkhJh1CyTI3roqQsBUCViBFreVQfwUg0PBAcnDRSXF50+AEM8itwSx6z1EfL2cH9qMrFJvg6N8hhWq4SjfW4NcXEPenFCpPCjuzvYuMlKgEkioLO3hjE/fJaWmzAKEyT8MPZmJhTDpec2f2ZzXys1N4PVKtE1DjslMqGNAxlRKJPGkpa1IGkB5HlHmumSJ5q+0oN3XqKOK6+Xg90tEBqydXkXghzRdYWeClEOaZ2OTur0HiqGByVjIXiCbK9XhxD4Om1/dAnFjXNo3B4lCUV8+pvce+2FO9BXenBO2Frzx2mklroQOeE+GGZgXBli+E1Wck2vsWcUcxPqYGZA4aWZ/qN1KJqPwpVD9jOOig9/73Vcusr2iMDRoBgecbgEKSIhSreXx9neOgVN9sxEffuYkLXW0Qo2X/qUeEey6SK0dTInvvLaRzRXTj+HUa+ItVcZz80+qyB0VXgc7cmvtp6aW39q0rqUtAChqxJClWt04c9M2gdODtaweuEIAS91p2t9xIFM3ChBjkjgUjFciEqIMUeDMtU+vUPzv3X88WVCxM3qAL1dxo2UlQBmfkoB6Hh3BVEoE1qaXmszn8CPL9F1ilJM5VhRirHH3+HNa4+g5mZEXD9+/xrS2SkyXGMqcjSc76/B5AlNpjyiZzRtF6GlHVrTScTe4fn9j/sFGKaNFA/2Q1dlTRl8fWg5C8HMoLmZtksobp1i4sVY+vud70uQ9DPfgyDp158FSc+CpPkC+903voylPNvIZCWEKCTUpv32nRvY4vYVjqchm7Ko/DYYFNAcFReco/wEg14JQ344VYsDCGKCGc9IupMctjk59r3di2RBAQCbV3bxtW++gSsN9lntUQGikGB7gx3sT7rcC2ICSYyQ4ZyL337rM1jNjnD9BvOXmmef86zStQx0+iVCJYCFO/Zxu44XX/4I773LylwX148QhTLSXJH7g09vQBYj0gnSlID0UmazNNLpGXEEDvc2oMghleoK2QkmszRyvGRkpi0EngpZ5aUrOaRuLdfVcf9sFVdXmACkbrjQUw40Dtv/D7/zJdRNC9vcyy6bmyDLIf7haQ2uq5MCd1p1sbl+jH/8HZbp/fkX3gfAVLwB4OxoBYocojVk81TLD0mb5a1Pb+LzL72PKXcRjyIR570KKhz9smwDS0tNtHjHouNpWF9hwWqvV0I+NyYB0GqpjyBQkOMlj5OjFQ7Ts0NAVX20umVC4hpLLUKwCqUBxqM8LH7obW4f4Jvvv4jra4c0P0eny1jmyuhJIlI22+2XUCn1CaFJZ2Y4b9VIMbheb+PxwSYurLG5bncqEIRkoSLNPbUAhmBpqo8TjiRpcoCdCweEFgWOjsBTUbrErss6r5DZ6ey8ArM0psNE0gI4wywmnEeiGy7CQKbOyny9i7feeZk0qsq1DnUOnu+vYWnrGFPu1Zap9aFXhxg9Ygeunp8idLUFwTxjQeDrzG2VIEgRNG5+e/id51BZaSK1zP3mihbCTobKXFaHoXtzflMSimRwbDZ6GB8u4V9/zIRL37x6B5ISEs9q2ilBMx20TjgHZ6lN9zuZpbG03KQyp5J28MlbLxJx3Xc1OI6O27y1/Pk1hnTkiuyz280aVjhaLJsuHnx8DSu8PV5WAkShROVIe5RBqjAmLpUzTpOMx8pyE4GnkKilJEc4PV6mclImP8HR0SoaVYboua4OUYypTAwwBXQAKJUGUDSf3mNRijEe5RadtqYNXXdhO1x+QHfguGxNm4aNw/NlXL/B0MF52a2+yfbAwVmN3A4AwEg50FM2TB742O0SWbw4sxSiUCbOmqIEGI1yVJI/bVdx/bm7OHjIysiur1IJ3dRdyHJISLvvq5haKRKmTGIBmeyUytGOp+HS9Qf4J1/7IgDgxdo5Ie/ZHPOcdFwNszDEF77xtWdB0g/w+KHlJP3Bkc9MsdvkWaTmIq07GHKrkavLx3iLdw197tJ9htDwLEoQElxeO6SukSQRUGm0YfPympFyEHgKubwbXZdKPM9v7COTn5B2jzNO4+ryCbXWbi2fUjABsJLRvBNsYKdxdf0ACd9AXuG1+DH3QZPkkHU/8e+PxjmYmoePuajhlfo5tdKvVDqYdgu4xNV2h8M8TMMhJ+5qdvSUkq+Ztgjiv3u4hXqgUMAlCAnyuTGVl8JIxsaFQzy4zwXddA+epxFh2g8UbHBV7EfH69iutmijEoQE1jhDvJrnaufwQoUOcs/TyNwyjGSoaoCbnLg+6JYgiAm+yAMK31ehqj5l2YbuQtM8bPFDYa69xJ73Ccb9AvEv7reW8NnnPsHDXba5Xtreg6L5KFMZVCT/sPvtBr64eo65CEAUS8iXBzSX+dwESSxQObLZLSOfnlF54fH+JtLczmE6zsJ2dCqJnR2tYKfWJE0ma5pCx8qiYHNF7sxskWGLMczsovlgNk1judHC4yOGQi1JzaesJcJIgixF+F2+Pn7+pffoQJC5mvucv7Jab+HoaBXblxkaeHK0gnq9Q75nADDkxp/Vm4+powwAZt0CZuMMIWehq8KapfCQe/+9nLKxVW9Sidl3dbR5aTCdnmHcLpFSvDZ1EFgGyU2MzqqoXduj9RH5CpK5ge3MRGa5A5EjKUGgIA5lRA57F6XYwv/wz34G//6f/Z8BAFmtjTgSCUkStYAc4SNuLfNFTrAfdkuorp2To7yi+dDyUwin7J2YjrLUQFEuDaAYHiFLVqeId5rLuHhpl55pbe0cz/NyVDrLyvPzDjVd8wgN8iZp1Mo90gnSTAeCmBD6MZ1knkKq947WcGGdvWuTcRaq6sPkwey4WUExP6JgNYkFHI5K1P0GAKeD8lNE7hrXPjo+XsH6+gnxDN2ZjjgRUK1wkrMaYDLMocSRaAAkayKrIS5t70HmZd5sYYzmeR0+N71O58f4x1//PH7+1XfYc+JI/Xwohgs/YsFXq1PBXr+C17hP5sl5A8u1NpUF15fPkcQCUjyYkcQYD3kDymcu30O7U6HALp+eIZOykOLBbLdTRhgoJP1SS00ZmhYv3rcKF8h86/ZzuLx0itNhCXb0ffRuS77LxO0favhkMZ4hSTwKv/fv3YI7ZFnM+sV9xJGEzil7gVIpC9UrrGwTuRp+72ufxyvXGWnRnqaRr3ep3DJoVnlXGdvkisttJLEAh5e94khCjyMFkhhj89Z9KicBwPv3r+LlawwNMvNTaMUxZbCCFEHhrcKRpyD0FlmDknIQ2jqRibPFMRTDpe4e67wC39FoE0xXBlSK293dRGeWxY//5FfZPXULSK900LvPDszTswauv/YRmYP64zQsXm4DWHZbI0l+RkTOcvVhq1NEHIloc8Lo2s4B7FGWMmlJDonwKggx2mcNrF9j5UaIMSQ1WDi1T1KYjXJoPMcCoeHuKvGZBCGGICZkOWAUJhidVQnhUlIOa1vm5QK9OMHkpEb8BX9q0oHSOa8zjhNHBsbtEorr53T42t0CcltnmB6x4PbbHz2Pa/zw0HQPohjD4No0iuGie7RMgd9Zs47NzSNSRR5PMzB1l5R7lzcXjuHuNIXJOEt8FUUJECci0k90Xs5m6acERnM8+Ih8BbLukwCkdVJF+2SZfL6M7AzBE+tB1jx8+NFzxFuaDHMLrthKC6Lmw+dlrnlQMm95zzR68MYppLcYB+XD3/wR7Fxhz3A+v/N5VzIWZmdVsjrR0jb65zUKfJa2jtE/q1EQmcpNkaoO+LznEYUyspxse3ZnB6nMDGleJh03K8gvd2BeZciK/aCGAW+1L26cQ5RiKHw+Ek+F189C4rYl+mYX8UyBfcLeRVGKMesWCB1SshYiHny4wywUwyPLl/kczcvA02YZ9iyF1VfYHhE7GhzOfTre3cTlz74Pu8ne08DRoWctDDiCYtsGsrkJodhhoEDPWJQMKCmHpBecfh7WMItMmd2/mrHhDrJUKpydVjHpFslfTDZdKpG1jpaRJAJ180WegiQRCbX1pybOD9ZQ5/58u48u4Mrzd4hnNRtnUFlj85zEAqJQpkCne7gMTfdQ4N/v7a8gx8t1ACvlzc1uk1iAZrqkgzQ4aWA6S2GTe9ex6xJorYlSDM/WkeVrwqgNKFE8eO8GVq89pr9j9fJoNuuoVdk7ka33IMgRtDJbAx/91ufIXknVPUBMqNwmaQH27lwi3qGWdjDpFkkN356lkMoutNLapw16x0Uphm64MPMTTPwIm//1/vcFSfpTmV/4riNJvzn9h8+QpD/qC/jjMjLVPgomt5l4tIXt5+9Si+tgUIDJBQLVtI1b249RuMQORWl/GWpuhrM7DGkqL7cwbFfwL+4w242fz38T6ZUOCbr54zQJGJbqXTz+4Dp13PQ7ZXz2tXfpmpJYwPSkBouTOMtbp8QTGp9XULp4RBu3ICbQihPcvcfq81EkQVZCmPxvebYOxzVQ5X9LlGJqWd7aPMLw7jXMzhkK5cxSMGt9pDnpOT3Io7u7itImQ8OUrAWDb0TezISm+YQkxZGIKJCZ+CAA1XQw6+exwTfjo4dbKBaHtKHKpkulwSQWUCz3iZ8xv9f5QWZP0shWBoRYzMtS87F2dRcCz7hl3UcqPyVLhpW1+/DHKbpOUWPcsCcz7XmAVVs9g6QF9LOuo0MyPOI6mLGIyNaJZ/XSpQco8LmZnVfgWgaVAGwnh/LaOf0dRfOhphyUOIyPc2b4OeZBk1EaIeD3EI8yKJb7MHkQ0D9YRqY4psO4tbeGYrlPKIPtmMjL7PmqWsAOGI7C7T7Ywfblx5jxEmI2a2HUKlM5VlIibPASF8ACrvmmDzFG5GgwOQerc28LcSwhzzkmncfryJaGcPn6Waq36WftZhnZS8dovce6+4ob54xX9gQHKZWZIV/t0xqQpJgO9vkzAYD9vU1cf/0D4iSVV1qMC8M5e9l6D9/4+hv4iYv/DAAnNnOEsCQkUEpjRBP2u6LhwernUX6OBXPRwMDJe9ex+hlG3h/e3UJ2pQ19nV1X7Ej0rgWeCjVto1hjyIiWn2JwtITyNkNpZpMM46E90YVpcJ2kC6bHSuUcWRw0swgDBVVupDs+reLxwSZe/sJb7GvOfVTTC37PnK+k8kRj2mOo7OxgFbW1cwreQ1+BKEYU3ItKiKM7jNtTzI9QXG3Ru6blLFidIvHKRid1GOZc6RK4dJ0ZOs+Rp6OjVTIpHjSrMNMWkbFnVgpL13Yx488lXZigf1bDygusy2xdCel9GDXLUM0Fz7DTL2LrwgGTZwDjd8WRSIj6ZJDD8nMPEfDnmEQiketzhTEkNSBukJmfYrx3AfqI85tKI3jDLCFRqysLQ+f0RhN+P0fzoaQcXLj+kDoF05UhFNWn5O7gaA03Nk8pWSzXuoTwDZoVZJc6SEIJUvKskf4HffzQBkl/UALg/PEGCgbb1NYv7iO0dTKVTOWn1PWhGB52j9doAzTzE4yP61D4ge5ZJlTVxytccyhJRHj9HO5+wlppb772IcrLXAxQTFAqDRadQGMP7jRFh//WS3cwapXxmHuKBYGCKq/V39/fwgu5Gakxy7qPo9uXIPFMKF8aQkvbGHPV5ExxjFLujDbYr/3+5/A8V5g2sxaub+4R90NSAzx++xZle0tbxwgcHdPm3H9rYdBpT9OQpRB9XuZbu7oLJTcjAnXoqYzczpGCXHYCMz/BjAdG/V6RhOFUw0PoK+jwluYgULCyfYh9burbWGli0KxQgKUbLnXUvPD8J/CnJpFFh0cNiFJEXDC3U4A7SVFpojRXF+YlJD0/w6fvMe2WnZ09hE+IS1bXzslyAWBZtmJ4+PV3XwUA/NiVu0So9xwdnqdBCzmP5qyBC4UJju8xE1JV9Z8m9QoJVN3F8kUWkM6aFQqKa5f3MWtWCA0pLHVxtrtOZYv6hWOEtg63zw7JQmmA1qMNNs+lESQ1oE18c+sQoadRCc7t5ZHKTWljv/vxNVy6/Bg2RxcLlQEdeohFjFpllHiwOp1mUF1qE7ohihEEKaKDrvGZTxHbbP5k08XZd25QMBYHMmTdp8YHVXdhFsd0nYrmw/cVODwQUg0Pd95+nt/DEdxeHge7DOFcXjlH8fLhIgDNWLh16SFGH7CyaGqlgx2OqkSuCq9ToANUSTsw81NEUx5UF2dY/cwnCDlZP/BUqKUJ/PMcPac58hr6CiTDowNU1n0YaYuC28ksjZ2b9xFxBFQyfHTvsjUchRLUboHsX2pr58hePMbbv/ZlAMCli3vY3jiiQDBT72Hv46tYvXAIAOgcrJD9UHXtHLsPtnH9dWZ5JOyvQFYD3P6QyQ1cu3EPnq2TT1zgqYSM+K4GZ5glvlIykCAIMfwh7w4d5dAZ53GLB0LHjzexeuGQiP4Xrz3EW++wjrM3X38Hhw8uoMSvK2UyREvhicDBwwuo19s4+5glcLrhEhlfM120jlawJB3TMxbEhIKV/YN1LNfa1FBQSduIHA13PmBJ6NbmETU2qFzscn5PkhZge+0YGr+OTz++jpsvfYJvf41ZWuVMC+tc5qP10SWY2RntgcPDZRS3TmmfCxwdZn4hc7G5fozReRVZnkj6tgGLo2y50gjBzIAzyWAWRADYvX2vx7Ny2/dm/NAGSV/5ylfwla98haDKmW1gOuEqwSkHjw42cHmboR96hjlgA8DdRzs4m2VR7LOXVhDZIWfzw3g2zhDhFQC6zSrKtS4KmXlZJ0WHTxxJODxdxhWenWi6B2uSpkOwfX8TSSJim0vw3znaQLbAMrm5QJvHyZCuZUKSIuR4q32/U8btj9bwOd7Wvvd4C8tLLSrdlMwZ8YJs20Q6M0PvlB1cpaU28vkx/Sy7VhH/7D0WFPzU9dvQhQVXoTMoYpNzHbxJCrLpUnYfBArSgYyvfvASAGCn1EEqP8Uh9yqrFgd0gCaJAEXzMeKE6O2Le/jXb72GFy+y8lrnvIaZYyDZZ4HhUbtOc/PBh7dwaeOQAozRKIdSeUDyBkcPt7CydUSt1+OTOgJPhcIPo/bxEhqcQzEngM5J0JIaIPFUOrjnBpyvcoFRWQrx8TvsIF+pdRgZm/PMZq4Bb5ImUvj5WQPWnok0f06q5iNJROzxDH9l7QyDuaxBP4/pKIvpdBGgHXTqSM0Nfs/rePtkA1+8xEivpyfLRJDvd8qorjTpcOmd1pHJT0iYU89YGHdKJDxYyE7hTFNI8fXlTlOQZC5VEUmYzdKo8QMjXxg9RbiPYwmffHIDL73BUFBxspBxQCyifvMxLF5SnrTKSBXGePse199ZOYLUL9B1fHr3CpJEwPO8fTwOZDRqCzNUAFjjxOX7D3fw+nOPYXMRw2zahmMZhIBap1WkNxg6JmoBon6ObDmM6hCRkEDK8LUXiohmBnUKNj5/G7Etw+aJgaQGVPLJLzOUYI5uCFIExfAI+VzbOMHup5dx9U3WLND6ZIeMhLXsDM4wS2VPNeXA7xSwvXUIABh2i3jv8ALeuMi6FAuNDrKZGe58yubr2vX7VBLqndYZz+w9FjDEiYDyzjEJd1rDHAQxwfEZC7IvXtolMvm91jJev3KXSqdRqKHfKSNvjwAwZEQQEpztMQ6bJMYIPQ093olarndJTqB73GBq1FyqIW3aiEMZIkeqS4UhzPwUxyfsna+UBoRiz8YZOJ5GXLqvf/g8Xr30gAKbMJYwGucQc42uIJAxmaWxzcUljcKEgtU5sjuXEUkSAf/V26/iP3z+I/ZMyz1YvTxxL1udChkL5/Jj9NpVLG2xfWzYL+DoZBmXLrNE8mh3A6vrJxjyBDYMZQhign/O7Zh++sYnMObm4VKEk70N1BptSPH3Tyfp2fjejB/aIOkPDlGMkedE1vEwB1UK0eUv0HpxTMTLSxuH8Pe2n1KEtcYZjKe8JFYcwHV1lAsLT6XJMEddVEkioLbCNrGPP72GjO5QAKaqPiazNImyjQd5RpjlkHAlNSV9pvnBMb8O39UQhjJaIxb4bC6d482rd4hz8mmnAVmKiGy8VO7CewIt6fWLpF6dmqagPyFEOG6X4LgGnuPGjd1BARN+cO/3amhkRpTNW6MMoW4AKzW88+kNXK2xQ68zyWPcX9g1JIlAwVgcSUgVx2QF4ExTeGHnEW2gjY1TtI+XqAxkqh5xNzYb5zg8W4bNfd/Wyh3EkUibsa55kJSICOfze/7t27fY72dHxMfptKowDQdmmrdtT1OQlYD0rBxPQxTIZJ0xm6VR5p2AshJg/2QV59wj7sWNfcSRiE6LBQnZ9AxJIqDPNWPKxSFEJ8Yyt5aII5FQyv/xX38eX9h+hNtNdrhcTwRsVhdaLsXiEH+iMCKCdaPRxoiX0456VRRKA+oWMkwH1jhDti2l1BSl/Ai/zYPXV9f38fW7N/DjnCBrTdNI8QBTVkMoSoDuI3ZgzjuZ5to2hulgpdLB+YMtmtvlKyzBONtdx3ajR2VPRQnQPWnA5880nZ3Bnpk4OeFdV5UO9ltLsHg3WBRKdL9xJCJTHNO6bJR68NoFZJbZurTOK5hZKUR7DHktVAZE1AYAoz6gsjcAKPmFZlkwzCL2VCrz6LYMQY4JHQssgxAKrTqE18sRZy2JJGiFKdqcw2ekbcjSwohYVkPi+kzbJfzahy/hSzss8LdnKTw8XcMLV1mgKwgJXt7YQ8B/N3A0+L6Cq1fYz4tSRHIjqupDNTyUuaK2anjwhhlqIimUeoh8hYy6Zc0nT8k3SkOIUoTDQzZXK0tNNDZOcbq/xj87QLHSJ72mbHGM0+NlWPxZpFLWArHhmlEF3gjy8GQNmuYRkTsKJcz6eSKBu46+UKeORZiGSyX1pcwYkhwRZ69WGCBORJLNsAZZ1DbOSGIkiQUc8SDw6tWHT5XQXUfHX37zLfz+bYYQf/nl9zDqFahJopCd4D63abqi+tA1Dx5H3QQhQRhLVJpLEgFhoFCXoWsZGI7y+MmrTH7B9xUU+drqndZRKg0gqwFkfB/FJPFMcft7MZ4Rt5/QSYpnLEtwPQ2ZtEUHrCAk1On04dEWrjdOUV1iL+2wW0R/nCMPsHTagqZ5FICoqo8PHl3CpSVWfqsutTDlB8BonIOm+dTNlslPYE3TCydqV8NwnKVujHxpSJuHbrhodyoYcb+1en4ISY7IbXs6yMO2DVLJlqXoqe4SUYrwm28zEcLXNjlixjcPx9Hh+io+PGcB2Rev3EUQyHRdnqsRMT2dH8OZpTDi6EexOIRqePjoLuOgLBf6cH0V+SdUtXPZKZXJLq4fkeVCHIlPka8PT5ehyiHqFcZ92TtdRb0wIPmFzhOt86rqI5WdkUji2aiIjmPip155h+ZSkkO8f59d12vP3cbjx1u4wDP4fqdM5GnHY7Yk88Dl/KyBjZ0D4k6FoYRsYQyPlxCTWKCDKV8ZYNwvUJnPcnWUcmNCAAfdEhxPI5uF6SCHTr9EKu+65pFw373jdVxdOyIxxVqpj7NuFR2LBajXlk7hBwpdd8p0SHri0tVHmPbyVC4YDQpwXI065SZWChe296nbz7ENWLYJha/500EZaZX97hwlnB8+gaciXRph0mHz0e6VsbV9gDQPVh5953lcfOND9rntIgJHJ/J15/E6NMOhz+q1KyxB4chKs1nHyuoZBdqCmFAgkyQCIWMACyBOT5Zx5RWGlgpShOb9C1i6xhCOwf4KTK50b1SGEA0f7//LLwAAbrz6EZSMDaXKhQc/ZCW63E3WoPH+P/0yXv4Lv4NHv/4GAGDlyi40zisK+jk4/RxdF8A63EpL7P4lOcSoVaY1kS2MqaTuTlOwpgsPvZPzBqaegUOuBP/mxh4j/vJ1bdsGyrUumSsniUBBtKIEyC93CElpdStYXz+hgFyWInTGeVy9yNCQOBYJ8VZVH66jUyA8HuVRLPdhP4Fadp9Qw09lZui0qyhwGYwgUKBy3qEkR3AdndTuZ+MM4ljE1x6z8tpGeooXrt7DAQ/IVpeaC/FU3UOzWYfN98vLlx5Dzdj4zlsMtb6yfoD3dy/RNd3a3IMshYQ+OzMT7R57P7JpC5nMFP8NL4O/0ThHzrRovjJpC7lqj3h5rqNTAprEAizbpERRVX3YjkFfh5GEs2EJmzVGlfj4eB0vrB+QqvjvfnILQ961/HMvvI+PHl/EhWoLszDEZ373698X4vaPp/5P33Xi9u9Y/+9nxO0/6gv44zJ6nQrK6QXqEIYSdTIAIEPXjOIjk5kS7JzNTbDbXMYS1xM571SRS1lk8VEqDHFra5daXg92N7HbZ5vYTrkNUYhpM52XS+blON9nnR39MdtAS/Uufv8RE5X7Uy++Bz+UkeHt4jPHQCk/IpRmvoHPjVtPx0W8UenD4pvgcJSDwvk4ihygMyjC1Ng157JTTKwUdrhE/zceXkE9NYOpsI374vY+vvHxLQDAy9uPIAgJ8YriWETgqbjHJQAK5gyqHGLES5lRLKI/XEDe7U6FDmZFDuF4Gpa47sujYRlbuSGhZTnTgu3qmPFnEYQytaX3J1kYkyxtai9efoBup4wuPzBSKRthoODy8sLAdeya9NlPmlWejAvIah5UjiTKUoRRp0QZaKZoY9QtIstJrIcHa2QWPOoWiTMCALmUhdE0Q2agjqfBD2Uq3UWxhCCUSf28XOnjHpcaKBoWvv3oMq5zftsnR1u4XD8j81zDcJErLIyCjewU737zswCAlWELmfKIyku/cf8q/v3nP8CYP4c4EeC7OuneDMY5pA2HDpSNausJMr6E27s7qOfY/FQrPbjT1EJioFeGPUlT11V9uUUdmYgFpuTMuUDDcRbxME/t4bn8GIKQUNA0f/bzQzSVn5KVhqr6kGYG/awgJCgVRtR16Y0ykMSIOslEKSJkQDZdaIaP5zh/x+nnYF7tAAugCdlLx3CO2Hq59tJtRCMV688xsvHZnR0s8eCV8W08arXfe7yF5UYLU26mW1hp47xTRZ53IbbO68TvU3UP02madLJ01UelMIQdLDzihpMM8mm2Lqe2iVIiELo86+fw4HgDAPDc5QcYNyv4eJ/x3T7/mXdw55NrqHNLoHRuiqltEl+wUB4QKqvqHn79oxfxUzc/ovv3HB1dbqZczI2hyiF+5wEr8/2Ja59i6hgYzFgQvlZr0fP3bAOikODrn9wCANxcPkauMMZNri0nCgmmoywKPLk5OF2BrrD7X109w8QxUc2N2P2LCUZnVVzdZMGqrATYLHXQ4t6QqcwMdx5epP3jNz+9hR3+3hayE4xHOfxJ7t2myCHOByV6rwUhhj3KoseV5ONYJI9O3XDR7JXpPc2ZFuJEoGA1CGUsF/pkVO7HEkQxhs3X14urh9R1qqdsVNMT3Gsuw46eWGDPxg/keBYk8aHIAZGv989WUMpMKHiZWCnUOKQ9tlM4ai4hZ7KsSRATaHKAg3NWLiikZlBVn4IT31eZt5vDXj7L0/HaDuMb/Ms7z+FPXvsUgsAP3+wU/X6ROE1hKCObnqHDA47pII8vXmHyAONRHmEsEY9mMk3j9vEm+Zq9evUOznsV/PMDhgb9xEobvqtRq7Wpu9A4gjWzUtCUAFVewtNMF0Eg0/2ndQf53AS/e59tmK1ZFi9sMfTpg72LePniA+ID3DvYwFa9iR/ZYJtcOmVBN9yneFj/9P2X8WfmbbnpGVoDhuDtbB3gOx+8RAJun1nff6qsObZTKGfHFAjFsUgdOHEioDkq4jpHxUQpwurmMZrH7LnYtsHKE+oi+722sY8m5w6Zqkeo23J2BC9U0OalS13xYeguPGj0d5NEwC4nEK8uNXHvgJPL8wNoqk9Bo+MaqJV7xP8CmO/eiJfIWqMC1qpt0s4CFt6BtVIfKd1Faa4ZFCgYWykcjdh6eEE7gOtphMIEjk5myPcPN/Fa410knEfzZ299hHavDJ8/Jy9U4PDSEgCkDQe64SLHu8qGnRImvDMsCBS8dOMO3e94lEN1qYUmV83WlACiGJNUg2o6JE8x7JSQK40w48TsuYXNvOwpyRH+l/dewc9+4et0LZ3jJYz53141PDicJ/R7uxexmppB40H1zUsPoeoeNSMEloEkEaHwDi1BTIgnFNo6tHhCRP3M5jnCsxSkIhd1TDmIPQUK5w457SIURyOl9KUr+0TetydpKN6io3Nt7RRJLCDhz9CbMA9ChXdhvv3uSwtD52SKk2EJV7kRsyRGCCMZF3k5ulzv4v13N/EqL+Xqqv9Uh18QKBSsxpGIOBLxHA8oBCFBxnBIuFQQYihyCIn/bVlZdGw6MxM/8/wHxNGTpRBfvXMTn9tmZT0j5cB1dQqijppLCCOJgpvRJEuBW79XhKb6+NJn3mbXFUhwLRMTlwUQz+08IrFSAOjbaRLn7XfKOJ7kMeI/m81NkKv1iR8ZRyLCSMJ2gyUKg24JVy7s03z86IVHdH+CkGBspVAtsvclSQRsr5zg7iF7N6+lZ3B4QAcAAzuFKRe1vLB6glzKwpRrKoWRhK8ebeJ13vGpyQEypk37x7VqE4NxDlmOno1maZh8Lwo8FfVKF1Eswgq/jzpJeFZu+16MZ0ESH6rmwXV56ao4QBILVMbQVZ+6GJYjEZruodlmGWcUSmjbacr2B7MM8rkxiZIdd2qo+yqZltaLfYJ4f/L6JzCzFkHpvq1CEBIovD6vBj6yhTF5Zu2dLeMah85V3+ewM28NlkO8kJnhQ55Vtlo1yGKE//jFjwEA7x5s45bh4hEXE7xx+SFe4sHISbsGU/VIEHE2zMJM2VQyTKUsaKaLLN8gLtWaVHoLYhGyElDwVU5PcNCuk8eRNU1BUkLSxVE0Hz994zbpi0zGWag8WNNSNtYzYyo/eqEGXXfJqXtbOkYQKAj5Z+22G3jzFSbod96pYLPaomBDEBMm6sczweEkizCSkOVz3++UoWseRrx0tbV8uiiPZGb45W+9hL/+GVYymlnMd2quzjt1DVxYPcHlayzYnQ3yqGTYoVYojJiIJw9WgkBGFKapzKVpHo7b9cUBW23jrFehJoHQV7DKFbQdRyfEAQBmno7VSocOAVLE5lwpzXBwqciCz+2tQwSWAZ2XeQQ7QSE7QZcHa43CAJNZmkq5punA9TTiYGQLY5qPeclrrijcHBZRrnVh8q8z+QnOTpeww7Wx7H6OkKD7p2t4tTCmtVQuDjCeZDHiiEVt7Rw/evVT6mZSUy7S2RkFv6GvoMFlK76cYj5e82c6HWXR2DmCx9vB08sdDDslQrRk3SdrlfZpA9vLXQrkklCCVh/AOWDvVuiqGH50iQxPzUYfYtpBNGKfPW2WifuU9ApoN2ska2GPMlAND90Otw+qd5mQJQ/wt5dOCV30PRVrxR6ynBt0fLiGsZ3COidbS2qALz73MVRevu+1q4wDxt8vVfNpLn//9i184cZtQo2nvQLiRCD+U+hqcH0VK1zINgplEiIdDfKwXP0pUvxLy8f0Xs8maaRSNhHOK84InqeSqGymOCKZi8bKOU6OVrHEP3t4WoOi+djhLgSa6aBS7tPec3Njn8R405kZvpC5Q2rcANP4mpt+B6GMTMrGjH+dNm24jk7zB+SQ4Vyo8SiPjbUT6mC1rBRU1cfV9UP2TLMWeq0KDD63y5qPFk9Am+0qSxTm76kS4IVyj9S7y4UhPE+j93quuK9wo15NCRDyNW/3ixClGCeTwjMk6d+B8YyTxOu5e//BJTQPWO27UelBMxwiPSuaT5B1Y+MEgphQa32aE/lsHuhMxlkMpxlscJGybqeMfG5M5rH3H17EUpn7FHGy9wZv752PufP0abcKQUiwza0jmtwsFgBWdg4RRyJlXPODec6LmLffEhITiwgcjbLSD+9dxcs3bwNgInSjsyoFLp12FbIUYfUi481EgQQtZ2F4xPg+mcqQYPuzvXXouksb9zyTm5M6i40Oxu0S+Zw5T7TSA0CqPCKBuiiUEYUSzemje5ewdeEQI64DU9s6waxbpA6sR3cvYYf7ZXkzE3rGIiXjyNEQeire/4R1/rz2yvvon9dIj+fw8SZMwyUOz8VLu1TWMQ0bcSyR71mpNIBjG6hfYM8hcHSIUvSU8m+fyxactqu4uL1PrfWCEEMrTHGft7FffO4eBid1CroDR0e/UyZj2d2zFbzyEgvOpr0CHh2tU7lgZfsQvm3ggHu31co9qLpHXVZGaYSTu0yvq75+CnuUJT+61sEKitUecX0kOUK/U6aysCTGaI0L+JGf+y0AgHVcW6zxwgSdszoptM/XwPxZ+q6G/FIH7X2GWqZzUyIXR6GE2XTRsem7Gj56fBErvJS78/xdKCkHH/wu4/5srh/DmqYJDYkjkdalmpthcLiE/TNGZC9lJli/tA9hjpSYLpTSBP/d/+fnAQA//x/995jts+cyN9idr1tBYCiTXOScnHsbSK90IJfZ19bDJZg7TTz6TXZdq1f2FqWqjA27W6DOsCn//7kgoiAkmHUL2D3cAADcvPUp/W7oafj6h89jOcvuL2vaaGyc0vsaBzIm3SK9A4KY4GR3A1Wu5qxo/lOCqQd3L1IDQSo/haQG0DhvK7AMkqsAGIdr3p2VL7N3eE7MLq+04M1M0txKEgGyEuLvfZ3Z+vzyf/g/cQVylT5rfh2hr6DVrmLnJitN7n56GRsXDtFrsgA0CBSsX3tMZdEnvfdCV4Wam6HH146esmFkZ4TgAcDenUvY4uruohIybzTedahnLCq/dk8aMNM2vn33OgDgR158H+cnyzQ/ZnbG0EWe7Dzprxg4Ou58ehUDh13bZ27cxtHRKq6/xpA0q1PEO7dvkK+kPzUhqQFpVKULE/z2268BAN64eB+5Wh/OOI1pEOHKP739feEk/Zj5l77rnKSv2f/VM07SH/UF/FGNP6iTJKoBWQPMUY+HuxsAWBlonjGouRmcboHaPbXCFJGjke7HcmWIqqPRITE/YNM8aNhaPSF39VJhiGxlQJ0doa1DNl3K5lYqHTR2jjDm/I6t7QN88wPWcrqycwhZ95Evs8NWEBMoKYc2yN7DDRS3TilYmY85Ufflm7dJU0g2XZjZGR0kc1Xb+SYoCDFCV0WquOC/mA12yB2/+xJeff5jCuxKuTGqm6foHKzQfCWtCm1IemwxlWF+nVpx0cI7z+LnKEu90kUciTA5WqZmbBieQhvo6uoZznk3ztrVXbijNHUviVIMe5TBjZ3HdB05T6WDvdFoYdArweVckCiQscwdwefXl+7mac7++d0b+E+eZ4dA5CuwBjlUrnEVdkdFhh9qZU97yqsMACTdJ9VfgKlIzw1cp70Cqsstas2uZMZ0D0I/DztQiesgGR50JUSRb/qZ8gid08ZCIFQJUeYCj84kA1GKoHHFdbNTZEgC/+xxu4SlrWMqgxm5GbYy98mGI44kItQPOyUUK32MOeG1fuEYoasRGVkQEnS5gjPA1Lzn/x84Oj7d20aVa4OVV9uw71+DwT/bHbCusvkzz621YE5SVK6LI5FKZkrKwT9672X8pTfYQZXEAmTTpQAEAMRUiD/9419jn31exrvvMz/CW1fuo/zGA0Qjlb6XfqWDZMIO2OzlI4iZCPGIr3k5wvj2JnWiipoPn3OOZNOFNcyidoPtF7N+HvnNM4j8PXbaRSiaj/Mp40a9ttwlzSS7W8Dnbn1Mcxf5CiQ5XJhJJwJEMcaQ8+FSmRkqtS4FZLK+CJKSSEJ9qUXIiZJyED3xfrijDHrtCslPqLpH5SI9N0VgGVRe9W3jqc4wUYohCDH+1p/+LXoOoa0/xVPLrbXoGZrjLO09ihxCkCIiNau6i9BdmEAnsUDPTFID+OM0rTVRjCHITycgcw4cwEq5khYsOuuUBe8sCBSY+Qk+e/MT+t15lxkATIZ5mGkLaY5MKxnrKT++FzLvEdJ455NrZGMCMOmGi7zkBzAjayXtwD+v8a9D1EwuGOyriCMJJ6fLvNx2G9+PkeC7WyL7oUZPnhg/tEHSH9RJuv3xDXzuDbaY40kakhzixnPMVmDaKxBMPTxcRn61hb2PWJeU2S+gUO2TPo+enyGxdOLgdHslbOzs49E9hlK921rGz7/5TboOSYloY7p95yqee+5T+t7USqEhxlReAliGAwB793awtnlMgY4/NRG6GiSbq1NbJsSjBqEM434eZtpeZOUZm8TxAsuAmrFpg+i1K1jZPqQ229GgAEFMKIgYntZQ5J/z2ksfwB5lUVllh8n9T6+gAZAar8sPljlapBguzMoQR5+y+dh84S51YAHswHX5XGbKI4w6pUVX3TADWffpEOh3yhhzA9dlT4Gen5HKr1GYwHMMUm6enNYgqwEe8ez+0tYBljaPkektLD3mI3RVSPrCI8u1TPyF197GmIs6GoUJwkCGdcay2TiUKSheubKL0Umd2sO9mYnIV4jkOrcomT/z93cv4Qsvv0e+T4KYkLKzbZn4zK2PqZzmT1PQsjMqmRUbXeiat0CHJgsNLlkJoBgu+aaZ2RkgLnRvastNqLkZRjwRyFSGUDI2dt9iiFd/usgcFSlEKjOjrjtRCeF2i2RoK3QK0LMWBaDezKQgQNY8PLfziA4bOT/Dl19/i4JEUfNhN8t47k1WNhWlGJLh0aGYW2vR787OqviLL79H9yjICfQLXczuMt6Zud1GEgkYcXX8pR/5BF+88D+zz82JgGZALnHpgXoLUDQIaX7YruYQHw4hrbN3zdA60D0ZIdd8ihxtYQfCDXbnAeXe0RpKO0ckxCipAczaAD/1k7/DrlMLIDwRNMexiNQme1+CQQaCmJBcwPy5r3LrHYgx2ncvkNLz4KyGxg2GngbTFGQ1oDJg5GqwpikKIOxpGpnslHh369uHFIxEvoJ79y7h1qsMKYkjEfYghzYvGapKgNXtQ3oHDm5fZvIlvHtWz1i0X8SRhDCSSGhxef0UiumRttNqrY07Rxu4yfmCAKiMJ0oRvv7+S3jzuY8BAKN+ASUlxOCEodZ6ysZomEdnnAcAXLv0CIGjkzyLPsoizUuAyxcP8Pj2FWxeZMnLpFuEmZnhX/Buty/f+ASK5lMCE9hFfHSboU6v5b+D0NYp4Pq1gzX8Qn6MyW3Wobe0eYxccUS2LnEgwennCQEet0u4uM54ZsNhHqNOCSvLTUyDZzpJP+jjhzZI+oPj1ouLaF9L23DGaRj88FZ1jzLw08cbSJdGRMxVNB/ONEVcmPmGnuL8jDWw7O+5LzBSo/zNl0nV1Z2kIKdteHxzvfX8bew/2CZoudWpQFRCsgOxOkW6Dv9QwdH+Oi7eYvoq9iQNy0phyEt4YSxhy3To8O6P8phaKVx+9WMArBNoHthVd44gZy1M9thhU6r2EDgaerz1vFLr0iYNAOULp6SYrJkOsvWFtEA5P8KsWyB+UxILSOfH+PgO2zC3V05R3jhblF+eKL/d/fAGLl19RGJ5RmkExAJlzmd761jaOqbP1nWXfMvG7RKqV/ehcG4LxBi1y/s4uc2CMcN0oBgePvNlRhC22yWIUowiz4ZDVyVV8Hazhvz2KWnmTCcZ2K6Oyy+xNTJrlyArISlO68UJ9j5mQfNOvQdJDmkd+K6GD+5ew0vc6y8MZIzGWdR5kLRR7GLv8RY2NlkpTzFcHN9nvLLBLIPycht5fgg6wyx6+yvUSTlslRHHIiR3IRA55WiPrATQsxZ6h+yZnrRreP7VD1HkDQhmbYDTTy9i+3V2SNrNEkQlxOYthpbVuUDjfCiGRx5pSspB5fouBZaffnwdN27doYw9s3kO+4wdYkrawem9S7jJg6BgwExX57Y1SmWCbHYhTHr/X72O+nKLAj+7XSTHd8XwkBYS8iNUqyMIuojMmwxNRahC8AI0PseeU+KJELd4sBeGQJwg4WUDQRSQ5AsQzrg+VbECwUwBTRa8CEYCxBF8Hty3DlbImT611IVRGmN4wILm6zfuwmqVqWRmrLcR2xoEHlT6nQKVBEedEgq1LsCfv7o8hHdcJmRF1n0Mxjk0eAACMUbl4hHe/des7HVlZ5cQK1Wewp+aFBT5loHS5SMcvcsO/uWre/CnJpHk9eKYZE1k08ULb763QOEiEb6jYX2THfRRKENUQhLqLBRG0FM2dc+qpoPeHiuRzawUKtUepPl+mZvB6ecpyTzbW8fMV8lHsXm8TEmDlrXw0vZDpPl+OUfEyxztcYZZlGtdNDbY3AtCjPbJMnkc7j7YJr5nqjzC5sV9DHii5PsqjLSFn//Z32RLYGZCLUzomfpTg7TR9j+5wmQ/ttn9/82f/m0IYoIjrvYvaQGsdgVZPn+TYR6SGKHAr9sZp2mP3D1ew8rWMUPg/e+jTlKSIP4u4j/xDzcTh8azIIkPNT+BIvEMwzIQhTKhH65lEAKTL44QRyKqV1m2MjutYtApE5lUSTuIfGXRRTJNoX3awKU/8W0AwOraKTlcJ4mA0NbR5WKSm29+hEuphexAITtBHMjUcROdVwmWv7C9j//n134U/7fXGX+lfOEU2amJDC+fZMpDeDOTSiSV0gCa5hEKEwcLRenxaRXF7RNkVlmWePD+Daw/dx/rPJgTlfDpskdpjDy/xt/4X76En/3T/xIzrqjsehp6x3kiNWs5C3Y3j+dv8g3zaAXB43UUeAlg3C6hcpFtTBc1H3pxTHPnjTJIrXTgdtjGXJVa8C0DRo0dipn8hHgg004J7bsXUN5im6nVKSK72sYK18wZn1ahZWfkvzY3xJ1n8KIUE7pTKg+QhCKVMZa2jjFqlem5PN7bxNWrDzHj60NUIsqwB/srmM3SZPCbBvCScQcmN1bV81PMukUi3K9vHcGepEkg0XdyZDpa7OXhTlPk0aWlbSSxgH/G9a3+3Be+jt5ZjQ5B3zaQ5qKWkhog9BUUOKKXq/YQuiocToCtVEdoXDqAxDvBkkjC9KhBfwtg2kIAEHsqlNwM430WcOn1AQQtQNRn9//86+8jiSQKXmJPIY5eMshh58pjQhn6B8vYPV7DMuflbbz6KUTDI4+5i5/5CEkkQeG2NnpxQoiFIEVQUg6VYsRUhCQUIIjsoI8HLmJLgVRm34+HIuJjNh+CkiDqGZB5SRcAYKYQ8SqoWOoDqoZ4yOU3zorQX/aRktl6WjFdWFwXytxowj0zKVh3JhmUr+0RkiSoMTAT4fNyrT81kVplz6G6eYrA1pBw0rOYidA/WCaF6eLNXVzY3qcA/eDRFm782FtE7J+OssjwxCJ0VfiuhvgJz8X0SodQXX9qInB0ZHiQqZYX5XKrVUaq3oPGk67R4zVMpxmyYvrGW6/iS3/qX8HlaLKi+VAzNnRerldMj9BiuVtEYeMMAg/eIkeDURqRRc7yhSPsd2uEeufyYyr7h4HCkgBOiJ6OsrDGGZS3WBAUeCpmkzTpjHm2DkNf7JHl4pBI3PN9Y448r736KSZ7y4sOR1+BrkSUwOgZi4JEXfOgGy6Jh8pijHBmUsevbLrIlwc4OWDl/Vx2isr2CRweROY3zyhpuH7lIXxbR37zDIH3w9Ej9su//Mv4tV/7NTx48ACGYeD111/H3/27fxeXLi00rpIkwd/6W38L//Af/kMMh0O8+uqr+C/+i/8C165d+yO88n/7eBYk8eG0StDz/CX3FKQKYzy6yx7w+voJeVq5jg49ZVM2l6r3IakB8YoiT2EE012WZeWXO8jWe/DbeQCApIT0WYrmY+/OJaysMaQoGKeQJAKGx5wgnZ/AH6fpkDCyU8rsUtUB/tJr7xASoxXHOP/kMnEO5l1cc4XYdrMGTfOoZDQdZbHfYv//6ssfwGqV6YAslAbMY4tvGKGtY3BWQ5FvvuMH64SG1VIzRI5GispxLGLkLCB/UfPxrY9ewGdfZPo0xeIQpQsn6O2yzebtx5fxM1dYGc+ZpqBlrcWm5qqQUi59VhgoUHWPyhyK4ZLnlzVNIQxlQrgGgwLsaZqUevPrTSSRRAe9UZhAEBPiQ6UKE+oKyi23EUwXZriy6aKyfYLeHuNZZQwHSSKQVQJigfz2li8cQdH8p+au3ayhwAOu6vU9jJsVuscmNyWdoxCPb19BYZ3Ns6yG0HNT2Ly8M+oX4Lg6/tSNj9mfDSToukvlyvRam0qAvm3AmaXo/s3yAOPDJRIPjGcGIkeDyxGfOQl1XmItXTjBkKNQ6coAiAXqsPJ6OWjFCew2e+aplQ4iVyV+h2frFLiFgQI9P6XDNlWY4Ne/uYS/eZ0hoHtv3cKFNz9EPDePnRlQshYRYo3aAD7/O83jZaxsH9Jh5B0WkSQC9E0WcAfNAvxxGimDBTZeqwhji5cxTQlS2UESzhsZEgj9PqQtVtaL01mIgx6i8cJvbfQ7ZeReseg5zp/RbG8ZRm2AKb+uTLXPulJ5ghM087j/nedx4Srjw+nFCU7fZwfB0o1H8KcmRI2jTIcFFNfP0dtnayuJRLiWSa35mxf3kYQScqst/iyGNJdadgYzP4XLu/tU3UNoa0S4V3UPWnoh3Bm7KhLegWWWhwzB5sHJNz96HpfrZ5jytfaZ5z+GN8hR2XTaK8A7qyLLRUEDWyNRRjNrIfIVsqMRxARqYYqlKyyRbD3awOc/ywx7AZaQNHmTxMrqGZSUs3AO8FXIUkgEcT1jwXV06gAuVPpQDA9dXo7zfRXlNXaNSSJAMVwk8+RFZ5Y/Q/7eSnIEt1PA8WMmZeF4GrY5ar90eR9OPwebB7ZJIkJ7gp6w98F15PNjMiM3cjOImg+Tz4cgxwjGCzNxVfcQORqi72OQlPD/vpuf94cdX//61/GVr3wFL7/8MsIwxN/4G38DX/7yl3Hv3j2kUmxe/t7f+3v4+3//7+Mf/aN/hIsXL+Jv/+2/jS996Ut4+PAhMpnMd+26v9vjWZDEhzNLkZrs3U+v4satO7h0g6Eh/69/+RP4Kz/1vwAATFvHdJBbZLNKCGeSQYZ3TQWWAVn3ybKhcOEU/jhNrchqyoXI695mcQxjUCAIfHpWZR1r/blz/Rlmwyypy/baFaxcYhuPN0lDM1wi3kaBBE3zqNX44/eex/Vr9ykgy6Qt5FbalN3tNZexzVt0BTHBoFlBiZe5fv3dV/Fn3vwWlTwGXUbynQdrYaDATLPNYWv5FL39FXJEN6YpqEpAQUAwSeHmxj59Vq7RhT9Ok2RAI73QrhGEBM4wS8FK+6wBvTghZee54vIclQg9jaD2xs4RPnz7RSLaruQnSBKROmpGRw2IUkybXmAZ6LcqOOuxg/2F2sf0uYGtwZ2mUOSoVG93DZnyEENuJeKHMj7+9BouLPPg1lNR4Vm1knbQP6/B4Krq7jT1lA/e8PEqTpt1bPHrWr/5EMOjBpWqAGDG14ozM2EUJrSW8qUhUp4Kgwez/+Trn8cXtx6jvMNKdW4vh90HrLvt2qsfIz4VKegxGj1ISkiB3+DRGnxHo3Jj5LPEYI4ABZYBi/OCzPwETrdAxPppswxBSAhpQixALU3Qe8wC32x1QM/fHuQg6R7sEQvIyzvH+IXn7hIKV653IUgxIVpyaYLEUakbMrJ1IrXXlpt4570X8frn+IEbi1AyFpKAk2svTyA8jhA7C+kCIce3OEWBELqAwcviUw9JIQ9hxDvS1AkgipB3+EMIXOQahxBkFkSYG01EXBBzelRH8oQzvWy6EAwfAl8/SSLg+pfeWqC2noIq74yMA/kp3aP+7ioqN3ZR4oFx0M/B91WcdRgye7PRQTBOEwFfztoQx7xUmbPg97NIzXkxZzW4vTx9lqiEcPo5uByVizrFBVfMdBF6Gu5+i5WJX79xG4Gn0nuZKo7RPlwmvo/OxVjn6+f8cI06I5e0JlqPNigAF6UYWnlEsg6FWhey6WLKuWJmfoJLvEQvSBFELUD/4QYAphtVbHQp8DMKE2QLI+o8VThfzeT3YcImn0jX0VFdOyd3hKCfRRyJVAab9gqQdR8rWwy5HjSr9H5o2Rk826DmlEd3L+HK83eIk1VfbkFL22jzxMEsjuH28lRy17IWBsd1PlcOwkCBN8rA/36W2/BHp5P027/92099/Su/8iuoVqv44IMP8LnPfQ5JkuAf/IN/gL/xN/4Gfu7nfg4A8I//8T9GrVbDr/7qr+Iv/+W//F288u/ueBYk8aEZDpHyipkpIl8hNOCndh4u2kVjEa1uhTbx4WkNs1mautvmnXHzVvzh3go67Sou3Fp4M80P6iSUkEpZJHi4foP9HY0fGNYwC8tKoXyBHdaiFFHn07hZwWyaxoQTl688fwdm2sLdx2yX31k9xunhKla4Gag1ziAOZBQbrL6QPKHi64zTyJcHUEy22f7c69/GsFPCgCt9l7lY4dkRN6isdSnTs20Trq8iwzcXI2Mh8FUKIgdHSzBMmyQUzPwUp7sbxEk6atdh88zX5U7b80y5ttyEN8oQmXTn+kM44zQFmanqAP6Ui7+5KkqZCZV8IkeDbLokNHh6toSxnaKy37hfQG3jjIIkQYqoi1BWg6dKca1OBb6nYpXzhh4/3MZz1+5RN2Bnb40OE3eUgZm28DvfeBMA8PlbHyEKZeR511kSC6iV+0jx62w+2ESuNCTCqCTGf6CLTCW+22ySwXCUQ2rK1seVPLNoCfnvTjpFVLnasiBFOD9v4NLzTHw0snUc7m2QwnCSCIgiCTIvI56d17G1fYDbu2z95M+WFgKq7RI00wVnyQAAzh9soby8CLCym02keHeTbxlUBlV1D5Gr4azJDpDixjlOB2W8tnMIABg1y5AOlgil0Soj+P0claTn1wqwZoMbO4/QP2DvS3nrFJGrQRjw7Ty0MdxfIRTLKI0RnbPfFbMOJh+vI7XGAr0kMiGOFuUn+20NqYt9OhliSwMgI+HlGNFclKrDQMG7X/ssrt/gxsKfXsTKjUcUjACAUR4TR2d6sERJgp6xWIfagCUvhfUm3FaJSO9RKMP3VVJVD7iUhcUbIFLVAa3p0NbROVjB6ovsOkQpQugr8DjCla4MMR3kUb/OEK3f/PU/gR95mZnuRoEEz9Zxjd9D5CuYDHMkzGgNclCUkGRQXMuEKMXUdbiyc7gQCI0FZAtjMnWuL7Xg9fKEaJnZGSanNeJHPtXdJkXwhxn0OBJbLA4RuipGnPsUBgqy9R4efcQaCuJYRKnaoz00CiUK5ueuBlVujhz5Cn73oxfwk59jjTKK5sMeZcjrsFAYkZyIPzUxGS8kM3auPGJ7LBc1NQ0bqXqPNO6sfh6uZVLZHJOFbY+etdA6WEHoy5gFIX7Qx2QyeeprTdOgadr/yk+zMR6zeS0W2Vo8ODhAq9XCl7/85ac+5/Of/zzeeuutP9ZB0jOdJN7d1v6/56BbeQDMyT5V75OVwpOmmP44DWOlC7dV5N+z+L9zyLswZZA2r3sLcozpUR2ZdXagTA4aSK/wbhRHQ+QrMJY5MSIWEXsKRM518Lt5KPkZlZes8woMzm1x+jmkVxf8Cuu8guzOyaJsMTGh1QcI+XXFgQw57cDh/AVztYPIZj8bzkzW4jsXeFtrYfRojfy29JUevPMSZE6mTEIJAQ9OtOoQ0cygoGl+UMyDFVEJWalizqtyVWj1IYL+Al6V+Rzahw3o1SEihysXc07S/G/JpofIUReE6eUebK6DYzR6gJjQoSalXcSOCp/zZuS0g8hdtJqLWoDIVSGbc10lFfIT/BxgQcIPxmkoGQuiwVGoYYYOQDa5Al1T5GhQczMqg+rVIef7sAMkd5llseGIfV8yXfTvbyLNg25BSMiJ3txowu/loPD5EeQI4cSk+QqHGQhKSOtl8mgN2S2GbvnDDCTDgzS/v5kBuTCl9SDpPiBHcE645Udh8tTf1pb6cE/ZWlErI8SWTsGKILAAUuLzkcQCBDlayAcEMvFfEk9h81dgAZTTLEGvDokb5jRLUHMzWj+SycurHCEUtYBKREkgI4kFTHjJuHB9D/ZhAyOumbP0xm2cf/smatcYfyfyFQogjdU2Q6xq7PkPv74B39VQ+3HWReZ8WmS6SSV2IMweryBz7RjOHkcHlruIOZLqj1PQl3uwdnnpts44bPMSfBzIcDsFGHWu/ByKkDKcRyMkiG0dId9btLUerAcrSF9lyYzfzEHUgsX8nFWglUeLz/YUWuP+MAu93kfEA0pBTKCuDOGfs+RGkGKIWoCAc6WU0pj+f77WR48Y+pe/eIzEl2kdK4UpnLMKdP4c3U4B5nrrqWch8EBlureCzOY5IW1JLEDO2nB4Kddo9CCmPOJhxY5G77icdiDmXARt3v1amSCeLuYniSSErkrIpDfKPLXvJYEMpTFic7VXZ/56fO04JzWYW+dwjvgaz83gDXILiQ0lpLWUXWvSmqH5iUXaA6S0g3CcgsybDIJBBnLWpjUfjNOQObrl9XMwOQdt4iao/q3p90Un6U3jP4L8XdRJChMf33J+5d/49//8P//P8Uu/9Ev/q7+XJAl+5md+BsPhEN/8JgtQ33rrLbzxxhs4OzvD0tIS/ewv/MIv4OjoCL/zO7/zXbvu7/Z4hiTxYTdLODtkWfTqhSM4vRze+5BlL89dfkCZ//C09hRCEXsqg8+fMLvs7K2hvMKCojgSMR3kofEAw7MNHH3zZQBMtVUQEyI0uoMs6wzhmWDneIl11PCX/tO7V7DBlXl/78FV/OxnvwWVl+JaR8us5ZvD5YgFavEHGH9FtW389jcZwvEzP/sviUNyuLeBQn5MBpXWSRVHR6vI9Fh2t+Qr8CZphJycrWg+zAqbj+neCstgObQ+6JQxmmaw4TPUJQolDPtFrN9gh9HkvIKiGhB6FLoqsnzTO3m0ierMxIe8E+7mxYeYdIqk/FxsdJh+C8/m/FaRSheT/WVIakCt45l6D6GtE+FaEBJkqwNCbFLlEToHK1QG8UYZhKfss3xXg5mdUeY7GeSQrwwIHfvqt1/HF197B978oEs71JG3/3AbF5+7h8kTRO9xs0LZq2J4gBjj7oc3AICENz1+AGee0KKyj2sQpRjB/J9iEVanCG3I18skBcVwyYbj0cNtbPJgI10Z4uSjK1i+ygIGb5yCqYQUvCV9dm+nXAKgXOuSsCDAiMruXOTTV1hQxO/f6ufh2TpdK7PHkKiUM+kWUZgrrKccfP13P4c3PvMuAOBsdx2NQKase35fA35YTcZZVBodKrmqudlCEqFXgJadUVemdtiAO0ktCNRHNfi+ioCTnv1xmrR7Wu9fRfXaHpKI/axRGcI9XEb3q+ydH/ULWLv1gBS29fIIiSPTcxS1hQ2J3WXcpzZvuFjVAiZlwN9bWffRP6+hwIOZSbdIc6VmbMSBTCKw1UBGFEhwj9n70N9bRWGlDZUHlbN+Ht7MJEFVM2XjMVeuXql0kBmnYfLPnrTKqGgBTj5i/o7FWg+iHOLdD5hW1Bf+5NfQesC6taqbp4gjEQ+5T+B1w8WwXYFhsmeYdjS09tawojPOjm/pkPtZkvQQlZDmdtgqIw4kel9OT5axc/M+dTB6vTwUz6Lkwx1kaZ/KrjURnhkYzYVq7R6CmQGPy16Y+SmSWKBy9dH+OrbUYNG1e17FmsLQ0ocfXcPO9Yf0jjtT1s327nfYfrtc7rHuTr6fhraO/b0NAMCVtA1BijDtcPQrP2F7zdwCqcP4evPSd/0Cox/Mg7f9Ty+hzJtRZCWA2CrykmYMYGHK/IM4Tk5Ongrw/m0o0i/+4i/i9u3b+Na3vvVvfE8QhKe+TpLk3/i3P27jhzZI+oNiko/uXsJKkaED9iiDh4cbuL7NNohvfHILV7ntSG25icH+CtW9+6M8irkxEaRbdy4ijCQ4jxg5MJ2eIVsaYo/rbaxtH2CTZzLt4yVIUkQvvCDEmPYKxAswTAezfn4haCYHZLq7nJrBmxk44odcNj2D1c/TZ6UrA3iTNByOwjQ7VSzV2/g81yPpPtgkv7XN7QP4rgaLB1XN8zpWV8/o7w5Pawie4CMYiQiVB0X2KIMolGA/4XkkSxGV14qVPnTDJS5UFEkQD5ZxdMSI7SndJZKqH8q4fe8ynr/KSgC+q0EzXfTP2AExfpRBpdwnHpLnaaSgvfd4C4UsMxsGgEszFvwcnLPDd7ncgzr1cHzMSoblKeNFtR+zA0eSYoLOFc3HOx/dwhb3bSpVe7h77zJ2NhnB/NWdB7BHGRyfsc9eqbeIxC0ICVp7a4j4156nQdM8aJxQ/y9+//P44vMfYou3Ws8Vxx8/ZofXhZSDj++zQ26rfo5CZaHB1RsUUat2SRVZ0XxEvoL+oxrN5fyZxYEMRQmJiGpP0kgiiTSXjOwU406ZWqtP9taxee0RlTpHeyvU3SfOTLQ7FZTndiiaDz3l4O49tqYvrB9j72gNy1yawHV0RPtsbZmZGW5uP8bePRaMVMp9fPDBLczHc9fuoXvcoI4k02Tda/NARxAS+PzQ29/bwPbFPTJhVVQfUShRCeT9t1/CzvoRZjwAnwxzWOEl0SiUEbkqhryhIrfagp6ySarDLI0hF6YQdPZZn/xPP4ql5SatidhTieRvZmeY9Av48GSD3VOjDbMygjVkCI6qe0jihTBjvt6jw7S1u4bKapP2j4cfXUNvlsWVdba2jIwNq5enn9dMB6NuETXe7TVuVvDiq6wJ4p23XsGN/IQCuX6/iOAjFW1utaEoIT493CRT53kQBwAHdy5CUUIq6w2aVaSyM1o/g5M6okii7q0kEdG8d4H8/MZ2CreeZ1IL7T7z+Vvj5WhNCXB4bwebNxmnc9ouIuRzNx8zbrRtlEaYtUvUdRkeN5DKTSlgN7IzhJ5KYrXLK+e4/+kVLHPrntXnHhLSvLp2ipNHm6ivntNcdh9s4sZllqD5rsbKnnyNJ4lAnnqDsxqKy23ih876eWTrPUr+nAnb5+6dMuSttnGGwNEI8UunLbKSkdQAghyhv7fKdZIW1i/fy/G9kgDIZrN/aBTsr/7Vv4rf+I3fwDe+8Q2srKzQv9frLClotVpoNBr0751OB7Va7d/4nD9OQ/y3/8i/m+MrX/kK7t27h/fee++P+lKejWfj2Xg2no1n4/+vkXwP/vtD/+0kwS/+4i/i137t1/B7v/d72NzcfOr7m5ubqNfr+OpXv0r/5vs+vv71r+P111//rs3B92L80CJJf3As1TuwRiyidVwNqhyizVVda6kFXDrslvDNvYv47AUmQlbMMV0fh2e77x5v4tX1fXKQz+XHeP+Tm+QwXxwMCSnK5ib4Fx+9iJ98jgn65RoDnD7cog6tbrOGtw8u4LM7LCMb2mmkucDj9Qu78ByDOkxWS0PMRjm43EMt8BT0hwU0GqzsN3JSWNd8aqWdzNJYWmJ/x7N1OLaJhzxLev7yfdx9tINKlsH4K1vHGDQr1Io/m6Qpa+p0y7A8HZe4jsuoX0AuO6ESmWsZcB2dFHNnvobJ0RZeWmddev1xjpChj5or2M4P0G2xsl6hNIRn62hy1/v1cge9fhFpXhLojfJPmOEqMEwHVW40KwoJFNWnLHLQKyGOJFRLA3qWshzCdlhGXyiMqHT3+Ggdl1aOSQfmeHcTldyIxDV1zYOmeWR+Kash7Bl7DqXCEEkiQhUYciRKMXq9EpnBbub7eP/eVVznppta2oZiuGQe67sabl5k1xyFMk6OVlEqMDKpoXnwXI1Ql/OzBmQpIsPOfG6M9++zbqWbm3s4bDawzUnMnqch7BWpbCFKEYy0hQ8/Yt52WcOGPchR2U/RArQ4YX778mMMDzaRSbFybCo/hTszkTXmtiQxVmtt/CNumfMf3PqIEJj5s5xyA1O/qWDsGVC4RpczSyEIFWgJK4Ol82M44zQZiQpCgrd42buWGSOOJFR4I0GSCBiO8ti4xNZevjtDp1um+dI0j/wG270S6tcfUyu92hgicjUqm2vFCcRMiNhi83PjJ76JaJKiMpBRGT5lyTGeZHC1xhALe5JGGCiEQtjTNE46NWTy3C8uFsnQN5WyiPAMAJ1pDpdWj0mfyB5lcHC4hqu8I8uZppDOTUmzbW4MCwDLpR6G/SJM/hzyuTFmszQMjlr+T5/cwr//0iIJFMSEOtAUJYBmuLQeBr0SNN3DQ65Iv71ygu44j9QTz/xJ5GVr+ZSI2brqo1brUgeaJEdIaR75qwliglangm/z/eUnLj2gawptHUkskE9iMT+CM03R848jEe3TBpmN1zIWiakCTHJlzoPU0jaK5T5pMBnZKVJySCRx2zKRyU2ok1Qvj6DzPf6kXUP10gESvh5yvMFl3rCTNXtIYgE/ts6eeRJJT5lPZwOJuKZOpwAlw+QDFOGHQ3H7K1/5Cn71V38Vv/7rv45MJoNWi71nuVwOhmFAEAT8Z//Zf4a/83f+DnZ2drCzs4O/83f+DkzTxJ//83/+j/jq/7fHsyCJjzgS4PCAo5SdIJueYfecwYVBLGKFw7v/9fsv4HLWJti5UupjOMrTQS8KCcJIwlqdLZJ+v4j/cb+G/+OVQwDMpiTHVaIlJcQb6/vkAxd5i5IWuyYRec1Dn7eeX9vYxzlvDW6Y57AtEwXeVSWpAbKVAboPGcfgtFvB9sop1dCvrB9gNs5Qp9Taxglt6nfvXUZ7lsFmkW3Uo0EBhdSMDt/eGdv80tykd/9gHRYPLgBgY/mMupOGkyyykURdd6sr53CHKjTufeeFCt68dI9IwEkiIM8PvWtWG5XSAF0ugYA+kC+MEPANU9ddKJGE1PwAcXW89ZCVpqxQgYAE73Dtp7+w+m10WlWUK+yeJDFCr1sinRNZ93Hn06so80Cw0y1jaZkFjbX8EOnclHgTKdOGmbZJ8LE/LMB2DJS5cONknEVvxDsB82PomodWl22+ohgjk7Jp3m1fw42NfeqaUQY5hIFMQZSi+bj/mCluX76wB0lccHdy+TF6vUXX4draKcaDPGljvb97CS9tswDrrF2jIBcAVNXHYJTHXo+tn1vCAarr51gusfk5H7ADb35d7kB96m9vLp2TaJ8zTaHbK2HmsjWQsU2YaQt/9gork3YGRVzh+kyzo1UUshNKEkzdxbrUo0PPslJQ5IAOf4W73M8Pb0FI8NnXGJ/pF/+7P4H/VEgoSJLkEJVqDz4/FCvlPibjLHWeutMU7j5iZb5GYcC8EfmhF0919I8aqHJrleYnl9DAQzw5BCki+wvP1tHusUN/udFCb5rFC88zj7DdBzu4sLOPQZt9PwgUtGYZ7HB+mCAmpAwvShFGgwLutVhZ+GKlhd6ggPpFdh2qr2B99YwIxK6jI45ENPl7L4oxsnPF6ECB66tkPCxKEbRAQYbvCc9ZaWTrPRzcvUhzO0+SDNNB4KlkeZQvjCApIdIaD8A7VZQyE4z4WhOlGJruUeu9ZjqweECxeXEPvm3QdTiWAd9X4PD3p1zvolIc4vM8wJq/7wArax2eLqNEDgYBVN3FeYvtOXqvgAetZbx6ma2t0FMhSjFG/H2L9yQM+P8vr5xj0CvR2qrw+SN/SyFBs1nH5kUWVLu9PCx3Iew7Pas+VeYbt0ukEg4xwdnBKtavMArG4b0dVOsdaDwZCDyVNOj+2dufwf/hx34Xgaci+D7aksT4Lpfb/nd81n/5X/6XAIAvfOELT/37r/zKr+Av/sW/CAD463/9r8NxHPyVv/JXSEzyX/2rf/XHWiMJeBYk0bCsNJmdCmICRQlQz7GXWRASWJzL8aNLLZiqR/yMVreCfGZKrbO3lk6e8gEThAR/9dZDqDyjD0KZfOAe7F5ARneoPRgAfn9/Bz/NNzlBSHBrcw/HLVbPdVwDGv+co4N1NBptEmXzLBOjQQEiD7Kyhg3X09DlAdaF9WMcNZewxJWO9dyU6u3rjXPovTImPNtPmQ4+aq7gx64yH7nxJItCYUQBXKUwxIxzCDIpC812FXXOZVCVAGEkIcszUEGI4QUKXdf2EjPdtfl8tmY5pDliYerMrHQecLq+iiQR4M/5PmICRKDgznJ1vLbDED3H0TFzDPzkZWarcf/xNiQxRoEf7K6noVgcUnt9ebmFgZNClaMOkhjDnnFdINNBFMqYjLP8exGazRpW1xh/p2F4GHRLsPkhEMUiYt4qfdqtYKnYR4ajXZarQ5ZCCqJ0xUcQKMSjmYyzuHu+gqU5AibFuLTF+CmeY6A7yWHC53rnwgG+dnABP3v9Nq0PM2Xj8JQduJfrZ9QarSkBdH1h/pokIqqVHgazDP2d0FfIxqZRGMC1TAq4TgdlVLlTff+8Bk33yEHeTNn0PAHAskx4rkZGvJ1xHhbXiTI0D5ncBFkeNOeyE3zr4VW8usXa0t/b38aPPP8RnNlCiC8KJeJ0TcZZyup/+Utvo8ubCQCGWAhiiN1dBu1nTRua5hHBfNgrYnOJ81NMG84TCM6oV0Cx1qNupff2dvDTzz0kLtD0iHWhluiAjbG6ckbP5eL6EbXH18o9qBkbg0fcwiM7wRtX7uH+PuOZXdt5DD23kPWIYxEvX2D3ny0N0W9VSG5CzVgIXZVQTU33cHC6guXKwttvzvf7+tEWfva5D+me5vvI/P1Zr7Uw6xahzHXYRlnscc7erSv38Vvvv4wXlhmPqNZoQ5RiFHiwIkkRVM0n7tR4lIOmLQxyHauI4zbbl17ZPEP3tEFG1Oe9ChqlHlI8+fMdDbISIMUTAc/WkeIJ19npElbrLYwn7F1TddbdOA/AVw0Pr1y6T359s2EWqu5hiQvwnh8vQ+fX9N7da7i6dkTzcXZeR3eawzafWzNlo9kvUwB6dryCT9pcUHf1EL//0fP43A225/XPa4gjkfiAiubDNBy09xmnLZuZ4c7Di7iyxRDxOBYx6bF7+JGtx+gcL9F8/DCMP0yTvCAI+KVf+qX/zc64P47jWZDEh+1q2F5hh6BmOHBsE+e8zLPdOCPkaKnYh6Z7+MYD1oG1khmjXBxSEJVOW5ClEGHEprZQGGE2TSPgJGlVDeBwUmo1N0IQyiRK59kG3lg9pGy+N8mhoQRYb7CN/sHxBpYKLEvOZqbodsoocDQj8FSoqg+fbwDL9Q529zeQ4pmhYxlYqzcJ0QBAHSRxLCEIZUIOsrkJbtXP4PHSnWk4eOfhZdzi5NJ0dkpBkqr6SBsOpvywLeQmEISYDpDxKI9KYQiFB3eOa+C4XYepsvLKlcYpZL6JB4HCDm+eCRayDOKflzs1zUN/mIfKD8GRk8KKzJEhOYTl6bTJV7JjFEpDQn8M3YUkh3TdxVDG9dVD0o3qnDYw5IGMLEUQpmnMOFpWKQyxtNQk7ZZSvQvdcMkEtl7s47dus4P652/ehiRH1CkYtSsQpRgr3N5AFCPYjgmFI2uDcQ7V1IwOst+6ewM//yP/GgBwf28LxfQUrTH7u65l4Keu3KUg27UMqIaHicvuyQsV9CbsHjaWzjCdZgiFnLoGrlzYh8r/TqtbRiozowMGYIHAkB9W9dyQrqnZL6OSH1FZB2CB4SpHVy3LhONpNF/F9JTWgyKHiEIZdX7/560abjROIXHC61JmAtcyCA0YzDIsyMwuStzzAEIzXHiBQqbFADtwqzxhOW7XcWVnd9E5lZvg4IShwXWuH7XEbWqMwoTkKwDgzeu3Edk6BN4pGAcS4kAizSUAODzkYplpC2kloMM23+ghjkSsrzOC9GycgSAkqOZG7J56JagTNs8Pzlbx8rW7pKeml0cwJmkSIiystJ/qUp1OMhTIA7yMzK/pWrGHdGlMzRvVSg9RJBEKUyqM0O2UUeIl5sGggBs7LDgbdEt448IjQmVlNUAUyBTYpIrMcWCFo6v/37dfw88//wHe32UuBMvZIS6scA22TpEF7Lwj8Qr3Q/M5SrN/tApVDlHiYr39YYGShKWlJlqtGmo19h4+fnwBG2snhDyHvoLxKEdI3FFzCdeuPmBdogBmjkFrWBISnHWqVAZ+3K/iWu0cfY6G6bqLlVob+3vsXV1dOcNLPKENQhnr+QH2eUPJo2EZX7p+mxDOOBIRRRLaQ3YmXFg/xj87rONv8iAJADxOMZg4JsaugRd2Hj2VMH+vxx8lkvTv8ngWJPEhSRF5mfkug/uvbzFYdjZNE4qSzszgOjp+hGfzjm3AsQ0KMBzboBcaYOUEQUxw1GdoyZWVY7x/wMopL6zvw3J1yvZdR8fUMUj5u3++AidQsVpiG8hqqUvBFgBMHYMQKs/VYJo28jmuTxMLKKRnVOawbBP53Ji6v7KFMXU6xYmApWoXAd+4ux2GKs0zUsvV8fV2HtUUF3XMLHSjBqM8SoUhBXZvPb6ElczCf62YnsJ7Ain7Hx9eREaJ8WaDZYKyHFJ22hvlkc1NYPtsY1pJtdDtlbDJg1fbMnE+LhB/x1B86pIBgLV6C/tn3F9M8dFYO8PUW5QLHNskfpN+5kNVfYx4y6+hO/jn9xif5+ef/wiSHFKQYDsGgkDB3SY7cL9QYYdOhT+nMJTxpTWWkZspm1AyANBUH4oSUNdQkgjQNQ8Tft0qD+5ORuw6fvL6bVhz/kmoYHnlnPg8o3EOsrTwnrp9cAE3N/ewwsukshRRwKloPozIoWc4tFk33/zwsTwdgpCgO2XzU8mMUV1qYYtn+NY4g91TdmBc2jjEwekKVrk/oaayYGW+XiQ5QjkzpdJMyrQx48jR8aCM0jSDCj/o41hEudJDl6OHGYOVIuc8Il31kcuPif/WbNaQ58KskhJCUwLqSJudVTEdZ5HhZZ7ZCUMsqDycnaHI30XDdCBK0VMt7GokkiN8qjxiHoVcy8d3dQSTFPFXXMtErczmeTZLI0kEEsy0+zno+enCxkYOkSqMcXLO+EwbayfUSfrqjU8RhRLJFriDHMajHKFw3iQFzzaoDPYbjy7jWn6EFzhPzbZM4vvduPwQoasSf8fMTxAGMtZ4p60oxTjvVJDiAdfENnFxi5UIu2+XGarNRXCtESvFzwOwOJJQzI0pofsz1z6FZrrIaeznZ95C7LPbqkLXXbpH32H757zkvHOBdc/O1225OMCDAxao3Lp+lyvps7ksjLOII4n2U9syUar2qKxVnqVZaYsnLAAoiWjaKTyfG2Kvx57/hUIP1VqH+GC9QRH7/QqucaeBDx5cwXKe+0By5PugzZ6ZIiRQOYoHAIbqQVMCNHh5ev9oFX/t1Y8JuZ0Mczjje8ut7cc4PFuG52rwv49ikn+UtiT/Lo9nQRIfhdwEHn/xBSGB62kE+SeJgLHNNv3ZqYE4EbDC4e8kEfCwvYSrvM12MkvBcnX4fMNIIKCcHeMlztcY9osEtX/r0WW8uLKAhzuDIuqlPr14Nzf2MZ5kiJxdrfRII+WD81U0TAvFhB0Cg2kGe506XrjENtPD41UUslPoMkOSjtt1qGqAJb4p7B+sUwbuujr+yb0r+I8/8w7d09WlFvYP2N9SpAh/7fX36WD3XQ1lnp36nopHx+vY4hYdL6wdwvcV4jOZKRt7x2tULvj3Lj5GkgiwOUo1nGQxctjcXt3cx7sPr2CzxH52NMpB4JsVABydLWGr0saUo0FXLz6Gza+p2S1jNTvFWpWhG7ISwhpn0Omz4KOQncBxdVzlhOlmtwxNCWhzhAzkOKJ33KpjqdylLDCdstAZFOFzhGvczz/FHZvaJhqc++R5GqZWigj02cwUR2dLKPBDUJIjiEJMz1RTAtSLA8gjFqAHgYxdvjFvVNrMXJmT06NYhKoE6HPO1oUqK1NU62y+7FkKI14iDEMZprkwAm3kBwgDGcucyB/HIpyZia06Qyn/+d0b+BNyiCLni0ymGUKdfF/FUrmLb3L+10+88i40JSBulCjGsB0d+zwRuFRr4njASkI3Ng4wnaWIIL+2egrf1QgNzGSmCHwVytwLERZTO+eJQ6XUJ1RFEBKUCsOFHpHmQxQXVjNblTaiUMa9M4b4XPBbxPV6cLCJ567dW2gsGS7EVok0c9Tc7CmbCUXz0T1aJvK+IMTk+C62YxycrmDK+X6plAU15ZBOlMlJ3toT/nVzA1uAob5zeQXLSkEUY1rj1jiDVreCCn+/Xq222WfxZ3lnbxsVXpqNQgmfPr6Iq5sMzRh3ynCchX5VkrBEaU4gzxbGhMoBrMQ8J2orUoSt1RNa17N+DuncFGenrBylyJalmvYAAIiMSURBVCGEcULly+NWndDyMJLQH+WR4wjfYFAgyYv5c3MdnayLokAm1P7oYB1LS026rmK5j/Egj77F5jZj2tjd38AWR+mOelUqwwOAqXlY5Q0o1U4Fhu7hRd5Us3u6ipPTZdpfDMXHeqGPHFfZfqXao4abMJShKAEkrnf2+vZD+K6GjSW2r8WxhMNmg7SQ6nw+5xyvw1YDdV6eFsUYxfQU570KrHCBRD4bP5jjWZDEx3mngmsb3H9L8xEPRMrYMpkpdRTdO17Hcn4Ah0PJ752u4/nGKSacU1Er95AkIqb863dPNrDG9XYAYL9bw/OcR/Oj12+j0y0Tl8DUPNw/XcPNTd6tU+3jvFOhUk0YyBSc+ZGMUmpKh+3m6imm0wxGnHPTt9PImjaVdRqlPoJARpoHBb1pljJQP5TxlTe+Q3X/VDqGKMXURRKGMvSU/RRy8KTjthvJmM0WnJMolChDnU4zCCKJNup2v4SulcFDfsAumw62i+zwsS0Ty9kh8RG8QIEsRajzA7OYmcJydUKSRCmCzTkTtXIfvq8SD0AQEhyfLeF0wrLIYm6M5qhIHJN8eoYglKncMB7m8OoS24jz2QmCcEGAnU4ySBsOtsA2eTNtQ89YaB7yYGbjGAPOlekMC9jeOMLvfnILAPDq5i4K6Rly+QWJejLOIsvLGobukJ0CAHSHBQr0AMB2TLrfUnnAhRvZfOydrkIQElR4qUJRAuKVzYM/05xrPwWQ5JCQkdPDVaRTFq3xzy6fMF4FD7J0zUOKX5djGyjXuvgMP3ycqUklBQCopicQhYQydEmKsMbRLUX1YegSLHthfup5Gr0vihzgzvEGljj/b339BI92t3CHowE/+8o7ZNkBsHJtcM51oTIzeJ4GPc8C0IZ0hmGnhNU8O8hqjTYF0c9du4dus0bk4sBTocU2Du8zUvPmlV14MxMG1zDzZiZKS21IHPE5v7+DK9znrmS6yC91Fv6EloGjR1u4+ApDaYJpCtYgS+/IZJxFhe8fk2EOHx1t4QJPBD5uLePFpRPsHbKExNQ8jJwUyjGbjyCWoEohzk8YQrqzcoL/6+8xccj/yy0J28un9MzyxRGCQCazaUlk7+k8oDByM+oEM3QXkhShwHWSJo4JRfOJ7+e7OibDHAyOHqbTs6cI9aoUEjI0cUyYqkfltWq9g+koSwG5axnwfRVTvjel82NKuJqTPPLZCca8LOx5KjTNxzKnFaiqj91hmZokdpZOMZxkUeSIeRAqVOYzxllEoYQB/ywnVHBt7TEmD9kzzpkW0mmL9jkAMHhgK4gJfEfDUpH9Xd1wMRrmKZlzA5WEfAGWOISBgkdnDG3dbpzRGdHvF+EFCiq5EYzw+4skfTdLZM+QJDaeBUl8ZEznqfbaqZUinytBTHDKN2ZVijBzDSJAFzUPKcMhyD8KZdiWRoThl+JjSHKE249YLf/KyjG9pGGgIG3a5E1m+xrWS12CqaNYQrUwxMOTNf63Q+LybNXPcdKpESy9aniQbQNmjr30FdvEbqeOrQo7cMNIgigk9CKLQkKlmOaoiGx6BpdvcrruYv9klYTmMmkLoa8QL2uOkgCsxJPTHarHS3JE5GAAGFspqHJIhOnWLIeU4qPOryOlBJjyw3Z3UMGt5WPc5x1qV+rnrCTG4XIvUPC7xxv493ipc9wvUJA4cwwkiYATDr2/efM2gkjGjRWuqO1puLhyghZvSa+U+8wn64lnPi/zrRXHaJ3V6RD4zUeX8WKlg0aBBVjtdgU79R7Ohiwwqq+eU+BygZfdbja4354Y09w8OeYlWUFMMJul0eClHMs2KcA8b9WwstSEzjfy0FfgWBkKbjU5QNpwMJwfilKEQ37/tfwQv//4Ml7igV8mZSGdnRIh2A9laLqHDhceVOUQE8fEbMTWwI0LuxRATW0TeV+hsuiHexdxbeUIy/xeHFdHoTAi/s7h8SqVeVO2geEkS4FvfC4gk7IoSBxPM7i0dIbjLnsua4mAlO7iz7zOTGxdy6CSahhJKBRG0LglzMH+Oh2WAOtGm/O1ANbBmBI5Qfh4BYbuUpCYrvWh1QdY48/NGbOS+ryZQcvOIKkBjj5l720uM4W+xv0aP9hmHBzetp9EEsJIIgPX5lkD1VoHp3x9bFXa8Dga1h/lsVXs0nt7sdBDOmUhxwPyhydr+OpZFTuc7yMJMerFASU7vq/il15jzQlHvSrW1k7puUShhHx5SGKjqu5hNM7B5MrYoauS4XUqbbHyK39m9lh7qhs0iQUmdMu5hZaVwtReBOwp3aX94mSSx3NLJ7i/x4jqz9+8gw8OL5Bw7YODTWR0BxoPuMJAIZ5UpdpFp13F0OKcz1IPj5rLKJls73nUreOF5WPqiJsMc2jUOhT4HTSXkONlb8fTYGge7T9p1YMgJNh4Ikl9cLyODb4n5vJjepeSWECSCMSrk+UQ3zy8gM9usIRVV320eyXiVQGMGL7GqRBTK0XX9KhTR0oJaK6ejR/s8SxIejaejWfj2Xg2no0f8BELMdkjfVc+D9+9z/pBHj+0QdIftCX5zsk6vrzFsv/JLI1P2kt4UWLZXJIIhKromodsYUzdKS/uPMTbD6/giw2m5RL6CjRz0XpdqfZgz0xs81JEs1fGRV56GvRKSKVs5Hi2W5DGOGo2qKQWhRI0zSPLgrkoG8CIqG6o4ALnlPiOhiBQiJ+RTVmolftIc5j6YH8Dy0stcsyuFwaUCd7cfoy7+xdQTnMCrGOglJlQl5nvKxCEmEo41bVzDJosax5PMizbrbKMynM15EyLsttxv4JadkToyEvbD5kUAX+Zn9Tyubx5gCQRcJ13vlSXWnjno1uU+clShJ+7eod+Pp2bknZT67wO11fxo68w8bzWyRKuXHpM4ojDYR7F1SbZlBhTD46nEeIhiTEJYgaeCl3z8K2HjMj9py4+QDo9g81LWYEjwxlmiTDdb1VQ4dyVcT+PdG5KXBjdcBHHIr5x7zoA4OWNPRRKA0Kw2r0yGrUOPbeZlSIEK204RGgFgP5pA0Eok4hdvdJDGMgocCL5ydEKXuOlWlGI8Zm1A+Tnz/90BZeLI/zT7zB12y/uPEQUSkSoHoxzuHhhn9rLu70SHI4Yri2fQ5Qiusary8fQDZeQI1X1YWZnEHmpZm35HAOO/h22Grhx+SHOzxghtpgfwfdVQo5uXnqITquKzRrL9hXNR7k0gMrXS+usTtl+ipcO5yWfiWNi++IeFF4iO324hdWrj+HvMeQ1dFVCbZdWz6Fxfy4AUPIzJJFIXn/la/uYHjWgzru9TBfq2hgr/Dnt3r2I2OWlprSNJJIw416Ggpig0Whjwm1JzkdFVGsdIlvLakCk5tWVcwz7BSJI1xptqKaLQZPzuVaP0cgPSCT1+qVH6LSqKHDk5b/99hv4i7z7MU6Epzh7o34BqcIECp8f1zJguToC7n3nzkyaO0ULcNBcIpSlkhnjXmsZb3LEJgxkjKcZEm7VTA9JImDAuxYvbu/j9n1mS3O50kJtuYlCaSHyeb1xigGXjFivtRAECrKFuczFYi0lsYBMZobVC4ybebS7gcvLCxmVSmHI9jprwR1KEoH4YBndwZBz9BxfRakwwv4hW3s/cfNjOLMUIeClwhCb1RY1v8znYn7NvUGR+EsA8OrKEf7JPcbD+2s//rs4PlijbtFiboyl/Ji4Yh/fuQaTo+PrhT4atQ5OzhvfV05SjATCs+627/oQkj+MwMG/w2PuoHz0C5tIhmyjSuWm8GydWvNPjlawscMCFcQC9OKEPK6SiDlFzzkDWzcewhlmaZN3JmkksUDdLJ2zOqrLrFZ/7/4lXL9xFzNeiiqun2N8VqPDR5QieLaBFCdiikqIwQk7bNL5Mcb9AnE9ltdP4c5MGHyTTxIBw04JldUmXcdsnIHGN1TX0YmPk6n2cXhvB3V+XY8fb+HylUcUYHzn7g382Oe/SfdsFCZwOQG2edpAfalFnT6zbgFhoNDGPRnmyNcOYAdKr1Uh+Fw1PCoB5Jc6sAc5OlAy1T6mnRJ0fp3ezICi+dT5pKZtKo8kkYSj/XVcuM4OptDVIEoRJh3ezZZyoOen6B2zIMn3VShygBTnM4hiTGbB7jQFLWXTAZokIhPq43ynObl3wk1rRSFBgQdJ014BqcKYfLuGzSqypSFt+rLmQ1RCzLpsI5fkCLLuw+dzbU3SxN9KEgFGboaId1xZwxw8V6Pv6/kpRmdVFDdYoGx1isSpiQIJcSiTt9S0lyf+BcC8ytxRmq4z9BXoWYsCtPk8AIA1TaO80oI7mc+HAFkNiHPjWiay9R51ioWeSknEbJJBOjsl3p1mOpgM8ySRYBbHsHp5dNos4FjZYOThuXmq1SlSoCPrzGR2rlitaD4Uw4XBneq9YYYCAoCVdVRemjNrfQSTFPmvZcpDtE+WceGNhc6Q2ylAX+Limu9cx+qPf4jJx+s0F/MgqH7hGA8/uYrNrUP2/KWYzQk/+J1JGv1OGSvb7PtRKFOGnyQiIl+hA3pu4HrIRWBXN48ReCrNrWK4cCYZmoMokJHhYpmBZcCZppDiwYc1zEFP2SSYefvjG7i8s0ulvlyji5CvM0GKMBvkqRU/8BSY2QVfJ4kFBJ5KXpCZWh97dy5hlROoJTUgEU9BSKClbXpv40CCZxvIVNg77ls6Bp0y6txM2urlqWR6tL+OzUt7UPi79+jD69i6vEtJpijFiCMRuw+YKOiFnX14tk4iuaWlDvGopr0CTs4bWOFcqFyji8FJg/wuMzXG6bv9/nMAgFpxgDLf8wQxwcnuBrK8DJ4pjiEqIWxOzM4udTBrl4iiMOiVsLxzQIRza5ijZxxHEiQlhO9omAYhbv7GBxiPx39o/7P/vWN+hj1n/DlIgvpv/4U/5IgSH584//339Np/EMYPLZL0B0cSCwtD104Jvq8izVvd06aNJFrUriNPoVZh1zJhZmeUdceBjF6rgvr6KX0fwMJR3kqhyA/ZlOZy40TeJWIzOQDX57L6GZsFSrwDQ0vbaHOC8BwhmvNd3JkJUYpwcsCy6LmMwNEj7vpd7yCOF2T0XHFEB5czzKJYHJIZbjk/gmuZsPnf3Sx1EFgGTnkgmB3mMOUt3qocIgwUePwAHY/y6I1yWHuC5Og5Ov3d/jCPOBYXvBrNI+0mI22h3ynTXKo6s02Yt8SLYgzXMsnWpSSH6HIndl13MbLS6B6ya0znphh0S0RctqdpuJaB3TPe0qv4WK52aA58T4XAN15FCSArASzOhbEdA4buktv6PHiYo2WCkNDhLMkh4lBG5LO15PsK6+aady/xg2w+XMtAWg3QPOc6ObnJglNieIyH9ARxeX4vAEMoBDEhMm7oK8Q5mvVzzCyVB+BBIMMfqNRhBDGGZxv0HBTNh2/ppG/15KEnSyECRyP0S5JDBJ5KwXzgKU8Rysf9hajp7tkKbpiPiAskiAkc28Cvf8rsUP7CZ7+FJBGpG9IaZWBmZxjzNv4kFihJsAY55Fba9Fm//f7L+MKVO5CUiJ6LaxkocusRt1khBGsDQOtoGVWuuN4/r2Hlyi784TzZkRA4OoQOC14zxTGCZoZEMeN4IXI6bZegKQEF6+3TBnqTHOkD2bMUoljEtMc+S5Ri9DlvLJ8fw7JSOJ23x68eQ085ePeUBWOa5iOJBdgc5V3fPEIUStSQkc1NEPLnIAgJPFeDzPeYwaCAQiJgroXvhzLiWCThxtDVKFj3LROyEtDznkwzyBTHmPL7nTdnzO8RsYiZa9B+Fo0lCuSSRKAEY36/krIgdg86ZaTSFny+v3iOQUTtlbUzyLoPl7/jpcIQ0RPreK4ZNRf6tSdpJlzKOVxxINHe7NgGUrpLe00SShiOs8jy76eKEwhSRPw/z9PQ51zTfHmAT5sruJ6wbjbNdCF4KsY8MFY0H56tU1AZhRLccYa6JQFQY4uihAh8FZZlYvZ9JW4zpaTv5uc9G8+CJBqzfh5KuIjCBTEh6fvb56t4hW8IUSzBnNiEMk3GWeyfrJLgmztJIZOd0gYZRSI+PLyAF7eYiF2t3Cfp+7RpYzTIU0u74+g47lWpDfXSxiHiSMTv32elmi/d/Jj8wpJEhM3JygAwGuYxsU36Wpmloao+Ecg/vHcVty49pM02Xx7g4S7LXjU5QD4zRY9vXPVKD+NhjmBp11dhjTLU6dEaF9DgUgKG6eBrn9zCj3GSpiRG2Fo/wYcPGeH1xcv3YU3TC4+07ITZA3CLh1Qokxhc4KmY2iZ83lr8nY9voWBYsHxeFrz4EIfHq1Qi6p42iEQuSRHK2TEha+NpBpmURRv5YJRFynBwg3cWNpt1ZPITtM5YcKJrHj7h7dBXG2cYDvNErjUNB76vEpI21/iZl+qCUCYNnd6giBKfcwA46VaxnIh0YCgKs12Yd8P5oYwgUEiN2PU0UvKWxBiG7mLMywVz5fICz3bDdhlm2iYUU1UDdLi/XDE/Qq+18Ns765WxVm1jxg8jZ5rC4ekyrdvzVu2ptvXltVPs8o6rOBFwUT2kElo2M4MgxIgULnORiLAHOTpAhqMcKdKrUghBTJ6STEilbPyZWwzBGfUKmFop+rsA0yGaz+0ctQKAwFfhjTIU2P6pN78NALB4kBjxuUx4QhKFEnX73b1zBZcv7mLAy4nDSRZVT0X3mAVRmfwEo34B9U2W3AhShN79TTzia2Jn/QjnPe7zNclDlSLkuHBpd5xHo9TDg4cM7bADDaXUlNSqM/kJfH5wnzbrWK61qQmgNygi68/wEle+Hk/TyGVmZF0URxKiUCbh0igWaT5CX0EUSdSGrqoB7h1skazDla19ZjE0l+twNbJA2j9YZ5IKnPieSVv46PZ1LPN1fNYro5IdU4nTdzX4oYwx3xNTKRsC9yU7bjVws96jxFHWfSS2TgHIaJpBGMoYnzEUt5wfERFd1rynFMaNjI3ffvs1KPzde2X7IRQtQI3PVxgoeGd/Bz9y82MAQPN0iQLyVMqGKNqEUrrTFEtw+Z54vr8Gx9XIf27mGIh4+VCWI5hyiBEnkB/drWA5P8A5b4RQlACa7uHTPaZxt7N0isODNXrvLStFnZPTaQbjaRql/AiB+P0Lkp6N7814FiQ9G8/Gs/FsPBvPxg/4iIHvMifp2QCeBUk0rFkKtTwriSSxgI8fb+LlbYY6rOcG1Do/HOahaxKsKTfk5Cqs3eHC5VsQEmrjB4D1fB9TXiJ553Qdlznhd2PpDMNRHg2uRzSbpWEFKm6uce8uV8ODs1XUTJYZjYZ5EoAEGHT/9u1bAICXlo9heToZls4z17ngGyM4LuwA7EkaxTSvv2emcF2d/MY+PdzEpaUzypS9gJHR5zB1LRYJdRKnaXz+8l2qx9uOAUmOUEktWtwBZtcCMA+tMFDISgMAqS13O5WnWrqTvoCVWofI1gBD4uZlHcN0SK/q4ekayukJhjab5yvrB+gNivTcJDFGf5yjksnd9hJq1UUrtutpuM7brjvDAkQhJgG7VquKpeUmCc85noblRoukG/xQJqSkWukx2J/fb6MwwNQy6e+U6114toFffpeRwv/T5/bQ7JVJF+jzW4/xmP+/JkVoZEaEtKlyiJRp0z13x3lsqGeUGR+06yQWKishJCkiS4Y5cmFzpC2MJChP6MXUK108ON5Agbdeu0+ohl9YPSEPPoCho5n8jNAwgIlzztfmyE6hwm1AVipMM2fOfwNYyXX+HJaWm/jth1fx0zc+ZnPpq0ilLDKTXVlu0vPOFEcIfYXmfUXz4bsaKVvXKz00+2XIfI33h3kYCps7RWYeb3MUUhQZ12VOxHVdHZar4+G3XwMAvHztLkQpwjovGzu2QfZA641zvP34Mg7OefnZsHH3dB3XVw/ZHDsGSqUBlYW77QohEldWjhclLDCvQ03zqHw9clLIPaFoPx7kEQQKGTH3J1nkHP5eehoT0+QonGa6SGJhIWRaGMNxNYATmy3bwAbn4G2snWLYL9BayhVHKKRm7OcBmKqHo34F2zK7/3eOtvDK2gFph8WRCCPDpSlOJfi2QWVih5fXzrgp79/8qIxf3PHw3Noh3de8aSRwGL9oTlSX5Agl3SEJhE6/hPX1E5TqrDHEGmWwlJ4QJ+lJlXnbNpBKWbA4x3FmpVDIj9Dne3O10oPjasjwd7NQGBEyZlkm1go90oXSFR9RLOLGBhPq/I1Pb+FPXrmDvMF+dzJLI5eekdOAKMX0vG1HhyKHMNM2ou+jwe2z8b0Zz4IkPrqjPNYarMPCc3SknoD/q4UhabUIQoJUbkob92SYg+stINxmuwrL0zF055YfwCs7D3H7gJW2fuzKXXz7EesKUSRmszDn5Ox3a3jxwiPyhXtp7QC3th+TF5MkRwT5C2ICVfWxOTchnWbRttPUrSKICX7r4WW8VGMcDC9QMLZSWKmzr23LpO61uYHt/ODaLHegax5d89XVI/iuRpvxeJIlhend0xWYhkPBV63RhmuZ8EKF5qtQ7ZOQXJKI8D0VNX7d5eKAPOKymRnCUFoEnJpL5QH2XAzIUoiZw56FYTpky3J9cw+/d+8GZT8XfBW1apcsQvrTLIJYwprJDrpL5TYm4yy+fcju8adfeYc2+YyhoTUuoMtLM4ocEqcMAMqFIY7PlqgsWC8OiIiqZyxIT5A4M9kpNM2jQ0GUIohShP/zVVZecXwNldwIr3JOznCawdU640W0RwU0qh0y/6zWO7j/eJu8qdh8CvQcl/IDWoeCmKA9LKLOxfFSGQvtdoW0vzK6B7fN7CQARmy/0DjDPteoaiQCXP4MHduAponI8d99dLaKq/IBOvw55UwLuuqTFUk1N6ISh+Pq8AOF7HBEIUHHTqHM76FUGOLz6/vEI/nwaAuff+5j1Ctdusc5F0pLO/BsnfwKv/HJLVxfOsES76x0HB2lzAT3j1mZcGfplAKmKBKRys5wxL25xq4Ja5AjvzXP1nGvtYwXuC7O+VkD9XqHDr7+NEtJRaXewXapgzxPIsbTDGQxooD8wdkqisUh8b1qjTZSnIcmCglOm3UUeLCRS8+g6h6SPpuvy2uH+P3717HCO02zho18ZrrgEqYsei9FABeXT4h8D7Cy89xsW1YDpE0brQELZjdXTqlJQlYC+KFMquqnJ8tQ5BAWX6f59AzNaZ4MkK+U2zBNZ9FVlp1SqXq12sZ0lMWH++y6bq4ewfM0Cuz+k4sZrOQGdA+DaQYJ2P0WgiHiSMRekz2XppXB8ytHVJ7WlAC+q0Hn96QaHmQxouAum5mRcG+hMMJslsZXH7NS/6X8EOVyn5KwwaCAqWPSO7KydUT7+LuPL6GWnqJS5qT4UIaueaQE/4WNPWi6hzx/B7K5Cf7p+y/jRb6/ymJESUJrXMDF5RNopgPf//4FSc8kAL4341mQ9Gw8G8/Gs/FsPBs/4CNGDOG7GNg8C5LYeBYk8VF5Qkk1jkTUsiPkeKvtrJ/HB1wx+/raIZJYgMOzF91woao+xjyLvrBxhMPjVZQ5KpMxbCiaj4vc0DWORLzMIdw4EjFzDEJolvMDqLqHNy4+AACMxlmUzS7J+9uWia1Vlvl+9fYtfPnWR1Rek6QIUi9GnttuWOMM/uxL7xGRd2v1BP1+kaQIfv328yjyMs52sYvhySoZyQaBgnavhGvc58z3VXx4eIFI429cuUtIwXqthfagiDWNIViuZSJOBPrZvf0NXL72kDo/gkCGpnn46hEzuHxumsN6mRuYyhHCaJHdZlIW4kjE1vIpXcdwUkSVE1En4yzB/7Zl4vmlE/LYe/dgG5+7eof0maq5ERQlIGQpn5liZpv4068z8m/gqYvOLiXAZq1FBOpicYgolBaZ8DiHpWqXyoC7rQau8rn0bB2a6aLXZohfudaFZrg432VfN3jH0Jww7bg6HE+jkpooJGTCmzcsKJpPKsANOUQpM4HOSwKur0IzXRgcifz4eBPr3JKjkbKxuXJKnXRxJCH9hPEsAIztFNZMNrfTURbFWo8UuINAQYmXTDXNgyjF5Le2s3SK41YDBY6sGLyjiPy0TAf/7YcvAQA+t3SGerGPFH8OqurDOdzCRe51GMfSU9YZS5kxmud1IuMaukulKEULoGg+3DEvY7k6Drs1vHSDaWc1u2U0Kj2kuCq9pnvUfDG2UtjQPRQ4+iNLER4cbFLJcancRSM9RqHK5u+8V4E1TRFKU8mPaA23zutETAeA7jQHSUio9PLf7JVwZeWY0LNX613qxpqOsliqdqjsKUoxfFcjtXdZCfETL75Pnz0Z5uD5KnW7NaodOG3upybGUFUfPieyTycZVBod2LzT1JmmoKo+tjcOAbD3a45uhb6CwSxDyHMuP4bnalQWTmdmSPV8LNeYRlmmOMbZ0crC4uQJhDcIFKQyM1zlexyb3xCFdYbwnQ9YN+BcHX9r/YQQOtfR4fsqcpxSsN5owkxb8Hm3qCKHEISEmhMM3cXF7X0i70tKiAyXGDk9XIUih7jCS87V3Ah7x2tIaQzhy2cnyGUnOGszZD4OZTJlXi/0EcciofZbFw7RPG3AjBaobRgohNJlan38+Te+jffvsKaa41kG1WkeAHB1+QTdYYHW0rPxgz2eBUl8yFJI2iXtXhnl4pA0Mvr9InlRqZqPdrNGLcvp/JgCJoCVBkq5Mc77LDhJmzZmkwwd1kGgQIzZRiSrIWopi8pNAOvQmV9HkghPmanOxdgAYD07QhRK1OKeJCLe69RwkW+Iu6eruHn1AXVNqYYHRQ6Ja/KFjT0ccUPSsWtitdRFl3NMlpabkOWQ2uU3qi28duk+ff/wdBkXNlhpspidwfU0KreJSQzHNkgQM4xkuNMU2vzwrZf6kNUQf5Kb/EaxiOaQfy8ZQtM86kiaugaOD7bx+ct3AbCS0X5rieDyKBYpSProeBON9IR4I/nUjDZ0gHW+aIaDB3usJLCzfgRdd0lTZtApU+kpjCR4rk78qOkkg1TKIlG6/197fx51yVXe96PfmqvOPJ/zzlPPc6tbUktCCDEJbAyYi80v4RIRm6xwISG2E7I8rNjEywlrGS/ihQH7Jgb7Zl1uYMU2dn42JlYASQgJDa1utXp+5/m875nHmqvuH3uf/XZbzWDcUqul/dE6S33OqVO1a+9d9dZ+hu8zMlSG70ns4a3ZSrKYM8+XkHQ6+OYcqRf188k2HFvF/KCESTmPcj2LSVoQWBBCfHd+DyZo0dI9E8vYoA9JUd2CJPvsD5Xvycjm6riyQB4wR/Pb8F2ZzYuhegspmhXlXxMnBQDVrTxisS77Y315fgaZWIe5GM8sTePBfB1JKhiqKC5Wm6TNf7c0hZ87fI49zBsRB1rLZX+4W70osok2lirkD8yRXbO4g8YkpaJdRKJ9NKmmlC9KUEWf7ct1FSiKx+JowlBAMtHZ+SNqa8xF2G3HEIn2WX2+9554jgiu0jibwbzYoJlg457MYvMGhaNTVIrB9yUosseKAwNAWMsx90spU4Nu7KSTA6R+GQCcmd2DZC+GmE6urdFMlWYekuv6Xx1cw/mVSQxRl3K7lkaExhkpiotvXzyMAnU3Hk220e9FritdEwYCc+9GYz0YgYmou1Nj7CiNfdpqZPCnz96JD99JBFRVzUHgi5ilZYw0xcVYcYs9/IdhwFzqAFBKNVgmmCT7sEwdL26Qaz7f7GG6tMG0tRxLw1YzzQpZh6HIrnnb0uB7MnM3VutpJEIRmRi5FmdG1tFo7ZSm0aN9mHTe6YaFc0vTOECz+6Jxct3OrxH323ixDMvU2eInYpgIQwHP00Xr8d1XYdDxTyY6cF0ZDZvsO2LayCVarNBzv29A1Rx2X3BtFdutFACSCShKPpZWyHE9R0Y00mcPyZrqYGlzCIUkGdPAlaEYFqsxN1UoI0qvnVojjWKuhvXlUSoBcAWvBNyS9PIg3uoGcDgcDofD4bwa4ZYkSiLTgkpV2BIx4uZ5cZbonkwUttCiloK5lXFMDW9glZps46k2KtUsNrvEbFtdiOP49CyzMlxemcR0aYMVz/V8Ges0cycd7WJoqIw2DY7UFOJO+P5lIoU/niJBzS9skNXNGw+cZ6ugmdFV+J7MzN6XZnfhRH4by2vELD1Z2kSzmmbWEUn2sFHPspWQpjrMOgaQjK0h6tZzTA3p/I6puNuPIAhFFiDsBRITGnRtYq0YmPEHitADc7noB2jU0kwMDgD63QieWyer3VPji8y9Jsk+RClAi64Ej0wuYP/uOea6UmwXo5kqE3GMxntM7E2XPMiiz1Z+EcOE78lYKZPg0qhmYUi3WYFgUQrQ70UgU2thqxtj1r6r2yUcGFqHSwOX/+rKPrx33yW2ms0HNXi+zDJyYtEeLq6SYOGRVB2q6uDdtHxKpx2HorgsQ7FvGnA8mVlKOr0oTo0vsoBZWXGxm5awiSU7EMSQWRotS4ftqBihxZU9T4brqCxb6lKtgNEisYysLI0hn62hQUtDyLIHy9JZ/+QSLUhigN7ATZzbRmWzyMa40Ujhzr2kkGpmhZRjGFjWjFgfMcNk++qbOmLxLkY9Mp88V8Eu6np5cXUSe4UQ2QL5rtuKQ5NdVuIlFutCcEIY1CqTiHfQaieYpTYa7bFM0UovjjsPXsDKCrF27D16EeX5ccjVFABgo5XGciOLw7T/TFNn53N1fQx3JC8yN00QiMhm66x0RiRiwg9ENKs77sZuPwKDWp4k0YcUIeOtyWSujYwSS0l5o4RKJ8kChD1fwnimygrcfuXqNH71zd8l/dpM4aHjp7FGNYMsU4ck+cwlVK1mYegWKyzrexLS2Qaz4pZK2/DpOdX6MXzw2FkMiCS68F0ZJp23quzh6+eO4oP3XetSHoicqlCuEcQUJR/lWhbDceKOjOkmGu0Es0Zqug1NcdG9JszgUSoIenR4Faals6wxPxBRmlhDOFAVp7paA60nqxfByha5LoupBo5NzWN+nQb2iwFEKWDut14/gmikz8IhYrQawqAArtk30F0i9+Z4vIP59RHcd5Bce1cWphCJmEx4t95MQrNVFuhf2cqzYPwgEOG5O65+2zQQT7XhUQtfzzSQMPrMWjR/aTeiEZPNU1nxWHJGJtVkpakCl4tJ3u7whyRKvZKFFCcugGi0R/7Ya+TGPTDBA0Am1kEs1UKWCsVZPQOl0jar25PKNNCoZpCjKat/uVzEr44v7cRrxPrMLG9aOrkY6c3FcUhcx54CeVhJxLvwfRF30oybc3O7sZdWtQ8CEYrisbbtnliGrLose2erloXjy1DpH/J92Rb+fGkI//YUiUHQdJvFmLguEeEbCGTOLU3icOE8nl8mat1vPPwCuu34zh9JS2cZeXMr45DEAKPTxP128fQdOFk4x0zxf/SdB/CR+77HHmwS6Ra2Not4wzRxt9mOyoTiXFfBVjuLU4deBECUiz1HQXGEtLmyWYQRMZlZX1Zcpop+PDoLWfXQqJGMq1ongZH8NhMljEd7WF4dwfgI+cOm6hZ0R2YPWTHDZKrY9x16EX/65L34+SMvAAA+eOI5dLsx7J0m0gxXFqawd3qRqShrqoPd1M0nSx6CQGJurUiqg8sv7mc19lrdGPKJFktprl8hxx/0rWur18WVXesy6/YjyGV2au4l0y249o6b5qFDL7AsO6UTI7IOVOCuWU+j0kpBoK7NmYkV6NE+NlfIH6d8robNrQL7I5FKtliq/YF9V+BYOsucsXoGhiZXWTmdVKaBzY0Se0iwbQ1XqNtmJreFWKzLStxUGmnsnVzCwiqZp8lUE916mklEhIGAR5dm8H/RWDHH0lCkGUeZZAuure78IWvH0DMNpGjNsMOTi1BVh8Vhmd0oe0hKxrvYWB9CivbHcrWAkZll9gB6dnEGx6dnsUofqocLFViOel31eZvGhhmKAz8UWf2xfKGKaKTPHubGi2VsVPM4SgVkBSHcKf/iS9Bi5k7MVdSEIASYpOf/4uwejCkVdr+wHBWeI2OYXgO+K7MFyUiyjmS2wVSfo6Uati5NYZrWOmz3I3j3wRevkxwYyCUUMnWoqsvOwe4bSFwjvJjJNLC6McTcoo1GCtNjqyzGMQwEPHCQXKflrQL8QGQZfIVMHYIQspJBtqkjmuxg3CbtWlgew74Zck/b3iogEu/izlMkDmv23H5M7Vpk94vB8Z6kGX1TtSYWWmncOUruN34goUfvxb4noZRqsKzUscIWNis57KExS7lMHb1eFEnqnk4IAb5FhXoP0z4dGyMP956jYGuziBzN4h2bIFmEg4fsdNBC4IvYpGEVB/ZfQa1MJUEcFZLso9WJo/tK1m7j2W0vC9zdxuFwOBwOh3MDeIFbWhxw9WNj8CtklRVNtyHrNi48fxgAcPjuMwBdaYiaA68bQZ3WlgpCAcVdy/AH7jRHgSj5LykUmt1HVj6d5RL7TlR8eJYKSaFum5FtBK6MXpmY1gUxRLOSwdA+YsForRUQzTUBkOKWAKDTwrJmLYn4RBmdZbISVuN9XD57EMMlsnrLzqzCbsbZsQUxZP+urpcwcmgWjUViVVA0B3qqg7945C0AgHeceA6S7CMxTlazTivGVqdun9Q/KtByDr6tQEt3WOHH0JNQWR65rqCp2zNYYKoW66O6RtpsRPpQDRsqDRbt15PwHAW5/eT861fHIck+dFr8dP78Xuy/7zQAwK4lYQxXUb88Sdplq4hlmqzOWqeVQGlqDU6PWDQUw4bZjjHL2+H7nkN/ixbDzbTRWBlCdopm64gBAltl1ea7q0WosT6aG0QsL79nmY1Zs5JBYWoNnW3yPjmyhfZGHslR4gbrV1LQEr3rgsrDa6qRu6YGlYr0iVKAp793F+66hwTmhqEABCIr4fDs88dw3/1Psd8qyS5s6nqaPb8XpeI20hNkzK48dxjFYgWxbJOMv+RDTXZhD2p16TbMWhJqlFiiRM2B2yVzTEt3ENgq3D6Z463tHEbvfQHmGlk5a9k2zHKGnVPgS1hfJP06Or0MLdljFs9Lzx3BoXtPo75ALE3piU1YzTgiNJO0fH43NrbzOP7Gp0l/9AxmTRPEEBAD9GjR4uXlMUxOriA5TcbJbcUQ+CLb3m5HIVFraeDJ0BI9WM0d8b/ocAU2LTWzMTeJsQOzrKQJADg9g5UACXyRBfl/81sPYCJdYyUpMuNlBK4MgQaOS5oLr69DpNe10zPYPIxlm9ALDVYzrrWRpzX6doz6vicjUSDWRKsdhWJY0JLk+hnUdwRIQdd4rrFThHZqA7UL08yKOyhSO7i/XJtFmBwrozo3jtQwLcy8nUWiVEWHXgOurZL7ABUBNdtxRFJt1gdXzx5gRb99R4GkujDo3Dr/5AkcfsNOhp7bNdDazLNCtINrASAB0P1aErFh6gK7OoHi/kU29zyLZJ1eW/KkV08iQos8V9dLLHHh4tXdOHr0PKsjp2ZbaM+PsNCAaK6J/983HsJDB88BANLDFcjU8lqZG4MR67NC3euzU8gPbTHLUWK4gt525rp7YBgK7FoVJB/r50gweacTw8SeBQhCiLYTYPKPF16RArfT0Z+CKCg/+gc/JkHoYqH3jdd9gdvXrSXpC1/4Ag4cOIA777zzVjeFw+FwOBzOq5DX7UPSxz/+cVy8eBHPPktW6YEnIz2+ifT4JvRMCxtzk8gmW8gmW9AKDVblXBBCBL6IZKFKXtkGBDFkFdiXZqcQHd2GrDuQdYd85yoQJB+C5KPbSEBL9KAlepB1G/VqFmqsz6wng9WJGu/DMbXr5AHixTpEKWDxDWqsj9CXEPoSVpfHIGoulRCQIesOJidXkCjUkSjU4TsK1HifFBsVQ8xf2g0t2YOW7KHbjyD0JEQzLUQzLSSn1+H1dZyamsepqXlIso+VpTEIqgeBxi0FrozAlRH6EgpTa/j+U3fh+0/dBVl3oMT7aK0V0VorQhBDGJE+7L4Ou6/DtxUY2RbMTgRmJwI51kevF0GvF4Ek+5BUl52TkSTpwIM2r60Pw3MVeH0dXl/HzIFZhJ6E0JOgJHoIHRm+S16xTBOuqUNWPciqh1S2Ad+VyO9dUrU+lm9gbHQDY6Mb6G7k2XdK1ISsuJB0m1hYKmkErgwpakGKWtDTbfjOzopNNGxoqQ60VAeR2PVWIt9RoMVM1l9GtgU12YXVjMNqxknFdM2FmuxCTXbJfLE0eJYGJdlFOtqFZNiQDBuCEKJbS6FTJa/7HvgeGYNAQBgIEBUPVjsKqx3FyOgGtrbzpHiopWJ4ZBOxfB1OT4fT00nFezlg8zoMBcSGq2yeOq0YAk8mL1dGr5qCErGhRGxkxzcQOjIbF0HyYbZj7Bxl3YaieFAUD76jwGrGIUcsyBELY2PrkGMmtAh5hYEANd6DqPgQFR+y4mJidJ3tS5QCKIkelEQPbl+DrDu4NLsLl2Z3YXx8Da6twm3F4LZikCMWthbG2G8FMUQYighDEaLsQSs02HvPUSBqLkTFg6h4aLTjkAwbouZA1BwIVBn9q4+8BV995C3keuwZcHoGTs7MwfMlBAF5iZoDsxVjfT3Yx2B7PdNiSuudShoC3b8g+ZBVF1qsDy1mEkVx00A812D3E3JPENm+BcmH2YrBbMWQLNZQXStBMSwohoXQlZGeXoOs2ZA1G1fmZpDdtcrmYmJ0C4EvIfAlNJeHINPAbUEMEU232DURyzdg2yStf3AtOpaG7ZVhyLE+5FgfpdI22pUM2pUMkWAIBLg9A27PQD7TgGjYaK8W0V4tQlQ8JIcq2N4qYHurQOZIogc50aOacxHYjTjsRhx61IRZTUKQfQiyDzXeh5boQlJdcm8IBMwuT0CJmVBiJi6sTaDbiqPbimPv9CL0TAtuX4Pb1+A04ojkm+zeI0g+3nPX04hnWohnWvAsFUq6AyVNLNOOpbFzMHSTSTEMLHWCEECQBy8fvk3nkOYiDAV2HeYLVeiZNiTNZZbMV4IQ/k1/cXjgNqNXT6JAg6LddgTFsXW4NAMptFX0qVtC7kSgJXqQqChjc3kYsuYgkicBnmOOAq9rMHdYu5ZGEAowN0mAXzzXvM6kP37kMtyB+FsljbNnjuCuN34fAMn2GppcRb+SAkBcaGtXSDB1YbgMpxvB+jJxW+w+fgF2NcnMxfNnDmB4fB3qwEW0kYPVi7Cg1qk9C8wlNj61AquRYK470bDh2irLSJI1G/vvegE+dVVZrThaNdKm/Ngm5IiFk0eJCdtsJCBHLBj0uIEvQo/3WFC4pPgIfBHpUeIG7JVzmNhLxDUHgZ4D1ucmkC1UYW2TYOyxsXWEgcAq2Wen1tk5CGIItxNlYpm+o5DSLTRjzepE4V2j59RrJJHQqohSU70ghmhtERdZGJKbY2+DuJN6zThy+QYCc+eBtbpWYgHWbjMGp0XcOIrmwLM0ZKZ33I+BK2P1Egk8nT71AnxLRSRLjttcLyA1VoZHA5sFKUBI3Sm+pWJoqAyLutDqWzkUp1fh0Bpysu6gU0sxV40g+2jSwPV4so14tAeT9pUoBbDbMZZ1aMR7sGsJdhOvLoyhdGCe9eegfMWAaK4JUI0dASJ6awXmTjK3MojlG2jR/krG+xjetUT6rprC4tVx7AtIHcRIpoUwFKCnyPx44akTOHTiHLyBay9iwcg2WTvcngGRBhf3GklsLI7j6NEX2Zh1qmk4g5phjQSyw9tw6TlG8k0sUxfI1J0vwqklWCmNeKyHxDUusV27FiFIAYIumYNhIMCzVPzTn/rfAIib69nnjwEATt31HCLxHR0u39RQ3cpjbB8JRg5cGVuzE+hRwcjp6BX49HwUzYHbiDN3deCLEDUHIW3z0NEr1/WtkW4jcGU01wt03Pos2FqQfBQmNrB6mcyt8UNXIesOJIXM8YMHLsPr60hNXOMmp4G9ydFtfP1vHsK7HngcANDayqLXi6I0QeZtMtNEJNuCTxMDYqkW9EwbJr0Wu+0Yxo4Q/R+rnoASNZmLOT+zAq8dhUYXfpLmQtJcjO8i7rnq0giGrqnlt7FdQJq62wausYHL1O0ZzJ0HkOt6/+45BNQNdurQi4hSN18YCghsFQHdBwIRUtREboacU7echR7vQaD3ACVqwmuTMYrnmrC7BkswSOTrCDx5x91YSyJaqjE3qdvX4DsKC2/Q022k8rRuouaw6/mVhARa88Dtm83r1pLE4XA4HA6H88PgliRKJNWGS1cV9eVhCELIAg37m1m2oujVk9BTXXh0Na/qFpy+wVYnvifB7USxOEdUkYeGtohOELUWteoppkGkGDa6G3m0aCp1Ol/D5NAmrDpZ/UuKh14jyUppFPQNJu0fhiL6zQjGZpZIu7YzkGSPBRJGo33MXZ3BfmpZcSwd25UcvDLVOvIlaINyKKMb0KJ92IPilxELnqOgQ/WbCsNlbM9OID1EAi7NToRpCm2vDKMwvsH0ZXLjG6jNjyFCg6tbm8S6kKYBj6EnwWnF2IrR7utMYXxhcQIHjlxkgdyD6t4Dy0CjmkE6t1MQ16wldxRxUx1YzRjbl+9qiKTabMWuxfooL4+yoNdcsQK7HUObWgjThRqevHwAAPCgYcF1VICcAjqdOGLVFLMcKFGT6qqQVXZrvYjVNaJ7Mzq8CVl1mVWsvjSMMBRYKvXck8eRLVTZ6leP9tGvpNm+RMln3/XKOfQ6MaxS7as9B69AkH08cfoOAMCpwy9C0Rxm1bs21dv3ZHxvfg/upOrMPUtHzDAxPE2spbX1Iq6sjePu42cBkJWz04ph+SqxVKqqizhV7+414+jUU0hSy2K7kkEk0YOmEGtQZysLy9TZOXqWiiZNh5ZkD5lkG5cvEQXyg0cvwKklmYVrbJgEbg8CpEXJh9s1mBV34BoFgMW1UUwMbaBKrUHZUgUXF6dx/8xjAIDnH78b0xOrbHst0WOWEa8bQbeSRpKWJTHifdTmxpAoVVk7e2sFFnw9mFfbizTAvFhBjhadXZ+fQCZfQ4PO+VY9BSNisgB8s5LGmaVpHJsglpPa8hBT7lZo4kePXuN6vAenFcPaEgl0HwkE2H2DBVvLioswFNFokjF2XYVZLDxLhe8oGJokLjWvr6N8dZIlUXTqSaR1hyUkLC9MYHofkSWwmnE8cPDFnYDydBuiFDBZBz1qorFWZKWZHEuH1HXRqRJLEgB2n3L6BjrVNKL0mrfbMWiJLhsHs5pk2w3YvjTN/j05vorL54g2XClfQehLzJ3d3s4gWazBpvfbMBQQhgLrv0iqw+aSpHjot2OI5xqsfwTJZ1adi1d34+Q9z6FbIedgeBKz2AlCgHo1izSVkwhDEYEvoUwlMkYm1uC0YvCoBct3ZXTbcZSpRMGRu86yRJheI4mllVEcOHIR3itZ4BYhbq4l6XWd08XgliQOh8PhcDicG8AlAGj65Oa/y0O3yIrkq4+8Be+793vMD65n2iyOqFvOIkoDoQFidfFNDUsXiTp3vlhBZs8KS1ldPbMfnidDo0KFxV3LLO3UbsZRWRphhRAjxTogBiy+JXBl9OpJttpVYiacDllReX0dzWoGpX0knkcQQrg9g33fa8WRHq6weA63S9KQB1aJ3fuvQokRaxACEe1yjvVJgqYFD+ICfEtDr55g6bDRVAfRQQyBqaG7lcXVebIyPPGGZ0jALV2hdctZyKqLyBA5B0EiQY+bz+8DQOqe5amFIpavQ1JddGhbtssFjM0sITJE+qe9NAw1YmJjgah1jx2cZSnJSr6F5ovTuHCR7Hckv42hfYuQaL8LcoDuWgGgqz0904bX19n3S+f2oU1jSPYeuAo902KyD56lYmNuksXZ6LkWAlthacqz5/azFboa7yMMBFRpins02YEoBUzwr3h4DpUL0/DcHSNuZqzM+qu5WmLxXLJKAosHsUChJ8HpRtiKNVIk/TVI47/0wgGU8mRcCnuXIIghKleJErjZNyArHkp7yDnYrSgkzUVlicyHdKFGxijYWf0PahcqmoPYcIXNh+byEM5e2Yd77iJp3rLuQEl2WezYlfP7MLObzEtR9qBEbGahCVwZC+f3sjHP7l5m6dQAiSuKFWvsvZruYOmpowBIoV09aiKzj5yD24nAbUeZlSE+sg23E4Uc2ylK2qVxUo6lIX9ggUkkeI6C+maeWYyGD1+F19fZmLYrGaRKVRZ7iEBkVqXAF+E4KrPKqckuEIgs/mloapVd4wAgqS4ef+RNAICTR88hNrKTAu9bGsxaEk8+fxwA8Oa3PAbf0tCn0gQLixPYt/8qC+IexD4CQHcrC0n2WRyiqDkQhJDdP9bmJjF17BLbPnBlFr9VXh7ByMwyi1lUMh3MfutuDE1Rq5SlQs+0oVLpgfrV8etEcqOFOotXCn0Ji5d2Ye+ps6SvOxHouRY8Khnx9Hfuw8G9V5EY22L7HrTR6kUQL9QgaTtSC04nys4/UahDyzVZLFBjrQjL0jF6kFxv7Y08EvRe1K+k0G0mmShscmTr+iQKU4OWbbF5bFbSzPLe3shDVlxESzU2LssXdjMh20i+icrcGEqHyHF7G3n8f77zJnzgrmcAANm9SwjpNe20Yli+Mo2xXUtoOz6mvvTKSACMRh+EKNw851AQeljrfed1LwHA3W0cDofD4dzm8MDtlwf+kEQZiOsBwMnhVWiJHsuwAcBW77XtHBJjWyz+w2nFoMb7kOhqX9Ecmo5NVs75sU14lgqT1jySIxYEmWwrSgF8X0KUiquFVGKAZXaYOlTDZvFOguIxy4nTiWCrmkXBJvEHaraF0JeY9Wt9ZRSFvUus/Y4fgxYzEY+QlZPViTJLEsseovEJ4VoRiVIVMv3edxT0u1G2Ksum2xAHKz9XJpXHaZ2qOxWPpE9r16e+DuICBu1P0LiKJ64cwDtoTMXAKhfJkMwvb30ISsxkfS1rNkTFY6UifFODQoXjIIaQVBdxWl19EB9zbSahrNss6zAMhOtW+wAppwAAeopYfwbxTYNzHLQ9sImkw6A/nlkfZ3W8jGIdoS8iRlf3gS9BifaQuCYVWJR86PS9Y2nMigQAUXruABF4lAx7R5hTCNFvx9hKWY6ZQCAyK42quOy4gkzGYFDb78X5XRjNVNm2WpKkX8dTg3aK142ZGu+z892cm0BycoOdryT72DW0jk0qGDl14gIEMWTnoSkuGxc5YkEQQpg0bkpWXcSivR2xVTGEIPsIqZVSj/fgOwobG0EIsVohmV0nT565brwG4ogmtSQlxJCk31PrkCD56NOaiw7NdtSoGKu/mcXfXj6Ij7z/L2lf02uAClWulIeQm15jlqTuWoH1VXm9hGSizdo4OO8IvbYCX4IoBez6CVwJ07QsTaeeQmxsi2UwShEL/cUR3H2YZOxJmkvOn87fUr6K6mYBI/tJ5pxvacyyKMk+FMNiIp8KADnWZ3EzquqgX0khNlxlxxpsm87WoSR6rO1hICCdq++8N3UiYTKI0RIDJNMtRGi8jxwzIdHz7yyXYLsKhEFG3lANfn8nE7SQbEJSPLZ9v5JmljFVt5hIKABI9HjfeIFY1n7+zd+BFLUwyHsVaYzj4J4VybR25nSiB89VWDykqHjwLY2Nk1lLQUn02P3VKNZh09imC1d348iBy+xeazYSrKQNQOZSZqx83TVyamj9urJAMs3Y7JWzuLw1jIm9CxCl17Wj5jUBf0jicDgcDuc2hxe4fXngD0mU5ecPYmqc+KPDUEB5fhyaRlaRnblJJGhhTMOwELgyylcnAZCCptXLu1jhzKtXdmGib6BPV7etThyTM0ssm2v70jQcutKTpACiGCCgq5GrzxxFPN5llbZz+RrWN0oQaebL8PAm4jS2p91IIZts4dwzxwAAe/fNkngemn0ShAIRQaQr1vWVUcSiPVbc8ZmLBzG1TSxYxaEt+J6EJs1mO700jfuCi2y1X6llUchXmcZQdysLb5VkGCmag83NEk6OkPiM7kYOrVoaeZrNVikXSFtoRpquOohG+jCopeHYyApb2bVWSqhXs8wKNDRUhts14NPsNrMdh1eVWYHX7a0Cxn2SQWQvjKLfjbKMPUn28ZW/+mncTbO7FNmD4yrI0WKpje0sovEuWjRrCCBFgQEgXm7j8uwulDJk28L4BlTVwdILJN5pUDS3UCL9d+/4IqpbeTZ3HFNDhe7L0GxE21FWeFaQfbi2iqUNEgsU1SxIss+seFv1DLI0A2tkzyICV0ZjjZTASRTqsEwdG+Uia7NjaWyc1psZaGvk/HOuDD3RY3pHJw5ewOz8FJZfIFlEpqUhEeviyTkSR/PTb/gets/tZoVns/E208mybA1bF2aYPk+5XES9G8fMCCkHsnj6IPJDWyzuCgDT9anWMxgaKqNP57Sm20iXqiyrqnppCoK4k0kqCCGWlsZZOZ1IoouISq7DwBdhtuMsS6q2nUMq02AZWNVZEqs2sABmxsqI0ALIYs9Ad60AlWaprsxN4eGHHmFWuvbCCMxOlP12emwVTicCh2pnWT2DWfBEIYSsenj+SaLWf+TYi6hvFvDsPIlLfGv6GaxfnEGWxfYF7F7iukRbZ2OVjH82W8dGuYiVFrFgHSivo2fpWGmS9/fsvwhVdVic3sLiBHbNkDnfaSaQzAYsM/Kvv3s/3nbHaTZOVzZGcdSwIJTJ9eU5Cr5zhlhojo6uQJQCdn9ITWzi0uwujORIfI9MrUIDDS5JJvpmgwzYxsoQ0xiTVBeZZAu9NTLmarKL7laWXdfJVAut2o71yHMUmHQMU7k6PEtFmeq/9foGkvEO9qTJmNY3yT4HlkktYkHRHGxfpNv3oqzIdeCLSOTrePYZkv1ZSDZRGilDoZmmviehuTzMilpPHLuEjblJAIDjy7B6BoKlYbqtjGy2juVFEtM3RAs8D6xSYShgfGQDyzTGM7bahkG1z5bmJ1GMdtDayqLj+gDIeHFuT/hDEofD4XA4tzkBfADCj9zuH7Y/Dn9IuobBamVq1yLqWzmmCi1shGzlU5pZQRjs6N7oURMl1UOXrrB01UG1ksX0YaJGW3BleI7CVrSCGCKSIP+ubBYhSx4rjjtz7CI6mzlU68QapOoW8pkG8jPESvNX33wb3l38NgAgN1pG4IsoUU2UQTbIQI8ln6tBS3VYttvo5CoCX2IquHcduIDm4DgRE4IQYmYviXuYCRYAMcTsJbIyTifaiKbbsGnmj6I5TJk2lu1jYnoZWoKs0K1mDLphwafZfcWRTfTbMRToCsyxNDSbScSSJG4gmWqhSleLyUwT0Wgf8UwTAIntCEMRg2DESKqNbi0FkcYvJBMdFlc10DUZWOESpSree89TTHFbkH30qil0Wgk2jq3NPFSVxnhBxfQUKULs2ioOHrjMVJKNfAPqdoYpbEdLNZiVNNpU3Xp4bB0W1bJSNAdatM+sXZFoH1vbeaQDssqM5RuIJLo4nDsPgBQpnV8ex0iBWB2GCxXEElSgibZ7YIXyHQWuq2CKttPsRqBHTWYNuOvQeVydIyvsaLQH11bZXFPjfQwXKojSeVgwbMi6jZ8Z2WLfm60Yjt/1PACibzWw/hSHttCqp9g5DQ2XMaEvs/iVmKXC92TEabxPJNFjFoihoTL0eA8xmpVVWR5BkpbRGJyT1YmivEEsk//vF/fiU+94FKcvHAQAHJxcwMQYsVjNXd6N0ZEN6HTuYDuH2YUp3PngkwCAbi2FdisBne67sVZk8UnrW0XsivdZm4dGNqGXanBqxKpgZIm1Y5D953YNhKGARo1YdEZ2L7IM0FYvivH9c9hN1aub5Tyend+NU7svs31lhRDba6Rgdn5oCyma0eb1dfiejHSa9FU008L8hcN499vIdW01YzC7UcQMWqTVsGH3dXRopuH+Q5dYRlYQiFhdHmOZlffvvYS/eOZu/PP/x18BAHaVNhFJdKHQuKoz5w7h7fcSNX/PUqHF+uy+IcdMzIyuMq0jQQoQuBKzSlm9CIx4j+lZ1evpHeufGCIa7zJreWczBz3e2+n7tWHkczU2xlP755DUyLzbvDKF4X0LzFLvujLyY5vIFIkV0/dktLczuLpCLDrHj5yHYlgsoy/SiaBRIdY+UQxQ3yzg7vtIxllrIw892WGxdFq0DyVmsmxhBCKzwh6ankdyqMJiFiXZQ3yiDIfq0iVKVbh9jWlDaYkeFMNGa47cI2XNQXWeZD8W8lXMrYxD0Rwowiv3oMHdbS8PXCeJw+FwOBwO5wZwSxLFMHZWmWEoIJbssEyHSKKLKF29CkJIFGXpatVzZLRbCZgDa9CBWXQqaaYhIkcsCJKPHlWFTRZrzMqSSLZJgU9aYNFtRxCGIkapNoeo+BCEgK2EHjxylsWnJIs1tLczWNkkq9Ujd7yI+noRuXGSRTN/fi/iuQbTH3H6BkQp2MkqMWwWn6REbKjxPrNoyRELvq0gESXWoWSmCbMVY6tKSXXR6xErQ8bYgE+LoAJkVZkoVdl7y1aRGqoyX/6gX6LU6tDayMOi8Uo5w4bnKDvFfn0J9fUi+744tk4sNXRfrVqKxStJsodIqo0k3b9k2EArzsZQjffhWRpsk6wU+/Uktis5DA+TvvY9CT1qDcwMbSMMRQg+ianobeQRzzWwOj8JANi/aw1yJ8piVCTVRUwn51NbL2Lk8CwiNO4hkurgz588hf/XPU+T/mjGYPUiEPpk36IUYGp0jVmDmq0kUlQ3y2wkYKTbbMwk2YOqOtBTO5amQSYeQDIe0zFiKfIDCRvrBew7SKwboSfBiOzU/dpcGsXQ5BpUaj21W1GIkg+LxhVJsoeYPlBr1+D7EtPI6bejiKQ6KFPdIADIj27u1CMTJFarb2N1GDPFy2zcdcOCa+rMkjTIxiwUiaXll3QLte0cDlC1ai1iMWtgd2EK3XYc8SKx6CVTTYhCwOZaolBHLNtkWkAA0fMBgFi2CSPfYNs6lga3GWPZXmrch25Y7B7gmhoUw4Z7TYZrnFrDJsUQAVVcBoBMsYp7911Et7Ojb6bG+ygMl9mx6lu0dmOqDT2+Y2mTIxbunJyHQmOlnJ6BRJ7EngGAluiiVUshSr/vVNPIZ4gVJTW1jlixxrIQ1UYSH3zrt1gGVmF0E3bXYH28f3qB9XukWGMxQ4M2Jwp1VsyV1UujlhbL1KFQHSaAxFIlaVau1YxDkj2mV9WoZZARQzbXhobKiOaa7Jy2l4cxTHWONI1k78YG9dcCARItPAwAyy/uw8SuJbxhH1FVb62UYHUjSI2RvjWyLWytk3vg1B0X0FkvoLZM3ifyJFuvSeMn6/U09t5/Gr11MhaSsjO2Zt9ASgixRK/xUnEbScNGc2B5VjzEJhs487dvJH15/DyUeI/NU7MdY5mlvifjyKGLAPCKWpKC8Ca720LubgO4JYnD4XA4HA7nhnBLEofD4XA4tzk8JunlgT8kUWKZNs59n6SOTo6vQY/30NkkZlnXVtFqE7NrvliBqtuwqek48EnwX48GtQqSD8vUYdEirZFYD0ayy9K2jdhOWvaFpWncfeIMBGqWbqzMwDJ1FCY22L61iAVnIPIYiqhUSZCi6yqIxruYHCVBrU5Px8XlSbxhjLrqhBDtSgZtai7OFSvoteLMbbi2MoJJWjqivlJCZnKDFY1UTQ2tWpq5+fR4D9srw0jRANB2JYModcXZzTh6zTgLEA58CW7PYIHdghiyArUA0KR92qLlIpqNFGJU8PDKxT2o9WO4f2B6DwVkRrZYuyTFh93XmbtNlAIsXN4FABibWGVlUwBS0NRzZOjXyAsY6TZS1GWkRE0kmgmWPj1I1waArdURSKLPJA+MSB/RXBM5Wpg49CV0Kmn0aGCzayvITpFxuLQ2juLMKnNLyKqLd46vodkk7jdJ9rFdySGb3imkqeo2O6duN8aK4zqWhrjusIK+lqnD82UmzGl2I4hkW9icJUGtiXSLFegUJR+FQECPuv3CUGAuYoC4etuVDCIWDeyOmtjeKqDaIX3tBRKi6s7256tFfIAWi10pkz7P0YLHdl8ngfMOMUxfvLwX+/fOAgBGxtfgdCKsALJl6sjKO+KZrqlBi/bh0XPsmQZU2UNumhzLbsYhUWHWtU4SU8MbsJox1pfRWI8lJ1idKOKlKlZmSXHp0nCZiYk6PQNqsovgmjlSvjrJSgK11otoNZIwqrRIa9/A9kYJ47tpuv12lgkHlg7NYevCDNpd0o5UroH06BYaL6ZI3ysenE4Em7Q4qiT7GN1LrrXAF+H2DCY9IavEhdpZLdIx1xFNt5Cn17FvK4jE+lB16iZLOcwtrmZbUKSAuaaSI1tQUl2YGznWt9l9y9g+PwMAyEyvsTI16eEK1HSbBVv31gro1JMs9b9eT2NkYg1bNPj83Po4hmJt7JokSQPVapbdH2LZJtqVDOapfMTk0CYiqQ5rV78dg6S6SNKEDM9VYNIis6IUoLNeQJwGtg9EJAZu8nSyTUpA0WQNLdaHtZVlrl2rGcf4/jnW7/VKFiN7yJg5nQjKVyeRofPUMnW47Qgq9JxGD84xmYswFBC4MiZoUkTgS2hcmGaSIt1yFpl8EzpN9OhsZxFJtVlyj9fXWfKGkehAUnxSYFd45cQkyUPSzXOR8YckAne3cTgcDofD4dwAbkmidOsJlgK+vjaMVK+NzSpZkU2OrqNFA5VH9DVoqQ5bNQBAJl9jBWytVhyK4rLA1W47jn43ysTipvxlzK4S0buk3kevkUCMrm77vQh8X2KB3WFIrFQild1v1NIoFmhhWU+CkW5DoatK19RwdPdVlh5suwrWNkvo2CSI1YiYSOXqbPXXs3QoEdJmPWqitjgChQZ8ypqD4q5lXH7uCADgueeO4/C+K0xor15Pw6Ar20xqg60UAeDSi3uQinaRy5MVmhbtw+kbLBhb0Ry4tortyk5B3TxNefdcGRNj6yyI2e5FoEYsXFkgae17sQBFc1jZEt+TkS6S/nD6BlbXRjA+TiwQcsSCu5mDSy1+nqMAgcjE6XKjZWSKVSwvkJV1cqjCgnozuRocS4MeJW1eXR7DdKrD2uU04kiObsFdGGP9F9K+GUnVMX9uH+I01T6pOfADEcWhLTZuhXyVWQQndi2hvpnH0hxZ7R/ed4UF13quQgTyaLp4ZbOIRLLNVveS5JMyLbRUxGB8AKBeySIW6+4EdVsa2o0kDBoE3etFkUi2mSVNMENEDBNx+j6TbMGk1lEAeHvhPCt4e7Wew67JJWYRjaQ6cPo6K6WxZ2YBBrUG9rYzaFSS8KjFQpQCSLLHxCS77RjS9DMAGB1fh6zZbJ6eOXcIeybIdfn2E8+hUcsgS+Um2uUcpGtKuiiag+ZqCSUaMA0Aa1SkcKE8hHuM55hVihxPg0aD4H1PRn5oiwlVGskuLFOHRgUCO9U0uz4EOYAR70On4qu9VhzxsTKmDl4FQILgXVPH0DixLg7KHQGAEAgIfIkVSy7PjyNTqLK+XN4cxoi5jeIuKkfRM5Ddu4TyOZJqHpdacKh1TIn30FgYRfbwjiXF7+ksgFrRHJjlDAugbiyOsHHo1lKIBgJqG+R6yA5vQ9VtmLTIs+dLCEOBWYzfdOwMVlZG4dD7zfDYBguoP/P8UUyPrOHY8XPk/LsRCJLPLKJm34DvKEx+JBqxYNFEljAUoGgOLFp42Mg3YFbSLBg9nmkiPlHG3PeICOb0yfOkTBC9VtWoCZPuS1Q8FEc3WXJL6dDcdffp4swqRMVjiSBu12Bla+bXR7B/ZgFxalkcSAEUhqmoaa4Bcy3PrN5mz0BqrMzS/vWoyYLJ588cwMT+OajxPhT7lbPGhGGA4CYGbochtyQBr2NL0he+8AUcOHAAd955561uCofD4XA4nFchr1tL0sc//nF8/OMfR7vdRjJJ4jYGK+FCvgrNsFBvkc8ThTrcZWJxiBTr8Po6EyTbmh9DIl9nadq+JyE1VGXWIN+TsLZZwmSabL+6MoqRHPm3aWlIDW9DSpAVVn50E3YvwtL2txbGEIYCswbEYl1odPWmxvuQVJdZcNR4D15fZ/Eq4+NrRFyRrlBrjRR0w0Jlm1hwStkas4yEoYDVcgl7di2w976lMatVymrDsTQYNA05Fu0xwb72RgGaYeHZ58lK7557n0ZleQTpKRJX1StnoWgOKxSqGjYcS8PYBClqq0Z3hCfT+TqsnoF2JUP7x4BTVjA9QqxDjqXBcVSWAj4ohgoQy8CufXOscCjEAJFEF5cvkLIbqVgXqmGjtI+c49qLezC8Z4mVk/H6OuZnqcXq6EUYQpuJB84cmIXT05n1S4/2ocb70KjgnygFzFowtXcezXIeSRrrELgy9u2ah06tH4uXdpFSNMHO+iSRbmGcvo/mmiwtPVGqwuvrzDqYduvotuKsCKjnkfikykCMM9ViYn+lsQ2YnSiLo3FdGY12AiUaU1EcW0d5eZQVC16Yn8Tk5AoT1/Q8GXG6apZkD6pus3n4U3c8B0n2WVyIa2pYXh7D9MwSAFJ0dCDNIAgh4qk2E+b889N34uHJVRajJAghtFgfKk2fvvjESUztmWeSEafe+BTrJ6cTgbmuMctBGAqIpDqYv0isLLsOX4Yoe6xdGwvjGN1N2lQY3USvkWSyDZ6rIJrosiK0q6cPY2b/LIwIsRw99di9OLBrnp2HojmI0fInVjUJu68joNYuVvqEWrXWLu7GzPGL2LhE5lPM0hClljWnG4Gs2Uy4NlOoIgxFZu058YZnUJkbQ5vG7CXHywhsBXFqPe23Y7CtQd8GJB6M9u25J+7E0Td9n1l79EQPEANmwTGkAFqP3B/0TBuBK6M4vcraXl4eYSV3kokO5GvkNp69cBD3nnyejYWe6kCh0iXTW2uIJLrMciQIIbEcUStd2qxDjfdhN3bK1lwbP6gmu1h+kVynRV+EkW2x+5iebsNpxDEyQyxrTisGPddksWVOJwKHjpG7XkTgi0zUNHBltJpJxFlR3j4knZRFAgAt3cH2eVJqaM/EMsrlAtKTxPpnNhLwPQmZPUTI1+sacHsGJJEWG5euL6YchgIruju2awl2OwY1YsJ3XkFLEgLcTAkAHpNEeN0+JHE4HA6H81ohvMm6Rjd7f7crr1t3G4fD4XA4HM4Pg1uSKFuVPCZ2XwBAlK7troFClpjXfVfCbho8Kqe66FfSrJq4qjkw2zEWQCrJJJjWbMXYvvPpBqtV1mvH0KPBkaIQor5agjFBggO/9+xJ3H/qGfTrO2nbRsTEdpm4U0xbQ5YGXubjfWJqpoGm0VwTLVqxHADimRbUeB8GDYqWt/LQ4z2kB0q/qgeL1m3qtuIYH9pkAeIDs3mXpjj7noTtegajQyQwMZbsMBP+5uIYYvEuUgbpD0H2IQohM5crURNWM84CLc1OFGEoIkJdZv2tDEQaTHv56i4cPHCZmeJj6TYuXdoDlbqQUpkGSTUfqHsLAcKQutvoNoMAWFlzEPgS9uwhQa1230AYCMxM7/sS+rUkC4ruteLYf5IGnjbjzFUAEDP98pVp5n70XAW9tSIL5J2dncaJSeperCcRTXZYYHJlPg9JDJg7pTRchtmNwqNB1rWNAiLRPkuPJi4b4j4IfBGepWKDprRP7FlAu5FkAdXjuxZhtmIwaSCq2jcQp/0gqS5sW0OLqkKbtoZzlRLeTdXcBTFELN5FZZu4dWyPBIn7AXV9lqqsVt/AtTYIxna7BgJPhkADiGvbOUxOrrA5IUcsPPXtNwAgboxvnT+CPRnSd//PNz0KSXNZarTny7C7EWjUnWRoNguuBgDf0qBR90l7I4/xqRXm2o7nGhA1h8lvSJqLzbkJDNGg50SyzeaynmtCVl0W1KxHTczOTuMOKt0wNFRGZXUIWRqoe2jvVciKi/LVSXKOzRSOzhC3b/XcKCKJHvIqOaf4yDbqc+Mo0+s0FulD0m2UdhFXTXVphJ2PkSA1zgY1wGTdQeDK7NqTdBu2rTG3oFVNERV66p6LJHaC8X1Hgax46CySyvVH3vAsnEaCqVdb7ShipRoGoe1OJ8KuO7cdJRIjSXrdSkSmYP48cXsZkT6URA9Xqbv6/lPPQMu24FBXJwDm2halAIIYwqRzPjlUIZUGqNtTMSyY1SQiQ9RduZ2GSt14ghAisFVWC1MQQ0iGzWQOQl9CGAhMqsBsxZDUHMy+sJ/0fbTHZBwqm0WIQoA6rUk5ZViIxzvoVMl7QfaBFli7BMlHkYY+RKm7t02Dvo1klyZ7EPeV2zPQa8WRHiZjLioeetQlOjiPDlX2npubQswwkS9WYDmvoOI2Agjc3XbT4ZYkDofD4XA4nBvALUkcDofD4dzmkJR9LgFws+EPSZRivgKXuhd6jQQcW0U8RUywS7PTaPWJKblwZBbba0NYqxBT62RpE74nI0GVjiPFOrobOWYSb7cSUBQXMVocs7KVR566bVxbRbJYQ0Czme694wzMdgznrhAT98njL2D20m7kqDqzoVtwHOI+WL60C6PTy+hQ7RpRCmDbGlK0HVtrQyiMlJnrKhrvolNNXacAa1EtkGY7gV0HrjKV29CT0G/GkaNFR31PRndpnLkAEqNbaFAXgqbbaDRSWG4SV99BIUQ802QKubLi4YkXjuH+42fIvkMBpqkD12R3BTS77eChS0AgsDY2trM4ds9p1JeIO2FxaRwHjlxElaqZDx+cY2O2dHE3kok2ilQzxrdUdGspZlrv9yLIJrvYoO6TSKSPfifGMhr/9twxfJAqnUuqC7OWQpKa1t12FPFYDxE6H5SIjcalGSQU8n737gXYVOfF7BuIZlqQZHJpDY1uQkt0me6KkewS1WDqmtjaLGJ43wJTje5XUlCjxBWxtTCGTLHK+mN9fgILlSKSOnG9OH0Drq2iQDWpNrcKiFCXV22DZPrkc8QVIckeRopbmFsiWZp7ZhbQ7cSwVicZe31Pxq5QRIMqg2uajQ7VASoMlyHrznVuHgCQNTIf8kNbEISQZZmNjq9j3xRRPdZjfTx0/DRTL5d1B6LmwKDuo7ArYG1lBINSufFEB0uXZzB99BKZAxt5pOlcSo5uw+lEYFDtIrOWhJ5r4tg9p9n74T1LGOA4KmLUDW5W0kjsWcGlv34QAHDwrrPYp15h7iPfk1GY2MDiJaImHo30MXHvC/AuKGx/A/eS46iQTY9lKGpjdRj1BA7uJcd2WzEIqseyFKPJDvptMt56vAc91WH6OormkGLPdF92PYlsqcLcvc8/eSf27Z6DTl2O6y/sRXaEuATNVgzJ0S30tkmmoGQ4OPP43RgtEbd4olCH2zUwf4mMS8SwMDVGfruxOgTHUVGaIO5GLdFF4MromGQepk0DvXIOETrGg8y9wf/NWhIR6iKUVReRQp3NU7sdhSD7zKUYLdVw+elj2EOzNCXDRtAl5+s5CkTNQZG2o7pWgih7bK6JigffVhAbJ+fkXplAv5LGnjvOk/c9gxXlVVUH3W4UQ6ObdLwkqIYNg1YD2FoYgxEx8dQsub/+3B2XmGK2nmshOlxB/SrRsNNLNVz6zt2IUB2pZKaJ9OgWK0YuJfrYfvQEcxMSvSdy3U6OryIxXIFvafBe0ey2mxy4fZP3d7vC3W0cDofD4XA4N4BbkjgcDofDuc0JwxC4mQVuw1eu7tyrGf6QRLEtHa5JTKfl7TyGS1usZIOuOpg5QAp29lYLGJ5eYWUFOluk0ONATFBOdWHPjTHXTNc0MFms7Jjeo30mhlhbHoKS6EGZICZtLAG+K2MXFU9U4z0cvu85WDTb7crFPRgbJqbkWLYJ31FYNs7awgTyxQqWl0mpjJm984gUaywDQ0+30bo0g9IMybjpVVOs9EM82iNlPKhLSM+0IWkuywySAhejw5ssw8TtRJGkJv/5J+9EMtLDXbuuAACURJ+Z/wGSUXPqwAVWMiORr6PXi7Lst2uFGK16ghTIpS7CVK4OLddCavB+qIowEJigW2e9gMQ46Y+h0Q3IugOJigOKmgs91mfZbslMEwgENGih4pGhMmTVYsd6y96LTMDPSHZJthx181RWhzC0d5H1FwIR7V4Uw9Mr9Jx7zF3iugp69STLMJJ1BwhEJh7o9gysLY1hcu88AOAbT9yHX7nvNJo0M8a2NeTixO0XjfcQKdSRoRlZtq3h3pPPo7pOMnDCUMCFhRnsHiWCgJriMrFRQQjQ68TQodltpYk1zC5OYby0U7KjNLGGHC3422vFoUVMGNS9AgARg7hH2rU0MiNbsFvEZfTsuSO469gLrMRLYWoNleUR7Dp8mbSzHWV9de78Adxx4iw2FogbYyzfgFVNIZomLjNFc5ApVhEdJa7dv/urd+DgxBJz3WTGyujVUgCA/MnLCJZlKNTd5nQi6G9lYBSIi9ntGhA1B7PPknI6I+NrCGl2kpbqQMo4mKKlh9R0h2WWASSD03clpJJk31rEgqC5SE2Q+SWtF1i/ZIe30W/GWVFjISoisX8FnSvk2gsDAXJEw8ocyUocHttgBXvdHsmyfOzSIQDAqelZ2KaB7PgG27+RbUGiru1svA1R8uHQbFlJCmBQ173VIdfRQOQycCUUszXk95BzbCyNILNrBS69bscOzEKQyZweOTQLpxVj4zJ5/CKik5s4RF1XWqIL39JYaRWzkUBleYQJWQ5Pr7AxVjQHvXIWNs201WN9rJzfw8YwuWsNk7sXcObJkwCAo3eeZRln8VwDsu7AGCPzUE12iRBlhoq8dg30annmNtfjPSxfncZMoc76a5BprHeiGD44x+4t9ZUSYuk2rlDByOmZRYhSgPe8/Vvkh2KA2XMkS25qzwIUw0KUHleM2EinmuwYsVINbteAQF2MYjKEptnIH1xg7Vw8S/Y1cXAWvqPAs1T4r2B2G+flgT8kcTgcDodzm3OzU/a5BACBxyRxOBwOh8Ph3ABuSbqGQc2jiYlV2KYOjWYrxBMd5noBJOilGvzeToX0RKnK3CndhWFEUm2Y1M2x/+hFyLE+Lj99DACw59hFZuKXZJ/UhooTN8bq4jhyuRpzoVn1BOITZZZNtPfAVVYtXU124bRiiE4TM/10vA+vr6NEM+dk3Yao+MzkbdaSGNq1zPaVHN1mbrGwJaK+PIxGIwUA2HXyRYiKB4O6wdae349Uvs4EG11TYy4y01Xxvflh/F/HSPaa04hDUjw0Vkil+sL+BShRk7nyGpsF5IrbrM6R04yjViZurliig3o1i7F9xBVVWRpBpFVnrge7GYeRbyBHhei0YgPtK8RdECnWIUdseLQ+lGjYCHwJGq0xFx/ZRnczj72HiEvoyvl9OPqm76NFM+ciiS5aNeICSE1swrc0JjyZytVht2MsC8/qRbB7/yyrfee2o9Bo1ossk36rrJLzj6faEKUAHhXx7LbjSCVbrD7fzx64CABYXCXZToePnWc146JpUsNq4KpMFWqIjW4zkUdRDLB3bAVtWsk8l6shSjPyooGIYG4MdoPMac/WcOjgJSYm2FkvYGt1BKUJ4gbKJjt44dlj2DW9BADod6Podsm8zBcqaG9nYFJ3ynCqDiPfgGLsuOZShRpziWiJHmLDJOMukurANTWkc+S4ghDCsTRI1AUkazYixTpE2h8PvvlxtDcKUFJkfnWXhtBuEHdzMSsgWBDZcRJ3LKN/ucgqyGvJHrobecwcIWMsSD70UdKO0JUgRFUkqeinIIRoLA4jd5jMtezEJqxmjAmo5vcsw29Hdq5V1YVH3Z6i5MO2NMi0Hl/YCyCWNBhNco71q+MwCg0Mj5Fjkdp0ZH6EoYDa4gjuGCUusezwNiTZY1ljcsTC+rm9LGtqaHINRraJ9fMkQy1dqMGskHlauP8iVv/3HRh7J6mp1n1xBLVmCkPUZabHe+hvZXHsQVL/zqykEdLvlHgPWraFokfaGLgyvGYMEeq6k3QHdl2ARV2dyZEtGOk2rBa5vpQE6etBfwS+hBzN7utt5DF1xwUsPn+QtGuliOhIFcmFHcHZJD2OnmuiV84hvasJAFBF4koMemTeyok+VN1mrn85YqHZi7Fab5l8DXF679UiJuR0B+oI3YcvQo5YOD71XQCAXU1h9dIMRqjYqLmRw97jVEBYc6BP1GCv7IQKGPE+mtQtGAYColOb7H6TMJYgqy5Eei/yawkMT62wvq3NTmBzs4iu5wK4ilcCUkbk5sURcQkAAn9I4nA4HA7nNudmP9TwhyQCd7dxOBwOh8Ph3ABuSaLEkh3o0R3BO0EMWS0qsxvB/370jQCAt9z1DMSIDae2U19NVDy4VBwwDARImsuyvwTZR+hJiEeJqVnSbZbplp1Zxdxzh3Ho/ucAAFMHr0IvNGBXUuS3torm/Chk6ubSMy00l4l7yLNVqLE+nCpph92Mo1NPMvdav55kLkCAZMz4jsKySpROdEdoMtlBq5bCgYe+BwA4/b/ejP3HzzN3nCx7iI1ss3111wto0HpR+ycXcWjXHMvmCgMBsbEt/MX/ILW7PrRvkYjHUbdFnNYoGxDJtBAd/NaXEB+qMjdXPNWGVU8yF2EYCBDEkLkMugvDiE3SWmRSADFqw7xMMowUVyZinQPhvUoaK0tj2HOUuLdK+QpEzWWZQb3tDEr7SKaKqLlwO1FUqMswEutBkyxES2RbtddHv57E6ioR1IxH+5hIEvHD2Y1RjByaRWduEgARHkymWqhWidhm24xgcmR9x4Voq3B7BvbsIsfeXBpDtkBcRP1mAka8h9Jxkjk4cPEOMnC2l4cRjXeRoa4Zm9ZwA4Ar3z+G+WoRuQhxWw2pa4gOV+DTzB9BCBAx+nBN8l6OWDhy8gVUqEhoItNiLp9IqoPWVhbZYTIHiroNOWYSVzH9bb+eZPUKU2NltFdJBp4aNVFeHsH0SSL+942/fginDlxgAoCi5BM3apS4CX1TgyAEsMqkv9RkFznqXoOhI3BlNC5MAwCy919FZGYLrRdIX0uDemHiNaKX4jXuB9+HaBA3r9uKIppr7tQfUzzEhqskGxFAbX4MmYkNlinVKOeYiKOeaWN8dBv1y+S42SNzkKIu5JTLxkfJdhCh/eM7CgKbZsqW6ojUE0gNkTGWY3101guIU9ed2zMwescl1uTuWgFyoo/xu18EQFxEg6wyIamhsHcJQjFF9r3ZwuH7nmPuuAsX9+HYnWfYtadETUjURbp8+iBG9s8z92xzfpTd7wAgMlSD04ohUSLtlDQXguzDoa5gw1aR2kVctXPfO46Zu1+AnKMu52YccqLPsuqiY9sQhBBjNCNYTXfg0vuUb2lAIMBvkHHw2xGIhg2vTVybzLV6mLjIgr6MQrqByePkOu5X0tedn9+OACF1v6U6sJtxqDmSsRi4Mna/5Wn0l0km6SBkAQC0QgOhK+zUhZQDGOn2To3KK1OYSHeYqKe1WoBi2DBXC2yMy8vEZZ7qRKHqFg7c8zzadgA8gVcEHrj98sAtSRwOh8PhcDg3gFuSOBwOh8O5zeExSS8P/CGJw+FwOJzbHO5ue3ngD0mUxOgWglpx5/34JmyqdO26Ch56I3UsiwHg73gpfU+C04miQ9OQ87tWEfgiS2Hur+chRyxEqSpsa7XE4oZi41sYmVhD2CJ+bzlCCr8O0oGNfAPbV6bgUj950pVZ2rmW6EHNtjD/xB0AgNG9C5A7UejUhy4IJHZnsL0g+4iU6ph7kajP7j5yCd967H4AwN7SOnbdfxqCQmKyxkY3YDXjSE4Ttd0EPVebFqxM7FmBTWNGJN1G5eoEWlvkvR41IWku3rKfpNY6rRi0VAcKVcIWZB9u10BrjfS1kewikt9RTJZUFyvn95D+iXUhWhpTZ9aSPWxfnkSMKi6n7lxA0KGxLYYPdyuO+HGShhs0FSRcGWq+Sdpp2NitO0QdG4AR68MqZyHT/nJtlcUn6FIbkm4jEqMp3iHpQzlBt6WqyTO7SRyR2YnCpKnSBycX4JsaRqlSsefIWFkdxdgoSbUuCAHSM2uQ093BFILbNaDTgqbORgkiVfUNAhHffe4EHio+wvrSMOroN0kadrpQg6w56NJjaxqRfQCAmWMXMWnOs+KmouRDEEP0abybY+mIJLpM1kEfqsHazKLeInNeNyxEk6RNouJBVj00aDzK0IF5iLrDlLDTyTU4lobkEIlvURJ92DR2TpR8DE2uQqSxMO/8qb/Dpe8fx8EHngEAbF+YQSbdhkulG3xPRnK8zGKBetsZpKiytXuRxOKoVFXc2zQgZ3fiaLqrRUiqy9LDp+64gNCj89/wSPFkWmhX0h3o4zUs/O3dZGxlH6lSBTEqqSHrDpxOhM3b/PgmtEyLjYO2p4UMlkg72hEIRhshvU4j0xtwK0loJSIJ0L46DsMg8WxizEXq4CKTqhAUD8nxMuQsiTMLXQl2OYvoSdKXWBEgGg7EYRLfFJgdPP/oKQDAnaPb0MbqCCMkjqz8QgEjD55FdY6kqd/zvv+N0BchpWgc1noCyhvJcXdNfh/ucpwp1OfuvAxzuQA1SWOj2hHIEQvLF8j8mT5xHvpEDWmqLC9FLNa34wfmoEx0EDSovEDUhLmZxcQecn0IQgi3FWPxXghE1jdeg0iApO4h2zplHaLmsuK4ZjsOPdoHyK4hRjyMH7oKJU+LHM+NQaEyH0zVvk7O0evr2F4cRWlwPx3bglTwYXikb0XDYfGOnfkRRGic2AA128LSU0cBAKOHr6K9MMK+U6ImEvuW0Z0lcUibi2MojBA1++hwBd/+m7fhbXv+GrLFS3vc7vCHJA6Hw+FwbnO4TtLLAw/c5nA4HA6Hw7kB3JLE4XA4HM5tTwjc1Dgi7ioE+EMSQ4mZSI7MAQBCW4E86aL3HVouI9lh1cSjk1sIXZnFssRzTURLVeYXdzoRqPE+2vPEfy2IIaKTm9BpvIsa76NJK4oHrgw912S+/OWz+1Ec3UR9i8R+TNz7AhLZBmQqfW82EkjTqvdqtg0EAsYPEcl7ybAhbGdZvJMa7yPwRaQOLAEgmkLGkQ7GaBkKUfHwlgeIXP/ihT2QJ13U/s8MACC7dwluK8Zio3xLhSAFWL1Mvt+/bx1aQOKI7O00SkdnYW0TbRZB8rF4dj+GJslxrGYc7XIO+X2L5H09gSfO3IGTe0jpiOhwhWnIDPSPZFp6pbBvCZ6lsliG7cuTcBwVid2k6j1Gcuj+30SfKnHHMol7yJFYH2lMhDunQaVxIl5fB8QAIS3xEck3IAgh02RKDlfg0NIpEAO01otQaOkUUnZBhDxK4neCFRmeqyCerLK+NGi5DwQC7HYUnSaJqRg+OAfH0pCa2GDtEDUXYpzExiiyBy3dgRIn8ylXqSF1lJTKiDejeMv4JosbEVox+KaKxCjR6+mVc4iMVFg82MgDZ5lt2F3PQZQCZFIkdqO1lYXdjbAYtbX1IRx765Mov7CbzRernsDhN5JYIbuWZLFOkWIdvfkoxu8g2jRmJQ05YsOhOkBKqY329weRa0BkfAvZGTJG21em0GrHceSNZD4EFzUc/dlvA/R6ShZrMPZXYM+R+ZPYvQqvHUGfxgMuLE7gnrdSnaiagMCXIAjkD4GUMmGvZBDfRWKW/I4BKdVDfZNct4OxBQCvGoOidSAY5PqwVxOQEn2MHJpl5xT4EkCvH2NiC+6lcaYVlt69Ct8k+9OybYT9AB4tDyOIIcScitZjRH8ncccyLv7fd+DYz5Fq82rUhECvJagC6k/tQuYYOa6znYI2XIc4TuJoghVavsQi8yM2uQlBCxDGyDyff/YA9u4jv/W6BqTjUbgjZAwL+16AWNAhU30rMe0j7AQID+4i4xTMIUhOke9GPEitKkSDHMdazKNfSbN7jd2Mo76Vw563fJ/0z3oeekyCQOPlRMNmGkaBK0OQBbg1Mgeay0NIT22wuCJrO42rLxzAkXc+DgBYfeooJt/5LPnttozptz8NQaWxTrqNwFRZ+Rw904YghvDrJEbNa0cgKh4COhaK5uyUw9nVQPfMKCITJDaov53BxL0v7MShTamAQzSyAACNOCsXo5fq8NoRmFT/Th+tQtQdlKbW2DlurQ0xvS+IAcSoD43GEo7uXWD7kqIWju29gvrFKXQcHwD9zcsMcY8JN3F//CEJ4O42DofD4XA4nBvCLUkcDofD4dzmkJT9m2hJ4u42ANySxOFwOBwOh3NDuCWJEjgyxCjxx4dygLAdMP+7ojlYn58AAOwe20ZnfgQ+rUvkmBq6tSSKh0k8k7rbhPliEu1GCgCwtlXE/W+YR+dp4uuO+iIKR2bpQUXIMRPWJokpGZ5ege/JyI0Sn7qguYjvXmW1qrbLBWQOkXgVKeXAXsowPaZBTJBJa8jFJjfhNOIQE4O6b20gosOm+jOoppkO0q47LgBegPRxcg6dS+OITW/A2iCxUb6tQE12MX2C+Nb9joruEom/KC+PYnh6hdWTSr5hG7HVEqs3Z3cNFGntMQCI5Jt4ywPfhWeRmILG3Bh8GjcUyzbhWxoytHaZOtKAc3kEyhjRNSlpswjsnTpYUq2B2EyT7NgF9LFtWEskHsWYDrA6P4kJicSv1DaKKO1bwPe/TWrK3ffT34bXNSDIJO5Ijtjo03gEUfEhyR7TK7p0aQ+mJ1YRdsl7o1iHHLHQXCV9MPyWFxC0SZviu1fRmR3D8GESKyYIIdLDFabBtDo3CesFFSf/5WMAqL5VxIZAa4rlDs7Db+/ERhljFbg1Eq8S3beG0JRZDTdR8hGGAgwazwQRECSy+ltbmMDuU2eR08g4XDx9GOcvlfDGXWQs9h66jGsxZrYhx0yIdPvG+QJSJdLvTieCseOXIGfIXBObcfQ3s5BorIffUbHnwWdYnAjEENooiSlxz+/GvvufAwzSZrsRhzraQNCVaV97EOI6KlfJ9TV08hIsqjkGAIdPvoCgRc5J1APExss7559RoJds2C+QOl9ysoegayA/RuL2lHiPxatI9NoezA9JdQFfZNpXsaiF9vwIxCSJHRIiMvStNqIjZC56XQP6JNUu0gS4q3G2b3W6ibAHFp9S/e4+zNcKOB4n8W/6SIXVWFTFJnKnLkMwqOZT0IJXj0HZQ8c86MK3FRaj4zZjUEZMoE/i0vb/3OPwq+T8/b6GIDuMQCW/1UYb8BZVZA+Q+L+gJcJrxKBeIfcMv6mj899IG+MzDYhGACFN48qaHSQ0h+l3SbUkpn/qaQhjtH5jw4L5YgbtDdJ/xUNX4a1RzbbJOjqnRyDSay1/xxUgFCDRmK3ayjD2Hr8AgX6vaTbW/u44AGDkwbMQlBC9sznaV1WUv38IpVPkXiMFAoK+zuIBO4+lIUg+KmeJ3lsQiiweNOyBxNzR41jdCOKuDClj0dmkAqrC4v9CX4IyRa67sO0hrEuI03gmAJCKIeRtqsGU7GLX/achpcg4OOtpOCtp2FSzTE12WexTb3EI+SOzQCC8wjpJN9eSxAO3CfwhicPhcDic252bHLgNHrgN4DXibvvZn/1ZpNNpvP/977/VTeFwOBwOh/Ma4TXxkPSJT3wC//2///db3QwOh8PhcG4JIYKb/uK8Rh6SHnzwQcTj8VvdDA6Hw+FwOK8hbnlM0uOPP47PfOYzOH36NDY3N/H1r38d733ve6/b5otf/CI+85nPYHNzEwcPHsTv//7v4/7777+p7dg4twfZiecBAKEnwtlKse+SBxfhUmE6QfbRb8cQSZAAx3i+j9jhVfQukoKeSlqDNlrDCA1cTqw2YV7KYegYFX1M9RDapNvtrTTkmMkCCZV4H6Liob9OgiNDV4JouCxAdN+bnoFLg4ulTAWCGKK7NAQAsHoRqLrFAg+9dhR2Mw55jQQeioaNsGbCoIV2I4U6E8iUYyYQhBCT5L3vKJByHoJl0k5juAqvHYWSJOdcObsX6UkS9F3wyug340hNkGBZyDKG7z6P+nkqTHlgEWLURm+O9I/bMyBIARMELNx7EX6DBHiGvoTZJ+7AzN0vkHOoR6Bl2hC0gJ2DIPmQSuScGo9NM8HL2PQG/I6ByGFapLKrIZutIzpF2lXbKEIQQhzaTwKXV587gNFjl1mgsrmZg06L30IMEMm0WDD69MQqWo0kijZZU/Q3s9hYHMeuU2fZHBkEyAtxFUltEYJB2mzOFiBHLJYEsO/NT7NCqAAQO7gOv64zUT9BtOB3SWCuoHgwV/OIHtpm2/eX0nCp6KUoe5j77glMHCbn5G3HWfLB1JHLMLfTSOwnBX9LKyVkki2MHrs+YDtNhSkRAuZWBgYtNpzI15mIZ6+aQmSyjIDOW0l1ERnbRkDPQzRcCFoIVEl/CfLOClRVHfiWCoi0f8QQ7lacfAYSuA3bQYkG94txG3Y3wsQ4A1+CXiBtClwZ6lQPoFqiYdOB35CY2Gboi/D6GpsTYSgA9NoZFG8eFDzuL5dgxFwEtM6wVc4gc2oWgkxjOhyy/ZXvngAAzBy/CGGcBDEHCw24rRgTDxTiOhAEUEdIO2OhgD3rOwHAQZ8UrgYAp5xB4ItsTP2uATnXhVAh94DWpXEk71gCoiTQ3+vrCEdKEDbJOIW2wIQptcMCPFWHUidCpX5Th3w4AnTJPA7KIaSYCf/YMTJuz51B4q1UtPJvVYh7daBDC9o2MggDAeowER+NjFQQ+gKEVpuOUxRKvg2JimtCUSBqpGixkDZgjFQgRl3aDgNSyoROi9gOJbsQDQfVs6RwdTTTQpzOS7EUweL/9wAm3vwc669uNwavQc5fybex+eQejOXIvTmxbxmBtSMSKoghIkOkeHDQI2PfuTIGAHj+6l68bdcqE6He+ssJFN+9yBI/5FwHocV2RRIX4lRMcy0HPV6FcQc5f3/NB1wZQY8mjUQtKAdEWKT2NJ7+zn144z/5awDAmeeP4lT2ccjJHoRXNK6HB26/HNxyS1Kv18PRo0fx+c9//obff+1rX8Mv/dIv4Td+4zdw5swZ3H///XjnO9+JlZWVn+h4tm2j3W5f9+JwOBwO5/YmJMHWN+v1EzwkffGLX8TU1BR0XceJEyfw3e9+9+af5ivMLX9Ieuc734nf+Z3fwfve974bfv/Zz34Wv/iLv4iPfOQj2L9/P37/938fY2Nj+MM//MOf6Hif/vSnkUwm2WtsbOwf03wOh8PhcF733GyDxquFW/6Q9MNwHAenT5/G29/+9us+f/vb344nn3zyJ9rnr/3ar6HVarHX6urqzWgqh8PhcDi3kPCm/vcPtSTdbIPGq4VbHpP0w6hWq/B9H8Vi8brPi8UiyuUdn/9DDz2E559/Hr1eD6Ojo/j617+OO++884b71DQNmqax94Mifl3XQ9ukBRutEK4dwKZxCaEV0kKFgGqF6Lg+fPpeEgMEZoieTRzffj9AaIbw6Puu48OzA8gyFbUzQ4QOLbJpB5Dl6zMIRD9E3yGfeVYIETvHFmm7AMAxQzh2AJN+Z7k+VNFHaNF22AEsx4dPtxfDELK5sy/PDiCG5DtBBBQzZI/MHcen29JjWeR8FCqM1nF9SHS/puPDcX2Ig3b1Q3jX9JdkhZCUnf7xHP+6mCTBDOHT/YZ+iK7noX1Nm0MvIG2j4xI6IST6vuP4EEKffefbAVT6HUIyTgZrs4eoHaBH29V1yXFEOv6mszMOjhXCtgMWk9RzfdIua+e417Zz0D6AiDkGVgiB3mBMO4AghkxIT7ZChG4IpU/PmZ7/4JxCZ6c/BJ+0w79m/307gEvPAYFwXTtkKYAo7cwtz/GBa87fdUW2LUDmmj2Yt2aItuOz+dV3fCjyNf+m7QYAxw6gXTPGghlCCHbaLcrXzCXXg2YHcPsB7bsAmhWweYkAcM0QrrVzfXQcH12XxN0Erg/NGhRSJeM72FYezB15p39ce2ffir0zdxCS+JVBG/sOuU4Da2ecfDOE4LNdwbIDdD3SjvY15xCYIUw7gEp/q/RDIAgRmDt93/V27ieutXM/AIDABxtTxwogmyFE9Zo5bYYQ6PxoOwHCXgBhcA2YIUKb9lU/hNf1IHg79ym5HwD9neslsEOg67G+Dbo714vSDwBz5/zDQIBL3/sWaZOo7ZyTcs39Q+3v9J1Ir3lR3PmtdE3fBnYAUdj5reP4CM2d33auufcCO9cmQK6tzt+7NwdWiP7gGhDJsQFyvZh2gIB+1/ddtK+5J3QcH0af3DcBMn+EgZmAXneivHO+jhmyguH+YP7Tcxxcw216rJ7nsvtDzyPHla0QncG97RWLTbr5x/n7ISl//28osGPQ+NVf/dXrPv/HGDReNYSvIgCEX//619n79fX1EED45JNPXrfd7/zO74R79+69KcdcXV0dPDLzF3/xF3/xF3/d9Nfq6upN+Xt1I0zTDEul0svS7lgs9pLPfuu3fuslbRj8rf7e97533ef/6T/9p3DPnj0v27m/EryqLUm5XA6SJF1nNQKA7e3tl1iXflKGh4exurqKeDwOQbiZmQG3N+12G2NjY1hdXUUikbjVzbmtufPOO/Hss8/e6mbc1vD5eHPgc/Efzz9kLoZhiE6ng+Hh4ZetPbquY3FxEY7j3PR9h2H4kr+Lf9+KdC1/f9sb/f5241X9kKSqKk6cOIFHHnkEP/uzP8s+f+SRR/Ce97znphxDFEWMjo7elH29FkkkEvyP0j8SSZJ4H94k+Hz8x8Hn4s3jx52LyWTyZW+LruvQdf1lP84P4pUwaNwqbnngdrfbxdmzZ3H27FkAwOLiIs6ePcsi4n/lV34Ff/zHf4wvf/nLuHTpEn75l38ZKysr+OhHP3oLW83h/Ph8/OMfv9VN4HAA8LnIeXm41qBxLY888gjuvffeW9Sqm4MQhre2it2jjz6KBx988CWfP/zww/jTP/1TAER74Xd/93exubmJQ4cO4b/8l/+CN77xja9wS19ftNttJJNJtFotvvLk3HL4fOS8WuBz8cZ87Wtfw4c+9CH80R/9Ee655x781//6X/Hf/tt/w4ULFzAxMXGrm/cTc8vdbW9605t+ZOT/xz72MXzsYx97hVrEAYjf+bd+67d+qP+Zw3ml4POR82qBz8Ub84EPfAC1Wg2//du/zQwa3/jGN27rByTgVWBJ4nA4HA6Hw3k1cstjkjgcDofD4XBejfCHJA6Hw+FwOJwbwB+SOBwOh8PhcG4Af0jicDgcDofDuQH8Iek24fHHH8fP/MzPYHh4GIIg4C//8i+v+/7DH/4wBEG47nXq1Kkfud8XX3wRDzzwAAzDwMjICH77t3/7JdmGtm3jN37jNzAxMQFN0zAzM4Mvf/nLP3S/tm3jX//rf41cLodoNIp3v/vdWFtbu26bRqOBD33oQ0gmk0gmk/jQhz6EZrP5Y/UH59ZxK+fiV77yFRw9ehSRSARDQ0P45//8n6NWq/3Q/fK5+Nrl5ZiLlmXhwx/+MA4fPgxZlvHe9773hts99thjOHHiBHRdx/T0NP7oj/7oR7aXz8XbD/6QdJvQ6/Vw9OhRfP7zn/+B27zjHe/A5uYme33jG9/4oftst9t429vehuHhYTz77LP4gz/4A/ze7/0ePvvZz1633c///M/jW9/6Fr70pS/hypUr+B//439g3759P3Tfv/RLv4Svf/3r+OpXv4onnngC3W4X73rXu+D7OxVE/+k//ac4e/YsvvnNb+Kb3/wmzp49iw996EM/Rm9wbiW3ai4+8cQT+Gf/7J/hF3/xF3HhwgX8z//5P/Hss8/iIx/5yA/dN5+Lr11ejrno+z4Mw8AnPvEJvPWtb73hNouLi/ipn/op3H///Thz5gx+/dd/HZ/4xCfw53/+5z9033wu3obcqqJxnJ8c4PpCwGEYhg8//HD4nve85x+0ny9+8YthMpkMLctin336058Oh4eHwyAIwjAMw7/9278Nk8lkWKvVfuz9NpvNUFGU8Ktf/Sr7bH19PRRFMfzmN78ZhmEYXrx4MQQQfv/732fbPPXUUyGA8PLly/+g8+DcOl7JufiZz3wmnJ6evu53n/vc58LR0dEfuF8+F18/3Ky5+OP8/t//+38f7tu377rP/uW//JfhqVOnfuC++Fy8PeGWpNcQjz76KAqFAvbs2YN/8S/+Bba3t6/7/sMf/jDe9KY3sfdPPfUUHnjggetE0R566CFsbGxgaWkJAPC//tf/wsmTJ/G7v/u7GBkZwZ49e/Dv/t2/g2ma1x1XEAT2m9OnT8N1Xbz97W9n2wwPD+PQoUN48skn2bGTySTuvvtuts2pU6eQTCbZNpzbl5djLt57771YW1vDN77xDYRhiK2tLfzZn/0Zfvqnf/q64/K5yLmWf+hc/HF46qmnrptTAJmvzz33HFzXZcflc/H255YrbnNuDu985zvxcz/3c5iYmMDi4iL+w3/4D3jzm9+M06dPsz88Q0NDCIKA/aZcLmNycvK6/QyKEZbLZUxNTWFhYQFPPPEEdF3H17/+dVSrVXzsYx9DvV5ncUmRSAR79+6Foijst6qqIp1Ov2TfgwKI5XIZhULhJedRKBReUiSRc3vxcs3Fe++9F1/5ylfwgQ98AJZlwfM8vPvd78Yf/MEfsN/wuci5lp9kLv44lMvllxRuLRaL8DwP1WoVQ0NDfC6+RuAPSa8RPvCBD7B/Hzp0CCdPnsTExAT+5m/+Bu973/sAAJ/+9Kdf8jtBEK57H9JA2cHnQRBAEAR85StfYdWsP/vZz+L9738/vvCFL8AwDNx11124fPnyj2xjGIbXHe/vH/tG23BuP16uuXjx4kV84hOfwG/+5m/ioYcewubmJj75yU/iox/9KL70pS8BAJ+LnOv4Sefij8OPmq98Lr424O621yhDQ0OYmJjA7OzsD9ymVCq9ZHUyMEUPVklDQ0MYGRlhD0gAsH//foRh+JKsjGv36zgOGo3GS/Y92G+pVMLW1tZLflupVF6yQuPc3tysufjpT38a9913Hz75yU/iyJEjeOihh/DFL34RX/7yl7G5ufkD98vnImfAjzMXfxx+0HyVZRnZbPYH/obPxdsP/pD0GqVWq2F1dRVDQ0M/cJt77rkHjz/+OBzHYZ/93d/9HYaHh5nr47777sPGxga63S7b5urVqxBFEaOjozfc74kTJ6AoCh555BH22ebmJs6fP497772XHbvVauGZZ55h2zz99NNotVpsG85rg5s1F/v9PkTx+luWJEkA8AOLZPO5yLmWH2cu/jjcc889180pgMzXkydPMvfa34fPxduUWxMvzvmH0ul0wjNnzoRnzpwJAYSf/exnwzNnzoTLy8thp9MJ/+2//bfhk08+GS4uLobf+c53wnvuuSccGRkJ2+0228ev/uqvhh/60IfY+2azGRaLxfCf/JN/Er744ovhX/zFX4SJRCL8vd/7veuOOzo6Gr7//e8PL1y4ED722GPh7t27w4985CNsm6effjrcu3dvuLa2xj776Ec/Go6Ojob/5//8n/D5558P3/zmN4dHjx4NPc9j27zjHe8Ijxw5Ej711FPhU089FR4+fDh817ve9XJ1Iecmcavm4p/8yZ+EsiyHX/ziF8P5+fnwiSeeCE+ePBneddddbBs+F19fvBxzMQzD8MKFC+GZM2fCn/mZnwnf9KY3sWMMWFhYCCORSPjLv/zL4cWLF8MvfelLoaIo4Z/92Z+xbfhcfG3AH5JuE77zne+EAF7yevjhh8N+vx++/e1vD/P5fKgoSjg+Ph4+/PDD4crKynX7ePjhh8MHHnjgus/OnTsX3n///aGmaWGpVAo/9alPsZTrAZcuXQrf+ta3hoZhhKOjo+Gv/MqvhP1+/yVtW1xcZJ+Zphn+q3/1r8JMJhMahhG+613vekl7arVa+MEPfjCMx+NhPB4PP/jBD4aNRuOm9Bfn5eNWzsXPfe5z4YEDB0LDMMKhoaHwgx/84HV/hPhcfH3xcs3FiYmJG+73Wh599NHw+PHjoaqq4eTkZPiHf/iHN2wbn4u3N0IY/gA7NYfD4XA4HM7rGB6TxOFwOBwOh3MD+EMSh8PhcDgczg3gD0kcDofD4XA4N4A/JHE4HA6Hw+HcAP6QxOFwOBwOh3MD+EMSh8PhcDgczg3gD0kcDofD4XA4N4A/JHE4HA6Hw+HcAP6QxOFwruNTn/oUjh07dqubweFwOLccrrjN4byOEAThh37/8MMP4/Of/zxs2/6B1cw5HA7n9QJ/SOJwXkeUy2X276997Wv4zd/8TVy5coV9ZhgGksnkrWgah8PhvOrg7jYO53VEqVRir2QyCUEQXvLZ33e3ffjDH8Z73/te/Of//J9RLBaRSqXwH//jf4TnefjkJz+JTCaD0dFRfPnLX77uWOvr6/jABz6AdDqNbDaL97znPVhaWnplT5jD4XD+EfCHJA6H8yP59re/jY2NDTz++OP47Gc/i0996lN417vehXQ6jaeffhof/ehH8dGPfhSrq6sAgH6/jwcffBCxWAyPP/44nnjiCcRiMbzjHe+A4zi3+Gw4HA7nx4M/JHE4nB9JJpPB5z73Oezduxe/8Au/gL1796Lf7+PXf/3XsXv3bvzar/0aVFXF9773PQDAV7/6VYiiiD/+4z/G4cOHsX//fvzJn/wJVlZW8Oijj97ak+FwOJwfE/lWN4DD4bz6OXjwIERxZ01VLBZx6NAh9l6SJGSzWWxvbwMATp8+jbm5OcTj8ev2Y1kW5ufnX5lGczgczj8S/pDE4XB+JIqiXPdeEIQbfhYEAQAgCAKcOHECX/nKV16yr3w+//I1lMPhcG4i/CGJw+HcdO644w587WtfQ6FQQCKRuNXN4XA4nJ8IHpPE4XBuOh/84AeRy+Xwnve8B9/97nexuLiIxx57DP/m3/wbrK2t3ermcTgczo8Ff0jicDg3nUgkgscffxzj4+N43/veh/379+MXfuEXYJomtyxxOJzbBi4myeFwOBwOh3MDuCWJw+FwOBwO5wbwhyQOh8PhcDicG8AfkjgcDofD4XBuAH9I4nA4HA6Hw7kB/CGJw+FwOBwO5wbwhyQOh8PhcDicG8AfkjgcDofD4XBuAH9I4nA4HA6Hw7kB/CGJw+FwOBwO5wbwhyQOh8PhcDicG8AfkjgcDofD4XBuwP8fY07WFTf5/4kAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHyCAYAAAD/ZVofAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d9Rl13neCf5OvOfm9OWvvspVqAigkJMIgFkiRdGiJdqyZVnutmGpbbdnxmGmZ01b7tW2W5pl9fSMqLFsyZJtBcuiTVEiKVEUCYIBJGIBhSpUQOUvx5vTifPHu8++hbZmWRpDkDT89lpcxK3v3hP22WfvZz/v8z6vkSRJwm7bbbttt+223bbbdttue1sz/6QvYLfttt2223bbbtttu+1PY9sFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu221/QNsFSbttt+223bbbdttu+69qX/va1/je7/1e5ubmMAyD3/zN33zb35Mk4Sd+4ieYm5sjm83y1FNPceHChbd9ZzQa8bf/9t9mYmKCfD7Pxz72MZaWlt7Fu/jP2y5I2m27bbfttt2223bbf1Xr9Xrcc889/MzP/Mwf+Pef+qmf4qd/+qf5mZ/5GV566SVmZmb4wAc+QKfT0d/5u3/37/KZz3yGf//v/z3f+MY36Ha7fPSjHyWKonfrNv6zZuwWuN1tu2237bbdttt22zvVDMPgM5/5DB//+McBYZHm5ub4u3/37/IP/+E/BIQ1mp6e5id/8id55plnaLVaTE5O8u/+3b/jk5/8JAArKyssLCzwhS98gQ996EN/Ivdi/4mc9U9Ri+OYlZUVisUihmH8SV/Obtttu2237bb/P2lJktDpdJibm8M0//gCN8PhEN/33/HjJknyn62LmUyGTCbzRzrOjRs3WFtb44Mf/ODbjvPkk0/y/PPP88wzz/DKK68QBMHbvjM3N8epU6d4/vnnd0HSn1RLkepu2227bbfttt32x9EWFxfZs2fPH8uxh8MhBw7MsLbWesePXSgU6Ha7b/u3f/SP/hE/8RM/8Uc6ztraGgDT09Nv+/fp6Wlu3bqlv+O6LtVq9T/7Tvr7P4n2HQ+SisUiAD9Y+VE2RoKYc5bNetjj3kIBgIvdEXnLAeA6q8QEHGUvAM1oxFXzAnfFpwF4wf8sxzMf4IQnD7odJOzNGVzpBADsyzn8Wuu3ANiTOcMh5kkjnlnLIkgS+lEIwHTGYXMUYCDXVXJslnwZsJeSb/Oo9TQzngXA2jDiknGNx9yjALT8mDBJKNry9+tBgwNOVf++aGRYM5oAHLYmaIcha8aOnCcu4GAxNGRn0jMG3GVNsx2M5O+2y0jFiE3DwDYMBrF8/pb/eWreIR63pT/8OGE16NGwGgAU4gJzVoX1SOLQ83aR1aAHwN2FAq0AXgmvA3DaPMBr8Vsc5zAAryQv8z73IVZHcl2eYVFy5P7iBBLgcrgp/WzU8SyTdA/UCSPWkzYjYwjAE7lZXuu1sRN5BfZlcvQjeQ4Fx+DNYYNikgVgwvGIkoS8bahnGnOF2xxMBFw7pkkYxwBEScKUZ2ux32+0/xMfK3w/aVsdDekbIw44ZUCueRjFtCO5p7qToRkG6p4S9mUzXBhK39UosGY0mU1kbF01b/G0d0jf4/lelwVXxuzVoMFJr4qnLsSPwbPgWk+OPeM5+JE8H4CJjMHWKGGk7qPsWPpvOdvgYCEhiuVMwwhWB9AI5JnfX7OwzYSmen+u9xI9Pu4q2bgmrEm3c7CQkDETPEvOszG0SYCyE6u+jJnP9XR/3eoVmMrIuOuGNlfaLndXB/L8rYiyO949G0ZCGJsEsdz0aj/HqbqMh/Pbkzy+9yb9oeyAJ6vSp37gAtDp5XCckI12BYC8O2QUOvrYrVGGRPV0wQnoBTabw6zqq4BeaPNmS459ujJkfZTBMqT/Vnom3+zLdXxyss6Vtomrnsul3oAjuSz7C3L/l1omnTDmcFG+kLPgrQ5MqI178w6yYE8ebvegE8pvi7aJCdwa9QEZ068Hq+xJJgGZP9QjZRBF9OMQU7EEg8TnaLZAIIdicTSgZXaZSqQ/7ik7rA1heSjPYiaT4fZInlPdyuLewZI4JlzzW+y1ZYzXXFgbxvRimdf2eS63hnIjDib9JOBYXvryVj/AMS0cdV3LUZv9TpkgHYuWQSOIcNT56o7BlYHcb9nMcJst8uq9nTILWIaBZ8mxGn7IkrGJpZa9u+xJRvFYbXIz3tL3G5NQtV2WwjYAbuKwkMnyZrANwCwVrhuLPJ7ZD8j8W8ukc3HAlOuQs8GPff594xf1OvPH0XzfZ22txfVb/yulUvYdO267PeDgvv8Di4uLlEol/e9/VBbpzva/Z6X+IKbqf9/+MN/542zf8SAp7XzPcilY0h3DOOJApsYgkr9Nuw7bgbzUB4w9ZK3xIrhge7TDgxiG/PZDuR9iX85CzTXcHna52F/hQfcIANujmCnvBACPOIeJErgxEsAw6+S4POiQM2TijmKXsu1QUzPqxX6XnJED4IPudxMmYKgr8ZMhmCZxLL993TjLE/YZPt36fwPwaPZH8MwMBzLq2ElCHKj7jUz2eAXskfwNE+qOQzuUhW7Om6QZxMSGLLAvJ68SG3KHx5P7qFkZao5cx1/IfpLfHjzLF/pfAOBp93vxjCwnjIr0t22Qs0x8tZDVXZdtdZ6vD9eYi6bZy34AGnHMafM414xVAB43H6cdxBzNF9U9QD9UC1HQo2V2OGDMAFBxbAwD1hSgqthZpsycfu5fH97imLWHdiT3dD0YUEH+7kUOjxdnOKsEhWUnw44fkSRyza/wLR7kITaRRWKGAqs0ATjoVPlacI5HzLsBeE/mEzQDyKuxNZ9xORctESWyAA+ikIvmVUaWnGu/9RjzWQ+AxX5EnFgsGVcBmOZh6kmN+axc52xygk4QczOUcz9arvOfeq8CsDb4NmeyP05eveFODFNewuZQ/qEfwKGixe2ePMcwNrmrCP/r6s8C8N/P/jjXu/K3Wc8kjKCakee03Lc4WY4ZqbE2lw1oBo5+pgfzMJ+L1HMIiYH7qrJArg48YmCk3q04MemHcKggi68f2QxDi14oC87VtsOC2nyebed4erpNpIBtP/QwsTAVGJktNmkO8txoy+J8T73JvAJUebtJ3nKYqMuCemX1IBWvz2pXvnuwtknOiwnlMjg4v8Xy+jRhLNex1S8y4cmxLNPAsG1stR5FcQbftNmvOnt9WOKeaosbXQGstYzN97jCIoyihKprcLwsJzKpcLQUcbMn56m6cKiYsDaQ/ik7CbOeAFiAAwWDnnQlJrA/Dxda8g9F2+aNQZNpS96PYWRwy3+J07k/DwgwmvHkGr89XOVkZoaiAv5fGl1gMzD5UPY4AFkrwzCSvpFnDicrMAjl91t+wIOlGgA3eyEVx8ZXk97ZcJG73T0anOz4MRXHpDWSDdqnu5/jKff7AJjM2AQxdAK5P9swuGWssy+W9/igM0HWMvlc8GUAPmi9lxVjjWOmDIrbwxFFM6+u2SZKQo7ZAgrf9Lc5YteI1CZ0KpMhH3r01YbuatTgTEYdZzDkgeweXvQXAdgbT1NzXTxzApDNTD+KmaIOQIshtwbf5CiHAFjIZvi90RsAnDKPM4wM1n2fMJFOeTcW+VIp+46CpPFxS28DSf+/tJkZeZ5ra2vMzs7qf9/Y2NDs0szMDL7v02g03sYmbWxs8Nhjj/1Xnf+/pn3Hg6S03e4HVB1ZuM5ymffbp1keyAKbtWzKtiwIO+GQMEqoqc+WYXDImMJTQMazDDohFFXPWpjU4gkMmQOJkoR98QEAvsFFpuI5cggy/5L/Kt/lnmE7kIW7njFYHsSsDWUSXHDzOKahjgNhFPO8L6zLCXs/ZzjOi9ElAB407qVoG/xw7ccB2d34cUw/kpe2Hwe0DVkwjjo1bgx7pLzLhO0RJgkbieyiSmEVzzTpmAIKHjUfYSlqApAxbG7G2+xXkwcRvNd5ihUFIJZocG9WQBbAjGfSDqBiS19vjyIWrZsAHI+PMpN1uK52hrNulqpr8OZAFic/jslZJpd78vcpx+NWutPD5pAxhaUmo8t+k3uyFQaJ9KUVGnSAmivnnYjqXLRucdQURrBulXTfBEnCzV7EoYwsNpujkKI93t3enTxAQIyjFutuHHLUkQVj0e/xkcK9XO/J2Kk5Ds0g4GIik+/RaA9b8S3OuMJC3YxbHImPMuHIeFr1RxiGjIff6f0Cnyj9de7nYQBumWscSmYZKcZrEMW8zOuc4pRc5zDhL5fuA6CZvY9z3Q53IfdwazBkystwpCgDsRVAP4SKArfdMCFIDO7JiWAybyfcp+apihvQj0yudeS3RQdebcD7ZqRvS05ADNxdke+3AwtfgaDbgUs/NECN8cenWsSJoRfbbpCjnklwFNAZASuDDHdXJXRQzzjEiRzrowtb3OiUmPKElqp7Q841yuzPy/joBZMcqGxTdAREhpHFpgJMhxYW2dqu8f946R4A/s4Db+C6PrWigNOdTpFsZsTC1DoA61sTLLarPHjoLQBeWp9hGMn9T2UHHKpvcH1bLcbtPHfXWhTVnACw1MszmZExUHZCXtoW4JuzDUwDXt6W/jhZDlkb2pwsy3ffaLp4ZsLGMFLPwWY2F9OP5DmtDeDqQN6t4/k8eRtylvxtMgOVQY4pBYRWBgGfKPwAimymEyZk1bw0n9TZ8EfsBPLbM9ZxCpbJ8kDOuxX1OZkrsjSQZ3xXySGIE7LqXPWMx02F1izDwDGh4ctvz9gL/HrzZ/lQ/m/o/miGIw5nBTTOhd/PimKPzZHMNYHaVvYTnw7bLOTk/fBjCGJ40n4aEMbYSzKaudox2xRjAUl10+Fp9yDbIzXXGGVeia5xt3FQ3X+EZ5p6Y3TcmeLSUMbZ/cUyfgSlWMBA0ba50R9yy7oNwGP2UfpxSKwA16p1mw/nfoShAlwvDtcpMaGuMeELg1/mYO5pYjX/vBstSUKSJHxHj/dOtQMHDjAzM8OXvvQlzpw5AwgD9txzz/GTP/mTANx///04jsOXvvQlfvAHfxCA1dVVzp8/z0/91E+9Y9fyR23f8dlt7XabcrnMj048Q0dR70t+j/tKBdpqfN8eDOmqMM3F8Dmedj9KX1HHQRJxvJDj84PXADjDaTqRT82WSdAxDb4SfJNTyQMATLljqvJyuEWAzz4UkvZsrvTHYGXWzWIZhl68O1HALVMW206ywSPGw6zFsjs74JRohxErpGGtHE2zzVG147oZNbiVnOMD7lOALObHczJpLQ58QhJG6qVISLAwuSsvi82ne1/mYeM9FG2ZYcuOwX/sy87uUfNJPXGk7Ya5wt0KfFyONnjIm+Zbw2UAYiNmTzxNWR1rNehTNmUBqTg2UZLgKiD4XPAGh6IjVNXi41kSplhVVP0543WesKRfJz2Dtg9qDmdzFLKQs/lGX847Fdc5lPP0pL8n67A5ipjJygrSC+C2ClPclc/xSn+bXCLXNTIC+kaPe5x5AFZGA3Kmw5xajCwTVDSVvA2v9LfpmjL53sU+tqI+9xQErLzSa9I3ehxWjFc9Y7E88HFNuY7pjMXrg6Y8w8RjNuOhNuSsjXz251waass+kTEJY7jQl4X+5dF/5Cnvh6SvTIuMaTBUY6eescla0FXX6Vkwn0u43jXUPY04mMtQV8PzfDPkVEXu71I75r3TEQVHfnytk6XijlNy/djEMhINjFwrIVChuX35Adc6OX53W8DsI6Uyp8pDbvbkRGFsUM1EnFLhr5VegYITsNqXHfG+QpfGSJ7DfL5LEJu4lpz7te0aeTvmZG1LX0uUmBRceVf3zKxxfXmPekYxtUIHX4GzpUadmVKTelX62jQSfN9hq1kBIOMEDHxXh9wWJje4sS474Fq+Q3uQI1HgbXuYI2NFLPZksS7aIY4Z89K2vF93V/tEimXzY5ObPRfHlHemFxo821nnh6frqt9tloYjvmtCxvwwMtibH7HcHwOwUPXtygBmspC+fpfaIVOerdlDgJu9iK4CBT4hD5blmiqusFWXu9JXe7MerSDWoDlK5H+PT8q7dqHlstiPdHjfNOCbfWF4H8jMsjUKCdWFFG2bYRyzoeamo5kyt4Z95lx5pi9Gb/GxgsgClvvym5dj2dw94RxnGCW8Fckz3WfUeI1LfCx/EoAv9q5zMF5gMuOo/knoqdBu0bYo2gYKX3LZb3LIKXM1kLG1x6rgxzG3kdDnanyJv1gU8NUNBeTtzcv9nW33OFXIozAjVwdd1q01vjsvof+3OgEVx+a58GUAznCGyYx0/C/v/Cx7Ck9yMDpEmPg8P/wlWq3WfzUb8/+tpWvY5s7PvOPhtsna3/pDX3u32+XqVWG9z5w5w0//9E/z9NNPU6vV2Lt3Lz/5kz/JP/tn/4xf/MVf5MiRI/zTf/pP+epXv8rly5d1OPLHfuzH+NznPscv/dIvUavV+Ht/7++xvb3NK6+8gmVZ79i9/VHaLkhSA+wHq89gJTJxFxz4dO9rPG1/FwDDOMZTO5eKa/DCYJ2hITuh+6wD3AjaLNjykFthyF0Fl756uYaR7LyX+wJA9uZtnu/JS/qAN8nLw02OWLIDMQ3YCQINVvZ5OYI4oaGYpXWjxQOe7F6DRIBAI5ZddNtss5BMcdUUEVw9nuR0tqxZKNs0iZKEViQ0/4q1wrFkPyDgwzYMFn25p1kn9zaNQRAn+HHMciwL/1F3TGE3g4CS7WgdjYks0OkOy09iDuQ8mmphfyW5yIezJ7U2YnsU81oiL1YuKfLh0ixXVZgnjUWnV2IZBp1wvLuZzDh6gehHMVOeqSn/fpiQAF9Tk9jB+DgPlAt8uy33YCYm69Yq7/NksvZj6Cltx9Vom5ExZCZSWg7LYTJj3fFMY15JLvK9OZm4X+v0CAy5rv1OiShJ9HX6Scy+rMfWSD5nLYv5nMGG0uikWqdemC6aEfM5mWxv9nzmsy6KOCKIoeTAqpq5K67F+jDgsin9dzdHmVS6iMWB/HZFgcJpz+FwMWZrJL35m90LfDh7EoWh2FeI+epmwKmSvANNXzYHAGcqHjNexKs78tv9BYOlHjw9I2PvSjvL3rzPULEdqwOb6azc762uzdFSwI4v93S83OH3V0t8ZI8sXAYJS70CX9uQRe/JaZ8wNrnSls9PTLVxlX7pa+sVcnaimaUnZzYxjYRrii0q2CGnZ5YplwQ0joYZbFuu49VbB3n48BUMFSYejTJYVsRWQ+iyiWoDy4oJVAg6l+/z9QunOFAVDUprmKOak0X/VqNOP3Q4Pili0u4wy1KnTNaWvl7s5dka2Zwoy/v0ZivPxnAcbsnZsD+vGE4Dmr5FyZFnapkJt3uuHseX2wE116Gk5FEJ6Gc2lU241EqoKBb7ar/PY7Ucq/JYyNty/NfbAv4fqOTwLBlMX2hs8WB2kt8biplfNZkik7g8WpK+jBIB/vvy8v0LrYSCbVJQACxrw6W2XPNONMDFZjYjYHbdH5EzbT0Wcxac7XQ5kReANoxgcyT3X3MdLGOsq7INqLom1/syT50uZeiF43Dckt+nabZ5xBPAujjw8cw0VGnxgr/I/bawUEGSUHHH/X6+2+WgV0C9XnQCNMv21dEVvss9qvV9q0MfxzB5mVcAmEsOc8Sp6RDi2dE6MTEfKct1XGpHOqS2HvaYtvMMopAw8fnq4F+/KyBpY/t/e8dB0lT9v/9DX/tXv/pVnn766f/s33/kR36EX/qlXyJJEv7xP/7H/NzP/RyNRoOHH36YT33qU5w6dUp/dzgc8vf//t/nV3/1VxkMBrzvfe/jZ3/2Z/9Ek6t2QZIaYO/P/beEyBsTJTHTrsfFcAOASlzEUkv1hJPhS/7vM2VLLPpRV6jca4oCv2FdZjbezx6rAkDBMumEkQYVoyTmK/2fB+CHaz9OO1VKAstRhxJZ5jzZNW6PZGe4qMJ+c56rF/KtYERMwtGcsD1rw5DZrK2Fl1ECN4Y9juZkd1tyYHsEbSW2jQFfAZlJ1+XGqKu1UP3E575SgYbSZ3gWbPkxM0oFfLsfUndlpvn11r/lzxV/mJciCUt04g2OJ/dRtmSxzVsmjmlobdBMxqXhhxqEXUyWOWXKbr8TirZhoFaB7WhIw2xy3JpV92CyNgw1g7M2DPlm/BwAT9tPk7NMtnyZfAu2xd68yVsduce6axElcH04ztR4olrQE30r8plxZZJPd577bXmGU57Jcn/MOg0jMIANBXxqjuycAdaCAXcX82wrDYllGFzytzmZqevzXh92Kai+dhWgPFFSz3wItkKFDT/CMgytSVsfyThKd6xNXz6noOpyd8BdBZkk9+RilvomLT/R42HaM1gayHVWHBPTgANKMJyCpxlP+uNfbl3hr1SPyXHbcLqaMKXCR54VcamdYyE3VhEPIpPZrKzOq4MsI8Wc3F1t0PQzlFwZTOcbVa60LT66pwnA6ztlPCumE8r3j5X6HKxsc7td1ef61qY8hwfqbTwrZLmfV89lwKGJDV5Y2gdAO7B5//7reErMnbI3AOdWFpgrtKnk5fnbVoTjhDTasrmpljoksUFtUkDR1vokruvT7cv7tdSoM5EX8PX8yh5MI+GEYr82+nn82MQxpS/jxMAyEnqKtfrNJZO/sC9Qz8zBtWJ+fkmu4wOVOvVMxNpwvEuez4Z8YU2ew4lihikv5n9Z+SwAPzbx56grbdjltozpeSW1M42EjYHBi0MJGb4nP02QwIoC1Sbw1fBLAJwxnuREMcv17hhE7/gR82qM52z5frox2BwmrAZ9ZhwZX1eiTQ4Ysrm7v2ZwrWsyJa8Pfgxvtn2OFGRM/6utX+IfzP0IF1oyFjfDPpO2XPTlZJmH3AUchU46YcL1oMV9+Yruj1d7TR4pyudvdXY45dW0zOA4+3TyRhALKEqZpK1RSCMe8pq654fs72aP5+k5wDdCEhXmO+bWGM/EsunqRAGOmvczpkk/jjip3tPXWgMGhs+80n9thAMqpsx5hmEwnbHohAlB4vPZ9s+9KyBpbeufv+MgaWbi//THeu1/FtouSFID7C9Wn2HHl5dtEIdkDIvDBdm+3eqPQU7OMumGEWVHJsCeEh2/ZUhY5wO5fSz2I/Iqq8yzwI/Qi7dtGLzCWQBMw+K9zn00FXDpRgEJiV6s/TghZ5l60bQNUIQD54c73JutocLvbPshM56tWQeAC8MdLAX8Fuwia8GAPa5MTp8b/BanrfcCMG3n2QoHHM7K4tPwI7KWSTMQENCgz8lsWe/mTAM2fFn0ThY9VgYxKkKmNUGpINQw4HeGr/Ee+14AJj1hKdLsnqu9IdMqBDmRMXih23zbxLU0GrA/Ky/+IErIWoY+1xuDpg5N5pIMe7OeZqhSMLm/ICfaGEA3irkeC4t3yplmadSnr8Kop7wa6ids+bJ7Tyf9V1t9arZHUT0I04AdP6KsnvFlv8m8JZPIvrxJL0A/F8cU3dVz4VcAuNt4nGknq+/hZtDmiFsm1XU6pmQDgYRTYLzbzVlQchOavnzZj2Q8pM/cs8Y7bsc0WMiPw16NkbBFaaim4EQU7YhLben7spNws2cwn1OgKh7vwGeygdrtpyDR4I1mwomyfKfuRmwMbU5WZKOwOcxo9idjxthmzFRW2IzzjSr78z02VQhtMjMkiC2KCtiMIouLraLWGS0UWyx2hN2IgaITaMZmutji7No8Z2bk3buyNc3dc4s4jozb528c4v0nREzrZHzOXbmLYkaOe+TIdRqbNW5vSDh63/Qalh0RKzYsV+jTbpVY3hIgMFNpUCjI4rq8Ps2FrWkNik5OrdIbeWwp8OYrsXdjpMa1NyRUgG1jmGEi43OhJd9dG8BDEyPONTKqrxMcMyFvpdmj8O0tR4+Bmgvfasp1TNs5ztTgVleOvSefEMTwcztfB+Ap+wlms6YO126PJLsQ4NVGTN21NMN5d9UiTgzNzBacmBtdk82RXMdDdYPzTUNneN4ajDicVxshG3ZGMK3el+U+NIOQPQq8Zyxo+XBR6X8eKo4F4SUn4Xwz1lmVnmVJlp665mEk4ffXfQF+s0mVvGXrvy8HPUJDrrGQePSNEaez4+N/dvANnrIfB2A9GDDtZCkqRFZ04He6ArbmoznmM57OdguShIJlckOJzV8Lv8Rx50kyibycx3MFRrFkzIEwxOlxL/e7HMkWSAA/GfEfGrsg6c9y2xVuq5azYKRint3Yp5/EbI5URlLW4vWu7CKvGps85h3ULMKhgs32CJ52ZDeb7rxm1Fi93ZNQXZpuX09KvMcRHc2y3yex4WBBiWl9i+f8ixxxJMNkEBoESYKrVtBRjJ7wXhv8BwrJj3A4JyfyTJPL/S6XDclu+kT+PRx2qjqN+9vxOd6TuZdng5cA+G7vYyzk08y+hCvtrF5s9+YtbnRD9ucFJF4ZrLM9KrASSx+sm4t8rCgp/oYBrmnoYyUJbI4kewYgIebD3r0aNKwPEqIEWmo2LlmOprAvdkfMWyUyagb8zf5nedr9qBZ9D6OIUWzRCpUo2shxvJRm68kikKYK96KQuutyqS3P6XTZ5loXthWYrbjT+LHHcjDW1uwEbxcqfqkj330sP0/FhWsdxcK4JhtxFyeSXeRdbkWD4Cg2udTvkTWk78q2jWEYfH/+A6qv4aVuk4zKbnu0XNY7X4CNYayFuFMeDKJxeGVpELMHyQYDKLsCONOJ+qxxju/NinD7Ws+nE9qcUOtFxTVY6puoNY/TFfjdVYeH6/IPz2/JOJ/MyLFeb4wXZteyKTkRJQU+PNPkfTMx3cBSf485UBgxUsLmw6U2LV8W0MV+lpOVFl1fntN7F27x5uaMBmEbwyz1zEiH0CayPZ7w+gyUFujCzgRnpiSslSQGnuPz+vocICDpnqlVCorBqmaGFAs9PvWCvF9/4ehVrRtaXZ3h2N6brG1KCLWxWcMwEqYrwgY5TkhpcofLb0r4dRJwXZ/ZqthinFte4IED1wAIY4u8E9AN5BrPrc+RtUNcU/pyENqU3REvbcs9318XsAiwJ99ntZ/jUGGoxkOGiuvz2KT0bTe0GUUmQwWqzu6Y3F8bM02GAQ9XJGyVtxM+s7mj9W/f7RxkIhPzo5X3AGNd0W90ZU74+9OnOd+Uaz5WsvhM+yofL4nGpukL6E6F3VFi8sJwmfcWRId3owvHyxLeA3hywuG6ImWv9ka06DGRkeSFCQ99/QCjSDZHtYwMxiAeWxmsDhKOFC1eb0nfOYaBH8tmCGB/3uDFxpBTKgstZ0mSQSoNmLbzKNyGgcG1sKffp2YQcjy5T88vudCh4hr8RleYpSft97IvFhbbMU1KLnQCNRf5a0yEFSYsmV+/3/tz9MKYZWVd8sagRdts87i3oM4Vs6NY28PZAmvDgMMFR4dN3432p1m4/We5fccySZ/61Kf41Kc+RRRFXLlyhe8vP0PGGIuqbRO6ilpYDnrsVf4zVdcgjMeTibzwic5Iy5kWVdfSrMShYsKtnsGk2mX1wvHOP05k55/GzbdHCZ41Dk3VHIdeGGl2Jm9bvOU3Adhvl8nb4+Ou9kVAnDIppgHf8q/TiFcA+IHCEwwjdOjuq4N/ywdyfxWAYyWbzeHYM2cyY1DPyHWDZMYVbEuLgIMkZtIdC0kLDnpiagcxRcfUYb84kb45lJfvf27wGvdzWt9TkCT6v7fCAVN2lvmcTLBNH14IrvOwIyHNSQ/ebAWMEjlZ1rRZQsIj97jTJAkozMRbXZ82A464MjE3g5BjJZu1wXgMlFxhbkDAW9qGccJOOGRWCU335g1udGOqbiq+hZdHyzyYkQXk093Pcp8lIOjRao5+JIANRHN02+9yMfk2AHusUzxdmGWxLx20kDP5dPcl7kcyPgq2pRm8jGlypGhRUh5CrzWg6JgcUGzAcl9CC6nY2jFlFw8y7oLYeNvnshNyQS2SD9RHrA1d2sGYMTpcHLGkBMLz2UBrjCwjoeIGlBTbc7VdZE++z7ZiSpb7LgcLQ/qKaTpebWjQs9rPM5UdC5fXBzn25Lv8k4sycP/JPS1++a15vkeF36qeXHBPJVH4kU1TAazGyOXB6TW2+gV13hxPLNwkUGGtJDHwI5tD+yQjKYkNVtZkcZ2d3uAbb57k8eNvyjMeeHjZob73jc0JwshiZlKYRsNI+E+v3ccPPCCbin4vx631Gf03gK2BsEEHqlu8uTlD05e+rWV8+qFNVfk79UKbiuq7jUGWkutztZ2GwSN6kaUBaBgb2GbC1lCO5VkxWSumGaTMtcHtnpz/TC0mSgxudtPnJIkBXVMW8ie8BZJkHL51TJjLyrvzK5sb/KXJKVYG8sxqbsKXt/rcX5brut4VwfcTyqCpExg0fWFfQMBK2l5ujtiXzTCTTdQze3u6ezcU0H5PWZ7ji82+lgkMo7Hfk3yOcU1Dz4nLg0jrQQF2Qp9pN6PP/+3hKk/kJBx/sxdQdmy9UZKsO0NHAeoZuYdU2O5ZvC0553DeY3kgz2HOswmTcUh9lEQcyGZ4eSjj44g1wcVojQ+W5NybQ/jC8FkAfrj8NA0fshb48Yh/s/3uMEmrmz/5jjNJs5P/8DueSfqOBUlpSwfYfzv5DK/1ZNKcMgscLFicbY0Fj6lnDEhIZbk/zjAq2PBKU3477Wa4EbTZa8ugKjuGnqRAgNCkN07jf6W3w6wpC/mxksXzjS5zjkxUM1lDMTPyiFxzHGoKYklpTQXSX+n/PH+5NvbF2RgKg5WyASvDEM80CdTjPlSwWFXAYCFnECS87Z66AWwqm/v5rExuKQDbUJljINf/eKnGplpvrvmyq326Kvd0pR2zFQ71pNgMYhphwMFcRvVHrCexe6smmyODKU8+n92JsQyD1VBm0O+fzbIxtPUudGMYabPMiguvdDrUzVSTY/Mr7c/x12sfBSQc0AsTRM4N8zmTndEYsNZcmcxBwgatAN3XeRveaAYs5GSF8GPxuymriXxzGDOTVR5K3RaZxGGfl1PPKaEdRlRUeLYZhOQti32KeZOsmjFQXh+KFgLgQDZDwUED7sV+xP6CpdnE9Npbqj/mc4kGPUHM20KvpgFHiyFvNG39+f6az4uK7XAMAVsTnnSCCXrhbvgOM9kh68qIsWhHXGhleHK6CcAoslU/ZPSx0zDf8UqTrWFWg6YTk2v0/Qw7CmCYRkIYG7y0VQFgygs5XGpriwDXijkxLxmdv3flGI/O36alwlrNkcfGMMsTe2/IdQQOy60aR6dlY9Dp58gqoDIxuc3mxgSOEnJvd0qEkcXeaWGpdlplJmsNthtyHfsO3OK3vv0o80rDNFNuUKsJ6/TmjYP4kcW1trzjk96IV3YKPD0jgH1vbYvbOxOsqev0rIibPRmXBwt9lvtZjlek7764XOeu8ljblRpQbgzludTckJWBo0XgncChnTJ4ZkIntHhuU+7xQM6jF45ZGNMYgxqQ0Fbqv5S3YSYb8ey6zB9HCi62KWFXgDdbUMsYzGbHg+jsTsyxkpy7H0HRGYOitQHsLYw/W4Ykl4BsGNaGPlPKo63iirYIRPfXCAPuKowTBrb98XdzNuyMEuZyhrp/2eidLo/npDRDzjEN4iQhp6glE9FSpvPLMI5YyLrs+GNmesaTDmoHMQcLJq+rl2nTaPFUcZLf6UoizEPOPq4Pu+xx5ZlWXYPz3R7H8/I5iCHtqVuDAQdzWZFaxCN+cevdAUkrG/+UUsl7B487ZG7qf/iOB0m74TbV7pxMpjMWQQx7MrLQxQnj3Yhr0Qm4wy9EFqbUuXYz8HmwUOb5rkyYC3GFesbSu/3tkSx2AGXbYtYss6bCWGtNOJGt8MXRCwA80n+QQRTySF0ubnMkoRqAR4oV4sTU6b0fLTyDY8Dv9q8AcCI5iGuaWox4lrN8IvsgX+tJbH8mnGYyo5iiAXzR/wY/UHgCkHNMGwUdynqh1eGBUpGNYZria3GxKwDykFvlfHvEmbLc4NFSiWsdQ+/QQLL0LvVlko+IOZotahr6dMVguS99udgXr5ef33kdgMete5jMGDgjYQ5e3zHoRjETitFxTZOuYrdmLJN5J089k2o/Yj5Z+Cg7itH5D53/yAcyH6errBvoO3imySVfntN3F2p0wzF4bQdoxmYQGdRch+eGol84GC8w4zlk7/C+Spm0BbvIbNbUTJJjGoySiDlFPc5lhc1KAdnyIOL+mqlZPMsw+U+91wA44z7M+nAcYp3JWvzM2s/yzNSP6+tc7Ic8WJMLWe4bTKlF7VoHDhdhXS2K87mYdmBxpKS0H2ZMJ7Q043e8GrE2sLRm6a2OxemKHOs/rnd5f63EvBJqL/Zdik6CpwBHPxQvo9ncmKbLKE3N6ztVslbMOcVgZe0JpnJdZotNQEJXZzdmuK8uFgFJAsPI5vTcEiBgZqRMTj949BJxZOoQWinb56AVMVRMU7XUplzoYqrQlhfaTCghdhRajAJHAx2A+tQW2aqc114KcTIBEzVZvHutIk8cfIuWMoRcbNS5vSP6pLPbVe6pNXk0vcZekR89tUh/KAvUy8t7uXdmWYOkm70s99fluMu9AjPZof7bbC5dsFOftZicFWmwO4wEIKVsWskJtGfStm+xJ+fzmJpcPCvmVtekpdBJOwwoBQ77C3KsQWhwqCjPpTGy+OYmHFAM72wuZrlvsqP0bvfWYpq+gUmaxWpyoGBp0fhOx9JzXt5O2FuQMQfiEffp3pd4wpJMp4pj81Dd0ce61IbHlRFlwU5YHYyZocUw4v6aow0zN4fyDqUh5qYf68QWkHBduunshQLOL/fHyRlv8gKfyL0PgBiLxYGvWe3z3QFfHL0GwNPOg7zViXioJuN0qT9J3k54SMkopj1YGtrUM2mYOMbB0ptQyxizUnOZLDkLfrt/gfhdDFklcUgSv4PhtnfwWH+W2y6TpFD4hwt/g4N5meTe6gQcKTrc7smEcIUVjhsSWjlYMPl2s8e9RbWDSGDGG4em0l1/qklKdUTpv2+OEm1KaJvy8tnKM6UbGrR8ESsCzOUMslbC9mh87HR3ZhmyU/qdkegNPpq9Twl35e8lR3ZYg2gseDl6R7hpPgffaghw2Z/Jk3fGAuEohh1/LCAexfDSYJP3l0TPcb0ba0H0Yi8RkKCEl2eqFl/Z7nI0K3qdOIFaBp1aW3bGfQWwPPQpKjfqI0WTYTxmrK50fOquq8N8O+GI+ypZbQnwrWaXU6p0zLmuOJUfVzvS2VzMhaZJW4WuYuDBmqX7sh/B8sDnmAKCa4PxDnwiI/efTrYHvQKdcOwhk7HkGhUe42ynO85+tGUMpYzdfNbiZi/gkQm5x1/buc3HSvt4rTnO9uuFMZ41LkOR2jY8Pmnw/BaaLbMMCZn8vnL2/dHqKUaxQd5WYeG+icq6puIkGAa6/EcQG3QDUwvE65mQmhvQVzoiPzLZ8S2iJGUhEq2bOdfMcldpRF2xMi3fpZYZaoFyzg6JE4O2nxqsJlxsywbjqdkNotjUbJNtRtzqlLhPsT2j0MGPbNoqdLc1zHKstsUbyqhxNttnKs1IMyMyTkBHlQNZ7xU5UN0ir8wltzsluiOP04fEEqHXy5NTgnEn4xOMxour77vstMpUlJlkfWaTzk5FWwTkyx1a21Wurcp7P1/dpjuQ8xZzfXY6RYpKC9UfZej7GR1+y9kB08UWn79xAIAz9SbbCkDl7YDbvby2UzhZSThZGTNnthljGTFfWavoa73W9fnoPPo5LQ/ku20fjpYinRm42DM4WIhpKoPIr7a2eV+lrt/5hXzC89vSV09NegzC8XsYA0U71hYB/UhC5ql1wZnaiPWBy5r6bBljw9xbvYT9hfE4PNcwmMmOWe+q8mRKPboMYywgX+4bdMMxKwtQceSYIFq6890eZ0oqqWQE54NNJhNhql/jRW22ek/F4ecbz/LnCwLOXuhvcsye4EWVebvYf56T2Y9wn7JR6QQJZ2PRmX2seJggRoOzlUGgWSaA55V04cOZJ9QzlvtPNztrw1hnoc5kE253DVb9EWHi843BL74rTNLy2v/0jjNJ8zP/43c8k7QLktQA+9szz3CjK2/9Oa6wEO3joYpM9HcumG/yAj9efy9FpRN5dj1iPuuyV/mJDCODK+2YYyrzp+1LHNxVi1fTjzldSbU+Bl8aXOEHSiIWtU0BRFujcZp2NXPnixvrGmEznk03TDiixu5bbSjYhjZTvNwd8HA1q8Mn2yObLzeavLdSAeD1ZsC9VZkEeqEs+Kk/0VzWZG0Qa3fvw0V4ZSfkRFm+/81WS6e+Hi0Ja3KzP7YpmM8lGhQlwO2uwYR6d7/W3ubBfF2zMO0ATem3fIPf7l/gIVPKtkRJwkzW1MzbybLFhVZEoPrg4bpNR030WSuh5RuohERudBNmswbXusp/xjBU+nxq8yDC6JvdlC2KOF6W578xlPDAIZXCfLEzZDbj8XqwrMfND9Tn+NTWNwH4eO4JzciEsWgsUmbpakesGe5kEp8dXuV9WRHMRrGk9p9QYYx/3fwGf2dSLPh/dXuZmJgz1l593iMluNFRYM4TIHxQMQW/1V7kmWnRzXx6xefxap6Ck2YNxeTtSGtdZrI+1zqeHh85K+ZCy2VeMRudwNSGh8fLXbqBo9P6o9hgY2Rzd0UAhmGI4Hq5K4Nxc5gha0sHTHkDXt6u8PTshvqtiWEkrPQE3E5l+/RDB0uBk8bI4+TEOsudir7nwxPCfu50i6z3C9RVeZA4Mbhr4Ta+AmdJbLDZqmjN0MGFRdY3ZEGcmdkgjkw6KuU/440IA5tyrQnAzZt7OXriMokCjbeu72N2bo1MXkDWa6/dTUkBrpw3ZHF7kv1KUL62U6fnZzTAdK0Ix4y42qzpe0iz+y62ymTMmMW+PId7qz2GkaXDbFk75Fonr7P7lvqeDl0C7PimDi8dKUHTH5cpmfIgZyWM4nEShWsl2oNpe2SPMzhHcLIS8sKWAvcZk7IznmvOdwbEJBy+Qzu0Nw978wKUn1t3OaTKkX1re8STkxnNDluGaJjSc1WVo/orO3LdVdfS7twnKyZf2+7rsJXICyJOVUx1/wb9cFw3EeTdTefbQTS+/6ItbHu62VsbRNQzFtsqWyFrmUQJmnnyLLRMIIgTTlYSrnbG+i7LgMW+ILsJ5dQ/dYfk5/XWiNOlcYg5BZhf2xarBAODIPH57c67E25bXv0f33mQNPs/7YKkXZAkA+xvTj+jU3b9ODU2UxkWBYPGHYUl65lEp7D/2s5tvre4T/9tGMn/0rDHZ5pLPOQu6BDaXyg+zLTyotkcWTR9idGDLHinKgndYBx+ei58lb81cQ8A1zoWs7nxDuyF4Vg8PO3JbvCiquN0rGSTsRJ+b0c0QvflK9zqBdr+/4FKRjNYz233eXoixzBKKX65nlXlqbM3b9L2x6LoxV5C2RlPWmEydsHOWjY5y+SYCuvs+FKGJA1nBjFMZhJaKpzwRns80ezLB3x9w+KgYql+t72qhZEg2Tebo4SSOvf5XkcL6m8GbZ6ulvVEfbsXYxuGDjWca4bkLPNtJpkVF36r/xoAtWQWU7FB31ubYG0wToe2TemTVCR/oyvGlanoO07g2a5k8x2zpjlQGIfb1oYh+/M2ywroPTRh0A8NXtlR5pN5h2kvoeLK5+c2LI6VTPW8E/blDc0EzOak/yquXNjawOC5wSI/WJUMnbw9Ll+xNRTAmP723mpA3o50TbRvb4ldxNMz8twutzPECRwsKKsKM2EQpnqvANeMte/P2tDhvXOrdFUGm23G3OqUCJJUh7RDpOrc+ZFFMTPUwu2iN3hb4dgbzRq2GetQzFyxzc1WlYMVCZMNgzH7U/QGeK6vw2tRbJLNjAgVsPFcnwur8zxxQgwSF1dmmZ6Q42RzfWw3pNeSld12Asqzm7x1TjJJDx67Sjh02VgRkFmutGg2Krjac8nSFgC//NJDfP+J89o+wI9shpFNSTl9e47PMHDZGgjA+BfXHO6ryOp6qCDHm1IsVM3r8+rWJIeKcuzLrSKd0OSk0iANI4trXQ9Pvat5O9b9/MW1gE8uGFzrynOY8kLKTsjzmzJQF/KJ2rSlgNXShXQrTsjXNhweV1l1o9jgxS2L+2ry95ITsTJwuKUc2eseHMgHuj6fZ8W8oUKoFVeZsSqmqJoRvVRGXfO2L6xUWgvRwWKvkjLM5mAQji0zFvui/UuBzuvtPnsyOV11YE/WpB+h7Tn+U+s6312QxI6Vvmj7zvYltPm+Su1tJaK+2ehxspDXn9eHd7DniYCitOTR3kyOHZXsAfBCs8uZYkFvwr6x0+PuYl6z2s075scpL6HhG9zqxQSJz+92/+UuSPoz3HZBkhpgD3t/hftKFUBe2JyNrqB+q5doD4zVQcjxsq13L7NZcSquqlpkL8UXedQ6QUaFbmY88btJgVDGHNsETHkJSYIOAZ3tdLmvVGBNCaqnPQPDGGtSGndkZrzZGbDgZdlW6d8P1iy+vNVnf0Z2ZLdHffZ5OU5X5GTNwGRtYGgfnYSEvfl0IROAlQqmf23nNo+4+zTbsz1KqGUMbfjWj8bXBAKA0s/LfXg9WOYBBd5cBTBS6v3SsIWT2BzwUnH6OB34YCHilR2DKdXx26OEKc9AJZxQcOBGN9KhqaJtaIau4kpZjNRbqJ6RiTudBC+3Aw4WHFYU8CtYJhMeWrx+qCjAEyQ0aBvo0NTvDF/jEfNuCkqBf6wccaNrsT6UY0VJwunKHRk4I0OnJQ8juYZ9BbmJn14/y1+rPqCLJ8eJPNfUn6gXGjrcmDFFQJ7uZk+UHbZH4wWi4sbc6Jg6BFt1x2VHprIJM17IsmIs+pGA+4oSYxedUIupQcJrkTJBBHijmeVEWRb9UWxSdgIuNPOqr4aMYpOKKlNiGgnDyNLZXGuDrNYNGUZCxfXJ2anze8RCdZu1VhWAQehQdIe0RgIimr5LLTPCUKCp4I4oZOQ6othku18go441CBwePnWeGzeFads7v8Jw4GmX7SBwyHiqcO7IJQgdLJWmny/2yJY6PPvtRwB4/5NfJw5s+k1ZDBrbVaLYpK60RLYb0FUAK45NfN8lo+730vICC9VtOiocd3F7iqLjE6hw5CCy2F+SzUo/cBmGFovKpPLBqXXWukXeaMqxjxQHbAwz+jks9m08C2Y86evlgaMB+GRGmMm9+TGwWR044+LavYST5USDqikv4IVNZWJqydhcUEaUoxgmvVj7M31tw+LBeqLDtW80HVxTxhBAzY241JbJKIglpJ7OD56VUM+EWmf1VsfiUDHi5W2lJXNMnQl3pZ3wUD3R4cdBFHO0ZOmkg6GaayYzch0XWgbfis7zXlcsSMrumA06UEi40Eq0fvSuooXStAMyB9/sRjxQV0kSA1NvCBcHvtToVDufVhBzpGjyfEPA6/fOZLnYsvR7ujYwWBz42gS2YI+TJp7trnLAmOLeqsko9vnny+8Ok7S08j+84yBpz9w//Y4HSbvCbdXWrFVsswJIllTJyOjJZtJ13wYKghgud+Xtm8y4nC5luNCWlf6v1k9o0APCBh0vx9rw7eYo4r6qcq7uGXxzdItHXWGiThUKRAmaWi65EtueVRPZrcGAjKqUe6yQpRuIBgjgX+68zHfnHtQM13tLWVYHsKH8VbJ2wvX+gAcqKV9s6PvrhLA+DHRl+u/K7MMy4d80fgOAH5v8AfxIfIwAjhcynOvIjuu6dYUngnu0iLPmwnepGmcgE1MYj3eKDzllbvciDfZ64RggeFZMN4R77vCYMg1bA8ybPdHupNqhUTxm7PqhgR+PU/otQ0JZ2wo0DJOQvXmTjsoMeiG4zvHuPm4lsgjmB5NU1XkkOwutSftY7l764VgrtjW06IeS5Zi2dFE3DThd8fmFZdk198wuHyvtY2MoN/zR7INEiVgZABwsSMmJb6mV72jBo6J2q99sSLmT1HzPNQUkp6BxEJocKkZ8dUOuc3/e0WPPMiS8kjqKHy9bVJyQz67I54/OOiwPbGZV+ZDzTZtHJ0aaacrZia7VZkcWy32PD+4RtuzFjSlsMyGfS0trxETJONx0vZPhI3tFc1TwBsSxybWGiJ6LTsynrxzllArVTec7ZOxAg6or7SIP7rmlPzd7Bf3bk9MrlPM9ze402iU21ycp54V12doScXVZheOmqg08ZRYaxya2FVKuN+WeMiNeefVeHj4mlgDhMENzo06vJy9bsdCjWGvSbwtT2W0VNfgaDLP0RxnWmgL0pgptXl/dw5l5sR6ItmRzkxbEfbPlUVNAL2eHXOqVOFCQa/7W2gyGAftUGOt2z2NPfsjGMC2AOyRKDM3g1DMRR4vS76sDl6OlEZ9flu9+fMEnSAyW+zLW7q4mWEZCpELSX1wxOabWuqYPj0763O6ldRFhtW9SUtqghyZimr6lNwqzWQHRqXi/4TscLMhYutmzqLoxDV/NcW0o2s7bNobDyNQh+I1hiGXINd5fi7GMRPusWYalN6Dpde7NQ1ux61UXno5Oa+PKGKmlCODHGfblxz5itin3dUXVp+sELvWMxZYCTtd7YsALULIdFvKG3rBVHJOiHWtn8OW+WG+k79eUJ3N/eq3f3vHZNiQJYE8ywb68xcVWrLWJu+3PbttlkhQK/3jpGa3R2RiabA7HWROdQKhrgF9v3OA4+3SdnmEUMeE61NVL+6+2/yN/rfoJvtSX1NEjyTzzOZurPXkz7yln9ItYdGT3ta52QpYhO6PXW/LSf3jGpROY+EpjULRj3mzJfy/6Pc4UC5pJsQwJg6UhwuOVmHMNgwWVOnu+JeZmnXD8/VQLtDE0qLjwq20RgX+yeB9vtkS8DmINMOmNAUHFkQUc4HA2zyBKtMP2jcGIA9mMpp7TSSTV7DiKWUo1Op07mJL7azZXOzDlpVkzUmg1BXMlW1xtNxXiOlE2uK3CAbM5CYOlnkt78+InM58bA9ZOAG/2VDmISamnlQrd9xcSrsgcx0zWUKAovXbp11NV+YdrHYucDbd6ch0Xk0WdBZOKuVM/qlnPlbIud+jMYmC/2v3HGGyPxpOzpGbLc7nRNfRCI78VL/JFJXxPGIcSQJiv1H9pT1YYpuMlVQ4jsFkbGDrsWbRjLBPtsTOXlZBfCiJ7ocnevAqh2iHbI5eBEgi7VsLxckuH1KLEYHvoUVGlR8qZEa9uSxmW4+U2E7ku15U+xzFjDtc2NfCZzXfo+hnmKwJWHTtk6Ls0lBfSl5enmcnKPXzs5Bv0B1maSs+0d2aVKLYYqGK47X4O24qwrXGywpEzEnrbur5Aqd5g8YawTnv2L5Ip9bj+xl1yj96Qifk1WhtyXZnsgLW1aXpKcJ11fUoq3GbZEbfXZmgOZQGt57q4VsjVHdE/7Svv8PtLCzrd/oNzTW505Jo3hjb9CD40LwVcv7o6wYf3rPHbixLme3SiTRBb2pH7SHHA5sil7kofnG95HC3Kc5nO9nmjUaanQNB0VtibF7fHlhquOQ7fX+8mPDUtx9ke2USJwetNlb0Wjnhq0tPXvL8Qsdy3NINjmSLITzddfgQHFDu6NrQZRmOWOzVATQFW0RHB+Pum5KVv+GMGZ7kf8egk3O6l407K7ewvpKVGhCVOTSxTjeKhgqXPdcf+lW6ALrQ7lzO41B6XUJr05LrT62wG6A1JJ5SoQLoavrgda8dwACXHRO1t2JePCGKDoZqbb3YNzfAOItnQ3O5FBInPF3v/6t1hkpb+AaVS5r/8gz/0cUfs2fNTu0zSn/QF/GlpExn4woYs/I9WijpGDRJ6SzNBvr98kKUe7CukGWkO51pDrqmCjd+f/wR5Gx60ZdFc930cA56oy2r3je0Rk4789948XGkbHCrKsaIENocGB5WL9ms7oklJDQGPlsYmaxOZAv1IQnQAe9w8G/6IQzl5U881DA4VRRsAcKrskLESbqlFdCcaUHFT515wzITvss4AEtv3LEvXbttfMFnpJ9rbxzYTDqkSJvvyCSsDg6vKY2pf1qMTJhxQ9/Rr7Vc4FJ/gkYp8/xebz3I3j7KksmQWvAz3qJlqMhNwtmFQT2RYdoNx8V2AE+WEUSwLuLREZxE2RqKNms0qENlLRaJyvy9sxRwq2jxWlXt+eVu0QumO9LVGrLMOd0YGBwsJb0qEhPvrMVfbFsv91HhPJvN7q+r7m5PsrYxT74uOQdVxVN8lvLwdsZLIwT5eqb4NnBwqRtRcUxcw9WNDj7VeGHOynPBWR87rGAbrQwltANxT7fOFZY+jpTF75CjNlQl4wLYqLJuzYsqOhYoQcqAw4Eond4cXVEzBjvSC0w5MZnN91bcZ6hmfXE4WxdVBFj+2dEZW2R2xr9impTR9g9BhRoW5pvJtHCviIeVldHNzGsNI2FOU/jCNmE/fmuNDSnuUtwPONytarPzkzJYGyZ9/8zRV1+dQVQBGr5dnq10mr1iaelmO2ekpL5tKi0QxY9lCj3PnT7B3RsTWvWYRw0h0OK042SAYZPjyRSla/MHTrzM3v8o/+PyTAPyDB96krewAct6QrX6e+VITkAw92420sD1OTJ6cXeW6CikW3BFPzIv1wPnNGUquT1vpuU5U+mwNchTsdA4wGUQWFVdQhGEkzHgjbVR5ptrnxe00ocRmyhubfm4MbbJ2wgdm5LedUIwm0zD6tGfwyk6agQi3+z5Hi/L5vkyGkhPqUPbawOJbnR3+ckHCgEFisNS3qaZ6uNDQfk1JIrXdmmow+XHCsRJa47g5NNgym7yyIxqueyoJbWU14JomjhGhiHhi4FTFZEnNeUVbWOJ0jJediIpr6hDbYj/gvpqMw5W+QTUDKWzyrISKY2tH+pxtEyew0rkjQUUdZz6XcKM79pU7VjLZGqHd/jOWyeutAY6RMq0urjmWCsxk4ffawrSmRbr35i1hAJVR5h93E8dt67/8xT/C8XbbLkjS7c3OiIcrgpbTBbZ3B+tSUMZp5xoJk56pd2/pS/Keqkwmv9R6nh8IH+P2aCwArGcSXmvIy3Ywl+G2ygR7rWGzkBtrUKJYTNjGGxgDy0w0C3O7Z2ih4O1hyFnO8tH8g0AqjM5oo7SSY/LcdleDglYAG52Y/XklxvULWtQ7l1WZQiW5kM/ubLHfrOuMtK+0N/lQeVKHzILEYI8Kkb3VMXBNAUcgC7hnwZW2XOndyT3cX3f0zvFp50mqrqmZpLXB2J06SBwWcuNQZtlyeHQyZkmFD273RIycAqM7tT9ZGw66pu6fJb/P0BiBComcqoiOLN0pHi3ZbysHcrpi8rs7smCeduq81THYL13HxtBix485P7oJSFHj+VzC2R3pkIcqOX0Pp6sx26NxjauNIdxgnTPuvP5cchNe6YuguOzU32Y22vTHJpCvxdeZ7R9mQWWcjWKDu6uRDqesDzLM50xUohAFJyGvFls/MhjGcDQnF/bKjsepis/aQBbbX77p8FcO9JjPyucYuNj29Ji/vzbk5W0J8814oQ69AUxnh0znO1xSvkE1M2YQOkzmZDXo+hnuVin+650yU4U2W2051sGZVd5Y2otnKRain+fp6T6zqnhswRvQGHnMFeRzGFlUlAv33e6IPZMbrCmWahQ4zE9ukFOhq2s39zFRaWkh9xs3D/CA0g1lcgPqxbb+bnlhje7qJJECUZY3AjPme+57GYAkkSy8v3O32AnUJrZ59ty9ug+OT61qZml5c4p8bkBNnStODFqjLAtFoSavtyrMK0DZCWw6gc1+JdSuZoZ8eWWSUxW5x1bgUHYClvvygrR8RxkzpsDZ5t6qrOz/5nbI981ktWv2oaLP1Y5LpDYZw8hgdRBquw7HlI0ISB2+k2WDBPn8RtPhg7NdXtmROfBI0edYKc+1royP272E+2sRi/1xkec0s9QxIGcb2utoaySg+6Zih2Y8cPsum6FyUw/HDPghz+BCy0ZVQOJyd0DJyTKp5oe3OhHXkg0e8mbVby1MYxxyPlJ09PzYDWMSTM2uVt2IKGfztYZMdPMUafrJHXXhxoz2hWbMfM7ira7Mze+ZtFnqG0xm0jBfwqTjMa1Y7iCW/zVUKZKtUcKHU/ftkTDGnjVm03bbn922C5JUO1PJMOnJ27YxNKm5Y5bmiWqBq20Z7a3IZ8bIaO0LQN1xdcjsE/nHWBvGHMzKbq8XJjQDg+Pl1PAP7lYxlNu9hIyJznSa8RyGUcKJstLomCY7I0NX+V7qx5TUiQ8VbIrDB7SN/mRsU3ENrdfxLCjYBb3gTnoJpmFpqnm5H2uB9NdbLd5fK+l4+2P5SS24Bnh/aZJOOBZB90Nx/wZhVQxD3HxBUnJX+oZO0c3bLucaoS74249iTmYNNtW5TGNsj3CsNORCy6NoyYxZdEyudsYsi+XCzW7MgtIC1TIJ15WBXcYy3pa2/1Alz0LO1fR4O5Dd7sE70pZnMx4HatJ/v7k65MGCLL69QHym0nIgS32TomMyN5BJsOrK7vb+mtzDti/0O6TMncm32sJqHHLLfKA4rzPSLjQlbfuD1brqL+gH6Oy3+ZzFm2rcvSd3mPlcxDc25LcP1C0utsav7NbQIkxEVA/wrWaPJ+vCogxj2JMLtcbogdqQzy07HCrKdx+fsFnuW1RVGCeITYp2onVFK4OMZnOqrs/2yOXotDA4r27MYpKwPZIHM4zKeFakNThplihIGRKAAxPKAiC0mMx1teN2JTPifKOkU+Rz7oiTU6s63FbNdXWG2zB0CAJHZ8dt7RSpDXLEG0onUm7S6eXIKd+kBTvU2qbzF49x5r7Xaa2rft+s4g/G19nfquJkh1jKumBpcYZ9B29ph+7NjUmeuEv0S41mhd+/cYi9CnAdrG0yGrk6pDZslnh0Zg1XAcH3HLjKhdW0RljCXZUdbiu7hD0FnwfqbZqKWYoSg07gcKCgPJgii3Zgs6CMOq91cuzJy/3NOXk2RwbHSgLOgsTAAGazstAv9V0+NBdrZrIfG/zcijBaPzpTY3kw3rzcWw240c1zQ9mA9EKXog2Tyjwyb5t0wnHh2UPFmGsqXd40BGyk78v60GBzZOnw0zcaXe7O1imooTudDXl9Rz5UXUnOSLOHC6ZDwR7bkUx5FtV4Vs8nl1qSdZwWos1ZBq+qnWrZtvmqf4HjQ7FUsUyHKIYzxaLq2zQZZhzOf7Yh72mVHEFssWSK3cSL23OcLJtsqXl9EEroOy1HdaUdsRUNuK8kz/zT3ZepBg/q417r+gwiRydVvCstDiF+55gkds0kgV1Nko7n/pX6M9RVNfqbvZi7K3CzJ5NALxxrW7KWZDFodqcfcot1XQgyb0PGTPQOYhAa9KOxyWPBhums/PirmwFP1McGbS0/YU/OYFqJabuBRS80mFCWAcv9cUmKg4WAN1vjSa4diK/RvVU59uZIXpbUcbqWgY0BtEL5wVrc4cFCBZAdpmWMdUNBLIt3mt027SWsDw1WB/LbGFjIpaURBEwN0sK+HqwNpRYSwPfM2vzMxmU+XpAwxigScJPqatJzp323MRyn2rd8mYzThftG16DqjsHbtJfwM1tfBeCHSk+TJLKjA5jISL8fKspNXeuYLOSSt4nqC86YtXHMRBe3XBsk3FeL2VZ9mLFk97mpntPyICJvmdyvisM2fEsDislMRC80dabchDcuNApy7SVnzJ5NeglN39B/n/ESHaYYxaI7SkMcfgxvthJtETDjBVzrOhr43uiO6+D1wogzNVPfbz2TMAgN9hVG6rsZJjORzl4CKZ+RVXqepb7Hnpw8w2bgMJkZYisn68VenpO1Ha62KgCsD1zOKEF02rK2DPhB6HCgvqHZnWxmxOffuoucOu+J2ha2FWkws94r0hhleFCJoG/vTDCpWKbJaoNb6zO66OwocHDskNk9wlrFkcXi7T1USsLgGGaiRd5xZGLZEZbK7ttcn2S9WeWhR6U226BRIldrsaO0QcWJJoNWAa8g4C0YuQyVqPv22gzlXI/lhgCuA1NrDO4AhiMF5FKQlHECXlEgqZoZ0QscKplx2pVrRtzolNRzs3DMmECF7nZ8i/vrLYaKiVoeeJxvSF/uLSQcLg60NUNaNDid0F9vOMxkx95Gg9BisT8G2Uv9mO+ek78t9j1udA3NrEx5EUmCtpSYUWG9HV/OfbtnaEa3HcgGakLpl0wDbvfGQm3TQCeUwNuzXYu2YrlVHDhvm+RtOFKUvnt2HXpxyJmKTAqeJe9LOmd0AphTrPZiTwwsU5Z7EInm8IWBAJ8fma7zmdWRNgLuhOPrWh1Iun9qYjnpGbzV9ampsHms/JXS29jxBRim7FnqcSe/lf9e7r+7mqTFW3/nHdckLez7f+5qkv6kL+BPSzMYu1nHibzk6QvhmuOX4/VGxGzW1qxK3rL4eGlOhynCGH6vscN7yzKBXmpLnD8t2hrF6PTvh2uuDtuBUNa2Cf9uXUIxd1lTzGTRi/Vif+z6/GbLoXhHXa+dcMTjdY91Jaz8/c4qj+dmdejONeFNf1szGPeZZW1F8NVmk0eKFc63ZVG8p+xRceF3m1LM8XQ4ST2DTp3dGpkaQCWJTHjjlF6DIE54oCqT2u0e/GDppJ7URpEYbKY6gburlgYf017EUt/QGosogdXB2I+o6oqIM90Zv9Ux+GvVpwG41pEaTWk2yemqydrA5EJT2QU4En5YT0urOIY4lIfp8zdYG47F1Z3Q5HJHaTsin0dqWbYVANufF7CaZqy9qgp8AuQsk340rtc3UCnMaVjWsyTEmD6X6x0JH6YGgVnL4KhiBpb6Ltc6Y3GpY8By1OZwXAHAMpO39cfJcqJDIEFskTEjjpbkHn5jKeT9kx4tpVHan/e50nF1mvpD9T6uFRGqxflIqcOWcrY2ES+kRaX1mc4OaY085lV47VR9k8s7E7rOmWEkZB0l+nb8t9UxK7k+D0xuUFAZaEFos9YtM1OQHX3eDrjdzfPm+pwce2ZZ12rbaZUpegOyilXZWK1wYG6FG9f3AzAztclkfVubS65v1plQNdIGQw/bijj08OsAtBtl7rvnDa1ZikKbi2dPsbBHDEObG3Vmj19j+5pUed/ZqeqSJrYZ0RlktcN4d5ClWmpzcUlE4be7RU7WN/nGigCjKW/EuYa8D49OhpRcX4cQV7olfuFmSWe8ftfMOqu9Ije60vfvmd7i7E5NZ8PV3IDHpkI1luR5peDIj01GsYGt7ANOVkJe3rawDLnOyUyo5wvLhDM1yaYDeTeOlSKaCgR5ZsxUdsiza8LCbA5djhRDXbrnYGFsWnm8FHCj53CuMWaHPQu2VXHYQRJhY/BALa2TZnBvVUD0qzvCHKWgqRfG5GxT2wvcX0vYHNlUFEv1xc0+s06OrUDekcfrnk64mPTENiSdXzcGskmZS2qqfwzqlqczc08UclzrjYuJj2LoqQoFjm9zsuTqzcx8TjZw6bxfc+Hftn6XR8z3yvigz11uRT0XAUhV18JP3j1N0i6T9MfTdkGSarPZRBcK/Wb8bT5uPkbTT7VJEQdVNsX+vE3JTXhVhciumrfo7OxjTmk7Lve7nM7WNSi4p2qxPjC095FnGcRqj7U9StibF2dYgL15S/vcAGRMg82hsEsAD9bhKxvy1u7xMgwjtPD4QDFDnCS6jMDHqjN4ZsxbihKfz8Ucc8clCvzY4KjSIL23UsE2x8VfX2p1WXDzugxJyqRcbKnsJhPyarcWY3Ch6fOQqi+3Nw+/3VxhOhRmzTBkp5myPyVH/js1abvUijkmchXCxOBUZVz3rerKb1OTuiCRUNWzvmQs3c0x3lLu0wXLpOCMz+OZIY451j61A7AzYw8VE4NRPPaY6QQmiYLCLV+yaWbUjHjEyXK1Mw5PBjH0YjRwXvAyuoRLjPi2pMzQQl7CEmkmoW1A4MLnGhJ++stTEywPLF0TqugknG/KRbd9OFmOWRmkIu+QhrmFa0mHXWm7VNxEg92sbWhNUtGO+F/Wvs3/bU5KNvy5OYd6ZqCL1DYDm7srAy62ZDHuRxaLfY+DijnxY0uDnigxKbpDvZD5kcmNTkF7+dyXGTKb72rGrz3yqGRlZbCtiNYwy1CBr8dml3hjZY92xQaYyHXp+jKQ79pzG8NIGKiQ2gtL+7hX6ZvqlSbtbgFbMTQb/QIzA4+5GWEK3rq1D9uMOLCwpJ7LKp5yrrZ2ypTrDZZeOybPKTHBTIgUC5Ovtji9f5nO8hQAuUKP3lqdkeqvnW6RrArjTdV2cJyAQJVaqRQ7bOzU2FuTcOTGIIdpJJyqCqjaP7lOlIjhYc0bYJmxZs72FFs8c3SkmbdCZsiVVpW7awIar7TKVJyQW11hsaazI2LFynUDh4rra9YpSBIK9piF8mOTesYgZ6cZagkT3rjf32qPNyBJInYdKQP+tQ2L++t5XevNjwz82NBFsKdq0FdgZHUgdQy/S4G3TmhxpW3w6GRqimozmUHPL64p3wG4ORgw43ocULqpz7UXmTcXuNSRyXh7ZHO0ZHBBZfV+aDJHMzCp+DJue+HYgy5nARmDr7Rlc/dYfpKGjy4u/ZWNgGNFl5IvfVmw0YVyNwYw5cW0A/nu1/yL1NvTnMkJwIoSmbvS+fm1wQ4fy36YgTK5PJqtsKk2YG0lr+iFaHPbd6dF8I6KraP/8le+A9p3bLjtU5/6FJ/61KeIoogrV67w3808wy1VluRqssZUXGdKhd/qGYPr6u24Yt5gJ7zFx3MfAIQRKDl3hpsi/tNGR+8qjpZiNoamZha8O4D+1hBmc4kO1awN4Ndav8rTmR8AoOzYOh0d4MvDK7zPk3j7W70Bj9U9zUQNI6mWnQoLLVMmo8Ed70zJTbjSlse9N29q87eUBUvZjmpGJs3LSsR4V8ElTNC+KF9Zj3VGWieUtNrsHXDbMtAag7S6fFrX6VrX5FAh5lJ7DLjSti+fUHAiPruq/JjyecoOuqjmNzcT9udtrqpn4ZgmrUj5C+VyjOLxhFl0En6rscbHqhI+iWLJDEtDeWsDua5UK3SukXCvaLzZGKauwml/xGyPTG6rlP/9eZOmj3Y/jxO0kdyUJ34xKUi61Yt5sC4LEsDGKORQwdbh13urAbf7Dq82ZTE/VsjqUMPywGZnJOFe6R+DTgi3FGo8VXbeFjKYycY0/TQ8EuLHBhNKqLvtO3hmzECxdMPI5FCxz7lGXj+zA4WRBjrDyNRZhPVMyFR2wBVV0uPByU2eX5/iaElA1IHKNr9+dT+PTsqW/nKrwHv3CFBJMOiOPGo5+e4gcHGtUGuSTGDfxAa3tgScTBZFeF1SmXXdQVan9HeGWebqW2w05EEtzKxhGAmttoQCioW3b9k3d6rcdY/oiIbNIqOBR14VtF27Nc/CsWvEalGMI5NMuUdvQxbFmzf2vs1KYHZujedevxcQDVIhOy7m2+gUqZXbLG+JkH0QOjhmzKTK4OsOs9xUmW6dwBHRtGK49ta2+J9fOqqdr691Hb5//wrPrYr+rR0YHC6OKCvh/MYww0TGV+PDUwWBTfUMRVM2pYwnF/suNTfSofe8negw8JnaCD8yaar7f2Un5n3TMc+uy7HurZrcU2vxjY0KAIeLI5b6LpMZuc43W45OgpjOJoSxoTPF7q6EOGbClbbMEYeKAV9eM5jPpTok9HEcM+GtjqPfw8bIYMqLWVYbg4oqlZKaWH5mZ4P35Kd131vm2PTXsxKudQxtP1K0RZu3fodhbBgbOgGl6YvYGyTRxQQtIB9GwnqnlhkLuYgvrUd8YFqBu56l32EQZi3FQ89u9XmokufV5oAw8fnW8N+8O+G2G89QKrr/5R/8YY/b8Vk48MdrhPlnoX3HgqS0pQPsMe+vcr/KbhtE0PTHOqSqG+td9LmGwf68wZSXpkNL0dhUSDiTNcjbY81JPQMv7Aw5pZxQX253+J4pWSCudaQYQxpwW8hL6EStiXytvc1pr65NDhPGxV+nvJjzTUN7CplKPB3cUbfpWjfW15W3TMquoSeb5b7Bt/zrcn9xndPZsu6TF4frnLCntEHkfE52RClL0wvGoMiPJX226Y/FkO0AfncgbM9fLJ/Ej9FAL2PJpJZOVK+1BhxWlgf7CgIw0mwtwxB9UNr3kxmDC50h3z0jM9f17th4LoiFcbvT+bvgoAu+lpyE57d9HlaUTy80mM9GnFP6DtuEQZTudA32F8avxe2eQRSjJ8G9eUmpT9O0t0c2rpVO8iZTXqR9X7K2iLnTkMD99ZizO6aue7UxMNhXGJuNTnjommnXOgYLuTHA7EcmGTPR51rumxwqhGyObH3P91alQ2ZzA7aGnt6x/876gO+bzWjB7GNTIxq+w6RacMPEYCY70KLrYWTp+90YOsx4AUcqwoys9wpMZPs65f9gbYth4PKqKtMxn+/rEJBhwIHqli5K2w9crrVLWjfziXtfpdstsKH0TZOllmh6AnnG0xPbvHJd6tyVM0Nmyg3NQl1an+NQfUNnmS1uTHPi6FsMe3KunWYFVwmvn7t5iL/49LMsXRdrjn13XaffLGIr8FGY2yLsexgKGK1cOki+2NPZb1FoEykwYtsh/X6O2wrYHdt7k43tOq+tCXv61JFLfPv6EfaVpb+GoUNZhdcubE1ztLpFTmmSlps1FnsFJr3U8NDBsyJ66v6jRExf0xBa1orYVoV6LTOtiSbP4aXBJv/NXJlrHfn7kaLPYn8cMjpZlrAYwGw2UnXS5P6mvEgzgyC6yiA2dFbd9shiYwibKoT2iYWAHWVLkLcj/sNizIliVn0WkJ7ql842Is5ULe33VnFjfa7lvsXGcDzXLvbEWDLdZLR8YcvTsPjGMNaZYyD/fkeFJAoO1JTtR5QY/N5Wl54pfX/YnFQeZQqAuQmvNdIkGYNaxuCV7ljIPeE6b/N7S6sngGygyo6Y9II4cKdzj2PCF3vXWYjn39UCt0vX/pt3HCTtOfQL3/EgaTfcplreciirDC0p7GqMvTh644rWQZyQteF2P03pld2HpyaASx2pap+GZpo+9I0Rv7DzeQD+5sQntO+RbUgIKXVyfq0Rk7NMXZvs8WKds+0en1Ao6esbls4qc0yTmSy83JIFIme4bBotTjgSIjORTLITKqzV9AXkpBOKZcBfm5QF48vrol1JF/aD5iQHi7CoNuafbl/kI7njOmR0dhBTVejDsyQE9rv9KwAcSw5yd8XmfbEItXOWsBupBme5n3CoCKaafMuWq1m2Xii7uXRxjmIp4pkKIie8hKlRhq9vyjemM2O2Zz5n6GK1APfWxDG4poDM1zelXl36TCuuiGL3CF7Fj0XXBBKKGUaGZrCOlgwao7FGqelbRI6piwln7Zg1lYY9k40YxQLm0pY1bR6syd//rzd+jh+q/rgeA6MooR2Y/Mf+lwH4sex7qak6bm7ZYntkYqmx9dxOh4E55JFcGgaFL60lfM+cLPR529JhrW9tFpnLRmwqVuz7ZjNsDW3tX+VHJv3QIFa+W2Un4FubFQ4oYXfF9XXR2f2FDqPIYkeV3bjayVFyR1xRbtSH6pts9Ao8Oifs0WavqMNJ28MslhlTVaE7egUemF7VfdNql3CckD2TEn5c267jWJHOaOt0Cjx85BIAt1bnuLwxqwvenpxdYrtT4oLSL+0ptmg3ylQmBJxkC32+odifmewAw0w4/MAbAETDDLWjt7n4nGQk7c+O9DUDTO9fxrAibl9UAK3SIq/KtGytTbLWqFFSwGe7USUIbfYo24IkMeiFNue3J3VfpiL3w+UmG70SG1vSl9XMiJwVaXC6PnQpO2MB/drQ5Vipo8NgK/2sLo67kAuwrEQ71lvGJEW7z4N1Ab6L/Sw1N9LZb7d7ntYSembMMDaZUUkhjhkTJwauEtRf7bgcL410+GkyE2EZFg/UlYFqK6uz2T6/GvDeyQwlBTjXhg6bI5tVBShOl222R2OW91zDYDYr4zJvQ8Udaz7ztkHFifX9xonJ51vjGo6WYTCVTXhTmUtuhn0erRTU30QE3tdsKRSMDA/fkd0m5xhvQibU+N/xYzaH8FRFNovLfbirPHYRr7oixk7D97Yh5arSbNGMOc6GDo2I9xcOkrNkM/iNMem42/4Mtl2QpNrerKmFiPVMxGrf4qXwFgB/ZWKBNUX/NkYiTH5LbW325mxMA/aqLKpqxmW5P168y07C43aZj7p/DoCrnbGg8VTF5suNJvtteTHvKloEyfglfqsNT0/kWBmkFHms6XKp2ZTolO+bXYPBKKftAtoBPFBP6ISpx47JZzvf4EcyT6jfR/hKU/BY3WFtaOiJ6WTZwDHRvz0cH6LgjENKhjEu/hojk9NfrBwBRJS+MRwLuYPEoGDDG0rwdSDv0g8lHAZiFvlyT7KVnrBqTHsRhTgFmAYbA0P7NTlmgmWYWisEcLqSTsw2GcvgVEX6dn1gszmSzDOA+6oJK4NxBt/vtFb5SHlWF/l9qxOTt9KUZtFFpaLmspOQsRJOltPPEcPI1Flov7fdYcGWibjimlxpGzypjF4qTsggMnhVbpH/49yPU3Fj2n4ayoppBiYfybwPgAvNiKPK8+DOulEAH5wo0AmLuto4QMG2tCfVbC7WKf2bwwyeFZMxUyPKhE4Iljb4c3h8soejapl5dsRkJqKmXLM9O+KlrYqMh0qXouOTUQv3U3OrbA9ynKkLGAkji72VHc5vSmjzeH2DG01JENhfbjAKHF06pJLrcasxwd3KXDJJDF68cZgze27pe2oO8joz7Ob2JK5afHf6ee7bf42RAhSOE5DPDJlSAvJBIPXUQiVOX1ub5siUALKFwzeJA5vNK7IxWFehsc9dF63Q31pYYXtjgr2nBOyHQ5fXX7qXmbokUdxY2qNNK4PQZt/sKh2V8r/WqrJ3YoM9yqhyOPR4dOEmbWV/cHZjhmkVngsji7zjM8W4bYU2h8tNAMqux7++5vHMkTSz0MY2Y15vyBxxozPOKis5IaPY1O/iIxMC2n5nWa7reCVmdWhyTemZDhUizjXlBXhksstKP6eF+oaRsDqwsZRZYtVN+Oq6qwveXmlb3Fcf8eKW9P2kh3ab/vCMS831WRsIClobCIDvh2Pd4kI+5qJKotifN7RlyjBKMA1Ds9TzuYTrXVNrLW/2It6Tn9VM9P68wfYITijiO04KOrS/PYo5WjJ0+DlJDB6fcLSO6CuddT5andLeapPeOFSdtU0NagBW/RFh09XhtrWBQZQk7M+P51/vjlpVv92/wFNZ2RjOeOPjvKstDiE2/8vf+6Mcb7ftgqS0ldyx0eBST2oWfXdBJtSN4TjUNKUmqHurY1O1YTTWsUSxxLHTMJBtCCPVUaUBijZMqXpBYQz35Ss6nDaIhAb/pugOOVm2+Bfb3+AvlQTYNHzzbeUteqFB0U7j7QntIKN3ZDNeQie0dBhnbz7m7+cepR+lmiRLi5hjhGGazatslNBkc2RSUbRT0XaJEvhM5yIA95t3afp7NivV6tNdYidQVcGjVKMT8W8bl/hYUU0gSjdzo5MCv4iTUQWAvB3yudVQA4woEaYtTRcXdmfsybTcN9hRC2LdjXBNi8vKRyjviFYsZQB3fLFtSCffP1+YIUkSSo482LuK9ts8TZr+OAzaCw3msgnrakeYJBa3egmPT8ns+3i5rLNvzjUTJjKGBlC3A4cpL9Kak7wd8fkVl4OF9LpErJ8yPJ3A0jqyH9rj8htLEXnl3bM2sLjSCXW9voyZMJs1dSmUihNyuS19ZyCmhinw9WOTI8WAjDUORawNMzgq7DGVHVLP+JpJ+P2VKh/eI0Lkr69N0ArgYwvy+Y3tSSquz5zS3CSJwevrc7qIbcYJtKP2+e1JPCviAQUS3tqaYiLbZ3VbQIprhewtN1hUrEsUmxyeXWZF/X2u3GBbaY6Ozy+yvl2nVpbYZaHUwTRjKurz8sYUhplQmpMXqNMq0VPs16ibI1ttYyr266573sQwEu794DcACFoFQt9moAw0s/UWdz/wOv0d+dxc2quZpkN7bzMceNqt+8b2FDc3pzmRE+B39vYBbnTzPD4rgvP7plZ1CZPzjSoHix3aiinbV2xxuVVkXWXwbY9cTpYdtlSm5Yw3opIZckoVUJ7yPB3KnMr2+eZGXYdnt0cuppHw5PRQP3PPNPUzvd1zee+MgODtoUfGjBkp1iWOzbeFrSYzARdxKCjLhHtqEe3A1g7Uh4rjemp+ZHCrl+GGKhHkWZIIU1UszWQmpBlYHK/Ib5f7ptYG/tvWt3jKfhRTe3JFbAxsDaIa0ZCDZl7Pv7LRSXSh6oMFS0sIRpHJKzs+hnpzH5uwaAcm15Xn0mO5aSwjoaqY2n40BlDdUKIA/UQQ1/dM5+iF45qMGTNhY2jygjKmfCX+Ms/UPspLqizBRwondfYrGCz1Y7phRPhuulbvgqQ/lrYLklTbGMCRkrxMt3oGg0jKOICIA9Nw0VudiBnP0qCgnonpBKYWPU97Ca/sjCvVz+cMrYtJW8rIlBwp6bEzGme+vd7yebAqE/tSDx4xH9UxdsdMNHCxzJjlvjkupeHDfM7WlPJLOxEP1S2dnfJG08Ix4VAhzeaSkCIIoPvG6DqPDmVXLcUbYzKqxMWtXsJq3+DvTEvoYbFvahD49Z0uD5YLemFfHoSccGwdQvvaRsJH8if1JGcZCZ6VUFXZXDe6lnbItUw4WfS4qvQ7d5VjXm8PmVeapYoT40eW1vfk7XHpg5tdm5w9tnEIYgFZ6U6x5CTUM+Pvrw0Myg646jlt3REOmPYi+uH4oRUdOW5B7So9K6FgGzy7Jhf+yETEi9upJkuAbFovqxNGHC2GLKtd9lLf4b5qrBmc7ZFF1kZryTwLcup5f2nN5qlJh55i9GxDQhdpllBHCatTN/hOaOm6Xi9tu9iGzYGCfG4HFrMZX3vqLA8cKm6kNUuRqn+WhowOFwO+sipAZX8+IO9bOuV9T75H23e52RKR81S2x3y+q//+7K0DvP/ANQAme0Wm8x08pcEpuT7DyOZWR7GntU1aw6wu03Hf3pt0enm2FGgII4uD85KWn8mMCAIHR2WCBSOXG6tzHFkQT6XT95xn2Mnz5kv3yHUfuI2lQE67UcbNDWi3lMh7osHm0gxbr0o1+eP3vEl+oklHmU22tkVonajnMlduaGPJdqtEbXIbR+m5Tu+9wcZOjbVNAXpHJtaZK3pUVIjx0vocy8pj6amFW9xoTNBVmqOvrMzw6NS2zuY74PpAAU+xdqsDj5I7wjFTc8UhF1vCWq7287QDeM+UPLNO4HKt69F3Ui8jkxkv4WhWhQmHDl0VPlsOJLMtY6b+RDH9aKy19GODh+pj/6q8HXJ2x9VO2Mt9uKs0Vi4PR2NblAfqI57fyHCmNq7t1vTRGkeD8abzb008gshiZQy/vmNzuJTwpU1hB+/KFSjYCRMKCLV8k0vtiImMEtwn41qGc1kYRA4nlRnvYt+kEyRa+lBQ+sC0VM9rTZ9DeRmzGQumXZe8Khl1syt60lTPNYzEIHfGFXS3L7yfKS/iRKyYtUysSwK90BhwTzlL3YVRbPHsErvtz3DbBUmq1TJwvikv20LOYDabsKlekOU+ur5a2bY0OwHivHy7J2JegJWBgW2a+sX84maHJ2tFHZ/vBDEbYVqyJI9lwJkJmTFudW3qmayumVZywTItdhQAG0bjMN7GEBZy8PONZwH4kcrTks2mwYhBwze4rqQgGTPmWEkmThANjnbJDg2eyBzk3EB2xiWnRtM3mVTpwsfKUhutpSbYO7NN7jMLmAYaFEVJTCsYs3L3VC1uddHan15o4hgJOUVV19xEizhNEvI2XFRlSQ7ELh+Y8ris0n+zZaljl9av2xhGTCgEupAXoemkuq5mYLA/G2mPqeW+iLFTjVJadyr1dtmfRwuxX9o2OFiAvXlZBH5v1eBoyb7DnsFgNpdoC4XrXYu1QCb1fOgw47kcLyujyZHF2nBs6nioEPJG09b11zwrYX9+xLe3UrO8cbbSYxMRF1omINd6vCwh0jTc1glNam6s6/P99mrA/qyAnZdHq/xoZZJvbsqk/8TUiOWBx34V9ko9kfxYeeh4I95o5ol3BPiEsaGB8MnaFlFiYqqFrDnyKDg+OyO5Ztf0cMyYvAqLPTSzylABpplCm1HgcPb2AQBydsDdB64xuCqFZV/dmOVjp19nqEJob63OUcwMqSsH7tn6thZPf/HyvTy455b2QWp1iniOz7bKdlvZmOLYyUtarD3o5HS9NdcOyU60MBdFXN3erFGfX6c+L/qml168j33Ta+y0BFQdPHSD2zf3sv+IsEOlWovGpvTNxPw6W8vTmApgGEaCZcZanD6b26HRK9BSvlLPrZV572xTzjvIUXR8qson6mAk5pHX+wKislbE4VJbg8bNkcV84Oq6cEkyDnV/c9Pj/TM9NtVzcIwEx0xY7ct3H6gN+daWR8w4k7CiwrEVV/RPKTi/3XOoZyKd3bgxtPGshEiFq19rmDxSj9lRYeK5bMTrDQF2Exl4pTnk4Zpcx9mdDA9NBDo7ci4bYKJ2GEgoKk2N3xiaHCwEvNYY/31tYPChybQ+ncCnsypcfbAAExmbr/kSFv2LuSM6w/dmT9irX98WBu+HJmdpjEzOK9v9E2VH+kdJJ+6vutxQOsaFnMGMl/DCtoydI0UHPx5ntyWJMMqpZcJsUueVHVOvCxdaBjuBTNQfmM5wrSMVE1IJx7vRjCTESN45JsnYrd0G7Ga36cyAjxb/hl6c7q24Kp1cumapZ+iaaPWMVLBObfI9S2jY+Zwsij+z+QbP1O/WE8TqQEJs6cL/QCWDpRa1S62Eu6uGXnyCxKBox6wpQ8ggltTTZSUKXhskHFZZUVFisDqA/flUtPl2diFnJby0E9GIZTJ+qFykF4yZluPliMYoFV9LxlRadLWsmJNU1Lk9kvDjhqLA9+QS1gdp5lvCF7ZbfHxKduj90OBW19Dho9caMacrJp66542hqZgT1f/BuC/rmYDzTVf/7XK/yxPVgg7tNX04XYl0rapLHZ/vmZXrWBk4dILx7vatjqMzYdLrvNSGnUD+/t4pi1s9S39/ue9owfhKP6HiGhwqjp3PR7GhjfhiRMia0vYX2xntNrw+MJnwEr0IpGHHsmKHlvqyu08z1DaGJrPZiAtNuadaBl5pCZB5opYnZ8V6orUNuN41tMP2vrw4Zqf12IJEWB/pd4f5XKIB1PFym29vVnhwQmi4270cnjX26zlQbLMxyOkabX5k0VBgZMobEGPw3LoMvr90eInFdkULuydzPbZUSj/AL17L8t/dJeep57pYZszzyljxo8cv8OqtgyyUGvr7zy3v4bQyajw4uc655QXu3y+Zl0ubU8TqGudq2/z25eN8/6lzAPQHWRFJD2VxrhS6UutNFbrdblQpl4RlKVWb+EOPgnIGf+v8Xezdv4ilAJXlBnS2qsRqDnCzI4a9HLUF0TTdfPOIDq8BLK3M6vIoQWQxVW5qy4DBKEM2M9IhRD+yqCnfqGxmxFqrqpmji60SC7kBkwoUrvbzEgZToGip53FPrUlLgablvqefaTXj0w0cqm7KFjpEiUE+ZbzUpiaVzqwPbSZU6v2ltpTsuKs8HuNBAvNZef79yGRjaLM/L8f+7WWDv3JwqP2adnxLf7cXWdzomJq1fmHboBX6/JB4a/L5FZeFnKlZmWOlmAllU/D8RoZWGHGokBaOTTjXiLSPWtZO+O2dLT5cUckKZkIrMHQJqeW+qeut3Vtx3yYQL9pSpPqISswyEIYs9WGLYrTesRfClY7Ph9V8sj4UpjWdx6NEEkiOqjnhRtdmaRBzWPk7Ze2Eszty/7045GTRw7VgFI/4F+t/vGn06Rq2fOmT73h22/yxX9/NbvuTvoA/LW3GM5jyZOJqjCT0k6a1vzrY5uMTslvN2lIPK2UGrrThoYlQuy//pdK9DKOEotKoNH2TA4WQrJ2WPEkYKgOyUxWTbmDwSjM1iPRwTIvFgaLxyy4x8HvdRQDusfaQUxqkL6z3OF0o6AV0Y2hwqBjrsNfPbf8Oz9S/h5wlO+lOKL4+qRboXMNiQYm8S05EM7BoqJV9Jmuw1hnbC6T+KqkQ0zHH9daCBOrktTVBzY3wyqbWaBVti29tD3l6Ml1wY273TB266ocJV1RdvNMVi9lswqoCYEeyBS53YlYjWeg+NlVke2Qxl43UuRzN9t3oxhwqmHxF+bzkrYQZz3ybf9P+vMEB5T68MpDJNGXHprxIZ8U0bYOZrAhZAV5vjfj68Nf5v8z/sFxzZAg4Gcqx4gRd3mNlIAtPqJ7LMDK53LYI1Q6vE0hoLd2BTnkxr+2YnFblZILY4CNKOLUyEKH/3nyaUBDz6KTPqgrdfXUj4mTZ5f6a0IUvbReYVf5CV9plOoHB6Yog28bI4+HJlg7bFO2I5cHY92axV2AmO+BCUybDrZHJx/YKQHirWcOzIt4zJedZ7xU5NbOsS41sdMqU3BETBQFG/2wy0i7Z2cyIK5szvE+F3/qDLHnHZ0WF2/ZWdrhvYls/o0xmxN5yg7cUqDo4M86E22qWeXR2hQ3FdvmRzanjl1i+rUp+1Hfwhxlyyr8J4NyNQwCcNiMsO2LQUqLmR87SXZnkxlVhuA6fuEK7VWJiWvRMhpnw2o1DPJKX/pyY3MZXxpLDUYZqqa2ZpAuL+ziQ72vjScNI6PRzTJeagJQpySjweWVzhtlCi5e3JKxnGjCX77DSEwBay4woukM20/6zY6LEpKwE9bYZc6Ep91BxJVW+qUJ3N7ouD9Xb/L2bAjD/3vRJLDPBV+M6YyYsq8y4h+oDNoautoDIWTb9yNQbhcmMT8O39ObrvdMW5xpFXevs41MFltSxDhZHNDMZbZJ7sGBiGR5XVV3FVjiEvqv1kr3QpN2RvvIsOFNLuCCHZV8+ZIkmEyMBRe1uwlPFSc1qLo2khtq3t+S6pjNwjzKETEPsafvCdot5q6Tvv6XKp6RzVTOIudSXTeS9xTzzWZdYsSdJAje7li6XEiQJZdviWSEeOVCAac+kmkmF7Sb71e6lH9m4Fu++mWQcQ/wOGkDGfxLq8z99bZdJUij8Q/m/ztPT8tJ/YTXkVMnTjIZnjbOx3mgm3F+TCQeEuVnuG9rwrx/FHCpYWkybFoZNQ1sXmrCQT0M8AV9Ygftr8nJtDGVxTst0iGZmXMsr3UGCePeUHREcgmSJTGQMZlXFeNeMObtjc0D5/SRIpeu0tMjtnqlTh5u+QTcQE0kQkHi0FGmfE9NI2BhI6i3AtQ4cKIz1TDU30c7Xe/Oib0j7Z2VgUXPHbMjWSGjtHX9MQ6c73X35gK9vWBxUu7PNkfiyPDWV2h7EvLBl63CbY0oNOxCwMwgNqplxmOvl5ogHKhn9HIYRvDyUWe77alO4ZsIFFWLdDHxmlXnooaKwTulkur8gTtZTniwo6wOXihtq0fjawNDZfFJPzdUhsYoTEyVodnAiE3OlbVJWIDFrS2HQ5X6qjYo5IxiAnBWRsWJdpPZG1+ZAIeQ3VwX4fGAyz/CO8FvOipnyZDF9eTtHNZNwvKxcs2MTy4x12v6RYo+m71JUi7dtxnQDB9dMRfKW1sUEsUk3tLhLMTSv71S5q9zRi0/J9cm5I52R5rm+1u9cXp/lsZMX6KrzbjSqFLMDOkpQXcwOGPquLkq7tDPBXGWHnBJ6R7GFpfRbgfJPSsHZW9tTfM93fYON22IB4LoBhhGTK6mQYm5AZ0s2N7lKB9sNCBWw9Wptehs1AuU5FIwcJg8vEqmive21CbLlLsOOKsS7b4UXv/oYABk74OCBW1y/IYkdlUKXjDfSdeKSxGBnp0pfhRBNI6GrQmJhbGGbERWVkXdhY5blvscTcxIi2uwVqXp9vrgk99T04f2zTaby4+eY/q3sRBws9lgfpD5jHb6wXOO4Ykc9K+a1RoaTFV89U1OD9735AW80C5odvrsSkLMjXtqW6/zQXFMXJwYxpjSNhKoKSTtGwk3luVRzxTD3ukIy3z0Xc+OOd6DqRnxz02RGSRD2F8YMTTsQ88h0U+WaAlBSP6K5rITyUw1TGEt9xpmsoT+XFeP/7R15h1NDSNeENzsj7iqo50DKkCv7gJGh9ZCdEG73Qg10fqv/Bj9cOaUrGMznEoJ4XBfPMxOawVjsvtwfs1K3ezFzWdmgjeIRn1p7d5iklfN/jlLR+S//4A973E7A3KnP7DJJf9IX8KelHS+busL6hGO9zQCx6IwXzCNFkxe3I+5W2Sa90KB5x3ah5opmKXWfzVoCAtLMj9wd6fDbI5cT5bE4cCEX81oDHlReJF9c9zlRzOoiine6xR4rx8QJ2KOx30gvhM9sNAF4IF+j5gooAXGPPV6Wel7pudImXiXjXc9sToTeqfZqbx6Ol0OudGx9TykIKmYTTBImlViqFwq7dqxsqv6IaQemBkKuKZP3nMoSXO5bKJ0pr2w7nKwkGpxaBnxwJtEhwle2HQZRREGn5qNDMfPZEb3QYkMZK7pWwvFCRk/UO77UpjpamlDHgmYYckzR03tyGX2NrUDqus2oSe+fr/4L/seFv6Ezx0YRGMb41TlTG3FV7Yx/YyninjLa2dzA5HQl0SG0T+5xmMu6enx0VVmFNGvxiclIex290XRwTbQ27FAhJGZsCeAYEVfaNgu5sVfLuaYsbI9NdbjRzWvW4afXPs0vHPswpyotdQ827WBsGHlXpcHl1pQG5I9N7bChFsl9pRZdP8PrO1XVV0P2VbeI7sikyTiBLvi6L9/jjZQJqm2xtVnnDVXg9f59NxiNXG4p0fdha5OZyU2tMypmVPbQTUkimCu2mSjJNacan85I7v/e+dtcfOM4hw7eBGB5aQ7TSHQpksh3dDgxGGTYWJplak7S9OPA5urVA5y8T3yTOut1Vi4eZFKF10wror1Z0+G4N775AEWlI5qo7eBkfHoK+ExWGwz6WUzFurx07QiTua4Ox00U2vRVNttEvkMQ2bywIjXh5nM9Dle39HctIyafGXJ3VWiYVOD9ujKurLm+zvY8UuowimwNZl/cqvLEZE+L8zuhxX21ISsDGZtbQ4OHJmQcfm2jQMURkTVIHbizOzk9L7zeKDPlBeTUsf1YQsd7laxgGJlMq3B8PxJA8EhdxsPnlxMyZsSsMmW60jZ5airSYa5/s7nCA86Cul+wDJPPdOU5PDNxkts9kyPFFGCFXOk4zOdSDzNJjnitOWbbbyvh9sM1l06A3qD2IzhVyhCl84kJe7MR17pyXambN8j/Hy/bumzTj1RPsT0aFzJ3zEQDO4DbXYO6Ny5NtOqPOFWVfv/9zgZH7Fk8K+EOl4Dd9me07TJJCoU/M/UMvVAmk9ksXGnHbITyxtxfzrMnN47dGwY6++LBcoFpb6wpOVUVF+dUN5L+fwo4TNBCwkcmbD6/1eLBQgWAl7pNfnCmwLmGrX87nxu7MX97uKrLbLimTFyf2voiAD9W/zDdAM0kvdU2yVhj88jZnJTWSC0D+pFB7g6/nV5o6FRZxzS4HG7xfTUBFJfbkvKbhmZ6kcUlVcet6EhZknSxvTUYESUxT6pt1Us7EXOerV3EF4cjnqi7WpNzZ4HfrCVlFVKKvxeavNYImHDVYuPJzjq96hkPbcp4qioaqxQUtQIxAE3rOD2YnaTijnekRSdhKhPy4rYc+95qxFc3UjZIsgTTXWa6kz2mduirA4dfab/G35qUzKgrbUsf98F6oMBepH6bcK1jM+2NBeUzXqT9mS62bHLWuATM6bKrwfmRolgifGxOZVkaojU6oDIUpz2fX72d8EhNQMOhwpCtkaO/O4rHIt9rXZNTlVCDhqPlNqPI4uyO7BCPlvp0A4fr3dSoMOT+KWHdrjVr1L0hfbX4esr88IQydSxkB6w2a3j2ONspq8JDaZipoEqGhCq8udWsAMLC9IYe1ZKE6ta26zSHOQ5MiLnk7e1JnQkYJSa9wKWpANX9c4ssHLjN115+AIAnzrxKu1GhVG0CsLI4r3VETsYnN9lg1JSw1sbyDLYdsnBGbC2iQQa/kyMYyLi1nBB/kCE/Icdqr01oAXm7UyTj+oThGCivNmrMT4hFQn/gMfRdbVWw0ahqY8mWb3Ow2NOarPNb08SJwUl1v81Bjulii5W2ANLb3QLrQ5tHpyQk+fW1CR5U1/QPrm/wkfxRztSUnmngsTc3YKkv9zCbHbE5cikqCwnLSBgoFm4UG/yfr/9LfmLf35TnZCbk7XG2Y8kJ8SNTA/aiHbEycLSmace3qStN3rmmw5QnzBbAcxsxT02beIqV9GOT7ZGl0/rvKkU8tyF/+9AsNH1bzx/twKAXjDNJB5EAo/T9OlqSeSz1RuqH41JMBwoh39w08VWYaD5nM4zQIMmzpITK6w052MmyfUcShPgrtcdDmJyFrovoWRLOm1JaqLM7EoKbVIkjv9L8ZT5R/MsADKOYkxWD39tuEyU+Zwe/9u4wSec+9s4zSXf/1nc8k7QLktQA+0f7/jpFW6WGNhzqGdhRDM+kNw4J/X5jh0/OlLRexbMkqyoVMZ5Vv51UYZ9uKH5Gv9F9FYC/Wb9X+5pcalmsDn2OFJRnSiHkuXU4UFDeP5mEG11Dp+1/ZXPE+6YEyN3umQQxHCunqcJSmf5KWyauAwWbIIZVle62v2BRd2MNTpZ6FotqBnhqOubNlsPGcPy5FdiaWQpig4ob80+WPwPA/33/97KixMLPbUudop/d/HUAfqD4SWF4VP/O52KGkaF3v03fIm+Ps2TWBgknyin9LWnJG2o3V3FlckonqsV+xOOTaEB6fdjlYeW22/TFwPKzDQlbPJ2fZxjBgeIYNBadcdjUMmRCvlOcnqbS+7HUekvToXuhaKxSz6EpL6YXjm0QSk6imcLj5ZgkQd+fbQirlfoo7fgWV9oxpyvy/RgJk6VZRsPYoH8HcFzIhbovVwc2k5mIglqMXtl2mchIAWLpr4iriu1LNSdpm8gEzOR6nFWp7SAL5eNq8Y2B1sgjo0JmF1slWuoeHqi3Kbk+M6rMxltb05TcEVuKaToxtcrAdwnj1DIjHptBNuucnlvkinLFPja3RH/gUVDaKcuKcJxAsz+GmbC5OqXBXLHY4cptCWt5js+++RXWNgRwTE9s0WhWdPgNoKqYMrmOCEfVrotCiyu39nHmXmEsbDfA73k0NoX9cpyQif3LmMoXaPPqArlSD68sjE4w8Dh3Try+Du+9zcratK7f5jgBX7pynMcXbgJgmjEDFWoDsTF4Wd3/kXJTOXKr8iCFFqPQwVfFcruBy9mdEqcqEl7zI4ujtU0+q0J7R0sDOgpoOmaiigGnJXAiuoGtGY/ZrJQlSYGAYyYcUGC1Gzj0o7HmqBvYtAKTu0ryXNaHGeayQ37lpgCuTywEXGhldWJAnAj4AQFUQWKw3JfxtjWUd3c+J9/9ldUOPzhd1iVOPrPR5CN1GYe90GDKi3hDvdOnKxHNwOT5bUFUh3NZRvF4s5lm+M5lU63Q+F2JE5EsLPblvA/Wbb6xNdJZd2Es72K6MeuH6Gy1fghlF2525d06VBxvuKQvA273XBZ7SkbgD/iemYz2iuoEhraBaQcR9YwlG8h4xL/ceJfCbbsg6Y+l7YIkNcD+/vwzrClauhcmTHpjqjVKxi/T9Z7P4xMOa0pcHCVSRDbd+STIC129o36QH8tLBvDNDYeDKkOt4sRc71q81RM09nDNxY8MHV7KWnL8FICtDR394l7rGKp2kDpvMk7DB7XQJ2MtVCcQXc0ttZhXXCk8CbDYd1jpJ9yr3HWvtsVf6c3WOOOqYCe6D9KdKYhOZhjdIeSO4XKvz5MTwm40fYPJTPy2VNiLrYT7ZW3CNWOdVfjNzYh9eUczONPZUO1CTX3svI0Wj95fKGsfpIwJJTfWmYKpI3Yq5Fwfym9T64IoMTjXHOudOqGpM9G+2ehxqpDXmW8ZK+ZqJ8NeNekv9R0sY/xMh7HJRdVXUQyHSwlbSstwqjLiYjuji3Bm7YSGPwZnMQa/udHmL81KKOlGz9GFMw8VY0pOyFJPFh/DEEA1n5Px8tJ2lv2FiKttOfd8LtFAbiE3xLMibqs6ZnUFFtLsNc+KaPsuy4o5OVPbYalXYEH5JP2/LlX5W3c1AeiFDjOFNpcUGzKZHVBRJTkApspNzi7to6ocqeer2xSLssgPB97bwnLNXoH988s0myLc/vzVo3zowDUNKkahQ84d6fps2cyIWm2cCedkfHaU6DmJDa6uz/LQqfNyrl4Wy47Y3pZQ3uz8Ko7yCNpemcYwEgy1QYkjEy871Nls1T3rGHZErDRKO8vTuN7obWJtX9Uqm5zapNsuaibJtkOKlTYvv3kCgMMzq7Q6Ba2z6vRzREq4bxkxO4M8dVXw93pjgk7gMKUAVzkzYL1foK5Ce8PQ5s1mmYNFATe/v1piSrGSD000eHW7yunqOIQ6jCzq6rzXVEHiC0pG8MRUX4fi/MjEjw2dobk2dJnPjig6stLv+BmixKCixkszcCg7AZfaAozzdsKLSjx9piau32nG2vmmy84oYX8hZXikTmBaIqcXjjedh4oh1zq2nlumvJjVgcmsAkG/vrXOh0uzugTK/7b5HH+t+jRX2uPNXzoHtAMpnpvarWyPQu6vWfTVex3EUhappjzaijY68SOKZQ6/3JW++55ZCUdf66T3kODHxh3ic9Expb5Ro3hse9KP4Egx4v/D3n8HWZbl933g59p37/MuX/qszMryVV3t3bQZPwNg4AiSAAGSIgmaocgNUSZWIne5K1GixN0IaqXYFSCtREoig6AZgCABzMDOYGYw0zM97bu6q8tXZmWlz3zeXX/3j3PeedXafzY2Bg1AqBsxEVP9Xt537Tm/8/19zb89HHy0SNI7P/T9L5Ie+/U/9kXSQ06S3DRtahjpGMIP4xcHwo33b889pwaasmlx6E0NIsuW8NZ4tCpepqZvcrufcKs/mYzFy+0aptq3/QDpe8FNWHDFg/3LzWMuWDNqAFnJpTgG3O6Lz/PWVL3xZDWkE5psy378rhexnDUVKXFCAn8wr6hgJRzJ9NjFrK2k4zd7ES82NI4lubjhprzV0pUP0DjWqNox3zqa+PdoahITdggJb7Ymai2DrGap3y1YKbtjXbWqUsQg8uqx2NdLM5pCLF6YgTeaMUuSXK4jTNwmfLCfP/h5fjD31ziTERPsWj5iLFfNtpHS9A2uy8HzY/UEU9cUUbWaEUXiRB34ZjNl0TVJmPgmaao4ebGawzFS+uGkNaHjGKkKB13LhbQDkx15/fbHYgUMwtdma6jRkHymn9/p8PH8LBfLYpLbHTsMQ4ORNSGqpnyiXGZD5uRV7PSBVbPGkWerCeRoLMxJt4Zi509UPQwtJVOeII8Bt/piEhtGJk3fZt4Vs8D7nSw/urrNLckbGoQWrxw5zEtuWCfIYOuJClb94ukerpwww0QnTnSKkphsaAlZ22ejLdqx49AmbwWqHbfZnCE+FmG3FxbvoxsJbTlhZ22fezsLVGQo7cfm9lhY3EOXSGPo27x+7TyPr98CoN0pqzbXW3fO8MT6TVXYOK5HPdeneSiOozrTxHZ8VSSN+nmQ0SHNTpn5xiG5ssxXSzQGnRKWPKfW/TkWnrxG6/oqABl3zKBXIJboWH32kF67LJ6d6+d59vJ73LoleFOztSbDXl4VPt/ZWGcYmXz8hFCZxamunJv7vosXmYpX9d/f1fhPzg0oyaKoJ3lOgUTHfnGzyuVKrFSJn5gdKOuFMNHpRxpvNMVxXa706YUmrWCSVaZRs0OeqolnUwfuDUQRuJIL6YUGv70n7vcPLPj86o7FBRnE/TudJp8t13hfcqnm3ZSMnlCTxO07A5Nn6rKdFot2lSZbvUULzhcj3mxZ6tkaR6IlDoKHeKYorvs4Eia3b/TEffH7AR/L1xSR+wulefLWNGD8L5U/yZEnWl0gAnDrslDph2I8mowXtq7znWao1G9xCifzmrJgafmaev6bvlgIv6+9AcCZ/ou4BsoZ/E4fzpWmeMKRL3iLk4XpRKAD0Bon9COdT1ZK+InP2x9RdpuWxGjfR8dt7fuplPsjvD0skuSWpnBNhpKuuA66Bn9vSYRfBnHKP2n+PAB/deZvsJ6P2BhMfDwSnq2ZyjeokkmoZ6ZFQTMwebsVK0LseiFRho4ZXQwuF2XL7CdqNQw9Ue0WU4NvHHm8UBNvqh9Pg3Zv9i22hhGPy+DUi+WUIz+dmhYWRAvnakd8f9bRCBJD5Z7ZRsp12Zl4uSF4QBMUohdozDpwWxZ6BRNmMhrLWSmRD1O1emu4KZtDHU0O3A0nZcE1VUvoTt/E1FCE6qavcSIHl6Xi5pd3Us5Kj5RFM+Z86YGogFDHNVMVPPzFxt8gZ07Jkoeeqcwht4aCFzQ5v6IV0PRNdU6dQBhsTrbHqynjOFW8CTBYl625YaQxCDX1/V4ofI4mSFMzMJnJRNyVfKaXGh4HsrVVtUUQ6ISfcd5skNHhl++L0fhj9ZRBlKp9ZY2EnJmyLpVzm8OMso945Sjhyep0NftiQ4SwTgrUt1oOs06q8vyK9hRpzFshpm7wdlsUTfVMwgfNmanE2/E4VbBZlwjF3shlPjsmlTLuu/0Cz0lJ/+1OlYo7UpNzL8hQCDKcqgkezb12naLtsViTnBzP4XVJTF4dO1hmpFpxM4U21++e5ngkJvL1mX3azSpVaQMwGmSFk/S1SwA8u3abrowlefL0DXQ9UQVVNj9kLT/Ezor3dtzN0x851OW+4sjALQjEa9EKqZ/eUuq20VGFKDKYf2RTnOOrj3H/9UtkpDN4kugsnLtLb1egZ/7IVeTykjPmeH+GE0vCCXw8cmn3ipxcuwcINdtev8y/viEMM//8Y+8o24Kc7aFpKW1pPPlfPdbmn99e4jPSbNLUU2w9JisL1M/Mj7CNeMrLMjTGshhtBRmeqfUYxZMQa5u8GSsCOQjLkkk+241elktlcT2GkYmppzxTF9/1E52XGyntQPz7C7UqNTvkY9LN+5e3qhx7DhfK4vpUbENF2qyXBlzpFDiZF/v+nb0cOha7vvjupxoWlpZyVxKmV/MxN7riWl4q+wSJwZ+S1cowyjGMpi32nRGYus6jFTEoWE5KxtB5y5e2EX6N7wRbAPxE6SRfb3f54RnxbN3u61wsW8oWpWyLVtumtCaYc6eo074XsJ63+am8iIC6NvD5xIzFN47E7368bnGrP82UO/JjlieKGkRhNuF/3kh3cPpLLGQ/YguAh9vvy/aw3Sahyr+78lcpmmLSu9U3yT8AxYaJmKAAvrpn8XIjZhhPsts0+qHGrw6EA+yfLp7BNlIKpuTghDqdQEMCOPgJNAPx1s5kTFZyU7SnaCW0fYNOOP3dmQzcH03+nVLLTJCRlLdaEZ8X4dh0Q5OqHdGV6McrRzFP10zVFvRiQbKW2ankzES561p6SifQFcI1jDRe6XV4LFsG4P4o5FzRUnL7TmAoT6GskbA51JUh5JuthKo9jW15rdvnxUpBESJPFSKudU3lZBsm0+iQFDjyUChMRhcI37ZEWc6WEt5tw5Is1rJmqgamYaRhG1OJ8sHYpBtCVR5HJRNTs0Nu98XOj3x4ru7x322LSvGvL5ZVZMPrTZ2XZ0PFscjoIj5mEqb7v+72eDpXYyUn7rGjJ8rBu5aJ6EcGOWOSrp6yMbCVmWSQiOflRG7a6lzOhgq1so2UnZEhvwsvzAxpyhbQ1Y5F3YGVnHgWe6HJONI5L3kzt/p51Var2j6GnvLbuwJ1+/Rcj2FkqVbM4djlvY6jfJTyVkjNGdOUk7elJ1RlS22zV6YVWDwqw14NLeFolMOUBebtfoHPrd5V3CA/spiriu+62TG+l8GTho+WFfLN22f5wUffFue/O0/O8dTf1iptDDPmV95+Upxz1+avXBSoUneUI2v7nFzfBOB4f4b6nAw6BK7fPMVctUl1VhRrhj1l4Rp2yNa1U8p48vzj76PpKYa0TGhvCifu/IwgenudApqeqnadmfUIpB1Aa2+G3eMZLl64Ls535NJplVVbMYxMLDNSxcpht0xGktpHQYYwMVThUnZHxInOTYnw1R2PvO3zyr5Qs316aYfdfpF/eU8gYj+9OlAtsdu9Eo/NHPCNHcF3Wi+MCBOda12pSsz7ZI1YFcZlO+BQ2gVUMj4bg9wDcTgJe2MTd8JZHGm8MOMpS4AfXW5ys1tiazRp3XVVhtyR7+DoU6sKx0i43suooO441cjoKUuyTdwMLGVV8XsHWZ6uBdzqT9418Q5MMhW/e6RzuTLNQhzHMAynNIOsMRVv1GRg7aQV9/yM4F5OxCyWJhDyiQXLkQcncpMiUeObrT6fqonrXLVjvnYAp2Xvf9GN+c6xpswjJ8atE6fwUZRysSyO40o7JUxTZjMGQeLzC+2PhpO09+ZnKOa/j+22Qcj8k1992G77gz6APyxbO9A5kGTsvCk4LCelx5BjJGzLCbNoaaqFBqJIOPIMvpA7I/7WEkTlCZ9nIZtSsVO+1RRLlh+Zt9keTaX0MC0SbvYMHAPFOQABEZ+XMO/BWFe+SEmq8cKMwa602G/6wnF3ol47lbdkTpr4/v1RSCfUOV0Q/2GvrytC+P2hjq6BjC1ia5jwuWqJsj117i1YqSrAHCOlKUmKh55O0YJrEpU6mTdo+VPS+6IlWleTDLHvHWd4rBIyiieKrVQRsYWfFMrZ+ru9Lp+pFnmqNsmT0pl3DZXiveiGXO/JWI1Mgpdo6to2nIS6k6psKkOD7dGUTPtMzeeDrsOPyXyQg/GUbP5SIyJONIXoCLNITXkIPeHWWM0JzgHAF+oFOjKPr2KLa1KT13LeDXDNVPG49sYWpiYcwQEulgJyZqT+/Vx9iKVJcv7I5E4/qzhq/SjFCDQuKpdkk1omoiXdmBdcX5F6W0EGU0u5XBHXveqO6fVsNmX7aXtkcbnsqYltd5zhvJYyK1tGR6OcmuTf67h8buGYzZ4ouJbzferuiAVZCC0U8hz1S0q+X833cbNSyn/zLAulNsmkgBjkOV875LvXBX/Hi0yeXr1LNS94R5vbi4SxyaMzQqp/eUZTAba1Sps4MVS7zTQjxv0sQ2kNkKYa7V6RmiycJko1ECjT0qlN9W9NT0lCUxG187UOmWoXX2a9OeU+QT/LQLayWrcqCsGbW9zHtgNu3hBZhoYunMtdiUJttevUsgO+vi0Kr2cbxwzkPVqpHnO/XVOtudvtOrYe87JsL757/wQzhS7fuyqQp1l3hjl3zH94SQgS4kTnd3fFyujRSpd/enOJFxuiStgaulTsiC+cEGFhe4Mid/s5ZXT6ncMsj1fF89ANbOJU44QkzPdlm3WiYJ11oOlbqvU7DC3Wi310TfpdjV2Kkq9UskL+8609/v5qQ+7LZtaJuS+L/ccqHl/bzxClGfUbN2Qh94nZEf/ynqWsSSq2wblSQlt6tJ0uaPwXWz/P3176d8W11kT6QZmJxUiqTCwn26JEePphiqlDW3Ia+xGcLqYq2Hs5xxQ9D+HRfIGqPc2uO5kTYhdxbQ1KFkqhN44T6hlDteuCROOddiKvh85SNmXvgTHl4fZHd3tYJMmt48MFySvZGBjMONMHPG9NjRUnPeqJrDRrJVi6MbW6T3WyhjB3BGE0WLbhUzPibSpZPkPJch6EGttDjTPFiWQVqnakXKOfq2u809K4WJ4YMaaclQX9ka9Ry0x79RPy89Wu+N3LZdE+m5gcWrpFzkxZka2J7VFG9f2Xcwn//fEV/qT+GABVWwNStc9OGHK9a3FZCqOGka5iOGq28EmZd6fmkhfLsVLNHHsmjpHw7UMxQJ4viciF7x5Nh49VmWjhmqIonHiVfLJSIiVVMuRJ0Tf5vB/ZlCfGcXIF/JZU9y1lNcaRzq/ti4nrszM55bkCYjX7dG2g5OS90OBIxrQEsWhbTY6w6WsULfjq/sStOMbWEz5XK8pz1pQ0+JUjk0fKiVLdXOs5WNpUhZMzExllIwfyyCBINC6WxOT1C5sWf2JpYuJoUrEjleK+mkv5oOuwMRDPkpdorFiRcv4+XRgSymt16Fl0Qp1TBXH+B8M8R75NQzosa5o4l/MVUZxca1c4GLuqlZO3At6TRO3nZ3p0ggxPzovJd6NVJ0gcKr6Y6PPuGNOIVRGh6wkDmZk2V+iyvLxDS6rI8vkBR80a52bFpF/ID4kig9tbK+J4Tt9mPMjxxh1RgCwUpmq10SiLZYXKu6g3yNM7anD+9G3x72GO5aUdVUT5I0eF0I5HWdzSgOaO4EqVZ1rY+RHJJI+wVcTMety/uSZ+d22L3FwT/66rfr8kbQr2tuf5YH+BTzz2jvjddok4NihJAnU+PySODH5Aokf1altZHzS7JfK2r8w281bITK7PSBZ0dXfITqfKnzkh/rYXWuyNssovaSHXV8jz7X6BH1icmj5eqnQw9YTDobj2/2arwJ9Z69CRpPiL5WmQ8vWeQ8NJFI8M4DPzxxxLJHF37HB/ZPCpuQ4AH3SKXKr0qMvr2Q5sVUQ3/Qx/ub5GJ5iSwL1Y47QUhtzsOawXUlWAxelUnNIOLD47pymvp9/eE+30ibrt2YrL313+d3lLFiDnisJs9lguwjQNxZ0MEpHR6MsLtDUUQbi/6X8PgC9Wn8FPNL7TEkXl85WsijyacxIKVsyv74m/rVkWgyhiSaJOUSqMbR+viPd2ORvSC00O5LifM+EJOT6OYsFxfMM7IE4f8BT4fd60JPm+8oi0h47bwMMiSW0XyhGvHouB6InKROI9IWNbivty4Bnse1N5/J2Bzlo+VcXIKNIYx5qCdAtmovLUQPBIJrL8sm1wtpTwRlP87YsNofR6PRXkQaf1DHGasixh6jh1PpRyf7tvKhRqOStiNc4UJ6uqlJs9XRVgw0i8yJN205nimARH7kvjL5QfVShVP0o5ZU1VZy/UTfqRptxni1ZKy5sqzi6WA0WQ/pXdCF1zVWr35jBlXddUm+9mT+dyJeKTYq7CS3Q2JEfgxUaPN5rF6eo1goyuEUvoKIg1fqO7x0VTeEXNmJoqjjqBQTsQhSWIlWHWSPipRTFB3B9pbA4sRbgfRRr7Y0f5wlzrTou1MIWdvqZahk/VRnz3KMujU/W8kj+L+xirVuWZosFafsy13tSt2DVTjr0JwhWxMzY5V/Tk9XDYHxs8UxeD6fmiRYK43/NuwsbQUqjcSi5lzp0Ogg0n5JWjDM/PiC+0ApuqJCK/38nweHVMSyqyzpZbNLJD3m2KYuXxap+2n6EjicKnSl22BwWWZVHyQbumIk7m8j1sI1JIyVy+x/6gyN2WKKIeXd5k47jBo2uCqPzOxjpn5wRfZ6tbZTneVZL+dqeMriccdsuAKJIc1yMrfZWOD2bQtJTHZXZbENjc3hFGlBfW7pKmGq+++ygAj6ze5fTCDXQ5cZdaFfb3Z7knj8uLDD71hLDeyBUG6FZETkaWFE7s4x1W6OyK61E9scvwsMrMnOBZ5VcO8FtFHMmzKYUm+0div+cff5+tVh1btoyKlS5JbHAsC8Gxn1E5bgBb+3NsdsXDs15pkst4KoR3o59nrXbIGzuiSMyaEbPZASdkpMnuoMiX7rl8YVG8xwejPJ9dFIaXmpZyv1dWCOfOMM+SVCcCvNAIORy7ii93sdzjWlcU9gtuzFp+yH0ZrLvgetzpFzn0pu2a5+pDNmSxW7CEN9bkeTK1VLXrR7FOyY7UeFG2IjxjaiD7SqfPopWjUp+MibHiJN7suxTMhLdbk2NMud7TmLUlDzMRi5AJAn61GzHnmGoReuxpfGMorsfz7jxv+nv8qZoYH8LEoGDFVL1nAYjSFF1LuVQQ53yrn5A1pPN3oHM96PDJskDwrnQCVrK2ciT/rfE1Xs6c51X5Mt7oWcy7H3YZvyZ5VkEsIk8uWbOEqc91PqItieH7Gaj7kLgN/DHmJP3cz/0cP/dzP0ccx9y8eZOfrHyRuoyl+MXB9/jZyjOKBH2qECn498jTeLkxVNLp/bFB2U6V/HPf0/j2aIcfKQuoPU6hlolV26doRfzbbfEyfW4+ZmMwNQ9czcdc7xrKLNHWYTWfKIKkF2vsexNvEkEQnRRJv3rc4s/PF/nOkZiML5bF9/f+N8qKByXzcnygnknIm7EyEsxK6wHXnHoK6aTsyNaepcGslOhGiUbT1xRs/X7P42LB4cgXf/tkNaHpG8o88Uon4WJp6kGik1KWBeitvlDFTVCVfmQQJpqyAJhxRCvzl9oC0fhrs3MMoik3rBto6pzW8yGalqpBv2ZH7HuW4jedLwti+8QyYHes8+pItGluBr/HX6//SSXT/62DiJfqNm+2xDk/VtEpWzEF2aq51XcUmdxLRDBwlE7I9yn3hgYn82JfdwcGM05KQ8ql//V2zCNFl/d7YjQeab5CqKp2xL2hpYjreSvm3mC6rlnMxtQyoZKPf2W7on6nZEfMOJ5Chr5zlOOTcz2OJSdnPjui6g6V0/PbzRpXOwZfPC9IsMejglJkuVbIr96b5WclN+jW8SxPnLirkKM7e4u4VqAMJHe7Fc4uiCJpr1mj+UC8xTOnb9DvF6jUBIIVeEJaX5AttUGvQDY3YjgQFWv8gAeSZYWEoUVjUbTivEGWKDRpSWPKuTlhbjmWE3+53lLFmWYk5JcOSaQC6/jWCrv7s6yuivNtHtZZOLmFIdWArc0F4aot25PtXpE16ez9/rVznD15l+MjoaobSTPMiUHmVrdCkBiclcT2372/wo+dFVOlF9gc9MqUZeDtKMhwPM6xWhaty4HvsNkrc0IWq++3aqzkh1QkP+xut8JyQVyrN4/qNJyAnESsXDMiTHRysg02CG0Ox66Kz3mq3lTeVo4ZMQwtOrLoqWYCBpHJqVIHEK3LD9oVTkhfpWPP4YOuw/Mz4rezZsiORKzeaGZImHoZPVcfcKufe4BrGZM1EoUu74xttQC1dZh1QvUeR9KWYFKAvdkyebnhK7R0EgE0jYwS0nwQi72TeY/rPfGM9wK4PRrz+Vnxt3cHIkWg5U9UuzFzjjhoPxHqtlXJM7za1TgOAy4Vpy36vDlFw4JE582WzjCSVgQ58wEDYeED1wkgSH3+1UfESdr/3scp5r9/uEdvEDH37Df/2HOS/tgWSZNt8oD97aW/xh0ZLfFSI2RzaCtJ+CT7CMRLfH9kKYJjikCLSrKXfejZdAJNrfiHkc68G/Dasdh3nKIUEkvZkDsDi3/ZF1YDf7P+Anf6Gk9UxQ9/69DgyRpUJAF1a5hhMSuO5Re3I066WYWMLLoJZTtWcHolE7AxcNkbTVcW89mUsRyc/ERMspNjzBqJmtgXXJ+mbytOQdMXKpsJgdiL9Q9xbDRtGlMSpQJOn5VFwK2+xZlCSDOY+LOIrLHJILmUFVYGALd7GotZmJP+Q7tj0SLMyd/aHplY2lR26xgpC3JSe7PlSB8kMcjtySy0iS9SgrBFqEh0yNJTdFAqvE5g0JV5coYuBu8JepgzE/Y9k0NJgr83DvhEw1Su46v5VKFscSIy8CYOwQ1H5NhNrRgSNC3lakccSDtIOVWACyUxGf3PGxY/NDflaw1jQ93/INYJU43V/MQzp8Rn5zv0pEz7Tt9V1/Vc0SdnRvzGrig2Pj03pmT7DOR3g0RnPjtkFE2Rg5oz4lv7AuL79NIO/8M1geD86FIPQ0+VDN01Qzq+w+MrGwD0hzmyjoch0ZOx55DPyfy0TECvW1Sk5g/2F3DMmAuLojjZOJjHNiLOrG6K5yc0GQzyeLIN6mZ8nAl52ojIlfuk8hm/t3GCUqFPJNVdphFhmrGKqpk7s8m9K0JhZtsBh60ql568AkAaG1iFoWq3jY4rwmG7KooTr58jDk1VrM0s7TGS4b/jkYtuJJRkodc+rFFpNLl9U4Tp1soduv2C8kl6d3uFBVnYVPJ9TCPmmoxpWS43ee9wnm4wCYvtY+kJHclhWis3iRKDb+8KcvaFcpeu/MzWYyqOx42OQKlcIyZjxHzQFcf88uwxN7olMsaEKxNyfzRRkYlCf05e2yTVuN7LqnfP0YWw46QsmvaHeVq+rRYG+15GRZZEqeACni9KpDE74s1mWUnxd0YaL8+O2JbWFcNIpybNdh0j4e7AUiaVt/sWlcxU+DKMdPJWjCkLrA+6Fr/lvUcxFQXqX5qd4df2xN8+UnQ5UwxUYdwNDQ49XS1gS3bKa60QSxPP4jiJyOnS2sUyCdOU41A63xczDKOpLUxOikQm3EOxcJy+50V7Oo02fY2mnzDv6gSJzz86+miKpIPvvvh9L5Jmn//2H/si6WG7TW7faUasuJP0dYswmU6w20MbGQZNPZNQkXlkAFkjpRMYCmoOU4HSTKTlm55B0TJ4TEpY24GpUATXjJhzDf6iIWSnGT1mzjW4J/14LpZT9kYaTckpaPowjMTk8TPLKe93pt4cKzmPdmCx701v6f5YY70wdZSOU5TKahxr/LeHoq33N+tPY2jwZmvylxmavs57PZmQXXJJU025jIcJ7MhJL28Kr5Ll7ITkC8/VE0VE7gWwNZpK08MU3m1GPFYRn/+D/df5kzkRHHoiL3yMXpfS+lpGrA4nrapThZCCFXF3IO7T3ljD0MT1WHRFW3OiglnLR3z3WCcvTYbagfiOl0w+H/PlbUe156p2zECiLvVMQjeYOmzvjCyKdoIr236WppM1Yp6fEffxu0cZQjkjfHbek5OcOK7dsUUvRZ1/gkbRipRj8GJWxDlMJvYfmjOUI/u+Z7Ka8xUtdShVQl/dE+Tiy+WA9zslzhVFi2XWidiSz06YagwjUyFcrcAiTHSFOnUCm1FkKV6JRsrdXpkXZLvpg+YMP3taIDaH4xyz7oAwmXC2DM7P7tKW0nw347NxOMfZJVH4lIp9xRsaDnMMPUep1y4v3qc+e8TejiAfnz+xQX19m1tvCsl/PjfkS9fOK8PMohUoZGS9sc/m7iLrK+J3bCtk93iGM+uiNXe436BWa/HWTVEY5Yt95iSJ2a13menm2bt9AhBFjx5YWNIiINyZpTDTJiMjP0adItlyD1sW4UYmxJPo8dhzWD61qcJzk0Rne3OZ+Ya4dkfNGrYVEkge0WxuQE4abd44mKdgB1yWBeaVrTWeXrrHm9viuGrZAQV3DFLt1h7liVNNhStfaZe5WBYF10Y/z6HnsiQL0kmkz7niROZvsVYYqGerF9g0Je9u0Q1puB62JEzf7hf4+Pwhv7sr/a1KQ7JmqGwf7o9canao1JE5M6QvC27HiDld7PMbO+J6PAosZ302h2Lceq7uc6fvqncgTmFeFmed0OJ3+jv8eVe0yEp2imOkXJcGqWeKMe+2TBYlGNkOEr5Yv8i+RLXfbsEnZgx5TBGD0FD80b2RWPBMBDJBonE2b6tx/d5wqrLNGrA71igY4j/o2jRKCoTxbzfUqchi6HoXHqtOFcJ7I53XB6LA/ky1SJLqFKxUZW0+3P7obg+LJLnVbUsFmsapxhvdIRVD/IeXZqbf8xONghkrryMjo3FvOCVUg0BCxrJoihL4JwdHXLbEpPByw1ck3mMvw95IZyk3RXQsPWU5O81HmnUTbvfFvtbyqWoPbY1slnJT5Ghr6OAYqZoU/8H+d/ibtZeoS0l4KzC40o45UxS3vBfA35oRmVf3hjpeDBeliq4Xaiy4MbomVp1NH95uuYoP9WR1CmnPuxGzLipvLiHh0DNYkedk5FOiRGN3PHGFjilapiK6/x/qz6mA3xM5n05gcU7yqCqZiK/saIrE+upxlpN5XSE+l8tT6fCsE3Orn7ATiwnkR+pFnqmlOIZ0zdZNjnxdSd5v9rIsuBCn4jg1Tch8J/dhdyyKNHEcgohekH4DPzCfcuCZSmX3WCXizmBiH+ByIhezKAnyAF/ZTflR0X3lnbbNmaLOnCtVRqHJkS/+B4JntCUdtgXSFXIgJ+c01eiGOvOS/+aaEcHYUm7OV7sWT1XF7xasgFFs8pl5MWH2I5NeaJKVNhdebHC+dsjhoCjvscN8dkhXcpSyZqRQpc+vbNEa5xSSVMsOaA0KGJN/ux1mix2Gss019jOqYCiVO+hagi3RsG6vwHvXz7Iic+E8z+G133uOlTlRkBUrHf7UuevMzIrW5/37i5QLogicP7tB9aBGYU5I/E07xO14XLslSN7VfJ9sucezj4jokY2NEzzyglgIxL7FjffOcf4pgSRdefUJnvnxrxLJAOBcpYu7fEDvpuAGHRzMcOHsJrHMQRsdlbEl9ymbH2LYoUK0DCPm+uE8y7KVmXM8yg/Eo9w6mlXqtjONfTrDvPJ6urB4n+HIJS9l/Tv9MgUvq1pZpytNFVkCsJj1cGV77WML2/R9l1sSSQoTjbPlDlXZyvvu/hyXKh08iRbWnDHrsliNU41haJGTyNGC69H2XHISwckYMSkaO/L5KJgxw8hgV97jt5oZPjUv7sveyCVONVblO29qKQeePS3uI4MFN1TPT5Bk2HzACf6navNKKWdoBtsjUy269sYGfjJV6c67OqMoZX8sPn+uHqtgctc0KVqp8kVazH6YL7jvmeyOE8J0OjZPYoqCWONCKVbjVC8Q6PM09FqnJJXLABdKULNDbkqOp2PAMwWxeMmbMQPTYH+sfbQ+SQ85Sb8v28MiSW71DMqfqOGkvFDJKa7MnYGhBoBxrJHRdR6vipn9O4cZ8qamFEiulpKkGr5EWtYKCTlrXq1AwlSjKXkRW0NBaN6QJmtnCsKkMkzE5wVTtGomLaIwAV3CGy1f405f55wszoaRRsEKiVOxr7818yLHvkZOwvjCSsBUvfyL5akM/5GyyHiahNDmzJQj3+CMVEb9Rt/kTFGjI52x7w0zU06RlnKtYylX6OfqqVKfAXxtP+VSyWROIic3ewbnirEiPsepKMgAdkYZbCNVtgaOYfCFxZhvH0qOiQ2HnqGg7WFkqPZa0zf48aUR90figliyPTQpIsNUIINf2RHX41I5ZTGbKPnwMNJVWy9MhWJmXyrQLpY8bD0hlhLm6z2LmUyqrtfm0GQtL0bmjC6QxRuSuH0i5/PijA2Iz1fzwk+mKouGjYHgMiy4UxXMJBPuTCHkZi+vWqSVTMyJ3Bg/nvA3dJayAfuyiLpUDtTK9rVmkeVsqNRuDcfHi/UPcaX8yMKWLZOGOxJO0BL9aLgjTkqezEylTd93VcssTTVsI1IBrmPPoV5t8eqtcwBcXtzCkNfyzuYJasUezbZoAX1vd5mXTtzFlgRz389w+fJVTEmCHhxVmZ0/4MZt0bo6uXyfm5urAGwdznLp7E1Gx1MGfbHS5ckTQil378ZJ7MKId965DMAzL71KZk60xG7+5se4/PHv4R2XATh9+i7JOIM1I4qZ0VGFsFnCkpL49Us32Hv3LJV5Uew55QE7W7JFtrZFe3uW+rpAqQb7NV44f5VdWVSWin2OjmuKvH2i0lRBvwCmHjOWba+t5gyn5nfQpXv55eUNjjtlRWQ/GuU5VT9Q5pO6ltKTBVdXIsxPSZL8fr+EY4aM5Od5K8Y2YtVSPRxnlULzx5bGDCOTbx4IovKfPXubg16ZZVnc+7GBqSeqxd4JTJ6eaarfDtOM8np6rWnwJ5YjLsgFyDgy0RAK0skxf+PAYr0wEcLA8zPiOgv0x1SczUgXytnJc3yqEDDnGNzqSyPKXEIz0LlYnra3TuQnMn2drKGpiKTrvZjnZ+AfHQpi96PGEnOurgquYYgy7t0cJviJocaxnCOKqInXUzfUOPQMhTzVMgm/dF/nvBp/4TFpt7E7ttAQymI/Adp8JJtw3P7+FUkPHbfF9rBIktvdQczn5qYeGTq6mmAnK3cQvft511PqpffDI56zZhQXZDUX8D/d9/iRunh7KnbI/jijOCnHnsXmcPLdlFGsUbUnxpMG50uBCo/1Eg3XTCg/0O+eDCaigBjR8ie5XibHvskZqZr65fsGH2+kis/iGEKxN2kLFq2pGuXIF22XSeGzN9ZZycXsjcW+n6qJ/RQlknLoWYozMIgMZt1p3IehpTR9uFASvzuTcahlphYKjiEKkp8//ioA/+niJ1Sx5hgJo1h/IF8NtoY2N0cCDflzdZ37o8wD/B9DyfQrmYROYCnU7dm6z7FnKZsDxxCr4T+xLCafm30X10gUV2pnpGFJfsLFUsh7HYszxUidUyew2BpO3LyhYkeKS5U1UPEovVRjJhMpZAiEm/vkOL1YYyUr0tlBcJ+yRqqKlzDSlXTa0FPW89O8rZxsYU1W5Nd7WS6Whuo+nXZ8DmTW2A8sHdD1HVUkzef6LCU6h2NRrKxUjul4Wd5vi4Lj6ZlDDkY5PHkvclZAzxPPuH9ocTzOcqoq0J2B7+BH1tRFu9ThzTtnFEfJtkPlizRbbXFrd4nTC6KgyJsRYWQSymKsUOrx6htP8OhpYcaaq3bxB1nyMqaj3y/w5NPCeHLUKZCmGr5Ed3QjwbRCbrwnirPzT13B7xRYmRWo1NGdFeblpL98/g733z7P3JlNANxMiHdYId0XRYLp+EQjB1Oq2bzjMqYVklsTE2zrvXXFszKdACc3ZvuqQLCSVCeJdaolUXAZZkS13FVtro3NNdbqElkr9jD0hHekmu1M/YBOv6CI2Z6fYatboSrbonujLJ2dFdVynM/3KLjiuzudKmmq8fVtsa9nGwfc6lRV/p6jJ/zfrhb5/Jy41uuFAT+xIlV1gxzzrsczNVHofuv+CfqRoVp53z4s8+Or2xRlsbY3zHO3V+JCRRTOT9UyvNUSz9JPrPRIU/jukbiW54ojDD1RqPaNnsUnZgNluJozNbIyALkX2Ghaqt6HiRBm0nJu+yYrOQ9HtsGOfZP3e8ING8SYuSEd6RezYoEzyat8uZHyXsfkFILPtZrXyJnTxINBnLAnIe3Pzpr8nzd+nv/sxF8H4FpXZzWfKs4iGLzT9Zizp7yq9bytxu5BqLMhI19sI6UTwFf7+x+pBcDD7fdne0jclqS3nyh9EUcXE8zpQsKVzjQD6KVGrCY9WxcoxUR2e7NnUransGwnEAnVkyTuBLFyOlMUL5sX66pg8mKRND+Bi9cLIpLkK23RTvgzjSpZY7ovQ0MpikDkxE227SF8an6kVvv7nk0tEyrU6lpX51wxUeo4L566by9mRcF0LFVkOTPFNVJmZKvuei/D5cqIY29KPp8EY94ZZKjasTKaBMGxGURTpGgxGxDIgqwVGCxmA270xL40UOqtE/kxGwNXFWA5M+a7RzZnS+LfXz7q85NzOTryt7JG8qHjmMlMvXpeOzZYzomEcRBmcJfLPu93Jn5NAWGiMS9ND3dHLvdH4oKcKfjsjW1lL1AwY/JWqFbOTd9i3zPU8/F4daRcjtfzPrqW8l5HDKaruYgHt1eOdLxExI0APFnr0PQcbvUFUrCS8ynbk1wrk7wVKuSoH1pUMr4qZL66l+XTc2OudsXfLmdD5WS8Ocwy73rKU+mZegvbiLkjDSEvVI85GuWpy9aMoScMfIeNvijun1+6x0giFe8ezfHiygYlyX3qD3IYesLNSbJ9Y49mv8jZU3cA2L6/yMmzwrto1CkyGmaV8mtpfp9Cvc2bbz4GwMUzt7AyAYEMl05iA2/sMJAGkZVyR127fKVH4GUUStU5rlCbO6IvDSBrazuYTsBIoiNm1iNTFZN+7NmEvRztPWF4WD95HwBbEub79+Zwa11lLtm8vUxp4YjBUUUdly6RoTTRiCMTUy5Artw4yxOX3qdzLH43DC1c10OXfB/Pc2h2xTFmMz6tQQFLFgm6llIt9bi+K1CqrUGez6zfZLclOElBbBIkhgoUvtutMJ8Vx9wLMhhaotqtRdvHMUNVnB2Nchz5DiVZYB15GWbk89EPLWbdkfJF6kcGs46veHmOEVPN+ErhWHLG/MLtRVYlalO2ImUREacaQWxwKMeHhuOzP3ZYyonPD8Yu89mRygX89mGWedlOCxONsh2rgipMNSwtpSM5nxU7ph0Yimf1ylGOS+WAr+yIc/zUrK7oC0ee4AFNDCHfalks56bjpaWJMeaDTlYeZ8yObK+FiRgPJ0TsnCnifoYSLp5zNfbHKYtZ8VsXSx5BovPqsSiMzhQTJV6x9ARbT9ka2viJz/9r/6Mhbh9+88nvO3G78fE3HxK3/6AP4A/L1nAgr9ypdXbCPmddkQGUpAlzjnjx3mxZOIbGb4yvAvC3GudJEBM2iIy0O31LmQu+04bHKqhCpx9O4VDHEKqqayMx+bwwI3gjnykKElRGDznwTOpSdro7tlQxVrASjj0UMbtaESGmE8ftv3//v+f/tPzvKpL4YtbmVl/nSamcs41EIRDDyKBkRUqx5iU6rxzBI+Up36ft26oddatvK65TwUwYRLoaINYLI/6zrR0+6woH8qeqHs3A4np34r4rSevyWlt6qlK67w1clrM+O9IZ29ITzhQTdW3njQKQ8K1jgQ58ftamIr17ir7F7thQiNbFMsxkAoXgrOaEc/gJ2RbbGVvMuyHvd8Q9Pl8a8EFXDOIbgwynCh5Zidz8txsRf3nJVS0AQ4Nn632udQVv5Kt7Wc7LQq4dmJwt9SlYE38mkyiBx6uiGPv0nEHd8ehKYvf+KCsmJNnajVNNqXN6oUk/NFUrV9NS3mgWVOH3k6ttvn1QYTkreSXZsVr5DyOTewOXjzVEwV3NDrjTriuJN4hJ9Xckgfrxao8k1ThbFuz9++0abclPOltucb9d49tbwmjx+aV7YEZqAu2NssxVm7x+9aK4x6ducbwjiLhBYDO7uMfOsXimS7NN/EFWEcZ3d+YpSIQG4EvvX+ZnP/YKe8cytLbaJl8Vx2w6AXZhxP1rohWXLwx4493LPPf8awAMDmpoWkok2zyuntK+chqAxtlN0lQjJyNc9m+usvTYdcUrqjxzm6RnKY7S/MevcPzqOb7znmjdffK5V3n9rccBuHTqNnfvL7NQF8jaCx9/hfe/97iKS9m9v0Ch2KcnPYmKpR5DGQdSrzdxHY/NQ3F9FitNuv08jZwo5k5Uj9CNRBG9tSBD3vC43ysDUMt4U88pP8PJUoeRJFDf7ZU4UehxY1KQ5kYsZkfsSB7RmVKX/ZEoPh0jJkgM1opSzReZDEKbMyXRG9K0lDePGpyShfEv3V3kR5ebylfLMSNudMW7s5gVQcvzEv0q2gGmnrAnW4pZM8aLTPX+1DLT/MXnZ1rc7hUVyrSS8+iHJgWlKos59Ew2ZbHvGgJdfq4+4eWF/JNdcR8+lV9EB6Xmu1iO2RtPXbNdU7QPJ3SAY99QsSQHnsahN7VIAY09L+DJqniWvtbq8idm8ypz0Ut04mTqpRYkmkKtw8QgawqxxnTp+HD7o7o9RJJkFf5TlS/SkS2hxysGGX1qd/9+J6Ui356VnIBrJyuqMNE+hNikqZCJnikINODrByZreV2hI5qGIv9tjzQeq4RKzZU1hBrDl6uZi+WIN5oGOXNCVA7ZGk2StUUu2YRMXbMTNG1arBWtiG8eOFyULuKtwGAt7/NGU7rvliJcWfSMow+/yrqWEiY6ebmqDmKdONV4rSm+93w9oh1M/EU05pyQsj1R71lSTiw+P12I6Uc615QTuDCfm0ySYaIpYuWCK0jLE3mwpqW0A4OyjAfpR6IF+k57Qja1eK4uJpNvHDjMODAv+U1FK+L4AWO8SiZiGE1DOcXga+FO2oahodRsOimumfB2S5zDjy33OPQcBnIgd42EfmQo/6blbKQKyM1hhlomUr8zjA3KVqSQRy/RudqxVQBynGqcKXX5bWlq+EjZU0jASr7PbYn8ANwdWMy5sdp3PzJYzY3pR5O234c5BPkHeDBpCkFisJATk17Ty+LHhmrXPtE44HiUZ7EoJsmB77ArSbuX5nb48p1TrEq+zqnqEcfDgorWCGKTSm5AT3rwzNeOacqJerbexHZ8VTAAWGaIJu+5aUS4hRF726JYy7rjD3khbW8uM7cg/r9phxztzaow3F67RLNTZm5GTJL5So9+q0zj9D0ADMcnluiGZsRYtR6pfE/9VhFnvokmC85kaBEclcksiH233jlNcfkAsyzOsfXeOuOBOL/aiT26uzMUJYG8vT2LlQmIJFJy894Jzq/fpdMS1+DKzjKnZbvNMiM0LVWkd8sKuXcwx2xZXPd/8Pp5/sKpQ8VJ2umVuN4r8KnFHXVf9uV1Pl87xDYjvnVfKOOyZkzRCpiRSNM39uZ4fqZJTxbki8UuX94UwcMJcLE0UvckTHTmstNiVQRepypY916/xGx2yKH8bZ0PG6p2Q5NZiVK5ZoSlJ/z2rkDhynbKohvyO/viOf1zaz3eak2f6+dnWgrBdIyYMNEVmvrKUZ6KnVKSY8Bv7Ie8XM+oxc840ujKx/xCKaQbmmoMBLHQ+te7Yl8/OOsykwn41qEo9J6uhWrMj1ONzaHGb/uvi+86T1Ow4HpPBg3P6bQDQ3GUdFJqmVAp+PqhpriEc27KSjagF5p4ScDfu/c/fSRI0tHXn6CY//6VZb1BzMwn33qIJP1BH8Aflq1swSMlMTk5RkTRitiUvh7P1hNMTQwWx77J6UKMn0wIvxpBYqmJfBTrzDmxUijlTTFBFWRv2zWmQZBg0A1NHquIz+Zdj28e5HiyJl5MS0t5vp5ypSMG36/spXyslsrjFRP5xOTy/kjnpcZQtWa+e+zwVC1kT/KbRAGSUeGxYarhyMm4HwnZ+YRXVZTnMsmrK5gJDSdgWZqG7I0tZQ4Zp/D1A53PL4jffbNp8Wg1YkHyuCp2iGMYnF4S59TybX7raMTzZbFi92WUAMDpQkQ/sslL7lM7MJjJxNTl4NvqCQTiL54cy3O0FOdmOSvamtn8xORSp5aJ+OUdcRyPlzKU7ARHFkVfP7CpZTTW5Pe9WFPntD3S+dz8iHu2zDkbZlkv9vm9g4p8PnRmMpEysStYETel2u/RypBxbHBLql7W8j5xqtGW6IalJzxXHykelihAdR6vignr/U5WecZ4sUnOnBrrzTgGjp6oLK5+ZLA1dJTA4ErHVcW5Y8Q0/YyKe5hxxthJgieVUhVnjKEllKSBatdzqbpD+rL9sjcscEKiCmM/w0+cvc4H+0KiZ+gJ9dzU2dnQE3LZEVmJJPh+htOy3Xb75jqrq1uYsr0UBDZGJmE4FJNtsdQjW29j7QukSdNSstkR7UNRNOp6oiJNbDugsbRHThYnpdVd9r76knK+dio9vEGWUKIO3/zayzz/jHSvr/Y4euuskvTnFw+JBy6WVM4Z9RC9E9H7YBUQBVnQn+6rdHKHWl0UTDd+7UVOPvU+7Q3RbnRyY27cXlehvtV8HysTqNbvc6dv0u0J1CVOdCqlnmrFfe/WOerukJFUxv359SP2hnnK0dQ+IEwMhSwlqca83G824zPyM6pAf2H1Dt1hjm/L1t1K1mdrUFAmjqMgw+Oy/eiaETkr4GAknvFH57dpDQrqnhbdEV/fWlV/u5QbYRvTAn0h3+MtiQ6WrYiL5Y4635bnopEq08ZnamOavq1iO755UFZh2QvZMfeHedW62x5msfWUf3NfPB+fnBXP84Qf+sPzJm+2NDyZC7XgaizLANso1UhTsUACgZB/79jkBWk3sjMCS5u24P7h/nX+k3lhF9H0TRxD42/Un5T/FjSAiSoVEq6NTR6riH3fH1l85cDjR+ckSmVoKusyiHXeaWdo+qlS0n0kWxJ/f8PiHhK3gYdIkqrC/y8n/ipeNElAFynUrx2LieyTc1PV0M2ejRdP3WXXCwE7I1uFoRatiLdbtkqMz8i21qKUfL/RzCj053JZJIVP2jynCzHDSOeWJCKeLyXUMqEqqh5EO9pSBj/JUGsHOivZkEPJU1rN+TR9S02oOyPRqpsSiFHcqHk3YW88JUz/cmuXn52dVeTJyWrrSCInJ/OhIn0bGtQygSIXm3rC+53MA0gJfG1fo2xNnMBj8las0Kv7I4OO9Oq8WI459ERhBPBB1+DHljt8da8MCHVblKBWjo+UQ2blxPwr94vc8wd8fkYMrsNIxzFS1qUPzs7IwTESda0vVwKavvWh6zgZ5OJE48g3lbtuwYrohyarBRn+OnYpZ3yutMXq6p12wp9dleaJhlDmTLyM/BjmXFQhU7YiDC1VrU7XTKhlAtoS0cmZMb8oOM781ZM+CRq/uycmr0/ODRhFJhlZ+NzpZ7lU6bEjC461Qp+7/YK8DynrhZ4qIkvOmL7vkJEtxK/tzPIjq1u0JZHb0FKCxFAo1rm5Hb56R7RMz1Va2EakZPq+lyFNtWm0iDOmUu6qQuhb1y+yKB2jL5y5xaifx5LIwPFxjdn5AzWhekMX38+oUNpD2abbaYp220yxy/pl4VY9apbQ9JRYPjuGGTPsFuhLw0dn0nqVGWqllX0i6dScXT8gGVqk8m/9wwrO8iHBoTiHaOQIQvaqOI7ma2cpnbrPL//LHwfgx37kN4kkYVzTU/oHVVrHonhbOrWJbkVce1t4Pc3PHqJpKb5EsUZjl67kWM3XjylWu9y+LVqXthlhmRFbLXG+i+UWR/0SWUucy/6gSMEOaMiYku4op9Rrc6U2A8/llT2Bwn18cZtB4NCTXLJixudqq8pjsi2oaanyq3r9aIa1/FCNJ7O5PuPQVq26jy3e59c319T78Zn5Jkeeq/hQXT+j2sDjyGQ2O6Apif4bgxxBrDEvx7yrXYc5N6ZsTbPbJuPH+XKHt1tVZf66lo849EyFJr/XEYG3t3ri8/VCQpp+eCyaJAUsZmNqdsi7bXGfGk7Cl5oHrGuCh/ZMXWNrqLOen/BDNbXYrWci/ERX7bRmoOPo09SB04Uh+2NHFY2bQ4vFbKTG18liFMTYe+TbjCINPwn4b3Y/Gk7S0dce/f4jSZ9+9yGS9Ad9AH9YtqoV4jriBbnScdjomyrMNkp0zAfS5J+rj7kmybJRIhQTE3l8nJg4Bmpy+qBrkaYoN+9WEPJSY/ogd0OBTIGQt58s+NQy4m/faVuAxRmZNzUILcXXuVTyeaPlKMOzspWwNbK4XJZFwdghTuCfHQmY/4vzDW71LS6WxODbDkxlLFcwY6xcqgaIsTakYEXKxuAft67xf106SVEWOg+arH153+fZSpb1/IQLY/CPm/+M/yL304CQ5j9ZTZUZnqGlNANLmW1mdLjniWN+ydZp+wajeDIApvzOXlnxl0qWKLAmnIwDz6QbipXwp+fGtAKHSLKpTxU8bvQc3pQKnFOFgLIVUrAm7UqT04Uh13vi87IdqQiTvZHGUzVftRM2hw6PVrp8Y18shZ+oDtkc5NQksJ6P2ZATtWskrBd7HEn30dMFnSdrXW73xHH2I4NBaFCTBdjm0GI5O+It2cppBSY/tiCqwC9vF/nhpZ7yowlig/e7IjAXhDFonGgM5cT37cOqcok/9hNu9uq82BDIQbNb4XSlqdo4n1tK8EJbFUVt3+Fc/YC7crI+7JapS+NAQ0vY7FZYnRdKrzuHc5ScMTt9SQLPDtk9nGGhISbjC7O7fCBJ3Zm7q5w5e5tuU1y77ihHvpfnQGbI9X2XZ59+k/17Av2oNY6JIwNTFnOZjM+td8+L8y32KVY65GU0xvaNk7jOWHkqVU5uc3xjFbck3pc00fAl58xNDon7LmFf3Ce71iUZZTDzosjWrYh4nMG/L8jXmpbgH5X53MdeFZ9nQnSpZowDCysTcPrFt8S1u7VMu1lV6rbd/VkW5/cVr+pwWOTRE8Lw8tr2CsvDJnVJSO8N8tw8nOPRlU0AOv0CM4Uu1w5F4dMLbMoZT1kIjEOboiRxf/nOOj/z6Luclp5K93sVClagBAaGJsKke5JH1Mj3VGjx+XKPpuewLjlogyCDa07b5l/ZWOOHT95lIJHF7X6JakYQwwE2+kUWJPpzqnpE33P5jR0xkX5uoc+9QZaKRL/GscPe2FCigjjRFQobpxq3ejofm5kiZWVbUwHQtQw0MgF2WVx7L9ZZzY8xdHFcH3QtqpIXVLSiD7UAF7M+f1ZvqH83HJ+yZShUynsg8mZTmrA68s9PFQK+tm9yQXYXvnGQZ70Qq0XmjJNQsiI1L4wiW42L/2wr4XxeZzUXY36UIbHp9xlJSh8iSfCwSFLbKDbYHU8VSWFisi5JvkmKQpJO5IS/0FpeTJBbQ5t5N1TE7H1P50whVIqLOVfk/UycsK2RRUEONE3fxDUTJek+Xwq42nVV6+6FmTG74wyHEop/u2XzZFX87p2Bw0ouUS2yJNWYycQPSGl12j78UEngxTlzzEzGUOquSiZV6q0Zx+f1Zp4zMlbgr9bXuT/SlSXAT5cuYutDXpG5cNWMpmwRPj/rkDNChYyYesq/P/vnFBy+lvf5+Z0OPz0jJoxBpLOa8xUnqRcaPF/JymNOWC94yoTuzsDhk7M9XjkSg++EAzApEqr2NFahE9jMOj6/dyBVUXbEUjZUaJihpdzuZxV6VjBjjrwMK9LZWThUa/JZmKgQNfk7ETd6RXV9klSjaofcl8jCguurgRd09kY5np+ZFIEiGPTLB2Iy/pE5l/c6KT+8JJ6BfmixNczhTt7EADXwlm1wzJj+JKLDjBiG8Lh8Bq50bGYdm5nMpD1r8fyMKKjm8l0Oh0W+LVuET9V6aKRK/VjJDfju9gkekVwZ24jxQltJzav5PlUpJb/XnCFnhbx1V0jeK86IerGrUImcO6Za7uBLBOP28azixcxU2hzuzDG7JAosQ48xzJhT68IuwBu63Lx6VhUBg14B04goSbJ24GVYkIGuw36eYbdAdqbDZMtkPdpSVVY9t4k3dpg9KXyTRncXKJ4UXJ7RrXl2bq0xvypUbboTkPoWqTwH77hMptxXMSWanmJX+jgN0XLsbyyAfJaGEkG88zsvAIJ31R9mWVkREKBpxgwGeVU0loZDvik9pB5p7PH1zZO8tHxPncNiscNrG+LaLhc7lHMD5bL/scUttjtV7h4JD6ZxZJGThe6Fco/fuH6Rj8mIl/udGgkodKjgjPnY3J4ifVcTg0dq4pii2KAX2Lx2IJC7x+rHZG1fZbm9PL/Pt7dX+MzJ2/K+Jdxq18hK08uq7ZORyOFGu0aYGPzkqmiDhonOUtZTz9IztTG90OR9qSqrZRJWpfLtzWaVl2dHish9Z+DixRpnpZXJsW/xftdRXMOqHX0I0Xl+ZqTUajd6GXJmyr5coHzr0OVscZqj+GbLxTGmquWsmapFwlI24kbXZFV2AP75ts/Hq7ZSuz1d8wgTXS2k3mon3OSAn6wI+4VOIBBjgD+9ZHK1IyxN0B5abv9R3x4WSXIztZTl7DRYdXsUoWsTD52YhnQgm3HSBxQQcHeQAhaLUmFUtXUKVsSVjnhjcmbKK0cmH5e99TlHZ0eSr08VPMaxoewFjn2TnDkljPuJTpRM1U4FC96TmV9ZE6WmEPuNyZkJB7IYK9spDWcqh01Sjd898vmLq2KEeKOZZV368dzpZ7lcGSkJLwgOwJxUxtm6jqXHnJaI66IbqMLOk6ZzE9g5TDQWsyHfOpwcR4aXc7P4cmSaZM9NELFThRHXe5PBM+KdtsOLDTE5j2OHa92CcucuWgGjyGFPuu1+bj5Ux/xu22I5Z/FETa5WU2HwuSN5Vas5n4SpxNcxEvY9W/kkreXHVOwJWigKpAmx3TFibhxbimD/o0sxrzVdnpTu1u+0HWVQJ7LlUqXWuVjqc+i5/NllidJFKY9XNVWsPFPz2PdsFqWZ5Gou5VpXnNPj1TE3u0XWZJtPWACg/Jl+cLFNx8+o1bOtJyrQ9lqzQc4MeaImruV7nQJ5O1BuzCD8rr62LYroC+U+jUJXhdR2Rzm6EkU4NbtHs1ekVpRxGIdz/L/fucTffOodce23Vrkwv8NQFvNPr9+iJFV1e5vLLK7f4+23HhW/c+YWgWzXgVC7uYURx5KT9OrtM3z2qTcw7P9vfxnLCrEdH0siRVl3hFsckMhC59rXn2WmcaxaaM5ck1AqEJ1GG2drQQXYdq6ukV84Vi00f5Cl9MwWwyuiaCg/cpeD710kX+sAMOrlmTknCrvb109xcn2DC08IZ+9hs8ycGalz2tybZ67aoiPJ6vPz+zwiC92ZapsvFPr0ZfvtoFfmRP2QRclBqhe7xInOYzPCkdwyI+WxBKJYmVgzXCh2WRjk+UCiTidKbe52qlyYEW3Re50am4Mc5yVqNQ5t/GgSLWTgxwYfl1Ey49Dm/3HlBBkJh6wXbcJEZ68jClCdlErGVwG5lYyn/n/R9inqgSKUZ42IV45yPCMjf0q2sK24JFFux4hV0PKcE/DdoywvzIzkv0PKdsBIeYMlrOUSJRQJYg1LTznwJp5lBtsjMR7UMxperHFecsKbvuApDaSdwFdHd/mZ6pq6lnEqkF+AO32TvAUl+dx9qpanakcqq+5K28E2phSFlxspF7wTfEfGBbxUt9UY2PQtOkHKkW/if4RIkpYmaOn30UwyfVjgwcMiSW3dyGRXoiHr+YDLFYstMRbTjD0+I8l/E17QZCWzkBX988m/j3yDOTdRLSJbh8uVlIGc2AwtVc7eupYyjHSFYJStRMpUJwRpm7IVKxTqyIMnq+KldYwEL9bpS47FzsiglplK8b1EI0g09flKzufHFhxCScZbycUqHbxqR3zvOMtFaQDZDQ0VuArQClyudAoK4XKMmENvihy1ApvTBfH915p5/ETjk3OiGApinbIdKlTG0hOu97KK73NnkFUWB53Q5Pn6kLacBM4XhUv0BMG51c+z4MaUpC3uzZ7LCdnm+9iMx9f2MzScKXcsTGC9MLFucDiRi/n4rBiM7w2yLGc9rvdEIXClnVXqlAVXhOpO0MDvHmU5XYhV8PAgtDhfDClJns3pwhS2t/WUghUC4hw6QYYknSoI41SjakeKZ7aUG2LpCa5sL40jkx9aEm2bXpDBl1JjEIqiFxstFXC62c9TsCKFvKV82EfryJ+uuL/RHPIDK2NKUm5/2C3z0twBe0PRjipnPG43Gyqra/2BiXmnWedglGe+LgqftcY+P2xEbB3OqnvquB7bslU38FzyLYFgzdaPiQOLojRA1PSUN2+e5enz1wBRnCSJzoGM1vjc06/ROqwzt7YtP3fVcZTmj/A6Ba5IBOd4UOSxrEcoFWv1epPqqS323xey/5n1LXzZ5hw3S1TmD9m7ISbJtU+9jmYnhLdEgZGfbZImgvcEIsbEKQyJZbGraSmhjNK4+Mw79HZncExRNB7uN7jw+VcYboh9ZcyQMDSpymiSza1lynnJZ2tVsKWhJsCzj7/D/v0F+rIl5jdn2B4UePnUDQC+fuscq8Uus5KT9C+vnedF2V5MEp0gNhVi0/VcztcP8GXBFSY6M5mAobQIyFkDurH4HVuPmcsOudGctqP+ypkj3pVt0K/v17B14bUEUHdH5KyAMJG5iaMcZyriedjo1HDNkJW8uB7XOlVeakwz4xypdpuYoR6MXdXKrWQ8HCNHL5zkNfq8086r9n0/MrD1RHEL98cOo1hXxO8o0Tkni6L1/JBeaKnxs2xD09cZy4XRn6uukgCLslB+u+2wJvlJc66GTsprx6LQW83HOEaikPmzpYC9scWuFJkMQ5MzxVhlvZWsSCFWmwONZ+shb7UsxT99uP3R3R4WSXKbczw8U1yOOwObWiZhRYyvPFO3sbQpUuIYqVo1nCoEHHuWknifLnjc6We505eur7Mh48jganfaYy9Ljt+bLZdaZopMGbpo85zMiwFkf2wzjHRWJPqy6GpKNbeUC8iZsVK2nC6EtAKb7Qc+3x9PuT+9wKYfGtRla2YlF/BmS6x0M0ZCxUYVVONYI5IBqQAn8yOu93KKUzCKDWXiuDcWcSZXZfL4Wk4o6ibtt5lMxN448yFO0lI24Ld2xb5fbsTsS9KjnwgkZTKY3uy7rOV83m5NlXC1TErTl942mZQZOdhuDnJ8fHa634oNn50fcFNyjk7mY145gkdlnMyO7vK/3Ev44po0E4xMVfhtDDRqGV0hfJcrAY6eKMSm7nhcaRc4XxGtmCvtgmpNzjkBrhmRlYPnkW8x6wRUJT9jENr0QkuhQSuaQPWeqYvjeKed5YflZHOjm+fRakcZ/v3aToa/dnpEVrZrNwcu89mxKiofnzlUbczNboXFjM9Nqar6j86M+fbuAhfkxJ2iYesxDdkWa3oulp4wkBNqmmqqsHm/u8hauclhS6AKC41DakGPvkQOzszt0ukWKUmuzKkzdxjIllR1ZR+/l6M4KRL2GjyyuoEj2y2tgzpRbKp8sqO9WVzXo70rkKXjVpX5eYGq7N5exTQilmVbaynVyORHfHBTFEWPPvo+mpEoC4DjO0vka9IF2w5x6h0Wi+J809BAd2PcZVkM6inH3zxL/QVBEo+OsgzvN5RVgVsY0twQqNvsxTuEvq1I4CfO3GX7O49ye1vwqkrZIa4zNZNcmt9n0BfP8OLCPts78wpJDH2bZr/I5TVhxOn7GfaGeQbS22i91OYX7szzHzwhuEOnCyNMud/JPiZZboae0Pdc3pWkd0tPyVshs1KJ6FoBv3pTcMU+Nz+kaPt8IN/bT84fEia68kX6wVN7eIHNvmzVuVbA3qBIQbbbGtkBWz1R2G6NXF5eaLErOWpZI6Zo+7wteWh3BlmerLV4VTpyz2Qibsri9UxRLBwm73w3tFjJBYrYXTBjilao4nKKVkTRmqKpVTukIC1SdsYO40jnlCyoeqHF1a7N4xUZDgnc7me4GYlCrxfAb+7L8TNncq4YsSMjkXqhzu2ewdmSFDrsm/z40pg5RxxH0zd5r2PwbE1aJAwthTJdLEfcH1k8Vonwkphf7PDRbA/Vbb8v28MiSW7/5r7FTyxPPHYManbITGa6DBjJAdHSU751BOt5MZksZyNm3UBJvL1Ep+GE1DLSC2loM+eGrOZkS8RI6Uv491LZJ0p05VYdSLXFZELdH9uEqaYmvnGss5QTg9TeWNgOTN6JZmDR9HVcOVl7sc7j1S5juap8t53j6XpP8ZsszeTLPcHP+C/qBd5oZpiRSrlsJuVO31Vo0tVujvtDjTVZNJpaqvxBKrYo1CZISZgKIntdtuoOxjZHvkbTFxP92aJHEOtcLItrMIpT1guTVaVPL7B59Vh89+XGkE5oKX5CmGq8285wqSyuQScw1WpVB7qByY/J2JEb3Sw7I5dLFVFwtP0Mf2J5KoE/9Ez+nZWIbx+J67HoCiUhiOy+g7GtTCt/YM6mHZuK31SwdNbzHt8+EBP5840m21I+XXM8vndUVnYCj5T7/N5hkeWsVDAW++haSkWiUEkqVqkT64asmRImkzBgHy82lWHmX1z3aHout/tZ9XnGiNmXxV1zf55l6SC+kOtzOM5xXpKJ41RnJTcmL9tpWdv/EIrwyOwu250qTYk0RLGBJSeu8409HDtQoay6kZBzx1Rkdts3rl/g2RN3VRuo26wwmCjOjse0m1UsOZE3FvaJQouRnCTD0GLxzAZ5WUQNBnkK1Q66/O18pce9u8IH6PTlawyOKuQaomCYtMoef+JdAFp7DUw7JLsqOEzzlT6RbOVGIwfvuKyKntFBldrLt+m/Iwqb4iP3KJ3cIelPh8TX33qcj39BxOe887WPsbY25RFliwOlnLt9/TQZK+Ti6VsAZPJj/pevfkqpyi5fuM7egbjWQWhRzE9R2l67RN4Zs3MgUDlDTyjaAfWaOEfTiPnZs6FC2rJmqNp6nXGO/XFWKc50UoLYVL+7OyjSyA4VShUnOi/MiPtfzni0fYefPicQq9+6e4qzpa4ytewOc3ihrThIh8M8jhGxKGNJ+uMpwvf0zBGbnapCtPxEJ2NGrOTE+6NrKXGqc1a6Zt/qZ1Ur/3YvR90JlbUAwPlyi+8eius16wT85q7Lx2bE87A1tDH1lGO5UGrUfV45EmPJDy4EvD10MCbB3IHOxVKgEOGbPZs4nXKSag6sF8Q9NLSEYWxwfyR+p54xOFWMlcXKDy34krcq3uOTeRGVMokt6YaGohJkdGGAe+Rb+MlHaCeZJN/ngNuH7TZ4aAGg5JP/3vwXSWSA6Zf6r/P3lh5hX6IhtUykUqpT4Eo7x/mSmIxcM2IQWnxtf8IjSeiFOjd7E95MwIFnK3m5F+uq1TIn0ZVJK+rOwGY1Fyri7u1+hlMFX5EaNwYZ5iR35Uu7HpdyBU5KuDhnJnxtX+cLixKGTjXiVFMojaVDL9RUaG2Q6LhSSr4xzHC+OOL9jpjY7g1TLpRSJVsXcvpEOdlaWsrVriOvjRgQbvansS2GJgjuACfyQ7aHOWUO90E3xyPlgVLO/e5elhN5ca1mnYgkRQ1qx57J2dKIr+5NigKBgE1aSKaWqmt5p2/hmlODvCNfEJonfkR5M2J37CiC/aIbsO/ZynjO0FJVjN4dWJTtaZZdkgoV40SRZmgpdcdT5Nqv79uKr/V4tcc7raJqe67kPBlNY6tjvtGzeELymZbzffx4Wuwde45qn4WpxqlSh11ZgG0OXcaRpopKP9EZhAZLMp8sTjXFFfMTnW5gcUGiXR3fYRiZajI6Wz/gd7ZW+YwkEO/3Sxh6ogwiO+MchYx4xm0z4m6rztmG4Lp0RzlMPaYvC9+Fcou5hX1CeY7Zcp+9TVF8vLl9gk9duqK4Pf3jCp1OSSnSQt9md3+W9VNC/RV4DpnsWLlmD7oFutLW4NTFm/QOq1RXBTE7CU2S0GT3riDPzp3YxsqNFflatyJa9wRy0rh4B7M6IJKopLU8gCCl9ZpAoeycRzB0KJ0SKNX+O2eZOXOPRCIaw/06D27Xb55SMSyanpLJj+jsie9kJU8qI3PgRp0CI1k0Fqtd0kRjY0MUfksLe1y5fVoVPlnbZ7bc5l2Zx9YLbT55+jq9gTjuu60Z1msC/fru9gment9WBHrLjLh6OM98TtzDvWEeS09oST7UC0v32JJBulV3SNdzVdG8OyhStH1lEQHwzb0Gj5QFsnTkO7y4vElHKuniRGdDokwZI0YDVSSBaPVNEE6AghWqdx6gK+9vPROga6niIDUDi6dnDvkfrgtu2HP1mL2xSUUu4ApmzCgWKlgQJPUJgrM1TDlXRKUM/Nsd8NOIn1qa8LA0OqGpQnw3hw5X2mK/l8o6N3vwdG1CKUgw9amnXScweLLWZf+B4nBvbCvaQJhoSpW7MdCxdTA1CBKff3z80VgAHP/GaYq576MFwDCm/oO3HloA/EEfwB+WLW+l1ORL/h/nHmNzaCpU5tCzlKrhwNN4qTFQEv8b3TzzbsAZ+Qw1feHK+qg0Tvu32ybP1DQ1sfdCg2WpqBpFBoaeKo8Nx0jxYp3N3qQ/nxLEOusTwuwgo/LF/txSytZQeAkBPFFN+BPL01wvHehF09VNyRKZTpPJWtemjrlnCmPe7+TIS87RIxX414dt/u7pSUZYmXlXU4TzpWzI5crE/M1ha2Sq3v5KbsSX7uWUCu9atyiMOSW3pBfCoZdRBEntgYWPqScMQlNN9HEKd/ouj5Rj9d2SFXJFJsprGpQl2TpMoWFOOQS90KBqa8pMsemLgmgyTM9lR5wo9JSj9Wq+zy/dE3yMU4WEdjDlij1b77E7cqlJROfQy3C7n1cFx5kifKspCorHq/Bkrcvb0lF4c+iynh+xKBGeg7HDrDMNtH2nWaUTTP2v4hRenhWrdT82GIeWuqdlK+LF2Sa3uxX5fPg0nJR52Z77r9+b59+/KFtTgyJnS12ljDs/u8tep6o4R0Pf4bnGAS1pJjhf7Ah1m2xf+pHFNYk0Pblwn6IdKAVammq0xzlOz4tipVjq8frVizxz6X3xeayrifszj75Dp1XGlZy10vwRGdfjzt1VANZPblIqDFSBZVoh9+6e4MwTYl9WJiCW+zrenqPcaKLJexr1szjVHquPfwCA1ypiFUcEsoWUxobyKkpjnaTvMJa5bkZ+TDJylFJueFilfPYeyGdv9tGbjHfrCnnKFAeqvZY9sc/ccQVLKiuNTIhuJNTXRYF1dHsZ3UjotcUzcHd/gYsnRUEV+jahb02NF1sV6vkepjwn24xo9oosSQ5SzvHw/Iz6fs4M2ZX3/+XVO7y3t8RqSaBOfmixXmlSl1EjB6McW0NXIaRX9hepyxbq3U5V8eBAmEMej3MK0RyENj++flf9VjTW2OlUVVtU11Iacl+2IWw5KrLA7vsullR1AqwVuzQ9VxVGFyptgnjquH3oZRQNIExsvrE3xxPVyXutsZYPuCPDY7NGzP7YUHL7tVzAPfnZ5+Y99r2pG/d6zuaFmZBvHojP1woJOin9SRENrOQmXEH42EyoFpU5U8NLTK53J++4xjC01IK2ZIUYmq1a8mVr2po6XYjZ9wwer4wYxwEc89FsD5Gk35ftYZEkt1GksdkXL8hjlYgr7ZgfXRKDyP7Y5l+0hJT48/llNC1VL+K3mwE/Mq+raA3HSDG0VPXUn6wavHoc8YVF6W4dasqduWQnfO3Q52+eFhPoRj/PNw5TfvqEmFCu97LoGvyLjZo6zi8sioHoajeHbaS8MDN1WI5TTRU+hpYyjnQVYvtBN8dMZmp+1glNvisW81i6ybP1SKEqmpbyH61luCqltUVrmj0HogCZcAI6gUbOnJ7v1jDLkjuNHTG0lDjRqExWXKnFIDL42r64Hp+eC9W1G0YGXqwRphL9sYT1f0cSzPdGOsvZVCnUXmz0VPusZhscepY6/7W8cPmdqMySVKzszkpl1L/YKHOqgMp6+6V7Nc4Up4agUWJxRvJX2n6GI99UqNSk4P3VfTFJ/uSizbwtisA3jrPkrUStMHNmRJhqNMcTgzufWXeav3VvkOFMcawmrK1hVmWmvdfJ8YWVHXXdvdgkTnWKEpWrZDy2BwUa8pz/6pk29ye8EDMkSAwqjni23t1dZrnYoSRbM/1xFgOUzH+j2cA2IpZmRZEVRiaPzooi6HhQJJ/xlHmkoSf0ggz7kqNkGhEnakf48hwPt+qckK2pX331eZ5d3lQO2mFoYdsBi/J3vKFLpdYilkhCJt/n3NNXVCsrjkxmpH1AEpm09mZYmmnL31lgJtFoydDa2uIB0cBVobbRwFW2BKO9Opt3Vjl5Tkja01jHbxY5uCtiOk68+DZvf+UTLEm7gcaT17CKQ+Wj1PxgjXZTnO9KJqS+uM/9O6vieSkMsB0fUxaROwezLM4eUGmIYvdidkxfomFhaHK/OcNQtsFfvHSFfreIPYn16RZpVNpE8nrcPZrFNUPqBXFOmpbSllywfL/IaqmFK4v37XaNRr7Ht6SdwMlih/c6OU5LntG9QZ4Feb/P1g65266rdlreGZN3xmxKpOlMVQwOOfm5ayS4ZshtGdS7Vujz1T1xPX5y/T43W3VVQEyiS05Jx/bjcZYo0TmRnwbzLsnjOBjlmHfHapFwudLhe8cVhY7eGWTxYh3ZBeOf7w35iUZBqdscPeFUYSLscLFksCyIbMyNgavyLXNmgqGlCvGZdQPCVH5Xn0QxyUVEpPPVdov/YE18/k47T5hqXJXq4hSbIy+hIY2VGk6ixrxBZHCqELAzdvAeQM8ebn80t4ftNglVfib7V/gLJ8XL9HsHBZ6uCY8iEETmSTtkzgk/BNnGqcY3Dhw6oUz1Bl5uTJ1cHSOhYMbsyNZdkqIm0Os9i61RxJ9dFfsaRSbtwPrQ315pm6wXprdoQlo+mRd+TRNi9pFvsuBOs4guVXpsD3NK6eGaCRk9UTL2R8qxgr8vV7p876hM3ZmeQ8I0By5ONcJEUyRx44HsqQ86WZayITdlgXmp7HPo2fRkkG/DifFiXTn3ruWEd9FEWVe2I9oTgnS1y7cPKtwbivP97LxPNzRV8G6caiSgIPD32wZr8trYekqUaB/KdLpcGfLasUAVVnIx3VBnciUbmYiiHRLEU9XZ6AGy6IPtyF5osu+J6wtwsdribrfMWH7/Rs9iwU3k+YrnY1WqyL62X+SlxlDZHJwqjDn2MiohvWj7HI6zysrgfKnLv9kSk8/ZYsyTM8e8JxVHK/khYaLTkDL+w3GOnCyGJltFtsi2BkVmnDF9ScReLnZ477ihfJGyts+7BwtcaYvjerI65LHFLe5Ls8Gm56oCa61+SLHUo90uA8LZ2nE8rm+tAvDouesc7jeoz0ifHN+msiSKIDPrMW6W8aSJY77W4Xh7DlsWeoV6m/ZegyOphjv/xPsEQ5c7N0SI7Wz9mKLkIBl2iJUfMz4WE3XkZ3BKfVr3RWumsnDEsFWkdkFI9ZNxBl2iKH6zSDDIKkSmsLZL2M3jPiL2HW64vPu153niTwoO0tFr57GzHrZEwCZ8LICdD9bRtJTGCVFE9o8qOPkRBzJ/bvNolicvXsWS6AhAXyKLo1GWILRwJWJnWhHtTok92bo6M79DkuoqeLczyFMp9jnuSAf3yFKGoB8cz/LY3I5y4J4U3pNN1xLC2MSa+Bl1apySxc/hoEhJ3l+Ahdox948alGURXS728P0Md2QQrxeb1N2hIvM3hwVqkhB+II99wlfa7VTxY1MRyrO2z2v782rBkrdi1qWtxTgSreZjiSSeLPT55xsVnqxO3icfx4i4Ik1Bn6h2+dZhmfX8hP+kKZ+wd9pZokS86+J3JopR8bt9uQibtNFnMqGyVMmbApkey2JsMRujaShTyzMFn81hhtWc5HTZPoeeqwQ7vdBUwpZbfZcFN2RzaOMnPj+3/9G025q/tkYx9/0rynrDhNqPbDxst/1BH8Aflu1HlwI2ZKDn9iiiF7qcK04iPTR+cEGs5N7rFIhTjZaEjn/vUONCERZS2fdOwYsTDPmsHnsmppuyJ6Wja4XkQ47Vpwumat05RoxjGGxJ91dN06llYEUGi0aJQFIABRlPEJ6VnM8wmrpV3+nniVNN9eebvkiU/4EFMQje6me5KBPRr7RLvNeN2OqKAfQ/W3fZHeW42Z8WdrVMqqDlWSfkGwfiGD89F3K9Z/GkTLnfHDokKcpzqBMYxKkwawOBQjWckPzEg0hPFCF6s5+nlol5Thoi3h/myOgpR1Li/XYLfmAhYCyztX9oqc816YNjaim/2Drib69l1bW92skzL3Od8lZEN7S5JANLD8YOe2NHtczqjs++VJHNOj5BYLMhyekasJwNlStvziyRNSNqsqi0dVcVZzXHI05d5XW1kku4O8hyqiCuj6Wl1B1ftQF3h3mGkcGdvjinhuPwXF0Mtou5AbuDApeqYiL3IpOcGSrZfsUZ8+vbddak6ems4/O9IzGpfW7pgONxVhVUaaphaalSIAE8f+Iu52vi+vW8LCPPUeexWm6p1lwQmdzeWmFlVnCSND0lik1sOfn+xhtP88Tiliokqiv7qm0VDl1GnYJSs3UPRMHnSdSpf3eFYqnH+lnRjvrnv/55fujRt1k/LThKuhXRPxYFVKtVYX5xj0AWlNXVXQzHZ3hd8n3CFsWFI67+7nMAPPKD32J0b06dr5Ub486LiZxEI7PQJNyQxO6By1zjCH9bICmNlz5g+MHClKxuRfR3BGK116yzNHugeFOGFWHnRziy/VbJDnjt/Uu8+IwIS92+e4KB5LKcPXeLt959hDPSu2ggfY6eXhXna1oRvpehIzlIupbya9fP86cffQeA4TDLLemLNIxM4kTnHWk0+dTsLq/vL9JwpnzJkjNmX45rl+e3+ZVbgoNVtmNOAKvSXPJfvf8Ij1S6Cg25ddxgNjfAls/p+aUt2r0i/8sHAqW6UPbpSsSz7g6JE10FHJecEfuDElsytPaJ+W3OlLoUpCDlZrumWnE1xyNrBTimo+7TxVKqFmR74wy1zFSQ8u3DMveGCefl2Lzv2RzKOJQzRZ+sEatzGEUme2ObExINvNnPogFni+K5PfIttWgq2QnDSCcvkXdbT5nPjhlG8v0ITXLm1K9p37NpOIF6jx9EsWediH3PomwneMlHiEEkyfdZ3faw3QYPkSRVhf8HC19kVjoC9kKRFj8pdDqBzrI0i9wZCePIiWR1FBu80bS5WJqoHHRmnUgp1qJEoxVoKhftWhfFX1rOioyfSXp7mOgY2nSA2BhkuNVPKEuPgMvlkA05Ua/mQqJUo2RNJKoZPr8w/pDVfi80+UdHYlX9d5cX2Bi4DwTzwpmiWIEt54b8m60KBVkyf2q+Q9vPKEn8JApkQl5/9Tir/IeGkUi5b8gJ4nDssDm0eKY+KcAK5MxExRAUrZhBaLAmB65OYPHtI3HMP7o0phtaZBQ6ZuPFmjLEdI1EekuJ71fskD2J9uXMhFGsc6U9WTXG/MB8rIpGU0ux9SnU3gsNVnMeV2W8zFO1Pp1gsqqM8GNDDbZeLIrPjYG4QI9VPOqOp4rbcWRyrSsG6rId80zjkK4/JXi2/Qw5JdNOud4tqLbnxXKH272SCvjcGWZV0biS7zOKLHUcth5j6QnvStTl7sDgk3N9dkbitwpmrAbt1VKbcWjTlZORbSQYWkJRTlT3+yWeWt5U3kZpqrFQaarJXNdSxZMp5IYYRqwI1IXcEF1PeGtToD3PnLrB/f05zkjydeu4Rm7ix3RUZ2l5h35HPPRzZzYZN8v86+98DIA/9yO/TjzOcLwtipl8SYTD+lK5tnFvhSWZGTdz5h7XXn2cWelkfXhU5/Sj18jUOwAMtmax8lN0JAlN5ZgdtAu0NhdYfEko4cJmgcS3sSriOU1jnfFunfwFofhMhhbJOEMolYSDgxp52ebzezky5b7iKHndAkms40ol5ahVIpMb0T2URO7CAFO205xqj1tvXqIm1WuHR3UMPSEvr9dxu0K11GUsVahpqpHLjpT9gqalCjmq5AYc9UtUHwgbTlONoT8tOEwjZizRxEGQYUZ+V0MIFSbIWnOUZ6V6zPfurwKwUujRKHbw5Dsx9B3GkcWc5EpFsaH8mO50qjy3skFP2hYcDwvCdX5FjD13juZ49ajCc/L6AaxIj6XjQZHf3p7lYw2x39u9AjkzVrzEMNFxzUjxme6PLFayoYriWcmOea0piuTzJZ/tka0WJN88yFK24UCaz77UCNn3LIUkDSONNYkMbQwzOHqqMuEer47YkkIJgMVsiGPEypG8H+nc6WuK7rA5tGlLp4Enaj5BrLM9svATn58/+IiQpF858f1Hkn7s3kMk6Q/6AP6wbLqGknvOu0JmOyko5pxpm+p0IeHOwFLE5ObI4clqyHsd8fkzNY+NYQZP5qBV7ESEgXri35crCRv9CWE6pmDGqqACEbUxGSA6ITxdS8lLXkAvNKnY0773nb7OYlb87afnfA7GGTX52nrK3tjgr8wI87ytocbmUFMcpWdqQ1VQ3R/mWMqmHIzFMb7bKlG2IxW1kdETRtG0aFjMTj2DCmZMOzDphbkPXc+h9DXJynbjZOK/P7LJ6KmKKJh3Ix4X4z/d0MLQUlV8dAKdMwVPSdzzZiwS6GX45T/dtHhJuvreHVjMOAkFeX61jEGcJiy4E1fsPMYDCN6Z4ojfO8jySHlKXp0UGAdehnZgcF5Klr+0ZfBXTg0JElEkJKnG4dhV3CRhlDdVlb3XrKvz9WKd+ex04j7yHP7hwW/zCxeeAuBGt8RCdqwCcR+MYVkrpMSppmwbVnIDOkGGS5WOOA4qlG2fc9Jh+b96c52/84SY5H/v/gmKVqQmQcf0WSi1GcsJ9lTlmM4gT3uCnuX6dIZ5liVXqN0tqiLpf37nUX7m/HWuyjy2C409drsVnj0tPIV2DmY5vb6hioRgd46jjvAUWmyI9t7sSXFch3dWKDea/MRz3xXXq1Ng2Jmmz5t2iGbEdGQhOFNpY0vzv823L3Dy3G3u3TwJwNmn3iPybJrXxDNeXDgCPaF1d0nta4IEmVkP3UhoviVCewuLh9iNNsgWVf/OIroVqZW4nomIOnmV/aZpKc6CmNi9Tp5w4GJKdWoS62xtLYEwr+b8E++zfeMkvmwhaVpCVvLb0BNsK+RIhuO6GR/DiBU5Pet4dPoF5mQheG1zjbhTVa2tIDJZlKae20czZMyQrOQkDcYuphEzV2mp6/n1u6d5URYrE0d0gHudKqfrhzRki9Q8nME0pkV2o9jhsFdmWSJNbx0sULBCTktEMAxNDuVz2gtN7h7NKn6gRspqscs92brNGBGfXdzjjiSBtwKLjizeHSPiRD6gJNvEc65FJ7BZyU74gA4ZI1aebSACtZHX9o1WjgV3gjoJ5/qJOOWpWsC7LZsna1OagGOkqn0fxKbiUa1kA/qRwYz8jWvdrIwaEe/PlbbFM/WpL12YahQsjX0p6JlzImxd3MOq7fObu0XmXPhInYYeIkm/L9vDIklueTOhKNGhtm+iadCWobXzbsTF8uTF0jhb9JVM+7eOBvyNNZ1lWawc+jZxonFOevvc6jvkLShIQmDNDlmfl4aGoyyuGbMtVWNnChFXOjarsqe+6CaEiaY4O/1IVxP95cqA5azBl3cm+WE6rpGoltDJfIitowqd+yOdc8VYtYF64VSxN+sGZM2Us6WJ5N+gHxosSZ+Tt1tZilaqEJ+Pz0b0ZLvvN/cTPtXQaAUTZ++Arx8lPF2L5L8TfmPX5fMLYhC8WArZGTus5adWBLYsispWyPbIUcdcMBO2RhlqE/uEROdez6Eor+WyqxNLIHRvnPJ0bUScTNttSYpCWfbH8PyMr3gbppZSsGBzKM0nM4YqGrdHJmu5kI4s9H76RMT2MMu69PKJU539saMiC/a9jELGCnagJgCAnbFLmGap2hMPpjF/d+Ez9ALxfVNPyVkBf/m8QGG+dOskp2VcTJjoxInOeRlCerNbYTE7VMXZc40Dur7LaztCLv75+YBATiYfX9nkTrOhOEpBbBLFhiJuH/eLFN0Rj8sJ1DBi/ue3HucnJN+lPczTC8Sz9RceeZ+xn+GMlJ5HscHltTsEEmXwQpvWUU2hJWFkcvkxEdnxwZULLFkhelcUG/lin8izuX1HFDY5xyOXHdGQDtskOnalR1XeN01LFSG8PnfE1q01chJ1e+eVp3jq898iku23JNZJPJuM5AsWV/aw5kThFrddFj7xLrG0rohHGby9Go5sv5UubeDv1hjfEy01Z65FEpq0DgQatPr8uyQStQw8BxsYtMpiX5HJyVMbbG8KEvjwuMzKpZu074m22GiYpbcjzj/XKQolmPSY2tyb52BY4JS8tlnHozfO0rsnLAJquT73OzXmZkSxcnXzJO5IFGdnVzdptSp8SyJ689khhp4wmwp1W8YKqWV8mrLtlbV9pU47UW6haSmBP0WKlhZ3uSSf+e4oR8YM+bba94j1+gFbRw31DEzsA35l1+W/mhtwvSVKjFrG491mTYk5nm8c0vZcnloQhfJ+t6I4jf/kdoO/fn6bbdkG/tZhjgU35VRRPOMasDdyFf/vVMHnlaOcWgzlzFQtMh8pD7jey6mg7vOlEedLurIU6YUmvUBXPE7XnPrMlayQN1sZlrMTLlTEai5RY5GhmdzsOeQtcVxxCvNuyrFc/CapQV4ulN5pFzn0IxayxoeoFQ+3P5rbwyJJboaWKvJxnEKcoNptaTqV8E/UCpN0+Z9aCOmFKa1g0tYRZOU7/Yn9f0o9E3GgVhwJdyTfACCJULlfYapxsRQqTlKUikFg0g89V5ySyXVSeqHFCzOisBnFOjkzZjk7aU3FNBxNEbcX3JR+pDPnTLlBkwEiiHV6gU7OnF6LBXfqUrucjbH1hLlZiWKF0yTtH10EiPmOlLk6hsWzVY2toTguL9Y5VxTmjgBFO6GRCdgaiutzvafzXF1MrkGiM4h0toZi3xfLMUU95tVjcWCfnfcwdWESB0J1N1Gg5UyXD7o5ZVjXDy32PUsd5w8v9bg3yKmVoGjrCS4CwPeOszxTEwXFvBur0F9xTjbL2UB5pKwXe2haqnySanbIr25LAnTN4WK5o9yFJwTxiZoniA10xMAPUJGk0+aEZ5RJOCkl3FuDAiUrVBlZVdvnWrfEOTnBZghxjEjdx1PFjnJh3mrXldMyQNPLUtNSRbIdh4IAfNwR/845HhdKQ3Uc9XyPexLd2m3VqBd6ZFyp9OoXGQ5zitT77CPvEYUW3kCS0y/cZOeONIA8fYc7t0+yvCRIzrbjkZ3psCAdqG3Hp9BoChQHiAOLwXaD0opAx65862kufexNAAa7M8w0jhQhevHSLe6++ihLZ6XHUjdPmmqMZYssF1gqDHmwNUvB3kF3xd/e/Poz+KHFYz/5NfG3uyWMrId7Tnwe3TGxygNykrjtH5fZviEQrHK1zbBbYP9IFAXnHrnGvZsnqddFwWXaIf29ulK02XZAKItxywrJF/t4MuJksX6EH1lKGFIs9cg4PkdSSeeHFqcbe8qKIGf73JMKtK/cPcknl3b4xKmb4tpFBjvtGuWCuO+v3DlD07cV/+eZxS2FDmYdj7GfUf5Laws7/PpbT3FWEruvHDd4dn6bp2V4bppqRLHBTEE8m7qWsitz3X5k3iKITbXIOBxnWXA9FRgepzq3+wVak+iVB7Lp1vIidNmWLuJ/avWQX9psKGuOA89kJhNRlBJ7P9aZc1MlKrH0RHElW4FNJ9AUqduLDVqBoTI5r3QyrORi1TY/U5yaWH73KM/TNVFcA+yOM8SpxtZwYuya0Ao0zpfEd7627/J4NSK0xecFa2ovYmgpl8smYQLhRwnGPESSfl+2h0WS3A48g770QktTqGSEwgGEJPzOQAw0li5y2NYLU+VKwQoZRjKGw0nxE01JSZezHncGrsoPeqftspoTE8J/uv0V/v7yD6kWWtmK6ISmmriDRKMfasw4k5VPRDdw5X6KOEaqeuYn8j7fOczwqXlRJASxIci6cnCNUrhYGqqJ3U+mxQiYAoaWA9GRb3Kz57Ii3b1v9Q2eroV8R7pTmxqcL02NFffGNp+bnxjJxWSNWCFN9UzIIDK4KtuRSzlxjhNH7qctXRlN9kMLS4eXG2Igut13CFODJ6qxunZZAzXxZYxpodJwfPKWQUuujFfyQ+6PyqzLiJf/8U6Gp8oG87L9drWb44lan6sdMUn82PIxr8kWyP5Y42LZJ2tKPybEYDyJj9kb5TC0lNuS2F7PJDxSFtf5kjRvnJhJ6poYrCfBond6RU4Vp9YFBSsga/vcbIvfbmQC5d7tGDFf38/zZ0+JAuNWp8rlSpuyJGNPzBwv16VsPzY5Hom/NfWYcm6gZPsZI8aPLHryej26ssm9gzlykqO00WxwsnJMKI8rY4U8JSdIy4z4YG+Romzr1HJ9hp5DnIoLkiQ6g16eE09eZbJlpSzfsEOyjkdlVVgZ3Hv3PJXIxJL33HY8+oc1inOiyta0lNC3aW+I1t5s/ViZQ2byI8E5kkjAvXfPs3L5On67oH5LtyKyEzVczsOT3ldOtYd/UMFZEr9z4c+/wvhqWR2vVesTdXLE96Va6e4yxVPb5CqiKDCzHusfF0Rsb7eOaeVYlsq57dur1GotMrKt6o9cNC2hKoum33rjaX7gmdcA6DbL9LpF9VkYWpxeuk9bqteGgxzHnTIz8jmKImEZkJHXfrNb4bxsr15e2eDO3iKhvD5jP8M4tFSkyTMrG+y2ago9Oh4UyVoy4HeUY3VuT/HKgoMFPn/5Ha7cFsTuC5Umfc9Fk4VN0R0x9B3lf5WTjt0gFmi6lnJJtubudqqEia6CdYPY4OOL97klkab8A6aTlyt9vnc4qxRqvdDmcwtdDuWCpGyLDLUtGVQthBeOsuOomLEKqW0HJifzoVLRpQjV6nePxTO/mkvZGhpcLE08mTQO5XjRDQXqP+ErFa0YU0tZlSyCsh2yP3YUh7FoCarBhB/ZcHy+N8l9y8V0AoO1vC98kj6qLY2nduLfl/09LJLgYZGktoqdKILfxVJKgkZTurpaWspp6XL8b7dNXm5oDOSLmDMTBpHJYxXxMtwf2cw5voopudbN4hgpsXzeinaqCpe/v/xDBInO7Z6Y9cPE5nKlr1CGONXohSYjWQjd6OaV8yzA5kAnK+/gwdjmYjlmT67e2r5O3kqV/X/TN3m9mee0LO4aTqDaOv3Q4o1mhll34qgtFEwTcnrWtBlFBk/XxN/uji2FrE1cZ691J4OYTy806YYTl1udQ8+gH4nvl6yQX92x+FhNfP+rx0M+VRcj0aIb0Ak0TktSuGumLGVCbvZk4ZOLOBibKqakF5ocyPDfJBWD5DdllMjPrDg8WeuyJZ2Of2YlpB+GKkjzYmlIL7B5vCpDSAcFJgYBLzWGbA4KSu47GQgn/IWCFXK1m+OMvJb2A7lu9/pFvFj/37iVw5Hk/hTtkP/mhsvfuShW+ze7Zap28ICU2OK1Y3GMf/nsLntjRxFvT5db3OuV1eS0O3YoW5Eq7s4UB9SksmmjV2K50lSSbdOI0bUHZOzHM8yW26qImi90CGKTntx3OTdgRxZuWdvn/NwuhkThcrkh7XaZExJ1uHV3jbWlbQZS/aUZCcWamOTbBzMsrt0nli2xUrmDbiRK3VaYbdI5rvKVX/88AF94QqBGvW5RfR95bSPf5uDeIvV50ZqamT9AtyLFDcqu7bPzrUeFug4wiyNFzPYPK9iVPmFTFFS9t+apnL0Htrin/kZNeSKBKLjMOR/HF+eRhiaxzAGcFHWOLhC95nEVTU+VMWXn2klmlvdoy0Lx04++o5y701Sj1jhmKGNZBsMc3VGOzYlpY6rx8qkbyt/pg/1FXjsucUYiK1ujDM+tibbvlS3RshxJrlFzWODswg5DOX5sHs2yXDtShc1Op4orVxiWEbO5P8//eFt899872+e1G+dZLovi7U5zhlFsMpbFfcPLUnVGvNcSz8RSbkRPtlt//MwNruwuc0KaWupayow7UrzEhUKXw8GU+Pv1/QLllrgPT9V6XKq0eb8tzl8Htoau4g1l9JS57IiGO/WSe71p8Ok5GT/Uc2g4k8Ws8IpblGa9rcDidGFMLSOOo2DGaJqt3mfXjGmOJupggdgXzEnagclKLqEoEc5f27G4UJwCNY+UAzkOiPs05xiKChEmGjsj0LQM/sM644/89lDdJpUB/07ti2zJMfKluk2aTu3td8eW8vmZcxLm3EBBy3cGFotuzC8eiMH4C/UScYqCh+ccn30vo/yLokRTJN9faN3nc7kTqlgBOFtu8xvbYnBdcGN2xwZPVAVy8HsHOS5XxHeTVBhCToJj321neLziq969qae8cmjxmPQbyZkxbd9ULURLSxW5fC0/5ti3VSvqwLPJmzHHEsZ+penxMysat2QL8UzBUwTPYWR+SPWha3Crb1GV6NiRr/F4xVMchO8dZ3m04tP0Jyq9MV/eESuwz8z5hKmmCsx512Nj4KqW2TiGxysj5artxTq/cyiKolPZLD+42OVIThjdwOTAM3hMOoM7RsQvbOZ4uSGOazk7Im8HCiLfGeYVQfznjl/nP1969ENu3bVMwDvtSTEXMed6ytvoVLGnUJWv7lZYzMbKwG8cWThmpMjobT+jEtBBIEmdIKP8msJE57T0m7neqtMOTOoSsYhTjbLtq/iHMDEIE53lopjIB4Gj2m052/9QUQRC5j+5D4XMmM1ulUclTwTAC2z6sphbmjmkP5TS+vyA371xgc9dvALA7mGDsxduKu+jKDApzTbR5PPj9/IqX+3w1gnC0KSxItAwqzhkdFBVhY3pBPi9HJpEAzLFgdoPQOfeAvkZsS+7MGJ0VCErHcm33zlHud4iI1uuRiYk8mxlELn2qdfRJb+v+d2zFFf2QC5QzPKQxDeJpRO8Nduj8/Y6RRlL0r62SuXiXY7eOQtAeXmfQLbxNC1F01OCScv4xmkWGkcUyqJoMuyQ7735OI+fvyau6zCr0B7Pz1As9GnJNmel1GPvqE5D2jy8v7WKbcQsVQXiNfYzzM8esr0nWpu3WjNcbAjDy0JuyHGnrFzSvcAWZpPSRd21AsLYUIahYWQqztpE2bYj269BYnC+sceebKEVnRHbvbLiMJ6qHvHe4bxqG8eJrlpvVw/nKWd81TL8v9/S+DtnEn71vih8/uYjt3lrb4msXHQVbV8tGhruCB1UiPNivkfbczmU/367leFiKVQLy3+1HfFDcxm1YLH1hPLEDyk2MLRUKWlzZoxrxHxXeqU9Xx+iaymbQ3Ef+6GuooZeOdKZc3QVcVK2RatsQl/ImTGHnqXUsSfzHv3Q5Ev74tn7S0sOTTluWZroJpSsGC8J+Dt3//FHom5rfalBMft9VLeNEqo/efjHXt32sEh6wEzyB+fFQ94OTEw9VR5EaSpQDRAtsXZgKofYrJHgJxobA/FdSxeEvslK6Ev7Q57Ol5RfTxBrvNcR+zpX0qjYseqLNwPRf1f8p1inFUzJf3sjjYrkBJfthJwRKzVbgkB1JqRF20hZzXmqeLnSMTlVSDiQKddnSwHBxDzRitgf28xLvsbtvsO8G35IoQWwNZL5Sh48Xp04aGvUbNFSA5GhdqnsK7JkmmrkrWko59bQ4fVWzMsNTe37tOR93B1kKZiximmZd4UH0zP1kbzWEbf6eXVfTuY93myJiUoDggTOFKU6x/ExtZQv3RMX7FLZZDkrVn8ArzdzPFcfcEdOfEs5T1kPdAKbpdw0emYQ2h/KpQJ4p1VUAcB+orMhJ9ucmbDoemxKzkktI6TDkxDScWTR9Bzlmn3sOVQyvuJkWHrC3kgM6rqWsiQVbZPj0oEn58VEfq9dI2PEXJUT7qeW7yn5t2MFxImu2m+uGdLxHXYlyvBTz7zGtTsnlXlgpdwlCGyO5L7OnbnNUJKtb28vsVBtMp5wsCodirU2+/dFS+zEIzeIRg7mJBPryjkVWOvkxpRW9tl48yIAi2c28DoFjvbFQiBOdFzHUy2is8+8i1Xpc/jWOQAODmc4/9zbALz5zee49OhV9TualjI6fiDw1rPJrhwQyVgSszSkc1WgLaYT0D2osfCkKFwS38K+4BNtyAJ8Zwan0WawJTyHNCPGyIRklwVq1b+9iFsXRUHv/qzyRgKBuh5uLHFvTxC1z5++je34D6BHurJAePX2GV6+8D6xfF/SVOe9zTXOL4nW5rXtFdYb+xxL5KhW6JHPD7i3J6/1/C6v3RaFm6GlnJ/fVt8V/y1RRVNvnMXQEiJpNqprCSVpNfDfvXOeH15q8o5UEX5icYe8M+Y//K4QAfw/X9ygM8zjSGVtd5Sjmu8rTtup+R10+b68cvvsh5CjONVZLHToSf+ia50yM47PP98Ui5BPzOr0wonUvsdcvsdAPre6lrLVL6rxZDk3pBtklLpt1h3z9f0iphwTT+QjjiWafCIvFl+FBxRoq/kh/0iiZY9XbBbcD2djPlUTRV/Tz/DtQ4vPzYtrZ+sJv7Lt8nw9Udfa0EV6AMCcOyZOdX51WzxrrqHxqFzAfvPQ4IWZhF5o4CcB//XOR2MB8LBI+v3Z/ndTJI1GI86fP8+f/tN/mn/4D//h/89/96BPkob0lJHuzRNe0cFY59SkNRUZzDkBxxIJsfWUnbHJs3WxirzbzzGKdcUVylspW0NN8VkeKQe83RKDxbvjDp+ulClZk4k9IEx0tSKx9YTbfZNnZZFwMM6wOZyoyBJsPVEI1XphzM7I4UZX/NAn58aMYoOynNxfa+bYGSV8ck4UN9tDm1OyhbgxzGDrqMFlUpgtyqIpSHR+ZTehaorjfqKacORP7BIimr7JY1L+/U83sjxTM9TqruF6/NK9HOdKE8dtn2ZgKWn+K0c5zhXFMf7drS/zQ+6P86QMmSxbkXT+Fsf1v25q/PiCyaFEuHJmSk5+NsnAa8iVYT8yqNqRWnH2I4OiNS1A/VinaE0RniDRmZWQvmNEjCOTipxsDkY5XDNSxO2SJQba+IG/nUjt32pmOVMM1Yq0lgnoh5ZCpSoZH9cM1YRyMM5yttxSk9GX760opPHFuX02emVWZDYbwDC0uSc5S7WMj23EyoPpjeMql+R90LWU+8OcKk4/sXqHoefwvjSbXCt2OBjl1ar6R0/fYDB2WVkUiE8cGXiTNk63O1nuqAABAABJREFUxNrqFkcHglNSyA9xciN2thfUcRXzA+qLos016hSpnRGxJN5xmf5xBUcaopZPb7H31jny8jh/+9VnOVk9ZmtCAv7xX8dvlVQsSRLr3L8nkKFKqcd47HDiskiuD/pZeodVZRFQWt6nvblIeVkch91ok8j9pIGJZib4TTHYG5kQq9ZlcFecQ6Y0JLNyzK1fF/5NhUKf2Wevsv/qJXHci4fKAmDvtYuYVqjI5dHIIQlNBs0yIIjbraOaMoScrTWnAbb5EcdHNRzJMdpt1qkVelSkrcPeQQNdSynLvMZWt0SS6FgShTGNmO5owpVLsYxYkbHHgU2j0ubXr18A4FNrd/BDi1syg6/hDpW6cbNdp+4OFcrUH7v0fZdVSajeadYpuiPlhZR3xhz2ysqTKfPAomG/WyFOdFre1BvM1BMcaTba9B0cme8GApWaCAQ0LSWIDRx5fl/fazDnhEogc7Vj8HLDU8au827IYnak3sVvHtiqsDG0lF+4Z/JkRdzzWSdU6BaId2JCAwAoWRF3pFinaKd80E15rj5dDN/uZzgjW/uuIexHbsuWay0jxr2JiORMIVBjwO1+BkO6d3+UAbetf1n//hdJf+b4j32R9L8bTtJ/+V/+lzz77LP/f/995gHeUJRo2EZK0584YUNWFhBeoguJvEQzVnM+M4nGV/fEQ7ReiPnm8Zg/v6Kr76/mItWee62Z4VxxEgZbJE5ThQa93nQ5XYh4U5oCr+RM+iEcT/gcdsQpfeJVNGZrmFXcl5wZiaR6aYUSJjrHnqW4Uyu5iNUcCj1qOBHXZIbcnBNz5Bs4xoRzk7A5MPj2sfitpyoWPzIfciQFb66RoEvX67dbJqv5lN/cFef/hYUAx5gOTjsjl5N5nSeqHQDeaJYxtJSBJR69pWyiCpW/NfvjLGWnCNe1Xoa8mTKW6NhfW+8zCDVW5b3YH9s0JDH7YOywlA3YkQTPOBUGnqHc13J2zP2Rq4o3P9G5O3A4IXlHS7khP3tDEHP/j3OfxtYTteK8PxKeSJMicsYdcbtXYlmuym/1Cipm4WONmKafYUmSeP/B7Yj/+GSskKiv79d4rDJUgb9nigOGoU0oV/sTojnAwTDPfHbIXbl61xCclAnyqGk2q/m+alVUMhFXJWLxzMwxj9SO2JJ/Gyc67x7O87jMY7OtkNlymxOypbbbrgm128S/x/Fw5TnovSK9dkkZC46OHZYdn9ty8v3C577GuFkmkChVaelAGS0m8rl/632BJD1fHLB32KAof/ezz75GfvmA1bvCV6l9d4ni0gHOnHgJEt/ihFxEJKFBHOt4LVno2KEKlQXQzBi32MeXSFIS6wp1MrI+/mGFTE22xGQL2y5I35+Bi2OkKiz34NoazbfPKKfwJNYZbgikKPBtxiMXc188SzdurnPhwg11HPmZNr12SZGvZ1Z36Eun8V63SG+UVUXSYv0Iz88ojtb87CGjYVa17lrdEq1Rnllp4njUKymemfC8irnfEfuuZ/v82rWLfG79FgCH3TIFZ8xL5wWh/s79ZaolgYZlMz4bxw1yslhvj3MUMh5tqch7t1lnrTBFU8+5I7YHBa5IU8unGweK9H9qcZuvXbvICanKbI1dclbAgsxu29tZoWwH1GUA7ji0uSkz4M5X2lSzQ25J/tvETPdSUdz/ml1mxh0r77g3W1mqdkBeFlUXS5Yicaepxkt1Q3Ep7w0tVnOh8jLaHKR8YXHEP90U//6BOR1T1hRFK+GRsk7bn2Zfni16itjdCXRWcgHXe/8f9v473Lbsrg5Ex8pp57zPPjneHKpu5SCVSipJCFkSwgZhsAR0IxvaRo1xY/wwFjbhk3mP5rMbGXjGLaKtxkYIGyGUq1S57q26OZx7zj35nH12TmuvvNb7Y849d1Xjtnl2qZCsWt+nT3XuTivOOeb4jd8YtFkhkvDeSRMc7eis2RI2zZF8gYwVf3Rgw4/eQOH2m91t35DtfwiQdPv2bdy8eRPvfe97cfXq1f+m74iLAfoemXy6Hk2eDgg4OZ4c4muH5GE4niLsRJUaL672ZJQ1HkvxMQvznSUFN3rkwU1IETquiJQ88g2KmEj35ZYIkeNwN82vXUl4cEIe92TJfghcgKTEE/M0EP1PzR7FkcTwTMPDvEEe4ldaCZzN+FhJkolt19ShiSGbUA+o4HnErDRdCS6VfmhigIlX5bqlZGDGCLCSIMcg8y68kGNgRRVC5lXkhMRW4Ch17246MuxAYvomQwww8EX0qPh4Pmbjc/syRI78PROzsEu1HTsmtUBwR6WrCBl5bODmBmQAVOgKteVKbHW6N5RwLDVkhpgLcdJld0gz80xfQ9/nUdHIZ92Qw4lCG7dGLfCiiH8+8wi9G1ys91XERdphI/mYjvVxvpGhx5jF0VSflciWEn3s03JRXPRR0YdYpy3u/8uMi01TYQLQuRhhlo7RSXDXNFDWLRzSNv9n6yqemCCr9bRqo+cqyNDJ6MDScTrdxQZlKFZSbSTVITq0VGGIPt6+QNrBd5p5bHbTuIt2qG00CjiRO4RHJxTHlzBwxjEkM9k6BpaGIS2p+YGA7RopPVWyDdiOgkPqZXNm8TYODorM26e1OQHVsKDSsunWlRXWvSUpLvTEAPfcdREAyUA7dtcVphsKAwEHl1bQ7ZHJeb1RxHcu/ycMtgnjJcdNhBToJ+YOwEsBOKq18iwFUcQheS85xv4rE69hsW4/fwYTNCDYmKiDV1yYe6R93r9TgWsp0GjgcbtK/t2hk14i34KSNBmj5Zka65rLBDXYfQNtavNw9OgqJMNChjp/240U9ps5HFsmYMXt69Dp9XYcBblUl+m9KpP72Li1wswiLVtFJjN2ph6BmhFLoYgeM3WdKe9jp1pCOU5+d+CoeNfiKostqVkajolj48q4amFtf5J9jyr4yNIOtJhmMT8lAPhrx66ibxrsdzXVxmyig3M0aLdcOcAWZfh2D4u4d3ILGxQ0AwSwjBgugYvQtFWW5WbIDk5mCSvnhwK6tgaR/s77F+7gxf0pWJTBskMeN7sJNm4txT1q70GuS1LyWQB2SvbBcWCWABGI0/woEHshDjQcGY8XR/IBATEqo5C4CF7IQRw11ex/Cf9b6QlUqTzhSIKYTT5WJM/icw0VXsizKoAd8DhOq57DgMf2UMT3TsqwA+D8Hby5fQtvf+Ug6amnnsIv//Iv48KFCzg4OMBnPvMZvP/973/Nez75yU/il3/5l3FwcIDjx4/jV3/1V/HII4+w13/yJ38Sv/zLv4xnn332v3k/JH6c3A6IuNlTkKWdZAeWgtkYeXhWeyIeL/XghmSQU4UQVzpjw7KOS4wcr3fJwH40QTLVRg9yx+XwZJ08WN8/42NnqOI2pXyPJDzoQsi6OOsO0SiNvJHmY0MWDfJKW8f7K4AdkH0u6xZMT8ItmmXW9TjsDSNMGWPn7xs9FTs0PPZkKmK+SC/UZSwnQjxcIKtbP+RJOYkeUxBxUIWQdZE0XQk7w1EkB2DrPL5cJefjnqwLPgLONynATHmo6CF6tIRI4kB4JjhvOzLS9LzfI3Oo2wpi0ji1OyZ5OLRG7rw81vsScuqoU87HNtX+9H2g60p4B83YazoKZCHANDXEdEIezlCGRleZO0Mas0DLfl7Is1VzWnGwnIhYac4LefRcBUVafkwxPZHGXs9SZmBjYGAC43Dgsm4iozjYM8eO5AXNwkuNFDnmXAdOIDJz0rsyHlLUpG93EEdZN6HQyUXkI7QcBU/MkZyzf3tzBUcSQ5bYbnkyDjtEY6JJLnLakE1UWX0ATXZRo0Dn83t5vJOWjwDg8v4UFjN1VtbxAwEy/W/DMBFL9xCjKe7WUEPcMFlbOgDo+TZr1S/P7jLQUSy2wEs+zBoBFI16BpLsMiPKdj2DXOUQAv2tYvkQzZszSM0QcXLgSrBpSVBuJLG3MYWQXqdMpg2nkWFsUOzIHiTDwoA2Ptw8nMACZYYiX4A604R2jgZTb5BraO+T/Zw6dx1eT2exJHtfPQMAiC8SkCVMRLAukXMrxSwErsQsD2o35tGs5lnXHS/5qOTqaFFwki00INB7WhR8iJrPYlvUuAnLk2BQ1m7UmeZRBkOSPFiugpkyYQDTEc9Y2uFQRy7VxdfWiIv41Y6C989wWKLCbo76WI2Azl4ngwo1JrVdGSIf4KBBjj+X6iKX6CJGGdEvXDmNhVQL0zQS5tMXz+Ch8gHrlHv28mnmkt2wDNxs5bBEv1sTxdf8bkJ2cXJih4EwPxCwQ+/D5UwdF+slJOm45ngSsoqNG3Tx8nKLx0MFjz2LNVvGhOYwvWRWceFHVCunkLH2cofcS4/kOcREHwtxcr42BjKGgYC6Te6fmEg87ACgRfWgI/uAH06/C24QoUDtV4KIg8KH2GNjEYmkGpXVq7bADIRrPRULMQ9uwLOu1zdkC6PXl/15I3Pnvom3v3KQZJomTp8+jR/8wR/EBz/4wb/w+qc//Wl87GMfwyc/+Uk89NBD+I3f+A28+93vxvXr1zE9PY3PfvazWF5exvLy8l8KJDmOA8cZD+69Hl3RD2XsUL3PY0VC0bKWbzFgK4y4JOJKZ9wevmcpOJd12CQp8zr2hgoyVGC9YSrYG3K4O0MTsYUQFdq3vzfkMfA4VKiou+WKcEMwcWBZIxlFo3LczlBjbrGzhgeOi/C1GnnvO0oqZD5EmjJWFT1AVpExkpw1HR4LcRdz1Mey54kQ6DE9kPdwsyfD9MlOv9i28YNzhAECgO2hjLg0bocNQg4VfcTgcPAijsV73O7LELmxEWda9rBlSmxQ27N4nE07TAzedAXmGZSWQzQdHqdoR9qltg4vlHAuS/5uOzIW4x72qLC7ogXIUZat6xk4nmnhUpNMTFsDEafTEeuo2RsqkHgCAAHid1W3VaYVGngSA6C7po71gYB3V8iKfuiL8EMeN2i770N5cq1H4uvtQYz9Nw+gbiuoUFdoJxDx86sRfmaZTIpPH6ZxNNXCgwXyuz2XgLnRfjQcibE7CdlFQh1CGmlOfAlHMnXUqVD3sXINli8hTn9LsEOsU6PBI/kq9vtJNjH1bQ0ROBRoR9KHj3ZQ7ydZCWSrn8BnN2bxcIEwQPl4F2mqV+l0kxgMYnBoaSamD6HpFmSaet6qZ+HcmsOQ6kQmpvZZzEZ1bRq39ydxdJqwO6oxRGKijjjtULM7cdh9AwYNWza7cSSLTQwOiP6pulfC8kMvk3PZSGHm6Bp8musmqi54xWXlt/ZWGWHIo3SGlL7elTAR0WdJO9lFcCji8GvEFyg5UYdaqUOgx3Dr63cjne6gSMtxiUILWr7NXLbt83HGKgmyB9+TsP0y0f4IYgDfF2HRbj+Vht2uUtdsUfBRSJDzrCcGqO2XGIDQEwMkVQt7FKzEVQuddgpVCnZjig1DsRGE4+iiAbW1MPQhOV56/d+2dBPnt+Yx8Mg+T6WaaJpx5FLkmp+eX8P6LmF/potVtLpJ1ClYSfsDfPnOEh6aJNfp0cVbuLU/CYk+E+9buQmOi9CnjGk53oFONXsLkztwHIXt4249j8NhDDmqpVvKHWJgaUycXbd0zNDyoRuIELkIzsjmIRTwn3YTeCcN4v7+BQtr3SRGbajThoVnazoWqWRhb6hikpZUBzT38e8sk989GBr4l5seTmrkfC3FAwgcWLfw1w4Nlm7ghDwq+hAGbZIQqQB8lGCwbfJ4KD9EmrrKX2gpSEgKlql57d5Qwp0BOb4HCx18YT+FohrBedV1e3P71ty+qYTbHMf9BSbpvvvuw1133YV/9a/+Ffu3o0eP4v3vfz9+6Zd+CT/90z+N3/u934MgCBgMBvA8D3//7/99/OzP/ux/9jc+/vGP4+d+7uf+wr//84UfRMshCCIuETv6UVJ9wxGZ9mdKH+J2P8Ym/VHcxNAfRVpImNQ9xixVdAuX23FsDMj7Hy85qNISUEIKkJA9Ft6YVVy0HBnbNKZkLuai54kMGG2aIsspEvkIbji22Jf4CDHJY2LiuORibzgOS206IuyAQ1YZU+C3+wScvLXYQ9UaW/8npAA9T2CMDgB0XBFZ2ooucRETrqsC0RTFKID67C6Hx4sCKnRl/IWDGM5lXfzjnScBAP9s6i1MiA2QbrcRCKzoNr54YDBAWXNElLVxmPBXDnTMxSMmKE/ILgM9XU9CXPTxYpMM4ueyQ/RcCde6o3MLnEn3sEcHeVkIYfoCsvT63eqpjJbPKhEKqsfaffOKi/NNna0qU3KAuXgPVSqgjUsuvnqYoOcOqGgeiywROMJI8WxV7aBPS48AcU7XRH9skVDPYoH69RR1E5/bzeNokkzkZ/JVNIcx3KR6jrnYADndRId2EYl8gCIFQbebBfCIsJQj7IbjSbA8GWmDTNaa4kCWXeiUHfrKpbO4Z3Yd7R45jtnZbRwekHLbwNIwO70LfmSJUMtBll3W3ZQuNSAbFlzK6tl9A4dU5L1811X0qzncXCPgJK5aqEzuM61So57FrVoZ7/mOL5D9bMeh5boY1glIkOMmy18b1lOoHxQxdZQwadvXFzF1ZB1Wm+yzbWrIL28xCwFOCJlT9aUvP4Bzf/dZhLvk3Fo7eSiFNniDXH8+zgGGBu86eW67dypIrWyBp4shhBy612cBkDBcNd2DQ72O3KEKPdNlf2vpHsKAZ+G6Oy+eQG6SMDKdag5RNGYX4pkOtjemkaDdgLLiQpQ8tt8AcPnWCnuup7N1FCaIuLp+UEAUcSykeDpXw61qBXF5rGtbqOxhk3bdpY0BktSaYm13EplYn/2uH4gYWipuUmF/VrXQtlWcnCCar65pQJVdxCggA4AdGlEykWlis15EUqX6rYjD5UYRt3oEcLyt1EJCsRmr+WK1jGl631XiHfQdDdsUzFeMAXTZYYLxpq3h5WYc8/GxZ9lszGTC7bg4dpxvOzKGAY+SOm44qTsSiw55pNjDS40E0yEtJ4Zs/Oi4Egqqw9jk5xoqKvrY2VvmI6QVF23K8A0DHlnFY5/XhADnaadtTomg0O5oJ3TwL6tvkHD7d1JI6K9fDkpvGCHztzrf9sLtb2qQ5LoudF3HH/7hH+IDH/gAe9+P//iP4+LFi3jyySdf8/lPfepTuHr16n+xu+0/xyRNTU3hh3MfRVGjrtmKj44rYIHS+HVbYZNezxPhRxzTCbmBgKsdBXMx8noIoGGLzERsSvcxaQzRoJ1CXsjh31QJLX1OLeLujMso3qLmkNgKOqFu0qDchdjIVn+c69b3ecTFkPmYyHwIXQiZqWNSjjAfs/GFA/K7x5MRpg2blZtudONs8DiXHSJ4VfTKxkBDx+PwlmIHAEnmHr0GADd7Io4nyeSyPpBQUEMGKD93EOFDMz7zEMrIHrqeyETPTVfC8VQX/9cmmQTvyXpMc1R3ZEjcWMgOkFp/ga72N00NU7qNHDVMXOsl2Gd10YcfcRiwNmSihxp5EnVcGXHJY7lqVVtGEHHMKyqr+AzwxiQPl9px1pE4HxviZk/H2cy4ywwAPrtNwMp3TvbYoD0dM7HWi7OB+2y2CcuXIFAdTUx28ORBmR3jYrwPVfTZJHgwNJgXTcvWkFMtJOjkk9CHpExCJ5sL+1PQRZ8FIEt8yAz+JuI97PcTmKElEFn04XgSVMp4XT2cwD3TG/jD64QN+ZFHn8aN24vjEok2ZKW3TKaN3f0yclSInK0cYtBMQaMaJEH2IBkWdq4Tt+ZsocFiN5LFJjghgEO7gnghxDMX7sISLR9Nrtx5jcDaH9CONXrNA19gpbfm+hQy87vMIDIYaOClAC4Vake+AG2qhsOXKMMj+cieXCP/nfMQ9TmYa0Qgrs8eYO0r92H6FAnp5SUfYtJERMF/YMsQYhYzsgyGCjs3g70CYlOHaK2SdnlZcyAqLrxRKSY1QK+aYyxWcqKO7euLAABFcXDQyCFBwYaqOBAlHxYts6XSHZgDA6I0Dl7eqxVYue3ZW0fxrkeeIffKxhQsR2HX1PNFxAwTq3uELdroJ/DQ1CYrkY2iSABgvVnAfKbOynw8F+JXXjyND8wQUD2dq8FyFFylocZLmToaZhwFyg5ZnowGXSTcNb+O27tTkKlWsOtoGPoiFtKknCtLHmxXxnaXlFyX81X8xzVyPk5lusjpfdyh4nORD2GI3mvsN9yQZ4vQuOSj74lI0Ge150psUXkmbSKjWtiigEvgSED06LqNxN5DypA3XQl/dkiO/0OTxANpBF95LsJLTQlvpwkGQcjjq4cqkyRYvoCybmGLatg6roAubfibjwUQuAidN9oC4FOJ1x8kfaT3bQ+S/srLbf+lrdFoIAgCFIvF1/x7sVhEtVr9b/pORVGgKMpf+PemC8zHR2UtCdtmBGCUVD92RPZCHqezTRzSAUISfXRcBV+skgfxdEpCWgkYKDB9AftDDZ8/oN5ICQk/UKROxoKLsj7Edj0FAHi2oeCthYiVtfoeySEaTbgyD0ZLlzUPVUtiuW7Pdzg8WuBxNkMe+qTs4Pl6Co+XyOQTkzy4gcBynAYehxgNibzW1TFBPYkA4B3lDvaHBl5pERAgcRGWEyZuUnFtSYsg00m+7wEJiUOKmkfen5WwNxSZl1FBdaC8yr17Zyhj6ItIUTLFEAM2AGZlDzVbYuBk0jDxdC2FOWq/kJElbJoqS/kGwNivpktKkSOAOfAFlDWLgZe2K+GFho63lwnTkqft/qvU2VnhI8zTbpzrrRyOJobMnbvvSTiaGDKjyulYH6rg4wcWyYD5Qi2HFSoA/ujtq/jFqXPYHpLzHIQ8vrSfxtvKHbIfto6jyT50qjOShQCKOPaRAgCbDuLEmyXEDSqILdsDyK9i4QraEKroI01LZl/cnsU9NAjVdBXkdZMZC86XDmB1ZOZz88RdF3B4UMT3nb4EABgODCR18zWt3SoFmN1OEovL6yzAFXtFJDJdHO4ShqIwUYWS6jOxdqOah0ivd3SQQ6pSQ7tO7nlZdvH4O7+C1h0iII5CDvXNCnu/pHjIH9nA8JBMqKriIaBMa25lE6Enon+b7IeS6sOq6YjNkrHAqaURORIKdxHg41SzuPFF0tJ/4kNPIujp0KYICzPcLmLle57D8AphYZTjHYTtEIN1CqIqdfzR7303PvA9fwyAsFIBLfOlTq/D3s6jdkiuy9LdVyGXWth+6i4AwM7WFEqlQ3C00rJ9fZFpkIJQwHT5gOW6eZ6E7VoR5XSLHr+LsB9nzNPO6hwMxcaQCvuPlfZx4cIZAMB04RA3dmbxwBIpLwamjivbc7j3KNFhrVgqbm7PsBgbXbVZeW0+U8das4ATMmGKeCnE3z17nQGKdK6Fw7UFVCgoEoUAM9k6NhrkmI9PbUGjuqGX1pdwemoLLfos1ToZzNJON4AA9DDkMUFZzoNOBh88Qq7RnXoRHVtn5Wov5OGGAjg6sgURh74nsvL1jW4cHY/DgxTcxSUPcYky87KLfTPGxpq0YuPlZppZarRdCUEIplO0AxkfniYXaa0vg+NIYwkAPFNX8e4JE1c7ZJy/L9/BE+UQfQawBLihzmQDTggcowvHvaGEYUAkD8KbHWLf8ts3NUgabRz3WnQcRdFf+DcA+MhHPvLf/BsP5l2WcZRVAsj82PBM4iVkKa4yfR63OmmWP1SzFZzN+Mxx+dlGiMVIgCWOQIKHjifiUdr4kZJcrNLMr+NJG5daSeZXVNIEiHyEV9o0L0ki1gMj+4AjiTHr5IccUnLA/n4kT8p1I4F0x5VQ1HxcpN91JCFgGIyP6URqiH+/Tfbj0QLp6hgF7baor8kodmN3qGK1F2M09u/t+Hh7ngzaby0OEdLzAAALMQsdV8ISFYBumwZUIcQl6lZ9NGmhZqmYpoyYH3EMcFVtGaoQMtZu4MlYirvYpcLduiNiWndfI4bMvko8PDKGBMgKdXsQYzojUYmgCwJeofqV5bgFWQhwjLIjti/iS3tk0n/H5D7qwxgrgaUVG2u9JG5Rlu6rVfL/P7hIQMHbp3awRrVAHys8iDOlDUxTHxjTk3E6bSNPu5e+ulvBfYUGXqiR91d0By82NXxHhU6SfIgsBT2y6KNvazhFhbiWJ6PvqKykNvTSSKhjL5sTqQ5jDdL6AAIfQnDJMYiCj7hmIUv9d66tLmG2dIAGjYPQFAepZA/Xt4mOJm/0kS0QJkCyPOxvV6BQ9tRIDBCFHOK0dKPnO9h4+Tgri2ULDWYWmZ86gNlIITtBy34DDYGljM0UAwHJbBsOZVLihSaGhxnm5i06PjTqqeT1DESBwFgnu51AYnEXfZrzlljeRmjLiGi3JAAcefQ8AICLqxCLA4RUd6hkeoiGISvN9Z6r4PLFkzhzDzGubN+awV//O38Al4b8Stk+Ijoheocp8JKPcoVcl7WXj6M0UWX6namZHYiqy/ZTT/WZseSwk8DtrRnMlslnFc3C5OImCwQWZQ/1TgriFgWNlIWRKYhwHBk52mHG8yGK+oB1BsYNE/O5Q7x8i5hNzuVqmM0fMpbyua155rmVTnVRdlQmAu8OYkjGBri6S/bjlOxiMl/DTcpKTcf7uFOdQIneezd2p1mL/2yqib1GDpsUgJ/IHeKF6gROZqgnmS9hv5/AJNUhrb3G/JIsBEaeSnYgIgh57JqjcGnS3epSbY8sRJiUAjxbJ89xVg6xb40kBhpKqo9VKiM4mxYwDDhmEXBvrou1XoxpTSUuYi3+aSVAXnEZ034kIWF3qLL8yoEnoenIzM175NfUoczt9Y7ORNxnMz2cbyag8CGi17Un/7+yhSEQvn5M0v8/wm3f9/Hxj38cv//7v49qtYpyuYyPfOQj+Jmf+Rnw/MhUNcLP/dzP4Td/8zfRbrdx33334dd+7ddw/Pjx12+fvwHbNzVIyuVyEAThL7BGtVrtL7BL/73bS00ZU/oojy3CwOeQo91tqhAyUd5yYoiNgYanauS9D+UDpGUPv71JboQHsgoSUoBVagFg+jKOpYYMvMh8iFljlJk2jggACEsUEz30qLXGrBFgb6iAxp5BFyPM0Vr+1U4MaTlgD6YXcbjc1vFQgQxiEh9if6hjSh87W1c0GwJHwMzljs5aVjXRhekLmNRHdLSACy0Jj9CgWUMMkVNt5lXynmIMBcoy9H0RPMDcqm/3NTQdjonCNZGYyB2l1gQCF+Fous3Ykt9eT+Hx0mhg6uN3NnR87ww18bQVLCX6uElXqEcTQ/ydtS/hf58jOV81R0ZAO1umDBNlzUWKgqa6pWEuPg6S7Q11ZBUXZcogiXyI/aHBylNWwON4ioCTp/bLMMQQeVry2eonkJI8zMTINb4v5yCrWqjR1f3VdpqFeYYRB9uTcZX6yZzONnChmcRKhlyH+woN7A7iuL9IGB/HF/HOCQdToyiSeol9r8SHmEp0UKeAayrdRHUQZ2UwDhG8QIRJxaaleBfXGuS5mC8d4CZt9waAeD+OWj+J5Qrp3prK16CoDiYnyGS9sTMJgQ/Ro9+1MrHLNEeOoyCZ6CFBW+APNqZgGCbytNU+sBVkCw0YtAW+s1dgOW++LSNebLHOt0CWcHhnipWE3n7XTTTOH8fESWJd0F6fxHBgIE0F5GqmxwTTnb0C8stbaK5PseMStouQaIdiaMvgVRcB7STVZg6x8yRhd8r+KqJIhrLYp58cglM5qEvkmIQdFw//vS/BvkR1ZpqDyOVh7hNtVbRbYB1nHB8hMVFnQO/o48+jc2uGic/VXAe1W3PITJFza/cNyJT5SE4eYs4T4VGW0mxkwQshcvR+6LeSOHHyGq5eIRPH8WM34W1XxmOEJ2FIr1EuR7L5zu+Rst9krI/lyg6O6sQSYW1/Elv9BKZo+fY77j6PwchFfW8StztpHKEAYujJ0BUHK9RHqzeIIaYPMUNDaxXFwcml27h1hziY120NpVeJr2OKjQdniVbsK+vLmImZ2KZ5bY8u3kLb0ll48rF0ky1ALE/GnhljLO5+L4Uw4lChzNuOaUDhQ1YiM4QAedXBNgVRJc3FtDEee/q+gEcL5Dk2JKINHRnqNm0V04aF67Q8O/A5dOlYO6FHkDgJ2xRgV3QHXU9kOW8hgOcbAgxq9f22ko2Nfox1x87Fxn5Iq70YYlKE230J7rcJk/SJT3wCv/7rv47f/u3fxvHjx3H+/Hn84A/+IJLJJH78x38cAPDP//k/x6/8yq/gU5/6FJaXl/HzP//zeMc73oFbt24hHo//FR/B//P2Ta1JAohw++6778YnP/lJ9m/Hjh3D+973PvzSL/3Sf/dvjuq5/3jmf4bOj8s4w4BHhTr59jwRmjjqppCReRWDc6kT4S2F4FW0K4/52JCl0UcAPrPv4d1FMrAZYoi94Th2Q3hVKerQUuCEPCvVbQxEJOSIlZ+WEwNcosGQx1Mm/sO2iifKYzNJL+SRpp46N7oJRBGwSHOtGjbpfstScHMw1JnD9B9uxXBfLmTHVFJJ59yoBGT6AhNmAwQQ/d4Wee3hnIK2w2GGarIUPsL1rsSiVM6kbXzxQIFNB4uVuACOI0JIAEhKIfYs8rvHkzY0YRzSGwKoaDY+TaNFPjRL8tJmKFDsuPIYfAohuq7IQonvDEI8UggYKDIkD8/UsohTf6d78nVcaWbZdZ2O9XFgjoT7ZMAblRePJvu43okzC4CSZsHyRVaaSMkOAzYxyYXlS2PhvjFA09YwSVfgO70UvJDHJF3RBxGPviszn6TpWB9xeg0V0YMs+sydWBU9SIIPmwq/w4iDG4hsAi2nWqwDDQDutPIM2FYSbfB8yF5P6EN8fWsex+kkGIQ8Sqk22tSDSeBDzEyR9ndFt2B24sw1W1SJ/mbEHCmxITZuLGJiap/93aMt/4EvEG8g2h4vyB7Onz+L5RkCsIqnV8FJPro3CYOhZnrguAhOhxzzsBdDdoEAO6uehhwfMobm+rN34fhbXoRUptlkB3Hwkg8+SUFTX0FImyR4xQPEABEFa2LZApwIXImKry/y4A0bfof8bTVT6NUzTPT8yPf+KUA9dayNAnghZF123cMstJgJnjY6SJqNQT2N9Bw5H1YjiR71VIqlezh/6RRWpgiQ4fkAsWwXt66TNv5K8RCKbjPmKfBFiLIHibJ4N24sY3aSXJeDwwK6QwMV6jmk60P0+nHoo1Ly3hQWy3u4RcGyG4iYoTqhZLzPrBQAwLQ0mLbKmEZJ8tAbxDCgNhcz5X1s7FdQohlz5lBDuUxKl1fXFqGKHjRqXeEHAhpmnPkiZWJ9PLU9iwIFFEV9gAEFehIfomFrjMFJyA56rsKCqU9mm9jqJRmoOrBUJCSfMch2IDDxdBhx6PsC0xUtJ7uoDg1YLBeRgyYGTJvUcmS2T21HQdWWcCJF7qV/va7iiRKPpDReOJY0C881CPDLKaQTt0OxUUwEHsgTcFazFfQ9ASXNhRW4+Im1T70xmqR/bbz+mqT/yfxL7ft3fud3olgs4rd+67fYv33wgx+Eruv43d/9XURRhImJCXzsYx/DT/3UTwEg+uBisYhPfOIT+OhHP/q67ffrvf2VM0mDwQBra2vs742NDVy8eBGZTAbT09P4iZ/4CfzAD/wAzp07hwceeAC/+Zu/ie3tbfztv/23/7t+99d+7dfwa7/2awgCOrBxEX6rTurz35+dwsDjYErk4Wq6AlxrXIqrOyJjcBZjHICAxYPEpBCf3zcg0Sd1IRbi+6ZC/NYuefg+Uhm7ZAcRh2mdCH0B4IUmx9gdAOA4IC0H7EHdNXX8VucpAMBPqw/iu6dtpkkSuAg3ezrsLhm4jyVteCHPSlVlzYYb8ixI9fmGBB5kwrwv5yMpjTOQ3JBDUvaZ9ufOQMBsDPiPVTL4/tCMgA+RxSsO7QiLcf813Vz3ZH3W0u6EPJYTwDxdaT1X1/CuSge3aBdVSvZwrTs6d6RbZLQ6q1oqgojDE2VylC81YzietFkyeUJycZQaGn5pZxpJKUCFTqD35X2YngSVgqAXGxlMGw5z8/7iXhFLcZsJu7cHcfZaSfdwsZXGNAUFh5aGleQAz9Upo2MMYEEET89+Wh87EzdsDVnVxiY1k+QRw0Ssz9ieMOKQVmzcojEcx7N1iHyANapRsQMRBQrSqv0kMrrJRN+VfA07tSKa1qibLcL2IIYzNEriysEk5ukkmE12ofdS0Ol3dSwDsuBDomWNvXYW7zp6FTXKeM1O76Bey2NlmbABgS+MDQwTJprVPNPF1NppHF25Pc5MG6pYPHsNAu1+DD0RDi2/5iarCHwRFvXvkhQX9z/6HO5cOkr2c6ChenMemVd5DMnZHiJ6n/KSj90rBEDEEn34roQkFYyv3H0FTiOFnQtEqD376MsQJiJ461QvuGADNPXev00YIHGKXO/IjuA3Ygh2qEO7rUBNmVCmyDHxiof0W7Yx1bwAALC2CsxFvFfNIZbtQKXMWXSQQ6+dQoqyX07PIGwYyOZZKiR6bjxHRiHRwUGdlluLh9i9M83YIV4IoaV7ePG5ewAA5XQLsuzConq4uald9Ciz6ngSjsxtoEXz11xXRibTZnqniVQL13ZncHJ6AwAJzx11s60fVDCVrbPybCbVwedfvhvfUyCgeSQW92qkbLp3WEQ23sN1ygDOZWvYobE0y5M72NifYLmBh2YclXgHbYtch8vVCk7n6szva7+fRIouBEJwyKkW09XdahbQcSWmQWrbGimP0edrOdGHwEWsEabpSDhGLQ5WewlYPo9lardwvpHBYnzIyvOiGKJhS+jyo/EjYOWy230ZJS3AVQrO31EMMRfrMxmFyItoOiqmKduuCiEUXsAMZbEGvoCbtDlB4ICMPF5UvmFbFALR61huo/zJyCZntP3ndL0PP/wwfv3Xfx2rq6tYXl7GpUuX8PTTT+NXf/VXAZB5vVqt4oknnnjN97zlLW/Bs88++yZI+i9t58+fx2OPPcb+/omf+AkAwIc//GF86lOfwvd8z/eg2Wzin/7Tf4qDgwOcOHECn/vc5zAzM/Pf9bs/9mM/hh/7sR9jKNwNOfz0FKHW+76PKBKZkDmvEot6AHilreKh/AAvNekkyAExMcCfdcng+qF8DroAFDVyg+0MeSQkHm9NpQAAEm8jSUXOVzsKZEFHjpZ13lqQULUl7NAg2SAibaxN2nHT93n8ZPEhAIAm+rjZ01l9fULzkJED1gnWcSUIrwrpjcsuVrsJNvE9UR6iTkHQbMzE9sDAkGqC7wwk9DwJR5PkH1SBgMgZhRzz3nDcVZdViOi4RRkd0xdQszm2mrs3Z2Lgc2ylqAqE5Zqn4aBdT8J3TpJBzvZFJOlKEgBiEuncGkV6BJEOL+IYaGg7Kl64MwsAKKk+nJBjpoyWL0ITfexQE0cer9UvzcYH+PxeGo8UyH5NGcSvBgBqZgxHkz102X4Q8JaQqNeTGYPEh5ilmpyOZTA250xpD7caRVZuLOomeEQQKDgp6CZkwcfjE4QNeObOIhZSLdyVI+AmijjmJzOZauGgl8IcbeP/+u0jSMgusjSWImUMcGr2Dl5cW6Ln57UDZCnRQZJOitVWFhO5Onaoi/aZlZtY25xlE9cfvXQfvuueF9hnnaHKOszMRgqbtRIaFCTtDTUszm4xJmX/zjRyxRosuvpP5FuYOD5e+LjdGHPBjnwBoScyZiD0REycXGUsTGDJeOmzj+P0wyQixig1IdBOpigQAD4ER4W4UcTh0sun8MAHiH1A/ZVl5IWb4KmFQu+ZChIPk1J9YGuQcxYQJ/cwJ7mQdAuDJ8n5sE0d+okqi3UY7BSROVNDuD0uo2g07FZO9+EPNHi0gy8zXYWo2zi8QUpRhZVN+J7EbAwkzWasTRRymJrZgUsneUH0sbG+hJOzBMjU6jl85pW78X2PksXQ1p0ZVBa2sLU6DwDwPREFmpG33Sgg8AXW7bhxWMbR2Q2UZwnzNuzEwXER/ujqKQDAB09dwq0dsrpZLO/hwuY8linArjWz+BunLqHTHXWGhWi205Dps5eIDTAwDVaOUxQH6wdE5F7i6sjGezDpMR0r7WG/nYVCn/mVbA19R0NOJ8/5tBBgi3azuYEAL+SZp9LJ4j4uVissEuhWL4G5mIkmbTi51iFjx8hgd+BxLBC6pDpoODKuUKBzf76Fy+008zZS+BDTho0D+tmdoYySOmoKCVFSHRYIDgCX2kmoAnmOp3ULFsD0TmmZdEGP9E5dl2clt/WBjIwM3OypcF5PjdBf0TY1NfWav//JP/kn+PjHP/6af/upn/opdLtdHDlyBIIgIAgC/MIv/AI+9KEPAQCTzPznmrC2tra+cTv/Omx/5SDprW99K/5rFb8f/dEfxY/+6I9+Q/dDFUJcpp0MJ1JDNB2JJU1bPod1qkk6kXJQsxXcTwNtt00DVVvG+zJkxeVHESp6hJGuXBVIuOroYVvvq6jo5ME8k7bR9UTYAQErDVtE3yfW+wDQ9UQEIWBHIy+OsW+HG/BwAo49mHuWBIED9to0VkGKcCLVZ1qhPdOAxIfQ6OdX+xo0uk9PVpNQBeA49eNRhQBVW8ENyvA8XjKhCAFUgZyDnifgKF29OQERQ/t0csmpASo6h+P09e1BDH9t+gDXqJfLvTkTAhfhuTqZrCaNADWbevMYpIz1XINchwdyJr5eS+HeLJnoRT5CQbXwAnWrrtnAWZq8nZA92IHAylpfPyjBCTmczZC/p4wIm/0Yy+AraBb+2lQDt6jnkMCFWO+NvFqG+MJ+kpUM781asEMe2zSb6Z7cEH1Xxm3KBmVVm1kk7HfTyGlDFjqb0kzcaBYwR/Ub/36zgAfyQ7Spt5EqBBi4CgNCfiCgRQNsbzWKuNGNMeGt6YtouxIMyg7tdTJYrZdQpN5HDctg3WmrBxUYkotNKig/VtqDHhtiMiK/s70ziYlcHQK9H96daSOKeHRpSGvfNDC3QlilYSeBM0dv4HMv3QsA+LHv/iz6BzkEtDybzrZglJrYe5GUddLTB7Do9wCAbFjMeFFRHCTyLRQnqRbq8hFMzm+hS4Xsudk9zM1uQ6RAx6lm0a+RCXV3r4wjZ67BbtBrJnu45/GnEVAdSeHB63B2MwjoJBg/sQ3vDjnPHBfBP4xBsGju2VYRaqWO1D3rbD8jk0P3MvFzSp9bQ7jNQaDi43Avj4Dm7UnlPrA3nvwiynSM/I/E1ABqx2Ti89TMAUTa9BC4EvbvTLPPKoqDtz74PL7+PDm3pxfW8KHZbfb6ROUAvi0jRzsHzYGBqEXO7T1nLsG1FcZSGYaJq3cWMEcXBu1eHB3LwDItoTm2gglqCbFbL2ApV0NlkoCef/vsg/ieyvNo0o61XKqD/WYOxRTRCnF8BJ4PWWxNJtdErj+OWimUanjpGtFRfX5rBt9/+hLTXTV6SciCjxd3ZgEAU/EeKjRKZb+fRBBJr7ExcEIeBXpPtxwVhujhKi2DLsRscACz7lhJ2AxwNx0Zhhiw7uA/38viXHaI390i9+lbcjTAXBjPNyPdYc0xsGep6NPGlmnDQUn1sE+NayU+QNPRcDZN3r8zJL9l04DbojYOz16IuRC4CLOGBzt8AxmlKHp9s9vovLyzs/Oactt/rjv805/+NH7v934Pf/AHf4Djx4/j4sWL+NjHPoaJiQl8+MMfZu/7yzZhfTNtf+Ug6ZtlmzJMDDwyoDYdGQ2bw2J8xGBw2KbszoEl41S6x1rpSR6YixdpDEdC4jDwgHNZ8jCN3G9HkScCFzEvo7oj4vHSmN14pSXiobzL9E1tl8NCzGeZavdkxw9i05GQlEO80qIdakWTxGPQ8tFGn3RxjBiehi3gfMfCu0rk/afTfWzRlf+kESAje+y9kSuiotuQqMj7Vk/Hvbk2++2s4jHB88Andv4j358rHRn3ZC3UaOt9VnHwlf0Scyjft1QsxAfMqqDniQz4hQB6nox3V8iEcK2TwomkzQDVOyZa2DZjWIiR71qKR0jSwbXnynACHhu0w2Y2ZuFy22Bs0JWOhgfyPTw5Mn0cqHjX1B4bUIeBiKO0063jqJiNhUwkP/AkFDQLP7BIANfAVbBpajhChbqX2wm8c4qs3l+pl1DRhyyywfZkRBGHlyiD84HpBhTRw5/tlOn9EuKR2HgVfthPslW06Ul4vLKPPG2nTvcTyMZ7rIvqT28ew3x8JEQGMuoQqSSZuBqDBGKqhRz9rKI4aDfTDICVsw28dGcRJu2MO5Y7RDnfYF1UBd1igmk1Tib8tx4hreV71xeQnzqAQvUbUcTDMzXMnyCt6G7fYJ91LBXXrh5lHjqS6COe60DLk3NdcCWomR4Lx5WzXWiOBGEU9NtMIneUsCyqQfRIAgUcHB9hsFvADu0MO/XDz2DwYh6pZZrldnUa+gxZwdq1NETdxsFFUrqbevfLCDsSdr9wFgBQeewigp4GvUwZvYADJ0Vwtwkb5FkKbn+NBGirsouFe66AG9kxhDyc9lh42r05g4tXj+P+hwkz5w00VNcJMNJ0C/FEH/HcOJ9NSfcZ8BUlD9bAgEiv8XBgQNVsFoCrqjaqdcJ4Z6YO4AxVtJtkH2vdFHYGcSyWCUs5UaiBr+eZI7vni+w+a1o6krqJPVoy+8DpV7CzW0GC3vOXd2ZwamoLAj1G09Rx2Enj+BLJo3vh+gnM0VK3IARo1nL4apWA2Q/M7cCyVQzoGBCEPKaLVRZie62Vwdk89WNKtRBFHHOG3+ilcE95l1kVTBgDXG2nsRwnz1NCdlG1NExo5Px0XiWu1oUQZdliGqVHij0MPAnvLJKxu2aTQNs01XeNFpAAoPIRwggwKaZpOhImNAdT+sizzkBBHUcGWQGPp2sKnqDO4H7EMS1lRbNhBwJJCfmmUfz+t2+JROK/qkn6B//gH+Af/sN/iO/93u8FAJw8eRJbW1v4pV/6JXz4wx9GqURMSkedb6PtG9GE9Xpvb4Ikut3oJpCRxyG1i3GPMQmG6GOSdpd/7sAHkGA0relzsAIeczHywCWlALf7Eq52yOR8b87E729KWIiRSePe7BCn0uS9dwYqTF9Al4pJ78+RjKL1AflbFYB/u2fjLZlRKYtnAEoTQ5g+j/tyZDIZ+iK+eijjCXr/iXwEP+SxS1ueH8gPcGjHcJWOzVUrgQqtr8eFEHYgMMG4F3K40DJwKkUGpo4nwPTHcRluIMCPRmG3JEj2ImWweh7p4GtTELXaUxGTIjaQTWg2Oo6CAyqozakePrNLvutvzpBy3WXalp5XXEh8yACVJnnIKzYLy9WEABujEo/kY0K3kKXGiwdmHH4EZp+QkUO0HQWPlbr0GHmstrOvcT9XBTKom54EO+Bg0pWwF/K40UkwdvBcro4Hixb2aPcOD2C7R/Z5OdlBz1WYloHnAqQVByfyZLLe7GSx1kvibIaslJdzh2iZcbSp0R65luR3H55bw2p1gpXyamYMXz+YwDlamlMouDykgvNKoov9GplAv14t4PuO11Ftk+8t8iHCiEOZinx7gxhUMcBKgeyXwIewHQUuBcpTC5u48PIZcv0dFTPpJqaniWYvHTchJUysnT8JAJhe2oCa68Kn3lBOz2DlpcAXsbxwByIteVh9A+5QxcEmYZ1U1YYaN9nrgani8sWTOEd9p/qHGaToap8TAigTLRw8TcpHiUILdt/AkYeIbsjf4hFFHDgKfDk+YkJsuxPH4Y1FnPg+Usby9nRIMw6m/jrNdmtFkE7JiA465G+Lh3m7zLrylFQfZ//Gl8h3bWchFTvo3yDAR9RtSAkTCZc8XK6t4NTRm5DoMXTvVJDOE+D/0uVTeOw7voTV5wg4m5jaw4tfeQjqCCTJPmTNQeuQMGuxRB9mP4YYBeTtRgYTJVIi21udg+UomKQCe9uV8c7KLjOi3N6bQMcyGEuTSnYZSD4zswFeCBngvrU5C1n0kRXJ8S/lD2E7Y8bgj1eX8TdOXEODaqmOT26x/L2hpSEMeTyQJ8+WLjv4+tY87hp1yjkqDptZ5oX04Mwuat0Uub62hq1+EhXKHF1u65iOGVilDO9js3dwYMbYAq3tKHADnplJBq7Exq245EMRAhxScCbzIUKMM+Tm4w50IWB2JTMxk2k2E1KAtiviniwBPX1Pwr6lsJSBlOQjLnnYoY79hhjgXNZj0U03ugqmDXLevZCHxIdouyLsNzy77XX+vr/kNhwOWav/aBMEASFt2Jmbm0OpVMIXv/hFnD1L7n3XdfHkk0/iE5/4xOu3z9+A7U2QRLeey2GD1pt1Aeh5Eis/jQJeAWBSVZFXPGwMRiDAhyGKaDtjjc58zEODJlHfGeg4kuCY4G/T1BhzshS3EEYcBDr5BhFlqlJjC/5HuTiylIXyQw6/0XoRAPD3i3djWh+zUAnZRUpW8FKT5mdpISr6kLFhLVfG/Tn3VfQxsE6PdyXhoeWKzHTNDng8XOhizxz7Dj1XjyNDtVQn0j3WfdJ0JLRdHkvUU0kXJdzo6UhTwFnUfGybItaovutoSkBBcVGh+973RFTUUYeag7QM9Cmwk6l/ikc9Ug7NGCKA6Y7ckMcsbRVuOioUIcAB7QQLIg5PTDQYUwJoKOlDiDx1LLd0+BHHTCAlPmTHdHexClXI4AVa9judtnEi3cef75GVcMctQRdCPFImAGM+1cSvXycT5vfOO2jaKrM4KBt9xGSHCXP9kMdcvMc6f3Y6WdiBwDLm/JDDdJKURJ7eWETFGDAvm1Ksh1KshzTVGeViPVyvlXGcTkaiEKBL9RnfvbyKdj/OJt/OIIakYbJ8tZg+RNHrMgAmiT7CgB+H2PbirGvqwTM38OLXHmQhtEq6j3/zh+/H33joaXIuG2lEEQdjkrADq1+/F9MVsk/5hW28+PX7odMV+NLKGrR8G0a2Q66TK8F3ZIh0dd/erCAb76G9SfQuxYeuIqT5Wcn5FqxbBRROETZDiNlwTRW9bbIy0NI95B+9gbBLO9hiQybEjgIB+XeuAVRi1Lo5i+KRLRZDIuYdVP9dBflzBIyEAw3qRAPV86RMmJ4+QGiPc7jM1UnGhnmmBn+gQ6WO7M5uAakj22jfGnsf9WmJbGVqG93NCTZxb23MYLObxluOkLBcq69j62ACCzOEDYsiHqlcC0MaeRJP9NHt0HKjGOB2o4h1ajZaNPpo70zjxAqxUyhkWpB7PtMV9fpxVHJEmN3tx1Es1BlDlU90ETNMyPQ6OJ0U/nRjDg+VyDX9m2cuwnVl1jl3ZXsOJ6Y26T5yOGjmsEL9vAaWhtP5KhNyp6l7+0hLWO2k8R82yTV7e7mDpiOjpJEJ9m/fdQUHzSxjdfc7Gbghz0pqO0MVEh+hPyTXIikFqNOOVp6LcLsXZ6AJILKE0Th3JBFB4iJ0vVGTxTgSac+SMKm7zB4gIweY0m3c6JIxcDlh4c/2YliIj+OovnQg4btnyCL1TDpkCzIv4vBkVcH9OR/g3kifpL86kPTe974Xv/ALv4Dp6WkcP34cr7zyCn7lV34FP/RDPwSAlNk+9rGP4Rd/8RextLSEpaUl/OIv/iJ0Xcf3fd/3vY47/fpv31QWAG/k9uruttXVVXxi/ocQgTzUo9wdgTFJAWulfupQxaNFm4mpDTHE7+z38Z4sYRIquoN9S0HPIx+e1j081xBxIkVO8+U2h7uz5Lt6Ho/FuPUaB+lrHRHHkuPokbziY5UCjIoesNb5lOyh6cgsHsUOBJi+gDLtDOt5EhuIAeDQknFfvon/tEtWgqQDg7xedzjERTDjNFUIcK2rYbVHJsXvqJC22ZGtQUr2XuMnklVt/MkOOf67My46nohp6gtzYKnoejzr6BO5CFnFZRN/xx2H32qiD4UP8dUqmRCWEwFarsBYu4JmwxA9bNHVcE61Gdtj+gIKms30O9s0DHiDsnJvn2jDC3kG/CYNExE4FulxtZ2GSM9XGHGwQ56V2xKyA9sXUaR+MxcOS/AiDnMUrKiiz8olW70UQgD30KDQC9Scz6SgqagN0XZUFj3CcxFsX0Rj1God78KiwC6pWghCniWmD30RK+kmug4VDGsmFNFjobZL2Rpr8S+k2xCEAB2qs0rG+/jq6lHM0PLbXPEAB80cWrQDabm4D46L4NLPT0zts6y2tdUFTJQOYVBTRy3bwde/9BbcdeIqANL9FnoiLDqR65ku+ocEUEqKCyU2hEPjG2TDAsdFONwiIGikURp1swmyh9iRHTj7hAHjJZ91NolpYug40gaFjozW5gRyK5vks7qDw1dWYKTJMabu34J5mdD8xgMdwHJg3SD3qTrdRNDWmIu2b8tQcl1mxte8MYfCI9cRdMg977XjbD94yUfgSMwJHCEPOTkATy1D7GqW2BSMyjkhj/YWLa+WGjCbqbHnEhfBtlSWmVfINtHrx1Gk7fW9dhKeJzFjTy3dg0n1Xs1aDolkjwGdVK4N29RY95ssu1AUB7tVcg7y6TYU2rzA8RE8T2JdiCMQbVN2qFioY3tvgonCG4MEFkr7rMsujDjE6QLF8yR8cW0Fj80Rsb7tylBlFx3KcOYSXWzUSqxEv5w/xA4tvaW1Ib64W8GHz1wkxzuIYbOVZ4uI52s5pGQfRTquPV2L497skAms86qDO/Te8kMOk7qDGz2yj48WCdD6Y1oyLWnAsaSJm70RGxQxUfcXDiS8Z8LF7nDMnr0667LrkV7WJl0Mn0076PsCblBAPmuM0YksROh7PHKKDzt08TMbv/XGWAB8UkZCex0tAKwImR91/1L73u/38Y//8T/GZz7zGdRqNUxMTOBDH/oQfvZnfxayTO1wqJnkb/zGb7zGTPLEiROv2z5/I7ZvW5A02kY32D+ofBQ8Ry7m9oDDTCzCgUVuuONJn3UOXWjx4AAsUAlCXAqRksavC1yEA0vG3pD8XdAi7JgczqQJ4DDEAM81yIP4cN7Ghqngiy0yqP+tio6qJeEITZZuODJmYia+Wk0BAE6mbBxSrUdSIrYDaWWUci+jagFLCQrAXB4CH6FAX3+xKeGh/LhTZ9+ScK1LLv07SkTrpL/KP0QWQgYaPrcv4z0TY6frojbELhWH5lUHHVdmXk+yEOC5ehxZZeSD5EMTQkaX71kKooh4DwFAzdZYB4jCR5iODeDQCTOl2Pg/b+fxngo5HzwXoePKaFKWrqI7KNBOr+1BHHHJY6ZzFWOAi600FArAFhN9ksfUGJ3LPjYGBsraOBdutE9RRDRKI6sBVQhg+iLbz5Tko2wMmEvw53ZL+Gsze/T4fdxoFpjQ//3zG+hYBnao5mIh1ULaGLB4kLQ+wO1mARMj36SQZ87vpWQb3aHBgMxUqol6P8my3ADiyj2ayGxXhk9ZN5EPUMo3cG1rll2XtD5g743pQzS7SSTpRHd5bwqPnX0FV24St+Ziqo3KDCmvCbIHz1KQuZ8wON2XZ9GrZ5BfJDqsS8/ejeN3XWEt8p6lQKH+XBwfYVBPo0VjScqzOzDbSeYDVDiyiWE9zUTOe/slnH3vVzGkTIPdM5BaJPth19IIPAF6kbBDe5dXMHnuGqx9AhLl5ABuNwa9QtiSwXYRyXOb5LzWNIhLgHOFPD9SvofI5yGQ6iSiYYAb/+FRHP2er5P9TuqImibTLDXbaRx9gLhx93aK0NI9ZnkgJky47TjzjQIfwusZzM370vkzmCoS0BMEPP7Fi3fh7937Mjm3QghZdcBRxmFA7UA0usj40pXTeOLMK6hTYXu5cgCVasGef+5eaJKLPDUy1VQLtWYWRVqOffH2CkQ+Ytohng8hSSNtmAcjMUCdBhF3TQPlXIOZfB6b2cD1rTmoFKwktCEOeikcmybg/6lbRzFLDSB5LkJMtdCj3Y88F8ELBNzpEnByPHcIVXbZvffpmyt4jIJA05ORUGxmTSGLPkxHRY+yUKYv4cnDOBbjo3FOhC5GOEXPwWovxrzggpBn/mQAoFMWehQlogsBep6EAu1ibbkKJDoukcYMGZVXaZ12TQ6PlchCyAl51GwFbjBy3HZxq6diJjZapPKwfJ691nAkFDUHVuDi763+zhsCkpr/x+sPkrL/y18OJP2PvL1ZbqNbRvHxTI2cjndO+OBBzB2BUXcaGcROpSNUNBu3+zTxPODRjCSk6ODzTF3BkWSIMq1UCRwwoY1ZUJ6LMEnFgE1XwqlUHwsx8js1W0BJ8/AvNsmD+njawITO41SKrKK8iGMt/fOxIThORobW+aeNAf5sL4NFGgdi+iK2TQ0dqql4rGjDizhmpDboy/j+OQLO3FBAw1aZxqBqS5g1HNzuk4HqbUUPA59EpgDAn++ncHeGgIttU0NZcxiAErgI9+cGTGw9H3NR1E2sUQ3C5XaERwsB0xUJXASFlrJjNIB2VAI6MGMMIAEkaPjFpoTlBO0UHKisBbdqSShGHANQAkfiUEYarp4rQ+AixMSRwDyOU+k+Y3geLh5i3xx5FQnIqTY2KGOxEPMxF++hMyofUIbn09tkhf5AfsjKSY1BAhPGgDGPV2plNB2ZmVautrPY25vAadp1J3Ah4pLLhM3rvRxm6ORT7aaxO4hjibpxC3yIcqrFdCUJbQjPF5m5pCY76FCwIfAhYgMDaZrbNVPZhyAGLLLibKGOaiuLLgW7j5+7gGYth1NHSabW4UERDmVZrEYGAh9g59NvAwAcue8irF4cIp2cjt91BaEnMt8gXXfQoaUmjgsRLzXQ75BBVopZ8Gs5aKOyXiMJXgiQoLElsWwHiDgIVIckeQL6W+Q8RyGH9N1r6F4k7fATx9cgpCwIbfJeudghsSXT5JmI8VWARtFxigd/g4dyhPzul3/1fXj8//UVhNtU6/PKEpYePQ+OOrda51UoJQtFGpBb1hyIczRjsHwLQctAm2bIJSUf3kCDQG0MlEwXL1w4g7tpxMmpM1fQbxDAYJpJ/KN3PAmdXv/axiR2difGwDjTRCzRxzNXid7r8ROXMRzo+BNq8/DDhQaee5YIyCczDdS6KaQy5H7ptZNIxfvMJ+nQ0lExTMba6q+ywPB8CXc2ZpCmwn9Z9DEwDdx9nJT9uq0UNMll5blWN4kjlR08v0aE7/dMbSKVJtd7aOr41MXT+JF7iW3D1sEEGpaBkk7OdTreR6OXRJHm092fb6FJuzunky3s9VJsgaZJLv50ewL358l3T8R6eDTisEOF/W8ttVG3NKxS1jIlj2ObBp4EJxxLIw4tBYuJAb5cpUG8GQ9OyOGpGrkX785Y7PnftyRUNI/5vbVdESdSHrqUWfVDHhnZYzmTQcQhxNhW5HI7zha3/2FHwYM5YNdUWdbmm9u37vYmk0RR+CdXfgApmTwALzcTmIs5qNOS2tUOB1UY0axE0D0qZW0MZJQ1n4GEhOSjakmMweh4PKZ0j5XuRp47o63lSmhQrcPAB+7PDZkxoRUIMESf6YzuzQ2ZGeSeJUMXQqSpaVlWtXEw1BmjowoBmo6CIQUJWdmDLvpoUSCk8iFuUVp6Me6A5yJco0aUc4YHVQhZmOqtrg6Rj3Av7ci51U0y0Gf6PKZ0B0XK6FxqpWCIY+ZoFFI7imIh+zb+7sttnRlv5pUAFX08cIURMZr74+0UAEKXL8Yddox2IDA33cVEF6vdJGP0SpqNktFHnWp0ZCGEF/Lo0uP3Iw5x0Wf7IXAh82O61UnhckfCQ3my4lxItTB0ldcIypOyw4T9li8ip43BXMPSkaGrVScQkVKHzL380IxhMtFBY0gZA9GD7YssPkXgQqijcNiIQyXVYjEkYcij0U9gna7QNSHAQrqBvjPuIpqjQuyNWglHprdYOeXa/iSOlvaZYDYb70FTbcRThMEyezGEIY88jdLYvzONww75nXP3n8fVC6dw/K4rAAC3ryN1bHMsim4l4JoanFF3z2MXUX+OmEWqcROBK+Ha9SMAgKX5DeiZLnPNDiwFg3oacdpV1tqcQOUtF1F9hoAEjo+QniUsXX11BqXTtxFS64HORgWxfBtWm0x6o4y30XeDDyHSictrxRFFHJRJMlFzErEEEMtkURFZHIKeBjFD3s9NptD+kywL8R1YGk48SATigSsRxoruM8dF4GQf5g7RBhlTNVj7OcYkBY4EizJEmfld9PcKzIizf0AYos+8cD8A4N0nLsE0DSRol+JgEIPniZiYJufA7MQRUrZQEH3sV4tYWLwDANjbnsTQUZBNEgBm2Sqq3TTzIALA9En9oY7VVh7LGQKC6mYcZ+bXsE/NI6cmDuB7EmsEEIUAB70UVqi/VzLVYS7g+zsVRBHH9ErXd6dRTnTYPa8pDpKJHoKRtrCRRYeyo4bsgOMiphX0QwF9W2OM8FymgSuHE4wNWkx00XMVvESdrxUhwsaA/E4QRXiibOOpGnkeHi1YuN3XWLleFUKs9hVmfbKSGDLWes9SsGtyWIiT/ajoNvqehJeaZLy4J+tSk13yXW1HxsZAZJFRD+ZN9l0SH+J8U8eptP2GOm43/4X0+jNJf897k0n6q96Bb5at7crYonqVtBKA5yLsDcns/Z6KiT5dUVRtCaowrmUfSZAojdFqJSXLmNACbFPxcUEltovXuyNdkQCflm0mdQdRBEbZdlwRe5bKvtsJOXCBgJpNqXhPYsLriu7iyUMRbymS79oeEEPDi20yQMwapIQ2RWn7C60YJA7IqWTCXe3JOEqF6TnVwq5pMHG5IQbYsxTmGpuSA0zqNu7QFepcfICLNCiW54iQetTNdTrTwcCTUaUT5vlmCkkpYs7go9LbqJT1WKmFiEqxOUR4oZHG6TRZ3QpciI1BDPfRMmFFH6JpqwwIJWQXBv3vF+pZzMQs9r153cT+IMH0XhdaEu7OeCjRgVwWQjx1mMIMBW+TxhD7VEMxHTMRlxS2Qm1ZBjTRwwJl6XIaWZ3fpLqKsk58kwDCyiVkB8lXlcQcX2Iu2bIQwnRVpqW63EriXK4Fl4ok06qFNO30UWUXT20ssuPluAjnSntYHuXktbOIaRaMke1Ds4BrNILiWHkP7c7Yvn25UAXHRZgqkDJHvZ2GrlkYUrF6rZXBkeM3cesqATOXa2V84MFnAABmM4WlpXXUNsh3J9JdhJYCjzJtguwhe3wb1z/7KAAg/NJdSE+QyTcKOQiyh+MnbpC/A6LfObxG/IiGQx3ZQoMZRkqKi+F6mYmTZ89eh0VNGdOTh4hCjpX1tMQAoSdCoQ7LUnKAwJYhlTvkoEOAT9PICssFJ/ngqCEoZoqQ5BpGbQDWdh766SYi6qhgPS1BLzewdGyTfH6gse696uosMsUG82NSJxtoXFhBaoGUBfsbE/BdiZUUcyfXEayS6x04EiTNxsZFAiKnj65h7/YcnjhG9F2xdA+8ELLSXTrbQrOWg081OPVmlmXqTU7vYXpqF712ihy/6KNgmIwR7lsaTh+5yUqd8UQfq1uE4Tt9/Dqc6xI0yoQcTXVwa2cGUzSmZm17GkndZL5bidgAMc3CLrUfcF2JgaCho8APBaYHbNgats0Y3rlMrrnjyuj2EowBTeomDLooOBgkcKRwgDh9tg4bWTRtjS1e7rTymIp3mc/aziCOvaECg0bElDUXJQoMdCFA3ZFxX248roURx0pwNVvCrOFhQh/nwq33yXmdi/k4lY7Y+Nrv6QheZQSpiT7UiMNaf7Qg4RCTgCIFYM/UDczS0O6YFKCsh1CFABHGIvJv+BbidRZuv47f9S28vQmS6EZKWeShuNnlcDKl4J4smVCbjsy61WJiiEndxp/ukUnvrkyIUOJwf26UJcRDFUKczZCJ/VpXQ9PlcTxF/r7cllHSxnVwjiMPNwDoWoBNU2VaIIB0Z7ynMnbR3hiMhNsCyhrPJv2Y5OJqO81Kc6QjL4AijIBPhLzi49k6OY7HSzZjYfaHpDQ1eiYiAAuxITN1XIp7MH2RsWF9T2K+R4oQ4GLbwMN0on6llYYqhAyc3e7H8H2Le3i+SlbkIh/BDXmkmL+RwgCUyIc4khiyFt6Y5MH0BWToBLrWi6Ogjkt7BhcxMaghhpiM9dGlJbGqGUPJGKDvpwAA7yibsAOBWQa8pbKLJwSfpYsDYGLqtW4Kbshhjg7c+0MdKykLB5SF0UQPG/0EmySeq6dwLtuj++Ex524A6No6BD5kMQwDT4HlSzhKO4GG/hQU0WOxDHu9FIa0fKZLxJTuPadJ2aZay2Nga0hQ1mo+2Uazn0CSDvoL+Sr6tEX5Tr2I5fIevr5OyiNL6SbSsT56NJstijiIYoA6jbRQZReepWJ6ikz0pXwdNl00GOku3KGGygmiSeIlH27XYGJrUbcBn8PKI4RpiUIOzVuzAIDUzD7kQge7XyfanpfWl/DY3eeh01KdkeyjXc/Cpu7V5XuvgZMCLNCuQ6cTR5xmoAW2jO3zxzFJw3DdoYbE7D77LbsTJx5J9DkOTQWtl0nXYe7xNfjbMhNii3oDMFR4N8kxqLN1uOsxlgMnpfvgDQd+g3ZLuhIDZ9mJQ1i9OGOSnGoa6ZUt+BQ0clwEI9chonMATiPJHMVbWxMQJQ8Tc6R7rb1bhCR6KCxss+MlGiXyVFxfXcKRxXXcXidu3lOlKjOtPNgtI5XsIjdJ2MPd27NodlKYpWaUhmHi+asncXaeXLd2O4VcnNynrq1ieXYTl26T++NEeh23OmkUqenp79yu4ONvfQH1JgFYvUEMQ1dBIUle1zWLibj9UIDAhUz0LfMh3rJ0k0XeDF0FsuhDG8XtdNM4pAzvcqYOWfIYsEsaJqJWnrHJFWOAtq2xmCOBi7CSHLDFkBfyWKDHtGfGULUETFCRd8PWsGkquNohI9u9OWB9IKFIO+k4AA8WRjpEDqs9A+do1+WldhJ35Tps8RdEHNqOwvyatk0VshCxcr8qEHAEADe6MmaNAHVbgf0/gOP2t/v2bVtu+793t31H7EfwgamRm7WAPUvGlQ45NadTHJ5qEFDwgYqATVPCjkleO5YkE3/DIQ/TpO4jr7jYo0yKF3K42QWWKFsZF0Ps00DXlBwhLgb4QpX87hMlnri40hXozZ6EB/Mm9qg2pKw5rBS3aSpIyQFmqbajamlQ+JC9LnARVCFgLaxVm1jpZ2TqTuvyWKRt+5YvwPR5LMbJ5BtEHDruOKS26wnoeTzuo5qTgScz+rusDSHyEap0cnZDHqoQIEZXoKTrTkSHJrMfTfawPzTYJJCRXdRpSSgu+ZD5kA2QVsCjrFmsFAUA55s6C5JUBJ+xW2XNRs+TkKC/+1zDwPtnDrFLV6+jVe5IJ7HRT0DmQxQoyPRCHjU66BdUGwIXIkffe7lRQBCBxdS8u9LG0BeRkMcajyJ1+q73k/BCnq2EB56MIORYjIvARciqQ5gUCJUTHfyvLxXw86fIQJ+N99hks9XJYibVxM0GMVs7UdxH24wxEJXWTAw9BZOZUcCpBZMCm+vVCmqWhj26Mp4zHLzj2FX2+m4rh0Kig/IEmWA5LoLnyDik5ZX5lTWs3SQ6mKPnLmP3xiIm5unEvp9Hdm6PXcPAleAPVaZJ8noGAwgcH4ETArz8LMkiO3XmCvRKHevP3AUAmD6xCkG34fXJfkW+AM/UGLPEiQErn4kxC5wQ4uA8YWHKd93E3vnjyFOAISgepHIHfJyc68gO0X15FgCgFdoM5ACkbT9+fx0Qyb9FfZvokehNHw18IADcA8JoDXYLiE2Q89xcm0L++B24tF1cTvfRXZtC+jgpe4WOhGtfuR/LdxF2qHFnEsIotHp3Enc//CI7P243hltXjjA2kOMixBN9xiTJqg1eCrBBY0lymRYDSS+sLePxcy9hfY28ljBMxBNjc9HN3QoawzgKBrm3MskeGpSh02QXyXifddWJQoB0ssfuj2Sqi8EgxsxFt6slyIKPHeoHdvfsOl7cWAQA3Du3Bll2sXUwwX67nG1Aobqyjd1JuL7IdHvpeB9N+rvlXAPPry/j7hliGHpxewYZzcJWj+znYqqFP9qcgEdXcMeSHhKSx7yO0rLHmjd2KRM8ikAyfRFZxWELo1ljiI4rM52mzIcoqiMrEgkyH7IFmxfySEgee47X+jGkJJ9ZvyzGSXfbyM18tZdAjWZf8iDh5aoQwgpc/OT6//nGlNt+5RtQbvuJN8tt37YgabSNbrB/OPkjkHjy4BVUF4eWjJu0lP++qQETCpZUF1bA486ATD7LCRcpycM2FRZ6IYe4GDBNTkr2ULUVFoC7MYhwNkOe+L7H40hiyB5MOxBwaMuwaAeFzAPrfQ5PlMlkfWCp2KMA63jSxvWuigmNPMSLiT6uthOsnb7rCZg1HEY1pyQPN3s6TtFS1r/fiuNdE2Rgfqmp4f7ckK2K5uI9PFnNY5qyRRnZgSoGaFIQsTdUcDrTAQDULMKUjAatkurA9EVsmjL9bICs4mGKsjQvN7M4lW6jSleSe5aCAnVQTsku/JDHH2ySz/7YSg9OILD8tTO5OmrDGG50CfD5g9YGfrJCBuZJY4CYYuOFQyLyLaoOSsYADgVcIh8irlh4uUYYrXtKe3ilVmaMVuJVmXFRRKwBRuDseieO+wsNtClLtZI7RM/SmYv2g+U93KBeNSMQNgqWvdLMYTY+QIqW3xTRQ8OMY5OCt6YjIa94mKet+QAwTUsetivjoJdCm9oDHC/uI26Y2DikvkCSC5EPGKPlBiJLaT9oZtG2dZb6LgoBstkWnrtJfH8eOXUJsupAoiG+d66uoFw5YIyOrDmsrGObGoaWjiTtotJTfcjJAYseMUoNSDN99C8QIbOgOQzkiKkB/E6MGU9qqo3sxCFjoTxHRrxSYzlwbl9HcnGXmTi++IVH8cB3fx4A4DcT4CQfIjXiRMjB3s1h6woRo+eKdeTfv4uoOdYZ8fNkUrefAaRMH0KBPC9hPwJf0gGfTKjBTojQkSCWyfkIauRe8KiTtna6DX+TPPMO7ZAcNpPs/GTn9liWm9WNIV5uQE6Se+HKV+5HqUiE6fFiE529ArtmtWYWx++7iAF1q3ZtBUa6Cy1H7ocXv/IQztzzCjp7BXZ/cPQZN00DhmFCocxJ4Auwhjoiyl4MTAOS6DM367nJXWba2aoT0f6oG7JSqGG/lkchPXYCb3RSKND7qTeIQZVdBoxdT0KSAjJJdtFpp/C718i99V0Ld1Au1nBwON7noavgWpMA8JVUCzIFMvlkB3vNHOKUfQ0jDg0zjpxBWd1WHmWjz4Tez9UTuD/XQ5WyzRHGpqo8iOB6huZCJmQHTx/mkKQMz7Rhoe+NjX7PZYdsQfblqohHCwG2h+QaT+seyrqF801y7k6mTLRo7AlAGHQAuEKjrEYO4KD785ldDscTMtzQwW/UfuNNkPQtvL1ZbqNbTvHghOQBebamUJEwFV+7MssK+sNd4COz41b6uOij541DEaOIdMNtUjGhLkqYi/no0I+8e2IsTD6VbuNgaCBHBwjZF+GFPHpUmBqCgxeCmRqeSttY7VGdjCshI4cslmK9H6NsBdnn/9jZwz/LGQzYqKKPGcNhhm4fmB5gvT8qp/no01UXABwMDQy8cRmw7qh4YVfG3VkyECzEhzikGpuuJ6LjCshRqwGJD7Ftyqz8ZPki6o6MMmVyFmIDBBHP/HpUIca62dqOgqxi43SK6r+GBlQhwCJdrVmejLRqwaQD10cL05B5cmLdUEBjGGNdhhnVwsuNHKYNMmBebscxH7MZw1UbJCByEbbpyvm45GKWmji2LAPP1bIMUBY1F24gsDw2y5VxaMaYR9XQU1g2mx2IePowxzpdjmVacHyRlRqaZhxpzWRdZ0nDxFYzD4OushXRw0aDTC5J1UJKHWKKdrc1+gkMbA26RN4bRjyGr3L3TmkmhozBFHBqegM+BXpfX19C/LCMB1eITqTfSaDTjzMGIwh5qKk+m0Q5IcBTL5A8sSfe/SVI2R4i2siwf+Eo8gkTVep1NJ9vY3BpAjItkYWeCLdLFhVmNQuzG3+NnYDdN7C9TfRNiuQhXm6wiBMl08P2CyeRKRNQcf/7vsi8i8KAh5RwcPGPHgcAnHz7s3A6cSZyzj10E8GmAI46/5prFcQUYlNgNeehzLZQ/zLRXOnZLrSwyr5byEXg+j7CEyR/jH/uOq7/6SOYO0W6/cJ2gCgg51ZO9xGFHLq3ib6nN4jBtlUUqQ1EvZZHem4fO9SIcuXuKzik75U6cQaQAGDl5E1cfOYcM9+s1XPQenGEG6RMeOL4DXT2CiwHTVZcJPLkPt3ZL8NxZLQpgzJf2YUeG0eN5DItyKrDfi/wBdSoY3Y+18R+K8sMQxPpDtb2JjGgjHAy3sdkqYouZXwcT8LSqRu4fZmweHHDhEXvtYsbC7h76RY+dITE0uiahUE/xpy+LUfBoRnHY7TsZ7syXtwjx/dE8RBH5jbwuUukHHu2tIfNQRx79JhO5A7RdzSmy3sg34MhueBHvmKxPlvcyEKAgmbhhXoKALCcEPFQoYlrNI9O5EPooo+ZGBlDY5LLmKJ3TYQQ+RD/tnoRAPDzyRNwA4GBHy/kkVVcNnZf7xoQuAgFdZzNNoo46nsi3l+JcLENuG+kricC8HpSHt/W9Ml4e5NJoij8+zMfxanUCJwQN+pHi2TgvtaJoUQfFjfg0fcFBPSslVQPfVquAoCDIYdpI0RZIwPEal/FXMzBWp+WlMQIt/vkgT+ZCjBtWLhGaXtNiDDweMzFRt49CmYNh9HDfY9nZmZ5NUJCCnChSfb5ZDpCWbNxvUMGuZYLnM24aNh0ZWTYkPiQle5iUoA81clsm6T8NRpMR+3ro63hiJg1HMTpRN/zZJbz5oUctk0eby+TiYrnIlQtDQU6+V5uxxETQ2bvf6GlIiEBD9AWX56LmIhZ4EJcaCVgU63j8STRH91F9TtPH1RQUB2WufRKK4Y+HaO+a6ZGVqEUvKmijzDiGACzfBF+xLHzs5KwwXMRpqieoWVpyNDSW0oz4fgSLFrWermRw1sqO8w1O4h48IjY6tcNRKxTEXdCdpGQbeb8PRnvwvYlxGmW28EgiWdqSTxeJsBnNlfD0FYRo7/dHsSYo3atm0Im1kefrpqLmRZu7k1hhjJNB50MUprJSonpV+W42a6MjhljGpJ0tg3L1BgLoWo2RMlDg/rkKIqDMOSRoh2M25tTSNOQ4tz0PiJfgEJBY3tjApvbU5ihcRixfAt/+IW34299+NPkmmouuleJhiY2e4DBZpnZCcSLLXhDBUNqCZCcqGPr2hKKFXKNRdUlpSZ6jf2hygCUOtmA3zEgGBTYmSpCR4JcJMfYuLCC7NlVdg4iT4B4lJaBz4eQZvqAQ46fS8mArgIUUIWbXfAlFfYr5Fwri23sfu4MKm+5SN4vRuQzAKyLSUjZLj77+98FAHjb/S9CLzYhFcm9ZG/mIaUG2D1PAFd24hBmm7BOatyEIPr4T08SkfuJ0h7y1CgSIECQ4yLc2SGsXEIbYmphCx0a8itJHmNoCtkWUqU6DjbIe/1AIFozOvEXJw9Q2ysxndrikTW49Drs7FSQTXdYd2Ntv4hsocGE/KN9GQXeFnNNSLILhWoN2/Usu1c6jTRk2cW/eYmUVD908iravTgSNDNuYGlIUn0fAHieyPZp5cht/OlzDzDPpSDkkYn1WZCu6ajoOCor/TdtFdtDBeey5P1dV2EWByMPJFkYZx8evKoRxgoEZBUH2yP926usS0yfRC2NSmazBkkn0KlAXOVDpGSPdc6dy7rYNmU8TLsUr3ZSzEDXDXk2Ptqhi49v/us3hkn6/3wDmKS//yaT9CZIojfY/774EWyb5EboeoAXAmdowrzER4zdiUkB4qKPA9rZUtFt/OsNDh+eGQOMzYHGylx5hXSZjfx7RuaP5DUbHVdhoMQLeWwPZRa7EUQcFD7CLVr2uy/nI0fZi+2hBjsYR5rcl2/gYjMDLxybnY0M0shvBajaAmt/XYiPO8HckKNaKHKMCcl7TRzIqEPMolopO+BxgrZbr/ViyCkeavQ9dZvHlO6z/LmluIeiZjOB9c2egpMpiwkx1/s6pumkV9RNWL7ETBobtgYOxFQTIG37U/oQBxQ0pGWP6Q/8kEwuozJnXHKxZ8aYOL3uiHhruYoGbT2OSy6qlo4ZqiXyQwF/Tksa3zW3je1emuU6TRpDGKLHztd8poHdbgaTlHn62fNT+Gf3EF3MwNZwu5PBA9NEYxFFHD6/voTHqeZi6Cqom3G2Mt7ox1DWbOaNFNeGLNxTlxykYwNWLuG5EKVsEzep4Z/Eh8jFenDpfiUNE1uUhTo2s4EgFLBN3ZaHroKVyW0IdAIRJQ/nV4/gWIXsd3FmD51qjjEW3X4cSzSwtnOQQ2Z2H2aNCHE9R4aR7jLdDCcG0Cp1CAlyb9753H2YuptmonkiAkdi4Kx2ewalY+us8wshj+2ry5i//xIAUpqqTO6z9vJYpQaOdllGvoCIgghyQiK47Th2bpJOuSPf/XXYt/Po7RPgV3jLdXDFFLm+VxyIsx6iPHWPXD9A0NIgnib3EnwfkW6AqxMA2v7qDPRiCxLNI+PiEcIWJd65CDf+/CEceftzAICbX3oAC2evI6BM2/WXT2J2dpsBQ2VkSQDAKLTQ2y+wANt+JwHNsJjNweHNefi+gCQVEIuKgygQsH6b6I7CkEeWlj1l2QXHR2g0yXUxNAu5yiHWbhKt0MLSHYSBwJzTdzen2LnrmDFM5OowKHgZ9OLQdIt1FU7MbaO6NclCakWBdPyOPq9rFrtXpo6uY391FsGoBV7yoGo2W3S9tHoEp2fusHvg5TsLOFoizNml/SmcqWwzoO8HAkxbZbYWbiCgYWssuHupcIAb1Qnm2SbyAbbo81ExTDRtlY2nTUdG3xOQox1oz9YUzMUjZgmQVhzI1HrgUjuJKd15zeJPF8IxWxwICCKO+dJdaMWwHHfYczwMeGb7EkZEID6lB7BDFz+39f99Q0BS45dffzPJ3D9400zyzXLbq7blBHkQc6qNpq2iTFuxb3eTmKbaDdMXkVIcBii+UjVQlCIEEWF/VC7CpGEzEOAGAkIA5VGyuy+gQktAv78Rx1+fHuJrh4RaPpLwMWc4jP1YH6hISAFmYxRg0SgSAFhJ9OCGAjoUfDx9mCPWBBSEBRGHpOThZIqmifsiypqNDh3YEpKLkVuTTJ1qRwBrta9hOW5hlba7HkkMUdRNJjaWBZ8NRHMxDproM1C4GHfQdhQUVHJ+OJDV4YgNuyc7wMV2DO+okFb0nDZkAyRPu9UaITVtVBxIfAiJDmSG5MELBZQp6zIR7zG2J60P8NPnK/ibM+S9BX2ApXQTf0wzwO7N9Zn+AiBmi6VXeRsJXIjvniduwn+6NY13Te+Cp3xznoK3OtUkLXARZMFn+/1TJ+ssWyoIeTwwvYGvbZKJ+0z+ECfSbQZkBo6Ky+0kOi45X39zZR2iEGCbtjjnEl32vVOlKtZ2pzA3QSaUap2AmAkKqHTNhuPILB5ivTqBBTr5DIc6Mvkm0n0qchc9xFM9WDTCIQx4ZDQT5UVyzK2dEgtGBYCp6V0WJZKq1KAU2ujtF9jfUcihT9mN7MomvHYcbp1q2t7xIji6Ag/aGqxGEvFFAgLyIQdOCNBcJeWnzMw+BD7AYJd89/FHXkLt+jx0yh7tXV7B1H3En6l9awaS4rJuN6eRgnFiH7PUNR0+YZ6K30EMIL21GLgWucZC2kVY58HZRKgeBRyZxG3alXpBgXqfCecmAdHpt+0AQYCwSU9IGIGjz1bjpSPIZNrgqX3E/OkbqN2egU4Bx/KxWxBVF6k5csydjQpiRfJFf/7Ft+Gu+TV0aJZbttCAlu7hzoUT7G/5VaCK4yMMOwbm5jcBALwUMBA0Pb2LVj3Lrr/jKDDbCcZKSpqD6sYkYtQiYbVeYqzt+x59ClcunwBPu9cy8T7stoIUZQ+/8OyDePTkJYCsAyDLLl7ZnEeBjonVbhrPUkbrb+do+Y9qjnSJjGEV6jK+VDiAkRggpGNmKdZj8SgruUPik0THy1o3hZhi41Nr5Hn4kZUq0toQbcoQ/8fbK9CF8FVaQpctlOqWBl302d8tR8axVI+lAzyQdzEMeGQpg35gaYxlWooPkVMtzCbIflxs5NDxBNxFGe8v7ZWxFLdYk8mJ1BC7psoWeCFEVChz5oU8yroFJxBgBWNpxjd8e9MC4BuyvQmS6HboyEiKo7JPhPWBypLqC+q4m6LriZD5EE9RYWdCAh4tWsyd+WCoQhXAgmVHKdB5ZVSqEljG1Q8udHBo6ZiNkbtxJjbAWj+OKhVnz8c8dD2BibE7rsTSr3O6iTvdNLPVf6DQxNOHORYHEkQc/IhDQhpnu93s6ZiPkYf6767fxs9NEjFtWnGQkB28QgfM/SGH48mQ+YT0PQnNdhoF2gliehIDRet9DROax54nJxCQVhzs0XM3ylaKUcGj6Ys4krAY8AGAr9cI23E220ZBGzLTxrJuojo02Goto1ko6R3caZHB+LduTeID0wQwuP0kPrYywA1aHoiiNB6cXUdGpplZsoOXG1mcpO7EpiejYPTg0Jy0l+p5nKAOwu+e3oEs+ligZa0X96cwaQxY12EyNsB6M4+pNDkfAh9im+anpdQhBpaGczR0Noo42IHIfmekn/hu2inWHRpoOxpqdMWutXIsCqJazyMX7zFDyJUjt+EMNUgUvNzen8Rs/hD+iElSh2jQ4y/lG3CGKvOfkSUPL1w5iUcfeAEAcLhVQVI3sXaFaHQGtoZMrM/iMPRsl/kiSZqN3uo0MvNEV8RJPnqbE+xvXvIhFfsIaTODe5CGSYXI6bNrSN61ibU/eQAAsPDO59F6eRlZCiB2ry0iW6qjXSXnLz5zgEShBY5OmtOPvgy/TZ6XWLGJKOLA0dLt7q15JA8zUOMEJKgLTXiWAvMl8tvGqSqikdufB/gdA9IyOZfu10Mojylwn6UgcraF7d+5C9PvJXYL/pYC8bgO3qdM474GkTY6xMsNmLUMnG0ah5LvIGMr0OfpNbdkdNcmoU2S+ydzbIOVD4+U9pCpHCJF76Uo5GC1E8zkU5ZdaK6EBC3jdA5yEMSAAQzPkRmg4LgIlYUttA8IWLm5V8CpeB8WLVXdvHwUS0dXUd0i1/G+pZuwqUZx0EohG++xrrtEsgfL1JgI/KGj18DxETT6t2oMMZVsI0eF3XrMxHS+xo4BACwKwE4urWJntwKJXifFcRF446nGC0RmD7DTS0MRAhadMls6wOdvnMA/OkfKpm0zhoGjss61+4tVfGF3gjU6vNzIYDZG7tmeL+BaV8XDhQ4AoKRZOLR0Nn6oXIi84qJFn8Gk7LGFIABkbYU546dkD6av4HfXiL7rZMpDTHLxTJ08e0cSHCq6gxeb5O+FmI+NPtnHlitAFSLwHGC/amH25vatub0JkuhWVFxGy26bOo4khvinO2QS+JH8AhPlBS4B2EdoRtq0YeP5ho57c6NVhI6aPda8pSQfccnDKy3yACWkcVTG07UMFmIOCsp4tXEk2cN52jUj8RLOZvpI05XPlVaGgTWRS+HJQ50Zp9m+CFWIYNI254X4ALumwZinV1oizmZ8Jlz+f88exSstMmAmZRkpWUOWArD3T/dwuZVETCLHGJc8xCQPe6M2/4DH3dSUcLWnYybeY6GsCdmB6cnI01X3vqVCF0IGsG73DTxcPMQuLSkFEYdTNKLhs9tZvKvSYSUzTfRQ0k1sUDp9p59A1Ywxofv/dGQH+/R7mo6OCX2I01ka4cGFeHpjESWqDUsoNu4t1BhYmcvW8O9Xl/C+eVIGe3x6i7XaD30JTUdBnlL8J3M1tCwDj1aICJjjIqwUqowdulovsUDby/tTOJKvYp+6YldSLXghzxyFy7EephJtth8TmSbkXpKV9nKxHlJUiFyt56BrFsorZB/tVgKb25M4doqUsp5bX8aCECBJOw05LoJEr+9erYBiusVYBAA4NTcuc728NYfvfMdXWXv9xoXj0PUhKw25poYk1X0kzmzB3U3i0teIK/SZx55D6ugGrD0CVuPH+ggrsxA2yDm4/eVjWPng02Sf0gbgepilbFDkCsjctYqrn30rAGD53kv4s889gff9MNEzWRsl9GoZxGg5VxkqTOsjz2eBgyaG1wkoWP7OZ2Bv5lmZK2jJyDy+DXjk3rNuZNixyx+chLy1hjBFAJT8bg9crwPhnQRA2JPHMblyHqiRZyIKOKJTmiDXRVzw0XuKlDljR3aweekIErMEFHnNJATVQefKPPs9LduFtUvOT+iJMOaI5qqysAXflTCgz3iy2ESs2MQ07dhMlxow2wnG4iWLTezfmUaMgt1EvoUjkwRQVFdnEUUca9s/NbcOQQxgUXZ5dnIP3VoOJSqar++WEVKRfyLfgjXUoFNWexSSO6QTfUDLmjJ9bmXdRibZxZCC+Vorg2KOPGuureDG3hQmUy12/ImYiUOqd3M9CYIQQKbj3FThkPkiFbNNbFbLr3GVP1faY9mGs4Uqmt0kqpRJalkG3lY+ZN1xczELccoq1W0FU7qPDeoFVtEtyHzIpA6GGEAWAmbPAkgsY/Ns2kNWcVmXclwMcCLdw0qSnK8/2Ynh0E7hofw4RzKMONydIWPRta6G5Tg5V5oY4OmagikdLO/xDdkijjUivD7f9/p91bfy9m0Lkl7tkwSQm36LihZVIQTPRfi7RSI+bTg8eHqqajYHgdPYRN73RZxKO4zRkfgIs0bEtEJXOwpWkhymKTWfkDy80iYPvB0QADKicO1Qx7QxwNEk+TCPCFc7MUzqZECZiw9wmUYweCGPd070WbktAof1PodTZG5Gw1ZRUC2YdDL+rukBNgYxNhknJB85lR47gKTksbbW9V4cR1N9xm44gQDhVXqfsm6hT0tP9+fbuNJKs1Jdx0viRGrI3ltUXXQ9CXt08MkrHhLa2Cdo24wxn5OVpI+l/CEO6IC4PUhgOtZjoviVVB+K6GGViqQLoYAnD8c5TJv9GF5pk+P9yNI+CtqQdX4dmnE8WU0yj6WNnVm8Y3KflbZqgwRzVZ9PNVGJk641ANjsppl7LwBsHZawO0hgnk4KDVvB0B4J4l30LB1fOiD7+GMTu1jM1thn77TyuNqJ415aopD6cfzp1iR++CzR5NTaaeSoJqs5jCGuD1mLux8ISMUGeOXl0wCAc9Mb2KyVsECv29BWMZknE1cq18L+TgXrq2QlXEq2IfAhi4Z4+Ng1/B9//J343jOEOUkke2i10qhQwNqpZRGjLd7Dm2UouQ6WjpLupMCVIB9zEIsTNsjfVoHdfew8fzcAUjIKO+RcRo0ATiMNbYZM7P0b01AzPUxMEYDhD1U8dv/zMOmKXY4P4QciC7F16inIFPgLdgfh0IBMBeRP/c57ce9bn2V/R54I7w7gU3sFADApQyV95QaaN2eQXCZATsjZsO9koC6T7jX16g1whoze04TV1Ct1RK6AYJNMfLzhQyuRfYp8HsvveA7tq6Sk2m2mMPvoy+juEZCdmqrC7euIUWbJ2s2je5OUF41SE/vXFhmY3by1gPkTt7BNrSs6vQROPPoiqldJSa3XSjJdEAB4noTSEeLHpMdMuJbCdEKS4qJ2WECcltv+5OJdeM+JS3DoMw8AKi1zcXyEaisLcSTMzjYhSR46XQLevra5gDP5Q8TogqQQNKDpFvq0dPXy4QQ+dIywPVevHMNS8QC7tGQc7PIwVBtZyjpd3VhA04xjmS4ydusFDCibM5OtY3lmizmBD1wFB7SrFQDKqRZ6ts6e04LRw0YnizK1CLjQMgCQfXq02MFaLw6ZsnY3ujHcne2wUj/PRai9SsjddCS8vWSyc5NSbCbkdkIeTVtlEUgPFTys9uTXBJk3aRA4ACzEXCQoWPvMdgwSD8zEnDe23Pbm9g3Z3hRuU9HbxyY+iow8LrcVVAfnKZV6d8Zi7d+rvRi8iGNp0CvJIRr2WHwt8hFudGUcTZKHo+2IqOgOvnBAJtFz2YC1qZO8NA1n0uRBfbFhYDHuMS+OgFrqjwDYK20Fp1KjlncOCclnQsNDS0RF95joO6L7MupuO5rs45l6AsdpFIksBChTTx+JD3C+kWcu2S1Xhi4E7LvPNwU8XnLYwDUV77KE75jkoevKOLQJ6MkqHpKSx0BBBOJ90qbfNRcfYKMfwwrNl+q4ChsAAaBs9HG1laXnh+jDRtogWSD6pJGgvBTrstLDQS8FOxAxGAGdZBthxDGt0F4/ifl0A//y6iwA4InyECvZGra7hG1IqxZzvd5s52D7Ihaox9BeP4WMOmTsTzHRQWdoMP+irqvgRJ5oXYKQf00MScshA+0izci6VCtjPtFhnXFP7U3hvmIVBwMC9mZTTZavZWgWNmslVKgFwF47i3y8i2Kxzs5X4AsIKKP18p1FvPW+FwEAu3emkcs38ekXSRv/X7/7PA4OC6gw88gQUcSzUgnHR7i0uoyHHyZi5EE9jetrZKIeuAoeve9FdEdJ9KdvoXFjDukZwo5wQgDBsDHYJKVNOT6EREtg9ZtzyC1to3qdAIqpt7wMp5pmvkh7q3OYmN+GQHVFw3oag14cedpO7/QMZO4n4OzK//UY5k/cQuxeArj8bRGcGIDPjLVUYUvEtc8/DAA49eOvIDrokH1UefRfqiB2jEzUXjVBDDCnaXyKK0DIBkCWgAT35QAcH0GskOMYvDIJtUA7qu5UwAsBAyfJE5Tp2yXnZ9hIQ0v3YNNsO14K2Ar/ay/dg3uWbyJZJr9rNlKIlxtobRKQKMo+VGOc9VfbK6E0s4vYNGFurYMcGrsEUMVTPWjpHgY0tuXSzSMop1qYWSYgatBMwfdExCnwvX59BQuzBCTu7FYwO7uNrS3CjpWpj9OIOep3EpAkj+1HIt+CY+os4iQIeZQnCQhs1XKIJ3ssf+/y83dhauIAHSoCz2TauLy2xErsxxbXceEmKfOWEh3cbhZQpM/e4uQOnls9wjpN17opzMb6WKdsckZ2kVRsXKUl+attAe+ukM9yXAQ7ENg4FZdcXG6PJQmqEMIQx2NmzRZxKkWu756lIiN7jIkPIw5ZxUWMyhUutZNYig9Z3FJWcSHzIdp0kVrWh2yRtd7XcCxp4pVWDE7o4JOHb4xPUv0XVSTU11G4bUfI/yP72164/SZIojfY30x/FFcd8rA9GMuioIao2lRAqweMGfIiDh2XR496h2kCEJcizNG6+IGlYiE2wJUOWc2aPocz6SEDCQN/nN12LNXHwJOY0NANBFzu6CwMNoyIOdoo1VoTQvTpQ2wHHJbiFvP5IALnkDlfezTAlTE6xgBXmllsD0fUc4QELadN6RaSio3rdOCxAw7LiQEzUzzf1JFVIhbm6Icc3lJq0OOT0HEUJjZfydRRMxNsQFzrJZCWPaxQzcGVegkFzWL1+4Tkj32jcjVUB3G2OrvcTiKreFhJjQ3uqmaMMV5RBKYvOJGto+eobPCc0GzkVAt/skMFoCduY71ZYOAtpdh4pZnFHHUsn001cbVOJp8JY4C6pWOCrlbziS6uVivsOi3kDlHvJRkbpkkeA0wCF8IJRHy1So7vf737Om4dTiBDfZHqwxiKxrhVPwh5qJLLJqMbzQIriR4r7UHXLKhUFyLKHgJfBEe9rp66chp3zdxhIliOj3Brc5Z8dnEdUcihNYodURymPwGAfj+GqbltrK3SDDVXwXSpCosyfsqrEuM13YKR6cKi3keKbqPXTKNM40GExBBRwMPaIUxK/J49hF1yPzj7Gci5LoYUQGnlBvobE8ydu71RgaJb0KlAdv2VY5g5usbMKD1TQ4tqbmbeegHrX7yPic2jiIM+W8Xe04RZK6xsEiftR8l3BdtjATQfD8BlY8xo8pXffzuOP3QB8iy5t7ikBvsVjV0HudABrwbgkpRs11QMnyXP1le/8igevOsVBo5CS4a1l2eA88vPPIhT0xsoLRLdWWOzwryNBs0kYtkuy5uzmkliqEmZM7sTQ2yyBpN26CkJE19/6kGsTNHuyYGBSapnQ8ih10zj89eItvChmTvomDGodGKfKB2i0ciiTO0VrIEOjRotSpqN3Tsz6FCtz8riOmTDQveQLlCEEK1WmtkT7O6VkYr3WUebYQyh0WenVc/CDwRotDx9e38SGX3Agnf3dyrIZlvwKaPTbKdZi/9EoY52J4kNykKdmtrCYKiz1zPxPjqDGF6sEhCZkj1kVYsJ0FUxwL/bSAEAJnUO9+c7+FqV/P1IsYeeK7POW0MIYIc8KvR5sgKBmdw+fZjDqXQfX6fM9KQRwAs5ll85CvDu0Wc+Lnm42EowL7X9oYYtk+xTRg6xmDDx5GEcbujgd5pvEEj6ee31B0k/Y33bg6Rv23Lb/31bTISo1ccPCAAcSZCBOiZ5eLo2EuwFeKjQxq+tEor3vRMcdoYS63aLiwG2TYP5azgB8epp0ViOaX3MyPRcGYoQ4FIrTn8nxPGkxSZjAMirHJ6rk4Esq/Co2uQheLQwQN+TmF6p6yrYthXWsmpwEa52DNBsXJQtFSof4niSvP/QltGwyT7rgoL1vs40WWXNRxDxTM/0SLGHQ0vDNPXvud2L46u0jJFVApRUh7Xt36Ki6hpllhYTA2wPDLx8SAY50yelu5MZwo4cDmOMwnYDkXSrSCOKOgldCHCbptFP0s6aMk01v97Mo0AZmWerZTxYOmBs2ESshyDk8VCeDOQ3amV0PYmde0WQsJzoI0ZNHF+sVqBS1kkWfCRlhzFWri++xnNpo1mALrnMUHNBbsOg+1yzdJzIV3GiRJiQ27UyLF9kzJHAh1hvZ5Gjg64sBOgNEixDbjbRwUyRsD2b1TIqQgCdTkbOUEW9mYVOJ6MT5V1c2Jxnq+5crIcNquVQt6YQ1yymm0qlunj59jJLcS8Ua7h1cwnLK6QTLAwE7G5XMEM7/PxXBZjGyw1I2S4UyoxwfITY9CEufulBAMCRUzegzx7ApKHH4jUb6hxlaHwB/duT0CgL43Vj6DQy0GmJORit3KlWanppA7wQQkqRa81LPqZmySTvHqYwsbwJ/QQ5P2FbgFdPonSCHAOveJAyfURtusgYxCDS8mpk8uBUi0SPADjzXV9G2FfBiZTxTCSgLtcwuEjAnJCNAPAYvEgAWuzeGrQl8l3vTP8papeXwN0ghoh6sYXAE9CmGpxjlR2UFrfh02fA9wWYtEy+d1jEgmEh9AjLkpg7wMHFZcYGCWIAXgqgUk2WWctA4gOWz5YNOdR3yD5Onb0BY7KGR2g5jeMizJT30aCi6K3dCjLJHnaocaemjDPhqvsl9IY6MhQk8EKAYSfByrGOo6BcOcCgR8amz23O4WPv+Ty2bxMJwkvrS3jiYRKA7FcL0DUL+w1y/HVLx7GZDRzukf3MZNo4rOVZ+S2V7KFHrSmubM5hItlm9/+t/Ulk9QF26X089BQ4vsjsR9oDDaYvMl3nXHyAvzE7YqVl3OgmsEJZ/Ljk4mCoYZHqufyQxyutGCZo9XLoC7hJy40nU33smjpeGpDvOprUEJc8FvPUoKG7I4+2tV4MKTlgtiACBza2GpIH05OwHPdhhwEw6pB8c/uW3N4ESXQjlC4ZEDsusBS32IDyQkPHKdpKb4gBLjRTOJOiHROCjaPJcfdbSvJhiD4DCafSJu4MdEzrZDLuecRCACBlrp2hjsU4ebiudlVU9Ig5YY/Aw705umJzZCwnyGedkEcI4Lk6GRDPZnpISD7r1pA4YNJwWWbaXMzEK60EpnTa1q54WO+POvQEzMYsPE+dvad0ETnFwwwFRc/XUyhqPi7QGIpHSjXcbJPfTcku/IjD0zUyCTxS7EHgQhYWe6mZxXy8D4OyIz1XQRSBmT6avog7A0Jhf6Wq4IMzPdToa2czbdQsna3iVNHHf9zJYJN2EpY0l5nMLcQHGDgqo8f/eGsC75k6ZCG9aTnCQ4UmE4Aqgo+uo+DlBgF7AhfhBM1AU0QPtzoZLFIjxq12FjPJNhObZ1ULDUtnjE/X0bBIy21o5Ui3G10ZO4GASnxcFhS4EDEaXAuQdum4YsGjrF061mcu2ftmHJP5Om7dIYLgfKLLDC0B4l1zZnoLPaqlu3o4gcdo8joArO5NscDSdjuFswu3EcuSSaB1kGct2gBwZ30WU5P7TMjdrmUxdY4IxOvX5qF3DfTovZad28OVJ+/DXW8nkyQnjpg9MqEo0w02sogxC9pSDZ0L5Bj2NqZQntxHjIqPOSGE00ixLDNB9lgpDiBidYOK7+VKG5Elwtsaa45adyaRnCTHoc/0Cf1KWV5/qECibdmRAzS+vAifPg+OpUGSXUwskVIed1ADFAn6EgFkO39yBsXj64g9QGa4yAzgbNLA1loGsWwHiQeoJmufGG0Wafbhwa05iLEhi1bJThzi6hViLHn2vpcRBjx77drX7oUqu0wLlMs1wUk+Ni+TctTE3DbuvusiOgfkflINCymqZ6vdmIeR7iFJ2/Z5IUSnlcL8EQIao5DD6vUVJooemU0CwI3DCdy/dJN1oHUaGWi6hSp15J4sVbG2PsfukbdV9nDr6hFM0RLb3PFVFsPy1Y1FHEm3kKTRO/dMb0AQA1zZJ+DsNB8iERvgz6+dAgA8unAbCpUvLJfa6JkGW2QWNA8dywBHn2s/EKBLLosaaToKEpIHjYLbpq2yhaIh+pgxLKzTHECBi8MQAxaYLfIh7sr2mWfbal/C/XRs7XsyQgAfnaE+YS6Hy22D2cL0fQFJLsLByGW8xeGtxXEUSRCBjevXOgkUVBcdT4DzRna3RRz53+v2fa/fV30rb2+CJLpF4DBr0NKU5sIJefzBDhlcPlD2GWC51lVxf66H27RcpAoBWo7MkuqvdFR4IUDNeSFYKiQ+wotN8nA9WjBxgXa2ZOQAfZ9n5bQdM0RC0lhnWEp2cWgrTGeUkD206APe80QEIVCk7E8UAW1XwqROJpRDS8ZThxKWKUtq+SJOpgbYpw95wxZxP+2Ma7qECbs3SwYiN+SRUhyodHA1xAg8gGU6CfQchUWY7A01yHyIs7TLY3+o4VpHwqNFMvhoYoBDS8dqjXbcGEQ3NU3ZEc4bHwMgIaMOkdOoS7Ynw/QFHKc5Vr+9OoPvna+iQ0XjOd3EDl1xLmbqEIWAdZXdnTHRcxSco8eUVWyYvgSXDsY9V4EheThCO8l0yYVLwUmXGtmNSoY9T0Y6EKDT89G2VSRkBwk6OOcSXSautXwJd1p5ZlK3MTAQRaTMBgAHQx2Pza3BoyvQnqVDk130aDYVBnGkKGN2/9waBkMdedruLMsupksH+L2XzwEAvmN+DbV2moH5B+Zvs9X88sIdHJfu4NYOEcQen1/H7a0ZHKN+X9VmFseO3UJ1hzB8U5P7iGU7sCjjkS41sPUi9e6ZqMHuGygeJeWl1RdO48TdlyFSPYdTTUNJWEhMUK1QLc6y2cxqFnE+QmKJaIFikzWEjoT+DmESPEdGdmUT3TvEzyq9sgXP1PDn/+E9AIDH3/G18WuxNXCaDz4k5z3yRPT7caQlAlY4kYO/r0DIkdf9gY7IJCCHi3PIPrKKgy+Q0tTE2ZsQcwME25QJmJThr/MAyH5Pfc9NRE0L7nVyPqSKw6JW4nP78AcawjbNDDNCoMlDolE0qVwLt569i5W5EjMHuOexZwGQcNzAFxCnbtXNfgIrs5vI0dJc7dYsbnz5fsyfJEaew2YSkmYzI0ZRHQuBBTFA6Ans+jfqWeQLdQS0tL+9MY2n9qbwAw+S3x5048wA9ER5F0/dPI5lWgYvF2o4f+sIlopkn1XDwsL8JmP4svEecsU6+62dmwtYp9YdM7E+JjMNdk/3hzoEIcA09fP69zeO4YNHbuAMtcVYq5Zh0/cuLm7A3pZxmr6mKQ5q3RSmqP3GZqOAF2sF5lPXcUUYIukYBoDVXhxVuiBVhRAL8QGOUY+ttX4MEhehRMtrTUdGFHGMlSqpIdMR1R0JC7Ehky/0XAmKMEYJpi+gYYssDeHxEvDbOy5+aJp8vuWKGPgEvGdkH3f6Ciq6BzscVwXe3L41tzc1SbSe+4n5H4IXjnQlxEF15E/06s4uN+Txnw5NfFeZvNf0BWQVD01nnN+WknyYdJLgEUETQvZdIYiYGyBMUU4dr0ZUPkTbldCn3Vwj9mk0OYt8yFZFOdXGoaWyUFo74FBSSUI2QFrxD4YG+2zXk6C8KvX+di/OzCSvdUWcy47dYwcesegfOcjKfIiOJyJPV52TxoDR0Nc7CUwbNjs/TUdG3RFxPDWmuHOqxbKYFCHAhNFHmwKR7YGBk7Rtvz408HwjhreXW/T88Oi4MqO4w4hD3xex8Kow2NH3LqWbuNHM4whlg8KIgx8IuNEhq/8pw4TAhVijWVRLyS5udVI4TbOrTE/GYKQxEn0UjB5jd7LxHraaeRRomU9THNiujCs0LNcQPQaaz+WaKCXbuFIlE/tKtoZqP4kuZYDy2hCy4GOClhv7QxIQ3KeaJseXxq7G0lgXBAC5VBf/7uoJPD5JWrpnK3vY2ptg7dBxfcjiHgQ+hCq7+MObJGvrA0urxFeHtoOv3lpELtVBkTo9r11bxsLR26z1XDYsxu7YnTgEyWfxIILsQTBs+JTRG+znoSZMaFNjZmoUDCvFiQjZ3CEsbXxlB5EjIaCffflr9yOX6jANlJEkvxGboNeROnYDgHFiH/6hDmufsB1230D29G1wIrk/BquTUNJ98FQE7vcM8LT8LE93ER1fAb9Oy4sU4IR9ylqJAYSMi+YzNCz3LauIQmphACBSVdhP0TGgGwMvhNCoULl3p4JuM826znjJh5gYwq6Sey/yBTg98j1mNw7L1hD7/7H3n1GyZel1GLivvzdueJeR3j7vy5uu6i7TDmh0E0DDEABFkAQBUqRGokbDxZmRNKIsFsmhWRJEJ4oSIXoOGmigu9EG1dVdvurVq+dNvpc+IzO8j+vN/DhfnKyambVmfpSK7Ol316q1Kl9G3rj2nH32t7+9iaVNkrP2uJPhPytJm7NpV9+/gCgWMEW6vDgWMHdsm31vIw8z10dEgKNRrSCOBUzNMaAz6qYhKwHXAtmOgSz5hPmuCt9XPlLKleSQe3KpmocwkLFXZzqzYytbGHQzKNG+7946iSotUF584j0MOxleqlMUH+OxyTvpgkBCOtfnETh+IPMysKb4uFxd4BYah708kqqDXVrs1GwDq+kB1yB9v57GghlhiawLhr6CjRE75ou5EVQpxE0C+qYcYc+ScCw1yV8TMPAl3pb/RLGHtyjn7fXuEF+aMlEh4bokxNizdK5JujtQUdBiDtY+6CSgiUBOo066nsizLYuah31LR0YNYIce/vLGP/5ENEmNv2p+7Jqk8v9t/FCT9G/7AP5d2RQx4uGvQSygoPn4ziF76b84E3BA0XRFzClJVIhadkIJLVfhIKHviTiVsfEW6ZtOZ5yPfI9P7tYAcCYzRNVKcK2LroTQpSN6tu0pyCoBtwiYThyVAOu2jr4v80644+kx/vlWCs+VyeRxlIATCjifY5OEJMTIaS7eJu3D97t9PJ9lA/Pnpgd4tZ7GvHlksTqle5wCz6keVtMDnsx9OMxiZzTRSQWYNkec3QEAWQC+X2OT5AuVIQrmkKfex6GEsa9yynstPeCMTRQL+OJsC9dIbHyx0IEuBVBJ77Q/SiOj+PgmuTM/UxrgIml/+paJp+a3UaPB9Tv7U/jlU+uYpzb+pm1gJdPFGUo1j2MBT1QOeWfd2FZ4h00Yixh7OooEiq4ezEMSYhTos2/vLeHphS0eaXKnl8cfP89a+DdrM9jplDBLf6urHgqJEe9+1GUfihRgu8kmn4VCEwMrgTSVFKu9PL/OhUwfrV4WGXJUtmwdL85WIRAPvn9YQTHbR67Azmlza5Gfz3SxBd1w8NPHmLi61s+hnO4hIJZhZXkHvqtypmDl5APICQfVDcY8LZxd56U3WfcQugqMZcY62BtsMnZaWXZO2SGG9QKMWbb6D0cGFBK09u4swyj0eKkuuVBH8+YaFzmff+Iq5KSFgxvH2b7yA0S+jP4uYymKT95F/Q3GaAl3Q6i5IXqkh5t59A4EOYKYYdcj/bkegjsepDKVs9dCeLepPOkD3X8YIf8nGHMW7TchFR1IMpv0hLksYjmNwi/22PNRBfy9JNQCdf/1Bti/wSwOAGDp6WuoXWWAyswNUDm5CW2Gni1PglvLc9bGtzVYZCA7+8x1jDZmYfJutQJ27qxh5QIrk8axAH9kwKGS++rCLnKLh0cxLgB8Apiq7qK2M4fF84x1mtE83Lt5Eo1bDBg/8fzbsJpZCM7Ru7m3x8B7EEoo5boYUobe126dwxdW7yNJoGljbx6XHrkGj56XQTeDkZWA/YBpktIJC9MlAontHLYPp3FihYFE31Vx92AOBpXUFst1BL7Cn836IMvL7WVjjOO5FjfAnM214QUyL7eVDbYAk2jB9mjeQc1WeQOGKMQ4TnKFPYt5vT0/zUrfdqAgQg7TVHId+wpyGnijSNvReQDtL8zoaLgCb+Nv2AYWTZszwmVdhiLG/ByOpz2831bxeJGNGQMvjSYtfnuejHEgoOdJcD9J1+pI/Hh9kqIfa/6Ebw9BEm19X0EUk8hVCfBuS8WzJfaCtF0FLXfC7gR4firCzR4bxM5mx5AEBTJNgoWUj+8epNF0J/5LOoY+QCkdWDADLJGVfdVKoKy7XCB9aOtYSw+5jX7blTFrBFCpta7ravBosNSlCAkpQoZW+0nFw0pShCRQhIccYuTLXBR+NjvGu60MLuYmDE8Gs8YRiyUK4NYEZcPGoZXgIudxIKPlpjkLk1F9pOizUSygYZl8QMxrHrKqj9XUEQvXGKUxS3YD3z7IIzfW8HSZMSkigLdptSoJwPFCAyvE6HQcA2+3kviFVVaK+Fe7Kr664EGn+eLczB6+t8EmVycUURlm8F6bXbuvLNTQHGZ4t99yuo+DUZrnwOVUH6eMMd6qM93EqVwXIwJUDomJjwTkQEZz0KeS2FPz29hrlzCk45w2LF7mSmk2glBCjQJuFSlEUrdxOGKAdOCpmDJHPPA2lRqi0c9yzdIigSYAGNsGpgpt3NxdAgAsFZof6YSbKrYRhiJ2SZibMce87NcfpqDpLg/HVaUAxUIHm1sMBP2gOo/l5BgvXLoCALh17ziSuo0T5yj13pcREKvkDRMYddO85GN309jaXMTFzzHDSKdWgJnvc1dpuTDg1y0124C61IWWZ/9m1/OQ5AADCnwt5Yao31hDlp6H0NaYMJxiPK7865dx5ml2jJLu4eD908hTpE3z5hoKx3YgiwyQjd/PQNQ8aCJ1Q9ZEKBS8HI0U5r1EjQ/yCRne1TSG1JGX6e8BkQCpQjETfRGiEiA+IBCVkZHOMVBceuwuorGG2RevAgD+1l//NfzxJ9+BSWxRa7+CqdU9yMQWKZkRPOoa7N1ahu+q0AbsmOub85hf20Zzg4nAbVuHYTjwif0xU2OemQcwgbVHuZGK5iFX7GBIeiXFcDE/V0WfxMjtrVmMhkmoNPF7nooRMZam5sB2dOSJWXpmuoqp6Tpurx8DAFw4dwv9eoGfs5pwkPMUHFB51vFUXDtg9gFr+Sbmy3W8fpNpjp45dQsZzebA33VVOLbOMwj3Ryl87hxbVFx/cAymdpTzlsn2sb0/C5cWaLIYscw0WpROmUNs7MyhRgvH+YSFdQKgFcODHwu4Su+iKkUoqP5HOmkjgOdZXsyN8DIFTT8YpHE+O8SDwZFr9qGlcnYIYAHjy0kCUcMkni05fDE8Y4TccNiLRJzO2tgamXCih9keP+rbj2257cNmkuvr6/i/LPw6PmizgenzM+zBnry4YQxe1tLFCG80Rfz8Iq0gfBVDX+ZMkiLGWB+qKKhsH9OGx/RDtC8nFBCRyiirBPjN2hX8ByWWnp1TfQx8GQlagd4dKChoMdcoqWLEWahxIEEEUCR6uOFoyKs+9z4KYxFvNHJ4jCasDzppKGKMaRLB3ulrOJ9lE4ImhbjRM7Fgst9lFB91R0PPY+c8pbPvXx+wVeV0IsL9AUMqJzPhR763ZpkwFZ9fj5xuY2+YxgzpbHaGaTihyMuRjxVbqFtscplKjD/ibaTLPt6sTeNJcvceuDoMxcfbRNsXtICXDyfdZ01aNddtFVk14Ku7s9kR0qqLezSBrKUHaDkGF1+vFRpcz6RKIWevANY1JIshHlD0yPE802aMiT2bdK4BQM82EUYiLFqtFhNjqFLAAdbyVA3dQYqDItdXEMUiRGIx73VKnKHKJMZ473AOP3WBGT5uV2cRxwIM6sizPQ2rC7u8Q6w/SOM2lfnWCg0Ymou3d9nK/4uX3sd+dYb74exWZ5AxxyhQi3ci34c7SKJxwEBDrtDlbE9uuQpJ97gGqXdjBWrSwvq10wCAU099AOPiCNZlcopPW7zkFdkaxtUiN4cMLB2S4SKmY45DCe2t2aN4jEoLSmrMS2jWYQHJVRJId1OQs0cO4p0bqzDLHUhUBlZXeog6Mnq3l9jz8eIm4iHZHqxMAaKIWGWTqzgaAN0+oj5l7vUMyAULwvwRIEF/gLDOnmNBjPn1EI0QUAV4m1n+vb23VmCUGOCw21mIUogRNTps7c9hbWmb7bKXRXnuEAaV2R5cPsc6+j6Um1fbWMD0MeoydFTICQf9fVpIKEcAc+b4NpxeEv/FN14CAPyXX/4uolDkrFVxdR+Bo+La5YsAgPmpOkRiRvqDNBKGzR208/kuxiMTEj2XI1qo5ShMN4okBIGEVJaNJ3EscLAmySG+cfURvEhNAxO2ewKqDxolWL6GEj3XlUod795mQvZycoAbzQpWqMGAGZ6K3H4kb4xRHWY587yY6uNgnELApQEKllOTsO00yrqLXRKUTxtHC1CA6SOzqocrbbaAeWmmicstyq6jstqE8Z0yLPyzrRw+P8Pe7Y2hgdmEhw867JxfqAyhSyE/rpu9BNcwJeQY9wcinii6n2y57T9Lf/zltv9q8GNfbvuxBUmTbfKA/dfLfwYFdaLvkdDzJA5s1lIWBlQT37NUZNUQr9bZy3QspWAl6aNqsd8nFXY5J2UwJxQRRAJ6PttXRQ9h0gRQc2Q0HQGP5ikTLZDgxwKGPiViRwLSaoRxMDmOo8lYl0I8GJjYHrPPPl+28K0DA5+eopWOoyKvBjAmwZGuiigG5qmEsjEy+MAAsBLjpB5fczSsD2QcS006smLMmRZ2qdXYlEO4xGillQBuJKJPXUNBLDB9FLFUy6kBgkhCkwZjTQqxkO5xIXNOs/FNMsf7meVdOL6KQ2Jhup4KJxTxSJGM93wVuhzgf77PQNIvLB1pk3ZHJi4Um/jGLlvpfnH+EHUryQex6cQYlVQfewSEspqDm50CTtAkcLeXxWPUet+xTJya3cNBm4GijV4eK5ku6qR/mkv3cLtd5h4rI19Fhcprshjig8Y0kqQTOlep4srBPDeb/KA+g7VMF39AwuUXKh3ocoAEAZ+OZfJ4hwftMk5Xqrwcu9MqIwKQIVBm+yosX8VxEr2qqsd9bDTdheepGE9iFswxoljEkO7hTKWO4TCF2WNMjG11MqgdVFAhs8k4FlA/ZBPz9OwhFMOBQQJ6t5uCXu4iJrZDStqof3CCi5GV9BgRTU6TSX7iezSuFZB79AEOfsC8jVTdxR998Ah+4jnGSsWRAKPYx4AYnmEvjemTR7Es5lwDcp7a+gMRg9tLSJEoXMqyzCDrAfvbxGod0KhcpopAJgX/Ons/lJUAwR4gpYktFNl/QuloMnDfF6BdIMa0ZiFosfvvtrJIXthD2GHn6NYKUFJj+FQiU1JjyPkR7D32nH5YbC1nR7B2KhhS2TuRHTCQR2WcvfVlTC9UeVlUNW2EnoJOnT2LS89e5XqvUa0A19a5MaUgxBDEGF0CVNNP3MK97z6NCrmbS6rPfZDCiAGebvMIFOq6w2Nphr00glBGmTRI+5sL2O8UsTbNAOud6jzX6C3MHqDXzaI8wxYzvqtC0TzcvMPKkeVMD/cb05hJs+fjNz9Ywq+ssL89PbuH3WaZd8blM33cO5jjIc71QRa67HOH7r9+18CfWw05mHmnmcEFMuPdGCWQVQKcIquB/VEKihjxbre1lIWqrXMH/+MpC/uk/UorIaYMC681suyY9QgLCZszVgXNw+1eAqcyNr/WV9oJ3hgyDGQkaKzds3RUdA/jQIITefjPt/+nhyDpR3h7CJLoAfsrc7+O9QF7IZ4qhtClCFWbDVQ5NeSurZIYwwtF9HwGqLJKiGEg4TiZw13rpLCYdHG7x/a1YIZIKgF/gRqOhn9VZ5PNl4tZFLQAFgGO2YSNtqtha3TUCXZ3oOAM+X6oYsQDc51QRN2WcYJaVAu6g5vdNGZJ7F3QHbzdzOFRavke+grarspZKkmIuV0/AOTVI7funi8jqwTYHrNz0KUYF/NdnqGmihEWafU28lWEkcDjP6yAsWYTH5ObPQUvTg+5nwgAVC0NBgHFKd3lrIsqhRAB3sY/k+qjNsqgRgBrkqU20eSEscj9iVQpROZDrthdO8FXpew7TTw6dYDvUbfX8zNV/NH+HM5TOcELRR7hMvBlPD51yJmj9aEBVWSi7Ml3qVLAywm1fo6vfIuJEV6tznDG7kyxjgfdIo6R43bSsNEepnEwOhp0ljIdftzFdJ8zmEEooZDrok42BdnUENlCFx1a/UpiiN4whXXKnDtZqnGLgKw5QrnSgE32AKIYQtE8yASMx/0UfF/G7FnWAr9/4ziyhS6f0N2RgcJJxmYcfHASnqdg+ZmrAIDWrRUUL9yHQM9S7MuwDws8LPfCV77Pc8yiUEL22C5C6kDy+kmWCUaapY23LmLp0m1Ub7Iyz9JzV9C4cpKH57Y35mERsDMSNiqP3UYwcbLWfAhyyFkpt5OGefwAY4picXopqCS0Ta5WISYCxLTggAjEjgQxR2GxUznA84AxLUSiGIhiHpAb20e5WHEkwNkr807A9MIhnFYWBonNpayN+998houkFc3j7IqsexCkEB6VMl3LgG5a3DVdlEKMeyn+DJSO78Bu5jg75Ng6ZkggvnPjBBZOP8AG2QUUiywAODvPgK7VzCFR6KNXLfPj8GjSF4QYUSiiTearmuLD9RXco461587cRGamiZ1b7L4kkyPops3LtQnNhUhAZWahin47x8G85ylIZQbYr7L7sN0tYsocYo7sBKqNMje8HLs6NNlHmnRDxakmdwEHmMmpKMS4P4kiMix8fa+AL8+zd7HtGHy8qNsJtF2Zjy26FEETI9zoMSDkRcBPzbfwDrmGX8r3eQPKzV4KFd3HgMZ1Q4qwkBzjwWDiYRfAC0UuMxj4MoJY4J3J9/oqniQ7gUNbR9uVMAwAL3Lxj1ufjJlk/T/NfOwgaeq/7v/Yg6SHmiTahoGAc9mjDrSNkYqTBEAyqocDWpG/0VBwLhdzTZsuRVClCHeoPVgSY9wbaFyw982ah19eEHC9xwbFU2kH//EKmxB/Zxc4n5V5inXd1lHWXZQK5Fw7TCKtHPklPRjqmE2wFbkTilgwfQ6aRCFGxfCwQiuw334wgzOZAG80GDXfdgFFBGeHhoEIUz7Cx01XhUUTSEZh7t0zxiTjSMa3qgVcyrHjarkKjlE56of7JZzJuLyLbiE1wLerZR618nPLXXQdHUMCZGnVx5zpIE0D28BXUaEB8kY3g4wSYo5WqHfaZZwt1VAkQfXI1fHhCn8QSZxVGToGqoMcN4eMIUASYtjUcZOUA7x1MIdp4whovTy3x4GQH4lYIOD3125nsJJKYnfMBteyFuDpmX3OQulSgL1BFjqxYdPJPrKTUF7NxfMzh7xtvztKQhYjDoIOG1ks5ZvoUfmtaRt40C1iie7brcNZfOr0LQDAP3vvCbwUbyGXZsdl2Qbam0tcyN0dpJDQXN5qnU6OoLrsnlmOjnajiDRZHISBhMBXYJLTdfOwjN4oCXWdTXqCEMO1dThUqjhslJE/zrRgZSr9WBRoa2RGkFIe6q9TyeSp20ieqWKNnkW/nUKa/haBBLeVxcH6Ens+Lt7F+jsXcPxJpkmZXd2B201h9vQGO86BicrTN2HvMOBXPrsBp8WeYXPlENZWhTMlc5/7APb9Mi9ViUqA0e15JE8yZim8tYjMpxjzEVsBhJSG6ID8mGZkwA9gXaNzQhP2nRKME+xZi4YSAAFShT0/waEKKU+2FVHMRO0EkkTNR/LkHoIWm1CDVhKWrWNhhgHjwUEJPWpGyBfb8F0V5YtMUO/3Tbzz/WexPMPYngmYndwnSfUhax6yZK8wbBR4eTGZHGH/3gpSZJaoJWxo6THP+ls8dw93Lp9H4kPu6dkc22+7nceV6gK+9BSLobEGSWi+gs8us1ibg91ZKJrHgdBgmIKsBCgRSzMcmzBp0XLnznGIQowisbKyEuDqvZN83CoaYxRSAx5qmzVHOKSu00qmi4Rhw6YyebtRRGuU5j5KohBj4Glw6dmSxQimDF7Oz2ouhtwWRcLp7AAWvWtuKCGleDhDWZhrmS5udgoo0EJhd2TyBANTjmCFInfgH/gqLrcz+GaXAd9frWThxwJerbP341yWLX4DOq7F5FFyQMOR0POA6UT8ULj9/wfbQ5BE24XcCL+/zway0xkJy0mP5/jU7CTWSYNzMc80OLLBnv5vVnX8xKyDvEr6DdXHq/UEpqih5EnVAOCgpDFwcmegI6uwl/qxQozj6aOIirarYnOU4K33CSnClO6hSaWLrBry9tXzuR72x0kOGqJYwDiQeGbYL67UcbVVxGxi4nUkQRZYthoAJBWR57pl1QBRLCBN52QHEtaHBpbMielljBcqfe5t4oQaqsSEzCdCNF0FKWKO3FDCybTDu0K6jg5JjFGiUl5GcxBGImeW0orHmaGUHCKp+FgnMFIxbLyyt4AysRtRLGAhNcDGgE2afU/GMboeZXOERCzggyZbNZ8vtLDRzyFHE8Tv7hn4s8fb2KcuO8vX8KCf5fd4OTmCqbJB//94UkRatzBHmqM4FuCFMmZSE9ZJxoliHa8QK5VUPCS1oy7G7X6O65SK2T4Smss9ZJKhjO44iRPUlZfvZ/FKdRbn6OdomMF9Cvt8ZroKQYh5UntvmELXSvLJSBIjOJ6KeVqh9wdHJosJ3UEQSjisk2O0YcMwHPzOd5l+5dnVdRSzPSTJ2bm2N4PpE1vYuMp0RqmEheZtxgYlCz2kTu2i+eolAEBpbQ9+48hzxzvMQZ3uwieNiqgkePkoCkXo8w3kCFAISoBMesD1PXLCgTtIYv8Wy4lbevIG7n3rWZSmGSgwn+zAafHTgnn2AEqawIoqIPGMheErBF7LXQRSBL+eBQBkn9lFPKI3hMwH/SZ7dsRMl3WvEaPl3M9Dm+oyxog2MRMBIj3zjRyEdpp/j7rUhUBWBKLpwt6qHOXV3V7Buc+9AbfBjkvRPA5WZd1DotBHlTyoZp+4icefeQ+v/uBZAMCLL/8A/f0y9u6yuJiVR28iCkVUN9jP00t78CZmiXKI8kwNf/j2UwCAE8U6RDHilhBWM4dCrocxMXG5XA+DPrFfqRF++oVX8f03nwYAPH3uOuKxgN0tJiCXxAj2KMEZrWNPXMff+qdfhUpj0yOlBkzSA5q6A1318N+8xUqo/97aIYrJATIkXPd9BZX5A7i00Gw1CzyPMJUa4s7OMmfaDIU57u+QvcBccsA6S+k9vt3N4dlyHw9oDKhaCvcuGgYiDu0EalQBqBg+GqMktobsWfzDwzJ+csbjHolThoUq6SEHvgxFiNEgYfuBraBqAf/RAvt91ZZQ0V2cIxNhUw4xb47wd9fZcZzJyBjLbCzJqBGSCos0eeiT9KO/PQRJtHVcDXMGe5nWBxGcUMUzlCf1TiuLtTR7tSq6CyeUcKfPBp4LuQhBJOJ2n72YZzLAuWzAOx02RjpiAHWKAKkY4YdE3CLGvoIHNOhFYKWtyeZFAlQxwqE1aTv1+WDSsBPYHat8pfLDuoK8JmAmwT77Zr2MvBrwxUBCjvHtuoNFnX3XsVQEh0J6a7YCPwYGJJ0o6sCnplq4QavfUSBifZDiJcPFpI1b1N3XdJkeaqIRMBUfG4MUF3J3XR1+IHI7gaGvIPGhTDlDDBBToW8CpAakx9gfm7BCkbflvt7IYC3bwZU2m4x/caWGK9TJYgUKBACfW2Xlo9e2V5FSfNyiFuc/e7wFUYi5O+9rtTLOZIbwQjYoigI4q5RWPRihzI0nJRJuT9gg21dheRoeKbLZO6XZ3AzSC2ScKDTgkjbotXuLuFhqcE1Fw05gOjHmLc+CEGMlaWGfygkF3eZmkvlsD7ppc3+ZIJRwfHaPr7olMULKHOPaFgMzl1bvwyKQnEyOcG97CedOsvbwH169iJVCE1949DIAoLo/g+Xjm3An7eQqKwkVyE6ABedSGWuUQO/7j2LuOSYgH96bx3h7hv8+DSCylSP2KBJx54/YxH3qpbdx/fc/g3NfeI39ytbQ6WUxTR2eowfzSM02kKCsw8DSIMsBd8Y+/L3jvPQW9EwE+waMFQagor4IjMfQKxG/ltpPmLB/j5iTdUApHenWAA9KiSYtL4ZcHEE06VeNEIIRcLGxtTEF8/QBF6OnPtOB8z67Z/JqhKglQCcReTTW0D8oofI0A6txLDB7gQE7Dl0KOShMlLpo3V9Au5sFAOT2yhi2cpgm4fL2tZPIl9pcUH/zzUdx8uItDlbM2RZad5gY30iN4YwT+PJnX2HHEYrYu7vKu9lU0wYGKR5EW92dw8IaadB6aezeX8ZK8cjbKltpcbZHFCOk8n3uon7v7Yv4uXPXuRt8f5jkGXqjZg57+7P4T6kc+972KtxA4QyW46kIPAV7+6z8NnJ1LFAzhihFOHfsPrc4+G9ffRo/Nd/kpTtN8eE5Mq6TDuuF6Tp2hhme5ygIWV76nzVF7I5SOJ1hY8+BrWPJtCCCPeOfMlwoYoS3SVsm4IilP54e4p1mFjltYqli4Uwmhh1OFsoiUrKMJI3rOyMNt/oFfHmWzjGMeeltHEioOTLyR5rxT2SLI/Dn7OPZ30MmCXgIkvi2O1awZ1F6tCxh1giwRx0ecQyskC1+QIzNMfLm+OaBip+dD7FAHkMNl3lkPEZi7Cndx/sdHavJid+Gy5mhKBZxvWfiTMbix6FLAe4OjpxbX60n8FLlKKl6e8Re2tMZHwXtKIl8xhBITEi6ISmGFYpcjL2qD1DSTAhgx62IEXoERo5n+hgHCro0cd8f6hh4Gk6Qsd/YV+DHAu8UOZZrQ6bv/Rc7GrKaywXSCcWDIsac8h76ClbSfRxaE1sDFWuZLu9ge7s+xSMHJplHFVqhNhwDWSXk9gLPlXu41y3gZ5dYGeNwnMJzs6y00hilMZftoNHPAgCyqospc8TB2e/slPBsyUKZdESfnaviYJjGEpUqCokRDi1WxtkeG3iseLQC9CIRPdvkPweRCEM+AqxJw4ZDdgBT2S72O0XeybOWYVEiEyFqyRyiOU6hTivlcqoPQw6478tK5QC1DgNMUUdEwnIwJlDk+CqCUEZpip2/76poNIt4gspzvU4ODt2HQrmFtbk9NGuMSZrPdBGEEk9xv1afweqp+xhTe3S22MXmtVOYmmaTV2q2AZvExQKBY4E6No1iH+kzO+hfZ+AsjgX47QxvVd/aXMSlzzNQ5HdTOPvCO6hdZgxV6fgOFte20b3H2LLciR30H8wjv0RuzJfP4djj1xGSdubOlbNIkT0A7zbts+vRuHocqak2EkskNrdVeN8eQKZ3TZ3p8xHO281AW5MgrBKjVTtEtHwM4RusI0teFBC1AGGBnUPiYgqhdgmJHLNE8G8f+ZdZlzMQ5BAq6f269xZRPn8f/ZsMvBRW9+DvpblDt1Hp8GsjSCF008IygRW92MP1q+d495skhxDEGDYtnM596jKG1TJMYhM76wvoU3eblrBhjRIYUSlzarGKbK4Hl95j39aRLbdRp2aGYrHN/aqCQMb03AHXrDljA2FwZHNQP5yC6Yyg0vgxkxlCUn3skY/WqQu38f47zDeq5yTwxKnbcMjNf+QrSCkeN4y0PRXv3TrDQ54VKcQbZN3xqbV7iCKRA/8XKz2YqstBEsBigk6Sm3nDNnG9Z3CGuKQ5uE/v/ExijJTiY4bK9VXLQNUyuD7SCiXkpQCX8uSMrnrco21vnMSJjMX98KbNER70s/x7zmfZmDkZA09lLPQ8BR4xpgk55As/QMLuOMaSGUN8mO3xI789BEm0uSHwaJ4Nwg2qnGTUI/3P7+5Rl5Ai4mcWOrjSJopfZBE3b7XYBPLVBQ9f39exmmQvU1oJcDYbo0QMxtbIRI5q4hPh9WRA2LMM5FQfVWtiEcBa7Ce5cO+2BHxpjr3gXVdFx5OQUo6K3lEkIKuyl/5cvouWneBAqGrrmE/YqNO+NDHm9fjqOAknEmESTX8s5WAu1cffvMkG19843sbYV3j9/Y3DGZwlbcK/f8JGw06gQOf3dr2E56ZrsAk0jEnIPQFVZ7I9NGyT76vmSDiVZd97o5vBlO7xrLYcN3ZjE8b+WMfnF3c4YMnpNi5TcK4pB9BHaQ42SokxRp7G2+lN2ceZ6Sru1SnAVGR+RRPtQ2OcxqXyIf0ugu2rWB8yZukLc3VkdAsFKnO9uXEcS8UG3ttnE0Yl2+UC8evVeZiKzyf0vqtjJXdUL7pcm8WXL17B/iETyKbMMc7qDtrkQaVpLpbJUXvQT0PTXQwIrEtiBFGI4FJHTn+Qhu2pvOwVhBIyVL7tt7PwfYV3HCnNPAd1APDy6Ru4ff00HvnM2wBY55ihO3BpovM25pGgZoTNe2s48+z7cHfZ9YAYASJgkuYm8mWoCy3IpK1bBiDSIkJyFbjtNGTlqE1/XCsgu8zKi1LWRmq+hjZpo5ZO38edty/h3MssSmN5ZRs6heMOd6bRrRWxdJwBqsqzN9C/vgJrm67ly2PI1hjeXVrCywAI64pKCPTHiKeYKDjYqENOHiCYOOWrMoKWCu8+O3/z9D1Ii1NAgr33TsOERjohOW3BbeQgrzLwVlp+gPAQSJADd2hr3EEbABo3VzlTEtxfhOdouLfHylortQNceOwqqusMYKXSQyTSI2RnGVvWur+A4oltpBfYsxk6Ggy6L2++8zhe+MIrcIllcUcJ1BslTJXZfVETNuo7s8hR1pvvqsjRPas+WIRrGegSo5XN9OE5GhLkTi2JEX5w7SJvjGjZCXz5udc5Q/r+e5dwcpXpyAJfgao7nP2ThBiFxAj5iUZpmMLq0g5uP2Al1b5r4MlFJj63HR2HvTzPGJzPdDF0DP4e7/ZzLAKItIY5w8I/3FDwZJHCp0MJc6TR2xmZyKk+D3mWhBhr6QG6VDav2jpGHzLgTSk+TFoAbA41fGGuxkv91XGS0hQoScBT0HYlnExTYsHQ4LFSAD6S1zkMRPzMwhC74wTXjH4iWyx8vJqkjzMH7kd4e9jdRp0Bf27qN3CBhNs9T0HPF3nr/awRwpCPjCUruse1QLvUATZZRSyZLpxIREqedEEoH1phsM2jB9kKWZ178vvf3pHwC/Mx7zJrewpajoTHi+QDMkyiTDELkhjhTj8Bh2xgvjTfwL/cKuNpyq1KKR62xyZmSah8aOvYGEmc8VpI2HxVFMYCSrqLGk2QYQxsjyVcyLGBaeTLKOouB1FZzcHuxBjO0vBIocuZorJh43uHWXxuhk1sTiDhe4dpnM+xwfdkroOObaBD5adTuTb2KDj2/Y6Jsh5xcfWdfgKfrrRwh7yNCpoHXQq5yeW7rSzv3tsemShpHo5TF5ntq7jSKuE4iZ5/UM/jC3N1ZGk1u9vLYyHbwU6PMSvVcQJPz1BH1TiFnqehQLqirDGGqvjokJ7JDRQkVJfbGByfhNsC2GqXsVqq4XubbEKYpwH8sVUWh7Fbq0Cm1SsA5DMDvLG5huMUp1LK9nB1lwGG2XQfrq/wCJe1Yh3XDue4sL1lJ3C6coA0sWG2reMBgcBnHvkAw04WAvkvSXKI6mEFS0uUEVYrww9k7vX0+Atvwh8ZPLleSdrcADK0dHjDBAwy3rv7ypM4+yuvYfAOpctXOhANl8dwmI+0EbWpm/Pt00hkj1yy41jEYJjE6kUWnhv5Moy5JiyKLdGLfRxePY5Gm92XlbUtZM+xCbX21lmUz9//SKdcYOnIPs4m69gW4R4UYFxgz17tGydQeowxQbEvQTR8iBV6xncCSMUA8SwDWMJhHd5GEso8O2f3xS9Cf/M73EdpvD4DhTrl9LMDePcNSAQKg74JpTTAeJ1dj1E7y8TXFXZPRSXAvTcfAQAsn3qA0Jcw6mTZtcoNoGeHaG2wv80vHcAfGfjm658CAHz+iXegmg436hw181BJMH24PwNDdzj4jSIR5YUDjIlp2thZwJmzd3iWWxhIHGAncwP0mnlIBLCT2T6+//5jODfHno+xZUAUI+RISxUEEu5W5/HoSca8Bb7CQXS3UYDvK7yEDDDwf3ufAcG1cg2lSgO1A3atVdVHh7RRHdvEqbldbB2yxU7OHDGwT890s5dFxzLxOjFxCyYzU51UgiQx5kxRVgnwRzUNf2yeLRQ6nobjmS4vyS+YY+7kDTBj18LkWloJbIxUfIHCkq+0isirPmei3UiAHYhYoDLxwFcwDkRULfb7phtzT6XXGwmoItDzYvixh98dfDLdbYd/uYC09vGBsoEbYfqvtX/su9segiR6wH5z5U/zqI3ZRIi5hINdEho2HBFrKQZONDGCKQfYpBZeUWC/f6LAXuq2q2F9oCCnHV1WOxDQIpmEF4HXqoMY+MzUANakzu8pyKg+ugReRCHGvYGCBPF9x1MuHgzZQHQhN+Y+QgDrsrveVfBpCpZdHyaQVUJeJ19J97E/SmHXYn8/8AW0iTE7mwtR1l3OhkxCfCdRAF/fy+AzUzYytJrbGSW5BcITxQ7eaBR4Jxy7NjqerzCwsjtMw4lEXCIgca1ZwZnCkebgvXoF6odsCfKqixLpme738lClkHfCaVKIQ8vEfcrbWjI9roWyAgkxgJO0eo1jAVvDNNccHMv0cGh9KG2cANAiCUhrgyzvjBu4Oi63c5gnO4WM6qGcGHH/ppOlGvqWyX/eHSfwE6SFWm9U8N3DLH55jQEuL5Ax8jUu1JakENVWCUn6/vcO5/BYpYo/ImD0mbk9tGi/SdVFOdODQixMb5hCPtPnpYk4FqBrLs89E4QYXQKUY0dHFAtcK6XJPqZzHaSIafruzfN4amELPXrmNcXHsbP30NxlIEvVjjyXysv78C0N2S8yRqL1u9MwcgN41AmXvbSJzrvH2GQOsHgSui+i6SMaahDJEmHju09i9tQGHnzAOuNOv/g24ljAte8y4fLCwj6Kj99F810WrWGkR5DImDK0NZgrB/jg918AABw/cw++rSFFmXGhp0BfbSMm7zCIMQTq4Gy9fRLFT9+DQALuqB9DXMoAbQaygwMdUs6GUGHXo//dAjJP7CJoENMUSJBPka7u1QySJ6vwqox1kJI2BM0H6F2MIwFurYD2DruWnV4WMxR226qXUJxqIneC6Xm8dgajZo47jDudNEa9DMontvg9vfraE3jsiz9gx/VgDg4JsQNfgZkZwqfxIj3TgNNJ4zvvPQEAWM21kEsP0KA2//OP3MDd6+y6nnniKnZvHufPQ7ebxdR0nXc39voZSGLEM+ZU3cX27jyOHWOAFAC2NpcAAKV8F0EgodFhQMbyNCxO1ZAl36xeK4fv3z/JzSbbvSxS1NGqqh5q7QIvV0tihLRh4YfUFFHUPEyZRwaiqhRgd5DlUU1l3T0qmVkJhLGAMzQGbA3TKGguB5EDT8V0YswXdHPJIV4n/6lHC314oYRvVNn9f77swo8FfKPKnpdfWvLQ9xVejjMoZHedpBFpJcCAOniHvohxAOTVGG7k4a9XH4KkH+XtIUiiB+wvVH4DhxbZ1edj5NQjO3pZiPFag01Mj+R9RLGAGz32Qky62IZE65/Purja1fB4gU2CTijB/JBQ+ff2DSyZEyPGCMtJG0Oq3etSCCeUePTIvzxw8KUpEwOP/ZzTQqSI0bJCESNfwq0+2+/xtMCCMCkw141ErKWGeDBM0XGIyCoBT8AGWOAj+14mOqw57Di+2W3hmFTEZ6c/GvY4iUC5WGzy7pOk4mFrlOTHNSDWaVJeU8UQ94dJ7s8UxgLCGEgq7POnsh2+0jPlEAvJIQbEMs0kB7jfy+M0JZVbvoaBq3G904Gt46WFbQBAfZjBVKrPO2re3DyGtOohRyZ1XSeBtOpwLdTYV3Gnl+UDqhXI0KQjhidrWOhRmW8u18b/cvs4jzD42m4BX5rroZJkE+xuP4cZEo8OXB2m4nEQ9H+/uoL/+MIW8hn22fsHc6hkumgSe+aF0keO+8MlsZGVgOOp3PsoZ47g+gpvvbZdDV4oc6H3XruEs8tsEvN9Bf/q+gU8N8PAWS45QhiJyNJxtDp5VCoN6KR1gRhDlEL0auxe5GfrkEkrNq4VYZY7cPtscnHHCbiWjvnPs7iQztvHkF4+hEe//+Ctx3jqPcA62iadcmauDzVlQSUn+JvffQann3+Pt/EPNmeRObWNiBgPiBFEAqvW5gxEzYNeYWCtf3cRqeUDyNPsWsdDAV49y8XXkS9Dpk44p5FD8sIB9r7BOvQWfnUTGI4Agb0P4UGEOBQhL5P2SFXQ/3aOM2vZM1s8lNfrpqDmhhCpUzSyVUgpGzGVmwTDw8Eb55Eh4HP96jksVBhIShV7UE2bA6hJ+YsHCyeYeeS4z97bysV7GO+XuSBXSdq8c/Affv0n8EvPvIkfXrsIAHh05QG2DmZwcpkBLFEKEYUSjAx7PjxL5yaVD3YXcOmRawgIYHXqReSnWvjmW6zbLYwFPLNyn+vjNNnHbj+Pl59mlgHtgyl0+uT8Xanzsh0AKEqA+4czOEWslO8raA0yqFCoc7VVwiwZxDa7OdxsTXFj1rl8i7vGA0yjKYkRvHBSyosQQ+Bs7O1ujo/Vy+keuq7BvY8ato4HQwWrVEIc0sJuzjzqRJ2w6V4kQkTMO2l7ngJFjLkZ766loaQF2Byx61fSI5Q0j//+nZaJ01n2nN7saUhIbCFrhx7+/L3f/mRA0n9S+vhB0t9o/tiDpIeaJNou5oa4kKVJIBLhhiJvd7010DCBklVLwWOFAQyZTVxtV8GpzAA3e2zAiABoEvB+hw2oCyazwp+4vlZ0EdMGteiGIm72TJyluIfrPROSwOI2AGBVS0ESQhSo4+J07sjQMYwFTBsegpi95CUtgCmHvAZe0BzYgYKSduT22/EU7vZd1B3eht/xFEwZNhZI8FqzS1hNRby89k+3dRxPCZwB2+zn+OAyDGS8tLiFm6QNKhs2ohi8Y+39dgZLpss71B4MTBR1n5tz7o7SnO0KY+Ej5nB910Ba8Xju2YQ1WsmywTYhp3G3WeHX7qRlotBnA+BUYox7vSxPDzdkHwnVRY32pUsBgkhAjjyYVFfHmFazA0+DH0lIkyVAsdDBF2absAmc/fLqIcJY5LoJQw7QIDfuQzuBTy9uch+YP3uihtvNCs7TYJrRLRi6iymhB4AxTQM7wbUeH/a0GTkGFCngE4TrK4hjARkqIQrDFGayfXSoC/H04jZ+660nAQBfPbaBnz9/DXUqW3VGKRRSA979Vsh10W7lUX/AWsuXKodQVY9rhyBGPMB23E8hNV9DYoosIYYuCsUegibt6/kHCA50OB32bD7+0uuwqf1dzw8gRALSZQZs5KSFrStnEBCjd+KJa2jeXkH5LAN3ohwg6Kb4vqJQgp4nXdnxfbj7RXiU3G4U+gjHOqJtdu3kzBjqdBf4/zBPNN45B3PlEDkqp0SbAwinpyB02HFJ00BcKiC6yxhPsRwh86kq4sFE1AREVNvWZ1oQDR8CafmjPQWjzaNynCoOMBolUT7NyoSz5QYHQ1EoQs0N4ZLYurVfQa+fxrnPvQEAaN9awc7OPNaOs+vhNHIYtnIoket4f3uG67m+cu46JDnAT33lm+z5aGegqh60BDuOfjuH4lwN9R0GOsoLB7z0llBdFoZLVh66FMB2dHz5M4yxau5NI5G0kCHWcn51B/0PLnDh92G7yIFf9bCCxcU9znCFoYiFfIvr8jTdhToO0KMF2/HlbexXGUjUVQ8n8y0ey2M5OlKKhzkqP7+5u4xKwuLv8XK2jbaV5AupMAaPahr5Gmq2waUOec3DE5qHf7bN3uvHCwJMOeJ6yP6HIqAmKQJ/eMDO999b7aDr6qgSWC/rPhqOguPpo45FADyJYToR8X+7lHMQxgJu9ky40cMp9kd9+7G9gx/ObgOArqdhTAGnOS1A35dxjHxPni463D+j48m4P0ziVo+9mFOGgIQc8M++Wk9iPhHBoZVfz5OQVhTuAmvIItZokuu6Oga+wktAy0kXedXlDtOPFSYlLHaMXihzDxBFBCoZiwMZUYghCDFytMKyAgVbI4OvmvJEO+e1SZu9yldcFd1FHDPhNAAkJGDacLBH5cb/4GQHl1sFznIc2BoyxARpYoQ39hexQGzG7jiJnZGK42TEeTozhhNKfJC7VOhCEuKPhMdOAm4fLbXw6mEZjxXY76ZTPVieBofAiaF4uN8toEzfpcsBTJrUv5ztIKG6HDT9sJ7DL6xtcQPI1xpZPB2JvJS3PcjiuZkqZ2nsQMEp6pTrj5LoWknuN3NnexmVTBfV3lGEQ1J1cJOcrk8VmryTZyo5xI3DOX6tThTrmMm3ceuAaU68SEJznIJBxz2Xb8EPZO5YXu3lOfi6tHof/UEaOSqJZLI97O3PYkxCbkUJoBkOTCpdhKGIX3+MsTt7jSn4bZnvK5Ng4bcTJq07SKGc76BMv89PN/kECDATw5BEzcWVPQz3KlBIK6ZlhxBNF+GATYrWrRKU7AjJieO07kEh9kfJDyGeywNvMqATegrWnrqK/jYD1b2dGRRPbOPGK8wyYHltC4Glw1yi8tS1Yzzn7OrvvIQTl24hcZr9DoTnelcZS5VbG8LfMTHaJ2+ouQaUi+y+rP7GfQS3ZO7OLc4ZiG7XIZSoRDYKgEKE+GkW0oqNu4inp4EBeyb8wxQkepfiQIKYAobvz9H5ulBTFu9gGzfymJo75AHBuuGgtsU+azs6jmeHmFqkPDpXRXHhgGuyOs0C/FDiMS7miQNs3z6G4bvsuFafvIbuJttXbords0mbfhhIqB5WMEXO8KnsANv3VjkgFfam+XM5cW+vUHltOEzBC2QMW+x9sWwD3UEaU2Rz0T4oYzrbgUyMX0J1+f93rCRKI5NbQnx3/RQulQ+h0jPuuBoEIeb7ikIRGv1OkRlTNEPRKa+8/yguzO+gT12XZ4t13GxN8TZ/gI11EwD2eKnJNXtJxYUkJKASWLEDGU1Xxa+tHXnR/WE1iymyejmfG3KT4CgWIQkxniWLiAeDNObNMQRB53+bkiOuQZ0sNifRTl4o4JA0nYeWiEt5Gz2fySs+qS2OhI/ZAuChcBt4WG7jVOXfWP1TqFpspbNg+uj7EqaIem27Cnd8nTVcdL0jMfbAlxABeK3FBtBfXYrxtT2Nd8qllRB+LOCdFvv7R/MxRtQRcSJtYXtk8CiRd9sGdAmQ6Nk05Rgn02P87h6bFJ8qHrWZppQAVUvDaQqcbDgG4ljAHAGIzWGK56oBwL6l4nx2iLdabOX4RGGE1xpsIJoxIlwqdHGVGIm2K+Iriwe8pCYJMbfaB5ip5RxlPKVVF21X56GSGfrO1dSRjqA6TvBW+7wxRn2c4gBtKdPh7M7WMAlVivB50i58d/0UCprDS1ma7GOvn+PdKmvZDr5HK9KXZw9RHye5fiGMROTMEbY6THMwk+pDkQMeLNu3TFiexieNjG7xENqUxlr6c7SvnmXCDRT+vY8vbaDdz3DfpPlyHa/cYy3uZcPCqdk9jCy2r7GrQ5UC/IBErJ8icfik+y+bGGNgJ3jJzDRstEhXNIlVOZiU5iIJihjh0RUmAg98GUEgwyRxeK1Zwuw0Y0Iur5/Ek6dvwqIWbz9QEAYS1zdJUoi9xhTOnGTOz56tQVaPbA1cW+esizdMAGKMBJWPpKSNyNZ4hlo4MCCXLIQ9dk5+NwXjHANF/oYOeXYM5x4l1Rf6aF07BpuuT+XkJiTdg09Mq1bs4/DyKRSILdEqHQ7GJnlo5qNM62JfTyEOJCQuUXjurow4FNFbZ9e69MI9dN9iXWO5T++yYylRWXMqiahYRqyQX1UcQdzaQFxi5cboZgON905j6klmrxCOdB7DIp+QEdz3eFkvHBrw+kleMrTbGdgjE8l8j51DZozLrzGG75Gn3odW7iKgc/L6SUiGix5l+c185hpufe3TvOU/N9X8SGkrjEScPMPE6ErSRuSq2LpDRpwnNuCOEjx6JF3uIPAU7oVl5gcYE0MnShFu3D2BlVl2nbPFDuJYwPWb7DmeL9cRRSKKs+wZsHoppIpd3L3BNE2phIUpynXrNgpQFB/9wZFRJQDc3Fli+8q1USy2+fXqdbKYXmLg82BrAfcb0/gGGfn++pkNBKGEpHGUU+n5Cq4cMmCoSSE2RwleFvNCEQvkkp3RbNTGKb64+/TsHrpWkr+3ScWDH4mQJxWCXgYFAqOTxIAilcnX+xksJMfYpwXJOBDhRwJn+RUxwvZYwzIZ7nY9BU13oncMIALIaR7s0MP/Yf2ffCLltupfmvrYy22zf6v+sNz2b/sA/l3ZHoxUjGllOptg7s+T9vm0EmJ3zF6AUSDBlEPcH1Iqtcn+6DMl9iK+1RIAhEgT03J3oGApGeLz0+yldiKRgyABQNMVUdbZg/3ydB9jX+FdVVc7OTQcDT9Fbf9OKHGH6KqlIauGaBHD9X/dex1/Y/EZ7FPZRxVjfH1fxZ9cZasoESzm5EKO7et6N8nPPaWEaDsGLymGMVAfJzmQ6QUSLhTaaFGpZiHT5VlKihih7ylYJf3K9Z6JR/MD7BP1fjrXxUKmg79ymYGZ33ysB0P2MSDx5G4/h4hKc4+W63i3XsH6ISsPnCk0EYQSFIpA6TsJ/IvtNP6jswxobPYKOJdl53e7U4QfCfCjo5Diw3EKx0nPdL0xjeV0D/eIDZpOWMjpFnco77p5LlzPJ0YIopCvwAFguVzDMRpIO/0Mdnp5nCgzQLLXmMJTC6wcEkUiXt88huPU9i8gRtoc43RuYn4Xs7wqAivZ9ACKHHB/o/4oyYHc2NWRNiy89DRr0w9cDQd7MxzoRKGIei+HZSqvzM0c4so6i6SYzXTgORrvXnJdEZarYSrFrpesBnjkiSsYU0kt8GUYmRHvhjNyA55NJskBtPQR6A0HJqT0GO4Bu5bdrVlMv3idgwhRCRDWCWy10whGBrcHuP2dZzG/vMtjOvq7FZQeu4sxsT+S6sPMDuHQd8exwLvsOlePway04N1l75qSshC5CmKL3Re5EgKyCGmLSmQZE2nKnwv2JUjPFxFdJmuC/hjR/X3IiyTknplFXCggyrHjEJ4wMb22B7DbBnEmRtRgE2L79+eh5wcYUVjs1BfX4V8xoM+xe67mhkgME4hIyBv5Mi5cug4AOFhfQmFg4mCXPePza9vQKx0UadK/9bVPY3ruABppqeSEg5ncEK987acAAF/99A8REWsZWDrWb53A4iIDHO2DKWiaC4NYbVEJ0Nqaw5iY6ZXskOeprR7bxMpslbM/ghRC1nz+7Gm6C9sy0KoytnTm+DbsbhqHQ/a8HD99D3sbSwCAYqmNVrOApdOseeFff+dlXJre5wG4W+0yFta28K03mDj/ieUH2FpnZd5KpYEzqodlek9v1Wcw8hWu9VnNtTB0De5vltacj4yDmhShRSXBnG4hrbqQiNFpW0n0XR23SCs3a6jQpRBzpH86n+tyAPVaw8Rz5TE2SM7QcGX0/Az3OVpNWRCEmJfqrECGLsbo0hyhSxGeLLL9vlLLYsEMMfAUOA8NGX/kt4cgibb5RIDJ5dggsV/VpjKYGfFUe02KkJIDHKMEiLYrYxyIXDf0bMnBjZ6JMblZn0j76PsyaiQAPZMd8PJaEIlIKzGa7qSEFmF3rB8ZlEkRnFBEn0pVE/sBgHV9tF2Vd7v91uoTuN41oNAqadrwkFaOJnk7FBFEAu+cO5Mdc13RvDnGvUGal+ZOZX3sjxMY0UBU0Hz8wV4ZZzJskni/XkGBtE5+JOLZ2T0MCGwMfAWCAG5jsDXIYCES8Z+fZ6v9jW6RDWQT53DHwArlnN1ol7AxklAxqGtKt1AdZqDRQFYwLPz6iSauUUltzhzhd3bZRP1yZQxJjHgciqn4mE13uafSk/Pb+O7mGjZG7B6nFB/TKQ8jYssW0z3cIeA3KVGtt8mIMd1DvZfj1zJtWPigk8ZqgTxnhhme1WZ5Ks6WaqgT+1NIjNAbJXGc0tMb3Rz8SMKIugwzFjvuIoWh3t5dxKVjjN35vQ8exYuFNr72w+cBABXDwpmlTeQXWWli7/YxdJ0EVgjYjEcmzi0xsJYptxC4Gp8E+4MU3j6Yx6do8jnx2A309ioQ6edkboDAUXl3k5ZweH5YFIpQ0hYCYiSsZha56R66V9hEP/XYHURDGaLJwEnclnj22qBWRHa+huYtVhI79en3IBouUsvsHIY704htFfvbzL/o5EIdiXIHcvrIYNWnSS57agtyJUBQoy6ijTmkT+5ASLFrGWyIkJdD5J5hep7W14+j8CxzHBfkCP4PWxANCqm1Y0iXCogSbN/CvQ0ImQREkJ1DtYGgpSD2CZBd1BFSib3w2R2M388hQ0Gy7u0UFNNGOGKfPXifsTEzjzKbg7e/8SKe/eVvAGCRJvtXTnFdmdVLQ+sMuQZr+ew6Nq6fxOp5xhYNq2Vk1/bxS1/6FjsO08aIAmvVlIVcesDDcQszdfTrBS7Oll0FyfQIQ2JD5ISDzQ5jysY3dZw7cwcGWWhsXT2F/tjE4jS7L2ZugP3DCgfzoavgys0zePwEY3m79RLuNdjCx/FU9GwTZfKGOlc+hOsrmClTw4WnQVJCfOYcA4qBJyNF7Ofe/gwqpSau7LDn41ihAVUO0KTYkb1BDmuFBt6sMnbwqUwXMx/qdhv7Ks9Mu9MtoGqpOENO6B3HgBtKmKaxO6X4GAUyXicHe12KuUXKEwUHo0Dm49ITxR46rsYXTn93U0BNquHnswzcLZsutscivjjLrl91nOAl85TMOtwKpg8xPGoG+d99i0Qu6v949vfx7epHeXtYbiOq8r9b+TO40WWDySN5H6/URbw0xZ4SRYy5WeJlcrTWKD5kNuHxDDSA1aqVDxk1LiRslrFFwGhnZKBIHWj3+ipOZDzezTbwJZzIjLh+p+GqMKUQDZcNAhU94OLAxdQA7zaLXPQsggmfJ3EoEYCqpcINJ1lvYwx9hXe0dT0Zy7S6v9lL4LHCAHtUAklIEVQxws3+RLQYwQoEKPT+ZZWAC8Tfbgn4bCXAiSwDQW0nAS+UuM+sH4mwQomLKXOaAyeUsTs++q7HpxkztNvLo+vqOEWrys1eAUEsYI32/V69ghPZHg+1vd6cwjTpcQaeitVcG3sEerKqi3eaBVwg0e/rjSxeqLSh0XGkNBub3SK3CFjKdDFyJz5RAormkAfJ1ns5RLHAjSeHrgFD8VAfH2WlTXLdFqcPsFmd46W69w/m8dzqOixazWczfRw0ylwLVc70MLQSyFJ3W6Of5f5LOc3Gsfld7NbYZJQ1R4gikYeOmqaFVifHtR6tTh6VKXbtHFuHJEU4aLAJYa5Sw63tFRyjcp8sh7Asg2eKJdIj6MUeDihDzUyNoE5a730ZmZUqxgdsX6nVfSASMdxgICn79CbClgK/zSY2q5lFhhgceSaEc/vIWDGOBdx5+xLOf/GHAIDenWXkzmyif5e1fAtCjMR0C/VbbDKa/+wVhNQEIRgeOlePQaaFwt7GIs599fv4/j/+CgDghV/9PYRdA/IMe1f9qgEpy56V3gerSC0fQDnNntvuH5aRmGpDfZqiZl4REToazF9iz6VwZx3xUIBYmnS/CRDTxOCNJYQ9E+oJcuHfF9G5uYo0lSftdhapxUNULzObg0y5BY2iMpTcEE4tD5/YDj07hCCF6FG3m+doiGMRJrndG4UeEInYvU0ltUu3uV5pVC1DlAPsPmAlxVK5BUkOUD9kADWf70LVXUSTEGwxQrvByp6G4SBbaaJzyABXFIoQpQhD0gJpmgdFPurwTWUH0JIWmnvsOIdjE3MLDPiLUojL187z9yOl21ha3eZsmaIEUGSfvwP3G9M4Rsat3VGK2VMQoOoP0nhtZwUvrDBWyvFUmIaN18ihWxUj6B/qFh75Cl+QDXwFc+aIt/grYoQoFvC391mZ+L89ZqDr6jya6J1WDiUqn8lijCAS+MLwVGaAhmNwDdKl/ABtV+OGkfMJB2+3DLxQYfepYR9pl5xIREnz8EbTgBe5+OfdT8YCoPofTn/85ba/c/iw3PZv+wD+XdkUIYJOxMuepeC50lGnWEm3cYtaclUpRkkLMEUrkA86KUgCeCjt3YGMp4o2NqhVdByQeJN+n1ZChARUHilYCD5kPOlEOuJYwC0CJ7oE1paqHUVkTH43ZVgQBWCBtAtBJOJqN8kHD0WMkVEiCCr7mYEVkbfmG/KRxX4QAz1PQ89jF+BYcYh/upnFr6wwcPJuKwdZAC6SxuJ6J4PjVH5RhAQUMcL+6OglGvgKN3sbBhKemz7EN2jAPJ+N0fVUPBiyR+/JooVDAjabwxRMOeTdbH1fwWpqgG0SXxtyCC+U+WD8RlPFgsnO4fNzB9gbZLGQZozM4SiDRwpdjEk39CdOreNOYxoVcva91ZjGwFdwiUpmbSuJu2Rw90ixhb95fRF/4TRbVacNC41hBjPUwtw4TGMq3YNJg+0/X1/FM8Tm3Ll5AacLDR4lcqZYx2ZtBhWKJWl18pgutVBvMdbK8VQUsz24VG4zFA9rlKclCjE8T0WaSg29cRILlUPUW2yiM03GJEwEtI1hhpcIp4ptXNtawWlqw76/twA3lLk7d71VwNzMIRfAqikLnc05pEjjJn/YAkP34HbS3BwxHJiQCwNeyoq6EuxqCYkFdtzG8yECJuWBfSsLf2BCpTZ0tdjH4vIOdt+4yI5zdQ/jrWmI9A7Iugc5N8LUGbIyqKcgEaskpkLkTuzwMtb5p7fg7aTw/Fe+AwAIOgkcvH8aiz/DMuakpAOB/MomuXLeCaYNyqm3ACcABuTt9BNlRFcOIVyld+3kPMRBH95VsrJYHGF8k4EPSfUhaj4C6qoTDA/5sxu48gfMv2l1bROj3SlkySsscFQu6t6/fA7TMzWu/VJTY8SuAo00fpmFGvZvHEdiYs8x20L9nTO8xLp/4zh/VhaObWHczRzF4xR6cEcJXrpNFnrYvb+M5TOMmRy3s1h5grE5//LffAUvKj4CupbZQhdxLPBoEZfGhjyJwNuNItSehz51qGXTA9SqjNHN5Xp44tEruHGdhfYamotOvYgWsUHHFnewW51BOc/GE0UMOXBLGRaiSMTNLWJoyjWcKza4A33PSWAq7GOKGi6udfJYTY5wSPrBtXSfl8yyqoeqZfIxbioxxp1eFr9QIO8vqY31oYFLdC1Ppi10JmNgJEAAYNOicn9sIqv6uJSfNNloUIQYGi1Q/EhEQgb+zQ4DZGeyAjz626zK8jkLGni25iexPRRu/++zPQRJtIWxgBmDvVxNl3n5TATW17tJ1MhaY8mMuVYHAM5kLAwDGYfUdfby9AANR0daYfuyAwGqFPNS1jerOj5H+qSuq0KXIi6ubrsiUrKGMxlynB7oWExa6HmTiA8JCwk2iPuRiIYj8hr6Ty+0kVcNflwHtoK8GnLHaS+S0HRV3vLqR0fhjgk5hh8LWCIR4t7YREYRsE4DVUaJUDEcrBOIOJ4e4Q6Bxix1dxxSAvwsDfbvttn1yKvAN3Zn8SSVbmIISMYCitrRo1egNvxqLY8XKgP+8+VWBj0vjxL50VQMG14oYr/PJpwvzIz5qnDsq/BCCR9QKU4XI1RtjYO5a4dzmE/18T4JQBNy8BFPIiuQ8Rh5t0QQ8JfO7UKZpKl7Gs4sbaJKXXjLhQY8X+GuwJ+fbeCQtGCPz+7C8xVsUFjuvX4SX1l7wDt9Dnp52J7KTR6tQMZp3cFmk+37kWPr0AiA1w4qOGwXsbbEwEhFDjDspTFTYWDk6oNjWC3X0COPmrGv4HSJncPtnWUs5Fu4trsEADg7twdJDLFbY9fnxMomJPmoFCBqHsJAQmGV7dsfG7CofJKcagORiDe//RkAwKf/5NcBTUDndcZu5C49QPLCAfwd9kzEt0boUQhr9tguRCnisRx+O43MyR0kuhSka2uQEw5vTddKPUhLBvq3GGulGC4SxHjGroD2nWWUnmIln6gvIBgZiAkY7t9bwfGfegPBLoUWpxxEPSo9zUWAJAFbDL3FsgIkFQi9HrsAQYDwi09DuvcBPRBjhPdtqGcnKaUJmE+z+x03xxBKJiZeA9FBBK+RRYnCgQFWRitfZODEbeQgTTLQQhFmuYP1KwxQ5Ecm0qUOug0GmvNSiEKliSTFkgxuL8FIjZEhlkrLD/j59h7MIY4E7l4eOhq09AhzZFzp2zrKlQYcelfjSMDdN1je2i/8/O+ivznLwdnezhwkMeKZgvOFJh7UppGhJoILj13F1q3jMEn/JkkRNLL1+L0PHsXPPf0myqS7c10VQSjh2CJ7bm3LQHWYxfIiA6pWoOBb5Ej/k2vr2OvleddlImFBGh4xtOXkAP/m/iqWk+z6VXSWyTjpAG47BrcAyGsu/Ejk4/P9foa5ZkvsenVdHXMJj//tUnLIvdE2hyaSSohZKs2pYoSc5nAAdmeg4UTaxQFJMLbHEnbGPk6mqXkj4WDPmhhcerBCCWU9gBN9cuW2OBb4oufj2t/D7WG5jVOVv5L/DbxUoQyxnglTjjkrk5RDbkRW1H2M/KPatSpFCCMBuxZ7We4PQ3xu+ogtargyDiwBFymWw48FLFNp5b1WFlk15FluVVtFVgkxSyWkv7eh4JGsgUs5torat3Te1aGIEf6oZuI85Z5lVR9NV0WNXuKTaRdzySGfvBNygO8cJnl7fUbx4dJgG8YCGo6CN1psX58qyVg0j7pLnFBCx1MwQ5N321WhEdh6MNTw6akOZ2w+6KRwLOVw4LeaGmDoqzwAt+GqeLZyyAfFjmXi2yQA/lOnNlAfZvjL6UcSDNnHPsWBaFIIQz5i1cJI4KLvOBZgyAEekAPuxJhyl/52OmEhqbrYpDDMgu5ga5jEIx8CRpNt5GnoeSr3cmo4Gj6zsI171PJ/ktzD75AmQxYjTJmMdm9aSUSxwAHotDnEKwfT+PmTTGMSRSLGzpFwu1xq4Ye3z+IUlR80xecux5aVQCJxpM0xkhYOq9N8IpvLtyBKEWQStt/ZX8AUlf0MzYWmekhROc1zNNRbRd41lEjYuLe3gJvkkvxzl96Honno06Q46T4CSJOUtOGTJqlVraA0f4jMU+wzzt0s/LHBfYKcThqZi9vsHh6mEfky9m+wcsnUyh5GzTxfpSayA0SBzHU0maUDjPbL6LXYcZUXD3h2W+QqiHyZGzwmlmoYP5hF6lF2HELOxPi1FIxldn8EExhfZ/dIK/UgP5YCaNISegMgnWRgCYDQbAGShLjP3o/IliBNCUBAHl4NCeMttq/Uo3uwblZgPklAby/C4P4813eZcw0cvH8KpeMMJPgDE+Yyu7+jzRmIUsTPQZBCGMU+L3OWV3cRuSoHlY3dGWQLXSQrjNEJLB3OgLEXWtKCIIdwB+wd1zNDCHKI2+9dAAAsLu7h2t2TPBdNlkIUKRw5jgWMB0mUKBPuYHMBlcV97N5n4HZgJZAybCQn2qHGFMqZHl9YeL7CgX++xI5tEp48GJvwQhkSsau66qFvmVicZt+VSI7RoODlhGEjkbRQpciSKBKRNGzsthlIfq9ZQEELkCVAltEciAAHL6bio0qaq1lzjLv9NE6RYeqDQRp+LKDlkCdX2kFBd/AW+WwdTznYpnLauewQpuLDIU+yDzppSAJwciKgFyM0HB07o0kmZ4SK4eF2f8JixQhpJvVCAXOmh3EgwYk8/Fc7//ATKbft/cXZj73cNv8/VH/sy20PQRI9YP/F0q+hTpqcCMC9kYsXy5OSmYCexwb1UxkPFcPGze7EhI2Jqyesal4N0HJl5CloVhFj9DwJa/Syvd5IoaxTG78cEkChEokRYBxI3HtjGEjIqT7sYNJa6uJ7NTYgPF+2sWfpnGXxIgF+JH6k3FZ3ZAQ0GTkR8Gh+zNtj00qAm9SyHcVAxYgx8Nlnz2YcOJGILA2CDUdDQfN41931bo5Ty2spC3YoIUmfnUkOsNnPoUSfvdvPICFFWKY2/qGvou+pKNNkbcg+7lBswpw5hiJGXAD5YJBCx5PwBLFQDduAKMRcuNmyE2gSXT6luyjqNtcj5DQXDdvgGq62q2IxOUKRaPuDURqqGGKFxNd73QL+/n12T//U6hjTyT6G5L+ST4zQGKW5VixJA/ZbtPr/2WMPuD+TKob8OwCW89awTCxSuc3UHOz1Cpwtk8UQCc3lwveFyiG+dZNNci+fuI3DdhE1KmVOmUMUUgNuPOkHMnLpAXdFHrk6SgSSNtolnK4cwJi4czs6HE/lcRBRJELXHagfMhsFgEaTMWCLyzssFBbA3VsncOLk/aMSUWaEcSPPgU1hbQ+DvSno1GmopixeEqveXsX0iS2opMlp3FyFqrs8SDeOBMw8ex3De0y4nT63g9pr55AqseslJy2ExFIq6TFEJYRIWqnOjVUUn7vLBaZBMwHlpAD3Gvtuda4PZ4vKmp0M4lBE7ilmn2DfK0NfagLnGSgQWw1ExTKit5hmS7qQg9DpwrnBAMj2B6dx8k+/TzfVw8EfnIFC16700jqq3ziHqUcZwxUOTIiaj7s/fIzdt+n6EbhwmNXCJEOtsFyF20vBJBC08d45mKaFFJW27aGJdjuPxePMmPJ7bzyN5y9eZfffVREGElIU/zFs5VBrljA/x7RCZrGH/mEJHr0jrquhUGYl0zgW0OvkuH2Eonn4zpVHcZJKvVPFFm5tr/DnabNTwqdO30SdNG6CEPNooYGdQD455Fq5ZGqEbjfLA6Afn9uBIMScLV0qNHkQsyiGqNanUCXgP7Hq6JIuzw1kFBIjNEn/l0+MsdvPYUjvwAddDS9Mkdu9r8KNRO4ldyJtwY9EHhdiyiHaroIMja+3exqeLh2JwAUh5ga7t/oGniwO0KU8OlUKkZACbFCMT0oOYYUiXwyNAwFpChtvuxL+h8a/xl+qfBVu5OFvH3wymqS9f3/+4wdJ/+PeQ5D0ECSxB+w/W/yzSIhsMNkcSZgxIli0mpvSfVjEuuhi9JGXQ5cicr9mk9HOyIAuRTx2Y+DLsAIBfQJZQQy8NM0GnvUB8zLqkjC7qPsYBxLfdxwDZ3M93KLVfdeVMGceZcgNfZkPVHuWgpwacVBkyhGudyVMs7kXs4aPd9sKVlPs8+NAgELkSd0BvrrUwm0CK7oUYSYxxuU2+97VpANdClEj/5XPrzzAP7p5EgDwWH6McSDzgciQQ0wbFkb+pEQo41i2iwfE4KxlevjD/Sn8zDKj3mujNHfnro4TyKr+RwJc322ncSZj0/Wx4UUSp8vjWMDdARsQny8P4IQyv3aCEOM2CdIBIKc7aDsGUmRiaQUKTMXjoLJgDjlTNPAVnM63cJM8lubNMRbzTexQZ5AshlguNrDTItHrh54nSYjRdXUUSUc0cDXEEFChc1KlAM1xCmkqE4pCBE3x+X2cBM4CQDHdx9XqAmeuNMWHKEY8xDZrWMgnh2jQtV2Z3YdHjN0kYmLyt3EsYHqqwTUnAU0G//I2Exf/4tmb0DWXT86jbhoG2Tq0G0UsP34DHi0MRM1D5Ko8SsOstLhH0OTajynQ1h0ZCAOZO0aHnoLa3RXMnCGw0spA0nwuRnYHSej5PgdGzZ1ZTK0xRsYio8P8I6yMFXSSkPMjdD9gLEzhxU0gc1Sq8a97GJNJoyDGSP2CAMjsvMX7G4jtGFhixym0u4hHIYQCPVtDB1FH5qG9Wrl75PS92kBkS3Cq7G/12RacvTK0CZi/fgx60kJEY0bzsIwKmUeGngItPeKg6cGNk1g9ew8bN5l1w9jRMVNuory6y6+l1crBIvbISFq8A1E1XEhyiPeunwMAPP34ZTT3p3nm3urjN2DV82hT1EwQyFyoPwFet6+zTry1tS20aiXufbS/PY/DXh7ztIioLFZx/foZrMwyEOk4Oj+HhGnBdTW8t3EMAPDk2jquba1gjhouho6B2WKT693GgyRcAh+vbq3hUvmQM6vNYQYpzeY+YnEswNQc7A/Yvb/aSeNcdog8LbLea5awRLpMK5AhiRFSysSE18c7zQJOZI6AkC6F3PtIEI6qBSJYSW0yJp7K2NxmBWA+SbIY41/W2DlcSuRxPufhcpsAaBjj8QL7bEl3YQUyGo4CN/Lwm/v/4CFI+hHeHoKkD4Gkqx324r44FWIYSLzc0nYlNCkt4tE8S6LfHbPJpuMJ0CUgq7KpsuexcMOJcHk2EaHlijhPXTY1R+M5Z2EM3O4rqBgTZilC05W4j5IiMnZn1piwUhF6k3woATiWGnO9UtVWoIrAEpU8tkYGcmrAu+wSUoQbPRkvVohJsXWe3tDxJCSkiBulvddW8WzJ4fX6vq+gYtj4dpVpVNbSIS/rPZofQ5VC3q0WxwIK2hH4MOSAWR1QeGzbMeCEEtcRrKX7PGJAFGLoUoAN0kKdzndwu5PHMnn7dF0d86k+jwcpmUP88gfsGP/eqSQfaAFgvVPEiXwTPdL+KGKE3WEa08RC9V0dScXjobbf2JvGC7SaTygeXqtVuEjz5cVt3G+XOfAZeRq8UOTU/ExyiGmaELqjFN6uTWOOBm47kHFpeh9XKY9qJdNFz0kgQWBtKt3DVruMFVrBX64u4NEZcv62TFTybc4UDVwds9kOksQGNbs5ZJNHE25vlORlzKliC+1ujrcwZ5IjjG0DJk0uV3aWkdMdLJbZ9/aHSQhCzJ3Dl+aqMHMMzHuWAdfSecxG5KoQpBAPLrPJ+eRn3oWUszG+xzx4khcPuRu1lu/D6ydhzDONjd9OQ05bHHwIYozr717ExefeZfv2ZfT3p1A8xUCV20kjQX8buQrkvIX66wzYmcUejNkmQgIQVjMHc6YJpcyeFyEjY/gOA756ucsy3lx2reJIgGAAUZ86v04XIQwGGL+VBQAYqzV41RxnxPrVKVRevsmu+6snkZptQKtQGdBWYVdL8AnYpRZrsA4LXCS/f38JC6cf8PMLPIW7myezffTbR/YSH2yv4LkL13CP4mIq+TZSmQE3Ykxkh3j/PZY/9/in3kFtfQlpuk8PNpaxMHvA2Z6hY+DcmTtwCMzalgGVWFBJDmGkxkdhuZ6M0SiJNmkcV+b3sH8wjWMn6LhDETtbiyiXGBNlZoY8X67WKEFTfPjBZGyK0R0ncZw0SXEkoNYs8VKvaY7RpgVZMd9BtT7FFwdjX0Ul1UeVQJETSggjEcsURXSlMY2i7vDnOqV62KKOvDmTMUfrgyMPuJWkxTVKVUvDpUIX1+m7vVDA2RwDPdVxAgvJMW710vzvJCHC3Q+V77NKwN8vWYjxRtPEgsl+rugutw7xIhENR8E4EOBGLv7H+ifDJO3+uYWPHSQt/L3dhyDpIUhiD9ifKf4GpgwGOM5mh7jWTcGhktIkaw0AdkYyphMRrnbY7z477UKXQvzdLfayfHXawLttCT6hpJenfdzpa6gYk1b9GA4xVEXdR8s5iizJKgF6voyhT6aGaoiOJ2FrxL4rpQBFbeK4HaHrStges58fK4QY+BIuUcv72FegiCGqVEIcBhIObQFfmmODzXo/gzKJSdeHCRxPWdyfqeZoMKWQh+FKAosp0UkPNPBUnsVmyj6+XytyYbYoMI3Tuy0GqEpaiOXUiGu0IgjIaQ5nmoa+gmXSTNzrFhDGAtYy7OfFch2vbRzDCcpx6toJrA/SvJNwJjHm7rljX8HpqQP8natM+/LTCx04oYwRraozqosYAjZoQD2eHqKS7HOX7bGvYJaOI44F9J0E6lS6O1M+RHOYwfeJHXlxuolKpotdYpq8SMJChoEkP5Qw9nSuo5oxRygmBzzipDNKoZLrcN2V7WoQxYgzSZrmoUU5gIejDATEuEAhvsOxie44icUpxg5t16axOFXjPjh+ION/W2flo//wiQ+wXp1HkRgsXfVw9WAeL527BgB8Jd8jMX6p2EYUHrWeh4EMm9y6py/cg9PI4dY1Bk4e/9L3Mdya4d1ucSygtzULj0BCZqoNLcf2o13yMH4rycttXt+EYtoQqZFhtDmDxHQbEXmFxbEAfbWNoE6T98iANsOurXuQh5KyIJWP9HKxK6D5NnOBLv26g+CVJtRHGIB33xEgk2cOpAhSLoJP7vXKeRHh5hjCY6wkJNYOERw7A/EHLNYl6LHPTY7LH5pIXmIsStjQIJ/RMf4BO199ug2vlYHbZfdc1j109ioorrDPB5bONUb9RhHFpSruX2PHnE6OIIgxZ8tCR8OwmeP+VpvVOZw7cwfDThYAA1UT8BWFIvrtHAxaGGkJG4pp49rliwCA1cVdBJ7MnbCnpuvY32Ng/fW9JTw7twOd3uPOKAVd8ZAicF9Z3Idv67yDLZ0aIghkNEjDVsz2OODSEg4G3Qza5Ap+p13GZ07c4efQ6mWxurKNq3fYOc8Xmry7bWr2EL6r4u4GA4WZxBiWq8GiiCgRMQaejl16FufMMRqOgTwtbrZGJpbJcTuMReR1m79LLTvBbE/oXVME1qAygRER/dtku9zW8BNzPQDAzW4ax9MjqHStu66GtOrxccyPJEhixE1zdSniC8OOJ6PviSjrIZzIw1/9hDRJO7+x+LGDpMW/v/NjD5IedrfRllLBO7++tpvCuVyMRwhw/G9bafzKMptswjgFXYzw/BR7ITaGOjZHMdLCpAPLwQtTCg9jVcQIZzLMlwgAao6Es9S95kQiirrPy22NUMFy0sY/rLEX8SvTKhZNF3mV/X7XkjGls8lWEGKklQA3+mwgeqTYRG2cQptaz/1YQBwryFIZo+nKyCrA5YkgVvfxrQM28Dxe8HFo65z9GAc62q6Cp0vs/Luuhq2RgRfn2KBfa1YQ0iS7P05gyfRwQICiqDvYHScwnyATupjFAUyCeXUpxN1eFnXylvq5Yw9wiwTQXiRiOmHx0lx1nIQoxNwCQABbsU1KSHebFdhU0shpLva7BfylS8w8MIoF1Po55PSjCdXyVTxCnkK2r2DoGnxAnc908c3tJQDAqcwQC5kuduiYx66OrDHGjMEmgYGnIekYXFe02SvwVWRCcxHFIr70OGNGDqrTaAyyMCdhuek+FMWHTfdpv5fHdLqHCnWlbezPI0ETQNEYY75c559NJ0dIJ0fQCNzOFlqwHZ23/fedBH6OJmZRipDUHJikScoVunjGsDGmyWajNoO5fAsLS6ysE8ci+u0sZxYEIUa6xMBJTMLtuQq77n7fROb0NgSN3Lx388gf30VA3T36chsRlUHtd7NAJKJ+g5XEolDE/Oev8AgTUYo+UqoTDRf7f3gJ5ZPbAAA54cI7ZPdfSVkYbM4iv8qYtlf+5hfw+FOXeeCreOBAVETEOgPCcraFiIDbaHcKRqnLmSHFG0LKRYgtNsHG6TTkq+8DSwR0docQV3IIrhEA+bQC7JCLeCsD4V4HWpm9L4IcQV9tI7rL9t3bq6By/j6uf5/l0a2dvH+UrxaKEJUAM9SBNtn8iYlndohkJKBL/kUrs/uIQokbU8aBhNp1VtaafeY61G2HA7Dd+8tYOn0fFbKqYPdVQKHI7qOeHWLFZMxQfZDFzMzhUYRJZgBZ8fnPasrCoJH/iOu8ovjcINJ2DITkbp/IDrG5tcjjc37ysffgjA08qDM28dHzN6AYLgfsU3NH3xv4CjqtAre5UOQAphDzyJ/qKI2FdI+LwFUpxH4nw21TzuZ6nNEtaiPc7ha4TGJjKOF8zuOMcBQLCCMBhzTezho+Fsh9e2uYxpQRcyYppYQ4tA3esDNteHinmYEpT/zxXKTFkEeRSILES3NTuocpnY11dvhRzd/D7UdvewiSaOu44F0QTxaZBmmHRHp/fGmETWpLvVRoo26ZuDfJkxJjrCQFRGCDfofeiYm9pBtK8D4URTJthBxAtT2FDCDZy1VzFPxRzcSfXGQDc8MR4IQSVknkeL2Xg0x/64YiFCnGVxfYF+4MM9gdG/BJIHMibaHpaFwvczxtoeuq3GxSl0K8PM3+v2JYeDDIcJFzSo7QdiVeIuu6GhZMB5s9VvaxAwmz5F1zu55FVo1xko4xrXoIIhHvd9hk/OWFQ1RHacxTmUsQYgy8DJ4ts4H8zeoCF4jrUoh3mhmcIg3S7tjArOFyx3EnFPGF1fu4RbElqhRyDZIdyKjZBhokgHYjERnFxywJT+vjFAq6xUt1a+Uabtdm+b3Yb1bw5VXmzXM4yKI5TqFCZa1v7M7iy0t7eJYCcAUhxvX6DFapxJZRXbxJAbYXCi30XB3y5hJ7DuQAeXPIHbjLuS7SuT527pJVgRygmO9y48bpQhs6hRCLYoj13UUe4LlaaEAQYiSJ7ZGsEOnMADaJ8be6RSzQtZPEEMV0H0NiEnfXS1ieqiFHbeqnNRd3d5dQom4nVXfR6OTx6Essjd5u5ngHVhxIcDpp6MRYKJkxejdWkF5jgCzyZexdP4Fjf4p58MRNwDkg08LFOiJXRp6eLUGM0Xz9FGdDcmc2Ub98CrlFBhpq149h+pG7nMGJXAXVmwwUFOdq8GwN7W8z9+Unn3sbxnIDInvUEB6IEDQB2GL7kpZNBNeOJnltpQMhw66Vd1OBelE6sgAAEM9WYH+HHWfiwhjBDQvyAns2L/9353Hpp74PADCfHACqgeErbExQTBuiEnAvpKlL9yAoAVZPsOep3yiiRBqj6XwfkasyWwWwnDfVdPDb3/4sAOBnn3wbpafucJBUPEYglhZZ/tBElhi87s1VGIUexElQ9UwNohQhR91mvVYeRsKGT9eyszeN4hIDlE9euvoRcHp9/QSee/E1PLjC2EKVYmImAmsjaUFSAlhUyirPHaK+y8qr404aC7MHSHbIqiEWUG8VsUQeZIGnoFMvIk1dm56jcTCumxY2m1O8/Jw2LCQ0ly9emo6GtlvG+QI7575roKwFmCfWt+ckUDQY0G3bCSwmh7zxY8ZQsGcZOEU6rAeDFMq6i1t9KtdrAiwqES6nBlDEJG9AyWkO7vWyyJEEwY8FPFnq42rnaLHnhDLOZNgYcbWb4DKKmq0ipYS4P9ThRp/gFBt/zI7bP9Y1pqPtxxYk/dZv/RZ+67d+CyHZxqsicD7LXtQwFrCQsDGgyXnSvg4AP6iVUNEDzJCfhiJGCGKBG5i1XQVWKEISSDyZtBADyBE1XTQsHFBb/qzhYNcyMKbVWtcDjqUjvNdmA3lBiyEIzLcIAD43PYJG7d66HOC1WhHH02xgGgcyep6AxwtsIPIjEWXd5c/55iiBjBJwF+1Plfs4pNJTHAtYTg14W60fCTBloEHs0PZYw6fKbd45NgxEXsb60nwNDdtEhib2e70sTmR7eKHCznejn0MQCyhSR19CdbGaZrYAAHCzp+JnFnsAgN/ZKeOPLTSR0dnAM50wYQUysiRynsp28cPtVX4vCprDLQESsg9JiDmjs5rtoDZKYZe6ZhbSPfybzVl8eZFpcGq9HCQhRp4G2Plsm+uG/EjESqbHj+MnNJuzOwDw319fw2emLKxTjIkuhVgnc8xHyyHSmss740JbxHS2gxJZBFzeWcEj8TaWZ5hRZeDLiEIRe1QGySRH6A+OxMdhLCKnsXucz/YhiiEOKNT3g8M5TCXGOL3ASjU53cY0aUZqzRIsT+PGm7O5NmQpgEZi7G47j3PH7vMMtSgUcezYJmc0xp0MNPLEObyziqXPvwfrAdP3xL6MOBLgkfu8WuphJt5E3GDXUjAEyPQ9ka3C2ivzNn6nkUNqtgGfdETVt86xcg25ec8+cx3ta8dQuMAcl+29MmZOMS2UWukgpUaIxuzZE00fsSMhorZ+0QghpGVEbVqRtMc4uPE4u79P3oAgC7CvsMnZeMwBHB/R0qS7rQ6h04GaO5pkBDlk9WMAZ56+AvEsu99xtQHnfgKpl9n52q8r6JBjNgCIKRfNt0+h+AhjNVXTxuuvfgoA8NIv/D7s/RJ8Aq+eo0PPjvBLL74CAJA0H9b9aV72FJUA1WsnMEXsmagEeO9Ndk6nj9+HNzQBKgFV92ewmh7Dp2423XCgJy1eBh0Pk3B67J3vtfLIldu8Q+/kwjYuv/YkTh5jTNPG5hLmZw6RLVCosRwgDGSYpOFxRwaaxPhOLRzgcHsOVXof0qkRZip1DOk5VhM2wnYeCWKL1ISD71xhfk0r2TbOLG5z0XdKtxGEEmeWnqgcQpWOwNzv707jdMbhWsOhp8Khsl4EAaMPxZTsWSqeKnUxpPF7LT1ETrc4AHNDiTPgshih78noUMfm2FdQ0DzsUxfiXMKBF0o4SYvDMBZwaGtYIx+2xwsjVGmx0nRFSCJbbKoPs9t+5LeHmiSq5/6fZn8DpnwULzKle1CJZbDCo46znicjjgGHBqZL+QHWBylkaVW2PVZxPjvGLr0w04aDd1oJnKJIg11LwfEUm3Bv9TXEMQNDALBnCZAE4FyWffaHDQlfXTiqi68PUlzPdJ7EmjtUPiloHr5ZTeAnZ4m2FkN8v57GEwU20eU0F+uDFHfobrsaZ3AM2YcbylwEHsYCfvtgjP9klX2XG0rQpJCHOzYcDSezPfb9wzQeDDUcT5OpYyChrLsfoscjlMwhtihY9sL0PlrDNH54yJiUU5khvAltL/toOQZM+QgIOoGMBlHzhhxiOTVAnspc39ldxM+dYeaA37h7Co+UGjgcT0wuXeQSI64FeudgHueLdRTIXHNoJXAwyEEgGBlDwNn5bQDAQasEP5R4HpvrK8imhtyY8VTlAFEs8K6ymfxRwnmjm4MgxOgRo3Vx7T5ubKxxx+2pchP9Xoa7IqfMMYJA5hqlfKnNJzlBiGFbBmcGRr3MR6JEFM2Da+m8m6k3SGOB/I0mk9rhPpu8ZxdZ2WYitr23t4DlqUMuCl+Z34OieTxaw+mkkZhirNO3vv5FfOmXfwdbP2ATW36qheyFDfhNBpIiX2Yu1KQzklcVjN9gvxOkEJLhQiSriu23LmDlhfcQUB4bIhHayQGa32WTZHq+jv5uhYvRBTGGWWbHoc21EHSS3IFbkCOM7s4j9cfIBuM1C8rnSwhfZQBUOS0CfSqnRQC8mEecRL4M5ZkkginGSkV6EurGNQjdHvt8LovwgzEEahcXkz7iC6wDDe/eh2BECJrUrEAsj1Vnz7hv63iwsYyLz15mP48MmGuMwXn1n/8UHrlwg2fVzcxXsfFgBec/9R67b6aD2JOhLDKQZN2sIPJljInB6PeyvLwmywEcV+PPTmWmhigUuUloFIlIZIfcqmHUzsCi57JQbqHfznJdketqSKaPAnAXF/fQbhSRJMPURHoEZ5RAgjrURp0sNz2d+ENdvclYqHMn72FzaxE5YqFm1rZR35zH33//IgDgLz51GTd3lgAAq+Ua/EDGDvkinZrbxX1iZQGWv7aWb2JIQd5eeCQOB1izx2Ss+Xa1gmfLXRwQAD1XbKA2SuM6dWWmlRCrqRHSVPreH6WxRyBIE2P8pzv/FH914ZcBAFPE7E4AVxCxhpSJFnODWKkJ4MppDh6Qw7gbCVhKjjH2Fdihh7+4/k8+EU3S9q+tIK1+jJokL8LS/7T5Y69JegiS6AH7K/O/jkfzk3y2DM5kxvj6PpWM5sY4mLRORwJMOcLXqpRSndDx/NQYQTxpvQ/ghRJ6/sRjSYIXCrjC5kj8mbUuesTY1BwNCSnCyRybBBUpRNdO4BqJNFdTFu4PTa6VUsQIGdIY5TUX9z8Eem72UjiesmAQcyAKrAQ1ARiLyTH8SOQ+IKIQI0PsyAedHM9rAwBJjDFvjjkVPfBUHNoqLhV6ANjqbaL1cQIZVqDwTrjp5ACbvTy3TFhIDtF3dV66y+g2Bq4OUzmq1TtUAjsYJ6FLIf9sOTnAbj/P6fQb7RKenN7nYutr7QLapC94eaYGSYxwMPEUSoxgag52yZ07p9vIGmPuoh1FIt4/nMNn1thqv9XL8gT0w0EW87k2uuOJVwsri04iTar9PDKaDZ3OYeganHWyPA0LUzUctNigXx1k4IQyTAKkpytVVLsFLJSYtkPXXOzWKrhNk8TPPvMm+mS90B2k8Ue7S/i1z7wKAFhfX0M2OUKW2vQ9R4Oqu1zfMaYSBgAYCRsu/TsATC/voV8vcG1MfrYOd5Tgfj2SHEAQ4yOvm0obCrVOb715EZXlfQiTMNyLh/C2Ujy7LGpGEHPgrMuN//U5nHrpbXYtL59CutyBucRKYJGtwW1lkVhhQKb+zhkUju9AIpPUOBYY6CDQqR53cfefPAEAOPbSOxCUEPV32GScrrSgFXuQqeQMQ0fcGCMOSFxbz0L+YwwEicMOwvfqPF9OKfQRuyrCP8GiRNSdG4Cqwf8Guy/qUhfe8y9Be5dde+QygHWkbxu9kePlqjgWIKk+1OlJt5sCv5viJUWl1EdM7v0f/P4LmJs9QGqaMX5KykIcihgQExXHAhKkhZxs96+fwoWfZkxTNNbQoOYE1XBhFHro7zOGr3TuAbxuCjK5aMuZMQ7fOYvMNCupWp0M37fVyUBWfHQoy204NjEzcwg9xd61t957DJ965h00d9lxjcYmVs/fxcH6EgAgDCUOzhbP3cPuzeMwCDSFoYjR2ORmk4mEBc9TOdhfX1/j7tt3N1aRNUeYnmGlucu3T2Ox0ORaqNd2l/HZtXsYke1HtZ+HgJiX1PxIRIs0e0Xdwf44gdPk/B3HAt5pFngHW1p1ca+Xw8kcA907gwwq5Gl2t5/BI8UmrtJ7m1V9uJGIfYstWFaTDqYSY97MEcUCNCnEuy3282rK53PAbMLGtw9SWEtFcCIPv7n3yVgAbP2ZFaRV6f/7H/z/ul8vxPI/egiSfmzLbf+vW9cVuHHYQsJD09FwNssGapYhxiaMr+9l8VzZw4tl9llNDLEzNj7iUF00LKiSRvvVIKkxFj32IjfsBK97m3KItUwPTXrxdDnEW40cnqbSxPVOBiJiLNN3H1oJfNAhhiInIKsEHPSk5Ai7loFTGbbvtOpAERXufK1KAbquiXkydbzfy/FIj/mEA0GI0acV56VSDQ+6RZyvsNXvbreIlQ8dpxeJ3FNpzrTQdlWu13F8FXcHCfzpi6yL6tvrp5CSA7RpJZhQPJTMId6i1aIixjhfYuzFvBghlxjxzpfqgJnGKSKVrmLg61tL+FXadzE5QJO0Pindxr12Gac+5Au028vzsmA5McLQMXgLr+2reOnEbbTJg+qHB3O4QNlS40CBH8j8fFcLTfQtkxtGHi80YHkaejb9vnLAO8wWpw9RaxZ5eW4u3UPKsHkZUBQjuIGMbJ7d4webSwgjEV+6yLqq+u0sZGICulYSF/IdrgPJmGP4gYw6pZjnMgOkKy24VLpyXI3rmVL5HhTDRZfKWP16AY12gbdhDxp5DAcpZIiR3N6dx6Nf+CGsKnnqWDpPpp9arOLejZNYXCSW6o4PJTOCfYNde7Xcw1v/4HM4eYYBzhPPXIE8w4BL5cJ9KMs2vA323IqGi9Z+BQsEmsoX1yFoPqxtdm0T8w1EkQhhAkCGHlLESNj7JSQfqaH8OBMxi5kIgiwgbLJrK5UcQAJA1RntUR/jf8ZAj7Fag7yaQOyy8xfEGOJnypD2KGRO1RBkypD/GHtPo6CCWFa547bzBqAU2LslqCGSj9TgrrPzjyPWRXf7959n36t6mD9/j5teDu/NI7nK3qVzz7/Lo1gAVn60eikOmvg20ZaIEebmq3jrX3wRAHBsdYszN4f708D+NOZWGOCwD4oYtbMYUMfi7NoOEukR9u+tAGDC6wnLJAgxXMvAXpNpj5589l3s31vh3k7PPvUualtzUGlRtnr+LuJIQHmBgVs1M8L7P2TC9CUxhv0ho8r3b53BhePr0GkBF4UixgcVhDRW9Z0EDg4Y+CrQeDRx4E6qLlLJMR7ss/Ehq3roDlOcOZLFEKoU4oC6R2uOxh22C4kR3FDCvYlrfMLGS3NV/Pe3WCn7TJZFKk06T6fNEdcoHksP0XUMDEiovZwaoWolsGweldn/mzsafn6GjErFGBsjHZ+usO9uOjrSNLboUoiyzhbU4cP8sx/57SFIok0SwJmUpqti1nCwNZ6kSctIUinuxQpjlfYtNoidSvu4P1SwkmQv8dbIxGoq5oArpIiKiv7/nuFTt1VkFPMjLthFPeC+H7MJF9OJMd6lMNSsEuDxwpGbcxQLvO10NmGj56ncKG1ZDNF1dU4Xdx0Df1Qz8JM0wPZ8Ga9uMJblWBp4bqqFus1+3uwVYCo+tsk8MaPZeLsxhTNZNiCYis/NI+NYwGJyjE1qh+94Giq6j3sEggqai91xAi/OM93M4SCLlm3iFK32VCmART5JdqBAshNcj2AHMjQx+pC4coSLRRt3q/N0z2JutHk2JyCtejigTriZTBcfdDL4SVqx/sHOAp4udTBDZa/3GlOIY4E7Cj8/s49tYp1OlQ9h6C7maMKo9vMomwOcoU6YvmXiYJTGIrX9a5oLjcDJje0VzGS6+N42m5heWNhGLtvDiJoARraBhXwLQ+qimSk30e5m+SSQzvVhk69N1hhj7fgGbt1mxp2lbA+5QhfrW0sAAEN30dg6CqXNZHt8InItA1Eo8fBbPWkhW2nhzXeYnuXT5+8hD6BLDMby0i76D+a5qaMoRZCJ3dGKPaS2La5nUjIjCGrADR/F00U8EX4P1g65jq+OsP8H5wEAyXwPwabGW8kVJcDai+9AKhFYvWNClCKkLrHJN+oLUJZjDF8lsLahovIU8ycSzRDxGJBy5Eezk4RSHsIj53M91YaQkCBMk6arO4DdZROkbreAoQVBYccsrWrAQRVxlj0/qDaAp8oIE6SzuvcBxA/uIF5j10fpNhCTANqpliAnLQ7k1NkhwoaBtcdusOPqJ2G3sxgRiMrONtC+xsqJZrGHiDrcAKYx8l0VNrGHvqsit1TlYvXFp65DEGKcJzdzb5hA/iQTzAOsO2wioJ5Z2UXp3AOM32KO7fdunMTS8i73aNq5dQzbW4xZm52pod/L4OQy86OaZMvtE3gpuRry5RZnmrr7U9BNmzOP3mEZs9Tp5vZNZDMD7Oyw9/LZpxnAmgjGddNGOjPgsSWG4sGg96XRzyKfHGKfxo+VyiF2axUMaFGZkH14ocx9kZiY2uOO/sNA5s0XtVEa86k+/sEWu+5/fkXEdj+HrMqelyXTwtbI5BYrKcXnixdNCnCrV8CzFXZOYSTiVLaDN+sMvJ3KDvGnFzTo0hEDPpsAtwCYN8foUIXg/XYGJS3EnGmx7rYqPpntYw64xUOAB+AhSOLb6YwNL2ID6HJyjPVBEifS7EVmnQzkvRKJKKg+8vkj48JNK0KFVvMigJpt4Ps1dml/dsHCga3jNAGMrWGK7+tcrg83lFEi8aQTMlPHyUt/o8fA07HUkQHkpLvNCyWYis/t+RELuNVXcSzFjmvsKxgFMk5ku/zzX5gBr98vJ8eYNST+vb+3W8IJ0k21XRWBo/GMuVudIm71RKwmP9QpRKWEhUwX39qd44LG/3l/jK+UstykMam6KBoWXttng/NnVx7gxuEcH/R2xll+vmv5Jt6vz0AjsfWxXBvf3pvFC9OMaZKlEOVMDzbFG9TsBL50nGWiHXQKmEr3eAkgjER8fr6KPOl3Pjt7iJGnwSYtkCLEaNgJDpJ2+zlMk7h6vVlBENvgBv8AAQAASURBVImo0M+3ehmcmdvh4Gy1XIMshdidGN75KtbIHiGMROx1C/i1l1h5ZNxPodkq8ONqDjNYLtf4z+NxAp1xCuMdNsCKQoyvbzOA+ecfv4KdzUWcu8BAgqT6+Ed/8EX89AUWwqqbNsbDJOwhxelEEt6+z0oxX3z+dVy/eg7zU+zaiXaIYSeLZfJYChwVw3oBJpVfQk+BOdPEcI+BGUkO0NxjE+bqZzoo7jRg9UiImxkhjgUoFLUz+L0sJLXExdr+no65L1GnmxchbBjQSOCaWKhDmpNw8DXm9Fw69wB+L4mgxt49t5WB7nd4ac+ca3C9VzRQIKZ9xLPsGIc/TCJXHPFSnWCqCLYkyDNH5aril2mGcgQglpgYG0BccyAUDcTpLPvbKESsGhACKvtlc0B3DGxQp9yUDJjUwBH1IM84iANSKogCevcXkF5iQE/SfEiajzSdww9ffxpPnL3Jj0nLDiFl2bWrv7aCdKnDOwlFKYQgxigvs+ep/2AOga9wcBIEMmcW0+UO7H4SixdZHMr9985jWQ55yTQIJdjDBAYUVDy7usMn0d0HTLAe0GJn68oZFKeaPAdwOEyiMFNHlcpPlVwHVx8cw/ll1rEXRwL61PE7e/EuDrYWONPY3J3GyEqgQufgDEyMRkmub0qmRri2wSwh9kcpvFxq4MwSE+e/v3Ec06kedDqO2VwbfcvEOi1+PjW7h8YozSULKTngId+TzMtfmmfn5IQRTNnHL65Qbp6nIYwF5Ei303U1rn8c+woGnogRLdgkIUIQiXDpemU0hzRGbAzMaw68SIRJWrt/sZ3GLyyx8cKPRHiRgDcbKXjRERP1cPvR3B5qkj6U3VYhI64YrNth0rH2WsPEZ6bYC27IAbquhu8espf0pxeG+NpuCifZOISS5qNs2NzlVREj/I0HwFcrDEQtmBaudScurjHKmoc7A7avS7kxTMXHNRrUhoGAs1kLadK+vFrLYs5kA29Fd3Gnn8BaitH2Wc3F0Ff4Z+8PUphNODy2NaV6qFkJqDRwx7GAAnnoXO9kkFVD1B02uJzJjiAixi6xUkklQEE7EmPf7qXxU2tsdfrqzjKarsxXumEsQhYjnJpiE0ZvnER9nMJcmoG1XHqIwcjEt0m4uT4Q8WdpZeyHEoaezqNVJkLxSVZaEEnQpAAz1Ho/sBOchSql+thsl3CJBtveII2eZeJv32Yrwb/2qTt4b3cZx/JMn3GnXcbIVzBlHHUHHiNtmCREyGcGPGj23XunkDfGmKUw3AeHsxj5Ki4tsu/q9DO4Wmer+ZdPsfLNRNDZ7mbx/uEcLlHpcqZSx3evX8Szqyxaw/NUVOYPMNmsQZJnbRmmjTCQMP0km2C3Xn0MihIgoG6eOBaQMC0c1BhozKaGmD3NJrHmg3nopo3NLWaWmDRsRJGIEpVEJDlA7aCC5VPsPkJkzNEEnPhDEyppOZTSAK33TvK2dWOlgdHteW6u+P2//2V8+hf/AAK5zgetJC81xa4KQQkgL9Lv9gCvmeUg0VhuwN6ocJCQXK0yV+4kuy87b5/Hyl/YBgBEt1uQlgz0v0tdVI/sIB6LEMioFSHgVXMQfoUxKeqV1wGNGN3ZBfhfr0NbYc9OdP4sIt2ENGTn5Bz/NPT1HyBMsX0Lf/gB5GMq4HzI5ybNwEm43oeYCiHk2PsxeKWAcTfD9TyJUhdSeoyAOslEJeBdg7X1JcydX0dAoEfUPGxdOcMDXZ967H0oSZuX2+xuGqn5GgJiF0XNg0PjQ+RLEJUQKn1v/T671yN6b088dRW333yEu2Snil3ONNZ2ZiFKEWbW2LX1xwZ2NhdRpJLzxO5hYgjpORp008Zr19i1feHxyxxwjfspSHII60OauHr3yGNpYaqGyvFtHiuTKHbx7musVGdqDmQp5GXwVGqEWztLyJEOURRiyFLIneB7TgJdx+ALmnu9PNIkX5hkSE66zExq9Jg4+pvk1zZh3zUx4jmQt7s50mmyfV3rJvBEYYTb1GDwVKmDhp3gDTyTjt9r1B1qSBGcyZgvxFhMjtBwDNihh7+88Y8/EU3S5q8eQ+pj1CQNvRAr/8v9H3tN0kOQRA/Y3zn2JzGTYJfiW9Us7AD43Ax7Uf1IxBQJ/G50cnBCkXsbbY9lPF4Yc0ZHEmLMmiP8sM4G20fzA+jyUamt42rcYXrkaWg7Bo84mU24kD4UHFmzdVwoHBnDdZ0jJikhBxh4KnzqDDNkHz+oZ/H8VJ8f861eErpEZokJB0nF4zX4gm7jDSpTPFroYzHXwnsHR2WsGEflR4B1b3xAA4Iph3iMhMe2r+KDTh7PzzAQ0LFMqFLIJ0EvkiAJEdckGXKAum3wVO/5VB9dEmKPfAV53eYs1KQd+JU9xkJ9auYAe4MsTlCEhyIHPMA1jCRYtn6kUdJsZMwx+jRh5FJD1Lp5vlKcSvURhBIWZiet+AoEAoFbB7OojVJ47gwDJ41mEZerC3hulbWl/+6d0/jUdJXHoEwVW8gvMIZm4/pJmAkLCv3uM99J4fWf7GJjl51D32Hltq8R4/PnP/1D9DtZXhYzEkeZX7V6GYVcD7lpiuUIRbz+7uP43Ff+EAAw2J5B42AKi+eYFshq5vDmdTaJXVzegONqGNOEsXx8E7LqY0RlHUkOoKfGvOwzpGchSQaS7iCJBAWnJi600f3BEtQUW6kbqzVEYwUye1wQDz0EzzwD+ZCVbrwfOHjlWy8BAL7wa/8G7l4e+vEuf5bCrohv/fbPAAC+9H/+AwRbIeQyMbOagqjDWvsBwGtlYFxkE1lU8xH7EkSTPisBb/6vP4Fn/sQ3AQBCUoL9mZ+G9nv/D/bzSgHeKrse2puvIFpehDjosfs9vwZ36VkICluwJMwVhJf/DjCxE7h5C0LORNwmfy9ZQNimCSgWACGGNMMmxeGbUzBP7mPneyzQtnJ8G437i5i5xFhOf5BAa5Oxg/MvX/lI3Ik3TMAodRHTPR/sTSG9eIiDG+z5KC/vQyt3EdnU8agGaJIxp5EaQ1J9zujFAWPKejsMsOdX9tF+MI8qdZKef+49fPMPPg8AeP6R9zHoZnnWnyL7rJOQ2J7xMIkwkFAhfyd3YEJNWWhssfMQpYgDqDgWMBybuE9Zhudm9pHODDggsywD+VKbeyNd3VrFpRX2Lo3HJvpjkzPL85Ua2t0cNtpsX01Hx0JyyI1b3z6cxaPlOq7Rd2UVH/9P9v40ypLrvu5EfxFxb8Sd57w5j5WVVVlzFQoAARAEAY4yR5EU5abatGa19Gyt9fS6nyxbb8myLdnq5Wf79Wq1bMmSLMnikyWREieTFkmAIGagUKgq1JyVlfN0M+88x/g+nJMnAfl1i6IgqNlGfEEl8ua9EXFPnLPP/u//3oMS6CzUssymaySlZUapnSIactTPz22NcijVVN1vA5EeNyQ7OpdqEdJ99uQ8NZFo8uJeXsU86VpAzzNUec7QApJhm4qcT6p2mLwEWMmwQ9sNEQ+5dD2bn7j5H98CSd/Fx1sgSQ6wX5j8MTTEgD8sRXtDslsjpPvEZNfYRjvBWsekLyNLTmfbNJwwg1JH82o1TdZ0GYjsuyZ3uF7NstER4KQQOTBAHI32WG1HKETEe//ems0/PGqzKx/UhjSbjMjSViHSU+xKPOzwZ5tZTmTE5/Q9naZjcEqWTzY7MXRQBpHxsMOVaor7ZYfJ9WqWE1IXtNxKkg47vCp3viNRh3I/xMnsvuN2hMVWhEflYq1pAXVJd/uBxnR2jz+6IzQ4DwzUSJk9pSu6Uxkg8xqPodFsmWuSdQEx2ZydEIvrna1RbtQy3CtLQi/sDPHe6UU1MZUaGVKRDg0JqjxfJyN3nMv1HEutuDKOu1ZLcU++olx+i/kKz9w+qjrnhMmnwXHJePVsk8GC7L5ZHydpdfnmukABHz16g/9w5QQF6Xb+wNAmHcdSbf2XN8e5R9oHXNkYZ25gh/FJWWpoi4DXHakrK8h73pYTdameIZ9s0JLfeS7R5IW1KQBmMxWS0Q6D0vBxfWOYueO32F6RotZclV47hiMX3KFDq68DOwtX5pmeFff2+vUjzM/fpip/H0+28D1DlbJSIyU2b86oEklzN0vxjGC7Vp87xcyP3yFYEwDqT//t3+Z7f/ZzuKK6ghb2wNcwZMCne+oMxouiJKhlLdyVACMpy1iuhr2VxZqSjE4jDFqAJqN5/LaF14nQ2RWA3Ey2sXLiOww8Az3WI5At8JoeENghQofE33rrHvqJPJotvmP7ood5WCxy7nIY9ECZVJrHXIJCAXtcRGWYCxfxswMYa+J7DBJxNNeFpliA+zfjhP6WGLfG7hbBTo29p4RWLHv8LoETor8fgDtewu+ZhAbFM7D85XsZkAG3etgVIbeSedXjPQInhB4T59y4OYnbM8keFyylUXDwKyGad4S2Kgh0tmQ5du7RF6lcn2ZnSzCJs+euoYdddm6IUtrIvdexyykFwHwnxH/6mgCv3/+eb6CHXWobAmx02jGyAxVqku1Z2hnm/ntfVpudraVxhqfXcGSXr6b5B6B5dJe1506Tzouxvb02wsj0qnqtbngsLBzi6HEBGt2+xfqquB7XM8il63jyHP/fL57mx4/fUXEp1VaCYrbK4wviXh8vlLBCDnuyizVh9VR3bDRsc22vqGJIDC3gRH6XzebBAj+aqitncC/QVPNK2wnjBTp1ez/kPMJI1GFin03ey3Bfocaq1BZmTBs/0FTX6n7oNgivvEOJDtfqcfp+n/9l683Jbrv76bk3HiT97u3/5kHSW5okeQxYfWVvf7ORZDzWU4JhkRwtFrXldoi3FVp8bUs8LLav85sbTf7HGfFwGVpALOQpwXTCDRHSA8ZkTMdWN0w09BqPDx1ljf93xpOYRld1ZMVCHstti6m4WJxXWnEVHXKpkuFUpq9q6ueHdmj3I+zJjquThRK/fWucRwelbsQ2CWsBq7KzI2L4ShB+PNOg64aYiO/nIVm8Y7CsgiDPSTYrJynuVi/KoPz3nVqOz9+d5kxWTCam4VLqxpXg8VimQbkXZUSClUY3JgTTkpnrOKbqsHF8nef3DMbiKXleNTQtYGlPLAJTuV026wehrT0vpNr2Td3j0dE1VX57cLBLEGg0pC/M116Z4v6BkgJvm40s8XCPZVnmiIRc9MpBvh7A26SeZ7ua43Suqf5/zOqTjHZVoOe7Tl9iT4pSc9Eunq+zKx2TS/UM48UdBqTT9frOIHOH7mJI4BsEGu5r2qmHxjf5HgnWSjtFCoUyF28Jf56BeJNOLcVKSdyPaKRL8ciSYg7cnqnYsNpGkajVVwnwuWQTTQtU52C/G8XzdIZleQ5fJ5Wtq5bvgYktmotiIRs8vAK2TW9FXONDpy4TdB186UkVHmqgRTWCYXHN2uNX4aQ0ntwosfnCWRVxEo71cTqWKnsFroGe7LP9lAjLLRxZxhytqvJbbHYHbVA8a72XTMKHegQ9ySS5AV5No3dZ/N56WMe7XBVlMsA8b9J+26cAiD/7n/CX6+jSo2zjj08x+qklrBsiPiZYr+GPz2HogjnRdsq4pTCheRlxkm6hvSQWeUZi4EL+vGDweqsDtHbyKh6lv53Dd0KsXxBWBbnhEoYsP3pdi8A1sOvS1PHGDCMPX6a3Kr6nxFiJxtIw1Wti0xEbqGKm20pE79lhiiNiXHa38jh9k4YE3HrYpblRVEaU7dVBuvWEKgP22zE+eI/wY6rv5Imnm4Qk+6F1Ana3iq8RUG+yszLKsMyUS6aa+J6h2MW164cJtsSY3Xz+PIbuE5LBunOzd3H7lmpOyAxUyCRa/PE33wkIrWFR5jNu1HKEDE+V5n746BKuZ7BVFU0U1X4UP9C5Z1iA91YvSse2iEpZwVYrRVGyTNutFJPJBhfkvJYOe/TcMJekT9LhZJe1RkZtHJcaSTUvhXWPG7Uc12Rczrlcj6zVV000WdNDI8CRJcZXa3Hltg37wm0x98QMj9vNGBnTo+cfsPF/3UcQaGoeeaPe763jLZCkjqv1KIdlePRcqsVON6LEyYFnqHrzTMKh5xmck8Ltudwe/yQW5VXZmp+3XCaTDeWnUbctZbAIkDIdtci33BDz6YPXvrhnsdouMhqTQlSEP8e+n1Ei7KiW/8dGN6h04+rBfHxtkq2uwf0FMUFut1I8OthmUWoZRqN97h04cM2OmDaOL3Y/Yd1nvW8qf5GBiMWdRooj0nhxs53gaH6XV2XGWsTw1ESTt3qve5ieLeV5ZGhXMTY9N8TxwU1uS7H1ZKaCH2hqksvGWiqyo2Fb/P3jG6yrn03+9Pac8jnZa6UYiDfV/TN0X4Gkai9KItpVJbCo1eeV9UkKEhSdl5lt+zvQ6XyJeidOUe4kdxoZ1R6/D36e3xHn/IkTr2KFHOWi3bNNWnaE8bxgeLa3iyrFfKq4jecZB2nruk+jlWBaRlSEDJedrUFlJjmQr3BzdZJhqbPqNBL05A48m6mhGx7vfEREhdjtKO1qivlJwQ6Vq1nar8RJZ14jvs7tOyLH8H0DW9o6xONtnrpwD/PSqiE7XKJdTVNflQGmI7vEpQ8WgJWrE5XmkN21QWjvET0vwX14E9wAc1qMtaCHKEWVBbjbfP4k4+OiTb95eQTXDZGaF+DDKSexhso0XxHlx9RjZYLdgOI5AUCMlI3fDhE/IVjLzrUi2ooEwvkGzmJEiZ71pIYedYjsC7XLEDoSx1+WJbKjcWKf/Xfic992P2F9gdoXxfc/dO916On4Jak5OjeLUd4kiInvWPN9+qUUoUMtdU/8tuzmCxl4tQi9bbGQt3azdFpxstJ40gj6aHrA5GPCTLJ+dVqVNatLo0STbRq7EgRUM3hP3IMp54eMvo2Z7ChQFEq12bt2iMzkprz3ruqExNep19KcPCPKwr1Kin4nonyR2uWMGg8AnnNgWtpqJkjkasQko/XSteO844EXlN1C4GvkpjZVB2NuapPmVkHZD9zdHmZaxo4cmVqm2UgqYbamBywvTVCUm6tqKU+2UOFBX7BjfqApr6/1pVlSVo+23Nws1DPEQ65i28fiLardGAnZzVbtxchF20qS8MR2incMymtywlyrpVREkqbBtUqO98icPC/Qqfcj2JKJzJsOC9IlfCjWptwPk5Z9MKmwTdbq0pYb1m3pObbP6mdMn6od5kpNzK9HUz2i+6y9abPZtRiPdd/Kbvu/wPEWSJLHbMKmKBnTjU6UINDY7ooHZDrR55CkXVfbcYrRjiqJbbdS3GkkiMtywWi8TcO2lLEYiNb+qhTjmoavhMmXqmFOZAzasrZ/NO1RjPRVMnXNCYt6vyynxEIem3LSutsa5VS2+boU61Q4UCBqpWeSNV3OyMkIDswaQewS1jritV6QwtR9LpfFhDEW73A4XSctJ6at3RjfWB/jHsmGFOJNviY1Nu+bXCFl9bgru0/uK9TYaieUhssyPC5sjish+6AjjCj3J6czQxu4Ule13bPQtQzHZAlstVKg72vckfEGv7z1Er8w+k7ePiYW3HY/Qj4iSzGBcMZW11rJM56qcVc6fYd1n1ykq9hBM+yw2UxxToaB1jpxXlkXwteM2ScV6fCBWaGb+NcvnuEHj97l6MQyIDpwDhV26EqAem1nhPfeIxbEbivOZinDksy5e+DwLfo9S2mB7m6M0XfDHBkX13BrbYKhdJWS7OhLp5oH7ttTm6zfmKUvqXwr2sVzQ1gSzI1PrrGwcEjpn0q7BbUjHyzskRqosH5XfE+eZ3D/iaukx8XCdvflE6zsFZmSHlWlnSJHH5KiYUQZaJ/NAHC+OU3m74iF3ppZofnKKMl7xXsReOjnhtG2pd/V910HXYruj26QOL1JRwroQxEbXAMrK1var+oYKQOvJa7RqSZpbQ6QGJIGq6kO4aNS09d2CTZDinWxhip0loeVgDj1WBnnqovxdnHNwaVV9LRMgL9xCfoOmQdr4nOX4rjXdKzj8hJu3EGLhfBmROu9vrKHVQjwJgWLZ0TW8JfFJsK74xIa8dl4SpS1Ilafqfe+RPOa+NylW4eYf+hlNp8Seihd91VnYMh06DbjDJ0XIDJfThPO19l5WZb9Bmr0bk3QlexHEohn64p5io3uKlZq9eIxJo8vqKiRbiuOGelTkR2KkXiX+k5eaYPi6abqhIzFOuiGz9ptcQ3HxlcwLIdaTWxQxmeXwde5fU1c/+zRBXTDx5QGow+97UVcOaf5nkE02Wblrnh+Do/c4MbukHK7r3fiDDhhMllx761YF1c+qw9Pic2DeFpgslAiCDR+/7q4H2cGN9lrpajLzd2x0TXqzQQ3JLt8KttX3bGD0Q7xkMuELINvNtN0PINrkh0bjnUwtIC0lFEMxltcl7+Lhhym4l125TVdKKd4sOizJMflWKyP4+sq8cDxNV6ohvhbo2359y5bnQPh+lDEpu2G6HpvIpP0BlsAvKF2At/Fx1sgSR6rHZPB6AHqz1u2yhv7wnqE+/PiVhma0Oisym6V8ZiGqQfKIHK7E2M03qIsXWBvNizeVmiwG4ifW47BpGyVPovYmYzH9kMSU9yox/iBQ7JtuxPn1VqCQalZqjshFaJYjPS5Uk0yKUtkqbDLUstiqSnO60jaJxZyKcYFiPiXV8b55GRLRYA4vs52V1zfu0eq3KhllGnl7yzG+dS0SMYG8HyNmURH7aoa1YJqjXU8g/VmmoIEVEvNJFPJA8O26VQNP9DU7rdlW8oVHET+2L5A/O0j62w0MtyQjNVKK8ajwzvkZDkyaz5Mw9G4Jn8/GGtza0f8+3ChRLmdJCLf2wy5fHFljHFZ5rxYCfMz59ZVaWKjXBBZT/LnaNhW1gyZaJublQF+4xVxrz886LFay1HtyHDPeIMrW2OKpZrLl5QHTLMTI5tsKh+Yai2NpgWYskvK83VOHLrDzSWxOA2lq9huiAt7YrI+OrFMLCsm3pVXjxCJ9JQma3l1nL4bJi7Zr0xSAKp9g8DDZ6+xfkOIep+7Pc+DR68rc8lQ2KVZS9GW7ePDU+sMT62r1nzDcvB6FpVlUbrLjG+zvSkW2+Mf/BZf/48f5T33fE5855UYkWKVwBbfmzaWge0dqo8LDVfm3CJaVGpZnjxFamiP6LhghuxSFj3QCA/XAPCbFoFjqG6uyKEy4WwTQ+YoOltJ/E1xDd2VIWKHt4hmpXGrpZFIrtF6VXyuv93B72bQXxJlL+NQjO7zEmBO7KFZATtPCFSUP7aE1zO5/lv3AzD74CtU74wz+C7RTk/apPNqkdRtaTZpGGgz4jve/UyRwU9ucvi9zwFQvz7F3gtHlZv1bjPNiYjNjWXxHT/w4AtKqG3l61QXx7ClfskaqqDHD9ih6rUZXrhykvd+TIjRe6Usnh0meVgwgM3FMVVSHZlbpro+SF7mupnJDv5r2KJqOUdhsERVjk3DdEjJiJfmXpb1O1PcKYnv+MzMHZoyVgXEAul7ugI6huXQqmRYeEq4n584e5VNqSuanL/D8vXDKsC2uj7IUPyAgav3oswfWVA2BhurYwxLdmdwdIu7i9NMTYlNw7cuneHwwA6PSduPZKxDrRtXcUO2F2KnE1dg5t7iDn94V5zHmWyPx7ctjkg7lnePr+P6Oov7OiI3xHY3wlxa3OtnSlkeksa9S40MluFhSY1e3xfdcGOx/QqATdK0yUq7lnjIYCLukZPzXss2FYCq2iar7TCPDJXpeAdz3VvHd+fxlnBbit7+/bFPkZWit7V2nFt1k1NZsRglwo4KuR2Kdeh7hrLCj4ZcwlpAVf5+uxei7Wq8vSgmzG/tpHl0qKZev9GxmJBljH1r+/1jP7usKrOgZpJtXthL8eBADYCvb2WYSojXj0R7bHcjCmBcq4d570idO3IR7Hk6s8mOCul1fI2x+IER5WiqxtPS8HEkKhy399tqr1cKTCYbZGTUhuOFuLh7IIj0Ao3phHgvQwvIWD16crf6wl5W5dkBnMjU2OjEFeNVjHa420xy+DUuuSVZAnN8nbvNJBPyPHteiHykS0aCEY2A57ZHOCr/dqpQIizLGCHD5crqtArDnMjtsVHNk5CAwnZDhA2PkC7uXzImgi73W4vNkKsAlOOFaNsHmViaFmAaLr+/KACZqcMHx/eYyMloiZBLSC4mnW4UP9CUEHsgU2NpZ0gJ7o+MrNO3TfIFWV5rxQiFPEISZC+sTDI3tSzOwzZxnBDDh6UR58IkA+NbdCWr4Lkhosm2Wqzi8Q7P3xFdUQ/PXyMS77ImRd4jo1usrIwrLxuAZi2l7l8yVyM5uU3tjni964QxZedg/uNl/LtV9BnBFlKuCf+jPTGmAyeEHu2jy8xBrxRVYmG7miQ6uaNiOexSltZ2ntS4WASrSyPkZtcwT4nvxVvtYeQDsMS47VxIY+YF0A8djwhdkWSHAjdAi5vgSIvtbJrAtNB2BCAjGqH7ovhOt25OM/XelxTQ8a+JMaTdL1v0dJ29fxcmLb2OrLMe/moH7hPMknbjNlpIfG7z5WGS92xhL4nF2OtEhAO5BBmJ4xv4jTCaTJDvLA4TGRLft5HpETgatcsiqDlzdpEX/+B9zB0RVgxxyaDtl0GLj93EXkrS3hYgemt5TPkgjc4K36P9XLj2nVGMaB9Hsh/dRhKnH1Z6sKXbh5g9LsT4umWjaQEbN8R5pLJ1qns54vLZs2I9tjeHGD8kxl5pfZhsvoIpQ4+rOwMUpPt2fWuAWKqlxmGtnSBm9hXwSyebOO4Bywuo/MGtrUHMsMOhs4JZW3zlGDd3RlS38AOTd6k2kyqKqGFbdN0QM7I8DWKjBvBiqchEvKs2L8+VBjiTq6lNRsM2ldAahPfRvq0JwG4nrrrVLN2n4xnE9mUFkR6VvsVVWV67J9fiWj3OUOQgfFd1HhseDSdMxrTpejY/dev33hTh9sKnjr3hwu3Dn7n+lnD7b/oE/s9ydNwQa3Kx7vsaWSt4nXHjsCwf2b5B3TYVxZsK26y141yriYd6LuUBuhJ6WzpcrqQVMHIDqEmdSMfTcX1N/e5rWxneUWwpL6NSL0Im7KucoocG2krr82wpx3SiT1m+19GUS9sJ82pNhsUaMJsU7agg7ATW2nFG5CTX7kfIy12RofkkTJsLUkA9GutS7UW5UxfU++nCLsOx7gHTYtoKjLQdk+dKAxyS7NipTJNE2GZYUtqvVLJMxLvk97tI3DBnCrt8Uzr7nsiGScvfVVtJJhNtfueuuHfHUiE+eXhbibHrvSjvP7Sg9Ah3dweVqVzDCXNqYIfP3hWL3tvdEBOZChe2xcSdDjucGV0lIhf+b96ex9ACxqRwM271Djpqagm+sFbgh44K7U+zF2VqaIsflN/LCztDHB1d49KK7CJK1lUWVSzeYac0oDQUzXaMyUKJpgRgtzbHSJh9srL0cGN9gsFknUGpmZoZXacuSx4jM6s0SjnVdg2CAejKtv7bW6O87fRlBXS2dwvcL1urK5UsT75yDz/wyJMA2F2L0eFtrkgR+PGZRZrtOLnMgfFi/e6oCpM1B2q0l2WyfauNPhQhWN0XW2voWQNH+n1F52WkxoAACfatEO2S+LcRdonqAf5+kOhImejpKqufFY7cmhZgHmrhrUrg0w+D7lB/UoAE3fCxy+K5NDZKcGYG9xmxOIeG+hCLgivz+DI5tGt32N/1aYZDZEroc0bDLnrBhJr4vo1pk/KXR8gfEoxG//j9FL//FZyLctPiegT3H0Gvi2vW0jHs+XMAJJOv0H8liSm1UGasDX5ANCQ+SxvNcf2PTqnS5+nvfZy1J0Q4cDzdxIx1uX1LMH6HnBBnHzlgmgJfw4j3VMda9wtxxh99mazURvmOQXpORgBt57DbcVoLYnzY7Si0YiRHBUh87qXzPPLYtxTYDwKNvtQoNlaHyQ2X1POQP3kHc2GckmQPzWifQqFMSGqlxo7cpSKBG0Ak2lPZdPuBu4fuEdqo6tIoYcvGkOPS9wxKm4MMTwnxdXW7wCU5DgdTNRw3xM2XxHhYrRbIRTrcK2NcLi0dohhvEJfz3kozRakXxjTEM/LEdpIPjonv6ES2xp1G6gCchV0ykY5q1thtpnF8XTHkuUiHutQZRgyX5/dSHEuL+zGfL/GtzTGGZGm73IsQDbmcyoj38gKN4egB4BqPt6nJ8vtIokmzlqXuhOl5bx4H8Va57a/neAskyeOpUpR7c3KHZjps9yy2pIB2ItbllgQMhhZQcwySUoPk+DqJkMdjw+LhWmrF6XkaIUnbFiMes6km12Snx5lcQwGoyXiXa7W4AlyZMJiGxze2BVPQdgN+bG6HqzKpPWfZ/G+3xe8+OGqTDDsMyVLdbjfKH66afHJC/HyjLozP9t97Lt2g44aUIHKvG6MsKev/73aIH5lBeR99fmWEuVSfUdlJtyQ7QialO/VmK6WAysVyilPZltqRlfsRHN9Q2qiPzC5wozSsQnuLEYdyv6BKm2HdVyWywVibp3cK/PwZATg2mhna/YgSZ18oZwnrvhI5FxMNkhJgDeUqeK7BR6TAdaGWI9TI8sCY2AmXmynWKwUF7k4Wt9h7jXNvzOyzLnVSk/ldHnVMlc02lK7i+zq6vMYHhsRnFGVJYWxom0u3RItyOtJhMF+mLyfMZjfGdiOjzPFG0lUipq2A0HIryfzYKqvbw/I6ympR69RSZMd2VPZWzzZJpJpk8uKa3zG9TqucoSPH6YWdER6Ri14uV+Vj+Qv0JaDSDY9eN8I56fwcBDr1TlxZFZS3BxiZW1aLtVNNqjZ1b92juTBMQobS4hr47QBrRHp4ZWUMyO6+r5JOtCXG0rXPPUJycpvwnPiOg7pP0PEZPC60KHY9QefVgrrm2OwO/dtpdR6pM4v4Tem3c3uY+MAOGxeEXiU/vUFk7CDzrPZlSE4mCA1LQDEygt4X37/5kAE7Nr4iUx1y9y3APnPwytN0LqTRdAFsQtVd+i+W1TUGjoHZF+U1wmHMiRbujniOtUoAesDOK2LhH52+TRBoypjxX/yrH+N/+tH/KK5hY4DY6C6ZuwflqO3rhxSTWDi8Smt5mKPvFF13t568l/5mjs4rUlsX7dNcEiXRxVuHOHRkkUihJs5DC9hYnCQqGx2SkS53L8+rkuuMZKsAQiGXdjWtgM7tb7yNwdEthuR4aO5lSQ1U2JORJ4buYUb6KprGs8M0JLuVGdpjdWGaWQmwLy/McXhknZ58BiJWn+lz11TUSq2Z5HMr4m/zVoGffvhZ9f1v17MEgUa5mgFgIrtHux/hltQOHcvv4u0VGZdec/fYptI7pqw+BctW3cEasN1K8vyOAHdT8TY9L8S0zItba6ZZkPKEews13jVcVh3OL2yPUIz01Xu33ZC4vxLsH880uNmIcVpq6/5gKcMh+Rh0PIN4yKXlhAl4C2h8tx9vldskVfm/zH2aTFg8IAvNOJbuq06G8XibHdlKXox2WW3F2eiK196Ta7HQjJOWu6bD6To7nTiLLfEwjcVsGk6IuNSNpMMOC1I8OWC5mLqvgEvH07H0gKxkNL6+HWc+feCrdCJTU91pSy2LsfiBhqrtGuRNR5XEAEJaoBiwS5Usrq+pDpztXphx2UU3Gm/TtE3CshS12o7zckXnw2Pib1Nmn1jYJrwfrNlK8fi2AH3vHq6Ttnp8blnsfD82tcNeN6ba5aMhl4TZV9YEEcOl3I8wK4FO7zU0/HY7QSzksNXdN5c0mE60acvXnB1eZ7VaYE0aREZ0n+PSWLLSjdOyTUqyzDWdbFDqxlQ58vjgJle2RxUwfP/sbTaqeWU0t9NKK0H9SLJOsx9VXWT1RornV6c5I12zd5tpVltJRiVIajoHzOLx4XWCQCMn2/i3twcpDuyxuiEWmyNHF7hz+5Aq82210hwb2mC3IUDT4ckV1aZ/9e4hzh27jiPPudeNkMwcZGBZkT4bpaJaYAbSNRWce+vuDB3b4twxUcZw7TCuE6YhW5rz+QqNekq93gh5tGSJFKDfsxQTMjy2Sf59qzSfFkyjmW5hzdYgKs6r/F8myH9oi+0/FsLd5GCFsGw7b28OkH3oLgyIUp17rYUed+ivi0U/MlGmfnmK1EkBZvSkRu3ZCQXIvEYcc0qco9800JMezpoYe+HhBu5ugvC0+A4D24fJEVgRf6vFTSUgD+pdgvlZtBsCKGhJC2/doycDfc18ndBwFy0ps8muh9Ath9DxiLonyHbuwDTxXm0oU0u/HsFpxpS4OjpYQdMDmjLLLpJt4EnGt7I2TPHIEqVbgoVM5mpYqTaREQH2uusDwhZCdlOlTywR2AYdyeo1d7MMSA+lzlYezw4TlkJut2eSmNqivSa+p/h4ifL1aWz5XrZtqpy/diNBuxNTnZyDxV2iyTbdpni2gkBj+L5rLH9LsGeZQgUr1Vas5tLWCIdl80HxyDI7N2fYlBYAo4M7dHtRBd5nT97EyjS5+Yxg05bLA4ztb3QG9giFHba2Dliq37p2mJ88I8btRjVPwuwpdmiplidl9lUG443SMJeq4r4/MrRHzw0Rk6XvW/U0xUhf6UcdX6MQcVTpfzh+oJ282bB4dKhCXcWSBCy3Y0xI5n2jG+FUtqpAVKkbJRZyqUmZReg1xrvJkMtyO0rGdOl5Nv/g7m+9KeW2W99/4g0vtx35T1e/q8pthmHwjne8g89+9rPkcgcau52dHUZGRvC8/zpD9S863mKS5FHqWZjagQnZzYbBAwXxsNm+QaknJjkfkVy/Lwg2DY/DybYCMg3b4iubFt83KXYYsZDDE9t5RDw53JOzWW7J7iUTLlUtPjYlFvqLewW8IGBZPtSfmimx2kwpy/66bdGUnXBzqS5rnQhF2Srs+BoZq68o34lkg8VGmm0Jqh4c3GG3E1emZ4eTXdUpNypeokTdJ3MVJhMWm5KFyFo9fvfOMJ+YFAu/7RmczkrfF194cxxKyhZnGRlwS7Iy0ZBL1w0rk7bxQpWhZJ2tZgYQOqN91mk6U6HrmETkJPfNrQIfObLGngQQT69N8Z7ZWyTKYle51MioUqShBRSindf9XIx2lFNv3wmz1olwXoIXI+QRDdvqPHLRNmuywyxq9WnZEVa2RuQ16tw/vkytLSbjK9Us7xhZpyKB33xxi/0jEu2xWRpgSToCzw1v8NXLZ3n0qJj0nb5JMtZhQ17D209c4ZWb89x7SoSjVndzuPJ+3HfmMqWNIQakiHV5fZRItEdamnyubwwzNbqhOpKi0Z4CVKOFXfIjJb709EMAfPDtz4CvEZPi/Kcvn+Htpy/xtZeFS/TfevvT+NU0w0cEMKytDZGbEaxCt5zBXdIU8DFSbcin8W6L9woCHdpd8kcF0Fl58QT5EcEkJQ9tEHQDtM5+15xw097PW3O2U4Rjfdw9cW+NXpfEzCaBvA5rtgZyN+41YhhD/QOm7fYw8fsruEvi2QxNB7CxhbstFmfjgQKBKcZ4MBmBZ24QeNIZfzCKMdAgnhcdel/73z7Ku//ps7AjSmbmKQPqfcp/Isq3+Q9t8fy/ejsA9//jV+mXslhS9GsM9dCitmqX7+7k0LSAsHRrjkztUr8k2MBUvkpkokxRjpdeJY1meNRvCoBpmA7tSpqM7ELsrxdA94nvh9rqPjvScTuWapGa2aC/lxHXD+xcniMq9YKt5WGsWI+Q3BjZeyZfuyiAyvvve5FYoq1+Z4RcQhGbV68Jlm68uEPr7gjZonzmuxYRvaUcuqeHN9U4rdwdIzVQUWyY5xr0+yYZqTvqNxLYzRgxWbqKh20GpD2A7+kEIV11r3Udk789u0pHzmNJq6saJkCAt8uVnIoaGUk0lAZJ0wIu7uWYlQ7kbx9b5ebuEKflRuBzKwUm4p5ij/IR4YUEMJeCnW5MxZQ8vlVgOOoq6UPM8MnGWlyXXXWGFlB3wgoc5cw+X9kUQOJjE216jRgtx6Dnv3Gg5a3jLz6CIKDf73P+/Hm+8IUvcOLEidf97js53gJJ8nB9jVsyQ20yYTMUMRUwulKzeGhAhjOGbdbbCUxZTtunY/edW18pZ/nwWFeVn7Y7ceaSfdV6f7cV49Eh8VD3PIOHiy3lXm17GsWIo/yZvr5ZpBg58AyZTrRVJ5yhB2yXowzJja6lB0QMl7YrWJilRpq81VemlnvdOG03zItlcU2PDnqMx8Q5J80esbDNjgQBC/UMm90wM4meusYPjtWV7UHbDSlBo2n4LDXSyr371UqOuYFt8hJApGW0yL54su+GubhbZFZ6MK22E4rB2e9C2c9W+vFzl1kuDany2r2GS7dvqY6bAJT2J6R75NN1ZsKC7fn8q6fImg6nZwRz0GolyJmuYo4q9RT5ZINm78ApNx858EnquyEmZPlxS1ojDEm7gNO2hesbaqLO9CL851WxmP7AsRvoWsD51zA43/fux5U54s76MKOzK0SlZmt9Y4RMtI0rxfqeZyj9UmthBtsNsS2N9XKJJq4TJmqJRWB6ZoVOI04qKQF5qs3dxSkAZucWWbx1iA8++Kz4npJtamtDqvU6F20TSbU5MyrYgMTUNr1mnJaM04km2yo/LW452OUUsQfF2AuqDr3ndKwJ8T0khnfxD83iXhNsyOyPXmfvTwXzERpzsBeT3P4TwUhkszVGP7VEcEtcf+P2BNGBKuFx8Xy5G3G0sKv0EK1Lw8SPHngEEYsQyI1CKNbDuR1WFgH9y1Gs0z30h8Vna+vr+JvSIDTtos1m8DPiXl76x1Oc/J6nlN7p0Y99Bf+6gx4Rr+9dixJ9UCf99+QCfaXN/X9HxMF4L5vEjjloMii1+dIIsfESlmywCOXl8y3NN7WZPGnpEYSvoSUNIhNiLPWrScKpDtEjYqxtP36S/Owa5qgMpt7IYp3sUPqyKOfaPYuxj4qSaf3pURp3R9W9ig3UyI7t0Jagye6FiMQ7JCXgSs+uMXZSCLc3r80yeGiNvuwESx5eo/zqLPe+/QXxt82YAnkAhhMilOiQlQ0HVryjxPmeGwJfIzsh/Yh6Fo1mUoX0hpNtrj99nrycI0ZyZVzJyOxVsrieweFJAbD3cwizcn5Y3h5mZuhgE1KqZilEO+o5tr0QTQncZvK7nPMMFWvUc0zOja0owPVTp6p8ZekQ7xgSQDhu9liXG6Oc2We5HSdnifN6dKjMaiupGOIjmSpXd4cYliBqpZkirAUq/7LatzibFSBxtZ0gHfaJhjxC3wFz8Z0eb5lJgqZpfPazn+Vf/It/wYMPPsjv/d7v8ZGPfET97jt6z7fKbYKq/KXpH+G2nDDiIZhL2Uq0l7Z6LEs2A6DjGmSkU63t62StvsoAaro6qbDPleo+KwXH0gFzstU6ZdqKsQnpHterWSVydgKNvNVjQ+6qdrrC6+ibJfH675voKJGz7YUodaMKfG11LVqurkpoGbPPa8dE2w1RjHa4Kl20m47O22TXS7UfwfF1inJHVurG8AONZWme1/c03jWyS11ONoVoh5IEQUcKO7y0Oa4mC1P36Hkh1bVn6h6362mOSX3Gxb0Ch5ItSpLRSoYdJqS+YK8TJxZyiclJzvUMXtgtMifN4WzPYDRZx5YTbKUbJSe/o29uFTmXq9ORpbmhuAjpjShn3jRDiQNjvboER/PSc2lzb0AJxKNh0fmzK9uOV1tx3nf4lgIvrmcQj/R4UfoqjSWaTEhjyUikx631CVXm2lgf4Y8WZnlI7shH0lXSySZr0jX7yMwSobDDrTuiy2gwWyElmaJ2I0GpklNxDv12DF33lebEd0K8cvE0U8NiEUkNVLh+VSymU2MbChABeJ5Oqx1XZb5ivky9kWJUalCsVBunY7FwQ3THpRJt1YGUHt0hdraCtynZ0lsThGI9IgVxnr29NLHxkupu02Ihgo6r/m0vRDHPyQX1Vhu0gJ2XjonrPX9DtcMDRI7sQT+g+rJgS7Ln76ClxDm3LwxgDZVVlIqectBMjWA/33YvTGg+RrBRE/9Dh9Y1IdxPzG8QeBqdBQGgEme2CLoBvsyI048VIBTCe0GMUz3ZQ59KKyaKtR28iiytHIkQlJtsfFX4IKUHy1i5+uviPwDVZRab3MaX+YyhXIv23eHXiZ6ddvR12jFd95Wb9+3//BADwzsq98yK9QjL+cJuR9H0gD98RrCF//17vo7nhqjJ6JleN8LY4WXqEvjmJje5ffFgZz3/wCu0NgWj6bnCOmBpWXg9HT1+k/LmoDJFvbsxxkCqzoQMRG6XMyo8+Z53PUO/lqS6Pqje+7Vja3drkHYnqjZK+2HLAJbV54nb80xIndDsyDpPLRxlTgZR//ubk3TcgP/prNCwldtJOo7JZ1fEPPa9EzW1Id1npPfzLJ/YifPu4aba/FR7ERKmzV05l2dMm3Gps2w7Jgv1NC0JwEdjPdpuSG2U7x8os9eNsV9Ua9hhRuMd1YUX0gJVyl9ph5lL9Wk5IXq+zS+u/MabUm678X2nSIbfwHKb4zH/R1e+q8ptuq6zvb1NsVjk13/91/npn/5pfv7nf54f/dEfZXR09K1y21/l2O2HGIqKyXco4jIc7SgdkkbAN7bFZPmDs3tsdeIk5OIbDzust5KclzuskhREv2tIfBkp02ajE1VamY4XUgG3VysFtnsGJ6TvS7UfwQt0heATYY+xeJsPjIgJ9ko1wVkpLvfRGIp1lG1+3nJwA5NZWat/rlTE0gMFwGzPoNSNKW1UznSo9vdtCSKE9IDdfgaA5ZbB0ZTDiiwLns87tBxTBfUuNTKqlfbm7hC/snmXfz4lFiMHGXshF4ylZoKxeEdNZPGQR8M2D3yT3JAydAtpAQ3HZ1YCwVI3TirsMpEW93armSFm9lmTO2WATakpOJ5uk4922JNlviPjKzy/cJQReZ4T6QqlVkrR4+mIiA9Z3BLn7fk6RTlhDuTLlKtZuo6Y9I5kHGqthHLcvlzOc66wq/RQA9kqOxXBUAxZfZEnJRc12w3xf3vweVWK2Nwc5smFo0zJMdBpxYjGuipPygo5pKUBaL2ZZGpijZ7UiTTrKe5sjXL6sGAD4rk6g5kqbflZnqdTkN1quuGzs5VndFiwCJulEbqOyaFRwbQ5TphMus6d2wKczZ+9im74FKVhaLq4pwwff/UPv5efjv0hRlKWjwo1AtcgJI304rk22myRICb1LFeW2C+RacMpAidg94/FApo7s4C9nWPwvPAj0jMO/Ttx9X02v1mgcO9Ncu+RvkDPjirQkX5km6Bp07kp3it+uIt7q6dy4YyCA9UG3n1nAQhtrZBMisXWuZNAj/aJf4/Mlxu8B73bxFiUYuZKlfZLecy8OG99Igm9PsFdsXhrcwW0M2Ks9D63Rm3lGENnbsnP7bL3zFFMyby4PRM97KmMub3Lh9mU3Zyn3vc0hulQ2zd8THRIza6r19ZuTxDJNHF2xaI0MrNKYzdHYVaAebcTwZYdapnZdfrlFB84cQWAcKrN3vVDxGS5LT+yQyjWoyKDqQGVAxhNNdm5Mc3dDaExuv/RZ1h8+QR7cmNgJjvEky22JbOTjHQZHN1iVfpwDY1vcuSo6KRcefk41zcmODoiQFE83iYe6yhLgFyuSshwcfYF1XqA60hA2YtwNL/LBSmuXmqkOV3c4uquDOXNOASgwH021uLW5jj//aGDHMlduamcye7h+oYylf3gmIMXaFiyMWS5nWcKuFKVvx9vqQ2X5+sULJux+H7XbpicadN9TYjvcjuqtKeOr3OjlsQQXxtNR1d+djVbMFM5s0/nLcftv7Hjx3/8x5mbm+MTn/gETz755Hf8Pv/NgqRf/dVf5Vd/9VcVshyKOMTl3QgCjRv1FHlLDPrndzN832QNgK4bptw3FYOz14wS1n1KElAZWkCpF+KBolhgan0L29dZaomn6WzWUw9mzPCYijtc2BML7HymiaH5PLcrFue5lE+lf+CFNBR1aMqFOxm2KfciZM39BzPM2XyFTTnJTca7rHUOSkkZs49p+MRkd1fTMZUrdiHS5UYtw9GMuMbjGTH5xEICgGkIT6dlCciOZGpUJOjb6ET5Xw4XqfXFZBINuQzGmixJp+sj6TodN8R1CV4yYYeRRIOWZG16XoiIPKe6bRELOWpCtD2Dk/ldluTfDsTa9F6jWRpN1rgkJ9PxSJc7tQOh3ur2MIPxpnL2Plnc4ko1y1nJaO0zTIG8js1WUmm/kvE22/WsYs7SVp+nN8eYl/dnKtGmaUdU/tTLyzMckx1vvq8zNrijBNLlToKpsMOtu0KTMn/4DrFIT5XQtsoFJsJbHJW6JtsNqfbv27uDTEyt8vQrolQ1nimr7jyAdiVNt28p8a2u+8qv6fbSFCfmbyojwTMPXaCxOaAct3/vcx/m7VOLTE+LMkdju6AiKkA4Y7uyk+fvff/naK4Nkn+PeG10uoe32iPY7xTTwX6mhzUjFq7WwjAx2Vrv3WwQHvQoSPG1Zuq4yyam/FMtFkLTA+X9VDh+F78bxnlVsnadiOrecu4YhAYg/oDUQu20MXKw8WdnABg8eQfNsgnFBYjEDENKvG/4jA/NHsGKzOP7zWGyEzWqqyIzbuzvrhIZ3SXYb8VPJEHXca+LzzarNfSQWFwjZ7sUP+TCizJIdzVLanxHaLUAfB2nmsSTYbpWpsmZ+wQo9Lsm1lCFpBRTR8d38BpxjP3SZrFC9FCJq599JwCHzlxn9N2X2HlS5sDNrWJK8Iru062mVKSJYToMTGyxKV3WB87fZPfCUUbGpWWC1VcC8mihzvLCDPc9/Lz4XaLL5PwdwncOzCOj6RZTUocWjvV56lsPMijBfWJ8h/amEGqHwi7vuO8l5e6eTIrn6PDbLgHQXBtiaW0MX+oFzz34ErYE/rHBMttXD6sNSd8NoWsB7zws2NM/u3WMD5y4QkXq7hw3xGyqzg3JiBejPSz5TKzWcyTDttr8hXSfct9iLCXG3myyyeGBHSZl+X61nlO+afGwTd221FyUtnr0X9MN/HI5R8PROJMTY+9KJY1pBMxLz7aw7rMn55LTWeHYnbc8ev7r/aH+Oo8g0IU+8A17v+++ItPk5CSGccCmvfOd7+T555/nQx/60Hf8nm+V2yRV+VODP8FEXNzccj/EK1Wbj4/LsFA7TELuIPqejgbU5GQ6Ee+y07U4KcWB9X6EkO5zRy6SYS3AC2CtI977vnxH+SSF9YBSL8xJWV7xAp2uG1I6opoTomjZ3GmKh/5UtkVZLtyzqTo9L8TL5bQ8L42s5b+OObrRsLgnJya5nZ5FJuyqMtg/X63wE4MCYIzGOzxdSpMJi6Fw/0CZUjdGVC64q+0YU4k2u9IQ0/V1BRIXmhEeGKgpZ++Veg5D80lJmv7pUp75VIea3N3dU9xisVpQrtux1+Q09bwQA7GWAlBBoDEkfVQAtltpXtjNUJAGbvcWd/iW3KG/e3yNpVqeQSnUjpl9VutZprOizHWrXCRr9ViWzNNEvKVAGcB0bo+SZHOKyTq67vOcLKedyO+SjrVZk4Dr9KE7LK6Nk5Yg03FD5ORkmRvc4+aNOfr7Zb+s6HQaPSwE0V/+xjt5z/0vKr3HxRfPMT2yoUTiPTfM7KjYkfd7FqZpq44k3fB46copFWlSGNvG7ZmqIyk5UFUxE8NT61S2BlS5xIz26bVjGPI7jaVarC5NKJfk7NAe5c0ihVHJPC1NMCqNBNMfaOLdbKBLcX7tpUNEcg0ihwQrgQ9MD8KG3N1n4wQZyV74Pt4LFUJjYiEP2j6dhWE6ctwOvGcBbxf8jvjOtbCLHnXQ9xvtdA1nTYy78LSNu64TmhTjxV3UCU3YoEuTxxcGic9tomdlaW/2KDwlFlvtvgm0W3cJDk8BYE+exNy4gV4ROirvVpvSxaPkJGNjnfUIUmlaXxCnUdsoMvL/lOXE566jj1i4S1ILVcoSP7NH91pG/F4L6FVSKn8tNr1NVZpHJsZKQrQuWdnQoTD1bxQobwyq78GMdzEk8OlVUiQPr7N3SZRBM9Mbyp1cMFau+vnV585x/PwVIqPie3GrSXqVlGIiw5atokOmDi/RrSdIDcnrt8O0K2kVeLu3M8Dk8QWuvyxA5PzZq3h2WOmfmntZCofEOF185RjNTkw1Mjx4/iKl9WHacpM2OrbJhevHmJXaov1GBIDttRFyhbLqbnPcEB3bUqW5Si/GYLxJWIKXaifBYjPFMflcd92wKp/FQy6Or6vQ73jYeZ1ZpBfoFGItlQ15u5FQ/m5h3ePlSoqMuW/H4ko/OE++NsnpXIWLckObDHuMxLp8UXZavm+kTUkCXy/Q6PsaPU+j79v8681/96aU265/4swbXm479seXvqvKbf97R6/XY2dnh8nJyb/03/43yyT9+SMRFi3nAHOpDoYWJRWWQYmg2ko7mtDbdCU9PpZoUupZilnZ7VnEQ54SNs+mGjy5neeRwYOMsbYnJv0j8QZrnYwqxV2pWtyT6ykDyMFoh1cqaQ4lBfCJhlxe3RHga7Nb4LGRHUZeY2iWtfoUpR/PC7tFzucOuu7O5ve4U88qG/1P5UcxDfG3TSfM905tKJ1Oxw1RtcNcq4vd/FTcRuMAS08mmjwtzQIfHdqj7YapSUfcmm2qjhGAE5kW05myos+XanlKPQtPxrS8e+quCr8dk7vU/cy47VaKtVpeAbBoyGEsbqsJMhq2eViWk8qdBNOZsvJUssIOBbujwnCP5EtsNLI8KIXK67Ucjx5/lZYEs6t7RcUkuZ7BaHGXB+Q1rFQGGM7v0duV0RLRHoOZKo32QZloS3arxRIdmv0ox6aFUPfy4izHJlaUcPtd51/m9q1ZJkbF7v7UqWss3jrExJC4jliyxdqqbLOuFBhPV4lLPVuvHeXU7ILS5GwvjRFPtInK3f720hjTZwRjsX5tlniijRk9+C5CYYewNBCNZBsUW3tKKNtqxxk/tKKYhvG5JSKye8u72QM9wKuI7yzzyQ7axh7lbwnfGzPZIT4fRhuXbdw7JUhJDd/CBkYWAll1cEpJ3J5J4QEBXtBDGLMJDNn9FlRsapdmiMqwXWu8ooTQ7mqE0ISLPyIYC23Swv3WIv2SAGTJ+3fwqxAMimvSXrhG8LBgYPp/skX0iIYfF+cVee6/QCpBsCvLk6mA4j03MGbFOA7Kbezj9xP778T3lLj0CrSlO7fl463bhCZlqabVo3f9wHNIj/aJWY76ntxKgrTs/Nu+cIzBk3fUOceTm8QnPJp7ByWx+uYAAydFGTCR6kCgKQbQiNhK+xSbqNJbHECX3+nMoWXWbhxiUv7ckBohS/qdNXZznP744wCsfP08A5MbqpR56+pRTr39JboyYzCTrVFdH+TMu4Xwv7VeZHlhWj1PfSeMJRs/UskmrmdwSo7hWilPcWRb+Wy5nQiZSIeofK6XF6eISQ1jItGiXsvQkEz8QKqOGXbYllmQjq9T7cY4e0iU9rbuZDg7sK0E14YeMCGBfjTk0LAtJUE4Ge2w1YkTkqX9jhsirHtqjmzYJldq4hlOhX3uK9QVk+QHGqbhKVZqItZlvZVkWPq7dT2DnW6U7xk9aOjZB1TVvkUh0uVqLc0BRPvrP94yk/zfPyKRyHcEkOAtJkmh8H8x88P0PKkj8TWGIgfgw/E1cnLiabkh7jYtzuXFBNCwTZJhh439dnnToeGESO4zT75OyzHoy8llIt5VERWpsM1SK86gXMj2ehYRw1e5aKdyFbbaCaV/ul5LqYc0Zdqst2OMyQlwvR1jOHbQjdJ1QxzOlmn19/VMWY6mG2zsewwZHl/eEDufqYTOcsvnE5Ni8qjZJrcbFnMpmUxu2sRDDiuShel5uirzrXcs3jG8rTyU2raFrgV0JZOyT4Xvd4KNp6rcqRaUWLvvhtmTE+RGJ8p8pqZiSCqdOHu9KIclKCpmq9SbCZ6VcSqPTCyzoyZLH9czVAxJNtHk16/Mcyojc86sPrZnMCd1RL6vEw65bMgSXUj31ffiBTp+oHFsVOhiqo0kK7UcQzJDruuYbLYT6rw8X1elt61qjsPjq1yXbtyn526zvDpGRk7kzU4MM+wwIrOruq04N1YnmSwIFiYS7ak261i0Q2a0pPRb7XKGZi1FRLKF2Ykt6uuDSgRr9031b133SaSbNKWJab9vKVYJoDixSXWrSHZYfG5Yloqe/sY7ADgzf4PEiBSjvzOE82yX0g1RMhz76FWC4WFYEkyClo2D6+EXxaLsJ7OEtgQooFyDdALa0oRwCwg0tPCBgLK3XiAqS3VuJQa+TnhfX9zsEIwLbcvmv81hxXoUPiaZiKoU4kt/MxwXrDBBVQLDI+MqdNedP4XebaKvLotzLIl70bwhAFfq/CpaSKP5kox4+YSBvrRCMC4YviASxR4XJ2UtvkygG4qFotmBqKWun0uraEcH0Go18XMohL8uLRDGorgLB3olfJ3weBtnTbI9h3r4VY/Gq2JCT9+3grcdEYwZEIyOEFwV911PwtLnzzP5zpcBeOoPPsBoYZfZ739JXPOqiZHr0rohxeunN/Er4l5tPn+C4XM3acjcs5BlExsvsfqccL6eeuwCjRsTGFJy0G8kyJ2/zc0vPAyIrLvWmrjexPgOl77xIPNnRdddKGLje7rqlNzcGFYbEBDh0vmiuHeuE1bRJHDwXO6P+W7fYrVaYE6GXnu+zk4tq+aXYqKhWNt0rE27F6FlizkvYfZYquWpyOcpZ9rM5na5XRYGDPlIl+h+Y0c7SdbqqZ8v7RY5lDowq42GbZq9qLIYuVzOM5tqEpevD+me0ka9WksyGrOJGR5dz+bv3f7dN4VJuvq9595wJunEn1z8rmCSstnst9W9VqlU/sLX/Pnj2wJJH/vYx/7Sb/xv/+2/pVgs/sUv/Bs+9gfYvzz0Qzy7K3Yg/+PpZW6Vi+z0Dso+++7yw9E+pZ7FaGzf80NqgmQZzPF1bjcjHE2J3xtawIMzC/znm6Kb52R+j2fk7v1cocKrlSwpuWAYWkDE8JiS4uu9Thwv0JUIuuWGSEpGaza3S6MXU7R01w2TtroKrCQiXRb2Bqnud6RFuuSjHV4tCx1B29WVf0gm2iZkeCqWY7VSoO2YylW76YS5Z2SNy1sCnAxEO0ob03FMSt2YCvgt9y0+cOIyL94R7sMps49puIwXxWLV6UZpdGJq0jRDrgI6w5kKrV5UdZnlZJbciixzVfsRLMPjoVkhmN3YLTIgwQkIABKW98f3dYoDe7x0+6i8tz6zxW3+8IbwgZlNdjhS2GF4UCzOX7t6SnX3HSpus1YeYKooWap6moFslYp0Xc+l65QqOTUZZ6Jt8lKv1O9bbFVzHJsVTMDC0jT5ZINVed9Pz92mVsnQld9L1OozNLmhNDmxTIPElPjc20/cx8T8HeVs3GwmGZlZVa/9/Iv3c3Zog9GRbXUPkrKLbuHKPIPFXZpNAWxHZlZp7maV91F1eZTU0B6aHC+bN2eYeugSvW0BGjuVNIX7JdtzYpLelzpqwVy7fISZf7CH1hDXHGTyaJ0W3ssCVIWKDoEtxo42mCLYbaDlxTkH5RaMFmBZLJJaIUrjmwOEJCsRu69J65kssWlxTVrcV632pBP0XzLUORvJLvrJHFpFMl6H5tDbdQUi3He9HS8jQE7kP/8ntGwcb1IIj7VuE2dwGnNJLOys7aANZggiYrOj1WrYx8+j+bIstrFI73ExZiPTu9RemVFdZvFTW7ReGSN5v1jIO5fzbN+eYuyMuH9ez8KUrFz58mGsRIdITgC88GCN7tIQzzwleMt3ferz2KUMkcNiMnc34hiZNn5XZjCW0/RkJ22rnCZkunSlr9rYuRvoYRdbxsWEEl3wNcUWtbfztOvid9mRXVrlDBG5yWrXk3huCE+Ct/Hz11m/OM/4A5cB6G0W8Owwt2T35OTkGnHJ9i1dmyORaBOV9iStRhLbNlV3pOeGCIUd1W1pRvqKpei0Y5imTU0+W9d2RgjrvsqCjIYcDhVK3JH+RHMD21TbCS7JCKXThd3XAbBblQInBsTYubo7RD7SU3PgZLLO1Uqec3IuqnZj3G6Ixf9wqskzpSxnsgdO6BPpKi9LQflwrEvXPdBPlnpRVdYDweK/UhHXMBq10bWAnmfQ821+7u5vvgWS/pqP3/md31H/DoKAn/zJn+Sf/JN/8l9hkL/7d//uX/q9vy2QpOs6n/zkJ4lGo3/RSwH4zGc+w40bN5iZmflLn9Cbfbw24PZaVSxGZ3Mtbjbi3D8gF5x6mrS5DwJMbF+n7YqHfCrex9R95Ze073h9QraEV7pxVlsJipJq/t8WQ/zCSUHx36zmWWqZvHNYuu26Ye40EsRl5EnGtBmKt/iy3LGdSPcUKAsCjZnsHl9dETvOc/kqe72oOo+JRBMv0A7abs0+X10f5nhaTGS2r3NT+kL9yMnrXN4cZzojrvfq7hClvkmpJ0uKMZeRaE/9frFaUG210bCNH2isyDr/cKyNabgqL6nvhLlby6sy33i2zMub46rDb72ZVmZwmWgbM+Qq76J0rI3jhlivS3dmw6WQaKgOrKXNEdpS8Gl7IbpuiAkJMMudBCcnlri+Ju5PMdHADzTK0piu64Y5PryuxkG7FyEuSwCVZpKR4i5xabx4e3GGkcIue1IsqmkBmWRT5V4lsg1cWaba3xlHZckxnamjG57wkkH4NYVDDpt7AjQN5coMzqwJbQlQXhqlI60GDMPDNB1yo2JSv/rKCc48/KJ6rduJ0Nw6EFxfv3KMI8eEaHlreYzpc9cIpwVDdOW/vJ1T3/MtGrcFc9JpJEgNVFQHm245hIZbuFvSqyrVgf1W+7RG53v/JyK/+z+Ln6ey9A+fRXOl3mnhMs2vpzH+hZiA9N3LWF/5orhXxTjOzddMMR85Q3jhCt640OgEuo7erqO5krl1XYJEiuB5ATL1U0M4o7Ks9/yT+E0BfgB0u4tx8WUYFROh5joiv80W974/eQJr4aL43fv+ubjutiiDBl4XPZTE70nPnP/yG3Te+X2EqqIca3QaOLkRzA0ByPuH7iVy42nxt6Ew+t4u7eekw/aHomiLK7hbYty6rSiaFmCN7+e+HVgiuDsxvHaEUEaMLc3wQQ/Q4wKMOVtJjESX3pbYGLR28gx+chNasuS4xuvsBLxGDCMjvmO/bRF4unhPwO+HsatJFa57+4n7SMvux6F7r4Phc+3Lgjk88ZFvooUCrv3JI4BwWc+eXsTZlZrHahI97NKW5bjC6QW2pY1DZrREONlWIby64dFrxulL4X96sIyZ7FBeEqxV2LKJyhJybHKbvcuHacsSWRBoRGNdOvuWB1afl+7MkZdzRCFVJ5erqg7gajWjNIvtfoTpsXV60un7ucU5Gk6YYQne4mGbbKylSnuRsK1kAqVujMlkXSUD3G3GOZxqqs/daSeYH9xiUzLPQaDxP9+I8+kpMbZjhktaPvNP7xS4r1Dlxb3sm6pJevWj97zhIOnkn778XQGS/vyRTCa5fPnyG4JBvm2QtO898Gaf4F/3sT/AfmP+Uyw2xcQ0GrNZallMJ8SgL0a6VGTZqu2K0tk5GUha7UXZ6kT3taP4gWCLFmVNfaNjkbdcZlJicvrBm9f5uaEHARiLd1hqxclLAFaMdih1Y0r/dLcVYzzWU0LvAJiU7b2G5hMJuWxJA0gv0EiZNllpsnarlqMQ6fHCnhjcyVDA6Vydz61kAPjUzB4dObnEQi5D6aqabP7j7WnuyXUUIHu5nOaxkR0lqC51oxzNievPJxuvo79Nw6PUOdDq7PVN7h/aZFEC0PFUjVS0w54ME54e3OLSqihN5SIdrJCj9AZDiSYd2+LEtPBI2ZNt9kmZVN5oJVR0RsS0aXRj5KXfyp/dmePDJ6+oCRMEYNsvrw2nasRjXZ5dEov1aLx1sHsNO+gETA6KHWl2oExtL8euBEl77SRHZSkOoNuL8Lnbgjn7v3/wK9y6elQxVLruE022uX5d/D5q2lzaHuV73/EUAC+8fJYH7rvA1ctCO3P2wQtqMRk6e4v1C8fVDj2SbJOc3WDlKdHinsw08H1dldTyIyU0KVRNTG3TWTuILPHsME7fVNqW8uI49VpaaZgCX0PTA0Ky7KZpAVsXBWsw8tAVjJk4rjSABAiNeAQdsbAHfQ19Kg1lGZabjNF+RpyTVagRmnJU9lh0fhdnLUFILuwX/+RdHDl5E0t2sJnHXNovpBQQNAt17D3pKH68BvEo7WfE+IqO7+KUk6ozrHL1EOmJbaz7xZTm5woEYem+vbWKNziKflV2mZ2Yx9jZOIgtWa/h9wz0E2KO6575W1iLz2KsSBPIro0/LTUNoRCa3UdbE3YKQc9HS4TwduTndiy0sKvAip716FyVgb2WjWE6aKED/ZLXjCqgEzgG9m6GsARRftfCHK3i1SPyZ5OaHB+psR2CQKO7K8allWnS2CwSlb5ihuWgG6IDDgR42fdjimUaGKajYkbyozvEhssErrgfjdVhdreKJOV7FWZX0UIejRXRKNFpJkjlxYYkkmuwfm2WpGSOYpkmvqfjSgan34nQaiUojokSs9O11Li0uxY3V6eYHhS/M0IekWiPq3cE4zeaLWO7IXKSqV1YmyAStnlaWnd86PAtSvUMIDZV1XZCselWyGG3nVTPNYhUgVUJwOZSTRXFZIVcbtWyzMvOt5VmmrFEU2U73mkmmE8f+KwtNhNYeqASEF6pwGhM3LsHBxpU+xZeoNH1bH72TYoleQskHRxvJAb5toTbTzzxxOtyUP6i4ytf+Qqjo6Pf8Un9TRzP7iZ5oCAWAUML6LochMH2ourf8ZBHpROisT8BeAbxkKecWb1AY7mR4ZBkNKJGCifQuFHLAPDL4/eRNg90RBOS7gb4+laOmYRDWYKi1bbOUERnVnZO3apluFIVC8Y9+QrlXpRdaWB2ONUkpHvckCCg5+mUehE+MC4mH10LWGumeWSwp86zL60Iqv0Ihu5zR042Z7JdbF8nIcXaU/E+L+8WiMpJ/1Cqwa5kZL60Msr5fIOKBFADkR66FjApvY30eo4nN8Z4+4goRdyuFDhl9cjKLrSdSk616OpawK1yUemVluvCXfeG1PdUexG2u1GKssxxfHCTO0pf0GG1lVJGlO+dvc1/vHiW0Zj4+XC2zF4nwayk4lfKA5R3RjgqTesyiRbLUkC+2UqSsfrK+2hpZ5ijE8ukJFjZ3+3uh9Smki3ePSZA062rR0lEuwqcbVfy5JMNZmeWxdgKeQwP7yjTx7nRNXzPUBP79u0phubEazXDJ2S4dFoCFAycu0V3rcjFZQHsHpy/hucayldJNzzVLl+7NYmm+SzeEZPE1NQqVrxDdVkusEN76IbPc98UgD0atjl26roSmMcmdkjkxbhzqwl0M4wuy59aVIqoj8uonsFRuLuggm4D08QakvEvJ1O8+q9OcOx9z4jXVg3Cg02cHfHacx//Ovgansw6DMpdotO9g5iSKYtITIbMNqH3apTYUcGseRUTa75L81np5TNawnzIIJAhtfrqKkFBbHyoNtGKPsgKid5uEOw0CE4K8Krt1NBOTOJ8XYD/SOJptEYN+6Y0kHzvFIEmy37P3UafS+Ouy5yvoR5BPo9WPvDuMe4ZUOXHoO0RTovxbs71CQp5tI4ARe4NA/NwG2TbsnPHxByoKYPN2LkaQZOD8NxPLVG8T1x/86txEqfXCMkxroVd8vGuYAGB9WfOMP7IReKPChDZ/HqcnvRYCkVsIiN7zNwvrte+bdFaL7K9IsbHkQ88TSG9gL0ktVLFJq3r4/RkaS8ztKtE/uZAjdH5RWyZSQlw99Ysk9JeIpZqYUb6tGRHo6YH5A+J52Xj6mFi4T5x2XzQaiRwjRAz0lJju5wnn2pwbVmM4/tOX+bzzz3IR44IsNvqRtUzb+g+fTesdEWxSI+cf9ASb3shsvEWtbUpcd6Ge+CaH+1wfnCTVcla+4HG9WpW2aIcSoDt6cqo8nCqSccN8bVlcc2fnmkp7WjDtogYHg0njP8mBtwG/hsrtt43af12j42NDX72Z3+Wr3zlK3S7Xebm5vjN3/xN7rlHROEEQcAv/uIv8uu//utUq1Xuv/9+fvVXf5Xjx4+/Yef813G8Jdx+TcCt54sJoe3qGBqk5G52ONbm61vi4SlGfGYSHfVAvFLJMhHvqtDEG40YYzGbicS+S3SI9XZcRW3krR67cndi6T6m7vPMrnjQ4iE4muor9+qGbVKzw0zLsk/PM1R9fd8eYFIyVHvdGFmrx/MlwdhcrPp8eqZFQ4oWO55BMdLjRn2/Bb7LuqTtixGHrqez1pFBstk2i60YA9ZBl93FSpr3jomJ61p5QF3PUKxDuRdRmUctxyRl9inLktnRgW1e3hxXrNTtRoK5VEsldeesnmKhfm51gd88OsJtCdZypk2pZ/EuySTFYx2urk4xIBfrZj9KUQKqdi/C4+tjKrdpoxPlRLaq9Aq2Z+D5uspy6zgWOoGa9AzdV8DNDLlUWknlpZRP19mp5pRJXTFdQ9MCvrQg2rI/evQGhgQ51zcmODG+rATUpulg22FCciyFDJfdcp60jBLRDZ9eN0K5KXZqx0/cYE+2g1tWn2SuTqMsu7dyNXzPwJO719uLMwykaxRkzIJrh0jK0m15aZRyNUtCArtkuoHds5Qg9tlb83zgXd9U5ROnb7K5PcixcyJDzmlHMZPib2NHBdBuXxf6nviRTXqreeWj5PXDpL/fY+PXBCCJZxtk3yuBzJKNU0kSzksbg5hLZ2FYgaigb9IrZYnPClYGQC+GcO4KAL/76izpMfFevYq4R+k5scDuXjnM8MfvEuxK9ittEhTylH5Xeug8dJ3GFRm6+98ZBFYM7TnhhK6PRend8xjmhjS1XFkWQGdX3L9gdAR7fB5zSdyPIJFC35Tl2WYHZy2OJps5QpMa7kqAJx37NakL2o/8sFJtomPiOzKKHs5aRLFMRrpH+9aICrgFEdWSfVCM+aCpoU8l6L8smZdqiqhs8dfCLp3lYaXRsvINeqWs6naLDFXw+2EV4+LUE8p6oV7JEIt31Dgtzt/FaUfZWZDl6el1du6OK8De2CySmdzEl5syrx/mmmQ/T5y9Sr8Vw5bZdZ5rEEu1aMlNxB9dPsOPvufrClRlji/RWRVjfPHqEZLxNh3pwH93b5DJ3K5iiF3PIBXr0JK/dzxDlchAxOvs+87pWkBI99huic/d7kZZaln80MlrAKzsFfnG5gDvGRVgdiBZV6W3jm2Riba5IxnvaMhlbmCbJyQ4y1k2X92M88OHxSar5VhYhnvQ/ZaqslQT4z9ANII8W0pi+31+c+/NKbdd/tB5kuFvi/f4to6m43L6ixe+rXOvVqucPXuWRx99lJ/8yZ+kWCyyuLjI1NQUhw6JTd2v/Mqv8Eu/9Ev8h//wH5ibm+Of/bN/xre+9S1u3bpFMpn8P3z/v+zxpjNJrz0ee+wxHnnkEX7hF37hdf+/Wq3y8Y9/nMcff/yvfFJ/E4fr69gShY/GerTcEM/vyQDYmIktUfWAJVxc9y3wkyGPna6FK5mmouWSDjvKT2M01ufFvTAhuaE5nAqxLI0lZxIehgb35gUoSps2LSesxIHrTozFVgjTkPV53We5LSaptxcrXChnSZli8ui6IV7cG2BSJpN/77hDwzYZll4+mWibl0vDjMpOurYb4nNlsVC9Jz3A8XSHnhRtLrVerz1ba8eZivfV5OT4GrPZmvzcMIVIl4xsq11vJXF8HV2yUIvlIroWMJLYt0DQ6HkGMxLcOL6hOkbeb52h2msowHmtHudUpsn1bbE4h3SfsO7jSmBjewYV2XEXM/s8PLzNkizVDUb6RMM2q/LnphMmHnKVGL3jhmm7IX53WXxvPzLtqx3oWi3PocKOakM2dJ9EpKt2rLFolxvrEzwm/YpqrQQJGY+SCPexbVN1oPX6Fo1WnNJ+ebEgutX2F6d0vka3E+XYvNC+xAaqTI2JSfz3PvNxfuD7/pQLl0XH0clol8penoTslDtz7yuEYj1qKzKI1zW4JX1tRka2SMQ6xGV5Nppu4Tph4jLS5NToGrcvH+PwCfG5d67NieDdBcHaZXJV5eXk7iTo7aVJHBVARstZmO0Gpowl0dMu9jeyDN8n29RHApzrYvHQLJEntd/NtfHEGdKDZWXaqEf7mOkWrmzF3r5ymImPXCJwxbM39MBV9CnBKsXbsptQRnkVz92k83yW6Iw0cYxFsJ/qkBiUD+uhYcKLsqtss46/7eA/Iow59Vuvorl91aEWDA5iP9HBuleWim+uYWQHCW6La/IqTbTz4rnwFjycRozoEWlq2YS9y8eJSxbPMB0iI3tKfN5ZGqLyqlgosvPL9Hczqo1fL7nYrRjuXfEdrt+dxPUMsvcJTZZmBpQ+O4ol/XziYyWVN9fYHMAIHXQJ2q0Y/U5UifdXnjpLfnRHlS4Xrx5hVG508iMlYgNV7l4QHXuZegKnHWXkuPjcnZszxJMt+lIk7ns6RsTm0lP3ATA3d0dp+LaXxhiZW+b5y0Irdmx8hV47RlMyoN9/9mWuvnqc2allALprRZavC51ZPNqlVMlxYUdcv+NrJM0er0pLjflslYXKAKelfvCVtSnarqGMXZ/cGFPdwZPJOndqOdWAETM83jFY5ltLonR3OFNhNtlXWW+LGxNYchPlBxqLzRSzctMZCTks7A6q+KmUaXNv3uS2nBMihsedZobpuPjspzZHmZU6q1rf4m4rxqGkQ8934QD//l/2+JVf+RXGx8f57d/+bfX/pqam1L+DIODf/Jt/wz/6R/9INYL9zu/8DoODg3zmM5/hJ37iJ/5Kn/8zP/Mzr/vZtm1+6Zd+iXQ6/br//6/+1b/6S7/3X5pJ0nWdfD7PQw89xO///u8Tj8ucsZ0dRkZGvqNslL/J47UWADlTTFzxkMNiK0G5Lyb2uWT/NWnQLmudmOpuy0e67HTiSjC92Iown+rQkKxDXJol7pfFkiGPpZZM0k7YREOuYlVmU3Wq/YjKkJtOdKnZYVLyQc2YNnvS0DFqeBSiHWWk1nYNHp1YZlM+xA3bYjDe4uVdMdmMxXpkI11FL5u6p5yr7zbSTCaa6nfrnQjzmYYyYqv1IyRNW00uAYLVQv73aLaiyo/ZSJe1ZlplIl2v5tnrhZmTDE+5bzGZaFKWO7BU+KAt3fYNTN1Tmqzx/C7Le0UVrDuTrhIz+0rYXenFlPj6uZUZZtJVZTq310nSdsLMSyfrqzsjPL4d5+OTYgEZzVS4tD3KeembVO/Elfvu19cm+Nsnr7BdETvDwWwFw/BYkoaP6VibiGnTkd/FVjPDkSEBINLZOosrEyzLsucDh25ze2Oc2WH5+1yNyzePqs65WjPJ3PFbvHhBLN7DmQoZKa6Np5ugB8oAst+K0ayllLnk4xfPMTewo9LWR07eZuOyKMvEEm2MkIchF8h6OUvIcPElwCyVcxRyVQUajZBLrZZm9rxgTtZfnVOfUzh3i8b1KVLHlsVrx0zcxQDjrJyAQiHs8aP0/z/CyybxKZPgefHazvIwibPraAPite6rfZ740/fz7v/hT8XfTo/B4hpBX8aBpHX8Q7NwQQjQ3b2DHWZ4uIGWtQjqYmHy2wY8MIdxR7zWXoxhHnPxpgXDF4TC6F3J2JW2wD2Ym4JUiv7h84RLwuTTWFnE3+7hPyxKA6GFa+B6eBvi/vR3skQPC/BavziFpgekTopykjaUIKi2ab4sfJRik9sETgh3f7Ph6zS3xHOYGtvBiNqUbwrGJp5rEEp0FEPj9kwCX8OW2qFotkF0uEx3Q7pbJzqUbgkgW5jaoLWbVeXY4flF9u5MEJXAOD5UxrPDih0aO3eDjhSEN/eyFI8u094WPy8vTjE9u6TE+it3phga2qEuZQLhkMPg4RU6Uv/0rUtnePi06Hxz7TCVSlaNnfZ2nj976T4eOS5+9n2dZ28e413nhTWBmeywcEV0mXZsi5DuEZOiZ9sN8eLmOHnZej+WqmGGXNpyvohbPS7vjKjn1nFDLEn2p+WIjc85+cw3ejFChse21G0ORDvEzf6BvYCz7/sOT24VGbBcjkjw9fnVAX7g8Jqaa27X0wzHusrM1ws0XF+jIFm7sWSdy7IZI2fZGFrAWidKz7f5p29SdtulD973hjNJZ770Imtra687d8uysCzrda89duwY73vf+1hfX+fJJ59kdHSUn/qpn+LHfuzHALh79y6HDh3i4sWLnD17Vv3dRz7yETKZzOu6076T49FHH/0LX6Np2ndE4nxHd/TrX/86P/ETP8Hb3vY2vvjFL74OMX43H/sCaYCOq3GPtKAXImkxwTZsk+lEi5CcTC6X88ylG5TlgjkWsynG2iRlCannGqRMWz2YGdNWMSP5SI+abapW0rYbZq0TVTqamh0mYzqq++viXo5zMiMuYfZ5tTyghIa3ajka3Ziif33gy2uDRKWOb1r3+NpmQblqn83XlHiy7ep8aT3Ho0NiQRmN9V7nVNvzDKK+pkDVRjvGnNRJ1WyLvW6Mr2+JxexMNq52YyCYo4jhKxfxwWiXhNlXIGmhkSQhLRAyYYfpwg5rkrb+7K2jTMW7TEgW6nqlQCLkKgA2mqzxstQXjCcbosNNTnxpq8tIqkpPArueZ/D/uOcGr2yI7q75RIuY4VKTE+hIYZe+nADn0w063SgZWUJ03RChsKvKgqlAY6+RVr8fSR102/S6EY7N38K7JhaBci3DQLJOX57HxevHmB3eUDlW0zMrNEo50hHxHVumTUQyOLHhPTTD586zYlIpDO4yevqWEu7+rXc+RX0nT02WNXwnpK6hOL3O3atHGJsSpSnL6tPvW/iS0cml6yQzDcVQdGpJCgN7ql382vok7zn6BAB6xCMxsYMxI1mWTg896SgfoOazBZLvfAHrAWkI2SmiC30vybkmwdbBPswodnn0o19V4bBjf2eZ3t0ckdNiYe9eShDN7hJYsrMu3kOXhqnOThJzMIDDQodmtJoE1V2ClgxTPtTBmz6Bb8rur61lCMkprt0B1ycYFAtZ/8j9+OE4/XFxHhHPQcu10JvSR0XX8Q4dQhsR33Hom2W0mHiYUsdXcPeSlF8UgNT3dMKWTWxQ/G2/lCWc7ChzyfBQle5+mWttiIHzNyntiGuYzjUIXEOVyLxGnOTkNunz4hpa/zmKFnaVsace7ZOfEGxQr5Ygd3QZ4864eu94toEuN3SeHcbrWmpMtNeLrC2J8V8olOnsZtlekyykr4MeqHDcw6dv0NzJEZNzTyLboLWTV8L/h9xXVcfm5vYg8+evsHZF3I/h2RVmc7v8/ov3A/D+QwscGzoIXK7eHScuN5lRq08i0eI3XxQM1flChbPFLeXefWFnmJ6vK+lDMdLlvrEVNZ8+tTmuutfmcnvUujHV+OEFOvGww5B8TmPhPtVuXOlDvUBYugC8e3SLF0oHAb2PDjV4fnuYQ8n9YHKHO80EQ9IJ3Q801nsHzuBLrSGGpIedH2g0nTCW7hO8qXaSfz3H+Pj4637+hV/4Bf7xP/7Hr/t/d+/e5dd+7df4mZ/5Gf7hP/yHvPjii/z0T/80lmXx6U9/mu1tMW4GBwdf93eDg4OsrKz8lc/xiSee+Cu/x//e8R2BpOHhYZ588kl++Id/mHvvvZc/+qM/Yn5+/o0+tzf10LWAjNTNXKpGeWCgydWaWEAjeqAegIVmhFOZtorZGIr2+JPVLO8dFg9TxPCwPUN1jpX7FtvdKKZx8LCUX9OtBoIVAgHA2q5OTfrvRIyAvNyVAJzINrgj/UQMPUAHnpWT7alcnVfLBcZk59fFSpqJmKto6e1ujILlK52R62tkpDdN3nKIGD62ZIdqdhjL8Lgi/VZypsdw3GVF6maGY11uyfMYi3fQCPiJY2JHvlgtoGkBVyRd3vN0jqSbCnTdbSZZb8eUVcJE/MAAs+OGeGZ9kkmp57qvUMYLNKoyWHY2XcP2DAWEImGblCyBbbaSDMbapCTY8AOddj9CTwKbrNXnyuY4Fbljv7s9wvHhDfYkE/eZy6e5V1o+TGbLVNsJ1c0XDTnsbcaVHkyU/Tylm0jGOurfn3/1FB+cv6YctPs9i55tKk1FJOSQHShTlzqj2l4Wy+rz+JpYvD556jIvXREls/s0n34nqqwG0lObLL10kqgs5d25O8XhQ0vKZXz1ylHlv1TfGsD1DJ546bwYH+Mr1FsJtuUCcmx8hU4jzrWbgnUZye+RyVdVZ929R24oIa7VCVG+OclAQvj+GAOgxyFIifGxePUIJwafoyuZNiPSJ3ZcsjblOvjQ/DPx2vjROnvXZhh+QGqfLkUxh9u4i2LML108zrEjT2GvSkZ0bVC5c5snfILtNsGm7ARzNQLHoLsuPjfxQBn9wuX9hjXQUQwVR0eEWFpGp5ixK2h2Hy8rnh99ewO/KB3DAX9oGP3iVYLjQtMQHm7Suy6tKE63qV8YIXdKlKYCJ0T99jjLr4iW+JGZVVq1pLKFeOZL72MoIYD9iXuu0F0b4IjMNevupQELW+oD40Nl7j5/mvbjYrwcf/glmgtjhOXGKSinWLomvrOZ0zdoLo0oLZAlgcfGomCOUukGl+4cpig3GWMRm7gEFPs6r6zsUBuKdenUkqqT0ulYNOspRo6K7r6OZKxS8rkNW7YCSVPTq+zdHUeXm7+FK/NUOwk+flIwTe1ODN/X1e83JOMCsNNO0nLCPDwkzqeYruH5OroESabhkzEdspJZysda7DbSSmsYMTwVcZRPNlis5pX+Ed/nUiXDnCyDRWyLsO4pwJUybUqywSLbj3B/cUeV62OGS96yFcufDDvkrR5L0nes1A/xwECFntRDGVqgOuVu1tPMZ2pcr2ZVheHNOPzXWL68Ue8H/P9lkv6r1/o+58+f55d/+ZcBOHv2LNeuXePXfu3X+PSnP61e9+cNH4Mg+LZMIP+i48EHH+SjH/0oH/7whzl69Ohf+f1ee/ylQdL+BVmWxe///u/zz/7ZP+P9738/P/uzP/uGntibfVyumFyxxWTyd4dCfGYpynxaXKuhQUeKH3WEF9KAfGhrtsXxtMeybCvNhF3qTpg/WhPA5kdnbP7DksmZjDRINPuqDu5IHVROvhduGB2YSYifF5oRvEBTnXUbnZiyGij1wswlO6xKjVLfM3ACTXXZzac66FrACzLg9FCyw+FkSz3Ur1TSjEoq+U7TIhUOlEC8Zoep9i11HlmrT70fUeehawHjEox13TBdz6BfkTt0X0fXAor72VOeQcrsKVft3X6I+wo1evJ+pkyba3JnN51o4fWiqgT0xHaBngcTMpk73I5Rc0Iqb2mvF+VIXix68bDNsztF7pdOvt/aHiAAPjK9DEC7nmWusMNJOYFe3Jig64QZkqzUbKrNrjzHW7UMc+k661LvFDE82m6It08IIFjvxKl041xdF/f20am7JOT9KEb66LrP3Q0BNkZyZVYrBaL7UTOpGk+/ck4xj++cu8HOXoFJeU2tdpyCXNT2doqMzd9h56LQjSSWR1jdK/K2+y4AcGFxlrFWnEHZWr24cCBSNCN9olafU+Nil+Y4YaZnlolIQGHbJtmhPSZk+W17t8B2Jc+tigC3n3zX41x8+Yw4x7etkBioUrkkdCS5U3dwqxm0JbFxOPXRJ7j8J49x6gMiadvvHNgu2CsJjHiPvuyqSugBQ++5Tu15uZDPr6KFA8o3RAlp7tEX6d4oUFkW5zn8jivsPScmvYH338WrRzCki7pXj+D1TOIfkp45fzBG+sQS/U3xvVhje/TXxfVY58SGh34NgCCaxH9mE+0xAcaCWBw/niG0JoCPNziGvZojEhHfeeCBNSOYIm/TIH/fLZb/7F4xPqI9UkN7TAyIsl+vksL3DFISiHz0HX9A9Xmhi9ENn8ryCIMydqS6M8DkO19m4U8fE+OjHWP2sRd4+fPvAiA82KB0fUaxUs1GUgGdXiUl7AQkq93vRIllGmT29YKdKIPJOpOTgk10eyb5kYPctNLiBK5kDs1IT3TlScZ8b2OIO1ujquEgnmxhWX2VE9drx2jUxcJ56IFLbD9zTunsYtEeSdskkRabnSDQXmdVkYx0lY9YNGxjeyGu7QmwWkzXuFUaUp5Dpwo7tO2IasVfb2RYbcdVlmbbNZiSm4SebbLajvDomNjsLNdyHE01WZAeTKMxEfk0Kpkl0/DYkSDJ9g1KnYSKMNnoxBiK9qhLkOT4OsOxNpH9Dt9Ej6VmSlUBGk5Ild4Aem4IJ9DUZvBNOd7gWBLke6VSqb+wVDg8PMyxY8de9//m5+f57Gc/C8DQkNiAbG9vMzw8rF5TKpX+K3bpOzl+/Md/nC9+8Yv803/6TxkeHuYjH/kIH/7wh3n729/+VwZhf2mQ9OclTD//8z/P/Pz8d+Rk+X+m410jDR50xEAoRNo8MJDiiBQXx8OOYlF8hGD42ZKY9N83WqftHnSvLTRNxmMuo5a4tS+W4cF8QHy/XOeYaidTs8OE9YBN6Sv01S2NZAgeGhILd88zMLSAV8piB3s2X6ElyzY1O0HNCXNOdg3t9SLEDF+V20o9i6d24QMj4sHVgOV2XAGdiBGokNr5lFh09tmvAFFzPypLeYu1nPBgko7cjq+rnd1mJ660VCB0Q2uNDE35XuPxFnvdGAn5t/OpDkvNhAJkPnB+QACdzVaKY/ldbPm390lh8D6D0/MMHhwsUZXgrhBtc6UkHrhitEPG9Lgq2/YfG9mm2ovyhaUpADKmR8rqMy5NPkWWW4bdtgBCpn5g4zAacklYPR6WUSG7jTTJSJeb8rNGkzVG0wf29iHDUwvVu8+9zJcv3KvurdV0mB9d45aMUtlpZDA0n+//nj8D4PalY1hhh9MjYiFLJFoq1X11bYzE2hAzR8WCWlod4d4zl6lJ074jg1t0OlFKcnyMDm/zzatC5F3Ml2n3IhyW5pIvvHQPxZEdpXeqVjNcv3qUqTGhlZqZXsFzQhw9LD6rsZtjTgpt3W2LyMie6k7y33cf1tJ13BtSnL46wKkPPIkv7QOMzEHMhpHq4Hcs8g8IgbizlcQ8alPZEotibLCC04yrTLnm0gjdeoLRj0r/pkwe/WVxL/09h+7WCGZHjB097GFEbPy0uB/ZR6/hLEX44lfeA8D3/fRniD4o7uX2/xqicLKMUZQbn501glwPbUe6c7/aR3usDTJDzilO06u0CJfF86XdN0HrD6Sbu6eTmNlkeVuMh3NnL9OrJ9U1Ll2aZ+6Rl3AkE+fuxAjJ67MKNf7NH3yEfyAZVNO08Roxjj8s9Dr15RHsvbTqMtx44gzxTBNdLsbJQlWVTEGU1DoSgOZHdthZG1VO141WgrHRLQWwnL7J5oY458Nnr1GcXufaBTFeRuaW0fQAU4L1XjvK7PCGAlHNWop6M0lUWhncWZ1gtCCeJbuaJAg01URxpLiEbYf58gUBIgciXR556HmaUs+UAWVjcXp8maWdYY7J5/Lu3iDZSA9LskPNfpSw7lGX896xfIlCtENSmtM+tzmm4kD2ujEeHdtQz7SuBdRsi6Sce3ueQdcNsSHdy4+mOq9JLAiReE0gro8l/7/U8LkmhUiX3b40jfU1DC1QzP1grM2CZNfnUg1s38DxhW7pv4XjoYce4tatW6/7f7dv31Z5adPT0wwNDfG1r31NaZJs2+bJJ5/kV37lV/7Kn/+DP/iD/OAP/iD9fp9vfOMbfP7zn+f7v//7cRyHD3zgA3zkIx/hfe97H7FY7C9+sz93/KWF2ysrK4yPj6Prr6cRr169yssvv/xdB5b2RW//cOLHOS13qF/dyJAxYSwmHtSpZItfXxAP3kfHXL62ZfGeYTH5fnEjzMmMzqjUTax1TCbiffr7AbjxDl03pNLmv7SeYSYhHsRoyGckeqD/2ejEyFq2EkV3XYOhaI+7chI8ma1zRVrfz2ea5CIdrsmd/3I7zFyyrzrUJhJt/ADqsmR0ox5lLtVT7501bQVkdrom7xlfY0u2ztqegePr3JABt2NxG8/X1IRQjB8kadueQcMJK41AMdJjvX0wEJNhl8OZCpuyu8s0PLpuCFNS04YecEGaBU7EbY5kKqrbbShdZalcVPfndxdzfHisQzayHwljq46zei9GwuypUly9HyVtHWQz2V6IvU6cQxL41NoJEpEu1r41QWlIgSTT8NhsJ5iSIPlapUAq7HBMeiz15Gc48l7mEk2akoXKJxsYIY9dyY5d2BnibcMb5KWGyzQden2L0H68QSVHpRtnQppzRqw+azJyQdcCTp+8xs0borySiHZJJVssSpZqfKDETjXHkVnRLt7vRojJ0sLq0gTRSJ+K3O0nol3GDy2zKTUpfqARjfTU7j+RamFGeiouo7ObpSztJI583zPUnptRv7M+nEaz+zjflNd0wqF7MUb07WIMBFuV1wmxg6aHFpWmlnshOitDxKakeeBcgtY3Ykpzo1kOgadjpCS4T4VwlsT99vthzLE62rC4tzRbBHUXrSAF0n2b9sUisQ+Jca016uBL/7LhcYytNSpfFjva9P8QR+u3VbSK1uniHD6B3hNjvD9+GmvtMoYEUbgu/ZfFAtmXZej4tPQgizt07xaJnRPv5Zdc/H6IFz7/bgDO3P8KhgS+ra0BkuPbSmA/MLVBr5ZU/kNDZ28R2CEaqwLMJEdL1FeHiBele7cW0JQguVVPkilU1PfS2skTSbZVbI1u+Lh2mLIE0WMzq/SlmHxzc5hGN8bMqLg+I+SRm1mnvCj0J91OlOLEJh3J/rSbcYoTmyqWZHpmhe4+CPRCbO8WSMv5ASAS6VGXpamIaTN+dJHaphjX26UBFmVMjxfozBe3+OyCYNo+eeQ27d4BE1nuJPACXTWNeIHGds9iXj5PKaunSuqb7QSm7isNpxBXGyo/EuDVSo5jWTHW/nSlwINF+VpfZzpVU7rDUjfG3VaEqfh+N7BBAGxIm5SxmEPGdJTiKKwFbHX3DYd1oiEfL9Do+Ta/vPrrb4pw++X3P0DiDRRutxyXe7763Ld17i+99BIPPvggv/iLv8gnP/lJXnzxRX7sx36MX//1X+cHfuAHANEB98//+T/nt3/7tzl8+DC//Mu/zDe/+c2/FguA/eOFF17gC1/4Al/4whdYXFzkscce4+d+7ud46KGHvu33eMsnSQ6wXzvyd/AD8dBfqVnMp21e2N1vt++rhyERcul5Bs39PCRXJxX2lObICzRsT6dsiwX0bK4hkqwlG7LbD6v2+KlEl2jIVblvL1ci3JPr8ZVN8blH0xpzya4SlM+m66qb7fzgJld2hyj1xO9GY32W2xGm4j35OSZBAItNcR6D0YDRmM2QbFV/upThREZMEKvtKD1P47zMYrpaSzMeOwBUw9ILqS13VaPxjioXHcmWWWpkGIruG2Qm6LgGiy3puZTrsNiMckZO5PGQQ9MxKcm/H411eHEvI84x4vD+w7e4tS1AgOtrtByT4fh+a22EsO5TjIv32mhmSEoQVLMtRhINtuVudijR5GalwGOHhZ7lpeVDxMOO6mDb6cQ5NbjJl+6KEtUn52+wLgGn4+ukrJ4CQR3HxPENpTkwDY+42SOQRnGer3NXdhW+bWIJ3fCJywVjc3sQP9CYnhLdOF+7eA9z+ZJKU/cDDV0LFFhLJVp4sgTWaMUZHiyJLjdAD7t0ailV5ri1OUrK6qkImGS8rTryJoc3CQIdR47TF5dmGYi1GZbs4PJekaOja0pAni/uETId5d8TyTTx5K7ZsBzC6Zbq1oo8BN7ACM3fkqLW/w70tTXcdfH60JEQzcelt9NjVejZqDpx1yYYLiozxaAqy7Y3xKIZfbdG+Q8y5H5cvNyPJuGrMl8NMO7NE5jiefHjaUIL1wmk0a0zOkv3f1096DrLWcpRu/VMlvipLbS8DGl+IYT5gZzqwtNjLtpIit5pEcuhuX2sFx+H8EEzBzEZO3JNjkdZIowVquhhl6vPis64e/77r9G5Pqx8kjZWxjj+YVGK3HnuBImBAxbSaUfZWR9m9mERUttYHGV3a1A1HEzOLhMbqBKSjPGXfvcTHJJgPZVssro9rBoIUskmZqSvrAhqG0WazaTSAo0fX1Chs5Fkm0iuobyuWrtZxeaBMCV0+qYSmGcztdfF77QaSeXX1WglCIdc8jIu6PLCHDNDWypQebecIxnr0JRxO+GQq/yJNppp5go7PL0uwPv3HLnJwtaIkgVEQw5h3VfPS88LKYYdhOZzP/KpIO1ONuQGbiDWpt6PKEuVjhum1Isodmck1mVJdgYeTTd4aS/DiNzsTiYbvFrJKnuBiCG6bvcDwsO6TzzkMii91Z4rFTkjszABLlWyJEMePd/mHy29Odltf5MgCeBLX/oSP/dzP8fCwgLT09P8zM/8jOpugwMzyX/37/7d68wkT5w48X/wrm/csbi4yBe+8AXGx8f5xCc+8W3/3bcNkr7dkNvPfe5z3/aH/5/h2B9g/6/JH2MiJm5FqWdxOlfh1r5WJtmkJB9qL9AwDY+6nCxerYWZS3mckLuTINC4XU8rf42eZ/BS2eS+gnjYXF8nL+vt290IEcPnG9tiYH/veBfT8NiS7b+rnTDzqZ5qide0QCXVj8SblLpxZRY5HGvTdUPkJAiyPYO7jTSOnBAqtsHlqsenpsXvbzcSioZe7YR4dKjKakvsQF/cC3Mi63FU0vaW4Sq9zv417QOmvGWTi3Sp7Lfl902GY11lVRDWfTnBiPsR0gM0Al6piEX0eyaX2Whk5f2IMho72I3u9aKkzb4CI9W+xXiiyXUZDzKRaJOLHLhgR8I2WekhtFXN0bAj3GmIRXEy0SZiuEpI6fo6puFzelIIU5+9c4QjBRnCa1vUejEmpRt3qxel65hEXiMQ7fQt1YV3YmxFLUQgQnz3F4xousWFV05zZl6Uj5aXJ7DdEEU5XkJhl+urk2oHO5PbJStLYroWEEu2aEiX9XiyxW88/RCfkO9VaSZJxTrE5Hfe6UYZkmG3vq9zd2mSV2SJ8MHxZbp9i6kJwRysrY8wkK8oRmurVGRqalUtsLcvHeP4Iy+K87AcQhMu7QsCyPRqCdJza+iPCCq9/4U9ItNltIhkl3WNr/6bjwLwvn/6JP61OpolPkcfi1P/Wp70fQI0Nl8eIzq+Q1fmEyYf2KLxzAgxaZjo9Ux0a1+IqxM+Z+LfEeeoD+i4y2FCY7LjaHoKd2CC8Ios1SWSCoz1n+gTOVqDpBzH9TaEdPyqjAdJawQ9H/ux94rv5U+fwBjVqHxDLN6J8R0MuQExxnW6F1PKRbuzMYDdiSrQkBioEhndpX5jSo2J5KQ0IVwdxO5ZSmydm9okHO/SlNevhz18x+APnxGeQ3PpKnMTKxSPLgPgtKI4krHw7DBrK2MMD4v3Dpku3WaMBdkEcO7sZa6+epzjx8RGYWd9mKzsjt3dGSAW7ZKWwu3S5hA921Tv5fRN1reHSEr9Uy5Xpd2KMyD1b4Fn0JSstuOECYU8LDkOV9fGGCyUVVhupZ5mIFfFlnNmtxfB3A/EbqQIG556fuKRHnd3BxmUWkEz5LJcHlCC6WO5CtVeVJXfplJ1+u7rgcGG7Fgdjbd4pZwlY4p5rhDpYeqeYqrzkc7rzGRbtkVCMtOVbpRspMdvLYgxP5uEyXifiryGz293+HszmppPZjIVfvOWKKl/YrJM2wlTsy26ns3/uPjbbwpIuvC+B99wkHT+vzz7XRlL8kYe3/Yd/fOmTJ/5zGf40Ic+9NdGk73ZR9zwsOQcX7MNtjpxJbp7tpTjkSFRDrlVT+MDM9IxeTKh4/g6S1KzZGgBQ9Ge8jo6km6x0vU5Knfsf1Cq8LG8WFxP52rcqKcZj4sP/o0ljeloirojJoxzWfFfVcqKtrkoO0NSpo1OoDrlvCCBF2hK+7MPTnb7+4aYNm3XUiWlnOmq951N2gwm6nx9U4CP+YzPfLqu2vRdP0oi7LCyL74Ne0pT9I2tLG8rBGpnV3NC6N0ovoTeYR1ykS4ZCWb+dGmCsZhDMSLOc6OR5WXZHp0xPUrdGPeNCSbg8sJhmk5IlflW2haTyYbq2PNBddFpwMPjK9TlTu9OPctSy+K4zMQ6MbzO1a0xldv0yNgqfTfMqkz5zlg9tmRny0i6yjc3R9TY8KV4Pilz8bZrWbxA5+T4svi5klfdbbeqecYSTdIpATCXF6ap9yMs3p0CYHhgj243wuMLomxxvFDi1PQiptyxLtydxq+K85iaXsVzDbbkNQ76Ou+bXGFoUuiINl85xezQMqVtsdt3PYPfe1osrh8/fYlSO8VxqfUYHtmm34lw6640i4y32N4tEJYAPJeuEy/UlHtz1OorA8j26iChvR6mDMONHdvCWUsRfF2cR3d3iOh9fQE8AHsxwfv/X18D4O6/Pcr0+1+kdkkwdonGNskja1z5j+8E4NQPfgt7MabKUd6mRmJuHb8rfYNaMSIp8ex5zSjezQbGiJi2vI0AtxWlf0U8e3GWCd+4S39ZMEvWxB00macVuT+Bd0eHOVFOMvQNsB20YzKwdGmD4Pgs5poEWGEP98hp0huCxdLjDq2bguGM9KuYxSqtRfFzq5xh5D2Xqb0gdDZmtsnFLzzG8fsuifMYrOI2xLjbWh1lYv4OeemwXX51luTQHnr4wMPp5q3D/O13CubJ7ZmETIfOjjjPcLyr8vmuXD/KSK7M2ro4jxNve4V2PcmxWaErW16YYSBTUxqmINBoNxJqrOxVs6rcOjS+yfryuAqazQ3uMW3ZPHHlDAAfu+8KT3/he3hQdtDZfZPfvCi0Jf/gY19i+fphInIuulwa5h7DUx5DM6PrrGwdPE+FVJ07O7KcaPV4aWeYs1KX2LUtbtQyKhvx9y6d4WS2zpScbxJmj0t7BWZlplzXCStJAYAbaIzJ7thXysIyZd+Re6sT42i2rMxovUBXXXIgWKt9vWPDMTH0gI+MSxsQX2ciVeO5bTFf/NiUgRccNPj/weIYcykprndM2k6Y5bZF/010AAgCTVmRvFHv9910fPnLX+ZP/uRPyOVy/PAP//Drutz+KmbX33G57bspxPb/6NhH4f/zoR9iWEobarZJ1zVoy7DH3b7OmayYHH57xef7x8JU++LBixgB5wq7NGTb/lIzwXCsqxiepmvgBRo5ySxpQEm2ob+tuMPFvQEy4YMOiRv1EOfzYsFY65jomjCVBLhQjnE0Jd7nbHGbei/Kq5KRmYh3VXlMXIMQhS8090WKwkogKXdwT5USxCREnkv2absGWUm3X6nGuCfXZljGf3x9c4i5VEe5jKfCDracXJfbER4YKCvR9043xmLLZELquXKWzU7vQDzZdg22eyHul4xFyzGVUeeteoLzhYrS51zZGiMb6bIpd4YRw2M00VA5Z09ujijq/Gy+Rkj3FFgt9cK8fXBXGWQaWsDtRlIxfqa0atgHdzudOA/L0txvXTzLo8M7yl7hg4cWeWJlmnP7E7lj0nbDSvTZ9wzmX6NXulke4PSg8LLZbGQ5MrTBmtRg6AQcnV7icSmwHk00GMmVWSqJyXexmeJ9c2KhvrI2yfGRdXLSmqBRTdNsxzlyjxD1vvLseVzfUCXEYraq9Ey5RJNKK6lsDAbiTTKJlgoxXq0UODd3i6jMzFpfHqdnm6oTKmQ61HbFwjz17pfwGlH0yL6XT4xQroU+ccAuBpmsYm1ee7S+FiF+agt3SzxcoXyH1o1RIlKU70kwZA6K8dC+Mwq6T2xCsHp60mV/JeouFomdr4MpO46u+xiJHrp4BPCroJ0YVplp2jsOYWyJ6+mdfpjw5/8MY0qcRxCL44zPYXQEmO2PniD2/Odpv0PoJ6yVFwmtLLCP9tvPpBRI1AyPINDQ5HPrSI3SvgN56eV5ksWy8pyyO1EFbHTDF/l68vmprxcpnF5g77LoHDSjfQzTYe3OFABjMyskZjZp3BbsUL8TVT5Iuu6TGNnFkN9L5fYERshTjJYV61Et5dmTzGsy1lGbiES0S7mZIpc46EAbGd9UDFenHePS6jRnJdNqRfo0G0lVBnQ9gwnJSpa2i0Ssvgq4XV0bY2J8na0tMaZDhoemBYTDB8L3mmStwyGXXLrO5mtsAQzN5yur4nrP5uqUewedtTPpGtVelP+8IZ7zvz29qzpnC9EOV6tZ1aEGcKawq0rhpu5zYmiDktwMNWxL6SdTYZditKPilMYSwndtQDJaK9W8bLoR9/pyNU1YCzgi2cRfvRPi7x8Wc17a6vHS7gBhLaDn2/zim2Qm+dJ7H3rDmaR7/+yZ7wom6TOf+Qyf/vSnef/730+9XufChQv8+3//75Ue6q9idv3G3dHv8qPmhNGRbelhl1A4YP/2JMOeWkzflomjY7PRFZPcY0MNSt248ttwAo2NTpQBCTiSsmNiTdbjByybObkL+pPlYWo2vGNQTB67/RCFCDwn41DuyTns9EKsSlHndMJVHWav7hVpu4YyQwPBeOzvovKRENdqaQ4lZJeIa5AJu/zZVkJeIxyVXW09TwjENzr7uyjoegYl6VVi6QE9z1AuuBudA5+jtw/uUutHVNt+xrSZiGls9/YZLo3DqSY3pY5mOtHGCeL81qI4jw+MHBhNahpcq2UUBZ6xeoR1X4ERx9fZaKXUzw8US0q7sNVOsNG1lA/U8XSTai9CVDIlpuGRDHkKkF3aKzCfqVGQk+BmO8HWXkFev4ah+zwqO7+261mGY10lVj9W3OJuZUDpGR4dW1WxJGu1PD1fV95FZ2cWuLU2qb6jy+UCZsjlbdNit9/tRSg3UhydEOzZQyM7bC0LtmN+aJNyI8XgvnngtoXn61x78QwAQ/ky5VpGfTbAaEEAzFi0Q6sXZUh+Z/uC9v2yxmimQq8bUd1KEavP2NTa6zqnxu8TLMrOcyfIzazjSna0vl4kf3QFf0FqWFwD4wGgJUDSzpcOUXxYZKQlzumUvznL7pYoJx1+9/PYzRjmfuDraJX+agE9LV2Q6wkK995k/ZuCpSgeWVZlrsjYHu6SCbr43MC10JIBpCWbXW/iDozRW5Ni9G6LICbOOfiNF9FGfIJt8bn2u+7HaFXozQjmzWisElTbxC78KQB+fgjaXYKOBCRWBD1xcJ/9RgxH+qh5PQvN8ChLoJMa2sMq1JSGq1XOqO7H3Mw6oXxD2RSsrY+SHKzQlfNDvFCjW02Rl2WxINCpXpvhxatCt/HOR5/iW088DMCD97/E8ivHiEl2p92OYVl9wnIjtF/2GpdRJL6nk953c8/VSZdyquXfinWpl7NkpF6q2UwylqqyJg0WlxoZzg6vUxwQ42unNKCcvlcrBU5O3eXagrj+w+OrtJsJ8nJDErYc7J6lujAB/osEQW8r7hEEGk9L5nYs1iPgYGNoaD6W4ZGTuqO+G8LQfH7quLBmKLVSqgGlqAUcSraw5RgejLd4fmeQGbkRuFxN0nCm1Eax6YRV234+0uVOI82m7Hyby+1yZzeLKcvRLcdEB9WJXIw4FCM9tXH8Hw55qgHl/oGAAcsW8UxvYgKFH+j4wRvny/RGvtdf9/Ev/+W/5F//63/N3//7fx+AP/7jP+aHfuiH6PV6/MiP/Mhf6b3fAknyOJauUemJhzgRdrhSTarOhrDu89yemMR6HgxGdR4aEA+ergVCWCgX7pzp0Pd1fnVFPHwfKyapO4aqi4d1ny05Ic4mRQ7cfrv4eMym7Ro8MiQmqs12goeKdfbk7manZ3FbdpTMJTtkTFtRomudKIeSLVpyMSx1o4xGe7xSFa+PGgL8fXBMTJK2Z3ClKib5oahw9T6wBzBZ61gUpcZE0yCkBTTke0dDHpWO+PdWO0HnNRol19c4masyJ6uzG+0EX1jLKnas3LcwtICPj0vfoNdokIrRMKbuqWvQwwHgMZkUO9SuG2arE1OTXK0fYUnuSGOGz6lsXV2DRoDtG9yVWobD6TrRkKviU8biHbxAV+aKU6kaTWla6QXC3XvfyXcsXWF5e1Tppb66PMORVIOz+f8fe/8db1l2Vwfi6+Rwc74vp3qhcuzqru5WJ0ndUksoISEZjAU0I7DBkj/87AHsGY/Nxza2xUcOM4jgAQmELIEGCSSQoNWpOlVXzunVy+ne+26OJ5/z+2Pvu1+3kQe1aLXQoPNXvXrvnnvi3muv7/quRRgeWXJwbYsAm7ncFvhyHn++REovP37kAq5WU6w8+fZJAo661FzyudUJPDS2zCa2bj0GnrIOAc/hcjmP7OaOIDSXrrDSRbsbQrm7I8wVHIk9D5fXx3D/nmuYXxkHAIzmirixPoZdOaIpuVUaxJFIm6W+R6JttKoJpisJAh4+dXIOZ2oA77Nojey9N9C6Osbyx6Jzq4Btw7xMJpD4WAG9eTK5SpEegoDH4CTRIP3x7/0ITszchLNI7nE2dwPKYBWBSwOgD8/DXMsgkiTPKSd6EFO0A6mhwiikWEu7km6A0ySgRzPEXtqP7Fs8OJQNsZ+uQr6PHKN2jwPzdII5eytnnkPQ8SBGCYPh6wn4+/aCO0vCUJHIAJoKv0SeW2W4hlebJ5eu7mJeR7zkIvAEyBSsyIk2+JCF7fPEYDeza505aq9d2IP/89xB/BxlAwdy2+iUE9japsJ1vQdJsXd0aIkmpISJI7PUQqGjsfZ3XvAxNLWK8jopXY3MLcJu6zh/lZiRPvT4U2iuDKJEAWoQcBidJuDi3LnDmJtYhtlf3NkyGq0oc+deKucwFK9h/13EEDJ/cwrVVhSjFHB4xRwD1Edmb6NaSSJDnfbXi3lIgocELTnzgo/PXTiCd4wvs+v3rolldkyJaAsnqPnqULqMz185iN20WUHifci8hy4dEwo9DRIfMPd/gQtwgGoJq70wzlVjeGiAML7bvTAGNIt1xx6It1n0EQBsmzqi9L1bbkdh+RwTbndsFQnFQsehTQIgHnk5+n60bBlxxYTAkeO6XI9hJkp+d7kWw/5EE3+5FYftf0eFmh9sr3Obn5/Hu9/9bvbzBz/4QaTTabznPe+B4zh4//vf/x3v+wcgiW4XawmW3XZxK4q9cQcdt+9ArWAiTF6svGpB4AJUacnM6KnIqjamKDukCC4u15K4LxoHAFh+AIUP2OR9oxlCmopYB3UDl+sRZGnHa0h00XBEBhK6rojNbhgFo1+64zEVJoP2QKiNuqWBo51yjs9RYbJA/1ZAVHIwE7HZvk9VdMxF6Spb9DAbI5PPckfDqe0MDiTIIBeWHIi8hlHKSgFRlC0ZbYd8djpi4BEqEAaA9XaMUdymJ6Bjy7hCgzF3R3uYi3pY65LBhucC7I72MBYjE/96K85cs7uOhEUzjM0eTS33gUcHG1ikOomJcActZ4fRCkkOcv3WalfEmUoc92TIfpNaF7draQzQQa1makgqFp4vUd1V1ETFVBlAHdDBRJuPD1fI39PQ3lI7hpRiMS+oh4fWIQoeqtSPRRQ8dg6OK0LkPbxrkrTlX1qewli4w1yBm70Q7tRTDOjdO7iB5WoWEaq7cj0RFRozMpzbxsFMESaduHTNwLmFWYxTQbnv89BEh+VePbk4jR/aQ9ifPZKDb145hMl4n5HgsHdsBS/Nkzr9sdFl2LbMAIdlKtgoZ1n5RRJdTN1/AQDwyp8/gkN3XUT2HSSbzboRR3TvKjq3CIiyiknIThPqHgr0LqVRpy3soVgbsm6gXSHX/R1veRG85EIbIRNZ58YIIofX0L1GgF/gCeT39D52tzKQB2nMDe8jcrSA+gtEVyWoFja/NIkwZUei+Qpu/a/T2PcPLpLrMzYGrrETM6Ke8OGOEAAhLt8Cx5tQXn6K/D4WJmCr/zIu3wEsB/yeHfYDKgG25l+YyO1fgEd9obTjFtrPJGDR0o23PABBdpA/QK7X9vUpxtgM7V7Er84tQaULISHtonlmFINZck8XV8Zw5P6z7L6Iugm7rSNO40DMWhRTYwRwbq8OQlF3ssjKK0NI5CvYM0FKZE5XQyhbQ6SvMxoqITRHSmTixQNITm6gTh3WVzeGcPDEeZx85gF2urlcGcvXiP2EItsIwKFdiwMAqt0IBqlLtmNJyOa3mWXEqeIg7s4VX9PM8KMHL+H0EmGa9uU3UaVl8ajWQ6enI0Tf6VozhhPZMrP2iGo9eLU0erSxQRc9PF9SMUbJw4qpMU+ljiPD8znUmLu9h5OlKPbFyXiSVQ3UbAXXaJjyo4N1bNO/tX0OuuCzMa9lKWjZMnPv1gUXCdVkTSNbhoSBUAcp2lkaakcw3yL7emigjKu1JEwPcN5EjBQEb6yZ5PeTJikajaJUKmFiYoL930MPPYSvfe1rePe7342NjY3veN/fNkj66le/+pqffd/H008/jWvXrr3m/9/znvd8xwfzvdyGNAsFugJ9x1ADdWtnAo1KLgM5yx0NCXnnZ5kPkFJN1uXQsnVIXIAObch5OF/H7y7E8MFRGiXR1tnErQouMorLfH9eLKURBGAtq6rgYSDUwUUa4LgvbqFBdQ4niznsi7fx/6ySweZHxltY74bZg63wPs7XQtgfJ/tu2BIOJixsUgaoZEoo0OrB/RkTiuBhs0/5iy5WOwrqVIiZVy2MhjpMIKmLDn77NtEb/P3JGgQuYHl0MdnGUKQBgZYXBC5AyueRotpK0xNQtWRcWyWdIAnFQ5UyWkOagwOJOoKADEQ+OMQUAzwd5McSVVyoxZgPSsXQ0WD+KcAjgyVGjxuODIn3EaXlyZYtw/IEvIO6IF+vJbE3WWPXyw84FkkQlWzEZAvXqY5oV6yBxVYU+1Ok1LD/2GVcO38AITqQV1oxxCmgemljDJ7PYQ8tn0miizvbA0wgajgyDua2sEEDcDuWioTag0gnUUlyMDZE9hVJk46gK7RcF5FtHJ+9yVbwPUOH5Uis1Xou3sDU/0IYh6/+y0cxlahiboawHX9++m68576X8FbtEgCA43yUtzOY2EvMJtdu7kIm2kSENiSsbA0hcWscAHDg0FX4jgh/jPwsrG3ANyREDpLJ2lpJoruWg2YQYGM3wyyyIn5iCc0zY0z7ZLZDqJQykBbIOQ3OrKB5bhyxIysASHiskmyis0m0VZGxIrgYucdcJ4A1H0PsEAEBfITDyNB5BAY1PFwYwt6PPA+vTK6PoJV2rAdcD/7wKJb/N/JMj/3Hw+D/7DTELC2H2A5gOQia1J9J5WCvhiF1yT3n4jKcBfIOi2HAdwQUbxE95nD4OtR8FXq/g21pELzgw6ZapViuirNnSIDxiZEi7KaO9adJrlks0UR69zJuXiWs06ET53H99CEcfOspctgdDYWVEUwcIQyX0Q4hTK06isUsZmeX0aMAlBc8cJzPrv3S5d3IZMuMHZRjHfht8iJOjazDqkeQGCPMYq2WwJkX7mFBzPFUHa4jYYCW6mxTRXpgG3Wa7TaRK0KkOkvf47G4NM66xu4f3IDjidig+riQYiKVaGAiTphXAMw3basTxWisjiZly2OqAdMVWUSSwPmIKCaLVqn1wvjpRBV36uQ4orLNmjf2JOq4W3QZU78/so2H8zxWaFmwZOio2SKmI7SzzlQxSb3Qllpx5LQedKo5uljN4b58iXWdbnQiaDky5mjTyGyMNHP0rQkqpoC0Sp6lQi+EyUgboyEePc/Glxp4U7a/y8Lt48eP4xvf+Abuueee1/z/gw8+yIDSd7p928Lt/9E88lvujOO+I2HU93Lri95+dfIJ7E+QyXehRUR5fX1PqRfCnTZ5iXOqg5RiM6HyF9d9/P/meiypvmrJyCg2lqkeQeQDhMWdvKCaLTH243ZLR0TyIdGVYM/jMRXpMqv8nGbiYi2C0RB5cUdDHSy0yOCSUS34AYcUBViLrSi8gEPmVczKTKyOZynVPqg5+IMNCx8eJPuOSO5rcn4mog1m/e8FxNepz2DNRLuo2TIzqswoNlthXaxFERF9hMSdVWNYctggNxpuv8a+X+J9nJi+jasrBPEvtSO4d5Cg/Kapo9wLsYiXiXAXd0/eQWqIABvPlvDC+aOI0S4z05WYFmokVcbvXtmLRykIKnbDSNIBFyAAKxlrMo3Fvt23cOPWLEqUDRqO1mHRAXEoXcadrWHk6ABa74Yh8D4DUcPhNnTJQj61M+j3u4SWSwPYM7HEvIw6hoZ8poxba+MAgPvecgpSpIvCVbJCb3dChImiotdmIwaLdkKOTqxhezPPxLIjY+u4cG0fjh4gpZqVxXHEoy2Y1G6ha6pYol5PD+y/Cl7wEM6RYwwoK9pncJo3x6EmWli4uJfc02wFkmIj9RYCmriYjt4rZHKxWmEkHlyD/aFfAwC4//zfQcnVwdGOLH5XHO71DvgQeSYCQ0TjBjnf1Ds34BdNNK+R+x2dW8XmiwcxdO8Vck87GryeCm0vOU6vzEMYAOoniWZFz1Wh7CXgpP1yGkqyBXkPeZaCqgGIgE+9wODxsMtxKMME2PARMJDUeHkUsWMrrGTGRWTAcRH0aGnz4CxwYR44Qu4Lf+cOOhfyTKwt3R9lgnAx6wARHe4ibcaQPHgtHRsXCNAZOXYD0hEZwTpl8RwOfpvcIyFtoPzibmzSeJjDP30SF//vBxHv3/9WBNlMBendpBwlT/Xgbglwqf7JrEURO7gCAOjdGQCv2PDo4k6KdlFfHEaYsnBGPYrV1RHsPkIXsrzPfJJsQ4GsWZhfJEDv4OErqG7lGBORGS3AeBXY9VwBWriLUJ7cp0svHGcGqc1OGJYjsXL17tFV2LaELNXSebaEajGDMDU6LW+nmW2FqpkolLLMZX9ybB2Lq6PsZ54LoIgO2/dAvIZiM8HASdnQcZUyQw/nK6hbKkYpS/1nKyNQhQD35sh9e7aQxY/vvcH2vVFPMY1iSDbRtrSdcnUtgV3RDmPqK6aGvN5D19nRWk7Ea2xfdxpJ1jmsiS5cn8d6T3tTzSRPvfVBhMU3rjjUcV2cePrk94Vw++TJk3j55Zfxy7/8y9/y98899xx+7/d+D5/5zGde975/YCZJH7B/MvgzyKs0sFT0cKqiYCJMLs2QZiFP9ShlU8Ptpo6pCBm4rzdV5FUPMmVOxsId2L7AfIJqtoiWwzHjxpMlne1Xp5T6hRp54ffEAjgBh2h/8gHR/5wqk0HwR8arDIxlVANewLOXVuR9rHZCSFHtw5ahgOfABOdzsRbOVOJIUG1USrEZkDE8HluGhPdSw8MrlRwU3meGmYbHY5iG4QLAxXoIWbpqiksuVMFjTJrE+7jZ1HGi76CMANqr7P6vVtNY6Uo4ktyx8+9/drUdRVYzcLJIyk3vGK5AFjyWoRYSXdiewFakm+04Rmk8SLUXRqEbZgOVxPvguADDVJi9RAcxi35XyVAQlTxW9orJFtZoF11WNWF5AmKUKQpJNlq2ygSha90QTgxs4S/WCBv2ztF11KnIXeR9aJKNNgWco8kKrhWHcP8sETJ7vgDTULHdjAMgwbKVRhwhGmLLcQEuU33T3twWepaCao8c12YvhEd2zTNvo3Y3hNvbeeSomeBorohWZ6fFezBfYuDtxvIkEZLSezg3ugrbllknlCQ5SOXLsKh4X9ENLC0QYHPw7S/B7WisBATehxjrwm2Sc+YlD0KyC7+5AwS8CtmPkDDQvjb6Gt8jeaCJ8ikCKDxXRDRfYZod7ZiJ2797CBPHCBC0GhHUNyjQP3oTRinJusbC0xvgYz68IvnehReOYmhmGXKEvGuCbqK3SdjA8Nw6jOU8QndR0Jgk7MvKbxIwNv7Os7DXEnD/KQnj1P+f/wLjXT8GqUrAinTnCmGbAPTOxaCOluHWyLUOHBHyW8Own6W+Yoc99F7WIdCmCl5x4FMgY9Uj0MeKrCPOt2SA97G9SI4jPUzYKG2EdvdpDgKXZ0Lv2uogEqOE/YHPw7MkSFHyLjXX8ghn6jCb9H3JVxC4pHwJABwfMLdw15IhaRazXpCiPfzZH78bDxwhppY3bs0in6xieO8Cu+fdYhpR+t3Fa7ug0DFB1k2IqoU7V8g9tRwJiUib6dCkaBfl+TGEEzTihQuwQZsTuqaKsGawhYAq26h3Iswg03IknNkawUHaPdq2NGQjTfz6VeLQ/dNzq+z9SOkdNE2dsfya6KDUC+PZIjWY1QK8Z3KJLUKqvTDzv9u2ZNyTLaHYjykSPGx0dQh0HTkZbcL1BSxTVns21sRKJ8KMLHuuhHX67vRcDhWLw32ZLgzPxj+6/bk3BSS9/MhDbzhIuveZ574vQNJ3c/uBJolupgfE6GDyJxsijiYDpGinlO3zTK+ybeiv1m/C84lvUN/5ulaLwfU5HKYO039R0DEVFlkH11vzXfYyrfcEjOgepunzl6Japb6Y0KShtVMRAnTqlsqAzaVaAjnVxq0WmSCyqgfD5ZGQ+wJyFwnFYo7Ui60ojqcbjE5ebcUYuzMaNjAcknCtQiajGw0F92bbDLwsdiREJQkJqn25P9vAUJSAoFNbw7B9HoMURKqii7tlG2GJ/O1TW3k8NrzFtFIDuoGpaIuF2ub0LgNye1NlCLyPdwyT87/ZiOOubIkFAq91ddw/uMEMEi2Ph+sT5qRmy5iJNZiWodoLI6YYbLCdBC1tUYfcSCuBpNpjZbDhzDbqCyQqIiLZkHiRhd+Oja2jVMjhTplcn+O5IoKAQ04l12+hnsYwLQfcqKcwEWlBodd2sZLD/bM3mCAWIOW5/vc6joR9h69hfZ4AknIrxvRNkuji0KEbDBQYzTDajShGDhOLgNbaAGaOXEOV6kocR2LO3V1TRa2WQIKGnU4Pr2NrO4MoFaOnR7fASy7Wr0+zzwY+BzVEAYbsYO/dl8i+1rPgBZ9NtlLYgN9TIT9IQ2MXN7H4tXsw9UOvkJ95oHKdMBTZe26gUUwzMbUcIkGqyT0EfHg98v99NqT9XBKDk2vgNdodOlvC5XOHAACD/A3w0o6/V/P6BORwD/oEmUAnj1+BNNQCFybXy6970EWqnTsyBX1XA+iQ55DrdRFUO0gOUA2SBwgfnILywu8BAAIfELplCM+Sspfn8uCOkImd47vwGiG0aAivlmqg9dkQErsJEDTP6uhuJyHQ6+U5IhSaiSYoDqpXd7F8PjnSY4J4ACitDCE1uA2DgrteLYbE5AbWb5D7lBvZZKygnGiD62hwqX9Ztx2GrFkQ6Xva3swiMlCBGCXfbRRSjBkK5asA70PKUAbr2gQeuuvszj0WXKSHSmht7bTme46IjUtz9BoEsKhbt9nVoWgGY6anp5cQHihj9TIBTfVWBF9fHcNHqAkqAPzxbfKu3ZffRqEdxzBd7PRMFV1bgUQXAkHAYSLSQsukbf7hFnjex89TvdfN7QH2PMiWht+5k8Iv7Ce2D89vDWMi3MV7Ryvse+u9MH7lGnlu35NXWRD3VLiDW/UUbMqkTcea2Jus4ffvkHd+y0jjRKaGWcqe2b6AvGYgHyY/W66Eskme4ZTuYTpCOqIF7u80B/H/ie3bYpK++tWv4p3vfCekV1v0/79sX//61/Hwww9D07S/8QF+t7c+Cv+V8Z8GQF76ls0jKvvQKRX7clnEB8cI7X62EsVkxEKFgqLDqTr+dC2Fx4bIy1I0NNgej4ZDBjJd8BGTXSZcjkkeNLoiz2sGrjYiKBnkxbw324Pn87jSIMdxItPGRldn7NCdtrYDKOIdmJ6AK/W+EziJAOkLynfHGzi1ncK1Bvmutw14MFwBFh0ERC5gidZh0cNGT8FMdKfTrGbLzIMoRdtZ+9/96uyk//2Og58diuNkiXzve0c6qFoKu3Y9T8BoqMMcc3XRe41VwXI7ykAQCZgMmOHj7aaIAwmHATBddOEDOEV1EfvjbWat4PocarbA/JcMV4IseDhGW+1fWph9jcfSjWoGEcnBs0UyYH50dh3nqbHkaLiLhNrDAtUNjUWbEDifGXlmFBuT8RqzBBiN1hkTtFrLIK72sEK9WRyfR0SyMUg79FTJxkubI5im1y+mGggCDnvmiJbI6mksHmJhcQKZRB06BS6l7Qwk0X2Nw3bPVDE5tQIA2FofZBPV6MQaLl7Zh8EkYU5E0YVpKUjS6ATTUHFzY5SZ9kUTTRidEFp0pdwxNOw5QNivdiUB01ARps0JuYevw9vWGEujZuvENylLnoGgZjGmKAg4RIdLuH3mIAASnZIeLjIfIICIgqO0aSA+sQllsoXOJQKElVQLJm2tDs9tAgLQukT0TKHREoSYCbdGngFxwEAwPYHgHNGD8fuygOuw73HOWOApu8MJPrx33Q+hQRgboVyAPbUfYplcD75SBlQF7SfJGCZHepDfSq6N9c0uWhs5pA6SiRoBB6uUYGBWjnUgptuonCWAQo10YbZpnIVmQVQtmLSxwfd5NGoJqBTY5OaWwEsu02RJmgXXltjnXVuEKPcd+H00G3GMHyb3aePKDOqtnRV/LNxBLNnA6ioBd4P5EqLUFPeZ5+/H3XuusTb+gT2LWL6w9zUl+I1aGg+/g5jvtdZzEGXSyg8AC0vj2L2blGbPXT6A2ZE1FoEjSS4UzWDGlPVWFKYjY4W+T3uyBWZi2uyFEA91cL1AgH7PE3Ewt4XLJQJA47INngsYgzMR6UDgfIh0zLhQTSFFtVET0SZkwcVpWlKfi7VQNjRkqYaxZOiYSVSZHup6IwzLoz5ryQ6JGxJ3ut2GQl2cpZFJBxJthCQbX98ggPbBXAurnRAatJnlkYESqhTIxRUTq+0o0qqJnmfjo9e++KYwSS8+/PAbziTd/+yz31dM0q/92q/hn/7Tf/qG7vPbuqLvf//7USwWkclk/vo/BvCRj3wEly5d+r4ymkzKNkyPppxLwKhuMP+NqQiHa3RQU4QAIhdgFwUUp8pJzEQ9FGmXhOnxWGyLeEuWMBZtR0LLEZl2Zlg3sdFfgXkiDiVbzGtjy1Ch8j6Op8i+17o6eAAvlcm+3z3cYOLqm80wTI/D3hiZnBuOCJELWCv+i6U0RkMWRNqianoBWcHLfTG6gxXqv3S6IuJI0t9ZCSk2ZuN13GmQiV4TXSgBB8vrO9VyrNPrHw/r4Dkfc/Qd4hEgIu4ESt5uypiI+MxXaSzSQstWmEGk9CrRd0h0YPsCDGriORb2sdmTkFLI9VnvhpCQHTw2QsSl290w7s4RpuCV4gB0IWBCy6olQxZ8vEzZobRqoNiNMCp+ONxGx5bx+HADALDZijHQ6Pg8DEdGkXYvvVjO4SdnNpkhaFrrwXBk1kq83EhhT5aUIWKKAdcTWFfZnXoKPjjWvfP527vw+HCReVBlwy30bAVLi4RJcj0B6zSmJa114TgSEz0LlRQGhreg52hG1ot3IZusoUf9i8KhLrZrZCK6fmMOe3YtYoWWBBtGCAm9g+YG+TkTbyCimFA1clyLS+MIqSaLUzEKCiuvDb/nKroXsrh6lgCdfOgOWktDEOj1kLJtYNcA7Bdph14vxvyXfI8HL/jY9/aXAQCBx4MTfMzQc1g8dQjDexdQo6yM21PhXVdQWiIT+4C0zIwlMZkDV64w3Yw47AAQIApkEoQP+C8UINxFAIaXykM4TTrduIgAMe2Dk8h7yA3Ewa/fhj22BwDAX7wJ2b8Mf412dCZ4QBSYn1N7PY/Is+RZs5sxtBtRJPueUj6P1lYGsVHy++qdMUSaVZZz1mtEmKM6x/mQIz2Wixd4AnjOh04tIubPHMSuw9dZqXNm720o0Q5EynjYbR0OXQhtl7KYPnoNjVUCKKOJJgrVNGJ0UfHC4gx+7NBXMUj/XlJsdKhB6LGZW4jkamhSRnf5wl6kc2XGyvCCR4AbfTeDgIPZ1VGtkM/nkjXcpMHLca0Lz+PxHHWRv298ETzvwaCSg+fXx3B3fovpGG1XxNOr5PwOpSuwm3EU6PiZ00y0DJ2ZNpqegI2ujuP0Pd9sx6CJLiuTSVyAtNrXKIowXIn50PVcEXFlp4y+L1nBWiuOMD2OvfEOW/h1XRHbpvKaANuqqWKOsnAS72OtE8F9GXKfmraMmViLgUqB95mk4NlCFiO6jZhiQPR2QPoPtu/u9ku/9Ev4yle+8r0BSUEQ4Cd+4iegKMpf/8cATNP86//ob9m2Yag4SnUyhivi2WIYD+TIz5PhABplIK41QpB5n5VEDid9bHR1TFCmYKsbRlIRsEXF133GJkMHG9vncZCu5lu2jLKpYrVDruuRVAtNW8YtGmEwF+1ho6dif5y8aI7PIynvhFD+2SbQdcn33J9to+NIbKKPST7WugoyrITnwvR5BhLm2zruzZJV5XhIh+EJrPy2ZajI6l1mxPhnGzG8d6SBy1TPMKrbbHB5qqTinUMdxkJxHBVb0uuV08jg0uoza7KFriNjmoKIV0o5jFLB73wrirjkgus3JPkcDibbGKdUfN6RcbuRRIsCtOVOmDUvHc8V0TB1FhY8Gu6C5wJcp+30aa2HnN5BgWoOhuI1LFayrBPG8TkW/qsIHkTBwwFaqlKFKJqmxlaZLVtBTu9gLEFYGp4LcJuWKrNaF0OpCk7Sdue5ZAVtS2WTz4/NLiAa7iBEJ6e2qSGsmChRVmp2cIPFJqSjTXg+j9u3yL4yiTrOXD6IFarRevf+S+gZOjrURdnzeVaWmMxvQYu2MTW5AgC4sziBeLiDdJ6UhATZgeOIKFJ/HlW2MTBUYBqmwXwJ5X4S/YkCnJ6Co4++CAAwrkQQHtqGvIfaHsyHIcWrKFLDw0i6ATVOJiqrGYKyvwe/SK6dsZqDkm4goKxDOleGUY2xMp+SbEGcBrI2EfPfOHsQBx48DQDwz3QhTXFQqJjaWdbAaxZ664QBbJdSSIwVYD9Jnj197yUgSZ6HoGsjsHnwtHRd+qNBJCY3oPTOkmftxDHw3QZAQVJg+3AuBVAmyc9uT0VtgeiGRMlBLNVA+w4BclLIgKTYsJtUGzO9CvABggK5trapIE1ZJ99Q4PVUdGgrveNIUBQLGtXr5AMOnqkgTy0BGsU0ZNVCrUKDaVUT2Qnaxi+7qCwOY/htBAhWT89iNF9AnLJFiUQDZ5+9F0NZItaP5isMJEmKDbuts07JgfENVLeyiCUbAIAejS9p02u7sT6ESKjLQqCP7b+GDn13eC6AZSm4b5zYXoiiC9uWEaWdko/P3MLp1UnMpshxZJM1EDtMAr4k0cXRLAHCkuBCFDxWJl+o5LA73mCLjDb9/hnqyn+9kmV5lhLvY7EVYWNgRHJQtxSM0n0BZNHa1xpudCM4Sl30vV4YkhJgDzXAtD0BsuCxZpaQZGNGNlkH38XNLKZiddygXXY8FyBCx+ac6mA03MbVahqmvzNef7e3v6vdbUEQ4GMf+xieeuopPP/882/4/r8tkPTRj370de30x37sx940eq7dbuORRx6B4zjwPA8f//jHX5M8/O1uo7rBTBv9gMNExMeFGpl8xkMOAwVDOvl3fyUzoHfR8yJ4juoKhnUHedVlkSZTsQ4W22EM0hX7qXKYiYc3ejLGQxY8WvAsGRqWOhJE+mwudnQMaRZadEK52Yww3VRMdvD+YQETUfKSV00NbUeESsFYSrHRdEQMUQ1KzxMR4n0UKHgb0GzGBsUVE8+vp3AgQV5oHqS9fogOLkeTEryAwwA1WjuYLeBskeZFJTxcrIVxjKaUp9Qebjd2vGUmwz1YPg+b0trztTRisoXLtHT1trEVvEKFynHJRUIxmY7K9EQsd0Is4HetE8ag3mVsUUqxmUDe9ngMRZtMR5Wm2qOHQ+S4btUyqFoyY56Wq1mMxOoo0fuYUmy0qT/VRKJAIh8ow7faiWA6V0CJMmsb7Rh6jowe/fvNbhj7qKGd6wv48q09+PB+YsJnmCpSkRZWKoTdkAUPS7UM9g8TUWuab6BnaKx8MF8YYhYQsmxD1UzcoRqsmdkFHAr3cJRej6+cvgfvOngRIeqxtLg+gjYVwDbaERiLKmTK9uSSNXR6Otap9UJY7yGRaLAuvOHZJTQ2s8zPx/d4DB0kJUBvi2OhqgCgPiTCnjgEnCP5YsEPH4dfL7DPxj/iwBkgXXPxq6fh54fAWysAgNB4F97AFCS6wk5duI36+V3oUDAbV5YBl0f4HWQiOzL5NDiNejmtJOE+9C6ovT8EAHC5OPx4FpFZAqIj9QLcLRniLLlv5tkEO2Zllw3+0CCwSgBG7t2LqH1zBMljNBdOj4E32sABUsrjHvyX4N0e3GufJccduwV5moDT4EvXIEQMeLTj1W6GEd+7zICfOGjjL/7r+3HPMSKC1geqKJwh16PTCWP6obOItMlkXCtkkRgsQ6WNDvp0AU4hjiwtG0vZNs598VHM7iORObzkMmF2ZGgbUclF4TkSceM6ItKTG/jGk48AAN79Q3+J1MQmLr98lFzrwRIGHiWdboUn9yF99Dbzo7IaEaQGt2F1diQSw/vnwdF7Gq0kwHEBHn6c+ErVFkbxzAqpFHz8ic/j7Ncfwtxe8rwYzTBcR0SjSe5pJlvB/dJtBsDXSnlEaQnM83mc2RpBnAKMPbktdE0VOeocn8+X8NSlI+hSO4596RKWGyn0qB3J4dwWLtLSXEbvYjTcZc0s08kyXF9AmS6MlpoJeMFOKO2+RB2rdHGS1XrY6ETY70TeR6EbZgvW+VYYqsDjXUNkXLkr3ULN1DEbJ9ev58h4aou84/dna/ADDknFhuH9ACR9t7cPfvCDeOWVV3Dy5EmMjIy84fv/vu9u8zwPlmVB13X0ej3s27cPZ8+eRYqGyP51W7+e++8nfwpzMTIw91wJJUNjZSDT41lrPUDKT/2y19FsAdVemMVjtGwZ8y2Nte1PRptoWgp8mmRfMlR8vkBWWD+Si6FmC6x9XuEDpFWLld8SioVfW7Lx/gwZ7IOAhOICpE2/aqos4Lbl8BgPWewlL5oS4pLH8tg6joSmIzCdUUJ2cb1JdVVJCzFphxZuOhK6rsC679Z7MkZDO+f/8raCdw8T8CELhGbuWxNMRDoYjtWw0SRAqWKqCIkuY6UKPR0pxcT5Gvn7uajxmi66I+kqy1tb64TQ83icoCvhL6/mUTR8PJwn+8prBq43yH5GdJPR6AChw+eSFZyn+oSRUBfZUAcV2gnzB0tRvGfYxAgVZ1+vpTFGdVJ9M8/+tbzZ1LE33mV/e7IwgPGQgf00n+3G9gBu0sH0w7PzuFkaQIOew970NhTRYfYCMZ2sxvv2Ap7PI6wZuLhBJufHjp+GSLO4bl7djYVaBoNUFL7VieLI8CoUql+xbRmS5GBoD1nBL1zYyzp3hgaLcCwJNcpYxaJtNF+VvTU2sonbSxNIU5dk1xMgiy77/XItjXv3Em+egUevYfuZOUQGyMRlNUOIvd+A/QI5TmV/D+0Xs9BoBxsnenjuj94FAHjgvU/CbYVYcK4YNgA+gFXZCcyurQyy0p6k2MicuInm5XFyDa7txt6D5Dgih9fQOD0FhbJUpYUxjN5/kYETpx6B8JN7IX7zJD2OANa73kd+90kCWPpdY0LSBqZGgEWiQeJ0EYiEYbxIrp8yWEXgCGgvkMWApFvQqEDc2kiju51kYuxmKYXYQJndN0G1ULy2i5lJ1uZH0aZgdPzEZXCCj8UXCHDJDhbhe/yOr9TEJsxKnJlvtppRjO6bZ+acidECbtCyZyLaQmakAI+OAbdvTWNseJN1LDqOBM8TMLCLaLS61TjTIOnhLpRQD0UKmm8Xh7B/dJmVXyXFRq8dRokyWG1Tw67hDWbdcXh6HlcXSYfZ0b3X0arHdry+ZBvVahJfWyDluAcGNzE5so6Ld8jPS60YHqZawRdWJ7E/vc061JJaF6vNBEsWeDBfQon+DiCdcZs9DSN08bfZ0zFLvYu2umHcaqm4P0t+rpgqkoqJDcq0joZJJ+0Vyojfl60iTd+tf3QujvuiSUgUFwzpDhq2yJy/Q5IDXbJZFiIAfHktiR+fIs9Ey1axRq/tnmQNPUfGf7mtwQ1svGx+9k3RJD3/4FvfcE3SAyef/luvSeJ5Hr/927+Nn/7pn/6u7P/7HiS9eqvVajh8+DDOnz+PdDr9138AOw/Y7+37COpWHABpNU8pJmOLvFcJjTu2TDQmtPSybehoOCKjeDOKiahs4yadnGZiTax1IqzV3PF51OigFhE9hEQXm3SVfiRdwXOFLCuRTUba2OyFmMan64rMHLHPbPW73bquiKxmsHJaoUcs9/s+SgIXoGErrEUeIGZqACkBRiUHi3QVeTxdI5EdFAhmNQNdR0KLTsDbpoRRmqeliS7qlsIA5YFsAbYn4iplTpKyhUv1KI6mmuz8o7LFfE7OVBJMJ7XYEXFfpsPOISZbKBk6Az8NW4bIBXD74uRwG794mwCGTwynsCe1jVNFsqrMqxZ2Jcvse65UcjiQLuFGNcvOP6sZTBAqcGAl1clYHS8U86y7cSLSgsAFLEhzONLEUjPBnoGYYqFGWciaTTKe+h2KIclBWu/gaZrUntNsdByRMY2HUw20bBkTtPwo8h4cCrjv1FPYny2wjrVKO4q43mWraA4BKr0IY4+yehcTNHakz0j1j3kmQ8FB3/Qz2sbTN/fiXloi0ejk2I/HiIW6zKRycG4Jzc0cEuNEC9bezCJ56A54agPhdyWYxSTzFPItiXVUCWkX9nKElebc1QBC3Eb3BnXYDjiIqo3lS9QSwOcxfdcVqPto8OytELtfgm7B2k7ApVqx4uowZv/eKzBvEMClHuwiSKdR+X0yCUbHCpAeo8HCy8vw6z44ujsuEYK3ZCKg5SYx6wCZBIwXafv4PQ68hR58+l3weQhxqrmqhdHdyDKwJoYNdDeyrHSlRLsorw7hFQoS3nbkPCR6fQXJw+f+8u14x27C6EiSg1iuCoOWt3jeR7sRZVlvABCKdFg5rrwyhCiNbPE9HvGpDVRuEuDiuQJcT0SXNj6k0jV02yFmCxGLtBGmk75rS+C4gHXgyboJ15Rh0bGo0YghFOpBD9MYEkfEtcVd2DdFwE2tlmBNAJ4roGfojNG8cGcGM/kt6BTILG0Oo2WpO4aqrsSCZd82uYB6J4IufaZlwYXlSgy83Krk8PDeq3jpJtGO2b6AhGJiiL4v9W4YFarvu1iLomEDUxFyTtPRNgTOZyUy1+egiy4rVyu8z8b1hWYcKcXEGN3vudIgIqLLFkpR2UbXFVGn+q6ZWBPL7SiLKYkrJup0PFVFD5ZHgs0Nz8bHbn7+TQFJzz3wtjccJD30/FN/60HSL/zCL+B3fud38NRTT+Guu+56w/f/PbcAeP755/HJT34S58+fR6FQwFe+8hW8733ve83ffPrTn8YnP/lJFAoF7N27F//5P/9nvOUtb2G/bzQaePDBB3Hnzh188pOf/LYB0qu3hXYEMVrn2uiqaNoScnRgq5gqswBoWiquN0MY1ckEMh2v4Wo1jSt18vIcTga43oxgRCd/XzY19DweMk/AzJWGihGdTC4CR+JKxung8vnFHB4d6LDSS91SYbgC80n64bE6Vuik7gUcQqKHNl01hkQPHUfCKhVjj+gmGrbEQNV8O4yo5GKbvuQNm3+ViNuD7fN4ZJBMsHcaSWz2FAzr/ew6D3U7hDTt4BoOdRiAXO6EoFJPIgC4Qt2l+zElf7EVxZ6Yh1NlGv6YbqFmaqwLby7aY6L2qh2CF3A4T8uccUnHbKyDMxUyqO2NmThZUnFvlhyX4Ur45+NkYBqJVmC5EgsW3uipWOmOYpoKYuOyjbalMYfdrW4ELVvGXRRUPLMxjOEEuQ+3G0lMhXey7Fq2grTWg0kB6dVqBmPhNivVXW1EmDZqQLNxNLfFmKOurcBwZByjgaWD1OjufIGs4ONqD47PM+uChVeBuHvHF3FlcxRHKZDpWQqi4Q4kk0wC4XAXgyijQVmK81sjbHKZzJRIUjvVeqQHtrG9lUeMrrrX1ofx+JFzqJTJu6JoBtY3hjBOk93DqQbsLrm29bUBJCc3UF0kVHbu8G107gwjPE3+VpjWEMpXYFyPAwC0Iz3Y18hz2F5IIv72Mpxb5NrxigNrJYnQHGHhevMDWLs2g2Sa6LtcR4Kg2fDrtDuykEZokDBUKy8dwuQ7TiOwycQ1rJvwmz66RcJ2iNEeWt/UoFNAruw24J4kwA5vGQMfqSAok+tz8f+8G4d/6jk4yxQEyT78pTrUMfIsBvoAAs8ET98BYSaG3nPkfi9c3IsDP3cWzg3ynq6+cgDJXAWRPksVMRA3VHz4kf8OAOjcGmEWCNG9q/hxfBNdyqQaPR3tSgK5g6RTbP3sPjRaUUwfIO3y3Uoc4VwVgrLDkmrUcdvtqdi8NMe6Dmu1HMb33MEQFZtX74yhXE9g9z6yLy1bh5igAb/FJNqFNH7/pfsAAE888iyatTjrpLQdCSnNRJ0KtfNjGxhNb+84pxdz7N/PnLkLbzl4mVkCnDhwBbfu7EK6nyvZjiGnd5Gnz3441MUU7XZ1XBE85zNd0a6BEq5vjDEm+kYzhNun7sZ9WfJ8VEwNk5kSlqgdh+mJrDz/8MA2Ct0wAzZbPR13D67jBi1XD0easD0RJ4YJs9Y2dCa8nktUsdhMME3f4UwRpiOzjjUv4KDwPvYlyXu80YlgV7TJIlGK3QgUWiZ3fQ5xxcRyKwbj+8tb+fty+9SnPoVUKoV3vvOdePbZZ7F///43dP/fc5DU7XZx8OBB/ORP/iR++Id/+K/8/g//8A/xT/7JP8GnP/1p3Hffffit3/otvPOd78SNGzcwOkqElPF4HJcvX0apVMIHPvABfPCDH0Qul/uW32dZFixrp3TUapFBU+IClghteioW2xIziIxKDm5QweBGT8aBeJt1s12qZLDWE/FQjrrJmgqGNBv9ai4PUkbrd0p5AXCHOgRnVB5TYZN1dhxKOLjTDmGlQz49qAeISj6GyHuKzW4I2xa5Ze+bXMafL0+gavVbWB28UgnhnjQZuKqWjJ4n4AoNyhzRTSx1VIRpaW8uamCFToLXGwLSKuAHZLJJqSbKlsxiSSKSBD/YqVG/vJ1EkWrz98WJ/kpmgnEH6z2NgZWxEOleO5wgH+g4Ela6Kkv5brsiRqj2KSJqiMo23jZA/rZlk/ykEZ2GWfI+PrZ7Y4elUntoUifeQieKU+Uo3kfZDomPISzZ0CgLUzc1XKim2HFpgoeNnoqYTEDnw8ObrFQVlU2YnogoFYtKgouupeJQnuz71OYo1rphZl1wIltlK9vtVhzRUBc9uqr0Aw7Xqxkcpt1vPVsBhwAH6c8878NwZBSom3dCNbBriICP2+ujODiyygCoIjk4vzKJ+/eQ8tPa5iAk0YXc97uKtLBMn9OSoeMDd53GmRtEC5OopWA4MvR++U3volJOI0PdiH1PwPBQAevUCTrRCsOlJaC5H3kRvRtZdhxC2oRxNYzYIPm9fSnAn3/lQ3jfP/oieSi6HDybRtwMVRBUu5BGyMRl3ExAna6BozmJoQe7yLaLrFRld1U0l4aQyhB9S2RqE+IUee4mk2fAJwR4M+ScQvPXETQDJJ6gHVkbAZLTBQRJMsE6qcPgN0n+HHdnGe6RoxDbROR84N9tITAGIYWoUPeKBumBOLzTtGR4bRt+NwR5ijybwWYNSp5qnWwZtT/Pg6PPvB7qQYl2YdXIu8Z3NYRHizBWyXO6sTCO3e8ngtKVv7wL8WyVlRefv70bP/JD34BDRd/p4SJUzcS180RnJPA+JkQPJl38ZCc2AAoCeIkKpCk4q26noaRaqN4ipVvbVDA7d4eJxEXVxpWTJA5lZHgT26Us0+hVixmsbecwnifPZSrRAMf5iFO2qFOLo2eqWFkcJ8+Lz6NLtVEndt/A2towhmie48rKKBxPwFOLhEl76+Qd8LyPTRof4noC2pR5zcXreGljjGl7loqDCEsWkye8a2wdK40kY6HajoTtZhxTWfJdd0oDDBR1XbIozIRojqbooGupzFV7qUl0VX1zWo4LoFNgs9YNISq5WKAmr1HJgRNwLCcyAAeR99jvHZ/DSjmFuzMEvGmii6cK5Hf3Z9voOjK+uinADagb/JuwBcEbqyP6fqox/Yt/8S+QyWTwjne8A5ubm2/ovv9Wlds4jvsrTNLdd9+NI0eO4Dd+4zfY/+3evRvve9/78Ku/+qt/ZR//8B/+QzzyyCP40Ic+9C2/41/9q3+Ff/2v//Vf+f+/l/gZ3J3eyT1TBQ9tOmkmFIuVt+ZbYSRll3WCqYKL87Uo2nShN6j5SCgu4nRy/sKqguOpnRelbnNIyeSFj8seRN7HEs1TmoxY6LoCa+PXBR9FU8BU2Kbf5WGLrkj3xls4V41hnGqFypaM8VCPZZlxXICLNQV3pchLvtJVMBU28Y0t8vn3DBtscAlLDlyfxza1ANgyJMxFDVbmIi3/CraMfshkgHG64pxvhbAv0YJHtU5dV0LVkrFOQ2qnIw7arsCunxdwSMkOrjfJd92T7mCTmmtaPoeuyzMjzqhMyljf2CQTyIcnqogoJhapMJxow8hn45KLliOy7pQL1RSikosMHeSeLUXx3pEKqnRwrtsybrUkzEWpgFixGFMk8cSH5TaduA7TlfuvzxOG65f2VWG4Eivl2b6AzW4/986DE3AYf5UP1HS8jpeKZMJ8+8g6NttxDFDGp2OpSIdb+NMlUjJ54tgFVvJqmToSegdrdFU9nS4hEupilfo5KZIDy5FYKnwmVUMsRc6/XMjh9tYQy7zyfB48F7DSw2Yrhun0NrapcHUiV0TgcyjWyXclw200e9SmIFHH0PQyE2+rySYCV2BaGC1Xg1WLEvdoAOE968y7SIgaqF/cxUBQeHoDXkuHT1vglfEayi/uhqyTczBaEfQ6OibfQzraAotjTt52PQLPVJjIWRzqonJylmWIJR5ehXUjApGW/fiIC3uDnJ882IS1loQyScCssxmB9EAcXIPsy1/rgR9UYO89BgCwfmMFobkNGMvkvvmOyM7BaoYQO7SCxvkpAEBxfZAYWebItS6+sB/p3cvMmNGqRbF6lVhR5IYKsHoatimDNzm3AG2wghrNyUvtXUL5yjRSsyvk+TlzgJU9AdJFld9HtE7drQzatTgWqK3D0SOXYHV1/M6L9wMAHhlew9TkCgNYsmaxyJLlazMIhXpMg6SGejC7OvQ4OYfNxTFEIm3mkn371jQS0TYS1CKi04ywMt4zK5O4d3ADYVp6anZDiIW6WKVi66TWheVKzCBSFl3Uqc5oMFHFs8u7sNYlz8OxVAscByxRX6io5EHifcZihyQbf7aexWNDRB/3l5tpnMiQ+10xVYyGO6zDNav10HUlJuQeizbwzNYADtNy5e1mBNOUhbtcj2FAs5Gier+4QvI4C9Q+ICLZGIo2UaPvRN1S4fg8a6rZn6pitUWDqcNtWlIMwfRt/PLS77wp5bZn7n87wuK352X47Wwd18EjL37zb3257dXbH//xH39LsuVvsr1ukLS8vPyapN039GD+B5Bk2zZ0XceXvvQlvP/972d/94lPfAKXLl3CyZMnUSqVoGkaotEoWq0WTpw4gS984Qs4cODAt/yOb8UkjYyM4D/t+gloAhnkM/Rl36KaHMvjMUxBgeGKcHyehd8qgouWI6NDX0TL5zAdbcOkQCemWLhRTzABdURy2IQ6FOqx/QFkcq5ZMmtFv1iLIq26LDMtp9oMQE1EOmjbMtMcNWwFpicwjVJIdCHxHhOUOz6PiiWx9vq5WAvr3X5Zy0HFkhnAuFFPQBN2vI082h6vUmFm1VSxTZmxmExiSfrn79OnKdr30OECJKhhIkDKj0OhDhbpgGJ7PNNzpVQT24bG3MsnwgYDLgApT56vqXjXcJXeFwE2bZcfj9VwpZxnq8YBvYvldpSV/VTBQ+dVrFXLVrDe05jjrukJ7J6qggeZ97DU7scZmLjV0nE/pfxtX4DA+aw78NjICr46TzxiCABUcTzdZscdly22Es5Emqh0oiyIt2lq2DZ0TNJSBEAACkCMFy+uTjIhf0y2sHeExIkAQKMTRrkbwQYdyOcSVdY1JAoeNNVCvUXOIawZsB0JI7Scdv32DJLhNsK01NszNLTp8w4A+w5fwwXqdL1/702ER0rwaDnFNWW4PRXhccI6CGETXCRA0Cb3mB9U4K3RHDePh1VMQaMC18rpOYSyNfY9SroJcdDGpd97CACQzVTA8QHzQlLDhKUBAG2CsDOho+RaOUsirj19AgffTwwPcWAMfKsB5wp519xWCOo4Zcq6EpxaBMoIBUnbEfDvnQVHzSaFwiqCQgPBbtKxxa+T7sN+2c9a2ynhy5kGhNkQvNvkuAJbBB8xsf0K0c1cvTODh37om+zvO2s5ROdIiWfp2bsQSzbY+xCf2ER3KwOPTrZqtAv+VXYCjiWjVk4hO0SunxQyGEhsLw+iXYtDoAu23P4F2PUIE8mb9SjMjs66ytSQseNtpZkoLIwhQjPj1taHMTqywRiujfUh+AGHCB33Wp0QkrEmhihAW78yC4++m4pqQZZtGL2dzjhZtnGR2mCMJctYrGRRo+/LwWwBOgU9HUPDzOwCC85NZKt46sxx7B8kgvpqOwpdtlhGGkD0cqdWyX3yAo6V0DuOgmJPh03PdzTcQViymC4vrfUgiy4u0VLdaLjDGlly4TZuVjNsYdh1JGS1HhsD/IDDaLiLMC3taZIN2xPZvgUuYBYpBxPEjoXjAhiejY/P//4PQNL38fa6y227du3CAw88gCeeeAIf/OAHoarqX/+h73CrVCrwPO+vlM5yuRyKRTJobGxs4IknnkAQBAiCAD//8z//PwVIAKAoyrf0e+rrYgBA5j1sdsOsLfVMJYLbdFKfjrjguYAF3oZEH3OxNqNtbV+A5Qn4zBK5Lr98oI19yRpOb5NBNqsK+AsavfTjEwI4gJmhlQwdEh/gItUrHEy2IfMeRFr2a9syynS1/vmlOH52rrjj0wESkCux8xCx0A7hcJKAgicLOp5xTuMn4oRub1gKNnsU6MQclC2RsSxpxUbDkVhW2Wi4i2eLMTycJyswjgtQtmhgquDDcAXk6Yo0LNmQBQ8RGkJ7u5bBi6U07s+Rld/tpg6JCxCmA7vJCUhStudiLYapiIGx8I5Qfb0nMyH7kN7DAzmHteqHRIf5MS03UpiINnGbtukXeiEiCu47f7siIqKLk1S/8pZcDUfSXWh00IvpXRQoQ6XLFoqdKHbRVWbVVLE7SlalADAQbiKbqOMZap63WsliL9X6zDdjePdIkfmrHJtawMt3ZjFCB3JJdHGhksZUpF+eVTGkd1Gn1z4fbiFMBa/1VhSa6OD4LlJ6OjU/h56hYZCaaZ4/fQ9kwcMjU0TPIoou+H5HpqnipaVduGeUxH8Ioodnl3fhYToJ5BM1tLohTB0ibs1WIwJO8JnAuLw6xCZyq6chFjIZM2JUhxDfvwSPdvT5hgxxXIZDcADk7I4g2muFIKgW+Bj5OT6xCfkIYJMqGMQpDkHFx54HiF+RUUqysh4AhD4aBV8l146r8vAXRJj3PU6+Z/ASpss3gUNk0fbcP92Ph/7+VyFNUEaQc+GPEwaH77QgJbJwwmRskNZvw9ZjkKoENPrxJJzZo+D/kDBYi6fvwthd18BTLZCUaEOIk2vjdyS0n4xg+eZhAMDuB8/i2p8+hNl7yUnNWTJuPX8MIXofJ95xBo0LhHVKZGqQNHOndKlbiO1dhrlJS1E9FadO3of90wSMRPMVOJbMss7GZpYQ2GTYXpifwvj4GjPutOsRXDx9BBPD5Jwi6Tp+96lH8MHd5B5ndy/hD/6ILDbHow3snbnDwOjBB86gPD+G7K4lAAScbRbyzAm82Q6D4wK4FChHYi00auRd81wBStxEhzJLkujAcSTM0O7P7WYco/EaZum+lso5TNB/u76AciGHFxYJoOreEHAkW8IN6sAdkW30bAWrbTImjkVaKHViGKSLnZPFDCyfvLcDWg+7YnXUaQn+T9YSuCdtYZQuOgaTVWzU0owRn0vYCMvknq41E8jSxSkA3G6SUOsSXbANag4KPR2qQOaOnisgo1pI00XJ5WqKselbPQ0J2YHj84xtfjO2IOBe45j+RuzvB9t3wCRdu3YNv/u7v4vPf/7zsCwLH/7wh/HEE0/g+PHjf/OD+R+YpK2tLQwNDeHll1/GiRMn2N/923/7b/G5z30Ot27d+ht/Zx+F/+9j/wskjrwAuyIdrHV1RsV2HQlLNB9pLGSAA5i4eDzkYKW74200FraxK9rEM9RILq+6SCg2y25TeP9VbrLEifvJLbKve7MWFN7H1QZ5yWeiFm42FbRoKe+dgy1cqpPB4miqiacLO23UAYCEDKgCuZ1J2UXVElke3NmqhONpG8sdAjCiUoAQZYZ0wcefbAK/sJuAoPVOBF1XwBjtbNns6chrBjNeFHmfMTJ1S8WWobJogIhkY7On48sFMvj8H/u6aFkKbtBW/QHNxpMFBYeSNG+J95nD9p54C5YnsjKnKnjwAo6JvJ2AQ0jwmB1DSHJQpnqu0UgLhW4YBVqO3JdowAt41Cj13nEkOD6HsTA5bon3YbgiE8lLvM+sB9JaD2VDZw7kU/Q56A9Az5fieHSwwsBa1xWZdsFwRdRsBfvTxLbgZjWD/ZkiK5n1B9A+Q+YDGHmVEH4mWcEtWqboC+Bv0CDZD8/OY7GSRYoOzLl4HVu1FCuh5V/FRvUsBaVODGmdHHsq2mKMAgCsVTNIh1usRLJQGoAiuhhJEeYlmamiRfVsPO9DCxmIj5CFSX11AKahYvgQef/EZAcbzx/C8ENE79OdH0ZphUxypVoSh06cZwyGR7uq+i3tA/dehbGaY5EeZ04fxfETZ+HSa19aG8TU/QR8BLaIbjGN+CEykXMaB2dTA0fBm9sIQ93fgV+jLJYhQhgi98xdFsCHLAYK/A793DuIAaa4eBOBrgF0Jc4VSkBERxAm7MDmf8sxcbXXVXHn7AEWDzO4dwEcF2D79jj5LBdgo5jHvsOkg02f3ELzOgFyq0tjGBgo4tYiAU33PvYc1i7sQZoyRRwfwGiGWTSNIDuwexoqJfJMTD9wDsWLBPipIQO2qTDAFUo2oaYbaFEHboDolPoGorahsAxBgfeQGCyzzMBiI8GaDQDg4PQ8Qskmlm6RNv+RsQ3Uy0l06fvWMTUGxpqNGHqWwp4vxxMQUs3XLDpiehdVCnS2jRBjbccSFdiuyMAEzwVIxlp4aYl8rxdwcAOOAZ2OLUMTXTTpu+r4POsy9UFkAf3FrUwZ4f57nVANZMMtLFHdnip6rDTX3/qg50sraXxgtMZY/pYjo+uKWGyTd34y7GCtK+Ehaoux0YkwFrtpSxjQDIRlGz3Pwd+7/KU3hUl6+r5HEXoDmaSu6+CtLz35fcckdbtdnDx5Emtra7Dt1/pUffzjH3/d+3vdTNK+ffvwqU99Cv/xP/5HfO1rX8NnP/tZ3H///ZiensYTTzyBH//xH/+240v+ui2dTkMQBMYa9bft7e3/qTD7O92qJo+ZKC2B2DIKhoiKSVZK92ZrmNyx6kDRUDEW2uk2CQBmpugFPIKAw+5YPy9IQd2SEaeTRNsREaZmHKrgYr4VRoK+p3HZRseRkFHpxM0FOJFpM0T/J+sRVB1y06fCCo6ne3hxm0yuD+W6aDoSK801HQEJ2UWNrjqHdOB0WcYEdRzWBR8RCpJ4LsDBmIoCrbdfqavIaT4roU1EWnixlGYW/S1HwiL1RWq7AibDPQY2tnoaIpKLtyTJBVtqSpB4n3lBmT6PyTCHITrBdF2RgTWeI23+fbuE1a6GId1kJTHH55HVeqyrrGiorAMN7Si1MiD7KvbIQJxkK1Yec4kmSrQ0paoGOA5sXy9sS3hrnvxtQIFZP3+v2NMxm6hilYqrdTFgABcARsMtpKjj+umNMRzNbeFfXyAr/0/sruF0YQhDtGxxOLONkWyJxaVULRkRxWSRL2eKA68p7Y5EmuzaKpKDbKiDDmWporEWGp0wtqiuyKxmmGh1sZ7GA3PXIVIA8d/PHseJ/BZG8uRd2iXbcF0RNr3HDUvFlF5hE6rVU5leRY92oKWa0O6loaz567C2UhBpSTGwRIz+6G3UnyQTbvyuJVbyyY5uQZ8pwVohE6ao2uiVksxhu3xuDrGRIvMg0i/uQ2VtECHKtIUjHUiT5Byq3xyCHOkBdB7w6jzg81h9kTA6o3ddR9C2AQqEOM1F/TlyTIm3rAKxKNAm+3XKMrs25KQkcD0DoLlokER4I1PgumThMHjfFfi0aUJ+Zxz797wAd41MmOK4g6DjIklZFiXTwHDyInyT+hWVY4jRclu4mMHCyjhmxlfI14y1MYob6NIgWUExEQQ83L7dxlYek8euITpMxdk3JhAfIgC8W4kjPbsCZTd5l+x5Be3VPAy6oJMUB5PHr+D0Nx8AAOyevYNIjmb56SYCV2BdhWN772B7eRj5OQJAe6UkWttJzNGQ46987Z0YijRZF2Yq0mKgUbkzCkF28I2X7gUAvP3oOWysDzHAnc5UYPR2yn67hjdQo+aho+Nr2FwbRou+h7Yn4NrGCNNePjq6irapMcdtHmFEVAMzecJSVWkuHECe4Zot4gHaDdrshuAHPAMvF6opvD9TwrEJ8vt2NwSOAibH53GnFcE4XWj8zO5V3KxmmbVJx5GQVk3WrJFQLIyGfcRoFSAsW6yE3rY0nNrOYDrSheG9uUzS30UzyVdvFy9exOOPP45er4dut4tkMolKpQJd15HNZr8jkPQ3Fm5bloVPf/rT+OVf/mXYtg1JkvDhD38Y/+E//AcMDAz89Tt49cH8T4TbR48exac//Wn2f3v27MF73/vebync/na3X//1X8ev//qvw/M8zM/P45eGP4a0sqN/6XkCHp8kniCNbpg5RB/JlnCjmmFgxPB4aIKPPbQ11PYE8AD+r9txAMDDOeChkVWcoa7SQ6EuIpTivd1IIgg4OHRQt32ifeq3wzZsGbuiTaa7uVKLsa6wmdQ2yt0I7lBX22O5IhbrKcZQNBwRI7qBJh1s47KNBvXwAYhmp28AWTRF3J1uYKGvwVEtvFTW8Q/3E8r/zOYopuM13KErw+NDa2zld7Ocx9HhVfz2FaLHOJrsYjTawCidjC8sTUF/ld+I4RIX7aMZGitQS7KuwuWOhoPJBvaPkxLRb505Ck0MmKnlbKyJbUPHKAUktxsJBgInwz0cHNjAIo0HWe2E4Acc67pTeB+vfuUzmoGyoeFBWsqSZYf5y/zqmT34wFiDgSBNdIgGgbKB+2bn4XsCulRcaloKXHrdT2+MYV+6xLyNTEcGhwBFGqrZcmSogsdibQrdMB4/dIGt8EORDtOY3Lo9jZF8kZkSLp85gHC4w8wCez0dut5j4trorg2snSLlJC1kgON8xliEFBMRvce67jYaSST1LgbTZCKr1BPIZ8pMk+I4EuLUtkAfqGD+1GGM0CBdx1ARn1mDSzPjpFgH3gfvRftXCbOQfnQZQYPcU6cYhTxnIoj3w/0EgOdh9KND7u1h6w8nMfAzlAVbXEfvxgBk2sZv1yPQ3k91IaE4gq/dAk/fASED+E0fldOk7Bkb34LyK/8J9q3fJ/v6w/PwnniM3XP16nOw3/pLAIBg42mok69t7rDmPw+pQCZQvtMCynUELnkGerdyUKgWiFdc8ONhuDfpKpX3sfriYSRpSTl+dBHF5/cjOUktEnSTCbODgIMa6SJ2PymZOosqipenEabnG8pXsHTmAPOtSgxsQ9RNmJRBlsM9WP3rrlno1mMIZ8h94iUXviWjWSIl5e1yGtFwByPUOb2+PAi1nwOoOGiXUgw08YKP0uIIBHr/X7kzg2MTi7hItT9DkQayyRok+lynxgrYmifn9MryLrzj2FkGguqVJNL5MirFncVydqiItWXSjfxq09KQbsBzBdZZOjq+hsWFSTj0fZJFFw0jhPNU6D4dbWM2V2AT+HYzzhYoi5UsJN5nNhui4KHYTGCJSiX2psrYbMdYhtxApIGv0IaJjOLiYKrCjtcLeIi8hzJdOLYcGQIXMEsVTXRwuZbEFGWmX9yO4h3DO6zScLiNrW4YhmfjFxbeHDPJb554xxvOJL391F98XzFJDz30EGZmZvAbv/EbrOtdkiT8/b//9/GJT3wCH/jAB173Pr9jkHTu3Dn87u/+Lr74xS8iFArhox/9KJ544glsbW3hX/7Lf4l2u40zZ878tfvpdDpYWCBg5PDhw/jUpz6Fhx9+GMlkEqOjo/jDP/xD/PiP/zh+8zd/EydOnMBv//Zv47/9t/+G69evY2xs7Ds59Nds/Qfsnw39DE5kyADScWRwXMCMF6umigYtB9ydLaFq6Oi5/XZxGyK/Y4bh+gIisskiK8jndwSNf7apYiZKXvAjySYKxo61/culLPKqjQnqglzqhSBwASvzzLd1pjka0GxsWzJb6UhcAF30WF2960iQBY+VyHKagaV2CFWqJZKFAMfowLzWCaHhiJijZSWOI6JondLYPVfCK5UQPjC24y7bF2jzHBE994Gd6QlIqybrKKlaMnbRxHuABO/el62yUpXpCchTitvxeVyoJrCPTvqFno7pWIPpEYbDbZwup5hGKfcqDUEQAGVLxRQdMNc6EdoVY9Dz9XC1lmT3dDLSRli2cItquuYSVTbw+uAY2AWAi7UkBjQTn1sh//OhEQ62xyNLJ7Lp1DYWaYms5cgY0HeiEa40Injf5DJWG+R7xhMV2pZMzmG9lcBItI5l+vu01mMAtGpqODE1jyYFr7FIG61OGCNjZPJtN6LwPR5/cPkQAOAt+SLS9Py7poq53fO4RUNIM4k6HEdChU4Y6WgTum5gpUAWMrOTS1hcGcPoABHMhVNNXLxE/Eb27FpAYmoDUooGhy7nwUsu1FECsIov7UdiYhNKnrbTl+IQNBpxo1lo3BhnTMqpP3kUBw5dZcGxbkeHYyjQqZhbmayhd2MAJerJFAQcxu4lES9C0kThmQNMg+MYCjL330TnKvnbyN1bgB+gfZaU+kIzG+DTdNJwXFjzMcjDtJvNEOB3NIgDtMV/dhKcbYGrUVG5KCCIJ1D7HAGV21t5zH3wBXLMJR2c5MKjYCXwOdw4dQRzx64AAAq3J6BqJgYeID9vv7wHXepvtlrK48EPfR1Cmna+LUXRWB5CjJYyz508gUN3XWS+SJdeOobd+26yvLrOVgaNKmG4RclFbtcqCrfJRD+07w6qiyOsc27/oy+hcG43E/onslWWyZaZWUV7M8s8l+prAwjF2swQs15OwaHiY2AH5EQpKOD4AAId9xxHQjjWxnOXDgEAHjlyAa16DBtl0hk4mKqg2oyhTbVCA/EaJMriJdNVPHPhCASqu/R8Dl1XYo0MhW4Ep8oRvG+MPJdjuSJqzRjTGnZMDTVqJinzHk4W03jrEA1EBtCyFFaOTqk9cFyAGvU+qlsKxuj7stCM496RFVym/mU9T0DFlDBMTXPjsk3GNjpWrbejSCg76QhlU8FBuuDY6kQh8j4SqoGu5+CDF778A5D0Jm3xeBynT5/G7Ows4vE4Tp06hd27d+P06dP46Ec/+h1JdF53ue1Tn/oUPvOZz+D27dt4/PHH8fu///t4/PHHwfPkQZyYmMBv/dZvYW5u7tva37lz5/Dwww+zn3/hF34BAMmL++xnP4sPf/jDqFar+JVf+RUUCgXs27cPX//6198QgPTqbTrawU3qgaHwPkmjpoPLWk9m2WNbnSi6roiRvlNrKwaV99nkK/E+HJ9nTs6mx2FI32kv/9DYjqN0x5Gx3JERk8jfthwOji+jYJAJNyp5CIkerjUIy3A83WVu04ZLmKK+fofjiB9R32xyKNRDoafDoixV05Zh+TzuyTQAAC9ux7FN9QUCH2BQs9CjnXARyUHVknG1QSMMhABRCehSYBNTDBYV4Po8LE9AnJa1fm21g38xqeHPN8lA9PYBExerSeymXTRvGyyibmmoU+bkQKbEHKSrpoYHBopYp+WjAZ3kKfWvbakXQlTycIDqfW7V0ngLpdb/25U9eOfwNhOMK6KD9XYMm3QlSPRNwGPjpJxQaUcxM7bKspuWmgl2DpPJMiqdKNP4tB0Ze/KbmEuSc/ry0hgOJzuYSpCVY0g12ep0T34LjisiQrvGjo4HkCSXDerPr41jV6yJ47RLSFj2IUsOZmj222I1wwbifflN9AyNdQJlRgrQ6zFm2re5ncWu8RV8YIYwBY4rMuH24QdO49ILxxnAvro+Di/gMErDggfG1xEEPBL97rdMHXsjXYRoa/XK6f2454FTAADPVFC6PoU0ZUb0D0fA3ZwHJ1Mt1D9swX+pB36cCnf9Jtx3PQQA4L78EpL3L7C2x7f84vMIqm32WXeji8ioC2+LHGfvVg7aWAkTb6ddRn8pM8F09dQsBj+8BLRp7tee/fDEY4gMkXvqR8cQnF5H+N2U4VkOSPkNAKaGIJub4FTyvUKUAzwLXIYM/tx2CZAlQKXC3Id+BkLpIuL/iNwX+XNL4EIy/ayB239+P4anVwAA2lAZBx57Ee1l4jE1/uB5cKoHv7szYcUoGJkSPfBxB9YCATpuTwXP+0wgfuDQVXi2hOIiYV0OHL8EMdxD+RYBQsmxLcYkSoqNwu0JLFKRc7enI52uIp8n70dznoJH2tYvyA4UCuxLNyeQGC4hdIjcb7MWxfLCBGI0lDaRqaJeTjGjSteWYDsSErTDMwg4ROiiafvaFHxPQJ6OiRvrQ1BlG7OT5L58+ezdeM+hC5hfJWN2OlPByho5Nk01MJncYXB6toKVZoKZNEq8jx+ZWkeYLnZOL03DDzjWCDFfT7Gx2PV5PJivwKBjYkiysWdgx//s7OYoNMFjDPFIuM0WYKPhNi5sjbDGmIjoYSJsQKPHcbkWw75Ei5Xre56AYclGjI43aa3HIktuNEPIaw4KPe1NDbj132Dh9hu5rzdrkyQJHG3hzuVyWFtbw+7duxGLxbC2tvYd7fN1M0nT09P4qZ/6KfzkT/4k8vn8t/wb27bxhS984XUH434vtj4K/+ejH0OBmiseT5swPYEBDIkLXqWbCWD5PHQ66a11VQyHTNZq7vg8cnqXCXGDgMNKV8Vmj+xrSA8Qp7qZnsdDF3yYlDlIyQ6uNRQM6D77+UpDwb44mbzDovuaB7dgKExc3rQVqILHfJIajoiQ4LE2/rWuiNGQC4Wu2MKSw+wCqrYEiQvQDywZ1Exooot5OoHuizdwsxlj4bldT8AM/d7Nro5tS0SCunfzAOKyg80eGTA00UfVEjEVNtlxK4LHhPAphWQkAcC5aoCoJOChHBl4QqKDrithnYKClOKQlSY97m2Tx74Y2e+2JcPxORyi2XamK8ALeOxKktXd9UoOJUPBkE7jIbgAGb0Li64Eny2mkGD+VcTn6skCAVhvH+jieiOEY2nCiJ2vxvBAroJFOsDeM7iO631X33ALT23lmUPwuUoSu2NtjFLA1bMVlHphJgrfnahj1+AGm+iGkxU8TVunZ+N1FjMCEKO9dLgFmQKy64Uh5MNt2BTclrphjNHvGUhVcGltgoXlHphYxKn5OUxTgFntRnD0wFWUNshxP700jffsv4QmLcEaloIBmplnWQrWtnO4+z7CDOtzBbQujcGm/jupI/PwWjqsKvmsmq/BoxE3vOJg/dweJGgyfb2YhhYymB+P1dFhdjUM3U/YImsrBUFxcPMU0RnVOhHc//gzbF9mMQmR3kMx3oGYdxGYVDdydQTh/evgYuTaeus+82PyLQnNlUFk30sGyvqTOUR/UoH7daJtkQebCHaPIzhLjeju3wXzjxoI3UWdnp+cQOotRIOz9ZcHEB/ahkC1ckLIhNdVmSN5enYFHBegeoeAAkmxWddgrxGFohtw7Z3FjajaMGnp1uhqGNy7gA5t/FCiHQiyw9iieLoGno4fK3cmIIkuZk4QwXxtYQS+J6BRjwMABifWUFgZQZoahoqqjRfOEB+oew9dhmPJEOmzJIcM+J7AjuPGwhSS4TZyWfLZULIJXvCZ0Nt2RcToGHB7fZS04tPomz+bn8P9gxtYbxEg+MD+y1jfGGK6o0y0ycptPVuB5/PMxHKjnIXtiazrrNyNIKV3cIG+X4ezRViOxLpHL9dj2EfjYSYSFbywMcpSCN46vIH1VhyL9Jz2J5ooGxquNMhnp8IOGx+no21wCJggXOACpLUeNikoErkAyqsA1kZXR9MRmeHibKyDaw3ytycyNTQsFSHJQc+z8dFrX3xTmKS/vOedbziT9Ngr3/i+YpIeffRR/MRP/AR+9Ed/FD/7sz+Lixcv4uMf/zg+97nPoV6v4/Tp0697n3+rzCS/F1v/AfuvM/8AEfqAhSUHXsCxkslaV4VMu8amIh1sdHVM0hWX4/O41ojhOBVAbhs6slpvpyvCVnCrpWM/fZFNT2SMhetzsDwRV+r05crW8Uo5gUkKKNyAQ8GQmQ6pYios8+uBgSLKvRALUk0oFoIA7Oe4bMH2BdYZlqYddn16+ZXtNAZoSWShreCFZhM/NrhTmus4EmO8araErGphQCfsyMliBo8Nk8ml0I2g60gsGsD2Bax0NFxtkM/+8GgbIu+zwadqyUgp9mtCbftA72YzipTiIEtXjTxHjOjmaUlsy1BQtzk8Nkhr/90wY+iyqgEv4Nl19wIOUdlGUiWsw9lyFinZYYzPdGobriewGIKWrcCkgCmlkgy8fkmwZcvI6z2mJdukdHpOp+JixUSNMmuWJ2Lb0DCTIM9D09QQkmxG+dueAEV0cblKzmki3MFYooqBHAEkz147gOu0m+3n7n0Fq5uDGKCJ6K1OmGmeAMpgaQZK1AAyCDhm2KdIDnTNhE5ZqXI1hVikzRiNp88dRcuRcYz60Zi2jHi4w7RV6UwVXz1PJlQfwEysjmPHyGSsD1TRWcshfoIwBRjKIljYRvkVkr+mx9sIzRHWydpIEiNGCmxWzu9DONxh4mPfEZnIGyDhuOpAFWtUjN3phJCnTs6ZH9mG8SIHmQaYNq5OInFwEeYGKS9t3pxCfmoNkbvJ9Qk6LpwCAfryPh8QBRgvk+eQV2ySL0c1OPA5dBaHEHuMgMxA1eCea0PaR54Jf6UDfpB2WPg+at8cQWSCvAPSPhH2BcK4ASTLTUx3YCyRclNzM8d0Q25PhZpuQB0jz0f76ijCe9Zx5+tE9JzObYOXPHSpBikUa8PqqRCpoLxeTmLiARLW61QJC3r6JOn8nRlfgSC5qFK7kUx+G77Po7BFFrMC72NgmICR7a0cZt76CorniJawVksgHmuy0pyqmVA0E1dvkQaDmbFV2JaM3DQpm27dmoRKGc701AYuvXQMuRQ5J0W18Mqt3Zikwu1Uoo6Tt/biHhpq2/dXAoDh2SUsXZtlDGi9E0FIMdlz6HgCeC7AlTI5B4+6YOdod63pSiws2nFFdCwVcTpOcVyAWieCv9ggnz2SapNmDo38vtiJ4Pltcp0fyTcwmyugQ9l1ngvw1PoYJmiH73ishq12DAFVNmqig64jI8GyMX1cpyLwqOTgYl2HzAOWb+HXi7/1poCkv7j78TccJL3j9Ne/r0DSuXPn0G638fDDD6NcLuOjH/0oXnzxRezatQuf+cxncPDgwde9z9ddbvvMZz6DcDj8Vxytv/SlL6HX631fsEffatvoaUhI5HJwpoK1rojJMJlQazaPqQgBAU9uxfBAtotlqhOJyw5GQ8ZOaa6rYq2romyRSfF4qosR3UaZrnwU3mcZP1u9KMKii700OPNMJY4R3cY6ZWGyqoOo5DEn7KolwKOQVuB9qKKHNE9e0rOVOI6kWjhX7TM4CgY1D2G66qzbMkyPx+cWyQr1A6MNWJSBuDtj4kiKh+v3QVMYKdlhpmxTkQ7KpootuqrKKC6+uERKC7siLlKKjSuNCPvdkG5hJtoP9N0J4AWApsNjpavhaJIcty5yrJxWsXgcSHRZy27bFWF7PHJaP/FbwWzUYgaZpicgQYWUZUvFJwu38VNJ0tJ9INEEzwUstmTbFBARPTSo4d2frk/iH+9dh8CR7/YDDnV6D//rioOfGNKRoGC25YjgDQ1/vEpXxlkTadXAUpP8rAoeY3A8i4PABSjS6AOBD/CNlTw+NLHDCOmShcdoU8DlrRF0TI0lpM9lirhrnOoetgaw2Y6zz7UtDUfym4hTgN7uhlBpxMGBPBSi4EGl1+P0xhge2jWP+TXCZiRCHWxVMqjSWJLhaAMC77PV/Xw9hYFeGPccJDqadiOK9x4jzJHrSKS0s0yYkumpTUghA/YKGTgVuQJoQGIXAVyBx6NPS25d34Wx+y/Cpyzt6L55OB0NYpico1mJQ89X4VLmScnXwck+LPrMz5y4iOsvkNDK5Pwd8EIUd57csQNRky1oI2QyHgsbkO6PovIHRKye/BiATXLdg2oXXCoE7RiZXOF6sO56GMrLT5H7Xw8QPbSKIErOse/EXfhDcv2yR2+SchwA55oLjgtgU5Ai+W0EgQCJ6oYK53Yjf/AO1q6RexqNtVBZI+9LarAE7UgPd36PnENmuIAX/uDdGO9rwYa30d3KIJKmhpmGiuhgGYJG/YqqcVjb5LmrLI0glq0w81FZs8ALHvIjBLxtrIxg1+HrzE4gPLTNfI74YgZ8yIEepZosn0O5mmLMketIMDo6BpME+PS1SUUq1tZ0AyGqHbz00jEYjsxCeVc2hiDxPmteWC0MIqd3Eabfden2LLt/fR3gIgVBrs9hkPeQpOX5W1vDcH2OaQvrlor5VhjbVOeZUqydQGzVQNtW2TufDzdxrpJhnce5UOc1TLzI+8z7LQCHpXIOKm2a0CQbd2XK7G+32jEUDJ1ZAAzpLjKKDYuOiY7Ps8XdYKSFnN7FK9tpCG9ixerverktCALEYjHoug7XdZHJZPD1r3/9b7zf1w2S/v2///f4zd/8zb/y/9lsFh/72Me+b0DSq7vbAOBwqobA30kcD4IQErRtv+MKzAVa4IDFjg6bTgKmzyMuuaw1NCJ5mI018VSBrCr+eF3DiM5DpYsn2wfrsqpaEgqGjLm+o7BASl4zETKBvFQO4Z50j9XJbZ+EvAJA21LRsmV0KPjouoTxCNOFRErxkdMsrNLJZzbWQcuWMUdF4zcaUeym7FbLlkmgLRUpqryP9Z6MERriK3ABVMFjA5oXcPgROuk/X8jjc6U2HgyTyfZEpoW1TgQNWk74TKmMXxiNMe+StGpC5j2crcQBAJYP5hvlB8BlmjMFAPsSLdgez3RFh1MNlA2N6QSmYw2U6O8ELsDfi+5Hkt6zli3DCzjmoPv4cBGmJ6JJwWpIDOPlwhCaDgGCR1NNJoL/JxMiFKGH27T0dCxdwVo7iidmSSnmN24O4l/fdweNtXEAwNc3IniEXhseff0TZRItEfekewxQjUZaaFsaIlR0LvEempaGOGW8Kp0oW0WPDBaw3Y0iSUGR6chYayRxh4bgegGHe6fmsb5NOvqWGzFMxClD4QqQRIcZ6zUsFZOpMgNFf7Y6hLszO4L6tGpi9/AaNtZI2W98eglnzh8BQPyXsrltxBLk731Thpxow6YOw0pCQOdJjTlBd9ZziFBwPvUj59B8eZj5ExmtCFxbRKTfHdqKoLA8ggTtpMuOVtG7M4DcKJ3oL82hS+9Z584wYvesQ7lOAIOiWNCnSkz7017Ng9/wkX6QlMWwHYE0QuNfLo9AHytCyFKx8aG7wH/hZeBIHADAuXUEs7vAb1O7EZ4H/9YRuBfJ++W1dAS3KcPbicDqqYhMkechqJqAnwBHS/KKbqJ6awzDs4RpM5sRzK+QZ2XsofPons5glHpMyUN17HdFSBQEGdsJlDYGMHXiEgCge3MCzmaOAZ2V4gB7DzMjBXRrMSSTO/5Yri3BoeNFsxdCcX4cPcqODHEBMwQdP3wD5Vd2s2639PQaHEdirtmOI2G+NIgR+jzlhgtotyIIUa2d40hYoB5KkxOrqFeSLE5H4H1s9kIwtogIeijaRNeRsUkZrXyszsB8JNrG/OoYwlK/2zOC+VoG15YIOH3P+Aa6tsLKXAnVwFzKxXOb5Dkd1F3WvfZwqgwOAZZoE0THVrEvUWdGrXVTx0CkgW3aadpvNgFIw8VwqMMWTZpsodSNoEq7Qeu2iLDk4a0D5Ho0LBUS77Fut+dLaeRUmmXoCxgMtUmSAOfjB9t3f1tZWcF73/teXLtGvMlGRkbw5S9/GUeOHPkb7/t1g6TV1dVvGUsyNjb2HQujvhfbz/3cz+Hnfu7nGFV5uZqA6/cnUB8RyWP+GmeqAQ4lyMD0lmwHXVfErVZfv9TCfDOKaRpwOhRp4lI5i8M0UX5IUzARaeHl7TgA4HCihyxlRipWAqIQYI1qOwY1i7AWdEDYH7dxqqLj7jT5e1XwsdQh37vSVbA31mWrlw1Zhu3zeK5NVj8/qiVRMFTkaEltrasjJHqIU+1QSrGw1qEt7D6PuOyxTo247CCvmayUtdnTkVIs/NEq+fvHB20sMhbFxy+MRtB1yff0XAlx2WbePv/rWBQcAsYktRzii7QrQiaciGTjVIUMWjfaFv5hzkCHlrnOVOLIKC4WOzSWQyKRH7NU6Hm5kmU6KcMVsC/eZQBKFcngqdGVYaEbQVwxGSu3P+7gekPC+8bIvra6YQxRCv9SLYGpSBfrXTKIjod0SLyP8xSM/NLROyg34hiOENDwz45useeq1IrjbDmDg9QSoueG0bAl5pcSIIqeu1NuCEkOdMnGOvVgemDuOmvDb7ci4BCwiUltRzAVabEOo8XCELYqGQxnSOmqYyu4XSMT1bumiZh7jroet3s6dM1EiX7PLz72LNZXh9lkZVgKbm6MYoyWSOZvzGKU6pcm7rqKV775AA4evAoA4HULgSPAWCIT1fZvD2P80bMMrJgdHSGqBbIXOajpBhrL5G8H3juP7ukkQO9bdP8q1CsTUClgD3wO6lAZGvXVik6vI0EDW31HRNDzMbiXsHC9UhJcRICgkXscndqE11UBkXZofT0N3yH3TJAdcJIH86H3AACUxfOw/969MEWqX7pnEPqf/ja8PaThhDc64M7fwuB9r5pI6XG0K3FEkk34Bl283I6iujyEwfsICxcdLqG9mWWgiRc8xOmzxccCyJ02WovkeoR5H7dvTWP3vpsAADnSQ60dwRT9znCqAVE3UaZC7vvf8SxMusAIfA61WgLTx8n3ttZzMLsaAgrQM7EGZMVm7GEQcOhUyb8bxQxi2QrK60TrIxQ83NwYZaWoWKiLB46dw+1bRB/nWDJsR0KUntOFxRnM0sBn21BgWAr27ifO3ucvHEJeM3DvfnJcf3LmbhzMFlhem+0J7Dm7vTKOiGowI8ujIyto93REZTK+bHfDiMj2Tk6iJ6Btq5iLkedlqxfCXjoeGJaC+XqaSQw00cVQpMHOSRQ8nC0MM1Yso5rMiiMX6mCpmWBO3kHAISzZyNCSerkXRlS2mI4TIJ3N/bihnOogTK/NYlvH9UYIqkD0q2/WFoBj5cA3an/fL9sv/uIvwjRNfO5zn4OqqvjkJz+Jn/3Zn/22Ouz/uu11g6RsNosrV65gfHz8Nf9/+fJlpFKpv/EBfa+2rGpD5MgDPRTqoueKqNBVxEcn2yx3aL2nISq5DASVDZL/xcSz7RDymoEiXb1lVNLZ1o8HAcC0LjVbgMABBdrJHpYEyPxOy39UcnA85eFKnaz+DyV6GKLxWnnNgB9wLLJkX7wDgQvwz8Ypc2B7aDkCYpRJics2TpYiGNLIS329GcZjgw0ARAuUVQ0sU9CkiS400UWPApuQ6GKxHcKPjJFzXmyHkKdhnwOahZRqwOn7idCSVb+Fd6mZwECogygdLOKuCNsXXpPcPayTSW4qzONGI4ohnQpiqZj8cIKKXl0R++MGCnQlGJccBoo2jRjsngrH32HONMFDgprQxdQeakaIDWQRyUZWtZjAvusKTAx6IruN5VYcbxsg1ydB9U51m2h/1mppyIKHL60QQPKh8TIDtp7PIyq57HkQeB+7Ey3E6UCdTtTR7en4/A0yGT+YryATbaLYJazMH1w4xgDWwakFDFsKbq+TyVmXLJzdHMUhCnw2OhGogocELbdcqiVwgoqtOS6AIPisjKEILmKhLsubW18dJhomaccUdThRZVEasWgLqQkyCS6f3Y8Tj57EwiuHAAA5W4IgO5BDBr0PLjgNEATKDuSqLGS2fo1M9+kjBLRZV6PgJRfafnKO639yCPnDt9HbJNeyd34XKqUsJujEX709DocCLi3cA6dyaG8SJk3STHglDgE9J2nEBLcRIGiTexy/awntiwRc6ENlWFspqNdfJNen0wWePQ2VGjE6ew/DO3QIwqVL5PeqAKcShjxHwf+5GCJTRGd19sIh3Dd2ioEVx1AQH6jAp2VyQbMRHiyz0pbRDmF0giwgvYoI+DzUOHWsXxzG3oPXoeXJ9bj9wlHs2XMbxSsEnGxtZzExvoYmbaLQVgbZJC9pJkanl2G3yTNsdHQ0W1F2D6fuvQSjmESU6qHalQSy1HNr+8o01GQLOnXCNw0VmVAbOaqtdBwR4APsv5vo0KoU5H7zCnkGfujel1nemu8LmJhZhEs7VmXRxVS0xMTpj+65BoH3sE11eNe3BzDYTyCQHGy2EkhTMFKoJ1E3NUT6TJNi4MWtYRyiuryepWAw0mRlaMfnGFM0kKhhsa3hMRrbo8kWtpoJVkLjuACj4TZ7Bwo9HTK1MVBEEiPSpOfg+jzSoTZjMfsZm/2u3Nl4DapkY7tLrl/uVYvKPfE2mraM3akyuq6DT76xofQ/2L7F9sILL+ALX/gCHnzwQQDA8ePHMTY2BsMwoGnaX/Pp//ftdYOkj3zkI/j4xz+OSCSCBx4gTq4nT57EJz7xCXzkIx/5Gx3M93K73VLwYI5MqE9tJdB2geMp8qK2HJmlUGuCB8MTWPv3Yj0NVXRxtUYm0EPpCi5V0jhIRYy6bOFOPYUxyjq4rwII4yEbEcnBiQwBBbebMWiih76SXhcdbHfCKBo0pDXtsoDF260oPB/MYTqjWtAlm030DUfEbLTFQNRmN4T3jlRwrU5WaAkZyIZIKcIPgNOVOKvdK4KHm40oWwXtizeRSRooUiB06FX0fh/wjfW9nbphhCSHlZeyWg8CF+C3Fggl/tFJMnmuU1qfR8CMJdfbUfgBWLL2ATrRlijg3JusoNQLI0SvQVa3mQv2gwMFOL7AWnRHYzVYrsQcgn/92iTuz5jIv0rU2bRUTFDRZ9PS0Lb7Qm0VY9HmjoEdgIV2BLto2UuTHAQBhw/R8NQb9QR+aPd1cqz1JPbLFlsZR2UTp7azOJEl4PT2QhYrHQ2Hky26LxtBwOEEZX68+TmmyfI9Hqe3RnCUgqJYpIP7wh2EqFs1X85jJNrAEg3sfHR0FadoiSMTbaLRCbNyScvQ0TVVZi/QtVTkEjWU6HPr+gJcT0CW3gvPFdhkPP3W03BqEQzvWgFAVtmh4W14NOSY4wL4Bw5AuEWo7sjRAvwmjcrIVyBFegxAKAdN+NsmzBvk+Rh+/BKW/uQ4xh8+R+7D9QmMH73G9C2p2RWIVLNnrOYAWWDePrzgw61HoMyQZ+/G5+/HzK+2gQtkYvf37UbEIQwNBMCqxGFPE+8nzjbA7RfQze4lP3smtEtfBxch74+35sBp6+BXyfPj2RJ86gI9kiqjU04w4Fe7NI3w/nXYa+ScusUUjHaI+RUl400m8jY2Mgg8AQYNsLUMDZJiQ6Q5eLYjAXyAJPVN2izl4NoS4tRrLJStIaBMpNPV4NgSwrSRQdFNZFQLHgUgt184CtuRsO8BspourIwgTxcgouxg/sxBDFL9UqsZRVgzmBO2rpl46exRPPiWlwEAieESZNXCIzSj8Mylgxin3WwcF6CymUciQ561jXYMw7kdr6JSJYVCO87Gm7TWY1YDt8p5dBwJB2jG4Pp2DvlwC6ko+dtiPYkj6TLTXY1mTDy3MMP0gl2XR4WCpNVKFgcSbTTpz5VeGDwXYLlvJpkmFiERunDiWnE2liw1E0irBu5QMDoaMshCg74DecowjUbJ2LfaTL4mIHtfpog1ara7bWqYiLTwGzdG4AQ7Yerf7e3vsuN2sVh8je3Q8PAwNE1DqVT6K4TO691eN0j6N//m32B1dRVvfetbIYq088P38Q/+wT/Av/t3/+5vdDDfy+1oqoMgIBPbj06v4uL2AOapSO9Dk0U4lBngOQ3CqxKpc6EOSt0w9iTIy9O0VBxKV5Ci8RBdS0XHkbBJ2Y+OK7KHb0DvoWXLSNKJe1fAI6YYWKETf0giwbM/t5cIYhuGzlpS/QB4ZHiDdWeJgoelZpy91PflC3illMc9OZoJhQBDiSrrBOlaKqqU/i4ZOj44tczyxc5X43hooMgARr0XRt1SMU07tl4qDmBEJyvwqEyAWZQOBjwXIBtqMSbtmWISedXDx6bJ9y62opD4AMfoyvArq1nM0pbt2WQZbUtDkq4qr1dyeMvUPL5ynUxsdxpJ2D4Pna4Ml1txpmcKKSa+tjzB9F2ezyOkmFipk4nqidkN1A2dgbqRaAO2J+Im7Zwb0rtYpLYEj48vY62RxMHkjnPvuM9jvUtA4n3xGmxXxCq9XicGNnGbgpO6pbL2YQBQJRspxUGU/jyQqGHp1u7XWAK0DQ0JOvlcbYRwH9X23Fobx8OTd7BOjSpf3hrGZKSNFL0+s6ltmI7MQLcfcNik4Z1+wCGbrLFOIlly0DNVDNF7KIgeirUU0hTcBgGHTH4bZ64R4ftUtog+L3zn6bsxsvcOM4CsLIyyfwOAnGrB/uMNgAaNtrYyTEMTmdiCZ8osm42704NvRSAlaXmtzWHyfWdg3k6zvw9cARz9fG9lACGqo6lv5BA6VELoKLk+lScnwHE+lL3knu/5sRfhneTg0WdPXF6ES99hcUKANlGE8ZsErAqyAzHag55+DgDg3nMvgltF+CeIYzk2rsHtqdBo/FDgCpCytNX8yHXcOXsA8SrR5QmSi8pLcwgPEtAcGSti4Zv3MVYmN7fEfJA8W0KtkMXofZfYtc1MrWH9BmGOUokGQvkKCleJ6HtmZgHRiQK6NAD35rkDcOj4k03WkBkpoLlG2EKOC+AHAtY2iUh8du4OQoNlnH/6PgDEc8lYJYDaNhRYjgSTlvqzQ0WYHR096jq/WckgpXdw6xIBkal4A5vUHBIgHm99V/BWO4ztZhznV4g7973Tt+G6AkyDAM50vIGhXAlVukArdGL446uky2h3vAGBC6BQsJGL11FtR5npqSS4WG2lsdDX9IXbyOs9pmF6W7TOrAbCionRVBlX6bu4O1fAsyuTGI/sPKulToyV3yTeY+LyiWgDpW4Yu6k1RcuWEVVM5rLvBTxCsokFOp54AYcR3WD+Zku1DNMz7U5UUTV0PJC1YHg2vrwj/fuubn+XhdscxzGvxv7G8zzeiOb979gCYH5+HpcvX4amadi/f/8bbu74Zm2vtgBIUYO75U4IW4aA6Qi14FcsxnyERA88SAkKAEYiTSiig1NFMjAN6QbWujpG6Wr/2WIE7x+tsInsci2ONap1eTBHXta+TqZmC4jLHvNc6nkCdkU6rAzm+BxGaCu1LHj4yloYb82TySSv99CwFNQpxT1AS379WI4g4LBtSkjQVuJtS8RumsXmBaQjq09x1ywFHUdinWOX6yEM6Q4Uui/X53EX1SNc3B6AyAWYpxqtYd1BVHaYhiBP3af7x7HWCaHtCnjrMAF+NSPETCrrlgIfYK7iAciL2u9e2Zsqo2aEmNt3392afFZFw5ax1FbofXCQUmwmrASA50sJ3J0mg2DTJm7lfVA5HGkyfcFWOwpZ8PGXW3EAwCP5Fk6WonggS9kf0UUm1IZEn4GLxSHsphqLcjeCbKiFQocM8km1h6alsVV0w9Sx0YkwB/dHRlax3Ymy8tw9e64zs8DVzUH0HAXDVHNRqCeRjTVYtMjl7QHMJKrMvXvvweu4eIFMPoOpChYKQ8yUT5NsJGMtPDlPVluHMiWSvzVEJvpeKwzXE1GnTILlSOz8dh+7gvXr08zbpthM4MTxc4h+iFwvbnUDgQ/88X8hTPIP/+Meq6lZAAEAAElEQVQvMLNI42YCynANnEKus3knA/A+Lr9IOtZ277+J6LE1XP8izRd77CXUruxi2WWZA3fAh8iE2Lk1AjnWgTJJykeBxcHvShDi5B5zQ0mgXIdPHgl4bzkOjmrl7KED0J/5AtzdBAS58QGIjQKscQIg+M4mtFN/Dn+QlJU42wIW19E4Syb+xEMbeOn/ehsAYN/B64geWEXlFLmWeqoJbaIITiTn+NRn3o8H3/UUqjTwVo+3oOXIMS+8fBijuxfQq5Hr3KzFMXrkBgul5QUParwDhzJvvOAjtGsTl79KDHcPPPYiFl84CgDIDhZx7fpuHKX+VfMX9iGfL2F9g5zD5NQyQvkqaksENGQPzcMsEiDbKSdw6fYcA80dQ8NgtgyPaufimRquXNuDvbNEBB8EHFxbQrVKPm9YCjM5nTx4E5s3p1gW3tnFaexKbaNNGZ3psVV888oh3DdF9uU4O23qVzZHMJUqs3dvs5FETDWg9hnzSg53jS/hmQUCGnfFGqgZGu7bTfRP15amsEz9yu4bWcGfLU5jFwVFu1LbWG+kmJULQBZHG9RAVuY9KK+yn+i5EtMo2Z6AkGSzTloAiKs9zFOQpAoeNnsaZijjVbdUjLyqWiBwPlbbMRiejU/c+b03xQLgq8fe84ZbALzn3Fe/LywAeJ5HLBZjRpIA0Gg0EI1GXwOean1H/dexvW4mqb/NzMxgZmbmO/3437qtZsvQqCZvsydgV8RhIGG9pzEzyaxqIqX2cIFmuQ2GeSzU0xjR++GvMi7VeGRpO9vDeVID7ztjz0Q7CIlktRaRbVytx1ChdgFvH6xgrRNh5aYjqSq8gMMarXu/e7iCItXQDEea+MldFquvt20ZVUvGAGV4vIBHSPRQoOLSI+kaWk4CUdr9NRTq4Vq9X0+3oQoertLU97xqYyzcZnqdIZ3U62P0szbAYjSG9C6atoJnmmSw/bmYjoqpYIa28P7X2xH82JiLFu0iGw13cbsZQYNGCax1IsyYs26LGAv3WLBuWjVxuRbDMdr51LMVCJyPLKW+E64EiX62bOiIyzbuzpCBu24pELiAtcd7AY/Hh4vM+TokKeg6MjNb9AMOTXpMQ9Emip0ofnicrBJXWzEcTRpI0EnhYjWFABzTbO1OlZlruBdwWGqkGDhr2ypsj0ed7tv0ROxNb6NGS5d1Wj6coCLp+eVxlCnDd2h0GYap4gs3iJfNQwNFFBpJpMPk2g7oXQyly6jR/L7CyshOB6InwPRE5hoeDXdQqKaZyNXzeXRNFYUNAu51zUAk3oJGn+NLt+ewe5R44gBAbnQLHgXgiWYLvUYUodNE3+J14hB0k4nE/YYEntpnaLM19K5nWISJlGqit5rHINVO6UNlNE5NYs+7SOSHuZFGeHAnQy5wRCz+JfFMygwX4LRD6L5Mnr3YzDq8jgaXmvipORft88PMo0l85TQwRpgT7fRFWIUY/CukrKPtvgBnXYV+nHao3SoCwyECjgB4p8sALyN+N/l7b0vAvoOkpCqFDAQWjxZ9X9L33EL9/C4WvbJ7fBkLLx9mLETCVCBR/dbUXVfhmjLT6wzvXSA2CBlyn/Q926icnGUgUVZN+D0Fo+NkUbF1dg/RCwFQ4m2EVYOxUM1eCElTwYEHiWHelZN3o319D/O3cuoRlFcJgNLDXcwMrbP7qyoWYtkKM5PstcJQJZt5LsUSTWiRLlrrBHDJootEosE+b1oKituE0UqoBkZGN5iB5vL8FEYiOx5MHBeg1CDsT88TMV/J4Tj1UJoLdfHC4gx0+l46AYf/fHY/Pjy5xT4bUyxcWyJaN9sTsJ++O5V2FCO6gRdKUfY7VXRZ2VjgAoi8x3RITVvBCPWNk3gPVVNDinaZCryPtU6UNXNs90IwXImFbxuuiAeG1rFIQVNKNZj1gCq4qNsqLJ9/c4Xbf4fLbZ/5zGe+a/t+3SDJ8zx89rOfxdNPP43t7W34/mtbHJ955pk37OC+m9v/aAGQlm3M0zLXkVQPi20ND9MIi+FOhJVlLtaieGTQYEntlisipRq4Qqnk8VAPe+MyY4M6joTD+U1cKpLBaTRWZx1XPBdgLGQgIpLBY9vQkZQtlhm23onA9AQ8NkiFl46M3SkyIJiOjKqpsRVYoadhd7zBfIkk3mOTOABcrSUwGemy7oyioWE/bem+04rAEnhM0xVYwdCwVk2w0tUAHSj67FBMNdgL9MzWAD6y+yb+N4lMtlNpIlB9hlLvH58llgB95u3Lq3G4QYBdUTIJeK9iisKSh+FIk5WAlso5HEw2WTu9HwTguQAhClZaDZ2VJgdDHaTDLbxCg4R3RZtIhdo4TbOYJC5A3VLYtY9INgYjTYxSp1+OC5AcJaXJ//71x2D5/I4eQe+iYanQ6Or2Zx79JqyujlqZTtbxJp6m5YN8qINtI8GufUKxkAt10KJgNqN3YDgyChQkHclvQpVtTBwhE/AEAJk6e5/5ytsxnC/io4cuASBuxHG1i4PvJ+9Y6rnDWC0M4t4PfYOcAx9g+XPvBwCk82VMORL+com0ab+NPsuzNH2e4wLMr4zj4CMkeuTCU/chHGsjTjOycoU8EgPkWQs9aEG+0oaxRSaEbjMCNdIFTzsnOcmF9677sW/vBQAAmh4CGm5tv9iFfrAK0Kc6uHsGkWYV/J+Tay1N2Aj7JXAzhKHoXUoglK0xpiV+dAm73k2OMXA4BJaIyCwFnKd0FG5OIbeLgJOgVIP+n/8D+C/8PADAeOSD0AZJwK1z7f8G/6eXILyPPJdW9CiUXR9Bt0aMGUNvP4rg2f8D/c2uRqHk6lj48j0AgKlfLEE3yTGLAwYwlEXoDHkv/K6E5P2LsJbI5JyaWsdgvg5QXZVvSDDWKVjbXQa3GoFAWRd1vAx/MQeDdp3Jm124jsTCcTtbaXhdFdFxAhK0to4M/azb0ZHPbyNE3+PcyCZqhSyWzhC27PA7nwd8Dga1I+ElF1EKbOSQiehgGS7VlZmNCIKAR2yY3PPA5xDN1GBTBt3qqZBjHYwNkeMIJVqwqTC9XUxjYLiAsRnyjHWqcZSLWWQHySJj19551DZzMGj5TdNMhGhJdH+2ANOREaXn0GlGcCi/ybRxr9zajQ+OtzCSJfsqVlPYM7bM2KhWJ8z0TcuFQYxEmgwETSYr8Hwe31yjES/JJpqmzhjzk6U4UnQsEXkPKdVgZb2JaJN26ZJ9FQxiJ9CXKzy5MgE/yKFFj6PrSGwsHg5b0EQXsYCHzO80Rvxg++5t303rodddbvv5n/95fPazn8W73vUuDAwMvIbeAoD/9J/+0xt6gN/trU9V/trUT2I6RleRPo+NbhgqZR0k3mdtpQnZwXJHw11UpNi0VGiiy7oz1ltx5PQOOg7NgHJFnCxF8HbaKbXRDSFD6+8hyUHNUti+Q6KHvGbAppS3yPtY7oRRMvoTro8IZbQSso2IbGORCg3Hwh00bQUxShe/XI5jRHdYXbntChjRTaz0Tf10izFWexJ1VAydWfR7Pg/T51nZ6082eDyU41m7/YBuMI+Rniti01AwTf1WZMHDfCuCbbNvptmB5fOvWZUsdVTk1J2Q2n6QrhfwMF0BXbfvSRUgLNl4pRwHABxOdrDe05ge6k47xGIBHhosYLkVR4uu0JMKsSHo38OOI4EDGJ1et1SsdDUkafnxelPC40MEjFYtFQN6FzVaLrhSD0MTA0xSA8SobMPxecxkyKTpBxy6tARW7EQxGq8xZumVUh53ZbZxnuo58pqJ0WgDW1SjNhBqo2WpsBm49VlprmOruFpNQaP3fDzcxlCiysAqQPRSmxTA52NEzwEQ7dPgxBpuXZ9j93T/oWvoUdPPjc1BhFST6VvW6ykEAYdDuwg75Hs8m4h4wcf4D52D36T3fGkQrikjOksAMR93AB/wWzsRIOgnwt8ZQerAAkCfJbcZgmcokGipN3B5iMkO08r4Ho/I4S34TfK8dJcGoFB7AKOcwM2ru3HPPyIg0bwahpxroHiK6Khyd92AMCohqJPnw15LQNlPvsfftsFpAdwSYUfXTu/H2L2XWWyJdI8OrJcQzBIQhSvLgMvBrRGWyjMVmDUau5JsQX2bCOtZKoIOGxDSBjaeJIzXuYVZPPb2Z1BaIBKEkROX0V0hoHF9YRxjuxdYNls8VceZa/uwb2wFAKDThUq/c1DUTTgdDTevETfz2bk7jBmxTQWtegwJ2r3WbUYQTdVh0/I9xwXwPZ6F60qSg80SBWuKhbHJVXzjFDG1PDq2DMuSGdOq6QZ4LmBAeenWLrQNHVmqvdwoZzCUIkCm0Qljdu4OiutkofTiyhT2pUsMNPC8j3ikjSdvE0b0cLYAjQqvNxskdLpO35+Q5CAXaTIWDgCe2hjBQ4MEnCVCHViOhCXqbi3wAXPVj6gGLpUGMUwXddfqCYyGuuzd6rgivIDD0SxZCLy4Ncy0pFdrCYQlDxOUWUpqXTy1PsLGeS/gUOqFWHm/YSswPQEpKgJXRRfbdOEzQPWob3a57StH34eQ8AaW2zwH7z//J98X5bbv5va6maQvfvGL+KM/+iM8/vjj343j+Z5tDUdEnU7sccWEwAWM4ZBAYj3I30mYipDgVQDQRRc8F8CkE/uWQUprfY+loVAHx5ISWlR3o4se8xC6Wo8hr9pI0X1LXIBCT2cZaps9GSnFxRGavn6yFMEo9btUBQHFVgQxuqrsx35cpCvwwwkiRO5rmBKKjYW2hlFqEBlXLHxjiwI/JQRdcFkr7a2WBJkH5qJkIHtiVw9+wGGBDrbnqlHcT1PbBc5H0hPwtQ1yYI/kLQxoJnT6sj5bDCMqAyeoceG2oSGjuGjYtEPH1xGl51C1JcQlF3Wa5ZZWHPzXOzIOkEuNU+UwcpqPGzS2Q+KJyzIALDSSaDkiXs1rRiQb16lHzMFkjRlPAiQeZUQ3cbNJzjkugYGzrNZDxdCZvcBE2EJc3gkAtjyiOegDo5vV/z97/xksS3Zeh4IrfWZleV/H23vuud63QfuG9yAogARBJ4HSUHwURUkMaSLI0dPMxHvSMMCQ4ZMo8g1F0AACCRCGIJtw7X1f19ffe7ytU95mpc+cH3vXPt1PFDndajQJChnREX3uqZOVdu+117e+tfIMjC6k63ipPMYAZVLyMHBlVn6MSA6aps5cxm+2MjhT3MFVmk0FAMco67O0PY6HJtZZVlujF0fP1Nhqvt1OIKKZSNLjEAUfGTrI77VTELZ8ZGhXFMeF2F6eQnPoBM4F6JsaLlKG896JNZTbaTYB71bzmJog5Rg93YW3o6O3Qcopg24U+cMrDPhwMg+/wbFke0EXAZd2g1b76C6Ns0lfUG2sXzmIA4++SE6WF1F9eRE67far0wiJoWB44cgtyLNk0rPbMUQ1E0GVsjCHOghaISrUxDDTioE/IiPcpWaT93AIRXL/MaIDngvrasCuh3BXDniFdmHJSWz/+UmUmoTR87tJyBMtyCfI5+0LHusa00504L0ioHqbAJeJj1xG78Ioc69+9zufgO9IiNBIC17xEFAGd+b4TQzqKYwukmBmjg9xt/AqIjR4urVRgueKDOj0N6JIZZqYoPecEwJ2LSXdxK3lWWSKpJQZifXBCT7iVEDe2c4jVmgyw8hIoYkodcmWNBu9WgpnaUB0bqwMZ6AxI8qdchHzi0tYvkEkFZpiQ5H2Fcgj6QYD2CP5Kr714l0YpQzwh06/gsu3DzLmVVcsXN6cxg/fTRjB6l4etyoEUDUsFadL2/jOLllE/OjCEga2wgTVlivjWKrDGJ3ddhodW0FAPXzutKM4kyWfHfRIiPdQgsBxISaTTbxCn/GCZmIi0cQzO0O2uYffXiIM5sfGTaiihyVaup4HcG+hyt6HlqXhULaCMrUeKET6cHyRfZfEByx0t2erWO7GoQkB06K+Hdv/zOW24cbz/H9D3Lx2G1aO3sj2hkGSLMuYm5t7w1/0N307kW3gfJW8TAlJRdMR8E6aGfV4ucDs5e/KNbDRi2OPOnCPasAzVR0fmSCrqoJKqNbHdsjL9s6Sj7FojwGu7X4MX1gnYOOnZju41Ymz8tqpbA1Xdoo4SlueMykbfVdi3kNHkg6bfBuOhCndYILoPVOD4/M4QSeb5W4UR5IdZsz47zdM/Ow4z1Z3K70oFhPkmBxfeJ1QWxclPFKqMSbF9EQEIYciZcByCocXamRwGdFc6KKHj46TgVsVfewNIpink/NMjEcIDnsDsoKPSy4yqsnKUaYnQaID4LM1FR8c60OnXZOy4ONnpgXkI2Q1K/I+bE9iYEbiA9j+PgMTk3g06KAFEIbnCF0plgc6tg2VlQ7PFvaw1Mow1+k73RhjmSxPRFLZD+QlTKIKizJ8B1J1PFseRZyuhvPagLXtS4KH6ViXleoeL+dwOFtlg3zP1hCVbQZIF1MNXK2WmIZpLltBvUko/7Tew8BRmHlkKuiTOAw6kcVjPQwGETah/PnKPB6dJBqaYrKFXKmCXeqgnUx2cHt3DAsjpIzjeSLSuQYmJsjPgugjEe8yLZDAB8hQjU1vowiVD6BR3Ux8bpsE2NJykrOmg9dsOBvkHsuzA4R9OhjxAeIHNxBSxqZ+dRYL73qBtbGLuQEKD17H4BYBiaXFFRh7GZz8wJMACCjwG+Q5FWQXE/NrCAwqap4QEOw6OPaBpwCAfMdqC9zQFqXRBkqEOeGrFQT5AqJHCQAVVQfcRh08/az3fAOlXy5AvOLRh8ck0SoeOQ9vEINGAQbZgY/ikWX2o5rt7E+omyWUzl1H7CwZP/w9ASLV8ynFJpYvHcbhY+RvrZ0s0ncvoXuZsE5azEDg89CL1EKkQfRKq+cJW5aZ3YJZS7HrMZ6vMGCjxgzwkofuLgGNycky6ssTzO/qzgsn0aEdmlNjO6jVMww0FyZ3kJjYQ5+WVA+dugrXVLFFtYfZSA+r7QweOUL8q5Y3J9hYwnEhZtJ1JtS+tTKLQryNiSnCNK6uTONwaRt3VghLVzNiKFJdXS7Sx0Yrg08vEjuFWjdB9EC0Yy2rDaCJLnpU7zMcK4bv6v2lHrvuPVtFQnKZ63xUisELBGa4W4p2Ue4lUaRaKV1y8MPU+41HiILeY4sXAHi+kscUXYRlVcqsUdYqoNmeI/Q8RN6H4Qz9l3QcTjdxu52C930INL6ft6985Suv+9l1XVy6dAmf+9zn8K/+1b96U/t8w+W2z372s1hdXcWv//qv/6WI7ftlG1KV/8+pz2CLtr+eyw6waWistLXSF3EsSV7KAIDt8xinLshXWwmkZA88vRQZxcbOQMM52nq/1U1ie6CyHKDV7n6bPseFKJsqSvSl7bsSBC5EwyYgYTY2wJVWFKeof1F5oDHn5snoABIfMAajPCCdbCadfFQhAMeFTBQ9ZMaGeWwNW8IEXZGu9CI4EO+jSSf6jGJj29gvv83Feui6MiuxXe+oOBDbjxmR+ABrlGU6km4yvyGA+As5PscGG9sXEBE9rNJ2e5ELWb6c6QmYi/dwnRrcFVUHa4aCUW3YZWhBl1wk6KB3u5llgxoBKjIDST1PwKhmwXyNQ27DlhjYtXwOB+J9tiKVeR8mBV8r/QhGNJvdJ8sXoIkeKz9eaOo4GLcZW+j4ArtWs7EuSskmOpS16lga+q7M2oMBMvAPv1cVXXRtFRNUUH1jb4Tl4P3w/DKSiS7aHWr458i42cgzV+COrSAuO6ycwCHEgSJhHLYaOZw5+SqaNE1ej/VxY3kOpRRhACXJxeA11gMcH6LeSDN2IJ3oIF0gx+Q5EkTVYa7Ybl+DoLjo7pEJtfjQVXApDWGDuqKKwOAWASdyqoeVZ09h/lEiJl576jRGjyyhTyfyxMwOQldksSVWMw5RddDcIoxS6cQdSIfofbigQNAtFoei39OHv2lBILuCtylDHLMRDsi1HiwXICfIe9pdKyHzsRqCLC3rPbFJPjtKwFkQS8H7xhaUw+RdtF7VmWM2ADidKBS6AJGnDfQulBA9SMCH35PBKx6qLxNmSU93ISf6LLg3DDk41BdJ0k30yzkkZsjfPvkn78Ijn/gG3CY5p6VXjiGXr0GmMSW+KxJAR5+fSKnBSoQbry4iV6ogQlndnWvzyE/u4vIFoo87doI4pA8F96LiwKVeT+XtEcSiBnTqXH391gH4AY/ZUXJcg4GGqeO3UF8hmr56M41MqoUOjep5aWsKp0oEYD+zNYl7R7eYe3sYcqj34qypIhXtIRY1sF4m1zqmmojR8fP/uHAc/7cT13CTagePTayh3Mhil3agAaRL7QZlWg/ly/B8gWkNRyIGW6xEJBs9W4NOAdTtZhZJxWbNGT1XRteRcYd2wN6XbzPQs9VL4MW6jo9PkVLcRi+Bg+ka6zoNQw6K6OICPY4w5FCKDFCl2qqFZBNdCpKiso26GcHOQIMVOPhf1//Pt6Xc9qVTP/SWl9t++OIf/60ot33+85/HF7/4RXzta197w3/7hpmkZ599Fk888QQee+wxHD58GJL0+pvyx3/8x2/4IP4mbAOPx6t9MmDMREmZaqjZeSDfZaWWpOygPIgwB+6jqQ77fwBIKBZW+xHWoTScPIcv27/bbuCRKFndx6UQR5M95ikUEX1wAARKLXVcCUXNxc3OMDzWRZt2iV1rR+EHHLJU23OnK+LhYg9Vi3xvUbPgBjxjKD6/FscHR/ddYQuajXUKCrOqi1vdGCvNmZ6IMX3ATBz7FCAN//a+fAdlygxtGhGMUv3CcKuYEVarNz0eY5F9Q7WuK2Ii1mU09HisgywtEb28PYkrrQTT/mwYGjKyD4MCP10UsdKP4hJlWn5ytoWvb5GV7rtHXAh8iPkkYTv2jCic13SXTEV7KEXA2oWnYwPIvI/V3lDTZTD2aFHwiasv9WpJKTZkwUOZelRN6i78kGMGoa+NVWgOdBiWih06yBcifeiSw/Qbf760AMOTWE7cgUwV4xEDJnXynUw2MUkjbm5WS3h0tIwbNKT25PwdRDWTdRVF4n30W3Gs7ZLnSRY87DQIcCnE27D7GooH1gEAgS0jDDlMHCFt2DfPH4MiudAp8DHaMSzXCzg+Tj6fyjdQpVlb+bEykidX2T1UQ8DvqEhRZhEBYLyQhH6MXD+/IUCgzIl0IMRscBk8DTyWZQdSqoc4ZawqV+cw/qN3YL9K3o9IoQkhPsD4IQL2/LYMqOS6K/fzGHw7AXloMvrVSRQ+ugHrAmXxch0EkxPgNwiDIekmxCwBlLFgD2E0CX6b/G7vyjxGjm6Co+88JyuQHk0BffIsqidN7HzpAEZ/gnaAvTAgwb0AQi+EVmiCS5PvFWMe2s9OIH8vaUsvP30MYSWDsQ9fpdcnxNoXiNfX5ImbiE/tonyZlLHOnroEcCFzET/40MvgJA8dGoEiyi5ae1mMnyH7thtxqNSd+9buGIqT28xzqtWNI1jjceZBUtaSUj34XR0rr5DvHpneZExhaWwXu1ujiGfI+3LmnvPoVdKo0dLl2MwmOtt5lKvkuBxfhNiNs5y4076AYpEwvB9LN5Ee38PadXJOuXwdouCj3CJscyLehaqbmBXJtbQtBStl8sx+YLyCVLaJzSUaers5jYRisg7XUsSAJHrMYNfxRLxaLSGj7GsLh+PvOyZX8Web48gpZEycifVQjHVws06AsRvwOJbbQ5JGnkRlGzp95+/O1jCfTuD/uDZFzi9D9JxDU1wAmEs20aZSgJnoADPpGnTaOGJ6+4x/eRDByXwZXpCF6e9bkPxg++vb7rrrLvzMz/zMm/rbNwySkskkPvaxj72pL/ubvFkBh384TQbB6eQOvrExgQx92V5uxPEg9Tn5l0s+/tGEx0wMK2YEk7Eu+vQF6dgqCqqDbQpAxnUDIheyF+gXxqJ4mcyXOJk2UbU0CPxrGAvBx0kaS/Eq7UgbUJYmJrkMMORVDxt9hfkxTUcD3GjHWdDuUFCtUyr+/aMWeC5keqgw5JBXho7iIvKqw4DLbLqO+kDHwB92lUmIyy70oWDUF1hwbOBI9LhpGa+bwMFUg7Eyx9Md2mlH9T6q/TrhseOLWKGDWFKxoUsuY4ceHt3Gl1YncDRJGArDE9F2ePzIVBsAYcfuyZHzn0w28N3NSZygLukR0UXFjGCO6iRMT4LhSqzLjkOIjqOwsuDXNrOsZGp4IvG+oply7x+rIq7ul9TckMO43se3tsmq8sFiHS/XCVibjxlw+3Ek6OBbGUQxHm/j4tYUuU+xPjKRPjPyvF4v4J7JVSTiNGy4F8VL9LP3zy6h34mxnKu1rTFIgo+QgkTbUtDtR5kO6YXNabxz6Pxdz8A2NfzHP/woAOBTh68jHe2htUmOuTWIwnQlaLS7Z6NSxK1ODJpIJq+TUQMRaoDZ2M1jZ20cB+4hreShL8DpRFGj+5qIX0Hg8/CqVHB/PAVllWh9+s+NQD9WRvNZ0qY+GETQuj6D1OI6AOLk7N0OwNHnR8r30Lowh9QZUo4KXRHms5R1m6zDqC9ilybRz//kZaBnQUxSzdalA8iPrQMSGdakyR5CgzKFswOEKz1ApOGwh1dhvyKgQfdVevAKMJWFe5lcj71LBzH2s1UEtwgocDpj0Erk+bCW0rCaCeguuS8cL+HipeO4h4K3WLYFTvSx9mUSrpkuVTH/TqLBal2bRauWRpTqlyKFJjjVB09Zl+atKWjxffNDTvCRzDVRuUokDrmDa6hSgJWJ9BG4IsmrAzA9s47oWBVrFBSVprdg9XQoFFBcu3oYhw+RYF3PlTA2tQWbdqitLJFS2LD82qORK0OBdYSzUBrbxStXSOdcNtrF5dsE2ORiHVxancdR6ppdLhcgiR4zULXpAuDKGmnbNz0JOtX7JTUD3710CnP0PVzuJFAKeGZcu95Jwa3n2WLPD3icG91En5b2lttpTNCS13K1iOOpHivF1cwI1nbHkKdM/TBrbbivl6o53F+ixrSbWdi+gPeNkmt/q6tj4CqYowsWSfCw2UmzBVxR7+EPbs/hWJL8bPkCspThPpCu4UK1hEOpBgz/bexue4s1SfhbUio0TRP/4T/8B4yNjb2pv3/TZpJ/W7YhVfmfFn4cUTq4bhsR9Dwex6gG4aVaArJALtO9eQIAhmUugQvQslWWESbyITKRPs5XyCo8CDkkZRcnqPniajOHGhXaSlwIN+RYzXy1FyOp1XRl1HElGJ6Aw7QkIvABHqcCx7tybbRsBWPUrl8RXTi+iC4dkAAi4h5qlKqmBj/kcIJGCWy8JtNI4EKkNYPZ+QNkAN6mq6S0Rlr+h6aPmuhimbIsMbqPIcAqRgyUBzorCaU1A6Lgs5fX8UUMHIV1gozFOqw9/mYngQPxff3WQr4MUfCZp8qfbI5gOuqwVeTB3B7TI1zdG8U75m6j24+ya5VKtfHSbdLdJfEBdMlBi2obNvs6PnL4KrZp11k62sMm7ZgpG1GcKO7ApqvZAe1UzFHm6KXtSRzJVhh7lku1WAvzjTvzmB7ZhUFBcnF8F6LiMEHypfUZTKb2Ra+xyACaaiFGnX5vLs2xdmfLUrHw7udZsGp0qozzjz2Iu//unwMAGs8cgGMqePLaMXpf9rssF+ZWYBkaKnVyTpcrI/joXS+iUiaAtFCqQJA8Bk5k3YQUM1hpZvvqAcz/MJnY7dU4lNMh0+fAMGHf/TBe+Wly3878AQ/1+ccQTE6x58eeJoaH2oVvwhufg5slv9Ne+XOE8QTg7LOLwa0WbBpppF17HJxjwzz5LvpLH+qffwkAwKV0BMUSuAEp1ViL74BcehT8t36F/Hz8Uaz9dBlz/448i0K/he5/Jtcj/jMavPQIpDIBX/zWJvxdjnTmgWS12Z/4N+A4um5c+SqJLqFmlML5SwgXyDnwu7sIew446hQf7LlwKkmINI9NiDmABITUNLZ7cwJLNwmwOXT2VSjZDkLKUovZPvq3RhnzJufa4IQAfIK8V9ZKBhwXMrao/PJh5BcJq3fj2TM48p5nUblAynwcF2J7t4TbDfJMf/jBp9Es55lFwp2LR5DNkEmf5wOo0QHrHDSqadgDlemX9u5ModLI4NCxG2zfZjcKh5brCodXsHeNALdI3EB1t8A6K7PxDnghQI02TWRiXQbUAMBxZNyh5ruHxjbhBwJeppYhC5kqGkaMJRY0jBhEwUeKPtc2bbUf+qzVzAgWaZdp04hhux9jC7ipZAMdK4I9ygAfzFbQNnWs07ErLjn4yhZhkv/ZiVWIgo87NOuw70oYj3XZgi5DzWP3KLNUMyNIyDZb0PVcmTHR15ppnC3swXRlDHwXP3zpy29Lue0PT/wwa5h5K7aB7+ITl7/0fVVuS6VSr5MBhWGIXq+HSCSC3//938eHP/zhN7zPNwWSPM/Dk08+iZWVFXzqU59CLBbD7u4u4vE4otHoGz6Iv47ttT5Jd+7cwb+Z+bsYi5AH3g9JaelyizrGxlxWHimbMnQxwI5JGJ3DCQt7powFGtMg8QG+U07iIC0vFDQTDVtBx9kn7cZoWUvifaz0oxilK52qpaDpCNikjsEP5G0EABN2r/QVnEiR71EEDx3ahgoAX98BfmJ6nw0qmwoGPo+n6gSA/dQU0H1NGr0mBMxYUuED+CGHFRqUORaxsZCu48U9whRYPgc74Bjl7QccJqNk0EvKDq63o5jUhyJmE11HZoJqXXLRsBWcpAPZd7bHcSzVYRomAJilLMor9SSKmsso7Q/OLuNSeYx5O3Vdkem3AGA62cCzlLbXRR9ewDFmqEwz5IZuu6ZPssjylDkpDzSsGRLuz7cBEG3Z8B6GIQdN9FgZ9Fi2gr1+nLFh8+kavEDAOs1q4rn9UGI35JBWbChUB9F1FMyka1htkjJGXLahii7WKAA9kKrD9UUmgt3uJZjPy2SqgUyqzTRJfsCjb2nsu/KJNnR9gLVdMuF0bA3bVJjrh8CJbI19NqX3UcjXWCaaaWj4g8sn8KE5AhoMS8X0+DauLBPG5/DUKgy6r1ypAl7ykXqETKD9FzIQFBc7NwgzUFpYg366hbBNAIW5modMdXTPfe1duO8TfwafZpNJ43089ZsfwvGjhPHSR2p49s8fxgMfJ15Py0+cw8y5K/seQ7YEn3Z66ff30PzTIpuoE2NV0mm2QS0zpkPY19V9VqrUg1+nESULPJwrAoT3kedF2NmEe4MDT7VyADBYLyJ6nJb59lQIJ3VgnbBHwUAEH/PYZxEAXo2W1LsRrFw+hLkzpLzGU/A5vNbdtRIzmmzfnIYS78OnuqJIoQmrnoTZJfvqteMYObgKkR7XygsnMDa/DiXbBgCsvXwM0rDr8kMvY+Vrd2PkIAFNe3emMHp0CcYeYTW318cxPruBrRUCsge2ghR9115en8FEvM0aCg4uLKHTSCE7Rt5TZ6DB9wRYFOwvb48hHd0XSedzdXTpc5nKNtHvxGDSxV+rH8NGJ8UWESdGN+EHPGQ63uzUs4jRhWHDiEGXbXYct5o5lOhCCyCs7nSsixFqiup64uuYaF21UKOgR1csFh8FAI/vjOLd45vYpMBmra9jQjdZ/qUmuWzhU+slsNROMZnASj9KOlPpeClxIXgOGKNaKtMToQgexulx3WnkWXfbVjeJsVgHN5qk3PbPV3/7ByDpbdo+97nPve5nnueRy+Vw1113IZVK/Xf+6i/f3jBI2tjYwHvf+15sbm7Ctm3cuXMHMzMz+Mf/+B/Dsiz8xm/8xps6kL+ubfiA/drcT2GUgqQb7Tg4DvComDSrutjoExbl3nwbO4MIGnSQO5bq4OlKEocS5OW63FJxJjPAjTYZXCajDtKyw4S7XVdGgtK95xtxjEdcaK/xY2o7+w/5za6ER4pdVroLQDQ+AJBSPOiix8prV1pRlDSX5RTdbMdR0mwWeRIAiAgBY62ajsI8hPyAhx9yr4v4kAUfdTro3elKWEg4yNEBZDTeYaxT1YzAD3jcpLEkR5IDVooEiH/IRi/OvEs6jkKdb/cjToYt/SOai7lEG3Xq9D2dbKBqxLFOAdVKX0LZDPCpaTIBm56IBmXO5uIdyILHjCctT8SNdgLz8WFIbgSjusFAw9e3kvj7ixu4SVfdquAz/ZLEhSjpPZQNssp0qB5rkpa1Fka2sV3Lo0Vz8yTexwoVtBY1EwIfwqfPjiZ6GE81sEmdeS1PgBMIuNgk5/zxmS0stTLMK+vH7noJMgVyzWoWpbkNfPXbjwIAHly8hn4/isIYEZfubo5C1wcI/P1JY+IsAR/XnzxH7tUYmfR77Tg6vRgTzOoxA46lMB+cO9cXkEu3UBt21iU62KRs6MLMGnxPQGqCfG/oCZDiBqQCuR68TtLtPQqEAECeIJOPtZQjPkLUF8ncKEBO9dBdIwB8bXUK4+M72KHO3yd/7Dvw6yrEIgHdYQD4VXKPh5ogMU32BQkI56fAV/fDVO2rMuQR8t3BiUUIW+vkWn15HsV7rsH9AIkWUS48BeeWDKlENUm5KPx1cx/MPZAEt7MLb5uWEBMWOJ1qkgYB3HKcsaOcEMBpxeBSs0RB9CDFDbTWCCDTEn0Y1N1eT/QgRiyIKnlHWhslFO66DqeaBACo0w1c/q+PYv4YCea98+ohLJy8zkwfd1cnUJwkYDVSaKC/nWfu3KLkUpE3GdI7lQw8X0SGmjr26immSZJVC7zkY+U2Abou7WCdHifltmYzhXisB4Uu6CwjAstWEKPGjb4nQKWNH7zg44XLJ1jn5E49h7qpY47mmjX7MSQjBlsouAHPAEVEttEwYmwhVDUjUPj91nnLF7CQajDtUKWXwEyuwrryepbGrAY4LsR6J8VAUMtWMZdssuvx1fVRfOrAKrp0fNk1YqwCkNQG2O0lmM3JXKyP1Z7OOlofKO1hNFtHncb2GI4KP+BZvmUm1mV5cy0rgiutBA4nuxj4Dv7u9S+8LSDpi8f/zlsOkj756h99X4Gk78X2hjVJv/ALv4AzZ87g1VdfRSaTYf/+sY99DJ/5zGfe0oN7O7eJeBe+R14QK+AwFnFQoZEeKh+ALpJxoZFAw+YwS1eVG30dB+I2VnrUUZlmVN1NfU9utONQ+YB1lQ18HgVaq0/LPnsJAcJ2bA8kuBS27pk++q7EfJS6roRNGmEiCwLudGXcR/PEjqd7NIuIHFdK9iALPlb6ZPAZ1QJkZJ85cnsBjwplbBq2gJmYjSutJP2Zx/vGqtik4Gw25iIhuczriesl0KEaK4ELsWfJmKJBoF1HQlxyWMSJ5XPIqyTrDCBgBdgvz5UiA9zukhOej3mIqwNWigtCDmnNwBXq/fRgoQ1V9NCh5bmapWCRtvgLXIDHywU8UiID8+N7acSlEKkhKLRVbPajjBH8qQM7jDEEgJotI0evc0YbQBR8GN5QrG8jpdj40joBOg+ZEWS1AWOawpBj4NQNeGz2dbRdst+iSrRRw3s+mWzC9UU2OFf6MRxM19gzwAs+arQkpusGjEYSZ6jWwzB0iKLHTPsEPkAYcLiyOQ0AcHweDVriqBkxHJteQUCvcxhyOHDqGnrUfbnfjUFRbBj0Phm2is72GI4fJpPz2uok8/6SFAfJ8Sa0c1R/cUHB1qVFFGaIEHfQTKDw4TXsfWmKnPPZGzCuUR+czRHkF9aw/hLRyYwursCqJ5B5gDBYnUYKkWQPU8o6AIATOaw9exJzHybi45tffgDzD5wn10Z1wN09hdp/ltg55UergEkmKndLhVlNsUlRPB6g/xwBfcV3XAV4Ao4AIGzZkI+ICKlpJXoDCDNRDL5Dc72qVQSdAI3rpAwU+AJKf4fcB05xwTU8FociZ7qQXsNIdfeySCf6WKMRHmcXnoWWaZN7plvobxahlYjmxr4zhdCUoS2S57j9/BSOPPoCmrfItTx45gp8R2JlMVWzWJehsZuDILuIUL2kN1Ahqg4zvYymuhh0o6jQKBLLVpCnYmtBdiFFbKZBsgcq9GSPWUaMzWygsVtAZ4/sa6+TAo8QI3S82m1mGHCRRQ8zuQratAni5KlXYTQTeJy60Eu8j91+HMdHyPNS7SSZ2Wou2YbjiXiRMsIzsR62jSi69P3hOOB8LY8p6jkVlRz0Te11MUDD57Q80FG1FJykC7KkYsF0ZVa+f7jYxFory7Iwc4qDLB2XeNr9O/Bo+Hi0C4kPmFdaz1ExMFV4dPwsG1EkFRtF+l5bjow+PaYgBM5kG9g1ojD9vx26nv+ZtzfV3fbcc89BluXX/fvk5CR2dnbesgN727eQYynvi/EBETnTwdbwBByI77M9C3GH+V/oogfHF3BfgbyY/2U5hRcbIt5boj5KERu66OJFKgLuusBGn5RpUkqIg3EDt7rke3kQ5ik5TKbWZVxqapilQbsLiQ50cVhO4ZBXbVQp25OWHXQcBeLQuybg0XVkHKBgbjRC2s6Hq19V8NGjInA7IC2sw4iPgsrhYj3DqGZeBNKqidt0Ai5F9uNNVvpk5RcfevXsavi4zmFYFr6/WEdloDOhshvwWEg2WfZd1dTw6RnKOngCqv0480Ip9xNwfAF5ley7ZasYk3qMeTqXbcGiQMbyRZzLthmNfzptICHbLE/pOHXZHbYOV4wYeC5koCkmgrmVX2qmcSDeY+UCVfTRsFTcnyf7HvgCMZcbtu03swycZiMmTE9EzyNg8FRhFz1bY8CuNYgio/cwSsXoliND4AMWFnr+xiEkhw7C8R5qlRwLlt3tpHBkYp1NRoVsHbwQ7GujIsbromM2yyWmp0pF+ghvT0OjbuXReA/9boyxARPFPTiOjOu3iHZmNFtDIUvOr9NIYmtjDCePE4ARuDpK8xuorBBTvvFz1+BvOyicJgDL72nQDxIGq19LobU2irkPENDj1aPQCn10XiYloMxoBVLMgEXfAfNmFuPHbiM0yXkURsuQpgl43fjSCYy615B7iPpZ3c4CW3UgRT10ph0o/R4E6jPGXb0N/Rh1ka9LEEd8uHfIe8kpIXh3AD5Prm3YtMHpPvQfIder/XslxD6TgHyFTKKC6MFfJ9dq8+lTGDt1EwrtMnMbcYhRk4GTwtkbCF0RR09cAwAYe1nWeq9EB4hNluE0yGcjUQO8bsOjxq7RqT04jTgrc6WTffh7GZRvEsYnP7sJ7SgFRa/IsLtRhE1yrSK5FnavzyFJsw7tgUoALu1C3NkeYaLwzaVpqIoNn076U6evoXpjBi9QwP2jh5ZQa6VY+crxBZxauI1X75DnI6aYMOgzrcpd6PoA310lpVqOC6FILh6mnkq2paDeSuEmNZCMSQ7THPFcgHy6iQxlmQQ+wJjeZ/YaT5Zz+Mj0BitHt00dmmJjjbrMtx0F07Q5Yy7ZhNPIsbFpuZuCJgQ4RBsf+raKfLSJrEaej2f2itihkSWaGGAqauCjs6vsOG41s8hrFHDzPgPfADAS7cHzBbSo3immmuz3PEdCbmu2DOv1qV3f0y2g/72V+/vB9iZAUhAEf6Fr5fb2NmKx2FtyUH8d2+VGGrNRmhge8MiqJpZo2KMqBKzMNRm1IfM+dimgGo+Q1cY6pX/vzoaYjpnMY8dwifnh+2gmkuWJzMunZcto2AoyNBqjFDGJaJyKR5+sCviHByu4UCOr/8+vZhGn2PRg3MWEZuJrW2Tw/cQkAXBLNKbkUlPEQwWL6X16joxv7uo4kiL3Lil5zLupYkTRsTVW8pmO9WF4AkYp1d5xJewaUUxSU8MXa2l0XTL5TOkecqqNCUqfPxrw2DM15NX9kpsb8KjR8tzx3B6qRpyxYwnZxscvfwEA8O/nP4N5rYU0Lfvt9hJIKRYLB46IHmTBwxTVPxmexEqGEZH4Jw1jFeKyg7n8Hl6lWW5fW5tCXArw8BhpAf/K6jSOpXo4QrVSAh8wADmdrqPejzNt0M1OAknJY6zfQrIN05NY2/+43mdBspYj4+zEGs7Qfa3XCrB8kWmwVCGAIrrYo744CcXCeKrBVvgdQ0echszu7hVwtVrCxx9+kjwfjSQE0UOCtm23aiRKJCqR6zH0uAGAXl9HIt7FgDJ3zU4cX7hyDB+YoXmE4zvguBCWQe5LrZHGsfteQe0pElPhBwLz0Om3Exgd24W3SZ7L7m4OxQ8uQd4mjJdYMuHefR+kF58lPx+OIkiTzqdiYgmQJUAlC4Og7INTecQ/ToOFL1fAqT7SVJjsGyp4xQWfIO9P6idduCkiAp/ovgTwAFcg+/KvSOCiIoKRUXbe8oyEUCUTPXf7KvluAGIihD+5CEknDtPGgz8D7fpjwAplh/I6rLPvgrRHGK7kA7dgf7WDnTUiij/yU8/B36UhzffRLr+h+Do+APgAq7eIkPn44iZCn4eaJ/dJTBrgdDLlWEs5cLIHbYbcbynZZyVIABBzfax8927o9BnwDRVqsYH0UBujm6wEOGgmEB+rMGPOQS2Ffl9HkWqUZFdk7BIAzKW6DLxmWgkkRitM+xTYEgqHV/DJAmG4PEuGH/CYGiHPlKQ4uHJnAQ88TIKIt27MY2yRXKvWZgmJUg2foJ227WYKPBcw0MDxIcZGysxsEgCiGv3ekMfabomNlxIfoBRvs6YJTQzRd1QGfDKRPvY6KSzkyXu70cwhppB9cVyI4/kynt8lC6FzxTJE3sc2NabkEGIm3sPmFnl+Tmea2KIgZy7RxkY3wfzNFMnFfLLJWKrb7SQKsQ5+5w551o6nXGQUB5ZP/n4m5JhFiBtyUPgAZ7J1DHwX2MTbsv3Acft7s71hTdInP/lJJBIJ/OZv/iZisRiuXLmCXC6Hj3zkI5iYmPiepvF+L7ZhPfeXJ34Ghkte4u90axhDCu8bIQPbpiHjLlo+cwMe20aE5WkBZJK8Re3sX6rzeP9r/IimY13sGlEWfzEZdZgpoeEJKGoWmkN/DVNCSvZxkIqPa5aGli1jlA6YS70oRoYmcyGHhOwwD6Up3cSFZgQzNH19WM6aG7aWOzIMT2TaoPONFPMTadgiKhaHU2kCiqKSC5n3GbO2YUg4GCfRHAAgCwETRF9p60jKARxKK0/oFi41NZzLGvQciAYpQq/Xrqng/uIe0xFUjTiaVFcUEYhY+nyD7PuDY6SU2KY0dssRkZA9JChrJQs+s1YYi/aw0k1ginb7rfXimIx1mei97SiQeZ9pluqWirxmIkUH2KvNDBN9AwTMDs9/15TwRLuJAzIZXB8qWBiP9pCkK9I/WZ/EYWpa6IccKpaCRybWAQAmPb4h8PF8AYrkYpkmpq/1YkjKLg5RsHarXkCasmGLY5u4sTWJxbH9UVaLmNjYJgN131FRTLQQp6W+q+vTOEiT3fuDCHTNhD20pjB0vOeVC7j+QQIaq400Jia2mYljs54BzweQh67r8T5jHQKfh21EwNPVfPbuW2hfnEVsnnyXtZtF5GMygudIqVNIm+DiBEAEk1PA5RXww0QYnoOzpsOmrMtwgh+Wq9y+BjXbZlEk5vUMZMrYCDnAuJxljE0Y8sg+eAf2vY+QfXz7cfA6EJp0ck6IgEYWJGE0Bq7dRtihE2ohCVg2Ok8QTVp0Zhd80kV4mIA7vloGPB/eEnluOdGHUCTn33l+DPpEBZxCSzG3xyFFbBi0bT73wE14lQgEyhbWXlxE5jABLvWrs8iduYX6RfI9aszAxp0ZFKm7v2VoECUPuaMEgPTWRhAGHLq0FD526ibqNwkITE7uwjcV1Gg5bfTYbWxfPgid3jc5YmFjeQopGokjiB5adD+dgY7Dh25hQAXjsmojCHjm3j3UuQ273VqbJRiGjihdKFnmvjdcMttErVzAOI1aMVtxVHcLGND3+rntCbxn/jYr/VqOjA2q0RtPNnBpbxRZ1lARgcwHmKD6Pzfg4fgiyzPc7iYxm6nhOjV1dIJ9+UIp3sZmO83cvCXBx1orgxTd97ADeDj21IwYonRMq5sReAHPGk6Sio0TE2u4TQGX4crQJYf53e2ZGlTBZ/YDli8ypj2jOBiJ9rDVi7+t2W2fP/aJt1yT9Kkrf/g/vSbpDYOk3d1dPPzwwxAEAUtLSzhz5gyWlpaQzWbx9NNPI5/Pf6+O9XuyDR+w/3XqM5iKkEuhiS78kGei4IxiMw3OwBNwpS3h/aNtAMBSN4a86mCKMinP7RWwmOxhklrj1/txNCyN0ccCF7AOpLTiQOZ99KjW53C2gvVOGjH6Eq/3Y3B8HtN0ElzpRaFTsFHUTBSjHVyig8WuKeFYqgd9KFqk3zm8u01HQUaxmYA8BMdWZyIfwPEFVn9XRQ+GK6NFz78UMbDRj8GlE6rEh4xVqdkC5mMWG6gMT0JKsdi+N/oxjEQMpmca1vCH9HndjLCuup7H4+FiHddaZOV3KltD3Yyw0l1MIu7Sw4FsNNbGMh1sAeK6PdQfBCGHqGwzMzhV8NGwZUxT4Wkp3kbXjOCbOwSsnE53mV+V4wt4pRHFw3RyjisWGmaEtfs2bBU3OxEUqZHnXLzLPJRU0YPM++znuXQNsugxsOT6IkTBZ2UxP+Ahix7SFNxtNnIMfCmSC02x8Sc0I+xAoovpTJWJz2O6AVH00aATn+cLLFvq2NQqtisFbNDzP5CpwnRlNGnr9NkDt1CtZZGMk0E+mujh8s1FLNJYk14vhtSQsWqkEI3293O/dBOxu2uwru53KEo/NA5hhXrwzB+C8BJlWwIOXj3KTB35ER2wHBivkHLJypWDyGYb0NMEoPbqKeQPr0AaJ58fXCvCpqW49KObaH53AhJdKGilOoSihcENMuYonxqBuLEE5zK5tm5Ph/4odcpfbcHazCFyktxTf2YenO8ilCiIklUIL59n3XDCPVkEl3f3BdUPifAvkWPkdRuda9NMjG0ONIwdvfM6F3Ex3UeFBu9q8R40yioJERviZAB/hzxrtUsHUHzfLTSfJMCHFz3IsQFEyuK6hobubh6ZedId5zsSrr9A/JeOP/oCatdnIFFW1uxHkJ3Zhke9j3ZXJ9DuRzGSJ6xVNNXF8xdJCO9kpobSWBkpGo+y+fQp7FZz0CmgGB3bhe8J6FNm2nFkJFNttOmzlh+poEWjiVK5JvZ2iowN1VJdhJ6A7eUp8r3RPhxHxu9cJhqlHzt8A01aMr7ZyCOjWq9zpDc9kS3+Hh3bgR/w7P1oGVGIvI+NDvnuC80oShp5Dx+ZWMfVyghz2D4+tgnLkVGlMoI7nSQOpRoMJH1jYwLvo5qsrW4SquCz8UMVPBTjbXh0rNnpJpFULFis/ChiNN5iRpVRycEonQNu1AtYSNfwSqUEK3Dwy2v/37cFJP3+0U8gIsh/9R/8/7kNfAefvvoDkPSmLABM08QXvvAFXLx4EUEQ4NSpU/ixH/sxaJr2V//x37DttZ0BGZVciuV2GuprhLsAkKGDx2ZfhxtymKOTLUDa3IeBt27IYXsg4wj1TJF5Hzc7cRTVYUCuyOJOipEB2raCGl29FVSbMVAAWUVlXzOAmJ6EMl3ByXyAhWSbTcYxycGrzRRkOtGXqDZmSGOX9D4sT8SrzSQA4EC8jzt0FXmGahiGA4Qs+NjoxVkXnh9y2DYiUGlnTEp2mB1A3xORlm28NqHGo91yANC05dcdZ1y2oUkO6q8Jmx0aT04nG9BVC2XaWi8LHgNTACkLNmyV6Z8k3mffqwg+opLNfJCGHktD2r5vaUjqfba/yzsTePTkRbxynQSpVgY6u/bHchXUjBgbbKtmhMWeAMBEooXdXgKHaTfPViOHqExtHUQPVyojzKtlPlsBx4XQqC6k2iLC4iO0Bb62XcJapYSJLJlgXE9kHkrJeBexZBePXyST4r0LN5Ge2kX5NplQx47egdOJot8g97TZTOHr1Ln406fOIwx5WBToyrIDy1SZl83p+14GAGxfJyWiZKaFSKYDdZwcx96LRzD6PqopWU7CG6gshqT0kTuwzj4C9TrRGQXJNLjbq4yFCbQYQp5cy+BLt6AsmkCcAirHQRiNIYiRY+av3US4OIe1f0NA0+wnzsOvcBAyNNJjtIj+12mwbKkOIWsC84QN4wYGQp4H6HeZ9/4UIo//J6Bn0L8dYccBnge/tQkoVFybzcHLjUOsETaMr9cQRjT4BbJvLzsJftCGtEUyxQanfwiRl75I9qVqwNo2wh7tbouF4GQeEOhxPPgxNH/xFkr3keuHE9MIniGaOPG4RjLlFPJcBiOj4K6tghsh98W+wEE56iAYm6DXy4b/dB3+T5KuPPH3vwmOlueFxRhQa2GYiRS0gNDjWYceAPCKi94GWUjF57fAUfY4MCWIRY/9rXE5CwQ81FFSgneqKVjNOGLTNFhXc+A14ixqpb02isQEYb/kqRbqzxxE+sQSAKB2/iCUqAmTRrGkZ7YRuCIr3yxdOszK4tVOEsVkizGYANAz9NfF4yyXR9n4+uDcbVi2gu5g/xxXab7cXKoOgQ9Qo12pUdmG44tIUI3f0zvjOJuvYIS637+4NocpWiYfskwmXcw1TQ2a6CFPmaKBoyCfaKNNS2q7vQReqsdZzNH7x3dxjfqsTeh9mJ6IrUHkbY0l+QFI+u9vN2/exAc+8AGsrq7+1R/+v2w/MJOkD9hvH/5R8CF58a60dehiiCPJ/fLLkAmJSS4uN+M4SFuaY7IDRfBY27ofclAFDzWqO8qrFp7Yi7NuuKnofhv6q60YjiV72KEvfEZx4AQ89mhX3fF0G8vdOObi+8GaG3SwyKsm/l9rPfxwmoghT2VaCMGxMpgs+GjbCg7TNtyVVhbbAxUFugr3Ap614St8gD1TZZqjihnBXKLNzCOrpoaxaA9/skUGgYcLXXZ+Ch9gJt5GlTIUuujSMFgyYfAg3kkrVJMzGjEh8QGLNZH5gAkvg5BD35UZoxVXLBiOgi16zrroIaFYTASd1Qa4TY0mT+QquN3MYpSWEw1PQsvetzkYeCKm4x3GcPkhj6hk4yVqJvmuiXU8s00mppTiIK8NWKlu4Im40Y5jkXYVtW0FVVtmjuXFiMG6ZF7ZG4X8GlfftiMjJnoo6cO/VdF1ZeYovNlJIS7bDET2XAnvPkQEv0/fXkQhYmCSAqh6N4GtbpK1OB+fXkWrE8cOBZUHSjvYrJKVbSbWRTbTRJO29OuRAa5vTWKa7iuimRiYGp6lQt1PPfo4EYHTc9q+OYdr2wQwKIKPQ+MbGDtFhNl2M47YyV04a+S+CEkDHB+y0p0wocK5QpsC2jHETpcRGtTyoR5F/eY0Yvl97Ys+Woc3IOfvdKKIjNYQUKEz+AD9bWrTkOyDlzxoi2SSCwPAWU1i+woRE8989GWglAEXkO8K1lvw7ydWCNLNy2R/VE/plwH+RAGtLxBQnf4AmfCDTWovwIfw2zp4yugIB6LY/r0pAMDY+1+FV5XYMTqtGDrlHHKHyABs7ObAcQHkGHUsXxtF7gBhgtTTNsyXI+jQc1KiJgTRQ2SSfH9vZQyuqSBFS5mNW5PIHFpj39VcHWPXWVIcmP0IE98r0X0GCgCa6yOQFAcJqoe88Ow55s4eiZiIpduMlQMfwBuoTDCuxgwmBAdI99d6ucQWGbpisWDl/EgFjqlAkMgY1+/EIEkuc9qOJbowelHUWvs+NUMzSFV0oUoOE4gvtTIYj3VZp5jj83ACAeOxYXOHhJFkE+sNwtppkssWkTwXYqObZJ+NqSae2Z7AGNVKfWM7jh+fq2BAxzXLEzBKx56Bo2C7H2PNG7sDHafyZdyhTPVEtAs/5JnuaM9ScCZbwyplqQ5lqsyzbeh713Wlt9Un6feOfvItB0k/fvWLfytA0quvvopTp079hXrqv2p7w8Lt3/3d3/1Lf/8TP/ETb/gg/jq215pJAkTYzIEAjPeOldGyNLxYSwIA7sp1kKM6ka6j4GS6A5u+1JYngEO4Dwq4EAnFxggdjHZ7cSzEXUQpe9R1ZFa22exzGNVUTND2Vj/gcLMTx2yMttYKPhaSbXyDgpNz2QGL2VjrxfHPJwUkZLISSmkDXK4VUKCCyIRiQeZ9dF7j5eMGHDrUh2lMHzDdkhfwsAKehfTOxDvUVZz8PBbtoesoeEeOHGcADkX6PSnFhMAHyNMS0X+8lccvHd/EJqXDbV8gXXavAXoNW4VP951S9mNKGpaGnidiguqqVMmB5UnMv2kyU0OjF2fgLRXpY4b+7Y1GDicLu2wVORprIxcRcYuu7iyfR2Wgs0GwbSvQRBdztJTZNSMMjOqSAz/kmcGdIrpQhRg2aevwvSPbsFwZVdqxVx7oDCQdzdSQiBjYau3bY3gBj3yiDQCo7o2yaBSAlONEwUdkaJ7XScGm3laHcnuIaibLdXtxr4TJqIE5Klr93589g188exWHJsgErEUGMKmGotZLoNxOY65ENCWOI+NAcRd9alvQHUSgSC5G6bXt1VOwTBV9Cl6DgMcJWnqLpzrY2BhH43Ei6j52/yvoXy6xDDE+5oNLaAh7NLttzYFUJPewvTaKGMrwe9QyIm0gPbfJvIyGYbjDINq9WzMwmgmkJgnzIudb4Hbpw8IHUMbqQI5Mtp0/iaPfTGLmwyQ8l4tpcCYXIT3/DD0uHvwSAZxhOo3+N3jWSi+fAnw9jgh1N4csI5QV+I8SoTbnOZAuX0D5W6RkVhq5jdxBcj38Fg9O8mHvkIlDSXfRuLaAvEiYlORda0AQwloiE3l2dhtyqUXveARWO8aAi9WOIXpgG1tPEbYwWaxBS/TR3yRg1zY1CFELgx2yr0iyC3VoLPnKUYiiB4lqo8KAgxix8Nw3HwIAnDlzCYHPM+B71/ufwPnHHgQApHMNaJkOAio+dwwN337pLsxQO4rZ+VX82Tfeg6M0yy+/sAYtaqC6R8Bdx9ARp4uqbjOBWLILk4ZWO44Mx5GZy/bt1RmkXsPilrtJFspciLchCj42KOiZSbRwuZ7DiSw5jq6t4nojxsaqqXgbEc1En44BI4kWrlLJwemRLViexErsxxTSuBKhi4oPj4e42sggRa+HxIUMYOXjbbgBzzRKKdXEwFUwTUtopiuD40IcoNcnb+pwAwEpeo7LrSzupqHmfsCj7yiYTjZgeC7wxsmLH2xvcPsn/+Sf/KW/r9Vqf+nv/7LtDTNJ/1fXStd1MRgMIMsyIpEIms3mmz6Yv45tiML/9czfRZ2Gw57KdGF6IkZoHZxHyBKeW7aCriuiQFcLfVfCninjbI6sjDu2AssX2UudUS2ogsfq4Lpi4c/Wyer9QLwPyxcQoWWduOzgZjvJQnEfHN3CRjuNNAUkN5ppLNCIkoQ6wMt7IzhNX8zdXgJ9V2KGiCIXYjbRYr4eAFAd6Bih9PGT5SIO0JVuzxMREz32u6V2GnHZQZuWlxQ+QNORULfIgLqYGLDBYqubwsVG/HUO3I4vMCAYl224gYA4LUdt9BIY0fsoDN1pWxls09WZJnqYTzVwtU4G4nfO38J6tciYo54rIa8NmHhyNN6CS8Hp1NgOfuuFu3GcalvGkw1Uegns0n2P6X1EZBupoXB9ZwJx2UH6NSngi5R1O783irxmMl1ZaxBFKtLHq7SFeSbRQjJiMK8WVXKYdiGbbOOJpYN4YJZMmKLgwbRUjEwQsHL9xkGMZGvYooyP5UnguZCVE06NbLF9Tc+sY3VlGqMlGrvQTCEWNVjkSWliB1quhavPnSHXPtZDQIXpti1jfHYDMQo2AluC04miskrZIdWGrNpoNWinmCegMFpmnVDRmV1Ye7QjzZYRPbmNoEmuOyf54GIhhijaP3US4tIN2Ncpu7howl0mz450wIW/7bNOMCFrAS7AjSUBAN7NAfi7RsCtEKAXGiD0I62y8hkBQYOAVaecgnpPgDBKrhW3sQ3kUnDOUyH/KQHO7FHINy+S494dAJR14RMhwvERdL9MjiNxbhNhIQNnnoATqbIKbmCg82Xq5n1uA2GPQ/gO4u+Ep66DP0GDUkfnIbbKCJ6hnXF8CL+nQXwvmazhuXBLcxC/9jj57kNJcAPyDvuTcxAqNDQXAFodhKUiuC1S1kIsgiCbA79FPuNtyhAnHNh3yHMsva8Irk2ey8G3JUTmy+xaYmCi93wWapa8A2KpD2slA3WS6iNfOIjUArnO4qIA77bHTDvrTx1gXk4AoE1WMVgpsQ69wJYQuCLrhuNjFuqvkMif5PQO5GM+mo+R80/dvQzzdh7qFB0jvnsa2akd9Gs0WLbQQEAlBvXtIgwjwt6P7fVx5AtVpoXiuBBaxESFBu9KoodksoM+ZaYtR8Yy1QWdmFjDwNRYif25nXGczldgML2gi2y8w2KONvtxxrT3LA0CH7AFWFS2YXsSG7dT0R4q7RQCkOcpItkwnH3xetdRUKALpaoRxe5Ax62uBCew8V/q//ltYZI+d+RH3nIm6Sev/dfvCyZJEAScOHHiv3uc/X4fFy9efFNM0ltSbltaWsLP/uzP4pd+6Zfwnve85390d2/rNnzAvnL6o2ibZPWfVk3UzQj+l5VvAwD+7yMfwgT1l7nVjeBctsVMEcf0Pl6uZ3BXjpQAmpYGO+BxvEAGPZ4PsNdJsck6IdtYo/liGcVBw5ZZSG2Kfu8KtR64J19F3Yyw0pYXcOhRk7WpqIm2I2OBpt7fbqdwIlfBNk2fj1E2ZNgebrgy4orFAEbZiDJDw/JAx6jeZy27fUdGLmKwlZ/tSVBEl03eAh8wFkUVPFi+yLxHrjezmIj2kaBdYzdbGSymGlimJaHrHRWfmN1g13+zk2IGl+PxNp7YGcFRmoN2qLSDO5URDF5j6hhV9ssJS60MY5nKAx0Z1WJ+RWHIoefKzEH3WKqFtq1ichhv4AuoDKIo0EyorV4CBbqvZytZHE32cJ562dxXIH8zPKeurRIvpCGjpViso6ZqEJ+nIbN0qVrCyXyZlRM6lgaBC5llQDrZweW1WWTocaSjPaYbCkIOmVgXS3SlPJmqIxnvYp3GxZRSTcQTXdaxFAT86wThAh8wH5d0tAdZ9KBSbZ0xiBCfHHpPJcmFLDtIjhKGY+PmHLv/Qy3J1DEizJZzbfCaC04iz0vocuDHdLT+nIDb5I+4aP/X/S6b5MlV+M19402OC2HTTrDAFaFk2+BpqUZIm7A305BorIlTTUE7TCb50AnQvTiJxPvI8+Hf6UPIBTCvk/dWeb8OyAq4AXV3/yMJ8aPkWQvuOQGhtguskUmRK8VhHX0H1JuEhUK3D39+EeHjpKQojgPm5QTUBfJec4kIwir1X4oJ+Py//lE8RH2AlIgJUXUQWyDAZvU751CY2kGPgoLUZJmdn5TroHd7HLHDpGPRrcRhNxKMHbry1F04dPZVCJQdEuIGOMlH5zpZWMUm95hbuRI3wIk+JFpuq96cgWHoMCkT2RnoOHbsOsrrhF2cPnWdveNyqQV7Nw2D6swE2UV5fQw5Kr7m+BCC7CKg4w0vBBAjFtZvEC+khXsvYucK0aD1+zom5tcYwO5V0qjXsuy5iWgmrm1N4bkquR5nMl2m7zuYqaGQaqJHm1l4PkAQ8HDoO9+1Iviz7TwW4mQce8/B6xCEAE/TZobxWIfJF3guRHUQxQHaKdq3NLy8V2JM/XpfR0ZxUKGly+PpFm7SjrRDqRYS6gDfpL5JZ3MNlI0oykNDYSHETKzHoommk01U+jHotOTIcyGzImgMouC4EGHIvS0dYsM57L8cfutB0k9f//4ASQcPHsQv//Iv49Of/vRf+PvLly/j9OnTb0+57S/a5ufn8a//9b/Gpz/9ady6deut2OXbvjmexCbJ7X4MquDjdw4Savr5Go+788NWTwGGJ+EofRG7VgT35GuMOZpONnChWsIFalqY10wIXACNllgmUw2EdDWyZ2qYihpsgm0MohC4EONUV9C2VaRUCzIVTDcslQmzNdFDXHZYSSglO3A8kXWk9V0J88kmJAoaIrKNxzYnkJTI5x8Y32A09VAaPay3T8S6SOl9FqURkcj3DB12TUfBCK37hyEH1xeYhuBgqgnb2xdAjkYM3GhmWTfcRyZ3sdNLMlG05Yvo0QHR7aTwQGmPTc4cFyKpDqAM9WCKib1+nBlmZlUTO/SYI6KHqGSzv60OohC4ALO0JLDej+FCQ8Y/pCvHjkU8mIYD+XiswyIGDidVyEKAvEqu1WxuD+v1PMtbMzwRi8kmsxPoOArQJ4PIRLKJpUaexZRMRA1sdtIs/HI2v8fiCwCg24siE+mznLwPHuhAoZqsa7Ui8ok2Hr6bBM3+n99+J+4b2cb8OJlg68006lvjiNGOwZHRMiuHCBQwyfS5W2vkMZfbQ6pIJv3GrTm4nshMLNf3SjBcGYvUnHR8bp1N7L1KBlrMwPoVwhwcePRF8EUV3sp+GYw3THRpt1Pi2gUkT+yvvdqXZnD7BtENnXrnc7CacWjUJdrYzkPK9xAMaNlnOwW7HUNIwZsy0kDQoSZ9CR6C7KL3HTKhRg+24azFcOFZoju6O/E4uHcfALdxhxzHx4vg2uR8fFkD57nw+zRmRBQhfe1bCGSa1/jgPRBffgHc7L4guLY8jhJlTiTVQkjdmIMKh0/9yh/h1u+cJcdoK5h44CJ4SrJP3n0FuxcOYXmbjAEPHF5lGXHG8ig8SwafJ8fFt100dguYOkLu6fF3PYf+ZpExgIONIiLjVejFBrvWsXHyDIe+ACFuoHGViu9HqlBacSyvEEB197uehllNsSgRXvIYg7P95En0+1EUx8lirr5TQDLVRq9NnttOL4bxyW3cukP2feLsJfRrKaRSbQBAfyfPysJhyGF3dYJdN14I0Dc1ZjY5odjoOTJ+dIGwq89tTyJCtYIdS4NXz+GZMuky/eHFm1iqlDCWJM9HWu/h4aIEi1pFXNucQlyxUKSMsCK6DCS1rQjmsxWm0ZMFH7PxHrMP0EUXhXibxaM4gYD7qb2GptiotFP48CyxMdhqZ8BzIe4uEDYso/dwu15AhL6bn706iv/HmRV8Y4WYfB5Ld7BJFzdJxUYQchiNtSF7Ln6wfe+306dP48KFC/9dkMRxHN4sH/SWgCSA0F27u7tv1e7e9k0WXTy9R17UE+ku0uoAf7BCJq6PjDexR7UuBzM17HQTbPJpWSrajoLTJdLp9J2NKZQ0m3WVNW0FGcWCOVwZvaaVHCAv7hp9qb2QQ0TwGMPjhzzatsra+BczVZY1JvM+QnBMhFg2VbRdCUepu2zH0lAxoijQwaQ6iOJkuoPROGEwLu+Nsnp71dQRkRzoEtmX4cowmjmWKF8fRKFJDkwKhAxHYeBCEV1EFQt/ukWu1ZHkALrosZViy5FwINFFlWphRMGHwIUYpYOg1cgzE8t7R3dhuxLTUfVNDbeaWRyjgDQWGWCjk0ZMJqAgF+uwUl1RtmF6EtMfbBoRHEs3WXp41ozgaMZnJnY9S4PpSUwf5Ac8cwWvmCoOpVpM8LnVyKFmaSyTLia5mCqWoVMhqix6rJX+y1ePY0wfMKuGsUQTumrhKtUKzUiE8s/kCVjpteNoG1EUaPebLDtwKIgqRQyEIQcpQn73o2degaoPWGI8x4coSS5sem177TjTHOmqBYEPkKUatnS0B0WxGZA5cvclVJcmWThuTDVxz4PP49kn7wMALJdH8fB7SLkoc2ADg0oGs3e9Su7hiI+w7kA8nAQAoNGBe+IeTPSfJz9PF4AtytjIPJI/4uLsxe8AALp3JhCb3iVlNwD+qoQw4MBRQCpPtSDlOggM8qzVLywg95NUz1avQz+yP8ZwhSQktHHX+5+gx2XByk5Amd4v+Q99kcTKBsLNJrizU+R7tSiERhvuKaKzQuDDO3cPhCdIxx6fETD+zotwH36I/P76K+AnyETtXA4R3AkxeoCU225eOoKJ+48AawSc8Y9OYiJ3HqUy6YzjNRshZWTkVBexB+oAT80hRwdIbdUYAEPAI35gE5xIxojIaA21K/Mo3EW6ITs3plgsiTLSgLWdZR5M5k4OWqqLI6ev0GvZhVzqQFoh10AudRBY5DgSvQi06ACJxXV6+gKU6AAc7ZTU43206ykcoA7UUtREZ2kayTQ1yFQc5otUXprEq5tTeODEZXKbKjkcPfsq00IFrojpVgo1ynIXNRPHqdbpytYk4oqFj8wTANXuR3FobJOF5XYHEUQlG3lqICvwAZqDKJrUmLJpalihzPyH52+jN4iwJpqkYsNw901fY6qJtWaW6a5+79YcPkEBlONKOF/P4RG64ChEO9gdRBChTHylm8QLtRgWE+TnEykOW60MHh4jZcLvbI1hjsoXitEuBC5Az9YweE238vd6C8GxBfhbtb/vl+2zn/0sbNv+7/7++PHjCII35yH+hsttX//611/3cxiGKJfL+PVf/3WMj4/jsccee1MH8te1vTbg1vT3Iz94hHhHiazmlttpXGyQF+9DE1U0LI0BmfP1DM5kG+zF1CUXjs/D8IaOsR7qlook7Xb67TUe//QgddMNiXlZhupiNnoJRCUXccpoSLyPABxutcjEllUt9r2kzZ5nDNaeqeFopoZdymh0HRk8F6JJhdpF1aYxHD77/JCGrlsqCtqAAY65BGnZH37WD3lcaiYQoYzWYrLLBI9tW8Xhwi6WqC7A9gVcaOp4pNhkfxuXLRYX8vTOOCyfxzwVTL9YjyOnkn0dS7Vg+wKjtM9NreLplXns0M4ny+dwNttGgWrFrtQKLDolLbtYzFRxh64Sr7QjOBCzYQ5dshMdPLaTxdEkuX6liIG2rSJG70tSHWCLMkXTyQYe2xzHuSyZEDqOgl1TRc8l+3qwVIXtiQyQNa0ISlECRuqDGEqxNq7VCOAei/YQhBzk15QBZdFj4MW0FTie+LrS1gQNGX3h+lHk9S7rItJVC7YrwaATyOGjN7B8a56B13I/jmOjZGUsCD7WKiWmqZgo7mFlZxQSXcE7noiZ0R1s0oXBSKYO25ERo8+ErNos5T3weUQiJip1UtaSJRfH/87j6N8k3Tz6gV1wMxlUfp88A4WHr8Mrk2eJkzzceeIcximg2Lg9g6lDS9AXCNgJDAmc5sHeJs+4oDoQkwYCm+qf+JAF5yozXdSfOoDMOwj48OsqqpcPIH+CgBNOcSEUOHiHTpB9XbwAjJJFRRjRwa+tAxq5Vu4dDtIhHvAo/R7REMST4CxqNtlsovWdMcQPknLdxtOnMPMZ8j3BahecHqD2NCn5CKKHzMdqCGvknjrrcTSXJ5A7RiZ+8AEGG8X9a1lqIKAB2cZeBp4rIXeOlPkCU4KxXkK3Sq5HcrSK7l4WWoyWs28cxF3vIfEwWxcOwbRUzJ8joOg7jz2KUwu3kZwk19aspeA5ErQEtSNJ9NHbIdeDF3wY7Ri+fJlosn78gadx584cY0eHTtUPnSL6rjDg0O/GWFjuys15lKhWTlIcdBop1s02Nr8OKWagensKAGDbCjxPxBYVZ4+l6yjTMa2QbGGjkWMs9kyiBUV00aYLJR5ANtrF41skxuZUto5stIvvrJNMvYXXGMDKgo9nKlnMxcg9vNiI4F0jTeYdBwDb/TgbQy1fZDoiP+DRsTW2MATI+zT828pAfx3gUfgAx/NlFo9SjPbY+OGGHNIUoJm+g39w6/fflnLbbx/+0be83Pa9Duf9ftjeMJP00Y9+9HU/cxyHXC6HRx55BJ/97GffquN627eUYqFD9St3F2rY7cdwgYpr90wJ9+b3W7iXuzp6HvXtKNaJHTzdD3mpZFzvkIlsPjbArikxLcCHSvuBtrc6cRxMdNnAlFJs6JLDRLw9V8RKX0JaHu5dZZoTXXLRdmTGhKh8gJV2mvkT8VwIgQvRpRO7ykswfR4zdLAd1Qe4Rs3w7srXYXoS1vrkBZP5OPLaAHW6WsuoFqZ0i7W1y7zPJv2WrcJyZPzxJjnmMxkfd2V7zHTNC3jsDNJQKAjIKQ7W+horP55KG1ikTNHVagkxyWVlT8chQvQFOsh3HRlXWwnEaUfJsVwF/WHYrRmh+iZyvu8s1al2ah/47gwCfHKWaC5sT8JKN84A6W4/juwwrNKVcSzVY235Hs3JK1Kd5iu1HN45vsFE4wW9hxZtaeYQ4oXdMdb95wc81npx3EdDam1XwsW9UWTppHBsfAO7jSxb7S6Mb6JJwchiaRvtfhRjo/vsya2VWVZCdQYaopqJGGW8OC5kTFIQ8JjIVhnjV65lcebMJeyskMlGklz8waWT+KEFUh63HRmqYuPyGikfLBR3MDpHAEK7nEWjlUKGNg3EUx1wER4a9dRBAGCrjuxx6ilzo8Ta1KPnqlj86NOoPn8IADC5uIzIfBk2jYZwOlGs3JzH+CQBhvGJMozlUabnKT10BTIFlKFFQIZ77/3kHF58FiMfvI7dbxCvq1iuhVihDDc7BQAQM3fgUQNIuw4oeRHiIrmn0ngX7uxZ5rEkLV0BNzAQ3CAMn5AKoKa74CPkWs98/DzCCm01z4novVSCQ8tNqbE2rBd4qKSiCF5xkVlYZ+COE31odNGwdf4QEuc24KwmyaXzBWQOr8JYJoxec6uEeK6J0fsJa9e5MYVIsgfPIu/msRNX4VOzyNICfaZa5N07PrsMJWKyjjVBdtHYy0Gneid5ogVvjXyPnh7A2svhR+4ipdzKTgmxyIB1Ug6fm9UVci2LuRp4LoRHWV9J9CBT+4C9rRGkMi1EKMBu7ebQ6c5Co6XcYdbgUBrQ6MXRpu+tbmrwA54JqC9VS5hPtvBqkzwf9xb2MHAUjNBGGdsTMbAVHE2T6+n4AjS6iIgpJg7EdDa2HEraKMY6eHyLlAKfrPr45OS+91q5p6FOFxxxyUVB7+ObWwT4p2Ufj0ytoknH4pRiY1YzmC5z14hh4Cg4kCPH/dTmFHPs3zWiGE82sNbMwsd+J+v3egtCjpUe36r9/WB7k9ltfxs3XfIwTXUD2WgXtYGOg3RSmE9wqJr7WoUD8T5UWk7Z6MVxKF2HSyfj7X4MEh9gSqfdb56IEc3FhQYtKeUsBorGIyaCkEOF/m1UctG2Vei07p1RLVxupfBggQ70r+ma0yUHPBfiSpNQ2HnVRTFiYJlqYdYNCSdTAxYXsphq4flKjpX94rKDCXqMLUuFGwh4qEQmCB5A3dKwRQfjobHm1TaZgN85Umcg6HJLhxvw+HsHaPaYrWK5G8UCzf3yAh666LGw4JVeBGdzDWYgCQB/ukZWhe+fWoPjiagP9jMAp6I95v0kcCHeO7mBG5S1+nZZxWcOkEGqacuYivWR1si1ulDLYi7exwIdfLc7afzMgQau0L/dNBQcThhMMF1v5uAH5B6bvoC8ZuIKnXwOJ/vY6EdwjjoXZ7UB9noJVjatmhGmsUqpFk7lK+hQgNmyVQhciB264gxAVppXW7T0EE2hZ6us/Pj80gJOUDZIklyMj5Sh0OdSjhno3jiMItWD6fkmKuUCy5uan1nDn54nOplz4+u4vjvGXIAFPsDXnnwQh2nQr2Gp+OiB20zI3e1HoccMvO/DhAnu7+Rx7RJpf79eL+AdUyuQ6GT09OUT+NipO8y7R4g5wHQJYp/cc3NLRGSGADvrWgJSpguFArnYfU0EVcIQAYCabePou58DH6PWDJdmkTy6Cp+Wp+zNNJQpWprdyCBaaECm4mvwxDBy5P2kzT9oAUENCDRyrd3pRUgOYVm8T5wC19xFYFBPrtFp4GvX4X7mI2RX/Rbs6XNQ4wQ0mF9tQjvRgb9LAUcsRNAh/+/vaNi+PYOp4wRghgEHQXMAmZbjGglEDpRZNMvaH53E5EMXAABT734FoQnmih2fLIOP2ZD75Pok8nW4pgpjmUzWgujBdyRUyuS5PfjOF+BQa5Ly7WlEEz0EdOJOT+5Cm6lisERK39XNEUzddRUiDd/2myqyxwm75TYSJLqGApvi+C5a1QxyVINTq+RwSNtBOku0UErUhDNQ4VMApqkWVOrA7m+MwbUlxHPkPt1YnsNWL4HTYwRk5zNNrJdLGKWByRvVAibo8367XoAmuqwLV+YD8AjxwMh+DuHX18fxkSnyTgxcBYajskUaz4Ws+3W5k8RsvIMGfffSso3nd8fYezsaiSMiulgbGqoW9tgiy/Qk+AHPopoemFjHzep+plxWM/CFlVE8WKAWEjTwtkvnhXtHtpn9yIjex/VqCXumCivYZ7G+11sYAm+l6+H/3A6K+9tbpkn6ft86tsyiR/qWBl1yGSvTsjTmvj0V7eF6O8lWNknZgSK6mKQTl+HK6DgK+3m7HwcvehA5MtEfze3hRWo6pos+Ng2NibFd6lQ99N7gEOJQwscunQRLkQGLSpmViRjyJI2OqJoRKKLHtDCL8QA1W8Z7x/bYccnC/lNv+QK+UyYv+DtLxDNpGJ2y3EkiLds4RwdIJxAw8ETMxoaxHSKjoe/JdXCnG0MQkklfFXwsJHosemVMNxDnfbZy3DU5yILPQFLNUnBPngzMm+00QnC40CD7Gk82cKeTQIwKiPdMGalukrmfvyMvYHMomI4a2DJ0xMT9zpU9M4Jt6tfUdmRmYAkApzMdGK6EgUs+v5CuoUsp/vV+DLYv4L00sqDSJ9EzLTr4qqKH56tpnKGt1k7AI6MSALHWTeBQpsYE5QupBiKyzczzrjfTOJJqYc8kovierSGpDZhIfmh+CQCmpSKRaaO+Q4NkJQ+HxjaRSLcBkDwty5GRoMxbq57GUQqCOoaO8UQLC0fIRN7eI5ETQ+8aSXJRbWTgUACqyg4Cn0f5KqFDcrObKNKOzWPnLhMfnRfuJs/LuZfhNmKMsZCLUTjPGpDnCZjTRj0IB8g9rJ0vQa6mkbqX6FfgSehenWQ6K212D0FHRWCQ44jPkMlxGOMRuCK4DLl2WqxH4jxq1DV6dhq4sgannCQ/+zzEqAl16WkAAN9rw71DYyb4pxEUS6ycJnbbCO9LQXrxawBItptUuQV+j37/GR/GSylEDhJANng1j8jd5DpjzcLU8VsQ4+Rn6YSKsNxH++kpAECk1EDn8hSiU+TdGz12GwHtkuJ1G5wWMtNHqdBFaAmQCuSeGnsZApxodxvHhbjy7Xfg0D2k7GXtZlnO3diJW3BacTTp89GlsSjDGJfJ09cR2BJc6uf0ynfuw72f/jMAwOZz0zBsFclxcox/9q1H8b53PQ67TSb6Vj+G0VwVEap/UvMtcOUMBNr4Ua/kYFEmWpaJcaRPS/snj13D2YiF6xeJfcJGIwcvEGBXye8nslVc3CLX6nBhF31LY6z9I1OreGl7Ekfo4kYSPTxYrDNTR1XwkZRtNp6YnoiSvl8iu9NJ4kiaPLcdW8O9I9vYor5JQcghpZpo0r/d6ibZgjShmLhcz+Ee6it2ZW8UY9Eu+x7HF/GekTb7nqhsQ1cs3KRl9Zlkg5ng7vbjUAQfRc2C6b99IOkH2/dme8Mg6a8ybXrt9mu/9mtvdPd/bVvV0hizkogY+Pr6GGv9rtv7dV6BC5FTHNbl4AQCVNnB5jAjTPSxZ6qovKbz43imgQfIGIByLwmFanvikgM74PFcdciqCPjweJ+9bMudBPKqzQCaJrrMJdvzBdQtDc9Wyfe8Z8QgMR505WMHPGNvgKEzbchKZlHZxsNFsl+JJ913e3RiF7kQTUdh/kwDT0TLkViG3FovigOJfZfs4+kmW83VLAU8FzIjyhdqSbxzpIo8nciPpSRs9eKsdT+lOMybRBF8rPdjOEojXaq9BKyAR44Ch6koGeBG6KCYlFxm4rnZ1zGmG+x8DU/CpqEhPyyh+RrmEm3cbKXY52fjPVysk8H3YKILj5aIcqqF9b7O7nHTVjETb+OVGpmEopKP0YjLXMQjQoDL1Nn63RMb+KPlaXxggqatx7pQFRvLVCtl+aT89mCJrG4HroxDxTIUehxRzWQRDa1uHGYvwtqjx8Z3UK/k8NJVMvncdfQq8pkmy25rG1HkqGllEPDYqOfx7EuEWbI8EQ+dvoBbt0kL93Y3iZRqIU+Zpu1mFpLkokRLbK3NEmJJwhTwioOvPPZuvPc4yWOz+hGopsKS68NoEu21JPLUcRp8gGCdvDtqLA4t34K3Q87B7UbgmioDEJwUor9ZYO3zTiMBbTYA36XmqxslqC0C9DhVAJ8OEDrUn+nJKtxubh+8OC7Kf7KA0gzRLIXZDMKPk843XHoefLPOPJZCAFy3A/RoqdJxIUR09nM4CKB+Yha4SCZrMWLBXyP3xdrNwulFIFO9m9Rtwd2KIzpBPnvzibuw+K7nIU6S52njiwfgUACRGysjOlFBi5a9slETvbUR6CNkoRAdr0A+wcG5PIxTCVEsVLFNwev48dss4Nc1VSjRAXrU5DQ7swU51YNB9UwAIKZ6CChrNTu1ge3vkuy2vqFDEV322UfPvQyrGUerRli4c488h8AV2e+ddQ1aqguTAqNIxESnQZ75RLINoxdlDuMvv3AWuXiH2V5MZ6vYaWWg0vep1YvhIC2xb7aySGsGK1Ut1QpYzNRY88atdhJR0YdDGXTTE3FidBPnKciSBR/PVsi7NR01kVMsdGg0keUJsD0JeTpe6I6CW60M5qltytVGBueKbXJ+noiY5DFGayrRQkS2kaOl3m+szONUZp8B/+5OAe8e26+qtK0Is3kZj/ag0q47w3/7uttCcMzH6a3a3w+2NwGSLl26hIsXL8LzPCwsEJ+MO3fuQBAEnDp1in2O476/LvCYbqDvkgGg2Y/hbLaLNmVtoqLP4i4sn+ShDcXFUclFGHJYowPV1baAj4zvC5udQIDABXi5Tn7/gfEabCoQD8BB4QP85BxZ+Wz1Y4jL+w7UcdkFz4UsPDYMOeSpANp0ZcwnmxA4MlCNxTpY7aQYaChqJi40EsjTji1Z8JFTHFa6ajsyxqgAeq2bwFi0h6xGXujb7TTmEm08vkuQ3X2FOjTRZ/qd2XiAMmW3VMGHxIvMyyivEXH56LAk1MqQbjn6vTmFaJvWaa3/RlvBe8fI+V1rpVBUbaYpAIDFRJcZUVYGUdRsGQfTQ2PKOAvdHTJoEfq3PVfGQyO7zDzyjzeyELk4MrTjZizWQdmI4YdoBMi37yzi3AiZqJtGDKYXY8zaSk/FwbSH05RZGc/UUGmnmOdULtZhOoftZhafmF9l97DaSWIk3cBMivytJibh+Dy69NkyPQlP3TrMzvehxWswKCi6WSsiGeshQVu4W400dH2AOZ66UesmOs0kGkOX8VQDBz74HADg6d/7EAQ+YBlYR8a2UN4eQY9OIHGZgNP540QwXH3mHpzfmMGp15hRllRamtvL4mMPPIM9mjY/c+Yatq8cwPS7SP6b+S0fuXtuwrlFDQBFH6FDnezrKcQWtliemFJsQh2rw6kkAQBOIw4lYUCYolqqHR5hz4Z4N7UT8Hbh18kkL+RtbH7jNMYfJKwK/65xRGploEOtKa4ncXNlBiWRhLaG0TjkFVJuaz81guS9mwiTZL/Wn9mQ4gGEB4hehQt8cFeW4VFncHHER/Xfcig+QO6LdLcMbHTpOTRw+9JhnPxR0rFnXChAP93CzleJkHvx0Rdh7uQQjRNWIjOxy8qL7kCBOOUiskPuKae4QMChvUK6H7VUF1J5B/6ATPxmI4FuJ45IhI4BAQd9itwXIemg9+oEepQh9QYqrGZ8/7t6OoT4gInEt3dGho8Z0okOnE6Ctfwrqg1zoDFgLEQsXPnm/Th4gnTVXb94FHNza1BpGV2J97F2nQA3LTKA54ss269q6hjL1ZCj5dn1WgGFeJt1txmujBPThFlsGDEYjsIWhlHZRnOgs1L22UIZbSvCfq+ILlZrBSY7sH0Bs0ODSy6EKvpsLApDDkuvcb7nuBBZ1cJluiAZ0wfMj0mTHIzofWZzsttJQRFdXKcGsu+fWcYzm9Ose3gxIcP2JJylWsPdZoZVAFq2CtOIYkTvw/V/ULP669gcx8Ha2hpmZ2chiv9jBbM33N32a7/2a3jyySfxuc99jrlvt1ot/PRP/zTuv/9+/NN/+k//hw7o7d6GnQF/eu6D6FnkhSpFO7jZyDOjMFXw8SxNA78v30bV1LA5IIPpPbkmEqqJVdrGr4keUqqJVxtUfJtsQxZ8XKiRF/N4usW6yBq2hMnoALdpEOTRVAeK4LPJeceIou9KyA4FkI4MibJDEh+g+5rfqYKPriOzwSMierADHgfT+3bsPVtjTMpCss2iVaKSjSfKBdxXIBN535XhBxwLj+04BJANjSp7nohFmj22248jrZrg6XEFIYeaGWHBkVfreaiCz5ijnitjOlWHRgeUcjuNLPWJavZjcAOBiUbdgEc+2mUp5rvVPCr9BOu60yQHj+8S/cX7Jzew1MxhhHarGK6MnYGOQ5R6D0MOSb3PumLO5ivY6iaRoaBzrRdnHYgTiRb6tsqAYFxyUIj20Kb6g7VeHFHJZVE1SW3AUsq7gwhyqRaWaMu/xPs4OL0GnRpk1neKmLrnVSw/c5qcoydCll0kqP5tb6+AgN7DmYVlNMt5CJR5lGQHYcjBp54xiUIDZieKG8vEy2aqWEazQ+7RSLECjg+RGCXsRuRcD90nc2iV82xfsVwLO8tEyK3rBvRkD8mTZPLiDo7g+r8h+x2b2UDi77jAGpn0vXIUnODD+fl/RO7DH/1/EBoAd4hMKIPHPGjT5J45H/gglLXLwAoBoFxKh3ONh3yKMiWtLrxjpyDeuEyeh28sovCzBoIXSKlTnJeZs3ewOwCf4hHmyLs0+DagfUQHt0Sdr3MJoNUFMkny+WQafoKcL+eYEFduwTpLgmLljavAtQ10LpPnIfXBGtDqIbTId3GjSViH74H6IjGUxad+E9Ym6ez1o6PQv/4f4f/4fwQA2IN1CJVL8NKEpZOq1+GN3oXQIfc0cvHrGJz+IbJf34LQ2YKfIM7nCDyIjVXIl4n1gHXfByHWNyB0yHPrPduCNGvBnyH7BgC3SO6LXL6DUJAQRAjQETpVcDeXEdrUz+kdp4m79yr1VfI4uBScyo9GgVtbMG6Te6aNVyEcjMO/SYO775uD/eUG88riJQ9SqQuuRLucLBtBnbwvg6US9CO7cDbJsycVuuCUEKAkyvKf3oNEuo0Y1TzKuTZqlwjA0rNthJ7ASnU7G2NQZIexpwNHwdzUOiv72f0Iant5aNTcd9ggAAA3tiZxaHyDAb3llWmYroxSiuifOC6E85ruUIEPWClusbgLRbGRoK7jrVoaguCzjr16NwGeC5ChVh+WI8NxJaQpA7ZcHkWGjj0v7o7j7pEtbLbTb4sh43AO+88HPw3tLexuezs6897qbTAY4Od//ufxuc99DgAhcGZmZvCP/tE/wsjICP7Fv/gXb3ifbxgkjY6O4lvf+hYOHz78un+/du0a3v3ud3/feCW9Nrvtzp07+K3FTyEM6aQoO3hqL4GCRiang4ke8/mZjnUhCj7TpyiCjx1DR56Wplq2gq2BAoP6nrx/bA9lIwaTMjwiHzDdSUxy8NhOBkeSBDBkaHfb0E5gPNYBz4Xo0lJWVLbRtPZ1NQW9x0wIj6abCEOOGUNKfADTk1Cjx72QrkPkfVymNXQeYGAsp5owXAkpCriereRwIDZgZUaBAw6lGni1sb8CG5ojvtrI4Gy+wrr3LtXyGImYSFEAsWdEMZ1sYod6/2wNIjiVrTHmZbObhEKPoxTtYrmdZtcnInqIyfsu4RLvo+uorCNlPtlkpbpCrIOtdgYN+ruWI2FCN5gR50ovijDkmPfRkBXL0YHtZr3AVq8dV8Jcos3Kj0eLO9huZVipc6sfg+ULuIcKrC+Ux3CWslBPbk7hVK7KrBg4LsSJ0U38by+R9+V0xsWDE+u4Re9DTHKwMLKN8xtksh6Lddjq1g0EmJ6EswdIuWl3r4BsqoUBvaeaamGjUmQALRHv4WtXSfbYJ868gpXNCaTo77K5OsrlIiyqu+O4EOXXmHpO5SqwXQnFIplQA1+ASz8ryQ6qtSy7ZzPHb0J/0AYscg23vngQ4x+8DL+x3yLN00BnrhBHsN0DN0fAivGYADnRB09L272lcUQK+75G8kQL1koOAtXsyAdsxtAUTt9E6IqwqHNz7N0m0GgDCplgg6qDnadOYOxRUhbkNA5had8CwH96D2KGBtgujKP62zFEcwTMt7YLGPvYDfZdo++7AsQiLGojeXwF/Ah598Kqge3vnkSRiqClQyHgebCvkt8LcQO84oHPk/v4h//7D+NDH/gmAECM2LAbcXCU+RRkF7U7kywAt3p7CiOnb6K3Qb7Xs2R0mklMnCGMDq+42LtITD1zB9ew9spRlKbJs/fy+VO4974XWRnU62toro8wgKEX62guE3AmKQ5euHwC91Bvo6WlWUQ1E6O0y1CODTBoJCBTN++vP/UA3nfuZcgUnBitBFq03CZJLp5cXsCnPkhF/5UMKuUC8gUClL/0yl14cHKfXQ1DjgmeH9scxYG4yQKfRd7HlVqRLapK8TYcT2Sln0ysi8s7E6yNv2lpyNHPdm0FhWiP+Z0JXICI5LDxo+/KUAWPOfwXox2odGFU6SbBcyHzVav34xD4gB1zRLYJi0W1UbrkYuCJr7NkGbJdAh8wV/6B7+Bnbn7+bQFJ/2nhx99ykPSzt3/v+wok/cIv/AKee+45/Nt/+2/x3ve+F1euXMHMzAy+/vWv41/+y3+JS5cuveF9vmEeqtvtolKp/DcgqVqtotfrveED+Ovafu7nfg4/93M/xx6wlGahSZkDN+Bxf6GLcWq8eLORR4nS3YYnQQNYOU3gApwtbeN3b5FJ7gPjNYzpfeaTpCsWRriQOVJrkstevF0jinePtFiURkbv4dXKCGJUFP3d3SKOp3q4RDUIH5zcxC+uklXzY/coeHlrCpO0O8VwJdi+yEpVAkdq4sN9WZ4ETQrhUB2FLvqYoAyOIrkIQp1ZD5Q0BwvZCjJ0og8A9F2FeRLpEslnA4id/9CCHwAmowb8kGNATxF82K7EjutsvoKlVoYBkkLEgESZoUysS6h3esy2J0HgA2g8+dkPeEym6sjTyXvgKhgaKjyxOYUT2TorN45Fe6gMdFhUBz0f70ETXeZm/XKliI7L46OzZCVYNhWcokL1hELcqv94i4ARLxyDxO2HGOc1ExHJwRI19pyMdVGn1+rDh67hW7cP4SQVUA8cBS9uTuMzBwkL0zR11HoJHKaxNb93YwEn5+9gnGqDFNFlQuylWgEZbYANWiYp9xMo5moYmyETqmuqyA4iWKEdewclFw+Mk99dW5nDbGkHDRq78Mev3IVHZu+wluZ8og2hHzBQfacygoMj23jqynEAwImJDaaNqtczKBYrCGkpDgEP83kBvEAAaWqsgsH1HFqbZGKPF+voVQiTmposw7ej0AVyvstXH8Gh+87D75NrK+kmmqtjzNvHq0QxqCWhUl2aLAdITZBr6bZiECM2c+sOt0xgMgts1NlxjX/wMowr5Dha2wWM/iy5p/zaOpAMgVnyO67bQf7BLQRtKhi3JXhbQDxPAZsmI2wYSL+HdlmZHMmCAxCYMmqNDDJd8juJH6D57XFEaaQLr7sIDAnWRXLt3/fwU1BGyH43Hj+DsTPXIR0hQ6/xjIbzywv40DkCgtZ2R1E6cQc6dUZ3DQ3pY8sIacnMbcUw8iCxB3jh8+/D3Mw6ZGqRcerINUgxAybN3NNG6nAcGRHKttx+/hSKI0QLVCsXcPfxK9hcJ+XGubk1eI6I6i4B77puwDB01JbJOdw9vQy9WMfaRTLudwcRTE0QcJaa3cY9jownHie1ydn8HgqlCmpUK3QkXYfnC6x9XhR8BuwfHa3gejPNfMPOb01BFz2odLy4USuS0GtaNu/bKmKSw1iboQ4IIEDF8UTmsN2xItgzYkzTORnrwg94DOj4u9bOYIIy3l1HwUSiiTgdT1PxLv705mGWjfn07ig+NHcHCQqKeAAzxcrrFh0tCs6CQMBcfg+GpZKA2x9sb9v21a9+FV/84hdx9913v07yc+jQIaysrLypfb5hkPSxj30MP/3TP43PfvazuPtu0u3y4osv4pd+6ZfwQz/0Q2/qIP4mbAIXMJHvhUYaJ9JtVA0y8RUiBp6tkBXE6UwHT+1lsZggn+VdIKUZeKTUBkAyxDqOxKIzZN7HnW4cZ2naOM+FrDS3mKmiaepYpiyLLttY7qnQRfLi3Zdv4EIjjdEIdZHupvC/TZDJp2/WMBVvY50amOW1AeKKzbQuti/C9ERWMhS4AE/vjiIm7ndPLVOqeSHVgOWLzCxtNDLAH9yZwbkMGZhGol0IfAAa9Ym1XhynKQj4ytokPjS5zY5D5ANIfMDCcXOqhb6rsNyzy7U84rLLXLYlPmDBuopiw/ZFVrrzAx4VI4Zv7pL78MnpKm5US5il+p7n9vJMbH8o1YLjC8ziwPJ1SFzI/KuCkMNaN8GE6xnFQcdVcZ1Gs5zKNhgrZXoifn01xIcL5K/nUw2stDJstVtIttDqxXCdernoostAX7mRheHtMyqi4GMm0WIg+XYnhiOpNp6jwtNDyQH6/SgD3bfrBRynrNTAk3CqVIZlUjAS7aPbi8Gj5+j7AoKQw0NnXwFAVugmzf3zfAFfu34UHzhINEfn+C2EIcdKD4LoYyZXQXGUTAL2QEWlmsM76b7k2AB96s6tahY2t8ZY0K46WsPzX34vzr3zGQCANlZDYCqI0lLFyy+cxcM/TrvGbBGBLcGrkQnkxE8+idALSZAtACnXhd3VYdb2g7PT55bAqXSAMzjYXRosayrIf2gdV3/zLgDAkb/zJLhWGyEFPvZ3PKhaDZFD5NmMvCdA+OD/m9z/8/8Owsod+LEkAIAXRQSlCThfJu9l/L1deFcFxE4TJiXMjyHc2wFH371gdgbc1WV6TDwWz70K7V7CpPmFcaQfWYJxkZptTongHQehS94f484EoiJ5lqbe8wq5FgY1lDWTOD17BzzVAx5ZvAXwAW4/T0KLpw6uwO9GsHmR+Ey1ezGcOUeczc88/ALsVgwu7WZr1TJIHV9BrET9qpYLUDULAV3ciIIPmz5L67UCps9exSHa3eb1IygvTUKlZfBeNwZR9HD8zGUAwPLVg9i8chAj04Q9LYU8i5rRs23kCjWmf+sYOiIRk/kkiUYUmVQLFaoF+sM78/jRg0RcH5FsHEy28dw69edK19G3VSRpFuRyJ4lZyt4DQFS2UDXiDJAcK+wyVlbgA9RNHRPyvvOyHfDMKX+7H0Nc3l/grfQjmKYh1lnNAM+FKFOZhCK6iIg+KnRR8Y5iGXeqRTauN20Fbj2PuTy5fkHIQbYJsGtbEVQ7SVQHUQzexu62kP73Vu7v+22r1WrI5/P/zb8bhvGmddJvGCT9xm/8Bv7ZP/tn+PSnPw3XJS+2KIr4e3/v7+FXf/VX39RB/E3YqkYUxQgtJ0QHkHkf16h+Z9cU8ABt0e27Eh4p1RjbcbmWRzHTwJdodtF8zEFCdtlkLQs+pqP917mxDu0BdnsJXGomUFBp+KXgIaX4zF6g7Sg4EO8zUfhoxMftPmFo4nIC2UgPV6h30WLAg+fC/egM2ULV1BhL9XylgIgQQKODzZ2eiimddlFZEUwkmoiIZEC41Ejhxw6sMtfoiGzjqe0JTNDusUOpBpYp7Xwm08VGJwXbH/qckNiRCbpSjFKa+iIVQM7Gu6R9lg5yEh+gQleDWauDpq2gT2MGZuIdrPV1HE2S5+wLq3m8b7SL83RfH5hew2qTHEffkSELAROjX2pkcG+xzHRU5UEEM/EO604Zj7ch82lWFmxYGsbofblcK+BXT5bxLLVIWGllYPkCNuk9HDgKztfTzOTysZ007s2RaxNVLBzPNPBfbhOtz+GEi7TiMIPMjx26gY1qgdlL1C0FL67NIkknJ54LUaOgeSbZwHalwEzdZMFD09SZ/cLi/DIS6TauXSclomK6AYuCZJ4PcCpXxYvUHPKuyVXkShUYHXKP68006v04OlT7kY71cKNagkRX8NlcAxdvk8aMs4evY/HkNaZPcRtx3PPB78KhPlKBLUPOt2BQz657H30GoUcmZk7xwDki+jvkPsXjmzA3ilh6lRzz4UdeRHSkzuwEasvjSPocfNrxufzEOeiv6VqE7WDuFGFdQptDuDAGfovqnYQE3J04xCz1a/o2IDz1zwEAwqcOAvOLwJM3yGfzPgSxDOX9RDs2+MYAjbVpjKVpqa7fA46NAluELeLrVZb7Froibp8/imMTJA5FcNYRdjxok4RJCtURYLOJ9h1SFsu+4xb8NgHgTi2JyJkOQK0qfE/EyNkb4DPk/UmdXoa5UsTUIVLKq2+OYPLgNqYfvMAugb9Opi8x6YDXbFh7dGJXbHBygMAg13L75hymz1xlQbTzD5xnwcLS+hTqt6fQ65J7WBgrw7RUFGbI96YBhJ4A1yDjSyFfQ7cTx+XLpJx76vRlnHqEgDWnE0W3lcAlmldZiBgooY4ufY9tlzQnHKHs6btGy9ik720m0kch3oZH2Z1hqfk2ZWlfaciw/CRStOGiFOFfJ29Y6SZYDtx0vAUvEDCgCxKBD5BWbIxTIFTuJhFXLLxSIePah2ZWsE0XrLrkYKuTwjTVMJqOjEOZKnP+9nyBsOJ0nMupJm51EkjRhfV6JwWPvqfzqQYGjgLHF5jh7A+2t2c7e/Ys/vRP/xQ///M/D2C/gey3fuu3cM8997ypfb5hTdJwMwwDKysrCMMQc3Nz0HX9TR3AX/c2LLd94+yH0KXC7YjoQhZ8NjnVzAhrhjQ8EW7IoUVjEw4luxiJdfCVNTIp3pNrww85JqC+1IzhgUKDGZy5AQ93mKoe7cHwJFivAVSq4OEaLZGkZBejEQMNqknKqSbTEV1rprGYbDMWiuNCTMe6rC7+zF4R4xGLaYVilFEanlNSsVggY1x20HVkNlEnFAvZaBcVCgrqZgQlvYeuQ47j55aX8O9nySpS5n3mTA0AU8kmOpaGDbrv+WQLA1fGCh2MRyMDtB0FSbrau96J4T5qYKdJDjqWxjQDLVtBXhsgSj97uZ7D7a6ET1KjwrIRY2WqRMTATivzOpPKuGzh86tkQHzPCOk4HGqpvrlTxMl0j5XQIoLHDEI10cUT5TweoEL2AKSFfgioNnoJRASPOXQbrsxA8Uy6jt1uipl8ZhQPBykDBQBf3yzhwUIbG/390m7DFvAoFVh3bJXl3mmih9lUHZcoKBzV+xD5AIXXGESOT2/ixg0yCW53k3jHIgEBj105gfFoD313uC8Xac3ACgW300kStLxCu3/unl5BJl8HRxmtzfUJVkIdGSlDiVjY2yLHMXHkDiIHKnDLtJuND8FHTfAHyaKC6/bgLpPr6hsqXEODRf13snffws2vPsBiStRiA+07E4jSAFejmgbHBUidJqwNJ4XoXydddctXD2JyZgPpj5D7Uv/jArI/VIGfoyW0l26D0wL4dZoTOGbDP7DArj3n2uBuE5sCdysO6V4N4R0CbHo3J5A4twloVNNhOui+Mo7YR6lfUaWKV37rUQDA8YdehJDcB2687qP36gRiNKQ2MCSUXz7MyoTadJX5QHF8CE7z0L1KxovQFxA/tM460gJThtvaN1P1bQnaWA28To6jf2uUOZ27jQTaW0VEqYmjNlpD++Y0NMroOT0dsm6ivES+qzCzxe5DEPB45spxvOeBZwEAg3YMN5fmcPa+lwAAl144g2y8A40u2DxPQKcXY52U73jwOWxcJde2MFZGZbvEjnm9VsB4poY/vEVA4njExvF8Gef3yH08W9pmmqRhqPSQKbI9CY4nsjZ+w5VQNlUcz1BTS9FF09SZlo7jQix1kuz/7x3dRJvKJoZ6zqFhrCY78HwBTbpAy0a7sOj78ZW1cXxseouVAVdrBYwkWoylOje9jO/eWcQMtdiQBQ+6YjGd3vBzADCVaMILBJiujIHv4ocvfflt0ST9+oGfeMs1Sf/Lnd/9vtIkPf/883jve9+LH/uxH8Pv/M7v4B/8g3+A69ev44UXXsBTTz2F06dPv+F9vuneuHK5jHK5jAceeACapiEMw++7tv/XbuV+DPO0A2ngKFBEFzfoaqfrijjfIOf26ZkO1npRvGeSaD9eKo9hNlvF6TShuKumhp4nMM+du7Jt7BhRxhxMRHvMcXulF0fLFnEgTl7iUrQL1xdwIE5e1Fykj4GjoEgn47ajwKIBld8oe1hIAgdp+aRjq2hZGso+GQBOZ5oYeBIbTDaNKHTRwxx1un21nsci/f+L9RxOZOusJMQjhB/wzNdkMkF0Rzo97t9amEbLIo+OrrqoWgoTRO/2EijoPTj0/B2fWCCowr4lQjEy2Bc5dmMMuBmOgoRqotzffyFHEi3Y1D5gpSfhUMKFRYHQzc6+HsEPeJyvZ3A6Q92ZfRGVQRSfodlbNSOGm50EeBqRcDLdQ0T0XmfeeGEY7ikGuDvXYsB2c6BhVLMYSApDDmVTYz5SmuSiQgf97U4amujiHVQAXRvokASfndO7RurwAx5ZujLWJRenFRNF6t3y/K1FPEgzA0XBx0vlMUQpwJ3N78H1RKaDGJ9dh9GJIaD3ZbFQRrlCVuAniztYaeSwWCD72mpl4Ic8K7/GNBOdgY5TVHy+VB5B4PNMh3RlbxQffgexE7hxYwHT49s48C7SgeV3Iyg/fgwCZZZEySXZZetUGxQTcP6xRwAAd//LyxBebgF00bD+rbMoju/ul4DSA8i6iRYVKgcBj9yBDVjrRM8iKC5rNT98/ytYeek4uG+QZ4njAmBggu/QnEBThphx4VG9k+CY4C+TcqN3372QLr4IiK8Zo3gefIocR3R2hwjAI9SKYGQU0ekAfoJM7KJl4syPf4vcf5Mj3Vt0C10OYsRi4bHCSIjM7BZCWnYNHR42ZXv0+3vwbooIKTjXci0IqQDOBtWz2BKcXgS9OgGcxTM3wEddlJ8kDI5tK0hQdic6WkVitMLArN/VwQs+c/PmBR/uQEFhirBhF18+hWNHCIgOfB6q4GF7aYp+NsChA0vsmP9gaRy/8sgWA2/lrVHk003MLhKmyWwkEKPjVOALsF2J6d1GUw1sNXL46CzRgMR0A/V2klls5DMNRI39RfX18hhrjJmMdVEZ6LjTJT8/VKqh54ls0ZVWLBSjXRh0weYGPKZjZOxNqCZ2O/tl22K8jbg2YMBu4Cro2grTO623sphIkGdnVPOw20sgQ/eV1XuIqBbS9J23bAWnijsM3BXTTbyyPsPGsZLew5/TRcRsqo5L1RIyisV0nG/HFtD/3sr9fb9t9957L55//nn86q/+KmZnZ/Gtb30Lp06dwgsvvICjR4/+1Tv4C7Y3DJIajQY+8YlP4IknngDHcVhaWsLMzAw+85nPIJlMft/mtwUhj/9ym3R+LCY8pGUX41QsKAs+jqfJQCTwAQqaxRyUx3QDAh9gkgKOtK2hYkRZ6SYi26hbGmtFf6ZcZAArG+lh4CpYpishq51GRjVZ55Uf8FBEl3VnHMztoUVLU58cT2M81cCvXiCrudlYiHcUq+BpJblhRdB3JVRpt9eZwi5k0UOZskMSFzJm6FS2hnyijdVhZEc/joOyjct1MlEtJDrIxToYJtTdaWVZ90lCHeAudcAGrbatQuR9nMyRFfpqJ4W45DADt4ErQ+ACxKhGaUo3UaTiybVGHo4vMDv8dUPFjBmBSstLH5sq43ozixodqB4d3UWFDoCrnRSOpdpwKAs1nakiCHhstTP0nKK4t1hmnYJ9R8aOoeNolhynyPuIU3PIw0nCBg5XiceoOH0o+r57Yg0cF+IOZXjyehe6SF3RY21stNOYpEyD6qhomRGmOfICAQnFZOzbsLtuiWqjfuF934RFdUVX7izgaKa2390nuUjnGiwaYm+niOLoHg7OE9ZFlF2WJ7a7U8Ijpy7i1hJpF89E+mR1SxmvnqnB9QVMHyahrd4VAdlCDToVLj8k+mzyvfcn/wxuOcaS6TkxQO7wKrhhWG4rRk0a2+TGSSKO30PLQwEHIUrYCACYfOQ8zI08K69xMdL+nV1YBwC0VsfgdKKITBKtB6+7OPqpJwEAfl3CzLkrEKgvztLjdyFtLCPcq9HjEhBMTsJ9hbw/akzB4KEfIf//pd9F4HFwPvJBAIBSeAGDUx9G5PxXyfeURLgvttBbIwuj9Efq8AtjEHco83TZg3SI3BdrRYWUMCAu0lV7owd1qoaQgiRnScPerRkUD5BzEiZUCDWqk+F5iIuA2iPXShlvIgw41u1m7uYgyi6ycwS82tUU+EbAro+xm0PiCGHhzK0c5IQBnnYChj6P9HELrW+R51KODdDYKGG3SoDzsWPXmSA8cEWcPXydRZokx/dw/aUTmKD36ScX1sELPovEGSvtIRLv4/Y1wg7NLyxDp55J9kCFwAdYmCLH2OvGcGxuCd+6SpoAHlq4id1egi0ycmGLNa8EAY8rrTg+SP/W8UWogse0gzwXIqPYbLGXj3bBcyFydHx1PRE73X1H7ZatsuidrhmB6cpssXNqbANCO8Wea9OTwNN3/KGJdRi2ikqb7KuQbOH67hgLwLYcGZ4vIE+ZpAsb0/BDDlk6DvoBjw9OERB4oTKCMb2PfLT7A+H227i5rou///f/Pn7lV36FWQC8FdsbBkm/+Iu/CEmSsLm5icXFRfbvn/zkJ/GLv/iL37cgKaVa+Il5suLa68eQUGw2GY/HOoxlWeok4Yf7poV+yKFtRPdLcwMdF5o6upT9GNUNtBwRUTpABOCY+7IbkNXcAQoSvrNbxJQv4DCduDc7Kaz2Iyiq5EVNqAP83jKZTD883sb1ygg+OtEGAIg86aD70kYSAPDu0gBj0R4rqdWNGDguRJyWmyKWhpdoBlRG8eHW8jhJQyOP5suo9BIYoe2+FxppHA0ExrTcV6gx8WPfUcEjZEGyT1R0vH80YELmvDaA6UkMJBgu+X+baoXGol2s1MkgPputwnJkls32rrEdko9EdQGpSB8FzWSrv0vVEltFdh0ZTiAgSgHVM5vTuNKS8DOHqNnbIIL6IMr0PCOxLhKKjRa9x7LgIyHtm1gq4n6rsCJ6qJsRlt+3sjmOk+kODlDRZiLeZTqIgaMgLjuoU/CWifTRsTSMURCtKTai0T7UCjkOLxCgKxYTiH7zuXtxdISIh8czNZRbaQbOwpDDoK8jniL3fCLTRnsvy4Tctq0w4JaN9CDKLqoUVI/EOrBdCSdpnlY02ke5mkdzi5QJ8rk6PFdiJZSpkzfg02y2+nMH0axnMPsgEXU7rRi6e1lIlA1LzOyg/fkY1CwVLg86LHZj8E0d6ogA0Oeh/SrRSGkZMsnd+oN7UBgrw6GsYK2Sw2S6A6FI7Rien2TdbMZuDrHpXZg7FLx/4FmEJljOWeyBOuxvN8Bx5Fk0L8ah1n8XAMCnJQRNF+oLpBXfXRUhX/w9Fj/Kqw6kGR7pGQJOwkgOgapDoFmVTkcHvznsootAOJsBqgScWUtpAqLvJxP/3u+MQuB9aIdpmdURwUvkWXKvebj++N1YOHOV7GogwrydR/QUeZbEqg2rHWOBttGJCgJbYnExhYOr6NHFnBwbwG7E4W6S9+XSlSM4dugWM3zkBB9be0VM0oBk11Rw41kiCM9lG0iOVvGfvvYBAMDPJL+NWi8BvUoBV8ih006is0V0RrNzq1hdnkaBdoAKsovz54l7d1QhNh3D0r7nC+hX8riP6pueu3MQ4/E2s8Xorc0yr7OxdB0PFitsIbDbSyAf6TMJQlYz4PgC61BLaQOsd1KYeE03aJqKvE1XRlY1YVKm9Wojh7tHtpi5ZKsfhSx6rIsZIA73ALDXSqNhRhgjbLgyDo9sY71WYJ+1PQkgH0dctrHWi2OVMldVS2FNMQvJJm620ygP9Lc1liQMOQYA36r9fT9tkiThK1/5Cn7lV37lLd3vGwZJ3/rWt/DNb34TY2Njr/v3+fl5bGxsvGUH9nZvm70YIgIZIMbibay1MyyWou8ozCNnIdnCF1bzmIySB0gTXXBciEs0e2hcN/CRyV18Z4f6q8gSopLPWsQPxnuI0tWJxAfoOTIUWgL5+NwKKr0E8xSaSLSQUCw2YOz2EvjxOapzkBz0bI2Bs3ysg6V6Hp+YIoBLpFqhYc5ZeaDjSLaCLbrqcoP/H3v/HWbbedeH4p9V91pr916mtzNnTm+SjiRbkiVLLrINNmAbMBCHe0Muei7kckm4IfklcGnhIeHHLzcONxAMvgQCsTE2GBfZlmX1dnqZM2f67Jnde1lrr/77433nHQmnWL6ygoPX8/ix5uyZtVd5y7d8Co8PzJEAojvSUBqEsUyxUJpMMreLDQJqvDdXhW7LeICymyTBBUe96Axbgg8OR2j2xnM5JFWdOdXXhhGktQFzuY/IJsKBEcski/0ow0LtdRKIKTpbbNuGBllwmVq3KsnIh3osACloOmPB3OrEMBvV2WJ7OlPBTFjDDvVumw710bECaJtheh0WxiNt1Oh7KcRaKNBA5ka1gGdqYbyD0rZ3B2H0LAlphVznwOFguiI2aXAnt5OMkQcf+Eo5hUPUsDWmkmv6oxVS0TkaNdj3A0BC0fGV4jymaMY+G20zMHVINSDwHlq0ajmnFfHy7cMQtshYfOu5C/ja8jE8ehfBkfzJs/eyFupkvozRUGPZu+lI2BlEGPbDMAPgeQ8rRYJX0W0ZYfnAfDlwcw75I6RdYpUDmDx2mwUnvOSgWk1jfJIkFcVXjmDi3E00lmcAACnNZN5jg404wHvgabs1mGvCHqgsCMjPFCHINvMjG5vaRauYP8DSHd2BtUfG7IDq9rj7dPhqDHzARiBBAi6IAuTxLmSX/Fx77giSVDMIngl+Mgx3jFxj/bM+UkubkM9RMHZZB1wB/hgJMrlyGdJeGb5D1asHU9AvE0HH5Jnb8JVZcCGyoSpTTei386j+BzLWtFgfomLCrVHQruCiSXFB+Ueu4+gDLzHQO38sCcVuYePPSPDy9OphPHjkGlLUpkQvJ3Hz6hE2f8bOX8WgTNW4uyE06inM04Dr5NGbRN+I4uG6rRgWD61jdXWWPh6XiR/2uhGIso0fpS3VJvV/26fpj2WrCGgjmJSFao0UBJURDMqOk9tRhGjCpQZMROUBtukauC890aTCpnHFgGHLTFNIEW1W0S13EoipQ5ZkKIKDnqkw7OX+sb9erLRSiFBRVYAkGa+uDAUli+kkHU/WsdrMMOygbgcwkazjBp23Z/O7EOj3ZGNtbPZimKVSBKlQD19cXcRRmjherRYQkmxc7+y367s4HG/BpGvzTKTDrnHkisgoIwQE901lt333IOz7z3zmM6/LPu2/dbzuIGk4HELTtG/490ajgUAg8J/5i++M41C8iVttkpEeTXg4kd9lLKOwYuBru6QQfTTWwQ/NVVllKRIYodiLscnkuAJKgwhTr7ZcARVDYQDayWib+QPVhiHEFeM1UviWKyJL23wdQ0NcHeLFClm4Bc5nm5jRj2I81IPtkVf43B65vjHhwMKkrGvo2vvAZA9X6zkG4OY4H8u0YhORLVgez3rQAyuAkGwiJrvs/kuvwglpsBCiViGWKyAT6uEarWDYHo+brRSOUvn+kGwirBh4aZtULMY0A7ojscwwLNlYptYI9+bL6JsqU7IOySbaI42Z5YZlCzF1CI1m5ZVhmLU9C5qBuh7E53bJue5KW3ilKeP+LHkeqmhD5l3EqLFqz5Kx14sxfMJyNc8UxrcHGt411kSfvrOg6CAZGLFK0qMTVbgez7SgMtoQ16kcwGRoiLfnG6yFeKNagCra+PACadvsU5dvUuZkPtTF6WQHl2iV7mZHw7EYueaz49tIhnuo07+p1VMYi7QZFV/vhfDgkWsQ6D3cP7XB8Ft71SyCyogFb6LgYiHexK0m2WAX4k3MFPbY5yt7k3jH2A526EaXHKvi4lOEar8wt4lBJQmFGrpynI/phQ1EjpOkKDaUICQsZCNU8HBSg/ESeTadVhxqZACTsjKDggu9FUWYagptXTqC3ESJsai21qehqaODjW8zg1eeJf5r9773KxDiBrpXprF/+A4PaYJUE70SBz7MY3SLPEslPISQIuOUS4bga0HwdRLYFd7fB2wH6NKX7gGIR4FNKgEAouDN8WS+hRd20b5OqmB8RoTf68BZJu+pd3sekfldDKiMwbAdQUAdIXyezIHtT55G/jhpaxorCYxaUbSphcfUtUvg1QNl5wcO30Qw1odIx6momZju7LL7bd+YRXSaVIbMThjR8Rqrwg06UXDdMELxA0mNBjU2BgDdDDAl60y6AVNXINFgttZKIBdto0Mrj/tr334VMyc66A6DiFC9OFkZIZcm91eqZSCJDhvzuqEipBosgSv3yft4nlauf3BxlSUz5WEIf7yRwYemyXo5dCSEJYuNy+eqOdxf2GWBD0CwR/sByfPlAu6hprQ85+N2N4YwnQ8L2TKuNdNsrXnw0DK6/TAMihMybQldysBr6yFMhbuQ99eDeg7vXFjBTmNfC60LTTaRVMj9N0caHFdgpBLP57BNq+MZVcdYuIORLYPj37x2m+dz7Jm/Uef7Tjvm5+fxS7/0S3juuedw9uzZbyCU/dRP/dTrPufrZrc9+uijOHPmDH7pl34J4XAYV69exdTUFD784Q/D8zx86lOfet0X8d/z2GcGfPzoDyIZIINin8kk0SzjViuFKdrW8ShWZb+CMTQVbPZiTGPpU1spfO9km1U/9vFF+wC/eHCAVTrxmqaCxVgLNbrRVw0FtsfjUPQABH65reAEVeQ+lqri05skGHrHWA35WAsVWu7VJBO1YQQyreAMLBnjkQ67h44RRM8KIB8imVJlEGEBguvxSGhDZruRCfUIa4TScHeGKs6mG+zchi0zEbeobMLxeJatyaKDm800C8YSigHLFZCgvfutTgKuzzFKfHEQxhINqExbQjw4YDTg3kiD6/FMBXe3F0dIshiDbf96ACCm6LjdTuEkpRkPTQXdkcrwCLVRAHl1xHRRKoMINNFhFYuBLbN3FFN07PTiTL9JtwIIKwbbMG41slhKVxiIs6qHmLFwLDBC35IZVmGnF8NSusKwUVPxBhqDCMNkLTczOJ4ps+CpYyrIUpySLDjIpRswdAompuX0a5RqfSy3B1myIe4LiL5aA2tvHHP5Pci0JWaOAmh2YhjQDP5iI423FHYxUSAVwL+4fAb3Tmyxv3c9Hkfe8gr5XlNGr5RG+jwBQV/5sweRy9WYLlIg0YV0XsbwSySo1BbK6FwiAQXH+YidWcfgJmkRDZoxXFxZxIOPUPq8YmHjhZNYeIhUw5yehsFuBpJKxrygmgz0Dd6Dkmth+2nS5pl64ALKzx/H+PsJGBmKDPR1uJRkAZeHkKHPhOcASQRMumkFVcA04bXJ53xKRv+ZDKQweW/yu2Lgd3fhJygQeKOKnS+Tas/YndfhuzykU7Qa8kdjiE2VWLBiDjSk7roF7gh5T1y5DPMWmeO+I4AP2HApuFpKdiFELHzl4+9n7/z0mStoUt/ESLyD6KEiQIkQnimx77ENBaN+EAHaFt/bHsdytYBZakV05I4rqNyeZgFYMDhEgLZBg8kOrrx8iiVssuAgrOlM20g3VMiyjXSeEBBqezmkcnVcukH0mup6kLVuAaCva4yFeTJThu2KyCXIXOsOQrhRy+NEjgQzvs8xMHVlGMLGQMOdtI2Xj7XQ7EeYsazjCuA4HzuUldmzZMzHG2wDbxtBzKYpSaIXRd9UWOASEG2kYh28TDWYzkxsYbk8ziQBunoQL9bJGvfg+A7K/Rjy4Q4AYLuTwGS0zXCJtisgrBooUckARSSiwPst+dVujK0BGdVAz5LxfF2F5Zn4o/a/e1PYbb85/3fecHbbz6z9wXcUu21mZua/+BnHcdjY2Hjd53zdQdLNmzfxwAMP4OzZs3jiiSfwvve9Dzdu3ECr1cKzzz6Lubm5130R/z2P/QF29X1nwZkxAGSDUAImBtQ4MperMkBsONFFiwpLAmQTCEYGGPbIwmVZMsKRPlrUFb6na8jE2wwgKIouK1n3dZKN7Lfb9oGGszmycXX7IczObaFHy+f7nl4AMNA1WLaEAmVRiZINzxVwdY20BFTJYuauABAODyDwLsOvtLpRjFH13WurC8hF27hOKbpHsiWMLJllb5YrIhfqIkr1akaWDJles+2ICAeH2KMgb002MT5Whk4rB8ZIQTCos42+NQgjHesgFBqw57XPqFKCOjxXQL1CFq56L4pcooU4Zax1WzGMzABTDb66fBiHJslC3WzHIfAeW9RCoQFKtQzy1JQ2oBpw7AOgZrWWhsB7rP2UztUYk2djfRrSqwKoZLyNSj3NWhGS6JDWBfVb6/Yi7HuDQR1/df0EfvTdXwQA3L5yBFMz2wwg69gSErO7GJTIGLp8/SiOzK+zalC/E8EzawQX9OhdL6JdTyBMg2ZRdhA/to4n/5SAj9/6rifg6AoGVN26Ws4iSDP9YGSA0VBDYoKMJUdX4PscHOqRFQjp8D0O5S0SvBRmd+C5AkTaUgy/pQW/STZfuxxB9cYcq1A4loTIVBmBWfKzec+DEP/iKdgfIL5oUqMI7kVSVfLeehZCuwr3RbJxizM+rFsy5BkylqzNIOQzAvxd8iz3vnYKY++8Aq9Nn1c3yEDegmyD/545uJ/eIueKDcBJLvgcuafR3e+Ccu0pZpdivKJAou02IWKBi8oYvkxlPh7l4QUjEIrkXPA8QFPh5klbzJw4BV9NgTPJdQntLUhffoJ89v4PwpdC4EyykQuDBpz4FLSXiIAmLBv24kk4MVoB7lXhaTHy3B//S7jnTsOXKQOvW4MTz0O+RsyCoQQAUYSbJe+FM/oAzwM8bd1ZJjiPjFlf0eDE8xAGpIIjrC7DT8QxeoKMRfVUF3Bd5n0HkYevU+q8zMMpyeCD+4By8n/9GyQJs4YqYvO7EPNknvpDHp4hE0NeAELyYNuofGkJQcruBUg7dlCPM181JTzE7z7+MD56/1Pk3EYAnTZ5HjzvIT9TZO3XQGQIsxeETdt8xd0xzB9ew7BNNunhMAjf41hioAV1Zp8TTnTQb8XQ6tAOQHCIQMBkrd5qLY2VRhbzNIhMJdrYrZJgNBYcYLeVwh5N/h5YuIVOP4wwZe3u1tMYT9fB7xMwHBHxZIvh8kxdZeuzKNlwbAk3N2ffVAmAv0lB0q/92q/h53/+5/HTP/3T+K3f+i0AgO/7+MVf/EX8zu/8DtrtNu666y587GMf+wb3jr9px7ekk1SpVPDbv/3buHDhAjzPw5kzZ/DYY48hn8//t//4b9ixP8A+deYDCAuU1k4xM3+8RltYmoc81QsJSzY4HLS9ssE+BlYAAzpR97FLNVrB2BdV3AdMD60AqzLxHBBXdEZp/2opjfmwyUDh8cAIns8hSttPq+0k+ywXJFICg1dpFFkuz/BOA0vGWKSLLr2OSGCEn7scxQ+OkQBtKtRnBq45TQcHHw36uwvxJnb7UaaaPXQEPLqwgs7gIGjaL3cLvIe+qbD7DsomVttJxn7rUFG1KQq0JNcWYBnYZj+Eok6e+/fNFrHXizJLl2PpCurDMH7mNlmA/8MZ4DevzOB/OkRVklWdBS7dkYa2qTDAOAcfc6kaXtydos/ax9AREJVt9h4Tio4GreLNxBv44tY0+e+QAdfnGF2+YqiYDvXZAppRDYxF2qxlUB2EkaSVtPZIQ0g2mWnvXieB5U4Mbx0jzBdRcPFyeZyNi4Q6xF4/hgQt4xf7UdZquG9xGTe3p3FygbRqVrencGhm64DBVksjINno0/dmOhIWxsn3fPbaCdyRLTPW4cgRkQn1WOVA5F3oVoBl7IYZQCQ4ZLo4/UGQPVtVMTF57DYa1Kk+MV3CqBWBThOD3OkVSGMGfINct76aZ8w3Od2BOMXh8u/cS57t4jqkoIEOBYxrsR58V0BwnLTfuhtj4HgfAn1PwVwDoMGr2YogfLYMe5sE4NLEEP5YDp1PkfuP3bEBjKXANWnb50oSgSz5bz7hgBNpNQkAZAnOigfhLPXYc2ygNwAilIofSwC8AH6XALndXQuNiyR4dSwJhQeuMHPY0JkKrPUQ6rdIFps+vInOJkk4ACB1xy1wEsXZvTKP6NFNCDkqD9C1MNpMo7VFzuW5PLLH18DTSppRzGL5yhGcfphgh9qrEwhlSSVETvYgTnmw18g89T0OZisCh46PZ18+i7uOX4NGQfLDRoxt6mu353D4xDITCB3U4+h3DjZC1xMQjXWwuU3WwFhogPHFDbz0/B0AgDvvuoDPPPEAGR+ig5Q6xEyBVHEtS4IxUnCLMjazwT50K8DWm8VEHbpNrrE6DGEu3mCYq1fqGRyK9A682rQBXI9nY3G7H4XMe69Rg07TuReUTez2o4zBORdrYaMbZ+37jqng7MQWY7CFFAO3KeTgUKqKvS7BRAJgCea/pUKc3zdNIBYDunZroo2kqrP11/V5ZGmVvm+qeLmexh3pOoauje+/+Ok3JUj6l3MffcODpJ9d//3Xfe0vv/wyPvjBDyISieBtb3sbC5J+/dd/Hb/yK7+CP/iDP8ChQ4fwy7/8y3jqqaewsrKCcDj8Xz/pf8fjdWGSbNvGI488gn/37/4dfvEXf/HbdU3/XY6eGYAvkgmQiXYwsmR8cJaUh3d6MTYRn6ulcH+uitu0zXVibAdRS0aZlmFDgREMW2YtIcsVEZJNpr8hDoMwXcrysGSMR0eMVvqAz8H1eBaAzWUq2KhnWZXibKHItEjaIxWFcBctqi8SlGwInIcCxQVwnI9Pry7AptncW7IN/KszLVQG1CU+2sYMZdF9fXsW57Il1n7zfA4nC0UM6LlFwUWrH8bX9sgm+c7pTcYKWa/lkAr2sUoZe6lQD+OhPmuR2b0Y5l5VHgeIDMK+jpA0DOKDcwdl+6VsGVsUN3Ollofnc/hIgjzb/qiKj8wRCxUA6HQSWKCldscTUBqG4NBnVTIUpLQha5PKgoOAaGOP4iMOpYm3UoYGJButFLum/Xe3H5wuZsoodxKYp882TIGo+wuk8qqq01iE0JsHNHCJKgY+eGoTW2WyYfBU9HMfvxEJDbDVTTAsRFIxWLug1iStyeUNArwdSxKxxwB99mFNx+PrC3jbFAHgrzYOmDgPzayD43yoNGj2qKlogbZA4qkWbFNGh2bd+0GvRStNli0hTQX80oe2wYkudNpejNkiInN7GFwgrZfBTg6x5AacBgkwXFOCNtYBAAhhC/1nJnDozHUAwMXn7sDd738czgYZS2qqixe++hacpw7xoUIdgfEWvD6116nFIdNNXs03YdxIYvcGAcHnaruQ1wYI5ihWSuSAwRD+gARoni2CU8lzNdfiECM6xEW65HWH4O+fY5ut73nwl/sQQmT8eM/uwChm0dg9BgDIzm+zKpysmOBiMgRaVbG3NciLOkJ1es+xIdL3LMMzaPWHB576xHsBAIfn1wGPw+gaVZxP9OHoCmtdymEd9ZuzcPbb9ekWjt11iSmYR6dLTMuIVy30X8hjSFW0k0c2sXd7BhIN7u8+dRmmrqKxRQK24VBDj1bHU7EOWntZRuPf3JpESDWg0bHlegIcW0KGYi19n4PRjuDUsRv0njy85x6iuP30K2eRDPdYNbTTTKDaj2KJtr4l0cFWPYtTtN1mWDJ0ivebjrUwsBTmxXYuXYPlihAp+221ncRstI0wnYtTIF6T+2zhK+Vx3KKEk/efIJ52cWb43IPIuyxRmI61EAiYqNEKeddUGRu22o8iEzxgqe60UpAFF0ej5FlmIx3EbImJT0qCg1hogGXa+uZfxcINBwwcjXWRCvWg/C2TABgMBvjhH/5h/O7v/i5++Zd/mf277/v4rd/6LfyTf/JPmH3ZJz7xCWSzWfzxH/8xfuInfuK/1yX/N4/XFSRJkoTr169/R4tG7h8f+9jH8LGPfQyuSz2BJBtPVcjmnA72oUgW9igQr2XK6NNF6+50Ex1TYeDAlcoYdEdkhqXPFqexFG+yakA0YMD1ecaEGou10G+TibaYqkK3AgyPso+JWacB2O1qAZpkMcrqk3tjmKKu3FsDFUlVZyrRAJHW//gN0m57dKKOY7E+FlJk41+u5eF4AmaSJDD68uYcTqXIxnQ6XcGVWh53UmHBnXYKW904JqgWSV0PYiFVw0KYBD6VXgx1miXmVB19U8UYrZxUeqQ3/yJdPB6aXcVWPYsIzdBqwwhSio0qveeZcA8/dYkEfr9+zIRhy+zZcQDO5PYYRkkSXKiSxQKuvqniJVopumtiC7MejybdyM+l+tjrR5Gji2/XVJGXTTQpPuNWLY/tQRAqfX55VUebBjZJVUd7pDGjWcMMoDlSmfBkz1Lg+hxbYIEDfNR+kLtvh5LVBnhx7RD7Xh5EOXsfIHuzWkBCMZhEQkzVWcAiiQ7i6pAFyW0qhBlLkAArGNTxzvnbCNKWwKQt4YU1QhWPyCYm4s0D9mOyidJGHJU2CTgt2nqMUzmBsZkidjcOVLZnF9dw6wbRxBFlB7GJClLU1d1oR2D1NQZGbq5OwSpFIaXJGFAcHkaZtBPFvg7wHho0KLr3R/4K3kBCjOr1mO0wTp68doANK6URyLXhGbT9kuqwlhCfEQG+i9kHCFbKakYg5TvgVBwcmgpOocFrqw1zh1yHoI0g5kz4EdJu4zwfviCBe5F4iHGHEuDHOHgJet1HWwi+VUPwJaL3pG/mMPauqwAAP58Bmh4kGrwJKRvWaggilerwDRk4HAS3Qc11ozze8sHPAwCqLx7FaC/NsE+c6sA2AkyxevbcdeTvuwrfImPAtwWUXjyG+DiZx/ZQRZQKpHauzSIQGaLfJUmXcHsSsmwxHJpMfQ1vbZIK1+GZTeQpI7HTSCCc6GB7g8yfiUIZSlBHgILz91ZnYNsSrlOPwYfufxq9SgphGswOKklItOp4bHILm+UC830TBReTiQbDN72wsYCIbDKfxKV0hWmupSJdLJfHmc2TJpsIeDYLVhqjAFwviRlaie5ZCo5nK7hB530sYDJ25+bGFIZWAHaXSnfIFhp6mAlVqoILRbKwxvTQuoxFF1V0vFItMNums4UiGoMI7p8iGJY/vLmI753ZYb6bc/EmBobKKksAkd0AgKYeQssMwGul31R227dLTLLX673m3wOBwH+RpPXYY4/h0Ucfxdvf/vbXBEmbm5uoVCp45JFHXnOe+++/H88999z/OEESAPzoj/4ofu/3fg//4l/8i2/H9bxpx2OPPYbHHnuMlSp53sP3U42Uph7CkfEmTtNJ3h0GWSDDcT6yoT6b5JudJBZTVYZ1mY92kE822cbmejw02WA/D0cKE5o0HQmGLbMFwrBlJLQBovv0cHUIyxEZ6PktgRGjzi5GXbgej0KEbJgByUa9F8VHjxBhwY4ehOEEmenkQrKGaj8Kg27WU6EhojRw4Tgf98+u4kurpLTcswX86NmLKNJ+fUrVUe3FUNjXJDIVlhW+tDcJifdwzzShi69V8+jbMu6kn39tYwEZ1UCOLqAYAoeibYbDAoCfnCIblyToCCkG84gTSuNoDCKscjQWaePx4iTeO0u+y/EETO5X6AQXIcVgNgc3GllEJIsB1+dSVWw100w8UrcCMBwR4zS4y0Q7zLfs87cPQ+J9BCWyIIYDBuLUqgUABiMVEVXHBq2ezaeq7Dm7Ho9QwMBxWq4XeA91PYhjFJzeHamIqToLio7l9pDNV1Etk2c9s7SGPmVJ7ZbykEUHGYrJMgwFkWiPtdt4zkd7EGKVg/F8BcfvINl0ayeHejMJjT5325YwHmthfIK8l5dvHEVQspjB7frKHKamiqzl0m/EMZYlG3N8eo+xzwBAEB2i0UPp0KJkIzDfh9emfnQr0yh8zy0AgLmsIrS0x9pnnMJhtJZgbR45OsCoEUPxEtFcm33Xi7D24kw1OhBsYrRLA5fWCPKiDnuTBFCOriDgcMAYeQ9oteFmJyCsUpXtQQg1Sr3PLGzDH/UJ9giAefw8OMeCPE7mvJOdgDcVYtig9lfGoaQaWHnpAQDA5MwOnBK5JjE6BDge4hytul1VIIQN2BRQzUdHQHnErEjaF6aQvI/MSzU6QPCuFiCS8eLXSGtxks7bwJE+nJ0AOtT7b9gNI3dknQloXv3LB3HXIXLN8bNrsPbimHuYBAm95UkopsyqUqNeEN1WDCeO0HehK3jyZdIuu/voNexuTSBDMXuC6KBVSwE18qz3MYNvPUuCxFE3jPhUGX0a/AqiA52OlaGuIaLqTPnddkRs9eLM1DosWyhE28jvK+ubCmup94ZBzCRr2KX2OFHFQCFVx1aFBFQPz6yj3o+yIPrUzDoq9RQmqcm14wq4eJ1gWubye2gOw+jTylF3EMLhwi4WaTX9ua05iIKLR2jltd6PsnVZDZg4nqyz9bUxiCAZ7DO26PfNbQEAkyuJBQdYr+cwT6/D9XlWtb3ZzCAqW5iKNzB4EytJ3y6dpImJidf8+z//5/8cv/ALv/ANv/8nf/InuHjxIl5++eVv+KxSIetMNpt9zb9ns9m/8dJBrztIsiwL//7f/3t8+ctfxrlz576BYvebv/mbb9jFvZnH0JJh0snl+jxu7k4y9ebxSJtt1P94vYtfmY0y0bGsqsP3OdykoOdPbYfxE/DZpO6aKmRbZtUB2+MZrqjW05BUDKzSBSIiWygNQ1ikwEItYKLaiyEikmBms5NgDIqlTBmlbhwCndQSFT+s0QrG0JaQDw4YbsZyRIi8h03KstrTVUzQAOvx4iTuztQRoRtZWjFRqqUZ1iWmDpEM9PC5ddLmuL9QYkHByUwZO90Emr0Ie3YR2WT+SCfTFaiyBYUuIENbQkIdsupYPtJBkD4Pm9obtCkNPRQYYa2TYOaX41Efj0zsYI2y7hZSVdbWKrWSyMdbqFC8QTIwQlCy0Ng30hUczKarDKitqiMYm3NMfmGnlWIsmSPxNqKKzvSJXJ/HobEinlvbDyIlCJyPeybJYjuyZIQpYFpVRwioBsplgrmpDsJ48MxFpmR946VTSMY6SI1T93VTxvLyIcxOESxRYzeHzRLBp9z94DPYu76A5R2yYZ5avIXEoR10N8hYi83vosDfxIuffxsAYC6ygxeeIbT90yeuIxjrI0yVqz/9n96HR+55gWX/Zw8vwzZl1MvkWR46ugJzoGHmnSRI0NezLFCR0l2IEZ39HF4oQpzi4KfIhhlUHPiDNLwTFASeuQp3hhA4xDkBvpuD3KLYnoaI4Fky7gDAa9kIPZJBZPcy+QctBulEEs6fU8B1zALXJGNePuXBWZYgHaKyBmdMcF4Mlf+HXEfm76kQNm/DIY8SyqE2siCVAOW0geHzeWgyFW2MZ2BOnILMU0Pbr10DHn0LvMlpAEDg/zwHob2DE+8jQSUcD26UWIMYC++FfOOTMKcI2004WQS/eQ3KW2IAAF/MwDj0dvA9svgnX/wC3AmykYfOBDGKnYAnkbEV2LuOaOIW+14zeQTS1DYCe2Q8pb6/DjeZA2eTzfl84EvwHibv2O83ESiUYR4lgHn/5hryP9EGVyZgfb/rICUAmKBEk3ITjx4hz0M6ryFXvglE6frdHSKbzwAbZA74DgezlECAaoWZpQSUySbTqFKnqvDpf6cMGcNSGpFF8o71Yga53SyyS2R+tDcL0GJ9GBTD5lgS5ugG7Lk8ipUczhwiFb1mMwFRdHG9RdapD0xuI6gaiCUptkxwEY71mMdgqTiGcaVBP/OgiDbb3Ee2DLMjoZAh6+nxTBk857PPPRA2HUAqq7l4C6ubZI27r7AKSbSxViIV0HDAwK1Wmtk6GWYAC5kyHl8nlfujiRbDf4q8h5VuCI2R8qaKSX67jmKx+BpM0n+uilQsFvHTP/3TePzxx6Eoyn/xXH+9C/WdYGf2uoOk69ev48yZMwCA27dvv+azv+k3+187PB+I0w0krg2w2z0ISP5sfRrvpJvav1wIwfYImBkgSsaXqgUsUhPTv7tgomFoKNLe/+lkAzfbSRyltiS+zzHMUUQmraMBPZcm8igEBwy0ODQV3OrEcJheY0oxsE4VtH2fw3Y/gnFasYhqQwzsg7ZgbRTAUrTLjHaHtgxFcKDSgOSOTBUvUf2lqOQgHDDg0HNPhnrY7CQZrb870iAKLvOYcz2eUXgF3sNGP4jdIbnfiOQgHhixe6jqQYyHegctJIo12M/grlQLWKItwPKAZHb75pYLmTKShsYqadfrOUQkCykqv1DvR1k7KRnsY6+dxLUmWVyXYh1YrogmtWV5sT6N+3MNxhxsdaKQeZepeyeVEVPX/fOdFB7IDtCiwHW+H0FAtJGkOIi+IyKvDVnLLKzqzE+tr2u4WBnDYfq+h7aMm7cXsPoiua6jqSqeXj2MPF18j8xsQBJcDOgGIgguA412tgtodaPMQ6/fjaD89TtZwNmophFLdLAwSzajWiWDZ2j1b2yvgXiqhe2XCKZmJt7E5u1ZFiR6PgfP45k6cffqEaRiHQgXyCbBcT7UNNmY+isTEBWLVYOa1+aRSdxE9S9i5P6zLWgPuxDKWwCAwYspSDfIfJFnO3ArCjiVtqJsAW7FBa+S6+henkN4uAOb+q3xAQujiongITImWi8sIPkwCTbMSyqk9BCg3rLejo3u8jSyb6M4mVEWsG0IZ8kz0L9oQ5kkG6RXAcB7GFwhY16trUCNXYG/QAJOPj7Eq+ULtec+A3ge2l8hFY3QeA3SPNEr8rQo/K+sQM2Q9pvXFuDaIsQFUmmsfmYK6b/35+j+B3IuW0xC75C1JPe9V8GtXmUtRLMSBxCCeJsEY4GpVYxuxeC5ZH61/jwBOdRllbxgIQjj35LfHbaiUKMpxOrEU67aOIPhb3vodAiGLZVuYNgPIUorS8sr53GUVpVQBDr1KQTpnA5lm/j//eL34EPHKa4n04TnCmiuk8A3ObOHnS+fgxoiD3/j+iKe2CLf884FEuD0miRBKdXS4DgfFh1bz64fwtnxbVygLbKsNmRuBl1bwlKsha/fIL5ahVAPO60U7qaq8392+QwKmoEJijtSZAuDkcoCkrg6ZNpNPOejYQRRpmtvv5XAoUgft6l8QFB00BgpOE9hBTFFR4PqQVWHIaRUna3rL2/NIqXqbO7daGSxEG8yhf44CI6pqFPsmBRhyW3PCiAsuTieqhFbktfPOv+WDh9vbLttH68XiUT+m8DtCxcuoFarvcZA1nVdPPXUU/g3/+bfYGWFjJFKpfIagletVvuG6tIbdQyHQ/zpn/4pDMPAI488goWFhW/pPN90kLSxsYGZmRl87Wtf+5a+6G/6EVNGsD2qe9OPIh3s4/kyWVDvSPWYnsYd6TpGpog7s2QT+PreOM5nq2iP9u0tHIxFuozttd/+ebpCxRRVkwVFs+E+mqaCK20y0d43MURrpMJ0D17LiWSDnWOtlcYRGox5PofjqRrDvrSHIVQMlX3eNtNQJRvF/sHg3h1qmKOmlBzno0eFJh8c3wXH+chQ0OaAMk86+1Uq3sPNeo5hcDjOx4UmaUUtRXs4k2oyL7IQFYLbF1eUeB9hxcDXqRjnXHiAvqm8hil2nQYqYcmGYcuwqNibYQZgezxbEBMBE6poM0bWyJKZF50iW1BsGWczJBO+XM9gMdZh5fH7gwP0LBk398iiv+8FtW8ee6sbwXn6Th8pdBGSLKYQ/IW9FMJSlgXNCdnE7V4EJ+nf1ijeDADuWryFe2SL6VcFJQuf2x7Dw1Q8sdSPsmBr/1kWclV8jW4SUdlkgPphP4grtTzu3q9YmQH4PocAvSeO91GvpVhLIJNs4UdOkcpIrZWAPlKwSzEUhWgbm60U1iiu6V2zawiH+1DpRua4Anjew+VrpOKhShZe+hoZ/3/3XY/DdwXmLyYrJobXCwhTu5Dg/UP4kOFTDI42BwY0tou0TU2DWU7wANeH26K2G9NleEaA0fz1cgqxM+ugMTZu3lrE3TQ4Ccz20HlhCgqlm0uJPtR0G06VzD1xAvDjMbgXaCX2pAtfpxXdi9OwDQVRSsZwByqE01FYU+R+ZQDylefhR8jz6T2RRPg9OhpUidrohhAsk3EXbnwZUDn4NFjzTYkw8GgrL/vuNaClIHqsTz8X4W/QGxIFCPEBY8ZZAw2SajLtI8WUYDRj4GkwG5qowu5rjC0IAB2KnVwpTuLu8y9j7/FT5B2fXUbpwhJLQETZQWaqhHaJ/P6ps1fQovcTSbaRnt7DoE7Gh2eLOBFvswpnZXscmqojQYUrpegAr6zP4/xh0soMajrePktahMVmGulwF5HoAXYlFhrg8g7BQo2Heii1kziZJ++xNQgznbS0z4HjfITp2hLVhshEO3iGahsVNAMpdYguXV/3pTlyFKNU7UdZm6tYzULiPZyg84fniFH3bIKab3fjWIgZDOO43MywOd6zZciChy3aIj2XrUC3Aoxw0zMVuB6PDTp/FngPt7pRBEWKrVIMfGWXrC13pppY6wVxsZbFyPvOryR9M8dDDz2Ea9euvebfPvrRj+Lw4cP4uZ/7OczOziKXy+HLX/4yTp8mOmeWZeHrX/86fv3Xf/3/9ffv7OzgR37kR3Dx4kWcP38ev/d7v4eHH34Yq6vEGkdVVXzhC1/Afffd97rP/U0HSQsLCyiXy8hkyIbwoQ99CP/6X//rb1sU+GYf15op3Fcgi/y1RgY9K4Axbd/1HXgbpXDvdOPQXREy3bj7Do+RI7H+e7EfBQ8whe31dgqK4GKJ2lGMhTtYo5lNjmKT3lmgIPBuGDOhIUxKdw1LFnRbZpWVHV1lDDTTkaBKFkb0d0OBEY4n6wdK4JKD7V6ULQI8RypX+/IDAqfgfJZsJn1TJR505kEZ9TO7Cn54hsoXyKR1VaUtsv+0MYbzKZpR9sM4FO0x2q3nc8iHeliiGkIB0cYzexO4l6ri1oYR2J7AWGeOx+N6h3zvR48U4Xo8Y6ucUA1EDJMxYTb7IaiCx0DSmmxCpYGK4wrojlTU6XtxfQ4NQ4NNN+fHS1F8aKbC2qDPVbM4Hu8y4OV9hV2m3q0IDiTeZS3Wd4w1wNNzAoAmWejZ8oGFQ6SDFL3fkaHAdkSM00pSsx/B3z93CUOa3U6IDr62sYD7KIarVk/BcQXcTX2uHEdk4OoM7+HuyU0GZFeDOqqNJHtH3V4YU/NbTEOmVk8hHiNjqpCpodWJ4QjF3Dy7fggn87v4+DrZjKeDeSxmKkzrabtcwF47yURC33HiMlNqDs7vwSwl0aObbWkvj2S8fSBM2K2Ck0SA0ty5kAi/RwUuZzmMXhQhUiZY6+YMEkc2YVJGljJRg76VY15vwUIdXC6E/hMkyDxz/sIBCLw7Qmi6AnGcnGt4MQPtcBlej7xDL56GUNwEH9zHgfDwbfLOome2oN/OQp6i2mFhDW58DIGXiPaRNzEJb+4wPJlioZK3wFk+8vPU6+7uJnvuXoO0o/gAxR3qCnrFLJJhki3zKRlo95kA5PbTp5FdIOcZPh2GUjARPEKCD7kcRuv2JFInyfvneB/D21OsYjOqxSGoJiSqwC1N9BCrU52fdgxSeIjcGPnZ6WnQdQ0zZ0hlrbxMAo0mVXfv9iIYp7jLYTuC/OIOGjvUDLev4Z4zl5i5cm5qF19+9h4conNxtZ5FNtSHTHW09so5TIyTe8jmq+g04xhR/benSuMoqCNW1c6HuigPomhS4PZEpMPei0iTqP1E8Eubc7h/rIgJylCbStWwWs2zuZgTXAT5Eao0OYoqBjZbB7p1jZGKq1RX7ny2jpg6xJAmeyNXxHIndiDWax5YpWwMFEyFe7gzScbH1XoWs5EunqTB2mpfQs8G3jNO5lckMMKhyMG6N3QkTFNSTXOk4q4Mmf+6+yZikvAGY5LwzZ8rHA7j2LFjr/m3YDCIZDLJ/v0f/IN/gF/91V/FwsICFhYW8Ku/+qvQNA0/9EM/9P/6Wn/2Z38WlmXht3/7t/HJT34S73jHO7CwsICnnnoKPM/jJ3/yJ/ELv/ALeOKJJ173ub/pIOmvyyl9/vOfx6/92q+97i/8m3pYHsc8fZbiTYwcCVda+9WSLqPOq6KDkGwxi4rTiR42elGcTJMMLCRZCAVGaNOJORHpwPM5XKaVqE/vhPFQjiwIz+xNYCnWQYOCGK91BJzPDvDFIlm43pJtwvV5NhFjksN83IKiTWTy6SQvduPESJZmkUllBIHzWLCWUnWIvIsKbZOpos2Uvn2fQ0Ix0KEU58VYBz847bBW1fHxHXx1dRHnKBh7MnLAQBO4GK62opgLk2zNcgVcb6ZRoCVwzyGtr30hyu5Ig+Pxrym3v71A2jqux8P3OcyGyQK5LwL3VJUs8mHRx+mxEnKUllxrx7FKMUjtkYqhIzJNlLHgAENbxvaA3ONHF7fRN1V06D2dSrTh+RxS9Pebeghx2sbb68dIu4AuzALnIRgYsQD0D9fyeP9kiz3rvV4MNv3d1XYS5yc38STFNoREB4p0gMm6VRnDQwsrTECz043AdCSmlt3uRVhQLPTJ9+4v8nYnjsowzGjZnsfjz596K+6gyseR0ACZObIJXn3hDLa6CZyirYXFZA2ex+N/OUQW+aQ2gGVLTI2Z43ycPXoDMzQIGxkKChNkE/zU730YD9/9Al65SSj/d524hno5w4Ik83YUni1CXaIt5YGD8pMEvxNOtyFHBxBnqBdbuwExZ0LMkfniDQntfV8XyKzHII8aUDJkTPQ289DSHQBAYLIBTvKZThIvOeCSQQj0OrC5Cvu2BPFOWtmzTPBk2sK+akGO99F+nlQ34u9pwdMi4Km4oheMgn/2Mvi7SGVJvD+E4V95CB4jz8DvgvUyuADAT4bh7ZBn2d3JIX3PMrgQpfxrKryKTVtpwPSDr8DYJsmkdqQMryPB65PxcvEr9+LkPRdgUcsOURshOVeEnCH3bNViDOQOAG5NZQHl1Mw2PFuE3SVj3NEVfHZlCf8zBePHUi1cuXYUq7Sa+OChZexukIruwFCh3RogliJjKRDrY9SOMAHIejGPt9/9PEKTpDIbevE4Or0IRrTt1x1pSNOgaGdzGouzG2jRsfPQ5BZymTpeXCFAgaYegsy7jL1rOSK+XiHP43SC2H3sz48zqQaqgyjC1Pao1Q+zZBIgiv4DQ2WOB9frORyja29QGSHcSWA2Sqs7oR6qvRjGaHX9ViuF8aDODG+PxToM+nA4ouMrpQzOJSmRQyVOAYsxMg6nQiJ4zmfBWssIwvZ4bFGbl/sKu6gNSbIi8i5utuMIiu6bikny/APd0DfqfG/k8Y/+0T+CYRj4yZ/8SSYm+fjjj78hGklPPfUU/uIv/gJ33nkn3v3udyOVSuHjH/84K+L803/6T/HQQw99S+f+psUkeZ5HpVJhlaRwOIwrV65gdnb2W/rivynHPrvt83c+ivUOwYmklREU4cAF3vU5JlLYMgNY76t4dIpsPpLo4EJ5nIF4b9dyiCsG21AL0TY+tTqH+TCZ9LbPYYlO2i8WC3horAqLViRaI0Kl39cEKfdiuN6J4SplDf2vR4sMeD0e7qJpaOjRICin6giINq41SVY1HhwirhhMTuB4uoK+qYKnnWZFsvCXW2TBPJPsQeI93O6RwXoo0kcm2GP6Ijv9CBYTDaZd4vkcViizKyqbmHqV5METO9O4b6yIPWqkm1CHMGyZeZUdTzYRU4covcpodz/wO5Ipg+N87NFFfT5bRrMXYZW36Wgb8eCA4ZAU2UK9GyPncQWsdhI4QRfMgGTj5dIEcjRYm0rUUenGmSmn4wrY7MVwmOIIPJ9jGiiuzyMV6kGjlZRwpA99qMGmmfHAUNEfqawdGQuMMDtGAsj01B6aOwVWCQCAcL6B9UskwGgPwrjVSuHtSyTbLxxdg6CN0KNgbNcWGXtNiwxgmzKz6Bj1g1jbmsKhOQJyWN2YwYlT11CiG19hdgc3rpBN/tw7nkZjeQYb26QFcPT4Tbx04QzTZ/rrCuyhaJ/5qQHAqBFjAo/SeQ2Dz4swaMUq83178GUZKDbY7zv33ANXIxGJvLcCvkVZPxtD9FcmIP8SWaC0r/whvPFx1priHBtY3QOXpgBingM8H/biSQBEkRoOlVdIUn/AmQfJ37ZvgXNM+DJtde/egFAvQT/zLvK570DokU3eDaXAOSaUZwgV30+n4IzNwV/8IPlb6bWYC2P381BWngfXoCyqhSPw6P1xn3wF3HsPQ7x5mfyy5wPRMHyZajstnEFg5WVwVTLP/alxuC+T6/CMAORDJrlPAHBd1L64gMwPlOm5PJgXOMjTZLPmgjL8tgkuSYOTr2UQpIGLXswgEO/Do+1pdbGFjT+/A+lJci7bCCC6tAWrQRX7bRESrXZUb8whf+YWOqtULHJxG1YzwsQ3nU4IgaNDBoIXYhYgcmg+TSQmPJdnZATfIa3YfbbjxtoM5g+vok5lDXhqcNymmlyfXJ3Hj1K9pVo3htmxXYZf4gUPzXYMX9uZBgC8c24VAu8xmYvhUEMk2sPyFgl2dVtmlaMPHruB/lBj83izk8BYqMeSmWIvhulYCwpt7T2+PYNpet6toYa8OmKV5cPxFhTRZsSPiDyCLDqs9b9v0v1qMd/hq0y8e1YAMdmE7tr40JVPvilikr8y8+NQ+DdOTHLkWfgnm7/3HWFLIggCSqUSC4pCoRCuXr3K4pNqtYpCocAkf17P8U1XkjiO+wZg9ncyUPuvH4psYYz2yTOhHjpGEBqdTKpk4SkKtG2bAvLqQQn1diOLyVAft2sEc+T6PD65mceH58im2TM0fGBuk5k8dswAhnQS359roNiPoEUrOMfibazQAAEgGkL3ZCt49ywpAb+4O8U80STBQVi2mMt7a6ShOVIZQ810RWz3o0jQoKA6iCKl9VGhRrVjgRHeO00CvRcrBSQDFh6a3AIA3Krn0DdVtrjcO72Oq3sTmKUtpIuVMdxRIKtnf6SiNQyjTxe587kylhtZhvnhOR8JbYC7qdzA7VYa4YCBkEQ2fll0oNJSu2HJqA0jiNPfFQQXjicw/ILjCqj2Yqx6dCTRQISCyw1Lxniojwu0pG+5PM5QYToA6AxDKOtBHKO6SaV+FAHeY9YrAuez7FTgPaw2MpBpJUuoeFBEh4lMhiQTzZHGNKgAMEZaJN5Brx+CuG81043A9zmMTRE8hlZLYmb8wLB0+fnTiEd7TCByfWuKMd18n0O/E0FvlzL0RAfHji6jSTEpk7kypJCB8UUSNNU2x1nbb/25U4gl2ix4HbajOLW0jEGXbGR/evkUfvy+p9GklO/1jWnMAaxSoIZ05i+G5wxo00OoFIPk7Y7AT0bhLU4DANxnauD+4hKkt1MD2M0tIE7GGR90Eb1zG+7v/yG5p7AFrrsBp07uaffiEma+r4LKp8m5RNlB6v7b8P+M4Bv4Ez42/oAEmGPHlyFEhtCWiFebs6yDD9rgZqn2UacHRELQniL+kX4kzOw85MEAUAJoPUk218TDRYh7z8MWaWA8aGP4+22E30e9Fh0bGAzh7lKiQfcSnEeIIKQypcOv7wFRSoH/mgQl3wR/jGyYgSeJJY25RT4PqDUmFwDeh9+0GCZLSDgkQKJWKs6mi8BJCRDJexp+PQg52YU0Rs2Wx2vob5KxFrtrE+t/fhdm7ic0faekQBQdqLT9tvmVuxE/twavTObAC0/djQc/+hkAQKjShVFNsECHE124owBMWrVVZ2swl6MEQwZgsFGAmurCsWhb3RVQWycBFrH+cJmVSM/Q0CxlodEApEnxi/tehz94eIXh6vbXmB5V86/2Yjg2u4730vnw8s4MjmVLWNkgldmIPIIguqydfWl3Cj90koDNOc7HYKQyxupEuIuuqTK5gKARRCLUR5PiNE/E26y6NRHpoGUEcZaua44rYLOVQoaSKAg72GV7QrEXg8B7mKPnfmZvAot07iW1AQTOh+PxrEX/Zhw+gDey+PMGF5K+rcdfZ8m9kbHJ62q3/Z2/83cY/W80GuHv//2//w0SAJ/+9KffsIt7M4/WMMIsG57cncBUSGd4H8fjcZROAN2RcLUdxn9cI0yN+7JdyILDNthnSuN4e77DnNstV0AOwA5dBEKSzapS//imgH92aIQKrRwEZRMi52OaApMtV4DtCayyMhnqY5diRpp6CCHZZIuM53M4nK5gm8oJ8BzA0esHSHvN8QQ26WuDCLsOnvOhCM4BAFgbYrsfwTm6YNwoj2Mq1sIOvY6hI7AWUHUYxmyijpttsmCKPDmX96p+9l4vjk0q4HY2U8WVWv41gpH7tNqaHkJZP9DjmaRg1f2FJqEY2GwnMU8Vyj2fw19ukI35rbkKsuEuA1e3TQWi4DJWXUTVMcv5bKEOSxbW+xHG9gvIJq7WSaC7NQzgwUKVMfFEwUWxF2NmxR1TQUQ2UaJVuqQ2wESaMvR2C3ihOI05ypqRBBeGGTh4tokW2u0YE97L5apY35pCJk4VuDWdgXZ3NicxHCnYpfiLuDLCCzszjA1YyNTx/JP3MMV2VRmhQTEk2WQTT107yfSY4r0+OoMQwxn9wPGr6HcizK9uolBGaS/PxtP/c+EcfoJ6bYmKBZTSrMIlBSxEhjvgBDKWeM0Hr7hwnyBAXj/hgevTcfb0Efgeh9gUqW4YxSCUTBt6mYzT3OENODsycu8irKvBK1noN9JQFyh4/ek8CkfJeQVtBCFswQ+RbLH80gzGH7oElGnFxvGBGA/nKGHYuH98C2KMVGT8d56GtHIV4RnSPut8LY/oqS3IL5F7dI8cR+TtLfgyrXC+NAR4AdIMzTyFAAJPfA4AaREaVz1o83Tcrt+BtCNAapONXR7zYdfCkLIUyCwH4TfJ8+BkngRIlLzhtmQIfBdeiyzFdjOGwUbwAIMUHsJqRjH6CnWu72XRaZBr3PuTCYwsGaNKgr0n25Zg7JEgOhweoPbsEXSoj+Sdd7+M5/7Du8l4CBG7j+nDBBvXuXgYvODCsRL0dm3YAxVlus7t1LKYyZdQpezRaHCIdI68oycunsFYpIts/ECdW5YtFEskYblez2E22mZt5Kg2ZHIaADXYphikUGCErb0xlvycHtuB73NYpoKZ92R1rJTGMJ8hFeN4YIQNytIt9iM4kqqyOb7SSeBcbo9psqW0AS7sTkGjgZHEe9ilSSPP+SgE+9D3RV85H0HJZqbWI0fCjUYWizQ4Gw93MXIkJno5FRpgjK5jg5EKx+ORi3QIu+27x5ty/LN/9s+gaeTdW5aFX/mVX0E0StZhXde/5fN+00HSj/3Yj73m54985CPf8pf+TTwsV2Ab6kKkj7BsMYDwzVaKtVYE3sN00GQbVd9UoUgWwywtxTrIhrusneR6HAxHwjjF5OzpGhK0mvFrR8JojmQcooyzkSNh7lWLieGIEDiP+bFVDI2FHkGKfbpSO6BT/qfVOUwHye/ORrowHJEBvcMBA6V+FCLdFG2PZ7iqvGpgPNJhrby4YuBkpsw0iGyPx043wXSV5lI1PEOVeCeDA7T1EB6aIYvt7VoOsuC9ylPTxXI3gvfOE7mItXoOM5EuqzxlQ33GNtk///7GzvEEF7Tfjnt8ZwqnEm0GvtZkE/fnyebbNDQERJthsKqGgois4vkauaewlMa5VB03aRB5IlVDXtWRoMHtC9UcTlKsT9tK4FY7gVP77uLDMOKBEQM1C5wPRXTYeBEFF80uef/R4BALsRZr1WqCCd0KYGmR3P/t2/NwfZ6Z9K6tz2BqrMSwIANdY2bJkdAAAu9hkjvI6cY8non2qZqO2KukCFLpBmr0vVyt55DTdKawLggutIDJnl1vEALH+UjS4OzJG8dxNFtinz86u45uK0a+88g66msTDDcVny+ivzrBFKbDZ3dRe2IJ6fsI86n7yjQixwlOKnFoB4PdA/afY0mw2mFs3CKVgWMPPY/O6iSC3Rb7HXuoQu5Q+4fwEEMKGI9NtNC+MI9Ehrzz/Lk6nEaIMb/Ewgj+VgNSu0P+9hgAlVbDiqvwMlk4F/vse9yeDIE/wIy4+QkIm2Qc270YONGFSBdXtybB7pKqm3pugEC/x6phg0EQWcmBGKOBkMqBV01UnyWA1fx7lll7zR96EMc99F8k9xQ8VIJTVuEOyXWa3SDUVBfFKySISGQb4EUHPk14jL6GHMWdXX75NM7c8zKa1CcuMV2CFtIRSJH7H9wiCUSDtrkKHo8z9xHhydKNeUSTHei0Rea5PILxLsLHybntahi2oaBPMTc320mMXBFJajeUn9zDLjVHnoq1MJatwqNjfmAH8MlLZ/H9py4CINXiWj+KRepKwHE+q+AcGy/iVulAcTsg2kzUFSDtuJvtJN4+QcZTWNOR8TnsUOuibKSDDiWUnM7vokorPACh/IdUg4mtAsDRTJnJYCxX89jZf+4eh7Sq4xJdT4+naigOwixBa41UJJURBnQfCCsGwoLD1szaKIBLtO13d6aJ5kiF7QlvruK2z73G/umNON93ynHfffcxmQEAuOeee7CxsfENv/OtHN90kPT7v//739IXfKccF5pxvL3QAUAAf3udBNoU5LtnSMjumyhKNoa2xEB6O4Mg5qMcGvR3g6IDrxdDjwYBLzWCmAvbmKGWHgLno0Gzl7qhwfM57NHqSUDXcEduD89RrZsT8Q5GrogGDWYmQz2mg5NUFOTjLdZOywQHOJ52sE2rPV0zgOCrqlauz0PiPQYoz6g6vlomk/r7p8l977tjN4Zh8LzHNkzgwKQSIL5P+ywKHxxKgzBjoAUEF21TYTYlxV4cMclh3naNkYLFbAnXqW1Jd6Sy+4sHRuhZMiKh/VI8Wcx02uZaivZQMzQsUEyX6/HsGnOhHiTBxRoNMO5I17E7iOB0glTlFNHBc9UMTlNRuu5IxcCW4QxIwJGQbWzSMvxbC3sYWgoTk0wH+/B9Dim6UeXCXTSHYdYmDCojprfS1zWEFINVynjeQ2GsjO1NkpEnoj3IsoXPvXwnAODRcy+TNgV1YU/EuhhSzSlBdBEJD9iiPrJkpAT3YPzU0jBtieEkup0Yjk1sAQDynRgk0UGSqnXLigmznGXmnlU9hIlIB126wXzvw19FeW2K4a4Ckg2Djun2dh7p+SLa22QDcUcympU0ps5Tmw7LR3xxG6NVsnFp+SbsKgWxRnTonTBCk1TZ+7k5hFQDx9/5NDn3jVkEMy0GThZDBipXFhCIkWBGjA1YEGTtxRE5tAPQfUec9GBv8kxzyKkEwIdNeFXy7JuXDiH5U2Rccs9fBSe1oC6Scbv8idM4dXQb/tIBppJv1wGF/L7ZCyFyaAdOmfrRGTIC76ZV82IL4tEg0CVzevb4CgKFJjiRzDV7T4VnBBCbIkGB13aZzYgwqcC8JDNgum+IGOzkEL+XvDfj2RgAEpgCwPUXTmPx2C2oExQfFjQgR8n3DkwFVl9DKE7mWqeYgxoeYvfiEruncKyHSZrs9WoJOFQCIJ5pIhDr48ZLpwAAx+99BdefO4vpAR17kgPLCDBA9d1jO6j0Yviz9WkAwCOmyvzWApKNjb1xpu+VCfYwlagzUgAA7A7CaNFxmtaGDCbwwuYcMqoOe99MWbbQ1YMsQZVFB3PhHiI0yWz0oggpBmPaDmyZmUP3DA2y4DCm3Lxk4tntWbz3LFGAHuga2sMQm5tfq0bwcL4DAHStdJGh1+W4Ao4ka8yIN6sN8WIthSB9x3dkRwB30JI6lmgxTTqB8zFFCTvim8hu+3bZknwnHE8++eS37dyvW0zyf9TjkYkdGCbZyDV1hGFdYi7wpxM9bNJ2GUDaPyMmjuijNAwx1/uRK2JPD2KOtszeP91DVQ/hFi0X35WpshIuAKx0YjidJCXcP97IIaMkGJW0EG3jarXwmr72bIgsCCGZVAVqr/Ibu97MI0d7+WORNv6vazP46CGSdf/V9gQORXREaMbmAbgvSxa5jqkgAg5dGkApgoMbtTzzbksqBmTBYSDFrVoOMbp4RgMGPJ9jEgjlYRi54IAFTRHZRFiy2AKSUQ384Y0juJNmuyHZRIQGetvdODTRYVllrx+GJpkAQuweNdFhwctibg97FKje0IPwweEY9SKrGUEEJeLUDRBRx3tzVbZA7n/3gfouh2OUvbfZyCAoWZilmKP9VtmrAeMRV2eWJ3968wi+/zBpFzmuANsRMUbtP9Y2prG6PoOFOQLsb9ZSKNXSeGCRVF2u3VpEVBsiSa87M7OLNaqavd9Ge3UmbDsiKjSoPJlsQdNV1IukGhBPthgjsD8MIpNuoFYnz+diaQL3L9zCGB1ri9NbUENDvHSFAKRfev4OZs4MALNju6xyVKunkFraRHKetF951cTkmZvYfYWAxHOHtjCoJFnlKb+4ydS5o/N9SAEL0mHy7M6NfQXVry4xmr4cNOBaEtNJCqgmRiOFVU7g8VBpQDHYzUDRFQgn6fK9XcVgawqxsySggOmBT8nwCqSykj5ch/8sCRL5KOANOcAi73/hxDI2v3wnJh6iFavibVjPugicJPespdtwBypj3UmqCZ6qByAgw1dUWBfIPfEBC3zQZbR2uxOC1dfYdXMq0LlEsFBKqYdhLYFQgSQkdimF2OkNdF+YOvheU8KwRtaiY+cvwbNFmJT9tnbtMDO5fuh7voTy5UMY0mpPNNaFGLBwjeoTHRnbwc7WBBaOkQxb74QRoRgk2whA1EaYmdlmz3lh6TZsyliTggbRoKJjf231EJLaAD9xlowB3VCRoV5+xd0xzE0UUamRIDmkGhgYKoY0yDYdCfOvqq7u2yEBQNYVkQl3WYus31ch8S6rBiVCfTxTKjDCQcfQoEgWswPhOZ8lrIVIG9frOUbGGNkyIpKFneI4/VvynPbNtx/Odxj84IVKHsfibURoG/xPNgr4vukqjFd5sy3F+jhEiSGmLWGnk4BME7lUqIcvb5PnfjLRQjLcw147Cdv9TkL2fPf4zx3fNLvtf9RjnxnwV3e+B7YdPfh3K4AirfCcTLRYq2U81EdzpCJPsyhFslAdRPEC9ds6m+wirQ2wQ3EkmmgjKNm4RuUEZN7DfJQEH1HFgO9zuEV1PiKSBd09oLELnA/X51glJa4YCNNgpGMEMZ2uokTl+zXZRMcIsk1/rRfF4XiLiUmeG9tBVw9CohnatXoOS9RPLJdoYmQG0KaLb0AkBpMpGujZjoirlTEmJpkN9RlmoNKNIxPpvEafw3ZErFH221sWb8IYqWj3XkvzrNL2ZEgyGdvkYi2PI/Emy0hn5jfx3MXT7NzX2zF88MQViLQc/8LqYaa+HQqMkIx1DtoD1QLOTm2yVoNuB9AeqQyP0DEVDB0RCxRH4Po8jsyQ8uyXrp7C+9/yDAyqGcMLLnyfR6NOnrVhkgw7RLPbaLLNBA4BoF9OIT5HwNlSsg/PFAEaJHZWplAvZ5jwXmphB4I2Akd1hG584a2IU/yb5wmIJNsIUxIAJzloX59DkJrDGvU4xIDFWiaDXhidfRPccB+S5LCqVDTWxY2NOUxRsc3Zey5hWMygR8UEx95yBXzQRe8y2aydkcwsTaSJAWD52Pg8Cd7mfuQqvMIY+E0S+DnHTsOcOAuxTX4OXHoao7veAQAQG9vwRRn8iDwrc+ostCf/hAUy4HnwjRozlrXGFiF+6qsQTpNnbU0dgZMkrTn1+pfAeS6se3+aXmOZWX8AAOc5kPeWwd/9c+RzR8foZ38VAKD8y5+HZRQhbZMKlqtFobz4VZh3PECetRIBnzkP8eLvkXO5NsyZs+B1sjlL5TX4Knm2fLsGJzsJoUvmD9/rwE1m4UbIPUjVLWClCH9pmlyYHAB3mbYCOMDajTNGmjLTxPBmAcHDtBWl8fB1D/ptUrVT5yrwLZ5hx8xKHOpxMi/9gYOdL55DYoy8U6MbgpbosoAzfHIHbksBR6t0fNBhgRxABD85mQQj1l4cvd0sMu8kek1wPLh1HvoWuQ7P5aHlm3CoMnp9bQKFu64DIArsw16IaUHdeOkUJsZLTDfJ9zi4roBUngRVnUYCDr3GrVoOJw/fQpuCu4e6SnwY6dwKRfvotmK4RAO/mXgDkdCQPb9WP8xwdopswbIlFGlLPR3sQxRcRKmkyK29CeQjHVYdu7g7xVwFVMmC73NYoX97R6GIlUYWMzFStf763gRmQkNMRsl6IQokkNtfm27Vc8ws99laFHckB8hqAwxdGx+4+OdvCrvtn0/9z284u+0Xt3/3bzy77Wd+5me+6d/9VmzTvltJoofr8UjRwKeQqWG1OImAcNAbv9Aii8ONropHJ8rYpEHQZKiHfLiDt7+KrcVRECBANmNZcJj2T8tUsEbxK3cH+yj3Y5il6rFtU0VCNNlki2sDXKyMMSXs9khlkzKmDmGYAbxAfc5OJlrY7EcYjub4PjOPBhSlTgJlPYirbbJpvmu8hi3aAhN5FyHVYOqyV0oTkHgPJdrWmYh00LaIFxxAzGFfogaUAufjqUoa76CVk+5IRd+WsUU35/l6GpoyQpIGhp7PY6U0xnBHzZHG/OdOpato6CHGIuPWfewMDoKrqZCOzXKBsVcOZ8rYo4taXQ/iUrWAOM0EW5aMK8UpnKA6QXt7k0ipQxQSZNHbqmcRcQWmk+K4ArZ2ycZ9z/Q61m7PMcAnz3tQAiZk+UC4sthOQqEttrtmdtnGtLsyi9zUHjzK9BntpiAEbPA0CBp2w8SklrZjR60IZFtklRdZslnLKz29h1EnjO5tgv3Q0h3wgovKLdIi4jkf2cMbePHls/RdeKwKlxqr4OWLp3HmGNnIlEQPmUYS6TwZH8NiBoLkokaBuMFrswiN1zCkuIqraws4Q7FgUbsCeayNmXcQX7fOV6cQ/ZAJd57Qwd1QAtorn4EXpcxMx0Vg+Xnyn2Nz4CwD/EV6HaYOKAHwNeoRVh/CszkYT1NW3cwX4doq/NtUyqFeh5wlVTrvchX84Qi4tc+Scw3a4JsV+CHqGxhNw/v6NsypL5FnuXOViUC6l38XfGoSwldfIM/q3CzguhA/S8TlfJeHcPJpeNdo5WlBRcB7GXyDbOx+JApOp7IOxSr8iUXwRTK2jGtRBN5jQ14mGBx4HoztJNQoCXzAc/BOkEDP/lIdfMCGFKPnmkiBu+Wj/Qr5XA7pCN1ZY+3H0VYavOTg+nPkHd9uZPF9wl+Rr7FF1JoJJCZItTg6XcL6iyeZRc6cz8EaqgjlyDPol1OMgaYEdUQPFcFTaRKjGYOkmvDqZF52b07DNgJYWSO4JtfjcWh6C+s7hKCRSzQxpAHUsBeCHLBY9SsaHmBkKGi2YwCI0vXSWBGrK+QeJdGBRi2gFinWyKTX1dGDmB8vsvkx7IfA8x5jknb1INSAiZepxcm5sR1m2n2zWsCJQpGtkeV+DKpoI0hFgYOSBUl00KZdgUKox+b/zVYKyYDJ1o/2MISwZGGF+kTelakiGe6xKt5mJwnX41myLAsuY/Tene5hYEtoGNqbikn623pcunTpNT9fuHABruticZHg+m7fvg1BEF5jmfJ6ju8GSfRwPAEbVMvn8NFbsGnpFCBg7bfT3nVjpOBWOwnLO8jIiEcYNbwN9qGKNi5RSQCB85FUdTYZi3oAGYVsmC+Wx/GpPRuPzR8obI9ckYGaMxEHGfUA3yLxHmv5iIKL1iCMkcux6+9YIqP4r/VCOJtuIEtLy67PI6fq0F4V+O3TV7++N4Hz2QoqdAHYHWpIBizWQrQcEapw8N0v15NMrftyI4X7cnUMaSsupurwfA5nkmRh7hhB6FaAYYcaehC6I7GKjuGIrK23D4QOyfvMrxpmejEGxnY9DlU9hAgNoi4XJ3EndTFfSNXQMzS8QDFb49oIE5E2blDphrFwB52RhnX6XhqGBon3ME4rSe1hCD36DoPKCNfrOUzR6zIdCR7ArFeO5fYwFmsx0PPe6gxb5HneQ2V7DOsvk+85c2gFHO9jeZ0ENploB1dLE1ii4GNV01HamGQtPQCIJch561tjuL03gVOLJEjYunIYrsczfBcPH+V6irUigANKdWMvh8WJbTx5gSwMJye3MLJkBrZdruZx79JNePSZt+tJdBoJ6Aa1gNEGjM127ZlzmJ3fRJ+20yLJNvyrO/BN2iJbKMLbHYKXyEbmdBSINhkfIjVMtSj+ja/X4Aku9mirbuJtF2DuprB6ifw87wi49NIZFrAffvcz4LrUZJYX4FwxINx+jtxr3INTCRC6GYDalTBy//s81K98EgDg6x7st9xDfverL0AZXyOmWwDsJyrwNQ4eDU7Xnj2Npcwz0KmQa+ioCf+lHfhRar58mYf4CNkw+awJ8ctfx6hM6fL3uECnBcjkHRrPkfm89xmCDdJifQQL5DkIIRNuLwivTjFbZhfOqMCA+7XNceitKIK0HW0NVQQiA8zMbgEg1ZL9gNoZyWgMIuhVSAUrLtvITZRYBdDRA3AtCfU18s5Ts7voFMm4LBXHIMg2Vr9AAt1TjzyD8sXDCA+pvdB4Dc5ARfsascvJhbvodSPYoozO6800ZiirbKFAWrPVMpl7a/UcBM5DniZ/tsfDtiWmnfalUgz/E8VciYKDTinKbHyaIxXOzjSreN7cmsRMqsZIJJLgYLeVYgKqtiMyoPdsvIGNepYJPgYlC7uDMJML8HwOrUEYBdpyfnJtkWFN5yJdbPairLJsuSJ2BmHmjRkQbfzV2gLupUSRmVgTjiewgGxKbeIiNTk3XB6pgAXbExhj+s04/rZikl5tlfabv/mbCIfD+MQnPoF4nAoNt9v46Ec/ire+9a3f0vm/226jpcrPnv0eZENksh06uoK/euqtzGNrbxhiYOGdbhyXWiHkVfK7R+Jt+D7HwILBwAiGFWAb/rVmGhnFQJoGHK7P42KDLGoFdYT4q9S5A4KLyWiLiaEV+1EcTlVR26epAqxSIAkOdnpxZGi7qWFoCMkWBjTAUkUHVUPDcdpD7400WK7APNOOpmosoEprAwQDI7ZRX29kEZNN5j83l6pht53EM1VSdfjI0WVmyVHvRyHxLsMbGLaEmqHhFMX31PtRhCmmCSBMsZiiM6HKviWzyhFAWopR+twLqTrWSuMo02vOakMUB2Ecou8iHhzg8+skO31LoYSdbhyzNPD7v29O4+25ITr0nk6marAckbmL313YxcBU8IUiyYbfM7XH3lnfUiirkLzTiUwVQ13DKjXAXUhX0R6G2D3FQgMG3J6dKOLGxhzDYE0mGri4N4n7KAYpmmzD6L+qLboziVy8xX5OpJvotcm5vrhyBN978iKq++MlV0VAM1CkApGOK6AxiLBNQFVGKDVImzOfbGCzmmdCpYfHipAkGyrFtDWqBPStUpuJ1XIBh6n1DgAEw0P0KI6uML8FXvDQr1LMXqyPyCMdODdopS1owtjOQilQnEjQhrFBAgopokMcG8Lepq2qgA3PFpkPXOf2JCITVdYScgYqONFF/TapFPCCh8xRsqH2tgqIn1gDaKtFmCD/77fIPfgeBz7MAckYAMC+aEFMU8ZZOghv1wBPgyQ/mwY8F97NDvlc9OD2NHSpqGfizG3wYaD3MnnW4feZgEg2X65ahR+Pof1n5HtiJ9ex+eU7Mfs+whzrvjINS1cRpb5njq5AmzsIFrcuHMPcvaTq5JkS9GoCAxqAxsercE2JiYKGVAMTc1twaLXENmXWanJsCRznIbtE2pxWNwRndNBuURIE/8TRqq2S6KG8QpI/VTNw4fYi7tqvNIaH6NUSSM6QeWv2QmiV0+xcz6wt4ki6wqqrrsezNtb1nWksjRXB8wd4uJVaDjOv8pnUrQDyVCJgu5HBNK14y7KFTi+CPK1w7u7lEVRG2KTuB4pAKvMyDYQ4+MgmWhjR57FSzWNq369SDyEcMNhcEgUXjiuwxOF6PYfpSIcFLulwlyVvL+5OYSF2MA+HtoyyHsQ8TUBsT8BUqoaBcSBR0jM0tCkTeeSIOEzXWscVsNpK41ShiIHj4K1PPvGmtNv+P9+GdtsvfQe02159jI2N4fHHH8fRo0df8+/Xr1/HI488glKp9LrP+d1KEj002cTIpr5flgQePi7RVsSYOkKRttc4zse5ZI+1sf5kM40fnjsQFRQFF21DQ4FOroVoB8VBGJ5OJl8h1MMkFVlTBBc1Q8MRWkpebmZwrZ5DlPbM93QFxZ1pVpXpWQGWJV1pRXFfvoINmoHt6AGkAw4zd6wOw3B8DqsUG9S3JYwHB4jQc7sez/A8vs/BtCWYNFjJa0NMxJsse9tppWA4Ig5FSPCy1cgc+MvJFv5gtYAPTFKzU8nCGO8duM2DtPP2mXGkGsazdttMooEmtUqp60E0DI0BueWAhY6psGd9vR2H9irvNtfjcSR2UIWqGAqyGgm+PjxDfJs+uzkNADgnOKgNQwwP1h+p2OzF8H1zWwBIxWt/Me1bMo5kygdWInsT+OxOCh+aoabG27N49Mg1vEKtR7ojjbmFP3PzKOLKCJOvClzOjO2w1sNKcRJLk9uoUQyGIlno69oBS08bQaVVqQ/f8yxurBxiAWjS7KDfD7MAta2HkNAGsGlbLODxrKLHUXHMEG3V7uMxrBrZfMayVfzqV+/CrzxIWmgC5yMQMBn2RZRspCgwt7Q2jXS+ymxIIu8eAF0dfJi84+FaAdpEDUKO5p7RGFSQv3XbKuztMMQECVa2njiHqfsuglPI325tTeLUoR2sfP0OAMCxxy6h9ZcZZGlgFDg0gK9Ts1ezDqsWQ6BA9XgSOfhyALxM1b1XHPA5Ab5IxrF0yoMXIe8fjg3j2QgUj0oi8A34yTh82ibloyOIh4NInaJzmY/DL7ag0IoOVx+y64BCghSX/q1ZSmD2PS8CtEgbmi2hszzDWqwYaNj58jkAQP7kClLZGtuMGyvTyJy6DZna+gRyLdjNCA4dItpQseMbMLaz2KCtqqP3XmCBkGsEYOkqWhukWrqyMYNTp65C75ANTQoauL68iJkC2RhsU0Y0Qe7n0s0jePidX4VMbTh8R0CrnGE/l1dmEIr2mRzFkXQFrsejRKuYmXAXIwrMXixQ4Vzaxnp2dwqa4DLGWtsIYizWwgsUV3R+cpNVMBvtOCbGS1jZIJ9lY20YZoCZPK/W8hA4jyVSs+kqGp0DG6C4YjDNtnyshe1mmiVZtV4EAcFhScSzdRVLyRpbmx7fmsU8DfROpImh7X7F3/IE5DSdrQmy6KDaieMKTULOZivwwDGMUqUfxS2qszYTa2IpXcEre5Nvqi2J75P/vZHn+047er0eqtXqNwRJtVoN/X7/v/BX//Xju0ESPTyfw2XqRr/k3oYseDhNg5NwwGAMirA8QsMIwqIb148v7qJlBBGiXkMrtRyWsmXcphPmVjeMO9MNbNJKw6du5PG/HiGbbU0P4US2xEQJl5I18JzPgobKKIK5kM3YbRltwICFc2HCrgrQCb8Q1pFWdSZi+bVKBEdjFguKBM6HLLjMB6k+DGOZCg/ekalCC5hYpv13ifewuTONQzSgaJoKrnc03EM9tPZexeZTJQvvGe+yqovjCRAFF59dWwAATGgjSK+SE4hQZsu+NtLlyhhCNDsNSRZCsokqvf94J4qJSJupnSdkG0vJOlvINHWEcZ8Crz0ep1J1xqoDSBBxnGrXtPUQMsEBo+0PRioOJ+vYoJYnJUNhprx3zayh2k6wa/R9Dn/38BZ2abvgjtweSo00TlMrGs/nWXYfUXXksjXs7JFWxIvFabzzxGXGMlua3IYkW6xaGA/10R6EMaKbgGtJLCNXIkNcbqTxgZOk584LHgIBk7Xj4t0wirUsjlDl9NFQZa23Z9YWkVQMtOl4SGoDNIdhJnpabaTw/dNtuHQcH5naQr2ZfA2DL04Zd/VODLmpXQSnqd3FRRnSqRD8Mnm2v/Kp9+L/eO8XEXLIuBZGHXBR8uysjTCU6TpGW1TXZq4Ipx1mtP58lrR1UrRtal/10K4lMaJU9KRXhEFtNSJLO+jenEZgnLxz/UsetCPbQJa8l8rFeYwvrsFXaLa/VwNP7U8wMtGrHII6R64RAQWcbrCxAp6Df6sObpz8rbdrwKwk0aC2HeMTl+Ab5B1zCsANhqiUiA7S8Q+U4NcBp06uuXFjDrIyQvMm2fg/9fJd+LF3EZxUd2MM3VYM8bMkCPI8HvAOjEn1nSzgHQC17XoUHO8jRTW8ti4dQY6qt3OcD8cSEUqS93Q2fQFbNxeg0cBYGWiYyFSZRc7G5hTm58mYjWsDNFYnkRG2yHvqhlA4fhv1q2TeZmeL4EQXlkGC7p6hIRnuYZyeuzMMsbEy7CnIxtqsZXbv+DZagzDzawxINhqDCI7SZFBRR9ilbfFSPwI1YGKcirH+zsVT+MjSCnrUEFp3RAicj7sPkUrs7R1SYdyvLIUVA0/vknc0qYdwOFvCS1QrrG+LuCu/xzBLS1EHt1ppHKet7hPxNvN1aw9DWOkkmBemIrrUMonMy9IwhDvGt3HyYMRAEW1cqpJ5LvEe84GURQetYRjHM2UiJnkbb8rhgXuNiO8bcb7vtOP9738/PvrRj+Jf/at/hfPnzwMAXnjhBfzDf/gP8YEPfOBbOud32220VPm1t74dIZqBphItfPnGCabeXDYCjFq+NwzhcKKB2zRYWYi10DMVxPdZElSJOUGDiOVmmvW1AUIV3S9Z62YAukVYVwCZaANbZlT0nVYKpisgRc91uZ5BkLYpMqqOhWwZu5QZp4g2uiOVVXgWs2XcrIwxPFM8YKBhaMxf6P6FW2hRAPnlagFz0TajtOcouLndI4HhvofZfgUjHBzi9h5pQ4QCI3g+hwbVLTmUqeB6ZYy1AQ1HQi7SwQataNVGCpZiLVamno43WCbo+xw4zsezFBT+voUV1Loxdl2ez8H1ePYzx/mMGXernoMq2gjToLCmB5EP9llA5fkcMuEu+vRZm44EWXCQoy2AnUYGx+bIxvXk9RNIKAZSVOuJ53xoyogxCc+evQzXkrB2m4BaZ+e2IFLA57AdxScvnGOBjWXJUNQRo9PbpoRiJfeae+A4H9kUCRJyp1cwoIDYJ1++AycmN/EUVSc+ldvDejODcSq6GZBsolZMg9lIoovUe8gGuvy7Z8BxPmPR7ewVsNLM4GR+l/1trRvDoZktct39IDYqBUxQxmNf13D0HNFBCmTaqFw8jLEHL5P3tDQN84t9KFMUFN1SIWQM1J8iGJzEkU2IBfIe/Ikx4FYR+iq5J2ckk/dG6fHSxADDq3koORr4FDMIzpbgtEmgLIQM1ooblZP49595D376nxHNNrfOQyjwgEjGZe0vp5H4mSCEKmkbmkt3wxfJBim2ipDWr8PX9rWOKoDnwz1zmlynKEO6/DK8BRIkGH/WAS94UO8h7xXtPvw8SSI4y0T7cwmYlOmVOX8TnOrD65LAsHdrCrzkMI81eBx0qoLdLGURivQRmaDtt76GYSPG8F/5U7dRvTbPwPvjZ5bRWRuHuE8asCRs03ZrPlvD1u4YE4h0dAXPPHM35vO0ZWbJiIT7DASdnS3Cp0rfpY1JTCyto71LgpXdcg7n3vsEPBoU2X0NviNg+RIJBCXRwRNbs3jr+A4bP/sMNEmy8dLqIs7MkurfM7cPo29LuG96H3fkYqeRwcI4eS9Xt2ZxiorPyoqJrZ1xVvHkOB/pbB1XV8iYX5reRKmSRYsG+1GFYB5fjfXZZwfnNB22xzOhypBs4nI9g3csEGZhZxBiwRUAqAETV+k6NptooD9S2bwMKQYulCYwRtdujvMRlE0m3/JcaRz30JY9QDBM+63t2XQVNytjyGgDDB0b33Phs29Ku+3nJ//eG95u+9Wd3/mOarfpuo6f/dmfxcc//nHYNnlXoijix3/8x/Ebv/Eb3+AQ8s0c3w2S6AB75m1vg2uSoCGojHCpPP4aW5K7KUvK83g8VxrHeboQNfUQZMFlLI1mOw5FthCmKtrbewV8uTjBdHRK7YNsvW0qFLhMNrJ8rIVyJ8HsMBamtnFjY47hkDyfY62mqfE9lCpZRn+VJBuNToyJSY5HOjhy7BYGTXJPalhHvxNh7vOxiQpbMKWQAaMRZdo07VoSvs+xhToYHKJcy7D20xc25nFPjmRjliOikGgyL6YvLh/DZKjPZAtmE3XkszXo+1T0RAeey0Om+jPNShrFOtl8Thy5hVC+jiplb8XzNbiOyO6h3w9DEF2I9BlkZnaxd5tk65mxCiwjAINmoALvotFKYG6JUJo5zocQsCGFqQ+crkBvxHH1JnEqnxvbQ5fKFCzccRWCYkEIkYW7vzoOKWSw52UNNHSbceQOE8mAQK4Ns0T9wwQXvs+xAMJ3OfBBYnIKAFxxD1AD8PvkvQ0ujUMKDxGg7UqnHoJnkmcnv1UGtqtwqfq0OO7Bz2aBVTL2PEOA2wniq597BADwjh/9ND798Q8BAL7/H/4n+H0X9v0ErCivXIJXGoKP080lHIKvBXHj10kb58h7nwJ3bBz13yebUfpHOsAaecf965OQf+4MkCWZmRLIwLRacNvUXy22hMBzH8NokYCk1QKh/+8fptWCX/o6ueZABOpf/RH09/8E+ZATIbZW4WkULOS58KUg5DIxQLUzc1A+/6fko1Mn4ckKhD55tvy9P4+/fnjP/zqTAHBf+A3wVMlbv/sjCEaOwv/SPyY/3/VhKL//b2B/D3l2gdWLME69E0r6LeSazSp8bwQt+J838B5tfBJ+/l5yv2rhNZ+5L/wG3EgK9jgRDBWVPAIymZeGUYLfW2XfY9lNeK1r8IOk8syLYcjXPwU7R96LLwYgtorgdbJGmDN3wZeol1/pIjwtxgx+hU4J8vJF2AvH2LUI7SqsCRK8esEMAtvE540zBhgduhfgaTNBy8H3HXBmhzyP7VfI36+SCg5sB/7QgzckY1PIuIBKxSKVALydLvgU3aBlCRga8EcUd/byLOIP7gE8z67LTxx4VMJxwI1oVU8fAb4Hv0vmuLUXh9GIIhClvoqKCV61YFBbm1Yxj9Q0mQ/DRgzR6RJcGug5uoJuNQlRJudS6Ny36eeuI0IKUIynOoJni9BpezEY78J3Bbi0mmwZAbaGAUAk3oVtykzmQJYt9j3tZhyux8N2RAwcGw8+8+U3JUj6Pybe+CDpXxS/s4Kk/WM4HGJ9fR2+72N+fv5bCo72j7+1QdLHPvYxfOxjH4Prurh9+za+dP5dqPZJtnsst4cb1QKrJNVGCuZoINM2FYyFuwctIcWA6/EMk/L5YgEPj1VZ+VwWHHRNlXmXVQwJ75okk/pGM42pcI8pPSdkC11bwiJlWFxupDGm6UzUUuB81iMPiDYiqs40QYaOhJSq4wrFUbk+h/tfBcT93NYUwpKHO2hZu28paNEy9EykA8OWWVsvqhhoGUEGPp6iWiH77SfTkdj9bfRizGsOAEqDMDqWhHtpxrkPYo/RjGwwUhFRdTyxRTaf8/k9fH6blNDvTLWwMwjjBAV1zozv4tnlowjSIFERHKx147iTBqxqwGTsNcfjoYgHBpQ8fFxrJTEfIe/tlUYCj85s4i83SVB1It5DWhswteo9PYiCRqqBYXkEw5EQo61B3Q5A4DzkYqT60dM16FaAZZWX6jkkaZAIADHZRJ6+w2Y/gulcGc+tExbRw6cu4tKtJRyjmfR2uYCtTgIPHL3G/v4aBaOfOXIT9WoayRQ513M3juL09AarDGTGKrh87SjS9PmHQkPGkkqOVVFcm8bE/BYAIBDro3prlgFe650YTp67jN/93LsAAIeiBMS6Lyj60OmLKO2R+RAN9zF51zX0qeJ2MNfAsEJEEAESCHYuzUGg1Y7Qwi4Eivl15w/B/dIuiheISW0o2oepK5ApYLy4O4ZzH34cW48TTNL4mWU89Zdvx5nTtIoVGTA2F8f7cG2B2aEY7QhSb70Ft0GV8V86hsLZm6xqEzm1DS5MnlXj8RmkHtlE/wXymdkLIfXQGrwu9S+cjAI8D79I27c9GWYtDu1Rqthd3IM3M03+9vNdKHNNZjUCAF5bgHCIqnPfHsCqxSFRZWwhY7Aqk9MNwmxGWSWtsTwDQ1cx/TYalMwGsffHM8gc27dH0eDoCgO6e7aIENXN6q+Oo1dPML2iwUYBUshggqKdYg6yMkJkhgS7jh6A1aUBVtBAINfCiD4rOd6H3dMg0fb0sJiB7/Mob5H51dM1RINDXKLU+7cs3mQtdMcV4XscEz1dLU5ijFZGAaA/1DC3uI42ZeFpoSHC1CzZaEfAcR6MAdnEfI9DpZ7GZdrGWkrW0dRDbC76PodgYMTa1S0jiJRGElLbFRFSDLTo2lyIN7HbSmFpkiSwFzfm0RgpjNGWC3fRpYzW3UEYI1dga68qWfjq7gTekiPtWcOWERBthttsjFTMxxsscTRtiRFslrtRLEW7sKgtyd+98R+/GyR9Bx9/azFJjz32GB577DE2wLa7CdyiC8ihlIjxcJdtgjOcz1pNPUtGRNVZG0uVTVR6MSa8OBlMQZNMBixsGhp2h0Hc7JLJ9bZc/0Dnhwon7utrRLUhbjeyzLl+MdbBWjeKIF0QwpLFxM8sV4TjCoyWXgj1wHM+5qj9ycCWoAVMvLJH+vXn0y1EFQMirVIBwDXKohK5KEKSjQjFVa22kziV24Nh7VPveVyv53CSei9pAZPphURlCyF5xK45qRjIqDqK1NNoMVuCaR8EVZudBI4FRsjT8vrQVDBDKzZDW8K53B7DZPk+AUbu+yNlEj0cER08tTMNAHhwZp1507VGKnJKn1GUQ5KFO7JlZCmWYy5TwXoth7vTJOAbuSIMW2bPby7SZRU7VTbxhdtz+LFjJIt+ZYMomcdo2/PpvQnEZJtpqpxKV1Hqk2c5HWtiYCoMB5GNteF5PA5TPMagR3BBQWq7kbca8H2OBTd/cvEcMjSAEEQXnsejXqPstnAXjXacLeyWLUHgPaYVFdY1TNBFvbI9jmIzzZ57pRvH7iCMczTAzCWa2F6eZzis+fwe2r0IC0hrlQw2qD/W0YCJwU4WoNfY3hhHfL4ILkm9/W6KCESGB3gfh4NbpQw0fhXClIvuk+SdBsMDGCMVDSqumkvXsfvV0+z+rW4Q8+O7qGwTltnSR56Ds0PGYfniYQS0ERPujESG6F2cQvgouafC6VuoXjmE8e8lQYOzpULMUiHWxxRgnUP4DnKN9U+eRaLpo0txQzF1EzB9gBItb3/1PGZOLcN9kbQfXT0MWadeUF4ar/zhIzjzvV8FAPimhMa1OQR3yLNsFeexW83g+Cl6HRsyEg8QLNDv/+778UPv/TxEqpO0vjOJqXwJVi0GAFj7/HHSdr5BxSPNAKLJNqzOQfVDpAD6VjmDULSPFz/7dgDENzA/XmIgcF5wSfCxSYJbLdvC+jJpJ07PbaFPgxYAiGkj/MZ/ej/+9/f/JQDgmZfuwNGpLWxQRqcq2ogGh4w9enVzDlO0NSuJDnJTuzD2K7ETO/A8gQXkQWWE3Y1JfH2bJEan0xUEK+S8suggEDAxpBVgVRmx6jhA2l473TgA8nkm2IMiW0yhezZVxQbFkg5tCYcUg+EeV2t5LGZLqFODXwBIBEYHa4YeYsntubEdphAOEDbw6WQLVcqsnYy2kYj2sEeZpodTPZR6cXBD8p58cBjSyvu7Ztew2cxgNlHH4M00uH2Dgdv4W1k++cbjb22Q9NePgS3hLF18S904QrLJgpn2MMQo/qrooGdorAIh8i4EzmebUVB00NDDKFDcSMMI4mSqjgdnyLmf3JpDlk5wTTYxGKko06CgSlt3axTkfTxZR0YdsYqWIjjM56wQ7qE5DOMoDVx22inIvIsBnaiLyRp2Wilk6cZeHoZgewL7/GR+F2dpVjRyRYxHW6xKFQ8O8MTONO6n1aCgMsLhZJ1R5AHg87ukPXAqPkSxF0eYbq5f2kviLZke4nShe7E4jZhsMTbbsWwJN6oF5t3kgUOYZqBpbYD1dordk+9xiGg6BhQEDxA22BEa+LxQnMYEdQ/PBQe41UoxnZPSIALTkRjuqqWH8Hw9gXsyTXauVKgHZ9+klneZGvnIlnFPpoMuVe9OBiwcze/hE9dJ2+Jcktzf7W6MPIPJTeaALggu/vilMzgZJwv1vNdCSDFY1j12bBX8zTnsH2yVPAABAABJREFUbJLg1TADuNlMMxxYXLaZXIDn8giHB3Bpm89xBUxOF/HcZQIfTaWaUJURkjmyWbVrSWZRUW4nsDsMscDv0HgR068Che/WM3BcgflvAaSdm6dkBVm2cFojQUEs3YKlq9CoD16vGYdRTUC6hzIldQedvQxEKi8gj3fh96n+0temIMg2Fk+T9ll1fQKWJWF2keC/eMFDr56ATNsenWIOPO8iSPEuTkkAHyVjKT5exd7qDHuWoUIdoYVdBgpvbo5BClgwrpBNUdBG8OsUVxZqAKEgfJls3OOnbqG/MoH4+zrk3tc4QAQ6LxCcWU/XMKgkkX4LreLWu+Bo5Sgw3sCx85fg9shclPJ9xOd20d0i1Y9Iso3K+jzuOUbmj76aR/c5UpH5vrc+jV4pzYDZ59/1JIqvHIFDgeqR8AAjM4AUpfXvvHIU4ZkSfvcTHwYA/Nh7vsDU22PpFurlLKuqFIJ1DLthJhExd2wFjq4wH7wvfuFh3HX4JgBADFjgBI944QGwGlH81CNfwa3LVK8qW4bvcTh/klT0dnfGYJgBhh+cTDSg0CSh2k5gtCojlyOJAMf7WNmePMD08R54zscP3EWEPGuVDEs69xMBnQZUe+0kFsd3mBuA5/GYiHRYcveFnUnMhQym/h/Qg+jQv50Id1HqxpkY70Ssiae35vAANdfO2BIhWexXwbtxlvjdrBSwlC0zmY+peBPb7SQzF99PAvcT54BkI6X10afYymSwz+6pNQgjpRG1b9F/89SGvgvc/vYc3w2S6DEfayGlkoVrv0qzvyDsDiJYopWA/WrMPhVfkS1EfA4r1D36jvFtXN6bxA7FBuVDXcRDA9TohvqWiS1cKJFFbCxIXN6n6cYuCw4GpsKo+apkYTraYvT5YGDEQN83qgXMxJqMzjqXrsBxBeTp/QQkGyHVYBikV66eRE4bIquRnx1XYBnXfLyNUjPFfLvG4k3MhAYsW9vXgSpTGYRsuIsfPESBl6IDxxVwg97/w4UW0sE+mhRoOUvZVvtl6nBwiLtm1nCTVrj+7UoM//gkaQckwz1koh00aftRFFx0h0Gc3BdeDJgYGCrzXprOVDCkuiVf357B2WwFoX2DSk/A47t5fIB6pgHAXak2MnThrvajaA3DGKfsls4whLEsecc3tmYxEWuiQBd9WXQgCi5+4uxlAIAxUkgLkb4nxxHxMqU33zG5icfOXoFDW5OtfhhdPYgsbdXZvSDkgIWpDGkBDNoRCLyHl7fI5nzn+DYLikZDFY4tYkCz7MXTN/Dv/+LdSNNKU6cdQyLVhEntcyTJZq2WpcQG1J1xxgwsD8M4lttjC/lEpoqtSh4vUqPhe4VtyKKDJ9ZIW/DRY1dwa3caADDlSIjGOmjukCAgnq9BSXXg36ImtBEVybkio7w7dQ29dVIJisyUYXWD0KltT0AxYZoB1HfJeEnm6gglOhjSqma1lsbkdJFp+1z83Ntwx0cIM2zt2mEUxsoM9MyrJnxbgDJNNlRsjsHQNeybC0ljfdaKE4N1IBICt0cZeGERXCMG4xnq3WdmIUUHCETIOz1+1yWoE3X4u3STkwAEKah5TUN9bQIK9ViUSiZipzYQpG3BjStLeOvJK0CAVt52s+x3tzYnsXTuKswuCWY5wUVyrMoCzMziJuxeEBXKMssvbqJ1a5qp7rd2csx/bWNtBhMTe4jSaqAUsMALB7pJ9kCFNQrAqZG5F5JNdKgURfroBqx2GAP6nvqNOGKFGiMBiKIDXdcwGpKxxXM+UukG2rSyYtoSYvR3Q4qBZLyNyysE3zef30M63MVtGnBEAyZOLy2z9u0XNufwnjmCFXQdATvtDEsyQ4ERaq0EbtEq5j1TG9hopXGKMkl/NN7Gbj3DEprlZoYlaKpkIRQYYZlWllTJwsOHb2BAEwfdDiAb6eDXXiFj/H87scWq1mORLrr6AWt5ZMsYi3SwR9c81+PR2J1AjCbOAu8hE2+jsUf+nuN8jNMq7p9eOovTyQapLr2ZlaTvHt+W47tB0quOIm3VZIIDpCJdtlkPHREV2k4JShYu1zM4TlVbi+0kynoQZygjrdqJY/FVApANPYy+eUDN/srWLCYo9qU5UlE2FMZY4zgfUclmwpOaMoI+Ulhg9HJlDPP7fmo+h9owgr1+DACphHGcz1SirzVTiMg2JvezOfjQHYmx35aLUzhDVW2vFKeRDfaZsnWtG0PV0BgWaqebQFC0mf6I4wqMDr/ZD2Ep1mGsqUafbPr7rDLdCiAZ7LMq1F4jjUSozyxf/pdDXRacNXpRrLaTDMhe6cQRDw7Yxn6jPIbJaJtlzsNmipnu3l3YhW4F8DzFTNyR38U9GZFRdO8oFNEYRNhivDUI4/6pDdaqWpzYYfTihqGB53zYu6+dHmVqpstxPjTZZAFqZxDCURrI2Y4IUXQYa2Yq1gLgMGC773NoteKsojMcBjExXmKqwcORgmz+QHcrFO8hRIOg7RsLuCu/x8D5jiug340gSCne3V7kQEOpVEBYMRCjzLAHT13CsBdCgvpnba3OYrWTwDit2PRHKiqDMH7gHqJmbfQ1xtbZqOTx0LlrMGigI0cHEDN98Amy+dp1CVK6y3ST3JaM6CHKMKvFoc5VGI6oujyDsblt5jfnexx69QRj/xmW/BrM0pEz11D6Kqmc5XJVLK/OY5YGI6FkF3J4yLBQvs+h2Y5BoArTOW0EaYziVTY0SFNdIEj+1rgch20EmP2HZ4twqglETpHgdXizAN8WgFMkmK/8dgSF76EmxrqC9HwR5VskMI4HLAxujbE22NLDz+Hy5+9HorIFABj0Q0jOkecRrqXgmTKCYxSzw3vghyq++qUHAQB3n7oM25QRo/58ZoeQFb7n+0kbrHTpMD7/NAF933toGc1aClPHV9g9dPYyuHKNVIPOP/gM1l6exuwU+e7FiW0WrOnlJILjNWgJ8rP5nAajHYFC7UJubMwhrg0YO9LzOfS6ESxOk3ta25nEMysEZ3bnzBpGIwXHKLttt5xDQLJxJEeqNNfK4xgNNZZ03ZsrM+Fa1+PRMlRco+PhnZO70AImkrQSvddOYj5VZUzb5jCMcMBg7LZj6QpLyPbnUJwGMhFVR7cfZvN0YAUQsyW8b4IkWR0jiK+UCGnkbbkGOlYAHQoxGPc53GxkWZInUBkTjvagmnoI1+s5NC1yHxOxJv7oAtHCOhLrom2qOJ0rY2AfsOm+3cd3dZK+Pcd3gyR6GHYAs7TE2x6GsNtKsVbE22ZXcZlWPnaHISzF2wciY4KL09kS25wiqo5qP4ocleS/VsvjWLrNdIN4+Jij36PIFo65Avp08fB8DmHFQJVmL1dLEzie34Wlk9d0vlBkVNn27hTx7qLXeDLRQm8QxAalw55M1RHVhqwa9v7FFbywM8OUsJdyJYYrOlYootJOIEoXl0KiiYEdwEyWZEYvb82iOVIwSZ+VwHuYptiEY4UirpcmWBA0sALIxdo4RrPb9fIYwSyoZLGpdWMYWTKrwryalr7eyODOiS3oFBswNVVEtZxl+iuLmQpEwWWfpzMtprciCi4mMlUmCfBCaQIPTK8j2ImzzwOizSi7OdXAXjuJBK1KbeyNMWPdfYXfFL2Hzy4fxbuDtzGVp4v+1ixE3mUmvrbPMazPyJLRGYZwfoGU+HerGeRTDTSo5Y1uqHA9HkHauqrVUyitzzLw9cBS0G4k2Lmy2ToUKj7qNRIIqQY6NWoBE+2i24swgcBaN8a86RJcH7Lo4N3HL5Px0khgr5mCTSt6qmJiMd5kulsLmTIy0Q5qJfI8L+xO4dzEFgAgP13EYC+D/WPr0hHM8DcQmKbKxpE+RnspqDMkADNrcUgUFwPeQ+/aFHOXlxUTzVL2gGU5VYYcHKG1R743m2hBiwzg0M1HybUgUcza1qUjiKg6TNpeGTu2CWMzB5NusKF4D44jIjFBxq1nSkzgUZqxAOkA1Bo6U8HgS0vgBmQn2FibwenveQKDayTAkqMDjEopBLfJe03MxmBvkHkoKCaMZgzu/pw/vA19J8v8+0alFLKpBuw+mdei6DBmZHZiD4JiMp0oPmjCLwl463kq6inbqN3KoUIxO2PjJajxHuo3CJ4nmmmAXyWVEN/nkZ/cg02lCMyhhsRkhSUCviugkKnDpmxJQXSZ1EC7mUC4FUX6OGl7Nmsp5KeL0NJknuZbcfCcz7za9jGXHWoYnYl2MEUtOjZLBSxM7CBWIO//yvo80sE+C4qWMmWU6ynGzJ0olNGiOKG+oeK+49cwTluEtiuib6gMH5kM97DXSTDg9p9spvH+yTYSdP2IhQYsaYqF+/B9DtEQmcfXd6ewmC0dtLojbWy2U+z5jCca+BFaxX9yaw6K4OIsbb+FNR0DU2FG3roVQDrWQZ1qyyXUIS42EnhwnKxdjivgnTRIrPVimE9UIEk2RLx5QdJ3j2/P8d0giR4nF2+hU6ULQrgHSXSwTaXxU4k2w8kAZEKkKXZDNzRYlsQCDkW2MJepsIzsIfp7f2+MMkwsEX3q1D6yZOTzVfgV8j26STzOZjJkkbepN1KabtZDXWWA4MloG5O5MgPAmqYMgfdYHzkYGKHai7EgwLIlnBvbYVmVJNmI7lesNB1iL8o0gyLRHg4LHgSKA7hnfgWdXuRAEDI0YAyraLyLVDuBOq20nZ5bhW1L2KJaR3FtgMYgwthekuAgINms96+KDjq0hH9ubg3Xt6eRpNfcqiex00qxFtnteg73HL4JxThgku1jedYrBSSplhUAPDC9jnBoyMw+Q8EhcoUKdoukvXB4ZhM7ewXMzJDKgesI6NCFW1NGeG5rjjHyPnjqIglGspTWvzmHw0dvIV8jgWK3F2bt1ul4A6lIl8kJTI/vQR9qrHVXqaUxGKlolck7n5gqYgJg7J7CxB6jHYuyDceSEJ4hY29CctCrJfChtxGvolY5g6CmQ42T53Py6DJCeRKAG/U4es04NvZIO+3o4dto9iII0Q3EsmSMp2s4eZKAi/VOGI4tIZIkm+QHjq7C7JFrksM6HF1B6DCpSOi9EEatCKwvkkQheKgNdaoGPke971IdZhUixoYof+VOJOkGGhAd2KaMVcpoFGUb+iDI5ktirApzoCFA20/ipAMRJBFQlw1oqo7caVI52fzynQhF+0idIT/rGwVMPXAB3RukwhM8UsLoPUQSQX3+c4AswU2T92R9tobcB4uwr5NN7HiuCY73EZwnSUTp2RMYe/AyfIeKax7pMlwRL3iIHN7GqE+ej9MOI5DoQYiQa3Z7GtLaCIJK20CaAWWStgR30hBUExxtTTYuLELWDAgSDZokB5FoD2s0OFmaqMLqhqCG99Xxedx9iFS0RMlB5PA2rBodt/kmMc+lgGxectDvh1iFZeLwOiTaThTXx6FGB9ilHnqh0ACNvRwkWlnL5quoVzIMCxQKDdBsx5lfoRrWMeySMb7SSeDM6Svo0KrMmcUV8IILkVaia6UcouE+mjTAMEcBNi8dT2DYQ4BgwfKpBlRa8eq0YsT/krJUf2Jpm1V1AODTt47gB08RTbJKPYWJQhnFEnnHnk/agvvfFVRGODu9zoJsSbIxpGvxu5euo9RII06/RxBcpEI9XKGV6HeeugTPPRCNjSU6+DBdlwFixbKfKA9tGapmoNFKvKnA7b+t3m3f7uNvrQTA/rHPbvvjEx/EkSzFjTgiRpbMAH69kcYAsALvIZdo4hNXTgAA7s40IfEeMrRyNLJk9EYaE+WrdWN4qZrDo1TQTJJseLQV1RsE8bHrszgcIQvRDxy/Ct1QcY3iRB4++woqpRyb5ALv4ZOrhB7+w0eWsVrLIxPssc+iwSGr6Gw1MrjnzCVUKfZjOFIIW2xyl937viO4ILrQYj3WLqitT8JzedZeiqg6sVuhtgNtI8iwPJ7Ho9hJMqB6JDTEy1uzOELbTyuNLM5NbWCtTIKTqVQNlU4c8+MH8gSRNMVkhXW4owAqm+T+RcmBLFuI0NZDv5rEcBBkrJnpw+ts0TIHGra2JpkVwkSuguEwiK9ukAree49dhSjZTNckWajC6IVRoQHqrXqOiXhOH1mFa0qs+nHt1iJOHLkFiW7k9WIeIzOA/DgJXkZDDcE4ybSXry/h2Onr4CkQeVBNIjpRYVUG7UwHUGRgSNsct0PgOB9DurHtbkwiRRl4mbPL2HvuBNsQskfXISYGeOo/vgcAcM+7vgZXV5iBqSC6aFPMieMKmF7YYABhLd/EYCeLMKWPuwMVnODi+cfvB0CCKNcREKVVGOVYD26VLg0uD/5oFPYM0d8Rm7uws7NMqDGweRnY3AUmCMDeTY9BqJPvMY49CPUv/wi+SY2YG2H0i1nEjmwBAHqrE4jdsYHiF84AAAp3XQfH+9h+mog8zv7dWwx8ff1PH8DcqZsMg8SnZFT+Yh65d5GgAaqC4n88xIIoXrEgpMlS701Ngi+V4HfIe+ESATjbPniVbGLd6zNQYn3mZJ/8YBN+LAkrSyo4/GgAzqF6ZUoIUnkdHN0AfS0EJ5oBeKo7trcKLxyHGyHvVNpehnHqneS/q7cgdOswZ8j9So0tCM0yOJ0GQYoKPxQBPBo01YjopR8ic8+LJiA0ScC9b7/iRanhsTEAN+gDFt2YhwYQkOBVqMdeHIBIyRccFeF0yPfoF2Oork2hcJxUQI1aHHongvRRAt4f7qWIuCYV/fQdHuVrpKJVOH0LQmIIt0MqWkLMgDeU4NP1xbMFeKbM5oSgHFh1uCMZnOAxbTDPFmH1NTRpRdP3ORivakH3OxF4Hs+wiNnsQaWMFzyYowACtFVr6Cq0oI6v3yAmvWcmtlBpJzBH1x7HFZlsgaGriCY6bE0EAEF0MKDJTn8YRCLWBU+Dxn1Lls0qWV9nsmXWEtxvpZu2hKFj490v/dWbIgHwvxV+AoE3UALA9Cz8f0v/7m+9BMB3gyQ6wP705A9gIUUW4xvVAqajLaxRy4q0qiMcIJtaQLLx+8tz+MgCqUBsdRMYD3cZ9TxCmVwp2gZba6VxLLfHjES/uHIYizQDkQUH7ZGKZWokejTWQy7UZcHZy9U8JoJDzFEfo2eK05iheB3HE9AcKVhKks8qgyiRJ6BtjLiiY7WTgEIrR6rowPZ4BCk7Ix3sM2p9Vhsgqg2ZBxjH+XA8gWGFLFdAJtRjLUZNGaFJF4S+qSIcMBjLw3IFJLUBepSmLgouKsMQVigT6Hy6hbJ+AMZeb6eQp8+qYQTx/2fvP4Nl2dLrQGxVZlZmZZb3VadOHW+vt8+/7tevDRpoAA3XTRJkD3uoIQhpFNII0g9SEYwYShEDBSGJkBQARRIhggQ5HHjv2qHf6+ffu94e78t7k1lpSz/2ru/cO2CInJjuB3ToZkRH9LnvnKo0O/dee33rW6sQ7pDI23IlRAI6ueQedZKoGypm+D2YdM8AwINaHgNHQoxffzHSwX4nQcDn63uL8AsermfL9BynCyUqa8SjPWJ/3j+exZlkDXHOugwMFbLfJm+n53JlDMwAdcapkk3n2B2pWMxUUG7zhcs3xu1GmsxHV1a3MfZ8ONxnTEE4OES7F6Fr7hga6cYuzuzjg70larsu92MoRNrIphiI2j6exlSiiRbfDbNxwJ7LRGA60ZDUG0kMRuppZ1jAwOKZLfy7r7H28cuZMqLBIS0a6WIZD+8yzcnC/AFC2SbUIgMnw908anvTuMVbur/w+W+wf+cAQ012yNDvZGcWsUQHMteYCKKH73x0lTqQLq5sQtEMVI7Yjj0c7iO1fIjyQyZkj2eaCE6zMX5yew3p2RMCfrW9aciyhRgHdno9jlYjSZlz47GACA+Z9b8UArbL8KkcrNX8gCfg9p8xs833SkV8fvUhMVrBaB+huTJ1kkmFId3jcd8HuxmG1Wb3OpBpQ0oNKIql/24eY88HkRumeqaM8HX2/LvvFRGcqcLh74NRj0MO6wSi9U4Y27tzWFtlwmZjEIQcMBHkGXJKqgNw/ZbTCcHshMkSob45i9hUDSPO8JSP8wiFhqSHGxkBHNXYeH/ph/4CPr8Dk0e+tPanMBoFqHRrmzJuba1Q3FCVl5BFPs5t248TngPY0oM4WzygTdX5i/fh2RJG3Hxxc28O6UgXgYnOqJ6heKCQauA7e0v4BBdyNzpRJCM99PVT48aDTpLK+6btRyrWxWPekHB2+gAHVQbONdmEX3KIDXpzexVnU1VizyOhAXqDEDE+e+0k1wyyMl9UGyLMLVTe215BYxTAdT5/BAMjDAwVCa7R6vZDCGs6bUodV0SNyyQSwT4e1PJYjDcxdGx84YM/egaSvo+PZyCJD7B/c+5vYjHGKN+IpqM9CFGt23D8BHocT4TrCURDb7ZTKAQH+H88YgvE35o1kQ0OcJv7abyYL6GlB2my8YsugSDT8T8FMFS/hQ+rOTzPBY99U4XgG9Pv+wWXWlHT4S5OugmMuNZBEjyEZYsYrTvlaaiSQ5olw5bhF1yKAwmIDi1UkQB72SfX6/ONEQ4Y1OlSaqQRChjo8uiRgaXgm9zxNiACr2QbZFNQiDdx0k6iyn835LcQ9NskXN9pZCD4QH48QXlEC/t8ogHdUqibL64NsNHIEiv1oJaHLLjo8P++Gm+iyXUPZ/In2KrmyQAzExzAciQCBYpkwy+6tMur96OQecI4wGwPJmLSxjAMWXTJ9qGlB1k7PV8gzqUraAwipFn7qFIg8NqzZAQkFzN8Unc9AZ532nbcMYJQ/RYxk7l0HaapELtY78TQ4dcUU3VUBhGc51YMj0vTuLywhTH/3YcHc1idPsTDI1a6AoA1biB6XM/A5xtTXMxUuIuOEaSsqlBwCMuSyRxQkxwUoqcp6Jc+9xYqt1g0hKyaMPUABpxJVDUDzXYMs1wQnLi0BbcTJMd2sx3Gxn3W6XTx9Xfx4I3nUOCsm6wZaJayUDW26fhoYw3L2TI0/rNl+aEoJu7uMZD06R/4FrmXP/idT6Iweww/L8X4hDEEv0OdYkp0CMHvQOQlpeqNder2s00/8lceY3DIFtRArA/PFQjMWboKUw8Q05hbOoTgd2BxXVEg1SFdkU8Yo/Z4DgkOwMaOiECuhcpNds2WKSORr6HfYBundzfX8cUf+2MAgKDYKN9cI/Y0WKzBM/0YNWJs/NQSCMV7GHAA5rgSosk2Arykeve9K7jymbcBAOU7q/D5PBJ5W7qKejlD9gmi5MJ1RMrn00JD0nr90e0r+Dtf+DO6vtFQQ7mcpRzJQqyFWLSHx7yZwfJEFKItxHgg7M2DBcxxk9l4pAdvLBA41XshVOppAhCCb4ypXBV9vgnZrE5hMc2AbamdxNCWaT7IRDoYWTLNRaLgoWUE4XAfrUuze7h1sIBCuMPubbmASykG3rumitVsiXLfJNFFVw/SBkaVTQi+Mek0nwzeToT6GIxUek8ToT4+OpkhreFvbqziRxd28S7Xpp6JN5m8gf/+yuwBHu6xTYM39kHwjRHnsSSfeefPPxaQ9N98D0DSLz4DSc80SZMj8kR7vSB4T3WkVbrx0wBKS0FQHpFZ5Ll0BW09hJ87wxfFsYD5bBk9XhJyXBHrhSNs8nLT3WYKr88xCrvRj2Cvk0SRA5t4qI8XBZeCITPxNj7cXyQDyfIwjEW++N6uFHAhUybQlI23cNJI4xYv1c2Gu9BtmcSSridgpxvHGc48BQMjWBwU+CUHI0sm8fCD6hT5gQDAUS+GF9I1mlyy4S7+S56s3RqEcaeRxjmuDfqTnWUYjoBMgP39arKGth6ikqHpSpiNttA22MI20kPwP0FPm7YfTe5Bpckm8sE+tR1PBfsIBwya2ABQrt147ENAciDz5+TzjRFURmjwFl9ZcpirOJ+4J7qvR/x+TSWapCubS9XwW4/X8HKO3au5ZB0ziQbprlxPgOWJ1Gp8JVuiZ+b32/jm5joUMQaA+ad0R6edYmuFI4SifWzvzgEABoMQItEelQ0NO0P2EulYB/2RCosvbJ+49hE2Hi+TeD8V6qHaTOLiAhPfVupp/GvuofTF+X2oikl+XnMzx/jtj65jlrOS3X4YhekSjjeY99NqtIvZ2SPce8yAUeXWKoGiucVj1LeLmL/CvI6cgYbpK48gJtg1T6IqJhYASrKL9ctM6ySoJi584Q3SzQh+B+OTHMJc3/XZeWbIOGFSrH4QcniIl7mw3ajHoZ7tAGA6GTmsY9Thob2f2IbbFKnLbGbhNjqP5pGcYeW2ai2Ny19mLJcvKMCtiYheYK3kQkpG/50UWQ+IkoORESC9it6MIrpwguhFNgeMuw7lzzX2Cyg8dx/tR+wZ1isZrF/4DtIrjF3W63Eo8T4BtJeEhxiWmMg/ur6P5PwJZB6zYTWj6FVSSJ1lol/X8kOJ9ansE1JNdGpJ6uCbmzmCwBkqyW+j24kiZDIAJSkmHFdEiAOq3W12XxZX2WcHYn04I/a5P/35r0HJtOFORN2mg3Ivhizvjr1VnsZr4Ue4do49x729WSSiXVS5o38h3IHKGaruIITpQokYLb3HdFBFrsNrNxO4t7OEGgf/+eCAMidXCkeotU4jSkTBQzAwwlSmxq/RgbGzRJsZy5JxbuoIPd7Wfz7ZxMFED5k/Rq0bQ5JvWA5bKaSDfXT4XCMJLm7Xc+Ssv5iuEMvUGETgegJW+CbjvZ0VnM+U8YfcEuNLqxv44+1lvDLFDXVlE4/rOQJJi45EEovOIIRocEga02fH9/fxjEniKLz+f9YQltlCNamlj51T80SfxCY8n+jSjnnyOz7Jo26V8diHsSXRguGZfvgkjxyFfcIY4KAAnkB/T5/n+TDmC6YYsDB2xdPPfuJ7BdXE2DrFuJ7pB4Qxfe/YFVip4InvguBR+cDnd+h7fL4xfPJpB87YljB2BAhceDq2JTp/gC9049Ofx45IJZCx56P/DzA9AnC6gE5+l+6tMKbIBXZ/Pbi8W2fyN//j+/XkM6H7Krnsv3uTzh4BY0ekz/AJY8pVe+re87wln29MC/Xks+h7FIvGBDtHl86dfZaP/nbyXU+dp3za4TL5nkkunDeS4QxUSPznyTOYfA4ACnj1TD8ExSb9BjwfGzvCZGx6GE+ugf/N5Bm7wwCkkPHUGPJsEYLfpf8vaiY8Q6Z77/IFVYrocPsqjQe7G4Sc6UAIsr+1DuMQQwZ9lxCw4JP5mLVECFEHTlWj8xAUm65NSg1g7GagcD0gfGOMykmos2yRdFohuqbeURbx9f3T82iGIUWHZOooZfpwO+rp/TIUcgnfef8iVn/krdNr7yuA4MHHr99pRuBPd+EO2EbAP2tiPHDh03g5pSSfXp9movtgnsaaXzURefEE1g47D5/kQgyNYBwxYCQFLMgz7Pq8nh9OT6NxKQQs7L9xFfOf/pDdn8Gp6zO7f1zEn2BloNLbF5B/joFVz/TT/Zw8a59vTPOJZ4uwe0GoswyseAMVRoUBEm22grEpQ5iMQ11hY2/yPj0xZgE2bseuSO+zzzem58DmOBdihH9WP8B+d6IVUs2nPmtsSfTu/EfHuGoCk7noifeVfRi7tsl7Iig2PRd4wn/0HX/quwSP7umT8zaEMeD56G99foeNO/69nuln5qSTzsHJNUzmReHpZXTsCvCJHnojD7n/S/tjYZL+N/l/AEVQ/tN/8J95mJ6J/2f5GZP0jEnix9d/84fh97EJauSKiCsjih4JyiOibNt6CJYrQuIva0gZYaudpDDclWgbbVMl87NWN4qwppO9/1S0TS3+mXAXjnuq/RlYCo4HYVyfYruZWIQxBRObfp9vTEyI5wnoGRoS3HG6zl26Da5tsT0RtidgJsoDPi0FEVV/Snc0MUqbTzRgWDJ1kDiuCEW2sMHr/lPRNv54dwFfWGAM2G4rjQgvRc2kaqi0E2hzDdK56QM0OjHyMUmGe6h1Y6hxLxON+y0J3CxwZMvkbH7ci2M1UyZGR7cUSKJLbFgu0UKrG0GY7wQPmmnybhqYASS0ATabTCcxy1nABv9ewTdGyG9iOPGCMjQ8N31Az/+wlUKMM3ahgAHHFen5N4dhhOQRBhYbHwHJRkMPweKT83Skcxqdog2xmD/BN7iHTEY1IPjG1LG330lgNtom08v2MATHE58qqU46FNdm9nFQnqKdcbUTZ50znOUrpBoQfB5pPaqNFAacOQKA6XQNDd5RND93iA8fnKX7ZTkSRq5EnYOuJyAgWzjkO/w/Ok7gv/0080waj32sI4mLVZv9CCTBxdVPs7KPFBugdW+RRK6pmRKxKKXNOUTiXSjcxqBbS+GomkWe+4xlF45wvLEAMMICudljjMcCNn7n0wCAfL6KMHdJ39mdw5wjUlDpoBVDaukQNu8ys/tB+EQXNjdAFGWbmhHWfuo76N+agcmdrSe+TQfbc+y/P38b3YdzUJMdAID3WIFPdOFyFq97mENyjY0XT1cgKRZ9ltELIdQco3/ASnlqsgsxYsCbbLZkG16fvXeDXaa9mrhg6ydpTF96jOM3LwEAHh7M4/mrt8hMUxA9HG/PYfE6y/azTBltbgfgOiL0QZDMR0XJRSzVQq/JWDvblhAMDwmIGO0IaYp6mzPwiR6FvTZrKdiOBHUyltoJNPUQlcUavSgzPeX6nyvpGhmk3j0p4uX1h2QB0C2nsXUwSyxNLtGEIHjYOGalKtVv0Zh+VJ3CxeIBKpxN2mwncW3qiKKHLqbqyMVbOOSdxpGAjpvVKVzntiEh1cAm70AzXRELiTp2uTXHy+sP8Ae3ryDMr/lMpgxVMdHgc+VxP4oqL6+qoofXlx/jzhH7Xh/GqBoa1nh5upiuQQvqKHENY1jT0RsGn8pumxhTyqKDm400vrC8gYHjAGDhzt/r45lP0vfmeAaS+JEJdWHbbHEqagNmTMcHveAbE2Ur+jzE1RHGT7Tav772EPtlRsVvtZNYirWg8+6LXLqOdzfXcJHrShq9KC36PUPDh7UsXuKiXgCIKyZpY/bKU5jNVkhT0OpGqKxz0GBlmYkm5147ii8ubeMRb0U/nz/GYSuF6oBNCLGADsVvk86o2kwi98QCObJl7NXYBJiNdGCYCqY40FAVE4sT3xsA56cP0eMt67FEG71hkMBapx9GbRjBbIJRzwNDRSrSJVDAspos6HxyCgZG8DjwkwUX9ysFJPnvxvlzuMWvSZNNGLaM2cQJffbkfkzCdyf6Jd1SYNp+5Ll2oTfS4HsCrExF29hrZnCWAyXbE8kTRfbb2K9n6TmJPg8fVKZIcO8XHeRCXXzjiHWVLadquMAn7eEogForQVEI5WYSqUiXrBtWU9WnWLjZbIV5SXGNWzhgUBmj040yTyV+jfd2VnA5UyFQ7ZdsPDqeIeB8tnhAYN60/fiLrTXs9Nl9/t8WTxCSTbI1MG0/poM6DriQF2AauYl27v/0ue/g8Q7TBeXiLciydQrQxz6ENZ3AiJTpI5RrQuRsgD1UiWUJhoZQIwMcbrHSj+cJmCucQOUGmGYvCE3ToXAw8/jBGuZmjkjDpAR1siIIqQY8V6QSmeS3MWpF8Ob7zwEAfvirvwW7HqXz6teSiPCFe+8Pn0M41qOxFlk7gL47hSAvXZqdMGxDgcYBhWv6IWkuRi32XYmVQyov+oQxqu8WMHOJddW99bVPYroVx9QCe8cdPQC7GqMS6r23r2HlLCsBupYf4dkKHJ2Dk5MspmJ9qKHT9yuQ6KLPfanUeA+Zqepptp0lw+FMiG3KMHSV3Pyfe/U91HdmMOSC6Ui0h0B4CGOib7IkBKIcnLWiaNZSZBZpmAosR8IDDjguTh1hs5XCZa5Bag/CmErV8XkObpKZBvl5TYV7GPRDUNo8U64Vx2y+jFKNgZV7R3NIaQOs8jnw59++gh8osGdaCHewXckjzyUH51JV7DQzZHKaTzbR6ESxNrMPADipZnGWl7UANp9O9KGxAPOoy/N5rdWKYy7Ux/IUezerrQQ2Glk0+bv42eUNAmeZaAcf7i+S7vDa0gYarQQ0LuQfmQoGunZq1tpnJsFhPp7Cmo6CfNq1d3nsw71SEbp7+m/Pju/P4xlI4ofPN6awQ8E3huWK9LMkuqcRFK4IxxOJ/XhQnUKmfwp8zqUr6BhBih65Lni4yjVIAFDqR5EMnDpu59RTxqoQa+FepUA7MFHwcFzPkJGbN/bRS2p5IgqRNuocyH2meAzHFXGJCw0nHk9rfILwXAF9XSNPomS4h//hEdOjfOXCXSSiXep82WulEA8YCPFrPGqmEfJbJHr2OK0PAI7tR4gbMwKA6UiYTdSJkbA9AQtSnYzldrtxfHJpgxit39qZx1fPsTypM9OHuHM4hxmum7EdCd/aW8Qc7zhR/DbCmo5aPUX3Z3I/CqkGau046ZUKqTpOGmloHHDcqeWxxEEfwITbm90IijHu1iu4ZFoZVgxkIx2E+URdbSXw4tQxua7fq+ewHGvhAtfNHHWSCPlNGiuVQZiYNIAxL84TZa6edVpSiQzCUCSbJnpB8GjRi6g6otoQPd69Nh/uQZNN3OC7+YVcCdlwl+5lqxsl1lEQPFzKlpAKsEXA5/Nw0IsRSBqaARx1kjjkYPfl6UO09RBm0uzeP9459Ylq9iLY7SQxzzuBFgrH8J64vknrt4+zRw/ur1OWXTzdgm0oWLzMnvHv/cnnMGOouHj9NgC2WLc6MaSlJj1TLdYnR+53P7yGCh87ryxsYWQEqAMv/4mHMPYyWOGNDq3by4it70GZALTpGowqu/7BMIjs8gExSHY9CkGxkOIO5J4tQZQcMmb0bIkxME+Uc0tvcOfvK4/RHYTw6F1mU3B2eQvBRI/OWdZGkGID3P4mc8a+9uJHsDkoevfWJfzA0h9BDLDPdV0R7f0CkrxbtlDKwdEDiM2zjcAf/t4P4ZNXblE5VwmYKJfZ88/lakzzuMw0aY3daSQKVaQ4WJ2I2ps8IDlbPEH7mPuThXUk0k0CX5l0A71uBGv83sqyhWK4hypvQAmrOpSASfqh7fs5XJxn85rVlFA8u4XK5hwAQFMNbB0XidXuWTJWsz3aOP4fX72BN7kWTvCNsZCuotRi84ftiUgEdLzJr3E5XcXIlvGYM0vL00fYK02hMTiNLlrhm0xFMdHrh0lrqQZGUCQb39lhuqIXZvZQzFXofdooFTDNx7Rp+3Fh6oh8osq1zFM5kj7fGCFNR4iz2I9OiphJNCgUt/NEvqfjikiEmJnrxxlL8swn6XtzPNMk8Xrunzz3BXgue/EsV0Q0YJDZ4pMvwMSFdULpptQhVL9FraGuI8JyJGILHtdzOJstEdNx0k0gyu0E/vx4Cj/73Ec4rjJAo3Hh5c0KE3l/+RNv4psfPIcEB1UhZYS7nFV5aXYXB40MXP49qWAfvZFGpo2OK0IUPHqJFb+N25UCWQZMuvQAxiQFlREBjHDAwHulIq5wViasGthrZrDMf3ZckQzqNM1ArZmgFnZFstEzNLpfAdmC4rdJuN0fqVB4ojjAOl0mESWq38Ji8Qjv8wyoKws7qNRTyHJDzvuHc7A9Aau8jb/Ri+KjOrt3X750E9VG6imQAAAV3oo/na7BcSRidABAU0fo9rn/zNhHDtqVkYIfWXtE7rqhgIHOMEQlgoNmGu5YILbsyQ7E4SiAjVaaYhViAR33mml8cpYtKB8ezyKj6iSQPewkMJ9oEGt5PAjjPL/PS2tbKO3NUPlxaW4frUaSmEbHFREJDXGHd7e9sPwYTe7sXe9HEQno1GCwsriLcimHA36NuiOhGOmgxbvfVnIl9IZBAuiWI5Hj+MhUEFBMbPHy64vXP0JpbwYrn2Q6mvHYB0Gx0bzLPLwG3TAF1ibnT9A+yOPwhDEUmmJCDYwg8u85rOZg2DKynEnYa6Xw+U+/gY1bzOQwn6/Czz8rfnYXnYdzeLzBvK9e/PKfYez50LnHyk9+1YRWqJPTtdUN4e5t5pHz4g9/E2LcgFVmQNfuBRFcK+E3fumnAQA/+bd/B8PDLOQot30opZG4tAV9n7eXF2unWhbFhtvToHMA5pgKks9twK6x5zQ4yiJ2fhfGAQMkRjuCOPcb0o8ysPoa1CR7/v1KCm/dvYAf+qGvA2CdgVq2RWU+KWSg+XAerQYDEbJsIc8B1bARgyTbcDmAch0RiaUjiDG+oWtGntKK+UQPBu9KHdQTzBuNg8b3334O15+7SeW30UCDJNu48YA9h48aCVxJtXCeb/gSxQrK22zchaM9jMcCFN6hqPdC+HBzDWne/el6Ak76UXzyLCsZDgYh9Dnblc/W0GrFscc3dblwF7ql0Nz7uJ7D8wtbNJ/+6eOz+OKFW2TIK8sW3uVeaKJvDFl0iSEXfR6KU2UKfW51I3irNI0rvBsuEerTZm+nkcGl2T1s8jihYrIO25FoA5JOtjD2fBjyzrlmP4JEqE/vvSS6+A+P2Lz1er6KcMBgrt2Ogxe/+cbHokn6r3PffU3SL1WeaZKeMUn8iIWG+NNtNtl+9eoNOI6IPn+5XE8gUFBth2A4fkqxn2SLtbjXUVjT6QUCgKVEHZVuHGe5Zb3itxHku5G/l6qj1YlS9lBnpCEaMPCJebYzNPUAZqItcoWulrMEcvx+Gwu5MnU+1XtRpEI9YorS0Q7ul4pY5L/vegI+sbRBuzk1MKLrSyVaFMgKsN3tD5+7S7tMWbGw08gSNS/5beq+sW0/XE8gtstxRXSMIDEplW4ckYCOHAc6AdlCsx8hgDYTbyCbYZNWvx+GOVKQ5fdOCw0R7IcgcobiUTeKC/E2LeTvVHP4PJ+0T6pZFLJV1Hj3TUC2kMnVSH8wMhXYjkQdjP/+4To+PVXBLI9e2a/kSWe1mqrCdU7Lb4LgIaoNyeQxHu+g0UyQb9LnFrewV2eL6ZnCIXLJJrEdv37rKs7E26T1eG3lEUqNNE368YCBaPh0so4GdAJ6zVIWuqmQfqdUysOwZLqXpqkgGuvgec6W6bpGAMob+zCVqcHgGqVWPYlopI+XeBmrfJJHLNpFko+B8diHbKqJNh/Hh90EgaS5M1t4ePM8rl9gi1z9OI9Uto4P/+Q1AMCV196DlNXpGmTFQpIzIVJkiEiugQ6P5cmnGzCMAOK8Bf5yoQrB7+DgEQNYL519gLHnwywf89GlY5i8PV5MOQgkerjyiffZOdsihIQDLc3OU8604bTDUNcZY+jcCJyysLYE9yQOh+e+dUoZSNoIMxNriu9cxeLLN4mxia0cwu1pCKT4uO6EIBfY7x5+/Rq6vTBS3K8qOlWH0wjhkLtXL37hPYxNATt32aI5VSwxETmYTip+dRujfQZWRcnF6y98QL5QWmiIZimLqXU2rkeVJHTO9gGMLcxQzIgDU1ehxdh7qcT6rIuOd9I5lh9KSKeyn5ppQ+flw43deczmy8gsMub53OomWidZOBNBtOhhPPbh3Dybt164cgt6LwSJd9k92ajg2H5E0i0Mmuw52bYfF2b2UGqw85hO15AI9bGxPweAlbYm41/RRvC1x1RuA4CmoVFJ+fL0AVrdKJVJr2bKeHw4Rx5pHx7N4TLXcLqegFi0B5NHr4iii6NSnoKrQ5YfX331O9jnHmX5fAVDvkm6HmPl8ctrjwAApqHCdQX63nYnCt1SsDjL7te98jRm82W8u8W6QV87dxdfvXiXPTOTOYqPx76nSuvf6+OZJul7czxjkjgKf+f115CNsl2VZfnhuiIGHFB09SDWuWi5045Bli0SxAq+MYrTJdzZZJRuQLJRSJ3WzFXNeKrjyxwpJGodGQHcOp7FyzxmwHFENDsxyHyBtR0JiWiXTPvO5E5o5/L2wQLOpmpUElFkC9vlAtXfR6aCRKKNIZ9gtaAOfaiRyJe9wLxbR3AxGgVg26cZTw9PitjgpnT/5Stvo9eOostbwovFE2phjwaHEHxjBLkwt9mOoThzTOnhjVYC4eAQiSxb6Dv1BHRDJbO4ph4iIXIi1EdhuoQP+e61GG8ikWiTi7TtSDAsGUWetr17Mk2LYCLRxuHJFKbzFbrPzU4MRQ4K9IGG8dhHhnelfgQz0TYyCbZY/+6D8/jJC3f4M9NRLueQ4xYAjXoS2/UcLnI2aJLDNhGQ+3xjmkxVzUC7E6XnFAv30RuEiKXLxlt0nyf32rYlAn7NXgRz01xzNQhBEh0CXKVaBiHVoODlTLSDnVqOLANmoi2keGzEJDZmMoYVv41opIcSNwAMBkawHYkYt/xUBf1OBGG+4IqSix5fUP1+G+1OjNjQcJAtvBMNzrAVRTjdhsxbz4elNDxeXqyc5FCYPSZ/ntFQhWXJyC2xv927v4KAYmLAx8N47MO5T7+LrTdZWGhxbQffeIMZPr52/UOEF09gt9m4VKaa8Mkeunfm2HlqJjxXICAkaSMCbq7lx9H2HIHVuU99BLcTpA4td6Di+O4KNK4NSi4fwKjHiWkJFGsQs+yZ3v/VlzF/bpNKaOHlY4zKSdR22OI7feURXEOmrs1hKU3eTsGlEszjFHk7NU5yOKxlKXMvO12Gmm4TkwSPRWE0DrngWzEJqAz7IWQWD2Fx4Xog0YVrKKjw80gXy1CzbHwDQOPRPI1Tv2JBi/VRP2TMdCzdQr2chZ+/i7VWAslolxi/ULSPQHhIkTnVwykkM+ydbtZSmL2wQfYCpe05aKqOLjecfe9wHq+vPiQnbEm2KbLk1996FcuxNhZ5yaw3CCGXq1JEULMXQYRvPAGWISeJLs0fxekTAjo39hdxdW6HcgGb7TjUgIkA30T4fB4OylMUZdTsRjE3wwBWpZJFUDXoei1Lhj4KUFnv3OI2up0obUJSyRZ63QhiPApJVk3KPWwNwogFBzBM5WP1SfrZ7HefSfp/V58xSc+YJH4k0w34bPayDQ2VykMAEPBbBDbC4T5EyUWBv3i27YcxVHF+kbE/ijbC8WGB9CzfeXQWr52/C33SVSO56PPPSqZaOGP7ccRDWleXdmBZMqIxtvDrQw1aSMd17kZbb8Upn+ylmT28fzSHK/Jpe+10ooHfe8iiI35k7REc+3QRdGw/bNtPP9u2n5ghRTPQ74dpQR2YAbx84Q7mT9gEurc/A00xieEQJRdTnP352sNz+MFzd4iJyqQbcGw/UdzpVBOlSpZ2VJPOtwLXviwu7MPki9pgEIJj+fEc92ZxbD963dOX0xv7kE81CGQ2DY1CNjvtGJvU+cLkeQKmclU0ubg0V6hgf28Gcc5SzeQqKNXSxKZ9YXkDW8eMao+pQ+y1kwRcunoQuVCXrkESXdyuFPAiB00+YYwef76xeAfZTJ2M5cJBHbV+lEwcbduPh5UCmeFNXMw3eFdeWtUh88WkXcozhoczR44nYreexWU+Hr7x8DyuTx9A4YvCd3ZWcJkznqlEC8eVHOJcePs7j8/gK1c/RJuzltP5CkZGgK7pazev4nLhEIMSY8RkyaHxUMhXEA4P0OAL11BXEYv0sPOIsUNTU2W49qlGybH81EW19toHqN5ZIR3ZdPEEkUwLfV6qGo99kGULca4FCcW6sNphzJ5l19ivJvAiL9NIAQuNe4v0/AOLdbQ/WILBQUJ1I43zn3kHVpOX1HSFNgJKZAC/30GCZ9u1bi8jOlei1nOrr2H6wiaGFcZEdvenoKXb1Gru6QqEHgNQsVgXni3B4N184n4eYsCExsXogmqicmcZkQwDKBuPl7G6xq7Hrsbw6IOL9B5nF44QDA+hRthzEv0ufJJL2piTu6uIxDt075fWtmFy3VRuZR+lRwt037PqCOp0HaE6+11RtmE2YsTw6EONHMU9V8TR5jzNAZ16Apqqw+GAOxXrIKCOMOAAZH9/BqvnHqNVZuzQzaM5nOfvfCg0xN7tdXL21o0AjutpYtPPpqp4b2cFV2dZx6/9BAv14vQBdFOhsOBkvI1aNUMygWKugo2jWazPcX8rwUOnHaN3czwWcMxL7lfndhAMD56KFhF8HuURmnoA+904sVRLU8fYP+SRPoKHSLxLfzsYBqEqJs5mGJP2YHcRC7kSrQv3dxexPnNA85NRU6gsngj18c3dJbxaPKD59tnx/Xs8A0n8sEwFFd7dddBN4MXlDaJSP3XhDo45YDDbCSRCfWJk9it59K0Anj/DFvZGJY3hKEBdMz1LRrOReCp/bQKgOq0Y/mhnCV/gpbhmLYVWP0yTzUkjjaLg4Q5nktZyJ3jIHXCXcmVEZAsG/9yDdgpziTrmeZTGjYN5rKUrCJKTsYxAYERtuCNXQqTJrmFp+hiuJyDPDdya7ThsHpgLAMloF+/sLuOVJR4k2guS2PzzZ+9BDpg43Gf3JxQwUOnGkeGam4kgsxhhjE6nH0Y83Me/usGyq/7+1ZsYcKBS7cWgaQYqXKM1v7SHg6MCLeTZZBODYRBTXDD92tUbqPFF3e+38eH+Ip5fYIuRzzfGyAjQfX/weAXhgEG7SoA5mu/w6Jl8sI+La4zRG3s+pJMtHFZ4S7ffQljTCVBJoovZcJd2t7frWXx2+dTAsKsH0eZlrlA3AnfsIyH7RDMxibxZiDWRibcR6rGFLRdto8zH2kTLNVlAdEvBSq6ERwesU2wp1oIaGFEsQ14b0kS920wjF+rRzvhHljbRbMexx895thtBIDBCqxul8xhZMmkwOsMQPf/doyKmUnXs8XNez5YQS7eIGQimOvD5xvAnuQZlWyKxcGS+DDlgEitXPsljbnWHwEskPMBgEEKX39vc2IdOI0FNBJcu3cXxLhvzsmoinG1hwEHA/d9kWW7v37oEAPj0D38NZj1GpaBgoYHGI3av4PmQytagRNj78advfw5fXv1tHL51mZ55Zv6YnK2tvsY+Z+IarZmwjtn3BoIGtLkyOmV2jT7RheB36JrjwyOMxz4KwL3wwk10jtgzCs9WsHxu41T70wlDlBy6H4/urGJpZYfMI0XBxYd3LyDKdYlHO7OYP8tKQ1JkCFUzIPBnrLeiGLsiwk+wRz7Jog4/a7eIwCQ4thGHqhkwdDZOK60kprNVOPzeSRPQypsmRpaMQTNGLM0Li5s45OMuk6uh043gHT5PnUtXMLAVJH1cpzkWcKSrSHMwUxqEcYHHfYSDQ6QSLTLxrDeTCMgWjT3TVBDXBqjwTjlZctDoR8ix3nVE0i91+2G0exGKJYlG+ijV0ghy8FqpZiD6xljibPtgGESMz5fhSB+9dhQJzo4pwyD6Q42YyIlR5Nd4iT2tWFhxBXq/NPXUQ+lBdQqfmtuFJLpwhKf9pr6Xx3jMQn2/m5/37HgGkugQBI+SqF/Nl9HtRXCet3X/2/dewPMZVtdORboQBA8S3ynrtozFdAV9vqPo6xr6pooM2O7ltaVNBBQTyQCbuKyRQi26guDh1XyZKFyATQIdTlMnQn0MdQ2XuC4AAK6fZUZymzsLWElXkEpyofaRCMcV8e1KDADwvzi3iT/bXUSeG7mtJOqI+8YU6bGeKVOeXLmegusJJJ6MqzrUgYmpIpvIaqUcFmItWlAzydNJ+O3NNbyy+hB9DgoUyYY79lG5aTZbwVZpmnZcYU2H44r4mes3ALCS4+R31+f24FcsRJ8wkmvrISxxKj4c66HVjcLiC0ww0aVJW5Yt5IJ9WrhbrThO2kma3DxPgOsJ6HDBp+K3MRVvYpY/V88VcHDAdpXpZAsH5Tx5KqUjXfR1jTLTSrU0Pqyn8ZnZfQDAj1++gd+/dRUAkFV1vLj+ENYO09iEVAMB2cLmxCcr3EN/pKLKdRNFV0K1ncAsd1IHTu0MTNuPu40srvIFYzZTRbmZxDR3O+/pGppPeFKdmd2Hwa0V0rYfbx7OY51fQzjAzuNa7tRuYuN4htqyb+6zbLuJGF3x27RA1PtR1FoJ1PjuvqBriPdCVHpxTT9cyw93g92/YLxLOpjeXh6uI1II6d3yNJLJFpWMtPAAimogznf7sWIF77/xIvKcPTN6YeoM7LdiUJOnu/2la/fQPcwRS1d/PA+fbwyV+yiVb69QZMf+xiKWr96HnGHfkwv2MTjMIsG727RCHY+//RwKs6cB0I6pIDLDmMrj71wmvU7x6kOU3z9HgEOdraL3eBZpDgTHtoTxWDhlcfXTbkazGUHjOEdBsmYzCseU8c5HbNOwkj+BP2iQRiuVbiAT7mJucZ89l1ifymtGiYGySWlqauEQgUwbrU22ESqd5JFJNxBO8Ws+t4W9D5mQfWTJSMbbVJadyVUQzTTw6D7rOqsNI1jJljC9ythSc6RgMAhB4zo901RQ5O/Og81lXLl8Byleuj6u5LDCu8IABrgvJ5vQeAfo1enT+JuAOkK/F0aMZ8ZZloxaN4bf3GPlxZ97/hYAEPCpt+MoDSKY4pqko1KeOnyT2gCHvTiuc/Z067gITTahcjF+ypbwfLiPMu/YCwZGiCXYvfErFnrdCDUFTGdrEAWXmhVmUzX4/Tb+1mU2bx2UpzDUtVNtYayDh1z0PR9rom+o8MbCx9rd9uz43hzPNEm8nvtr5/8GXl1jlO5wGESllaA2f1lyoHFmaGQqGI99tNMZjgIIazo07XTy0II63nvM4x6yZaSzdZwc8wDP4BAxviAIootGNUM6AJ8wRqmWRoK/5G/uLeGzaw+QmWcT9xvfeQmfeOVdAED7OItSLUMC6LuNLF4u7p9aBDgS2nqIFrrrF+6idFRAjPskAcB9no81nWhAUw28w1tlLxcOkcnVYPCy4Jsb6/jMxdsUUmqbMo6OWQfedKGMcjlLE6Sua4hEe9g5ZBN1d6QirIywtsSAXrWcRb5Qpl33ZmWKDA6LmSqGukaJ31qii3ffeR5LBXb9riPi4fEM5rlFQCLRpusLhHRUj/PEwr2zvYqrxX0CoJl0A/pQQ4wvGP/8W5/El889IF1FtxlDlBsJPt5cwlEvRnEwqt+C5UgU1bIwe4R2M07sx+z0CR7tsh1mJtrBQTONRR57MjBUREJDEvY7nohUpEveR91eBKHQEA8O5gAAF+Z3SLPU7YcRj3WxV2JjJx9ni8tk8RVFF0f1DC6dZ8D5Lz68hlcv3qHnOxqq9Fl+vw2/YlPZNzlVRaucQY/rzIKqgWBoSMaEkuzg0Q67prlcGeVGCln+jF1PxNjz0QITmaojMN0g1+HB4yLllomSA0UbkbZn2IrAr1i484CZbca0IYozx/S97WYCcxcfo7HDFqfEXAn/r9/+UQDA33v1LRwcFDEzc0zf67kCeiUG7h1LYt10XGeTe+E+ah+y7wmEh+g3YgRswvkGxIBJnkqeKaO6X6BMOc8VECvUSOgsB0xoeTZW7F4QruVH84SHI2ea8IkuTL75iS8dYVhKP+VoPwGNUsCCNVTh52Wvo505xKJdpBbZNX3w5gu49uJHOHrE3s10vgrblGkTFol3IXNPqZO9Ipau3SMzzX49juz1hxidMNZF8DuQIkPKqxMlh7ROo6EGv2LB6J9qwR7sL+DsE40Q6XibGj2Cmo54pgmTM0+TcQSANiqTUrdPGGPYD9I4LTXS8GGMIbe+mEnV6L07OpyGN/ZR+Syk6VA1g8q1rUYSouTiBmdPLxUOYdp+8hJT1dGpEavfxv3dRdpUVVsJzBePqTuy04zDGAWQ5Js8v2KhwpnoRj+Ctfk9Au+O5X/qv7cGYcxPndB8U6mnMbJlLM6wTcbICJBQ3XFFSDz7ceDYeP2tr38smqSfyfwDyN9FTZLlmfiXtWeapGcgiQ+wmz/4AuIan+QHIQSDQ8quGhgq5WXt1rNIBfundLDjh2HLELlD7vxUCc12jMoWmUSLFiiATS4TRmYqV0W7HUOc6xP8igXPFbDBF9zzZx9BlG08uscAV4SzMMBpi3txaR8AsHF/DZHgEGkOMKxRAKLkEDiLRXsIhgcEfETJIUH0cSuFpfwJLaiWI6EwXSKRZ68dRSAwotDRK6sbuLfFdlyZSAfpVBNlXiKbWA9EOMU99nyIxrsw+GKkBEz0uhGksoyx2N+fQYGLrQXRRa2awVSR7UItQ0G/H6YOvtxUBb12lCbu6bkjfHTnAgDgxZfex6Nb5yiAMxQZoFFPIhQ6zVQbDoOkwSiXs8jnq2hzd+JkpkFi9OlsDfVWnO51Pt2AbUtI5tg5V4/zGBgq5ubZBNmuJ4im//DuBYSUEXXBjD0fRL9DwuXJ2Jrc64l9wETPcnRUQGGK3Y9OK4ZwpE8LrCi58PnGeIvrzi4WD2CMFCopFrJV0pT4/UwcO9FcFKfKECUHBhe8lmrMQ2ryt7l0A5V6Crk0u47DSo6y/CLRHo7LOcS5bqbVjWAqU8ev3WTsx0+tP0Qk2kNyiYlgG1szFGaanS5DifXR3GOgejz2QQ6YCKUZwBpyvcyExVtc2kUgNkCvwkC064jk5GwPVVgjBf0Om7Dzq3vwh3W88cefAQB84vPfgqMHMKiyEm9ibR8DXgYOLx9BCNpwW2z8Nx/PwieMqXMsGB4wCwGeKbf7wQXMnNtEIMcW1FElQeLr7v4UJNmGxdnA5Poe9JM0/Dzi491vv4SrV29DmOiKNudpLE3NnCCyckiu2VLAQnCqjvY2u/5BN4zM/DEGdabZUjQDftWENWQAw7H9CHN2zCeMMagk0eFjuD8MYvncBrmMj7hvU+WA3fvMVAWBGGNV3nnrBeoQA4DZhQO0qinaZJimglCkT2yhKDkQJRcKF7Y3S1kas81aCuV2gsZLPNZBtZEi49pgZIBWPUkA47cencFP8i6yRLoJ15awd8RA8crSLrqt2FOMr+1I0PgGLZ5qwbUlVHn5bTBSSd/ouiKGhkpGpM1aCp4nIDPF5sRaKQvHFTG7woCga/nxJ+++CAD44Ve/g7c/vIYYL2uePf8Qh9vzaPDy9HLxEKLkUjkyEDSwsb2IIWfmL60+Jv+qrh5ENtaG44oYOA5e/fa3PhaQ9F+lv/sg6Vfqz0DSs3IbP24fzuNzF5kmJeCOcFjJY36a7e4EwSNa9UzxAEe1UzfmrXYSeW2I86vcYbmcw1Suim/fZ4t331QRVgyqfY8sGVVuShgJDbHfyOAuN56sjRRcTtdO/ZnqCXieQC2suyfTmOGdXZNFzubllalcFfd3F6mLbqiriIQGBNYeHs4iHexTIO5svgSZ75pWCkfoD4N0jYORil47Sp0+nX4Ys4kOdaG1m3EscAO/SZvrBET6/TaGugaTl0TeP57F54N3qCMsl67D9QRa6OKRHk745BJSDQxHAezvMRZq9fzjp9po65UMDptpXFhiuqNhN0wTfXl7Fv2RShPz/uE0FuYPsMfbfTXFRCg4JFDU0YP45nsv4DN859xrR7HAU+3bzTjikR72K2yBrbfiiIX7JBDWNB2lVhKNCtdJyBbKHIyemd1DrZkkUGhZMnzCGCI3i5w4lU9iWY7qGciSA7nJ3apdkcTmwaCOh3sLVBIcez40elG8uMIWmH4/jMFIJTdz3dAIUJq2H7OzR9RV1+1EkcrWCXDlkk20exECRfVmApLoktZMElwKIZ3hpejJM1X8Nt7fXsH/7if+EADgjGQY3RDkaQZ8stoI3k3W/t6spDEV61PJ58Obl5GLtsnN23IlTCcapIczdRWH+zNYu87aqc1uECPeZTnshpFaOKLOKKMZg6SNEJK5N5Ziw+8bQ+OaNWegErDp70wjmGugu8+ekyQ7+LMPnsOXf+r3AQBi2IDVjMDlpVxNM6CkurDqMXae/SCBnkCsD6uvIcm9j5oPFhBKt8mI8vzaBnq1BKIccCUzDRrDpq5iVEohwGNJKjszMLohRKcYAPf5xoAnkM7o995+GWdSVayeYfOLq6uUvzdqB2GbMmluwtEe1HyDfKJ69QRSC0fUhdhvxFE6YoBpbWYfalinpolmJQ3XFZEqsPkFjTi29+fIR+v5c/fhOiI5pxumAjY62PVFY12K7Kg3k4iGBnif+xctJerkAwYAf/fahxRx89bdC1jNlmnT2aimcdDIkKax0o0jpg7J30zTA7i1u4wW//lsqooIf97DLtNzHvNrVBUT27UciiusQnDcSuHaxbt0DZHwANf5+z9oxXBhfgcNbpb51gfX8dy5+3CO2L0OBA3UKxnSIcaCA5YkwDcZR8cF6nY96SSQcCSkUk3I9mku5bPj+/N4BpL48ckrN3HrAdOVrM0c4HEzjSneyu/3s/gHALiysoHpdA1trht6dXET47GPzN4Uv43hIIj5GJsgWwbL97nL69W6K+H54j4AIKCYmOZ6CgBYcUWqvU++FwAxWrLo0CIWDQ7h9zsY8gVEUScCbbZIup6ASitJi2Q+0kE62STqedAL4zGvt3/QiOF//eo7qPMS2Jm1DZi6Sj9nUw1s7cyjyHdsimIStW6OFDSaCWQ5MzTsBxHljAMAvDy7C93QMMsByPbuHCqDCBm+fVjN40d591IiX4O7O4sIZ4OMbgitVhxdPlGnYx0EZZN8YcyhhtkFbqzXCaM9UrHE71k6zkpxk5gO3WQ5cBOrgnPZOjLRDmK8k3Bjfw55zu5EY10YuoqBze+d0sJhLYuVWfZdjiOhmK5hp8IW3OlEg8oFpqnAcUWi3mdyZVTqacp4KvdiyKYa1B6tySaS0S7uckPIl84+wMiYsAasxBfiALveSCIR6pOORJRcuJ5AYm2zk8AZrpMq1dIs6yzHNDVDXYMoOahwH6nZQgleR0C7wwD77OwRTo6nqNNSElyEuempYbKIl8k17rdTCPotCgcNzlQxuBWDN+SsQ8IgRsu2/ehXUmQJsJg/gSh6xJ6GEh08uHeGNElyYIS55T1iQQTRpZJQkmfCTUTOiUtbGB2n0OW5gVJCx2g/jZ37rOFi6fxjCne981s/gMuRj5C8xgT29Q/WEVNGFAbrdELwR4fksB1OdHD47gXEuJ/T2PORtojcuPnCHl84xsGNs9ThGQwOkZwtQ+Dv2rAdpfKRbfoxqMchc61gMleHEhni9vtMQL62usVCWvl5/MhzzBNK4lq7aNBgWXdgXWKpdIOE2oJiofV4jrLtgtE+PFuCzCOFon6H3tteN4J+P0zlRZ9vjN4wiAJnvEXJxYVL90hg/qfvv4DXzt4jsCKJLlQOCsaeD+FUG3kOBB/tz0NVTJzj+jdZthmDw60tNvfnSHN2eW4XWmiIMWeGjpppLE8dw+AgKhnsP5UVWenGkQ118fwZNp8YuoYOL+0eVHOYz5eoFGfZfrx8+RY9h5g6xN37Z8g2pd2N0JiO5utoHeXJUftMuI9KKUd+XV2+uZrIGyZl/DTXKXY6UdqQ2h4zFPY8Ad53U0n9nzie+SR9b45nIIkftilTPR5gnUMTvYbtSHDHp6nunifQC/Hm9irOZ8pUMup2ohAEj5iV6VwFjithnv9+IV9Bs8l2K7quYruRRUo9zSmKJjvQeVZVIGjAesJXqTKI0mKb5H44WoSXk9QRApJNC+bK/D5s048j3qH19vEsPhsYQeGL18PjGYT5DvzvnH2IZiNBIbn6loJ8ukH0uCi5UGWLFvKFZJ1MGU/aSVxaf4RuKwaACStrwwh1+wWjfQy7YVok19c3kTjO0yTzExdv0e6t2w/DLzmUVedXWTlo0kosCi6CyggD/l0jI4AgXxAk2cHZqWP864+uAwC+uLQF2/YTTR8WXbR7EYpPWZk+YtlvHJQmwz263g821lGMNXFlke3eu70I0pEu2RoYIwW1XowYrd+/dRVTfHKdTdRRnCoTkIlmm/jdO5fxhXWmG1pIV2GMVPLrGXCB5zpn5kZGgNgen28MRbLxYJexLo/acfz4xVt0f8JaH7JsEdAxLBk93rI9N3MMY6jSLrs3CEHwu5gtlOiZTtzjAdYeLfttRDlA1Q0VdybROnO7EAUPe9ymwPYEPDe3i82brOyXTjURyTXQvLNMzy3EgXJm/hjWUCXmZPhwEcHIgO51eb+IlaVdYkBHQw3xmTJaBwyAuo5EGwB7qELSRgjyctNwuwBnJOPTP/6n7BqOEhADJjKcHfNJLtweA1CXX/oISq7FUuEBpC5u4fNndympvneUhV8dka5IS3RRnH1ICfZ2K0xskJzsYbiXR/MeE1fHZstodGKYm2ilcg0cbyyQ1jAzf4wAF4zrJ2mc7Mwix0vKomxDjvfJUmM8FiCqJjR+v0TVRG1nBtE59vvb710iQHl0PMXKpwwHIpxtIbZ4jB5ny8aeD2+99SLCnGk8f/E+Qhz0OZaEraMZxPl7OLtwAFUzcPcjHr3CQcwB1x5angDLlJFL85JzI4U6BzbZfBUnO7MEIKIBHZJ06u9ljAJIx08924qZKrq8nBaL2Njamz/1OwuyZhUqT06VEdQM0qw1+xHMFEpUNv5wZxkvLLMKwFSiiWYnRhvN7WoeamCElJ8BoZkiC09+svT/eI+xSgVeOp3oRV1HRKsbRbvO5otQpI93tlcxzRkuw1LQGJzGDYWDQwKc5wMjKIqJRjPBA26fHd/PxzOQxA/TUFBvsV10NtmE6wk0KcbCfZoAjkt52E/kcF3KnWC3laYS2pniAUqNNIGASHiASLyDDhdettsxKHxnY5oyXjl3Fw7/3VKFmbl9tMcm38szezBGAWJmLs7uks8JAOwdTaO9xyae587dRyrSJX+VScZVmC8wl9JV8r0BgOvrj3B/m31PX9eQS9fxoMwmxOXiIXr9MFHg5WoGiWgXl/gCuluZIjG12PEw6J0uILl0AyHVIGC3uzOHZKyDowPGxCXDPZRaSUzzyda2/eS4vXUwi/mpEjaO2O++MFWFbilIcufnUiONUMAgR91wrIcWn8QMU8Hjeg7/1QvvAQDubi9jOtEgTVKzHUMy1oF/wO7PUTWLbx5P429wliY/VcF37rIFQhZcSKKLgzJbbKLaELVujFiZaMRCMt5Gl4OTT87tkLfVyAig1YrT81cUEy8VjsikcdyOwucbky4tHu4jGBzigMd2AKdC2ON6BpYrocxd1F+f34FpKjjirdS5WBuxeAf/9jF7jj/30gfksF2vpaCpBhncFWePUDkooNphO+KZbAXx4IDAtuNISKZaVI50XBFzPOLGcwW8dTiP81wwP+W3YJoMKALA4rkNlLbnsPw51lTgDRX0dtlYMntBCJJDQmxVM1Au5ZDLVen+jMc+jF3+rhVqGFSTCPIg1vdvXcKrn3gHALBzdw05UyamxOiFkH7uEYw9LkwOmBAUG/lPslLd499/FblZxl74fB6MZhSJ6wzYun0REDwqTWnpNjxTpvJTKN2GmBjCabB7746Up8Bru5whvzMlqMMdC0iu7gMA7nzrRZy5eg8PPmIl9/zaHlqP59jYmSsh2W/g7n0mKK8Mwvjs8x+QtcdLmZtw9AA2HzA2rGdoeOET7+LkLvt5emmfNEeC6CKY7EDkQM4zTw0sJ//99R/8Jnk/Gd0Q3bv7e4tYnjpGhVt0CJKDkRHAyhLbKG7vzGNWO0Fxio35LHeR/2ibnce56QNyTZ/cs4m9hhoYYahrtCGxPBEz8QaxNMf1DPom+5tUooVcookRZ6hGtgzFb6PMx5bMbTBGvEszn2yg0UgiX2Dn5Rc8hFMdAMCH2yu4vrRJm6716UPU23Gkp9nv+oQx9J6KP3vEwP213AkWCmx8tMppRJMdbG8z0OR4IgqZGnUiux0Rn7l0k8rEhXQNkUQXW1uM1YtFe6eeSaaCo+NZ9CwZxscYcPssu+17czwTbnPR2589/0NIcuF2KtHC7sk0gYTKIIIznDoWJRd+yUaVly0AkDkZAKzMHuC4nKMss+l0DcHwABVerx+MVMo1e1DL42ymTCWxUMCA44pY4sZzjZMcwrEeiX4PT6YwzwXBAy6MvTGJxnjhfZQPCyTobvSiaOlBvHyZtdDWSjkkMw3s7rHJeGV1G33OyCQKVeidMFH8hq5B1XQqIQaDOoZDjVqcJ115AGN3fL4xgaLBIAhR8JDgNPSgF4bPN0Z+lekCeqU0Br3wU11Xe1XusSSPMLAClD83f+Ex/ujPP40cZ5IKqTpUzUBykVHtVjcEi3fb3Lx/FlfP3yNtkOOKSCVbdD8k2YYxCCIQfII5eUJAPNGbAIDeiEMQXQps9asjSNqIOoOsfhBSwESXG+u12zGKLPH5PFgjBYdcz7S+uoleO0a76gkzMil7CKILaxSAj2uUFG2E3oTadwXmR8RZBaMZQ+Ukh/lzjOEy2hFaoADWer+3ySfx6RJKJ3kUeZmz24wjkuiizQXBucVDOHqA/l6SHYTydRhcSN0qp5Ga5h16zRhOyjkqmUp+G9GlYzhcg6PMtTBeXwA8dg1Cr4OxxPZftf8+g9j8CZSr7N0a13sY3CvQOYcvl+ANASHOTRvbLrxuAGKGgXt4gC/JYzkkEeNmH8jzd6/cBGanAIt7X+03YH/yVYg6dw0/2oFx/fPsnEY9SI0jCP0Ou3cXPgfBaEEus3vpKRrE6hEgs3fRC0ZgZ+agbLB8Ot9gCHeW3dvRb9QRvNKEW+VM60wAzoYHaZlflOPC2lQg8Qw1b6hAiDJg4xPGgAh0b86xZ1asQcrqdD/gAW5HJmbN53chRMcYW9w5vCNDUHk3bBCAOYY34s0cqgtfwAdz91RkK/hduAabn/zpLnwyLy82QhjV4jB5l5oS0iGqJr0Hgt+BZ0vwx7n31UCFaygweRk0NFOlcqtPdlD58Azi3C7h3TdewrnVTdSr7P1QZAui6BKrORqqBCje2F/EZ5Yfk9+Q5wmQZQsPeTfbbKqGgDoiTV+jlYDjijjhvmLpYB9pvonSVB2WJVPDicOz13K8EULWDFSPCqhwEHV2bZPmvPHYh0E3jFt8Pn353D10WnHok7JfvANRcvDhJtPavXT+LkTJxf1HDDQG/BZtFKPBIRxXxN3yNAzXwv9y49c+FuH2301+94Xb/6b5TLj9DCTxAbb9t9fg03lgpSNCCZiwJvlkjh+p7Kmw1PMEEqLeunkRQWVEor2dWg4RZUSi7whPQZ9ohwaDEBlRmqaC7HSZXtTff/cl/OgL7z314h4fFaguvrc7R2U+VTHRNzTK9fL5xojEuyRa9PnGmFvehcN3aJahoFLNUDlFC+m0MO8dzCAR7dE1AkCnkSAd1lrhCO1ehETRAXWErQMGtnLxFtL56mlr8FCDbfuJSblTnsary4+R5hPo3ZvnMf3E94QTHfK96XciyC8fwJq0ZdsibPN0wRAlF44lIcxbsXulDPnvxHIN/MY3X8eXXv8LAMC9O+cwlapT0KrrSDCMALE00WQbxiBIE7vZCWPEF4zHe/M4v7YBk2uDRkYA0USHxOaS5MC2/U+UE1S6d7VSDlMLhwQau9UkdQhNrtevmnh0hzEJM8VjyKoJvccYi4OTKayuMLuEm/fPYj5bxjtcAFsZKfjb1z6kNvbycR4+3xhprgfrdyJ0fYGggUopRwtE6SSP5csPyBxR0kb4oz/8AVziLsjpIrsPExftdKpJzMlwGEQoNHjqOYQzTQqD9Rd7cKoahE+zMSE2q0CzAwCofn0Nsdky5Z45jRBzuebgVVAcCGkBXp397At68Ek+QOagqe7Bp/D/lo9gLMvwjTib6rgYJxIEkuz3LMhXGBADAK/jh7jIxv84FIavXqfvEeZCGEeiwBYDfr4Qf0YKB0m5PIRGDe4uAzriUhgYmfS9XsuGjxOzTlmFGDMI6LklH3zqKegeWwKEIGd4BMBtyTB4m374ahljZwzjEW8CiDMdkRjkztiGAggeBK4VcocBiJFTUCVEPXhdLgXwfHAHKpUQ/cke+lvTUKK8JB/vUwyLWUpCDJi0sDt6AI4eoGcqp7oYuwJlzo1tiYEiPgbsbggyD+l1hwEMymkywDQHrAtxMk5NPQCfMIbKWd1BJ4oq34Alooz9njBJ6XwVRj9IbHE808RoqJFOTxId+BULDe7gHot1EeGMVnm/iEYnSlYVWlCH6HfIwf7D2xdxfnkLm3tzAE67hwHWZdgtpamJZGllh5V+57hX3MYcBNFDkJuNjl0BomyfWioMNAQ5CLSGKtR4D85IRt9yMf+vd56BpO/j4/seJB0dHeErX/kKarUaJEnCP/7H/xhf+tKX/rP/fjLAfuPST0ET2YC/sLSFVitO+UCqYiLCyzK/ee8ivnT+DrlEW44Ew1KQ4WWL4zqb7CalmVC0j8PDaRII3q9OYY6HaqYiXXQGIep8CwaH0HUNPf7ZiWgX/WEQQ05NJ0KnZb/EEyZoAMtxmvgIAcCZ6UP4/Q50Dl5cT0CzH0E2xv5Okhxs8/LaXLoKVR3hEaf8M+Eufm9nET/NjSsbvSimUnUyajwq5en+aYqJVKqJFje0i0Z6TLzMgYEsW4wN46BpZASgKCZsrtkZmQrtEsvNFNZXt3B0wEoz2Uwd1VqaxNmeK+Jwv0h6lnBwSN+TSDexsb1I4PQ3blzD9WyFfrZtP0q1NPIpBrCqzSRUxSSm5T+89SrOcBF9SBkhHumR07WqjrBfzmOOR6AYRgCHjQxiXEs2lavi5hbzmFovHJGXFsD8ZULRPsrcb2VkyYiFBrh7wp7TXKyJgGyRD1dvEEKHC9XjQdadOFNk11Aq5Z+65ncPFvDp9Qck1rdtPw6bbPzlom2WqcfB+5OgHzhty57EP5i2H4JvjCO+Qy9G2uQK/tLiJv5icx2vrz4EwLRjsWgPkUluVViH2QtR0j0AdB7OsXPiHj+TZ5YulvHO+9fJxDIc6yFcqFFJSA6OIIV0AnPtgzwxA51OFCsv3qKF2mxFIPgdAqS9UhqRqTpk3rav704hkGPPVAyN4JkS9AMeuxIdwCe5BD6cXhBGM4rICjsvMWKhd3cWocVT883WXVbW1NJtSAELOo9WEWUbeidMAmrPlmAbClQOIsqP52k8TK3vor5dRHyalRt9vjF17wEsPuWDd6/j6pXb7F7XUhAElzRuACj3zh8dQC8nIfJrGDsiPvroMlbn9gEAoWQHo36QbEAAkKYxHO4jFO+hesze5US6idFQhc7nvPz8EZonWdQ461LIVqntHWD6pg7v7hQEF4LoEbA5qWeQSzSJxe0NQjjpJHCmyN7jm/uLWM2wd2niddbhdiTxZBsDvmGY3J8b+wuo8TLyp+a3cdBMw88/e7V4SKVZo69h57hI2ZmmJUPwjUnDJflt1CsZVCYl50yVNhVqSMe/eesVvD7D7l0+X8XG7jx9luNI8PnG+P/cZaW6z0zVsNmNIclLjNfndnDncI6dh+PHaoo9348zu+2/+B6ApH/7DCR9/2uSJEnCL/7iL+LSpUuo1Wq4cuUKfuiHfgjBYPA//cdPHFPxJuQxexG3DmbRNwNIagy8tAbh0ywhzcBOuYAsT60+6Sag+S162RKhPnK5Gpmtbe4sPGUe+IKmU5hnKltHX9cQ5+ZmR8cFHHcTeOk801T0OxFk0g3yINprZDDD3Zbb7Rhq3RiJMieT8CTstNxMYaudxAszjCnw+x3M5ctUYx+PfadOxd0YyicRXJ1jDIYSMPETggeV6598vQhkxSJfpVhoQPT4xB5h8v0TE7rJ/ZiI30W+kE28Vb51j+l/LhUOoYbZNUysASYLql+xkEq0IPDOIMtQ8KCWxw8+9wH77FaUztFzBUS1IQG42dAAimRj75gBrqg2xL96PIP/+4+z8ko808Sde2cR57qiLz3/HpUifb4xVM1Ah/831xWQiXaoQ0mSHGiyeRpEbPsx4CVXx5HguCItRol8HcN2hPQYQdXARmka1+ZZ1l+5kcJOdQrX+b2fmTuCfMIWcn0UQCLaxRYXl8ZDfQx0DXcrDNwWw9x1mGuU8vEWxVfU+1HMpGsEbCchy5OF7N7985hN1Klz8C/KWXzlwn269x0jiBf4OcqyhYVom9q2XU+gziYAqO1NY/alO3C4SNqf7pF5pOeKGOgatfQbzSji2gBBHg/Sa0fRrKXo/RBED3/4F5/EpQIDAopiUtlv0lJv8YDbsSPC0gMIJNh9CISHaO4VEOFlQNtQYHL/Ic8VoMZ7CC4x0DM6ykBJdSDNsPMc74gQ+xqVsuxqGP1GHCovxxr1OHkEebYE2xGJAZ2ERb/9Hea584nPfhvmQIPLGZ30TBl73EG7V0ojUazgHhdIZ5NNqEGDyk/HD9Zx9cpteBwIp+ZO0DnJkNB5Zu4I7WNWug8OVUgBk75HVGzMT5Wg8Xv7rXdeRDygY32ZPcf/4d0X8SO8k7RcyyBl+4kdHHTD6A1C1K3ljGQoAZMaNDrdKIqpNgn9mydZOqdkvI1WK06apOlsFfVmAtNcz+TzjVHqxmmOiMgmyh0Gvnq6hu12Cs/xeWriPdXkmj1ZcnB1bhcnvFvUMBVcXt6kTZaiGhTEPBgGiVGfXJPjSsSYtxpJ5GdOQW+nHyat07nzD3A9UyWmvd2Mwxv7SIx9VMpjbuYYP7Gwz+59YIRiso5aNwaAZVJOmi9UzUC9mUClH4X+MWqSnh3fm+P7HiTl83nk82xhzGQySCQSaLVa/5NBUiLZxpjP+7PzB2S6CABqaIhD7rfz+sVbMA2VGJqFVBW5qQrqFbZQzcyxUsuQe+qsLu3gzuM1TPPPcj0BunmK9g1bpk6Nth7Cc6uPKHZDUUxUa2lq+y/Gm2T+t7S2je79IKZyp7EasmqSbqRazuJywMC3uAj8+fwxPFegSeLfffs1/PA5tnD1dA0XCodP7KqGyAgewnyBCCc6GA00KuvogyD6vIvKcUVUmklofIJMRrtI5OuUWxWO9fCtm1fw0irz9nFtCY4t4UXeOTYRNAPA5St3MOoHKU/K8wSYpgKhzSZBNTzEDz3/HpWvJhM8wABVODygDr3nVx9DUUf4799+GQDw0y+/jZ/PNEiHtVeaQlQbwuUlpbHno1byxVwJX79/AZd5LM1v3L2Iv3P9Q3z7AYt0OJMpI+C3yPYAAIV39oca8tkadSeNXQGDfohibAKBES7M71AJwKll8fLKI3T4ouBrjjHLoyAONhYQDA8xy5+LxXfGkwy9gDqCY/uR4+xgIt3EDs8ffPWFD/DuB9fIfTigjrCxP4OVAhsfK9kSJMmBxRm+v7G2gf5QwxT3KypKLoX0nl/ehCLZZMrnWBIe7yxigYv3BdHDyQfnIHBGMHNml9rONx+sopCvUAnZz0XGkzGeyDagptto7zPgF0j08PkX3qOW68ziISqbcwCY4Hd59gBRzsIYzRh8vjEczkJFF04gh3UqE9YOpzBzjbGh8HwYuyJEttZCHvRh9zXo77J/CC6UEPTXsPHHrwBgJpjRbBP9IwZIOo0EFn6UteMP7hQhhYeIcvPIzkEe4UwTn1pnY2DrrSuIxrpUYldDQwKfoWwTrf1TbaEWY2ahf3yT2Y/81GvfRrOUJfd3a6jCsf2I88aAcKGGCe9kdUMY1BNwLPY+xPINROIdej+moy1EQkO43ADxpcIR3uOu+iupKqLJNn75m58CALyQrSMb6RDA2tlaQEg1EIuevp+WrlJu3N2PLmKGM6uheA9HlRwBhoXCCbojDXnekRaK9vFi+jZKh+wZrxYP6TMFwcXc9AmZQ2any2jXkuQNN+TAZzLWJNlBtFBF6TEbmxtHq1jkY9wvOVAkm9j1SLwLvR+id3HYD2H8RGTS4vIueZ85PGZlIgso7c4gHelSMHOpH8WCeIBHvMPzlYUtyLKNpSfuz6RUFw73oQVGWNb0j7W7zfsuZ7d9jO4Ff62Pv/Jy25tvvolf+IVfwI0bN1Aul/G7v/u7+LEf+7GnfueXf/mX8Qu/8Asol8s4e/YsfvEXfxGvvvrqX/qsjz76CF/96ldx//79/+zvn1CVBz8zDw1s4h62I3AdiUzrgvEu6pyWVhQT8ekqiXbL1QxCqgGN7zgARutOWAfPFfHhxjo+ce0j9tndMCVrA4yVmJRP4qkWmrUUWfa7tgQ1PMSIsz+hZAd1HrkwYWYmC1NirgSzEyaRt2P5IYgulSIk2cbh3gxmuEu0IDl4/ICJEGeLJ7TbAsC9aHzUtr+xO4+lmUOqxw+aUYR4KWHUDxKNDQCJVBPlcg7LFxgo8gljWH2Ndvv9cgq2KdNE1m3F4HF7hVBoAEm2qTQ1u7TProGLSc1eCD6fRzv45Jk9VG4x4WSnG4UkushwDc6wG4YxUqmUly6WIQUsiBycGPU49F6IFgXXkaDy6+ucZBBOtUkULso22pUUlX20oA7PEwhEzGaqFNEhSszjZmIGKId13PzgCq69yJ7/qBOCHNbpmlxDeepei5JzCv54SaHPHaS7nSg6gxC1ixtGANF4lwCITxijwp9DNlOHILpU5pzc7yfF+Y4tkT7OcSWMPR+GHLDPn93ELvcbqveiWC4eIlFk97a6W0Ryqkp+RRNvodgVxob5Uirsx+x6BscZ2IaCYIa3nusBKLE+Du6s8/suPrW7V9NtDMppOs/IbBk2t8TwbAlKsoveAX8XQzoONhew9hpjFks3zmDq8mOICcZKNd5fQ4izT0q2Df0oQ5obKTpE58E8wsUqffawkkSQl+eaO0UMBiEYnNnwPAGXfuqbdJ79BzMEBAEmdB61GBskiB465RQxJ4lihUpipUcLUAImgWTPFXB8MkUu64HwEILoUkjvZKxIHJD19vKwRpMOvBasvgaBt7iryQ6MZgz73CwxGW/D9URqn/f7HdS4/cjy+iZcy0/jQ4v10TjOIcpLU2PPh0CiRzlxruWH0dfw3377eQDAf/eDb+LDB2cBANfWH8I0VIR5/pprS7j18AxefIGJ3vv1OMLZJhl7uiMFw0aMjQfLj+h0Fd5E/2ko0HshMqbUAiOk0g1qdDg5nkI61aT3tteMI8rny0ErRowpwPIb05kG6ZlcR3wq8sQ0VGrkGA01+GWL3tt6LY1UuklRTLVSjmmSOOM5+fxJp3JAMWkO/f27l/Gj5+9gv5zH0LHxox/9wcdSbvvb8e9+ue3ft5+V2/7KQdKf/umf4u2338aVK1fwkz/5k38JJP36r/86vvKVr+CXf/mX8fLLL+Nf/It/gV/5lV/Bw4cPMTMzQ7/XbDbx6quv4ld+5Vfw0ksv/Wd//2SA3f3Rq6hU2KKXCPWhBkzSevglB9/gO7AvXriFw3KeFvaHzTTOJOvkhG1ZftYizM0CI6EhUtkadrbZZ+fSdfI2qpzkEFBMNDoxAMxxujsMEsVdLJ7ANmXS+wiCB4WzCoLgodJMIk56Jh2uK1B5azBSEVRG0NSJSFyGIHhEc59f3qQOuccnRcRUHcsLbCc8iRDIzjD6uN+IodpIIc/Fybe3l3FlhbEZ+pCFPEb5BLm5s4BQwCDbgnv788iFuyRstx0JxflDPHzIFuC56ROaxIfDIJKZBtp8Io/GOjg6LpBbbyHexEk7icvrDICZeoDSyoeDIFxXJMbm4fEMZhINErq7noBMooVNbuq5UjjCxvEMlnkieLsXIauB3iCEej9K5cj2IIR4aEBRKpPYhEkQbSbehsYn24nH0jyn5aWAhYd3zxBLVYg30dWDWOK6kRuP1zGbrJO5oiB6ePMeY6xyoT4KqToxfG9tnMF8rIkUP09ZttFsx0jDlIu1ccBDinPRNt4+nsXffPltds7NGOvg4SCob2jwiw6ZbU4XT/Dfff2T+N+/zNiSRitB4nvblZBLNMngT1MNtHsRYi1HQxW5C1uQUmws3viNz2L1HPOuEfwOKjszJAxX020MTjL4Yx4H8cXX3kBpdwZHXEu1PrcHOWASuLcMhcBpfLqKfjVBwn053oc7DBCgAIB+JUXZZvB8xCopkSFaRzkq2YWWj+G0Q+jwuJQE1yINDtniHF4+QvXGOiLck0lJ9MguQNJG6B3kMeINBpLswOfzEOf5a7WHC3BcCbEUD4IWxpB5670cHWLsCGjvMm45EB6iW01ir8RZloVdeK5IjRHzUycIRvsEZkLZJg7usXcnFu/AsSVqgTcHKkxDJRG0bUsQBY/sKWxLppDeoa6hNQiT5sYbC0hmGsTwTeKAJlrK3OwJA90jBmY+uHMRazNMYzQyAgiFBgjxTcb9B+vUUAIALb6Bmegp45EeMciuLVEECsAkBqPRaei1zSOSnixtPsnMCoJHG0afz8NwGMRjXo6eT9YQkC08KrN73bNkvDC/Q2VBv2zR2AKYWeukTB7k2j+T30tZttDuRdAz2BgQBQ/VYRhN/t+fnzpCldsWRAI6goERArKFgePghW+8+QwkfR8ff+Ug6cnD5/P9JZD0/PPP48qVK/jn//yf07+tr6/jx37sx/DzP//zAADTNPHZz34Wf//v/3185Stf+f/5HaZpwjRN+rnX66FYLOLfnf8yrs1OgI4M0/Yjzw0iXUfCR7z1cz5ZgyS69BIrsoVAYATPm9jX6xj2QrSb8fttmCMFdR7LcdhNkJ1AJldDrZJBjkcBfOfWZcwl6kRxO7YE2/bTbr/VjSLJF9ODcp5cawEWczFpeQWAWLQLUXJpR3bcTSAX6j61wE5Khs1+BKbtxwqf9AaDEIajAC2S+VQDtVYCNtc7DcwALq0ykFStMjfpiROv44qIhfvocrAm+MZIJVp4b4u3zq49hBww8W/eYmWNzy9u0Y47mWyh2UyQiFk3VOw308hz/VdAthCLdvHWBusMmwr1SIieSDfxcHOZNBPJeAebx0XM8aDZncoUuqaCK7wsNunW+3CfCVHP5U4IqPS6EQiCR8L9XLoOx5Wom+07j87i4tQRym0G5g76USrNuZ6ATLJJHksri7sY9kKkDRJED44lkSP148NZnF/cJuak3w9THMhCroTtcgEHPAphPtLFTKpGu9nhMAhN09Fsn7oB5zjLVKunMF08IR+p8dgHn2+MBi9H5hJNHFRziHP34VSihZNqlsocvX6YPLcO6xmkQj1aQL62vYJPzu6h0mXfe+38fYiSQ+zY2PMRy9RvxCBKLgWHhtJtmL0gBm12TSfVLDKJFpK8lLe/tYDV5+7A4Zo+f3gIo86+R8s3ULq3QiLmRieKq598Dy5ne9T5Crr352FxWwM5YBJ7YfaC0LItjDiDEZ4vwWzE6L7L8T7sbgjaGgNzgwcFaHMVDLbYAhucrmF4nKH/3z/I0/dIfhuibCM0x8baqJJAr5KisnG6WKZW+/HYh3ChRu7dk46yt99gZeHLZx5C9DvY35kDwMwUbVOGzhdnY6RQNtnO7hwE3xgrZ9i7uPVoBbl0nX43Eu1hZARQ55uORLRL5qv6QIOqGfRcrJGCViuOcJiNB1XTMR4LxKZbI8Z4TkDmsBUh4PJn9y/ilbkdeh9i2hDxWBdB/lndVgyPToqYS7KxmZuqkPWEbftRayWQ5VqogDpCs5GgkGspYMHn86DzzlLXEVGuZcjUcmK4CzAWd9gPUraj5UiIhgakK7q9vYxcpIMo31jatp/c7B1HQjAyINbeMAKIJdow+Wc5jgjdULHbYPPp2tQxRMElhsvQVdKtzs4eoVFNU3bbJ9745scCkv7W9wAk/YdnIOmvtybJsizcuHED//Af/sOn/v1zn/sc3nmHGcyNx2N89atfxeuvv/6fBEgA8PM///P4J//kn/ylf0+oQ3q5JrqhSfK2zzfG1WU2EamhIdr1JC0gtWYCU0H91NfEN4YSMHGLdzutcSPBSZfIiyuPIMnc8HGoIhLuUxvqbLyBdKpJIs6eriEgW1AmnTG5KtHBUW2IWKJNZZpAUMeDh2unLb0us8afLHpLa9tonGQx5NcYiXdh8x14PslA0DsbrARybX4HPt8YxeLEiG8MLTSk7zJNhTRXI0vG8sVH2LvPrndm7hAHe7Oko5qaKuPxziKKEQZmSpUsFhb38flF5gWlqQbpNVxHxFSxRLS1XcphKVM57YzK19CuJ/D6Jeb9tLc/QwJy15Fw4dxDdLgPkG1LuHrhHna5OVwm3MWFpRoJPiXRhRbU8YOcaakcTBOFD5wKNQGgUU8iHu+Q4/bLK4+g6xoZYubjp35MyUwDej9EkTZHRwVU+1FEucD+3PkHqB4ViKWURAZkJy7B3WEQ01ycPx77kAl3EeS+WmFVx/1SEdf5vYsl2gjnG8RCyKJDwbJaYIStnXmcPc860kTFxtbddfLoeng8g+vrj4jFkwMmArJF4G5teRsGX9hl0YGmjig8OXMyg9Vr91DkuWZatoUbb75Afl/L00fEfuUvbaJyZ5nKS71KCq4j0g59dvoEpqlA5CWj1Wv3UN+cRe4cExsf316jElDp3gqK1+8TWMlMVWB2wgSExqaEQKIL/6ThQHKpBCYFLDgD7TT8tRaH0Y7Q7771h5/DZ//mH2BwjzGNoTNH0HeyCJ9lDFPtnTO0GJsDDYm1fYxqDLwN6nHIwRFsLiiflCMnOpveo2WsXGLPQQrpGDViCE4zVnbvnUvwVdJIcyfnSbl9IiD2XBGCeOo7psZ7kLl30apso9+KUlm4kK9gOAg+VXJWlFOdYjDZwfY9tlmZKpRhDILEUi9evQ9FHVHqfTjWQ68VRTzDGwEqGWQLZZR2Z/h5CbSJ+slX3sKDh2uYzU6Cqj30+yEy0F1Y20aqUMW//4vXAACf8ds0PuKZJpSAiXs7TDsp+MaYzVRJ+F/en0YwqBMDJkkuzly5h/s3mFHn8vIONg/Y3HPl8h0WqM1Z7UkKwKRZ4fLyJvyK9ZTv3CSmSAsNUTrJI8e94EamAp8wRoizcJ4rYqhrOMMbCrSgDjU8RKvKNjTe2Efv8DduXkVcGeHq2QfoW8+y277fj7/WIKnRaMB1XWSz2af+PZvNolJhL+Tbb7+NX//1X8eFCxfwe7/3ewCAX/u1X8P58+f/o5/5j/7RP8LP/dzP0c8TJmlx/gCVI/aiTmXq8A81SsQWRI8WwTsPzuDyhfs0YS4mOpAUC1WetC35bUiyjYU0W1CiiQ5CU3Us8oXe1AO0MDVaCdT6USxZDIxMF08QCA9psc4B8AcNvPsO0wFcu3iX/HSKs8cQnsh4ksM6VhZ3EeTUe3lrFqlChcoWriMhHO2hsM50I2YnjBj3ejL6GuZmjlF0yvS7wfAAKj+P8diHXi1BC1tvECJH3PNzuzB7QQKN47GAVKJFbbmC30UhVUeYs2OKNkKtlKNw3XYvgtXzrDSjJLrQqwn4Nd4lE95Ft5ymz7JNGZF499SvSDydgMKZJsauSGDVdUS0qimE+SSYmz1Gp5JGhC+4luWHJNu0OCfSTbqXnU4Us9MnlBEXNf1Ir+1BK7FFr9uMY7uax0tXGFhr15I06QuiCy08oFT75TObmDMClC816gcRDvdR4R2LC7kSdENFgusqRNGlEoAsWyis71D8R2G6hFSyhWMuEF1c2MfRg2VKXz9oZDDDY0ei+Tqch8so77PzSOdrWH/uDpVL1gMWKptzVObotaOYW97DkDM85ZM82QdUh2EUM1UCqz/82ptwTT9FNgDA1Vc+gMyjN5xuECJ/hj7JxWgUgF+3+PM3YJsyQnwhCyR6MJoxuDZ7J7Y/vIB8voJ3v/ZJAMCFcw9Jz1Y+noLd11A7ZEAut3iI1lEeSV4WPnz7ErJLBwhMsXvZeTQPaeICnW7D0QPEOo0BJC5sw6wwUP2Zn/gT+PwuWQZ0bi8gdnUXD36LncfKyzdxcpsBjMh0FWYrgr0H3Pbh0+9h+41rpEvLzJZgDk47+hw9QN5fj26ew9nnb1OHXjA0xMgIEDvUa0chiC51aAEM4MkcCOrNKPxcn2T0g5D8DunNwvkGxFKaOvKqx3mo6ohibV54/iMs8XetW05j56RAeYwAYAw0MkUFmMZtAgL8fhumrhJYOzqcpow0v2ri3PmHCHCfoNbuNGLRLrGJo34QlqHghSkG1orrOzC5zswnugin2rgkPabvnVwPAEzNH8I2AgTe5s9uonk4hbYe4vcrhsuXWMfe2BWhhofEUqUKFfTqCWJ7LEuGKDkIcVH8uVwDnRJ7DwXRw9ziPvq8Uy6VrWE8FkjvZeoqKt041mOMia43kkgDmFpjTRb9SoqMaV+RLfgVG8FUB6758flWe/guC7e/ex/1fX38tQZJk8Pn8z3183g8pn975ZVX4Hn/+Y9TURQoyl+mJPf2Z7CY5/4aIwWW7ce/u3kNAPAzr71BIZupcA9/9t4L1LItCB5++95FzPASyCtnWEDpZDLxCWMMKyl8cJ8tdOfn9rB9yCh8TTYRkGw8OOaZaKMqHt2ewkXuJzLUVQiCh/ksAy96L0R2APlsDZ1OlBZUa5dRy1s7jDnJpxqoH+cJnJRKeViOhCDf3TquSBqBTLKJYT+IcvN0VzRZeAGg24nBtiUKnm0MIjjHg1SNkQq75qcSkOcKaLbjNEG+s7WK1y/dovb6gGwhm6mTmLIxiGB+yP5/p5yCJDtoldk1hmM9DIdBErrbDtNYTLoDo6EBaYEqOzOwbT8SfJKvHySgKia5pv/5Wy9jLVNGi7f1m7YfrivifZ719srSBoW/zuTLjNbfYwAjGByisTFHO1LdULGQruKE+zmNLBkdg+dSJZmGaKLfenj3DMKajn/7gLF0r2RauDi/S/oFw5LhjQUYXLMWDQ9w/5h979mpY7z7xku4sM4WkHfuXkQx1iTGxhopsB0Jh7w8J/rGqHOTvge7i7iwsoGv374CAHgtNCBdEsAy9nRLQXbIJvaBoWKnXKDOI59vjHe5Du9MpozRKEAbgw9vX8T1S3eQzE3yxnzol1NITXOgFzJgN9l93vjoPBKxDunf8vkGFADlDTZO08IYo36QtEPLFx6hV0mRxk8O62hzofb0wgHsXhCpAtuAiLKNaKaBAS/HTUp2Bu9Ii1/YJodpuxzD2BWJSbL6GpxukMpeZicMUw/QAt2uJxFePMb65xhjbRynMc075e5/80WsPX8bqy/dBAC0Hs4jFB4Q0ypHB7CGAXzw5gsAgAsXHiCyzADCjKHAJ7pwufdZON2GU0pjn3fPGrYMVTMQK7Dx068m4Pd5xB7J8T523rkEgJXT3np4jphFpR/Eu4/O4GUO9i3bj/HYh2SQ/a0zkqnMORoFcPnSPQJfzkDDG4/PIq6w+1OItZDPV1DilhqxSA+eJ2CPv8fz8wcon7D/Vt0v4PbhPK4uMPYvmmzjt996BRe5F1KgF0Yq1USWe5QdbyzQ85ZlC36/TQA8lm+gW01C4QzfeOxDtZylEnzzcAqJQhXLnAVP5Gtk6Fg6LEAUPNIOVg6mUWknkIu36LNk2cK922wuVmWLZBO5TB3HRwUsn2MVg349jge7i+SFBrAGjckx6Qptck3bWxtnkOG/u1w8RLWahjFUMbAdAEd4dnz/Hn+tQVIqlYIoisQaTY5arfaX2KX/ucfC/AGcPltsjpqM/v5RXmJ78HiFtC8jS8ZctIXkFJvELD2Az8ztIsxBwu3tZZyb3T/tJhoz75/Ly6x19vHePNYX2O7D8wQ0mglqb906msG1+W3ykJFli2I/AKYziXGgYpkyEonT/DDLkTDQNQIF1WYS3ZGGZf5zNlNnTrU8KqDWjSHPJw/J76DRSmChyOM+LBmS6GDIwclGqYBLC9u4u8d2pC9fv4GD7TkAwO9vL+PL6w+xVWKA4dzCDoZmAJUDtnA9v8Am8Ci/P+Fwn7ngeuz+rBYP0aqx+65qBob9IPq8rOX322h1I8hwB13PEyBKLnJRNgn6fGPoXEPw7e1VJJQRLnBBZzrZgt9vky7kTO4EAcWkkurczBH2Dmawzk3fJMlFkS/M1UYKsuSgz383FB6g3wsjxDUWmydFpEI9ciCfKp6QluHdx2fwyrm7lJElVbKQRBc/e40tqLF0C91mHAvcbNSy/NhtZHFpnoFuUXKwzFlIv99GJtohM8CZeAPJeJt0ae02Az1rvK1fN1QK3Lx85iHeunMJn7/GOoxaDcZ2Te5HWNMxO31CINvvd3CvnsM67wb8+u4Svsg9dfx+G91eBP/NH7KO0v/rD7wHox9EgwOymaU9GK0YuncZ0NOyLerMm55hgt9//wZjZH5MMaEbGoW/bj1cwfKZTSrjAIAWGdB53v3gEi48dxsA0xX5Q33IMteR6AGIfhcytxXQZisof3AWCR4Gq+/nqBQn59twDjLU3SjoAfSPclTaFUQPybUDCrQ1PgjCMxQ0N+YAAMN+ECnOwk0XT2B1QxQX47kC0isHePvrnwAAvLxygL3dOSzPss2OXx3B6bB3KTZ/gmElBY8zZ6yTVECKm9GGon1mwMmNKj1XRGlvBnn+XEdDDUXOBm/ePoNPnL9D4KxUySKlDVHjGynXE9DtRcnott+KUtnTsmTcvHUB93h2299++W18+vwdKr9VO3Fk3Trmlxhz8vjRCuLhPpWUHm8tYW6KMeCheA+XANIg1U5y+PTqQxzV2Bz9F8cz+ILgkQGuJDrwB049xir1NGmStu6vYvXqPTR2+QYl2kd+ukzssRYeYO/REpX6/BWHStfRSA/1ZpI2AgBrwplsnG48OIs1dUSNMZYjIcnf4X4vDEl0cbLNQOCt41lMhXo03wJAfxik75rKMWZ1wlxfm92laoOuazhspZA2FQwdGx/XMeb/+25+3rPjrzlIkmUZV69exde//nX8+I//OP3717/+dXzxi1/8rn7XoB+CwPUqL7z4ARw9QELUaC1BZatIlDlKVznlv1fLYXX6EA0unv3kq++gdZTDES+3hINDaCGdSjmJUB99bsJWbiYRVEaU6j4RTv/JDcZgrSdrUPw21cnjsS72Sux756dK0GI9EmYPzQDWlnYIUKnRAUa9IOWvRTItDJox9LgYeS5XpgVy62AWuUTrVM+i6dgvFWg3f3lxC4NBiEqI+1vz1OL/f7j4CLaukH/TcBhEIVMjkbNlypD8Nt4/mgMAfOHah7BGCsWBdI+zxNA82p/HlXP3ybl25dJDSLJDZa/yXhGmKVO5Mp5sk+nc1fwxCtMlNDng+sNHZ/GlyzeoZKpqBmsP5vdHVk34fGPcrbHd8KvhAX1uSDWQnS7TrjsQNDAcBkm0Ot2JIpOr0Wf12jEy6SyEO1BCBpkBFvIVSPLpTrl6nEci3YRis/NSNANBTaeke30QRGvAnoMgeJBEl0ogjXoSkt+hZPZ4uI/9VgrPL7JxE+UTOMC6wk50jRYMSXQQUEck4p0pHsM2ZfJnkmUbr85vU6be5xa3SCCdLpYxHAbxz//mnwNg5RPblClktFnKQgmYVOapb84ivcLOKZSv471vvYKfvPoh3ffRKEDdTQF1hOZJFh0u9M9wUe/kfVtePnXx9qsm/uDPP4Mf+TSLnnFGMvwhAyFeYm7cWWbZihONkitSeXHwuIhAqgMpwzcZ3RDChRoszhCr2RYGh1mK8Eiv7UGKDZFc5kDnMA+TP2Mt0YVnS+TWHUx10N6borKP2Ywil6kjxi0TWgdTyKyz69j76Dxmzm3S9/Ybcfzqjav4X732BgBWJtZifRJUG90QCosHNBdFogP0yyn+TF2o0QFs4zRfLAmQhqvbjCOTbmDA761t+2kcxjNNxDNNXOH3uVNLIre2S+OlMH8Ec6BSjmA63kaqUEGVxx4tzhyiyceSbmjITJfR4rYomqZDDelY52XyMytbkGSbhN7eIIgu7/71Sw6mclX8377DWLd//IVvoLlXeAK8uvBcETle1vL5xhj0wjA5mNPCAyQ4WPU9IWkAWMSJ3gtRF+LVsw9g6gHKxtx8uErzQyLTQKuWosBfgHUWTiQG6ekyIkONgNBoqOJbDy7iCy8xplEQPNo0xKJdTEXbyGdr6NsfnyZpPP7ulsj++rR0/dUef+UgaTAYYHt7m37e29vD7du3kUgkMDMzg5/7uZ/DV77yFVy7dg0vvvgi/uW//Jc4PDzEz/7sz/7P+t5f+qVfwi/90i/Bddkg/vbGOr783B0AwIiHOAY4NV9tpKil2zZl1JsJ7HfYC5HRBhiNAtT5U9ubRrMTI2q5VMtgVMtS11V7GKKuuZNGCnNzh8QUdPUgzqxs4XPn2XlosT76jRhOeD2+MFVB12QvvOAbQ4n3Ue+zRe5kGEKxV6XWWFkzYBoBPOYMT37uCIHwkEo1T2aPZaIdGCOFrsG2/cjE27RrEgQR4UgfFV6qG499GPIg1EB4CKMXhp9/b7cfwkzxGHsHp8yA7fhxljM2gujBdSQKyhw9kadWiDfZjp7fq0E9jkolgzleUhuPfTCfmOgb9SRWzzCGbtQPYjTU8PUdlj12LtFCo5XAzBwrH3WbcYiiR12Gk46Xhejp7nYiZG92Y8jNHqPOy29yLwLBN8aD28wXJptqMp0WN7lMZBsEsMZjH4xuCAr/fNHvPGVM6vfb6HciBIxr9RRqvRheevk9AECnFScG4qPNNSS1AS1cLjfXTHNm4ObBAs7kTrDxkBsErm7jmGuQZld2sRI9zZtju2CZnn+3E0Mk2kOad8Nt78/hQSODM7wDKazqiEYmvlgxaJqBNmch395cY4aafe6qzZ2JJ7vqCQAGACk2wEy2gsMTNsYX5g8gii52ducAAGcvPYBmi6ehpLYf4WwLzjEbe54rsJgSAHYviB94/n0qmdlDlW1mJkHEioXxWEDtEbfbuLQBiZeprFocw0oKYQ5s/JEhpPiAGC8xYSA2dYDOe4xJCM31AWEMmy+wgWifwIg9VNmm5wk9YOckQ+yx0Q2xxZz7Wz15P6KxDlr7U1D4NQSjffzXr38b79xmDtzPn7tPXXPAqUVAjNseeKYMlXs9pQEosT6aJ2yjZJoKAuqINmQH5Txy8RYB0JEtk/v2g4drOLO2AYePh4A6Qn1zliw1jG4InXaM3jXHFVHeL5LFxPVsDUaJ/e1BM43c7DFK3BU7He3gsJLH2TOsTOwTXYh+FzU+j22Vp7CYOa0OyAETOZXNw5sbS5Alh8BIeuUAh3fXoHIdkSjbLG4ncFqOm4i8zW4QjisRuBclF37Foo3i7sk0gsqINEqJaBc9vmGNpFvEYAPAlZl9VBspsgWxdBVqZEAmuaNRAC8tbVAJWhBdpCe6QslBSDcwMgIw7Y/PTPLZ8b05/sotAL797W/jU5/61F/697/7d/8ufvVXfxUAM5P8p//0n6JcLuPcuXP4Z//sn+ETn/jEd+X7J+2Tb33qU3BNtuhNZepod6I0QbSHIcxPMQq/2mBusLsnp3EXouDR70YjPTTbccwu7QMA9jYXEAkNyDBS03T6/6apoK9rRLVLkoONo1no3Cr/+TP38db9C2QZEI11aQIYez7Iymn5pNJKIhYcULklFu1hMAiSJ4jPN4YxCiDEY0EE3xh9vngbpgK/5OBe5TSdvRDq4ewK23FVy1l4Yx/l17muSJPYeOxDtZVAmDMh3tgHWXLItsDvt58CZKapQJRc/ME91p3yhfUH5N0TCQ1oogeARisOxxVR4kBwOV2FN/ZRabPSTGKWC5Vr9RQCskXdKr964yq+uLRF5+z323h0MI9U6NQhtzkMI6yw886nG9g4YsBuNlPFbiVPJbHdSh6KZFNnWDbVhGNLdA8OqjmcWWKLz97BDGanT6iL7sOdZTy3tEGp5plwFwHZonbh6UIZxlAlE8dIeECskmmo6PVDJFCPRHtoNhNQ+b0FONvEJ33XFehzJuXUiUv2R/fOYX3mgIDg2zsreP3MPajcELFyknvqc8djH43Tvq5hcXmX2tLTySaCsT6VeZTIAGq2BTHBztuXDsI75saBPQ1mM4JehbEfriMiGOvT+xI5s4/23SWEOetSfzwPQ1dPGVHNQP4lLsz1fGjeWkFibR8A4AxUGM0YohdYSchtBSHGhhBSDGCNOxZ8U7x1WR8Bgg/jDFvkfYM+xloQvjL73nFhCt7tEsQpds3WQ9byLvIFeHiceULPFIRni+RsbXN2Mz7FAOYkOHaid/L5xsQEjbphCKJLYcoTlnFSBo8lOgiEh+hzq4Ls2R28/eev4eUf+DYA4N6bz1HXqSi5GA1VWvT1gYZIvEvgvTcIYWbuEJ0GY3xk2UKDd9n6JQfz5zZR3WGgOqCO0GnHUFxh97K6X2DAacJEhwboDUJI8rnKNBWYfIznChVUTnI44F5Xe/0I/ovPfgNvv/ccACAfazFGfJad9/HuDDK5U8H4k8yhzzdGrxuhEplfsTBoR1DhmZgrZzagdyIUJru3sYg5zjYKooeN+2t4h3uh/cSlm/ArFu7xTuOZdA3v7S1iNcm+e7Z4QhYHjWoaweCQWLdwuA/d0Eg7ZZgK0skmnUdINTCyZJpv+yOVOnoDfguy5KBnaBg6Nr544/c/FguAn4r+A/h93z0LAHts4re6zywA/spB0l/1MRlgNz7/InIpnq5eymFkyehz1qYQb6I58aqZPoZlyqRtSWfr0AdBom1LlSxmZo6JWr69vYztbhQ/eeUGAMacTP42Fu3C5xtjn7dw+0UHs8VTc8VJ6v1kEuy0YwjzGvl47MP2cRHn15huqtOMUyArwMCYbfvJjyeVraHXjsHhi6TPN6bSis83RjpfpUnfdSQ06knMrrDJp1NJQQ6YOOJlnmyqQZPaUSkPxW8jxXVDjVYCxZljYj8qpRwy2RpNVEuFY0iiQzlgyVydylrdXgTTC4e4e5cxNqsLuzg6LlD0ysb+HJamj2giiyfb2OVlzbXVLVijAE16nsc8Xia7zH4jDjlgUpdMqZNA2wyQZko3VNwtsc96ZfUhhsMgCdv1UQDTU2V6Lv1+GJVOnEDksBeCyks8oWQHUkhH/4QtxoHwEIFUhxbMUTsCUz91+gXYInvIxfzhoE4u4b1BCIXpEoExJaTDJ526MeudCMaeD799g4nPl6MdnOE+UMFoH3JwhAFn/GzTj8EgROPU8wSo2mlmWDjch6yaaPMFNVOoIMDNAcsb88gtHVLqOzwB/uIQiPKdtzeGeziC7xpjYdxoGoLFAZdjwWeb8G1wHV5fhJgcY1xgZU5frwtIEtBnYNZrunA7QQi8g0s4k4JvxMXFD2xIqwLGIfb8fY4NdHuwz7FID0HvQTzah5dhzMpYDcFnchbyowOMP3kBPt7k4TP6EA4OYF1jOithNIBYP4GbZmN8LMkQ9B6EPgMFsEwgoJ6ec3cAJGP8+j14+10I0+x+jAMB+AZDwOS6xMIUfAdMdzg2xvCpPnhc6iKE+b9FJbqXEHxANMLPww9fuQaEGajC0IDXZVP22JTgUx2qsbidIBxdgZ+zZ8ZRFrahQOIMlz9knJYX021IiQG8IV9UJZcxgZNu2J7Gxho3l9TrcSiRAQ651Ucyc8qeKiEDgUQXVpc9F3/QYK7a3H6h04qTfQQAHB0UMb/KdFX9RhyC4FHHmRwd4A/+6PM4zzvhgsEhOt0olXaNgYZgtI9HG5w9Xdw9tWYYKdBCOjF6nUYcqUIFFd5g0RsGMTd3SADcGGhUbs5NVdBrR2mDZpkyHh7NUn4nwILOJ+arjivC5xvjIx5U/cPXP8BHvDlnNsVA2HYtB9218Hfu/cYzkPR9fDwDSXyA3fzC8xh22ALaMYKwPQFBP6fPHT9SvENElhx4TwS6qoqJaKRHYKTRisMvORQUWa5mEAv3CRjtNLIoxrjrr2pg8ITYdipTw63dZaQ09l3FXAWWJZODbrmTQJGXQ5q9CJKRHvkEjUwFmmpQh1ZE06Gpxul5agYsS8ZxlS0ghXQN/+oG63z60bkD5NKnk95BNYe5XJn+tjcI4aCdwjo3TBRFlxzFJy7hE2F2MKjDtiWyBLBtCSeNNGSR/RwP92GYp6W9e6UiIpyhialDpGIdvLfLSmaXCocQfGOctE8NEePagEIpD7px5PlzSYT62G2mofD7sT59CGMUoC6Uai+G5aljcjcvZKvwPJFiGvySgyBncLSgDkm2ccT1F6LgIRIaQONln2o1jUhogHju1FVY4oJYe6iiXs4ixbvb5LAO1/RTqUb0O6iXs1QSCYUH2DueRoybOvp8Y7p3gs9DKl8jJoCdi4sH+6yctFI4wq/cvIwv8RLK1/bnscAF45957gM4lh/vcffuFy/chWkEaGc8MRqdAMGIpkOWT4OaI+kWvvku04m8dPYBEgvH8PHzEiM6BNU9LdY7gFWKkkbHv+bDWOOAotmG1/bQuskWtejSEcx6DKErnMGxPIyHAvQ99u6ps1XY9SjG/J3wJ7twe6dlEHmuDfuIjT15VQfCIYwlfiJHDdgnEchrvBRj2BhtsXunXhpgHAnD1+SgR5Hh7Llo3WfNCOlXHsEXVQCBZ/mlUgygWNx41jLh4zlcY1mBb2RgLLNx6NN5JNGky1b2s/9vcdGu6wI+/rlDCz5NwrjLyzA+ABLg0/g1WC7GHuAL8A2P42FseXAbnJVSbHg6mw98vvFT2iiAWS5Y3L9qwl5NDkcPkCBcCRkY9YOI8AaUCfCebH6UVIdpuvh32b0gzIGGbd49Oz97SB2LI1NBKt2gTdbG/hyef/kDEsl3j3KQ/PZTdiQTvzefbwxrpNBGwBho5NwNAJJiwbX8tNkR/A56lRTpFPc2FnHmFRb50z/KYtCJUuxIpZZGJtkkXZHkdyCJp7E/lilT4LZtyvA8ET3erGLaftyuFHCBd+jdqeXx+sojYvKb/Qg02UQmzWUVlSxC6mk01V4jg4DoYOja+Imbv/uxgKSf+B6ApN95BpL+6jVJf10OUXDJ96M2jGAm3qCf3z1YgM01JAPbj5DfxlKaTfK2w2rgk7iLvi1jPVsigFHtR8mrBwD8gos07/Io1dLomyq1mUp+B2F5hJN+DACg+G1oiokur5XfayaRjzHGRuCdFRMNQauZgiS66PD4i85IQybUo5q6KDlwdRVt7sYb6MTw9y4x7ZMs26i34pQInwz30O2HqYPEciVcmNl7YpI7Tbn/zcfr+OnzdymlOyd4UNURyjwYEgAkwaWSkaqOMDBUYjSuzW+T6H27lcZWK43zvLwYDg3R64fomg1TQccIkot2IV2jGBbL9uPa4jYeHswBAMrNFGTRgemwa1jKn+DG/gIF7dabSRiWTNoGw1TINbxVLiAb7mLI27Q7Iw1KL0YsDcDb3nlJRNFG+N03GSPxmTP3UOeWCfScfGP8CmfHfuYyKx1NohIuBXZQHYaRjrLnVGolsc/tAV6Y2YM1UmhiPqhlUR6GcIaPvXYvgh9f2KNn8aXzd/E+B5h3759BMVNFXJ1kU6kYDEIEggaDEGLhPpmLdodB9FspLE+zHXzjJIcpbnD4p7eu4Ef8NrWL+wfqUyaOo24YarwHlZ+XeSuGUYuNJTVtobk1S4zfGdmGpQfgu8vZslIGB0cFzPISUnW3CN1QEeNdR/r9FUyvMxA4rCWgtCIEMNu709ASXQQm/kyDJFxDgX2DXZM/aFDum/1mEIFMG3aXMXxysgufKCDzGd7yfaMAUbbh46ytkjuBT/bou6yTOHwC+/+C2seokoTGHfqHe3m4jgSDMynZa48wtiSMaqci4Mk5Dg7noGVb6O4zjVYo1wQEDxL3lareW8LY85HwvXOQRyjdJhAjqibp+YadMMq1DIrcY8l1RIQSHbLQSE1XYOkqCZdHRoDY499+ex2fnj5CmAPwVLqBRj1F5WrxII9A0MCdx8wbKh9rQQ2MSA/X70YomqnaiUMNjGicJkJ9HG8sID/HxtL9jRVosomFeXZNtUqG2Jy7pSKKkQ5WFhnTaNt+qOk2Hr9/CQAzp5UCFqo8ADm/uodm4zTU91EtjzP8HsvBEVRHIg1gWw/BcUXqZgsHhzB0lUr/ougS0Gt0YpBEFy0egRRWDKwnaxjwOeDa1BH6wyBq/N0sJusotxMIdNn7JPttmi8dV0RVD2Il0YDj+/i627wx4H0Xe9KeBdyy4xlI4oeimsjE2WQzHAVIywIAhiPh+jR7wXfrWTx/7j4GPOE7GB5AlFxc5TsbYxCEX7bw1kNGvX7q8k3cengGSzwjLDwMkXus5UpIBPvUSm7oKkzHT74ne6UptIZh2Hy3n1Qs8gvpDpkp4TH3MYlqQ3SHQVzhcSHddpSJGvmuSh8EYdt+6lALKCaV8Xr9EE66CaxycJLOV/F4YxkaBzLOSIQSOP39ZiOBx7wr7Etrj1BqprDLIypmshVo4QHkdgwAsx5Qw0PsbDH2w7L8KHXjBJrCwSG1FV+P9NDsRglg3t5bxAvn7lGe1LgbxaUnhO5qwKTPCcgWBMGlPKkPtpeRDQ7g5wzWn2+u48cu3STPpWS8A0FwKdLjzIWHOOTBoLqlMCfsAds9vbL6EIo2Iq+nWGiAUiNNwtRhJ4zXVh7xexnGB5U8fvwCA6Dvbq3iwtQR/v5FFrosCi6iiQ7W+eLbaMVxdWEbX+PjpRAc4Au8bf/PblzD1bGPRM01PYjpUI8mfUl0EQzqFC+zX8mjxBkr0xPQMIJ4gYPCTieKgaHC5EntmWgHsmwjxO0mHEtCtxehBeQbj87iDNdufPkHvo7DR0vkKaMGRoilWhjxd8CxJGzePoP1SXu9YuMbb7Nsth//e78BNdKnxPh+I8YiIHh5xTb9iEf6uLfFwN21i3cRdUVivJLzJ8QqVUo5RCP900gg5TTjDWAsSLceR3KNZ4rV4gjwzjcIY1jtMHRuFugPD5nBo8e77FJdbL11BcU17n9Wj8KzJeqOe7LdGyMZSqKL/TcZE5sulhGarhGD0d8uQBA9KLw8eXJnFeH2qfN3+d4KUgsMQPTLKUSmq3jvT19j1//q+3j84QWkwa7Bsf3oltPUuo+BRjlupqlgeX0Lba730kJDtMoZshAZ9YMoneSJ1Z5E8QDAz3ziO7i/sYIwGCjSB0FEwn2onC1tVJmJ6yr3bJtoBScaSG8sQOMAPB4cIJGvY8C9sWRLhhIwyWB3fWEXgujSe5tJN/C1e0yo/pOf+jYONhcob08xZYxa0afa+HceLZMVgRSwEAn3iW3KagOY/Jk6lh/fvn2Z5s/nr9+A3gnj9z9i2qjPn72HdLFM5TdFMilHc6s0jatnH6DNQeHy8i76ncipN9oogKN2EjPcDV+SHBTTNfKhG/TCVKrzXAGzs0cw9QD6z4Tb3/fH/9+CpP9xd1ulkkV8kU3kk0VosmB8amELYe5MPG37IfltCq/stWMIRfr0UmvhATrNOFbSk9w3ETOpGrU8GydFMulbSdYQDQ1IbJvO1JGLtskFubQZwfPz22Tat7s9T2GOsuRA9Duw+QKSz9RwXMlB5X/7Gx889/9l7z9jLcvS60BwnXPusdf7e5/3L7xJX5lZjsUqkqIVJUhNjVrgYDQSekqcFiTMDAaEIAoQyJF+CAIGGkCa7iHZPWJPSxQpSqRYVFWRLFZVVvqIjAwfz9vr/fFufux9vxvBRjsgmRS7Yv+KiPfi3nP22Wfv71vf+tbCj168hx4vL6myD8OwIStT/SYB+ydss1isNpEdZ6iN33cV5FMTyoxGroZeL0+lmWx6jDonQGuag9XUBAtcuVfVXCQUH2XuK6clLTgTg3hF580Kbq4/eaY8OQ2SRpMUNjd38Z1b7PBZzHXhWhplqIZuQ8uYRJCMIwHp1NTHjLW7T+HzVzaeYDJJkrL3q4kAtqWTd9nFehOS4uOUlx8lxUdm6lulOciXu1jkdg7/8b1X8IWrd4iPIEkh/FBCnyMFumGTZUkQSvjLL71HmfKra0+Qzo3w4X2W7+qyh3y5S4FPQgoRBhIu8M1XFGIqPRyZGl4RIxLx/GKRrbkp50JWPVaG4N1N16oPscCJtnLCh560KeP2gwRyqQmVH7O5IQI/QXpO9+9eQCXfR58Ht1/avo8Pua/ddTDS77QjT9MdeI6G3DJLKgaHc8hlRxTMmGc5/NAX/4ieUee0hjwn4vZaJTiuSsHHabOKxblzzHEz4YTqwbdVhAH3Z9tbgMYRq5XtXViDNFTOVxp3ckgYDtmDIBJhjlMoc62j1uEc6jy40DdbePSdF1Hjlh3y8hjuR2l6b51OFpW55qxEJUboHcyhepMlHXEoYnLAEoM4FuANU5i/wg7j4XEN+lyH7EFGvSxS2TERvVPZMd7hZc/N+hkWtvdgc65YQvExOKyTltHguIa5+XPisHW6BWxef0DEdz0zpmBjZXMPWmFEciSy66OyeoL+CVsPH+5uYSnfIb7PWtJC+5z9bNjLsT2Er7VEIoCUCKHxdvq67kCUIjy5yxDQK9uPIYoRBUnvHqzhCxdZ4J+QQvQbJSo/v/fhDVzdfEIBuJEbIQolGE81BiS5TpYzTqJQ6KPD13C2MICameCjJpc62dpDJjWhpoGt7AS9QQ7lDfZupjUbMl/Dg8fLeGl1h9DS1tEcinMtfIknMHrKxKhVwO0jluxcXzhCfoHtSyvlJmTdJVNrPT+CKIXoNsp0zUVjghRXoT9pVyCJESHig3Ea8+mZ8OTu3grWVg+hPOUK8Cc9nusk/cmM55wkXs/9vdd+BJfX2Ab6u7deREW3sMz5P61hDle2Wat546yGar1JthNLiycYDzNI8sP5D+9eww+/9jbJ+Td7BSxUW7B5hp9KTwjCjyIJsuKRIKIoRjjrlHGRf9fjxxvIpSbI88MxCqVnyMMTW6eSoCRGkBIhQdyepcO1NHzwmDmGX11hmdh0AxmP0mSGOw0OpvYf3751E/X0gGrsuubgrFNGiatwP27O4YV1do2nzSriWKDriCIRucyIgrmTZgVJzaGOtOE4DVGMUOBlwMkkRQhVqdoiUUZ2vyIKSw3scdfz/U4Fb9y8RZl04MkkppnJjpAqDGBz+HzYz0KSQuTLbO58V4E1MXDSZqWICxu7CDyZArDvPL6AL3HphVtPtvDy5XtkDmsYFjLlHrpnbCOfGiDXeOB3cLSIDN88e5M0kqqD5TWOPO6solrqUFeR68swVBcqD3TyxR763cLMQ03xKCPdOVpCUnUoiHRcFYVCn373pFHDhcuP8LW3GGrzlZffJV6IPUnCtjUc844jSYhoDQPAGVdLnpbqjjoVbMydkBGvIMSkgzO0kqgVujR3WysHzH2+MPW1YvYN0wN20ihC5YiEWhzC6eTIWqRxfx2/c/caPscV6wdmCsv1Mwoya8sn+OijqxR0i1KEBi/dXv/MB9i9fQnr3AfN7mbhmAYqV9hn3fr6G1hbP0DhJS4LcVAmonJqqQkx7cA5YvMhygHk4gheZ4osWZDyNtxjds/f/cbn8PqXvg1MFe3HBox5th+YxxUuAsk1qHgwNOIWFwnZh54fweboUbtRQZ5rF2lJC66l0RrO1ttwBml6pr1OEaVqm5DqQr2FUXvGSfN9GbWtA/bniY5JL0fNCo/21rA6d0pBZa9dRDozpj1AkUJcXd+h64hCidrj0+kxRCmkhpPBMItypU3+ldOy/tSPrZjvw+LJ3dQIdqrhtrl8iPEojSq3i7GHKZiTJPEBlxdOiZN0cjqH5eVjKnvlq230m+WZvlnaRBwL+P33WHPCV978LtyJAYlfjyBFhKQlMxMohkPrcHBcgzlO0vv04GAVC4UOyRhUMwOsbHKxzHvbWKg1qKFEkkJougOTl+52zuchCDGub7G1Nd3D/x9/+DoA4O++/j5EcRYQHZ3Xsb21i7EXYvPX7n8qnKSfzPxNyILyiX2uH3v4rdFzTtLzIIkvsMf/2WXUVzg6dFJFFEqkddNtlLFwlQcFdzdR397H4JgRTTO1DnxTp3ZoKRFAUnxYnDeQKvdx/HCdpPITik+bq6T4z5QL7GEK/W4Bi5dYhtrdn0d+oYkhF2nLLTYQ8U2sf1ZGGEko87ZaUQ7Q3FmmDRRgL7LLvd6kRIAoFEksb9KYKdPq+REhHwAzIU0WhjNX90BC83Ce/MWmflsAM9HMVjoknhh4MmTdpftXNBdqyqLDOw5FnB3NY5nzTCI/gQHP1irb+/j9//hFfO7N7wEAQleGmjUx5IamquFATtp0KIWOipNHrIw3t3EAtTCCyztqbr93E/Vih7yVJNXH977xWdIgKm0eIXRlHNxh8HouP0CaiyEGjgIlbcHhKsmS4kOv9GFzxEKSQwzOSyQuGbgKbZqiHCLyJSKaArxUwwPB3nEdhflZpw/AEI8Ct8Qxql0EvD3cGxvwXQUKX4d6aQizUcThHreG2NqFVhiRH9nhvU2sXGMlwDgW0NpdwpAfPnPz59DzI8T8MHYnBmTdoec2fWYGP2CU7ARmY8ap6beKKC006JmFQYIE/9SMCUn1kZh2pBkOeaJpCx24Z0XquHI7WVjtPKEhaxd2ICRCuq7AVSAmAlqng+MavYey7kJOm/DHMyK3VukTobx5axuFlTOo3B4lDkR8/Nvce+2Fu9AWOrCP2Vrzhikk59oQk1xzqZ+GfrGP/rdZyTW1xJ5R5LJgxp/okHlppvt4GbLqIX/xgP2OreDD33+dNLt8W4Wsu8ThEqQQEke3nE4Op7vLFDRZEwO1jSNC1hqHC1h96WPiHSUMB4Gl4ckdZmtz8bVbNFd2N4tBp4ClVxnPzTotI3AUuBztyS02nplbb2zQupRUH4GjEEKVrbfhTQzaB473l7C4fgifl7pT1S4iP0HcKCERIuDrTtYdiHKAIUeD0pUuvUPT7zq6fYEQcaPSQ2eHdYUlZB9GbkwB6HBnAWGQILQ0tdSEIIVo3N6m6xSliMqxohRhl7/Dq5cfQ8lOIPA99ej9y0hlxkhzjanQVnG2twSDJzTp0oCe0bhZgJqyaU3HIXuHp/c/7OahGxaSPNgPHAUJw0HI14eaNeFPdJqbcbOIwtoJRm6EuX/S+lSCpB9Pf/JB0r8fPw+SngdJfIF9842vYC7HNrKEHEAUYmrTfvvuVaxxMUTbVZFJmlR+6/XyOB8UZpyj3Ai9ThF9fjhVCj0IYowJz0jaoyw2ODn2vZ0tsqAAgNWLO/jGt9+gLrLmIA9RiLGxwg521bDJ5V4QY0hiiDTnXHztrc9gMTPAlavMX2qafU6zSsfU0eoWCZUAZgq1R80aXnz5Ft57l5W5tpYPEQYJcsD+4OOrSIgh6QSpsk96KZNJCqnUhDgCB7srkBMBlerymRFGkxS5mhspE76rIKHw0lUiIIVcx9Hw4HQRlxaYAKSmO9CSNlQO2//3v/dl1AwTG9zLLpMdIcMh/v5JFY6j4aDFgteU4mB1+Qi/+j2W6f2VF1gHTJIHAaeHC5ATARp9Nk/VXJ+0Wd76+Bo+/9L7GHMX8TAUcdYpo8zRL9PSMTd3jgZXO7ddFcsLLFjtdIrIZYdo8S7DSrEL35eR5SWP48MFDtNzwqfiodEuERJXn2sQgpUv9jAc5GDyQ291Yx/ffv9FXFk6oPk5PJnHfJWtoTgWKZttd4soF7uE0KTSE5w1qlA46lCrNfFkfxXrS2yum60yBCGmwFnjnloAQ7BUxcMxR5LUhI/N9X1Ci3xbg+8qKG6z6zLPymR2OjkrwygO6TCRVB92P4MR55FouoPAT5DXX67WxlvvvEwaVaVqCwoPZM72ljC3doQx92pLV7vQKn0MHrMDV8uNETjqjGCeNiHwdeY0ihCkEGqZPYeD711HeeEcyXkuAFgwEbTSVOYyWwzdm/Kb4kCEyQ2OjXoHw4M5/OHtmwCANy/dhSQHxLMat4pQDRuNY87BmWvS/Y4mKczNn1OZU07Z+OitF4m47jkqbFvDHd5afnOJIR1TZ/vmeRULHC1OGA4e3r6MBd4en5B9hIFE5UhrkEYyPyQulT1MkYzHwvw5fFcmUUspEeLkaJ7KSencCIeHi6hXGKLnOBpEMaIyMQDYUxmPYg+y6tF7LEoRhoMs7QEpw4KmObB404iu2bAdtqYNnan7X7nK0MFp2a22yvbA3mkVYTj7Tj1pQ0taMHjgYzWLZPFiT5IIgwRx1mTZx2CQpZL8SbOCK9fvYf8RKyM7nkIldENzkEgEhLR7noKxmYQx9ZCLBKQzYypH266K7SsP8S+/8SUAwIvVM0LeM1nmOWk7KiZBgC/80Tc+lSDpx9J/4xMPkn57/C++74Ok71tO0h8fufQYO+c8i1QdpDQb/VO2oVyaP8JbvGvoc9sPGELjzNpwLywdUNdIHAtMDp+X1/SkDd+VMcc3Qb096wK5ubKHdG5E2j32MIVL88dIcLLx2vwJBRMAKxlNO8F6VgqXlvcR8w3kFV6LH3JbDikRsBZh/vPBMAtDdXGbixperJ0hw0mHC+UWxu08tlcOADBPMEO3yQG7khkgm5l5GBkpkyD+ewdrqD2lgi0IMXLZIZWXgjCBlfUDPHzABd00F66rEmHa82WscFXsx0fL2Kg0aKMShBjmME28muvVM7iBTAe566pkbhmECSiKj2ucuN5rFyGIMb7EAwrPU6AoHmXZuuZAVV2s8UNhqr3Envcxht088S8eNObw2esf4dEO21y3N3Yhqx5KVAYVyT/sQbOOLy2eocI/K4wk5Eo9mstcdoQ4Eqgced4uIZeaUHnhyd4qUhrPbocZWPZMzf30cAGb1XPSZDLHSbTMDPIWezbMZJVn2GIEIzNrPpiMU5ivN/DkkKFQc9I5iulZwByEEhJSiG/y9fEzL71HB0JCCqE+ZRa8WGvg8HARGxcYGnh8uIBarUW+ZwDQ58aflWtP4A9ncztp5zEZpgk5CxwF5iSJR1wZ/uWkhbXaOZWYPUdDk5cGU6kJhs0imSOrYxu+qZOFx+C0gurl3ZlCuScjnhrYTgyk51sQtZmqfBQkENpcnTky8d//+k/iL/+lfwsAyKhNRKFISJKo+pD494S2iigU8SVOsO+3i6gsnZGjvKx6UHNjCCfsnRgPMtRAUSr2IOsuIUtmq4B3zuextb1Dz7S6dIabvByVyrDy/LRDTVPdmcL0KIVqqUM6QSpXPZ+iH+NR+hmkevdwCevL7F0bDTNQFA8GD2aH52UUcgMKVuNIwMGgiLQx68w96ZWeIXJXufbR0dEClpePiWfoTDREsUDt8QnFx6ifRbEyk8yYCpUmlADbG7skoZHJD3F+VoPHTa9TuSF+9Vufx8+8+g57Thypnw5Zd+CFLPhqtMrY7ZbxGvfJPD6rY77apLLg8vwZ4kggqQ9JjPCIN6B85sJ9NFtlCuxyqQnSSRNJHsy2WyUEvoyHnCtVTY4ZmhbN3rcyF8h86851XJg7wUm/CCv89Lrbno8/mfEcSeJR+P2/eANOn2Uxy1t7iEIJrRP2AiWTJnkvhY6K3//G5/HKFUZatMYp5GptKrf0ziu8q4xL3883EUcCbF72ikIJHY4USGKE1RsPqJwEAO8/uISXLzM0yMiNoRaGlMEKUgiZtwqHrozAnWUNctJGYGlEJs4UhpB1h7p7zLMyPFulTTBV7lEpbmdnFa1JBj/0o19n99TOI7XQQucBOzBPTuu48tot0j3xhimyJQFYdjvdMKUEIyJnuPqw2SogCkU0OWF0aXMf1iBDmbSUCIjwKggRmqd1LF9m5UaIESTFnzm1j5KYDLKoX2eBUH9nkfhMghBBEGMEPGjS8yMMTiuEcMlJphk1LRdohRFGx1XiL3hjgw6U1lmNcZw4MjBsFlFYnsk6WO08smunGB+y4Pa7t27iMj88VM2FKEZkHSHrDtqH8xT4nZ7XsLp6SKrIw3EahuaQVtb86swx3BknMRpmiK8iyz6iWETqqc7LyST1jMBolgcfU22ZqQCkeVxB83geOS4/oWcm8J9aDwnVxYe3rhNvadTPzrhiCw2IqgePl7me9hUDgHS9A3eYRGqNcVA+/O0vYvMie4bT+Z3Ou5w2MTmtIOR/V1MWumdVCnzm1o7QPa1SEJnMjpGs9Pi85xAGCWQ42fb07iaS6QlSvEw6PC8jN9+CcYkhK9bDKnq81b6wcgZRiiDz+YhdBW43A4lrDGmrbUQTGdYxexdFKcKknSd0SM6YCHnw4fQzkHUXrcM5eg6lhQaVgcfnJViTJBZfYXtEZKuwOffpaGcVFz77Pqxz9p76tgYtY6LHERTL0pHJjgjFDnwZWtqkZEBO2iS9YHdzMPsZpEvs/pW0BaeXoVLh5KSCUbuADC/tJQyHSmSNw3nEsUDdfKErI45FQm29sYGz/SXUFtkz3Xm8jos37xLPajJMo8ztVuJIQBgkKNBpH8xD1VyyY+nsLSDLy3UAK+VNzW7jSIBqOND5e9o7rmM8SWL1yuOnrkugtSZKEVxLQ4avCb3ao0Rx/72rWLz8hL7H7ORwfl5DlVvvZGodCIkQaomtgVu/+zksLTHEStFcQIyp3CapPnbvbhPvUE3ZGLULz3gsJjMTKgs2T+r0jotSBE13YORGGHkhVv/rvU8FSfpzqU8eSfoPk+dI0nMkiY90pYu8wW0mHq9h4+Y9anHt9fIwuIKykrJwY+MJ8tvsUJT25qFkJzi9y5Cm0nwD/WYZ//4us934mdy3kVpoQeGHpjdMweSHTbHWxpMPrlDHTbdVwmdfe5euKY4EjI+rMDmJs7R2Qjyh4VkZxa1D2rgFMYZaGOHefVafD0MJCTmAwb/LtTTYjo4K/y5RiqhleW31EP17lzE5YyiUPUnCqHaR4qTnVC+H9s4iiqsMDZMzJnS+EbkTA6rqEZIUhSJCPwFxWk4ybEy6Oazwzfjw0RoKhT5tqAnDodJgHAkolLrEz5je6/Qgs0YpZMo9QiymZanpWLq0A4Fn3AnNQzI3JiHGhaUH8IZJuk5RZdywpzPtaYBVXTyFpM5MaR1bg6S7xHUwIhGhpRHP6qXth8jzuZmcleGYOpUALDuL0tLZM/5iStJGkcP4OAOMlIUhD5r04oD8wqJBGoVSFwYPArr780gXhnQYN3aXUCh1CWWwbAO5BHu+iuqzA4ajcDsPN7Fx4QkmvISYyZgYNEpUjpXkECu1mcdYHAu06UOMENoqDM7Bat1fQxRJyHGOSevJMjLFPhy+fuZqTfpd67yEzPYRGu+x7r7CyhnjlT3FQUqmJ8hVurQGJCmigz14yrR3b3cVV17/gDhJpYUG48Jwzl6m1sEffesN/PDWrwPgxGaOEBaF+BlhSlF3YXZzKF1nwVzY03H83hUsfoaR9/v31pBZaEJbZtcV2RK9a76rQElZKFQZMqLmxugdzqG0wVCaySjNeGhPdWHqXCdp3XBZqZwji73zDAJfRoUb6Q5PKniyv4qXv8CMU4ec+6ikZvyeKV9J4YnGuMNQ2cn+IqpLZxS8B54MUQwpuBflAId3GbenkBugsNigd03NmjBbBeKVDY5r5G8IANtXHkKUIkKeDg8XUai3+D1UYKRMImNPzCTmLu9gwp9LKj9C97SKhRdYl9myHND7MDgvQTFmPMNWt4C19X0mzwDG74pCkRD1US+L+euPSP8qDkUi12fzQ0iKT9wgIzfGcHcd2oDzm4oDuP0MIVGLC6eUCKRWzuF1szQfctLG+pVH1CmYKvchKx4ld/uHS7i6ekLJYqnaJoSvd15GZq6FOJAgxZ+k5ezz8acxvm+DpD8uAXD2ZAV5nW1qy1t7CCyNTCWTuTF1fci6i52jJdoAjdwIw6MaqSS7pgFF8fAK1xyKYxFuN4t7H7FW2muvfYjSPDvIBDFGsdibdQINXTjjJB3+ay/dxaBRwhPuKeb7Miq8Vv9gbw0vZCdkspnQPBze2YbEM6FcsQ81ZWHITTbThSGK2VPaYL/xB5/DTW7JYWRMXFndJe6HpPh48vYNyvbm1o7g2xq5j4dBgrgM1jiFhBSgy8t8S5d2IGcnRKAOXIWR2zlSkM2MYORGmPDAqNspkJGqorsIPBkt3tLs+zIWNg6w95iRs+vcaXwaYGm6Qx01L9z8CN7YILJo/7AOUQqJC+a08nBGSSpNFPn1Tw1OtdwEH7/HtFs2N3cRuDPl2srSGVkuACzLlnUXv/XuqwCAH7x4jwj1rq3BdVWoAefRnNaxnh/h6P4Gu0fFe5bUK8RQNAfzWywgnZyXKSiuXtjD5LxMaEh+ro3TnWUqW9TWjxBYGhzu1J4v9tB4vMLmuTiApPi0ia+uHSBwVSrBOZ0cktkxbez3bl/G9oUnsDi6mC/36NBDJGLQKKHIg9XxOI3KXJPQDVEMIUghHXT1z3xMqtAJw8Hp965SMBb5CSQ0jxofFM2BURjSdcqqB8+TYfNASNFd3H37Jr+HQzidHPZ3GMI5v3CGwoWDWQCaNnFj+xEGH7CyaHKhhU2OqoSOAreVpwNUTtkwcmOEYx5UFyZY/MxHCDhZ33cVKMURvLMsPacp8hp4MiTdpQM0oXnQUyYFt6NJCpvXHiDkCKike2jfY2s4DCQo7TzZv1SXzpDZOsLbv/EVAMD21i42Vg4pEEzXOti9fQmL6wcAmIH21H6osnSGnYcbuPI6szwS9haQUHzc+ZDJDVy+eh+upZFPnO8qhIx4jgq7nyG+UtyTIAgRvD7vDh1k0RrmcIMHQkdPVrG4fkBE/63Lj/DWO6zj7M3X38HBw3UU+XUlDYZoyTwR2H+0jlqtidPbLIHTdIfI+KrhoHG4gDnpiJ6xIMYUrOztL2O+2qSGgnLKQmiruPsBS0LXVg+psUHRHMSxQPckqT42lo6g8uv4+PYVXHvpI3z3G8z3M2uYWOYyH41b2zAyE9oD+wfzKKyd0D7n2xqM3EzmYnX5CIOzCjI8kfQsHSZH2bLFAfyJDnuUxsQPAbB7+5MeEcih5hP7vOfj+zhI+upXv4qvfvWrBFVOLB1jbrWhJ2083l/BhQ2GfmhpE01eerv3eBOnkwwKXfbSCiI75Cx+GE+GaSK8AkD7vIJStY18elrWSdLhE4USDk7mcZFnJ6rmwhyl6BBsPlhFHIvYWGCB0d3DFWTyLJObCrS5nAzpmAYkKSR7kG6rhDu3lvA53ta++2QN83MNKt0UjQnxgizLQCo9QeeEHVzFuSZyuSH9LrtWEb/+HgsKfvzKHWjCjKvQ6hWwyrkO7iiJhOFQdu/7MlJ+Al//4CUAwGaxhWRujAPuVVYp9OgAjWMBsuphwAnRG1u7+MO3XsOLW6y81jqrYmLriPe4y3mzRnPzwYc3sL1yQAHGYJBFsdQjeYPDR2tYWDuk1uvhcQ2+q0Dmh1HzaA51zqGYEkCnJGhJ8RG7Ch3cUwPOV7nAaEIKcPsddpAvVFuMjM15ZhNHhztKESn87LQOc9dAij8nhTvX7/IMf2HpFL2prEE3h/Egg/F4FqDtt2pITg1+z2p4+3gFX9pmpNeT43kiyHdbJVQWzulw6ZzUkM6NSJhTS5sYtookPJjPjGGPk0jy9eWMk5ASXKoilDCZpFDlB0YuP3iGcB9FEj766CpeeoOhoOJoJuOASETt2hOYvKQ8apSQzA/x9n2uv7NwCKmbp+v4+N5FxLGAm7x9PPITqFdnZqgAsMSJyw8ebeL1609gcRHDTMqCbeqEgJonFaRWGDomqj7CbpZc3PVKH6EQQ0rztReICCc6dQrWP38HkZWAxRMDSfGp5JObZyjBFN0QpBCy7hLyubRyjJ2PL5BdRuOjTTISVjMT2P0MlT2VpA2vlcfG2gEAoN8u4L2DdbyxxboU8/UWMukJ7n7M5uvylQdUEuqc1BjP7D0WMESxgNLmEQl3mv0sBDHG0SkLsre2d4hMfr8xj9cv3qPSaRio6LZKyFkDAAwZEYQYp7uMwyaJEQJXRYd3opZqbZITaB/VIQgxWlyqIWVYiIIERI5UF/N9GLkxjo7ZO18u9gjFngzTsF2VuHTf+vAmXt1+SIFNEEkYDLOIuEaX7ycwmqSwwcUl9fyIgtUpsjuVEYljAf/V26/ir928xZ5pqQOzkyPuZaNVJmPhbG6ITrOCuTW2j/W7eRwez2P7AkskD3dWsLh8jD5PYIMgAUGM8Zu3mG/gT1z9CPrUPFwKcby7gmq9CSn6FHWS4hjxJ6hu9H3OxKHxfRsk/fEhihFynMg67GehSAHa/AVaLgyJeLm9cgBvd+MZRVhzmMZwzEtihR4cR0OJd38BjN8x7aKKYwHVBbaJ3f74MtKaTQGYongYTVIkyjbs5RhhlkPC5eSY9JmmB8f0OjxHRRAk0BiwwGd17gxvXrpLnJOPW3UkpJDIxnOlNnkaAUy0bqpenRwnoT0lRDhsFmE7Oq5z48Z2L08eR3udKurpAWXz5iBNqBvASg3vfHwVl6rs0GuNchhy5GN6/dNgLAolJAtDshKxx0m8sPmYNtD6ygmaR3NUBjIUl7gbq/UzHJzOw/LYPS2VWohCkTZjTXUhySERzqf3/LU7N9j/zwyIj9NqVGDoNowUb9seJ5GQfdKzsl0VoZ8g64zJJIUS7wRMyD72jhdxxg2RX1zZQxSKaDVYkJBJTRDHArpcM6ZU6EO0I8xza4koFAml/Fd/+Hl8YeMx7nALkyuxgNXKTMulUOjjR/IDIljX600MeDntsFNBvtijbiHdsGEO02TbUkyOUcwN8DUevL66vIdv3buKH+IEWXOcQpIHmAklgCz7aD9mB+a0k2mqbaMbNhbKLZw9XKO5nb/IEozTnWVs1DtU9pRlH+3jOjz+TFOZCayJQT55C+UW9hpzMHk3WBhIdL9RKCJdGNK6rBc7cJt5pOfZujTPypiYSYS7DHnNl3tE1AYAvdajsjcAyLmZZpnfzyByFSrzaFYCQiIidMw3dUIo1EofbidLnLU4lKDmx2hyDp+espCQZkbECSUgrs+4WcRvfPgSvrzJAn9rksSjkyW8cIkFuoIQ4+WVXbK18W0Vnifj0kX2+6IUktyIonhQdBclrqit6C7cfpqaSPLFDkJPJqPuhOohl2fX/EaxD1EKcXDA5mph7hz1lROc7C3xz/ZRKHdJrylTGOLkaB4mfxbJpDlDbLhmVJ43gjw6XoKqukTkDgMJk26OSOCOrc3UqSMRhu5QSX0uPYSUCImzV833EMUiyWaYvQyqK6ckMRJHAg55EHjp0qNnSuiOreFvvvkW/uAOQ4i/8vJ7GHTy1CSRz4zw4ITd70XFg6a6cDnqJggxgkii0lwcCwh8mboMHVNHf5DDj15i8gueJ6PA11bnpIZisYeE4iOBTy9Iej7+ZMZz4vZTOknRhGUJjqsinTLpgBWEmDqdPjxcw5X6CSpz7KXttwvoDrPkAZZKmVBVlwIQRfHwweNtbM+x8ltlroExPwAGwyxU1aNutnRuBHOcmjlROyr6wwx1Y+SKfdo8NN1Bs1XGgPut1XJ9SImQ3LbHvRwsSyeV7IQUPtNdIkohfvttJkL42ipHzPjmYdsaHE/Bh2csIPvSxXvw/QRdl+uoRExP5YawJ0kMOPpRKPSh6C5u3WMclPl8F46nIPeUqnY2M6Yy2dbyIVkuRKH4DPn64GQeSiJArcy4L7sni6jleyS/0HqqdV5RPCQzExJJPB0U0LIN/Pgr79BcSokA7z9g1/Xa9Tt48mQN6zyD77ZKRJ62XWZLMg1czk7rWNncJ+5UEEjI5IdweQkxjgQ6mHLlHobdPJX5TEdDMTskBLDXLsJ2VbJZGPeyaHWLpPKuqS4J990/WsalpUMSU6wWuzhtV9AyWYB6ee4Eni/TdScNm6Qnti89xriTo3LBoJeH7cyMhUdmEusbe9TtZ1s6TMuAzNf8Sa+ElML+7xQlnB4+vqsgVRxg1GLz0eyUsLaxjxQPVh5/7ya23viQfW6zAN/WiHzderIMVbfpszrNMktQOLJyfl7DwuIpBdqCGFMgE8cCIWMACyBOjudx8RWGlgpSiPMH65i7zBCO3t4CGaHq5T5E3cP7v/MFAMDVV29BTluQK1x48ENWosteYw0a7//rr+Dlv/p7ePxbbwAAFi7uQOW8Ir+bhd3N0nUBrMOtyM1ipUSAQaNEayKTH1JJ3RknYY5nHnrHZ3WMXR0HXAn+zZVdRvzl69qydJSqbYwHGZqDaRAtyz5y8y1CUhrtMpaXjykgT0ghWsMcLm0xNCSKREK8FcWDY2sUCA8HORRKXVhPoZbtp9Twk+kJWs0K8lwGw/dlKJx3KCVCOLZGaveTYRpRJOIbT1h5bSU1xguX7mOfB2SLc+cz8VTNxfl5DRbfLy9sP4GStvC9txhqfXF5H+/vbNM13VjdRUIKCH22JwaaHfZ+ZFIm0ukx/lteBn+jfoasYdJ8pVMmspUO8fIcW6MENI4EmJZBiaKieLBsnf4ehBJO+0WsVhlV4vbRMl5Y3idV8W9+dAN93rX80y+8j1tPtrBeaWASBPjMN7/1qRC3v5z8P37ixO2vm//v58TtP+0L+E9ldFpllFIz1CEIJOpkAACLG4GmZQ/p9Jhg50x2hJ3zecxxPZGzVgXZpEkWH8V8HzfWdqjldX9nFTtdtoltlpoQhYg202m5ZFqO8zzW2dEdsg20WGvjDx4zUbkfe/E9eEECad4uPrF1FHMDQmmmG/jUtPVkWMAb5S5Mvgn2B1nInI8jJ3y0egUYKrvmbGaMkZnEJpfo/6NHF1FLTmDIbOPe2tjDH92+AQB4eeMxBCEmXlEUifBdBfe5BEDemEBJBBjwUmYYiej2Z5B3s1Wmg1lOBLBdFXNc9+Vxv4S1bJ/QsqxhwnI0TPiz8IMEtaV3Rxnoowxtai9eeIh2q4Q2PzCSSQuBL+PCPCvVhIGEoWPQZ5/3C6jl2CF4PMwjo7pQOJKYkEIMWkXKQNMFC4N2ARlOYj3YX0KOl7kG7QJxRgAgmzQxGKfJDNR2VXhBgkp3YSTBDxKkfl4qd3GfSw0UdBPffXwBVzi/7aPDNVyonSKX5PYpuoMsD74AZlnx7reZ0e5Cv4F0aUDlpX/34BL+8s0PMOTPIYoFeI5Guje9YRYp3aYDZaXSeIqML+HOziZqWTY/lXIHzjg5kxjolGCNUtR1VZtvUEcmIoEpOXMuUH+YQdTPUXt4NjeEIMQUNE2f/fQQTebGZKWhKB6kiU6/KwgxivkBdV26gzQkMaROMlEKCRlIGA5U3cN1zt+xu1kYl1rADGhCZvsI9iFbL5dfuoNwoGD5OiMbn97dxBwPXhnfxqVW+90na5ivN8jwOL/QxFmrghzvQmyc1Yjfp2guxuMU6WRpiodyvg/Ln3nE9Udp5FJsXY4tA8VYIHR50s3i4dEKAOD6hYcYnpdxe4/x3T7/mXdw96PLqHFLoFR2jLFlEF8wX+oRKqtoLn7r1ov48Wu36P5dW0O7x/aPQnYIJRHg9x6yMt+PXP4YY1tHb8KC8KVqg56/a+kQhRjf+ugGAODa/BGy+SGucW05UYgxHmSQ58nN/skCNJnd/+LiKUa2gQo3eBbEGIPTCi6tsmA1IftYLbbQ4N6QyfQEdx9t0f7x2x/fwCZ/b/OZEYaDLP4c926TEwHOekV6rwUhgjXIoMOV5KNIJI9OTXdw3inRe5o1TESxQMGqHyQwn+/C5cG7F0kQxQgWX18vLh5Q16mWtFBJjXD/fB5W+NQCez7+TI7nQRIfcsIn8vXe6QKK6REFLyMziSqHtIdWEofnc8gaLGsSxBhqwsf+GSsX5JMTKIpHwYnnKczbzWYvn+lqeG2T8Q1+5+51/LnLH0MQ+OGbGaPbLRCnKQgSyKQmaPGAY9zL4UsXmTzAcJBDEEnEoxmNU7hztEq+Zq9euouzThm/uc/QoB9eaMJzVGq1NjQHKkewJmYSquyjwkt4quHA9xN0/ynNRi47wjcfsA2zMcnghTWGPn2wu4WXtx4SH+D+/grWauf44grb5FJJE5ruPMPD+tfvv4y/MG3LTU3Q6DEEb3NtH9/74CUScPvM8t4zZc2hlUQpM6RAKIpE6sCJYgHngwKucFRMlEIsrh7h/Ig9F8vSWXlCmWW/l1f2cM65Q4biEuo2nxnADWQ0eelSkz3omgMXKn1vHAvY4QTixblz3N/n5PJcD6riUdBoOzqqpQ7xvwDmuzfgJbLGII+lSpO0s4CZd2C12EVSc1Ccagb5MoZmEocDth5eUPfhuCqhML6tkRnyg4NVvFZ/FzHn0fylG7fQ7JTg8efkBjJsXloCgJRuQ9MdZHlXWb9VxIh3hvm+jJeu3qX7HQ6yqMw1cM5Vs1XZhyhGJNWgGDbJU/RbRWSLA0w4MXtqYTMte0qJEP/hvVfwU1/4Fl1L62gOQ/7di7oLm/OEfn9nC4vJCVQeVF/bfgRFc6kZwTd1xLEImXdoCWJMPKHA0qBGIyLqp1fPEJwmIRW4qGPSRuTKkDl3yG4WINsqKaXPXdwj8r41SkF2Zx2dS0sniCMBMX+G7oh5EMq8C/Ptd1+aGTrHYxz3i7jEjZglMUQQJrDFy9GlWhvvv7uKV3kpV1O8Zzr8fF+mYDUKRUShiOs8oBCEGGndJuFSQYggJwJI/LsT8qxj054Y+MmbHxBHLyEF+Prda/jcBivr6UkbjqNREHV4PocglCi4GYwyFLh1OwWoiocvf+Ztdl2+BMc0MHJYAHF98zGJlQJA10qROG+3VcLRKIcB/91MdoRstUv8yCgUEYQSNuosUei1i7i4vkfz8QPrj+n+BCHG0EyiUmDvSxwL2Fg4xr0D9m5eTk1g84AOAHpWEmMuarm+eIxs0sSYayoFoYSvH67idd7xqSZ8pA2L9o/LlXP0hllkOHo2mKRg8L3IdxXUym2EkQgz+PR0kp5zkv5kxvMgiQ9FdeE4vHRV6CGOBCpjaIpHXQzzoQhVc3HeZBlnGEhoWinK9nuTNHLZIYmSHbWqqHkKmZbWCl2CeH/0ykcwMiZB6Z6lQBBiyLw+r/geMvkheWbtns7jMofOFc/jsDNvDU4EeCE9wYc8q2w0qkiIIf6LF28DAN7d38AN3cFjLiZ49cIjvMSDkeNmFYbikiDipJ+BkbSoZJhMmlANBxm+QWxXz6n05kciErJPwVcpNcJ+s0YeR+Y4CUkOSBdHVj38xNU7pC8yGmag8GBNTVpYTg+p/OgGKjTNIafuDekIvi8j4J+106zjzVeYoN9Zq4zVSoOCDUGMmagfzwT7owyCUEKGz323VYKmuhjw0tXa/MmsPJKe4Je+8xL+r59hJaOJyXynpuq8Y0fH+uIxLlxmwe6kl0M5zQ61fH7ARDx5sOL7CYRBispcquriqFmbHbCVJk47ZWoSCDwZi1xB27Y1QhwAYOJqWCy36BAgRWzOlVJ1G9sFFnxurB3AN3VovMwjWDHymRHaPFir53sYTVJUyjUMG46rEgcjkx/SfExLXlNF4fN+AaVqGwb/ezo3wunJHDa5NpbVzRIS9OBkCa/mh7SWSoUehqMMBhyxqC6d4QcufUzdTErSQSozoeA38GTUuWzFV5LMx2v6TMeDDOqbh3B5O3hqvoV+q0iIVkLzyFqleVLHxnybArk4kKDWerD32bsVOAr6t7bJ8NSodyGmbIQD9tnj8xJxn+JOHs3zKslaWIM0FN1Fu8Xtg2ptJmTJA/yNuRNCFz1XwVKhgwznBh0dLGFoJbHMydaS4uNL129D4eX7TrPCOGD8/VJUj+byD+7cwBeu3iHUeNzJI4oF4j8FjgrHU7DAhWzDIEFCpINeDqajPUOKf2n+iN7rySiFZNIiwnnZHsB1FRKVTRcGJHNRXzjD8eEi5vhn90+qkFUPm9yFQDVslEtd2nuureyRGG8qPcEX0ndJjRtgGl9T028/SCCdtDDhf08ZFhxbo/kDskhzLtRwkMPK0jF1sJpmEori4dLyAXumGROdRhk6n9t51UODJ6DnzQpLFKbvqezjhVKH1LtL+T5cV6X3eqq4L3OjXlX2EfA1b3ULEKUIx6P8p4okxfhkO9Keh0hsPOck8Xru7n++jfN9VvuulztQdZtIz7LqEWRdXzmGIMbUWp/iRD6LBzqjYQb9cRorXKSs3Sohlx2SeeyDR1uYK3GfIk72XuHtvdMxdZ4+aVcgCDE2uHXEOTeLBYCFzQNEoUgZ1/RgnvIipu23hMREInxbpaz0w/uX8PK1OwCYCN3gtEKBS6tZQUIKsbjFeDOhL0HNmugfMr5Putwn2P50dxma5tDGPc3kpqTOQr2FYbNIPmf2U630AJAsDUigLgwSCAOJ5vTx/W2srR9gwHVgqmvHmLQL1IH1+N42NrlfljsxoKVNUjIObRWBq+D9j1jnz2uvvI/uWZX0eA6erMLQHeLwbG3vUFnH0C1EkUS+Z8ViD7alo7bOnoNvaxCl8Bnl3y6XLThpVrC1sUet9YIQQc2P8YC3sW9dv4/ecY2Cbt/W0G2VyFh253QBr7zEgrNxJ4/Hh8tULljYOIBn6djn3m3VUgeK5lKXlV4c4Pge0+uqLZ/AGmTIj66xv4BCpUNcHykRotsqUVlYEiM0hnl88ad/FwBgHlVnazw/Quu0Rgrt0zUwfZaeoyI310Jzj6GWqeyYyMVhIGEynnVseo6KW0+2sMBLuZs370FO2vjgm4z7s7p8BHOcIjQkCkVal0p2gt7BHPZOGZG9mB5heXsPwhQpMRzIxRH+u//PzwAAfuZ////DZI89l6nB7nTdCgJDmRIFzsm5v4LUQguJEvu7+WgOxuY5Hv82u67Fi7uzUlXagtXOU2fYmP95KogoCDEm7Tx2DlYAANdufEz/N3BVfOvDm5jPsPvLGBbqKyf0vkZ+AqN2gd4BQYxxvLOCCldzllXvGcHU/Xtb1ECQzI0hKT5UztvyTZ3kKgDG4Zp2Z+VK7B2eErNLCw24E4M0t+JYQEIO8I+/xWx9fumv/RuuQK7QZ02vI/BkNJoVbF5jpcmdjy9gZf0AnXMWgPq+jOXLT6gs+rT3XuAoULITdPja0ZIW9MyEEDwA2L27jTWu7i7KAfNG412HWtqk8mv7uA4jZeG7964AAL744vs4O56n+TEyE4Yu8mTnaX9F39Zw9+NL6Nns2j5z9Q4ODxdx5TWGpJmtAt65c5V8Jb2xAUnxSaMqlR/ha2+/BgB4Y+sBstUu7GEKYz/ExX9951PhJH3J+OtIfIKcpCD28E3rv3rOSfrTvoA/rfHHdZJExSdrgCnq8WhnBQArA00zBiU7gd3OU7unmh8jtFXS/Zgv91GxVTokpgdsigcNa4vH5K5ezPeRKfeosyOwNCQMh7K5hXIL9c1DDDm/Y21jH9/+gLWcLmweIKF5yJXYYSuIMeSkTRtk59EKCmsnFKxMx5So+/K1O6QplDAcGJkJHSRTVdvpJigIEQJHQbIw478YdXbIHb37El69eZsCu2J2iMrqCVr7CzRfcaNMG5IWmUxlmF+nWpi18E6z+CnKUiu3EYUiDI6WKWkLuivTBrq4eIoz3o2zdGkHziBF3UuiFMEapHF18wldR9ZV6GCv1xvodYpwOBck9BOY547g0+tLtXM0Z7957yr+zzfZIRB6MsxeFuXLXIXdVpDmh1rJVZ/xKgMASfNI9RdgKtJTA9dxJ4/KfINas8vpId2D0M3B8hXiOki6C00OUOCbfro0QOukPhMIlQOUuMCjPUpDlEKoXHHdaBUYksA/e9gsYm7tiMpgenaCtfQDsuGIQokI9f1WEYVyF0NOeK2tHyFwVCIjC0KMNldwBpia9/TPvq3h490NVLg2WGmxCevBZej8s50e6yqbPvPsUgPGKEnluigUqWQmJ238ynsv46+/wQ6qOBKQMBwKQABATAb48z/0DfbZZyW8+z7zI7xx8QFKbzxEOFDoZ6lXWohH7IDNXDiEmA4RDfiaT4QY3lmlTlRR9eBxzlHCcGD2M6heZfvFpJtDbvUUIn+P7WYBsurhbMy4Ua/Nt0kzyWrn8bkbt2nuQk+GlAhmZtKxAFGM0Od8uGR6gnK1TQFZQpsFSXEooTbXIORETtoIn3o/nEEanWaZ5CcUzaVykZYdwzd1Kq96lv5MZ5goRRCECP/gz/8uPYfA0p7hqWWXGvQMjWGG9h45EUCQQiI1K5qDwJmZQMeRQM9MUnx4wxStNVGMICSeTUCmHDiAlXIl1Z911skz3pnvyzByI3z22kf0f6ddZgAw6udgpEykODItp81n/PheSL9HSOPdjy6TjQnApBu2eMkPYEbWcsqGd1blfw9QNbhgsKcgCiUcn8zzctsdfBojimNEnyD+E31/4yc0vm+DpD+uk3Tn9lV87g22mKNRClIiwNXrzFZg3MkTTN0/mEdusYHdW6xLyujmka90SZ9Hy00QmxpxcNqdIlY29/D4PkOp3m3M42fe/DZdhySHtDHduXsJ169/TD8bm0nUxYjKSwDLcABg9/4mllaPKNDxxgYCR4VkcXVq04B4WCeUYdjNwUhZs6w8bZE4nm/qUNIWbRCdZhkLGwfUZjvo5SGIMQUR/ZMqCvxzXnvpA1iDDMqL7DB58PFF1AFS43X4wTJFi2TdgVHu4/BjNh+rL9yjDiyAHbgOn8t0aYBBqzjrquunkdA8OgS6rRKG3MB13pWh5Sak8qvnR3BtnZSbRydVJBQfj3l2v722j7nVI6Q7M0uP6QgcBZI288hyTAN/9bW3MeSijnp+hMBPwDxl2WwUJCgoXri4g8FxjdrD3YmB0JOJ5Dq1KJk+8/d3tvGFl98j3ydBjEnZ2TINfObGbSqneeMk1MyESmaFehua6s7QodFMgysh+5B1h3zTjMwEEGe6N9X5cyjZCQY8EUiX+5DTFnbeYohXdzzLHGUpQDI9oa47UQ7gtAtkaCu08tAyJgWg7sSgICChuri++ZgOm0Rugq+8/hYFiaLqwTov4fqbrGwqShEk3aVDMbvUoP87Oa3gZ19+j+5RSMTQ1tuY3GO8M2OjiTgUMODq+HNf/AhfWv+37HOzIqDqSBS59ECtAcgqhBQ/bBeziA76kJbZu6arLWhuAgHXfAptdWYHwg12pwHl7uESipuHJMQoKT6Mag8//qO/x65T9SE8FTRHkYjkKntf/F4aghiTXMD0uS9y6x2IEZr31knpuXdaRf0qQ0/9cRIJxacyYOioMMdJCiCscQrpzJh4d8sbBxSMhJ6M+/e3ceNVhpREoQirl0WTlwwV2cfixgG9A/t3LjD5Et49q6VN2i+iUEIQSiS0OL98AtlwSdtpsdrE3cMVXON8QQBUxhOlEN96/yW8ef02AGDQzaMoB+gdM9RaS1oY9HNoDXMAgMvbj+HbGsmzaIMMUrwEOL+1jyd3LmJ1iyUvo3YBRnqCf8+73b5y9SPIqkcJjG8VcOsOQ51ey30PgaVRwPUb+0v4G7khRndYh97c6hGyhQHZukS+BLubIwR42Cxia5nxzPr9HAatIhbmzzH2vz8kAH7pl34Jv/Ebv4GHDx9C13W8/vrr+Ef/6B9he3vWmRjHMf7BP/gH+Bf/4l+g3+/j1VdfxT/7Z/8Mly9f/lO88v/58X0bJP3xcePFWbSvpizYwxR0fngrmksZ+MmTFaSKAyLmyqoHe5wkLsx0Q09yfsYSWPZ3/QuM1Jj49suk6uqMkkikLLh8c71x8w72Hm4QtNxolSHKAdmBmK0CXYd3IONwbxlbN5i+ijVKwTST6PMSXhBJWDNsOry7gxzGZhIXXr0NgHUCTQO7yuYhEhkTo1122BQrHfi2ig5vPS9X27RJA0Bp/YQUk1XDRqY2kxYo5QaYtPPEb4ojAancELfvshdhY+EEpZXTWfnlqfLbvQ+vYvvSYxLL04sDIBIocz7dXcbc2hF9tqY55Fs2bBZRubQHmXNbIEaoXtjD8R32kuqGDVl38ZmvMIKw1SxClCIUeDYcOAqpgjfPq8htnJBmzniUhuVouPASWyOTZhEJOSDFaa0wwu5tFjRv1jqQEgGtA89R8cG9y3iJe/0FfgKDYQY1HiStFNrYfbKGlVVWypN1B0cPGK+sN0mjNN9Ejh+Cdj+Dzt4CdVL2GyVEkQjJmQlEjjnak5B9aBkTnQP2TI+bVdx89UMUeAOCUe3h5OMtbLzODknrvAhRDrB6g6FlNS7QOB2y7pJHmpy0Ub6yQ4Hlx7ev4OqNu5Sxp1fPYJ2yQ0xO2Ti5v41rPAjye8x0dWpbI5dHyGRmwqQP/uPrqM03KPCzmgVyfJd1FykhJj9CpTKAoIlIv8nQVAQKBNdH/XPsOcWuCHGNB3tBAEQxYl42EEQBcS4P4ZTrUxXKEIwkcM6CF0GPgSiEx4P7xv4COdMn59rQi0P091nQfOXqPZiNEpXM9OUmIkuFwINKr5WnkuCgVUS+2gb481fm+3CPSoSsJDQPvWEWdR6AQIxQ3jrEu3/Iyl4XN3cIsVISY3hjg4Iiz9RRvHCIw3fZwT9/aRfe2CCSvFYYkqxJwnDwwpvvzVC4UIRnq1heZQd9GCQgygEJdebzA2hJi7pnFcNGZ5eVyCZmEuVKB9J0v8xOYHdzlGSe7i5j4inko3h+NE9Jg5ox8dLGI6T4fjlFxEsc7bH7GZSqbdRX2NwLQoTm8Tx5HO483CC+Z7I0wOrWHno8UfI8BXrKxM/81G+zJTAxoORH9Ey9sU7aaHsfXWSyHxvs/v/eT3wNghjjkKv9S6oPs1lGhs/fqJ+DJIbI8+u2hynaI3eOlrCwdsQQeO9TFJPEJ0zc/l/xWd/61rfw1a9+FS+//DKCIMDP//zP4ytf+Qru37+PZJIlPP/4H/9j/JN/8k/wK7/yK9ja2sI//If/EF/+8pfx6NEjpNPpT+y6P+nxPEjiQ8mNIEs8wzB1hEGC0A/H1AmByRUGiEIRlUssW5mcVNBrlYhMKqdshJ486yIZJ9E8qWP7R74LAFhcOiGH6zgWEFga2lxMcvXNW9hOzmQH8pkRIj9BHTfhWYVg+fWNPfw/v/ED+L+/zvgrpfUTZMYG0rx8ki714U4MKpGUiz2oqksoTOTPFKWHJxUUNo6RXmRZ4v77V7F8/QGWeTAnysGzZY/iEDl+jf/uP3wZP/XnfwcTrqjsuCo6RzkiNatZE1Y7h5vX+IZ5uAD/yTLyvAQwbBZR3mIb05bqQSsMae7cQRrJhRacFtuYK1IDnqlDr7JDMZ0bEQ9k3CqieW8dpTW2mZqtAjKLTSxwzZzhSQVqZkL+a1ND3GkGL0oRoTvFUg9xIFIZY27tCINGiZ7Lk91VXLr0CBO+PkQ5pAy7t7eAySRFBr8pAC/pd2FwY1UtN8akXSDC/fLaIaxRigQSPTtLpqOFTg7OOEkeXWrKQhwJ+HWub/WffeFb6JxW6RD0LB0pLmopKT4CT0aeI3rZSgeBo8DmBNhyZYD69j4k3gkWhxLGh3X6LoBpCwFA5CqQsxMM91jApdV6EFQfYZfd/83X30ccShS8RK5MHL24l8XmxSeEMnT357FztIR5zstbefVjiLpLHnNbn7mFOJQgc1sbrTAixEKQQshJm0oxYjJEHAgQRHbQRz0HkSlDKrGfR30R0RGbD0GOEXZ0JHhJFwBgJBHyKqhY7AKKiqjP5TdOC9Be9pBMsPW0YDgwuS6UsXIO59SgYN0epVG6vEtIkqBEwESEx8u13thAcpE9h8rqCXxLRcxJz2I6RHd/nhSmC9d2sL6xRwH6/uM1XP3Bt4jYPx5kkOaJReAo8BwV0VOei6mFFqG63tiAb2tI8yBTKc3K5WajhGStA5UnXYMnSxiP02TF9EdvvYov/9h/hMPRZFn1oKQtaLxcLxsuocWJdgH5lVMIPHgLbRV6cUAWOfPrh9hrVwn1zuaGVPYPfJklAZwQPR5kYA7TKK2xIMh3FUxGKdIZcy0NujbbI0uFPpG4p/vGFHleevVjjHbnZx2OngxNDimB0dImBYma6kLTHRIPTYgRgolBHb8Jw0Gu1MPxPivvZzNjlDeOYfMgMrd6SknDlYuP4Fkacqun8N1Pz9zjT9OW5Gtf+9ozf//lX/5lVCoVfPDBB/jc5z6HOI7xT//pP8XP//zP46d/+qcBAL/6q7+KarWKX/u1X8Pf/Jt/8xO88k92PA+S+LAbRWg5/pK7MpL5IR7fYyjE8vIxeVo5tgYtaVE2l6x1ISk+8YpCV2YE0x2WZeXmW8jUOvCaOQCAJAf0WbLqYffuNhaWGFLkD5OIYwH9I06Qzo3gDVN0SOiZMWV2yUoPf/21dwiJUQtDnH10gTgH0y6uqUJs87wKVXWpZDQeZLDXYH9+9eUPYDZKdEDmiz3mscU3jMDS0DutosA33+HDZULDqskJQlslReUoEjGwZ5C/qHr4zq0X8NkXmT5NodBHcf0YnR222bz95AJ+8iIr49njJNSMOdvUHAVS0qHPCnwZiuZSmUPWHfL8MsdJBEGCEK5eLw9rnCKl3tzyOeJQooNez48giDHxoZL5EXUFZeeb8MczM9yE4aC8cYzOLuNZpXUbcSyQVQIigfz25tcPIaveM3PXPK8izwOuypVdDM/LdI/n3JR0ikI8uXMR+WU2zwklgJYdw+LlnUE3D9vR8GNXb7Ov9SVomkPlytRSk0qAnqXDniTp/o1SD8ODORIPjCY6QluFwxGfKQl1WmItrh+jz1GoVLkHRAJ1WLmdLNTCCFaTPfPkQguhoxC/w7U0CtwCX4aWG9Nhm8yP8FvfnsPfu8IQ0N23bmD9zQ8RTc1jJzrkjEmEWL3ag8e/5/xoHgsbB3QYuQcFxLEAbZUF3P55Ht4whaTOAhu3UYC+xsuYhgSpZCMOpo0MMYRuF9Iay3KjVAZir4NwOPNbG/xeCdlXTHqO02c02Z2HXu1hzK8rXemyrlSe4PjnOTz43k2sX2J8OK0wwsn7DEmdu/oY3tiAqHKU6SCPwvIZOntsbcWhCMc0qDV/dWsPcSAhu9jgz6JPc6lmJjByYzi8u0/RXASWSoR7RXOhpmbCnZGjIOYdWEapzxBsHpx8+9ZNXKidYszX2mdu3obby1LZdNzJwz2tIMNFQX1LJVFGI2Mi9GSyoxHEGEp+jLmLLJFsPF7B5z/LDHsBlpCc8yaJhcVTyEl75hzgKUhIARHEtbQJx9aoAzhf7kLWXbR5Oc7zFJSW2DXGsQBZdxBPkxeNWf70+XsrJUI4rTyOnjApC9tVscFR+7kLe7C7WVg8sI1jEepT9ITdD64glxuSGbmenUBUPRh8PoREBH84MxNXNBehrSL8FIOkP6kxGo2e+buqqlBV9X/kt9kYDllQWyiwd2R/fx+NRgNf+cpXnvmcz3/+83jrrbeeB0l/FoY9SZKa7L2PL+HqjbvYvsrQkP/X7/ww/k8//h8AAIalYdzLzrJZOYA9SiPNu6Z8U0dC88iyIb9+Am+YolZkJelA5HVvozCE3ssTBD4+rbCOte7Uuf4Uk36G1GU7zTIWttnG445SUHWHiLehL0FVXWo1vv3eTVy5/IACsnTKRHahSdnd7vk8NniLriDG6J2XUeRlrt9691X8hTe/QyWPXpuRfKfBWuDLMFJsc1ibP0Fnb4Ec0fVxEorsUxDgj5K4trJHn5Wtt+ENUyQZUE/NtGsEIYbdz1Cw0jytQyuMSNl5qrg8RSUCVyWovb55iA/ffpGItgu5EeJYpI6awWEdohTRpuebOrqNMk477GB/oXqbPte3VDjjJAoclersLCFd6qPPrUS8IIHbH1/G+jwPbl0FZZ5Vyykb3bMqdK6q7oyTz/jg9Z8s4uS8hjV+XcvXHqF/WKdSFQBM+FqxJwb0/IjWUq7YR9JVoPNg9l9+6/P40toTlDZZqc7pZLHzkHW3XX71NqITkYIevd6BJAcU+PUeL8GzVSo3hh5LDKYIkG/qMDkvyMiNYLfzRKwfn5cgCDEhTYgEKMUROk9Y4Jup9Oj5W70sJM2FNWABeWnzCH/j+j1C4Uq1NgQpIkQrURwhthXqhgwtjUjt1flzvPPei3j9c/zAjUTIaROxz8m1F0YQnoSI7Jl0gZDlW5wsQwgcQOdl8bGLOJ+DMOAdacoIEEUkNvlD8B1k6wcQEiyIMFbOEXJBzPFhDfFTzvQJw4GgexD4+oljAVe+/NYMtXVlVHhnZOQnntE96u4sonx1B0UeGPvdLDxPwWmLIbPX6i34wxQR8BMZC+KQlyqzJrxuBskpL+a0CqeTo88S5QB2NwuHo3JhqzDjihkOAlfFve+wMvHrV+/AdxV6L5OFIZoH88T30bgY63T9nB0sUWfknHqOxuMVCsBFKYJaGpCsQ77aRsJwMOZcMSM3wjYv0QtSCFH10X20AoDpRhXqbQr89PwImfyAOk9lzlcz+H0YsMgn0rE1VJbOyB3B72YQhSKVwcadPBKah4U1hlz3ziv0fqiZCVxLp+aUx/e2cfHmXeJk1eYbUFMWmjxxMApDOJ0cldzVjIneUY3PlY3Al+EO0vA+xXJbhE+YuM0/a3Fx8Zl///t//+/jF37hF/5H/18cx/g7f+fv4M0338SVK6z022iwfaZarT7zu9VqFYeHh5/YNf9JjOdBEh+qbhMpr5AeI/RkQgN+fPPRrF00EtFol2kT759UMZmkqLtt2hk3bcXv7y6g1axg/cbMm2l6UMeBhGTSJMHD5avse1R+YJj9DEwzidI6O6xFKaTOp+F5GZNxCiNOXL548y6MlIl7T9guv7l4hJODRSxwM1BzmEbkJ1Cos/pC/JSKrz1MIVfqQTbYZvvTr38X/VYRPa70XeJihaeH3KCy2qZMz7IMOJ6CNN9c9LQJ31MoiOwdzkE3LJJQMHJjnOysECfpsFmDxTNfhzttTzPl6vw53EGayKSbVx7BHqYoyExWevDGXPzNUVBMj6jkE9oqEoZDQoMnp3MYWkkq+w27eVRXTilIEqSQuggTiv9MKa7RKsNzFSxy3tCTRxu4fvk+dQO2dpfoMHEGaRgpE7/3R28CAD5/4xbCIIEc7zqLIwHVUhdJfp3nD1eRLfaJMCqJ0R/rIlOI7zYZpdEfZJEcs/VxMccsWgL+f0etAipcbVmQQpyd1bF9k4mPhpaGg90VUhiOYwFhKCHBy4inZzWsbezjzg5bP7nTuZmAarMI1XDAWTIAgLOHayjNzwKszOo5kry7yTN1KoMqmovQUXF6zg6QwsoZTnolvLZ5AAAYnJcg7c8RSqOWB/C6WSpJT68VYM0GVzcfo7vP3pfS2glCR4XQ49l6YKG/t0Aoll4cIjxj/1fM2BjdXkZyiQV6cWhAHMzKT9bbKpJbXaoxRKYKIIGYl2NEY1aqDnwZ737js7hylRsLf7yFhauPKRgBAL00JI7OeH+OkgQtbbIOtR5LXvLL53AaRSK9h0ECnqeQqrrPpSxM3gCRrPRoTQeWhtb+AhZfZNchSiECT4bLEa5UuY9xL4faFYZo/fZv/Qi++DIz3Q19Ca6l4TK/h9CTMepnSZjR7GUhywHJoDimAVGKqOtwYfNgJhAaCcjkh2TqXJtrwO3kCNEyMhOMTqrEj3ymu00K4fXT6HAktlDoI3AUDDj3KfBlZGodPL7FGgqiSESx0qE9NAwkCuanrgYVbo4cejK+eesF/OjnWKOMrHqwBmnyOsznByQn4o0NjIYzyYzNi4/ZHstFTQ3dQrLWIY07s5uDYxpUNsdoZtujZUw09hcQeAlM/AB/1sfx8fEzEgD/cyjS3/pbfwt37tzBd77znf/BzwRBeObvcRz/D/7tP7XxXCeJd7c9/EtXkeN6Zo6pI1UYkHJv5CcIRRHlAAnNw733mf7Oxev3Icozoq7dzyCz2MTe+yyCXrywi3GriByHy72xQbB873AOohghzQMus5NDsjSAxj2irNMyEoZDEHkcCzh9zKDi+a19iFJE32vyNuSpa3kUishunGC4w6FmxUfgqjBK7LMHxzUUOReo/XAVrqMiz9EwLT/Ch2+9jHXu2VXcPsDJhxfJE0sQY9z59ssAgOtfeJtlVHyDOt5dxvLW3qw7abHBSoj8YMsuNCEpsxZep5ehwMZqFgHe1g2wQyA514bP+RlK1kTnwSoJ7WUvHJIOjl7pE3cGYG3Yer0Lm5eTAk+GKM34CKIUQS0OqUSkPuUJltA81u7MDwyrw9C+KYE4mBjoHtYx9yIjOZ9/eIE2z+xcG+4oSd/jmAZyiw3sfcTsZFYvP4aSH8Mfz+wyRod1pGpdWh9T5Kx28xH6j5aR4usjjgVErkKBcmBp8MYGXXv/qI78Erf1cFQIUgglz342Oa5CLw4pABWlEGpuDIt/lyBFSGgurbWE4aC5wzrh5i7vPBMAqLkxnF6GnqFWYGjgmJc6k5UePYcxJzdPr7l/VEd+oUllzuLqKY7ubmGRl6ZEOcD+h5exdIURauWkTc9fUnwEloZzfl2rb97C8PEiHb7ZlTO4vSyRwuNAorUkygG8YQo65wb53QwiPwHjNYYyjH6/iOTqOdq3ttjPXYWQM4DxsA7fYkap1bVjKPkxTM7DE+WAIY8XDthn7c4z/g5/jydHNWS22LsU9NMQdZeI7Xq1h5MPL2LpM4xsbh5VGQrHy2AQI7bnPNUBOt2LRmcVpIoDmtvQlaGUB/A5N2r6GTJfA9ZxhWgBk3YeiuFQEOi7CozcmIIXvdpD99EK8fKCQEJxrkl7opI14Y+mXZcGjGoPfV4yTFW7iPwZp1NLMzPcKaobxwJ1cKr5MSRj1oUpqh6cTo6ShqOjBaxv79J19polLFx9jNG0TF7p0RofPF5Cer5FVIjQ0hD5iRkp3nDQfrxM5WktbdL3pOdbOLh1CWuvsOfgdrM0V9MhabNAeXxcQ6repkQqsDT6Htc0kFs+h9koYuyFWP9vH30qOkmvaz/7ieskveX8yv+qa/+5n/s5/Nt/+2/xR3/0R1hdXaV/39vbw/r6Oj788EPcvHmT/v0nf/Inkcvl8Ku/+quf2HV/0uM5ksRHfusImpkDwA4QvTQkvyk1N6aDyBumoM11cPmV2wDYZsH+nQUFua0jxIGE9Ve56WYigjcxkOCbi9XOUVBQWD5D6MnQ5xnKoNe7iFyZumLkpA05NyEOjnlWxvI11hpsd7NILc42cd/WkMhYSMns3/yRAUH1kVpgh0LkJ5BMtWBzkmflxmOEFtuo8gtNpoMy1VvJTbC9sUumpImcifqFfUichxQHEi69zO5PTDpQ4yEhS4urR4j8BDJTzaNEiNDSUOK8o9BRoFQH8LtcMqE0QILPYaKfgVbpI7QVumZR9SE+VZ7Ir5wSxC3IISSZbVqS5kEyXNpMk2vniGyFNma1NEDozPR4RNVH6ChIL3M0xFboGcWhBEX1KdDRQwly2oSos8M3chXUrj2hDbJ6eZeuKbRVpOZbxBXLbpwgDiXMLzM0UF/giBL/v5LmIYpE2mDlpE3kWVHzkJ5vQebzIyRCBCOD5gsA5OwEIicQ6/0MHRhen+kqPc2dS+THFEBImgckQshT/Zn8CIIQI+RrQJ3rYgqMSxkTuhQSoiMIMbTCCBKfjzgSICRCpHkiEPkJIvGmV8/gD1N0UGf9BJTiEDUeQNjnRay8eJfWj6j62HjjFpVgRdWneY/5eshzIU5BDqAkHQx4YlDImRjcW0f1MiM5h55MwoX6YhN6xoJUZc9/9DAPz1Fh2CwAlVM2gkEK5Ze4ivqTBRib57B3a/RdSy8zVM4bJiFlLEJL9VoPerk/M1JdbrBmAx6kJGsdgM9dIj9GZGkzjbLSBOWlc0hZfnCXBhBVnxoM7NMy5PSMAxm5M4Q7VRxAq3URctRNUn1IGQ/hhBtzSxFE1aegyVhu0J+nAd3g8RL9PfYStI5F3UWq3IPGyd5OKw9juTFL2PwElPIAACv9i7qHHC/zxZEAtTSk+9frHYhJl8jqka0i5HMnGQ7ErAORl+bk8giS5kHle+/lOms4mJZvC3xN5Di6HvsJSDmuGl8cIpGxaO24nRyMtTPYh2wlS4qP/Fx7pkMmB9TRKik+1l/9iO5fn+sAkUh7gJSyEQyT7PMBpOptJDIW7c1xKFEpU+yy8nFm4wRwPj0M4k+zuy2OY/zcz/0cfvM3fxN/+Id/+EyABACrq6uo1Wr4+te/TkGS53n41re+hX/0j/7RJ3bNfxLj+zZI+uNiktZ5EacHrNSwuH4Iu5PFex+yh3n9wkMqj/RPqs+UcSJXYRyDpxzBW7tLKC3wAyMUMe7loPKWVtfScchRmLm5c0Zy5Bum08uw9lkOl7eO5ljbMX/pP753ESvcvuD3H17CT332O1A4KtU4nGe6OPylRySQDhLASL6KZeFr32ZloJ/8qd8hFOVgdwX53JBcvM3jCg4PF5HuMAh8zpPhjlIIeOYsqx4MvkGOdxcYzM83uV6rhME4jRWPZc5hIKHfLWD5KgvuRmdlFBSfSmyBoyDDg73jx6uoTAx8yOUCrm09wqhVIHuMQr3FRO54Nuc1CsTvGO3NQ1J8QrDStQ4CS6OuNEGIkan0KHNMlgZo7S8QV8QdpBGcsM/yHBVGZkIIxaiXRa7co0Px6999HV967R240yA6ZZNswd6jDWxdv4/RU91ww/MyQfyy7gJihHsfXgUAUid3OTqQfkqw0zqqQpQi+NN/ikSYrQLUPl8voyRk3aHs/vGjDazyYCNV7uP41kXMX2IBgztMwuBoCgDEXXZvJ1wnqVRtk/oywLq5nKkSuicj8hN0/2Y3B9fS6FqZh9jskBi1C8hPbWiSNr71zc/hjc+8CwA43VlG3U9QaWJ6Xz3eUDAaZlCut4iXpmQnM92oTh5qZkLSFepBHc4oOesyO6zC8xRCnrxhipKbxvuXULm8izjkAWW5D+dgHu2vs3d+0M1j6cZDsiHRSgPEdoKeo6jOvNqsNiOIN3lX6qLqM70n/t4mNA/dsyryPPAdtQs0V0raQuQnSCm/4icQ+hKcI/Y+dHcXkV9ozhDALkNVpqrzRtLCE27vsVBuIT1MweCfPWqUUFZ9HN9iqGWh2oGYCPDuB0xQ8wt/7htoPGQt7ZXVE0ShiEfcTPmK7qDfLEM3eBBgq2jsLmFBY+ixZ2pIdDOkeybKwQzBbJQQ+RK9LyfH89i89oACcreTg+yaxPlzehnapzJL5whOdQymav5WB/5Eh8u1wYzcGHEkEKfvcG8Za4o/kzY5q2BJZsHro1uXsXnlEb3j9pi1/L/7Pbbfzpc6TAKD76eBpWFvdwUAcDFlQZBCjFu8RJgbsb1m6hPZYk0NU35gbZ1xNKfB297H2yjxjt2E7ENsFDjvKwIwQ6n/tzq++tWv4td+7dfwW7/1W0in08RBymaz0HUdgiDgb//tv41f/MVfxObmJjY3N/GLv/iLMAwDf+Wv/JU/5av/nx7Py20cqvy9134ECwWeoaUmeHSwQkaK3713BZe4N1t1/hyupRM5sDvIoZAdUhdZp1lGEErkTp9KTZAuDKl1dGljn+r8zaM5SE8p0wpChMCXiTyp6Q6kxKxEdHQ6h5UlxjG683gb17YeodFgWVImNUHyqYM9Ve7BHaVg87LOeauCuVpzRlx2FSqRZYp9eI4KkwdVo0kK9bnGM1o//lOkTT1ps44nsI05DCRYTxlD+kECOpdEKJS7MMcp+qwwlJAtDHB4yMiASc1Bngs+Nptl9CZpXL3wiL5XVj2cnbINNI4FlEtdImu7rko2IzsPN5DPjLBzzsp624ss+Nk/Y4fvfKmDXKGPoyNWEigV+nBsjaQbJCma8QvAbFvWuLllsdLBg0eb2Fzdp7kTpQhHp+yzF2oN6nTrDbJIJ02E/O+KwvzjzAk7fN87WMeXbn5Iczm1ZXnyhB1e62sHuP2AHXJrtTPkyzOh0k6vgGqlTYiOrHpIyD51Flq2jjJX9k4WRuidVkkSwBqlkMqPSJhSz4wxbJXIHuV4dxmrlx9TOS6OBSq1iGKEZquM0tQzTmVimI93+TUvH2H3cAnzXL/JsTUy+zTSE/iugtZUc6vUxSMu6AkA1y/fx7Cbn3kBegoy5R4hgkrKgscPvZ3H69jY2sUeN9qdqzURBhKVOh8frGBz+fApheUsSUC0niyjsr1PZZrsYgN2O096Zv44CW2+DUFjn/XRv/kBzM2fk/iikraoRGhkJhj3cvjuYyY0+EOvvAOjPKBAT9FcjAcZSpQA0GHa3FtEefGcglPHU9CZZHBxma0tPW0hCkVq27e7WQzaBZRX2P4zPC8jx/mO77z1Cq5eeESJQrdbQCY9wQn3lVyotvDxwSouzLM9ozTfICVv0zQgywF8Hswauo1kZvLMO29ZBimlR6GEUS9LpsdDK4kbN1lp6v6dS9BVF0ucs9c4nkMUC1i9xlC58XmJuvWmYzLmBsaXn2DSLMLi74cs+0hmx+g1+XpZPEfgKqTony0MsLe/jHnub1i5cEAJmtXOo92ooLZ4RtfsmDrJK3iO+iwnNBZwcsy14fIDFOabxA3zXQWZWoeEJ+1RGmEg4cMnrBz7xTe/B99WCfEbtIokRSApPuSUjcFxDWM/xJXf/PBTKbe9qv21T7zc9o7z3/wvuvb/MV7RL//yL+Nnf/ZnAczEJP/5P//nz4hJTsnd/6mO71sk6Y+PuVoL5oBtgrajQkkEaPINpZqcZQL9dhHf3t3CZ9cZZ6KQZbo+Nt/I3z1axavLe+Qgn80N8f5H18hhvtDrUxCUyY7w72+9iB+9zgT9svUeTh6tUYdW+7yKt/fX8dlNttn0rRRS/LC5sr4D19apw2Sx2MdkkIXDPdR8V0a3n0e9zja5gZ3EsupRK+1oksLcHPse19JgWwYenbBA7uaFB7j3eBPlDDtgF9aO0DsvEwdlMkoRL6jVLsF0NWxzHZdBN49sZkToj2PqcGyNFHMnnorR4RpeWmYBaHeYpaDn1vkCNnI9tBtsk88X+3AtDefc9X651EKnW0CKZ7udQe4pM1wZumGjwo1mRSGGrHgUcPU6RUShhEqxR88ykQhg2SzYzecHdNg8OVzG9sIR6cAc7ayinB2QuKamulBVl8wvE0oAa8KeQzHfRxyLUAS2EYtShE6nSGawq7ku3r9/CVe46aaasiDrDpnHeo6Ka1vsmsMggePDRRTzLIjUVReuo1JAcXZaR0IKybAzlx3i/QesW+na6i4OzuvY4CRm11URdAqUkYtSCD1l4sNbjFuX0S1YvSwhWrLqo8EJ8xsXnqC/v4p0kiGNydwYzsRARp/akkRYrDbxK9wy5z+/cYsCzumzHHMDU+9cxtDVIXONLnuShB/IUGMWjKRyQ9jDFBmJCkKMtziiW00PEYUSyryRII4F9Ac5rGyztZdrT9Bql2i+VNUlv8Fmp4jalSfUSq/U+wgdlRBhtTCCmA4QmWx+rv7wtxGOkoRwPF1Oi0Lm63epyg5ja5RC4MvUpWqNUzhuVZHOcb+4SCRD32TSJMIzALTGWWwvHlGJ1RqksX+whEu8I8seJ5HKjonfMzWGBYD5Ygf9bgEGfw657BCTSQo6lwH5Nx/dwF9+6T36fUGMqQNNln2oukProdcpQtVcCmA3Fo7RHuaQfOqZx7GABEdW1uZPiJitKR6q1TZ1oEmJEEnVJX81QYzRaJXxXb6//PD2Q7qmwNIQRwL5JBZyA9jjJD3/KBTRPKmT2Xg1bZKYKsB4WFO+nJqyUCh1SYNJz4yRTARUyrZMA+nsiIJorTSAxvf442YVle19xHw9ZHmDy7RhJ2N0EEcCfnCZPfM4lJ4xn874ElEb7FYecprJB8jC94fi9v8SrEUQBPzCL/zC/2Rn3H+K43mQxEcUCrB5wFHMjJBJTbBzxlAHPxKxwDOX//r9F3AhY1FGVS520R/k6KAXhRhBKGGpxjbjbreAf7VXxf/h4gEAZlOS5SrRkhzgjeU98oEL3Rlaw65JRE510eWt55dX9nDGW4Prxhks00Ced1VJio9MuYf2Iwafn7TL2Fg4IXj44vI+JsM0dUotrRzTpn7v/gU0J2msFthGPejlkU9O6PDtnLLNL8VNevf2l2Hy4AIAVuZPqTupP8ogE0rUdbe4cAanr0Dl3nduIOPN7fuEhsSxgBw/9C6bTZSLPbS5BAK6QC4/gM83TE1zIIcSktMDxNHw1iOGupiBDAEx3uHaT3918btoNSooldk9SWKITrtIOicJzcPdjy+hxAPBVruEuXkWNFZzfaSyYyoJJA0LRsoiwcduPw/L1lHiKM1omEFnwDsBc0NoqotGm22+ohghnbRo3i1PxdWVPeqakXtZBH6CgihZ9fDgCVPcvrC+S4gkwALuTmfWdbi0dIJhL0faWO/vbOOlDRZgnTarFOQCDNHqDXLY7bD1c0PYR2X5DPNFNj9nPXbgTa/L6SnPfPfq3BllyvY4iXaniInD1kDaMmCkTPyli6xTqtUr4CLXZ5ocLiKfGVGSYGgOlqUOHXqmmYSc8Onwl7nL/fTwFoQYn32Nler+1n/3I/gvhZiCJCkRoFzpwOOHYrnUxWiYoc5TZ5zEvcesnFbP95g3Ij/0orGG7mEdFW6tcv7RNup4hKeHIIVkf+FaGpoddujP1xvojDN44Sbj5e083MT65h6hH74vozFJY5OXPgUxJmV4UQox6OVxv8EQjK1yA51eHrUtdh2KJ2N5cca7c2xGCD7n770oRshMFaN9GY6nkPGwKIVQfRlpvidcN1PI1DrYv7dFcztNknTDhu8qZHmUyw8gyQFSKg/AWxUU0yMM+FoTpQiq5lLrvWrYMHlAsbq1C8/S6TpsU4fnybD5+1OqtVEu9PF5HmBN33eAlRMPTuZRJAcDH4rm4Iwj5Fonj4eNebx6ga2tgKO4A/6+RbsSevzP8wtn6HWKtLbKfP7I31KIcX5ew+oWC6qdTg6mMxP2HZ9WqOSsZyYYNoukEg4xxun+IpYvMmTy4P4mKrUWVJ4M+K5CGnS//vZn8L/7wW/CdxX4n6ItyZ+UBMD3+3geJPFhmikyOxXEGLLso5ZlL7MgxDB5meIH5howFJdKD412Gbn0mFpnb8wdP+MDJggxfu7GIyg8o/eDBPnAPdxZR1qzqT0YAP5gbxM/wTc5QYhxY3UXRw3GX7AdHSr/nMP9ZdTrTRJlc00Dg14eIg+yMroFx1XR5gHW+vIRDs/nMMeVjrXsmGDq5foZtE4JI57tJw0bt84X8IOXmI/ccJRBPj+gAK6c72PCy2vppInzZgU1DtMrso8glJDhGaggRHB9ma5rY46Z7lp8PhuTLFIcsTA0ZlY6DTgdT2FlH166EsQYCEHBneloeG2TIXq2rWFi6/jRC6zj7MGTDUhihDw/2B1XRaHQp/b60nwDPTuJCkcdJDEiyN8wbIRBAqNhhv8sxPl5FYtLjCxa11302kVY/BAIIxERL6GetMuYK3SR5miX6WhISAEFUZrswfdlKhGNhhncO1vA3BQBkyJsr7HSi2vraI+yGPG53lzfxzf21/FTV+7Q+jCSFg5O2IF7oXZKpQRV9qFpM/PXOBZRKXfQm6TpewJPJhuber4HxzQo4DrplVDhTvXdsypUzSUHeSNp0fMEWOnGdVQy4m0NczC5TpSuukhnR8jwoDmbGeE7jy7h1TXWzfbe3ga+ePMW7MlMiC8MJCpXjoYZyup/6ctvo815cgBDLAQxwA4vv2UMC6rqEneq3ylgdY5l/rphwX4KwRl08ihUO0TEfW93Ez9x/RGVxcaHdaQWWijSARthceGUnsvW8iGVzaulDpS0hd5jbuGRGeGNi/fxYI+VIy9vPoGWncl6RJGIl9fZ/WeKfXQbZWoCUNImAkchVFPVXOyfLGC+PPP2m8ppfOtwDT91/UO6p+k+Mn1/lqsNTNoFyFMdtkEGu7wcfePiA/zu+y/jhXlWIqvWmxClCHkerEhSCEX1iFYwHGShqjODXNss4KjJ9qVXVk/RPqmTEfVZp4x6sYMkT/48W0VC9pHkiYBraUjyhOv0ZA6LtQaGI/auKRoTj50G4Iu6i1e2H5Bf36SfgaK5mOMCvGdH89D4Nb137zIuLc00d07PamiPs9iYlhSTFs67JQpAT48W8FGTC+ouHuAPbt3E566yPa97VkUUilTqllUPhm6jucdoApn0BHcfbeHiGkPEo0jEqMPu4YtrT9A6mqP5+LTGnyZx+3/L43mQxIflqNhYYIegqtuwLQNnvMyzUT8l5Giu0IWqufijh4xcvJAeolToUxCVSplISAGCkE1tPj/AZJyCz/k/iuLD5sTSSnYAP0iQKJ1r6Xhj8YCy+c4oi7rsY7nONvqHRyuYy7MsOZMeo90qIc/RDN9VoCgePL4BzNda2NlbQZJnhrapY6l2TogGACJHRhHjEU2Rg0x2hBu1U7i8dGfoNt55dAE3OG8ilRlTkKQoHlK6jTE/bPPZEQQhogNkOMihnO9D5sGd7eg4atZgKKy8crF+ggTfxH1fZoc3zwTzGQbxT8udquqi289B4YfgwE5iIcGRoUQA09Voky9nhsgX+4T+6JoDKRHQdReCBK4sHpBuVOukjj4PZBJSCGGcwoSjZeV8H3Nz54T5sooAAJCcSURBVKTdUqy1oekOmcDWCl387h12UP/MtTuQEiGR4MNmGaIUYYHbG4hiCMs2IHNkrTfMopKc0EH2u/eu4me++IcAgAe7ayikxmgM2fc6po4fv3iPgmzH1KHoLkYOuyc3kNEZsXtYmTvFeJwmFHLs6Li4vgeFf0+jXUIyPaEDBmCBQJ8fVrVsn67pvFtCOTegsg7AAsNFjq6apgHbVWm+CqkxrQc5ESAMEqjx+z9rVHG1fgKJcznm0iM4pk5oQG+SZkFmZlbingYQqu7A9WUyLQbYgVvhCctRs4aLmzszUnB2hP1jhgbXuH7UVMZCz4+gVvokEPnmlTsILQ0CyX5IiHyJNJcA4OCAi2WmTKRknw7bXL2DKBSxvMy4P5NhGoIQo5IdsHvqFKGM2Dw/PF3Ey5fvkZ6aVhpAH6VIiDC/0HymAWM8SlMgD/AyMr+my4UOUsUhDjm/qVLuIAwlQmGK+QHarRKKvMTc6+VxdZMFZ712EW+sPyZUNqH4CP0EBTbJAnMcWODo6n/z9mv4mZsf4P0d5kIwn+ljfYFrsLUKLGDn3MqL3A/N4yjN3uEilESAIhfr7fbzlCTMzZ2j0aiiWmXv4ZMn61hZOibkOfBkDAdZQuIOz+dw+dJD1gABYGLrtIYlIcZpq0Jl4CfdCi5Xz9DlaJimOVioNrG3y97VxYVTvMQTWj9IYDnXwx7nSj7ul/DlK3cI4YxCEWEoodlnZ8L68hF+/aCGv8eDJABwOcVgZBsYOjpe2Hz8TML8fPzZHM+DJD4kKSQvM89hcP+VNQbLTsYpQlFS6QkcW8MXeTZvcxL3NMCwLZ1eaICVEwQxxmGXoSUXF47w/j4rp7ywvAfTmelrOLaGsa2T8nf3bAG2r2CxyDaQxWKbgi0AGNs6IVSuo8IwLOSyLGiKIwH51ITKHKZlIJcdErE5kx8SiTeKBcxV2kTibLcYqjTNSE1Hw7eaOVSSXNSR8xoAoDfIoZjvU2D31pNtLKRn/muF1BjuU0jZv3q0hbQc4c06ywQTiYCy084gh0x2BMtjG9NCsoF2p4hVHrxapoGzYZ74O7rsEQEUAJZqDeydcn8x2UN96RRjd1YusC2D+E3aqQdF8TDg3Sy6ZuM37zM+z8/cvAUpEVCQYNk6fF/GvXN24H6Bk53L/DkFQQJfXmIZuZG0CCUDAFXxIMszOYE4FqCpLkb8uhUe3B0P2HX86JU7MKf8k0DG/MIZ8XkGwywST2k93dlfx7XVXSzwMmlCCinglFUPemjTM+xbTOV8eviYrgZBiNEes/kpp4eozDWwxjN8c5jGzgk7MLZXDrB/soBFTnJXFRasTNeLlAhRSo+pNJM0LEw4cnTUK6E4TqPMD/ooElEqd9Dm6GFaZ6XIKY9IUzxkc0Piv52fV4moLMkBVNknsvXktILxMIM0L/NMjhliQeXhzAQF/i7qhg1RCp/pzlJCkYi5ydKAeRTyNnXP0eCPksRfcUwD1RKb58kkhTgWSDDT6mah5cYzG5tEgGR+iOMzxmdaWTqmJolXr36MMJCoI8/pZTEcZAmFc0dJuJZOZbB/9/gCLucGeIHz1CzTIL7f1QuPEDgK8XeM3AiBn8ASbyIRpQhnrTKSPOAaWQa21liJsP12iaHanGBvDlgpfhqARaGEQnZICd1fuPwxVMNBVmW/P3FnYp/tRgWa5tA9ejbbP6cl5831fXiOSuu2VOjh4T4LVG5cuceV9Nlc5ocZRE81vlimgWKlQ2Wt0iTFSls8YQFAScS5lcTNbB+7Hfb81/MdVKot4oN1egXsdcu4zJ0GPnh4EfM57gPJke/9JntmshBD4SgeAOiKC1X2Uefl6b3DRfzdV28TcjvqZ3HK95YbG09wcDoP11HhfYpikvEnXG57jiSx8TxI4iOfHcHlL74gxHBclSD/OBYwtNimPznREcUCFjj8HccCHjXncIl3kIwmSZiOBo9vGDEElDJDvMT5Gv1ugaD27zy+gBcXZvBwq1dArdilF+/ayh6GozSRsyvlDrX/fnC2iLphohCzQ6A3TmO3VcML22wzPThaRD4zhpZgSNJRswZF8THHN4W9/WXKwB1Hw7+8fxH/xWfeoXu6NNfA3j77LlkK8Xdff58Ods9RUeLZqecqeHy0jDVu0fHC0gE8TyY+k5G0sHu0ROWCv7j1BHEswOIoVX+UwcBmc3tpdQ/vPrqI1SL73cEgC4FvVgBweDqHtXITY44GXdp6Aotf03m7hMXMGEsVhm4k5ADmMI1WlwUf+cwItqPhEidMn7dLUGWfNkckgCxH9I4aNcyVZl1kqaSJVq8AjyNcw27uGe7Y2DJQ59wn11UxNpNEoM+kxzg8nUOeH4JSIoQoRPRMVdlHrdBDYsACdN9PYIdvzCvlJjNX5uT0MBKhyD66nLO1XmFlikqNzZc1SWLAS4RBkKAOMwCo53oI/ATmOZE/ikTYEwNrNYZS/ua9q/iRRIAC54uMxmlCnTxPwVypjW9z/tcPv/IuVNknbpQoRrBsDXs8EdiunuOox0pCV1f2MZ4kiSC/tHgCz1EJDUynx/A9BfJUzwlMeHCaOJSLXUJVBCFGMd+ftdqrHkRxZjWzVm4iDBK4f8oQn3WvQVyvh/uruH75/kw+QHcgNorUDq5kJ8/YTMiqh/bhPJH3BSEix3exGWH/ZAFjzvdLJk0oSZskEAxO8laf8q+bdlgBDPWddg6aZhKiGNEaN4dpNNpllPn79WqlyT6LP8u7uxso89JsGEj4+MkWLq0yNGPYKsG2Z9IMccwSpSmBPJMfEioHsBLzlKgtSyHWFo9pXU+6WaSyY5yesHKUnAggDGMqXx41aoSWB6GE7iCHLEf4er081GcQyhiOrZF1UegnCLU/3F/G3Nw5XVeh1MWwl0PXZHObNizs7K1gjaN0h50KleEBwFBdLPIGlEqrDF1z8SJvqtk5WcTxyTztL7rsYTnfRZarbL9S6VDDTRAkIMs+JC7l8frGI3iOipU5tq9FkYSD8zq1+df4fE45XgeNOmq8PC2KEQqpMc46ZZjBs4KUz8efvfE8SOLjrFXG5RXuv6V6iHoiZWzp9Jg6iu4fLWM+14PNoeT3TpZxs36CEedUVEsdxLGIMf/7u8crWOKt5ACw167iJufR/MCVO2i1S8QlMFQXD06WcG2Vd+tUujhrlalUE/gJCs68MIFickyH7eriCcbjNAacc9O1UsgYFpV16sUufD+BFA8KOuMMZaBekMBX3/ge1f2TqQiiFFEXSRAkoCWtZ5CDpx23nTCByWTGOQkDiTLU8TgNP5Roo252i2ibaTziB+y8YWOjwA4fyzQwn+kTH8H1ZSSkEDV+YBbSY5iORkiSKIWwOGeiWurC8xTiAQhCjKPTOZyMWBZZyA5xPigQxySXmsAPElRuGPazeHWObcS5zAh+MCPAjkdppHQba2CbvJGyoKVNnB/wYGblCD3OlWn189hYOcQ3P7oBAHh1dQf51ATZ3IxEPRpmkOFlDV2zyU4BANr9PAV6AGDZBt1vsdTjmkRsPnZPFiEIMcq8VCHLPvHKpsGfwblRsupDSgSEjJwcLCKVNGmNf3b+mPEqeJClqS6S/LpsS0ep2sZn+OFjjw0qKQBAJTWCKMSUoUtSiCWObsmKB12TYFoz81PXVel9kRM+7h6tYI7z/5aXj/F4Zw13ORrwU6+8Q23ZACvX+mdcbTk9geuq0HIsAK1Lp+i3iljMsYOsWm9SEH398n20z6tELvZdBWpk4eABIzWvXtyBOzGgc6FBd2KgONeExBGfswebuMh97oqGg9xca+ZPaOo4fLyGrVcYSuOPkzB7GXpHRsMMynz/GPWzuHW4hnWeCNxuzOPFuWPsHrCExFBdDOwkShGbDz+SoEgBznir+ubCMf5vv890j/4vNyRszJ/QM8sVBvD9BElCSCJ7T6cBhZ6dUCeYrjmQpBB5bn8ysg3Iqkd8P8/RMOpnScojlZo8Q6hXpJnLwMg2YCguldcqtRbGgwwF5I6pw/MUjPnelMoNKeE6H+WQy4ww5GVh11Wgqh7mOa1AUTzs9EvUJLE5d4L+KIMCR8z9QKYynz7MIAwk9Phn2YGMy0tPMHrEnnHWMJFKmbTPAYDOA1tBjOHZKuYK3HVAdzDo5yiZc3yFNOoAljgEvozHpwxt3aif0hnR7Rbg+jLK2QH04NNDkiIhIr22T+Tz8Ml91p/l8TxIej6ej+fj+Xg+no8/4yNCDOF5d9snPp4HSXykDfsZDZKxmSQzUEGMccKzV0UKMXF06hIrqC6Suk28iDBIwDJV6qp6KTqClAhx5zEjPF5cOKJMJvBlpAyLDFwtT8VysU21/DCSUMn38eh4iX93QITntdoZjltVqt0v6i4Slg4jyzKjsmVgp1XDWpmhEkEoQRRiynZEISa+yvmggExqAodngprmYO94kUw20ykTgScTeX1aSgIYDyar2URalBIhdVABwNBMQkkE1FXWmGSRlD3U+HUkZR9jjkjs9Mq4MX+EB7yN/2LtjPGGOKfA9WV882gFf5HzwYbdPCFpE1tHHAs45vyEN6/dgR8mcHWBK2q7KrYWjtHguj3lUpeZiT71zKdcqKXCEI3TGmXKv/34Al4st1DPMxSq2Sxjs9bBaZ+hR7XFM0J31jk36VqdmxKLEc3N02PKWxPEGJNJCnXOdzEtg1C4s0YVC3Pn0Hi2G3gybDNNCKCa8JHSbfSnyIEU4oDffzXXxx88uYCXODqWTppIZcbUNeUFCaiai1aP/V8lEWBkG5gM2Bq4ur5DKNPYMpDzZOKOfbi7hcsLh5jn92I7GvL5AZGcD44WiQuXtHT0RxlCB6MzAemkSUjacJzG9twpjtrsuSzFApKag7/w+lsAGAox5Z0FoYR8fkDeW/t7y4QoAKxlf0pqB5jMQ1LkXVRHC9A1h5C0VLULtdbDEn9u9pDxDqcdn2pmAknxcfgxe2+z6TG0JW5q/cEGIypzbaM4lBCEErncn5/WUam2cMLXx1q5CZeXDLuDHNYKbXpvt/IdpJImshy1fHS8hK+fVrDJSdGSEKFW6BEi7HkKfuE11sF52KlgaemEnksYSMiV+nCmXoeai8EwC4MrYweOAosLxiZTJuOo8WdmDdVnJDPiSIAkhdS1aZpJjK0ZqpnUHNovjkc5XJ87xgMuLnrz2l18cLCOz1+/DYCVOtOaTcKtgS8TmbxcaaPVrKBv8saYYgePz+dRNNje87hdwwvzRyQbMOpnUa+2CB3bP59DlnMDbVeFrrq0/6QUF4IQY+UpJP/h0TJW+J6YzQ3pXYojAXEsUPNBIhHg2wfr+OwKQ/U1xUOzUyTyOcC655Y4X3RsJumaHrdqSMo+zdXz8Wd7fN8GSX/cluR7x8v4yho72EaTFD5qzuFFiW1UcSxQwKCpLjL5IXWnvLj5CG8/uogv1ZmWS+DJUI1Z63W50oE1MbDBSxHnnRK2eOmp1ykimbSQ5Rt5Xhri8LxOJbUwkKCqLqnxTkXZAEZEdQIZ65xT4tlMFXvKz8gkTVRLXVJc3t9bwfxcgxyza/kebXLXNp7g3t46SilOgLV1FNMj6jLzPBmCEFEJp7J0ht45OxCGozTbyLnSs+uoyBombdzDbhnVzIAO/pc2HjEpAg4LP63lc2F1H3Es4ArvfKnMNfDOrRu0qSWkED996S79fio7Ju2mxlkNjqfgB15h4nmN4zlc3H5C4oj9fg6FxXNS4NbHLmxXpcNcEiMSxPRdBZrq4juPGJH7x7YeIpWawOKlLN9m5p1TwnS3UUaZc1eG3RxS2TFxYTTdQRSJ+KP7TFX25ZVd5Is9Cs6anRLq1RY9t4k5M8dN6TYRWgGge1KHHyRIxK5W7iDwE+Rldny4gNd4qVYUInxmaR+56fM/WcCFwgD/+nuvAwC+tPkIYSARobo3zGJrfY/ay9udImweDC/Nn0GUQrrGS/NH0HSHgiJF8WBkJhB5qWZp/gw9HtgeNOq4euERqaYXcgN4nkJB0bXtR2g1KlitsoNMVj2Uij0ofL00Tmt0kCV56XBa8hnZBja2dslM9+TRGhYvPYG3y5KKwFEoIZlbPIPKrScA5k8YhyLZ2JQu72F8WIcy7fYyHChLQyzw57RzbwuRw0tNKQtxKGHCbXoEMUa93sSoz0rIZ4MCKtUWka0Tik+k5sWFM/S7eSJIV+tNKIaD3jnncy0eoZ7rkUjqle3HaDUqyPOg4v/73Tfws7z7MYqFZzh7g24eyfwIMp8fx9RhOhp8buviTAyaO1n1sX8+RwFEOT3E/cY83uTBSOAnMBynSbhVNVzEsYAe71rc2tjDnQdMcfxCuYHq/Dkp58exgCv1E/S4ZMRytQHfl5HJT2UuZmspjgSk0xMsrjNu5uHOCi7Mz2RUyvk+2+vMGXcojgXig6U1G33O0bM9BcX8AHsHbO398LXbsCdJSu6K+T5WKw1qfpnOxfSaO70C8ZcA4NWFQ/zL+4yH93d/6Js42l+ibtFCdoi53JC4YrfvXobBE7/lfBf1agvHZ/VPlZMUc6WkT/Lzno/ntiQk6X74N1YR99lGlcyO4VoateYfHy5gZZMFKogEaIXRzL4hZCaIU87A2tVHsPsZ2uTtEbPkmHaztE5rJPV//8E2rly9hwlHWQrLZxieVunwEaUQrqUjyYmYohygd8wOm1RuiGE3T1yP+eUTOBMDOt/k41hAv1VEefGcrmMyTEPlG6pja8THSVe6OLi/iRq/ridP1nDh4mMKML537yp+8PPfpnvW8yM4nAB7flJHba5BnT6Tdh6BL9PGPepnybIFYAdKp1GmzFDRXcpuc3MtWL0sHSjpShfjVhEav053okNWPep8UlIWZf5xKOFwbxnrV9jBFDgqRCnEiLvca0kbWm6MzhELkjxPgZzwkeR8BlGMyAfPGSehJi06QONYZEJ9nO80JfeOuB+bKMTI8yBp3MkjmR+SN1n/vIJMsU+bfkL1IMoBJm22kUuJEAnNg8fn2hyliL8VxwL07AQh77gy+1m4jko/13JjDE4rKKywQNlsFYhTE/oSoiBBtgnjTo74FwAzA3UGKbrOwJOhZUwK0KbzAADmOIXSQgPOaDofAhKKT5wbxzSesXAIXIWSiMkojVRmTLw71bAx6udIIsEoDGF2cmhNrTRWGHl46gtmtgoU6CQ05p82VayWVQ+y7kDnJqxuP00BAcAQC4WjTka1C3+UJGuRdKmP5vE81t+Y6Qw5rTy0OS6u+c4VLP7QhxjdXqa5mAZBtfUjPProElbXDtjzlyI2J/zgt0cpdFslLGywn4dBgrgicSwi9GQ6oKfeZAdcBHZx9Qi+OzNilnUH9ihNcxD6CaS5WKZv6rDHSSR58GH2s9CSFglm3rl9FRc2dwjFytbbCPg6E6QQk16OWvF9V4aRmfF14kiA7ypkc5SudrF7dxuLnEAtKT6JeApCDDVl0Xsb+RJcS0e6zN5xz9TQa5VQ4z6JZidHaODh3jJWt3ch83fv8YdXsHZhh5JMUYoQhSJ2HjJR0PXNPbiWRiK5xbkW8ajGnTyOz+pY4FyobL2N3nEdKk9Y0lXG6bvz/nUAQLXQQ4nveYIY43hnBRmO8KYLQ4hyAIsTszNzLUyaRULfe50i5jf3iXBu9rP0jKNQgiQH8GwVYz/AtX/3wadiS3JN/0uQPkFbkjD2cMf+V3+i1/5nYXzfIkl/fMSRQAdEv1WE5ylI8Vb3lGGRl1QcCQhdmVqFHdOAkZlQ1h35CXQaZdS46zu12U/NUs0kCvyQTaoO9wTiXSIWkwNwPC6rn7ZYoMQ7MNSUhSYnCE8Romkpx5kYEKWQPOKmMgKHj7mhZa2FKJqR0bOFAR1cdj+DQqFPPm+l3ACOacDi37tabME3dfI5yvSzGPMWbyURIPBluPwAHQ5y6AyyWHqK5OjaGn1vt59jrvfTkpHqknaTnjLRbZVoLhWN2SZMW+JFMYJjGmTrUkwEaHOTUU1zMDBTaB+wa0xlx+i1i0RctsYpOKaOnVPe0it7mK+0aA48V4HAN15Z9pGQfZi8zGPZOnTNISPRafAwRcsEIabDWUoEiIIEQo97YHky6+aadi/xg2w6HFNHSvFxfsZ1crKjWblEd1mJ7Sni8vReAIZQCGJMZNzAk6mcNulmoactmDwA9/0EvJ5CHUYQI7iWTs9BVj14pkb6Vk8fegkpgG+rhH5JiQC+q1Aw77vyM4TyYXcmarpzuoCrxmMqcwliDNvS8VsfMzuUv/rZ7yCOReqGNAdpGJkJhryNP44EShLMXhbZhSZ91tfefxlfuHgXkhzSc3FMHQVuPeKclwnBWgEzga5wxfXuWRULF3fg9afJjgTf1iC0WPCaLgzhn6dJFDOKZiKn42YRquxTsN48qaMzypI+kDVJIoxEjLkprShF6PKSaC43hGkmcTJtj188gpa08e4JC8ZU1UMcCbA4yru8eogwkKghI5MdIeDPQRBiuI6KBN9jer088rGAqRa+FyQQRSIJNwaOSsG6ZxpIyD4979E4jXRhiDG/32lzxvQeEYmYODrtZ+FQokAujgVKMKb3K8kzYnevVUIyZcLj+4tr60TUXlg6RULzyEy5mO8jfGodTzWjpkK/1ijFhEt5eTLyJdqbbUtHUnNor4kDCf1hBhn+82RhBEEKqbTtuiq6nEaRK/Xw8fkCrsSsm001HAiugiEPjGXVg2tpFFSGgQRnmKZuSQDU2CLLAXxPgWkamHyaxG3gE+YkPR8AIP5pX8Dz8Xw8H8/H8/F8PB/Px3+K4zmSxMekm4MczKBKQYzJH+jO2SJe4VlTGEkwRhaV4kbDDPaOF0kV1xklkc6MKYsMQxEfHqzjxTWm9FstdckfKGVYGPRypPtj2xqOOhXS6theOUAUiviDB4zP8uVrt8lUNY5FWJysDACDfg4jy5g5xE9SUBSPCOQf3r+EG9uPKCPNlXp4tMMgfjXhI5ceo8Ozu1q5g2E/S7V7x1NgDtLUDtsY5lHneku6YeMbH93AD3KSpiSGWFs+xoePGOH1xQsPYI5TMyPZzIh5KHEfrGSQIMVc31Uwtgx4XH/le7dvIK+bMD3Ondp6hIOjReLRtE/qRCKXpBClzJDKj8NxGumkSdlub5BBUrdxlcsvnJ/XkM6N0DhlCI6muviIa8Zcqp+i388RudbQbXieQuXGqRDilM/kBwkSGuz0CijyOQeA43YF87FIWbUsM2+qqWSAFyTg+zJZNjiuSnYnkhhB1xwMOadiau+S5yWBoFmCkbKo1KsoPlrchLeQG6DTmJkSn3ZKWKo0MeEZuz1O4uBkntbtWaP6jLbP/NIJdnhbehQL2FIOiGeUSU8gCBFCmWuBxSKsXpay7P4gS7Y9ihRAEONndKWSSQt/4QYrcw06eYzNJH0vwMQap3M7Le0BgO8pcAdpQv9+7M3vAgBMjqSFfC5jjtqGgUSSCPfuXsSFrR30OOeqP8qg4ipoHzGkKZ0bYdDNo7bKEGBBCtF5sIrHfE1sLh/irMPNUEc5KFKILFd3bw9zqBc7ePiIlYQsX0UxOSZLj3RuBI+jGyfnNcxXm9QE0OkVkPEmeInbgwzHKWTTE/J3jEIJYZAgdfcwEmk+Ak9GGEqk1aMoPu7vr5H21cW1PebDONU0c1TyidzbX2a6U5z4nk6ZuHXnCub5Oj7tlFDODIkH5jkqvCCBId8Tk0kLAjdvPWrUca3WIXQ9oXmILY1QmsE4jSBIYHjKSt2l3ICI6AnVfcaGRU9b+Nrbr0Hm794rG48gqz6qfL4CX8Y7e5v44rXbAIDzkzlCLZNJC6JoUSnXGSdZFYDviWd7S7AdlUx6J7aOkHOsEokQRiLAgBPID++VMZ/r4Yw3QsiyD1Vz8fEuEwLenDvBwf4SvfemmSR5ifE4jeE4hWJuAF98LgHwZ308D5L4MCdJVHOsJBJHAm4/WcXLG+xAXc72qCus389BUyWYY27IyVVY2/2Zy7cgxNShBgDLuS7GvETyzskyLnDC78rcKfqDHOpcj2gyScH0FVxb4t5djoqHp4uoGuylH/RzJAAJMOj+7Ts3AAAvzR/BdDUyLJ1uylPBN0ZwnNkBWKMUCilef0+P4Tga+Y19fLCK7blTOgRcn5HRpzB1NRIpoBLHKXz+wj16OS1bh5QIUU7OurcAZtcCMA+twJfJSgMAqS23W+VnupXiroCFaovI1gALMqdlHd2wSa/q0ckSSqkR+hab54vL++j0CvTcJDFCd5ilksm95hyqlVmXkeOquMI7ilr9PEQhIgG7RqOCuflzEp6zXRXz9QZ1JXpBgoKASrnDYH9+v/V8D2PToO8p1dpwLR2/9C4jhf+X13dx3imRLtDn157gCf+zKoWopwcURCqJAEnDontuD3NYUU5p099v1kgsNCEHkKSQLBmmh7LFg8gglCA/pRdTK7fx8GgFed5V5DylGr6+eEwefAAL/NO5CQV6ABPnnK7NgZVEmduALJSZZs6U/wawkuv0OczNn+Nrjy7hJ67eZnPpKUgmTTKTXZg/p+edLgwQeDLN+4LqwXNUUraulTs475aQ4Gu8289Bl9ncyQnm8TYNsEWRcV2mRFzH0WA6Gh599zUAwMuX70GUQizzsrFt6WQPtFw/w9tPLmD/jJefdQv3TpZxZfGAzbGto1jsUVm43SzTYXtx4WhWwgLzOlRVl8rXAzuJ7FOK9sNeDr4vkxFzd5RB1ubvpasyMU0eYKqGgzgSZkKm+SFsRwU4sdm0dKxwDt7K0gn63TytpWxhgHxywn4fgKG4OOyWsZFg9//O4RpeWdon7bAoFKGnedfliQTP0qlMbPPy2ik35f17t0r4W5suri8d0H1Nm0Z8m/GLpkR1KRGiqNnU3dfqFrG8fIxijTWGmIM05lIj4iQ9rTJvWTqSSRMm5zhOzCTyuQG6fG+ulDuwHRVp/m7m8wMK+kzTwFK+Q7pQmuwhjERcXfn/t/fnwZZkd3UovHIezjyfO481z13Vs7pbE2o1CElggZ6tT24ZcFjPsmWQjYMhDDIRtiKAkAlAwvZDgs/f02cRBgQ8EBKypO5WD+qxeqj5zvO599wzDzlnvj/2PvtW0aUBqO5Sde/VcaPrnJMnc+fOnXn2/v3Wby0i1PkXr5zEDx86h7RBvtvuxpGKd5nTgCiF7Hr3LR2K7MOM9xG8rga3IYQbOLHhkyQCPkmiqDbTGB8iFRaOpSN21cq2mGmwMmRBiBBLddiDu91IwXb2Vidb20X0HB0Ne2D5Adyx7zJeXiJRm3ceOo8nrpCqEEUiNgsDTs5itYTTM1eYL9yZ8SWcnJ1jXkySHLDVrCBGUFUXUwMT0k4S2/04q1YRxAh/ffkgzpQIB8PxFLR6MYyWyet+z2TVawMD28EP11R+B7rmsDYfHluBa2vsYdxqJ5nC9Pz6KEzDYpOv0tA27J4Jx1dYf2WKNSYkF0UiXEdFibY7n60zj7hkogvfl/YmnJrNVr7kuhiQJR9di1wLw7SYLcvRqQV848IxdlvPuCpKxSqzCKl1kvBCCeMm+aE7kN9Gu5XEE8vkHN97x9PsIZ8wNFRaGVRp1EGRfcYpA4B8poHVjWEW8Spn64yIqid6kK4icSaSHWiaw34URCmAKAX46GESObBcDYVUE3dSTk6jk8DhMuFFbDczGCruMPPPYnkHF+dmmTcV6U+BXcfhdJ2NQ0GMsN3IokzF8WKJHra3C0zWIqE7sLeJnQRAiO0zQxtYpPILQ5EAm15Dq29A00Sk6HevbIzhsLyEHXqdUmYPuuoyK5JiqslW75atw/UUZocjChF2+jHk6TnkMg08MLHIeCQvrEzjgRMvolyosnMccKG0uAWnrzO/wsdeOomjw2sYppWVlqUjl2jj4iqJgO0bXmcTpiAQEUt2sUK9uVq2iV49xfzWnL6OC5UR3EZLvjc3hlAu77AfvlonyRYVhfIOZnM7SNNFRKuTgCwGbEJ+aWMM2WyD8b1KQ9uIUR6aKERY3yojQycbqXgXqu4gqpH+Oji+jG9ePIpRWmmaNPpIJzp7XMJYj92XIoD9I2uMfA+QiOrAbFtWPcTNPip1MpmdGl1nRRKy4sH1Zaaqvr42AkX20aPjNB3vYquTZgbIh/LbME1rr6os2WFR2LHiNjrNJF5YJO06PrYCx9HYxO7j+xMYTdXZOdQ7CUQg55vxGggDEQtb5Lps9RI4NbrCIq+a4sG1Nej0nFTDgSwGbHKXTHSZcG8m00S3G8fX5kgU+0C6gXy+xhZh9XoGHctk98jo9Ap7jj8zdwCleAeFPCXF+zJ0zWFK8G+dXICmO0jTeyCZauN/PXc7TtPnqywGbJFQaWWwf2QNmmnBdV+/SRLHawM+SeLg4ODg4LjFwSNJrw34JImicJVIWBiIKCWbSNFS224tjeepGOTR8WVEoQCLrl50w4aqumjRVfTM5AqWV8eQp1GZhNGHornYTw1dw0DE7TSEGwYiupbBIjQj6TpU3cG9+y8BAJqtJPJmlcn793smpsfIyvdrL5/Eu06eZek1SQog7YZIU9uNXiuBnzzzLOOoTI+toVbLMimCP3/5FLI0jTObraKxNsaMZD1PwfZuDkeoz5nrqnhheYbxoe49dJ5FCiZKFWzXsxjXSATL7pkII4Ftu7A4iYNHLrPKD8+ToWkOvrZCDC5PdFKYyFMDUzmAH+ytbhOxHsJAxPTIOmtHo51FkXIs2q0kC//3eyZODa8xj71nlmZx/+FzTJ+pmGpCUTwWWUonOuj2TfzYPYTX4jnqXmWX4mGqVGHcoGy2gcCX9lbCrRSGi1WWBpyvDOEw7Uunr0Mzbexuk4hfvlSFZtjYnCevh2jF0IALZNk6LEdjKTVRiJgJb9roQdFcJnA3JPvIJdrQaUrAdlVopg2DRiJfXJ3CBLXkGIr1MTW6zirpwkBC/CrjWQBo9WMYN0nfdppJZEu7TFzS8xTkaMpU0xyIUsj81vYNr2O1MoQMjawYtKKI+WmZFv7vF84AAO4f3kA5W0OMXgdVdWEtT2M/9ToMQ+ka64zhRAtbm2XGMzF0m6WiFM2DormwWzSNZetYrpZw5hjRztqq5jFU2EWMCq5qusN4ha1eDJO6gwyN/shSgEtLUyzlOJyvYijeQqZI+m9zt4BeJ8aiNIV0k43hymaZca4AoNpJQRIilnr5/y3kcGh0lUXP7ixXWTVWp5nEcHGHpT1FKYRra0zIVFZ8vPv0c2zf7UYKjquyareh4g6sbeqnJoZQVRcu5Wh12gkUhnbQp5WmVicGVXUxO7kMgNxfg+iW7yqodxMs8pxKt+DYGksLxxNdxHZdjJSIRlki28LGyuiexclVEV7PUxBLdHGYPuNI//rITJAI32adVAMOhF+nJ9ZYhM62dLiuihSlFEwMbcGM9+DSalFF9iEIEePdGbqN/bOLjJcmKT4SVGJkfXkMiuzjEE05F1NNLKyOI6aRCF862UYq2cbGNonMh77MTJknMjWEocii9tMzy9haH4IZ7EVtfU9hUbpEqYZ/cu8TeO4c4YuudhModtIAgMMja6g2Mmwscdza4JMkClnymXbJ9m4e+WyDaWTUalnmRaVqLra3SqxkOZ5usQkTQFIDuVQLmzUyOYmbfXTbCfZj7XkKxJA8iGTVRynWY+kmgJBPB+2IIuEaM9WBGBsATCSbCHyJlbhHkYhnd0rYTx+I8+tjOH74EiMEq4YDRfYZ1+StkwtYoYakLdvEWK6KKuWYDI9sQZZ9Vi4/WazgrgMX2efL6yOYmSSpyWyyC9vRWLpNjEJYfYMJYvqBDLsTwzb98S3napBVHz9MTX6DUMRWg34WNaBpDiPbdmwDq0uzeODgeQAkZbRYGWbh8iAU2STp7OoUhuJtxhtJx7rsgQ4QUqdmWLi0QFIC+yZWoOs205Sp7+RZ6skPJDi2zvhRnXYCsViPidKNDFUQ+BKbvDVbKcY58wMJKbeDr8wTv6ifTLXhOioWBurclQIq9RwmqSGwIET41sJ+TFDT0v0TK9ikk6SYbkOSA/ZDFfgycvk6Li+SCeZoYQeBJ7NxMVRvIU0Jv8FVPCkA2N0uIB7vsh/rSwszyMY7LMV4dnkabyvUkaKCoYriYa1J2vw3y1P4iWMvs8m8YbrQWh774W71Ysgl21iukh+Y47NzuI1yktKxLsxYH02qKRWIElQxYPvyPAWK4jMeTRQJSCU7ez+ijsZShN12HGasz/z53n/6OSK4Snk2g3GxSUnO477MuHkD4+g0lWIIAgmK7DNzYACIanmWfilna9CNvXJygPiXAcDZuf1I9eKI6+TeGs3uUlI9ua//1ZF1nFudxBBNKbdrGZiUZ6QoHr5x4RiKNN14ItVGv2deo8oehQJL78biPRihhZi35zF2gnKfthtZ/OGzt+MjtxMBVVVzEQYi5qhCv6Z4GCtts8l/FIUspQ4A5XSDkZwlOYBt6Xhlk9zzhWYP0+VNpq3l2hq2mxlmZB1FIrvnHVtD4Mss3bhbzyAZicjGyb04M7KBRmtPdV2P9WHRcacbNl5ensZhSlyPJch9u7BO0m/jpQpsS2eLH9OwEEUCXqCL1lP7rsCg1z+V7MDzZDQcsm/TcpBPtpjRc79vQNVc9lzwHBU7rTQAQnIXpQDLq+S4visjZvbZJFlTXSxvDaGYItc09GQohs085qaKFcTovVNrZFDK17CxMkolAC7j9QAXk3xtwCdJHBwcHBwctzh4ddtrAz5JokhmW1CpClsyTtI8r8yRkt6J4jZaNFIwvzqOqeFNrNGQbSLdRnU3h60uCdvuLiZwanqORRkurU5iurzJfOH8QMYGrdzJxLoYGqqgTcmRmkLSCd++RKTwx9OE1PzSJlnd3H/4HFsFzYyuIfBlFva+ODeL04UdrKyTsPRkeQvN3QyLjkiyj816jq2ENNVl0TGAVGwN0bSea2nIFPZCxd2+iTASGUHYDyUmNOg5JFoxCOMPFKEH4XIxCNGoZZgYHAD0uyae2yCr3bvGl1h6TZIDiFKIFl0JHp9cxKF98yx1pTgeRrO7TMQxlugxsTdd8iGLAVv5mYaFwJexWiHk0phmY0h3mPedKIXo90zINFrY6sZZtO/KThmHhzbgUeLyn18+iPcfvMhWs4WwBj+QWUVOPNbDhTVCFh5J16GqLt5L7VM67QQUxWMVin3LgOvLLFLS6cVw1/gSI8zKiod91MImnupAECMWabRtHY6rYoT6Bvq+DM9VWbXUxVoRoyUSGVldHkMhV0ODWkPIsg/b1ln/5JMtSGKI3iBNnN9BdavErnGjkcbtB4hHWHaV2DEMImtGvI+4YbF99S0d8UQXoz4ZT76nYJamXl5Zm8QBIUKuSD7rthLQZI9ZvMTjXQhuBINGZZKJDlrtJIvUxmI9Vila7SVw+5HzWF0l0Y4DJy6gsjAOeTcNANhsZbDSyOEY7T/L0tn5XNkYw22pCyxNE4Yicrk6s84wTQtBKKK5u5du7PZNGDTyJIkBJJNcb00mY21klERKKptlVDspRhD2Awnj2V3m3faFK9P4hbd/i/RrM40HTz2PdVoOb1s6JClgKaHd3RwM3WaeaYEvIZNrsChuubyDgJ5TrR/Hh06+iAHMZBeBJ8Oi41aVfXzp5RP40L1Xp5QHIqcqlKsEMUUpQKWWw3CCpCPjuoVGO8mikZruQFM8dK+iGTxCBUFPDK/BsnVWNRaEIsoT64gGquJUMmIgY2D3TKxuk/uylG7g5NQCFjYosV8MIUohS7/1+iZiZp/RIeLUDWHg7Wb1DXSXybM5kehgYWME9x4h997lxSmYpsWEd+vNFDRHZUT/6naBkfHDUITv7aX6HctAIt2GTyN8PctA0uizaNHCxX2ImRYbp7Lis+KMbLrJrKlC7/WTAOB4bcAnSRwcHBwcHLc4IoQ3NPrD020EfJJEUa/mICUITyIW65GIiEZWtwOeAgBk4x3E0y3kqFCc3TNQLu8wc8N0toHGbhZ5quvxZysl/ML48h6pNd5n3AXL1smKha7AXJeQX/cXSUQnmegiCETcTsuSX57fhwPU1T4MRSiKz9q2b2IFsuqxEuftWg5uIEOl0Y6DuRb+ZHkI//YuQtTUdIcRcT2PiPANBDLnlydxrHgOL6wQS5P7j72EbjuxF0mwdSZbML86DkkMMTpNOEoXnr8NZ4ovM77Cf/3mA/iZe59g0Z9kpoXtrRLeMk04SY6rMqE4z1Ow3c7hrqOvACD2Dr6roDRC2lzdKsEwLcZ9kBWPWcecis1BVn00aqQsvdZJYqSww0QJE7EeVtZGMD5CVv+qbkN3ZRaJihsWsw659+gr+MMn78FPHn8JAPCh08+h243jwDTRr7q8OIUD00vMakJTXeyjXChZ8hGGEuP+mOkOLr1yiBkRt7pxFJItpvtSv0yOP+hbz1GvId9fzSvq9k3ks3vGxKlMC56zx2V58OhLTIpA6cSJ9hUVuGvWM6i20hAo/2tmYhV6rI+tVbKCL+Rr2NouspV0OtViekSHD16Ga+sslG/3DAxNrjHPwXS2ga3NMoukOI6Gy5TbMpPfRjzeZT6A1UYGByaXsbhGxmkq3US3nmE6WlEo4JHlGfwflFDv2hpKtCw7m2rBc9S91X47jp5lIE2NVY9NLkFVXUZWt7oxFklKJbrY3BhCmvbHym4RIzMrLEr34tIMTk3PYY1GHoeLVdiueo37vEMJ9IbiIohEZtJaKO4iZvZZxGu8VMHmbgEnqICsIER7HnmBBC1u7RHTYxYEIcQkPf9X5vZjTKmy54XtqvBdGcP0Hgg8mUVtR1J1pHINZo0RK9ewfXEK09QQut038d4jr1yjyzTQlCpm61BVj52D0zeQvEp4MZttYG1ziHHHGo00psfWWCFIFAp44Ai5TyvbRQShyGQOitk6BCFivoqOpSOW6mDcIe1aXBnDwRnyTNvZLsJMdHH7XYSsPvfyIUzNLrHnxeB4T1LZg6laE4utDG4fJc+bIJTQo8/iwJdQTjeYdMdYcRtb1Tz2U2J3PltHrxdDinL4kkKIr1Oh3mO0T8fGSATUdxVsb5WQp1InYxNEamEQicyELYSBiC3KPT186DJqFaqb5qqQ5ACtTgLd19HgluO1ATe4peaAa/9yDEGVPEBimTZk3cH5F44BAI7deRagN5GoufC7JurUWyqMBJRmVxAM0mmuAlEKXmUUmjtIburOSpl9JioBfFuFpNC0zcgOQk9Gr0JC64IYoVnNYugg+XFurRcRyzcBEHNLANCpsaxVSyExUUFnhTzk1UQfl148guEyeTDlZtbgNBPs2IIYsX/vbpQxcnQOjSXyg6loLvR0B3/6tXcAAN59+jlIcoDkOHlQu604e/B6feJ/VKRKxYGjQMt0mPFj5EuoroxcY2jq9QxGTNXifeyukzYbZh+q4UClZNF+PQXfVZA/RM6/fmUckhxAp+anC+cO4NC9zwMAnFoKxvAu6pcmSbscFfFsk/msdVpJlKfW4fbIj7ViOLDacTapPHbvc+hvUzPcbBuN1SHkpmi1jhgidFTmNt9dK0GN99HcJGJ5hf0r7Jo1q1kUp9bR2SGvUyPbaG8WkBolabB+NQ0t2buGVB5d5UbuWRpUKtInSiGefuIO3HE3IeZGkQCEIlMnfvaFk7j3vqfYd5VUFw5NPc2dO4ByaQeZCXLNLj93DKVSFfFck1x/KYCa6sIZeHXpDqxaCmqMTLJEzYXXJWNMy3QQOiq8PhnjrZ08Ru95CdY6+VHQcm1YlSw7pzCQsLFE+nV0egVaqscm8xefO46j9zyP+iKZRGUmtmA3EzBpJWnl3D5s7hRw6v6nSX/0DDZRFMQIEEP0qGnxysoYJidXkZom18lrxREGItveaccg0YVA6MvQkj3YzT3xv9hwFQ5VUd+cn8TY4Tmm1g0Abs9g6tZhIDKS/1e+/gAmMjWmtpwdryD0ZAiUOC5pHvy+DpHe127PYOMwnmtCLzaYZ1xrs0A9+vbWq4EvI1kkE2W7HYNi2NBS5P4Z+DsCxNA1kW/smdBObaJ2fpotUAYmtYPny9VVhKmxCnbnx5EepsbMOzkky7vo0HvAc1TyHKAioFY7ATPdZn1w5cXDzPQ7cBVIqgeDjq1zT57GsbfsVeh5XQOtrQIzoh3cCwAhQPdrKcSHaQrsygRKh5bY2PNtUnV6tZp3r56CSU2edzfKrHDhwpV9OHHiHPORU3MttBdGGDUglm/i///lB/HgkZcBAJnhKmS6qKjOj8GI95lR98bcFApD22xSlByuoreTveYZGEUCu1cFKcDGy4RM3unEMbF/EYIQoe2GmPz9xdfF4HYq9iBEQfneX/g+EUYelnpf5Qa3N7sBNwuf+cxn8JnPfAZBwMW+ODg4ODhubZBUGydu32i8aQ1uP/axj+HChQt49lmySg99GZnxLWTGt6BnW9icn0Qu1UIu1YJWbDCXc0GIEAYiUsVd8pdrQBAj5sC+PDeF2OgOZN2FrLvkM0+BIAUQpADdRhJasgct2YOsO6jv5qDG+yx6MlidqIk+XEu7Rh4gUapDlEIWulfjfUSBhCiQsLYyBlHzqISADFl3MTm5imSxjmSxjsBVoCb6xEdLjLBwcR+0VA9aqodu30TkS4hlW4hlW0hNb8Dv67hragF3TS1AkgOsLo9BUH0INCUXejJCT0YUSChOrePbT92Bbz91B2TdhZLoo7VeQmu9BEGMYJh9OH0dTl9H4Cgwci1YHRNWx4Qc76PXM9HrmZDkAJLqsXMyUqQceNDm9Y1h+J4Cv6/D7+uYOTyHyJcQ+RKUZA+RKyPwyF8824Rn6ZBVH7LqI51rIPAk8n2PuNbHCw2MjW5ibHQT3c0C+0yJWZAVD5LukAhLNYPQkyHFbEgxG3qmjcDdW7GJhgMt3YGW7sCMXxslClwFWtxi/WXkWlBTXdjNBOxmgjimax7UVBdqqkvGi63BtzUoqS4ysS4kw4FkOBCECN1aGp1d8nfvA0+QaxAKiEIBouLDbsdgt2MYGd3E9k6B+GLZKoZHthAv1OH2dLg9nTjeyyEb11EkID68y8ap24oj9GXy58no7aahmA4U00FufBORK7PrIkgBrHacnaOsO1AUH4riI3AV2M0EZNOGbNoYG9uAHLegmeQvCgWoiR5EJYCoBJAVDxOjG2xfohRCSfagJHvw+hpk3cXFuVlcnJvF+Pg6PEeF14rDa8Uhmza2F8fYdwUxQhSJiCIRouxDKzbYa99VIGoeRMWHqPhotBOQDAei5kLUXAhUGf2LX3sHvvi1d5D7sWfA7Rk4MzMPP5AQhuRP1FxYrTjr68E+Btvr2RZTWu9UMxDo/gUpgKx60OJ9aHGLKIpbBhL5BnuekGeCyPYtSAGsVhxWK45UqYbd9TIUw4Zi2Ig8GZnpdciaA1lzcHl+BrnZNTYWk6PbCAMJYSChuTIEmRK3BTFCLNNi90S80IDjkLL+wb3o2hp2Vochx/uQ432UyztoV7NoV7NEgiEU4PUMeD0DhWwDouGgvVZCe60EUfGRGqpiZ7uIne0iGSPJHuRkj2rOmXAaCTiNBPSYBWs3BUEOIMgB1EQfWrILSfXIsyEUMLcyASVuQYlbOL8+gW4rgW4rgQPTS9CzLXh9DV5fg9tIwCw02bNHkAK8746nkci2kMi24NsqlEwHSoZEpl1bY+dg6BaTYhhE6gQhhCAP/gIEDh1DmocoEth9WCjuQs+2IWkei2Ry3Lp400aSODg4ODg43igIEeHGRpLe1EwcBj5JoujVUyhSUrTXNlEa24BHy7QjR0Wfcjfkjgkt2YNElaubK8OQNRdmgRA8x1wFftdgnKF2LYMwEmBtEYJfIt+8hvcwfvwSvIFCbjWDF88exx33fxsAKYkfmlxDv5oGQHhG65cJmbo4XIHbNbGxQrgd+06dh7ObYjn1hbOHMTy+AXXAo9nMw+6ZjNQ6tX+R8YbGp1ZhN5KM3yQaDjxHZWXbsubg0B0vIaB8HruVQKtG2lQY24Js2jhzguT5rUYSsmnDoMcNAxF6osdI4ZISIAxEZEYJV6pXyWPiAFEgHxA9B9iYn0CuuAt7h5Cxx8Y2EIUCc7LPTW2wcxDECF4nxhTFA1ch/na0rN/uxOBfJXrZa6SQ1HYRo3wGQYzQ2iY8oigiK8jeJuHc9JoJ5AsNhNZeVG93vcwI1l4zDrdFuC6K5sK3NWSn9zhaoSdj7SIhnk7f9RICW4WZI8dtbhSRHqvAp8RmQQoRUc5JYKsYGqrApjyj+nYepek1uNRoV9ZddGppxmcR5ABNSlxPpNpIxHqwaF+JUginHWfSDEaiB6eWZCvd3cUxlA8vsP4ceHwNEMs3ASpEKEBEb73IODfWdhbxQgMt2l+pRB/Ds8uk73bTWLoyjoMhMYs2sy1EkQA9TcbHS0+dxtHTL8Mf8J9MG0auydrh9QyIlFzca6SwuTSOEydeYdess5uBOzBWbSSRG96BR8/RLDSxQnkiU7e/AreWZH5jiXgPyat4Q7OzSxCkEGGXjMEoFODbKv7JD38VAOECPfvCSQDAXXc8BzOxJ1YaWBp2twsYO0jIyKEnY3tuAj2qqj0du4yAno+iufAaCcbpCwMRouYiom0eOnH5mr41Mm2EnozmRpFetz4jWwtSgOLEJtYukbE1fvQKZN2FpJAxfuTwJfh9HemJq7iElHyfGt3Bl/7qQbzngccAAK3tHHq9GMoTZNymsk2YuRYCWhgQT7egZ9uw6L3YbccxdpyIJNr1JJSYxXh4hZlV+O0YNBodlzQPkuZhfJZwmHaXRzB0leHx5k4RGcpJGvCHBrwyr2cwzhNA7utD++YRUq7QXUdfQYxyoaJIQOioCOk+EIqQYhbyM+ScupUc9EQPAn0GKDELfptco0S+CadrsAKDZKGO0Jf3OFm1FGLlGuOSeX0NgaswDqieaSNdoObSmsvuZ45bH3ySRGGm2/DoDVNfGYYgRIxo2N/KsZulV09BT3fh0x8qVbfh9g124wW+BK8Tw9I8UUUeGtomOkF0ItSqp5kGkWI46G4W0KJVQplCDZNDW7Dr5IdNUnz0GilmpVHUN5m0fxSJ6DdNjM0sk3btZCHJPiMSxmJ9zF+ZwSE6aXBtHTvVPPwK1ToKJGgDO5TRTWixPpyB+aVpw3cVdKh+U3G4gp25CWSGCOHS6phMU2hndRjF8U2mL5Mf30RtYQwmJVe3tsgPZ4YSHiNfgtuKs4eh09eZwvji0gQOH7/AiNwDd+/Bj15jN4tMfs8Q16ql9hRx0x3YzTjbV+BpMNNt9mOkxfuorIwy0mu+VIXTjqNNJ7+ZYg1PXjoMAHibYcNzVYCcAjqdBOK7afajqMQsqqtCfkBaGyWsrRPdm9HhLciqxyZ89eVhRJHAqoTmnzyFXHGXPdj1WB/9aobtS5QC9lmvkkevE8ca1b7af+QyBDnA48/fBgC469grUDSXTVivrmIKfBlPLOzH7VSduWfriBsWhqfJQqC2UcLl9XHceepFAORHwW3FsXKFTMJV1UOCqnf3mgl06mmk6KS5Xc3CTPagKWSi09nOwbZ0do6+raJJK30k2Uc21cali0SB/MiJ83BrKTZ5GxsmxO0BQVqUAnhdgy1QBqlRAFhaH8XE0CZ26UQnV67iwtI07pt5FADwwmN3YnpijW2vJXvsR9/vmuhWM0hRWxIj0UdtfgzJ8i5rZ2+9yMjXg3G1s0QJ5qUq8tR0dmNhAtlCDQ065lv1NAzTYgR8q5rB2eVpnJwgk4LayhBT7lZo4UeP3uN6oge3Fcf6MiG6j4QCnL7ByNay4iGKRDSa5Bp7nsJ+jH1bReAqGJokKTW/r6NyZZIVUXTqKWR0lxUkrCxOYPogqbizmwk8cOSVPUJ5pg1RClnFoh6z0FgvMWsm19YhdT10dskkCQB7Trl9A53dDGL0nnfacWjJLrsO1m6KbTfAzsVp9u/J8TVceplow5ULVUSBxNLZ7Z0sUqUaHPq8jSIBUSSw/jPTHTaWJMVHvx1HIt9g/SNIAZuwXLiyD2fufg7dKjkHw5fYZFQQQtR3c8jQSskoEhEGEiq0+nNkYh1uKw6fTs4CT0a3nUCFVt8dv+NFVgjTa6SwvDqKw8cvwH8dDW4jBMw4+Ebtj4NPkjg4ODg4OG55cOL2awMuAUDLJ7f+XQG6TVYkX/zaO/Dj9zzBQrx6ts1SZN1KDjFKhAZI1CWwNCxfIOrchVIV2f2rrGR17ewh+L4MjWrwlGZXWNmp00ygujzCjBDNUh0QQ5a6CT0ZvXqKrXaVuAW3Q1ZUfl9HczeL8kGSqhKECF7PYJ/3WglkhqssVeF1SRnyICqx79AVKHESDUIool3Jsz5J0rLgQcg7sDX06klWDhtLdxAbhMctDd3tHK4skJXh6bc8Qwi3dIXWreQgqx7MIXIOgkRIj1svHARAfM8KNEIRL9QhqR46tC07lSLGZpZhDpH+aS8PQzUtbC4Ste6xI3OsJFkptNB8ZRrnL5D9jhR2MHRwCRLtd0EO0V0vAnS1p2fb8Ps6+3z55YNo0/TIgcNXoGdbTPbBt1Vszk+yFJKebyF0FFamPPfyIbZCVxN9RKGAXVriHkt1IEoh07IpHZtH9fw0fG9vfZIdq7D+aq6VWapSVgmxeJDminwJbtdkK1azRPprUMZ/8aXDKBfIdSkeWIYgRqheIUrgVt+ArPgo7yfn4LRikDQP1WUyHjLFGrlG4d7qf+BdqGgu4sNVNh6aK0N48fJB3H0HKfOWdRdKqsvSopfPHcTMPjIuRdmHYjosQhN6MhbPHWDXPLdvhZVTAyRlFi/V2Gs108HyUycAEKNdPWYhe5Ccg9cx4bVjLMqQGNmB14lBju+ZknZpCtC1NRQOLzKJBN9VUN8qsIjR8LEr8Ps6u6btahbp8i5LqyMUWVQpDES4rsqicmqqC4QiS+0NTa2xexwAJNXDY197KwDgzImXER/ZK4EPbA1WLYUnXzgFAHj7Ox5FYGvoU2mCxaUJHDx0hZG4B2l9AOhu5yDJAUuxi5oLQYjY82N9fhJTJy+y7UNPZqnJysoIRmZWWDpeyXYw9/U7MTRFo1K2Cj3bhkqlB+pXxq/Rf4sV6ywVFwUSli7O4sBdL5K+7pjQ8y34VDLi6W/eiyMHriA5ts32PWij3TORKNYgaXtSC24nxs4/WaxDyzdZmquxXoJt6xg9Qu639mYBSfos6lfT6DZTTO8sNbJ9bRGFpUHLtdg4tqoZFnlvbxYgKx5i5Rq7Livn9zGNNrPQRHV+DOWj5Li9zQL+v998Kz54xzMAgNyBZUT0nnZbcaxcnsbY7DLaboCpz70+EgDDsQcgCjcu7hFGPjZ7j3IJgJvdAA4ODg4ODo5/GLjB7WsDPkmiGIjrAcCZ4TVoyR4jjwJgq/faTh7JsW3G/3BbcaiJPiS62lc0l5Zjk5VzYWwLvq3Cop5HsmlDkMm2ohQiCCTEqLhaRCUGGGnR0qEaDuM7CYrPIidux8T2bg5Fh/AP1FwLUSCx6NfG6iiKB5ZZ+90gDi1uIWGSlZPdibFIEiPGUn5CtF5CsrwLmX4euAr63RhbleUybYiDlZ8nE+dx6lN1u+KT8mnt2tLXAS9g0P4k5VU8fvkw3k05FYOonJklpGZ/YwhK3GJ9LWsORMVnKsiBpUGhwnEQI0iqhwR1Vx/wY64mycu6wwj1UShcs9oHiFIwAOhpEv0Z8JsG5zhoe+gQSYdBfzyzMc58vIxSHVEgIk5X92EgQYn1kLyqFFiUAuj0tWtrLIoEADF67gAReJQMZ0+YU4jQb8fZSlmOW0AosiiNqnjsuIJMrsHA2++VhVmMZnfZtlqKlF8n0oN2itdcMzXRZ+e7NT+B1OQmO19JDjA7tIEtKhg5dfo8BDFi56EpHrsusmlDECJYlDclqx7isd6e2KoYQZADRDRKqSd6CFyFXRtBiLBWJaTlM2fOXnO9BuKIFo0kJcWIlN/T6JAgBehTz0WXEvk1KsYabOXw15eO4Gc+8Ge0r+k9QIUqVytDyE+vs0hSd73I+qqyUUYq2WZtHJy3Se+tMJAgSiG7f0JPwjRVXO/U04iPbTNyvmTa6C+N4M5jhIwuaR45fzp+y4Vd7G4VMXKIkMIDW2ORRUkOoBg2E/lUAMjxPuPNqKqLfjWN+PAuO9Zg20yuDiXZY22PQgGZfH3vtaUTCZMBR0sMkcq0YFK+jxy3INHz76yU4XgKhAHZfKiGoL9X5FBMNSEpPtu+X82wyJiq20wkFAAkerwvv0Qiaz/59m9CitkYlHSIlOM4eGaZ2dbemE724HsK40OKio/A1th1smppKMkee74apTocym06f2Ufjh++xJ61ViPJ1NoBMpayY5Vr7pG7hjauUbyXaTFCr5LDpe1hTBxYhCi9qRM1bwjwSRIHBwcHB8ctjhABcAOJ2yEnbgPgkySGlReOYGqc5KOjSEBlYRyaRlaRnflJJKnnk2HYCD0ZlSuTAIhX1+6lWeYJdeXyLCb6Bvp0ddvqJDA5s8yquXYuTsOlKz1JCiGKIUK6GrnyzAkkEl3mtJ0v1LCxWYZIK1+Gh7eQoNyediONXKqFl585CQA4cHCO8Hlo9UkYCUQEka5YN1ZHEY/1mG/RMxeOYGqHRLBKQ9sIfAlNWs32/PI07g0vsNV+tZZDsbDLyue72zn4a6TCSNFcbG2VcWaE8DO6m3m0ahkUaDVbtVIkbaEVabrqImb2YdBIw8mRVbaya62WUd/NsSjQ0FAFXtdAQKvbrHYC/q7MvMt2tosYD0gFkbM4in43xir2JDnAF/78R3Anre5SZB+upyBPfcAaOznEEl20aNUQQPzuACBRaePS3CzKWbJtcXwTqupi+SXCdxr4wRXLpP/uGV/C7naBjR3X0lCl+zI0B7F2jHmqCXIAz1GxvEm4QDHNhiQHLIq3Xc8iRyuwRvYvIfRkNNaJBU6yWIdt6dislFibXVtj12mjmYW2Ts4/78nQkz1Wyn/6yHnMLUxh5SVSRWTZGpLxLp6cJzyaH3nLE9h5eR/zVMsl2kwCwnY0bJ+fYaXnlUoJ9W4CMyPEDmTp+SMoDG0z3hUAVrK+W89iaKiCPh3Tmu4gU95lVVW7F6cgiHuVpIIQYXl5nNnpmMkuTJXch2EgwmonWJVUbSePdLbBKrB25whXbRABzI5VYFJvP7FnoLtehEqrVFfnp/Dwg19jUbr24gisTox9d3psDW7HhEtlIeyewSJ4ohBBVn288OTtAIDjJ19BfauIZxcIL/GdmWewcWEGOcbtC9mzxPNI2fjmGrn+uVwdm5USVlskgnW4soGerWO1SV7ffegCVNVlPL3FpQnMzpAx32kmkcqFrDLyL791H37otufZdbq8OYoThg2hQu4v31XwzbMkQnNidBWiFLLnQ3piCxfnZjGSJ/wemUaFBvISkkykOwYVsI3VISafIakesqkWeuvkmqupLrrbOXZfp9IttGp70SPfVWDRa5jO1+HbKipU2qTXN5BKdLA/Q65pfYvscxCZ1EwbiuZi5wLdvhdj/o1hICJZqOPZZ0j1ZzHVRHmkAoVWmga+hObKMPNrnDh5EZvzkwAAN5Bh9wyEy8N0Wxm5XB0rS4TTN0S9CwdRqSgSMD6yiRXK8YyvtWFQWY/lhUmUYh20tnPoeAEAcr1ea/B022uDN63iNgcHBwcHBwfHdwOPJF2FwWplanYJ9e08EzwUNiO28inPrCIK93Rv9JiFsuqjS1dYuupit5rD9DEitFb0ZPiuwla0ghjBTJJ/V7dKkCWfmePOnLyAzlYeu3USDVJ1G4VsA4UZEqX586/8EN5b+gYAID9aQRiIKFNNlEE1yECPpZCvQUt3WLXb6OQawkBiAm93HD6P5uA4pgVBiDBzgPAeZsJFQIwwd5GsjDPJNmKZNhxa+aNoLhNdi+f6mJhegZYkK3S7GYdu2AhodV9pZAv9dhxFugJzbQ3NZgrxFOENpNIt7NLVYirbRCzWR4K6doeBhCgSMShrNdNtdGtpiJS/kEp2GK9qoGsyiMIly7t4/91PMTFJQQ7Q202j00qy69jaKjC3cRcqpqeICbHnqDhy+BITADQKDag7WSYeGSvXYFUzaFPhxuGxDdhUy0rRXGixPot2mbE+tncKyIRklRkvNGAmuziWPweAmJQurIxjpEiiDsPFKuJJKtBE2z2IQgWuAs9TMEXbaXVN6DGLRQPuOHoOV+bJCjsW68FzVDbW1EQfw8UqYnQcFg0Hsu7gR0e22edWK45Td7wAgOhbDaI/paFttOppdk5DwxVM6CuMvxK3VQS+jATl+5jJHotADA1VoCd6iNOqrOrKCFLURmNwTnYnhsomiUz+t1cO4JPvfgTPnz8CADgyuYgJ6sw+f2kfRkc2odOxg5085hancPvbngQAdGtptFtJ6HTfjfUS4ydtbJcwm+izNg+NbEEv1+DWSFTByJFox6D6z+saiCIBjRqJ6IzsW2IVoK1eDOOH5rGPCjM2KwU8u7APd+27xPaVEyLsrBPD7MLQNtK0os3v6wh8GZkM6atYtoWF88fw3h8i97XdjMPqxhA3qEmr4cDp6+jQSsNDRy+yiqwwFLG2MsYqK+87cBF/+syd+Gf/6M8BALPlLZjJLhTKqzr78lG86x4iVOvbKrR4nz035LiFmdE1pnUkSCFCT2JRKbtnwkj0mJ5VvZ7Zi/6JEWKJLouWd7by0BO9vb5fH0YhX2PXeOrQPFIaGXdbl6cwfHCRReo9T0ZhbAvZEoliBr6M9k4WV1ZJROfU8XNQDJtV9JkdE40qifaJYoj6VhF33ksqzlqbBeipDuPSabE+lLjFqoURiiwKe3R6AamhKuMsSrKPxEQFLtWlS5Z34fU1pg2lJXtQDAetefKMlDUXuwuk+rFY2MX86jgUzYUivH4pqzC6wem2iKfbAB5J4uDg4ODg4OC4LngkiYODg4OD4xYH5yS9NuCTJArD2AvFR5GAeKrDykHNZBcxGuIXhIjI7tOQvu/KaLeSsAYps8Nz6FQzTGhNNm0IUoAelc5PlWosFZVMtYkLOnWh9tomokjEKBUwE5UAghCycPHbjr/ISLypUg3tnSxWt0hI//htr6C+UUJ+nJQaL5w7gES+wUTa3L4BUQr3Sm8Nh5G4FdOBmuiztJ9s2ggcBckYSaGlsk1YrTgLvUuqh16PpGKyxiYC6hQPkNB7srzLXtuOivTQLiM8DvolRlMzrc0CbErqzhsOfFeBSlOCUSChvlFin5fGNkg6i+6rVUszUrck+zDTbaTo/iXDAVoJdg3VRB++rcGxSDi9X09hp5rH8DDp68CX0KMp0+zQDqJIhBAQ4mlvs4BEvoG1hUkAwKHZdcidGCPySqqHuE7Op7ZRwsixOZiUHGqmO/iTJ+/C/3n306Q/mnHYPRNCn+xblEJMja6zlFmzlUKaiotajSSMTJtdM0n2oaou9PReOm4gVwAQWYhMnKTTglDC5kYRB4+QFFDkSzDMPd+vreVRDE2uQ6UpZqcVgygFsCn5WpJ9xPWBpY2GIJCYkGC/HYOZ7qBCxRUBoDC6tedHJkjMq29zbRgzpUvsuuuGDc/SWbptIFlRLJF01M/qNmo7eRymlh6aabOUaXdxCt12AokSSXum0k2IQsjGWrJYRzzXZIKJABE9BIB4rgmj0GDburYGrxlnJfFqIoBu2OwZ4FkaFMOBd5UMSIKmDCfFCCG1pQCAbGkX9xy8gG5nTwRWTfRRHK6wY9W3qXdjug09sZeOlE0bt08uQKGEcrdnIFkgBH0A0JJdtGppxOjnnd0MClmSakpPbSBeqjGpBrWRwofe+XVWpl4c3YLTNVgfH5peZP1ulmqMWD1oc7JYZ473zC+NpqNsS4dCxSoBQjhPUekSu5mAJPtM1LNRyyIrRmysDQ1VEMs32TntrAxjmIpBahqROIkP/NdCAZLmseuw8spBTMwu4y0HifVMa7UMu2siPUb61si1sL1BnoFTt51HZ6OI2gp5nSwQSYMmLTKp1zM4cN/z6G2QayEpe9fW6htICxGW6T1eLu0gZThoDtLzio/4ZANn//p+0penzkFJ9Ng4tdpxJr8R+DKOH70AAK9ruo1Mkm7c8fgkiYCn2zg4ODg4ODg4rgMeSaKIZ9t4+dukdHRyfB16oofOFllxeI6KVpusKAqlKlTdgUNXRWFAyH89e+DiHsC2dNjUpNWM92Ckuqxs24jvlWWfX57GnafPQqArrsbqDGxLR3Fik+1bM224A5HHSER1l5AUPU9BLNHF5Cghtbo9HRdWJvGWMRqFEiK0q1m06UooX6qi10qwiNj66ggmqXVEfbWM7OQmM41ULQ2tWoZFsPREDzurw0hTAmi7mkWMRpmcZgK9ZoIRhMNAgtfbc9MWxIgZ1AJAk/bpwDG+2UgjTgUPL1/Yj1o/jvuucvXOjmyzdklKAKevs0iSKIVYvDQLABibWGO2KQAxNPVdGfpV8gJGpo00jYYoMQvJZpKVTw/KtQFge20EkhgwyQPD7COWbyJPjYmjQEKnmkGPEps9R0FuilyHi+vjKM2ssRW3rHp4aHwdzSaJLElygJ1qHrnMnpGmqjvsnLrdODPHdW0NCd1lhr62pcMPZCbMaXVNmLkWtuYIqTWZaTGDTlEKUAwF9GhEK4oEFv0ESBSzXc3CtCmxO2ZhZ7uI3Q7paz+UEFP3tj+3W8IHqVnsaoX0eZ4aHjt9nRDnXbLmunDpAA4dmAMAjIyvw+2YzADZtnTk5D3xTM/SoMX68Ok59iwDquwjP02O5TQTzNV+vZPC1PAm7Gac9WUs3mPFCXYnhkR5F6tzxFy6PFxhYqJuz4Ca6jL3eACoXJlklkCtjRJajRSMXWrS2jews1nG+D5abr+TY8KB5aPz2D4/g3aXtCOdbyAzuo3GK2nS94oPt2Nii5qjSnKA0QPkXgsDEV7PYNITskqig521Er3mOmKZFgr0Pg4cBWa8D1WnEaC0yyK+aq4FRQpZ1CU1sg0l3YW1mWd9mzu4gp1zMwCA7PQ6s6nJDFehZtqMbN1bL6JTT7HS/3o9g5GJdWxT8vnLG+MYircxO0mKBnZ3c+z5EM810a5msUDlIyaHtmCmO6xd/XYckuohRQsyfE+BRU1mRSlEZ6OIBCW2D0QkBhHgTKpNLKBosYYW78PezrGopd1MYPzQPOv3ejWHkf3kmrkdE5Urk8jScWpbOry2iSo9p9Ej80zmIooEhJ6MCVoUEQYSGuenmaRIt5JDttCETgs9Ojs5mOk2K+7x+zor3jCSHUhKQAx2hddPTDKKQoQ30uA24pEkgEeSODg4ODg4ODiuCx5JoujWk6wEfGN9GOleG1u7ZEU2ObqBFuXgjOjr0NIdtmoAgGyhxgxs7VYCiuIxTka3nUC/G2NicVPBCubWiOhdSu+j10giTle3/Z6JIJAYZymKSJRKpLL7jVoGpSI1lvUlGJk2FLqq9CwNJ/ZdYeXBjqdgfauMjkP4GYZpIZ2vs9Vfz9ahmKTNesxCbWkECuUyyJqL0uwKLj13HADw3HOncOzgZSa0V69nYNCVbTa9yVaKAHDxlf1Ix7rIF8gKTYv14fYNxjNSNBeeo2KnumeoW6Al774nY2Jsg/FznJ4J1bRxeZGUtR/AIhTNZbYlgS8jUyL94fYNrK2PYHycRCBk04a3lYdHI36+qwChyMTp8qMVZEu7WFkkK+vUUJXxVbL5Glxbgx4jbV5bGcN0usPa5TYSSI1uw1scY/0X0b4ZSdex8PJBJGipfUpzEYQiSkPb7LoVC7ssIjgxu4z6VgHL82S1f+zgZcYb8T2FCOTRcvHqVgnJVJut7iUpIDYt1CpicH0AoF7NIR7v7vGVbA3tRgoG5ff0ejEkU20WSROsCKZhIUFfZ1MtWDQ6CgDvKp5jhrdX6nnMTi6ziKiZ7sDt68xKY//MIgwaDeztZNGopuDTiIUohZBkn4lJdttxZOh7ADA6vgFZc9g4PfvyUeyfIPflu04/h0YtixyVm2hX8pCusnRRNBfNtTLKlAsEAOtUpHCxMoS7jedYVIocT4NG+V2BL6MwtM2EKo1UF7alQ6MCgZ3dDLs/BDmEkehDp+KrvVYCibEKpo5cAUD4XZ6lY2icRBcHdkcAIIQCwkBiZsmVhXFki7usL1e2hjFi7aA0S+UoegZyB5ZReZmUmiekFlwaHVMSPTQWR5E7thdJCXo64wYpmgurkmXcoMbSCLsO3VoasVBAbZPcD7nhHai6A4uaPPuBhCgSWMT4rSfPYnV1FC593gyPbTKu2NkXTmB6ZB0nT71Mzr9rQpACFhG1+gYCV2HyIzHThk05mlEkQNFc2NR42Cg0YFUzjGeVyDaRmKhg/gkigjl95hyxCaL3qhqzYNF9iYqP0ugW422Wj85f85wuzaxBVHzGcfS6BrOtWdgYwaGZRSRoZHEgBVAcpqKm+Qas9QKLels9A+mxCiv712MW40ktnD2MiUPzUBN9KM7rF40hHKIbGEninCQAfJLEwcHBwcFxyyO6wbpGN3p/tyretOm2z3zmMzh8+DBuv/32m90UDg4ODg4Ojh9AvGkjSR/72MfwsY99DO12G6kUIbcO0gXFwi40w0a9Rd5PFuvwVkhaxizV4fd1ptq6vTCGZKHOyrQDX0J6aJelzAJfwvpWGZMZsv3a6ihG8uTflq0hPbwDKUnC0IXRLTg9k5Xtby+OIYoEljKJx7vQaIhbTfQhqR5Lc6mJHvy+zki94+PrRIGahvFrjTR0w0Z1h6S5yrkaSx9FkYC1Shn7ZxfZ68DWWGovbbfh2hoMWoYcj/WYqnF7swjNsPHsCyQcfvc9T6O6MoLMFCGf9yo5KJrL3NRVw4FraxibWCOvY3vq3JlCHXbPQLuapf1jwK0omB4hKTTX1uC6KisBHzjGAyR9MntwnrmrQwxhJru4dJ54k6XjXaiGg/JBco7rr+zH8P5l5rnn93UszNG03okLMIQ2U1ieOTwHt6ezFKEe60NN9KFRVWRRCllKZerAApqVAlKUEBp6Mg7OLkCnKaKli7PEry/cW58kMy2M09exfJOVpSfLu/D7OkuhZrw6uq0Ec0r3fULirg4Uy9MtpohcHtuE1YkxsrHnyWi0kyhT4mlpbAOVlVGksyRVt7gwicnJVaZA7vsyEjS1IMk+VN1h4/CHb3sOkhww8qxnaVhZGcP0zDIA4sw+kGYQhAiJdJupl//J87fj4ck1RuQWhAhavA+Vlk9fePwMpvYvMMmIu+5/ivWT2zFhbWgsvRJFAsx0BwsXSCpq9tgliLLP2rW5OI7RfaRNxdEt9BopJtvgewpiyS5kqti+9vwxzByag2GS9NpTj96Dw7ML7DwUzUWcesTZuyk4fR0hTQkyfzia+lu/sA8zpy5g8yIZT3FbQ4ymH92uCVlzmLp/triLKBJZSuz0W55BdX4MbVrYkBqvIHQUJGiKud+Ow7EHfRsS0jzt25cfvx0n3vptlhLTkz1ADFmay5BCaD3yfNCzbYSejNL0Gmt7ZWWE+RKmkh3IV8ltPHv+CO458wK7Fnq6A4VKl0xvr8NMdll6TRAikl6jqcyMVYea6MNp7Hn7XV1koaa6WHmF3KelQISRa7HnmJ5pw20kMDJD0o9uKw4932QEfLdjwqXXyNsoIQxEpvweejJazRQSNB0tx/uQdOIdCQBapoOdc8SPcf/ECiqVIjKTJEVqNZIIfAnZ/cTtwO8a8HoGJJHce4IUQdRcdk9EkQCRXsOx2WU47ThU00Lgvn4pK0Lb5um2G403bSSJg4ODg4ODg+O74U0bSeLg4ODg4HijgJTscwmAGw0+SaLYrhYwse88AKJ07XQNFHMkvB54EvbRChs53UW/moFKU0+q5sJqx1mVjSSTiiOrFWf7LmQazNC1146jRytIRCFCfa0MY4JUUDzx7Bncd9cz6Nf3tG0M08JOhaRTLEdDjlanFBJ9Emqm1TixfBOt7Rw7ZiLbgprow6CVY/J2AXqih8xA6Vf1YVNzy24rgfGhLVZFNwibd6kOTOBL2KlnMTpEqjfiqQ4L4W8tjSGe6CJtkP4Q5ACiELFwuRKzYDcTrBrF6sQQRSJMmjLrb2ch0oqjS1dmceTwJRaKj2fauHhxP1SaQkpnG0SPZ6DuLYSIIppuo9sMqoRkzUUYSNi/n1T+OH0DUSiwMH0QSOjXUqxyrNdK4NAZWp3TTLBUAUDC9CuXp1n60fcU9NZLrNppbm4apydperGeQizVYdVb1YUCJDFk6ZTycAVWNwafVqLVNoswY32mIUNSNiR9EAYifFvFJtX9mdi/iHYjxarOxmeXYLXisGi1jto3kKD9IKkeHEdDi6pCW46Gl6tlvJequQtihHiii+oOSes4PqmkC0Ka+izvMkPjQWptULHmdQ2EvgyBVlnVdvKYnFxlY0I2bTz1jbcAIGmMr587jv1Z0nf/n7c+AknzmH6MH8hwuiY0mk4yNIdVoAFAYGvQaPqkvVnA+NQqS20n8g2Imss0yiTNw9b8BIZoZVgy1WZjWc83Iaseq/zSYxbm5qZxG9W3GhqqoLo2hBytZjp64ApkxUPlyiQ5x2YaJ2ZI2nf35VGYyR4KKjmnxMgO6vPjqND7NG72IekOyrMkVbO7PMLOx0gSI9iBUaqsuwg9md17ku7AcTSWFrR300SFnqbnzORexWLgKpAVH52lYQDA8bc8C7eRZOrVdjuGeLmGQf2f2zHZfee1Y0SHLUXvW4loOS2cI2kvw+xDSfZwhaar77vrGWi5Flya6gTAUtuiFEIQI1h0zKeGqsRpgKY9FcOGtZuCOUTTlTsZqDSNJwgRQkdlhuGCGEEyHKYFFQUSolBgek5WK46U5mLupUOk72M9pnVV3SpBFELUqXH3lGEjkeigs0teC3IAtMDaJUgBSpT6EKPp3jatjDNSXVoRSyYdXs9Ar5VAZphcc1Hx0aMp0cF5dKiy9/z8FOKGhUKpCtt9PRW3bzBx+wbv71YFT7dxcHBwcHBwcFwHPJJEUSpU4dGVc6+RhOuoSKTJ6mJ5bhqtPlklFY/PYWd9COtVsoqYLG8h8GUkqdKxWaqju5lnq712KwlF8RCnvk/V7QIKNCLhOSpSpRpCStS957azsNpxvHyZrN7OnHoJcxf3IU/VmQ3dhuuSlfHKxVmMTq+gQ7VrRCmE42hI03Zsrw+hOFJhUZlYoovObvoaBVibaoE020nMHr7CVG4jX0K/mUCe+mkFvozu8jhb3SZHt9Ggq2NNd9BopLHSJFGsI0KERLbJFHJlxcfjL53EfafOkn1HAixLB64iLoeUuH3k6EUgFFgbGzs5nLz7edSXyUp5aXkch49fwC5VMx8+Ms+u2fKFfUgl2yhRzZjAVtGtpdmqsd8zkUt1sUkjA6bZR78TZ2T9v375JD5Elc4l1YNVSyNFV41eO4ZEvAeTjgfFdNC4OIOkQl7v27cIh+q8WH0DsWwLkkxuraHRLWjJLtNdMVJdohpMV93bWyUMH1xkqtH9ahpqjKyytxfHkC3tsv7YWJjAYrWElE6iCm7fgOeoKFJNqq3tIkwazaltEhJrIU9W2ZLsY6S0jfllUoCwf2YR3U4c63VCRu/7MmYjEQ2qDK5pDjpUB6g4XIGsu9dEMABA1sh4KAxtQxAiRqAeHd/AwSmieqzH+3jw1PNMvVzWXYiaC4NGRqKugPXVEQxc4BLJDpYvzWD6xEUyBjYLyNCxlBrdgdsxYVDtIquWgp5v4uTdz7PXw/uXMYDrqojTCK9VzSC5fxUX//JtAIAjd7yIg+plFhkJfBnFiU0sXSRq4jGzj4l7XoJ/XmH7G0ROXFeFbPmMfK+N1WHUkzhygBzba8UhqD4j4MdSHfTb5HrriR70dIfp6yiaS3wM6b6cegq5cpVFMl948nYc3DcPnUbTNl46gNwIiXZZrThSo9vo7RASvGS4OPvYnRgtk4hvsliH1zWwcJFcF9OwMTVGvru5NgTXVVGeIJE0LdlF6MnoWGQcZiwDvUoeJr3GA1L64P9WLQWTRr9k1YNZrLNx6rRjEOSARcti5RouPX0S+2kBgmQ4CLvkfH1Xgai5KNF27K6XIco+G2ui4iNwFMTHyTl5lyfQr2aw/7Zz5HXPYH5zquqi241haHSLXi8JquHAoG4A24tjMEwLT82R5+tP3HaRKWbr+RZiw1XUrxANO71cw8Vv3gmT6kilsk1kRreZz6aU7GPnkdMsAkb0nsh9Ozm+huRwFYGtwX8didtRFAE30uA2ev3Uwn+QwSNJHBwcHBwcHBzXAY8kcXBwcHBw3OK40SX7XAKAgE+SKBxbh2eR0Gllp4Dh8jazbNBVFzOHiWFnb62I4elVZivQ2SZGjwOdHDndhTM/xlIzXcvAZKm6F3qP9ZnOT21lCEqyB2WChLSxDASejFmqC6Qmejh273OwKZH78oX9GBsmoeR4ronAVRjRdH1xAoVSFSsrxCpj5sACzFKNkQv1TButizMozxAyaW83zawfErEesfGgKSE924akeYz0KoUeRoe3GHnS68SQoiH/hSdvR8rs4Y7ZywAAJdln4X+AkEXvOnyeWWYkC3X0ejFG7L5aY8iuJ4lBLk0RpvN1aPkW0oPXQ7uIQoFplXQ2ikiOk/4YGt2ErLuQqO6NqHnQ431G5E5lm0AooEGNikeGKpBVmx3rHQcuMG0aI9UlRHCa5qmuDWHowBLrL4Qi2r0YhqdX6Tn3WLrE8xT06ilGnpV1FwhFpovj9QysL49h8sACAODLj9+LT9z7PJqU9Ok4GvIJkvaLJXowi3VkKdnYcTTcc+YF7G4QcmkUCTi/OIN9o0TrRlM8pqMlCCF6nTg6lLhdnljH3NIUxst7lh3liXXkqeFvr5WAZlowaHoFAEyDpEfatQyyI9twWiRl9OzLx3HHyZeYxUtxah3VlRHMHrtE2tmOsb56+dxh3Hb6RWwukjTGWKEBezeNWIakzBTNRba0i9goSe3+zZ+/G0cmllnqJjtWQa+WBgAUzlxCuCJDoek2t2Oiv52FUSQpZq9rQNRczD1L7HRGxtcRUeKtlu5AyrqYotZDaqbDSNMAKU4IPAnpFNm3ZtoQNA/pCTK+pI0i65fc8A76zQQzNRZiIpKHVtG5TO69KBQgmxpW5wnhfnhskxn2ej1SQPDoxaMAgLum5+BYBnLjm2z/Rq4Fiaa2c4k2RCmASwtBJCmEQVP3dofcRwP9ptCTUMrVUNhPzrGxPILs7Co8et+OHZ6DIJMxPXJ0Dm4rzq7L5KkLiE1u4ShNXWnJLgJbY9YqViOJ6soI02ganl5l11jRXPQqOTi0iESP97F6bj+7hqnZdUzuW8TZJ88AAE7c/iIjUyfyDci6C2OMjEM11SUaS1mqX9Y10KsVWNpcT/SwcmUaM8U6669BEY3eiWH4yDx7ttRXy4hn2rhMtZCmZ5YgSiHe966vky+KIeZeJgTwqf2LUAwbMXpc0XSQSTfZMeLlGryuAYGmGMVUBE1zUDiyyNq59CLZ18SROQSuAt9WEbyOxG2O1wZ8ksTBwcHBwXGLg9iI3DgeEZcAIOCTJA4ODg4OjlscN3pSwydJBHySdBUGcv4TE2twLB0arVZIJDss9QJI0Ms1BL09h/RkeZelU7qLwzDTbVg0zXHoxAXI8T4uPX0SALD/5AUW4pfkgNgeJEgaY21pHPl8jaXQ7HoSiYkKqyY6cPgKc0tXU124rThi0yRMP53ow+/rKNPKOVl3ICoBC3lbtRSGZlfYvlKjOywtFrVE1FeG0WikAQCzZ16BqPgwaBps/YVDSBfqTIvIszSWIrM8FU8sDOP/OEmq19xGApLio7FKnOqLhxahxCyWymtsFZEv7TAJf7eZQK1C0lzxZAf13RzGDpJUVHV5BGarzlIPTjMBo9BAnmqsaKUG2pdJusAs1SGbDnxqfSAaDsJAgkbtUxIjO+huFXDgKEkJXT53ECfe+m20aOWcmeyiVSMpgPTEFgJbY5pK6XwdTjvOqvDsnol9h+aYrYvXjkGjVS+yTPqtukbOP5FuQ5RC+FSfqttOIJ1qMeuZHzt8AQCwtEaqnY6dPMfsUGIZYs8wSFWmizXER3eYfpEohjgwtoo2dTLP52uI0Yq8WCginB+D0yBj2nc0HD1ykenkdDaK2F4bQXmCpIFyqQ5eevYkZqeXAQD9bgzdLhmXhWIV7Z0sLJpOGU7XYRQaUIy91Fy6WGMpES3ZQ3yYVNyZ6Q48S0MmT44rCBFcW4NEU0Cy5sAs1SHS/njb2x9De7MIJU3GV3d5CO0GSTeXcgLCRZEdJ3nbCvqXSsxBXkv10N0sYOY4ucaCFEAfJe2IPAlCTEWK6lkJQoTG0jDyx8hYy01swW7GmTZYYf8Kgra5d6+qHnya9hSlAI6tQaZWM1EvhFjWYDTJOdavjMMoNjA8Ro5FbFfI+IgiAbWlEdw2SlJiueEdSLLPqsZk08bGywdY1dTQ5DqMXBMb50iFWqZYg1Ul47R43wWsffU2jD1E7EK6r4yg1kxjiKbM9EQP/e0cTr6NWLtY1Qwi+pmS6EHLtVDySRtDT4bfjMOkqTtJd+HUBdg01Zka2YaRacNukftLSZK+HvRHGEjI0+q+3mYBU7edx9ILR0i7VkuIjewitbinpZaix9HzTfQqeWRmmwAAVSSpxLBHxq2c7EPVHZb6l00bzV6c2ZhkCzUk6LNXMy3ImQ7UEbqPQIRs2jg19S0AgLObxtrFGYxQHS1rM48Dp6g2nuZCn6jBWd2jChiJPpo0LRiFAmJTW+x5kzSWIaseRPosCmpJDE+tsr6tzU1ga6uEru8BuAKOWxd8ksTBwcHBwXGLgxO3XxtwCQAODg4ODg4OjuuAR5I4ODg4ODhucXBO0msDPkmiiKc60GN7qsCCGDEvKqtr4quP3A8AeMcdz0A0Hbi1PX81UfHhUQXlKBQgaR4rkRfkAJEvIREj+XhJd5gcQG5mDfPPHcPR+54DAEwduQK92IBTTZPvOiqaC6OQKRdIz7bQXCEcGt9Rocb7cHdJO5xmAp16inGQ+vUU40kBpKw4cBVWeqt0Yntq3KkOWrU0Dj/4BADg+b94Ow6dOsc4S7LsIz6yw/bV3SiiQf2iDk0u4ejsPCt5j0IB8bFt/On/JN5dHz64RBR2KbcjQT3KBjCzLcQG3w0kJIZ2GRcokW7DrqcYjyoKBQhixHgV3cVhxCepF5kUQow5sC6RMmzFk4mi+UCduJrB6vIY9p8gHKByoQpR81j5dG8ni/JBUs4rah68TgxVyqsy4z1oko1YmWyr9vro11NYWyOq44lYHxMpohA9tzmKkaNz6MxPAiDqzKl0C7u7RJG8bZmYHNnY41k5Kryegf2z5Nhby2PIFQmPpt9Mwkj0UD5F5BUGPLhBmfLOyjBiiS6ylL/iUA83ALj87ZNY2C0hbxJuz5C6jthwFQEtjxaEEKbRh2eR17Jp4/iZl1ClSurJbIvxYsx0B63tHHLDZAyUdAdy3CJ8Ovrdfj3F/ArTYxW014hMgRqzUFkZwfQZopD85b98EHcdPs9UkkUpIFyzGOFSBZYGQQhhV0h/qaku8pSDBENH6MlonJ8GAOTuuwJzZhutl0hfSwO/MPEqZXDxqmqfIIBoEC6c14ohlm/u+Y8pPuLDu0SyAUBtYQzZiU1WTt6o5JnStZ5tY3x0B/VL5Li54/OQYh7ktMeuj5LrwKT9E7gKQofKiZTrMOtJpIfINZbjfXQ2ikhQfpPXMzB620XW5O56EXKyj/E7XwFAeDSD0nshpaF4YBlCKU32vdXCsXufY5yl8xcO4uTtZ9m9p8QsSJRHtvL8EYwcWmActubCKHveAYA5VIPbiiNZJu2UNA+CHMClfDnDUZGeJXy2+SdOYebOlyDnKS+vmYCc7DPpgdjYDgQhwhiVTVEzHXj0ORXYGhAKCBrkOgRtE6LhwG8T/hfjnx0jPKKwL6OYaWDyFLmP+9XMNecXtE0gohyldAdOMwE1T2QdQk/Gvnc8jf4KkdsY8DoBQCs2EHnCni+kHMLItPc8Ki9PYSLTYcrn9loRiuHAWiuya1xZIbzCdCcGVbdx+O4X0HZC4HG8LuDpttcGPN3GwcHBwcHBwXEd8EgSBwcHBwfHLQ6uk/TagE+SKJKj2whrpb3X41twqNK15yl48H4aMxVDINgLwAW+BLcTQ4eWIRdm1xAGIith7m8UIJs2YlQVtrVWZimx+Pg2RibWEbVISFc2ifHroBzYKDSwc3kKHg0BpzyZlZ1ryR7UXAsLj98GABg9sAi5E4NOw8OCQNJSg+0FOYBZrmP+FaI+u+/4RXz90fsAAAfKG5i973kICkk3jo1uwm4mkJomartJeq4ONaxM7l+FQ9Mhku6gemUCrW3yWo9ZkDQP7zhESmvdVhxaugOFKmELcgCva6C1TvraSHVhFvYUkyXVw+q5/aR/4l2ItsbUmbVUDzuXJhGnisvp2xcRdmjaxgjgbSeQOEXKcMOmgqQnQy00STsNB/t0l6hjAzDifdiVHGTaX56jstC7LrUh6Q7MOC3xjkgfykm6LVVNntlHUmRWJwaLlkofmVxEYGkYpUrFvitjdW0UY6Ok1LoohMjMrEPOdAdDCF7XgE4NTd3NMkSq6huGIr713Gk8WPoa60vDqKPfJGXYmWINsuaiS4+taUT2AQBmTl7ApLXAzE1FKYAgRujTVK5r6zCTXSbroA/VYG/lUG+RMa8bNmIp0iZR8SGrPho01TJ0eAGi7jIl7ExqHa6tITVEUjdKsg+HpoVFKcDQ5BpEmuZ56If/Bhe/fQpHHngGALBzfgbZTBselW4IfBmp8QpLc/V2skhTZWvvAkkzqVRV3N8yIOf2UkTdtRIk1WPl4VO3nUfk0/Fv+MQ8mRrtSroLfbyGxb++k1xbOUC6XEWcSmrIugu3Y7JxWxjfgpZtseug7W8hi2XSjrYJwWgjovepOb0Jr5qCViaSAO0r4zAMkqoV4x7SR5aYVIWg+EiNVyDnSAo18iQ4lRxiZ0hfYlWAaLgQh0nqLrQ6eOGRuwAAt4/uQBurIzJJirTyUhEjb3sRu/OkTP3uH/8qokCElKYpxo0klPvJcWcnvw1vJcEU6vO3X4K1UoSaomm/tgnZtLFynoyf6dPnoE/UkKHK8pJps74dPzwPZaKDsEHlBWIWrK0cJvaT+0MQInitOEtlIhRZ3/gNIgGSvpts61Z0iJrHzHGtdgJ6rA+QXUM0fYwfvQKlQE2O58egUJkPpmpfJ+fo93XsLI2iPHiejm1DKgYwfNK3ouGyVH5nYQQmTYEOoOZaWH7qBABg9NgVtBdH2GdKzELy4Aq6cyTFtrU0huIIUbOPDVfxjb/6IfzQ/r+EbHOT2FsdfJLEwcHBwcFxyyMCbiiPiE/wAD5J4uDg4ODguOVB0mPCDdwfnyQBnLjNwcHBwcHBwXFd8EgShRK3kBqZBwBEjgJ50kPvm9QuI9VhbuKxyW1Ensy4LIl8E7HyLsuLux0TaqKP9gLJXwtihNjkFnTKd1ETfTSpo3joydDzTZbLX3nxEEqjW6hvE+7HxD0vIZlrQKbS91YjiQx1vVdzbSAUMH6USN5LhgNhJ8f4TmqijzAQkT68DICUyxvHOxijNhSi4uMdDxC5/qXz+yFPeqj97xkAQO7AMrxWnHGjAluFIIVYu0Q+P3RwA1pIeETOTgblE3Owd0jZsSAFWHrxEIYmyXHsZgLtSh6Fg0vkdT2Jx8/ehjP7iXVEbLjKyqMHpf0ytV4pHlyGb6uMy7BzaRKuqyK5j7jeYySP7v9DpBeSt60Q3kOecH2kMRHevAaV8kT8vg6IISJq8WEWGhCEiMkNpIarcKl1CsQQrY0SFGqdQmwXRMijhL8TrsrwPQWJ1C7rS4PafSAU4LRj6DQJp2L4yDxcW0N6YpO1Q9Q8iAnCjVFkH1qmAyVBxlO+WkP6BLHKSDRjeMf4FuONCK04AktFcpSUovcqeZgjVcYHG3ngRbbs8TbyEKUQ2TThbrS2c3C6JuOorW8M4eQ7n0TlpX1svNj1JI7dT7hCTi3FuE5mqY7eQgzjt5Gya6uagWw6cGmJu1Juo/3tAXMNMMe3kZsh12jn8hRa7QSO30/GQ3hBw4kf+wZA76dUqQbjUBXOPBk/yX1r8Nsm+pQPuLg0gbvfSSUQagLCQIIgkJSClLbgrGaRmCWcpaBjQEr3UN8i9+3g2gKAvxuHonUgGOT+cNaSkJJ9jBydY+cUBhJA7x9jYhvexXEmg5HZt4bAIvvTcm1E/RA+tYcRxAhiXkXrUVJanrxtBRf+n9tw8ieI27wasyDQewmqgPpTs8ieJMd1d9LQhusQxwmPJlyl9iU2GR/xyS0IWogoTsb5wrOHceAg+a7fNSCdisEbIdewePAliEUdMpVuEDMBok6I6MgsuU7hPMLUFPlsxIfU2oVokOPYSwX0qxn2rHGaCdS389j/jm+T/tkoQI9LEChfTjQcVp4fejIEWYBXI2OguTKEzNQm4xXZOxlceekwjj/0GABg7akTmHzoWfLdHRnT73oagkq5TrqD0FKZfY6ebUMQIwR1wlHz2yZExUdIr4WiuXt2OLMNdM+Owpwg3KD+ThYT97y0x0ObUgGXyD8AABoJZhejl+vw2yYsKu2ij+5C1F2Up9bZOW6vDzEpC4ghxFgAjXIJRw8ssn1JMRsnD1xG/cIUOm4AgH7nNQYp2b+BkSSebgPAI0kcHBwcHBwcHNcFjyRxcHBwcHDc8rixkSRO3CbgkyQODg4ODo5bHTeYuA1O3AbA020cHBwcHBwcHNcFjyRRhK4MMUZIi5EcImqHjKSoaC42FiYAAPvGdtBZGEFAfYlcS0O3lkLpGCF9q/ssWK+k0G6kAQDr2yXc95YFdJ4mhMBYIKJ4fI4eVIQct2BvEeLt8PQqAl9GfpQQDwXNQ2LfGvOq2qkUkT1KSL1S2oWznGWilQPitEU95OKTW3AbCYjJge9bGzB1OFSkD7sZJhY5e9t5wA+ROUXOoXNxHPHpTdibhEAeOArUVBfTpwkBMeio6C4TkmplZRTD06vMTyr1lh3E18rMb87pGihR7zEAMAtNvOOBb8G3CfGyMT+GgJKr47kmAltDlnqXqSMNuJdGoIwR8beyNofQ2fPBkmoNxGeaZMceoI/twF4mpF1jOsTawiQmJELyrW2WUD64iG9/g3jK3fsj34DfNSDIhJwtmw76lLQpKgEk2Weijhcv7sf0xBqiLnltlOqQTRvNNdIHw+94CWGbtCmxbw2duTEMHyOEekGIkBmuMqHKtflJ2C+pOPMvHgVARUBNBwL1FMsfWUDQ3iOQG2NVeDVC6o0dXEdkyczDTZQCRJEAg5K+IQKCRFZ/64sT2HfXi8hr5DpceP4Yzl0s4/5Zci0OHL2Eq2HM7ECOWxDp9o1zRaTLpN/djomxUxchZ8lYE5sJ9LdykCghNuio2P+2ZxiZFmIEbZQQb71z+3DwvucAg7TZaSSgjjYQdmXa1z6EhI7qFXJ/DZ25CJsKswLAsTMvIWyRcxL1EPHxyt75ZxXoZQfOS8TnS071EHYNFMZIcYOS6DFSr0Tv7cH4kFQPCEQmEBqP2WgvjEBMEYK1YMrQt9uIjZCx6HcN6JNU4FET4K0l2L7V6SaiHhiJd/dbB7FQK+JUghQJ6CNV5rGoik3k77oEwaDCmGELfj0OZT+95mEXgaMwIrPXjEMZsYA+Ie8f+onHEOyS8w/6GsLcMEKVfFcbbcBfUpE7TIokwpYIvxGHepk8M4Kmjs7/RdqYmGlANEIIGUq+b3aQ1FwmcirVUpj+4achjFH/xoYN65Us2puk/0pHr8Bfp8K2k3V0nh+BSO+1wm2XgUiARInttdVhHDh1HgL9XNMcrP/NKQDAyNtehKBE6L2Yp321i8q3j6J8F3nWSKGAsK+zoonOoxkIUoDqi0QUN4xEVjQT9UAKE+hx7K6JhCdDytp0NKmAqrAiiSiQoEyR+y5q+4jqEhKU9A0AUimCvEOFKlNdzN73PKQ0uQ7uRgbuagYOFXZVU11GEO8tDaFwfA4IhddVTJITt18bvCEiST/2Yz+GTCaDD3zgAze7KRwcHBwcHBxvELwhJkkf//jH8T/+x/+42c3g4ODg4OC4SQhfgz+ON8Qk6W1vexsSicTNbgYHBwcHB8dNQkTI1jfq7++RbvvsZz+Lqakp6LqO06dP41vf+taNP83XGTedk/TYY4/hN37jN/D8889ja2sLX/rSl/D+97//mm0++9nP4jd+4zewtbWFI0eO4Ld+67dw33333dB2bL68H7mJFwAAkS/C3U6zz1JHluBRYTpBDtBvx2EmSe4+UegjfmwNvQvE0FPJaNBGaxihnJzkWhPWxTyGTlLRx3QPkUO63dnOQI5bLEeuJPoQFR/9DZL3jzwJouEx7sPBtz4Dj/JmpGwVghihuzwEALB7JlTdZjl1vx2D00xAXic5ddFwENUsGNRo1yzWmUCmHLeAMIKYIq8DV4GU9xGukHYaw7vw2zEoKXLO1RcPIDNJ+ExFv4J+M4H0BOGBQJYxfOc51M9RYcrDSxBjDnrzpH+8ngFBCpkgYPGeCwgahLsQBRLmHr8NM3e+RM6hbkLLtiFoITsHQQoglck5NR6dZoKX8elNBB0D5jFqUtnVkMvVEZsi7aptliAIEY4eIpyctecOY/TkJcbBsbby0Kn5LcQQZrbFeFbTE2toNVIoOWRN0d/KYXNpHLN3vcjGyID7JSRUpLQlCAZpszVXhGzajN928O1PMyNUAIgf2UBQ15monyDaCLqEcyIoPqy1AmJHd9j2/eUMPCp6Kco+5r91GhPHyDn5OwnGq5s6fgnWTgbJQ8Twt7xaRjbVwujJa7lIGSpMiQiwtrMwqNlwslBnIp693TTMyQpCOm4l1YM5toOQnodoeBC0CNgl/SXIeytQVXUR2Cog0v4RI3jbCfIeCCcJjosy5a2JCQdO12RinGEgQS+SNoWeDHWqB1At0ajpImhITGwzCkT4fY2NiSgSAHrvDMybB4bH/ZUyjLiHkPoM25UssnfNQZApp8Ml21/+1mkAwMypCxDGCT8nXGzAa8WZeKCQ0IEwhDpC2hmPBOzf2OO2hH1iXA0AbiWLMBDZNQ26BuR8F0KVPANaF8eRum0ZiBEOm9/XEY2UIWyR6xQ5AhOm1I4J8FUdSp0IlQZNHfIxE+iScRxWIkhxC8HJk+S6PXcWyXdS0cq/ViEe0IEONbRtZBGFAtRhIj5qjlQRBQKEVptepxiUQhsSFdeEokDUiGmxkDFgjFQhxjzaDgNS2oJOTWyHUl2IhovdF4lxdSzbQoKOS7FsYun/PoyJtz/H+qvbjcNvkPNXCm1sPbkfY3nybE4eXEFo74mECmIEc4iYB4c9cu07l8cAAC9cOYAfml1jAZHtP5tA6b1LjNMo5zuIbLYrwslLUDHN9Tz0xC6M28j5B+sB4MkIe5QPGbOhHBZhE+9pPP3Ne3H/P/5LAMDZF07grtxjkFM9CG+iCrE/+qM/ws/+7M/is5/9LO699178t//23/DQQw/hwoULGB8fv9nN+3vjpkeSer0eTpw4gd/93d+97ueDjv/lX/5lnD17Fvfddx8eeughrK6uvs4t5eDg4ODg+EFFdEP/+7tGkj796U/jp3/6p/EzP/MzOHToEH7rt34LY2Nj+L3f+73X5nRfJ9z0SNJDDz2Ehx566Dt+fnXHA8Bv/dZv4atf/Sp+7/d+D5/61Kf+zsdzHAeO47DXrRZZOXU9H22LyuzbETwnhENXk5EdUXl5QLUjdLwAAX0tiSFCK0LPIcuVoB8isiL49HXXDeA7IWSZVtlYESKXWiM4IWT52ryvGETou+Q9344gYu/YIm0XALhWBNcJYdHPbC+AKgaIbNoOJ4TtBgjo9mIUQbb29uU7IcSIfCaIgGJFbMrccQO6LT2WTc5HoZUaHS+ARPdruQFcL4A4aFc/gn9Vf0l2BEnZ6x/fDa6JJAlWhIDuNwoidH0f7avaHPkhaRu9LpEbQaKvO24AIQrYZ4ETQqWfISLXyWBt9hFzQvRou7oeOY5IV3qWu3cdXDuC44QsktTzAtIue++4V7dz0D6AVJeFdgSBPmAsJ4QgRqyyR7YjRF4EpU/PmZ7/4Jwid68/hIC0I7hq/30nhEfPAaFwTTtkKYQo7Y0t3w2Aq87f80S2LUDGmjMYt1aEthuw8dV3AyjyVf+m7QYA1wmhXXWNBSuCEO61W5SvGkueD80J4fVD2nchNDtk4xIh4FkRPHvv/ui4AboeiZaEXgDNHthfkOs72FYejB15r388Z2/firM3dhCRqMOgjX2X3KehvXedAiuCELBdwXZCdH3SjvZV5xBaESwnhEq/q/QjIIwQWnt93/X3nieevfc8AIAwALumrh1CtiKI6lVj2oog0PHRdkNEvRDC4B6wIkQO7at+BL/rQ/D3nlNyPwT6e/dL6ERA12d9G3b37helHwLW3vlHoQCPvg5s0iZR2zsn5arnh9rf6zuR3vOiuPdd6aq+DZ0QorD3XdcNEFl73+1c9ewF9u5NgNxbnb/1bA7tCP3BPSCSYwPkfrGcECH9rB94aF/1TOi4AYw+eW4CZPwIgzABve9Eee98XStiNk/BYPzTcxzcw216rJ7vsedDzyfHle0IncGz7XWLKN3447Tb7Wtea5oGTdOuec91XTz//PP4hV/4hWvef9e73oUnn3zyhrfpdUX0AwQA0Ze+9CX22nGcSJKk6E//9E+v2e7jH/94dP/991/z3je/+c3oH/2jf/Q9j/Grv/qrgyky/+N//I//8T/+95r/ra2t3ZDfyOvBsqyoXC6/Ju2Ox+Oveu9Xf/VXX9WGjY2NCED0xBNPXPP+f/pP/ynav3//a3burwdueiTpu2F3dxdBEKBUKl3zfqlUQqWyl/N/8MEH8cILL6DX62F0dBRf+tKXcPvtt193n7/4i7+IT3ziE+x1GIao1+vI5XIQhBsp6X5ro91uY2xsDGtra0gmk9/7CxzfEbfffjueffbZm92MWxp8PN4Y8LH4D8ffZSxGUYROp4Ph4eHXrD26rmNpaQmu697wfUdR9Krfxb8dRboaf3vb633/VsMP9CRpgO/V8V/96le/731dL1SYTqf/Qe17IyOZTPIfpX8gJEnifXiDwMfjPwx8LN44fL9jMZVKveZt0XUduq6/5sf5Tsjn85Ak6ZrgBQDs7Oy8Kshxq+GmE7e/G97IHc/x5sHHPvaxm90EDg4AfCxyvDZQVRWnT5/G1772tWve/9rXvoZ77rnnJrXqxuAHepL0Ru54jjcP+A8Txw8K+FjkeK3wiU98Ar//+7+Pz3/+87h48SJ+7ud+Dqurq/joRz96s5v2D8JNT7d1u13Mz8+z10tLS3jxxReRzWYxPj6OT3ziE/jwhz+MM2fO4O6778Z//+///Q3R8T/o0DQNv/qrv/pd888cHK8X+Hjk+EEBH4vXxwc/+EHUajX82q/9Gra2tnD06FF8+ctfxsTExM1u2j8IQhTdXLWrRx55BG9729te9f7DDz+MP/zDPwRAxCR//dd/nXX8f/kv/wX333//69xSDg4ODg4OjjcTbvokiYODg4ODg4PjBxE/0JwkDg4ODg4ODo6bBT5J4uDg4ODg4OC4DvgkiYODg4ODg4PjOuCTpFsEjz32GH70R38Uw8PDEAQBf/Znf3bN5x/5yEcgCMI1f3fdddf33O8rr7yCBx54AIZhYGRkBL/2a7/2Kp8hx3Hwy7/8y5iYmICmaZiZmcHnP//577pfx3Hwr//1v0Y+n0csFsN73/terK+vX7NNo9HAhz/8YaRSKaRSKXz4wx9Gs9n8vvqD4+bhZo7FL3zhCzhx4gRM08TQ0BD+2T/7Z6jVat91v3wsvnHxWoxF27bxkY98BMeOHYMsy3j/+99/3e0effRRnD59GrquY3p6Gv/1v/7X79lePhZvPfBJ0i2CXq+HEydO4Hd/93e/4zbvfve7sbW1xf6+/OUvf9d9tttt/NAP/RCGh4fx7LPP4nd+53fwm7/5m/j0pz99zXY/+ZM/ia9//ev43Oc+h8uXL+N//s//iYMHD37Xff/sz/4svvSlL+GLX/wiHn/8cXS7XbznPe9BEOw5iP6Tf/JP8OKLL+IrX/kKvvKVr+DFF1/Ehz/84e+jNzhuJm7WWHz88cfxT//pP8VP//RP4/z58/hf/+t/4dlnn2Xm198JfCy+cfFajMUgCGAYBj7+8Y/jne9853W3WVpawg//8A/jvvvuw9mzZ/FLv/RL+PjHP44/+ZM/+a775mPxFsTNMo3j+PsDuNYIOIqi6OGHH47e9773/Z3289nPfjZKpVKRbdvsvU996lPR8PBwFIZhFEVR9Nd//ddRKpWKarXa973fZrMZKYoSffGLX2TvbWxsRKIoRl/5yleiKIqiCxcuRACib3/722ybp556KgIQXbp06e90Hhw3D6/nWPyN3/iNaHp6+prv/fZv/3Y0Ojr6HffLx+KbBzdqLH4/3//3//7fRwcPHrzmvX/xL/5FdNddd33HffGxeGuCR5LeQHjkkUdQLBaxf/9+/PN//s+xs7Nzzecf+chH8Na3vpW9fuqpp/DAAw9cI4r24IMPYnNzE8vLywCAv/iLv8CZM2fw67/+6xgZGcH+/fvx7/7dv4NlWdccVxAE9p3nn38enufhXe96F9tmeHgYR48exZNPPsmOnUqlcOedd7Jt7rrrLqRSKbYNx62L12Is3nPPPVhfX8eXv/xlRFGE7e1t/PEf/zF+5Ed+5Jrj8rHIcTX+rmPx+8FTTz11zZgCyHh97rnn4HkeOy4fi7c+brriNseNwUMPPYSf+ImfwMTEBJaWlvAf/sN/wNvf/nY8//zz7IdnaGgIYRiy71QqFUxOTl6zn4EnXqVSwdTUFBYXF/H4449D13V86Utfwu7uLv7lv/yXqNfrjJdkmiYOHDgARVHYd1VVRSaTedW+Bz58lUoFxWLxVedRLBZf5dXHcWvhtRqL99xzD77whS/ggx/8IGzbhu/7eO9734vf+Z3fYd/hY5Hjavx9xuL3g0ql8ir/0FKpBN/3sbu7i6GhIT4W3yDgk6Q3CD74wQ+yfx89ehRnzpzBxMQE/uqv/go//uM/DgD41Kc+9arvCYJwzeuIEmUH74dhCEEQ8IUvfIG5WX/605/GBz7wAXzmM5+BYRi44447cOnSpe/ZxiiKrjne3z729bbhuPXwWo3FCxcu4OMf/zh+5Vd+BQ8++CC2trbw8z//8/joRz+Kz33ucwDAxyLHNfj7jsXvB99rvPKx+MYAT7e9QTE0NISJiQnMzc19x23K5fKrVieDUPRglTQ0NISRkRE2QQKAQ4cOIYqiV1VlXL1f13XRaDRete/BfsvlMra3t1/13Wq1+qoVGsetjRs1Fj/1qU/h3nvvxc///M/j+PHjePDBB/HZz34Wn//857G1tfUd98vHIscA389Y/H7wncarLMvI5XLf8Tt8LN564JOkNyhqtRrW1tYwNDT0Hbe5++678dhjj8F1Xfbe3/zN32B4eJilPu69915sbm6i2+2yba5cuQJRFDE6Onrd/Z4+fRqKouBrX/sae29rawvnzp3DPffcw47darXwzDPPsG2efvpptFottg3HGwM3aiz2+32I4rWPLEmSAOBVUgED8LHIcTW+n7H4/eDuu+++ZkwBZLyeOXOGpdf+NvhYvEVxc/jiHH9XdDqd6OzZs9HZs2cjANGnP/3p6OzZs9HKykrU6XSif/tv/2305JNPRktLS9E3v/nN6O67745GRkaidrvN9vELv/AL0Yc//GH2utlsRqVSKfrH//gfR6+88kr0p3/6p1EymYx+8zd/85rjjo6ORh/4wAei8+fPR48++mi0b9++6Gd+5mfYNk8//XR04MCBaH19nb330Y9+NBodHY3+9//+39ELL7wQvf3tb49OnDgR+b7Ptnn3u98dHT9+PHrqqaeip556Kjp27Fj0nve857XqQo4bhJs1Fv/gD/4gkmU5+uxnPxstLCxEjz/+eHTmzJnojjvuYNvwsfjmwmsxFqMois6fPx+dPXs2+tEf/dHorW99KzvGAIuLi5FpmtHP/dzPRRcuXIg+97nPRYqiRH/8x3/MtuFj8Y0BPkm6RfDNb34zAvCqv4cffjjq9/vRu971rqhQKESKokTj4+PRww8/HK2url6zj4cffjh64IEHrnnv5Zdfju67775I07SoXC5Hn/zkJ1nJ9QAXL16M3vnOd0aGYUSjo6PRJz7xiajf77+qbUtLS+w9y7Kif/Wv/lWUzWYjwzCi97znPa9qT61Wiz70oQ9FiUQiSiQS0Yc+9KGo0WjckP7ieO1wM8fib//2b0eHDx+ODMOIhoaGog996EPX/Ajxsfjmwms1FicmJq6736vxyCOPRKdOnYpUVY0mJyej3/u937tu2/hYvLUhRNF3iFNzcHBwcHBwcLyJwTlJHBwcHBwcHBzXAZ8kcXBwcHBwcHBcB3ySxMHBwcHBwcFxHfBJEgcHBwcHBwfHdcAnSRwcHBwcHBwc1wGfJHFwcHBwcHBwXAd8ksTBwcHBwcHBcR3wSRIHBwcHBwcHx3XAJ0kcHBzX4JOf/CROnjx5s5vBwcHBcdPBFbc5ON5EEAThu37+8MMP43d/93fhOM53dDPn4ODgeLOAT5I4ON5EqFQq7N9/9Ed/hF/5lV/B5cuX2XuGYSCVSt2MpnFwcHD8wIGn2zg43kQol8vsL5VKQRCEV733t9NtH/nIR/D+978f//k//2eUSiWk02n8x//4H+H7Pn7+538e2WwWo6Oj+PznP3/NsTY2NvDBD34QmUwGuVwO73vf+7C8vPz6njAHBwfHPwB8ksTBwfE98Y1vfAObm5t47LHH8OlPfxqf/OQn8Z73vAeZTAZPP/00PvrRj+KjH/0o1tbWAAD9fh9ve9vbEI/H8dhjj+Hxxx9HPB7Hu9/9briue5PPhoODg+P7A58kcXBwfE9ks1n89m//Ng4cOICf+qmfwoEDB9Dv9/FLv/RL2LdvH37xF38RqqriiSeeAAB88YtfhCiK+P3f/30cO3YMhw4dwh/8wR9gdXUVjzzyyM09GQ4ODo7vE/LNbgAHB8cPPo4cOQJR3FtTlUolHD16lL2WJAm5XA47OzsAgOeffx7z8/NIJBLX7Me2bSwsLLw+jebg4OD4B4JPkjg4OL4nFEW55rUgCNd9LwxDAEAYhjh9+jS+8IUvvGpfhULhtWsoBwcHxw0EnyRxcHDccNx22234oz/6IxSLRSSTyZvdHA4ODo6/FzgniYOD44bjQx/6EPL5PN73vvfhW9/6FpaWlvDoo4/i3/ybf4P19fWb3TwODg6O7wt8ksTBwXHDYZomHnvsMYyPj+PHf/zHcejQIfzUT/0ULMvikSUODo5bBlxMkoODg4ODg4PjOuCRJA4ODg4ODg6O64BPkjg4ODg4ODg4rgM+SeLg4ODg4ODguA74JImDg4ODg4OD4zrgkyQODg4ODg4OjuuAT5I4ODg4ODg4OK4DPkni4ODg4ODg4LgO+CSJg4ODg4ODg+M64JMkDg4ODg4ODo7rgE+SODg4ODg4ODiuAz5J4uDg4ODg4OC4Dv5fmliEH6+PKTQAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
@@ -297,7 +299,7 @@
"source": [
"If you see something interesting in the spectrogram, the next step you should do is listen to the .wav file. This can tell you a lot about what you're looking at. If you listen to this file, you'll hear the boat cruising by around 3 minutes in.\n",
"\n",
- "Some audio players aren't able to play some hydrophone recodings (i.e. icListens), so be sure to try multiple if you can't hear anything in one particular player. Higher-end hydrophones tend to user higher ADC peak voltages, which will translate to quieter audio tracks. You can use the `export_audio` file in the io submodule to rescale these audio tracks and increase the gain if need be."
+ "Some audio players aren't able to play some hydrophone recodings (i.e., icListens), so be sure to try different players if you can't hear anything in one particular player. Higher-end hydrophones tend to user higher ADC peak voltages, which will translate to quieter audio tracks. You can use the `export_audio` file in the io submodule to rescale these audio tracks and increase the gain if need be."
]
},
{
@@ -319,7 +321,7 @@
"\n",
"The IEC-40 requires a few aggregate statistics for characterizing the sound of marine energy devices. For the first, the IEC-40 asks for plots showing the 25%, 50%, and 75% quantiles of the SPSDL during specific marine energy device states. For current energy devices, the IEC-40 requires 10 SPSDL samples at a series of turbine states (braked, freewheel, 25% power, 50% power, 75% power, 100% power). For wave energy devices, the spec requires 30 SPSDL samples in each wave height and period bin observed.\n",
"\n",
- "For this example notebook we'll keep it simple and use a random set of 30 samples and collate them together. Otherwise one can pick and choose which to use. Then we can find the median and quantiles of those 30 samples."
+ "For this example notebook we'll keep it simple and use a random set of 30 samples and collate them together. Typically, one will pick and choose which 1 second samples to collate together and analyze. Then we can find the median and quantiles of those 30 samples."
]
},
{
@@ -330,7 +332,8 @@
{
"data": {
"text/plain": [
- "Text(0.5, 1.0, 'Median and Quantile Sound Pressure Spectral Density Level')"
+ "[(20.0, 80.0),\n",
+ " Text(0, 0.5, 'Sound Pressure Spectral Density Level\\n[dB rel 1 uPa$^2$/Hz]')]"
]
},
"execution_count": 12,
@@ -339,7 +342,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGdCAYAAAAVEKdkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5zc9LX9kWZmZ3tzW6+7DbYxpgZMTLMTgoGEFiC0kFASHi+QHyGhJHlphpdAgIQAgUAKLXQIJfQWwDywAdMM7r3v2tv7FEnf3x/S/RZJ03ZnvWuvDh+zuxqVrzSa+R6de+69GmOMIUCAAAECBAgQYIhBH+gBBAgQIECAAAECDAQCEhQgQIAAAQIEGJIISFCAAAECBAgQYEgiIEEBAgQIECBAgCGJgAQFCBAgQIAAAYYkAhIUIECAAAECBBiSCEhQgAABAgQIEGBIIiBBAQIECBAgQIAhiYAEBQgQIECAAAGGJIY0Cbr//vuhaRo0TcPbb7/teZ0xhr322guapmHu3Ll5PfbEiRNxwQUX8L/ffvvtlOPYk+A+73RoamrCz3/+c8yYMQPFxcUoLy/H7Nmzcffdd8MwjP4daI74y1/+gvvvv9+zfOPGjdA0TXmN7ruNGzfm7fhbtmzBpZdeiqlTp6KoqAjV1dXYb7/9cPHFF2PLli15O05/YP78+dA0LeN6F1xwAf+8apqGaDSKadOm4Te/+Q1isdguGOnuB/kzVFJSgoqKCkyfPh3f+c538Pnnnw/08LBw4ULMnz8fra2t/bL/Cy64ABMnTsxqPfneKikpwcSJE3HyySfjvvvuQzwe75fx5Qq/eeKll17C/Pnz836suXPnYubMmXnfbz6Qz+/QcN+Hs/ujrKwM99xzj4foLFiwAOvWrUNZWVm/j+Hggw/GokWLMGPGjH4/1u6AlStXYt68eejs7MSVV16Jww8/HD09PXjhhRfwwx/+EE8//TSee+45FBYWDvRQAdgkaPjw4R6CN3r0aCxatAhTpkzpt2Nv3boVBx98MCorK3HllVdi2rRpaGtrw/Lly/HEE09g/fr1GDduXL8df1eiqKgIb775JgCgpaUFjz76KK677jqsXLkSjz/++ACPbnChs7MTX/7yl9HZ2Ymrr74aBxxwAHp6erB69Wo8/fTT+Oyzz7D//vsP6BgXLlyIa6+9FhdccAEqKysHdCzyvdXT04MtW7bg5ZdfxsUXX4w//vGPeOWVVzB27NgBHaPfPPHSSy/hzjvv7BciNBQQkCAAZ511Fh5++GHceeedKC8v58vvuecezJ49G+3t7f0+hvLycnz5y1/u9+PsDjBNE6effjra29vx4YcfYurUqfy1r3/965gzZw7OPvts/PSnP8Vtt902gCPNjGg02u/v69///nc0Njbiww8/xKRJk/jyU089Ff/zP/8Dy7L69fi7ErquK9fzhBNOwMaNG/HEE0/glltuwZgxY3y36+npQVFR0a4aZp9hmiYMw0A0Gu31Pp588kmsXbsWb775Jr7yla8or/3kJz/ZLe+L/nwf3fcWAHz3u9/FhRdeiBNPPBFnnHEG3n///X45drYI5on8Y0iHwwjnnHMOAODRRx/ly9ra2vDUU0/hoosu8t0mkUjgt7/9LaZPn45oNIoRI0bgwgsvRENDg7JeMpnENddcg5qaGhQXF+PII4/Ehx9+6Nmfn8z50Ucf4eyzz8bEiRNRVFSEiRMn4pxzzsGmTZuUbUkafOutt/CDH/wAw4cPx7Bhw3Daaadh+/btGc+/P46T7Xn74ZlnnsHy5cvxs5/9TCFAhLPOOgvz5s3D3Xffza93qnCiXzgq3+c7ceJELFu2DAsWLOByOknwfsdPhTfeeAPHHHMMysvLUVxcjCOOOAL/+c9/Mm7X1NQEXdcxcuRI39d1Xf2YP/fcc5g9ezaKi4tRVlaGY489FosWLVLWSRVG8AtdaZqGH/7wh3jwwQexzz77oLi4GAcccABeeOEFz/YvvvgiDjzwQESjUUyaNAl/+MMfMp5fJtCkQO/fxIkTceKJJ+Lpp5/GQQcdhMLCQlx77bUAgPr6elxyySUYO3YsCgoKMGnSJFx77bWe8Opdd92FAw44AKWlpSgrK8P06dPxP//zP/z17u5uXHXVVZg0aRIKCwtRXV2NQw45RPkOmTt3rm8Y3X1t6R656aab8Nvf/haTJk1CNBrFW2+9BcC+X08++WRUV1ejsLAQBx10EJ544omM16WpqQmArUb6Qb4v6H399NNPcdppp6G8vBwVFRU477zzPN9pAPD4449j9uzZKCkpQWlpKY477jh8+umnnvU++OADnHTSSRg2bBgKCwsxZcoUXHHFFfyYV199NQBg0qRJHmtCuvfxzjvvxNFHH42RI0eipKQE++23H2666SYkk8mM1yVXzJs3DxdffDE++OADvPPOOzlfhwsuuAClpaVYu3Ytvv71r6O0tBTjxo3DlVde6QmzZbrv3N9zF1xwAe68804AUMJ5GzduxDHHHIPp06fD3SOdbB7f+MY38nJ9Ml2DW2+9FZqmYe3atZ5tf/rTn6KgoACNjY18WW+/B3uLgATBZtdnnHEG7r33Xr7s0Ucfha7rOOusszzrW5aFU045Bb///e9x7rnn4sUXX8Tvf/97vP7665g7dy56enr4uhdffDH+8Ic/4Lvf/S7+/e9/4/TTT8dpp52GlpaWjOPauHEjpk2bhltvvRWvvvoqbrzxRtTV1eHQQw9VbhrC97//fUQiETzyyCO46aab8Pbbb+O8884bkOP05bxff/11ALaSkQqnnnoqEolErzxU+T7fZ555BpMnT8ZBBx2ERYsWYdGiRXjmmWdyGtNDDz2EefPmoby8HA888ACeeOIJVFdX47jjjsv4BTB79mxYloXTTjsNr776alrl8pFHHsEpp5yC8vJyPProo7jnnnvQ0tKCuXPn4t13381pzDJefPFF3HHHHbjuuuvw1FNPobq6Gt/85jexfv16vs5//vMfnHLKKSgrK8Njjz2Gm2++GU888QTuu+++Xh8XAP9yHTFiBF/2ySef4Oqrr8bll1+OV155Baeffjrq6+sxa9YsvPrqq/j1r3+Nl19+Gd/73vdwww034OKLL+bbPvbYY7j00ksxZ84cPPPMM3j22Wfx4x//GF1dXXydn/zkJ7jrrrv4/h988EF861vf4sSjN7j99tvx5ptv4g9/+ANefvllTJ8+HW+99RaOOOIItLa24u6778a///1vHHjggTjrrLMyEuvZs2cDsNWMZ599NquxffOb38Ree+2Ff/3rX5g/fz6effZZHHfccQq5uP7663HOOedgxowZeOKJJ/Dggw+io6MDRx11FJYvX87Xe/XVV3HUUUdh8+bNuOWWW/Dyyy/jl7/8JXbs2AHA/lz9v//3/wAATz/9NP/sHHzwwXwffu8jAKxbtw7nnnsuHnzwQbzwwgv43ve+h5tvvhmXXHJJdhc7R5x88skAoJCgbK8DYD8UnnzyyTjmmGPw73//GxdddBH+9Kc/4cYbb+TrZHPfufGrX/0KZ5xxBgDw67do0SKMHj0aP/rRj7Bq1SrP98fLL7+MdevW4bLLLuvzdcnmGpx33nkoKCjw3K+maeKhhx7CSSedhOHDhwPo2/dgr8GGMO677z4GgC1evJi99dZbDABbunQpY4yxQw89lF1wwQWMMcb23XdfNmfOHL7do48+ygCwp556Stnf4sWLGQD2l7/8hTHG2IoVKxgA9uMf/1hZ7+GHH2YA2Pnnn8+X0fHfeuutlOM1DIN1dnaykpISdtttt3nO49JLL1XWv+mmmxgAVldXl/U1ycdxcjlvPxx//PEMAIvFYinXefnllxkAdvPNNzPGUl+/DRs2MADsvvvu67fzZcx7j6Q7Pu13w4YNjDHGurq6WHV1NTvppJOUbU3TZAcccACbNWtWyrEzxphlWeySSy5huq4zAEzTNLbPPvuwH//4x/wYtL/a2lq23377MdM0+fKOjg42cuRIdvjhh/Nl559/PpswYYLnWL/5zW+Y+2sDABs1ahRrb2/ny+rr65mu6+yGG27gyw477DBWW1vLenp6+LL29nZWXV3t2acfzj//fFZSUsKSySRLJpOsoaGB3XbbbUzTNHbooYfy9SZMmMBCoRBbtWqVsv0ll1zCSktL2aZNm5Tlf/jDHxgAtmzZMsYYYz/84Q9ZZWVl2rHMnDmTnXrqqWnXmTNnju894b62dI9MmTKFJRIJZd3p06ezgw46iCWTSWX5iSeeyEaPHq28j3647rrrWEFBAQPAALBJkyax//7v/2ZLlixR1qP3NdVn9qGHHmKMMbZ582YWDofZ//t//09Zr6Ojg9XU1LAzzzyTL5syZQqbMmWK8n67cfPNNyufBRmp3kc3TNNkyWSS/fOf/2ShUIg1Nzfz11Ldx27QvZUK9J32gx/8gDGW23U4//zzGQD2xBNPKOt+/etfZ9OmTeN/Z3Pf+X3PXXbZZb6fH9M02eTJk9kpp5yiLD/hhBPYlClTmGVZaY81Z84ctu+++6Z8PZdrcNppp7GxY8cq9+tLL73EALDnn3+eMZbb96D7O7QvCJQgB3PmzMGUKVNw77334osvvsDixYtThsJeeOEFVFZW4qSTToJhGPzfgQceiJqaGq5OkJz97W9/W9n+zDPPRDic2Y7V2dmJn/70p9hrr70QDocRDodRWlqKrq4urFixwrM+Pa0QyPToDvP093H6et7ZgDkSbzZZRW7squuaLRYuXIjm5macf/75yv1kWRaOP/54LF68OO3ToKZpuPvuu7F+/Xr85S9/wYUXXohkMok//elP2HfffbFgwQIAwKpVq7B9+3Z85zvfUUIhpaWlOP300/H++++ju7u7V+fwla98RUkgGDVqFEaOHMmvUVdXFxYvXozTTjtNMbOXlZXhpJNOyvo4XV1diEQiiEQiGDFiBK644gqccMIJHuVt//3394RSX3jhBXzlK19BbW2tcp1POOEEAODXadasWWhtbcU555yDf//7377q4KxZs/Dyyy/jZz/7Gd5++21F/e0tTj75ZEQiEf732rVrsXLlSv45ksf89a9/HXV1dVi1alXaff7qV7/C5s2bce+99+KSSy5BaWkp7r77bnzpS19SQneEVJ9Z+ky/+uqrMAwD3/3ud5XxFBYWYs6cOfy7b/Xq1Vi3bh2+973v9Sl5we99BIBPP/0UJ598MoYNG4ZQKIRIJILvfve7ME0Tq1ev7vXxUoG5QkrZXgeCpmme+3z//fdXvkOyue9yga7r+OEPf4gXXngBmzdvBmAraK+88gouvfTSXn13ysjlGlx44YXYunUr3njjDb7svvvuQ01NDf/89fV7sLcIjNEONE3DhRdeiNtvvx2xWAxTp07FUUcd5bvujh070NraioKCAt/X6eYl+bmmpkZ5PRwOY9iwYRnHdO655+I///kPfvWrX+HQQw9FeXk5NE3D17/+dd8vXfc+yVSZ6Qs638fp63mPHz8eALBhwwZMnz7ddx1KjexN1tOuuq7ZgsIDJGv7obm5GSUlJWn3M2HCBPzgBz/gfz/xxBM455xzcPXVV+PDDz9M6xGpra2FZVloaWlBcXFxzufg975Go1F+jVpaWmBZlueeALz3SToUFRXxkEQ0GsWECROUZAaC3znu2LEDzz//vEI0ZNDn9jvf+Q4Mw8Df//53nH766bAsC4ceeih++9vf4thjjwVgh67Gjh2Lxx9/HDfeeCMKCwtx3HHH4eabb8bee++d9fmkGzPdF1dddRWuuuqqtGNOh1GjRuHCCy/EhRdeCMAO6Zxwwgn40Y9+xP2QhFSfWbp3aEyHHnqo77GIXJOPqK/ZVH7v4+bNm3HUUUdh2rRpuO222zBx4kQUFhbiww8/xGWXXZa3z6UMIiu1tbUAsr8OhOLiYg8ZjEajSmmHbO67XHHRRRfh17/+Ne6++25cf/31uPPOO1FUVJTyAT8X5HINTjjhBIwePRr33Xcf5s2bh5aWFjz33HP40Y9+hFAopOyvr9+DuSIgQRIuuOACfsP87ne/S7keGWRfeeUV39fpiZgmhvr6eiVrxTCMjPH5trY2vPDCC/jNb36Dn/3sZ3x5PB5Hc3Nz1ueUCf1xnL6cN2AbEf/2t7/h2WefVcYk49lnn0U4HMbRRx8NAPwLxm00dE8Su+q65gKKh//5z39OmfkxatSonPd75pln4oYbbsDSpUsBiPelrq7Os+727duh6zqqqqoA2NfTrzZKb59Oq6qqoGka6uvrPa/5LUsFXddxyCGHZFzP7yl3+PDh2H///VN+tmmCA8BJQ1dXF9555x385je/wYknnojVq1djwoQJKCkpwbXXXotrr70WO3bs4KrQSSedhJUrVwKwr2FbW5vnOKmuoXvMdF/8/Oc/x2mnnea7zbRp03yXp8PRRx+NefPm4dlnn8XOnTsVQ32qzyzdOzSmf/3rX5gwYULKY5A/a+vWrTmPT4bf+/jss8+iq6sLTz/9tDKGzz77rE/HSofnnnsOALjRPdvrkCsy3Xe5oqKiAueffz7+8Y9/4KqrrsJ9992Hc889Ny/lCHK5BqFQCN/5zndw++23o7W1FY888gji8Tgn5vL+8v09mAkBCZIwZswYXH311Vi5ciXOP//8lOudeOKJeOyxx2CaJg477LCU69EH5uGHH8aXvvQlvvyJJ57IWOxP0zQwxjwpsv/4xz9gmmYWZ5Md+uM4fTlvwDY9z5gxA7///e9x2mmneeTwxx9/HK+99hq+/e1v8ydXyrb5/PPPcdxxx/F16cuL0F/XVVY9csURRxyByspKLF++HD/84Q9z3r6urs73ibmzsxNbtmzhk/u0adMwZswYPPLII7jqqqv4BNPV1YWnnnqKZ4wB9vXcuXMnduzYwb94EokEXn311V6dY0lJCWbNmoWnn34aN998MyetHR0deP7553u1z1xx4okn4qWXXsKUKVM42cuEkpISnHDCCUgkEjj11FOxbNkyzxf+qFGjcMEFF2DJkiW49dZb0d3djeLiYkycOBFPPvkk4vE4v9+ampqwcOFCX/XKjWnTpmHvvffGkiVLcP311+d8vjt27MCIESM8qoRpmlizZg2Ki4s9k2Gqzyx9po877jiEw2GsW7eOm5T9MHXqVG4v+MlPfpIy1b83qirdt/I+GWP4+9//nvU+csHrr7+Of/zjHzj88MNx5JFHAsj+OvQW2dx3BPka+pUPuPzyy/GXv/wFZ5xxBlpbW3v1HeOHXK/BhRdeiJtuugmPPvoo7r//fsyePVtR+vv6PdhbBCTIhd///vcZ1zn77LPx8MMP4+tf/zp+9KMfYdasWYhEIti6dSveeustnHLKKfjmN7+JffbZB+eddx5uvfVWRCIRfO1rX8PSpUvxhz/8IeOXYHl5OY4++mjcfPPNGD58OCZOnIgFCxbgnnvuyWtRsf44Tl/OG7CfGp566ikce+yxmD17Nq688krMnj0b8Xgczz//PP72t79h//33x1133cW3qampwde+9jXccMMNqKqqwoQJE/Cf//wHTz/9dL+fLwDst99+eOyxx/D4449j8uTJKCwsxH777ZfVtqWlpfjzn/+M888/H83NzTjjjDMwcuRINDQ0YMmSJWhoaFDO1Y3f/e53eO+993DWWWfhwAMPRFFRETZs2IA77rgDTU1NuPnmmwHYKspNN92Eb3/72zjxxBNxySWXIB6P4+abb0Zra6ty75911ln49a9/jbPPPhtXX301YrEYbr/99j4Rxf/93//F8ccfj2OPPRZXXnklTNPEjTfeiJKSkl2iwl133XV4/fXXcfjhh+Pyyy/HtGnTEIvFsHHjRrz00ku4++67MXbsWFx88cUoKirCEUccgdGjR6O+vh433HADKioquPR/2GGH4cQTT8T++++PqqoqrFixAg8++KBCJL/zne/gr3/9K8477zxcfPHFaGpqwk033ZTVZ4Dw17/+FSeccAKOO+44XHDBBRgzZgyam5uxYsUKfPLJJ3jyySdTbvvggw/ir3/9K84991wceuihqKiowNatW/GPf/wDy5Ytw69//WtPSP/pp59GOBzGsccei2XLluFXv/oVDjjgAJx55pkAbHJ83XXX4Re/+AXWr1+P448/HlVVVdixYwc+/PBDrpABdhr7SSedhC9/+cv48Y9/jPHjx2Pz5s149dVX8fDDDwMA/4zcdtttOP/88xGJRDBt2rS0BWqPPfZYFBQU4JxzzsE111yDWCyGu+66K6vM03SwLIvXAYrH49i8eTNefvllPPHEE9hnn32UsgS5XIdskc195we6hjfeeCNOOOEEhEIh7L///vy9nTp1Ko4//ni8/PLLOPLII3HAAQdkPab29nb861//8iwfMWIE5syZk9M1mD59OmbPno0bbrgBW7Zswd/+9jdln339Huw1+myt3o0hZ4elg1/mTzKZZH/4wx/YAQccwAoLC1lpaSmbPn06u+SSS9iaNWv4evF4nF155ZVs5MiRrLCwkH35y19mixYtYhMmTMiYHbZ161Z2+umns6qqKlZWVsaOP/54tnTpUs+2qc4jm4yz/jpOtuedDg0NDeynP/0pmz59OotGozzD5ZJLLmHd3d2e9evq6tgZZ5zBqqurWUVFBTvvvPPYRx995MnO6o/z3bhxI5s3bx4rKytjAHhGSjbZYYQFCxawb3zjG6y6uppFIhE2ZswY9o1vfIM9+eSTaa/T+++/zy677DJ2wAEHsOrqahYKhdiIESPY8ccfz1566SXP+s8++yw77LDDWGFhISspKWHHHHMMe++99zzrvfTSS+zAAw9kRUVFbPLkyeyOO+5ImR122WWXebb3e6+fe+45tv/++7OCggI2fvx49vvf/953n37IlMEjH/cb3/iG72sNDQ3s8ssvZ5MmTWKRSIRVV1ezL33pS+wXv/gF6+zsZIwx9sADD7CvfOUrbNSoUaygoIDV1tayM888k33++ed8Pz/72c/YIYccwqqqqlg0GmWTJ09mP/7xj1ljY6NyvAceeIDts88+rLCwkM2YMYM9/vjjKbPDKNPRjSVLlrAzzzyTjRw5kkUiEVZTU8O++tWvsrvvvjvtdVi+fDm78sor2SGHHMJGjBjBwuEwq6qqYnPmzGEPPvigsi69Bx9//DE76aSTWGlpKSsrK2PnnHMO27Fjh2ffzz77LPvKV77CysvLWTQaZRMmTGBnnHEGe+ONN5T1Fi1axE444QRWUVHBotEomzJliicD7ec//zmrra3l2Y30uUr3Pj7//PP8u3fMmDHs6quv5hmj8ucyl+ww+n4BwIqKitj48ePZSSedxO69914Wj8d9t8vmOqS6b933fTb3Xarv2u9///tsxIgRTNM03++W+++/nwFgjz32WMZrQZgzZ45yTeR/8nyY7b3AGGN/+9vf+PVta2vzPW4234P5zA7TGHPZ3gMEGKTYtm0bZs+ejbKyMixYsIDHkAMECNA3zJ8/H9deey0aGhqCz9UeCMr+3LhxY8rEgKGKIEU+wG6DMWPG4NVXX0V9fT3mzZvnazoNECBAgAB2SG/RokW47bbb8Mwzz+Dqq68OCJAPAk9QgN0K++yzT5+q8gYIECDAUEBdXR0OP/xwlJeX45JLLuHVuQOoCMJhAQIECBAgQIAhiQENhxmGgV/+8peYNGkSioqKMHnyZFx33XVKd2PGGObPn4/a2loUFRVh7ty5WLZs2QCOOkCAAAECBAiwJ2BASdCNN96Iu+++G3fccQdWrFiBm266CTfffDP+/Oc/83Vuuukm3HLLLbjjjjuwePFi1NTU4Nhjj0VHR8cAjjxAgAABAgQIsLtjQMNhJ554IkaNGoV77rmHLzv99NNRXFyMBx98EIwx1NbW4oorrsBPf/pTALbZa9SoUbjxxhv7rWNwgAABAgQIEGDPx4Aao4888kjcfffdWL16NaZOnYolS5bg3Xffxa233grA7h1FmUCEaDSKOXPmYOHChb4kKB6PK+X+LctCc3Mzhg0b1ueGcQECBAgQIECAwQ3GGDo6OlBbW+upmO7GgJKgn/70p2hra8P06dMRCoVgmiZ+97vf8aZ+1FPI3S9k1KhRKTt433DDDTlX6gwQIECAAAEC7FnYsmVLxia+A0qCHn/8cTz00EN45JFHsO++++Kzzz7DFVdcgdraWqV3l1vBYYylVHV+/vOf4yc/+Qn/u62tDePHj8eWLVtyKlcfIMBgxYufb8e0mjLsNTJ1a4HBgE82NePgCdUDdvx03xMDgaRpIRLKvw0zljRRGAnlfb8BAuyuaG9vx7hx49K2XyEMKAm6+uqr8bOf/Qxnn302ALsHyqZNm3DDDTfg/PPP580x6+vrlQaRO3fuTNlNNhqN+jbrKy8vD0hQgD0CRSUdKCktR3n54CZBJWXGgH7mLItB1wcPCUoYFgrC+SdB4YSB4oKg5FuAAG5k8xA0oNlh3d3dnnhdKBTiKfKTJk1CTU0NXn/9df56IpHAggULcPjhh+/SsQYIMFjAnP8GOyxrYMc42K6Q1U85KAN8mQME2K0xoI8PJ510En73u99h/Pjx2HffffHpp5/illtuwUUXXQTAZnFXXHEFrr/+euy9997Ye++9cf3116O4uBjnnnvuQA49QIABxe5Q4nSgh2gnvg4eJai/3rP+IlcBAgwFDCgJ+vOf/4xf/epXuPTSS7Fz507U1tbikksuwa9//Wu+zjXXXIOenh5ceumlaGlpwWGHHYbXXnstq1hfgAB7IhjbTUjQAI9xsF0is7+UoEAKChCg19jj22a0t7ejoqICbW1tgScowB6Bpz7eiumjy7BvbYXv64PFC7NoXRNmTxk2YMfvLw9Ob9EeS6K8MP8NLFu6EqgqKcj7fgME2F2Ry7w/eL4hAgQIkBUY0qssCdNK/eIuxED7lgb6+DL681lz8JxlgAC7HwISFCDAboZME2pykJCggZ6d92yNW2APF/MDBOhXBCQoQIDdDJmUoKSZ+sVdOWEGU7NAwFMCBBicCEhQgACDCJlISlNnHH9/Zz0e+mBjynXSKUFDyUM7mIhHJuLaFwyl9zRAgHwjIEEBAgwimBlmtD+/uRZrdnbi8cVbU66TMNKRoF2oBA10OGyIaFFD5TwDBOgPBCQoQIBBBCMDCWrpTmTcR3olaFeGwwbYGD2IuEF/hiGtQWIBCxBgd0RAggIEGETIB0lJ7wnq8+6zxkCTkEHEgeyx9NOA+qv+UIAAQwEBCQoQYBAhkxKU3T4GixLUz/vPcC5DJWtqqJxngAD9gYAEBQgwiJCp+m82JRDThUcyeY7yif6enDPtfjBRg/66FIyxAVfcAgTYnRGQoAABBhHyoQSlC4/sykyifleCMr0+iMjBYClgGSBAABUBCQoQYBAhH32g0oW89qTQScZzGUSnyhgbcKN4gAABvAhIUIAAgwj5UILSEaldWlOmn4+V6VwGG+noj1BkX5rp7kmEOECA3iIgQQECDCLkY6JMt489KUU+0/4H0xzPEBQ1DBBgMCIgQQECDCLkhQSl9QTlZybORkXobxKyG0XDHMWmH5QgDD7FK0CA3QkBCQoQYBAhHzVf0u0iX/NwPE1V6sGCwRbu6Q8lKMgOCxCgbwhIUIAAgwi5KEGpJvldEQ7LhgQFSpAEll/Fht57hkF2ngEC7GYISFCAAIMIuZCgVKvazTr9X8yXGpGuP5k8jv5EJlKxK/1PmcDA+kUJshjrteI1iC5PgAADhoAEBQgwiJAbCUpFdFKHSPKRgp/u2DL6OxyV8VQG2SSfr2vvRjrSGyBAgPQYMiRoV1bKDbBnYlfcQ/kgQXZNmty2AXKbpAfD5ylj24xdNI5s0JdU9lT7E/sdTGcaIMDuhSFDgpZvbxvoIQTYzZGuO3u+kKlOkKaJxhmp2mNYVu/CYckc2pFnQ4KCitECFmP9Ep5jDAiKUQcI0HsMGRL0yeaWQfH0GmD3hcVYv4U05GP0dV2rl0qQkab7vBvZDHPgjdF9G0A+32u7TlB+9wcIctWbXQffhgECDCES1BkzsSxQgwL0AabVP0/zMnIhIqlJUGqCkC50kq3SxbJWNfq5WGLGLvJ9238+yhUQGMt/irxlsbyTqwABhhqGDAkCgA83NAdqUIBew7L6v+pvbkqQ//J0farShsOyJGDZXoOBV4L6hnx+VzD0PovLd38OESUVKCBCAQL0DkOKBHXEjEANCtBrmP3k61COkYc6QXa2kP82acNhWXqC0oXb3OPoT2R6L/pKOvLqAcujEkTGdzMgQAEC9BlDigQBgRoUoPcwrf6vzptLCCbVbZw+Ayz1/rINxWU76fb3tUpkICmxpNm3/ee5Kna+yQplhplW79xPbpLY3363AAEGI4YcCeqIGVi+vX2ghxFgN0R/ZfjIyOxzEa/3xhOUNq0+hzDXYEjLzkTaMmXaZUK+zzB/fdvEP4v1jpz7lVEY+Hc0QIBdjyFHggDgw42BGhQgd+wKY3SmCIx89PR1glJnjvlvk302Vbafnf5u7JnpvcjFZO6HvNb1yeP+GByPEWwVKGlmvi/9SKt70WAgtgEC7GoMSRLU3pMM1KAAOcMmQf17jEyTmXz8dGpPqtdSEZhcJmmGzKrBrggdZtp/pnBZ5v3n9wTypwQxbtI3LZa1l8t9Pm6S6h5dEB4LMBQwJEkQALy/vglt3cmBHkaA3Qh96dPkBz9Ckmn/8kSaMhxmpSYp6TPKskM21yBumP2iA8nHzoaI9elYfdrai3xwCtUUzWAyBiMLwun3en9n1wUIsDtgyJCgzc1dyt+dcQNPfbIVHbGACAXIDvlWgvyMuxnDYQoJ8l8nHVlLp0ZkS/CyUY3ybSomyN3rMxLGPr5ZuZKoXAhsX2AxhnjSJpmGacE07dBYLudLniL3MvF7fgl/gACDFUOGBL34RT3eWLEDcUNMPG09STz9yTZ0J4wBHFmA3QX59gT1+JCgjOEwS/49nb/HH6lMzdmEuHKBrU7kfyKV09Yz7bmvhDXfvsF8XAsiLwnTArPs60FKUK7FHXMJvQYIsKdiyJAgAFi2vR0Pvb8ZGxqFKtTclcDTn2zrczptgD0f+awT1NKVwJMfbfEokZknpszhMLswX+rtU4VGcskOc1MQT7o1Y4glzX6okuweR5p1+/he5a4E9e31rI4B+7wShgUGOxRm+4LEvZmS5LoWu6+P1yMUsKAAez6GDAk65YBaVBRF0Bk38NyS7XhteT3iDvFp6Ijj2U+3KSpRgABu5NPs+/1/foQbX1mFnz39hbI8l6fz1OGwdNv7T20sFy3IZzW/Y8aSuYXEslFKPBN3uppIfSVBeVSxKJ297/uxSU/CsMCYnQEXN0wkTUvpLJ9xP8g8nhz66QYIsNtiyJCg2soifPuw8ThoXCUAYEVdB174oo6/XtcWw3OfbQ8yIgKkhJ2Rk5/74+NNLQCAFz+vU5ZnmniyqxOULh6WOl3aXyFKHXLzHNPnONmGgCiskwkqMUlPSvv6VuWsBGV6vZcD8hY1tL1RlmOKTpoWEs7fqcZB+1DuH9f5qZ4gpFWWAgTYUzBkSBAAREI6jp46At/60ljoGrC1pQf1bTH++taWHmxu7h7AEQYYzLDDYfndZ0FY/QjmEg5LbX5OHcrIdfx+xMRv397QSm7HSppWVnV9cjL/Zn94X+RaZyizMbovo3GOAftaJ03LqRFk8ZCYmcaH5afzud8zN+kLqE+AoYAhRYIItZVFmDaqDADw6ZYW5bWV9UH9oP7C7q6ymVZuGTjZIOoiQZl9Lv6/q/vI4Any3cZ/0vNP4/erKeOzT/8h+MK0WFa+PHedpHTH6KuCkf82F31XVsgATT6gpGHBcggQXZtU76/6k3FVjY8rxXhTnUeAAHsChiQJAoCDxlcBANbs7FTMqesauvotvXeoo303LkcQS5r9UgAwGg4pf/fVGB1LmrDS9JJKaYxOEVryV4LSjwsQWWjZXi6LqenvqZBPn04m5HqoTKvTpUz2sZK1ZQlDdJITIEHQczO4+y3PySEWIMBujSFLgkaURTG2qgiMAUu2iM7yCcPCuobOARzZngnDtNAR231LEcQNC209ybyrA7ISlDAsrKxvR08itSIiH95PfWntTjq9w1I8xcM/nMVShNBSVpjO4AnKNbMobasPaQyWxRTlIp0q0Zd3iuUxE9Aei9hfunYn/svFNbD3A64EGU44zGKC4Pq+v/CqPUYG0sTScNJADQqwp2DIkiAA3CT9xfY2Rf1ZUReExPKNpMl2axJkWgwt3Ym8kyDZE3T9Sytw/8JN+NFjn6ZcP5MS1BFLYltrN7pTEKlUoTKbUHiXZ1vV2r0aGa2zvVzupq8y8ZHVKHeWVdrd9/GtyvW97mvKfrqXhUkZvEq0bCY3LIt3k/cQVEfBdPuFki7lze03o3YctG2AAHsihjQJmjS8BJVFESQMC8sl4rOluQdd8d13wh6MeG9dIxas3ulZvrsUqjQsCy1difwbo0PiI3j/wo0AgNeW70i5vuUiBG78Z8VO3PPuRlzy4Mcptk8R4kpBjnxJkM9+/c242V8st1dJnpDl3liW44exj5n17nuFfL/XtLuUykuWY7EcBShhWDxEa5hMKlCpvh9M+in/7hfCpJ9mmlBmwIcC7EkY0iRI0zQcOL4SAPDZllZFrl5Z3zGAI9uzwBjD9x+w6+LI2XgA0N6ze5Ag02LoTph5fyKORnL7CKrGaO9YXlpqp9wvT6FmMtihSb/l2YbD/EIuHiUIuU2W7olb9v7IHhrLFaZKd4y+FvvL9b3OeDyWfr3UxS/VbSj8FTcsJE2LE0PTYnYl6RSFLGVlTq5+ztdWiJZovxJwngB7MoY0CQKAGaPLEQ3raOtJKpWkgyyx/EGexHa0qySorWfXmKX7mtVF6dL9qQRlg0zhsExp3VRbxg9+c3Ayy07sfkUMUxEr32O7jNmy38lwtcpgEplIt/++8FV32C3bbdK+DpZ2vbSEznlNITyOEgTYpFFuoSHvi66ZfK1sMuk/PtpfLuHMAAF2Vwx5EhQJ6dhvTAUA4NPNrXz5zvY4GjvjAzSqPQsxqRK3ewLeVRljrX0kWzTZ9KcnKBuoJMj7eqYCf1Rx2Lscvvd7qjpBfr4T9/76cqnk85RVITW1u/f7z3UMfd+X+D1VONG+rplIrCBChmXXVmIQGWNJqWiisn+opmnZg0XHlFPsSSmSQ3iBLyjAnogBJUETJ06Epmmef5dddhkA+0M3f/581NbWoqioCHPnzsWyZcvyPo4DxlZC14BtrT2KUrGyLgiJ5QNxqX2CW1lo3wVKUGt3Ag0dfSO0Rj+RoHC+laA0JadJKfBVdxh8jet+obNs22ak62Hmt095XZn4KE1jmesapM1gyvLYKZDX7DAXkfO+rpKSVMqlxZjj/7EkHxD4+5o0/Qt6yj4qynxzh8OUcKQTciMztbzLgAoF2JMwoCRo8eLFqKur4/9ef/11AMC3vvUtAMBNN92EW265BXfccQcWL16MmpoaHHvssejoyC85KS0MY29ePLGVL19Z3x48/eQBchG8TtdEuyuUoPr2WJ9VPTk7ZyChhoz8SFDqASYMe+L0Nzsz3zo9qWraeJSgFBN7byGH9VQlCEo9nE6fBIZMhCNbZNM7K9v9KyTH7/UMx+DbWkDcMBE3LN46g0GExuKGaRNK1z4syxUiY957WiY9sh/IXXIh+E4MsCdhQEnQiBEjUFNTw/+98MILmDJlCubMmQPGGG699Vb84he/wGmnnYaZM2figQceQHd3Nx555JG8j4XS5dfs6ODp8h0xA1tbevJ+rKEGeXJt7lLJSHfC7PfilJubuj3d2nOF8AQN7AQgH92P76TzBCVNCwnTShkO83sf/JQlvyOkyjTKFgyqJ0Uei5IRB5XE+TU9zsdbxJB7YcZsVk9ZosB9/aTf5TYopOAkDAtxw+R+H8MSKp/fuE2m+qcobd4+ltg3ma4NU3iCUlUZDxBgT8Cg8QQlEgk89NBDuOiii6BpGjZs2ID6+nrMmzePrxONRjFnzhwsXLgw5X7i8Tja29uVf9lgVHkhSgpCsBjQJE3UQc2gvkNWglq6k67X7Im5P7G2oROJPlbpFZ6gfIxIIOcMpAxP5Ok8QRYD4kkzRegKSPgQCj8lyG2ypWXq/nJvMSLvQyFBrp1b0uTtd77cM5TT0b0w+6GNOrPZnnc5hFrk9t8YliWpNQymk7lld5JnzlhtYpMwvD3EGIOTRSbGoITDpBAZeYEMS6hMfNygMeT1kuwSBOpVgFQYNCTo2WefRWtrKy644AIAQH19PQBg1KhRynqjRo3ir/nhhhtuQEVFBf83bty4rMcwoiwKANgp+UfW7OzMOkMmgD9UJSihvBZLmohn0TOqt2CMIZ60/L0tOYAUkYFWgjL1DkvnCbIYc4oo+hEbBn+e6PUQZZ1Kn3Ik/pDXT0rnka5qtd/bIa/fJ3N2VuEw6fcsMtVkYuF+Xc3eEq/J50OZYYbJkJRCm4YpwmFJ0+JhLAIRJiJAVF9ICbUx8OWiIauzzJVZtrthNxxygF2EQUOC7rnnHpxwwgmora1VlmuapvzNGPMsk/Hzn/8cbW1t/N+WLVuyHgORINlEG7TR6DvkkEVLtyBBlpPm259KEE0EuXYEd0MYSwc4HKaQoFyVIIZY0kqpBKUy7Po9BLhXdYdgZFUjG7jVD/l3JbNKIgs02buRzheVLXrzPqfaRGR+pV9Pzs5yEyL6K2kJxcZWa4jAOr3ETPszJReVBITRmcilyX0/wsBumM5+mL0f2tqdLh8QigB7EsIDPQAA2LRpE9544w08/fTTfFlNTQ0AWxEaPXo0X75z506POiQjGo0iGo32ahwjSr0kCACWb2/H9JryXu0zgJodJtcFotT5/vQE0USQ7GNoQ2SH9XlIfUKmJ/K043OFQZSX0hCWpMGAAnVdN9zkyz2RZwN5bZl3eQgJEVtLDvmIh6NdSVhZit+VdWQCkWI9ubcYbQOIXml0eU2TGqdaiFiapO44ZMW0ePiMzM0U3gKpOhHKslMb6iZME6YZBkL2ct0Zh2kyIETjEuQpzbPooEPA2wKkwqBQgu677z6MHDkS3/jGN/iySZMmoaamhmeMAbZvaMGCBTj88MP7ZRykBDV1JpQv9c3NfTfWDmXISpCchk2NQokE9bWgoR9oYsmXEpTvMeY6Tyvhlxy3tfjE6rPfFIUHGbwE0u+wvsUSXSGe9M1OXcUS0yhBhKQhlCB5eaZaSZkgmpVmDzmjiv5W9skY/5mShFpiX7SK6RAgei3peHUsnsIuxmxI/yzGuMLKGPgyUoxkckXGZ+YQKcO01006yhBtS6MOjNIB9iQMOAmyLAv33Xcfzj//fITDQpjSNA1XXHEFrr/+ejzzzDNYunQpLrjgAhQXF+Pcc8/tl7FUFEVQENJhMqaEbRgDVgQ1g3qNmKQEySQo5pAf8gx19EO/Npok+urr6i8lqC9qSc4NPsnkmsKZmzqc4/7bR4GyMhPEzNfOX+Vynye9F6ZEFpjyulphOlfkSn4A4aWRzcd++yOFxg/uc6a0d7nFBREUQV4kcmUxmE4jVYuRD0jUFhJmavCxCgLkkB1LVKSm44pzc467G1okBzqMHWDwYsBJ0BtvvIHNmzfjoosu8rx2zTXX4IorrsCll16KQw45BNu2bcNrr72GsrKyfhmLpmm+viBg8GaJudtQDEbISlB3wuBfSJQ1Rk+suRRObHEZrFOBJo9U9W6yBWUKDfSXaSqvTDbwm6AJqRpmutUcebnfPvjryrpiopYh3xfucFwqVYiB8fvGPh9BQvj6pKj4nE82YBIxyAY8LT0FwREtRNTxueEuYEjqGC1nDomhmj/8H8AVIDtLDNwzxGC/Lz1Jk7fWoP0pahGAnqTp7IMp5Ik8RvQv19IBftejv5Gu5ECAADIGnATNmzcPjDFMnTrV85qmaZg/fz7q6uoQi8WwYMECzJw5s1/HQ76gnS4S1NyVQF2bf82ggeyE/tryHYM+e01WguKGxQvccRLkKEHZFk40LYaGLIsf0hd2X7PDaPN8KEF9mQRSkYNsYHE1y7sd1YXxP2jqMYhV/D0tMrlxb0fhUL/DpMvwoolbrnXTJamI7jYbuSInJQjCV6N0uHdetywRaiL4ZfBRCjuRJTmTi2r3AOBkhq439wo5GWOmZZMUy/mbMcokExWmOaGxGEyTQmtCeTIsO1nB3sb+nRQgUpQG08NANusGQlCAVBhwEjTYkEoJAmyDtBtbmrvx8PubB4QImRZDY0ccizc07/Jj5wL5iT9pWtwcvbW5B88t2Y5F65oA2JNiNibpnqSJ1u7sCBN5KWQTbW+Qz95hqTwu2cBPYenL8QkJM0XPqVQKkU+dIHVzNbRDnhkZ7iyubAke95BJY6OJH3CMvBBemFzRm8uqdGWXSAIRoJbuONp7krbvxmdMSdNOb5fDakRWqB8YY/ZnSfYs8Z5gjOoJCeO04RAww7LbaRARMi01pEZZZYZpK0MU2kwYjN8XjNE+LU7sxPXq3X2Yartcl/uv6/o70IICpEBAglzgJKgz7vnQrdrRoSgKnXEDLy+tQ2fcwOvLd+zScQI2GQCAjze1oLU7u/DQQEBWghKGIEH3vrcBGxq7cNt/1vD1/CoAu9GTMLPuPi9Ppn0JiaUK6fRlX/bvvd82V3FLnqTdSEc+sx1jqlpBDDbJcu9HrQTtHqv/8RkT/i7ZGGy4UroJvSJBRCyyWZfReAWpsPchzNJJ08K37n4fVz65ROn8TrAsO8QnvyY8OvY5UIalxYjQq8STyIzJj2n7g/hymQhJ5mnD2cbgyo9IvU86tYcMU5izLctO03e/J+mvUX4JSG9aeARKUIBUCEiQC9UlBQhpGhKGhXZXn6t40sK6hi4A9hf+i59vR1fcnrTXN3Rh6ba2XTpWCicYFlN6ngF2Krrsm0maFtqyVE/yDVUJYjzUuK1VDS/SRJAJsaQ/CVq80auIqRNi70Ni+exc3pdd9CUcJiZM72ty9WFlG2Sj+sBDGtzjTBiWZz8eJShFJplHQZJamBAhIhUEUCs99yYMmjsxJULmX0+nMy7u1Y1NXR6/kaj7I/w2dvhJpLcnHX8P1dYCxPUiezQPhznrJE1R/yfpkJukQ3ZEnSFREDFumE47DstRh0R/MsUTZLrft9yR7xCVf40r930bMKEAXgQkyIWQrqG61C6K4hcSI4P0O2sasL1VNSUvWN2wS4mG3I6i0cfDtLGpi/+9pbkb3cmB8S4pSpBpYWd7DIwxZfyAXTcom8KJsaTpUb4YY74kNF9KEE8vz4sS1Idtpd9z9gSlU4J8lBp+zCxCC6l8IjTZububUxaSez1aprzm3qe0DZEgUwrRiFuIpWkAm/ra5XJZRVsJxs3lDIIUMgbo0tfsxqYuD4kk9cZwQlLk92FMru7sY2Zm4jxIOZJJkEh1F4pO3FlO5EhOh48btsGbjNBJ06m2LqXIKy01cibhTCE/flunKjFA59tbBPwnQCoEJMgHqYomAsCmpm58vKkFn21u9byWMCy8urx+lz1x9EgkosmVLdXcFcempm7+96bmbqVo4a6EogQZNglq7zE8E1QsaWU1xp6kic64oYRT0jUGJfTFHC3CYb3ehdiXrHjkmiLfh1CalWbySRj+1ZdThYXcy9y1Y9yqEE2cMjztOKRwkhoO8ypRYr/2H3FDkDhZ8Uudju672Bm7WuE5m9pQZB7m9YLgTPhgynjGVxeLe4mHvkQ2l9yehZQhSnk3TIaF65pw51tred0y+VqIdYUvyGL2taEQWNwQTXT5MSzZLySUIiI8phOWI7WKPrdeEpvdtc7Hg4SMbMJj+T5mgD0HAQnywUjeQ8ybfm4xhndWN6TcdltLD5Zu2zXp9HJ2TU/C5FlXANDYmcDWlm4+8W9q7Or3RqWpICs+DDbZWdvQoU5W5IvIYow9CROMAZ2SGV3uoyRD/vLrSxG9dCpKrpB3kXPoxWdMuW5tZw6p4a/0SpCXhLibi1L4Rl5HHqdb/WBQlTmbbEnZVfLE5jkL73HkcJu7XYQfMjWaVf/OrBoZTpYVqSVuciKvT1lgIvQlCAnVayLSQZ4gSlW/590N2NrSg3fWNDrXQpBHUtcsJmWLkRHaITpJQ/h+TAvOfQDegZ5CatSVnhIKuEnbqUgtZ6Zl+kykSlfP1tuTiYRmUjBlshwggBsBCfIBmaMbO3tnNv5oU/MuUYN6XOGkJiltvLkrgaTJsLWlx/YHdScHTAnqSajHTZgWVtR1KFWcGzriTjPV7JQgAOiUPFtJR8p3Q6kfk8Nb4jZo5zdFvvfbpqqknN224icpAAB4+MQ3O0xSRMQy73sqt3ZwryvXuZHh9mhlowQxBoUV0Wtxw5SUIKGwpCKv6YgNZWjRgbK5zERGiMCQMkbkwr1/+Se9H1T1mcZnSMZmizHETXFPur1zpCZxY7Rlp7eTksNDZBalwkMhOoZjmKbeYXY3eoun7ssKE4XThNqV+drI4ySkun+JKKrLmESeUm2nEmcPeWZe4hX4hAIMGRL07S+Px/Eza3DguEqMKi9ESE/d+Ga4Ew7rjBu9Sn1v7U5m1XS1r604XvqiDq8tr+eTSaOLBAHAhqYubHK8QdlkXvUH3GQtYVjY0R5Tvsi3tHY7Un3mMZLHSK4NY6f2+kzi0qJcirx1ukzxeVWC+mCNdisshKRz/unaOYknY5FJBAgSRK9lA/d7ShMlPxbUCcliXmKjElSVGLjVE+U8XD8BVVXyqzHk3kd6dcelXKS5JIL4iLCXXMmaSIM8diKE8vtB5mW5yjOpm1TfRz7Hzc3dWLuzQ0mXJzWIMTutnsJeVCQxbpi8BpBMjkzL4qnwSUkJShrM8XIxToZswiYM1d7r7L52rvWka5buumfrObLJWOb9BWQnQCoMGRJUWVyAfUaX4yvTR+Lcw8bj7FnjUq5bENZRWRQB4O8LygTTYvhoY0vadZKmhWc/3dYnn8qzn27DiroObGy0vT+kXLXHknxS29TYhY2ONyhuDHw4DLAnrJ6EqUxiW5t7eGZKtvuT22zQ060binKSg3RCWX+EvHqCXJNCr7eV/kgYVsYmsbLKYodvxHJSKzxzBRMqg3xc98OBXO3YHRZjFvjkLO3WQ1xkBcByrcvXY15lio4pEw93XSf3tUkXDvOksPspZESKuTHa2Y4JfxUpD/Kh5XpJPOMQFLKxEHOIimWJFHXTUWqSrs/GM59ux8ebW/h+KexDP0n5SRqUFcZ4dphcOJF3npfUKCJPplMXKJa0eGjNzhhTi0SmupqkGLmvm3rt0j+8pAORP3VbcV3pZ1/7yQXYczFkSJAb1cUF0NO0QU5XNDEVuhMGnv10G+5asA6fb23zpIDL+HhTCxo7E5yg5ArGGPcAURYYKUHNUhivpTuJTY326/3ZrT0d3JWBE6al+JcAYEszqVW9C4fFDROL1jfi1aX1yrrpKg+ng3t8pkQY+gplHznvTn5aFkvjRCDTSEGcJDDVhCuHbPyGw+AN6biJrVwt2U1URPsHdb/uUCUDk8zC/u+bnQXmJUhURZnWoWwxOoTbhJ9uTsylHAJN8nI7iY5YUiGcJhPXTlbMSLkBqKChhYRh8arQhinCUxaDr1+OHrbo+OQJSjqVnkUVaKEqyVWliRAlTRG+o2rTpD6RkpSU1CPhP2Kc7PleH5/rKGe/+W1nMfU9FtdahN/cKpTfcWT11k8FDsShAMAQJkHhkI7yonDK13MlQXVtPXj0wy3Y1NwN02JYtaMDH/nUrQHsL8mPN9lfXmt29K4xa2fc4F/km5q6wRhDc2cClsXQ1KWOWWTQDI5wWCxpKqEsANjmlBvItk4QoBKV55fU4f31zbjkoY+VdeXJLpdwWJeP0iH/7Av6sgf58PJY4oaJ99c1pa2kTRMLn8AsoUwkTDFhuMfKmJrJxQC+vjwuv/R2e5ze8AYpH/K5kKpgj1HeN1PW87sWpCTxIoOktlCIyhTnLv/0g2fSViZclSDJagONWc5UsxiDckdL58gsqRmsJdpW2D9FGjpPjff5bNBznMWk0BwTKfIJp68Z9QxTyBATVaGTjkGah8gYg2mKZqyGND7Rf0y6/mk+F/xaMTLQ+3l+1HXoXORr7H4PMi8TY5OLafqtE2DoYsiSIMAujJgKI6XK0enAGMNnW1rxr4+3ojNuoCBkX9Itzd3Y0NjFvTky3lvbxL/Q1jd29ar3lzzZdcYNNHYmYFgMrT1JNKUwdA9UOIyOWxixr01n3PCEm+g69VYJenlpne+66YrupYPbE+Se/PoCt0qS07bS7/TED9iFPP/rwY/9N3Id1zbOCuWAMVE+wO3toWMaZopZi4+FKfvnLxMBgnfiM9zhMGmdVM1YhWlZKEw0HNqeOqkv396OurYYH5O8r3STtnwMOk6K05bCeJInyBLp8RZjsKTztGA3OWXymIhkOP6buCFCV6YTSnTXVXLDfU2ItCSc0JUgP7YCSFlhFB4jTxAPJTLVsC28SRYnFESQGFNJizouoeowGh+8LVSUbXxep/eX9iPvHxAZd+J+cGXo+Vw7BnndgA0NVQxpElRVnJoEkTm6pTuZVp1YsrUNC1Y3wGLA3iNLuddoZ0cc3XGTKz6E+rYYVta3gzGGtTs70dqdwMbGLr9dp4X7iZ/Mz02dcV/iBQy8J6i2sgiAbWh2q0M0tkxKEFXMjRumUsJg9Q5/I7r83ZfLF10saSp+rXz2DuuLFKQoQZaFlu6ErR74EOlUX+6mZadOU3sEWgYIH4p8PLkoIV/mMy7ZaO1+zR3ikNPhaRtlwmTq9vycmdiLokQ425M37N01jbjjrbX4zj0f8u3omgDplSCLMaysb+eFUVVCpP6Uw3eyqkNwKxByGMmQQnuGaXt3TAtSmrrUwsJS6w0RKPopKjqLrK84rw4tVB7b/2OTYAZwdYeqU1NYjRNXS9QRorpDhs/6qT4WREx5/SQm3rdUilsq0kKv0f0kjuFPqmQlLeA4AVIhdTxoCCCdElQSDaOkIISuhInGzjifwN1Ys9MOZx0yoQqHTxkGTdMwrKQATV0JbGnpRmlhGC3dCf5k0h6zmyiuqOvA6yt2YOqoUhw4rgp7jyrz3X8saaIwEvIsb3DVMNrY1I1DJlajoTPuKZxIGCgSRMRmTGUR1jd0oTNuoDii3npxV0f5VIgZJjpjBh75cDMKwyF8d/YElEYjKddXJ9rsx2w6T+RhR9mj3aTzkmSLdMpCLtvGnSf9jljSV00kYhIJacqxePq1pduTh/QUHzcsT+Ykgz0JK6NwkUvZE2RZYpw8jdoVPgHU2i2cWPFFrknOYtB1zRmrIB6cRDj7ShgWuhMGPt+qVg/nE6/zdyYl6Jt/WQgAOP1LYzHMeSBSrgljADRRJZoR4RG+HIAIjUSmGYPGBNGxr5fw/nBvkOPVobYV8aSJaNj7zEoPE4Lsanwc8aRpZ3c5YU+5ACLVibKPp3FDtelcZ5kA2eFSCyFDQySk214hiyEMkTqvQbx/FKITbUQEsaX7JKRpnJzw9SGRJelvJq1kkyoGTfpbKFH2ejIxpPeTZ+Q5I9U0DUzaT4Chi6GtBKUhQUBmX5BlMexst1+bXlPGP1Djq4sB2CEx02LY1tKD7a0x1LXFRK+xRlu52N4aw4bGTs/kX9fWg6c+3ooXPvcP81D/rfJCm0xsb+tB3DCxsbE7JZGIJ3vvCeqLXEzka1yVfV264qbHn0TrZCpJ0JMwsWh9E7oTJpq7E1jfkL4IpFpXJ/tzkFPI5W3zY4zu/bby4SkU09aT9IarIFQdkUZt/+xJmtx8SwoNnZe7XhCFV9yZSfL9IEJZzqTjukYmY+iIGR5PEGUe0TqWRB6UXTCp9o/PNeGqhCXIqxuCiAnlJZUaJBNn8tv5nTetmzRELR3GyK8nrrlbsaLrTiSAyhvQ6wnTrpxOyhZzzsm/GKi4XjQG8gOR4Z2UGl6U0aTaQMwJuwkjOYXMLGmMFhMZZmTmNp2WGhZjYK7wXsoxQhRfJNKnqGQSoSQvOYW5xDmqpQXk98skouMivHRfMMj7UscaKEVDF0OaBA3LlgSl8AU1d9s+nEhIUwgVkaDNzd2+5MFidhFDwP7CbO1OYoMTEqtvi+Hfn23DYx9uwebmbmxt6fbtR0aZYCPLClFVHAFj9vF2tHurXBP6ogS5m8nmAlIpxg+zr0tn3OBjKS4IKWPrTphpCVdP0sQaKfS1vrErbYFFeVe5EBiLqY0i81onSCEZuW4rfqcn3LYefyUoKU1m8raxpIXGzgRM6g4uTTTucBiNUg7F0IRLoErHsjFaHmfScBQN1xANi3Elwx0ecnEgVw0i8G3A7PR3w2KIGSZf5obsXaFtU117+XPivRL+58AznqTzp39yY18iX7KHxWLiXEzLJhdxw+SEjshNWk8QRLaZ4RApO53d5JWsKVRIGWFUGoGKIpISROEu2qe9DePZaxSmo/CYTOr4eIhsOo1t+fWwxLnIbUPkn3KmnZxFxrP/XPe0TW7UUJvpkDNAKIlcLYJQSQPuE2BIk6DCSIhPwn6gHmI7UyhBRDhGlhUq6fZjqoqgazZx8Ot2vrM9rnzR7uyIY8mWVjzz6VY8+uFmrG8QHiHGgGXbvY1ByfxcGNExYVgJALtlB+GLbW1YXqe270ia/p3Cs0Fbd7LXtTZogp4wjJQgg6tV5YV2KIuUIdNi6EqkVqx2tMcV5Wdzc7dSSRdwqRSympNLOMxSwzX5DYdJv+f4fliu87EYeMdwN6hpKY05YVp44fPtWLC6Adtbe4QxGraatKW5255ILHWyYAxIGK4nZ9eYZI+PO4Mr6Sg+bk+LXKSR0rLdEyKBtmXS4zztjrKp2nuSnslYHaNK1FKRYoUEMVXJcasMJjUhtdwES1wL+SHKcHw6VDdJVoRE3R4LsaQJKmQoZ3X5wbQY2nuSnBCQMdyyGLoTJr+Paf+GJUJ0VD+ISBFlktH1IZJjh83s1jYiu9A+B3E+/mMjwsfT+B3FRgmHSteXWoYo1wfiXvQY1yWSJZMjod7CKQHgT7oCDG0MaRIEpA+Jja6wfUANHXGPkRewJ2QAGFWuegYiIZ1vu7nZWwfIvWxHewzbWnt40UM3lte1eybL5m4iQSFO1mhZd8LAmyt34o3lO5SwE2O9V4O6EkavUuwNU5hvJw8vBWCPgfp+lTnhPHlc7vR5GZubVBN5Y2fcowSp5MX/90xwZ+PkMxymfIHnuK18fPEE7m1BAQhVhwjKWyt3Yl1DF15ZWs/DHhQmuuvtdXj6023Y0NjpCSkxeFPk5fvRVg7Ua9QVN7CuodMhaBYnXPI1oBo0gBNWskQTV7dvirZVzdX2v864AdMCWnuSnNT5XTelUKElEy5VwXCfq1/tIoKo48OUY1B4kvH/2UhawmdDaoRsMDYt8jWZXIUhwpEqi/SxxZvxj3c3YEd7jF8rqvvDQ1ZM7IcIlb2MjNQis43CZUQkkoZaaJGIFJFsqiatEhOhcvEK5dI/i4GTKNrMz5hNY1DvHdXsLIdj3Z93UtlI6ZI4tC9hDrLEhh6GPAmqTpMhVloY5iGzLT5khpSgUeWFntfkkJgbtC86diqlidARM5SO8ADQ0iVIUFVJxFlmq06kEjHpd0KvSVDc6FXvsZh0vNEVhdykS+MnEiorZh1pQm/uApRNnQmPJ8j9hcmX5/AFR0+/BMti+GRzCxaua8p6H6kgT9O5KkvyKdCkSxOXG6TAkOdDvsayz0T2YW12fGx0TWkiSteAkkInnKgw4LoXluOFz+tw25trhAfFtQ9SOQBRy4VCkCpRVL1C4olePOlbFrMN4oa/wkMToKzouU3VtJ5CNpi4b2Q1QZApEXKkCdZyMrwoPCWPJun06OJkz5LCi8xWaGKGyX09gjSkVoKoUvzK+g5+bjTpU3sMChcRqeOZbMy+P7hXxxJ1gEgFo8rRdnhNhOco1EWE2vfzxa87KX2iYCMpRO4sRupjRmSLCJbwr0kp8RB1ocj7JAiRQ5j4WKG+V0wKXfpe2QBDAUOeBGUyR1MIx01CDMvivpx0JGhrS4/ypZw0LV675EsTqwAgrY+HsGy7GtqiCa0wovNU/04nzESKEKD2EwN6XzW6K2H2ikDJZuzSaAglUVv5oe/z8dXF0DSb+LQ75+Su1izDTYJafRrDypOYGsrIgQS5lKDGzgT+b00jXvy8rs+Vt1kvxwSoX9aiTou/SsB9H1Q12NXDSvSWEttoTtaOfE2534UJgiIPO2mqKguDuF///dk2Hi5RfT1OgUbpad4wResPThKYUCT4tkz9SdlVPQm791ws6Q37ykoNHU9WEuTr4lYA5arO7mMTeaBrINQGMj2rBmwRZhJkQ5QHAG9hQQSViIjF/CtGy5Czooj4yOSTxiSPwZBacxC5EQqOnCLvjCtpk50YZZ4xcKLi59ui8TCHTCUtUmVU0iK/t0nLJsM0VpkEyuO3CY5QuCzLdZ86lJUUNtq/WxW0l/eOBgXK0e6PIU+C0qXJA4LMbGruUm74xo4ELGaTEMrQkjGyPIpoWEfcsHgGGWBP4iZjKCsMY++RpdBgm4HTTfwAsL6hU2lVQEblokgIhZEQipw0+pbuBFdZAD8lqHcZYl3x3oXD2p0msZGQBl3XURZVr1VpNIxRZTaJ3OoQHHehQhkUgqQv/LaepGdycBfhI9Cv9LRL2OlDQukplCCTL7/QaC5Q1JwcpSC3siXCKN79JA17wpKrBsvH7YwZdmjE01KC8ffaUiYeZwx8erERS5oOefCO0XJMtWS4lWGYIvwlZyzJ+6Cwjkyw+LUgdYOJtP+44w/yXAuTQnbiHJnyuziuSpyFEiT7coigGEQETOoXpqocSZdCwsk1TfCMzo8UN4tndfGu7lI3+Uwgwiq/bzKxofOlgo30vsh+LrfJm4hS3OlPRyoizyKzxD0ok1fujWJiXJx0SeSSxkbr2+Zri5MwIjcy+aF71mSC6FmMyjOoRniuWkEiU5AM6a77KuW1DQjPHomABKUJhwF2bZuwrqErbir1d+RQmF+tCV3TMLbK6wuiUNj46mJEQjonYX4TsQzDYjyDDBAd6MudRq+0n5buhFIs0a0E9Skc1ott23tsQhMN2yStolit6RMN6xjjXKdtPGMudesHuu41FTZx6ognPR4iuVmm5ZqAAPsavbe2kS9fs7PTo6TISpBlMaVMQl9KDQC9D4cR2eDbWmJiT/rsyFZgREE8t0Jme2m8fgvZsCx7Q9Q2F+I4XQnDY0olmJadPZU0mXLd5AmajkM1cuR9ENkQZmiZvNBPx1hs+reWsPdvKVlFsnmZn6OlEi5az5KOTURO9hZxwszkbYT5183JSNnhYRwiQ0yEingTU0t0ck8XknTvn9aUyaeb6PD3VfL0yEqXeN8FgaHstoRhIcYzxRhvrkrXSa6fRARJPh8REhNkyQ5lCk8TEZykQzDpWAbfThT+lPcle64YhFokCJFzDzHhJ8oWARHa8zDkSVB5UZj7VPwQDolJerMUEtvRkdoPRPBTkYgQUc2ckY6pekd75h5lMgmiekNEBqqKhS9ICYd1JZQPbm98PfbxeucJorAdFXpzK28FIZ2TxXUNnehOGGk9QaRs1TjXvTtuenqlJZIWtjvKjaK6OH/0JExFLWroiHsUMzl8ZDHVNxNLWjkrODIUkpDDl2pPwvScD4W7DJ9QScKZSOKGpUzggE0KmrvsatOywkhP03KIiyYUSwopyOOw70WmTKB8f2DoSTh1idxKkEyCnCwltwGaOdvTpjRpCS+HqlokTX+PhzzpEtEj4kOqAimK8nvLpL9J8aFxWAw8pGNP1FJ4iNQgiWzRMWjSNx2CROEhPtG7WljIv6eFJt4b+b2Qjd00RplIyjWTOHmge0vyJZnOudHP7rghWmpYwmTPw1zMfiBJGkzySQkiYkieMFqXzjUphemUpq6Sn0hWoWTDNmNCBSUix0mS5fiwQAZsEXKVawwFGDoY8iRI0zRUZFCDJnAyI5GgFJlhMogEbW+N4YXP67CzPcZNjOOq7YmfQkE7OzL7gjY1dfMvHZq4xjkEgrxN9e2iIKOm2SpAh6SUZPIVpILtCcpdASElqtQJgw0rEdfLDpFpGF9VjOGlBYgbFhZlaALa1mNfPyKfXQkDjS5j+Y72OG9Xoqoc9k85bRiw+5a1dKskSA4/WEwlj90JA919UIOy8SL41YbqdurREEzHVNuVMHyN0QmH/FBtF7kSdGfMsFuDWEwxr8vhNbk9AqkVfNzSOLoTopmv+zWaXCgsJAo3qirFIx9uxn3vbuAkRZ7Ee5KmUF5kEgOxLzDGCQRtJ4PXvnGpNRYTWWmkQilcQxqLKV0rt1lZJsymozqR0lAqhYDjhsnPj1QOWf2KO+8JKSgyocrkRaN3Vw5XymOUz52vR0SOry/CSfJ14oRRMkMnTBG6E1ldsvnYITSSCmcxhoRpinCfdB0NkzlNZYUnigzzRJooXCgrcHbRTceQ7oS9Eo4PTb6fKYMx6azPVUaon0k3/D6jbjN3gN0XQ54EAZmLJvI6PK09vGAYhZyIxPihsrgAR+01HLpmF/V7bPEWAHb9oeIC+4uRJvMd7fGMH6pY0sT2th609ST5NEOKEpmjt7bYRK2kIMRDfU2dCaxv7MRnW1p7FcqhRoy9CYcRCSorss93hNSCIBoOIRrRoesajtxrOABgQ5PdVqPFp/VHc1ccPQ4ZIQUtlrQ8xSy3tnajrs1WgvzCYd0JQyFHCdN7bpQ6TPuISQSwI24o6kmuUJSSFJfUjxT3JExF4qBJpSuukjpC0hJhMMYY5G4YNAnb4SpBkmX1wTAtvL26ASvrOzyTqewj6oqbXJXxnp8a2lHrNjHu3/m/NY1YUd+BdQ2djrFZDt+I91FWLEjRoHVNy243weCduJQsLkf9EH4elzokj5EJtc5iZNhlSohHViDsZaRY2etNdL4/7PGLMBOFCrlCBcCUzlsUNQQns9lAVoJo3AB4eEpWPQQZlA3wtmL9wufb0Rmzyw+IUJMUJpPCdLKfi0K0dJ1lA7jFGGJJi4do5WtoEyNLUe2oxx1Vt+bHtixpO0GQ5H3K9ziF17hJn4mMsYDKDG0EJAjpG6nar0dQGg3DtBi2tfbwCao0GubZTqlw8IQqnDNrPGrKC/mHjRQiABheWgBNs592M5mjAWBjYzeanfBPQVjnfY0ozERz4YiyKCdY6xs78eLndViwugEbm3Jv1kqhoN4oQQ28vYcdrhshKWcFYZ0vp/H3OBWjt7R4SwtQODCsa6gsivBJfUuzmjHW2BEXGTE+k0FPwlT8LYZDbGWoSpD9xU3o6iMJch/HD2R8lzO/ehKqJ4gmge6E4VsniBQgMkbL3jX+9G1Zisol/BYMryyrx+OLt+Caf30uQg+kfEi/J5xQEA1OEVIA7umQCQYRiVjSTT4ZJzLyulyNYcJrIsJWkj+Eqz3SuToTNA9/OONPOhMnXV+qWK2EwyRSQuOnZbwOE4Nr0hVKAxl1+flJ5M1idqiPh/aYmuGUdEzedC0yqbifbG7FonVNahaga/zycjnbz+2D+tfHW7GuoQuvLquXxiDIJCkzpuXUETIYD/XJYS5OliQyzENXSmgLXP2h98SSjmE6pFzONLScgqZxQ6hD9n0hVCHKjEw4BEuu60Qkzn1tZARqz56PgAQhc4aYpmlKqnw2oTAZw0uj+NYhYzFn6ghMqC7GzDHl/LVwSOdKVHa+oE5OLIojIW6MLisMK+GOmopCHipbuq2dk6PGDv/mqunQGbf7PsXSVHJOBQr/VTjjHFUmrhljjC+n7Db6Mtza0gM3iASVRMPQNI2radtdafPdCZMrFWroSbwuTxSGz1O2HKqxmGqG7oqbvpN3tvB9Snd92fY41zphWtz4HTP8PEH2+fhVjKaqw1RzJiSRIFOahGKKYdkJWRgWVjl1ZwBIfblESI6bp12tNtznItegkbkaYyJ7UL1AwqDNICsYQhWhUIvdW4u8NkKBkakHGbMtC1zJIQIjG2+FEiQPRQ2ZMAijL9XXkU3j9rWA2lJC2qEgOZAmfJXkmaSkSNeOxpcJH0otOmj8pGTxkJdEioh4UUq6+71rjyUV0kbXx64b5FQrtxwi7qg+VO+J1iUinjAEOZSz38j4TkUXEw6hosKSSYlEEZklYmSaNpGkqul0TQ2JrPEQpSURL+m9JtIPqIQ1XwQoIFKDGwEJAnixwXQgX9Dmpu60RRJTQdc0HDiuEqceNAaVLuWJ9pONL6ixM8FrFhUVhHjFZV2z1RHC2KpiTBxe4tm+1aeNRya0difx0AebcdeC9TlvS2FDIjulhbI/wuIkLhzSUeCYp7sTpm/tpK2O4kNp9tTypMkVOutKGMrES+DhsKSpTFqMuQrkQc1cSrrCZV0Jw0Mc/NqjpIJfdph7futy1De7S7z4XdnWEmTBLy28x/FxUVNUXfq005c/kQD3eSdMtdcXKUHxpMU9Z0Rg5Gq8tK4MmnToSdy+BjZau5OIJVUFlMiGTBBVw64Yv+0XEo1fhbFaOj5j6IwnRQgEwvhumgwJw943b+HBLGUs9N7QmOKGJcI8shIER81gzAkjMaUMAF0Lbjh3xsDN0kQ0oGY/2dcgvW9FxtqdEnllKumh86B/piXUNVpHKQXSmVAVPAh1R4QE7c8HESDyABFRlf9RnzdRB0mUCqB9JkzL7mtHy51t3I1fifDEDBFStJT7Q7QFMWXyRTWIJBUoXeadW0ELsGchIEGww2E+We4KxlUXQ4PdmoIyvHIhQekw0lFH6rMomggAK5yeYCUFIURCOkqiNhmQCz9OGl6MqaNKPduSsTgXfLGtDc1dCSzb3pbzUw2RA0qNj4TELZcwLKXGUrGjBvUkTE/XcQDY7vh8SpxtKBTZ7iIgpKKQ1N7ancCbK3dyktnjkCRAfPnJJMd0vdYRSyoTmbtmUmt3Eq3d3uuaKnwof9/KYQMZRLKSJuNh0oRpKV/Ccn0gPyWoO2kXuBQdyNUQEZ2rvGnCsKRCeDJZY3zyohIGNC73uu6xEKmR16PVE4aFzpgrO81hVJx8SE/rjNnXNe6YpemJX5huLc9ExSw7U47CKDTpkUGewi/dTvad+v6QAiL8QMw5LhnLhSfIVspMU4TZ5Iw3gEJu4IqSYVEXesaNypysKKQu+8/d85/X8d/pM5AK7mPS9XavQ+MhkkSGba78WOL+4KFAiZySb4jCU0RgiIwQEUoYFu9Yz4mTaRMtCl+ScquSI+ERSjgeOEGWLKEESWScTN6AK4OO1Cn5GtC5I1B29jQEJAj2xFxWmF4NKoyEeDo6TZhyaKcvGFNph622t8SyMj9SlhqRAO6rkRSmvUaUYuLwEpQXhqFrgmilSz9PBQpDWSy3OkNdcYP7iaqK7LHJJMiwRDgMEMoOGZfdneup6GRp1A790fru9YgEkT/jgUWb8MW2Nrz0RT0ASKRAKEAJ00uCSF35bHOrsv/uhBoOa+iM+ypssYT/tZK/ROlXNwmiLKekaXGSl/TzLTnb+WWHxZL2RC2UBpXU0LnKfqK6thg647Z6pBb5s9eNGyboUpHCo3pxvGOhp3LD8pYWsMmHeP+IhJCKICs/pEJ0OSn3m5t7sLM9Lnlq/Mkg+UnIRMugNim1mD1mCvW5w1ekVshG2qQpm5rte4qUIAr92PcWg8nUe4tIHSkTcae7O3NUG3ctJDdJyQabHO+fu3s6XWP6Sb83dMSxvqHTsx9SmgUJIGO5xRMmeHFH01LICXOUOsXoTASIwpNMfY2uG88GMxknkwb/J0zQvLM9T5+3Q9fU64xqIFHoTlWRhD+ICHYmuK9jwId2f+REgurq6vDQQw/hpZdeQiLhCkF0deG6667L6+B2JaqzCInJhubK4giikdQd6HM7dgEqiyIwGcvKuEweEU6CHCJBtYKiYR21lUWoKIrgjC+NxbcPm4Bah2j1hgTJ9ZHSNTd1o6U7wckCqVQFYR17jbAVqhmjy1FWGIHuyHBFnAQ54RYXsaCwV2k0jKqSApQ4niC3V4IKBxoWw1rpi53UmpjkoeHmXoPSlAUpoK7Z7v5vPa5yAfVtMd/rEkuhBMmjTWXMJB9EwrCwqbkbzEflkI3KfqGSWMJEPGkpadcEvp2lTvqdcQOt3QluXiXQpJOQCKScHUQTJK1L0CCerinTSb4I1IiTXxv+JC49nUu+nK64AdO0sL6hCw+9vwk3vLxS6XPm1z7EdCZTWxUjhc1SyCFN3ES2+LZMkE1SJWyyRWEVxn01RMLoH/XZksOK3OPDRPZUT9IUhm9xaRSvin1tPKeWEq8u28GvyfbWHty1YB2+2Nqm7EtWlx76YBOe/7zObsIq7acoEuJjld86UnaI8FEINWk5f5tCCVIM1BJpNix7PSJJVC6ACFDCkMNfomo1kU/udyN1yNk+7lomh+zk0JxszCYi5gZz3Q9+74VKjAJWtLshaxK0ePFizJgxA5dddhnOOOMMzJw5E8uWLeOvd3Z24tprr+2XQe4KZMoQA0QfMSA/oTDah6ZpmDLSJgbrfJ7G3CBiQU9ppASNqSpCJKRh4vASlBZGUOb8qy4pQKHjt8kmA80NOVOL/CDZoLU7yScdIpkFIR3HzhiF4/etwZypI1BUEEIkbJMgMjpTDR63z4aIRjSso7q4AKVRfxLKQz0mQ32bCDFGQjpiSRN/fWc9nvp4KwChHBAJ2trSw03Za3Z0+BKczrjoV8afdn1iDqkyyPxCD34+mobOOBKmxdtb7GiPu/xE6asI9zjhMHrytZRtxU9TGiY9dZOJVR4P1YWRiReDY5Jl3n3L50gvy6oP4DTLlIgLg6wcCYJoSeqJYTGsrBe99JKcwJLHSyV2JrNLHMSSJk/nT5pyGEqoWu6Ceapi5pw7E1lJNE77mjiFHSksI+1fvo6kaNH7R/Wc6DrJxNhdbDFXMAa8tLQOSZPhzVU7M67v9td1xAws2drqIZcGV9ScMJdDKuJJi6esU7gslrS4n0dWj7i5WSI0cU6aBPEmHxF5rEjNMSyXemRanEgR4SGCZjEiviYnVooyZal2+oDLDB1kTYL+53/+B6eddhpaWlqwY8cOHHvssZgzZw4+/fTT/hzfLkOmDDHAJi1U+TgfobCDxlfy36eMsE3MGxu7PcqGGzS5Evkpd2rwlBVG8F9HTcZxM0ahJCpM04AdzgOA7l6QINmk3OGXzZMCtunV/vIkM3jEMUBPqylDQVhHUSSEAidEJofDAB+vj3PeBWEdVcWRlOUJaBIxLEupBN2dMPHB+iY0dSWwvK6dm3UBIOGQtZbuBB5atBH3L9yIdQ1d6EoY6HaFterb4uJLloqy+ZKgVKFDlcjYP9U1kqbdc45CNkmHDKnnCd/jEuKGifZYEqZl8cnffVyTqeSIhzrcSpApJhRTIgZUO0YOh8lPw7rTkJXIALVR4RlmJoOhzDjiPRGmYBFuIwLh9tnQPuX15HPiKdrK2AXRoG7q9v4lY7Q0SdKETMeRU71lYzMRNsp2UnupifAaKRA81Z7+c1aX0+nzpTDIhJ526X7YkA/VkzTx9qoGLFzXpJBZUv8STho/+XjihiiEmLQEKSGDc8LpP0YEkBQhugYiy4vCXJb0HjgEXUqVlw3xRKjihkiN5w8ATHiWKJyWlBQmj+qmXA/12vP73LVegN0TWZOgjz/+GD/96U/tJphlZbjzzjtxzTXX4JhjjsHixYv7c4y7BNmQIF3TcPD4KlQURbDXSGE6PnhCFWaOqeDZTdmgMBLC1FFlvGVHTXkhigtCSJgWL3iYNC2s3dnpmfw4CXLCYOWSnykc0qFpGkqjYRQXiJYg0YiTeZU0fVsspEJrdwItUvXiljTVnN3Y0R7jShB5f+RrVBDWEdI1voxIEHl65C/nWNLkak0kpKOiOMKVIzdofjQtprQQ6U4YigG+rSfJ/SsUUumKm/jn+5vR1pPEM59us9PhDfX6N3XF+dMnz2zxISOpGq3Kq6aqWGtYDF0Jw64jw6ivklelSKcExZI2kTIshvr2mGr4ldQceR8U6nGHB+S+TeSVEgUCVcVDPo6uC2WH0qCV83QpQRSmYBCZXER8SBEyLdX7w8NhTBxbmdAkwqGMXTIFG6ad4SdP9HQuJmNOJWNBsmjCtrPFTFVRYqKGjVtZMl3rUQE/Bq/HRPYG5cqB6D53q0hUPZ6Wt8eSuH/hRv56quSMLS3dikJFvydM2yPW43w+uWLIw4KSEVoyMBOJkU3TcvjKsOwaUklLZDB6lCPTQtxU1ThS+BISqRKhTBEWFeE3xy9mqdc/1YOoqha5yRHzXR5gcCN9pT8XYjH1A3LNNddA13XMmzcP9957b14HtquRDQkCgFmTqjFrUrWybNqoMtRUFGLutBFY39CFjze1+KZ4y5gwrBghXUNlcQEaOuLQNA2TR5Rg6bZ2rGvowrjqYrzweR33o4yuKMT+YyswvaacKwwVRaoniBDSNV53p6wwguauBAqdBqbxpC0Vh0PZEbaVde3KF4JfFpQfTIthe2s3N1ITCZL7tNEYySzt9gTVtcXQ2p1AeWEEnXGDT3YFIR1VxQU8K84NoQQxpfJ0T9JEl1TraGdHDAXSdWGMeUJfzV1xJVxE5xY3TD4e02LQNT8lKHM4zEoxySVN2/ugaxo/nuc8rfRKEGVOmZbtbVKN0bQPV3FA2JNOSIcrHCZn7NA+SFVRVRuZgIQ0jYd0yJAsH5+ezuVxEbmKG6KTeNwpD9DkVAcP695MNxoTEQp5nwyyj4fq9UAhL3HD5MvlfYsK0epELIcOhQokyKVQpVQliI+TkR+JIax7J0/TcvxQyF1x6E6YePHzOhw3c5T6gms8crgYAD7d3Iq5U0dm3D+NNWnY1yOeNDlh0SyGgpCu9IMjYiNXik5AkJGQrnHfEBFEWWkj/w5g34dhXePXnvZnMVGYU6zLoEFK65ceWrjXiKnmaLq3SFGU7yeL2fuDpoFBzrcMsLsiaxI0c+ZMLFy4EPvvv7+y/KqrrgJjDOecc07eB7crUVwQRmEk1KtKwFRnKBKywzxTRpTgjRU7sKKuI+U25C+qLingxQ/3GlGKpdvasb6hEwVhHZubu6Fr9pd4XVsMdW0xlEUjXGGodDKuygvD0DTxQS0uCPHqwGWFYZsEOYQjZtiVqTNVuiYsrWtX/s62Hk5dWw+6pIafXAmSyBeNSYTDHE+QpATdv3Ajygsj+Or0kVwJssNhBUpPJhk00RgmU7K27NR78Xd9e4xn5pFa0pVwqz4Jxehr79/JAjIshJxwj9+TY0oSJIef6KePEhRLmDzdl4iCvFYmJYjICnVwl9eUw0Ly2ElNYWCKz4eexin8AQhjtJjwRUiIoOua8oQtG9Dp+AlDJTH1bT34YH0T9hpRiuriAjDY711DRxx/eXsdAOCyr0yRzlMdv991sgskisKGPO2diZoxco8qQtxROihTier7yNfCsHR+PFIWGZOqb/sYo+UssaRhIRQJ8feLn4ukVLnv3WywtqETIzblJ4O1pTuJRz7cjEMnVmHqqDIwpkHTRDFI8lQR2SmMMIWkyMqpxcDJKA+XWfbnKCGFr+ieF+nvgOmEy6JhQUQZs/dfGBGKoJzwENJFPST6vFCLDtGahMgvE9cemlDyNEGGmObKloPmKbHCmFqhPcDgRdbxm+9+97t47733fF+7+uqrcd1112H8+PF5G9hAwJ0hpmsajp0xKsXaNsoKw4iGVUUiHNJx/MzROGKv4b71hzQNvJ+QbMgeW1WMgpCOroTJG4DOm1GD7x0xiXuGPt/WylUB8tmEQzrPlAKgkAMKlVE4LJ60PF6bdFi7QzVqZ0uCtrb0cPNwWNcE4ZHCYUUF9u+RsO0TomKP7T1JpRFmW08SS7e1cRWhvDCMooKQUnhRBk8btyx09AhS05M0lb93tseVsMqKunZ0xg2l8nZLV8Lj16HO7KIJpAiPyEjlCVJVClIG1HUM065j09qdhGn51xyS6wT5QZAVW/1jsmJiieOqjVHhS2boaZxMrfb+Jf8KKUGu8+OeIGfdhEsJsp/4pTpBFnDlk5/j+c/r8Je313FVKGlaWC1VsPZX01Rvjvt1GjtlqYlzFWqFbWiWr5N9bl1x0d6CG3JNoQAxZ2KX+4xRyrjsuZKvnekQJHoP3KEr+RzvWrAOD32wGbliS0u3khG6ZGsr/m9NI1fD/OBnxE4YFho64rzMBL3P3C8lXUN+nR3yEjdVHxCvp8RENXNKLpDDZxRmVN4bk9ppiGwyi4n+hnao1FLGRSoi9aoz5fpCUro8HYveTzlUTaRZ9X7J5FuQX/eyAIMbWZOg73//+3jwwQdTvn7NNddgw4YNeRnUQMGdITZ32gjMHFOhGIzdSBdGmzWpGt/Yb7QyqQJ2Xy9SYuTtQ7qGicNFBtqB4yoxraYMpYVhHoJbu7OTT9yUEg8IczQAReWhsRMJSZgWDylkg01Nanp4tk+jW5pFKIzCXIBaJ6hIUoKGlRSguCCEwrD9VO32Hq2sF60/Rjn1mspSGqPtn/SkKC9vkIzSO9pjSk2bJVvasLM9roRa3MXu7P0w6UtXlPR3E8RY0k6lX7Ojw7M9QZbZZSRNC10JA+09SVhM6rElT/5WehJEuyQiIatGctjGE05yCII7w4qybnj2HRPTJU1o7irdOj1Bg0JS4kmbxij3LjMtxkPJn21pUUIjMllT31exL1KxlMkIpCyYImTCJzVwZYJ7U6R900TcFTd4+My0RDiFQRDAjrghVZ0WPiq/iVEN46SvU9OX7DB3+5mV9R34eFMLnvhoC/6yYJ3vA9FbKzNnkdE9wvudcRXI4hl6dE0ty1a7ZAM5Lad093jSgtzklrfIkMiM3DaDE3KpTAMZqqmKONUUonAlVY6moo2GxRCTUviZBU84lMnnCqHukULn9/ELuM/uhaBYogSZkBw6sRoHjKsEAIxMkw5flcFLtPeoMsyeMkxZNknqKu0mUfvUlAMAxlYW8c7qADCyrBCjyqP8Q6dBVGEGVHO07JWhIpBRSYHJtjI1IDLDqO+UuzChHyxnIqNwUHEKEkRjKwhrGFEWhaZpvCGsm6jJvpFahwQVFoQUwiIfH7DDau7vI9mr1dAR94S6ACAcUvfpJii0/5buJKj6bGcs6anGHTdMbG3pwWqXmuanBLkLDFIFYyIuFAJVU+RVL44b8hIiAYRU4TDuGWFqOIzUGLnQJGUF0TXpcUJunuslTfJJSeEjxOQUedcxDYvSptV6Qu4QGp2vIERuNcdW5ixZwbFEqIxM06aphhjjUsVjygoj4kv74a9JJm8KE9mkSSXiAES9HCKjachsf6CuLQbTYvjEVQgUAJZI9YQygbLaiPQlDKHqUONeS/rHM7VMQWqSpPpYIoRLKhMnnaZ4nygVXq7tRPtPmEz4lAyTHwcQGXuyOZrUI06uZJID8oxJpMdSvV7ue13+KyBDuwdyJkHvvvtuf4xjUIAIzT6jy3DEXoK4jEyTDj8sC0P1IROqlEKLE6SeXlXFESVkNnF4Cc47bDxOPWiMR0Hab0wF/70wElLCcHLlZTk0RgqRrmmcCGVLgjrjBvfIkKLUkoUxuqEzzovFAWp4riCs8/Ml5a0gFMLw0ig0TVzPRle9EpoAw7qG4WWFzu+6Qu4o1EZfTJ2SakXXUiZBNonxflOFdfVj4VZbVtR34LMtrWjqtKsVv758B+Y/vxxvLN+hrEdqUUNHzNPklUBflO7+WXFD7e7ek/AxRruIinffEqEAlHAdzcvCCyHWo81k0mFPIO5wmKg7RRMJ9RFzn6OsSsnnDQAJWQlyjcVyKv26K0vLSlAsKYiVXG9H7NPiZITOgyYw2QdEP5MSaZEz5Wi/pExwk7clMtdEpprISJMjmW09CSd0RsejCRopsasJUjYgMk4kBBAqGfnl7N5swkxP14MBvAQDFVsksskbzEINsSkhLosItQivCbJkv39UIJPM2PL4KFGAKomTguUOvZGfi9RF+qzIoTPGVCVSvUYBdgfkRIJeeOEFnHbaaf01lgFHdXEBxlUX49gZNYqpbUQaEpRNVpmmaThuZg2KCkKIRnSMlpSlcEhXVBwAGFYa9RAgAJg6qoxP9NGIrmRajZNIlhoOE/umkFhDlp3kbTXH8eE4JIueIBljSqNGGXVOxglVTHYbmEkNomsXCWmoKIqgIKxjWKlDglxKkGyKri4W28lVu0eV2+8TfSl3SJlepEbJTWq7Ewb+/el2vLFih0IY3JlHfkRjweoGrG/ogmExvOmED/76znr+OqXrmhZDS3dSIY9+4RG3f4hkfjFWUoIEZGO0HxdyK05+6gkZheXlXPp3KTS2KmPybU1L9DUjQuYxWkvnaD9Ri+MSZIVKHgulydP68jVS25xYfH06tHw5TIue4EWIlJ70O+OGYtglLw+/HlyFENeHzpFniknnJFcip0kzIXme3lzZwNejz5H7esjoSZj4+/9t8H1toEBkkAiAfD8QsZB7pwHC3CyrO6Tw8JpAfmTTUj1bVDuJSKgl7UeUcBB/U0YfAE84kz7bMrmijDQ5PGmacikFi68jlCIV6UKbAQYfsiZBDz74IM4991w88sgj/TmeAUVFUQQn7u/18KRXgrLLviiNhjFvxihMqC6B7tp/tun5kZCOfWrKANh+Gjm0NLaqiJMNmXSURcO8LQWpJk2d8axMe59vbeUhLSIY3QkT6xs6sXZnJxaua/Ldrt5pdOquZ0SgbDDKqisI69xgPtJReTY1dePDDc18G5r0IlK3+ZCuKxPu/mMrAQCLNzbbnhqpujX5j+TiiZ1xAw99sAnLtrdjo+R9kt9/2QPjRl1bj3L8QomQyV/6gCuDSQ5pOT/dJMg9KfJMM5nYWIBJyoPP+GRDbjzprupMYRj7S16MTUxwauq6HWYgMzidk5wBR34KdxiNExNZEZKOqWZ3qdtypcRlDlf8StKlo2vrNnXLIZOYE7ajrDsKtVGfKVkdNJn9XjJnsiO1iAiOuzq13JiWQm3ufntcIbLEtqk+jp9tac06GaE3SFXLKhuIayARIk7+odToIQ8UnTORkYRp8owwIjHydaVjyOZkBkg+Iul1iZyS8ke/A0TkJY+ZJQzuSemfxWTVSmQQ0kOH7YEC9wK6w2cpvi4CDFJkRYJuvfVW/Nd//RcefvhhfO1rX+vvMQ0YdCmLSUZZYcS3Jk1RQUgx/WbC5BGlmDNthGd5Jl+RjIMnVGF0RSFmjqlQSJCmadjb6RovK0G6rmGkQ2B41eiEWi/HD42dcazf2cW/wCcPt/edNCx8vrUN769vQlNnwqPYAJISlKBq0S4SFNZRGhVZdZGQjvKiCKJhHaPKo7yS9sebW/ikmJSUIPLshEOaYuykkGDcsPD2qgauBIV0jWfHyZky3dI1kOsfyd9hDU7Iyw/UHJJArUli1DRSUglUU7LYBz8/S30/3CQolRJEh/czz7on1s+2tIptnXnZZIz3WqPx0GQjh+BMyy6sR40s7XOylBCb6WznJo1qppb9u6zkyGE3N4HiKfWu9VSiIogEbS6TqYRp8nOymE04aV1RWdi/YKE9SYqJljddtUQWnfBlifeHJlhbPVCvBylclpXZ8pxKIRpIvLumkf+uvrdqqEioKpRJyDhRJlKRNJyQlPOa4SRu1DuKMy8zwERPNlFfSa32bPBjijAdvW90XyuKJVPbZ1AmoGnZbySZ2t3bKZlkFlPed/t31/s9+N7CABKyIkE/+clP8Ic//AEnnXRS3gewbds2nHfeeRg2bBiKi4tx4IEH4uOPP+avM8Ywf/581NbWoqioCHPnzlV6lu0q+IXEslVwZPjVtsnGV0QoL4zgzEPGYcbociUcBgDTHJXIfYwvTagCABRGxCSdKU3+k00tSgNQ2nfCtLC5uRuNjqKyur4Da3d28qJrPU5aNyCeMitdWXeRkK4Qo4qiCCIh29+jaRqOnDIcYV1DwrDQ7HiD5EKJFK4K65rydRORFJzlde3cQxLSNE645MmzW1KK5J5qsjKyobGLkxZ3uQN35lgopKOhI45V9R3oiBmKEqQUJHRN9Pbr6r7df/s9sSumW58v2nRfvrIhVzbuchIB9XxNy0Jn3FDCdBazs2vEmMXEI/bHlH0SaZAnT/kaus+byJ8dzpOUIHl7d4EdqGMgEiITGQqdiaadIqQmX0vTEj3GkoYwaTN+HEFElRCKM0nKIT1xTUR2mOU61pbm7pwqug8EPt7cwn9nTFa/LO6xAUSzWVJThMojtrVT54UyxgD8490NeOiDzeiIJUUNIpfaY793jJMnep2IiVCRxHtCTYllczsRecNpx8EbrjJRR4qHzUw1XKZm9jFko64HGHzIigQdfvjhuPPOO9HU5B/+6C1aWlpwxBFHIBKJ4OWXX8by5cvxxz/+EZWVlXydm266CbfccgvuuOMOLF68GDU1NTj22GPR0ZG6EGF/gMI0MnIhL+mQixIkw131eXRFkd0sNaIu33tkKSqLI7xqdCxppZTYO2JJvLVyJ1bUdfAQTTSsY1y1XVTQXQvns62teOHz7djWaoeTtrcJAzCFSqo9JEhTCOTwUlWp0nWNN5clVUmEwzR+3mFdx1FOBt25s8Z7rge1G9F1NTuOn2tcXAM5dCarES3dCT5JR1z7t9PYVfP1lpZuu89XXCVBSmsKaR/iCzp9OMxvYiSfi3ufYt9eBUbe1l7uHZu71QPgVC9mroneAnokszIPQzD/cwV/YrcU4iOTBHfYkGcJuhQVtwLhhvy6bFYm4y5NzqKrOR+ij+9KKBpuo7Q9gVtcZZJT/2m/fnOjCKOIF99b24inP92GV5bVezcYpKDzBoRh3CaAIkMOgAibQdRDsrgSZ3GFR34v6bPHibMleYIkpY1BECR6D4T6RK9L4VpLSsO3RIhXLohJRnnGoBAg8htZtFwidzR2OqYow+C9AVIRpoBI7XpkRYLeeOMNTJo0Ccceeyza29szb5AlbrzxRowbNw733XcfZs2ahYkTJ+KYY47BlCl2NVjGGG699Vb84he/wGmnnYaZM2figQceQHd39y73Jvn5gnpLXtxwk4RsUeDT+uLAcZWeSqWapuGQCdVK1WhSgpq7EjzsEUuaeHzxFny2pZU/MQO2skQGa/dkHXdCC/Vt9mQlZ0HR9mR2JkQjIa4sAaKOkExUapw0+P+s3In31jaq4TBH8YmENBw0vhIXHTERc6eN8KTLb27uAuCEw/xIkBQaU5Qg6ZuYfA10PBlJw0Jzl0SCNA0tXQkknEym1EqQ2IfF7PpC7iw1DwmyvE+aNAG798mPI481BcmikIAYmyA5mtQUwD/cxlzkEZ6J3T0eWzmAiwT5kxtbKWD8+IqnSTodv0lGfl1u1UGZZvQ3ZWmluo4UDrOvEVNq3tA14JOf6xr5FUCkbQzT8oz7Uydcua6hS6zr2XpwYM2ODqzZ0YFXl9VjY5NdAoJUIcbIE6dm7bmzqKhoISk07nvHJiDCUM+JI4QSQ+sR8TAttZcYpegTmZF7jJGiROZsOU1eCYs5xChpqWn/nIhZgiyLdHomwqv8fLInQwF2HbIiQYWFhXjuuecwY8YMHHfccXk7+HPPPYdDDjkE3/rWtzBy5EgcdNBB+Pvf/85f37BhA+rr6zFv3jy+LBqNYs6cOVi4cKHvPuPxONrb25V/+UB/KkG5eosI7kkZAGbUlvuuu8/oMl5hOZY0uRL04YZmvPD5dlgWwzurGxRiEOPhrAgPsSVSSPWUdl/XKrKvSEkaUaoSyFkTqzG2qhhuyJleVAsIANY3dPmGw0K6Bk3TUFYYsX1CrstBBEUOh8mQPUGpSJBsjI64UuftwpPCS0SEJmkKckDjVkmOqpS8s7rBMyG6vxvdJIaOZ0gkwQ3GbDNxKnOuvY5aF4c/xQLK9fQlWcxuyMv3KT21p9rOYgwNHXHlfONJf8Oz/DepLvJ+0o3NbYymZZQyzX0lppgUhVIh74eIksXHEHM6pYu0aXUytn9XTcPu6ybXt/FDW08S765tRHc8c12ugcBLS+vx0tJ6fLGtHc98uh1PfrzF9sJZQv1we7iIFBAoW4/UQ+a6Hm71RiZZ7nVpfcMSJETejl4n0kEklOo9UV0jKrDIM8YkxYiWU5sOUoVkUkb3kAx5mAHpGXzIOjssFArhoYcewqxZs/J28PXr1+Ouu+7C3nvvjVdffRX//d//jcsvvxz//Oc/AQD19bYsPGqU2rpi1KhR/DU3brjhBlRUVPB/48aNy8tYK4oj3FxL6I0nKBVy3ZemecNhgDdkQwiHRGp5PGmhPWagK25g9Y4ObG3pwdOfbsOy7SphJB9KdUkBN1snDf8PcXtPEh2xpFKHh7Z3+6lqKvyLT8pqzcThJbxVSMK0+HFtY7TuOVdd0xQCR2MCUitBMjpjBroTdraY7L9p7krgI6eFifvaJgwLq3eIa2ZaTqE4qaYNhQ9N15c7gTHmqEbqePxIkfvKy1/wMqgfWkNnHHcvWI8Xv6jzmHPVYolyWrpQc2ROmYpoKB3gmcjmEfvzkpUuRyUjKAZsH9JE45K3UXxEfkqQDwkigkYp8m5vBx+ji2xRWIsmVbkekvrPRSZ9xlXuPIiINHvPKgCAf328FR9vasGK+l0b9u8ttrb0YNG6JhEac9QdBuE78yPEpnT97XtPvE7kghQhnoXFhMJjMos3vjUt9X2l93T59nY88+lW9MQNEaZk4n6Q0+oprd+0RKq/XNOJ6p/JoTQRYhPZYUSAZc9QgMGJnIsl3nbbbXk7uGVZOPjgg3H99dfjoIMOwiWXXIKLL74Yd911l7KeO7yTrjndz3/+c7S1tfF/W7Zsydt4ZUXDTuuOpFk7N+QaEktFdtKh0klJjxm2ErRkSyufTLY0d3vWJyWnUurYTg09/fDFtjapbg3jxmrKTssEOTNP1zQctfcIZxwmOh1SIReClCs7h3TN43Oi7DBdyg5LBZMxvLO6UVF23PCEw0yG7VIXbjtlnAr7OUoQkSBTle8JtlpjeTw/lt8ldi1zZ1IRSLD6zKkGvK6hyxtKswQJUpUgf2LlTzS8xIS8G35jphBBd8JU9ueXui/vk5a723j4HEI6lvidV6mWwir25CxUL6HgqMRNDtPQpEyTZjrQ5A+oKuBeI0s5oUvlFwFUZXJ3gVDYwEkNkXcKZbkhV2C23NeD0fvDeJgLkMkF8MB7G/GXt9ehK2Eonxnh8WJ48Ys6bGzqxpurdnKljxM0xpQMQTmVPymphKQC0WfcMEUxRsosE6ZtEbajYwQYvBjQthmjR4/GjBkzlGX77LMPNm+2GwXW1NQAgEf12blzp0cdIkSjUZSXlyv/8gW5fUY+VSAgd3+Rnx8o4zEcohVLWuiMGfh8W/ry+MLYHFEyzpLux3UHX0jl9qlfDwCMLM2OBLnVGjJ4GxbDDodsjJAIlewBCmmaJ+ONJpJU4TA3/NL9ZRSEveEwNY3c9lElTMaVIJqATSYKC7orOVPatQxfM6Xrb8XLIy2nulDpErBl5UP2z9AWbuXJb09yOM7exhvScO+DMVv5MX2OCXi9UzI5kese+aXdy5DPXRRcBA9r2OqCHCrxv1ZcfYBQ3uQ+Zvx6wUtumXNNPtrUrC5n4AZfd6LB7gzh2ZFCU9wj47+N5z12EV163R06pOXUC3BDY7crFOlVX7rjJldo5LYmck0vIkLcB2SI5WSMJp+gqCvEpH/ec7N8zj/d9Qiwa5HzTDp58mRceOGFiMfVCaOxsRGTJ0/OaV9HHHEEVq1apSxbvXo1JkyYAACYNGkSampq8Prrr/PXE4kEFixYgMMPPzzXofcZsjk63yQoXUFGP7j7W2WD4aUUDrOfxP1aMcjgJKgkiqJIiKdM+/lTANVjQyGlSEhDYUHqBrQy3CSoIKSDeE6rQ3BGS6E0ub2F7qMEUXZYNuEwADy1PxXcxuukYSnnTF+Q8aQpPEHOJGdIxMj9PRdLmJ6q1Nk8PSrbyEqQj0rq3ptcJ8gvZGW6WJCf+ifSoZ1tLBHiSHVcANw0DtgFJ5/5dJu0D5cSJJENxQwtkyifg8jLZDXJJjHMURfUTCUGp/+ZvK1EFol08vowPucmzpth3c5OvLKsHtslnxwpTemIwe6K5XWiybFMaDY1deGedzdga4tXbSalh+6vdTs7lRdV4uP/O63sZ6yWV7NACpVQakxLrW1ke4NMXvGa2qjY5m04WWN2eF6uMs1LIjDbKM1VXwhiGGBwImcStHHjRrz33ns46qijUFdXx5ebpolNmzbltK8f//jHeP/993H99ddj7dq1eOSRR/C3v/0Nl112GQA7DHbFFVfg+uuvxzPPPIOlS5figgsuQHFxMc4999xch95n9CcJGltVhOE5EKHehMNo/zEjdUhLBhGZ4WUF0DSNp9inMkfLoFBacZYECFCN0YD9/suG8bCuKWZ0ubJzSNdwwszRyvZkBvYjQX5tSdL14QK8zWOTlqUQQtq+I2bwa0fXqitucF+TX+ZXKuOyjFQhLUBVPujU3MqEDNkTpK7nP0a/S9PSnfR4cyjTRxqYsg8GpjRhfeKjrSnLE9AE0pM0YbqyqZRwWoY6QbygpEv1iRPhkcIwniw6i05BkKaEYfm/P/LvDHjog81Yuq3dtY5zfVOEh3Z3EPEgkmlaDE9/ug3NXQk8sXirZ33VQ8PwzGfbxb589ytUN/me19zrOcRD3QeTXhfHF3WHLMUTJJuf7dCXxbMLKftN9hNRjSFqqsxVRKmwJh9Hxuu4590bgxU5z6SapuGVV17B2LFjccghh2Dx4sW9Pvihhx6KZ555Bo8++ihmzpyJ//3f/8Wtt96Kb3/723yda665BldccQUuvfRSHHLIIdi2bRtee+01lJWVpdlz/6C6pID7QvJNgjRNw5cnVWe9fm/CYSNLhYrinnT94M7uovBUKgnfYgxvrNiBpdvaOAkoziHrrao44lFbiiRiNKy0ABEprOU2Rn//qEm4+KjJOHYfNVQa0jQPGSvyqQyeCWcfqprsqXYI/9uZGTvjBr9G9LMzbojGnD7SuFxvB8hSCXKFjtxIuweaBFyKhhyaUBSiLMYAqHWV7O3UfTBmryP305LhLhXQ2BHH395Zj7++sz4lCfK7G+VJxOTGaPV6xQ0RYPPz79D4GbNVLnr/5CaefMLNQdmxLIYFqxuwajcxPecCWVmzGMPTn0gqHxPvg/y5kcNGvvtkwl/D70+o15tB3MucJPl8zjjJt4QpncgaZYdR3aC4YRdPjBumow7JKfUis1CpIM2c/Un9xkymjovOicbk15Yn4EC7DjnPpIwxlJaW4umnn8Z3v/tdzJkzBw899FCvB3DiiSfiiy++QCwWw4oVK3DxxRcrr2uahvnz56Ourg6xWAwLFizAzJkze328vkDTNJ7plK/0eBl7jSzNWg3qTTissjjCSZw7k0pG3DDRnTB4OIz8SqTKpAqHbW7uxrLt7fjPyp1KjaFsUVwQVuoHAapZelhJVCFJxVIrk5CuIRLSccC4Ct6TTH7NXUDS7e9xI6RpvA0HABy193Ac4yJXSUtNA6ZrKpOAtQ2dWLOzA11OtWXASygYgO6EW4Hwfgs2d6umbb9JQ9Ps98EN95OlEgbyCV9RKrI4Vnbfyrbfx39dOk5PwsSSLW14Z02DZx03sfvc8ZnVtcWUcGd7j7h/fScR6XeDqTWA6KcoLyD8J6ZlKdvaSpAd4qOaWJlM0enAAGxq7sZHm1p4UcSkK6y4O8PiPiCbGGyT6oYR/r1kO/7y9jrUt8X4ekCqsKZaaiBdKNFNfmhdPjZZjYEw29NngMiQ0oTVFCZp8v8kTZFWT6ZqUbyRSX4o8EKb4lyEx0w0Fg4wkMh+hnIgZ2XdcMMN2HfffXHxxRfjnHPOyevABitGlEWxsz3u6fyeD5Aa9MLndRnX7U04rLgghNqKImxq7sbGpi7fViCxpIlHP9yMmGHxAoVkqCZVJ5USJBt1d3bYnrGywtxusQPGVSqp+sWuLvFyGKssGkZI12BaDCHnvtTg7f+mO/WEZPjVWJIRCmk4Z9Y4bGvpQVfcxKxJVQopAuyWGjJ6kia2NHdjXHUxVtV34JPNLfw6lBdGOHl0Z4IxxtCTNFzLvGNasKrBtY5XCdLgb1z3I16AOjHI+3TPydk+mVIoINV2DLYCc9t/1vhu7yYD8l8vfSESJJbXiXvEYoDn7ZQnP0udbGhSsiTHKh3WtNRtiSzSJMmgeow0zauadcUNpbWEe1yyF++9tY34aFNLzp+TwQq6joapNtclLN/ejk1Os+LHP9qCvUeW4tSDxgBQryEgh7bUZRoP94oXqLAnA4MG0U5H3mdzV4KTD1JgSEGydE10ojdtwpu0bCXIItXHIU1293phuE8YFsK6xtPmGQCNyDITWW+6Zo+SCJhciMv7kBJgV6FXSpCM8847D2+++SZeeumlvA1qMGNkWSEqSwo8neDzhWzVoN6RoDCmjLAboa5r6PS8zhjDmyt3oj1mh3PonaY+XxRSSuUJkrt8kwky1zIC7jCj7BOqKS9UyItdKDHs/G4v0zVvqMvP/5Pp+ukaEA2HMHlEKfYbW4GCcMi3ua4b729ogmkxvLKsnhMgAFizs5NPnn4kpdtlUvdTXryhGvl3+y/NXTHSZ13AO7G413ObObP1KJCB1HcMzqN6OtXDQ4J6GRdQlCAiQUR0nF94mIIJomTf92JrIok0QTIm3ptUDwOvLq/Hp055Ar9xyXycalClU2Z3J9A1thjDW6u8St/rK3Yof6/Z2cnDXen3K9YxTLs+l+wlk48tK0Dy7bOzI+41SzNRc4hMz4ZpIWGaSBpOppjFbP+fIYoqUqV1Mkbz9humTJREk1b5vlG8SZkuaIB+R86PH5bPN9zs2bOxZMkSrFy5Mi+DGswYWRbtl1AYQdM0zNl7BJ79bFvaySKTkuGHwoiOKSNL8eaqndjRHkdnzOBVpAFg1Y4OrNnpJUekBFGNnlQFE+UnXGqwWlGU2y0WCekoiYb4F5xMrIaVRhFyVW2uKIqgtTvJiY6maRjmSskP+WRLZSZB6jbhkJZVCLIgpPMsMBnNXQn+5Jh0fYYY1KrJQGp/hLKdD3nhj5qeld1/Mv/fVWaV03gAKBlX7sNmkyPjPqdsOJDz7J1mTOrx5Qa5cm8rAB71QiZO9DTvJpBM+t2yGLY0e0NAMlIR1T0BREAsxnhT5UxId2/JL7V2J2BawJKtrfh8a5uSKcrXV5Si1PtkjmZE68lhsIRpIeQoO5Qur0GYoE0nDGZ/njWnjpAwT+uaBl3TbOVXkzLFmO1fE+qhHBLTPA2a09XDC5A/5E2DHTVqVMraPXsShpVGfcNI+cT4YcX45kFj8NyS7SmfNnujBGmahpFlUYyuKERdWwzrGzux/9hK/vqSLbb/YnpNGVZKpk0Kg8kFE/3g1+l8hE+7kUyoKIpwEiTX9wnpmtIpntal1wBbwaksinB5Wn5NhkwiiwtCHiXG/d1jHzvzNZfDJTJauhNcAfKGw4AetyfI5xvco+aAeV5M9ZXpISCplCDFH+T/ezoYlpodpjZxzfzk6z5OVuTLZx15P+6+YHLau+VMmnS9SR1yH588IpGwf6jQVossPPmxNwPKPa6hMK+l8u3kAsX8bjHcv1DNPq6TSJamee/XZdvbsHhjizouJ1ymjBMMjGmqsdmSVR4LgM7Nz5QBRqUWEoYFMyJVv9Zs8hK2bDJE24R0zR4js3/KXihdy3y9AlLUP8iaBB100EFZvQGffPJJnwY02BHSNew9srTfjzOuuhjfOmQsXv6iHmMqi7DvmHK8vaqBP131hgQBtpl48ogS1LXFsK6hi5OgrrjB+38dsddwhQTR+06KkLu+UGNnHK3dSQ8JCukaDpucfcYboaIowmurzJpUja64gf3GVPB9yih3SBApN7qmobQwjGhEh+EQKVKCZGIkZ9eVFIQ9JMitHoX19ErQhGHF2NTUjc6Y4UuC2ntEOrlfBlLMUI+/bHs7Zowu5+1KnBXV7XyUoFQfUT9vTrrfNzR2YdUOcQ/I27+zugHtsSS+sd9oz3eCZTHfbC3A6z/yH2jGBdlB2sz2YqkTnzymkCbuC7chnHqMCYVL8x3RuobOrLx8e3r8QzYe57INc3lkAODJj7fix1+bCsDbTiXT/uraevDGip3ZjdUhQtTJnrw9pArZn1tLCZ1RGj3glMqwKLOMyI6FwkiIFxS1GEMIGiwL0HUiReRfYg4Z99cIg3T5/kXWJOjUU0/lvzPGcMMNN+C///u/UV2d+yS3u6Oyl13fc8XIskKcf/hE/ndFUUQiQb17IiguCGHKiFK8t7YJW1u6EUuaKIyEsN4x+daUF6I0Gsa46iKPrE89vzriSayq78CHG5ux18hSfLjBrojrNndOHFbMiVMuKJcMyKXRME46oJb/7SZ/dEyuBOlAWSSMaCiELph82ajyQpx8QC1e+qIOc6eNRINUHbq8KKz8Le+PENZ1FEVCKCsM+/o3ZtZWYFNTt907zIcEWQzc/OwJJzJvxl1bTxLPLdmOc2aNl1ZzkSdmk9f/W9OICcPshrRainhYuq9RdyVeAHhuyXZlHfl7mLqd72iPe/rAuVtKKASLZc6s8qpdmeG3jrzMtIBUzwykWNC4/v3ZNixar1Z4BuwwGVc33GELMLy2TPW6pMNQeJZnTBiHM2FHRwxPfrQFB46r9O7HUW78MgDTYWd76urv4n0kJYbBtIiO2IqfFRbE1+ZAjFeRlrPINNjEmbLELCfmZTE7TZ5URssCmO6okJYmMt4cRSgUkkm6U/TRr+hpoAblHVmToN/85jfK33/84x/xox/9KOcq0QF6j0qJHPRWCSqKhFFVXIDhpQVo7ExgbUMnZtZWcKP0ZKdp6df2GYVnPtmGefuKEGet05izI2Zg6fY2NHclOAGi5TL2ra3w1P3JBu4sLBluckIFHOk4GjSURsNKr7CQrmHKiBLsaI/hv46eDE3ToEtzVmk0jO8fOQn/eHdDyuOEQxp0XcN9FxyKl5fW4Z53NyqvUykAuRCgG50xm5T5GZz95gvZWO0H23y6E+saVNXGF2lUJDU05l/Eryvhbfnhd55eJSXzvtMMMztPUIZ1kpaFkO5vajedJ3QKV8gECLBbdXhNrd6sHl0HkL4Au328PSQVPh0aOuIoL4pwX2AmvLF8B5Im84SuAOHxWbK1Ne0+0iQH+u7PvYyKNjLY4dOkaYe/mKVJBR1J1RGmeE2jpryOKmRaiIR0HjIL6bS9UJHsYwqPmeWEZXXYg6PHGHvVPf9+GWjsGXmZQwQVxX0nQeTrmTqqDI2dTVhd34G9R5Ziq6P6UPZYeWEE5x8+EXOnjeDbUnfyTM0dj957OEqjYUwaXtK7Rq9p1CN3SIrIDtX90TQ7I02uA1QUCXHFQnNMi7VVRfz14aVRlETDOGBsBZY4dWnCuu58QdlfQkSKKosjqCzyjq9U6g7e1OX/5d8Zt2svuVUfxjJXq65vi3kmFYsxpV4OnT8RXOUYbhVJzoByGZn9nrq7eN+ztMP0VcH4vlnm7fMl/ct7SacimBYDC9k//fi6HDKhn36KnF+rEj+sqO/YbTrD9wb//mwbNjZ561SlQzqynzQtvLy0Dhsac9tnOoiyB+7lkJQeC6YF6I5aZPH33/a8xU0LIU1DSAdvtaFrGhKGXY6DqknbpMomQJrzudd00VstrNM9yGAxDSENCukOB6pPv2NAG6gGyA0VihLU+3AYYJMgANja0oPFG1pgMobK4giqilUVRjYmj3WIQ1fc4JPid2dPwJddvp9Jw0uwt7N/P1NyJowuL+THciPsMieTEkTp67qTNi+3yagojigVo6tLIhheIsztVAxy7rSR4jghDdVS0cUwN15rnkKLX55UjRKpMvabK/29CF1xAzvaY54wAQNLOVEvXNeIpdvb8Oxn2zyvWcx7fTUApx44xndfroOKX10eGb+h0Dpqc1TvinYtlVQVxTOTPfnVVIlu3m38Biz9mmYnmUiX28zdG6VqKCFXApQJf3l7XdYEqC/vhdzN3qQQKWNIWkLBoaa3dtq7aJtBGWSmZVeZplT5hGGJzvL0k6tNolAjmEquSQUK7q1dg4AE7UaQFZJeG6MdMlBRFEFNeSEYwAu7HTi20hNvlsNKtRWFdgyc5FvN3o9bGZH7ffWGrOm6hnkzanxfcytBRH6KPCRIjKGiMKK076guifLaR4B/a4+wrmF4qdyxXuc/ZYJ18PhKHDZ5GEqi4YxNWm0SFFeKSgLplaDFG1vwnxU7lTYnk4bbIUuLMa9ZW4NqppaOIYO+yAHvxO4XsqLxpRJVYkkTHbGkPTmkWEfOiEkJz8t9nwnSHdP2ZqRTr8TEZP/tPzkFz+sDjD68AYz+SaEq3mXeEs1y7VCv6gsib1DSMUVT41XqMk/hM/pHNYL49qZURZq/roZg7TH16eoESIOsw2G333678rdhGLj//vsxfPhwZfnll1+en5EF8KCkIIRIyK5LEcmiK7of5Al/6qhSnhE2bVQZ9h9b4VlfntgLC8IoiYZ5OKy8MALd1V5C19TMK7dyky0qiiOoLilAsyu05PYYRcM6IiGhzui6TYiKJPJWWVyAokiI1+eoLilQfAHjqorQ6Sq8Fg7pGFEW5VlyZFzUdfu10w4eg6Xb2jDL6fdWVhhBNKyn7cnWlTCxZmcHtvu0EsilmeYRew3DhsYuMB8lKFUNJ3fIYfWOTmxo7ML3jpikpsUzf9+KnxIk46/vrAcAXHHM3qnrs7D0oSn5OGJB2tVTrpOy9hHsMXywsRnjqoowrro48+4l4pOyJlHAggYUvGI0Y3hlaT1W+9Q7Swe7GKOtPcrkBrCrkZP3R1ZpTAYwy1GFwrpTJdquPM0AREKMt0RJmhY0TQegSUQK0DTGw2UU+mKwHzp0iIdN91jpYXVPNErv6nPKmgT96U9/Uv6uqanBgw8+qCzTNC0gQf0IzSEcjZ0JT72cbCGHhabVlGHxxhZUFkdwzD4jfW88WVEB7EwqToIc8iOToKKCkLKf3vQ4I0wYVuxDglRSpeuakk0WDet2jQ6JiE0dVQpd11AUsesBDSstUIowzqgtx4cbWlzH0TC6skj5G7BJR0jXcOncKXh+iUiJLi8K29Wt01T+7Y4baO1Oev06zN8YnQpUtNJizKM+pVKU3l3b6FmWNBknUwQycbrB6+hIJMaPz2xv6/FkBMpfauk8Q0CK0FYG+G7hOicZy+va8eGGZny4AfjRMXtL4/TuhhtZ0/hIAHiqFwfYtXjxizrMnToCk4aX5EyAVta1481VO3HS/rUYX13M6/0YplP4MCSIC+AoQiFHrYEGk9mhLy2sQ9csGBZ9pnWnkKLFTdUhzSY1pmVnjmmSohRyTNKA8znrp64EAVRkTYI2bNjQn+MIkCUqim3Ta+/DYSHp9zC+d+QkaFpqY2fU1Xi0ojCC7bDVo3KnGnRhREdBSEfCtDwtK3o7TgCYMKzE036gJOoNXckkrCBkvz5xWAkWrmvCsNICnuFWHLXrAVUWRZS+XzNqKzwkaNqoMiXlnxSXkKZB97le5YURRQHzQ3fC9LRlAOwJ9oMNTWm3lUGZaJbFFFLbG3QmDE+9IT+ewicAxjzLlPUs73IGmwAuWt+E/cZUeFqjKOu6xtJbyNu6z6dVasQqH9PveMKrkbrPU4DBgbdXN2BUeebirO6376Wldk+6Zz7dhssdJZP8O5pmZwMywCEx9n1gWgDTGEI6qacWTIsqRYuQF0BKELMrTIUA3fmMGKZtvOahN50Jf4orTJtCf9wjYVlqyYD+RtYz1LnnnosnnngCHR17bmbD7gCa8HursFBYiBDStbSZLW6lQfbS0Fg0TeOZa24S1JsUeUK5T1NJv670svJAYbFDJlbhW18ai7MPGceJUYFzzYqjYexTU26P3dmersE5h47DweMr8YOvTFFIDZG5kNOMVQ5DhXUNxQUhT2iquCCEWROreVYdL4jooybkkjnNSVCK0FUuoKq3fCwpQla0SH7Jfz3/UNobK3Zg2fZ2PLZ4S8oq6IDLhJwl2ci0mntMKatq+4XVuE+kd8cOsGvx+Edber2tCHWpNYJEt3kG+rRQbz2qDSR3mTecLvNJSxRejBumU1BRtN+g9U1TNF4VoTbxqRReob5fn8EMxhhueW0VDv7tG9icZ4N9OmRNgqZOnYobb7wRI0aMwLx583DnnXdiy5be33ABegeqFdRbhUV3Juys1tU0TzisSnqKryj0EqKighCGl0W5ihLugxLkp3KU+hAjmZgRaasoiqC2sgiFkRBvdhsJ6dA0uzP9+GHFuHreNFx1nF2RNhK21xlZXoij9h6ByqIChQSFpHAY9QYiFIR1u1O9a1zjq4sxe8owPqaUk3+OX24lUREOW9/oL/2TeToTPHV9wHxDaqK7vHhN9EQSy8h35d5WLhuQLtzvfvrNBn4htHTbeurE8Kwcf/LnPZ8sBxZgt4RtShap6qQGKt4wbl4WPjoiRIZFnecthwRZor+YRUUX1W3IbE2fL8OyYDoVrIF8pAcMbny8qQVXPbkEt7+5Fm09SRx981u77NhZz1Dz58/Hxx9/jLVr1+LUU0/Fc889h7333hsHH3ww5s+fj08//bQ/xxnAAZGNTKGXdCiNZtfZ3R0KA4BhUmq57MWpdtSYyuICnH7wGK5W9DaVH7DDbG6y4SZlgL8SRMcPu9QcmRRNGF7MM+7c11PXbcJI4+cp8rodDpNVn0hIR0jzNkCkdSiDLZa0SZBbQJH/PPvQcZ7zc4PO0bBYSi+KX9NYP9hf8AJbmnt867aQZ8nPE5TpC7q3X+B9IhtpFCu39y3dcTKf2+CZni6dO2Wgh7Bb4I0VO/DOGm+HewBc6bFJj8jSShUiZpAyxCxRVZoyxiyLmqvaWWNJ026xkTAsJwwG7kHiChSzP2+UWcYVIvrpCpUBu3+I9vS7FuKpT7xlQHYFcp5Jx44di0svvRSvvvoqGhoa8LOf/Qxr1qzBMcccgwkTJuCHP/whli1b1h9jDQBb9QjpGp/IewN3e4tU8Ev5HlYqKUESCTpgXAVmTxmGr00fieKCMJ/4e5sdBtiTVaFExFKNW1aCOAkq9JKwSEhVwcK6zsmN+1yJRJDiRvsNO8ZohQSFdR4mU/bhrFPESZBNWNzhmU83Cz/SjNpy33OUkU2IMdvkCvtJVx3P68u9LSBkUyhBbkTKjwvNVzlR1KY039eeySaL88j0/e82Y7vvSHtyYYgnvUqdXOFXXn8woi/+u6GCtp4klm1vx6ebW9NmZMqKjyURDz8iQuEy02m2alpw6giJcBiFyxJORXm7E71oukrrMoCn15NCxBiT1Eq/sQ7WO3L3QJ8+NWVlZTjzzDPx8MMPo6GhAffeey9CoRAWLVqUr/EFcIFSsfu2j2xJkFd1GVNZhLCuodxdkLAoglkTqzHSMSYSeemLEgSoRm4/P5B7OZGVsqg3bBgJ6UqIzSY0umc9+zWV/Mh1iDRXOCzikCL3mdLfhQX2PqjBrDvcRFWq050jobq4APuMzkyUciNB2a1n/5SW+YTDoHnVEb8Ky6ngzmLrredJPubyunb1Rde1sRjDU59sw10L1nn34+sTSv96gMGL+xdu5L8v3daGjljSdz1SgXhIDP61e2QPj8nghLsspyK0JWWGWZJC5JAlh+BQoUXLYmCWGiYTZEyMS/57d8SidU38wW8wELi8tc0IhUI45phjcMwxx+RrlwF8ENK1tNk12aA8TW8uGakysb592Hg7BKTr/EthRFkU21tjnPxEwyGEfdSRXFFUEAZg+0lSEQT5GETMhCdJDVspSlBIhLvcVaBJwJo4rASfdbfyApChVOEw3RsOo6rchW4lKM3EnsmvdeahY7Miwdled0rvzQQldRfq75bKgXyKL7r+zkFL+UIiiL3Fsu3tmDN1REqlhDFgm0/tJkAmet7XlmxtxZodnTjpgNF9HmNvENK0jBW4A6TGW6sa8NYqERYzpffaguDK1OGeVCBAvcdNTpicjDKIUhPUQd4Ohel2mw3HE2RZltSTzELS0hFy+o2ZDjmyzdmiJhCDvxq0u6C5K4Fz/v4+AGDDDV/H0m1tmOS0ahoo5ESClixZgueffx7V1dU488wzlUKJ7e3tuOKKK3DvvffmfZABVAwvi2ZeKQ38sq58j1PqPU40EuI+mhFlUexoj6GoIISywgiAmF0rB7afqC+maIKcbZYNeSNvTwn3JLmVoJDyN5EZNwkiJWjutBFY19DJxxHWNbtnkCa8QuGQxhUiwikH1PKGs0UZPEEyopH0JEjXtKwKZWZ75Zdua8+8EsQTmzzp+oWK7AXqn39zCimKfWU5ONhlBTKOzW+Za6FpMdCldWt26Z5G/eghqUxvOxPo3QvW+6zV/6gsjqTsUxeg92BgANMAzSH1zF4KEBGxX9c0myRTMgBjTj0hgGeMUWd60wKvPq1rTu8wCpGZFgrCup0lpovq1JZOniARCqOmq7JSlep5h+5rzVl/MBRVbOwUfsP/rNiJ7//zo5QtknbVmLOepV577TXMmjULjz32GG688Ubss88+eOutt/jrPT09eOCBB/plkAFUjPAhJ7mgrDA7JWiED9mS1Ri6ecsKw3yip15e0XCoz6EwQCgj5UURHDiuMuP69KEpCOsocKpJEwrCmhIOC+ka99d4izCK/U0cVsK3o0KM9HpRQQgFpARJ20+UsrPoGNQzLJ0SFM1AHHVN85i4K3zIYb6/PHjbDGns761tQlNnXCEKmpaFmTjP6kU8KYjSirp2PPnxFh56JCxY3YC2Hm/o4+NNLXhuyfaU+x6M2TkhXcP+YyuUmjiXH7PXAI5ozwGptTwbzFnOU+V9QqHCLyT8PdQrzLQo3GXxtPmkSR4g0XOMqkbz9R0SRSExubVGOrBUDyaDEC9+YReb3drir8LuKuSUHXbVVVdh6dKl2LhxI6655hqcfPLJeOWVV/pzfAF84KfQ5IJsPUF+ZKuiyI8ERXjIh8JhhRG9TzWCCBSGOnBcBT9GtiiNhhUlKKzrirIUCcmeIJepWSIR46qLlfBXiVQTqLjAPkbYJxzG96VTgTWvmiJD15DR8K5r3rG6w2PUST6foCHLYzcZw8MfbM75Czfd6tNqytQFWdxCD32wmf/+2vId2N4aw7LtqsK1sr4DT3+y1bPPd9c2YvWO1BWG3WNt6UqgrdvfR7KrcPGRk/CVaSNx9N7DcciEKnz7sPHcA5fJUxYgPZZua/N4vmQzNF8uqTOiH5ioG0T+IP63BU6GiCRRhhgRH2qxQaEwd28xtXkxpOP7Z4zt7pj085fwnk+l+3wjaxK0bNkyXHTRRQDsp8yrr74af/vb33DGGWfg+eef77cBBvBiWB8nOHviTj+7FIR1JeuKQCGpwkiIh+XKCsOcrBBRiYZDCOUxHFZb6S+ZpkNJNKwoPJGQrjR3Dek69wy5Q3cy6Rnv6i9VHA1zY3RRgb0Pu06Q/zWVSdDWlm4sXOdfHTqs6xnr+7hbggDwkMOiSAj7j61Mu59c4ZcdBpBEr66buTN76tdTmcsz4bb/rMEOpw9eKrSnaWmSCjTZmSZDPGnin+9vwn2SuXYgQCpfNBLCEXsNx/DSKCfg3zxoTK/3O2VEdrWl9mSYPvFPJoekJDO0p3YQRKd4kS1mEyCTiSwxQ1F9bOKTME2F+AgyJVQioQYNzsKJd729Fve/twGAnYW3wp2QgNyJ2rf/8UFexpYOWc9S0WgUra2tyrJzzjkH99xzD84++2w888wz+R5bgBTIRypsppDY8NIC35BKubNdWWEYZdEwQk6mWLGLBBVG9F73N5NRXGAbrEeWZS6H70ZpNOQTDpNT5EU4TB6rO929yGVWLo2GeCitKBK2w2GahsOn2M1UJ7uIjEyC0tXCSJgWRpUX4odfTR/acL8t+42pUP4eWR71VK/uK7gx2udLzN2ANdPX3Gs+KfgEaljbG7z0RV3mlXIEY3aI5O531uHJj7fy5ZkI164A3QdypmKVz4NLtnDfR0MRi9aLB5Te1ICijC+qNm1SVphUTVquGk0p9AnDCY9JhEdUlYZCjLgKxMNw4m/7Z2ozf39hR3sMN76yCvOfXw7DtHD0TW/hhNv+Dx9tbFbW6+jFg0h/I2vt9MADD8Rbb72FL33pS8rys846C5Zl4fzzz8/74AL0H8oKw57mpDJSkY7CSAiFkRDKCsPQNJsAlRVGhCeIh8NCeTFGTxxegoPGV/VqUi+JhpUvgkjIHQ4Txmgaq6Z5O7O7UVwQRkjTMLI8iqKCECJh2yM0o7YCV8+b6ukkT8Ucs033njSsBJGQ3YPID+42J+4n+NEVRdjYmN+y89wY7XMO8rJsztCvGGM+kI3S8+CiTWjuzt5M3Bk3sKq+A3HDQtwQ2z22eOCr5WuO7TZffLevYfY9CbLhmBSfTU1dYLAzRvl6oO7zgnSQYmNajGeTGiZDQrOgaUDSBMJM5/WATMuC6fQc4yFzi0HXnOKLDjHSmQaLMUS4MmVnrNFgNc+4ydjd/2xITmBgAPffvbFiJw6ZaD8cPvrhZvz86S/6fSy5IutZ6gc/+AG2bfN/ij3nnHPwwAMP4Oijj87bwAL0LzIpQX6maEJ5UZgrQhXFEZQViuKIRTwcpufFGB0J6Thy7+GZV/RBaTSspMiHPeEw0RaE1htemllFKYmGoesaaiuLUFwQQjSsI6zbRuzaqiJomqZkm00cZofTYlmkogO2KTtVaA3wkiDNZZYmz9fsKcNQURTBjCzqCmUC8Ry/bvdynSNkYd7szXHzhVwIEOCYNgc+qSYt9DyUojh2n1E8o3Kow7IYFqxuwBsrhGJpmBae/Ww7/v3ZdsQN/4xFUTzR6evHRCVoUnZs7w/jBIjaaNitNSxRQ8hiiBuWGhKT9qUQLvgrQu7fBxqDkQABOZCgb37zm/jTn/6U8vVzzjlHyRYLMLiRyRydjgRVFEX49pVFBSiNej1BhZFQn6pF5wPDSqIKOShyVCxCJKRx3xOFxcZUFmUMN5Y45zq2qpjvM+QQESIoBZJZujjHyUX3acGhvi5+H+t4pWSfDV33WROrccHhE3HsjFE5Hd8P5AVaut1bt+ezLa3898HURiJfGAwcqNCnLALdB/lIBKTeebOcp/ahjObuBD7b0oql29rRHrNJsxwGThp2SOvh9zfzMgmyN8hiqplZ9vTQT2qnQcZnMkYTKSK/kFxniElkCBCmaNovLaPx7Cl4c2Xq8Hk+ENRZH6IoT6MEaRrSFmQsL4xwJamqxCFBTnd6ylSy+3QN7O1VU1GoKDJu4hcO6TxURcRhTFUR7zafChQ6Iy9UNKw7hRcFCQrpGqIRHaXRMIpzzGrTtNQ6kKbZr58wswYAcPhewwCoYah8+4EAQbIyhbL2xCyVwVBf5cT9az3LaFiyJT+Xse49shQHjavE6IpCTB4+sAXrBhNW1glfWiolcs3OTjR0xvHZFtF+Q84Us7cVYTHqCUa/J6RMsKSjBJEHiHxCvGCisx0lIRCxkmsFyZ87QYT61xv0xdY2nHrne/hgfVOvPvPZ3qnuOmP5Rs6z1BNPPNEf4wiwi5FOCXKnlrtRLilBYyrt8I9tkI4oX8IDLa8XhHWMrhBZZe5zioQ0XmOHQncjy6KewompUFQQQlGBrQQVRUKIRoTHKKTbylBlcUHGAoiEWZPsp3BdSz2ZEck6e9Z4XDp3ijg/6TvIr3p1X7GlpQcPfbAp43pMHcoegYGnQF61Ry7Omem9TqXunDCzBkdPHYEzDxnXL8R5d8XHUi8/USxRwDY9u5MBpDYbUjsZnl1IpIYIjpQhRvWH7H5ijkeIMcU8TWn1tC6FwdQO9ETCdk1l6XP/8T4+29KKs/72vnp9sjzwYPmeyIkE3X333bjiiiv6aSgBdiXSKUGZ2nLI4TC5Hk1VibrPwVCzJF1Yr6q4QDFGF4R1lBVGss6+KwyHUFxg91DTHRJIc0lI11AYCaGqOPteb4dMqLK3dYXD5ArfPAQCldTJYaiQ5k3Xz9SOIxs0dWb20wzW9N2+YKCFoCkjSpTPEoVZiRBrSD3G/54zGbOnDPN9zZdoB1xIQa73MpEP1R+kFlG0HGJDP8kQnXSKKcaTFpKGJUgPrU/kh9nd5ykTk5bLx6exy8PPt0IrZ3qlvm1SH/OZT7PrGt/f3ydZk6Df/va3+OUvf4mXX365P8cTYBehtDCc8ouTQkSpUFUc4V/K8hdppWu7wUCC0kEtpKihvCjCyUs20HW7yz2tX1kcga5pPPW+osguIpktCSqKUIaa2qB17rSROG7fUTh31nh+vd1P7l+dPhIAcMbBY2xjteu93VVej2c/245VfUhzH2wI6xrqBzgd3h0K052MI+php6cJn/o1QU6LPYzA9hVvrdqJpF/xIB/ITVa5KiSpPNwrBBEWs4snUq0g2weUtIgUifCYXGHakPYlp82TQqWG48g47SzLU6aBm1Bd+eSSvOzXDx9saMZ/VvSfLyirb+crrrgCN998M1588UUccMAB/TaYALsOIV1LmSHmVyRRfd2/hpCbPJVmWZl6MCAS0rnikotqEtF1TnIqi2xlqdipnzSsNMpVomxQ6lT9pQmOMGfqcEyvKceIsqh4+nftct/aCvzXUZNxhhPacB9y/7EVOO2gMZjursgs4ai9epeF54YcTtjdYVgs6/5quxK6Q36yqTKeCwZa9Rps2NiUurhpJsjGZUGE7GWGadlVpU3RWd60LLtVhsWk9HmhIvFCi3IozbI7zzOHp4nQnOpTotf6C59sbu2/nQP43gMf9du+syJBt99+O/74xz/isMMO67eBBNj1qEzRkLS3XeqrdzMlSEZY8gfl4mWS05PLCu1K0lRMcf+xFXbl7CwmqVMOrEVFMZEgDeceNh5hXcNXp43kCltBWOeTVMhntipy2nm4m7kCtro0rro4baivog+F9gLsWmjQOPkhRYiQbYPkTIiENJx32Pi87Gt3xobGLuXve9/biDdW7Ey7jWxOJmLCzcxQw2EU9jItETqjtHnDEqbphOMXIrVHLqyoKECW3PPMGybrKyyL8b5fewKyIkGnn346fvOb32D9+oHplhygf5BK8XGHtbLen8sTlGuvr4FERNcxrMT2D5UU9G4S0XV7YiouCPOwWjSi+xIWNyYOK1FM1fuMLscP5kzBfmMrpFYkuuI58h2D5q0jJOOg8ZUAgH1GexUhd2PWAIMH8vtN4U4y0Id10QMPAE45cAwmDy/B2YeO48vG9KbtTEEYw4ICir6Nd1NBbq9BPy0pM0zJGFPq/4CHxTj5MQUhomyyWNJyMsaEv8iTki8RI4Jq5O4bHXr2s2344SOfZrwG8nUYzMjqW++JJ57AiSeeiGOOOSZlwcQAux/8SFDYaYPRG5TtRsqPG+GQxnuylUR7T950zd6eUu7DnBip+5x/0gyfbUWoSw6jUbjNJkG0jubZjn5Plx1WVVyAy+ZOwbH7eGsHFYT9Nzr5AG96doBdi5JoGLMnD8NRew1HQci+l+jd0l3hz+qSApx8YK3SZf7UA2uzCvMG4bDewV2g0N2FHhAmZiI9clYXpcqbLnUoYYgiiiIs5jReZWJbO4VeSqeXU+dpTFkQoWwI0vvrexceHKzIigRpmoa//vWvOPvss/HVr361v8cUYBehosir+FSW+Pt9ssFgqKfSW8gkqLiXShBgh6lKHCUIcFpzaBqu+NreOHfWeEwaXoJv7DcaZYURfG0f28xcW2lPViEe3tCUtHpK2bfDYV5jtFwVO6RrCLmM1d5z1X3fK13z/zrYd0zfK04H6DtmTarGwROq7FpREF4gDenfb8B+zy8+anLGY3jDqOrrU0cNzXpCdy9IHQXpiAmlSFaA+DJIYTFJBaKQFnmGmOMDSjiVoimdXu5Gz03SpuoNkr1CRKAohZ4IUirsaXW9ckVO3/Y33HADRo3qe/XZAIMDfkpQXxow7s6Qs2j6pATpGkqiYd7HKhzSwBhQVBDGiLIoTj6gFhVFEWgacMe5B+MHD33MexHRRKZrGic2pOzQGKlHjxxiC+saKHld1zRoeu8ynVNFw4Iw2eAEpcb79bujvmI57U+DKl24bqIDx1Xi6L2HI6TvQE/CxMam/Pan212xekcntjR345CJVRhbVex5nasxFCqD5NWh8JiTgWYxBtMQRmo/wpM0GcIhhjBzKk477xMRKVKILMbsUhmaMwZN9BPbVdja0oNY0syLNWLJllYcMK6y74NyIedvt6BO0J4DmoxlZEqPHwoo6sMHVtfs0BeRmLBuN1eVSUskLJrMzp4yDOWugo26BqWnGU1wBWFdqgwsjqn4RTTNU2eIkKkIZLoCjZOGl/i+FmDXQ4P9nui6xqtFh0Pqe95rUVbz/nq404Pu0IlV0DQN82bU4Oi9R/TyAHse3l3biE3N3Xjqk/RWEbmYIoWnKCxGdYBMi8JbrvCXnCbvpNUbJnWrV9tqWOQzcgzSSnq+ZKD2U4D8RKG+KEUvflGHr92yoNfbyzjlzvfysh83gke8IYxISOcZXCFdw9RRZdgnD802d3f0JawX0m2yUeiQmIhDYmQxpSDkT1KoZIGua5wQhZ3wFqD6hJRwmPS7fSxvsUQgM7kL6RrGV3ufZMO6hrlTg0lvIOEmOOGQphRNpKzAVNtkdQyfu0aDhsMmDcMFh09UwsS7U/mLXQnGGF76og4fbGiSlB+pyamTHUZESITCqAq0UHuI9PBmqybjKfVyJpntGbKXUxaY5WwrwmLe4om5nlf266p/b23p6eVRdw16fScvX74cmzdvRiKhVpE9+eST+zyoALsOFUURdMQMfHnyMN62IUDvQR3dp4y0lRPy6MjESk5Tl6ed8iL742gXXBQ+IF1Wgnw8QSFpfyFdhEjCugZDKo5WXBBCV9xQlsnQNQ2zpwzD5uZuz/KiPFScDpAfaBAZYRQScxdMJLXIdM1Ik4aXYENjF/eh8fV9CNNx+9Z4j+2sl21V9aGGzc3dWLOzE2t2Al+ePEzxCIm0dfG70viUaTzjy7QYNM0hOqZdSFHuKG85Rmo46faG8zocn1FIt//WTQaE7OOHdQ2mxRByQvSpSDJjjH/PLFrXBIDhy5P9q47vCciZBK1fvx7f/OY38cUXX0DTNM4Q6aKZppnfEQboV1QWF2Bbaw+m+6RMB8gdIc1upFrl1FqKhHTENEsJhxWEdRiml4hwJUgTmVqFkRB/wo+GQzwLSM0Is/+2GJPCYRpKC8No7RamzaKCkGeZe+x+qffuUEuAgYUmpcYTAaKiiZrzfRwO6XZIxbXtcTNGYfXOTuw10t/gLL/PoyuKxN9D2zubNUyfBwwiHOTHcfcdo5+kAlnO72AarxeUdLLEiCAZJoOu2USJPEN2fSBBomxPkL2OaTHu7bMckpPpI92TMHHO3+2+YMuvPQ7Fu3H2bzrkTOd/9KMfYdKkSdixYweKi4uxbNkyvPPOOzjkkEPw9ttv98MQA/QnKosjGFdVnLaXWIDsYWd2qe04KERFUJQg6ZuI+rFpjhIU1jVEw6LOUGWx6GtGuyuJhqBBhNt4ijzgqQgeCelpC0HqOlDu83okrEPvBzvlUDXh+2FOhnCje8qie0qURHD1E9P8w7rRSAj7j63whEY1+BNdDamNtAEv9uLdtY3K3+6aOZSu7oZtZAZMOaUdQvGhjvI8XZ6J33nWmFR3yJSIEJmsDctyxpRdeKsrIXqD9ST7Jm7IGXSDDTmToEWLFuG6667DiBEjoOs6dF3HkUceiRtuuAGXX355f4wxQD+isigS+IDyCF1XM83CId2jpBSEpMrP0kRGRRrt1hshjK0ustUf51M6qryQZ1kQqdp7ZJnSdd4+luaYq+UwmX0cOdOrzOXr0ACUF0dwzPSR2H9shTTe/lGCzjxkXNo2HkMJ+9aW46IjJma1LoW+wi7y41byUqXNp9MAiqR7lzZX/EjStmd8aSzKC8M4JagjxdEiqawJI3XPMTJJ278zyQ9kOX9DGKUpRMbUlHlbGYJIjzftukJUYVrUDBJESK5f5JfO31946P1N/X+QXiJnEmSaJkpLbSl1+PDh2L59OwBgwoQJWLVqVU77mj9/vvMhFv9qakQcmjGG+fPno7a2FkVFRZg7dy6WLVuW65ADpMGIsmhKaTxA7vBrk1EQ0pVlBWGdk5FwSEdFUVhRi3QNvNZPYURsG9Y1RKRaQgCw18hSJxxi/01KETVhpeWFEZt4ySqUuzI2bTNzTAXOmSWqDZMXKd88qLQwjP3GVGRecYggXZsZv8wvXdckpdF+b22CpDmeoNT7cvMj+vtLE6swaXgJvjp9pJSC7zJcO3fC2KpiXHjEJEwMMgd98Ze312GbYwq2mCVVk3bICNzZWjbpIZM0AKefmGWTIiI/hmX3HrNEqMxuvGoppmmqOZQ0RY0hHmoD+FhSQX5tc3M3trX23uD8zurGzCtlgYVr87MfGTmToJkzZ+Lzzz8HABx22GG46aab8N577+G6667D5MmZi3G5se+++6Kuro7/++KLL/hrN910E2655RbccccdWLx4MWpqanDssceio2PP6VI90KgsLsiYOh0ge/gZiKNhXcngKo2G+TUPaRqqS6NKHQ0iLyFds0mVZIYmEkPEqCQadurEuMmVxk3SgEPENJF15gfylgB2Ic3TDhqDH39tKsoLbX9Tvh8YexNiq60oxOgKYeo9af/R+RzSgCGXK6E76k9Is+tJkQ8t5JAiIEXtIGeZJv0tH1+DTaROP3gMDnLqsfgVTwz8Ydlj4bpGmBbDox9uwctL6wH4VZem39V2F4yJCtMmY0haUnYYJzUOMXIUH3d1abn3mHvf7s8zdZz3wzf/shBH/P5NX89TNliUpyrT5/7jg7zsR0bOs98vf/lLWE5s8be//S02bdqEo446Ci+99BJuv/32nAcQDodRU1PD/40YYcfGGWO49dZb8Ytf/AKnnXYaZs6ciQceeADd3d145JFHcj5OgAC7An5p6Jqm9naqrSziZCasayiKhJRmthS6Cuu2v4iHunSN1xiiOkRUk0jXNFRJhHaYU/mb5sFwSEckrPPt/UAqAmBnDc6aVI0TDxjta5b+yrTMKfOZGse6J9PvHTkp4z6/dcg4hTDsTk16+wIl88tRZ0I8TV5zqkZTQ9/UIS+5pYocLiNyQ813Nc2/O306j1AAf2xr7cHOjjhW1Xd4Q1HOOkrtIAhCxJukWoyrP5QubzqqT9J5zXBS65N8PclTRMZpnirP0qpAqZAcpIlPsaSJX/97Kfb99Sv492e5tfbKmQTNnTsXxx13HABg8uTJWL58ORobG7Fz585etdRYs2YNamtrMWnSJJx99tm8SeuGDRtQX1+PefPm8XWj0SjmzJmDhQsX5nycAAF2BVL1Z5JbW1QVR7hfJ6RrKImGFMMyVX3WNccYLdUGivDQmCBRdtaYnQ1GJGh4aVTpJl8Q0hEJaYjoYn/u5z5dUo7KCyM2AYM/mQlnkSJ9yoHpvSLy8ei6ZIP9HL/SuKqiPSdpySE2X55czVUYABhXbTc+VcNhgiSTgZ58YSEtnZFZ86g/8j4BQZLk7DO3+uPnFcoVP/zKXvjekRN7v4PdBlpasmFZUoo8IPl46G9R/Zn8QHHH92OTIcocY0ga1Gleba9hSQoT9x8x/9pBu2sLjb8uWI9/LtqEroSJHz32WU7bZk2CGhsb8Y1vfAOlpaUoLy/H4YcfzglLdXV1rwrMHXbYYfjnP/+JV199FX//+99RX1+Pww8/HE1NTaivt6VDd5uOUaNG8df8EI/H0d7ervwLEGBXIZpCaYno5NWxCQRViQ79//bePU6uqkr7f/be59Slu9Ode3dCriQhIYQQCNcMl3ALF0UUUUccIMI4IjgDL4Mgog7MKFFERH8ovjqKjO/LC44O6M93QDJjCAqiIYAKaAQMEiAXLiEJuXR3nbPfP/Zee+9TVd2pvlen19dP2+lTp07tOnXo8/Raz1pLCozKx5mIhpK+yqsQK9dwUQgfCQqFkbLNFaMgXTa+Ke+OAwBjGnOIrRDqegK9T6fEkUAhUu5mWEnff1l69wq979p+h8xtHYXzjpyG5X81Y58RQXQejpo5DscfMAGnHjgRYxpinDTXzJcLf78qG+GLpDHdR0rYIaq2YiwQMuWCxUV6IDKRnnB/Ej9h0036LqUX1r3VQGctNNFFSrPuy6TdiIrVf3oN3/rFn7Gz3VRhhWkxAH5CfEr+IN9JuqNkoz423aW1+b6nM0FHyXiBOpI0kwqrrBoLPEpVyvar8cJrO/HG2x1d7wAv7AaTp1/d1uvn1hxLvvbaa7F27VrccMMNKBQK+OY3v4mPfvSjWLlyZa9f/IwzznD/Pvjgg3HMMcdg1qxZuPPOO3H00UcDqMxJh42cqrFixQrccMMNvV4Tw/SFrq5NusGPtf2DaG6blCaCE/6yDPu+FGOFxlzkxE2YRqNUSKyESXcF0ZkxjTmIN/xNcGxjDCUlUqmdp6TaGnORAtCJSEoXCapWZVTLH4x7u0mWH1bV+IeUEAITRuWH1UyzMQ1xpnJobxy0XwvmT/am8fDUSCtQ8rG0wlYiF0koCejgrJvUlZkhJrsQLkKYz1IKgdTup6REqlPESiJJE6RaQAhdcS1IKUw4oQcsnNKC/SeMrEKM8HcC9f8BgCdfest9P3bOeADmdCqRbawYlrknqQaERnspQaxkpiFqqmHL4KUrlweASGpICUQ2QhSZQ8B8fDqTntuyox0txbjLVhrv+Nov+/Xc1AM1/xb52c9+hu9+97v41Kc+hSuvvBI/+clPsGrVKnR29l/9f2NjIw4++GA899xzrkqsPOqzZcuWboe4Xnvttdi2bZv72rBhQ7+tj2F6CxmSJ47KA/Az2iIp0JSPMDcoFSdPUFM+wpQxRUgp0FI2XyxSxhNijiGN+TpIuTXlo4zR2adPbOqkikShiBK9jjPg2oNMGW1SMx9bOqumvlJCiIoy/BBN3eMsUdTD2IIQ/RGQGhT2Oret4ufsllC4UkfxvDXCR1LY79JFcdxxRNYQTcch/48/vk+XKeGFlhDUjBNB2q3356G1ubD3nfYhKMpTTjbt5M3KgE9T0TYqkafUGHQ4PiM7ZNX7f2i77SOU+D5C9N8MNWYkXnlrN5Z84ec47our+vck1Dk1i6BXX30Vhx56qPt53rx5yOVyrkS+P2hvb8cf/vAHTJo0CTNnzkRbW1sm0tTR0YHVq1djyZIlXR4jn8+jubk588UwQ02kJBrzCkVblk7VYNIKhfLqMCGMv4j+ipwyxggQmt8USd9EMZJmaGsYGVH2xuib5wl38wzFUYgSwt2sqUItbMT43sVT8A8nzcaYhhhHzBhbU3n7ew+b0uVjAshUq4WRrEK8919NAsNGA+091VfDw2HlV6RsRZiNAiop7Dwx6TqGk4Ch50gnaipL6J04QrYJoxdNPn0mRVaU9YTwNYUA3r0X39hwZ/ueUtWU2Nd+/nzFNiqbz1ZwZcdlaFBTRe3mg7kqsNA4HaTA6N/UWJG+ksAfBAC/fO41AMCbu0y6K+26zdE+Rc0iSGuNKMr+VRdFkasU6w1XXXUVVq9ejfXr1+PXv/41zj33XGzfvh0XXnghhBC44oorcOONN+Lee+/F008/jeXLl6OhoQHnnXder1+TYYaCSAqMa8xX+Gsi6/sJIX9HWGlGU9xpwGnYVyhSEg25qOLYJCSENctSpIduhifNnZgVIZHIGLal8DfNUEwJGLF00ryJ3b5nAVNltigw+pYTCrcouKuWV9m997D9KqrHhKhNLA0WS7upmDtzQfel/NXSVCEyECGhB4zaHghh/GixNdILe8ywXxT5ylSVz5WEMYmlWHmR7SNEWWHcVTPG7ijvSTZ93L7fY6h8gOjOjmz2pKsu0gAqDMzkE6KJ8Z2uSiy1/iC/rTMx22i/UmIqxEhA6aAnUXfepeFIT3xJNXuCtNY4+eSTM0Jo165dOOuss5DLeYPbE088UfOLv/zyy/jgBz+I119/HRMmTMDRRx+Nxx57DNOnTwcAXH311di9ezcuvfRSbN26FUcddRQefPBBjBrFXWaZ4UU+khjbmKuICFSLENDNJpza3WZ745Q3XaRtjXkfNSJo7lhsO1RLYQRTIZbY0ykwsbmAjy2dhXWbduDpV7bj7EP2wxMvbXXHpMO1NhcwsTmPTdv2ADA3yu5K7cP3vNd9ArGjMpEg400ipoypnG4vIDChKd/lsSePLuB9i6fimVe34b/+sGWva+krh0wZjc3b9+APGyv7mI3eS+Xb3vREmL4igUq9gUjMRNL4gugaIQEE6aNIShhLCkV2hD12rARSHaRKFVzFGqARS+nN0/Dfe0ok60e0DhZr/7I18zP9d1QNrf21QN2dExtn8IZm4bxCProD1zRRS4EOO2cM8MNYS6k2DRUTP3qHPEpBlqzP/Pn1t/vpSL3n6h/+tuZ9axZB//RP/1Sx7eyzz675hapx9913d/u4EALXX389rr/++j69DsMMNaMKMRpyHRWip1ovFinNL6gwGlJtanfOmaUFIqkqGpk1F2NIe4OjaqBICkwZ04Btu7eZfQox/v6kOdixp4SWYpxJh5F3pDEfoSkfOROmGb+x91sgvbeu9tSA8zoBRjS997D98N9/2ILzjpyKL698DoA3k5dD/pczF7ThP5+uXjEqhKkmGwwRBPgqwHLKo33lmGHUwc9uu39cCrODsqXxppO3uTYo0ies0E2S1HqBAKG9iZ68zM7rIwXSxEcfXUVZ6qvQNASkNHOtnFeoutWFqYFqQZeu2hSmGpCBZ4h6CJEZmvr+hCX05BEiD1EpSe1nT5VlxjytJNCZaCOcy/4r7Uup/Dv/v0d6/dz+4oFnNte8b59EEMMwtdFcjNCYj9CZZNPH1crPI2kaJBZy3f/VTIIlHynkIlkxq2hySwH5WLmbo7J//TcXosyYjXFNOexsL7k0CBCmw3y6JI4kSh2Ju/H2Jh0SIoQxil+4xER+C7HCETPGYsqYBrS1FHHxsTPw6z+/iSNnju3y/QshMMkatiuOb/9XS0+j/uKo/cfid69sq9jelZAjqIpLiGw0gJAC0MFnRulQPy9MIxdJaG3EZLu9ieWUREeSZiJ3MqUqMPOVphoCwpnhpTUMRfYz1tCQUkCn2l0ToUju7f2yb1fP8OSpl97qdohxV4T+IBqhkQovgCg9Bm2aJ/qeQOZnJYBSAnQmqUmjagFpAkVubpkue73hwp7OBCufrV30lDPyYpMMMwQ05Ew0pSISVEVI0D7hINZqkAgqxCbFVT4SQwiB5kKMpgKN1jA3zeZi7G5AJHxcU8VyT5Bbp49GUSom2ls0iH6RdrFbMVYoRApnLpiEI2aMzcxYi5TAhFEFnHxgK0Y3ZAUErZG+N+Wjqt2mBYzPaTBpyFXe4N63eAqUFHv1UAHhFHgvPkOzMmBEjhTm/UeKfFy28k+amXDKCmllhQxVkZFoIs8QCWMlKRoEZ7Qm7xAdo7xarLzPU630RjufcuDez91w4KE/vYY1L76Z2bbmxa0V+1WbPk9zxQCT2qKhqmFDxdBE7QzRwVDV1M4VS21lWKK9N2i48vVVlSbzntBjSTpz5sxu+/RQA0WGYbI05BV2dmTzCNWERHfzvUJIJOUjhUIsUUoqf5M1FSK0dwpnrJXSpMDIRyKtaZq0WS6IBNFf+oC5KVMKzNwou2qiGGAf3n98o+uJEtKYj9BghSHd6Ol8KCndmpQULtVnhsoqdJTSinls1V4/pyTaO4e2zGWyjVRdunQW5rY14faHuv4dGb5XwAjPjpJJZ9AsOBrSawSNEUIdiflMpKYu44C2Ka2SjfgI25/Gtt6zxxSQKXmKvFBOYVNpgZFa2AiEssKMBFFveuN1J4TeuXASfvq7jT0/6DBhy472im3bdnWixfrGtmzfg7UvvYVj9h+HsY25oGdQmAIzIzOUNIKIIkLhDDHA/PeSaA2RAp3CeILyWqKT0qWpgFTIlM4DNu02TGov/7S5b7NEeyyCrrjiiszPnZ2dePLJJ/HAAw/gE5/4RJ8WwzD7Mk35CFt3ZitDqkWCajWPZiNBqiIdBtiKIekFTySlmyjf1pK3/hBvgnbVYXZ/H5kIUmA2slDr4N0pYxpw3Jzx+MVzZgL0hKY82ksJ5rWNwlu7O121GnldzDnwkY9IClCPWhWYfPdWpj25pdDtH2xDQSEoLNlvdBFKmlEZwolRf76FjfZQCqOkfdrKCRjho3ZKSiDVUCrb8LCjlBpxA3Ozi9z1UHYM7YVoKaHP24tyrQVK8M02XcXaXlTQxFF5bNnRjoMmN7sy/O5usAdOakZjPsI9a3yPt2rpxPFNOezpTPF2F714hhNJEIq56zfmfa/btANnL5qM/cc3ues8TTW0FM4gLWwfISGMeE6S1EaNjDCSUiPWAp2JSbV2llJ0RsYThFKKnJLQWljRMzLpsQi6/PLLq27/+te/jscff7zPC2KYfZWi9eeEVPcE1XbjpqhNIVZG7FQzT0fSRgyMsKGJ42YchkQpTd1gBCBIecmsOPLVSD411pAzIz06E41JLQVsLKt6Cd/r5MC3c8Ex03Do9DEoxApqTwmxjfqYjtVVRJCSABJ7zOwstWrpmDkTmxAriYuO3R8bt+2ueHwgqFUQhppsypgijt5/HBpyCu1WwFLpOaXBXNpKCmjtz5MIhEgkJQSSoALMROnS1Ke5/LlK7c3RD0mVwvh/tNbBc7WdVSfdgN7ORCMSyAioWjTmhUtmYP3rO9FmGyUa3dT9cye1FPCuQybhJ7/daH+u9H39zdHT8W+/+gtQGVgBYK6D57YMfaVSLXQmadWU1I+fehXLl8zIiMAk1RBS2J5BFB2ypfLaXC+Jiw4BaWT2i2x5vDFNp0BkOkuroHcQ4RozjgD6zRN0xhln4Ec/+lF/HY5h9jmqzeGqlg6rVjFWDW+MNqKm2o04pyQaqXu0NF2mYyWRU8JWoWWb6rkp9a6pok+BmR400kYjTPTpr4+YhgPbRuGjx89Cc1l36A8cPtX9uzGXLYUvUErHCp98pOwwWOnOC90kw/RgJMP+SNWbPra1FHDq/FaMaYh7bd5+58Lu+/qUs7dfpKGgfNchk3HQ5GYsnj7GPFeQ2CFxQT1+4GaBkTiRkkRP9rOjaBCdH+/f8RFAMj6blJdPg0ppIns0rJdEVtgw0R1bCCeEKVJYfooPnORbmBRj87lS1Kt8ZhlgqvcIasBp/jvp/rMTEDj9oK6nBxw7e3y3z68nqvmCiG27OzIT5gFfJRbOAyu5rtLWC5T6qFApsY0WrRCibdR5WqfZ3jr1rH8+99Nn+/V4Pbepd8EPf/hDjB1bvYqDYRhDeSRob+bn7iDBQCmfapGghpyyUQQfCQJMfx5/w/VVYA2xQksxzoxZMK/h55WRKTcfSew3poixjW2Y2JzHlacegPFNebzdXsLWwOMAmL/KT5w70Zlxw5ttrMwcrFwkkUvIk+SrzwrBOQqP2WUkwv4Gp5LwnqKEwNy2URW+lLENOddNtxwSOeV/zTfkyhphCtP4kppfmuf675nqK3hBXD4wV1tvDokk8ntFQrrPKhf5PkL5SEJav5GGEaLmOGZN+Uia6jQrcDsTbUazSN9/yKwtBc2Y06icJwYAy+a3uV5J45py7r1R1Zs5jrbnTOP0Ba04oLUJqQZmjG9w5zN7fqt/Vq3NRfyPU+bgK//1XMVjStpKuSpp4nrj7T17T+m5pol23kxiq/Wo5QF5gwBrnNa+uSKVznemKZJUQkhvpC6RwTp4LfIY1SP/+sv1+PQ75/fb8Xosgg499NDMBaq1xqZNm/Daa6/hG9/4Rr8tjGH2RcpFUF86Hpc/t1okaHRDDrs6Si4FQnajQmw7g0hASB8JainGfrhrICLCkmqqNhrTkMNrO9qxuyNxVUXFnMKujsSJKyJSEn9z9DT87uVtvrzbfsW243VDTjlDZzgDKx+8z2LgfQrL9MP37orSRO1RtZBE66qCsjsfC93c07J9zi4bCxEpic4kyWyLlcQekQC2Dw+tWwjfOJPETiSFa2wIeGFLYiSnpBeZWjhvF53ndns+8nbwqtZG1ORtaoTWo2Rixq5IgUJsSu+VBFAykblYCSSpj1Z1xah8lPEBmc/clGv7SJ/EnNZRFX2uMucXAu89bD/86IlXKs47YN5nUuWmfd5R07Dy2c0VXZvrjU3b96CjlOLNnZUim/47CueJAWTF0q7hYSlJXYPF1IrdJKwaSzWSxFSLydj8t5akGgIaJZn2qTfQYHPPmpfwgSOm9cuxeiyC3v3ud2d+llJiwoQJWLp0KebNm9cvi2KYfZXydFjfIkF7f25LMUZ7KTHTqWUQCYpMNRkZcukXrZTCRS+MOddGY2LTjDGyYzfiSGBcUx5j3m7H6293eKOuNAcM0yRC+FlXgI9m0A08Fxl/UUMuwp7ONBMRAZAZwiqEv3lSJAmoHLNB1OqvKqenTyOhogN9s2jqaExuKaKU0mx3X2kV3m+8D8tHgai5oekA7QfaUt8nl6aUWYOz+3yUNJEC6SvIchH5wbSL5JVSI/jiSELZG2esqAWCdCX0sNGGJDVryHUmaC+lpg+TBE5f0IoHnt6M0+a3ZiJDDfkoI4bJwC2lduk/YU9IeL2UI4Qx2P/DybPxh407MHWM9wgJABcdOwPbdnfiB4+/nHnS6EKMI2eOxctbX6k8aJ1x++oXqm6nSi0nhkC9gYKRG0JnBqLSNSeFsOMyzJwxlQKdqUQclNWX0hSdqch4gEhM1SvX/Oj3WDa/DWP20n+rFnosgrhpIsP0nop0WB8iQbWMpXD9XuC9I4ARNbt1CVoHXYLdmvxwV1oumXeVNANfYyWRj7QzbNK+KryJ2+NFwY0asP1trMGZRA2VvueswTtSXrCNshPrhTCCgVoBxEEZfRgJojUJmLQaYAZ1rnx2M3Z2ZKMwXZ+3ynPbVIiwdVdnlb2zaR5i9sSmiuopiopA+JsMCR7y95BPJxyHUbDix3hsJCKlXaSIojFC+KG5JDQjG7XJWz8XiaTOxKQf95QSCEgXKUptFKxgvTzuNSSdF3+8UETPn9SCea3N0CgXMdpFtSjSFSuBjpJw7zUU4pqqz8rPr/0uhcBBk5sRSRuJAgn3qKIJYXMxsq/ZOyFcj6Ra4w+vbsfUsQ0YXYxdpDNNNVLpzc2JNba7CJCNBnUkGlEpRckKb+oYHdt0GVHPAojY3ZlgTD8ch5slMswgUl7+XhjgSBAAFyUIoyujizHK50eVr4lu7IARQbE10I624zWKOYVxjWZ2F/3VSWKoECt351JSOjMvHStMh4U9glxTP+mn11MV3OhijJbgFz/5lgBzY/3rI6bi5AMnYsY4P2eMIkGzJjThs2fV7iMo79W03+giTjmwaxMu+aukAM5dPAXHzBqHmeMbMpPfzXfhqq0IEoexlC7FF0svbmJrHDdfEvlY+kowux+Jzsiev8iez4IVTbHdnlMSxVj5SI8dv0Gm9JwVoNS4koSzE1WSPiNvonYCmN5rcF609muj9yMD4UZGeyeU4E3h4TVZrmNINIbXaMjFfzUTsVSwgcl9Ag2Np1/dhgef3Yzv/HK9G6hKhJEcihRRdCjVRvBQRKiUpmbAajBZPtQ95BWqd3Z3JPhZD0ZkVKPfjNEMw+wdVXZzrbW0uhq1RpEiKaGRZqJQYxuNnweo9HWE0+d9l2IbicgpNOYjKBu5CVNVuaC6iNIgdIOlSEUkBUY35Fz0Iwpu4rE0wiqsSKLj5iKJ5mJsey0Z30SsfKWREAKtzQW02jJsd4MMREhPhneG+7Y1F3Du4ind7m/OoUk1HdDahP1GF63g8eX9gO1ibQ3Hu21UihpPRsqPqgiFRc6mskiwhP2UXFWYFS1kZs5Zj0+spHs9+jzM+xNO1ALaRvZ8Cg2gKJNw4zgAoCS1EVrKC6DUnme6IWc1iU+TJokf1xGKppJt1BdGe6qLHp8SCrf7aJLAh/9qBjpLGmMaY5fO7SoQtN/oIl55q769QgBw75Ov4NKlsxAriVerrFdrXeEXqjZ1nqrJUu3PuYkEaVtSnxVU3Xm06oXbVlUa4nsKR4IYZhBRXf1G7gW1pMMA0/MnrAwDbOfh2HhBBLKPFXM+HUabpb3Bmt5A5kZdCHoTUapKSYGxjTmMbchBCKC5ELkIgvGsGEN1eCMUwfGb8hFydiwEtQ+I7es2F2J38wXgBIPZX7g1h/2DKD1nol61n1slgZvOXYgDJ43CGQe3ue2nBSXZ04OI09iGHEjfhn1+XCQI2chFaLyOlY/UhCXu9F6MQDHpqaKt6pNBekogm4YksUrRnEbbldt8fpFLN0auLF5aw7WJDsXSvB51i46VL58nUZWLfIqOoozV0ZnWB7GiayHrZaJriKJC5Wljdx1m9g3SkPb8jm3IYWJz3kU8lRSYOb6pqjfshAMmdPXx1x2PPv8GgGyaioQOkenzA2uO1r5nUJIGk+jdoNUUpSTrJwKAJCk7eJ3yx4196xYNsAhimEGlu0qanlJrN2QXWQleWwiBaWMbUIxVRRWVS4cBgbgwkY5CrGwExogQEdyUcraZYiQlmosRBIAxjTkXyRFCoBgbEzT9lU6NG5WoFAD02nRzbi7GGQFB+9PrAnAiyTzVp9m6SpsQ7zg42xdISYlZExqxbH4bmgu+LJ/SfwAwf1Kz+/e8tmY3YyuMPlDkhdIy9L5CIzd136ZoDlXxSXteaEBupAQa8yor7ILXC4VTPvLGZorc0XblBI+P1JEIjaQxvcdBdIqEEFWmUU+hWGXTYXQ9ZquHg/l0MMKLRCtVu5GAIcJWDET42YX7upEeGVHkv0sBNOYVrj9rPs47chrOPcxH9DQ0Dp02ustrop546uW38O+Pb8AfN/mbfqqzpf++fD4YrAof5SFfUJJqdCZ+xlhnkrpZZP7Y2eaJ+zKcDmOYQaS31Up9QUmBRGZ/oUkBjG/KY/vukjO/EkVXHeZvRErY1ImNJMQ2FEHPMqkWYUWKEUJCCIwu5tDembroTkMussJLuP40At7YS9GMsJrMvJ4xZIcRIrqhk4mY3itg/gqmNFvBlgN3J4JmT2zK/Bx2rA4JnRNhF18pfVm/EkHzySBSRu9Zi2z/IKX8BHeKmpGJWUmByJ77UqpNWjLwFIWel/JxIk4kBmnKWJku4SRyTJk8XCNEKGo9oCFtFRmZq229kYkWKenK8en8kyk8PG0kPsPRKOHsMwjTe0gKAS0AIbQTsXMmNqG1OY+JzQX7PoVLuxnhpIOomz/H9N6pQo6EcmtzwYllotZoaj3wallH9j9u2oGDJrdkIkKayuaF6cotQWJIQGmNUkopMDuKxeS9EJfSbCRoGIigXz7/Onb0w8iUfrsCXnjhBZx00kn9dTiG2SfpTd+avkJRgMw6RHCDLHu8EFcao/ORiQAVbQVX6MUJn+dvtmY7RYFMJMgIrHzsOx7HNpqUbQbojbrCip68jSABtmMypd/KohCFyJuGBYzAGNMQZ3oK1UK5edkR3BfCx0lECNg0nfSpPNjVSEG9mrLpsLw1PodihT4TF62xosVFboLUm/uchG9qGZ7b0Mhsps4r5JRy14D5PLwIje35FQLORE09iJzBOvL+pDgQsGEbBromKCJD10UuIuEUjgmh9+MjQfk4wiUnzMKZCyZl3qeP9oSVcXBroDL88qiiENnrdfD/S+xfXgsGsYYdpTU1VYQvgzdDVctSYdYk3ZlodCQpwou7lNS/CLr6h7/Db9a/2efj9JsIevvtt7F69er+OhzDMP1E2FeGEKBIAdxf9gSlagS8aCPDckNOZf56FsE/CrFPtVDVWcF2go5tZKgQK9OoMUgXUToM8DdBRb4UmJtvYy5y/pF8LJ0xW5bdRIs5FVQOmeM25SNTVSbMyAoAeEfg86kG+ZvKCW8L4aNhtRRVuIUpKopkxJIiX968HVnDc94KUkrvxbaqrmCrtvKx9J8NRb5UeFP3lXZSeKO6Ea3mdei1vMHavp7yBmPykAkIl/6kCrNcFAipyHuLKPpF7/f0g1oxY1wDjpw5NlMRllMKSprIXmRToTIUN5Jm1JljhgJHICt+6DxQfyU6n9J9+cgaRQ/LdW1lMf7w4YmX3sLdv3nJGZizfiFdIYRIALmyeZsW6yilLiVGmAqy+hZB/UXN6bCvfe1r3T7+yiv134yKYUYi1MgwhMynJI7C7tPkYwmfQzdNM6zVp3LczQgmWiSFCbdTeiK8WSbal2HvokZ5yoTew8gSeUXCm2xsoxkloZGzEY5CbCIUTXY2mnkfpmM1rYnWTJO2//HUAzB1bBHTxzbgsT+/iTeCDr0nHDAeq//0Og6Z0uJeI3sey26iwb+VMqXslPqJlRnXQELTpaiUQHtiGwYGKTx6PWkjYJGUiCM7V42iMVoDSDOijyq4AO0EgJICSIGcMn1iIimQaDuPjV4vkiglKVLlI3f0PPrcpcz6yUQKCCFdryYSVVqniGy6TgjzWR48ZTQOnNTiPiM6Tj4KTdim1w/1UjICzsyo01rb74GfSoZCx5wDSuuZj8MLKleRqKn6TjohGn6Ah00fjWde3YbtNYytqEde3bYHG7buwtOvbkdbcwGHTRtjTpZtbukaKgJIYSbPJ7b83Txuhq52JtnqMOouPRKoWQRdccUVmDRpEnK56h0aOzqqz9RhGGboKY8E+Y7EXjzs7TmUOgkFU2hqpfEKiU5chVIhNsNSYyXRUUpdRMkJCu2rm8K1mYZ9Eo055Q26wY0UsD13pPGv0LPJbxKmRoQ0DRd3dyaIIomxjXnkIoW/PmIq7nl8A06bb6JCZy/aD+Ob8lgye3zV9JmAgAxuok1Bc76GWJmhtMJ3XG4vpU7U0XseVYixsyNxw1/pM6B2BwICJaWhbLSFUkO5SNpJ45Sq8gLKnAsyBntRkGrtRZHr10OpMgFAItUm8kefv9Zw0SSk2Uo2pQRKqRFh5BOKrbjNKYk9nUlmTEcp0d7jJCgyqFyUzXfEphSWdlGiRJtrQgeCx5wLidSO+iC/T2iq1xo2YiWdKKLhseXl8kIYj9pFfzUTEMCtVeaPDQf+/NpOrNu0A+s27cCh00bbppNG4Agh7GAN4czSVP4uYCbMAzY6FGiezkRXjIDZV6lZBE2fPh1f/OIX8f73v7/q40899RQWL17cbwtjGKb/KI8ERYqqlsz2agbR8uf4iEV4J4EzOofGWyNWzA1vXFMOk0cX8OLru9xf6fTXvIZGefk6RSYacgrjmvLu5kfPo/Jtsy+g4KM25IdxaR17YyxEEu2lxDXuk9L0MvrQUdOxaOpoPLXhLeQiiSljGtCUjzKl+H5dyKwzTCE22S7aykatYuXFnfOj2D49AibVlYuMCFHClr5LgfbO1EVl8rYMnUzi1ADPfG729AdLpGiH2TcNIiYU2aGIiT8vqTKzwSIrKijaEikJYcvbZTAHTsNXi7m+RIkXqFoEXcrp9QMRmw9SpnROyP+k4f1GHbY7uelALaCURKSNwCylPtVFYlVYkVRKtUsFAmZGGXUhD88bnYcwBXf2osn48VOvVvx3UO+s21y9TJxM0rCiKNVm6O5//2EzOpMU7zpkskulJUm2YzSly0YCNXuCFi9ejLVr13b5uBBiWA1gY5iRTNhxGKhebl9NBJVXtwlhfDj0lzhFfcIIUyEyc8FGFSJjwhU+MkBejzASpITvkjyuKQfqshxbo3RT0KCRohquC3HQhyaS0vUdonESrl9RkAqkl6Y1OE9P8D7JbBsa25UAls1vxaFTR2Ne2yg05CIXlcjMSRP+pk99fowokJnOzjny3Ng0E/XxISO4SZEZEUWrC1cpJdy5EgJ2Ld54Tr2inPnapgq9ZyfoC2VeJIjS+IgO+bCMD8qLoXBuGXnC6Hl0TVBVmZ+FJp1JmvoP0b5USh9GwyiNSMb1WAUpMLruhO+tJIPPw5yH4JZXFhWaNb6x4r+B4cCuslEw5b2EAOsNsn2BHlr3Gh55/g28/naH9wqVVYNRJ+mRQM2RoH/+53/Grl27unx8/vz5WL9+fb8simGYgSWnspGgalSkw4RwESRCAM7nQX/p5zuVKyUvxBJ7On0kgl43soJCa52JVgBwvWkKscLklqKJnCgjaLbv7sx0qaYba4f137gbrr1xNxUibN2p3U0wb6NW5NWhYwBeCFLpfSgMlR2JkRFrSuLEeRNRSlLEyvRGUlaINOQiAO1OkIQ3dopaKBuKoFQXACSpRKzsoFohbUNIiqhoCE0hIPst+DHTV0makmcXxbGCJrXnWwkBLX2kyERtgqaOWkAKn84yPX6Mn8SkGjWkNOeqs5QiseJECY1CLNHembgoizOLK+8HiiOJJNG+wk9mBWikBHIp+Y282Zuq2GIpkSqTPtNuTV6okejtVKnvvySyvYfGNOTMe4d2pvB9ie27O03TTCHho0H+cTdFXvgKMsKYqAd9yUNCzSJo/vzu5+7EcYzp06f3eUEMwww84fytrqgWCSqHKr4i+xc+Nf6jm3ohUoikMZ2GaQr6g5xSYWGExVU1KYnU9tOhCBQ1/nMRizAFZ59jok1+NERo/A3L7k1UIHF+nVxko1c55VJL/r1707M7hy5CosxkdVvVJGCGd1IExuwHX4lF0RhlDcD2ZGgNJEqjQUQ2amQjN0o4kZNS+jCrhTKfD71uBGE+h7LIl5LeW+O8MtY/k8L34HG+qiAaFEbwqNIsttPozWckrS+r5AzudA5yKjvQtQOpi24lqXGukOBx5mtlBA/1FAJMBC6OBFLtt7veTNJW1ikJCCOqYukjRkoK/OOyA9DembrIXUnsW0NW123ejv96dgs6khQtxRgfOW6meyzsc0VjNACgU2okgejpTEz5/EiAmyUyzAimzyIIcBVf+Ui51EYoUih6ZG5YZns4m6t8lMjooh2rIb34ofRSY05lhMiovPHi7CklaIiNGGnMR+7mS1EAFx0SZMgls6xZPxmApRAYlY/QXso2V6R+P2H6yQkbW95O3ZCFABpzZnYaVUFRuol6LFG/nVJqvUvanButJGQsfHRDwg1TFdq/fvlnQbO16HyGpeeU+qIUmbTHzUEGYtR+DrY6TFtvjRRwIg3IjlKJlUl/tqsUHTK10TaqiPPRwchGa2g8SN5WGCapRi4y4iiJhPHv2IhRorX1THlhJIRplKhspWCqjJjV2myTUkDZc0GRvzSiWWd+JtvoYoxSXjvfEYk12ZO5KnXKHzdtxwNP+4Gi23Z3GrO7/czCDBeVzgsIK4ZGpieIRRDDjGC60UA1iSApBEYVYpcaAXy/mvLnZaIoMnuM8tdxzQIDTwtQaejORaaJ4rbdAmMac4iVETHFnHI3T9e/JyIzrq808t4W8q34CqZwXe49BEsl4VSwbQCMKPDrzUaChE3reX+LMTAnLk0jBKBhegFpaHSWtOvP4/rgUN/mKpEL30U6MCUL3zOHIjj+/Wjvi7Lb6MZHn2DYf8d0bCYhZp5L75vmyu3sMClHVwZvU1tpChctpEaYnYl0768jMR2qaU4ZpWZMNEi7hoydSAOBayJrSWoep/VorZG3lYokorwgE0i1gEY2TdbdHwPdUYwVdncme99xkAgFEPHmzg6Ma8oZMRT8d0eT4qVAxeww4wkahAXXAcNf+jIM02u662BdHqGpng6DjbwEXaRluVjwx6NjhpGg8jVI6yWRNhUEeA8TUXADOWnYpxljIW16rrkQOyFCXqHGfOT8QFTBRSkSuoGS0belGHu/jfANJcc35YN12r5HkR86SqXZJEIoRUhRiLCPEHXrDnsIRdK0FjCVZtYw7MSlT391J4K8AApHWsBFh8xxwu3ZYwiEjRwpBRVWe8GZ0HM2AkPVbmRCj6Ngsr00pvZC5EeBZBo2WmFETRupNxSlVnNBKtONSrHnPh+b55hjwaa+jDAlw3k4+0xKmotmjktRIJqDt3j6mMxMuL0xpiHe+05DzB2Pvlh1u9bINE8MZ4d1sDGaYZiRQHdT7cuzA13tO7YhZ9vuG8ojFWGJNqWVuvvLO4xW0M07jrL7j7VipBCrjIdICGPGLuZU0J1ZuCaEAAkaP7yVPDt0I6fXdc35INzNtSGn8DdHT3NpLrqZ52OqejJ+KDLyxkq6Ke6hsKBBpHtIVKR+Zlchlkitx4YEgjkvQVWYyJ4rc579Noos+fL88nNs+/BouHNMhmf6zBKYfkX0Es5EjWzTxZySaJcp8pGZ0UbnNpJpEMnyY06UFTAdJYrAeVMzdcmOpIaAPwZFfkyzRrqOhI0aBRFCG3GLbB8kgdRGAn2EypTepwCM76sURImOmzMeUgg8u3F7l9dnSGtzoWKmVz2S2u7R2XSYif6Y1Ge2L1CSaLSX2BPEMMw+TreeoBojQeOacpk5RjLwp9DP9Pyw23RXuJs5vB+lUPY8qhAb0xC76AuVVLs5XNb06yegU/RIZMROmBKhDsdkFI6VFSRKOo/KjHGNaLd+EkoHGaOzuSm7Cix7g2/I+waRJlIlXWTDVy3RpHV701cpYvjKMHe+7TkXZX+kh6mu8JyTIKVWBGF3aSDrEUFwDHodugb888PPyaf1XIQn8d29M6XzwjeNLH8eReXC2WlUVUc9hugzTIR2n2+SamvOJq+TjxjGigSeT3W6qj8IaAUAqTFGp9p+hub8l1/lSpiquHIuOHo6WooxntzwVsVj9YZbfln5fKo1dAooma0GK6UaJe4Y7dnbyIyQf/iHf+j1YhiGGVy6q4qpZr4tx5ROZ/elyEL4s3mt7kVX+etQt2WgsqP1KNut2ZttadYYXM+dKBA30goWwA8U9Y/7Bo2jbBoNNuqSj0znZ4puUEk/RXQKse9FA9iS8CAV5UzT0nexLsaRE0HUDsAIJJ8mpLVRCTOdD/LKVPsssufQHKvdTmivJmCMSCAPkP+MtLYRldScmzD6JMPPxkZ1SKQAQD5R7lzGyndzlkK4eWEADcqFSxdS6iwXmeeVEgEhfeqSBK6SGg22es90mBaIQWIS1hNk3rtWptaNrgFK3dl3apoHSlOKb94L3GcYMq4phy2ByCdaWwrdfgb1xMo/bMJxsyegGHR71/Dm53IjtEmRcSTI8ZWvfKWmgwkhWAQxzDCiO02ytxut2QeIhHQDKgHym1RGgmotQw4jQUS5eGopxm47pakoOkBeErrxtXd6wQMgE3GgSAulnmiIKYmSYk5Bay+StLaRDTv/KxdEM8KoixQmikWz1ujxWAk3ADYfS2fOpv43kQo9Oxpp1VSWgNiLX4NSVsbInBVAJqpD/WEqH6NwQfDPrEhCECmyJeyU5vSdpK2/KtMU0jymtbaGdz8fjtKD1EyxXaZQMGmuJNU+EpRqm4I0Buds00ThrgFzvUhowHmCSEhp0Dw100G5U2obfcua8LviuDnjMbml6DpUDweefmU7ckrihAMmuG1J6qfNJ2m2WWKqNTo4EuThJogMs2/S26oYws0gK4v8VPOq1Ppa1arJyvVTo40EkbAh87MUcF4dutEqla0AIp8NpefCMmkTLfAemXyk0FFKbVRIoZSmrnqNbqokhIzvRaCDjm3HUVD6SwhkukDnlJnQTkZj8tkI4f0/wvYFKj8P5eej/GfyBIW+qrAZHv1Mr1MNl3oT4Weq/ToB18eoGCukWruhsbGykZ8gmkORoRSm1w99Bj5VlZ1uT+I0pQo0KQGkTixROgzSN8PMKTNkl943RbUoTSoEXPrL9LIKKtwCb1DI6IY4Ewk6ev9xpizfCql/OGk2vvbz56uew3piy4527On00Z1Ua+cTStKsX8hEhkZGJKjX1WEdHR1Yt24dSqXhOX2XYZjaoj21PL9csIT3EecJqvG1wplc7phd7OPHf0iXfvI9f+BeN/wL3zXwCzxAJGro+QK+ezEdqxBLF5FQ0tz4qYyfvEum55Dvz0MNHCnaYxoFKtP/JxLI23SaTxmKMtGT7XJcft67OqMk4kKBkzku7YPKCrHsa1d/hbASLZLCTbon3004niP09dA8N6W86bsQKeSUciKUomPkITKVd77jNkXWSFiR+ZqaN+aCzyj8vOjzjSQNp6WqtOyA3vL3fNTMcRjflMu8d28kF1Wv13rk5a27cfvqFzLbTK8gVI0EjZQ+QT3+9Hbt2oWLL74YDQ0NOOigg/DSSy8BMF6gL3zhC/2+QIZh6p9Q4JTfSEggdVeOH1L+l3g13NgP6QUW3USF8A0DgaDHTRCRopshRRBM2ko6j48QsGXewnVVplQPNVo0ER448y81R1TBDVgKc7OXtF9wQ6fp5q7qKhCPvhKrd0KVntHVU8PX6lJIofJxJ64E3HcaVUFl7TQWg4QRnWdqSknPofNK5y9nn6NUdvQJnbccRdHIbySzPaDCuWPKrcl7l+g5GSO2O7Zy0aAwtQuYzy1MIynpxR9F3IYjOpgZlm2VaFJlI6Q4rOci6Nprr8Vvf/tbPPTQQygUvDHslFNOwT333NOvi2MYZniQiQT18ViU6gopFwLlJfMUzaCeOmHqLTTzAtaXE4XeFYGxjTnkI4VirJwBmBop+uGbwt283bBOUCWTCPbxfiS6+RpjsK8Ko1QPGb6VoIo0kXk/lWmv2s5uV2mz8Di05q6iPZSio32BSmEkhekBJJ2w8emsYlCSTtEXGbzPsIKMojChEKGoUdgcMTOINfLNFvORL50Pm2T6qJ810Uvf2qCYU7anUSBGZWVkR4lsVWNlD6ZhqoIA1xvIzA7Lbk9HSCSoxyXy9913H+655x4cffTRmQ9//vz5eOGFF7p5JsMw+yrloqPGoE9VyivBgEphVX7jphtSLCvNrVLAGWTNWqVLh7jmejYSlI+zIiofS5RSaeeC+Snoncr7UChiQ8+jm3A+ku7mK4WAoFRQkHYpRCojRJx4gU9X1UJXN2IyXHf/3OrHCj1A2WOaJwnARVmUFEi1b/hI1VsU0RECNioDpEFETgrY3kDWt6OUi7IkqYn4dSK1bRAMrrGl9fYkdiQHGaKpKSKJPKR+ZAcAyBTG3xVrWyGXWq+WclGt8jfc1lLA0fuPxbjGvBVwQSfuTOoXw6bT8utvd+CPG3fgiJljsbsjyXiAOtMUnSPEE9RjEfTaa69h4sSJFdt37tw5rBUxwzC9p9wY3RcRVI3yVFr5r5rQh1Mpgsz0dHoORQdcasQO3cw0VJSmhLwYKySJdobdxrxCPpboSFJ34xbwURuqIlM2QiLgDdthlRytk4a2OnN0IEDouL0hTAX2lUqRZISQ1vBCSApIDTNN3p6DjoR8QFljuhczQHn0RUqfyqRUI0AjRrSr1MtHCqXEz3fLR2aILqVJBewMNACQNOLE/CyFdGM7OpIUUlB6zK837A1UjE3rhaVzJ6Ihp2yExOzbaU3zM8Y14MU3dmHR1NF44qW3+n7SB4Gf/m4jAGDNi1sr+iClGiOmT1CP02FHHHEE/u///b/uZ/qP7dvf/jaOOeaY/lsZwzDDhrC7dJg+GSjKIyQC3vdBN0C/Ni8+AB+tiJURKnFEE+XhojsURYiVRENe+UiFNfE25CJX9u5TRRQBkc7USyk6EjW0HilIdKmqZlyBSuFX9Tz08TSH669Gd+meMGUn4I3MSvhqu7ANgfFreZEX+qDCpoqCRFUgVsnzJQRc5ClM58WRH+BLKTPal0QoRaUiW81HHjKfwpOuUux/LJuDGeMacOK8CRjdkPOfmQh8SMHrnLt4Cj501FQsnTvRNfIcLlRrBJnyANWuWbFiBU4//XQ8++yzKJVK+OpXv4pnnnkGv/rVr7B69eqBWCPDMHVOeQqhvyNB5ZQfn26kTryUzfwQQtiuMXDpksZ8hLf3lFxKhx7zzQGF85qUbKrFG3CDrsaC0k7ew0IVSoBN6YRjRYSv+irkVNW0ikuL9YPI6Y5yv1TF411E4CpK7qXvt0SCJ4m0E0LZlJ8XquQPCv8tANuDhz7H1IpsHzUjcSVg0oyxEkjpc5TZ9KLW5t8m2mQ+ByOOJGKlIUQa9Hsya28dVcBHT5iFHXs6kYsk2kuJe39CCHQmOqg+SxFJhZnjm9BeSvH3J87Gjff/sZaPp27Z05lkrtl9mR5HgpYsWYJHH30Uu3btwqxZs/Dggw+itbUVv/rVr7B48eKBWCPDMHVOLd2l+5MKM6/wXiKBKsbp4Dn0fXQxRt4aoWn/cjFCpfCxlC6qQJVFvoLLp3loQjpFFmhbeRk8fXfNEitSTtm1DhR9OXy5uZqiW8KmsWgshgjESzkkAKlSLhR/dDyK/ISVX9IKTiG9GT1SwjVvdMeBX5/v5WQN1ZGfRE8Dcim6k7ftD5S0g18lmbP9fpH01wEN5qVqwOHOF+7/I77x0Mjw+PYoEtTZ2Ym/+7u/w2c+8xnceeedA7UmhmGGGYPtByyPUKiydFNUEQnya6THijmFxrwRTmHJfXhk5x2KTIVRWC3mog2Bn8eXxsN1US5Pd9G/hDDCQEoBmVY/fwN9VntVfl+RujPdrem7G6dBQrBM/IXvn75T00VKr0lhmypKE8mhKFEmahR4spQUQGoEZ/mppE807BeklECUSOSURiJ8VCcXmfVGqY/mhbPLKIoIpIiVRCnViOycMiPMfIXicGZkJMIMPfq04jjGvffeO1BrYRiG6RXlEZPueg2RPqK/6AX8XDEpsjd5ilK4tI40TRONl8ffwAFvxvWRB+kjJbIy6kIpGf+6lWvtr2aWAwmlAX2az5udKfoSRuKIMGVlBKbInEv3POm7apM/iM477ReazylN5v5NwiqMGAmab+bHnuRshZgKyu5dlEn6nlJuvEdEDRuzo0JyauDPOdN/9Fiyvuc978F99903AEthGIbpHaJMRHSVXgKynaPDHkD0WPjUyEaBXKk3THl1PuhR46qeylIwZNIGKqvnzLGlE2ShcTqz7r2+76G/4ZLACUVHKDLKy//p367zMrIRIyJsJVAeCfKvZx4jI3VWkPn1Ab5CLAr2c5GhIM1JfaRICIVzz6hhI0WG8k4I+UiSqpb3Y+qWHhujZ8+ejX/5l3/Bo48+isWLF6OxsTHzOA9QZRhmsKlI0XQjDkKDLvWfIZFSzRPkKrik7xxN0E2SKmyE/T9KjdHrSJHtBg34cnCzDUgHPPnVd6qdVyEEoDWkNENNSeAoFUR2hICbWF92CCmABNmKPxKFUmro1EeFKKIjBTJpLx8Z8pEnOg4ZuKV7blBVZofiCgE3zFUICWXXGnaiJqGTj81U2lxkrPaRfd+xEki1HybLDA96LIL+9V//FaNHj8batWuxdu3azGM8RZ5hmKGgPI3V/b5+vygQKuZ7ZdTI+HtsOTy81yfR2npIBIT2ZfX0dIpIANZrVFaKTB2T3etXKVXua6BnMG7HoYATlIqS3nsl3Jd/r1qbJoymb08okHw6TIPSWlk/EUWQwoynED6lKJD9DMM5X6rsOdTkkYzW1JxRKolUI5hTZsRwbGeTaW2M+DThXkMjb6+FbjKxTB3S47jd+vXru/z685//3OuFrFixAkIIXHHFFW6b1hrXX389Jk+ejGKxiKVLl+KZZ57p9WswDLNv0pO0UFjJ5ibNkxgpkw152/AwjCJQ9RClwyrWQq8jsj12fHTCfKdp9eWPDzdcY0dkq7HI69Nd40YX3RHZCE74WBgFEkJkvEBhyqtaFipzPOFTbGF6LRy2SlGfQqzsLDNfDWa8YNJ2l7bpslhlUmE5lZ1CX141ydQfdZG8XLNmDb71rW9h4cKFme033XQTbrnlFtx2221Ys2YN2tracOqpp2LHjh1DtFKGYeqRntxrMsNeJcrSYdl940hm0lt0I41VZSQCyEYhym+AFM3w5t/yFF7t76FWBssy5N6/KPcIicz2rgi9WOWClozQgBdD7t+oTDOWzzlza0R2PeUeI6r+8nPKBPJKIhcJ5GM/vZ48QjSrLA6G8dI8M2b4MOSf1ttvv40PfehD+Pa3v40xY8a47Vpr3HrrrbjuuutwzjnnYMGCBbjzzjuxa9cu3HXXXUO4YoZh6o2e9NMJ71FkyA0NyiGhOCJDren/IzIREKLcj4Kyx8K1lguuLv02wwgSgRSlCeeqlaeoQirPRfnxROax8OmuXxGQ+TzCY9DPYRVe+J2qwKjaK7bz5eKgAiwXZafYu8n2tu8QVY1FSuDEuWbq/MnzKkdMMfXFkIugyy67DO94xztwyimnZLavX78emzZtwrJly9y2fD6PE044AY8++miXx2tvb8f27dszXwzD7Nv0SASVeX7C7+WEYx9cNZITM36/ciFU/rjZbsVPmQ9pX6FC9KBrQUj7Z3+u3jU7fNwc158/GYqfKlEnUfYZlYulcM1SWiN00D2aqtsiaQRQWDUmBExqLDbz5MgvFCuJ84+Zjk+dOQ9L507A8XPGZ97Huw6ZBABoyFUOCmYGnyEdcnL33XfjiSeewJo1ayoe27RpEwCgtbU1s721tRV/+ctfujzmihUrcMMNN/TvQhmGqWt6kg4Lb4w0BqGr6EzY3dmZr+2fjmFpfHhjpn/vzQ8yGHaRoRJa4bkhv3e1lZDPB0BVY3j58yiaU+042pnTrfFaZEd7EFKIoBmgzpTQUyosH5mp9NRBOhcIIHrByLqszYgQZf1jgLQjVtpaiugspWhrKWRe/+D9WtBcjDFldBFfeGBd1ffMDB5DFgnasGEDLr/8cvyv//W/UCgUutyv/D9iuri74tprr8W2bdvc14YNG/ptzQzD1Ce9vdnLskhQRTrMlcX7PjhkzO0q+lSe9hop+MaQfhBqeXSn2+ejts+xK89PtW3ljS8zFWTwIow8X+F4jHxk/EDK9gPKRSbaYzqIS9d40ZinhfMMKSlQiBVi6Ye/Ei3FGLlIYW7rKDQXc7WdGGZA6VMkaOfOnbjnnnuwe/duLFu2DHPmzKn5uWvXrsWWLVsy88aSJMHDDz+M2267DevWGYW8adMmTJo0ye2zZcuWiuhQSD6fRz6f78W7YRhmJFCtLWH5AFi33Rp2s/OgaERE4EcJh4kK/9yRTE/ffbnPp7s/eM32bJSnq9cr9wBVbEdQqh90miafkAZ8Q0UpUIIflKthBFJHyZijC7Epn6foUSnVmDG+wb3mR4/f33auNqm2a86Yh+c27cB/PPlKjWeJ6W9qFkEvvfQSzj//fDzxxBM4+uij8Z3vfAennnoqnnvuOQBAsVjE/fffj+OPP76m45188sn4/e9/n9n24Q9/GPPmzcM111yD/fffH21tbVi5ciUOPfRQAEBHRwdWr16NL37xi7Uum2GYEUBPbrjV7qvls8j2tr+JBFXfJ5xV1f069h2R5P04PrJWnorqzdulaE34OuX9lsLju9RbF68VpsjK2xNIAQgJyBQ+MmRTXlrbYbdSQNn3FykBDYlImflhJmookURmhpipINMY3ZDDZ985H2maQkiJ2Ha3zkcSo4sxDp7Sgi1vt+OXz73e8xPE9Jma02FXXXUVOjo6cPvtt6OhoQGnnXYa5syZg40bN2Lz5s0488wzcf3119f8wqNGjcKCBQsyX42NjRg3bhwWLFgA6hl044034t5778XTTz+N5cuXo6GhAeedd15v3ivDMPsoA6knKkvZ/Zysai8rhd+P6T1C+C7d/X9s+73sE6TeTsYoTXPD/HiUcII8DYqNg8iOn3RPZfNm+6hChEIuCvbzQ1lzkcSJB0zo9/fI1EbNkaCHH34YP/nJT3DkkUfizDPPxPjx4/Hd737XpaY+/elP4+STT+7XxV199dXYvXs3Lr30UmzduhVHHXUUHnzwQYwaNapfX4dhmOFNT26UPb2nVo0ECQEJnfmZGGleoL3R3yKmu8P1KtoUCCLy8CgpkCbapTRpLEYkBZLA8yWldmkzJQWk9q0UctZcHSkJKTS0BhLpo0a5SLh9ClwpNmTULIJee+01TJ8+HQAwduxYNDQ0ZLw5bW1t2Lp1a58W89BDD2V+FkLg+uuv71GEiWEYpjuqx2/68fisgWqiXiNlUvqWCLESRsjYFJaSwswys/sJ7dNmZoYckI8lSom2VWMasRToBI1OMV3IAYGcUlAygbTHZIaGmtNh5Sa1er2AGYZhuqM/IkFme/VUDf9u7B19OW+9fW55HyHAz3yjobk0bT62jTVVWUuFyDZLpK7TYerMNE80PiA/pd6M4wgHs1bzjy3cr6VX74npGT2qDvvsZz+LhgbjdO/o6MDnP/95tLSYD2rXrl39vzqGYZghZqAjRyOF/k+LVe8DVP5alZ27u3seIO3nLSWgtIAWxuhMwkgLmkpvHhOwQ3Vd+wQBrYBcJFBKha0so4GwcAKpEBt/UUkpSFEZCnr3ofvhd69s6/mJYXpEzSLo+OOPd2XrALBkyZKKgam1VoYxDMMMFX0p3WZqp94iYlWjdhU/C0BoNwyWxIuZNO8Ht2qdrVyjaJEAoKVGpCkSZKbLdybmOTR1niJGkRLWI1SZlIlVfZ2/fZWaRVC5X4dhGGY40tObM9+KhgfdRXi6e0455AfS0FAi8ARRRaDONsRMoZ0AUlIAKWz0yFeCaS0hY4HOJPU9h+y0+s4khRCVIijbm4oZKPgsMwwzomBRs+/QlS+rlucBXYzgCL67rtLhwFwBL4jgHyOfkJICSonA72Mn0duu0znlvyJbWZa3A1qJjxw3E0oIFGNTNTaq0HW8YsmscT1+/4ynpkjQlVdeWfMBb7nlll4vhmEYZqDpuTGaZVM90Z+fBx3LN1D0faCgfVTI7w8bCcpuU653lEl7UR+hyKa8AOmG7+ZjaVJtKttb6JOnz8N//n4j3rlwMiaPLmB3Z4JrTp+L//z9Jpx84ESsuP+P7jWvPn0u2jsTvPDaThw2bQwefeGNfjsnI42aRNCTTz6Z+Xnt2rVIkgRz584FAPzpT3+CUiozAoNhGKYe4XTYvktfBVL47PLeT6JsuzA/AFqDLD2UHhMw1WCpLaHXVlDloNwQVhcZiiSkAGZOaMTfnzwHpSSFlAKlVGPauAb87XEzIYTAiXMnoqOU4NzDp6AYK+zqSLD/hCbs2FPq03se6dQkglatWuX+fcstt2DUqFG48847MWbMGADA1q1b8eEPfxjHHXfcwKySYRhmiOBA0L5POKss/LilFJCpj/JUG9thGmfaf8M3y6Ty+lhJCGgoCXQmZuq81jCeoEihXaWmuaIVR5E0KbA00sgphUhqJFrjvKOmob2U2P5FEsXYmLZz7B3qEz0eoPrlL38ZDz74oBNAADBmzBh87nOfw7Jly/CP//iP/bpAhmGYoYTTYSMDKY0J2neQttvLPn5XHSaCWWWwJfOwPfXsz0oI5GzHaCkAKTRykURnkho/kBKII2EjRxJam47SWgOp1s4n1JmkgE6RKpNWy0WmZ1GaAnHE12df6LGE3L59OzZv3lyxfcuWLdixY0e/LIphGIZh6oFyX1A5xiwtMj+b5wHKlsD7JonKRYeo03SsqHGi8RDlI7NPMVaIlTFUhzPHwjll9Hym9/Q4EvSe97wHH/7wh/HlL38ZRx99NADgsccewyc+8Qmcc845/b5AhmEYhhkMsp6g7Peu9i+PCFGyzHSQhpsppjXcbDKprHFaSjOENTLl8mbWmDFSK6ld6ivR2v5sehbFNqUmheZ0WB/psQj65je/iauuugp/8zd/g87OTnOQKMLFF1+ML33pS/2+QIZhGIYZTPbWc6hcGLnoTzBbTAgNCSN6tDDprVgJv4+tKqO5Y/lIopSa18xHxhhtUmYSnYlEB0yPodRWn6VKIE3NoNaT5k3Az//42sCcjH2cHoughoYGfOMb38CXvvQlvPDCC9BaY/bs2WhsbByI9TEMwzDMkBGaprveJ/i3+27q6ak6TMAOUQUASdVlQGRnkhVihY5SilJqojsyTSFgBE/B9gvqRAoJIFJmJIdUArlUY0xDbiDe+oigWpbFTwAAIqNJREFUxyKIaGxsxMKFC/tzLQzDMAwzZPSnB56aLJLwSVJvlk6tqFJSQEojhKBTJNKYqyMlIIR0KbR8JJHYKJHWpiIsTf3rHDptNH70xCv9t/gRRK9FEMMwDMPsS/Rm9Ea151FTRY2gx5AMO1D7L2nFEGC8PyR8hPX/GEFk+goBJq0WKYnIiiIpJQ6ZMgbHzh6HzTvaISFw0ryJuH31C307GSMEFkEMwzAMY6m1JYKgttIV2/3jmXJ5SouJYFK9EIilqRSDFT+IyExtSvZjGyWiFJiCqTyjknpAoBMaf3f8LGfS3rqrA+89bD+ODtUAiyCGYRiGKaMrMVSzSIKP9FCzRbPdholgBZE0oiaVgEoFhDRGaa0BDW0aNmqBnJAoJRoaxiyd6tRNt4c1TRP5SOLU+W1YOncCnt+yE1/97+f6cCb2bVgEMQzDMEwvcWM0MvPEfHpMSttc0YofE0DykSD6EtD2335+mdLm50iaERxxpJGm2k6mF0hTSpuZXkQUGcpHyjqvNWZP5KKl7mARxDAMwzDd0NuoEDVZTIOfqSrM/JwVQtKGj0gIaZo9BhM8iqRACUAsJVIJaGk8RLGWbhyHhkbeltLrSENJiX85+yDs7kxw43/+sWKNIx0WQQzDMAwzgISjOGi8htkuIKWJDinpq8Zov9ROo1cCEBLoTEzkx3mMACt8rEcIGqUEiGwDRSGAjiTF2MY8dnXwoNVqsAhiGIZhmH6mvJO02eYn0LsZZPBDW11qTPifyU9E5fVKmLJ6pc0zE23SaKbTtECaen9QqjXykGiXWc8Q42ERxDAMwzADBPmDKAJULo5oOr2tknf9hVKtXbrMWoiglOk2HUljjIaNAlH3aRUYqmlSPZRG1CGQSBZB1WARxDAMwzD9jCuhJ5VS03NsZMj2EpLwz1NSQKYCqdSmwSIpowSAAOJI2tliAqm2/iArtuIoqVLMzwAsghiGYRhmwJBSIE27liBknjatgrJVY0mqfSrNfimXMjPRJfIRxdLsqaRwg1pLaYpISsR21hhTCYsghmEYhhkCMv0WrSGaGiwKYSrpKaJEZuhU64x3iP6trAgSqWnAGEcCHYlErEwzxhw4HVYNFkEMwzAM0090O2gV1UdsAD51VQ2KFpV3mxaunN7vE0vqLWTET6wE4khCl9Iujz+SYRHEMAzDMANILUInrCALR29QVAiwZfM2dCTdPuZ7pISZNQYJJKmJ/ijpvnozE20kwCKIYRiGYQYQHx3SVbdrrSuEkhACwv6Q9QX5SFBqnydg02Fmjga07TQdKwkpTTfppBtf0kiGRRDDMAzD1Cmhb0jY8RqZqJH26bBUAEoA0GZkfaSMQTpWEh0yxc3nHoKnX92GXCTwrYfXD9E7qi/YKcUwDMMwdUiYBgN8hZh7HNYTBD+SI5ICSpnIEJmmI2mE0EH7NePsRZNx/JwJmddZMLkZy5fMGPg3VIewCGIYhmGYQUAEBueeP7frY/oye+EaJ0bWIC2kKZuPlBFCuUgiH6vMMZYvmYH8CO0oPTLfNcMwDMMMMHsbsFr9Od0/Vk1IeSO1qQoLjdUkiPyXMUqHNOajESuC2BPEMAzDMENIWDZfXkJvtgX/Rlb0eL+QT5VRZEhJ4YazKimQpkCsBJI0K3hykXRDV0caI/NdMwzDMEyd0W2PISGqPl4+oZ5EkpLCVZNJa46WEjYlJvDBI6cCAE6aNxH5SCGS/thfOOfgfnxX9Q1HghiGYRimDqkWFerqMRFMZnUjNqRPnSkpkKQCQgJJKrF8yQycNG8iirGyfiEvgoq5rGdoX4YjQQzDMAyzD0LVYTKoFKPUWKQkZk1oQiFWyEcShcAsnY9GjgjiSBDDMAzD7AN407SPANHQVS1gps9LCR0BqdbQ2laOSYn9JzTihAMmYGxjLhMV2tdhEcQwDMMwg0ytlWPdpcSqPU5ZMZozpmngqtRQqXBpsVhJaBhRFCmBfKTwsaWzkKYanSOouzSnwxiGYRhmmNBlvyBkx2vQ93DafCSlHa5q+gZFUiCOjB8oHynESiIfS+QjmYkGHdDaNIDvaGhhEcQwDMMwdUztUaPq28kPBGuQJkEk7HyxSJomirEy2/ORxEV/NdM9/7SD2vrjbdQlnA5jGIZhmEGkN00Uw+fWOhGeUmNSAKmgERsCkQKQAoA0zRSVQKIFOhMzciNJNUYVvTwY05Dr9XrrHRZBDMMwDDPE9K67tKj4OZxIT5iUmLa9hoxXiHojRjb6k0iNWJloUGeikVO+Qmzy6CI+tnR/KCFw26oXerzOeoZFEMMwDMPUEf0ZKXJGaZgJ9FIIpNBQENDCCB/qI5SLjGdICIEjZowBAEwb24B8LPFXsyZg2+7OPr+3emNIPUG33347Fi5ciObmZjQ3N+OYY47B/fff7x7XWuP666/H5MmTUSwWsXTpUjzzzDNDuGKGYRiGGX6YuWNwJmmzzVSJxVIaU3Qkbcm8wLjGPP79o0fjq3+9CIXINFSM9sHS+SEVQVOmTMEXvvAFPP7443j88cdx0kkn4eyzz3ZC56abbsItt9yC2267DWvWrEFbWxtOPfVU7NixYyiXzTAMwzB1RXnwKOwZRP2CTDTIeoOsRyhSxgfkK8akEzxNhRjFnHKm6ZySOKB11KC/t4FkSEXQWWedhTPPPBMHHHAADjjgAHz+859HU1MTHnvsMWitceutt+K6667DOeecgwULFuDOO+/Erl27cNdddw3lshmGYRhmyKjmBartedl/uy7SwleMRcp3labKMVMyb74vmTWuP9/KkFM3JfJJkuDuu+/Gzp07ccwxx2D9+vXYtGkTli1b5vbJ5/M44YQT8Oijj3Z5nPb2dmzfvj3zxTAMwzAjlUwH6WAQK0WDpDDRIOouHUkJAbjoDwmkXCRx5sGTcPVpczGvbd+ICA25CPr973+PpqYm5PN5XHLJJbj33nsxf/58bNq0CQDQ2tqa2b+1tdU9Vo0VK1agpaXFfU2dOnVA188wDMMw9UT1afOUDLM/w88TEwIuGkSRoVhZf5ASyNmGirGSKMQSR+0/Di3FeDDf0oAx5CJo7ty5eOqpp/DYY4/hYx/7GC688EI8++yz7vHyD9OU/3Ud+rv22muxbds297Vhw4YBWzvDMAzD1CvhvZK8QPRvv0+QGpOAsF/K+oMoLUYpMtNZWrgJ9QCw9IAJg/OGBoAhL5HP5XKYPXs2AODwww/HmjVr8NWvfhXXXHMNAGDTpk2YNGmS23/Lli0V0aGQfD6PfD4/sItmGIZhmGFGKIqoFJ6q6YXQdq6Y7ScE6i5tukoLaMRKI1YCpVS4CjMAmNg8fO+5Qx4JKkdrjfb2dsycORNtbW1YuXKle6yjowOrV6/GkiVLhnCFDMMwDFNf1GKOdjPFyBsEHwkStpu0EML5hJxfSBrPEKXEYiURBIIygmi4MaSRoE996lM444wzMHXqVOzYsQN33303HnroITzwwAMQQuCKK67AjTfeiDlz5mDOnDm48cYb0dDQgPPOO28ol80wDMMwwwrRVSpMA9RaUUogTbyoiaQ0qTFtBFNi+wl1JGkmHRaKoP9xyhzMn9yMB57ehB898crAvql+YEhF0ObNm3H++edj48aNaGlpwcKFC/HAAw/g1FNPBQBcffXV2L17Ny699FJs3boVRx11FB588EGMGrVvuNIZhmEYZjCo6CQdbIfWNgrkfUNu4CqV0CuBKNUmPSYl3nvYFKxa9xoOmtwMGeSUjpg5FgBw1iGTh4UIErrWSWzDlO3bt6OlpQXbtm1Dc3PzUC+HYRiGYYaEard7rYFUa2gYwdORpK5irL2UmgiQ1tAa2NOZIFYSuzsTxErghS07MaEph3977C/4t1/9BQBwz98djUhJtHcmOO9ffz24b9CStu/ChlvfX9N9f8iN0QzDMAzDDD7GR2SiQOSQVtIX0pMnCCmg7XwxigwpITBlTBEAMHVs0R0zsr2FSkk6yO+md7AIYhiGYZgRjAAAG/2BDpor2hQZVY2Fw1ZNubxEqoHj50zA9pNKmD2hyXWdjiOfI7v6tLm46WfrhuS97Y26qw5jGIZhGGZwEVW++4qxsu7SUiBSEpGSkBLIRQofPHIaDps+xgggO5SVGFXIxlvOOmQS6gUWQQzDMAzDAPCl8+bfcN2kqcO0M0rTAFYpEUk7e8ymwnJKIo58xVisslLj/YunYnxTbhDfVddwOoxhGIZhRgDlFWJ+u7MEZbdnBm0EZfaSOkwLwKbJTFWZ7ymkSv6ZUZkIKuQUvvbBQ/GnzTtw35Ov4o2327Fh6+6+v8FewCKIYRiGYRgHiSLqKm22aSeJImlTZACkNOM2ZNBlWgmBXOAJyimBy06cha+vegGAiQzllMT8SS1YOGU00lTjgWc24V9/sX6w3yqLIIZhGIYZKVA0qLzDdHnTZ2eSRrajtIaGtDEi6jFEk+c1NCIl3WgNQkmBsxZOxp82v43F08cgZw3WGkZolQCcflAbNm/bg///dxsH+hRkYBHEMAzDMCOUUBRpra3o8dtCcURCKIV2Ruk0SIFpDcTKmKZVUCK//4QmFHMK15w+F0IIpKl5fikRiCMBlZpc3IVLZrAIYhiGYRhm4Ohuzpjz/ZQZhcgfJIRAarcLCCgBaCkQSYFSarpJR7aE/r+uPB57OhOMboiRpBpJaiJGqTDNGSNFfiIjvkpK4/gDxuPhP70+cG++DK4OYxiGYRimgnC0Rjh7zAsiKp33IzeU8lVkzYUYE0YVoKTxCFHEKFJGNEXSVJPFttw+F0lcecoBg/oeORLEMAzDMAyArqNEFAXyU+eFmzOWWtO0FICisnopoMueHykTJUo1XPNFGsRqUmnSRZkGCxZBDMMwDMN0SzVxRJtoijyJHyFM1ZgK9IwUArHUkFJA2O1USRbshSRlEcQwDMMwTJ0iwi8hkArvEdI2/iOFAJTZX2sjeGTqmy1Cp0YQwVSJUXqtM60eiRoo2BPEMAzDMEwFUnpBQqIHCNNiwnmEqIM0VZBJ22nadJOGEz/kIXLDWKWfT6asT+j6sw4avPc4aK/EMAzDMMywpauiMtJKZgK9ET3Cls5LIbxxWpou00LCPUZiiMzUUggcOXMsTl/QNijvidNhDMMwDMN0Wzqf2a/se/hcFyGiFJnwniElg7lk0qTBnFCyXiFTSWZK7wcDFkEMwzAMw1SlK0O0b6iIzISxcPgqYAWQNIJIhULJVogJGAEkBaAFlc0rJ5wGGhZBDMMwDDOCqSUCVG2X7p5GwkgK4XouZqJDEICkSJHZL9WmekwpkfEjDSQsghiGYRiGqYlqk+hdhRcZpu12KYLZY3YfM5hVINE6aLIoXOQnkgJaybLS+YGDjdEMwzAMw+yVWj1DZt/AJ0TbIDI9hQDfbdr1GIJArMxk+sGARRDDMAzDMD0mY4ambeXfRdl+bvyGrRqDF0KAGbshIHDEjLGD8RZYBDEMwzAM0z9kIjy0LfiZ/m32CVNofpuUwHFzxg/KetkTxDAMwzBMt9RcPi/I/ZMZQu8eIz+RE0DuMWuWBpAKIFaqP5a9VzgSxDAMwzDMgFI+ZwwITdPlU+mBWAl84ZyDMaEpP6DrYhHEMAzDMEyv6C5CVP5QteaKtF84gkNAIFISpx3UhjsvOqJ/F1wGiyCGYRiGYXqNCIzNe4OGpmZmxzvjdDCNXph+QS0NOdz8voVYPG1M/y6aXntAjsowDMMwDIOgIkxkt2V+BpmmbUpMGnEUSYEjZ4zDp94xb0DWxiKIYRiGYZh+o/qojdqN1aaSzE6ftx2kcwNklGYRxDAMwzBMzfSkaWK154W9g7KPl3ebNpEgJQTiaGA6SLMIYhiGYRhmSHCG6HITtfUZKSmgpEAkJb5/cf+bpFkEMQzDMAzTr9Q2lDU7QoP+HZbRkwhSUqC5kOv3dbIIYhiGYRhmyCgXTOXySQozWDUX9b9kYRHEMAzDMMyg0X1vIT901U2Yl+aLRRDDMAzDMHVHb83S3R4TwgmhWBqT9P4TGvv1NVgEMQzDMAwzYPRs7lgWN3hVmC7Sh07t36aJLIIYhmEYhul3+hIdomaKAoE5Wgj89RFT+2+BYBHEMAzDMEydIYIIkBRGBEkBNBfjfn0dFkEMwzAMw9QN5QEk6hxN5uib37ew316LRRDDMAzDMANCX/xAFA0CzEBVmiU2r60Z1591UL+sj0UQwzAMwzB1BwkgIYQdqGoiQrGSNU+t3xssghiGYRiGqTvc9HlQubxApMyX6if1wiKIYRiGYZi6xAkhQZ2jJXJKQsn+kS8sghiGYRiGqVvCUnkpgEgJLJjc3C/HHlIRtGLFChxxxBEYNWoUJk6ciHe/+91Yt25dZh+tNa6//npMnjwZxWIRS5cuxTPPPDNEK2YYhmEYZrChUnlhy+VbijmcPG9in487pCJo9erVuOyyy/DYY49h5cqVKJVKWLZsGXbu3On2uemmm3DLLbfgtttuw5o1a9DW1oZTTz0VO3bsGMKVMwzDMAwzmAg7SFVZb9BlJ87u8zGjflhXr3nggQcyP99xxx2YOHEi1q5di+OPPx5aa9x666247rrrcM455wAA7rzzTrS2tuKuu+7CRz/60aFYNsMwDMMwA0TVcnkYczSgoewcseZijFgJdCa61681pCKonG3btgEAxo4dCwBYv349Nm3ahGXLlrl98vk8TjjhBDz66KNVRVB7ezva29srjrl9+/aBXDrDMAzDMAOA1kbkJKlGib6SFKWOBJ9/xyxc9e+/y+yftu/KPK876kYEaa1x5ZVX4thjj8WCBQsAAJs2bQIAtLa2ZvZtbW3FX/7yl6rHWbFiBW644YaK7VOn9u+8EYZhGIZh6pcdO3agpaWl233qRgR9/OMfx+9+9zv88pe/rHisPDSmte6yC+W1116LK6+80v381ltvYfr06XjppZf2ejKGmiOOOAJr1qyp6+P39hg9eV4t++5tn+4e7+qx7du3Y+rUqdiwYQOam/un8mAgGOjrpL9eozfH6O/rpJb9enqtDJfrBBgev1N6exz+ndJ/7Gu/U7TW2LFjByZPnrzXfetCBP393/89fvKTn+Dhhx/GlClT3Pa2tjYAJiI0adIkt33Lli0V0SEin88jn89XbG9paanrixAAlFIDusb+OH5vj9GT59Wy79726e7xvT23ubm5rq+Vgb5O+us1enOM/r5Oatmvt9dKvV8nwPD4ndLb4/DvlP5jX/ydUmvQY0irw7TW+PjHP47/+I//wM9//nPMnDkz8/jMmTPR1taGlStXum0dHR1YvXo1lixZMtjLHXAuu+yyuj9+b4/Rk+fVsu/e9unu8YE+zwPNYKx/qK6V/r5OatmPr5WhP349XCt8ndT/awzEOoWuxTk0QFx66aW466678OMf/xhz585121taWlAsFgEAX/ziF7FixQrccccdmDNnDm688UY89NBDWLduHUaNGrXX19i+fTtaWlqwbdu2ulbizNDD1wpTC3ydMLXC10r9M6TpsNtvvx0AsHTp0sz2O+64A8uXLwcAXH311di9ezcuvfRSbN26FUcddRQefPDBmgQQYNJj//RP/1Q1RcYwIXytMLXA1wlTK3yt1D9DGgliGIZhGIYZKnh2GMMwDMMwIxIWQQzDMAzDjEhYBDEMwzAMMyJhEcQwDMMwzIiERRDDMAzDMCOSES+C3vOe92DMmDE499xzh3opTJ2yYcMGLF26FPPnz8fChQvx7//+70O9JKZO2bFjB4444ggsWrQIBx98ML797W8P9ZKYOmbXrl2YPn06rrrqqqFeyohlxJfIr1q1Cm+//TbuvPNO/PCHPxzq5TB1yMaNG7F582YsWrQIW7ZswWGHHYZ169ahsbFxqJfG1BlJkqC9vR0NDQ3YtWsXFixYgDVr1mDcuHFDvTSmDrnuuuvw3HPPYdq0abj55puHejkjkhEfCTrxxBNrbrzIjEwmTZqERYsWAQAmTpyIsWPH4s033xzaRTF1iVIKDQ0NAIA9e/YgSRKM8L8zmS547rnn8Mc//hFnnnnmUC9lRDOsRdDDDz+Ms846C5MnT4YQAvfdd1/FPt/4xjcwc+ZMFAoFLF68GL/4xS8Gf6HMkNKf18njjz+ONE0xderUAV41MxT0x7Xy1ltv4ZBDDsGUKVNw9dVXY/z48YO0emaw6I/r5KqrrsKKFSsGacVMVwxrEbRz504ccsghuO2226o+fs899+CKK67AddddhyeffBLHHXcczjjjDLz00kuDvFJmKOmv6+SNN97ABRdcgG9961uDsWxmCOiPa2X06NH47W9/i/Xr1+Ouu+7C5s2bB2v5zCDR1+vkxz/+MQ444AAccMABg7lsphp6HwGAvvfeezPbjjzySH3JJZdkts2bN09/8pOfzGxbtWqVfu973zvQS2TqgN5eJ3v27NHHHXec/rd/+7fBWCZTB/TldwpxySWX6B/84AcDtUSmDujNdfLJT35ST5kyRU+fPl2PGzdONzc36xtuuGGwlswEDOtIUHd0dHRg7dq1WLZsWWb7smXL8Oijjw7Rqph6o5brRGuN5cuX46STTsL5558/FMtk6oBarpXNmzdj+/btAMwE8Ycffhhz584d9LUyQ0ct18mKFSuwYcMGvPjii7j55pvxkY98BJ/97GeHYrkjniGdIj+QvP7660iSBK2trZntra2t2LRpk/v5tNNOwxNPPIGdO3diypQpuPfee3HEEUcM9nKZIaKW6+SRRx7BPffcg4ULF7rc//e//30cfPDBg71cZgip5Vp5+eWXcfHFF0NrDa01Pv7xj2PhwoVDsVxmiKj13sPUB/usCCKEEJmftdaZbT/72c8Ge0lMHdLddXLsscciTdOhWBZTh3R3rSxevBhPPfXUEKyKqTf2du8hli9fPkgrYqqxz6bDxo8fD6VUhfLesmVLhUJnRi58nTC1wtcKUwt8nQwv9lkRlMvlsHjxYqxcuTKzfeXKlViyZMkQrYqpN/g6YWqFrxWmFvg6GV4M63TY22+/jeeff979vH79ejz11FMYO3Yspk2bhiuvvBLnn38+Dj/8cBxzzDH41re+hZdeegmXXHLJEK6aGWz4OmFqha8Vphb4OtmHGMLKtD6zatUqDaDi68ILL3T7fP3rX9fTp0/XuVxOH3bYYXr16tVDt2BmSODrhKkVvlaYWuDrZN9hxM8OYxiGYRhmZLLPeoIYhmEYhmG6g0UQwzAMwzAjEhZBDMMwDMOMSFgEMQzDMAwzImERxDAMwzDMiIRFEMMwDMMwIxIWQQzDMAzDjEhYBDEMwzAMMyJhEcQwDNMHli9fDiEEhBC47777+vXYDz30kDv2u9/97n49NsMwLIIYhikjvKmHX+GsJCbL6aefjo0bN+KMM85w27oSRcuXL69Z0CxZsgQbN27E+9///n5aKcMwIcN6gCrDMAPD6aefjjvuuCOzbcKECRX7dXR0IJfLDday6pZ8Po+2trZ+P24ul0NbWxuKxSLa29v7/fgMM9LhSBDDMBXQTT38Ukph6dKl+PjHP44rr7wS48ePx6mnngoAePbZZ3HmmWeiqakJra2tOP/88/H666+74+3cuRMXXHABmpqaMGnSJHz5y1/G0qVLccUVV7h9qkVORo8eje9973vu51deeQUf+MAHMGbMGIwbNw5nn302XnzxRfc4RVluvvlmTJo0CePGjcNll12Gzs5Ot097ezuuvvpqTJ06Ffl8HnPmzMF3vvMdaK0xe/Zs3HzzzZk1PP3005BS4oUXXuj7iS3jxRdfrBp1W7p0ab+/FsMwlbAIYhimR9x5552IogiPPPII/uf//J/YuHEjTjjhBCxatAiPP/44HnjgAWzevDmTwvnEJz6BVatW4d5778WDDz6Ihx56CGvXru3R6+7atQsnnngimpqa8PDDD+OXv/wlmpqacPrpp6Ojo8Ptt2rVKrzwwgtYtWoV7rzzTnzve9/LCKkLLrgAd999N772ta/hD3/4A775zW+iqakJQghcdNFFFRGw7373uzjuuOMwa9as3p2wbpg6dSo2btzovp588kmMGzcOxx9/fL+/FsMwVRjiKfYMw9QZF154oVZK6cbGRvd17rnnaq21PuGEE/SiRYsy+3/mM5/Ry5Yty2zbsGGDBqDXrVund+zYoXO5nL777rvd42+88YYuFov68ssvd9sA6HvvvTdznJaWFn3HHXdorbX+zne+o+fOnavTNHWPt7e362KxqH/2s5+5tU+fPl2XSiW3z/ve9z79gQ98QGut9bp16zQAvXLlyqrv/dVXX9VKKf3rX/9aa611R0eHnjBhgv7e977X7fk6++yzK7YD0IVCIXMeGxsbdRRFVfffvXu3Puqoo/Q73/lOnSRJTa/BMEzfYE8QwzAVnHjiibj99tvdz42Nje7fhx9+eGbftWvXYtWqVWhqaqo4zgsvvIDdu3ejo6MDxxxzjNs+duxYzJ07t0drWrt2LZ5//nmMGjUqs33Pnj2ZVNVBBx0EpZT7edKkSfj9738PAHjqqaeglMIJJ5xQ9TUmTZqEd7zjHfjud7+LI488Ej/96U+xZ88evO997+vRWomvfOUrOOWUUzLbrrnmGiRJUrHvxRdfjB07dmDlypWQkoP0DDMYsAhiGKaCxsZGzJ49u8vHQtI0xVlnnYUvfvGLFftOmjQJzz33XE2vKYSA1jqzLfTypGmKxYsX43//7/9d8dzQtB3HccVx0zQFABSLxb2u42//9m9x/vnn4ytf+QruuOMOfOADH0BDQ0NN76Gctra2ivM4atQovPXWW5ltn/vc5/DAAw/gN7/5TYXIYxhm4GARxDBMnzjssMPwox/9CDNmzEAUVf5KmT17NuI4xmOPPYZp06YBALZu3Yo//elPmYjMhAkTsHHjRvfzc889h127dmVe55577sHEiRPR3Nzcq7UefPDBSNMUq1evrojQEGeeeSYaGxtx++234/7778fDDz/cq9eqlR/96Ef453/+Z9x///0D4jtiGKZrOObKMEyfuOyyy/Dmm2/igx/8IH7zm9/gz3/+Mx588EFcdNFFSJIETU1NuPjii/GJT3wC//3f/42nn34ay5cvr0j5nHTSSbjtttvwxBNP4PHHH8cll1ySiep86EMfwvjx43H22WfjF7/4BdavX4/Vq1fj8ssvx8svv1zTWmfMmIELL7wQF110Ee677z6sX78eDz30EH7wgx+4fZRSWL58Oa699lrMnj07k8brb55++mlccMEFuOaaa3DQQQdh06ZN2LRpE958880Be02GYTwsghiG6ROTJ0/GI488giRJcNppp2HBggW4/PLL0dLS4oTOl770JRx//PF417vehVNOOQXHHnssFi9enDnOl7/8ZUydOhXHH388zjvvPFx11VWZNFRDQwMefvhhTJs2Deeccw4OPPBAXHTRRdi9e3ePIkO33347zj33XFx66aWYN28ePvKRj2Dnzp2ZfS6++GJ0dHTgoosu6sOZ2TuPP/44du3ahc997nOYNGmS+zrnnHMG9HUZhjEIXZ6EZxiGGQSWLl2KRYsW4dZbbx3qpVTwyCOPYOnSpXj55ZfR2tra7b7Lly/HW2+91e8jMwb7NRhmJMKRIIZhGEt7ezuef/55fOYzn8H73//+vQog4qc//Smamprw05/+tF/X84tf/AJNTU1VzeAMw/QdNkYzDMNY/s//+T+4+OKLsWjRInz/+9+v6Tk33XQTPv3pTwMw1XD9yeGHH46nnnoKAKq2IGAYpm9wOoxhGIZhmBEJp8MYhmEYhhmRsAhiGIZhGGZEwiKIYRiGYZgRCYsghmEYhmFGJCyCGIZhGIYZkbAIYhiGYRhmRMIiiGEYhmGYEQmLIIZhGIZhRiQsghiGYRiGGZH8P5EipIwVoldyAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGOCAYAAAC64ib+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZwdVZ0+jj9VdZfel3Q66XT2kCBhB0EWFwRFFNFBHR3FBcVx9AP+HGBcxw0cAeUzAn5lxm0cwH1FP4KogEJEFlkMggGyr510Oknv3XepqnN+f5x6n6Vu1V26bycdqIdX6O66VadOnap7z3Of9/s8b4tzzpEgQYIECRIkSJCgLrAPdQcSJEiQIEGCBAmeT0jIVYIECRIkSJAgQR2RkKsECRIkSJAgQYI6IiFXCRIkSJAgQYIEdURCrhIkSJAgQYIECeqIhFwlSJAgQYIECRLUEQm5SpAgQYIECRIkqCMScpUgQYIECRIkSFBHJOQqQYIECRIkSJCgjkjIVYIECRIkSJAgQR3xvCRXnufhM5/5DJYvX47GxkasWLECX/jCF8AYk/twznHVVVeht7cXjY2NeOUrX4l169Ydwl4nSJAgQYIECZ4PeF6Sqy9/+cv4xje+gZtvvhnPPvssrr/+evzf//t/8bWvfU3uc/311+OGG27AzTffjMceeww9PT0499xzMTY2dgh7niBBggQJEiQ43GE9Hws3X3DBBZg/fz6+853vyG1vectb0NTUhO9973vgnKO3txeXX345PvGJTwAACoUC5s+fjy9/+cv44Ac/eKi6niBBggQJEiQ4zJE61B2YCbzsZS/DN77xDWzYsAFHHnkk/va3v+HPf/4zbrrpJgDA1q1b0d/fj9e85jXymGw2i7POOgsPPfRQLLkqFAooFAryb8YYBgcH0dXVBcuyZvSaEiRIkCBBggSHFpxzjI2Nobe3F7YdH/x7XpKrT3ziExgZGcFRRx0Fx3Hg+z6uueYavOMd7wAA9Pf3AwDmz59vHDd//nxs3749tt3rrrsOV1999cx1PEGCBAkSJEgw67Fz504sWrQo9vXnJbn6yU9+gu9///v44Q9/iGOOOQZPPvkkLr/8cvT29uLiiy+W+4XVJs55WQXqU5/6FK688kr598jICJYsWYINGzZgzpw59b+QBM8LuK6L++67D2effTbS6fQh68emgTGsnNdadp8fProDF71kSezr+8YK6G7N1nTeXNGHbQHZtFPTceVQzbXo0N/buaKPxsz0+sIYh23XX62eLc8KABRcHxNFH3OaM4e0HwlKMZuekxcaxsbGsHz5crS2lv/8eV6Sq4997GP45Cc/ibe//e0AgOOOOw7bt2/Hddddh4svvhg9PT0AhIK1YMECedzAwECJmqUjm80imy2dWObMmYOurq46X0WC5wtc10VTUxO6uroO6QfhnnwKXV3tZfdpbh0t+yy7qTy62htqOu/IpIts2kZDHcnVQDGNrq62qvfXyVA9yJXPOJwZIlez4VkBgLzrI1Pw0NVSG5lOMPOYTc/JCw003pVSgZ6XqwUnJydLYqGO40grhuXLl6Onpwf33HOPfL1YLGLNmjU488wzD2pfEyQ4WPBY5bUrrML6Fn8K619cxlDvZTOV+hkGN36ffmeeh+uAIlHrOCdIkEDgealcveENb8A111yDJUuW4JhjjsHatWtxww034JJLLgEgGOfll1+Oa6+9FqtWrcKqVatw7bXXoqmpCRdddNEh7n2CBDMDX/N5mypYFQSt5BjO60JoCD7jNZE1znlAhqzg7+n3YQrDcNiB8/qMVYIEL0Q8L8nV1772NXz2s5/FpZdeioGBAfT29uKDH/wgPve5z8l9Pv7xjyOXy+HSSy/F0NAQTjvtNNx9990V46gJEhyuqIYQVFIqpqRk1HmS9hmflqJSj65MlyxWyu+cLUjIVYIEU8Pzkly1trbipptuktYLUbAsC1dddRWuuuqqg9avBAkOJfwq2FWlyXQqig1HfQiNao+j4FWvwnFe3/NTm9M9frZzK47pkdgXKnzfh+u6M3oO13WRSqWQz+fh+/6MnuuFhnQ6DceZfn7o85JcJUiQoBTVzJOVdqmGoEWdt545SpwDxVrIVcnxh54wHPoeVIeEXFUPzjn6+/sxPDx8UM7V09ODnTt3HhYK6OGGjo4O9PT0TGtsE3KVIMELBNWQikq7TIWY1DfjSqDg1fZtXe92XcKC01auVA7YbEWSc1UbiFjNmzcPTU1NM0p6GGMYHx9HS0tLWSPLBLWBc47JyUkMDAwAgOEmUCsScpUgwQsAnPO65FxNZbXgTEzSBbeWsCAP/T3980+XLh4OCfEcCbmqFr7vS2J1MGx5GGMoFotoaGhIyFWd0djYCEBYM82bN2/KIcLkriRI8AKAyDua/kw5lQWHXP6vfqjGVkI/v3Ht9SBX01WuDpPAIAefFWHU2Q7KsWpqajrEPUlQD9B9nE7uXEKuEiR4AaBaFaLcRCrUrylYMbD6BgantGDR4FZ18LmazrG8NiuJQ4WEVNWOJP/p+YF63MeEXCVI8AJBNVNlOUHIZ3xKCe1A/cNLtTQ3NTJW/qDpEI/DibMcTn1NkGA2ISFXCRK8AKCMNCvtF/+aN0V/qXpbIdQaqgr3uToFr1Ifpg7Gp05SDwZobMlCIyFYCaaD+++/H5ZlyVWUt956Kzo6Og5pnw4GEnKVIMELAFWHBcvQhqkqV4c6byd86kO9WpDj8LA4OAy6mKAOeO973wvLsvChD32o5LVLL70UlmXhve99b93O90//9E/YsGFD3dqbrUjIVYIE04TnT7+szEyjmoR2ygWKI0Ie4yhO4VrrrlzV2JgfynGqSsGb9g5lDuWze7UgPQOMCVI8i7uaoE5YvHgxfvzjHyOXy8lt+XweP/rRj7BkyZK6nquxsRHz5s2ra5uzEQm5SpBgmph0Z79DslCPKuzDzZ9hMMbh+VNRrg6tCjK1UGYFIjoNylFvJW8q9R7Lge4Xq9K+I8Hhj5NPPhlLlizB7bffLrfdfvvtWLx4MU466SS5jXOO66+/HitWrEBjYyNOOOEE/PznPzfauuuuu3DkkUeisbERZ599NrZt22a8Hg4Lbt68Gf/wD/+A+fPno6WlBaeeeiruvfde45hly5bh2muvxSWXXILW1lYsWbIE3/rWt+o3ADOAhFwlSDBN5Iuzn1wB1ROcuN08xuFNwYuB17lwc61kLbxasR49mQ7pqLdyVe8QI6lVrM7O+i80cM4xWfRm7F+u6Edun+o9e9/73odbbrlF/v2///u/uOSSS4x9PvOZz+CWW27B17/+daxbtw5XXHEF3vWud2HNmjUAgJ07d+LNb34zzj//fDz55JP453/+Z3zyk58se97x8XGcf/75uPfee7F27Vqcd955eMMb3oAdO3YY+33lK1/BKaecgrVr1+LSSy/F//k//wfPPffclK71YCAxEU2QYJrIHQ7KVRWhOXqdcQ4nwj3cZxxFL7qVcoWIGWVGV93X+hY1DhOZepQBmi7pqCchEmSzfmPGOGCDBwWylZv84VJserYg5/o4+nO/P+jnfeYL56EpU/vU/u53vxuf+tSnsG3bNliWhQcffBA//vGPcf/99wMAJiYmcMMNN+CPf/wjzjjjDADAihUr8Oc//xnf/OY3cdZZZ+HrX/86VqxYgRtvvBGWZeFFL3oRnn76aXz5y1+OPe8JJ5yAE044Qf79xS9+Eb/85S/x61//Gh/+8Ifl9vPPPx+XXnopAOATn/gEbrzxRtx///046qijar7Wg4GEXCVIME1MHjbKVXX2AnG7eYzBjcm5Gs15aG9Kx7Vck1rkMY60Ez+J16qEsXDO1SzIIqonuRLXZ9WtEDQLyBQLfM0O/WglOBiYO3cuXv/61+O2224D5xyvf/3rMXfuXPn6M888g3w+j3PPPdc4rlgsytDhs88+i9NPP90g4UTE4jAxMYGrr74ad955J3bv3g3P85DL5UqUq+OPP17+blkWenp6ZJma2YiEXCVIME0cLspVpVAUlz+jd/TLhAVH824suaq1/I3nc6SnX5ReYio5STNpxcBrVPKqaq+O8IV0VbKqkXPUjcC9ENCYdvDMF86bkbYZYxgbHUNrW2tJ+ZvGabx5LrnkEqkW/dd//VfJOQHgN7/5DRYuXGi8ls1mAUxN0f3Yxz6G3//+9/jP//xPrFy5Eo2NjfjHf/xHFItFY7902vx8sSxL9mk2IiFXCRJME7nDQLniqH5Gj1euOBgTk69jW1UdA0SUn6kAlzE0In6CqDnnKhwSnaYlBWo8f3T79UU92/MYh21Zh42T/GyFZVlTCs9VA8YYvIyDpkyqrrUFX/va10pSc955JjE8+uijkc1msWPHDpx11lmRxx999NH41a9+ZWx75JFHyp7zgQcewHvf+1686U1vAiBysMJJ8IcjEnKVIME0cTiQK6AKNaaK1YKkZoRzssqFuaaiXFVCbeTK3LkuPlfTXC1YTyj7jDrlXDEO7ghi5TFFsBKe9fyH4zh49tln5e86Wltb8dGPfhRXXHEFGGN42ctehtHRUTz00ENoaWnBxRdfjA996EP4yle+giuvvBIf/OAH8cQTT+DWW28te86VK1fi9ttvxxve8AZYloXPfvazs1qRqhbJasEECaaJwyUsWDmhXewRR5Q8Fm8hUJZcoTZn90orEmv2uQr1ux4O7bPps7/eeVFkwcA5DNPYZOXgCwNtbW1oa2uLfO0//uM/8LnPfQ7XXXcdVq9ejfPOOw933HEHli9fDgBYsmQJfvGLX+COO+7ACSecgG984xu49tpry57vxhtvRGdnJ84880y84Q1vwHnnnYeTTz657td1sJEoVwkSTBOHg3JVSygtbjef8VgVqlzTM6JcVd9cCbGsBxXxGANjHLZ96JOQ6k15/CCRnQgxjVe9VyUmmB2opCzpYT7LsvCRj3wEH/nIR2L3v+CCC3DBBRcY2973vvfJ39/73vcaju/Lli3DH//4R2P/yy67zPg7Kkz45JNPlu33oUaiXCVIME0cHspVZfVIhQXjlauc60eSE87jE8drUa2qKrEz3XynOrARn02dotVKNishvBpyuiASLdqtTfFLkCCBQEKuEiSYJg4LcoXqOUkct/GJXMW8Xkm9qgZxVg+l7VU/01fjTl/afvnXXZ/NmjBZPbvBeeBvFZDHcuWOlHXHVFZjzo6xS5BgppCQqwQJpgHOOfKuf1hMFpV9ruiX6Nc9nyEfSyTjlTERlqtufARpKb/PdMN69bhTuSKbNQne9XbAZ0ypYYxpiiaScjgJElSLhFwlSDANqBDKoe5JedTC/eIm6rxXnviUe63a8fH86ohCzcOtHVBd4eby+4SLQdfenTqSoTqHGV3GpDO7UTaIR4/dVM59GHwXSZBgWkjIVR3w2LYh7BychFdlSCPB8wceK7/CbtagiglYrRaMfp1Uq8iEdh4/BnGTchSqCQtON8RXj9WC01GL6v2k1FM1pRWCen1B4/V6nadO7SRIMFuRrBasA57YPoRnBxlStoWe9gYc09uOo3ujl7ImeH6BCMVsJ1fV2CFUSmiX5KqMg3vcuasdnWIVYcGg0ZpQd28pzB71RZCg+nXG83nJikEE57B56UrBqZy5nr5cCRLMRiTKVR3hMY5dQzms2bAvUbFeICBCMVsm2jhUs0KNXo5TrgpumeRmxCf216JcibBgedQ61FMhQhX7MIvuN/lS1QNE1JjMt1INixWSpasHp5TQPt2OJkgwy1GVctXZ2Vm1t8ng4OC0OvR8QN71sWnfOI7qSdSr5zsOF3IFVD+hxedcxYcFgXi/r1rIjc95VXpGrUqUvnd1YcHKFG9aOVd1XeFX39CgJ1cLcvhaQvt0crvIH0v9rFt3EySYlaiKXN10000z3I3nH/7eN5qQqxcAJLma5d/Fq4q0qWVhkXB9Hvsy54hdSUj5O/XCVGreGX5NdehNLSsgy/WlHqhGuarW/FNaMXCqI6mplWXy6mrFbH+/JEgwXVRFri6++OKZ7sfzDruGJjEy6aK9KV155wTTQq7oozEz9Urw04EvE9oPyemrBg8ZQkbuE/yMu5ZKvkb5MmHDaiflmUjFCZO7qpSrKl6fLepLNcqVxzjSTnUDSytgPcZEySPp0M7BpphzxTlA3C4pCJ2gVtx///04++yzMTQ0hI6ODtx66624/PLLMTw8fKi7FospJbRv3rwZt9xyCzZv3oyvfvWrmDdvHn73u99h8eLFOOaYY+rdx8MSnAPrdo/gzJVzD3VXnvcYL3hoSNuHpCyHf9gktE8/LKi3FYXYnCvUaAVRRW7YTI82r5AyKZSrqaOiC30NqGZ8a6rt6DOZ0E5ES7QRVgC1PlRQxhjnsEOs+YVSSufGezbUvU3OOQqFArLZrDGGV5x75JTa27lzJ6666ir89re/xf79+7FgwQJceOGF+NznPoeurq56dbsqvPKVr8SJJ55oRMzOPPNM7NmzB+3t7Qe1L9NBzQnta9aswXHHHYe//OUvuP322zE+Pg4AeOqpp/D5z3++7h08nPHMntHYkiAJ6oeC55d1kp5JzNacq7CSwatgJCpBufzrka+BY7LoxR5X/fjMDHXSz19N636FDlejBMYeC2XhUQ9wzqvob3XtcCgPL8/nss4jXa/rc+MzjbHqVCgWerZm+5eRFxK2bNmCU045BRs2bMCPfvQjbNq0Cd/4xjfwhz/8AWecccasyKPOZDLo6ek5rMh4zeTqk5/8JL74xS/innvuQSaTkdvPPvtsPPzww3Xt3OGOsbyH7YOTh7obz3t4PkfBO9TkanZNFlFks2KeS4WJTxbyjWlmKu7tU0FtZI3omr7KrfLBlZQljumFguuqXHFV1zHu2moJy7Igt8oP/tGRHGZNRb1eZTg0WULuS8xIq+pOgoOAyy67DJlMBnfffTfOOussLFmyBK973etw7733oq+vD5/+9KcBiKLNehFnADJER/jEJz6BI488Ek1NTVixYgU++9nPwnVd+fpVV12FE088Ed/73vewbNkytLe34+1vfzvGxsYAiKLOa9aswVe/+lVYlgXLsrBt2zbcf//9sCyrbBjwjjvuwItf/GI0NDRgxYoVuPrqq+F56gvfVVddhSVLliCbzaK3t7ds8el6oGZy9fTTT+NNb3pTyfbu7m4cOHCgLp063FDuw/rvfSMHsScvTLhly7LMLGajcsU5x8Bo3txWxeo2mVsTp1yV/KKfs7wVQ7WImnjrov5qTVRDNKoiy9PqVunB0yHoXoXnUB/CSsSOcY6ix0QZHEpu54pA6cfz0M84hBWreMPZWfRGegFgcHAQv//973HppZeisbHReK2npwfvfOc78ZOf/KTq+9La2opbb70VzzzzDL761a/i29/+Nm688UZjn82bN+NXv/oV7rzzTtx5551Ys2YNvvSlLwEAvvrVr+KMM87ABz7wAezZswd79uzB4sWLK57397//Pd71rnfhIx/5CJ555hl885vfxK233oprrrkGAPDzn/8cN954I775zW9i48aN+NWvfoXjjjuuqmuaKmomVx0dHdizZ0/J9rVr12LhwoV16dThhqd3j8W+tnX/RGy4JEF9UPRZWQ+mmcRsNBG99Ad/xcuvvx9PbB9SG6eZIwRoYcOYlnLF2hLa40hTeGtYheM12ZKWtlkNV6smzDadFW/1tmIwCE9JSNgMYYbvRfg1xjhcnxmkigVtkKqlnzuKlEddHx0PzHzOXILqsHHjRnDOsXr16sjXV69ejaGhIezbt6+q9j7zmc/gzDPPxLJly/CGN7wB//Zv/4af/vSnxj6MMdx666049thj8fKXvxzvfve78Yc//AEA0N7ejkwmg6amJvT09KCnpweOU3mx0jXXXINPfvKTuPjii7FixQqce+65+I//+A9885vfBADs2LEDPT09ePWrX40lS5bgJS95CT7wgQ9UdU1TRc3k6qKLLsInPvEJ9Pf3w7IsMMbw4IMP4qMf/Sje8573zEQfZz0e3jKITQPjka/5jOPZPaMHuUcvLLiHMCyoyt8cktNH4rd/7wcA/O+ft8ptHFUkilcIC5YjE2WVq5hzRxGYqH2nm58UVsOqCclVtDbA1I0745Lhp0q4PMY04lvajuubfS2XU0eFs4sek/lXpF5ReNXMX+NS0dKbFf0wSZjcH2rBQKJUzW7Q/dFTgMrh5z//OV72spehp6cHLS0t+OxnP4sdO3YY+yxbtgytra3y7wULFmBgYGBa/XziiSfwhS98AS0tLfIfqV+Tk5N461vfilwuhxUrVuADH/gAfvnLXxohw5lAzeTqmmuuwZIlS7Bw4UKMj4/j6KOPxite8QqceeaZ+MxnPjMTfTws8Pt1/egfyUe+9ve+hFzNJDyfoeAd4rDgNL+Lz8Qkoy+9r0Zp4dq+ka/z8q8XYwhuHJmoNu+opNpBFTk75XJ+4s4bTtQuf4Lp3bNIZWeKbbEK91aYgXLj77i+kMeVR4Qq+J3Uq5JagzwwHS3Zbm4IE/ZydSgTHDysXLkSlmXhmWeeiXz9ueeeQ3d3Nzo6OqQJrA49n+qRRx7B29/+drzuda/DnXfeibVr1+LTn/40isWicUw6bdoTkUgzHTDGcPXVV+PJJ5+U/55++mls3LgRDQ0NWLx4MdavX4//+q//QmNjIy699FK84hWvMPpfb9RsxZBOp/GDH/wAX/jCF7B27VowxnDSSSdh1apVM9G/wwKLOxvQN8nx67/txj+duhjtjebDMzhRxO7hHHo7GmNaSDAdFH0Gyz00q0iIUEx3Usi7rO5eXZmU+d2p2j5WrEEYuY2bhpPGeaMT2qO2RZHA0rBgZYim1VL/OOVKtwPwubILqJyXVO7clS0GyoXmpgJFfEvPHQ4bRh8vXpeKVeDSzqiIM1c5V8r3SsBnHNwRBMuJMSkjlZLacKc5mU4VLxT7h2rR1dWFc889F//93/+NK664wsi76u/vxw9+8ANcdtllAERetZ4StHHjRkxOqgVbDz74IJYuXSoT4AFg+/btNfcpk8nA92v7snzyySdj/fr1WLlyZew+jY2NeOMb34g3vvGNuOyyy3DUUUfh6aefxsknn1xzH6tBzeRqzZo1OOuss3DEEUfgiCOOmIk+HXZ49ep5uGv9GPaNF/D/nuzD205ZjIa0OVH+vW8kIVczBOEcfmiUKwpHTjfnKufW3wg17ShyVU2WUlSujj4RVTIR9YKJuGRyR0xYMC7nKhwW9EuVlorXEvxPdMW8dj3MWPCYfK/6jIPetpXuJ4XJ4vpfdv6OUN6IdEwNHLrzargVIldcIziuz5B2bEl8HcsCB+AyLrdROJGMRBknBUu16zHlhaWUz9KxISVQjKslyVp4nBLh6uDj5ptvxplnnonzzjsPX/ziF7F8+XKsW7cOH/vYx3DkkUfic5/7HADgnHPOwc0334zTTz8djDF84hOfMFSolStXYseOHfjxj3+MU089Fb/5zW/wy1/+sub+LFu2DH/5y1+wbds2tLS0YM6cORWP+dznPocLLrgAixcvxlvf+lbYto2nnnoKTz/9NL74xS/i1ltvhe/7OO2009DU1ITvfe97aGxsxNKlS2vuX7WoOSx47rnnYsmSJfjkJz+Jv//97zPRp8MOGcfGG0/sRUs2haFJF3c+tQde6JvZM3tGccuDW/H/nuzDAxv34e99I9g3VjhEPX5+wfVYZM7VwcjnoFWK0z1VXL7SdGCQqziGo4GHfroRpCb2WK4m2+jXIpSrCPEialVjCbmqYgqOIooEP0SuCK6mkFVDrmLPXbF3pdcwXXKu37uwJQKLUA6NpHRtu++rEGDB8+Wxet4atU9hQ1kuJ5RjFVYLdWLGQn1McOiwatUqPPbYY1ixYgXe9ra3YenSpXjd616HI488Eg8++CBaWloAAF/5ylewePFivOIVr8BFF12Ej370o2hqapLt/MM//AOuuOIKfPjDH8aJJ56Ihx56CJ/97Gdr7s9HP/pROI6Do48+Gt3d3SU5W1E477zzcOedd+Kee+7BqaeeitNPPx033HCDJE8dHR349re/jZe+9KU4/vjj8Yc//AF33HHHjBqk1qxc7d69Gz/+8Y/xox/9CNdffz2OPfZYvOtd78JFF12ERYsWzUQfDwu0ZFP4hxN78bPHd6FvOIdHtw7izCOUOzvnwPCki+FJF1v2TQAAHNvCP7540axUtIoew/BkEfPaGg51VyriN0/vxrzWBpz9onnG9v3jRXS3Zmf03PVQrvKuH1v0eDrQw4IcVag93PzpMYaM9v2rmpVeuvoT3h5G3vPRjsrloUbzZl5EtURRKSnm7noOl/m7TsDK96k80TSVpNLXSo9nldSuCihHUDggCZLaX/00SFCgOjFGifBKlaKQLTm160nujIsrltcXUtOoXVK1phtWPZwwVdf0cmCMYXR0FG1tbbDtmjWSEixbtszwq/r85z+PG264AX/7299wxhlnAAB6e3vx+9//3jgu7Dt1/fXX4/rrrze2XX755fL3q666CldddVXJ6/o+Rx55ZIln5rJly4xn/L3vfS/e+973Gvucd955OO+88yKv78ILL8SFF14Y+dpMoea7MnfuXHz4wx/Ggw8+iM2bN+Of/umf8N3vfhfLli3DOeecMxN9PGwwtyWLs1/UDQDYsDd69aAOn3H85qk9GC/MPquGgudXdQ2HGmt3DOGXa3fjm3/aUvLa7uHcjJ+/UIecq/GCNyM+XRlDuaqlnpvYsUS5quCDJY6JNi+NIleTEYQyKucqvF+1RDGOcOirFHWlzdNDZ9OxWZjCMWHyU9P5jJCcSVxkjpNvGn4Sij7T7qtSoHwucujIeoFc4Lk2+JybSleJUaj8Xa0olMqV5stFr03H9f5Q4XDrb7W4+uqr8f/9f/8f/vKXv0w72fyFimlR3uXLl+OTn/wkvvSlL+G4447DmjVr6tWvwxbLu5thW8BIzsXQZLHi/uMFD795anddHZvrgaLHsGFvvH/XbMGBcTXG4UTlPSMzT67qERYcz3uRRGO60MOCQOWJIEwowkRJqh1l6EPkYxwTLoxT68LdDL83qjUV1ffSQ1p6X/Rr9BhThbgj5hPGuFyVWo0pa2SfpPpTevB0CJ2+alX0jf4W10LO6kppUuSGMTU+VM6GMX2VIGSSO6lg1DYRLr0MTlgN41w7v0YiK11tUjrs0OJ973sfLr/88rooYy9ETHnUHnzwQVx66aVYsGABLrroIhxzzDG4884769m3wxLZlCPDfNsPVFf6ZvdwHvevn57PR71R9BlGcm6svcRsgaPZDYxp4aORnIux/MwrgvUICxY8ZvR9OtDDXOlU2IqhAkJhQZ14VCRmPH4/mpgBc8KMyjOLOk1kmxUuxlBRQq/5miKnkyif8bKFuF2NfJU9d7mQV8w+YUJSK/SQpklsSHFS6qF+Lp9zmR9K5W7IckG5s+tWDCqsx7nywCLrBrrGcM4pFYH2GTeIaZQKWS35SpBgNqNmcvXv//7vWL58Oc455xxs374dN910E/r7+/H9738fr3vd62aij4cdlnU1AwC27Z+o+pindo3MqlI5ZDEw29Ur3VtpeFIRlP3jBeQPgrFogZSrabThMYahSbcuIQbdtiBTolxV1wbtFjdhl7vYaHKkkSs9JFdlse2w2Wg116ETiH1jBYNs6e0ZvzMuyVbcdVRjaFrRyiKG6IZJUSXo6lQ4JKfnx1GeU9FnxjGAIJqkKnm+ImC+RsY8P/C7on218J0iY6bXlVDDtP5xVa9QJ2phzLRY9TyN4iWYhaiZXN1///346Ec/ir6+PvzmN7/BRRddZKwYmC1YtmyZLPyo/yPPDs45rrrqKvT29qKxsRGvfOUrsW7duvqcu0uMx67hXGQOShzue25g1ihFOrmazXkFE1q+2nBOJ1dFSXxmEvVQrhgDhieL03YiB2CUAQqvFqzU+l93DOP36/rlKlYiaoyZAatIYoB4xYdDheJ0MhN1uVHhthKDSi3sVQ7Up8mib4SsdPVJ/13PS4rzYdLbmQp0JSnc15pL+gS7e34oJAdFgKQKxblU7PSz+FzkY1G4lDFVAoe4NYVLPcZEzUGuFCehcClfrCjiRKqZH3qd1CzdR6ucxUXUWE4X9f5sm82flQmqRz3uY83k6qGHHsJll12GuXPnVt75EOKxxx6ThR/37NmDe+65BwDw1re+FYBY1XDDDTfg5ptvxmOPPYaenh6ce+65sjr3dDCnOYPWhhR8xrFrqPq8H49x3PX0nkNWhFgHkYaxvIc9s4TwRWFCy9sZmlD5V6M5d8ZL4jDG62Ii6nOO8YJXl7w7/Zr1BVfVEJIPff8JPNc/hv/7+/UAlHIVDodVE/YKI6rAdVx/KtkU0OSuI6yCGaEvxoz99fb03/WwIKk14TaN9olQsvj9wqByMmGEw4JVqXMR1yD+NsOPHhNFmI0Ve6Q8BaSJB9ch7rUiWECgaAUkzAuToeAYTyOmZM1A5wJEiNnzTbd36lvZa6zhjXUoiQ35PemmmgkOX9B9DLvJ14KarRgA4Hvf+x6+8Y1vYOvWrXj44YexdOlS3HTTTVi+fDn+4R/+YcqdqSe6u7uNv7/0pS/hiCOOwFlnnQXOOW666SZ8+tOfxpvf/GYAwG233Yb58+fjhz/8IT74wQ9O69yWZWFZVzOe7hvBtv0TWD63uepjR3Iu7n5mL954Qu+0+jBd6JP0/vHCrLSLAEzlau+YIoE51xfFZxmHbc/Msm59jKbzwa5/o58uDK+mKZK1LfvGjbYEyaoc6gLiXdejClxHKle8lFiUkpfSA12fI6VZQPicI0XO68w8Jk65EiSEy98jEXGdtYyyF6rzp6PW+0+WD4xz2CGzVxpHn3G4HpcrNtV9Ej99xqXyxYLQX9710ZB2tPI3glyL58EOrlkwOC/4gmFbluFhZaxYhNjPZQy+r9Q0Pcme9qNzCqNRXtafosLLU8JUbSAcx0FHR4eskdfU1DSjdhKMMRSLReTz+SThvI7gnGNychIDAwPo6Oioqmh0HGomV1//+tfxuc99DpdffjmuueYaaVPf0dGBm266adaQKx3FYhHf//73ceWVV8KyLGzZsgX9/f14zWteI/fJZrM466yz8NBDD8WSq0KhgEJBGX+OjoqagT5jYMxUm5bMaRDk6sAEfN+r6Y22sX8Ej7amcdLijhqusr7IFYrymkYmCjNag2k6GJtU96N/OCf7OZEvwvd9jOcKdXc+J+QKnhyjouvGjhFtj3u9UHTBmI98oYi0NT2CVdTO4fq+dm4PnvZ32TY8Btd15TVNBsn25rWaY+p5Yixc1ys5h+d5cD2xvVD05DUWvdIx8zyh4Onbw21GXctk3kXKUt8yCwUXPGXDAQv6K9rwGUdRa69QdI3f88UU3LSFouuhWHQNYl50Pbg+h+sCnufDC9opuD6ymrlX0fWQsqI/WnMFF0XXF2Oi9b/oiut2UoDHxBjr5476kuD6DJzZ8DwPtmWJe1b04TEGizMw20Kh6CNXKMJ1feQLFty0hYIrwqRuSpyn6DEUXUfdc8+DY3G4ng+fceQKLvKFFPJFF0jZKLgpuEWg6DLkC0UUPAbOfKQsBjdjIV/0kC/6cNMAty0UPYZC0UWxaKHoMhSLQLHoolAUY2ZzB74lSGLeZUDaFtfli2uI++wMj0k1X6QqHVMtuaL9iLRbloWuri74vo+9e/dWPH664Jwjn8+joaHheeUJNlvQ1taGrq6uyM/LaufCmsnV1772NXz729/GhRdeiC996Uty+ymnnIKPfvSjtTZ3UPCrX/0Kw8PD0nSsv78fADB//nxjv/nz55ethXTdddfh6quvLtm+bes2ZBrNvDOPARYsjOY9PPnsZrTUqC5u3rQRz3ZzdMysB2Ysnh22sG1MvGnzuzkGn5uduQRPb7VB36YfX7ced00+BwB4Yo+FCc/CnWMb0Dx1ZbcsJj1g4x5x7qYDG7CpgkBJoekwNo5Y2DRq4Xd16Ov+PEBv63XrnsFdQyKPcCAHPDtk4a6R6AKtAuK4oufjrrvuwvYxYEcLMBZ8lmzcK671jyMb0Bl6LrePARuHbdw7sqHkmX12yMKEBzi71mLSA5pSavvYBvO52jkO+BzY1aq2PTVoobBV7bc3J55PujZA9LFVG7sJF0jbQMYBnthnYd9GjmcbhDqydp+FzO4n5fm2CwNqbB0DurJAWwZYP2xh6DkOfa7O+0IFa04Dfztg4cAGjraM2N6gcc2CD2Rj+Py4K14fc4HdwTUyDhSZattjwL333muc2+eAE5pDPQakbGD7uHgHbG8Bir5oK2MDji3ONVwQxzelgPaM2MYBtKSBA3nA40BncB17chb2ToqxG/dE3wq7gTlZjv0FCxmbY04WaE4BLgNGXMD1xbmaUkBH0E7eB9rSgG2JfvbnxP0pMnHscFGcEwjGzhJKVJEB2aDvPhc2pHF8iXHztfDfccdYUIpX+Jhq1TDaj5RA/RjLsqaleCQ4tPB9v2wkotrQb83kauvWrTjppJNKtmezWUxMVL867mDiO9/5Dl73uteht9cMtZUWOC3/reVTn/oUrrzySvn36OgoFi9ejGXLl6G5ta1k//W5Pdg5lANa5mLVko6a+11oSOOcUxeV1Ck8GMg+O4D0HqHMLZ/bjPOPX3DQ+1AN7v/F00C/KCbaNrcX559/AgBg1wNbkXd9vOKURZg/Qy7zQ5NF7H5ElGZ46er5WL2gNXI/13Vxzz334Nxzz42M4T+0+QCs7UM457Ql6GrOTKtP2w9M4j/W/hkAcNTq1Tj/pcsAAFv3T8B9bgDnv2x57LH/+vDdAAAGC6997evwVN8Ijl/Yjr1jBXDOMfDXPgDA2ScvLAkT/23XCNwN+3D2ixdhQbs53s0b9mF40sX5J/ZieNJFR5MYg6YN+/DKI83w/brdoxgYK0gzXgCw1+3Fa49RX4Q2DowDmw7g/DOXym0DYwXM09z4D4wLxbIpk0J+bR+OX9iOFXObwQHk1vbhtScthG1beLpvBMctbAcAPLptEEvnNGF+WwPaNh3AmSvmGKoGrUbtaErDXrcXJy/pwLzWrHFNgPCua8lGf7TuHc2j4DEcmChKZdr1GfIuQ9FnaMtY+H+/vQevevWr0JhV11P0WEkh7oLHkE3ZeHLnMFK2jWN6WzFZ9DFW8NDekEbKsWTOpM842hvT6GlvwHigRHa1ZLFjcBJFj6G3owFjeQ8bByawed84GtMO9o8X4XOOExa1Y0FbA3YN59CUcbC4sxEdTWnkXYa9owXkXR+WJcZlcWcTRvPCBqWnrQEp20I+MCTuaskgX2Rob0pj72gePW0NcGwLrQ1irHzGkXN9NGdSyKTsINwIpJzosJfPOJwYFSrus9xngjDLYt2hNqLqaUa1E6VcHUxU+kxJMHOgiFUl1Eyuli9fjieffLKk4OFvf/tbHH300bU2N+PYvn077r33Xtx+++1yW09PDwChYC1YoEjDwMBAiZqlI5vNIpstlZIc24ZtlxKgZXObsXMoh+1DObx4We01jCaKDE/2jeHlq7or71xneLDkNRX86SX2zSQmXfUNYyTvIZ1Og3MOlwG27YDBmbG+2w6TY+SkKp8nnU5H72M7sG0HtjP9vtraN2bbtmV7TioF266+fSeVgu2k4KRSgOWBg8trTUVch+OIa3BSqdLXUilYNkM6nYaT4vJ1yyrtj+OkYNmesT3c71QqZVybOM43/rYcH6lUCum0uO5UKoVU8Gw4joNUOg3HtmDpbVsObEf0P5VS+xC47SPjiPM6joN0cK2Ww8y+lHu/2C5sx0YqpY7x4SMNBh8M6bQNzoFUyhxjHz7SoS9ZtM1JpeDYFpxUGiluw/aAVFpssx2AWzaclAUE42CnxHtGXEcKNmdIpdKwHMCybVi2A8t2YNt2kPdkg1m2fEZtJwVYKTgpBtvxRM10C+CWaN9xOBxH3PeUYyMFWzxLTgrc9mDZjnjmnRQcx0IqlRYLLnwOh1nifZKy4cOHY1slZrjyHvvMIF46UYojRXaIXNl1IFc+47EEcKYR+5mSYMZQ7XjX/ER87GMfw2WXXYaf/OQn4Jzj0UcfxTXXXIN///d/x8c+9rGaOzrTuOWWWzBv3jy8/vWvl9uWL1+Onp4eI0xTLBaxZs0anHnmmXU79/LA76pvKGf4MdWCp3aNHJLVgzsHJ7F/XOQzTczC8jwEvW8jgRVD3mVSrs97Mzd2eqL1dHLRqZ16rBY0V8WFXquhebIL4BCrBXUH+bJ17KJei0loD/tXleuLeY7Sc4aTwXVbC0qa1ku40P76+9IwwiyTbK+7kYevqeK1sNJSQLp7eRzi+mP0K7hnwtiTtiu7A0rSZwwAV+MmbRF8VaZG1RAMktZ9JseOc1EeSxmIMnldjCszUtWW+OkGPllFj6liz3QcU6sSw55dsWMS+rvyYon4e5sgQb1Rs3L1vve9D57n4eMf/zgmJydx0UUXYeHChfjqV7+Kt7/97TPRxymDMYZbbrkFF198MVIpdamWZeHyyy/Htddei1WrVmHVqlW49tpr0dTUhIsuuqhu5+9oSqO9MY2RnIudQ5M4orul5jaKHsNfdwwZRaBnGgXPx433bkTRY1jW1YSXrpw75VU0Mw29LuNYTvyec33sGJzEvc/uRWdTBkfOjw7XTRdsihNsGH49yVVMnzgvtTio1A4P+uT6DBNFz3itZP+yr2mr1LRrnCyWkvYoy4hITyh9NRqPmGjD3lxc3C+yl6Dj9RWfpcWNxao1vQ25XxkCUO5RIKKjI+wBxqPajLh3RZ8hy2wAmpcV49o5LHhM2B/YtiVXBfraa1xej/KzkgQSioAWPSbJmM8F2UrZtiKLFpFELlcgMm3VHxEr12cGGaNr41yQeH2RJucAt3jVnz1hb6244tlhlFOnEiSYKqakZX7gAx/A9u3bMTAwgP7+fuzcuRNvf/vb8ac//ane/ZsW7r33XuzYsQOXXHJJyWsf//jHcfnll+PSSy/FKaecgr6+Ptx9991oba3fRGxZFpYGhqLbDkw9H+3JncMHVb0annTlN/ptBybxg7/swAMb9x+089cCXbkiApBzffxybR/G8h6uuqM+xrBR8Hn8BFsLaHKtR31UHtun2mrhkSlkwRP+RONVlhKKOsdk0deUK7V9olDdMx0mrmGiyFFq16AXYZZlfRDYDgAGcdAb0ku4hEF0Q7iSx/tMxXFYUnFkAeQAYQ+wyHNHbCQCScSRc+UxFUW2Cp4vFCnyoSL1igGcaQ7qmmpFY0QWEtSe5wuixDiXxqJEzISfFTNK5ZCfljhOK5ujET6pXGn3K+7ao7Yrd/1yCmB54h51jso1ORMkKMW0AsVz587FvHnzAACbNm3C2WefXZdO1Quvec1rwDnHkUceWfKaZVm46qqrsGfPHuTzeaxZswbHHnts3fugSuFMVnyTHhgvYPdwqelowWX4287huvctDlTnLu1Y6G4ROWZPHsTz1wI9XDVZ9OH5LLYgcL2hT+jTcmgPjq1kqFgN9F5MJ2xJhpP5wC9MVwjLhahKDC0Zx+BE0fBAEvvzyC8M0SpUOdIIhIsxez4T9ii6CgXTtJLaCLvi64RCqXEmMaT+EJkpmeRjBlsnM3q7HmMAV4Q2cgwi2tRDt9QfLwjNeb4Ijbs+k+G60bwnw4dG4eaAVPlMXU/Y/8sNyBKFAT3Ggv3ElxmPMaMUDp0zGHxJbImcUXmdgudrjvCKdKnxihxKOSbGcyGd6csT1PBrdF9iTW3150jrW7k+JqpXgsR9bIaxqLMRjm1hvOBhUHMQ1+Ezjoc3H8APHt2Bn/91F4YnS/dbu3N4ynlbtYIKHjemHfR2iJVfVBKFkHd9PLXr4PUpDnpoqeCKAsgHS+WrlONRLaLq7k0VxkSgbWdVfAM32gmUjLzrawaSVRwX+rvoU8kUVY6F+hNdKidGpYkgSvoxev9cn6PolYadgFLyYDjPQ/Wv4Ok5ZvRTXYNOUuKIUHi89eP0a2JMnI9zwNXCmSZxiBgTTbmi9gVZVIWUPU0xotJIUmUCN4o160TMqAHJOFxPkSnxPKgQYMHV7696XSpkGrH1gz7p+VnifCZx8fVxiLj2KOjDHRVi52Vei20TpeH10n2i73eCFzYScjXDSDs2FnWKZevbDpT6YwxOFPHTx3fi0W2D8lvQln2lIcRcUZCZg4HRIDE8k7KlDQQltwPAwGge//PAFvzh2YFDrmjlNCLlc44t+ycOIrnS/5r6B6siV9Prj+iFTvjM32v57GfB1/+8y6QaEnUOfWv4nIAgvFS7DihVuKqZ6Li2X5SyEyZ/RZ8h53rGNhmyCtqh3CtdLeRcIzwGCVKKiPwbWr5SCYlS5wxfh76Jzi3Lz+jn4aExDw0TJefLYxDUCfSYUqCgys7kPT8IC2rkiJvhX0UWS8OWkqz5Ii9KhARJNWQyIV13X9cT4EX4UKhXnq/OxRiMpHY9uT+OpEaNSXhRQ7WKVzVviUr7JJwqQRSmVP4mQW1Y1tWM7Qcm8ejWQWzdPyET3RnneGzbEHzGkU3ZWNzZhE37xrF5/zhOXtpZ0s5fdwzh2IXtM+57NTSpyFVjcK4hTU3rH83DDSanx7cP4vhFM9+nKDAWODpreGrXMFbOm5kE9jD0yXO2KFd6ZFHvU61tk6JAylW5sJyO8GsFT4QVORwZpgLMkj8OzKXv4elMnzipmDTnyteIyAIhV/RR8FR4mM4rCwVDlGIhRS18LnlOCt9p18W1vyXRC11zHFmW5EUjX7Saz7G1lXtGXwIvpRCRkOpOoP5Y3ALnIkFf5llRQWUOuJp6SAoTAElockVfEkpdXQMg86sAQU718B8jNSsge6R4eozJMReqGIdjC6Lu+oJk0fiTukZKmrwHDPAts7RPeDzNv1VYOfwFgK47/OhyDnCrfOq7TvK49jMOUXlds3ExUIKZRdXk6te//nXZ17du3TrtzjxfcUR3Mx7efABFn6FvOIe+UF7V0jlNePXq+WCcY9O+cewZziNX9EvKtkwUfHz9/s1obUhhTnMG89sacOYRXXV/4w7nBJHKOLbsAxkoAsABLbxZcBme2D6El648+IW8ddUqZYvVT1v3TWJO88Gxta+WcFQCJcbXJaHdWMVm9q+WLtJqMZFPE1p5F3VeIh+clCHhQUSTPYWwij4z8mJ8xlGJl+vKVcFTNhuMc1gcUg0hkFqjPx+edn4WKF0Fz4ce7STlSrcYAESNPduyjDwbKkAcpbxRqNxjDBktOGASMZUn5jGONJ1bIwhMO18JWYB4Xph2Y8WXDeENpfKjtFBscK0+KUacB7lUlJvFZMFqrtENQZQCt3obMp+NktRlMrpGvDyfyyR4UuVokYHPVN/odxkm1FRSSqxX46dIiiI6NBpK9SLSp6PaLxqMA3YJMSujngHGczEdBTvB8wtVk6sLL7yw4j4JO49Ga0Mal7xsGQYnihjJuRiedDGSczFZ9LGyuwXHLmyTYze3JYP940VsPTCBoxeUur4DIidqLO9h+4FJdLVkcFRP9H5TxUhApLIpRypS5CEFAIPjZk7Y33YNHxJyRSsFLQBtjWkMThSR93xs1cKqU3kiqXBtJeirBaeV0K7lBk0XZqhE/a4vsa+mkDVN9HnXLwl9jee92HZoL59zpGDmF3HOZZhQD7mFj48aShprkWiuVrSBKYJAKGrL/alNN7ASKHpCPVGTf1j94JJ8EEmiyVWqToFCxIwJXj+/IHW5oo+mjPqIDStCvrYCL6eNM+0RN0ZM64/rKzWF/Kiyli0LJasEcUv21/U4LAuS3BDhofEIX48bKFdpx4bFRQjRgmV4VXka4WIMUrmixHrGFNlymQhdKlKlfrq+SO6nceUR16/Gk8sC3YLwMtl/84uFegYtKyJcq5FJYZoartwh/sVNb7qFRqV3VqJivXBQNbli9fha/QJGNuVgQXsjFrQ3lt1vRXcL9o8PYsu+8VhypePPG/djZXdLXR2CR3KlYcExbSl+ODG/4LKSMhIHAxNB2CebstGUcTA4ISY9XbGohkiE8ciWA3jli+aZ5yp4aA6VNDFDcFMnRvLDuQ5fevU2SnKuICbGxoxT8UOeFIiC6xuqDSCUTcY5bD2cp53H8DDSVCZSjihcREpR5YtSBLQYTNZEVEh1ofM6gZ+TsANQfZDKVaCkUXgrnDRO7fqcY7Loowum6kdJ766n5UmFSHGuyIwxIcjwEiktXBEbgK7DkeqV2r+UKFuWeJ1W23FYcH0G1xMkyPUpAV2FDqmdgucjk7LhB6TJ56TkMUM90+H5DI5lwYKFgseQccjjClKpUqFCLpVDyrdjXAuD+oqU6bYOdG0qAT4ICcZ8z+HB/qlAqaNrDSte4hkQ7Vqw5PXRGOphR24cE7pvXJEvPQdPhhyD+5BwpwRAktA+63DEXGHdsP3ApBHqiMNY3sNfdwyXbB/NV1e5OwqjAZHKpFRYcLLoybDDeIRj+6FYNUjKVTbtSOJT9JiR0E4hqWohVkGOlKyO2zNSapFhEKppECMW+hCfDsyEdvMcnKv7pOcoRfYpiOeM5jxzWT2UqhUF6WekqUaACqN5PpeTOO0P6LlOpUOpT5YF11dEJ5iwXY/LZ1NcG5GtkEEoI1VLvBZ2Wqf9yGqBDEalGhJcEBFFpZKYbbghuwd1HSHyGxA+IhhSOQpdc3hMiDjphIJ+d5lyQdfDgnq+VdFnhmJEOWsyAT10B4gEEY3UHdbp2fAYgx8QWhFuDXKrGBN9or5COeET2aJkd59BJtoTiQ0n1xvjqVlHcCDwMCtVrmjs1f01X/O1+6nfN3G/eGQlAX2LnpuXIAEhIVezDN2tWbRkU/AYF0Wfq8Bj2wYNM83Htw3i1ge3YcPesbLHjcUQMNouVguKR4RxQeTi7CSmQ65qIT866Job0w5aDXJl9mUiwgk8DmN5QSZGc+bY9A3nS/atJqG9mmurZ1kOg+9FhEbIYqCSpxZNyKN5N7AHMNsKT1LqW7xJaOm8unt33hV+ZGIiVK8HLZSSEq5e11ce0rJ+N1htp5MrsWJOtijVGyIGkkwY5+Hy2kuUI3CNVIXVitDYxYR5ST0hQkZkRhpzMlqBBzkmLDT2dH10jQEHlkqPz6KNPSUJofvDiRQp53Tf51qIS7u30PPBTL8q4XdFREqcl373gtw3FvSL1FAik6QgesH5OdRKQhp/Im70HOjPNNPGnnOTdBomsvJYpQjy0HZjP5gES3f75xHH6CQ76nlK8MJEQq5mGSzLwopAvdqyb7yqY4oew8ObD4BzjjUb9uGBjfvhM47fPt0fS7AY4/jThmjXdXLjzjo2UraNTBBy3DeWjyVXhWnU8BuM8PWqBkSaGtI2WhtSQT9YiRVDmCiVbTMgbKNaGJQxjr0jpeTKWPod8711rApnc5qM67JaMDT5qN/FTyKelZQrmowniz58xswJCIocRB3n6iE5bTsgjsm7PvIeK9kOxBNMuhYxCUOG0/RcIbomCvmZ5FdM3G6QUE/HxuZcaYROD3HqoS+dcJhtxF1DaXiPgwckUSWTE+0lY80wqSBCQgRX5V8pG4a8y5QxJ1f5Tl5ozGQeVKDo6eEugn7dHGpfdU4aR7JqCNSoYNGAIIMqDEh9onqFtMCAQrl0esaVIqf3Rc+l0++f/kyHv/gQAQqHg+l4PRk+TOD01bKKdKn7Uo/3bYLnHxIrhlmIFd3NeKpvBFv2T+AcXl0C5LrdoxgveNi6XyVzMy4Ilm2hxJ5g71gemwbGMZZ30dpgVvkeK6iwICDIS9Fn2D2cR87z8dPHd8JnHAvaG3BUTxt62huMGm21Yv94AXNbal/hR+VTGtIO2hrFNRQ9VlKseXjSxcJSZ4tIUMhTJ2RjBS+yAHQUeQljNO+iKVRFvegxObYAjMlkujC/OavfabKh66gUctYntlKHdDFB2ZrCoqtJuu+UoVxxsdJMt1MIr5QkwhG+JiIS4wUPaceWkywRJiIIQBAWZGbeF+fCoNPTCJi4LvM8nEOVggmOnyx6yKYygAzViZ8Fl0UqV3JiD79A4xUak6LHkLItFTrT9ovKTfMZh2NppW2C+yXDdYE6yLlKmqdQZVHLT6OftgWZOyXJgzEuGplkHEUwZOWYKyLrM5PYEllK2QFRtDhSjmWUvrFtFarVVw/S/RZ9VH1hwech3X/HokR9buSZhYk1EUTfN93jGeewuQUGkUOoq0/62HN6PsARTltXtzsYPyNHUWyL+wiPyn1Mkt6fH0iUq1mIRZ1NyDg2Jos+9o4WKh8A8UGgEyt9+yNbBku27xrKgXGOZ/eUKluTlMsUEADKu+ofzeOxbYPYM5LHwFgBf9s1gl892Sc+cKt08I7CgfGpKVfjQfiyMe2gQydXobDgUK769iW50kKm4tt3KfPRJ7y4b68jEapZuMQR0z6Ipwtu9EnfLv4gl+5w2Zcw9NCJ/judQ5+IDQUvUIio0K/eH1qlR8qK3l+dcERdE0264lkJcndk/pRa2k9tSAVKUwV9n8JYkInc4evSjTnpukjJJbIiV7YF4UjqsxcilKXcSmxxtdAZICxFiMQSWeI8MOVklBPEZdu6csQCNsA4D1RXLsOlpIpxSVTEe5sxoEAhO07KVWkozbzfpNIoU1EZtiRCw7VagUypcUaBaHkvzeeBiDLdH/0Z04mQzluVkaoKCzKtj9w4TvVBKVlcK0Wk7UdkSiNNpkptIv449XoSInzhoWZy9d73vnfWFWh+vsGxVcHnzVWGBsth31ihpKTOriHhFr9u90jJ/rQKTylXglwNjOWxa1AcN681i0zgY7R/vDCtnKuhyWJVyfthUMitIe2goykDACj4fmlYcLL6sOBYzsWze0bx9C41LkIRKO2fQQRiPjujFhbsCuXS6UvFpw/zGzvhvvUD+J8/b8Fz/aMAzHIxBP27Muda7hCPyEthpvkpvUzqBflR6ZdEq8R8xmUYWQ+9MUYTfPiKFMkYzbvydcrVKXhMkg7arvKVVM6QnmhPKk/4ZEwSAXU/xguevBZXm/zp2vV8MCD+PsrJV7texjnygYEnJX/T8UVP5SnRQOpEU1d5KFGdiIXPTPJDZKQQWFH4GqkBVBJ83COoK0nSYZ3Gis7BVTkdDnLnZ5I4KXJDITqVdE+EkcoWUVUAmYtmELTgmeGqQLQ+/nqSuzHuIcJNbdB/ktgSkYWu3GptaeSZQ61EpXGSr8WR7IRovSBQM7kaGxvDa17zGqxatQrXXnst+vr6ZqJfL3is6BZ5V1Fq1FSwaUCRNMY4dgcJ2sOTriRahFyIXJEdw97RPPYFKlNvRyMWBHUHd4/kp0WuxvOezMGpBZQX1ZCx0dmkK1cmuRqpYeXkvc8N4O5n9uLGezfIbYVAaQgjLr9JR1TO1YEJU42kY6ea2G+2pX7XP8S//cBWTBR8/Pf9mwGo8i9x4FDKilRI5GuCxKp+6+c3V6uZypXKCSqGcq5o4o4bR8o9mih4xsrDiYIg01SSha4tnCtDBIJCPEVN5dCv2ghxasoSqRdEaKQRKteUqyC5W4Y6Q9diTvZKYSJjVQqV0WEuEz5RFNqjcTBDaESEYahZOnHRE65dn0kfMH0fjzFZ3zAKpCARMSRFSs9VovGhJPaiL1RkysMj5Yv2lyRKI4PUJ5NARiwy4FpYNNhO+Xjk9m6GpLlRakdP9NfHViX+a6FErrbRFwnjb+0551wRwIRCvbBRM7n6xS9+gb6+Pnz4wx/Gz372Myxbtgyve93r8POf/xyuO/Xl/wlMLOtqhm0JN/QoG4BasVEjVwNjptK0bveosS/5RFEiO5GrvuGczEVqa0ihN/Ds2j2cm1bO1XjBk4SuFuirBTubA+XKYyWEJio0F4f71w8AEN+CKXm/6LFIMqKTirhJKe/6KITIXiEUtlRhj6q7GQu9H1HtKSJQ+mI4zYNIaljgITNQun5SMQDI5GRSUfQpRs/HUZOtUiF8bfLS+ysmQVVKhYxEXSZqCJKhp1LBAgWHyFPwU1ctSLkKqwjKD0q9JnKrIOvnFTWXeH3Cl0QnRM70cdN/+oyr/C6u/J7o6aBxohAmbdNVPhovnws1SowVJEkj8iSd8wMVqehzSXSlAqYpMFElXGgfImP6ggAmx0fzEWMq4V2SIMbl2OohQTJ3DfeHyBc9S4xr7xcmDFGJeOmhaJ00UX4ducmrsKkiaUzrmxkSJzVTkSo9zEjPBZFvGjY6N5FaNY7xnxVRiFrxm+DwwJRyrrq6uvCv//qvWLt2LR599FGsXLkS7373u9Hb24srrrgCGzdurHc/X3BoSDtY1iXUq9v/2oeNA2ZuFOccQxPFqhWj/pG8DFGFlapNA+Ny0hEhG9FmNiVIVUOQc7VvrCjbaGtMY0G7UK72jORLCES14FyYNU6l2PK4bsXQoKwYqDyPNEDNVWfFMFHwjBy3nUEItKhN3pOarUM1ypXnc0yGri2cHK9CCdP/8DRNMUvbI6NXCrXEtyOUSgCluUmANK8ERP/7tX19RiabpnJFieZknyCOFa8xOfma/SBlhNQqUl9oAs27LOiLntCuhwVVH5XqBOkYThMsXbOuHPlMJNBTwWOaQPMuhc9UOInG3iNpBqWTKJ2LSBgpNWSpwLgw3qTjPF95hvm+eR2kEBFBJMXMVH5EG1Q3kAgNWSaYhNRcmBD1POjnJ8VNheBUSFAqRdw0bSXFyrx2cUwxKL9jhjs1EqzdR3pNlt7R2uAww6I08L42Jqp/mvrGdWKnkSimEuX1kCbdL86hKVvaqlf5hKDkfVCOwJZui7wdCQ4DTCuhfc+ePbj77rtx9913w3EcnH/++Vi3bh2OPvpo3HjjjfXq4wsWrzl6PpbOaYLHOO56uh9/2XoAPuNY3z+GHz+2E999ZDv+35N9VX+jodBguLZh0WPYH4SqdINQCgtSyG2i4GE0ICptDWn0tDfAssQxe0anpq6Jpf58SlYOpFw1ZVJyxeNEwZNKFZG/0QjT0yjc+dQe4+++gIRSsr7HmCxqDZhWBHE8heqy6XBDtfB2D+fwl60H4NbBiFXvR1SfJLnyFcGJgiAxpNz4Rs4Z58LSQVdo6LlhXIVRw9/SPY30uJ4iSICa/MKu6XpOFm3Vc2s8xgMlkMvVo7qBJg+4zmTBNydcmEWg5TZZXkeF2YpUb08qQbo5qalcCUVD9U+HTkYBEX7Xc6/8ILQprkaF3+icRN5onNSkT+RTGKrS61IxgsojK3h+4EXFTLKgjW94TPT+M64UQF0dojbo3ILYMSP5nvqqrC4UESoE6rBMsmek3DGDvHCmiI84lkn7Bz8goUIBDBYccPVTqINMPYeSKDI5PlIBBOWFhUi59kyrfuilkEyFS44nSsc4PM4JkXp+oWZy5boufvGLX+CCCy7A0qVL8bOf/QxXXHEF9uzZg9tuuw133303vve97+ELX/jCTPR3VmJ54EtVb2TTDt54Qi9OXNwBAHhkyyC+9act+N26fgyMCTK0eySP3REeTFHYtFcoVH3DOazdMYTvPbJdKlEDgWJDBqKObcGxLSyb24QVc1uC1zwZMmxtSCHt2OgOLBSei1h1WA2IIFHJkJqODUKJTRkHLYGJqL6tPVhBOF5lztVze8zw6N5gjGUhXl+ohQRT+Yn+ZCz6vGSS9bXEagD4yWM78ciWQfzk8Z1V9bMc9I/vKNJN1YDIe0iHFVMZbSzvSeJCZyl4KlRFSggAmWsjS9wYYUE9gdlUjZQSEBqrYFalQsMcMJLhfabKtpBypTuQU3OFkMrCASO8J64KsrYd6HWmJ7mb+T+cU1gJwTWUWgAYCzW4yjcS5xITvlCrFCGi87uMSYIoVRJfhcoob0zPJ9OPIaWNVCu65ry2OpFxlV+nk+Hwk8MksdCVJ/N+ESHVlTRyjBeva3llUCsziUQWpSJpvqbqIyr1iJQzM9TMAgXLlwW6AVpFqEioCq1C/qS2OVeLFnztXLriJVdgcq04NSelC9qzocZLDwlHr8hMmNXzDTX7XC1YsACMMbzjHe/Ao48+ihNPPLFkn/POOw8dHR116N7hgfOOmY/duRTWbBioaM5YK2zbwllHdqOrOYP71g+g6DM0ZRwcv6gdgxNFbNg7jrU7hrCwQ9UsLHoMW/aPl9Qc3D2Sw9YDE8gVfDy6bRB5l2F9/xhOXTYH+8ZM5Srj2LAtC69Y1S0JBSViZxxb2jT0djRiYKyADXuntqpxeLKIR7cOYn5bFsctaq/pWMrTasyosCChqyUjlbfxQnWqWNiyYf+4uF6azIseM/K3KqlEANkFmMSR8mga0qLGHz0za9bvq6qfZaH3KYKvOkFiFeUpGbDU8eVClDxQQOhwnykrDsbF6jc/NFkDkAWbaSIU+1NfabKjfQPvJ6YmYmqPctbEJAkUPR+Mp0pWApoEKzi31iHpxaVdl166Rk9kJ9WCFCZ9LIg8UPv6ZO0xjiC6rq6VC38mPc9KqDgMPrNBRYSJPNpBIWYiLwXXR0PalhO7UIk4HFvlDkkCGLSTsi1T+ZIKE1d5S6F7bNxzaKEvpucoqdcod8rV+uUzZU7KAkmHSLTwvrLks+hpnlnKZkPUW3Q9jnRKCwtqeWU+44BF1hVixSEdz3hQqDqlDE5dpif1B8oVc+AzUbPRInWMmeFXGhfPZ7AsCxYP1cpkethS3GNSsbj+nCHJpXohoGZydeONN+Ktb30rGhoaYvfp7OzE1q1bp9Wxww3HLWrHws5G3PX0HklUakXKttDakDJCT4RjF7ZjXmsWIzkXy7ubkbJtHBgXpGbLvgmM5Fy0N6bBOcdv/74H2w5MYv+SIl62aq5sg3NR6HnXcE76DPUN53AqhM0CoFa3ZVM2jl/cjq6WLLoCdYomh7bGlDS5621vwJM7p24Z8dDmQTy85QAOTBRw0WlLazqW8p+as6kSI9S5zVlJAKt1aA/vpye0A8IRXi8zFFYpADFhpzVCSwm9OugDGxD5aoSpFJkOwyR8pR/adA49tyfv+tJug1Du816oR+K6DowXhBLlKQUq7/kyFKTD05Ko9TwWQPkkEYmixHGZCM1ViIvuu5iIVfI8KRW635UyM1XqAv2uu70TISq4yo6AcrkCcUjm4Og5QDTOMnHb15L0WekzQsqMZXFJdohEiPFRCe2UH2Vbeh5TUJuRKSUwnEtGqw/1cSASRCqOWd+PyI0W+o0g1z5jcGxbjiOVrKHxVSqUGldj1SjXFSDx07a5TETXc6VUQrwgP0WfwXEclTfFKZxnB898sD9TeWqUoO4yBsunLzVcEnkaQ9dXhZ8BwHKsgFSLayIl1AruIbhY/GFZkF5epKzKhQdcmJPSWDIO2JZlvD8rcaqEdB3eqDkseN9990WuCpyYmMAll1xSl04drpjTnME7XrIExy6sTYEhrJzXglOWzYl9fV5bA1bNb0XKFretqyWLJXOawAH8becwAGD93jFsOyByhZ7ZM1oysQ9OFLFZWzm4ZzgPxjn2jxfBOZfKTCZl44wVXQAgQ38Encj0BHlN/SP5KVkJ7B4RfR2uwYuKQCpbsxYWJMxtycpizkOTxUg/Lx2M8ZJVhkMTok9b90/gwU378dTOERkWBcLfPoWnVfg6XF8RKTrGZyrfSb8XU0nqD8MIC0a8bpNyFYSiADWO1VI7Uo8YF3lOOqFgnCNXVDYHhnKlJSDreVOAmIyEGsblvmN5TxIpMicFgJyrQpCkTugWCNRHziE9sEg50R9RFa5SfkdjmqcVJZRzKHWGQnGkZBGpKHoMBZfJfCJAlYkhhHOuiEyRAkdKF904PedKKnhMERYiCrQAhV6nffXEf+qzak/LU5IqX/l7TuOnwo1morZM/gYRVhXCJOUmTJalygbVT1dbiUhlcWh/QSxphaHKs5LkPCBQeu6XL/fXk+u5VA6JDMqajVzljNEKSCJORpu+Uh7DhrKUtyXut7kgQE92jxrnOE6VcK3DCzWTq9tuuw25XGnyci6Xw3e/+926dOpwhmNbOOeoeehqydR87LEL23FUTyuaMk7lnQOctKQDgLBTGJ4sYs0GFVrKuT62D5o+WZxzQ2Uq+soEdHCiiOFArWlIO1LNmNtqkivKZQLUijyO2gokEwbHBRmZmIIVAxGdpmxKJmoTls9tluO4b6yAe57ZayTrh1H0WYkdxEjOxeBEEV/+3Xo8vn0Itzy0DZPaPmZCu8jH0othD04UZciAIOvfBT/1MXN9Pm2CZUx2chJXigTZLUiTTy5IZVSybew5wGVYkBQE/fy0CoxrEwlgGmfSJEP9JZWDVCHP59g9ksNEwZfEyA0mZjPnSik3haCensrj4lKJ4vJvX14DkTIiIIBKhqfj/VB7rhYiomuQydGcfKq40T/z3ogxAKf8H0XipIVCsK+e86OHVKUNAlMEhUOFsQAKs5oTOeNqlaieRyTDfFzdraiJnCZ++kerHKl9n6vQLxFUXSVT26hP6lnQk/Ap4Z6UR/0+KHKrXnOZCgPLpHXtuSCSKxQwX14vWYbI2o76eGpkihYPeD6XCqZanVmquBnXxNQXD+WLpZ55832lh6jLEbCEZR0OqJpcjY6OYmRkRHwYj41hdHRU/hsaGsJdd92FefPmzWRfDxsQwaqlPFRnUxqL5zQh5dg4flFH1cctndOEzqY0ij7Dz57YhbzLMLclgxOC/KVnd5uJ5ntG8pgo+sg4NhZ1ijytvsAxfGCsgOEclZRRj0ZTxkGDVguvt0OFhB3bkknSE1XmNukYCpzjc0Wvpg+N0bwrw3WtGVO1mtOcQWPGQXOwXUzQpQnrOgoek8SJVLDRvIs92srK0bxrkCv9m/5k0cfgRNFQv9b3jwVkwyQYgCJX4Ry9aj25wookQd9KwxkmgUAwJhDEM+/6InQScWzkObhWx45z4/p0skJqB0GtfCvtj89UqFHsK0rojBdcSRxUeRk1BjJcxsw8MqIVuqM644q80t+0r04w1GSo8nron6sl8ushRpHIzGUokV7Xia0ibYieiCWJCPanCdtX2ylUNpb3gklfKXa6qsZD952uk/KhdLd8Igu671jsvdfIWrhqgSQ8TBFnGUbVCIXyEtPVOfXMKFd3rb/6a5JwKhWLSB35bKkwqxo/1xdql07OfKatsGQqTEvJ7r72O1k/kCqrn0+GWSnBHVDljKjEDuJzM/UxjB/7hFgdTqiaXHV0dGDOnDmwLAtHHnkkOjs75b+5c+fikksuwWWXXTaTfT2ssKizCUcvaKt6fz2Z+4TF7UhVmX9jWRZOWiyqEk8WfVgWcO7q+TimV7S3Zf+4EcraFKhWy7ubsWSOKLFDbu06uWrSCEtD2pFeVwCwsKNREhDLsmSOUTllKA50PsZrU68OjBclMWkOktmPD8KxZ7+oW1xDVvSZkk7DFhQ6ihq5mt8mlLrhSRfDWpJ7wfUxWfAMdYDQP5LHU7tGDHJF59OJEKk88qdvTlDVhkfjVEJ9cpSTue6gHvw+URBkdmCsICegasGhiAwLHSsmFhWaCveHJj6aXPWcK1q9x5gqskzEmCZUHbSNJrNikOulkyHqG51PTvJQpJdzBGV1SLUglYEsINS16P5g1H+ZyM7Vcv7wOWhsaHxkaI4rss2IYEGpHHLCD0J8HmNyxZ9YMRf4jXGVQyb7pitLXJEZ/XqYNib677H3XmtPDzcq4qdsDej69SLeOtGlZ4LGm9qjpHhSi3TyEiZM9NxQ7hPVSKR8NSrFRGqYMj9VXxCKfpiIMc0XSylUlEQvtzOyfFCKrB7S1JU5NX4aeQeM+wXt7wSHP6pOaL/vvvvAOcc555yDX/ziF5gzR+UGZTIZLF26FL29vTPSycMVL1/VjS37Jyq6jzu2hdUaEWvKpHDUgjb8va98nhDhqAWteGjzfuQ9hpOXdGJem1CWuluz2DdWwIb+MZywuEOEBIMcn5XdLTJs1jecExPtaF4mdTdqZKoh7aAx7WAY4rXe9ka0NqbVysKUqDEYrl9YDcY1MjKac0typ+JwYLwgiQkd8/971Uo8sHE/OoM6gxnHhhOsOJss+iXO6DoKni/ze5Z2NWPzvgnsGysYixPyrggdbDswgSO6W0q+5Q9OFDGvVfPBkkRKI1cUFmS85DUAcgwZ42UT3CcLPtpCSfwAjE9nNWmqjRTiKHg+fC6K/TZmHORd31BaywUJVaKy8qci0ARI37L1b9oqiVp1zlB5WJCLZtlCEeBCaRIkjlQk7Vq0sAsleut5VESGqC9E+Oga9OdBWklwPRdLkSYiXq7PQesVKIymkyz9msNhQSKjtL+v1awz3cmVaap4PqjmoFJsfC68wope0Kat8rP069fPTX3imrIirhFwIJK67SqVFTpOBwvIrG1BEiY9UZzTcYwj5VhGH9S1ii9ZrQ1ckiFRIYFsFpi5qpAp0k33m2xG/ICUFj2GTMqWZE2cj8NlKjGf/nEAWW7LsaY2PJ/DsThsiM+TdMqShcAl8ZXJ8kGCuw1YXBFIel6IxHJOCqt643EOcEvlP4rxnv5ClwQHH1WTq7POOgsAsHXrVixZskSuFksQj8aMg5evmou71+0tu98R3S2GUgQAJy/pqJpcpR0brz22B7uH8zh1WafcvrqnFfvGCnhmzyhOWNyBfWMFjOY9pILC0JYliF3O9TE06aIhU5DkqjmryFU2ZcvcKgDo7WxE2rGwc1D8TWVyaikzQ9AVmJGci17NUqIc9o8X4QYfqq0BuepsykhiBQhVrTnjYDRIjC5nVJp3falcLepsRMq2UPQZ7nlmQO5Dx2/cO4YjulsiQ3NjxmpC8VMvDUMTgXITDylXwRiOF71o8hQgTrnSSZGcUEPfnHOuLxPtc66PbNoxwp1iv9hTG6oFrbjSz9k/ksfc1mwQOlLH+UxZDugkh46jEItjqWTtfNBXxsUqQb1fFOYTKo3y3tJDV0TIuDbJ0TWQokuTsU6SaB894VooMcIuQZwfGlGhCZVLEuX5Ktlcln2RfTf7Y7qTK2VQhl59066Awlp0x4mc0IQt73uMakKKDP2uCFGZ+w4OTivguLom/XXGOSzLkvsSUZTHyOu2JNkiNY+uQZIpTZVSFg1KySt1hOfSwJZqJ0oyqh2rDEXFc5ayIRUv/drMcCJDyrGk2ucw8nNTCe2OZckwrccYHGYFKwxhtGuF4kXh9wLtWw5JeHD2oypy9dRTT+HYY4+FbdsYGRnB008/Hbvv8ccfX7fOPR9wTG87nt0zJkupROG4iNWFXS1ZLJvbhG3744/TsbSrGUu7TDPTF/W04s+b9mNgrIC7nt6DbQcmgn2bZChvQVsDdg3nsHs4hznNGWk/0KyRvbRjS5Ur7ViYF0pwJz+pkRpX/OVd31D1yFeqGgxOFCS5aQnCgroFAvWrOZvCaGCCmS+jXG0/MAmPcTi2hfaGNLpbs9gzkjdWGVIYkgpGR32+5SIS3ulDe2iyCNiir1LBCn39p7DiaM4tS64mY/Lb9BCgJBL6ZXPVRz8gLz4TJMvSjK7K5d6EQx7hnDI9MVgPe6pVX6VhEBli8ZX1AJEnmkgni76hp3k+l6RQKj9GjpQ2YSJEPJgyzlThLPPa6XiaaCmhPZvS96OJXZEGuSxfC4n5+j4wS7BQf1TelyLdPuPBkn+1Mo32IXLHGAd3lFIorz30bBF5JJBLvvGsxN710teNcFdApjjXSacimnSsHgbkliKFpA6SUuRqqpSeHC6VJO1++4zDDcbX9RSRontMie9EyiwLwZcCof4hZcuwoniWmEpiD85f9BmyzIYV3EuHWXKlIT0jsNViDsq3EqQ1eL8EYVqLa2NG7zpJ4APCHYgXEd/fEhwmqIpcnXjiiejv78e8efNw4oknim8mER++lmXB96e/nPz5hlcdNQ/ff2R7SQgIECvvFs+JVmtOXtJZNbmKQlMmheVzRYiLCje3N6alxQIgTEB3DefQN5zDsQvbZV2+cHiO7BfaGtJoyqTQoCW8p6eoXOVds6bggfHqw4rD2rlI9QuTqyPnq5WXk0Wv7Eq8Z4Nk9+6WLGzbQneLIFcDWlgwrDaFE4bFebSEd6YmTkCobW1Noo9eRMhQP2Y05wGdiEW8cqW1pSkT+usb9o7J6yCFJDw25Qpx68nV4Xwt+p2+4Rc1ckWEK1xKh/anfCzGLdl2rujLyavIzT5RSEecV90TfZLSk+CN8Kg27qTiqb4oRUqWUglIjb76C7pyJdUxpQrpE7aem2T8DXVOUqQ4VD6OzzkQuMRPumos9P5zaGEmrU0ia+L6VUiKoNe4rHYO51p7PjfbI7IoyUPQH5mDxk3lkEDqoAXd6FQzgtWSy+mZFfdWjHORFEteWhzc1+6fzwRpI78qIu3wWBDyV4RW5XSZthC2ZQXqKlOrDQMSl4IyCKb7b1u2EWqm0CvdMwYOOzAblePBAceC3D+saFHQKBGvZjeqIldbt25Fd3e3/D1BbehszuCUZXPwyJYDJa8du7A9NsS6tKsZXS2ZmkhHGC9ZPgdjeQ/drVms7mlDb0eDcb6FnY3ANpV8TWHBlpDjeVuj+Lu1IYXGtIPOZqWqTDUsOFHwDDVpcKJ65WpMOxcRvUxKXdec5gwWdjRK4jVR8OU315RTuo5jY+Aw3x2oco2SlKkJSOZJhTyadBQ8X+ZL0euSXE0UAVu0qywZTMJA5xgveEbelR+oaoQ4oqh/EEeFBRnnWLd7VLapJ03rqR3FMiFUmTuiKTQE8u+iiU9fDUkTn8e4kVNS8HypyuhL6Bnn0tPKYxxpx5xQXI0Qybwbxg0Co0JlZsK2XrqFkprpMvQFC24QriO/LM9n2Dk4if99cCvefupivPWUxUY4sSTBm1FYUCk5KkxpEmDpB8UVEaH8Nnp2xwueOo8WBKZwKAsa4Nwsrq2PibrHpSS33IQtFBVzog/vz7WxpbtsLADQVKxSoqmvwtNsDriyo1Dkissah9LIk2uKaXAsObErRZXBgjIN9RmHpz2DsMRzRRYN5KVFdQ8dW1yfFeRoEQkregxW2pbeYp7P4FgOfJv65ACWpm5q9yUcruYQBFWalmr7OUk6zmGDqsjV0qVLI39PUD1OXzEHi+c0YuPAODYPjGMs78G2LBzTW35FYU9bw7TI1bzWBrzjJUvKtm+B6sd5UrEIO56fuKgDf+8bxXGL2tGQsdHakEYmZctkUQAYK9RGroYmXWPir/Y69ZV9aceSZFFXrlbNb0E2baM5IEmDE8IkNe8xtGj7jRc8tGRTchXlvGClYGO61GuMQjlx+VKA+BCcdH20ZFMl5Gb/eBEpJ4WhyaK8VsobU+cQbU4WPRR9hoaAjOWCNglxZZZMJYG2mRMihQVFXlNp7gyAsiFU6fzNKSxohv7onL5fakVApIOIIocIcVL4xvM5fIcmPi3RnHFwW+TyHBgvYLLoSyuRcJ/oOulcMiSoXSONMyWti6RkRbYoZKPybshokuO2h7ZjLO/h2w9sxVtevEi0whXRlCvbNIVJV7boHDoxJaVPEkEmeucFzuJEWiYKnpGvRdflB5M6ES5SI41k8hAZIhJkWZbxjFQDUlBkfhsvfd6ISEr1TCODRj+CMXZsy1BEpScakSBm+l+plZSm35RUjgJipbfp07gyFTKk+0HPkLQZYVwjZgw+t8GDZ9KCbaxMdH0Gx7YUsQvIn+UrJdOBCBn7VinhpfFUCp74m1RiuX/CrQ4bTMlE9De/+Y38++Mf/zg6Ojpw5plnYvv27XXt3PMJlmVhUWcTzn7RPLz/ZcvxT6cuxqtWz5Mu4nGYihmpOF91+2VSNjqbxTkGxgqSXHU0mv3q7WzEP754EVbMbZHEQ1+VB6DE4bwSqOSO/LvKnCsKFQEmodJ/724R5W9o5eSmfeNYu3PYUHwmix4e3zYY9EWce05wTdl09FvDY6qOXjEmdCbLs9CEHxCOsbyL5/pH8d2Ht+Pyn6wV7cUoV7QyMdwmIYrYCegqVfBTt2IwCIZpIaA/MuXCgqQO0WRlhtjUZEW5KuFzl35TV7k3umpF5A2ADPsAwPf/sgO3r+0zrDU87bx6QruyRVCTPBCySNAmZnqNiI5cmReQL1rBRtAVKCI1aul+mDyFluFzrpFRlctGY6sfxwOylHdFP6SlRtHDzfdtxm+e3lNCoHwWlRdl3v+pgvpfsp2X/lP3Xc/tIoKh8veMVZbcXBHo+gyux1H01QpARWIVidLz/Yqh/dQiDJFrpVQmlY9FhEyvT6m7suvnlmRPI9LUZz2kKM/PlZUHjUvJe0EbL0WyKUw89fuV4OCjZnJ17bXXorFRfGN8+OGHcfPNN+P666/H3LlzccUVV9S9g89HWJaF3o7GqsrkzGnOVtwnCivntVS9LyWoD4zmJWFoazBJnV57jsjVnCA0mA7CcWM1+lztDylVVCC6EiZdT07iGc3cNOUoetDWmEZD2sGyriacHLjYbz8waZCr5/rHpK8UOXcTQYtSrgBKglXfcKMgE8a5mqwBEWJ8LCBzpDyFFSiVoM1Esm2AfNE8F9kphKHPd1TOKKxcyTaYGV7RUS4s6IUmfp2oyLI2NJnoHljBJfgMmoLB5QQr1SemwmQEQZrM/m/bP6G9rq6P1BzTtwrQiaevbWdceBUREaSl9Yxr3ltcEUB9pHRFSldcKCyqnNJVWEyGBqERcK0/HOS7BUleVWhKI5Gc4y9bDmBwoojHtg3JsSGVTS/FQ2Oj/13UEtrlPhUm8DARCMN81sx7FkfmTKJNJFQ9X3Ttwl1d5DmpskZazhxMguP6ZM+hWzOYBEhvX39mydYjnHslQo2aPYjeBtOJVVBAWnsmKHyom8fy0LjoIV99HxkmNu5V3D1KSNhsQM3kaufOnVi5ciUA4Fe/+hX+8R//Ef/yL/+C6667Dg888EDdO/hCx5zm2pWrjqY0jupprXp/Sa7GCnKCaW8ylSsqgpxJ2TJnKaxcTdRKrkIFrqMKVkdhsujLSTyjqVX6720NaWRTNizLwsLA3qHoMUORyRV9Wa6G2iOCFi5kTKAl8QXPN0hFuH+AmdDOuajHp18j52ZIjY6lcI6rvTbpeuZxPo9cMRie+HcOThokMKxcMTnhm8pVGeFKqkP6pCGP81UYzw+9pi/9J7gaWZGWFZpSYJwzNGmEJyXAzEWjSY8mJ/12mccqR3hx7UphKmgKhuxTiLDQWOilWmQh52DCJjJChIYH16snUQOkUIjQMuMwVgdyKJJHzvO6DxuNpCR82nXoBEYfHzk2U1Sx4uZxva+qD5qqyJUCSgRMEW4oUspVrh6RKLlqkikSYqzKJEXLD+o96gSVUckck2DJuoJM+52bNg4U8hNWEYGHGlcqGYW1KZQonwFGz4Aqn6QTcsP4Vhs3ztUiB/mscR475glmF2omVy0tLThwQCRm33333Xj1q18NAGhoaIisOZhgemhrSBnqTDU4qqet7DL+MOa1itDZnpG8/JDvaIxWrrJaXyhkSf2LsweIw2DIdLTahPhc0ZeTuN4fUp0yKRuNGQfZlGP0r+CZqxMLni9tFWhiJWf8uPqO0uiwzLXSogBSU8TkICY/vfZguKiz6IcvSpswMxlct3i46d6N+L93r8eekdL3m05cGBe5ZnpIUZ9Ddbdpzk12xXg8u5JhHqYUBtmmJEjBSjsjhKaOo99dTRnSVRzqF4HIjY6oOYaMbalNPTdJD6V6TCWEM67Kp9C4UBs0GesO4jpoohSWEbplgxmmApEwmhy5slegc+m/UI3DYkAiwmFFUsOGDbJO90cRvnLKFE3i+lhWO3FzoyXVhm6iSsQzitjR+cVP9YKuchGhDBeZ1l3WGYMkLIAi0TT2ZJZLKwrpOC8grfoiC1e7f+pcpjIlCJOm2vrqCwoRK+qP7ghP/ZGLNgImJU1HiYQL6zJ5jPxyEDPmsfcnYWCHHDWTq3PPPRf//M//jH/+53/Ghg0b8PrXvx4AsG7dOixbtqze/XvBw7IswxizGqxe0FqSkF4OtEJOL5PT3mQeT+RKd24PK1dhI8pKoImBFsFNFjzE5xIpGMpVBLlqC1Y6ZlI2bMuSJKsQLLkmFIOyGMOTRamqZFMOLCvaewzQCi6XUemGc0EpFS7c3H+3bi9oaPQSQUWflahfrs8wmndlfgdBJ1df/cNG9I/k8dPHd5bkbOmfqRyCsBZilCv65k0TjqWxq7iEeXEcl9+qw6EnQjhhW2yjPuhtqW//4ZVzYXJVUug24rx5Kt4MUq7UWESFcUkl0YmI7BNXFg0+iyYrZP0glExmhKRUUrSYFguaakWkQ/fhon7S+cJ5QoYXEhR5ibomXTGKg64k1ZrQTucpt00nVuIc5dvRiZ6Re8eUF5lQ8wTpVMRY1XvUiTnlTjHtWCJCusooiL1acaiS3c17SGV5KNdKhn6JnDGGoq9Cf5S3RQSNiJU8t/aPrlm9p1T4ku4l3dcEhwdqJlf/9V//hTPOOAP79u3DL37xC3R1Cc+kJ554Au94xzvq3sEEtYUGezsa0NEkChdXq3hlUjY6NTKVdiyDRAHK7kDPRepqyeJDZx2BVx09H0Bp0nUlUKkXur68x6qqrTdZ9KQiktX6I1YOinwrQjZty3EQYUFduRJtrO9Xxa3bm9I4ekEbTlnWGbkogMI45eooDk8WJRn4f0/uxj3PDmDDqHK2JpD7tA7XF95ONJmIY7jhSUQYyXkl5Ez/i3NR4NcwNtX2p8RtXRGJ2i8MPdwZtdJQb18naVEJ7bQSLpzYKyY8rT88SikpPa8qd6OFVVCaG2ZaNqjjAEg1gsNchUj3Sj8rXX/RE//onOShxDiksSmV2/nJYzvw8yd2GaWDwgRDEQS14EAoMirkFyYvemkaaiM8VibZKd1WLeKO4RH7KOIYfVC43zSGpECV5EUxIr0BQQ2IDueQxEWoU1yWDVKrDplUKuk9SmF23SXfozCfJF+CHMuEdl8pvvJcwevUH5epEKPy6gpChX64X9xQKHkwLkpZVqQ8PNamD1bCvmYLqi5/Q+jo6MDNN99csv3qq6+uS4cSlKKWFYN6jcK2hlRJ0ngc5rU2yHygbMpB1jHJFak/4UTvxoyDRUFOU66MSWcUaHVhT3sD9o8XUXB9DE8WpZIWBxEWFB8iDRqBpCLSekg0m7Jl6JCWshOIXG0YUOSqNZvC2UfNg884GlJOyTX99PFd+D9nHSHJ1TO7R/G3XcN4/fEL5HmHA4sJnYAVfKAFEeQqpBDRB7rHuAxZekzVwdOVKireqyPsc6WX9QFMzyvdMV1frQWUJ1c+A1KOSYii9xPJxFF9o35T+IxInt5P/di8yxAmgFFzNU2uFiw5mYaJi36oJF6+TviYImeaT1WUuqOHqqjciu6zRGqEuGahkj62bQgAcPqKrhJyzaEpNxAW5pwMJYnMGv1XYNp1ikk/2uxZ359zIDhNzYgiS4wHppgG6Ys/nsOKvI9ENsR+6vmQ+VRMqT9EgABzxSmRJEGe1bPu2KJ9YX0ASWL1pHTpDh+Mt8c4LItJ2wplKgvQKlLLsgMFi8gtg+uLOoVU0FkmyHPVRzJPVbl5IjxIXzpoDH0mfK44feQlPGpWo2ZyBQDDw8N49NFHMTAwAKZ9OFiWhXe/+91161wCgWqVq5Rt4cj5KpG9rTFdPblqy2J94NydcWy5ApBAylVDRC4SGY6W80aKAq0uXNTZhL/3jaLgMVl+J1y4OO/6MjQpwoIs6JfZn7RjScNTel1PdB8cV8oYkavtgQt+yhaKXdqxkXYEcYwijM/1j+IlK0Th8nueFXUjH906iFevng/PZ5gsCuK0d1QlG9OHv05aKGygww2++TLOZbKyWKEk+qrnpeVdP1BFuPT6MpQJJib08YJeTFonUCrpmr4ZR+0XBgtmZJpY4iZPcjePapMmDSo7Q5Og6js3xn4876Er9D6IOq00FrUEuTBWEcI8PylcKvE96JP2u65cRUWsGRfPvTKUVL5KRAL05OZwiDZM2Mj5PO8xpFO27CMRAfpb/6eOVW3QdZXDVEKBU0GUmhX3OqCtEgx29oPcJeF2rrylmBzn0OIRqNwr3RKDcQpVijbswFeKvNU8xuHopDggyxS29i3RW58FzwhXqpIgV5CEHoDMwQNU6FlfPUj9p3urhwDTwbXTe0KGhp2EUR0uqJlc3XHHHXjnO9+JiYkJtLa2Gm7fCbmaGYQnlTgs7242yEZrQ/nb25B2ZIK3Xi8wk7INQgIADTHKFQDp1VWoQbnyfIbJgFwtmdMktjGOgbECntg+iLaGNFZpRHHr/gmpyk26mnJVQq5smaAPCOXKti2kHVFUdcv+cUncKAeHxiDlWMb1tWRTkuzpsC2rJOfKgkge/+GjO3Dcwna887QlRl1Cyn/XJ7SiX6o8UX09z+ey1qKeN6WrUIUgrJh3RVHZtGOXEAjX54aNg74qjHKn9OLEhHLkClAhi3Jfn8OrBfUmaTv1QSc09LpO1vUVYeWgQqmBKqWdNE5NYcxU9IyQYXC8KCCtJXBp/Sp4PnJFpUxI5UkjWdKYMiSfhYQrqSZ5PkcqMFMVhX4tbcw1RSNSPTL7Hr7e8LZ6Tddhsqf6o9SXqGOiyrnoBqJESFzLHFOp8nCNDGsLBDiUKqtCgEqRZIHCRuol56bypUJ/Zv4ehX3J5FOtEOUyJ0z0Qa0SDCtipG5Js1iHaSouR8q2ZJk5eQ5OoVK69wlmM2rOufq3f/s3XHLJJRgbG8Pw8DCGhobkv8HBwZno4wse7Y1ppJ2IBKAQjuox3d7LrRg8urcNpy5Txev0UFw2bZeUiJEJ7RHkipzDyXumGuRcVUhZd9p+Zs8o/rRhv7HE3PWZUfg6V1SJ7+H+nHVkNxYHZA1AyYrBkZyLXUO5oL+q6C8ApGzbIGsU7gwj5QhypSdIN2dTeGjzfviM48mdw9g5OIltB1SfiVzpZKMQmXOlVhiN5T1wzrFnJK8RQS0hPpiw9RqN4cLNni9q0hGMnCs97yPEkyqRKwDGxBMFWu6u7x9un44PK1de6Fhx7SZ5jzptSZiVsdjJiCZnNfma/RSTbtCOr6mMxqpKtUqMQlS0nVaQFVyVBxTiViVjJ60ZuEnSRJuKNEhSbhA9RSzl/qVDVDWGJ4tl8yjj3urTFcRk3UKmL0wIcqI08iPIkyJAAEK/a0niofurkyguz6WsO8ILCnR1VxbyZhqJls+wsovQ/azkylwW5HMF+VnKWBTK8Z1xuZ1+54DMM1PPwfRyrJL8rJlFzeSqr68PH/nIR9DU1FR55wR1gWVZ6KiwYjCTsrGsy7wnemK3jrmtWZxz1Dwsm9sst2VTDjqC/aMIlPCMQkmiO6DIFYcZGiw3QedcX4Z9uluzMuw4HuQZ6QWTD4wXZTiMc45cUayoA0rz0VZ0m+aplG9FOWRFj2HzvnFQzTZATcgpxzLI1ar50Uasrs8xXvBlHwDAsS3j2nX3cACY8IIagbpypeVcUQSUVCufi8T24UkXozlX9nUsrwhG0ReFaPOeL5UtfcQp/0ifII2cK23iocmKUHmlGSIJg47wSsaoNjkUCayUmBsOO0epNmF1y+hf1PnldUSrPEop0hUYkySS8sEYl4RdTuxMhDfF/eEGMYtSenwtjASu+sdBOUoqiVuMgT4ealyIhJWDbpkQxkTBw20Pb8e3H9hato3YthE9ntH9KN2mm7+qnEB1r7gcG0hyA6jcKiIeaqWlTpqVK7veBpPnM0N4RKgoL9EI72nknDzb9C9Ivi8UL6rzWEKctNwxsWIxSIb3FEmj/lOel660RY1fwplmB2omV+eddx4ef/zxmehLgjKoFBpcPre5RG2KUq4yKRsXHLcAacfG3JasETqk0GAUuRKhNTvytaaMI+eM/VoJm2f3jGJgNF+yPyBsF2jS721vlO3S5KQrV/vHCzK5ezQnCtceCMJ1y+aWJ/lUxoZ+FjyGfePCLJU+hEgtSNmWJHmAUPei4AYhzdGcmcukr0TsHzUNUnMUFtQI56SWmJ+WdhaeoZJsH5xEzvVlzpWeP+X54sM77ypzVN1Z3ZXHaOTKUK5UGCKcO1WdchW9ii98fn1/82/FLig3Rp4/YoYoyX+LOHGJhYROmkL7Us/VBMyN/YwJmZcqabSPUD7UwgMiPzRpUkixlEzxkuv0A0VCL9sjjlPqC4WZQpdnXGB4JWEUyr2+Ye9Y/Is1Ik4hKUcASTUkIiGNQLkiPECpRUFYHaWFCmHyTOWM6D9fEimlDukGuXRu8kPTLRMk4QraVDlhVC+TSd8y8axRXc8gfyt4HyvlikmbFj/0Ty/6Xd0Yl//CkmDmUHPO1etf/3p87GMfwzPPPIPjjjsO6bQ5gb/xjW+sqp1f//rXtZ4a5557riy980JDpaT2qHI3UTlXL1k+R9YSBIClXc34e5/IDVre3YwNA+NGWE1HQ9qJdC63LAvZlI28x7B3NC+PH8m5eHLnMC56yRIjOR0ADkwU5US4uLMJTZkUhiZdqU6MF0Qh6eZsCgcmihjPe2CMY994Hp7PMBKsbFwxt3yZn3BYsOiJY/WQnl6nUFfmlsSMA33rHdVqKXrMzBHSw5gAQIKTPpmO5TxpsZB2bBQ8hrG8Z4TE1vePIptyZH/HtXOK8BAzwrF6ThYRMjPnSrsOphJrwyEkn3GjnFAYpAzQZB+FMNHRyUn/SB63r92Fc46ah7OOnIexvGvUhowiMuFtUWcNh1n1/aK+4XOQMhI9QevbovimngMl/llystaLA4e/+FC/wmqenmhPBMlY0UmvkWphqI2AY8XnMcWNC2Gy6GHfWAFL5jThTxv3xx9YI6rg6Wa/QuRBmmwyXa1SuUxR94sUKECRVVqVx0MJ5Jy+JHAOzq3gNZUjR/eewpSifS6fG6V6ERFj4lyw4DKROO8yjhTTSRoDD5b9CdVLKFaWJd6Xjs3A6VniHDaUPYWuwEWOH5L6zrMBNZOrD3zgAwCAL3zhCyWvWZYF368uqfnCCy+s6byWZWHjxo1YsWJFTcc9X1DOjiFlW1jW1VyyvTmbkonchN5QHtHyuU2SXB3V04alXc1Y2R1NWLIpOzIsCATJ8R4zFKexvIt9YwWs3TmMFy/tNPanvKdsykZHUxodTWn0DeeMRPF9YwU0Z1PYP1YA4xzjRQ/7xooYmnTBg2O7W8rbNixoF8ntWUe5tAvipp5TUo8c25KJ+wCQSTm45KXL0NvRiM7mDP7tp38DoClCOrnymRF+23ZA1b0DANpVn/tHCypRnXLq6NsuTQx7RvKY19ogv7mG+03100TbptUEXZdePJkmEcuyDCWgNPeHIxV9qwGoCV5XEcIosRnQzvHEjiG4Psfv1+3Fv5+/GpNFH60NakqoRjmL2iNM6IiMhM+vX8dk0TPaCpfQAcR9i8rdkvkwTISZ7bQlJ2uZY8M4HFuFqvRzl1ymRubCREEv8qy3oQ6tbVoNE7TvP7IDOdfHawLfOsLQRNH4QhbbHqIn/akIJhSm5hxgEONGao8K80Wby4bboT4oFVAdq/eRadt9JlREPVRI3w+l0mmZzxbjHFZAzgAOzjhcT6QbeD6D79gyd4yUTNuyAlNSCy5jsCDO6fkccLRFITZ9qROkTFY70J4RGnmusWv6tdSAdwo3JUFNqDksyBiL/VctsSL09/eXbU//V2uOV19fH971rnehq6sLTU1NOPHEE/HEE0/I1znnuOqqq9Db24vGxka88pWvxLp162o6x8FEuQLOS7qaYg1Ddad227KMVYEAsHhOExxNVWpMx5uPNqad2ILGRLr0sCApO0/tGi55M28Niu62ZFOwbQtdAUka0wjLvqCtAxPi52jOxb7xgvy7qzlT0Sh18ZwmHDm/1VCuAGBvEK5kTJVoCStX2ZSN1oY0FnU24ZVHdssFADTJjWkhutG8Z0x6fUNmzpUXmBXpH+gil0q8Z6h/jAuzyQPjBUwUPHAOjOaKMoFeT073GMfgRBG5wJoi5/oYL5SGBYsx4Tn6gJfL1LV7VE2tOfpWXb1ypX63jaTwoD2u71vF+SPOG9XvuEmfXpOGlME2XdWUdgAa2dHpCxExsllQ6oWyAKAVhECpKlYy6WkEgIP+mUn3sXQ2YnOlvCsdFHbdst/8YvDdR7ZX3YY8bwnpq/14nfxJIgWlNIv9QmFBPbyrkaMw1FhChgfVufTwoPLW4gjCtlz8lCWUuJ5/aKqWtIpQz9FytRCgdHgP8quKngotup5SzXxGxAqGq7tO+HXiCES/PxJSdfBQM7nSkc9H59NUg4svvrimEN+73vUutLVF58CEMTQ0hJe+9KVIp9P47W9/i2eeeQZf+cpX0NHRIfe5/vrrccMNN+Dmm2/GY489hp6eHpx77rkYG6tfrkE90dGYNkiQjqiQIEH3fJrbmjFCL4AIm/W0Nxjb4olaKrYPREp06wIiSsOTaoUegf5uD5LouwNlTicsa3cM4Tt/3irVmtGch/1jBRwIvLvmtJReTxRWzW8xSuAAImF+ff8Y/nvNZmwIHNpTJcqVLbentYLVRMb0XKatoQkpXPePPvCMsGDek/0h6wvOOAbG8vj+X3bgOw9uBecc33pgK/7nz1vx1K5hQx3zfJE/VvCEo/u4lscGaKVVQh+oeh4J/SzZp8KHMIfIHdFtC8IozbmK3lF9C+cV9zX7UIpS36gKoTFeuurRIAYhZSJ8Xj2nh3J1AM1/iSuvKyBkj4B4Eisne24+O+FcKo6Y3yMIa9w5ZhqVxr8aUDK4PtZhEhrVZtQiBFVKSGuDm89KuPwShwr9UdhQFZ42VUZJyKQyTG7vTBJ5mTTvM0m09HI5PuPCqiXIxxJhSUXaJXHUrj08DlMd6wT1Qc3kyvd9/Md//AcWLlyIlpYWbNmyBQDw2c9+Ft/5zneqbueWW25Ba2tr5R0DfP3rX8fcuXOr2vfLX/4yFi9ejFtuuQUveclLsGzZMrzqVa/CEUccAUC8QW666SZ8+tOfxpvf/GYce+yxuO222zA5OYkf/vCHVffpYMK2LaNEjdxuWTgiJowHAK1ZdcyCEIkiLJ9rhhTDHleEcqEBKnRMxZgZ40bYbN3uUfk7Yxz9I4KYUw3D+W2ib7pyNVHwjaTxfeMFjOZdSeDmNmfL5gURdDWuoClXv1vXD59x7NRClM1ZjVwF4+A4FtK2jXRALKPCgmHkgvwrynvztW+1hD0jOZmnldaUq93DYmw4F2SVrvfOp/YYSd0e4xieLCLvig/lfWMF6eQu2iolC6IvXB4P0MQRSmivktzQB3wUwrYIOnR/PNpL5xlVWFpFnjjc73AYLuo1Fp4gtfCKuY+AXqKJCE9Y/aPkaFJIdCd6vUNxI2QoN6SWRKlydZgx6zXpTrWd8CjoigwhrECpexVuSycbJvkhdZLCf2Z7ivwSYdMd2sNkldrVz0vnlLUqoUg2hfopb0r3vaLXqEYiWZPohdUVUSvNM1NkM/5ZT3DwUXPO1TXXXIPbbrsN119/vcy/AoDjjjsON954I97//vfX3IlzzjkHZ511Fj7/+c8b24eGhvCWt7wFf/zjH2tq79e//jXOO+88vPWtb8WaNWuwcOFCXHrppbK/W7duRX9/P17zmtfIY7LZLM466yw89NBD+OAHPxjZbqFQQKGghb1GBWFwXReuW7km3nTR3uBgYNQMvS7sbIIDBjfGHb0pbYExcUxXUyqynwvbMnIfALAtFrlfc9qKvU4KFw5NFOG6LsbyLjxfkY/1e0bwsiM6kU3ZODBRxGhOEIaOBtGnuc2CZI3lXaMvOjb2j8D3fYwEx7Y3OgDzK4592mKgaGbB88CYj32juZL95rVmwJkPNzi/xX3RF8bAmQcS9FyPwfe9svUF9XEZC0KGYWuCgdE8yM2ZiJvPmeFlpStgkwUXGvcTif0TBTSnbbRmLQxN5JFzzZWBjPnwQ+Ppeh6yDoKVbRy+b8PzbGOicj2/5D70Defwx/X78coj52JxZyM8T4QqHcuKvGcF14u9l/qnvxvs53lcVnwoemWODcA4K9nHdVUbYoxsuY/+OwB4sMEYw3i+CM9X1+t6EOMGWyY0u54HL2JMPM+D7/lwLcDzfXi+GIui68H3xfai58HzxRdTz9dz5phxXkC4kXOIfekf5xyOY6FQFOfSr88gxL4Px6rDrBoxM1e6F+bxVlXKI0Ekf+tMxwKzLOM6fd8WCqAfJHprxNSCRsi4yjWSqo/PZRxaP46eeGEIKsolMQvwbMC2OHzPD0J/Yl/fUooTC74bkFVC4LQCywr2ZRyc27AtwLcsWNxG0bHgeT4KFocNBp52YFviC58DjkLRhe9YsG0LFoTxcdFnKLoidaLouigULdhgsJgPxoGi64KpywtyuDi4FmGwbUsqffrfor9J6nutqHaur5lcffe738W3vvUtvOpVr8KHPvQhuf3444/Hc889V2tzAID7778fTz/9NNauXYsf/OAHaG4WSkqxWMSaNWtqbm/Lli34+te/jiuvvBL//u//jkcffRQf+chHkM1m8Z73vAf9/f0AgPnzzcTN+fPnY/v2+PyC6667LrKG4n333XdQfL82jljYNGq+GdKdDHfteTL2mN0TwMZBwQp6xjZgW4T1FefAlj4LPhUx28swtqF0v9EisDFGvJoctgHY2Ly9D3fdtRODBWDjgKmA3TrwHBa3ALsngb2DDgALk0MDuOuuu7D7AACkMJpzseZvm3Agb+GYTpVEyrlaATWeswBY2LdnN9bctwst8V6pAISB58Sg6F/f4AQ2bNgUtGX2Lx/0xbjevTb4Xo6R9Rz794k2RsYnsG79ZjBeWfhlxTwAkeS6efNW45z9ewcwkRfXMjk+CsDG2NgEtu0Yl/vt6d8rf9++cxf2OhyAYFi5fAHrntuA7WmO+Y3AYAHYOWTJ/QuFAjZu3IT9efNat2zZBi1ajAaHo8GBbBcAtm3bjsGM+az9bpdo41dP7sFrFzHsz3IUfVGrbbRY+iGdtjlcFv3hPTYmrhsA1qxZg40HbDgWl8/g7hSX3mClEP0Y2DuAjRMDxitimtZyCFMcuaCdBocj71sl+w5s58h5QDHoa8rm8JgV9Efs2Z/myPmAx9T4AsDfnnoaE55YpVfwgcYUkPMsjO3i6M+JNkZ2BMnREO9HGuctW7dgeA9k/whZB9i4cSMaU8CkJ559xwKa0+KZlO9TAOPjahw3b96CCimIFSAO3j8yjnBi/MaNm6puJXwPKoMb57MtUo/UtgZH3AuXCSKhK1eWbMXSjgUyNuAFKpWezUCv01gp431B89K2eKaLvlIaHRtIWcoqA8F5KendsdQ5UrY6J92dtA00pYAJT/QrZQNZW3ymuQxocMRrKUt9zqVs8drcrFhFOO4CzSnxfFDb9977B9kXDrHdZzCeAzU+NL5q/BJuVTsmJycr74QpkKu+vj6sXLmyZDtj0WpHtbj33nvxwQ9+EKeffjruuOMOLFu2bMptMcZwyimn4NprrwUAnHTSSVi3bh2+/vWv4z3veY/cL8za9RptUfjUpz6FK6+8Uv49OjqKxYsX4+yzz0ZXV9eU+1stNu4dx2/X9cu/LVh4z0uXyvIzUdgzksfkE7uQTTl468uXxV7f8F92SO+ol6+ci5OWdJTs4/osNsfp3vGnsG64H83tXXjNeS/G5n0TGHxmr7FPZ1sDzj9lER7afADW1r8DuQJOXL0C5597JJb0jeI7Gx4Bh4V1w2JVzSmrFmDJnCas3TGMx7YP48ITF6C7JYO7+7YCAFYdsRSvO2elkbQfBc45tt67CX/78zbkfaCzdxG6W7K4Z/dWI9SyetVynP/aF8m/R3MuBh7ejjNWdOHUZZ344+RTeGqwH5lsAxYu6Qb27Co5V2PaliFBAOjqaMX+vePwObBk2VJg90752pyuuRgbnAQKeczrmoOdE8PYX7Cwv6Du0Zy5c4FhUfmgu2eBMGzd2wcAGPcsoH0+eue34qTFHVi3exS7tw8Bg2IZfSaTwapVi5E5MAnsV8/NkqVL0aGFmJsyKTRmbGCL+nK0cPES9LSZix9+t2uL/H3VqpXoaWtAzvWRdmxjIQPBsW3oxZd1bHt2ALsnxwEAL3v5yzG+bq+xf1tj2ggJR/Vj3vx5WBXjRUZobUhjLDB7bc6mjNWUpJh0NWcwUVQu92nHhuszOLYtnbvnNGcwlhceZI8M7pShwWOOPRbDk25gIuvL8y2f24zW/ROwLQure1pRDAwgG/vHgOD5ddp7sHrFHNk/QChXu7ZtxsqVq9DUkEau6AtyZVtob0xjaLJo5LI9l+sH8uLDfsURK6Rp7lRA4zocQZRXrSr9zI8DlW2pev+QcmVbVklosCHtgHOx2MAickCMIvjJoX1+c5EzSeFY/WOPB/+jFbqyXE1wfDZlwwnKY3k+B6wg79KxZSUBak/kQolyWqlAEcqkbEG4NEbXkLbR2ZTB4ERR+AJaFtoaUrAsUYi+tSGNwYkiGtK2vN9pRxgTL5/bBMuyMDhRRHtjWnwGMB8PPPAnnH3OOUinRD4ulc0pBp/TTjCOYTIaTptN1KvaQBGrSqiZXB1zzDF44IEHsHTpUmP7z372M5x00km1NiexYMECrFmzBpdccglOPfVU/OxnP8Pq1aun3NbRRx9tbFu9ejV+8YtfAAB6enoAiNWKCxYskPsMDAyUqFk6stksstnSVXvpdLrE72smMK+jCbYtvvXaloWTlnSgo6X8ooDOFsC2HfR2NiGTic+Z6mxpwFDgdNnUkIm8nnKX2BY4yBeZUAdyPmRfCQPjLsaKHEM5taptQXsz0uk0WpuyaM6mMF7wJOGZKDLYtoMNAxMoeAw7hvLoammQ3yabMhk0ZrNIx6xg1NHRnMWSOU3Ysn8C2w7kML+tCSnbMshVa6N53U3chm07yGbE/W0K8tdcxiNVK8e28MoXzcNv/66ITFNAfBkHgiJxEpT7AQDZmGtgmkohDAfN13+3bgAv6mkHbBseFxMVgcMS9yB0Xli2cW9s2zbOE+xUcv902LYDy3YAi8N2nMh9OUqfAXm81ifbSYn2LEv6oVmhPsa1UW6f/pE8ntw1iuMXtSNl23BsB7ZtTvoWAG7ZsG3AtunaLNjcgmMrDcay7KBPFlqzKUmuLNuBbfuwbCtow5ZjLq4JsB0H4BYszmHZ6rr3jRfV/uFrC7Y7jpi8HUfIHLZtw9bulWUoPpXHbKqopV3bqjEsqE3+gHgfUWK43OY48JmosyjIV0CIuPpbJ1GcA7YjxopxLtsEVK6UHXxRtBEQsKAvli3us20DFuewLQtOEK6zYck3raWROtu2YNnibli2BYsHJBPieMt2xL23bPG8iRMBlgVucXDLgmWL11gwhmJfwLJTQb+C95wtwok+BxwnBSclFhpZnAsCCB+2Ixbg8NC101jQGFlWQq5qRbVzfc3k6vOf/zze/e53o6+vD4wx3H777Vi/fj2++93v4s4776y5o4C6udlsFj/4wQ/wxS9+Ea997WvxiU98YkrtvfSlL8X69euNbRs2bJCEcPny5ejp6cE999wjCSGFIL/85S9P6ZwHA51NGTi2hVXzWnDGEV0VS+IAwurAsa2SFYFhiLbEirdK9gZRIDd41xdGmHGqwzO7R7FvLC9XtfW0C7IqbA9SRh7TeMF0Yx+ZdGVCt2OJb3bV1FwExGrG5d3N2LJ/AtsPTOIly+aUrGZrCSmA+mpBagOATDQN47Tlc9AZuifNGZXQHl4ZRquf6PqjoNsCFH2GVITdic84XI/JcAdBLUk3z1uyog4R/lBVzI2ybMwUsmf1z3PpJRVK0p0ufvK4UAkZ4zhl2ZzY1XG0qk//GzDH0kjcN0JMapLXoTuoS18khJOO41daqteDhGotOd7oe0RS9cFGJcU/jGf3jGI45+KMFV3B8eH2IpLceakvlaFGxVy8TsKi+h17fm0brYz1Le0Y+b/SNkVOGICANDKIBsm13WeCyXmMw7aUPYNyYQd8AC6Y3Ebmol6wwtCGaf4rx8cxrRiCTbrAFzF2td2/BNWhZnL1hje8AT/5yU9w7bXXwrIsfO5zn8PJJ5+MO+64A+eee+6UOhH+8P/MZz6D1atX4+KLL55Se1dccQXOPPNMXHvttXjb296GRx99FN/61rfwrW99C4Agc5dffjmuvfZarFq1CqtWrcK1116LpqYmXHTRRVM658GAY1t4zxlLqyJVBMuy0NqQQk9bBXKl1SGMWy1YDrQqruiJun9jMSvp/r57JDAFFX/PbxX9SjuCXO0ZUfuOFzyM5Fz5oTqSc+VquGxafLuMcr6OQmPaweJOkRe3dzSPyaJfYuAYNkh1AqmfvulR0r5RxFdDJrgGHUTYhooWxkIJ8FT7D0Ck8z1gkitK0g3DDZZzh8FDPwlhksc5UAwlLFezTJ/DVN9qgf5RHj3xxZxTJydVnovIebk29TGJI3syT0VXB3npZAWYRIDc1aNWVkaNM4d277SXyyy+lMcdbEwUPPzgLzvwop5WnHVkd1XH3B2kCyzvaq74pY8QXs2qI+5ZDRMkQN27uO8ESuEJH28eQ/c8mhiK83HtOCLwnAfE2w6c2C1LJcUzjlRAwizLhstEOyLMFxiRMgbXt5G2ubEC2bKVDxg9y9QPercZnwdl3gsJ0aoPaiZXgKgveN5559WtE1u3bkV3t/nGfMtb3oKjjjpqSnUMTz31VPzyl7/Epz71KXzhC1/A8uXLcdNNN+Gd73yn3OfjH/84crkcLr30UgwNDeG0007D3XffXZM9xKFALcSK0NaQxoL28uHDdp1cTUW5Co4vBsqVnkeiI1f0MRGoVk0ZBy0BGckEhp06xvOekcszklPKVWPaqcrjitCUSaGtIYWWIPQYdlCnNsPIpGx5Hp1cRZVZyaRsUeAa6rNLV8Oe6zc91KhOGVBGuQqpa1GkrugxFANFi4dnBJROAOEmODg8j5fdJwqVyt9Ui76h0gTRqlqs8bRxu1OtOLlfxLiFizvr28W+5mu6KuoxJnNzWOj2RE7wWj/0SV1f6RaFmTSILHi+9IrT8eTOYeRcH0/uHJbkqlr/LHovr+8fA+Mcqxe0lT2+2naNt0CIDJW2WaadiDYVQTGT9vX3gV7vUJ0/KHkDkVdnQeTzEclyaRUilchhHJbFpUpuWcqlv2D5sBwELvIcDieiVfrMqP7xIBcOSW2cg4SayRXnHE888QS2bdsGy7KwYsUKnHjiidNiu+H8LcIxxxyDY445ZkptXnDBBbjgggtiX7csC1dddRWuuuqqKbV/OGFRZ2Ns2RqCnuBcC2khEDkj5Wq0jAcUmYK2ZFNSscmkSlWfiYIvDUMBoWRR2DCbtqsOCQKQSaS9HQ3YsHccmwZEMrVtiZJAe0fzOHZhe8lxacdWylWGyJUKC6ZsS4aAMikbliUSX4kUHaEZvOqlawAxuRBHi1OudEKml+DQUQwKwwKhCYF+hibdkmLBvioELI+tYqLWnavjwDnH2p3D6G7JmjUrtevQ6yGq4yqevmbEtRlWKeL2IVih7boSQO3oiqPh8h1B4uL6GqlqlUpfVbVXCZXu9zfWbMG/vmpV6XFTPyUAQTx/FyzSWTa3ObYChHnOaklW+f3iyC1jHFZEN+jLRFzdRp3YUPuMC2IkvK4CA1FYsHlQFglkGkrO7MLryvNFbhT5X9mWrdUl5EhbYiWk63Okg49N+gJAhrc29UkjePKnpfTXOOKZYHqoiVzdd999eP/734/t27fLG2VZFpYvX47//d//xSte8YqaTl5t1n21zuwJovGinspqXFtDWiaiTkW5InLm+gz7xwvG5BIGEaTmbArZtDhXxrExJ1DlMikbRY9hvOCVrEIbCMrWNKYdpOzq+0nkpbe9ERv2jmPnoPCPmtOcwVtOXoQ5zRkcOb90nDIpW+ZctTemYAcflMNBTlk2bcMrqFVmQLBKKOAL81qzOG5hG57uG8VEiEToru66chiHWHLlscjxjqqFB0TnfpUcW7E30WVrwtg9nMcDQRFgfXLWQ2sTEX5hsW7uVfQrDnGTcjWldoz+hPJVdDWAzqG3Sbk2USHUuDMbihW4MUka/dJaeGL7EF5RZWhuNiDsNu96rCy5qpU8RpGfcJ5WbFg2YrxZsL8VI/3oX2akSgQKCypXeVAOF2NiIQmnfCxFwFwwcFAR6aCMDilb4PCC2odkMmoHNQ1lTlfo+sOKmxGWLzNGCaaOqmenTZs24YILLsCyZctw++2349lnn8UzzzyDn/3sZ1i0aBHOP/986dZeLTo6OtDZ2Rn7j15PMD1UE0q0bUsqR1NZzk12EEWPYf+YUJuGJouRExclu7dkUzLhO5OysXhOI169eh7eeEIvAKHs7B0V5Ire8P0BucqmnJqVK0B3TBf9ItIVp+xlUrpylZI1EKlAddYpLZdj1GrMOmgItg+MldoVEKopjPvwlgNGYWyC6zPpPB/5gVoySVRWRKqZyOSEUWYfPTymE0D9zuViDHAjYVxflQoG/YzZvRqVLv7Y6NeN8F9Aqkrc40PkoqRtqGuUJCt0za4Wzl27c7jcJZRFNSPZP5JHruij4PrYdmCiqvqTYRzQvyxVUO7Mv6tQ8RD9/E8FRr3BEAlTZZA0FVK7l5xDLmBgGtEh1375PDAVKibVicr8MO2Z8RiTiewixKwqAriBNQQtfqBjWOifrKUo//HgWsxr1n8mmB6qVq5uuukmnH766fjDH/5gbD/qqKPwpje9Ca9+9atx44034mtf+1rVJ7/vvvvk75xznH/++fif//kfLFy4sOo2EtQPHU1pjOTcKSW0U25RMUjS3jU0iV/8tQ9zWzK48MSFhhfXUFAip6slI0kPIOwIjultBy0fpnp5ALCwoxG7hnKSbNWac0UkKuwJRt+U4665OZOSJXbmtmSxqLMR+8YKkiiR8qa3oX/za8lU18+o0kZReDaUtwUI0hKZ0B4KBxCi5sTS1VnVEQ79gzoKaY2oe4whQ9/ntDEqRqyAjGtzJj72q+EIOpEwv/WbhEeFhNQ2muyiSpTEJ2OH2rSi1ZRqCWZFVNEMrb6c25LB/vEizjwi2tuv3KOzad+4/D0qHBx3vEGapvBFYDr768eVhAU1R3wODuGdEKzM42pYBcmx5O+WJEFqFSC1z7jIy7ItG+AcPtNXCopcLGYLmxZZHkdTrihUHV71qpNCDuUlRr5kCaeqL6omV/fffz+uu+66yNdo9d2nPvWpmk5+1llnGX87joPTTz8dK1asqKmdBPVBR1Mau4eV11AtoLBWwRNFSjfvEyGv/eNF/OyJXXjLyQtlwjrVyuttbzBy9TKOjYIrSlG0ZFMYCRSuzqY0FrQ3GMWfs2m76pWCgDIMDJMrPecrCnNbMlKJWtjRKE1N6Rr042g/ffQa0k5V9Q+7mkv906qFmXNV+gkZVkwiQ24lk3ZlVMq3AiJIQsQJXK+0lbp+0MeQTEI1tg9GzpX2zEatKhPnMtunVV1RhaVLustLQ1Mc1d2TqaKWtvcHeZDr+8ewrKu5wt7x+MNzA1WlLEwV0yJREcfrSla50Jkiw0oJYoHfFj0vVvBMCFIlSJMgRMHfHHCYemY8X+RkFX0G2xaVAigs6DMOxxa5WYwFxrdB+DDgZyJ0GKR9WNwS22f0iUpQ9ey0Y8cOHHfccbGvH3vssWVLxySY/WhvTE8p3woQuUWdTWlwDuwayqEvIEIp28JIzsVfdwwDEB8GRJqWzjE/mPVwpL7Kbtnc5pLQplCuqieBpB41pR2D/BApjFOX5rZmZW7XgvYGLA1NJg3aCipS4Wztk7cpkypRxcKFshsikvlrQdFTlg7mRM/l6zqiwjnhLdWFBaPVlLh24kI2Yb+xqP7UA5VCe+UQmwNWhYpCeTOez2PHILLtkCIW1XbUCr6Dhink5sTlKwHlx2Mqz0N0PpWpNE2HgFV6XQ8TcqgQnQwN6r5WwXtS/1sv/kxhQFHomaPosaD0jlbvkGtFonlQJJqpsKDK+wsT/PIXk4QJp4aqZ9Lx8fGy9fOampqqrrmTYHaivTEzpZWCgPg2T0up1/ePYV+QW0FGgf0jIldqJCcKjaYdC72dpseNfu5mrULx8q5mLAj5dDXUGBYk9ci2LSO/ihLx40hld2tWKlIpx8a8VlNhSjsW3nvmMrznjKVIOzbaGtPGt9r2xrShXL1s5Vz827lHGm1k0870yFUEOQHUh3shTK4qC1dVfaDSRFFO+THFquj9IhPq44jQNGjXwZwidAKr58IY/SnLSkuJctS1L+osb7FSLaY6rvpxW/dP4Ad/2R6ZFzhd1Gt+r7adqN0qhSvFcTp5M/fTv4xwQNkngJeomz5XxIp87Hym9vElkeIGwfIZl6kZlKtlnlspZOG8QOqzIoVR78uEaFWLmj7Rn3nmGVn0OIz9+/fXpUOJgdmhw3SUKwA4prcdD20+gPV7RV5QZ1MaK7qb8cCm/dg3VoDHmAyndTZl0BLytdLzl3JanZfejkbYllCGKE+jIa1W8VUDfWVhczYl2yFH9TgVrK0hbSgrXS2mgkY13wjz27KGctXRlDZJY8ZBa6P5tvMZx8KOqRf+1sNq4Q90IIpcVf7QrCYPSfpcVdgn3J/SfSK2xbU6hc/2WokDYxw7hyaxoL0x8v0QzrmKOpe+1VQPauqKareCQjhtTKHt8Dvm13/bLX++/2XLjdce3nIA43mvZFXso1sHaz/xIUA1Y6+HC2lNHr0/bKiQnxWE55Rrv1j1KcJ2SlEjNYtxjqLvS2Ll2Byci7Ag5WI5tnrGyJTU5xywBKkngs8C9kQfnfRZxeU1JCai9UJN5OpVr3pVJHOlhLhab8qb3vQm45h8Po8PfehDaG42wya33357Te0mmBo6mtLTCjMc09smrQoAYGFnI9ob02hMO8i5PvaPFTEYJLPPac6gNZz/pJ17xdwW7BzMobMpbeQ8bQz8qWpVrnTypD+lbY2VV0jq5wkrVzppsy0L3S0muWrJpowxzaRstGVDZqkFT/ZjKijoCeERk0DBMxOHq1ktGGWSGndMWeUqFAZjnON3f++X91Fsr165mg6qbfOx7YN4ZMsgFrQ34G2nLJ5Sm/p2CsUUPd8M0ZYVrvhBVQnqeaZcuAAmFIla2d1ibH98+1BVbU5FWasmdBd7rpJamzWcM0hyJ1VKkCyOMB3VcxY5VwWVpcIUPDciiV3ZMoR/kvlo0eNgGXGcR/l9ttrXRlBk2hLefBlHtGlR9j1MkqX/TFA7qv5E37p1a91P3tHRYfz9rne9q+7nSFA90o5d9aq1KLQ3ptEbrOoDgEUdopr7/LYsth2YRP9oHkOkXDVnSpPLtXDd8Qvb0ZC2jRwng1ylag0Lqn11JYrIUcapjlTOazXDk7rtgmMDXS1ZIyxoWRZOWNSGn/+1D4DIkWkLfXs/Y0XXtL4tknI1UfCQ01ZgxedcVW4zqsxOGESiyy3JN2rfcY6dg5MGsRLbK/enHqh2gn5mt/Df2xOEssOomMwMk3ByiPH86h82hfoTE3oJtVUO9Ri60bwbu3JvKiDFJcrVPRwana2YbrK3rmLpf4vLF0TLJ+IFUqgicsJAZXIovBzkUUljUiZc3J0gDKiFCelcskYls4L2GFKwwWyxT8qxzGcuZJKqVkceHvdutqBqchXnoj4d9PT04MILL8Rpp51W97YTTA3drVNftZZ2bCzralbkKsgH6WlvwLYDk9gzksPwpEhmn9OUKSmUrCtXDRkHR/WY5rF6HbKGtF3VKjyCHkK0I2bHdKq6trpbzPExyZWNhrRd0v4xveo6Mikb7Y0pNGUc5F0fZ79oHt552pKqzq3jnKO6YcHCH54bQNFn8HyG//mz+QWIPgvDOVmRylXo76g8qDBUDb74fcLKVVR+mH74npEcGlJOrO8Xj/m9LGQOSXW7Rz0f0wHnHJNufMWCWtop3TjtZnHLg9umdNz+8aLpuq/h0a2DeHjLAZx39HyDUPVpK35fCJCkCirfCcE2xjhsO3CED0xHTdUKMjxoO6qOp884PAtgEO8njzH4zIbrM5lvJVzdLYBZMkfL5ipvy7YUi6LyOoBZe1G/hoObsfj8wNQTbOqA/v5+vOENb8CCBQvwL//yL7jrrrtQKNQ/GTJB9QgrM7Ugk7JxRHczHNtCT1uDVKaoaHT/SF56XM1pjiBXWs5VlGP5vNYsTljUjhcv7UTKsWvKD9NVrrNfNA9px8LZL1Ju1tV6ezVkHCOE2NqQkkqUY4vzhOfmLm2lYzZlozGTwvvOXIYPnXUEjl3Yjp6g7uNnL1iNZV1qsjp1WSfOOWoe3nxSqe+b6ysn/aLHpGO8Dvo4JBWK+l2NFUPUCr44VB0W5KXn0c89mnPx08d34buPHNpVx7WQq4LrY++oUrhi/blihrwWMWBWCgcxfXp4ywEAwO+f2Yt7nx2Q2+MWXwAHXxnZun8CT+8aqbxjFSiXN6hbOBBYhKmnMgNVzwYHJapTiJBJ3zRfq0NI9SvJZNSTSe/K/sHTViBGrRyk86n+q1C+ea2z8UGcfZh6okcdcMstt4Bzjj//+c+44447cOWVV6Kvrw/nnnsu3vjGN+KCCy7A3LlzD2UXX3AIJ2zXgrRjoaMpg/ecvtQgPiu6RWiP6g1SEniJoWcQFrQskWgeXnVkWRZe+aJ58u9azE4d25I+Lws7G/Ghs44wJtFaiFpj2pFJ4t2tWRzT24aHNx+AHdQVDE/OWS3cmXZEIeiGtCPVIdp9YUcj3nhCL57YPoQ5zRmsCPJT4lzZ6fqLHossIUOfkxSmacmmUPCKUmkay7vwGEdnUwb3bxgwDq1GuZKnKatc8cjfzW6K7US8ZxL9o3k8u3sUZxzRFVvPsVJVJT2E+50/b8VE0ceFJ/aW2HQQaPIsfaH8eejlR7YcwHP9Y7joJUumteDkcMZMzOeUgN/T3jAtxT4M6mvkLed60ru5PezyTj/1ouGkXLkg4hPUF/SDVYWeyNHyfJG07kOVyIEdhGWDPojkeEv+NM6L8Hs3KYtTKw75O9WyLLz85S/H9ddfj+eeew6PPvooTj/9dHz729/GwoUL8YpXvAL/+Z//ib6+vkPd1RcEpmrFACiC0taYNiauRZ1NmNui6ga+evU8NGWdkomCwoLZlGM4t8dBV7qqgR76CxOgWohaY4gsLQjClSnbQsqxsGq+IEW9HWL7nKY0eps4juhuDsKG5spI6ottWbAsC6csmyOJFRB9nWdq5GDfeAG/enJ3yT5EWogotWilfzjn+N8Ht+G7D29H3vWl6SvBK6Mw1PIZGw7jRQpXM6ze6If85LGdeKpvBH/auC92/0r5b/qrVC+Sxq+aBHfVr+oye/6ydRAjORePbS9dWXeojSDDK1Gng+8+vB1/m0YJn6lisjj1kK3nM6zvHzNyHcOQ6pS+LfhpWnYE2yTBUYSKGQnuTJW9kVYNIt+q6DOpZhU8ptk2BGV1mPDIYrL0jm5eCk0147KfPNQ/1d9wxYHZqWgVPF9aAR1MHFLlKgqrV6/G6tWr8fGPfxz79u3Dr3/9a/z6178GAHz0ox89xL1LUA5xK+7mtmRx3jE92D2cw5HzW9GQdkpCgoByS2/KOAb5AICjelrxXKj0S60rG9O2jQKiJ4NalSv9uJ72BliWUMcyjo3jFrajrSGND71SVBqwLAtnL2CYs2Q+LEsoaBnHxkRQ3ZnStuJyyKKu830vXY7/um9TxN4K9FlHyhXVcWSBESFhLF86uZRTrmr5BhsOC9Y1bWgan+VDE6VhVMJUvqBHqREE4WNUfVtxc1TkQoRDPJ89s2e0bm1xAPdv2IcTFndMuY29oyL1IJyvOVN4cPMBPLlzGHOaM3j36UvL7qurQvJvKpWj7yfDiJYkMDxweOdByRsbSrmilYHChoHJkKDvA7bF4XoMVnAen8iZbUk1n9scLEittyyVG0aLCKPe70zL05rtOPeGP2HH4CQuO/sIOLaNK1696qDYTcw6cqWju7sb73//+/H+97//UHclQRWIdTlvycp/hChyRaSlMe0YhKK9MY3TV3SVkKtaQyTlEuBraUsPZ2ZTNrIpQRYdW3hv2ZaF5XObjfw1ErssSxiZZtMOADfYJvrlxMSjwh5crdkUGtOOVAPj4DGOvOtLFYrGnHMg75WuKgwfWw9UFRaMSrDn0dYu9VJqoizSXJ+VzR8rh3If1eFclqlj+m3c99wABieLeNNJC+ueuD8b8OPHRP3DlmwKizqr844Lj2otj8CmYOUr+ffFn0NbGcgtoz6hWkUY3RdSrFT+kwWXkeUCC5QsW9UfZAw+Y2IloC1sFyxLPPOupmxJA2BmwbZF+zYs+Fz0FVZQBxGBql7F+MxGn6wdg8Lc/L/u2wxALDA675ieGT9vVeTqpJNOqnrA/vrXv1bcJ5fLYXBwsKRA87p163DMMcdUdZ4Esw+x9flaS0lAON8KUKGyxoxjhMJWdDejszmDua1Z7Nfyj8p5U0Uh5djyw6ak7zWEBXViSMe1NabBOUcqyLlinCOtkaWMrFdslfSdJnrHsowPWoC+NVo4cn4LNuwdx5ymDN7y4oVwbAtdzZUXH9z20Db5ga2HBfOaF1HBLZVEytkrRH0WDE8Wccff9uDFyzpx9AKlGugtixBDdTMXfXPeP17A7/7ej5csn4Mj50+tDl3UGaOIxTf/tAU+45gTs1KRUIlIRZ2/tnBhNKpx1q+Ep/pEAvfu4VzV5ONg46/bh3Dy0s6y+wxNFPHkzmG8eFkn2hpKF78MThQPyvXVSpoFNxIESx1P+U4RXzIAqVgRyaKGGMjBnctSOjI8GNizODZDNmXDZ2LBjZ4A7zMbDhWeZuQqGpwLvOQ558H/VI8PT3zwe09g25deP+PnqYpcXXjhhXU74c9//nNcccUVmDNnDjjn+Pa3vy2tGN797ndXRc4SzE7EEZS2BuH8rvstdUSsBsymBDFpyjhGztYRQf7Ryu6WELmqNSxoYU5LBgOjZoK4Y1s1FYE+Yl6zXA1FhLCtIY3xIKk85VgoetzI8SIuRURK77tSriw0pB3kij5evLQTT2wfQiYlilm/7tgFeO0x4lvhnOaM9A+rhLzHZLIqEVrGOfIaoZqIyDmhD3HXZzL5tRz+GCgi9zyz1yBX4aRYKvqrIzYPyxJL+g9MFPHbv/dPmVxFIVycnNyvAWBkMj5kCCByZqmcp1X6erjGZBglc20dQ4B1EiZnBA9s2o9jFraVfX//9PGdyHsMe0byuOi0JRiaLOLhzQcOYi8FJgrV+4PFufnLv6PIM9dyriCIDyxF2F2fI6PnVflmrcG0Y8kSORyWfI3K6TCtgLNlASwgcQTGOWyd/AWG4bDKVYk8dJhNyllV5Orzn/983U74xS9+EX/961/R3d2Nxx9/HBdffDE+/elP46KLLpq1CXEJqkM6QkmyLQvZlI2WbAqDnppYo1bnWJaFhrQdhAVFW45tYWGHsCo4qqcVj2xRH6C1hwVtdDakSshVre2cuKgD38cOACoPpr0xjVzgZZRxBJHU3dvTNocPNalHKVcpx0JzRpCr3o4GPLE9WJkYECH60KD9j5hnul3HQa0WdII+c4PoRk0Qm/dN4NsPbMFk0Ud7Y9pw04/66HJjTEeNnCtwPBHhyB31tmecw4FVmjA9lY+IKo7RyaNjW/CrMFHVIUMmESeL+1hzLCtG+YieHJ7cNYyzNPsQcb6pYXZMP/H4xpoteNdpS9DVEv0FIh88F/vGC7jt4W3SP4+wed8EVi9oq26BzkGYdqpZbacrnPoKUwoFcg54nAf5U8pgVKhQlLTO4AbbAEgS5WtteYzB9i3pecUhPqf9wKzUt4PyODxwcIf6skX5YXqIMBziPFRwfYYv3vkMXraqGy9fNRd/2rAPZxzRdcj6c9BzrlzXRXe3+IA45ZRT8Kc//QlvfvObsWnTplnDOBNMDVFhuoa0Dcuy0JxNGXkJcUufG9JOEBYURKA5m5KEpLM5g4WdjegbyiHtWIaBZzVIO1bkeWsJCVI/TlzcgR2Dkzi6V6gp7Y1pDIyJFSmU26XnSqWCZdEUjopbLUj+XQ1pMQZNGadk4qD3yfy22jzJWqRyZfpY/XlTdF1Qcu0eybkY0Xy0ppPQHr1PdYTkzqd2R6pXT+0axrrdo3jD8b0y9FkrwuQKZQSJyO/s2gQTRlzR5UP5VZJxjn1jBeO+zjZ8/y878LZTFmFBe/ni1OH3ByDybP7w3ABeexBya6YDriKE4u9Ics4l2bIsS4T4LEXA9KLNFiz4jKEYKNaieDPlEtrwmSgCbVss8MoTcT4LQd1DO1CrqP4hpzqEltyu9536Nxvw08d34raHt+O2h7fjnactwQ/+sgNnHkJyVfO6e9/38Z//+Z94yUtegp6eHsyZM8f4Vwnz5s3DU089Jf/u6urCPffcg2effdbYnuDwQzbllCRfE0ki1YS2tUbkSYjXbINchesPHtvbLs9VK1K2jbaGVIm/Ua3KVdqxcdaR3Xj36Utl8emWbEoqVcLLyjK+LITDgrrVBO2WClbwZFM2Mo4tVk2mnBIyUykROc6rjMKCT/eN4ECFBNxyiCIXcbknhilhHLmK2qZ9UyZs3jeB3/69tHD8fev3YWCsgL/tGo7rctl+AWYCf2Wfq4ht5c4Vc911KTkzxXntzqf24IeP7sBvnt4z/T7MIH76+K4pH7u+fwwHxmefKTUtcAirunHEXH9dlsAJcq48mdge+FsxBp+pgs5S0fLJwkGo1m7gi8U4ZCiRBflUTPtd9pcrMhcXvjzU2KvZLfwkWNjwUEyo+LRr78VvnprZZ79mcnX11VfjhhtuwNve9jaMjIzgyiuvxJvf/GbYto2rrrqq4vHf+973MG/ePGNbJpPBj370I6xZs6bW7iSYZSgxBtUUKEI5w76GtIOmdEqqYGElYtX8FlhW7YQIEEqSsIGYPrkiOMFMm0nZoM1ppzSHi9KviBg1ZbQwm5Zz5QRh1ExKkCvbtkr6V06we+0xPfj0+atLtlM+FyEqPDcTCE8g1eSJAVpOUJlrDX+eRxUMpvNWOni6k8NUMlD+vGl/+ZVXU2BO9z67N9pQNoR6rQad7fj+X3ZU9Dia6kgM18n0ttJiB5+Vhgt11YjIk/ypKVlkKOoxs9CzDCUyRdZI4VK+WhycmQtRqKt60WnZX6g+1RM+47j+d8/h/vXK6DjqHPkaPNf2jhZw2Q9nNr+7Zg39Bz/4Ab797W/j9a9/Pa6++mq84x3vwBFHHIHjjz8ejzzyCD7ykY+UPX7RokWxr3V2duJ3v/sdikXzoX3jG99YazcTHCI0Z1KGTE/FmHVyVc5CgMKC6WBlX9iyIe2I/K1aVwrSsU2ZFJqzKSOxuta2dLLjaDlUjqFcmW1SFJDGoVkjV3K1oFSuhMFqSzYFxoVKV3AZsmmR3F5OuHJsSyag6simbKO+4nRQS1hQryvHebRao08chKlYIlRKui+HcBmQcoi8/EOU0RCe4tbtHsV4wcOFJ5aWTHqhYuuBCfS0N2DfWAGuz9DbUT7MWC1+9OjOurRDKE14V9CVJOHmwOV2IkY+4+CWysNi3JK5VB7jsMCkouVoBZ5FuC8gT1zYOziWAxaoZTaH9NkCQ5DzZR205PFfre3Df9+/Gf99/+bYVX5f+u1z+Naftsx4X2pBzeSqv78fxx13HACgpaUFIyNiae8FF1yAz372s1PqxJYtW/CmN70JTz/9dFDAklYviBvn+/Wr2J5gZtEUUoUaSIGqQbkiB/SGtBNp2dDWkK660LKOlGOhMaLNWnOu9P3psyWb1pUrG5lQeJT4WFujOLc+TkTEUrYVeGAJcjanOYPBiaJS8bIpFNxi2Q+0gudHkp9MqrQsz1RRSysGaQEMCwi1nUfuW+u5dDysLXzYvG8CT+0axvGLOkraj+pnxVy+Gjt1sHNSKLexbyiH9XvHcPSCNnDwirlLsxUjORejOTe2SHS1+OGjYhHKB16+3FCOp4pydRIrIazoRr1GoTjLUs8nraJlgZrla0qT/rvri+T0tCO2ux6DlbLhesIXK+VYkliRe7ttqZI4tN2yLDAG+GTZEOR6MYTyr0qur37Eq2/YLPb940d3YDjn4kNnHSG3fWPN5rqcq56o+ev/okWLsGePiFWuXLkSd999NwDgscceQzY7tfpM//qv/4rly5dj7969aGpqwrp16/CnP/0Jp5xyCu6///4ptZng0CCuXmC1YcHGtCNDidm0jdaIBOXWhhQyTu05VxnHRkPalnlcbY1pHDm/tfawoEbslHLlSOXq+EXtJdcoyVWQo6XnXBF5sm0LKdtCcyaFtGNjbmvWCAs2Z0S+WDmS1JJNReYMZVO2XEE0XdTyoamfkorThiEnE/240BesWvHoVrNUzH3r48vd6H0AUFXppTAq9XIq/GqqnGws72Fwooif/3UXnu4bwU8e34mfPr4L4xFO/IcDbn1oG25f2zflEibrdo8YE/Qfnxsos3dluD7DM7vr50xfCRw8skwOABkC9HyukS0V7vPI+ypQszzGUPSZzKtSuVliHw4oh3dN2VLkTZXJMdVeXvcvEXHtffL2p/Gl3z6HnYE56GxFzfT9TW96E/7whz/gtNNOw7/+67/iHe94B77zne9gx44duOKKK6bUiYcffhh//OMf0d3dDdu2Yds2Xvayl+G6667DRz7yEaxdu3ZK7SY4+GjOROdctQTbhfllPLlqb0xLwtKQii6T09aYLlvLKw4tDSm5chEAjlvYjoWdjdiyb7ymdjIROVeUiA4AS7uaS1YwpS3Vd0CMCxVNpVwocndfNEcoDO2NadiWJc/RnE2hueiVzblaMqcpkpBkU3asXcJMIhxuK/cBHDeBVAsLooj1+r1jFfcNf9XW+zmV/KlyHLCcIet0ETdO33tke8m22bwysBr0j+bR017bCllAWI38/AmVGL9538SUy/b8edP+g5evWMEHi9M/Ij1Qz5rPOWwuVg76zAnysUT+FpmN6n5YduBe7PlMrBQMyJdlcfgc+P+3d+ZxchXl+n+q6pzTy2zZJ5NksodANgIEYgJkgbDL7hVElgg/hAso3FxAuMg1IIICApeLoiAGUBFEBJcrSMSwi2QhQCCErJB9Icskma37nPr9UVVn6e6Z6Z7pyUwm75dPmOmzVp8+0/30+771vMxTfxceUy11mLaGkHogOqDmLytSBUKz7MmjtrAjKVhc/fCHP/R//8pXvoLq6mq89dZbGD58eKtro1zXRWmp8uzp1asXNmzYgJEjR2LQoEFYtmxZq45JdAyZ3/oDSwX18+C+Zc2mXbqXBLMIYzbPObW+PG63qibHRI1MNKwsbqGyLIaNGWHnFo8TMkANC5mwsKzqFv0QEFzNVjRikTGG7iUOduxt9NOCpuZqoE5/KLEVRMdKYxb2NFiRyFXYcT7pCN27MHvMMUtE7BfaQqaQSLkeNtfknpUVfp1e+WRLszONZGSZjly1MJaIWGPAP5ZtwbJNLYurmvqo0Ajrn/Dze2b+Wkwf2Rt9QrYXucRXc4Lsj+9vwLodhd1jRDZtqanLZO7HmyOPN9fUw7E4uiebd+dvD2FlbuHmBHq4qDxzX7+/oLFjYEDaBQSTcD0jsNS+ac+LzCRMu1K7sav1gqt0omdqrzhTdVbQgskDGFctcnjIUDT38+o8hp4dQUH5kFQqhW984xtYtSooHJs4cSJmzZrVpqLzMWPG+DYMEydOxN1334233noLt99+O4YOHdrq4xL7nsy0oB+VESrF15KpW/jNLWELP+IVpjxhFVwnpfZToqgiEbJPENwXM/nSPen4gicsFBMhYdk7h/lhMiYytnEixfRCpwWToSgf1//M/uVxK/JeFu6XOFJ7QOV6P4vZvGjiKpP3Pt/Z5LrwrLQ9Denctgs5aq68fD5wMqaFMzC/11suwrPoaurTkbRCU2J9U009nlu0vulBZIwnFyu37s02Q+0AdhRpdltH4bYmnJkHn2yqwdPz1+LJf2ZH+zoj4RmDvi2DF07hwbdWCM/+Mw2evZBtgyp8h1/cborfw27vJk2Y1lX1EsF5TeTMiLxctVfhn/myette/Pz1VajN0T0iH/LVdA3p9qvnLugTyrZtPP/880UfxHe/+114ujjjjjvuwGeffYZjjz0Wf/3rX/Hggw8W/XxE+1GSUdAeFhPHjujdpL+VITzLrkeJk9WmBFARqJhdeF1MuNYKCCJYzdWA5UJwhm5JdYzw8MLPPdc3thLHQjI07l6lsSxxFX6+pmu9SQtaXDWEDkeu/l0XdZbGLN8wT+T4s3aEaLe0YHPppuaEl0FK9SYXDkzk82b8wfpdqA0VyKtZTE2zYE006vCh7rNnxtAUmYXLuca2uz6FX7y5GvPXbM9a154U8oq+0sZaow6nnbKrn27OrywgH4uL5ihUG2alAZuI+hoh5XpRLyxTqxWIJdV30NRSpbXnlRFlroymC10p4Xna98oLBJUbehyp88oQUm3Rwsf9+FX88MVPcPdL7Zu5+uN7G9rt2K2quXrhhRcwa9asog3ipJNO8n8fOnQoPv74Y2zfvh3du3c/oMOK+yOZNVfxkHgY2bew3nBNtb4oi1uRxs75YoSLsXMIp+gKpWdJDF/saYwInaTd/J9TiRONXJXF7Yj3lMW5L6SAwPfK6E3OGAb1LIl8GJw4ui/2NKSRsIX/PHLPFmRFi1xl1hAV6pSfyYqte/Dswp3ongyEtzmFaOa12VmbwmNvro4sa/b9PONQxsuHaTfqfMmVnVqqU5Fvr/wCRw5u2UyZKJzW+H4VyhP/XINzDx+Qs9ZzX9T4NJk2z7h3Tb2VuW+NGBIs6A0oJeBCF6u7QXQ4mFHowZUcXEq4WiwxcAAePMmVMIOqweJcgkMJKaajVPBYyNwUuum8Oj7PIQwz/5SbSxua57Dgs+04aVT7uey3ZcZnSxQsroYPH47vf//7ePvtt3HEEUegpCTafLQln6t8ycftneh8JB3ht04AopGrQmnKD8sSLddGtERlRbygZs2ZGCEQFhaZNhSZlMSiDalLYiLSBidu88jxLM7BWdRkNGxWCqhC9cxp5SyH2LEFjzRUbgtGXGzcVYcXl2xqs8WTiW7tCE0CMN9+CxFuDM3X5WQea822Wjzyxiocf3BlRKxvbMl0sgUhtqWmHj1KnUhvydZQU5fCX9rZRZqIYgT7t48bDsYYVm7dg9oGF6P7F+dvp7U0F8Uy1gjmp9ErnhZCxmBUSuPoLv2Il+tJQHrgNtcCzANnKsqthJQSUMJTjvCCSXi61spDYBchlfmW/94Q1oOdpT1OLr77whJ8eVwVurXx8yQXBYurX/ziF+jWrRsWLlyIhQsXRtYxxgoSV7W1tbjhhhvwwgsvIJVKYcaMGXjwwQfRq1evQodFdBIYY0g6Ansa0mBMzfhrLc2lEHuWtO2PoX8bjQRNoX04ctVSk9jMerQSx4oIo7glIjVUJk1oojfcF1nBeXKlR3PJEUdwnHP4ADzx9hosaeM0ciOc/7R4Q0GuyAWdQ/9sa1QszNbd0aJ7V0q4KYn/+3Ajzj6sedPN8Lfslp7xb+evxZBeJTjj0H55fbCs3V6LuC2y0tOvfroVWzPat7y1YhuOHh56f+y8n1tF57MvanHU4B77JJuxYsseVPdI+uJ29Rd78aUhnecLf9j3ypWqybnxpZJSlSuYmXtKSAX7mToq808yQGgXdwCwuK7HcrW5qAQ8riJSlpQRfxUTCZNS+WQxP0IV8sDyI2m5I1Xh5Tv2NuLJf67x1y1ZX4PtewqvFSykBOL2v3yM+746vuBztETBX61Wr17d5L9woXs+fO9738Pjjz+O0047DV/72tcwd+5c/Pu//3uhQyI6GSaC41g8Z81UMWhL1AkABnRvo7jSQqmQ4ETmTMqSmBWJznHOfOsKgy14qHheLQs7rds5rm+uS64iXgwnjqrMf8BNYN7Y29PaoTXfdlva4/NmfHFaSgsuCM0Sy2dsq7ft1ds2v11NXQp/eG+9b3AZpjGHcF2QMVttX6TKOgsbd9Xj70v3Td3YX5dsitiprN62t8Ur7UmJmroUpJSY+/FmfFBAr0ugsBolGfpp6qvCfQfDkSnjWWWK2Y0gS3ue74dl6rAk1Oxf0zIn7QZ1WOan5wVpyHDxvJlw4BfcZ4zXLG+OG37/Pu7/+/LIsg1NRJKLpbE/+6J9/LIK/oS6/fbbUVubPZi6ujrcfvvtBR3rD3/4Ax577DE88sgj+J//+R/83//9H1544QVyZN/PMXVXmUKhM5FrNl8h+OKqgL/wLGd4i6Nvhmt2Lvd4I1B5KD1oyCUyc307NPs6bYgkGjyJZuu3lufjM9UCJkVYiHRoS7+8XEImzKKQqCnkNC1t2lbvqW2t+Fa/P9Naf6rW8MyCaHubV1swon3xw02Y8/YavPTRJny8saZF49pCaE5Eh2uszO/BTEEtnlzlzG5m9HmeRCodzBBMuUGRuxFSpq2OSisiUsju6XSj6xrBpvsQhs4fjD3XmHPPIvxnE42W90da1bh5z57s2RW1tbW47bbbCjrW2rVrceyxx/qPjzrqKFiWhQ0b2q+Cn2h/jEDozOKqrRE1kxZsruA6k5Ic9WdV5VE/rMzZlrbFIkalQDRyFU4jWrp1DmMM3z5+ePQ4eruYHWyfOfRjhvfEby//Ul7P5eFXVzY5Nf6vSzYh7XlY9PmOnOvzwfgQFfJtPh9/q6bI1ZYnTNhKoZCoWkvbhmcstobmonFdlZoOMkPdVNN8Ld4KbUac7+zDYmCc0YMUoPldp/ykdnHXReiuFkJhr6tG3RIn7UmkPM+3XTA1WpkzCJUIC2YeRpo9m9ovaSJp2e7tnbkGq5gULK6aypu+//77BRehu64Lx4nWzliWhXS6czuvEs1jRERbitk7O8ZhvRCRljmTEsgWeWWxaJ2ZI1RRu3FvB6KRKzuUl+ScoU+ZEmvXTB8ROY6pBwtHrjIbOX9paM8WfcgMLb09/uzVVXhj+ba8jtXkOTLelNuTls6SmeLIl5aiXMub8OVSH3ZNR9N21aXwm3/tH75Mxeb/Ptx/ivz3NqSLeg/7h8o4pBFDfkouErkK7BmC9jVqFmHKk0iFWuCoSJSKSvkCyjONoPU+roeU9smSUgYpRnMuBGKvxefhP+56givvgnZji8AYw0EHHRQRWK7rYs+ePbjyyisLOrmUEjNnzoz0JKyvr8eVV14ZmYX4hz/8oaDjEh1LUkeuDg01yu1qmDY6hQTA8hGbmRYTtk4LJhwRRK5E7sgVY8DgnknUNqrmzSWOwF7dJsiPXIXEleAsUjdVzELhzKhW/26JrAasLfH84vU5BWm7kMd7u+tJfLp5d0E9+lpTEyUl8Nhbn6GxmZq2f3yy5YBLCRq27M7dDaAz8gttFfKt44YXrXF6GFPLZG5g8yszBe0s8KOS/jZqhYQS8UA4Aq9sGFSfZnUQCelHqVKuhMVNrVdQb8WYsX1Q1fScSUg909AfJ0IzCNG8J11XIO93rgceeABSSlx66aW47bbbUFFR4a9zHAeDBw/GpEmTCjr5JZdckrXswgsvLOgYROejNCZQ3SOJwb1KWt54P6Y0Joo6mw3IFjimED3pWKG0YCDAbMH9N1LOVOucTzbtBgNwxqH98Nv5qm5E6MhVLEfT6eDczY+te9KO2CUUwva9hQuBtdv3XcuYfCTQos934O0Ca0Ja84U85aFZYQU0X/NGdD4+2lCDsf0rWt6wFQQCK/DEMhkmE80K3NQB831M6tpJxhiEHyXlvqmoMTFW6UHPP046VFvlauEWCDoj5IywCuwZsry6ZPGK0jsjeYsrI4SGDBmCo48+GpbV9m+Uc+bMafMxiM5HSczCsSO6vp1G3Bbt8m00jC04OGMoiYmcaUFApfdSrpoKHXeE/4YV7odn1IMjgshV5thbalhcFm+9uOrsvPZpy8XHralvalW2owt/4ByofL69th3EVfRGUT0CwxYIMohcIeRHpW0bVJpPNWc20S3GpO+F5VgcHjP+cSpKFfMAqbdnYL45qSEtlCjzz6fP70fSwPz3p2JFr9qaUlz42Q78a9UXmDg0v5KIfCm45mrv3r145ZVXspb/7W9/w4svvliUQRH7N33L46gsL7x7/f7GvhFXqt+gOpdaFk4FmnEASizZ2uXdRMAOqlQN0WcePRgAIu12Mkfe0lNpTbPsfI+9P1DI5AVDIdfMpGi6wKUi9hV+nZV5qH7xzTxlNC3o12UBfoTKzBZMuxKptAfXr5/S7u6hfynPC2YXGvsGGdg+SBnMVDTnzxhu8HvGNoWKpK27G4pWq3XeI+8U5ThhCg4/3XTTTfjhD3+YtVxKiZtuugmnnHJKwYNoycLhv//7vws+JtFxHCgti0xRe3tiC46YzeGE/K4yC9GTjoW9Da4K72sXd7PFyaP74qtH2hjWW4ksO6OXYRjz8HtfHoXb/vJx1lja8j6W2TJnf6S9X+tddSl0T1otpihr6lMtusgTnYvmGornQyF/e4HQUv/3ZNCmxiwPF7wDiESgjKWJ8HTUSkrYIrBjANfiSftimebPfvsbT0WqvFAPHCmV+S7X8bVglmNm9C1/LnrsXZx/ZDXuOmdsAXvtOwoWV8uXL8eoUaOylh988MFYsWJFqwaR2Qw6lUph9erVsCwLw4YNI3FFdEoSjiiooL01OIIjpp3bzcxCkeFcmnQEBFe1FLZQ4srAWNSYNCzMShwLw3qXYsFnO9CjxPFTCof0K8fgnkmsyTDXa0vkKqytvjyuar9s67JKG4MWQiHXTAKobXSxvYV67TlvrSl4HK2BobAPO2LfkTlRwoin8PdaT9dXRSJbWtCo1jgMrifBAHgsiHiZ2YWu5wFaCKW1QVYqrVrleJ6EZExHuUzNp3aL1ylDT2ZEYUPpwJr6FM546C1MPag3vn/mmFZfh6fnr+064qqiogKrVq3C4MGDI8tXrFiR1WcwX957772sZTU1NZg5cybOPvvsVh2TINqbpCPaPUrHOUPM4iqCpUVTZuSqJGb5swqNmAoPK5y6DFs/uFJixiF9UBKzMKRXib+PxVnOhqZtE1fBvoN6Jlt9nP2NQi7Z++t24uMNNfBk27oPFIuJQ3rgndXbO3oYRDNoZ6msZeaLkolQqd+NgAo8qFxPFb5zaRqYa18sT80KZEz7W7nqLNyTsHT9FeeqFktCm4synR7kqqehqfky41B3tRJrL7y3Aet21OE3//oct5x2COIWb/V76b5oqN0aCv4rPuOMM3Dddddh5cqV/rIVK1bgP//zP3HGGWcUbWDl5eW4/fbbceuttxbtmARRTPaVTUDcFqhI2L6NQmZ6qiQmkAgJPfO7abfDI0ILOHVsFQDglDF9EbMFxld3Q0XCjjSIzuVY3pbMXlhcHVrdrfUH2s8o5JItWV/TpmtcbA4f1L2jh9Cl+GJP+1hINCXgM2VXpg+WP5PQU6k8V7uyR9zZveCnJ5X3VdhMNGwwajyxTA2WaZMTuMKbcUUjb6O/9zdc9dR7rS47GDv75dbt2M4ULK7uuecelJSU4OCDD8aQIUMwZMgQHHLIIejZsyfuvffeog5u586d2LWrcAfj2bNn+55c5l/fvn399VJKzJ49G/369UMikcC0adPw0UcfFXPoxAFAMrZvTFJjFkevULuezMhVacxCIlTwbkRfRcKG4CzyjZAxhpmTB+OiLw3CYQO7RYSa+Y1rD69MPE9iXCtmPM04pE9ENPQscfDVCQPw36ePwpfHVRV8vHxor+MWyv5sjmgLjrMP69fRw+gy/PpfnzfbZmn55t34+9LNqq6pSETSgQjqraReZvzo3NAyU+SuRJKnolNShorWg+bPfr9BKf1idyPMTO9Bvzg+NGsxc4wvLdnUqVPQO/Y24vG3VhdkKdOqtODbb7+NuXPn4v3330cikcC4ceMwZcqUQg/l8+CDD0YeSymxceNG/OpXv8LJJ5/cqmOOHj0af//73/3HIjQF/e6778Z9992Hxx9/HAcddBDuuOMOnHDCCVi2bBnKyspa9ySIA47SHAKkPYhZ3J8RCGRHrkpjFhKOQLpevT0Zs1LBGcriViQtKBiDZTP0KHEgOI+sM79yxnDcwX3wz5VfYPKwnvilrvEpT9g4bVxfbNndkLMVyJnj++GdVV9gc03wDX1En1KM7lcRabgbswSG9ynFtIN6472MRsTFIt5JWi9tbadoxb5ieJ8yXHv8CPzPK8tb3phokTdWbMXxB+dunv7XJZsAqL6nbYnu5vKPMlEqxqLRVNeT4CKwSVB9QyU4Y34jZyWc1F4M8Bs6cy79yBT0dkaUmegVg3o/MVE0l0vfO6t1z639JNjmmvomZ7lf/dQivL3yC/zfhxvx2AX51Yi16tOBMYYTTzwRU6ZMQSwWa3Pdyf333x95zDlH7969cckll+Dmm29u1TEty4pEqwxSSjzwwAO45ZZbcM455wAAnnjiCVRWVuKpp57CFVdc0arzEQce+6p3YmZzZiujoN1Ervbq2gMjLARnKHGiLvKWYH49BtcF8IIHha2AegMuj9u4aNIglMVtfKUujcXrdmLqiN5Ixmx8dcIA/OZfn+OLjG9xRw3pAUdwPLtwnb8s1ww7492lztU+NWuctc4Vvtis3lp4EXxn4gCZ+LvPWLK+pklxZahtbL7PZSEEvf7UY0/KLPsYU3huPKm4BFwEEae0J/1ouZQMcZ0qtMD1viE7Bin96JXrKe89CTM5QqItdZvtzWkPvokF352RtXzt9lrfPHj+mvy/DBacFvQ8D9///vfRv39/lJaWYvXq1QCAW2+9FY899lihhwMArF69OvJv5cqVeOedd3DnnXe2OpK0fPly9OvXD0OGDMH555+PVatW+efatGkTTjzxRH/bWCyGqVOn4u23327VuYgDk46ynBAZPlclWlxljoczpmc0BsttwX2fLMaitg2m2D1c2G5zhv7dEzhtbBVK4xaS+jwDuieyxmVxlvVhHE5nGhxdvMoYQ/9u2cdpDf26Rb9xMm2U2JE0pj0sbUMz6c5Aa7y9iOaZ98kWbNhZB9eT2FGrvqAUuxl1uKYpVxrO/DT1V64M0n3hXoSuF8wgDFJ+uhg+lCoM112ZdKGxaPDFVqjWKxc/fXVFi8KyPSNX25qIMs+c826rjldw5OqOO+7AE088gbvvvhuXX365v3zs2LG4//77cdlll7VqIMVk4sSJePLJJ3HQQQdh8+bNuOOOOzB58mR89NFH2LRJhV4rK6PfHiorK/HZZ581e9yGhgY0NAQvQE1NDQBlHZFKdU3naqLtmHujWPeIdF2kUsGbjM0kbC4Bz4ucQ3ouHNvC3rTrL5euevPyPBee60JAQkoPnufBc9V2nuvC81xAepCep3435+ISnudC5PpaJj2Uh+rQJgzqhnH9yyL7AwCTLqTnwk2n0S0hcOKoPnj54y2ZR4vQpyyGXqUOPt6YW6wcXl2BDTuDVCWD1+H1Tk+92/z7SWfGsbi6RzyW9foRbeOD9bvwwfqglnhA9wTW7QgirOrvsflr7urZvK5vPMsigirSbYEz32fOzCRkLPhyKHWludRN4iH1MaXwRVeK6QiYBzQwlRoUnKFBBLWaridR1yAhoFrlMOlBei4Y1BcvVwJcehAcSLvZz+/HL3/a4rVr78/ZXMdfmRF9zncMBYurJ598Eo888giOP/74SKPmcePG4ZNPPin0cO1C2Mh07NixmDRpEoYNG4YnnngCX/rSlwBkRx1ML6bmuOuuu3DbbbdlLZ83bx6SyQNnejnROubOnVuU47gessTN+r3AxlqG2MbF/rL3tzGU2sDuFCDWKbuTbVp/LN/KUb9BvR1vqgPSHsMmW+KvXyzBhr3A8u0cO+ISCQGs3Rv8XdRtkFi3l2HXLoZML/ElH3yArfUMx1Qqf52Eux2rVpqp/MGA33h1HpZ+wcA2SizdzlBbz9BSEL2fXYdKXoePm9huw4aNkWOsXbsWlRawqfDgfNHYVdc5p4jng/RcLF++AjEh0eC2/PoQrScsrABg2/YdeGfvdnSLBX0Am8JkZJpuJqNSc0GNPPOXhZcAwbnMe0v4Fbd1s2bOgLgA0p7aPm6pY3Mok9CkJeHwYB+Lq3USwIpdDIPLJModYOlmBqDwsoq//vUltLKaKc/j/zXH0uj5Xn45v9mJBY9y/fr1GD58eNZyL+Nbc2eipKQEY8eOxfLly3HWWWcBADZt2oSqqmBG0ZYtW7KiWZncfPPNmDVrlv+4pqYG1dXVmD59Onr2LG5fIqLrkEqlMHfuXJxwwgmwbbvNx8v1RWDV1r34ZNNunDo2qDPkH21Gv4o41u+swylj1PINugZp56L1GNu/AhZn+HjjbjSkXfQui+HUI6uxfPMe1H60CUN7laAsbiG+LviWPb66Gxav3Yntq3dg5e6g/iBmcRxx+Dis3Jrbifqldav830856QS4H2zEsSN6wf1kKz7fvhdvbl6Xcz/DMeOGgTGGv61flXP9gP79sOiLTf7jIYMHonvSwfvzcm9PNI/gAiNGDEbSsVDbmMZGbMP762o6elgHBKt3M6zerVPvUmJEZSnG9CuPbOO6HlatWoWhQ4dCCJ4VuTIwsIgbrNmG67S8J6VulxX44dkisGQxxG2BtK6hKotZaHQ9WJyjLG4pTyzB4LoSpXHLn+gTt5X5scUZ/vLBRvx60Qr0LnXwt2uPwRcL1uGPn7Ucqcrk1FNPxn/86+8tb9hKTj311Kxl1/4zKqbCJUXNUbC4Gj16NN544w0MGjQosvzZZ5/FYYcdVujh9gkNDQ1YunQpjj32WAwZMgR9+/bF3Llz/fE2Njbitddew49+9KNmjxOLxRCLZdeQ2LZdlA9NomvTnvdJMu4gHose37YsVJTEsHlPyl8ej6lwPOcCtmWpN0BLIOUBlrBg2zYcxwLnAjHHhmOr3w0JxwbnImJGCgAXfWkQYhnbhhlVVY6PN9ZgaK8SlMRjsCwLtmVDCAHOWv4GK4R6qzrz0H5odD28uGRTZD3nHOVxCzX1KlpkiabHQuQH5wKWEOBcIhmj97d9jYlordtZj3EDcnuOCcHBufAbI2eSa9YgYMQVwGTgg8f0L5xzP21odBnjHAKqropxAXhqmWQcjEuAcYB74EKo9VAz9Dln4Jzj9eWqIHzrnkZYtgXOWxcJtaz2vQ/zeX/+5+qdeR2rYHH1ve99DxdddBHWr18Pz/Pwhz/8AcuWLcOTTz6Jv/zlL4Uerl24/vrrcfrpp2PgwIHYsmUL7rjjDtTU1OCSSy4BYwzXXXcd7rzzTowYMQIjRozAnXfeiWQyiQsuuKCjh04QrcKxVP/BMJypvoOR2YKc+SkCxuAXtKtvrmar4Jtr2FPL9C1UWwTLzz28P0piVrO99645bjj++N56DOtTClsw/80dKMxoc3CvEnDG0Lc8jjlvr/GXM8YwbWQf/On9DXqs0f1KY1andXLujGS+JlTW3rE0pj28s+oLHFRZhr4Vue0CWiLfEkQzw5ADAGN+v0BVxG6aNAOcafNRqes2dU2W8c5Ka/f3LDNTr/VtlepSHV//d9VvFuW1XcHy8fTTT8czzzyDv/71r2CM4b//+7+xdOlS/PnPf8YJJ5xQ8ECbY+3atbj00ksL3m/dunX42te+hpEjR+Kcc86B4zh45513/GjbjTfeiOuuuw5XXXUVJkyYgPXr1+Pll18mjytiv8URqkVOGEsoK4ZwCtHi3BdMyixUzSZUJqSBRYPalkUiVJZg/jnC34gHdE/665uiZ4mDQwd2Q0nMgmUKZ9G6D23GgOkH94kuAyIi0tbfvg3t3QOyq0KTBTsH/1z1Bd5buxPPLFhb0H4tCSojfMxmpi1O2M0dgG8G6puJZvz0Zw9qIRY2HE170UF4epvWMGYfu7HvasMszlZVhp100kk46aSTWn3SfNm+fTueeOIJ/PKXvyxov6effrrZ9YwxzJ49G7Nnz27D6Aii8+BYPEvcCM7hWDwynd4SataO+b08boMx7eoeMhFV+7NINCos4HJ96GY2lM4aXyhqZotA/OQzq4+zqLVCZpRsdL9yLNkQ1ARZImqQmuntQxTGiD6lvtdPJpmz3YjiE3YGX7l1D4b0jFqYFDoxVkICkvlu7dGGz2pGIWdB2yrjGu9bMXgSnulFqB3ZgaAvoScBz9IeWRnjM07t+wP/+bv3W71vq8vuFyxYgKVLl4IxhkMOOQRHHHFEwcf405/+1Oz6YCYEQRDN4VjZkStbi6Ow6BKcgel3toTuWciYcnJPadUV+FzxrKLWmK3OUR6P1iZYGSnETGzBlSO8fpf104s5dvn28SPw3MJ1EQNQSzCkXJWuYDn2G9anFB+GprcLERVgpTELO4vsJXQg0S3pNLnuzEP74SevrmxyPdF2Pt9e6//+lw824lvTh+a9b1OO7dnLQj5UzLizq3VeqLGzsWcI9xq0tMt72jPRK+PQLrOEn+lluD/w96WbW71vweLKpNzeeustdOvWDYDqATh58mT89re/RXV1dd7HOuuss1ROthnZ3VFGjQSxP2ELjt4Zhp2W4LAFi9Ri2YIjpb1xEo5AScwCg4pc1dQr8RGJXDGGqoo4Nu6qR0lMoFtCRbpG9CnFtsHdUVWhvkHHbN5szVXc5hBMFcECgZEokP033iNpI25nCEXB4HkMaSnBWLa5ZeYxLN3aZ+bkQfh08x5wxrCug93auyqZHQSIzkeuj9jM+FG45yDTLWqCyJWqYzSNnk1bHGMSaro8mPY3ykCU64hW9P5QjZz3D3HVFgr+q7j00kuRSqWwdOlSbN++Hdu3b8fSpUshpSzYQLSqqgrPPfecMjDM8W/RovwKxwiCAPpnuKabps2xjL6EJsrkhFJ8yVhQc2V0immNU6kLaJOO5U+1Zoxh8rBeGNKrBICKahlxlfl9yETVhAgEmCNUIb3gLEtICcGzPgxilvCd6RljWbMVQ7PN1di5SmscNrA7ThlbRQXZBWJaKLXXl9tpB/Vul+MeKBSzuTOQ28U9XHtl3NWBoIdguKbKuLBLGTRzTrtBE+dwSt+T2dGsrkjB4uqNN97Aww8/jJEjR/rLRo4cif/93//FG2+8UdCxjjjiiGYFVEtRLYIgAjIjR8avJku8cKajWmo5ZwwxSyDpBB+oQhezc8ZQkVApwBLHAoNKIYZhTPlcmfOHmybbIiiWF4z5YzJpQcEZqjNEoarNiv7dx6ygED/syQMAQ3ppA9/QLpYWckyPf2RfmqzSHCeNrkTPEgfTRvZGVUUcXx6nPADbQ1qde3h/HNaGxsQEML+IDc+l/i+zkD2zhY7ZLqi/CoSWaZVjCtxNejDtSr8BtCHzcWdiV23xSgcKFlcDBw7MaRaaTqfRv3//go51ww03YPLkyU2uHz58OObNm1foEAmCQNDgObPBtOkpGK57ilncF1Gc6aiXXmeb4zgCnAGlGZ5HcVuoyJUWPEakqX0sPwJmceYXvau0oErvJRwLZxzaz99HMJb15stD+3IWLbRn2tYhvI9jqbQgZ0Dc4kg4hXteTRrao+B99lcO7luOC780CIcO6IavTxyI3mUqxezP6iyiyhrQPZnVH5MojPlrdrb5GE3FLWRonbFhCO9jIk9mZqGxZjDCK+0FoiodShUaMh93Jqb/+NWiHatgcXX33XfjW9/6FhYsWOBHlRYsWIBrr70W9957b0HHOvbYY3HyySc3ub6kpARTp04tdIgEQSCwRsglLGJWeOafiu7YIQ8riwdeVEyLLROBKs2IXCUdodJ2+pM4LOZKHAFoMSR4KHKlXaU5Z0g6VpafVuabL0PQniPTdqFniSq2Dn8fVjVXSqgJnSIslOZmP3ZVjHkk11HGcPr10qMHF3y8QT2pLVh78f4XrN0Kw43A8mTYpiFU9I7Ay0pZOYSFlkoF+kIrY4zGsqEzEp6V2VYKLmifOXMmamtrMXHiRFiW2j2dTsOyLFx66aURX6rt27c3dRiCINoZK4fYMVQkbF/oMKhC98D/ClqQMH9KtiVUtEuJoejxko6FklggrsKzFhOOQKo+Dc7UrEWzTcxWkStbMCScaDG8JbJbeTDGIEJpTM4Yzj28P9Z8UYtpB/UGg/L0Cj93lzM9S5GBs8KE0mXHDMayTblb+XRlwpMZwm2WGBjKE9GIZZ+yGA6qjKZbK8ti2LxbNbfvnrRx+MDu+OyLWmRCE5XazsY6hp+8thonHFKJURntcQrB6JzwSxJErsxPCU+qDaT+nwcV1TIRLOj6K5Na9KSE9CSC7oKK/Wm2YFsoWFw98MAD7TAMgiCKjUkLxnOIq/HV3SKeVSY6pR6bFF4ocsWCwnMj1mxtjxC3OQZ0TyLtelkpu6RjYXd9WqcFAxEVTlkm7Ki7u0pJZhes26GaK8EZBnRPYnx1N99CorI8jmkHqZohSzCkPOanH3N9lh81uAfeXZP9BXBQjyQG9ijBpwekuFICS+pGwM3Za3ztqIHZCxlw3pHVWLl1D44a3AObdtU3uf/ofuX4KORNRrSOuUs35xRX732+AzvrUurLR55iVkL6f3uZ9c6mDlJZNQCQQWG9lMHPtOfpdKBZ7kUi0Wldo9XVKVhcXXLJJe0xDoIgioxJC8as7KhNZXk84tTOWCB4GFMz9hxL+doYwWTEmBFZMUsg5aZhC44eJQ627WmAbUXFlWl1I3TkqpuOfthCvYXHbaGMTsORK84j0mpA9wQYg0pH7grSVmawggeC66ihPVAet2EJDsv1/NqrXEwa1jNLXPUpi+HM8f1UGjFjNzPdvCvDdJ0aYwyuh8gkAsiWP6BjlkDf8jiqKuKQMjslPXlY0OD++IP7YOvuBmzRkS6ibWQ2dH99+TYAwMF9y3zLlPyOk/EYElKq9whPAgLwGz6b+ivPi9o3uJ6HtOtpg1KWVdDemf+MPv+iFgN7JrFm2942HSfvWLnneUino725Nm/ejNtuuw033ngj3nzzzTYNhCCI4mKFrAsyMSk+wNQwBWajnBmrBuHXN7FQRMoRQq23guL08rgFR6j+hpwx32zU4hwJh4NzJahKYpYeGweYilxZGTVRtmCRSNP3vjxa1XrpfZWFA0K/K6FWGrP8GiuLq0J5x+JIOiLLYLUplHM8y3nNejRjpNlVMCLVnwyQI+qZi1PG9EXvshhOHF0ZWd6rNIYpI3rhlDF9cdW0YZg4JBBXjDF8feIgTBnRq6jP4UDkjeVb8fjba7CnIY2VW/dgb6iPZmPay+sYJhXv/5ThdQF+QTvCswgD3ytTq+X6Ng3RyFVnLmgHgCn3qEl0M+e826bj5B25uuyyy2DbNh555BEAwO7du3HkkUeivr4eVVVVuP/++/HHP/4Rp556apsGRBBEcbDzLMg2NUyZNVeOxdHougAYRGjWoGNxxG3hi7GkLZSflp6BaOni94aUFymEt0LjMSm+mC1893aDJXhE3JQnLNSm0v7+JnVlxm50k21x9Y065ONlZjDGLI5rpg/HK59sxtKNu5u8FuasuYJdXb2+3aR/zbUXXIkrZX0BNPcRfVBlGQ7uWw7bYmhIeWAI6uYOG9gd3ZI2dtenc9b3HDawOwZ0T+Kpdz9vp2fW9Vn0+U4AwGNvrs5r+9rGND7fXovhvUuzTGCNQzsQrX00xezh7SRTy1wduQp6DQY/GzNqrlSBeydWV5o1OWoFCyFvcfXWW2/hoYce8h8/+eSTSKfTWL58OSoqKvCd73wH99xzT97iatasWXkP8r777st7W4IgFPlOd2csiACpxwx9ymK64F1FkThn/vFswTCkV4k/syapC8ltHbkygmonUrCEMjE1bXjMh6olOFxP6lmLGanEjDofHqrXMs7uYcNTx1JRMIszpLWwsi2OmI6iMabSU0MSJTju4D5wPYnBPUuavSa5UomZdWCZnDm+H/64eEOz27QXleUxbK5pW3rN0jV2yg1fwrIE4raa1ckYA8/jA7GpFKylo4tZbq85qEjYbWqYS7TM7xeuw47aFDZXN2CqNnTNbImT62WSUK1tuPai45KFrBtMgbsuWtfeVwzRNGDa9Tp1WrBY5C2u1q9fjxEjRviPX3nlFZx77rmoqKgAoGqx5syZk/eJ33vvvby2o1klBNE68o1cmbokExmqSNg4akgP/W3U1GQFkS3b4rAt7he8m7oa2+J+GxyTFhScIW4JPzpmBIol1JuziXRNHtoTT/5zDYbpb9LhYloVSVP7qChYSAgCITNU3eNQcJTpFKIZo5+O5BxfnVANzlizH+C56rhbeiuyBcflxw7Bo2/kFz0oFmcf1h/HHdwH3/pt7vdUI1bK4mpyQVMY0WrSrI7FEbOEfw+0VHLFWfS6MRaklkyjbvMBHrb5yPwU71nikLhqZ3Zos8wVW/b44qop/BSgeRxaZ1rZmBJFT9ssSACep0RW5h1nzEc7Mw++srzNx8hbXMXjcdTVBb253nnnHdxzzz2R9Xv25D+7hsxBCaJ9sfKMXCVsAcajDu9Jx8LehrRfcxVuzOzonoW2Nh411gyqj6HwZwaafVwR+FwZgeJP+WeqUL5nWQwvXTsFn26uQdIRkVRF+EPfnCs8VuOZFbMEpAQcwRC31e8xW/VSLItZaEi7/rmbnATn18lnb9BUVMYwrHcpdhTRJydfjh7Ws1nhd8FRA7GjthGfbNqNxWt3AgC+fdxwrNiyB39dsglHD4vWQQnGAA4/vWtq3Lwc6soIJiOWwhHF8OencctnUgZRrBBhe4/K8jhWtbGYmGgd+Woez5PgnOlid8CFhKUL2l1ttWDSgvCQo+aqc4ur++Z+2uZj5F1FcOihh+JXv/oVANUCZ/PmzTjuuOP89StXrkS/fv2a2p0giH1Mc9Pow8T9mqjo9mFDSTMDD4BfuD6wRxIj+pT5/lKO4OhdFvNrnmI29yNWQZF0EHEyhfSOpWqj4o4A5xzlcRvXHT8C3RI2TtIF0kGRuvC9q8wYTWF9RcLWkTBV+5WMCcR0VK4kZvnbcZ3mbA4VZYvS0tUc0qukVU7wbcW0KWoKx+KoLI9Hxs8Yw4jKMlwzfTi+NFSJKyM6zethIpBcW2NYnGHiEOVaf8Sg7v4+TEcWI7M4AZ1OVL+HhbVx1A8bbpTELJx9WD/82xEDcPigbsW4LEQeMAY0pF28uXwbtuxu2jYjjIlkZTu3q+VmNqAxC82MUqk+hV0/I5W3uLr11lvxwAMPYNiwYTjppJMwc+ZMVFVV+euff/55HH300a0eyBtvvIELL7wQkyZNwvr16wEAv/rVr2gWIkG0knxT6glHRycyIl1hgdE9GRhIcmPOyRgGdE/4KUDGGPqWx/0olSM4LBGINlN3pbY1DZhNKo9FxNbwylLc+2/jcGh1N7Wcm8iVpdvwMG3nEHhZlScsv8Fzwla9Ek2Kq3dZDI7QUa+MgvlcNJUWHN9MTzzHav6YvUtjza5vLcaNvlA4U95lQTQxmMhg6tyM3xnX4nbS0J745pShmHaQmuGnq/Jg6fo2U1eXORxL3y8mFRgWXobBPUvRr1sCFuc4mHpBFo0l65v3Entz+TYs/HwHfvvu2ia3CXcaNNEqIBqRMo2bPRkuaA9ShwbX8+DJ/GYw7s/kLa6mT5+OhQsX4tvf/jbmzJmDRx99NLJ+/Pjx+I//+I9WDeK5557DSSedhEQigffeew8NDaowc/fu3bjzzjtbdUyCIPLD1ERl1miZD0LBGbpl2BDYQtsrWDzioxXX0SpbcMS0zYKJMikjUt0cGsFsPyXWgg9lP8rFTQse5b4uOENJTKB70oHFA1sHc/6kYyEZU+eM2wJJx/L37560/aiSI5g/i/CQqtwf4pxlN4+O2wKDm2nnYsRbLmzBUJ4o2FYwL5QoyuOtPEPMGIsNIzTDtXXmdTMRQ1PLxrma7MDNzE1u0oFRI9rglMZDLXgtzTKG4B4D8k9jE4WxIsOaIQwDsG1PdirbuKxnLmsKvy2ODKwWTF9CY91gcD0cEAXtBU0uHjVqFK699lqcd955/h+X4Zvf/CbGjx/fqkHccccd+NnPfoZHH30Uth18Q548eTIWLVrUqmMSBJEfCYfn/GA0BeiWYFnprnAz5nAUKCyoYpayWPD9s3gghMJCSuhietVrMKjv8g0tAXRL2rA4Q/ekg95lMXCufa8YfD+uEsdC0hawuPK2qkjYqjBbi4KKhOWnEU1J13Ej++CrEwb44zfPhLHs2VItBQIdq/m30/YqMzGvw8mj+6IiYePkMZVZ2zAGHNJXuXhXluumzL4wCiKLKh3IYQk1OcHSKdgy7WPGEMwq9I+NIMoZvHaBcMpcZiJkJnppxFY4pTi4V/OzOYnCaEh7WPjZDry+fGvkS0NNfRq1jU1Pcsgk0/tK6miVWR54YEm/cD0rLeh5nb6gvRi0z1epAlm2bBmmTJmStby8vBw7d+7c9wMiiAMI42WUWXNlPuxiQsCLtpWDLTikbncTxjSENr0ITY8/AL7gMpgPVBMh4TpdJIQSUWt31Pl1Wo5QRgAxS0WszAf+ngYXMZujLsWQjAnYlhYAoS7PZjZkedz2C9/TumWOJTiG9ynNuiaMMfTvlsha1hzNRV5y9XcsFiZtd3BVGUb2LQNjwEtLNke2YWDoXRbDlVOHImkL37NKhJ6TSeEKLXBtnW40swYB1xfhJvIYiCjm+485FlctiaTUrwX3BWDaC2rvBDe+ZEDaC6JfUgJj+pXjpSWbWn1NTGsmQvF/H270rVN6lESj0DXNzCAN0+i6Ea86AHh/7U5s3t2AGQf3gTJd0AIL8FODmX8VB8rr0ils8aqqqrBixYqs5W+++SaGDh3aASMiiAOHmLFKyBJX6sPOtoK+ggZLRI1HDf5MQqE+kJVwMm7tLOL4bZpCmzQizPk4R7ek7dsBcK5+JnSrnKQjIHSRevekrQvclYCxuSpoN6LBr8kCUJ6wlVgQPCKEGBgOHaAsZSbpmXMMwKShPXH5sUNC2zWPqSnKxemHtt9kH8Gjxqq5/LjMuEocy2+AbcSt2c94iRk3flPY7gjuG8QyfZ8EdVp6e/PaCR60UQL8Wi0eFtDMFOGbsZkIabjXZdtThFS3FbA9NIv1laVbmtxub0Mary7bgq27GyJ1Uq99uhU/mbcS63fURbafu3QLPli3C6u27Q36CyIocAeyrRc6e/ubYtEpxNUVV1yBa6+9Fv/617/AGMOGDRvwm9/8Btdffz2uuuqqjh4eQXRpTI1TJmZWly14VhsUYxaaVQSva3NMWxslwtQ6W/BIs2hzbt9gVJtVqiJrNSa/Hkyo2X8mAiK4ikRxU4AdEgQ8ZCth0oBc13vFbO7PYgyeJzBtZB/84Kwx6KejVYypQv8vj+uHft3iAIAx/Ssiz/Vbxw1Hv4p4i9cRUAX17QVnPDLzLh9dwhCk48I1TyZ6pQRy8NqY6FVMCy6GoD+kKmTnviizQ/0cTZskv2ZLv642DyJYZpaiHaqFy5fjDu6Dq6YNw9eOrMa3jxseWdezpOu3Kyo2T737Od5ft8t3y/e0bcJ72gH+rZXb/G3Dmb36lIqFhkWUKW7P1FH7gxVDMegUacEbb7wRu3btwvTp01FfX48pU6YgFovh+uuvxzXXXNPRwyOILg1nuWfHAfAbNmdmtdTsLy+n3UOPpKPcm00Rs/7YV6klBYMqpgo3hU65ni5yDoRRTM9ms4USWtIL3N1L4xZq6lO6tov5Yk4iqAMzNVfmTb8kZkVEnnr+atu4Lfy2LSa9xRhw7mED4EoJW3B89kXgvzS6Xzn+9pFqJg3oIv8mrqPFGUb3K8eqbXsxrHcJVm4too9TKBoET+YcA2eAazZnwU+TzlPjD1K0nuT+hABjbWFMX20jknggjByLozGt7oeYxVHLghmewT3E/Vo6k8rk+nUx6UbOGdwC0kZK5HH0KVcit8QR2NvoYkD3piceEE1T2+j6v7uexK/e+cxvth4mWzIpsbV9TwNKYjZiNvejUzJDYLmSIldNsnPnTvziF7/AzTffjO3bVVf5RYsW+RYKhZBKpTB9+nRccskl2LZtG959912888472Lp1K77//e+3ZngEQRSASQXlXNfEcluY4vPst5CyuIVuCdsvgDaHCKcWTcQk3PvPREH8baAEjzEadaxQcTwL1pmZaMZ2IXwMI7rMsvK4SSMGkZVwFM0IOc5YJF3aLWlnRaUyvbDUjMfc14tzhuF9ynDl1GH40bnjstYfNbhHzv0ymXFIn5zLw887PIZBenZjeJlviYBgUgGgXktbpwBtHXGyrSDN61jcT6madJ8f2dLC0tL7m5SxLThsHojfWMhh37wu/oxRP50YvYYTh/TAKWP65nV9vnbUQEwa2hMnjKr0G30TrWPDzjrsrE1Feuw1F1fcVZfCL95cg/95Zbk/c9CfdRi2bKDIVW4++OADzJgxAxUVFVizZg0uv/xy9OjRA88//zw+++wzPPnkkwUdz7ZtLFmyBIwxJJNJTJgwodAhEQTRBsJRnEyaEgv+h22OGXKcM5QnbAzrXeKbTAKZkSu9bUhc1TZm1Czp+ijGAn+swCeL+U2Gw5YNme7rPCNCUqpnvZm0V3nC9tMbXEddJOALA/84Gcc1y0rjwbd6U7OUC4sxpJlE/25x9A2lEg3HDO+Jd9dsz7lvmH4ZRfb6MgGAPwMyPIYhPUv82ipf0IZSpjy0ztbpP1uoqEPQakgJJpNiNREozoJIlKOjhzGLI+3qlLGeaWpbzBe0KiqmUoSOxXUTX0BI5tfxcSYjQrYiR+QkF4ypWaVHaaPTg/qWYcmGGqzfWdfCnkQuckWXNuxq2mg0sx7L7M+YzLm8q1Nw5GrWrFmYOXMmli9fjng8eJM45ZRT8Prrr7dqEBdffDEee+yxVu1LEETbaEoQNLfO4qzZyIAtOLolHQjBIgLKwHTUxwS+jICKaitTTxX0SQx7calISZAOVMeJjtlsb8ZQpmcaOkIgbgvtTq+fK2MoiyvLByGCD3tzHTJ1piUYLpw4EMN6l+Duc8dFInGZmAJuS3Df0d5wxKDuEIJjbKim69QcdgrmeRwxsLv/uHdpTAlgLZIsHq1bMsJTFb2HonXmGvsRPzXxwBEcpTHLr7tiUD/jtppIkLBVM2dLR7M4V1GrpHbON/+EnrxgCtzDtVemSD5um8fQUUn1WvOMa81YfjYWpmYvfK2OHdGr5R2JnDz/Xu5MVIOur8rywQr93pj2sG1PvW/JEEkLel4eLcD3fwqOXM2fPx8///nPs5b3798fmza1bupsY2MjfvGLX2Du3LmYMGECSkqiHif33Xdfq45LEETLNNcmpymxYImmozQGE9mqbdA9/TK29/vYaRK2iOQdmBZV4ZmM4WOYD/bwjLfMCJPI2C/hCD8CY8RVQ9rT26rldSnmpxvN8PxZcTw6XqssjutmHITjD+mDHbWpJovJTXsY08D49EP74c3lW3HehGrEdEHbYQO74cP1u9A3IX2D1EwYA6Ye1AsDeyaxdXc9RvYt913SM2fyAfCFTjiFGTS9Zr4gjAhVzn1RxJiKOCqBpF9ToWZluvrTNWZzXxw5FkOjy/2JBial6As/HkwskFKgTnhwPQ+WUKlIwRlcGa0ba/4ui16bzOsffnzEoO5Y+NmOPI9GNMXKrXswql951vKwYHrk9VWoS7n4+sSBqO6RjKx0M9VWF6VgcRWPx1FTk22nv2zZMvTu3Xx37aZYsmQJDj/8cADAp59GGyYWY0ouQRBN09zfWHPG3/n+bebaLDMtCOhUYygVl1kvlYmpxRI6ygKoBsDpUN4hUzgmHQuNaU/PfuNw9GxGYxnBmeubYRpRAAQRoHCNWUlMFdSrlFqQIsuFP0tOj/OUMX0xrn8FGtIuPKnO3z3p4Mopg7F65arIvtdMH4aH5q0MjsMZBvVMYlRVOfZo522T4jP1YpOH9cTa7bUY17888BELCU1mIkRmXy1US2IWLB2p4jyYVGDpejJLcCQcDttifoW8LQKbDFVj5UEwlSI0PSZtwXxBzqDqq9JC6ugg99PMYQ+svGjhFgzHQo8Z3gtLN9ZEiraJwnn5480Y1a8c63YEtVhgEgj1C6xLqWu8bPNu5XcVtmI4AIQV0ApxdeaZZ+L222/H7373OwDqDfbzzz/HTTfdhHPPPbdVg5g3b16r9iMIon1pKTqVDznFFQt8kMKEneDNLMCmNJyJjlic+SadMVuApb3INmGSjkDa9XzPLeOJlXRExEXc2Dq4ngxZB0TFZtwW2NuQjhidNnW5VP8/D2VxS6fgAodyO5TKM5Gt8GHCnlx+2szLmPUHYwUhIKXEkYN74MjBPeDoOjdLi6dG1/Nr1YzgCZovs9DzFr5rfkJfJyPejIeZlK6/T9wWqq1Q6Bgx7YsVE9yPTJkUYczmSHnqdfB0SjhuC1iCIe1FRXHeIh5BNK619dIXHDXQtyHIRc8SB7vr0zi4qgxrt9difHV3zFvWtG9UV2VzTT2eW9TyBLYFa3ZgwZpotNC4und1ChZX9957L0499VT06dMHdXV1mDp1KjZt2oRJkybhBz/4QXuMkSCIDqKpqFEh5Da1zC2akqF6pIQt/FRX7rEh+AC3TM/C5tvQJByBPQ1pv/jazHwzERtlbBp4ddU2prX/ky7oDkXWjDmmL2x4rmeqt9XCo8RRLXvCPRdzzTIMP+IsWlgvGIOri4SN1YUp5pcMfsolKGJXgijtSaQ95qcJTbTNEsyf0WeuS8r1fNPPuC3Adc2Wo9OFcVsJT1NDlbCFapvDTT1W4HdlZhyaSKTtR7j0LEItME3ksjHt5S3qOcIiLDBGdZv48G7pM70s3vxH4tDeJTh6WC9IBOc6EMXV6jZYifz1w43YewBEDwsWV+Xl5XjzzTfxj3/8A4sWLYLneTj88MMxY8aM9hgfQRAdSDHEVVOfk7mkSDhiYYxLm9rfREgA5SIPICvqk0kiZN9g+iCa1KOpMWI6QpN0BGobXeX8rtNtw/qUorp7AodWd/PFSNiXy25C2DkibKQZmK0Crh+tilybHHVjZrkRchHHcz3mtCe1z5cu+OcMQqfclGAyESr4lglhV/1AdHFfmDmWEkISqtbOEkELISUauZ86NI/N8zUeV8aywdY2D2a2phUSdbbuYdmQIa6ajURFavSMFYfKWIZnqua6rrkQnOHM8f3wx8Ubcp+OmdfbiNvsbc4/shpPz1/b/In2c95Z3fLM1qZYpA1JuzoFiat0Oo14PI7FixfjuOOOw3HHHdde4yIIohNQjLRgUwIt1+JwCszWH/puE3O3/bY5COwkjAloUwgW2AHEtRBStgHwP+xVzRX3ey72LHV8ERCzOL59/Agcf0gl6lNuxMeLM5Y1E9DgWBylcduPUgnGfL8pEzlqCouFhYYSg40s6OPn10xZHF5KzcQy0TffLV//brlS1z4pk1AjJG3L2CtEa92YuS6CwfO0XYPgSOjaNsFUik/otKOt06xGoJnt1axDjpgl/aJ5E81Txe3S99gyy/3njKbrn81W4aiVJThSrtukKG+JIRlNo/t1i2PDzvrI+dTv6rUc0D2BdSEbgqqKBIb2KsGqbUU0iiX2OwqyYrAsC4MGDYLrdv2QHkEQ7Vdz1dTyiI0AU2nCptOCQYF4uK1O08m5wPfKtPQxNUfqw55rc1TmR3IAaEsBptdzP2Jk1gczFaM1Y5HnxZlvV6DEW9CXMWwlEVyb4HG4xRBjgBBKwJg6JRMlStiWL9hMVM8Yr5qZeLbFEbdUWq8sbvnPM677QPqF91ZwPR39vBnXgtcUqoed8bUXlm1lt8wxdhpGnMZtAcFNHZqaEWq2i/v9IYPn3NTMyazXlgXtewLBG93mjEP7IW5znDiq0m+PE04jm7otQ3WPBM48tH/k+pt7zJzj4kmDUBXyLmMMOP3QKjIxPcAp2Ofqu9/9bsSZnSAIojmam0GXSVjMcc58L6RcCB6dvZcv5oPeiCa/v6FeZqIfxvHdfOiHZ8QZ/6ew9YMp/s6FrX2dTGQr3E9R5DAfDbccCT9/jpClgSX84nJbKLHEdQ2UabQcswLvKVswJLX9hNnHROSU8Auc28NeWOGegGExZYvA70qwQOgFRe96ZqGZaajb6CQcERxLBKlDI+JM78evHDEARwzqjpGVZU1GP8MRS5MG9UVvKGVr6NctgSunDMOofuU4+7D+OHJwd5w5PmiqnXma6u5JxCKdBYLUo/qpzjdaWxMkbKGXcxx/cG43/a5ITV26o4fQ6ShYWj/44INYsWIF+vXrh0GDBmV5Ui1atKjgQXzxxRfo2VN1o1+7di0effRR1NXV4YwzzsCxxx5b8PEIgug8NBW5alFcscC7KReq9ii/c2WelzElmiRkpC9hwhG+75M6XjDbzZhrAtA2BVGPLdZM5MoRHEIETaaNqDBpuUzKEzZuPuVgnSaL2lMIXS8Ws1UdlJ+W0xElybWfF5iOCCnT1EbX8ycBCG4K6QWkBOJOMDvQRGfM8/fThX5Bu44QuSrOY5plB15XQb1VwrEgpdTRNHXNTK9HY+ZqooIm6hSzBBrSLiYM6o5hvUthCY6hvUtQVRFHVUU8UrNzUJ9SwI/Wcb/vZObzMK8P089JQqI8YePo4b2wuz7V5D2U+cqYNDBjTKcymd83slvSQa9Sxz/P0N6luHraMPzk1ZW5b8QuRKPrtbzRAUbB4uqss84q2sk//PBDnH766Vi7di1GjBiBp59+GieffDL27t0Lzjnuv/9+/P73vy/qOQmC2Lc0WXOVY1lYXJkUYVNGprmO3VLNlTmv0FExIxqCiEyQVjOYWW8VCRuMQRVyc66bUyt7BzOW7kkb/bslsH5nXaQWJ9ynz68N0vVdZiZfgBIeo/pVQEJiS02Dv8Y4p0OqVJ6UwcxDM3vREWp5yvV05E8Jl9KYBVdKxPTMvoQjUJ/y4EnppwUB+DMPw7VkqpDb+FIFUScTueER4cX9GYGOUPVUDIGojVkcDWkvmEGo9zN9C5OOgOtJCB4U4Fuc46sTqiE4w7gB3bB2Ry3G9KsA50zN3AOU07vgSMHzr3FWP0jOAE/ClcH9Vx53MLpfeWTCwaEDKrBy616MHVAR2d/UtzGoGYnq2nNwpgSg60p1raQ6QayJSGaXQ+b+ez6QKVhcfe973yvayW+88UaMHTsWv/71r/HrX/8aX/7yl3HqqafiF7/4BQDgW9/6Fn74wx+SuCKI/ZimyrZyRaQihcw5euVlbZ8prpqrfva3CURB2pWh2WrK1sE8BkIpMsa0QakHqU0/pfbA6pZ0/HPHLIHvnnYIfvvu5xjTvwI/1VELU39kolDmHOa8rueCMwYP8NNOgjNIGZ2BWJG0lbDjnqq5gvbqMjPvGENJTCDlqnGWxS24HnSkygKgoi02D2b8uR58SwoTRQtfVc7gz0oUOpIYCFJTCM/8GYM2DwxEHaGc3NV1VM/DEhwpTwlUYzBqWumYIn07HOUzNVT6de1R4qAiETTSNtEkIUxjbx6MOfy6w9hVSDCpnofnqn1PHt0XEmpWImMMxx9SiZPHMDSmozeTMUBVbV2CBtbm2kDomi2uGhQDwFXThvn3QVdFSrT4peZAo0Mr7ubPn49//OMfGDduHMaPH49HHnkEV111Fbj+I/zWt76FL33pSx05RIIg2khzBeaZZKYFwz9zkdVSBy2nBjlTReIWGBrSXkQs8BwRD1twlTqzOfY0SD+l5nqBODLnjtkcPUtjOGxg90iRumMFvfRMVMX8dCzj7QSk9Ye9Sb25nvrQ/v6Zo7Hmi1r075ZA2pPwpNTeUp4fQVKpRjPLUqUMHSGQZp4v5KTUthC6Bqw+paODUoki4+MVrlViodfBWEAIHrQIMulZU8MVs1RNlxFb8ADIwIDV7OfpujHH0nVnWvBKfc1VGjOIJnksOnPQCD4zPkeYGjzPF9DdS+zQ81CvmydVFE5F4KQWVPrAoVSixTlSLDp5qyJh69mm5vxBildw9VwZA+AxeJDgnKF3Waz5G7IL4EqJpRt3d/QwOhUFiyvOebOOuYXMJNy+fTv69u0LACgtLUVJSQl69Ojhr+/evTt276YXjCD2Z/KpgzKEI1F+WrCZyFX2uViLTpGcqcJzV1sJmMiUmS1XnrBCNUfwbQhilkBdyoUnZUhwBA2pjZmpGW+4KF2lFIMmyWamozIWFahtSCPc8sWkylSUDDhtXD98vr0WO2sbwTlDY9pDzBb+zEdT/2MiPSoCpaJJSAWzBxmDPxvPpPEYAzwZjdj51zJ8bfVrEp6RaFKmxtyUM+U5ZmnhJHTaTmoxmHKlErYeg9T1WY7ggUmpPt4envZnJgYmq2rftO6fEukz6V97AAi8sxK2hetmjPCvkcUZ0pzB86QWbGEvLOlHKj1P+rVTnDOce3h/rPliL8ZXd4MlGFIuwJm2orBEJJWs6rE8v81Q+Jr2rYhj0676Zu/P/ZHFa3d29BA6HQWLq+effz7yOJVK4b333sMTTzyB2267reABZP0BF/JOTBBEp6cgcRX5cM9e1uK50HKkLPDH8vwPdROJSToCpbFwyklHQzh8mwHXMx+i5kM9FLnSYgAAEo6FO88Zg7oGF2VxG7WNad/c00S81IxI5URv9uMMvhO6J11/hpqZCccYUK8FlJTqZ8qF7zJvi6AI3jbF4yywTgjc6fWMSAm4PBCXua6pf+10lMo3FxWBZ5fpP+gX1/uzKSUY45AWIOH5UUIJRMZkCdNCSImgcGG8caJ3BPe/wFuc6ZRjYIpqIldm/7pGF+VxG5wBextdCMHBXQ8iNNOTMdVMOByhM8/DXMdDqspxSFU5HD1eKQHPU+c1gtBEtBz9uhiXeM4YLpk0CF/sbURVRQKPvhHtHUl0TVrVWzCTr3zlKxg9ejSeeeYZXHbZZQUdb+bMmYjFVNi0vr4eV155pT8DsaGhobldCYLYDyjE5T3i71SAqCoIP+3DdCoqSHclHIG4zbP8tnzrAc4hhRmrem6mZY9KOwXu5hZnGNijDHsb035dkvA/uKF79qnWO5wFfktCR8sswZDygkhROLLDeRoxi/v1X64nkbQtCB5EgzwdqVHCSYmduI6yJGOWL/DSnoSl03rhOqbgNTHO5PAnAHCdfzV1Xua5q+sVmJAaw1b1vELpV85gMwbPDgSIeX7QDu0xxn3bB8FN7VcwC9ASHFLPUjOCWRmpSv+5NbCgjU94XJZuSm0mYnrm2AjuV+Ma70npn9e0DAI8uJ6xpGB+BNP1lON+ylWCVur7rHdZDN2SDjWNPoAoWs3VxIkTcfnllxe0zyWXXBJ5fOGFF2Ztc/HFF7dpXARBdCytlUitab1jPnibP67ZVn3Qd0s6enYagwMeFRk6yhTTgkvZJwTeSmbWoX88I4y0gLBEICgY4Ec3VHG7i7itHNSNOGCMwdIf4qUxSxXc+35YgX+U2V4Vq6v0nBGKxlHd8oKicxMdcqxAdJkaJ8CDF7KGyL6m0fSb+en4RejBJAGzzkTFzLXmjMHTdU5GoDEOeF7Q+oeFUqyOpUSfaVFk6r3CejthC90EWEcfQ8/bmMTWNSqndiWKPC0M1UEsLfxUZC8Q87ZgaEgH4hCeqdPj/oxGCRXtMpHCoG2Qp81mPQC68be+F5gn/a4ARNenKOKqrq4O//u//4sBAwYUtN+cOXOKcXqCIDoxre1P2JrAlUqhtVxzFd7eTP03/f6MG3l4e+NTJbgqhDeYVFgYk5YL+0IJznSxNAMPeWuVxWxdmB58SJtUk3GDtzkHdJQlEGMqcuMYYRFKUSrnc5VutDjzhZNJ3aVdHaXiqshcSIakCOwkmry2CHmPMdO2BhFxZLYz9V9mOWPa1ZxLX9QCamKBYEF0yLY4PGnEEBDXZqgmcqQEoK6/4kYgBbVvtlCTA2w/xWj6IQb9DU0qVAgOIdVsSZN6Va8ph+CuSruCw5Oe9uQyDvAcLpe+aLVDr7Exa00JDgnPj1yZtGbc4ThvwgA8s2Bds/cosf9TsLjq3r175M1ESondu3cjmUzi17/+dVEHRxDE/k8rtVWr6y9b2i8sIFTRs0B92kWpY6loiRVNCzKm7BAY4AsUszyXQ7wtmO/mbmqbwrVgKdxt8AAARItJREFUYSuIZEz4JqC20LVVDH6EI2w2asRTILoYWKhNjYr8CD9KxaUSCkY1mLSkp6NrxlYA0gul/Zq/dkYUmbqxiLgKXS9zXRgLCvgZk/o6hOrptNAS2vTT4gwpnSL1pAxdQwbuBoayvrO9kGAm6ig4ghZFenamCNzpbaGKz+uEC88zLvQMqujM849t9rc4h5QepFDnCvdLdKUStr5LvWkFpKNbDdyDlBwMni9szfWt7pFs9hoTXYOCxdX9998fDRNzjt69e2PixIno3r173seZNWtW3tved999BY2RIIjOw76epNJSxCs8HMEYpGCwPK7rgOC3XwHgp6L8D0ce1EaZCE0mprFx3OZ+AXSWmSULzDHNB7Sp1bJ50E/PpKFMStFERxwtsEyTZk+7oMe1/YFgTBVvM2gjz6BGjDEJW59L+NYESmiEBVKu62aFzsl1TVEguELikQfH0EG7iG2CqUdizMzKC+qdjIhMudLv/6j8tDy/wTXXkTxHMKRgrCuU8Ek4wvcVi9tBsXkgsjjSUDVRjsXhNbpgIkhPqqiXKdBXkTTTK9FYXZhomYlOxi2BuKUioI7FYaVM02vhR7jM/WJmZjbVkNxw1JAeeHc1tZnbXylYXM2cObMoJ37vvfcijxcuXAjXdTFy5EgAwKeffgohBI444og2n+uuu+7Cf/3Xf+Haa6/FAw88AEBF3G677TY88sgj2LFjByZOnIif/OQnGD16dJvPRxBEx9GSmAuvNoLDtLVhOp1mAlImWmW289N0CKIymWSmiQJvq+gYjWWCqQkyqbSYCFzf47ZA0hH+7DxTV2X683EWPAdTXG9xlfIzLXDMc/Gkti9w1cxH87yltikw0a/m4DywKQCaFrK5rgxDkLI1gjBTeIa9tIBgNqGJ4Fna4V7oaFLcZmDakd3YS3Cmonpxm8PR6U7H4mi0PNi62B8m1ac9xsCYb6Bllhsxm3alP3szaLLNwV01DlNIH7dViyGTgvRTn+Z1NhFFxjBlRC/MW7Y1cn0G9yzB8Yf0AWPA5l31OKSqPEtcHTO8F95csa35F4noFBRcXffSSy/hzTff9B//5Cc/wfjx43HBBRdgx44deR9n3rx5/r/TTz8d06ZNw7p167Bo0SIsWrQIa9euxfTp03HaaacVOsQI8+fPxyOPPIJx48ZFlt99992477778NBDD2H+/Pno27cvTjjhBPLVIoguTrTmCv6HtcEUjAfrg3ofUzgN6GhMjndQ39STByk8xqK1WSrKJPwiduPpxBiQEBIljvAjZaZNjkn5ca7SW+q5BOdlMLYA8IUAQqIwLJzMMY29gak5yjfKGN4+V7QrHKUKX+fwbD+/zQ7CtVxBO5/wDEATqfPrr2D6ECqXd7M8HJ1yQo2jHYsj6Vh+JND8M1FDE8ViWug6lhFTwfFjtv5nCX1e4R/P2FKY85vXPhDaZrn6N3FoD3ztqOrINRUc6FMWQ6/SGMb0r4iY0ALAGYf2w1FD888OER1LweLqhhtuQE1NDQDVG3DWrFk49dRTsWrVqoJSfWF+/OMf46677oqkFbt374477rgDP/7xj1t1TADYs2cPvv71r+PRRx+NHFtKiQceeAC33HILzjnnHIwZMwZPPPEEamtr8dRTT7X6fARBdH4i4gosErkCdKQqtK0vqnhQFwSYIu1sjH+VJQILAHWs6BhKYsJPMZqoS8IWiAklvMxYTHRKsMD6IGbzoMDbPBcWzExMOsKfrWfGHxaMpsehLy55pvjLfma5bDJYE+tzXReTGsx1XOavD4RpzHe15/7EgZgl9DWF72UV0+LLsVTtk8W5H6FyhPCNSE2aNmaJSP2U8eSKWUEEyhHCF29GqPq/6xors31M72POY4SgGb8fuWLhBtUcB1WWZV2LzNcszOh+5XCEwFeOKGziGNExFJwWXL16NUaNGgUAeO6553D66afjzjvvxKJFi3Dqqae2ahA1NTXYvHlzVkpuy5YtbYokXX311TjttNMwY8YM3HHHHZHnsGnTJpx44on+slgshqlTp+Ltt9/GFVdckfN4DQ0NEe8tIzJTqRRSqVTOfQjC3Bt0j3QOpJTw9AdX2vXg6aazqZTKC5mecNJjcNNpcMmRTknA4/DSaXguQwrKX8lNp5H1snoS8Fwwz4PrpiG9NFKplN6W+ftxySBdF6lUCtJzweEhJgCXAxwuGlIebMeC67pIp9J+jQ6TDEy6SKfTatxcNyL2GKSXhoRZD7hptRyMIe16SHGJdNqD53pIpxnSaf08PA9pePBaKljT189Nu0hDRGwtIpdAj9Xj6ryentWXdj1wyf3LJHVqUB1Xia902oP0XHiehM0kUp4HCxLScyE9FzCNoOGBSZXi44yBw4N006rno/TgueqacumBScDmEhYkBDwISHBIQDII5SEPi0uk0p5azzxwGBNZZdVgQcKTnn59pZpxCAbpuRDw1GsuPXC9v6XrtaT0wCFhManSkeY55ZgMAelB6oKusLj68ti+qrheAqP6lrb4GhEdT8HiynEc1NbWAgD+/ve/+z5UPXr08MVGoZx99tn4xje+gR//+Md+L8F33nkHN9xwA84555xWHfPpp5/GokWLMH/+/Kx1mzZtAgBUVlZGlldWVuKzzz5r8ph33XVXThf6efPmIZmkGSBE88ydO7ejh0BkoD0os2qiDHtTepq/UD/3pICkFWzb4Kp1mbz/BcO6uEQ3B9iTBlYkgLo0kNDvuLVpNStwZyPwSQLYVAs0esCWOobh5cDr8+Zhb1qda0cD0M0JeuoJBuxOqfMyAI6A9noCUp5a3+Cq381YGYC0VPu4XvR3AHClKqTPJysopTq2pY09wzMGDaZWmzN1bMF8TQKT7TLPJxr9UsdOaw3j6nNtrWfY0QBscIAt9eq4uxKAxSQaXHWEzSVKdHlSXddSW11nVwbjdARQmwJSUom9uFD7SwAOB+pcoMyWaPSYEldMwtUCLCbUsYxVlbnmFQ6wtV7tX+8CcQHsTilRpq4tQ31av+ZcHaPRVdcbCG6evXv2YNnSj/3rpa6pWr910wYs371eTSBg0f2IzknB4uqYY47BrFmzcPTRR+Pdd9/FM888A0AVoBfqc2X42c9+huuvvx4XXnih/+3esixcdtlluOeeewo+3tq1a3Httdfi5ZdfRjweb3K7zG9bMtQzLBc333xzJPVZU1OD6upqTJ8+HT179ix4nMSBQSqVwty5c3HCCSfAtu2WdyD2GWnXi/guZVLbmIaU8IvKd9Q2opvuEwgA9SnXT+GFcZZuweCeSfQpi2FHXQqDeiSxpyGNUj0LcHd9Go7FsWlXPQb1TGL1tr1IuxJLN+5C7Zr3MWPG8diTUv0JN+6qR99y1cXC047sO+tSSNiqVipucd9PKeWqYvP6lIu6lIeKuOWn/BrTHhLa0yvleojr/oqelHC1BUU+NVdSSjSmg8LtprYB1HtsWhd5SymRctVsOmP+GZ5taN5/G9KejigqD6q6lIv1O+vw+fZaVFXEsWrrXgjOMbxPCZKOwPa9KVicYXifEr9QftueRlQkbNTUpbQDvRJTCYdj+94U0p6HxrREWdzCngYVAYzbAjX1KfRIOnD1NbEF91/juDY2tbWNhSvVNeuedLB+Zx1swVCfUtd4+95G32Q15XqobXTxxZ5GPQvSw95GFyWOwNOrlvjXrLy8DIcdOgiNrqdsNhjwu1UfAwAGDarGqKpydW8JjmdXf9Ti60R0LAWLq4ceeghXXXUVfv/73+Phhx9G//79AQAvvvgiTj755FYNIplM4qc//SnuuecerFy5ElJKDB8+3G+DUygLFy7Eli1bIjMNXdfF66+/joceegjLli0DoCJYVVVV/jZbtmzJimaFicVifqueMLZt04cm0SJ0n3Q+uJC+w3guSrhA2pNwtICK2YDjBK+hxzhsK4e4si0kYg4cx0bcVa99TDLYtnrLjXmq1icec9U6x0aCMZQmHNQzwLFt2FLCcWw4tgvLtiMz7Jw0YGubAUc7lVuCw/IkJACPuXDhwnFs3z4B3INtC9gAWNqFbQkILa7CzzEfJHdhcx5pnhxZHxJXXASpP6TVjD0jroCgAbP/5ZZ7sPS4Uq6ExziSMReJWBolcQcxp1FdA9tGSdxGbQpwLIa444Bri4PSBEM8JpCSTDds5nB18+ha3ci6ttFFMmbB1VYUjsWRlAwxx1YRNFcLKa6L4S2uZg5aJq2pjuc4FhIxV80QtDzELIFEGn5DapH2IMGRjEvELIH6lIuUZEjEou8FnDEkYhZE2tM+W8G1rSyPI6bvnUQBrxPRcRQsrgYOHIi//OUvWcvvv//+go7zwQcfYMyYMeChvHNJSUnWrD7DRx99hJEjR8KyWh7y8ccfjw8//DCy7Bvf+AYOPvhgfOc738HQoUPRt29fzJ07F4cddhgAoLGxEa+99hp+9KMfFfQ8CILYf2lphpwlOBgL/Igyy2SaahJtWtIETaKzZyn6vfT09nFbIGmL0Jh0uxgebNuQdvWxoi1nmP8TgAzMOdWYo/YJmeNWMxmb91zKpKXm2C3uz5hv/xBepo6t2wS5gVVDScxCQs+u9BtFc1OEzuAI4TdjZkw73HPu+3lZgiGVln7za0swJSiNyasu8jdWC2pGovStGszxOJO+NQdgXPWDlkcWF35LJCn1rExLCT5jvaF6ErKs2YAj+pQqDy1Pea0xMFw3YwTW7ajFoJ6lvvg09wzRuSlYXC1atAi2bWPs2LEAgD/+8Y+YM2cORo0ahdmzZ8NxnLyOc9hhh2HTpk3o3bt3XttPmjQJixcvxtChQ1vctqysDGPGjIksKykpQc+ePf3l1113He68806MGDECI0aMwJ133olkMokLLrggr/EQBLH/k0+NUTj1lZkGa6r+uyxu+21PYiEBFeyn3dh5sM7m3LdS4Hr6nBEaxqw0Yl0QGn94xqCUUguy6PPLFHdAILxa26KoUDLtGnLBmUq5qZmc0hdRZuad+Wdm+BlrBOP7BTDfIkEIY+/A4XJX2VjoPpGN3NOu7eo1MP0IjTUF4Pm2CibFJyJmp0FrG0cLNGOs6gjdEFsEs/8s/fqa6FemAe1Zh/XXadqgifaoqnL075bQ2wYzW8+fMABPUwudTk3B4uqKK67ATTfdhLFjx2LVqlU4//zzcfbZZ+PZZ59FbW2tb9LZElJK3HrrrXkXgjc2NhY61Ga58cYbUVdXh6uuuso3EX355ZdRVpY9PZYgiK5Joe7x2U7ruffvXRrzoyhGVFk5lJhps2OMP40gCkeijAcUELUr8K0UkNsYNZyyYwzgTUSbGFMdYArBnLvp9U2cK4/twuMxFhJOSETZIS8v08ja9HJkDDoNGDjZS6gIWWAwqq512EoB0K2QHBGKNAYGpsYLSyL8GgRWHaqOzLQEktq/TNd6scDHzBEcri3R6HL/PAAworIUpTEL9WnVjzBhC3hSQkrjoaXaASmvM2DcgAoSV52cgsXVp59+ivHjxwMAnn32WUyZMgVPPfUU3nrrLZx//vl5i6spU6b4tU/5MGnSJCQSiUKH6/Pqq69GHjPGMHv2bMyePbvVxyQI4sAiM3LVlMDo3z2BXXWpqDDKETkyhqQmKmPMPYFok+RgP+ablxqPruxjq0hXg7ZZgH+80Lgjz0HnEgugtXGugkxKtcJiXAkjE6WyecjtXIso40EmuG4CHXpsRI8L7RumW9g0cs8/hok8CT/apOvb9LU0r41pMK1mYAbu9zGLo9H1dGRK/bR0URmXCHlxqYhW3FaCaVjvEqzcuhdTRvT2m1YDureirp/zG3BLhMbS9HU894j+eG7h+la+QkSxKFhcSSnheeqP9u9//zu+/OUvAwCqq6uxbVv+tvyZYocgCKKzI1imuGq65so3AM2x3kSewm13TH2V2d7m2elEE6UKt+RpbqzZIio37dn/kTX1e1PRLRV+0r/r1KgIWtIEbuy6dZCOZAHqOafBILT4FEyJKq5FlEnFmtZEpjdg4KqvRCjnDFwGosrsw6U+rmARjy7OGSypitA9j/mRJkAVvgs3MDFNexJpV0XIbjl1FJZv2Y2DKkthcw5PSAAqZehpYWiEZaPr+SaqmfVahhtPGtnkJANi31KwuJowYQLuuOMOzJgxA6+99hoefvhhAMqYs7mZdgRBEPs7hXxwCWHa3mSvM4vCTudGbJlT2Jb6JSzo/IiXjsxkpgQj54ikCjvHB26hwwg3iDaiyvHrq9T1tXi4hY6+juZ3DnAvWqNmIj++oNIpP66Xpz1dtM7VtqZGS+jokdQTBrzQ+ARjkCxwVneEqhuTUmpvLO6nKdNCQjpqJmJp3MLwPqWI2QK2xeBKDksE94crpd9yBwy+lUY4pWg4b0I1YjSTsNNQsLh64IEH8PWvfx0vvPACbrnlFgwfPhwA8Pvf/x6TJ08u+gAJgiD2R0zkKNfMOiMMTACC6TSTCKUFzQdouH+hEUlB8XYz529mg0yxVaj0yuyVWMh++W8bEkyA31A7YStPdc6DYnFjZMr87ZnfdFuyQKAaAWt6KnIdmTLHsQVXjur6pH7EKmSYykPCNrOujmtRxgBAMnieWpcS0u9BmHJVRMuMu04o8aQEmAyeCxiElPC0Bxmg0omNaS+rGH7CoO4Y1qcEgjX/uhP7joLF1bhx47JsDgDgnnvugRCkmgmCIABl29BU4bdZxv3IVTD7zF9nBEGOYwvesrgyhddNrcs1ns6GEaeMwe/P51gcro4umdlzUoZmTML0YwyET/iamjo3iwWiigGROi5Tu2VSsEboyszXJiSOzXlMlAxQFu4qUuaFGnl7ADgEBzgTsBvTfk0WoNKIDNowFiqSlnDUZ6sSf/C3BYAx/cpx2rgqZfego2NXTBmKP7+/AZdMHoy7XvykPV4aogUKFlcAsHPnTvz+97/HypUrccMNN6BHjx74+OOPUVlZ6ZuKEgRBHMgIHd3J5eDeVGPkcC0NZ81si8B2oSn2VR1VexIRLzo1p2wKpO//xTmD9LJnWJorY2b1qWL0YOwm8uV5gIT0ha1JG6a9YDagKQNTx1XHMTMH1TkYPH1GU+yukL5oDhejByJa+rMWjX9VWtc0Mx3BslwVZfMsqeqyeDQtaFKjxhIiZnMcXFWGAd2HgTGGEkdgb6PbHi8P0QwFi6sPPvgAxx9/PLp164Y1a9bg8ssvR48ePfD888/js88+w5NPPtke4yQIgtivKCQ9E04zBcuajlxF9829BWdBj79c58vnGE2fs322jeyHqFgKzw60RZAa5YzB4yGj19B1Cx/DCFIz49Kk9MCCKJhgDC6T+pz63DqNyDngesZ/i0WuLWdB9Eyld5myk/DUY9visNJB7ZaKxHFI6eqUINPGpoAFZR9hQQk5W88y9KRKLUoE9hHq3IDgHNDrYzr1aAvVFunGkw9GQ0p5fN3xf0tzXuuzD+uP59+jGYbFpGCr11mzZuEb3/gGli9fHunbd8opp+D1118v6uAIgiD2V1ojWHJNsc81IzCI6DR/jk6a7WsRJYSiAtPMqBSc+aahZl14ZmT4OZu0rJ9eRBDJykzpha0vgv+iIi58uYMaLxYZrzlnUHQP7a8VpDVtoWYWGjd34wBvcW1+yo2/VmCcapzllbjkkXHYQhXRWyI4duQcjoBjcVz0pYE5r/f46m44dWxVznVE6yg4cjV//nz8/Oc/z1rev39/bNq0qSiDIgiCOJAwH8y5ZiO2OvLTTNqws8webI5wXZMx7TRCytgohAvYw5g0XvBYtbMBghquIMUXMmVFIKa88HnD4i1UdxVexkJ1X+bYni+ytLGoNi81Dbgt4UFKJXy4np3IdK0VA/yG3EKnjC3OAenBsaIRTmP9oNzsBRiD33xaNcBWadGyeHZv0xtOVPYNw3u3rpcvkZuCxVU8HkdNTU3W8mXLluXdyoYgCIIIMB/TmT5aTW7fweJoX5yfZfxuhJRpKYMcqVQ1tujP6DEQiiwBnlQzNoO0YVTMReunAmHW7LhNXRdTRqgm6sVNdIwrIWYiUi6Xum9h0L4nPH5L6CJ7qUQWBI/0F+R6GwZVzJ5wOFgKcD2gIe2qcwroXofZg6+siCHlSvTv3nqTbiKbgtOCZ555Jm6//XakUikA6ib8/PPPcdNNN+Hcc88t+gAJgiC6OuaDNId9UVGOuz/iiyQtaIRO11k8iPCFxVJTxwjXW/nLEYp6seCxWqcIJhREhVdmj8bMFG2uWZ4mnWlp6wcz29PMIDTrzT+un6/NeWiZEmacIZIWrO6R9NOJcd3c2gqdK0gP8pyRUcGZ7x5vGNmX2sC1lYL/lO+9915s3boVffr0QV1dHaZOnYrhw4ejrKwMP/jBD9pjjARBEAcE4fRTsKxDhtJpCIscVQweuN+r9SwrehXsy3xxFknh+XVYwTmC9eGC92gUKZIKbGK8LLR9WMSFvbbCBfSCM204q+0gWKh432J+PZmfvtQCc+aINL5yeD+cOrYKjsX8+ipljGrc7NVxYpbQTaizR21mK4YFG2fK7Z1oPQWnBcvLy/Hmm2/iH//4BxYtWgTP83D44YdjxowZ7TE+giCILs8Brp+aJWqxAF94hCNNElERGkSpZE4/MD8SpffOTHNyHtSrRY7rHz9a0xVdF+zgtzdCWNQp2wbGTG9J7kflBFNpQjMj0Z8lyRg4l9qPS0Wu+pcA4ycMQEoypF1VW+VYgSdXY1r9dISye6hPASVO9ke+IzikYH67HkAJuSG9SjBz8iA8/vZn2ReQaJGCxFU6nUY8HsfixYtx3HHH4bjjjmuvcREEQRww5Gu70NrjdiStHUOQZtOPYWbzZUeawkqnKQ8xKaWOSmXXaEWiVr6oiqb5zLZZoopFJw5kCrAg7WhEk342DBAM8LiMpBw9PU5Tq2VxVexueh3CM0XuUL0GJcCZcnJ3hEBM92BsSLuQUNGrmK16GvatiOPUsX2xfW8j3lm1HQBgC10A74WvoRKxRw7uSeKqlRSUFrQsC4MGDYLrkiEZQRDEviBX+5yuTi49ZkSWFapRArLrqbKPlRGVYtnLm63bgimmj6YIC0GlIE2NV7QvJM/x2BTScx3dykx9KuNQVcjuCFVnFbPVP7WMwxECcVv4gkt5aXFcPGkwzhwfmH1bAr7PlqG6exJxW8ASDIdUUf1Vayi45uq73/0ubr75Zmzfvr09xkMQBHHAEf687gTBpk5HOLJnaovyuU5NXdfw8Zqq12ormaLOL0oPndOkOiNmp2HBxYKaKz+tyNTEBxW5UoLKETxUzM4htFeWIzhsEXhkKZ8sFpmVGvbe+u6ph+D0Q6vwtaMG+o2mvzqhul2uT1en4JqrBx98ECtWrEC/fv0waNAglJREvTEWLVpUtMERBEEcCAQzzppeRwTpKtNb0CyDbDodmLm00KbV+aY1c9d8md8lTD+eIF3IwBH0K1QpyWgBv/mpol3SrxEzIs2xOFyp+g0K3WKHc4BDpQI9TyLlKuEUt4Vu+swjjZ8di+vUo8SofuX40rCeSGt/LE9KDOiexP+cNx7XPrM4r+tAKAoWV2eeeWanyOMTBEF0Feg9tWmCdFy0ONzM5pO6wXLex2vxfK0bWy7D1qjgyh4HZwwuZERIcZg+iCwrsmbqt0zq0BYcTDJ4Ui0z5qrKEZ4jDSWmVEE7A3SEqndZzD+mrWcWco/Bs2SobZN6nHI9JGMWbjx5JO5+aVn+F+cAp2BxNXv27HYYBkEQBJGrvopklyJcdM6RvwhqL93aluOy0E+/3sos1wLLiKpIQX/ovIzp2YiSw+NBytDSswUtwcAYh2NJP12onOIZuiUdPPS1w3xvLAbA00VCMYuj0fXAwJByPVicQ8LDsN6l1AS6APKuuaqtrcXVV1+N/v37o0+fPrjggguwbdu29hwbQRDEAUUBvZ4PSPw+fohGjdrSeLojoobhU5oIXHRZtqjOtZ5BWTOYfoTG/8sYjzqWqpsS2jPLpAAdi2N0/woc3Lfcr2Ez24R7EpoUYkwfhyKs+ZO3uPre976Hxx9/HKeddhrOP/98zJ07F//+7//enmMjCII4sKAPrybJrEFq27Hy37+lmq22jQMRsWhSgRH3+FA6NHNcXLuwB0X+gcjyHeFF2K09KHQ360wjaGGOJZSbu79eCyvH4pgwqHvRnntXJ++04B/+8Ac89thjOP/88wEAF154IY4++mi4rgshRLsNkCAI4kAhp+HlASi4ivWco7MFQwXwObbJrO1q9rhN1Fjls39r6sQ4A1wZFLabnTlTBfEmFWi8sQCVMlRu7lK5vev+g7ZQxevG4FRKQEKqInttUJp2pd+LMFy7deGXBmFgzySe/Odn+Q/+ACXvyNXatWtx7LHH+o+POuooWJaFDRs2tMvACIIgDjTayxagK5FrBmDbjpf/+sLTj/kJtfC5Mp9f2JdLRbkCYeX3LBRBtMq3c9BtdUzkyt+Os0gqkHPd49BSUapwSx7Bg9Y4tmAoi1uYPKxXQdfgQCVvceW6LhzHiSyzLAvpdLrogyIIgjgQoZqr/Ci2Bu2o6GBLxqTRZtOI/O7XXJl0ohZJCC3juug9M33opw71P7/GSm9rbB1sI850+jBmCzgWwx1njsZhA7u1xyXpMuSdFpRSYubMmYjFgimc9fX1uPLKKyNeV3/4wx+KO0KCIIgDhJxeTR0wjs5O0dKG+/DiNpdKzN429zLTTkcC/lRDzliQ1gtZNQgWNIMOG68aU1IhGDxPwmJKkAnGwMw2WnxJoc8JAPB0vZZAdc8SHDqgG977fGcxLk2XJG9xdckll2Qtu/DCC4s6GIIgCIIoJu0VlWrNcbPNRXMXqufaz9RpMRndjnNASgbJoq10dBDLbwptaqy4di4VylTL72fIZSDKLFMcb/oZ6iSXJ6GK4iXD0cN74eWPN2HDzvqCr8OBQN7ias6cOe05DoIgCCIHVIalaJ2YKc5xOhv+zEloI1Ip/ciU31oHKqLFQxEsIOhdqCJeSnwZ4ca12OK6VY+UDK6fq+ZwPYmYLSClhITAf51yCK757Xv7/PnvDxRsIkoQBEEQXYV8ZvcV4zhN71fY8TKbSLPQMYxwMilCSN02R9deSb2tb1BqjsGYL6zMtsG5lI+WSWiq1jmqBZFl7f9Ctb0ouHEzQRAEQRDtQyFiyxiQmgL28DGMUBLakiGot2JBNCtU+G5mHpq6LYag8N3mHLau24pZQvthccREICGowD0KiSuCIIhOTFdIYxFR8olK5dq2qQkP4X+5lnMjmFjQJsevzzLCKpRODJZDN3WOziI0dg4JW2BgjyT6lMUwsHuyLZeky0FpQYIgCIJoR5oTyIXMIgRCpqdAzuL3MKauSkrpF7iHj2Mc4YOxBD+l1OlDJoMaLWYMSz14ksO2OO4771DUNbj442LyvAxD4oogCIIg9hMydZqqrWp6W6md3TnU78E6FlkQ1G0BngymJdqCwZOAYIBkytnd85jfDFpwBs+jiReZ5CWu/vSnP+V9wDPOOKPVgyEIgiCIA53WOMFnttQJzygETBRLCSZplodnCvpF8mqeIaSZXaj3EEz1x4GHNGdwQs2dBXf92YiEIi9xddZZZ0UeZ4YxwzeC67rFGRlBEARBtIH9pV6tLeM0EahcrZMiostMFUQwwzAc1TJ+V8G++hcJ7ZOl9pMyMCh1LO4XuZO2ipJXQbvnef6/l19+GePHj8eLL76InTt3YteuXfjrX/+Kww8/HC+99FJ7j5cgCIIgisL+Ir5aoinj0aa2a+pn5nZ+a51Q4bvywIJv2eC31Oki17JYFFxzdd111+FnP/sZjjnmGH/ZSSedhGQyiW9+85tYunRpUQdIEARBEETzBMXombMNM7bL3E/vI0PrTDTMRLhU8bzyzLI5R4p7AABbWzGY/oWGu88dixuf+7AYT2u/pWBxtXLlSlRUVGQtr6iowJo1a4oxJoIgCIIgikRTMxKD1GBQ2x7KBqpoFZi/DQeDB6kaRDPAFmqntCd1mxxFZUUCFmdIe/nPguxqFOxzdeSRR+K6667Dxo0b/WWbNm3Cf/7nf+Koo44q6uAIgiAIgmge47Kee12uWqzs3401Q+Z+4eiVSQcKoVKDggeeV1ZIXNlUgFW4uPrlL3+JLVu2YNCgQRg+fDiGDx+OgQMHYuPGjXjsscfaY4wEQRAEQWRQaJmTqZ1q7li5rB6C2ivme2NZnPuiyhJR81PH4k2e51vHDcMPzh5T2MD3QwpOCw4fPhwffPAB5s6di08++QRSSowaNQozZszoMsWBBEEQBNHZac7NPXvbfI4X+j203O9XiKizuxAqZZhZ0G4JjiumDMND81bgqxMG4HcL1gEAepY4GNSzNDIrsavSKhNRxhhOPPFEnHjiicUeD0EQBEEQ7Uxg06BEUe6arEzbJQAy1LdQ5wtTjEGIkLjiDNMP7oOJQ3sg6Vi+uOK6fY6UDN8/czTW76zHz15b2b5PtINolbh65ZVX8Morr2DLli3wPC+y7pe//GVRBkYQBEEQRPFprUmpITAclX5fwnC9lplFaAsb4QY7Q3qWwBEcngR6l8WQcLpuk5iCn9ltt92G22+/HRMmTEBVVRWlAgmCIAhiH9Fen7k5o1SR9dmPjXASgiEUuELM4pCQYOBwPYn7zxuPeZ9swclj+sISXPU6ZAyO1XXTgwWLq5/97Gd4/PHHcdFFF7XHeAiCIAiCaCfaKs5Ugbv63TSDFizqc2VqsMyyob1KMHDyIDSmJVxPwpUSUkrYbtcNzhQ8W7CxsRGTJ09uj7EUjYcffhjjxo1DeXk5ysvLMWnSJLz44ov+eiklZs+ejX79+iGRSGDatGn46KOPOnDEBEEQBNF+tF1UZe8fdnDniIorS3DYnMMSDI7F4QgBx1KP4xaHLTgci6MkJto0rs5KweLq//2//4ennnqqPcZSNAYMGIAf/vCHWLBgARYsWIDjjjsOZ555pi+g7r77btx333146KGHMH/+fPTt2xcnnHACdu/e3cEjJwiCIIj2IV+B1dJmpr7Kr70Ci5iIWpz5QsrSRewxm8PRgsrW4soSHP92RHXrnkwnp+C0YH19PR555BH8/e9/x7hx42DbdmT9fffdV7TBtZbTTz898vgHP/gBHn74YbzzzjsYNWoUHnjgAdxyyy0455xzAABPPPEEKisr8dRTT+GKK67oiCETBEEQRN50ZLmzqbdSbXEU5x4+AE/P/xxTR/YG5wyWXud6DLYuYmcAkDJj9+B4HIcP7IbH3+6Y59GeFCyuPvjgA4wfPx4AsGTJksi6zljc7rounn32WezduxeTJk3C6tWrsWnTpoiNRCwWw9SpU/H22283K64aGhrQ0NDgP66pqQEApFIppFKp9nsSxH6NuTfoHiFagu4VIh8y75OwpUIhZO5nCtozbRoy9wEQiCUAaddDwmb489WTwADUptLwPLW/9DwwANLzID0JJj2VQvRccEjELYaffu1QXPXb9wEoLyxXSuys3b//BgoWV/PmzWuPcRSdDz/8EJMmTUJ9fT1KS0vx/PPPY9SoUXj7bSWRKysrI9tXVlbis88+a/aYd911F2677bas5fPmzUMymSze4Ikuydy5czt6CMR+At0rRD6Y+8T0/msrfn9B1vQxzTam0bME4Mrgdwag0Qu2S+ufrlTLPKm2S0vA9YC9adU0GlC1V+lUA6b09fDnz/fvWqwuazIxcuRILF68GDt37sRzzz2HSy65BK+99pq/PlOR56P8b775ZsyaNct/XFNTg+rqakyfPh09e/Ys7hMgugypVApz587FCSeckJVGJ4gwdK8Q+ZB5n7Q2cpVJoZErU2ZlGjR7EhAMqEu5vrhqdD0wxpB2PX9bT0qkXYmGtIdddSkwBvxs6QIAQDKRwNnTRuHPTy5q8/PpSAoWV9OnT2/2RfzHP/7RpgEVC8dxMHz4cADAhAkTMH/+fPzP//wPvvOd7wBQzaarqqr87bds2ZIVzcokFoshFotlLbdtm94IiRah+4TIF7pXiHwo9n2S6djenLiSUjmuSynBtbhypYTFOTzmwpUSDIDQ61KuBGOA50lfYKHRRcJTTaBNm5xvHD0YJXGnaM+poyhYXJl6K0MqlcLixYuxZMkSXHLJJcUaV9GRUqKhoQFDhgxB3759MXfuXBx22GEAlL3Ea6+9hh/96EcdPEqCIAiC6BhaG/0y+7FQ/0EJFdnydO9BT6rIlWqT48HVbXQc7eb+1QnV+PK4KjiWQMzev1OCQCvE1f33359z+ezZs7Fnz542D6gY/Nd//RdOOeUUVFdXY/fu3Xj66afx6quv4qWXXgJjDNdddx3uvPNOjBgxAiNGjMCdd96JZDKJCy64oKOHThAEQRD7FUaSGW3GGCCg+w9yZTIqGFOu7YxBSAZ4yrLBEmo7V3LELKE8sjjDsN4lWLl1b4c9p7ZStJqrCy+8EEcddRTuvffeYh2y1WzevBkXXXQRNm7ciIqKCowbNw4vvfQSTjjhBADAjTfeiLq6Olx11VXYsWMHJk6ciJdffhllZWUdPHKCIAiC2D/JFFnKZFSlAxkHII0fFgdjEoJ7sIUyIk27Eq5gEJwjZnHcduZoPLdwPT5ctxMr9kORVTRx9c9//hPxeLxYh2sTjz32WLPrGWOYPXs2Zs+evW8GRBAEQRBdBJUGlBnLgkUMDDCiSkewLM7gelJFsJiaimgJBikFJCRswf0Zipbg6JZwcOGXBuLzL3rhP36nbBrOPLQf/vj+hn37ZFtJweLKGG8apJTYuHEjFixYgFtvvbVoAyMIgiAIonPRXF0W061wlNAyrXEkGFTRutTrVPRKCSoGibSnIljSNILWbXUszjG8TxmumjYMSUfA9fafRs8Fi6uKiorIY845Ro4cidtvvz1izEkQBEEQRNckLLJy6a1oajAobDd9CCVT6ywBcKaiVhJqFqIQqmUOY6rY/aTRfVHb6KI+lcYVU4fi56+t2gfPsG0ULK7mzJnTHuMgCIIgCKILwBmDp60YVCRLRbCkDFKGgivRxRmDxxjSnoQlVVMdSzd+llDu7rA40p4HKQWmjOjdNcWVYeHChVi6dCkYYxg1apRva0AQBEEQxIGDbzqqf4eUOiWoolRAUHtlUoZGdFmcKX8sl8HTqUSulzNwJdIYgyMEXK9jeyoWQsHiasuWLTj//PPx6quvolu3bpBSYteuXZg+fTqefvpp9O7duz3GSRAEQRBEJ6OpGqzMpZwFIsysFFzNHpSe+t0GB2OALRhSrlqXcj1wnVI0MwtvOvlg/PClT9r3ibURXugO3/rWt1BTU4OPPvoI27dvx44dO7BkyRLU1NTg29/+dnuMkSAIgiCI/QSTDow+1hEsxnzhxXUki+sid1PEzrXosgVX/ywOS6jHjsUx5aDOH8QpOHL10ksv4e9//zsOOeQQf9moUaPwk5/8hAraCYIgCIIIolQIGkED0QbPJgUo/RShWmZmCwquZhBKP3LFIZoJCY2v7obFa3e28zPLj4IjV57n5exlZNs2PM8ryqAIgiAIgth/YIyBcxOdCpbzjAiW2ZZpAWW250z1KuQcvi+W4IHQcoSKXgnO/f0yueW0Q3D+kdXt8fQKpmBxddxxx+Haa6/Fhg2Bkdf69evxH//xHzj++OOLOjiCIAiCIPZPctVjKWPRICUIqGJ3U39lafFkIldmVqERWoKpCJZh0rCe/u9xS+BrRw3E81dNxn/MGNHeT69ZChZXDz30EHbv3o3Bgwdj2LBhGD58OIYMGYLdu3fjf//3f9tjjARBEARB7ENa28S5yeM1scwXWlDCycwoZFyv44HQsgTT0avgaOHImCUYYjZH0rEwY1Ql/vDvk4v6HAqh4Jqr6upqLFq0CHPnzsUnn3wCKSVGjRqFGTNmtMf4CIIgCILYj/GtGkKNnX03d0DbLQS1WcrRPUgbGmd3FdVCRKmVxgIZo4xH1UrOVI/CjqLVPlcnnHCC3wiZIAiCIAiiNTDt4s4Y4GqhZR4LbUgqPKaiWdp49Jrpw7Fq6x78xwkHYfnmPZgwuAcE5xBaXHlMVdD//spJWPT5Dtz5131r3ZC3rPvXv/6FF198MbLsySefxJAhQ9CnTx9885vfRENDQ9EHSBAEQRDE/kNTtVbN7xO1cDCRK5MS9GuwtBC7ePIg3HzqISiJWfjN5RPxnycepIrghW4UrVOIfSviOGVMFR6+8PDiP9FmyFtczZ49Gx988IH/+MMPP8Rll12GGTNm4KabbsKf//xn3HXXXe0ySIIgCIIguhYRvysglNIL1V5l9ChUMwqVyDL1V4KFfLH0eotz3yfLEgwHVZZhTL/yffbc8hZXixcvjswGfPrppzFx4kQ8+uijmDVrFh588EH87ne/a5dBEgRBEATRNcgd2WK+9xWgexDCFL0riwauGz8bMaVmFwZiS+iehDYPzzTUQoyzJi0c2oO8a6527NiByspK//Frr72Gk08+2X985JFHYu3atcUdHUEQBEEQXZKmtI6ZQRjeTnBlJir1Y84ZLKkK3D2pH0M3gtZiCwA8SMAUx+/DvoR5R64qKyuxevVqAEBjYyMWLVqESZMm+et3796d01yUIAiCIAiiOTJ1DwvVXJki9rCpqKm9Ynq52QYMsLVXlhAqkmVShBMGdd9nzydvcXXyySfjpptuwhtvvIGbb74ZyWQSxx57rL/+gw8+wLBhw9plkARBEARB7P+EU4I504MIituBYHZgZh2WElTR9B/juk+hUGlEQDm9M662v/SYIbj2+H1jLpq3uLrjjjsghMDUqVPx6KOP4tFHH4XjOP76X/7yl9RbkCAIgiCIvAkaOgdCKlinf4Z/Z4EPli2CCBbXtVhm/8hsQy3CErbA2Yf13yfPK++aq969e+ONN97Arl27UFpaCiFEZP2zzz6L0tLSog+QIAiCIIj9k3yc3sNNnnM9BoJGz17IjNREs6Q0P9VyT8rItgxKeIFH3d3bk4LtSysqKrKEFQD06NEjEskiCIIgCIIohFxazI9uITqLEPpx5j7hqJXZhnOVIrQEw6HVFe00+tAY2v0MBEEQBEEc8LQUxVItcZqqwwqlDxEUvJs0oUkVhtOH/vahwneLc/zonHG446zRRXxm2ZC4IgiCIAiiXclHWEUfZy83XliZ23IW/AwEV7SGy1gzOIKjImnj6OG9W/9k8qDVvQUJgiAIgiDaG8YA+B5X0YL3IPUn9c8gLejJ7JY6jKsG0BaP1nQVG4pcEQRBEATR6fHb5CDbF4vrlKKJbgFBOjCcMjSzDDlneOC88e031nY7MkEQBEEQRBHIWeiOcGF7uFehEk/+clN3BW3ZwJV9w5j+7VfYTmlBgiAIgiD2C4zIktIUwAM6Ixj5HYgKLwNnDNCmou1py0CRK4IgCIIgOi1NFcOzyDYtH8OfYQg1a9CxOH769cOLN9AQJK4IgiAIgtgvyCxoz16fPdMw4pMVap9jc4aD+5bha0dVF32cJK4IgiAIgtivCAurpqJWPFRrldmzUHBVlyU4w5nji98Sh8QVQRAEQRCdmrDBaE6j0dBswex10cdc9yMUjMGxOHqWFL+7DIkrgiAIgiC6DE3WaPlNncPNn3m7FLaTuCIIgiAIYr8in4bQTe3nzzJkut8gL74UInFFEARBEMQBQViSCa6EliUockUQBEEQBOGTTxQr0sgZpnWO+mlxhu+dPqqoYyJxRRAEQRDEfkmhDaHVsqDmigHgnGHqQb1x3pEDijYuElcEQRAEQex3tLbuSu2rfgrO/FmDXzmiGvd99dCijI3EFUEQBEEQBxSB75Xyu7IFh8UZBvUsKcrxqbcgQRAEQRCdirZEpTKPwRiDlDJrHQcgmQRnyvsqZgmkPa/N5wVIXBEEQRAE0cXJFGt+U2ctrBgDbMHAWHESeiSuCIIgCII4YOFM1V1ZggOgyBVBEARBEESrYFDCSjIJIZTAgihO5IoK2gmCIAiCOKDw04Gh3y3BYHGGx79xZJuP3yXF1V133YUjjzwSZWVl6NOnD8466ywsW7Ysso2UErNnz0a/fv2QSCQwbdo0fPTRRx00YoIgCIIg2ptw7VUgsJTIMn0G+3VL4BcXT2jTebqkuHrttddw9dVX45133sHcuXORTqdx4oknYu/evf42d999N+677z489NBDmD9/Pvr27YsTTjgBu3fv7sCREwRBEASxLzFO7bZgyveKM/Qui7XpmF2y5uqll16KPJ4zZw769OmDhQsXYsqUKZBS4oEHHsAtt9yCc845BwDwxBNPoLKyEk899RSuuOKKjhg2QRAEQRD7GMaUWzvnetYg5+BttILokuIqk127dgEAevToAQBYvXo1Nm3ahBNPPNHfJhaLYerUqXj77bebFFcNDQ1oaGjIOu727dvba+hEFyCVSqG2thZffPEFbNvu6OEQnRi6V4h8oPukOEgpYeyvXCmRdiXSrofatIuGBhdnHFKBFxZvjOzjNdT6+zZHlxdXUkrMmjULxxxzDMaMGQMA2LRpEwCgsrIysm1lZSU+++yzJo9111134bbbbstaftBBBxVxxARBEARBdGZ2796NioqKJtd3eXF1zTXX4IMPPsCbb76ZtS7TVExK2awr7M0334xZs2b5j3fu3IlBgwbh888/b/YidwaOPPJIzJ8/v1Mfv7XHKGS/fLZtaZvm1udaV1NTg+rqaqxduxbl5eV5jbOj2B/uk9YeZ1/fJy1tQ/dK+x+f3lM6nva+T4p1jnyPIaXE7t270a9fv2a369Li6lvf+hb+9Kc/4fXXX8eAAUG36759+wJQEayqqip/+ZYtW7KiWWFisRhisewit4qKik5/gwsh2nWMxTh+a49RyH75bNvSNs2tb25deXk53SdFOn5rjrOv75OWtqF7pf2PT+8pHU973yfFOkchx8gnmNIlZwtKKXHNNdfgD3/4A/7xj39gyJAhkfVDhgxB3759MXfuXH9ZY2MjXnvtNUyePHlfD3efcPXVV3f647f2GIXsl8+2LW3T3Pr2vs7tzf5wn7T2OPv6PmlpG7pX2v/49J7S8eyL8XfkvdIUTLZUlbUfctVVV+Gpp57CH//4R4wcOdJfXlFRgUQiAQD40Y9+hLvuugtz5szBiBEjcOedd+LVV1/FsmXLUFZWltd5ampqUFFRgV27dnX6bw9Ex0H3CZEvdK8Q+UD3SeenS6YFH374YQDAtGnTIsvnzJmDmTNnAgBuvPFG1NXV4aqrrsKOHTswceJEvPzyy3kLK0ClCb/3ve/lTBUShIHuEyJf6F4h8oHuk85Pl4xcEQRBEARBdBRdsuaKIAiCIAiioyBxRRAEQRAEUURIXBEEQRAEQRQRElcEQRAEQRBFhMQVQRAEQRBEESFx1U6cffbZ6N69O77yla909FCITszatWsxbdo0jBo1CuPGjcOzzz7b0UMiOiG7d+/GkUceifHjx2Ps2LF49NFHO3pIRCentrYWgwYNwvXXX9/RQzkgISuGdmLevHnYs2cPnnjiCfz+97/v6OEQnZSNGzdi8+bNGD9+PLZs2YLDDz8cy5YtQ0lJSUcPjehEuK6LhoYGJJNJ1NbWYsyYMZg/fz569uzZ0UMjOim33HILli9fjoEDB+Lee+/t6OEccFDkqp2YPn16QYakxIFJVVUVxo8fDwDo06cPevToge3bt3fsoIhOhxACyWQSAFBfXw/XdUHfi4mmWL58OT755BOceuqpHT2UAxYSVzl4/fXXcfrpp6Nfv35gjOGFF17I2uanP/0phgwZgng8jiOOOAJvvPHGvh8o0eEU815ZsGABPM9DdXV1O4+a2NcU4z7ZuXMnDj30UAwYMAA33ngjevXqtY9GT+xLinGvXH/99bjrrrv20YiJXJC4ysHevXtx6KGH4qGHHsq5/plnnsF1112HW265Be+99x6OPfZYnHLKKfj888/38UiJjqZY98oXX3yBiy++GI888si+GDaxjynGfdKtWze8//77WL16NZ566ils3rx5Xw2f2Ie09V754x//iIMOOggHHXTQvhw2kYkkmgWAfP755yPLjjrqKHnllVdGlh188MHypptuiiybN2+ePPfcc9t7iEQnobX3Sn19vTz22GPlk08+uS+GSXQwbXlPMVx55ZXyd7/7XXsNkegktOZeuemmm+SAAQPkoEGDZM+ePWV5ebm87bbb9tWQCQ1FrgqksbERCxcuxIknnhhZfuKJJ+Ltt9/uoFERnZF87hUpJWbOnInjjjsOF110UUcMk+hg8rlPNm/ejJqaGgBATU0NXn/9dYwcOXKfj5XoWPK5V+666y6sXbsWa9aswb333ovLL78c//3f/90Rwz2gsTp6APsb27Ztg+u6qKysjCyvrKzEpk2b/McnnXQSFi1ahL1792LAgAF4/vnnceSRR+7r4RIdSD73yltvvYVnnnkG48aN82srfvWrX2Hs2LH7erhEB5HPfbJu3TpcdtllkFJCSolrrrkG48aN64jhEh1Ivp8/RMdD4qqVMMYij6WUkWV/+9vf9vWQiE5Kc/fKMcccA8/zOmJYRCejufvkiCOOwOLFiztgVERnpKXPH8PMmTP30YiITCgtWCC9evWCECLrW8KWLVuyvk0QBzZ0rxD5QPcJkS90r+w/kLgqEMdxcMQRR2Du3LmR5XPnzsXkyZM7aFREZ4TuFSIf6D4h8oXulf0HSgvmYM+ePVixYoX/ePXq1Vi8eDF69OiBgQMHYtasWbjoooswYcIETJo0CY888gg+//xzXHnllR04aqIjoHuFyAe6T4h8oXuli9CBMxU7LfPmzZMAsv5dcskl/jY/+clP5KBBg6TjOPLwww+Xr732WscNmOgw6F4h8oHuEyJf6F7pGlBvQYIgCIIgiCJCNVcEQRAEQRBFhMQVQRAEQRBEESFxRRAEQRAEUURIXBEEQRAEQRQRElcEQRAEQRBFhMQVQRAEQRBEESFxRRAEQRAEUURIXBEEQRAEQRQRElcEQRCdkJkzZ4IxBsYYXnjhhaIe+9VXX/WPfdZZZxX12ARBkLgiCGIfERYL4X/hPmpElJNPPhkbN27EKaec4i9rSmzNnDkzb6E0efJkbNy4EV/96leLNFKCIMJQ42aCIPYZJ598MubMmRNZ1rt376ztGhsb4TjOvhpWpyUWi6Fv375FP67jOOjbty8SiQQaGhqKfnyCONChyBVBEPsMIxbC/4QQmDZtGq655hrMmjULvXr1wgknnAAA+Pjjj3HqqaeitLQUlZWVuOiii7Bt2zb/eHv37sXFF1+M0tJSVFVV4cc//jGmTZuG6667zt8mV6SnW7duePzxx/3H69evx3nnnYfu3bujZ8+eOPPMM7FmzRp/vYkK3XvvvaiqqkLPnj1x9dVXI5VK+ds0NDTgxhtvRHV1NWKxGEaMGIHHHnsMUkoMHz4c9957b2QMS5YsAeccK1eubPuFzWDNmjU5o4TTpk0r+rkIgsiGxBVBEJ2CJ554ApZl4a233sLPf/5zbNy4EVOnTsX48eOxYMECvPTSS9i8eXMklXXDDTdg3rx5eP755/Hyyy/j1VdfxcKFCws6b21tLaZPn47S0lK8/vrrePPNN1FaWoqTTz4ZjY2N/nbz5s3DypUrMW/ePDzxxBN4/PHHIwLt4osvxtNPP40HH3wQS5cuxc9+9jOUlpaCMYZLL700K2L3y1/+EsceeyyGDRvWugvWDNXV1di4caP/77333kPPnj0xZcqUop+LIIgcSIIgiH3AJZdcIoUQsqSkxP/3la98RUop5dSpU+X48eMj2996663yxBNPjCxbu3atBCCXLVsmd+/eLR3HkU8//bS//osvvpCJREJee+21/jIA8vnnn48cp6KiQs6ZM0dKKeVjjz0mR44cKT3P89c3NDTIRCIh//a3v/ljHzRokEyn0/42//Zv/ybPO+88KaWUy5YtkwDk3Llzcz73DRs2SCGE/Ne//iWllLKxsVH27t1bPv74481erzPPPDNrOQAZj8cj17GkpERalpVz+7q6Ojlx4kT55S9/Wbqum9c5CIJoG1RzRRDEPmP69Ol4+OGH/cclJSX+7xMmTIhsu3DhQsybNw+lpaVZx1m5ciXq6urQ2NiISZMm+ct79OiBkSNHFjSmhQsXYsWKFSgrK4ssr6+vj6TsRo8eDSGE/7iqqgoffvghAGDx4sUQQmDq1Kk5z1FVVYXTTjsNv/zlL3HUUUfhL3/5C+rr6/Fv//ZvBY3VcP/992PGjBmRZd/5znfgum7Wtpdddhl2796NuXPngnNKVhDEvoDEFUEQ+4ySkhIMHz68yXVhPM/D6aefjh/96EdZ21ZVVWH58uV5nZMxBillZFm4VsrzPBxxxBH4zW9+k7VvuNjetu2s43qeBwBIJBItjuP//b//h4suugj3338/5syZg/POOw/JZDKv55BJ3759s65jWVkZdu7cGVl2xx134KWXXsK7776bJR4Jgmg/SFwRBNEpOfzww/Hcc89h8ODBsKzst6rhw4fDtm288847GDhwIABgx44d+PTTTyMRpN69e2Pjxo3+4+XLl6O2tjZynmeeeQZ9+vRBeXl5q8Y6duxYeJ6H1157LSuiZDj11FNRUlKChx9+GC+++CJef/31Vp0rX5577jncfvvtePHFF9ulrosgiKahGDFBEJ2Sq6++Gtu3b8fXvvY1vPvuu1i1ahVefvllXHrppXBdF6Wlpbjssstwww034JVXXsGSJUswc+bMrNTXcccdh4ceegiLFi3CggULcOWVV0aiUF//+tfRq1cvnHnmmXjjjTewevVqvPbaa7j22muxbt26vMY6ePBgXHLJJbj00kvxwgsvYPXq1Xj11Vfxu9/9zt9GCIGZM2fi5ptvxvDhwyPpzGKzZMkSXHzxxfjOd76D0aNHY9OmTdi0aRO2b9/ebuckCCKAxBVBEJ2Sfv364a233oLrujjppJMwZswYXHvttaioqPAF1D333IMpU6bgjDPOwIwZM3DMMcfgiCOOiBznxz/+MaqrqzFlyhRccMEFuP766yPpuGQyiddffx0DBw7EOeecg0MOOQSXXnop6urqCopkPfzww/jKV76Cq666CgcffDAuv/xy7N27N7LNZZddhsbGRlx66aVtuDIts2DBAtTW1uKOO+5AVVWV/++cc85p1/MSBKFgMrMYgSAIYj9m2rRpGD9+PB544IGOHkoWb731FqZNm4Z169ahsrKy2W1nzpyJnTt3Fr31zb4+B0EciFDkiiAIop1paGjAihUrcOutt+KrX/1qi8LK8Je//AWlpaX4y1/+UtTxvPHGGygtLc1ZxE8QRNuhgnaCIIh25re//S0uu+wyjB8/Hr/61a/y2ufuu+/Gd7/7XQBqdmQxmTBhAhYvXgwAOa0uCIJoG5QWJAiCIAiCKCKUFiQIgiAIgigiJK4IgiAIgiCKCIkrgiAIgiCIIkLiiiAIgiAIooiQuCIIgiAIgigiJK4IgiAIgiCKCIkrgiAIgiCIIkLiiiAIgiAIooiQuCIIgiAIgigi/x/JIjzAvWkA9AAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
@@ -358,17 +361,20 @@
"spsdl_q75 = spsdl_clip.quantile(0.75, \"time\")\n",
"\n",
"# Plot medians and quantiles\n",
- "fig, ax = acoustics.graphics.plot_spectra(spsdl_median, fmin, fmax)\n",
+ "fig, ax = acoustics.graphics.plot_spectra(spsdl_median, fmin, fmax, label=\"Median\")\n",
"ax.fill_between(\n",
" spsdl_clip[\"freq\"],\n",
" spsdl_q25,\n",
" spsdl_q75,\n",
" alpha=0.5,\n",
" facecolor=\"C0\",\n",
- " edgecolor=None\n",
+ " edgecolor=None,\n",
+ " label=\"Quantiles\"\n",
")\n",
- "ax.set(ylabel=\"dB rel 1 uPa^2/Hz^2\", ylim=(20, 80))\n",
- "ax.set_title(\"Median and Quantile Sound Pressure Spectral Density Level\")"
+ "ax.legend(loc=\"upper right\")\n",
+ "ax.set_axisbelow(True)\n",
+ "ax.grid()\n",
+ "ax.set(ylim=(20, 80), ylabel=\"Sound Pressure Spectral Density Level\\n[dB rel 1 uPa$^2$/Hz]\")"
]
},
{
@@ -377,7 +383,7 @@
"source": [
"### Window Aggregating\n",
"\n",
- "If desired, one can also group a series of measurements into blocks of time. In the following block, we'll take our 5 minutes of measurements, `time_aggregate` them into 30 second intervals, and find the median, 25% and 75% quantiles of each interval. We then plot the stats of the first time block (block #0)."
+ "If desired, one can group a series of measurements into blocks of time, though this isn't required by the IEC-40. In the following block, we'll take our 5 minutes of measurements, `time_aggregate` them into 30 second intervals, and find the median, 25% and 75% quantiles of each interval. We then plot the stats of the median parameters."
]
},
{
@@ -386,11 +392,9 @@
"metadata": {},
"outputs": [],
"source": [
- "# Time average into 30 s windows\n",
+ "# Time average into 30 s windows and take the median parameter value\n",
"window = 30\n",
- "spsdl_50 = acoustics.time_aggregate(spsdl, window, method=\"median\")\n",
- "spsdl_25 = acoustics.time_aggregate(spsdl, window, method={\"quantile\":0.25})\n",
- "spsdl_75 = acoustics.time_aggregate(spsdl, window, method={\"quantile\":0.75})"
+ "spsdl_time = acoustics.time_aggregate(spsdl, window, method=\"median\")"
]
},
{
@@ -408,7 +412,8 @@
{
"data": {
"text/plain": [
- "Text(0.5, 1.0, 'Median and Quantile Sound Pressure Spectral Density Level')"
+ "[(20.0, 80.0),\n",
+ " Text(0, 0.5, 'Sound Pressure Spectral Density Level\\n[dB rel 1 uPa$^2$/Hz]')]"
]
},
"execution_count": 14,
@@ -417,7 +422,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGdCAYAAAAVEKdkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcwklEQVR4nOydd5wU5f3HP1O2Xz+ucID0oqCIDcUCRkWxt2g0JqDG8IvG3lMMGgVFYzBqbLHFXsHeC0YBQQSVjvRyvd/WKc/vj5lndmZ2dm/3bq/APe/X617c7s7OPDvs7Xz2820cIYSAwWAwGAwGo4/B9/QCGAwGg8FgMHoCJoIYDAaDwWD0SZgIYjAYDAaD0SdhIojBYDAYDEafhIkgBoPBYDAYfRImghgMBoPBYPRJmAhiMBgMBoPRJ2EiiMFgMBgMRp+EiSAGg8FgMBh9kj4tgp555hlwHAeO4/Dll18mPE4IwYgRI8BxHKZMmZLVYw8ZMgQzZswwbn/55ZdJ17E3YX/dqaivr8ett96K/fbbD36/H3l5eTjiiCPw6KOPQpblrl1ohvz73//GM888k3D/1q1bwXGc5TH6vtu6dWvWjr9jxw5cfvnlGDVqFHw+H4qKirD//vvjsssuw44dO7J2nK5g1qxZ4Diu3e1mzJhh/L1yHAePx4PRo0fjb3/7GyKRSDesdM/D/DcUCASQn5+PMWPG4De/+Q1+/PHHnl4eFi1ahFmzZqGpqalL9j9jxgwMGTIkre3M761AIIAhQ4bg9NNPx9NPP41oNNol68sUp+vE+++/j1mzZmX9WFOmTMG4ceOyvt9skM3PULHzy9nzyc3NxZNPPpkgdBYuXIhNmzYhNze3y9dw0EEHYfHixdhvv/26/Fh7AuvWrcPUqVPR1taG66+/HpMmTUI4HMa7776LP/7xj3jzzTfx9ttvw+v19vRSAWgiqF+/fgkCr3///li8eDGGDx/eZcfeuXMnDjroIBQUFOD666/H6NGj0dzcjDVr1uDVV1/F5s2bMWjQoC47fnfi8/nw+eefAwAaGxvx0ksv4Y477sC6devwyiuv9PDqehdtbW04/PDD0dbWhhtvvBHjx49HOBzGhg0b8Oabb2LlypU44IADenSNixYtwu23344ZM2agoKCgR9difm+Fw2Hs2LEDH3zwAS677DL84x//wIcffoiBAwf26BqdrhPvv/8+Hn744S4RQn0BJoIAnH/++XjhhRfw8MMPIy8vz7j/ySefxBFHHIGWlpYuX0NeXh4OP/zwLj/OnoCiKDjnnHPQ0tKCpUuXYtSoUcZjJ598MiZPnoxf/epXuPnmm/HAAw/04Erbx+PxdPn/6xNPPIG6ujosXboUQ4cONe4/88wz8ac//Qmqqnbp8bsTnuct53PatGnYunUrXn31Vdx///0YMGCA4/PC4TB8Pl93LbPTKIoCWZbh8Xg6vI/XXnsNP//8Mz7//HMce+yxlseuu+66PfJ90ZX/j/b3FgD89re/xcUXX4xTTz0V5557LpYsWdIlx04Xdp3IPn06HEa54IILAAAvvfSScV9zczPeeOMNXHLJJY7PicViuPPOOzFmzBh4PB6UlJTg4osvRm1trWU7SZJw0003oby8HH6/H0cddRSWLl2asD8nm/O7777Dr371KwwZMgQ+nw9DhgzBBRdcgG3btlmeS63BL774An/4wx/Qr18/FBcX4+yzz8bu3bvbff1dcZx0X7cT8+fPx5o1a3DLLbdYBBDl/PPPx9SpU/Hoo48a5ztZONEpHJXt1ztkyBCsXr0aCxcuNOx0asE7HT8Zn376KY477jjk5eXB7/fjyCOPxGeffdbu8+rr68HzPEpLSx0f53nrn/nbb7+NI444An6/H7m5uTjhhBOwePFiyzbJwghOoSuO4/DHP/4Rzz33HPbdd1/4/X6MHz8e7777bsLz33vvPRx44IHweDwYOnQo7rvvvnZfX3vQiwL9/xsyZAhOPfVUvPnmm5gwYQK8Xi9uv/12AEBVVRVmzpyJgQMHwu12Y+jQobj99tsTwquPPPIIxo8fj5ycHOTm5mLMmDH405/+ZDweCoVwww03YOjQofB6vSgqKsIhhxxi+QyZMmWKYxjdfm7pe2Tu3Lm48847MXToUHg8HnzxxRcAtPfr6aefjqKiIni9XkyYMAGvvvpqu+elvr4egOZGOmF+X9D/1xUrVuDss89GXl4e8vPzcdFFFyV8pgHAK6+8giOOOAKBQAA5OTk48cQTsWLFioTtvv32W5x22mkoLi6G1+vF8OHDcc011xjHvPHGGwEAQ4cOTUhNSPX/+PDDD+OYY45BaWkpAoEA9t9/f8ydOxeSJLV7XjJl6tSpuOyyy/Dtt9/iq6++yvg8zJgxAzk5Ofj5559x8sknIycnB4MGDcL111+fEGZr731n/5ybMWMGHn74YQCwhPO2bt2K4447DmPGjIF9RjpN8zjllFOycn7aOwfz5s0Dx3H4+eefE5578803w+12o66uzrivo5+DHYWJIGjq+txzz8VTTz1l3PfSSy+B53mcf/75CdurqoozzjgDd999Ny688EK89957uPvuu/HJJ59gypQpCIfDxraXXXYZ7rvvPvz2t7/FW2+9hXPOOQdnn302Ghsb213X1q1bMXr0aMybNw8fffQR7rnnHlRWVuLQQw+1vGkov/vd7+ByufDiiy9i7ty5+PLLL3HRRRf1yHE687o/+eQTAJqTkYwzzzwTsVisQzlU2X698+fPx7BhwzBhwgQsXrwYixcvxvz58zNa0/PPP4+pU6ciLy8Pzz77LF599VUUFRXhxBNPbPcD4IgjjoCqqjj77LPx0UcfpXQuX3zxRZxxxhnIy8vDSy+9hCeffBKNjY2YMmUKvv7664zWbOa9997DQw89hDvuuANvvPEGioqKcNZZZ2Hz5s3GNp999hnOOOMM5Obm4uWXX8a9996LV199FU8//XSHjwvA+HAtKSkx7vv+++9x44034qqrrsKHH36Ic845B1VVVTjssMPw0Ucf4bbbbsMHH3yASy+9FHPmzMFll11mPPfll1/G5ZdfjsmTJ2P+/PlYsGABrr32WgSDQWOb6667Do888oix/+eeew6//OUvDeHREf71r3/h888/x3333YcPPvgAY8aMwRdffIEjjzwSTU1NePTRR/HWW2/hwAMPxPnnn9+usD7iiCMAaG7GggUL0lrbWWedhREjRuD111/HrFmzsGDBApx44okWcTF79mxccMEF2G+//fDqq6/iueeeQ2trK44++misWbPG2O6jjz7C0Ucfje3bt+P+++/HBx98gL/85S+orq4GoP1dXXnllQCAN9980/jbOeigg4x9OP0/AsCmTZtw4YUX4rnnnsO7776LSy+9FPfeey9mzpyZ3snOkNNPPx0ALCIo3fMAaF8KTz/9dBx33HF46623cMkll+Cf//wn7rnnHmObdN53dv7617/i3HPPBQDj/C1evBj9+/fH1VdfjfXr1yd8fnzwwQfYtGkTrrjiik6fl3TOwUUXXQS3253wflUUBc8//zxOO+009OvXD0DnPgc7DOnDPP300wQAWbZsGfniiy8IALJq1SpCCCGHHnoomTFjBiGEkLFjx5LJkycbz3vppZcIAPLGG29Y9rds2TICgPz73/8mhBCydu1aAoBce+21lu1eeOEFAoBMnz7duI8e/4svvki6XlmWSVtbGwkEAuSBBx5IeB2XX365Zfu5c+cSAKSysjLtc5KN42Tyup046aSTCAASiUSSbvPBBx8QAOTee+8lhCQ/f1u2bCEAyNNPP91lr5eQxPdIquPT/W7ZsoUQQkgwGCRFRUXktNNOszxXURQyfvx4cthhhyVdOyGEqKpKZs6cSXieJwAIx3Fk3333Jddee61xDLq/iooKsv/++xNFUYz7W1tbSWlpKZk0aZJx3/Tp08ngwYMTjvW3v/2N2D82AJCysjLS0tJi3FdVVUV4nidz5swx7ps4cSKpqKgg4XDYuK+lpYUUFRUl7NOJ6dOnk0AgQCRJIpIkkdraWvLAAw8QjuPIoYceamw3ePBgIggCWb9+veX5M2fOJDk5OWTbtm2W+++77z4CgKxevZoQQsgf//hHUlBQkHIt48aNI2eeeWbKbSZPnuz4nrCfW/oeGT58OInFYpZtx4wZQyZMmEAkSbLcf+qpp5L+/ftb/h+duOOOO4jb7SYACAAydOhQ8n//93/khx9+sGxH/1+T/c0+//zzhBBCtm/fTkRRJFdeeaVlu9bWVlJeXk7OO+88477hw4eT4cOHW/6/7dx7772WvwUzyf4f7SiKQiRJIv/973+JIAikoaHBeCzZ+9gOfW8lg36m/eEPfyCEZHYepk+fTgCQV1991bLtySefTEaPHm3cTud95/Q5d8UVVzj+/SiKQoYNG0bOOOMMy/3Tpk0jw4cPJ6qqpjzW5MmTydixY5M+nsk5OPvss8nAgQMt79f333+fACDvvPMOISSzz0H7Z2hnYE6QzuTJkzF8+HA89dRT+Omnn7Bs2bKkobB3330XBQUFOO200yDLsvFz4IEHory83HAnqJ3961//2vL88847D6LYfjpWW1sbbr75ZowYMQKiKEIUReTk5CAYDGLt2rUJ29NvKxSa9GgP83T1cTr7utOB6BZvOlVFdrrrvKbLokWL0NDQgOnTp1veT6qq4qSTTsKyZctSfhvkOA6PPvooNm/ejH//+9+4+OKLIUkS/vnPf2Ls2LFYuHAhAGD9+vXYvXs3fvOb31hCITk5OTjnnHOwZMkShEKhDr2GY4891lJAUFZWhtLSUuMcBYNBLFu2DGeffbYlmT03NxennXZa2scJBoNwuVxwuVwoKSnBNddcg2nTpiU4bwcccEBCKPXdd9/Fsccei4qKCst5njZtGgAY5+mwww5DU1MTLrjgArz11luO7uBhhx2GDz74ALfccgu+/PJLi/vbUU4//XS4XC7j9s8//4x169YZf0fmNZ988smorKzE+vXrU+7zr3/9K7Zv346nnnoKM2fORE5ODh599FEcfPDBltAdJdnfLP2b/uijjyDLMn77299a1uP1ejF58mTjs2/Dhg3YtGkTLr300k4VLzj9PwLAihUrcPrpp6O4uBiCIMDlcuG3v/0tFEXBhg0bOny8ZBBbSCnd80DhOC7hfX7AAQdYPkPSed9lAs/z+OMf/4h3330X27dvB6A5aB9++CEuv/zyDn12msnkHFx88cXYuXMnPv30U+O+p59+GuXl5cbfX2c/BzsKS4zW4TgOF198Mf71r38hEolg1KhROProox23ra6uRlNTE9xut+Pj9M1L7efy8nLL46Ioori4uN01XXjhhfjss8/w17/+FYceeijy8vLAcRxOPvlkxw9d+z5pUmV7H9DZPk5nX/c+++wDANiyZQvGjBnjuA0tjexI1VN3ndd0oeEBams70dDQgEAgkHI/gwcPxh/+8Afj9quvvooLLrgAN954I5YuXZoyR6SiogKqqqKxsRF+vz/j1+D0/+rxeIxz1NjYCFVVE94TQOL7JBU+n88ISXg8HgwePNhSzEBxeo3V1dV45513LELDDP27/c1vfgNZlvHEE0/gnHPOgaqqOPTQQ3HnnXfihBNOAKCFrgYOHIhXXnkF99xzD7xeL0488UTce++9GDlyZNqvJ9Wa6fvihhtuwA033JByzakoKyvDxRdfjIsvvhiAFtKZNm0arr76aiMfkpLsb5a+d+iaDj30UMdjUXFN84g6W03l9P+4fft2HH300Rg9ejQeeOABDBkyBF6vF0uXLsUVV1yRtb9LM1SsVFRUAEj/PFD8fn+CGPR4PJbWDum87zLlkksuwW233YZHH30Us2fPxsMPPwyfz5f0C34mZHIOpk2bhv79++Ppp5/G1KlT0djYiLfffhtXX301BEGw7K+zn4OZwkSQiRkzZhhvmLvuuivpdjRB9sMPP3R8nH4jpheGqqoqS9WKLMvtxuebm5vx7rvv4m9/+xtuueUW4/5oNIqGhoa0X1N7dMVxOvO6AS0R8fHHH8eCBQssazKzYMECiKKIY445BgCMDxh7oqH9ItFd5zUTaDz8wQcfTFr5UVZWlvF+zzvvPMyZMwerVq0CEP9/qaysTNh29+7d4HkehYWFALTz6dQbpaPfTgsLC8FxHKqqqhIec7ovGTzP45BDDml3O6dvuf369cMBBxyQ9G+bXuAAGKIhGAziq6++wt/+9jeceuqp2LBhAwYPHoxAIIDbb78dt99+O6qrqw1X6LTTTsO6desAaOewubk54TjJzqF9zfR9ceutt+Lss892fM7o0aMd70/FMcccg6lTp2LBggWoqamxJNQn+5ul7x26ptdffx2DBw9Oegyan7Vz586M12fG6f9xwYIFCAaDePPNNy1rWLlyZaeOlYq3334bAIxE93TPQ6a0977LlPz8fEyfPh3/+c9/cMMNN+Dpp5/GhRdemJV2BJmcA0EQ8Jvf/Ab/+te/0NTUhBdffBHRaNQQ5ub9ZftzsD2YCDIxYMAA3HjjjVi3bh2mT5+edLtTTz0VL7/8MhRFwcSJE5NuR/9gXnjhBRx88MHG/a+++mq7zf44jgMhJKFE9j//+Q8URUnj1aRHVxynM68b0JKe99tvP9x99904++yzE+zwV155BR9//DF+/etfG99cabXNjz/+iBNPPNHYln54UbrqvJpdj0w58sgjUVBQgDVr1uCPf/xjxs+vrKx0/Mbc1taGHTt2GBf30aNHY8CAAXjxxRdxww03GBeYYDCIN954w6gYA7TzWVNTg+rqauODJxaL4aOPPurQawwEAjjssMPw5ptv4t577zVEa2trK955550O7TNTTj31VLz//vsYPny4IfbaIxAIYNq0aYjFYjjzzDOxevXqhA/8srIyzJgxAz/88APmzZuHUCgEv9+PIUOG4LXXXkM0GjXeb/X19Vi0aJGje2Vn9OjRGDlyJH744QfMnj0749dbXV2NkpKSBFdCURRs3LgRfr8/4WKY7G+W/k2feOKJEEURmzZtMpKUnRg1apSRXnDdddclLfXviKtK37fmfRJC8MQTT6S9j0z45JNP8J///AeTJk3CUUcdBSD989BR0nnfUczn0Kl9wFVXXYV///vfOPfcc9HU1NShzxgnMj0HF198MebOnYuXXnoJzzzzDI444giL09/Zz8GOwkSQjbvvvrvdbX71q1/hhRdewMknn4yrr74ahx12GFwuF3bu3IkvvvgCZ5xxBs466yzsu+++uOiiizBv3jy4XC4cf/zxWLVqFe677752PwTz8vJwzDHH4N5770W/fv0wZMgQLFy4EE8++WRWm4p1xXE687oB7VvDG2+8gRNOOAFHHHEErr/+ehxxxBGIRqN455138Pjjj+OAAw7AI488YjynvLwcxx9/PObMmYPCwkIMHjwYn332Gd58880uf70AsP/+++Pll1/GK6+8gmHDhsHr9WL//fdP67k5OTl48MEHMX36dDQ0NODcc89FaWkpamtr8cMPP6C2ttbyWu3cdddd+Oabb3D++efjwAMPhM/nw5YtW/DQQw+hvr4e9957LwDNRZk7dy5+/etf49RTT8XMmTMRjUZx7733oqmpyfLeP//883HbbbfhV7/6FW688UZEIhH861//6pRQ/Pvf/46TTjoJJ5xwAq6//nooioJ77rkHgUCgW1y4O+64A5988gkmTZqEq666CqNHj0YkEsHWrVvx/vvv49FHH8XAgQNx2WWXwefz4cgjj0T//v1RVVWFOXPmID8/37D+J06ciFNPPRUHHHAACgsLsXbtWjz33HMWIfmb3/wGjz32GC666CJcdtllqK+vx9y5c9P6G6A89thjmDZtGk488UTMmDEDAwYMQENDA9auXYvvv/8er732WtLnPvfcc3jsscdw4YUX4tBDD0V+fj527tyJ//znP1i9ejVuu+22hJD+m2++CVEUccIJJ2D16tX461//ivHjx+O8884DoInjO+64A3/+85+xefNmnHTSSSgsLER1dTWWLl1qOGSAVsZ+2mmn4fDDD8e1116LffbZB9u3b8dHH32EF154AQCMv5EHHngA06dPh8vlwujRo1M2qD3hhBPgdrtxwQUX4KabbkIkEsEjjzySVuVpKlRVNfoARaNRbN++HR988AFeffVV7Lvvvpa2BJmch3RJ533nBD2H99xzD6ZNmwZBEHDAAQcY/7ejRo3CSSedhA8++ABHHXUUxo8fn/aaWlpa8PrrryfcX1JSgsmTJ2d0DsaMGYMjjjgCc+bMwY4dO/D4449b9tnZz8EO0+nU6j0Yc3VYKpwqfyRJIvfddx8ZP3488Xq9JCcnh4wZM4bMnDmTbNy40dguGo2S66+/npSWlhKv10sOP/xwsnjxYjJ48OB2q8N27txJzjnnHFJYWEhyc3PJSSedRFatWpXw3GSvI52Ks646TrqvOxW1tbXk5ptvJmPGjCEej8eocJk5cyYJhUIJ21dWVpJzzz2XFBUVkfz8fHLRRReR7777LqE6qyte79atW8nUqVNJbm4uAWBUpKRTHUZZuHAhOeWUU0hRURFxuVxkwIAB5JRTTiGvvfZayvO0ZMkScsUVV5Dx48eToqIiIggCKSkpISeddBJ5//33E7ZfsGABmThxIvF6vSQQCJDjjjuOfPPNNwnbvf/+++TAAw8kPp+PDBs2jDz00ENJq8OuuOKKhOc7/V+//fbb5IADDiBut5vss88+5O6773bcpxPtVfCYj3vKKac4PlZbW0uuuuoqMnToUOJyuUhRURE5+OCDyZ///GfS1tZGCCHk2WefJcceeywpKysjbrebVFRUkPPOO4/8+OOPxn5uueUWcsghh5DCwkLi8XjIsGHDyLXXXkvq6uosx3v22WfJvvvuS7xeL9lvv/3IK6+8krQ6jFY62vnhhx/IeeedR0pLS4nL5SLl5eXkF7/4BXn00UdTnoc1a9aQ66+/nhxyyCGkpKSEiKJICgsLyeTJk8lzzz1n2Zb+HyxfvpycdtppJCcnh+Tm5pILLriAVFdXJ+x7wYIF5NhjjyV5eXnE4/GQwYMHk3PPPZd8+umnlu0WL15Mpk2bRvLz84nH4yHDhw9PqEC79dZbSUVFhVHdSP+uUv0/vvPOO8Zn74ABA8iNN95oVIya/y4zqQ6jny8AiM/nI/vssw857bTTyFNPPUWi0ajj89I5D8net/b3fTrvu2Sftb/73e9ISUkJ4TjO8bPlmWeeIQDIyy+/3O65oEyePNlyTsw/5uthuu8FQgh5/PHHjfPb3NzseNx0PgezWR3GEWJLe2cweim7du3CEUccgdzcXCxcuNCIITMYjM4xa9Ys3H777aitrWV/V3shtPpz69atSQsD+iqsRJ6xxzBgwAB89NFHqKqqwtSpUx2TThkMBoOhhfQWL16MBx54APPnz8eNN97IBJADLCeIsUex7777dqorL4PBYPQFKisrMWnSJOTl5WHmzJlGd26GFRYOYzAYDAaD0Sfp0XCYLMv4y1/+gqFDh8Ln82HYsGG44447LNONCSGYNWsWKioq4PP5MGXKFKxevboHV81gMBgMBmNvoEdF0D333INHH30UDz30ENauXYu5c+fi3nvvxYMPPmhsM3fuXNx///146KGHsGzZMpSXl+OEE05Aa2trD66cwWAwGAzGnk6PhsNOPfVUlJWV4cknnzTuO+ecc+D3+/Hcc8+BEIKKigpcc801uPnmmwFoyV5lZWW45557umxiMIPBYDAYjL2fHk2MPuqoo/Doo49iw4YNGDVqFH744Qd8/fXXmDdvHgBtdhStBKJ4PB5MnjwZixYtchRB0WjU0u5fVVU0NDSguLi40wPjGAwGg8Fg9G4IIWhtbUVFRUVCx3Q7PSqCbr75ZjQ3N2PMmDEQBAGKouCuu+4yhvrRmUL2eSFlZWVJJ3jPmTMn406dDAaDwWAw9i527NjR7hDfHhVBr7zyCp5//nm8+OKLGDt2LFauXIlrrrkGFRUVltlddgeHEJLU1bn11ltx3XXXGbebm5uxzz77YMeOHRm1q2cwGAwGg7Hn0dLSgkGDBqUcv0LpURF044034pZbbsGvfvUrANoMlG3btmHOnDmYPn26MRyzqqrKMiCypqYm6TRZj8fjOKwvLy+PiSAGg8FgMPoI6aTA9Gh1WCgUSojXCYJglMgPHToU5eXl+OSTT4zHY7EYFi5ciEmTJnXrWhkMBoPBYOxd9KgTdNppp+Guu+7CPvvsg7Fjx2LFihW4//77cckllwDQVNw111yD2bNnY+TIkRg5ciRmz54Nv9+PCy+8sCeXzmAwGAwGYw+nR0XQgw8+iL/+9a+4/PLLUVNTg4qKCsycORO33Xabsc1NN92EcDiMyy+/HI2NjZg4cSI+/vjjtGJ9DAaDwWAwGMnY68dmtLS0ID8/H83NzSwniMFgMBiMvZxMrvtsijyDwWAwGIw+CRNBDAaDwWAw+iRMBDEYDAaDweiTMBHEYDAYDAajT8JEEIPBYDAYjD4JE0EMBoPBYDD6JEwEMRgMBoPB6JMwEcRgMBgMBqNPwkQQg8FgMBiMPgkTQQwGg8FgMPokTAQxGAwGg8HokzARxGAwGAwGo0/CRBCDwWAwGIw+CRNBDAaDwWAw+iRMBDEYDAaDweiTMBHEYDAYDAajT8JEEIPBYDAYjD4JE0EMBoPBYDD6JEwEMRgMBoPB6JMwEcRgMBgMBqNPwkQQg8FgMBiMPgkTQQwGg8FgMPokfUYEBaNyTy+BwWAwGAxGL6LPiKB3ftyNiKT09DIYDAaDwWD0EvqMCKpvjeHtlbshKWpPL4XBYDAYDEYvoM+IIADY1RTGez9WQlFJTy+FwWAwGAxGD9OnRBAAbKkL4uPVVSCECSEGg8FgMPoyYk8voCdYV9UKl8DjqJH94HUJPb0cBoPBYDAYPUCfFEEA8NOuZqytbMHQkgD265+HIcUB8DzX08tiMBgMBoPRTfRZEQQAskqwsboNG6vb4HcLGF2ei2NGljAxxGAwGAxGH6DP5QQlIxRTsGJ7E3Y1hXt6KQwGg8FgMLoBJoJsbKkL9vQSGAwGg8FgdANMBNnYWs9EEKN7YD2rGAwGo2dhIshGfVsMzSGpp5exV8Iu+nEW/VyH0x78Giu2N/b0UhgMBqPPwkSQA1uYG5R1CCEIxdjYEsqF//kW66pacfEzy3p6KQwGg9FnYSLIgS11bT29hL2OmKIiJjMnyE5rhA32ZTAYjJ6iz4iglmj6Ia6dDWEWuskyskIQY+c0AY/YZ/4EGQwGo9fRZz6BdzWG0t5WVgl2NKS/PaN9NlS3YtWu5p5eRq+DiSAGg8HoOfrMJ/CupkhG27NS+exy6bPf4coXV6AtysI/ZtxMBDEYDEaP0Wc+gXc2hjIamspEUPaQFBUNwRhiior6tmhPL6dXwUQQg8Fg9Bx95hM4HNMuxOnSGpFR29r7L9h7gqgIS/GqsGCUVYiZ8YhsgC+DwWD0FH1GBAHAjsbMRmLsCY0T11a29vQS2iViKo0Pxlg4zIxb6FN/ggwGg9Gr6FOfwJkmO2+p7f0iaF1VCxQ1/TBfT2B1gpgIMsPCYQwGg9Fz9Ogn8JAhQ8BxXMLPFVdcAUBrsDdr1ixUVFTA5/NhypQpWL16dYePt7MxDDUDwVDZHEFE6t3hm7aojO29vJKNhcOSw6rDGAwGo+fo0U/gZcuWobKy0vj55JNPAAC//OUvAQBz587F/fffj4ceegjLli1DeXk5TjjhBLS2Zh4Ccos8YoqKmgzyfFRCenVITFJUEAJsrO7dIbEQC4clhTlBDAaD0XP06CdwSUkJysvLjZ93330Xw4cPx+TJk0EIwbx58/DnP/8ZZ599NsaNG4dnn30WoVAIL774YsbHGlDgBQBsz6BfEABs7cVVYrKiuVqbaoMZOVzdjTknKMTCYRZ4juvpJTAYDEafpdd8DY3FYnj++edxySWXgOM4bNmyBVVVVZg6daqxjcfjweTJk7Fo0aKk+4lGo2hpabH8AMCAAh+AzPOCfq5pQ10vrcCiHZgjkoIdGYq77sQSDrPND+vN4q076NuvnsFgMHqWXiOCFixYgKamJsyYMQMAUFVVBQAoKyuzbFdWVmY85sScOXOQn59v/AwaNAgAMLDQD0DL85EzGN8gKQTv/1TZK8domNe0rX4PEUE2J6ghlH7bAgaDwWAwskmvEUFPPvkkpk2bhoqKCsv9nC1cQAhJuM/MrbfeiubmZuNnx44dAIACnwsBjwBFJdjdnFn36Pq2GD5fV5PRc7oDGg4DgJaI82y0UExGczj9uWldQTiWXATVtPROl627yKSBJ4PBYDCyS68QQdu2bcOnn36K3/3ud8Z95eXlAJDg+tTU1CS4Q2Y8Hg/y8vIsP4AmpvbR3aCOzAVbs7sFq3f3rtlXZieoJeyca/PNz/U93v06kiIcVtOamSBlMBgMBiNb9AoR9PTTT6O0tBSnnHKKcd/QoUNRXl5uVIwBWt7QwoULMWnSpA4dZ1CRLoI6mD/zxbqaXtWh2SKCHJygmpYIVu9uxrYernBLFQ6ra4v1+bwgBoPBYPQMPS6CVFXF008/jenTp0MUReN+juNwzTXXYPbs2Zg/fz5WrVqFGTNmwO/348ILL+zQsQbpTlBNSxTRDvT/6W35QZIpHBaOKQnr+nJDLQjR+iP1ZEPFcCy+LvsA1daIhIjMegcxGAwGo/vpcRH06aefYvv27bjkkksSHrvppptwzTXX4PLLL8chhxyCXbt24eOPP0Zubm6HjpXjFVHod4EA2NmU2QgNSl1bDF9vrOvQc7ONXfS0mHJ/WiMSduljQmKyit0dfL3ZIJUT1BaRLX2E+hosJYjBYDB6jh4XQVOnTgUhBKNGjUp4jOM4zJo1C5WVlYhEIli4cCHGjRvXqeMN6kReEOWHnU2den62WLO7GeuqWozk2pZIXGDYh8X2ZNNHc06Q2QkKxWTIKrEkTvc1CCuSZzAYjB6jx0VQd0PzgjozaoIQ4JM11YjJPRsWe+Czn/HR6mps0mecmZ0guwjqyRJ6a3WYSRDpoi3cy0eTMBgMBmPvpM+JoIGFWtPExpBkXIQBICopWF/Viu0NobTKlpvDEr7+ubbL1pkOjXqPnWVbG0AIQWsKJ6i2NdpjjkuycFir/ntfC4exsngGg8HoHYjtb7J34XUJKM31oKY1ik21bXCLPDZUa+KH5g6PKM3BL8aUwucSUu7rx53NGFmaa7hL3QkhxBAXNa1RbG8IYUz/PONxuwgCtLldPnfq19QVmEVQyPR7U0hzrvpaOMyco870EIPBYPQcfc4JAuIhsS831OLjNdXYWq8JoEK/Czynjcp4Ycm2dkvLezIsFpFUywV06dYGSzis0aETc09VtZlFTkxWjY7d2xu08xuW+tY8MbMTxEQQg8Fg9Bx9zgkCgGH9Ali+rREAUBRwY2RpDkaW5qA4x4Pqlgg+Wl2FxpCEBSt344CB+ThqRD+4BGe92ByW8Ob3O7Fv/zwMKwkg1+vK6lolRXU8tjnBWOA47G6KYJXezDEiKUbuTWtEgqwQFAbclg7T3Yk93BWSFPgA7GzQKtbMJfR9AaZ7GAwGo3fQJ0VQRYEP5x0yEG6BR3GOx/JYWZ4XFx62D775uR4rdzbhx53NqGyK4MwJFfC7nU9XZXMElc0RfL5Oe/6U0SWo0Ae2dpb3f6qEwHOYOLQYJbnxtYZimghyCRxGleVi9e4WrNrVDFlRjVCYqhK8+t1ORCQFMyYNMQaudjd2pycYlVHfFoOsx4WCscydIFlRISYRpr0ds/vDqsMYDAaj59gzryJZoH++L0EAUUSBx+TRJTjzwAr43QJq26J4fflOtCaZz2WmuiWCtZUtWVkjIQS7msLYWN2GF77dhkZTng91glwCj1JdHLWEZbRGZEME7WoKoy2qlaHvbAz3inAYoFWx/VzTZtw2J3Sng6yo2NYLWhR0FLPwYeEwBoPB6Dn6rAhKh8HFAZx78EDkekU0hiS8tnwnmtKYep6tcvTa1iiikiZcCLEmFdNwl1vgkePVHKq2qIyWiGSIoM2mmWG7m8KQ5J654tpL4Hc0hLC+Ki4U2yJyRqMzmsLxRpBmerIrdiYw4cNgMBi9AyaC2qHQ78YvDx6IAr8LrREZry3fibp25oc1h6W0xFJ7F+0dtgu9dRCp7gSJPHI9Wh5Sa0RGS1hGYygGQgg21cbdll3N4R4Lh0V0Icdx2u1vtzRYRn6ohBjl8unQFJJQ2ZwoguwjORgMBoPBSAUTQWmQ63Xh3IMGol+OG6GYgjeW72y3Y/TWNNwgmpydjF22URfWpoPaBd8t8MjxaE5QWFLQEIyivi2GurYYWiMyBF151LfFHCvGugMq3kr08ON2h3Njrmxrj6ZQDDUt0YSqPPtIjt6Kaq4O68F1MBgMRl+HiaA0CXhEnHPQQJTneRGRVcxfsQvf6U0KnWivvL6uLZpSBBFCEkI+UTlRBLkEDl4XD4HXxM6W+iBaIhI26y7Q4GI/CvyaU7R2d3ZylTJBVQmiulihyeJOrk9LGvlWlMaQBFklCV2/9xQnyPKWYSqIwWAweow+I4JcItfpfXhdAs45aAD27Z8LAuCbTfV476dKizihtDe5/butjYhIStILd21b1BL+AuJhJQBoozlBIg+O4ww3aENVGwgBNun5QMNKAqjI18THmiwlbGdC1OTW0G7d5kRoWVXxzc91WLKp3ugf1B7Numu0pc4qNPcYEdTTC2AwGAwGgD4kgkaVdWzyvB1R4HHCvmX4xehSCByHTbVBvLx0R4KTEZNVx7wVQOvds6G6FQDQ0OYconJK/I04jJ+gPYRydRFUH9TGY9S2anlLQ/sFMEB3YNbrx+xOzEnRcREUP1eLN9Xju22N+Pt7a/H99qa09klFZ1VLxHL/nhIOszRLZJKIwWAweow+I4LGVeRnbV8cx2H/gfk495CByPGIaApLWLKpPmE7p9wXAFixvclwieqDzknWOx1FUNwpoULCrYsgo0LMVCKf5xXhd4uoKPAC0KrW7O5SV0NFkEvg0D8vMRy2alfcnVq2tSGtCi+aCxS1vZZgVN4j5nL1/hUyGAxG36DPiKB+uR5DDGSL8jwvTjmgPwDNZbE7EU7J0RFJwU+7mo3bTjO+aH8gp+dSaEjJJeoiyBMvk6fCqijgBgDk+1zwijwUlSSEkLoamsztFnmU6+e/NaJVsD31zRZLxVokljw8aIb2O7JXu4UlZY8ok98DdBqDwWD0CfqMCAKAAwYWZH2f5XleVOR7oRLgh51NlsdqWiMJjQJ/2NFkqWqqdwiH1QdjjkNFI3KiCEpwgqJxJ6g4oFVjcRwHjz4MtrtDRlS4uQUeFfmaCIrJKr7f3pjQJDGUtggixn7Mzk84pkLZAxQGmx3GYDAYvYM+JYJGluZ0yRT1CfsUAgB+2tls6cpMCCwVTMu3NWLxZmvYrN7BCXIKhQHWcJi5RB6I5wS1RmQ06KXwhYH4HDO37hh1NHm40WGd6UBFkEcUkOt1waOv4+dqrXqtf37cnQvGZLS10z2aEGKcY0KsbtCe6AT1/tUyGAzG3kufEkGiwGNsRV7Sx70uASKfeRXZsJIA8n0uRGQ1YWTGtvogVJXgs7XV+GpDbcI3f23YqfXCT4VTTFbxc02bcWE3h8PajGaJ2npTOUFAXCzRTtOZsr66tUP5NlS4uUUeosAhV19nRHfDjhtTaoz9CEbldkVaTFEt59DsqkXlPUQEmX9nVhCDwWD0GH1KBAHAAQMKjM7FZtwij7MPGoDR5ZlXkfEchwMHFQAAVuxoslzYttWHMH/FLvy4sznJs615QapKsLNRE0HLtjbgvZ8q8e0WzT2KyapxkU90gjTXJxSLT5A3O0EugbM8L1O21AUt5e7pEneCeLgEHnlekzsl8CgKuBHQXaxgGuEwc6dpwCqCZIXsGSKICR8Gg8HoFfQ5EZTvd2FIccByn1vkceaEASjL8xqhrUzZr38e3CKPppCELaZGiW1ROaGpnx1zSKzGNC9st54cvWpXS4IbRIUOLZE3N0wEtERpjxgP/VGx1JFwWCgmo7ol0qHKMprH5NHXt5/JiQt4BHAch4Annq/UXjiM5gFFJAWEEIswi0iKY8+mniKZ2GG9EhkMBqN30OdEEADsPzBeLi/yHE47oMLopVOS68GgIn/G+3SLPPbXy/BXpNnvhlJvmkW2Q3eBCCGo05Omw5JiVHVRIUJLz2muj7lhIhCvDKO4OpETtLUuhPq2WLtizgkaDvOKAlw8j+ElORhZmgMA2Le/JogCbt0Jispoi6buHC0pKt75sRKPfbUZry3faZTJ724K499fbsKVL63MeI1dRbJZbZacIKaCGAwGo8fokyJoWL8Acr0iBJ7DKQf0xz7FVtEzYZ+CDu13/KB8cJyW2EybFaaD2QmiM8laIrLlIrp6txZOo7k0oZi1WSIQT44GEkUQdYJaMxhPQVlX1YIXl27HH57/PuPnGuEwl5YTBAAnji3HWRMGGOeZhsNW7W5JmhRu3h8VhJXNETTp3aPnr9gFAFi6pSHjNXYV9tlmFHODRBYaYzAYjJ6jT4ogjuMwflABThpXjmElOQmPD+sXMOZtZUKuNx5qo3k96UBzgmRFNUJgVET59Wq2bfUhtEYkIwxES+gL/HHhQ5OjAaA4iRPU0k64yYntDSEoKkFlczjjizYVQV5RMESQwHPYp8gPkdfWRMNhAPD68p0p92evpqtr1W5nIjqTrTHb2POXKKw6jMFgMHoHfVIEAcAhgwuTjtLgTInOmVKiVzrVJRmH4UQ4piAUk1HZHDEunLV6iGxIsTb2gkCb/aXlvaig+b/m3kfmcFihTQQV+bXb7eXcOEF7GanEWqafDjRnx+vSwmFODCjwGcnqTs0jzdS1WcVOXTCir7HjIsjer8iJjgglKY1wmMqcIAaDwegx+qwI4pxKxEyMrciHx5V4ejgu7s440U8XH8nGYSSjvi1m5AMBQJ3ubPTLcWOcnky8ZneLXv0Vv2gfMqQIPGctkwcSw2G0W3ZHcoIaQ3FhEoxl9nzDCXIJ4HnOkrxN8YgCZkwaAkATDrEUyc11LdbzSgVaJqLTTjoT7GOKmvaAV+M5aYTD1MwL7hgMBoORJfqsCGoPt8hjrG3emMhzmDauPw4bWpT0ef1yNCeovi2WUeioPhgz8oGAuBNUkuvBiNIcuAUeLREZG6tbTZVhHAr9bgzpp+U00Zwgv1tArkc0kqYBYKCe7N0REdQUiouEUIZ9hqgI8rm1tTiJIABGE0WVpHar6mzikjaGzFR0mmmNtD9zTFVJxi0C0kmMZk4Qg8Fg9BxMBKXgwEEFhsvicWll9KPLczGqLNe4306+3wWB5yCrBM3h9JOQq5ojqGrWLuQRSTFCNP1yPBAF3shRqmqOGEKGJkWPKdecogEFPpTmejB+YAEK/C4j8djj4jFIr37rSJ8gs1OSuROkCQGfPraD9iuy4zYleDt10TYea7Oe08agdrvRJNTsg1Wd16VYfm9P4CgdEEFJw2EZ7YXBYDAYXQUTQSnI97kwrESrJPvlwYOM0vmAR8TAQp/jc3iOM5KSMwnRbKxuNVwBmveS6xXh1cUDraCqaY0aQoS6J8NKAnCLPDwuARcctg8OG1qEwoAbBw8uhNclYJ8iP3K8tJliZiImKlvDb5k+n5by+1za+sUkeUEcxxlCKFVekDk0BwBN+u0G07n+cHWVcX8yzI6YpKhGb6ZkKIRk3IMoaTjM5P4wJ4jBYDB6DiaC2mHisCKcd+ggI+GZkqqzdHGOnheUQbKubOp0TCudSnLix6RJz/VtMUOUeA13hceIUmuVW6HfDY8o4NAhhRhSHDCen+nYjIikImQa5prp86loojPbkjlBQLznkV3omKHiho43aQlroSzz4NTWiGSIr2QEbSKove1VFe0KJTvJBKM1HJbRLhkMBoORRZgIaofSXK9l1ANlRGlO0vyWfvrMrroUjsa2+iBeWbYDG6pbEx6jDlK/3EQR1BCKGkKEiiAA2MfW4JGGz8YPKsCwkoBRht7exd5OZ50gGg6jyeSikPwtR52tVGFE+hgVmi0RySIgAU3gtCdYzBVhMVltt/pLIZmFwx75chN+9fi3+NY2MBewN0tkKojBYDB6CiaCOojXJWBIv4DjY6mcIFUlWLSpDgtW7kZVSwTLtiY29zOSok1OEBUxTSEp7gSZEp/L8rwwQ6vDXAIPv1s0RBTtM5QukZjSKSeIigsqgrymirtCWy8m6gSZE7HtUBFEX19rRIZs68cTjClJk5KNbUzCLqYQY7xHMrTE6PRf+z0frgMA/Gn+TwmPWZslpr1LBoPBYGQZJoI6wegkfYZohVhTSLKUVYdiMt5csQvLtjYa99WZwluAloBL81tKHJyg5rBk5LP4TKX6hX6XpaS/0G8tkac5RSrJzA1qCMYsTktHc4KoCPKZ3Kv9bNV3VAS1pHCCqCAr10VfVUsEH62utB4zprTrBFlyguTEnCC74FFUkjTHJxVOGodVhzEYDEbvgImgTkATku343QK8Lh4E1iTfhRtqsaspDJfA4aSx5YbIMfcHagzFoBACt8Ajz9T3h4qg1ohsEkHxxzmOQ2mu13R8ay8jv1sADd5lUiZfbevLk2mJvblPkH3Ng4p8yPO5kO/THCGP0H5Xa7q/8jwv9h+giagXvt1u2SYmq0ldm91NYX1GmdkJUhOcI3tSu0qyN6HevBeWE8RgMBg9BxNBncAl8BhekhgS4zguIS9IUlRsrtVmXp1xoFZqT/N4ttfHRVBVs9YBuV+O29LQkYqgqKyipkXbJmBr2liWpx3T7gLRNVHnKJOQVrV+LEpLuGM5QYYIcpndKzcq8r1GKT8VlKnmm9HZaW6RR/98TfTRMnmKSpA0f2dHQwg7GkMJ1WF2l6euNWpx8bIqgkzuD2EF8wwGg9FjMBHUSZKN3rDnBW2pC0JWCfJ9LlToF29DBDWEjAvjuiotUXqwLd/ILfJGRdQmXUz5Ta4KEM8LSjb3LC6C0hcyNbaZXOl0VzYTNZwg7a1Gw2IBj+ZW7VeRZ8xvc7cz6V41haTcYnwgq100pQpdySpBsymvihCCNbtbUNViHdxaH4zip13Npn3CUoGWNg5PMWsp1jGawWAweg4mgjrJ4OJAQugJAIpzrDPENla3AQBGluYYDk9FvhcCzyEYU1AfjKE5LGGXPkB1X70EnwoDjuMMN4hOUc/x2JwgPRxmH5lBCeiiKZOQln1WV6bhMOrIeESaGK39S92qwcUBoyqMbpNMpJkbNboF3phF1mrbXk3R00dSVDSGJIRiClSV4MNVVXh52Q7c+sYqy3YxWcX6qnjlnqKShCq0jsOmyDMYDEZvgImgTiLwHA4bWmi4NJR+JicoJqvYUq8JF7NzJAo8BuidnLc3hLC2sgWA5hDl6mX55tJ3KoKqaDjMY3WC8v0u+NwCChzCYdr2mTtBNKfJyCfKcAArrbqi4oc6QdQpA7TSeI6LC75gzFnA0K7QPKedd+oEhWzbqynK2RWVoLYtCkK0XKCvNtYCSBxxISnEkkCuEgI1a+Ew0+9Z2SODwWAwOgITQVng4MFFuPiooTh4cKFxIS/Wc4KCMQVrK1ugqAQFPpchjiiDTXlBVATt2z8ulIaZco4CXqvoybXdBrS8IHvpOYWKKCc3J5kjQRsXUtHSlmF1WMyYIq+dF5/NCQI0l8sl8IYjZBc19rW4BR4cxyXtOZRqxIWkxKvvJEWFkGT8iaISI5+J3u6IE+RYHWb63V4dxpwhBoPB6D6YCMoSOR4Rx4wqwaVHDUVFgRduMV7dRXsBjSzLSZheT0dxbGsIoSUiwy3wGK7nyLgEznicHsNMrkMTx/I8X1InKFXXaJpnZIf25aFJyJkMUCWEQNJ7+MSrw7R/++VYO3B7RN7YJpTEqaL9g6jQdCVpVpkqMVpWVUN4SAoBn2Qfst4XiLo/SlYTo61rNdNefyMGg8FgZA8mgrKM1yVgUKEmXGheEA3vjCxNTKLul+M2QkSAJpToYNTCgBu5HtEYNWEXQXkOTtCosuSdrHO8VAQliowfdzY5hntoZ+WB+mvKZCisWYhQgeN1CRB4zhIOAzQRRB2siOTcwZmOzDBEUAonyJ4YTQWMubGipKiWQbhmF0ZWFBASD+eRrJbIO+cEEUJw+9tr8N/FW7NyHAaDwWCkhomgLoCKH3Poq9CfGAoDtFCQOe9n3/558f0EtDJ52kcnYEuEzvUlOkHFNofFDB3/YQ+HyYqKXY1hNDjM7KLbDi72G7fDScJVdsxCxtzdujDgTqhsc4u8sfaIrFgaJlJBQ+9zCVqlnJhkDplKSMIEd5rgbQ5paSIovg3NAfpyfQ3ufG8dttQFjZCYoqJLnCDz70u3NODFpdtx21urs3IcBoPBYKSGiaAugLocNC8I0FwgeyiMQgWGuXweAIr05+fr4S27E1TgIIJSEQ+HWUVQZXMEskpQY2uMqKrx4ak0RBeTVax3mHfmBBUQPGedGTaw0JewrUcUUK73OQrHFMsQ1W16Ujl1odwij6Icd9KJ9KpKLD1+ABivzXy/ohKLCGnVeyBd8swytEVlvP3DbqPKTFGz5wSZ84DMv6dqEslgMBiM7NMhESQIAo499lg0NFjnXlVXV0MQEsvF+xqFfjcEnrM4P6PKcpJuP6osF0eN6IeTx5VbhBItdadOkF0E5SdJgE5GIEli9M5GrSy/1lYO3xCUjAs/Xb+kqEYCd3s0h63hK8ogBxHkFnn01yvlCGC0CgCArfUhyIpqiASfS0COKUxoR9FzkcyhpppWraJO0l8PIVqis3lmGK26M2sdGj5rCUvYWhfMWAg5JTqzKfIMBoPRO+iQCCKEIBqN4pBDDsGqVasSHsuEXbt24aKLLkJxcTH8fj8OPPBALF++3LK/WbNmoaKiAj6fD1OmTMHq1b07XCDwHAr9LhQF3BhTnosDBuSnDFPxHIeDBxei1DYElYoo6vjYQ0iZOkEBY/SGNa+HCo4aW3foSr17tVvgUZanCRRJUVHZFMa7P+5ud6AoLWl323J3BhT4E7bVcoLcRthsV2NcBDUGY6gPxox1+92aCOI4zjH/iTYglBSzCNIEnqKo2FYfxKMLN+Oj1VWW0B7tjp1vOq+SoiIcU3Dlyyvw4Bc/462VuwAgIWcp2fu+vb8GVg3GYDAYPUeHRBDHcXjjjTdw2mmnYdKkSXjrrbcsj6VLY2MjjjzySLhcLnzwwQdYs2YN/vGPf6CgoMDYZu7cubj//vvx0EMPYdmyZSgvL8cJJ5yA1tb0QjI9RXGOBxzH4cSx5Th2TGnGzxf5eC4Q7QAt8JwlibrA51wFlgzaXNEcdlFUgqpmZyeIdlHO8Yrw689Viea0bKxuw6pdqR0hezUXxedOdAs9ooBcrwi/LtQqm+MiqDksobY1avQoCnhEQxA6VYjRzs6yqR1zS1hCRFIgqwTv/FiJmKJi7ofrLb2AqFDK88XFpqwSVLdEjLwkOvrEPunefpvipHGS5QQxGAwGo3vpsBMkCAIeeOAB3HfffTj//PNx5513Zvyt9p577sGgQYPw9NNP47DDDsOQIUNw3HHHYfjw4cZx5s2bhz//+c84++yzMW7cODz77LMIhUJ48cUXO7L0biNZ1+Z0KQzEZ4eZxQ4NiYk8B5fD8NZUUCfI3AV6e0PIcEyikormsDb5ftWuZny7RQt35nlF+E1dsen2NNyVjOaQczjMCbfIw+cWDJG3szECSVEhKSraojJW7mjCDt0dyvGIRpK4U6+gz9fVoDEUM9ZJiNbzpyUiQVKsuT3mXkC1uggyO0ExWbFUudES9kZbEnl1q9VFozjNBjPfl2yKfLYaMzIYDAYjOZ1OjP7973+PDz/8EPPmzcNvfvObjJ779ttv45BDDsEvf/lLlJaWYsKECXjiiSeMx7ds2YKqqipMnTrVuM/j8WDy5MlYtGiR4z6j0ShaWlosPz2BUyVYJhSbRFSuVzTCPlQEeTIUQEBcBJldC/N8LABYW9mCl5Zuxydrqg3XozDghijwRg6OpIuCZO4Hhc4Zo+MwUuERefjdovH6mkIxrNndYiRD17ZGjdBVrlc0XkuyvKBP11YbSdARSesN1BySDNeLYg5r1epCJtcTF0HNYdlSbk9noZlFECEE1bak8viDDnelkRPUoTllDAaDwciIDomgwYMHWxKgp0yZgiVLlmDnzp0Z7Wfz5s145JFHMHLkSHz00Uf4v//7P1x11VX473//CwCoqqoCAJSVlVmeV1ZWZjxmZ86cOcjPzzd+Bg0alNGasoW5MqwjmJ0knueMnkD04p+Ou2KHCoxQTEFNawTBqIwttiaJizfVG/POqOiggsyrixlafm4WQd9vb0w4Hg27pSPYPC4efj3hGdDK1Rdvrsfna2uMbWgOUoHPZcxBS9Y1OhhVjHJ4GvL675JteHbxNst2ZhFUrTtB5oju+uoWS+4TdYKaTa89IqlJR5E4SRmz+5OsZ1C2KtEYDAaDkZwOiaAtW7aguLjYct+IESOwYsUKbN68Oe39qKqKgw46CLNnz8aECRMwc+ZMXHbZZXjkkUcs29nzjAghSXOPbr31VjQ3Nxs/O3bsSHs92aTA70rqUqSDvZlgga1M3mloa3tQ4SApKtZVtmL17pak4RgACOkjMkpyPZZj0jBTa0SGohK0RCR8taEWm2rbLM+nyc3piKA8rws8z1mEWjimWKrEqJgpyvEYOUr2mW0UYuoVRJ/34rfbE7aLmFye1rCMRZvqLGM7lm1ptDpBMg2HmfoYKWrSJHHHnCDT70mdICaCGAwGo8vJap8gr9eLwYMHp719//79sd9++1nu23fffbF9u3axKi8vB4AE16empibBHaJ4PB7k5eVZfnoCjuNQ2Im8oCKbk0TL4WnX546IICowYrKKDdWtWKWHwggh2FYftCQJA3EnqESvbPO6tbcLdUNUQtASllDTog0kfe/HSqN8fmdjCM16OCydtdJZYjQp2Wl+GM3fKc31IMctwucWknaNJoiXt9PX4ZSz1mQKa4UlBd9ubkBjMH7f7qYIoopVBIVjiqVztqSoiErWvkSpsCZGO4ud3hIOszedZDAYjL2JxLkLKSgsLEyr+svePygZRx55JNavX2+5b8OGDYaQGjp0KMrLy/HJJ59gwoQJAIBYLIaFCxfinnvuyWTpPUJxwJPQgDAdBJ5LKH+nybrD+gUwtF8AU0aXZLxf6p7IKkFzWDJGRqzY0YT/bazDvv1zMXW/cmP7kC6KaOm+z2UNhwFAU1gySusVleCj1VVojchoCMYM8VGQRj8jWjFG56GFHAa10v2V5XrB8xxGluakdNtoddim2jZ8trba0XWpa7WKIAAImo4dkmSLwIlKCrY3hBCVFcORjMkqorKK2tYoSnI9FhfHWeSYE6Od195bEqODUTnpLDoGg8HY08lIBM2bN8/4nRCCP/zhD7jjjjtQWpp5CTgAXHvttZg0aRJmz56N8847D0uXLsXjjz+Oxx9/HIDmplxzzTWYPXs2Ro4ciZEjR2L27Nnw+/248MILO3TM7sQpOXr8oHz8sKPZYes4hX5XwmBPKoq8LgGnj6/A6PLEOWTtYW62KCkqPKKAiKRgqV4F1hi0JjpT0UGHp/pN4TRKUyhmlJYDmsvxzc914Lh4Z+rS3PTzo6jYo0Neo7KCrzZoAo06UP30/Y0qy03aNZoQICZrQuLdH3dj1W7nBHmz4xLRX695tEY4pliGmrZGZHyypgpEH9LqdQmQFBVNIQm7m8IoyfVYSvMlBzGTzAkyb9nexPqorKSVcN5ZgjEFDm2dGAwGY68gIxE0ffp0y+0rr7wS55xzDoYNG9ahgx966KGYP38+br31Vtxxxx0YOnQo5s2bh1//+tfGNjfddBPC4TAuv/xyNDY2YuLEifj444+Rm5u5COhu7A0S++V6MGVUKXY0hNEQTF5e3j8/saOy/du4vQFhOnhEHjynuQ+STOARge+2Nhp5LkGb+xJKEEG6EyTHL9BNYcloMmiGkHhn6jJbE8hUUMHUFtWqstZVtmJNZQt2NIYAAByAooAmlIoC7qTzwyKSAknR1t8STm8cBXWCFLsIkq0iiOZEBaMyvC4BMVm1zCszP19RHESQ6Xez1jG7P+05QZGY2i0iyGmQLYPBYOwt9PjssFNPPRU//fQTIpEI1q5di8suu8zyOMdxmDVrFiorKxGJRLBw4UKMGzeuh1abGfZeQfsPyAfPc5g4rCjpc9wijyOGFyfcn+9zWaqWMu0RBGjnMs8UbgrFZKzc2WQ8HoophjOhEmKIgpJcqwgyOyM7G0KO+TtA3M3JRATl+11G2K0xFDOm2NN/vS4BHv1xv1swKtbsyCrBXxasNl5rOjiKIEmxJD2bhWIwqkBViSEiqTgyd6p2Sjy330XPudn9SeUEacfsHnGizVfrHaE5BoPByDY9LoL2ZvJ9LqOU3SVwGKOHsEaX5RohHTtHDC82yuDNCDxn5MsAHXOCgPjw0oZQDDUtUSgqMcrvFZUYAsfsABTqOT1UzNSawl+0nN4J6gTRmWDpIPC8IR4bgjG0Rq0hOq+LN147x3FGorgTtAdSMIOp9xuqWy2iLiJZnSDzmI2qlgjWVbUarp6TEyQ7CBa7MKI3LQ5SChEUldVumzkmK4TNN2MwGHstTAR1MbTHzojSXKNKiuM4HOHgBpXkenDgwIJ29wUAbrFj5feDiwMAtPwfevEuy/MawiKkuzdUCATcgtGLZ/IoLRl7S13QkvfiBCHEcGAq8tN3gkSeQ6Ee7moIxp0gis9lrQjLT2N+WjgNEeQReagE+GCVtRJRJbCswezQbK5tw/JtDcaID3pOzOcmaus4DSQ6QVQUpSuCYrLq2Im6K1AJYeX6DAZjryWjnKDrrrvOcjsWi+Guu+5Cfn6+5f7777+/8yvbSyjO8aCyOYJxA6yl+iNKc1Ga12BUj3Ec8IsxpQkJ0WaKAm5sqdOaG7qFjuWDDOmnZbk2hmKGS1UYcKO2LYpYSEUwJqMw4DZEkNl9Gj+oAAG3gGBMwc6GMIb0CxiP1bREsHp3Cw7cpwCFfjfCkmI4CJmEwwSeMxpNNoZiCRPvfW7BMjS1sJ3KM0UlaeW1TBpejC/W1zo+Vm8aM2IWBFUtERAS71VEE7HN20gKQTimGGFIIHGUhurkBKUIQamke9wZVSV4edkOnLBfKSaP6ljxA4PBYPRmMhJBK1assNyeNGlSQnPETAao9gWKc9woCrgxsDCxxOakseWobYuC5zh4RQEV7YSNiixOUMdMvBElOQC0cBh1f4oDbgTcIppCkiF+duqJyBUFcQHjEXkMK8nBT7ua8XNtmyGC1lW14KPV1QA0MTdldKkhXvymeWDpIPKcIWzq2+IiiCZ059hCheZzcuUvRmBnYxi5XhH/1TtD0/L19vjFvqUpRFA85Gctf9f+pe6QrKpoCsWM/kSUxmDMKgSTOEFymk6QSronT+edH3fj+SXb8PySbdh69ylddpxUzU8ZDAajK8lIBH3xxRddtY69ln4BT4ILRCnO8SRUkKXcl2nbjnajHlGqiaCmkGQ4KoV+tyFUaHL0xhqt+/Phw+JJ2i6Bx4hSTQRtrg1CGU3Ac8BXG+qMbWgTQZoUnesRM7rACTxnCJsmfV8cBwzrl4Ofa9sszhRgrcALeEQcMqQQlU3xajV7To/jMTkO/fN8GNovYDhtAOAVeURkFXVBZycI0ATJG8t3wu8WccUvhmPVrhaLcAQSh60mky9m9ye1COqe6fM7G8Ptb5QFVAJ0ork6g8FgdJiM7IRJkyZh7ty5WLduXVetZ6+jX64b+/bPTtfqbDhB+xQHIPCclgQtq+CghZSoCApGZdQHY4ZIOtyUuyQKHAYW+BDwCAhLCn6uaUNTWLJ0mqZOEu0RlCpx2QmR55HjES2J3zkeEUeN7IdxFXmW9QDxkR6AJtJ4jgPPaaX0gDbENdZO12OXyEEQuIQGlDSHy9zOQFZV7GwM4cmvt2BzbZvWH6g5gp9r29ASlrGlPpiQg2QfNJs0J8i0zlQiiBDSLSIo2UiSbMOqzxgMRk+R0ZX097//Pb799lsceuihGDVqFG688Ub873//Yx9iKfC7RaPJYGdxizxydVHR0eown0uw5NHk+VwQBR5+08wu6gINLvJbxne4BR48z2FchZYD9uOuJlQ2a64LvWDS8BX9N53EZTMCz+kjR+LPy/WIyPe5cNy+ZRY3DADKcq3uGM9pIVnqcjWHpHZHP3hEASLPJYzgoD2I2kyJ0YpK8Mb3u9AWlfHuT5Uwy4TNdW1oCsYSWgZU2voo2avDVFtYjR4nGSpxLr3PNsmG02aThRtqccqDXxsjXBgMBqM7yehTbsaMGXjjjTdQV1eHefPmoaWlBeeffz5KS0sxY8YMzJ8/H6FQqKvWykB8sGpHnSCXYJ1pRt2lgBEOk7FJF0EjS3OMcRaAJi5EnsO4AfngOG2uFr14jdTDbKGYAkUlHRZBVHgUmZpDDiyK51PZhUq5qbEkIfGcNCqC6oOxdl0Tj8hD4DlLiJHn4vtoNSVnm7UJIVaB8+yibdhcF0Rdm3VUysrtTZbb9uWYezNRUvYJIt1TG2Y+H131RWf6U0uxvqoVFz+zrEv2z2AwGKno0JXU4/Hg5JNPxmOPPYbdu3fj3XffxYABA3DbbbehX79+OPXUU/HNN99ke60MwKic6qgI4jjO4qZQEUTdqrq2GOr18M+QfgGjcSHFJWrhKppgTZ2goSUB0OhJMCYbIaRk/ZCSQYVHnkk8DTdVodmbRJrDYRFJMeahUWeqpjWxm7Udj8hD5HkIptwlUeCNtbRFkjdb/GRNteX2t5vrUWsTQdvqg5bbdkHh5ASlcnq06rCul0HmKrx0kss7Q0tYan8jBoPByDJZ8bsnTpyIu+66Cz/99BN++uknHHfccaisrMzGrhk2qGhJNj09HcyzvOIiSBM71MEpDrjhdQkJIoiKC3tX64p8n9HksS0iGxVVgzIcPEX3b85/Mgsdty2D1nyhDsUUQ4jR+6lIS4XXJRhhOIpLiIfUMpEbosBbSuqBeII3JZkTZB6xYa8ws27fPYnRZrpDdDEYDEZ3k51kFRPDhw/Htddem+3dMnSKc9zgucT8lUwoN5Vr07BTwJa3ROeF+Wzl7UZvIb8bBw4qwModTXCLPAIeETkeEa0RGZXNEcQUVau6Kki/RxAQFy8jS3PQMrwYFQU+mzhJ/rrNThDdD+3DlAqfW0hIAnYLfNLhrKlwCVzCXLhmu8uRkBit/WuuDkslOjQR1PWixByRYw0TGQzG3kjGIui9997D/PnzUVRUhEsuuQRjxowxHmtsbMQ555yDzz//PKuLZMQpCrg7HAqj9M/3JTgudrHTP98HnuPgsR3LLAyOHFEMn0swBBPt4bNVLzMvCriNOV/pQsULx3E4ZEiR/nvc+UglgsKSAo7T3CS6znTCYX6XtQEjoIk9oQO9a7R8KL3btkdAMKqgNSxbeuHYM3oMJyjd2WHd1CzRLLTaaRDOYDAYeyQZXU1ffPFFnHHGGaiqqsLixYsxYcIEvPDCC8bjsVgMCxcuzPoiGXE8omBMUe8oOV4R5xw0EGdNGGCUgQs8B68r/nboX+CF18Un9PgxJ8uKPI/DhhZhkJ64TEXQziatv0y/HHdC+Ko9nMqyzc0WnUTQcWNK4RI4/O6oYcY8MSpq7K6ME163gwgy5QRlwtb6EKr1ZOlC3WVTCMGG6lZjm8QSee1fS05Qu4nR3eAEpdnBmsFgMLJBW1TGTzuburXiPCMn6L777sM///lPXHnllQCA119/HRdffDEikQguvfTSLlkgIxFzRVRHcIs8ynX3pijgQktERkxWEXCLiEgxeF08CnyuBHcISO3E2Ls598v1ZBxSEngeFQVeVDZHDLGQ63UZzRedZqZddswwnHvwQOxT7MePu5qQ4xHjJftJkppdAmdMe/e6EsNhHlEwKtUyZdGmegBaOwKR5yCrBDsbwhhdngfi4OIY1WFpO0Hd48yY05LamxXXWVjDaAaj77J8WwOeX7IdH62uQiim4InfHoIT9ivrlmNnJII2bNiAU0891bh97rnnol+/fjj99NMhSRLOOuusrC+QkUj/DAaSOmHuMeRxCShxCdjVGNZET1ALhXEcZ7hEZlIJA3tjxH45noyFhMhzGNovB+GYgka9yWCuV0SV3kbGSYS5BA4e3cXiOQ65JieINnLM97ksuTlugYekaI95XYmuj9lNcqLQ74JKHPJ9zK9F0HK3ZFVBUB8mG5XVhG859FbafYJUNWEyfVfAwmEMBqM7OOeRxZbb7/24u9tEUEZf0/Py8lBdbS0JnjJlCt555x3ceOONePDBB7O6OIYz5Z0UQeY8H4/IG3Ot6JDPAfoMM6eZX+k6QcUBNyryvRkncAs8h4oCr8XtMg8fdRRmfDxsx3NAjseVIIJKcjy44NBBxnPMeVWaY6PdnjK6BAG3gFumjUnZ48gl8O0KPJHnjfBhMKpoE+UlNSGQlekU+b+8tRrnP7YkrVBfZzBrNRYOYzAY3YW99UhXktEV6rDDDsMHH3yQcP/kyZPxzjvvYN68edlaFyMFed7O5QS5bSKIVotNHFqEo0b0w/4DtI7QziIo+YW/LM+LYf0COHBgAc47ZBBEgc9YBNH1mIVerslhKnAQJqLAGUnMNCeIhrcikmZhuEQOpXleHDAwH26Bx/RJQ4zne10CBP11HTioAJceNRSjy3ITRJD5fIgCB1c7oT7qBAFaE0oqhJLlBKU7RX7plgbEFBXv/9S1bSjMeUepcpQYDAYjmwRjXe90UzK6Ql177bXwep1diClTpuDdd9/Fb3/726wsjNF1WEWQgLI8rQ9Pns+FgwcXGo87uS4+V/IIqsBzOG18BSaPLjH2kWk4rCjghijwxpoAWIamFpg6SVPozDBAC4fleBLDYTQEeNoBFfj9McMw1NSAMccdF00D9JJ8nueQ47G+frP4dPE8XKb8JKeEbpHnjNcfiikIRmVdlNmaJRpT6M1OUPvxp85WCbaHxQliIojBYGQRVSX4dE21UUjSU2SUEzR58mRMnjw56eNTpkzBlClTOrsmRhdjzglyizwK/FpjxIhkVd9OM89yUwxEHVGag5/1kRuU9twSOzSsZW7SmKcfM8cjOl74BZ4zmiTyHCw5QfTiTR0Zn1tAW1S27H9Qsd/YfnR5LnY2hiHyiTlRuV4RVS3a76LAgRCrCLInMwt83C0KxWQEYzIEjkva6NAsfJKNOzPn6djbF2Qb8zJZOIzBYHQWQgiufWUlCvxujB+Uj2tf+SFldKE76PoJiYxehz0cBsDivFCcwmHJQnGjynJx+LDihPs7WmFlXiMdoVHgdz62i9cGuwKaExTwiAnDP6kICujujlngDCkOGE4ODYEJPJdQHWcWgC5bqM9JnIl8PG8oLKkIRhVEJDWhOiyeExS/L5kTFDNt1JmGmenAnCAGg5FNttQFsWDlbjyzaCsWrq8FAKNK186r3+3Apto2x8eySYc+Re+7775sr4PRjZgv2G5DBCWGOe0jM4DECjDKxGFFKHZo5NjRCzV1qwTdkRF4zui7Y0cUOCMcxnFa3lLiOqjDJII3TZkHgCEmJ8hn6ZskWJ5vPh+ibeBqsko6+vrDkqyFw2QlocdPvE9Q+05Q2BQr72oRJCnm9TARxGAwOkeq1h92bnr9Rxz3j67vO5jxp+gtt9yCJ554oivWwugmLCXyonbxLnEYdOrUJyhZOCzf5wLPc5a5ZEDqROpUiAKvh6R4fT98UidIE0Ha7xynhaC8dhEkxp0gUeDQauofVJLriYsg/TULnFX0uAQeblMzyRyv1W1yOleaUNK2icRUNIUlRCUVUVvYkYa4JNksOpxVUKgbEwaZCGIwGOlACMFvnvwW//fc8p5eSsaknRNECMHvf/97fPrpp/jqq6+6ck2MLsbj4AQ5uT7JSuR9bsHiSPjcgnGx75/vw87GsPGYPSyVCW6RN9blEpz7FgFaOIzmErl4LanZ7gRR4efXk6CPGdUPpXkeDNQToUWe18eECOA4gOc5yzw1r0tAJBYXBeMq8rHe1AW6PM+LbfUhyzHNIq4lIqElLCHHIxhjNSh0cKqURom8WQSlkzzdGcxDXNkAVQaDkYxt9SH8b2MdACAmq11etJFN0hZB5557LpYsWYKFCxdi0KBB7T+B0WtxygmyCwyOA7yis+jI9YoWEWTuD1Seb3OCOjB6wrxOryGCeEe3BdBL5PXjUMfHHipyGSJIE2x+t4hrjx9lNDukITSXwBn5QWYROKY811LFEPCIlqaV+w/Ih8hzWF3Zgia9yeOOxrCRY9QclqGoBJJCEIxaGyzKRBMzssl5SWYbS2lsky2s4TkmghgMhjP2T4cfdjThu22NuHjSECNfs7eStgiaP38+Hn/8cYwYMaIr18PoBpxygsxzw7TbQtI3b67XZZnObg6RleRYc4s6k7fiEQWjQs0l8I5uFX2MLpU6PvbXQ+8PuEWju7TIJ/YX4ri4i2Qe/jppeDEeWbjJss/yPC9K9K7YeV4RU8eWo6olYoig1oiMgYVa08eIpEBWCYJRGa02J4iKGSkN5yXdhorZwLx7JoEYDEa6nPHwNwC0zvpnHzQQALCjIYRb3vixJ5flSNoi6JprrsH111+P8ePH49BDD+3KNTG6GI/J4fEkCYc5hcIo9rwg821NSMQrizpaHQZoAo2uQ7QlJpsR+XhiNBVd/XKcc5P8HsFwuESBs8ysoqX4Pl14HTa0CBUFXgwuCmC/ijyLEhB5Dv1yvbjgsEEo8LsQUwjyfKIlXNUUihnVdBFJgaKqaI3ICfPMqOFidl6SuTxm4ZOsqiJbmIVYdw40ZDAYewcbquPVXTOeXopNtcEeXI0zaX9Nv//++3HTTTdh2rRp+Omnn7pyTYwuRuDjIZ94U0O+3WonSq5tUGqOJ56wLPCJCcUdxSyC3CnDYfHZX/T1DCi0DpnN1cNSfrdgvDaBjzdZBOJijjZJzPe5cNnRw3DY0CJwHIdHLjoYuR4RZx5YAZ9bMBoruvQk7lyPC5OGx9sEtERkIxwWkRVICkFrREIwahVBVPxYcnCSiKBMGyp2BrPu6WoNxKF3W+YMBqNzdFQApZrPmA0yukL9+c9/xuzZs3HSSSd11XoY3YRb5MFx1koxs/BJ7QRZq7Ts0+PNZfROnZTTxSPyCOj7dot8yuaAVPzQ12Mvp9+3PA8cpzleXlM4zLw8+rrMCdFUxAkch2NGlWDm5GEYXBxASa4H4wcWgOM0MeV1CQh4RAws9BtVbBOHFqEooK0jIqmIyaqeE2QXQYkdo5M5QWZ3pqtzgixOUJceicFg7Gk0BGN45MtNXd7x+e4P1nbp/jPqGA0Av//971FcnNgUj7Fn4RZ5KIQYVVWAJoJo6Xg64TC3yCMmqwnhsRyPiBpEwXNc56vD9HXk6vk6SbfVj0NHWYimTtU5HhFjB+Rhd3NYy/3RhZWoV5LZX5dZ1FF3jDpN2utRMbDQh3y/SxuNwXPwuUUjufrcgwZic10Qc87eH9/8rFVMmLtxR2Srg2OMzTAlPdtDZhSzWyRnORymqMTSP4lYwmFZPRSDwdjDueqlFfj65zrMX7ETj/3mkIyfn+5HypLNDSC2a1U26dAV6pxzzsn2OhjdjOasWIWO2QlKFQ4r8Ltw8v798YsxpQCS5wh1Jh8IADwCb7gy7Q2N9dicIIHncMK+ZSj0u/CrQwehLM9rPJZjWh9nCYfpTpBJBAm6mKKb0d4/Awr8xuMCz6HAr02u75/vRcAj4rh9S1FmGgQbiin4akMtCCEJSc+KgxPU5GABx2S1S50gc+WZts74Y6xEnsFgmPla/4JnzvvJhPd+TG8A9Ja6IOZ9urFDx0iHPaeYn5FV3AKf0MvBZwmHJTcJ/W4Ro8tzMbwkB26RTwiHBYyKrk6KIBcPvyfuBKWCvhZaIi/wHParyMNvjxiCUeW5yPWIKNVHg9D1ajlB8X3Q+wNOTpAp8dot8kZTSDoktcDnhsjzhuihuUYlpgTtFTuasLkumOCqUEfHLGpicmK+T3VLpEtzgmIWEWRPjM7qoRgMxl5EssIJe3d8M5l8iXvgs64TQRmHwyjBYBALFy7E9u3bEYvFLI9dddVVnV4Yo2txi3zC29NcVp6sEsu+j3ED8hNCXobTkuHw1IT9CwL8+jro/LBUa9GeE8/3oeR5tW7WBw4q0NanixyXqaoMiCd851icIGs4zC3yELh4GE3gOcMJaovKRg4QPby9y/WWuqCRLE2R9Q+QkClXiIogVSXGsVoikiVhOutOkEl4EdgSo1lWEIPBSMIvumG8RVfRIRG0YsUKnHzyyQiFQggGgygqKkJdXR38fj9KS0uZCNoDcEoy9qWZGG3moH0KEu7L1avFXCkSmdMh1zSaoj0niIb2zOEwCi19H1wcABAXaYItMZqKDTpkFYgLORo287sFSxhR1JsrFvhdiEiK4SLRaqeAzVFbvbslYe2KSkAIsTgxNDQVU1R4eUG/j1iTp3UHqTEYQ2HAea5aJphL7iXFOuiVOUGdxyxo9wa6Mk+DweguOnSVuvbaa3HaaaehoaEBPp8PS5YswbZt23DwwQez4ap7CE7VVubmgMnK0e3YK8WAuMjoTLdowFrhZc9fskNFD29zbpzW6DH1CeIdPsTNwkW07S/HI1rcHc0J0kKCosAbLo+RQ5RGYriiqojKqkVoUEHUFJLis8UU1RICo4KoPmh1YjuKQoiRnxRT1G5NjO6Oa2mytgPdhcKUJIPR6+iQCFq5ciWuv/56CIIAQRAQjUYxaNAgzJ07F3/605+yvUZGF+AWhJQ5QXYHIxOM6qtOTjnP83V8DRYnKMl+RFufIIr527poywkKeERLOItWh9FO0363AJ6LiyshDSGoqFr1mDkHh4amgjEZYb2yTJJVy3R5Koiy1TmaEGI4UJJNlO0N4bCefgUsuZyxt7A3NU/t0FXK5XIZNmhZWRm2b98OAMjPzzd+Z/RunKvD9O7RbiFtJyjZvukcrs7QGatdTOEEUQSeQ3tpSzQcltwJ4i2PcZyWKE33m54IIojKqmUem6QLnHBMQVtUNsJllq7SRkJ1dhKkzcnQ7/64G++vqrQ81pV0x2dqT39wd3Fvy25FUlTc/cE6fK0PzWT0HXY3hXHIXZ+mte2eoJU6JIImTJiA7777DgBw7LHH4rbbbsMLL7yAa665Bvvvv39WF8joGqhQMUOFT1EW8ksK/K5OdYvuLGY3J1l+U7JwmH0b8z78bsHRCQLiidVugc+oA7JCCGpbopb+QTFZyxOKygraItrwVdVWXk/DYZk6QUkrOUh8n397e41lBMje4GL09AzYvSkc9sKSbXjsq8246Mlve3opjG5m3qcbUN+WnRB8b6BDV6nZs2ejf//+AIC///3vKC4uxh/+8AfU1NTg8ccfz+oCGV2DW0jMCaIztYqzIIJKcjyd6hbdWczHTubG0DBWOvuhAjHHI1raB9DqMCAuvFy2mWTtIckqttZbW8rLiorWqIxwTEVbVEZjKIalWxoQNA1fpaErlWQmhJLNHFMJgZLksb3h8t3TIb2uHnjbnWxvCPf0Ehh7AAtW7MKG6taeXkZKMk66IIQgPz8ffr8fsiyjpKQE77//flesjdGFuEUevM2epxf6bFQaleV50ZClhN2OYHZ4hCSKRLT1CXJCsImggK0nkqD3CTLjcQntOkxmvlhfiwMG5lvuUwnQHJIQlhTwHHD5u99j2dZGi3sXjimQ9QRme7fnVMiqCrfD9x8Cza1wdIp64Pqd7eqjHjdievr4DEY3U9MaxdR/foWtd5/S00tJSkZO0NatW3HggQdizJgx2H///TFixAh8//33XbU2RhficcgJ8ujzxLLhBJXmeXo0HEaFCc9xScuSBb79cBh9DTRp3B5ac9qH3y1k5AR9tLoK2xtClvtUQhCWFIQlLSdo2dZGANYmihFZQTCqgCCzcJUkO2+7uymMzbVtjmIhlYuSjVwbp/OVbeOkp0VQTztRDMaeTE1r18woy+gqdfPNNyMSieC5557Da6+9hv79++P//u//umRhjK7FKSeI4zh4XUJWcoL65XgS9t+diLxWrZVKh2k5Qan3I+j7oWLI7kxoOUGJVXZmYUSPMbwkgAEF1un2lF2NWniBVtYRojk9EV0IOSHJBN9ta8DXG+vw7eb61C/EhLkfEYUQgl//51uc99gStEQSR3bYk3pVS+fqrrm4Z3u/PS1C9qJoGIPR7Zz4z6+6ZL8ZhcP+97//4aWXXsLkyZMBAIcddhgGDx6McDgMn8/5w53RO3ELPAQ+8VM53+dKWk2VCS6BR1mep/0Nuwie45DncyUdRApo4bD2wi0ugUvZPdupwsznFiyT4n939DAs2VSPSSOKUdcWw+vLdybsp64tCkBrCtkWlaESgoikoKYlknSESUxRsXJnEx787GcASMtyJoQ4VpNFTQ5TdUs08Xm225KqwqM3cVQIMT5IUjUEzDS8le1k7J4WIXtDcjmjbzHr7dVQCcHBgwvhEXmcNK5/h/aTDbe4MZT45SwbZCSCqqqqMGbMGOP2wIED4fP5UF1djSFDhmR7bYwuhE6Rt9Nfn32VDcqzuK9MEXkeeV4R4VhyEeQW+KT5QhSB5y0dpJ2OY8/F8bsFS2XV0H4BQ0glSxanDQ/zvC5UNkewuS6ITbVtuO/jDUmPLSkqah0Eix1V1crrvS4BEUl1DIeZy/Od3DP7h5isEND0KELi4kclBFDhKIRklWTUNiHbmqGnS+QlBweOweitNIckPLNoKwDgv4u3AQA23jWtQ/v6dG1NtpaVdTKKV3AcB972tZfn+Q5/uMyaNQscx1l+ysvLjccJIZg1axYqKirg8/kwZcoUrF69ukPHYlhx6hgNAAMLs+fotdfluSvheX1mWAqR43Xz7fYJcglcQjK0GcFUIk8py/Najmt+PFmeVCMVQabGjn+avyrl2hSVpHVhbY3K2NWkhduCMdnoQUT3AcAScnPapd1FMTtHhMTLv1PlJ8lJKs+Ske2S8p72YfYmI6inQ4uMrsfJMVYJabf9h9N7Y/Xu5qytKxmSouL15TuxszHU/sYmMnKCCCEYNWqUxdJua2vDhAkTLOKooaEh7X2OHTsWn34ab7wkCPEL59y5c3H//ffjmWeewahRo3DnnXfihBNOwPr165Gbm5vJ0hk2XIKzeK1IkrOypyHyPPJ8YsoyfY8otJu8ne9zpRRBLodeQwML/dhhKiE2HyPZemh/nrwMQpGySizl7tSNMVeKEULQEpbQEtbGb4RjikU4xWQVPrdgEUHOwkoTXPS1RGXF9AgxRFKqD0ntQzV9YZzt8BFRe3beFZMNjL6K2WnuKv7zvy2458N1EHkO399yVNrPy0gEPf300xkvrN0FiKLF/aEQQjBv3jz8+c9/xtlnnw0AePbZZ1FWVoYXX3wRM2fOzPpa+hpOF4Nk+Sd7GgLPIc/rardsvL3Xm+t1ocifPFFcFBLDYUC8+zZdS3z71Otpb1CsGUW1dpCWVBXBsAJZVVEc8EDQBVFUVhCTVch6Z2pzOMwQQaYPqahDIjYhwPaGEIaX5BjPo6gE4NT4dslcgkydIJLl6BEVa51sZN7x4+9FVlAmzUAZjMe+2pyV/fz7y59x+ZQRjo/9b2MtAFiGTKdDRle86dOnZ7TzdNi4cSMqKirg8XgwceJEzJ49G8OGDcOWLVtQVVWFqVOnGtt6PB5MnjwZixYtYiKIkRKB1xKjhXbiXanyfSiDivxJHxNNzRLNeE3J1OY8GHc7zpMvAxEqK8RiL0gKwc81bago8KItIiPf74JKtNCVos8Fi+gl95SoogBwWSrGWqOJeVQEwJbaoCGCrOEwAtX4PXkYK9WHk9MlNetOkN5UMt1+StlmL9JADEaPMPfD9Y4i6OeaVizalH6FrJmeq2EGMHHiRPz3v//FRx99hCeeeAJVVVWYNGkS6uvrUVVVBUCbTWamrKzMeMyJaDSKlpYWyw+j7+F3C/C0UyIPpDcoNlXLAFFwFkHmijKzEDNve85BAxOe509RiWanPhjDzzVtxm1ZUVHXFkVbVDbK3FWihcwIAdoiMuqDMeww9SSijo7ZpXCqDlP12WW0NN7sBNEmi9rvBM1hyVgPRVGtTRjTcUWykRNEj0MIwaJNdahq7ppeI+mtpccOzWBkhd7qZs79cH2Hn9shEcTzvDFB3uknXaZNm4ZzzjkH+++/P44//ni89957ALSwF8Uesmkvpj9nzhzk5+cbP4MGDcrw1TH2BrwuQR9p0Z4T1Lnwn8g7V5iZnSBjEr1tTEeuV8SEfQqsz3On/ye5szGMDSYRFIzJkBQVLWHZqE4jRMvxUVSC7Q0hRCQFtW1RRPSQFxUzNa1x4bOxJrHNvaonYdcFte0sOUEkHrpSCdAU0pK8zXlGKiEWURPTO12nIhtOEDWfPl5TjSteXIFf3P9lp/fZUZz6MzEYvYneKnK6kg5dAebPn2+5LUkSVqxYgWeffRa33357hxcTCASw//77Y+PGjTjzzDMBaGX5dE4ZANTU1CS4Q2ZuvfVWXHfddcbtlpYWJoT6KFr5eupt0gmHpcKVxAky5wS5dCE2uNiPOtPgwYikJDg/PlfHRVlLSIasaInQPpeAmlatx5Akq1AJQUMwBklRISkqmsMSRJ4zwloRU06QUxKjpGiZPpGYJl4ikmq8BpjygAghaNV7M0VlFbR8QRsAG99fXVsMZbmp+0hl4/OYhr++2qDnC2SYl5RNWJ8gRm9nwYpdGFqSgwMHFThvQJy7u+/JdOgT94wzzki479xzz8XYsWPxyiuv4NJLL+3QYqLRKNauXYujjz4aQ4cORXl5OT755BNMmDABABCLxbBw4ULcc889Sffh8Xjg8fRckz5G7yGdsRidLeNPnhid6AQNKQ5Y1hOWFGMmGcV+OxNaohIUlaAlIqHA70JDMAavS9BdF6AhGENDMAZCYHSippVgIZNrYw51me/jOM0BIiS+TV1bFDkeEareK4ggni9k7visEmLpMh2MylBz4n+nTvIgGx2jMxEeqRo9ZoO9SQSxEvm9j++2NuDaV38AkLzx6oerq7ByR1M3rqpjqBl8dmQ1J2jixImWcvf2uOGGG7Bw4UJs2bIF3377Lc4991y0tLRg+vTp4DgO11xzDWbPno358+dj1apVmDFjBvx+Py688MJsLpuxl+I00iLbuHjn2WTmHkxUEBXnuFHgj5fAh2NKQnWaz9Xx9bZFtB5AEUn7CccURCUVkkKgEoJb3vwJcz9aj5awhKisQlW1UFlMVi1OkFOJfG1bBJJeXRaVVYQlbaRHa0SGqouimKKCqPEPINkigqzOTjimWESBXR98vq4a5z22GMu3NXb4fDjtNxWSQ1+UbOIkLhmM3sKm2rZ2t7nmlR+wrqp3T4UHgCPu/iztbbNWDx0Oh/Hggw9i4MDEZM9k7Ny5ExdccAHq6upQUlKCww8/HEuWLMHgwYMBADfddBPC4TAuv/xyNDY2YuLEifj4449ZjyBGWvA8l1GH4o4gCrxj7x9z7o9Pz08q8Lvhd8cTc4f0C6DVNKeL49qvHktFYzCGLXVB9M/3IaYo4GOa4yMpqmWN1S0R1LZGURRwIxzTxIvFCXIQQa0RGbleF6KyauQWNYe1KfdEH/ERlQUQEMPBUZR4MrQ9JygiKSl7h1zyzHcAgOlPLcWq20/s0PlQVWIIrXS0UFfNQOuu/XcnrESe0ZsJRtPvS9QhEVRYWGj5kCeEoLW1FX6/H88//3za+3n55ZdTPs5xHGbNmoVZs2Z1ZJkMRpcPcRUdmiXa8bp4eF08Am4Bw/rl4IFfHYh3f6zElb8YgUcXbjK2EzgOrk6s97XlO/HtlgYM7RfATSeOBtHL4yVFBc+ZwmycFsYaLPkRjMmI2gSJU95MMCZrpfZ6uC0iqXoStqTlCum9iASeMxwgWdVcKIHntNEauiCRFRUR2Sq8khFKMfaEkiyMZa5aS4eu1ih7kQZi9AF6qqlod9MhETRv3jzLbZ7nUVJSgokTJ6KwsDAb62IwskJXj+5wOcwOs+NzCfC5BHAch8KAG2Mr8lEUcCPX60KhqREjIck7SqfDt1u0Tu1b6oJoi8rwEQERSUEwqsBl2i8HLSGaujGhmNJux+iIpELWq8wINOdHUQnq2miOkaqLnni7fVUf1spzvJY8TeJhsoikQDKFh8KSAkVRIdicsHR0g0oIeAdnQiXEqFpL56x2fc5O1+y/J7tgMxh2urvCLBxT8PGa6g4/v0MiqCuaJjIYXUF3OEHtCRevW4DHnChtarBYYBJBCiEQOxEOM1PdEkGB341ovtY7yGcqvec4Tei0RmTEFBVNIckiSNZUJvbWikgKVL3cvq4tile/24ECvwutEQkEBFFJgaxoPYKokySrBJJM4BKAhRtqsGhTPWaftb8hgsI2J+jqV1bioQsPyvi1mqfYm1EJyUjYdPVnd1ftX1II3CITQYy+ycNf/Nyp5/dos0QGo6txGhKbTVwC3+63cK8oWNYh8JzRW2i//nmWbdsbq5EukkJQ2xpFOKY5NjHTqAwOgCSraInIUPXwlrkDtFOzRElREZZkXPPKSlz3qpYced2rP+g5QVrYTSUE9cGY0ahRVggkVbv/qpdX4uVlOzB/xS7IigpZIUYvI8q7P1Z26LUmExepulc7b9+1KkjqovL8Pa3qrC/2oulLdHVD0i11Qcttc8PYjsBEEGOvpqtFUDq4Rd5SBcbznCF2BhX54DeVxTs1XuwM76+qxKrdzahsDlvulxSC1ogESVERlRV8sb4m5X6aQzI+XFWNhmDMcn9U0kQOnU22YMVO3PbWary+fCdkVb/fdPFfW9mCsKTg2cVb8cbyne2uP53rZaqE40ySkbs6ZydbzRLt5b89IYJYifzeT0fF6pT7FmZ5JVaOve/LrO6v568QDEYX0tXhsHQxD0YVuHgyda7XhZP3L4fAc9i3PDdrIZOWsISYrOLFb7fjs7U1lm9n1S1RxPTO0lFZK5E3N3F0YunWhoRvYBRZ0UZqKCrB/BW7AQC3vvkjZEVFZXPYcIYALfdn2ZYG/LizGS8u3e64v0w/fJO5Pao+L81OslLgLneCslQib3+9e1PVGYPR3fSOKwSD0UV0dWJ0uuR54/2BBFv/ohGluZh5zDCcsF9Zux2u0+XpRVuN0RgA8PKyHcbvS7c2oLY1gtaIhJiiItbJMA11fKJS/CLvFnhIitZZOmgayEpnkCWDtPO443OSbK7lMMU7WVOO+4fzN9Wu1BLb60OYv2In6tsSQ42ZYnd+mAZiMDoOE0GMvZre4gTl+UxOEM/B3MPRJfBGbpFZHHW2efHKnU1JH3tt+U5UtUTw1YY6NAZTu0Dt0RiMoiUsoT4Yv8Br4kpzhyImcRSJKY7uDEUlmY+2SBaaUVQCxahU6/h+ssHZj3yD936qwvWv/dDpfdkNq0y642YL1ido76Ovpmpl9Qqxdu1aDBs2LJu7ZDA6RW/ICQKAPJ/JCbKJHdrQkec4i2hrr/S+PcwOTOJjCl5dtgNLNtfj9ndWd/gYkqLi7EcW47a3V6MxJJnuJ3jws41YuqXemCUGaOM5UjVmThbCSgYd4+EEIcToWdTe5/uin+vwzDdb480dVZLVMBMNN367uaHT+7K/3kySvxmMvQ17nmKmZK1jNKDN9tq2bVs2d8lgdIreIoJyTdPqBYGzDFgNuEXUIwaPi8eEfQpxwIB8FAbcaArF8MPO5g4fs71qpKBendWZa71Z4Nz30TrLY99ta8R32xoxqjxeAScpxFKJZkcTQekviFalOaGoBDLtWt3OLi/8z7cAgAMG5uOkcf0N8dRZIWonG26T0QVb7w9EXyPrFcToK7y1chfOOHAAlmyux9KtnftikZEIMk9nd6K2trZTi2Ewsk22+u50FvMFSuQ5lOV5jdvFOW5sbwgZ4zUe/vVBCMZkvP9jJUaV5eK1NKqonMjEUekodaYcl11NzqWx5oRgVe8RlAzZNGojHYiaXN+oJD69Pl3xsb0hBEB7XjqaoquHrjoeUz8/tD+QrKpQCdDFE2KyBtkLJ5EzuperX16JyaNK8J//be70vjISQQ888AAOPPBA5OXlOT7e1ta5en0Goy9gnjAPAP30aeoB3S3iOK23kNct4PBhxR0WQS1hqf2NOskHq6ra3UY2xb9UIKUIevHb7ThtfEXax1cJSRkOU/TwWqYRI1lV03KBknWrTkY2IlfUKYvKCtwiD1Wlid/dpyxYifzeT293Fu3NVjtKRiJo5MiRuPbaa3HRRRc5Pr5y5UocfPDBWVkYg9FXKAxoXaP75Wj/8hwHl6g1VOQ7YWS1RNqfu9UdmMNbKiEpP7zuen8tTjmgf9r7rmwO46731uL3k4fjyOHF4DkOPM8ZAogOd61Ms4EbFSmykhhecnJ9Mg0ltjdnLh1orhLVlrKqJu2a3dt48dvt+GJdDR68cELClwEGoyfI6CP24IMPxvLly5M+znEc6wbKYGQIHbtRkqs5QhynJUuLAg+e4/CXU/bFtHHlPbnETmFOMFZVgt1JwmbGNhl8htz53lp8s6ke059aCtk0NZ6GwSS9h9HXP9eltT96ZElVExKjndaVaaPCbHy5Jrq4o25MKjess8fJNn+a/xM+WVuNV0wtGxiMniSjLw//+Mc/EI0m73Mxfvx4qKlKPxgMRgLUHSjN9Rq3Bb1SjOM45HhEjCrLTSv01Bu596P1xu8qIXjvp9TjMdK99hJCUNMa/zxSVGKEsGSVQFZUNIViUFR/2mulx47JaoJr4+S2ZKoTsuEEmXOd6G25C8rkuzJ3pzXS9aFaxt5Npq00kpGRCCov33O/jTIYvRWteSKHfL2MnuO0+9yCJob29LBBm6lUf0kaJeLpuiv26z4dmKrqjtDVL6/Aql0tePuPR6a9VuquSAoBx1m/0DktK9PcmKw4QYiH+hT9tSpdMJcs1R5ZnyBGT3P03C+ysp/eUTrDYPRhBI6Dx8UbLgYHLa9F5HkIPJDj6b5sj6uOG9Ftx0pGOJZewqN9SrxKgLaIDALNGVm5oxmyStISXhRCAFlRDTFlP57T9pmQDemgEi0fiCZ9KyqxJJ+3R7phLnM4kKU5MPZWmAhiMHoYntcqxqgI4jktT0gUOAg8b1SNUYYUpx/eyZTigKfL9p0u6YogRbX2/6HNEVVC0GJq3JhJ3g7Pcdo+VJLwPKeIU+Y5QR2TQWZBoigEkqpVvGlrTS8clmlnafNry7YGYpoqPZj47HqYCGIwehiBt4a8OH3AqlvgIfLWxooAjLBZuogZ9LEpyfXg5HHlOHJEcUbHyCbpfuzHZMUyZ4zmxhACPPTFz/H9OVxIkvVQ4jhdWBAkNHVMEEUqMWaBpXux6mg4jB776411OO+xxfhmYx1UQvDV+lpMf3ppu4nftFpO+z1RENFka+t9icc3HmMl8oy9BCaCGIwehuc4+N2C6baeJyTw4HkOLr3h47XHj0K/HDeuPm5URvvPRATxHDCyLBdDigMZHSObpBvamfbA19jZGDZum/OBfjR12nYyQF5P0nuJAxCVFMiqmjB2xD6o9ffPfYcp9y3Ekk31aZfKp5MY7SSoqAi56MlvUdUSwR9e+B6KSnD5i9+jIRjD9a/+4Oj0ELPwob8jcdQGIQ4zycxOULurzoxe3oKG0YfolAiKxWJYv349ZLl39CNhMPZEBJ5DwB0PeXF6dZgoaAnTdJ7YlNEl+PXEwRhU5MP1U0cZM8cohwwuxPQjBuPAQQWW+9vrmu1zmQVYPCTXU1z67HdpbberKWy5TcNDgLWTtdMMsLpW5ypXnuMQU1T8uLMZbbY+S/Y8oU/X1gAAnl60JX0nKI1t0o2A2MeLtJezlGq/xPR8Y36a6XY256gxGL2JDomgUCiESy+9FH6/H2PHjsX27dsBAFdddRXuvvvurC6QwdjbETgOPpMTpE2Z5+DitWRp6gQZidMch3MPHojLjo4PK548qgRHjuiH0jwvRpTmWPdvUjRnHFiBkbbHzVAR1JPdYltt4oNelFN1mgY04VPfFkFbVLY4DU75Msku6RwHvLx0B2598yfM+cA6C01SVed92UaTOYWW4vtPwwmy3VZV5z5AdmFiXpuq5zXRe1STkCGmvkLEJHRU4z66j/htlhPE2FvpkAi69dZb8cMPP+DLL7+E1xufgXT88cfjlVdeydriGIy+AG9zgmj4yiVwxg8AiELcpeG5uDgC4hczl+4emTHfPmxIEU49oAKC6WJcpHes1tai/9uL4hXU8aAiKFmC77QH/odzH12SkFjtlP+T7CLMcRzeXKGFytZUtlgeUxySpQGri0L3nWz/6ThsCbk5aW6nqHHxlbAmxEUSgZbTYxZDKok7XfRZtAzfXoWXclG9FJZgzEhGh2pvFyxYgFdeeQWHH3645ZvNfvvth02bNmVtcQxGXyHHG/9TpOLGJfJa00T9NhUzAs+B4wC/O/E7jMDzCWEy84U3z+dCU1gCzwOKrhVOHFuGxZvqcfXxo0xOUNZeWqehDgYVQzFFhYdL/v2tKRSz3HYa05EssZdD8h44suIcFjKLCUlJbLJo2X8751XrBJ18/5b12NYiKSpUIoAHMZwdHgQAB5UQRGUFhIiGSDM/nYAYSeYCz4FT4+4QFUiZvA4GY0+hQ05QbW0tSktLE+4PBoO9fugag9EbMfcCouErt8BDFOI5QYJu0+R5XVr1mCgkPF/kOYugAgCPabs8nwiXwFku1LleF6aOLce4AXlxEWR6/u2n79ejOUKSqkJSVMPRiSmJIy3M2C/YL367PWGbVE5NMoGUygky1qr3GErmPNDzm8zNcnKRnBKZ6XrMxGTV6CRN9McJdDGjAlFJ1R+LN1mUVdUQWYoSHzarmsJjsqpqzpJK3SPmqrRHJueInc+epUMi6NBDD8V7771n3KbC54knnsARRxyRnZUxGH0Ic04Qxevi4RK0vCCPSyuXF/TO0jQcNvuscTjnoAEYOyAPgCagcj3WEnqXGFcw+T4XRJ6HR7T+6Qv6vo3EaJPqKcvz4spf9FwTRUUhCEZl46IvKyRlNZa9eXLIoe9QMhHFcZxjqCfeQDHxMdUkXGSVGOIjFfbHjaGohCSIMEUliMmJB7a/hrCkICorxiwxOv+MipqIXvVGbysqsRxXMZwfYgmFSQoBUa0zylieNGNvoUPhsDlz5uCkk07CmjVrIMsyHnjgAaxevRqLFy/GwoULs71GBmOvxx7CAgC3IEBWVbgEHhX5Pgi8VkrP8xx4TnOKDhpciP4FPmyqaUNMliHyHPrlui37yfPGRVHALUIUOPjdomXKPM9pCdqcnm9kNnR9bhF8ivBTVxORFbgE3gjXxGQVqjuFE6QSVLckn3EIaO6G81R4gh2msvsfdjRh/KACNIVj+LmmDQVD3PZdQVHjHaZjsgqB45KGxOg0e5UQcGpcbGphNN4x8VpSVMe2ARuqWxO2aw5LhnOoKAQqT4x8IEkP52l9goAYVBAVcAkEUUlFOKbA5eU1saN3pFaJ/pr0dWrOUpKT2oshxDmERwjZY6MXnVk7fe6e/PqzRYc+2SZNmoRFixYhFAph+PDh+Pjjj1FWVobFixfj4IMPzvYaGYy9HrdDGbtHd4JEnsPgYj9yvKLhGHEcB5eoiSHzR5go8Mj3ufHbIwYb91UU+HDqAf3xq0MHGY6P3+Y88XpFGs9p4bSSnHjn6DyvJpyuOm4EAp748zrbufrokf3S2q62NQqVEIRjCoh+UU7VqVlycE0StlGcQ1tvrdxtuX3Gw98AAOZ+uB6/f245XlmWGFprCMYMwaAJlkQ3xw51aijUZbGLIEKI5nw5vKQbX//RcntLXRChmGIMlqSNI2VVxYerqvD4V5sQk1XNMVIURPR/aagxFFOgEK3rdkRSEJFULYwmaw4SdYeSNZpk7Nnsgdo2K2TsBEmShN///vf461//imeffbYr1sRg9Dmcvo25Be1buSjw8LoEeETeEC88pyVQ87rrkO9zoTWiOUEekUeh323aN3D8vmW6oNJEld8kZlz6oFY6w6zQ78LIshycOaEC4yryDSE2ZmABrj5uJFrDMg4aXIiVO5rwwGcbO/yah/YLYGdjGFvqgim3aw5LyPe50BKR0BaVEVPUhB45ZqJpXKTborKpJDy+r+qWiOP2r36nVYy9vnwnLjt6mKX30qpdLfhxRxMm7FOoCxaraKl16ElEw1E0FczI41EIBI6DohLwnBbyklTnWWZ2Lvvvcrw683AU+t3I9YqIKSq8hIekADe/oQmmI4YXY3BRAAtW7sL5hw5CvxwPRF5FTFGNnCIOmoBatbMZi6N1OHxYMXiOg6oCvEDDcH31ksnY28jYCXK5XJg/f35XrIXBYJjQ8oC0P1GvSwDPcUaSM89pA1Y5ThM5FQU+APr0eVu+Dw1vuUUePK8lWB+yTyEAYGxFHkpzvUZ3aiqgPKKA3x4xBEeN7KeJIP1H4PXt9FEenRnu6hUFS6l+MmpaomgOS4hKKmpao5BVFTE5ec+gqNS+CHpl2Q7DCZJNgkpoJwNcJc7VZq8s24FgTEZbVNZCTyYV9OjCxIpZRdUcHirAFP33mKIaicvUGaLOVzpzyp7/drue+6O5Oaqe8EypaY3ijy99j5eXab2QorLmBMkKQUxRtDwh3e258uUV+NP8VVi+rcEY0qqoevJ0uytJTTYlVDqJxXuqZAtF05ujx+g4HQqHnXXWWViwYEGWl8JgMMx4RMHIFfK7BUuuCc/FE5k5cIbzozlB1lAXzfPxiLwxmb5frgczjxmG3x01FB4Xj+KAW0vAFnnkekW4BR4ungcHDj6XYPQfouuhosxeiXbWhAFpvz6fS4DgkAtlZ8nmerRFZIRiClrCElQVaA4n71L/zabUc7QoVFQEY/F9tS+CiKMLpRAtr6Y1Iht5NPbjmJEUVXd4tHBTRFb03B3VUpJOxYykpDet6/0fKzUhpmg5PjHZmk+kqAR1bVoLgXVVrQjHNAdIUlREJS3kpagEEZOQ3FQb1B6XtZ/YHhAOs1extSeUemOF1oerqjB21keGiO7MGs3PfeKrzXjg0447uHsbHfoaN2LECPz973/HokWLcPDBByMQsM4Zuuqqq7KyOAajL0PnhwG66NATogFN2Ag8FThAYUBLfhaFxMovny5YNOFCnSHttsclaOENPTFa1LtU+90CQjEFPKcNVRV5LT+J9jDyiJqYMjs5xQE3hvVLb+aYW+ThdvGYMroETaEYJgwqwIerqx23/WpjLY7fr8wIi7lFHv/4ZH3Sff938ba01hCVVPjdsAiWbfWh1E8iWqWYHUUXK21RyXBLKPYkadWUpExzcdqiMvK8LsMdkhQCl8BDVlREJBUCn54TRKB13A64NdEYismW4bz2fJ6IrCAi8YjKek6QLvCeWbTV2EZWCaKyqjlLKoFEY3f0mPq6Mkmw7c5UXHM3bDM7GkK496N1+P0xwzG2Ii/Lx+x8L6UbX/8BAHD3B+sw85hh7WydHrKi4q731wIAzj9sEMrzvEm37Svp0h0SQf/5z39QUFCA5cuXY/ny5ZbHOI5jIojByBK0QSKd70VFCHV3eE7LjPa74n2CqAg6aWwZNta04VeHDkJ1SxQ+l2BMqKeOh8hzICQuqAReE0IBj4imsBS/T+Ag8EBJjgdVzRG49fCZ2TgZUZqTEIpLxsxjhiHgFiDyHP7xywOxvro1qQhSiXZhD0ZltEQkFPhdWLGtMfOTaSOih9TaczbMpegEzuEw6p5QJygiKXFxYNs2qrszEUlFjioiKisIRRW0RiS9z5B2ICqGonp1XLpGQKt+jsKSglBMsbhb9rL6lrAEn0tAVFaMEnsX4fH8kriQlBUaWiPwugStaaStQzbQNQ0U26teSsfhISTeTdtcETXzueVYU9mCt3+oxJY5J2d76WmTDcGU9rFMv0fSCBv3BTokgrZs2ZLtdTAYDAeo6KHiIj46QxMy1OWhYSXzrLFjRpXiquNGwe8WUNMaQ8AjGBPq3QKPMLSLq0oUwwESBa3qjO6XOk0ugdO6UYvx9dhLwfcfkO9Y6p/sdRUG3KhtjWoCK8XTglEZjcEYIpKCcEy7GEfSqABrD6oHJDn1hdQ8s0wlWjhpUKG1Mk7Sc2pCMQWEAG1RBTFFL5e3hdho5VUwKiPg0URFMCYjLIlGTyCR50CgCbSVO5rQHJYxvCT5zDcDoiV9t0VkvPDtNhwzoh+OGlliPCzbQnktEQkBj2iEu2SVQCXWc9scjuFfn23EUSP7YfzAAl1IWA4JlRDwGXgH9jNuFjuZlm2bRUSy50qqCq8t+2NTbZvjPnoLmSyHlbp3nJ5r/sFgMNrFnqNCE6V5vZrL7xHAwTxvLC5UBN7cBFEbzUHdI4+LNx7jdBEl6MLKK2qhN91kMpKwaQUZXZfAc/jlIQMBaBPsAx7R6GrdHiLPoSjghlvULp2pJt2HYgoe+2qTlq+iJ+2aq986Cq22kpTUyafmZos1LVFEJcWS+KztQ0UwquUsEaIJt7Becm4nIitoi8hoCUsIx7TEZPqvrIfIaPVYVFLw93fX4l+fbcSyrQ3tviYCzbV5bflOfLy6Gn95a7Vl/fZ1P/31Vvzq8SX45ycbEYxKCMVktEYkyzYLVu7GF+tr8fd316I1KiOqu0LGMdNM2k65btvTU1XCpdO1WmsIGb9tF3+aaMh4md1KV4uahmAU7/ywG1GHIoPemCPVVXS8tIPBYHQ7btE0RFVPgnaLvCGW8n0uuHga8uLBczBGb3hdgh760p7nEbWxHLysJT3TyfUFfj3kBj3kpidE83x8wCpNyp42rhyySjB5ZAm+3FCbMLw1GbJCkOt1aSNAeM6xT5KZuraY3uSPQFGBAwbmt1ta3x607Lw9V8k8kDWmqPhsXQ3GDyqwbCMpKv7wwnIEowqOHNEPrREZUVk1RJ6ZqKQlF7dEJBRLHgRjWv5OVNa6OUdlrUGmrBJL36CN1W1oD5VoTtOOhnhuU1iKJ37bK+d+3NUMAPh+eyMAgk/X1uB/G62J5ebrYWtEhqKHxIzHkShi2sM8vd58safhK2LcTnRoVBKfh+d0XLMoU/Wzr81NcwEgxj7NM+JSLT+Zy5Ls/nBMwcNf/IyTxpVj3ID8FHvuGNlyfX756GKoBJg5eRhuOWlMFla2Z8KcIAZjD4JWfnEcZ3F/BE4TKuX5Xnhcgu4CaUJJG5Oh5d/wenjLLfLwe0S9/D2eIyQIHAp0l4UzdY72uASIPJ9QnSbwPMrztGNyXDx81x48ryVXF/hdWrhNTO9DXSEEbVEJUYe8nEyJSCoisuI4VsNMSLJWor2+fGdCU0NZIQjq5cynPvg1WiOSUd5uv8AGY1r1VjCq5eFEYvq/kqonQmuukKIQi9gwV7Gl4uEvNmFHY1wE1bfFB8p+sKoq6fO+396UIIDsRPW1mZ2fdMv3rVj/v+3PprlLyfYaH99hrZojRPtR9PvpfqKSaog12pjSrCM662Rpx9b28cBnG/HQFz/j1Ae/Tmv7ZHS1U0Xfwh/q7wn74fqKF8ScIAZjD8KceExDSC49STnf50KeVwSB1gtI0EULLW0X9CRo2g9ImyMWz/8BkODk0PvzvC4jvEbvpx2mtd+1SjFzyXuuR0Rr1PnCvV//PF0EuaGoJC3xtGDlLgQ8IgYW+LLStfjlZdvxhynDEZFSiwu7SJIcBrjaw16fr6vBxKHFaI3ICReXUEzRc4hUtIQlrKtqwbb6ELbWteG5Jdtxy7QxOGJYMURBsSRtf7a2Jq3XVWNrzri+Kj5eozks2TfPiJAk443vd2KDyZVS1eSz2JJhbv4YD29xxoU51RBaADbhoz3Xsn8VIJwW8iJEE5CKSiDwHBTdSTE/gx6vM7lIlLWVLe08L36ctqiMLbVtGDcgP+HY3R2tM5/Tf322MWVD0r0JJoIYjD0Is1iggoUKE49LMAkjTk9c1twd2i1aVbVkXbfIG32DeBdnOBvmHCTzh3Cunk9k9CbSS+p5Xgu3UVFkDmv9YcpwzP3IWso++8xxqGqJwKWH53iOQ0MoBpHncfiwYizZXJ/0tdPy9TW7W9Avp/M5QZXNEbRFZMPBSUabLUfG7DBQ7DksjaEYZFVze+zX8lBMMXr4NIZimP3+Osvjc95fizf+MAmhKCyO10966CpTstnXZ+nmRizZbM1NsucZ2UkmLhRCwHOc0cdIBIxO2facI3PSdPxfzkjKphcy+jyFEBBd9HA8ZzScJHoTysQwXAYngT7HtL74PjLb0Yn//Aq7msJ4esahOHZMacptX162A+V5XkwZHU90zzSh3OlRep9ZyP2zD/UR6nQ4LBgM4qmnnsLDDz+MjRv7zoljMHoCsxNE54hRMWQWIEV680Oe0/J8aN4Qr7s5Lp7XS+a1/dB9iKbEZo6LD/gUjbCaFj6jydgCzyHX6zKqzjwWpyrxIzfP79ISsXmtT1HAo4krt8jht4fvgwK/K+E5TjQEY+1v1A7fbq5HRFLb3deX62utdxCgKWR9jv1Ls6JqFWN1wSjqg1ZnJhyTIatag8KmUKIz0xKRsa6qFW1RGUvTSIZuj49ShMAypao5caxITM9lygQCYoTR4oNd6X3auaNihf5rPJfEp9wrthEldPYZbVgpqwRb6tpw+Qvf4+Wl242ZcXbjSlGdewk5rp3YGzF2fKjsriZtWO/7P1UmPGYWNBurW3Hrmz/h4meWJWzXHI6hJsm4F0b7ZCSCtm/fjsmTJyM3NxcnnHACtm/fjoMOOgi/+93vcOWVV+LAAw/EV1991VVrZTD6PGahk6uPrKBiwyyQyvK8uujhLOKEujiiwMHnFowye8HmKgFa4ii9RQUUTajmOc7IJQq4tf5DboGHx9SYz17ZNqTYb4zZEPQO1i5Bc6u0BG8BJ4/rn9Z5yDD64khjSEIwJrfrsNhDSARa80DLehKcIRVRWUEwKuON73dZHqttjRodmpPl+Vz50gpEJAX/+HhDui8nKRtq2k+oTpfl2xP7M0UkJaF5olkkqHpCuyW8ReL5OYqiCRdFFy+K/jsNMaqOQgjGWBGaFURFkaxq+1T0f//29mpUNkcw6501kIw2ANbqME3IJVaQ2aGiTCXx10kA4ydbEEIsrs05jyxOurbxt3+CiXM+R31b4ow6RvtkJIJuuOEGxGIxPPLII/D7/TjxxBMxcuRIVFZWorq6GieffDJmzZrVRUtlMBhmoZPr1btE8/HcIEpxjttIhHYJnNE1mJbWu4S4O+TW3R07tFEiEC+J14SLNrOsNNcLDhy8bi2s5RKs4TCB4/CvXx2IK44djplHD8NfTt3XWL9gcpHoUFefW0i72WK2aAjGsLsp9bdou+CJSCrW7LYKp/XVrZbbCoExjsJORFLx8epq3PfJeuxI0aE6loVeSN1BxNYywK4dZH0ArE0DGcJHmwVH2wPEbysq0cNd8ZwrWjlGBVNUUozQpKqLoqg+O43OcDNXxC1YsQv3f7Qh4f9FsblDxLTe+L9mUUaMRGs6U43Oe+sITlEs833m3Lp4Urh1+zXt5CIlP3Yv7xXQxWSUE/TVV1/h7bffxmGHHYaTTz4Z/fr1w1NPPYWysjIAwF/+8hccd9xxXbJQBoMBS7jJCIc5OEEBt6i5QKYRGQCMsBUVLFq5MZe0tN0ugqho4qD1GuI4bRAqdXPomgBNiI0qy0NMIahuicAjxuef0VCdtj/tX5ep1L+7oLkiqXDqo3LTGz+lfM6WuiAikvO0++2NIaNK67N1yZOdnTpT90YiUjxR3JwfQ6+tkkJAeMCsb6lLo+iPK4TA7443iqQCUFb05GY1Hvalbo+gEny4qgoPfLYRD184AeMHFULRE86146qQFGDFjibjuLe/uwYAMGlEscVpoRVv5vWrhAA2HUrdJ57jQKD9S/OYAICASyqE0slDSievJ1ljys4UuP2wo8nSCqIvkZEIqq2txeDBgwEARUVF8Pv9hgACgPLycjQ2JtqlDAYjOzj104mXysc/GEV94Cn9QPW66LgNzhiN4RZ5SIr2AS4maXJI9+0RBRBCIPI8/G4B4DRBxkETY7zeuDHPK+KRXx+Ej9dUoaLAr5Xpc/ERHwKviSeXwBsXDp7jkOdz6RVo8ddQ6Heh0SFnJpsEY1K71TyxdjpKO9EWkRGRlAQXCQCeM802s1dymenoN/vuJiorem4OdUfiF3JVJfqsNev7S1EJoooWRovJ2jBZSRERkRT43AIisqKLDQCEQ0xR4RF5EFBxo8IlcPjzglUAgEuf/Q7f/ul47Xl6PlF1SwRzP3SeMVeXkKelIM9LDPHDcfGka7MooXlMVDhz0B0gTnvdTaGYEZ5LRXsNJlMJGtWUgE3srQYyrHADNMF+5r8XZfScvYmMRJD9BPd1G43B6G7sIxiAuFtjCUUZ5evaba9psrwWCtMcHVVV9cTkRBFkDofleESEYwpcIod9ivzg9F5DmsukOUoBjwifW8Dhw4pRSeeLcfF10ERrr6gJsHhZPg+XoA1qdZnEWEmup8tF0AtLdrR7jIUbalM+7oRCCL7f3ohXlu3o6NKykg/UHbRGZJTmxgWQuWCdhr0IUcGZ3mOKSgznISrHw19RWYFb5LUO2rIKl8iDEP1xt3bhj8kqZIVYxp3IquYARSXVSHw+77ElSdcsyVapcubD3+Cus/bHSePKISsEbpE6PBw4EAi6w0OTtqG/Voh6aI4D/vTmT3jvp0rjCwfdxn6dpC6ZOZxlbxhpF1+W54MYjpP54yDxOGyURjpkXCJ/2223we/X5ubEYjHcddddyM/PBwCEQu1MYE7BnDlz8Kc//QlXX3015s2bB0D7T7z99tvx+OOPo7GxERMnTsTDDz+MsWPHdvg4DMbehn2+GABjBIbR18f0aUmnwbt4HlFONfoG2aGuEd23rKoQ9H5EHDR3iNfDYVFZRY5HNMJdbpGHS4yXznNcPB/J6xKM3kYAjN5CWkjNmpjd1XS07Dwd/v3lpi7bd2+iNSJrDSB1QW24JHr/IEUlUPTQESWmaANktTEfKhQ9DygiqRB5zUGTVBW8opXQx/TeTBwHY7SIWQAIHAdJ0Zpfbq8PtRsa+tvbqy23WyIyrnxpBdb9/SREZW3obFRWDbeTijtFPzZN1OZ5rb0EB4L39Aov82BSKnickqwtTpAt8VslyfsEUecJSKxKVAkgJDkewIwLJzISQccccwzWr4/bi5MmTcLmzZsTtsmUZcuW4fHHH8cBBxxguX/u3Lm4//778cwzz2DUqFG48847ccIJJ2D9+vXIzc3N+DgMxt6IYITDzD2EeH0yfOKHHh2hQSvHeA6Wqi6nfdP98xyHgEcEp1d3ceAgCICkaHlItIrMLfBGCT0Nhwm6GPK5BUvoTtDzKziOg2gSY52ttsn3uRIqu9wiv8ckHO8pPLtoKwDgP9MPgc8txBsV8jBK1QFYRZCsIqRXxgWjCjgO+N/GWgSjMnxuAY1BCQMKfRA4La9KklV9nAiHiJ74bO7V1BrVxpQ0tMXw++eWd/i1UHHmEYk+okUTXiqvCQtJb21Ak6AFU/6SEzR/h2oSjtPf17ayevOfqZGPlAQj/IbEhGqnxpGM1GQkgr788susL6CtrQ2//vWv8cQTT+DOO+807ieEYN68efjzn/+Ms88+GwDw7LPPoqysDC+++CJmzpyZ9bUwGHsiNG/HaxIyPA9LOMyM18XDq4/RoGEzx3AYrLlCdCI6TYR2izwEvcSd5znkekVjf6LAGWM3eF0wUTHUL8djuSDyPKCq1A0y3d/Jz/JBRT5cMGIQHl0Y/6ImsG/CWee7bVoe6IbqVhwwsAAxRTXEMw1xEaJ16KbIiqolfhOta3JzSMLNb/5o2W9UVlHZHMb/TR5uhMwI4fD4V5vxv421uPeX4y3bx2Q1oSdTpmhulIKAR9CElqTAxfNwCZroURRidBCnAikqq0llhz1EaHV7rCX/5vBYqg7cqgp8ur4ada1R/PrwfUzHiockGenT47PDrrjiCpxyyik4/vjjLfdv2bIFVVVVmDp1qnGfx+PB5MmTsWhR8iSuaDSKlpYWyw+DsTdD3Z6yPI9xn+YEcY7VVl5RMKbIG6Erh4Rrc04QEA+peVy80YSRCimB0xKeaehLtOUD0fwhQHNozIh8PEnaXKXW2XlOPMfhkMFF1vt6/BNv7yUS0xyRqKzl89BePyF9NtrDX8TDg9sbwgjHFLSEJbz/0258ty2xKeQ/P92Al5ftwKdrqxHWZ5ZFJBUvfLsd2xvCeO27nZbtwzElYUBsxq9BP46saOItIimIKooR1ovKKppDElrCEqKSqg2+ldSk40ioY2Quqac5P+ZRK+bmke0lTUcVBde+shJ3vb8Wa3bHr29mB8n89Ke/2YKj535hGarLiJO2E3TdddelvdP7778/re1efvllfP/991i2LLELZlWVVkJqrj6jt7dt25awPWXOnDm4/fbb014rg7G34HfH/5zjTlCiCPK5tYaHskqMSi0nkrkm9LlGzo/uBIngjZwgF88Zv2uhM8EIn2mCKL4/LWk60QnKdB6VnRP2LYXL5nA5nQ9Gdnhm8VYcPKRQG1YqwigjD0YVuG0DcpdubcCJY8vw9c91+MLekdtGTUsE4ZgmSMzvCXvrgl1NIdzw+o/2p2dEW1RGKKYg3+9CRFL0nB4t70dWVGyrD+L8x7WE698cPhiNoRhUQvD+T85dubUKN82jEQCj7xGBrW8SgZGIrULrl5TsrWoOv9WZhuMm61x9+ztaW4C/v7sGj1x0cEbnoy+QtghasWKF5fby5cuhKApGjx4NANiwYQMEQcDBB6d3knfs2IGrr74aH3/8Mbxeb9LtMs14v/XWWy2CraWlBYMGDUprTQzG3gKd+O70p+LRXRmR1/J4kuFUiQbAeK6i0jJ86MNZiSU/SQuFaWGAHI+IAr8bLWEJPrdgSXoOeETjm7Q5V6izpv6gokBC/6Pu7kPUl/h8XQ1kVXN+iJ7YSwC0RCSju7mZdVWt7Qogup0o8DjlgP6QTZnAkq11wWX/7XguECUUVRCMyYjJKloisiHiA24BrREZN5pE1nNLkn8Zpyzf2oCJw4o1R0j/YkIdMrOgo6X/9AsJDSE6ETH1jwqbOo7/89MNKM8/AKPLck25SPGddPZLxd5K2iLoiy++MH6///77kZubi2effRaFhYUAgMbGRlx88cU4+uij09rf8uXLUVNTYxFNiqLgq6++wkMPPWQkYFdVVaF//3gr/ZqamgR3yIzH44HH40n6OIPRF6ANEZ3cHPolguM4ODSKNkjWQJE+V9THcgCaa6Tq4TUCYozU4HQ3KNcr6h2sNZfI/HFME64BTRAdv28p1la24hdjSrG5dkvmL14n3+9KED1OTeYY2ePO99agNSLjmuNHguNEEAKEYrJF3FLSbT3w1cY6fLWxDmt2t1ie49SNu7OEJRlRSdWcp5hWJfbej7sxYZ9CDC72Y3uGIaXpTy/Dj3+bqoepeICPd5iWbYNnZUVzjdqiMj5fV5N08K25b9W1r/5g/P7jzmb89smlWHzrL4wxHuaznqxKra/ToSny//jHP/Dxxx8bAggACgsLceedd2Lq1Km4/vrr293Hcccdh59+snZdvfjiizFmzBjcfPPNGDZsGMrLy/HJJ59gwoQJALSS/IULF+Kee+7pyLIZjD6FVsLe8Yt+MieIIprCaDwP8EQTRrIaFza0WixHF0EcF3eJzFCx5neLOOeggYgpKjZUWUdRZEquR0x0k5gG6lJons4Fhw7CgEI/PllTheeWbMMfJo9I2DZVo0gnvrSJplTdtjvKq9/txPH7liEYUxCRFayvbMUT/9sCYAuenH5Ih/ZJnRsOWvsAWZ+VZu4mTgggqSo4Bbj2lZVYtKk+6f6cOphTatuiWsm+/j43//0z+eNMh0RQS0sLqqurE/r11NTUoLU1vQ+u3NxcjBs3znJfIBBAcXGxcf8111yD2bNnY+TIkRg5ciRmz54Nv9+PCy+8sCPLZjD6FG6Rb1fIpCKTSiqB46DquUEcIfC7BfC8Ft7yiAL8bhEir/kwLpGH31aST0d/aF2BiZ430Tk8omCZaQUwDdRdhGIKZFXFPXrH5r++taqHV5Qeb63cjbEVeQhLMv7zvy1ojcTDTZc++12H9hmSZAic9rcoEM5I8I6YxAwB0RLLXUgpgADghtd+SPk4DaspRGtTQGHvfWc6JILOOussXHzxxfjHP/6Bww8/HACwZMkS3HjjjUY5eza46aabEA6HcfnllxvNEj/++GPWI4jBSAOnBoiZkEn+jMBzRrULz3GoKPDpQ1V5FPrd8LmEeNk8El0m+/wzSUldIUM5aWw5PlydmJR67kED4XHxIFJ8H387bT+s3NGEt1buTvt1MTpGVFYTcnb2FB78/GeL+OksrRFZm5vHa05pTNFK/295Mx4JUVSCmKKkVb24qTaY8nFZIcacNsX2N8SiYYl0SAQ9+uijuOGGG3DRRRdBkrSERlEUcemll+Lee+/t8GLsfYg4jsOsWbPYZHoGowN4XN0ngmjuD6B94/SKAhRC4BZ45HpF8DyMZolO0HEZVLhFZQ4jS9v/sjO8NABYm/+iNNeDAYU+uAWtMeKs08fip53NOHPCAEwcWoSyPC8e/2qz8w4ZWeGaV1bin+eNb3/DXkg2BRAArNndgvq2GPYp9mNocQBb6oN4bOFmbKmLixlCgHBMzYpAD0sK6oJRXPvySgws8hv3awNAGHY6JIL8fj/+/e9/495778WmTZtACMGIESMQCASyvT4Gg9FBPKJzF+h0ybSxoCGCOACc1oSM57UO01pVJ5JWrPGmqjKB5xCMKThsaCFmTBoCngee+nqr4zErCnyJ69b3JQqaEzWk2I8Cnwsirw1qnTyqhImgbuDuD9f19BJ6BY9/tbld90ZSVLRFZTz4+c+dPt5/F2/FlrogVu1uwSpTHyGGMx0SQZRAIJAw6oLBYPQOOlsOnmk+ET0e7RTNGcnOAiKSAk4vjE81E8wtaiLIxXMQBR6HDyvCzsZw0u3tjRcB4NyDB8b3I3BGbhQNz+1tZfL7FGVetdQdVLd0rnvz3kJ7AgjQwmEROTsO1KMLN+PI4cWJD7DqMEdY/1QGg5F1zI0a6Zwyen8qg8kt8vDoU+a1IbBaM8crjh3uuL3Acbj6uJHGbY4DBuqhMJ8+qNUjChD043pE7X4Gozfx8ZpqLN3cmLX9rdzRlHAfyUKxwd4IE0EMBiPrCLa5ZYLhDqV+nlsXLaLA61PsNWE0uMg51C7wHPJ8cUObAyDoI0NoONAj6sNkod2X63U2wK8/YVRGr5HByCaPLNzU/kZpEowlltFz6Pwomr0RJoIYDEbWofk/lHioLPXzBJ6D18Vbh7sK/P+3d+bhcRR33v9WVfeMRhpJlmRZB5Il40O28RWf2DG2OGwwBAzmSkh8rB02XiALSwiEEHKwCQZCCJuHhGzygCE8y0ISAuTlfTj8Jj44HhbbiRMIG3PEBAg+AGNsLFuypuv9o7qqq2dG0uickeb34dGjme7q6upWP+4vvxOuk/5AV3AsGFMZnBcqA0f3RnO0O8wSYR21CVl0QlCENV2F41xlaDn3iP7Cg0QiQSIoGRJBBEH0ObpQov2dIYgX6uy4kgJXxe4wBofzDhu8fnZ2PRzBUGzHBZmO9q4fExQIKk1HIqjACiS/dMGozC82y1A7NCIjJNByrONCi/kKiSCCIPocnmQJckwLjc4Do3UzVleoStPcd4e5guOsydXgDPjSguNx3RlNOHNSDQRXlp6aUtV/cHZjuepobwKsualeHViCGKpLw/0KK+KRkFCactywvr0hfcyJxweBr531UiQIzb5DrZhz8++yvYycg0QQQRB9Dk+KCbIDozvF362zuLSgiTgcC8ZV4t9OG4exVcV+wLMSOI5gOPdTx2HtwuOx/MSRKiPMt/YwrlLlOVe5aZyprLOrThsbOm3zuEq4gmPtwuNxy/mTMaIktanzsDSZaJozTqhGWWHH+/uaf2kOAsW7Sna7vDl9UHlXTB85rEfHEbnJy//4ONtLyElIBBEE0edw3/Jjo9xhnbtvtEjSKe2OYIi5AqUxFxGHIxYREH7hRUe7uvwu3yc3jUBJLBJyn5m0eG0JgrIEjamMh84rfPddcYGLmtIYHMFw+4VB+Y9ZjWWYPaq8w3VPbxiGfz93Uof7+5qI5dKbdFxph+PWnTcZhT2Mb1o+tyFtCQKCGEqQCCIIYsDQsUGd7QcA1xdBgnMURR0VHC04Clxhsr8cP+ZHuboYCvzWHLpGkJrPb+bKYWKStAvNsUwoBRGBiJ4LSmRNqRtm9usg63Rcv2R8qCRAbyjIoMr3hJpiFEYEHvrnOfjCnJGhEgHJRJzOY7A6IuYKxFyBL58yBp+dVd/9CQhikEAiiCCIASGoGN3xW1mLF5UZptLbS2MuClwlgmKuMIHOjmCmFQdjMMURCyOO6UHGGTPWItO3zLcO2cuIuQKuo1LyGVNtPOzea52t+/jKuFpH728RTh0/ossxBX79o9GVxfjs7JEoK4x0ONbxrWA2l56UGvR90zkTQ9+/efZERB1hKmwTxFCFRBBBEAMGZ52ndJuWF1zVCSqKOCiMCBS46ke5w1TAs7IO6X5lShRxxlBeGDECxhZIunGrFkHtXpAurLPJBOdgYCiMilBRxeICp8PYm6hvVcrU4lIZj6K+LIbKeDS0/dxP1YasTx2hM+90NezOesTp7DpNdUkByotSRVNRNOz2Ki+KmIKV9vEEMdQYPMUwCIIY1LAurEAAjItKCCVaClzlooq5yl0VKYygpa0djmAojDo41u4BUOJKW4hchxm3EmcMHsLNWwVXgdPlhRF8eLgNAFAUVVWlhS+aiiIODre145yptXj1vY+xcNwIvLY3tQ/TmMo4YhHhW5YyU0GnT6rG9JHDsPdgK/72/if41fZ3MbK8EIsmVOP9Q0e7vo/metR1RATHumWT8cj2d7Ht7+Gqw7p/2k1LT8A7+1swo6EMEYfjM1Nq8MSfd5txsUi4inaBK5TL0BdaDeWF+HsOtuYgiN5CEp8giAGjs07yQBATFFSY9gOkOUfEYSjUliDtGhNqnNrOEdQG4qF5YhEREikRh+OSE0ea7yUFjrIEWen0gjHMHV2Bz84eiaKowDlTj8OsxjJcNLPOHHfZyaMR9a0xDMC3zp6I4fH07qlV8xpxctMInFBTbGKa5o6uwDWLm3DzskkQPH1M0PGV4WrZFfGoKiHAYFyCc0aV46alk/CLNbPNOJU9pyxGY0bEMem4UsQiDlzBcf6MOtxy/mRMrCnBN86agFhEhCpmR/zsO7VOjlsvoB6RxNCELEEEQQwYnHVe10ZbgnwNo8Zz+JWjBaIux6Gj3MQMOb77qrQwAm7igrgJYuacAQnl7gqtgwM1JTGc0jQCsahAQ0URGGOI+i42Hb9UFHXQ1u4hIjgKowJfOLEBR9oSmNVYjvc+PoKyoohvpVKCbM6oCjiC48bHXkm5tn9bNA5Pv7LHVMJ2hGrjURQViLkOjrVL0+rD5utLxuOLv9gOAJhSV4p/+nSDCQjXYs/hHFEXqLBcXVKqoHBXcMSjDg63JhARHBISDAyjK+P4/oVT8NHhY4g4HHXlhebYiMMsd5i69wQxFCERRBDEgNFVBlW40aqfIeb/jlh1gQpcvzO8H8isYnaYSXVPrgodTYpr0b3NJteVYnx1sRkfiwjE/bkYV/MeaWs31iUlNiRiroNhbQlE/XpGBS73m70qIZX+2gPLDfez2VzfXaVrIRUmuaWOGxZDQ0UhJtaUwBUM157RhLLCqAnsVpYwptyHjIe7hDOYrDqVWafuHQNDgsngmoRvYbP+NI4fc+VYY74wZyRe/sfHKI65eO71Dzr9OxLEYIFEEEEQA4adlt4Zpl6QL4A4V/V9HK7ig3QhRWUJAqJCiyK1v82PFQKUSEo+r5ozEFZaBBVFBeJRR6XTAyj0A7JdJ2i/EWX++U2qvUrdZ4CpZZQO5hdq1EItECjMxO4UJ9XliUcduELgK4vH+WJJGBeX7pMGqJICkrNwg0yp1qMDtx2/eraKKZIojAgTJG6XFQBgtum1RR2Oi2bVY9mMOjz3+vskgoghA8UEEQQxYIiMRZD/QWd3+S9rXStIW4R07R/X0b3GgvR5mClYynm5X4m6MCJMnBEAxFzHuKQ4Y4j69XIiviiI+qn6jiWChC8SCqMqNb8kSch8qn4YLmseDc6AiGAhcaEqYyshJXwB912r6CLnMJYjLUziUcfEVmnLmSN0w1jrn3RmWba4cmtpi1PUESao2vXXP/m4UgjOUFUS9ccKvyRBcEzU4ZjZWE7VpIkhA4kggiAGjEwzqJixBAUp4XZX+IjgcDk3FiPHjxHS3yNJLikdOxOcQI0pjbmmCjWgREPEz/TSNYZU3SElFLSI4Ho9XAmiAleYNh4FDscDfoByeVEEnz+xAUsm1RghowOO9VyOHyTtcCU85o62+oLp1H8/JV4VhAwHfgPKLeb41qW4XyH6hNoSFDiq2raeuzAigvOKoNZSgStQFHXw28vn4a5LphsLlbYQ6XtfGFEi8Z8XHI8vnNiQ6Z+dIHIWcocRBJGz6B5kjAUVoqMOR8LzVGsOrlthBMIECLu/0rXq0JWkPd9lJHxREXXs6tLqeyyiY5F0AUUPUsIXP747zhdGrm81qSmN4Y6LpqIyHsUHh1tNoLe2ZCU8CU/KoNGrL6C0wLPX7vBAOBVGhEmRl5AhtyHjyjK0/p9mYf3zu3DlqePgOhxx5hjRE4sIHG3zICGNa0zPLyVQXBAB2DEltCw3mWDq2rifwaayzAZH49bZo8rx0q792V4GkaOQJYggiJxFu4IA9YJ3tAXFz1bSKfCOYMYdBoQDsLVosNEutALXDwC2xBMz6fmw4nC4EWH253jUARiMe0n41hohGMqLIogXOCbIWM+nRIRAgSOC4Gjf0lIUVefSQmhGQ1nIahR1hLFQMVi1j1gQcD1uRDHWzD8e1SUFEEwJH51J5nK1Rp2ir608JtvM79Wm44j0tTJ/n8M5Cv0Clm6ydS1HOS2DKtxE/kKWIIIgcpZQ3AtnxjVmt8Vg/guecwYurdR4M0dqSwsGFUwcEY7pJwao2JogHCkICtbuMW09klxZcRzB0e55iLocnpTgDKa1hyu4aeGhK1Xr1HPV0R4m5saxsrgYgFsvmIxX3zuIC2bUmevV9Yj0fWEM0KtlTK0XkHB8Yce5sngJv2Bk1I9fchIMUqr4ISmlcsUJhoSUSnD5weCm5YgvmDwZZOnFXNFppepcorIk2vUgIm8hEUQQRM5iW3RMnzAw44oJ3EzMvPDTkS4g2/Vf5volD2hLkI5JUi6jdiFNAUWHM7QzBsaZCVBOeGo97Z401hQ9tjASBCCrCtjKAmRil6zYHMd3pzEOVJfEUFVcgJjrhKxf+jgl7KTpQRKIIPU54gs3+O60ds8zbi3hZ5EpYQNEXRVjdIxJc/3awmaCwAWDkMy/v8oClmmmX1fccOZ4fHykHW99eDhUxbqvcAVHWaGLj1qO9fncxOCHRBBBEDmL/Zo11ab9lzwQiCTHd+ekq+nX0ataW164ZW0SvptJze03W3W4iRHS7iPOgZKYawo0CqvAosO1ayloO2HXBtIp9Mc8z6ToC+1u8l1VsYjA0WMJ47pS61BCKWH1PNPXxn1rlyfhn4eb+kqcA0xa7i+rnhLzCypyZrkNPfhWpGDtEcGRSEhjzTqW4CGB2lNOPL4cI0oKUBGX+KS1vdfzpSMiOIoLSAQR6Rkc9kyCIPIS+0WrawZpCwUQWH5c7W5KU6gw3bua+dlhWmDYWVZ6vHYHub4lRrvDHMFQ4AjfGhKIDS3SdLNWXZvHFClkQTsKnd2max/ZVhodAO3wYF06bse+luRebCaWCb5bLyTK4GeV+Wu1xJVgQRwU54GIA+Cn8PvXJYLjVMZa9/+exQXh/+/WAssRHI0VhWiqLk455oTaku6fyEJZxXo1BTGEIRFEEETOYsf26Be4Fhz2fv2iS64MDaRPy2fQQcjBC16dI5yZpV/6Ub8YYtQJepYV+L85hxFCep06jsf1g4l12r2dnu46WlRxU7xRC5cCJyjIaLa5IhQMra7Dule+S8yuss117JAVBM389epjdU0lXXxRXw8QBFzb82q3XU8sQZNqS0Pfa0oKEHWD6tRrPj0K3zlnotm/YOxwfHH+qG6fxybm/+2S+Z5Vj4nIX0gEEQQxKHC064qltt/Q2U2Z1iHSRQhNHy8evPT1FMy89LmxlpgYHt+6EpwXlhVGjY25wogP7b4LMs30j7YyISRcXCcQLfr6TLyS9UpPtQwF18dZsE2LF9OKJOmznktbu7hvzRKCheYwLkHBQjFBKzKsGVQzrADfv2AKFo6rxBknVGHRxCpVlNGPnYq6HMPjBWb8lLpSRJL6qdWXx3DJnJHJU6c/X2kBoq7Ap8cMT9lXbjW6nWfVZiLyCxJBBEEMGvSLO1nq6IaqmaJFiBZBQWwRC4kMLWCYFl++u0joIBqE23KYTDWmA46DuBpAbRN+nI62bOnihlqEMMaMG0pZbIJYIR2bBIStQKHPDMZSo+e0Sw0I6x461nZ9vXYQue6xps9rW4MWjqtEXVkM50ytxakTqjK674IxTK4rxcp5DfjcnAYUx9xQBW1ds0jj+o1pz59+HACgqboYN541EQvHVXZ5rh9eNBW/WD0bDmdYMbcBl54UWJS+fc5EI0yBVDddT/jXU8f0eg5i4KHAaIIgBhXavWNjC5lM0C97HWJsBAIPu5sA5QI75nmhKtISQMILjnUEx7GEms0RKp3ctjKZmCMr+0pXgtYvY1t+aQuUbhCrK0qrmGgrMDqdq4+FA7Vt4WTun2+5khIhSxCz7oW6z+o6GdMVuYNrLow6uHflTFQWF+DN9z9BU1Uxdu491Ol9Z0zHGXHTikSLuyJfDNpNZB2h7v+80RVorCjCqOFFiLoCnhUcrplSV4r2hMSruw8CAEZWFKG4wEXiSBsKIw7mj63E4onV+KilDRXxKNq9oL9czE3f7y2Zk8YOB2cMm197P2XfvNHDsfGv7+Plf3yc0VxEbkCWIIIgBhXpxI7K2OpejIoWJ9pioudJtqrwJCuKzuJKPp1xh1luNuM+srPPWNjVFbXS2fU6lOUnWI/rxxQli5RkTJyPPo81KHSNttDRnxG4vjTct0Sp89rtTPzii45qLhtxeIdpeLbVhkHFE7ncr5lkFZ6MuUL1RrOsMsJv+loYcdDoC6CCpGaviyZW4fLm0bhs4ehQsHZEZ+f5WYBRv69bWVFE9XpzHXxuVj2WTKpG7bBY+sUnsWJuoxFrybiCo7I4qEk0Pk2QN5F7kCWIIIhBRUciqLsIwcA9VSTQtsDYNgZTe0d/9y0ZCU8iYVmPbLTFyA7iDkRH8FvP7fqWIHuc7k6v59AuIm3F6QpbKDGmUuHNdXdhMUu2Lhn3m+WG5Eytsa3dM33JxlcXY+eewBIUERzrlk1C4/AiYzlh2k3oCxM78DvqcLR7MhScPrK8MGhc66l7FXVFaI3xqIO5o4enxEu5TtDGRLs1tVtRW9/WnDQKHx85ltaykw4dv5XM0mm1cAXDF04ciWMJD6dNGIFDR9vx1z2dW8aI7EMiiCCIQUVPBE86IoJDcqCt3QssHJyFXC22+0ef2+EMR44lQtlgGtvaogO4U5q3Jo11dBCybbWBelGbrDGpj2Gm2Wt4rmSRZe1D4PrS1yilDMb6O7Qly57TloT2PtPUVqf+OxxVxUFA842fmYiorphtFW/SZQxirvDrHgXirrWdQ3gSjmD4xepZ+Nv7hzGyvBBSAq3Cg8elaVRrPwK1wwqMZW1YzDXbHb9FiI7hijqqLIG2PMG/51HHw4Tq1DT8urIY9h9uQ0tbIphTsLTP34TqEr8oYwQ3fmYiOAPe3t+SMo7IPUgEEQSRl7h+24hjXmpgcfA5LCp04LISJzLtGDUuiKPpSLTZwir1vEH8kH2OTLGrR6vvQEfuKntM8mmUe0yGtmsxpWso2e01NJXFURMc7joMTb6VaPEJVarRrBN0vddriDrCNJUdNTyO4gJXNcuVEhGHm30FrgBjwC3LJmP73z/C+dPr8FFLGwTn+PKpY9ByLIGzp9YYd6d2XeryBBHH6hXnlzqY3lCGb509EfGIA8dh+PX2d3HhjDq8tvcT/GTTm+a6og7HpNpSPL7jvdB9coRuqSLNvai0stx6w/jq4pBFqSTm4OCRdvM3aE8TH0VkDokggiDyEvXSZuDtXlrhA9husLBbLDjeOg5ht5d2b3XUXiLZypQsQHT9oGSSrT5dzc0YYHXY6JCO5kvOxbMFoe61pvqjBWMiuo6Sb3m546KpONDShpHlRUb8qJ5pgRhpSyhRql1VsYgqJ8A8D65gkGCIusqKJKXEp8cMx4JxlXAFR0tbAoIzDI9HcOfF08w6dRaeLjapLXna9aYtRIIzzB8zHAePHkPUEbjqtHHgjKGmNBYSQa7gmD82NZ1exxlJKU1Ry6JoZsHWXbFybiM+PNyKza+9j1XzGjEs5uLz97wEACD503tIBBEEkdfYAb/JJG/Wwdd2MHWHY7VrTHQ0d3guniS+7IKGmdKRaEuN80kjrjqYryPvox30rX4CFRR1BIqiDqSE7w5jqCwu8K0yOqjat554Eq6fGu95QesS188e4wkGVyihGhGqAndCCmNlizhqG3wXYntCmvgg7U7U44Rf4sARHIAHl3N4IhB0uo6T55u7OAuuafaochOr9ey1J6Ot3cOGV/fi7/sPY1ZDmS+oVHC3lIAUwLiqOF7b+0mXf7d03LJsMvYePIr68kKMqYrjxOMr/Jgp2ywHrJnfiHuee6tH5yBIBBEEked0JjU6E0c82UKSNMbOKOv8/OnR6fGZkDwsJbZH9txmYDdtBWDiiYKK1n4FaeuYqN/1PuFJuA4DwE2X+sBC49dMstpxCKv6tg5qZswzgeGOny0WERIS0liaIkKY+kiAFwpo17WQtCXINdllKmZIeMxYiHQvN8YAT0pYWfSoLS1A1BFmXMThOGdarblOTwKuo4RaQkoAHF8+eQy+/NCOHt33sVXFqB0WM/WmAL/yd1LAV6aZbUR6SAQRBJHXdDPcBoCuS9T1GKDjmKDASpNuTTrFvpuxQCz8O92+dOdK9zk8X3rLkd7KOWAZTVQskOCIOEq4JHgCHEG7DS06bMuaw7kfC6XS7YVQL3zPFx2ehOnDFvGtNSZ7zvUDnYUSNzamVIH/N3P8oHXmV732BIMrApeZClRX83tc4nvnTcLv/7oP/zR/lAmqNnFcUOuV8AApwXxhxTwlouK9KMIYERzHnHAgt74ejZQSnx49HMcPL8LfPjjc43PlM1QniCCIvKYnPbDSudCSvyfH/CRjCww7/bw360peS2cCp7tzJWMXqHQFD1kolFtJvbzt/mm6kazO3NIuLS1OHK56m3GmmuLq7C49n4pBUhW3XScoJqnFi+Mfw7nuxRaILP1dW7BMLzrLUqQtQVrECc4xu7EcX1nUhGEx1/SK01lm3F+va7VBEf6cLuchF2Ey3zhrgvm8eGJqxW3tLtQ/uj5VxAn/PaKuwLmfOi7zPygRgkQQQRB5TU8y7jOJqQlewJnNkRyQ3R3N0qGVp4v9mczR2Xjb8mSLtgJXCQCHK+Gii1mazvVaLLCglIAWL7pPmx4jGDOCKlx6INxeRNdVYghilVRMU1DskTMEx/DAQgT42W4iOFfUCdbviiCmSDBmeqrp9WmrlV0fShe8TGZCTTF+8y/zcNLYoIhkLCLw8xUzQuP0GnSjXlsQ2eh1Ez2DRBBBEHlNTy0kqfP07fw9qYfUV9fS2Xz2Ni18OGOoLg1SwiNCGAFhW3nsOCktnEI9zixhZPq6cZUpp1/2LOkYznxrjBNuVZLOsmb3i9N92Yxw8QWO69cTEpz54sN2lXFLwAXVxLnvvmNWmxPBw/fEXkdZUQSOYPiXhaPRVFWM5Sc2oKqkAE1WlemIjmESQTkB1w/q/sricQCAG8+amNLvjegeFBNEEERe01fvjxTLTjfnDwczo0/ynzuL6elLGICTmyqx/MQGTDqu1G+GygAWuKK0BYfBjyGC1fWeMXAmg20yaOERZOIFlh7GguMZYASN2Wcdx1gQY8VZkHXHGYOE9McCrmDwPB2HJMGlEj6cSUipLDOQ6mLt+TmHf1xwz7UEizoC//df56Mo6qD5+5vMvdJ94M6fUYeLZtUDAI60JbB0ai1u27MTsxvLzD202694Uh37hTkN+MyUGhOoPTwetOsgugeJIIIg8pr+Egj9rDuyDrOUGmMMnHP884LjVUYXlJVEF3zkSaJEu6KMSEM4kDzhyZRaR/YYe5ueT69D/2eKWer5uV5nuAp2uAAmM5l/2tIjpWdcY0HqPDN+FM4YpF/SWyXqK8uMl1DZcDFXhBq0MqbqKh1LeJAyuKaIw3H6pGqMrynBhOpi3xLFjYAUnIHLwEIWj7pI+LWOptSVYvmJDWisKMTYqmKsuPelPvorD31IBBEEQfQDmRQ1DI8PH8u6YQrqOJW/ny1AlojR7iOHq5XrwGE7TkavJsiuCu6RLXoSkCGXl4Q08UD6vAz2PdZ1gQJLkD23fS67OKWSa4GwMS47BpXSz1R2mkTgyrPPL2UgxBiUSAqJMxbOJtPrUOKQgzFpxX+pYPHRlapRLABEHOkHWqvg63ZPfWcccKQfyyQ4IkLg0pOOh+swHDra3ou/aP6R1Zigu+++G1OmTEFJSQlKSkowd+5cPPnkk2a/lBLf/va3UVtbi1gshubmZvzlL3/J4ooJgiCGJj0RTCFBwfw6PlZAcbiJbPrjbNHALYuP7mDPjcCxKnInrdcuWWDmC11b+u1mf2ieIGBa90fTMUzGDQbLHZe0zmANQTB4qC+cf59UjI8WjtwISB0HJBgzGXU66Nu1gsdNgLnOohPB9/tWzer23zJfyaoIqqurwy233IJt27Zh27ZtOOWUU7B06VIjdG677TbccccduOuuu7B161ZUV1dj0aJFOHSIOvMSBDG0yKSqc64REhqwY1h0xlZgnUkRMVZBQ/07JKr8t5POFNPZXbYQsQm7ymzLS/DbiJY09zbZihQSQyIcn5RcCDOYN3wNwT0In49zGIGkg631OMdPt+fcD45mzFiDhHU/tTjT53C4PpahelgBblk2OaO/Yb6TVRF09tln48wzz8S4ceMwbtw4fO9730M8HseLL74IKSXuvPNO3HDDDVi2bBkmTZqE+++/Hy0tLXjwwQezuWyCIAgiCfvFrEVM4C6zLTVB0HPwHeFtSIr76eicCIKew8d2LHaYdZw+L6zz6WuxRY9JhbcEjT6HHfCt12tfg+DKfTW6sggAsGRyjRGJJr3fsuKoKtkwx5nyAUwHagdB3snZaNpCFBEcMxvLuvsnzEtyJiYokUjgV7/6FQ4fPoy5c+di165d2LNnDxYvXmzGRKNRLFy4EC+88AK+9KUvpZ2ntbUVra2t5vvBgwf7fe0EQRB9Te7bgZAiZMLVmXWMjMr8AlKvybbo2PsEV93ROxQ/zI/HYXqeNGNSjtGiSKaMM/NZ1qlAgDFjlbIzyhjC1qiwFcgXVFrMALh31Sy8se8TTDqu1FiQdMVswRikXylbSn2vVMZZgttxQ2GLl2OtSwtPx6+a7aVplTJmRBxv7OtZL7OhStbrBL388suIx+OIRqNYu3YtHn30UUycOBF79uwBAFRVhStpVlVVmX3pWLduHUpLS81PfX19v66fIAiCCOJykuNmgDTWH1gWk5D1JdWNlW6ffVwy6cYlV+QOV9K2x9mWHMs1p9efZv7ke2BjB4eXxlzMbCxX1hwezKutRcbdZWXO2cHatpvNPp+2wCl3pHKfRd1wMHZ1aQFuPX8yrl8yvsO15ytZtwQ1NTVhx44dOHDgAB555BGsXLkSmzdvNvuTHzjdvK8jrr/+elx99dXm+8GDB0kIEQRB9APJokUXIZTMtwAhsAAl2yW6innqrFCjTLJyMMbSbMvsGmxCGWDQ7xoZiv2xT2OLupS1Qoka6VltOwBIX9x4kCELlhY0xiLFAouQPpfKGVSZc1Ii1D9NcmmElOAMkMDPV8zA1l37ce6n6tDansCRY4nu35QhTtZFUCQSwZgxYwAAM2fOxNatW/Ef//EfuO666wAAe/bsQU1NjRm/b9++FOuQTTQaRTRKhaMIghjc9OQlnk3US1ylsifSCRJpxd9wBs+TqvZgGmHDfDXQ3VvAklVKd44DwKQ0Yi05FinTv4c9Ttc8CrvKAsEo08Qgwe+d5kllHZISRvgAUIUkoUSlHR8E5luDRBBTNLoyjjEjisGgBJMnJaIOR2u71+17NFTJujssGSklWltbMWrUKFRXV2PDhg1mX1tbGzZv3ox58+ZlcYUEQRBEMtpSAQTxMt2tlaTnUXMkbU87lqX9nP575ue2j+/Q7dbJWuwxtlAJMtyCQGpYY9Qx4Sy6UOo9guPNXNbxWvyoYGvdaywIvHYFD7XmILJsCfr617+OJUuWoL6+HocOHcJDDz2ETZs24amnngJjDFdddRVuvvlmjB07FmPHjsXNN9+MwsJCXHLJJdlcNkEQBNEBzLcIdT0OGbcGSefu6is6ancSHpN+W3Bs6tpM8DSTJoMMADxL+Hi+lUcLIs6U5cg+Z8itaIkj24oG63idnedJaVxjnpRwBYeUwDWLm6iitEVWRdDevXuxfPly7N69G6WlpZgyZQqeeuopLFq0CABw7bXX4siRI7jsssvw0UcfYc6cOXjmmWdQXExKliCIoc1gqBOUTHKWVneuoOsYofDYjkRRcvByT++jbaWxz9nZbOmsV3bgtZovfA6uLT8ynAWWzpIWiJ/AOmTmYeGK2Sbg2rc6RR0OQGJECYWL2DDZX/I6Rzh48CBKS0vx8ccfo6SkJNvLIQiCGLJ4ngTnDO0JL9TPy96nkVI1JuVJykknv+j9gO7hFU6K6ShJJvk86ea145CS59Tosbo/l72m5PXYc9vHAjCWHQllndHNWFXcTxDcbP8WjOlereZY+zNPCn1q9wKrT5sf75PwJFra2s2cxxISre0JHEt4OO2OLebYpVNr8fif3ku5X4MZr7UF79x5UUbv/awHRhMEQRBDi570S+vNmL4kfaZZ2OrS3fkA+JYeFexsTxGUE7CPScpCs8+dZLZgVmyQvT7GVHsOxgHmKcHlCg4v6fjyeKR7FzTEyLnAaIIgCIIAciNDLtw4tWduNh28zFiS2EHq9yBAOrCSdXWq9G1A/NpDTFmxIn4jV5E0Nrm2Ub5BIoggCILoEzrK7OrZXH37cu5ehlrPLT+ZzJ0cJ5R8zvD4jteR7n7bgku7yDhTlaTt1iCawojo0XUMFUgEEQRBEH1KOHMq2Bb+3jt10R+B471tYtvZeG0F6ir7LNmt1d11hNPrrYa2umGrCM91/PCi0Pdbl03Gz1fMyPh8gx0SQQRBEESf0pP6QMnH9hfddWn1Wqx1ce5wNlgvzpMkpOz59dyq4zzHlaeONWOTRVHj8CIURRz8+9ITer6YQQSJIIIgCCIr9I81p8+nTJo/06Dv/llIZ+4xIFVMMcCkynMORATHmZOrzX7OwjLAdTiiLkfj8CLclAdCiLLDCIIgiJwnl+smdWVd6o+4oq6q24RqDjHLNSbCwdBukiXI5aoDfURIjK6M9+3CcxASQQRBEAQxAKRzeQW1i8LbenyOkBXIjwdCECMkkxq3FkXDMsB1GBIeEIWASAz9HmPkDiMIgiD6hFy21mSLzm5JXwWHd+gaM/FAaoCqUcRC560qjuKrpzcBAD43ux6u4HA4h8NV/7GhDlmCCIIgCCKLZOTesqpT29+7aiFiozrXh61OjmD4wpwGfH7OSBw5lsCxdgkGD4xxsISHkeWFeHt/S88ubBAw9GUeQRAEMSjJxeyy3jCQS9NlCpIDqbmfIaZxhKoq7epiioKZzxHBcfOySQO36CxAliCCIAiC6EeSrTXpg6dTY4P67Pz+/AwSYMCIkiiWTq2FIxiKC1wIFjRbFQzgAgA4jsFDdUkM00cOwx/ePtD3C8sBSAQRBEEQ/U7Pu7nnrmWnr8nELdbZsSnb0o2DsgZ9/8KpkJBoa/eM8BKMweN2u1aVKXbDWROwaef7qCuL4bpHXgYANFYU4q0PB7+bjNxhBEEQBJGj9EWmWLrMM9s9poKlVXyQy1VgtGDKLeYIjtKYi6XTjsOEmqAj+7jqYjywZnaP15YrkCWIIAiCIPqZTK08vY2D6jRQ2mqpIaEEkOA6i0y5xADVcV5KBkgJJlUMEWMqbkhTGY+Gvg9WSAQRBEEQxBDGFj/+BsAXSnbhRM4YwAEmAUgOJiU8KSG4byniDN87bxL+36t7sWJuAw63JQb2QvoBEkEEQRAEMYSwrUFhK5HRPmYfh4TeJBiDTACCAR6X4B4gGEfCUSPahcSp46uwYGwlHMFwLNGz+KVcgkQQQRAEQQwAfRHk3dveZcz3hWn5whmDF8pc839D9RzTbjP43zkHXKgU+gJ38LvDBv8VEARBEATRLVTKvB08HXaLCe7/MKaqR3OGiKOCpjmHvz9VQqw7bxIaKwoH6Cp6D4kggiAIgugHVLHC3EvxT7ckU0uIBYHS3P/OmSqiaMSR/9vh4YlirsCU+mH411PHDsyF9AHkDiMIgiCIPCTZCqQljW0h4oyBcwnGGFzhCx/JwRkQcTiKogKHWxP4xlkTcOLx5XAFR9QZPPYVEkEEQRAEkacwP1paB01z33rFmASDihfSFiHHb6dhZ4z9nyvm4697DmF2YxkOtSYgpQTnuWf96ggSQQRBEASRRzDGwOxgaFhtO/xt3I8Z0oHRQUd6FQ/EoOoHVRRFMbPRgSM4XOHB81LdZLnM4LFZEQRBEATRYzKJTzIB0/o7grggHStkV5jmHHA5B/MbswrB0FhRBECl3NeVxczcd1w0FXdePC3teb9x1oReXl3PIEsQQRAEQeQZXemhIE5IGguQfYhqtqrEkLYpOYIBCSBe4ODpq05CRHBs3Pk+bnriVQDAhJoSHGhpS3u+Alf07oJ6CIkggiAIgsgTurIGGU+WX0tIWYWY+Q0AXLfa8C1E+hiXc3heAgBDWWEEEoDdWSPi8A5bbWTLhUYiiCAIgiCIFBgAMAYG3WJDC6NAFOl2Gp6UYILhmMcgZVCdusF3jQEw9YbSwTNw1fUHJIIIgiAIIg9JtgqFu80rEWPHB8H6zPzUeT2WSRUfxH2/GfMHTz6uFDeeNQENFYWIOBxl8YgfWA3UlcXw1octAIDasoJ+usrOocBogiAIgshjOjPCKLdXUPRRf2bQGWTqP108mjPdXkMVWBSc4awptZjRUA6HcxQ4Ahu/shC/+8pC07UeAJqqSvD1JeP78SrTQyKIIAiCIPKM7lSy1tagZJeVCZi2Kkxzv90G1/FCXBVZ1LFDgjMURh0URR3Y7VcdznDe9Lq+uLRuQe4wgiAIgiA6xO4+H3KN+TuCZqxKzDAwSBYEUjucg3HAATfNWtNlm2Wj0DSJIIIgCILIY2yrkC6aqD5neKwfPMQYC6xF0s8kY4DHVc0gKQB4qQIIABgHuBz44GhyhxEEQRAEkdZFFhZIdr+xIJ3eLrCo0+bNeO0mM3FEShAlu9aElWo/kJAIIgiCIAiiU+x+YMlaSbfdUJ+DTvS6vxhnCG3T25llD1JxRGQJIgiCIAgii3Q7aNpyb4XS7BFYg0zrDV1wkTGcOLoCABCLCCOCptSV9s1FZAjFBBEEQRAE0SFdiSLTfJUBHNZnxuBJgDEJwRg8AB6kEUrXnj4O9WUxnDphhBFM966ahe1v7UdLWwL/9ss/9fu1kQgiCIIgCCJj7ODpjtB9xXSVaXVc0IYDAIqiLlbOazRuMMEZigsczB0zHC2tiX68ggByhxEEQRAE0StMUUWk1hMygdIIxwwF+5NiiqAE0Y8//6l+XzeJIIIgCIIgMiKTeCHGUseZStPGGhQUYNRjufWbM2BWQ3kfrz4VEkEEQRAEQaTQnQDpzuYwQdMIW4nsNPvwMarAohiAnHmKCSIIgiAIoks6Kqpo7zNuMV1wEbrzfBAT5CWVStRj9PGcMQgByJSSin0PWYIIgiAIggiRmdur4zFdHR6k1LPwd/9Y4bvJfvTZaV2uozeQCCIIgiAIokd03oGehX4nfwaSepHB6kzvu8o+NbIM966c2YcrDpNVEbRu3TrMmjULxcXFGDFiBM4991zs3LkzNEZKiW9/+9uora1FLBZDc3Mz/vKXv2RpxQRBEARBdAddMdqmI/GUnDnmCIaxVcX9t7Z+mzkDNm/ejMsvvxwvvvgiNmzYgPb2dixevBiHDx82Y2677TbccccduOuuu7B161ZUV1dj0aJFOHToUBZXThAEQRBEd0h2fQXb01ea5ky12OCcobmpsn/WJLuqeDSAvP/++xgxYgQ2b96MBQsWQEqJ2tpaXHXVVbjuuusAAK2traiqqsKtt96KL33pS13OefDgQZSWluLjjz9GSUlJf18CQRAEQeQNqjo0S/muf3ueBOcsNM7zpAmg1p/VsUr8JDwJCfX7k9Z2tCck3vnoMC786YsZrclrbcE7d16U0Xs/p7LDPv74YwBAebmqDbBr1y7s2bMHixcvNmOi0SgWLlyIF154Ia0Iam1tRWtra8qcBw8e7M+lEwRBEETe0ZEISv5ub+9KEHlSWYMSUuJIWwJSSsRZO7zWlozWpMdlYuPJGREkpcTVV1+N+fPnY9KkSQCAPXv2AACqqqpCY6uqqvD3v/897Tzr1q3Dd77znZTt9fX1fbxigiAIgiBylUOHDqG0tPOGrDkjgq644gr8+c9/xnPPPZeyLzmaPFlp2lx//fW4+uqrzfcDBw6goaEBb7/9dpc3I9vMmjULW7duzen5ezpHd47LZGxXYzrb39G+gwcPor6+Hu+8805Ou077+znpq3P0ZI6+fk4yGdfdZ2WwPCfA4Pg3pafz0L8pfcdQ+zdFSolDhw6htra2y7E5IYK+/OUv47e//S22bNmCuro6s726uhqAsgjV1NSY7fv27UuxDmmi0Sii0WjK9tLS0px+CAFACNGva+yL+Xs6R3eOy2RsV2M629/VsSUlJTn9rPT3c9JX5+jJHH39nGQyrqfPSq4/J8Dg+Delp/PQvyl9x1D8NyVTo0dWs8OklLjiiivwm9/8Br///e8xatSo0P5Ro0ahuroaGzZsMNva2tqwefNmzJs3b6CX2+9cfvnlOT9/T+foznGZjO1qTGf7+/s+9zcDsf5sPSt9/ZxkMo6elezPnwvPCj0nuX+O/lhnVrPDLrvsMjz44IN4/PHH0dTUZLaXlpYiFosBAG699VasW7cO69evx9ixY3HzzTdj06ZN2LlzJ4qLu64dQNlhRKbQs0JkAj0nRKbQs5L7ZNUddvfddwMAmpubQ9vXr1+PVatWAQCuvfZaHDlyBJdddhk++ugjzJkzB88880xGAghQ7rFvfetbaV1kBGFDzwqRCfScEJlCz0ruk1N1ggiCIAiCIAYK6h1GEARBEEReQiKIIAiCIIi8hEQQQRAEQRB5CYkggiAIgiDyEhJBBEEQBEHkJXkvgs477zyUlZXhggsuyPZSiBzlnXfeQXNzMyZOnIgpU6bgV7/6VbaXROQohw4dwqxZszBt2jRMnjwZP//5z7O9JCKHaWlpQUNDA6655ppsLyVvyfsU+Y0bN+KTTz7B/fffj1//+tfZXg6Rg+zevRt79+7FtGnTsG/fPkyfPh07d+5EUVFRtpdG5BiJRAKtra0oLCxES0sLJk2ahK1bt6KioiLbSyNykBtuuAGvv/46Ro4cidtvvz3by8lL8t4SdPLJJ2dceJHIT2pqajBt2jQAwIgRI1BeXo79+/dnd1FETiKEQGFhIQDg6NGjSCQSyPP/zyQ64PXXX8df//pXnHnmmdleSl4zqEXQli1bcPbZZ6O2thaMMTz22GMpY37yk59g1KhRKCgowIwZM/Dss88O/EKJrNKXz8m2bdvgeR7q6+v7edVENuiLZ+XAgQOYOnUq6urqcO2112L48OEDtHpioOiL5+Saa67BunXrBmjFREcMahF0+PBhTJ06FXfddVfa/Q8//DCuuuoq3HDDDfjjH/+Ik046CUuWLMHbb789wCslsklfPScffvghVqxYgZ/97GcDsWwiC/TFszJs2DD86U9/wq5du/Dggw9i7969A7V8YoDo7XPy+OOPY9y4cRg3btxALptIhxwiAJCPPvpoaNvs2bPl2rVrQ9vGjx8vv/a1r4W2bdy4UZ5//vn9vUQiB+jpc3L06FF50kknyV/84hcDsUwiB+jNvymatWvXyl/+8pf9tUQiB+jJc/K1r31N1tXVyYaGBllRUSFLSkrkd77znYFaMmExqC1BndHW1obt27dj8eLFoe2LFy/GCy+8kKVVEblGJs+JlBKrVq3CKaecguXLl2djmUQOkMmzsnfvXhw8eBCA6iC+ZcsWNDU1DfhaieyRyXOybt06vPPOO3jrrbdw++2349JLL8U3v/nNbCw378lqF/n+5IMPPkAikUBVVVVoe1VVFfbs2WO+n3766fjDH/6Aw4cPo66uDo8++ihmzZo10MslskQmz8nzzz+Phx9+GFOmTDG+/wceeACTJ08e6OUSWSSTZ+Xdd9/FmjVrIKWElBJXXHEFpkyZko3lElki03cPkRsMWRGkYYyFvkspQ9uefvrpgV4SkYN09pzMnz8fnudlY1lEDtLZszJjxgzs2LEjC6sico2u3j2aVatWDdCKiHQMWXfY8OHDIYRIUd779u1LUehE/kLPCZEp9KwQmUDPyeBiyIqgSCSCGTNmYMOGDaHtGzZswLx587K0KiLXoOeEyBR6VohMoOdkcDGo3WGffPIJ3njjDfN9165d2LFjB8rLyzFy5EhcffXVWL58OWbOnIm5c+fiZz/7Gd5++22sXbs2i6smBhp6TohMoWeFyAR6ToYQWcxM6zUbN26UAFJ+Vq5cacb8+Mc/lg0NDTISicjp06fLzZs3Z2/BRFag54TIFHpWiEyg52TokPe9wwiCIAiCyE+GbEwQQRAEQRBEZ5AIIgiCIAgiLyERRBAEQRBEXkIiiCAIgiCIvIREEEEQBEEQeQmJIIIgCIIg8hISQQRBEARB5CUkggiCIAiCyEtIBBEEQfSCVatWgTEGxhgee+yxPp1706ZNZu5zzz23T+cmCIJEEEEQSdgvdfvH7pVEhDnjjDOwe/duLFmyxGzrSBStWrUqY0Ezb9487N69GxdddFEfrZQgCJtB3UCVIIj+4YwzzsD69etD2yorK1PGtbW1IRKJDNSycpZoNIrq6uo+nzcSiaC6uhqxWAytra19Pj9B5DtkCSIIIgX9Urd/hBBobm7GFVdcgauvvhrDhw/HokWLAACvvvoqzjzzTMTjcVRVVWH58uX44IMPzHyHDx/GihUrEI/HUVNTgx/84Adobm7GVVddZcaks5wMGzYM9913n/n+j3/8AxdffDHKyspQUVGBpUuX4q233jL7tZXl9ttvR01NDSoqKnD55Zfj2LFjZkxrayuuvfZa1NfXIxqNYuzYsbjnnnsgpcSYMWNw++23h9bwyiuvgHOON998s/c3Nom33norrdWtubm5z89FEEQqJIIIgugW999/PxzHwfPPP4///M//xO7du7Fw4UJMmzYN27Ztw1NPPYW9e/eGXDhf/epXsXHjRjz66KN45plnsGnTJmzfvr1b521pacHJJ5+MeDyOLVu24LnnnkM8HscZZ5yBtrY2M27jxo148803sXHjRtx///247777QkJqxYoVeOihh/CjH/0I//u//4uf/vSniMfjYIxh9erVKRawe++9FyeddBJGjx7dsxvWCfX19di9e7f5+eMf/4iKigosWLCgz89FEEQastzFniCIHGPlypVSCCGLiorMzwUXXCCllHLhwoVy2rRpofE33nijXLx4cWjbO++8IwHInTt3ykOHDslIJCIfeughs//DDz+UsVhMXnnllWYbAPnoo4+G5iktLZXr16+XUkp5zz33yKamJul5ntnf2toqY7GYfPrpp83aGxoaZHt7uxlz4YUXyosvvlhKKeXOnTslALlhw4a01/7ee+9JIYT8n//5HymllG1tbbKyslLed999nd6vpUuXpmwHIAsKCkL3saioSDqOk3b8kSNH5Jw5c+RnPvMZmUgkMjoHQRC9g2KCCIJI4eSTT8bdd99tvhcVFZnPM2fODI3dvn07Nm7ciHg8njLPm2++iSNHjqCtrQ1z584128vLy9HU1NStNW3fvh1vvPEGiouLQ9uPHj0aclWdcMIJEEKY7zU1NXj55ZcBADt27IAQAgsXLkx7jpqaGpx11lm49957MXv2bDzxxBM4evQoLrzwwm6tVfPDH/4Qp512Wmjbddddh0QikTJ2zZo1OHToEDZs2ADOyUhPEAMBiSCCIFIoKirCmDFjOtxn43kezj77bNx6660pY2tqavD6669ndE7GGKSUoW12LI/neZgxYwb+67/+K+VYO2jbdd2UeT3PAwDEYrEu1/HFL34Ry5cvxw9/+EOsX78eF198MQoLCzO6hmSqq6tT7mNxcTEOHDgQ2vbd734XTz31FF566aUUkUcQRP9BIoggiF4xffp0PPLII2hsbITjpP6TMmbMGLiuixdffBEjR44EAHz00Ud47bXXQhaZyspK7N6923x//fXX0dLSEjrPww8/jBEjRqCkpKRHa508eTI8z8PmzZtTLDSaM888E0VFRbj77rvx5JNPYsuWLT06V6Y88sgjuOmmm/Dkk0/2S9wRQRAdQzZXgiB6xeWXX479+/fjc5/7HF566SX87W9/wzPPPIPVq1cjkUggHo9jzZo1+OpXv4rf/e53eOWVV7Bq1aoUl88pp5yCu+66C3/4wx+wbds2rF27NmTV+fznP4/hw4dj6dKlePbZZ7Fr1y5s3rwZV155Jd59992M1trY2IiVK1di9erVeOyxx7Br1y5s2rQJv/zlL80YIQRWrVqF66+/HmPGjAm58fqaV155BStWrMB1112HE044AXv27MGePXuwf//+fjsnQRABJIIIgugVtbW1eP7555FIJHD66adj0qRJuPLKK1FaWmqEzve//30sWLAA55xzDk477TTMnz8fM2bMCM3zgx/8APX19ViwYAEuueQSXHPNNSE3VGFhIbZs2YKRI0di2bJlmDBhAlavXo0jR450yzJ0991344ILLsBll12G8ePH49JLL8Xhw4dDY9asWYO2tjasXr26F3ema7Zt24aWlhZ897vfRU1NjflZtmxZv56XIAgFk8lOeIIgiAGgubkZ06ZNw5133pntpaTw/PPPo7m5Ge+++y6qqqo6Hbtq1SocOHCgz1tmDPQ5CCIfIUsQQRCET2trK9544w3ceOONuOiii7oUQJonnngC8XgcTzzxRJ+u59lnn0U8Hk8bDE4QRO+hwGiCIAif//7v/8aaNWswbdo0PPDAAxkdc9ttt+Eb3/gGAJUN15fMnDkTO3bsAIC0JQgIgugd5A4jCIIgCCIvIXcYQRAEQRB5CYkggiAIgiDyEhJBBEEQBEHkJSSCCIIgCILIS0gEEQRBEASRl5AIIgiCIAgiLyERRBAEQRBEXkIiiCAIgiCIvIREEEEQBEEQecn/B3cGcAQO86U0AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGOCAYAAAC64ib+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5weVb3+M/O27SVbs6mbThoBgkBAQjFEQhFQr4ooiHLhgj8vcC1wFQxIUa4CKoqCXppgoV6qEJCEEiAQAgkJ6ZtNstne3zrlnN8fZ860d+Zt++5mN5nn80n2fWfOnDlT3jnPfMvzFSilFB48ePDgwYMHDx7yAvFgD8CDBw8ePHjw4OFQgkeuPHjw4MGDBw8e8giPXHnw4MGDBw8ePOQRHrny4MGDBw8ePHjIIzxy5cGDBw8ePHjwkEd45MqDBw8ePHjw4CGP8MiVBw8ePHjw4MFDHuGRKw8ePHjw4MGDhzzCI1cePHjw4MGDBw95hEeuPHjw4MGDBw8e8ohDklwpioKf/OQnaGxsRGFhIaZNm4abb74ZhBC9DaUUK1euRENDAwoLC3HKKadg8+bNB3HUHjx48ODBg4dDAYckufrFL36BP/zhD7jnnnvw6aef4o477sD//M//4Le//a3e5o477sCdd96Je+65B++//z7q6+uxbNkyDA4OHsSRe/DgwYMHDx7GOoRDsXDz2Wefjbq6Ovz5z3/Wl33xi19EUVERHnnkEVBK0dDQgKuvvho/+tGPAACJRAJ1dXX4xS9+gcsvv/xgDd2DBw8ePHjwMMbhP9gDGA6cdNJJ+MMf/oDt27dj1qxZ+Pjjj/HWW2/h7rvvBgA0NTWhra0NZ5xxhr5NKBTC0qVLsXbtWldylUgkkEgk9O+EEPT09KCqqgqCIAzrMXnw4MGDBw8eDi4opRgcHERDQwNE0d35d0iSqx/96Efo7+/HnDlz4PP5oKoqbr31Vnzta18DALS1tQEA6urqLNvV1dWhubnZtd/bb78dN9100/AN3IMHDx48ePAw6rFv3z5MnDjRdf0hSa7+/ve/4y9/+Qsee+wxzJs3Dx999BGuvvpqNDQ04OKLL9bb2a1NlNKUFqjrr78e1157rf69v78fkydPxvbt2zFu3Lj8H4iHQwKyLOP111/HqaeeikAgcLCHkxJPbWjBBUdNONjDSIu9PRFMHld8sIeRd4yle8XDwYN3nxw8DA4OorGxEaWlpSnbHZLk6gc/+AGuu+46fPWrXwUALFiwAM3Nzbj99ttx8cUXo76+HgCzYI0fP17frqOjI8maZUYoFEIoFEpaPm7cOFRVVeX5KDwcKpBlGUVFRaiqqhr1D8KSssiYuJf7SQhVVSUHexh5x1i6VzwcPHj3ycEDP9/pQoEOyWzBaDSa5Av1+Xy6FENjYyPq6+uxatUqfb0kSVizZg2WLFkyomP14GE0Yaykt4yRYXrw4OEwxSFpuTrnnHNw6623YvLkyZg3bx42bNiAO++8E5deeikAxjivvvpq3HbbbZg5cyZmzpyJ2267DUVFRbjwwgsP8ug9eDh4oGOEtowVEujBg4fDE4ckufrtb3+LG264AVdeeSU6OjrQ0NCAyy+/HDfeeKPe5oc//CFisRiuvPJK9Pb24rjjjsMrr7yS1o/qwcOhjLFDWsbMQD148HAY4pAkV6Wlpbj77rt16QUnCIKAlStXYuXKlSM2Lg8eRjvGiuzdGBmmh8MQqqpCluVh3Ycsy/D7/YjH41BVdVj3dbghEAjA5/MNuZ9Dklx58OAhN4wVzjJWxunh8AGlFG1tbejr6xuRfdXX12Pfvn2exuIwoKKiAvX19UM6tx658uDBg46xYhEaK+P0cPiAE6va2loUFRUNK+khhCAcDqOkpCSlkKWH7EApRTQaRUdHBwBY1ASyhUeuPHjwoGPMuAU925WHUQRVVXViNRJSJoQQSJKEgoICj1zlGYWFhQCYNFNtbW3OLkLvqnjw4EHHWKAslNIxbbkaKwTWQ+bgMVZFRUUHeSQe8gF+HYcSO+eRKw8ePOjw5v3hh3eOD1148U+HBvJxHT1y5cGDBx1jYd6ndGwTFArPeuXBw6EOj1x58HCYgJD0E/pYmPRH/whTY6y7NT14yAarV6+GIAh6FuWDDz6IioqKgzqmkYBHrjx4OEwga+WfRjMyIYCHAg6Po/QwFnDJJZdAEARcccUVSeuuvPJKCIKASy65JG/7+8pXvoLt27fnrb/RCo9cefBwmEBRM7FcpVs/vLSAZNA/pXRMZwuOlZGrhwnR9QBMmjQJf/vb3xCLxfRl8Xgcf/3rXzF58uS87quwsBC1tbV57XM0wiNXHjwcJsiIXKWZ+pUUE67bZNwXlTKeqA+X+TyfJHW4CK9Hrg4fHH300Zg8eTKeeuopfdlTTz2FSZMm4aijjtKXUUpxxx13YNq0aSgsLMSRRx6JJ554wtLXiy++iFmzZqGwsBCnnnoq9uzZY1lvdwvu2rULX/jCF1BXV4eSkhIce+yxePXVVy3bTJ06FbfddhsuvfRSlJaWYvLkybjvvvvydwKGAR658uDhMEEmbsF083SqCVdx6V9WaRbkKhMCOMYD2ml+rVfDxYEyuRYe3EEpRVRShu1fTFIdl+dKtr/1rW/hgQce0L//7//+Ly699FJLm5/85Cd44IEHcO+992Lz5s245pprcNFFF2HNmjUAgH379uGCCy7AihUr8NFHH+E73/kOrrvuupT7DYfDWLFiBV599VVs2LABy5cvxznnnIO9e/da2v3qV7/C4sWLsWHDBlx55ZX4j//4D2zdujWnYx0JeCKiHjwcJsiE4KRrkqoPt3UUmbvxMpkXvDnfCkIpfMi/BIB3noeGmKxi7o0vj/h+t9y8HEXB7Kf2b3zjG7j++uuxZ88eCIKAt99+G3/729+wevVqAEAkEsGdd96Jf/3rXzjhhBMAANOmTcNbb72FP/7xj1i6dCnuvfdeTJs2DXfddRcEQcDs2bOxadMm/OIXv3Dd75FHHokjjzxS/37LLbfg6aefxrPPPovvfve7+vIVK1bgyiuvBAD86Ec/wl133YXVq1djzpw5WR/rSMAjVx48HCaQ1QwsV2lIkJpixnV1GWYxSR8O1hIKCtD8kaHhOmeHw7XwYKC6uhpnnXUWHnroIVBKcdZZZ6G6ulpfv2XLFsTjcSxbtsyynSRJuuvw008/xfHHH2/RieJEzA2RSAQ33XQTnn/+eRw4cACKoiAWiyVZrhYuXKh/FgQB9fX1epma0QiPXHnwcJggHwHtqbL5VJf+s3HjZeYWPPiTPiEUopgbQaIUgJDPmKu8dWVBKiLtIT0KAz5suXn5sPRNCMHgwCBKy0qTyt8UBnIr1wIAl156qW4t+t3vfpe0TwB44YUXMGHCBMu6UCgEILf4vx/84Ad4+eWX8ctf/hIzZsxAYWEhvvSlL0GSJEu7QCBg+S4Igj6m0QiPXHnwcJjALSYqG6SOuRr6ZJxpFwd73ieUQhyCKy6f48/HeXcCHb3z1piAIAg5uecyASEEStCHoqA/r7UFP//5z+ukZvlyKzGcO3cuQqEQ9u7di6VLlzpuP3fuXDzzzDOWZe+++27Kfb755pu45JJLcP755wNgMVj2IPixCI9cefAwCqASCl+OlpBMkY9JOKeYqyx2OxZETIHRldU4XFl9nuXq8IPP58Onn36qfzajtLQU3//+93HNNdeAEIKTTjoJAwMDWLt2LUpKSnDxxRfjiiuuwK9+9Stce+21uPzyy7F+/Xo8+OCDKfc5Y8YMPPXUUzjnnHMgCAJuuOGGUW2RyhRetqAHD6MAmcRDDRXp3IJMOTz3mCu3Y6DIXJE8E57Asu0O7sQ/muKRhouQjqZj9DByKCsrQ1lZmeO6n/3sZ7jxxhtx++2344gjjsDy5cvx3HPPobGxEQAwefJkPPnkk3juuedw5JFH4g9/+ANuu+22lPu76667UFlZiSVLluCcc87B8uXLcfTRR+f9uEYaAh0rr4qjEAMDAygvL0dXVxeqqqoO9nA8jFLIsowXX3wRK1asSIob4BiMyygtcF6XL2zY24ujJle6rqeU4p5/7cT/O32ma5v9vVFMrCxyXNfcHcGUquKk5Qf6YqgoCmTkIukKJ1BdEkrZJi6r2NY2iCMnVaTtb7gQlZScXT4xSYUgAAUOsTGZ3Ct29EYkVBYHcxpLKnQMxFFbVpD3fg9FxONxNDU1obGxEQUFw3/OCCEYGBhAWVlZXt2CHhhSXU8+7/f397uSUMCzXHnwMCogZxBsPlTkwxKRmxRD5sh0jAf7jXA0vZIOX7bgsHTrwcNhAY9cefAwCqCMgFsw3WSZibhlKnLltiarQsU02c3llKF4sA3uQyE0+XZpDteZ8NyCHjzkDo9cefAwCiCNALnKR+Bzqgk31VycBbdK6se+z3wrnOeCoe4/n7xluDjQwT7HHjyMZXjkyoOHUYBMNKiGgkysR5noUaXigG7WJOpgjXLvI3lSd+KEQyEUqbS6RgL5JkPDFdx/sK2DHjyMZXjkyoOHUYDhzhYkGWTYEUKxvX0A7QNx1zaptLLyMRWzzEKatCyfe8vLOEcT7xguy9VoOkYPHsYYPHLlwcMowHAHtNMMfGmPvteMFza14Qv3vO3aJpX8jJvLMBs3nlNbe7fZSDs4IS+xREPogiK/1iaPA3nwMPrgkSsPHkYBVEKH1V1FkX4SfuajAwCAthSWq1Q6V26r3MiQk9spk5gr3i5XeBaZzOAFtHvwkDsyEmqprKy0FGJMhZ6eniENyIOHwxEqpVCHWFIlFVjcU+o2nYOJtP2kCorPdjJWCYXfZz1eSmmSVSfJcpXBsaRCJuNUVAK/z/3dcyiWJ0opkOHzNBMMFwnyuJUHD7kjI3J19913D/MwPHg4vEEohUoohlBzNSUokkmLHd2R9OQql2xB6mI2UylNegA5ESdHy9Uwz/wKofCnuBZD3f1YyBYklKYlmR48eHBGRuTq4osvHu5xePBwWIMQOqxumEysPZlINaRyXbq7BZ0tPZlKQ9ibZeLitO/HXLcxk9M8XPX6gPzHSA0nzUxHMj14GAmsXr0ap556Knp7e1FRUYEHH3wQV199Nfr6+g720FyRU/2GXbt24YEHHsCuXbvw61//GrW1tfjnP/+JSZMmYd68efke46jH1rZBnOiVv/EwBKiEDu+EnidtqFRDdLOMuVmZnI7XiQQ6xmZlcTCEUvhM7tZMSGy6osVDjvnKo/d3+GoLenFX+cBdq7bnvU9KKRKJBEKhkCVk55pls3Lqb9++fVi5ciVeeukldHV1Yfz48TjvvPNw4403jnhpt1NOOQWLFi2yeMyWLFmC1tZWlJeXj+hYhoKs7b1r1qzBggUL8N577+Gpp55COBwGAGzcuBE//elP8z7AsYDV2zrx9s4uTxfGQ84gNHUm3lDhJHGQUz8p+nAjXm76WblarlifmR9LkghpBtuk1QQb4rnM55NiON2CXgmcQx+7d+/G4sWLsX37dvz1r3/Fzp078Yc//AGvvfYaTjjhhFERRx0MBlFfX59x7PdoQNbk6rrrrsMtt9yCVatWIRg0ioWeeuqpeOedd/I6uLGEdU09eOmTthEpY+Lh0APRAtqHCyNiucpSisHRcuUQG5ake5XlwdhJa0bWmOEkFWOEsKjD7Kr2MDpw1VVXIRgM4pVXXsHSpUsxefJknHnmmXj11VfR0tKCH//4xwAAQRDwzDPPWLblLjqOH/3oR5g1axaKioowbdo03HDDDZBlWV+/cuVKLFq0CI888gimTp2K8vJyfPWrX8Xg4CAA4JJLLsGaNWvw61//GoIgQBAE7NmzB6tXr4YgCCndgM899xyOOeYYFBQUYNq0abjpppugKIpl35MnT0YoFEJDQwO+973vDf3kpUDW5GrTpk04//zzk5bX1NSgu7s7L4Maa+AP/21tg3hi/X5EJSXNFh48WDHcbkGSJ3aVarLNdvhubsFM+k3Wwso8izETvpCOVIwmyjFc/EclQ9MT8zD60dPTg5dffhlXXnklCgsLLevq6+vx9a9/HX//+98zttSWlpbiwQcfxJYtW/DrX/8a999/P+666y5Lm127duGZZ57B888/j+effx5r1qzBz3/+cwDAr3/9a5xwwgm47LLL0NraitbWVkyaNCntfl9++WVcdNFF+N73voctW7bgj3/8Ix588EHceuutAIAnnngCd911F/74xz9ix44deOaZZ7BgwYKMjilXZE2uKioq0NramrR8w4YNmDBhQl4GNdawtyemf27tj+OZDQc8F6GHrEBoftx2ALD5QD9++68diMuqvswtqNyMoZMOt3XOx+ZkqXNyISYrtjtlFLqPyr6fTM5zuhZDuVS5yDikGnNeBUlt+xnuygEeDi527NgBSimOOOIIx/VHHHEEent70dnZmVF/P/nJT7BkyRJMnToV55xzDv7rv/4L//jHPyxtCCF48MEHMX/+fHz2s5/FN77xDbz22msAgPLycgSDQRQVFaG+vh719fXw+dJnVNx666247rrrcPHFF2PatGlYtmwZfvazn+GPf/wjAGDv3r2or6/H5z73OUyePBmf+cxncNlll2V0TLkia3J14YUX4kc/+hHa2togCAIIIXj77bfx/e9/H9/85jeHY4yjHh8091oeSu0DcWxpHTiII/Iw1pBPt+BZv3kLv3plO/78VpO+bKjaUOZ+3OAac+ViNHOrp2hfmknMVUqJCBs/yIflaqjIlkiP1LuaeT9MisF7STycwe9TcwhQKjzxxBM46aSTUF9fj5KSEtxwww3Yu3evpc3UqVNRWlqqfx8/fjw6OjqGNM7169fj5ptvRklJif6PW7+i0Si+/OUvIxaLYdq0abjsssvw9NNPW1yGw4GsydWtt96KyZMnY8KECQiHw5g7dy5OPvlkLFmyBD/5yU+GY4yjHl0RGbs6I5Zla3d2Q1K8tz4PmUEl+U//39o2aHzJgFxlsvecdK5c1mWqX+UkKpqJFhZHkuXKtaV1HynXD0lENPttcjnvucDcFSPFHrk6lDFjxgwIgoAtW7Y4rt+6dStqampQUVEBQRCSLZumeKp3330XX/3qV3HmmWfi+eefx4YNG/DjH/8YkiRZtgkEApbv3EgzFBBCcNNNN+Gjjz7S/23atAk7duxAQUEBJk2ahG3btuF3v/sdCgsLceWVV+Lkk0+2jD/fyFqKIRAI4NFHH8XNN9+MDRs2gBCCo446CjNnzhyO8Y0ZvLu7G9NrivVshnBCwQfNPVgyvfogj8zDWAArf5PfPoMm8cf0EqKZIdeAdie4kUl7P5nFXGU+rkysUmnP1ghzjlTnfdgU2uGptB/qqKqqwrJly/D73/8e11xzjSXuqq2tDY8++iiuuuoqACyu2hwStGPHDkSjUf3722+/jSlTpugB8ADQ3Nyc9ZiCwSBUVU3f0ISjjz4a27Ztw4wZM1zbFBYW4txzz8W5556Lq666CnPmzMGmTZtw9NFHZz3GTJA1uVqzZg2WLl2K6dOnY/r06cMxpjGHgE9Ad0TCjo4wZtUZ5s4Pm3sxf0I5ygoCKbb2MFQ89/EBTKgsxNGTKw/K/u0ilbmADkO2YNBvkKtMNIsycVXlGtDuRFYyIU2As3CpfayprH7ZELFs2uQKiuy52UhZkChlQeyCIEAlRL/elNIxlQbvIXPcc889WLJkCZYvX45bbrkFjY2N2Lx5M37wgx9g1qxZuPHGGwEAp512Gu655x4cf/zxIITgRz/6kcUKNWPGDOzduxd/+9vfcOyxx+KFF17A008/nfV4pk6divfeew979uxBSUkJxo0bl3abG2+8EWeffTYmTZqEL3/5yxBFERs3bsSmTZtwyy234MEHH4SqqjjuuONQVFSERx55BIWFhZgyZUrW48sUWbsFly1bhsmTJ+O6667DJ598MhxjGnNYOKEcAPDe7h7L5COrFG/v6DpYwzossK1tEP/vrxtwwe/XHrQx9ESk9I3SQKX5zxYM+syq5Okzv4bqLnMVEYVz0JWbOGjacTi0ycZtZt5vttY20xBGFKnPex73A6bKzvfJ9+tZsA5dzJw5E++//z6mTZuGf/u3f8OUKVNw5plnYtasWXj77bdRUlICAPjVr36FSZMm4eSTT8aFF16I73//+ygqKtL7+cIXvoBrrrkG3/3ud7Fo0SKsXbsWN9xwQ9bj+f73vw+fz4e5c+eipqYmKWbLCcuXL8fzzz+PVatW4dhjj8Xxxx+PO++8UydPFRUVuP/++3HiiSdi4cKFeO211/Dcc88Nq0Bq1parAwcO4G9/+xv++te/4o477sD8+fNx0UUX4cILL8TEiROHY4yjHosml2NLdzd6ohK2tw1izvgyfd229kEsmlyB8eWFKXrwkCv29hhm6YP1dt05mEBNaWhIfbC09/zOYAGLW9D4fyhImbWWIqDdCZlySaftM3Ed6m3tMVu27XwOt0x6K1/K1Wm2pchWoj01eczffWOOs6Km/XrcKnfkqpqeCoQQDAwMoKysDKI49NqPU6dOtehV/fSnP8Wdd96Jjz/+GCeccAIAoKGhAS+//LJlO7vu1B133IE77rjDsuzqq6/WP69cuRIrV65MWm9uM2vWrCTNzKlTp1ru80suuQSXXHKJpc3y5cuxfPlyx+M777zzcN555zmuGy5kfVWqq6vx3e9+F2+//TZ27dqFr3zlK3j44YcxdepUnHbaacMxxlGPRRPLccwU5pJ6t6nH4sagFFizrdOTZhgmBEwzY0zOzk+fL3SF0xc8Tod8iXyaYXYLZpItmFkWXfbbux2bs6Ur2cKWrLCe3CYb0mfuz9Vy5dpbfpDt4yB1TNnQxuLWHxMR5cu859fhhJtuugm/+c1v8N577w052PxwRU61BTkaGxtx3XXX4cgjj8QNN9yANWvW5GtcYwqLJlVgZx+wYW8f+mMyPm0bwLyGcn19a38c29oHMae+zL0TDzlBNFmqwnEFRcEh3dI5oXNw6ORqIC7nfZK0WK5ovgLaU8VcubsFHbMF3Z7ZduLk1CSJMLkOy4GIOfcdTigoCfm1NmksVyNsy0m1t/y6BY3ehruYuIfRjW9961sHewhjGjnbE99++21ceeWVGD9+PC688ELMmzcPzz//fD7HNmZQEvLj6KmVWKxZr9Y19STFz7y5vQt90aHH5niwwiyUORAfeWV8lVD0DvG6KipBb0TOy0Rmvu8slivkx8KR0j2Vh74ycQFSmrxt6oD2VG5B6vg5H1Y+9/HksM1ISTFQ41wmVKJ/9iiWBw/ZIWty9d///d9obGzEaaedhubmZtx9991oa2vDX/7yF5x55pnDMcYxgWOnjsNRkytQFPRhIK5g7a4uywM/nFDwjw/2oWMgfhBHeejB7AocjA+fZokTZJUgoagIJ5QhuU16opKm0D70MSUU43xYpBhofqwtqUVE3YPDnfbtSKSQmgy5LcuGfFAXEjWiRpos95VtJuZQwAPazZYrz4DlwUN2yJpcrV69Gt///vfR0tKCF154ARdeeKElY2C0YOrUqXrhR/M/rtlBKcXKlSvR0NCAwsJCnHLKKdi8eXPO+ysJ+XHUlEoc18jSRj/c24e/rtuLA31GaZxIQsXj6/djnykI28PQkJAN31I4MbKWq7isojssWd72c0FMYoQoH5Ok+XyY49HcXHPZIuUYs4wLytRSN/SAdvf+LN1kQbRSrY6nif3L6TqMUMwVpYb0hfme9sREM4MXm3ZoIB/XMWtytXbtWlx11VWorh7d4pjvv/++XvixtbUVq1atAgB8+ctfBsCyGu68807cc889eP/991FfX49ly5bp1blzwbFTx+GoSRVYNrcOBQER3REJj6/fj1c/bdctLJJC8MyGFuzsyH0/HgxYLVcjS64IZfF0wNDcJubU96EiYaoKYM6cJHkKmE8V25rKcuW43KVtumB1Jxdnrtl0ZtLg9jnbPjMh2hTZSW+kk5rIx2TA4vIoZO0i58uaejiA6z2ZRTU9jF3w62hXk88GOUX/PvLII/jDH/6ApqYmvPPOO5gyZQruvvtuNDY24gtf+ELOg8knampqLN9//vOfY/r06Vi6dCkopbj77rvx4x//GBdccAEA4KGHHkJdXR0ee+wxXH755TntsyTkx8JJFVAp0FhdjLd3dmHzgQFsPjCA3Z0RfO6IWkyrKYFCKF7Y2IbTjyCYP6E8fcceXBE/iG5BSila+5llcijxUvnUtzIX2rVnxeVjAnY7TiYl4b6d06qMLVeO22beV6qAdnM/+XIRupNMJhXCrIgCZJXAJ6YvSpuqz3zDfB2Jiejme/eEUIhDFN4dTfD5fKioqNBr5BUVFQ2rLAwhBJIkIR6P50WKwQMDpRTRaBQdHR2oqKjIqGi0G7ImV/feey9uvPFGXH311bj11lt1mfqKigrcfffdo4ZcmSFJEv7yl7/g2muvhSAI2L17N9ra2nDGGWfobUKhEJYuXYq1a9e6kqtEIoFEwsgMGxhgxZllWdZrFC2aUIqP9/Yi5ANOm12NOXUleH17J3oiMv65uQ0XnzAZhQEfCIBXPmmFoiiY1+BlEeaKiIlQ9UelYa0VZYcky2jpjYAQFZIkQ7RXCNbAx+Q2tnhCBiEqZFkZ8vgl0/aKqpr2rUBR1Iz7d2tn7tOyX4VAVpzHLysyZFmALFsfN4rD8cqyDEkWIcuCZZm5nSTLUGz7SnXu2P5N25u+S5ICWaR6v3y/9v6T+ky1P1mG7PBMVgmFKLDjhk+ADwTsSWDd1vzXfMyy7DyJyorM7r8cyQonOoRQJCQFCUmFLPsgywoSEjtXkqQmjXUokFViyWY9FFBVVQVVVdHe3j7s+6KUIh6Po6CgwFPOHwaUlZWhqqrK+XmW4TM0a3L129/+Fvfffz/OO+88/PznP9eXL168GN///vez7W5E8Mwzz6Cvr08XHWtrawMA1NXVWdrV1dWlrIV0++2346abbkpa/vrrr1vizmJ9AvYMGjf84grgHUnAoAz86+M9mFVuvAZu37EdC8dRTCjO5cg8bG4Wwb3bH276FHV9ucfNZYuwDGxsY/v+Z2Q7gmlecrhr2o59YWBHr4hg13bsLRnamLriAP9Zb968BS/2svPRHQeaBgX4Wzak2Np4HLz44ouOLT5uF1DU9nHSckkFtvYLkJqSTRzNYaDED1QVWJc3DQKttiIPLRGgPAiUBKzLdpp+H2EZ2N4vAPuMfXXFgWpb/27rzN+jClDkN/rl++2IAbUOur+UAoLAzic/HpVahUjNfZqhUnanDsisfUAEQi73jP1eGZCAsqBz2/0RYHcRkAu3ohQgYOMhFIgpQIIA40LA+i4Be0IUe0uBhOo+1lygEMB/aHErHYIgDMni4eHgQlXVlFb+TF2/WZOrpqYmHHXUUUnLQ6EQIpFItt2NCP785z/jzDPPRENDg2W5nfGnU/i+/vrrce211+rfBwYGMGnSJJx66qkWGf3TZBWPvLdXD1QGAH9lBC9+0o59URGnHzkZBQHjxxcXBMycV4eZtUOcWQ9DfPDCVuAAK49QP2kqVqyYM2L77gon0LZuHwBg2YlTURxy/jnJsoxVq1Zh2bJljj78j/f3I7G9E0tm1WDhxKG5iZu7o/jZhrcAAHOOOAIrTpwKgCnZl+3tw4pFDa7b/uc7r+ifV6xY4dhm8IP9WLE4uRJDJKGgcGc3ls+rS1q3cX8/KosDmFRpTXz5oLlXly/h2No2iJrSEKqKDSbxaesgjhhv1OzsDidQuLsHKxaO15c190QxZZxzYo19XXN3FFOq2Pf+mIzywoDeb1UJU9pv6oqgsTr5jYfXkdzXG8WkyiLmRpBUy7Xvi8qoKEq+zpJC4BcFdEUk+EUBIb9o2U4lFERVHO+V9oE46sqc2ePmAwOYU1+aU31LQigUQhH0i1AJRV9UQkwmGF9eAGljKyZWFmLxlEpEEoplrEN168Vl1fIM9JAd0j1TPAwfuMcqHbImV42Njfjoo4+SCh6+9NJLmDt3brbdDTuam5vx6quv4qmnntKX1dfXA2AWrPHjjQd0R0dHkjXLjFAohFAoucxJIBCw3OCBQAAnz6rDqi2GeXhGbSmqS3rRFZbw8f5BnDDdWtPo1a1dCAUDmF7jEaxsICnGG0ZUJiP6oPH5VYhazIw/EEAgkPrnZL9POARRhCj64PP7hzx+n98YgyCIen8+nx+iz5dx/27tBFF0XCeqLO7EaZ3P74fPl3xsbsv8tvPg81v79QcIRNG6zKkvt3Xm8+yTqPHZT0yfk/ujTGALAZ+o90kIRYCKlmvv81PHsahQEfCJ8PsZyfIHfJbtqEJ0gmS/V/x+1fX4/H4/IPoQyIGsqISCqgSBgA+CSiD6CHyEQPT5oVIBBOx6+1S2H/7yOdRi5RIR0v5ePKSH2zPFw/Ah0/OdtWH2Bz/4Aa666ir8/e9/B6UU69atw6233or//u//xg9+8IOsBzrceOCBB1BbW4uzzjpLX9bY2Ij6+nqL6V2SJKxZswZLlizJy37nNZShocJ40xQEAcc1MkL10b6+pHRtlVC8uLEV7Z4OVlaIKwcvW9AaGJ17xK+i0iH3wWE2Z1uCtZFariBTuPVBTKVSnMbktC7TAHungPSkkjhZZAtadK7My83Zgo7jtZaGsW+fyVic9suRWqA1dZ/mRIZswK6NcSyq9l3VLFq8X/v9M9TkCE/53cOhjqxfHb71rW9BURT88Ic/RDQaxYUXXogJEybg17/+Nb761a8OxxhzBiEEDzzwAC6++GL2dqdBEARcffXVuO222zBz5kzMnDkTt912G4qKinDhhRfmZd+CIODUObX463v79AfJ9JpiVJUE0R2WsGFfH06YZrVeKYTi1U/b8bVjJx9SmTTDCbPrdeSlGFJPxplCn6jzTH6GI1vQrQ+VUKgp+ndUY3fq37FuoFN/6ftyW2f+ns01tKq5822SaU+6sVDTtvb+nYpIZzY2o89sApwprFIgKqGQVAJVu1848TfkHjTLFaVDqp2WxwRZDx5GJXIKKbzsssvQ3NyMjo4OtLW1Yd++ffjqV7+KN954I9/jGxJeffVV7N27F5deemnSuh/+8Ie4+uqrceWVV2Lx4sVoaWnBK6+8gtLSUoeeckNtaQGOnGTE0DDrFRMZ/WhvsvUKADoGEvhof1/exnCoI27SdRp5KQbz5yFYrvSZJh8zjpVQmZfmhby5zIoqpa7rKJzPT8blbxzOS3aWK/fv7vILzmSQj8Vs7Uk3Nrd92VulLuGTGXK5xqpqbKQSikhCAaHMcqXfm9RKiBR1iDeTR648HOIYUr5GdXU1amtrAQA7d+7EqaeempdB5QtnnHEGKKWYNWtW0jpBELBy5Uq0trYiHo9jzZo1mD9/ft7HcML0Kr0YLADMqClBVXEQkkrw0b4+x23e2dU94kRhrCJutlyNsEK7kyUjF+TTcuWu4UTzU/7GZTkh7uSAUpfz4+ZGtJe/SbJSJVvhUp//zNxt6dyCZlHNlNcszWnm+0kSQs1R6YBSY5/ZXmGzi5WCkamYpIIQ5hqUVQJC2L1jvt+VIZqePMV3D4c6DtFk2NGDkN+Hk2YaavZm69WGfX1IOFivJIVg9bbOERvjWMZoibkaiuUqn8VxU7m8hjPmSqWp3YJOxMu1tZ10OFq9bJukOLbkdc4kyvI5TT92l2umoBpBo0g2XaUiHOn2YRC27C6yfZ8qoUioBIpWVzAuq9rnpA2zhltNRw8eDkV45GoEcMT4MkysNERzZtRq1iuF4P3mXsdtdnaEsbszPFJDTIKkEHQOJtI3PMiwxlwdPLfgUIhLPsvfuFqu8ta/cyeEuLsFYbN6GOPLbEBOE7uTNcsNSZtnQKjSDU2Pm3JxHzqPI/cLkJI8Wqxv2fdLTZ8lhUBVKSSFMN0rWWXWKy3QnV/jXALS05FXDx4OJXjkaoRw+hF1KNRUJgVBwPFaMPv65l5sb3euM/j6ts6cs4CGiq1tA3jt0+FXGh4qzLUF4zIZ0fNlsV4MYbowXEz5cNs5W1T45DhUpCp/42a5og5kiC93bJu81DaG5HGYXWp2K1kyETN/dj5fbteTN9FdaQ7jTUvMtP/SuT+zgREkn/22xHafqJRpd6mEIqH9prhLVFLNdQdpGlJtG2OW4/KKIHsYy8g44ePZZ59Nub6pqWnIgzmUMa44iC8dMxFPfbgfkYSKGbUlWDSpAh/t68MrW9pRVhBAfblVJHAgJmPj/j4cM2XciI41Lqu46E/vIS4TnDanFrUu4oWjAXHZSqbCcQWVJgHK4RQrzFe2oEKMdPehwkwykgKohzhZuUkqAMwtqKjUVVxyKNmC9n0qhDhm2uljsWkwpSIx7gHtDmMzEaJcT2Uq61iuV8difcrJX2f0I2vXsD8mQ1EpBIG5CCWFoDhosrJqmxKaeXaiOdvQI04eDnVkTK7OO++8tG28GkepUV0SwpePmYQnP9yPwbiCz86sRn9MRlNXBM9tPICvLJ6EskKrQNlH+/px1KTKEZVm6IlIGNDil36/ehdWnjtvxPadLWKyNc4qnLCSq7b+OKY6KG3nA+bpIR+Fm/PitjONKjnmamg7kFV36xchFBFJgUopRNgqH8DZbeo2wUqKlTDbLSNqCk0twLCq8OcRJ5b69wzcaBlZn1zapSM4LLkgu99zeuJH9XiudDCTT0KphZhRzXIVk1TNDajFYSlEu46GW5DH8YkwSFPKMbp8HklkK1XhwUOuyNgtSAhJ+48XcfbgjsriIL58zCSUFwYgCgI+P68e1SVBRCUVz358AAnFeg4HYjJ2d41s7FV/zIhdeurD/UmT3WhCwma5ikhWsnWgPzZs+85XgK6ST7egqQuz9tFPn/0E972xGwNDiEuTVeJqAUsoBAmZuMorZCy7QJH0G7ATKZUkkzzzV5bl5n5trNYq53Zul4KazingbGlLta3ZRZrsTnS//uliygjNPO7PTrrNLkXeD3e3qwS65UpWCCjRxqkfA3WV2rCMUSNj+nnzDFceDnF4MVcHAeVFAXx58USMKw4i6Bdx7pENKAr60B2R8OKmtiT9qw17+0Z0fGZyNRBX8OSH+0d0/5lC1rKaAKCsgBlhIwnruTvQlx/Fe6dsNzfBzmxBbK6WfIFPZAqheH9PL1r64vjH+/ty7k9X63YYaDrrm9Pk60YYEjYy75TRluw6NLkFKdVdrXz7TFyBbrIMln70/TkOXWuXHk4kNXe3INXOicM96njfGssUYlVo51Y/Q5mdQlEJEgqBZIq9olp7TpzTETvuUjVks9IfrUfAPIxleOTqIKG0IIDl8+r1z+cc2QC/KGBvTxQPv9OMrW0D+sNyf28MHYMjVxZnIGa1bvzvW02OD+5N+/vx9/f3HrSsRjMJrdYK7kZMWleUUrQPxPNiEeqPJVt8sonXSQUeCJ4Xt6AD4TNPpuEhaIFxa5DTMPkyR8kFl8nX2aXmQK7sliuaPDWbvxMHy1Wmwp6pxua+R3ufmV3IZMuVe19uXXLyxLP7UpFOp/2oxOQWpIxoKSq1ZOEOxBQkZJVlEmptODnkVsJ0LxeciOnn5iARJ4+weRgpeOTqIKK+vACVRSzGqr6sABccPQGVRQHEZBUvb27HMx8dQF9UAsAU3UcKnEgsnFgOvyhgR0cYH9r2n1BUrN3VhQN9cTz3ceuIjc0M7roQAD3OKmpyC0YkNiFEpaG7q3u162BGvgLas3mbTwdrzJW2zEK4cu+bB5I7WqEciJwxJjcLSvI+zFYTo53NwuNg9bEHtNtJnlWWwtlClcn1tJMdyk04tvE5bgvDipbptTYfh7P1j/2TVKJZ1tyP21hmPVeGi5ONPa6olmsQkRTIKkVCUVnSgpmcUWbZSkuuLPugGhFMT8jyDY9beRgpeOTqIGN2fZn+eXx5IS48bjJOmFYFn2bFevS9vWgfiGNb26CFOAwnOLmaWlWMk2cxAdQPbXpc65p6sK8ninBcK5VxECQj4hLbZyggolhTwQ+b3IL8OCJ5UG7viyZbruwp7Lkin3EoTq5KC7kaAruSFSOI2Q7dXeZyGzjJNKSqU2htZ21rVko3tzHvy0pKrIWN3d2CBtwsPvpxZnEa3c55Eml0kIUwZ+elIkqGNck2Zgc6YSeaOlEkrB9JIRYXMNe6khQmKqoSg8RRmpyA4ASF8HvH+jcVhqO4s1cw2sNIwSNXBxlz6q21DP2iiM80jsPXj5uM8eUFUAjFqi3tiCsqNu3vH5ExcbdgeWEAM+vY+Fr6jMDwT1r6cNNzW/CX9/bisXV7EUkoFjfMSIGrsxcGfCjWNMTMBJQfx1BcYQCbHN/a0albETncJuZc+h9qH/o4HKwvbtaZbGHWOEreL/urOLArp0mfjct5WRK5QjIhSpZXsB63XbPKLZDfzVqV7iyZLTHp4ESiHC+DA+kzCHKyNY6vp9SIQ7O3SOVqtK/npDQuE0t5m2hCRUIhUAhBXFGZlYzviwKyQwycHQovoUMMzbX05zhNgxzgkSsPI4WsydUll1wy6go0j2VUFgeT9K0AoLIoiHMWNqAwwALd32/qxcb9/SmLu+YL/SZyNbGCKcvv72XkqmMgjq/c9y52drA4q5isYs32zoOSUcjjQgoCPpPlStHGG8W2NibOag9yzxaPvNuMu17dgW8/9IFludXdlvt1MWf1DRVO1he7GydXyKo1Hd9pz85lbpxjctyGkq5UjrOFxoC9XAulsLiG3d2kyZYj+1qD9JiXJ1vazDBfX8u6FJfCfu3czjvVGA63JqXKorSPBzAyLwlhSQD8u/kaRCUFCUVFOK7ooqKGBY86lvCynz9Vj9djUg9Orl23c5BPeNzKw0gha3I1ODiIM844AzNnzsRtt92GlpaW4RjXYYXZNusVR2HQh9PmsMLY7zf3YHdXWCcMwwkzuZqgle1p6YuycezpRSShoqzAj8/Pq4cgADs6wli1pW3Yx2UHD2i3WK4SKra2DeCJ9fvR1BUBwGJGMiUuKkl2cf7xjV0AmJq+GfmLucqn5cqhX7NLbQjkPCopupXEbb9uBX3dAt2d+rHHXNnjvMxZZxzm4yI2qQYKd9eVJaswG8tVSmkE6zrHmDGHfTjxLmdClXzfKS7WI8dx2u4RStn2PDidB7ZzRBIKBuMK+mMyk9zQZBl4V1FJTRlwz/vjMg88Js7tDPLjG44XyZF4OfXgAciBXD355JNoaWnBd7/7XTz++OOYOnUqzjzzTDzxxBOQ5ZGt7XaoYHZdKUQHYbvqkiD+45TpmFFbAkqBVVvasW5P97CPhwuIlhX6MaGiCADQolmumnsYYRlfUYjZ9aU4enIlAOCXr2zPi+UlG/CA9sKg1XK1YW8fCKEYiMmglGJ/bwyvfdqRUZ/huII3d3RZlrnJOVitKUOxXCWToNxhIhnUvoTpFuWKgZjiSGzM+3CcvBwsTfZx6ctosvXFPhETaiUN9vUKSe7DTK7MrRVzVqFtHI6g1r+ZCHcmuynd23HYkxHM1jozgeUuRkWzJiVZ9Ggyoba4iYnhDlS0oHVKrdathBaDFU4oiMsq4rKKmKzqsg0DMdnVYsatVHwfBslyPgvm8zQUK6sbPLegh5FCTjFXVVVV+M///E9s2LAB69atw4wZM/CNb3wDDQ0NuOaaa7Bjx458j/OQRnHIj0njCpOWnzqnFvMnlOPCz0xGQUBEV1jCPze1obk7MqzjcbJcDcQVhBMK9nYzC9aSaVU4duo4nDidBby3DcSTUuiHG7z0jdktGJUU9EQkbNzfjwfW7sGmln7s64miPUMpi6isYPOB/owC9K0B7TkcgG3bfDz37bFJAAtUNvaV+064y9XJ+pXKcpXapeXU1rrMLjFgJzQKsWarqSTZ8uV2rSxExeHc2fsxj9ONgCW7LO06W9S1XVIn1Lw22aLDP3KLk5N2loWY2ixcXHpB1lyCCTnZ9cutWnGZxV6pmqgot2LGFdX1vuLxVYo2PlU1sgudz7EpiD/NTzCXlxG3hAsPHvKNIQW0t7a24pVXXsErr7wCn8+HFStWYPPmzZg7dy7uuuuufI3xsIDdNXjE+DJMrGRWo7OPHI9TZzP34Lo9PXhp0/BKH3ByVVYYQEnIrwt0tvTG0KyRq/kTynHSzGp857ON+nb5yMrLBtwtWBAQdbdgX1RGQlaxensnAOhWqGiGcVcxSYWsUrT2MzJmdlFVlwQtbTMp9JsJnLL6cu/L+GxWEbfvKx3cVNipi9XBcOU4z15usVh22F16fNtURFZlpiwddheZnWCYj81Mop1kLNzGTKl7ooSjRc5hDOlU1y3fTQvs8gwUpvqUSZYrK+FKOrfUUF9XCNUTQuxkUCWsmDMv4hzXLFcK17ki9t+DQYIp2G+Vu3yZ4rtTfBi1JDSkl3dIudoRnuXKw0gha3IlyzKefPJJnH322ZgyZQoef/xxXHPNNWhtbcVDDz2EV155BY888ghuvvnm4RjvIYsZtSUI+JhrMBQQdQkEAKgtLcCXj5mIqVVFIBR4fP1+dA4mhrxPNwtYf9SwXAFAQ4URd8W3mVLFiF9ZYQCFAZ6pN7Llj3ipm+KgH0Wa5ao/JlvceAWmsWXyptsVTuCVLW3467q9AIADpixJLlTKYbEADOGNOMlIMQQ4TaT2AOZsxmQGJ7OOsgraX0fLFXUmK27uRXv3yRMitVjP7AHsimqftN3dcm6Wq3SFprmby06aWD/J+7eMRR+TfbvkMVvlGZLHxj/FJNVxLPZxy6rRo2GNUnUCG9HipywxbNr1Y0SKaO5DosdOccsXP5eEcBegkcUoq1yAVItr1KyNxHb+ndzCbsjl9+JRKw8jhazJ1fjx43HZZZdhypQpWLduHT744ANcccUVKC01LC/Lly9HRUVFPsd5yCPk96GxugQAcOL0ahQFrTW1l8yoxueOqIMAYFdnBP/4IPcyJgAwGJfx9k7n+C2zWxAAJmkWtKauqG7RmayRKwAoDjECM1TJg2zBrVFFQR9KNHLVF5WxtX1AbxORFP1BHnPIarLj9pe24tPWQfx+NQtiNxNGO3FIlTGWDXQphjy8VVtcQJy05eC+dJrgOLlyIpK8vZuFKpXwqL0f+1J7uRuboQqqaiUhyWNwL3+juNQgdLsUeiwRISmsW07bWfcjmTLu3LYzEzAzcbJnH3JXmplE2oVBjX0Y14JQinCcyajIGnEysg6t4+BEKKHJNMRkFYRwSxQjXPxccjeipBBNdJRZt7jCu6wSxGWikSzreGSTSGm6WzWX38twxIWOdKyph7GBrMnVXXfdhQMHDuB3v/sdFi1a5NimsrISTU1NQx3bYYfZ9aWoKyvAwonlSesKAj6cd9QEzG1goqOPvtuMgViyanimuPvVHfifl7fio729luVxWdX1jDi54nFX7+3uBgVzw9WYrDg83mmk3YKc+BSF/CjS3IKDCVmPCwPYxNDSG8MzG1rw8iftKfvrCicsdRyjkmJxC9rjsPKv0D50OFlfLEQkQxOb01h4TJ2jZUEnHc5HkXFwMk2erJj7yRi3PW6ofTBuIQP9MdnRWsQ+W+075utrvZ6px2vEOJn3w4lN0iGZxsG+MTeZ3cJltkhZrWIW6xs1xmAE1rPl9vacGKmEai5Xtl5RCaIJFXHNAqVoFilDL8tMyKnuspNUopMmlVJIKquAwN2LPJ5KUghkQnSLlqQaWYaEsGeFolJLMfCEQrQyPgbZSoXhCHj34CFfyJpcvf76645ZgZFIBJdeemleBnW4orG6GMvm1kFwyBwEgHkNZfj8/Hr4RQEH+uP401u5EVhKKZ5Yvx+9URl3rtpuWceFN0WBudsAYKJGrt7dzSxdEyoKLWPk7UbccqW7BQ3L1YG+OAbiCnyCgOk1xQCAZz46gOaeKK75x0cp+2s2kTIAaOqKWCZfu1BqOjdSpshnzFU6N1KmYq9OY+HnIpVr0U2mwdEF6LDMqZ1KqCVZwl7Lrics2QKwifU8wLAOcgFMo62bOKfpM0m+PorJvcZJjzFGJ+ud9RsL8LZun+wmtBEcWGPSuJWJu9IsauswCBe3LkU1QkehuTUp06ji1iTJHH9mGwtPKlC5a5CwfwmZESJVcw1y92FCVSFrZEklFJEE08qSNPcg/xyXVT3Oio+BB7Kn+z3k4or36JiHkULW5Oqhhx5CLBZLWh6LxfDwww/nZVCHK3yigJrSkOt6QRBw5MQKXf7gkXea8UlLX9b72d42qLv+3t7VbSkKzZeXFgQgioxATagwMgYBVhbHjBLdcnVwYq6Kgv4kN+qs+hL9PGUKswo9wNyvkuJs5QCSXT25wJp5lxd2ZfRts3QAmVuuUmX3OR0rtyK4xSo5i3I6L7M3lbVJmIN/5pbEQc0KYh6nm+XKHHMEGJO6/bgsOk8m1X++lNVZTB6nvR/2PZmUmy1xboTUfN54dp1MiOVc2y+xEXDPLV9Uc98xIsVJF1dKTyiEuftM2lVO4PvhcVeyZuXiMg2coFGwjMCETBDXNLFUQhFOKHpAvKISSJrVKq4QfawKYaTLLE2SyoKYTgPMg4eDiYzJ1cDAAPr7+0EpxeDgIAYGBvR/vb29ePHFF1FbWzucY/UAZt06ZkolCgM+9EZl/PLl7Vi7qyv9hia8tNkQ/FQJxb2v79K/2+OtAMMtyDGtxkqueMzViLsFHWKuOJZMr3Z0r6Z6+B6wk6uOsM0taN2WuEzG6eCm5ZOPecE6puRluVquzGWFnNwxhrvJuX83smaXdbBrIPGJ2Gy54mTHHkBt7tfc3hwkrdgsV1RzbQHJrjD9eB1i4rilyOyK43zJfqRmKxInTfw8Uc2CxMdtPz/U9Jlvr49H+/fa1g6s292ttzH2aWhMmffDx08oRUxS9ew/SU1BrsDL1xjuP+7WY4HtmntQI0hRSUVMUhHVYh7jMrNkySo734q2HQ/E58HxUUmFzDMfHc6JGblYi71sQQ8jhYzJVUVFBcaNGwdBEDBr1ixUVlbq/6qrq3HppZfiqquuGs6xegDL3Csp8OO4aeMAAG/s6MTDa5vx4qZWhBMKOgcT2NMVxsb9fUgozpakN3cwmYL6MlZ25/H1+3VrACdXFWZyVWElV1Oq7ORqaG7BQZe6b+lgibnSCB7HyTOr8eXFkyzHATgXYObg5Ipnbe7qtJIr++Rjdz1lCnNgfb60spzGpBOKNFYSJ5jHFZdVy7V1q3EHuBdodjKY8Ynf3ta8SFIJBuOyxXLFr7ukEnQOJpIsY7pUAOEuM1hik+wB/ryMkqRZcXg7+/GqpuBru3XMfA4ymcCtbkdtbEnOQ7Pr0Piu6PFTFD3hBO57Yzf+8t5eJpUBc3uNyBGiSSUAlGjWLK2BpJEcHmBuRiShoCucsByvSinimrVK0bINWbwVI0qSwkgWv2YDMQVxyXAPmmO7uEWSH5OsEsQ0gmY+BtdzaJN/yATprIoePOQL/vRNGF5//XVQSnHaaafhySefxLhx4/R1wWAQU6ZMQUNDw7AM0oMBnyhgSlUR4pKKlt4YdnSE8c/NbYhICra1DWJ/bxRrd3WjtT+OM+bW4ewjGzC/oQzTalgmoqISfNLCsumWzq7Bi5taMRhX8MyGFnz1M5MNy1WRQUrGFQcR9Iu6yvUUU6YgYHYL5kauWvtiKKnzu8aauSHiEHPFcczUcSgI+HD3Vxfhl69s04/5QH8MlcXBpL4AQ4X+6MmVeK+pB+0DcavlysYQrBlVmT+kwwlFd2NarCh5cAvarTKAVZ3c7tp0g5n0RDXtLw4n8kB0K5LDmFy2cerLPqFyYUuL5Uq7zxTVsLwIMO4dCnacugWEUpMVz+YWpFTvLyox602B6HO0XKmUwqfdo5xsmAlQaguUydpEDZce1QhOIawvB/azZSZunFgRQhE1kc6EoqIg4GOkEkYwOyGABCMTkMVhGZpScYVAUiX4Reu7No/pvPiEKagoCur7j0mKnv0XTiggmtvPJwoYjCuIySpz1RJWMLtKCern1nxOJYVqMVeGizGSUCArxr7YPez8XHArEp7qMTIclitCAV92jy4PhwEyJldLly4FADQ1NWHy5MlZT4Qe8oepVcXY0R7GmfPrUby9Cx/t78ObO7rwaesAusJGBuFbO7swo7YEuzrCOGpyBU6eWYN1TT1IKAQFfhFfOmYiWnpjeGtnF/70VhO+cuwki4AohyAIqCsNYZ9GPqaMc7ZcRXLQudrTFcHZv30bXzl2En523vysttUtV0EfQn5jYigIiDrZWjqrBhTAL17aiq1tg2jti2NeQ7ljfzzmasGEcrzX1IOeiATJRCqS3YK5WZ0iCRUoTe4jH899cxd87jETJa5qb4e99p5ZHVtRrfE4cQdJC90t6BLT5XRsFMlkjAdoU0ohCIJObOIys2j4RAEdgwk0dUW0oGhNlwnM8hHwibolhAedExO54YHZ+rhNAeIxzTVWEPBZtcG4VY5QiD4ziaOWv+kSE1g7wbAcaeeAWZgDKUmZTsbAXXrsWMxPYVklCPl9kLSMPVEQmMuUUhBTJiCh0MVAufVIUggqiqxWXo62gbhOrihl95BCCGKyioTMgtgH4zIKAz6EEwoSCkFcYpbDwbjCCJMmv0CoIfvAA9gJYfdYXFYRkdg15VmHCqHw+xyHlWRpy+QFZzgMVQoh8Ikug/Rw2CIjcrVx40bMnz8foiiiv78fmzZtcm27cOHCvA3OgzOmVhdrb2cCTp5VjeKQD2/v6kZXWIIoAPMaytHcHcFAXMGmln4cPbkSG/b2oSci4YM9vXofx04dh3MXjcdbO7uwsyOM7oiEgRh7iy+3udPGVxRiX28MPkFAQ0WBZd1QpBje39MDSSV4f09P1tvy/RUFrVavhnLDjSkIAk6dXYuH1+5h5Ko/ORmDg7sFF2ixWr0RyUIqmDuGQORv+BYrUfbjBuxaWUOHk2q8mcBIqjMBtruQVcpcOH6fqAcrc8RsJNpMUBxjrqh78LHdLUgId2VRBHyCbjFLaBO6ABH3vbEbAPCZqePw2VnVFnIU8ImAlo3H0/ztEgt2FyKP3ZIUlv2GAnvcl0GuAj5G9D5o7sXM2hKL3hvfJOlYuYVKIfBpSSIKtyKZ+qemfvQuqPGH8nOmnW8eCM6RUAiKQ1SvregT2HUkxLBicaseAIiiYAlodytubU2IMALaEzKLj6LUsG5yC3dcYaVyYqaSOSxYXYQoGAHtCZlZGLlUQ5RbxbR9uBUC58drGSZN/xtyspQO1U7geRY9OCEjcrVo0SK0tbWhtrYWixYtgiAIjm8JgiBAdXl4e8gfSkJ+1JSG0DGQgCAIWDx1HCqKgmjpi+HIieWoKArikwP9eO3TDqxv7sWCCeUI+EQ0d0exRisLs2hSBQBgxYIG3PrCVvTHZOzsCBuWqwIruZpUWYh1TUB1aRB+n9V9wEvP5EKuuLUol2255arYFm/VWF2c1JaXEjrQ71xjUCVUz4acUctcqH0xOekB3h9TdLcisU3SmcJKrhiJeemTNhw9pRLnHjk017rFKuNgTTJnP5phJ0UqodjVGcHs+lLmwlHZxLflwAAaq4t1yxLAy+JQ/XNvRLK4Xu2ilGycVmuP0Zb9pxIKv0h1K9lAXIasUoTjhmV2U0s/lsyogqJSCALQHZZQVhDQs/EikgqfIFjJFawTMCc9/Jg5cXRUutfilu5ctR1/XbcXb2zvxPP/7yRLPFcqyISiUGvHSTul1BLcDgC6oIOFvPP4MUGXk1BtbEJWiGaZo5AVAsEv6oHicYWdC64nFfAJujWLaOfAjVxZrKGU6nFanDTxGDeeFSirFDGJZQ7KGsHi8VQIsnuNaHFeCYVZv2KSVhBaUpkgKaH6b8MyFtN9l5S9a/rMrZxJx+IRIQ8jhIzIVVNTE2pqavTPHg4+GquK0TFglMCZUVuikwIAOKK+DO839VisV7JKdMvNybPY9SwJ+TGjtgTrm3st5MpuuZo8jpETe3A7MLSAdm4tysWlGDVJMQBAQ3kBDvTH8bXPTEpqyzMeW/ucLVfmbLhJ2rESCnSHrWWGeqOSiVwZy50e2lFJwcf7+rF4cplluSW1nwAb9/djd1cEu7si+OWXj3Qcnx3mScay3Bxkr5MCsxXGeQK1WwgG4zK6IwkApXoq/wubWnGgL459vTF8fn49Qn4RgiBo5VPYdglFxe6uMI4pHmeZ4KxaWyzomdrGxttx0cu4TDCoEd6eiARFJZZkAB4orxIKURTQOZhAY3UxiEbO+qMyCgLMTcj9Z7zgsHG+jElaIVSzxFjJoLnWHaUU//yEZdvyFwPe1C2gPUkegVqzNhVTdhxgj8MzlnHiyd1rlEJ/WQKAnZ0RVJeGNFcjQdAvakSFkRe/KOpxVqLAhVANgu8Wj2cno9wSxgkVAL3WYFwWmVVLUZlbkmoWLi3j0+8TdaHQcEKGpMXNDcYVppmluQq55VE2EU/2Um9YmsxZnNyF7BMFPXvUTq641c/tt2PuKxt4GYgenJARuZoyZYrjZw8HD1Ori/Fek7srLeATcWzjOLz2aQc+2NOLKeOKsLcnCkKB0gI/jplSobc9enJFWnJ11sIGPPreXpy3aELSvvSAdikXcsUsSUOxXHF19qevOhH3vbEbn5tbn9SWK8p3R5xV7XlfPkFAqab4HpVUtA1YLV09EQnTGC+1uuAcHrAKoegMJ9eANOuBEUrRG81eaT8uExQGk+M8nC1XponcZSKwx0rt741hIC6jNyJBpWwC5Ndqb0/UVDTbZ1HVTihEv4fCcQXlRYGkrK5oQkVXJKFPdmawYGx2PUSBnW+AufwG44pV6FIbt0wIAoJoZLaBai4lAkll3wXKJl1G6qxWKVmzpHBZAbuwqDmIPKGQJDcSPzQncuTUjp9vHlSuS0Ho5IwfhVHShseKqdQomkwo1c81uxaCKdCe/YtpBEhSCODnxI5AITyo3ZBpkJxcuuYDMx0HBdVJEGC46GJa/BYjuOwYeZwf17hKKCzDMJxgoqaDCVmP1ZL0TETjMyfggubmFGFyrZrIFqEUIjXi0pxgv89T0aJMiZbHrTw4IScR0RdeeEH//sMf/hAVFRVYsmQJmpub8zo4D+4YX17gOLkCLBj93EUNOKK+DGUFfsRkFX95by/e2MH0sKZWF6O21IibmlnLoqt3tA/qCu12cjWjtgRXLJ2Osx3cVrrlKp49Qdrfy1TRE5p2TqbgEyVgWK7qygpwyuwax/bp4sK41a0o5IMgCLqEQ7uNXJknM0s6vcMDVlGp4/7M0hOEUuRS8NopqBywkyv2xUIUXGJYktLwJQX9MRkf7++DSqhOcoz9M2vIQJy5Tvm+4rKqk8dt7YMA2IRr7j6hqOgOs2QB+3BUjTQMxGVEJVUnngmZYCAuW+K9uNVF1uKG+HmlFDqhkBWWbUhB0ReTkyxX3AXJyQq3xlizRLUaeHCS4zDHtlktV3bZBiMo3YgJAwy3pJmk8W2MY2XjkxR23pkIKCzWGX7coCZFeoVgICbrhJETWuZiVfQAd0rdBWaTJSLMge1UP0eS5g7kpInLK/B71VzDUNfL0iyMvIA0dzkqKkVflN1b3EUIWOUwLJINlKvUu6vuMxdw8j1nPcfJy9LB41YenJA1ubrttttQWMhcLO+88w7uuece3HHHHaiursY111yT9wF6cIYgCJgyrihpecAn4Jwjx6OxuhiN1cU4aUY1APYQrioOYmZtCc5d2GB5I5uuuRN3dIQxEHcmVwCzUNklD4DcCzdTSvVC0EB2Cu9m95A55sop3gowrGtuRIYLkvJ23PVnt1wNmAikU/C4GYMxGWt3dlksU799bQdu/L/N2LS/DwAjE1HJ6urKBHEXDTPz1nyiyCQ2zB5zFZeY6OPuzgjTU4pYLXBxWUVMVvH2ji4kFFUnAjydHgCauyMgWhwTn2R58HRvVNIEPa375RltTIBS1d2CAIt5MpNKqo07nFBY3JApMFylFN0RCZKqauKWjBibCyZzaQJFy6ij1JiY+fkwRDINAc10tgxGPqxFie3K85zMmV2E/Hpxq5N5OwrolpyIpGiFk+1WP2vpH27pGkwoCGvSCNztxjLzFP088PaOx+NguQKguYONeDWiBa1zgVBdqJQX/KbcQkih6kWf2fgkTWCUx1tJ2n0Uk1TtmMznDcY+za5WhW3PCZkdPDtSNt135r+cAGcDs0CtBw9mZCzFwLFv3z7MmDEDAPDMM8/gS1/6Ev793/8dJ554Ik455ZR8j89DCjTWFGNr26Bl2bK59bpV6jON47C3J4orq4vhFwWdUB2pBbNz8FitjsGE/iB0IlcVRQEE/cl8vCRHKYaeiJSkvF3ukg5uByckAoACU662OVPQjKI0BFC3XGnWwCpOrvqtpCLqUAoFcLZc3f3aDjy3sRX7e6O4ZCJb9iutluNPnvkE//fdk/TYFQ6mVZT+Z2nP2NPH5OCqNBMnN+Og3V0SlVQomnVQUSl6beKr4YSCYvjR0hfDxMoifYJOyAQDgoxBLQCdu/J4TA0/xv6obKnPZ4yZjZtnj0kmEimpxHKPUcqsUbzWoDlInFIWX1ca8usxRby+ndkKwt1XuitNc5FxVfOBmMx0okwlXuznW7c4mf4SymO5RBNRMhTiiWkyN2QZrJYu5t5i23JS4BdFXV8q6BOtLk5Q/fqahU+jkgJRc3fzMjfcqgSYLG3IDpwIA1rGqEiRUNi5FkUBskKTEgZ4PB3P0vRRI2mBWxV5bB3LNlQgKxQ+0SCgXPuKx2T5fZolTbtXLGSMsGQHPXBfO49BnwhBMPrjRJRnhGYDN2uwh8MbWVuuSkpK0N3NCvi+8sor+NznPgcAKCgocKw56GH4MKe+DN84YQqWzq7BtJpiHNc4DrPrS/X1k8YVYUJFIQI+0WKpspezKS8MoFIjNdxSUFaYPMHXlRUkLQNyl2LgMTwc2WzPSU5BQNRrIAKwfDajJE3QPe+Pt6vWajx22WKmorZMPw4ni9OqLe0AgA37+pPW8fNslgIAgG0aWXZz+3G46VVZXZXaBGsam5tCu32C4JpPKqHY3j6YtF1zdxRRicXJhBOKbp0jlCKSUDVyRtAXM4oqc8IUl1mqPiv0Sy37V7n7TbNcmN1wikos559S47pxq4T52PtjCiJa4LyiWcyiCVVnEebAeYNoQCeBlAK9UWbt6o1IujvNHodjtqqw7ah+Hsykk5qslMREsPjlMQLnOeEz5Ba4cjk/TkU7d2auxwO5eTtQRqxlxbDmxDXSEtcy+AAjJi9jyxWs14qPmcIgXFzIFICFxHF1drY9i82KasruvDahpBA9/opLcBATaeT75G2MbFZmjdM1zkxWLe5u5n1zIm1ohpnOHaE64eJk3w2UJruKPXgAciBXy5Ytw3e+8x185zvfwfbt23HWWWcBADZv3oypU6fme3we0qC6JISjJ1fiC4smYInmAjTj2MZxlu9+kQmC2mFXXXeyXLmRK93lpsVaZAp7oeRs3IrchVgYzMz4WmwaoxP4vnm7yiJnFfeYbJ7AjeX8sM0xWX4XogeYyZVVwHPLAUau3tnd7botS6d3I18mIsX1mdKoqwPJ2YKyaqTmDzpcF14/TlJYeZpBW7wdtyr0x2R9Mh2Iyzph6g5LGuHQ2nP3EjXcbxEtrd/ok1mqjDETxCSNIJg0kThh4i4pQtg4EoqK/pisZ/2Z6+pFEiqgky3m5kwoBF3hBMIJBX2aBUtRrW5BYpp8zRYgbpHi8UKc4PLYNW7d4hYyvoxvL6kGMQCYVZf3qxKDZNizMPm+GNmhesA/d29KmjQCV76HrY/dXWG89Emr5f5yqxxgtlxxYVQzoTFII/TjU6n1evJsQl4AGmAWqLimocX1rvi9yMVFAUY4uZSDrMWiDcYVC3HUzxOBpvTPLLH82nAXISO0VCdhhHItsvRwq6fp4fBG1uTqd7/7HU444QR0dnbiySefRFVVFQBg/fr1+NrXvpb3AXoYGhqriy2kqK6sIEmnCgCm15RYvpcWJJOr6hJnwsEJiUqtBXbTwV4oOZuYK0OGITMbPtfi4m6B5P6swfFOsWUAEJNTx1x1DhrWOH+KmhjhBCMJcVtZkMEEC7ruGkzOMuRIJa5o5k56YWMXy9XuzrCx3Ea6eJo+4Fz70Rxb5ZQlyov7hhOKvs++qMxcwSaCyi0IfIIi3H2jZR2ar5WsEj3hgu+jUztPnMQxyQYjRowQFkTNVcgVzVrCiZ+kWdL6Y7IuYZBQWEZhRGKxQNEEUxknlJWKsZ4HVbduGLIBRlaeoYpuZEGyz0ZwOT/zPEaLTezWwtPcZWYQMrbcZ7Ki8cQCnp1JqaFUL2vHpRAu5mnOUuTXguK5j1uxvT2Md3cbmcgC7JIGpvGa47tU67FyuMX88WvOY6x49h9PBOFE11xUmh87IVR3HSYUVbfm8WtqtpbpyQqKqut58f1wUs6zRPn9Z1gGUwe524/VgweOrGOuKioqcM899yQtv+mmm/IyIA/5x4oF9Wjpi2EgpmCcS129OfVlAFoAMGLhJMDnRMoAoMgUpBBOKCjIMGghiVxlIeWgC4hmaLkqMrWLJlSUF1mPhROFEi02y5Vc2bLVOPhc2DGYwAwt+9Jeq83Sj0Yw7IWkIwlVt7BwhXR7Srg5m4230cdk6ouTGjMR45NbVziBPZqK/6JJFbBr/yoqMURCHVyQCY2sAFbNJo5NLf2QVYJwXNH3GUkoiErJ2Ys8rgtg1i2fKDIiFZct51g2BaPzY7FP3DxIWic6oFr6P7FknnErh6QS+BRV3xcjYWwCZ1l2XDlcRWHQh96IZKk5QzW3FjVZIPm4ZNWwjHBrDrPoiXpMFXdDAbASKGK4pcwyCYRSqCYXplnbjhdflk3xYaopK5HLJJj/8WvAj4Xjo319xheXdwQeP2acf+OcuBEOc3vDbchiqsxxYnGZaMkKzEJaFPTpJJwTGokTYcpeZGSVaWcVBnzw+wTd+sTGyix1/PdFKNUtYz5VgE8QWCA+pQgSAgGa+KwICBQQTeNmGlrQfx/pYq5y0c7yMPaRNbkCgL6+Pqxbtw4dHR0gpjcsQRDwjW98I2+D85AfVBQF9dpgbpjXYAhdlhZkd1uIoqDrQkUSCqpLkt2OTjjQb7dcZR9zlanlKugX9XIqYYfAeW41K9JIVbELuYpKLI1cFAXHN/JOk8UpleWKw65xFZUUXeYgrhCU+ES0DyRQX25YH/+5uRXPf9yKoydXIiqpFsJsnry4NcpuuQonFOzpiqArLKE/JmPRpIokGYyorKYkrlydG3B2i3QOJrTJTjGCrCmFqiS/6RvXPYCopKIkJOgxNGaYU/LZsVj74QTHbPXhLjRZI1g8EzAiKRhMsKB6RaSMNMHIguTB8ormkgr42HW3Xy9GrhTDQqKNcTCu6OSyIODTLSER7eVDt9gRQ1Vd0cgjAct8g8lKJStEzxw0yBe1HGtM079iWXzMxcVlJHi8EY854vFFQO5SAnbrqUXA1qVXa8KFiSATo+qHqp8XFowfkRSMo0E9bo7HlDHrqQoaBACflrSgorRAhY8wcVtJIZDBrHRxTeqBuyBlhSVaCALTa+NkOCAS+H0COwLt9HILIQ+C508dM4EzH6NHpjxkTa6ee+45fP3rX0ckEkFpaanlJvLI1djFjDrjDdgp3iodikN+RCU1q7ipFq0QdNAnskywHGKuSrIggkVBP/pjsiUoWu/PFtBuL6nDoRKCnqiE6pIQVEL1AsJzxjNrVXdY0tWhzdY/N29pn22y5tpRCjFKsXSFE6gsDiCkZUVe8/ePAQB/enM3zl7YYCVXsBIp9tfon1DmQmvpiyEuqwjHjQnNjMG4kpZcybplLPng+H3A3WkAcxslT0TQA+fN1hqzW5JDtllKnILzEwqxyjdQqrubElqsUUSTJuiPyro7aDCu6AHOcZkFwcdlRnATKkGIEC3zTrXFXGkipCaiwC1g3BUZCoi6rhWvnwdqHCuP8eHngVBmwWuAqf4et1aZai+yGnzGOZAVApUYCu78nHLrGK/ZZ7aQ8WvA/joTIjeaYG/usnnKNlxwFKJxn3I5BV6OKBxXQEH1zEeVBLRzqWpiswITutWEZssKWakfSQvc5+cipsUIDsSZ65BLUoT8IvyiiLjMkjBCARGEst+vQlm9RL9muuIWLUoFjWi5aWp5BOtwR9YxV//1X/+FSy+9FIODg+jr60Nvb6/+r6cn++K7HkYHakpCKNTceWU5kCtdjiGLuKkOzcoztZoF04dziLnK1C0IpNbjMopAp3YLqoSiO8wI0Uf7+vDsxwfw8uZ2bNzXB0qppjRtyETo43XhjXZXaExWdXdpXFbRG5EQlVRLqSOO3V2RpEBy4kA+zOSHUCYe2TmYYOKNevq6faZ0Hq+5b65x5OQW5JNoRDL0mLg1wtw5n5za+uP6OO3uPg6eAaaPgSaTOl2NnPdvstBw995gQkFU09Fi/RJENULFFMU1PS6ZBetz3SZz0LX5NHFtKUINCQZOpLiAqh77pLIYLwrWlk/+CiG6y0ulrJIAt8RxbS4mHEp1EmhOOuDHpxCiBXUTjbga2YmKamTXqaZzbI6byhfc+rLfZioxLKv8Lw9IZ9eDaDpljBhygqRoJJQJj6oYiCk6oe2PyYjJKstKlVX9fMQ0oVLuDo5p8Y48sF2P4ZJ5PUQj5osnCSjEqOvIrZROLxcePGRNrlpaWvC9730PRUXJApYexi4EQUBDBXM9VWaoNWUGJy7ZxE1xFwsvqpydW9Ba+iYTcCLmRACNmKvUbkFCDXkGs0xD52ACEW0SiOt6TiYNL+3QQiadMFlzY5gRk1Vs2Nunfx6MK+iLSpYsRI62/rg+eXJYyIc2k5ljQghlcSm6qKT2dp9UhiaDmZa7A92UvVkbolvFJNXIxOqPyXhi/X6s2dHJgsYlFXHJqLHnFMdiDy52yoC3S1io1CoIyo+3PyYjqrVVuUuOQidEFGzi5nFM3CXFrU0cPJCdUquOU1zWjkkjajx2SydHRHNNajFp3J3J3HgsJk8mxGJ9ojASRrgVzUz2WvvjehyS4VYzYuO4FAO35BnHAP28Dzfs7kJDjsJYzgPL+XmPaQWdEzLTOeNaXTzjkxFlRZfUiGkiqzGZWdJ5kDsTs2XaZZxcy5olMS6rGIjJevA8v0944gbPbIybr4t2rZmeF3W1/OWTtHoYO8iaXC1fvhwffPDBcIzFw0HGlCqmbl5RmDo+ywkGccmMIMW1N0vAKAadDTHjZKPIxX3nBO5CdNpPRMosW5BQqpMqc3D7QFzRs+q45co80UcdyFU4riTVOuSWBYBl6UUkBR2DCcfzyjLy3J/cvB/ZxEgoZZOw4QoCOgYSugCnuV06cGuXk+XK3Ib3xS1AlAKvbW1HS18MP/2/zXqwOa8OYFbhNkMm9gDq5Eb2a8vddYARcM7jbeLa9aMUuqBpQpvICWUkXJc3cIlRYpYOw/rEXZoxWUVCVnXhUkUrZkwpdAX2mKSiLypDUqhuKSGEQiKApEkM8MB0nv2nu/QIy34zX/8d7YOadc0oaK0Hq2vxWtz16BQT5XrN8+jdysSixUkVP+aYxPTKBuMyYhKLZYsrvPizoiv5c4tWTFIRTSia25u9nCQUpoFFNbdvTOLXhpgImopwgq2Lyey7UVRay7TUXL286gCP3+NWS/NxGur8Hg5HZB1zddZZZ+EHP/gBtmzZggULFiAQsFo5zj333Iz6efbZZ7PdNZYtW6aX3vGQfyydVYM3tndiyYyqrLctyVJIlGfJiQJQVxbKaluAWW0AaxbgUMbIl3ELnJvl6s0dXVg4oRyAtQTPYFzRXXQ8u84s9JlQ2QxlnlzCCUUPpOYwW5B4qZ2eiORKPFVCsa1tUBePtcQkaV/MweqUAjvaw5Y+2gbius6U3s5hShAEZ6mHVASPUuDj/X2QFIKGigIQKiKhKJYMRElLo9fJFXF3C7ql9XMM2Cx8ZmsCt/Jwt475mGVCEBJ9enkYJvipQFYIfD5B29bqvgKgFxzmBI0fi9kCEkmoupWQwsgEjMsq/KIAhbDAd+5KlFQBqqYKT/SAdOgWKX7OVNXqAvX5BCgqhShQEL+ou7z4MfOahjxmyH7dDqaogD2WTjHF3HECJGifJdUQUI3JKoJ+UXMl8hI8LNM1JqsYMLkEoxpp5uQ3qlkV47IAlciai9Z4TrAMRi2OTbt2EUlFwGdUu4hpbkOFEPgEwcEiyEi3T8xS9t3DmEfW5Oqyyy4DANx8881J6wRBgGrP6XbBeeedl9V+BUHAjh07MG3atKy285A5ls+rh6wSfGHRhKy31Ys3Zxg31RdjpKK0IJBVvFZMUrFxfx92aRpNtQ6CqK5j5NY1WxYaz6Azt3ELaO+PyXi/uRfflI2YHYDpUw3GWYB0VGZvyGYhxkFtzjdP6G0D8aTsM/PbLydrLAg72RrG4n0o9vdG0VhdjKDfWg7FnNpu9J88gbYNxJMmVicLgwCb1INJS8gNlFKs3tYJAJgzvhSNVcVIKMQS7M8DtvnxuhXeTdInc9itXdrCTD7MFjZisurw79xdx0lHTLNWCIIp8Nq234EYKy6saq49WYvlCfl9evxXVFJ15XHAakmLiex6DsYVKNqkH1eNUiy8D54dx1XMEwoTMzUT/NrSAkgqs44VBn26VpR+jNRWsoamv+YjBfv9p1Kz+jtFTFaYa1Vm/1SfoLtTOflSqfGb4C5QFgBPNcFR4/yHE4pmcWT7iMtMvFQljMQSwuqx8ti2aEKBoooIxxUUBpmUhl8UENX6VQkFFQBREPRMUFGXahiZc+hhdCFrtyAhxPVfpsSKo62tLWV/5n/Zxni1tLTgoosuQlVVFYqKirBo0SKsX79eX08pxcqVK9HQ0IDCwkKccsop2Lx5c1b7ONRQVuhHYRYxTGZkWwKnN2IUiObbOolV2nGgP4a1u7qxX8s0tIufZjLG/piV0DR3G4HhRWl0rgCW4ddpc9UNxBRsbR3EvWt24Tev7dTia4xtBmUWl2W2Fnywp8cy+QPWWKP2/jj2dEUAGOd1b0/UaKxZYLj6OGDT3qLJbjun+bO9Pw5FSY6FSQc3IVNrP8ZnWWFjjUqqRaaCW3h4kgJ3f9lhLzPitHd7DUS3MkLMPWbqixqZhdyCJOsxZVYZCPO54UHSMa30SjiuWGoYysRUJ1E1pCAoYNlPRIuBi0oqZGIIq3LSplvGtM9mdXmOisIA4jITWuVyEOZrxN2C7HMWTGoESJd9OGYSaC7kzNXb41o5IX69ojwInnIBVUN6QiWaNIZ27njGKFdz5yWcEloAPL+WMVnRM0t192NCRlxm7WNaTB0ncLz+pN2t7QW8H57ImlyZEY/H0zdywcUXX5yVi++iiy5CWVlZ+oYAent7ceKJJyIQCOCll17Cli1b8Ktf/QoVFRV6mzvuuAN33nkn7rnnHrz//vuor6/HsmXLMDg46N7xIY6ioD8lqUgFroCeuVuQEZzywkDaun9mtPXHQahRBmVaTXHmY9SI06b9A5bl29oG0T7A7mVe9Low4EOK6jV4Y0enxXLVH5Px4qZWqITin5+06f1x7BkUsHZXd1IdQTtBMUsimNXNwwkWU2Lul4JC1YojG2/lRl/G5GRV+7YjnFAQla3n3mk+taeWZ0KuzPsTwIieSqhFYJVlxFldXE712jIpM2K3brnFg3FrkD5OMBLF3XWSQnSiy2rikaTMTIBZnCLatYlJKrojEqL65K+Va9FidXhdPe521JXJdQ0u1odCDW0uQgwrLydjRCOfXJfJfAzcaqOoVK9HaKynuos4g0tn6Tef2NExiHVNPSkJnrk2IXf1mTP5uMq8WXCUx5Jxosy3kQmPaSNaSSCKgZiiJy/wGCvdjauRpnBC1ddzDb+4FkfHdOhYEHxMIjrxlUwEjkKL+fO41WGJrMmVqqr42c9+hgkTJqCkpAS7d+8GANxwww3485//nHE/DzzwAEpLS9M31HDvvfeiujq5dp4TfvGLX2DSpEl44IEH8JnPfAZTp07F6aefjunTpwNgD/y7774bP/7xj3HBBRdg/vz5eOihhxCNRvHYY49lPKZDEZkKgNpRnAVBAqCTo3HFQV24M5NtD/TFMBhXtAla0DMNsxujYd2ISSq2tw/qRGmiVtRaEATXeK6YJo1gzgaMSgoCJqX0Fza2WraRCDBgOz6eiWaGkzsMYC7T/b1RSxwXn0xjWvYbwAKhORwtVy7zWV/EHqvk3M5trAMxGX9/fx+2t1tfTizdmLiZmbhKWvaXWbPJyXJlPzdOY3Q7f3bYSZdZ/kG3WJl2oGjWDtbW2I4TsaiW1t8VTujld7h70yzjQAjBEx/swxvbOzUrFtEzERUtSF0mXKmfQFJZUDYblxFIrWuD0WTypBJWpieu2MgVNcaeiWWSI99qTS9uasM7u7uTCrfbYbgvoVuJFP1cGmVwuJVQL7YMaO49TWZBIz08uULVtuH3HS8AzaUZeK1JbtUyS3joWaBawgHLujWkNzhp5y80dqFXD4cPsjZT3HrrrXjooYdwxx136PFXALBgwQLcdddd+Pa3v531IE477TQsXboUP/3pTy3Le3t78cUvfhH/+te/surv2WefxfLly/HlL38Za9aswYQJE3DllVfq421qakJbWxvOOOMMfZtQKISlS5di7dq1uPzyyx37TSQSSCSM9PuBAWYBkWUZspzepTUWUFEg5nQshQH2CB6MZXYuurUafJVFfhRonshwXEm5LSEUrX1R9IS5lSkEoiogGXqjCzRXVMS0n/b+GFp6meutqjgIHwhkjcAUBX2OhG8wLoMQlg3GwVw7xtg37e+zbKMQAb1hq1ZVQlaSlNFVQkAcDogA2Hqg31pQl1AkJBnRuIxtB/oxuSKEsMm1SgiFLMuQTFYppiKe3H9f3LqMEDWpnWBbn5CIbl14bWs72gbieOmTNsyoMQivarasmI7NbLWISTLisox4QnQcmxnWum7O5yoTxCQ5aVtKSErSISsCOy/mIHlFhaSo6IvEEZcU9EXikBUFqiqgOCAiLimQFQXRBKuTuK83ivWa1MZxjZUgPhGEEEiyCFlREYlJkAkgKQrikoRwTMZAXAEhKuIS60dRVcQlGaAEimI9v+y4gEicidkqWp1EQBNxVZ0zBVOBDuE8p0I4IYEQ58xkhRoVECgREJNkCIIAWVGQkGQoigJVVaEKACECVEJAiSHwCUoQTxj3PtHcrERrl5B5GRu2LbceCgCicZZhG/SJuqs4EmcvTpJCoCgiREFAgU/AQDSBhKwgHE8wVf0CPwTK1N79YEHwcUmGJAl5FRXlz69DZd4ZS8j0nGdNrh5++GHcd999OP3003HFFVfoyxcuXIitW7dm2x0AYPXq1di0aRM2bNiARx99FMXFzNUjSRLWrFmTdX+7d+/Gvffei2uvvRb//d//jXXr1uF73/seQqEQvvnNb6KtrQ0AUFdXZ9murq4Ozc3Nrv3efvvtjjUUX3/99UNG9yssAzuzl7lCU7sAwIemfS148cV9adt/2CwCENHX3oIP39sHwI++SAwvvviiY/t+ib3JbukQsWcQAEQUEPf2TmhuZWNs7+7Vt9sbBra1sLEUCwlrf7IPTu/t3YNRbN++E3FFsKxv6ezVv29qarOsUymwZftOGIUzgJb2DsRsfXR192KH6izG27OPx3KwPnr7+vDu+h70JgTsa6II76L46ICgr4/FE3j6uRextcVYRinFjh07k/pm3MqwvLUcaIXSa21DqTFWex+9g87rGE9l/e5pbkax9sSJRIz26zd8hEEZKPYD/VLqCYjNt6y/gYFB7NgxkLK9G0I+qmdwZoqASCETAdGYMfbNW7YgoQqQWrejNQr4BSCisND/AwEmwdHTzO5fUQDaogC/Fls+3QqfwJaXBVmb/UF2znbt2g25fRciMtNIi6sCevdRhGV2rUI+wCcALYNGfy0HWoH+A+z4RJbdGZYB4/6iSG+HSnZmdHR0IBjpyOpcZbKP1tY2oN+5hQAKahp3oZ+NPK4C3QXMmtUZZ+dZFABCBdM2bNmBADt3AtjLCZNLYH36RWbFEgR2HlXNqicACIjsTPkFdi0EASjys1FLBAiK7JqVBICuOGsj7Wd7DopAoZ/1VaTd64MyUBFk/WQCPq5MsGrVqswaesgbotFo+kbIgVy1tLRgxowZScsJIUNi0a+++iouv/xyHH/88XjuuecwderUnPsihGDx4sW47bbbAABHHXUUNm/ejHvvvRff/OY39Xb2N4l0JQuuv/56XHvttfr3gYEBTJo0CaeeeiqqqrKXLxiNyLVsg7qxFX/fvQnFFdVYsWJx2vZvPr0ZONCCo+fNwucXjscvNr4JhfqwYsXypLZtA3E8vr4FAoCZ5RT7t3UC/YNYMK0BK1YsyHiMZGMrntqzCXEhhNOWnYyCgA9v7uzCO5E9QE8PFjTWY8WKI/X2f977LjpakidvmfowddpkoGUPAGgPd0AMFrLXXgCDNADAsBipFJg0eSpwwCCeZRXj4EsoQCSs91FeUY6ZM53d33VlBcxdtou9xFRUlGPa7PG6/MCSxROx+919wP4mAIA/EETjoqMw3tcGtOwFAFAImDlzelLf4YSC1a179e/148djhi2e7bXWJqiay2zmTOsz4P3efYD2+zevi0kqcIC9sDROnaKXVtqRaEd7jFkM58ydj96ojPJCP3ps0hR2EELxcgs7vtLSUsycWZuyvRt4yaVsEPCxgtLr+/YDEhvnnDlHICopmFlbgtLeGERB0APzCwI+SApBY3UxWvvjKAiIKOiM4M12dg/MnDWbkStRQE1JCJ3hBAr9Ajo2bsW0adMwf0IFuiMS+qISJJWgoaIQPREJcVlF0CfC7xMR298PdLcDAMaPH4/Z9aUglGW6Bf1iRkkiHAMxGdif/GI0ZcL4rGIb0+Gf+1koSX19PWbWOSekCIJgsVIWh/wQwDJ9J1UWIi4TVGjWb4NWCRarXFVJCAMxGQLY748r2wOAT2QF0X2iAL8mYSGrBKLAzhshrOxNQmHLSkI++H0iohKTfgj6RJQX+nFAE249alIFfKKAwoAP5YV+CIKAisIABAHoDCcwobwQYqogThMyeQbLsoxVq1Zh2bJlSXJIHoYX3GOVDlmTq3nz5uHNN9/ElClTLMsff/xxHHXUUdl2p2P8+PFYs2YNLr30Uhx77LF4/PHHccQRR+Tc19y5cy3LjjjiCDz55JMA2I8aYNmK48eP19t0dHQkWbPMCIVCCIWSY5ICgcBhf4OXF7HzMpBQMjoXXMNpXEkBKopZELmkEggie4gBLI6pOyxh9fZuCAJbJgpAX4xtu7hxXFbn/fR54xF8ajN6ozI+ahnEZ2fWQFKNsUyrKbX0N29CBTZq5OonZx2B37++Cz1RCQmFYF8ve7D7BAGFmvvQLENhD35WaTKZl1VW6gRgkwdT6xYgumjiKIS9ORsQEJep3p4KPoQla0xWT0zFoE3iQhDEpLEIgpVoCEgeh2ASY7CvM8chWdYJpoB2QdTXCWYLisDMLGqKYzeOybQjIX17NxAIGU921v1ZLY2CyI5JIgIEUQRM542CLZMJ2x+FCNFntgwJoILAzBSCCAgi+w7A5xNBBAEEbJ0oClCoAKr1r0IrJmyp7SqCar8TCNDbZorVO9ocl2dyXXKB+X6wQxSshdEpREAABIEyl6Ht2ATbXz5uCCIEARCpZvXU+hQEARA0EiMIEEUKkQpMPkEQIIhUuyaAoJ17aNdR1fafUDVLmCAiplCE/CJEAshUhE8QIPr9TMgVPgQCgbySKw5v7hl5ZHq+sw5o/+lPf4rvfve7+MUvfgFCCJ566ilcdtlluO2223DjjTdmPVDAmHRCoRAeffRR/Od//ic+//nP4/e//31O/Z144onYtm2bZdn27dt1QtjY2Ij6+nqLSZW7IJcsWZLTPg938GBxu4ijG7geUWVR0KKybtagWt/ciyfW70dX2LBmEEr1OntHTarMaoxlBQEcP20cAOD/NjD3SVRS0anFQk0eZ3XtXvbZRv3z2Qsb8OuvLcLyeYx8v9/MfGYBn6CX4BlMmGObrPtWaXJxZB6UDACl2vlLFfMjqYaqOGAEtHPIKsFA3DhXlFJ0DiaSxuK0C/sip7jwVM97tzhyi6iipTPjI0+hT6X0bvRhDtDOPY8tm4DuVNsYQfC8GLI1CJ5SlkFriHdat9W1yKhVBR7gGYFG+SAuKApAD+Y2g2p9cCmATLI5zXCTrfjnZmfSNVSkiv1K0r0ixm8lJqkZHZuiEv2c268NB6HQ1/P9MhFbQ92fF73mchyKqXYkrzHIS/Dw4vVxWdXiuFQ9c9Dpfh3KPexhdCNrcnXOOefg73//O1588UUIgoAbb7wRn376KZ577jksW7Ysp0HYb7Cf/OQnePTRR/GrX/0qp/6uueYavPvuu7jtttuwc+dOPPbYY7jvvvtw1VVXAWBk7uqrr8Ztt92Gp59+Gp988gkuueQSFBUV4cILL8xpn4c7dDkFk8UmLqv4cG8vPmlJDqzg6eWVRQGE/D5d98gs5cBV2M3oDjMXSVHQhzn1mWebchwzhRGypu4wtrcP4sb/24z2gQR8ooCTZ9VY2k6rKcFXj52Eq06djvryAhQEfDhlVq02DkbIfD4BZVpZnVSZagpJfrjzDCbAKM2Tqg+uw8Nh789cjBjQLFcRKen3RZwmNTsBc1Jodx2Z+7iJhQw592WU0cnATXcQ5yJ9/ELyMkWTV7Bn5wHQS7WYJ3EASaTJXgRYMmXFsf7s5Mw9q9OJfI1lENPxsJeS9PeKufRSkkgueGYh1WQftOUUMBm49O88sJ1fK16nkmdgxrVahrzsDs9oDMcVvc4j1+BKB49vHRrISdRo+fLlWL48OTYmVzQ1NaGmxjqxffGLX8ScOXNyqmN47LHH4umnn8b111+Pm2++GY2Njbj77rvx9a9/XW/zwx/+ELFYDFdeeSV6e3tx3HHH4ZVXXslKHsKDAW69iUqqbtZ+e2cXNu7vx5SqIszXSsZw6CKiWpHokqAffTEZvREJDRWFoJSiY9CaXQcwKQYAOHpyhe4+zAYNWh3DnoiMh9bu0bMBj51SibqygqT2x00bh2MmM2tXgd+HimI2Xj5v+UURlcVBoDOScr8qTS40zMuhAIblj1gmZ4qN+/tRX16AurICloZu6sQ+vwxoCvHG9s6kJ5OHt2ObFOwqk6K1bm14xmQmMgrmFqNhEuLHFJeJrruU3Ib95XIB9uUUrKYhI0TGdtz6wZFkDSXWzD/LubEEhGeGTGUs8oYUu7NfW05yAPfak3YYOmWp90MFh/3BKhorar9fQgGBUigCQLXyOVwxXyUUkkhQGPTpemlRTWtMUSngA3wQdAswJ8vm7/nMKPRwcJE1uaKUYv369dizZw8EQcC0adOwaNGiId0U9vgtjnnz5mHevHk59Xn22Wfj7LPPdl0vCAJWrlyJlStX5tS/ByvqygoQ8AmQVIK3d3Vh8ZRx2NrGNI/sJIlSarJcsVTs4hAjVwf645g3oRzdEclR6+hAPyNXn2nMLYFgdh0jz31RCW2aIKdPFPDFoyc6ti8M+MH1LgsCIioKrf52vyhgXLF7oevCgA8xWUWfJFgKPQOwlIHhlj+z63BPdxSrt7PSMf95+kwAVvJldzOGHUQugeQ5LBO3oFMbc5yUfSJw+/1byIRji+zcV6OBUJmPVLdOyaqj2wmAaZK2ngNdaoBC10wzny+7wrpT/1byav3saKFMAbP7fSSQzei4pQlgv4FM5ht+6szb6v25nDe2naGhZe5L1K1dgMAW6FYuSSGAX4RCWGkdQllB56ikwicyIV9BEOHzCZbfDqEUou13NQpucQ95QFbk6vXXX8e3v/1tNDc36w8BQRDQ2NiI//3f/8XJJ5+c1c4zjbrPVJndw8FDcciPM+bW44VNrXjsvX0oDPh1chSTVAzEZZQVMGISlVQ9vqZCs1xx9XSuQG52CfZGJGxvH0R5UUAve3Ps1HE5jbNaq0U4EFf0fayYX4+aMmfx1OKQT68RVhDwoaLISqT8PkHPgHPCwonlTI0awMc296ikEgQ1z7xOrkwP9KipWHNCYfXqzDzEbmkYjCs2y47JNOK0PAXSTcyEshR2Dre5LtUklm55OowGosUvgUqTJ3AOqpMrqy3JPPlz+TJzF3bSmXB42bBbq6z7TTP4LLBpfz9m1pWgIODDG9s7kVAIls11T/4ZTqgEEIUM7mETeU0FNzpjdhUSLRuRUFZrUiWCxU3LY7EEgb1EsVg75ioMiKaC2iInU1xJ3jxennlM4cu7dKuHkUbGfpWdO3fi7LPPxtSpU/HUU0/h008/xZYtW/D4449j4sSJWLFiha7WnikqKipQWVnp+o+v9zA28JVjJwEAVm/rwAd7etDUFdELE3earFd8WcDHUpcBoKKQkZbmbuZe4ySLEIrnN7bi3aYevLy5naVC+0QsmlSR0xi5lUklVC/+XBzyu6qxFwX9unUpFBB1MsgR8IkoCRnLQn7rT2pqVTEuPZFZZpu6rPoovFwGAJ14mh+2ZsX3P6zZnVSyxR6jFE4oltmW2v5yOEWrJBEuJ8uVJdbI2sBtKnCz5uQ6dVjdYAefXfExpJrAdVV0G1ni383B1qmMeE6WXBu7Gjb8a1sHXvykFZRSbNjXhy2tA3oJq1yRleXKQkLye+UzIf1mt6Qeq0WN6y+rhgo/LySdkFVDAd5Uusj8uzQIoJHwoGqxXV6w+9hGxparu+++G8cffzxee+01y/I5c+bg/PPPx+c+9zncdddd+O1vf5vxzl9//XX9M6UUK1aswJ/+9CdMmDAh4z48jB6cOKMa44qD6IlIuHf1Lr3EzYSKQsyoLdGLLPNMwfLCgG4e/0zjOKzb04N1TT3YfKAfe7oZEdncOoCeqISgX0RlUQCVRUF884QpOReYLgj4UBT0sRIWmhI7I1fO/dktV/bnXcgv6sHoAPCN46fgyQ/36wWECwIijp5cgT+/3ay34a5CVleOdchjwVRC8f6eHowrDibV0msfiCMUMAiX3c0YTtgtV9rfJIuGg3vJ9t2JFDlZXfR1LqYrYpmgTF9yZ1cHHT7R7MZJ3z6dW9CMbCdUt5ir4cC+nhi2mcobPbF+P86cPx5v7ezCqXNq9LqcmWIo5CHfvMPZVW4jw/Z4OcFquSKUvYAktJegmBbYLgqmbNIgi98iEPRAd8AIvqcC++wTqR6f5cVijU1kTK5Wr16N22+/3XEdz767/vrrs9r50qVLLd99Ph+OP/54TJs2Lat+PIwO+EQBKxbU4y/v7kVfTIZfFKASipa+GP78VhPOObIBALC1jbmDze60U2bX4J7Xd2Jr2yBe2tSmP1De3d0NADhtdg1m1zP38Gdn1mAoqCoOIiox96IAoCjgcy1YXRz063XwCvy+JPdXyO/TrW9sbNV46ZM2E7nyYe54q1t7XHEQLX0xze3DHq68pmFLXwwtWtD+qbOtx8nSwo3vURu5sls29MkhRbyJG9IFtNuJgatb0LTzTCQ7uevMNYYr3RhHAGKWE515AjYjLhPY+Ui2h2SxrmS5rRnd4eTkESe8vLld/xyRVDzx4X4AwDMbDuDfTzae271RCdvbBrFocgVCfqM6wLomo/pAJtIbBwP6S0k6d6LtxYFSQBF4WSZBC38gekydKlIQ6tfV5AkxXL+qKbORS3KIPpffgGfRGhPI2C24d+9eLFjgroY9f/78lKVjPBweuGRJIwoDPlQUBvDQpcfihrOZmOvG/X3oCiewvrkXr33KSmlUmuKXFk2qQGHAh4RC8Jd3m3Hfm7uxYV8vopKK4qAPl55kaE6lCiDPBObi1JXFQdRXFGDSOOfyRUVBn26pCPpFBHwi/CbLRSggWlyejTUlFqtaKODDhIoCFPqMB+KEykKL4aYgIKKyODlua8AWoM7T9Tlispr0oKUOs639Uez4bE7vFbQEtCeRK4f2SftKMyfIKsFDa/fg/z4+4NomGy+YSij6tQzUSIYFxTOBmH2Sqg7z+Xh7V5dDgyz7s/Sd+6T75g6HsWSBmE0j6y/vNuPdph6s3tapL9vREca7JnL19s7c93kwXMLpXL9cLkLV5BqiEiv0bC4GLauGnplCCFSV62pRyJqWFy/mbd23R6jGGjK2XIXD4ZT184qKijKuuePh0MWM2hJcu2wWAj4BJ86owVGTK3H/m7vR2h/Hn97cjaKgX9dqqjSRJL9PxMKJ5XivqUd3J769k1mtFkwsx+y6Mry9sxulBX5dtiBXVJnIVU1JCEtn1VhcPWYUBf1JZVIKAkZB5+KgH43VRaZ1IopN5KogwNTQT28geH4fWz6xohAHKgv14PzqkhD8DjN2py3LUlaJJaZLJRT/3NyGz8+rd7T0uD2OnYLVkwmYdYmsEksRa7sMhHu2oHkfqSeIvT1RDMSVJFKZalyp8Pj6fWjXBGfHFQfxjeOnZLxtKldMtpYrNziV+smaNORpzs331M25QWt/HB0DcbzX1IPdXVa5kmxFTkczDKuTFmwvApLKiBIricSeeQmFvRAFfCIkLkKquRQlhYD62HkRFfZb90HQ5Ro89+DYQlaz1JYtW/Six3Z0dQ3tzYfDu3nGPqZWF+tutqKgH2cvHI/732zC397fh68snoSP9vUBAKbYrEUnzajGe009ep09jqWzalBeFEBxyIeZdUPXIasykbq6shAmVrq/NBQEkklPQUAE96KUFfjxb8dOwod7+9BYXYyQz2chfwWaS6TCZGyrLSvArLpSnVxVFQctwesce3usLyuKTcEbALa3hzG7PoJp1SyezTHmKg9uwZdtKt2ZWq6S4lT09smyDgk5u1p/6VTWObECnImMG9r643j24wM4aUY15jYkZyr7hvCMMpOnfDzprIr1eegwD/hgj7Xw+F/fT1/IPVuMlmM1Q09ugMAsWCqLqRRF6C8mcYlA9TMXYFRSWVkjzVrFRUn530JCWYFp1imAzAs6ezj4yIpcnX766Y5vjrzIZrbE6Pzzz7dsE4/HccUVV6C42Fok9KmnnsqqXw8HFw0VBRhfXqh/v/KUGXjonWb0RWX86a0mqISitMCPy5daCwj/27GTsGZ7JyaNK8JHe/vQ1B1BZVFAV1WvLy/ELJdCr9lgXInBdHiskxsErXagGSyzkE3W5UVBhPw+nLuoARMqChHwC5bg+AItHqs8aPxuioM+zG8ow7+2Mvfo8vn1CPrT/3YUNZlcATZ9KwdLUUYB7bZlduvWLptIahKxyVaKwZx5qH3NRKE9E2mHoeKFTa2IySpWfdruSK7Mlqusn3t5ipEy9p+HTpAftxMhLIj77V3deRjR2ALX0hIEI7OQl7wSqFF5Iq6okFQBPlFATFYhCgKkAqbmHpNVKCrTxyoM+ECoX88e9ItarUXiEayxgozJVVNTU953XlFRYfl+0UUX5X0fHkYeM2pL9CBWgLn//t+pM3DP6zt14cyLjpuCmlKrtlRtaQinzqmFIACnzanFbS9+iqMnV6K+jBGg2XWlFtKWKxqrGHkXBODSk7JPnig21UIsK2Q/oZBPRH15AYqCfhSaZB245avEFFIV8Iv48uJJWLenB5VFQXzxqAnojhg1GRdPqcQHWu1CMxRC9CDgIyeW4+P9TDfLospuaq/PlxnEU9mRbq5NyhZ06ycD6QSqsatsJ43hikOxu4HtCJiIcFRSs3JT5zsgP1/95eNMbmrpx/s2q1WmUAlFXM7uXI5mUFC9HqIoGJUreEhEYdCHmKRCEABJCUBSCaIJFaJolLDiNQlllUAURIsUhIfRj4zvZDcV9aGgvr4e5513Ho477ri89+3h4MFMrDi+e9oMjC8vwJodnSgNBTCjNtkCJQgCaktDKC8MYNncOkQSCnqjMmo1gc98WK0A4LyjJqB1IAYBcBxHOhSbyBM/1qBf1JcXmlyJPPjexMdw1KQKjCsO4jhNZT4U8GF2fQHOP2oC3tjeifkTyjC+ogDPfdxq2a+isqBXgMVpHTu1Eu/v6XWNXXHhVjkrtJuRaeFjqxSD8dmqck5hp2duFqGRsFylI23BHMou6X2bPpcV5JdIDCXIOx+lb97a2ZVzHNXfP9iHzsEELvzM5KSXrrEGfh14OSRBAKIJBaIoIJxQIAoCiiQFMU3VP5pQoRCCwYSMgE9ETNPy45bqhELg97HYK1FTePcw+nFQXxPa2tpwzjnnwOfz4ZxzzsF5552H008/HaHQ2P5xeUiGIAj40uJJWDipAm9s73TVqaorK0BjdTEEQcD5R09A0Cfqk2y+4vGCfhGnz6nDBi32K1uYZRt4gHl5YUAPijcLkvJ6hQU+4JFvLcYbO7tx3LQqjTwwghD0i/CJAq5dNgvL59WhKyxhikp0cuXncRm8RhmAgqBP17xSLJarZL+T/VmcrowK+576AZ4cc5V7+Ru+3K0Pa1ujl2zLu2QKQVPQdh+D6XO2QzC1z0f8YCbnNx3290bR6lAkPVs4Eat0pO2jfX1YNKlCT954bN1efPOEKZZM4rEAp/hGwoPVCbOGikRANMGsVVzrTtHcgSphJCvop4hKKkJ+ETFZRUHAB0lhheoVLQaL0PzE63kYXgwhqXjoeOCBB9De3o5//OMfqKiowLXXXovq6mpccMEFePDBB/MWJO9h9GBWXSm+ecJULLAVcuaYXluix0GF/L5hS3CYUFFo0afKBmbRUB5TZS6LY5ZqqNXewgt8wDFTKnDq7FoAjChyS5fZ+lUSCmBeQ5keZwYYk5aiEj0uqSjg01XtVTWZULGPKdxwaZAu+ilTA4WriKjDeMyXWi8NQym2tg3oqv5DITYZv/FncctlS/DyLSFAXb9khu5wAk9+2JKv4SQhnEYCY832Tr0YO8ezKaQ4hoq9PVF0ZajpNVRwBX6VsH8KYfFUEUlFRFKQkFVNrkFFTFaYa1BS9YLPCYVJOMgq0cvr8OxCz3o1+nFQyRXAJpnPfvazuOOOO7B161asW7cOxx9/PO6//35MmDABJ598Mn75y1+ipWX4HgAeRhZBv+iqKzWhonBEMkYri4OoKsnt7ZiXqgEMy5W5LE7EJO7J38B9IitnU2uqYVhRFIBfFHSLV3HIj4qiAI6aXGnR4uLY1RnRM+oKgz493ksx6SI4kY9MAtqTkKZJUh+uAe3p96WPz6G8zo6OMF7e3I6H32lOGlf25CqzdmnvPuryOUtk6lpNOZQhBMhTSvGX9/YOeQxDxVM2cscrOKRDQlahZJAEwdEbkfD0hhY8OkLHTCj00kaEUj2uLC6pGIgxDaxIQsVgnH3mJCsqqZq6u6qV02H6WLLKLNeHkoTFoYxRFz14xBFH4IgjjsAPf/hDdHZ24tlnn8Wzzz4LAPj+979/kEfn4VDCzBzirQAmAsrByZVZSsH8ti6KAlSTvmKNSZK7sihokQgoCfkxT8tOKw75sXxeHfZ0RXHijGr879tNCCcUrN/LAt0LAz7d8qW4BbQ7LYRLbcEUpT6ckKRzZe7LFC9l7iXdnGDpQ/trd1dZ+8vWapQZ0nH7oXCrbERVM+rPIsWQXYfqKLF+OI0jKimu9T4Bphf1hzd2I+gT8R+nTHdtZ0Z3FnIc+YDFRagFp8ckVcsUZNIjCUXFYJzFWvFAdlkliEkiIgkFxUE/EyJVWNuATwChQMDvBbZnilVb2vHu7m70x2R82jqAp688EUH/8NuVRh25MqOmpgbf/va38e1vf/tgD8XDIYgJFbllHk4eZxYNTXYtDsbd37zNJX8qi4MI9lp/5JyUFAREnDK7FvNOLUOTTXwRYJYrvm/Lm6xD7FTSM9jpoWzfzvUIGFIRG3N4urmd2za6WzCFArzRNvcYI0opdnVGsKszjNNm18LvEpieSewXx1CsT/mYG4diuToIIucZo2MwgalV7tMTj9FKl9lpRqrf5XDAXveRUlbyR6VAQlNulxTmCiwIAHGZES9ZJYjJKgbiCsoKVEQSChKKygLd/SKzhrmUxvGQjMse/sDy/c0dnTj9iLph329G5Oqoo47K2FXz4Ycfpm0Ti8XQ09OTVKB58+bNmDdvXkb78eBhqMjV/WgmVyGHN6D/d9oMrN7WifOPSl2AfFJlIba1DTquC/pElBWwQtWz55fiouMmW1w4hQGfLvOgpqnRZp+AHAPa7d+zDGi3bgudXZmbpdOxEpxMVymQraWGUOD5jSxJoLwwoGdrZgunpIGMt80gBi27seSO0exdem93D6ZWFbuuz4YAc6wdBv2tA30xHOiP4ZjJlUnPE3tmKwXL9vVRAZLKLFeKpg0mCMZLEi+RE5NURDQXYVxmJKwo5GcCpQFfRrU6PSQjnqVYca7IiFydd955edvhE088gWuuuQbjxo0DpRT333+/LsXwjW98IyNy5sHDwYSZXDnNT8dMGYd7v340TpmdusB0bVkBql3ivgRBQFmhHzWlIYT8PpxzZANe39apF3UuDPoQ0i1X5pgre3wVdG0d8zI7ksmV+XPyBqkmZrO0gpmEubovk0OuXCeOIQW0m7ZOpdielnMPxVpkQl4e8VnGoL2zqxtRScFpc2rzHlyfT7QNpM5ebO03guAzFXIdjlilx9ezwtVFQX9SgXY7qBaDpVAKSWGWK0qpZqkyMiv5skhCQTiuaAHu2t+EAkEQoBLBlKHolcXJBlc99iHOWnjWsO8nI3L105/+NG87vOWWW/Dhhx+ipqYGH3zwAS6++GL8+Mc/xoUXXuhlQHgYEzAHr/dFnSfp2rKQRUzUDamsJxWFQd315/eJmDyuSCdXZvdiSrcgWMkN67L07MqaUp7cPEmKwaa47tSP4mJhcxqP67PAMq4sY65MzVNJBGQzT2Uf95UnZgZGqrN9Zq7TRD6PmlxpqSQw1mCOxWsfSKC+vEAjJXRE4mns6E0Tz6VrX2m6V7JWsJmC3YuyQvTsQkrZbzqhEJZVqBDEZYKEwup7+kURaqGoBcwbyvAerGjpi6GhvCB9w2HCiMdcybKMmhr2Rr948WK88cYbuOCCC7Bz506PfXsYExAEAUumV+GTln4sm1vv2MacUZgK5UXu7cwEKuATMK2mCO/sZq6NpbNq8F4TmyjdFNoB9vCN2SxXmbzAmyUGnAgEMe+TUksdP7d6gm6ZXUZWY/KypLYZtHFDpkQonctpSNazPLkF39nVjXV7ejDJlFyRTX+KSkDoQU8WT4mW3hgaKgrSzgtPbdiPM+eP1yUcRqNOFr80XKNKoJpelUa0AC2wnxjio5JCEJOYBtZgXIasEggCCxmQVD+o1h+hrMTO4T5/xiQVV/xlPZbNrYOiEqx8bgu+fVLjQRtP1uRKVVXcdddd+Mc//oG9e/dCkqyMvacndfmD2tpabNy4EQsXLgQAVFVVYdWqVbj44ouxcePGbIfjwcNBwbXLZiHgE3QFdjtSkaZMYSVXIqZUFePM+fWYPK4IFUVB3fIgKc5SDPx7VLZqDTnWFnRwJ3IQBzZmXrTbHnBv3tb0RbYRslQYnoD2zNqlzRbMkRPZkwsy7YZvZ65pyC1Q+3pN7rFsxoLRn232xIf74RcFXLF0ui5X4gRZpRZtrC0HBnDijOqRGKKOTHkNBQWooF1TqtUOJBAEUVvP2hDCLJMRif12o5Koqb2rUP1M0oETK0KBsWuDzB8efmcP1mzvxJrtnbrW4J/fanJse8vzW/C14yZjek1+qn44IetXl5tuugl33nkn/u3f/g39/f249tprccEFF0AURaxcuTLt9o888ghqa2sty4LBIP76179izZo12Q7Hg4eDgnHFwZSp4mZilCtKTWKlFUUBBHwiTppZjcVTxwEwrGMJE7lycu8NxmzkKoN9m0mMuf8qjUyayU/EJhRptk9ZXHEqEz98d3c3treHk8aTCfEwLx+KW3AooGmsem54fmMrnt5gaDpluunzG1vxv283pU0ISNednZg2dSdnoXJMqSrCYpOQ7cGCQig+yrGSQirwbMN8oTucmcyD2YLFY7C4pYqvZ8HvbLmkEMgK0QVFw3EFMYn9VbTt7Pfg4Rpek06w1ow/vdWEc3/71jCOJgfL1aOPPor7778fZ511Fm666SZ87Wtfw/Tp07Fw4UK8++67+N73vpdy+4kTJ7quq6ysxD//+c8ka9i5556b7TA9eBhWVBWHdNVwJzjVV8wWoultfVxxEEG/iJDfp8eUcAJntlw5PWgH44o25iC6I5JzQLtDrBbATO0PrN0DgL2dlxb40R2RrK6/pL6cLVQyIWgfSOjuzKQOLC6z5DGmG3M6mK1oqbZNG8+eY9iU3cKXaUA5325PdwQza1OUzHHpri8qoTDos2ixgQKvfdrh2tV5i1imq1MB8ZHGWzu7cNTkCovlLtWZ+6C5Fx809+K7p85wtXi9u7sb5xzZkLcxZkOyufXKsj2hWpatQbJUQrWizQISigpJISAU8PsEJBQCmTCrneCjCGouxkORWBFCcc/rO7F4SiWW5NEiaRZ7Hg5kTa7a2tqwYMECAEBJSQn6+/sBAGeffTZuuOGGnAaxe/dunH/++di0aRMEwShMyX3Iqjq8J8GDh2xRVuhHYgTvy5Dfh8qiIFRCEdA0bso4uVJZMKwoCkkP+Zis6iKNDRWFGrmiiEoK/u+jA5g7vgxHTqpI2h/vZ1eXYWESBUGf4FKJYboFwzN16WTrCycZmQhipotZGojJ+L+PDmCRwzGl4zKRhIKiYPqSS6mOPRvkex50Oh872gfx4idtAID/d+qMrPv87MxqvLnj4Jche3d3N2bWlmJnRxjHTKnMiESs3tbhqmeU5MrOAeYxiFnGO9mtnzzOz+6OVwUBRGCyDIRSiIKAmAREJRWKVrPQp1LQQKrfzNjOJnz24wO4c9V2AMCen5+FdU09iCQUnDqnNs2WBxdZuwUnTpyI1lamFTNjxgy88sorAID3338/54LL//mf/4nGxka0t7ejqKgImzdvxhtvvIHFixdj9erVOfXpwcNwQhAEVBePbIHxyqIgKouCuraW2W04oAkk2rkL17jyi4Ju8SIU2LC3Dx2DCaze3gnAwXKlxXOYdbhUQvVJxKyq7RTnZfRjfFNU4pjJ5TQlZEI8nALz39zZhZ6ohH9tS7bKpLK27euJ4k9vNWHVlnakCO/RxpabWzCpn5y3zLw/Tqzs69/d7a759PXjJuufj5588F2DAPD+nl48tm4v1u3pwTu7u7GnO5p2m60uGnLDgf5Y7gKlXAMraTmM0jlM+4ppxcVlJiwqE2ZZ5pIOh6DRCgCrB2nGv/3xHXzrwffRYZLr2NUZxr2rd4300FIia3J1/vnn47XXXgPASNENN9yAmTNn4pvf/CYuvfTSnAbxzjvv4Oabb0ZNTQ1EUYQoijjppJNw++23p3UzevBwsCCmm4XzjMriABZPrdTdgQGfqBOBh95pZvXLbE9YnokU8Inw6VYnmkSA7NspKsUnLf3Y32stqiuKfBvr9mZY3YKmsRDqnIlHLX+SPrv2rbXa1jaIN3Z06vXb3JDOlQQAn7YNprVCmPt5bWsH3t+TOomHTXwOk2eWs2E6sdhsemvucScnFXmIFxxO5DteKleYb7VsSutk5PLWgt0JoVBVCpVoxZsJ1YVH4yr0bEJzcLt1X4co4wLQZYpzO/1Xa0ZdzcWs3YI///nP9c9f+tKXMGnSJLz99tuYMWNGzrFRqqqipIRF7VdXV+PAgQOYPXs2pkyZgm3btuXUpwcPhxoqi5juVYOpbI/5eRJNqEmWlO4wm4gCPkHPaKKwKss//E4z+mxv3jIhScQKMNwf5gzC5Ae68dkc56RoE4QdNOlDimxBh/38czOzzlS5ZG46jcsOc2xOOg+KeWw9EQlrd3XjWC3JIHmfFE9/1OKo8ZXtVPDenh7MSSFUua6pBydMc9dNG82iocMBhVDs742itrRgSJYlN6SKuUwHJ0ux/TsFc+cRSuGDAIBZrwAgrhDIREBUVlEk89+9AAHMumx3BY511+BYRFbkSpZl/Pu//ztuuOEGTJs2DQBw3HHH6QrruWL+/PnYuHEjpk2bhuOOOw533HEHgsEg7rvvPn0/Hjwc7uDipW5ZihFJSZJN2KFl5QX9ok4gXvqkDfVlhrienVgBzHIlCsmTMX8+mwmG3erlRIB4n84uQB5z5bxdJn0DLFso1fRh1d+ybmzeLq3lymFsKqGOwdOSSrCvJ5mkuvWTCn3RoRGEFgey7IhDaA5+8sMWjC8vSKpSkA8MxSWcKfSMQmiXRdtnQiFQCCtwzT5T+EXWhlLB8oJAKCAKY4tgbTkwgGc+asFVOcQJZoPhPCdZuQUDgQCefvrpvA/iJz/5CYgWLHLLLbegubkZn/3sZ/Hiiy/iN7/5Td7358HDWIRTBuJ1n5+tf44klCSiw2OuAj7RMvmnKy/S0hdzLBjNXYtmDmcndG5uQUWlqc01aYLV7W2Izd0WEMWUVqeUGYKC8+c0Q9DhJpCasp9hmJz39kT1fv+11Rp39sxHB5w2GXPIltS09scdXyCcEJUUNHVF0B+T8WFzryUT14wNe3vx13X7shpHLjAne/A4SC4wKhFgIKYgIilQVKIltsCiYca3Mb6PDevlit+8ifve2I1bnt8yrPtZo8WcDgeydguef/75eOaZZ3DttdfmbRDLly/XP0+bNg1btmxBT08PKiuTi2F68ODBwJcXT8K9a3ajPyajKyJhZwezVJUXBtAfk3V19qBfzDqjyQmCTq7cg7qpjQBxyGncgpYMKpf9WzMKrer0gpBaXb09DaHkSHeenI5BIRTZpjfYiXA+8PSGFpwyuwZHTqzAppb+vPS5Yn49trUPIugT8ekIBom7wVz6JlMwp5oVKmHZq+aXlr+8u9dS0aA7ImHZXCPjsHMwgQ37evFp68ieB0q51AJztasEkAl07au4TOATBYhBQc8q5OV1KAVUMBV3/oI1VqxYW1oHMMlUyzXf2NkRximzhyfrMGtyNWPGDPzsZz/D2rVrccwxx6C42Fq5PF8B6OPGOccwePDgwUBxyI8ZtSVY39yLd3YZGWAVGrmKaloudstVrvA5kCt7ELmlQHMGbkFnX6HDIhsZIQ5RRKnmi9dMlhwKZp17dUs7TpldYyFlac+Sw9j6YzK2tA5g7vgydEckNJQXwO9L7RhIFXw/FKxv7s1rUPrMulLMrCvFQEweFeQqFzid6nte3wkAuPzkaXoNT3upqH291sD/x9btTbEPmpcXGDPc+LeiEiiUWaZjsoqYrCLoFxFURSgChU9kRIrVnwSgkTPR5jIcC8jlHSTT4PZbXvgUiyZV6MLM+UTW5OpPf/oTKioqsH79eqxfv96yThCErMhVNBrFD37wAzzzzDOQZRmf+9zn8Jvf/AbV1SNbusCDh7GKgoAPEyoKsd4m9lhRFEBzjzGB56uYrValw+YWtLZxEzVVuM/CBmr7a9/O3M6apWj7DqRVMTfjqQ/3g1DmLptZa5TBEF0Cgbe3DyLkFy1B+hxPrN8PCmCtRnBn1pZgxYLxKd2gDpJfKVEQyOwaRiV1SC5AN+tf2SjPIswVB/pjqClxtjtmw0O2tA6gKODD5HFFaYl1LtBdhBRQAU3nimlgcR2soE+EIAIUAgSBlczhzwC/KIKKhht/LJCs9oE4trcPL6G//aWtePI/luS936zJVVNTU952/tOf/hQPPvggvv71r6OwsBCPPfYY/uM//gOPP/543vbhwcOhjomm4r0c9omwwC9mRTzcwIlHQlHR2h9DTWkoyb2VUIy3f/MaRU0u1QGYLFI24pTcLpmr2ItEF4cyf6SZCaJ5njFPOiql8AsCBuIyXtI0o5zOt31cOzT3bOoQs+xeyeMywdbWgZQZg8DQLGJnLRif0sIZ8ovWckuHANr7E3ju41bHdQNxFs+UCVniivfzGsrwORfx0nyBya4wC5akEMRkBSrxMXIlAPCL8IvsXkgoBD5BgCAwN2hAFMdM3mhXWMILm5yvzWhH1vT65ptvRjSarJESi8Vw8803Z9XXU089hT//+c+477778Otf/xovvPACnnnmGU+R3YOHLDC1qjjpLbSiyCpLUBzyuwbnZora0pCuq/VJywD+8cF+vPZpR9JkfqDPiImxiIgSl2xBx2XOJMwePG8na26FtNPu1HT+zJYrbl2KmUplZOOmSNk2g37sbqqXt7RnvvMsURz0YUZt6kK2Xz5mImbV5Vbstqwg63f5EcG6NDplXAMt05eTzQcG9LZb2wawakt7XlzAlntJs9oqhCKhqIgkmGuQl8lRVUN8VFIIZMJqFKp6HJaz9pqH/CGnws3hcDhpeTQaxU033ZRVX/v27cNnP/tZ/ftnPvMZ+P1+HDhwaGS1ePAwEjh+WhUCovWnbI+5qSwK5my5CvgEnH5ELc5eOD4ppmRr22ASwVm/13BR2ueUVGOwugWT1xOaHARudq1lo1KdzK2cda74sVmsWVlMlKmsUy39MbT2O8sjKCrBtrZB3PfG7qR16+y1GfOEozJQY68qCeHM+eOz7ru8MDAmAqidwIsy/+9bmXttfr96FyileHlzO7a0DmBL60Bex0TBLFfcMsUkGVTEJIKortoOnWwlZFb8WVaoo9ioh/wja3LllmXw8ccfZx2ErqoqgkHrm6bf74eiZF7d2oOHwx2Tq4qSLFf15QWW70G/qKu1p8L5R01IWnbRcVMwv6EcpQUBVDvEpjgJZHLY346dyJVTmrijojmSFdjtZXhSkRmztpe9pIZVisFkudJS382kMlNytWZbp64z5oRIQsU/Ptjv2N+D7+zVxVHteCdF6ZrRgpAtxu8iU0kdACgJ+TFpXLJ7dTRiZ2cYb+7oRDxLyy/P3AWYBSvfoGDxUwqhCCdUxGVGsqKSolur2DIVUUmFrBIkVFV3z49Gw5WsErwxjPIII4mM7bRcFkEQBMyaNcvyAFJVFeFwGFdccUVWO6eU4pJLLrHUJIzH47jiiissWYhPPfVUVv168HC44bKTp+Gef+3Uv0+2pS+rhGZkufrR5+fg6Q0tlmV+n/Fbt5M2gE0+dnQMxFFbVpBsuVIye6I7ugppsqaWXRJCTBGCnErby7yVmdh9vK8f7+/pwcmzavRlTsWnnfDR/r6M2jkJkMbkkY9rKgwm66hlgnkNZZAUoseZAcB3PtuI371u1Hqzxyx968SpEAD8xnTPAsCyuXVYNYyuz1zx4d6+rLd5c6dR8Doq5T/UhWlYsfsnLqsoCIiIyQJUSlEQ8KFI8SEuq4hKCgRBgE9kJbt4ZmHAZ9zro8Wq+MuXt+GPDtba4cRwuUczJld33303KKW49NJLcdNNN6G8vFxfFwwGMXXqVJxwwglZ7fziiy9OWnbRRRdl1YcHDx5YIHJCVnH/m8x1UWSbKKdUFTmKgtoR8CU/ZP0ml2NhILMJ+PH1+3HVqTOSHlz98WQxR0Mo0cC+niimVlllXpxqByaX4cntQSm4WKZ4PI5ZbDDfNcyYQCTFQFxBSfDgTXJz6kozbltXFkL7ACutNLGiELPrS7HDRJT8oojCgM8SM5aJCv7omOLzg8G44YEZqrq+Eyi0eoLai5OkEMRFFbJKURRUURJiVqtwQoFfFOEXmXGEUgoBfs26yBzio4Rb4S/vNh/sIeQNGZMrToQaGxtx4oknwu8fenDiAw88MOQ+PHjwwMjTLNPkGLdZPv5t8SR80pLeNeGUFWW2qmRq3eAExE5D7JIRgHPQ94d7+/DZmTVJau/2mCvzd0Io1jn0nwnMMgfRNKVS8q1PRSiTcPiguRcnTKtE2Qi7a46ZUonjG8flXIh8dn0pBEFAY3Uxmroiejbl+UdNwBs7OnHidCatc8T4Mryzuxu1pdnKrXpwhqARLG69Yr/5ggAQTSiIF/iRkJlMQ8BHdQu0GmRZhSqhmmwDINDRY73KFCt+8ybu/soinOcQyjAakHXMVSQSwWuvvZa0/OWXX8ZLL72Ul0F58OAhOxQF/TZypepxLqfOrkF5YQBLprsX9eUI+AR884QplmVmcpWuOLIdWZUqcZFfMH9OtlwZnzOxzGWya5rGI5dvcrW+uVfPSHtnd++Ip8lXFAWGpMvEJ+Xl8+pw+pxanLWABbzXlIbwxaMn6q7kxVMq8YVFDbjgaPfJMF96bIcTKFjclWKKsQonFEQllkEoqSyYPS6z5TFJZcHtKgGhzskjYwVX//2jIffx8f7+nMpXpUPW5qfrrrsOP//5z5OWU0px3XXX4cwzz8x6EOkkHG688cas+/Tg4XDD5HFFqC0NoWMwgRNnVOOzM6sR9IsoCflRGPDh4iVTsflAPxZMKMfK51jNrtPn1FqUy/2iiKWzatA5mNB1ncwoz1JIMpMHt0ooIgnFQiqKNQuZWbDzL+81J+3fbLnqjkhZjc0Mt5I9Tsi3W9BuzRvxyS6H/TVWFaN9IGEJXA/5fZg/odx1G1EUkly9p8yuweptzOV6zORKVzFPDy6gxkuHrFJQSqAQgqBfRFxmQe5xWYVfpBAEIOSn8IsC4rIKWfXDL1Iwr//YslrlEyqhuOm5LfjZefPz2m/W5GrHjh2YO3du0vI5c+Zg586dDlukh70YtCzLaGpqgt/vx/Tp0z1y5cFDBqgsDuLR7xyHqKSivrwA/TEZpQUBBHyC7vI576gJKDEJbVYUBXDG3Dq8ogURB3wCRIFNgsVBH2psLpxsLQuZvBE+vn4/AGBOvWF5K9E0kcw8J6EQdAwmLNvaA9xzhdn9mK7I73CVreFod1ZnGFVYPHUcygoDmFQ5tLpvCyaUo6IwgNqyAhQGfBhwiMnzkB6EUCgqAaXsdx6XmAQDj8UiPgASu3dFUUCBpKJEUeETBfipgIA4euKuDgYeebf54JOr8vJy7N69G1OnTrUs37lzZ1KdwUyxYcOGpGUDAwO45JJLcP755+fUpwcPhyPKCwN6XBS3KvhMAekBn5gUlG6XIRBFAUG/iG+d2IiSkM+SucYKQGdmXekcTGBXZ+auuq2munXtAwnc/+butFlWWbkdU/aTl27ygk29I+way2FS9YkCjkijFJ8JREHAFJM1yy7hcCihLyolifsOFRQUAtj9a45zjCtMfkFSCCSVglBWNJ0CEBMqgj4FFUoAPkEF/D4QP8u0HamCzopK8MMnNuLISRV4Y3snTpldg2+cMHXY9zuSyPpOPvfcc3H11Vdj1y4jzXbnzp34r//6L5x77rl5G1hZWRluvvlm3HDDDXnr04OHQx0hv0/PxAr5WSkMvylmqjjot8TXjCsOJmVu8eLMPlFAwG8lYkGfiMZqNhmWFwbQUGFIM9gzDVMVuc0EmaSv2wPcc0VvNHeXoof8IeTPTQ5iLOChd4YvE45rwKlaRq2iUoQTCiSV6CVyFE2tPSariCQUhBMK4jLTvrLoxWmfh1PB/bmNB/DUhhb89NnNeG1rB274v8059/VpngVa84WsydX//M//oLi4GHPmzEFjYyMaGxtxxBFHoKqqCr/85S/zOri+vj709/dnvd3KlSt1TS7+r76+Xl9PKcXKlSvR0NCAwsJCnHLKKdi8OfeL68HDaEEoIOoB6ILALFDmgPSSAj/8ooDvnNSIu/5tEYqC/iTDhVnsPWgjTEG/iM8dUYcl06twwdETLFawsxc25P140mGoJX049veOAV/ccGEUWe2AQ9t6NZyExawDJ6sECYUFrquUBbzLKrEsj0kqJFVFQmZlcQihjoK+w4H+PEpTXPuPj/PWlxsopWjtj2V1XnJyC65duxarVq3Cxx9/jMLCQixcuBAnn3xytl3p+M1vfmP5TilFa2srHnnkEXz+85/Pqc958+bh1Vdf1b/7fMYkcMcdd+DOO+/Egw8+iFmzZuGWW27BsmXLsG3bNpSWZq714sHDaEPIL1osUSG/z0quQn4kFBXFIT+mVBdhT3cEE7W4GR4sbt4+YMsiC/pFFAR8OHbquKT1qVLsi4K+YRFSfHnz6BOc9ODBDX1RGZUpMm6buiLoi0oZlSIyg2p6CoQKECiFAuiq7KzgOQULfyQglAW0x2QVBTKbF2WVIuRnc68IYUzFX+XLcrWrM4zpNc51M3+/ehf+5+VtuOZzs/Ctz2RWlDsnsSpBEHDGGWfg5JNPRigUGrKP9q677rJ8F0URNTU1uPjii3H99dfn1Kff77dYqzgopbj77rvx4x//GBdccAEA4KGHHkJdXR0ee+wxXH755Tntz4OH0QBBECwCogUB0RIUXlrghxplC7jVqTDowz0XHoVOLVjcTMbs5Mpvq2FobpvqMVBa4B8WcpUJls+tG9aCx2MeY2giHet4+N1mfOekRhSHnKfeZz9mdXXrywswvjz78kCEUgjQCJbKXIS85qYCrUQUBeKa5SrkV0Eps3SphGUUUhi3xEjFYI0GnP6rNdjz87Mc1/3Py9sAAHe9uj1jcpW1/ZUQgp/97GeYMGECSkpK0NTEFKFvuOEG/PnPf862OwBAU1OT5d+uXbvw7rvv4rbbbsvZkrRjxw40NDSgsbERX/3qV7F79259X21tbTjjjDP0tqFQCEuXLsXatWtz2pcHD6MJZlddYcBnibkqCPh0t1/IL6KyiFmrKgqDeiYgt1yVFvgR8LuTKXNbIJmIcfhFAcXBoYsO54o5eQi8PlwwludRfi+PdvDs2FQIJ7Kvr8tfonhhZsXk6uNCo6pWi1BSmPZVRFIQkRQkFAJJJdq21NLf4Y6H39mT03ZZP/FuueUWPPTQQ7jjjjtw2WWX6csXLFiAu+66C9/+9rdzGkg+cdxxx+Hhhx/GrFmz0N7ejltuuQVLlizB5s2b0dbGtHvq6qzss66uDs3NqQMOE4kEEgkjFXxggJkjZVmGLHspxB6cwe+NkbxHVM1I5BcoJEos+6aqCkJUiCCoLQmiOxwHqApKWDtK2PrSUBAiJSDEZHHS1nEUBIzZ2E28fXZdSd4Cz7PFl45usI7/MMcR9SWISiqae4wYs0K/oJ8jXh5ltODz82rxz80dadtNrCzE+YvG47evj2xdulzQH5PT3pOUkJRtVE3iRLVJnQgQWDklIgCUWaP0qlACQIkAUQAoFRBLiFBVFaTAj/6IiAKRQvUJ8IkiqE8AocyCJYpGFmG+LFnEoT6nLMtprajD/Qx16v9GW7B9pmPImlw9/PDDuO+++3D66adbCjUvXLgQW7duzba7YYFZyHTBggU44YQTMH36dDz00EM4/vjjASRL/Wdy09x+++246aabkpa//vrrKCoamt6Lh0Mfq1atGvF9bu4VEFWAwjYj6DOqADtaRbw5sB0dcWDPoABfJ0V7TMCLHRuxLwzs6BURLaYQBWBf2PhdvNm/HTs6DAtVOQHGhQRMKqZo2r4NAkQtOdzAnFAf3u9kdcxGHD37sLMDAA7dLLRs4EsMYEoI6PILKPABZUFA7mnFDk3HVNTidg4mBCpAv1f621AeENAvpx7T3KIIduzYiRycMQcFqz/aicoQUJQ0A7Pxt7a2gWaQy8U9Mk7wCVSXGGG/SfZ75rUEi/2AT2BjKA9SVIYAv8CW+UXDPci2hEbK8mPd3NwqwP6bvP/xFxFN+JDqOfHiiy8ix2imjMD6t8O6v1deeSWjvrIeZUtLC2bMmJG0nBAyaq03xcXFWLBgAXbs2IHzzjsPANDW1obx48frbTo6OpKsWXZcf/31uPbaa/XvAwMDmDRpEk499VRUVaUvLeLh8IQsy1i1ahWWLVuGQGBkXRdVTT3oGExgxULjXg8nFBx4ew9WnDAF+3pj2LCvDwsmlGNXZxgrjpqArW2DkLZ0YMHEMvhEAQV7+/RtP7d4Ino+sLo1jgBQXRKCXxRQ1hBGOKHgiQ9Z7MjsuhIcs2gy9nx4AHsjfRgJlBX4MaAVzT1y4Xz0RGS8tD83geNDDScvnA6fKOBIl/UBnwh5GEqBZIOK+sT/b+/Mw6Sozv3/PefU0tvswMywr6IgiCAiKKssinGJehNjXIjG6HUJXq5rjAl6jSTuSfBiNIqaXKNRQxZ/0StRBNSYICMXNYiIqIgsIssMs/RSdX5/nDrV3TM9M90zPQvwfp5nHqarq0+9XVN0ffs97/m+WL7hS0wcXIJBPcKo6JfA439v2dbjiGFDwBjDS58nxcZRFRFs2HGgo8NtE9rL7NvH90VpSoG7jj9QVIaKigIUBDLfoh3Hxccff4zBgwdDNDMdzxnzs1a6OXrqNH5h0IRtcIQsgV4FNnoXB1BgmzAEgym4L8I4S2/u3JbM1d66GH785w04d1wfTBnWA1+99Rme/yQ9GXPX+tblyNy5czH/79mJm7Ywd+7cJtsaHy+1pKglchZXI0eOxOrVqzFgQHr/sWeffRbHHntsrsN1CtFoFBs2bMDkyZMxaNAgVFRUYPny5X68sVgMK1euxM9+9rMWx7FtG7bddEWUaZqdftMkDj664jopCgVwICbTjhsEB+cC4aCNophEYdBGwDJhe/EFLBOmIdRjofbVBCwr7bEmHLAgOFAUshG0ksfauPMADGEg2EzN1fyZw7B51wG8sH57Xt7v6L5FOGFwGR5epW5StmnCMiXOGtMbf1z3RV6OcbDSM2LDNFr+yBeCw0nJXDHW+bU35UUhzJs00DfFLAxyGJxlbDtUGrJQHDIhRNP3NaJ3UbcVV5oPdtbipKFNC9ff2rIXb23Zi/knD2vx9aLR/89UtJBSRe4KxtTUoXqg/taOZIi7DAnJITkHGIeR4jfGmZpKTLV4AXIrdr9n+b/w4vs78eL7O/HJT09LW72fCx39+ZnN+NnGkLO4+vGPf4wLL7wQ27Ztg+u6+MMf/oCNGzfiySefxAsvvJDrcB3Cddddh9NPPx39+/fHrl27cMcdd6C6uhoXX3wxGGO49tprceedd2LYsGEYNmwY7rzzToRCIZx//vldHTpB5JVIwMDQXumdEzhjMDhDwBQIWwKFQROCJ1vkGIKDc+Z9g03/8DR40w9TNRb3zUcbv4YxYGCPEF7PkDwyOIOVRdPgPsVBnHxULzzZihGjwdNrhgzBIDgwqEfmJdaHEzILQ6vGhrK6hqcrYYzh8imDsb8+jt/+Iz2Dde64vn5HAgC48IQB2PzlAYzpV+yvfu3OrP10L/qXhtC/tGPKSprrYCChVhEmXGXDcCCaQDTuIhpXrXKMlP/DBudggvkiWwnu3K6J7fsb2vweuhvZvvecJ6hPP/10PPPMM/jrX/8Kxhh+9KMfYcOGDfjLX/6CWbNm5RxoS2zduhWXXHJJzq/7/PPP8a1vfQvDhw/H2WefDcuy8NZbb/nZthtuuAHXXnstrrzyShx33HHYtm0bXn75ZfK4Ig45ioJmE2FhcObfkMK2gYitjEW1ODK4El8RO93NHVDFrY1vwAFTwBIcAW/Mxt9mOWO4fs6RaT0NNQysSf/CTPQvDcHkrX9cfVUbQ9AUGNQjjCE9wyiwDQjO024WHUXjlZTdjUznvzGMpU7/qDqb7oAhOMoyNXVuFF9p2ML4gaUwBUdlUbJ7gF5Be/KRvRC281N/F8iT2emyd7blZZzGZBLFMmWK0PH6EcYd5doe9Vrm6H6EcUfZOSRcz2RUJkdsbzbzYF6VOmphB9VcAcCcOXMwZ86ctrw0J/bs2YMnnngCjz32WE6ve/rpp1t8njGGhQsXYuHChe2IjiC6P6UZDAu5J5wAZe5ZEDAguMrwADrbw1AYMFEbU7VLnDG4UnrTA4DrJKeMgpYyKi1J6Zs2bkAJ1n66FycOLQNjSuRdM2MIlr3zRVoPwQLbyKrGJ+a4yEJb4dOv6sAYwxnH9Pbfq2CdI3xG9i7E+s9z7yjR0Zx9bB/83+f7MO2IXq3uqwqYmdezTmUzucxfD8d809JflTGGc8b2wSdf1eGEwaVwHAnbFBhRWYj6uINfv76lXcfuXxpCbczBtn3td/f/+SubmvT8bC8t/cmkTLaOclyJhrhybTfiDoTXxFn4X7g4GJNe7ZUE756XQrejzWX3b7/9NjZs2ADGGI466iiMGzcu5zH+/Oc/t/h8SyshCIJoO7qBLGNKaHHG/AbPSmgxFAZNRBOuWllkC9Q0JMAZ84qeHQRN5bpeHDLBGUPv4gCClkB9zMGJQ8owsnchioOmn+kyhMCckRWIJVx8vFs1dI4EDCSkxKlHV+DF93agvMDGzgzTOf1KglkLpNT6HM4YhOAQTsffEbrrl/F+pSH0y3LaSWerXKlEtiU4XNfpVo2tU2ktA9K3JOR3INCJJs5ZsyaeudC/TI39+JuftHssAKiPd45lSLLFjfo37riQ4IgmHFUewABAlQSk1m0ZnMFxJLgpIKWEyKM1Q7bc+sf3Ou1YAFDd0PZFejlfYXrK7Y033kBxcTEA1QNw0qRJ+N3vfod+/fplPdZZZ53Vqq/K4eIOSxCdSY9IMssUCRiIJVzfRNTkqoC4IGBgT23UnyKMJlxwr19hXcxRwsiV6BGxEU24KA1ZCJpKXDGWzGTp/8KGN6UYSPmGLriaFhzWKwJ7TG+cfFQ5rvndO03i7V8aysor68ShZTAER0J7BHliobEwswyet76EGsaAM47p7btsdxb9SoPYuic/vRF1tgquupmagiHmeGqrGxA0RZoIaU+j55KQib3t6HE3orIQjDEMLy/Axp01rb+gDXSkeHE9R/aECzDmoi7mKHd373nVBF79LjiDbcq0z4lcyNd7+M1bLddc5pv/bEffwpzP0iWXXIJ4PI4NGzZgz5492LNnDzZs2AApZc4GopWVlXj++efhum7Gn6qqqlzDIwgiC4ZXJOsLdc2VFlyGUDdYU3CYgsMQHGHbQL/SEBhLOrFHbAOFQRM9IjY4U3UxmWqbkpkr1ZontfYnYAoEDA7GGAaUhf3+ho1hLFkTBiCtiDmVcf1L0grqGQDBVHH+yN5Jp/biZo6jOaqiLfWXDIN6hFvfLY/0KQ7issmD8zaeXnoPqL9nY4f+zqIzvlOzNuYaOQMunjjAFwzThvfMZ1hNcKWqjXr5Xzvwxke782byqlvhSKn6DjbEVe1VXUz96N9jjnJzTzjqRzu9O91EcOeTvbWxtMfL29E2K+f/OatXr8aSJUswfPhwf9vw4cPxy1/+EqtXr85prHHjxrUooLqbWzBBHCoUBJLiImAKGIL7heW2kWyZowVWYdDEiMpCP3MFAGHLQMQW6BGxkjfkDFN3WuzYhkAkYOC/zjoaIUvgxlOGozBopH0T5oxhwawjMq9KFBwnDi3DxCFleHzeeEwf3jMtAzemXzEYY7BTxmNMCcWAITBxcBl6Fdg4a0xvnDO2b4vnpzhs4YjyllcYnjWmN751fDJT39lJ9qApcO64vigKmrjtjJFpz5WETPQtCWLSkNz99wRXmQpLqIUN3Wny4Gspfm3tpa3v64qpQ/xpdQBpmdh889L7O/DLVz/Cg69txobtNXj7071474v8NCpWxe2A4yoBF004qI85flPnqFeHVRtNJLclXCS8FjrJ4vbc79Hd6JJKY8rdK/I2Vs7Tgv37989oFppIJNCnT5+cxrr++utRW1vb7PNDhw7FihX5e7MEQWQmbAtIqW4SlsH96RbL4DAF8/2EOFOiKmQJhG0DDQlH9Sv0xVXT72sRWwm5CYNKsf7z/RheUYD/OnMkThvdG9X1cXy0S3kR6XqfGUf2Qjzh4pcr0r0bBGcYP7AUhQETpWELo/sWwxQcL/9rJwzOMPWInt5+KeIKStwxqDqbbx3fHwCazZBpehcFcGR5AT7c2bxPUnlhIO3G2tkr6/T0WONm3YA6h7rWKBcYY+BQ51oLa85Yl/hdZaJ3cRC9iwP4Yl9D+0Vfo9dPHFyGmONi7ad7m33JpScNaraHZkeQ6fp79YNdSDgO2mveoOwYVAbPddXKwBhzYTgMzHPE13VVUe561wIQS7gQjMHh0s8mdycB3h5qGnLv6dgcOYuru+66C9dccw0efPBBjBs3DowxvP3225g/fz7uueeenMaaPHlyi8+Hw2FMnTo11xAJgsiRxrUrJd4qQ32DDVrqX+YVru+piyFkCTQkDK+WSr2u8U0eUDVdgCqs3l+vvpgFTPW6XoUBbNldq8bgDMy7kXPOMKRnGJu/rPVX/pmCQXBVB6I9uY6sKEDYFhheXoD6uKqh0rVdrlQ1JQbnTWquUqcOJw0pw5ubv4JlcHxtVCV21jTghMFl+PSruhbPWWNLCv1YF4RnojCgplffz1P2QR8vtablO5MGorAV8dgcDMlzq4Q19206Et1BXQE4dWQl/vHJVzimb3G7xmmsB44fVApALZ7447ovcER5BPvq4tiVssAiGzuLzuCtLXsxo6J9Y6T6VulGz9xxEUski9gFZ36GKmA4MA2G+rgD2+AwXAYIdLELWvcl5ytl3rx5qKurw4QJE2B4br+JRAKGYeCSSy5J86Xas2dP/iIlCKLT6BnRU4Tc+1FeVpwBI3sXYfeBGCyDozCgvLB0BqfxTZ0xNKmxAlTmSHtoCc5QFDIRS7he7zP14X7aqEokHInhlQX4+Mta/0av+pwl3aKPqixEcdDyl8QLztC3JIidNQ3+6sa0OiyWPn2p6pYGYUivCHbuj6JfaQiGaH06rHFh79Beahpx7qjKZh3nv3PiIADIq7gSTBWeXzRxAGIJt83CClDnJmQJNMTdtIJmzhmYlHnLXmnx2xYiAQMnH9lyq7JsmDSkh7/4YMqwHv72AWVhXDVtiH99/vyVTe0+Vr7J52IMbbuRcFxwxhHTTaFdmXRlBxBNOEi4SdNfk3O4hv4btvyf5RBJbOVEzuLqgQce6IAwCILoTgzxXN1NwTGoRxhBS8DyCs8tg6GyKOCJC/URom/oqb5ayivLSCs+1yInXewwBE2hnKAZ8/2sGGMoCBoIea1zAqZAUdDEV7WxtOJ2Bpb26W0ItQIxaAkwABVFAVTXJ0sZbEOkmaNKCYQsA7bBlaCSyX5qLaEFwndOHIjaqIOx/Uvw+d76jPViAPD1Y5NlE9OG98RrG79s5QjZwTkDd9N9xtoKgzoX1fUJJTChpwgZEk7+3Nr1ee5KBvUI4/Ipg72/e/rfrLF5brZUFAawo/rgdCNPuBLClYh6GWDhJrPJUko0xJXXnM5y2waHK0XbpgQPlXnEFshZXF188cUdEQdBEN0I/QEqPDf3gCnSptZ6FwdRH3cQ9oSPXn1XllJgXhgwUFEUQEkomUnR9Sqpq9AEV0XyloG0zJXan/krEC3BURw0sbculuYiztK1FQRnKA1biMZdz9zURH3M8e0XQpZIW9WoBYPgKjPnAN70JMPXj+2D3TVRrP5oNwAgYHL0LgriG+P7IeG4cB2gMGBiYFkYdguFzeMHlqS1OJl2RP7EFUP+7lXc8zfbfSDqC2DBGVzJwZibN0HUXW6t2RSjn398fzz1z89wegvF9JecOBANcRc9IhZqGhJYmifvq5aozVN5kJQAmITrelODTALedxHT4P7fPOY4YC5D3FHed9GEq4yF0fl+Vx3Jhu3VOKqyELsPtK99Utby3HVdJBLpf82dO3fitttuww033IDXX3+9XYEQBNE9MQVv0uqjOGgiYHB/tZ4uEC8MmP5NuSxio7ww4GeegGRmK7WfoGBqqiFkGX7NlcbgzG97YxmqxY4yPE2uZgTSa44swVESshC2Db9uqDRs+asIAyZPq5fSs1Om9y1dxwQof62xA0r8fcf0Lcbpx/TG9OG9/H0ZU9kyPX6f4iAKAkaamBrSM33lIW8mu6UZ1aewxedTYYyhrbYCmcaK2AJBUyBgCFhCeE7d6fs1rjfL/Titx9Fd6FlgY/7JwzC4Z/OrRwsCJnoW2GBMidN8tcZpiTVf5vccqZWDaiWg40rEvDY4CVetJKyNqhWEvkVDQrXOcaWEK9u2arA7curPlevBVf/TPiuorDNXl156KUzTxMMPPwwAqKmpwfjx49HQ0IDKykrcf//9+NOf/oS5c+e2KyCCILoXQVNk7DFop2zXYkHVT1mIJVz0KrDThBWQzBSkrrjS3llBS3iZK+8Ynru6zjJFbAMmVw2itbjSxeuptxnLUL5chUHDq0fiCNvJFY16dWN5oY19dXFUeD3oRIrtgBaI2u39iimDsW1/PQaUqulS2+Ap9SjpdV2G4Jg3aSAYgF+8+pF3ftLPaWviIfXZxsaZGffP033W5Ay2IfxpYFd6prIWS1tJlTqt15aVhKyD5gW7y6rGoeURvLctf3V1mWhw8i9AlUBS17yqiXMhmMpo1ccdxB2GgOnAcSXqYgnEHROCS681VvPxdCOtnDX/2NK+mvGsxdUbb7yBxYsX+4+ffPJJJBIJbNq0CUVFRbjxxhtx9913Zy2uFixYkHWQ9913X9b7EgSRXwoCmT8mMn07NzhDUdCEJdQ3eLuZb/CpNVeCM5ieIFJTXOq50ogFSySFS1HITE4Dei83vCL7VPGia4RKw8p/y+Q87TW2Jxq+eVw/uDLp3i54MgOk68S027ttCgxOaYAtvObWgNeHjbE0wdT4RtM4s8SgVvU1N32U+vLLJg/yRVrGfZGfaTbGPCdubwFD0BJoiKvpVFXgn5wm0dOn6vi512IdjDfb7sgnX9VhcM+2GN6moz2vXABMSrgpf0/ta9UQd2AJjtqog4Ap0RDnylhUMHAmvf8D7Q7lkCFrcbVt2zYMGzbMf/zKK6/gnHPOQVFREQBVi7V06dKsD/zOO01bXGSiO6WHCeJwpLnl55mKfhlj6F0UgCuBHhEbCTfzqqbUzJUyrOSwBIfjteSwTY6eXv1K2BYoLwygKKhXFCbd2rVISxUvBucwuZoarPduCIiniigOuK7n+p4ae/Kmry0lTMGQqb2YFiLq2PB6sjX/WcUbHYd700f+NqTncVI/97L5DMzHxyQD86Y3BUyhGncnHLViLGCItGxT+u/IOQnV3mnF7k5pHhYXZMNf1u/AFVNDsA2BndXK+6s+5ngrZnNzwpKQgGRwobJQUiqhpacJE44Eg3Jx1zYN9XEHpuBwmITLJZjM8npt6xs+iMhaXAUCAdTXJ/tXvfXWW7j77rvTnj9woHnDvcaQOShBHBzk+gVnTL9ibNp1AD0L7CbtJDSpKwiDpoBtJqfu4o6L4qCFngUB1MVqIRhDyDJQHDSx+0DMz3QBSkhpPyuNZXC1gg4MjtcjL+FlwPTz0XhTNZBauRQ0jbRWMJkwGgnElsqoUofhLLnvcQNK8OHOGpx3fH88vCrZqL5nJPubsxq7/bcrw2vUq+vUAt7fxeAsbUFD41MiOGu1FUrj6brmVlS2l7Zk0TqC0X2LsWrT7k451oqNX+LkI3vh6TVb07ZfPX1o1s3OgWRhu/5dQsJxGRiTkFJN/cUcgMUdOK4LgzPUxZImwqYABDq2H+LBRNZVd8cccwx+85vfAFAtcHbu3IkZM2b4z2/evBm9e/fOf4QEQRxUGIL7qwhtM/NHTKptQN+SIEq8ps+FQROcMYzuW4TSsOXVQalpPnWDVyJAj18aNtMK3NXYyYyQJbg/hafrs4q8Y7SEZXAltprZjbFkaxhVM9Zy5io1s8ZTMmQnDu2BeZMGItho1Vr/0hDmjCjH+Z6jvObMY5p+xqZm3NoK986xXrkZMFX2KmAIr2kv92M0GmXplFhsrYas6WsyvY9DBcEZrpw2BGcc0zvteuwIPv7yAKIZfK/aIjK1ANbu7Wqb+t2VEq43PRhLqH6DdbEE6mMOoo7KZnWHerfuQtbi6tZbb8UDDzyAIUOGYM6cOZg3bx4qK5NLU5ctW4YTTzyxzYGsXr0aF1xwASZOnIht27YBAH7zm9/QKkSCOAjRmanGzu+aVDHEGENBQK0UDJiqPqowYPrbOFNLwnVbnqKg6RefG559Qmq9R1qvQk+cCa6mvARXU376+Gk3+RSRYgmeNvWX8T1405OMMQQtI60GqzFpwoKnr+7L9C2fARjZp8jv96jJdO/Kx1pBwfW5VDVXehGDbaoslm0kFxYIr4bNfz+tiDst/lJPpdl4+SHa3ki5u6I94i44YUCHHifuSMSdpuJqz4EYPtvTcpeB1tAiS/cgjLuut5JQiazaaHLloOMVwWdKYh5sf9kFv1/X7jGyFlfTp0/H2rVr8f3vfx9Lly7FI488kvb8mDFj8B//8R9tCuL555/HnDlzEAwG8c477yAaVYWTNTU1uPPOO9s0JkEQXYeuWcp2WiJsGTC9eh8G5a1lG2plIGeqt6EpOAoDpm/7YHAGIZTRoW7TowVXYwyujEoF91q6+Cv7UkQOkjd401CCrLn4dZ2VnhoMe6vrAKQZnB5VWYD+pSFUFgfSYskmS9OcaDlhsGrTMnmochVvbfqytWNxps8h8/sIFgaVWDQ9gWUbwl+lqfZLjp06zZnpWAwsbSUmY03d7VNjOdTgjOHIivYXnbfEH6q2Ndn2uzVbseydbdhXl3lqPluUzQLguK6XwQJcVwm6ulgC9XEHCUfVZDlSttl5vzuR6XzmSk4moiNGjMCIESMyPve9732vzUHccccdeOihh3DRRRfh6aef9rdPmjQJt99+e5vHJQiia2g8zdUaATMpeBhTmS/dbkdwhmJvaiUSMHyvrJBl+MXtYdvws00ZtBWYt4+ewtP1V7ZnLJrcT/1rcFVgb2YaDElvK1MwxByJkGX4Rb48pbng7BEVXqaMA3BUTZNo2uswE5wzCIkmPf2OH1iKkb2L/IUGShA1f0NrrQ7J8pzpDcFhGSqukGX4zZttQ3jCVGf/GOAmLTT0e2au9I+VqcZKnWa1T8AUTfZhTInWVsq3WqQtxfWdQUc3ez4Qbd5RdH99HMXtKLDX144rGTgkXKi/UTRlajBoCoRtF6bLIBlg8Jbrrg5BDd2Ezmvv3QIbN27ElClTmmwvLCzEvn37Oj8ggiDaRWsmmY1RdVXaENTz1vKm9DhXK9cAeI7r6kZREjbBPZETtlWNUIFtZMxcAUDYTmZjdIYknLISMvVmYHi1R6aROn3X6D16xd8BQ2WtlJVD02ydFg3qNYBtiladwZk31anPo67b6V0U8Iw+k3Fzxlps19Lajczw4lbZPTWuXv2oV3EGTOVDZnKe4i2WrNEyuH7sHbNRjZneB1BZQV0E3Xh6MdfrhmgbH+6sweNvfoIva5q6kEvZ1CtMb9Pb9QrCaNxFfcxBfTyBmOMinkiv1Tqc6RbiqrKyEh991NTH5fXXX8fgwYO7ICKCILoKXSPFvWk5wRhKUnoW6qxYccgCg+ojaHDl8F4YNDPW8wCqHY/tZWD0PTxgJm/6zDt20BIQIrlqTpM6ZaWFhcGV6NAF841ri5LvyRuDM4QskTGzN2dkuTe29MWHju17kwdj/snDMrbYae6YyVgb75u+sxZSegpQvVf1OsM7D7Yp0hzv9TnU9VhqUUFTew49HRi2Df88WYL7mbDWas+I9rNxZ43/+2d76rBjfwNefG8H9tfH8f/ezdxgPJXUInc9Jei4Kp8Vc1w0JFxE464qdHdcJLzpw+TrD8/Vgzn3FuwILr/8csyfPx+PPfYYGGP44osv8Pe//x3XXXcdfvSjH3V1eARBdCKprXFMwZpM8yWzORbqogmUhJRZaO/iIGKO0+wUTMQ2EbGFbyoKqIL7kG0gmnD8DJNtqOlAS6SLq8aWA7r+SItBVypBmMlANJm5UnVlmSp8j6woxJAeIXy8ebP/PvVsn2lwuEDGKUx9jObQBeVSqmyY22gqjjPAZUm/MbVKUokiAVXgbgmVobO9lYQJV/p1WrYpEHYlogkXYdtAQ9xJGqtCiaaQJ6zqYg6CljIoNYXqSSddFZs+b4fifbgr39KG7TUY3acYBQEDy95JryVqzUIjU/JJv8TRbXISLhoSDg40JGAJ9WVFAoA8NP+W2dItxNUNN9yA/fv3Y/r06WhoaMCUKVNg2zauu+46XH311V0dHkEQnUgoxQNLfVhnFktFQdWQWVkIcPQvDWFHdUOaOEslEjAQsU3PbVx96tuGcn93XObZBcAvZFeF3DqTkz6FpcVD0BLKS0swAKrgPtZoWbwSN8wv/LYN3uRm64uflBSUYIAQHDWAL3bSXuNZRTAkBRTQ9IbImJ6uVIJNutK/8Zkp9V96KjQ1ZkAiZAlwrpz6Q7ahpmK9TJ3gDGFLFbvvq4sjYgvsq2Upr1fvtyhooiHuoqYh4fcttA0l0pirVyuq18USbb8jd9d7+bH9i7F+236MqCzE3roYtu9v6NTj76uPZaxFzIVUHyzAWz3oqIxVQ1x4wll9udHtcJqbGjzUVoZmok3iat++fXjuueewefNmXH/99SgtLUVVVRXKy8vRp0+fnMaKx+OYPXs2fvWrX+GWW27Bv/71L7iuixEjRiASab5RJkEQhyap4sr0VgxmImCqAmyDc5gGR8Q20JBwmq3bsQ2OsCX8qTG9ak2JKe7VbyV9scKWgR4RZYWgb/66QoUh2Scx7rj+9GXIEhlXSzGmxtBF4o33MQVvIsqUwEt6S8UbnQf/bfor9tQGJ2Xs9CbXDHFH+rc14dkuGIKDMakK2kVSTKq4dU0VR0HAQMBrHWQZHCFvEUHIMsC5apNjCeHZX8B33BdcLSaI2MDuA1HVI9JQqzcTroTrJhDwauxc2bq1w8FIccjCVdOHwODqnCxe0Xw7o45g1Ye7MXdURZPt+jxX18cRto1WF1qkTfdB2UBwpuquwraLA1GVvUo4EqZQyxcOV3IWV+vXr8fMmTNRVFSETz75BJdddhlKS0uxbNkyfPrpp3jyySdzGs80Tbz33nsqdRwK4bjjjss1JIIgDiFS6zN01iQTeiWbIZKF18XB5g0bBWMI2YY/Tadfr20G9DQXoDI8qpG0eiy4ykrVRr2OekwV1O+rAxDzTDi9KbNUQ8fUFjkq+6SmOWUjWyKDMzReMM89+whA1T4FIVAfSzZwNjyRpt9PptuY4Op9Mrie2HH9vnHC6/8YNAXqYgk/E8VYejGu7t9YEDD9zJbBTSRc6dVjca/+Kjn9pwvd445E0BSI2GplZ0HAUOMI1Usy7rqIJbgv8hxXoqEdmavujM7A5uKani/q4w5e2/hlxue+2FePZ9d+jp4RG+dP6J9xn+ZwpUTCVdOC9TEHnClblZjjgjGuvlA0XhZ6mJBzonDBggWYN28eNm3ahEAg6d1y6qmnYtWqVW0K4qKLLsKjjz7aptcSBHHoUlEYaPZmZHLu1wOVhi3lKG41vwqP86RJqe7tZxkqI6MEAvOd2QFVOM/8aUJlD5Fq1RCyDN9CQtdoNa7T4np6jOni/KRZZyqZ3qPJeYqYYU1qyUJePMxbZaczRsljq4xcadhUAskrQteZPcGUW31h0ITBuV+8bjZ6D3rVZthWhfghy0BRyPSmVFVxelFICaaCgIGAtxoy4PUoDNsGwraBwqChxKyp3lfYVqJL+5sFvBZIzRnPHkp0VPuflviqmVZUG7ZXAwC+PNB05WBruF5T53jCRTThoCGurBliCdd3bJfAoZeKzIKcM1dr1qzBr371qybb+/Tpgx07drQpiFgshl//+tdYvnw5jjvuOITD4bTn77vvvjaNSxDEwU1JyEIsg/s0oLI5IVvdsJU4YbBaKdBNtXvoUxxAYcBAXcxANOF67u0G9juqU3Nh0EQ04SBoCj+LJBhDwvOzUivfBCzDhWWoVYO2yWHG1BSdK6UvZBjgO80LDiTcZIF8phV8gLIs0NN0BuewUj6tmVe71RBn/thqPEAbPWkfLi2ApLcKMZpwEHfUMSO2gaKgiX11Md/bS4WcUvuVIsZCluF7fGk7CDW2ymwVBU3fAd821DELAgZCpoDpOb9bgvstdlwpUV0f9x8zBtTFHEQTjv8+c0l6HCz38AtOGIDH3/ykq8No0jA8F9TqQQYulTVDfczBntoYGJPoVRiA7XJwJsHl4WnLkLO4CgQCqK6ubrJ948aN6NmzZ5uCeO+99zB27FgAwIcffpj23OG4hJMgCIUy0sz8GWAIhpJQep/A5orZU5/XtVZFQRNBS2VPaqOO7x9VXa/ElfC8nIqCJhoSjm/R4Ejp9+ETXAkOXfiua5ACJkddzPFMTrXXlZ4244gzVQTvuDKtqDztvTOW5iRvG0njTe1iXx93vNWKSUsJLeyYX3juPccYLJGs72IMiNgGIp43WMh7f4wxsJSboa554172SjvTFwRUhiJoCdVsO6SyYEVBE3FHImwr8RSxDRhCidHCoOHXcEU837H9gTiClkDYE27V9XE/e8gZS6shay/dZYaqKGhi3qSB+HBnDcrCFv6yvnVLhI7AlcjYOicXdFPnXTUNuG/5JjAGvLJgqsp4WgBjTf9PHg639ZzF1Zlnnonbb78dv//97wEo8fPZZ5/hpptuwjnnnNOmIFasWNGm1xEEcejTXEG7mhZMX5HUmgllYdBUDuGGQFS4yorBMhAw4+BeQbr+QicEA0sARSETqFfCqTCgVihqYaVXCerjWgZHrwIbn35V68fOPYuDeuYgaKpps5ijjh2Nu55PVNNYGUtmrrQHlWVwROOu3+ZHr0DUK/1czwYBnu2C8FzXDS+DxRjA48oygQEoDqmpUUMw9Cq0kwXtKQHp088Y/MLzgCdKXUuq6dI4UBaxEPB6P9bGEojYBuKORHFITTtqA1htCaF6RwIFtsp2FQZNxB0Xdtp0LGvVLqDxOWspF5NvsdYeioImxg8sxba99f62oKkE89dGV+KFThBcB6IJfLjzgP+4uj6OwhbqFlOR3opTV6qVgx/tqvW318UcPxMqeFtaSB/85Fxzdc899+DLL79Er169UF9fj6lTp2Lo0KEoKCjAT37yk46IkSCIw5jmBJM/5ZbD12Dba/WihUrIUrU+erVfxBMdQFLUFQQM5fzuTWf1KLD8VXhBU70+Ob4qsE/1bOKM+SsLA6ZyO+cMsLysVMAUQMo+DBKCq1WSpmfQaXo+UxFvRRdnSBNMqqk1T5ki9VYbCrWCzxDcr4OyDCUSrRRn+ZDXbihTLRBjyfNsew20VUG6UOMI7oklE6ahaqxKwzYKAiYCpjqWNirVKwW1SWthwEQkoAxGexbYKA5Zqrjde4+5Zjha603YEaVO+eyHeOlJg/DvU4f4/TM7m+X/2ol3P9+Pj7880PrO0FODyR9NfdxBfdxBQ8JBPJEurQ6XKcKcM1eFhYV4/fXX8eqrr6Kqqgqu62Ls2LGYOXNmR8RHEASRN7RlgSq2TvjF15bXzDm1HQ7nqialNGylNS3WpqW6yDy1+bNlcL/HoBZWBte99JgvfnSxOaDEW23U8W/8JkeKAFPiKWQJhG0VqykcuFJ6xeeq1szgDBHbhOPGVb/DhMpm2aYqMq+NJXwRKARDXdTx7RLgvcdMhfaN0dYYhreaknnHNgRHACrDFvJWWWrxGbS0G7taFOBI6Z+7oMm8vnTKAT5gCL9mS3uD5YIpGBrizT/fWmYrfd/WpxB1/VkskR/BoLN12gKks/l8Xz0+36cyad+fMRR/XPcFioMmph/Zq8XXOW66uKqNJvzpblPwDO10Dn2BlZO4SiQSCAQCWLduHWbMmIEZM2Z0VFwEQRB5R2dmbDO5Ii5oCl/0hFJWBAqmBJItBCzD8SwGOAoCptcahsN0ZVpNScgSiCVccJ5sh6NFBvOOaxvCu/Go19iG95qUbJdu/xPw2sREvMJ9w4uxNpaAndKGRvtQRRMOOFOWEbYp/NWANQ0J3/A0xNUqL+GNn3AlioKmV2/V8vnT7vap2ThVvM79c2abalWh40pPDKo4pVT1ZXoFpO43qIWV6dVllYQsBE1Vx6WnnjLdi1O369/1OW/u3q1XV7Y0brbo89C4+fehwvb9DfhsTx0+A1oUV3pFoJtyCj7ZXYf99fsw48heCJi8iZg6HGqpcxJXhmFgwIABcByn9Z0JgiC6GXoq0WbJPnp6ak+LGd9binPorJCuGTJTBJjBGbgl0m7QIUt402ZeVsury9JZo7KwhaAl/N6BgMq2qMyWSrlwBj87ZAlV+F0QUB/VhuAoDBpIuNLzn/La7wiVSVL1YxJf1kQRspS4CnhToBHbQH3cQcQWSDiqdYltcHDPi4qh9Zse58lpMC20UmvDdDYsbAs0xF0UBIxk70avUN7yxJYF7tW5GQhZhhKz3vnVxfoJR/l4Zara0dv1YgE1PSpg8AQSXp1WY/EkvGyYI5Pj6gUAmWhNgOlVmu2hoiiA4pDZZVOBzZFNrVvquUk9hwv/8j4A9WVizsjKtL+elGj7EsWDiJxrrn74wx/i5ptvxp49ezoiHoIgiA6HMeVNBcAXVQZPNjAG1PQZ9+qZONeO6WqVIfPET+qKPkDtG7ZUzZHgLMVDSgmKfiWhtNYxgJpKC9vCd2Pn0NNrhu89pXrxeUapIQslIdOvudIF7bbnHVXk+XeFLGWzYPs9ATkiXp1UadhCSdjy49e1Xa2hxYmu89Iv0U22GVNTp9z7N5giIjWGV9+W2g5I171x5jV59jJehkg/v6loTaOFlT5XVkqdWvLvnd7uRx9bP5fxGknrCpmyPaUWTPBkBrTxONkmZwRnuOiEATjzmN5p22ePKM9ugA4iF/3TXMn6+9uqURtNpAk1CTQrZg8lcq65+sUvfoGPPvoIvXv3xoABA5p4UlVVVeUcxFdffYWysjIAwNatW/HII4+gvr4eZ5xxBiZPnpzzeARBEK0hUm7atsEhoW7Yeror7AkanWUyuK7V8rynBIcr3bTMhb6pFwQMP1sUTbh+gTbnzOulp+qUfB8qSyBsqcyVrrHStUu2Z13gSheWodrySClVfZKdnDaMBi0AKjMQMAXCVrIAXls5hG3Da3sjEGDJmBv3Tmz2nKVkoQQD3BSbDP2b5dVlSc8ENXVBgupt6Ikx7zWm1yhbE/IycCErgfq4aladyJBdUo2tpT+NanoZwoAp/EbQerpOiyTb5Ig5LlzPX6w5UgVUY92gx5KQEDy5SEK/ri26IVPG8KjKQgzrFcEf3tnW6b0IAWBHHo6ZcCVqo4m0v10uqz8PZnIWV2eddVbeDv7uu+/i9NNPx9atWzFs2DA8/fTTOOWUU1BbWwvOOe6//34899xzeT0mQRAEgLQbum0IQNdHeS7vzMvq6MxQUdBEnWfDoNEFyI0f6zok1QLG9bMqQNK/yvTsE3QvxYhteEXcyiJBZauSWbWEC98fypUStrcSz/ZWChYGDUhI1MVUn79IQNVpacEoOENhQHl2aUd6XTekC/Zbo7EISF1dqJ+zPDd45hX2NxnD+5ezZAYxVYApsclRHDIhGhga4i6E40K66cJFja3qeXQNWDBlWpczhgPRhPcelUayDYF67sAVzBsrc/c7v/4tw3adSXNc7f1lpAmu9tZypWIIjm8c1w+7ahoACaz9dC8+3JXdSr728sW++tZ38vCd2BvREHex9tO9iMaTBVlL39iCTZ30HrqSnMXVj3/847wd/IYbbsCoUaPw29/+Fr/97W/xta99DXPnzsWvf/1rAMA111yDn/70pySuCILIO6k3ftNIZmR0fRPg9eVjqrg8ZBnoWWA3EVNpY3o3Zb1KyjaEX2hdGFA1NSzleZ0Zk5D+tB+Dyt4EDDVVGLYNr0Be7R+xlYhSvluGX3dleE7scUcZd4ZtlT1zpKqp8r25vLqm1JuhjidXUsWW/i21n2KmqcbGFhpmo2k/LVh0vVVNQwKxBEfCTa/1VTVaKnump0WV8ATc2iiEVxMmvHMjIRGyBOrjSnzpHpCNs06qhktnr5RI1Jkw3cBbAilZxWTWTxu85tvZqVeBajV3ytEV2PTqR51SsvTpnrp2j7Fi4y6s2LgrbduiFz9o97gHAzmLq3yyZs0avPrqqxg9ejTGjBmDhx9+GFdeeSW4943ymmuuwQknnNCVIRIEcYiSelPXdTgA/EyS2oen1QUlXNFihkcLB+7d0MO28B3JdQG9zhRp6wdDMN+9Xe2riuxNQ928/WbI3vNqaku12uGcqSkuKBGhBVrYVo7ngjMwqeJXjvPelCT3mj577zmfve70mI3r0ZqjiUDlauoz4SgJYRscDYIhlkgXLaZQ2TyB5OrFkKXEVV0s4U93mp4vl3aLr4s5qo2RG29ybJ3JU3Ek/16OlJ63GE8zN9VtezhLX7mIDhJZjDGcM7Yvnqv6PK/jthWphWcer59DhZzFFee8xRUluawk3LNnDyoqKgAAkUgE4XAYpaWl/vMlJSWoqanJNUSCIIhWSf0cUx5P6vdQShM/vQpOT9npBsetIRhD2BIosE3UxRN+8Tng1Qp5K+wKbMOv5wp6IqrAgF9npfsCWgZXN3PB/dV2YctALOEi6lk/cK7qyJQoS5qjMqn8pRKu9NsJKcGQjDcfN8dMBd3Nueun79dI4AB+Sx3BGYpDltdKyPGlipTwmlF703p6WtDi4Fz1iwTgN5c2BQOYEp0FcQP1MQd1sQQcP4umphYZkudCZ6QcF4BXI6f9uWxD1W4FPB8vQ6i/j+ukZvCgHudxmhAAygu7xgMrE//v3e34Yl8D5k0a2NWhdDtyFlfLli1LexyPx/HOO+/giSeewG233ZZzAE3+Y2W7xIIgCCJPpGYwUh3XVXZE+lN62U6fMaYEWcjrr9d49RpnqpBbF5gbXm2VZXBETOn5cCUzaXqaSmeuRENyxZ6+b1uCw3V1k2fuG3fqDI7WhNyb5pQdbM3EsiySb/o69Z7jjguDq9WZXx2IgnMGJ0UR2kYy+yalRIFteLVlHIVBE66XWdKLB9RqSRP1MfXGVZYrDlVfrWq39CpQQP3tLUN4CxK87B9XKyBtk0PGVA2XrvNqiDt+I25VZK+mMvPdckdwhrKwhbqGKCJBG18eiOVt7Ob4aNcBDO0VabJ985eq5c3Huw8cFvYKudCm3oKNOffcczFy5Eg888wzuPTSS3Mab968ebBtpcQbGhpwxRVX+CsQo9ForuERBEG0C9tITgtq0ZWazcgGzhjKCwMIW8nVgqnTkLrfoB3iCFgqSxU3VG1UzNBtdDwfLq/foYASUwFDeO7xKkuVrBlSx7C8VjnaJR4Snoln8thA02Lt9pLpi3FbjsEYS2bshPTFjMEZpGRwXFU4HjCThq8JRyJkG/75Lg6aiCZcBE1VW6Y9v7RjPGNAfcyBIyWicWUQG/eEm2UoR/FU+wsAvvg1haq/SzgShQHDc/lXmauEJ664VJkr7VSvV8vlQ2MxxvCt8X2wadNmuIVFWL7hy/YP2gr/793tOLp3IaYN75V5WpyEVRPyVnM1YcIEXHbZZTm95uKLL057fMEFFzTZ56KLLmpXXARBELmQevPQKwY12U6fcQ7PnVytClS1OikZMa8Gy+DJfoCWoVbI1XH4buUA/CJ3xphvdqpX+hmcwXFTpjcFhyGUeaeuHUraHzS1Muho2joRoe0iJKS/6lEX5+ul/LbBfW+waNzxzUc5U7VOIuYg6Jm8FgZNFIcsBEzum8BaBkfIFXBdqf7GMQdSpoordXsMWGofbfOgFxU4rmqAbXsZSFfC77GnC+ANoerrEk77669Spxd1VnB4eaRTxBUAvPdFNSK2gfEDS+FK6Yt/gLRVJvIirurr6/HLX/4Sffv2zel1S5cuzcfhCYIguhWCMUQChl8AbaSIJUA3Wk5mQrS4KgmZ2MXhO8IDgG0KXwgFjKTNAIC0aSyN9tnSq90AeNmTzi+5aGuZh/auYkwV+tte4bjyvJLgYF7LHFUrp7JJni+YyQGmbm1hy1CZK1N5funVmYzBMzgFHCm9Yn8Gx3URspSDfdhrZWQbHJDwfcIsoaYqHVetPrRN7q9uVOIKkNGEV7OlpnRjCTetxq2l951NP8P2nt+28taWPXhrizIQnzi4rFOPfbCRs7gqKSlJ+4NKKVFTU4NQKITf/va3eQ2OIAjiYCS1JYxuU5Pa3kT19eP+yj0tECK2AcGSU0pA+qpG3yuLp65qa7razs7gjJ5rE+SuRGVmVLF6wKtrClmqrinuuL5FhRaWuoWOeqhWWTquQGHQRNxxvZZD3HPQV6JKFaIz36PJEAyuVM72jiu9Jt4JBF0lxkK2MmbVq0ATrrK7UIatBuIJ1yuAl4gnXGUS653y+nh6vVjyfaaLqY5YYdhR/P3jr/zfVUebgyPuziJncXX//feniSvOOXr27IkJEyagpKQk63EWLFiQ9b733XdfTjESBEF0JdoAFNA2D/Bu1knCtgHpIqWAWmVVhLfKTn/KGqnTibo1D0tt39JYRCWnElM5eKSVQq/eMw21kjLoiRhtkhrwmm8z6HZBWlBKACoTWBAw0BB3ELIM35oi4FltFAZMJFzVMDvhSiS8RtGRgK6nMpFwpOfErwrmdYNpvfoyYAq//2PCM4uNO8rIVTm3a1uKhDIaZbLFptLa7LSl7FXjljxzRpbjf9/f2d7TTeSZnMXVvHnz8nLgd955J+3x2rVr4TgOhg8fDgD48MMPIYTAuHHj2n2sRYsW4Qc/+AHmz5+PBx54AIDKuN122214+OGHsXfvXkyYMAEPPvggRo4c2e7jEQRxeBP2itABdcPUhpOpBL1pLt8by2WwRLJNjt6eZnaaJtgyyyWd9WmSuTrIvIh0uMnmzg4SrsS++phyvxeq5ooBnj8YSzZxhoTBmd/+J7UeyxIc0gBKwxYa4t5qPlcimnAhuBK99TEHBQFD+WV559r2+kbqlZ1Asr+iNna14wK10YQygfWmHRlj2FcXQ8IBHJmc1tOGo1pwMai/uesks0AtNZXWHFlRiCMrCvHzVzZ11J+idWRT0Xe4k7Ml70svvYTXX3/df/zggw9izJgxOP/887F3796sx1mxYoX/c/rpp2PatGn4/PPPUVVVhaqqKmzduhXTp0/HaaedlmuIaaxZswYPP/wwRo8enbb9rrvuwn333YfFixdjzZo1qKiowKxZs8hXiyCIdqNvvoCa1uIs2f5GoxsTaxhLmpY25w/lC7YU8ZUJbbdwMKPfK2OqeD0SMFAcNBG2DYQ893ntARa2kgX8DEkXfNvbJ+g35vbsNAyGsC0QCRgoDJiIBAx/RWHINFDgPQ6YAgW2eqxXGoYsla0KWar+SjDmbTdQHFLxRbzXFIcsJcg48xqB63bQKas8kS7CkxnJRj/ea5qb3T13bF+UhEx8/dg+uOiEAR34l2kKTQk2JWdxdf3116O6uhqA6g24YMECzJ07Fx9//HFOU32p3HvvvVi0aFHatGJJSQnuuOMO3HvvvW0aEwAOHDiAb3/723jkkUfSxpZS4oEHHsAtt9yCs88+G0cffTSeeOIJ1NXV4amnnmrz8QiCIICk+SjgCaFmBFNqf0MtCPRrWqI1S4iDW1YlYZ5Hl2psrcSQFi6mUDVUelFA40JvBnhmqiKllyJLOtl7rw1YqkdjxKufCnqiyvcd84SWqq9KeojpFZ16FWfISgqxiG2gJGShOGSiOGTCMoTqocjg/zCodjoazr32OoKnZOC895PyF23uT9+nJIiLJg5E/9IQSsJWWhunzoAEVjo5n/0tW7ZgxIgRAIDnn38ep59+Ou68805UVVVh7ty5bQqiuroaO3fubDIlt2vXrnZlkq666iqcdtppmDlzJu64446097Bjxw7Mnj3b32bbNqZOnYo333wTl19+ecbxotFomveWFpnxeBzxeLzNcRKHNvraoGvk8CK1WYXrSkjOkKmBhd7muhLSTQBo/VpxHRfxeMs3sxyaZXRrEo4LARccLmwOBA2GQsuzP3dV7z/XkZCeJYXrWTUwBnC4YNKF6wAOk5DeFJurLQ1cF3AdGILD4hIcUrXTkWq7gDo2AFgcYBKQDuBKF66USHAGV6pxuFTTigEBRCyOsOk1xjbU2A1MgnkCxHE9KSLVCkWvIhwcHGCAdF2Aqb1dR8IUylHflRKOZHAcFZP+NxPzJvbHp1/V48/rt+f7T9IEKV0cOpI+P+QsrizLQl2dauj4t7/9zfehKi0t9cVGrnz961/Hd77zHdx7771+L8G33noL119/Pc4+++w2jfn000+jqqoKa9asafLcjh07AADl5eVp28vLy/Hpp582O+aiRYsyutCvWLECoVCoTXEShw/Lly/v6hCIboxMqcdp7VpxZfMZjEMNVwJxF2hwAMGAnfVAxAQ+MgFLqPOWmgFK7fHnSKj+gwxInZV1pZICemzOkvVQHGpb0ACqY+pfCcBUukc1bUbyGK5Ux0x4fxMdq95fMGBTNUNtHIh6WshxAdd7Lu6q19tC/TgSqE+o51wvRsOLTx9T9Zxm+Pjjj1s5exKq+2LHsnOnbs6ce/PvQ5WcxdVJJ52EBQsW4MQTT8Q///lPPPPMMwBUAXquPleahx56CNdddx0uuOAC/xubYRi49NJLcffdd+c83tatWzF//ny8/PLLCAQCze7XeJWNbn/QHDfffHPa1Gd1dTX69euH6dOno6yMPD+IzMTjcSxfvhyzZs2CaZqtv4A4bKFrpSmu53yuC84//apeTbcFTVgG94vGNamf49o1XTCkm16mZLBiCddzsPeKyDlDwpGwDY4arzjddSVsU/hZsdRpW9dN+ltxBsQdFauOyxIM72zdj90HoqiNqRY5ccdVcXGGhpjqmRi2DRR51hH761VTadd730HPcwtQdVm1DTF8tPljDB48GKKFdkwMDEOHulj82pb8/DGaIWYWoE9JENi7u0OPczCRs7havHgxrrzySjz33HNYsmQJ+vTpAwB48cUXccopp7QpiFAohP/+7//G3Xffjc2bN0NKiaFDh/ptcHJl7dq12LVrV9pKQ8dxsGrVKixevBgbN24EoDJYlZWV/j67du1qks1KxbZtv1VPKqZp0gch0Sp0nRDZQtdKEiklDAlYlhIxJRGJiG3AtlUdE2NNvyhrhCtheGIrU9sWKSW4UCsL9ao8vULPEBySK0d2x5UwDZ7xC7gWXLqHpCElLD3vCLVIoSQSQFwChqF8uuKOi/qYAyE4XMk8cWWiKGTDcSUaEqrtT8KVYLEEwrYJxhK+M39DXM35CsHBefOZKcYAJjs+m/Thrlp8sZ/a1aWSs7jq378/XnjhhSbb77///pzGWb9+PY4++mjwlILOcDjcZFWf5v3338fw4cNhGK2HfPLJJ+Pdd99N2/ad73wHRx55JG688UYMHjwYFRUVWL58OY499lgAQCwWw8qVK/Gzn/0sp/dBEARBdByMqboqw3OZ18XsgrEWhZV6bXpheKaxOZNeKyEO103+DqiFAwwtT8Hqw3NvNZ8AA+PJqVvtcRaKqrgPNCRUax+phFfCceF6vQy1pcO+OlVAH0uo2q6gxZFwVbsk3fao5XOWnz6GuXAgmujcA3ZzchZXVVVVME0To0aNAgD86U9/wtKlSzFixAgsXLgQlmVlNc6xxx6LHTt2oGfPnlntP3HiRKxbtw6DBw9udd+CggIcffTRadvC4TDKysr87ddeey3uvPNODBs2DMOGDcOdd96JUCiE888/P6t4CIIgiM5DrfRTKwCZZ1vQWvsXLcxa2o2ljNN4v9Q2Q6n/Nn69TDmGqttS1Vn69SFLoCBgIO4oTytHSiRcF6bgiCZc1UPRNlASNhGNu6rJtCVQH3PAufJEc1zlc+a4uq8frc7rzuQsri6//HLcdNNNGDVqFD7++GOcd955+PrXv45nn30WdXV1vklna0gpceutt2ZdCB6LxXINtUVuuOEG1NfX48orr/RNRF9++WUUFBTk9TgEQRBE+0jVNNrxPttuPq3t19LTSS+qbI+VFGnSTb4+4PU2dCXguCpTBaneSzThQHDl8q48sVyURWyYni+WIZQbPaCEZdxxsc+rzm8uJ3cwtdE5VMlZXH344YcYM2YMAODZZ5/FlClT8NRTT+GNN97Aeeedl7W4mjJlil/7lA0TJ05EMBjMNVyf1157Le0xYwwLFy7EwoUL2zwmQRAE0bkIb6ouX02LU4vTG4+ZzEq1fqxMbYj06y2hzEwlgPqYcnnXe0cTJgQHikKm760FSN8uwoy7vk9XwBSIJhzf/b35WOC7pktIXHLiQOyri8MyOKo+3YuQZWDd5/sAAJecOBCPvfFJq++PyI2cxZWUEq6rVi387W9/w9e+9jUAQL9+/bB7d/YrBRqLHYIgCILIRKpwyVSYnu1rO4rWjqF7GkoJFAQM1eZGSiQciYgtYZsqc2V7GSrHlcoLSwK2IREwVXufkCUQSwi/+TRYsr4qva1OesauIGCiMGhCSuDUUZWQUmJHTQNMwTrdbPRwIeezetxxx+GOO+7AzJkzsXLlSixZsgSAMuZsaaUdQRAEQRwupNZpCa5a+Ghx5bgSCVMgzl0AhufwbvjO/qEU6wXHlQjZwuuxKBBNuCgIGBAsOV2Z2h4HTGXjHEcmM1isaWzfPK4vpAQ4I2+qjiDns/rAAw+gqqoKV199NW655RYMHToUAPDcc89h0qRJeQ+QIAiCILqKfGS+1IpD1S7H8BpOB03VjzBoCRQGTb+djuDMa8uj6rRCtvDb8uifoqAJiycbeGthJbzXG1y1+Wlcm5baq5AzDu41u556RHYLy4jsyTlzNXr06CY2BwBw9913Q4iOd4IlCIIgiIOJ5ApCz96BASHbQDzhgjG1GlA17VaeV+p3CckB4TKYnEMayiKCmQwR20DQUNmwhGS+15YpGARXU4iOlGDw2utA9f7jjKVNIUIqATZuQAl6Fwfwu39u7YKzc2jSpnzgvn378Otf/xo333wz9uzZAwD417/+hV27drXySoIgCII4/NB+WdxvHq0yVCHT8JpPe5kkpGa5lLDiHKqonSsBFbQEgkKJK0twCKFXFQq1zeAwuWpobQiW0ija63fIUuLxjllRGMSkIdRpJF/knLlav349Tj75ZBQXF+OTTz7BZZddhtLSUixbtgyffvopnnzyyY6IkyAIgiAOWrjXYkcLLAAqM8WZb1oK6PopQHqZLodJCMbgQk/nMTWlaEiELANRRwJxpGXADMEQjTveMQGX6/ZBXgwpiwKUUarKcJ0wuAxxx8WAshD6loTwwN82deYpOqTIOXO1YMECfOc738GmTZvS+vadeuqpWLVqVV6DIwiCIIhDCb3akTPmZ6h0JikV5mWVdF1V6r+mYAgIoDBoqEJ4g8M2OAqDJoqCppo2tAQszyPLNrhfi2UZatrQ4AyW4LANAcFV78WCgIEzxvTB6L7FiNgGTj26ovNP0CFCzpmrNWvW4Fe/+lWT7X369MGOHTvyEhRBEARBHIowvYQP6W1smqub99v8pGxTwggoDJgAU42fGYCwZSBoqZxJbdSEKyUa4g6kBGKO67cQMoTKaEmpehhKr/F02DIguHKBZwAqiwIZIiKyIWdxFQgEUF1d3WT7xo0bs25lQxAEQRCHG6krD7XI0kajqdtlo8aAjc1MDcFhcahehIz7rYDCtlp5GHdcFAYdJBwJU3DEHBd2XCBgqnqshKPGd1yJoKUWojlSImwbsA2OuONCxFThPNE2cp4WPPPMM3H77bcjHo8DUH/0zz77DDfddBPOOeecvAdIEARBEAczzdk5pHphNRVe+vcM2wAYXHlmlUUsRAIGioLKKLQgYKhWOrbhbw961g8FARPFIcvfL2glbR4KAybCtkBJ2EQkoF47tFcEEweXYeZRvfJ/Ug5xcpal99xzD+bOnYtevXqhvr4eU6dOxY4dOzBx4kT85Cc/6YgYCYIgCILwYAwQTIkr0wFiCddvjxM0BQRjCFvq9p5wld1DwnF9Ty3Hs2440JBAyBIwBYNtqNY7OltlcI4GwfHN8f1wIJrAyg+/RNyhfoXZkrO4KiwsxOuvv45XX30VVVVVcF0XY8eOxcyZMzsiPoIgCII4pGhLr8LGz3EoKwYuOGIJFxJAwFAF6tybImRMeWBpfytDMBTYBuKOTCtwNz1LB0OolYiMqSnDupiaIow7Lo4oL8D7XzQtCSIyk5O4SiQSCAQCWLduHWbMmIEZM2Z0VFwEQRAEcdjT/JSiWnFoC46g17fQMjg4UyakAS+DFXdVix29f8AUCJjwHd3VikE36avl+WYlHBem9280oX4nsicncWUYBgYMGADHcToqHoIgCIIgssDgan4wbBtwXVW8rrJaahWg4AzCUT5WgBJUAVOAAZ6lgxJVpqNElSulElsAEq4qfI8lJOpiDsb2L8W6rfu79P0eTORc0P7DH/4wzZmdIAiCIIjOhUGJJYNz36+Ke/0EOVNZKO1lZXnZrZBlIGCq2qqAqX2w1Hbbm1LUP2FLNZRWdVoGZhzZExdNHICJg8nFPRtyrrn6xS9+gY8++gi9e/fGgAEDEA6H056vqqrKW3AEQRAEQTRFNWBmfhaq8aSd8ExKOVOtc4Sb3BdeKxw9DciZBGPw67Jcqeq0HKlMSAsCJoKmgQmDyjCqTxH+/vFXnf+GDzJyFldnnnlmXrqEEwRBEATRPhgDhCetZMo2hpQ+gr4RKfMfSyl9t3ZA7edKJcoA9a9gDCHLQMKR4DZDcciE4AxHVhTggx01XfF2DxpyFlcLFy7sgDAIgiAIgmgrumDdf+wZkQrO4Ep4KwalZziqeheKFGElOAOX3jieMBOcwWbKeNQSHEVB099OtEzWNVd1dXW46qqr0KdPH/Tq1Qvnn38+du/e3ZGxEQRBEATRCpkmk1KbM+vehVpYNX5N0szUe+xt13YNAVPANrnft5BWDrZO1uLqxz/+MR5//HGcdtppOO+887B8+XL8+7//e0fGRhAEQRBEC6S6vDf3nPo9Kbga75ucOmTJKUSvnoszVRQvOEPQEgjbBgaUpddaE03JelrwD3/4Ax599FGcd955AIALLrgAJ554IhzHgRCiwwIkCIIgCKJ5WjMcbWl74z6G6fuofw2hhJZtcARNgcsmD0bckRjVpxCPrN6CPbWxNsd+qJJ15mrr1q2YPHmy//j444+HYRj44osvOiQwgiAIgiA6lpYyXvpfvfLQFEpc9Sq0cc2MoTi2fwluOe0oXDFlcKfGfDCQdebKcRxYlpX+YsNAIpHIe1AEQRAEQeSfXFf7q/0lGGMwpKq/4g7zexDGHRdBk2avGpO1uJJSYt68ebBt29/W0NCAK664Is3r6g9/+EN+IyQIgiAIosNoTXDp5zljEBywkGzwHE24AIA7v340frDsvY4N9CAia3F18cUXN9l2wQUX5DUYgiAIgiC6L4IrCwcJCcBANOHClRKVRcGuDq1bkbW4Wrp0aUfGQRAEQRBEN4axpE2DbgIdsQ24UsJ1my+MPxzJubcgQRAEQRCHNwZn4BwImgIhS6AoaOLB84/t6rC6DTk7tBMEQRAEcfiRat/AGYMEYBoMAVc1jS4vDHRtgN0IylwRBEEQBJE12miUMwaDK3sGy+CIBAz856wjujq8bgGJK4IgCIIgciLp4A6YgiNgCoQtA9OG98Ld547u6vC6HJoWJAiCIAgiZ1SBOwOH9HsQRgISI3oXdnVoXU5W4urPf/5z1gOeccYZbQ6GIAiCIIiDA8YYmFQGo4IDtsnBmAEG4IjyAny4s6arQ+wyshJXZ511VtpjxlhaP6JUAzLHcfITGUEQBEEQ3R7OGeACluDgjMGVEj8/bwxueO7/8O626q4Or0vIqubKdV3/5+WXX8aYMWPw4osvYt++fdi/fz/++te/YuzYsXjppZc6Ol6CIAiCILoJqebuqsCdwTYE+pYE8eD549C/NNR1wXUhOddcXXvttXjooYdw0kkn+dvmzJmDUCiE733ve9iwYUNeAyQIgiAIonvit8bhDNyzaHCFavQcsgUmDCrFZ3vqujjKzidncbV582YUFRU12V5UVIRPPvkkHzERBEEQBHGQITiDlF6LHMZgGRz/Pm0IehcHMbJ3Ib73m7VdHWKnkbMVw/jx43Httddi+/bt/rYdO3bgP//zP3H88cfnNTiCIAiCIA4eGAMEY2CMweQcxSEL357QHwPLQjiqsqCrw+s0chZXjz32GHbt2oUBAwZg6NChGDp0KPr374/t27fj0Ucf7YgYCYIgCII4CGBMTQkyAIZgCJgctiFQGLSw5NtjsXTecV0dYqeQ87Tg0KFDsX79eixfvhwffPABpJQYMWIEZs6cmbZqkCAIgiCIwwetAbQU4GBqqlAAIS5gCIZBPSJdGGHn0SYTUcYYZs+ejdmzZ+c7HoIgCIIgDgGUgzuDKRi4KwEDCFkCryyYijc378atf3q/q0PsMNokrl555RW88sor2LVrF1zXTXvusccey0tgBEEQBEEcvGj/KzCdzeKABdimwNQjeoGz9+HKVgY5SMm55uq2227D7Nmz8corr2D37t3Yu3dv2g9BEARBEIc3qVOEusjdEAy2wREwOcK2wOVThnRxlB1Hzpmrhx56CI8//jguvPDCjoiHIAiCIIhDhNSOLoIpqwbGgIApcMEJA7CrpgHPV23r4ijzT86Zq1gshkmTJnVELHljyZIlGD16NAoLC1FYWIiJEyfixRdf9J+XUmLhwoXo3bs3gsEgpk2bhvffP3TnfgmCIAiis2i8uC01i8WZ5+QuGAqDBq6bM7wrQuxwchZX3/3ud/HUU091RCx5o2/fvvjpT3+Kt99+G2+//TZmzJiBM8880xdQd911F+677z4sXrwYa9asQUVFBWbNmoWamsO3ySRBEARBdBRqelDZNHBvmtAylE3D498Z39Xh5Z2cpwUbGhrw8MMP429/+xtGjx4N0zTTnr/vvvvyFlxbOf3009Me/+QnP8GSJUvw1ltvYcSIEXjggQdwyy234OyzzwYAPPHEEygvL8dTTz2Fyy+/vCtCJgiCIIhDHi2yBAekC9gGx4RBZai6dRY+2lWDP637Av/zj8+6Osx2k7O4Wr9+PcaMGQMAeO+999Ke644+V47j4Nlnn0VtbS0mTpyILVu2YMeOHWk2ErZtY+rUqXjzzTdbFFfRaBTRaNR/XF2tun3H43HE4/GOexPEQY2+NugaIVqDrhUiGw6V68RxJbiUcF1AwMWwniFEbNHVYeWFnMXVihUrOiKOvPPuu+9i4sSJaGhoQCQSwbJlyzBixAi8+eabAIDy8vK0/cvLy/Hpp5+2OOaiRYtw2223Ndm+YsUKhEKHZ+dvInuWL1/e1SEQBwl0rRDZcLBfJ1IC2onBleqnuAEADJQHJfqEJKq+yrl6qVvQJp+rg4Hhw4dj3bp12LdvH55//nlcfPHFWLlypf984yyblLLVzNvNN9+MBQsW+I+rq6vRr18/TJ8+HWVlZfl9A8QhQzwex/LlyzFr1qwm0+gEkQpdK0Q2HErXiV5JqMSVhCuBM0+JI+FKWAbHjv0NOGvJW10cZe7kLK6mT5/eogh59dVX2xVQvrAsC0OHDgUAHHfccVizZg1+/vOf48YbbwSgmk1XVlb6++/atatJNqsxtm3Dtu0m203TPOgvcKLjoeuEyBa6VohsOBSuE53YkFJCSsCREuW2hbpYAgDQRxhY8u2x+Pf/qeriSHMj53zbmDFjcMwxx/g/I0aMQCwWQ1VVFUaNGtURMeYFKSWi0SgGDRqEioqKtHRqLBbDypUru73FBEEQBEEcqmizUQbAFBwG57AMjvGDSrs6tJzJOXN1//33Z9y+cOFCHDhwoN0B5YMf/OAHOPXUU9GvXz/U1NTg6aefxmuvvYaXXnoJjDFce+21uPPOOzFs2DAMGzYMd955J0KhEM4///yuDp0gCIIgDjt09kpPjBmcwZWAzTgEZ+hfGsJne+pwy9wj8ZO/ftC1wWZB3mquLrjgAhx//PG455578jVkm9m5cycuvPBCbN++HUVFRRg9ejReeuklzJo1CwBwww03oL6+HldeeSX27t2LCRMm4OWXX0ZBQUEXR04QBEEQhw+pZUapbu6cMWXb4FW8v3TtZOyri0FwjuUbduGfW/Z0RbhZkzdx9fe//x2BQCBfw7WLRx99tMXnGWNYuHAhFi5c2DkBEQRBEATRKmkZLKlElvT6ExYGLcQTLu4462jMvn9VV4faIjmLK228qZFSYvv27Xj77bdx66235i0wgiAIgiAOT5inrhgAcNWTUHKAmxx9S4K44ZThaIg7+MUrH3VxpJnJWVwVFRWlPeacY/jw4bj99tvTjDkJgiAIgiDaip/F8n43uC+38K3x/eFIidF9ivHdJ9/u2kAzkLO4Wrp0aUfEQRAEQRAE0aQOC1A2DcIrcgcAy+BwpcQJQ8pw3zeOwYLf/1/XBNsMba65Wrt2LTZs2ADGGEaMGIFjjz02n3ERBEEQBEEASPYkZF7BuymUuGIMmDOyAm/9oAwhUyAalwhYHH/71078RxcKrpzF1a5du3DeeefhtddeQ3FxMaSU2L9/P6ZPn46nn34aPXv27Ig4CYIgCII4TNHZLJ3UEpwBrvcvXBQFLDAGGEKCM4aZI8pRURTAjv0NXRJvziai11xzDaqrq/H+++9jz5492Lt3L9577z1UV1fj+9//fkfESBAEQRDEYUrTaUKAAeBM/QjGYAoGgzMI78cUHCv+cyreuHEGqn44E6Zoub1dvslZXL300ktYsmQJjjrqKH/biBEj8OCDD+LFF1/Ma3AEQRAEQRCpMM8DS2Wt1GPli8UgmBJZpuAImAI9C2yEAwbeuHFGp8aYs7hyXTdjLyPTNOG6bl6CIgiCIAiCaI7kNCED93ywGJKCy/vHz2yFLQMG77zsVc7iasaMGZg/fz6++OILf9u2bdvwH//xHzj55JPzGhxBEARBEERLMC9rxXnT6UPB1XOWyVF166xOiylncbV48WLU1NRg4MCBGDJkCIYOHYpBgwahpqYGv/zlLzsiRoIgCIIgiJzRmS3OGMJ23prStErOR+rXrx+qqqqwfPlyfPDBB5BSYsSIEZg5c2ZHxEcQBEEQBJEVqf0JUwvhOQO8zZ1Cm2XcrFmz/EbIBEEQBEEQnUmqeGptP79fYSeR9bTgP/7xjyarAZ988kkMGjQIvXr1wve+9z1Eo9G8B0gQBEEQBNEedF1WZ5G1uFq4cCHWr1/vP3733Xdx6aWXYubMmbjpppvwl7/8BYsWLeqQIAmCIAiCILKhJRF11pjenRJD1uJq3bp1aasBn376aUyYMAGPPPIIFixYgF/84hf4/e9/3yFBEgRBEARBtJf7vzkG8yYN7PDjZC2u9u7di/Lycv/xypUrccopp/iPx48fj61bt+Y3OoIgCIIgiDzBGMMPTzuq9R3bSdbiqry8HFu2bAEAxGIxVFVVYeLEif7zNTU1Gc1FCYIgCIIgugucMcwdVdmxx8h2x1NOOQU33XQTVq9ejZtvvhmhUAiTJ0/2n1+/fj2GDBnSIUESBEEQBEHkA8aAoJmzzWdOZD36HXfcASEEpk6dikceeQSPPPIILMvyn3/ssccwe/bsDgmSIAiCIAgiHzDGcNnkwR16jKx9rnr27InVq1dj//79iEQiEEKkPf/ss88iEonkPUCCIAiCIIh8MryiAG/eNAOTfvpqh4yfs4loUVFRxu2lpaXtDoYgCIIgCKIzqCgMdNjYnddohyAIgiAIohugvLA6rh9Ox1Z0EQRBEARBdEMYY1h1/bQOGZvEFUEQBEEQhyV9SkIdMi6JK4IgCIIgDkt4B7UbJHFFEARBEMRhCWMMK6+blvdxSVwRBEEQBHHYUlkczPuYJK4IgiAIgjhsMTjDv0/Lb4cZElcEQRAEQRy2MAZ8e0L/vI5J4oogCIIgiMOa0pDV+k45QOKKIAiCIIjDGkPkVw6RQztBEARBEIctjDHkWVtR5oogCIIgiMObfPtdkbgiCIIgCOKwhjGGvy2YkrfxSFwRBEEQBHHYM6RnBH3y5HlF4oogCIIgiMMexhjOOKZ3XsYicUUQBEEQBAHg+ycPy8s4JK4IgiAIgiAABEyeF7d2ElcEQRAEQRBQU4PXzx7e7nFIXBEEQRAEQXhwzvDBf81p3xh5ioUgCIIgCOKQwBQCpeG2t8QhcUUQBEEQBJECAzCwLNTm15O4IgiCIAiCSIEx4P5vjmnz6w9JcbVo0SKMHz8eBQUF6NWrF8466yxs3LgxbR8pJRYuXIjevXsjGAxi2rRpeP/997soYoIgCIIguhN9S0J46rsTMHdUeq2RjAAAD51JREFURc6vPSTF1cqVK3HVVVfhrbfewvLly5FIJDB79mzU1tb6+9x111247777sHjxYqxZswYVFRWYNWsWampqujBygiAIgiC6GsYYGIAJg8vw8/OOzfn1Rv5D6npeeumltMdLly5Fr169sHbtWkyZMgVSSjzwwAO45ZZbcPbZZwMAnnjiCZSXl+Opp57C5Zdf3hVhEwRBEATRTWAMkBIQLPeuzoekuGrM/v37AQClpaUAgC1btmDHjh2YPXu2v49t25g6dSrefPPNZsVVNBpFNBptMu6ePXs6KnTiECAej6Ourg5fffUVTNPs6nCIbgxdK0Q20HXSebiuBGPAyDID735RDTdaB0CVFrXEIS+upJRYsGABTjrpJBx99NEAgB07dgAAysvL0/YtLy/Hp59+2uxYixYtwm233dZk+xFHHJHHiAmCIAiC6M7U1NSgqKio2ecPeXF19dVXY/369Xj99debPMcapfqklE22pXLzzTdjwYIF/uN9+/ZhwIAB+Oyzz1o8yd2B8ePHY82aNd16/LaOkcvrstm3tX1aej7Tc9XV1ejXrx+2bt2KwsLCrOLsKg6G66St43T2ddLaPnStdPz49JnS9XT0dZKvY2Q7hpQSNTU16N275QbPh7S4uuaaa/DnP/8Zq1atQt++ff3tFRWq8n/Hjh2orKz0t+/atatJNisV27Zh23aT7UVFRd3+AhdCdGiM+Ri/rWPk8rps9m1tn5aeb+m5wsJCuk7yNH5bxuns66S1feha6fjx6TOl6+no6yRfx8hljGySKYfkakEpJa6++mr84Q9/wKuvvopBgwalPT9o0CBUVFRg+fLl/rZYLIaVK1di0qRJnR1up3DVVVd1+/HbOkYur8tm39b2aen5jj7PHc3BcJ20dZzOvk5a24eulY4fnz5Tup7OiL8rr5XmYLK1qqyDkCuvvBJPPfUU/vSnP2H48GQDxqKiIgSDQQDAz372MyxatAhLly7FsGHDcOedd+K1117Dxo0bUVBQkNVxqqurUVRUhP3793f7bw9E10HXCZEtdK0Q2UDXSffnkJwWXLJkCQBg2rRpaduXLl2KefPmAQBuuOEG1NfX48orr8TevXsxYcIEvPzyy1kLK0BNE/74xz/OOFVIEBq6TohsoWuFyAa6Tro/h2TmiiAIgiAIoqs4JGuuCIIgCIIgugoSVwRBEARBEHmExBVBEARBEEQeIXFFEARBEASRR0hcEQRBEARB5BESVx3E17/+dZSUlODcc8/t6lCIbszWrVsxbdo0jBgxAqNHj8azzz7b1SER3ZCamhqMHz8eY8aMwahRo/DII490dUhEN6eurg4DBgzAdddd19WhHJaQFUMHsWLFChw4cABPPPEEnnvuua4Oh+imbN++HTt37sSYMWOwa9cujB07Fhs3bkQ4HO7q0IhuhOM4iEajCIVCqKurw9FHH401a9agrKysq0Mjuim33HILNm3ahP79++Oee+7p6nAOOyhz1UFMnz49J0NS4vCksrISY8aMAQD06tULpaWl2LNnT9cGRXQ7hBAIhUIAgIaGBjiOA/peTDTHpk2b8MEHH2Du3LldHcphC4mrDKxatQqnn346evfuDcYY/vjHPzbZ57//+78xaNAgBAIBjBs3DqtXr+78QIkuJ5/Xyttvvw3XddGvX78OjprobPJxnezbtw/HHHMM+vbtixtuuAE9evTopOiJziQf18p1112HRYsWdVLERCZIXGWgtrYWxxxzDBYvXpzx+WeeeQbXXnstbrnlFrzzzjuYPHkyTj31VHz22WedHCnR1eTrWvnqq69w0UUX4eGHH+6MsIlOJh/XSXFxMf7v//4PW7ZswVNPPYWdO3d2VvhEJ9Lea+VPf/oTjjjiCBxxxBGdGTbRGEm0CAC5bNmytG3HH3+8vOKKK9K2HXnkkfKmm25K27ZixQp5zjnndHSIRDehrddKQ0ODnDx5snzyySc7I0yii2nPZ4rmiiuukL///e87KkSim9CWa+Wmm26Sffv2lQMGDJBlZWWysLBQ3nbbbZ0VMuFBmascicViWLt2LWbPnp22ffbs2XjzzTe7KCqiO5LNtSKlxLx58zBjxgxceOGFXREm0cVkc53s3LkT1dXVAIDq6mqsWrUKw4cP7/RYia4lm2tl0aJF2Lp1Kz755BPcc889uOyyy/CjH/2oK8I9rDG6OoCDjd27d8NxHJSXl6dtLy8vx44dO/zHc+bMQVVVFWpra9G3b18sW7YM48eP7+xwiS4km2vljTfewDPPPIPRo0f7tRW/+c1vMGrUqM4Ol+gisrlOPv/8c1x66aWQUkJKiauvvhqjR4/uinCJLiTb+w/R9ZC4aiOMsbTHUsq0bf/7v//b2SER3ZSWrpWTTjoJrut2RVhEN6Ol62TcuHFYt25dF0RFdEdau/9o5s2b10kREY2hacEc6dGjB4QQTb4l7Nq1q8m3CeLwhq4VIhvoOiGyha6VgwcSVzliWRbGjRuH5cuXp21fvnw5Jk2a1EVREd0RulaIbKDrhMgWulYOHmhaMAMHDhzARx995D/esmUL1q1bh9LSUvTv3x8LFizAhRdeiOOOOw4TJ07Eww8/jM8++wxXXHFFF0ZNdAV0rRDZQNcJkS10rRwidOFKxW7LihUrJIAmPxdffLG/z4MPPigHDBggLcuSY8eOlStXruy6gIkug64VIhvoOiGyha6VQwPqLUgQBEEQBJFHqOaKIAiCIAgij5C4IgiCIAiCyCMkrgiCIAiCIPIIiSuCIAiCIIg8QuKKIAiCIAgij5C4IgiCIAiCyCMkrgiCIAiCIPIIiSuCIAiCIIg8QuKKIAiiGzJv3jwwxsAYwx//+Me8jv3aa6/5Y5911ll5HZsgCBJXBEF0EqliIfUntY8akc4pp5yC7du349RTT/W3NSe25s2bl7VQmjRpErZv345vfOMbeYqUIIhUqHEzQRCdximnnIKlS5embevZs2eT/WKxGCzL6qywui22baOioiLv41qWhYqKCgSDQUSj0byPTxCHO5S5Igii09BiIfVHCIFp06bh6quvxoIFC9CjRw/MmjULAPCvf/0Lc+fORSQSQXl5OS688ELs3r3bH6+2thYXXXQRIpEIKisrce+992LatGm49tpr/X0yZXqKi4vx+OOP+4+3bduGb37zmygpKUFZWRnOPPNMfPLJJ/7zOit0zz33oLKyEmVlZbjqqqsQj8f9faLRKG644Qb069cPtm1j2LBhePTRRyGlxNChQ3HPPfekxfDee++Bc47Nmze3/8Q24pNPPsmYJZw2bVrej0UQRFNIXBEE0S144oknYBgG3njjDfzqV7/C9u3bMXXqVIwZMwZvv/02XnrpJezcuTNtKuv666/HihUrsGzZMrz88st47bXXsHbt2pyOW1dXh+nTpyMSiWDVqlV4/fXXEYlEcMoppyAWi/n7rVixAps3b8aKFSvwxBNP4PHHH08TaBdddBGefvpp/OIXv8CGDRvw0EMPIRKJgDGGSy65pEnG7rHHHsPkyZMxZMiQtp2wFujXrx+2b9/u/7zzzjsoKyvDlClT8n4sgiAyIAmCIDqBiy++WAohZDgc9n/OPfdcKaWUU6dOlWPGjEnb/9Zbb5WzZ89O27Z161YJQG7cuFHW1NRIy7Lk008/7T//1VdfyWAwKOfPn+9vAyCXLVuWNk5RUZFcunSplFLKRx99VA4fPly6rus/H41GZTAYlP/7v//rxz5gwACZSCT8ff7t3/5NfvOb35RSSrlx40YJQC5fvjzje//iiy+kEEL+4x//kFJKGYvFZM+ePeXjjz/e4vk688wzm2wHIAOBQNp5DIfD0jCMjPvX19fLCRMmyK997WvScZysjkEQRPugmiuCIDqN6dOnY8mSJf7jcDjs/37cccel7bt27VqsWLECkUikyTibN29GfX09YrEYJk6c6G8vLS3F8OHDc4pp7dq1+Oijj1BQUJC2vaGhIW3KbuTIkRBC+I8rKyvx7rvvAgDWrVsHIQSmTp2a8RiVlZU47bTT8Nhjj+H444/HCy+8gIaGBvzbv/1bTrFq7r//fsycOTNt24033gjHcZrse+mll6KmpgbLly8H5zRZQRCdAYkrgiA6jXA4jKFDhzb7XCqu6+L000/Hz372syb7VlZWYtOmTVkdkzEGKWXattRaKdd1MW7cOPzP//xPk9emFtubptlkXNd1AQDBYLDVOL773e/iwgsvxP3334+lS5fim9/8JkKhUFbvoTEVFRVNzmNBQQH27duXtu2OO+7ASy+9hH/+859NxCNBEB0HiSuCILolY8eOxfPPP4+BAwfCMJp+VA0dOhSmaeKtt95C//79AQB79+7Fhx9+mJZB6tmzJ7Zv3+4/3rRpE+rq6tKO88wzz6BXr14oLCxsU6yjRo2C67pYuXJlk4ySZu7cuQiHw1iyZAlefPFFrFq1qk3Hypbnn38et99+O1588cUOqesiCKJ5KEdMEES35KqrrsKePXvwrW99C//85z/x8ccf4+WXX8Yll1wCx3EQiURw6aWX4vrrr8crr7yC9957D/PmzWsy9TVjxgwsXrwYVVVVePvtt3HFFVekZaG+/e1vo0ePHjjzzDOxevVqbNmyBStXrsT8+fPx+eefZxXrwIEDcfHFF+OSSy7BH//4R2zZsgWvvfYafv/73/v7CCEwb9483HzzzRg6dGjadGa+ee+993DRRRfhxhtvxMiRI7Fjxw7s2LEDe/bs6bBjEgSRhMQVQRDdkt69e+ONN96A4ziYM2cOjj76aMyfPx9FRUW+gLr77rsxZcoUnHHGGZg5cyZOOukkjBs3Lm2ce++9F/369cOUKVNw/vnn47rrrkubjguFQli1ahX69++Ps88+G0cddRQuueQS1NfX55TJWrJkCc4991xceeWVOPLII3HZZZehtrY2bZ9LL70UsVgMl1xySTvOTOu8/fbbqKurwx133IHKykr/5+yzz+7Q4xIEoWCycTECQRDEQcy0adMwZswYPPDAA10dShPeeOMNTJs2DZ9//jnKy8tb3HfevHnYt29f3lvfdPYxCOJwhDJXBEEQHUw0GsVHH32EW2+9Fd/4xjdaFVaaF154AZFIBC+88EJe41m9ejUikUjGIn6CINoPFbQTBEF0ML/73e9w6aWXYsyYMfjNb36T1Wvuuusu/PCHPwSgVkfmk+OOOw7r1q0DgIxWFwRBtA+aFiQIgiAIgsgjNC1IEARBEASRR0hcEQRBEARB5BESVwRBEARBEHmExBVBEARBEEQeIXFFEARBEASRR0hcEQRBEARB5BESVwRBEARBEHmExBVBEARBEEQeIXFFEARBEASRR/4/oVu0peTcTZ8AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
@@ -428,28 +433,31 @@
],
"source": [
"# Plot medians and quantiles\n",
- "fig, ax = acoustics.graphics.plot_spectra(spsdl_50[0], fmin, fmax)\n",
+ "fig, ax = acoustics.graphics.plot_spectra(spsdl_time.median(\"time_bins\"), fmin, fmax, label=\"Median\")\n",
"ax.fill_between(\n",
- " spsdl_50[\"freq\"],\n",
- " spsdl_25[0],\n",
- " spsdl_75[0],\n",
+ " spsdl_time[\"freq\"],\n",
+ " spsdl_time.quantile(0.25, \"time_bins\"),\n",
+ " spsdl_time.quantile(0.75, \"time_bins\"),\n",
" alpha=0.5,\n",
" facecolor=\"C0\",\n",
- " edgecolor=None\n",
+ " edgecolor=None,\n",
+ " label=\"Quantiles\"\n",
")\n",
- "ax.set_ylim(20, 80)\n",
- "ax.set_title(\"Median and Quantile Sound Pressure Spectral Density Level\")"
+ "ax.legend(loc=\"upper right\")\n",
+ "ax.set_axisbelow(True)\n",
+ "ax.grid()\n",
+ "ax.set(ylim=(20, 80), ylabel=\"Sound Pressure Spectral Density Level\\n[dB rel 1 uPa$^2$/Hz]\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Band Averaging\n",
+ "### Frequency Band Analysis\n",
"\n",
- "Analysis can also be completed by grouping the data into specific frequency bands, called \"band aggregating\" here. In other words, instead of aggregating by the time dimension, we aggregate by the frequency dimension. The `band_aggregate` function operates by taking the SPSDL and grouping it based on a specified octave.\n",
+ "Frequency band analysis can be completed by grouping the data into specific frequency bands, called \"band aggregating\" here. In other words, instead of aggregating by the time dimension, we aggregate by the frequency dimension. The `band_aggregate` function operates by taking the SPSDL and grouping it based on a specified octave and octave base.\n",
"\n",
- "If one wants to do more analysis on the grouped frequency bands than the simple statistical methods that xarray offers, it is possible to use the \"map\" function to apply a custom function to a file. In the following block of code, we find the empirical quantile function (the empirical version of the cumulative distribution function, CDF) to each decidecade (10th octave) frequency band and plot the 160 Hz band. "
+ "In the following codeblock, we use the same plotting function as above, but do so by creating the decidecade frequency bands (10th octave, octave base 10 => $10^{1/10}$). We'll calculate the median and quantiles of each sample, then take the median of each of those parameters. For the IEC-40, one will calculate these parameters for each device operating state (current energy converters) or wave state matrix (wave energy converters)."
]
},
{
@@ -457,20 +465,10 @@
"execution_count": 15,
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\users\\mcve343\\mhkit-python\\mhkit\\acoustics\\analysis.py:83: UserWarning: `fmax` = 100000 is greater than the Nyquist frequency. Settingfmax = 48000.0\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"text/plain": [
- "[Text(0.5, 1.0, '160.0 Hz'),\n",
- " Text(0, 0.5, 'Exceedance Probability'),\n",
- " Text(0.5, 0, 'Decidecade SPSDL [dB re 1 uPa^2/Hz]')]"
+ "[(20.0, 80.0), Text(0, 0.5, 'Decidecade SPSDL [dB rel 1 uPa$^2$/Hz]')]"
]
},
"execution_count": 15,
@@ -479,9 +477,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAGHCAYAAABccIIuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWl0lEQVR4nO3dd1xTV/8H8E9CSNggG2SKoMhw4EAUt7hHh6u27kGH1FEH1dZRLa2to9aqdVL7+FjaOh6tilIHKooDQVCoiqBsEVD2TM7vD0p+RoaJEm4g3/frlZdycscnV/lyOffec3iMMQZCCCFqgc91AEIIIU2Hij4hhKgRKvqEEKJGqOgTQogaoaJPCCFqhIo+IYSoESr6hBCiRqjoE0KIGqGiTwghaoSKPmlRCgsLsWTJEvj5+cHMzAw8Hg+rVq2qd/nKykps3LgRHh4e0NbWhpGREXx8fHDlypVay/74449o3749RCIRHB0dsXr1alRWVsqVq7KyEqtXr4aDgwNEIhHat2+PH3/8Ua51g4ODwePxcPPmzTrfHzlyJBwcHOTaFiECrgMQ0phyc3Oxc+dOdOzYEWPHjsXu3bvrXVYsFuOtt97C5cuXsWTJEvj4+KC4uBhRUVEoLi6WWXbdunX44osvsGzZMvj5+eHGjRtYsWIF0tPTsXPnzlfm+uijj/Drr7/iq6++Qrdu3XD69Gl8+umnKCwsxOeff/7Gn5sQuTFCWhCJRMIkEgljjLGnT58yAGzlypV1Lrtp0ybG5/PZ1atXG9xmTk4O09LSYnPmzJFpX7duHePxeOzu3bsNrn/nzh3G4/HY119/LdM+e/Zspq2tzXJzcxtcf9++fQwAu3HjRp3vjxgxgtnb2ze4DUJqUPcOaVF4PB54PJ5cy/7www/o06cPvL29G1wuNDQUZWVlmD59ukz79OnTwRjD0aNHG1z/6NGjYIzVuX5paSlCQ0PlyiuvVatWSY/Dy69p06Y16r5I80NFn6il1NRUPHr0CB4eHvj8889hYWEBgUAANzc3/PLLLzLL3rlzBwDg4eEh025lZQVTU1Pp+/W5c+cOzMzMYGlpKdPu6ekps/1XEYvFqKqqqvViLw2UO2vWLFy9elXmtXjxYgCAm5ubXPsiLRf16RO1lJ6eDgD45ZdfYGNjg61bt8LQ0BC7du3CtGnTUFFRgdmzZwOovk4gEomgq6tbazvGxsbIzc1tcF+5ubkwNjau1a6rqwuhUPjK9Ws09BuJvb299O82NjawsbGRfn358mX8+OOPmDx5Mj777DO59kVaLir6RC1JJBIAQFlZGU6ePCktmoMHD0bXrl2xZs0aadEH0GCXkTzdSW+6PgDs378frq6utdoXLFiA1NTUOtdJSEjA6NGj4ePjg71798q9L9JyUfcOUUsmJiYAgPbt28ucJfN4PAwZMgRpaWnIzs6WLltWVoaSkpJa28nLy6vzLP7lfdV1Nl9cXIyKiopXrl/D1dUVXbt2rfUyNDSsc/mMjAwMHToUNjY2OHz4MIRCoVz7IS0bFX2ilpycnKCjo1PnezV95Hx+9bdHTV9+XFyczHJZWVnIycmBu7t7g/vy8PDA06dPkZWVJdNes71Xrf86CgoKMHz4cEgkEpw8ebLeHwxE/VDRJ2pJIBBgzJgxSEhIwKNHj6TtjDGEhobCyckJpqamAIChQ4dCS0sLwcHBMtuoeWhq7NixDe5rzJgx4PF4tS4QBwcHQ1tbG0OHDm2MjyRVUVGBt956C48ePcKpU6dk+vcJoT590uKcOnUKxcXFKCwsBADEx8fjzz//BAAMHz5ceob/1Vdf4dSpUxg6dChWrVoFAwMD7N69G7dv38bvv/8u3Z6xsTFWrFiBL774AsbGxtKHs1atWoVZs2ahQ4cO0mX379+PGTNmYO/evZgyZQqA6jtmZs6ciZUrV0JDQwPdunXDmTNnsHPnTqxdu1bu7h15LViwAOfOncPXX3+NoqIiREZGSt8zMzODk5NTo+6PNDOcPiVAiBLY29szAHW+kpOTZZaNi4tjI0aMYPr6+kxLS4t5e3uz48eP17ndH374gbm4uDChUMjs7OzYypUrWUVFhcwyNQ9S7du3T6a9oqKCrVy5ktnZ2TGhUMhcXFzYli1b5Po8ij6c1bdv33o//9SpU+XaJ2m5eIy9dJMvIYSQFov69AkhRI1Q0SeEEDVCRZ8QQtQIFX1CCFEjVPQJIUSNUNEnhBA1onYPZ0kkEmRkZEBfX58GnyKEtAiMMRQWFsLa2lo6fEh91K7oZ2RkwNbWlusYhBDS6FJTU1857IbaFX19fX0A1QfHwMCA4zSEEPLmCgoKYGtrK61vDVG7ol/TpWNgYEBFnxDSosjTZU0XcgkhRI1Q0SeEEDVCRZ8QQtQIFX1CCFEjVPQJIUSNUNEnhBA1QkWfEELUCKdF/+LFixg1ahSsra3B4/Fw9OjRV64THh4OLy8vaGlpoU2bNtixY4fygxJCSAvBadEvLi5Gx44dsXXrVrmWT05OxvDhw+Hr64vo6Gh8/vnnCAgIwKFDh5SclBBCWgZOn8gdNmwYhg0bJvfyO3bsgJ2dHTZv3gwAcHV1xc2bN/H999/jnXfeUVLKavEZBXicWwx9LU0YaAtgoKUJfS0B9LU0IRRQLxkhpHloVsMwXL16FX5+fjJtQ4YMwZ49e1BZWQlNTc1a65SXl6O8vFz6dUFBwWvt+38x6fj5YlKd72lp8mGgpQkD7eofBDU/EAy0NWX+3r+dGWxa6bzW/gkhpDE0q6KflZUFCwsLmTYLCwtUVVUhJycHVlZWtdYJCgrC6tWr33jfVoZa6GrfCgVllSgsq0JBaSWKK8QAgLJKCcoqy5FdWN7gNvS1BNg2uQt6OZmCz6dhnQkhTa9ZFX2g9oBCjLE622sEBgZi4cKF0q9rRqNT1LRejpjWy1GmrUosQVF5FQpKq1BQVinzA6GgrAqFZZUoKK3+Myb1OR5kF+GDPddhYSDCMHcrDHQ1RzcHY2hpaiichxBCXkezKvqWlpbIysqSacvOzoZAIICJiUmd64hEIohEIqXkEWjwYaQjhJGO8JXL5pdU4uuTCTh5JxNPCsoRfOURgq88gpYmHz3bmGBGb0f4OpspJSchhNRoVkW/Z8+eOH78uEzbmTNn0LVr1zr781WJoY4mvn3XE2vGuuHygxycvpuF8PtP8aSgHOfvPcXlxBxM83GAvYku7Ix1YGusg9ZG2nSRmBDSqDgt+kVFRUhMTJR+nZycjJiYGBgbG8POzg6BgYFIT0/H/v37AQD+/v7YunUrFi5ciNmzZ+Pq1avYs2cPDh48yNVHUJhIoIGBrhYY6GoBxhjuPSnEhjP3ERb/BLsuJcssy+cBlgZasDXWwUBXc0zp6UBdQYSQN8JjNZ3iHLhw4QL69+9fq33q1KkIDg7GtGnT8OjRI1y4cEH6Xnh4OBYsWIC7d+/C2toaS5cuhb+/v9z7LCgogKGhIfLz81VmEpXyKjEO30rHvaxCpOaVICWvBKnPSlBWKZFZztpQCzs+8IKnjRE3QQkhKkmRusZp0eeCKhb9ujDGkFNUgZS8EsRnFmD7+URk5JehjZkuwhb0hQbd/UMI+ZcidY06jFUUj8eDmb4IXvat8IG3PU7N7wNdoQaSnhYjMbuI63iEkGaKin4zYaitCXsTXQDAz+EPqfATQl4LFf1mpEcbYwDA4eh0DNoYjrm/3kRKbgnHqQghzQkV/WbkixEdEDy9GwZ3sACfB5y++wRDNl/E3Yx8rqMRQpoJKvrNCJ/PQ7925tg1pStOfdoHne2MUFopxsr/3YWaXY8nhLwmKvrNVDtLfWyb3AXamhq4+fgZDt1K5zoSIaQZoKLfjFkZaiNgoDMA4PMjcdhzOZnO+AkhDaKi38zN9nXEIFcLVFRJ8NVf8Th99wnXkQghKoyKfjMn0OBj1xQvDGxvDgCYHxKNE7GZHKcihKgqKvotAI/Hw5qx7nA210NZpQQBv0UjNY9u5SSE1EZFv4VobaSNEwG+aGehD7GE4dKDHK4jEUJUEBX9FkQo4KO3sykA4OajPI7TEEJUERX9FmaQa/V0koej0/Fr5GOO0xBCVA0V/RbGu40x5vRpAwD4+kQCcooanreXEKJeqOi3MDweD4HD2sPTxhCllWJ89Vc815EIISqEin4LxOPx8NUYd/B5wP9iMnD8dgbXkQghKoKKfgvV0dYIs//t5ln4ewyiHtOFXUIIFf0WbcmQ9hjmbolKMcPaEwk0RAMhhIp+S6bB52H1GDdoafIRnfKc7t0nhFDRb+nM9bUwtlNrAMDlRCr6hKg7KvpqoIt9KwBARGIOdfEQouao6KuBfu3MIBTwcTejANODbyAhs4DrSIQQjlDRVwPm+lpYMcIVAj4PF+49xbAfLsFvUzi2nnuAovIqruMRQpoQFX01MaWnA0Ln98Ewd0sINfi4/6QI35+5j5/DH3IdjRDShKjoq5G25nrY/r4XbqwYhA+87QEA958UcpyKENKUqOirIUNtTfRvbwYASHtWynEaQkhToqKvpiwNtAEAKbklqBJLOE5DCGkqVPTVlLOFHgy0BCgsr8KuS8lcxyGENBEq+mpKU4OPgIHOAIDDt9I4TkMIaSpU9NXYwH8nXHmQXYTdl5Lo9k1C1AAVfTXmaKqLPi7VF3TXnkiAT9BZ3M3I5zgVIUSZqOiruR3vd8GqUR1gZ6yDgrIq7L38iOtIhBAloqKv5nSEAkzr5Yiv3/IAAITfz6ZuHkJaMCr6BADQzbEVrA21kFNUgU1h97mOQwhREir6BAAgEmjg4wFtAQBxadSvT0hLRUWfSHn9OwRzbPpzemCLkBaKij6RcjTVBQCUVUpoeAZCWigq+kRKJNBAdwdjAMCfUfTAFiEtERV9IqN/e3MAwOO8Eo6TEEKUgYo+keFmbQAAOHM3i2bYIqQFoqJPZPRqa4rOdkYor5Jg72UaiI2QloaKPpGhwefh/R7VE6xEpTyjidQJaWGo6JNaBrtZQMDnIelpMd3FQ0gLQ0Wf1GKgpQlbYx0AoAHYCGlhqOiTOvX9d/TN68nPOE5CCGlMnBf9bdu2wdHREVpaWvDy8sKlS5caXP7AgQPo2LEjdHR0YGVlhenTpyM3N7eJ0qqP9pb6AIDLiU9RXiXmOA0hpLFwWvRDQkIwf/58LF++HNHR0fD19cWwYcOQkpJS5/KXL1/GlClTMHPmTNy9exd//PEHbty4gVmzZjVx8pavj4sZRAI+7j8pQsDBaEgkdEGXkJaA06K/ceNGzJw5E7NmzYKrqys2b94MW1tbbN++vc7lIyMj4eDggICAADg6OqJ3796YO3cubt682cTJWz5rI23sntoVQgEfp+8+wYSdVxF6JxNiKv6ENGucFf2KigpERUXBz89Ppt3Pzw9Xrlypcx0fHx+kpaXh5MmTYIzhyZMn+PPPPzFixIh691NeXo6CggKZF5GPr7MZvnvXEwI+DzcePYP/f25h7Yl4rmMRQt4AZ0U/JycHYrEYFhYWMu0WFhbIysqqcx0fHx8cOHAAEyZMgFAohKWlJYyMjPDjjz/Wu5+goCAYGhpKX7a2to36OVq6MZ1a49LS/pjV2xEAEHIjFWWV1MdPSHPF+YVcHo8n8zVjrFZbjfj4eAQEBODLL79EVFQUQkNDkZycDH9//3q3HxgYiPz8fOkrNTW1UfOrAytDbSwf4YrWRtooqRDj8oMcriMRQl6TgKsdm5qaQkNDo9ZZfXZ2dq2z/xpBQUHo1asXFi9eDADw9PSErq4ufH19sXbtWlhZWdVaRyQSQSQSNf4HUDM8Hg99XMxw8HoKolKeYVCHuv+NCCGqjbMzfaFQCC8vL4SFhcm0h4WFwcfHp851SkpKwOfLRtbQ0AAAGi6gCdi00gYA/EMDsRHSbClc9FetWoXHjx83ys4XLlyI3bt3Y+/evUhISMCCBQuQkpIi7a4JDAzElClTpMuPGjUKhw8fxvbt25GUlISIiAgEBASge/fusLa2bpRMpH6925oCAM7fe4qPDkShmCZQJ6TZUbjoHz9+HE5OThg4cCD++9//oqys7LV3PmHCBGzevBlr1qxBp06dcPHiRZw8eRL29tUDfmVmZsrcsz9t2jRs3LgRW7duhbu7O8aNG4d27drh8OHDr52ByK+jrREWDnaBBp+Hk3FZNAonIc0Qj71Gv0hsbCz27duH//73v6ioqMDEiRMxY8YMdOvWTRkZG1VBQQEMDQ2Rn58PAwMDruM0S3svJ2PNX/HwdTbFrzN7cB2HELWnSF17rT59T09PbNq0Cenp6di7dy/S09PRq1cveHh44IcffkB+Pg3S1ZJ5tzEBAFxLykNmPo3CSUhz8kYXciUSCSoqKlBeXg7GGIyNjbF9+3bY2toiJCSksTISFeNqpY+ONoaoEEtw4d5TruMQQhTwWkU/KioKn3zyCaysrLBgwQJ07twZCQkJCA8Pxz///IOVK1ciICCgsbMSFcHj8eDW2hAAkJn/+td0CCFNT+Gi7+npCW9vbyQnJ2PPnj1ITU3FN998g7Zt20qXmTJlCp4+pTPAlszRRBcAEPU4j+MkhBBFKFz0x40bh0ePHuHEiRMYO3as9D75F5mZmUEikTRKQKKahrpbAgCuPMxFdgGd7RPSXChc9BljaNWqVa320tJSrFmzplFCEdVna6yD9pb6YAy4nEjDMhDSXChc9FevXo2ioqJa7SUlJVi9enWjhCLNQ69/H9b6/vQ9VInpNztCmoPXOtOva0C027dvw9jYuFFCkeZhkZ8LtDT5yMgvownUCWkm5B5wrVWrVuDxeODxeHBxcZEp/GKxGEVFRQ2OdklaHh2hAHbGOrj/pAix6flwMNXlOhIh5BXkLvqbN28GYwwzZszA6tWrYWhoKH1PKBTCwcEBPXv2VEpIoroGuVrg/pMibA67j5EeVuDz6x4WmxCiGuQu+lOnTgUAODo6wsfHB5qamkoLRZqPj/q3xS9XHiEppxix6fnoZGvEdSRCSAPk6tN/cYrBzp07o7S0tNYUhDQVoXrSEwnQzlIfAHDxPj2bQYiqk+tMv1WrVsjMzIS5uTmMjIzqvJBbc4FXLKap9NTNu162uJXyHD+dT8RwD0u0NdfnOhIhpB5yFf1z585J78w5f/68UgOR5mdSd1scu52OyKQ8/CcyBatGu3EdiRBSD7mKft++fev8OyFA9Vg8Q90sEZmUh9S8Eq7jEEIaIFfRj42NlXuDnp6erx2GNF8eNtV3c93NoOs6hKgyuYp+p06dwOPxXjkPLfXpqy9Lw+r5c3OLyyGWMGjQrZuEqCS5in5yMk2LRxpmpieCvpYAhWVV2HDmHpYMbc91JEJIHeQq+jVz1hJSH6GAj6/GuGN+SAwOXk/B4iHt6rzLixDCLbmK/rFjxzBs2DBoamri2LFjDS47evToRglGmp/hHlZYdjgWz0oq8fBpMdqa63EdiRDyErmK/tixY5GVlQVzc3OMHTu23uWoT1+9CQV8dLI1QmRSHm48yqOiT4gKkqvovzghCk2OQhrSwcoQkUl5SM4p5joKIaQObzQxOiEvszQUAaC5cwlRVa9V9M+ePYuRI0fCyckJbdu2xciRI/H33383djbSDDn/OwRDfEY+x0kIIXVRuOhv3boVQ4cOhb6+Pj799FMEBATAwMAAw4cPx9atW5WRkTQjloZaAIDUZ6UoLq/iOA0h5GU89qonrl7SunVrBAYG4pNPPpFp/+mnn7Bu3TpkZGQ0asDGVlBQAENDQ+Tn58PAwIDrOC1ORZUEAzZcQNqzUqwa1QHTejlyHYmQFk+RuqbwmX5BQQGGDh1aq93Pz4+GViYQCvh418sGAA3JQIgqUrjojx49GkeOHKnV/r///Q+jRo1qlFCkeau5VTOJ7uAhROXIdcvmli1bpH93dXXFunXrcOHCBen0iJGRkYiIiMCiRYuUk5I0Kw4m1XPl3knPR1Z+mbSfnxDCPbn69B0d5euX5fF4SEpKeuNQykR9+sonkTC8u+MKbqU8x9hO1tg8sTPXkQhp0RSpawpfyG3uqOg3jeiUZ3hr2xUI+Dw8WDeMxuEhRImUeiGXEHm4WFTfr18lYSirpKe4CVEVcvXpvywtLQ3Hjh1DSkoKKioqZN7buHFjowQjzZu2pgY0NXioFDOkPSuBswXNm0uIKlC46J89exajR4+Go6Mj7t27B3d3dzx69AiMMXTp0kUZGUkzxOfz4N7aENEpz/HViQTsn9Gd60iEELxG905gYCAWLVqEO3fuQEtLC4cOHUJqair69u2LcePGKSMjaaa+fad66syL958iv6SS4zSEEOA1in5CQgKmTp0KABAIBCgtLYWenh7WrFmDb7/9ttEDkubLxUIfdsY6AIDbac+5DUMIAfAaRV9XVxfl5eUAAGtrazx8+FD6Xk5OTuMlIy2CdxtjAMCx26o9PAch6kLhou/t7Y2IiAgAwIgRI7Bo0SKsW7cOM2bMgLe3d6MHJM3bhG62AIC/YjNQWkET7BDCNYUv5G7cuBFFRUUAgFWrVqGoqAghISFo27YtNm3a1OgBSfPWxa4VTPVEyCkqR9TjZ+jtbMp1JELUGj2cRZQu4GA0jt3OgIDPw0xfR3zUty0MdTS5jkVIi6FIXXut+/QB4ObNm0hISACPx4Orqyu8vLxed1OkhZs/yBlx6flIzinGz+FJeFZcgfXvduQ6FiFqSeGin5aWhkmTJiEiIgJGRkYAgOfPn8PHxwcHDx6Era1tY2ckzVwbMz2cXdgXn/1xG4ej03EtOQ+VYgk0NeiBcEKamsLfdTNmzEBlZSUSEhKQl5eHvLw8JCQkgDGGmTNnKiMjaQH4fB5WjOwAIx1NPM4twcpjd6FmPYuEqASF+/S1tbVx5coVdO4sO3LirVu30KtXL5SWljZqwMZGffrcCot/gjm/3gRjQOCw9pjb14nrSIQ0e0odcM3Ozg6VlbWfrqyqqkLr1q0V3RxRM4M7WODLkR0AABvC7iOvuOIVaxBCGpPCRX/9+vWYN28ebt68Kf31/ObNm/j000/x/fffN3pA0vJM83FAG1NdVFRJcD05j+s4hKgVuYp+q1atYGxsDGNjY0yfPh0xMTHo0aMHtLS0IBKJ0KNHD9y6dQszZsxQOMC2bdvg6OgILS0teHl54dKlSw0uX15ejuXLl8Pe3h4ikQhOTk7Yu3evwvsl3OHxeHD6d0rFg9dTqG+fkCYk1907mzdvVsrOQ0JCMH/+fGzbtg29evXCzz//jGHDhiE+Ph52dnZ1rjN+/Hg8efIEe/bsQdu2bZGdnY2qqiql5CPKs8jPBeH3nyL8/lP851oKPvC25zoSIWqB04ezevTogS5dumD79u3SNldXV4wdOxZBQUG1lg8NDcXEiRORlJQEY2NjufZRXl4uHSsIqL7gYWtrSxdyVcCey8n46q94iAR8HP24F1yt6N+DkNeh9JmzxGIxDh06hLVr12LdunU4cuQIxGLFxlWpqKhAVFQU/Pz8ZNr9/Pxw5cqVOtc5duwYunbtivXr16N169ZwcXHBZ5991uAdQ0FBQTA0NJS+6DkC1THdxwF9XMxQXiXBnF9voqKKZtgiRNkUfjgrMTERw4cPR3p6Otq1awfGGO7fvw9bW1ucOHECTk7y3YKXk5MDsVgMCwsLmXYLCwtkZWXVuU5SUhIuX74MLS0tHDlyBDk5Ofjoo4+Ql5dXb79+YGAgFi5cKP265kyfcI/P52HLxE7o9/0FpOaV4npyHo3NQ4iSKXymHxAQACcnJ6SmpuLWrVuIjo5GSkoKHB0dERAQoHCAlyfMZozVO4m2RCIBj8fDgQMH0L17dwwfPhwbN25EcHBwvWf7IpEIBgYGMi+iOox0hBjuYQUA+DMqleM0hLR8Chf98PBwrF+/XqZP3cTEBN988w3Cw8Pl3o6pqSk0NDRqndVnZ2fXOvuvYWVlhdatW8PQ0FDa5urqCsYY0tLSFPwkRFX0blt9dp+cU8xxEkJaPoWLvkgkQmFhYa32oqIiCIVCubcjFArh5eWFsLAwmfawsDD4+PjUuU6vXr2QkZEhHdoZAO7fvw8+nw8bGxu5901US80F3DsZBSgqpzuxCFEmhYv+yJEjMWfOHFy7dg2MMTDGEBkZCX9/f4wePVqhbS1cuBC7d+/G3r17kZCQgAULFiAlJQX+/v4Aqvvjp0yZIl3+vffeg4mJCaZPn474+HhcvHgRixcvxowZM6Ctra3oRyEqwtFUFwZaAoglDFn5qj2MByHNncIXcrds2YKpU6eiZ8+e0NSsHhO9qqoKo0ePxg8//KDQtiZMmIDc3FysWbMGmZmZcHd3x8mTJ2FvX33PdmZmJlJSUqTL6+npISwsDPPmzUPXrl1hYmKC8ePHY+3atYp+DKJizPRFKCirQtqzUrQ11+c6DiEtlkL36TPGkJKSAjMzM2RkZEhH1+zQoQPatm2rzJyNhgZcU02L/7iNP6LSMLqjNbZM6vzqFQghUorUNYWKvkQigZaWFu7evQtnZ+c3DsoFKvqq6U56Pkb+eBkAcHPFIJjqiThOREjzobSHs/h8PpydnZGbm/tGAQl5mXtrQziY6AAAlvwZi/yS2iO5EkLe3GuNsrl48WLcuXNHGXmIGls12g1CDT7O/ZONgRsv4Hbqc64jEdLiKDz2TqtWrVBSUoKqqioIhcJad83k5an2ULnUvaPaoh7nYcmfsXj4tBh+HSywc0pXriMRovKUOjH6pk2b6n1ilpA35WVvjGXDXDF7/00kPi1CWaUYWpoaXMcipMVQuOhPmjQJVVVV0NXVVUYeQtDB2gCaGjwkPS3GB3uuIWROT/D5dKJBSGOQu08/JycHI0aMgJ6eHgwMDODj44OkpCRlZiNqqrWRNnZP7QYAuPHoGZJyil6xBiFEXnIX/cDAQERFRWH16tX47rvvkJOTg7lz5yozG1FjfV3M0NnOCABwNiGb2zCEtCByd++cPn0ae/fuxfDhwwEAw4cPh7u7OyorK6VP5hLSmCZ2s0V0ynP8diMVc/vKN2Q3IaRhcp/pZ2RkoHPn/39Ssn379hAKhcjIyFBKMEL6upgDqB59s1JME6wQ0hjkLvqMMQgEsr8YCAQCSCT0zUiUw0xfBBPd6pFb/xdDJxeENAa5u3cYYxg4cKBM4S8pKcGoUaNkhlS+detW4yYkakuDz8NUHwdsDLuPL47egbm+CH1czLiORUizJnfRX7lyZa22MWPGNGoYQl72UT8n3Ep5hgv3nmLur1EIX9IP5vpaXMcipNlS+Inc5o6eyG1+KqokeGtbBO5mFODz4e0xpw9d1CXkRUobcI0QLggFfPg6V3frZOaXcZyGkOaNij5pFmou6OYVV3CchJDmjYo+aRbMDarH1496/AxllWKO0xDSfFHRJ83CIFcLGOsKkfasFNP2XafCT8hreqOiX1ZG/aukaeiKBNg+uQv0RAJEJuXh8yNxKK+iwk+IohQu+hKJBF999RVat24NPT096aBrX3zxBfbs2dPoAQmp0aONCba+1xk8HnD4VjrG77iKiip6OJAQRShc9NeuXYvg4GCsX79e5qEsDw8P7N69u1HDEfKyfu3MsfvfiVVup+Xjwj0ajI0QRShc9Pfv34+dO3di8uTJ0ND4/8ktPD098c8//zRqOELqMtDVAu90sQEArD2RQOPyEKIAhYt+eno62rZtW6tdIpGgspImsyZNY8UIV+iLBEjJK8GDJzTePiHyUrjou7m54dKlS7Xa//jjD5lROAlRpla6Qjhb6AEAvvzfHZyIzUQVnfET8koKT5e4cuVKfPDBB0hPT4dEIsHhw4dx79497N+/H3/99ZcyMhJSp9EdrRGd+hw3Hz/DzcfP8K6XDb4f15HrWISoNIXP9EeNGoWQkBCcPHkSPB4PX375JRISEnD8+HEMHjxYGRkJqdO0Xo64uLg/ZvZ2BAAcupWGLBqmgZAG0YBrpEUY+eMl3EkvwE/vdcEITyuu4xDSpJQ64NqNGzdw7dq1Wu3Xrl3DzZs3Fd0cIY2irVl1/37asxKOkxCi2hQu+h9//DFSU1Nrtaenp+Pjjz9ulFCEKKp1K20AwJn4J/SkLiENULjox8fHo0uXLrXaO3fujPj4+EYJRYiixnnZQk8kQNTjZ3h/9zUUlNHtw4TUReGiLxKJ8OTJk1rtmZmZtebQJaSpOJjqYucHXtAXCXDj0TPsDE/iOhIhKknhoj948GAEBgYiPz9f2vb8+XN8/vnndPcO4ZRPW1OsHO0GALhwn4ZnIKQuCp+ab9iwAX369IG9vb30YayYmBhYWFjg119/bfSAhCjC08YQAJCaV8pxEkJUk8JFv3Xr1oiNjcWBAwdw+/ZtaGtrY/r06Zg0aRI0NTWVkZEQudm00oYGn4f80ko8yimGg6ku15EIUSmv1Qmvq6uLOXPmNHYWQt6YjlAAHycTXHqQg7Un4rHzg67g83lcxyJEZbxW0b9//z4uXLiA7OxsSCSy4518+eWXjRKMkNcVOMwVkUmX8XdCNnZcfIiP+tUeIJAQdaVw0d+1axc+/PBDmJqawtLSEjze/59F1QzLQAiXOlgbYMmQ9lh3MgHh955S0SfkBQoX/bVr12LdunVYunSpMvIQ0ijsTXQAgObSJeQlCt+y+ezZM4wbN04ZWQhpNI7/XsCNzyygB7UIeYHCRX/cuHE4c+aMMrIQ0micLfRhoitEpZjhn8xCruMQojIU7t5p27YtvvjiC0RGRsLDw6PWbZoBAQGNFo6QN+HtZIITsZlY8udt/DS5C9ysDbmORAjnFB5a2dHRsf6N8XhISlLtx99paGX1kZpXggk/X0VGfhn0tQQ4Pb8PrI20uY5FSKNTpK7RePqkRXtWXIGp+64jNi0fvs6mCJ7eHRp03z5pYZQ6nj4hzUkrXSE2TegEkYCPSw9yMG3fddxOfQ41O9chROq1zvTT0tJw7NgxpKSkoKKiQua9jRs3Nlo4ZaAzffV0IjYTi/6IQVll9cOE9iY6eLeLDfz7OUFTg859SPOm1DP9s2fPol27dti2bRs2bNiA8+fPY9++fdi7dy9iYmIUDrtt2zY4OjpCS0sLXl5euHTpklzrRUREQCAQoFOnTgrvk6ifEZ5WOP5Jb4z0tIKWJh+Pc0uwIew+PjpwiyZdIWpF4aIfGBiIRYsW4c6dO9DS0sKhQ4eQmpqKvn37Knz/fkhICObPn4/ly5cjOjoavr6+GDZsGFJSUhpcLz8/H1OmTMHAgQMVjU/UmLOFPra+1wVRKwbjm7c9IBTwERb/BLP3R0Eioe4eoh4U7t7R19dHTEwMnJyc0KpVK1y+fBlubm64ffs2xowZg0ePHsm9rR49eqBLly7Yvn27tM3V1RVjx45FUFBQvetNnDgRzs7O0NDQwNGjRxX6DYO6d0iNK4k5eG939XzPRz7yQWe7VhwnIuT1KLV7R1dXF+Xl5QAAa2trPHz4UPpeTk6O3NupqKhAVFQU/Pz8ZNr9/Pxw5cqVetfbt28fHj58iJUrV8q1n/LychQUFMi8CAGqJ13p42IGAIhMyuM4DSFNQ+Gi7+3tjYiICADAiBEjsGjRIqxbtw4zZsyAt7e33NvJycmBWCyGhYWFTLuFhQWysrLqXOfBgwdYtmwZDhw4IPfUjEFBQTA0NJS+bG1t5c5IWr4RHpYAgD2Xk2icHqIWFC76GzduRI8ePQAAq1atwuDBgxESEgJ7e3vs2bNH4QAvjtIJAIyxWm0AIBaL8d5772H16tVwcXGRe/s1UzvWvFJTUxXOSFqutzrbQFeogZyiCiRmF3EdhxClU3gYhjZt2kj/rqOjg23btr3Wjk1NTaGhoVHrrD47O7vW2T8AFBYW4ubNm4iOjsYnn3wCAJBIJGCMQSAQ4MyZMxgwYECt9UQiEUQi0WtlJC2fUMBHWwt93E59jti0fLi3pqEaSMvG2Q3KQqEQXl5eCAsLk2kPCwuDj49PreUNDAwQFxeHmJgY6cvf3x/t2rVDTEyM9LcPQhTl9e8F3MuJTzlOQojyyXWm36pVqzq7XOqSlyf/BbGFCxfigw8+QNeuXdGzZ0/s3LkTKSkp8Pf3B1DdNZOeno79+/eDz+fD3d1dZn1zc3NoaWnVaidEET5OJtgbkYyTcVmITMqFdxsTriMRojRyFf3NmzdL/56bm4u1a9diyJAh6NmzJwDg6tWrOH36NL744guFdj5hwgTk5uZizZo1yMzMhLu7O06ePAl7e3sAQGZm5ivv2SfkTQ3qYIGRnlb4KzYTlx48paJPWjSF79N/55130L9/f2m/eo2tW7fi77//xtGjRxszX6Oj+/RJXf4T+Rgrjt5BXxcz/DKjO9dxCFGIUu/TP336NIYOHVqrfciQIfj7778V3RwhKsHVqvob5eajPOQUlXOchhDlUbjom5iY4MiRI7Xajx49ChMT+rWYNE8dbQzhYqGH4goxVhy5Q6NwkhZL4Vs2V69ejZkzZ+LChQvSPv3IyEiEhoZi9+7djR6QkKYg0OBjtm8bLP4zFqF3s9D3uwuY0M0Wc/q0oVE4SYui8P/madOm4cqVKzAyMsLhw4dx6NAhGBoaIiIiAtOmTVNCREKaxghPK0zqbgddoQZS8krw3el7WH4kDiUVVVxHI6TR0MxZhLyktEKMP6JSsfLYXTAGmOqJsHq0G0Z4WnEdjZA6KX3mrIcPH2LFihV47733kJ2dDQAIDQ3F3bt3X2dzhKgUbaEGpvR0wLb3usDWWBs5ReVYEBKD8/9kcx2NkDemcNEPDw+Hh4cHrl27hkOHDqGoqHq8ktjYWLlHviSkORjmYYWzC/thQHtzVIglmB58A1P2XkdKbgnX0Qh5bQoX/WXLlmHt2rUICwuDUCiUtvfv3x9Xr15t1HCEcE0o4GPLpM6Y1dsRmho8XLz/FEM2X0RkUi7X0Qh5LQoX/bi4OLz11lu12s3MzJCbS98IpOXREwmwYmQHhC3oizZmuiitFCPwcBwKyyq5jkaIwhQu+kZGRsjMzKzVHh0djdatWzdKKEJUkYOpLn56rwv4PCA5pxhDN1/Cxfs0SBtpXhQu+u+99x6WLl2KrKws8Hg8SCQSRERE4LPPPsOUKVOUkZEQleFqZYADs7xha6yN9OelmLL3On6/QXM0kOZD4aK/bt062NnZoXXr1igqKkKHDh3Qp08f+Pj4YMWKFcrISIhK6elkgtPz+2BMJ2sAwI6LD1+xBiGq47Xv03/48CGio6MhkUjQuXNnODs7N3Y2paD79EljeVJQhh5fnwWPBySuGw4NvnzDjxPS2BSpawoPw1DD1tYWVVVVcHJyknu+WkJaEmPd6rvXGAMynpfC1liH40SEvJrC3TslJSWYOXMmdHR04ObmJh3vPiAgAN98802jByREVWlq8NHRpnp6xfE/X8Wx2xk0UBtReQoX/cDAQNy+fRsXLlyAlpaWtH3QoEEICQlp1HCEqLoVIzvARFeIzPwyBByMxua/HyC7sIzrWITUS+E+fXt7e4SEhMDb2xv6+vq4ffs22rRpg8TERHTp0gUFBQXKytooqE+fNLbi8ips/vs+dl1KlrY5mOigq4Mx3vWyoZm4iNIpdeydp0+fwtzcvFZ7cXGx3PPoEtKS6IoE+Hy4KwKHtUd7S33weMCj3BL8GZWG93ZFIurxM64jEiKlcNHv1q0bTpw4If26ptDv2rVLOr4+IeqGx+Nhbl8nhM7vg5gv/RA8vRvamOlCwoAJP1/F1ycTIJZQfz/hnsK33QQFBWHo0KGIj49HVVUVfvjhB9y9exdXr15FeHi4MjIS0qwYamuiXztzuFkbYumhWJz7Jxs7LyahvFKMlaPcwKdbOwmHFD7T9/HxQUREBEpKSuDk5IQzZ87AwsICV69ehZeXlzIyEtIsmemLsHdaN2ya0BEA8MvVx/g0JAYSOuMnHKJJVAhpAn/cTMXnR+JQKWb4cmQHzOjtyHUk0oIo9ULuyZMncfr06Vrtp0+fxqlTpxTdHCFqYVxXWywf7goA+OpEPE7F1R60kJCm8Frj6YvF4lrtjDEsW7asUUIR0hJN9XHAez3swBiw8PfbmLP/Jn48+wAX7mUjt6ic63hETSh8IffBgwfo0KFDrfb27dsjMTGxUUIR0hLxeDysGe2GpKdFiEzKw5n4JzgT/0T6/nAPS2yZ2BkCjdeaxZQQuShc9A0NDZGUlAQHBweZ9sTEROjq6jZWLkJaJIEGH/+Z2QNRj58hLj1f+kp6WoyTcVnIKboG/75t0M/FnO7yIUqh8IXcOXPmIDIyEkeOHIGTkxOA6oL/zjvvoFu3bti9e7dSgjYWupBLVNHJuEwEHIxG1b939vRua4qt73WGkY7wFWsSolhdU7jo5+fnY+jQobh58yZsbGwAAGlpafD19cXhw4dhZGT02sGbAhV9oqrSn5filyuP8OvVxyitFENHqIGhbpZ4q0tr+DiZ0tDNpF5KLfpA9UXbsLAw3L59G9ra2vD09ESfPn1eO3BToqJPVF1CZgECDkbjQXaRtM3CQIQxnVpjYjdbtDHT4zAdUUVKLfpPnjyBhYVFne/FxsbC09NTkc01OSr6pDlgjOFWynMciU7D8duZyC+tnoRdqMHHqtFueK+HHccJiSpR6n36Hh4eOHbsWK3277//Hj169FB0c4SQOvB4PHjZt8LasR64vnwgdrzvhd5tTVEhluDzI3GITMrlOiJpphQu+kuXLsWECRPg7++P0tJSpKenY8CAAfjuu+9oPH1ClEAk0MBQd0v8OrM7BrlWj3A799cohL1wuych8lK46C9atAiRkZGIiIiAp6cnPD09oa2tjdjYWIwePVoZGQkhqD77XzXaDS4WesgvrYT/f6IQkZjDdSzSzLzWUyBt2rSBm5sbHj16hIKCAowfP77efn5CSOOxaaWD4/N6Y0wna4glDEsPxaK0ovYT8oTUR+GiX3OGn5iYiNjYWGzfvh3z5s3D+PHj8ewZTRZBiLKJBBoIetsDpnpCpD0rxcRdkfgnS7VnrCOqQ+GiP2DAAEyYMAFXr16Fq6srZs2ahejoaKSlpcHDw0MZGQkhL9ERCrD9fS8Y6WjidupzDPvhEoJOJXAdizQDChf9M2fO4JtvvoGmpqa0zcnJCZcvX8bcuXMbNRwhpH7dHIxx/JPeGOFhBcaAn8OTqI+fvBKNp09IC/D2tgjcSnkOoQYf695yx7iutlxHIk1IKffpDx8+HPn5+dKv161bh+fPn0u/zs3NrXP0TUKI8u143wsD25ujQizBkkOx+Cs2g+tIREXJXfRPnz6N8vL/H/P722+/RV5envTrqqoq3Lt3r3HTEULkYm6ghd1Tu2JS9+rx+heExOB26nOuYxEVJHfRf7kXSM16hQhReTweD2vHumOQqwUqxQwrj91FUXkV17GIiqHZGghpQTT4PCwf4QodoQZiUp/j3e1X8CinmOtYRIXIXfR5PB54PF6tNkKIanE01cXB2d4w1RPin6xCjN0WgftPCrmORVSE3DNnMcYwbdo0iEQiAEBZWRn8/f2ls2W92N9PCOFWR1sj/DXPF3N+vYnYtHzM/OUGwhb0hZamBtfRCMfkvmVz+vTpcm1w3759bxRI2eiWTaJOnpdUYOjmS8gqKMOqUR0wrZcj15GIEihS1+Q+01dWMd+2bRu+++47ZGZmws3NDZs3b4avr2+dyx4+fBjbt29HTEwMysvL4ebmhlWrVmHIkCFKyUZIc2ekI8QsX0esPZGAb0L/gYmeCKM6WnMdi3CI0wu5ISEhmD9/PpYvX47o6Gj4+vpi2LBhSElJqXP5ixcvYvDgwTh58iSioqLQv39/jBo1CtHR0U2cnJDmY2J3O3SxM0JZpQQBv0UjOCIZTwupO1ZdcfpEbo8ePdClSxds375d2ubq6oqxY8ciKChIrm24ublhwoQJ+PLLL+Vanrp3iDqqEkuw4ugd/HYjVdrmamUAX2dT9G5riu6OxtTf34wppXunsVVUVCAqKgrLli2Taffz88OVK1fk2oZEIkFhYSGMjY3rXaa8vFzmInNBAY1GSNSPQIOPNWPcYW2kjdN3s3A3owAJmdWvnReTIBTw0c2hFQIGOKNHGxOu4xIl4qzo5+TkQCwW1xqH38LCAllZWXJtY8OGDSguLsb48ePrXSYoKAirV69+o6yEtARCAR8BA50RMNAZOUXliEjMweUHObicmIPM/DJEJOYiv7QSf82r+5oaaRk4fzjr5Xv9GWNy3f9/8OBBrFq1CiEhITA3N693ucDAQOTn50tfqamp9S5LiLow1RNhTKfW+G5cR1xZNgCHP/IBACRkFkonYSctE2dF39TUFBoaGrXO6rOzs185C1dISAhmzpyJ33//HYMGDWpwWZFIBAMDA5kXIeT/8Xg8dLY1gp2xDsQShvd3X6OHuVowzoq+UCiEl5cXwsLCZNrDwsLg4+NT73oHDx7EtGnT8N///hcjRoxQdkxC1AKPx8NP73WBkY4m4tLzMfyHS5j/WzQiEnMgkdA4Wy0Jp907CxcuxO7du7F3714kJCRgwYIFSElJgb+/P4DqrpkpU6ZIlz948CCmTJmCDRs2wNvbG1lZWcjKypIZ8pkQ8no8bAzx17ze8OtggSoJw9GYDEzefQ3Dt1xCfgl1+bQUnE+ism3bNqxfvx6ZmZlwd3fHpk2b0KdPHwDAtGnT8OjRI1y4cAEA0K9fP4SHh9faxtSpUxEcHCzX/uiWTUJeLTrlGf6MSsNvN1IhljC4tzbAsqGu6NXWhMbcUkGK1DXOi35To6JPiPyuPszF1L3XUSGWAADmDWiLRX7tOE5FXqaUmbMIIeqnp5MJzn3WFy4WegCA68l5r1iDqDoq+oSQBtm00sEPEzsDAKIeP0N2QRnHiciboKJPCHklVysDeNm3QpWE4dCtdK7jkDdARZ8QIhdfZ1MAwJazD3Dunyeo+refnzQvnA3DQAhpXiZ0s8UfN9OQ/rwUM4JvwkhHE4NdLTCxux287FtxHY/Iie7eIYTIrbCsEhvO3Mex2xnIK66Qtg91s8TYzq3R1aEVTPVEHCZUT3TLZgOo6BPy5qrEElx/lIfDt9Jx+FYaXnxot42ZLno4GmOqjwPaW9L3WFOgot8AKvqENK77Twrx69XHuJ6ch3svjNnD51V3Ca0Y0QG6IupJViYq+g2gok+I8uSXVOLm4zwcupWGk3HVgym2t9THwdneaKUr5Dhdy0VFvwFU9AlpGlcf5uKT/95CbnEFnM31MKdPG/R0MoFNKx2uo7U4VPQbQEWfkKZz8f5TTN13HS9WGXsTHXw5sgMGujY8hDqRHw3DQAhRCX1czHD4Qx981M8JXeyMIODz8Di3BLP338T5e9lcx1NLdHWFEKJUne1aobNd9X38xeVV+OyP2zh1JwsnYjPRv139s94R5aAzfUJIk9EVCdD73yd7n9AYPpygM31CSJNyszYEAFx6kIMB319AJzsjdLKtfnm0NqTx+pWMij4hpEl1sjXClJ722H/1MZJyipGUU4zD/w7iRuP1Kx/dvUMI4URuUTli0/IRk/och26lIe1ZKVrpaCJ0fh9YGGhxHa9Zobt3CCEqz0RPhP7tzbFgsAv+XtgXbcx08aykEl8cvcN1tBaNij4hhHNamhrY8u9ELWfin+CPm6k0GbuSUPcOIURlzP8tGkdjMgAAPB7Q3tIAPRyN8b63Pdqa63GcTnVR9w4hpFn6blxH+Pd1QhszXTAGJGQWIPjKI4zbcQWPcoq5jtci0Jk+IUQlZReW4UbyM2wPT8Sd9AJ0tjPC73N7QlODzlVfRmf6hJBmz1xfCyM8rbBrSlfoiQSITnmOWb/cRPj9p6iooqkaXxcVfUKISrMy1MaP73WGUIOP8PtPMXXvdXh9FYZ1J+IhkahVR0WjoKJPCFF5/duZ49CHPpjcww7m+iIUlldh16VkzDsYjajHz6j4K4D69AkhzYpEwrDif3fw32sp0jZTPRH6OJuit7MperU1VbuHu2g8/QZQ0Sek+WOM4URcJk7ffYIL/2SjsLxK5n1fZ1PseN9LbaZppKLfACr6hLQsFVUS3HyUh8uJObicmIO49HwwBnRzaIVNEzqpxUxdVPQbQEWfkJbtVsozvL/7GkoqxNDU4KGzbSt4O5nAu40xutobQyhoeZcyqeg3gIo+IS1fck4xlvx5GzcePZNpd7UywB/+PaHXwrp9qOg3gIo+IeqBMYZHuSWITMrF1Ye5OH8vG4VlVRjhaYWtkzq3qHH76eEsQoja4/F4cDTVxaTudtgyqTOCp3eDgM/DidhMHLudwXU8zlDRJ4SoBS97Y3wyoC0A4Ku/EvDgSSHHibhBRZ8QojZm+bZBOwt95BSVY86vUWo5nAMVfUKI2tATCXBgdg/oiwRIzinGsB8uIvz+U65jNSkq+oQQtWKqJ8L34zuilY4mHj4txtS91zF933XEpD7nOlqToLt3CCFqKb+0ElvOPsAvVx6h6t+xezrZGmHxkHbo1daU43SKoVs2G0BFnxDyoodPi/DT+UT8dTsTFeLqPv73ve3w6UAXmOmLOE4nHyr6DaCiTwipS05ROTb/fR//iaweyE1bUwOTutvhg572cDTV5Thdw6joN4CKPiGkIVce5uDb0Hu4/UIf/3APS2yd1AV8vmo+0EUPZxFCyGvycTLF0Y98EDy9Gwa2NwcAnIzLwr0Wcl8/FX1CCHkJj8dDv3bm2DOtGzpYVZ85z/8tBvsikpFdUMZxujdDRZ8QQhrw7Tue0BVq4N6TQqw+Hg/voLP4/WYq17FeG/XpE0LIK2QXlOGv2Ez8J/IxknKKAQCtjbRha6wNO2Md2LbSgZ2JDmyNdeBiod/ko3jShdwGUNEnhLyuiioJ3t4egTvpBfUuo68lwHfvemJAe4smG7ufin4DqOgTQt4EYww5RRVIyStBal6JzJ8PnxYjp6gcAKDB58HOWAdOZnpoa179cjTVgYWBFsz0RRAJNBotU7Mq+tu2bcN3332HzMxMuLm5YfPmzfD19a13+fDwcCxcuBB3796FtbU1lixZAn9/f7n3R0WfEKIsFVUSfHPqH/x+MxVFL83b+zJjXSHM9UWwMNCChUH1n+YGWrA00IJHa0NYGso/uXuzKfohISH44IMPsG3bNvTq1Qs///wzdu/ejfj4eNjZ2dVaPjk5Ge7u7pg9ezbmzp2LiIgIfPTRRzh48CDeeecdufZJRZ8QomyMMTwpKEdidhEePi1CYnb1K/VZCbILyqVP/tZn/bueGN/VVu79NZui36NHD3Tp0gXbt2+Xtrm6umLs2LEICgqqtfzSpUtx7NgxJCQkSNv8/f1x+/ZtXL16Va59UtEnhHCJMYbnJZV4UliGJwXleFJQhuyC///7k8JyBA5rD+82JnJvU5G6xtlEkRUVFYiKisKyZctk2v38/HDlypU617l69Sr8/Pxk2oYMGYI9e/agsrISmpqatdYpLy9HeXm59OuCgvovwBBCiLLxeDy00hWila4Q7S2bfv+c3aefk5MDsVgMCwsLmXYLCwtkZWXVuU5WVlady1dVVSEnJ6fOdYKCgmBoaCh92drK/ysTIYS0NJw/nPXy5MSMsQYnLK5r+braawQGBiI/P1/6Sk1tvg9VEELIm+Kse8fU1BQaGhq1zuqzs7Nrnc3XsLS0rHN5gUAAE5O6+79EIhFEouYxPCohhCgbZ2f6QqEQXl5eCAsLk2kPCwuDj49Pnev07Nmz1vJnzpxB165d6+zPJ4QQIovT7p2FCxdi9+7d2Lt3LxISErBgwQKkpKRI77sPDAzElClTpMv7+/vj8ePHWLhwIRISErB3717s2bMHn332GVcfgRBCmhXOuncAYMKECcjNzcWaNWuQmZkJd3d3nDx5Evb29gCAzMxMpKSkSJd3dHTEyZMnsWDBAvz000+wtrbGli1b5L5HnxBC1B3nT+Q2NbpPnxDS0tAkKoQQQupERZ8QQtQIFX1CCFEjVPQJIUSNcHr3DhdqrlvTGDyEkJaipp7Jc1+O2hX9wsLqGe1pDB5CSEtTWFgIQ0PDBpdRu1s2JRIJMjIyoK+v3+AYP0D1T09bW1ukpqY2u9s7KXvTa665geabvbnmBho3O2MMhYWFsLa2Bp/fcK+92p3p8/l82NjYKLSOgYFBs/sPVYOyN73mmhtovtmba26g8bK/6gy/Bl3IJYQQNUJFnxBC1AgV/QaIRCKsXLmyWQ7NTNmbXnPNDTTf7M01N8BddrW7kEsIIeqMzvQJIUSNUNEnhBA1QkWfEELUCBV9QghRI1T0XxIUFAQej4f58+dL26ZNmwYejyfz8vb25i7kv1atWlUrl6WlpfR9xhhWrVoFa2traGtro1+/frh79y6Hif/fq7Kr6jEHgPT0dLz//vswMTGBjo4OOnXqhKioKOn7qnzcX5VdVY+7g4NDrVw8Hg8ff/wxANU95q/KzcXxVrsnchty48YN7Ny5E56enrXeGzp0KPbt2yf9WigUNmW0erm5ueHvv/+Wfq2hoSH9+/r167Fx40YEBwfDxcUFa9euxeDBg3Hv3j3o6+tzEVdGQ9kB1Tzmz549Q69evdC/f3+cOnUK5ubmePjwIYyMjKTLqOpxlyc7oJrH/caNGxCLxdKv79y5g8GDB2PcuHEAVPeYvyo3wMHxZoQxxlhhYSFzdnZmYWFhrG/fvuzTTz+Vvjd16lQ2ZswYzrLVZ+XKlaxjx451vieRSJilpSX75ptvpG1lZWXM0NCQ7dixo4kS1q+h7Iyp7jFfunQp6927d73vq/Jxf1V2xlT3uL/s008/ZU5OTkwikaj0MX/Zi7kZ4+Z4U/fOvz7++GOMGDECgwYNqvP9CxcuwNzcHC4uLpg9ezays7ObOGHdHjx4AGtrazg6OmLixIlISkoCACQnJyMrKwt+fn7SZUUiEfr27YsrV65wFVdGfdlrqOIxP3bsGLp27Ypx48bB3NwcnTt3xq5du6Tvq/Jxf1X2Gqp43F9UUVGB//znP5gxYwZ4PJ5KH/MXvZy7RlMfbyr6AH777TfcunULQUFBdb4/bNgwHDhwAOfOncOGDRtw48YNDBgwAOXl5U2cVFaPHj2wf/9+nD59Grt27UJWVhZ8fHyQm5uLrKwsAICFhYXMOhYWFtL3uNRQdkB1j3lSUhK2b98OZ2dnnD59Gv7+/ggICMD+/fsBQKWP+6uyA6p73F909OhRPH/+HNOmTQOg2sf8RS/nBjg63k36e4UKSklJYebm5iwmJkba9nL3zssyMjKYpqYmO3ToUBMklF9RURGzsLBgGzZsYBEREQwAy8jIkFlm1qxZbMiQIRwlrN+L2euiKsdcU1OT9ezZU6Zt3rx5zNvbmzHGVPq4vyp7XVTluL/Iz8+PjRw5Uvq1Kh/zF72cuy5NcbzV/kw/KioK2dnZ8PLygkAggEAgQHh4OLZs2QKBQCBzEaaGlZUV7O3t8eDBAw4S109XVxceHh548OCB9E6Yl890srOza50RqYIXs9dFVY65lZUVOnToINPm6uqKlJQUAFDp4/6q7PWtowrHvcbjx4/x999/Y9asWdI2VT7mNerKXZemON5qX/QHDhyIuLg4xMTESF9du3bF5MmTERMTU+uOEgDIzc1FamoqrKysOEhcv/LyciQkJMDKygqOjo6wtLREWFiY9P2KigqEh4fDx8eHw5R1ezF7XVTlmPfq1Qv37t2Tabt//z7s7e0BQKWP+6uy10VVjnuNffv2wdzcHCNGjJC2qfIxr1FX7ro0yfFW2u8QzdiL3TuFhYVs0aJF7MqVKyw5OZmdP3+e9ezZk7Vu3ZoVFBRwmnPRokXswoULLCkpiUVGRrKRI0cyfX199ujRI8YYY9988w0zNDRkhw8fZnFxcWzSpEnMysqK89yMNZxdlY/59evXmUAgYOvWrWMPHjxgBw4cYDo6Ouw///mPdBlVPe6vyq7Kx50xxsRiMbOzs2NLly6t9Z6qHnPG6s/N1fGmol+HF4t+SUkJ8/PzY2ZmZkxTU5PZ2dmxqVOnspSUFG5DMsYmTJjArKysmKamJrO2tmZvv/02u3v3rvR9iUTCVq5cySwtLZlIJGJ9+vRhcXFxHCb+fw1lV+Vjzhhjx48fZ+7u7kwkErH27duznTt3yryvyse9oeyqftxPnz7NALB79+7Vek+Vj3l9ubk63jS0MiGEqBG179MnhBB1QkWfEELUCBV9QghRI1T0CSFEjVDRJ4QQNUJFnxBC1AgVfUIIUSNU9AkhRI1Q0W+mHBwcsHnz5gaX4fF4OHr0aJPkqU9wcHCtmZnUUb9+/aTT4cXExNS73IULF8Dj8fD8+fMmy9YSPHjwABYWFtDR0UFERATXcWp5cXrQV33fKhsV/Ub04nyXmpqasLCwwODBg7F3715IJJJG3deNGzcwZ86cRt2mqiouLsbSpUvRpk0baGlpwczMDP369cNff/0lXebFoioSieDi4oKvv/5aZpTUn3/+GR07doSuri6MjIzQuXNnfPvtt9L3X/zGFAgEMDU1RZ8+fbB58+Za45v369dPZh5lecyePRuZmZlwd3eXe52aHwI1L21tbbi5uWHnzp0K7ftN7Ny5E/369YOBgUGj/kB6cf5YHR0duLu74+eff1Z4OxkZGfDz80Pv3r0xc+ZMjBw5EnFxcTLLVFZWYunSpfDw8ICuri6sra0xZcoUZGRk1LlNR0dHhIaGNvhDWJ4TrxqfffYZMjMzYWNjo+jHa3RU9BvZ0KFDkZmZiUePHuHUqVPo378/Pv30U4wcORJVVVWNth8zMzPo6Og02vZUmb+/P44ePYqtW7fin3/+QWhoKN555x3phCs1aorqvXv3EBAQgBUrVuD7778HAOzZswcLFy5EQEAAbt++jYiICCxZsgRFRUUy23Bzc0NmZiZSUlJw/vx5jBs3DkFBQfDx8UFhYeEbfQ4dHR1YWlpCIFB8aup79+4hMzMT8fHxmDt3Lj788EOcPXtW7vXFYvFrn3iUlJRg6NCh+Pzzz19r/YasWbMGmZmZiI2NxdixY+Hv74+QkBC513/27Jm04P/+++/48ccf8eGHH2LIkCEyM7GVlJTg1q1b+OKLL3Dr1i0cPnwY9+/fx+jRo2ttMzY2Frm5uejfv3+jfEYA0NPTg6WlZZ2j9jY5pY7so2bqm+/y7NmzDADbtWuXtO358+ds9uzZzMzMjOnr67P+/fvLTOTCGGP/+9//mJeXFxOJRMzExIS99dZb0vfs7e3Zpk2bpF/fv3+f+fr6MpFIxFxdXdmZM2cYAHbkyBHpMmlpaWz8+PHMyMiIGRsbs9GjR7Pk5GSZfe7Zs4d16NCBCYVCZmlpyT7++GPpexs2bGDu7u5MR0eH2djYsA8//JAVFhbKrL9v3z5ma2vLtLW12dixY9n333/PDA0NZZY5duwY69KlCxOJRMzR0ZGtWrWKVVZW1ntcDQ0NWXBwcL3vM1b3xDeDBg2SThAyZswYNm3atAa3Ud+8vQkJCUwoFLLly5c3uD9F8zHG2IkTJ5izszPT0tJi/fr1Y/v27WMA2LNnzxhjjJ0/f17m6xpt2rRh69evr3d/+/btY4aGhuz48ePM1dWVaWhosKSkJFZeXs4WL17MrK2tmY6ODuvevTs7f/68XJ+hvix1efn/J2OMdezYka1cubLBZZydndnEiRMZY4wtWbKEOTs7M21tbebo6MhWrFjBKioqpMsWFxczb29vNnfuXCYWi2W2s3btWubk5MQyMzPrzXj9+nUGgD1+/Fimfc2aNezdd9995Wd+MX/Nv9vLrxc/b32fuanRmX4TGDBgADp27IjDhw8DABhjGDFiBLKysnDy5ElERUWhS5cuGDhwIPLy8gAAJ06cwNtvv40RI0YgOjoaZ8+eRdeuXevcvkQiwdtvvw0NDQ1ERkZix44dWLp0qcwyJSUl6N+/P/T09HDx4kVcvnwZenp6GDp0KCoqKgAA27dvx8cff4w5c+YgLi4Ox44dQ9u2baXb4PP52LJlC+7cuYNffvkF586dw5IlS6TvX7t2DTNmzMBHH32EmJgY9O/fH2vXrpXJcfr0abz//vsICAhAfHw8fv75ZwQHB2PdunX1Hj9LS0ucPHlS4TNtbW1tVFZWSrcRGRmJx48fK7QNAGjfvj2GDRsm/fdrLKmpqXj77bcxfPhwxMTEYNasWVi2bFmD6zDGEBoaitTUVPTo0aPBZUtKShAUFITdu3fj7t27MDc3x/Tp0xEREYHffvsNsbGxGDduHIYOHaoyk6RoaWlJ/8309fURHByM+Ph4/PDDD9i1axc2bdokXVZHRwdXr17Fjh07wOfLlrLly5cjMTFROsFKXfLz88Hj8Wpdczp27BjGjBmjUO4JEyYgMzNT+jp48CAEAgF69eql0HaaBKc/clqYhma2nzBhAnN1dWWMVZ/5GxgYsLKyMpllnJyc2M8//8wYY6xnz55s8uTJ9e7rxTOG06dPMw0NDZaamip9/9SpUzJn+nv27GHt2rVjEolEukx5eTnT1tZmp0+fZowxZm1tLXM2+yq///47MzExkX49adIkNnTo0Fqf+8UzfV9fX/b111/LLPPrr78yKyurevcTHh7ObGxsmKamJuvatSubP38+u3z5sswyL55Ji8VidurUKSYUCtmSJUsYY9XT0Hl7ezMAzMXFhU2dOpWFhITInCHWd6bPGGNLly5l2trade5PHnUtHxgYyFxdXWX+TZYuXVrnmb6uri7T1dVlAoGA8fl8tnbt2gb3V3Pm+eJvj4mJiYzH47H09HSZZQcOHMgCAwNf+RmUeaZfWVkpzbxt27Y6t7l+/Xrm5eX1yn3Lo7S0lHl5edX6HktLS2OamposNzeXMVb7+L/44vF4dZ61JyYmMhMTkzp/E1OFM33FOxfJa2GMgcfjAaieorGoqAgmJiYyy5SWluLhw4cAgJiYGMyePVuubSckJMDOzk7mIlHPnj1llomKikJiYiL09fVl2svKyvDw4UNkZ2cjIyMDAwcOrHc/58+fx9dff434+HgUFBSgqqoKZWVlKC4uhq6uLhISEvDWW2/JrNOzZ0+EhobK5Lhx44bMmb1YLEZZWRlKSkrqvE7Rp08fJCUlITIyEhERETh37hx++OEHrF69Gl988YV0uW3btmH37t3S31w++OADrFy5EkD1NHRXr17FnTt3EB4ejitXrmDq1KnYvXs3QkNDa50pvuzFf7/GkpCQAG9vb5ntvvzvVuPSpUvQ19dHeXk5rl+/jk8++QTGxsb48MMP692+UCiEp6en9Otbt26BMQYXFxeZ5crLy2v9X2wqS5cuxYoVK1BeXg6hUIjFixdj7ty5AIA///wTmzdvRmJiIoqKilBVVQUDA4M33mdlZSUmTpwIiUSCbdu2ybx37Ngx9OrVC8bGxjLtNcf/Rf369au17fz8fIwcORLDhg3D4sWL3zirMlDRbyIJCQlwdHQEUN0dY2VlhQsXLtRaruZXTW1tbbm3zeqYEuHlAiWRSODl5YUDBw7UWtbMzOyVRe/x48cYPnw4/P398dVXX8HY2BiXL1/GzJkzpb+O15XjZRKJBKtXr8bbb79d6z0tLa1619PU1ISvry98fX2xbNkyrF27FmvWrMHSpUshFAoBAJMnT8by5cshEolgbW1d50Uzd3d3uLu74+OPP8bly5fh6+uL8PDwV160e/Hfr7HIc7xqODo6Sv9vuLm54dq1a1i3bl2DRV9bW1vm/4FEIoGGhgaioqJqHRs9PT3Fwr8Cn8+v9flq/p+8aPHixZg2bRp0dHRgZWUlzRsZGYmJEydi9erVGDJkCAwNDfHbb79hw4YNb5SrsrIS48ePR3JyMs6dO1frh0h9XTsvHv8aL1+QF4vFmDBhAgwMDLBr1643yqlMVPSbwLlz5xAXF4cFCxYAALp06YKsrCwIBAI4ODjUuY6npyfOnj2L6dOnv3L7HTp0QEpKCjIyMmBtbQ0AuHr1qswyXbp0QUhICMzNzes9W3JwcMDZs2frLIA3b95EVVUVNmzYIP0B8fvvv9fKERkZKdP28tddunTBvXv3ZK4VvI4OHTpIf9OoKfqGhoYKbbdmkvDi4uIGl6u5YygwMPD1A9ez/5efo3j5eNVHQ0MDpaWlCu2vc+fOEIvFyM7Ohq+vr0LrKsrMzAyZmZnSrwsKCpCcnFxrOVNT0zr/zSIiImBvb4/ly5dL217nesyLagr+gwcPcP78+Vq/3RQVFeH8+fP46aefXmv7CxYsQFxcHG7cuNHgCQzXqOg3svLycmRlZUEsFuPJkycIDQ1FUFAQRo4ciSlTpgAABg0ahJ49e2Ls2LH49ttv0a5dO2RkZODkyZMYO3YsunbtipUrV2LgwIFwcnLCxIkTUVVVhVOnTslcOK0xaNAgtGvXDlOmTMGGDRtQUFAg880CVJ8Ff/fddxgzZgzWrFkDGxsbpKSk4PDhw1i8eDFsbGywatUq+Pv7w9zcHMOGDUNhYSEiIiIwb948ODk5oaqqCj/++CNGjRqFiIgI7NixQ2YfAQEB8PHxwfr16zF27FicOXNGpmsHAL788kuMHDkStra2GDduHPh8PmJjYxEXF1from+Nfv36YdKkSejatStMTEwQHx+Pzz//HP3795f71/0PP/wQ1tbWGDBgAGxsbJCZmYm1a9fCzMxMpkulqqoKWVlZkEgkyM3NxYULF7B27Vp06tSp1q/rT58+rfWglaWlZYMXD1/k7++PDRs2YOHChZg7dy6ioqIQHBxc57LZ2dkoKyuTdu/8+uuvePfdd+XaTw0XFxdMnjxZ+v+kc+fOyMnJwblz5+Dh4YHhw4fXuV5WVhaysrKQmJgIAIiLi4O+vj7s7OxqdYPUGDBgAIKDgzFq1Ci0atUKX3zxhUK3K7Zt2xYpKSn47bff0K1bN5w4cQJHjhxR6PO+qKqqCu+++y5u3bqFv/76C2KxGFlZWQAAY2NjCIVChIaGwtnZGW3atFF4+/v27cO2bdtw5MgR8Pl86bb19PQa/beoN8bh9YQWZ+rUqdJbtQQCATMzM2ODBg1ie/furXVLWUFBAZs3bx6ztrZmmpqazNbWlk2ePFlmfsxDhw6xTp06MaFQyExNTdnbb78tfe/lC0L37t1jvXv3ZkKhkLm4uLDQ0NBat2xmZmayKVOmMFNTUyYSiVibNm3Y7NmzWX5+vnSZHTt2sHbt2jFNTU1mZWXF5s2bJ31v48aNzMrKimlra7MhQ4aw/fv317qwt2fPHmZjY8O0tbXZqFGj6rxlMzQ0lPn4+DBtbW1mYGDAunfvXmue2Rd9/fXXrGfPnszY2JhpaWmxNm3asICAAJaTkyNd5lUXVv/88082fPhwZmVlxYRCIbO2tmbvvPMOi42NlS6zcuVK6b+fhoYGMzY2Zr1792abNm2qddG9b9++ct2i96p8x48fZ23btmUikYj5+vqyvXv31nkh98X/V46Ojuyzzz5jRUVF9X7emls2X1ZRUcG+/PJL5uDgwDQ1NZmlpSV76623ZI7Dy148Li++9u3bV+86+fn5bPz48czAwIDZ2tqy4OBguW7ZfNHixYuZiYkJ09PTYxMmTGCbNm2q8zPJIzk5uc7PAEB6y+r7779f60YGeW/ZfPF7v6H/D6pwIZfmyCWkCfTr1w+dOnXi/BF8UjexWAxzc3OcOnUK3bt3V9p+HBwcMH/+fIWf5m5MdJ8+IU1k27Zt0NPTqzVEAOFebm4uFixYgG7duill+19//TX09PSQkpKilO0rgs70CWkC6enp0guvdnZ20ovPRD3k5eVJH7w0MzODoaEhZ1mo6BNCiBqh7h1CCFEjVPQJIUSNUNEnhBA1QkWfEELUCBV9QghRI1T0CSFEjVDRJ4QQNUJFnxBC1Mj/AbyPujXrB28UAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGOCAYAAAByjswoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUXElEQVR4nOzdeXyU5bn4/88za2Yyk30PWdkh7CCLAqIigsWFblZpwS7HHtpfaz3W6rELtghHz5HaHk9r9VvFWrfWre6CCggie9jCTvZ9nUy22Z/fH4FIZEkyM0kmyfV+vXiReeaZ+7knmWSuuZfrUlRVVRFCCCGEEGj6uwNCCCGEEKFCAiMhhBBCiLMkMBJCCCGEOEsCIyGEEEKIsyQwEkIIIYQ4SwIjIYQQQoizJDASQgghhDhLAiMhhBBCiLMkMBJCCCGEOEsCIyGEEEKIs0IuMPJ4PPzyl78kKysLk8lEdnY2v/3tb/H5fB3nqKrK6tWrSUlJwWQycfXVV5OXl9ePvRZCCCHEYBBygdEjjzzCk08+yRNPPMGxY8d49NFH+e///m/+93//t+OcRx99lPXr1/PEE0+wZ88ekpKSWLhwIU1NTf3YcyGEEEIMdEqoFZH9yle+QmJiIn/96187jn31q1/FbDbz/PPPo6oqKSkp3H333fziF78AwOl0kpiYyCOPPMJdd93VX10XQgghxACn6+8OfNlVV13Fk08+ycmTJxk1ahQHDx5k+/btPP744wAUFBRQWVnJ9ddf3/EYo9HI/Pnz2bFjxyUDI6fTidPp7Ljt8/mor68nNjYWRVF69TkJIYQQon+pqkpTUxMpKSloNJeeMAu5wOgXv/gFjY2NjBkzBq1Wi9fr5eGHH+Zb3/oWAJWVlQAkJiZ2elxiYiJFRUWXbHfdunU89NBDvddxIYQQQoS8kpIShg0bdsn7Qy4weuWVV/j73//Oiy++yPjx4zlw4AB33303KSkprFixouO8L4/yqKp62ZGfBx54gHvuuafjdmNjI+np6Zw8eZKYmJjgPxExKLjdbjZv3syCBQvQ6/X93R0RwuS1IrpLXiv9o6mpiaysLKxW62XPC7nA6Oc//zn3338/t912GwATJkygqKiIdevWsWLFCpKSkoD2kaPk5OSOx1VXV18winQ+o9GI0Wi84HhMTAyxsbFBfhZisHC73ZjNZmJjY+UPmLgsea2I7pLXSv84973uavlMyO1Ka21tvWDuT6vVdmzXz8rKIikpiU2bNnXc73K52Lp1K3PmzOnTvgohhBBicAm5EaOlS5fy8MMPk56ezvjx48nNzWX9+vV897vfBdojvbvvvpu1a9cycuRIRo4cydq1azGbzdx+++393HshhBBCDGQhFxj97//+L7/61a9YtWoV1dXVpKSkcNddd/HrX/+645z77ruPtrY2Vq1aRUNDAzNnzmTjxo1dzhsKIYQQQlxOyAVGVquVxx9/vGN7/sUoisLq1atZvXp1n/VLCCHE4Ob1enG73b1+HbfbjU6nw+Fw4PV6e/16Q4Ver0er1QbcTsgFRkIIIURfUlWVyspKbDZbn10vKSmJkpISyaMXZFFRUSQlJQX0fZXASAghxJB2LihKSEjAbDb3erDi8/lobm7GYrFcNtGg6D5VVWltbaW6uhqg0671npLASAghxJDl9Xo7gqK+St3i8/lwuVyEhYVJYBREJpMJaE/fk5CQ4Pe0mvxEhBBCDFnn1hSZzeZ+7okIhnM/x0DWiklgJIQQYsiTtT6DQzB+jhIYCSGEEEKcJYGREEIIIS6wZcsWFEXp2K23YcMGoqKi+rVPfUECIyGEEGIAWrlyJYqi8MMf/vCC+1atWoWiKKxcuTJo1/vmN7/JyZMng9ZeqJLASAghhBig0tLSePnll2lra+s45nA4eOmll0hPTw/qtUwmEwkJCUFtMxRJYCSEEEIMUFOnTiU9PZ3XX3+949jrr79OWloaU6ZM6TimqiqPPvoo2dnZmEwmJk2axKuvvtqprffee49Ro0ZhMplYsGABhYWFne7/8lTamTNnuPnmm0lMTMRisTBjxgw++uijTo/JzMxk7dq1fPe738VqtZKens5TTz0VvG9AL5DASAghhDiPqqq0ujy9+q/N5b3gmKqqfvX3zjvv5Nlnn+24/cwzz3QUXj/nl7/8Jc8++yx//vOfycvL42c/+xnLly9n69atAJSUlLBs2TKWLFnCgQMH+P73v8/9999/2es2NzezZMkSPvroI3Jzc1m0aBFLly6luLi403mPPfYY06dPJzc3l1WrVvHv//7vHD9+3K/n2hckwaMQQghxnja3l3G//rDPr3v0t4swG3r+tvztb3+bBx54gMLCQhRF4bPPPuPll19my5YtALS0tLB+/Xo++eQTZs+eDUB2djbbt2/nL3/5C/Pnz+fPf/4z2dnZ/P73v0dRFEaPHs3hw4d55JFHLnndSZMmMWnSpI7ba9as4Y033uCtt97ixz/+ccfxJUuWsGrVKgB+8Ytf8Pvf/54tW7YwZsyYHj/XviCBkRBCCDGAxcXFceONN/Lcc8+hqio33ngjcXFxHfcfPXoUh8PBwoULOz3O5XJ1TLcdO3aMWbNmdcoDdC6IupSWlhYeeugh3nnnHcrLy/F4PLS1tV0wYjRx4sSOrxVFISkpqaN0RyiSwEgIIYQ4j0mv5ehvF/Va+z6fjyZ7E9YIa6eSICa9/5Xhv/vd73aM0vzf//3fBdcDePfdd0lNTe10n9FoBPBrGu/nP/85H374If/zP//DiBEjMJlMfO1rX8PlcnU6T6/Xd7qtKEpHn0KRBEZCCCHEeRRF8WtKq7t8Ph8egxazQRe0Wmk33HBDR0CyaFHnoG7cuHEYjUaKi4uZP3/+RR8/btw43nzzzU7Hdu7cedlrbtu2jZUrV3LrrbcC7WuOvrxgeyCSwEgIIYQY4LRaLceOHev4+nxWq5V7772Xn/3sZ/h8Pq666irsdjs7duzAYrGwYsUKfvjDH/LYY49xzz33cNddd7Fv3z42bNhw2WuOGDGC119/naVLl6IoCr/61a9CeiSou4b8rrSKxrauTxJCCCFCXEREBBERERe973e/+x2//vWvWbduHWPHjmXRokW8/fbbZGVlAZCens5rr73G22+/zaRJk3jyySdZu3btZa/3+9//nujoaObMmcPSpUtZtGgRU6dODfrz6muK6u/+wAHObrcTGRnJ/76fy10LJ6LXDvkYUVyE2+3mvffeY8mSJRfMkwtxPnmtDEwOh4OCggKysrIICwvrk2v6fD7sdjsRERFBm0oT7S738zz3vt/Y2HjJABJkxIjGVjc7ztT1dzeEEEIIEQKGfGAEkFvcQJlNptSEEEKIoU4CI0BVYVNeJW7vwF80JoQQQgj/SWB0VoNMqQkhhBBDngRG55EpNSGEEGJok8DoPDKlJoQQQgxtEhh9iUypCSGEEEOXBEYXkVvcQLlMqQkhhBBDjgRGF6GqsFGm1IQQQoghRwKjS5ApNSGEECIwW7ZsQVEUbDYbABs2bCAqKqpf+9QVv4rIvvXWWz1+zMKFCzGZTP5crt/kFjcwMsFCStTA6rcQQojA/X7TyV5pV1VVnE4nRqMRRVEA+NnCUX61VVJSwurVq3n//fepra0lOTmZW265hV//+tfExsYGs9tduvrqq5k8eTKPP/54x7E5c+ZQUVFBZGRkn/YlEH4FRrfcckuPzlcUhVOnTpGdne3P5frNuSm15bMy0EktNSGEECEkPz+f2bNnM2rUKF566SWysrLIy8vj5z//Oe+//z47d+4kJiamX/toMBhISkrq1z70lN/v9pWVlfh8vm79M5vNwexzn5IpNSGEEKHoRz/6EQaDgY0bNzJ//nzS09NZvHgxH330EWVlZTz44INA++DEm2++2emxUVFRbNiwoeP2L37xC0aNGoXZbCY7O5tf/epXuN3ujvtXr17N5MmTef7558nMzCQyMpLbbruNpqYmAFauXMnWrVv5wx/+gKIoKIpCYWHhBVNpF/P2228zbdo0wsLCyM7O5qGHHsLj8XS6dnp6OkajkZSUFH7yk58E/s27DL8CoxUrVvRoWmz58uWXrWQb6vbLLjUhhBAhpL6+ng8//JBVq1Zd8H6clJTEHXfcwSuvvIKqqt1qz2q1smHDBo4ePcof/vAHnn76aX7/+993OufMmTO8+eabvPPOO7zzzjts3bqV//qv/wLgD3/4A7Nnz+YHP/gBFRUVVFRUkJaW1uV1P/zwQ5YvX85PfvITjh49yl/+8hc2bNjAww8/DMCrr77K73//e/7yl79w6tQp3nzzTSZMmNCt5+Qvv6bSnn322R6d/+c//9mfy/QJt6/rnWeqCpuOVnHHzHSZUhNCCNHvTp06haqqjB079qL3jx07loaGBmpqarrV3i9/+cuOrzMzM/mP//gPXnnlFe67776O4z6fjw0bNmC1WgH49re/zccff8zDDz9MZGQkBoMBs9nco6mzhx9+mPvvv58VK1YAkJ2dze9+9zvuu+8+fvOb31BcXExSUhLXXXcder2e9PR0rrjiim6374+A3+WvueYaHnrooQuONzQ0cM011wTafK/bU2jr1nn1LS6ZUhNCCDEgnBspMhgM3Tr/1Vdf5aqrriIpKQmLxcKvfvUriouLO52TmZnZERQBJCcnU11dHVA/9+3bx29/+1ssFkvHv3OjTq2trXz961+nra2N7OxsfvCDH/DGG290mmbrDQEHRlu2bOGJJ57glltuoaWlpeO4y+Vi69atgTbf646U2am0O7p1rkypCSGECAUjRoxAURSOHj160fuPHz9OfHw8UVFRKIpywZTa+euHdu7cyW233cbixYt55513yM3N5cEHH8TlcnV6jF6v73RbURR83Zh1uRyfz8dDDz3EgQMHOv4dPnyYU6dOERYWRlpaGidOnOD//u//MJlMrFq1innz5nXqf7AFZV7oo48+orKyklmzZlFYWBiMJvuMCnx8rAqvr+t52HNTapL4UQghRH+KjY1l4cKF/OlPf6KtrfMH9srKSl544QVWrlwJQHx8PBUVFR33nzp1itbW1o7bn332GRkZGTz44INMnz6dkSNHUlRU1OM+GQwGvF5vjx4zdepUTpw4wYgRIy74p9G0hygmk4mbbrqJP/7xj2zZsoXPP/+cw4cP97h/3RWUwCg5OZmtW7cyceJEZsyYwZYtW4LRbJ8w6jXUNrvYX9zQrfNlSk0IIUQoeOKJJ3A6nSxatIhPP/2UkpISPvjgAxYuXMioUaP49a9/DbQveXniiSfYv38/e/fu5Yc//GGn0Z8RI0ZQXFzMyy+/zJkzZ/jjH//IG2+80eP+ZGZmsmvXLgoLC6mtre3WaNKvf/1r/va3v7F69Wry8vI4duwYr7zySseapw0bNvDXv/6VI0eOkJ+fz/PPP4/JZCIjI6PH/euugAOjc8mpjEYjL7zwAj/96U+54YYb+NOf/hRw5/rCnOxoAHYV1NPQ4uri7Ha5xQ2UNrR2faIQQgjRS0aOHMmePXvIzs7mG9/4BhkZGSxevJhRo0bx2WefYbFYAHjsscdIS0tj3rx53H777dx7772d0ujcfPPN/OxnP+PHP/4xkydPZseOHfzqV7/qcX/uvfdetFot48aNIz4+/oI1ShezaNEi3nnnHTZt2sSMGTOYNWsW69ev7wh8oqKiePrpp7nyyiuZOHEiH3/8MW+//XavJq9U1O7u5bsEjUZDZWUlCQkJHcdee+01VqxYQVtbW4+H1fqK3W4nMjKS3726i01nWiiqbyU1ysRXp6Z2BHuXE2nSs3xWBgad7FIbzNxuN++99x5Lliy5YH5diPPJa2VgcjgcFBQUkJWVRVhYWJ9c0+fzYbfbiYiI6JguCpbf/OY3rF+/no0bNzJ79uygtj0QXO7nee59v7Gx8bIphAL+iRQUFBAfH9/p2Fe/+lV27drFM888E2jzvU5RFK4Zk4Beq1Bma+NIub1bj2tsc7P9dPe2QQohhBB94aGHHuKPf/wju3btCnhh9FDlVx6j811qnm/8+PGMHz8+0Ob7RIRJz+zsWD49Vcv2U7VkxYVjMXb9rTlU2siIeCvpsQM3s7cQQojB5c477+zvLgxofo8Y2e32bv0bKCalRZEYYcTl9bHlRPfyMqgqbDpWhdMTmtOFQgghhOgZv0eMzuVGuBRVVVEUJWTXGH2ZRlG4bmwiL+0u5kxNC6eqmxiZYO3ycfY2N5+erGXhuMQ+6KUQQgghepPfI0abN2/mk08+4ZNPPuHjjz/GaDTy/PPPdxw7d78/MjMzO4rQnf/vRz/6EdAedK1evZqUlBRMJhNXX301eXl5/j6VDnEWI9Mz2isRbzlRg8PdvaDuSFkjBbUtXZ8ohBAiJAW4D0mEiGD8HP0eMZo/f36n21qtllmzZpGdnR1wp/bs2dNppOnIkSMsXLiQr3/96wA8+uijrF+/ng0bNjBq1CjWrFnDwoULOXHiRKd05f6YkRXNqeomGlrdbD9dy3VjuzcS9PGxKpbPyiBMrw3o+kIIIfrOuR2Era2tPSqOLkLTucSVgewMDXjxdW/48i63//qv/2L48OHMnz8fVVV5/PHHefDBB1m2bBkAzz33HImJibz44ovcddddAV1bp9Fw7dhEXt1XSl65ndGJVtJiul5c3eTwsOVEDTfkdL94nhBCiP6l1WqJiorqqPllNpu7lbIlED6fD5fLhcPhCPp2/aFKVVVaW1uprq4mKioKrdb/QYqQDIzO53K5+Pvf/84999yDoijk5+dTWVnJ9ddf33GO0Whk/vz57Nix45KBkdPpxOl0dtw+tzDc6/Ph83WeMkuOMDAhJYLD5XY+Pl7F7TOGodN2/eLNK2sgMyaM4fHh/jxVEYLO1ePpzbo8YnCQ18rAFRsbi9frpaqqqk+up6oqDoeDsLCwXg/ChpqIiAhiY2Mv+nvY3d/NoAZGvfEDfvPNN7HZbB01XyorKwFITOw8xZWYmHjZ2i7r1q3joYceuuB4YUEhBtOFI0KJwEmtQmObhw9yCxgd2b15yz/nn+KqRBWDzKgNKps2bervLogBQl4rA5eiKAGNNIj+5fV6L7vG6Pz6cJfjd2B06623dgqEHA4HP/zhDwkP7zxa8vrrr/t7CQD++te/snjxYlJSUjod/3IQdm4X3KU88MAD3HPPPR237XY7aWlpZGZlEm69eAZMY2wL7x6uorBZYeboYcRbjd3qszHBwmKZUhsU3G43mzZtYuHChZLNWFyWvFZEd8lrpX90N4VQQNv1z7d8+XJ/m7qkoqIiPvroo07BVVJSe8BRWVlJcnJyx/Hq6uoLRpHOZzQaMRovDGy0Gg0azcU/IYxIiGBkQgunqpv55EQt35yehkbT9ajYmdo2CuodjEoMbCG4CB16vV7+gIlukdeK6C55rfSt7n6v/Q6MkpKSuOWWW5g5c6a/TXTp2WefJSEhgRtvvLHjWFZWFklJSWzatIkpU6YA7euQtm7dyiOPPBL0PswfFU9xfSvVTU5yS2xMy4ju1uM+OV5NapSJ8G5k0BZCCCFEaPB7OXxlZSVLly4lOTmZf/u3f+O9997rtLg5UD6fj2effZYVK1ag030RXCiKwt13383atWt54403OHLkCCtXrsRsNnP77bcH7frnhBt1zB0ZB8DO/Dpsra5uPa7N5eXj493LoC2EEEKI0OB3YPTss89SVVXFP/7xD6KiorjnnnuIi4tj2bJlbNiwgdra2oA69tFHH1FcXMx3v/vdC+677777uPvuu1m1ahXTp0+nrKyMjRs3BpzD6FLGJUeQFm3C41P5+Hh1txNInalu5ljFwCmLIoQQQgx1ASVQUBSFuXPn8uijj3L8+HF2797NrFmzePrpp0lNTWXevHn8z//8D2VlZT1u+/rrr0dVVUaNGnXR665evZqKigocDgdbt24lJycnkKdyWYqicM2YBHQahdKGNvJ6EOxsPlFNs9PTa30TQgghRPAENbPU2LFjue+++/jss88oLS1lxYoVbNu2jZdeeimYl+kXUWYDs7JjAdh6oobKRke3Hud0+/joaN/kxhBCCCFEYHot5WZ8fDzf+973+Ne//sW9997bW5cJWE7qxbfqX8yUtCgyYs14fCpvHSzH3ta9ZFEFtS0cLm30t4tCCCGE6CM9Doza2touOjUWjCKu/WF2dixJkWHdOlejUViSk0ycxUCb28u/Dpbj7Gah2U+OV5NXLsGREEIIEcp6FBi9+uqrjBo1iiVLljBx4kR27drVcd+3v/3toHeuL2g1CksmJHe7+KtBp+GmSSmEG7XUt7h493AFXl/Xi7F9qsrGvCp2F9QH2mUhhBBC9JIeBUZr1qxh//79HDx4kGeeeYbvfve7vPjiiwDd3qkViiJNehaOu3RyyC+zhum5eVIqeq1CSUMbn/Rgp9pnp2vZ3IPzhRAiUA63l8LaFnbm1/HBkUoKalvkb5AQl9Cj7INut5v4+HgApk+fzqeffsqyZcs4ffr0gC+ENyLBwtSMaPYXNXTr/HirkcU5ybx9sJyjFXYizXquyIzp1mMPlNhocXm4YXxSt4rTCjEYVNsdnKxqZlSShQRr96avRc+5vT6qm5xUNjqosjuobHTQ+KX1kMcq7MRaDExOi2JscgR6+TskRIceBUYJCQkcOnSIiRMnAu0ViTdt2sSKFSs4dOhQr3SwL101Io4KWxsV3dxxlhUXzvzR8Ww5UcPnZ+qIDNMzOql7uZROVTXT5ipj6aSUbk/jCTHQeLw+TlQ1cai0sWMn596ierLjLczKiiEhQgKkQPh8KrXNTqrsTirtDirtDuqbXfi6MRpU1+zi42PV7DhTx8TUSCamRWGRTP1C9Cwwev755ztloQYwGAy89NJL/PjHPw5qx/qDVqOwZGIyL+wsxtHNRdWThkXR2OYmt9jGpqNVWMJ0pEaZuvXY0oY2/rmvlFsmp2ANk3o5ou9VNLZha3WTHmMOavkaW6uLQ6WNHK2w0+bq/Lukqu3JT89UN5MdH87s7FgJkHpIVVW2nKghr7wRtzewKbE2l5ddBfXsLWpgVKKVqRlRMqInhrQe/SUcNmzYJe+Ljo7mgw8+wOXqXDLjpptu8q9n/SQiTM+i8Ym8dbCc7k7BXzUiDnubmzM1LbxzqJxvTk8jymzo1mNrm5y8sqeEW6ekEmu5sMitEL0lv6aZ9w5XdLyxxloMpEWbSYsxMyza1OORTFVVya9t4VCpjaK61m79/uTXtJBf00J2fDizsmNJlACpS6qq8vGxag6XBXeXq9encqzCzrEKO8OiTUzNiCY7LnzAL5MQoqcC/oiYn5/PrbfeyuHDh1EUpWNB37lfJq+3eyMvoSQ73sK0jGj2FnZvvZFGUVg0PonX9pdSZXfyrwPlfGNGGqZuvrE0OTz8Y28pN09OIaWbo01CBCKvvJGPjlZ3mnKpa3ZR1+ziQIkNjaIQbzWSHmMmLcZESpTpkutQWl0ejpTZOVzW2O3cXl92LkDKimsPkLqbQmOoUVWVT44HPyj6stKGNkob2og265mcHs245AgMOlmHJIaGgF/pP/3pT8nKyqKqqgqz2UxeXh6ffvop06dPZ8uWLUHoYv+4cnhct6fEAPRaDUsnpmAN02Frc/POwXI8Pl+3H+9we3l9fymnq5v96a4Q3ba3sJ5NR6suuw7Fp6pU2R3sKazn9f1lPLnlDP/cW8LO/DrKbW34fCpltjbeP1zB/9tWwGena/0Ois5XUNvCS7uLeSO3lIrGtoDbG2w2n6jmUB8mi21odbP5eDV/3V7A3sJ62ckmhoSAR4w+//xzPvnkE+Lj49FoNGg0Gq666irWrVvHT37yE3Jzc4PRzz6n0SgsnpDEC7uKL1gjcSnhRh03T0rhH/tKKW908NHRahaNT+z2ULTbq/LuoQquGZPAhGGRPepvk8NNuc1Bma2VMpuDtGgTV49O6FEbYnBTVZVtp2rZ182dl+fz+NSOUYTPz9Sh1Sjdyt/lr8LaVgprW8mINTMrO1ZGUoHNx6s5WNI/SWIdbi/bTtVSZXdy/fhE2cUmBrWAAyOv14vFYgEgLi6O8vJyRo8eTUZGBidOnAi4g/3JGqbnhvFJvHmgrNvrjWItRm6ckMy/DpRxoqqJSJOe2cNju31Nn6ry0bEqmp2eyz6urtl5NhBqo8zWdsGndVuLi+mZMbLLRADtu5c2Hq3iWA8KIF9ObwZF5yuqa6WorpWECCPWMD1hOg0mgxaTXkvY2X/nbrcf0wzKNTGbT1RzoMTW393gZFUTtjYXN02SDSNi8Ar4XTMnJ4dDhw6RnZ3NzJkzefTRRzEYDDz11FNkZ2cHo4/9KjMunBmZMT3KWJ0eY+aaMQl8dKya3YX1RJr0jEvpfk02gJ35dbQ4PVwzpn3Up7rJ2TEaVG5r63IUy+NT2VtYL6NGArfXx3uHK8ivaenvrvit2u6k2u7s8jxFAaNOi0nfHkClRJmYnR07oPOFbTlRzYFiW393o0O13clLu4tZOimF5EgZyRODT8CB0S9/+UtaWtr/4K5Zs4avfOUrzJ07l9jYWF555ZWAOxgKZmfHUm5rn0borvEpkTS2udlT2MDHx6uwhulIizH36LqHyxopbWil2enxa0vukbJGZmTGBHUbthhYHG4v/zpQRrmte7m5BjpVbX/ODreXhtb26eWC2hYWjU8akDvetp6sITeEgqJzWpxeXt1byrVjE3v8oU+IUBfwx6hFixaxbNkyALKzszl69Ci1tbVUV1dzzTXXBNzBUNC+3igZs6Fn25dnZ8cyKtGCT4V3DldQ09T1J94va2h1+52nxO1V/VpPIgaHJoebf+4tGTJB0aXUNbt4ZU/7wnFfH00BBsOnJ2u6nYm/P3h8Kh/mVbLtVI0syhaDSq+ML8fExAy6eX6LUccNOUn05GkpisLCsYkkR4bh8vh4ZW8JucUNffpH5HBZI60uT59dT4SG+pb2YKC22dX1yUOA16fy+Zk6XtlbQkNL6H9Ptp2qGTAfavYWNvDWwXKcnoGXmkWIi/E7MGptbeVHP/oRqampJCQkcPvtt1NbWxvMvoWcjNhwrsjqXj20c3RaDUsnpZARY8brU/n0VC2v55ZhdwS+tbk7XB4f+4tsfXItERoqGx38Y28JTQ4JiL+sstHBC7uKOFBiC9lRju2narudQy1U5Ne08MqeEmytoR90CtEVvwOj3/zmN2zYsIEbb7yRb33rW2zatIl///d/D2bfQtLs7FhGJlp69BiTXsvNk1NYMDoenUahtKGNF3YWc7TC3id/nA+W2rqdckAMbIW1Lby2v1R+3pfh9qpsPl7NG7llNPXRB5Tu2nG6lj2F3d/oEUrqml28vKeEkvrW/u6KEAHxOzB6/fXX+etf/8pTTz3FH/7wB959913efPPNAZnpuicUReGG8UmkRPVsIaeiKEwcFsUdM9Pbp9a8PjYdreLdwxW9PtXl8vjYXzywPoGKnjteaeetg+W4PN1PLDqUFdW18vedxRyvDE4Kg0DtOFPLrh7sfg1FbS4vr+8v42AIpBYQwl9+B0YlJSXMnTu34/YVV1yBTqejvLw8KB0LZTqthpsmpRJl7nkejyizga9NG8ac4bFoFDhT08LfdxZzpiY4Ga/VsxmLz9Q0dxqNOlBi63ZhXDGweH0q207V8MGRyj7LLzRYONxe3j9cyXuHK/r19+PzM3Xsyh/YQdE5vrNlSz45XjWgFrsLcY7f+7i9Xi8GQ+dCqTqdDo9naKxrMBm03DollZf3lPR42kKjKMzIjCEzNpyNRyupbXbxzqEKxiZbmT8qHqOuZ7vffKpKhc3B6ZpmztQ0d6wtmT8qnslpUcAXo0Zzhsf1qO3edKzCTrPTw/SM6EG3WL+v1Le4eP9IRbdy/IhLO1HZRFlDGwvHJZIZF94n12x2ejhT3czp6maKB+H008GSRupb3Cwcm4g1TIdGI7/jYmDwOzBSVZWVK1diNH5REd7hcPDDH/6Q8PAv/rC8/vrrgfUwhEWZDdw0KYXX9pXi8eOTUbzVyDdnpLErv559RQ0cq2iitKGNhWMTu8x55PH5KK1v40xNM2dqWmg779OuRgGfCrsL6jsVfzxQYmNqenSPq6b3hiaHm80nqnG6fRTUtOeZifRjBG4oO1Rq49OTNX6ncxCdNTs9vJFbxsRhkcweHovZEPz8X/UtLk5Xt3+AqbI7up1Rf6AqqW/lmc8KUJT2tZZmow6LUYvZoCPcoCPcqCXcqGv/Z2j/WsqNiP7m92/+ihUrLji2fPnygDozEKVEmbghJ4l3D1f49UdOp9Fw5Yg4suLC2Xi0isY2N6/nljE5LYorh3fO2Ov2+iisa+FMdQsFtS24vF+sJTHqNGTHhTM8wcKwaBMv7S6hsc1NbkkDM7PaS4s43T4OlNiYld39EiW95eNj7UERQJmtjb/vKmLeyPge14gbitpcXjYdq+KMFBzuFYdKGzlU2og1TEe81UiCNaz9/wgjET0sg6GqKpV2B2eqWzhT00z9AEgV0BtUFVpdXlpdXmqbLn+uQafBYtQRazGQHWchKy4cUw9zyAkRCL8Do2effTaY/RjQRiZamevw8OnJGr/bSIkycfsV6Ww/XcvhskYOlNgoqmthwegEmp0eTlc3U1Tf2mkNSbhBS3a8hREJFlKjTGjPG6qenR3LB3mV7C+yMXFYFKazo0S5xTampEf1eLoumPLKGymo7VyewuXx8dGxKvJrm7lubGLQs3X7fCrljW0Mi+5Z9vFQU1TXwsa89lp6onc1OTw0OTydSqmYDFriLe1B0rmAKdqs7zQV7PWplNe1B0L5NS2SNqGHXB4f9R4X9S0uTlU1oyiQEmkiKz6c7LhwYi3GrhsRIgBSKyJIpmVEY29zB1To0aDTcM2YBLLjwvnoWBUNre2jR+eLNOkZEW9heEI4SRFhl1ybMyrRwr4iIzXNTvYW1jN3ZDzQvtj0YEljj/MxBUuTw83WywSQ+TUtPN9YxLVjEhiZaA34em0uL4fLGjlUaqPJ4WFUopWF4xI7phcHCo/Xx/bTtWfz7/R3b4auNpeX4vrWTmuCDDoN8RYj0WYtB+sUSrYX4paNgUGjqnQUy95+qpZIk57s+HCy4yykRnf+QChEMAQcGP32t7+97P2//vWvA73EgHH16HjsDnfAxToz48JZPiuDzSeqOVXdTGy4geHxFobHW4izGLq1UFlRFOYMj+VfB8s5WNrIlLRoLGHtP+79xQ1MTovql+Dg/Cm0S2lzec8uRm/m6tEJfq2Jqmt2klts43ilvdManJNVTdS3OFk6KYUos+EyLYSOumYn7x+p9KukjOh9Lo+PMlsbJfVeylsVwj1eNBqZ+uktjW1ucott5BbbMOo1ZMSEkx0fTlZceEisnxQDX8CB0RtvvNHpttvtpqCgAJ1Ox/Dhw4dUYKQoCksmJPPqvlIqGwOrTxWm17I4J5lFqorGzx1bGbFmUqLCKLc52FVQx7VjE4H2wONgqY0ZmX07avTlKbT8mmZMBu0lK3SfW4x+/bgk0mO7ngJTVZXCulZyixsoqrv0Lp/aZhcv7S7hhpwksvpoB5K/DpTY2H5KFlgLcTFOt4+TVU2crGpCoygkR4Vx5Yg4UqMu/jdFiO4IODDKzc294JjdbmflypXceuutgTY/4Oi1Gm6enMLLZxc/B8rfoAjaA7Urh8fxz32l5FXYmZoRTfTZUZL9Re2jRn21A+TLU2iFtS28fagCgHkj45iSHn2Jx3l4PbeUSWlRXDUi7qL9dXl8HKuwc6DE1u3Freeqzs/OjuWKrNCr7dfq8rDpaFXAo49CDBU+VaWsoY1X95Yye3gsMzIlDYjwT6+8K0ZERPDb3/6WX/3qV73RfMgzG3TcMiU1JIZ1U6JMZMaaUVXYeaau43iry8uhUluf9eP8KTSfT2Xb6S/q6n16qpZPT166QreqwoFiGy/uKqbK/sVInN3hZtupGv66vYBPjlf3eMePqsKOM3W8c6gipApgFtS28PznRRIUCeEHn6ry2ela3jxQJqVxhF96bfG1zWajsbGxt5oPeTHhBpZOSuaN/WV+5TgKpjnD4yisK+ZkdTPTmhwkWNvLmewramDisN4fNfryFFpehZ36FhdhOg0T06LYXVBPbomNJqeHReMSO6UoOF99i4uXd5cwNSMKe1v7Tj1fEFYin65upqHVxdKJKUSH9+26I5fHR5XdQaXdQUWjg6pGh+w4EyIICmtbeWFXETfkJA343aiibwUcGP3xj3/sdFtVVSoqKnj++ee54YYbAm1+QBsWbeb68Um8f8S/HEfBEm81MirRwsmqZnacqeOWyakAtDjbd2xNvcQ0VjB8eQrN5fGxM7995GpmdiyT06KINuvZdLSK09XNtDg9LJ2U0pFe4Mt8qtorlcfrml28uLuYG3KSGB7fsyLB3aWqKrXNLqrOBkGVjW3Utbhkl5kQvaTJ4eG1fWUytSZ6JODA6Pe//32n2xqNhvj4eFasWMEDDzwQaPMD3ugkK3aHm+2nars+OQgUBcYkRaDXKhwq/WLEbnZ2bHsupLpWyhraSI1uX5y4r7CBiamRlxylCdSXd6HtK2qg1eUlyqRnQmp7MscxSRFYjDrePlRBRaODf+4t4ebJqUSa+jYTtsvj4+2D5czMimVWduDrjpqdHiob26hsdFLR2EZ1k1MKvArRx85NrZXZWlk0PqlXMpqLwSXgV0hBQUEw+jGozciModXlJbe4oVdHB7Ljw5kzPI54qxGH28vJquaOwphRZgPjUiI4UmbnszO1fH3aMBRFodnp4Ui5vaOmWjAdKes8hdbkcLO/uH2058oRcZ3yjwyLNvONacN480A5Da1uXtlTws2TU0iMCAt6vy5HVWFnfh3VTQ4WjU+iu6vEGtvc1DQ5qLY7qW5yUt3koMUp6xuECBWFta28sLOYxRNkak1cnoTOfeRcQddDpTaOlNmDWsk7NcrElSM7b1EN02uZkRnNtvNGqmZmxnKsoomKRgeFda0dW9X3FtYzITUyqInSmhxuPj3VOZHj5/l1eHwqKVFhDI+/cJt8rKW9dtxbB8qpaXby6r5SlkxI7pct9fk1Lby8u5gbxid0Oq6qKg2tbmrOBj/nAqH+rMwuhOieZmf71Nqs7JiQ3I0qQoMERn0o0qRn7sh4ZmXHcqKyiYOltoCqosdZDMwZEXfJNTGT0qI4UGLrKElgCdMxeVgU+4ob2HGmlsxYM4qi0OTwkFfeyMRhUX735cu+PIVW3eTgWEV7kaS5I+Iv+QfJYtTxtWnDePdwBcX1rbx9sJwFYxI6pt36UkOrm3/sLcVjh60na6hv9VLTLNNhQgxkPlVlx5k6ymxt3JAjU2viQgOrLsIgoddqyEmN5I6ZGXxzRhpjkqw9Gq2JMOlZND6J5bMyLrtQWK/VdBSQPWdaZjQGrYbaZhcnq74oQrqnsKFTHbZAfHkKTVXVjpGrUYkWkiIvPz1m0Gm4aVIK45IjUIFPjlez40ztJbfz9ya318fJRg0HSxsps7VJUCTEIFFU1z61VlJ/6WSwYmiSwKifpUSZWDwhme9dlcXs4bFYwy796cVs0DJ/dDwr52QyLiWiW8PA41MiiDZ/sYjZpNcyLaN9F9rn+XUdwZC9zc3RcnuAz+biU2iFda2UNrSh1bQnnOwOrUbhurEJzDxb021PYQMbj1YFLXgTQohmp4fX95exK7+u65PFkCGBUYgIN+qYlR3Ld6/M4saJyR27xqB9BGVWdiwrr8xkanp0j0aXNBqF2V8KRianRWHSa2n8UjC0p7AeX4CBx0fHqjpNofl8aseOvMlpUUSct9Osq6zeiqIwKzuW68YmoChwvLKJNw+UhVQyRiHEwHZuam1jXmXAf//E4NBrgVFJSQnf/e53e6v5QUujURiVaOUb09NYPiuDuSPjuPPKTGYPj8Wo8y+T9qhECwkRxo7bBp2GK86OxOwqrMPjbQ9kGtvcPPd5Ie8frmBfUQOlDa09mjo6UtZIYW3nYem8cjv1rS7C9BpmZHTOlzQ9M5olE5K7LGY7PiWSmyeloNcqlDa08c+9pVTbHUFJ7iiEEND+t+qdwxUdfw/F0NVrq87q6+t57rnneOaZZ3rrEoNevNVIvNXY9YldOFcz7Y3cso5jOakR7C9uoMnh4WBpY8f0mq3Vja3VzfHKprOPhWizgcQIIwkRYSRGhBFvMV4QzFxsCs3p8fL5uWSOWbEYz0vaaA3TcUVWDHqthgSrkXcPV1y2enxGbDhfn5bGvw6UUdfi4qU9JRh0GpIjw0iJNJES1d63vqr9JoQYfM5UN/NGbhk3TU7x+4OoGPj8Dozeeuuty96fn5/vb9OiF2TGhTMs2kRpQxsAOk379Nymo1XsKawnJyWiU+Byjqq2l+Kob3F17CpTlPaSJwnWsI6AaXdBXacpNGhP5tjm7pzM8Zz5o+I7gpjocAO3zUhj68maTkkpvyzeauQbM9LYcqKmYzSrqK6Vorr2USqN0n5OSqSJ5Kj2gCncKDtOhBDdV9rQxmv7yrhlSorsWBui/P6p33LLLSiKctmdQpIjIrRcOSKOV/aUdNwek2RlX1ED9S0u9hU3MKebC6NVtb2ERl2zi2MVFz+nPZmjDYCrRnZO5pgRa2ZkorXT+TqthmvHJjIs2sxHx6ouOYUXEabnpkkp+Hwqtc1OyhsdlNvaqDhbY6zK7qTK7iT37NOMNOlJiQwjOcpESmQYMeEGeV0KIS6ryu7gH3tKWDZtGBFhfZuBX/Q/v+cdkpOTee211/D5fBf9t3//fr87VVZWxvLly4mNjcVsNjN58mT27dvXcb+qqqxevZqUlBRMJhNXX301eXl5fl9vqEiJMpF9XmJFjaIwO7t9O/+BEhstQSxe+vmZ9h1vKVFhZJ+XoFGrUbh6dMIlHzc6ycodM9O7nELUaBQSIsKYnBbFkgnJfPfKTO6ck8mi8YlMSI0kztJeDLaxzc2xyiY+OV7N33cV8+r+9vVJQghxOQ2tbv6xp4S6Zv9zzYmBye/AaNq0aZcNfroaTbqUhoYGrrzySvR6Pe+//z5Hjx7lscceIyoqquOcRx99lPXr1/PEE0+wZ88ekpKSWLhwIU1NTf48lSHlyhFxnD9gMjw+nMQII26vyp7C+qBco9ru4NjZNUpzR3ZO5jglPYqYLirYR5nbp9YmpXU/qaOiKESY9IxJiuCaMQncMTODH87L5ubJKVyRGcOwKBNajUK5zcFLe0rYeLRSqtgLIS6ryeHhn/tKqWyUD1NDid9TaT//+c9paWm55P0jRoxg8+bNPW73kUceIS0tjWeffbbjWGZmZsfXqqry+OOP8+CDD7Js2TIAnnvuORITE3nxxRe56667enzNoSTOYmRMkvW89UIKc84uzD5c1sjU9OhOW+p7SlVVtp1u354/OtFK0nm1zqxhugsSTl6KTqvhmjHtU2ubjl56au1yjHotmbHhZMa2j1jZHW52nK7jRFUTxyqaOF3dzPSMGKamR/VaEV0hxMDW5vLy2v5Slk5MIT1WaqwNBX4HRnPnzr3s/eHh4cyfP7/H7b711lssWrSIr3/962zdupXU1FRWrVrFD37wA6C9aG1lZSXXX399x2OMRiPz589nx44dlwyMnE4nTucXQ6J2e3v+Hrfbjdvt7nE/B7Lp6ZEcK2/s2O4+LMrYsTD78/xaFo699FRXVwpqWzqSOc7KisLn+yLn0OysOBTVi7sHdcWyYsL4xtQU3s+rvOyute6wGDRcPy6eialWtp2uo9Lu5PP8Oo6UNTJneAwjE8IvWH/kPbt11ytbeEUX5LUyeDlcXl7bV8yi8YmMTLh0tYHuOveeM9Tee/pbd7/fIbfkPj8/nz//+c/cc889/Od//ie7d+/mJz/5CUajke985ztUVlYCkJiY2OlxiYmJFBUVXbLddevW8dBDD11wfPPmzZjNQ+9TQFuDQnHzedXt9VCKhuOVzdTZmhgWrhIf1r7Tq7t8KnxWpQAK6WYfVaVFVJ29L8aoctpxktN+9teiQqmtc58DMckKCTo42ajQ5PTw4dFqdp1WGROpEnWR5U2yy1J0l7xWBq8TJ0+SE62SFnhsBMCmTZuC05DoltbW7pV/UdT+KEB1GQaDgenTp7Njx46OYz/5yU/Ys2cPn3/+OTt27ODKK6+kvLyc5OTkjnN+8IMfUFJSwgcffHDRdi82YpSWlkZFRQWxsd2b3hlMWpwe/razGPd5n263na7jQMkX2+XDjVrGJVsZnxxx2VIl5xwus7PlZC1heg3fmZWO8WyuI0VRuH3GMGItgedkOlXdzMfHqnEF6VO52+vjQEkj+4ptuL3tvwqjEy3Mzo7BGqbD6/WRn59PdnY2WpluE5chr5WhY3Z2LDMyo7s+8RLcbjebNm1i4cKF6PWy662v2O124uLiaGxsJCIi4pLnhdyIUXJyMuPGjet0bOzYsbz22msAJCUlAVBZWdkpMKqurr5gFOl8RqMRo/HCN2a9Xj8kX5hRej3TMmPZXfDFguv5oxKYOCyKvDI7RyvstDi97Cm0sbfQRmZcODkpEWTGhV+0lIfT42VXQQMAs7JiMRm++J5OzYgmKTo4H7HGpUaTGmPhaLmd0zXN1AY4vWbUaJmZHcf41Ch2nKnlWEUTJ6qaOVPTwtSMaKamtf/yaLUaNBpJ+Ca6Jq+VwW9XoQ23qjBvZFxA6T+G6vtPf+nu9zrkAqMrr7ySEydOdDp28uRJMjIyAMjKyiIpKYlNmzYxZcoUAFwuF1u3buWRRx7p8/4OZNMyojlU2ojjvDU/0WYDV42MY9bwGM5Ut3CkvJHShjYKalsoqG3BYtQxPiWC8SkRWM/L79GRzNGsJ+e8ZI7hRi2zsmOC2u9Ik57Zw2OZPTyWhhYXp2uaOV3dTJXdgb/jnxajjuvHJTFpWBSfnqqh3OZgd0E9eWWNZIfDcFWVwoJCiA77ixpwur0sHJcoudEGmZALjH72s58xZ84c1q5dyze+8Q12797NU089xVNPPQW0T8vcfffdrF27lpEjRzJy5EjWrl2L2Wzm9ttv7+feDyxhei0zMqPZdrbI6/l0Gg2jk6yMTrLS0OriSFkjRyvsNDs97CqoZ3dBPVlx4eSkRhIbbvgimeOIzskcrxoR36up9aPDDcwIj2FGZgx2h5sz1e1BUpmtza8gKTEijK9NHcbpmma2n6rF7vBw2KWhZFcpUzOiGZtklR1sQgigvb6aXqdhwWVys4mBx6/A6J577un2uevXr+9R2zNmzOCNN97ggQce4Le//S1ZWVk8/vjj3HHHHR3n3HfffbS1tbFq1SoaGhqYOXMmGzduxGq1XqZlcTGT0qLILbZdNqdPtNnA3JHxzM6O5XRNM0fK7JTZ2sivbSG/tgWtouBVVVKjTJ2SOaZGmRiXcul53GCLCNMzJT2aKenRtLo8nKlu4XRNEyX1bXh7UDVbURRGJljJig0nt7iBPQV12NrcfHK8mp35dUxKi2JiaiRhFymhIoQYWg4U2zDptczKHnprVQcrvxZfL1iwoHuNKwqffPJJjzvVF+x2O5GRkdTW1g7JxdfnO1Rq4+Nj1T16TH2Li8NljRyrsOM8m2PomzPSOvIWaRSF27uRwbovONxeCmpbOFnVREFtS49Gknw+L8dOnMZpjudAaSNNjvYAUq9VyEmNZEpaVKcpRTF0+XxeTp06zciRI2SN0RB0zZgEJqVFdetct9vNe++9x5IlS2SNUR86977fK4uv/UncKEJXTkok+4oasLV2P6dGTLiB+aPiuXJ4LPm1LRh1mk7JHCcOiwyJoAjapwzHJkcwNjmC6iYHn5+pI7/m0slJv0yngbFpkUxKi+ZUVRN7ixuoa3aRW2zjYImN0YlWpmZEExeEXXdCiIFp84lqwvRaRifJzMVAF3JrjETf02jas1+/d/gSFWEvQ6fVMOpLBWHNBi2zh4fmKFyCNYybJ6dS0djGjtN1FNd3L68FtNd5G5McwegkK0X1rewraqC0oY1jlU0cq2wiM9bM9IwYUqLCZDGmEEOMqsKHeZWE6TVkxIZ3/QARsoKyinTbtm0sX76c2bNnU1ZWBsDzzz/P9u3bg9G86AOjEi1BG+G5ckRcyK+/SY408dVpw/jatGGkRpt69FhFUciMDeerU4fxzRlpjDibCbewrpVX95fyj72lnK5u7sgsLoQYGrw+lXcOVVDR2NbfXREBCDgweu2111i0aBEmk4nc3NyOJIpNTU2sXbs24A6KvqEoCleOiAu4neTIMMb34YLrQKXFmPnG9DRunZJKUmRY1w/4kqSIMG6ckMyK2RlMSI1Eq1GotDt493AFf99ZREOrqxd6LYQIVS6Pjzdzy6lrDizHmug/AQdGa9as4cknn+Tpp5/utIhszpw57N+/P9DmRR/Kigtn/uh40mPM6HpSC+QsRYEFYxIG5DRSZlw437oinaWTUojzY+QsymzgmjEJ3DknkysyYzDqNDS0unnrQHmnPFFCiMHP4fbyRm4ZjW1SC20gCniN0YkTJ5g3b94FxyMiIrDZbIE2L/rY1PRopqZH4/b6KLe1UVTXSnF9K7XNzi53c01IjSQxouejLqFkRIKF4fHhnKxqZmd+HbVNPRsSDzfqmD08lonDInllbwm2NjfvHq7glsmpnfI7CSEGtyaHhzf2l/KNGWmYDbKcdyAJeMQoOTmZ06cvLA26fft2srOzA21e9BO9tn0B4bxR8SyflcG/zctm8YQkxqVEYDFe+EtuMmiDMhUXChRFYXSSlW/PyuC6sQmYdD1fKxRu1HHTpBT0WoXShjY2n6gmxMoSCiF6WUOrmzdyy3B6ZNR4IAk4MLrrrrv46U9/yq5du1AUhfLycl544QXuvfdeVq1aFYw+ihBgNugYkxTBovFJ/GBeNt+ZncH80fFkx4dj0Gm4cnjoL7juKY1GYVxyBPOSVK4eFX/RgPBy4ixGFucko9CeITe3xNYr/RRChK5qu5O3DpTjCVLha9H7Ah7fu++++2hsbGTBggU4HA7mzZuH0Wjk3nvv5cc//nEw+ihCUKzFSKzFyNT0aLw+lcE8S6RR2vMyTUyP4WCJjT2FDd1eN5QVF87ckXF8eqqWbadqiTLpyY4PTkFdIcTAUNrQxntHKvnKhGQ0g/mP5SAR0IiR2+1mwYIFrFixgtraWnbv3s3OnTupqanhd7/7XbD6KEKcVqMMyAXXPaXXapieGcOdV2YyMysGg657vz6T06LIObtT74O8SmqaZLeKEEPNmepmPjpW1d/dEN0Q0IiRXq/nyJEjKIqC2Wxm+vTpweqXECErTK9lzog4JqdHsbugnsOljXguU4tNURSuHp2Arc1NaUMbbx0s57YZaYT3cGpOCDGw5ZXbCdNrmZ0V1d9dEZcR8Bqj73znO/z1r38NRl+EGFDMBh1Xj05gxZWZjE+JQHOZUTOtRuHGCclEmfU0Oz28fUjWHAgxFO0rapD1hiEu4I+sLpeL//f//h+bNm1i+vTphId3ToW+fv36QC8hREiLCNNz/fgkpmfG8PmZOk5VN100tUGYXstNk1J4ZU8JVXYnm45WcUNO0pCYhhRCfGHHmXriJcVRyAo4MDpy5AhTp04F4OTJk53ukz/4YiiJCTdw48Rkqu3R7DhTR0HthYVqo80GvjIxmTdyyzhZ3Ux0QT2zskOzrpwQond4fT6ONCh8XVJ4hKSAA6PNmzcHox9CDBoJEWHcMiWVAyU2Nh+vvuD+YdFmFoxJ4ONj1ewqqCfabJCK3EIMMQ1OhbzyJqZkygejUBOUIrJCiAtNToti3CXqxuWkRDI1PQqATceqpOikEEPQZ2fqaHZ6+rsb4kskMBKiF10zJoH4S9Reu3JEHNlx4Xh9Km8frMAudZVEL3N7fZQ2tFJtd9Dq8kg29n7m9HgvOqos+pfsFxaiF+m1GpZOTOHF3cUXJIXUKAqLxifxz30l1Da7eOtgOd+Yntbt/EhCdIeqqpTbHByrtHOqqhnXebshtRoFi1GH1ajDEqZr/zqs/WurUY8lTEeYTiPrRXvR6epmTlc3MSJBptNDhQRGQvSySLOeG3KS+NeBsgt2qxl0Gm6alMLLe0qoa3Hx/pEKlk5KuezWfyG6w9bq4lhlE8cr7NgdX0zXhBu0qECry4vXp9LY5r5sFXidRsESpiPGbGDuyDiizIY+6P3Qsvl4DcOizYOurNJAJYGREH0gKy6cmVmx7Myvu+A+a5iepRNTeHV/KYV1rXx6soZ5I+OldIDoMafby8nqZo5V2KlodHQcN2g1jEiwMDbZSmqUCUVR8PpUmp0emh0empzus/+33252emhyeGhze/H4VGytbmytbhpaXXxzRhpGnbyBB1Oz08Nnp2u5dmxif3dFEITAqK6ujtjY9lX1JSUlPP3007S1tXHTTTcxd+7cgDsoxGAxKzuG6iYH+TUXbuNPigzj+nGJvH+kkoOljRTWtTI1PYpxyRHotDK1Ji7N61Mprm/lWIWd/NoWvGezsCtAeoyZMclWhsdb0H/pdaTVKESa9ESa9IDpom17vD6anR7sDg+bjlbR0Ormw7wqlk5Mlum1IDtc1sjoJCvDos393ZUhz+/A6PDhwyxdupSSkhJGjhzJyy+/zA033EBLSwsajYbf//73vPrqq9xyyy1B7K4QA5dydk3Ri7uKLzp1MSrRisvj47MztTS2udl8ooZdBfVMSY9iQmqkfEoXndQ2O8krt3Oisom289avxYYbGJscwegkK5YAy87otBqizAaizubf+ue+UgpqW9gl+beCTlXh42PV3DEzXT4M9TO/v/v33XcfEyZMYOvWrVx99dV85StfYcmSJTQ2NtLQ0MBdd93Ff/3XfwWzr0IMeGF6LV+ZlIxee/FP2zmpkXz3yizmjYzDYtTR6vLy2ek6nvmskB1naml1ydZeAfm1zby4q5gDJTba3F5Mei2T06L41ow07piZzrSM6ICDoi9LjAjjmjEJAOwqqOdMTXNQ2xdQ3+Jid2F9f3djyPP7N2fPnj188sknTJw4kcmTJ/PUU0+xatUqNJr2WOv/+//+P2bNmhW0jgoxWCRYw7hmTCIf5lVe9H69VsOU9GgmDoviRGUTe4vqaWh1s6ewgf3FNsanRDAtPZoIk76Pey5CgcvjY/PxGlQgLcbE5GFRZMSGo+2DNWnjkiOotjs4WNrIh3mV3DYjnZhwWYwdTHsLGxiVaCXOcvE0H6L3+T1iVF9fT1JSEgAWi4Xw8HBiYmI67o+OjqapqSnwHgoxCI1LiWBSWuRlz9FqFMalRPDtWRncOCGZxAgjXp/KodJGNnxeyId5ldQ1O/uoxyJU7C6op9npwRqmY+nEFLLjLX0SFJ0zd2Q8qVEm3F6Vtw+V4/R4u36Q6DavT+Wjo1WSY6ofBTSR+eXFd7IYT4jumz8qgZSosC7PUxSFEQkWvjk9jWVTUkmLMaGqcLyyib/vKubtg+WSOXuIqG12klvSAMDVo+IvWFDdF7QahSUTkrAYddjOLsaWN/HgqmhsH5UT/SOgSeiVK1diNLYP9zkcDn74wx8SHh4OgNMpn2SFuJz2N5hkXtpdTIuz60/diqKQFmMmLcZMpd3BvsIGTtc0k1/bQn5tC6lRJq7IiiEt2iQfUgYhVVXZfLwanwrZceFkx1v6rS9mg67TYuyd+fXMHi6LsYPps9O1ZMeHExEmU+Z9ze+PGytWrCAhIYHIyEgiIyNZvnw5KSkpHbcTEhL4zne+E8y+CjHoWMP0LM5J7nFCx6SIMG6cmMy3Z2UwLjkCjQJltjbeyC3jlb0l5Nc0y6f4QeZYRRPljQ50GoX5o+P7uzskRoRx7dnF2LsL6zldLYuxg6l9LZmUC+kPfo8YPfvss8HshxBDVlqMmatGxvLpydoePzYm3MDCcYnMyo5hX1EDR8rtVNmdvH2ogjiLgRmZMYxIsEgm7QGuze1l++n218fM7JiQGUUYmxxBdZOTAyU2Nh6tJNqcRqwsGg6a/JoWTlQ2MTpJyoX0JUmWIEQImJYRw6hE///4WcP0XD06gTvnZDItIxq9VqG22cX7Ryr5+84ijlbYOxL/iYFnx+la2txeYsMNTEmL7u/udHLViDiGnV2M/c6hCpxuWYwdTFtPVl9QZ1H0Lr9GjO65555un7t+/Xp/LiHEkLNwXCJ1LU7qml1+txFu1HHViDimZ0RzoMTGgRIbDa1uNh2tYld+HdMyoiWb9gBT0djGkXI7AAtGJ/TpDrTu0GoUFk9I4uU9Jdja3HyQVyn1/oKoxenl05M1XD8+qb+7MmT4FRjl5uZ2ur1v3z68Xi+jR48G4OTJk2i1WqZNmxZ4D4UYIgw6DV+ZmMJLu4txeXxdP+AywvRaZmXHMjU9mkNlNvYX2bA7PGw+UcPugnqmZkQzITWyX3Y1ie7z+VQ+ObvOZGyyldToi5fu6G9mg46vTEjmH/va6/3tzK9jzvC4/u7WoJFXbmdscgRpMVIupC/4FRht3ry54+v169djtVp57rnniI5uH+JtaGjgzjvvlFppQvRQTLiBBaMTLpn8sacMOg3TM2KYPCyKI+V29hU10Oz0sO1ULXsLG5icHsWkYVJuJFQdKLVR2+zCqNNw1YjQDjQSIsK4bkwCHx6tYk9hAwnWMEYk9N/OucHmo2NVLJ+VIR9m+kDA3+HHHnuMdevWdQRF0J7ccc2aNTz22GOBNi/EkDMuJYIxQV5sqdNqmJwWxco5mVw7JoFIk542t5fPz9Tx7GeF7C2sx+0NbJRKBFezw8PO/DqgfR2P2RDcEh+9YUxyBJPTogDYeFQSkAaTrdXN9lM936Ahei7gwMhut1NVVXXB8erqasl8LYSfFoxJ6JWSH1qNQk5qJN+ZlcGi8YnEhBtwenx8dqaODTsKOVhqk0XaIeLTUzW4vSrJkWGMT4no7+5029wRcQyLPpcZu0IWDgfRgRIbR8ok8WNvCzgwuvXWW7nzzjt59dVXKS0tpbS0lFdffZXvfe97LFu2LBh9FGLICdNruSEnqdcWsGo0CmOSIrhjZjrXj0skIqy9YO2WEzX87fNCjlXY8UkepH5TVNfCqepmFKV9wfVAStip0SgsyUnGGqajsc3N+0cqqW9xSV6tIPnkeLVkuu9lAY/NPvnkk9x7770sX74ct9vd3qhOx/e+9z3++7//O+AOCjFUpUaZmJEZza6C3qu2rVEUxiZHMCrRypHyRnYX1GN3eNh4tIq9RQ3Mzo5leHz4gHpjHug8Xh+bT9QAMHlYFPHWgZcXyGTQtmfG3ltKcX0rz+8swmLUkRZjIj26PXt7uDH0pwZDkden8s7BCr41Mx2LfA97RcDfVbPZzJ/+9Cf++7//mzNnzqCqKiNGjOgoDSKE8N+s7FiK61upaHT06nW0GoVJw6IYlxzBwVIbewsbqG9x8e7hChKsRuYMjyU9xiwBUh/YU9RAY5ubcGP7zsKBKsEaxtJJKewtrKe80UGz08OxiiaOVbQvsYgNN5AWYyY9xkxqlAmDThYVd1ez08M7B8v52rRhknqjFwQt3AwPD2fixInBak4IQfu0xOKcZP6+qyjgLfzdode272KbkBLJ/mIbuSUNVDc5efNAOcOiTMwZEUtyZGhuGR8MGlpd7CtsLxI7f2T8gA8W0s8GPh6vj/JGB8X1rZTUt1Ld5KSuxUVdi4sDJTY0CiRFhpEebSY91kyiNQxNiOVrCjUVjQ4+Pl7NIslvFHR+BUaHDh0iJycHjaZ7v7R5eXmMHj0anU6G/YToqUiznqtHx7Mx78JNDr3FqNcye3gsk9Ii2VPYwOHSRkptbfxjbylZceHMzo4dkFM8oUxVVTafqMarqmTEmAfVVnedVtMRJAG0ubyUNrRSXN/+z+7wUG5zUG5zsLOgHoNWQ2acmdnZsUSZDf3c+9B1tNxOgtXIlPTQyoY+0PkVqUyZMoXKykri47tXyHD27NkcOHCA7Oxsfy4nxJA3PiWSorpWTlT27U5Ps0HH/FHxTEmPYndBPUfL7RTUtlBQ28LoJCtzsmN7ZffcUHSqupmS+ja0GoWrR8cP6mlLk0HLyEQrI8+WwWlsc1Nc10pxQ/uIktPj42RVM2eqW5iaEcX0jJgBP3rWWz49WUucxSjJH4PIr8BIVVV+9atfYTZ37wfhcvlf4kAI0e6aMQmU29pocnj6/NoRYXquG5vItPRoPs+v41R1Mycqmzhd1cyktEhmZMYQppckkf5yetrLPgDMyIgecqMkkSY9E4ZFMmFYJD5Vpdru5PP8OorrW9lT2MDRCjtXjYhjdKJ1UAeM/vCpKu8eruBbV6QTKR9SgsKvwGjevHmcOHGi2+fPnj0bk0nWJQgRiHNb+F/dV0p/7XyODjewZEIy1XYH207XUtrQxv5iG3nldmZkxjBpWKQsBvXDzjP1tLi8RJn0TMsc2tMiGkUhKTKMWyankF/bwqcna7A7PHyYV8Wh0kauHh1PgjWsv7sZUtpcXt4+WM43Z6RJZuwg8Csw2rJlS5C78YXVq1fz0EMPdTqWmJhIZWV7iQRVVXnooYd46qmnaGhoYObMmfzf//0f48eP77U+CREqhkWbmZEZw+5e3MLfHQkRYSybkkpRfSvbT9dS1+xi++laDpbamJ0dy5gk+WTfXdV2BwdLbUB7Yk9dN9duDnaKojA83kJGjJn9JTb2FNRT0ejgpd0l5KRGMCc7DpNBRinPqWlysjGvihsnJvd3Vwa8kPwNHD9+PBUVFR3/Dh8+3HHfo48+yvr163niiSfYs2cPSUlJLFy4ULJsiyFjdnYsSZH9/4lZURQyY8O5/Yp0Fo5LxGLU0XQ2B9KLu4spqmvp7y6GPK9P5ZMT1ajAqERLx+Jk8QWdVsMVmTF8Z3YGoxLbF6QfKbPz3OeFHCix4ZNM7R1OVjX1+4emwSAkAyOdTkdSUlLHv3OLvFVV5fHHH+fBBx9k2bJl5OTk8Nxzz9Ha2sqLL77Yz70Wom+0b+FPCpnFqBpFYVxyBCtmZ3Dl8FgMOg21zS7ePFDOG7llVDf1bg6mgcrp8fKvA2VU2Z0YtBrmjezeZpahyhqmZ3FOMl+bOow4S3spm60na3hxdzEl9a393b2QseNMLfk1zf3djQEtNP6yfsmpU6dISUkhKyuL2267jfz8fAAKCgqorKzk+uuv7zjXaDQyf/58duzY0V/dFaLPRZkNzB8VWm+kOq2G6ZkxrJyTyZS0KDQKFNe38tLuEj7Mq8Te5r7s432qSovTQ02Tk6K6Fo5V2NlX1MC2UzVsPlFNcX3roCkr0eRw88+9pZQ0tKHXKiyZkCSZoLspNdrEt65I55rRCYTpNdS1uHg9t4x3D1d0+RobClSVjjIswj8h95s4c+ZM/va3vzFq1CiqqqpYs2YNc+bMIS8vr2OdUWJiYqfHJCYmUlRUdNl2nU4nTucXlZ7tdjsAbre7o5SJEF927rURiq+R0QlmzlSZOB1inw6NWrhqRAwTUq3szK/nZHULxyubOFnVxMTUCMKN7XXZzv/X5vbS5vJyubDnUGkj0WY9E1MjGJNkDZkRs3O8Xl+n/y+lpsnJ24cqaXF5CTdoWToxiXirEZ9Piq32xPgUC8PjTewqaOBwmZ3T1c0U1LYwLtlKUoSReKuRaJM+JBNFdve14i+Hy8ub+0v4xrRUjLJbtEN3/44rai99BCspKeE3v/kNzzzzTEDttLS0MHz4cO677z5mzZrFlVdeSXl5OcnJXyww+8EPfkBJSQkffPDBJdu52KJugBdffLHbaQeECDUuL3xWpeDwht4f/3MaXXCiUaHe2Z0+qhg0YNC0B1gGLRg14FGhohW8ansbWkUlNRzSw1UsA2iHco0DDtQpeFUFi05lWpyKKeQ+ng48TS44dpHXmEZRseohUg8RBpUIPVj0EIKxUq+ID2t/jck+iHatra3cfvvtNDY2EhERccnzei0wOnjwIFOnTsXrDfxT0MKFCxkxYgQ///nPGT58OPv372fKlCkd9998881ERUXx3HPPXbKNi40YpaWlUVFRQWzswK1HJHqX2+1m06ZNLFy4EL0+NN+BSxvaeCO3HPWy4y39S1VViurbOFrRhFajYNZrMRsu/GfSay/5Cd/p8XG8solDpXZs502ZpEWbmDgsgsxYM5p+fAfwen3k5+eTnZ2N9iJbpvPK7Ww+WYuqwrCoMJbkJMqn+SBSVZXCujZKGlqpaXJR0+zE7b3wd0KjQJzFQLzVSILFSLzVQGy4oU/TTHT1Wgmm6RnRzBku73HQ/r4fFxfXZWAU8p9VnE4nx44dY+7cuWRlZZGUlMSmTZs6AiOXy8XWrVt55JFHLtuO0WjEaLywhIFerw/ZNzwROkL5dZKVoOeKbBd7CkN7N0p2vJXseKvfjzcZtExJj2FyWjTF9a0cKm0kv7aFkoY2ShraiAjTMXFYFONSIjD1Y8Ch1WrQaL64vqqqfJ5fx56zNdDGJFm5bmwi2qEybNGHhidYGZ7Q/hpTVRVbq5vqJifVTQ6qm5zUNDlxenxUN7mobnKRR/tuZo0CE1IjmT+qbzOOf/m10hv2l9hJj7OSFSeF3bv7NzzkAqN7772XpUuXkp6eTnV1NWvWrMFut7NixQoUReHuu+9m7dq1jBw5kpEjR7J27VrMZjO33357f3ddiH4ze3js2erl9v7uSq9TFIWM2HAyYsNpbHNzuKyRvLJG7A4P20/X8nl+HaMTrUxKi+z3RIAen4+PjlV3lHK5IjOGWdkxkuOpDyiKQnS4gehwA6OTvgiW7A4P1XbH2YCpPVhqc3s5WNpIlNnA5LSo/u14L9h2qoaMGHNIrrcKRSEXGJWWlvKtb32L2tpa4uPjmTVrFjt37iQjIwOA++67j7a2NlatWtWR4HHjxo1Yrf5/EhVioNNqFG7ISWJYtInNx6vxDJHcLpEmPVeNiGNWVgwnqpo4WNJITbOToxV2jlbYSYwwkhplIjEijMSIMCLCdH0WlDjcXt49VEGprQ2N0l7SZXxKZJ9cW1ycoihEmvREmvQdddpUVSW3xMa2U7VsO1VDYoSR5MjBVamhrtnF0Qo7Oany+usOvwOjZcuWXfZ+m83mV7svv/zyZe9XFIXVq1ezevVqv9oXYjDLSY0kIcLIe4cqaGgNvZ10vUWn1TA+JZJxyRFUNLZnkj5d3UyV3UmV/Yu1hSa9loQII4nWMBIjjCRGhPXKNnl7m5t/HSinvtWFQathyYQkMmJlKiMUKYrClLQoKhsdnKpu5r3DlXzrijTMhpAbNwjI52fqGJ1klZIh3eD3Tz4y8vKRZ2RkJN/5znf8bV4I4acEaxjfmpnOpqNVnKoKra38vU1RFFKiTKREmWhxeiisazkbHDmobW6fMimqa6Wo7ouEgBajjsQIIwkRYSRa24OlQAriVp/djt/q8mIx6rhpUgrx1gvXN4rQoSgK145NoKbZia3VzYd5Vdw8OaVfF/MHW7PTQ26xjSuyYvq7KyHP78Do2WefDWY/hBBBZNRp+crEFHKLG9h2qhbvEJlaO1+4Ucf4lEjGp7Tf9vh81Da7qLI7qLI7qLY7qWtx0ez00Fzj4UzNFyVMrGE6LEYd4QYd4UZt+9dn/7V/rcWg1VwwLVfdBh/tL8fjU4m1GLh5UgrWsNBctC86M+q03DghmVf2lFBc38rugnpmZQ+u3Vx7CuuZkBopNea6ENBYoc/nY8OGDbz++usUFhaiKApZWVl87Wtf49vf/rYsMBSin01JjyYpMox3D1XQ5PD0d3f6lU6jISkijKSILxZkuzw+apqcHcFSVZOTxjY3TQ5Pl98vvVY5Gzi1B0o6jcLROgVQSY8xs2RCEkadvAENJHEWI9eMSWDj0Sp2FdSTFBlG5iCaAnV5fOwsqGPB6IT+7kpI8zswUlWVpUuX8v777zNp0iQmTJiAqqocO3aMlStX8vrrr/Pmm28GsatCCH8kR5pYPiuDD45UUlArhV3PZ9BpSI02kRr9xWLbNrcXW6uLFqeXFqeHZqen/X+Xp+OY0+PD7VWxtbk75VQChbFJFq4dmyTb8QeosckRlDe2caTMzodHKvnWzHQiBtGo3+HSRqamRRNpHjzPKdj8Dow2bNjAtm3b+Pjjj1mwYEGn+z755BNuueUW/va3v8k6IyFCQJhey82TU9hT2MDnZ+rwBZDXNcKkJ95qpKCmJaB2QpVJr8XUxa4kt9dHi7M9UGp2emhxeWh2uPE0NzB/TLwERQPc/JHxVNvbt/O/d7iCr09LGzQ/U69P5bMztSyZkNz1yUOU34HRSy+9xH/+539eEBQBXHPNNdx///288MILEhgJESIUReGKrBiSI8P44Eglzc6up9Y0ikK81UhyVBipUSaSI8M61swU1bXw7uEKnO7eqfcUyvRaDVFmA1HnVRPy+bycOtUgSwgGAZ1Ww5IJyby0u5gqu5Ntp2q4ehBNP52samJaRjSJEf2b5ytU+b1v79ChQ9xwww2XvH/x4sUcPHjQ3+aFEL0kLcbM7TPTSYu5sEagQachM87M7OGxfG3aMP796uHcPjOdBaMTGJVo7bSQOCM2nG9OTyPSJEPyYvCJNOm5fnx7wfKDpY0dSToHA1WFbadq+7sbIcvvEaP6+voLqtyfLzExkYaGBn+bF0L0onCjjq9OTeXz/DoaW90dW9zjLIYejXjEWozcdkUabx8sp9zm6MUeC9H3suMsTM+IZm9RAx8fryLeaiQm3NDf3QqKkvpWCmpbpFTIRfg9YuT1etHpLh1XabVaPJ6hvQtGiFCmKApzhsexeEIyk9KiiLca/ZoGMht0fHXqMMYkSfZ5MfjMzo5lWLQJt1fl3UMVuDyDZ+p4++laeqmO/IAW0K60lStXXrQwK9Cpkr0QYnDTaTUsnpBMlNnAzvy6/u6OEEGj0SjcMD6Jl3YXU9/q4pPj1Swanzgo1pLVNrWXz5FSNZ35HRitWLGiy3Nk4bUQQ8vs4bFEh+vZlFc1ZOq1icEv3KhjcU4yr+WWcqKqiZSoMCYOi+rvbgXF52faiy7rpFRIB8l8LYQIqjFJEUSE6Xn7YDmtLm9/d0eIoEiNNnHl8Di2n67l05O1JHwpWehA1eTwcKDExvRMKRVyjoSIQoigS4kycdsV6cRZBsdCVSEApqZHMTw+HK+q8t7hCtrcgyPw311Yj2OQPJdg8Dsw2rVrF++//36nY3/729/IysoiISGBf/u3f5N1RkIMYZEmPd+YkUZm3IVpAYQYiBRFYeG4RCJNepocHj7MqxwUi5edbh+7Cur7uxshw+/AaPXq1Rw6dKjj9uHDh/ne977Hddddx/3338/bb7/NunXrgtJJIcTAZNRpuXlSKpPTovq7K0IExblis1qNQlFdKzvzB0dAcajERmOn8jZDl9+B0YEDB7j22ms7br/88svMnDmTp59+mnvuuYc//vGP/OMf/whKJ4UQA5dGo7BgTAJXj45HMwh28ggRbzWyYHQ80D4NlVs88HP2eXwqn5+RpI8QwOLrhoaGTgket27d2ikT9owZMygpKQmsd0KIQWNKensJguL6VuqaXdS3OGlodeOV3WtiABqfEkmzw8POgno+PVWLQacZ8Nvej1c2MTUjmgTrwF9UHgi/A6PExEQKCgpIS0vD5XKxf/9+HnrooY77m5qa0OulVIAQ4gvnMmyf4/Wp2Fpd1LW4qG12Ut/ioq7Zha3VPSgL1IrB5YqsGJweH7klNj4+Vo1Bq2Fk4sBNdKqqsP1ULcumDuvvrvQrvwOjG264gfvvv59HHnmEN998E7PZzNy5czvuP3ToEMOHDw9KJ4UQg5NWoxBrMRJrMTLqvDcUr0+lvsV1NlByUtLQKiVHRMhRFIW5I+NweX3kldv5IK8SvU5DZuzALbNRVNdKUV0LGQP4OQTK78BozZo1LFu2jPnz52OxWHjuuecwGL7YmvvMM89w/fXXB6WTQoihRatRiLcaibcaASuqqrK/2MZnp2tl6k2EFEVRuGZMAi6Pj1PVzbx7qIJbpqSSet7I6ECz/XQt6THmQZHd2x9+B0bx8fFs27aNxsZGLBYLWq220/3//Oc/sVgsAXdQCCEURWFaRjRp0SbeP1JJfYurv7skRAeNorBofBIubzlFda28daCcr05NJWGAJoCstjs5XtnE2OSI/u5Kvwg4wWNkZOQFQRFATExMpxEkIYQIVEJEGN+6Ip2c1IG9yFUMPlqNwo0TkkmNMuHy+njzQPmADuB3nKnD4x08BXN7wu/AqLW1lR/96EekpqaSkJDA7bffTm2tbPUTQvQug07DwnGJ3DgxGaNekveL0KHXalg6KZkEq5E2t5c3csuwD9DcQPY2N9tOD833dL//qvzmN79hw4YN3Hjjjdx2221s2rSJf//3fw9m34QQ4pJGJVpZPitjQK/l6Gthei3Z8eFEmWXHcG8x6rTcMiWVmHADzU4Pr+eW0eL09He3/HKg2EZ+TXN/d6PP+b3G6PXXX+evf/0rt912GwDLly/nyiuvxOv1XnRqTQghgi0iTM/Xpg1jd2E9u/LrZYv/RcRbjWTFhZMZF05yRBgaTfuC2manh3JbG2W2Nsoa2qhtdiLfvuAw6bXcOiWVV/eV0tjm5o3cMr46bRgm/cB7b9x0tIo7ZoVhMfodLgw4fj/TkpKSTtvzr7jiCnQ6HeXl5aSlpQWlc0II0RWNRmFWdizpMWbeP1I5YKcugsWg05AeY+4Ihi71hmYx6hiVaO1Ik+D0eKmwOdoDJVsbVY0OPLID0G8Wo45bp6Tyz30l1LW4+NeBMpZNGYZBN7Cmf1tdXj48UsmyqalDZpea34GR1+u9YHG1TqfD4xmYQ4ZCiIEtJcrEHTPT+eR4NScqm/q7O30qJtxAVlw4WXHhpESZ0Gp6/gZm1GnJPBtMAXi8PqqanO2jSg3twZLLMzQX4/or0qTn1smpvLq/lCq7k7cOlnPL5BT8+PH0q+L6VvYWNTAjM6a/u9In/A6MVFVl5cqVGI3GjmMOh4Mf/vCHhId/kRjq9ddfD6yHQgjRTWF6LUsmJJMeY2bryZpB/UY+LNrEyEQrWbHhRPbCmiGdVkNqlInUKBMzMsHW6uIfe0tocXqDfq3BLNZi5JbJqby+v4wyWxvvHq5gSU5i1w8MMZ+fqSMt2kxS5MBMQdATfgdG3/nOdy4YVlu+fHnAHRJCiEDlpEaSGmVix5k66ltd2NvcgyJIUhTIjrcwIzOa5Mi+XXQeZTawbOowXt1XSptLgqOeSIwI46ZJKbxxoIzCulY2Hasme4Ctf/f6VN47XMEds9Ix6gbeWqme8Dsw2rBhQxC7IYQQwRUdbuDGickdt1tdHuxtHhrb3DS2ubGf/b+xzU2TwxPSC7e1GoXRSVamZ0QTazF2/YBeEmcxdiwqHgyBZl9KjTbxlQnJvH2onFPVLTjCFUaG8GvuYhrb3Gw+Xs0NOcldnzyA+R0Y7dq1i/r6ehYvXtxx7G9/+xu/+c1vaGlp4ZZbbuF///d/O021CSFEfzEbdJgNuotOBfh8Kk1OT0ewVFjXwqmq/t+mrNcqjE+NZFpGNBFhoTHEkBgRxi1TUnljfylu78B6Y+9vmXHh3DA+ifeOVFLSorC3yMbM7Lj+7laPHKtoIj0mnHEpgzcrtt/L41evXs2hQ4c6bh8+fJjvfe97XHfdddx///28/fbbrFu3LiidFEKI3qTRKESa9KTFmMlJjeQrE1P41hXpDIvunxxJYXotM7Nj+N5V2SwYnRAyQdE5qVEmlk5KQTfQVhGHgJGJVuaNjAVgZ0EDeeWN/dyjntt8ohpb68DN6t0VvwOjAwcOcO2113bcfvnll5k5cyZPP/0099xzD3/84x/5xz/+EZROCiFEX0uKDOPr09O4eXIKcZa+KW9kDdMxb1Qc37sqiznD4zAZQnctR0ZsOIsnJKMZIlu4g2nSsEiyrO2jbR8fr6agtqWfe9QzLo+P9w5XDtqCzn4HRg0NDSQmfrGyfuvWrdxwww0dt2fMmEFJSUlgvRNCiH6WHW/hjpkZLByXiDWsd5LcRZv1LByXyJ1XZjEtI2bA5LoZkWBhUU4iEhv13KgIlTFJFlQV3jtcQWWjo7+71CNVdgc7zgzOkiF+//YlJiZSUFAAgMvlYv/+/cyePbvj/qamJvT60Br+FUIIf2g0CjmpkayYk8lVI+OCUqMtzmpkemY0X506jBVzMslJjfQr/1B/G5MUwbVjBt728/6mKHDN6HgyYsx4fCpvHSynYYBNT+0raqCobmCNdnWH3x9/brjhBu6//34eeeQR3nzzTcxmc6dM2IcOHWL48OFB6aQQQoQCvVbDjMwYclIi2VVQx6HSxm5PJ5gNWtJjzGTEhpMRayZ8EJVYmDAsEpfXx6cna/q7KwOKVqOwZEIyr+0vpbrJyZu5ZXxjetqAeW2oKnyYV8nyWRmYDQOjz93h9zNZs2YNy5YtY/78+VgsFp577rlOmbCfeeYZrr/++qB0UgghQonJoOXq0QlMSYtmx5laTlRdmGlbq1FIjgzrCIQSrMZBXVJhWkY0bq+Pz8/U9XdXBhSDTsNNk1L459m6am8dLOerUwdO6ZAWp5eNeVXcPDll0Ly+/Q6M4uPj2bZtG42NjVgslgsKx/7zn//EYrEE3EEhhAhVkWY9iyckMy0jmi3HqyjTqUwcFkl2QgRp0eYB8+YWLLOyY3F7fewtbOjvrgwo4UYdN09O4Z9720eO3j1cwU2TUgbM1GpBbQu5JTampkf3d1eCIuDf2sjIyAuCIoCYmJgLaqkJIcRglBARxq1TUpifrHL1qHiGx1uGXFB0ztyR8UxKi+zvbgw40WYDN51NgVBc38pHx6pQB1ACyO2naqm2D6wF5JcyNH9zhRBC9JoFoxMYmzx4EwD2lqTIMG6ckIyiwPHKJj4bQNOSXp/K+0cqB0VGdAmMhBBCBJWiKFw/LpERCbKcoqcy48K57uwuv31FDRwosfVvh3qgvsXFlhPV/d2NgA2eZeRCCCFChubsjqv9xQ24PD68PhWvquLzqXh87f97VRWvT8Wnqnh9dDpmd7hxugf+6IM/xqVE0Oz08Hl+HVtP1hBu0DIy0drf3eqWvHI7iRFhTEqL6u+u+E0CIyGEEL1Cq1GYkRnj12M9Xh/5tS0cLbdTVNca0kV+e8OMzGhanB4OlTXyYV4VJoOWYdHm/u5Wt2w5UYM1TEd2/MAcMQzKVNq2bdtYvnw5s2fPpqysDIDnn3+e7du3B6N5IYQQQ4xOq2FUopVbpqTy/blZzBsVT5x16BQlVxSF+aPjGR4fjldVeftQBbXNzv7uVrf41Pb1RgN1MXbAgdFrr73GokWLMJlM5Obm4nS2/+CamppYu3ZtwB1ct24diqJw9913dxxTVZXVq1eTkpKCyWTi6quvJi8vL+BrCSGECD3hRh3TMqL59qwM7piVztSMaMKNoVtHLlg0isIN45NIjgzD5fHxrwPl1A2Q4Ohcf+0Od393pccCDozWrFnDk08+ydNPP92pBMicOXPYv39/QG3v2bOHp556iokTJ3Y6/uijj7J+/XqeeOIJ9uzZQ1JSEgsXLqSp6cIka0IIIQaPBGsY80fF8/2rsrl5cgqjEq3oBki+H3/otO0JIGPMBpqdHl7aU8L+4oYBMbXY7PTwrwPlOD3e/u5KjwQcGJ04cYJ58+ZdcDwiIgKbzeZ3u83Nzdxxxx08/fTTREd/kTRKVVUef/xxHnzwQZYtW0ZOTg7PPfccra2tvPjii35fTwghxMCh0Shkx1u4cWIyP5iXzbVjE0iJChuUQVKYXsuyqalkxJrx+lS2narltf3tmbJDXW2Tk3cPVeDrZumcUBDw4uvk5GROnz5NZmZmp+Pbt28nOzvb73Z/9KMfceONN3LdddexZs2ajuMFBQVUVlZ2KjdiNBqZP38+O3bs4K677rpoe06ns2OaD8ButwPgdrtxu0P/xSX6x7nXhrxGRFfktdJ/tMDYxHDGJoYD7R+g3V4Vj8+Hx6vi9ql4vD48Z3fEebxf3HZ7fbi9Kkcr7H0WaHi9vk7/d4dJr7B0QiJ5FU1sP11Huc3BC7uKuGp4LONTrCFdjqOgpomNeeVcOyahX/vR3d/NgAOju+66i5/+9Kc888wzKIpCeXk5n3/+Offeey+//vWv/Wrz5ZdfZv/+/ezZs+eC+yorKwFITOxczTkxMZGioqJLtrlu3ToeeuihC45v3rwZs3lgrPQX/WfTpk393QUxQMhrZWCKUcHeBGfsCl61b4KM/Pz8Hj/GCMyOh8P1Cg0u2HyylsNFNeTEqISF8LKrU6fg6AEfw/sx72dra2u3zgs4MLrvvvtobGxkwYIFOBwO5s2bh9Fo5N577+XHP/5xj9srKSnhpz/9KRs3biQsLOyS5305OlZV9bIR8wMPPMA999zTcdtut5OWlsaCBQuIjY3tcT/F0OB2u9m0aRMLFy7stIZOiC+T18rg0ORws/10Haeqm3vtGl6vj/z8fLKzs9Fq/VvRMlFVOVDayOf5DdQ64fMaLfNGxjI60RLCo0cKI8YnMKqfcjKdmynqSlDyGD388MM8+OCDHD16FJ/Px7hx4/wuILtv3z6qq6uZNm1axzGv18unn37KE088wYkTJ4D2kaPk5OSOc6qrqy8YRTqf0WjEaLxwq6der5c/YqJL8joR3SWvlYEtRq/npilmSupb2XKimtpmV69dS6vVoNH4P8wzLSOWrDgrG49WUmV3sulYDfm1rVwzJgGzITTTFH5yoo4oi4nUKFOfX7u7v5dBKwliNpuZPn06V1xxhd9BEcC1117L4cOHOXDgQMe/6dOnc8cdd3DgwAGys7NJSkrqNFztcrnYunUrc+bMCcZTEUIIMcSlxZi5Y2YG80fHY9SHbvWsmHAD35iWxuzsWDQKnKlp4e87izlT03sjXoHw+FTePliOrbX3As5A+RVSnj8l1ZX169f3qG2r1UpOTk6nY+Hh4cTGxnYcv/vuu1m7di0jR45k5MiRrF27FrPZzO23396jawkhhBCXotEoTE2PZkySle2najlaYScUd8lrNApXZMWQFRfOh3mV1LW4eOdQBWOSrFw9Kh6jPrQWH7W5vLyZW8Y3Z6RjMoRW38DPwCg3N7fT7X379uH1ehk9ejQAJ0+eRKvVdpoOC6b77ruPtrY2Vq1aRUNDAzNnzmTjxo1YrQOjlowQQoiBw2zQcf34JCYMi2Tz8RqqQjSjc7zVyG1XpLErv559RQ0cr2yitKGN68YmkBEb3t/d66Sh1c3bB8tZNjUVnZ/rrHqLX4HR5s2bO75ev349VquV5557riPfUENDA3feeSdz584NSie3bNnS6baiKKxevZrVq1cHpX0hhBCiK8mRJr51RRpHyux8dqaWNlfoJS7UaTRcOSKO7PhwNuZVYWtz8+aBcm6ZnBJywVGZrY2NR6tYnJMUUgvGAw7THnvsMdatW9cpCWN0dDRr1qzhscceC7R5IYQQImQoisKEYZGsnJPJ5PQoDLrQGu04JznSxO0z0xmV2L7m96Nj1SGZgfpEZRM7ztT1dzc6CfgnarfbqaqquuB4dXW1lOgQQggxKIXptSwYncAP5mZz/fhEhkWbCKFBDwD0Wg3XjU0k0qSn2elh+6na/u7SRe0uqOdIWWN/d6NDwIHRrbfeyp133smrr75KaWkppaWlvPrqq3zve99j2bJlweijEEIIEZIMOg3jUyL5+vQ07pyTxazsWCJMoZOuoT04as84faTcTnF995Ic9rUtJ6pDZmoy4MDoySef5MYbb2T58uVkZGSQkZHBHXfcweLFi/nTn/4UjD4KIYQQIS/SrGf28Fi+e2UmX5s2jLHJEei1/T+MNCzazMTUSAA+PlaFy9P9UiR9xe1VyS1p6O9uAEFI8Gg2m/nTn/7Ef//3f3PmzBlUVWXEiBGEh4fWIi8hhBCiLyiKQlqMmbQYM05PPKeqmjlabqfM1tZvfbpyRBwFdS3YHR4+O1PLgtH9W7fsYg6WNDI9I6bf120FLTVmeHg4EydODFZzQgghxIBn1GnJSY0kJzWShhYXRyvsHCnt+5ERg659vdEbuWUcKm1kVIKV1Oi+zz59OQ63l7zyRqakR3d9ci8KWmB09OhRiouLcbk6Z7O86aabgnUJIYQQYsCKDjdw5Yg4pqdFoKk8SkxsOKU2J74+yhqZHmMmJyWCI+V2Nh2r4o6Z6ehDLIfQ/mIbk4ZFodH03xRkwIFRfn4+t956K4cPH0ZRFNSzP+BzOQm83tBYTCWEEEKEAo1GIcEESyYl0+aFvDI7eeWNNDk8vX7tq0bGUVjXSmObm8/P1DFvVHyvX7Mn7G1uTlQ1MTY5ot/6EHCo+NOf/pSsrCyqqqowm83k5eXx6aefMn369AsSMwohhBDiCxFh5xZsZ3HT5BSy48N7ddu/Uafl2jHt64tyS2yU9+O6p0vZV9S/i7ADDow+//xzfvvb3xIfH49Go0Gj0XDVVVexbt06fvKTnwSjj0IIIcSgptEoDI+3cPPkVL57VRYzs2OwhgVttUsnmXHhjE1uL6H10bEqPN7Q2qVW0+SksLal364fcGDk9XqxWNoza8bFxVFeXg5ARkYGJ06cCLR5IYQQYkiJCNMzZ3gc370yi6WTUsiKC/4o0ryR8YQbtDS0utlZUB/cxoNgbz+OGgUcjubk5HDo0CGys7OZOXMmjz76KAaDgaeeeors7Oxg9FEIIYQYcjQahREJFkYkWGhsc5NX1sjRCntQ1iKF6bVcMyaBtw9VsL+ogRHxFpIiw4LQ6+AoqW+lstHRL30KeMTol7/8JT5f+zDcmjVrKCoqYu7cubz33nv88Y9/DLiDQgghxFAXadIzZ0T7KNLNZ9ciaQIcRsqOtzA60YoKbDpWhccXWlNqe4v6ZyQr4BGjRYsWdXydnZ3N0aNHqa+vJzo6OqSq5QohhBADnUajkB1vITveQrPTw9FyO0fKGmlsc/vV3vzR8RTXt1Lf4mJPQQOzh8cGucf+O13djK3VRZTZ0KfXDXjEaN26dTzzzDOdjsXExPDss8/yyCOPBNq8EEIIIS7CYtRxRVYMd16ZyVenDmN0khVdD/P/mPRaFoxp37K/p6ie6iZHb3TVL6raPzvUAg6M/vKXvzBmzJgLjo8fP54nn3wy0OaFEEIIcRmKopAea2bJhGS+PzebeaPiibV0f5RlZIKVkQkWVBU2Ha3C6+ubhJPdcbTcTouz9/M7nS/gwKiyspLk5OQLjsfHx1NRURFo80IIIYToJpNBy7SMaL4zO5NvzkhjfEr3CtlePToek15LbbOLvYWhs0vN41M5UGLr02sGHBilpaXx2WefXXD8s88+IyUlJdDmhRBCCOGHlCgT149PYvGE5C63+5sNOuafzYK9u7Ce2mZnH/Swew6VNuLy9N3C8IADo+9///vcfffdPPvssxQVFVFUVMQzzzzDz372M37wgx8Eo49CCCGE8NPweAtXZMV0ed6oRAvZceH4zk6p+UJkSs3h9nK4rLHPrhfwrrT77ruP+vp6Vq1a1VFANiwsjF/84hc88MADAXdQCCGEEIGZnR1Ltd1JwWUySiuKwjVjEijbWUR1k5N9xQ3MyOw6oOoLucUNTE6LQtsHxWUDHjFSFIVHHnmEmpoadu7cycGDB6mvr+fXv/51MPonhBBCiAApisINOUlEmfWXPS/c+MWU2q78eorrW/uie11qcng4Xmnvk2sFHBidY7FYmDFjBjk5ORiNxmA1K4QQQoggCNNr+crElC4XY49Jat+l5lVV3jlUTmVjaGzh31/UgKr2/vReUAKjbdu2sXz5cubMmUNZWRkAzz//PNu3bw9G80IIIYQIgnirkevGJV72HEVRuH58IukxZtxelTcPlFHT1P+LsWubXZedCgyWgAOj1157jUWLFmEymdi/fz9OZ/s3r6mpibVr1wbcQSGEEEIEz5ikCKakR132HJ1Gw1cmJpMcGYbT4+PNA2XYWl1908HL6IvisgEHRmvWrOHJJ5/k6aefRq//Yu5yzpw57N+/P9DmhRBCCBFk80bGMyzadNlz9FoNN09KIc5ioNXl5fXcMpoc/pUeCZayhjYqGtt69RoBB0YnTpxg3rx5FxyPiIjAZrMF2rwQQgghgkyjUbhxYjLWsMtvTjfqtdw6JZUos54mh4c3cstodfVtJuov21PYu6NGAQdGycnJnD59+oLj27dvJzs7O9DmhRBCCNELzAYdX5mY0mV9NbNBx61TUrEYdTS0unnzQDlOt7ePenmh/Jpm6lt6b1ov4MDorrvu4qc//Sm7du1CURTKy8t54YUXuPfee1m1alUw+iiEEEKIXpAUGcbVoxO6PC8iTM+yqamY9Fpqmpz862A5bm/fZaM+X28Xlw04MLrvvvu45ZZbWLBgAc3NzcybN4/vf//73HXXXfz4xz8ORh+FEEII0UsmDIskJzWyy/OizQZunZKKQaehotHBu4cq8Pj6Jzg6XmGnuZeKywZlu/7DDz9MbW0tu3fvZufOndTU1PC73/0uGE0LIYQQopctGB1PUmRYl+fFW43cPKl9+q2ovpUPj/RP6RCPT+VAsa1X2g5agkez2cz06dO54oorsFgswWpWCCGEEL1Mp23fnm82aLs8NyXKxFcmJqNVFE7XNPPR8ao+Sbz4ZYfKbDg9wV/r5FettHvuuafb565fv96fSwghhBCiD1nD9CyZkMzr+8vwdRHoZMSGc0NOEu8dqeBYRRNGnZZ5I+NQlN6vZXaO0+3jcGkj04Ncz82vwCg3N7fT7X379uH1ehk9ejQAJ0+eRKvVMm3atMB7KIQQQog+kRZj5qqRsXx6srbLc0ckWFg4NpGNR6s4UGLDqNMwKzu2D3r5hQMlNqamR6MJYnFZvwKjzZs3d3y9fv16rFYrzz33HNHR0QA0NDRw5513Mnfu3OD0UgghhBB9YlpGDFV2Jycqm7o8d2xyBC6Pjy0na9hVUI9Bp2FqenQf9LJdk8PD6ZpmRiVag9ZmwGuMHnvsMdatW9cRFAFER0ezZs0aHnvssUCbF0IIIUQfu25sIqlRl8+Mfc6ktChmnx0p2naqliNljb3ZtQscKLEFtb2AAyO73U5VVdUFx6urq2lq6jraFEIIIURoMeg0LJuayuik7o3EzMiMZurZ+msfH69m++naPtutVtbQRnWTI2jtBRwY3Xrrrdx55528+uqrlJaWUlpayquvvsr3vvc9li1bFow+CiGEEKKP6bQaFuckMaMbi5sVReGqEXFMy2ifPdpX1MCbB8to66MM2cHcuh9wYPTkk09y4403snz5cjIyMsjIyOCOO+5g8eLF/OlPfwpGH4UQQgjRDxRF4aqRcSwcl4imix1n54KjxTlJ6DQKJfVtvLy7mJomZ6/380RlE22u4ARhAQdGZrOZP/3pT9TV1ZGbm8v+/fupr6/nT3/6E+Hh4cHooxBCCCH6UU5qJLdMScGg6zpsGJVo5Zsz0og06bE7PPxjbwnHK+292j+PT+VwkNY2BS3BY3h4OBMnTmTSpEkSEAkhhBCDTEZsON+YnoY1rOsN7XEWI7fNSCMj1ozHp/JhXhWfnqzp1XVHh0ptQWnf7wSPv/vd7wgPD+8y2aMkeBRCCCEGh3irkduuSOdfB8qotl9+iixMr+WmSSnszK9jT2EDuSU2apqdLM5JwmzwK/y4rGBt3fc7waPb7e74WgghhBBDg8Wo4+vT0nj/SAX5NS2XPVejKMwZHkeCNYyNRyspbWjjpd0lfGViMokRXddm66kDxbb+CYzOT/B4/tdCCCGEGPwMOg1LJ6aw5WQ1B0u6XtszIsFCtDmNdw5VYGtz8899pVwzJoFxyRFB7VeZrY1qu4OEAIKugNcYrVu3jmeeeeaC48888wyPPPJIj9v785//zMSJE4mIiCAiIoLZs2fz/vvvd9yvqiqrV68mJSUFk8nE1VdfTV5eXkDPQQghhBA9o9EoXDMmkXmj4ulOibTYs+uOsuLC8fpUNh2tYsuJarxBXneUG2DCx4ADo7/85S+MGTPmguPjx4/nySef7HF7w4YN47/+67/Yu3cve/fu5ZprruHmm2/uCH4effRR1q9fzxNPPMGePXtISkpi4cKFkkxSCCGE6AfTMqL5ysRk9NquoyOjXsvSicnMzGrPjXSwtJHXc0tpcXqC1p+TlU20uvxvL+DAqLKykuTk5AuOx8fHU1FR0eP2li5dypIlSxg1ahSjRo3i4YcfxmKxsHPnTlRV5fHHH+fBBx9k2bJl5OTk8Nxzz9Ha2sqLL74Y6FMRQgghhB9GJFj56rRhmA3aLs9VFIVZ2bEsnZiMQauh3Obg5T0lVNmDk73a41M5UuZ/eoCAl4WnpaXx2WefkZWV1en4Z599RkpKSkBte71e/vnPf9LS0sLs2bMpKCigsrKS66+/vuMco9HI/Pnz2bFjB3fdddcl23I6nTidX6ygt9vbv2lut7tjIbkQX3butSGvEdEVea2I7hqsr5U4s46vTknmk+M1lDS0dnl+ZqyJr09L4b0jVTS0unnrYDnfnpnWrVxJXcktqmNSigWN5otRrO5+vwMOjL7//e9z991343a7ueaaawD4+OOPue+++/iP//gPv9o8fPgws2fPxuFwYLFYeOONNxg3bhw7duwAIDExsdP5iYmJFBUVXbbNdevW8dBDD11wfPPmzZjNZr/6KYaOTZs29XcXxAAhrxXRXYP1tWIEItrgRKNCs7vr6bVpUbDDqdDq8rLpQAGjIoOz5kitOEryeW/vra1dB2sQhMDovvvuo76+nlWrVuFyuQAICwvjF7/4BQ888IBfbY4ePZoDBw5gs9l47bXXWLFiBVu3bu24X/nSKi9VVS849mUPPPBAp5xLdrudtLQ0FixYQGxsrF/9FIOf2+1m06ZNLFy4EL1e39/dESFMXiuiu4bKa8XnU8mrsLOroKHLNT/GmBbePVJFUYuGq8YPI9IU+PclItLEkmmpHbfPzRR1JeDASFEUHnnkEX71q19x7NgxTCYTI0eOxGg0+t2mwWBgxIgRAEyfPp09e/bwhz/8gV/84hfAheuaqqurLxhF+jKj0XjRPun1+kH9whTBIa8T0V3yWhHdNRReK1Mz48gZFsPewnr2Fzfg9l58NGh4gpW0aDslDW3sONPAjRMvXLvcU1VNLhravB1b97v7vQ5aSRCLxcKMGTPIyckJKCi6GFVVcTqdZGVlkZSU1Gn40eVysXXrVubMmRPUawohhBAicAadhjkj4lgxJ5NxKREX3dqvKEr7tn/gdE0zpd1Yo9Qd/mzdD0pgtG3bNpYvX86cOXMoKysD4Pnnn2f79u09bus///M/2bZtG4WFhRw+fJgHH3yQLVu2cMcdd6AoCnfffTdr167ljTfe4MiRI6xcuRKz2cztt98ejKcihBBCiF5gDdOzaHwSt89MJz3mwrW9cRYjOamRAGw9WYNPDXytkT9b9wMOjF577TUWLVqEyWRi//79HTu/mpqaWLt2bY/bq6qq4tvf/jajR4/m2muvZdeuXXzwwQcsXLgQaF/TdPfdd7Nq1SqmT59OWVkZGzduxGoNLAW4EEIIIXpfgjWMr04bxs2TU4i1GDrdNzs7FqNOQ22zi7xy/7fcn+PxqRwu7Toz9/kCDozWrFnDk08+ydNPP91p/m7OnDns37+/x+399a9/pbCwEKfTSXV1NR999FFHUATtw22rV6+moqICh8PB1q1bycnJCfRpCCGEEKIPZcdbWD4zg2vHJnTkPzIZtB3JHz8/U4fT4w34OofLGvH1ILt2wIHRiRMnmDdv3gXHIyIisNlsgTYvhBBCiEFKo1GYOCyKFXMyCTe2B0cTh0URbdbT5vayu6A+4Gs0OTycqm7ufp8CvWBycjKnT5++4Pj27dvJzs4OtHkhhBBCDHJhei1zR8YDoNUozDv79YESGw2troDbP1DS0O1zAw6M7rrrLn7605+ya9cuFEWhvLycF154gXvvvZdVq1YF2rwQQgghhoCxyRGknV2UnRkXTkasGZ8K207VBtx2uc1BTTdLjgQlwWNjYyMLFizA4XAwb948jEYj9957Lz/+8Y8DbV4IIYQQQ8Q1YxL4+84ivD6VeSPjeaG+iILaForqWsiIDQ+o7YNl3VuEHZTt+g8//DC1tbXs3r2bnTt3UlNTw+9+97tgNC2EEEKIISIm3MC0jOiOrycOiwLg01O1PVpAfTGnq7q3ziigESOfz8eGDRt4/fXXKSwsRFEUsrKy+NrXvsa3v/3tLst0CCGEEEKc74qsGI5XNmFvczMzK4bjlXbqW1wcLmtkUlqU3+16uxlY+T1ipKoqN910E9///vcpKytjwoQJjB8/nqKiIlauXMmtt97qb9NCCCGEGKL0Wg0LRrcvvg7Ta5md3V7PdGd+HQ534Nv3u+L3iNGGDRv49NNP+fjjj1mwYEGn+z755BNuueUW/va3v/Gd73wn4E4KIYQQYujIjrcwPMHCmepmclIiOVTaSF2Li535dVw9OqFXr+33iNFLL73Ef/7nf14QFAFcc8013H///bzwwgsBdU4IIYQQQ9PVo+Mx6DRoNO111AAOlTVS1+zs1ev6HRgdOnSIG2644ZL3L168mIMHD/rbvBBCCCGGsIgwfUcW7PQYM9lx4ahnt++rQaijdil+B0b19fUkJiZe8v7ExEQaGrqfUEkIIYQQ4nxT06OJO1tPbe7IOLSKQlF9K4V1rb12Tb8DI6/Xi0536SVKWq0Wj6dnFW2FEEIIIc7RaBSuGZuIokCU2cDk9CgAPj1Z0+1dZj3l9+JrVVVZuXIlRqPxovc7nb07ByiEEEKIwS81ysS45Ajyyu3MyIzmWIUdW5ubg6U2pqZHB/16fgdGK1as6PIc2ZEmhBBCiEDNHRnPmZoWAGYPj+XjY9XsKqhnTJIVsyHgIh6d+N3as88+G8x+CCGEEEJclMmg5aoRcXx0rIpxyREcKm2kpsnJ5/l1XDvm0uud/RGUkiBCCCGEEL0pJzWClKgwNIrC/JHt2/fzyuzUNAV36Y4ERkIIIYQIeYqisGBMAhpFITXaxMgECyrwyfHqgOuonU8CIyGEEEIMCAnWsI6daXNHxmHQaqi0O9hbHLz0QBIYCSGEEGLAmJUdgzVMhzVMz9Vna6rtyq+juskRlPYlMBJCCCHEgGHUaZl/tkTImCQrw+PD8anwYV4VHq8v4PYlMBJCCCHEgDIy0UpmnBlFUbh2TCJmg5b6Fhc7ztQF3LYERkIIIYQYcBaMTkCnUTAZtFw3tn3Lfm6JjZL6wMqFSGAkhBBCiAEnymzgirNFZrPiwslJiQBg49EqnB6v3+1KYCSEEEKIAemKrBgy48xAe3bsSJOeZqeHrSdq/G5TAiMhhBBCDEiKorA4J5kosx6DTsP14xJRgGOVTZyubvarTQmMhBBCCDFghem1LJ2UgkGnISXKxLSM9sKyHx+vosXp6XF7EhgJIYQQYkCLsxhZND4RRYFZ2bHEW4w43D4+OlaFqvYsK7YERkIIIYQY8EYkWLkiKwatRuH68YloFYXCulbyyu09akcCIyGEEEIMCrOzY8mODyfOYmTO8FgAPj1Vg63V1e02JDASQgghxKCgKAo35CQRazEwJT2K1CgTbq/KxqNV+Lo5pSaBkRBCCCEGDaNOy9KJKYQZtFw/LhGDVkNFo4MDJbZuPV4CIyGEEEIMKtHhBhbnJBNp1nfUVdtTWN+tx+p6s2NCCCGEEP0hKy6cK0fE4fOp5Nc2c6q0e6VCJDASQgghxKA0IzOGaruTNreXkqruFZiVqTQhhBBCDFrXj08kIzacBaPju3W+jBgJIYQQYtDSazUsnZRCTX1Dt86XESMhhBBCDGqRJj2LxiV161wJjIQQQggx6A2LMXfrPAmMhBBCCCHOksBICCGEEOIsCYyEEEIIIc6SwEgIIYQQ4iwJjIQQQgghzgq5wGjdunXMmDEDq9VKQkICt9xyCydOnOh0jqqqrF69mpSUFEwmE1dffTV5eXn91GMhhBBCDBYhFxht3bqVH/3oR+zcuZNNmzbh8Xi4/vrraWlp6Tjn0UcfZf369TzxxBPs2bOHpKQkFi5cSFNTUz/2XAghhBADXchlvv7ggw863X722WdJSEhg3759zJs3D1VVefzxx3nwwQdZtmwZ8P+3d+8xTV5vHMC/XRUEKlVASwkXzVDcvDUiGg1CNQ4vm3NzXrItYAMzI8iiIXiLc4uLGXHDuCxubC6KzMypm0MXEy9kK6CYTUHZZrYxZDhxA4wgilxa157fH5b+qEV4xdK3g+8naeJ73tNzHt48eft4zgsF8vLyoNFocODAAbz++utyhE1ERET9gMcVRg+6ffs2ACAgIAAAUF1djbq6OiQkJNj7eHt7Iz4+HufOnXtoYWQymWAymZzGbWxs7KvQqR+4d+8eWltb0dDQgMGDB8sdDnkw5gpJxVyRR8eukhCi234eXRgJIZCRkYHY2FhMmDABAFBXVwcA0Gg0Dn01Gg3++uuvh46VlZWFrVu3OrWPHTvWhRETERGRJ2tuboZarX7oeY8ujNLT0/Hzzz/j7NmzTucUCoXDsRDCqa2zTZs2ISMjw37c1NSEiIgIXLt2rdsL5AliYmJw4cIFjx6/t2M8yvuk9O2pT3fnuzp3584dhIWFoaamBv7+/pLilEtf54mr5ujNGK7OEyn9mCvyjt9f7ynAfydX+ts9RQiB5uZmhISEdNvPYwujN954A99++y2Ki4sRGhpqbw8Ovv8lcHV1ddBqtfb2GzduOK0idebt7Q1vb2+ndrVa7dGJCQBKpbJPY3TF+L0d41HeJ6VvT326O9/dOX9//wGfJ66aozdjuDpPpPRjrsg7fn+/pwCenyv98Z4iZSHE434rTQiB9PR0fPPNN/j+++8xevRoh/OjR49GcHAwCgoK7G1msxlFRUWYOXOmu8N1i9WrV3v8+L0d41HeJ6VvT326O9/X17mvuSN+uXLF1XkipR9zRd7xeU+RX3++p3RHIXp6CsnN0tLScODAARw7dgxRUVH2drVaDR8fHwDA9u3bkZWVhdzcXIwZMwbvvvsuCgsLUVFRgaFDh0qa586dO1Cr1bh9+7ZHV+wkL+YJScVcIamYK57N47bScnJyAAB6vd6hPTc3FwaDAQCwfv16tLW1IS0tDbdu3cL06dNx+vRpyUURcH9r7e233+5ye42oA/OEpGKukFTMFc/mcStGRERERHLxuGeMiIiIiOTCwoiIiIjIhoURERERkQ0LIyIiIiIbFkZERERENiyMuvDiiy9i+PDhWLp0qdyhkAerqamBXq/H008/jUmTJuGrr76SOyTyQM3NzYiJiYFOp8PEiRPx2WefyR0SebjW1lZEREQgMzNT7lAGJP66fheMRiPu3r2LvLw8fP3113KHQx6qtrYW9fX10Ol0uHHjBqZMmYKKigr4+fnJHRp5EIvFApPJBF9fX7S2tmLChAm4cOECAgMD5Q6NPNTmzZtRWVmJ8PBwZGdnyx3OgMMVoy7Mnj37kf5YJA1MWq0WOp0OADBy5EgEBASgsbFR3qDI4yiVSvj6+gIA2tvbYbFYwP+P0sNUVlbi999/x8KFC+UOZcDqd4VRcXExFi1ahJCQECgUChw9etSpz8cff4zRo0djyJAhiI6OxpkzZ9wfKMnOlblSWloKq9WKsLCwPo6a3M0VedLU1ITJkycjNDQU69evR1BQkJuiJ3dyRa5kZmYiKyvLTRFTV/pdYdTS0oLJkydj165dXZ4/dOgQ1q5di82bN+PSpUuYNWsWFixYgGvXrrk5UpKbq3KloaEBSUlJ2L17tzvCJjdzRZ4MGzYMP/30E6qrq3HgwAHU19e7K3xyo8fNlWPHjmHs2LEYO3asO8OmB4l+DIDIz893aJs2bZpITU11aBs3bpzYuHGjQ5vRaBQvvfRSX4dIHqK3udLe3i5mzZolPv/8c3eESTJ7nHtKh9TUVHH48OG+CpE8RG9yZePGjSI0NFRERESIwMBA4e/vL7Zu3equkMmm360YdcdsNqOsrAwJCQkO7QkJCTh37pxMUZEnkpIrQggYDAbMmTMHiYmJcoRJMpOSJ/X19bhz5w6A+9+qXlxcjKioKLfHSvKSkitZWVmoqanB1atXkZ2djVWrVuGtt96SI9wBbZDcAbjTzZs3YbFYoNFoHNo1Gg3q6ursx/PmzcPFixfR0tKC0NBQ5OfnIyYmxt3hkoyk5EpJSQkOHTqESZMm2Z8l2L9/PyZOnOjucEkmUvLk+vXrSElJgRACQgikp6dj0qRJcoRLMpL6+UPyG1CFUQeFQuFwLIRwaDt16pS7QyIP1V2uxMbGwmq1yhEWeZju8iQ6Ohrl5eUyREWeqKfPnw4Gg8FNEdGDBtRWWlBQEJRKpVN1fuPGDacqngY25gpJwTwhqZgr/x0DqjDy8vJCdHQ0CgoKHNoLCgowc+ZMmaIiT8RcISmYJyQVc+W/o99tpd29exdXrlyxH1dXV6O8vBwBAQEIDw9HRkYGEhMTMXXqVMyYMQO7d+/GtWvXkJqaKmPUJAfmCknBPCGpmCv9hIy/EdcnjEajAOD0Wrlypb3PRx99JCIiIoSXl5eYMmWKKCoqki9gkg1zhaRgnpBUzJX+gd+VRkRERGQzoJ4xIiIiIuoOCyMiIiIiGxZGRERERDYsjIiIiIhsWBgRERER2bAwIiIiIrJhYURERERkw8KIiIiIyIaFERGRixkMBigUCigUChw9etSlYxcWFtrHfuGFF1w6NhGxMCIiCTp/0Hd+df5eKHI0f/581NbWYsGCBfa2hxVKBoNBcpEzc+ZM1NbWYvny5S6KlIg663dfIktEfWP+/PnIzc11aBsxYoRTP7PZDC8vL3eF5bG8vb0RHBzs8nG9vLwQHBwMHx8fmEwml49PNNBxxYiIJOn4oO/8UiqV0Ov1SE9PR0ZGBoKCgvDMM88AAH799VcsXLgQKpUKGo0GiYmJuHnzpn28lpYWJCUlQaVSQavVYseOHdDr9Vi7dq29T1crLMOGDcO+ffvsx3///TdWrFiB4cOHIzAwEIsXL8bVq1ft5ztWY7Kzs6HVahEYGIjVq1fj3r179j4mkwnr169HWFgYvL29MWbMGOzZswdCCERGRiI7O9shhsuXL+OJJ55AVVXV41/YB1y9erXL1Tm9Xu/yuYjIGQsjInpseXl5GDRoEEpKSvDpp5+itrYW8fHx0Ol0KC0txcmTJ1FfX++w/bNu3ToYjUbk5+fj9OnTKCwsRFlZ2SPN29raitmzZ0OlUqG4uBhnz56FSqXC/PnzYTab7f2MRiOqqqpgNBqRl5eHffv2ORRXSUlJOHjwID788EP89ttv+OSTT6BSqaBQKJCcnOy0UrZ3717MmjULTz75ZO8uWDfCwsJQW1trf126dAmBgYGIi4tz+VxE1AVBRNSDlStXCqVSKfz8/OyvpUuXCiGEiI+PFzqdzqH/li1bREJCgkNbTU2NACAqKipEc3Oz8PLyEgcPHrSfb2hoED4+PmLNmjX2NgAiPz/fYRy1Wi1yc3OFEELs2bNHREVFCavVaj9vMpmEj4+POHXqlD32iIgI8e+//9r7LFu2TKxYsUIIIURFRYUAIAoKCrr82f/55x+hVCrFjz/+KIQQwmw2ixEjRoh9+/Z1e70WL17s1A5ADBkyxOE6+vn5iUGDBnXZv62tTUyfPl0899xzwmKxSJqDiB4PnzEiIklmz56NnJwc+7Gfn5/931OnTnXoW1ZWBqPRCJVK5TROVVUV2traYDabMWPGDHt7QEAAoqKiHimmsrIyXLlyBUOHDnVob29vd9jmGj9+PJRKpf1Yq9Xil19+AQCUl5dDqVQiPj6+yzm0Wi2effZZ7N27F9OmTcPx48fR3t6OZcuWPVKsHXbu3Im5c+c6tG3YsAEWi8Wpb0pKCpqbm1FQUIAnnuACP5E7sDAiIkn8/PwQGRn50HOdWa1WLFq0CNu3b3fqq9VqUVlZKWlOhUIBIYRDW+dng6xWK6Kjo/HFF184vbfzg+GDBw92GtdqtQIAfHx8eozjtddeQ2JiInbu3Inc3FysWLECvr6+kn6GBwUHBztdx6FDh6Kpqcmhbdu2bTh58iTOnz/vVPgRUd9hYURELjdlyhQcOXIEo0aNwqBBzreZyMhIDB48GD/88APCw8MBALdu3cIff/zhsHIzYsQI1NbW2o8rKyvR2trqMM+hQ4cwcuRI+Pv79yrWiRMnwmq1oqioyGklp8PChQvh5+eHnJwcnDhxAsXFxb2aS6ojR47gnXfewYkTJ/rkOSYiejiuzRKRy61evRqNjY14+eWXcf78efz55584ffo0kpOTYbFYoFKpkJKSgnXr1uG7777D5cuXYTAYnLaL5syZg127duHixYsoLS1Famqqw+rPq6++iqCgICxevBhnzpxBdXU1ioqKsGbNGly/fl1SrKNGjcLKlSuRnJyMo0ePorq6GoWFhTh8+LC9j1KphMFgwKZNmxAZGemwBehqly9fRlJSEjZs2IDx48ejrq4OdXV1aGxs7LM5iej/WBgRkcuFhISgpKQEFosF8+bNw4QJE7BmzRqo1Wp78fP+++8jLi4Ozz//PObOnYvY2FhER0c7jLNjxw6EhYUhLi4Or7zyCjIzMx22sHx9fVFcXIzw8HAsWbIETz31FJKTk9HW1vZIK0g5OTlYunQp0tLSMG7cOKxatQotLS0OfVJSUmA2m5GcnPwYV6ZnpaWlaG1txbZt26DVau2vJUuW9Om8RHSfQjy4gU9EJBO9Xg+dTocPPvhA7lCclJSUQK/X4/r169BoNN32NRgMaGpqcvnXgbh7DqKBiCtGRETdMJlMuHLlCrZs2YLly5f3WBR1OH78OFQqFY4fP+7SeM6cOQOVStXlA+dE9Pj48DURUTe+/PJLpKSkQKfTYf/+/ZLe89577+HNN98EcP+38Fxp6tSpKC8vB4Au/xwCET0ebqURERER2XArjYiIiMiGhRERERGRDQsjIiIiIhsWRkREREQ2LIyIiIiIbFgYEREREdmwMCIiIiKyYWFEREREZMPCiIiIiMjmf+z8XbdLgFiSAAAAAElFTkSuQmCC",
"text/plain": [
- "
"
+ "
"
]
},
"metadata": {},
@@ -489,39 +487,33 @@
}
],
"source": [
- "def quantile_function(x):\n",
- " # Empirical CDF/Quantile Function/Exceedance Probability\n",
- " # Use the median of the coordinate we're grouped in\n",
- " x = x.median(\"freq\")\n",
- " # Squeeze to remove frequency dimension\n",
- " shape = np.shape(x)\n",
- " x_sorted = np.sort(np.squeeze(x))\n",
- " # calculate the proportional values of samples\n",
- " p = 1.0 - np.arange(len(x)) / (len(x) + 1)\n",
- " # recreate dataarray\n",
- " x = x.assign_coords({\"time\": p}).rename({\"time\": \"probability\"})\n",
- " x.values = np.reshape(x_sorted, shape)\n",
- " return x\n",
- "\n",
+ "octave = [10, 10] # [octave, octave base]\n",
+ "spsdl10 = acoustics.band_aggregate(spsdl, octave, fmin, fmax, method=\"median\")\n",
"\n",
- "cdfs = acoustics.band_aggregate(spsdl, octave=10, method={\"map\": quantile_function})\n",
- "# Plot\n",
- "fig, ax = plt.subplots(figsize=(4, 4))\n",
- "ax.plot(cdfs[40].values, cdfs[\"probability\"].values)\n",
- "ax.set(\n",
- " title=f\"{np.round(cdfs['freq_bins'][40].values, 2)} Hz\",\n",
- " ylabel=\"Exceedance Probability\",\n",
- " xlabel=\"Decidecade SPSDL [dB re 1 uPa^2/Hz]\",\n",
- ")"
+ "# Plot medians and quantiles\n",
+ "fig, ax = acoustics.graphics.plot_spectra(spsdl10.median(\"time\"), fmin, fmax, label=\"Median\")\n",
+ "ax.fill_between(\n",
+ " spsdl10[\"freq_bins\"],\n",
+ " spsdl10.quantile(0.25, \"time\"),\n",
+ " spsdl10.quantile(0.75, \"time\"),\n",
+ " alpha=0.5,\n",
+ " facecolor=\"C0\",\n",
+ " edgecolor=None,\n",
+ " label=\"Quantiles\"\n",
+ ")\n",
+ "ax.legend(loc=\"upper right\")\n",
+ "ax.set_axisbelow(True)\n",
+ "ax.grid()\n",
+ "ax.set(ylim=(20, 80), ylabel=\"Decidecade SPSDL [dB rel 1 uPa$^2$/Hz]\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Another plot that is useful for IEC-40 compliance are decidecade boxplots of the SPSDL. We can also use the aggregate methods to apply plotting functions, like matplotlib's native boxplot. In this case, we supply the \"map\" function and an iterable of the custom function inputs, in this case the figure axes we want to use to plot.\n",
+ "The plot above shows significant spread in sound measurements at higher frequency due to the vessel noise, but less so at lower frequency. This mirrors what we can see in the sound pressure density level figure we first plotted.\n",
"\n",
- "This plot shows significant spread in sound measurements due to the vessel noise, with whiskers stretching to the 1st and 99th quantiles. Generally any significant spread in a frequency band is caused by sound generated by an external source, and not the ambient soundscape."
+ "Boxplots for each frequency band can also be created instead of simple line plots. We can use the aggregate methods to apply plotting functions, like matplotlib's native boxplot. In this case, we'll supply the \"map\" function and an iterable of the custom function inputs (the figure axes we want to use to plot)."
]
},
{
@@ -529,33 +521,25 @@
"execution_count": 16,
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\users\\mcve343\\mhkit-python\\mhkit\\acoustics\\analysis.py:83: UserWarning: `fmax` = 100000 is greater than the Nyquist frequency. Settingfmax = 48000.0\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"text/plain": [
- "[[,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ],\n",
+ "[[,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
" [Text(0.0, 0, '0'),\n",
" Text(1.0, 0, '1'),\n",
" Text(2.0, 0, '2'),\n",
" Text(3.0, 0, '3'),\n",
" Text(4.0, 0, '4'),\n",
" Text(5.0, 0, '5')],\n",
- " (1.68, 4.7),\n",
+ " (1.0, 4.8),\n",
" (20.0, 100.0),\n",
" Text(0.5, 0, 'log(Frequency) [Hz]'),\n",
- " Text(0, 0.5, 'Decidecade SPSDL [dB re 1 uPa^2/Hz]')]"
+ " Text(0, 0.5, 'Decidecade SPSDL [dB re 1 uPa$^2$/Hz]')]"
]
},
"execution_count": 16,
@@ -564,9 +548,9 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwUAAAHFCAYAAACjElXkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo2ElEQVR4nO3de1hU5do/8O+oOYIiHkiQQtEExVNopqEmWip5KEGrXUKed5an2O6dZp5AEdJdaNYvxcOrFmpn3NVroh3E8LDznPmCUgpaioaiaBAorN8fNqsZYBYzi7Vm1sz6fq7LK2atmTU3Ochzr+e578cgCIIAIiIiIiLSrTrODoCIiIiIiJyLSQERERERkc4xKSAiIiIi0jkmBUREREREOsekgIiIiIhI55gUEBERERHpHJMCIiIiIiKdY1JARERERKRzTAqIiIiIiHSOSQERERERkc45NSnYs2cPHn/8cfj7+8NgMGDbtm0W5wVBQFxcHPz9/eHh4YH+/fvj5MmTFs8pLS3F9OnT4ePjg4YNG+KJJ57AL7/84sDvgoiIiIjItTk1Kfj9999x//334+233672/LJly5CcnIy3334bBw8ehJ+fHwYNGoQbN26Iz4mNjUVaWhref/99ZGZm4ubNmxg+fDjKy8sd9W0QEREREbk0gyAIgrODAACDwYC0tDRERkYCuDNL4O/vj9jYWMyePRvAnVkBX19fLF26FJMnT8b169dx991347333sPf/vY3AMCFCxcQEBCA7du3IyIiwlnfDhERERGRy6jn7ACsOXv2LPLz8zF48GDxmNFoRHh4OPbt24fJkyfj8OHDuHXrlsVz/P390blzZ+zbt89qUlBaWorS0lLxcUVFBa5evYrmzZvDYDCo900RERERETmIIAi4ceMG/P39UaeO9AIhzSYF+fn5AABfX1+L476+vsjLyxOfU79+fTRt2rTKc0yvr05SUhLi4+MVjpiIiIiISHvOnz+Pe++9V/I5mk0KTCrfuRcEoca7+TU9Z86cOZg5c6b4+Pr162jVqhXOnz+Pxo0b1y5gIiIiIiINKCoqQkBAALy8vGp8rmaTAj8/PwB3ZgNatmwpHr98+bI4e+Dn54eysjIUFhZazBZcvnwZvXv3tnpto9EIo9FY5Xjjxo2ZFBARERGRW7Flebxm9ylo06YN/Pz8sGvXLvFYWVkZMjIyxAH/Aw88gLvuusviORcvXsSPP/4omRQQEREREdFfnDpTcPPmTfz000/i47Nnz+LYsWNo1qwZWrVqhdjYWCQmJiIoKAhBQUFITEyEp6cnRo8eDQDw9vbGxIkT8c9//hPNmzdHs2bN8K9//QtdunTBwIEDnfVtERERERG5FKcmBYcOHcKAAQPEx6Z1/mPHjsXGjRsxa9YslJSUYMqUKSgsLESvXr2wc+dOi3VRy5cvR7169fD000+jpKQEjz76KDZu3Ii6des6/PshIiIiInJFmtmnwJmKiorg7e2N69evs6aAiIiIiNyCPWNczdYUEBERERGRYzApICIiIiLSOSYFREREREQ6x6SAiIiIiEjnmBQQEREREekckwIiIiIiIp1jUkBEREREpHNMCoiIiIiIdI5JARERERGRzjEpICIiIiLSOSYFREREREQ6x6SAiIiIiEjnmBQQEREREekckwIiIiIiIp1jUkBEREREpHNMCoiIiIiIdI5JARERERGRzjEpICIiIiLSOSYFREREREQ6x6SAiIiIiEjnmBQQEREREekckwIiIiIiIp1jUkBEREREpHNMCoiIiIiIdI5JARERERGRzjEpICIiIiLSOSYFREREREQ6x6SAiIiIiEjnmBQQEREREekckwIiIiIiIp1jUkBEREREpHNMCoiIiIiIdI5JARERERGRzjEpICIiIiLSOSYFREREREQ6x6SAiIiIiEjnmBQQEREREemc5pOCGzduIDY2Fq1bt4aHhwd69+6NgwcPiucFQUBcXBz8/f3h4eGB/v374+TJk06MmIiIiIjItWg+KZg0aRJ27dqF9957DydOnMDgwYMxcOBA/PrrrwCAZcuWITk5GW+//TYOHjwIPz8/DBo0CDdu3HBy5ERERERErsEgCILg7CCsKSkpgZeXF/7zn/9g2LBh4vHQ0FAMHz4cixcvhr+/P2JjYzF79mwAQGlpKXx9fbF06VJMnjzZpvcpKiqCt7c3rl+/jsaNG6vyvRAREREROZI9Y1xNzxTcvn0b5eXlaNCggcVxDw8PZGZm4uzZs8jPz8fgwYPFc0ajEeHh4di3b5/V65aWlqKoqMjiDxERERGRXmk6KfDy8kJYWBgWL16MCxcuoLy8HKmpqfjvf/+LixcvIj8/HwDg6+tr8TpfX1/xXHWSkpLg7e0t/gkICFD1+yAiIiIi0jJNJwUA8N5770EQBNxzzz0wGo1YuXIlRo8ejbp164rPMRgMFq8RBKHKMXNz5szB9evXxT/nz59XLX4iIiIiIq3TfFJw3333ISMjAzdv3sT58+fx/fff49atW2jTpg38/PwAoMqswOXLl6vMHpgzGo1o3LixxR8iIiIiIr3SfFJg0rBhQ7Rs2RKFhYVIT0/HiBEjxMRg165d4vPKysqQkZGB3r17OzFaIiIiIiLXUc/ZAdQkPT0dgiCgffv2+Omnn/Dyyy+jffv2GD9+PAwGA2JjY5GYmIigoCAEBQUhMTERnp6eGD16tLNDJyIiIiJyCZpPCq5fv445c+bgl19+QbNmzTBq1CgsWbIEd911FwBg1qxZKCkpwZQpU1BYWIhevXph586d8PLycnLkRERERESuQdP7FDgK9ykgIiIiInfjNvsUEBERERGR+pgUEBERERHpHJMCIiIiIiKdY1JARERERKRzTAqIiIiIiHTOppakK1eutPvC48ePZ1tQIiIiIiIXYFNL0jp16uDee+9F3bp1bbro+fPncfr0abRt27bWAToCW5ISERERkbuxZ4xr8+Zlhw4dQosWLWx6LmcIiIiIiIhch001BQsXLkSjRo1svuirr76KZs2ayQ6KiIiIiIgchzsag8uHiIiIiMj9qLqj8aJFi/DNN99UOf77779j0aJF9l6OiIjIZgUFBdi8eTP27t2L4uJiZ4dDROQ27J4pqFOnDu666y4kJSVh5syZ4vFLly7B398f5eXligepNs4UEBG5hs2bNyMmJgYAcPjwYXTv3t3JERERaZeqMwUA8O677yIpKQnjxo1DWVmZrCCJiIjsFRgYCABITU1Fhw4dnBsMEZEbkZUUDBgwAAcOHMD333+P/v3749KlS0rHRaRpxcXF2Lt3L5cxEDmYh4cHACAkJASenp5OjoaIyH3Y3JLUxGAwAADuu+8+HDhwAE8//TR69OiB1atXKx4ckVZlZ2ejb9++4mO1lzEUFxfj6NGjyM3NRWBgILp168YBERERESnG7pkC8xKExo0bY/v27YiKikJkZKSScRFpWocOHZCamgrAMcsYTElITEwM+vbti+zsbFXfj4iIiPTF7pmCDRs2wNvbW3xcp04drFy5Et26dcOePXsUDY5Iqzw9PRESEgLAMcsYTElITExMlSSEswhERERUW3YnBWPHjq32+Pjx4zF+/PhaB0REVUklIY5eyuRITHiIiIgcw+akYOXKlTU+x2AwYPr06bUKiMidqTHIlZpFcHXunPC4EvPPbUREBHx8fJwdEhERKczmpGD58uUWj8+fP4+WLVuiXr2/LsGkgEiaGoNcRy9lkkNuMuTOCY8rMf/cpqamIjo62skRERGR0mxOCs6ePWvx2MvLCxkZGWjbtq3iQRG5K3ce5EoN/OUmQ66Q8OiB+efWtE8AERG5F7trCohIPkcPch25Jl9q4O/OyZAemH9uTfsEEBGRe2FSQOTGHLkmX2rgzzv+2sDCbSIiskbWjsZE5BocuZ8CB/7ax/0uiIjIGpuTgqKiIos/BoMBN2/erHKciLSDA3Uy5+hN9+QqKCjA5s2bsXfvXhQXFzs7HCIiXbB5+VCTJk1gMBjEx4IgoFu3bhaPDQYDysvLlY2QiNwal7Q4jqskienp6YiJiQHANrRERI5ic1Lw7bffqhkHEekU9yKgykwdjrQ8myGFiS4RuSKbk4LS0lIMGDAAd911l5rxkEr4S4qUUlBQgPT0dKdvvsbPtPsydTiyZzZDS58HJrpE5IpsTgpeeOEFXL16FRERERgxYgSGDh2KJk2aqBgaKYm/pKgyqUGU1A62Si/tkLukRe5nWkuDR1KOlv6NYwteInJFNhcanzlzBnv27EGXLl2wYsUK+Pn54dFHH8XKlSuRm5urYoikBFcpMHQHxcXF2Lt3r+YLJaU60ZifS09Pt3idVpZ2yP1MswOPssw/7wUFBTa/TuliYkf/Gyf1c+4qtRtERObsaknatWtXzJs3D99//z3OnDmDp556Cjt27EBISAjuv/9+LFiwAIcOHVIrVqoF/pJyHFcZdEoNoszPVd7BVs7SDjXI/UwzQVaWVAIpxTTjpNTPiKP/jXOVn3MiIlvJ3qfA398fL7zwArZv346CggIsWLAAubm5eOyxx5CYmKhkjEQuxVUGnVKDKHfewVaNwaOrzA6pQSqBlKKVGSe5XOXnnIjIVorsaNywYUOMGjUKo0aNQkVFBa5cuaLEZYlcEmdl3JNULYIa69ldpfZBbgKplRknufhzTkTuxu6k4JdffkGTJk3QqFEji+O3bt3C/v370a9fP9x9992KBUhEpAVSA381Cku1VDhLynGVZI+I9Mfm5UMXL15Ez5490bp1azRp0gRjx47FzZs3xfNXr17FgAEDVAmSiMjZpJaLqHHXmMtT3BNrEYhIq2yeKXjllVdQt25d/Pe//8W1a9cwZ84c9O/fH7t27ULTpk0B3NnVmIjIVUndxXX0chFHv58ad7ClWts6kpbuzqsxq2Rre2Fnf+9EpG02JwVfffUV0tLS0KNHDwDAww8/jL/97W945JFH8PXXXwMADAaDOlESETmAnpfsqPG9m18zNTUV0dHRtbqeEnEAzt3TQo1kT+r70/NnmojsY/PyoevXr4szAgBgNBrx8ccfIzAwEAMGDMDly5cVD+727duYN28e2rRpAw8PD7Rt2xaLFi1CRUWF+BxBEBAXFwd/f394eHigf//+OHnypOKxSJHbp5uI1CG3G5Cel+yo8b3L7UykNKnvTeqz4ipLfWxtL6y3zzQR2cfmmYK2bdvihx9+QFBQ0F8vrlcPH330EZ566ikMHz5c8eCWLl2K1atXY9OmTejUqRMOHTqE8ePHw9vbGy+99BIAYNmyZUhOTsbGjRsRHByMhIQEDBo0CKdOnYKXl5fiMVVHK3fDyLVxml85cu+OqtWu1BX+XtX43rXS2lbqe3N0AbkabG0vzC5JRCTF5pmCIUOGYM2aNVWOmxKD0NBQJeMCAOzfvx8jRozAsGHDEBgYiCeffBKDBw8WN0gTBAErVqzA3LlzMXLkSHTu3BmbNm1CcXExtmzZong81mjlbhi5Nle5K+kKtHR3lH+v2uboAnIiIq2yOSlYsmQJPvroo2rP1atXD59++inOnDmjWGAA0LdvX3z99dc4ffo0AOD48ePIzMzE0KFDAQBnz55Ffn4+Bg8eLL7GaDQiPDwc+/bts3rd0tJSFBUVWfypDa3cDdMaLquyj5YGsq5OS4M5/r1qm5Y+K0REzmTz8qF69eqhcePGVs/XrVsXrVu3ViQok9mzZ+P69evo0KED6tati/LycixZsgTPPvssACA/Px8A4Ovra/E6X19f5OXlWb1uUlIS4uPjFY2VquKyKvtwcOKe+PdKRESuwOaZAhM1Coqt+eCDD5CamootW7bgyJEj2LRpE15//XVs2rTJ4nmVux4JgiDZCWnOnDm4fv26+Of8+fOqxK93XFZFpA65hdRERETW2LWj8dmzZxERESEu51Hbyy+/jFdeeQXPPPMMAKBLly7Iy8tDUlISxo4dCz8/PwB3Zgxatmwpvu7y5ctVZg/MGY1GGI1GdYMnLqsiUgnbTOqPqxSsE5Hrsnmm4Mcff8TDDz+McePGqRiOpeLiYtSpYxli3bp1xZakbdq0gZ+fH3bt2iWeLysrQ0ZGBnr37u2wOImIHElui01yXWoUrPOzQkTmbJop2LdvH4YPH44XX3wRr776qtoxiR5//HEsWbIErVq1QqdOnXD06FEkJydjwoQJAO4sG4qNjUViYiKCgoIQFBSExMREeHp6YvTo0Q6Lk4jIkeS22CRtk5oNUKM9Kj8rRGTOpqRg8ODBmDhxIpYsWaJ2PBbeeustzJ8/H1OmTMHly5fh7++PyZMnY8GCBeJzZs2ahZKSEkyZMgWFhYXo1asXdu7c6bA9CoiItMRVeutTVVKDdDUK1qU+K1yuRKQ/NiUFDRs2xMWLF2ss4FWal5cXVqxYgRUrVlh9jsFgQFxcHOLi4hwWF7kP/uIjd8NuR67L0QkdZ5yIyJxNNQWZmZnibsJE7oQbS5EzcU03mdNSQsf9NYj0x6akICgoCJmZmTh8+DCmTp2qdkxEDsNffORMTEpJq7SUoBCRY9jcfcjf3x979uzB0aNH1YyHyKGkfvHxLi6pjUkpERFphV37FDRt2hRff/21WrEQaQrX1JLaeDeWiIi0wu4djbkJFekF7+ISETmG+cxsQUGBs8Mh0iW7ZgqI9IR3cYmIqlKja5v5zGxqaiqio6PFcwUFBUhPT2eHOCKV2Z0UlJeXY/ny5fjwww9x7tw5lJWVWZy/evWqYsERERGRtqixtNK8HWtgYKDFufT0dMTExCj2XkRUPbuXD8XHxyM5ORlPP/00rl+/jpkzZ2LkyJGoU6cO9wogIiJyc1JLK+U2aDCfma28TNmUJHAZJ5G67J4p2Lx5M9auXYthw4YhPj4ezz77LO677z507doVBw4cwIwZM9SIk4iIiDTA0ZuemZIELuMkUpfdMwX5+fno0qULAKBRo0a4fv06AGD48OH43//9X2WjIyIiIpfBBg1ErsvupODee+/FxYsXAQDt2rXDzp07AQAHDx6E0WhUNjoiIiJyGbbu/cIOQ0TaY3dSEBUVJe5V8NJLL2H+/PkICgrCmDFjMGHCBMUD1AJuYkVERFQ75jt4p6enOzscIqrE7pqC1157Tfz6ySefREBAAPbu3Yt27drhiSeeUDQ4reAmVkRERLUj1WFILrYrJVKOXUnBRx99hG3btuHWrVsYOHAgnn/+efTq1Qu9evVSKz5NMP+HjGskiYiI7CfVYUgutislUo7NScGaNWvwwgsvICgoCA0aNMAnn3yCs2fPIikpSc34NIGbWBEREWkP25USKcfmmoK33noLc+fOxalTp3D8+HGsX78eb7/9tpqxEREREVnFdqVEyrE5KThz5gzGjx8vPn7uuedQWlqK/Px8VQIjIiIiIiLHsDkpKCkpQaNGjcTHdevWhdFoZCceIiIi0pyCggJ2DSSyg12FxuvWrbNIDG7fvo2NGzfCx8dHPMYdjYmIiMjZlC5CLi4uxtGjR5Gbm8tuR+SWbE4KWrVqhbVr11oc8/Pzw3vvvSc+NhgMTAqIiIjI6ZQuQmZ7cnJ3NicFubm5KoZBREREpByli5DZnpzcnd2blxERERG5KrnLgNienNyd3UnBokWLJM8vWLBAdjBEREREapJaBsS6AdIzu5OCtLQ0i8e3bt3C2bNnUa9ePdx3331MCoiIiEizpJYBsW6A9MzupODo0aNVjhUVFWHcuHGIiopSJCh3UlBQgPT0dN5xICIi0gCpZUBy6wY4w0DuQJGagsaNG2PRokUYPnw4nnvuOSUu6TaUbolGRERE6pBbN8AZBnIHNm9eVpNr167h+vXrSl3ObUi1RCsuLsbevXuxefNmFBQUOCE6IiIiqi3TDAOgXAtUIkeze6Zg5cqVFo8FQcDFixfx3nvv4bHHHlMsMHch1RLN/M5CamoqoqOjHR4fERER1Q47E5E7sDspWL58ucXjOnXq4O6778bYsWMxZ84cxQLTA/O1i6YZBSIiIiIiR7M7KTh79qwaceiS+Z0F04wCySNV5MUCMCIiIiJp3LxMozjItY9UkRcLwIiIiIikMSnQKFcY5Do6OZF6P6k2ctyanoiIiEgakwKNcoVBrtzkRG4yIfV+UkVeLAAjIiJnkfs7j6sCyNGYFGiU3EGuIzdLk5ucyE0mtJIMERER2Uru7zytrAog/VBsnwLSBtNmaX379kV2draq7yX3Drzcfs68409ERK5G7u887n1AjqbYTEFhYSE+//xzjBkzRqlLOtyBAwfw22+/ufQ0ndRmaVrBwT0REemF1O88qSVC/F1JjqZYUnDu3DmMHz/epZOCiIgI8WtXnaaT2ixNiiOXHRERyXXu3DkAQFZWFry8vBAUFOTkiIjkc3RtHpEUm5cPFRUVSf65ceOGKgEGBgbCYDBU+TN16lQAd3ZUjouLg7+/Pzw8PNC/f3+cPHlS1nutWbMGgLbvsqvF2rKj4uJi7N27F5s3b8bevXtRXFzsxCiJSM9ycnIQFRUFAIiJiUFwcDBycnKcHBWRfHKXCJmSCUctFyZ9sHmmoEmTJjAYDFbPC4IgeV6ugwcPory8XHz8448/YtCgQXjqqacAAMuWLUNycjI2btyI4OBgJCQkYNCgQTh16hS8vLzseq/27dsD0Oc0nbVlRyx0IiKtMN18Wrx4Mfz9/TFx4kTVbkgROUJta/PsbbzBGQaSYnNS4OXlhblz56JXr17Vns/JycHkyZMVC8zk7rvvtnj82muv4b777kN4eDgEQcCKFSswd+5cjBw5EgCwadMm+Pr6YsuWLarE466sLTtixx8i0pqhQ4c6OwQip5KbTPBGH0mxOSkwfWjCw8OrPd+kSRMIgqBMVFaUlZUhNTUVM2fOhMFgwJkzZ5Cfn4/BgweLzzEajQgPD8e+ffusJgWlpaUoLS0VHxcVFakatytzdKET72IQERHJJ3ejT/7+JZuTgtGjR6OkpMTqeT8/PyxcuFCRoKzZtm0brl27hnHjxgEA8vPzAQC+vr4Wz/P19UVeXp7V6yQlJSE+Pl61OEk+3sUgIiKST+5Gn/z9SzYXGv/973/HjBkzrJ739fVVPSlYv349hgwZAn9/f4vjlWsZaqpvmDNnDq5fvy7+OX/+vCrxkv3Yl5mIiEg+7otAcrnMjsZ5eXn46quv8Omnn4rH/Pz8ANyZMWjZsqV4/PLly1VmD8wZjUYYjUb1giXZ2JeZiIhIPrm/R+Xup0Duw2V2NN6wYQNatGiBYcOGicfatGkDPz8/7Nq1SzxWVlaGjIwM9O7d2xlhkk7k5OQgKysLwJ1+6WyLSERE7ootUPXBJZKCiooKbNiwAWPHjkW9en9NbhgMBsTGxiIxMRFpaWn48ccfMW7cOHh6emL06NFOjJjcWU5ODoKDgxETEwPAMf3SXSUJMd9YSqsxEhGRfbi0SB9cYvnQV199hXPnzmHChAlVzs2aNQslJSWYMmUKCgsL0atXL+zcudPuPQqIbGXqi75+/XoYjUaUlpaq2i/dlISYmJKR06dPa2o318obSwHai5GIiOzHpb364BJJweDBg622OzUYDIiLi0NcXJxq71/5Lq2Xl5fLDXTc4XvQmtDQUHTv3h1Hjhyx+TVy/h4cnYTIxY2liIiIXJespODnn3/Ghg0b8PPPP+PNN99EixYtsGPHDgQEBKBTp05Kx+hUrnKXVoo7fA/uoLZ/D3KSEGfgxlJERPrBImT3YXdSkJGRgSFDhqBPnz7Ys2cPlixZghYtWuCHH37AunXr8PHHH6sRp9O4yl1aKe7wPbgD/j0Qqcu8poWzoUSOwf0N3IfdhcavvPIKEhISsGvXLtSvX188PmDAAOzfv1/R4LQkNDQU0dHRCA0NdXYosjn6ezBfKmP6ZU3u8VkiUpOcgvXKNS1qF/8T0R0sQnYfdicFJ06cEP/hNXf33XfjypUrigTlajj4rapyh56oqCj+giaiGskd3JvXtKxfv97iGBGph0XI7sPu5UNNmjTBxYsX0aZNG4vjR48exT333KNYYK6i8jrxqKgortWH5VKZCxcuYP78+fwFTUQ1qm3BOmtaiIjksXumYPTo0Zg9ezby8/NhMBhQUVGBvXv34l//+hfGjBmjRoyaZj74Xbx4scUxurNUhr+k3Qv3IiBHGDp0KJfYERE5kN1JwZIlS9CqVSvcc889uHnzJjp27Ih+/fqhd+/emDdvnhoxugQOfkkPuG6biIhsVVxcjL1792Lz5s3Yu3cviouLnR0SSbBr+ZAgCLhw4QLWrl2LxYsX48iRI6ioqEC3bt3cermMXyMDPK6dBi7Ugce10/BrZHB2SEROwb0IiIjIVuxM5FrsTgqCgoJw8uRJBAUFoW3btmrFpSmTH6iPkD2TgT1AyJ+PidxZ5eL5yv+Iy5kVY7tIIiJ9MXUmiomJYWciF2DX8qE6deogKChId12GUg6XIatfCvB8BrL6pSDlcJmzQyKqNWtds9ToHMVlR+SKKu9Azs8skX3Ymci12F1TsGzZMrz88sv48ccf1YhHk/JvCihpEgz4h6KkSTDybwrODomoVqQG/moUz7NdJFXm6IJ1e9+v8s9I5WSWCQMRuRu7W5LGxMSguLgY999/P+rXrw8PDw+L81evXlUsOCK1Vf7F7orLWmpa6lMdW1rGhoaGIjQ0FPPnz1csVhbjE1B15giAqq2c5byf1A7klVtRO+J7IHI3xcXFOHr0KHJzcxEYGIhu3bpxJsHJ7E4KVqxYoUIYRI7nDr/Ya7tPhhoDf6VJ1SKwTsE1ObpgvTbvFxoaiu7du+PIkSNVrlddwkBEtmERsvbYnRSMHTtWjTioEne4g6117vCL3d03iZO6w+vou82kPEfPHCn9ftUlDERkG6kiZM4iOIfdNQWkvprWspKyQkNDER0d7dIbJbn6PhnW1ntL1SKwTsFxrBWluwNH1wawFoHoDqkiZNMsQkxMDPr27Yvs7Gxnhakrds8UkPrc4Q42aYOcegNHs+WOv1TCU905zrQpp7ZL1LRMagmho9/PHf5/EimFrUydg0mBAsTNzf78WimcmqbacJXBnNLry2saeLlKwqCVON15iZpaN2Cs/d3xhg+RbaRmEcyXFkVERMDHx8dZYbodJgU1MG3JvX//fmRlZaG0tLTKc8TNzcCNzUg7XG0wp9TyJ7W6xjhykK7FO8quUJQul5I3YGyZfeANHyL5zAuUU1NTER0d7eSI3AeTghqY1rFNmzbN4riXl5f4dcrhMvxtwcY7X78xGk84LDqimrnzYE6Kkl1jHD1Id8QdbK0uJ3N1nA0gUpf50qLAwEBnh+NW7EoKvv32Wxw5cgQPPfQQ+vTpg5SUFCxZsgQlJSWIjIzEypUrq+xb4OoiIyMBAAaDAZMmTUJqaip69uxpMRAQNzf782si0jZ779Q6a6Cn5h1srS4ncxecDSBSh/nSIncbczqbzd2H1q5di0GDBmHVqlV49NFHkZSUhH/+858YNmwYnn76aXz44YeIj49XM1an8PHxwaRJk9CtWzcAd9a2OfuXKLtXaJs7d2pxdzX9bMnpVKWVn1c1dqquCX8WiIhch80zBW+++SaWL1+O6dOnY8eOHXj88cexbt06cd+C/v37Y86cOXjttddUC9YVKb25khbXGtNfanM3ViuFpXqlRicaLf68Kr2czNqSJM5MEJGjsQi5dmxOCs6cOYMnnrizWv6xxx6DwWBAz549xfO9evXC+fPnlY/QgX755RcAyg7gld5cietVtU1uca+jWyNSVbX52XKHbjNy6g2kBv6uVuhORK6PRci1Y3NS8Mcff1is3TIajTAajRaPb9++rWx0Dmb68Cg9gJfTalFsc3qhDjyuna7S6pTrVbXN3ruxrjR4dHf2/my5Q7cZuXf1bRn467XQXWlSM4lyzxG5GxYh147NSYHBYMCNGzfQoEEDCIIAg8GAmzdvoqioCADE/7o6pXqlm5PTalFsc7oHCAFbneqF1gePVJXWEjo5d/xre1efA3911ZR4yjlX054d7FRFrohFyLVjc1IgCILFPy6CIIjFt6bHBoNyG3c5i1K90mvL1OY0pEMHZGVns9UpkcZpIaGr7Tp+Du6dqzbL0Ow9Z0+iIbc2iskEaYlUvUFBQQHS09MRGBiIbt26WWyWpic2JwXffvutmnFQJWKbU/9QlORXsNUpEdWI6/hdV22Xodl7ztZEo7rPEYvLyRVJ1Rukp6eLP3OHDx/WbTJrc1IQHh6uZhxEquGaWtIquZ/Nml7HO/6uR4t7YVT3OWJxObkqqXoD0+PU1FR06NDB8cFphE1JgT31Ao0bN5YdjCsqLi4GAOzfvx+FhYVOjkb5FqhqXdNR2NWHtEruZ5OfafemhWVoUmpTXM6lReRMUvUGpschISG6XToE2JgUNGnSxOZ6gfLy8loF5Gqys7MBANOmTROPeXl5OSUWay1Q1bimqyQGWisCJTKR+9nkZ5q0wN7ZKC4tIlelp3oDm5IC83qC3NxcvPLKKxg3bhzCwsIA3LlLvmnTJiQlJakTpYZFRkYCuNOdadKkSUhLS3PaP3K1aYHqyGs6g9bvvpF+yf1s8jNNrqSmGQbOIpBW6anewKakwLyeYNGiRUhOTsazzz4rHnviiSfQpUsXrFmzRtzhWC98fHwwadIk8Rdzq1atVH/PmvYwUKODkla6MhERkeuyt06ByNn0VG9Qx94X7N+/Hz169KhyvEePHvj+++8VCcpZWjQEPK6drnagrSXiHgZrwhGyZ7JL7mFgXqeQk5Pj5GiqV7mYU6txEhG5MvNZhMWLF1scI3I2PdUb2Nx9yCQgIACrV6/GG2+8YXE8JSUFAQEBigXmDBNC/xxsQ7nNwsS7+n9+bQvz4uWsrCyUlpZanFdjDwM5xcS16Zyi9ToFFnMSETkWu2aRKzHf98Bd6g3sTgqWL1+OUaNGIT09HQ899BAA4MCBA/j555/xySefKB6gI/3PsTKMWbQJABTbLEy8qw/bE43qipeBOwXMN27cUHwPAzmDdKlBc02De1eoU2AxJxEREVljvu8B4B71BnYvHxo6dChycnIwYsQIXL16FVeuXMGIESNw+vRpl193fvl3oKRJMEqaBCu2WVjK4TJk9UtBVr8UpBwus+k1kZGRWLt2LdatWwfgzjo2Ne+kmw/S169fb3GsptesX78eqampNr/O3NChQxEaGmpxTGtLdkJDQxEdHV0lTiIiItIv074HgPvUG9g9UwAA9957L5YsWaJ0LG5JvKv/59e2qFy8HBIS4pClNXKSOiU7oNRm9oGIiNyTK++VQ+7LfN+DyvUGrrq0yKak4IcffkDnzp1Rp45tEwsnT55E+/btUa+erJxDN9iCzVJNS3a4MzERkb64Qg0aUWWuurTIplF+t27dcOXKFZsvGhYWJmb2tfXrr78iJiYGzZs3h6enJ0JDQ3H48GHxvCAIiIuLg7+/Pzw8PNC/f3+cPHlSkfdWk+muuOkfuaioKKcvldGK6pbsVP7/FRMTg+DgYP4/IyJyY3KWtxI5m6suLbLpVr4gCJg/f77NUx9lZbatna9JYWEh+vTpgwEDBuDLL79EixYt8PPPP6NJkybic5YtW4bk5GRs3LgRwcHBSEhIwKBBg3Dq1Cmn7SxsC1u2itcKOR2UlMbCXyIi/bK2vJVLi0iLpJYWaZlNSUG/fv1w6tQpmy8aFhYm9nWtjaVLlyIgIAAbNmwQj5k2kQDuJCsrVqzA3LlzMXLkSADApk2b4Ovriy1btmDy5MnVXre0tNSizWdRUVGtY5XLFVqwyemgpBbu4kpERACXFpFr0nK9gU1Jwe7du1UOo3qfffYZIiIi8NRTTyEjIwP33HMPpkyZgr///e8AgLNnzyI/Px+DBw8WX2M0GhEeHo59+/ZZTQqSkpIQHx/vkO9BaTXtYaAG074IgH2tWrUww0BERO7JFdpbE1Wm5XoDTVcCnzlzBqtWrcLMmTPx6quv4vvvv8eMGTNgNBoxZswY5OfnAwB8fX0tXufr64u8vDyr150zZw5mzpwpPi4qKpLceK24uNiiwLVDhw5Oy+pq2sNADXI6KAHammEgIiL35Ort0ElfTPUGMTExmqs30HRSUFFRgR49eiAxMRHAnYLnkydPYtWqVRgzZoz4PIPB8i60IAhVjpkzGo0wGo02x5GdnW1R4OrMrC4yMhLAne950qRJSE1NRc+ePREUFKS5JTVyZxjkYGciIiIi0jot1xtoOilo2bIlOnbsaHEsJCRE3DnZz88PAJCfn4+WLVuKz7l8+XKV2YPa6NChAzIzM8X1X87M6uTuYSAu5blQBx7XTjtkOY/cGQZ7Se1vQERE+sQiZCL7aDop6NOnT5UC59OnT6N169YAgDZt2sDPzw+7du1Ct27dANzpfJSRkYGlS5cqFoenpyf69OmDPn36KHZNtVhbxy8u5dkDhECZ5TzOSDSqw85ERERkjkXIRPZTLCm4dOkSUlJSsGDBAqUuiX/84x/o3bs3EhMT8fTTT+P777/HmjVrsGbNGgB3ltDExsYiMTERQUFBCAoKQmJiIjw9PTF69GjF4pDLVBSclpaGNm3aOOQ9ra3jNy3lCenQAVnZ2Yos51Ej0agNdiYiIiKARchEciiWFOTn5yM+Pl7RpODBBx9EWloa5syZg0WLFqFNmzZYsWIFoqOjxefMmjULJSUlmDJlCgoLC9GrVy/s3LlTE3sUmIqCExISxGNqx2VtHb+4lMc/FCX5FYos51Ej0SAiIlIKi5CJbKfp5UMAMHz4cAwfPtzqeYPBgLi4OMTFxSnyfkre1Y+MjEReXh4SEhIsCoLVJHcdv5z2oWokGkRERGqTqjdgLQLpleaTAkdT8q6+j48PoqKikJCQUG1BsJb6+LN9KBER6YFUvQFrEciZnL2xWR2HvZMLePnllwEAqampDvlHwDQQD9kz2ekD8ZTDZcjql4KsfilIOVzm1FiIiIjUYl5vsH79eotjUucAy1mEnJwch8VM+mDa2CwmJgZ9+/YVl6E7is0zBeabfVXnt99+q3UwzjZ8+HD8+9//trnNZ205so9/TRzVPpSIiEgLpOoNqjvHWQRSm7M3NrM5KTh69GiNz+nXr1+tgtEbVxiIO6ODEhERkdawoxGpzdkbm9mcFHz77bdqxkEaZa2DUm3/IbRWT6GVvQ+IiIiqw45G5K5YaEySrHVQqu1eANYKm6X2PpCbMDDRICIiIpJmV6Hx77//jgULFqBz585o1KgRvLy80LVrVyxatEhcZkLuxdRBCYBdtRamz8P+/fuxffv2KuetFTabjuP5jCrnxIRhTbhdxdlyXyflr0TjGBMNIgcy/ezx5460JCcnB1lZWQBYhEyuy+aZgrKyMoSHh+PHH3/EkCFD8Pjjj0MQBGRlZWHJkiX48ssvsWfPHtx1111qxksaYT7oz8rKQmlpqcV507KjadOmicfMW7xaq6eQ2vtA7mZpetjNmUgv2D6ZtCYnJwfBwcHiYxYhk6uyOSlYtWoVfvnlFxw/fhzt27e3OJednY3+/ftj9erVmD59uuJBkvZUN+gH/hr4R0ZGArizudykSZOQlpZW638c5W6Wxt2cidyHlrq2EQF/FSCvX78eRqMRpaWlLEIml2RzUvDpp59i/vz5VRIC4E4Lpblz5+Ljjz9mUqATlQf9lXds9vHxwaRJk8Tag1atWjkrVFVwN2ci53CFrm2kT6GhoejevXuta+6InMXmpOD//u//0L9/f6vnBwwYgEWLFikRE8lkrX1oTUt95LQdrTzod9TeDkTk/rS02zsRkV7YnBRcu3YNzZs3t3q+efPmuH79uiJB6YH5QL2wsFCRa1prH2oauFtb6mPtdXrAzkRE2sO6ASIix7M5KaioqEDdunWtnq9Tpw7Ky8sVCUoPairElcNa+9CmTZsCsL7Ux9rr9IAFw0Taw7oBIiLHszkpEAQBjz76KOrVq/4lt2/fViwoPVCjENfUPjQhIcFiOU9NS32svU4PWDBMpD2sGyAicjybk4KFCxfW+JxRo0bVKhg9qU0hbnFxsUU/5A4dOjh8K2x3wYJhIvfBWgQiIvkUTQrIMbKzs8U+yDExMTh8+DC6d+/u5KiIiJyLtQhERPLZnBRYk5GRgd9//x1hYWHi2nVSV4cOHZCZmYnc3FwEBgaiQ4cOzg7JLnK6HdX2vax1XiIi98FaBCIi+WxOCv7973/j5s2biI+PB3CnxmDIkCHYuXMnAKBFixb4+uuv0alTJ3UiJZGnpyf69OmDPn36ODsUWax1O7p06RKA6gfwcgf3UpuscWMZIveidC0Cu5OREnJyciyW/Hp5eemqdo9ch81JwdatWzF79mzx8ccff4w9e/bgu+++Q0hICMaMGYP4+Hh8+OGHqgRK7sNat6OMjAwA1Q/gpdqqSg3upTZZc8YGMxxkEDmHnHoDqe5k/FkmW+Tk5CA4OFh8bFr6e/r0aSYGZJfi4mIcPXpUXCXSrVs3xetJbU4Kzp49i65du4qPt2/fjlGjRol3q+fNm4ennnpK0eDIPVnrdiQ1gJdqqyo1uNfaJmtsgUrkHHLqDaS6k/FnmWxhumm1fv16GI1GlJaWYuLEiZypJrtlZ2ejb9++4mM16knr2PrEW7duwWg0io/379+P3r17i4/9/f1RUFCgaHB6VrnDkGn5jDszDeC7desGANW2Va3unCtJOVyGrH4pwPMZyOqXgpTDZc4OiUgXTD979vzcWXQnaxJssSSJP8tkj9DQUERHRyM0NNTZoZCL6tChA1JTUwEAqampqtST2pwUtGvXDnv27AEAnDt3DqdPn0Z4eLh4/pdffpHc8ZjsU7nDkGltPLk2qUEGEanH9LNX+efur2VAx+xaBsSfZVJC5XqDnJwcJ0dEWuXp6YmQkBAAd26MqtGK3ublQy+++CKmTZuG7777DgcOHEBYWBg6duwonv/mm2/Eu7h6Y35Xv6SkRJFrunqHIVIW1y8TqUONZUD8eSVbsN6AtMbmpGDy5MmoV68evvjiC/Tr16/KvgUXLlzAhAkTFA/QFZjf1c/NzVWkK5CrdxgiZXH9MpE61NjVnD+vZAvWG5DW2LVPwcSJEzFx4sRqz73zzjuKBOSKzO/qR0REODscXXL3O3NqDFyISJ1dzfnzSvYIDQ1F9+7dqzTNYCtTcjSbk4KKigq88cYb2LZtG27duoWBAwdiwYIFaNCggZrxuQTe1Xc+Ld2Zk9P6sCZqDFyISB38eaXa4tIicgabk4KlS5di3rx5ePTRR+Hh4YHk5GQUFBRgzZo1asZHTla5C1KHDh1UKW6pLS3dmZPT+pBIb9RInl2Bu89qkjK4tIicweakYOPGjXjrrbcwZcoUAMCOHTsQGRmJlJQUGAz8R81dVe6CZE9fXDUKsK3R0p05U4ICgMsGiKzQa/KspVlN0j5rS4uI1GBzS9K8vDwMHz5cfBwREQFBEHDhwgVVAiNtMNVLpKamIjMz064uSJULsF1NbVsVsk0hkXVy9g1wB9zfgIi0yuaZgrKyMnh4eIiPDQYD6tevj9LSUlUCI22oTb2Eqxdg844ekXrE2b0/v9YLLc1qEhGZs6v70Pz58y3Wk5eVlWHJkiXw9vYWjyUnJysXnYOdOnUKgLJr503LZrS8Hl8tWi/ANu0SvX//fmRlZVVJcLVUp0BERGTCzkSkBpuTgn79+omDZpPevXvjzJkz4mNXry14/vnnAdi/dl6KadmMktckZZh2iZ42bZrFcS8vL9y4cYN39IhqSa/FxERqYmciUovNScHu3btVDEMb0tPT8dtvvym6g3BERARSU1O5K7EGRUZGAriTzE6aNAmpqano2bMngoKCnFLUxa4k5G70WkzsaPy3Q1/YmYjUYtfyoercvn0bf/zxBxo1aqREPE710EMPoXHjxope08fHB9HR0YpeUytcpV2pNT4+Ppg0aZKYAISEhDj1LgtrGEir5N7xZycux+C/HfrEzkRkUlBQgPT0dAQGBqJbt26yx2I2dx/avn073nvvPYtjS5YsQaNGjdCkSRMMHjwYhYWFsoIg11S5XalpOY67M69F2Lx5M44dO6bIdeV2JTEN2Kq7Qyj3nFxqXJOczzToDNkz2a4BJztxOQY7GhHpW3p6OmJiYtC3b99ajcVsnil4/fXXMWrUKPHxvn37sGDBAixatAghISGYO3cuFi9e7NKFxmQf8+5CzlweVVPBsNIzGjXVIsglt4ZBaomG3HNycbmIe+Idf21j/ROZYxGy/gQGBgIAUlNTazUWszkp+PHHH/HGG2+Ijz/++GMMGjQIc+fOBQA0aNAAL730EpMCHdFKdyGpQbrpvNwN2KqjtVoEqQGb3HNqxCIXi1WdT6/tQ90B6w30hUXI+mTaMiAkJKRWNz1tTgpu3LiB5s2bi48zMzPx5JNPio87deqk+EZmcXFxiI+Ptzjm6+uL/Px8AIAgCIiPj8eaNWtQWFiIXr164f/9v/+HTp06KRqHO6jpbrkrtE619j1IDdIB5Wc0tFaLIDVgk3tOjVjk4uwD6YUaA3i59QZMxl0Ti5CpNmyuKfD39xcHZDdv3sTx48ct7hBfuXJFlYFkp06dcPHiRfHPiRMnxHPLli1DcnIy3n77bRw8eBB+fn4YNGiQy3z4zQe5pkG5Wmpa/2/eOlWrtQHWvgfTIL1bt24Aqg7STTMa0dHR6NOnjyYTHrJOrzvfugrWkShHHMCvCbe7fsMaufUGcutI5OLnSFmhoaGIjo5GaGios0MhF2LzTMGTTz6J2NhYvPrqq9i+fTv8/Pzw0EMPiecPHTqE9u3bKx9gvXrw8/OrclwQBKxYsQJz587FyJEjAQCbNm2Cr68vtmzZgsmTJ1u9ZmlpqcW686KiIsXjtoX5IDc3N1fVZTg13S3XSutUqRkNrdQwkGNx6Yq2cSZHOWpsmCi33sDRdST8HBE5n81JwcKFC3HhwgXMmDEDfn5+SE1NRd26dcXzW7duxeOPP654gDk5OfD394fRaESvXr2QmJiItm3b4uzZs8jPz8fgwYPF5xqNRoSHh2Pfvn2SSUFSUlKVZUnOYD7IjYiIUOSa1pYB1bT+XyutU6XW/2ulhkEPHL10gEsVXBeLkJUjNYBXY2mR1DUdnYzzc+QYLEImKTYnBZ6enlVakpr79ttvFQnIXK9evfDuu+8iODgYly5dQkJCAnr37o2TJ0+KdQW+vr4Wr/H19UVeXp7kdefMmYOZM2eKj4uKihAQEKB4/DVRY5Dr6jsoczZAGxx91453CV0XZ3IcQ429CLS0vwE/R+pjETLVpNabl6lpyJAh4tddunRBWFgY7rvvPmzatElcumQwWN4tEQShyrHKjEYjjEaj8gFrgFaWAUmRWiLE2QBtcPRdO0e+n567sXBGxnWpsbRIjWvyM6ZdLEKmmmg6KaisYcOG6NKlC3JycsSOM/n5+WjZsqX4nMuXL1eZPdATrSwDkqJ0i1BSnqPv2in9flIDfy3dHXU0qRkZDua0TY29COReU+qzwlk/7bO2EzKXFpFLJQWlpaXIysrCww8/jDZt2sDPzw+7du0Su86UlZUhIyMDS5cudXKkJMUVlgjVtCEa2U+NQae1a0oN/OXeHXX0DIMa7yc1I8PBHNlK6rPC2gDXxKVFBGg8KfjXv/6Fxx9/HK1atcLly5eRkJCAoqIijB07FgaDAbGxsUhMTERQUBCCgoKQmJgIT09PjB492tmhkwRXWCJU04ZoeiZ3cO/IHZSlBv613jnaQTMMaryf1IwMB3NkK6nPCmsDXBOXFhFQy6Tgjz/+QIMGDZSKpYpffvkFzz77LAoKCnD33XfjoYcewoEDB9C6dWsAwKxZs1BSUoIpU6aIm5ft3LmTAzeqtZo2RNMzuYN7R+6grMZSC6lEQ827+kqu95bCwRzZytGfFS5tcxxrS4tIH+xOCioqKrBkyRKsXr0aly5dwunTp9G2bVvMnz8fgYGBmDhxomLBvf/++5LnDQYD4uLiEBcXp9h7EgHa27VYS+QO7l1hB2WbWjRWk2ioeldfwcSGyJm0NMtIRFXZvKOxSUJCAjZu3Ihly5ahfv2/fji7dOmCdevWKRocEWmPabBa0iTY7QaqcneUldo19q9E45juuh0RmZO7SzJ3NXe+ykXIOTk5To6I1GD3TMG7776LNWvW4NFHH8ULL7wgHu/atau4DptIr8wLlAsLCzUbi5bi1BK5S3YcPYtA5Iq0NMtItmMRsn7YnRT8+uuvaNeuXZXjFRUVuHXrliJBEbmq6gqUnVXjIhWLluLUEneoRSDSKjUG96w3UB+LkPXD7qSgU6dO+O6778RiX5OPPvpIbA1K5CqkNlKTo3KBclpamtPupEjFoqU43Z2jZxE4SCI9Yb2B47AI2f3ZnRQsXLgQzz33HH799VdUVFTg008/xalTp/Duu+/iiy++UCNGItUovZFa5QLlVq1aieccvfeBVCxS58hx1OgwxEES6Qlb6RIpx+6k4PHHH8cHH3yAxMREGAwGLFiwAN27d8fnn3+OQYMGqREjkWocuZGa1N4HnIbVp1rvKFvNsiMOkkhPWG9ApBxZ+xREREQgIiJC6ViIHM6RG6lJ7X3A6Viyh9SyIw6SiIhIDk3vaEzkTqT2PnD00iJybY7e2IyIiNyfTUlB06ZNYTDYVrB29erVWgVEpEdSS4suXboEgAkD/YUbmxERkdJsSgpWrFghfn3lyhUkJCQgIiICYWFhAO4MVtLT0zF//nxVgiSqidJdhBxNamlRRkYGANYiEBERkXpsSgrGjh0rfj1q1CgsWrTIYoAyY8YMvP322/jqq6/wj3/8Q/koiWqgdBchR5NaWuQqtQimJVBpaWlo06aNZq9JRETKqbzbsZeXF1tcuyi7awrS09OxdOnSKscjIiLwyiuvKBIUkb0c2UXI0WytRVBqZ2K51zQtgUpISBCP1XZDNDWuSUT6wD071Mfdjt2L3UlB8+bNkZaWhpdfftni+LZt29C8eXPFAiOyhyO7CGmJGjsTy71mZGQk8vLykJCQYDGbURtqXJOI9IF7dqiPux27F7uTgvj4eEycOBG7d+8WawoOHDiAHTt2YN26dYoHSETWqbEzsdxr+vj4ICoqCgkJCRazGbWhxjWJSB+4Z4fjcLdj92B3UjBu3DiEhIRg5cqV+PTTTyEIAjp27Ii9e/eiV69easRIpDlaKWxWY2di7nZMWsUaE7KH1J4dUkuLuOyI9ErWPgW9evXC5s2blY6FyGW4emEzkStijQkpRWppEZcdkV7Vqc2LS0pKUFRUZPGHSA9Mhc2pqanIzMx0q8JmKeZ3ao8dO6bZa5J7ioyMxLx58wAAqampLGYk2VIOlyGrXwqy+qUg5XCZzefIPuadic6dO+fkaKgmds8UFBcXY9asWfjwww9x5cqVKufLy8sVCYxIy/Re2MwOQ+QMrDEhpUgtLZI6R7ar3JkoKiqKibzG2T1T8PLLL+Obb77BO++8A6PRiHXr1iE+Ph7+/v5499131YiRiGSqXPtguisvlxp3ann3l4jI/Zh3Jlq8eLHFMdImu5OCzz//HO+88w6efPJJ1KtXDw8//DDmzZuHxMRE1hmQW1F6QO0MlWsfTHfl5TLdqQVg151aqSVCcq9J7onLyUjLTEXIHtdOswjZRqGhoRg6dKizwyAb2L186OrVq2LXh8aNG+Pq1asAgL59++LFF19UNjoiJ3KHYmKpTd0c2UGJS4TIVvyskJaxCJncmd1JQdu2bZGbm4vWrVujY8eO+PDDD9GzZ098/vnnaNKkiQohEjmHO+ySLFX74MikR41NyLTSntJ8B+isrCyUlpY6LRZ3IPezopXPA7k37n1A7szupGD8+PE4fvw4wsPDMWfOHAwbNgxvvfUWbt++jeTkZDViJHIKdy8mdmTSo0aBqLU7ymqsWZUa+Fe3A7Sasbg7uZ8VR84wMBHULxYhK6dyZyJXm4l3R3YnBf/4xz/ErwcMGIDs7GwcOnQI9913H+6//35FgyMi9bh60mPtjrIaO2pKDfwr7wCtdixUPTVmo6xhIkiViRueXajDegMbsDORNsnavMxcq1atuOMpkRmt7Hbs7uTcUZZ7h1dq4A/AYgdoFks7h9KzUVKfFSaCVJlYa7AHCAHrDWpi3pnowoULmD9/PhNqDbA7KZgxYwbatWuHGTNmWBx/++238dNPP2HFihVKxUbkktyhQNldyb3D6+Pjw4G/C7NWbyB3WRg/D1SZqdYgpEMHZGVns97ARqGhoQgNDcX8+fOdHQpBRlLwySef4LPPPqtyvHfv3njttdeYFJDuaaXjjztQ+v8X7/Dqk7V6A9Pfub3LwqSw3kCfxFoD/1CU5Few3oBckt1JwZUrV+Dt7V3leOPGjVFQUKBIUESuTG7HH6kBsF6TCaVnXXiH137mg9zCwkInRyOPtXqDpk2bAlB2WRjrDYhqj0XIzmF3UtCuXTvs2LGjyj94X375Jdq2batYYETuSGoWQWoArNclSXI6JPFOrbKqG+S62r4B1uoN1EgSORtFVDssQnYeu5OCmTNnYtq0afjtt9/wyCOPAAC+/vprvPHGG1w6RFQDqVkEqQGwO+yZIIecDklSd2rJfpUHuWlpaW6zx4QapBINJqxENWMRsvPYnRRMmDABpaWlWLJkCRYvXgwACAwMxKpVqzBmzBjFAyTSC6kBsKu3D3UkrgVXVuVBrhLd5vS6azGXFhHZjkXIjierJemLL76IF198Eb/99hs8PDzQqFEjpeMiIpJF7pIQLc0wuEOCIlWL4Mg9BbSES4v0iXsYkKuQlRTcvn0bu3fvxs8//4zRo0cDAC5cuIDGjRszQSByMDWKkM2vWVJSomocWimiljvDoAY17ihLDdLlFhNLvU6qFkGNHa5dAQvd9UlqDwMmDPZjEbJ67E4K8vLy8Nhjj+HcuXMoLS3FoEGD4OXlhWXLluGPP/7A6tWr1YiTiKxQowjZ/Jq5ubkWy5ZMSULlAbzcOLRSRO3oAZsam2PJHaTLLSaWep0atQhErkhqDwNuemYfFiGry+6k4KWXXkKPHj1w/PhxNG/eXDweFRWFSZMmKRocEdVMjSJk82tGRERYnMvNzQVQdQAvNw53LqJ29OZYcgfpcgfwUq9ToxaByBVJ7WHATc/swyJkddmdFGRmZmLv3r2oX98ym23dujV+/fVXxQIjItuoUYQsdc2IiAikpqZWGcDLjcOdi6ilBv5qFETLHaTLHcBz4E9UO9z0TB4WIavD7qSgoqIC5eXlVY7/8ssvuugeQaR3Pj4+iI6Otus1WqkbcLSaBv5KF0RzkE5ERHLVsfcFgwYNstiPwGAw4ObNm1i4cCGGDh2qZGxVJCUlwWAwIDY2VjwmCALi4uLg7+8PDw8P9O/fHydPnlQ1DiKyT+W6AdPA1t2ZBundunUDoNzmWGvXrsW6desAAKmpqVxTS+SG/ipCPsYiZBtVLkIm+9g9U7B8+XIMGDAAHTt2xB9//IHRo0cjJycHPj4+2Lp1qxoxAgAOHjyINWvWoGvXrhbHly1bhuTkZGzcuBHBwcFISEjAoEGDcOrUKc5cEGmEO9cNAI6dCWEHG7KVO7S21TMWIduHRci1Z3dS4O/vj2PHjmHr1q04cuQIKioqMHHiRERHR8PDw0ONGHHz5k1ER0dj7dq1FpvdCIKAFStWYO7cuRg5ciQAYNOmTfD19cWWLVswefLkaq9XWlpq8Y9jUVGRKnET0R3uXDcAaKeDErkuuQN4ucXsUsWZclvUkrJYhGwfFiHXnqx9Cjw8PDBhwgRMmDBB6XiqNXXqVAwbNgwDBw60SArOnj2L/Px8DB48WDxmNBoRHh6Offv2WU0KkpKSEB8fr3rcRKQP7j4TQuqTO4CXW8yemZkJwPZkQs2ZdyYh1WMRsjwsQpbPpqTgs88+s/mCTzyhbB77/vvv48iRIzh48GCVc/n5+QAAX19fi+O+vr7Iy8uzes05c+Zg5syZ4uOioiIEBAQoFDEROYKWipfdfSaE1Cd3AC+3mN2eZELtPSYcnYS4A256RmqwKSkw/QNhYjAYIAhClWMAqu1MJNf58+fx0ksvYefOnWjQoIHV55ne20QQhCrHzBmNRhiNRsXiJCLH45IdcidStSJq7GlhTzKhdhcrbnRnP9Yb2I87IdfMpqSgoqJC/Pqrr77C7NmzkZiYiLCwMBgMBuzbtw/z5s1DYmKiosEdPnwYly9fxgMPPCAeKy8vx549e/D222/j1KlTAO7MGLRs2VJ8zuXLl6vMHhCRe+GSHdILuXtaSJGbTEgt9ZF7jq107cd6A/uwCNk2dtcUxMbGYvXq1ejbt694LCIiAp6ennj++efFLEwJjz76KE6cOGFxbPz48ejQoQNmz56Ntm3bws/PD7t27RJb/pWVlSEjIwNLly5VLA4i0h4u2SG90FLHKamlPnLPSTElE2lpaWjTpk1tQncrUvUGUkuL9LrsqKYiZFP70qysLHh5eek2WbA7Kfj555/h7e1d5bi3tzdyc3OViEnk5eWFzp07Wxxr2LAhmjdvLh6PjY1FYmIigoKCEBQUhMTERHh6emL06NGKxkJE+qalGgYiZ5Fa6iP3nBRTMmHeZMSUTDBhqJ7U0iK9Lzuqrgg5JycHUVFRACAuSdXrLILdm5c9+OCDiI2NxcWLF8Vj+fn5+Oc//4mePXsqGpwtZs2ahdjYWEyZMgU9evTAr7/+ip07d7JIiYgUpdcN2IjMVd6Qz3ypj9xzUiIjIzFv3jwAVTfqM08YJk6cCIAFysCdpUVZ/VKA5zOQ1S8FKYfLbDqnV6YZg8WLF2P9+vUWx/TG7pmC//mf/0FUVBRat24t/lCfO3cOwcHB2LZtm9LxVbF7926LxwaDAXFxcYiLi1P9vYlIv1jDoA0lJSUAOFujFz4+PoiKikJCQkKVZVORkZHIy8tDQkKCInUW7kJqaRHbnFo3dOhQZ4fgdHYnBe3atcMPP/yAXbt2ITs7G4IgoGPHjhg4cKBkxx8iIlfGGgZtMC1TZccpkkoYiMh+sjYvMxgMGDx4sMWmYURERGqLiIhAamoqZ2uIyCH0VIRsU1KwcuVKPP/882jQoAFWrlwp+dwZM2YoEhgRkRpYMOzafHx8EB0d7ewwSOPkFiHruXhZr52JpOitCNmmpGD58uWIjo5GgwYNsHz5cqvPMxgMTAqISNO46Zn2sW6Aaktu1yI5rzPfg6HyjtOuRKozkV4TBvMiZH9/f0ycONGti5BtSgrOnj1b7ddERK5GqmBYS7MIWo3FNGBXk5y6ATX+f2np74DsI1WELDXwl/M60/4R1e047UoDSKkN0fTeylQvRch2tyQlItK6yoM505084K+C4ejoaPTp08dikOfotqNScWqpBap5LErvR1MdU91AZmamzXUDcv9/yf07kHqd1DlyDFMRMlB1szepNqdyXhcZGYm1a9di3bp11V7TVVh0JmoSbNGZiK1M9cHupODJJ5/Ea6+9VuX4v//9bzz11FOKBEVEVBtyB4imWQR7B6RyScWpRixyB6vmsURERNQ6jpqY6gYqJ21S5P7/kvt3IPU6LSV0VJXUwF/O6yrvweCOnZCkEgZyH3Z3H8rIyMDChQurHH/sscfw+uuvKxIUEVFtyN1TwNFtR6XiVCMWufUUasSidN2A3Bjl/h1IvY57WhDpg7t1JrI7Kbh58ybq16+6luyuu+5CUVGRIkEREdWGlvYUkFqXrqUkRO01+ZVrERy534AafwdSr9PS54+I1OGOnYnsXj7UuXNnfPDBB1WOv//+++jYsaMiQRERuQst1SmoUU8hNfCXqkWQUzcgl5aW87DegMg9mHcmWr9+vcUxV2X3TMH8+fMxatQo/Pzzz3jkkUcAAF9//TW2bt2Kjz76SPEAiYhcmaOXkshdIiQ3zsoDf/O74+bXrFyL4Mj9BrS0nIctcfVFql2pu7Qy1Tt36kxkd1LwxBNPYNu2bUhMTMTHH38MDw8PdO3aFV999RXCw8PViJGIyGWpsZREajmMo+sppAb+WllGo5U4AG0lKKQ+06xUde1K3aWVqV73MHBHdicFADBs2DAMGzZM6ViIiMgGUnebHT0A1tKA2xXw/5e+REZGArizueukSZMs9j5o2rSp1XOZmZkAlJ1hUGtmQu97GLgTWUnBtWvX8PHHH+PMmTP417/+hWbNmuHIkSPw9fXFPffco3SMRERkhnebyd04eoM8RzG1KzXNClTXyrS6c3JnGC5dugSg+oG/1DVrMzMhtekZuRa7k4IffvgBAwcOhLe3N3JzczFp0iQ0a9YMaWlpyMvLw7vvvqtGnERE9CfebSatktvFSqo2Ren2ta5A7gxDRkYGgOoH/lLXNCUacljsYZBfwT0M/uSK7Urt7j40c+ZMjBs3Djk5OWjQoIF4fMiQIdizZ4+iwREREemFozsTqfF+tu4CXXk2QGqDPPP2tXrZCE5qQzSpc1K7K0u9znxp0ebNm3Hs2DGHfa/uqHK70uDgYOTk5Dg5qprZnRQcPHgQkydPrnL8nnvuQX5+viJBERER6Y0SbWErD+6lztk6gJe7+7XULtCVW9Sat8v18fGxOCfVvtZ8FkGJpEbu/0uttJqVu7uy+dKimJgYTJw4EcCdGQayn6u2K7V7+VCDBg2q3aTs1KlTuPvuuxUJioiISG+UaAtbufBc6pzU+0m9Tu5mcFKdqqRIta9VehM8uf8vXb3VrFpLi/TO1dqV2p0UjBgxAosWLcKHH34I4M4H6Ny5c3jllVcwatQoxQMkIiLSAyXawlYe3Euds3UAb0/CoMb3J8U0i1BdEiWnFkHu/0tXL/6XKnquDbFd6Z9f0x1arTewOyl4/fXXMXToULRo0QIlJSUIDw9Hfn4+wsLCsGTJEjViJCIiIiukBttyB+JyEwZHU3oWQe7/Sxb/V09sVwq2KjWpXG8AQKz7cDa7k4LGjRsjMzMT33zzDY4cOYKKigp0794dAwcOVCM+IiIi0hBXGQBbm0WQ2yFJr2qzv4GpXSkAtir9k3m9gb+/PyZOnKiZegNZ+xQAwCOPPIJHHnlEyViIiIiIFGFtFsHV1/87Wm32NxDblf75Nf1Fi/UGdiUFFRUV2LhxIz799FPk5ubCYDCgTZs2ePLJJ/Hcc8/BYOB6MSIiIqXx7rZyHL38ServzhX+XtUqQma9gfbY3JJUEAQ88cQTmDRpEn799Vd06dIFnTp1Ql5eHsaNGyeujyIiIiJlyW1XSlWZtz/t06eP6oNwqb87uW1hHdkCVW6b05qY6g1C9kxmvYFG2DxTsHHjRuzZswdff/01BgwYYHHum2++QWRkJN59912MGTNG8SCJiIj0TEvFvWQfuV2L5LZAdYXZB4D1Blpkc1KwdetWvPrqq1USAuBOfcErr7yCzZs3MykgIiJSmKsU91JVcrsWqZFMKJ0w1KYImfUG2mNzUvDDDz9g2bJlVs8PGTIEK1euVCQoIiIiIj1TI5lQusi6NkXIUlhv4Bw2JwVXr16Fr6+v1fO+vr4oLCxUJCgiIiIisp/chEHOLIJaRcjc38A5bC40Li8vR7161nOIunXr4vbt24oERURERETKkiqyllPMrlYRcsrhMmT1S0FWvxSkHC6r9fXINjbPFAiCgHHjxsFoNFZ73p51ZERERESkHVoqZme9gXPYnBSMHTu2xuewyJiIiIjI9ShdzG5ehKzk8nLWG6jH5qRgw4YNasZBRERERG6iuiJkLy+vWl+X9QbqsWtHYyIiIiKimlQuQk5LS1Os3sBd9zfIycmxKPb28vJS5P+ZrZgUEBEREZFVcjoTmYqQTV2IWrVqpUgsUvUGrry0KCcnB8HBweJjU9H36dOnHZYYMCkgIiIiIquU3t9ArXoDV15aZNrXYf369TAajSgtLcXEiRNrtd+DvZgUEBEREZFVSncmUqvewB2WFoWGhqJ79+612udBLiYFRERERGSV0p2J1Ko3YCvT2rF58zJnWLVqFbp27YrGjRujcePGCAsLw5dffimeFwQBcXFx8Pf3h4eHB/r374+TJ086MWIiIiIiklJ50zPzegPzpUXbt29X7D1N9QYe1067XL2Bo2h6puDee+/Fa6+9hnbt2gEANm3ahBEjRuDo0aPo1KkTli1bhuTkZGzcuBHBwcFISEjAoEGDcOrUKUWmoYiIiIjIOjlFyFLYytR5ND1T8Pjjj2Po0KEIDg5GcHAwlixZgkaNGuHAgQMQBAErVqzA3LlzMXLkSHTu3BmbNm1CcXExtmzZ4uzQiYiIiNxe5SJk06BersjISKxduxbr1q0DAEVbmWb1S0FWvxSkHC6r9fXckaZnCsyVl5fjo48+wu+//46wsDCcPXsW+fn5GDx4sPgco9GI8PBw7Nu3D5MnT7Z6rdLSUpSWloqPi4qKVI2diIiIyB0pXYTMVqbOo/mk4MSJEwgLC8Mff/yBRo0aIS0tDR07dsS+ffsAAL6+vhbP9/X1RV5enuQ1k5KSEB8fr1rMRERERHqgdBGyFLYyVZfmk4L27dvj2LFjuHbtGj755BOMHTsWGRkZ4nmDwTKjEwShyrHK5syZg5kzZ4qPi4qKEBAQoGzgRERERDrmKvUGUq1M9TSLoPmkoH79+mKhcY8ePXDw4EG8+eabmD17NgAgPz8fLVu2FJ9/+fLlKrMHlRmNRhiNRvWCJiIiItI5pTc9k2plWptZBKmlRXqaRdB8UlCZIAgoLS1FmzZt4Ofnh127doktrcrKypCRkYGlS5c6OUoiIiIifXNkvQFnEWpP00nBq6++iiFDhiAgIAA3btzA+++/j927d2PHjh0wGAyIjY1FYmIigoKCEBQUhMTERHh6emL06NHODp2IiIhI1xxZb8BZhNrTdFJw6dIlPPfcc7h48SK8vb3RtWtX7NixA4MGDQIAzJo1CyUlJZgyZQoKCwvRq1cv7Ny5k3sUEBEREWmY0vUGnEWoPU0nBevXr5c8bzAYEBcXh7i4OMcERERERES1pnS9gRSpWYTacLdZBE0nBURERETkfqTqDRw5i6AWqVkErWJSQEREREQOJVVv4MhZBFO9QVpaGtq0aaPYdaVmEeTIycmxSJS8vLwUme0wx6SAiIiIiDRD6a5FUkz1BgkJCeIxU72BVMKgVjJRnZycHAQHB4uPTQnT6dOnFU0MmBQQERERkWZIzSKYLy0qKSmx+Zw1kZGRyMvLQ0JCAlJTU9GzZ09xoC2VMEidU9qNGzcA3Km1NRqNKC0txcSJE8XjSqmj6NWIiIiIiFRivrQoNzfX5nPWEgYfHx9ERUUBAEJCQizuvEdGRmLevHkAgNTUVIs781LnzGcRjh07VttvWRQaGoro6GiEhoYqdk1zTAqIiIiIyCWYlhalpqYiIiLC5nNSCYM1UgmD1DnzWYSJEycCUG8WQUlcPkRERERELkFqaZHUOfM6hcoJgxxSHZKkliRpGWcKiIiIiMitmRKG6Oho+Pj4WJwzLSfKysoSl/7UdK5yhyTT7IDpvcyLo++55x5lvxmVMCkgIiIiIt0yLSeqPLiXOme+VCkzM9MiCZBKGIC/djv2uHZaU7sdc/kQEREREelWREQEUlNTq21/au2crUuVqrumVnc7ZlJARERERLrl4+OD6Ohou89ZI5UwANrd7ZhJARERERGRgyi927FSWFNAREREROSizp07B+BOMXROTo7s6zApICIiIiJyQTk5OeJ+CTExMQgODpadGDApICIiIiJyAKV3O75x4wYAYPHixVi/fr3FMXuxpoCIiIiIyAHMdzs28fLykj2QNxk6dGitXg9wpoCIiIiIyCEiIyMxb948AEBqaipOnz6tmd2OmRQQERERETmAlnc7ZlJAREREROQANe127EysKSAiIiIicoCadjt2JiYFREREREQOILXbsV8jAzyunQYu1IHHtdPwa2RwaGxMCoiIiIiInGzyA/URsmcysAcI+fOxI7GmgIiIiIjIyVIOlyGrXwrwfAay+qUg5XCZQ9+fMwVERERERE6Wf1NASZNgwD8UJfkVyL8pOPT9OVNARERERKRzTAqIiIiIiHSOy4eIiIiIiJyouLgYALB//35kZWWhtLTU4TEwKSAiIiIiciLTJmbTpk2zOO7l5YUbN244JAYmBUREREREThQZGQkAMBgMmDRpElJTU9GzZ08EBQXhyJEjDomBNQVERERERE7k4+OD0aNHo0GDBuKxe+65x6ExMCkgIiIiInKy7OxsxMTEAABiYmLEJUWA+W7Hx1Tb7ZjLh4iIiIiInKxDhw7IzMxEbm4uAgMD0aFDB/GcI3Y7ZlJARERERORknp6e6NOnD/r06VPlXMrhMvxtwUaEdOiArOxspLwxGk8o/P5MCoiIiIiINMwRux0zKSAiIiIi0ihH7WHApICIiIiISKNq2sNALEIGalWAzKSAiIiIiEijIiMjUVpaikuXLmHx4sVYvHgxnnjiCXEPA7EIGbUrQNZ0S9KkpCQ8+OCD8PLyQosWLRAZGYlTp05ZPEcQBMTFxcHf3x8eHh7o378/Tp486aSIiYiIiIiU4+Pjg7CwMCxevBgAMH/+fNy+fRvAnaVFKYfL8E75M/iP30ykHC6T/T6aTgoyMjIwdepUHDhwALt27cLt27cxePBg/P777+Jzli1bhuTkZLz99ts4ePAg/Pz8MGjQIIdtCU1EREREpCZTu9LU1FRkZmaK7Uqzs7ORf1PA1IQ1iHwxDvk3BXh5ecl6D4MgCMqXL6vkt99+Q4sWLZCRkYF+/fpBEAT4+/sjNjYWs2fPBgCUlpbC19cXS5cuxeTJk226blFREby9vXH9+nU0btxYzW+BiIiIiEgRBQUFePPNN5GQkIDU1FT07NkTQUFB4nl7xrguVVNw/fp1AECzZs0AAGfPnkV+fj4GDx4sPsdoNCI8PBz79u2zmhSUlpZaVG6brltUVKRW6EREREREiqpfvz4efvhhAHeWEnl5eVmMZ01f2zIH4DJJgSAImDlzJvr27YvOnTsDAPLz8wEAvr6+Fs/19fVFXl6e1WslJSUhPj6+yvGAgAAFIyYiIiIicoznn3/e6rkbN27A29tb8vUukxRMmzYNP/zwAzIzM6ucMxgs2y8JglDlmLk5c+Zg5syZ4uOKigpcvXoVzZs3l3yd3hUVFSEgIADnz5/nMisiDeHPJpE28WeTnE0QBNy4cQP+/v41PtclkoLp06fjs88+w549e3DvvfeKx/38/ADcmTFo2bKlePzy5ctVZg/MGY1GGI1Gi2NNmjRRNmg31rhxY/7jRqRB/Nkk0ib+bJIz1TRDYKLp7kOCIGDatGn49NNP8c0336BNmzYW59u0aQM/Pz/s2rVLPFZWVoaMjAz07t3b0eESEREREbkkTc8UTJ06FVu2bMF//vMfeHl5iTUE3t7e8PDwgMFgQGxsLBITExEUFISgoCAkJibC09MTo0ePdnL0RERERESuQdNJwapVqwAA/fv3tzi+YcMGjBs3DgAwa9YslJSUYMqUKSgsLESvXr2wc+dO2T1ayTqj0YiFCxdWWXpFRM7Fn00ibeLPJrkSl9qngIiIiIiIlKfpmgIiIiIiIlIfkwIiIiIiIp1jUkBEREREpHNMCoiIiIiIdI5JAUlKSkrCgw8+CC8vL7Ro0QKRkZE4deqUs8Mi0r1Vq1aha9eu4qZIYWFh+PLLL50dFhFVkpSUJLZQJ9IyJgUkKSMjA1OnTsWBAwewa9cu3L59G4MHD8bvv//u7NCIdO3ee+/Fa6+9hkOHDuHQoUN45JFHMGLECJw8edLZoRHRnw4ePIg1a9aga9euzg6FqEZsSUp2+e2339CiRQtkZGSgX79+zg6HiMw0a9YM//73vzFx4kRnh0Kkezdv3kT37t3xzjvvICEhAaGhoVixYoWzwyKyijMFZJfr168DuDP4ICJtKC8vx/vvv4/ff/8dYWFhzg6HiABMnToVw4YNw8CBA50dCpFNNL2jMWmLIAiYOXMm+vbti86dOzs7HCLdO3HiBMLCwvDHH3+gUaNGSEtLQ8eOHZ0dFpHuvf/++zhy5AgOHjzo7FCIbMakgGw2bdo0/PDDD8jMzHR2KEQEoH379jh27BiuXbuGTz75BGPHjkVGRgYTAyInOn/+PF566SXs3LkTDRo0cHY4RDZjTQHZZPr06di2bRv27NmDNm3aODscIqrGwIEDcd999yElJcXZoRDp1rZt2xAVFYW6deuKx8rLy2EwGFCnTh2UlpZanCPSCs4UkCRBEDB9+nSkpaVh9+7dTAiINEwQBJSWljo7DCJde/TRR3HixAmLY+PHj0eHDh0we/ZsJgSkWUwKSNLUqVOxZcsW/Oc//4GXlxfy8/MBAN7e3vDw8HBydET69eqrr2LIkCEICAjAjRs38P7772P37t3YsWOHs0Mj0jUvL68qdXcNGzZE8+bNWY9HmsakgCStWrUKANC/f3+L4xs2bMC4ceMcHxARAQAuXbqE5557DhcvXoS3tze6du2KHTt2YNCgQc4OjYiIXBBrCoiIiIiIdI77FBARERER6RyTAiIiIiIinWNSQERERESkc0wKiIiIiIh0jkkBEREREZHOMSkgIiIiItI5JgVERERERDrHpICIiIiISOeYFBAROUD//v0RGxuryrX79euHLVu2qHJtd3PixAnce++9+P333yWfFxcXB4PBAIPBgBUrVigaQ25urnjt0NBQRa9NRCQXkwIiIhf2xRdfID8/H88884x4LDAwUBx0mv7ce++9ToxSO7p06YKePXti+fLlNT63U6dOuHjxIp5//nnxWGBgYLVJQlxcnM0D/ICAAFy8eBH//Oc/bQ2biEh1TAqIiFzYypUrMX78eNSpY/nP+aJFi3Dx4kXxz9GjR6t9/a1btxwRpqaMHz8eq1atQnl5ueTz6tWrBz8/P3h6eir6/nXr1oWfnx8aNWqk6HWJiGqDSQERkRMUFhZizJgxaNq0KTw9PTFkyBDk5ORYPGft2rUICAiAp6cnoqKikJycjCZNmojnCwoK8NVXX+GJJ56ocn0vLy/4+fmJf+6++24AgMFgwOrVqzFixAg0bNgQCQkJAIDPP/8cDzzwABo0aIC2bdsiPj4et2/fFq+Xk5ODfv36oUGDBujYsSN27doFg8GAbdu2AQB2794Ng8GAa9euia85duwYDAYDcnNzxWP79u1Dv3794OHhgYCAAMyYMcNiKU9gYCASExMxYcIEeHl5oVWrVlizZo3F9/bLL7/gmWeeQbNmzdCwYUP06NED//3vf5Gbm4s6derg0KFDFs9/66230Lp1awiCAACIiIjAlStXkJGRUcPfknyVZ2oMBgMCAwNVez8iotpiUkBE5ATjxo3DoUOH8Nlnn2H//v0QBAFDhw4V79zv3bsXL7zwAl566SUcO3YMgwYNwpIlSyyukZmZCU9PT4SEhNj13gsXLsSIESNw4sQJTJgwAenp6YiJicGMGTPwf//3f0hJScHGjRvF96uoqMDIkSNRt25dHDhwAKtXr8bs2bPt/p5PnDiBiIgIjBw5Ej/88AM++OADZGZmYtq0aRbPe+ONN9CjRw8cPXoUU6ZMwYsvvojs7GwAwM2bNxEeHo4LFy7gs88+w/HjxzFr1ixUVFQgMDAQAwcOxIYNGyyut2HDBowbNw4GgwEAUL9+fdx///347rvv7P4ebGU+S/PTTz+hXbt26Nevn2rvR0RUawIREakuPDxceOmllwRBEITTp08LAIS9e/eK5wsKCgQPDw/hww8/FARBEP72t78Jw4YNs7hGdHS04O3tLT5evny50LZt2yrv1bp1a6F+/fpCw4YNxT9vvvmmIAiCAECIjY21eP7DDz8sJCYmWhx77733hJYtWwqCIAjp6elC3bp1hfPnz4vnv/zySwGAkJaWJgiCIHz77bcCAKGwsFB8ztGjRwUAwtmzZwVBEITnnntOeP755y3e57vvvhPq1KkjlJSUiLHHxMSI5ysqKoQWLVoIq1atEgRBEFJSUgQvLy/hypUrVb5vQRCEDz74QGjatKnwxx9/CIIgCMeOHRMMBoMYg0lUVJQwbty4aq8hCIKwcOFC4f77769yvLr/tw0bNhTuuuuuap9fUVEhREVFCQ888IBQXFxs03sQETlDPadmJEREOpSVlYV69eqhV69e4rHmzZujffv2yMrKAgCcOnUKUVFRFq/r2bMnvvjiC/FxSUkJGjRoUO17vPzyyxg3bpz42MfHR/y6R48eFs89fPgwDh48aDETUV5ejj/++APFxcXIyspCq1atLIqVw8LC7PiO/3qfn376CZs3bxaPCYKAiooKnD17Vpzx6Nq1q3jeYDDAz88Ply9fBnBnSVK3bt3QrFmzat8jMjIS06ZNQ1paGp555hn8z//8DwYMGFBl6Y6HhweKi4vt/h6Aqv9vgTu1HXv27Kny3FdffRX79+/HwYMH4eHhIev9iIgcgUkBEZGDCX+uba/uuGmJi/nX1l7n4+ODwsLCaq/l4+ODdu3aVXuuYcOGFo8rKioQHx+PkSNHVnlugwYNqo23cmymQmfz51YuYq6oqMDkyZMxY8aMKtdr1aqV+PVdd91V5b0qKioAoMaBdf369fHcc89hw4YNGDlyJLZs2VJtt6CrV6/ivvvuk7yWNdX9v60uSUlNTcXy5cuxe/dudn8iIs1jUkBE5GAdO3bE7du38d///he9e/cGAFy5cgWnT58W75Z36NAB33//vcXrKhfQduvWDfn5+SgsLETTpk1lx9O9e3ecOnXKahLRsWNHnDt3DhcuXIC/vz8AYP/+/RbPMRUyX7x4UYzl2LFjVd7n5MmTVt/HFl27dsW6detw9epVq7MFkyZNQufOnfHOO+/g1q1b1SY7P/74I5588knZcdRk//79mDRpElJSUvDQQw+p9j5EREphoTERkYMFBQVhxIgR+Pvf/47MzEwcP34cMTExuOeeezBixAgAwPTp07F9+3YkJycjJycHKSkp+PLLLy3u0Hfr1g1333039u7dW6t4FixYgHfffRdxcXE4efIksrKy8MEHH2DevHkAgIEDB6J9+/YYM2YMjh8/ju+++w5z5861uEa7du0QEBCAuLg4nD59Gv/7v/+LN954w+I5s2fPxv79+zF16lQcO3YMOTk5+OyzzzB9+nSbY3322Wfh5+eHyMhI7N27F2fOnMEnn3xikaSEhITgoYcewuzZs/Hss89WmV3Izc3Fr7/+ioEDB9r7v8om+fn5iIqKwjPPPIOIiAjk5+cjPz8fv/32myrvR0SkBCYFREROsGHDBjzwwAMYPnw4wsLCIAgCtm/fLi6d6dOnD1avXo3k5GTcf//92LFjB/7xj39Y1BDUrVsXEyZMsFijL0dERAS++OIL7Nq1Cw8++CAeeughJCcno3Xr1gDuLA1KS0tDaWkpevbsiUmTJlXphHTXXXdh69atyM7Oxv3334+lS5eK7U5NunbtioyMDOTk5ODhhx9Gt27dMH/+fLRs2dLmWOvXr4+dO3eiRYsWGDp0KLp06YLXXnsNdevWtXjexIkTUVZWhgkTJlS5xtatWzF48GDx+1NadnY2Ll26hE2bNqFly5binwcffFCV9yMiUoJBsLa4lYiINOXvf/87srOzLVppXrp0CZ06dcLhw4dVG+RaYzAYkJaWhsjISIe+ry2WLFmC999/HydOnLA4XlpaiqCgIGzduhV9+vSx+vq4uDhs27atyhIoJTniPYiIbMWZAiIijXr99ddx/Phx/PTTT3jrrbewadMmjB071uI5vr6+WL9+Pc6dO+ekKLXl5s2bOHjwIN56661qC5rz8vIwd+5cyYTA5MSJE2jUqBHeeecdRWM8d+4cGjVqhMTEREWvS0RUG5wpICLSqKeffhq7d+/GjRs30LZtW0yfPh0vvPCCs8MSaXGmYNy4cdi6dSsiIyOxZcuWKsuKbHX16lVcvXoVwJ0iam9vb8VivH37trjLs9FoREBAgGLXJiKSi0kBEREREZHOcfkQEREREZHOMSkgIiIiItI5JgVERERERDrHpICIiIiISOeYFBARERER6RyTAiIiIiIinWNSQERERESkc0wKiIiIiIh07v8DcGA7kcGFnBkAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHFCAYAAABy/MT4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXXElEQVR4nO3de1xUdf4/8NeIOs4AklcuRgoGDt7S0LyAoKXYRQ397m6tjoK3aNWSNdPMMjSE1JX8lluim2KS2rap23d/XXQrUbyUgqYpA5holI5WIqCDoHB+fxBHh5twztzOzOv5ePCQOefMmfcgyovPVSUIggAiIiIiUowW9i6AiIiIiJqHAY6IiIhIYRjgiIiIiBSGAY6IiIhIYRjgiIiIiBSGAY6IiIhIYRjgiIiIiBSGAY6IiIhIYRjgiIiIiBSGAY6IiIhIYRwywO3btw9jx46Fn58fVCoVdu3aZXZeEAQkJCTAz88PGo0Gw4cPx6lTp8yuKS8vx3PPPYeOHTvC3d0d48aNw08//WTDd0FERERkHQ4Z4K5fv44HHngAa9eurff8ypUrkZKSgrVr1+LIkSPw8fHBqFGjUFpaKl4THx+PnTt3Yvv27cjMzMS1a9cwZswYVFZW2uptEBEREVmFytE3s1epVNi5cyeio6MBVLe++fn5IT4+HgsXLgRQ3drm7e2NFStWIC4uDsXFxejUqRO2bNmCp556CgBw4cIF+Pv749NPP8Xo0aPt9XaIiIiIZGtp7wKaq6CgAEajEVFRUeIxtVqNyMhIHDx4EHFxccjKysLNmzfNrvHz80Pv3r1x8ODBBgNceXk5ysvLxcdVVVW4cuUKOnToAJVKZb03RURERC5PEASUlpbCz88PLVo03kmquABnNBoBAN7e3mbHvb29cf78efGa1q1bo127dnWuqXl+fZKTk7F06VILV0xERETUdIWFhbj33nsbvUZxAa5G7RYxQRDu2kp2t2sWLVqEefPmiY+Li4tx3333obCwEG3btpVXMBEREVEjSkpK4O/vD09Pz7teq7gA5+PjA6C6lc3X11c8fvnyZbFVzsfHBxUVFSgqKjJrhbt8+TKGDh3a4L3VajXUanWd423btmWAIyIiIptoyrAth5yF2piAgAD4+Phgz5494rGKigpkZGSI4Sw0NBStWrUyu+bixYv4/vvvGw1wRERERErgkC1w165dw5kzZ8THBQUFOH78ONq3b4/77rsP8fHxSEpKQlBQEIKCgpCUlAStVouJEycCALy8vDB9+nS88MIL6NChA9q3b4/58+ejT58+GDlypL3eFhEREZFFOGSAO3r0KEaMGCE+rhmXFhMTg7S0NCxYsABlZWWYNWsWioqKMGjQIOzevdusz/jNN99Ey5Yt8ac//QllZWV45JFHkJaWBjc3N5u/HyIiIiJLcvh14OyppKQEXl5eKC4u5hg4IiIisqrm5A7FjYEjIiIicnUMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDCKDXClpaWIj49H165dodFoMHToUBw5ckQ8LwgCEhIS4OfnB41Gg+HDh+PUqVN2rJiIiIjIMhQb4GbMmIE9e/Zgy5YtOHnyJKKiojBy5Ej8/PPPAICVK1ciJSUFa9euxZEjR+Dj44NRo0ahtLTUzpUTERERyaMSBEGwdxHNVVZWBk9PT/z73//GE088IR7v168fxowZg9dffx1+fn6Ij4/HwoULAQDl5eXw9vbGihUrEBcX16TXKSkpgZeXF4qLi9G2bVurvBciIiIioHm5Q5EtcLdu3UJlZSXatGljdlyj0SAzMxMFBQUwGo2IiooSz6nVakRGRuLgwYMN3re8vBwlJSVmH0RERESORpEBztPTE0OGDMHrr7+OCxcuoLKyEunp6fjmm29w8eJFGI1GAIC3t7fZ87y9vcVz9UlOToaXl5f44e/vb9X3QURERCSFIgMcAGzZsgWCIKBLly5Qq9V46623MHHiRLi5uYnXqFQqs+cIglDn2J0WLVqE4uJi8aOwsNBq9RMRERFJpdgA1717d2RkZODatWsoLCzEt99+i5s3byIgIAA+Pj4AUKe17fLly3Va5e6kVqvRtm1bsw8iIiIiR6PYAFfD3d0dvr6+KCoqwhdffIEnn3xSDHF79uwRr6uoqEBGRgaGDh1qx2qJiIiI5Gtp7wKk+uKLLyAIAnr06IEzZ87gxRdfRI8ePTB16lSoVCrEx8cjKSkJQUFBCAoKQlJSErRaLSZOnGjv0omIiIhkUWyAKy4uxqJFi/DTTz+hffv2+J//+R8sX74crVq1AgAsWLAAZWVlmDVrFoqKijBo0CDs3r0bnp6edq6ciIiISB5FrgNnK1wHjoiIiGzF6deBIyIiInJlDHBERERECsMAR0RERKQwDHBERERECsMAR0RERKQwDHBERERECsMAR0RERKQwDHBERERECsMAR0RERKQwDHBERERECsMAR0RERKQwDHBERERECtNSypM++eSTZj9n1KhR0Gg0Ul6OiIiIiO4gKcBFR0c363qVSoX8/HwEBgZKeTkiIiIiuoPkLlSj0YiqqqomfWi1WkvWTEREROTSJAW4mJiYZnWH6vV6tG3bVspLEREREVEtKkEQBHsX4ahKSkrg5eWF4uJiBlAiIiKyqubkDtmzUB9++GEsXbq0zvGioiI8/PDDcm9PRERERLVImsRwp7179+LkyZM4duwYPvjgA7i7uwMAKioqkJGRIbtAIiIiIjJnkXXg/vvf/8JoNGLw4ME4d+6cJW5JRERERA2wSIDz9fVFRkYG+vbti4EDB2Lv3r2WuC0RERER1UN2gFOpVAAAtVqNDz74AHPnzsWjjz6Kd955R3ZxRERERFSX7DFwtSexvvLKKwgJCUFMTIzcWxMRERFRPWQHuIKCAnTq1Mns2P/8z/9Ap9Ph6NGjcm9PRERERLXIDnBdu3at93ivXr3Qq1cvubcnIiIiolokB7iSkpImXecMC+AePnwY4eHh3BKM6HcmkwnHjh3DuXPn0K1bN/Tv35//PoiIbEhygLvnnnvECQz1EQQBKpUKlZWVUl/CYYwePRpZWVl48MEH7V0KkUMwGAwIDw8XHzf130ft4KfRaKDT6Rj+iIiaSXKA+/rrr8XPBUHA448/jn/84x/o0qWLRQpzJOvXr4dOp7N3GUQOQ6fTIT09HXq9Hunp6U3+91E7+AFND39ERHSb5AAXGRlp9tjNzQ2DBw9GYGCg7KIcTY8ePdhCQHQHrVaLkJAQAEBISEiT/33UDn4hISH85YiISALZkxiIiJqqdvBjyxsRkTQMcETktEwmEwwGA8rKypx6woWtJ5W4yteVyJFZNMA1NqmBiMjWDAYDQkNDzY4545g7qZNK5LyeK3xdiRyZ5AA3fvx4s8B248YNPPvss3B3dze7bseOHdKrIyKC9BYfnU6HrKws5OTkNHvChZJInVQidVawq3xdiRyZrGVE7qTX6+XWQkRUL6ktPlqt1uya5ky4UBKpk0qkzgp2la8rkSOTHOB8fHwQHR2NQYMGWbIeIqI62OJjHbaeFcyxc0SWIznAGY1GjB07Fm5ubhg7diyio6PxyCOPQK1WW7I+IiK2+FiJrWcFc+wckeW0kPrETZs24dKlS/jnP/+Je+65B/PmzUPHjh0xYcIEpKWl4ddff7VknURETs1kMiE7OxsHDhzABx98gAMHDsBkMtm7LIuqaUlNT08HALakEskgOcAB1bNOhw0bhpUrV8JgMODbb7/F4MGDsWHDBnTp0gURERH429/+hp9//tlS9QIAbt26hVdeeQUBAQHQaDQIDAzEsmXLUFVVJV4jCAISEhLg5+cHjUaD4cOH49SpUxatg4jIUmpap8LDw6HX6xEeHg6DwWDvsiyqpiVVyng9IjInK8DVFhISggULFuDAgQP46aefEBMTg/3792Pbtm2WfBmsWLEC69atw9q1a5GTk4OVK1di1apVePvtt8VrVq5ciZSUFKxduxZHjhyBj48PRo0ahdLSUovWQkRkCWydIqLmsNpCvp06dcL06dMxffp0i9/70KFDePLJJ/HEE08AALp164Zt27bh6NGjAKpb39asWYPFixdjwoQJAIDNmzfD29sbW7duRVxcnMVrIiKSg+P8iKg5mt0CV1ZWVm+XqC27J8PDw/Hll18iLy8PAPDdd98hMzMTjz/+OACgoKAARqMRUVFR4nPUajUiIyNx8ODBBu9bXl6OkpISsw8iouYwmUxm49iys7OdbiybPfDrSmSuWS1w//rXv/DXv/4V7du3hyAI2LBhg7iMyOTJk5GdnW2VImtbuHAhiouLodPp4ObmhsrKSixfvhx//vOfAVTPkAUAb29vs+d5e3vj/PnzDd43OTkZS5cutV7hRA6ESzo0Tuoit1LXVqPGSf26Sv17JHJ0zQpwiYmJyM7ORqdOnXD06FHExMRg8eLFmDhxIgRBsFaNdXz44YdIT0/H1q1b0atXLxw/fhzx8fHw8/NDTEyMeF3trb0EQWh0u69FixZh3rx54uOSkhL4+/tb/g0QOQAu6dA4qYHB1muruQqpX1cGanJWzQpwN2/eRKdOnQAAAwYMwL59+zBhwgScOXPGpvugvvjii3jppZfw9NNPAwD69OmD8+fPIzk5GTExMfDx8QFQ3RLn6+srPu/y5ct1WuXupFaruY4duQwujts4qYHB1muruQqpX1cGanJWzRoD17lzZ5w4cUJ83KFDB+zZswc5OTlmx63NZDKhRQvz0t3c3MRlRAICAuDj44M9e/aI5ysqKpCRkYGhQ4farE4iR8YlHRpXX2Dg10d5+PdIzqpZLXBbtmxBy5bmT2ndujW2bduGOXPmWLSwxowdOxbLly/Hfffdh169euHYsWNISUnBtGnTAFR3ncbHxyMpKQlBQUEICgpCUlIStFotJk6caJMaa4+74NgiIiIispRmBbh77723wXPt2rXD559/joqKCrPj48aNk1ZZI95++228+uqrmDVrFi5fvgw/Pz/ExcVhyZIl4jULFixAWVkZZs2ahaKiIgwaNAi7d++Gp6enxeupT+1xFxxzQURERJYiex24s2fPYvz48Th58iRUKpU4maFmTFxlZaXcl6jD09MTa9aswZo1axq8RqVSISEhAQkJCRZ//aaoPe6CYy6IiIjIUmTvxDB37lwEBATg0qVL0Gq1OHXqFPbt24cBAwZg7969FihRmWqPu2D3KREREVmK7Ba4Q4cO4auvvkKnTp3QokULtGjRAuHh4UhOTsbzzz+PY8eOWaJOIiIiIvqd7Ba4yspKeHh4AAA6duyICxcuAAC6du2K3NxcubcnIiIiolpkt8D17t0bJ06cQGBgIAYNGoSVK1eidevWWL9+PQIDAy1RIxERERHdQXaAe+WVV3D9+nUA1Ts1jBkzBsOGDUOHDh3w4Ycfyi6QiIiIiMzJDnCjR48WPw8MDMTp06dx5coVtGvXzqa7MxARERG5CtkBrj7t27e3xm2JiIiICDImMZhMJsyePRtdunRB586dMXHiRPz666+WrI2IiIiI6iG5Be61115DWloaJk2aBI1Gg61bt+Ivf/kLPvroI0vWR0REZHMmkwkGgwFlZWXcEpEckuQAt2PHDrz33nt4+umnAQCTJk1CWFgYKisr4ebmZrECXQX/syAichwGgwGhoaFmx5q6JSL3wiZbkBzgCgsLMWzYMPHxQw89hJYtW+LChQvw9/e3SHGuRM5/FkREZFk6nQ5ZWVnIyclp9paI3AubbEHyGLjKykq0bt3a7FjLli1x69Yt2UW5opr/LNLT0wGA+6cSEdmRVqvFgw8+KGlLxJq9sAH+X07WI7kFThAExMbGQq1Wi8du3LiBZ599Fu7u7uKxHTt2yKvQRdT8Z1GD+6cSESkT98ImW5Ac4GJiYuoc0+v1soohIiIioruTHOA2bdpkyTqIiIiIqImsspCvs8nNzYWHhwc8PT0RFBRk73KIiIjIxckOcMuWLWv0/JIlS+S+hN0988wz4ud5eXkMcURERGRXsgPczp07zR7fvHkTBQUFaNmyJbp37+4UAe6LL77AL7/8Ar1ej9LSUnuXQ0RERC5OdoA7duxYnWMlJSWIjY3F+PHj5d7eIQwePBhnzpyxdxlEREREAKw0Bq5t27ZYtmwZxowZg8mTJ1vjJYiIiJxK7R0cNBoNdDodlyGhelltEsPVq1dRXFxsrdsTWRW3NiMiW6u9gwPAXRyoYbID3FtvvWX2WBAEXLx4EVu2bMGjjz4q9/ZEdsGtzYjI1mp2cKjZuiskJIS7OFCDZAe4N9980+xxixYt0KlTJ8TExGDRokVyb08ki9QuCTn7IBIRSVF7Bwf+wkiNkR3gCgoKLFEHkVVI7ZJQ0tZmHDdDROR6uJAvOTVX6JLguBkiItfDAEeKILWVyRW6JFwhpBIRkTkGOFIEtjI1zBVCKhERmWth7wKImqKmlQkA0tPTkZWVxVYmIiJyWWyBI0VgKxMREdFtVmuBKywsxLRp06x1eyIiIiKXZbUAd+XKFWzevNlatyciIiJUT/I6cOAAPvjgAxw4cADZ2dkwmUz2LousTHIX6ieffNLo+bNnz0q9teLl5+ejtLQUOTk5ACD+6enpiaCgIHuWRkREToaTvFyT5AAXHR0NlUoFQRAavEalUkm9vWLl5+cjODjY7Jherxc/z8vLY4ijenFBXiKSgksJuSbJAc7X1xd///vfER0dXe/548eP19lLUrEunoDm6k/w8bh7IC0tLQVQPVOyW7du4g/jc+fOQa/Xi+eJauNv0UQkBSd5uSbJAS40NBTZ2dkNBri7tc4pStrjCFGrEBfauslPqflHFBYWBgDQaDTWqo6cBH+LJiKippIc4F588UVcv369wfP3338/vv76a6m3dyyxnyLn55+Qunoixtm7FnJa/C2aiIiaSnKAGzZsWKPn3d3dERkZKfX2jsW3L8qua2G85iQtikRERKRoityJoVu3blCpVHU+Zs+eDQAQBAEJCQnw8/ODRqPB8OHDcerUKTtXTURE5DhMJhOys7PNliDh8iPKocidGI4cOYLKykrx8ffff49Ro0bhj3/8IwBg5cqVSElJQVpaGoKDg5GYmIhRo0YhNzcXnp6e9iqbiIjIYRgMhjqTDTlxSjkU2QLXqVMn+Pj4iB//+c9/0L17d0RGRkIQBKxZswaLFy/GhAkT0Lt3b2zevBkmkwlbt261d+lEREQOQafTISsry2yfaU6cUg5FtsDdqaKiAunp6Zg3bx5UKhXOnj0Lo9GIqKgo8Rq1Wo3IyEgcPHgQcXFxDd6rvLwc5eXl4uOSkhKr1k7Oieu5EZESaLVas9a2kJAQ/j+lIIoPcLt27cLVq1cRGxsLADAajQAAb29vs+u8vb1x/vz5Ru+VnJyMpUuXWqVOazGZTDAYDCgrKxMDQ//+/fmP0I64nhsREVmbRbpQ9+/fD71ejyFDhuDnn38GAGzZsgWZmZmWuH2j3nvvPTz22GPw8/MzO157FwhBEO66M8SiRYtQXFwsfhQWFlq8XkurGcMQHh4OvV6P8PBwGAwGe5fl0mrWcwOquySysrLYLUFETqX2/quc/GB7slvgPv74Y0yePBmTJk3CsWPHxC7I0tJSJCUl4dNPP5VdZEPOnz+P//73v9ixY4d4zMfHB0B1S5yvr694/PLly3Va5WpTq9VQq9XWKdZKasYw5OTkiAvANjUssPXOOrieGxE5u9o9DexlsD3ZLXCJiYlYt24dNmzYgFatWonHhw4diuzsbLm3b9SmTZvQuXNnPPHEE+KxgIAA+Pj4YM+ePeKxiooKZGRkYOjQoVatxx5qxjDcGRiaGsDYekdERFLU7mlgL4PtyQ5wubm5iIiIqHO8bdu2uHr1qtzbN6iqqgqbNm1CTEwMWra83ZCoUqkQHx+PpKQk7Ny5E99//z1iY2Oh1WoxceJEq9WjRJyBREREUtTuaWDPje3J7kL19fXFmTNn0K1bN7PjmZmZCAwMlHv7Bv33v//Fjz/+iGnTptU5t2DBApSVlWHWrFkoKirCoEGDsHv3bq4BVwtnIBERESmT7AAXFxeHuXPnYuPGjVCpVLhw4QIOHTqE+fPnY8mSJZaosV5RUVEQhPq3tlKpVEhISEBCQoLVXp+IiIjIXmQHuAULFqC4uBgjRozAjRs3EBERAbVajfnz52POnDmWqNHuDh8+jF9++aXJ1/t4qKC5mgdcuN1DrbmaBx+PxmfBEhERETWFrAB38+ZNREVFITU1FYsXL8bp06dRVVWFnj17wsPDw1I12t3o0aPFz5vSDRsX2hoh++KAfbePhfx+nIiaLz8/H6WlpcjJyQEA5OTkwNPTE0FBQXaujIjIPmQFuFatWuH777+HSqWCVqvFgAEDLFWXQ1m/fj1CQ0Ob/AMjNasCTy1JQ8gdEwJyDAakrp6IcdYslMgJ5efnIzg42OyYXq8HAOTl5THEEZFLkt2FOmXKFLz33nt44403LFGPQ+rRo0ez1rcxXhNQdk8w4NdPPFZmrILxWv1j9oD6WxgAsJWBXF5paSmA6lnS3bp1w7lz51BeXo7p06eL58i22CJKZH+yA1xFRQX+8Y9/YM+ePRgwYADc3d3NzqekpMh9CafXWAsDwFYGIuD2oshhYWFWX2OSGsYWUSLHIDvAff/992LrVF5entm5u21dRdXqa2Go+VOv17OVgYgcBltEiRyD7AD39ddfW6IOgnkLAwBoNBo7V0RUl9Tufg4TcC5sESWyL9kBjohch9Tufg4TcDwM1ETKxgBHRE0mtbufwwQcCwM1kfIxwBFRs0nt7ucwAcfAQE32YjKZcOzYMfF7TqPRQKfTcRtHCRjgiIhcFAM12ZrBYEB4eLjZsaysrGYt1UXVGODIZkwmEwwGA8rKysTfvvr378/fvIiIXIROp0N6ejr0ej3S09MREhIC3R2L3lPTyQ5wv/32Gzp06AAAKCwsxIYNG1BWVoZx48Zh2LBhsgsk67H1IGaDwYDQ0FCzY/zNi8h1cOIEabVahISEALjdAkzSSA5wJ0+exNixY1FYWIigoCBs374djz76KK5fv44WLVrgzTffxL/+9S9ER0dbsFyyFHsMYtbpdMjKykJOTo742xd/87IfV/hh6grvUSk4cYLIsiQHuAULFqBPnz5IT09Heno6xowZg8cffxz/+Mc/AADPPfcc3njjDQY4K5P6A8oeg5i1Wq3Zb1shISHsPrUTV/hh6grvUUk4cYLIsiQHuCNHjuCrr75C37590a9fP6xfvx6zZs1CixYtAFQHuMGDB1usUKUwmUwAgOzsbLOxXufOnbP4a1niBxQHMbsmV/hhKuc9suXOevh/DpFlSA5wV65cgY+PDwDAw8MD7u7uaN++vXi+Xbt2TvFDoLkMBgMAYObMmfWe9/T0tNhr2euHMCcjOA9X+GHa3PfIljsiUgJZkxhq73XKvU8hdhnrdDqcP3/ebKZNY7+9+3iooLmaB1xoIR7TXM2Dj8fdv6a2/iHMyQjkzFyhdZKIlE9WgIuNjYVarQYA3LhxA88++yzc3d0BAOXl5fKrU6COHTtixowZACC2SDVlpk1caGuE7IsD9t0+FvL7cUfjCpMR2IVGrtA6SUTKJTnAxcTEmD2+s4uhxpQpU6Te3uWkZlXgqSVpCLkjCOUYDEhdPRHj7FhXfWw9GcHWYYpdaKQk/GWDyDVJDnCbNm2yZB0uz3hNQNk9wYBfP/FYmbEKxmuC/YpyAPYIU+xCIzny8/P5ywYRWR13YnBhcsbd2Yo9wxS70Ki5ageq5oQpKS1prvLLBlsZiZPn6pIU4ObNm9fka1NSUqS8BNmAksbdMUyREtQEpvfeew9qtbpZy5bIaUlz5n8fbGUkgJPn6iMpwB07dszscVZWFiorK9GjRw8A1f+g3Nzc6nyxybEoadwdkZL069dP/MHSlDDlKi1pUsj92tiyS5usxxUmzzWXpAD39ddfi5+npKTA09MTmzdvRrt27QAARUVFmDp1KvdCtQE53aAcd+cc+APKeThzS5pcUr42crq0ybFwJ5+6ZI+BW716NXbv3i2GN6B6Ed/ExERERUXhhRdekPsS1AgldYOS5fEHFFHDpHZpEymB7ABXUlKCS5cuoVevXmbHL1++zH8gNuAK3aBKmGxhL/wBRXR3ze3SJlIC2QFu/PjxmDp1KlavXi3ufXr48GG8+OKLmDBhguwCqXGu0A3qKq2McrpC+QOKyLI485UcnewAt27dOsyfPx96vR43b96svmnLlpg+fTpWrVolu0AiOa2MShkfxq5QIsfBma+kBLIDnFarxTvvvINVq1bhhx9+gCAIuP/++8UttcgxmUwmAEB2drbZujrnzp2zb2H1kNrKqKRQxK5QIsfBWcGkBBZbyNfd3R19+/a11O1cij3ClMFgAADMnDmz3vOenp5We21bUWIoYlcokePgrGByZJIC3IkTJ9C7d2+0aNHi7hcDOHXqFHr06IGWLbnxQ33sEaaio6MBVK+tc/78eXFdnZCQEIfsYpSDoYiIyDU58w4OkhJV//79YTQa0alTpyZdP2TIEBw/fhyBgYFSXs7p2SNMdezYETNmzAAA8Ru55rdNIiIiZ+DMOzhICnCCIODVV19tcoKtqKiQ8jIuQ2lhypazs5Q0Vo+IiByLM+/gICnARUREIDc3t8nXDxkyhF1XTsLWs7OUNlaPSw8QETkOZ97BQVKA27t3r4XLICns0Tpl69lZShqrx6UHiIi/xJGtcFaBgtmzdcpWs7OU1L3MpQeIXBt/iSNbYoBTMCW1TrkSLj1A5Jr4SxzZUtPWAXFAP//8M/R6PTp06ACtVot+/fohKytLPC8IAhISEuDn5weNRoPhw4fj1KlTdqzY8mpap8LDwxESEgLgdnhgeKt2ex/V48CF49xDlYisLiQkBGFhYZg0aRLCwsLE/5+JLEmRLXBFRUUICwvDiBEj8Nlnn6Fz58744YcfcM8994jXrFy5EikpKUhLS0NwcDASExMxatQo5ObmOtzAd7Ke2vuoOuMeqkRE5Hqs1gJXWFiIadOmWeXeK1asgL+/PzZt2oSHHnoI3bp1wyOPPILu3bsDqG59W7NmDRYvXowJEyagd+/e2Lx5M0wmE7Zu3drgfcvLy1FSUmL2AQC5ubnihAFSltSsCuREpALPZADPZCAnIhWpWXdf1qZ2yx1b74iIyJFYLcBduXIFmzdvtsq9P/nkEwwYMAB//OMf0blzZ/Tv3x8bNmwQzxcUFMBoNCIqKko8plarERkZiYMHDzZ43+TkZHh5eYkf/v7+AIBnnnlGnDBA0sNNfn4+srOzzWZnZWdnIz8/32q1mu2j6tcPZfcE33UPVeCOlrv1keJHyL44tt4REZFDUGQX6tmzZ/Huu+9i3rx5ePnll/Htt9/i+eefh1qtxpQpU2A0GgEA3t7eZs/z9vbG+fPnG7zvokWLMG/ePPFxSUkJ/P398cUXXzjNwn+WULtbErh716TSZmelZlXgqSVpCLnj7z3HYEDq6okYZ8e6iIiIAIUGuKqqKgwYMABJSUkAqrf2OnXqFN59911MmTJFvE6lMm8REgShzrE7qdVqqNXqOscHDx7sNAv/WYKUcKO02VlmLXe/KzNWNan1joiIyNoUGeB8fX3Rs2dPs2MhISH4+OOPAQA+Pj4AAKPRCF9fX/Gay5cv12mVo+aTE25sucRGzbjFQ4cOIScnh1twERGR05Ac4CZMmNDo+atXr0q99V2FhYXV2corLy8PXbt2BQAEBATAx8cHe/bsQf/+/QFU78eakZGBFStWWK0uciw14xbnzJlT5xxnIhMRkZJJDnBeXl53PX9nd6Yl/fWvf8XQoUORlJSEP/3pT/j222+xfv16rF+/HkB112l8fDySkpIQFBSEoKAgJCUlQavVYuLEiVapiRxPzULHKpUKM2bM4CLHRETkNCQHuE2bNlmyjmYZOHAgdu7ciUWLFmHZsmUICAjAmjVrMGnSJPGaBQsWoKysDLNmzUJRUREGDRqE3bt3s+XFjm7PXr09+dmaS3PULHScnZ0NwDZbcNn6PRKRc+AeqtRcssbAVVVVIS0tDTt27MC5c+egUqkQEBCAP/zhD5g8eXKjEwbkGjNmDMaMGdPgeZVKhYSEBCQkJFitBmoeKbNX7aFm7Fx2djbKysrMJlzcjVLeIxE5DqXN0ncVJpMJx44dE38GaDQa6HQ6h5nUKDnACYKAsWPH4rPPPsMDDzyAPn36QBAE5OTkIDY2Fjt27MCuXbssWCopnVKW5qgZOzdz5sx6zzfWiquU90hEjkNps/RdhcFgQHh4uNmxrKwsq/fkNJXkAJeWlob9+/fjyy+/xIgRI8zOffXVV4iOjsb7779vtXFwjs5kMpk1hTtSarcXpSzNUTN2TqfT4fz589Dr9U0eP6eU90hEjseWs/Tp7nQ6HdLT081+BjjSmrCSA9y2bdvw8ssv1wlvAPDwww/jpZdewgcffOCyAc5gMIhN4Hq93qFSuxxyuheVombsHAAxdNti/BwRETkOrVaLkJAQAI75M0BygDtx4gRWrlzZ4PnHHnsMb731ltTbK55Op0NmZqYYcBwptcshp3uRiIiILENygLty5Uqji+J6e3ujqKhI6u0VT6vVIiwsTGwKdxZyuhflqN0lXVODq3dLExGRa5Ic4CorK9GyZcNPd3Nzw61bt6TenhyUvboXa3dJA441mNQSai9BwuVHiIioIbJmocbGxta7dygAlJeXSy6KbMNkMsFgMChiskXtLuma6dyORO74wNpLkHD5ESIiaojkABcTE3PXa1x1AoNSGAwGhIaGio+tOdlCbrhRQpe03PGBtZcg4fIjRETUEEXuxECWodPpkJWVZRaorNWq5QqTH+SOD6y9BAmXHyEioobI2omBlE2r1YqtbdZu2bLX5Adb4vIjRERkKy3ufkn9vvnmG3z22Wdmx95//30EBASgc+fOeOaZZzgOjkQ14SY8PLzOujrWDG+1Z69mZ2eL3blERERKJTnAJSQk4MSJE+LjkydPYvr06Rg5ciReeukl/N///R+Sk5MtUiQ1zGQyITs72yykMKDcVnv2amhoqNidS0TkDPLz8+v8opqfn2/nqsjaJHehHj9+HK+//rr4ePv27Rg0aBA2bNgAAPD398drr73GzeStzJYTEZRICbNXiYikys/PR3BwsPi45hdWAMjLy3OK4SlUP8kBrqioyGwh34yMDDz66KPi44EDB6KwsFBedXRXtpyIoERKmL0K3J6le+jQIeTk5Djd9mREZB01G92/9957UKvV4v8der1ePEfOSXKA8/b2RkFBAfz9/VFRUYHs7GwsXbpUPF9aWopWrVpZpEhqmC0nIpD11HTrzpkzp845Z5ihS0TW1a9fP/FngUajsXM1ZAuSA9yjjz6Kl156CStWrMCuXbug1WoxbNgw8fyJEyfQvXt3ixRJ5OxqZumqVCrMmDGjWTN0uYMD2Rq/54jsT3KAS0xMxIQJExAZGQkPDw9s3rwZrVvfXjV+48aNiIqKskiRRM6uZpZudnY2gOYtP8IdHMjW+D1HZH+SA1ynTp2wf/9+FBcXw8PDA25ubmbnP/roI3h4eMgukMgelLTNGHdwIFuT+j1Xu+UOYOsdkVSyF/L18vKq93j79u3l3prIbpQ0u5c7OJCtSf2eq91yB7D1jkgqyQHOZDLhxRdfxK5du3Dz5k2MHDkSb731Fjp27GjJ+ojswhVm97I1xLXZ4++/dssdwBZjIqkkB7jXXnsNaWlpmDRpEtq0aYNt27bhL3/5Cz766CNL1kdkF64wu5etIa7NHn//tVvuALYYE0klOcDt2LED7733Hp5++mkA1V1MYWFhqKysrDMejsiV1N6+C4BDjp9ja4hr498/kbJJDnCFhYVmy4Y89NBDaNmyJS5cuAB/f3+LFEekRLW37wLgkOPn2Bri2vj3T6RskgNcZWWl2bIhANCyZUvcunVLdlGuSEmzHqVyhfcIcPsuIiKyPskBThAExMbGQq1Wi8du3LiBZ599Fu7u7uKxHTt2yKvQRShp1qNUrvAeAenbd0npeuUWXERErklygJsyZQpUKvPZSnduokvNo6RZj1Jb0pT0Hu1BStcrt+AiInJNkgNcWlqaBcsgJc16lNqSpqT3aA9Sul7lbMFFRETKJTnAffPNN7hy5Qoee+wx8dj777+P1157DdevX0d0dDTefvttsy5Wcg5sSbMOKV2vcrbgIiIi5ZIc4BISEjB8+HAxwJ08eRLTp09HbGwsQkJCsGrVKvj5+SEhIcFStZKDYEuaa+MCwERE9ic5wB0/fhyvv/66+Hj79u0YNGgQNmzYAADw9/fHa6+9xgBH5GS4ADARkf1JDnBFRUXw9vYWH2dkZODRRx8VHw8cOBCFhYXyqiMih8MFYImI7E9ygPP29kZBQQH8/f1RUVGB7OxsLF26VDxfWlqKVq1aWaRIInIcXACWyDnk5+ejtLS0zvJFnATVdCaTCceOHasz+cwW65tKDnCPPvooXnrpJaxYsQK7du2CVqs125nhxIkT6N69u0WKJCIiIsvJz89HcHCw2bE7lwLLy8tjiGsCg8GA8PBws2O2Wt9UcoBLTEzEhAkTEBkZCQ8PD2zevNlsZ4aNGzciKirKIkUSERGR5ZSWlgIA0tPTxQXAa/7U6/XieWqcTqdDeno69Hq9uIyTrVZlkBzgOnXqhP3796O4uBgeHh51NrD/6KOP4OHhIbtAIiJybZz5bD01Sw/VrCig0WjsXJGyaLVahISEALD9Mk6SA1wNLy+veo+3b99e7q2JiIg485moHrIDHBFRU7AVhaSSM/O59vcdv+fIWSgywCUkJJjNeAWqZ8UajUYAgCAIWLp0KdavX4+ioiIMGjQIf//739GrVy97lEtkVSaTqc4sMlvNgmoOtqKQVHJmPtf+vuP3HDmLFne/xDH16tULFy9eFD9Onjwpnlu5ciVSUlKwdu1aHDlyBD4+Phg1ahQHZZJTMhgM4uwxvV6P0NBQcZN7R5KaVYGciFTgmQzxIyciFalZFfYujZxY7e87fs+Rs1BkCxwAtGzZEj4+PnWOC4KANWvWYPHixZgwYQIAYPPmzfD29sbWrVsRFxfX4D3Ly8tRXl4uPi4pKbF84UQWptPpkJmZWWcdIkfD9eOsg13Tjav9fcfvOXIWFglw+/fvR2pqKn744Qf861//QpcuXbBlyxYEBATUWR/FUvLz8+Hn5we1Wo1BgwYhKSkJgYGBKCgogNFoNFvCRK1WIzIyEgcPHmw0wCUnJ9fpmiVydFqtFmFhYdyX1kWxa5rINcnuQv34448xevRoaDQaHDt2TGzBKi0tRVJSkuwC6zNo0CC8//77+OKLL7BhwwYYjUYMHToUv/32mzgO7s5tvmoe15xryKJFi1BcXCx+cCswInJ07Jomck2yW+ASExOxbt06TJkyBdu3bxePDx06FMuWLZN7+3o99thj4ud9+vTBkCFD0L17d2zevBmDBw8GAKhU5t0HgiDUOVabWq2GWq22fMFERFbCrmki1yS7BS43NxcRERF1jrdt2xZXr16Ve/smcXd3R58+fZCfny+Oi6vd2nb58uU6rXJE5Nxujw87Ln5wfBgROQPZLXC+vr44c+YMunXrZnY8MzMTgYGBcm/fJOXl5cjJycGwYcMQEBAAHx8f7NmzB/379wcAVFRUICMjAytWrLBJPURkWVLX8uL4MJKKk0PI0ckOcHFxcZg7dy42btwIlUqFCxcu4NChQ5g/fz6WLFliiRrrmD9/PsaOHYv77rsPly9fRmJiIkpKShATEwOVSoX4+HgkJSUhKCgIQUFBSEpKglarxcSJE61SD5HSmEwmAEB2djbKysrM9kF0RFLX8pKzACy5Nob/huXn56O0tLTO+pOenp4ICgqyZ2kuRXaAW7BgAYqLizFixAjcuHEDERERUKvVmD9/PubMmWOJGuv46aef8Oc//xm//vorOnXqhMGDB+Pw4cPo2rWrWFNZWRlmzZolLuS7e/dueHp6WqUeIqWpWSdu5syZ9Z53tH8rtYNYU0OY1PFhbH0hqeHf2b938vPzERwcbHasZh1KAMjLy2OIsxGLLCOyfPlyLF68GKdPn0ZVVRV69uxp1Y3s75wsUR+VSoWEhAQkJCRYrQYiJYuOjgZQvYbc+fPnodfrkZ6ejpCQEIf8LdrWa3mx9YWkhn9n/96pWRA/PT1dbLWv+VOv13PBfBuy2EK+Wq0WAwYMsNTtiMiKOnbsiBkzZgCAuOVWSEgIHnzwQXuW5TDY9UpSucr3Ts3/FzXrT2o0GjtX5HokBbh58+Y1+dqUlBQpL0FEZDdylubg5umujcu6kK1ICnDHjh0ze5yVlYXKykr06NEDQHUfuJubG0JDQ+VXSESkIFInXDj72CkisixJAe7rr78WP09JSYGnpyc2b96Mdu3aAQCKioowdepUDBs2zDJVEhEphNQJF84+doqILEv2GLjVq1dj9+7dYngDgHbt2iExMRFRUVF44YUX5L4EESmc0pYtkUPqhAtXGTtFRJYhO8CVlJTg0qVL6NWrl9nxy5cvczYKEQFQ3rIl9sCxU0TUHLID3Pjx4zF16lSsXr1a3If08OHDePHFFzFhwgTZBRKR8ilt2RIiIkcnO8CtW7cO8+fPh16vx82bN6tv2rIlpk+fjlWrVskukIiUj8uWEBFZluwAp9Vq8c4772DVqlX44YcfIAgC7r//fri7u1uiPiJyIK40lo2IyJFZbCFfd3d39O3b11K3IyIHxLFsRESOwWIB7vTp0/jxxx9RUVFhdnzcOM6fInIWHMtGROQYZAe4s2fPYvz48Th58iRUKhUEoXrGlEpVvfhkZWWl3JcgIgfBsWxERI6hxd0vadzcuXMREBCAS5cuQavV4tSpU9i3bx8GDBiAvXv3WqBEIiIiIrqT7AB36NAhLFu2DJ06dUKLFi3QokULhIeHIzk5Gc8//7wlaiQiKzCZTMjOzkZOTg4AICcnR5ykQEREjk12F2plZSU8PDwAVHevXLhwAT169EDXrl2Rm5sru0Aisg6DwWC2X7Fer0dWVha7Q4nsgHvhUnPJDnC9e/fGiRMnEBgYiEGDBmHlypVo3bo11q9fj8DAQEvUSERWoNPpkJWVZbYciO6ObZwcRX1Ll5SXl9u5KiLL4l641FyyA9wrr7yC69evAwASExMxZswYDBs2DB06dMCHH34ou0Aisg6tViu2toWFhdm5moY1tnQJly0hZ8G9cKm5ZAe40aNHi58HBgbi9OnTuHLlCtq1ayfORCUikqqhpUseeuihRpct4aLDpCTcC5eaS3aAS05Ohre3N6ZNmyYea9++PTZu3IhffvkFCxculPsSROTCGlq65G5rznHRYSJyZrJnoaamptY7bqZXr15Yt26d3NsTEUkSHR2NDRs2YP/+/UhPTwcApKenIysrC3l5eVx0mIgUTXYLnNFohK+vb53jnTp1wsWLF+XenoiciMlkMlu2BKjuGq1pWbMkLjpM5Fjy8/NRWlpa5/8A7uIijewA5+/vjwMHDiAgIMDs+IEDB+Dn5yf39kTkRAwGA/R6PQCIf3LpEiLnl5+fj+DgYLNjNf8HAGCruASyA9yMGTMQHx+Pmzdv4uGHHwYAfPnll1iwYAFeeOEF2QUSkfPQ6XTIzMwUJxRoNBqHXLqEGsZlXUiK0tJSANXDGGomE9X8qdfrxfPUdLID3IIFC3DlyhXMmjVL3Mi+TZs2WLhwIRYtWiS7QCJyHlqtFmFhYQ69bAk1jsu6kBw1wxhq/g/QaDR2rki5ZAc4lUqFFStW4NVXX0VOTg40Gg2CgoKgVqstUR8ROaDaY9msNY6NHI/UZV2IyLJkB7gaHh4eGDhwoKVuR0QOrPZYNo5jUxY5a+RJXdaFiCzLIgFu//79SE1NxdmzZ/HRRx+hS5cu2LJlCwICAhAeHm6JlyAiB1J7LJszjWNzhQWA7bFGnit8XYlsSXaA+/jjjzF58mRMmjQJ2dnZ4mDW0tJSJCUl4dNPP5VdJBE5Fmcey+YKCwA31A0aEhJitSUdXOHrai8+HiporuYBF6qXdtVczYOPB3dCcnayA1xiYiLWrVuHKVOmYPv27eLxoUOHYtmyZXJvT0RkU/YIN7ZmjzXyXOHrai9xoa0Rsi8O2Ff9OOT3Y+TcZAe43NxcRERE1Dnetm1bXL16Ve7tiYhgMplgMBhsMnFCTrip6SY8dOgQcnJy2EV4By6sbD2pWRV4akkaQn4fypBjMCB19USMs3NdZF2yA5yvry/OnDmDbt26mR3PzMxEYGCg3NsTEcFgMCA0NFR87KgTJ2q6CefMmVPnHLsIyVqM1wSU3RMM+PUDAJQZq2C8Jti3KLI62QEuLi4Oc+fOxcaNG6FSqXDhwgUcOnQI8+fPx5IlSyxRIxG5OJ1Oh6ysLLPB7444caKmm1ClUmHGjBlW7yLkxAAi12WRhXyLi4sxYsQI3LhxAxEREVCr1Zg/f369v4USETWXVqsVW9sceeJETTdhdnY2AOt3EXJiAJHrssgyIsuXL8fixYtx+vRpVFVVoWfPnvDw8LDErYmIJLPl2Dl74MQAItdlsYV8tVotBgwYYKnbERHJppSxc1K7QjkxgMh1SQpw8+bNa/K1KSkpUl6CiEg2pYydY1coETWXpAB37Ngxs8dZWVmorKxEjx49AAB5eXlwc3Mz+82XiMjWlDJ2jl2hRNRckgLc119/LX6ekpICT09PbN68Ge3atQMAFBUVYerUqRg2bJhlqryL5ORkvPzyy5g7dy7WrFkDABAEAUuXLsX69etRVFSEQYMG4e9//zt69eplk5qIiJqKXaEN40xbAoD8/HyUlpaajWd19V9uZI+BW716NXbv3i2GNwBo164dEhMTERUVhRdeeEHuSzTqyJEjWL9+Pfr27Wt2fOXKlUhJSUFaWhqCg4ORmJiIUaNGITc3l90RREQKIad7mQsrO4f8/HwEBwebHdPr9QCqe/xcNcTJDnAlJSW4dOlSnZaty5cvo7S0VO7tG3Xt2jVMmjQJGzZsQGJionhcEASsWbMGixcvxoQJEwAAmzdvhre3N7Zu3Yq4uLh671deXi7u5QpUvzciIrIfOd3LXFjZOdRkifT0dDGEl5eXY/r06VbPGY5MdoAbP348pk6ditWrV2Pw4MEAgMOHD+PFF18Uw5O1zJ49G0888QRGjhxpFuAKCgpgNBoRFRUlHlOr1YiMjMTBgwcbDHDJyclYunSpVWsmIqKmk9O9bOuFlcm6av7ew8LCxLUWXZnsALdu3TrMnz8fer0eN2/erL5py5aYPn06Vq1aJbvAhmzfvh3Z2dk4cuRInXNGoxEA4O3tbXbc29sb58+fb/CeixYtMpthW1JSAn9/fwtVTEREtmTrhZWVxsdDBc3VPOBCC/GY5moefDxUdqyKmkp2gNNqtXjnnXewatUq/PDDDxAEAffffz/c3d0tUV+9CgsLMXfuXOzevRtt2rRp8DqVyvybUBCEOsfupFaroVarLVYnERGRo4oLbY2QfXHAvtvHQn4/To7PYgv5uru715lIYC1ZWVm4fPmy2TIllZWV2LdvH9auXYvc3FwA1S1xvr6+4jWXL1+u0ypHRER0J1eZ+ZqaVYGnlqQh5I61EXMMBqSunohxdqyLmkbyQr6vv/463N3d77qorzUW8n3kkUdw8uRJs2NTp06FTqfDwoULERgYCB8fH+zZswf9+/cHAFRUVCAjIwMrVqyweD1EROQ8pM58VVrwM14TUHZPMODXTzxWZqyC8Zpgv6KoySQv5Fsz3q32or624Onpid69e5sdc3d3R4cOHcTj8fHxSEpKQlBQEIKCgpCUlAStVouJEyfavF4iIlIOqTNfuaMG2ZLshXzv/NyRLFiwAGVlZZg1a5a4kO/u3bv5D4iImsRkMpktGgpU/0CvmQlJzkvqzFfuqEG2JHsMXHJyMry9vTFt2jSz4xs3bsQvv/yChQsXyn2JJtm7d6/ZY5VKhYSEBCQkJNjk9YnIuRgMBnGx0Jo/s7Ky7vpDnMHPdXFHDbKlFne/pHGpqan1bg7dq1cvrFu3Tu7tiYjsQqfTITMzE+np6cjMzERWVla9/9fVVjv4hYaGil1rRESWIrsFrvZMzxqdOnXCxYsX5d6eiMgutFotwsLCEBYW1qzn1QS/mgHsGo2mScGPiKg5ZAc4f39/HDhwAAEBAWbHDxw4AD8/P7m3JyJSFKnBj0gpuACwY5Ad4GbMmIH4+HjcvHkTDz/8MADgyy+/xIIFC6y+kT0REUln6/F6JpMJBoPB7DU5PlB5y49wAWDHIDvALViwAFeuXMGsWbNQUVEBAGjTpg0WLlyIRYsWyS6QiIisQ85EDSlBzGAwmC3Artfrm/R6zk5py48oaQHg/Px8lJaW1vlFxRlmBcsOcCqVCitWrMCrr76KnJwcaDQaBAUFcUsqIqJmsEfrlNTxelKDmE6nQ1ZWllkrE8cHKm/5EaUsAJyfn4/g4GCzYzW/qABAXl6ew31tm8NiW2l5eHhg4MCBlrodEZFLkdM6VbsrtKnBT85EDSlBTKvViu+HYwRv4/Ij1lFaWgoASE9PF7uka/7U6/XieaWySIDbv38/UlNTcfbsWXz00Ufo0qULtmzZgoCAAISHh1viJYiInJqc1qnaXaHW7pZkEHMcNePnDh06hJycHIceO2cvNWG45ntVo9HYuSLLkB3gPv74Y0yePBmTJk1CdnY2ysvLAVQn36SkJHz66aeyiyQicnZyQlHtrlB2S7qOmvFzc+bMqXPO0cbOkWXJDnCJiYlYt24dpkyZgu3bt4vHhw4dimXLlsm9PRER3QWXLnFdNePnVCoVZsyY4dBj58iyZAe43NxcRERE1Dnetm1bXL16Ve7tiYiIqAE14+eys7MBcOycK5G9lZavry/OnDlT53hmZiYCAwPl3p6IiIiIapHdAhcXF4e5c+di48aNUKlUuHDhAg4dOoT58+djyZIllqiRiIiILEhpiwdTXRZZyLe4uBgjRozAjRs3EBERAbVajfnz59c7qJKIiIjsS2mLB1NdFllGZPny5Vi8eDFOnz6Nqqoq9OzZEx4eHpa4NRERkaJIXZfPlpS2eDDVJSvAVVVVIS0tDTt27MC5c+egUqkQEBCAP/zhD5g8eTJUKm5sS0REyiNnZwxbr8snBRcPVj7JAU4QBIwbNw6ffvopHnjgAfTp0weCICAnJwexsbHYsWMHdu3aZcFSiYjIVdVu1QLQpEAl9XlydsbgunxkC5IDXFpaGvbt24cvv/wSI0aMMDv31VdfITo6Gu+//z6mTJkiu0giInJttVu1ADQpUEl9npydMaSuyyc1bNoSJz84DskBbtu2bXj55ZfrhDcAePjhh/HSSy/hgw8+YIAjIiLZardqaTSaJgUqqc+zx3ZhUsOmLYMfJz84DskB7sSJE1i5cmWD5x977DG89dZbUm9PREQkktqqpaRdKqSGTanBTwpOfnAckgPclStX4O3t3eB5b29vFBUVSb09ERGRS5EaNqUGPyk4+cFxSA5wlZWVaNmy4ae7ubnh1q1bUm9PRERETaCUVkYfDxU0V/OAC7c3gdJczYOPB1eskELWLNTY2Fio1ep6z5eXl0suioiIiJxLXGhrhOyLA/bdPhby+3FqPskBLiYm5q7XcAIDERGRY5Kz1p0UqVkVeGpJGkLu6N7NMRiQunoixlnlFZ2b5AC3adMmS9ZBRERENiRnrTspjNcElN0TDPj1E4+VGatgvCZY5fWcnUW20iIiIiJlkbPWHdkfAxwREZELssdad2Q5Le5+CRERERE5EgY4IiIiapbauz/UbLFFtsMuVCIiImqW2rs/WHPygz3k5+ejtLS0zhZljrTbBAMcERERNUvt3R+cafJDfn4+goODzY7VhFUAyMvLc4gQxwBHREREzaKU3R+kKC0tBQCkp6ejW7duYkg9d+4c9Hq9eN7eGOCIiIiIaqnZ47UmpGo0GjtXZI4BjoiIiKyqZpJDdna22bpz586da9Lza++jyj1UGeCIiIjIygwGAwBg5syZ9Z739PRs9Pm191HlHqoMcERERGRl0dHRAKonP5w/fx56vR7p6ekICQlp0szO2vuocg9VBjgiIiKyso4dO2LGjBkAqidAALfHmDVF7X1UuYeqQhfyfffdd9G3b1+0bdsWbdu2xZAhQ/DZZ5+J5wVBQEJCAvz8/KDRaDB8+HCcOnXKjhUTERERWY4iA9y9996LN954A0ePHsXRo0fx8MMP48knnxRD2sqVK5GSkoK1a9fiyJEj8PHxwahRoxxm6i8RERGRHIoMcGPHjsXjjz+O4OBgBAcHY/ny5fDw8MDhw4chCALWrFmDxYsXY8KECejduzc2b94Mk8mErVu32rt0IiIiItkUGeDuVFlZie3bt+P69esYMmQICgoKYDQaERUVJV6jVqsRGRmJgwcPNnqv8vJylJSUmH0QERERORrFBriTJ0/Cw8MDarUazz77LHbu3ImePXvCaDQCALy9vc2u9/b2Fs81JDk5GV5eXuKHv7+/1eonIiIikkqxAa5Hjx44fvw4Dh8+jL/85S+IiYnB6dOnxfMqlfkCf4Ig1DlW26JFi1BcXCx+FBYWWqV2IiIiIjkUu4xI69atcf/99wMABgwYgCNHjuB///d/sXDhQgCA0WiEr6+veP3ly5frtMrVplaroVarrVc0ERERNUt9uziUl5c36bm1d3AAnGcXB8UGuNoEQUB5eTkCAgLg4+ODPXv2oH///gCAiooKZGRkYMWKFXaukoiIyHWZTCbk5OQAgPinTqcT14arT2O7ODR3BwfAeXZxUGSAe/nll/HYY4/B398fpaWl2L59O/bu3YvPP/8cKpUK8fHxSEpKQlBQEIKCgpCUlAStVouJEyfau3QiIiKXZTAYoNfrAUD8Mysrq9EFfRvaxeGhhx5q9g4OgPPs4qDIAHfp0iVMnjwZFy9ehJeXF/r27YvPP/8co0aNAgAsWLAAZWVlmDVrFoqKijBo0CDs3r37rkmdiIiIrEen0yEzM1PczF6j0UB3R7iqT0O7ONwtvAF1d3AAnGcXB0UGuPfee6/R8yqVCgkJCUhISLBNQURERHRXWq0WYWFhCAsLs3cpiqfYWahERERErooBjoiIiEhhFNmFSkRERNSY+pYf6datG86dO2ffwiyEAY6IiIgcmslkgsFgMFuCRM7yI8DdlyBxdAxwRERE5NAMBgNCQ0PFx3q9XvLyIyEhIfD09GzSLFZHxgBHREREDk2n0yErK8usK1Tq8iONhT4lYYAjIiIih6bVasXg1ZwlSKR0vSoFAxwRERE5JSldr0rBAEdEREROSUrXq1IwwBEREZFTktr1qgRcyJeIiIhIYdgCR0RERNRM+fn5KC0tNZsgAcBmS5QwwBERERE1Q35+PoKDg82O6fV68fO8vDyrhzgGOCIiIqJmKC0tBQCkp6eL23PV/KnX68Xz1sQAR0RERCRBzcLANRMkNBqNzV6bkxiIiIiIFIYtcERERER38PFQQXM1D7hwu51LczUPPh4qO1ZljgGOiIiI6A5xoa0Rsi8O2Hf7WMjvxx0FAxwRERHRHVKzKvDUkjSE3LFrQ47BgNTVEzHOjnXdiQGOiIiI6A7GawLK7gkG/PqJx8qMVTBeE+xXVC2cxEBERESkMGyBIyIiIvqdyWQCAGRnZ6OsrMxsjTdHwgBHRERE9DuDwQAAmDlzZr3nPT09bbJQ790wwBERERH9Ljo6GgCg0+lw/vx56PV6pKenIyQkRNznNDs7275FggGOiIiISNSxY0fMmDEDJpMJ58+fNzvXpUsXO1VVFycxEBEREdViMBjEDer1ej1CQ0PF7lVHwBY4IiIiolp0Oh0yMzPFSQwajQa6O9aFszcGOCIiIqJatFotwsLCxI3qHQ27UImIiIgUhgGOiIiISGEY4IiIiIgUhgGOiIiISGEY4IiIiIgUhgGOiIiISGG4jAgRERFRM/l4qKC5mgdcuN0WprmaBx8PlU1enwGOiIiIqJniQlsjZF8csO/2sZDfj9sCAxwRERFRM6VmVeCpJWkIuWN3hhyDAamrJ2KcDV5fkWPgkpOTMXDgQHh6eqJz586Ijo5Gbm6u2TWCICAhIQF+fn7QaDQYPnw4Tp06ZaeKiYiIyFmYTCYYrwk4cPYaDhRcxwdfn8KBguvIvlgJ4zXBJjUosgUuIyMDs2fPxsCBA3Hr1i0sXrwYUVFROH36NNzd3QEAK1euREpKCtLS0hAcHIzExESMGjUKubm58PT0tPM7ICIiIqWq2dR+5syZ9Z63Rc5QCYJgm6hoRb/88gs6d+6MjIwMREREQBAE+Pn5IT4+HgsXLgQAlJeXw9vbGytWrEBcXFyT7ltSUgIvLy8UFxejbdu21nwLREREpBC//vordu3ahW7duuHw4cN49dVX8frrryMgIAB9+vRB3759Jd23OblDkS1wtRUXFwMA2rdvDwAoKCiA0WhEVFSUeI1arUZkZCQOHjzYYIArLy9HeXl5nfuWlJRYq3QiIiJSmNatW+NPf/oTjh8/jldffRUAxD8zMjIk54aa5zWlbU3xAU4QBMybNw/h4eHo3bs3AMBoNAIAvL29za719vbG+fPnG7xXcnIyli5dWue4v7+/BSsmIiIiZxUZGSn7HqWlpfDy8mr0GsUHuDlz5uDEiRPIzMysc06lMl+LRRCEOsfutGjRIsybN098fPXqVXTt2hU//vjjXb+QRHcqKSmBv78/CgsL2f1OTcbvG5KK3zvOQRAElJaWws/P767XKjrAPffcc/jkk0+wb98+3HvvveJxHx8fANUtcb6+vuLxy5cv12mVu5NarYZara5z3MvLi/8gSJK2bdvye4eajd83JBW/d5SvqQ1GilxGRBAEzJkzBzt27MBXX32FgIAAs/MBAQHw8fHBnj17xGMVFRXIyMjA0KFDbV0uERERkUUpsgVu9uzZ2Lp1K/7973/D09NTHPPm5eUFjUYDlUqF+Ph4JCUlISgoCEFBQUhKSoJWq8XEiRPtXD0RERGRPIoMcO+++y4AYPjw4WbHN23ahNjYWADAggULUFZWhlmzZqGoqAiDBg3C7t27m7U2i1qtxmuvvVZvtypRY/i9Q1Lw+4ak4veO63GKdeCIiIiIXIkix8ARERERuTIGOCIiIiKFYYAjIiIiUhgGOCIiIiKFYYCrx759+zB27Fj4+flBpVJh165d9i6JFCA5ORkDBw6Ep6cnOnfujOjoaOTm5tq7LFKAd999F3379hUXYR0yZAg+++wze5dFCpOcnCwuo0XOjwGuHtevX8cDDzyAtWvX2rsUUpCMjAzMnj0bhw8fxp49e3Dr1i1ERUXh+vXr9i6NHNy9996LN954A0ePHsXRo0fx8MMP48knn8SpU6fsXRopxJEjR7B+/Xr07dvX3qWQjXAZkbtQqVTYuXMnoqOj7V0KKcwvv/yCzp07IyMjAxEREfYuhxSmffv2WLVqFaZPn27vUsjBXbt2DQ8++CDeeecdJCYmol+/flizZo29yyIrYwsckZUUFxcDqP5BTNRUlZWV2L59O65fv44hQ4bYuxxSgNmzZ+OJJ57AyJEj7V0K2ZAid2IgcnSCIGDevHkIDw9H79697V0OKcDJkycxZMgQ3LhxAx4eHti5cyd69uxp77LIwW3fvh3Z2dk4cuSIvUshG2OAI7KCOXPm4MSJE8jMzLR3KaQQPXr0wPHjx3H16lV8/PHHiImJQUZGBkMcNaiwsBBz587F7t270aZNG3uXQzbGMXB3wTFw1FzPPfccdu3ahX379iEgIMDe5ZBCjRw5Et27d0dqaqq9SyEHtWvXLowfPx5ubm7iscrKSqhUKrRo0QLl5eVm58i5sAWOyEIEQcBzzz2HnTt3Yu/evQxvJIsgCCgvL7d3GeTAHnnkEZw8edLs2NSpU6HT6bBw4UKGNyfHAFePa9eu4cyZM+LjgoICHD9+HO3bt8d9991nx8rIkc2ePRtbt27Fv//9b3h6esJoNAIAvLy8oNFo7FwdObKXX34Zjz32GPz9/VFaWort27dj7969+Pzzz+1dGjkwT0/POmNs3d3d0aFDB469dQEMcPU4evQoRowYIT6eN28eACAmJgZpaWl2qooc3bvvvgsAGD58uNnxTZs2ITY21vYFkWJcunQJkydPxsWLF+Hl5YW+ffvi888/x6hRo+xdGhE5KI6BIyIiIlIYrgNHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHRBYzfPhwxMfHW+XeERER2Lp1q1Xu7WxOnjyJe++9F9evX2/0uoSEBKhUKqhUKqxZs8aiNZw7d068d79+/Sx6byJigCMiBfjPf/4Do9GIp59+WjzWrVs3MSDUfNx77712rNJx9OnTBw899BDefPPNu17bq1cvXLx4Ec8884x4rFu3bvUGuoSEhCaHMX9/f1y8eBEvvPBCU8smomZggCMih/fWW29h6tSpaNHC/L+sZcuW4eLFi+LHsWPH6n3+zZs3bVGmQ5k6dSreffddVFZWNnpdy5Yt4ePjA61Wa9HXd3Nzg4+PDzw8PCx6XyKqxgBHRFZTVFSEKVOmoF27dtBqtXjssceQn59vds2GDRvg7+8PrVaL8ePHIyUlBffcc494/tdff8V///tfjBs3rs79PT094ePjI3506tQJAKBSqbBu3To8+eSTcHd3R2JiIgDg//7v/xAaGoo2bdogMDAQS5cuxa1bt8T75efnIyIiAm3atEHPnj2xZ88eqFQq7Nq1CwCwd+9eqFQqXL16VXzO8ePHoVKpcO7cOfHYwYMHERERAY1GA39/fzz//PNm3ZndunVDUlISpk2bBk9PT9x3331Yv3692Xv76aef8PTTT6N9+/Zwd3fHgAED8M033+DcuXNo0aIFjh49anb922+/ja5du6Jme+vRo0fjt99+Q0ZGxl3+lqSr3QKqUqnQrVs3q70eEd3GAEdEVhMbG4ujR4/ik08+waFDhyAIAh5//HGxRezAgQN49tlnMXfuXBw/fhyjRo3C8uXLze6RmZkJrVaLkJCQZr32a6+9hieffBInT57EtGnT8MUXX0Cv1+P555/H6dOnkZqairS0NPH1qqqqMGHCBLi5ueHw4cNYt24dFi5c2Oz3fPLkSYwePRoTJkzAiRMn8OGHHyIzMxNz5swxu2716tUYMGAAjh07hlmzZuEvf/kLDAYDAODatWuIjIzEhQsX8Mknn+C7777DggULUFVVhW7dumHkyJHYtGmT2f02bdqE2NhYqFQqAEDr1q3xwAMPYP/+/c1+D011Z+vnmTNncP/99yMiIsJqr0dEdxCIiCwkMjJSmDt3riAIgpCXlycAEA4cOCCe//XXXwWNRiP885//FARBEJ566inhiSeeMLvHpEmTBC8vL/Hxm2++KQQGBtZ5ra5duwqtW7cW3N3dxY///d//FQRBEAAI8fHxZtcPGzZMSEpKMju2ZcsWwdfXVxAEQfjiiy8ENzc3obCwUDz/2WefCQCEnTt3CoIgCF9//bUAQCgqKhKvOXbsmABAKCgoEARBECZPniw888wzZq+zf/9+oUWLFkJZWZlYu16vF89XVVUJnTt3Ft59911BEAQhNTVV8PT0FH777bc671sQBOHDDz8U2rVrJ9y4cUMQBEE4fvy4oFKpxBpqjB8/XoiNja33HoIgCK+99prwwAMP1Dle39fW3d1daNWqVb3XV1VVCePHjxdCQ0MFk8nUpNcgInla2jU9EpHTysnJQcuWLTFo0CDxWIcOHdCjRw/k5OQAAHJzczF+/Hiz5z300EP4z3/+Iz4uKytDmzZt6n2NF198EbGxseLjjh07ip8PGDDA7NqsrCwcOXLErIWvsrISN27cgMlkQk5ODu677z6ziRBDhgxpxju+/TpnzpzBBx98IB4TBAFVVVUoKCgQWxL79u0rnlepVPDx8cHly5cBVHfL9u/fH+3bt6/3NaKjozFnzhzs3LkTTz/9NDZu3IgRI0bU6b7UaDQwmUzNfg9A3a8tUD0Wcd++fXWuffnll3Ho0CEcOXIEGo1G0usRUfMwwBGRVQi/j8Wq73hNN9+dnzf0vI4dO6KoqKjee3Xs2BH3339/vefc3d3NHldVVWHp0qWYMGFCnWvbtGlTb721a6uZRHHntbUnSFRVVSEuLg7PP/98nfvdd9994uetWrWq81pVVVUAcNcQ1Lp1a0yePBmbNm3ChAkTsHXr1npnjV65cgXdu3dv9F4Nqe9rW1+gTE9Px5tvvom9e/dyFjCRDTHAEZFV9OzZE7du3cI333yDoUOHAgB+++035OXlia1QOp0O3377rdnzag/O79+/P4xGI4qKitCuXTvJ9Tz44IPIzc1tMPD17NkTP/74Iy5cuAA/Pz8AwKFDh8yuqZkkcfHiRbGW48eP13mdU6dONfg6TdG3b1/84x//wJUrVxpshZsxYwZ69+6Nd955Bzdv3qw3mH7//ff4wx/+ILmOuzl06BBmzJiB1NRUDB482GqvQ0R1cRIDEVlFUFAQnnzyScycOROZmZn47rvvoNfr0aVLFzz55JMAgOeeew6ffvopUlJSkJ+fj9TUVHz22WdmLV/9+/dHp06dcODAAVn1LFmyBO+//z4SEhJw6tQp5OTk4MMPP8Qrr7wCABg5ciR69OiBKVOm4LvvvsP+/fuxePFis3vcf//98Pf3R0JCAvLy8vD//t//w+rVq82uWbhwIQ4dOoTZs2fj+PHjyM/PxyeffILnnnuuybX++c9/ho+PD6Kjo3HgwAGcPXsWH3/8sVmgDAkJweDBg7Fw4UL8+c9/rtNqd+7cOfz8888YOXJkc79UTWI0GjF+/Hg8/fTTGD16NIxGI4xGI3755RervB4RmWOAIyKr2bRpE0JDQzFmzBgMGTIEgiDg008/FbsPw8LCsG7dOqSkpOCBBx7A559/jr/+9a9mY97c3Nwwbdo0szFlUowePRr/+c9/sGfPHgwcOBCDBw9GSkoKunbtCqC6e3Tnzp0oLy/HQw89hBkzZtSZEduqVSts27YNBoMBDzzwAFasWCEuUVKjb9++yMjIQH5+PoYNG4b+/fvj1Vdfha+vb5Nrbd26NXbv3o3OnTvj8ccfR58+ffDGG2/Azc3N7Lrp06ejoqIC06ZNq3OPbdu2ISoqSnx/lmYwGHDp0iVs3rwZvr6+4sfAgQOt8npEZE4lNDRQhYjIDmbOnAmDwWC2/MWlS5fQq1cvZGVlWS2QNESlUmHnzp2Ijo626es2xfLly7F9+3acPHnS7Hh5eTmCgoKwbds2hIWFNfj8hIQE7Nq1q043sCXZ4jWIXBFb4IjIrv72t7/hu+++w5kzZ/D2229j8+bNiImJMbvG29sb7733Hn788Uc7VelYrl27hiNHjuDtt9+ud7LE+fPnsXjx4kbDW42TJ0/Cw8MD77zzjkVr/PHHH+Hh4YGkpCSL3peIqrEFjojs6k9/+hP27t2L0tJSBAYG4rnnnsOzzz5r77JEjtgCFxsbi23btiE6Ohpbt26t07XaVFeuXMGVK1cAVE/Q8PLysliNt27dEnenUKvV8Pf3t9i9iYgBjoiIiEhx2IVKREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQKwwBHREREpDAMcEREREQK8/8BGb8sESqRQmgAAAAASUVORK5CYII=",
"text/plain": [
- "
"
+ "
"
]
},
"metadata": {},
@@ -584,23 +568,86 @@
" whis=(1, 99),\n",
" showfliers=False,\n",
" positions=[np.log10(freq.values)],\n",
- " widths=0.015,\n",
+ " widths=0.04,\n",
" flierprops={\"marker\": \".\", \"markersize\": 2},\n",
" )\n",
" return x\n",
"\n",
- "fig, ax = plt.subplots(figsize=(9, 5))\n",
+ "fig, ax = plt.subplots(figsize=(7, 5))\n",
"acoustics.band_aggregate(\n",
- " spsdl, octave=10, method={\"map\": (boxplot, [ax])}\n",
+ " spsdl, octave, fmin, fmax, method={\"map\": (boxplot, [ax])}\n",
")\n",
"xticks = np.linspace(0, 5, 6)\n",
"ax.set(\n",
" xticks=xticks,\n",
" xticklabels=xticks.astype(int),\n",
- " xlim=(1.68, 4.7),\n",
+ " xlim=(1, 4.8),\n",
" ylim=(20, 100),\n",
" xlabel=\"log(Frequency) [Hz]\",\n",
- " ylabel=\"Decidecade SPSDL [dB re 1 uPa^2/Hz]\",\n",
+ " ylabel=\"Decidecade SPSDL [dB re 1 uPa$^2$/Hz]\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The \"map\" function will also allow one to conduct further frequency band analysis than the simple statistical methods that xarray offers. In the following block of code, we find the empirical quantile function (the empirical version of the cumulative distribution function, CDF) of each decidecade frequency band and plot the decidecade band centered nearest to 160 Hz. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Text(0.5, 1.0, '158.49 Hz'),\n",
+ " Text(0, 0.5, 'Exceedance Probability'),\n",
+ " Text(0.5, 0, 'SPSDL [dB re 1 uPa$^2$/Hz]')]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAGNCAYAAAD966FIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPRElEQVR4nO3dd3hUVfrA8e9kUklPIJUQEkKvAZQmVQkdcf0higoIuLKrhqIuoiJFWKyAyILSxUWXRQRREQhIkd4SaqQkgYQUQgJppGfu74/IrDEhzISEm5l5P89zHzPntvfkmpc75557jkZRFAUhhBAWwUrtAIQQQjw4kvSFEMKCSNIXQggLIklfCCEsiCR9IYSwIJL0hRDCgkjSF0IICyJJXwghLIgkfSGEsCCS9IXJys7O5h//+AdhYWHUq1cPjUbDzJkzK9x2zJgxaDSackuzZs3KbZuSksIrr7xCcHAwDg4OBAYGMm7cOOLj442OcefOnfpzpaWllVu/bt06QkNDsbe3p27duowcOZKEhASDjt2rVy9atWpV4bq0tLRKfx/CclmrHYAQVZWens6yZcto27Ytw4YNY8WKFZVu7+DgwC+//FKu7I8KCgro0aMHt27dYtasWbRo0YILFy4wY8YMtm/fTnR0NM7OzgbFl5OTw4svvoifnx9JSUnl1n/22WeEh4czfvx43n//fa5du8b06dPp3r07kZGRuLu7G3QeIYwhSV+YrMDAQG7duqW/i75X0reysqJz586VbvPrr79y6dIlVqxYwbhx44DSO2oXFxdGjhzJzp07eeKJJwyK780338Td3Z1BgwYxZ86cMusKCgqYPn06Q4YMYfny5fryFi1a0LVrVz7++GPmzp1r0HmEMIY07wiTdafZpDrZ2NgA4OrqWqbczc0NAHt7e4OO8+uvv7Js2TJWrFiBVqstt/7s2bNkZmYycODAMuVdunTBw8ODjRs3ViH6yjVs2LDCJi6NRsOePXuq/XyidpKkLyxGXl4ePj4+aLVa6tevzyuvvMLNmzfLbNOtWzc6dOjAzJkzOXbsGDk5OZw8eZK33nqL9u3b89hjjxl0nnHjxjFp0iTat29f4TaFhYUA2NnZlVtnZ2fHpUuXyM/PN6hexcXF5ZaSkpJy223atIlDhw7plwMHDtC6dWscHR1p0KCBQecSpk+ad4RFaNu2LW3bttU/+Ny7dy8LFixg165dHDt2DCcnJwCsra3ZvXs3zz77LA8//LB+/169erFx40b9N4HKTJ8+nZKSEmbNmnXXbZo2bYqVlRUHDhzghRde0JfHxMSQnJwMwK1bt/D19a30XOfOnTMoJoDQ0NAyn1999VWio6PZsmULwcHBBh1DmD5J+sIiTJ48ucznvn37Ehoayv/93/+xfPly/fqioiJGjBjB2bNnWb58OU2bNiUuLo45c+bQt29ffvnll3JNP3909OhRFi5cyLZt28o9JP4jDw8Pnn32WdauXctDDz3E8OHDuXbtGn/961/RarWUlJRgZXXvL+KNGjXiP//5T7nyzMzMSr+VvP/++yxevJgVK1YwYMCAe55HmBFFCDNw48YNBVBmzJhh8D4lJSWKo6Oj8tRTT+nLli5dqgDKsWPHymwbExOjAMrMmTMrPWbLli2V4cOHK7du3dIvU6dOVQAlJiZGycrK0m+bk5OjPPfcc4qVlZUCKFZWVsro0aOVoUOHKnZ2dkpRUVGl5+rZs6fSsmXLCtdV9vv46quvFI1Go7z77ruVHl+YJ7nTFxZNUZQyd9RRUVFotdpybfHBwcF4enpy9uzZSo937tw5zp07x4YNG8qta9SoEW3btiUqKgoAR0dHvvrqKxYtWkRCQgJ+fn7UrVuXZs2a0bVrV6ytq//PMyIigrFjxzJmzJhKm5+E+ZKkLyzWt99+S25ubplunH5+fpSUlHDs2DE6deqkL7948SLp6enUr1+/0mPu3r27XNmaNWv48ssv2bx5M/7+/uXWu7u76/vkb9myhQsXLvDBBx9UtVp3FRUVxZNPPkmfPn1YtmxZtR9fmAZJ+sKk/fzzz9y+fZvs7GwAzp8/z7fffgvAwIEDqVOnDlevXmXkyJE8/fTThISEoNFo2Lt3LwsXLqRly5aMHz9ef7wXXniBBQsW8OSTT/LOO+/QtGlTYmNj+ec//4mjoyMTJkzQb7t27VrGjh3LqlWrGDVqFFD6wPfP7nSH7NatG3Xr1tWXb9y4kaSkJJo3b05+fj579uzh008/ZcKECTz++OPV+nvKyspi4MCBODg48Prrr3P8+PEy61u0aIGLi0u1nlPUTpL0hUn729/+xtWrV/WfN2zYoG9aiYuLo2HDhri4uODt7c38+fO5fv06JSUlBAYGEh4ezltvvYWjo6N+/4CAAI4dO8bs2bP54IMPSE5Oxtvbmy5duvDuu+/StGlT/bY6nY6SkhJ0Ol2VYtdqtaxatYpLly6h0+lo2bIlX3zxRZnePNXl5s2b+l5Bffv2Lbd+9+7dFf6DJcyPRlEURe0ghBBCPBjycpYQQlgQSfpCCGFBJOkLIYQFkaQvhBAWRJK+EEJYEEn6QghhQSyun75OpyMpKQlnZ+dqH4tdCCHUoCgK2dnZ+Pn53XOgPotL+klJSQQEBKgdhhBCVLuEhIR7DhVicUn/zvymCQkJ8tq5EMIsZGVlERAQYND8zRaX9O806bi4uEjSF0KYFUOarOVBrhBCWBBJ+kIIYUEk6QshhAWRpC+EEBZEkr4QQlgQSfpCCGFBJOkLIYQFUTXp79u3jyFDhuDn54dGo2Hz5s333Gfv3r106NABe3t7goOD+fzzz2s+UCGEMBOqJv3bt2/Ttm1bFi9ebND2cXFxDBw4kO7duxMZGclbb71FeHg4GzdurOFIhRDCPKj6Ru6AAQMYMGCAwdt//vnnNGjQgIULFwLQvHlzjh8/zscff8yTTz5ZQ1GWSriZy83bhTjbW+PiYIOzvTV21toaPacQQlQ3kxqG4dChQ4SFhZUp69evHytXrqSoqAgbG5ty+xQUFFBQUKD/nJWVVaVz//vIVb7YG1umzNbaChd7a5ztbfT/dba3Lv2Hwd6mzGdnexvc69hQ36MOPi72aK1khE8hxINnUkk/JSUFb2/vMmXe3t4UFxeTlpaGr69vuX3mzZvHrFmz7vvcdWys8XW1Jzu/mJyCYgAKi3Wk5RSSllNo1LFstBr83BwIcK9DfXcHAjzqEOBRh87BHng52993rEIIcTcmlfSh/IBCiqJUWH7HtGnTmDJliv7zndHojDXxscZMfKwxACU6hZyCYrLyisjOLyY7v/S/Wfl//ly2LD2nkKSMPIpKFK6m53I1PfdPdYOHAj3o18qHEQ8F4GRncpdHCFHLmVRW8fHxISUlpUxZamoq1tbWeHp6VriPnZ0ddnZ21RqH1kqDq4MNrg7lm5PupUSnkJKVT8LNXK7dyiPhZi4Jt3K5eD2bs4lZHL1yk6NXbrLmYByfPdOedgFu1Rq7EMKymVTS79KlCz/88EOZsh07dtCxY8cK2/NrI62VBn83B/zdHMqtS8rIY8e5FJb/GkfCzTxeXneS/VN7ywxfQohqo2qXzZycHKKiooiKigJKu2RGRUURHx8PlDbNjBo1Sr/9hAkTuHr1KlOmTCE6OppVq1axcuVKXn/9dTXCr3Z+bg6M6RbEz5O642CjJTEjj+jkbLXDEkKYEVWT/vHjxwkNDSU0NBSAKVOmEBoayrvvvgtAcnKy/h8AgKCgILZu3cqePXto164d7733HosWLarx7poPmou9DV0alTZX7bmYqnI0QghzolHuPAm1EFlZWbi6upKZmVmrZ8769+GrvLP5LPWc7dg+qQcejrZqhySEqKWMyWsy9k4t9X8d6tPYy4kb2QW8+s1JrqbfVjskIYQZkKRfS9nbaFkwoh22WisOXE6nzyd7WfFr7L13FEKISkjSr8Va+buy8W9d6RTkQYlO4cNtF0jNylc7LCGECZOkX8u1ru/Kf/7amYaedSgs0TF69TF0Oot6DCOEqEaS9E2ARqPhy7EPAxCdnEViRp7KEQkhTJUkfRMR6OlIMx9nAA7FpqscjRDCVEnSNyHdG9cF4GxipsqRCCFMlSR9E9K+gTtQ2od/7aEr0rYvhDCaJH0T8mhzbzoFeaBT4N3vz7Fg50W1QxJCmBhJ+ibE1tqKr1/szFsDmwGwePdlzidVbVIYIYRlkqRvYrRWGv7aoxEDWvmgKPDV4atqhySEMCGS9E1Uzyb1ADiTmCFt+0IIg0nSN1HdQuqi0cDZxCxGrjgsY/MIIQwiSd9EBXjU4YO/tMHBRsvh2Jv0W7iPb09cUzssIUQtJ0nfhD31UADbJ/Wgua8L+UU6FkRIbx4hROUk6Zu4Bp51WDm6IwDJmXmk5RSoHJEQojaTpG8G/NwcaO7rgk6Bo3E31Q5HCFGLSdI3Ey18S2fLuXhd5tQVQtydJH0z0S7AFYCfTidjYTNgCiGMIEnfTDwe6o+jrZZLqTnsv5ymdjhCiFpKkr6ZcLG3YXjHAAC+OiRv6QohKiZJ34zceUtX2vWFEHcjSd+MtPRzwUar4Up6LpsjE9UORwhRC0nSNyNeLva82D0YgDe/O83tgmKVIxJC1DaS9M3M62FNcbTVkl+kIzVbXtQSQpQlSd/MWFlpcKtjC8DN24UqRyOEqG0k6ZuhRl5OAEQnywQrQoiyJOmboZZ+pW/nXkiRXjxCiLIk6Zshb2c7QJp3hBDlSdI3Q+6O0qYvhKiYJH0z5OfmAMCF69kUl+hUjkYIUZtI0jdDoQFuuNhbc/N2IdHJ0q4vhPgfSfpmyFprRdsANwBOJ2aoGosQonaRpG+mWvuXDrV8TCZVEUL8gSR9M9Xj98HXtpxK4sy1TJWjEULUFpL0zVTnYE+GtPVDp8A7359VOxwhRC0hSd+MvTu4BbZaK04lZHBJhlsWQiBJ36zVc7aj3e8PdM8lyZAMQghJ+mbvzjg8x6/KA10hhCR9s9e/lQ8A3564RkFxicrRCCHUJknfzPVoXBcnO2vyi3Qk3MxVOxwhhMok6Zs5jUaDx+9j8Ww8KVMoCmHpJOlbgJd6lk6huPpAHIqiqByNEEJNkvQtwF9C6wOQX6STkTeFsHCS9C2AvY0VPi72AAz//BDXbknbvhCWSvWkv2TJEoKCgrC3t6dDhw78+uuvlW6/bt062rZtS506dfD19eWFF14gPT39AUVrmjQaDf96NhQfF3ti024z4d8nKNFJM48QlkjVpL9+/XomTZrE22+/TWRkJN27d2fAgAHEx8dXuP3+/fsZNWoU48aN49y5c2zYsIFjx44xfvz4Bxy56ekQ6MHGv3fF0VbL2cQsTsbfUjskIYQKVE368+fPZ9y4cYwfP57mzZuzcOFCAgICWLp0aYXbHz58mIYNGxIeHk5QUBCPPPIIL730EsePH3/AkZsmfzcHOgV7AnBRhmUQwiKplvQLCws5ceIEYWFhZcrDwsI4ePBghft07dqVa9eusXXrVhRF4fr163z77bcMGjTorucpKCggKyurzGLJXOytAcgtkBe1hLBEqiX9tLQ0SkpK8Pb2LlPu7e1NSkpKhft07dqVdevWMWLECGxtbfHx8cHNzY3PPvvsrueZN28erq6u+iUgIKBa62Fq/N1Lp1Lce/EGOmnXF8LiqP4gV6PRlPmsKEq5sjvOnz9PeHg47777LidOnGDbtm3ExcUxYcKEux5/2rRpZGZm6peEhIRqjd/UDG7jh7WVhv2X01h/3LJ/F0JYItWSft26ddFqteXu6lNTU8vd/d8xb948unXrxhtvvEGbNm3o168fS5YsYdWqVSQnJ1e4j52dHS4uLmUWS9bc14XwRxsDEHH+usrRCCEeNNWSvq2tLR06dCAiIqJMeUREBF27dq1wn9zcXKysyoas1WoB5E1TI/Rp5gXAsSs35fcmhIUxOunPnDmTq1evVsvJp0yZwooVK1i1ahXR0dFMnjyZ+Ph4fXPNtGnTGDVqlH77IUOG8N1337F06VJiY2M5cOAA4eHhPPzww/j5+VVLTJYguJ4jANn5xdwulAe6QlgSo5P+Dz/8QKNGjXj00Uf5+uuvyc/Pr/LJR4wYwcKFC5k9ezbt2rVj3759bN26lcDAQACSk5PL9NkfM2YM8+fPZ/HixbRq1Yrhw4fTtGlTvvvuuyrHYInq2FrjaFv6DSkmNUflaIQQD5JGqcL3+9OnT7N69Wq+/vprCgsLefrppxk7diwPPfRQTcRYrbKysnB1dSUzM9Oi2/dfXneSn84k81TH+nz4f23VDkcIcR+MyWtVatNv06YNCxYsIDExkVWrVpGYmEi3bt1o3bo1n376KZmZmVUKXDw4z3cp/Ta19UzF3WOFEObpvh7k6nQ6CgsLKSgoQFEUPDw8WLp0KQEBAaxfv766YhQ1oJW/KxoN5BQUc+KqDMkghKWoUtI/ceIEr7zyCr6+vkyePJnQ0FCio6PZu3cvv/32GzNmzCA8PLy6YxXVyMnOmgG/T6X40+mKu7sKIcyP0Um/TZs2dO7cmbi4OFauXElCQgLvv/8+ISEh+m1GjRrFjRs3qjVQUf1a+bsCcPN2gcqRCCEeFGtjdxg+fDhjx47F39//rtvUq1cPnU53X4GJmtfQs7TrZrzMnSuExTD6Tl9RFNzd3cuV5+XlMXv27GoJSjwY3i52AFy8nkOe9NcXwiIYnfRnzZpFTk75vt25ubnMmjWrWoISD0ZogDsBHg7kFBTz0xlp1xfCElTpTr+iAdFOnTqFh4dHtQQlHgwrKw1PP9QAgP8ek8HXhLAEBrfpu7u7o9Fo0Gg0NGnSpEziLykpIScnp9LRLkXtFNbCm4+2X+B8clalI5wKIcyDwUl/4cKFKIrC2LFjmTVrFq6urvp1tra2NGzYkC5dutRIkKLmBHjUwdbaipyCYq6k5xJU11HtkIQQNcjgpD969GgAgoKC6Nq1KzY2NjUWlHhw7G20NKrnRHRyFlfTb0vSF8LMGZT0s7Ky9OM5hIaGkpeXR15eXoXbWvJ4NqbK28WO6GS4nlX1wfOEEKbBoKTv7u5OcnIyXl5euLm5Vdjue6c9uKREuv6ZGh8XewBSMuUlLSHMnUFJ/5dfftH3zNm9e3eNBiQePK/fk/71bLnTF8LcGZT0e/bsWeHPwjz4uZYm/ZNXb0kPHiHMnEFJ//Tp0wYfsE2bNlUORqijbwtvZv5wjt9SsjmXlKUfk0cIYX4MSvrt2rVDo9Hccz5VadM3TZ5OdrT0c+XE1VucTcyUpC+EGTMo6cfFxdV0HEJl3ULqcuLqLY7G3eTphxuoHY4QooYYlPTvzFkrzFdTb2cATifKrGdCmDODkv6WLVsYMGAANjY2bNmypdJthw4dWi2BiQerW4gnAJdTc8jOL8LZXl6+E8IcGZT0hw0bRkpKCl5eXgwbNuyu20mbvulydbChrpMtaTmF7IpOZVjo3edLEEKYLoNG2dTpdHh5eel/vtsiCd90aTQanvm9LT/i/HWVoxFC1JT7mhhdmJfezUr/Yd99IVUmVRHCTFUp6e/atYvBgwfTqFEjQkJCGDx4MDt37qzu2MQDFhrgRj1nO3ILSzgjD3SFMEtGJ/3FixfTv39/nJ2dmThxIuHh4bi4uDBw4EAWL15cEzGKB0Sj0dC1UekD3U2RiSpHI4SoCUZPjD5v3jwWLFjAK6+8oi8LDw+nW7duzJ07t0y5MD09m9Tj+6gkEmSydCHMktF3+llZWfTv379ceVhYGFlZWdUSlFCPq0NpV82s/CKVIxFC1ASjk/7QoUPZtGlTufLvv/+eIUOGVEtQQj0uvyf9tOyCew67IYQwPQY17yxatEj/c/PmzZk7dy579uzRT494+PBhDhw4wGuvvVYzUYoHprmvC9ZWGpIy80nOzMfPzUHtkIQQ1UijGHA7FxQUZNjBNBpiY2PvO6ialJWVhaurK5mZmTLL1110+udOrmcVsPFvXekQ6K52OEKIezAmr8mAa6KcNvXdiDh/nSNx6ZL0hTAz8nKWKOeRkLoA7PnthsqRCCGqm9FdNgGuXbvGli1biI+Pp7CwsMy6+fPnV0tgQj3dG5cm/ZPxt1SORAhR3YxO+rt27WLo0KEEBQVx4cIFWrVqxZUrV1AUhfbt29dEjOIBuzNnbrFO4ebtQjwcbVWOSAhRXYxu3pk2bRqvvfYaZ8+exd7eno0bN5KQkEDPnj0ZPnx4TcQoHjAnO2tCvJwAOBybrnI0QojqZHTSj46OZvTo0QBYW1uTl5eHk5MTs2fP5oMPPqj2AIU6ejapB8C8n6PJL5LB14QwF0YnfUdHRwoKCgDw8/MjJiZGvy4tLa36IhOqmvhYY3xc7Em4mcf2cylqhyOEqCZGJ/3OnTtz4MABAAYNGsRrr73G3LlzGTt2LJ07d672AIU6XOxt6N2s9G7/0vUclaMRQlQXox/kzp8/n5yc0iQwc+ZMcnJyWL9+PSEhISxYsKDaAxTqaejpCMCpaxnqBiKEqDYGvZFrTuSNXMPFpd2m98d7sLbSsPv1XgR41FE7JCFEBYzJa1V+Oev48eN89dVX/Pvf/+bEiRNVPYyoxYLqOtK1kSfFOoWPd1xQOxwhRDUwunnn2rVrPPPMMxw4cAA3NzcAMjIy6Nq1K9988w0BAQHVHaNQ0at9GnMwJp3t51KIS7tNUF1HtUMSQtwHo+/0x44dS1FREdHR0dy8eZObN28SHR2NoiiMGzeuJmIUKnqooTttA9zIL9Ix9dvTaocjhLhPRrfpOzg4cPDgQUJDQ8uUnzx5km7dupGXl1etAVY3adM3XnJmHj0/3ENhiY45w1rxXOdAtUMSQvxBjbbpN2jQgKKi8rMqFRcX4+/vb+zhhAnwdXVg4mONAfhou7TtC2HKjE76H374Ia+++irHjx/Xz6x0/PhxJk6cyMcff1ztAYra4c7dfWZekbyhK4QJMyjpu7u74+HhgYeHBy+88AJRUVF06tQJe3t77Ozs6NSpEydPnmTs2LFGB7BkyRKCgoKwt7enQ4cO/Prrr5VuX1BQwNtvv01gYCB2dnY0atSIVatWGX1eYRxnO2s0mtKfZf5cIUyXQb13Fi5cWCMnX79+PZMmTWLJkiV069aNL774ggEDBnD+/HkaNGhQ4T5PPfUU169fZ+XKlYSEhJCamkpxcXGNxCf+x8pKg5ezHdezCvgtORsvZ3u1QxJCVIGqL2d16tSJ9u3bs3TpUn1Z8+bNGTZsGPPmzSu3/bZt23j66aeJjY3Fw8OjSueUB7lVN2V9FN9FJvKX9v7Mf6qd2uEIIX5X4y9nlZSUsHHjRubMmcPcuXPZtGkTJSXGtfMWFhZy4sQJwsLCypSHhYVx8ODBCvfZsmULHTt25MMPP8Tf358mTZrw+uuvV9pjqKCggKysrDKLqJp2DdwA+O5kIv89lqBuMEKIKjH65azLly8zcOBAEhMTadq0KYqicPHiRQICAvjpp59o1KiRQcdJS0ujpKQEb2/vMuXe3t6kpFQ8qmNsbCz79+/H3t6eTZs2kZaWxt///ndu3rx513b9efPmMWvWLOMqKSo08uEG7L+Uxo7z1/nv8QSeekhexBPC1Bh9px8eHk6jRo1ISEjg5MmTREZGEh8fT1BQEOHh4UYHoLnzdPB3iqKUK7tDp9Oh0WhYt24dDz/8MAMHDmT+/PmsWbPmrnf706ZNIzMzU78kJMgdalVZa62Y9FgTAE4nZpItD3SFMDlG3+nv3buXw4cPl2lT9/T05P3336dbt24GH6du3bpotdpyd/Wpqanl7v7v8PX1xd/fH1dXV31Z8+bNURSFa9eu0bhx43L72NnZYWdnZ3BconLNfZ1xtrcmO7+YK2m5tK7veu+dhBC1htF3+nZ2dmRnZ5crz8nJwdbW8LlUbW1t6dChAxEREWXKIyIi6Nq1a4X7dOvWjaSkJP3QzgAXL17EysqK+vXrG3xuUXUajYaWfqUPiracSlQ5GiGEsYxO+oMHD+avf/0rR44cQVEUFEXh8OHDTJgwgaFDhxp1rClTprBixQpWrVpFdHQ0kydPJj4+ngkTJgClTTOjRo3Sbz9y5Eg8PT154YUXOH/+PPv27eONN95g7NixODg4GFsVUUXjHwkG4PuoJJUjEUIYy+jmnUWLFjF69Gi6dOmCjY0NUDoEw9ChQ/n000+NOtaIESNIT09n9uzZJCcn06pVK7Zu3UpgYOnbn8nJycTHx+u3d3JyIiIigldffZWOHTvi6enJU089xZw5c4ythrgPd5p0buQUUKJT0FpV/AxGCFH7GNVPX1EU4uPjqVevHklJSfrRNVu0aEFISEhNxlltpJ/+/Ssu0dF65g7yikrYOaUnIV5OaockhEUzJq8ZdaevKAqNGzfm3LlzNG7c2GQSvahe1lorAjwcuHg9h+TMPEn6QpgQo9r0raysaNy4Menp6TUVjzARd4ZhSM0qUDkSIYQxqjTK5htvvMHZs2drIh5hInxcS5P+xdTyPbmEELWX0Un/ueee4+jRo7Rt2xYHBwf96Jt3FmEZ+jTzAuC/xxLkJS0hTIjRvXcWLFhw1zdmheUIa+FNoGcdrqbnsvvCDYa29VM7JCGEAYxO+s888wzFxcU4OsoE2ZbMWmtFpyAPrqbnciXtttrhCCEMZHDzTlpaGoMGDcLJyQkXFxe6du1KbGxsTcYmajlvl9J2/UMx6ag4QrcQwggGJ/1p06Zx4sQJZs2axUcffURaWhovvfRSTcYmarnhHQKw0Wo4FJvON0dlIDshTIHBL2c1aNCAzz//nIEDBwLw22+/0apVK/Ly8vRv5poCeTmrei3bF8M/t/5GA4867H2jlzzvEUIFNTKJSlJSEqGhofrPzZo1w9bWlqQkGX/Fkj3zcOm0lvE3c8kukGkrhajtDE76iqJgbV32ua+1tTU6na7agxKmw9neBgcbLQC3bheqHI0Q4l4M7r2jKAqPPvpomcSfm5vLkCFDygypfPLkyeqNUNR6TvbW5BWVkJZTSKCn9OoSojYzOOnPmDGjXNnjjz9ercEI09TG35Vdv6Wy9UwyHQLd1Q5HCFGJ+0r6QgAMaevHrt9SOX71ltqhCCHuwehhGIT4s87Bnmg0cCohg9TsfLXDEUJUQpK+uG8+rvY08XIG4JfoVJWjEUJURpK+qBZ/ae8PwKwfzrP1TLLK0Qgh7kaSvqgWY7o1pGeTeuQVlfD3dScZ/+UxMvNk9E0hapv7Svr5+dJ+K0rZWWtZMbojf+vVCICd0alsjkxUOSohxJ8ZnfR1Oh3vvfce/v7+ODk56Qddmz59OitXrqz2AIXpsNFaMbV/M0Z0DADg870xnE/KUjkqIcQfGZ3058yZw5o1a/jwww/LvJTVunVrVqxYUa3BCdP0er+mNPSsQ3JmPkMW72ftoStqhySE+J3RSX/t2rUsW7aMZ599Fq1Wqy9v06YNv/32W7UGJ0xTPWc7/juhC48196ZEp/DVoatqhySE+J3RST8xMZGQkJBy5TqdjqIieXAnSnk52zPpscYAZMl0ikLUGkYn/ZYtW/Lrr7+WK9+wYUOZUTiFcLEvHXI7I7eI/KISlaMRQkAVpkucMWMGzz//PImJieh0Or777jsuXLjA2rVr+fHHH2siRmGifFztqetkR1pOAQsiLjJtYHO1QxLC4hl9pz9kyBDWr1/P1q1b0Wg0vPvuu0RHR/PDDz/Qt2/fmohRmChbaysmPlraFLg5KlHu9oWoBQyeOctcyMxZD9b1rHwe/WQvOQXFPPNwAPP+0kbtkIQwOzUyc9Ydx44d48iRI+XKjxw5wvHjx409nDBz3i72LH2uPQD/PX5NJloRQmVGJ/2XX36ZhITyk2AnJiby8ssvV0tQwrx0b1yPuk62lOgUYm7kqB2OEBbN6KR//vx52rdvX648NDSU8+fPV0tQwvx0DvYEYOuZFJUjEcKyGZ307ezsuH79erny5OTkcnPoCnFHv5Y+AKw/Fk90sgzNIIRajE76ffv2Zdq0aWRmZurLMjIyeOutt6T3jrirvi28aRfgxu3CEqZvPqt2OEJYLKOT/ieffEJCQgKBgYH07t2b3r17ExQUREpKCp988klNxCjMgL2NlsUjQ9Fo4PjVW2w4Xv65kBCi5hmd9P39/Tl9+jQffvghLVq0oEOHDnz66aecOXOGgICAmohRmIn67nV4tXdpv/23Np3hhMypK8QDJ/30xQOl0yn8bd0Jtp+7TqcgD9a/1EXtkIQwecbktSo9eb148SJ79uwhNTUVnU5XZt27775blUMKC2FlpWHagOZsP3edo1duUqJT0Fpp1A5LCIthdNJfvnw5f/vb36hbty4+Pj5oNP/7g70zLIMQlfF3d8DBRkteUQmnrmXQvoG72iEJYTGMTvpz5sxh7ty5TJ06tSbiERbARmtFv5bebI5KYuOJa5L0hXiAjH6Qe+vWLYYPH14TsQgL8tTvUypuOH6NI7HpKkcjhOUwOukPHz6cHTt21EQswoJ0aeRJ52APCkt0jFxxhBnfnyU9p0DtsIQwe0Y374SEhDB9+nQOHz5M69atsbGxKbM+PDy82oIT5kuj0bBqzEO8veksmyIT+fLQVX4+m8LWid2p62SndnhCmC2ju2wGBQXd/WAaDbGxsfcdVE2SLpu1z8HLaby16QxX0nMZ2akB/3yitdohCWFSarTLZlxcXJUDE6IiXUPqMmNoS15YfYy9F26oHY4QZs3oNn0hakKnIA+srTQkZuQxb2s0Op1FvTMoxANTpZezrl27xpYtW4iPj6ewsOykGPPnz6+WwIRlqWNrTfijjZkfcZEv9sXSKdiDPs281Q5LCLNj9J3+rl27aNq0KUuWLOGTTz5h9+7drF69mlWrVhEVFWV0AEuWLCEoKAh7e3s6dOjAr7/+atB+Bw4cwNramnbt2hl9TlE7hT/amIeDPACITs5WORohzJPRSX/atGm89tprnD17Fnt7ezZu3EhCQgI9e/Y0uv/++vXrmTRpEm+//TaRkZF0796dAQMGEB8fX+l+mZmZjBo1ikcffdTY8EUtN6SNLwA7zslkK0LUBKOTfnR0NKNHjwbA2tqavLw8nJycmD17Nh988IFRx5o/fz7jxo1j/PjxNG/enIULFxIQEMDSpUsr3e+ll15i5MiRdOkig3WZmwGtfbHSwKlrmSRl5KkdjhBmx+ik7+joSEFB6Us0fn5+xMTE6NelpaUZfJzCwkJOnDhBWFhYmfKwsDAOHjx41/1Wr15NTEwMM2bMMOg8BQUFZGVllVlE7VXXyY7W9d0A+GTHRXWDEcIMGZ30O3fuzIEDBwAYNGgQr732GnPnzmXs2LF07tzZ4OOkpaVRUlKCt3fZh3Xe3t6kpFT81f7SpUu8+eabrFu3zuCpGefNm4erq6t+kTH/a7+3BjTDSgMbT15j44lraocjhFkxOunPnz+fTp06ATBz5kz69u3L+vXrCQwMZOXKlUYH8MdROgEURSlXBlBSUsLIkSOZNWsWTZo0Mfj4d6Z2vLMkJMiMTbVdp2BPJj9Weo3f2XyWdUeukl9UonJUQpgH1SZRKSwspE6dOmzYsIEnnnhCXz5x4kSioqLYu3dvme0zMjJwd3dHq9Xqy3Q6HYqioNVq2bFjB3369LnneeWNXNNQolMYs/oov14qbTKs62TH0ufa81BDD5UjE6L2MSavqfZylq2tLR06dCAiIqJMeUREBF27di23vYuLC2fOnCEqKkq/TJgwgaZNmxIVFaX/9iHMg9ZKw/JRHZkxpAX+bg6k5RTwwupjXEiRrpxC3A+DGsbd3d0rbHKpyM2bNw0++ZQpU3j++efp2LEjXbp0YdmyZcTHxzNhwgSgtGkmMTGRtWvXYmVlRatWrcrs7+Xlhb29fblyYR7sbbS80C2IZx5uwOhVRzkSd5PwbyLZNqm7wf8/CiHKMijpL1y4UP9zeno6c+bMoV+/fvouk4cOHWL79u1Mnz7dqJOPGDGC9PR0Zs+eTXJyMq1atWLr1q0EBgYCkJycfM8++8L82dto+dez7ek4ZycXrmfz2S+X+XuvRlhrZRQRIYxldJv+k08+Se/evXnllVfKlC9evJidO3eyefPm6oyv2kmbvuma9J9INkclAfBi9yDeHtRC5YiEqB1qtE1/+/bt9O/fv1x5v3792Llzp7GHE8JgnzzVjnGPlA7tvWJ/HIdlxi0hjGZ00vf09GTTpk3lyjdv3oynp2e1BCVERbRWGv7RvyktfF1QFBi5/DD/2n0ZlTqgCWGSjB5lc9asWYwbN449e/bo2/QPHz7Mtm3bWLFiRbUHKMQf2Vlr+fZvXXhn81m+O5nIR9svAPBy7xCVIxPCNFSpn/6RI0dYtGgR0dHRKIpCixYtCA8PN4luk9Kmbx4URWHl/jjm/BQNwDMPBzD78VbYyMNdYYGMyWuqvZylFkn65kNRFD7afoEle0rHf3pnUHPGdw9WOSohHrwafzkrJiaGd955h5EjR5KamgrAtm3bOHfuXFUOJ0SVaDQa/tG/GWO6NgTgn1ujWfzLJTJzi9QNTIhazOikv3fvXlq3bs2RI0fYuHEjOTk5AJw+fdrgkS+FqE6T+zbhkZC66BT4eMdFOs/bxXs/npcpF4WogNFJ/80332TOnDlERERga2urL+/duzeHDh2q1uCEMISrgw1fjXuYBSPa0szHmbyiElbuj+NMYqbaoQlR6xid9M+cOVNmgLQ76tWrR3q69JsW6tBoNDwRWp+fJ3YnwMMBgOnfn+VckiR+If7I6KTv5uZGcnJyufLIyEj8/f2rJSghqkqj0bD02Q4421tz+lomgxbtZ36ETMYixB1GJ/2RI0cydepUUlJS0Gg06HQ6Dhw4wOuvv86oUaNqIkYhjNLK35UfXnmEfi1LJ+hZtOsSv6XIjGlCQBW6bBYVFTFmzBj+85//oCgK1tbW+glO1qxZU2a8+9pIumxalsGf/crZxCwcbLQMaOXDwNa+dG9SFzvr2v3/qRDGeCD99GNiYoiMjESn0xEaGkrjxo2rFOyDJknfstzILuDVb05yOPZ/Q37bWVvR2t+VdgFutGvgRmgDd/zdHFSMUoj780CSfmFhIXFxcTRq1Mjg+WprA0n6lkenUzgZf4ufziTz85kUUrLyy23To0k9XukdwkMNDZ87QojaokaTfm5uLq+++ipffvklABcvXiQ4OJjw8HD8/Px48803qx75AyBJ37LpdApx6beJis8gKqF0OZeUyZ0u/f5uDvRt4U3vZl6EeDnh7Wwn4/aLWq9Gk/7EiRM5cOAACxcupH///pw+fZrg4GC2bNnCjBkziIyMvK/ga5okffFn8em5LN17mU2RieQX6cqss9KAl7M9fm72+Lo54O/mgK+rPQHudXikcV3sbeTZgFBfjSb9wMBA1q9fT+fOnXF2dubUqVMEBwdz+fJl2rdvT1ZW7e4lIUlf3E1eYQn7L6ex8/x1Dselk5SRR1HJ3f88HmvuxRfPd0RrJc1BQl3G5DWjG+Nv3LiBl5dXufLbt29LW6gwaQ62Wvq28KZvi9KunjqdQlpOAUmZ+SRn5JGYkUdyZj57L97gcmoOO6NTaf9eBD2a1OOJUD/6NPNWuQZC3JvRjZUPPfQQP/30k/7znUS/fPly/fj6QpgDKysNXi72tAtwY0BrX8Z3D2b64BbsmNSD5zo3wNXBhsy8In44lcTYNcf5+Uz5lxaFqG2Mbt45ePAg/fv359lnn2XNmjW89NJLnDt3jkOHDrF37146dOhQU7FWC2neEdWluERHVEIG8yMucjAmHSsNjOrSkClhTXCxt1E7PGFBanRo5a5du3LgwAFyc3Np1KgRO3bswNvbm0OHDtX6hC9EdbLWWtGxoQcrRndkcBtfdAqsOXiFPh/vZVf0dbXDE6JCMomKENXk10s3mPH9OWLTbgMwslMDGtVzwt/NHj83B/zcHPB0tJVnX6La1Wjvna1bt6LVaunXr1+Z8u3bt6PT6RgwYIDxET9AkvRFTSos1jF2zTH2X06rcL2dtRV+bg408Xbi7YEtaOBZ5wFHKMxRjTbvvPnmm5SUlJQrVxSl1r+YJURNs7W2Yvmojvzzida81COYQW18CW3ghreLHRoNFBTriEu7zfZz13lm+WE+3xvDpevZWNgXbqEio+/0HRwciI6OpmHDhmXKr1y5QsuWLbl9+3Z1xlft5E5fqKWwWEdKZj7xN3OZuvE0iRl5+nXB9RxZ8mx7mvnI/5PCeDV6p+/q6kpsbGy58suXL+Po6Gjs4YSwGLbWVjTwLH2T98dXH2H24y3p2aQetlorYm/c5u/rTlIiUzyKGmZ00h86dCiTJk0iJiZGX3b58mVee+01hg4dWq3BCWGu3B1tGdWlIV+OfZhD0/oAEHvjNj9JX39Rw4xO+h999BGOjo40a9aMoKAggoKCaN68OZ6ennz88cc1EaMQZs3TyY5eTesBMOk/kUQlZKgbkDBrVeqyqSgKERERnDp1CgcHB9q0aUOPHj1qIr5qJ236oja6XVDMsH8d4FJqDo29nPj6xc7Uc7ZTOyxhImq0y+b169fx9q54jJHTp0/Tpk0bYw73wEnSF7XVgctpjFp1lBKdgreLHfun9sFGhnUWBqjRB7mtW7dmy5Yt5co//vhjOnXqZOzhhBC/6xZSl81/7wbA9awCGr/9MyO+OMSH237jwOU06dYpqoXRSX/q1KmMGDGCCRMmkJeXR2JiIn369OGjjz5i/fr1NRGjEBajdX1X3ujXFBf70gFwj8TdZMmeGJ5dcYRPd11SOTphDqrUpn/q1Cmee+458vPzuXnzJp07d2bVqlV3bfapTaR5R5gCnU4h5kYOJ+NvcTAmne+jkgD4S6g/c55oRR1b05miVNS8Gm3eAQgODqZly5ZcuXKFrKwsnnrqKZNI+EKYCisrDY29nRnxUAM+fTqUN/o1xUoD30UmsmjXZbXDEybM6KR/4MAB2rRpw+XLlzl9+jRLly7l1Vdf5amnnuLWrVs1EaMQFu/l3iHM+0trAD7fG8O+izfIyi9SOSphioxu3rGzs2Py5Mm899572NiUjhkeExPD888/T3x8PNeuXauRQKuLNO8IU5VbWEy72REUFpfO46vRQKN6TnQK8uDNAc1wljH8LVaNTpe4Y8cOevbsWaasUaNG7N+/n7lz5xp7OCGEgerYWvPFcx34PiqRyIQMrqbncjk1h8upOZy4eouXe4fQLsCN+u4OMnyzuCsZT18IE5WeU8C/dsew6kBcmXIPR1t6Na3Hh0+2wVr6+VuEGnmQO3DgQDIzM/Wf586dS0ZGhv5zeno6LVq0MD5aIUSVeDrZMX1wc/41sj2jugTStr4rNloNN28X8t3JRM4nZ6kdoqiFDL7T12q1JCcn4+XlBYCLiwtRUVEEBwcDpW/q+vn5VTjWfm0id/rCnBUUl9B+dgS3C0t4OMiDtwc2p019V2nuMXM1cqf/538bLKxVSAiTYGet5aWejQA4GneTx/91gBFfHEYnQzaL30mDnxBm5pXeIawe8xBD2voBcPTKzXKTtgjLZXDS12g05b4iyldGIWofKysNvZt58dkzofRsUjpk84YT1+j10W72XbyhcnRCbQZ32VQUhTFjxmBnVzrca35+PhMmTNDPllVQUFAzEQohqmzl6I7sjL7Osn2xnIzP4LUNp/j8uQ50CHRXOzShEoMf5L7wwgsGHXD16tX3FVBNkwe5whLdLijmiSUHuHg9B62VhlFdApnctwku8kKXWajR8fSr25IlS/joo49ITk6mZcuWLFy4kO7du1e47XfffcfSpUuJioqioKCAli1bMnPmTPr162fw+STpC0uVU1DM25vO6Adva+hZh6XPdaC5r/wdmLoaH3Ctuqxfv55Jkybx9ttvExkZSffu3RkwYADx8fEVbr9v3z769u3L1q1bOXHiBL1792bIkCFERkY+4MiFMD1OdtZ8+nQoa8c+jL+bA1fScxnw6a+MW3OMyHgZN8tSqHqn36lTJ9q3b8/SpUv1Zc2bN2fYsGHMmzfPoGO0bNmSESNG8O677xq0vdzpC1H6Nu9bm86w/dx1ABxstJyeGSYzdZkok7jTLyws5MSJE4SFhZUpDwsL4+DBgwYdQ6fTkZ2djYeHx123KSgoICsrq8wihKXzdLLji+c7snNK6ThaeUUl3C4oVjkq8SColvTT0tIoKSkpNw6/t7c3KSkpBh3jk08+4fbt2zz11FN33WbevHm4urrql4CAgPuKWwhzEuLlRB1bLQCR8RnqBiMeCNW/y/25r7+iKAb1///mm2+YOXMm69ev1w8NUZFp06aRmZmpXxISEu47ZiHMydMPNQBg4a5L8qa9BVAt6detWxetVlvurj41NfWes3CtX7+ecePG8d///pfHHnus0m3t7OxwcXEpswgh/ufFHkForTScSsjg3e/PqR2OqGGqJX1bW1s6dOhAREREmfKIiAi6du161/2++eYbxowZw9dff82gQYNqOkwhzJ6vqwPznmiNlQa+OnyVi9ez1Q5J1CBVm3emTJnCihUrWLVqFdHR0UyePJn4+HgmTJgAlDbNjBo1Sr/9N998w6hRo/jkk0/o3LkzKSkppKSklBnyWQhhvKceCuDR5qXfsD/fE0NxiU7liERNUTXpjxgxgoULFzJ79mzatWvHvn372Lp1K4GBgQAkJyeX6bP/xRdfUFxczMsvv4yvr69+mThxolpVEMJsPNe59O/uu8hEXlhzTBK/mVL9jdwHTfrpC3F3myMTeWvTGXILS6jrZMvDQR6E1HOikZcTjeqVLg6/9/YRtUeNzpErhDBfw0L90SkKb3x7mrScQraeKdvRws7aitVjHqJrSF2VIhT3S5K+EKKMv7SvT9dGdYlOySLm94nXL6fmcPzqLQqKdSzefZlOwZ5orWRodVMkzTtCCIPsv5TGcyuPAPB850DeG9ZK5YjEHSYxDIMQwrQ80rgunz0Tiub3rp3TN58lv6h2z4ktypOkL4Qw2JC2fvyjXzOgNPEv2HlR5YiEsSTpCyGM8rdejZj0WGMAvtgby6c7L1FYLN07TYUkfSGE0Sb0bETn4NLRbRfsvEj4N5HSr99ESNIXQhjN3kbLNy92ZsGItthqrdh2LoXp358jI7dQ7dDEPUjSF0JUiUaj4YnQ+kzqW9rU883ReNq/F8H/LT3IllNJKkcn7kb66Qsh7stfuwdTWKxj65lkLl4v7c9/Iv4W7nVs6N64ntrhiT+RfvpCiGqTmJHHvK3R/Hg6GRuthiXPdqBvi8qHShf3T/rpCyFU4e/mwEf/15Z+Lb0pKlH41+7Laock/kSSvhCiWjnYapn0WBMAYm7kkJVfpHJE4o8k6Qshql1QXUc8HW3Jzi9m+NJD8uZuLSJJXwhR7exttHw59mFcHWy4cD2bZfti1Q5J/E6SvhCiRrTyd2Xio6XdOedHXGTl/jiVIxIgXTaFEDXohW4NycgrYtGuS7z343l+PJ3EY8296d/Kh0b1nNQOzyLJnb4QosZoNBomP9aYF7o1BCAyPoOPtl8gbME+dpxLqXxnUSOkn74Q4oFIycxn12/XWXPgCpdScwDo39KHJzvU55GQujIN430wJq9J0hdCPFDZ+UW8uPY4h2Nv6ststVZ0bOhO98b16N64Li18XbCSmbkMJkm/EpL0hagdopOz2HD8GtvOJpOUmV9mnYejLd1C6tKzST3CWnrjYm+jUpSmQZJ+JSTpC1G7KIpCbNptfr14g/2X0zgUk87twv/167e1tqJPUy/+1qsRbQPc1Au0FpOkXwlJ+kLUboXFOqISMth38QbbzqVw+ff2fyc7a9aN7ySJvwKS9CshSV8I06EoCueTswj/JpKYG7cBCG3gxvOdAxnY2hd7G3n4C5L0KyVJXwjTk5KZz9yt0Ww7m0xRSWnKcq9jw8u9QxjfPVjl6NRnTF6Tl7OEELWej6s9nz0Tyo3sFvz3eALrDl8lKTOfOT9F42Cr5dlOgWqHaDLkTl8IYXKKS3R8tP0CX/w+pk/nYA/a1HejqbczTX2cCfFysqimH7nTF0KYNWutFVP7N8PeRsuiXy5xOPZmmX7/WisNrfxdWT3mITwcbVWMtPaRpC+EMElWVhom923C4Da+HL1ykwsp2fyWks2FlGwy84o4lZDBT2eSeb6zNP38kSR9IYRJa+ztTGNvZ/1nRVGY/eN5Vh+4wme7LlHfzYHezbxUjLB2kQHXhBBmRaPR8Ea/pgTVdSQ1u4AX1hzjmWWHORiThoU9wqyQJH0hhNmpY2vNlle68VKPYGy0Gg7FpjNy+RGGf36IPRdSLTr5S+8dIYRZS8zI44u9MfznWAKFxToAhrb14/0nW1PH1jxauI3Ja3KnL4Qwa/5uDsx+vBX7/9GbcY8EodHAllNJfLrrktqhqUKSvhDCIni52DN9cAv+2qP0Dd7TCZkqR6QOSfpCCIvSq0lpT55DselM/fY00clZFtXGbx4NWkIIYaBOQR482b4+G09eY/3xBNYfTyC4riOD2vjyzMMN8HNzUDvEGiUPcoUQFunE1Zss3RPLvks39A94ra00PN7On/BHQwj0dFQ5QsPJKJuVkKQvhPij7Pwifvktla+PxHMkrnQoB2srDS/2CGZq/2YqR2cYGXtHCCEM5Gxvw+Pt/Hm8nT+R8bdYsPMS+y7eYOmeGNzr2PBi92A0GvOZr1ce5AohxO9CG7izduzDPNTQHYB/bv2Nx+bv5Wyi+fT0keYdIYT4k9SsfJbujWHD8WvkFBRT18mOR5t50djbiSa/D9/s5WxXa74BSJt+JSTpCyEMlZFbyOP/OsDV9Nxy61wdbBjZqQFT+jbBRqtuo4kk/UpI0hdCGCMrv4i9F25w6Xo2F6/ncDE1m6vpuZToSlOnq4MNdZ1scatji5uDDa51bHBzsMWtjg3udWxw/b3c7fdy1zo2ONtZY2VVfd8S5EGuEEJUExd7G4a09StTVlBcQsT567z13Rky84rIzCsCbht8TPc6NvylfX2eeTiAEC/ne+9QjeROXwghqii3sJj4m7lk5Bb9vhSSkVf6c2Ze4f/K835fl1tEXlFJmWO893hLnu/S8L7iMKnmnSVLlvDRRx+RnJxMy5YtWbhwId27d7/r9nv37mXKlCmcO3cOPz8//vGPfzBhwgSDzydJXwihpvyiEg7FpPPloSvsuXADgIaedWjfwJ3QQHfaNyid69faiOcEJjPK5vr165k0aRJvv/02kZGRdO/enQEDBhAfH1/h9nFxcQwcOJDu3bsTGRnJW2+9RXh4OBs3bnzAkQshRNXY22jp3cyLVaMf4olQfwCupOfyXWQi0zefZdCi/aw+cKXGzq/qnX6nTp1o3749S5cu1Zc1b96cYcOGMW/evHLbT506lS1bthAdHa0vmzBhAqdOneLQoUMGnVPu9IUQtUlGbiGRCRlEXr3FyfgMohIyWPPCQ3Rs6GHwMUziQW5hYSEnTpzgzTffLFMeFhbGwYMHK9zn0KFDhIWFlSnr168fK1eupKioCBsbm3L7FBQUUFBQoP+clZVVDdELIUT1cKtjS++mXvRuWjr6551eQTVFteadtLQ0SkpK8Pb2LlPu7e1NSkpKhfukpKRUuH1xcTFpaWkV7jNv3jxcXV31S0BAQPVUQAghaoDWSoO2Grtz/pnqwzD8+Y02RVEqfcutou0rKr9j2rRpZGZm6peEhIT7jFgIIUyXas07devWRavVlrurT01NLXc3f4ePj0+F21tbW+Pp6VnhPnZ2dtjZ2VVP0EIIYeJUu9O3tbWlQ4cORERElCmPiIiga9euFe7TpUuXctvv2LGDjh07VtieL4QQoixVm3emTJnCihUrWLVqFdHR0UyePJn4+Hh9v/tp06YxatQo/fYTJkzg6tWrTJkyhejoaFatWsXKlSt5/fXX1aqCEEKYFFWHYRgxYgTp6enMnj2b5ORkWrVqxdatWwkMDAQgOTm5TJ/9oKAgtm7dyuTJk/nXv/6Fn58fixYt4sknn1SrCkIIYVJUfyP3QZN++kIIc2Myb+QKIYR4sCTpCyGEBZGkL4QQFkSSvhBCWBCLm0TlznNrGYNHCGEu7uQzQ/rlWFzSz87OBpAxeIQQZic7OxtXV9dKt7G4Lps6nY6kpCScnZ1rzUz2UPovdUBAAAkJCWbRlVTqU7tJfWo3Y+ujKArZ2dn4+flhZVV5q73F3elbWVlRv359tcO4KxcXF7P4n/YOqU/tJvWp3Yypz73u8O+QB7lCCGFBJOkLIYQFkaRfS9jZ2TFjxgyzGQZa6lO7SX1qt5qsj8U9yBVCCEsmd/pCCGFBJOkLIYQFkaQvhBAWRJK+EEJYEEn6D9DMmTPRaDRlFh8fH/16RVGYOXMmfn5+ODg40KtXL86dO6dixJW7V33GjBlTbn3nzp1VjPjeEhMTee655/D09KROnTq0a9eOEydO6Neb2jW6V31M6Ro1bNiwXKwajYaXX34ZML1rc6/61NS1sbg3ctXWsmVLdu7cqf+s1Wr1P3/44YfMnz+fNWvW0KRJE+bMmUPfvn25cOECzs7OaoR7T5XVB6B///6sXr1a/9nW1vaBxWasW7du0a1bN3r37s3PP/+Ml5cXMTExuLm56bcxpWtkSH3AdK7RsWPHKCkp0X8+e/Ysffv2Zfjw4YBpXRu4d32ghq6NIh6YGTNmKG3btq1wnU6nU3x8fJT3339fX5afn6+4uroqn3/++QOK0DiV1UdRFGX06NHK448//sDiuV9Tp05VHnnkkbuuN7VrdK/6KIrpXaM/mjhxotKoUSNFp9OZ3LWpyB/royg1d22keecBu3TpEn5+fgQFBfH0008TGxsLQFxcHCkpKYSFhem3tbOzo2fPnhw8eFCtcO/pbvW5Y8+ePXh5edGkSRNefPFFUlNTVYr03rZs2ULHjh0ZPnw4Xl5ehIaGsnz5cv16U7tG96rPHaZ0je4oLCzk3//+N2PHjkWj0ZjctfmzP9fnjpq4NpL0H6BOnTqxdu1atm/fzvLly0lJSaFr166kp6eTkpICgLe3d5l9vL299etqm8rqAzBgwADWrVvHL7/8wieffMKxY8fo06cPBQUFKkdesdjYWJYuXUrjxo3Zvn07EyZMIDw8nLVr1wKY3DW6V33A9K7RHZs3byYjI4MxY8YApndt/uzP9YEavDbV/t1BGCwnJ0fx9vZWPvnkE+XAgQMKoCQlJZXZZvz48Uq/fv1UitA4f6xPRZKSkhQbGxtl48aNDzgyw9jY2ChdunQpU/bqq68qnTt3VhRFMblrdK/6VKS2X6M7wsLClMGDB+s/m9q1+bM/16ci1XVt5E5fRY6OjrRu3ZpLly7pe738+a4kNTW13N1LbfXH+lTE19eXwMDAu65Xm6+vLy1atChT1rx5c+Lj4wFM7hrdqz5326c2XyOAq1evsnPnTsaPH68vM7Vr80cV1aci1XVtJOmrqKCggOjoaHx9fQkKCsLHx4eIiAj9+sLCQvbu3UvXrl1VjNJwf6xPRdLT00lISLjrerV169aNCxculCm7ePEigYGBACZ3je5Vn4rU9msEsHr1ary8vBg0aJC+zNSuzR9VVJ+KVNu1ua/vCcIor732mrJnzx4lNjZWOXz4sDJ48GDF2dlZuXLliqIoivL+++8rrq6uynfffaecOXNGeeaZZxRfX18lKytL5cgrVll9srOzlddee005ePCgEhcXp+zevVvp0qWL4u/vX2vrc/ToUcXa2lqZO3eucunSJWXdunVKnTp1lH//+9/6bUzpGt2rPqZ4jUpKSpQGDRooU6dOLbfOlK7NHXerT01eG0n6D9CIESMUX19fxcbGRvHz81P+8pe/KOfOndOv1+l0yowZMxQfHx/Fzs5O6dGjh3LmzBkVI65cZfXJzc1VwsLClHr16ik2NjZKgwYNlNGjRyvx8fEqR125H374QWnVqpViZ2enNGvWTFm2bFmZ9aZ2jSqrjyleo+3btyuAcuHChXLrTO3aKMrd61OT10aGVhZCCAsibfpCCGFBJOkLIYQFkaQvhBAWRJK+EEJYEEn6QghhQSTpCyGEBZGkL4QQFkSSvhBCWBBJ+kIIYUEk6Qsh7ikhIYFevXrRokUL2rRpw4YNG9QOSVSRDMMghLin5ORkrl+/Trt27UhNTaV9+/ZcuHABR0dHtUMTRpI7fWF2evXqhUajQaPREBUVdc9tJ02a9EDiMmW+vr60a9cOAC8vLzw8PLh582aNn3fMmDH6a7l58+YaP58lkKQvyklNTeWll16iQYMG2NnZ4ePjQ79+/Th06BBQ9g/RxsaG4OBgXn/9dW7fvm3wMSo6jre3N3379mXVqlXodLoy2w0bNsyoOrz44oskJyfTqlUro/b7Y0wajQZPT0/69+/P6dOnjTpOVe3bt48hQ4bg5+dXrYnOkGtmqOPHj6PT6QgICKjwPG+++eZdr9mePXvQaDRkZGQYdK5PP/2U5ORko2MUdydJX5Tz5JNPcurUKb788ksuXrzIli1b6NWrV5k7u/79+5OcnExsbCxz5sxhyZIlvP7660Yd44/HuXLlCj///DO9e/dm4sSJDB48mOLi4irXoU6dOvj4+GBtbW30vndiSk5OZteuXVhbWzN48GCjjlFYWGj0eQFu375N27ZtWbx4cZX2r8y9rpkh0tPTGTVqFMuWLSu3TqfT8dNPP/H4449XV8i4urrqZ8US1eS+B2cWZuXWrVsKoOzZs+eu24wePVp5/PHHy5SNHz9e8fHxMfgYdzuOoijKrl27FEBZvnx5pdvdTc+ePZWJEyeWK8/JyVGef/55xdHRUfHx8VE+/vjjcttWdK59+/YpgJKamlrpOV9++WVl8uTJiqenp9KjRw9Fp9MpH3zwgRIUFKTY29srbdq0UTZs2GBwPQBl06ZN99wuMDBQWbBgQZmytm3bKjNmzKi0Xn+8ZoqiKD///LPSrVs3xdXVVfHw8FAGDRqkXL58Wb8+Pz9f6d69u7J27doK49i3b5/i5eWllJSU3PWa7d69WwGUW7duKYqiKHFxcQpQbunZs2eZ/Qz9XYh7kzt9UYaTkxNOTk5s3ryZgoICg/dzcHCgqKjovo5xR58+fWjbti3fffed0ftW5o033mD37t1s2rSJHTt2sGfPHk6cOFHpPjk5Oaxbt46QkBA8PT0r3fbLL7/E2tqaAwcO8MUXX/DOO++wevVqli5dyrlz55g8eTLPPfcce/furc5qVdkfrxmUfsuYMmUKx44dY9euXVhZWfHEE0+g0+lQFIUxY8bQp08fnn/++QqPt2XLFoYMGYKVleFpJSAgQP+tKjk5mcjISDw9PenRo8d9109UzPjvvsKsWVtbs2bNGl588UU+//xz2rdvT8+ePXn66adp06ZNhfscPXqUr7/+mkcffbTKx/izZs2aVWs7ek5ODitXrmTt2rX07dsXKE3S9evXL7ftjz/+iJOTE1CaCH19ffnxxx/vmcxCQkL48MMP9fvNnz+fX375hS5dugAQHBzM/v37+eKLL+jZs2e11a0q/nzNoLRJ7o9WrlyJl5cX58+fJyMjg/Xr19OmTRv9c4avvvqK1q1b67ffsmULH3/8sf7zH3+Pd5SUlJT5rNVq9c03+fn5DBs2jC5dujBz5szqqKaogNzpi3KefPJJkpKS2LJlC/369WPPnj20b9+eNWvW6Le58wdtb29Ply5d6NGjB5999plRx6iMoihoNJpqq1NMTAyFhYX6BAzg4eFB06ZNy23bu3dvoqKiiIqK4siRI4SFhTFgwACuXr1a6Tk6duyo//n8+fPk5+fTt29f/TcfJycn1q5dS0xMTLXVyxj3umYxMTGMHDmS4OBgXFxcCAoKAiA+Pp5HHnkEnU6n/71ERUWVSfjR0dFcu3aNxx57TF/2x9/jnWXFihV3jW/cuHFkZ2fz9ddfG/VtQRhH7vRFhezt7enbty99+/bl3XffZfz48cyYMYMxY8YApX/QS5cuxcbGBj8/P2xsbIw+RmWio6P1Sac6KEa8juLo6EhISIj+c4cOHXB1dWX58uXMmTOn0v3uuNP76KeffsLf37/MdnZ2dgbHYggrK6ty9ftjs80d97pmQ4YMISAggOXLl+Pn54dOp6NVq1YGPZTesmULffv2xcHBQV/2598jwLVr1yrcf86cOWzbto2jR4/i7Ox8z/OJqpN/ToVBWrRoUaZ7350/6MDAwAoTviHHuJtffvmFM2fOlGtuuB8hISHY2Nhw+PBhfdmtW7e4ePHiPffVaDRYWVmRl5dn8PlatGiBnZ0d8fHxhISElFkq6up4P+rVq1emW2NWVhZxcXHltqvsmqWnpxMdHc0777zDo48+SvPmzbl165bBMXz//fcMHTq0SvFv3LiR2bNn89///pdGjRpV6RjCcHKnL8pIT09n+PDhjB07ljZt2uDs7Mzx48f58MMPDe6KZ8wxCgoKSElJoaSkhOvXr7Nt2zbmzZvH4MGDGTVqlH67zMzMci9aeXh40KBBA4NicnJyYty4cbzxxht4enri7e3N22+/XWEzwp2YoPQfhsWLF5OTk8OQIUMMOheAs7Mzr7/+OpMnT0an0/HII4+QlZXFwYMHcXJyYvTo0RXul5OTw+XLl/Wf4+LiiIqKqrSuffr0Yc2aNQwZMgR3d3emT5+OVqs1OFYAd3d3PD09WbZsGb6+vsTHx/Pmm28atG9qairHjh2r0jsFZ8+eZdSoUUydOpWWLVvqf++2trZ4eHgYfTxxb5L0RRlOTk506tSJBQsWEBMTQ1FREQEBAbz44ou89dZb1X6Mbdu24evri7W1Ne7u7rRt25ZFixYxevToMgl5z549hIaGltl39OjRBj8jAPjoo4/Iyclh6NChODs789prr5GZmVluuzsxQWnybtasGRs2bKBXr14Gnwvgvffew8vLi3nz5hEbG4ubmxvt27ev9Pd4/Phxevfurf88ZcoUoPK6Tps2jdjYWAYPHoyrqyvvvfdehXf6lbGysuI///kP4eHhtGrViqZNm7Jo0SKD6vzDDz/QqVMnvLy8jDonlNY3NzeXOXPmlGk669mzJ3v27DH6eOLeZOwdYXZ69epFu3btWLhwodqhWIShQ4fyyCOP8I9//KPGzqHRaNi0aZPRb2aL8qRNX5ilJUuW4OTkxJkzZ9QOxew98sgjPPPMMzVy7AkTJpTr9inuj9zpC7OTmJiof+jaoEEDbG1tVY5IVFVqaipZWVlA6aBvMqrn/ZOkL4QQFkSad4QQwoJI0hdCCAsiSV8IISyIJH0hhLAgkvSFEMKCSNIXQggLIklfCCEsiCR9IYSwIJL0hRDCgkjSF0IICyJJXwghLMj/AxvbvEPDcS9DAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def quantile_function(x):\n",
+ " # Empirical CDF/Quantile Function/Exceedance Probability\n",
+ " # Use the median of the coordinate we're grouped in\n",
+ " x = x.median(\"freq\")\n",
+ " # Squeeze to remove frequency dimension\n",
+ " shape = np.shape(x)\n",
+ " x_sorted = np.sort(np.squeeze(x))\n",
+ " # calculate the proportional values of samples\n",
+ " p = 1.0 - np.arange(len(x)) / (len(x) + 1)\n",
+ " # recreate dataarray\n",
+ " x = x.assign_coords({\"time\": p}).rename({\"time\": \"probability\"})\n",
+ " x.values = np.reshape(x_sorted, shape)\n",
+ " return x\n",
+ "\n",
+ "\n",
+ "octave = [10, 10] # 1/10th octave at base 10\n",
+ "cdfs = acoustics.band_aggregate(spsdl, octave, fmin, fmax, method={\"map\": quantile_function})\n",
+ "# Plot\n",
+ "fig, ax = plt.subplots(figsize=(4, 4))\n",
+ "ax.plot(cdfs.sel(freq_bins=160, method=\"nearest\").values, cdfs[\"probability\"].values)\n",
+ "ax.set(\n",
+ " title=f\"{np.round(cdfs['freq_bins'].sel(freq_bins=160, method='nearest').values, 2)} Hz\",\n",
+ " ylabel=\"Exceedance Probability\",\n",
+ " xlabel=\"SPSDL [dB re 1 uPa$^2$/Hz]\",\n",
")"
]
},
@@ -610,17 +657,17 @@
"source": [
"### Sound Pressure Level\n",
"\n",
- "The IEC-40 has two requirements considering calculations of sound pressure level (SPL). We'll first calculate the SPL over the full frequency range of the turbine and/or hydrophone. The IEC-40 asks that the range be set from 10 to 100,000 Hz, though the lower limit can be increased due to flow noise or low frequency signal loss due to shallow water. \n",
+ "The IEC-40 has two requirements considering calculations of sound pressure level (SPL). We'll first calculate the SPL over the full frequency range of the turbine and/or hydrophone using the function `sound_pressure_level`. First, however, note that the IEC-40 asks that the range be set from 10 to 100,000 Hz. The lower limit can be increased due to flow noise or low frequency signal loss due to shallow water. \n",
"\n",
"#### Shallow water cutoff frequency\n",
- "Low frequency sound is absorbed into the seabed in shallow water depths. We can use the function `minimum_frequency` to get an approximation of what our minimum frequency should be. This approximation uses the water depth, estimates of the in-water sound speed and sea/riverbed sound speed to determine what the cutoff frequency will be. The difficult part with this approximation is figuring out the speed of sound in the bed material, which generally ranges from 1450-1800 m/s. \n",
+ "Low frequency sound is absorbed into the seabed in shallow water depths. We can use the function `minimum_frequency` to get an approximation of what our minimum frequency should be. This approximation uses the water depth, estimates of the in-water sound speed, and sea/riverbed sound speed to determine what the cutoff frequency will be. The difficult part with this approximation is figuring out the speed of sound in the bed material, which generally ranges from 1450-1800 m/s. \n",
"\n",
"This function should only be used as a rough approximation and sanity check if significant attenuation is seen at various low frequencies and harmonics."
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
@@ -660,23 +707,25 @@
"#### Flow Noise\n",
"Flow noise, or psuedo-sound, is the other reason to increase the minimum frequency of our SPL measurements. Flow noise is caused by one of three things: turbulence advected past the hydrophone element, turbulence caused by the hydrophone element, and the sensitivity of the hydrophone element to temperature inhomogeneities in the advected flow. Flow noise is most noticeably apparent when flow speeds increase above 0.5 m/s, seen in spectrograms as a logarithmic increase in pressure with decreasing frequency.\n",
"\n",
+ "The particular data shown here was measured in around 8-10 m of water, and a mix of mild flow noise below 20 Hz and low frequency attenutation below ~50 Hz can be seen in the spectrogram. We'll again use the Nyquist frequency of 48,000 Hz.\n",
+ "\n",
"#### Cumulative SPL\n",
"\n",
- "The particular data shown here was measured in around 8-10 m of water, and a mix of mild flow noise below 20 Hz and low frequency attenutation below ~50 Hz can be seen in the spectrogram. We'll again use the Nyquist frequency of 48,000 Hz."
+ "Running the code block below, we can see our cumulative SPL start out at 86 dB and then peak at 125 dB as the boat drives by. If you haven't listened to the audio track, this peak SPL of 125 dB rel 1 uPa (underwater) is equivalent to 99 dB rel 20 uPa (air). For reference, the OSHA time limit for workers experiencing 100 dB rel 20 uPa of sound is 2 hours. Vessel traffic can be quite loud and is one of the largest contributors to noise in the marine environment."
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "[]"
+ "[]"
]
},
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
@@ -700,61 +749,54 @@
"spl.plot()"
]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "So we can see our cumulative SPL start out at 86 dB and then peak at 120 dB as the boat drives by. If you haven't listened to the audio track, this peak SPL of 125 dB rel 1 uPa (underwater) is equivalent to 99 dB rel 20 uPa (air). For reference, the OSHA time limit for workers experiencing 100 dB rel 20 uPa of sound is 2 hours. Vessel traffic quite loud and is the largest contributor to noise in the marine environment."
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Decidecade Sound Pressure Levels\n",
"\n",
- "The last stat that IEC-40 requests are the decidecade SPLs. Note that the IEC-40 incorrectly labels these as synonymous with the third-octave SPLs, following the relevant (and also incorrect) ANSI specifications. \n",
+ "The last stat that IEC-40 requests are the decidecade SPLs, where the SPL is calculated for each decidecade frequency band. Note that the IEC-40 labels these as synonymous the third-octave SPLs; while for some applications this may be true, mathematically they have different definitions. \n",
"\n",
- "To explain, an octave is a frequency band where the upper frequency is double (2^1) that of the lower frequency. The one-third octave is a frequency band where the upper frequency is 2^(1/3) times the lower frequency. The decidecade is a frequency band with a bandwidth of 2^(1/10), which means it's the tenth octave, not the third. Wherever the IEC-40 says third octave they actually mean the decidecade band.\n",
+ "To explain, a true octave is a frequency band where the upper frequency is double (i.e., base 2) that of the lower frequency. Third octaves are often measured because mammals to have evolved to interpret sound at this bandwidth. The true one-third octave is a frequency band where the upper frequency is 2^(1/3) = 1.25992 times the lower frequency. The decidecade band referenced by the IEC-40 refers to the one-tenth octave of base 10, where the upper frequency is 10 times that of the lower frequency. Mathematically this means the decidecade band has a bandwidth of 10^(1/10) = 1.25892. So, when reporting frequency analysis, it is important to note both the octave and its bandwidth.\n",
"\n",
"We can calculate the SPL in each decidecade band using the function `decidecade_sound_pressure_level`. This function uses the same calculation as `sound_pressure_level` above and runs it on each tenth octave band. It returns 1 SPL in each frequency band every timestamp, so our boxplots show 5 minutes worth of SPL measurements in each decidecade band. You'll notice a similar spread as in the SPSDL boxplots, especially in the upper quantile. Boats are loud."
]
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "[[,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ],\n",
+ "[[,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
" [Text(0.0, 0, '0'),\n",
" Text(1.0, 0, '1'),\n",
" Text(2.0, 0, '2'),\n",
" Text(3.0, 0, '3'),\n",
" Text(4.0, 0, '4'),\n",
" Text(5.0, 0, '5')],\n",
- " (1.68, 4.75),\n",
- " (40.0, 120.0),\n",
+ " (1.6532125137753437, 4.7160033436347994),\n",
+ " (50.0, 120.0),\n",
" Text(0.5, 0, 'log(Frequency) [Hz]'),\n",
" Text(0, 0.5, 'Decidecade SPL [dB re 1 uPa]')]"
]
},
- "execution_count": 19,
+ "execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwUAAAHFCAYAAACjElXkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/a0lEQVR4nO3de1xU1fo/8M9oiowh3opLkZejhqWItyzpq1aiJ7so1unLUTuR+jseNc20mxiGYlgmZnkhK0vLkM4psZuldEoM1I6goHWcxLwnaKGCOooo+/eH35lmGPaemc3ee/ae+bxfL17KDLNnMczsvZ61nvUskyAIAoiIiIiIKGA18nUDiIiIiIjItxgUEBEREREFOAYFREREREQBjkEBEREREVGAY1BARERERBTgGBQQEREREQU4BgVERERERAGOQQERERERUYBjUEBEREREFOAYFBARERERBTifBgVbtmzBAw88gMjISJhMJqxfv95+X01NDZ577jl0794dzZs3R2RkJP72t7/h+PHjTseorq7GlClT0LZtWzRv3hwPPvggjh07pvFvQkRERERkXD4NCs6fP48ePXpg6dKlLvdZrVbs3LkTKSkp2LlzJ9atW4d9+/bhwQcfdPq5adOmIScnB9nZ2cjPz8e5c+dw//3348qVK1r9GkREREREhmYSBEHwdSMAwGQyIScnByNGjBD9mR07duC2227D4cOHcdNNN6GyshLXXXcdPvjgA/zv//4vAOD48eOIiorChg0bMHToUI1aT0RERERkXNf4ugHeqKyshMlkQsuWLQEARUVFqKmpwZAhQ+w/ExkZiW7dumHr1q2iQUF1dTWqq6vt39fW1uLUqVNo06YNTCaTqr8DEREREZEWBEHA2bNnERkZiUaNpBOEDBMUXLx4Ec8//zxGjRqFFi1aAADKy8vRtGlTtGrVyulnw8LCUF5eLnqs+fPnY86cOaq2l4iIiIhID44ePYobb7xR8mcMERTU1NQgMTERtbW1WL58udufFwRBcsR/5syZmD59uv37yspK3HTTTTh69Kg94CAiIiIiMrKqqipERUUhJCTE7c/qPiioqanBI488goMHD+Lbb7916rSHh4fj0qVLOH36tNNswcmTJ9G/f3/RYwYFBSEoKMjl9hYtWjAoICIiIiK/4kl6vK73KbAFBKWlpfjmm2/Qpk0bp/t79+6NJk2aIDc3135bWVkZfvzxR8mggIiIiIiI/uDTmYJz585h//799u8PHjyI4uJitG7dGpGRkXj44Yexc+dOfPHFF7hy5Yp9nUDr1q3RtGlThIaGYty4cZgxYwbatGmD1q1b4+mnn0b37t0xePBgX/1aRERERESG4tOSpJs3b8Zdd93lcvtjjz2G1NRUdOjQod7Hfffddxg0aBCAqwuQn3nmGWRlZeHChQu45557sHz5ckRFRXncjqqqKoSGhqKyspLpQ0RERETkF7zp4+pmnwJfYlBARERERP7Gmz6urtcUEBERERGR+hgUEBEREREFOAYFREREREQBjkEBEREREVGAY1BARERERBTgGBQQEREREQU4BgVERERERAGOQQERERERUYBjUEBEREREFOAYFBARERERBTgGBUREREREAY5BARERERFRgGNQQEREREQU4BgUEBEREREFOAYFREREREQBjkEBERHpVkFBAUaOHImCggJfN4WIyK8xKCAiClCZmZmIjIxEZmamr5siKiMjAxs2bEBGRoavm0JE5NcYFBARBai0tDSUlZUhLS3N100RFR8fj9atWyM+Pt7XTSEi8msMCoiIAlRKSgoiIiKQkpLi66aIys3NxalTp5Cbm+vrphAR+bVrfN0AIiLyjYkTJ2LixIm+boakGTNmOP1LRETq4EwBEVGAMsIi3ri4OKxbtw5xcXG+bgoRkV/jTAERUYCyLeIFwE43EVGAY1BARBSgmJpDREQ2JkEQBF83wteqqqoQGhqKyspKtGjRwtfNISIiIiJqMG/6uFxTQEREREQU4Jg+REQUgKxWK3bt2oVDhw6hffv26NmzJ8xms6+bRUREPsKggIgoAFksFtx5553274uKitCrVy8ftoiIiHyJ6UNERDqhZYnQ6OhorFmzBgCwZs0aREdHq/6cRESkXwwKiIh0wlYiNCMjQ/XnMpvN6Nq1KwCga9euukwdslqtyMzMRN++fZGZmQmr1errJhER+S2mDxER6QRLhDqzWCyYNGkSAKCwsBD9+vVjihMRkUo4U0BEDWaEnXGNgLv3OouOjsbs2bMBALNnz2aKExGRihgUEMmQmZmJyMhIZGZm+ropuqBl2gsFDrPZjOHDhwMAhg8frssUJyIif8GggEiGtLQ0lJWVIS0tzddN0YWOHTs6/UtERETGwqCASIZRo0YhKCgIo0aN8nVTdCErKwvV1dXIysrydVOIiIhIBgYFRDIcOHDA6d9Al5KSgoiICKSkpPi6KURERCQDgwIiGWbMmIFhw4axSsz/+ctf/oJXX30VMTExLBtJfonriIjI3zEoIPKSrdP70EMPOX0fyDZu3IgxY8bgzjvvhMVi8XVziBSXkpKCsrIyzoYRkd/yaVCwZcsWPPDAA4iMjITJZML69eud7l+3bh2GDh2Ktm3bwmQyobi42OUY1dXVmDJlCtq2bYvmzZvjwQcfxLFjx7T5BSggWSwW3HnnnewEO2jfvj0A7oxL/uvGG290+peIyN/4NCg4f/48evTogaVLl4reHxcXh5dffln0GNOmTUNOTg6ys7ORn5+Pc+fO4f7778eVK1fUajYFuOjoaKxZswYAO8E2wcHBAPS7My5RQy1btgwJCQlYtmyZr5tCRKQKn+5ofO+99+Lee+8Vvf/RRx8FABw6dKje+ysrK7Fy5Up88MEHGDx4MICrnbSoqCh88803GDp0qOJtJjKbzejatSsAdoJJWQUFBcjIyMCMGTO4gZmO1Jcy6Pi559+NiPyBT4OChioqKkJNTQ2GDBlivy0yMhLdunXD1q1bRYOC6upqVFdX27+vqqpSva1ERO7YNoEDoFjnkh3WhrOlDNoUFRWhV69e9u/V+LsREWnN0EFBeXk5mjZtilatWjndHhYWhvLyctHHzZ8/H3PmzFG7eUREXrFVs1KyqhU7rA1nSxkcM2ZMvSmDavzdiIi05pfVhwRBgMlkEr1/5syZqKystH8dPXpUw9YREdUvLi4O69atU7TzboTyuQUFBRg5ciQKCgp83ZR66SllUO+vFREZl6GDgvDwcFy6dAmnT592uv3kyZMICwsTfVxQUBBatGjh9EVERL4xefJk5OTkYPLkyT5th9wOt202JiMjQ5FjSj1G6rmIiBrC0EFB79690aRJE+Tm5tpvKysrw48//oj+/fv7sGVERPpghE6krYy0r8tJy32t4uPj0bp1a8THx7vcl5ycjE8//RTJycmKtEPquaRwhoGI3PFpUHDu3DkUFxfb9x84ePAgiouLceTIEQDAqVOnUFxcjP/+978AgJ9//hnFxcX29QKhoaEYN24cZsyYgX//+9/YtWsXxowZg+7du9urERERBTK5nUilSXVK09LSEBERgbS0NB+07A9yX6vc3FycOnXKaYCqIaRSvuQ+lxGCQyLyLZ8uNC4sLMRdd91l/3769OkAgMceewyrVq3CZ599hscff9x+f2JiIgDgxRdfRGpqKgDgtddewzXXXINHHnkEFy5cwD333INVq1ahcePG2v0iREQ65diJnDhxos/aIbbg2Wq1IiYmBq+++irat2/vUu5TS3JfK6mFxunp6fbqT56Ki4sTXVcid1EzF0MTkTs+DQoGDRoEQRBE709KSkJSUpLkMZo1a4YlS5ZgyZIlCreOiEhbSpcPtVqtiI+Px9GjRxEfH+/TDrdYp9RduU8txcfHY/v27V7PFEh14pWm5XMRUWAx9JoCIiJ/onSKh8ViwaRJk1BYWIhJkybBYrEoclw5+elilZX0tEO40mlAgLy/qdTrK/c+pg8RkTuG3qeAiMifjBs3TtFRfXf19eVScu8Dtcp9ypl1kZNiY7VasWvXLhw6dAjt27dHz549nX4HOceUen3l3sf0ISJyh0EBEZFOnDlzBoWFhSgsLES/fv0anEbTkA63VKdaTgdT652Vk5OTkZ+fj4qKCuTl5Xn0GDmpOe7Sn+QcU+r1lXufXtKOMjMzkZaWhpSUFJ+ucSEiVwwKiIh0on379gB8n0YDSI86y+lg+uvOymrMxoi9vlarFQDw0EMP2b93DPSk/i5aB2ViUlJSUFFRwaCASIe4poCISCeCg4MB+H7XXEBeeU6pnHatS6Omp6dj+PDhSE9PV/V5tNzt2DYrMWbMGNx5550ua0TEXn+r1Yrk5GR88cUXSE5OtgcXvnDjjTc6/UtE+sGggIiIXEgtuhXrfIotZrVarcjOzsbvv/+O7OxsxTqlUkGI2MJmIxD7vdwtyhbbKM1isWDLli2oqanBli1bFFtwLseyZcuQkJCAZcuWefU4br5GpD4GBURE5EJqAy2xzr/YY9TqlMqpqJOZmYnIyEhkZmY63W61WlFQUIAPP/wQBQUFmoymextcSc1KWK1WVFZWQhAEVFZWOrVfTxWepII1Vk8i8i2uKSAiMgCtc8LlbKAl9hi1qiB17NjR6V9PpKWloaysDGlpaU457b7YL0FsnYWchdwWiwUlJSUAgJKSElgsFnv7tUxxaghWTyLyLc4UEBFJ0EvagtYjpUqm5qjRKbVarVi1ahWqq6uxatUqj0f2U1JSEBERgZSUFKfb1RhNdzf7IDazcvPNNzstJvaE1rMBcj4Xcl8PwNjpYERGwZkCIiIJeqmao/VIqV5+bzEWiwUVFRUAgIqKCqeRcSkTJ06st+qNGoGL3HKlGzduxJgxY+p9jBit93uQ8/5w93rs3r0b27dvx+7du3X5niPyd5wpICKSIDV6qSWtR0qlfm89zJ7oKU9ejNw2al2aVmydBSC+eFnO58Ld6+GY2kVE2mNQQEQBQW66Q05ODr777jvk5OT4tJSjluqrh+9ID4s+3S26zczMRN++ffHll1/6qoluR+/F3pNal6aV0xmXs2DY3d9s1KhRaNmyJUaNGqX6Z00PgS2R3jAoICJdUvqiLacja7FYkJGRgTNnziAjI8OnpRy15K4evl5mT8RYLBZMmjQJhYWFSE1N9XVzROkhuLJarRg4cCCaNGmCgQMHunTG5ez3oPVnTc65Qg+vPZHeMCggIl2SumjL6QTITXdISkoCACQlJekyRUUNUmkejrMIN998s9Pj9DL6Gh0djdmzZwMAxo4d69O2SNF6Q7f6WCwWZGdno6amBtnZ2S6dcbEZAam/tRqpRXLKlcpto17ex0RaY1BApHOBeoGSUydfipycfLPZjClTpgAApkyZottSjkqTSvNwnEXYuHGj0+P0MvpqNpsxfPhwAEC/fv2c7vvyyy/Rt29fZGZm+jwdTGqDOK04BlCzZ8/2uDMu9beW+1mTSrUSW9sAiJ8r5LZR6rnUEKjneNIfBgVEGuI0t+ekLtpyRiJ54VWG44iubUEscHUGoWPHjggODkbHjh193uEWk5qaisLCQkyaNMnn6WB6SMNyDKCGDx/ukuefnJyML774AvPnz3d6nB7a7o7c2YDKykrU1taisrLSq8fJFajneNIfliQl0pCcMn5al6LUepMsOaQ21lKyhCK5chzRtS2IBf7ICQeuvtajRo1SffMvOcaOHYvCwsJ6R8W1JvU+1gPbTtQA0Lt3b6f7zpw5g6NHj2L37t3o2bOnUzCh9DnEarUiMTHR6V/H5xP7bEu9vlLng9DQUDRq1AihoaFePU4ubsxGesGggEhDck7+WnccjN55VnKXWPKcLQ1l7ty5uuhwi7GlE9UdFdea1WrFrl27cOjQIQwdOhRt27b1WVvEOO5EPWTIEKf7bDMuhYWF6Nevn1MAqPQ5xLZwHEC9zyf22ZYKTsQe4y4AUeM8ovfgkAIHgwIiDRnh5G/0zrNY+43w2huZLQ1l7ty5Pu9wG4HjRl5r1qzB6NGjfdwiV2KzQoD0jEt8fDy2b9+u2AJqx+DEm70bkpOTkZ+fj4qKCuTl5TndJ3Y+cBeA8DxC/oxrCojIidabZCnN6O2nwCC2NsMoxGZcrFYrsrOz8fvvvyM7O1uRtSXuFiF7m5PvuI9F3QXnDamCRGR0DAqINCTngsKLELnD94jxSI3CG5ltHUJNTQ22bNmiyWJusQXFYnssOO5jUXfBeUOqIClN7uea5wOSi0EBkYbkVJnQujwe6ZOcOu1EWnM30q40qX0zbr755np35XZXhlXquSorKyEIAiorK1WvsCV17lfjfMBgghgUEGlI6TJ+apzElT6mEdqoBi13ZDZCeUgKDO5G2pUmtW/Gxo0b692VW6oMq7vnKikpgSAIKCkpUWwWRM65Qs6+DQCQmZmJyMhIZGZmutzHwQViUECkITn57mJT4IA6J3Glj6nGqJWcY2odnCj9Okpd6LmOggKV1NoM2/dKzVg0ZBZEzrkiMTERYWFhSExMbFjDHaSlpaGsrAxpaWku93FwgRgUEOmc2BQ4oM5JXO4ok5zjSZE7EiZGjQBK6TZKYcefyJXU2gzb90rNWLibBZHq+Ms5V0jteC01WCT1XCkpKYiIiEBKSor0L1uHnHM/GQ9LkhLpnG0KHACKiopU3xBKquSe4yjTxIkTG3w8MfXl7jpegOUcc9y4cTh69Cji4+NdjqcGli4kCixi+zNYrVYcP34ctbW1OH78uMfnM6ny0GKPkTp32gaVbrjhBvv3nmwCB8g795PxcKaASOekpsC1XoQsd5TJW1K5u1LlBKWcOXOm3mojDSE1Wic1asgqVET+Jz4+Hq1bt3bZn8FisWD//v0AgP3794uez7788kunx8mZHZQ6d0pVXQKkZze1OveTbzEoINI5pafAG2LixIk4fvy46iNFUrm77i5sYp1nqeBKbodb6qItla4kJ5WJiwCJ9C07OxsnTpxAdna20+1S1Y4cz2epqalOj/v999/x4YcfoqCgwOPBD6lzp7uqS1LnM7FzPwcr/AuDAiKDslqtSExMRK9evZCYmKhYeTw9nOSlcnfdXdjEZk+kgis1FkNLjbqJjSiKsVqtiI+PR/fu3e3pT0RkDFLVjhzPZ2PHjnV6nFj1JED83CN17nRXdUnOuZ+DFf6FQQGRQbkbMZeil5r3ci5CcssJSpGzKNhqtSI5ORlffPEFkpOTveqoi40oimnI35qItCGVTijG8Xxm2yXaRmx2syHnHjFyj8mKRf6FQQGRQTWkPJ5eat6rEYDIuTDLzd0V27lV6Yu21htCEZF3HDdRc/y+IcRmN9XYNVruMaXOnXqYdSbvMCgg0pCSJ8mGbBIklr6ixoVNitIBiNTupkpzt+5BKmCwpX09++yzHj1XQ0ohEpH6HDdRqy/dR0lqDBKocUypQR+es/SJQQGRhvSSfylW/1qNC5vUyV/p2vtSu5sqzd26B08WSp85c0aRtujlfUUUqLSczVNj12ipY0pVSJIiNejDc5Y+cZ8CIg1J1Z3WQztsF7YxY8YoPloEuNa+Vppj++vubqolTwIGJduol/cVUaBSo6OuF7aBDABITU3Ffffd1+Bj8pylT5wpINKQHnaltVqt2L17N44ePYrdu3c7pQipcWHzttJOQ0jtbipFy6lsuW2Uoof3FRH5J6kKSVKkZgN4ztInBgVEGrFarSgoKPC67rTS1KpaJEYsVUlPjD6VzfxcIlKLVIUkuWWZSZ88Sh+qqqry+sAtWrTw+jFE/syW725TVFSEXr16ad4O26jP3Llz663zL0VOKpDUNHFmZibS0tKQkpKi+oZoUow8lW2rdLRt2zZUVFTgq6++8qvUBSLSr+TkZOTn56OiogJ5eXlO98XFxXEmwGA8milo2bIlWrVq5fFX69atceDAAbfH3bJlCx544AFERkbCZDJh/fr1TvcLgoDU1FRERkYiODgYgwYNwk8//eT0M9XV1ZgyZQratm2L5s2b48EHH8SxY8c8fwWINKKXspJy6/w7bqA1btw4j59PbJrYarUiJSUFZWVlSElJ8emGXEaeylajPCERkSdqamogCAIqKysVO4dnZmYiMjISmZmZihyPPOdx+tDHH3+Mb7/91u3Xv//9bzRt2tSjY54/fx49evTA0qVL671/wYIFWLRoEZYuXYodO3YgPDwc8fHxOHv2rP1npk2bhpycHGRnZyM/Px/nzp3D/fffjytXrnj6qxFpwugL0ZSummOxWFBRUQEAqKio8Fln1rGyRmZmpuF2C9ZLsElEgSc+Ph6CIKCkpMSl9LLc82paWhrKysqQlpbmVVuYRtlwHqUPtWvXDgMGDECbNm08OmjHjh3RpEkTtz9377334t577633PkEQsHjxYsyaNQsjR44EAKxevRphYWHIysrChAkTUFlZiZUrV+KDDz7A4MGDAVy9KEZFReGbb77B0KFDPWovEbmndNUcNSodyeFYWaOwsBD9+vXzSVqXXEYPNonIuIYMGYK5c+eKll4G6j+vSqWOpqSk2O/zhpaV7vyVRzMFBw8e9DggAIAff/wRUVFRshtle87y8nIMGTLEfltQUBAGDhyIrVu3Ariak11TU+P0M5GRkejWrZv9Z+pTXV2Nqqoqpy8ikianao7U4mq9dGYdK2t4u8aCiCiQie26LHVedZc6OnHiRBw/frzedWZc2Kwu3VYfKi8vBwCEhYU53R4WFma/r7y8HE2bNkWrVq1Ef6Y+8+fPR2hoqP2roQEMEdVPy10+5ZK7xoKIiOondV5tSOqonDKnTCvynKyg4Pz589iwYQPefPNNvPHGG05fSjOZTE7fC4Lgcltd7n5m5syZqKystH8dPXpUkbYSkTPmuxMRkSN31wWlZwOkAgkGDM683tF4165dGDZsGKxWK86fP4/WrVvj999/h9lsxvXXX4+pU6cq0rDw8HAAV2cDIiIi7LefPHnSPnsQHh6OS5cu4fTp006zBSdPnkT//v1Fjx0UFISgoCBF2klE4vSSIkRERPogdV1wV2JZqsxpQUEBMjIyMGPGDKefkSo5zXUIzryeKXjqqafwwAMP4NSpUwgODsb27dtx+PBh9O7dGwsXLlSsYR06dEB4eLjThkeXLl1CXl6evcPfu3dvNGnSxOlnysrK8OOPP0oGBURERESkL+5KLEuN7MvZhDI+Ph6tW7dGfHx8g9vuD7yeKSguLsaKFSvQuHFjNG7cGNXV1ejYsSMWLFiAxx57zF4pyBPnzp3D/v377d8fPHgQxcXFaN26NW666SZMmzYN6enp6Ny5Mzp37oz09HSYzWaMGjUKABAaGopx48ZhxowZaNOmDVq3bo2nn34a3bt3t1cjIiIiIiL9k6pKZ7VaMXnyZOzevRsHDhzA1q1bnWYRxGYEnnnmGWzfvr3ex+Tm5uLUqVPIzc316QaaeuH1TEGTJk3s+fphYWE4cuQIgKsddNv/PVVYWIiePXuiZ8+eAIDp06ejZ8+e9hXrzz77LKZNm4ZJkyahT58++PXXX7Fp0yaEhITYj/Haa69hxIgReOSRRxAXFwez2YzPP/8cjRs39vZXIyIiIiIfkUotslgsKCkpqXdfBCmnT58WfQxnCpx5HRT07NkThYWFAIC77roLs2fPxocffohp06ahe/fuXh1r0KBBEATB5WvVqlUAri4yTk1NRVlZGS5evIi8vDx069bN6RjNmjXDkiVLUFFRAavVis8//5zVhIiIiIj8iLsyp8nJyfjiiy8wf/58p8fZ1rrWV3LacaagrkDcWdnroCA9Pd2+8DctLQ1t2rTBxIkTcfLkSbz11luKN5CI5GFVBSIi8hfuypza1iL07t3b6XH9+vWr9zGAdDUjuTsrG5lXQYEgCAgNDUVYWBguX76M6667Dhs2bEBVVRV27tyJHj16qNVOIvKSnEVXRERERuNY5tRxQ1sptk3THnroIafvbVJSUhAREVHvzsr+OujmcVBw6NAhxMbGIjo6Gt27d0enTp2wc+dONdtGpLqnn34azZo1w9NPP+3rpih+kuHujkREFAgc1yLYdll2x93mmlI7K/vroJvHQcFzzz2Hixcv4oMPPsC//vUvRERE4B//+IeabSNS3dKlS1FdXY2lS5f6uimKnmSsVitycnLw3XffIScnx2UEhIiIKJBJbaJmtVqRmZmJvn37IjMz0+Ua2rFjR6d//YXHQcH333+Pt956C6NGjcLIkSPxr3/9C0VFRbhw4YKa7SNS1RNPPIGgoCA88cQTvm6KolUQLBYLMjIycObMGWRkZHi1jTwREZG/c1fpaNKkSSgsLMSkSZNcrqFZWVmorq5GVlaWpm1Wm8dBQXl5uVMUdeONNyI4OBgnTpxQpWFEWli4cCEuXryo6MZ7cmVnZ+PEiRPIzs5u8LGio6ORlJQEAEhKSnKpuEBERET1c1fpaNSoUWjZsiVGjRrlMotg5PUGHgcFJpMJjRo5/3ijRo0gCILijSLSgtVqRUFBAT788EMUFBT4VYqN2WzGlClTAABTpkxxqbhAZASlpaXYu3cvAGDv3r0oLS31cYuIKBC4q3QkNROfnJyMTz/9FMnJyZq2WQke72gsCAK6dOli37gMuLojcc+ePZ2ChVOnTinbQiKV2BYZ2RQVFaFXr14+a096ejoyMjK4MJgIVwOCLl262L8fM2YMAGDfvn3o3Lmzr5pFRAFOatdlo/M4KHjvvffUbAeR5vT2wY6Li0NcXJxP20CkF2fPngUArFy5EkFBQaiursa4cePstxMR+YLUWgTA2AN8HgcFjz32mJrtINKcuw+2lqxWK3bt2oVDhw5h6NChaNu2rc/aQqQnsbGx6NWrF0tgExGpzOsdjYk8ZeTFNlpzrJe8ceNGXzeHiIiIvGS1WpGcnIwvvvgCycnJhlur6HVQ0KhRIzRu3Fj0i8jGXzf3UINjveT27dv7tjFERETkNYvFgi1btqCmpgZbtmwxXDlwj9OHbHJycpy+r6mpwa5du7B69WrMmTNHsYaR8dny6YyYV6c1ObsxEhERkX7oba2it7wOCmwlmhw9/PDDuPXWW/HRRx9h3LhxijSMjM/oC2cLCgrsi4WM/HsQERGR+vS0VlEOxdYU9OvXD998841ShyM/YPQ1BUx/IiIiokDh9UxBfS5cuIAlS5bgxhtvVOJw5CeSk5ORn5+PiooK5OXl+bo5XmP6ExEREQUKr4OCVq1aOW1gJggCzp49C7PZbF8oSeQPjJ7+RERERPqh97Rkr4OCxYsXO33fqFEjXHfddejXrx9atWqlVLvI4KxWKxITE53+NVpuHREREZFSJk+ejJKSEhw4cADFxcW+bo4Lr4MCbmJGnrBYLJg0aRIAoLCwEP369UOvXr183CptZGZmIi0tDSkpKZg4caKvm0NEREQ+ZrVacejQIQDA0aNHfdsYEdy8jFThWHffiGW5GiIlJQVlZWVISUnxdVOIiIhIBywWCyorKwEADz74oI9bUz8GBaQKo5flagjbgnsuvCciIiLAebB0/PjxPm5N/RgUECnIarViwoQJ6NOnDyZMmGC4Lc6JiIhIeUbYpFSRkqREdFUgr6UgIiIi4+JMAZGXSktLsXfvXgDA3r17UVpaar8vkNdSEMkh9XkiIiLtKBYU7N27Fx07dlTqcKSSp59+Gs2aNcPTTz/t66YYUmlpKbp06YIxY8YAAMaMGYMuXbrYOzKBvJaCyFvuPk9ERKQdxdKHLl26hMOHDyt1OFLJ0qVLUV1djaVLl2LhwoW+bo7hnD17FgCwcuVKBAUFobq6GuPGjbPfTkSe4+eJiEg/PA4Kpk+fLnn/b7/91uDGkLqsVisSEhLwySefICEhgRuKNUBsbCx69eqFnTt3+ropunDkyBEAV2cMQ0JC0LlzZx+3iIyEnyciIt/zOCh4/fXXERsbixYtWtR7/7lz5xRrFKnDYrEgOzsbAJCdnY1nnnmGi2CpwUpLS5GQkAAA9jSQffv2MTAgIiIyEI+Dgs6dO+Opp56yX/TrKi4uRu/evRVrGCnPtgh2zJgxXARLirGleqSlpSEyMpLpH0RERAbk8ULj3r17o6ioSPR+k8kEQRAUaRSpg4tgSU3Dhg1DbGysr5tBREREMngcFGRkZGDatGmi9/fo0QO1tbVKtImIiEg3WDaViNRUUFCAkSNHoqCgwKft8Dh9KDw8XM12EBER6Y6tbKoN180QkdIyMjKwYcMGAEBcXJzP2sHNy4iIyHAcR+9t1a8ayrGKlm02wLFs6po1a7By5Uqn24mIGio+Ph6tW7dGfHy8T9uh2D4FRERkHHVTYoxUSrbu6H1CQkKDR+7FqmjZsGwqEaklOzsbJ06cQHZ2NiZOnOizdnCmgEiEXnL8KHDUN1KtBqPvJOw4ep+WluZ0W0OPmZaWxtkAD2j1XiUKBDU1NRAEAZWVlbBarT5rB4MConpYrVZMnjwZ69evx+TJk336IaXAUHekWs1Our+kxMTGxmLYsGEutzcktYhVtNyT+17lgm2i+sXHx0MQBJSUlMBisfisHbKDgkuXLuHnn3/G5cuXlWwPkS5YLBaUlJTo4kNKgcEXI9WxsbEYPXq0X3WC686CJCQkBHznU25nXCy4kvNeNfrsFJGahgwZAgA+30PK66DAarVi3LhxMJvNuPXWW+0niqlTp+Lll19WvIFnz57FtGnT0K5dOwQHB6N///7YsWOH/X5BEJCamorIyEgEBwdj0KBB+OmnnxRvBwWW6OhozJ49GwAwe/ZsbvRGmuFIdcOokVokRarDrcZiaDntk9MZ9yS4EnuvcsE2kXeCg4MB+H4PKa+DgpkzZ6KkpASbN29Gs2bN7LcPHjwYH330kaKNA4Dx48cjNzcXH3zwAfbs2YMhQ4Zg8ODB+PXXXwEACxYswKJFi7B06VLs2LED4eHhiI+P54mGGsRsNmP48OEAgOHDh3OjNyKDEUstUpJUh7shMxZK5uu764y7mw3wNrhyl1rkj7NTRP7C66Bg/fr1WLp0Ke68806YTCb77bfccgt++eUXRRt34cIFfPLJJ1iwYAEGDBiATp06ITU1FR06dEBmZiYEQcDixYsxa9YsjBw5Et26dcPq1athtVqRlZWlaFuIiMj4tOpwq9WplnqcVIpQfZ1xTwIXb4MrLtgmMi6vg4LffvsN119/vcvt58+fdwoSlHD58mVcuXLFaUYCuDrNkp+fj4MHD6K8vNyeiwUAQUFBGDhwILZu3Sp63OrqalRVVTl9ERGROvSywFStxdxSo99adKrlpgipmWrFNDgi4/E6KOjbty++/PJL+/e2QODtt9/GHXfcoVzLAISEhOCOO+5AWloajh8/jitXrmDNmjX44YcfUFZWhvLycgBAWFiY0+PCwsLs99Vn/vz5CA0NtX9FRUUp2m4iIrpKTwtMjTSKrWW+vhapVkSkf15vXjZ//nz8+c9/xn//+19cvnwZr7/+On766Sds27YNeXl5ijfwgw8+wNixY3HDDTegcePG6NWrF0aNGuW0gUzdGQpBECRnLWbOnInp06fbv6+qqmJgQESkAscOa1BQEKqrqzFu3DifdsaN2gH25w3WjLyZHpG/8HqmoH///ti6dSusViv+9Kc/YdOmTQgLC8O2bdvQu3dvxRv4pz/9CXl5eTh37hyOHj2K//znP6ipqUGHDh0QHh4OAC6zAidPnnSZPXAUFBSEFi1aOH0REZF6uMC04Yw00+ENPc0mEQUyr2YKampq8Pe//x0pKSlYvXq1Wm2qV/PmzdG8eXOcPn0aGzduxIIFC+yBQW5uLnr27Ang6v4JeXl5eOWVVzRtHxERkRaMOtMhxt1sEmcRiLTh1UxBkyZNkJOTo1Zb6rVx40Z8/fXXOHjwIHJzc3HXXXfh5ptvxuOPPw6TyYRp06YhPT0dOTk5+PHHH5GUlASz2YxRo0Zp2k4iIiJP6WEPA73xpEJS3VkEvo5EyvF6TUFCQgLWr1/vlJOvpsrKSsycORPHjh1D69at8dBDD+Gll15CkyZNAADPPvssLly4gEmTJuH06dPo168fNm3ahJCQEE3a56igoAAZGRmYMWMG4uLiNH9+IiLSP1tH1yYhIQH79u3j6Hc9pGYRGvI6Oi7Y5swD0VVeBwWdOnVCWloatm7dit69e6N58+ZO90+dOlWxxgHAI488gkceeUT0fpPJhNTUVKSmpir6vHJkZGRgw4YNAMCggIiI6uXY0T1+/DhSUlL8Ym2AmupbRC33dRRbsM3AgAKd10HBO++8g5YtW6KoqAhFRUVO95lMJsWDAiOZMWOG079ERERiYmNjERsbi5SUFF83xdC8fR0dF2xHRkZy/QLR//E6KDh48KAa7fALcXFxnCEg8iNG6CAYoY1EvuAuRajugu266UicRaBA43VQQOK4poDIfxihg2CENhL5gpwUIT3uqUGkJQYFCuKaAiL/YYQOghHaSOQLUilC7hh5EziihmBQoCCuKSDyP0boIGjZxrolIHv16qX6cxLJ5W97OhCpyesdjYmMpqCgACNHjkRBQYGvm0JkCGK13+vWjE9ISOCusxQw6q7f4Xuf/A1nChTE9CF94t+FyHNStd/dlYBk7XfyV1y/Q4GgQTMF58+fx7vvvotly5YxYsbVtKFhw4YxfUhn4uPj0bp1a8THx/u6KUS659jxT0tLc7rNJjY2tt7KLY4LOx13nSUyOsfPxZo1a7By5Uqn24nUkpmZicjISGRmZqr+XB4HBUeOHMHAgQMREhKC+Ph4ey7p+PHjMWXKFMTGxmLLli1qtlX34uLisG7dOo5Gq0hOKlB2djZOnDiB7OxsFVtGeuc4ih0ondWGpDvU1/GX4riwkx0m8lexsbEYPXo0YmNjfd0UChBpaWkoKyuzD9KoyeOg4Omnn8alS5eQmZkJs9mMoUOHonPnzigrK8OJEycwbNgwXewq7CtWqxUFBQX48MMPUVBQAKvV6usm+SVbKlBGRoavm0IGEoij2HXz/7X6vYcNG8YOExGRQlJSUhAREaHJJocerynYsmULPvvsM9x2220YNmwY2rZti3fffRdhYWEAgBdeeAH33HOPag3VC7G9CCwWC+68807790VFRazKoQI5FZ7S09PtfzOS5q+VZRpSntCoWK6UiMj4YmJicPvttyMmJkb15/I4KPjtt9/Qrl07AEDr1q1hNpvtAQEAhIeH4/Tp08q3UGfEFq1GR0djzZo1GDNmDNasWYPo6GhfNdGvydk1mjtNe0Zqgam/CMTyhEYoqUpkdNxZnNRgtVqRnJyMbdu2oaKiAl999RXMZrNqz+dxUCAIAkwmk/17x/8HErGRarPZjK5duwIAunbtquofjQKLWEUXpS9C7irLEBGRK1YmIrVYLBb7et0tW7bAYrGoOoPvVUnS2bNn2zu7ly5dwksvvYTQ0FAACJgceo46G8/vv/+OjRs3on379ujZs6ehAra6ufDA1QsNANUuQrGxsYiNjdUkf9Ff+WsaFhG5YqoeqUXrLBSPg4IBAwbg559/tn/fv39/HDhwwOVniPRm48aN9k6z0dZ6uMuF99eLkJGn4tVKw+IeAET6xlQ9UprWWSgeBwWbN29WsRlEDSe2CLx9+/YA4PO1Hg0ZPRbLhTfCRcjbzqy7qXi9j8KrkYYlNWNERESkhAZtXhaI5NTJ92davx5SzydWrjQ4OBiAb9d61C0PmZCQ4PclMQF5pUClNgky0uvobZ1/KdwDgMi46g5kEOmVRzMF06dP9/iAixYtkt0YI0hOTkZ+fj4qKiqQl5fn6+b4nFg1Jl88n5xypVoJ1EW8DSkFWt8siLvXUe4sgpapOWrMGBGRPgVCVTfyHx4FBbt27XL6vqioCFeuXMHNN98M4Oo0duPGjdG7d2/lW6gjVqsVlZWVEAQBlZWVsFqthlq0qgatO+JSz2eEReBGXsSrp85sfa+j3Iuvlqk57CAQBRa1BjKI1OBR+tB3331n/3rggQcwaNAgHDt2DDt37sTOnTtx9OhR3HXXXbjvvvvUbq9PWSwWlJSUQBAElJSUwGKx+LpJPhcXF4d169bpojPO1C71GCFtx/Hia9sO3pNZCS1Tc+S2kYiMrb50QiOcVymweL2mICMjA/Pnz0erVq3st7Vq1Qrz5s1zyeX2N7bSUIDvF61KyczMRGRkJDIzM33dFMWJrRtwdx81jJE6s3Jz+YcNG4bY2FjlG1QPJdcbEJExGem8SoHB66CgqqoKJ06ccLn95MmTfv9mNsoGZWlpaSgrK7OfZPyF1WpFfHw8unfvjvj4eJe9MWbMmIFhw4bpck2Bv2BnlohIWTyvkl54HRQkJCTg8ccfx8cff4xjx47h2LFj+PjjjzFu3DiMHDlSjTaSl1JSUhAREWHIvHUpFosFkyZNQmFhISZNmsT0LYOruxcBp82JiP7gWACB50fSgtdBwZtvvon77rsPY8aMQbt27dCuXTuMHj0a9957L5YvX65GG8lLMTExuP322xETE6P6c2mZx+8ufUtO+hBPur5RN5fW03KlRESBQE45Z6KG8njzMhuz2Yzly5fj1VdfxS+//AJBENCpUyc0b95cjfaRDFqWCdXyuaTSt2ypRUePHsW4ceM8Op5Y1Rl/rwSjh92CHXNp/XFHZiKihmhIOWciubwOCmyaN2+uyUg0ecexc2zLu1dz7UN8fDy2b9+O+Ph4rx4ntvuwXLbUIgA4c+aMR48JxJOu1G7BvmCEHZmJiHyFaw1ISx6lD40cORJVVVUeH3T06NE4efKk7EaRfFrn3efm5uLUqVPIzc316nFKVwpyTC1q3769V4/VsuqMr0ntFkze4ZoIIvIFnntILR7NFHz66af47bffPDqgIAj4/PPPkZaWhuuvv75BjSPv2TrHY8aM0aRsqtzNy+TOMIhxTC0KDg5W5Jj+jCP0DaO3GRciCgxS5x5/T30l9XkUFAiC4PQmJP3Sumyq3F2Es7OzceLECWRnZ2PixIkqtIxIPVwTQUS+wHMPqcmjoOC7777z+sA33HCD148JVErn1+ud1WpFZWUlBEFAZWWl6useiNTCGRci8gWxc48eCkmQcXkUFAwcOFDtdgQ0LSv4KO3333/Hxo0b0b59e/Ts2dOjzr3FYkFJSQkAoKSkBBaLBb169VK7qURERH6LqUXUULKrD5Fy5Obl68HGjRvtJ56ioiKPOvdar3sgIiLyd+5SiziLQO54vXkZaUfLjcHkslX68aZz727dgxF+byIiIj2KjY3F6NGjnarqccNI8gRnCjQitW5ALH3ICGlFtko/Si5qnjx5MkpKSnDgwAEUFxcrckwiIqJAxQXK5AkGBRqR6uCLpQ/pKa1Iy8XQx44dc/qXiIiIGo7FEUiKYkFBSUkJevXqhStXrih1SL8i1cGXW9ZTS3JmLY4cOQLAu9xFq9WKpKQkrFy5EklJSaxMROTnwq81IfjMPuB4IwSf2Yfwa00e3UdEynFcb3DkyBEW/whQis4UCIKg5OH8ipyOv1RHXMuRe6vViqCgINTW1iIiIsKjx5SWliIhIQGAdxUQLBaLfZfjjIwMjBo1iicnIj82oXdTdN0yAdgCdP2/7z25j4iUUbdqUUJCAisWBShFFxqbTBzFUdKMGTMwbNiwemcXbAGDrQOtJovFguzsbNTU1CArK8ujx9jyFNPS0rBy5Uqn26TYKhMB3i1eJiJjWlF0CXsHrAD+noe9A1ZgRdElj+4jImU4rjdIS0tzuo0Ci66rD12+fBkvvPACOnTogODgYHTs2BFz585FbW2t/WcEQUBqaioiIyMRHByMQYMG4aeffvJhq7URHx+P1q1bIz4+XvXnio6ORlJSEgBg3LhxXj122LBhThUQ3NF6R2Yi8q3ycwIutOwCRMbiQssuKD8neHQfESkrNjYWw4YN83UzyIc8Dgqqqqokv9SIKl955RW8+eabWLp0Kfbu3YsFCxbg1VdfxZIlS+w/s2DBAixatAhLly7Fjh07EB4ejvj4eL+IcqVmA3Jzc3Hq1Cnk5uYq9nxipUDNZjOmTJkCABg1apRiz0dEZAR/rG0o5toGIvJbHq8paNmypWR6kCAIiqcPbdu2DcOHD8d9990H4GpN/LVr16KwsND+nIsXL8asWbMwcuRIAMDq1asRFhaGrKwsTJgwod7jVldXo7q62v59VVWVou1Wyrhx43D06FHEx8e7LLhVujKRbYHv/v37sWfPHpSUlHCU3sC4SQ2Rcri2gYgCgcdBwXfffadmO+p155134s0338S+ffvQpUsXlJSUID8/H4sXLwYAHDx4EOXl5RgyZIj9MUFBQRg4cCC2bt0qGhTMnz8fc+bM0eJXaJAzZ86gsLAQhYWF6Nevn9OCW6UrFlksFuzfvx8AsH//flgsFi7wFaH3iihSW90TkfdWFF3C/85eha7R0dhrsWBFxig86OtGEREpzOOgYODAgWq2o17PPfccKisrER0djcaNG+PKlSt46aWX8Ne//hUAUF5eDgAICwtzelxYWBgOHz4setyZM2di+vTp9u+rqqoQFRWlwm/QMHJ2C5bLtm5g1apVSEpK4gJfCXofNeQmNUTKclrbUF7LtQ1E5Jc8XlMgCAJeffVVxMXF4bbbbkNycjIuXryoZtvw0UcfYc2aNcjKysLOnTuxevVqLFy4EKtXr3b6ubppS+5SmYKCgtCiRQunLz1SY7dgMY7rBqZMmcLUIQlGqYhS31b3RCTONguoxxlAIl+pu4cB+S+Pg4KXX34Zzz//PJo3b46IiAgsWrQIU6dOVbNteOaZZ/D8888jMTER3bt3x6OPPoqnnnoK8+fPBwCEh4cD+GPGwObkyZMuswd6ZbVakZmZib59++LLL7/0+HFii4JJfayIQv7AnxfPyu3c22YBu26ZoLsZQH/gz+85f2VLR7WloSYkJKC0tNTHrSK1eJw+tGrVKixZsgSTJk0CAHz99dcYMWIEVqxYodr+BFarFY0aOcctjRs3tpck7dChA8LDw5Gbm4uePXsCAC5duoS8vDy88sorqrRJaRaLxf6apqam2hdVS7FarUhOTsa2bdtQUVGBr776iiP7ROQVvafBuWPvYP7f/x3Zfze4/l5Sj7OtHQDg8boBva8x0hOjv+cCkWM66vHjx5GSksJUVD/m8UzB4cOHcf/999u/Hzp0KARBwPHjx1VpGAA88MADeOmll/Dll1/i0KFDyMnJwaJFi+w75ZpMJkybNg3p6enIycnBjz/+iKSkJJjNZsOUzoyOjsbs2bMBAGPHjvXoMRaLBVu2bEFNTQ22bNkCi8WiZhNJA5yeJa0ZJQ1OjNSovu13q+/3knqcbRbQmxlAe0f3rYGcYXDD6O+5QMY9DAKDx0HBpUuX7DnuwNUOedOmTZ1KeyptyZIlePjhhzFp0iR07doVTz/9NCZMmGDfcQ8Ann32WUybNg2TJk1Cnz598Ouvv2LTpk0ICQmR/bxapuaYzWYMHz4cANCvXz+PHsNdf/0Lp2fJF4yeBifV8Zfq3Es9riHtqK+jyzUKzoz+niPydx6nDwFASkqKU5rKpUuX8NJLLyE0NNR+26JFixRrXEhICBYvXmwvQVofk8mE1NRUpKamKva8tk3DACha9lMp3PXXv3B6lsh79g7m//1f7ce5PV49lYmk0pi0xBQnIvKEx0HBgAED8PPPPzvd1r9/fxw4cMD+vVprC7Sm9MZgRJ6IjY1FbGwsUlJSfN0UIlKAnDUK7kitiRDDXH5Siy3dlZtk+gePg4LNmzer2Ax9UXpjMOBqSlJGRgZmzJjhs9kH7nJLRKQdpWclAHmzD9x8jdRQWlpqX+PpuEkm+xXG5VX6UH0uX76Mixcv4tprr1WiPX4rOTkZ+fn5qKioQF5enubPL7XLLT/ARETGIGf2gZuvkRpsaa5paWmIjIzkJpl+wOOgYMOGDaioqMCjjz5qv+2ll15CWloaLl++jLvvvhsfffQRWrVqpUpDqWG4y602OBtD5Io57cpRY/ZBDqk0JjkpTnyPGBerEvkPj4OChQsX4qGHHrJ/v3XrVsyePRtz585F165dMWvWLKSlpSm60NifpKen29OHfCk2Nha9evXCzp07fdoOfyQ1G0MUyJjTrj65nWo5HXhAOo1JTooT3yP+h+sNjMfjkqQ//vgj+vfvb//+448/Rnx8PGbNmoWRI0ciIyMDn3/+uSqN1FpmZiYiIyORmZmpyPGsVisA2IMq2/fkXxxnY9asWYOVK1c63U4UqFifXn1y90uQ2rdBqqSqVGlXOWVf+R7xL3XXG3Tp0oWltg3A45mCs2fPok2bNvbv8/Pz8fDDD9u/v/XWW1XdyEwrVqsVKSkpqKioQEpKCh577LEGl/y0WCy488477d8XFRWhV69eDW0qeUjr0QrOxhA5Y067K7kj9GLkLiaWWqMgNeIvlcYkJ8WJ7xH/wvUGxuTxTEFkZKQ9V/rcuXMoKSlxqqJTUVHhF/XyLRYLKioqAFz9nZTYLZibjfkORyuISI/kjtCLkbsxmJYbvcn1R2pUMdcbGMywYcMQGxvrdFvdtXe8JuuHxzMFDz/8MKZNm4bk5GRs2LAB4eHhuP322+33FxYW4uabb1alkVqydeDHjBmjWAeem435DkcriEiP5I7Qa0kvi5q53sB/sBKivnkcFLz44os4fvw4pk6divDwcKxZswaNGze237927Vo88MADqjRSS+zA+ydWRyAiPZHqcKux6ZmRcZ8F/+GuEiIr+PmWx0GB2WzGBx98IHr/d999p0iDiIiIApleRuj1gusN/E99a+84i+B7Dd68jIiIiIioIbifku8xKCAiIiIiXWAFP99hUEB+T+nSf0REpH889xN5h0EB+T29VPIgIiLtSJ37GTAYj+Mi5CNHjnC/JxU0KCi4ePEimjVrplRbiFTBSh5ERP5JqnNvhLKv5Jm6i5ATEhK4AFkFHm9eZlNbW4u0tDTccMMNuPbaa3HgwAEAQEpKClauXKl4A4kaSmpzHjHcXIXIe3I23SJqCKlN4IywMRt5xnERclpamtNtgOssAsnjdVAwb948rFq1CgsWLEDTpn98ALt374533nlH0cYRNZTVagUA5OTkoLi42KPH2EYkbOXQuBMykWekOmhEapDbuRcLGLh7sr7Fxsa67DtU95qdkJDA67VMXqcPvf/++3jrrbdwzz334B//+If99piYGFgsFkUbR9RQtvfkvHnz7LeFhIRIPoZl0YjkYaoeaU3pPR24e7LxOF6zjx8/jpSUFKfrtW3mgJuhuef1TMGvv/6KTp06udxeW1uLmpoaRRpFpJQRI0bghRdeAACsWbPGqxzE2NhYjB49GrGxsSq2kMh/yEnVI9IT28wD/p7H1CKDEZtFSEhIAMBZf094HRTceuut+P77711u/9e//oWePXsq0igipbRt29Z+QujatStHCIgaiOsGyJ857Z7M1CLDs80YpKWl2de9is0iMFiQkT704osv4tFHH8Wvv/6K2tparFu3Dj///DPef/99fPHFF2q0kYiIdIJVWyhQMbXIuOrOIACuswgAAr6ikdczBQ888AA++ugjbNiwASaTCbNnz8bevXvx+eefIz4+Xo02BixGsMq4cOECgKuvo23hMZEnODLoilVbKFAxtci/uJtFCESy9ikYOnQohg4dqnRbyAEjWOUcOnQIwNXXsaioiBuekMe0Hhk0woZKSi/sJDIKp9Si8lq+//1EfbMIgcrrmYJAJlW7Xum69oxglXP8+HG0bNkSM2bMQHR0tK+bQwai9cggS3oSEfleoO5V5NFMQatWrWAyeTZqderUqQY1SK/q7qbnOHoPQPS+ho7sM4JtuNdeew1nzpxBVlYWFi5c6OvmkIFoPTLIkp5ERL4l1d/z92wNj4KCxYsX2/9fUVGBefPmYejQobjjjjsAANu2bcPGjRuRkpKiSiP1wJPa9Xqoa183uvWnmrxyf7eUlBSkpaX59fuT/ANTc4j8jxHSAukP7vp7/tzP8igoeOyxx+z/f+ihhzB37lw88cQT9tumTp2KpUuX4ptvvsFTTz2lfCt1JDY2Fr169cLOnTu9uk8L7mYz9ELOB6ohkXtMTAxuv/12xMTENLDlJIYXPSIKZH8UJWjkUpSAFbuMqb4+nb/PIni90Hjjxo145ZVXXG4fOnQonn/+eUUa5WtG2P2uvjYaYSdeuR+ohvxuGRkZ2LBhAwAgLi6uIc0nEbzo+RcGeUTekSpKIJUWyM+asRihn9UQXgcFbdq0QU5ODp555hmn29evX482bdoo1jBfEav6oyfu2ujrGQspDf1AyfndZsyY4fQvKY+58P6FQR6Rd2znwK7R0dhrsTidB6XSAvlZMyY997MawuugYM6cORg3bhw2b95sX1Owfft2fP3113jnnXcUb6DWHKv+REZG6jIC1FMb5c6qKP2BckxJOnLkiFPZ0bi4ONEZAo7SKIO58P6FQR6Rd+QWJeBnjfTE66AgKSkJXbt2xRtvvIF169ZBEATccsstKCgoQL9+/dRoo0/ooeqPuw6rVm0U63DrZS+FuilJCQkJHreDozRErhjkEWmDnzXSE1mbl/Xr1w8ffvih0m2hOvTQYZXqcKsxYyFnEbJjStLx48eRkpLicTs4SkNERHokZyZbasEzkTuyggKbCxcuoKamxum2Fi1aNKhB9Ac9dFg96XCLzVh4e0JraPWk2NhYxMbGelV6lKM05M/YQSAyLrGBQY8qHWm0Czs5k0plNgKvgwKr1Ypnn30W//znP1FRUeFy/5UrVxRpmB5JfRDVuPjqqcMqp8Pt7UyHv6/qJ9IaOwhExiU2MOhJpaP6FjyTuhqSyqwXjbx9wDPPPINvv/0Wy5cvR1BQEN555x3MmTMHkZGReP/999Voo+ZsHXzRCPytgei6ZYLTB1HqvkC1ougS9g5Ygb0DVmBF0SWPHxcbG4vRo0cjNjZWvcYRBQDbZxB/z/P6c0hEvmUbGLzQsovTwKDU59ppwXOdx5G6HAc209LSnG4zCq+Dgs8//xzLly/Hww8/jGuuuQb/8z//gxdeeAHp6el+s87A1sGv27mX+iDy4utK7IQWqMSCTaKG+GOWstjlvcUOApH/kfu5ljpXkHJiY2N1UaxGDq+DglOnTqFDhw4Arq4fOHXqFADgzjvvxJYtW5RtHYD27dvDZDK5fE2ePBkAIAgCUlNTERkZieDgYAwaNAg//fRTg55TbIRb6oOo9cVX6Q5m3Tw4Up5YsEnUEJylJCJPSJ0rOGhFgIygoGPHjjh06BAA4JZbbsE///lPAFdnEFq2bKlk2wAAO3bsQFlZmf0rNzcXAPCXv/wFALBgwQIsWrQIS5cuxY4dOxAeHo74+PgGTdkYYYRbyQ6mLQ/OtrA3ISEBpaWlSjSTHMhNpyKSwllKIvKE1LmCg1YEyAgKHn/8cZSUlAAAZs6caV9b8NRTT7nscqyE6667DuHh4favL774An/6058wcOBACIKAxYsXY9asWRg5ciS6deuG1atXw2q1IisrS/SY1dXVqKqqcvoyGiU7mP6QB2cERgg2yXiYIkREnpA6V3DQigAZQcFTTz2FqVOnAgDuuusuWCwWrF27Fjt37sSTTz6peAMdXbp0CWvWrMHYsWNhMplw8OBBlJeXY8iQIfafCQoKwsCBA7F161bR48yfPx+hoaH2r6ioKFXbrQY1OphGzoMjIiIieThoRUAD9ykAgJtuugk33XSTEm1xa/369Thz5gySkpIAAOXl5QCAsLAwp58LCwvD4cOHRY8zc+ZMTJ8+3f59VVWV7gIDq9UKAMjJybGv4aDAJGcDG3LF19FYbOfAbdu2Ye/evaiurvZxi4iI/JvXQcHUqVPRqVMn+2yBzdKlS7F//34sXrxYqba5WLlyJe69915ERkY63W4yOV/gBUFwuc1RUFAQgoKCVGmjUiwWCwBg3rx59ttCQkJ81RxR7GipTw87W/sDvo7GYjsHPvHEE063h4SEML2RiEgFXqcPffLJJ4iLi3O5vX///vj4448VaVR9Dh8+jG+++Qbjx4+33xYeHg7gjxkDm5MnT7rMHhjNiBEj8MILLwAA1qxZ49MNMKSqEnBxkvoCMddTjdJ5gfg6GtmIESPw9ttv45133gHg+/MgEZG/83qmoKKiAqGhoS63t2jRAr///rsijarPe++9h+uvvx733Xef/bYOHTogPDwcubm56NmzJ4Cr6w7y8vLwyiuvKPr8Wk9lt23bFgkJCZg3bx66du3q0wuh1Air2I6LpBw97WytFTV24g3E19HI2rZti/Hjx2Pnzp0A4PPzIFGgYkZA4PA6KOjUqRO+/vprlyndr776Ch07dlSsYY5qa2vx3nvv4bHHHsM11/zRZJPJhGnTpiE9PR2dO3dG586dkZ6eDrPZjFGjRsl6LrFcfqmp7BMnTgDQf+7rH6OvjbwafZXq+GvZ0ZLbfjIe23uua3Q09loshgs4pS6ici+w/nhhNsK6ASO00Qj4OhoXUy8Dh9dBwfTp0/HEE0/gt99+w9133w0A+Pe//42MjAzV1hN88803OHLkCMaOHety37PPPosLFy5g0qRJOH36NPr164dNmzbJzr8Xy+UfMWIEgKuByPjx47FmzRrcdttt6Ny5M/Ly8gDUHzC4U3fTsF69eslqtyfkjr7qZYRVjdHjQGSE4MqpdF55reFG9qUuonIvsP54YZYabNGaPw8I6QHXiBgXMwICh9dBwdixY1FdXY2XXnrJXtO+ffv2yMzMxN/+9jfFGwgAQ4YMgSDU3ykwmUxITU1FamqqIs81YsQIHD58GPPmzXPq+AMQncqWChik2DYNs0lISPAoZ1ZuZSItR1/VqJ5k9NFjvfDn4Eovo+lSF1G5F1h/vDDLPXeqQekBIXZ0nUm9jrbrKumTXgYG9ULuwJqWg8ByySpJOnHiREycOBG//fYbgoODce211yrdLp+Rk8svN/fVcdOw48ePIyUlxaMLidjFy91jtRx9lWqj3A+U0UeP9cKfgyu9jKZLXUTlXmD98cKsp3UDSg8IsaPrTE9/a3/lixQtvQzEaEnOwJrcQWCtyQoKLl++jM2bN+OXX36x5+4fP34cLVq08KsAQSnuosPY2FjExsYiJSXFo+OJXbz0dBGSaqM/j1RrKVCDK6mLkD+OppMrx87P6dOnFTmmlgNC/kzOLLFUZ1aNjq5YG7Vuh9J8kaKll4EYrVitVqwouoSuI6YjJCQENTWXsKJojttrjdxBYK15HRQcPnwYf/7zn3HkyBFUV1cjPj4eISEhWLBgAS5evIg333xTjXYalhrRodTFSy/54lJt9OeRai0FanAldRHiwnfPGKGDI6W+zo/e9nFRI3BpaDu0+FvL2WNHqjNrC7iU7OiKtVHqudRohxQ5gYvUzFV+fr7o4xrCXwdixM7vFosF5ecEJD413+nnPX0feDsIrDWvg4Inn3wSffr0QUlJCdq0aWO/PSEhwWkPAbpK6+jQCB1FqZFqI3e0tBaowZUaFyE5U+BG+KyJMfqiz7qdn5ycHPvAg1RnXMud4vUSuKjxt5Z6HaXSsMRIdWZbtWolep/c2XGxNko9lxrtkCIncJGauVLrM++PaY2A+Pnd31MGvQ4K8vPzUVBQgKZNnS+A7dq1w6+//qpYw/yNVtGh3I6iXvIC9d7R0tMIq9+kAclNf4JyFyE5U+BGDsqMfmGr2/m56aab7PdJdca13CleKnBRmtzRY7l/a6nXUek0LLkpWlKBi1gb1WyHtzNGcgIXd8cTe5xan3m99CvkEDu/+3vKoNdBQW1tLa5cueJy+7Fjx3Q3fRuI5HYU9ZIXqPeOltFHWPVETwGgnNkHIwdl/nxhk+qMyxnFlksqcJFLTtlUqb+1J7Mq9d2n5esoRaqNWgaAUqSCVKn2ywlcpMh9HzSEWL9CakBID9kCVqsV5ecEfLu3AjvLfkJ1dbXT+d1qteLTTz8FAHz66aeIjo6G2WzWvJ1q8DooiI+Px+LFi/HWW28BuHriPXfuHF588UUMGzZM8QaSNsQ6RVrnxWrZ0ZKTSmD0EVY90VMA6K9T4IFIqjOup53i5ZBTNtWT40nNqtR3n15eR6k2ahm4eDNT4xik6jnFTIl2iPUrpAaEtB4sqm82w93+KRaLBXPnzgUAzJ07F8OHD9dleVE5vA4KXnvtNdx111245ZZbcPHiRYwaNQqlpaVo27Yt1q5dq0YbSQNinSK9nLTUSNuRU9rVn0dYtWbkkXYiX5BTNtXd8QDxWRWx+/RCqo1aBi7ezNQ4Bql6eY3VaodYv0JqQEjqPjV2iq9vNsNdkB0dHY1OnTph//796NSpE6Kjoz1+Pr3zOiiIjIxEcXEx1q5di507d6K2thbjxo3D6NGjERwcrEYb/Zrec+48WdDnq0V7QMPSdoxQ2lVren8/EgUypTu67mZVlE5/Uppe2ih3pkYv7de6HVIDQlL3qbFTfH2zGW3btsWoUaOQk5Nj/7kbbrjB/n+z2YzIyEgcOHAAkZGRfpM6BMjcpyA4OBhjx47F2LFjlW5PwNFLLr8YTxb0+WLRnhKdeDVGkvSQD9kQUu9HuQEDAw0i8mf+PIOsl9K6gDo7xUtlSYwZMwYAMGbMGBQVFTmlCKWnpyMjIwMzZsyQ++vokkdBwWeffebxAR98UE/LQvXBXzdbkpOzKTcNyCgnXT0tnpVD6v0oN4DVe+BLpDU9dbSIpOglhRiQv1O8WB9MKtvBXYpQXFwc4uLiFPit9MWjoMA2SmtjMpkgCILLbQDqrUwU6PSw2ZIaOflyRtr9vXqPXkrCqlHuU24Aa+TAlxpOT2V89cKTijRapGWS/7Fardi7dy8AYO/evQ2ujKOXdQ8NIdYHk8p2MJvN9oD99OnTfpUiJMWjoKC2ttb+/2+++QbPPfcc0tPTcccdd8BkMmHr1q144YUXkJ6erlpDjUwPnSK9dMb9vXqPXkrCqjFjITeAZWWfwOaukkcg8qQija9LaQYqqXKTSne43blw4UK9z2W1WrFkyRIAwJIlS7Bs2TL7fe7SXryll3UPDSHWB3OX7ZCWloa0tDSv9pcyerpsI28fMG3aNLz++usYOnQoWrRogZCQEAwdOhSLFi3C1KlT1Wij4dk6RRdadvFZp2jEiBF4++238c477wAA1qxZg3379mke8dtOMD179gSg3zQgra0ouoS9A1Zg74AVWFF0SbHj4e95Tsd0HLX98MMPUVxc3ODnIpKil3OPntQ9D9atSPPCCy8A4GvlC3XLTdqCNNt9jh1ux/vUYPvM1H0ui8WCVatWAQBWrVrldF90dDTatGkDAGjTpo1T2kvdgMd2PZDLcVbLl9cSx+vahg0bXO4X64OZzWY0anS1G7xv3z6nxcQAMHHiRBw/fhwTJ070uC22AbmuWyZ4NRh35MgRAFcDwNLSUo8fpzSvFxr/8ssvCA0Ndbk9NDQUhw4dUqJNpAIj5OQHcpqB0qPpYjMWepkxosBhhHOPnuhlD4BAFR0djRkzZmDlypUYN26cU6c6OjoaiYmJ+OSTT/DQQw+pXoryq6++AuDauZdqh9lsRlJSEpYuXYqkpCSnmQyl6+tLzWrJSYOT6gN4slGdt+se1NhvQE5mSGlpKRISEgDAHnT6ajDA66Cgb9++mDZtGtasWYOIiAgAQHl5OWbMmIHbbrtN8QaS+vSy6I1pBurz9/QtIiJ3pFKEzGYzDhw4gAsXLuDAgQNOnWqz2YycnBzU1NQgJydHkb2ZHNvyww8/OHVKX3zxRXv6St12VFdXo1GjRqiurnZJYTpw4IDTvzbR0dFYvnw53n33XYwdO7bBQY1U+o2cfYCk+gC265PYRnWA9+sepAJAORx3Qj59+rTHA3y21yQtLQ2RkZEYN26czwbpvA4K3n33XSQkJKBdu3b2Kc8jR46gS5cuWL9+vdLtIw3opbqA3FrPajB6aVExHLUlokDnboQ4Pj4e27dvR3x8vMtjn3jiCSxdutSl4ypFKghxbMsbb7zhlKoyceJE0dQVWynM+kpiit1nNpsRExODqKgoxMTENHg9hNSslljAkJ+fD8Cz3Z8dH9eqVSun++puVCe27kFqxsJsNmPHjh2oqqrCjh07Gvx6NLQvNWzYsAY9vxK8Dgo6deqE3bt3Izc3FxaLBYIg4JZbbsHgwYPtFYjIN+Sm3+iluoCeOqxGLy1KDRfI6WxipGYVWTWHjCI6OhqhoaGorKxEaGioywhxbm4uTp06hdzcXJdO+cKFC7Fw4UKXY3ra8a8bhERHR6NHjx7YvXu3vePrCamSmFL3ZWRk2PPu1SypKRYweLP7s+Pj5C549uV+Skas1CRr8zKTyYQhQ4ZgyJAhSrcnoCidtiM3/cYfqgsoveJfbmlR8h9cf+FKaiSMVXPIHa2r94gxm82YP39+vak5gPQovBh3HX+xIMRsNmPZsmX1boRVUFBgv12pDrzULIgW1MoIcHxv2ao22Z5PqsKQkpuQ2XZCfuWVVwAAu3btwpAhQwxVztSjoOCNN97A3//+dzRr1gxvvPGG5M/6cwUipU9oSqft6Cn9RmtKl/SUW1qU/AfXX7iSGgmTs5khBRapcpnuSoGK3SeXVGqOnI2p3HX8pYIQsedTY1RfbBZEjde4PmplBDi+t9555x376+Vu4b7Sm5CpsXhZSx6VJH3ttddw/vx5+//FvhYvXqxmW31O6XJkdUv1NXSqKZDLfSpd0pMokD9PYqRKadouvgBfK6qfVLlMd6VAxe7TC1vHPyIiAvPnz3fpUEuVtywoKMDIkSNRUFDgdPuMGTMwbNgwRUax3R3TCK+xFFtQBgCfffaZ032O+z00tAyrJ+3o0aMHTCYTevTooXqFKqV5FBQcPHjQ/kE+ePCg6Ffdle7+Rs4fW6p+rtQFlryjh70giPyBu5rfRFLqzqg7dsJs5TKDgoJcymXaKsG0bNkSM2bMcCnBKXbtrVu9x5HteyVq8ntCTl174I8ZgYyMDKfb4+LisG7dOkVHssWOGR0djU6dOgG4unZUj53Zupu21X1vtW/fHgAQFRXl9Dix/R7UYDabMWHCBISHh2PChAmGSh0CZGxeFsjMZjNCQ0NhMpkQGhrq0R/bMUXItiuepylCWp/QiPTACBusqdFGvWwE1JBzFpG7GXWxcpnuSoGKdbQcR7hff/11p2Pa0p31PvKtxoyAt8xmMyIjI9GoUSNERkY6vcZi+fpqkOr4S23aBgDLli1DQkICli1b5nS7beagvkXlanBM0TIarxcaP/zww+jTpw+ef/55p9tfffVV/Oc//8G//vUvxRqnR2KLUsTWGzRkNfq7774LwJh5aRQ4lK46Y4QFvmq0US8Ldf2hggb5jmM1nZiYGJdOmJxSmoB4Lrzj87Vu3drpMa1atYLJZKq3HXqidF67XGL9G8dAb9OmTaq2tW7Hf8qUKU4LtqU2jxN7HaOionDq1Cm0b99ek5F7OQvV9cLroCAvLw8vvviiy+1//vOf6y3T5W/E3nRiC6gaUtnnkUcewf79+xXZVINILUp3Zo2wwFeNNiq9UFduSVV/qEZGvuNuRl1uB1iq9r5Y9Z5HH30Uhw4dMmQahy+I/W0cA6/c3FzMmTPHfp9jvr4Si5Pd7dYstWmbGLH3h1r0EuTJ4XVQcO7cOTRt6lrdpUmTJqiqqlKkUUYUHR2N/Px8HDp0CO3bt1ekE79t27Z6p1KJpGhdX19OZ1aqjXrar0KMGm10VyXDW9whnNQk1RmUW+ZRqtqOnLr8UvsNkOccA70mTZo43bdp0yYA9VeTklOt0V3HX84ovJE76VrzOijo1q0bPvroI8yePdvp9uzsbNxyyy2KNUyvxOoGm81mxd94Rp6C0ks96kCkdWdQTmc2UDusSu9NIiWQSxQrTep8plUpR70R6ww2hNLXPCNfQ/UmMTERpaWlSExMdLo9Nze33hQtueVnAem/Gzv46vI6KEhJScFDDz2EX375BXfffTcA4N///jfWrl3rF+sJ3HVmtdoN0HZ8o775pU4IpC4jdAa1bqNedttVem8So8+46InUuV/qfCZVl9zogyN1K/s4nsPFOoOA/Ouk3Gue2GCdka+heiM269KkSZN6U8Vs5WcrKirclp+tu2aSfzff8TooePDBB7F+/Xqkp6fj448/RnBwMGJiYvDNN99g4MCBarRRU+46sxx58Iwa6VTkGSN0BrVuo78u4g3UGRc1SJ37o6OjsXz5crz77rsYO3asS7nMFi1aoKqqCi1atPB4tFRL7mY6pIIhW+ftjTfe8KgzCGh/ndRysC5Qif1NxWYQzGYz0tLS6t2wzd1idHJ25MgRAFc/nyEhIapeK2WVJL3vvvtQUFCA8+fP4/fff8e3337rFwEB8McilyZNmiAxMbHe1e1idYPFNiCRS+njacmWTjV69GjExcWpOjrGuurK8OfXccSIEXjhhRcAAGvWrMG+fft8EigpvTdJ3Q0Qffm7GZ1UnXyz2Yzs7Gzs3LkT2dnZLuUyX375ZURERODll1926fzYNlRSuxyi1P4AUmVCpe5zrF3fuHFjp+dLT0/H8OHDkZ6e7tIWNerrS9FDSU9/J/Y3lSq/KbZvg21x+IgRI7Bs2TJDzZ5prbS01L4p5JgxY9ClSxeUlpaq9nyygoIzZ87gnXfeQXJyMk6dOgUA2LlzJ3799VdFG+cLZrMZOTk5qKmpQU5OjldvVrENSOQSO17dfDy19zCQ2hxGD4xQV90IHW4jvI5y+etuu/6+67KW5zqz2YysrCycOXMGWVlZXp37pTo/tg2V1C6H6K5zbysQ0rRpU5eZDrFNqxxr19s2MNUjrYMQ+oNUQGbkgU01hF9rQvCZfQg+sw/h15o8eoytxHVaWhpWrlzpdJsavE4f2r17NwYPHozQ0FAcOnQI48ePR+vWrZGTk4PDhw/j/fffV6OdmnriiSewdOlSlyl5d7RaJOUuH09pdTeH0VsVByPUVdcyl9yTxyq9p4ZWtFyoS76nxrkuKysLwNWNkeqOUqakpNjTHeqSW1FHq3KIUmlMZrMZU6ZMsV/X6s502D5Lp0+fdglcxH5vpuwQIJ3/L/UeCcT3z4TeTdF1ywT7/70xbNgwNZrkwuugYPr06UhKSsKCBQucOjX33nsvRo0apWjjfGXhwoWy9lxQenGMVM1gqQ08lCa1OYzSNYqliHVmla6rrkZJTz3lksvZU0MvnXGlgyuj0MtCaTVIVSKRyuWXyzbaVndjJACIiYnB7bffjpiYmAY/j42S1wWp18psNqNDhw4oKSlBhw4dXM7FUtc1x9xvT9vP9XXkjtyN6vzViqJL+N/Zq67+P2MUHvRtc+rldVCwY8cOrFixwuX2G264AeXl5Yo0yqjEKiAozWw2Iy8vDzU1NcjLy1M9H09qc5hDhw4B0GYRnVaL9tRYvCk3cBHrDDakeo9UVQgxeumMG2E2Qw16WSitBqnZALPZjJiYGERFRSEmJkaRc11ycjLS09Pr3RRS7yOb7mZO5M5KTJw40esZYFaIIXfk7C3hz8rPCbjQsov9/45sqUW2//uK10FBs2bN6t2k7Oeff8Z1112nSKOMSsuLhtQ0txrEPsBDhw7FmjVrFKswJFUJIzo6GgMGDMC2bdtwxx13qDZDIrfDrcYMg1hnsCHVe6SqQoiR2xlXeoTbCLMZalB6t2M9cTcbkJycjPz8fFRUVCAvL89+u6d7B9QtpfnMM8/gmWeeqbcteh/ZdFe1JRA7WkRG4O761JDUIiV5HRQMHz4cc+fOxT//+U8AVzsJR44cwfPPP4+HHnpI8QYaSXx8PLZv3474+HjVn0vOyI4a2rZti9GjR9d7n5yZE6nZALPZ7FT+TK0ZErkdbjVmGNTqDHr7/pE706HlCLdeZjPUCE6U3u1YT8xms6zzmad7B7z77rseH1vvI5tmsxkTJkxAWloaJkyYwKotRAbh7vqkl9Qir6sPLVy4EL/99huuv/56XLhwAQMHDkSnTp0QEhKCl156SY02GoZUaS5/JVVdQE71JNuoYZ8+fbB8+XKXkTAlX2OpEn5yqFEeUq2qOVpVhZBbClTO36bu6y9nNqO4uNjtz7tjlCpOSr//G0Lq/ShW+tI2am4ymdCjRw+Xijq280hqaqrHz6Ulx9fftjbLE4F4nSEyOqnrk9VqRfk5AVnf/YRth6wuqUVa8nqmoEWLFsjPz8e3336LnTt3ora2Fr169cLgwYPVaB9+/fVXPPfcc/jqq69w4cIFdOnSBStXrkTv3r0BAIIgYM6cOXjrrbdw+vRp9OvXD8uWLcOtt96qSnuk6GF6WYoau2uKTe0D8qonmc1m5ObmYs+ePS47J0odUw6l1yjInWHwRdqLVqlucke45fxttJ7NMHIVJ0A/G2sB0u9HsRF6s9mM0NDQejfQkpp90MPaAMD59d+0aZNTW6QKOOj9OkNErtq2bYtRo0Zh8uTJAID8/Hz7tUJPa8a8Dgps7r77btx9991KtsXF6dOnERcXh7vuugtfffUVrr/+evzyyy9o2bKl/WcWLFiARYsWYdWqVejSpQvmzZuH+Ph4/Pzzz5q/qHqYXpYi1QmQGzBUVlaitrYWlZWVLvdJVU8SK50HSF/0lHyN9bKroi/SXvTesVCj6owYuSlacqo46YlWa3Q8Iff9KFUmVCx9US/vfcfXv6ioyOm+TZs2Aag/WNP7dYaI6mexWLBq1SoAwIoVK+zVwEaMGIHNmzfjww8/xPjx4zFlyhSfDSR5FRTU1tZi1apVWLduHQ4dOgSTyYQOHTrg4YcfxqOPPgqTSdkV06+88gqioqLw3nvv2W+zbQQDXJ0lWLx4MWbNmoWRI0cCAFavXo2wsDBkZWVhwoQJ9R63urraaRFofQun/VF0dDTy8/Nx6NAhl4XBckcNQ0ND0ahRI/uunZ6w7QAqttBVq4ue7XkFQXD6Xmu+GFnWe8fCcQdZ26ivWuTOZth2wF25cmW9lWz0zmw2O3Wq1S4nLFZKE1Dn/Sg2I6CX977ZbEbfvn3xww8/1JsmaTKZfDpYQUTKsm0UuH//frRr185+e9u2bfH9998DAN555x2frhf1eE2BIAh48MEHMX78ePz666/o3r07br31Vhw+fBhJSUn2vGclffbZZ+jTpw/+8pe/4Prrr0fPnj3x9ttv2+8/ePAgysvLMWTIEPttQUFBGDhwILZu3Sp63Pnz5yM0NNT+FRUVpXjb9ch2Ef7kk0+cvgfc5/KLkdrqXorYDqCAtjm/coIapdXdlVavI8vkrCE74AaauimDjrvtAvI/81K7yEvttKoXWVlZqK6utm+oZtOkSZN606KIyLjMZjNWrVqFhIQEl9L+586dA3C1T1K3/yVnJ2S5PA4KVq1ahS1btuDf//43du3ahbVr1yI7OxslJSX45ptv8O233yq+m/GBAweQmZmJzp07Y+PGjfjHP/6BqVOn2p/Hti9CWFiY0+PCwsIk90yYOXMmKisr7V9Hjx5VtN16lpycjE8//RTJyclOt9fN5ff0QqTG9vJSF3qlyQ1qqOHcLXQ1wt8mJSUFERERmpUGVppWnzV3gw5y22GEjr8UsfdPYmIiwsLCkJiY6KOWEZEaxPpM8+bNQ0REBObPn+/U/7JarfZypV23TFC9XKnH6UNr165FcnIy7rrrLpf77r77bjz//PP48MMP8be//U2xxtXW1qJPnz72TkHPnj3x008/ITMz0+l56qYtCYIgmcoUFBSEoKAgxdrZEFL1tLWml1xbLduhl1SCQKSnha5y6aU0sFxafdbcbUImtx1Sn1+9LCiWIvb+cawwZOT3FxF5RuxcYLFYsKLoEj77uQYAUHZOwGgV1xx6PFOwe/du/PnPfxa9/95770VJSYkijbKJiIjALbfc4nRb165dceTIEQBAeHg4ALjMCpw8edJl9kCvHKfVX3/9ddWfT2r0VelRfzXSgPRQTlBPpRyNzJaT37JlS8yYMUOx0WMluftb6+H92BBKfualSg0D4rOUSrfDxsizCEZuOxEpZ8SIERg/bRZ2lddixsL3sWXnz6quOfQ4KDh16pRkRzssLEzxcopxcXH4+eefnW7bt2+ffYFGhw4dEB4e7lSv+dKlS8jLy0P//v0VbYtaHGttt27d2qdtUbqDI7dTJ/U4PXQU645w182P1gMjBC62/MozZ85g1apV9Y4e+7pj5O5vrYf3Y0PI+cyL1dd3t25Aa2oEGloxctuJSDlms9lpwOyGG25Q9fk8Th+6cuUKrrlG/McbN26My5cvK9Iom6eeegr9+/dHeno6HnnkEfznP//BW2+9hbfeegvA1bShadOmIT09HZ07d0bnzp2Rnp4Os9mMUaNGKdoWtZjNZixbtky0rJ7SpKbUpfYckENuSoDU4/SQ4qSXUqZStE7NkaqrLuXGG29ERUUFbrzxRpf79JDa5a5spx7ejw0hJ8VGrL5+dHQ0QkNDUVlZWe9iOanyoURE5Erra7nHQYEgCEhKShLNxXcs8amUvn37IicnBzNnzsTcuXPRoUMHLF68GKNHj7b/zLPPPosLFy5g0qRJ9s3LNm3apMsdRPXACPn6Uo/TQ0dRatMkvdA6cJGqqy5Fy4BYDrPZjMTERJSWliIxMdFn5XPVIud84Pjeys3NxZw5cwBcfa3mz5/v81LDRET+Ijo6Gk2bNsWlS5fQtGlT1a/lHgcFjz32mNufUXKRsc3999+P+++/X/R+k8mE1NRUl63sjUTJBXFWqxVLliwBACxZsgTLli3zuB640iN5YpsH+QO9j3pqvQfDunXrAACdOnXy6qRlhI6iPy/6lPP6OwbFTZo0cbrP6AuviYj0xGw2Y8qUKVi6dCmeeOIJ1a/lHgcFjhuIkbKUHL133DFv1apVmDJlisejtkp30IxQ/UMuI3RmtdyDoaysDMDVXcj1OHPSEPHx8di+fTvi4+MVOZ5YTr4Sx6ubviV3p3J3j3OcPSEiIvUsXLjQvvux2jxeaEzqUXJRWXR0NBITE9GkSRMkJib6NN9dDwtF/cEPP/wAwLWii9Z1/uuWz3WUlpaGiIgIpKWlKfJceuI4U6AExxzRd955R9Hj1V0MLXdRvLvHKf2aEBGR7zEo0IC7Un1KMpvNqK6uRqNGjVBdXe3TUVstK2goPfqqJ++++y4A14ou7jpucl5/qUDDsbrMG2+84fQ4qR2qjU7p4DY6Ohpt2rQBAHz11VeKHq9NmzZOAwFydyq3LRoG6t9hkwE/EZH/YVCgAa1L9QXiBbtuRRSjkRqFT01NrbdTFx0djfz8fKxZswb5+fmKzApJBRrR0dHo1KkTgKvVxgKF0sGt2Wy2z6y8+OKLTvc5VnHydPDA8XhpaWlOAwFmsxnZ2dnYuXMnsrOzPR4kMJvNaN++PQCgffv29S4aZslMIiL/wqBAA3JH6+QKxAu2rXRkkyZNUFRU1ODjaV3nX2oTu5YtW9a7E6zZbMbu3bvxzDPPYPfu3YrMCkmNOpvNZkRGRqJRo0b2n3FHy1kyd8TSsHxBbGbl0KFDALzf/0JqpqayshK1tbWorKz0qo3Lli1DQkICli1b5tXjiIjImBgUaMBsNiMmJqbejh0pw2w2o2/fvmjUqJHqI+ZqkNrETmon2LS0NJSVlSmWy282m+2lh5OSklzeq96uU9DThlZiaVi+ILZpWMuWLRUfPJC74DwQBxeIiAIZgwKNGH3nUyPIyspCdXU1srKyGnwsubM7cmcYzGYzJkyYgPDwcDz66KMetzMlJQURERFISUnx+DHuHDhwwOlfR952FB1TjrwtV6q0Rx55BC1btsSMGTN8vuGc2Plg1qxZKCwsxIoVK5wCMnfvK6mdiZVecE5ERP6JQYFGAjHPX2tKdpDNZjNyc3OxZ88e5Obmejy705AZBrGKLlKdOjUW+Cr5XnVMOYqMjFRklkxu4LVt2zZcuHABBw4c8PlsndhrfOzYMad/bdy9r6QGHTjiT0REHhFIqKysFAAIlZWVvm6KbuXn5wsJCQlCfn6+r5uiGTm/8/nz54Xly5cLffr0EZYvXy6cP3/e6f6ioiIBgFBUVKTI8xmB0r+X7TW0fdV9LcVeY6l2SP1dGtpOb465fPlyISIiQli+fLnT7efPnxfatGkjABDatGnj8r7y1/cOERE1jDd9XI83L6PA5s8bkYmRu9ur4wyD4wh+3UW3dTeEMsKGaHIo/XvZUrveffddjB071uNUILF2yN3gSw1iOwLb1nosXbq03rUe/vreISIi7TB9iDwSiOlPUnnaUsReKzUW3cpto5FJpXZJlXYVe620XlQul9RaDyIiogbTYOZC97RIH+L0vvEkJCQIQUFBQkJCgiLHc5daJIfSbTQKsc+TY2rRzTff7HSf2Gt1/vx5oUePHoLJZBJ69OihyN/FsS1KpSTxHEJERN5i+pAOBWL6jdHZRvqVmh0xm82i6SFyKd1Go9i9eze2b9+O3bt3O32ebKVdd+/e7VLaVey1MpvNCA0NhclkQmhoqM8XIYthihAREalKgyBF9zhTQN6S+nvyb62+iIgIAYAQERHhcp+c11/pv9n58+eFpKQkAYCQlJSk2OwDERGRNzhToEMc5fMvUjM/nBVSX0pKCtLS0uotP6uHz5rFYsGqVasAAKtWrcKUKVPQq1cvn7aJiIhICoMCIhmk0nYCNaVHS0qnYSkdyEVHRyMxMRGffPIJHnroIZ9vlkZEROQOgwIiGaRGo6XuKygoQEZGBmbMmOHz0Wz6gxrrR6qrq9GoUSNUV1frdp0CERGRDYMCIg0xtUh9cgIvNVKOOGNERERGwqCASEPsKKpPL4GXHtY2EBEReYpBAZGG2FFUHwMvIiIi73FHYyIRauwWHIg7EGstLi4O69atY/BFRETkBQYFRCJsaSgZGRlePU6q4y/3mERERERqYvoQkQi5aShSOe1MbSEiIiI9MgmCIPi6Eb5WVVWF0NBQVFZWokWLFr5uDhkcy44SERGRHnjTx2VQAAYFREREROR/vOnjck0BEREREVGAY1BARERERBTgGBQQEREREQU4BgVERERERAGOQQERERERUYBjUEBEREREFOAYFBARERERBTgGBUREREREAY5BARERERFRgGNQQEREREQU4BgUEBEREREFOAYFREREREQBTtdBQWpqKkwmk9NXeHi4/X5BEJCamorIyEgEBwdj0KBB+Omnn3zYYiIiIiIi49F1UAAAt956K8rKyuxfe/bssd+3YMECLFq0CEuXLsWOHTsQHh6O+Ph4nD171octJiIiIiIyFt0HBddccw3Cw8PtX9dddx2Aq7MEixcvxqxZszBy5Eh069YNq1evhtVqRVZWlo9bTURERERkHLoPCkpLSxEZGYkOHTogMTERBw4cAAAcPHgQ5eXlGDJkiP1ng4KCMHDgQGzdulXymNXV1aiqqnL6IiIiIiIKVLoOCvr164f3338fGzduxNtvv43y8nL0798fFRUVKC8vBwCEhYU5PSYsLMx+n5j58+cjNDTU/hUVFaXa70BEREREpHe6DgruvfdePPTQQ+jevTsGDx6ML7/8EgCwevVq+8+YTCanxwiC4HJbXTNnzkRlZaX96+jRo8o3noiIiIjIIHQdFNTVvHlzdO/eHaWlpfYqRHVnBU6ePOkye1BXUFAQWrRo4fRFRERERBSoDBUUVFdXY+/evYiIiECHDh0QHh6O3Nxc+/2XLl1CXl4e+vfv78NWEhEREREZyzW+boCUp59+Gg888ABuuukmnDx5EvPmzUNVVRUee+wxmEwmTJs2Denp6ejcuTM6d+6M9PR0mM1mjBo1ytdNJyIiIiIyDF0HBceOHcNf//pX/P7777juuutw++23Y/v27WjXrh0A4Nlnn8WFCxcwadIknD59Gv369cOmTZsQEhLi45YTERERERmHSRAEwdeN8LWqqiqEhoaisrKS6wuIiIiIyC9408c11JoCIiIiIiJSHoMCIiIiIqIAx6CAiIiIiCjAMSggIiIiIgpwDAqIiIiIiAIcgwIiIiIiogDHoICIiIiIKMAxKCAiIiIiCnAMCoiIiIiIAhyDAiIiIiKiAMeggIiIiIgowDEoICIiIiIKcAwKiIiIiIgCHIMCIiIiIqIAx6CAiIiIiCjAMSggIiIiIgpwDAqIiIiIiAIcgwIiIiIiogDHoICIiIiIKMAxKCAiIiIiCnAMCoiIiIiIAhyDAiIiIiKiAMeggIiIiIgowDEoICIiIiIKcAwKiIiIiIgCHIMCIiIiIqIAx6CAiIiIiCjAMSggIiIiIgpwDAqIiIiIiAIcgwIiIiIiogDHoICIiIiIKMAxKCAiIiIiCnAMCoiIiIiIAhyDAiIiIiKiAMeggIiIiIgowDEoICIiIiIKcAwKiIiIiIgCnKGCgvnz58NkMmHatGn22wRBQGpqKiIjIxEcHIxBgwbhp59+8l0jiYiIiIgMxjBBwY4dO/DWW28hJibG6fYFCxZg0aJFWLp0KXbs2IHw8HDEx8fj7NmzPmopEREREZGxGCIoOHfuHEaPHo23334brVq1st8uCAIWL16MWbNmYeTIkejWrRtWr14Nq9WKrKwsH7aYiIiIiMg4rvF1AzwxefJk3HfffRg8eDDmzZtnv/3gwYMoLy/HkCFD7LcFBQVh4MCB2Lp1KyZMmFDv8aqrq1FdXW3/vrKyEgBQVVWl0m9ARERERKQtW99WEAS3P6v7oCA7Oxs7d+7Ejh07XO4rLy8HAISFhTndHhYWhsOHD4sec/78+ZgzZ47L7VFRUQ1sLRERERGRvpw9exahoaGSP6ProODo0aN48sknsWnTJjRr1kz050wmk9P3giC43OZo5syZmD59uv372tpanDp1Cm3atJF8XCCrqqpCVFQUjh49ihYtWvi6OUQBi59FIn3gZ5GMQBAEnD17FpGRkW5/VtdBQVFREU6ePInevXvbb7ty5Qq2bNmCpUuX4ueffwZwdcYgIiLC/jMnT550mT1wFBQUhKCgIKfbWrZsqWzj/VSLFi148iPSAX4WifSBn0XSO3czBDa6Xmh8zz33YM+ePSguLrZ/9enTB6NHj0ZxcTE6duyI8PBw5Obm2h9z6dIl5OXloX///j5sORERERGRceh6piAkJATdunVzuq158+Zo06aN/fZp06YhPT0dnTt3RufOnZGeng6z2YxRo0b5oslERERERIaj66DAE88++ywuXLiASZMm4fTp0+jXrx82bdqEkJAQXzfNrwQFBeHFF190SbsiIm3xs0ikD/wskr8xCZ7UKCIiIiIiIr+l6zUFRERERESkPgYFREREREQBjkEBEREREVGAY1BARERERBTgGBSQqPnz56Nv374ICQnB9ddfjxEjRtg3jCMi7WRmZiImJsa+SdIdd9yBr776ytfNIgp48+fPh8lkwrRp03zdFKIGY1BAovLy8jB58mRs374dubm5uHz5MoYMGYLz58/7umlEAeXGG2/Eyy+/jMLCQhQWFuLuu+/G8OHD8dNPP/m6aUQBa8eOHXjrrbcQExPj66YQKYIlScljv/32G66//nrk5eVhwIABvm4OUUBr3bo1Xn31VYwbN87XTSEKOOfOnUOvXr2wfPlyzJs3D7GxsVi8eLGvm0XUIJwpII9VVlYCuNoZISLfuHLlCrKzs3H+/Hnccccdvm4OUUCaPHky7rvvPgwePNjXTSFSjOF3NCZtCIKA6dOn484770S3bt183RyigLNnzx7ccccduHjxIq699lrk5OTglltu8XWziAJOdnY2du7ciR07dvi6KUSKYlBAHnniiSewe/du5Ofn+7opRAHp5ptvRnFxMc6cOYNPPvkEjz32GPLy8hgYEGno6NGjePLJJ7Fp0yY0a9bM180hUhTXFJBbU6ZMwfr167FlyxZ06NDB180hIgCDBw/Gn/70J6xYscLXTSEKGOvXr0dCQgIaN25sv+3KlSswmUxo1KgRqqurne4jMhLOFJAoQRAwZcoU5OTkYPPmzQwIiHREEARUV1f7uhlEAeWee+7Bnj17nG57/PHHER0djeeee44BARkagwISNXnyZGRlZeHTTz9FSEgIysvLAQChoaEIDg72ceuIAkdycjLuvfdeREVF4ezZs8jOzsbmzZvx9ddf+7ppRAElJCTEZV1d8+bN0aZNG663I8NjUECiMjMzAQCDBg1yuv29995DUlKS9g0iClAnTpzAo48+irKyMoSGhiImJgZff/014uPjfd00IiLyE1xTQEREREQU4LhPARERERFRgGNQQEREREQU4BgUEBEREREFOAYFREREREQBjkEBEREREVGAY1BARERERBTgGBQQEREREQU4BgVERERERAGOQQERkQYGDRqEadOmqXLsAQMGICsrS5Vj+5s9e/bgxhtvxPnz5yV/LjU1FSaTCSaTCYsXL1a0DYcOHbIfOzY2VtFjExHJxaCAiMjAvvjiC5SXlyMxMdF+W/v27e2dTtvXjTfe6MNW6kf37t1x22234bXXXnP7s7feeivKysrw97//3X5b+/bt6w0SUlNTPe7gR0VFoaysDDNmzPC02UREqmNQQERkYG+88QYef/xxNGrkfDqfO3cuysrK7F+7du2q9/E1NTVaNFNXHn/8cWRmZuLKlSuSP3fNNdcgPDwcZrNZ0edv3LgxwsPDce211yp6XCKihmBQQETkA6dPn8bf/vY3tGrVCmazGffeey9KS0udfubtt99GVFQUzGYzEhISsGjRIrRs2dJ+/++//45vvvkGDz74oMvxQ0JCEB4ebv+67rrrAAAmkwlvvvkmhg8fjubNm2PevHkAgM8//xy9e/dGs2bN0LFjR8yZMweXL1+2H6+0tBQDBgxAs2bNcMsttyA3Nxcmkwnr168HAGzevBkmkwlnzpyxP6a4uBgmkwmHDh2y37Z161YMGDAAwcHBiIqKwtSpU51Sedq3b4/09HSMHTsWISEhuOmmm/DWW285/W7Hjh1DYmIiWrdujebNm6NPnz744YcfcOjQITRq1AiFhYVOP79kyRK0a9cOgiAAAIYOHYqKigrk5eW5+SvJV3emxmQyoX379qo9HxFRQzEoICLygaSkJBQWFuKzzz7Dtm3bIAgChg0bZh+5LygowD/+8Q88+eSTKC4uRnx8PF566SWnY+Tn58NsNqNr165ePfeLL76I4cOHY8+ePRg7diw2btyIMWPGYOrUqfjvf/+LFStWYNWqVfbnq62txciRI9G4cWNs374db775Jp577jmvf+c9e/Zg6NChGDlyJHbv3o2PPvoI+fn5eOKJJ5x+LiMjA3369MGuXbswadIkTJw4ERaLBQBw7tw5DBw4EMePH8dnn32GkpISPPvss6itrUX79u0xePBgvPfee07He++995CUlASTyQQAaNq0KXr06IHvv//e69/BU46zNPv370enTp0wYMAA1Z6PiKjBBCIiUt3AgQOFJ598UhAEQdi3b58AQCgoKLDf//vvvwvBwcHCP//5T0EQBOF///d/hfvuu8/pGKNHjxZCQ0Pt37/22mtCx44dXZ6rXbt2QtOmTYXmzZvbv15//XVBEAQBgDBt2jSnn/+f//kfIT093em2Dz74QIiIiBAEQRA2btwoNG7cWDh69Kj9/q+++koAIOTk5AiCIAjfffedAEA4ffq0/Wd27dolABAOHjwoCIIgPProo8Lf//53p+f5/vvvhUaNGgkXLlywt33MmDH2+2tra4Xrr79eyMzMFARBEFasWCGEhIQIFRUVLr+3IAjCRx99JLRq1Uq4ePGiIAiCUFxcLJhMJnsbbBISEoSkpKR6jyEIgvDiiy8KPXr0cLm9vte2efPmQpMmTer9+draWiEhIUHo3bu3YLVaPXoOIiJfuManEQkRUQDau3cvrrnmGvTr189+W5s2bXDzzTdj7969AICff/4ZCQkJTo+77bbb8MUXX9i/v3DhApo1a1bvczzzzDNISkqyf9+2bVv7//v06eP0s0VFRdixY4fTTMSVK1dw8eJFWK1W7N27FzfddJPTYuU77rjDi9/4j+fZv38/PvzwQ/ttgiCgtrYWBw8etM94xMTE2O83mUwIDw/HyZMnAVxNSerZsydat25d73OMGDECTzzxBHJycpCYmIh3330Xd911l0vqTnBwMKxWq9e/A+D62gJX13Zs2bLF5WeTk5Oxbds27NixA8HBwbKej4hICwwKiIg0Jvxfbnt9t9tSXBz/L/a4tm3b4vTp0/Ueq23btujUqVO99zVv3tzp+9raWsyZMwcjR450+dlmzZrV2966bbMtdHb82bqLmGtrazFhwgRMnTrV5Xg33XST/f9NmjRxea7a2loAcNuxbtq0KR599FG89957GDlyJLKysuqtFnTq1Cn86U9/kjyWmPpe2/qClDVr1uC1117D5s2bWf2JiHSPQQERkcZuueUWXL58GT/88AP69+8PAKioqMC+ffvso+XR0dH4z3/+4/S4ugtoe/bsifLycpw+fRqtWrWS3Z5evXrh559/Fg0ibrnlFhw5cgTHjx9HZGQkAGDbtm1OP2NbyFxWVmZvS3Fxscvz/PTTT6LP44mYmBi88847OHXqlOhswfjx49GtWzcsX74cNTU19QY7P/74Ix5++GHZ7XBn27ZtGD9+PFasWIHbb79dtechIlIKFxoTEWmsc+fOGD58OP7f//t/yM/PR0lJCcaMGYMbbrgBw4cPBwBMmTIFGzZswKJFi1BaWooVK1bgq6++chqh79mzJ6677joUFBQ0qD2zZ8/G+++/j9TUVPz000/Yu3cvPvroI7zwwgsAgMGDB+Pmm2/G3/72N5SUlOD777/HrFmznI7RqVMnREVFITU1Ffv27cOXX36JjIwMp5957rnnsG3bNkyePBnFxcUoLS3FZ599hilTpnjc1r/+9a8IDw/HiBEjUFBQgAMHDuCTTz5xClK6du2K22+/Hc899xz++te/uswuHDp0CL/++isGDx7s7UvlkfLyciQkJCAxMRFDhw5FeXk5ysvL8dtvv6nyfERESmBQQETkA++99x569+6N+++/H3fccQcEQcCGDRvsqTNxcXF48803sWjRIvTo0QNff/01nnrqKac1BI0bN8bYsWOdcvTlGDp0KL744gvk5uaib9++uP3227Fo0SK0a9cOwNXUoJycHFRXV+O2227D+PHjXSohNWnSBGvXroXFYkGPHj3wyiuv2Mud2sTExCAvLw+lpaX4n//5H/Ts2RMpKSmIiIjwuK1NmzbFpk2bcP3112PYsGHo3r07Xn75ZTRu3Njp58aNG4dLly5h7NixLsdYu3YthgwZYv/9lGaxWHDixAmsXr0aERER9q++ffuq8nxEREowCWLJrUREpCv/7//9P1gsFqdSmidOnMCtt96KoqIi1Tq5YkwmE3JycjBixAhNn9cTL730ErKzs7Fnzx6n26urq9G5c2esXbsWcXFxoo9PTU3F+vXrXVKglKTFcxAReYozBUREOrVw4UKUlJRg//79WLJkCVavXo3HHnvM6WfCwsKwcuVKHDlyxEet1Jdz585hx44dWLJkSb0Lmg8fPoxZs2ZJBgQ2e/bswbXXXovly5cr2sYjR47g2muvRXp6uqLHJSJqCM4UEBHp1COPPILNmzfj7Nmz6NixI6ZMmYJ//OMfvm6WnR5nCpKSkrB27VqMGDECWVlZLmlFnjp16hROnToF4Ooi6tDQUMXaePnyZfsuz0FBQYiKilLs2EREcjEoICIiIiIKcEwfIiIiIiIKcAwKiIiIiIgCHIMCIiIiIqIAx6CAiIiIiCjAMSggIiIiIgpwDAqIiIiIiAIcgwIiIiIiogDHoICIiIiIKMD9f54ypQgUvNyvAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAGbCAYAAACIxMC9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7+ElEQVR4nOzdeXiU9dXw8e9M9sm+L2QjbAmLQIKggKJVQLGKYmut0kerba0+rbVS24oFERRbW9S62/exxUpdWsW1qGAVKAFUEnYSCGTf93UmM5OZ+/0jZCRAYGYye87nuriSWe8zZJJ7zm85R6UoioIQQgghhBBCCCG8htrdAQghhBBCCCGEEMI2kswLIYQQQgghhBBeRpJ5IYQQQgghhBDCy0gyL4QQQgghhBBCeBlJ5oUQQgghhBBCCC8jybwQQgghhBBCCOFlJJkXQgghhBBCCCG8jCTzQgghhBBCCCGEl5FkXgghhBBCCCGE8DKSzAshhBBCCCGEEF7Grcn89u3bufbaa0lJSUGlUvHee+9ZbjMajfzmN79hypQphIaGkpKSwv/8z/9QW1s76Dn0ej0///nPiYuLIzQ0lOuuu47q6moXvxIhhBBiZJNzuhBCCOFabk3me3p6mDp1Ks8999wZt2m1WgoLC1mxYgWFhYVs3LiRY8eOcd111w2633333ce7777Lm2++yY4dO+ju7ubb3/42JpPJVS9DCCGEGPHknC6EEEK4lkpRFMXdQQCoVCreffddrr/++iHv8/XXXzNz5kwqKipIT0+no6OD+Ph4XnvtNb73ve8BUFtbS1paGps2bWLhwoUuil4IIYQQA+ScLoQQQjifv7sDsEVHRwcqlYqoqCgACgoKMBqNLFiwwHKflJQUJk+ezM6dO4c88ev1evR6veWy2WymtbWV2NhYVCqVU1+DEEII4QyKotDV1UVKSgpqteeXxJFzuhBCCHF21p7TvSaZ7+3t5be//S233HILERERANTX1xMYGEh0dPSg+yYmJlJfXz/kcz3++OM88sgjTo1XCCGEcIeqqipSU1PdHcY5yTldCCGEOL/zndO9Ipk3Go3cfPPNmM1mXnjhhfPeX1GUc47GP/jgg9x///2Wyx0dHaSnp1NWVkZ4eLhDYnYmo9HIF198weWXX05AQIC7wxFeSt5HYrjkPeRZurq6GD16tMefx1x1Tq+qqrIMFAghhBDepLOzk7S0tPOe0z0+mTcajdx0002UlZXx+eefDzoxJyUlYTAYaGtrGzSS39jYyOzZs4d8zqCgIIKCgs64PiYmxitO/EajEY1GQ2xsrHyAFnaT95EYLnkPeZaBn4EnLy135Tk9IiLCK87pQgghxFDOd0736E11Ayf9kpISPvvsM2JjYwfdnpeXR0BAAFu2bLFcV1dXx6FDh8554hdCCCGEa8k5XQghhHAst87Md3d3c/z4ccvlsrIy9u3bR0xMDCkpKXznO9+hsLCQjz76CJPJZNkzFxMTQ2BgIJGRkdx5550sW7aM2NhYYmJi+NWvfsWUKVO48sor3fWyhBBCiBFHzulCCCGEa7k1md+zZw+XX3655fLAnrfbbruNVatW8cEHHwAwbdq0QY/74osvuOyyywB46qmn8Pf356abbkKn03HFFVewfv16/Pz8XPIahBBCCCHndCGEEMLV3JrMX3bZZZyrzf25bhsQHBzMs88+y7PPPuvI0IQQwueYTCaMRqPDns9oNOLv709vby8mk8lhzyvOLiAgwKOTWjmnCyGEEK7l8QXwhBBCDI+iKNTX19Pe3u7w501KSqKqqsqji675kqioKJKSkuT/WwghhBCSzAshhK8bSOQTEhLQaDQOSwTNZjPd3d2EhYWhVnt0PVWvpygKWq2WxsZGAJKTk90ckRBCCCHcTZJ5IYTwYSaTyZLIn149fLjMZjMGg4Hg4GBJ5l0gJCQE6G/VlpCQ4NFL7oUQQgjhfPLpSwghfNjAHnmNRuPmSIQjDPwcHVn7QAghhBDeSZJ5IYQYAWSPtW+Qn6MQQgghBkgyL4QQQgghhBBCeBlJ5oUQQoxIW7duRaVSWar8r1+/nqioKLfGJIQQQghhLUnmhRBCeKTbb78dlUrFT3/60zNuu+eee1CpVNx+++0OO973vvc9jh075rDnE0IIIYRwJknmhRBCeKy0tDTefPNNdDqd5bre3l7eeOMN0tPTHXqskJAQEhISHPqcQgghhBDOIsm8EEKMMIqioDX0OeSfzmCy+r6Kotgca25uLunp6WzcuNFy3caNG0lLS2P69OmDXtMTTzxBVlYWISEhTJ06lbfffnvQc23atInx48cTEhLC5ZdfTnl5+aDbT19mf+LECRYvXkxiYiJhYWFceOGFfPbZZ4Mek5mZydq1a7njjjsIDw8nPT2dv/zlLza/TiGEEEIIW0mfeSGEGGF0RhMTV37q8uMeWb0QTaDtp50f/vCH/O1vf+PWW28F4K9//St33HEHW7dutdznd7/7HRs3buTFF19k3LhxbN++naVLlxIfH8+8efOoqqpiyZIl/PSnP+Xuu+9mz549LFu27JzH7e7uZtGiRTz66KMEBwfz6quvcu2113L06NFBqwLWrVvHmjVrWL58OW+//TZ33303l156KdnZ2Ta/ViGEcLX8/HzWrVvHsmXLmDNnjrvDEULYQGbmhRBCeLQf/OAH7Nixg/LycioqKsjPz2fp0qWW23t6enjyySf561//ysKFC8nKyuL2229n6dKlvPzyywC8+OKLZGVl8dRTTzFhwgRuvfXW8+63nzp1KnfddRdTpkxh3LhxPProo2RlZfHBBx8Mut+iRYu45557GDt2LL/5zW+Ii4sbNNAghBCebN26dWzatIl169a55Hj5+fksWbKE/Px8lxxPCF8mM/NCCDHChAT4cWT1wmE/j9lspquzi/CIcNTq848NhwT42XWcuLg4rrnmGl599VUUReGaa64hLi7OcvuRI0fo7e1l/vz5gx5nMBgsS/GLioq46KKLBvVpv/jii8953J6eHh555BE++ugjamtr6evrQ6fTUVlZOeh+F1xwgeV7lUpFUlISjY2Ndr1WIYRwtfnz57N79+4z/oY6y8DgASArAYQYJknmhRBihFGpVHYtdz+d2WymL9APTaC/Vcn8cNxxxx387Gc/A+D5558/Iw6Af//734waNWrQbUFBQQB27dd/4IEH+PTTT/nTn/7E2LFjCQkJ4Tvf+Q4Gg2HQ/QICAgZdVqlUlpiEEMLTbdmyhdbWVrZs2cLdd9/t9OO5evBACF8mybwQQgiPd9VVV1mS6IULB68qmDhxIkFBQVRWVjJv3ryzPn7ixIm89957g67bvXv3OY/53//+l9tvv50bbrgB6N9Df3rRPCGE8HYD9UPOV0fEUVw9eCCEL5NkXgghhMfz8/OjqKjI8v2pwsPD+dWvfsUvf/lLzGYzc+fOpbOzk507dxIWFsZtt93GT3/6U9atW8f999/PXXfdRUFBAevXrz/nMceOHcvGjRu59tprUalUrFixQmbchRBimFw9eCCEL5NkXgghhFeIiIgY8rY1a9aQkJDA448/TmlpKVFRUeTm5rJ8+XIA0tPTeeedd/jlL3/JCy+8wMyZMy0t5Yby1FNPcccddzB79mzi4uL4zW9+Q2dnp8NflxBCuJOr97DPmTNH9soL4SAqxZ6NhD6ms7OTyMhIOjo6zvlh0VMYjUY2bdrEokWLztirKYS15H00MvT29lJWVsbo0aMJDg526HObzWY6OzuJiIhw+p550e9cP09vO5c5i/w/CGEbaU0nhOex9lwmn76EEEIIIYQYoebMmcPGjRtdlsgPpzWdtLUTYjBZZi+EEEIIIYSXs2eGXavVsnfvXsrLy8nMzGT69OloNBqnxjmcZf3Lly9nx44dtLS0sG3bNmeEJ4RXkWReCCGEEEIIL2dPklxcXMzcuXMtlwsKCsjNzXVKfAOkAJ4QjiPL7IUQQgghhPByy5YtY9GiRTYlydnZ2WzYsAGADRs2kJ2d7azwLIazrH/t2rUsXryYtWvX2vQ4WZ4vfJXMzAshhBBCCOHl7KkSr9FoyMnJASAnJ8fpS+xPX9YfEhJCdna21ce1txK+qyv2C+EqkswLIYQQQgghnO70Zf3gmqX9WVlZg74K4Stkmb0QQgghhBDC6U5f1l9QUGDT0n57l8u//vrr6PV6Xn/9dZseJ4Snk2ReCCGEEEII4XSnL+vPzc21aom9VqulsLCQ5cuX89FHH7F8+XK0Wq3Vx12xYgXJycmsWLHCpnhlr73wdJLMCyGEEEIIIWziykS3uLiYvLw8tm/fjtFoZPv27RQXF1v9+Lvvvpva2lruvvtum477v//7v7z77rv87//+r60hC+ESkswLIYQQdtq6dSsqlYr29nYA1q9fT1RUlFtjEkIIVxgoKrdu3TqnHys7O5uCggKXV96vrq4e9FUITyMF8IQQYoR6asuxYT1eURT0ej1BQUGoVKpz3veX88fbdYyqqipWrVrFxx9/THNzM8nJyVx//fWsXLmS2NhYu57TXpdddhnTpk3j6aeftlw3e/Zs6urqiIyMdGksQgjbvPjii6xZs4YVK1bYPDvrLfLz81m3bh3Lli1zScX2+fPns3v3bubPn+/0Y2k0mkFF8lxVef/222/nlVde4fbbb0er1Tr9mELYSmbmhRBCeKTS0lJmzJjBsWPHeOONNzh+/DgvvfQS//nPf7j44otpbW11d4gEBgaSlJR03sEMIYR7rVmzhrq6OtasWePuUJxm+fLlvP/++yxfvtwlx9uyZQutra1s2bLFJcdzteLiYtatW0d7ezvr1q2zaVm/EK4iybwQQgiP9L//+78EBgayefNm5s2bR3p6OldffTWfffYZNTU1PPTQQwCoVCree++9QY+Niopi/fr1lsu/+c1vGD9+PBqNhqysLFasWIHRaLTcvmrVKqZNm8Zrr71GZmYmkZGR3HzzzXR1dQFw++23s23bNv785z+jUqlQqVSUl5efscz+bD788EPy8vIIDg4mKyuLRx55hL6+vkHHTk9PJygoiJSUFO69997h/+cJ4QLeVBzslltuISgoiFtuucXdofiMZcuWsWjRIpYtW+buUJzi9Mr7rljWL4StZJm9EEIIj9Pa2sqnn37KY489RkhIyKDbkpKSuPXWW3nrrbd44YUXrHq+8PBw1q9fT0pKCgcPHuTHP/4x4eHh/PrXv7bc58SJE7z33nt89NFHtLW1cdNNN/H73/+exx57jD//+c8cO3aMyZMns3r1agDi4+MpLy8/53E//fRTli5dyjPPPMMll1zCiRMn+MlPfgLAww8/zNtvv81TTz3Fm2++yaRJk6ivr2f//v02/E8J4T7Lly9nx44dtLS0sG3bNneHc06lpaWDvvqitWvXWpbZu8KcOXNcspzfXU6vvC9L7IUnkmReCCGExykpKUFRFMsHqdPl5OTQ1tZGU1OTVc/3u9/9zvJ9ZmYmy5Yt46233hqUzJvNZtavX094eDgAP/jBD/jPf/7DY489RmRkJIGBgWg0GpKSkqx+HY899hi//e1vue222wDIyspizZo1/PrXv+bhhx+msrKSpKQkrrzySgICAkhPT2fmzJlWP78QwjoDCa6vziKD7yfXI4Gr6x4I7yfJvBBCCK+jKArQv2fdGm+//TZPP/00x48fp7u7m76+PiIiIgbdJzMz05LIAyQnJ9PY2DisOAsKCvj666957LHHLNeZTCZ6e3vRarV897vf5emnnyYrK4urrrqKRYsWce211+LvL6dn4fluvvlmSkpKuPnmm90dynlJoutYWq2WV199lb/+9a/ccccdzJo1i+zsbI+bvdZqtRQXF6PT6SgvLyczM5Pp06d7XJwDBjoEAPJ+FVaRPfNCCCE8ztixY1GpVBw5cuSstxcXFxMfH09UVBQqlcqS3A84dT/87t27ufnmm7n66qv56KOP2Lt3Lw899BAGg2HQYwICAgZdVqlUmM3mYb0Os9nMI488wr59+yz/Dh48SElJCcHBwaSlpXH06FGef/55QkJCuOeee7j00ksHxS+Ep/KWAmharZb8/Hz+8Y9/kJ+fj1ardXdIXq+4uJh77rmHPXv2cM8995CXl+eRBeIG+tPPnTuXpUuXMnfuXI+ME/rfp0FBQZjNZoKCgigsLJT3qjgvSeaFEEJ4nNjYWObPn88LL7yATqcbdFt9fT3/+Mc/uP3224H+vet1dXWW20tKSgZ9AMrPzycjI4OHHnqIGTNmMG7cOCoqKmyOKTAwEJPJZNNjcnNzOXr0KGPHjj3jn1rdfwoOCQnhuuuu45lnnmHr1q3s2rWLgwcP2hyfEK7mLQXQiouLvSKZs5dWq6WwsNClAxbZ2dmsXLkSgJUrV1JQUOCRBeLc1Z/enuKQxcXFvPnmmxiNRt58802PHSARnkWSeSGEEB7pueeeQ6/Xs3DhQrZv305VVRWffPIJ8+fPZ/z48ZYPkt/61rd47rnnKCwsZM+ePfz0pz8dNMs+duxYKisrefPNNzlx4gTPPPMM7777rs3xZGZm8uWXX1JeXk5zc7NVs/YrV67k73//O6tWreLw4cMUFRXx1ltvWfbwr1+/nldeeYVDhw5RWlrKa6+9RkhICBkZGTbHJ4QrDSSLN954I4BHzyL6elVyd8w+azQaFi9eDMDixYvJzc31yKXrA/3pXV3IbmC5/Lp166x+THZ2tmWQ+vbbb/fYARLhWdy6KW/79u388Y9/pKCggLq6Ot59912uv/56y+0bN27k5ZdfpqCggJaWFvbu3cu0adMGPYder+dXv/oVb7zxBjqdjiuuuIIXXniB1NRU174YIYTwMr+cP35YjzebzXR2dhIREWGZZXakcePG8fXXX7Nq1SpuuukmGhsbURSFJUuW8Nprr1k+kK1bt44f/vCHXHrppaSkpPDnP/+ZgoICy/MsXryYX/7yl/zsZz9Dr9dzzTXXsGLFClatWmVTPL/61a+47bbbmDhxIjqdjrKysvM+ZuHChXz00UesXr2aJ554goCAALKzs/nRj34E9LfQ+/3vf8/999+PyWRiypQpfPjhh8TGxtoUmyeQc/rIMjDbfaqCggJyc3PdFNHQfL0q+cDsc1FREUuXLvXJAQtvY0/BRY1Gw89//nPWr1/Pz3/+c4/8XRKex60z8z09PUydOpXnnntuyNvnzJnD73//+yGf47777uPdd9/lzTffZMeOHXR3d/Ptb3/b5qWQQgghPE9mZibr16+nvr4es9nMypUr2bx586D2bSkpKXz66ad0d3dz7Ngxrr76atrb2y0zHABPPPEEzc3NdHV18eabb3LfffcN6g2/atUq9u3bN+jY991336DWc+PHj2fXrl1otVoURSEzM5PLLrsMRVGIiooC+mdTTu85v3DhQsuy146ODr788kt+/OMfA3D99deze/duOjo66O7uZteuXVxxxRWO+K9zOTmnjyynz3bLLKL7uGv2WQjhfm6dmb/66qu5+uqrh7z9Bz/4AcCQfXw7Ojp45ZVXeO2117jyyiuB/hNKWloan332GQsXLnR4zEIIIdznkUcesSx3nzVrllNWBAj7yDl9ZDl9tltmEYX4xvLly9mxYwctLS1s27bNJceUtnYjk1f3vikoKMBoNLJgwQLLdSkpKUyePJmdO3cOeeLX6/Xo9XrL5c7OTqC/+rE3VBAeiNEbYhWeS95HI4PRaERRFMxm87Ars59uoIL8wPO7ykDPdsClx/UEZrMZRVEwGo34+fkNus3bf5cdfU4XQoiRxB0DCML9vDqZr6+vJzAwkOjo6EHXJyYmUl9fP+TjHn/8cR555JEzrt+8ebNXLUvy9FYwwjvI+8i3+fv7k5SURHd39xmt2Bylq6vLKc8rzmQwGNDpdGzfvp2+vr5Bt3lq8TFrOfqcLoQQ7qDVarn55pstXwsLC8nOznZ6jtHR0YHZbKajo8OpxxkgKwE8g1cn80NRFAWVSjXk7Q8++CD333+/5XJnZydpaWksWLCAiIgIV4Q4LEajkS1btjB//vwz+iILYS15H40Mvb29VFVVERYWRnBwsEOfW1EUurq6CA8PP+ffXOE4vb29hISEcOmll57x8/TVGWl7z+lCCOEOxcXF3HPPPQDs2bMHcG5xSK1Wa+leMPC3UqvVOn3wYKBiPyDJvBt5dTKflJSEwWCgra1t0Eh+Y2Mjs2fPHvJxQUFBBAUFnXF9QECAVyU13hav8EzyPvJtJpMJlUqFSqVy+P7ygSXuznhucXYDP8uz/d56+++xo8/pQgjhDgPFIQc6C+Tk5Di1OORAa8IB+/fvp7i42OrBA3tn2O2p2C8cz6s/feXl5REQEDBomXBdXR2HDh0654lfCCFGioEEz9uXYIt+Az9Hb0/cz0bO6UIIX3C24pDOnCUfaE14ancJWwYPli9fzvvvv8/y5cttOu6cOXPYuHGjzMq7mVtn5ru7uzl+/LjlcllZGfv27SMmJob09HRaW1uprKyktrYWgKNHjwL9o/dJSUlERkZy5513smzZMmJjY4mJieFXv/oVU6ZMsVTCFUKIkczPz4+oqCgaGxuB/g8ZjloSbzabMRgM9Pb2ysy8kymKglarpbGxkaioqDOK33kCOacLIYTrDbQmHGBra0LZa+/d3JrM79mzh8svv9xyeWDP22233cb69ev54IMP+OEPf2i5/eabbwbg4YcfZtWqVQA89dRT+Pv7c9NNN6HT6bjiiitYv369R37QEUIId0hKSgKwJPSOoigKOp2OkJAQ2TPvIlFRUZafp6eRc7oQQnifyMhI1Go1kZGRLjmeVN13LLcm85dddpmltdHZ3H777dx+++3nfI7g4GCeffZZnn32WQdHJ4QQvkGlUpGcnExCQoJD25cZjUa2b9/OpZde6pPLvj1NQECARye1ck4XvkhmEYWvGiicd2rlfVsK58nvhmfw6gJ4QgghrOfn5+fQZNDPz4++vj6Cg4MlmRdC+CR7K3ZLoiM83emF8/bs2cOsWbOsLpxn7wz72rVrLb8bYvhkk6MQQgghhBBnMX/+fGJiYpg/f75Nj7O3qBj0DwQsWbKE/Px8mx8rhLWGWzjPXlI4z7EkmRdCCCGEEOIstmzZQmtr66AuC9YYTlGxgdUA69ats/mxQlhroHDeqZX3bSmct3btWhYvXszatWttOq4MVjmWLLMXQgghhBDiLOztpT2comLz589n9+7dNq8GEMJVBtqk3njjjZbL1gwEaLVali9fzq5du2hpaeGpp54iOzvbqa37fJ3MzAshhBBCCHEarVbLgQMHqKqq4sCBAxQWFlqSmPM97uabbyY3N5ebb77Z6scNsHc1gBCuUlxczNy5c1m6dClz586luLjY6sdt377dUkA3Ly/P6sfKjP7ZSTIvhBBCCCFcyhs+mBcXF3PPPfewZ88e7rnnHqsTD3sfN8DeffpCuEp2drZde+1Pf1xBQYHVj5XtJ2cnybwQQgghhHApb/hgnp2dzcqVKwFYuXKl1YnHcBIWkJl54fk0Go1de+1Pf1xubq7Vj122bBmLFi2SKvinkWReCCGEEEK4lL0fzF988UVSUlJ48cUXnRTZNzQaDYsXLwZg8eLFVicew0lYQJIWIYT1pACeEEIIIYRwqTlz5tjVmmrFihW0tLSwYsUK7r77bidE5j5ardayHN/WwmJC+LqB1TyAtLU7hSTzQgghhBDCpfLz81m3bh3Lli2z6YN5amoqLS0tpKamOjE69yguLiYvL2/QdQUFBeTm5ropIiE8h72dJXydLLMXQgghhBAutXz5ct5//32WL19u1f21Wi2FhYXcddddzJgxg7vuusumCvHeIDs7m4KCArsKiwkhRiaZmRdCCCGEEB7t9FnrPXv2MGvWLJ+atdZoNINejy2FxYTwdbLM/uysSuZjYmJselKVSkVhYSEZGRl2BSWEEEIIIXzPwL7wm2++2dKP3Zp94QOz1kVFRSxdulRmrYUYYWSZ/dlZlcy3t7fz9NNPExkZed77KorCPffcg8lkGnZwQgghhHCszs5Omx8TERHhhEjESGTvDLvMWgsxcg1sqRkoDFlYWEh2drb8DcCGZfY333wzCQkJVt335z//ud0BCSGEEMJ5oqKiUKlUVt9fpVJx7NgxsrKynBiVGClkhl0IYavi4mLmzp076DpbikPaW3DTG1iVzJvNZpuetKury65ghBBCCOF8b7/9tlVb6BRFYdGiRS6ISIwUMsMuhLBVdnY2GzZssAwA5uTk2DQIuHz5cnbs2EFLSwvbtm1zYqSuJwXwhBBCiBEkIyODSy+9lNjYWKvun5WVRUBAgJOjEkIIIc5Oo9GQk5MD9A8A+lLhy+GyO5k/cuQIlZWVGAyGQddfd911ww5KCCGEEM5RVlZm0/0PHTrkpEiEEEII51u7dq1lmb2vsTmZLy0t5YYbbuDgwYOoVCoURQGw7L+TwndCCCGEEEIIITzBnDlzfG6v/AC1rQ/4xS9+wejRo2loaECj0XD48GG2b9/OjBkz2Lp1qxNCFEIIIYSz9PT0sGnTJl566SWeeeaZQf+EEEIIb5efn8+SJUvIz893yeNcyeaZ+V27dvH5558THx+PWq1GrVYzd+5cHn/8ce6991727t3rjDiFEEII4WB79+5l0aJFaLVaenp6iImJobm5GY1GQ0JCAvfee6+7QxRCCCHsotVqKS4uZvny5ezatYuWlhY+/vhjq4turlu3jk2bNgF47My+zTPzJpOJsLAwAOLi4qitrQX6C+ocPXrUsdEJIYQQwml++ctfcu2119La2kpISAi7d++moqKCvLw8/vSnP7k7PCGEEMJuxcXF5OXlsX37doxGI9u3b6e4uNjqx8+fP5+YmBjmz5/vxCiHx+ZkfvLkyRw4cACAWbNm8cQTT5Cfn8/q1aulB60QQgjhRfbt28eyZcvw8/PDz88PvV5PWloaTzzxBMuXL3d3eEIIIYTdsrOzKSgoYMOGDQBs2LDBppZ2b775Jg0NDbz55pvOCnHYbF5m/7vf/Y6enh4AHn30Ub797W9zySWXEBsby1tvveXwAIUQQgjhHAEBAZYCtomJiVRWVpKTk0NkZCSVlZVujk4IIYSwn0ajGdTGLicnx+ol9t7C5mT+sssuo6+vD+jvPXvkyBFaW1uJjo62fCAQQgghhOebPn06e/bsYfz48Vx++eWsXLmS5uZmXnvtNaZMmeLu8IQQQgi38YaWdlYvs29ubuaaa64hLCyMiIgIZs+eTWlpKQAxMTGSyAshhBBeZu3atSQnJwOwZs0aYmNjufvuu2lsbOQvf/mLm6MTQggh3GfOnDls3LjRY4vfgQ0z8w8++CAFBQU88sgjBAcH89JLL3HXXXexZcsWZ8YnhBBCCCdQFIXIyEg0Gg19fX3Ex8dbqvYKIYQQI9VAFXydTkd5eTmZmZlMnz7dI5foW53Mf/rpp/z1r39l0aJFACxatIjJkydjNBoJCAhwWoBCCCGEcKzy8nIWL17MoUOHAEhLS2Pjxo2D9hYKIYQQI9FAFfxTFRQUeOQ50upl9rW1tUyfPt1yOTs7m8DAQEtrOiGEEEJ4h9/85jf09vby2muv8a9//Yvk5GR++tOfujssIYQQwu2GWwXflayemVcUBX//wXf39/fHbDY7PCghhBBCOM9///tf3njjDebNmwfAzJkzycjIQKfTERIS4ubohBBCCPfxpir4NiXzV1xxxaCEXqvVcu211xIYGGi5rrCw0LERCiGEEMKh6uvrB80ypKamEhISQkNDA5mZme4LTAghhBBWszqZf/jhh8+4bvHixQ4NRgghhBDOp1KpUKsH77RTq9UoiuKmiIQQQghhq2El80IIIYTwPoqiMH78+EFtZbu7u5k+ffqgJL+1tdUd4QkhhBDCClYn80IIIYTwDX/729/cHYIQQgjhk1588UXWrFnDihUruPvuu516LJuT+dGjRw8ayT9daWnpsAISQgghhHPddttt7g5BCCGE8Elr1qyhrq6ONWvWeF4yf9999w26bDQa2bt3L5988gkPPPCAo+ISQgghhBBCCCG8hlarZd68ebzzzjvMmzcPrVbr1Er4Nifzv/jFL856/fPPP8+ePXuGHZAQQgghXEOtVp9ztZ3JZHJhNEIIIYR3Ky4u5s033wTgzTff5IEHHhjU5s7RHLZn/uqrr+bBBx+UfXhCCCGEl3j33XcHXR5Ybffqq6/yyCOPuCkqIYQQwjtlZ2ezcuVKVq9ezcqVKwe1gXUG9fnvYp23336bmJgYmx6zfft2rr32WlJSUlCpVLz33nuDblcUhVWrVpGSkkJISAiXXXYZhw8fHnQfvV7Pz3/+c+Li4ggNDeW6666jurp6uC9HCCGE8HmLFy8e9O873/kOjz32GE888QQffPCBTc8l53QhhBAjnUajsbRvX7x4sVOX2IMdyfz06dPJzc21/Js+fTrJycksX76c5cuX2/RcPT09TJ06leeee+6stz/xxBM8+eSTPPfcc3z99dckJSUxf/58urq6LPe57777ePfdd3nzzTfZsWMH3d3dfPvb35algUIIIYSdZs2axWeffWbTY+ScLoQQQriWzcvsr7/++kGX1Wo18fHxXHbZZTYvI7j66qu5+uqrz3qboig8/fTTPPTQQyxZsgSAV199lcTERF5//XXuuusuOjo6eOWVV3jttde48sorAdiwYQNpaWl89tlnLFy48KzPrdfr0ev1lsudnZ1A//JCo9Fo02twh4EYvSFW4bnkfSSGS95DnsVRPwedTsezzz5LamqqTY/ztHO6EEII4etsTuYffvhhZ8RxhrKyMurr61mwYIHluqCgIObNm8fOnTu56667KCgowGg0DrpPSkoKkydPZufOnUOe+B9//PGz7gXcvHmz05dCONKWLVvcHYLwAfI+EsMl7yHPoNVqbX5MdHT0oAJ4iqLQ1dWFRqNhw4YNDovNHed0IYQQwtc5rACeo9XX1wOQmJg46PrExEQqKios9wkMDCQ6OvqM+ww8/mwefPBB7r//fsvlzs5O0tLSWLBgAREREY56CU5jNBrZsmUL8+fPJyAgwN3hCC8l7yMxXPIe8iz2zEg//fTTgy4PrLabNWvWGefW4XDHOV0IIYTwdR6bzA84vWWOoijnbKNjzX2CgoIICgo64/qAgACv+kDqbfEKzyTvIzFc8h7yDPb8DG677TYnRDI0V57ThRBCCF/nsGr2jpaUlARwxmh8Y2OjZWQ/KSkJg8FAW1vbkPcRQgghhHvJOV0IAVBSUkJRUREARUVFFBYWUlJS4uaohPBeHpvMjx49mqSkpEF7MQ0GA9u2bWP27NkA5OXlERAQMOg+dXV1HDp0yHIfIYT30xlMHKrpcHcYQgg7yTldCFFSUsL48eNZunQpAEuXLiUvL4/x48dLQi+Endy6zL67u5vjx49bLpeVlbFv3z5iYmJIT0/nvvvuY+3atYwbN45x48axdu1aNBoNt9xyCwCRkZHceeedLFu2jNjYWGJiYvjVr37FlClTLJVwhRDerddo4p3Capq69DR167lsfPx5l+UKIVxPzulCiHMZaEP5yiuvEBQURGZmJuXl5SxdunRQi0ohhPUclsyfOHGCH//4x3z++edWP2bPnj1cfvnllssDBWxuu+021q9fz69//Wt0Oh333HMPbW1tzJo1i82bNxMeHm55zFNPPYW/vz833XQTOp2OK664gvXr1+Pn5+eolyaEcBNDn5n39tbQ1NXfdmpfZTvdvX1cNTmJAD+PXVgkxIgk53QhhDWmTZtGbm4uACEhIW6ORgjv5rBkvru7m23bttn0mMsuuwxFUYa8XaVSsWrVKlatWjXkfYKDg3n22Wd59tlnbTq2EMKzGU1m3t9XQ11H76Drjzd2s7GwmuumjiIkUD7gC+Ep5JzuvfLz81m3bh3Lli1jzpw57g5HCCGElaxO5p955plz3l5TUzPsYIQQAsBkVvjoQC3Vbbqz3l7b3subX1dyw/RRRGkCXRydEL6vqKiIa665htLSUneHIlzgf//3f9m/fz+lpaXs27fP3eEIIYSwktXJ/H333UdycjKBgWf/4GwwGBwWlBBi5DKbFTYdrKO8WXvO+7Vrjbz1dRXXTUshOVKW6QnhSAaDwdL/Xfi+6urqQV+FEEJ4B6uT+YyMDP7whz9w0003nfX2ffv2kZeX57DAhBAjj6IobD5Sz/HGbqvurzWYeKegmqsmJzM2IczJ0QnhOwb2sw+lqanJRZEIT7BmzRrWrFnDihUr3B2KEEIIG1idzOfl5VFQUDBkMq9Sqc65V04IIc7nP0WNFNXZVtHWaOpfkj9vfDzT06OdFJkQvuXPf/4z06ZNIyIi4qy3d3dbN6AmfMPdd9/N3Xff7e4whBBC2MjqZH716tVotUMve504cSJlZWUOCUoIMfJsPdrIQTt7ySsKbD3aRGdvH5eOi5PWdUKcx7hx4/jlL39p6fd8OlltJ4QQQng+q5P5iRMnnvP2gIAAMjIyhh2QEGLk2Xm8mb2V7cN+nsKKNrp6jVw1KQl/aV0nxJAGVtsNlczLaruRQ6vVsnfvXsrLy8nMzCQkJITs7Gw0Go27QxNCCHEeDmtNJ4QQ9viqrJUvy1od9nwlDd1o9TVcOzVFWtcJMYR169ah1+uHvH3q1KmYzWYXRiTcpbi4mLlz5w66rqCgwNIHXAghhOeSqSshhNvsrWwj/3izw5+3pl3HW19X0qE1Ovy5hfAFSUlJsppOAJCdnc2GDRsA2LBhAwUFBWRnZ7s5KiGEENaQZF4I4RaHajrYdsx5FbPbtEbe/LqS+o5epx1DCCG8nUajIScnB4CcnBxyc3Nlib3wOCUlJRQWFlJUVARAUVERJSUlbo5KCPeTZF4I4XLF9Z18VtSAs7fkag0m/rWnik0H6zje2EWfSZYNCyF8V35+PkuWLCE/P9/doQjhMCUlJYwfP568vDxLnY+lS5cyfvx4SejFiCd75oUQLnW8sZtPDzk/kR/QZ1Y4Wt/F0fouAv3VZMWFMi4xnMxYjRTJE0L4lHXr1rFp0yYA5syZ4+ZohHCMrq7+lrUbNmwgMzOT8vJy9Ho9d955p+U2T1FSUkJXV9egFQQA4eHhjBs3zp2hCR9lVTL/zDPPWP2E9957r93BCCF824mmbjYdrMPspirZhj4zxfVdFJ9M7MfEhzE+MYyM2FD81M5pZ9dnMtNnVjCYzPSZFIwm88l/g7/vM5kxmMyYzRAZEkBMWCCxoYEEB0gRPyGEdZYtWzboqxDO4K6EdWAbyJw5cygsLHTaccC+1ziwguBUp3YMOXbsmCT0wuGsSuafeuopq55MpVJJMi+EOIPZrLCrtIWvy1tdNiN/PoY+M0V1nRTVdRIUMJDYh5Meo7E6sTf0mWnXGejUGek49Z/WSI/BRJ9JGfbARWiQHzGhQcSGBhIbFkhMaCCxoUFSqV84lMFgoKysjDFjxuDvL4v2hBBnNxISVntf49lWEAx8Xbp0qcetIhC+waozdllZmbPjEEL4KK2hj00H66lq1bo7lCHpjWaO1HZypLaT4AA/xib0z9inRmvoMfTRoe1P0k9P2rUGk9Nj69Gb6NFrz/j/0wT69Sf2YYGWZD8xIphAf9k6IKyn1Wr5+c9/zquvvgr0f0jNysri3nvvJSUlhd/+9rdujlDYYvny5ezYsYOWlha2bdvm7nCED/K2hNWeGfbhvsZTVxAAhISEWB2rLM8XtrJ7+F1G8YUQ51PTrmPTgTq69X3uDsVqvUYTh2o6OFTTgUqFx6wkOJ3WYEJr0FHdprNcFxrkx0VZsUxOiUTtpG0Dwrc8+OCD7N+/n61bt3LVVVdZrr/yyit5+OGHJZkXQpyVvQmrKw13FYErX+PpsfraagfhPDZn4TKKL3yZyayg7zOhCZQBquEqqGhlR0mL2/bHO4K3hd6jN/Gfokb2VbUzd2wcWfFh7g5JeLj33nuPt956i4suugiV6psBoIkTJ3LixAk3RibssXbtWtatWyd75k8hBclGLm9aRTAQyyuvvEJQUJDHxik8j80Zi4ziC19lNit8fKgOvdHMktxRgz7YCuv1Gk1sOdLA8cZud4cyYrV0G3h/Xy1pMRouHRdHQkSwu0MSHqqpqYmEhIQzru/p6ZG/gV5Gq+3finPjjTdaLo/0fvEjYX+3OD9vWEUwYNq0aeTm5gKeHafwHDYn8zKKL3yRoih8eriekob+BHRfVTvT06PdHJX3aezq5d8H6mjXGt0digCqWrW8/lUl2UkRzB4bS0RwgLtDEh7mwgsv5N///jc///nPASzn9f/3//4fF198sTtDEzYqLi5m7ty5lssFBQWWpGCk8qaZWSGEsIfNybyM4gtfoygKW440UFz/zUk9/3gzmbGhRIcGujEy73KopoMvihvpM3vZ2nQfpyhQVNdJSUMX09OjuXB0NEH+Uglf9Hv88ce56qqrOHLkCH19ffz5z3/m8OHD7Nq1SwqoeZns7Gw2bNjA0qVL2bBhA9nZ2e4OyWN408ysEELYwuayxwOj+ANkFF94u8+LGzlc2znoOqOpf6beLInpeRlNZjYfrmfLkQZJ5D1Yn1nh6/JW1ueXs6+qXd7bAoDZs2ezc+dOtFotY8aMYfPmzSQmJrJr1y7y8vLcHZ6wgUajIScnB+hPXkf6EvuRpKSkhMLCwkF1AQoLCykpKXFzZEIIZ7N5Zl5G8YUv+eJoIweqO856W11HL1+XtzIrK9bFUbnGwZoOqnv6X2dCpJrgANtna9u1Bj46UEdTl94JEQpn0BpMfFHcyL7KNuaOi2dsghTJG6mMRiM/+clPWLFihaWorXAMrVZLcXExf/zjH3nnnXe48cYbeeWVVyTBFg4ndQGEGNlsTuYHRvH/+Mc/Wkbxc3Nz2bVrF1OmTHFGjEI4xfZjTeyrbD/nfb4sa2V0fCgJ4b5TQExRFP5T1Mj+qlZKWtX0FlSjVvsRGuRHtKa/b3m0JpCY0ECiQwOH3Gd9vLGLTw83YOgzu/gVCEdo0xr5cH8to6JDuHRcPEmRvvMeF9YJCAjg3XffZcWKFe4OxecUFxcPWtnw5ptv8sADD4z4PezC8aQugDhbxwbp1jBy2JTMyyi+8BU7jzdTUNF23vuZzAqfHm7g+xem4e9n864Uj2M2928fOLU+wIAevYke/eC+5QCB/uqTyX0AMaFBxIQGUNPeS6EV/3/C89W06Xjjq0qy4kO5KCuWRKl8P6LccMMNvPfee9x///3uDsWnZGdnU1BQwO9+9zs+/vhjrr76ap/bw15SUiLt3jyIPXUBpG2f9zvXygxZlTEy2JTMyyi+sMfO481clBWLWu0ZBRJ3l7bwZVmr1fdv7tKzq7SFS8bFOzEq5+szmdl0qJ4TNraMM/SZaejspaGzF5ARfl9V2tRDaVMPo+NCmZUVQ3KkFIgaCcaOHcuaNWvYuXMneXl5hIaGDrr93nvvdVNk3k2j0ZCbm8ujjz7Kxx9/zKOPPupTS+xPTyBkWbf3keX5vuFsKzP0ej133nmnrMoYIWxeZi+j+MIWHTojX5W3YjCZuWzCmV0QXG1PeSu7TrTY/LiCijay4sMYFeWdCY6hz8yH+2upbNW6OxTh4cqaeyhr7iEjVsNFWbGkeOl7Xljn//7v/4iKiqKgoICCgoJBt6lUKknmxVkNJAmvvPIKQUFBsqzbC8nyfN9y6sqMwsJCd4cjXMjmZF5G8YUtius6URTYW9lOUmQw2UkRboulsLKN/5Y02/VYRYHNh+u5dVYGgf7etdy+12jig3211LTrzn9nIU6qaNFS0aIlPUbDrKwYUqN9Z1ZRfKOsrMzdIQgvNm3aNEsdAGn35p2kbZ8Q3s3mZF5G8YUtjjZ8M7L72ZEGYkODiA8Pcnkc+6va2Xa0aVjP0a418t+SJq7ISXRQVM6nM5jYuLeaxk6pNi/sU9mqpbJVS2p0CBdlxZIWI0m9EEKci9QTEEK4is3JvIziC2s1dPbS0m2wXDaaFD7cX8sts9LtaoNmr0M1HXxxtNEhz3WguoMx8WFkxoWe/85WqmrVcrCmg6lpUQ5dxt+t72NjYfWgn4EQ9qpu0/F2QTWjokO4aHQs6bGS1AshxOmknoAQwpVsTuaFsFZRXecZ13XojHxyqJ7F01JQqZxfEO9IbSefFTWgKI57zs+KGlh6UcawByQMfWZ2HG/iQHUHigJH67tIjQ5hlgMSpQ6tkXcKq+nQGYf1PEKcrqZNxztt1YyKCiE33X3bZoQQwhNJPQHhLaSbgW+QZF44hdmscKzh7CetsuYedpW2MHtMnFNjONbQxZYjjk3kAbp6+/iiuJGrpyTb/RxVrVo2H2mg87Rku7pNR3VbNcmRwcwcHUNWfJjNz93SrefdvTV09fbZHZ8Q51PTrqOqtZvuFhVXmR38SyaEEF5O6gkITybdDHyHJPPCKSpbtfToTUPe/lVZK4kRwYyxI1m1xtH6Lj45VI/Z0Zn8ScX1XYxNCGNcYrhNjzt9Nn4odR29vL+vloSIIGZmxjA2IcyqlQyNnb28u7cGrWHo/3shHKlOq+Kz4kYWXTDKJatthBAjk8wiCuE40s3Ad0gyL5yiuP7cfwQUBT45VM8tM9OJDg102HFNZoXtJU3sq2x32HMO5T/FjaREhRAaZN2vUVWrli1HGmxa+t7YqeejA3XEhQVy4egYxieEo1afPWGqbdfx3r4a9Eaz1c8vhCMU13cRFNDIlRO9pzikOFNPTw9vvfUWOp2OBQsWSIIkPIbMIgrhHNLNwPtJMi8czmgyc6Kp+7z3M/SZ+ehALd+7MN0h7d7atQY2HaynobN32M9lDZ3BxGdFDSyeNuqc9zP0mck/3sz+6na7l/w3dxv4+GA9uzUtzMiMISc5Ar9TkvrKFi0fHqjF0CeJvHCPgzUd+PmpuHxCgrtDEVaorKzkBz/4AYWFhVx00UW88sorzJ8/n5KSEqD/A93HH3/MpZde6uZIhZBZRCGEGMqwMqienh7++te/8vzzz1s+AAhxoqnb6qSyudvAliMNwz7msYYu/vFlpcsS+QGlTT0cqukY8vaqVi0bdlewr8r+RP5UbVojW440sH5nOfur2uk7OXDy/r4aSeSF2+2rbGdHSbO7wxBW+NWvfoXBYODFF19Eo9GwcOFCxo0bR11dHQ0NDSxatIhVq1a5O0whBsnJyWHOnDnceuutzJkzh5ycHHeH5FAlJSUUFhYO2kogn6+FEOdi9cy8jOILaxXX2TZCfqyhi8TyIGZkxth8rD6TmW3H+vegu8u2Y02kxWiIDAmwXGc0mdlxvJn9DkriT9epM/J5cSNflbWiNZicVhtACFt9Xd6Kv5+Ki7Ji3R2KOIft27fzwQcfMHPmTBYtWkRcXBx//etfSUzs3yrxu9/9jiuuuMLNUQoxcpxrK4FsIxBCDMXqmXkZxRfW0Br6qGjR2vy4/OMtVNr4uLYeA29+XeXWRB76l9FvPlyPcjKhrm47ORtf6ZxE/lTd+j5J5IXH2XWihT3lre4OQ5xDU1MTGRkZAMTExKDRaCyJPEBSUhJtbW3uCk+IEefUrQQ7duxgw4YNvPLKK4NuE0KI01k9My+j+MIaR+u77EouzYrCpkN13DIrnYjggPPev6iuk8+LGz1maXl1m46vy9voMfQ5bTZeCG/y35Jm/P3UTEuLcnco4iwURRnUfUA6EQgxmLuq559akKywsNBpxxFC+AarZ+bdNYrf1dXFfffdR0ZGBiEhIcyePZuvv/7acruiKKxatYqUlBRCQkK47LLLOHz4sMPjENY5XxX7c9EZTHy0v44+09AJutHUPwv+yaF6j0nkB+Qfb3bJbLwQ3mLr0cZz1pQQ7rVy5Uruv/9+7r//fgwGA4899pjl8sMPP+yUY8o5XXiDgSXveXl5lqXuS5cuJS8vj/Hjx8s+diGEU+Tn57NkyRLy8/OtfozVM/PuGsX/0Y9+xKFDh3jttddISUlhw4YNXHnllRw5coRRo0bxxBNP8OSTT7J+/XrGjx/Po48+yvz58zl69Cjh4bb1ABfD09ZjoL5jeAXoGjp7+by4kQWTks64raVbz6aDdTR3G4Z1DCGEaygKfFbUgJ9aRU5yhLvDEae49NJLOXr0qOXy7NmzKS0tPeM+jibndOENpHq+EMIdli9fzo4dO2hpaeHDDz+06jE2taZbuXIlGo0GwDKKHxkZCYBWa/s+6fPR6XS88847vP/++5YPFatWreK9997jxRdfZM2aNTz99NM89NBDLFmyBIBXX32VxMREXn/9de666y6HxySGVlTf6ZDnOVzbSWJEMFNPWZ57uLaDL4obMZpk2lsIb6IosPlwA/5qFeMSJRnzFFu3bnX5MeWcLryN9OAWQrhSR0cHZrOZjg7rVzVancy7YxS/r68Pk8lEcHDwoOtDQkLYsWMHZWVl1NfXs2DBAsttQUFBzJs3j507dw554tfr9ej1esvlzs7+JNRoNGI0Gh36GpxhIEZPi/VwTTtms8khz/V5UT3RIX7Ehgay9VjTsJbvi7MzndzOYDrHtgYhzsXa95AZ+Gh/DddMSWJ0XKgLIhuZPO2ccDpXn9OFZzrbXnRn70MXQghPNzAxPrD6fd++fVY9zupk3h2j+OHh4Vx88cWsWbOGnJwcEhMTeeONN/jyyy8ZN24c9fX1AIP27g9crqioGPJ5H3/8cR555JEzrt+8ebNl5YE32LJli7tDsGjTQ0Gj1SUYrLLuxDH8VdDTJ4WZnOn0QTkhbGXte6ik5Bh5cQpxwee/r7CdtSvk7r//fquf88knn7Q3nDO4+pwuPI+0XxNCiLMrLi5m//79AOzfv5958+ZZ9Tibltm7w2uvvcYdd9zBqFGj8PPzIzc3l1tuuWVQhc/T9++fvr//dA8++OCgDzOdnZ2kpaWxYMECIiI8f1+n0Whky5YtzJ8/n4CA81d+d4UvjjYxLlIKXXkTk8lMaWkpWVlZ+Pk5diBGjAz2vIe61WqumJbMqChZrupo1s5I7927d9DlgoICTCYTEyZMAPqTKj8/P/Ly8hweoyvP6cLznG0vul6v584775R96EKIES07O5sNGzawdOlSNmzYQFpamlUJvVXJvLtG8QHGjBnDtm3b6OnpobOzk+TkZL73ve8xevRokpL6i6TV19eTnJxseUxjY+MZI/unCgoKIigo6IzrAwICPCY5toanxGsyK5S26FCr/dwdirCDn59afnZiWGx5D5mBfx9q5MbcVJIiZYrekaw9H3zxxReW75988knCw8N59dVXiY6OBqCtrY0f/vCHXHLJJQ6P0ZXndOG5pP2aEN7LXW0bfZ1GoyEnJwfo/xs5duxYqx5nVTLvzlH8AaGhoYSGhtLW1sann37KE088YTn5b9myhenTpwP9hfm2bdvGH/7wB6fFIgYrb+lBZ3DMXnkhhO8z9JnZuLeahZOSGBMf5u5wRrR169axefNmSyIPEB0dzaOPPsqCBQtYtmyZU44r53QhhPA+59oqA7Jdxh2sSubdOYr/6aefoigKEyZM4Pjx4zzwwANMmDCBH/7wh6hUKu677z7Wrl3LuHHjGDduHGvXrkWj0XDLLbc4PBZxdsV1sjROCGEbvdHMB/tquSA1kkvHxxMgWz3corOzk4aGBiZNmjTo+sbGRqcse5ZzuhBCeC9p2+h5bN4z7+pR/I6ODh588EGqq6uJiYnhxhtv5LHHHrMsJ/z1r3+NTqfjnnvuoa2tjVmzZrF582bpR+si+j4TpU3d7g5DCOGlDlR3UN2m4+rJSSREyLJ7V7vhhhv44Q9/yLp167jooosA2L17Nw888IClPZwjufOcnp+fz7p161i2bJml1ZgQQgjbSdtGz2FzMu/qUfybbrqJm266acjbVSoVq1atYtWqVQ4/tji/koZu+szS+10IYb/WHgNvfl3FxWNimZERfc5iZ8KxXnrpJX71q1+xdOlSS2s7f39/7rzzTv74xz86/HjuPKcvX76cHTt20NLSwrZt2xz+/EIIIYSr2ZzMu3oUX3g26f8uhHAEk1lhR0kz5c09LJycRESw+4t7jgQajYYXXniBP/7xj5w4cQJFURg7diyhoaHuDk0IIYQQ52FzMu/qUXzhubp6jVS3WdfXWAghrFHdpmPD7gquyE5kQpJsl3KV0NBQLrjgAneH4VRr1661LLMXQgghfIHNFYcGRvFbWlrYu3cvhYWFtLa28sILL8hI/ghztL4LRVbYCyEcTG80s+lgHZ8cqkffJ50yHG3JkiVW96QHuPXWW2lsbHRiRK4xZ84cNm7cKPvlhRBC+Ay7ywcPjOJPnTpVkvgRqkiW2AshnKiorpN/7K6ktl3n7lB8yvvvv09TUxOdnZ3n/dfR0cGHH35Id7f3FzrNz89nyZIl5Ofnu+RxQgghhLNZtcx+yZIlrF+/noiICKue9NZbb+Wpp54iISFhWMEJz9XUpae5S+/uMIQQPq5DZ+Rfe6q5cHQ0F42ORa2W4njDpSjKGX2CR4J169axadMmAJtm56VwnhBCCE9lVTI/MIpvDUVR+PDDD1mzZo0k8z6suN76JZpCCDEcZkXhy9JWKlu0XDU5iShNoLtD8mpffPGFzY8ZNWqUEyJxrYG98rJnXgghhK+wKpkfqaP44uwUReGoLLEXQrhYXUcv//iykvkTExmfKMXx7DVv3jx3h+ByWm1/sdYbb7wRgMLCQrKzs9FoNOd9rDsK5+Xn51uOKXv8hRC+oKSkhK6uLoqKigAsX8PDwxk3bpw7Q/NqViXzI3UUX5xddZuOrt4+d4chhBiBDH1mPjlUT2iQP6OiQtwdjvASxcXFzJ07d9B1BQUF5Obmuimic7N3S4AQQniikpKSMyaGly5davn+2LFjktDbyapkfiSO4ouhFdXJEnshhPuYzAof7a/l+7PSpR+9sEp2djYbNmxg6dKlbNiwgZycHLKzs8/7OK1Wy/Lly9m1axctLS089dRTVs/oD4dsCRBC+JKurv4VvRs2bCAzM5Py8nLL16VLl1puF7azuc+8GNn6TGaON3l/VWMhhHfTGkx8uL+Wm2akEeBnd2MWMUJoNBpycnIAyMnJsXpGvri4mO3btwOwfft28vLyXDKjP2fOHJmRF0L4nIG/vwN/30JCZIXdcMknIGGT0uYe9Eazu8MQQggaO/VsOdLg7jCEDxuY0Yf+GaWCggKrZvSHS9rhCSGEsIbMzAubyBJ7IYQnOVrfRVxYEDNHx7g7FJ+yf/9+cnNzMZlM7g7Freyd0R8uaYcnhBDCGjIzL6ymM5ioaNG6OwwhhBhk54lmSmX7j8MpiuLuEEYcrVZLYWEhHR0dKIpCR0eHpRK/EEIIcTqHzczLKL7vO9bQhcksH+6EZzGazOgMJrRGEzqDCd1pX/V9JtKiNVyQGolKpXJ3uMIJFAU+PlTPzRemERsW5O5wfIb8vrhecXExeXl5lsv79++nuLjYY6vuC+EqSWEqQtqPQW3/PGRI+zGSwuRvlBAOXWYvo/i+rbheltgL96hq1VLe0oP2LMl6nxUDTCeaeqhu1zE/J5FAf1mQ5IsMfWY+3F/LzTPTCQ7wc3c4QtglOzubgoICioqKLJX3XbFHXwhPd1deIDnb74L+epTknLxOiJHOocm8jOL7rqYuPbXtve4OQ4wwDZ295B9vpqpNd877+alVhAT4ERLod8ZXk1lhT3krxxu7aesxcM0FyURr5AOAL2rTGvn4UB2Lp45CrZbz0bl0dp57cFbaBLmHRqMZNAufk5Pj1DZ4JSUldHV1UVRUBGD5Gh4eLj2fhVPYO8P+coGB761cT87Jwa2i4mJeXncL1zk1WiE8nxTAE+dV2aLlo4O17g5DjCBtPQZ2lrZwvLF/H7SfSkV2cjhRmgBLkq4J8Lck7QF+qnMOJmbGavj3gTpaegy8+XUVV01KYnRcqKtejnCh8mYtO443c+n4eHeH4tGioqLO+TujKIoM0Pu4kpISxo8fP+i6pUuXWr4/duyYJPTC4eydYa/vVtBFjYeUaQDo6s3Ud8uKYCGsTuZlFH9kOlDdzhfFTZhlC4Vwge7ePr4sa+FwXScDb7mc5HAuGh1LREiA3c+bHBnC92em8++DddR19PLB/louzorlwsxoSVh8UEFFG3FhQUxMiXB3KB7riy++cHcIws0GPrdt2LCBzMxMysvLLV+XLl0qn+uEU8gMuxCOZXUyL6P4I4vZrLCtpIl9le3uDkWMAL1GE3sq2thX1W4pspgVF8rFY2KJc1BBs9Agf27MTWXbsSYO1nSwq7SFxq5eFkxMkn30Pug/RQ3EhAaSFBns7lA80rx589wdgvAQAy335syZA0BISIibIxK+TGbYhXAsq5N5GcUfOXqNJj4+VEd5s7TDEc5lNJnZV9XOnoo2DH1mAFKigpkzJo6UKMd/oPRTq/hWdgIJEUFsLW7iRFMPb31dxbcvSCY6VPbR+5I+s8KH+2v5/qx0woJkR9npFEXhT3/6E++99x5Go5Err7ySlStXEhwsgx9CCCGEt7D6E46M4o8MHVoj7++voaXb4O5QhA8zmRUO13bwVVkrPYb+dpZxYYHMHhNHZqzG6at8JqdEEhcaxL8P1tGq7d9Hv3BSIlnxYU49rnCtbn0fH+2v5Tt5qfj7yeqLU/3+97/nd7/7HVdccQUhISE8+eSTNDc385e//MXdoQkhhBDCSlZ/ulEUhT/+8Y/MmTOHmTNnsnz5cnp7pbq5L6lu0/LG15WSyAunURSFYw1dvLa7gi+ONtFjMBER7M/CSYncMjOd0XGhLtuukxQZzM0XppESGYzBZObDA3XsLm2RFps+pq6jl/8UN7o7DI+zfv16nn32WTZv3sz777/Pe++9x9///nd5/wshhBBexOqZeRnF922Hajr4vLjRsl9ZCEdr7THw6eF6Grv0AIQE+DFrdAyTR0Xi56Y2YqFB/izJTeW/JU3sr+7gy7JWmrr0LJiUSJC/9Cr3FUdqO4kPDyI3PdrdoXiMiooKvv3tb1suL1y4EEVRqK2tZdSoUW6MTAjh6U5vLwfWt5gTQjiW1cn8wCj+PffcA8Ann3zC9ddfz8svvyyF77yYoij8t6SZgoo2d4cifFh1m5aPDtSh7zMT6KcmNyOK6WnRHlF4zk+t4rIJCSSEB/P50UZKmwf20acQI/vofcZ/jzUTFxpEeqzzenZ7E4PBMKjQmUqlIjAwEL1e78aohBDe4PT2cmB9izkhhGNZnczLKL7vMfSZ+fhQHaVNPe4ORfiworpOPitqwKxAcmQw10xJJtQDC5JNTIkgJiyQfx+oo01r5K2vq7gyJ4H48CCMJgWDyYyxz4zRZO7//rTrLJdPXqcJ8mdMfCijY0MJCnDuLL+iKLRpjZjMCvHhjqn+72vMisK/D9bx3RmpDuuQ4O1WrFiBRvPN4IbBYOCxxx4jMjLSct2TTz7pjtCEEB7s9PZy4Hst5mT1gWcpKSmhqKgIwPI1PDyccePGuTMsj2D1J2oZxfctnb1G3t9XS3OX/PyEcyiKwpdlrXxZ1grAuIQwFkxM9OhCZEkRwXx/ZhqbDtZT065j06H6YT3f8cZu1CpIi9YwJiGMrLhQhw1kGE1mqlq1lLdoKW/poau3D4DZY2KZkREtK6bOotdo4p97qrhuagqp0SN7hv7SSy/l6NGjg66bPXs2paWllsvyHhJCnM3p7eXAc1vM2ZuUu2P1wemxyuBBv5KSEsaPH2+5vHTpUsv3x44dG/EJvU2fKmUU3zfUtuv46EAtPXqTu0MRPspkVvhPUQNF9V0A5GVEM2dMrFckB5pAf26YPor8E80crO5ApYIAPzWBfmoC/NUE+Kn6vz/5r/961eD7qFU0dxs43tRNa4+BilYtFa1aPgdSIoMZkxDG2PgwIkICrI5rYPa9vKWHihYtNW06TKcUK1OrwKzAzhMtdOv7mDc+HrUX/H+7mt5o5t3CGq6ekszYhJHbvWDr1q3uDkEIIZzO3qTcHasPTo9Vti706+rq/yz5yiuvEBQURGZmJuXl5SxdutRy20hmdTIvo/i+obi+ky2HG+iTQnfCSXqNJv59sI7qNh0qFXxrQgKTR0We/4EexE+t4tJx8Vw6Lt7u5xiXCBePiaW1x8CJpm5ONHXT0KmntqOX2o5e/lvSTEJ4EGPiwxgTH0pMaOAZf0ONJjPVbTrKm3sob+mh8+Ts+4CIYH8yY0PJjAslNTqEQzUdbC9p5kB1Bz36Pq6alOTRKyHcpc+s8O8DdVyeHc8FqVHuDsej9PX10dvbS1jYyB3o8EYlJSV0dXXJMlQhTmNvUu6O1Qenx+prWxeGa9q0aeTm5gIMWi0+0lmdzMsovvfr7DWy+XCDVKwXTtOhM/L+vhratEYC/dQsmpJERmyou8Nyq5jQQGJCY7gwM4bOXiOlTT0cb+ymtl1HY5eexi49u0pbiNYEMCY+jPQYDc3deipatFS36wb9vvqpVIyKDiEjVkNmbCjRmoBBAwDT06MJC/Ln08MNnGjqYePeGq6bmkKwk/fseyOzovCfokZ69CYuHhPr7nBcbtOmTbS0tPCDH/zAct1jjz3GmjVr6Ovr41vf+hZvvfUW0dHSAcDTnb4EFWQZqhADvGlLwOmxemqcwrMMe/OmjOJ7jy9LWyWRF05T39HLB/tr0RlNhAX5c93UFCnGdpqI4ACmpUUxLS0KraGP0uYeTjR2U9mqpU1rZE9FG3tO6ywRPjD7HqshNVpz3g4A4xLDCQn048MDddR19PKvPdUsnpZi05L+kWR3aQtaQx+XT0hA7aYWie7wpz/9iRtvvNFyeefOnaxcuZLVq1eTk5PDQw89xJo1a2TrnBcYWGa6YcMGy/JTWYYqhHtI4TzhalYn8zKK793aegwcqe10dxjCRx1v7ObTw/X0mRXiw4K4bmoKYcGeV7Hek2gC/ZmcEsnklEj0fSbKm7WcaOqmpl1HbGigZfn86bPv1kiN1vDdvFTe31dLq9bAP/dUsXjaKBlcGcKB6g56DCYWTR452xIOHTrEunXrLJfffvtt5s+fz0MPPQRAcHAwv/jFLySZ9yI5OTnk5uYyZ84cQJahCuEO0rZPuJrVn1r+9Kc/0dn5TTI4MIq/YsUK/vnPf1JVVcWaNWucEqQYvt2lLZgVmZUXjqUoCoWVbfz7YB19ZoXMWA3fyUuVRN5GQf5+TEgKZ9GUZH58SRZLclPJzYg+6z56a8WFBXHTjFRiQwPpMZh4u6CaylatgyP3HScau9m4t4Ze48goDNrV1UVs7DfbC3bs2MG3vvUty+VJkyZRW1vrjtCEEMJrvVxgoOjSl+En2yz/ii59mZcLDO4OTfgoq5P5Q4cOMXv2bMvlU0fxlyxZwrp16/jwww+dEqQYnuZuPUcbZJmdcCyzWWHr0Sb+W9IMwJRRkVx7Qcp5l4EL1wkPDuC7eamMigrBYDLz/r4aiutlhc5Qatp0/GtPFV29RneH4nQpKSmWImnd3d3s37/fMqML0NLSMqh7jRBCiPMbtO/95D9d1HjZ+y6cxupP3TKK7712nmhBJuWFIxn6zHx4oJYDNR0AXDI2jssnxI+oPcfeIijAj+unpzAuIQyzAp8ebqCgog1F/iicVXO3gbe+rqKlW+/uUJzqO9/5Dvfddx+vvfYaP/7xj0lKSuKiiy6y3L5nzx4mTJjgxgiFEEIIcT5WJ/Myiu+dGjp7OdHY7e4whA/p1vfxdmE15S1a/NQqFk1JIjcjWlpTejB/tZqrJycxLS0KgB3Hm9le0iwJ/RC6evv4555qatt17g7FaR5++GFmzJjBvffey759+9iwYQN+ft90PXjjjTe49tpr3RihEEIIIc7H6o2tA6P4y5cvZ9OmTTKK7yV2nmh2dwjChxhNZt4uqKZDZyQkwI9rpyaTHClFlryBSqVi3vh4woP8+e/xZvZVtdOj72PBxMQRU/TNFr1GExsLq7l6SjJj4n2vW4tGo+G1114b8vYvvvjChdH4nrP1fZee78LTSOV1Ibyf1cn8ww8/TG1tLffeey9JSUkyij9MvUYTWoOJmFDnVbesbtNS3iwFr4TjfFnaSofOSFiQP9/JSyVS2p15ndyMaEKD/Nl8pJ6Sxm60BhPfviBZetGfhdGk8NH+Oq7ISWDyqEh3hyO8xLn6vkvPd+FJpPK6EN7P6umYgVH8trY2ioqKuOSSSwbd/sUXX/Cb3/zGocH19fXxu9/9jtGjRxMSEkJWVharV6/GbDZb7qMoCqtWrSIlJYWQkBAuu+wyDh8+7NA4nGHniWb+faAWo8l8/jvbfYwWpz23GHkau3oprOrvgX55drwk8l5sQlI4108bRaCfmpp2HW8XVNOp8/2ib/YwKwpbjjSw60QLJrNsSxgOXz6nn+rUvu87duxgw4YNvPLKK4NuE8ITSOV14etKSkooLCwctEqqpKTEzVE5lkf3j/rDH/7ASy+9xKuvvsqkSZPYs2cPP/zhD4mMjOQXv/gFAE888QRPPvkk69evZ/z48Tz66KPMnz+fo0ePEh4e7uZXcHb1Hb0cqO5AUeCL4kYWTEpy+DEqWnqoafPd/Z7CtcyKwn+KGlEUGJcQRlac7y07HmnSYvrbCL6/v4aWHgN/313BlJRI8jKjCQvy6FODW+wubaGorpOLx8SSnRQuNSLs4Kvn9KGc2ve9sLDQ3eEIcYZBlddP0tWbpfK6lzl9u4Rsleg3UlZJefQntl27drF48WKuueYaADIzM3njjTfYs2cP0D+C//TTT1va4wG8+uqrJCYm8vrrr3PXXXe5LfahKIrC58WNluryh2s7SYvRkJMc4dDjeMKsvKIo7Cpt4VhDN/MnJjIqSvZWe6v9Ve00dukJ9Fczb3y8u8MRDhIfHsRNM9L49FA9tR297Ktu52BtB5NTIpiREUNYsEefIlyuQ2fkk0P17KloY86YWLJ8cC+9M/niOX0kkwRCCM9w+nYJ2SrR79RVUpmZmZSXl6PX67nzzjt9apWUR39Smzt3Li+99BLHjh1j/Pjx7N+/nx07dvD0008DUFZWRn19PQsWLLA8JigoiHnz5rFz584hT/x6vR69/pu2Q52d/X2XjUYjRqNzl5rur+6grr1n0HVbDtcRE+Jn9f75gRiHivVEUw+1bT1nvc1V+kxmthQ3cbyxP44vihv5/oWjZDbLg5hObvEwnWerR2evkV2l/YNDc8bEEBKgwmw2OT0+4RphgWqWTE+mqk3HV+Vt1HXo2V/dwaHaTiYlh5OXETXkTL217yFf09ih5d1CLcmRIcwZE0OKhwxUDvf81dvbS3BwsIOiOZOrz+nCuSSBEMIzvFxg4Hsr15OTnQ1AUXExL6+7hevcHJen8PVVUh6dzP/mN7+ho6OD7Oxs/Pz8MJlMPPbYY3z/+98HoL6+HoDExMRBj0tMTKSiomLI53388cd55JFHzrh+8+bNTm2vpzfB9noVfeYzE9o/nTjKxYkKfjbkulu2bDnjOkWB/AYVXUb3Jc0GM+xtVtFmUKFCQa2Clh4D2w+cIEW6F3qc0tLSIW9TFChsUWE0qYgOVAjsbqSkpNGF0QlXuiAMUgPgeKeKNgMcqOnkYE0HaaGQFa4w1ET9ud5DvqwE2L4H4oMVxkcqRLg5j9FqbS94ajabeeyxx3jppZdoaGjg2LFjZGVlsWLFCjIzM7nzzjsdFp+rz+nCuSSBEMIznL5dQrZKjCzDSuadPYr/1ltvsWHDBl5//XUmTZrEvn37uO+++0hJSeG2226z3O/02V5FUc45A/zggw9y//33Wy53dnaSlpbGggULiIhw7HL3U316uIHRoUMv6wgdFcm3Jpx/CbPRaGTLli3Mnz+fgIDBRciO1ndx4kgDjt+Fb50OnZEPDtTTbjAS6Kdi0ZRk6jt62V3WRrk2kLlT0vBTy+y8JzCZzJSWlpKVlYXfEK3JShq7aappRK2CRdPSnNp9QXiOWYpCdXsvX5W1UdvRS2UPVGtVTEqJIC89ivCTWb0176GRogkVUYlhXJwV47bikPbMSD/66KO8+uqrPPHEE/z4xz+2XD9lyhSeeuophybzrj6nC+eSBEIIIdzP5mTelaP4DzzwAL/97W+5+eabgf4PFxUVFTz++OPcdtttJCX1p6z19fUkJydbHtfY2HjGyP6pgoKCCAoKOuP6gICAM5JjR6lq1VLSpEWtHrr905G6bjLjwpmQZF2Rn9PjNZsV9lR2nPMYzlTf2csH+2rRGU2EBfmzeFoKcWFBJEdqOFDTSWdvH0fqu5maGuWW+MTZ+fmpz/qe6TWa2F7Sv7z+wswY4sI9YymxcI2M2DDSY0KpbtPxZVkrNe06DtZ0cqS2i4kpEVyYGU1oYH8CP9R7aKQ53qSlrEXH5FERzBodS6iLCwnac/76+9//zl/+8heuuOIKfvrTn1quv+CCCyguLnZkeC4/pwshhBC+zuaplEcffZT169fzxBNPEBj4zSzdlClT+L//+z+HBqfValGrB4fo5+dnaWMzevRokpKSBi03NxgMbNu2jdmzZzs0luEwmfuL3lnjs6IG2rX2tQQ5UtdJm9Y97aVKm7p5p6AandFEfFgQ37swjbiw/g9Xgf5qZmbGAPBVWatT2/EJx8k/3ozWYCJaE8CMzGh3hyPcQKVSWare35g7ilFRIZgUhYM1HazfWc4XR5vQ9bk7Ss9iMivsr+rgb/ll5B9vptfo2fUlampqGDt27BnXm81mh9eQ8ZVzuhBCCN92tpZ2hYWFHtnWzuZpA1eO4l977bU89thjpKenM2nSJPbu3cuTTz7JHXfcAfR/0LzvvvtYu3Yt48aNY9y4caxduxaNRsMtt9zi0FiGo6CijdYe6xJ0Q5+Zfx+s43sz0vC3YdmqyazwZVmrvSEOy4HqdrYebUIBMmI0LJqSTKD/4Ngnj4qksLKNzt4+9lW1c+HJ5F54ppo2HYdq+5fsXpGdiL96ZC+hFpAareE7eRqq27R8WdpKdbuOQ7VdqFBh1LSTlxmDWgpcWhhNCl+VtXKguoP5ExMYm+CZbdUmTZrEf//7XzIyMgZd/69//Yvp06c79Fi+ck4XQghfcHpHCpCuFHDulnbgeW3tbE7mXTmK/+yzz7JixQruueceGhsbSUlJ4a677mLlypWW+/z6179Gp9Nxzz330NbWxqxZs9i8ebPH9KPt0Bn5qsy2NnGNnXr+W9LM5dkJVj/mYE0HnTrXzsorikL+iRYKKtoAmJQSweUTEs66J95PreLirFg+PdLAnoo2poyKJDhAluV6oj6zmf8UNwD9P9NR0bK8XnwjNVpDap6GmjYdu0qbqWnvZWdpK+UtWhZMSnLbfnFP1Ws08fHBeq6f7kdajOdVAH344Yf5wQ9+QE1NDWazmY0bN3L06FH+/ve/89FHHzn0WL5wThdCCF9xekcKkK4UcPaWdgNfly5d6nFt7WxO5l05ih8eHs7TTz9taVtzNiqVilWrVrFq1SqHHttRth5txGiyvSDMvqp20mJCrJrNMZrMfO3iWfk+s5ktRxo41tANwMVZsVyYGX3OIkXjk8LZU9lGS7eBPRVtzB0b56pwhQ32lLfRpjWiCfSTn5EY0qjoEG6YlszW/Sc42ulHbUcv//iygnnj45mYHCFtKE/RZ1b48EAtN834ZvuRp7j22mt56623WLt2LSqVipUrV5Kbm8uHH37I/PnzHXosXzinCyGErzi9IwVIV4pTndrSDiAkxDMnt2xO5l05iu/tTjR1U9pkf7/3zUcaiA8LJlJz7pmu/VXtdOtdt3G112jiowN11LTrUKvgypxEcpLP3wVArVIxe0wsH+6vY19VO9NSowgbqteVcIvWHgN7yvtXWswbHy+rJ8Q5qVQqUkMhd0IqnxU1UdvRy2dFjZQ19/Ct7AQ0gfL7PUBvNPPe3hq+d2Ea4cGetXph4cKFLFy40N1hCCGEcKHTO1KAdKXwRjZvhB0Yxd+0aZNlFL+oqMgpo/jezGgys/Vo07CeQ280s+lQHSbz0L9U+j4Te04uc3eFTp2Rf+2ppqZdR6CfmsXTRlmVyA8YHRtKcmRw/x7/ctu2HwjnUhSF/xQ3YFIUMmM1jEsIc3dIwktEhgRwY14qc8bEolbBiaYe/vFlJWXN9g9m+qKu3j7e21fr8UXxfI03FTISQgghbGHXtImvjuI3d+lxVJv5L0tbHbKHvb6jlx3Hm5k3/uz95/dWtqMzuOaDYUNnLx/sr0VrGNx6zhYqlYo5Y+N4u6Caw7Wd5KZHE60Z2XtzPMXh2k5q23vxV6u4fEKCLJMWNlGrVMzIjCE9VsOnhxto7THwwf5apoyK5JJxcQSM8D70A5q79Hy4v5YlualnrS/iCtHR594SdarWVvcUVnUUbytkJIQQQthC1kCe4u2Cauab/JmePrw2XC3degorHTdbXljRRmp0CGPiB8+U9hpNluJzzlbW3MOmg3X0mRXiwgJZPHWU3UvkR0WFkBmrobxFy+4TLVw9Jfn8DxJO1aPv47/HmwG4eEwsEVLETNgpITyY71+Yxs4TLeytaudgTQeVrVqumpREUmSwu8PzCNVtOj49XM/Vk5PcMmh26p71lpYWHn30URYuXMjFF18MwK5du/j0009ZsWKFy2NzNG8rZCSEEELYwqpsbKSM4pvMCluPNlHZqmXBxCRCAu3bL/x5ceM5l8bbY/PhBm69KIiIU/ZaFlS2Y+hzfs/2koYuPj5cj6JAeoyGRVOSCPIf3l7q2WPiKG+p5FhjN3ldvSSEy4d8d9p2rAlDn5mE8CCmpUa5Oxzh5fz91Fw6Pp7MuFC2HGmgQ2fknwVVXJgZw8zMGLfNSHuSo/VdhAX5c+kQq66c6bbbbrN8f+ONN7J69Wp+9rOfWa679957ee655/jss8/45S9/6fL4nMFbChm5mrSmEkII72ZVMj+SRvEBSpt6+MeXFSyclGRzK6Giuk6q23QOj6m/vVEd381LA0Bvgv1VHYBzT7gnmrr55GQin50UzpU5iQ75IB4fHsSExHCONnSx80QL108b5YBohT3KmnsoaexGpYIrchJQS6IlHCQ9RsOts9LZerSJow1dfFXWSkVLDwsnJhEdKttrCiraCAv2J3eYq8GG49NPP+UPf/jDGdcvXLiQ3/72t26ISLiStKYSQgjvZlUyPxJH8bt6+3insJqZmTFclBVrVYLTazTx35LhFb07l9r2XvJPNHNRZhQnOlUEhppRq51Xbbz85NJ688lEfv7ERNQOXBJ6UVYMJY1dVLRoqW7TkhrteT2YfV2fGfKP9RcinJ4WJSskhMMFB/hx1eQkRseF8sXRRho69bz+VSVzx8VxwajIEV+bYfuxJsKD/BmX6J4+6rGxsbz77rs88MADg65/7733iI2NdUtMwnWkNZUQQng3mzc9+/IofkljF1NGf7MvXVHgy7JWqtq0XDU5mcjz7CPeeaKZHr1zi9EVVLQRGqCiqgfGOPE4la1aPjqZyI9LCGN+jmMTeYAoTSCTUyI5UNPBzhMtfDcvZMR/sHe1kk4VXfo+woP9uShLPrgL55mQFE5KVDBbihqoatWx9WgTh2s7yYzVkB6jISkyGH/1yCuSpyjwyaF6QgL93DKg+cgjj3DnnXeydetWy2q73bt388knn/B///d/Lo/HGbxpKXlJSQldXV2DKu8DhIeHO6VQn7SmEkLYypv+po4ENifzvjyK/1lRI72qIGZkDK4RUNveyz++rGB+TuKQsycNnb0cqO5weoyKAl8cbcKsOO8XprpNy4f7azGZFcbEh7JwUpLTll7PHB3DkbpO6jp6KWvuISte2qG5SkOnnoru/u+/NSFBqo0LpwsPDuCGaaPYX93BjuPNNHXpaerS83V5G/5qFaOiQkiL6U/u48ICR8zgXp9Z4cP9ddw0I5VYGzuEDNftt99OTk4OzzzzDBs3bkRRFCZOnEh+fj6zZs1yaSzO4i1LyaXyvhDCG3jL39SRwuZk3tdH8XeeaKFDZ+TyCQmD9obrjWY+OlDH5FFaLpsQPyjxURSF/xQ1ovjAQHZtu44P9tfSZ+7vNX7V5CSnFqsKDfJnWloUeyra2Hmihcy4UIevABBnMpsVPj/aBKgYnxBKZlyou0MSI4RKpWJaWhTjEsKoaNFS2aalqlWL1mCiolVLRasWgJAAP9Kiv0nufb3DQq/RxLt7a7h5ZjphQa5tNDNr1iz+8Y9/uPSYruQtS8ml8r4Qwht4y9/UkcLmTwy+PIo/d2wsu6p0HK7tpKu376xV2w/VdFDXoePqycnEh/fPoByo7qChs9cdITtUfWcv7++rxWhSSI/RcM2UZMuyVz+1yuEV+gfMyIjmYE0HLT0GjtZ3kZMc4ZTjiH6GPjNfHG2kudtAgErhknHevaJGeKfQIH8mpkQwMSUCRVFo6TFQ1aqlslVLTbsOndHEscZujjX2Lx+JDAkgLSaE9BgNadEaggOcVy/EXbp6+3h3bw03zUgddscQe+h0OoxG46DrIiK8/++xty0ld1Xlfa22f+CssLAQnU43aPBAeBdZ9ixcydv+pvo6u4b/fXUUf8qoKGKjo/j4UD2VrVr+VVDN4qkphAcPnhFq6Tbw5leVXDI+nnEJYeSfaHZTxI7T2NXLe3trMJjMjIoK4dsXJON/cvVBgJ+K66ePYsuRBtq1xvM8k+2CAvyYkRlN/vEWdpe2MC4xbETtnW3tMVDdpmVCUrjTP8A3dPbyyaF62nX9P8ecaAVNoGtnAYU4nUqlIi4siLiwIKanR2MyK9R39lqS+/rOXjp0RjpqjByq6USlgtljYpmREePu0B2uuUvPR/vruH76KJe08NNqtfz617/mn//8Jy0tLWfcbjI5tw6MpyspKXHZ/nVXKy4uBuDHP/7xWW8PD3dPUUZhO1n2LLyBDDo5x7A+xfviKH5WfBjfyUvlg/21tHQbeOvrKq6bmkJCxOAq331mhS+KG/mytAW90bZe74qiUNvei77PRGq0hkB/9yauzd163t1bg77PTHJkMNdNTbFsI/BTq7jmghRSozXkpkfzeXGjU2KYmhrFvqp2Onv7OFTTybS0KKccx9OUNHSx+UgDfWaFL8tauXRcPOMTwxy+V1hRFAor29l5ohmzAmFB/izIiUfbXOPQ4wjhCH4n98+PigrhoqxY9H0matp1VLXqqGzV0tpjIP94/9/e2WNifW5vfWWrli1H6lk4Kcnpr+2BBx7giy++4IUXXuB//ud/eP7556mpqeHll1/m97//vVOP7elO38Pua/vXr7/+egCys7OpqKhg6dKlbNiwgZycHJ8ZsHCX05MWZycssuxZeAMZdHIOm5P5kTCKnxgRzPcuTOODfbW09Bh4u7CaqycnM/os+4q1Butfr8msUNLYRWFFO03deqD/Q2tadAhj4sMYHRdKqIv3Srb2GNhYWEOv0UxiRBCLp6VYBhdUKlgwKdHyuielRLC7tMWm12ytAD81szJj+fxoI1+VtTIxOcLtgxzOZFYUdpe28HV5G9C/+kFrMPHJ4XoO14Zw+YQEh/Xh7tH3sflIA5Un9yKPiQ/lypxEAv2gxPsXlYgRIMjfj6y4MLLi+gtkFlS0seN4M3sq2jD0mblsQrzPJfRFdV2EBQUwd1ycU4/z4Ycf8ve//53LLruMO+64g0suuYSxY8eSkZHBP/7xD2699VanHt+TDexRf+WVVwgKCrJp/7qrkzl7xMXF8aMf/QgAjaa/k8LAEn8xPKcnLc5OWGTZs/AGI2HQydUdScCOZH6kjOJHBAfw3Rmp/PtgHVWtOj7cX8u8CfFMTY2y+bkMfWYO1Xawr6qdrt4+APzVKkKD/OnQGSlv0VLe0p9opUQGMyY+jKz4UKI0zh2patMa2FhYjc5oIj48iOunjRq0zPvyCQlkJ32z0sLfT83UtCh2nThzEMcRJqZEUFDZRofOyN6qNmaN9s293Hpjf9I+8DPPTY/ioqxY9la281V5K1VtOv7xZSV5GdFcmBlt2e5gj7LmHrYcaUBnNOGvVnHp+Hgmp0SgUqkwm71/4E2MTHkZ0QT6qfn8aCMHajowmMz97TNdsCzdlQor25g5OsapA5utra2MHj0a6F9Z19raCsDcuXO5++67nXZcV3HEvvBp06ZZElxr96+7OpkTnuX0pMXXEhYh7OHrg07u6khiczLvy6P4cRGBdJ+S3wT5+7F46ii+ONrI4dpOth5tokNn5JKxcVbNAvXo+9hX1c7Bmg70ff1L8UMC/JiWFsWU1EiC/dW09hg40dzDicZuGrv01Hb0UtvRy3+PNxMbFsiYuDDGxIcSHx7k0JmnDp2RjYU19BhMxIYFcsO0UYMKSl08JpapZ1nqPi0tioKTs2GO5qdWMXtMLB8fqqewop0LRkUREuhbRa5aewx8uL+Wdp0RP7WKK3O+GTCZOTqGCUnhfHG0kYoWLV+Vt1Jc38llExLOuirkXPpMZnYcb2b/yXaJcWGBXD05mRgHzfYL4W5TUiMJ9Ffz6ZF6iuu7MJrMXDU5yafqbZjMCpWtWsYmOK9lZ1ZWFuXl5WRkZDBx4kT++c9/MnPmTD788EOioqKcdlxXcde+cEnmRrbTkxZfSliEEGfnro4kNifzvjyK/53cNA40Gthb2WZpM+enVnFFdgIRIQHsOtHC3sp2OnVGFk5KGrIvd2uPgYKKNo7Wd2E6+URRmgBy06PJSQofNNMaGxZEbFgQMzNj6Oo1UtrUw4mmbqrbdbR0G2jpbuWr8lbCg/0ZE9c/Y58cMbyErLPXyDuF1XTr+4jWBLBk+qhBSfP0kzPFZxMc4MfElAj2VbYPK4ahjEsIY094EE1devZUtHLJuHinHMcdSpu6+fRwAwaTmbAgf669IPmMWgyRIQEsnprCiaYeth1rorO3jw/21zImPpR54+PPKMZ4Ni3dej4+XE9LtwHoH4CZMyZ2WDP8QniiCUnhBPip2HSonhNNPXy4v45vX5A85N9mb1Te3OPUZP6HP/wh+/fvZ968eTz44INcc801PPvss/T19fHkk0867biu4q594ZLMCSHEyOSqjiQDbE7mfXkU30+tYt74eDJiNGw+Uk+Pvn+aXqVSMTMzhsjgALYcaeBEUw/vFFZz3dQUSyVwRVGoaddRWNlOWXOP5TmTI4PJy4gmKy70vDPr4cEBTE2LYmpaFL1GE+XNPRxv6qaiRUtXbx/7qtvZV91OsL+aELWKMmMjYcEBhAf5ExbsT1iQP+HB/oQE+A15rO7ePjYW1tDV20dkSABLclMHVTPPSY5g3vhzJ9C56dEcqOrArDj+g4lKpWLOmFje21fL/uoOpqVFWZXAejJFUfiqrJXdZf0DX6OiQlg0JWnIKvIqlYqxCWGkx2j4sqyFvVXtnGjqobJVy6zRsUxLizprlWtFUThY08H2kmZMZoWQAD/mT0y0eVZfCG+SFR/GdVNT+OhALZWtWt7dW8PiqSkE+UjruvKWnvPfaRh++ctfWr6//PLLKS4uZs+ePYwZM4apU6c69diu4G37wt1R7Vmr1fL+++8DWL5mZ2db/r+EEEJ4LpuTeV8fxQfIjAvl1lkZbD5ST3mz1nL9hKRwwoL8+ehALQ2dekul+9YeAwWVbTR06i33HRMfSl5GNMmR9o3GBAf4kZ0cQXZyBH0mM5WtWk409VDa3E2v0UwvKtoaus/6WD+VitAgP8KDAwg7meiHB/mjCfJj14kWOnRGIoL9uTF3FGGnFNzLig9lwcTE8w46RIYEMC4xjKP1zlkukh6jYVRUCDXtOvJPtLDAi/fCGvrMbD7SP2sIMDU1kkvGxVvVcirQX80l4+LJSY7g8+JG6jp62XG8maK6Ti7PTmBU1DfvLZ3RxH+KGizHyYjRMH9iossLKgrhDukxGm6YPor399VS19HLO3truH5aik+0Xezq7aOpS098eJBLjpeenk56erpLjiXO5I5qz8XFxaxevRqA1atXs3r1agoKCjx2wEMIIcQ3bP6k4+uj+ANCg/y5ftooCivbyT/eP9MJMCo6hJsuTOP9fbV06Ixs+LLS8hg/tYqJyRFMT48i2oHF6/z91GTFh5EVH4bZnEB9h5Zj5dWERcfRozfTpTfSre+ju7ePHoMJk6LQ2dtH58lie6cLC/LnxtzUQTPeo6JDuGZKstVJ84yMaKcl8yqVijljY/nnnmqO1ndR164jNyOaSckRTlsqrij9fa0PVHfQ1dtHanQIGbEaEiOCUdtZq6BNa+CjA3W09hjwU6m4PDueSSmRNj9PXFgQ381L5UhdJzuON/d3WCioZmJyBHPGxtLSbeDTkytJ1CqYMzaO6WlRPlfdW4hzSY4M4cbcVN7dW0NTl563C6q5Yfoor1/ZA1DR0uO0ZP7ee+9l7Nix3HvvvYOuf+655zh+/DhPP/20U47rLbylxdhwZvSzs7OJjIyko6ODyMhIPv/8c7JPOb6jufr/VHpbCyF82bCnLXx5FF+lUpGXEU1adAgfH6qntad/D3K0JpCbZqTy0YE66jp6CQ5Qc0FqFFNTI50+E6RWq0iKDKZLA+PSo1CrBy8lNZkVevR9dJ1M7geS/IGEP8jfj8snxBMR8s0H3Pjw/pZ0tiTKCRHBpMdoLO3OHC05MoTLJ8Szu7SVzt4+th5t4quyVqalRXFBauSgqvvD0Wc2U9LQzb6qdhq7vllZUdOu48uyVoL81aTHaMiI1ZARGzpoJcO5lDf38PHhegx9ZkKD/Pj2lBSSIoPP/8AhqFQqJqVEkhUfxs7jzRyq7eRIXSfHG7sxmPqLEUZrArhqchIJ4fYfRwhvFh/eP/C1cW8NbVqjJaF3dmcQZytr7mFGZoxTnvudd97hgw8+OOP62bNn8/vf/37EJ/Pe0mJsODP6Go2Gxx9/nDVr1rBixQqnz8i7+v/Um3pbe0NLQyGEZ7E58xyJo/gJEcF8f2Y62441caimvzq4JtCfJbmjqO/oJTEi2GMKLvmpVUSEBAxK1s8lWhPAktxRdiXHMzKjnZbMA1yQGkVOcgRHajspqGyjq7ePnSda2FPRxtTUSKalRdk9eNKt7+NgdQcHazrQGftrI/ipVYxPDCMpIpjqNh2VrVr0fWZKGrspaezf0hAbFkhmTCgZsRqSo4LPqJytKAp7KtrYebJ9X3JkMNdMSXbYcveQAD+uyElkYkr/0vvmk0XuJqX01zrwlPehEO4SHRpoSeg7dN8k9LFhrlmm7gy17b3o+0wOG8Q8VUtLC5GRZ64YioiIoLm52eHH8zb2VKU/Wzs8vV5/jkc4Pk5rYx1w9913u6yIsasr/XtTb2tpaSiEsJXNGcZIHcUP9Fczf2IiGbEaPitqQG80469WkxptXYEYtUpFbFggyZHBJEUGkxwZgor+4kaVrVqq23ROafd2LuHB/txwWgE8W2TE9rfMa+py3oeUgJO97SePiuRYQxd7ytto1Rr4uryNwsp2JqdEkJsebdXgxcBS+n1V7Rxv7ObkzgnCgvyZkhrJ5JQIy//FBalRmM0KDV29lLdoqWjpoaFTf7LDQH+NBH+1irQYDRknZ+5Dg/zZcqTBkvhPTolg3oR4p7TKSo4M4fsXpnO0oQtNoB8Zsb5f5M5PrbJsdxHiXCJCAvhuXv+S+5YeA28XVnP9tFEkRnjnqhWzolDZomVcouPbqI0dO5ZPPvmEn/3sZ4Ou//jjj8nKynL48byNPVXpz9UOz1mt8Lypf7OrK/170/+Nr7c0HBjo2rVrF0VFRZa2XUII+9mcxY30UfzxieEkRgTz6aF6atp1Q94vNMiPpMiQ/uQ9IpjEiGAC/c9M6qJDA5meHo3JrFDbrqO8pYeKFq1TE2ToL7B3w/RRRFo5gz+UvIxoPjlU76CohuanVpGTHEF2UjilzT18Xd5KQ6ee/Sdn1yckhpOXEX3W2behltKnRAYzLS2KrPiwsxakU6tVJEeGkBwZwsVZsegMJipbtVS09v+MtAYTZc09lu4FAX4qjCYFtQrmjY/ngtQop/1/DMSXkxzh1GN4gtAgP2aPiWNSSgR9ZoVeo6m/CKTR9M33fSZ0hpOX+/pv0xtN6E7eLoMAI09okD/fyUvlvX01NHTq2VhYw3VTUxgV7dwWMc5S1tzjlGT+/vvv52c/+xlNTU1861vfAuA///kP69at89nBeWcbqh3ezJkzndYKTzieO/ba+3pLw4GBrtMHD+HcA13uWO0ihLewOZmXUfz+au7fyUtld1kLX5e1oVb179UcmHFPigy2OUn2OznLmxaj4ZJx0KPvo+LkjHBla3/i6CiB/mqun57ikGWnExLDyT/eTNcQxfYcTaVSMSY+jKy4UKradOwpb6WqTUdRfRdF9V2MiQ9lRmYMSRHBQy6ln5AYztS0SJv3locE+jEhKZwJSeEoikJzt4GKk4MvtR06jKb+dnDXTEn22oTBk/ipVUxLi2JWVoxleXGAn4oAPzW2/OgURaG8RcveyjYqWpy3LUR4nuAAP5ZMT+XD/bVUt+t4d18N10xJ9sp2jc56795xxx3o9Xoee+wx1qxZA0BmZiYvvvgi//M//+OUY3oLe2cRh2qHJ4m8d/GmvfbeYmCgS6VS8aMf/YgNGzaQk5NDeHj4OX8/3LHaxdVk1YKwl83JvIzi91OrVcweE8fkUZGEBvpb1WrMFqFB/kxMiWBiSgSKotDYpaeiRUt5Sw81rfb3HfZTq7j2ghS7W+adTq1WkZsRzbajTQ55PmupVCrSYzSkx2io7+xlT3krJ5p6LP/iw4Jo6dEPWkp/QWokk05ZSj/c48eHBxEfHsSMzBgMfWbqOnTEhwf5RDssd8uKD+XScfFEhw7/Q5NKpWJ0XCij40Jp6dazr6qdorpOjCbfmO2ICwtkTHwYYxPCiAgJoLlbT1PXyX/delq7DfSN4JUJgf5qFk9L4d8H6yhv0fLB/loSI4KYnBLJ+MTws66Y8kTd+j4au3qdUuByYL90U1MTISEhhIWFOfwY3sjeWUR7nW32UT7Qf8PVM+XetNfeWwwMdBUWFgL9g1zWFFwcCatdXP33xttIccih2Zx1yCj+YBEuaHukUqlIPLlUf+boGLS9ej7sOsq3LsoAtR8ms4LR1L+UuM+s0Gc202fq/95kNmM0KZb7pMdoSI+1bp+/tSanRPJlaSu9RsetHrBFUkQw374ghdYeA3sqWjla30VTd//yq5SoYKalDr2U3lEC/dUjYt+6s8WEBnLp+HinzZzGhgVxRU4ic8bGcaimg31V7S5bVeIoKhWkRIYwJiGUMfFhZ1RqT43WDKrlYTYrtPQYLMl9U5ee5m49Ogeu9vF0/n5qvn1BCluPNXKktpOGTj0NnY1sL2lifGI4k1IiSIoI9vh2juXNWqck8319fWzdupUTJ05wyy23AFBbW0tERMSITuztnUW017lmH2HoD/QjZRDA1TPl3rTX3teNhNUurv5742rD/TslxSGHZtcUooziu1eAn5pgf4jSBBAQ4P4eyoH+aqamRvJlWatb44gJDWTBxCQuGh1LRauWxIggadPmJQL91VyUFcO0tGinDroMCA7wY0ZmDLnp0Zxo6mZvVTs1bUPXwHA3f7WK9FhN/xaT+FCbVn+o1d+sIjlVZ6/RMoPf3K3HaDKjPpnMqlQqVPQPHKhQnfx68vpTvjeZ+uitU5iUEoGfnz+KoqAAisLg71FOfu2/npPXq9UqAtQq/P3U+PupCFCf/Oqnwv/k94F+6v7b1f1bLPz9VBj6zPynqMHSzcEafmoVV2QnctHoWIrruzhU20G71sjh2k4O13YSGxrIpJQIspMjCAlwfNV4Ryhv7mHmaMe2qKuoqOCqq66isrISvV7P/PnzCQ8P54knnqC3t5eXXnrJocfzJvbOItprqNnH832gt3cQwNvITLlwFXcMkNn798beegL2vkZ7Hzfcv1O+XhxyOOxK5mUUX5xualoUBRVtHrGcNyIkgCmjzizSKDyPSgUTkyOYMzbOYe37bKFWqxiXGM64xHAaO3vZW9XOsfoum9/HKhWEBvoTebItZESIP34qlaUAX+/JYnw6Q/9XazpXBAWoGR0bypiEMDJjQx2+HDwiOICI4ADGxNv/N9toNKIvVbgiO8HlA4s3z0xn69Fv2oVaKzTIn7yMaHLTo6ht7+VwbQcljd209BjYXtJM/vEWxiSEMiklkrToEJtm6xVFoVvfR2uPgTat8eRXAyoVzM6KIylyeIOLdR299BpNBDtwsOEXv/gFM2bMYP/+/cTGxlquv+GGGywzYcI1hpp9PN8HensHAbyNzJQLV/GmATJ76wnY+xrtfdxw/065ujikOwpg2svmT88yii/OJjTIn5zkCA7a+MFajFwpUcFcNiHBY9qFJUQEs3BSEnPHxnGguoODNe306L9Zih4c4HcyWT+ZtAcHfJO8B/vj72d9sm06WZV/IMHvPaXyvtFkJjU6hNRojUtWKXirAL/+dqHpMf3tQm1t7alSqRgVHcKo6BDmjTdxtKGLw7WdNHbpOdbQzbGGbiKC/ZmUEsnE5AjCgr85XfaZzbRrjbSdlrS3aQ1D1mL4V1sVF2XFMiMj2u7l/GZFobJVy3gHVrXfsWMH+fn5BAYOXq6YkZFBTU2Nw44jnMfeQQAhfJ29s8j2Jp7umNG3t56Ava/R3sd5298pbyqAaXMyL6P4Yih5GdEcqu1AkUFycQ7hwf7MGRvnsW31QoP8uXhMLDNHx1DTpiM4UE1kSIClor4j+KlVhAb5u2U1gq+ZkBROYkQQmw7W09DZa9dzBAX4cUFqFBekRtHY2cvh2k6KG7ro7O1jV2kLu0tbSI/VoFapaO0x0KkzMtSfObWqv+NJTGgg0ZpAokMDKW/uoaSxm50nWqhs1bJwYtKgwQFblDX3ODSZN5vNmExn1k+orq72qNmn4dJqtbz//vsAlq/Z2dmWD5VCCOt4U40Ge2eR7U083TGjb289AXtfo7cl5fYWzvOmbT02f5qQUXwxlOjQ/qraxxu73R2K8ECRIQFMHhXJtLQor6gg7ndyn7rwfFGaQL53YRo7jjdTWNE2rOdKiAgmISKYuePiON7YzaHaDmrbe89oDRforyZGE0h0aMDJr4HEaAKJCAk4Y0VFTlI4GXWdbD3aRHWbjn98VcGVOYl2bXGoaOlBURSHFeubP38+Tz/9NH/5y1+A/hUL3d3dPPzwwyxatMghx/AExcXFrF69GoDVq1ezevVqCgoKPPYDqBCeypuWoLt6C8pI2fLiTewtnOdN23psTuZHyii+sM+MzGhJ5oVFoL+asQlhTEyOINXG/cdC2MJPrWLe+HjSokPYfKRh2NX6A/zU5CRHkJMcQVuPgRNN3f0J/MkZd02gn9XvZ5VKxaSUSFIiQ/jkcD2NXXo+OlDHBaMiuWRcnE1bNHr0Jhq79A7bnvLUU09x+eWXM3HiRHp7e7nlllsoKSkhLi6ON954wyHH8ATZ2dm88MIL/PWvf+WOO+5g1qxZZJ8y4yKEsI43JayunkX2tlnrkcCewnnetPoE7EjmR8oovrBPcmQIo6JCqGn33MrgwvlGRYUwMSXCq/p4C9+QFR/GrbOC+PhQvcM6FESHBjIj1PYq8oH+aiYmRxCpCWB3aQvRoYF8d0Yqu060UFjZzoGaDmradVw1OYm4sKDzP+FJZc09DkvmU1JS2LdvH2+88QaFhYWYzWbuvPNObr31VkJCQhxyDE+g0WgsnXiEEPaThFV4E3sK53nT6hOwI5kfKaP4wn55mdHU7JNkfqQJD+4vgjgxOYLoUM8rECJGjvDgAL6Tm8rusha+Kmt1eR2PiJAApqVFMikl0lJ5fnxiOFuPNlLS0M0l4+JJj9Gw+UgDLT0G3vy6ikvGxnFBaqRVs/0VLT1clBV73vtZKyQkhDvuuIM77rjDYc850mm1WoqLiykqKgKgqKhI9ugLIYQX8KbVJ2BHMj9SRvGF/bLiQokNC6TFhh7Qwjv5q1VkxYcxKSWCjFiNLKMXHkOtVjF7TBxp0Ro+OVRPt77P6cccFR1CbnoUWXFhqE/bNx8W5M+3L0ihtKmbz4sbyYgN5dZZ6Ww50kB5i5atx5qoaNUyPyeRkMBzF1us6+hFZzCd935D+eCDD6y+73XXeVqpH/vl5+ezbt06li1bxpw5c5x6rOLiYvLy8iyXly5dKnv0hRDCC8TFxXHLLbdYZugHeOqArF3ldGUUX5yLSqUiNz2aLUca3B2KcJKEiCAmpUSSnRTu0J7XQjhaWoyGWy9K59PD9ZQ3a8//ABv5qVWMTwwnNz2KBCuWvmfFh5EarWFXaQv7Ktu5bmoK+6s72FHSTFlzD//4soIFk5JIjxn6A4OiQEVrD9lJ9nWEGJh1GKBSqVBOW74wMDB3tho53mrdunVs2rQJwOnJfHZ2NgUFBYP2W8oefeFJvG1fsBCu5E0DslYl8yN1FF/YLyc5gl0nWlwyGyZc6+IxsQ5d4iuEs2kC/bl+2igKK9v4sqwVvdG2nvRnf04/pqRGMjU1yuYWg4H+auaNjyc7KZzPihqYplIxKiqETw7V06o18O7eGvIyork4K/aMyvgDypvtT+bN5m9e/2effcZvfvMb1q5dy8UXX4xKpWLnzp387ne/Y+3atXY9v6eaP38+u3fvZv78+U4/lkajITc3l/z8fN555x2WLVvm9BkdrVYry/qF1bxtX7BwvOFsB9JqtTz77LMAPPvsszz//PNWP+7U48H5Z7wHBp527dpFUVGRSwadBgZk77jjDg4cOMAFF1zgsQOyVn0CcecofmZmJhUVFWdcf8899/D888+jKAqPPPIIf/nLX2hra2PWrFk8//zzTJo0yaFxCNv4qVVMS49iR0mzu0MRDqJSwbeyE7ggNcrdoQhhM5VKRV5GDHkZMej7THT19tHV20enznjy+/6vnb1GevQmzENstI8PD2JaWhTZSeE2VaE/m8SIYL5/YTp7q9rYXdrKzTPT2F7SxKGaTgoq2qhq1XL15CSiNGfWoKho0TqkRd19993HSy+9xNy5cy3XLVy4EI1Gw09+8hPLhy1HcPf5fMuWLbS2trJlyxaXFcJz5WqA4uJili5dCnj2LJLwDN62L1g43nBmn4uLi1m/fj0A69ev5+c//7nVjzv17xRw3mMODDz97Gc/O+M2Zw06DQzIApac11MHR61K5t05iv/1118PGiA4dOgQ8+fP57vf/S4ATzzxBE8++STr169n/PjxPProo8yfP5+jR4/KqKKbTRkVyVdlrRj6hj8LJtzLX63iqslJjEuU3ynh/YL8/QgK8xuygrzZrNClPyXB1xnRGk2MjQ8j7RzL3+2hVvcPMoxNCOeL4kYC/NRkxITyWVEDjV16Pthfyw8uyjgjadcaTDR06kmKHF5V+xMnThAZGXnG9ZGRkQ6f+XD3+XzZsmWDvlrDnlmk4RxzYKbs/fffB+D999+3+nint9/z1Fkk4RmkKr0YmH2+/PLL6ezsJCIiwuq/G9nZ2SxbtoxXXnmFO++806bH2domdGDgSaVS8aMf/cjqQaezbSXR6/VWxTkgMjIStVp91vPk2SSFqQhpPwa13wz2h7QfIynMeTWlbN4z78pRfID4+PhBl3//+98zZswY5s2bh6IoPP300zz00EMsWbIEgFdffZXExERef/117rrrrrM+p16vH/TD7OzsBMBoNGI0Gh0avzMMxOjpsfoBOUmh7K1sd3co4ixMJvOgr0MJ9FNzzZRE0qKDPf49J1zLW/4W2UPjD5qwABLDAoBvirs667Vq/OGayQmUNHQT7K8iISyADV9V0aY1Ut3Ww6ioMwvMHm/oIFbzTc0Ke2K78MILue+++9iwYQPJyckA1NfXs2zZMmbOnGn/CzoLZ5zPYehz+unmzJlj8+y4PbNIw3H6TNnq1atZvHixVcfTaDRs2bKFgwcPunT1gRDCOw3MPo8ePZr9+/czevRoqwcqNRoNf/rTn/jTn/5k8zFffvll9u/fj9FotOrv1MDAU2FhIWD9oNO5tpJYO0C8du1aS+FUa9yVF0jO9rtg+zfX5Zy83llsTuZdOYp/OoPBwIYNG7j//vtRqVSUlpZSX1/PggULLPcJCgpi3rx57Ny5c8iT/+OPP84jjzxyxvWbN2/22CUUZ7NlyxZ3h3BevX1wol6FWZEq556qtLR0yNsC1Qoz4hUO7irmoAtjEt7FG/4WeZN4M7S2q0gMVlHdo+bLo7VMiTlz2X9jhUJL0TfXD8xC2OKvf/0rN9xwAxkZGaSnpwNQWVnJ+PHjee+99+x+DefjqPM5DH1OdwR7ZpFOZesy+4GZsu9973scP36csWPH2nQ8e1YfCCG823BbYT7//PM2JawD7O0QUl1dPeirswy1lWTmzJlWbyOxZRBYq9XycoGBqTf9ltGjR1NbW0tKSgq1tbW8XPAQzqoqZ3My78pR/NO99957tLe3c/vtt1uOC5CYmDjofomJiWfdlzfgwQcf5P7777dc7uzsJC0tjQULFhARYV9BIVcyGo1s2bKF+fPnExAQ4O5wzivmWBMHqjvcHYY4jclkprS0lKysLPzOsvc3PDiA66clE32W/bpCgPf9LfI2kw/W84t/HqBRryZjdAaB/oN/T1WouGxuBprA/lP5UDPS5zJ27FgOHDjAli1bKC4uRlEUJk6cyJVXXunUVpOOOp/D0Od0RxjubLetyfXATFlKSgqlpaWkpKTYNMlw4MABdu/ezYEDB5y6R98dBamE8HVarXbQFhuwblvPcCuv27NqCeyvCbJmzRrWrFnDihUrbD6mLYbaSuKsehDFxcXUdyss+d+zDy47a/u3zcm8u0bxAV555RWuvvpqUlJSBl1/+geO8xUFCgoKIijozL2SAQEBXvWB1FvivSInGaNZxdH6LneHIs7Cz0+NWj24vVxcWCA35KYSZmOVbjEyecvfIm9z3fRU1mwqprnbQGmzjokpZw4213QYmZjSvwTf3p+BSqViwYIFg2bFnc1R53MY+pzuKMOZ7bb3Q7KtSzsHrFmzhrq6OtasWePUZfauLkglbdTESFBcXMzq1auB/i02q1evtiopH1jR8/rrr9u8h3047P3bePfdd/vkNiB3FZW0+ZO6u0bxKyoq+Oyzz9i4caPluqSkJKB/RH9glQBAY2PjGaP7wn3UahVXTUrCrCiUNHQ7/3gqFTMyozne2E1rj8Hpx/M1o6JCuG5aivSPF8LNVCoV10xJ4dVd5Ryp6zxrMl/R0nPW68/lmWee4Sc/+QnBwcE888wz57zvvffea9NzW8Pbzuf2JuTuOOaKFStcMuNlb0Eqe0kbNTESZGdnM3bsWMsWm7feesuqpHxgRc+CBQtob29n/fr1Nu9lt4c7/jZ6soGVAFqt1rL98NixY9xwww1O3cZt17SbO0bx//a3v5GQkMA111xjuW706NEkJSWxZcsWpk+fDvTvw9u2bRt/+MMfXBabOD+1WsWiycn8W6njeKPzEvoAPxWLpiSTFR/GRVmx7Ktq58uyFof0lR4JsuJDWTQlmYBhttwSQjjGnZdk8vdd5dS062jXGs5oU1duR4u6p556iltvvZXg4GCeeuqpIe+nUqmckszL+dx5XDXjZW9BKntJGzUxEmg0mkFbbGz9nUpNTaWlpYXU1FQnReh9htMhxF6nr7CwtoipvaxK5t09im82m/nb3/7Gbbfdhr//NyGrVCruu+8+1q5dy7hx4xg3bhxr165Fo9Fwyy23ODwOMTxqdX+i/e+DdZxwQkKvCfRj8bRRllZNfmoVeRnR5CSHk3+8hcO1HQzROloAOckRLJiYiFotxQqF8BTpMaFMSongUG0nRXVdXDwmdtDtvUYTdR29pJyl2v1QysrKzvq9K3jj+fzFF1+0zHb74tJQbyBt1MRIYe8WG7C/kJ0vG06HEHtlZ2czdepUDhw4wAUXXOD0LQ9WJfPuHsX/7LPPqKys5I477jjjtl//+tfodDruuece2tramDVrFps3b5YlVx7KT63iminJfHSgltKmHoc9b2RIADdMH0V06JnF2jSB/syfmMgFqZFsPdpIbXuvw447HP5qFZogf0ID/fBTq2jq1rttBUFeRjSXjItz6lYZIYR9vndhGofeP0xRfScXZcWc8Xta3txjUzLvTt54Pv//7d17XM53/wfw19XV8epE0YmIhUQHyjFL3HKcFfdmOaU5zHFmjhs/W4vFLIfb3Bo2YW6ye5a53bi1jdC4EdEQOZVRGUknrlLf3x/urnW5iuu6uo7t9Xw8rkf6Xt/v5/u+8snX+3PU1Tx0ahi4OCDVR32GrnPYu6Lq9QTGjx+vs+RaIpFg8uTJWLJkCSZPnqz1ndKUSub12YoPAP3794dQR5eqSCRCdHQ0oqOjdRsUqe2PhD4XN+/XP6F3trNEeCc32YrOLzpvRKA7MvOKcTzrPkqkT+t97+eZiESQmIshsRDD2twUVubPvlZ/LzEXw9ri2dfn56QLgoDCsgrkFT1B/v9evxdLUVGp3eEEQa84ortn05efSER68WagOz7dfxnFT57i9sPHaOEg/x+Dmw9K0dOziVplv/HGGwgMDMQHH3wgd/zzzz/HqVOn8M9//lPtuGtjjM/z+sxDV3frJtKv+iy4p+vFAcnwlJWVyW0TByi3Kj3VTd2fafV6ArpMroFnW/YWFBSotQuKqrhUNemFqdgEr/m64l8X7uLWfdX3Rq7m0USCIT5uCls21UUkEqG9qx1eaWqD07cKcDb7IZ5WqZ8s21iYwt3BCs0bS+DeWAI7K1O1e7dFIhEaW5ujsbU52rs+W9CqqkrAg9JyWXKfXyTF/RIpKusRc837+ThUIaBl43qXRUTaY2kmRkjbpjh4MR+XcosUkvnfi6UoVbNxMiUlBR9//LHC8YEDB+pkASVjUJ956Opu3UT6VZ8F93S9OCBX+jc8mZmZGDNmDADIvqqyVRwpqu/PVJfJNVC/XVBUpXIyr+tWfGq4TMUmGOrrhr3n7yL7geoJfXtXO4R6O0Osxhxvc1MTBHk2QQc3O6Rc/V3pIf9W5mI0b2wF98YSuDtI4FDLsH5NMjERoamtBZraWqBjM3sAwNPKKtwvKZf14D+pqISpiQnEJoDYxASmJiKYmIiefRWJYCr+31cTEcT/e5maiGBlCqQdv6LV+IlIM8b3aoWDF/Nx/V4JpO0qYWH6x8geQQBuPSiFu43q/xaWlJTA3Fzx3zEzMzO19q0nebr8Dx1pTn0W3FN3ccDaknKpVPrS6/4sK/1XL2RWs3fWUHu7vby8MGfOHNk2caNGjdLJVnENmZeXFxwdHfHgwQM4Ojri0KFDKv1Mdf1vsS6nPKiczLMVnzTJVGyCoX5u+CH9Lm4XKJ/Qd23lgCA1h5XW1EhijjD/Zrh1vxQpV39X2MrO3NQEzRpZwd3hWQLf1NZC7/PKTcUmcLG3lC30p66KigoNRURE2tbFwwGu9pbIffQEWfklssa9arful8Hdxlrlcjt27Ihdu3bho48+kjuemJgIb2/vesVMnMNqrPSx4N6LknJlRgI09JX+n1/IbMyYMQbb2y2RSLBjxw4UFhZix44dzI80QCKRYMmSJbIpT6r+vTfkf4tVTubZik+aZiY2QZi/G/acu4PfHj5+4bkiERDSzgn+7o00GoNHE2u4O0iQfrsQ2Q9K/5fAS+BiZ8nV3YlI70QiEcL9myE+5Tou5RYpJPPZBaUIaqF6D9XixYvx17/+FdevX0ffvn0BAD/99BN27tzJkXZk9IxpCHpdSXnXrl2VGgkANOyV/qsXMuvbty8ePXoEe3t7g+7tHjVqFNatW6f33TgaEl1tvWlsVE7m2YpP2vAsoW+GPel3cKeOhN7URIRBPi7wdNLOkLHqrew4h5yIDNHbQR748uh15D56goel5XK7d0grqpD76MWNobV5/fXXsWfPHsTGxuK7776DlZUVfH198eOPP6J3796aDJ9I54xpCHpdSXlD6Vmvr+qFzDw8PHD+/Hl4eHhofYj984uuqTKs/8aNG3Jfqf64oGjtVE7m2YpP2mJuaoJw/2bYc+4O7hTK/6fU0kyM1/3d0MxItl8iItI0JztLdHJvhLM5hbiUW6Qw1eh2gerJPAAMGTIEQ4YM0USIRAblzzIE/c9El3upP7/omirD+rlehuZxQdHaqZzMsxWftMnc1ARhnZ4Nua/eD97W0hTDOjWDo42FnqMjItKvMd1b4mxOIS7nFaHHK44wqbGGR3aBelt9FhYW4rvvvsONGzcwd+5cODg44OzZs3B2dkazZs00FTqRzv1ZhqAbk/pu26bLuc9eXl6wt7dXa1h/Q56jrS9sIKmdWlvTsRWftMnCVIzwTs2QdPYOKqoEhPu7wdbSTN9hERHp3Wu+bli851eUSiuRU1AGD8c/Fr27X1z+gitrd+HCBfTr1w/29va4desWJk6cCAcHByQlJSE7Oxvbtm3TZPj0J6fuiu3UcOh627bqVfB/+OEHAMAPP/ygdOOBRCLR6bB+ejE2kNROuc25n1NYWIivvvoKCxcuREFBAYBn/zDfuXNHo8HRn1d1Qv9mQHMm8kRE/2NuaoJQb2cAwKW79V90dvbs2YiKikJWVhYsLf/YIWPQoEE4evRovcsnqqnmHPZevXphzJgxmDBhAgDDmr9O2uPl5YWIiAiYmZkhIiICaWlpWl3IrnoV/JiYGABATEyMrB4q4+9//zuGDRuGv//979oKkaheVO6ZZys+6YqlmfjlJxER/cmM79UKe9Lv4sbvpXhSUVmvfytPnz6NDRs2KBxv1qwZ8vLy6hMmkQJ1V2wH6tfDSoZDIpEgKSkJFRUVSEpKws6dO7V6v+pV8Pv06YOioiLY2dlxuDw1KCr3zLMVn4iISH98mtnDvbEVKgUBV/KL61WWpaVlrdvKXrlyBU2bNq1X2UTPq57D3qtXL7Rv3x6A8iu217eHlTSrrKxMrmHl7NmzsmkULzNjxgxYWFhgxowZ2gwRwB+r4C9fvhyurq5Yvnw5G4CoQVE5mT99+jQmT56scJyt+ERERNonEokwoos7AOBybv2G2oeFhSEmJgYVFRWysnNycvDBBx/gr3/9a71jJdKU6h7WOXPmoFGjRpgzZ45B7zPe0GVmZso1rAQEBCjduBIXF4cnT54gLi5OmyHKmTp1Ku7evct9yqnBUTmZZys+ERGRfo3q2gImIiC/SIoHJeovIBYXF4fff/8dTk5OePz4MXr37g1PT0/Y2tri008/1WDERPVT3cN6+vRpFBUV4fTp0zrfZ1yV3ueGzsvLS65hRdtz34modirPma9uxf/2228BsBWfiIhI1xxtLNC1lQNO3ijApdwivNpGvcZ0Ozs7HD9+HD///DPOnj2LqqoqdO7cGf369dNwxNTQ1HeLMWOg65XXjYlEIpFrWNFlLzsR/UHlZD4uLg6DBw+Wa8XPy8tDjx492IpPRESkI+N6eODkjQJk5hWj5ytN6lVW37590bdvXw1FRn8G+kp0Y2NjsXLlSp3sNe3l5QVHR0c8ePAAjo6OOHToEHuficigqJzMsxWfiIhI//p5O8PW0hTFT54i+0Ep3FTsEK2qqsKWLVvw/fff49atWxCJRGjVqhXeeOMNjB07FiKRSDuBU4Ogr0RXl6uLSyQSLFmyBEuWLMHixYvZI/8cXTasEDVkWVlZKC4ulhvtVFJSotS1Kifz1diKT0REpD9mYhO85uuKnadu41JuEdxesVP6WkEQ8Prrr2P//v3w8/ODj48PBEHA5cuXERUVhe+//x579uzRXvBk9P4sia6vry+6d+8OX19ffYeiFc9Pl1BlqgS3bSOqv6ysLLRt21buWPVoJ2WolMyzFZ+IiMhwjOvpgZ2nbuPm/VI8bmGt9HVbtmzB0aNH8dNPP6FPnz5y7/38888IDw/Htm3bEBkZqemQqQGZOnWqUawOXp+EdeXKldi/fz8ANMjE9fnpElwTgEi3ioufbTG7fft2eHh44NatW/Dw8MClS5fwzjvvvPR6pVezr27FnzhxIu7cuQMfHx906NAB2dnZiIqKwrBhw9T/FERERKQyLxc7vNLUGlUCcFWFPed37tyJhQsXKiTywLORdx988AH+8Y9/aDJUIr15PmFVZX/6OXPmYPDgwToZSl5WVoazZ8/KNTxoe/V8Ly8vrF+/HoGBgVi/fj3XBCDSk/bt2yMoKAijR49GUFAQ2rVrp9R1SifzNVvxz507h507dyIxMRHnz5/Hjz/+iJ9//hnbtm1T+wMQERGR6kZ2bQEAuJqnfDJ/4cIFDBw4sM73Bw0ahPPnz9c7NmrYUlNTMXz4cKSmpuo7lBfy8vLC8ePHsX37dhw/flylhDUoKAjff/+9TnrlMzMzERAQoHbDgzokEgmSk5ORkZGB5OTkBrUbAdGfgdLJPFvxiYiIDM8bAc1haiLC/dJypa8pKCiAs7Nzne87Ozvj4cOHmgiPGrDqIegrV67UdygvJJFIcOHCBcybNw8XLlww2ITVy8sLaWlpajc8qEuXow+ISLOUTubZik9ERGR4GknM0ctTta3pKisrYWpa97I5YrEYT58+rW9o1MCpkwTqYyg5ACxZsgS5ublYsmSJ1u+lLolEgs6dOyMpKQkTJkxAUlKSThoeLly4gJMnT+LChQtavxcRaZbSC+CxFZ+IiMgwjevZEj9nZCt9viAIiIqKgoWFRa3vS6VSTYVGDZg6q5lXDyWvpqtF10aNGoV169Zh1KhRWr2PJqxbtw5SqRTr1q1DXFzcS88vKytDZmam2ov81WzoMIYFDYnoD0r3zLMVn4iIyDC92qYp7K2U36Bm3LhxcHJygr29fa0vJycnrmRPWlE9lDw4OBhmZmYIDg7WyVDyGzduyH3VprKyMnzxxRcAgC+++AJnz55VafTBjBkzYGFhgRkzZih1fn3n2i9evBiurq5YvHix0tcQkWFQ+snPVnwiIiLDZCo2wWt+bvhVyfMTEhK0Gg9RXaqHkkdERCArKwsRERE6GUpePRVAF/PCMzMzsWXLFgDPFpDesmWLSqMP4uLilOqRr1bdQPL+++/jxIkT6NGjh0oNJMayxSARKVK6Z56t+ERERIZrRKC7vkMgUlpiYiLy8/ORmJiok/vpclV6Ly8vREREwMzMDBEREUhLS9Pq6IOaDSRNmjTRWQMJEemf0j3zbMUnIiIyXK80tdF3CESEZ8m1VCqFiYkJpFKp1tcDqJacnIyCggIkJyezp53oT0L5CXZERERERBoQGxuLlStXNtjt0HQ5rL9aaGgoTp48idDQUJ3dk4j0i8k8EREREemUOivhGxN9fD72zBMZJxcbEawKrwJ3/5gBb/XomlLXMpknIiIiIjJy+hgNQET1NznAHO2PTgaO/nGsnVRQ6lom80RERERERq6hj3YgaojKysqwIa0cfiM+QKtWrXD37l24ubnh2vUbAGJeej2TeSIiIiIiIiIdy8zMRF6JgOHTP1HreibzRERERERERDoWHh4O4NmWltnZ2RgzZgy2b98Od3d39O7d+6XXK73PPBERERERERFpRpMmTTBx4kR07twZV69eBQDZV2UwmSciIiIiIiLSk8zMTMTEPJsjHxMTo1SvPMBknoiIiIiIiEhvvLy8YGdnBwCws7NDSkqKUtcxmSciIiIiIiLSE4lEguXLl8PV1RXLly+Hv7+/UtcZfDJ/584djBkzBo6OjpBIJPD390daWprsfUEQEB0dDTc3N1hZWSEkJAQXL17UY8RERERUGz7TiYiIajd16lTcvXsXU6dOVfoag07mHz58iKCgIJiZmeHAgQO4dOkSVq5ciUaNGsnOWbFiBVatWoV169bh9OnTcHFxQWhoKIqLi/UXOBEREcnhM52IiEizDHprus8++wzu7u5ISEiQHfPw8JD9WRAErFmzBosWLcLw4cMBAFu3boWzszN27NiByZMn6zpkIiIiqgWf6URERJpl0Mn83r17MWDAALz55ptISUlBs2bNMG3aNEyaNAkAcPPmTeTl5aF///6yaywsLNC7d2/88ssvdT74pVIppFKp7PuioiIAQEVFBSoqKrT4iTSjOkZjiJUMF+sR1RfrkGEx9L8HXT/TiYiIGjqDTuZv3LiB+Ph4zJ49GwsXLsSpU6cwc+ZMWFhYIDIyEnl5eQAAZ2dnueucnZ2RnZ1dZ7nLli3DJ598onD80KFDkEgkmv0QWpScnKzvEKgBYD2i+mIdMgxlZWX6DuGFdP1MJyIiaugMOpmvqqpCYGAgYmNjAQCdOnXCxYsXER8fj8jISNl5IpFI7jpBEBSO1fThhx9i9uzZsu+Liorg7u6O/v37y7YEMGQVFRVITk5GaGgozMzM9B0OGSnWI6ov1iHDYug90rp+phMRETV0Bp3Mu7q6wtvbW+5Y+/btsXv3bgCAi4sLACAvLw+urq6yc+7du6fQsl+ThYUFLCwsFI6bmZkZ1X9IjS1eMkysR1RfrEOGwdD/DnT9TCciImroDHo1+6CgIFy5ckXu2NWrV9GyZUsAQKtWreDi4iI3xLO8vBwpKSno2bOnTmMlIiKiuvGZTkREpFkG3TP//vvvo2fPnoiNjcWIESNw6tQpbNy4ERs3bgTwbCjerFmzEBsbizZt2qBNmzaIjY2FRCLBqFGj9Bw9ERERVeMznYiISLMMOpnv0qULkpKS8OGHHyImJgatWrXCmjVrMHr0aNk58+fPx+PHjzFt2jQ8fPgQ3bp1w6FDh2Bra6vHyImIiKgmPtOJiIg0SyQIgqDvIPStqKgI9vb2ePTokdEsgLd//34MHjzY4OdIkuFiPaL6Yh0yLMb2LNMW/hyIiMjYKfssM+g580RERERERESkiMk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGSYzBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGSYzBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkmMwTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGSYzBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkmMwTERERERERGRkm80RERERERERGxqCT+ejoaIhEIrmXi4uL7H1BEBAdHQ03NzdYWVkhJCQEFy9e1GPEREREVBs+04mIiDTLoJN5AOjQoQNyc3Nlr4yMDNl7K1aswKpVq7Bu3TqcPn0aLi4uCA0NRXFxsR4jJiIiotrwmU5ERKQ5Bp/Mm5qawsXFRfZq2rQpgGct+GvWrMGiRYswfPhwdOzYEVu3bkVZWRl27Nih56iJiIjoeXymExERaY6pvgN4maysLLi5ucHCwgLdunVDbGwsWrdujZs3byIvLw/9+/eXnWthYYHevXvjl19+weTJk+ssUyqVQiqVyr5/9OgRAKCgoAAVFRXa+zAaUlFRgbKyMjx48ABmZmb6DoeMFOsR1RfrkGGp7sEWBEHPkdRNl8/0oqIi7X0QIiIiLap+hr3smW7QyXy3bt2wbds2tG3bFvn5+Vi6dCl69uyJixcvIi8vDwDg7Owsd42zszOys7NfWO6yZcvwySefKBxv1aqV5oInIiLSg+LiYtjb2+s7DAW6fqa7u7trLngiIiI9eNkzXSQYchP+c0pLS/HKK69g/vz56N69O4KCgnD37l24urrKzpk0aRJu376NgwcP1lnO8634VVVVCAgIwNmzZyESiV4aR5cuXXD69GmNnPeic+p6r6ioCO7u7rh9+zbs7OxeGochUPZnZij3ULcsVa5jPVKdMdWj+pSjj3qkzvusQ9q/jyrlCIKA4uJiuLm5wcTE4GfRafWZXlBQAEdHR6We6YbIGH+3SP9Yb0gdrDeGSdlnukH3zD/P2toaPj4+yMrKQnh4OAAgLy9P7sF/7949hZb951lYWMDCwkLhmLI9GWKxWKnKrsx5LzrnZdfb2dkZzS+dsj8zQ7mHumWpch3rkeqMqR7Vpxx91KP6vM86pL37qFqOIfbI10Wbz/RGjRppOly9MKbfLTIcrDekDtYbw6PMM93wm+5rkEqluHz5MlxdXdGqVSu4uLggOTlZ9n55eTlSUlLQs2dPlcuePn26xs9V5rwXnaNKTIZOF59Fk/dQtyzWI+0ypnpUn3L0UY/q+76x0NXnMIR6ZOi0+UwnIiL6MzDoYfZz587F0KFD0aJFC9y7dw9Lly5FSkoKMjIy0LJlS3z22WdYtmwZEhIS0KZNG8TGxuLIkSO4cuUKbG1t9R2+1hQVFcHe3h6PHj1iCxqpjfWI6ot1iFTBZ7ry+LtF6mC9IXWw3hg3gx5m/9tvv2HkyJG4f/8+mjZtiu7du+PkyZNo2bIlAGD+/Pl4/Pgxpk2bhocPH6Jbt244dOhQg3/oW1hY4OOPP1YYVkikCtYjqi/WIVIFn+nK4+8WqYP1htTBemPcDLpnnoiIiIiIiIgUGdWceSIiIiIiIiJiMk9ERERERERkdJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTLfgNy+fRshISHw9vaGr68v/vnPf+o7JDJCxcXF6NKlC/z9/eHj44NNmzbpOyQyYmVlZWjZsiXmzp2r71CIDN6yZcvQpUsX2NrawsnJCeHh4bhy5Yq+wyIDFx8fD19fX9jZ2cHOzg49evTAgQMH9B0WGZFly5ZBJBJh1qxZ+g6FVMSt6RqQ3Nxc5Ofnw9/fH/fu3UPnzp1x5coVWFtb6zs0MiKVlZWQSqWQSCQoKytDx44dcfr0aTg6Ouo7NDJCixYtQlZWFlq0aIG4uDh9h0Nk0AYOHIiIiAh06dIFT58+xaJFi5CRkYFLly7xWU51+te//gWxWAxPT08AwNatW/H555/j3Llz6NChg56jI0N3+vRpjBgxAnZ2dujTpw/WrFmj75BIBab6DoA0x9XVFa6urgAAJycnODg4oKCggP8BIJWIxWJIJBIAwJMnT1BZWQm2+ZE6srKykJmZiaFDh+LXX3/VdzhEBu/gwYNy3yckJMDJyQlpaWkIDg7WU1Rk6IYOHSr3/aeffor4+HicPHmSyTy9UElJCUaPHo1NmzZh6dKl+g6H1MBh9gbk6NGjGDp0KNzc3CASibBnzx6Fc9avX49WrVrB0tISAQEBOHbsWK1lnTlzBlVVVXB3d9dy1GRoNFGPCgsL4efnh+bNm2P+/Plo0qSJjqInQ6GJejR37lwsW7ZMRxETNTyPHj0CADg4OOg5EjIWlZWVSExMRGlpKXr06KHvcMjATZ8+HUOGDEG/fv30HQqpicm8ASktLYWfnx/WrVtX6/u7du3CrFmzsGjRIpw7dw6vvvoqBg0ahJycHLnzHjx4gMjISGzcuFEXYZOB0UQ9atSoEc6fP4+bN29ix44dyM/P11X4ZCDqW49++OEHtG3bFm3bttVl2EQNhiAImD17Nnr16oWOHTvqOxwycBkZGbCxsYGFhQWmTJmCpKQkeHt76zssMmCJiYk4e/YsG92NHOfMGyiRSISkpCSEh4fLjnXr1g2dO3dGfHy87Fj79u0RHh4u+0WUSqUIDQ3FpEmTMHbsWF2HTQZG3XpU09SpU9G3b1+8+eabugiZDJA69ejDDz/E9u3bIRaLUVJSgoqKCsyZMwcfffSRHj4BkfGZPn06/v3vf+P48eNo3ry5vsMhA1deXo6cnBwUFhZi9+7d+Oqrr5CSksKEnmp1+/ZtBAYG4tChQ/Dz8wMAhISEwN/fn3PmjQx75o1EeXk50tLS0L9/f7nj/fv3xy+//ALgWSt+VFQU+vbty0SeaqVMPcrPz0dRUREAoKioCEePHkW7du10HisZLmXq0bJly3D79m3cunULcXFxmDRpEhN5IiW9++672Lt3Lw4fPsxEnpRibm4OT09PBAYGYtmyZfDz88Pf/vY3fYdFBiotLQ337t1DQEAATE1NYWpqipSUFKxduxampqaorKzUd4ikJC6AZyTu37+PyspKODs7yx13dnZGXl4eACA1NRW7du2Cr6+vbH7rN998Ax8fH12HSwZKmXr022+/YcKECRAEAYIgYMaMGfD19dVHuGSglKlHRKQ6QRDw7rvvIikpCUeOHEGrVq30HRIZKUEQIJVK9R0GGai//OUvyMjIkDv29ttvw8vLCwsWLIBYLNZTZKQqJvNGRiQSyX0vCILsWK9evVBVVaWPsMjIvKgeBQQEID09XQ9RkbF5UT2qKSoqSkcRERm36dOnY8eOHfjhhx9ga2sraxyzt7eHlZWVnqMjQ7Vw4UIMGjQI7u7uKC4uRmJiIo4cOaKwOwJRNVtbW4W1OKytreHo6Mg1OowMk3kj0aRJE4jFYoVer3v37in0jhHVhfWINIH1iEg7qtegCAkJkTuekJDARjGqU35+PsaOHYvc3FzY29vD19cXBw8eRGhoqL5DIyItYzJvJMzNzREQEIDk5GQMGzZMdjw5ORlhYWF6jIyMCesRaQLrEZF2cE1iUsfXX3+t7xCoAThy5Ii+QyA1MJk3ICUlJbh27Zrs+5s3byI9PR0ODg5o0aIFZs+ejbFjxyIwMBA9evTAxo0bkZOTgylTpugxajI0rEekCaxHRERERIaNW9MZkCNHjqBPnz4Kx8eNG4ctW7YAANavX48VK1YgNzcXHTt2xOrVqxEcHKzjSMmQsR6RJrAeERERERk2JvNERERERERERob7zBMREREREREZGSbzREREREREREaGyTwRERERERGRkWEyT0RERERERGRkmMwTEREREb1ESEgIZs2apZWyg4ODsWPHDq2U3dBkZGSgefPmKC0tfeF50dHREIlEEIlEWLNmjUZjuHXrlqxsf39/jZZNpAom80REREREerJv3z7k5eUhIiJCdszDw0OWLFa/mjdvrscoDYePjw+6du2K1atXv/TcDh06IDc3F++8847smIeHR63JfXR0tNKJubu7O3JzczFnzhxlwybSCibzRERERER6snbtWrz99tswMZH/b3lMTAxyc3Nlr3PnztV6fUVFhS7CNChvv/024uPjUVlZ+cLzTE1N4eLiAolEotH7i8ViuLi4wMbGRqPlEqmKyTwRERERkYoePnyIyMhING7cGBKJBIMGDUJWVpbcOZs2bYK7uzskEgmGDRuGVatWoVGjRrL379+/jx9//BGvv/66Qvm2trZwcXGRvZo2bQoAEIlE+PLLLxEWFgZra2ssXboUAPCvf/0LAQEBsLS0ROvWrfHJJ5/g6dOnsvKysrIQHBwMS0tLeHt7Izk5GSKRCHv27AEAHDlyBCKRCIWFhbJr0tPTIRKJcOvWLdmxX375BcHBwbCysoK7uztmzpwpN+Tdw8MDsbGxGD9+PGxtbdGiRQts3LhR7rP99ttviIiIgIODA6ytrREYGIj//ve/uHXrFkxMTHDmzBm587/44gu0bNkSgiAAAAYMGIAHDx4gJSXlJX9L6nt+ZIRIJIKHh4fW7kekDibzREREREQqioqKwpkzZ7B3716cOHECgiBg8ODBsp7y1NRUTJkyBe+99x7S09MRGhqKTz/9VK6M48ePQyKRoH379ird++OPP0ZYWBgyMjIwfvx4/Oc//8GYMWMwc+ZMXLp0CRs2bMCWLVtk96uqqsLw4cMhFotx8uRJfPnll1iwYIHKnzkjIwMDBgzA8OHDceHCBezatQvHjx/HjBkz5M5buXIlAgMDce7cOUybNg1Tp05FZmYmAKCkpAS9e/fG3bt3sXfvXpw/fx7z589HVVUVPDw80K9fPyQkJMiVl5CQgKioKIhEIgCAubk5/Pz8cOzYMZU/g7Jqjoq4du0aPD09ERwcrLX7EalFICJqIMaNGycAEAAISUlJGi378OHDsrLDwsI0WjYRERm+3r17C++9954gCIJw9epVAYCQmpoqe//+/fuClZWV8O233wqCIAhvvfWWMGTIELkyRo8eLdjb28u+X716tdC6dWuFe7Vs2VIwNzcXrK2tZa+//e1vgiAIAgBh1qxZcue/+uqrQmxsrNyxb775RnB1dRUEQRD+85//CGKxWLh9+7bs/QMHDsg9L6ufcw8fPpSdc+7cOQGAcPPmTUEQBGHs2LHCO++8I3efY8eOCSYmJsLjx49lsY8ZM0b2flVVleDk5CTEx8cLgiAIGzZsEGxtbYUHDx4ofG5BEIRdu3YJjRs3Fp48eSIIgiCkp6cLIpFIFkO1YcOGCVFRUbWWIQiC8PHHHwt+fn4Kx2v72VpbWwtmZma1nl9VVSUMGzZMCAgIEMrKypS6B5GusGeeyIBVt0I//7p27Zq+QzNYAwcORG5uLgYNGiQ7VnMYYU1RUVEIDw9XqtyePXsiNzcXI0aM0FCkRERkrC5fvgxTU1N069ZNdszR0RHt2rXD5cuXAQBXrlxB165d5a57/vvHjx/D0tKy1nvMmzcP6enpsldkZKTsvcDAQLlz09LSEBMTAxsbG9lr0qRJyM3NRVlZGS5fvowWLVrILaLXo0cPlT93WloatmzZInefAQMGoKqqCjdv3pSd5+vrK/uzSCSCi4sL7t27B+DZ0P1OnTrBwcGh1nuEh4fD1NQUSUlJAIDNmzejT58+CkPcraysUFZWpvJnABR/tunp6ZgyZUqt5y5cuBAnTpzAnj17YGVlpdb9iLTFVN8BENGLDRw4UGG4WfW8uZrKy8thbm6uq7AMloWFBVxcXDRerrm5OVxcXGBlZQWpVKrx8omIyHgI/5u7Xdvx6qHgNf9c13VNmjTBw4cPay2rSZMm8PT0rPU9a2true+rqqrwySefYPjw4QrnWlpa1hrv87FVL8BX89znF9erqqrC5MmTMXPmTIXyWrRoIfuzmZmZwr2qqqoA4KUJsbm5OcaOHYuEhAQMHz4cO3bsqHX1+YKCArzyyisvLKsutf1sa2tc2L59O1avXo0jR45wNwEySOyZJzJw1clpzZdYLEZISAhmzJiB2bNno0mTJggNDQUAXLp0CYMHD4aNjQ2cnZ0xduxY3L9/X1ZeaWkpIiMjYWNjA1dXV6xcuVJh79zaerIbNWqELVu2yL6/c+cO3nrrLTRu3BiOjo4ICwuTWyCnutc7Li4Orq6ucHR0xPTp0+X+YyCVSjF//ny4u7vDwsICbdq0wddffw1BEODp6Ym4uDi5GH799VeYmJjg+vXr9f/BPqfmnrE1XyEhIRq/FxERGTdvb288ffoU//3vf2XHHjx4gKtXr8rmv3t5eeHUqVNy1z2/sFunTp2Ql5dXZ0KvrM6dO+PKlSvw9PRUeJmYmMDb2xs5OTm4e/eu7JoTJ07IlVHdUZCbmys7lp6ernCfixcv1nofZTsUfH19kZ6ejoKCgjrPmThxIn788UesX78eFRUVtTZS/Prrr+jUqZNS91THiRMnMHHiRGzYsAHdu3fX2n2I6oPJPJER27p1K0xNTZGamooNGzYgNzcXvXv3hr+/P86cOYODBw8iPz9fbmj4vHnzcPjwYSQlJeHQoUM4cuQI0tLSVLpvWVkZ+vTpAxsbGxw9ehTHjx+HjY0NBg4ciPLyctl5hw8fxvXr13H48GFs3boVW7ZskWsQiIyMRGJiItauXYvLly/jyy+/hI2NDUQiEcaPH68wImHz5s149dVX1W6Jf5HqPWNrbgHk6OjIxW6IiEhBmzZtEBYWhkmTJuH48eM4f/48xowZg2bNmiEsLAwA8O6772L//v1YtWoVsrKysGHDBhw4cECuR7xTp05o2rQpUlNT6xXPRx99hG3btiE6OhoXL17E5cuXsWvXLvzf//0fAKBfv35o164dIiMjcf78eRw7dgyLFi2SK8PT0xPu7u6Ijo7G1atX8e9//xsrV66UO2fBggU4ceIEpk+fjvT0dGRlZWHv3r149913lY515MiRcHFxQXh4OFJTU3Hjxg3s3r1brnGhffv26N69OxYsWICRI0cq9ObfunULd+7cQb9+/VT9USklLy8Pw4YNQ0REBAYMGIC8vDzk5eXh999/18r9iNTFZJ7IwO3bt09ubtqbb74pe8/T0xMrVqxAu3bt4OXlhfj4eHTu3BmxsbHw8vJCp06dsHnzZhw+fBhXr15FSUkJvv76a8TFxSE0NBQ+Pj7YunXrS/dpfV5iYiJMTEzw1VdfwcfHB+3bt0dCQgJycnJw5MgR2XmNGzfGunXr4OXlhddeew1DhgzBTz/9BAC4evUqvv32W2zevBnDhg1D69at8Ze//AVvvfUWgGd7yF65ckXWq1FRUYHt27dj/Pjxav0cR44cKfdztLGxwT/+8Q/Z+9V7xrq4uKBRo0aYMmUKevTogejoaLXuR0REDVtCQgICAgLw2muvoUePHhAEAfv375cNMQ8KCsKXX36JVatWwc/PDwcPHsT7778vN0deLBZj/Pjxcs8jdQwYMAD79u1DcnIyunTpgu7du2PVqlVo2bIlgGdD6JOSkiCVStG1a1dMnDhRYWV9MzMz7Ny5E5mZmfDz88Nnn30m2/aumq+vL1JSUpCVlYVXX30VnTp1wuLFi+Hq6qp0rObm5jh06BCcnJwwePBg+Pj4YPny5RCLxXLnTZgwAeXl5bU+93fu3In+/fvLPp+mZWZmIj8/H1u3boWrq6vs1aVLF63cj0hdnDNPZOD69OmD+Ph42fc158nVtgDO4cOHYWNjo1DO9evX8fjxY5SXl8steuPg4IB27dqpFFNaWhquXbsGW1tbueNPnjyRGwLfoUMHuYezq6srMjIyADwbuicWi9G7d+9a7+Hq6oohQ4Zg8+bN6Nq1K/bt24cnT57INWaoYvXq1Qot+AsWLKi1IWPChAkoLi5GcnKybA4hERH9udVsrAaeNVhv27bthddMmjQJkyZNkvv++bnas2bNQocOHZCdnS1LTmtOW3teXfP1BwwYgAEDBtR5Xdu2bV+6lVtQUBAuXLjwwvt16dIFhw4dqrOM2mJ/frh+y5Yt8d13370wltzcXHTs2FEhgZZKpYiPj8fOnTtfeL0q8QFAdHS0rAE/JCSkzp8zkSFhMk9k4KytrVVaAGfo0KH47LPPFM51dXVFVlaWUvcUiUQKD7Gac92rqqoQEBBQa09CzcX56rMADvBsztzYsWOxevVqJCQk4K233oJEIlHqMzzPxcVF4edoa2uLwsJCuWNLly7FwYMHcerUKYXGCiIiIlVUj4SztrbGgQMHsHXrVqxfv17uHGdnZ3z99dfIycnRWk+zMSkpKcHly5fxxRdfYMmSJQrvZ2dnY9GiRQgKCnppWRkZGbCxscGKFSswbdo0jcWYk5MDb29vlJeXw9vbW2PlEqmKyTxRA9K5c2fs3r0bHh4eMDVV/PX29PSEmZkZTp48KVt19uHDh7h69apcD3nTpk3lFsDJysqS2/6lc+fO2LVrF5ycnGBnZ6dWrD4+PqiqqkJKSkqdc94GDx4Ma2trxMfH48CBAzh69Kha91LW7t27ERMTgwMHDmhlXj4REf25nDp1CitWrEBxcTFat26NtWvXYuLEiQrnVc+zJ2DGjBnYuXMnwsPDax1i37ZtW7Rt2/al5cycORNjxowBUPsuQPXh5uYmG21gYWGh0bKJVMFknqgBmT59OjZt2oSRI0di3rx5aNKkCa5du4bExERs2rQJNjY2mDBhAubNmwdHR0c4Oztj0aJFCkPJ+/bti3Xr1qF79+6oqqrCggUL5HrZR48ejc8//xxhYWGIiYlB8+bNkZOTg++//x7z5s1TavsWDw8PjBs3DuPHj8fatWvh5+eH7Oxs3Lt3T7Zgn1gsRlRUFD788EN4enqqtSeusn799VdERkZiwYIF6NChA/Ly8gA8m9tX1164REREL/Ltt9/qO4QXMsSh5M8vlqsuBwcHrT2/TU1N6xw1SaRLnAxK1IC4ubkhNTUVlZWVGDBgADp27Ij33nsP9vb2soT9888/R3BwMF5//XX069cPvXr1QkBAgFw5K1euhLu7O4KDgzFq1CjMnTtXbni7RCLB0aNH0aJFCwwfPhzt27fH+PHj8fjxY5V66uPj4/HGG29g2rRp8PLywqRJk1BaWip3zosWwNGkM2fOoKysDEuXLpVb7Ka27XCIiIiIiPRNJBhikxwR6VRISAj8/f2xZs0afYeiIDU1FSEhIfjtt9/g7Oz8wnOjoqJQWFiIPXv2aC0eXdyDiIiIiOhl2DNPRAZJKpXi2rVrWLx4MUaMGPHSRL5a9VZ++/bt02g8x44dU9jOjoiIiIhIXzhnnogM0s6dOzFhwgT4+/vjm2++UeqaFStW4P/+7/8AQKU9b5URGBgoW+ymtq3/iIiIiIh0icPsiYiIiIiIiIwMh9kTERERERERGRkm80RERERERERGhsk8ERERERERkZFhMk9ERERERERkZJjMExERERERERkZJvNERERERERERobJPBEREREREZGRYTJPREREREREZGT+H0kzy+yCut4vAAAAAElFTkSuQmCC",
"text/plain": [
- "
"
+ "
"
]
},
"metadata": {},
@@ -766,21 +808,37 @@
"spl10 = acoustics.decidecade_sound_pressure_level(spsd, fmin, fmax)\n",
"\n",
"# Plot the decidecade sound pressure level\n",
- "fig, ax = plt.subplots(figsize=(9, 5))\n",
- "ax.boxplot(\n",
+ "fig, ax = plt.subplots(1,2, figsize=(10, 4), constrained_layout=True)\n",
+ "fig, ax[0] = acoustics.graphics.plot_spectra(spl10.median(\"time\"), fmin, fmax, fig=fig, ax=ax[0], label=\"Median\")\n",
+ "ax[0].fill_between(\n",
+ " spl10[\"freq_bins\"],\n",
+ " spl10.quantile(0.25, \"time\"),\n",
+ " spl10.quantile(0.75, \"time\"),\n",
+ " alpha=0.5,\n",
+ " facecolor=\"C0\",\n",
+ " edgecolor=None,\n",
+ " label=\"Quantiles\"\n",
+ ")\n",
+ "ax[0].legend(loc=\"upper right\")\n",
+ "ax[0].set_axisbelow(True)\n",
+ "ax[0].grid()\n",
+ "ax[0].set(ylim=(50, 120), ylabel=\"Decidecade SPL [dB rel 1 uPa]\", xscale=\"log\")\n",
+ "\n",
+ "# Boxplots\n",
+ "ax[1].boxplot(\n",
" spl10.values,\n",
" whis=(1, 99),\n",
" showfliers=True,\n",
" positions=np.log10(spl10[\"freq_bins\"].values),\n",
- " widths=0.015,\n",
+ " widths=0.04,\n",
" flierprops={\"marker\": \".\", \"markersize\": 1.5},\n",
")\n",
"xticks = np.linspace(0, 5, 6)\n",
- "ax.set(\n",
+ "ax[1].set(\n",
" xticks=xticks,\n",
" xticklabels=xticks.astype(int),\n",
- " xlim=(1.68, 4.75),\n",
- " ylim=(40, 120),\n",
+ " xlim=(np.log10(45), np.log10(52000)),\n",
+ " ylim=(50, 120),\n",
" xlabel=\"log(Frequency) [Hz]\",\n",
" ylabel=\"Decidecade SPL [dB re 1 uPa]\",\n",
")"
@@ -792,44 +850,44 @@
"source": [
"### Third Octave Sound Pressure Level\n",
"\n",
- "Since you're now curious, you can also calculate the 1/3 octave SPLs using `third_octave_sound_pressure_level`. Third octaves are often measured because the human ear appears to have evolved to filter sound at this bandwidth, and these plots may also be used to reduce the \"busy-ness\" of a figure. "
+ "One can also calculate the true 1/3 octave SPLs using `third_octave_sound_pressure_level` if desired. Note the results are quite similar to `decidecade_sound_pressure_level`."
]
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "[[,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ,\n",
- " ],\n",
+ "[[,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
" [Text(0.0, 0, '0'),\n",
" Text(1.0, 0, '1'),\n",
" Text(2.0, 0, '2'),\n",
" Text(3.0, 0, '3'),\n",
" Text(4.0, 0, '4'),\n",
" Text(5.0, 0, '5')],\n",
- " (1.68, 4.75),\n",
- " (50.0, 130.0),\n",
- " Text(0.5, 0, 'log(Frequency) [Hz]'),\n",
- " Text(0, 0.5, 'Decidecade SPL [dB re 1 uPa]')]"
+ " (1.6532125137753437, 4.7160033436347994),\n",
+ " (50.0, 120.0),\n",
+ " Text(0.5, 0, 'log(Frequency) [kHz]'),\n",
+ " Text(0, 0.5, 'Third Octave SPL [dB re 1 uPa]')]"
]
},
- "execution_count": 20,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAF4CAYAAABOy9GLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTcUlEQVR4nO3de1wUZfs/8M+KioC4AioHQ9FE8ZxSeaBESzCtRLHMyBI1My2NpMxDKIpiWahPmqg9JSYpPpWo9VUTexQDtWQRPCQe8pysByQQwQVlfn/423lcAd2FWXZ29vN+vXjpzgyz1yrsXnPNdd+3ShAEAUREREREClDH0gEQEREREUmFyS0RERERKQaTWyIiIiJSDCa3RERERKQYTG6JiIiISDGY3BIRERGRYjC5JSIiIiLFYHJLRERERIrB5JaIiIiIFIPJLREREREphkWT2z179uDFF1+El5cXVCoVNm3aZLA/Ojoafn5+cHJygouLC/r374/ff//d4BidTodJkyahSZMmcHJywuDBg3Hx4sVafBVEREREJBcWTW5v3ryJrl27YtmyZZXub9u2LZYtW4bDhw8jLS0NPj4+CA4OxtWrV8VjIiIikJycjKSkJKSlpaGoqAgvvPAC7ty5U1svg4iIiIhkQiUIgmDpIABApVIhOTkZQ4YMqfKYwsJCqNVq7Ny5E88++ywKCgrQtGlTrF27Fq+88goA4NKlS/D29sbWrVsxYMCAWoqeiIiIiOSgrqUDMFZpaSlWrVoFtVqNrl27AgA0Gg3KysoQHBwsHufl5YVOnTph7969VSa3Op0OOp1OfFxeXo7r16/Dzc0NKpXKvC+EiIiIiEwmCAJu3LgBLy8v1KlTdfOB7JPbn3/+GSNGjEBxcTE8PT2RkpKCJk2aAAC0Wi3q168PFxcXg+9xd3eHVqut8pwLFizAnDlzzBo3EREREUnvwoULeOSRR6rcL/vktl+/fsjKysK1a9fw1VdfYfjw4fj999/RrFmzKr9HEIQHVmCnT5+OKVOmiI8LCgrQokULXLhwAY0aNZI0fiIiIiKqucLCQnh7e8PZ2fmBx8k+uXVyckKbNm3Qpk0b9OzZE76+vvj6668xffp0eHh4oLS0FPn5+QbV2ytXrqB3795VntPe3h729vYVtjdq1IjJLREREZGMPayF1OrmuRUEQeyX9ff3R7169ZCSkiLuz83NxZEjRx6Y3BIRERGRMlm0cltUVIRTp06Jj8+cOYOsrCy4urrCzc0N8+fPx+DBg+Hp6Ym8vDwsX74cFy9exMsvvwwAUKvVGDt2LCIjI+Hm5gZXV1d88MEH6Ny5M/r372+pl0VEREREFmLR5DYjIwP9+vUTH+v7YEeNGoUVK1YgJycHa9aswbVr1+Dm5oYnnngCv/32Gzp27Ch+z+LFi1G3bl0MHz4cJSUlePbZZ5GQkAA7O7tafz1EREREZFmymefWkvTz5xYUFLDnloiIiEiGjM3XrK7nloiIiIioKkxuiYiIiEgxmNwSERERkWIwuSUiIiIixWByS0RERESKweSWiIiIiBSDyS0RERERKQaTWyIiIiJSDCa3RERERKQYTG6JiIiISDGY3BIRERGRYjC5JSIiIiLFYHJLRERERIrB5JaIiIiIFIPJLREREREpBpNbIiIiIlIMJrdEREREpBhMbomIiIhIMZjcEhEREZFiMLklIiIiIsVgcktEREREisHkloiIiIgUg8ktERERESkGk1siIiIiUgwmt0RERESkGExuiYiIiEgxmNwSERERkWIwuSUiIiIixbBocrtnzx68+OKL8PLygkqlwqZNm8R9ZWVl+Oijj9C5c2c4OTnBy8sLb7zxBi5dumRwDp1Oh0mTJqFJkyZwcnLC4MGDcfHixVp+JUREREQkBxZNbm/evImuXbti2bJlFfYVFxcjMzMTUVFRyMzMxMaNG3HixAkMHjzY4LiIiAgkJycjKSkJaWlpKCoqwgsvvIA7d+7U1ssgIiIiIplQCYIgWDoIAFCpVEhOTsaQIUOqPObAgQN48sknce7cObRo0QIFBQVo2rQp1q5di1deeQUAcOnSJXh7e2Pr1q0YMGBApefR6XTQ6XTi48LCQnh7e6OgoACNGjWS9HURERERUc0VFhZCrVY/NF+zqp7bgoICqFQqNG7cGACg0WhQVlaG4OBg8RgvLy906tQJe/furfI8CxYsgFqtFr+8vb3NHToRERER1QKrSW5v3bqFadOmISwsTMzWtVot6tevDxcXF4Nj3d3dodVqqzzX9OnTUVBQIH5duHDBrLETERERUe2oa+kAjFFWVoYRI0agvLwcy5cvf+jxgiBApVJVud/e3h729vZShkhEREREMiD7ym1ZWRmGDx+OM2fOICUlxaDHwsPDA6WlpcjPzzf4nitXrsDd3b22QyUiIiIiC5N1cqtPbE+ePImdO3fCzc3NYL+/vz/q1auHlJQUcVtubi6OHDmC3r1713a4RERERGRhFm1LKCoqwqlTp8THZ86cQVZWFlxdXeHl5YWXXnoJmZmZ+Pnnn3Hnzh2xj9bV1RX169eHWq3G2LFjERkZCTc3N7i6uuKDDz5A586d0b9/f0u9LCIiIiKyEItOBbZ7927069evwvZRo0YhOjoarVq1qvT7du3ahb59+wK4O9Dsww8/xLp161BSUoJnn30Wy5cvN2kGBGOnliAiIiIiyzA2X5PNPLeWxOSWiIiISN4UOc8tEREREdGDMLklIiIiIsVgcktEREREisHkloiIiIgUg8ktERERESkGk1siIiIiUgwmt0REFpKeno7Q0FCkp6dbOhQiIsUwaoWywsJCk0/M+WKJiB4sLi4OW7duBQAEBARYOBoiImUwKrlt3LgxVCqV0SdVqVQ4ceIEWrduXe3AiIiULigoCPv370dQUJClQyEiUgyjklsA+OGHH+Dq6vrQ4wRBwKBBg2oUFBGRLUhKSsLly5eRlJSECRMmSHLO9PR0xMXFITIyktVgIrJJRiW3LVu2RJ8+feDm5mbUSVu3bo169erVKDAiIjIdWx2IyNYZNaDszJkzRie2AHDkyBF4e3tXOygiIlsQGxuLkJAQxMbGSnZOfTuYXNvCOIiOiMxNJQiCYOkgLK2wsBBqtRoFBQUcCEdEVs3Lywu5ubnw9PTEpUuXLB1OBYGBgUhLS8NTTz2F1NRUS4dDRFbE2HzN6J7be928eROpqak4f/48SktLDfZNnjy5OqckIiIJREVFISYmBlFRUZYOhYjIIkyu3B48eBCDBg1CcXExbt68CVdXV1y7dg2Ojo5o1qwZTp8+ba5YzYaVWyKqTcXFxcjJyUFJSQnOnj0LHx8fODg4wM/PD46OjpYOz4DUA9Q44I2Iqstsldv3338fL774IuLj49G4cWPs378f9erVw8iRI/Hee+/VKGgiIluQk5MDf3//Cts1Gg26d+9erXOaK2GWeoBaQECApEktk2Uiup/JyW1WVhZWrlwJOzs72NnZQafToXXr1li4cCFGjRqF0NBQc8RJRKQYfn5+0Gg0OHbsGEaOHInExES0b98efn5+1T6nORJmAIiMjDT4s6akTkbfeecdZGdn4/Tp08jKyqp5gERk9UxefrdevXrigg7u7u44f/48AECtVot/JyJSIqlG+js6OqJ79+5o3749AKB9+/bo3r17jSqs+oQ5MTERAJCYmAiNRlOjhFlKxcXFyMzMxIwZM/Dzzz9jxowZyMzMRHFxcY3Oe/HiRYM/iYhMTm67deuGjIwMAEC/fv0wa9YsfPfdd4iIiEDnzp0lD5CISC70t+jj4uIsHUoF5kiYAWDGjBnYvHkzZsyYUaPz6CvLe/bsQVlZGfbs2QN/f3/k5OTU6LwxMTHw9PRETExMjc5zL05XRmTdTG5LiI2NxY0bNwDcfVMZNWoUJkyYgDZt2mD16tWSB0hEJBdS36KXM30Pb0FBAQRBQEFBATIzM6vdw2uOVgwAmDBhgmSru+nNmDEDaWlpyMvL43RlRFbIpMqtIAhQq9Vwd3fH7du30bRpU2zduhWFhYXIzMxE165dzRUnEdVQfHw8vLy8EB8fb+lQrFZAQAA2btxoEwOX9JXW7OxsCIKA7OzsGlVazVVZlpK+deLSpUsoLy/HpUuXJGmdIKLaZXRye/bsWTz22GPw8/ND586d0aZNG2RmZpozNiKSUExMDHJzcyW9fUvKJfceXnPQJ/SnTp0CAJw6dUqS1gkiql1GJ7cfffQRbt26hbVr1+L777+Hp6cn3n77bXPGRmQ2tljFDAsLg729PcLCwiwdClkBa6i0Sk2f0M+aNQsAMGvWLMUn9ERKZHRy+9tvv2HVqlUICwtDaGgovv/+e2g0GpSUlJgzPiKzsMUqpn6BFWtcaIWoNugT+pCQEABASEiILBN6DngjejCjk1utVmtw9frII4/AwcEBly9fNktgROZki1XMyMhIDBo0yCYGQxEpmZxn7SCSA6OTW5VKhTp1DA+vU6cOTFy9l0gWbKmKqR8kAwDDhg0DAA6SqSZWzORD/3Odnp6O7777Dunp6cjMzFT0z7b+Ndvb26O8vBz29vaKfr1E1WX0VGCCIKBt27biAg4AUFRUhG7duhkkvdevX5c2QiIJ6ac3CgoKwoULFxAUFFSj6Y2sgblWrrIGUq+GJfVStFR9Vf1cA/L72Zbq5/D+15yUlISkpCTZvV4iSzM6uTXHHLZ79uzBZ599Bo1Gg9zcXCQnJ2PIkCHi/o0bN2LlypXQaDTIy8vDwYMH8dhjjxmcQ6fT4YMPPsD69etRUlKCZ599FsuXL8cjjzwiebxk/e7/cNAvSKLkDwdzzS9qDaRORoOCgrB//34EBQXV+FxUM1X9XOv3yYlUP4f617x06VIkJCQgPDwckyZNkt3rJbI0o5PbUaNGSf7kN2/eRNeuXTF69Gjxdun9+wMCAvDyyy9j3LhxlZ4jIiICP/30E5KSkuDm5obIyEi88MIL0Gg0sLOzkzxmsm62mOjpB8no6Ue92wKpFl3QV/yTkpJw7do1JCUloUePHoqu+MudNf1cS3VRpH/NkyZNQkJCAiZNmiTb10xkSSavUCalgQMHYuDAgVXuf/311wHcnWO3MgUFBfj666+xdu1a9O/fH8DduRi9vb2xc+dODBgwQPKYybpZ0wci1VxAQIAkFdv7K/76pWOVXPEn6aSkpOD69etISUmRfDU1qcTHxyMmJgZRUVGyjZHIWCatUAbcHURmZ2dX5Vdt0mg0KCsrQ3BwsLjNy8sLnTp1wt69e6v8Pp1Oh8LCQoMvIqKq2OKCBlRz+gFgrVu3hoODA1q3bi3bAWBRUVHIzc1FVFSUpUMhqjGTK7fJyckGj8vKynDw4EGsWbMGc+bMkSwwY2i1WtSvXx8uLi4G293d3aHVaqv8vgULFtR6rERkvVjxp+q4v+IfFxeHuLg4WVX89S03Li4uyMvLg4uLiywH2Uo9OJSUzeTKbUhIiMHXSy+9hPnz52PhwoXYsmWLOWI0mSAIBrM63G/69OkoKCgQvy5cuFCL0RFRbeHUXWRJ1rDimbmWHJb6d49z+5IpJOu57dGjR5WDvszFw8MDpaWlyM/PN6jeXrlyBb17967y++zt7WFvb18bIRKRBc2YMQNpaWnIy8tDamqqpcMhG3NvxX/u3LniimdyYq5BtlL/7kk1OJRsg8mV28qUlJRg6dKltT79lr+/P+rVq4eUlBRxW25uLo4cOfLA5JaIlE3f61hQUABBEFBQUCDbXkciS9In4Ppp1PQtNzVtSSgoKEB5eTkKCgqkCBMBAQHYuHGjZC0JvKujbCYnty4uLnB1dRW/XFxc4OzsjG+++QafffaZSecqKipCVlYWsrKyAABnzpxBVlYWzp8/D+DughBZWVn4888/AQDHjx9HVlaW2E+rVqsxduxYREZG4tdff8XBgwcxcuRIdO7cWZw9gYjMQ84fDvpbrdnZ2RAEAdnZ2ZLcaiWiB7t3RUR9e6AUF5bx8fHw8vJCfHx8jWME7laWN2/ejBkzZkhyPpIXk9sSlixZYvC4Tp06aNq0KXr06FFhYNfDZGRkoF+/fuLjKVOmALg7p25CQgK2bNmC0aNHi/tHjBgBAJg9ezaio6MBAIsXL0bdunUxfPhwcRGHhIQEznFLZGbmWK1LqumIbHE+YyI5uH8Qnf7CsqaD6GJiYpCbm4uYmBhOVUYPZXJyK+ViDn379oUgCFXuDw8PR3h4+APP0aBBAyxduhRLly6VLC4iejhzrNYl1QcYZzcgsgxzXVhGRUWJF75SiI2NFWdfIOWRpOeWiGzPvRPTSyUsLAz29vYICwuT7JxEVHuk7uHVtzl06dIFn332Gbp06VKjNgf9+Q4dOoQLFy7g0KFD7MdXIIuuUEZE1kvKyq1+rs0DBw6gvLwcBw4ckOVcm0RUu+5vc9CrbpvD/efLyMio0fnuxbl45YOVWyKJyHmAlZT0lY+kpCRcu3YNSUlJNa586D9w9uzZg7KyMnF5Ww4AI7JtUq8OaM65hzkXr3wwuSWSiNRvbFKPDpaKORJRLm9LRJWRus1Bf76QkBAAEOceluIOUWRkJAYNGsQ+XhlgWwKRRKSeZDwqKgp5eXk1njlAauYYMMIBYERk7QICAtiOIBOSVW6PHTuG1q1bS3U6IpunXxSlthdHeRhzTfpORGTNbKU1zRpIVrktLS3FuXPnpDodkdWRarlJ/eCq8ePH45tvvsGYMWM4uIqISObMMfc3VY/Rya1+gYWqXL16tcbBEFkjfTJ6/1Kv1U1GzTmal4iIzMMcc39T9Rid3P7rX//CY489hkaNGlW6v6ioSLKgiKyJ1CvycHUtIiLrc+/c33IaJ2GLjE5ufX198f7772PkyJGV7s/Kyqp0LjoipZM6GeXgKiIi66G/excUFIQLFy4gKCiIrWQWZvSAMn0lqioqleqBS+kSKRUHWBER2S793buJEyciIyMDEydOlGSebrlOB2kNjE5u4+LiEBERUeX+rl27ory8XIqYiIiIiKyCuebpjomJQW5uLmJiYqQI06YYndx6eHigZcuW5oyFiIiIyKqY6+5dVFQUPD09ERUVJUWYNoUrlBERERHJTJcuXdCzZ0906dJFkvPZ0jy8XKGMiIiISGaknjfXlubhZeWWiIiISCaKi4uRmZmJoKAgdO7cWZx9obi4uEbnDQoKgqurq03Mw8vKLREREZFMmGshn6SkJFy+fBlJSUmKn4e32pXb0tJSHD9+HLdv35YyHiIiIiKbZa7ZF2yJycltcXExxo4dC0dHR3Ts2BHnz58HAEyePBmffPKJ5AESERER2Qpzzb4QGxuLkJAQxMbGShGmrJmc3E6fPh3Z2dnYvXs3GjRoIG7v378/NmzYIGlwRERERFR9+h5eABg2bBgASNLDK2cm99xu2rQJGzZsQM+ePaFSqcTtHTp0wF9//SVpcERERERUfff38OrVtIdXzkyu3F69ehXNmjWrsP3mzZsGyS4RERERWZYt9vCanNw+8cQT+L//+z/xsT6h/eqrr9CrVy/pIiMiIiKiGjFXD6+cmdyWsGDBAjz33HP4888/cfv2bfzrX//C0aNHsW/fPqSmppojRiIiIiIio5hcue3duzf27t2L4uJiPProo9ixYwfc3d2xb9++Sns6iIiIiIhqi0mV27KyMrz11luIiorCmjVrzBUTEREREVG1mFS5rVevHpKTk80VCxERERFZgfT0dISGhiI9Pd3SoVRgclvC0KFDsWnTJkmefM+ePXjxxRfh5eUFlUpV4byCICA6OhpeXl5wcHBA3759cfToUYNjdDodJk2ahCZNmsDJyQmDBw/GxYsXJYmPiIiIiCp65513kJycjHfeecfSoVRg8oCyNm3aICYmBnv37oW/vz+cnJwM9k+ePNnoc928eRNdu3bF6NGjxYmF77Vw4UIsWrQICQkJaNu2LebNm4egoCAcP34czs7OAICIiAj89NNPSEpKgpubGyIjI/HCCy9Ao9HAzs7O1JdHRERERFUoLi5GTk4Ozp49CwA4e/YsMjMz4efnJ5sZGExObv/973+jcePG0Gg00Gg0BvtUKpVJye3AgQMxcODASvcJgoAlS5Zg5syZCA0NBQCsWbMG7u7uWLduHcaPH4+CggJ8/fXXWLt2Lfr37w/g7vxt3t7e2LlzJwYMGGDqyyMiIiKiKty/KERBQQH8/f1ltSiEycntmTNnzBFHpc+j1WoRHBwsbrO3t0dgYCD27t2L8ePHQ6PRoKyszOAYLy8vdOrUCXv37q0yudXpdNDpdOLjwsJC870QIiIiIoXQLwpx7NgxjBw5EomJiWjfvr2sFoUwuee2tmi1WgCAu7u7wXZ3d3dxn1arRf369eHi4lLlMZVZsGAB1Gq1+OXt7S1x9ERERETKYw2LQsg2udW7f0lfQRAeuszvw46ZPn06CgoKxK8LFy5IEisRERERWZZsk1sPDw8AqFCBvXLliljN9fDwQGlpKfLz86s8pjL29vZo1KiRwRcRERERWT/ZJretWrWCh4cHUlJSxG2lpaVITU1F7969AQD+/v6oV6+ewTG5ubk4cuSIeAwRERER2Q6TB5RJqaioCKdOnRIfnzlzBllZWXB1dUWLFi0QERGB2NhY+Pr6wtfXF7GxsXB0dERYWBgAQK1WY+zYsYiMjISbmxtcXV3xwQcfoHPnzuLsCURERERkO2qU3N68eRMbNmxASUkJgoOD4evra9L3Z2RkoF+/fuLjKVOmAABGjRqFhIQETJ06FSUlJZg4cSLy8/PRo0cP7NixQ5zjFgAWL16MunXrYvjw4SgpKcGzzz6LhIQEznGrMPHx8YiJiUFUVBQmTJhg6XCIZOXkyZO4ceMGAODYsWMGfwKAs7Ozye/PRETWyujk9vz583j99deRmZmJnj174uuvv0ZQUBBOnjwJAHBwcMC2bdvQp08fo5+8b9++EAShyv0qlQrR0dGIjo6u8pgGDRpg6dKlWLp0qdHPS9YnKioKeXl5TG6J7nPy5Em0bdu2wvaRI0caPD5x4gQTXCKyCUb33H7wwQcoLS1FfHw8HB0dMWDAAPj6+iI3NxeXL1/GoEGDHpiEEtXEI488YvAnEd2lr9gmJiZCo9EgLS0NiYmJSEtLg0ajQWJiosFxRERKZ3Tlds+ePdiyZQuefPJJDBo0CE2aNME333wjzkrw8ccf49lnnzVboGTbvvzyS8TFxSEyMtLSoRDJkn6uSQAICAiwcDRERJZjdHJ79epVtGzZEgDg6uoKR0dHg+m2PDw8KkzJRSSVgIAAfmAT1RL28BKRNTM6ub1/YYSHLaRAJIXi4mLk5OSgpKQEZ8+ehY+PDxwcHODn5yer1VCIlII9vERk7UyaLWHWrFliQlFaWor58+dDrVYDuJuEEEktJycH/v7+FbZrNBrxFiwRSefeHt727dtXuLDUryfPHl4ikiujk9s+ffrg+PHj4uPevXvj9OnTFY4hkpKfnx80Go34gar/wPXz87N0aESKxh5eIrJWRie3u3fvNmMYRJVzdHQ0qNDe+4FLRNbBFnt4bfE1E8mFRVcoI+VKT08XZzdg1YfIdtliD68tvmYiOTEqudWvHGaMRYsWVTsYUo64uDhs3boVAG9pEtkya+nhlbLSai2vmUipjEpuDx48aPBYo9Hgzp07aNeuHYC7V592dnaVDvwh2xQUFIT9+/cjKCjI0qEQkQzIuYfXXJVWOb9mIiUzKrndtWuX+PdFixbB2dkZa9asgYuLCwAgPz8fo0ePxtNPP22eKMnqJCUl4fLly0hKSuJyuRbEvj9Soof9XAPKq7Tyd5nIeCb33MbFxWHHjh1iYgsALi4umDdvHoKDg7mCFJFMsO+PlMjYn2tAOZVW/i4Tmcbk5LawsBCXL19Gx44dDbZfuXKF/UMkLrowYsQIFBcXY8SIEcjMzOSiCxZgDdUoIlM97OcagOJ+tvm7TGQak5PboUOHYvTo0YiLi0PPnj0BAPv378eHH36I0NBQyQMk63L/ogsZGRkAuOiCJcm1GkVUE7b4c22Lr5moOuqY+g0rVqzA888/j5EjR6Jly5Zo2bIlXnvtNQwcOBDLly83R4x0n/j4eHh5eSE+Pt7SoVSgX3QhMTERwN1Kg0aj4aILREREVCtMrtw6Ojpi+fLl+Oyzz/DXX39BEAS0adMGTk5O5oiP7qG/5T9t2jQUFhZi2rRp6NGjh6xu+XPRBSIiIrKkai/i4OTkhC5dukgZCz3E/bf8CwsL4e/vz1v+RFaEo95JLvizSEplVHIbGhqKhIQENGrUyKiTvvbaa1i8eDGaNWtWo+DIkP6W/+bNmzF37lzMmjULISEhvOVvJL6Rk6Vx1DvJBX8WScmMSm43b96Mq1evGnVCQRDw008/ISYmhsmtxO695T937lyEhISwYmskvpHbDjlfxHDUO8kFfxZJyYxKbgVBqDQxILIWfCO3Dea4iDFHssxR7yQX/FkkJTJ5hTJjNW/e3OTvITI3vpHLj5TJo9QXMaz4ExFZH6OS28DAQHPHQUQ2yFzJo1QXMaz4ExFZn2rPlkBE0pNzv6g5WEvyyIo/EZH1YHJLJBO2fAucySOR9bO1i3OSLya3RDJhLVVMIqL72fLFOckPk1simWEVk4isDS/OSU4kS26zs7PRvXt33LlzR6pTEhERkRXhxTnJQR0pTyYIgpSnIyIiIiIyiaTJrUqlkvJ0AO7e6oiIiEDLli3h4OCA3r1748CBA+J+QRAQHR0NLy8vODg4oG/fvjh69KjkcRDR3b66zMxMZGZmGgwY0W87efKkhSMkIiJbJ/ue2zfffBNHjhzB2rVr4eXlhcTERPTv3x9//vknmjdvjoULF2LRokVISEhA27ZtMW/ePAQFBeH48eNwdna2dPhEisEBI0REZA2MTm4LCwsfuN8cTeIlJSX48ccfsXnzZvTp0wcAEB0djU2bNiE+Ph4xMTFYsmQJZs6cidDQUADAmjVr4O7ujnXr1mH8+PGSx0RkqzhghIiIrIHRyW3jxo0f2HYgCILkbQm3b9/GnTt30KBBA4PtDg4OSEtLw5kzZ6DVahEcHCzus7e3R2BgIPbu3VtlcqvT6aDT6cTHD0vciapii/M6csAIERHJmdHJ7a5du8wZR6WcnZ3Rq1cvxMTEoH379nB3d8f69evx+++/w9fXF1qtFgDg7u5u8H3u7u44d+5cleddsGAB5syZY9bYSfl4m56IiEh+jE5uAwMDzRlHldauXYsxY8agefPmsLOzQ/fu3REWFobMzEzxmPsrxg+rIk+fPh1TpkwRHxcWFsLb21v64EnReJueiIhIfoxObgVBwOeff45NmzahrKwM/fv3x6xZsyq0DEjt0UcfRWpqKm7evInCwkJ4enrilVdeQatWreDh4QEA0Gq18PT0FL/nypUrFaq597K3t4e9vb1Z4ybbwdv0RERE8mH0VGCffPIJpk2bBicnJ3h6emLRokWYPHmyOWMzoH/e/Px8/PLLLwgJCRET3JSUFPG40tJSpKamonfv3tV+rvT0dISGhiI9PV2K0ImIiMhEnHqQqsvoym1CQgKWLl2KiRMnAgC2b9+OIUOGYOXKlWaZ31bvl19+gSAIaNeuHU6dOoUPP/wQ7dq1w+jRo6FSqRAREYHY2Fj4+vrC19cXsbGxcHR0RFhYWLWfMy4uDlu3bgXAShwREVFt45gGqgmjk9tz587hhRdeEB8PGDAAgiDg0qVLaN68uVmCA4CCggJMnz4dFy9ehKurK4YNG4b58+ejXr16AICpU6eipKQEEydORH5+Pnr06IEdO3bUaI7boKAg7N+/H0FBQVK9DCIiIjISxzRQTRid3JaWlsLBwUF8rFKpUL9+fYMptcxh+PDhGD58eJX7VSoVoqOjER0dLdlzpqSk4Pr160hJScGECRMkOy8REREZj2MabIt+DYOoqKga5V8mrVAWFRUFR0dH8XFpaSnmz58PtVotblu0aFG1g5ELVm6JiIiIaldUVBTy8vJqnNwaPaCsT58+OH78OA4ePCh+9e7dG6dPnxYfZ2VlVTsQObm3ciuF+Ph4eHl5IT4+XpLzERERESlFcXExMjMz4eLiAgBwcXFBZmYmiouLq3U+oyu3u3fvrtYTWKPIyEiDP2sqJiYGubm5iImJkW2bQ3p6OuLi4hAZGclbP0RERFRrcnJy4O/vLz4+deoU/P39odFoxLYUU5jUllCZ27dv49atW2jYsGFNT2VxxcXFOHXqFABg2LBhAIDMzEz4+fkZtGOYKioqSuwhkSvOEEFEREpmi8ulWws/Pz9oNBpxoKB+IKGfn1+1zmd0crt161bk5eXh9ddfF7fNnz8fMTExuH37Np555hls2LBBLClboxMnTlS6Elt1rxyKi4uRk5MDAOKMElIky+YgdbWaiIhILji1mLw5Ojoa5Fn3DiSsDqOT288//1ysZgLA3r17MWvWLMydOxft27fHzJkzERMTY9UDytq2bSvplcP9ZfaMjAwA1U+WiYiIyHScWsy2GJ3cHjlyBHFxceLjH374AUFBQZg5cyYAoEGDBnjvvfesOrmV+spBX2bfvHkz5s6di1mzZiEkJKTaybI5sS2BiIiUjlOL2QajZ0u4ceMG3NzcxMdpaWl45plnxMcdO3bEpUuXpI3OyumT5ZCQEABASEgIunfvLquWBP0IxdatW8PBwQGtW7eu0QhFIiIiIksyOrn18vISG6+LioqQnZ1tcNWTl5cnq6SNjKNvnYiLi8M///yDuLg4+Pv7i73CRERERNbE6OT2pZdeQkREBNauXYtx48bBw8MDPXv2FPdnZGSgXbt2ZgmSzEffOjFr1iwAwKxZs6DRaGTZOkFERET0MEb33M6ePRuXLl3C5MmT4eHhgcTERNjZ2Yn7169fjxdffNEsQZL53NtnPHfuXLF1Qg44bQuRZXg0VMHhnxPApYr1D4d/TsCjocqi5yMiehCjk1tHR0esXbu2yv27du2SJCAigNO2EFnSeP/6aL9nPLCn4r72/3+/Jc9HRPQgNV7EgcgcOG0LkeWs1JTilVkJaF9Je9KxnBysjAvDYAuej4joQZjckqxx2hai2qctElDSuC3g9ViFfSXacmiLBIuej4joQYweUEZEREREJHes3BIRWTkO2CIi+p8aJbe3bt1CgwYNpIqFiIiqgQO2iIj+x+S2hPLycsTExKB58+Zo2LAhTp8+DQCIiorC119/LXmARET0YCs1pTjWZyXwVmqFr2N9VmKlptTSIRIR1RqTK7fz5s3DmjVrsHDhQowbN07c3rlzZyxevBhjx46VNEAiInowDtiqObm3dsg9PlvF+djlyeTk9ttvv8WqVavw7LPP4u233xa3d+nShUu2EhGR2T0o0QOql+zJvbVD7vHZIs7HLl8mJ7d///032rRpU2F7eXk5ysrKJAmKrBOvYImoNjwo0QOql+zJfS5eucdnizgfu3yZnNx27NgRv/32G1q2bGmw/fvvv0e3bt0kC4ysC69giai2PCjRA6qX7End2iF1GwFbT+SL87HLj8nJ7ezZs/H666/j77//Rnl5OTZu3Ijjx4/j22+/xc8//2yOGMkK8AqWiGrLgxI9QB7JHtsIiCzH5OT2xRdfxIYNGxAbGwuVSoVZs2ahe/fu+OmnnxAUFGSOGMmK8AqWiIhtBESWVK15bgcMGIABAwZIHQsREZEisI2AyHK4/C4RERERKYZRlVsXFxeoVMY1v1+/fr1GAVHlOBMBkTJwvlIiIvMyKrldsmSJ+Pe8vDzMmzcPAwYMQK9evQAA+/btwy+//IKoqCizBGnrOBMBkXJwoBERkXkZldyOGjVK/PuwYcMwd+5cvPvuu+K2yZMnY9myZdi5cyfef/99yYK7ffs2oqOj8d1330Gr1cLT0xPh4eH4+OOPUafO3aqHIAiYM2cOVq1ahfz8fPTo0QNffvklOnbsKFkclsaZCIiUgwONiKgqvEsrDZMHlP3yyy/49NNPK2wfMGAApk2bJklQep9++ilWrFiBNWvWoGPHjsjIyMDo0aOhVqvx3nvvAQAWLlyIRYsWISEhAW3btsW8efMQFBSE48ePw9nZWdJ4LI0zEdQMbweTHHCgEckF3xPlhXdppWNycuvm5obk5GR8+OGHBts3bdoENzc3yQID7rY7hISE4PnnnwcA+Pj4YP369cjIyABwt2q7ZMkSzJw5E6GhoQCANWvWwN3dHevWrcP48eMrPa9Op4NOpxMfFxYWSho3yRNvBxMR/Q/fE+WFd2mlY3JyO2fOHIwdOxa7d+8We27379+P7du349///rekwT311FNYsWIFTpw4gbZt2yI7OxtpaWliD/CZM2eg1WoRHBwsfo+9vT0CAwOxd+/eKpPbBQsWYM6cOZLGSvLH28FERP/D90R54l3amjM5uQ0PD0f79u3xxRdfYOPGjRAEAR06dEB6ejp69OghaXAfffQRCgoK4OfnBzs7O9y5cwfz58/Hq6++CgDQarUAAHd3d4Pvc3d3x7lz56o87/Tp0zFlyhTxcWFhIby9vSWNneSHt4OJiP6H74mkVNVaxKFHjx747rvvpI6lgg0bNiAxMRHr1q1Dx44dkZWVhYiICHh5eRkMcrt/mjJBEB44dZm9vT3s7e3NFjcRERERWUa1klu9kpISlJWVGWxr1KhRjQK614cffohp06ZhxIgRAIDOnTvj3LlzWLBgAUaNGgUPDw8AEGdS0Lty5UqFai4RERGZDweoyY+tzr5gcnJbXFyMqVOn4j//+Q/y8vIq7L9z544kgemfSz/ll56dnR3Ky8sBAK1atYKHhwdSUlLQrVs3AEBpaSlSU1MrndGBiIiIzIMD1OTFlmdfMDm5/fDDD7Fr1y4sX74cb7zxBr788kv8/fffWLlyJT755BNJg3vxxRcxf/58tGjRAh07dsTBgwexaNEijBkzBsDddoSIiAjExsbC19cXvr6+iI2NhaOjI8LCwiSNhYiIiKrGAWryYsuzL5ic3P7000/49ttv0bdvX4wZMwZPP/002rRpg5YtW+K7777Da6+9JllwS5cuRVRUFCZOnIgrV67Ay8sL48ePx6xZs8Rjpk6dipKSEkycOFFcxGHHjh3VmuM2KysLDRs2tKnSPRERkRQ4QE2ebHH2BZOT2+vXr6NVq1YA7vbXXr9+HcDdabsmTJggaXDOzs5YsmSJwfK/91OpVIiOjkZ0dHSNny8wMNDgsS2U7omIiIiUxOTktnXr1jh79ixatmyJDh064D//+Q+efPJJ/PTTT2jcuLEZQqw9q1atgr+/v02V7omIiIiUxOTkdvTo0cjOzkZgYCCmT5+O559/HkuXLsXt27exaNEic8RYa9q1a2dzpXs548hbIiIiMpXJye37778v/r1fv37IyclBRkYGHn30UXTt2lXS4Mh87p0eBJDnFCEceUtERESmqtE8twDQokULtGjRQopYLM6h4BRwqeI8vUqrElY1PQggrz5jjrwlIrJdvHtH1WVycjt58mS0adMGkydPNti+bNkynDp16oGDv+Su3d4IQFPxl0VpVcL7pwcBIMs+Y468JSKyXbx7R9VlcnL7448/YsuWLRW29+7dG5988olVJ7fHey/BE/7dK2xXapXw3ulBAPYZkzKw2kOkDLx7R9VlcnKbl5cHtVpdYXujRo1w7do1SYKylBJ1G8mqhLa65J1UiouLAQCZmZkAKq8skzJInYyy2kOkDLx7R9VlcnLbpk0bbN++He+++67B9m3btqF169aSBWbNzLHkna1Vo3JycgAA48aNe+Bx1Vmsg+RF6mSU1R4iqoytfY7aMpOT2ylTpuDdd9/F1atX8cwzzwAAfv31V8TFxVl1SwIAZGdno2HDhjWuEppjyTtbq0YNGTIEAODn5wdHR0fx3+zePmFWv5VB6mSU1R4iqoytfY7aMpOT2zFjxkCn02H+/PmIiYkBAPj4+CA+Ph5vvPGG5AHWpvsHyd3P1CqhlEve2Vo1qkmTJnjzzTcrbL+/T5isn9yTUVZ7iJTB1j5HbVm1pgKbMGECJkyYgKtXr8LBwQENGzaUOi6L2L59O5o2bSrLKqHcEwAipWK1h0gZ+Dlac9Yynqhaye3t27exe/du/PXXXwgLCwMAXLp0CY0aNbLqRLdXr15o1Oh/89wquUr4oGoUIJ+KVHFxMXJycir8EunbFYjMjdUeIiLzjCcyF5OT23PnzuG5557D+fPnodPpEBQUBGdnZyxcuBC3bt3CihUrzBEnSexB1ShAPhWpnJwc+Pv7i4/1v0QajUaxFx4kL6z2EBGZZzyRuZic3L733nt4/PHHkZ2dDTc3N3H70KFDK+2RtFVy79N7UDUKqF5Fyhyv2c/PDxqNBr169UJpaSnq16+Pffv2wa+KuGub3P+f5R4fERFZFynHE5mLycltWloa0tPTUb++YVWvZcuW+PvvvyULzNpJ2adnjjlfH1SNAqpXkTJHb6KjoyO6d++OSZMmYdmyZXj33XdlVbGVez+m3OMjIiKSmsnJbXl5Oe7cuVNh+8WLFznn6D2k7NOzljlfzdmb+Pnnn+Pzzz+vWYBmIPd+TLnHR8rHBVmIqLaZnNwGBQVhyZIlWLVqFQBApVKhqKgIs2fPxqBBgyQP0FpJ2adnLXO+2mJvotxfs9Txsc1B+aRORq3l4pyIlMPk5Hbx4sXo168fOnTogFu3biEsLAwnT55EkyZNsH79enPEaHWk/nDgnK8kF2xzUD6pk1FruTiXM1a/iUxjcnLr5eWFrKwsrF+/HpmZmSgvL8fYsWPx2muvwcHBwRwxWh25Vyruf6MEav5myTdfaci9Mso2B+WTOhnlxXnNyf0zxZbJ/T3bVlVrnlsHBweMGTMGY8aMkToeRZB7pcLYN0rA+DdLvvlKQ+6VUbm3YVDN2WIyKveLc3N8pkj9mm3tfHpyf8+21eTbqOR2y5YtRp9w8GDWbeT+4XD/GyWAGr9Zyj2htxasjJKp5J6YWQOpL86toTVN6tdsa+fTk/t7ttyTb3MxKrnVJy56KpUKgiBU2Aag0pkUrEVxcTFOnTql+NWwqnqjBKr/Zin3hN5asDJKpuJdk5qT+uLcGv5PpH7NtnY+Pbm/Z8s9+TYXo5Lb8vJy8e87d+7ERx99hNjYWPTq1QsqlQp79+7Fxx9/jNjYWLMFWhtOnDiBwMBA8TFXwyIiubO1uyYPq4oCsHhl1Br+T6R+zbZ2PnORso2guLgY2iIB6aeLUNK4vOIdhNw7Fk++zcXkntuIiAisWLECTz31lLhtwIABcHR0xFtvvWXVt8Datm0LjUaD999/H/v27UOvXr2wePFi2ayGRUR0P2v50JaKOcYMSM3W/k9IOlK2EVjDHQRzMTm5/euvv6BWqytsV6vVOHv2rBQxWYx+NazY2FjExcUhMjJSVm9ExcXFyMnJUXzbBBFRVYypigKWr4wSVYeUbQTWcAfBXExObp944glEREQgMTERnp6eAACtVovIyEg8+eSTkgdI/5OTkwN/f3/xMdsmiMjWsCpKSiZlD6/+d0VfGDtx4gSAuy2Y7du3V3RhzOTk9ptvvsHQoUPRsmVLtGjRAgBw/vx5tG3bFps2bZI6PouIi4vD1q1bAQABAQEWjuZ//Pz8oNFoKvTNsG2CyDpwZgMi0+gTs6VLlwIAli5dikmTJik6MZPa/YWxuXPnYu7cuYoujJmc3LZp0waHDh1CSkoKcnJyIAgCOnTogP79+4szJkjJx8cH586dq7B94sSJ+PLLLyEIAubMmYNVq1YhPz8fPXr0wJdffomOHTtW+zmDgoKwf/9+BAUF1SR0yenbJtLT0/Hjjz/Krm2CiB7MlnvgiKrj/sQsISEBCQkJskjMrOViVV8Ye+WVV3Dq1Cm0adMGGzZsUHRhrFqLOKhUKgQHByM4OFjqeCo4cOCAwfRiR44cQVBQEF5++WUAwMKFC7Fo0SIkJCSgbdu2mDdvHoKCgnD8+PFqf0CkpKTg+vXrSElJwYQJEyR5HVKaMWMG0tLSkJeXh9TUVEuHY4B9wURVs+UeOLIN+s+Ajz/+GADw8ccfY968edX+DNAnZuvWrcPXX3+NsWPHIiwsrNqJmZSfUXKfH1lPXxjz8vLC6dOn4eXlZfELA3MzKrn94osv8NZbb6FBgwb44osvHnjs5MmTJQlMr2nTpgaPP/nkEzz66KMIDAyEIAhYsmQJZs6cidDQUADAmjVr4O7ujnXr1mH8+PHVes7IyEiDP6vLGhI9qWNkXzBR1dgvSkp3/2fAtm3bsG3btmp/BugTs5KSEpw+fRpDhw6t0e+KlJ9R1jY/8r2D5ZXOqOR28eLFeO2119CgQQMsXry4yuNUKpXkye29SktLkZiYiClTpkClUuH06dPQarUGFWR7e3sEBgZi7969VSa3Op0OOp1OfFxYWGiwPyAgQJJeW3MlelL+gEodo/4qOzg4GHl5eXBzc8OOHTsUffuDiMhaSV3g0H8GfPbZZ/jxxx8xbNgwfPjhhzX+DJBqLIw+vjFjxuDQoUPo0qULvvnmm2rFZ23zI0uV21gDo5LbM2fOVPr32rZp0yb8888/CA8PB3B3lgYAcHd3NzjO3d290j5dvQULFmDOnDlmi1NP/0sk9by5Uv6A6mPs168fCgsL0ahRI+zatavaMeqvssPDw7Fs2TKEh4fLoiJlLb1RRERVMcfgKqkLHPrPgPXr11crnqpIdUdVHx8AcaVVOXxGAdZxZ0fKRSbMqVo9t5by9ddfY+DAgfDy8jLYfv9ANkEQHji4bfr06ZgyZYr4uLCwEN7e3tIGC/nPmwv8L8ZWrVohOzsbrVq1kiTG06dPG/xpadYwkIcJOBE9iDkGV+kLHM888wwKCgqgVqvx3//+V3Z326SuOqrVatSpU6fSefupalIuMmFOJie3L730Eh5//HFMmzbNYPtnn32GP/74A99//71kwd3r3Llz2LlzJzZu3Chu8/DwAHC3gqufcxcArly5UqGaey97e3vY29ubJc7KWMOtgC+//FLSXhyprrKlYg0DeawhASciyzHHqHd9gcPHxwfZ2dnw8fGRXRHGHOTcfyrX6c+Ki4uxUlOKrsOnwc/PDzqdDpcuXYKXlxfs7e1x5swZrNTMNHqRCXMyOblNTU3F7NmzK2x/7rnn8Pnnn0sSVGVWr16NZs2a4fnnnxe3tWrVCh4eHkhJSUG3bt0A3O3LTU1Nxaeffmq2WEwVHx+PmJgYREVFyXL2BUD6BFxuCb013O6xhgRcaqxWExlPn4gmJCRIfjdQ6gKH3MntM+pecp3+LCcnB9oiAaHvPLitUw4FGJOT26KiItSvX7HsXK9evQoDs6RSXl6O1atXY9SoUahb938hq1QqREREIDY2Fr6+vvD19UVsbCwcHR0RFhZmlliqIyYmBrm5uYiJiZEkuU1PTxffhOT6y0mms4YEXGqsVpOSmWvGHHMkZnJO9myNuQbl1ZS+AOPj44PLly/jzJkziIqKQkxMDFq1agUfHx80a9ZMFgUYk5PbTp06YcOGDZg1a5bB9qSkJHTo0EGywO61c+dOnD9/HmPGjKmwb+rUqSgpKcHEiRPFRRx27Nghqw9D/X9+VFSUJOeT6wpqpGzmqLJKXa1mJZjkhFMj2gb9RczmzZsBQPyzuhcx+gq9TqdDnTp1oNPpZPHzoi/AZGZmGixypc9tNBqNLBJboBrJbVRUFIYNG4a//voLzzzzDADg119/xfr1683WbxscHCyOaryfSqVCdHQ0oqOjzfLcUpgwYYKk7Qhy62cl22COKqvU1WprmVTdFkmdAFgDqRcgIHky1/K2cv2st4ZBiCYnt4MHD8amTZsQGxuLH374AQ4ODujSpQt27tyJwMBAc8RI9+HtIzKG1ImZNfQEW9uk6rbEFte311fgXnjhBfzzzz9Yt26dWcemkGVIOXfuveT6WW8NgxCrNRXY888/bzCwi4jkR+rEzBp6gq1tUnVbYg3r25urRzYsLAzLli2T1VgQko4+2bt3UJ5c3hPNSc6DEKuV3P7zzz/44YcfcPr0aXzwwQdwdXVFZmYm3N3d0bx5c6ljJKJqYGJWc9aQ0FsLa1jf3lw9snKb95tICnKtLAPVSG4PHTqE/v37Q61W4+zZs3jzzTfh6uqK5ORknDt3Dt9++6054iQiEzExo5owVxVTzvOLmquXUK69kyQtDvaWD5OT2ylTpiA8PBwLFy40uJ05cOBA3nIhIlIIc1Uxpar2VJV8AzUfpS51L6GcK1wkHV7EyIfJye2BAwewcuXKCtubN28OrVYrSVBE1sBcI+nNVTEjMoXce2SrSr6Bmifgcu4lJPniRYx8mJzcNmjQoNLFGo4fP46mTZtKEhSRNTDXSHrOjUnVIfVFkb6KmZ+fDwDIz8+X1c9fVS0E+n01wSSFyLrVMfUbQkJCMHfuXJSVlQG4O8/s+fPnMW3aNAwbNkzyAInkasiQIfjqq6/w22+/QaPRIDExEQCQmJgIjUYDjUaDEydOmDxgS/+h3bVrV6hUKnTt2hUajUY2FTOSJ/1Fkf5iaOTIkfD39xcvwqorJiYGnp6eiImJkSJMydzbQgBAbCHo3r0773AQ2TiTK7eff/45Bg0ahGbNmqGkpASBgYHQarXo1asX5s+fb44YiWTJXAO29B/aAMTFS+RUMWPbhDyZa65NqRehkRpbCIjofiYnt40aNUJaWhr++9//IjMzE+Xl5ejevTv69+9vjviIJGVNiZlarUadOnWgVqstHYoBtk3Ik/6iSK1WQ6VSQa1W28T/B1sIiOh+1ZrnFgCeeeYZcfldImthTYmZXKdMMleFkKQxYsQInDx5EiNGjLB0KEREFmFSz215eTm++eYbvPDCC+jUqRM6d+6MwYMH49tvvxVvnxLJmT4x69OnD+rVq4c+ffrItp81ICAAGzdulF1VqqoKodwq33JWXFyMzMxMgzsImZmZ4gwcNZGSkoLr168jJSWlxuciIrJGRlduBUHA4MGDsXXrVnTt2hWdO3eGIAg4duwYwsPDsXHjRmzatMmMoRLVnD4xu7e6JbeKrbVghbD6zHkHgXNtEpGtM7pym5CQgD179uDXX3/FwYMHsX79eiQlJSE7Oxs7d+7Ef//7X65ORlbDlqpb+irh5s2bAQCbN2+WpEoo539Dc71mqZhzRgy5VvyJiGqL0cnt+vXrMWPGDPTr16/CvmeeeQbTpk3Dd999J2lwROYSFBQEV1dXBAUFWToUs9NXCefOnQsAmDt3riRTREVGRmLQoEGyrBCa6zVLha0dRETmY3Rye+jQITz33HNV7h84cCCys7MlCYrI3KSsOpqzf1IK5qoSyrlCqH/N+pkm1Gq1LHurR4wYAXd3d7Z2EBFJyOjk9vr163B3d69yv7u7u7iSDZHcSVl1NNfk+VLRVwnHjx8PDw8PjB8/XnZVQqkvEPSvecGCBfD09MSCBQtk95oBebd2EBFZK6MHlN25cwd161Z9uJ2dHW7fvi1JUETmJuXcmNYyNda9iZTcJuU31wArqRYg0M+PfG8PL1Dz+ZE5+IuISHomzZYQHh4Oe3v7SvfrdDrJgiKyJnJfUUxPzomU/gKhX79+KCwsRKNGjbBr1y7ZXCDcn3zPnTsXc+fOrXHyzQUIiMjWnTx5Ejdu3ACACgssAYCzs7PJy9gbndyOGjXqoce88cYbJj05kZLIdUUxPTknUvoLhFatWiE7OxutWrWS1QWCtVTniYisycmTJ9G2bdsK2/V37/ROnDhhUoJrdHK7evVqo09KZIvkuqKYNfnyyy9l+W94b99yTEyM2LdMRETVp6/YJiYmon379igpKcHZs2fh4+MDBwcHHDt2DCNHjhSPM1a1l98lIkNyroxaC7n/G8q5b5mIyFq1b99eLBhI8RnA5JaIyEhy7lsmIqK7mNwSERlJ7pVlIiIyYZ5bIiIiIiK5Y3JLRERERIrB5JaIiIiIFEP2ye3ff/+NkSNHws3NDY6Ojnjssceg0WjE/YIgIDo6Gl5eXnBwcEDfvn1x9OhRC0ZMRERERJYi6wFl+fn5CAgIQL9+/bBt2zY0a9YMf/31Fxo3biwes3DhQixatAgJCQlo27Yt5s2bh6CgIBw/fhzOzs6WC56IiIiIHsijoQoO/5wALlWstzr8cwIeDVUmn1PWye2nn34Kb29vgwUkfHx8xL8LgoAlS5Zg5syZCA0NBQCsWbMG7u7uWLduHcaPH1/bIRMRERGREYqLizHevz7a7xkP7Km4vz2A8f71TT6vrJPbLVu2YMCAAXj55ZeRmpqK5s2bY+LEiRg3bhwA4MyZM9BqtQgODha/x97eHoGBgdi7d2+Vya1Op4NOpxMfFxYWmveFEBEREZGBnJwcrNSUYsvxsiqPyS0S8JqJd+JlndyePn0a8fHxmDJlCmbMmIE//vgDkydPhr29Pd544w1otVoAgLu7u8H3ubu749y5c1Wed8GCBZgzZ45ZYyciIiKiqg0ZMgQA4OfnB0dHR3G5Xf1yvADg7OwMX19fk84r6wFl5eXl6N69O2JjY9GtWzeMHz8e48aNQ3x8vMFxKpVhP4YgCBW23Wv69OkoKCgQvy5cuGCW+ImIiIiock2aNMGbb74pLr373XffGfzp5+dncmILyDy59fT0RIcOHQy2tW/fHufPnwcAeHh4AIBYwdW7cuVKhWruvezt7dGoUSODLyIiIiKqfTk5OfD398e2bdsAANu2bYO/vz9ycnKqdT5ZJ7cBAQE4fvy4wbYTJ06gZcuWAIBWrVrBw8MDKSkp4v7S0lKkpqaid+/etRorEREREZnOz88PGo0GI0aMQL169TBixAhoNBr4+flV63yy7rl9//330bt3b8TGxmL48OH4448/sGrVKqxatQrA3XaEiIgIxMbGwtfXF76+voiNjYWjoyPCwsIsHD0RERERPYyjoyO6d++O9evXS3I+WSe3TzzxBJKTkzF9+nTMnTsXrVq1wpIlS/Daa6+Jx0ydOhUlJSWYOHEi8vPz0aNHD+zYsYNz3BIRERHZIJUgCIKlg7C0wsJCqNVqFBQUsP+WiIiISIaMzddk3XNLRERERGQKJrdEREREpBhMbomIiIhIMZjcEhEREZFiMLklIiIiIsVgcktEREREisHkloiIiIgUg8ktERERESkGk1siIiIiUgwmt0RERESkGExuiYiIiEgxmNwSERERkWIwuSUiIiIixWByS0RERESKweSWiIiIiBSDyS0RERERKQaTWyIiIiJSDCa3RERERKQYTG6JiIiISDGY3BIRERGRYjC5JSIiIiLFYHJLRERERIrB5JaIiIiIFIPJLREREREpBpNbIiIiIlIMJrdEREREpBhMbomIiIhIMZjcEhEREZFiyDq5jY6OhkqlMvjy8PAQ9wuCgOjoaHh5ecHBwQF9+/bF0aNHLRgxEREREVmSrJNbAOjYsSNyc3PFr8OHD4v7Fi5ciEWLFmHZsmU4cOAAPDw8EBQUhBs3blgwYiIiIiKyFNknt3Xr1oWHh4f41bRpUwB3q7ZLlizBzJkzERoaik6dOmHNmjUoLi7GunXrLBw1EREREVlCXUsH8DAnT56El5cX7O3t0aNHD8TGxqJ169Y4c+YMtFotgoODxWPt7e0RGBiIvXv3Yvz48VWeU6fTQafTiY8LCgoAAIWFheZ7IURERERUbfo8TRCEBx4n6+S2R48e+Pbbb9G2bVtcvnwZ8+bNQ+/evXH06FFotVoAgLu7u8H3uLu749y5cw8874IFCzBnzpwK2729vaULnoiIiIgkd+PGDajV6ir3q4SHpb8ycvPmTTz66KOYOnUqevbsiYCAAFy6dAmenp7iMePGjcOFCxewffv2Ks9zf+W2vLwc169fh5ubG1QqlVlfg1wVFhbC29sbFy5cQKNGjSwdDpHs8HeE6OH4e0LmJAgCbty4AS8vL9SpU3Vnrawrt/dzcnJC586dcfLkSQwZMgQAoNVqDZLbK1euVKjm3s/e3h729vYG2xo3bix1uFapUaNGfEMiegD+jhA9HH9PyFweVLHVk/2AsnvpdDocO3YMnp6eaNWqFTw8PJCSkiLuLy0tRWpqKnr37m3BKImIiIjIUmRduf3ggw/w4osvokWLFrhy5QrmzZuHwsJCjBo1CiqVChEREYiNjYWvry98fX0RGxsLR0dHhIWFWTp0IiIiIrIAWSe3Fy9exKuvvopr166hadOm6NmzJ/bv34+WLVsCAKZOnYqSkhJMnDgR+fn56NGjB3bs2AFnZ2cLR2597O3tMXv27ArtGkR0F39HiB6OvyckB1Y1oIyIiIiI6EGsqueWiIiIiOhBmNwSERERkWIwuSUiIiIixWByS0RERESKweTWhi1YsABPPPEEnJ2d0axZMwwZMgTHjx+3dFhEshIfH48uXbqIk9L36tUL27Zts3RYRLK2YMECccpOotrG5NaGpaam4p133sH+/fuRkpKC27dvIzg4GDdv3rR0aESy8cgjj+CTTz5BRkYGMjIy8MwzzyAkJARHjx61dGhEsnTgwAGsWrUKXbp0sXQoZKM4FRiJrl69imbNmiE1NRV9+vSxdDhEsuXq6orPPvsMY8eOtXQoRLJSVFSE7t27Y/ny5Zg3bx4ee+wxLFmyxNJhkY1h5ZZEBQUFAO5+cBNRRXfu3EFSUhJu3ryJXr16WTocItl555138Pzzz6N///6WDoVsmKxXKKPaIwgCpkyZgqeeegqdOnWydDhEsnL48GH06tULt27dQsOGDZGcnIwOHTpYOiwiWUlKSkJmZiYOHDhg6VDIxjG5JQDAu+++i0OHDiEtLc3SoRDJTrt27ZCVlYV//vkHP/74I0aNGoXU1FQmuET/34ULF/Dee+9hx44daNCggaXDIRvHnlvCpEmTsGnTJuzZswetWrWydDhEste/f388+uijWLlypaVDIZKFTZs2YejQobCzsxO33blzByqVCnXq1IFOpzPYR2ROrNzaMEEQMGnSJCQnJ2P37t1MbImMJAgCdDqdpcMgko1nn30Whw8fNtg2evRo+Pn54aOPPmJiS7WKya0Ne+edd7Bu3Tps3rwZzs7O0Gq1AAC1Wg0HBwcLR0ckDzNmzMDAgQPh7e2NGzduICkpCbt378b27dstHRqRbDg7O1cYr+Hk5AQ3NzeO46Bax+TWhsXHxwMA+vbta7B99erVCA8Pr/2AiGTo8uXLeP3115Gbmwu1Wo0uXbpg+/btCAoKsnRoRERUCfbcEhEREZFicJ5bIiIiIlIMJrdEREREpBhMbomIiIhIMZjcEhEREZFiMLklIiIiIsVgcktEREREisHkloiIiIgUg8ktERERESkGk1siUoy+ffsiIiLCLOfu06cP1q1bZ5ZzK83hw4fxyCOP4ObNmw88Ljo6GiqVCiqVCkuWLJE0hrNnz4rnfuyxxyQ9NxHJG5NbIqKH+Pnnn6HVajFixAhxm4+Pj5g86b8eeeQRC0YpH507d8aTTz6JxYsXP/TYjh07Ijc3F2+99Za4zcfHp9JkNzo62uhE1dvbG7m5uYiMjDQ2bCJSCCa3REQP8cUXX2D06NGoU8fwLXPu3LnIzc0Vvw4ePFjp95eVldVGmLIyevRoxMfH486dOw88rm7duvDw8ICjo6Okz29nZwcPDw80bNhQ0vMSkfwxuSUixcrPz8cbb7wBFxcXODo6YuDAgTh58qTBMV999RW8vb3h6OiIoUOHYtGiRWjcuLG4/9q1a9i5cycGDx5c4fzOzs7w8PAQv5o2bQoAUKlUWLFiBUJCQuDk5IR58+YBAH766Sf4+/ujQYMGaN26NebMmYPbt2+L5zt58iT69OmDBg0aoEOHDkhJSYFKpcKmTZsAALt374ZKpcI///wjfk9WVhZUKhXOnj0rbtu7dy/69OkDBwcHeHt7Y/LkyQYtAj4+PoiNjcWYMWPg7OyMFi1aYNWqVQav7eLFixgxYgRcXV3h5OSExx9/HL///jvOnj2LOnXqICMjw+D4pUuXomXLlhAEAQAwYMAA5OXlITU19SH/S9V3f+VcpVLBx8fHbM9HRNaByS0RKVZ4eDgyMjKwZcsW7Nu3D4IgYNCgQWIlNT09HW+//Tbee+89ZGVlISgoCPPnzzc4R1paGhwdHdG+fXuTnnv27NkICQnB4cOHMWbMGPzyyy8YOXIkJk+ejD///BMrV65EQkKC+Hzl5eUIDQ2FnZ0d9u/fjxUrVuCjjz4y+TUfPnwYAwYMQGhoKA4dOoQNGzYgLS0N7777rsFxcXFxePzxx3Hw4EFMnDgREyZMQE5ODgCgqKgIgYGBuHTpErZs2YLs7GxMnToV5eXl8PHxQf/+/bF69WqD861evRrh4eFQqVQAgPr166Nr16747bffTH4Nxrq3an7q1Cm0adMGffr0MdvzEZGVEIiIFCIwMFB47733BEEQhBMnTggAhPT0dHH/tWvXBAcHB+E///mPIAiC8MorrwjPP/+8wTlee+01Qa1Wi48XL14stG7dusJztWzZUqhfv77g5OQkfv3rX/8SBEEQAAgREREGxz/99NNCbGyswba1a9cKnp6egiAIwi+//CLY2dkJFy5cEPdv27ZNACAkJycLgiAIu3btEgAI+fn54jEHDx4UAAhnzpwRBEEQXn/9deGtt94yeJ7ffvtNqFOnjlBSUiLGPnLkSHF/eXm50KxZMyE+Pl4QBEFYuXKl4OzsLOTl5VV43YIgCBs2bBBcXFyEW7duCYIgCFlZWYJKpRJj0Bs6dKgQHh5e6TkEQRBmz54tdO3atcL2yv5tnZychHr16lV6fHl5uTB06FDB399fKC4uNuo5iEi56lo0syYiMpNjx46hbt266NGjh7jNzc0N7dq1w7FjxwAAx48fx9ChQw2+78knn8TPP/8sPi4pKUGDBg0qfY4PP/wQ4eHh4uMmTZqIf3/88ccNjtVoNDhw4IBBZfjOnTu4desWiouLcezYMbRo0cJgUFqvXr1MeMX/e55Tp07hu+++E7cJgoDy8nKcOXNGrEB36dJF3K9SqeDh4YErV64AuNvq0K1bN7i6ulb6HEOGDMG7776L5ORkjBgxAt988w369etXoSXAwcEBxcXFJr8GoOK/LXC393nPnj0Vjp0xYwb27duHAwcOwMHBoVrPR0TKweSWiBRJ+P+9n5Vt1986v/fvVX1fkyZNkJ+fX+m5mjRpgjZt2lS6z8nJyeBxeXk55syZg9DQ0ArHNmjQoNJ4749NP6Dt3mPvH6xWXl6O8ePHY/LkyRXO16JFC/Hv9erVq/Bc5eXlAPDQBLF+/fp4/fXXsXr1aoSGhmLdunWVzm5w/fp1PProow88V1Uq+7etLNlOTEzE4sWLsXv3bs5WQUQAmNwSkUJ16NABt2/fxu+//47evXsDAPLy8nDixAmxeunn54c//vjD4PvuHyjVrVs3aLVa5Ofnw8XFpdrxdO/eHcePH68yGe7QoQPOnz+PS5cuwcvLCwCwb98+g2P0A9Zyc3PFWLKysio8z9GjR6t8HmN06dIF//73v3H9+vUqq7dvvvkmOnXqhOXLl6OsrKzSpP3IkSN46aWXqh3Hw+zbtw9vvvkmVq5ciZ49e5rteYjIunBAGREpkq+vL0JCQjBu3DikpaUhOzsbI0eORPPmzRESEgIAmDRpErZu3YpFixbh5MmTWLlyJbZt22ZQMe3WrRuaNm2K9PT0GsUza9YsfPvtt4iOjsbRo0dx7NgxbNiwAR9//DEAoH///mjXrh3eeOMNZGdn47fffsPMmTMNztGmTRt4e3sjOjoaJ06cwP/93/8hLi7O4JiPPvoI+/btwzvvvIOsrCycPHkSW7ZswaRJk4yO9dVXX4WHhweGDBmC9PR0nD59Gj/++KNBst2+fXv07NkTH330EV599dUK1d6zZ8/i77//Rv/+/U39pzKKVqvF0KFDMWLECAwYMABarRZarRZXr141y/MRkfVgcktEirV69Wr4+/vjhRdeQK9evSAIArZu3Srekg8ICMCKFSuwaNEidO3aFdu3b8f7779v0GNrZ2eHMWPGGPSwVseAAQPw888/IyUlBU888QR69uyJRYsWoWXLlgDuthwkJydDp9PhySefxJtvvllh5oZ69eph/fr1yMnJQdeuXfHpp5+K04zpdenSBampqTh58iSefvppdOvWDVFRUfD09DQ61vr162PHjh1o1qwZBg0ahM6dO+OTTz6BnZ2dwXFjx45FaWkpxowZU+Ec69evR3BwsPj6pJaTk4PLly9jzZo18PT0FL+eeOIJszwfEVkPlVBVYxoRkQ0aN24ccnJyDKawunz5Mjp27AiNRmO2ZK0qKpUKycnJGDJkSK0+rzHmz5+PpKQkHD582GC7TqeDr68v1q9fj4CAgCq/Pzo6Gps2barQWiGl2ngOIpIXVm6JyKZ9/vnnyM7OxqlTp7B06VKsWbMGo0aNMjjG3d0dX3/9Nc6fP2+hKOWlqKgIBw4cwNKlSysduHbu3DnMnDnzgYmt3uHDh9GwYUMsX75c0hjPnz+Phg0bIjY2VtLzEpH8sXJLRDZt+PDh2L17N27cuIHWrVtj0qRJePvtty0dlkiOldvw8HCsX78eQ4YMwbp16yq0Kxjr+vXruH79OoC7g+XUarVkMd6+fVtctc3e3h7e3t6SnZuI5I3JLREREREpBtsSiIiIiEgxmNwSERERkWIwuSUiIiIixWByS0RERESKweSWiIiIiBSDyS0RERERKQaTWyIiIiJSDCa3RERERKQY/w+0T3DQ2TZC9QAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAGbCAYAAACIxMC9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4yElEQVR4nOzde3zT9fU/8NcnaZImvd/vpS0UW+5QBAUUbwVlCoJOEdlgbt85mducOKcojIvi5k/Uzfs2FSdzuCnijQ3wBlJApeVOA4Xe75ekTdOkSZp8fn+URkoLJGmu7ev5ePRRcv2ctiGfnPf7vM9bEEVRBBEREREREREFDImvAyAiIiIiIiIi5zCZJyIiIiIiIgowTOaJiIiIiIiIAgyTeSIiIiIiIqIAw2SeiIiIiIiIKMAwmSciIiIiIiIKMEzmiYiIiIiIiAIMk3kiIiIiIiKiAMNknoiIiIiIiCjAMJknIiIiIiIiCjA+TeZ3796NW265BcnJyRAEAVu3brXfZrFY8Pvf/x5jx45FSEgIkpOT8eMf/xi1tbW9nsNkMuFXv/oVYmNjERISgrlz56K6utrLPwkREdHQxnM6ERGRd/k0me/o6MD48ePx4osv9rnNYDCgqKgIK1euRFFREbZs2YJTp05h7ty5ve73wAMP4IMPPsDmzZuxZ88e6PV63HzzzbBard76MYiIiIY8ntOJiIi8SxBFUfR1EAAgCAI++OAD3HrrrRe8z3fffYcpU6agoqIC6enpaGtrQ1xcHN5++23ceeedAIDa2lqkpaVh27ZtmD17tpeiJyIioh48pxMREXlekK8DcEZbWxsEQUBkZCQAoLCwEBaLBbNmzbLfJzk5GWPGjMHevXsveOI3mUwwmUz2yzabDRqNBjExMRAEwaM/AxERkSeIooj29nYkJydDIvH/ljg8pxMREfXP0XN6wCTznZ2deOSRR7Bo0SKEh4cDAOrr6yGXyxEVFdXrvgkJCaivr7/gcz311FNYs2aNR+MlIiLyhaqqKqSmpvo6jIviOZ2IiOjSLnVOD4hk3mKxYOHChbDZbHj55ZcveX9RFC86Gv/oo4/iwQcftF9ua2tDeno6ysrKEBYW5paYPcliseDLL7/EtddeC5lM5utwKEDxdUQDxdeQf2lvb0dmZqbfn8e8dU6vqqqyDxQQEREFEp1Oh7S0tEue0/0+mbdYLLjjjjtQVlaGL774oteJOTExEWazGVqtttdIfmNjI6ZNm3bB51QoFFAoFH2uj46ODogTv8VigUqlQkxMDD9Ak8v4OqKB4mvIv/T8Dfy5tNyb5/Tw8PCAOKcTERFdyKXO6X69qK7npF9SUoLPPvsMMTExvW7Py8uDTCbDzp077dfV1dXh2LFjFz3xExERkXfxnE5ERORePp2Z1+v1OH36tP1yWVkZDh06hOjoaCQnJ+P2229HUVERPvnkE1itVvuauejoaMjlckREROCnP/0pli9fjpiYGERHR+Ohhx7C2LFjccMNN/jqxyIiIhpyeE4nIiLyLp8m8wcOHMC1115rv9yz5m3JkiVYvXo1PvroIwDAhAkTej3uyy+/xDXXXAMAeO655xAUFIQ77rgDRqMR119/PTZu3AipVOqVn4GIiIh4TiciIvI2nybz11xzDS62zf3FbusRHByMF154AS+88II7QyMiGnSsVissFovbns9isSAoKAidnZ2wWq1ue17qn0wm8+uklud0IiIi7/L7BnhERDQwoiiivr4era2tbn/exMREVFVV+XXTtcEkMjISiYmJ/H0TERERk3kiosGuJ5GPj4+HSqVyWyJos9mg1+sRGhoKicSv+6kGPFEUYTAY0NjYCABISkrycURERETka0zmiYgGMavVak/kz+8ePlA2mw1msxnBwcFM5r1AqVQC6N6qLT4+3q9L7omIiMjz+OmLiGgQ61kjr1KpfBwJuUPP39GdvQ+IiIgoMDGZJyIaArjGenDg35GIiIh6MJknIiIiIiIiCjBM5omIaEj66quvIAiCvcv/xo0bERkZ6dOYiIiIiBzFZJ6IiPzS0qVLIQgCfvGLX/S5bdmyZRAEAUuXLnXb8e68806cOnXKbc9HRERE5ElM5omIyG+lpaVh8+bNMBqN9us6Ozvxr3/9C+np6W49llKpRHx8vFufk4iIiMhTmMwTEQ0xoijCYO5yy5fRbHX4vqIoOh3rpEmTkJ6eji1bttiv27JlC9LS0jBx4sReP9PTTz+NrKwsKJVKjB8/Hu+9916v59q2bRtGjhwJpVKJa6+9FuXl5b1uP7/M/syZM5g3bx4SEhIQGhqKyy+/HJ999lmvx2RkZGD9+vW45557EBYWhvT0dPz1r391+uckIiIichb3mSciGmKMFitGrdru9eOeWDsbKrnzp52f/OQnePPNN3H33XcDAN544w3cc889+Oqrr+z3efzxx7Flyxa88soryM7Oxu7du7F48WLExcVh5syZqKqqwoIFC/CLX/wC9913Hw4cOIDly5df9Lh6vR5z5szBE088geDgYLz11lu45ZZbcPLkyV5VARs2bMC6deuwYsUKvPfee7jvvvtw9dVXIycnx+mflYiIiMhRnJknIiK/9qMf/Qh79uxBeXk5KioqUFBQgMWLF9tv7+jowLPPPos33ngDs2fPRlZWFpYuXYrFixfjtddeAwC88soryMrKwnPPPYfLLrsMd9999yXX248fPx733nsvxo4di+zsbDzxxBPIysrCRx991Ot+c+bMwbJlyzBixAj8/ve/R2xsbK+BBiIif1dQUIAFCxagoKDA16EQkRM4M09ENMQoZVKcWDt7wM9js9nQrmtHWHgYJJJLjw0rZVKXjhMbG4sf/OAHeOuttyCKIn7wgx8gNjbWfvuJEyfQ2dmJ/Pz8Xo8zm832Uvzi4mJcccUVvfZpv/LKKy963I6ODqxZswaffPIJamtr0dXVBaPRiMrKyl73GzdunP3fgiAgMTERjY2NLv2sRES+sGLFCuzZswctLS3YtWuXr8MhIgcxmSciGmIEQXCp3P18NpsNXXIpVPIgh5L5gbjnnntw//33AwBeeumlPnEAwKeffoqUlJRetykUCgBwab3+7373O2zfvh3PPPMMRowYAaVSidtvvx1ms7nX/WQyWa/LgiDYYyIiIiLyFJbZExGR37vxxhthNpthNpsxe3bvqoJRo0ZBoVCgsrISI0aM6PWVlpZmv8/+/ft7Pe78y+f7+uuvsXTpUsyfPx9jx45FYmJin6Z5RESDwcKFC5GQkICFCxc69TiW5xP5FmfmiYjI70mlUhQXF9v/fa6wsDA89NBD+O1vfwubzYYZM2ZAp9Nh7969CA0NxZIlS/CLX/wCGzZswIMPPoh7770XhYWF2Lhx40WPOWLECGzZsgW33HILBEHAypUrOeNORIPSzp07odFosHPnTtx3330OP27Dhg3Ytm0bAGD69OmeCo+ILoAz80REFBDCw8MRHh7e723r1q3DqlWr8NRTTyE3NxezZ8/Gxx9/jMzMTABAeno63n//fXz88ccYP348Xn31Vaxfv/6ix3vuuecQFRWFadOm4ZZbbsHs2bMxadIkt/9cRES+tnz5csyZM+eSu3ycLz8/H9HR0X16lhCRdwiiKwsJBxmdToeIiAi0tbVd8IOiP7FYLNi2bRvmzJnTZ60mkaP4OhoaOjs7UVZWhszMTAQHB7v1uW02G3Q6HcLDwz2+Zp66XezvGWjnMk/h74HIe2bOnIk9e/ZgxowZXmmcV1BQgA0bNmD58uWsBKBBzdFzGcvsiYiIiIjI77HrPlFvnEohIiIiIiKnrV+/HvPmzbvksiUi8gzOzBMRERERDUEGgwFqtRpGoxHl5eXIyMjAxIkToVKpHHr89OnTvVruvn79enuZPRFxZp6IiIiIaEhSq9XIy8vDjBkzsHjxYsyYMQNqtdrjx3V1S7vp06djy5YtLg0gcBs9Gow4M09ERERENATl5OSgsLAQxcXFWLx4MTZt2oScnByHHmswGHDw4EGXZvR9saUdt9GjwYjJPBERERHREKRSqXptuZmbm+twQq5WqzFjxgz75cLCQoe37+wpk3e2XH4g3eyzsrJ6fScaDFhmT0REREQU4LxdRp6Tk4NNmzYBgFMz+q4yGAxYsWIFPvnkE6xYsQJFRUUwGAwOP/6dd96ByWTCO++848EoibyLyTwRERERUYDrKSPfsGGDV46nUqmQm5sLwLkZfaB7i7kPP/wQK1ascPgxarUau3fvhsViwe7du5GXl+fU+v6VK1ciKSkJK1eudPgxANfak39jmT0RERERUYBztXQ9UPRUAvSs7c/NzXWqGuC+++7Dfffd5/Rxudae/Bln5omIiFz01VdfQRAEtLa2AgA2btyIyMhIn8ZEREPTQDq9e5PBYMDChQsxadIkLFy40OFy+fMrASZNmuRUNYCruNae/Bln5omIhqjndp4a0ONFUYTJZIJCoYAgCBe972/zR7p0jKqqKqxevRr//e9/0dzcjKSkJNx6661YtWoVYmJiXHpOV11zzTWYMGECnn/+eft106ZNQ11dHSIiIrwaCxE555VXXsG6deuwcuVKl2ZnyX3UajWWLVsGADhw4AAA55rneZPBYMDGjRthMpmwceNGrF271isDCESO4sw8ERH5pdLSUkyePBmnTp3Cv/71L5w+fRqvvvoqPv/8c1x55ZXQaDS+DhFyuRyJiYmXHMwgIt9at24d6urqsG7dOl+HMuSd3zivsLDQ483zXKVWq9HS0gIAaGlpcWqNPpE3MJknIiK/9Mtf/hJyuRw7duzAzJkzkZ6ejptuugmfffYZampq8NhjjwEABEHA1q1bez02MjISGzdutF/+/e9/j5EjR0KlUiErKwsrV66ExWKx37569WpMmDABb7/9NjIyMhAREYGFCxeivb0dALB06VLs2rULf/7znyEIAgRBQHl5eZ8y+/58/PHHyMvLQ3BwMLKysrBmzRp0dXX1OnZ6ejoUCgWSk5Px61//euC/PCIvCZTmYIsWLYJCocCiRYt8HcqQ56tyeVd4u2M/kbOYzBMRkd/RaDTYvn07li1bBqVS2eu2xMRE3H333Xj33XchiqJDzxcWFoaNGzfixIkT+POf/4y//e1veO6553rd58yZM9i6dSs++eQTfPLJJ9i1axf++Mc/AgD+/Oc/48orr8T//d//oa6uDnV1dUhLS7vkcbdv347Fixfj17/+NU6cOIHXXnsNGzduxJNPPgkAeO+99/Dcc8/htddeQ0lJCbZu3YqxY8c69DMR+QNXupL7Qmlpaa/vRI4YSMd+Im9gMk9ERH6npKQEoijaP0SdLzc3F1qtFk1NTQ493+OPP45p06YhIyMDt9xyC5YvX45///vfve5js9mwceNGjBkzBldddRV+9KMf4fPPPwcAREREQC6XQ6VSITExEYmJiZBKpZc87pNPPolHHnkES5YsQVZWFvLz87Fu3Tq89tprAIDKykokJibihhtuQHp6OqZMmYL/+7//c+hnIiLHLV++HHPmzBm0nd5p8AiUahfyD2yAR0REAadnRl4ulzt0//feew/PP/88Tp8+Db1ej66uLoSHh/e6T0ZGBsLCwuyXk5KS0NjYOKA4CwsL8d1339ln4gHAarWis7MTBoMBP/zhD/H8888jKysLN954I+bMmYNbbrkFQUE8PVNgWLhwIUpKSrBw4UJfh3JR06dP9/su70QAt8Ij53BmnoiI/M6IESMgCAJOnDjR7+1qtRpxcXGIjIyEIAh9yu3PXQ+/f/9+LFy4EDfddBM++eQTHDx4EI899hjMZnOvx8hksl6XBUGAzWYb0M9hs9mwZs0aHDp0yP519OhRlJSUIDg4GGlpaTh58iReeuklKJVKLFu2DFdffXWv+In82c6dO6HRaLBz505fh3JBBoMBBQUF+Oc//4mCggKHt0ILNJzR7Z/BYEBRUVGv14C//v0NBgMUCgVsNhsUCsWgfa2S+3Don4iI/E5MTAzy8/Px8ssv47e//W2vdfP19fX45z//iV/+8pcAgLi4ONTV1dlvLykp6fXhp6CgAMOGDbM3zAOAiooKp2OSy+WwWq1OPWbSpEk4efIkRowYccH7KJVKzJ07F3PnzsUvf/lL5OTk4OjRo365TRPR+XrK1v25fF2tVmPGjBm9rvPXrdCA7vesDRs2YPny5U7NzHJGt39qtRp5eXm9rvPG39+Vv6NarcbmzZsBAJs3b8bmzZv9+rVKvseZeSIi8ksvvvgiTCYTZs+ejd27d6Oqqgr/+9//kJ+fj5EjR2LVqlUAgOuuuw4vvvgiioqKcODAAfziF7/oNcs+YsQIVFZWYvPmzThz5gz+8pe/4IMPPnA6noyMDHzzzTcoLy9Hc3OzQ7P2q1atwj/+8Q+sXr0ax48fR3FxMd599108/vjjAICNGzfi9ddfx7Fjx1BaWoq3334bSqUSw4YNczo+Im/qme0EgNtuu81+nT8KpK3QgO+T8g0bNjj1uPz8fERHRyM/P99DkQWmnJwcFBYWer0rvSt/x5ycHCxduhRA9y4q/v5aJT8g+tCuXbvEm2++WUxKShIBiB988EGv299//31x1qxZYkxMjAhAPHjwYJ/n6OzsFO+//34xJiZGVKlU4i233CJWVVU5FUdbW5sIQGxraxvAT+M9ZrNZ3Lp1q2g2m30dCgUwvo6GBqPRKJ44cUI0Go1uf26r1SpqtVrRarW6/bl7lJWViUuWLBETEhJEQRBEAOKCBQvEjo4O+31qamrEWbNmiSEhIWJ2dra4bds2MSIiQnzzzTft9/nd734nxsTEiKGhoeKdd94pPvfcc2JERIT99j/84Q/i+PHjex37ueeeE4cNG2a/fPLkSfGKK64QlUqlCEAsKysTv/zySxGAqNVqRVEUxTfffLPX84qiKP7vf/8Tp02bJiqVSjE8PFycMmWK+Ne//lUURVH84IMPxKlTp4rh4eFiSEiIeMUVV4ifffbZBX8fF/t7+vpcxnP60FJYWCgC6PVVWFjo67AuqCdef46xx549e8T58+eLe/bscepx8+fPFxUKhTh//nynj+nq7ydQHueLY7788stiUlKS+PLLL3vleDS4OHou8+nMfEdHB8aPH48XX3zxgrdPnz7dvjVQfx544AF88MEH2Lx5M/bs2QO9Xo+bb77Z6VJIIiLyPxkZGdi4cSPq6+ths9mwatUq7NixA4cPH7bfJzk5Gdu3b4der8epU6dw0003obW11T67AQBPP/00mpub0d7ejs2bN+OBBx7otTf86tWrcejQoV7HfuCBB1BeXm6/PHLkSOzbtw8GgwGiKCIjIwPXXHMNRFFEZGQkgO6ZlPP3nJ89e7Z9jWZbWxu++eYbe8f6W2+9Ffv370dbWxv0ej327duH66+/3h2/Oq/jOX1o8dVs51Awffp0bNmyxalSeYPBgPz8fIwdOxb5+flca+0HAqGfBAU+n66Zv+mmm3DTTTdd8PYf/ehHANDrw9S52tra8Prrr+Ptt9/GDTfcAKD7ZJKWlobPPvsMs2fPdnvMRETkO2vWrLGXu0+dOhUSCVeL+Que04cWlUrVax0v9+D2LbVajWXLlgEADhw4AMC/+wIMBYHQT4ICX0A3wCssLITFYsGsWbPs1yUnJ2PMmDHYu3fvBU/8JpMJJpPJflmn0wHo7n4cCB2Ee2IMhFjJf/F1NDRYLBaIogibzTbgzuznE892kO95fm9ZsmSJ/d/ePK4/sNlsEEURFoulzz73gf5/2d3ndKKhpKcvwOLFi7Fp0ybk5uayUsKHDAYDjhw5gqqqKhw5cgRKpRI5OTkeH/B65ZVXsG7dOqxcuRL33XefR49F/iGgk/n6+nrI5XJERUX1uj4hIQH19fUXfNxTTz2FNWvW9Ll+x44dATWqzLIdcge+jga3oKAgJCYmQq/X99mKzV3a29s98rzUl9lshtFoxO7du9HV1dXrtkAvqXX3OZ1oKFGpVMjNzQXQXSXBGXnf8nalhMFggFqtxiOPPAKdTodHHnkES5YsCai8hlwT0Mn8hYiiCEEQLnj7o48+igcffNB+WafTIS0tDbNmzUJ4eLg3QhwQi8WCnTt3Ij8/v8++yESO4utoaOjs7ERVVRVCQ0MRHBzs1ucWRRHt7e0ICwu76HsuuU9nZyeUSiWuvvrqPn/PwToj7eo5nYjIV3JycrBq1SqsXbsWq1atwrx58zxaKXH+9ns6nQ5qtdovt98j9wroZD4xMRFmsxlarbbXSH5jYyOmTZt2wccpFAooFIo+18tksoBKagItXvJPfB0NblarFYIgQBAEt68v7ylx98RzU/96/pb9/b8N9P/H7j6nEwUqJkiBT6VSYd68eVi7di3mzZvn8aS6pyHlhx9+aB9A8Ob2ewD4WvWRgP70lZeXB5lM1qtMuK6uDseOHbvoiZ+IaKjoSfACvQSbuvX8HQM9ce8Pz+lE3VasWIEPP/wQK1as8HUoFCB6GlLOmzcPADBv3jynSuwLCgqwYMECFBQUOHXc5cuXY86cOWzy50M+nZnX6/U4ffq0/XJZWRkOHTqE6OhopKenQ6PRoLKyErW1tQCAkydPAugevU9MTERERAR++tOfYvny5YiJiUF0dDQeeughjB071t4Jl4hoKJNKpYiMjERjYyOA7hO+u0ribTYbzGYzOjs7OTPvYaIowmAwoLGxEZGRkX2a3/kDntOJBq5nC0tRFNHW1oaioiKvNE6joe2Xv/wlDh8+jNLS0j7btF7M9OnTXZqRZ/WJ+/g0mT9w4ACuvfZa++WeNW9LlizBxo0b8dFHH+EnP/mJ/faFCxcCAP7whz9g9erVAIDnnnsOQUFBuOOOO2A0GnH99ddj48aNfvlBh4jIFxITEwHAntC7iyiKMBqNUCqVXDPvJZGRkfa/p7/hOZ0GK28mHmq1GocPHwYAHD58GHl5edxijjyuurq613dHufp/Y8WKFdizZw9aWlqwa9cup45Jvfk0mb/mmmvsWxv1Z+nSpVi6dOlFnyM4OBgvvPACXnjhBTdHR0Q0OAiCgKSkJMTHx7t1+zKLxYLdu3fj6quvHpRl3/5GJpP5dVLLczoNVt5cF8wt5sjbDAYDli5ditdffx1Lly6FwWBwuBKESbnvBXQDPCIicpxUKnVrMiiVStHV1YXg4GAm80Q0aPWsB3Z2XbAre35ziznyNrVajQ0bNgDoHrhatGiRx19369evt8/o08BwkSMRERERkZutW7cOdXV1WLduna9DIbqgnmoQANi0aZNTlSDr16/HvHnzsH79eqeOOX36dGzZsoXr5d2AyTwRERER0QX0lNn3zF46auXKlUhKSsLKlSs9FBnRwJ1fDeJoiX3P7iq33XYbAKCoqIg75/gAy+yJiIiIiC7AlTL7nqQmJSXFfpkd6WkwUavVmDFjRq/rHGnWaDAY8NZbb+GNN97APffcg6lTp3LHhgHgzDwRERERkRup1WosW7YMBw4cwLJly6BWq30dEpFbnV+eX1hY6FCJ/vn/N/Ly8pz6/1FQUIAFCxagoKDA5dgHEybzRERERORVgfCB3GAwoKioCCtWrMAnn3yCFStWOFxGnJOTg1WrVgEAVq1axY70NOj016zRkdn18/9vODoI0MPVZS+DFZN5IiIiIvIqVz+Qe3MQQK1WIy8vD7t377ZvxenoDKJKpcK8efMAAPPmzWMJMdFZ5//fcHQQoMfy5csxZ84cdsI/i2vmiYiIiMirXN3uzZv7Wufk5KCwsBDFxcX2fd85w07kW9OnT2cX/HM4lMw/+OCDTj/x448/jujoaKcfR0RERETUn7a2NthsNrS1tXn8WCqVqlczL2c6fRORZxQUFNj3qGdS72Ay//zzz+PKK6+EXC536En37NmD+++/n8k8EREREfXRU2YPwKkP5BEREZBIJIiIiPBUaETkx1x97xisHC6z/+CDDxAfH+/QfcPCwlwOiIiIiDxnwYIFTj/m1VdfdfgzAJEj8vPzsX//fuTn5zv8GIPBgIULF9q/FxUVcUsroiHG1SU6g5VDyfybb77p1Ajoa6+9hoSEBJeDIiIiIs/YunUr7rjjDiiVSofu/84770Cv1zOZJ7cxGAzYvHkzmpubsXnzZixZssShhLxnSysAOHDgAADH9rUmIhqsHErmlyxZ4tSTLlq0yKVgiIiIyPP+8pe/OJycv/feex6OhoYatVqN3bt3A4C9Q7wjCXnPvtY9zehyc3PZkI5oiGGZfW/cmo6IiGgI+fLLL53qafPf//4XKSkpHoyIhpqepByAUx3iXd3XmogCn8FgQFFREfLz8zF27Fjk5+fDYDD4Oiyfc3prOqvViueeew7//ve/UVlZCbPZ3Ot2jUbjtuCIiIjIvWbOnOnU/WfMmOGhSGioOj8pZ0JORJeiVquRl5dnv3zgwAFMnTp1yC+zcXpmfs2aNXj22Wdxxx13oK2tDQ8++CAWLFgAiUSC1atXeyBEIiIi8jSj0QidTtfri4iIyB/k5OSgsLDQpaoeAHjllVeQnJyMV155xVMh+oTTyfw///lP/O1vf8NDDz2EoKAg3HXXXfj73/+OVatWYf/+/Z6IkYiIiDzAYDDg/vvvR3x8PEJDQxEVFdXri4iIyB+oVCpMmjTJ5aqedevWoa6uDuvWrfNUiD7hdDJfX1+PsWPHAgBCQ0PR1tYGALj55pvx6aefujc6IiIi8pjf/e53+OKLL/Dyyy9DoVDg73//O9asWYPk5GT84x//8HV4REREbrFy5UokJSVh5cqVvg7FrZxO5lNTU1FXVwcAGDFiBHbs2AEA+O6776BQKNwbHREREXnMxx9/jJdffhm33347goKCcNVVV+Hxxx/H+vXr8c9//tPX4REREbnFfffdh9raWtx3332+DsWtnE7m58+fj88//xwA8Jvf/AYrV65EdnY2fvzjH+Oee+5xe4BERETkGRqNBpmZmQCA8PBwexPbGTNm2LcOIyIiCnQFBQVYsGABCgoKvPI4b3G6m/0f//hH+79vv/12pKWloaCgACNGjMDcuXPdGhwRERF5TlZWFsrLyzFs2DCMGjUK//73vzFlyhR8/PHHiIyM9HV4REREbuHq/vT+vq+9U8n8f/7zH2zduhUWiwU33HADfv7zn2Pq1KmYOnWqp+IjIiIiD/nJT36Cw4cPY+bMmXj00Ufxgx/8AC+88AK6urrw7LPP+jo8IiKiATMYDMjPz0dVVZV9f3pHm+fl5+dj//79yM/P93CUrnE4mf/rX/+KX/ziF8jOzkZwcDDef/99lJWV4amnnvJkfEREROQhv/3tb+3/vvbaa6FWq3HgwAEMHz4c48eP92FkRERE7qFWq7Fs2TIAzu9Pv3PnTmg0GuzcudMv19s7vGb+hRdewGOPPYaTJ0/i8OHDeP311/Hiiy96MjYiIiLyAJvNhv/3//4fpk+fjilTpmDFihXo7OxEeno6FixYwESeiIgGjZycHJf3p8/Pz0d0dLTfzsw7nMyXlpbiJz/5if3yj370I5hMJtTX13skMCIiIvKMP/3pT3jkkUcQEhKCpKQkPPvss/j1r3/t67CIiIjcTqVSubw//bkz8/7I4TJ7o9GI0NBQ+2WpVAqFQgGDweCRwIiIiMgzNm7ciBdeeMFedvi///0Pt956K1577TUIguDj6IiIiPzD8uXLe333N041wPv73//eK6Hv6urCxo0bERsba7+OI/tERET+raKiAjfffLP98uzZsyGKImpra5GSkuLDyIiIiPxDz6T1bbfdBgAoKipCTk6OUzP7nuZwMp+eno6//e1vva5LTEzE22+/bb8sCAKTeSIiIj9nNpuhVCrtlwVBgFwuh8lk8mFURERE/kOtVmPGjBm9rissLHS4eZ43OJzMl5eXezAMIiIi8qaVK1f2ml0wm8148sknERERYb+O29MREdFQ1dM4b/Hixdi0aRNyc3Odap7nDU6V2RMREVHgu/rqq3Hy5Mle102bNg2lpaX2y1w7T0REQ9n5jfP8aUa+h9PJ/Nq1ay96+6pVq1wOhoiIiDzvq6++8nUIRERENEBOJ/MffPBBr8sWiwVlZWUICgrC8OHDmcwTEREREREReZjTyfzBgwf7XKfT6bB06VLMnz/fLUERERGR591zzz0Xvf2NN97wUiRERETkLLesmQ8PD8fatWtx880340c/+pE7npKIiIg8TKvV9rpssVhw7NgxtLa24rrrrvNRVEREROQItzXAa21tRVtbm7uejoiIiDzs/KVzAGCz2bBs2TJkZWX5ICIiIiJylNPJ/F/+8pdel0VRRF1dHd5++23ceOONbguMiIiIvE8ikeC3v/0trrnmGjz88MO+DoeIiCjgFBQUYMOGDVi+fDmmT5/useM4ncw/99xzvS5LJBLExcVhyZIlePTRR90WGBEREfnGmTNn0NXV5eswiIiIAtKKFSuwZ88etLS0YNeuXR47jtPJfFlZmSfiICIiIi978MEHe13uqbb79NNPsWTJEh9FRUREFNja2tpgs9k8vgxd4tFnv4Tdu3fjlltuQXJyMgRBwNatW3vdLooiVq9ejeTkZCiVSlxzzTU4fvx4r/uYTCb86le/QmxsLEJCQjB37lxUV1d78acgIiIKTAcPHuz1deTIEQDAhg0b8Pzzzzv1XDynExERAQaDAQAgCAIAoKioyH6du/k0me/o6MD48ePx4osv9nv7008/jWeffRYvvvgivvvuOyQmJiI/Px/t7e32+zzwwAP44IMPsHnzZuzZswd6vR4333wzrFart34MIiKigPTll1/2+vr888+xefNm/PznP0dQkHPFezynExERAWq1GocPH4Yoijh8+DDy8vKgVqs9ciy3dbN3xU033YSbbrqp39tEUcTzzz+Pxx57DAsWLAAAvPXWW0hISMA777yDe++9F21tbXj99dfx9ttv44YbbgAAbNq0CWlpafjss88we/bsfp/bZDLBZDLZL+t0OgDdW/JYLBZ3/oge0RNjIMRK/ouvIxoovob8i6//Dv52TiciIvKFnJwcbNq0CYsXL8amTZuQm5uLnJwcjxzLp8n8xZSVlaG+vh6zZs2yX6dQKDBz5kzs3bsX9957LwoLC2GxWHrdJzk5GWPGjMHevXsveOJ/6qmnsGbNmj7X79ixAyqVyv0/jIfs3LnT1yHQIMDXEQ0UX0P+wVMlfO7gi3M6ERGRL6hUKuTm5gIAcnNzMWnSJI8dy2+T+fr6egBAQkJCr+sTEhJQUVFhv49cLkdUVFSf+/Q8vj+PPvpor6Y/Op0OaWlpmDVrFsLDw931I3iMxWLBzp07kZ+fD5lM5utwKEDxdUQDxdeQf/HnGWlfnNOJiIgGO7cl81qtFh9//DF+/OMfu+spAXzfOKCHKIp9rjvfpe6jUCigUCj6XC+TyQLqA2mgxUv+ia8jGii+hvxDIPwNvHlOJyIiGuzc1gCvsrISP/nJT9z1dEhMTASAPqPxjY2N9pH9xMREmM1maLXaC96HiIiIfIvndCIiIvdzOJnX6XQX/Tq3G607ZGZmIjExsddaTLPZjF27dmHatGkAgLy8PMhksl73qaurw7Fjx+z3ISIiIuc0NDRg7dq1bns+ntOJiIjcz+Ey+8jIyIuWuTlSKnc+vV6P06dP2y+XlZXh0KFDiI6ORnp6Oh544AGsX78e2dnZyM7Oxvr166FSqbBo0SIAQEREBH76059i+fLliImJQXR0NB566CGMHTvW3gmXiIiInFNfX481a9Zg1apVDj+G53QiIiLvcjiZDwsLw2OPPYapU6f2e3tJSQnuvfdepw5+4MABXHvttfbLPQ1slixZgo0bN+Lhhx+G0WjEsmXLoNVqMXXqVOzYsQNhYWH2xzz33HMICgrCHXfcAaPRiOuvvx4bN26EVCp1KhYiIqKh4siRIxe9/eTJk04/J8/pRENHSUkJ2tvbUVxcDAD272FhYcjOzvZlaERDisPJfE9L/ZkzZ/Z7e2RkJERRdOrg11xzzUUfIwgCVq9ejdWrV1/wPsHBwXjhhRfwwgsvOHVsIvI+URSx/Xg94sIUuCwxHKEKv91Qg2hQmzBhAgRB6Pcc3HO9s9V2PKcHrldeeQXr1q3DypUrcd999/k6HPJzJSUlGDlyZK/rFi9ebP/3qVOnmNATeYnDn6QXLVoEo9F4wdsTExPxhz/8wS1BEdHgdLi6DcV17Siua8fXJc1IiVQiNykcI+JDESzjzBuRt8TExOBPf/oTrr/++n5vP378OG655RYvR0W+snLlSrS0tDCZJ4f09MnatGkTMjIyUF5ebv++ePFit/fRIqILcziZ/7//+7+L3p6QkMBknoguSG/qQsHpZvtlUQSqtUZUa434Qt2IjNgQ5CSGITM2BDKp2zbaIKJ+5OXloba2FsOGDev39tbWVqer7ShwpaamoqWlBampqb4OhQJIbm4uJk2ahOnTpwMAlEqljyMiGnpY40pEXvHVyUaYu2z93ma1iTjTqMeZRj3kQRIMjwtFTmIY0qNVkEicK/Uloku799570dHRccHb09PT8eabb3oxIvKll156CRs2bMDy5ct9HQoRETmByTwReVxpkx4lDXqH7mvusqG4TofiOh1UcilGJoThssQwJEdyxJ/IXebPn3/R26OiorBkyRIvRUO+Nn36dPvsKpEnsXEekXsxmScijzJ32fDlySaXHmswW3GoqhWHqloRoZThssQwZMeHIj482M1REhERkSexcR6R+zGZJyKP2l/aAp3RMuDnaTNa8G2ZBt+WaRClkiE7IQzZCaGID2NiT0TkKoPBgIMHD9qbmCmVSuTk5EClUvk6NBpk2DiPyP2YzBORxzS2d+JgZavbn1dr+D6xjw6RIzs+FNkJYYgLU7j9WEREg5larcaMGTN6XVdYWGjfkpjI3dg4j8h9HErmdTqdw08YHh7ucjBENHiIoojPixth83BHbE2HGd+UafBNmQYxoXKMiA/FyIQwxIYysSciupScnBxs2rQJixcvxqZNm5Cbm4ucnBxfh0VERA5wKJmPjIyEIFy8o7QoihAEAVar1S2BEVFgO1zdhvq2Tq8es0VvRoteg29KuxP77PgwjEwIRQwTeyKifqlUKuTm5gL4fsaUyB+VlJSwcR7ReRxK5r/88ktPx0FEg8j5e8r7Qndi34L9pS2IDZXbu+JHquQ+jYvI33z99dd47bXXcObMGbz33ntISUnB22+/jczMzD7l10REvnB+8zx/bpzHjv3kTQ4l8zNnzvR0HEQ0iFxsT3lfaNab0axvwd4zLUgID8Zlid1r7MODZT6Nq8tqQ3tnF9o7u6DrtJz9twVGixVJEUpkxoawDwB51Pvvv48f/ehHuPvuu3Hw4EGYTCYA3Y2q1q9fj23btvk4QnJGQUGBfb94bjVHg0lPc7zXX38dCoXCbxvnsWM/eZtLDfB6RvFLS0vxn//8h6P4RGTnzJ7yvtCg60SDrhNflzQjOUKJkYndpfgquXv7gYqiCIPZak/QdWe/9yTv7Z0WGMwXXpZU2tSBgtPNCAsOQkZMCDLjQpAWpYI8SOLWOGloe+KJJ/Dqq6/ixz/+MTZv3my/ftq0aVi7dq0PIyNXbNiwwT4Aw2SeBqMJEybYl4J4unGeKzPs7NhP3ub0p9dzR/GLioo4ik9Edhar63vKe5soAjWtRtS0GrHrZBNSo5S4LDEMI+JDESyTOvw8XVYbtAYLtAYzNB1maDvM0BjMaDVY3FKd0N7ZhaM1bTha04YgiYCUKCUyYkOQFRvCJQM0YCdPnsTVV1/d5/rw8HC0trZ6PyAakPz8fOzfvx/5+fm+DoUooA10hp0d+8lbnE7mOYpPRBey74x79pT3NpsoolJjQKXGgC/UjRgWo8LIhDAMjwu1z4QbzVZoDGeT9Q6zPXnXGbs83rG/R5dNREWLARUtBuw62YQolexsYh+KlCglpJKLNyolOl9SUhJOnz6NjIyMXtfv2bMHWVlZvgmKXLZz505oNBrs3LkT9913n6/DIfILnGGnwczpZJ6j+ETUH0/tKe9tVpuI0qYOlDZ1QCYVEBOqQJvRAuNFSuJ9RWuwQFvZioOVrZAHSZAWrcKopDCMiA/zdWgUIO6991785je/wRtvvAFBEFBbW4t9+/bhoYcewqpVq3wdHjmJM/P9Yxf0oSvQZtj5WiVnOZ3McxSfBjObTcT+shZckRkDCWc5HSaKIr7wwp7y3maxil7fXs9V5i4bzjTqcaZRj4RwLaaPiMGwmBBfh0V+7uGHH0ZbWxuuvfZadHZ24uqrr4ZCocBDDz2E+++/39fhkZM4M99XIHVBJ/cLpBl2vlbJFU4n8xzFp8FKFEVsP14PdX07pIKAqVkxvg4pYByubkNdgCS9Q0GDrhNbimqQGqXEjOxYJEVwrR71ZbVasWfPHixfvhyPPfYYTpw4AZvNhlGjRiE0NNTX4ZELli9f3us7BU4XdPKsQFjDztcqucLpZJ6j+DQYiaKInScaoK7vfrP8pkyDrLhQbgvmAH/YU576V601YvO3VciKC8H0EbGIDeXrmb4nlUoxe/ZsFBcXIzo6GpMnT/Z1SDQABoMBAHDbbbcBAIqKipCTkwOVSuXLsPyGN7ugEw0EX6vkDKeSeY7i02D11ckmHK/V2S9bbSJ2nKjHXZens9z+EvxtT3nqq7SpA2XNHchJDMOVWbGIUMl8HRL5ibFjx6K0tBSZmZm+DoUGSK1W99keuLCw0J4UEBHR4OPUhsU9o/htbW1QqVSYPHkypkyZwkSeAtrXJU04VNXa5/pGnQnflmu8H1AA8fc95el7oggU17XjrX3l+ELdAL2py9chkR948skn8dBDD+GTTz5BXV0ddDpdry8amFdeeQXJycl45ZVXPH6snJwcbNq0CUD3+uDCwkLk5OR4/LhEROQ7TpfZcxSfBpN9Z1pwoFx7wdu/LdNgOMvt+xVIe8rT96w2EYer2nCiVocJaVGYnBGFYJnU12GRj9x4440AgLlz50IQvq9CEkURgiDAavW/XRwCgcFggFqtxiOPPAKdTodHHnkES5Ys8WjJu0qlQm5uLoDv1wcTEdHg5nQy3zOKv27dOuTl5SEkpHe35PDwcLcFR+RJB8o12F/actH7sNz+wgJ1T3nqZrGK+K5cgyM1rZg8LBoT0iIhD3KqWIsGgS+//NLXIQxKarUaeXl59ss6nQ5qtZoJNhF5RElJCdrb27mt3RDkdDLPUXwaDA5VteLrEseatvWU21/B7vYAgE6LFaVNHYNiT3kCTBYbCk4341CVFldmxWJMSniv93Ya3GbOnOnrEAalnJwcFBYW4sMPP8TatWuxatWqQVfyzuRhcODfMfCdv6UdwG3thhKnk3mO4pOzjtW0IS1K5TdNt47VtOGrk41OPebbMg2y4kIQHxbsoaj8l9UmorbViEqNARUtBjS2d2KQbSdPADpMVnxW3IBD1a24ZmQc0qLZAZvIVSqVyj4Lv3btWsybN29QdZVn8uAZ3k6s+XccHHq2rdu0aZN9Oztuazd0OJ3McxSfnHWwqhWHqlpx5+VpkEl9W8arrtfhs+IGp5NRq03EjuMNuGtKOqQ+LrcXRRFagwWN7Z1oajdBa7AgTBGEqBA5olVyRIXIEBY8sIGTZr0JlRoDKlsMqGk1slv9ENLcbsJ7hdXIigvB1dlxiAqR+zokIvIzTB7czxeJNf+Og0tPr4zp06cD4LZ2Q4XTyTyRM5raTWhuNwEAPi9uxI1jEn0Wy+nGdmw/5nwi36Op3YRvyzS4crj3yu27rDa0dJjR1G6yJ+/NevMlk2t5kARRKjmiQ2Rnv8sRFSJHpFKGoH4GVDpMXd3Ju8aAKo0B7Z3sdD7UlTZ1oKLFgPFpkZiaGc0meUTUB5MH9/FlYs2/I1HgYjJPHqWu/35ro+I6HRIjgjEhLdLrcZQ1d2Db0XrYBlgf/l25BsPjPVNu32mxoqndhCa9CY267u8avdmlmM1dNjToOtGg6+x1vUQQEK4MQnSIHGEKCdStAlq/rYLW2MXSeerDahNRVKFFcZ0OV2bFYGxKBBtBEhFdwkDK5V1NrEtKSrjunWgIYjJPHiOKIk7W9x5J3n2qCfFhCiRHem/Ut0pjwCeHa2G1DTxb9US5vdFsxefqBpxu1Hs8obaJIloNFrQaLLDZrChrFxCkN0Ei4awrXZjRbMUX6kYcqW7F1SPjMCwm5NIPooBkNpthNpsRGhrq61CIApIvyuXPPybXvRMNHdyHiDymSmPsU65ttYn49EgdOkzeKeOubTXio8O16HJDIt+jp9zeHU436vGPfeUoafB8Ik80UM16M7YU1WDrwRpoOsy+DocG6M0338SvfvUr/POf/wQAPProowgLC0NERATy8/PR0nLxrTuJqK9zy+X37NnT6/u5t3vimK+//rpXjkdE/mPAM/McxacLKT6nxP5celMXPj1Sh9vyUj3aTK5B14kPDtZ4pHnbQMvtTV1WfHWyCSdq+/8dEfmzsubu9fSjk0Jg5m6kAenJJ5/Ek08+iWnTpuGdd97Bnj17sHXrVqxduxYSiQR/+ctf8Pjjj+OVV17xdahEAAJvCzVfrEOfMGGCfRcFrnsnGhqcSubffPNNFBUV4YorrsDdd9+NRx99FM8++yy6urpw3XXXYfPmzYiJ4V7cBFisNpxu1F/w9ppWI3aXNOHay+I9cvyaViM+OlTrsS7sAym3r9IYsP14PZvMUUCziSIOV7ehvF7AyDodxqfzvT+QbNy4Ea+//jruuusuHDhwAFOnTsW7776L22+/HQAwZswY/OIXv/BxlETduIUakWcE2iAZ9eVwMs9RfHLGmSb9JRPpQ5WtSAwPRm5SuFuPXVihwZ6SlgE3u7sUZ7vbW6w27DndjMNVrSypp0HDYhPweXETpNIgjEmJ8HU45KDKykrMmDEDADB58mQEBQVh7Nix9tvHjRuHuro6X4VH1Au3UCNyPw6SDQ4OJ/McxSdnqOscO7F+XtyAmFC5W7rDd1qs2Hmi4aIVAe7maLl9fVsnth+v5zpjGpREiPisuAFBUgE5ie4dnCPPsFgsUCgU9styuRwymcx+OSgoCFYr11CQf+EWakTuw0GywcHhZJ6j+OQog7kLFS0Gh+5rsYr45HAdFk1NH9A+1o3tnfj0SB1aDRaXn8MVlyq3t9pEfFPWgu/KtB6vFCDyJVEEth9rQJBEghHx7KESCE6cOIH6+noA3buPqNVq6PXdg6HNzc2+DI2IiLyEg2SBzeFknqP45Ch1fbtTiWub0YL/HavHvAnJEATnG+Idq2nDl+pGt3asd0ZTuwnflLVg2vDYXtc3603YfrwejTqTT+Ii8jabKGLb0TrMHZ+MjFhuX+fvrr/+eojnvFfffPPNAABBECCKokvvx0REROQ9TjXA4yg+OcLREvtzlTV3YF9p34T4YixWG75UN+K4H3SE/65MixFxoYgPD4Yoiiiq1GLv6RafDTAQ+YrVJuKTI7WYNyEFadEqX4dDF1BWVubrEIiIiGiAnErmOYpPl6LpMKNB1+nSY78t0yAhPBjD4y5doqvtMOOTo3VobvePWW+bKGL7iQb8YGwSPituQI3W6OuQiHzGYhXx0eFaLJiUgqQIluv5o2HDhvk6BCK/x07fROTvHE7mfTWK397ejpUrV+KDDz5AY2MjJk6ciD//+c+4/PLLAXRXCKxZswZ//etfodVqMXXqVLz00ksYPXq0T+Id6orrXJ8lF0Vg+/F6LJqSjkiV/IL3K2lox44TDR7bds5Vze0m/GNfOTvVEwEwd9nwwcEa3D4pFfHhA29wSe5z5MgRh+87btw4tx6b53QKFOz0TUSBwOFk3lej+D/72c9w7NgxvP3220hOTsamTZtwww034MSJE0hJScHTTz+NZ599Fhs3bsTIkSPxxBNPID8/HydPnkRYWJhPYh6qRFGEun5gnS9NFhs+PlyLOy9PhzxI0us2m03E16ebUVShHdAxPImJPNH3TBYbthyswQ/zUhETqrj0A8grJkyY4HBFnbt74fCcToGCnb6JKBA4lMz7ahTfaDTi/fffx4cffoirr74aALB69Wps3boVr7zyCtatW4fnn38ejz32GBYsWAAAeOutt5CQkIB33nkH9957r9tioUuraTVCZxx4N/lmvRmfFTdgztgk+3XtnRb892g9alpZvk4USIxmK7YU1eCHk1MvWnFD3nNupd3Bgwfx0EMP4Xe/+x2uvPJKAMC+ffuwYcMGPP300249Ls/pFIjY6ZuI/JlDybyvRvG7urpgtVoRHNy7RFOpVGLPnj0oKytDfX09Zs2aZb9NoVBg5syZ2Lt37wVP/CaTCSbT92utdbru0nCLxQKLxbtbm7miJ0Z/i/VYtRY2m3v+/sW1rYhVBWFieiQqNQZsP9EAo5m7JbiT1Wrr9Z3IWY6+hnRGK/79XSVun5SMsGDZRe9LrnP0nHBupd0Pf/hD/OUvf8GcOXPs140bNw5paWlYuXIlbr31VrfF5+1zOhER0WDnUDLvq1H8sLAwXHnllVi3bh1yc3ORkJCAf/3rX/jmm2+QnZ1t76yfkJDQ63EJCQmoqKi44PM+9dRTWLNmTZ/rd+zYAZUqcLov79y509ch2FlF4ItaAV029zVBPF1Sgp0hQFUHALC5oqeUlpb6OgQKcI6+htTFJzA1XkSw1MMBDVEGg8Hpxxw9ehSZmZl9rs/MzMSJEyfcEZadt8/p5J/YVI6IyH0cSuZ9NYoPAG+//TbuuecepKSkQCqVYtKkSVi0aBGKiors9zm/WuBSFQSPPvooHnzwQftlnU6HtLQ0zJo1C+Hh4W6N3xMsFgt27tyJ/Px8yGT+MctV0qhH2bF6jzw3T+2eYbXaUFpaiqysLEilkks/gOg8rryGDCFy3DQxBUo5M3p3c2VGOjc3F0888QRef/11+4y5yWTCE088gdzcXHeH6NVzOvkfNpUjInIvp7amA7w7ig8Aw4cPx65du9DR0QGdToekpCTceeedyMzMRGJiIgCgvr4eSUnfr69ubGzsM7J/LoVCAYWibzMmmUzmN8mxI/wp3tPNRkgk/HAeiKRSCf92NCDOvIZajVZ8fKwBt01KRbCMrzt3cuV88Oqrr+KWW25BWloaxo8fDwA4fPgwBEHAJ5984u4QvXpOJ//DpnJERO7l9HRczyh+Z+f3e4l7chS/R0hICJKSkqDVarF9+3bMmzfPfvI/t9zcbDZj165dmDZtmsdiod6MZivKmzt8HQYRBYhGnQlbD9b43faSQ9GUKVNQVlaGJ598EuPGjcPYsWOxfv16lJWVYcqUKR47Ls/pQ1tubi6mT5+Ou+++G9OnT/fo50ciosHM6Zl5b4/ib9++HaIo4rLLLsPp06fxu9/9Dpdddhl+8pOfQBAEPPDAA1i/fj2ys7ORnZ2N9evXQ6VSYdGiRW6Phfp3qqEdVhv3ZCMix9W1deLDQzWYNyGlzzaU5F0qlQo///nPvXIsntOJiAIfe1/4D6eT+Z5R/E2bNkGtVkMURdx5551YtGgRQkJC3B5gW1sbHn30UVRXVyM6Ohq33XYbnnzySXs54cMPPwyj0Yhly5ZBq9Vi6tSp2LFjB/ej9SJ1PTsHE5HzqrVGbNpfgetz4zEsxv3nD+rfRx99hJtuusnhsvxt27bh2muvdcuWXL48pxcUFGDDhg1Yvny5fZsxIiJyDntf+Benk3nAu6P4d9xxB+64444L3i4IAlavXo3Vq1d7JR7qrdVgRm1r56XvSETUjzajBVuKapCbFI6ZI+PYGM8L5s+fj/r6esTFxTl0/4ULF+LQoUPIysoa8LF9eU5fsWIF9uzZg5aWFuzatcvtz09ENBSw94V/cSiZ9+UoPvm34jr+hyWigSuu06GipQMzL4tDTqL/7yoSyERRxNKlSx1uGndujxwiIiKgu/fFpEmT7JVOzPt8w6GFivPnz0dra6vDT7pw4ULU1dW5GhMFEJbYE5G7GMxW/PdoPbYerEGb0eLrcAatJUuWID4+HhEREQ593X333QGxbeulrF+/HvPmzcP69et9HQoREdEFvfLKK32WMlyIQzPzHMWn/tS1GdFq4AduInKvsuYO1OyvwJXDYzAxLfKie4yT8958801fh+AT06dP51p5IiLyeytXrkRLS4tD93VoZn6ojuLTxRXXcVaeiDzD3GXDrpNN2PxdFZraTb4OhwaBgoICLFiwAAUFBV55HBERkTMMBgOKiooQFRXl8GMcmpkfqqP4dGFWm4hTDXpfh0FEg1x9Wyfe+aYSkzOiMDUzGkFSbmNHrtmwYQO2bdsGAE7N0LNxHhEReYNarUZeXp5Tj+GnInJJeUsHjGarr8MgoiHAJor4tkyDTfsrUKUx+DocClDLly/HnDlzsHz5cl+HckmsBiAiGnpycnJQWFiITZs2OfwYl7amI1Kziz0ReZnWYMH7RdUYnRyBq7JjESzjNnbkGIOhexDotttuAwAUFRUhJycHKpXqko9dv369fX96b3G1ioCIyN+VlJSguLgYAOzfw8LCuDc9urd/nzRpklOPYTJPTuu0WFHaxBJ7IvI+UQSO1bShoqUDC6ekI1TB05gnVFVV4Q9/+APeeOMNX4fiFmq1GjNmzOh1XWFhodMfmrylZ+AgEKoIiIgcVVJS0qtL++LFi+3/PnXqFBN6F7DMnpx2ulGPLpvo6zCIaAhr7+zCJ4dr0WW1+TqUQUmj0eCtt97ydRhuk5OTYy9b3LRpEwoLC5GTk3PJxxkMBqxYsQKffPIJVqxYgaKiIvssvydNnz4dW7Zs4aw8EQ0q7e3dlb2vv/46Nm3ahD179tjfm3tuI+e4LZmvqqrCPffc466nIz/GLvZE5A/q2jrxubrR12FQAFCpVMjNzQUA5ObmYtKkSQ6V2KvVauzevRsWiwW7d+9GXl4e1Gq1p8PlmnkiGtQmTJiAu+++G9OnT7e/N5Nr3JbMD7ZRfOqfrtOCmlajr8MgIgIAnKjVoahS6+swaJBydUZ/oHrWzG/YsMHjxyIiosDFMntyirquHSIr7InIj3x9qhmVLexyT+7n6oz+QBgMBmRlZUGpVCIrK8srZf1ERBSY2DmInKKuZ4k9EfkXmyji06N1WDQlHREqma/DCQgLFiy46O2tra3eCYT6UKvV9hn5DRs2YNGiRX7bqI+IiHyLM/PksEZdJ1r0Zl+HQUTUR6fFio+O1MLcxYZ4joiIiLjo17Bhw/DjH//Y12EOSTk5OVi1ahUAYNWqVV4p6yciosDk8Mw8R/HpBBvfkQ/pTV3QdphhsdpgsYqw2GzosopnL3df19Vzm9XW63abCFyWEIbJGVGQCIKvfxTykOZ2E7Yfr8fN45Ig8O98UW+++aavQ6ALUKlUmDdvHtauXYt58+Z5vKyfKFAkhgpQtp4CarvnIpWtp5AYyvd6GtocTuYjIiIueTtH8QevDlMXTtZzywjyLlEUUakx4GhNG0qbOjCQdg37SltQ02rEjaMToZRL3RYj+ZfTjXp8U6bBFVkxvg7F71VUVGDHjh2wWCy45pprMGrUKF+HRD5QUlKC4uJiALB/DwsL437P5BHnJ+SA40n5vXly5O6+F9jdfTn37HVEQ5nDyTxH8YeuVoMZW4pqYDBbfR0KDREmixUn6nQ4UtOGVoPFfn2USgZ5kAQyiQRBUgEyqeTsl4Cgs99l0u7bz72uzWjB1yXNqNQY8M63lZgzNhFJEUof/oTkSftLWxAbqsCI+FBfh+K3du/ejTlz5tibqwUFBeGtt97CXXfd5ePIyJtKSkowcuRI++XFixfb/33q1Ckm9OR25yfkgONJ+WuFZty5aiNyzy49KVar8dqGRZjroViJAoFTDfA4ij/0NLZ3YuvBGnSYmMiT5zW1m3CkuhXq+nZ02brn4eVSCXKSwjAuJQIxoQqXnzs5UolPj9ah1WDBe4XVuDo7DuNSI1iOPQiJIrD9eD0iVWmIHcBrZjBbuXIlrr32Wrz22mtQKpV49NFH8fDDDzOZH2La27sr7l5//XUoFApkZGSgvLwcixcvtt9G5E7nJ+SA40l5vV6EMXIkkDwBAGCst6Fezy2WaGhzOJnnKP7QU6Ux4KPDbChFntVls+F0ox5HqttQ19Zpvz4mRI5xqRHISQyHPGjgvTpjQxVYeHkaPjvRiNNNenx1qgm1bUZcn5Pglucn/2LusuHjw7W4a0o6gmVcVnG+o0ePYvfu3UhOTgbQ3TX9b3/7G7RaLaKionwcHXnbhAkT7B3zlUpWLZHnnJ+QA0zKiQbC4U+wPaP41dXVaGlpwT333IOHH37Yk7GRD51ubMfWgzVM5MljdJ0WFJxuxht7yrH9eAPq2johEYCR8aG4fVIq7p6ajnGpkW5NtBVBUswZm4irsmMhEYBTDXq8+10VNB3cpWEwajVYsO1oHWw2fkg8X2trK+Lj4+2XQ0JCoFKp2MyWiIgogDg8M89R/KHjWE0bPi9uhE3kB2Byr56Gdkeq21DW/H1Du1BFEMakhGNMcgRCFE6t/nGaIAiYlB6FxPBgbDtWB43BjM3fVeL6nARclhjm0WOT91W0GPD16WbMHBnn61D8zokTJ1BfX2+/LIoiiouLe5VXjxs3zhehERERkQMc/tR8sVF8JvODxzelLdh7psXXYdAg1GWzYfvxBpxu1NuvS41SYnxqJLJiQyCReHftenKkEnddno7/Ha9HtdaI/x2vR12bEVdlx0Hq5VjIs4oqtIgLVWBUcrivQ/Er119/PcTzBm1vvvlmCIIAURQhCAKsVvZLIaK+BtKVnojcx6kpMI7iD16iKGLXqSYcrGz1dSg0CJm7bPjkSC2qtEZIBQFjUsIxLjUS0SG+3VImRBGE+RNSsK+0BQcqtDhc3YYGnQlzxiYiLFjm09jIvT4vbkB0iByJEcG+DsUvlJWV+ToEIgpgA+lKT0Tu41Qyz1H8wclqE7HjeD3U3EeePMBoseLDQzVo0Jkgkwq4eVwy0qNVvg7LTiIRMH1ELJIigrHjRAPqdZ3417dVmD06AcNiQnwdHrlJl03EJ0e6G+J5eilHIBg2bJivQyCiADaQrvRE5D4Of6LhKP7gZO6y4dOjtShvNvg6FBqE2jst2HqwFhqDGcEyCeZNSEFiuH/OjGbFheKuKQp8erQOTe0mbD1UiyuyojElI7rP9nWiKKKzy4ZOsxVGy/df517utNigkkuREROC9GgVO+b7gfbOLnxypBa356UN+aUUGo0GBoMBqamp9uuOHz+OZ555Bh0dHbj11luxaNEiH0ZIRP5sKHSl51IC/1JSUoL29nYUFxcDgP17WFgYsrOzfRmaTzmczHMUf/AxmrtnTM/dDozIXbQGMz44WIP2zi6EKoIwf2KKz8vqLyVCKcMdeanYdaoJx2p12F+qQUWLASq5FEbz90l6p8UKRz+uHK/VQSoISI1SIjM2BJmxIQhXuq+E32oT0djeidrWTtS0GmG1ibj2sjhEqvz7d+0rta2d2Ha0DjeNSUSQdOgOsPzyl79EUlISnn32WQBAY2MjrrrqKiQnJ2P48OFYunQprFYrfvSjH/k4UiKigXE1KffFUoLzY+XgQbeSkhKMHDmy13WLFy+2//vUqVNDNqF3OJnnKP7gouu0YOvBGrTouSUXuV+jrhNbD9XCaLEiUiXD/Akpbk1gPSlIKsH1uQlIilDii5ONFx3sUgRJECyTQimTQimXIlgm6f63TIpgmRQtHWaUNXegzWhBhcaACo0BX51qQkyoHFlnE/uE8GBIBMdP1OYuG+rajKht7URtqxH1uk50nbf12r8PVGPehGQk+GkVhK+dbtRjy8EazB2fPGT3oN+/fz/efPNN++V//OMfiI6OxqFDhxAUFIRnnnkGL730EpN5Igp4riblvlhKcH6s7EPQrac/26ZNm5CRkYHy8nL798WLF/fq3zbUOJzMcxR/8GjRm+wzpkTuVqM14qPDtTBbbYgPU2DehGSo5IG3RnlUcjgSI4JR1twBuVSCYHnvRD1YJnWoVPvq7FhoDRaUNXegtFmPutZOtOjNaNGb8V25FkqZFBmxKmTGhmBYdEifcnyDucs+617bakST3oTzd40MlkmQHKFEcqQSJ+vb0aQ34f2iaswZk4SMWK7770+N1oh/H6jCrRNTED4Emx3W19cjMzPTfvmLL77A/PnzERTU/X917ty5eOqpp3wVHhGR27ialPtiKcH5sbIPQW+5ubmYNGkSpk+fDgBQKpU+jsj3HP6EzVH8waG+rRNbD9XAaGajQnK/0iY9th2rh9UmIiVSiVvGJ0ERFLgzn9Eh8gEvDRAEwf48ecOiYLRYUdHSgbKmDpRrDDBarCiua0dxXTskApAapUJqlBJtRgtqW43QGix9njMsOAgpkd3Je0qkElEqmX1d/5iUcGw7Wo9KjQEfHanFDTkJ3JLtAlr0Zrz7bRXmTUxGfNjQqmIIDw9Ha2urfQndt99+i5/+9Kf22wVBgMlk8lV45CSuJSW6sEBa339+rP4aJ/kPh5N5juIHvi6rDZ8erWMiTx5RXKfDzuIGiCKQFRsy5NckX4hSJkVOYjhyEsNhtYmobTWenbXvLsev1BhQqendkDImRG5P3JMjgy+6bZ4iSIq545PxWXED1PXt2FncAL2pC5dnRPVp5EeA3tSF/xyoxi3jkpEe4z+7LHjalClT8Je//AV/+9vfsGXLFrS3t+O6666z337q1CmkpaX5MEJyFNeSEvkXNs4jb3I4mecofuA7VNUKnbHvLB/RQB2s1GJ3STMAIDcxDDfkJkAyxLuFO0IqEZAWrUJatApXj4yD9uwa+9o2IyKVciRHBiM5Uun0um6pRMCsUQkIVQThQIUW+0pb0N5pwbWXxfPv0g9zlw1bD9XghtyhU8Wwbt063HDDDdi0aRO6urqwYsUKREVF2W/fvHkzZs6c6cMIyVFcS0rkX3zROI+GLoeTeY7iBzaj2YpvyzW+DoMGGVEUsb9UY39tTUiLxNXZsZwBdlFUiBxRIXJMQtSl73wJgiBg+ohYhAYH4auT3d35O8xW3DQmETJWTPRhtYnYfrweelMXpmRG+zocj5swYQKKi4uxd+9eJCYmYurUqb1uX7hwIUaNGuWj6MgVXEtK5B980TiPhi6Hk3mO4ge2/aUtMFlsvg6DBhFRFPHVySYcqWkDAFyZFcNSbj80PjUSIfIg/O94PcqaO7ClqAa3jE8KyKaE3lBwuhl6kwXXjBz8VQxxcXGYN29ev7f94Ac/8HI0RESDQyCt0afA5/CnOY7iBy5thxlHzyZcRO5gtYnYcaIepxr0AIBrL4vDuNRI3wZFFzQiPhQL5Cn46HAt6nWd+M+Batw6MQURAbJdoLcdrmpDe2cX5oxNYhUDERER+S2npmY4ih+Yvj7dDKuNo4HkHlabiI+P1KKixQCJAMwalYjLEsN8HRZdQnKkEndMTsPWQzVoNVrw7ndV3Iv+IkqbOvB+YTXmTUiBUh64OzIQEV0Mm7URBTbWWQ5y1VoDzjTqfR0GDSJHqltR0WJAkETAD8YlISOG+5gHiugQOe6cnIYPD9V+vxf9WP4NL6SurRPvfleJ+RNTEaFiFQM5jlvFUaBgszaiwMZk3kd0nRaUNOiRN2zgja4uRBRF7D7V7LHnp6HHYrXhu3ItAODqkXFMAgNQiCIIt+Wl4NOjdajSGPHRYe5FfzFagwXvHqjEvAkprGIgh3CrOAokbNZGFNj8ejFgV1cXHn/8cWRmZkKpVCIrKwtr166FzfZ9IzdRFLF69WokJydDqVTimmuuwfHjx30YtWN2nWzC1yVNqGwxXPrOLlLXt6NB1+mx56eh51BVK4wWKyKUMoxKYvIXqBRBUswbn4KcxDCIIrCzuAHflmkgilyO058OkxXvFVajrLnD16F4xJkzZ/D444/jrrvuQmNjIwDgf//7n9vPpYP5nH6uc7eK27NnT6/v595O5A96NWs7+2WMHMlmbTRolJSUoKioqFelVFFREUpKSnwcmXv49cz8n/70J7z66qt46623MHr0aBw4cAA/+clPEBERgd/85jcAgKeffhrPPvssNm7ciJEjR+KJJ55Afn4+Tp48ibAw/1zHW9bcgdNnS9//e6wOd18xDKEK9/4puqw27D3T4tbnpKHNZLGisKJ7Vv6KzGhIB3mn78Guv73oW/QmXDk8BpEqlleez9xlw0eHajExPRJTMqMRLBsc6+h37dqFm266CdOnT8fu3bvx5JNPIj4+HkeOHMHf//53vPfee2471mA9p18It4ojIm9h74P+DYVKKZcyyDNnzuDNN9/EmTNn8Oc//xnx8fH43//+h7S0NIwePdptwe3btw/z5s2zN9fLyMjAv/71Lxw4cABA9wj+888/j8ceewwLFiwAALz11ltISEjAO++8g3vvvddtsbhLl9WGr0422i8bzFZsO1KH2/NS3boN0sGqVuiMFrc9n6vq2oz4uqQZo5LCMSYlwtfh0AAUVbbC1GVDdIgcI9nwblCw70WvCMJXp5pwqlGPkiY9chLCcHlmNKKY1PdiE0UUVmhxvFaHKZnRmJAWGfCDWo888gieeOIJPPjgg72S5WuvvRZ//vOf3XqswXhOH8qYPBD5D/Y+6N+5lVIZGRkoLy+3f1+8ePGgqJRyOpn35ij+jBkz8Oqrr+LUqVMYOXIkDh8+jD179uD5558HAJSVlaG+vh6zZs2yP0ahUGDmzJnYu3fvBU/8JpMJJpPJflmn0wEALBYLLBbPJsDflGmg0fcufa/S6PHVyXpcNSLWoefoifFCsRrNVuw/3dSrdNEXzjR1YPuJRlhtIhrbTUiPCkZosF8XgwwpVqut1/eLMZqtOFjVPSs/NSMSEG3gBgmDx9iUMMSHyfBNmRYVGiOK69uhrm/HyIRQXJ4RecGk3pnX0GBiMFnxlboeRRUtmJYVjez4UAiC7xMYV85fR48exTvvvNPn+ri4OLS0uLe6y9vndPIsJg9E/oO9Dy5uMFdKOZ1ZeXMU//e//z3a2tqQk5MDqVQKq9WKJ598EnfddRcAoL6+HgCQkJDQ63EJCQmoqKi44PM+9dRTWLNmTZ/rd+zYAZVK5cafoDdDF/B1vQCb2PdDX0kJUHLIhkQnDr9z585+rz+uFVCp9+0Hy/J2QN0mABAggQirDdh5pAJjopgB+pvS0tJL3kfdKsBiFRAuE2FrrUdJmxcCI6/LVQFJQcAZnYCmTgEnG/Q42dCOJCUwPFxE6AUaujvyGhqsCo8AEXIROZEiohW+jcVgcL4HS2RkJOrq6pCZmdnr+oMHDyIlJcVdoQHw/jmdPIvJA5H/6NX74CxjvY29D4YAp5N5b47iv/vuu9i0aRPeeecdjB49GocOHcIDDzyA5ORkLFmyxH6/82dERFG86CzJo48+igcffNB+WafTIS0tDbNmzUJ4uOeaen10uA7DQy/cQMkSJMW0yamIvMQWSBaLBTt37kR+fj5kst731XSYcebbKmT7qJGVKIrYc0YDdVt3tjcmOQwjE0Kx5WAdagwCrhmTxtJdP2G12lBaWoqsrCxIpRfuhdlh6sLO2ioAImbmJiEjxnMDXuQfLgfQoDPhu3ItyloMqDMCdUYB2fEhmJIRheiQ7v/Djr6GhgINgIjYEEwfHmP//XibKzPSixYtwu9//3v85z//gSAIsNlsKCgowEMPPYQf//jHbo3P2+d08iwmD0REvud0Mu/NUfzf/e53eOSRR7Bw4UIAwNixY1FRUYGnnnoKS5YsQWJiIoDu0fykpCT74xobG/uM7J9LoVBAoeg7hSKTyfokx+5yulGPSm0nJJILN02y2IDtxU1YeHkaghz4YNxfvPvLGyEIEvii4rPLasOOE40oOdvcb9rwGEweFgVBEJARo0J5iwHflrfipjFJl3gm8iapVHLR1+WByhZYbSKSIoKRGesf5cTkeUmRKsydoEKjrhPflGlQ2tyBksbur+z4UEzJjEa0qvsUcqnX0FBRoelElbYWY1LCcUVWDELc3Nj0Ulw5fz355JNYunQpUlJSIIoiRo0aBavVikWLFuHxxx93a3zePqcTERENdk5PpfSM4tfX13t8FN9gMEAi6R2iVCq1rwXPzMxEYmJir3Jzs9mMXbt2Ydq0aW6NZSAsVht2nWpy6L5N7SZ8edKx+56vSmNAaZNvtk7qtFjxwcEalDTqIRGA2aMTcHlGtD3xmza8ux/AqQY9mtpNF3sq8iM6owXHarqrLK7MimEiPwTFhwfjlvHJWDQlHcPjQgAAJY16/PObSvz3WAPafd9n06/YRBFHqtuwcW859pe2wOLn/QRkMhn++c9/4tSpU/j3v/+NTZs2Qa1W4+2334ZU6t4BmsFyTiciIvIXTk8beHMU/5ZbbsGTTz6J9PR0jB49GgcPHsSzzz6Le+65B0B3Kd4DDzyA9evXIzs7G9nZ2Vi/fj1UKhUWLVrk1lgG4tsyjVOd5Y/VtCE5Mhijkx3v/i6KIr4uaXYlvAHTGS3YeqgGWoMFcqkEN49LQlp071LsuDAFRiaE4lSDHnvPNGPeBPdWcZBnfFOmgU0E0qKUff6mNLTEhSlw87hkNLWb8G25Bqcb9Tjd1IHTkKDeVo8ZI+K4pd05zF027DvTgqPVbbhyeAxGJ4f75WDYrl27MHPmTAwfPhzDhw/36LEGyzmdiGiw4K4UF1ZSUoL29vZe+9MDQFhYmF9tZ+d0Mt8zir927VocPHgQNpsNEydO9MgP9cILL2DlypVYtmwZGhsbkZycjHvvvRerVq2y3+fhhx+G0WjEsmXLoNVqMXXqVOzYscNv9qPVdpjte3M740t1I+LDghEX5ljpoLq+HQ26zkvf0c0adJ346HAtDGYrQhVBmDchGbGh/cd8RVYMShr1KG8xoKbViJTIwdNJcjDSGsworu9eg3vl8BgfR0P+Ii5MgR+MTUKz3oRvylpwulGPM00GVLRU4qrsWIxNifDLpNVX9KYu7DzRgGM1bbgtLxUyP+stkJ+fj8TERCxatAiLFy/GmDFjPHaswXBOJyIaTLgrRf8CaX96l7am89YoflhYGJ5//nn7tjX9EQQBq1evxurVqz0ai6u+PNm9NZuzLFYRnx6pxV1T06EIunipY5fVhoLT3p+VL2/uwLZjdbBYRcSGyjFvfMpFt56LUskxOikcx2p12Hu6GbfnpfJDvx/bX9oCUQQyY0OQFMGBF+otNlSBm0YnoEhoR7lJiZrWTnx5sglnmjpwQ248woI9038kUNW1dWLH8Qb8YJx/9Qypra3F5s2b8a9//QtPP/00xowZg8WLF2PRokVITU1167EGwzmdiGgw4a4U/Quk/emdniLIz89Heno6HnnkERw7dswTMQ0apxraUdHi/FZBPbQGC3aeaLjk/YoqW9He2eXycVxxrKYNHx2phcUqIi1aidvzUh3aQ35qZgykEgG1bZ0oH8DvhjyrWW/CqYbuRoZXZnFWni4sTAbMn5CEmSPjECQRUKkxYNP+Spyo1UH00a4a/upUQzu+K9f4OoxeYmNjcf/996OgoABnzpzBnXfeiX/84x/IyMjAdddd5+vwiIjIg3rtSnH2yxg5krtSnJWbm4vp06fj7rvvxvTp05Gbm+vrkPpwOpmvra3Fww8/jK+//hrjxo3DuHHj8PTTT6O6utoT8QUsc5cNux1sencxJQ16FFVeuEzfYO7y6odDURSx70wLPlc3QhSB3MQwzBufcsnqgR6hwUEYn9rdC2DvmWZ+2PdT+850bzOZHR/q8FIPGroEQcCEtEgsmpqOxPBgmK027CxuwMdH6tBh8u5Ao78rON2MsmbfNCq9lMzMTDzyyCP44x//iLFjx2LXrl2+DsktSkpKUFRU1GvdY1FREUpKSnwcGRER0cA4ncwP5lH8Zjd2Wd9f2uK22fI9Jc2obTVe8DjmLu90S7baROwsbsC3ZwcPpmREI39UAqQS50rlJ2dEQy6VoFlvts/+kv+o13WitLkDArr7HBA5Kkolxw8np2L68BhIBQFlzR3YtL8Cpxr8pxzN10QR+O+xOmg7zL4OpZeCggIsW7YMSUlJWLRoEUaPHo1PPvnE12ENWM+6x7y8PPt6x8WLFyMvLw8jR45kQk9ERAFtQJ14Btso/nuF1Th4kVlwR7XoTThU1TrwgM6y2kRsO1oHo9na63pNhxlHq3VuO87FmLqs+PBwDYrr2iEIwPU58bhyuGtblSllUkwaFgkA2Ffa4lJPAfKcnln5nKQwRIcM7QYo5DyJIGByRjQWTklDXJgCnV02/PdYfb/vYUOVyWLDx0dqYery/e9jxYoVyMzMxHXXXYeKigo8//zzqK+vx6ZNm3DTTTf5OrwBO3fd4549e3p9P/d2IiKiQOR0A7weBQUF+Oc//4n33nsPnZ2dmDt3LtavX+/O2LzOahPx1ckmVGoMmDUqEUq5a3vsfqF2rendxbR3duG/x+owf+L3W7oVnGmBzQtl6p0WK7YcrEFTuwkyqYA5Y5KQERsyoOecmBaFw1VtaDNaUFynw5gUx7fhI8+p0RpRqTFAInT3NyByVWyoAndOTsO35Rp8V65BSaMeNa1GXJ8Tj6y4UF+H53MtejP+d6wec8cn+7QR6FdffYWHHnoId955J2JjY30Wh6fl5uZi0qRJmD59OgBAqWRTzx7nb03FbamIiAKH08n8ihUr8K9//Qu1tbW44YYb8Pzzz+PWW2+FSjV49qAubeouDb1xTKLTe2sX1+lQre2/JH6gKloM2F+qweT0cLR0AtrmDkgkrg04OMrUZcXWQ92JvFImxbwJyUgIDx7w88qDJLg8Iwq7S5rxTZkGOYlhCPKzLZuGGlEUsbe0e1eE0ckRiFCyGzkNjFQi4MqsGGTFhmDHiQZoOsz4+EgdcpPCMHNknMO9Ngar0qYO7CttwbThvkui9+7d67Njk384f2sqbktFRBQ4nE7mh8oovt7UhfeLqjF5WDSmDY+BxIF14Z0WK74uGXjTu4v5pqwFcSFBULcJSIj06KFgsdrw0eFaNOhMCJZJsGBSygX3kHfF2JQIFFW2Qm/qwpHqNkwaFuW25ybnVWoMqG3thFQi4PIM/i3IfRLCg3HX5WnYX6ZBYYUWxXXtqNIYcUNuPIbFDKzKJ9B9W6ZBfJgCI+J9u4/6iRMnUFlZCbO591r+uXOH8uZE3ldSUoL29vZezfqA7m39PLWn8flbU3FbKiKiwOF0Mj+YR/FLGtsxNvP78k9RBL4r16Baa8BNY5IQobr4TOW+0hZ0mDy7BlIUgY+P1EFnFpDgweN0WbvXdNa2dkIeJMH8Ce5N5AEgSCrBFVnR+Ky4Ed9VaDA6JXzIz9T5iiiK2Ht2rfy4lAjuEU5uFySVYMaIWPssfZvRgq2HapGbFIacxHCkRCqdbqY5GIgisP14AyJVcre/xzqitLQU8+fPx9GjRyEIgn2HkZ7Sf6vV9+v6B+r8MnLAP0vJe5r1naunaR8AnDp1yiMJfa+tqQAY623cloqILipQ3leHApfXzA/GUfzPihthFBS4fFhUrzWMdW2d2PRNBa7PjUdOYni/j21s78SRqjavxOnpdfJWm4htx+pRpTFCJhVw64RkxLuhtL4/uYnhKKzQQmuwoKiylXua+0hpcwcaz/ZEmMxZefKg5Egl7p6ajoLTzThc3YbiunYU17VDLpVgWIwKWbEhyIgNQbBs6Azsmbts+PhwLe6aku71n/s3v/kNMjMz8dlnnyErKwvffvstWlpasHz5cjzzzDNejcVTzi8jB/yzlPzcZn0ZGRkoLy+3f1+8eDGb9RGR3wiU99WhwOlkfrCP4u8704I2gwXX5cT3miUyd9nw36P1KG824LqceMiDvh+JEkURX6obvdKMztNsNhHbj9ejrLkDUomAueOTkRThuUZBkrNrarcdq8fBSi3Gp0ZAJXd5jGnQM1ms0HV2QddpQXtnF3RGCzotVqREKTEiPtSlygZRFO0d7CekRfL3Tx4nk0pwzWXxyE4Iw4laHcqaO2C0WFHSqEdJox4CupP+zNgQZMWGIGoI7KrQarBg29E63DohxaFlXe6yb98+fPHFF4iLi4NEIoFEIsGMGTPw1FNP4de//jUOHjzotVg85fwycsC/S8nZrG/o4mwnBYpAe18dzJz+1D6YR/FnZMdgX6URJ+p0aO+04Adjk6A4b5akuE6H+jYjbhqbZG8Ed7xWh9rWTl+E7Fai2L2PfEmjHhIBuHlcElKjPN/YcER8KOLDFGhsN+G7ci1mjozz+DH9kSiK6OyyQWc8m6h3WtBu7P7e/dUFc5et38cW17fjq5NNyIoLQU5iOIZFqxxOCEoaO9DSYYY8SIJJ6ZyVJ+9JiVQiJVIJURRRr+tEWXMHSps70KI3o6bViJpWI/acbkakUobMuO7EPjlC6dVk15sqWgzYc7oZV3vxPdBqtSI0tHt5WWxsLGpra3HZZZdh2LBhOHnypNfi8KTzy8gBlpL3MBgMALoHdYqLi+2VAOQbnO2kQMH3Vf/hdDI/mEfxxyZHIjYqCv89VocqrRH/LqzGvPHJCD+vq7fWYMG731Vh+ogYjEqKQMHpZh9F7D6iKOILdSPU9d37yM8Zm4SMcxpTJUcGo8smolFncvuxBUHAtOEx2HqoFker2zAxPRLhQ2jNdpvRgs+LG1Cv64TFeuk3QaVMirDgIIQrZQgPDoJUIuB0ox5agwWnGvQ41aCHUibFZQlhyEkKQ3yY4oJbX9lE4NsyLQAgLz1qSJU2k/8QBAFJEUokRSgxbXgsdEYLSps7UNbcgWqtAa1GCw5WtuJgZSsUQRJkxIR0z9rHhUA2yHbBKKzQIj5cccElXe42ZswYHDlyBFlZWZg6dSqefvppyOVy/PWvf0VWVpZXYvBnJSUlXm1G521qtRoAcP/99/e5LSzMt00ZA5mrM+yc7SQiZzmdzA/2UfzM2BD8MC8NHx6ugabDjHcPVOGW8clIPG/NuNUmYvepZhwo18Jgdm5pQVO7CQcqNGjv7MKwaBVGxIcixgeNj3qIoojdJc04VqsDAMwelYjh5+wDHR+uwLwJKahoMWDb0TqPxJAerUJqpBLVrUZ8W6bBDbmebO/nP6q1Bnx6tA6dlu9n3FVyKcKDuxP1sLMJe3iwzJ7A95e8XJkVg8Z2E9R17TjZ0A6jxYpD1a04VN2KKJUMOUnhyEkI6zMwVWsAWo0WKGVSTEiL9PSPS+SQcKUME9IiMSEtEqYuKypbDChr7kBZSwc6LTacbOh+nceEyHHrxBSEKgbX0pDPTjQgWiX3WK+Scz3++OPo6OgAADzxxBO4+eabcdVVVyEmJgabN2/2+PH92fkN6ZxpRhco5dK33norgO4BtZ/97GfYtGkTcnNzB9WAhS+4OsPO2U4aCs5/f/TH98ZA4vQnoKEwih8XpsCdk9Pw0eFaNOvNeL+wGjeO6Z3g9nAmka9v68S35RqUNXfYr6tr68T+Mg2iVXKMSAhFdnwoYkLkF5xJ9YR9pS04VNUKALghNx6XJX4/Gh8TKseCiakIlkmRHR+KCKUMbUaL22MQBAHTRsTg3weqcaJWh7z0qEG/TvZIdSt2nWqCTQTiwxS4ITcBUSoZglyYaRQEAQnhwUgID8aM7FhUagxQ1+twpqkDWoMF+860YN+ZFqREKpGTGIbshFBIIOK0rvt1NnlYVK8+EET+QhEkRXZCGLITwmATRdS1dZfjF9fp0NJhxn8OVGHBpFREKAdPNY/FKuKjw7VYNDXd4z0sZs+ebf93VlYWTpw4AY1Gg6ioKK+eh/xRT8O5119/HQqFwqlmdIFSLh0bG4uf/exnKCoqAvD9en0aGM6wE13Y+e+P/vjeGEic/pQwVEbxw4Jl+GFeGrYdq0NFiwGfHKnDVdmxmJgW6fQHnBqtEd+Wa1Cp6V6bJgDITghFapQKpU16VGoM0BjM+LZMg2/LNIhUyZAdH4rs+DDEhno2sf+2TIPvyrvLrK+5LA6jkyPst0UoZVgwKRVKeXfptUQiYNKwKHypbvRILEkR3Q2vypo7sK+0BXPGJnnkOL5mtYnYdaoJR2u6dz8YmRCK/NwEl5L4/kglAjJju8uQTV1WnG7UQ13fjmqt0b4O+atTTYgJkaPTKiBELsW41IhLPzGRj0kEwb7OflxKBLYcrEGb0YL/HKjCrRPdv32mL7V3duHTI3W4bVKqR3sE3HPPPfjzn//cq6Q6OjoaHR0d+NWvfoU33njDY8f2hp414UVFRTAajb06xDtqwoQJ9gTX0WZ0TOaGNs6wE13Y+e+PfG8cGKeT+cE8ih8bLof+nIl2eZAEc8cl46uzidfXJc1oM1owMzvukh+uRFFElba7ZLym1QgAEAQgJzEMl2dEI0rVPQI1NiUCpi4rypo6UNKoR4XGgFaDBd+Va/FduRYRShlGxHfP2F9s7bMriiq12Ffa3cV8xohYjE+NtN8WqgjCbZNS+5Svjk4Ox/7SFhidXFrgqGnDY1DW3P27aNR1eqXM1JsM5i5sO1pvf01MHx6DvGGe+7+jCJJidHIERidHoL3TAnV9O9T17dB0mNHY3t3/4PKMKLcNJBB5S7hShh/mpeKDQzVo0ZvxXmE1bp2QgsSIwfOeUa01YtepJlybE++xY7z11lv44x//2Gd9tNFoxD/+8Y+AT+Z71oT/3//9X7+3e2pdOJM58jaWLlOgOP/9cTC+N3qz34rTyfxgHsW/fVIajjaaUVSpRc8ucxKJgGsvi0OkUoavTzfjSHUbdEYLbhqT1G9ZsiiKKG8x4NsyDep13R3upYKA3OQwTB4W3W8pqCJI2r2mOSkcpi4rypsNKGlsR3mLAW1GCwortCis0CI8OAgj4kMxPFaFge6Cd7S6e3ACAK7IjEbesO+7mKvkUiyYlIIIVd9YZVIJxqdGYv/ZQQB3iw1V4LLEMJysb8feMy24dWKKR47jC03tJnx8pBbtnV2QSyWYPSYBWbF9l254SliwDJdnRGPysCg06U1Q1+mg0bZiVBKbHFFgClEE4fZJqfjwUC3qdZ3YcrAaN49LRnq053fh8JZDVa3IjA1BRmzIpe/sBJ1OB1EUIYoi2tvbERz8/SCI1WrFtm3bEB/vuUEEb+lZE56Tk4OKigosXryY68JpUGLpMpF/GEi/FVc4ncwP5lF8qUTA1SPjMCxGhe3H69Fh6p59FoTu8vIwZRC2H29AeYsB7xVWY+74ZIQGd/8KRVHE6SY9vivToklvsj/f2JQITEqPRJiD3dkVQVJclhiGyxLDYO6yobylA6cb9Shr7oCuswtFla0oqmyFRBBQ2FaN6BA5olRy+/dIVf8N0s5VXKfDFye7S+XzhkVhSmb098eXSTB/YspFG/JNSItEYYXGoc7rrrgiMxolDe2o0BhQrTV4ZXs8TzvdqMeOE/WwWEVEKGW4ZVySz5oeCoKA+LBgxIbIUFKihXSQbvNFQ0OwTIr5E1PwydFaVGmM+OhQLW4a23+Pk0BV1tLh9mQ+MrJ7yZggCL0+dPQQBAFr1qxx6zF9oWdNOACoVN3nEn9eF+6LxnkGg6HPDFJOTo7990WBgaXLRP5hIP1WXOFwMj9URvEBYFhMCBZfMQw7TzSgtOn7ZnXZ8WEIU8jw0eFaNOlN3Z3uxyVBYzDju3ItNB1mAIBMKmBcaiQmpkUiZABdluVBEoxMCMPIhDBYrL0Te4sVaNab0aw393lcWHAQolVyRIXIEaWS2ZN9lVyK04167DzRAAAYnxqB6cNj7CXe8iAJbp2QcsnSdqVcilHJ4Thc1ebyz3YxkSo5RidH4GhNG/aeacEP85QBu4RDFEV8U6bBN2UaAEBatBJzxiRxCzgiN5IHSTB3fDL+d6weZ5o68OnROuTnJiA3yTvbu3la9dl+K+705ZdfQhRFXHfddXj//fcRHf39oK5cLsewYcOQnJzs9uPSxfmicZ5arbbPHPV8Lyws9NsBD+rfUChdJgokrvRbcYXDmeZQGcXvoZIHYd6EFBys1GJPSTO6bN1viIkRwbjz8jR8dKgWGoMZ//quyv4YeZAEE1IjMSE9Eko3J2syqQTZ8WHIjg+DpasLR9VnEBGfhFajFZoOM7QGM7QdZnR22dDe2YX2zi5UnPcBUC6VwGKzQUT32veZI+PsSXKQRMAt45KRHOnYiy0vPRpHq3WwDbTe/wKmZkajuE6HurZOfHCoBhPTopARo/JoUq83deFYTRvKmjsQoZQhPVqF9BiVy3vem7ts2HmiAaeb9AC6KxquGhHr0WZWRENVkESCOWOS8Jm6AcV17dhxogGmLtug2HKxpcMMg7nLrZ3tZ86cCQAoKytDenp6wA6Yepq31yG72jhvIDP6OTk5kMvlMJvNkMvl2LdvH3LOOb67+aL6gOvJiWiwcviTwVAdxZ+YHoXUKBX+e6wOLWdnwSOUMvxwcio+PVqHaq0RwTIJJqZFYXxqBBRemHGVSgSEyIDM2BBIJL2PZzRboTmb2GsN5rOJvgU6owVma/de5pclhOG6nHj7hzeJIOCmsUlIj3G8pC5C1d2Y71SD+8tFgO61sNNHxGLXqSZUaYyo0hgRoZRhfGoERiWHQxHknt+zKIqo1hpxpLoNZ5r19l4Eje0mlDR2J+FRqrOJfbQKqVEqh7Zw0xkt+PhI99aGEgG4Lie+104BROR+EomA/NwEKIKkOFTVvfWjqcuKKRnRAZ2simJ3M7yRCe7vb/HFF18gNDQUP/zhD3td/5///AcGgwFLlixx+zEDiSvrkAfSQd/VxnkDmdFXqVT41a9+hRdffBH333+/x2fkfVF9wPXkRDRYOZzMD+VR/LgwBe6ako7dp5pwpLq7tDxYJsWtE1JQ12ZEfFiwU3t0x4bKkRqtgiJIgtONevsggTso5VKkyLu3bjpXl82GNoMFRosVyZFKSM7+/QQBmDU6ASPinV9fOjkjymPJPNA9k50ZG4Ij1a04VqtDm9GC3SXN2FfaglFJ4RifFmnfFcBZJosVxfXtOFLdCq3BYr8+OTIYo5LC0d7ZhUqNAfW6TmgNFmgNbThc3QaJ0L2FXk9yHx+usP8ue9Rojfj0aB2MFitUcil+MDbJ4YoHIhoYQRBwdXYsgoMk2F+mwf5SDUwWG67Kjg3o81a11uCRZP6Pf/wjXn311T7Xx8fH4+c///mQT+ZdWYfsiw76A90K75lnnsEzzzzj9rj644tt+7ienIgGK6dr9obqKL5MKsH1uQkYFhOCz4obYDRbIZUIDjVnCz9bsp0WrURalKrXOvppw2PRojfhVIMepxvb+10D7w5BEkm/Ddeuz3F9XWlCeDDSolWo8sB6zh4RShmuyo7D1MwYqOt1OFTVnXwfru5OrjNiVJiQFon0aMdK8Bt1nThS04aT9e32pRMyqYDcxHCMTY3otU/1FVkxMHVZUa01oqLFgEpN9+4CPXu17yttgSJIgrRoFYadTe4rWgz46lQjbCIQH6bAzeOSHG5+SETuIQgCpmbFQCGTYtepJhysaoWpy4brc+IDdplLlcbokeetqKhAZmZmn+uHDRuGyspKjxwzkLiyDtkXHfQDaSs8X8TK9eSBr6fiZd++fSguLna42oVosHM6mR/qo/gj4kOREK7A9uMNF0xiVXIp0qJVSIvqTvD62+LtXDGhClwZqsCVw2PQou8u7y5p1KP57D7gnnL1yFiMTR1Y6ffkYVEeTeZ7yIMkGJcaibEpEajUGHC4untte3mLAeUtBkSpZBifGoncpPA+VRJdVhtKGvU4Ut1m3y4QAGJC5RiXEoGcxL6P6aEIkmJ4XKi9M3ab0YLKFgMqNB2o0hph6rLhdKMep8+W5PcYmRCKG3ITLrmzADlOJhUQHaKAPEjS/SWVQNHz77OXL3SbRBBQVKlFYbnWPohDg9+EtEjIgyT47EQDTtTpYOqy4sYxiQiSBN7/S02HGXpTF0IH0FS1P/Hx8Thy5AgyMjJ6XX/48GHExMS49VhDRaB10KcL88X6/sFsIEtQeipe7r///j63eaLahShQOP2pgKP43ft13zYpBd+Va7HvTAuCpAJSo5RIPZu8x4bKXS7njAlVICZUgSuyYqDpMKOkoR2nPJDYT82KRt6w6Evf8RIyYkMQG6bw+MBDD0EQMCwmBMNiQtBqMONwdRtO1OqgNVjw1akm7D3TgtHJ3SX4oijiaE337Z1d3f0CJEL3gMy41EgkRwQ7/XeKUMowNjUCY1MjYLOJaGjvROXZWfs6XSdEEZg2PAaTh0UFdEmvv5AIAtKilbgsMQwj4kMH1Cth2vBYjEoKx65TTb12qaDBbVRSOORSib3T/ceH63DzuKSAHGir1hqQk+jeDv0LFy7Er3/9a4SFheHqq68GAOzatQu/+c1vsHDhQrceK9BwJpB8sb5/MBvIEpSeihdBEPCzn/3M49UuvsD3HHKF08k8R/G7CYKAKZnRyE0KQ4g8yCOlm9EhckzNisHUrBhoO8w41dCOkkY9GtoGNhM+aVgUpg2PdVOU3bPz/ztW77bnc1SkSo6ZI+NwZVYMTtTpcLiqFa1GCw5WteJgVWuv+4YFB2FsSgRGJYUPaLvAc0kkApIilEiKUGLq2ZJ8c5eNZfVukBAejJykMFyWEOa2vxfQ/ZqZNyEFpU167DrVhNZz+iUEsgilDClRSqRGKREeLEOb0WLf5ULTYYbO2OWxnScCwYj4UMydkIxPjtSiUmPAlqIaXD0yFonhzg/o+VKVxuj2ZP6JJ55ARUUFrr/+egQFdf9fs9ls+PGPf4z169e79ViBxtszgQOZtRwKfDFL7ov1/YPZQJag9FS8FBUVARic1S6sPiBXOP0pmaP4vXkrcYs6J7FvajPgo9ZTuGpcEgSJFF02EdazX13277bvL1tFWMXu6yOVMkwb4b5EHujujl9wuhntnV1ufV5HyYMkmJAWifGpEahoMeBQVat9W75hMSqMS41ARkxIn0Z17qYIkrqty/5QFKmS4bLEMOQmhiMqxLOzHllxoUiPVqGwQovvyjWwWAMr0Y1QyuzVQKnRyj7bJ6add3+rTYTWYEarwQxNx/eJvtZghsli817gPpQercL8iSn48FAt6nWd+PeBaoQFByE7PhQjE8IQH6bw+8S+Wuv+JU1yuRzvvvsu1q1bh8OHD0OpVGLs2LEYNmyY248VaLw9E+jqrOVQGQTwxSx5IPUiCARcgnJxrr7nePs9wFfvOVz20j+nk3mO4vtepEqG2ODurelkMt/PAkskAiamR2H3qSafxiEIAjJiQ5ARG4L2TgsECAgNdu/6UnIvlVyKkWcT+MSIYK8eO0gqwdSsGOQkhWP3qaY+fQ/8SaRK1p24RymREtU3eb8UqURAbKiiV4PHHh2mLntyb+rqHgS0iSJEEb3+bTs7IGgTu7d0tIoiLJYutFaJGBatgkwWBIkgQCoR7N+lEvS6rr/rBQj2wUabKMJm635umw3d33uuO3vsnjgsVhsqNQY4U3CQFKHEHZPT8G25BqVNerR3dqGoshVFla2IUMrsif1Alkr19/ttaO+EtsOCrLgQl3fgAIBWgwW6TovTf39HREdH47rrrhtSFXaX4u2ZQFdnLX3RPd8XOEtO3uSLhNXV9xxvDwQO5D1nIEsJuOylf05nOhzFp/6MTYnAt2UadFqsvg4FgPcqJsh58iAJhseFICcxHOnRKp93F49QynDL+GRUtHTgq5NN0HQMbEcJhUyCpIhgJEUooZJ/XznTZf2+asYmnnv53O82e4O++LDgs7PvSo++nkMUQQhRBCEt+tI7c5zPYrFAUn0QcyYk+2RgsbLFgO3H66E3OV4VFB0ix42jE9FltaG8xYBTDe0oa+5Am9GCAxVaHKjQIlIlw8j4MIxMCO13F5AL6UncG3UmNLab0KjrRIf5+/fEAxUaLJiYirgwx5/zfNUaI0Ylu+d33draisceewzvvvsutFotACAqKgoLFy7EE088gcjISLcchxzj6qylL7rn+wJnyf3HUKgGCaRKGW8PBA7kPWcgSwm8PaAXKJUALk9bchSfztXdbb47oSfqjzxIgknpUZg0LNIvlyMMiwnB4itUOFipxTdlGpi7HCs/j1TJkBShRHJkdwLvzlldurj0GBXuviIdO443oKzZuaaGQVIJRsSHYkR8KCxWG8qaO3CqoR3lLQa0Giz4tlyDb8s1iAmR22fsz13+0Sdxb+9Eh6nvYKaA7gEEq01Eq9GCLUXVWDDJ9YS+SmvAqOSBr5vXaDS48sorUVNTg7vvvhu5ubkQRRHFxcXYuHEjPv/8c+zduxdRUVEDPhZ5FkuXyduGQjVIIFXKeHsgcCDvOQNZvuTtAb1AqQRwKpnnKD5dzIS0SBRVcOsv6k0mFTAuNRKXZ0RDKfe/JP5cUomAyRnRuCwxDF+XNONkfXuv24MkAuLDFb2Sd3c26CPnqeRBmDchGUWVrSg43QyrC+8/MqkEIxPCMDIhDOYuG0qb9TjVoEdFSwdaOsxoKdNgf5kGsaFyhAXLLpm4x4cpEB8ejPgwBeLCFJBJJTBZrPjgUA0adCa8X1SNBRNTEB/u/NISd20FunbtWsjlcpw5cwYJCQl9bps1axbWrl2L5557zi3H8zWDwYAPP/wQAOzfc3Jy7B9EichxQ6EaZChUyvhiINAXjQxdnWEPlKU9Dn8K5Sg+XUqIIgi5SeE4WtPm61DID0glAkYnh2NqVozb98b2tLBgGeaMTcLYlAgcq2lDXJgCyZFKxIcpEBSAW5oNdoIgIG9YFNKilNh2tA7aAexSIA+SICcxHDmJ4TBZrDjT1IFTje2o0hjQrDejWd+9DENAd2PShH4S9/4oZFLMn5iCrQe7G/BtOViD+RNTkOBkQt/e2YU2gwURqoGV2m/duhWvvfZan0QeABITE/H000/jF7/4xaBJ5tVqNdauXQuge7Bi7dq1KCws5Ow1kQsCqRrE22XvgfS7GSpcmWE3GAyo14soKNVDo+j4/nVTZ/W7pT0Of8IeaqP45Jq8YVE4VtvmVFMqGlwEAchJDMeVWTEDTjh8LS1a5dJacvKN+PBgLJo6DF+oG1Fcpxvw8ylkUoxKDseo5HAYLVaUNulhsYqXTNzPlxgRjNHJ4dhf2oJbJybjw0O1qGv7PqFPdDKhr9IaEKGKcOVHsqurq8Po0aMvePuYMWNQX+/9LUc9JScnBy+//DLeeOMN3HPPPZg6dSpyzpltIaLBaSgsCaCLc2WGPZBeNw4n80NtFJ9cExUix/C4UL/uDE6eMyI+FFcOj+m3azqRN8iDJLhxTCKGxajwhbrR4d4Hl6KUSTE62bkEeliMCpdnRNsHhNKjVXi/qAa3TkjB1kM1qGvrxAdFZxN6J3ZzqNYaMCZlYMl8bGwsysvLkZqa2u/tZWVlg6onjkqlwn333Yf77rvPK8czGAxQq9UoLi4GABQXF7Osn8gHAqnsnTzDlbX2gfS6cTiZH2qj+OS6yRlRTOaHmGExKkwfEet0yTCRp+QmhSMpIhjbjtajQdfpteNKBAEj4kNxeUZUnzXxkSo5fjg5FR+cTeg/PFyD2tZOfHCwBrdOTEZShNKhY1RpjAOO88Ybb8Rjjz2GnTt3Qi7vXWpoMpmwcuVK3HjjjQM+zlClVquRl5dnv7x48WKW9RP5AMveyRU9rxuDwYCKiopet6WkpPgoqv45nMwPtVF8cl1ShBIpkUrUtA78Ayf5t5RIJa4cHsNSdPJLkSo57rw8DQWnm1FUqfXo8p8giYBRyeHIGxaFyIvsJR8eLMMPJ6diS1EN5o1PwUeHa1HTasTWg7WYNyEZyZGXTuj1pi5oOsyIDnG9o+6aNWswefJkZGdn45e//KW95PzEiRN4+eWXYTKZ8Pbbb7v8/P6ooKAAGzZswPLlyzF9+nSPHisnJweFhYW91uiyrJ+IKLCo1WosXrwYAOzf/W1g1uFknqP45Iy8jCjUHGIyP1hFqmSYOTIOWXGhvg6F6KKkEgFXj4xDerQK24/Xw2Du24V+IORBEoxPjcTE9EiHdzZQyYNwe14qPjxUg3kTkvHR4VpUa43YeqgG8yakIMWBhL5aaxhQMp+amop9+/Zh2bJlePTRRyGeHekQBAH5+fl48cUXkZaW5vLz+6MNGzZg27ZtAODxZF6lUtk/7Hn6WESuGgr7xZPnGAwGvPDCCwCAF154Ab/61a8G3XKinJwcjB8/HkeOHMG4cePwxhtv+N3ArMPJ/FAcxSfXZcWGICZUjpaznZ9p8IgOkeP2vFRuyUYBJSM2BIuvGIbtx+tR0TLw7d1CFFJMTI/C2JQIBMuc33IxWCbF/Imp+PhwLeaOT8bHh2tRpTV2J/jjU5ASdfGEvkpjxLjUSBej75aZmYn//ve/0Gq1KCkpAQCMGDEC0dHRA3pef5Wfn4/9+/cjPz/fa8f0ZjUAkbMCqckX+R+1Wo2NGzcCADZu3IiNGzd6bNbaVwNPPQMTPQPe/jQj38PhT+O+GsXPyMjos1YBAJYtW4aXXnoJoihizZo1+Otf/wqtVoupU6fipZdeuuj6fvI8QRAwKT0KO080+DoUcqOYUDlum8REngJTiCII8yemoKRRD72pC5YuGyxWEWarFeYuERarDeYuGyzW7i+zVbRf7tm/PlIlQ96wKIxKCh/wNoXyIAnmTUjGtmP1EAB8fKQOlRrD2Rn6ZKRGXXh2o1rrnv3mASAqKgpTpkxx2/NdiK/P5zt37oRGo8HOnTu91ghvxYoV2LNnD1paWrBr1y6PHstgMPRquAdg0M2SkXsFUpMv8pzzZ9hfeuklh943cnJysHz5crz++uv46U9/ikWLFjk0a+3Ke5WrA0/uGASIiIiARCJBRMTAGs96ilOfyH0xiv/dd9/Bav2+LPLYsWPIz8/HD3/4QwDA008/jWeffRYbN27EyJEj8cQTTyA/Px8nT57kiKKP5SaFY9+ZFuhNXb4OhdwgNlSO2/JSoZIzkafAJQgCRiY4f26w2roTe0WQBBKJ4LZ4gqQS3Dw2CXJp93P2JPQfHuqesb9QPwqD2YpmvSmgdo7w9fl8+fLlvb47whcJ8vnHdPR4gbC2k/wLm8MR0HeG/Ve/+pVDrwGVSoVnnnkGzzzzjNPHc/a9ytWBJ3dUn6xfv95eYeWPXPpU7q1RfACIi4vrdfmPf/wjhg8fjpkzZ0IURTz//PN47LHHsGDBAgDAW2+9hYSEBLzzzju49957+31Ok8kEk8lkv6zTde9HbLFYYLFYPPSTuE9PjIEQ69jkUBScafF1GNQPq9XW6/vFxIQqMHdcAmSCGBCvO/KOQHovcocgofv/i9W9y+4BANeNjIEEImw2K7Yda0CFxoiPDtfi5rGJSIvuv+S+vKkdEYrvqwP8/e/gifM5cOFz+vmmT5/udKn7QBNkVz4Enn9MR48XCGs7icj/5OTkYMSIETh9+jRGjBjh1PuGK0uJcnJy8PLLL+ONN97APffcg6lTp17ymK4OPLmj+sSVc4c3BdQUm9lsxqZNm/Dggw9CEASUlpaivr4es2bNst9HoVBg5syZ2Lt37wVP/k899RTWrFnT5/odO3YEVDnazp07fR3CJXXZgLI6AV02981kkXuVlpZe9PYwmYj0OBFffXbUSxFRoAmE96JAIbQKuEwpwBAsoKkT+OhwLSbFiojtZ9dHXXUJamK/b9HfU04YCNx1PgcufE53B1c+dJ7LlQ+B55euOno8lUqFiIgICIKAiIgIzq4SDSEGgwFqtdqlqh6VSoWNGzfak3JnciFXGouqVCps3rwZRUVFUKlUHl32NBSqTwIqmd+6dStaW1uxdOlSALDva5+QkNDrfgkJCf2uy+vx6KOP4sEHH7Rf1ul0SEtLw6xZsxAeHu7+wN3MYrFg586dyM/Ph0wm83U4lxR9ugVFlVpfh0HnsVptKC0tRVZWFqQXWPsbF6bA/AnJLjX4osEv0N6LAsEcAAcqtBhR0oz/HmtAWYsBBzUSLJyc0qd7vSJIipuuyoAgdA+WXmhG2h+563wOXPic7g4qlQo7d+7E0aNHvbbWvueDdWtrKzZu3OhUCevChQtRUlKChQsXejBCdkEn8hSDwYAPP/wQAOzfHUnK1Wo18vLy7JedqeoBXJ99dmX5EgC0tbXBZrOhra3N6WMGgsRQAcrWU0Bt9+drZespJIZ6ZmIzoJL5119/HTfddBOSk5N7Xd/zQaaHKIp9rjuXQqGAQtF3naFMJguoD6SBEu+07Dg06s2obe30dSjUD6lUAomkb7KeEB6MBZNSmMjTJQXKe1GguHJEPFQKOaRSKT4oqkF1qxHF9Xpcld27TN1iA1pNNsSHdU/bO/o3+OijjxyOZe7cuY4H7gR3nc+BC5/T3cXVD6sDkZqaipaWFqSmpjr1OG81+fN2F3QOHtBQoVarsXbtWgDA2rVrsXbtWoeS8pycHBQWFuLOO+90qVzeVa4OAvh7U7mBujdPjtzd9wK7uy/nnr3OEwImma+oqMBnn32GLVu22K9LTEwE0D2in5SUZL++sbGxz+g++Y4iSIpbJ6Zg68EaryT0ggBclxOPCKUMu041cXs8FyRGBGP+RCbyRL4yPi0SMqkEZc0dqG41oqRRjxkjYvsktlUaoz2Zd1TPGsIegiDYd6jpudzD6oEGAYF2PvfFesmXXnrJpYZL3hp48HYXdG6hRkPF+evX3333XYeScpVKhUmTJkGr7a6E1Wq1fr102NtN5c6vePB0I9PXCs24c9VG5J792xWr1XhtwyJ4YnjcoWTeH0bx33zzTcTHx+MHP/iB/brMzEwkJiZi586dmDhxIoDudXi7du3Cn/70J4/EQa7xVkIvlQiYPToRlyV2n9gXT1XhUHUr9pe2wGS5dKM3ApIignErE3kinxuVHI77Zg7H9uP1aO/sQkO7CYnhvRP3aq0BecOinHpem+3798LPPvsMv//977F+/XpceeWVEAQBe/fuxeOPP47169e75ec4H8/nl+bqAIK3Bh68vQ6VW6jRUKFSqZCcnIzS0lIkJyc7/X9q3bp1WLduHVauXOmhCN3D24Ok51c8zJs3z2PvVwaDAfV6EV8Ut6Co7nh3FVGdFfV68dIPdoFDybyvR/FtNhvefPNNLFmyBEFB34csCAIeeOABrF+/HtnZ2cjOzsb69euhUqmwaNEit8dBA+PphF4mFfCDccnIjA2xXyeRdO93n5sYjr1nmnG0pg2iZ/4vDYhMKsBqA2w+Di45sjuRVwQxkSfyB6NTIjApPQrflGlwukHfJ5mvaTXCZhNd3i7vgQcewKuvvooZM2bYr5s9ezZUKhV+/vOf25spuUsgns9feeUV+4djb+1PT70FUhMrLgmggRrIrPV9993H96l+nL/bhyeXIPRUEt1///19bvNEFZFDybyvR/E/++wzVFZW4p577ulz28MPPwyj0Yhly5ZBq9Vi6tSp2LFjB0uu/FRPQv/hwVrUtBrd9rzyIAnmTUhGalT/JTNKuRTX5yZgbGoEvjrZhBqt+47tKKVcikilDBFKGSJU3d8jVXJEKmUIUQShy2pDS4cZTe0mNOtNaNab0aw3wWj2wD5Y/UiJVGLexGQm8kR+Zt6EZHxTpsGpxnZMHxHTawDdZLGhsd2ExAjnSu17nDlzpt81ixERER5JPgLxfL5u3TrU1dVh3bp1Tn9IdmXbJgpsXBJAA+XvW6EFIpVKhXvvvRfr1q3Dvffe69ES+55JcEEQ8LOf/czjVUROr5n39ig+AMyaNatXJcC5BEHA6tWrsXr1arcflzxDESTFvInJbkvolXIpFkxMQXz4pT/MxocF447JaThZ346vS5rQ3tk14OOfKyw4CJEq+dlEXdYreb9UkhwklSAhPBgJ5/0celMXmu0JvglNejO0HWZYbe6bxU+JUuLWCSmQB/Xf1Z6IfGf+xFT84aPjFy21dzWZv/zyy/HAAw9g06ZN9rXq9fX1WL58OaZMmTLg2M8XiOfzlStXuly26sq2TeQfXJ1h55IAArpfP+duEwc41pWeLmwg2+8B3msQGhsbi0WLFuGXv/wlgO5B7NzcXKSkpHjkeE4n894exafB6dyS+4Ek9GHBQVgwKbXPlk2XclliGLLiQvBduQZFFVpYrM4nxoIAxITIkRKlREqkCilRSoQq3N9TMlQRhFBFEDLOWT7w/9u787ioq/1/4K9hWGQAUVBZEkFDxIVFFtdELMG0DLTNlQijTNNMU39m3RS9eDO3vF4pvQhUF7V7DfNamvT9iltaimK4IJB7glwFBQQHZD7fP7zMz2FYZoCZ+Xzw9Xw85hHzWc7nPcOhj+9zzuecGpWA4nsPe+5vl1eh7H41ypQPUH7/Ae4pH+CBHon+Ex2YyBOJmbWlHIHdOuJYA0Ptr5VUIMjDoVllJyYmYvz48XB3d0e3bt0AAFevXoWXlxd27tzZ0tDbhJYMWzXFTPjUOprbw97cRwI4PL9tycnJwZQpUwBA/V99loojbS1dfs+Y/z/OyclBcnIyACA5ORnJyckG+/3rnXkYuxWf2i5Lc7MWJfQdFRYYF9AV9tbNWxLLQm6GIU92Ql9XexzK+w/ybpY3eryZTIbOdlb/Td4fvqwtTTMkXW72MJbOdtrLMQmCgMrqGpTff6BO8MuVD1D23/+W36/Gvaoa3K+qgaOVgBf8XJjIE4lcZMATOHapGHn1DLW/cec+VM0cqdOzZ0+cPn0aP/30E3JyciAIAvr06YORI0c2uSQcNY3DZaVLSjP21zYEHD16FOfPn2+zjQDNXYPdFLy9vTFv3jwkJiZi2rRpmDRpklGWimvLapffCw8Px+3bt+Ho6KjXd2rM/x97e3tjwoQJ2LFjB1588UXMnz/fYL9/vZN5tuJTa2puQt/Zzgrj+j8Bm1boCbe3tsDzvq64VlyBjNz/4FaZEsDDhNmpvZW61921QztJPE8uk8mgsDSHwtIcXRo5rrziPvbty4WFnIk8kdhF+D2Bj3aeQen9BygqU2o8jlP1QIXC0vuw1fNP+cGDB2jXrh2ysrIQHh6O8PDwVo6ayPSam+hKacZ+Y0+4ZSrNXYPdFBQKBVJTU3Hnzh2kpqZi1apVpg5J8mqX33t0xn4xNuQAD2NVKpUwMzODUqk0aB3VOxNiKz61Nn0TetcO7RDh3/pLp7k5KDB5QDfkFpXBxtIczvbt2nSia2Uhh5x/skSSYG0pR6B7Rxy7WIy8m+Vac2tcL6mEt6N+t3Rzc3O4u7sbZBUaIrGQSqLbksYDY0+4ZSrNXYO9Jeo++67PSIBJkyZhw4YNJl+Ro62Ryoz9xhrWr9edn634ZCjqhD7rj0Znmnd3VGCsn6vBkmwzMxm8ndsbpGwiopYY37/rw2S+nqH214or4O2o//+7PvzwQyxatAhff/01HBya99w9kZg9DolubUPAyZMnAYh32b6Wauka7M1R99l3fUYCXLx4UeO/1DqkskqIsYb165XMsxWfDMnS3AyR/g0n9D2dbDG6nwvkzVxPmYhIysb6uWLxzux6h9oX3K1EjUr/Xsb169cjPz8frq6ucHd3h42Njcb+2uSASKoel0T3cdGSNdibw9vbG/b29rh79y7s7e31GgnACTANg6uEaNJ7mD1b8cmQGkro+7q2x8jeTjBjIk9EjylrSzmCPBxw9PfbyCvSHGpfXSOg8K7+E4nW9loSERlLS5ZtM/akkgqFAh4eHjh9+jQ8PDz0ekabE2AaBhtJNOmdzLMVnwytbkIf4N4RIT07cU4GInrsvRjwxMNk/mYZhj6pOdT+j5L7epf38ccft2Z4RERNMvaybS1dn/xvf/ubUUcDUOPYSKJJ72SerfhkDLUJfV5RGfq62ps6HCIiUXjOxxWLvq1/qP0fdypMGBlR07iWOgHGn8iupeuTM3kkMdM7mWcrPhmLpbkZE3kiokdYW8oR7OGAn+sZan+zVKlTGQ4ODsjNzUWnTp3QsWPHRkc9FRcXtzhmolotWUsdkNY649QwhUKBkpISAEBJSYnB5zCoXZ/86aefbtaz70Ri1vJFuomIiMhoXgrs+jCZrzPUvkYl6HT+2rVr1UnTunXrDBUmkZaWrKUOSGud8cdBS5Zte3StcEOrXZ+8uc++E4mZTsk8W/GJiIjEYXQ/FyzcUf9Qe1289tpr9f5MZGgtWUsdeNgIMG/ePCQmJmLatGmYNGkSe1hNqCXLtplirXA++05tkU7JPFvxiYiIxMHaUo4B3R1wJP+W1lD75lCpVMjPz0dRURFUKpXGvpCQkBaVTdSaFAoFjh8/jtLSUhw/fhyrVq0y6PVaOnFaW+ft7Q0/Pz/89ttv8PX1FX3DCp99p7ZIp2SerfhERETi8VJA14fJfD2z2uvj2LFjmDRpEq5cuQJB0BymL5PJUFNT0xrhEklSSydOa+sUCgXs7e0hk8lgb2/PRg4iE2jWM/NsxSciIjKdUf2cYLFD1uyh9rWmT5+OoKAgfP/993BxceESoKSz2l7rRyekM0avdXx8vNGGStdOnBYTEyOZ3mdjmzBhAvLy8jBhwgRTh0L0WNI7mWcrPhERkWkpLM0xsLsjDrdwqH1eXh7+9a9/wdPTs5UjpLaubq91XFwcIiIiDN5rbcyh0rUTp7H3uWHp6ekoLi5Genq60Z+BJyLATN8Talvxz5w5g+LiYpSUlKhfnPyOiIjIOF4K6goAyC8q12pc19XAgQORn5/fmmHRY6K213rjxo0ICgrCxo0b22yvdXx8PCIiIhAfH2/qUFpdRUUFTp48qTEvQEVFhc7nz5s3D2PGjOGkckQmonfPPFvxiYiITC+8jxMs5DLcrazGf8qUaC/X7bzffvtN/fOsWbMwb948FBYWwsfHBxYWFhrH+vr6tmbI1IbU9lpXVlbCzc0Nvr6+7LWWoJbOC8BJ5YhMS+9kvrYVn8k8ERGR6SgszTGohyMO5d1CblE5glx0G2rv7+8PmUym0ZsfExOj/rl2Hx+dI12sXr0aP/zwAwCINqmrqKjQeLYfgF7P9xvzM9Zdux3QL1Z91Y6weO+993D06FEMHjy4zY6wIGqLdErm2YpPREQkPi8FdsWhvFvILypHoLOVTudcunTJwFHR4yQsLAzHjh1DWFiYqUNpUE5ODuLi4gA8fLY/Li5Or97n2iHkxhhKXnftdgAGnUG/doTFoxPZcYQFkXTolMyzFZ+IiEh8wh4Zan+rXKnTOe7u7oiJicFnn30GOzs7A0dIbZ0UJkCrux76li1b9Op9NuZQcm9vb3h6eqpHwW7fvt0oPeVS+D0SkTadknm24hMREYnPo0Ptf//PPZ3PS0lJwV/+8hcm89Rizem1rjuU3NBL2ikUCvztb39TL2kn5nXiFQoFSkpKAAAlJSVGi1UKIyyISJtOs9m7u7tj6dKlcHBwgLu7e6MvIiIiMp6XA90AAL//p1znc5o7+z1RXUOHDsW3336rV8913aHkOTk5hgrPZOo2WOgzQ/yyZcvg4uKCZcuWGSo8LY/2zBORdOi8NF1KSgoqKysNGQsRERHpaWSfLrCQy1B6/4Fe58lkMgNFRNQ4b29vhISEwMLCAiEhIUYZRl47id3q1asNfi2gZQ0Wb7/9Nm7cuKHXcPe6k/ydPHmSS8wRPQZ0ns2erfhERETio7A0x5AnHbE/W/dh9gDg5eXVZEJfXFzcktCI6qVQKBAcHIxffvkFwcHBRplwzZiT2AHaz74busGipZP8cYk5ItPLy8tDWVmZelSPLvRamo6t+EREROLzYkBX7M++qtc5S5cuhb29vYEiImpcamoqlEolUlNTsWrVKoNfz9jJat1n3w3dYOHt7Y158+YhMTER06ZNw6RJk7jEHJGE5OXlwcvLS+/z9Erm2YpPREQkPs/0fjirvT4mTJiALl26GCgiosZ99NFHWLZsGT766CNTh2Iwy5YtM9pnVCgUuHjxIiorK3Hx4kVRT/JHRNrKysoAAF9//TU8PDxw7tw5vPnmm02ep1cyz1Z8IiIi8bGxMseA7g64qOPxHGlHpvb222+3+SXQjP0ZOSM9kfT17t0bAQEB8PHxaf1knq34RERE4hTp74ptOh7LeXCI2h6uFU/0+NE5mWcrPhERkXiFeOne2K5SqQwYCRGZgrEn+SMi0+Ns9kRERG2AjZVeg+2IqI3hjPREjx+d7/xsxSciIiIiIiISBzNTB0BERERERERE+mEyT0RERERERCQxTOaJiIiIiIiIJIbJPBEREREREZHEMJknIiIiIiIikhjRJ/N//PEHpkyZAkdHRygUCvj7+yMzM1O9XxAELFmyBK6urrC2tkZoaCjOnj1rwoiJiIioPrynExER1c/ZVgbrO7nAjSyg4DedzhF1Ml9SUoKhQ4fCwsICe/bswblz57B69Wp06NBBfczKlSuxZs0abNiwAcePH4ezszPCwsJQVlZmusCJiIhIA+/pREREDXsr0BK9D74FbBoOJI/R6Ryd15k3hU8++QRubm5ISkpSb/Pw8FD/LAgC1q1bh8WLF2P8+PEAgJSUFDg5OSE1NRVvvfWWsUMmIiKievCeTkREVL+Kigp8kVkFv1f+H7p374783y8CiGvyPFEn87t27cKoUaPw8ssv48CBA3jiiScwY8YMxMbGAgAuXbqEwsJChIeHq8+xsrLC8OHD8fPPPzd441cqlVAqler3paWlAIDq6mpUV1cb8BO1jtoYpRAriRfrEbUU65C4iP33YOx7OhERkVTk5OSgsFzA+JlL9TpP1Mn8xYsXkZCQgLlz5+KDDz7Ar7/+itmzZ8PKygpRUVEoLCwEADg5OWmc5+TkhCtXrjRY7ooVK7B0qfYXtW/fPigUitb9EAaUnp5u6hCoDWA9opZiHRKHiooKU4fQKGPf04mIiKQiMjISAODt7Y0rV65gypQpOp0n6mRepVIhKCgI8fHxAID+/fvj7NmzSEhIQFRUlPo4mUymcZ4gCFrbHrVo0SLMnTtX/b60tBRubm4IDw9H+/btW/lTtL7q6mqkp6cjLCwMFhYWpg6HJIr1iFqKdUhcxN4jbex7OhERkVR06tQJkyZNQk5ODn766SedzxN1Mu/i4oI+ffpobOvduzd27NgBAHB2dgYAFBYWwsXFRX1MUVGRVsv+o6ysrGBlZaW13cLCQlL/IJVavCROrEfUUqxD4iD234Gx7+lERERSkpOTg8DAQL3OEfVs9kOHDsWFCxc0tuXm5sLd3R0A0L17dzg7O2sM8ayqqsKBAwcwZMgQo8ZKREREDeM9nYiIqGHe3t7IzMyEp6enzueIOpl/7733cOzYMcTHxyM/Px+pqanYtGkTZs6cCeDhULw5c+YgPj4eaWlpOHPmDKKjo6FQKDBp0iQTR09ERES1eE8nIiJqmEKhQEBAAJKTk/H888/rdI6oh9kHBwcjLS0NixYtQlxcHLp3745169Zh8uTJ6mMWLFiAyspKzJgxAyUlJRg4cCD27dsHOzs7E0ZOREREj+I9nYiIqGlDhw7FP/7xD9jb2zd5rEwQBMEIMYlaaWkp7O3tcffuXclMgPfDDz9gzJgxon9GksSL9YhainVIXKR2LzMUfg9ERCR1ut7LRD3MnoiIiIiIiIi0MZknIiIiIiIikhgm80REREREREQSw2SeiIiIiIiISGKYzBMRERERERFJDJN5IiIiIiIiIolhMk9EREREREQkMUzmiYiIiIiIiCSGyTwRERERERGRxDCZJyIiIiIiIpIYJvNEREREREREEsNknoiIiIiIiEhimMwTERERERERSQyTeSIiIiIiIiKJYTJPREREREREJDFM5omIiIiIiIgkhsk8ERERERERkcQwmSciIiIiIiKSGCbzRERERERERBLDZJ6IiIiIiIhIYpjMExEREREREUkMk3kiIiIiIiIiiWEyT0RERERERCQxTOaJiIiIiIiIJIbJPBEREREREZHEMJknIiIiIiIikhgm80REREREREQSw2SeiIiIiIiISGKYzBMRERERERFJDJN5IiIiIiIiIolhMk9EREREREQkMUzmiYiIiIiIiCSGyTwRERERERGRxDCZJyIiIiIiIpIYJvNEREREREREEsNknoiIiIiIiEhimMwTERERERERSYyok/klS5ZAJpNpvJydndX7BUHAkiVL4OrqCmtra4SGhuLs2bMmjJiIiIjqw3s6ERFR6xJ1Mg8Affv2RUFBgfqVnZ2t3rdy5UqsWbMGGzZswPHjx+Hs7IywsDCUlZWZMGIiIiKqD+/pRERErUf0yby5uTmcnZ3Vr86dOwN42IK/bt06LF68GOPHj0e/fv2QkpKCiooKpKammjhqIiIiqov3dCIiotZjbuoAmpKXlwdXV1dYWVlh4MCBiI+PR48ePXDp0iUUFhYiPDxcfayVlRWGDx+On3/+GW+99VaDZSqVSiiVSvX7u3fvAgCKi4tRXV1tuA/TSqqrq1FRUYHbt2/DwsLC1OGQRLEeUUuxDolLbQ+2IAgmjqRhxrynl5aWGu6DEBERGVDtPaype7qok/mBAwfiyy+/hJeXF27evInly5djyJAhOHv2LAoLCwEATk5OGuc4OTnhypUrjZa7YsUKLF26VGt79+7dWy94IiIiEygrK4O9vb2pw9Bi7Hu6m5tb6wVPRERkAk3d02WCmJvw67h37x6efPJJLFiwAIMGDcLQoUNx48YNuLi4qI+JjY3FtWvXsHfv3gbLqduKr1KpEBgYiJMnT0ImkzUZR3BwMI4fP94qxzV2TEP7SktL4ebmhmvXrqF9+/ZNxiEGun5nYrlGc8vS5zzWI/1JqR61pBxT1KPm7GcdMvx19ClHEASUlZXB1dUVZmaif4rOoPf04uJiODo66nRPFyMp/m2R6bHeUHOw3oiTrvd0UffM12VjYwMfHx/k5eUhMjISAFBYWKhx4y8qKtJq2a/LysoKVlZWWtt07cmQy+U6VXZdjmvsmKbOb9++vWT+6HT9zsRyjeaWpc95rEf6k1I9akk5pqhHLdnPOmS46+hbjhh75BtiyHt6hw4dWjtck5DS3xaJB+sNNQfrjfjock8Xf9P9I5RKJc6fPw8XFxd0794dzs7OSE9PV++vqqrCgQMHMGTIEL3LnjlzZqsfq8txjR2jT0xiZ4zP0prXaG5ZrEeGJaV61JJyTFGPWrpfKoz1OcRQj8TOkPd0IiKix4Goh9m///77GDt2LLp164aioiIsX74cBw4cQHZ2Ntzd3fHJJ59gxYoVSEpKQs+ePREfH4+MjAxcuHABdnZ2pg7fYEpLS2Fvb4+7d++yBY2ajfWIWop1iPTBe7ru+LdFzcF6Q83BeiNtoh5mf/36dUycOBG3bt1C586dMWjQIBw7dgzu7u4AgAULFqCyshIzZsxASUkJBg4ciH379rX5m76VlRU+/vhjrWGFRPpgPaKWYh0iffCerjv+bVFzsN5Qc7DeSJuoe+aJiIiIiIiISJuknpknIiIiIiIiIibzRERERERERJLDZJ6IiIiIiIhIYpjMExEREREREUkMk3kiIiIiIiIiiWEy34Zcu3YNoaGh6NOnD3x9ffHPf/7T1CGRBJWVlSE4OBj+/v7w8fHB5s2bTR0SSVhFRQXc3d3x/vvvmzoUItFbsWIFgoODYWdnhy5duiAyMhIXLlwwdVgkcgkJCfD19UX79u3Rvn17DB48GHv27DF1WCQhK1asgEwmw5w5c0wdCumJS9O1IQUFBbh58yb8/f1RVFSEgIAAXLhwATY2NqYOjSSkpqYGSqUSCoUCFRUV6NevH44fPw5HR0dTh0YStHjxYuTl5aFbt25YtWqVqcMhErVnn30WEyZMQHBwMB48eIDFixcjOzsb586d472cGvTvf/8bcrkcnp6eAICUlBR8+umnOHXqFPr27Wvi6Ejsjh8/jldeeQXt27fHiBEjsG7dOlOHRHowN3UA1HpcXFzg4uICAOjSpQscHBxQXFzMfwCQXuRyORQKBQDg/v37qKmpAdv8qDny8vKQk5ODsWPH4syZM6YOh0j09u7dq/E+KSkJXbp0QWZmJkJCQkwUFYnd2LFjNd7/+c9/RkJCAo4dO8ZknhpVXl6OyZMnY/PmzVi+fLmpw6Fm4DB7ETl48CDGjh0LV1dXyGQy7Ny5U+uYjRs3onv37mjXrh0CAwNx6NChess6ceIEVCoV3NzcDBw1iU1r1KM7d+7Az88PXbt2xYIFC9CpUycjRU9i0Rr16P3338eKFSuMFDFR23P37l0AgIODg4kjIamoqanBtm3bcO/ePQwePNjU4ZDIzZw5E8899xxGjhxp6lComZjMi8i9e/fg5+eHDRs21Lt/+/btmDNnDhYvXoxTp05h2LBhGD16NK5evapx3O3btxEVFYVNmzYZI2wSmdaoRx06dMDp06dx6dIlpKam4ubNm8YKn0SipfXou+++g5eXF7y8vIwZNlGbIQgC5s6di6eeegr9+vUzdTgkctnZ2bC1tYWVlRWmT5+OtLQ09OnTx9RhkYht27YNJ0+eZKO7xPGZeZGSyWRIS0tDZGSketvAgQMREBCAhIQE9bbevXsjMjJS/YeoVCoRFhaG2NhYTJ061dhhk8g0tx496u2338bTTz+Nl19+2Rghkwg1px4tWrQIX3/9NeRyOcrLy1FdXY158+bhT3/6kwk+AZH0zJw5E99//z0OHz6Mrl27mjocErmqqipcvXoVd+7cwY4dO/D3v/8dBw4cYEJP9bp27RqCgoKwb98++Pn5AQBCQ0Ph7+/PZ+Ylhj3zElFVVYXMzEyEh4drbA8PD8fPP/8M4GErfnR0NJ5++mkm8lQvXerRzZs3UVpaCgAoLS3FwYMH0atXL6PHSuKlSz1asWIFrl27hsuXL2PVqlWIjY1lIk+ko1mzZmHXrl3Yv38/E3nSiaWlJTw9PREUFIQVK1bAz88Pn332manDIpHKzMxEUVERAgMDYW5uDnNzcxw4cADr16+Hubk5ampqTB0i6YgT4EnErVu3UFNTAycnJ43tTk5OKCwsBAAcOXIE27dvh6+vr/r51q+++go+Pj7GDpdESpd6dP36dUybNg2CIEAQBLzzzjvw9fU1RbgkUrrUIyLSnyAImDVrFtLS0pCRkYHu3bubOiSSKEEQoFQqTR0GidQzzzyD7OxsjW2vv/46vL29sXDhQsjlchNFRvpiMi8xMplM470gCOptTz31FFQqlSnCIolprB4FBgYiKyvLBFGR1DRWjx4VHR1tpIiIpG3mzJlITU3Fd999Bzs7O3XjmL29PaytrU0cHYnVBx98gNGjR8PNzQ1lZWXYtm0bMjIytFZHIKplZ2enNReHjY0NHB0dOUeHxDCZl4hOnTpBLpdr9XoVFRVp9Y4RNYT1iFoD6xGRYdTOQREaGqqxPSkpiY1i1KCbN29i6tSpKCgogL29PXx9fbF3716EhYWZOjQiMjAm8xJhaWmJwMBApKenY9y4cert6enpiIiIMGFkJCWsR9QaWI+IDINzElNzJCYmmjoEagMyMjJMHQI1A5N5ESkvL0d+fr76/aVLl5CVlQUHBwd069YNc+fOxdSpUxEUFITBgwdj06ZNuHr1KqZPn27CqElsWI+oNbAeEREREYkbl6YTkYyMDIwYMUJr+2uvvYbk5GQAwMaNG7Fy5UoUFBSgX79+WLt2LUJCQowcKYkZ6xG1BtYjIiIiInFjMk9EREREREQkMVxnnoiIiIiIiEhimMwTERERERERSQyTeSIiIiIiIiKJYTJPREREREREJDFM5omIiIiI6ggNDcWcOXMMUnZISAhSU1MNUnZbk52dja5du+LevXuNHrdkyRLIZDLIZDKsW7dOvV0mk2Hnzp2GDfK/15HJZOjQoYPBr0VUi8k8EREREZGR7N69G4WFhZgwYYJ6m4eHhzoZrH117drVhFGKh4+PDwYMGIC1a9c2eWzfvn1RUFCAN998U+fyG2q0SU5O1isxLygo0GhEIDIGJvNEREREREayfv16vP766zAz0/xneFxcHAoKCtSvU6dO1Xt+dXW1McIUlddffx0JCQmoqalp9Dhzc3M4OztDoVAYKbL/z9nZGfb29ka/Lj3emMwTERERETWhpKQEUVFR6NixIxQKBUaPHo28vDyNYzZv3gw3NzcoFAqMGzcOa9as0ejdvXXrFn766Se88MILWuXb2dnB2dlZ/ercuTOAh8O3P//8c0RERMDGxgbLly8HAPz73/9GYGAg2rVrhx49emDp0qV48OCBury8vDyEhISgXbt26NOnD9LT0zWGnGdkZEAmk+HOnTvqc7KysiCTyXD58mX1tp9//hkhISGwtraGm5sbZs+erTHk3cPDA/Hx8YiJiYGdnR26deuGTZs2aXy269evY8KECXBwcICNjQ2CgoLwyy+/4PLlyzAzM8OJEyc0jv/rX/8Kd3d3CIIAABg1ahRu376NAwcONPFbalpcXBycnJyQlZWl13n1jZ6QyWQtjoeoJZjMExERERE1ITo6GidOnMCuXbtw9OhRCIKAMWPGqHvKjxw5gunTp+Pdd99FVlYWwsLC8Oc//1mjjMOHD0OhUKB37956Xfvjjz9GREQEsrOzERMTgx9//BFTpkzB7Nmzce7cOXzxxRdITk5WX0+lUmH8+PGQy+U4duwYPv/8cyxcuFDvz5ydnY1Ro0Zh/Pjx+O2337B9+3YcPnwY77zzjsZxq1evRlBQEE6dOoUZM2bg7bffRk5ODgCgvLwcw4cPx40bN7Br1y6cPn0aCxYsgEqlgoeHB0aOHImkpCSN8pKSkhAdHa1Oli0tLeHn54dDhw7p/RlqCYKAd999F4mJiTh8+DD8/f31Ov/48ePqURPXr1/HoEGDMGzYsGbHQ9QqBCKiNuK1114TAAgAhLS0tFYte//+/eqyIyIiWrVsIiISn+HDhwvvvvuuIAiCkJubKwAQjhw5ot5/69YtwdraWvjmm28EQRCEV199VXjuuec0ypg8ebJgb2+vfr927VqhR48eWtdyd3cXLC0tBRsbG/Xrs88+EwRBEAAIc+bM0Th+2LBhQnx8vMa2r776SnBxcREEQRB+/PFHQS6XC9euXVPv37Nnj8b9sfa+VlJSoj7m1KlTAgDh0qVLgiAIwtSpU4U333xT4zqHDh0SzMzMhMrKSnXsU6ZMUe9XqVRCly5dhISEBEEQBOGLL74Q7OzshNu3b2t9bkEQhO3btwsdO3YU7t+/LwiCIGRlZQkymUwdQ61x48YJ0dHR9ZYhCILw8ccfC35+flrbAQj//Oc/hSlTpgje3t4a34kgPPw9W1hYaHz3NjY2gpWVlcbv7lGzZ88W3N3dhaKiIo3tSUlJDZ5DZAjsmScSsdpW6bqv/Px8U4cmWs8++ywKCgowevRo9baGZrKNjo5GZGSkTuUOGTIEBQUFeOWVV1opUiIikorz58/D3NwcAwcOVG9zdHREr169cP78eQDAhQsXMGDAAI3z6r6vrKxEu3bt6r3G/PnzkZWVpX5FRUWp9wUFBWkcm5mZibi4ONja2qpfsbGxKCgoQEVFBc6fP49u3bppTKI3ePBgvT93ZmYmkpOTNa4zatQoqFQqXLp0SX2cr6+v+meZTAZnZ2cUFRUBeDh0v3///nBwcKj3GpGRkTA3N0daWhoAYMuWLRgxYgQ8PDw0jrO2tkZFRYXenwEA3nvvPRw9ehSHDh2qd2LByZMna3z3WVlZiIuLq7esTZs2ITExEd999536UQgiUzE3dQBE1Lhnn31Wa/hZfTePqqoqWFpaGiss0bKysoKzs3Orl2tpaQlnZ2dYW1tDqVS2evlERCRewn+f3a5ve+1Q8Ed/bui8Tp06oaSkpN6yOnXqBE9Pz3r32djYaLxXqVRYunQpxo8fr3Vsu3bt6o23bmy1E/A9emzdyfVUKhXeeustzJ49W6u8bt26qX+2sLDQupZKpQLwMAlvjKWlJaZOnYqkpCSMHz8eqamp9c4KX1xcjCeffLLRshoSFhaGrVu34scff8TkyZO19tvb22t99126dNE6LiMjA7NmzcLWrVvh5+fXrFiIWhN75olErjY5ffQll8sRGhqKd955B3PnzkWnTp0QFhYGADh37hzGjBkDW1tbODk5YerUqbh165a6vHv37iEqKgq2trZwcXHB6tWrtZZlqa8nu0OHDkhOTla//+OPP/Dqq6+iY8eOcHR0REREhMaEObW93qtWrYKLiwscHR0xc+ZMjX8oKJVKLFiwAG5ubrCyskLPnj2RmJgIQRDg6emJVatWacRw5swZmJmZ4ffff2/5F1vH5cuX6x0FERoa2urXIiIiaenTpw8ePHiAX375Rb3t9u3byM3NVT//7u3tjV9//VXjvLoTu/Xv3x+FhYUNJvS6CggIwIULF+Dp6an1MjMzQ58+fXD16lXcuHFDfc7Ro0c1yqjtGCgoKFBvqzspXEBAAM6ePVvvdXTtQPD19UVWVhaKi4sbPOaNN97ATz/9hI0bN6K6urreRoozZ86gf//+Ol2zrhdeeAGpqal44403sG3btmaVkZ+fjxdffBEffPBBvfERmQKTeSIJS0lJgbm5OY4cOYIvvvgCBQUFGD58OPz9/XHixAns3bsXN2/e1BgaPn/+fOzfvx9paWnYt28fMjIykJmZqdd1KyoqMGLECNja2uLgwYM4fPgwbG1t8eyzz6Kqqkp93P79+/H7779j//79SElJQXJyskaDQFRUFLZt24b169fj/Pnz+Pzzz2FrawuZTIaYmBitEQlbtmzBsGHDmt0y3xg3NzetJYEcHR0REhLS6tciIiJp6dmzJyIiIhAbG4vDhw/j9OnTmDJlCp544glEREQAAGbNmoUffvgBa9asQV5eHr744gvs2bNHo0e8f//+6Ny5M44cOdKieP70pz/hyy+/xJIlS3D27FmcP38e27dvx4cffggAGDlyJHr16oWoqCicPn0ahw4dwuLFizXK8PT0hJubG5YsWYLc3Fx8//33WL16tcYxCxcuxNGjRzFz5kxkZWUhLy8Pu3btwqxZs3SOdeLEiXB2dkZkZCSOHDmCixcvYseOHRqNC71798agQYOwcOFCTJw4Uas3//Lly/jjjz8wcuRIfb8qtXHjxuGrr77C66+/jn/96196nVtZWYmxY8fC398fb775JgoLC9UvIlNiMk8kcrt379Z4Vu3ll19W7/P09MTKlSvRq1cveHt7IyEhAQEBAYiPj4e3tzf69++PLVu2YP/+/cjNzUV5eTkSExOxatUqhIWFwcfHBykpKU2u21rXtm3bYGZmhr///e/w8fFB7969kZSUhKtXryIjI0N9XMeOHbFhwwZ4e3vj+eefx3PPPYf/+Z//AQDk5ubim2++wZYtWzBu3Dj06NEDzzzzDF599VUAD9eUvXDhgrqXo7q6Gl9//TViYmKa9T1OnDhR43u0tbXFP/7xD/V+uVyuHvnQoUMHTJ8+HYMHD8aSJUuadT0iImpbkpKSEBgYiOeffx6DBw+GIAj44Ycf1EPMhw4dis8//xxr1qyBn58f9u7di/fee0/jGXm5XI6YmBiN+09zjBo1Crt370Z6ejqCg4MxaNAgrFmzBu7u7gAeDqFPS0uDUqnEgAED8MYbb2jNrG9hYYGtW7ciJycHfn5++OSTT9TL3tXy9fXFgQMHkJeXh2HDhqF///746KOP4OLionOslpaW2LdvH7p06YIxY8bAx8cHf/nLXyCXyzWOmzZtGqqqquq9z2/duhXh4eHqz9dcL730ElJSUjB16lR8++23Op938+ZN5OTk4H//93/h6uoKFxcX9YvIlPjMPJHIjRgxAgkJCer3jz43V9+EOPv374etra1WOb///jsqKytRVVWlMQmOg4MDevXqpVdMmZmZyM/Ph52dncb2+/fvawyB79u3r8bN2sXFBdnZ2QAeDuWTy+UYPnx4vddwcXHBc889hy1btmDAgAHYvXs37t+/r9GYoY+1a9dqtegvXLiw3oaMadOmoaysDOnp6epnComI6PHyaOM08LCB+ssvv2z0nNjYWMTGxmq8r/ss9pw5c9C3b19cuXJFnZw++phaXQ09rz9q1CiMGjWqwfO8vLyaXMpt6NCh+O233xq9XnBwMPbt29dgGfXFXne4vru7e5O94QUFBejXrx+Cg4M1tiuVSiQkJGDr1q2Nnt+Qup/nlVde0RixWPf3XCs6OhrR0dEAHq4x39DvgciUmMwTiZyNjY1eE+KMHTsWn3zyidaxLi4uyMvL0+maMplM66b16LPuKpUKgYGB9fYsPDo5X0smxAEePkM3depUrF27FklJSXj11VehUCh0+gx1OTs7a32PdnZ2uHPnjsa25cuXY+/evfj111+1GiuIiIgaUzvyzcbGBnv27EFKSgo2btyocYyTkxMSExNx9erVFvc0twXl5eU4f/48/vrXv2LZsmVa+69cuYLFixdj6NChTZaVnZ0NW1tbrFy5EjNmzDBEuA2ytbXFgwcPGlytgMgQmMwTtSEBAQHYsWMHPDw8YG6u/eft6ekJCwsLHDt2TD0LbUlJCXJzczV6yDt37qwxIU5eXp7GcjABAQHYvn07unTpgvbt2zcrVh8fH6hUKhw4cKDBZ+DGjBkDGxsbJCQkYM+ePTh48GCzrqWrHTt2IC4uDnv27DHIc/lERNS2/frrr1i5ciXKysrQo0cPrF+/Hm+88YbWcbXP2RPwzjvvYOvWrYiMjKx3iL2Xlxe8vLyaLGf27NmYMmUKgPpX/TG02tEIdR8fIDIkJvNEbcjMmTOxefNmTJw4EfPnz0enTp2Qn5+Pbdu2YfPmzbC1tcW0adMwf/58ODo6wsnJCYsXL9YaSv70009jw4YNGDRoEFQqFRYuXKjRyz558mR8+umniIiIQFxcHLp27YqrV6/i22+/xfz58+tdw7UuDw8PvPbaa4iJicH69evh5+eHK1euoKioSD38TS6XIzo6GosWLYKnp2ez1sjV1ZkzZxAVFYWFCxeib9++6kltLC0tG1wbl4iI6FHffPONqUNolBiHitedHLe5HBwcTHq/bmgUJZEh8WFQojbE1dUVR44cQU1NDUaNGoV+/frh3Xffhb29vTph//TTTxESEoIXXngBI0eOxFNPPYXAwECNclavXg03NzeEhIRg0qRJeP/99zWGtysUChw8eBDdunXD+PHj0bt3b8TExKCyslKvnvqEhAS89NJLmDFjBry9vREbG4t79+5pHNPYhDit6cSJE6ioqMDy5cs1Jrbh8jNEREREJEYyQYxNdERkVKGhofD398e6detMHYqWI0eOIDQ0FNevX4eTk1Ojx0ZHR+POnTvYuXOnweIxxjWIiIiIiJrCnnkiEiWlUon8/Hx89NFHeOWVV5pM5GvVLuW3e/fuVo3n0KFDWsvZERERERGZCp+ZJyJR2rp1K6ZNmwZ/f3989dVXOp2zcuVKfPjhhwDQ6mu/BgUFqSe3qW/pPyIiIiIiY+IweyIiIiIiIiKJ4TB7IiIiIiIiIolhMk9EREREREQkMUzmiYiIiIiIiCSGyTwRERERERGRxDCZJyIiIiIiIpIYJvNEREREREREEsNknoiIiIiIiEhimMwTERERERERScz/AWq0L3bzhlBhAAAAAElFTkSuQmCC",
"text/plain": [
- "
"
+ "
"
]
},
"metadata": {},
@@ -840,8 +898,25 @@
"# Median third octave sound pressure level\n",
"spl3 = acoustics.third_octave_sound_pressure_level(spsd, fmin, fmax)\n",
"\n",
- "fig, ax = plt.subplots(figsize=(8, 4))\n",
- "ax.boxplot(\n",
+ "# Plot the decidecade sound pressure level\n",
+ "fig, ax = plt.subplots(1,2, figsize=(10, 4), constrained_layout=True)\n",
+ "fig, ax[0] = acoustics.graphics.plot_spectra(spl3.median(\"time\"), fmin, fmax, fig=fig, ax=ax[0], label=\"Median\")\n",
+ "ax[0].fill_between(\n",
+ " spl3[\"freq_bins\"],\n",
+ " spl3.quantile(0.25, \"time\"),\n",
+ " spl3.quantile(0.75, \"time\"),\n",
+ " alpha=0.5,\n",
+ " facecolor=\"C0\",\n",
+ " edgecolor=None,\n",
+ " label=\"Quantiles\"\n",
+ ")\n",
+ "ax[0].legend(loc=\"upper right\")\n",
+ "ax[0].set_axisbelow(True)\n",
+ "ax[0].grid()\n",
+ "ax[0].set(ylim=(50, 120), ylabel=\"Third Octave SPL [dB rel 1 uPa]\", xscale=\"log\")\n",
+ "\n",
+ "# Boxplots\n",
+ "ax[1].boxplot(\n",
" spl3.values,\n",
" whis=(1, 99),\n",
" showfliers=True,\n",
@@ -850,16 +925,160 @@
" flierprops={\"marker\": \".\", \"markersize\": 1.5},\n",
")\n",
"xticks = np.linspace(0, 5, 6)\n",
- "ax.set(\n",
+ "ax[1].set(\n",
" xticks=xticks,\n",
" xticklabels=xticks.astype(int),\n",
- " xlim=(1.68, 4.75),\n",
- " ylim=(50, 130),\n",
- " xlabel=\"log(Frequency) [Hz]\",\n",
- " ylabel=\"Decidecade SPL [dB re 1 uPa]\",\n",
+ " xlim=(np.log10(45), np.log10(52000)),\n",
+ " ylim=(50, 120),\n",
+ " xlabel=\"log(Frequency) [kHz]\",\n",
+ " ylabel=\"Third Octave SPL [dB re 1 uPa]\",\n",
")"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Sound Exposure Level and Marine Mammal Weightings\n",
+ "\n",
+ "While the IEC-40 does not have recommendations for sound exposure level (SEL), it is a better parameter for quantifying auditory stress/injury to organisms. Sound exposure level is a metric that quantifies sound pressure level relative to exposure duration, based on the idea that that the effects on an organism's hearing are the same for equivalent totals sound energy received - even if that energy was received at different rates. Numerically, an SPL of 190 dB re 1 uPa over a 1 second interval and an SPL 160 dB re 1 uPa for 1000 seconds both have a SEL of 190 dB re 1 uPa^2 s.\n",
+ "\n",
+ "The National Marine Fisheries Service (NMFS) publishes auditory weighting functions for five groups of marine mammals. These weighting functions are designed to try to emulate the auditory sensitivity of each group to better predict auditory injury thresholds. They are mathematically equivalent to band-pass filters. A link to the latest recommendations from NMFS is [here](https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance-other-acoustic-tools).\n",
+ "\n",
+ "The SEL function `sound_exposure_level` has a few inputs. One is the pressure spectral density (PSD) in Pa^2/Hz, found from `sound_pressure_spectral_density`. The 'n_bin' input to that function should be the same length of time as you want to calculate SEL for. If you would like to calculate the 24 hr SEL, you need 24 hours worth of data - the best way to do this and save computer RAM would be to calculate the PSD from each 1-5 minute individual file and then concatenate the PSD from each file together.\n",
+ "Set \"group=None\" to calculate the standard SEL. Set \"group\" to \"LF\" for 'low frequency' cetaceans; \"HF\" for 'high frequency' cetaceans; \"VHF\" for 'very high frequency' cetaceans; \"PW\" for phocid pinnepeds; and \"OW\" for otariid pinnepeds.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Size: 4B\n",
+ "array([136.9158], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 8B 2023-02-04T15:07:37.996493339\n",
+ "Attributes:\n",
+ " units: dB re 1 uPa^2 s\n",
+ " long_name: Sound Exposure Level\n",
+ " weighting_group: None\n",
+ " integration_time: 300 s\n",
+ " freq_band_min: 50\n",
+ " freq_band_max: 48000\n",
+ "\n",
+ "\n",
+ "Data variables:\n",
+ " sel (time) float32 4B 136.9\n",
+ " sel_lf (time) float32 4B 136.1\n",
+ " sel_hf (time) float32 4B 133.6\n",
+ " sel_vhf (time) float32 4B 128.5\n",
+ " sel_pw (time) float32 4B 135.1\n",
+ " sel_ow (time) float32 4B 132.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "import xarray as xr\n",
+ "\n",
+ "# Five minute SEL\n",
+ "spsd_300s = acoustics.sound_pressure_spectral_density(V, V.fs, bin_length=300)\n",
+ "# Calibrate PSD\n",
+ "fill_Sf = sensitivity_curve[-1].values\n",
+ "spsd_300s = acoustics.apply_calibration(spsd_300s, sensitivity_curve, fill_value=fill_Sf)\n",
+ "\n",
+ "ds_sel = xr.Dataset()\n",
+ "ds_sel[\"sel\"] = acoustics.sound_exposure_level(spsd_300s, None, fmin, fmax)\n",
+ "for group in [\"LF\", \"HF\", \"VHF\", \"PW\", \"OW\"]:\n",
+ " ds_sel[\"sel_\" + group.lower()] = acoustics.sound_exposure_level(\n",
+ " spsd_300s, group, fmin, fmax\n",
+ " )\n",
+ "\n",
+ "print(ds_sel[\"sel\"])\n",
+ "print(\"\\n\")\n",
+ "print(ds_sel.data_vars)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Compare this to the 5 minute SPL:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Size: 4B\n",
+ "array([112.14459], dtype=float32)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 8B 2023-02-04T15:07:37.996493339\n",
+ "Attributes:\n",
+ " units: dB re 1 uPa\n",
+ " long_name: Sound Pressure Level\n",
+ " freq_band_min: 50\n",
+ " freq_band_max: 48000\n"
+ ]
+ }
+ ],
+ "source": [
+ "spl_300s = acoustics.sound_pressure_level(spsd_300s, fmin, fmax)\n",
+ "print(spl_300s)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can look at the specific marine mammal auditory weighting and noise exposure functions as well using `nmfs_auditory_weighting`, given a frequency vector and one of the mammal groups. It outputs the weighting function and the exposure function (the inverse of the former) in units of dB. To convert back to a unitless magnitude, use `10 ** ( / 10)`. The exposure function shows the SEL in dB at and above which temporary or permanent hearing damage can occur to an individual in the specified group. The minimum value in the exposure function is the known or estimated injury level for a given group."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAGbCAYAAAAoUj0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3M0lEQVR4nOzdd3xT1fvA8U+SJt10Tyh7UzayBcoegigKyEZAkeEPARGcoCIOEBUUQREQVFABQURklVH2lL3LbinQ0t00Te7vj7b5UjtoStt0PO+XfUluTu597mmbPjn3ueeoFEVREEIIIYQQQqC2dgBCCCGEEEIUFZIcCyGEEEIIkUaSYyGEEEIIIdJIciyEEEIIIUQaSY6FEEIIIYRII8mxEEIIIYQQaSQ5FkIIIYQQIo0kx0IIIYQQQqSR5FgIIYQQQog0khwLIYQQQgiRptgkx7NmzeKJJ57A2dkZb29vevfuzfnz5zO0URSF6dOn4+/vj729Pe3ateP06dNWilgIIYQQQhQ3xSY53rlzJ2PHjmX//v1s2bKFlJQUOnfuTHx8vLnNp59+yueff878+fM5dOgQvr6+dOrUidjYWCtGLoQQQgghiguVoiiKtYPIi7t37+Lt7c3OnTtp06YNiqLg7+/PhAkTeOONNwDQ6/X4+PjwySef8PLLL1s5YiGEEEIIUdTZWDuAvIqOjgbA3d0dgNDQUMLDw+ncubO5ja2tLW3btmXv3r3ZJsd6vR69Xm9+bDKZiIyMxMPDA5VKVYBnIIQo7RRFITY2Fn9/f9TqYnMhL9+YTCZu376Ns7OzvN8KIQpcbt9zi2VyrCgKEydOpHXr1gQGBgIQHh4OgI+PT4a2Pj4+XLt2Ldt9zZo1ixkzZhRcsEII8Qg3btygXLly1g6j0N2+fZuAgABrhyGEKGUe9Z5bLJPjcePGceLECUJCQjI999/RB0VRchyRmDZtGhMnTjQ/jo6Opnz58ly4cME8Ki1yZjAYCA4OJigoCK1Wa+1wigXpM8uVxD6LjY2lUqVKODs7WzsUq0g/79A//8S9lPZBXhhMJjaHh9PZ1xdtKbzikBfSZ5YrcX2mKMRcvkzAyJGPfM8tdsnx+PHjWb9+Pbt27cqQ9fv6+gKpI8h+fn7m7REREZlGkx9ma2uLra1tpu3u7u54eHjkY+Qll8FgwMHBAQ8PjxKTtBQ06TPLlcQ+Sz+P0lpSkH7ezo6OlHFysnI0xYfBZMLBwYEyTk4lI2kpBNJnlitxfaYo4OAAPPo9t9icraIojBs3jjVr1rB9+3YqVaqU4flKlSrh6+vLli1bzNuSk5PZuXMnLVu2LOxwhRBCCCFEMVRsRo7Hjh3Lzz//zLp163B2djbXGLu4uGBvb49KpWLChAl89NFHVKtWjWrVqvHRRx/h4ODAgAEDrBy9EEIIIYQoDopNcrxgwQIA2rVrl2H7kiVLGDZsGABTpkwhMTGRMWPGEBUVRbNmzdi8eXOprecTQgghhBCWKTbJcW6mY1apVEyfPp3p06cXfECiwBiNRgwGg7XDKFAGgwEbGxuSkpIwGo3WDqdYKI59ptVq0Wg01g5DCCGEBYpNcixKPkVRCA8P58GDB9YOpcApioKvry83btwotTdjWaq49pmrqyu+vr7FKmYhhCjNJDkWRUZ6Yuzt7Y2Dg0OJTiZMJhNxcXE4OTmVysUf8qK49ZmiKCQkJBAREQGQYRYdIYQQRZckx6JIMBqN5sS4NEyhZzKZSE5Oxs7OrlgkekVBcewze3t7IHVKSW9vbymxEEKIYqB4/IURJV56jbFD2hyEQpQU6T/TJb2OXgghSgpJjkWRUpJLKUTpJD/TQghRvEhyLIQQQgghRBpJjoUoYpYuXYqrq6tFrxk2bBi9e/culGOVJHntNyGEECWXJMdC5NG3336Ls7MzKSkp5m1xcXFotVqefPLJDG13796NSqXiwoULj9xvv379ctXOUhUrVuSLL74olGP919KlS1GpVJm+vv/++wI/NsDVq1dRqVQcP348w/Yvv/ySpUuXFkoMQgghigeZrUKIPAoKCiIuLo7Dhw/TvHlzIDUJ9vX15dChQyQkJJhvxtqxYwf+/v5Ur179kfu1t7c3z3JQ0ArzWGXKlOH8+fMZtrm4uBTKsbNj7eMLIYQoemTkWBRJiqKQkJxila/crMYIUKNGDfz9/dmxY4d5244dO3j66aepUqUKe/fuzbA9KCgIgOTkZN544w1q166Ns7MzzZo1y7CPrEodPvzwQ7y9vXF2dmbkyJFMnTqVBg0aZIpp9uzZ+Pn54eHhwdixY80zJLRr145r167x2muvmUdtszrW9OnTadCgAcuXL6dixYq4uLjQv39/YmNjzW1iY2MZOHAgjo6O+Pn5MXfuXNq1a8eECRNy7C+VSoWvr2+GL3t7+yzP948//shwI9v06dNp1KgRK1eupHLlylnGZTKZ+OSTT6hatSq2traUL1+emTNnAlCpUiUAGjZsiEqlMi9D/9+yCr1ez6uvvoq3tzd2dna0bt2aQ4cOmZ/fsWMHKpWKbdu20aRJExwcHGjZsmWmpF8IIUTxJSPHokhKNBip/e4/Vjn2mfe74KDL3a9Gu3btCA4OZurUqQAEBwczZcoUTCYTwcHBdOzYkeTkZPbt28e8efMAGD58OFevXuX777+nWrVqrFu3jq5du3Ly5EmqVauW6Rg//fQTM2fO5JtvvqFVq1asXLmSOXPmmBO+dMHBwfj5+REcHMylS5fo168fDRo0YNSoUaxZs4b69evz0ksvMWrUqBzP6fLly/zxxx9s2LCBqKgo+vbty8cff2xONCdOnMiePXtYv349Pj4+vPvuuxw9ejTLZD0/Xb58mY0bN7J+/Xqio6MzxTVt2jS+++475s6dS+vWrQkLC+PcuXMAHDx4kKZNm7J161bq1KmDTqfL8hhTpkxh9erVLFu2jAoVKvDpp5/SpUsXLl26hLu7u7ndW2+9xZw5c/Dy8mL06NG8+OKL7Nmzp0DPXwghROGQkWMhHkO7du3Ys2cPKSkpxMbGcuzYMdq0aUPbtm3No8H79+8nMTGRoKAgLl++zC+//MKqVato2bIlVapUYfLkybRu3ZolS5ZkeYx58+YxYsQIhg8fTvXq1Xn33XepW7dupnZubm7Mnz+fmjVr8tRTT9GjRw+2bdsGgLu7OxqNBmdnZ/OobXZMJhNLly4lMDCQJ598ksGDB5v3Exsby7Jly5g9ezYdOnQgMDCQJUuWYDQaH9lX0dHRODk5mb9yiiG7uL7++uts4/ryyy/59NNPGTp0KFWqVKF169aMHDkSAC8vLwA8PDzw9fXNkOimi4+PZ8GCBXz22Wd069aN2rVr891332Fvb8/ixYsztJ05cyZt27aldu3aTJ06lb1795KUlGTR+QghhCiaZORYFEn2Wg1n3u9itWPnVlBQEPHx8Rw6dIioqCiqV6+Ot7c3bdu2ZfDgwcTHx7Njxw7Kly9P5cqV+e2331AUhZo1a2bYj16vz3ZlwPPnzzNmzJgM25o2bcr27dszbKtTp06GFdj8/Pw4efJkrs8lXcWKFXF2ds6wn/QlkK9cuYLBYKBp06bm511cXKhRo8Yj9+vs7MzRo0fNjy1d5S6nuM6ePYter6dDhw4W7fNhly9fxmAw0KpVK/M2rVZL06ZNOXv2bIa29erVyxAHpK6CV758+TwfXwghRNEgybEoklQqVa5LG6ypatWqlCtXjuDgYKKiomjbti0Avr6+VKpUiT179hAcHEz79u2B1NFPjUbDoUOHSExMxMnJyZwkOjk5ZXuc/y4kkVVdtFarzfQak8lk8TnltJ/04+Ymnv9Sq9VUrVo1y+3/fX1Wq8nlFFd+3FSY07n9d9vDsaQ/l5e+FkIIUfRIWYUQjykoKIgdO3awY8cO841eAG3btuWff/5h//795pvxGjZsiNFoJCIigsqVK1O1alXzV3ZlBjVq1ODgwYMZth0+fNjiOHU6Xa7KH3JSpUoVtFpthnhiYmK4ePFinvfp5eVFbGws8fHx5m3/nXLtUapVq4a9vb25zOK/0muMczr/qlWrotPpCAkJMW8zGAwcPnyYWrVqWRSPEEKI4qvoD80JUcQFBQWZZ4ZIHzmG1OT4lVdeISkpyZwcV69enYEDBzJs2DDef/99WrZsSWRkJNu3b6du3bp079490/7Hjx/PqFGjaNKkCS1btmTVqlWcOHGCypUrWxRnxYoV2bVrF/3798fW1hZPT0+Lz9XZ2ZmhQ4fy+uuv4+7ujre3N++99x5qtTrPyyQ3a9YMBwcH3nzzTcaPH8/BgwctnnvYzs6ON954gylTpqDT6WjVqhV3797l9OnTjBgxAm9vb+zt7dm0aRPlypXDzs4u0zRujo6OvPLKK+ZzK1++PJ9++ikJCQmMGDEiT+cmhBCi+JGRYyEeU1BQEImJiVStWhUfHx/z9rZt2xIbG0uVKlUICAgwb1+yZAmDBw/m7bffplatWvTq1YsDBw5kaPOwgQMHMm3aNCZPnkyjRo0IDQ1l2LBh2NnZWRTn+++/z9WrV6lSpYr5BrW8+Pzzz2nRogVPPfUUHTt2pFWrVtSqVcvieNK5u7uzYsUKNm7cSN26dfnll1+YPn26xft55513mDRpEu+++y61atWiX79+5ppkGxsbvvrqKxYuXIi/vz9PP/10lvv4+OOP6dOnD4MHD6ZRo0ZcunSJf/75Bzc3tzydmxBCiOJHpeR2UtdSIiYmBhcXF+7du5ftDVIiI4PBwMaNG+nevXumutDcSkpKIjQ0lEqVKuU5ySpOTCYTMTExlClTxuIb0wA6deqEr68vy5cvL4DoLBMfH0/ZsmWZM2dOgY6wPm6fWUtOP9vp7zfR0dGUKVPGShFaj/n9dvt2PErh+eeVwWRi4+3bdPf3R1uMfhesSfrMciWuzxSFmIsXcRkw4JHvuVJWIUQRl5CQwLfffkuXLl3QaDT88ssvbN26lS1btlglnmPHjnHu3DmaNm1KdHQ077//PkC2o7FCCCFEcSLJsRBFnEqlYuPGjXz44Yfo9Xpq1KjB6tWr6dixo9Vimj17NufPn0en09G4cWN2796dpxpmIYQQoqiR5FiIIs7e3p6tW7daOwyzhg0bcuTIEWuHIYQQQhSIElBEIoQQQgghRP6Q5FgIIYQQQog0khwLIUQpM2vWLJ544gmcnZ3x9vamd+/enD9/3vy8wWDgjTfeoG7dujg6OuLv78+QIUO4fft2hv3o9XrGjx+Pp6cnjo6O9OrVi5s3bxb26QghRL6S5FgIIUqZnTt3MnbsWPbv38+WLVtISUmhc+fO5lUKExISOHr0KO+88w5Hjx5lzZo1XLhwgV69emXYz4QJE1i7di0rV64kJCSEuLg4nnrqqcdeiVEIIaxJbsgTQohSZtOmTRkeL1myBG9vb44cOUKbNm1wcXHJNFXgvHnzaNq0KdevX6d8+fJER0ezePFili9fbp45ZcWKFQQEBLB161a6dOlSaOcjhBD5SZJjIYQo5aKjo4HU1QpzaqNSqXB1dQXgyJEjGAwGOnfubG7j7+9PYGAge/fuzTI51uv16PV68+OYmBgADIqCwWTKj1MpFdL7Svos96TPLFfi+kxRMOSyqSTHQhSCpUuXMmHCBB48eJDr1wwbNowHDx7wxx9/FFhcxcWOHTsICgri6tWrOa5qVLFiRSZMmMCECRNytd927drRoEEDvvjii/wJtBhSFIWJEyfSunVrAgMDs2yTlJTE1KlTGTBggLn/w8PD0el0mZbW9vHxITw8PMv9zJo1ixkzZmTaHnznDg6xsY95JqXPlmz6WWRP+sxyJanPEnLZTpJjIR5DdglsejIXFRWFq6sr/fr1o3v37tYJMhv/jTEnCxcu5JtvvuHSpUtotVoqVapE//79eeONNwol1pYtW3Lr1i3s7e2B7D9sHDp0CEdHx1zvd82aNRmWPLc0uS4Jxo0bx4kTJwgJCcnyeYPBQP/+/TGZTHzzzTeP3J+iKKhUqiyfmzZtGhMnTjQ/jomJISAggCAfHzycnfN2AqWQwWRiS3g4nXx9S8ayvoVA+sxyJa7PFIWYy5dz1VSSYyEKgb29vTmxK24WL17MxIkT+eqrr2jbti16vZ4TJ05w5syZQotBp9Ph6+trvgyfHS8vL4v2m1MZQWkwfvx41q9fz65duyhXrlym5w0GA3379iU0NJTt27dnGLX39fUlOTmZqKioDKPHERERtGzZMsvj2draYmtrm2m7VqUqGX98C5lWrZZ+s5D0meVKTJ8pCtpHtwJktgpRxMXHx2f7lZSUlOu2iYmJuWpbUJYuXZppdHb27Nn4+vri7OzMyJEjmTp1Kg0aNMj02tmzZ+Pn54eHhwdjx47FYPhf1VRycjJTpkyhbNmyODo60qxZM3bs2GF+/tq1a/Ts2RM3NzccHR2pU6cOGzdu5OrVqwQFBQHg5uaGSqVi2LBhWcb+559/0rdvX0aMGEHVqlWpU6cOL7zwAh988EGGdkuWLKFWrVrY2dlRs2bNDKOMV69eRaVSsWbNGoKCgnBwcKB+/frs27fvkbFC6ii3RqMhOjqaHTt2MHz4cHMNrEqlYvr06UDqyG96icQLL7xA//79M8RoMBjw9PRkyZIlQGpZRfoocbt27bh27Rqvvfaaeb/x8fGUKVOG33//PVOfODo6EltMSwEURWHcuHGsWbOG7du3U6lSpUxt0hPjixcvsnXrVjw8PDI837hxY7RabYYb98LCwjh16lS2ybEQQhQHMnIsijQnJ6dsn+vevTt//fWX+bG3tzcJCVlXFLVt2zZD0lixYkXu3buXqZ2iKHkP1gI//fQTc+bMYf78+Tz55JOsXLmSOXPmZEpSgoOD8fPzIzg4mEuXLtGvXz8aNGjAqFGjABg+fDhXr15l5cqV+Pv7s3btWrp27crJkyepVq0aY8eOJTk5mV27duHo6MiZM2dwcnIiICCA1atX06dPH86fP0+ZMmWyHdn29fVl586dXLt2jQoVKmTZ5rvvvuO9995j/vz5NGzYkGPHjjFq1CgcHR0ZOnSoud1bb73F7NmzqVatGm+99RYvvPACly5dwsbGJttY/6tly5Z88cUXvPvuu+a5ebNqN3DgQPr27UtcXJz5+X/++Yf4+Hj69OmTqf2aNWuoX78+L730krl/HR0d6d+/P0uWLOG5554zt01/7FxMSwHGjh3Lzz//zLp163B2djbXCLu4uGBvb09KSgrPPfccR48eZcOGDRiNRnMbd3d3dDodLi4ujBgxgkmTJuHh4YG7uzuTJ0+mbt265tkrhBCiOJLkWIjHtGHDhkzJ2aPmef36668ZNGgQw4cPR61W8+6777J582bi4uIytHNzc2P+/PloNBpq1qxJjx492LZtG6NGjeLy5cv88ssv3Lx5E39/fwAmT57Mpk2bWLJkCR999BHXr1+nT58+1K1bF4DKlSub951eUuDt7Z1jzfF7773Hs88+S8WKFalevTotWrSge/fuPPfcc6jTLrV98MEHzJkzh2effRaASpUqcebMGRYuXJghOZ48eTI9evQAYMaMGdSpU4dLly5Rs2bNHGN9WHpiplKp8PX1zTbuLl264OjoyNq1axk8eDAAP//8Mz179szypj53d3c0Gg3Ozs4Z9jty5EhatmzJ7du38ff35969e2zYsCHTVGfFyYIFC4DU0fKHLVmyhGHDhnHz5k3Wr18PkOlqRnBwsPl1c+fOxcbGhr59+5KYmEiHDh1YunQpGo2moE9BCCEKjCTHokj7b7L4sP/+AY6IiMi2rfo/9VJXr159rLgeFhQUZE420h04cIBBgwZl+5rz589nKmNo2rQp27dvz7CtTp06Gc7Tz8+PkydPAnD06FEURaF69eoZXqPX682XwF999VVeeeUVNm/eTMeOHenTpw/16tWz6Pz8/PzYt28fp06dYufOnezdu5ehQ4fy/fffs2nTJu7fv8+NGzcYMWKEecQVICUlBRcXlwz7evjYfn5+QOr3rWbNmvkS68O0Wi3PP/88P/30E4MHDyY+Pp5169bx888/W7Sfpk2bUqdOHX788UemTp3K8uXLKV++PG3atMlzbNb2qCskFStWzNVVFDs7O+bNm8e8efPyKzQhhLA6SY5FkWbJzAMF1TY3+6patWqGbXlZQjerZOThmRQAVCoVprQ5J00mExqNhiNHjmT6oJA+kj1y5Ei6dOnCX3/9xebNm5k1axZz5sxh/PjxFscXGBhIYGAgY8eOJSQkhCeffJKdO3dSu3ZtILW0olmzZhle89+4Hj6f9BkN0s8nP2NNN3DgQNq2bUtERARbtmzBzs6Obt26WbyfkSNHMn/+fKZOncqSJUsYPnx4tjMyCCGEKN7khjwhrKBGjRocPXo0w7bDhw9btI+GDRtiNBqJiIigatWqGb4eLgsICAhg9OjRrFmzhkmTJvHdd98BqeUJ8OgSkKykJ8Tx8fH4+PhQtmxZrly5kimOrG70ykl2sf6XTqfLVdwtW7YkICCAVatW8dNPP/H888+bz9uS/Q4aNIjr16/z1Vdfcfr06QylIkIIIUoWGTkWwgrGjh3Lyy+/TIsWLWjdujWrVq3ixIkT2dbZZqV69eoMHDiQIUOGMGfOHBo2bMi9e/fYvn07devWpXv37kyYMIFu3bpRvXp1oqKi2L59O7Vq1QKgQoUKqFQqNmzYQPfu3bG3t8/yxrZXXnkFf39/2rdvT7ly5QgLC+PDDz/Ey8uLFi1aADB9+nReffVVypQpQ7du3dDr9Rw+fJioqKgM89rmJKdY/6tixYrExcWxbds26tevj4ODAw4ODpnaqVQqBgwYwLfffsuFCxcIDg7OMYaKFSuya9cu+vfvj62tLZ6enkBq7fezzz7L66+/TufOnbOc9kwIIUTJUKxGjnft2kXPnj3x9/dHpVJlWnhBURSmT5+Ov78/9vb2tGvXjtOnT1snWCFyMHDgQF577TWmTJlCo0aNCA0NZdiwYdjZ2Vm0nyVLljBkyBAmTZpEjRo16NWrFwcOHCAgIABIHRUeO3YstWrVomvXrtSoUcM8xVrZsmWZMWMGU6dOxcfHh3HjxmV5jI4dO7J//36ef/55qlevTp8+fbCzs2Pbtm3m2uaRI0fy/fffs3TpUurWrUvbtm1ZunSpRSPHOcX6Xy1btmT06NH069cPLy8vPv3002z3O3DgQM6cOUPZsmVp1apVjjG8//77XL16lSpVqmSaM3nEiBEkJyfz4osv5vqchBBCFD8qpbDmrsoHf//9N3v27KFRo0b06dOHtWvX0rt3b/Pzn3zyCTNnzmTp0qVUr16dDz/8kF27dnH+/PlcT7kUExODi4sL9+7dyzSvp8iawWBg48aNdO/ePVONbG4lJSURGhpKpUqVLE4QiyOTyURMTAxlypQx3yzYqVMnfH19Wb58uZWjK5qy6rPC9NNPP/F///d/3L59O8fSjP/K6Wc7/f0mOjo6x2WxSyrz++327XiUwvPPK4PJxMbbt+nu718yFmcoBNJnlitxfaYoxFy8iMuAAY98zy1WZRXdunXL9mYaRVH44osveOutt8zTSS1btgwfHx9+/vlnXn755cIMVYgcJSQk8PXXX9OrVy+0Wi2//PILW7duLdbTg5VUCQkJhIaGMmvWLF5++WWLEmMhhBDFT7FKjnMSGhpKeHg4nTt3Nm+ztbWlbdu27N27N9vkWK/Xo9frzY/Tl6c1GAwZViIT2Uvvp8fpL4PBgKIomEwm8+wFJd2WLVuYM2cOer2eGjVq8Ntvv9G+fftSc/6WSr/Ilf5zUlg++eQTPvroI9q0acMbb7xh8bFNJhOKomAwGDLN3iHvMUIIUfSUmOQ4ffUmHx+fDNt9fHy4du1atq+bNWsWM2bMyLQ9ODg4yxt8RPYeZ9TTxsYGX19f4uLiSE5Ozseoiq7/1szD/z6ciewV9pLNr732Gq+99hrwv9IOSyQnJ5OYmMiuXbtISUnJ8Fx2KzoKIYSwnhKTHKf779yjiqLkOB/ptGnTMtxNHxMTQ0BAAEFBQVJznEsGg4EtW7bQqVOnx6o5vnHjBk5OTqWi5lhRFGJjY3F2dpb5cnOpuPZZUlIS9vb2tGnTJsuaYyGEEEVLiUmO0+d1DQ8PN6+8Bamrb/13NPlhtra22NraZtqu1WrznOiVVo/TZ0ajEZVKhUqlssrNVoUt/dJ8aTnf/FBc+yz95zqr3w95jxFCiKKn+PyFeYRKlSrh6+ub4dJ+cnIyO3fupGXLllaMTORGepIgl5lFSZP+My2JsBBCFA/FauQ4Li6OS5cumR+HhoZy/Phx3N3dKV++PBMmTOCjjz6iWrVqVKtWjY8++ggHBwcGDBhgxahFbmg0GlxdXYmIiADAwcGhWF06t5TJZCI5OZmkpKRiNQpqTcWtzxRFISEhgYiICFxdXTPdjCeEEKJoKlbJ8eHDhwkKCjI/Tq8VHjp0KEuXLmXKlCkkJiYyZswYoqKiaNasGZs3b871HMfCutJLY9IT5JJMURQSExOxt7cv0R8C8lNx7TNXV9cMy3kLIYQo2opVctyuXTtyWrNEpVIxffp0pk+fXnhBiXyjUqnw8/PD29u7xE9xZTAY2LVrF23atJHL7blUHPtMq9XKiLEQQhQzxSo5FqWDRqMp8QmFRqMhJSUFOzu7YpPoWZv0mRBCiMJQ9Av3hBBCCCGEKCSSHAshhBBCCJFGkmMhhBBCCCHSSHIshBBCCCFEGkmOhRBCCCGESCPJsRBCCCGEEGkkORZCCCGEECKNJMdCCCGEEEKkkeRYCCGEEEKINJIcCyGEEEIIkUaSYyGEEEIIIdJIciyEEEIIIUQaSY6FEEIIIYRII8mxEEIIIYQQaSQ5FkIIIYQQIo0kx0IIIYQQQqSR5FgIIYQQQog0khwLIYQQQgiRRpJjIYQQQggh0khyLIQQQgghRBpJjoUQQgghhEgjybEQQgghhBBpJDkWQgghhBAijSTHQghRysyaNYsnnngCZ2dnvL296d27N+fPn8/QZs2aNXTp0gVPT09UKhXHjx/PtB+9Xs/48ePx9PTE0dGRXr16cfPmzUI6CyGEKBiSHAshRCmzc+dOxo4dy/79+9myZQspKSl07tyZ+Ph4c5v4+HhatWrFxx9/nO1+JkyYwNq1a1m5ciUhISHExcXx1FNPYTQaC+M0hBCiQNhYOwAhhBCFa9OmTRkeL1myBG9vb44cOUKbNm0AGDx4MABXr17Nch/R0dEsXryY5cuX07FjRwBWrFhBQEAAW7dupUuXLgV3AkIIUYAkORZCiFIuOjoaAHd391y/5siRIxgMBjp37mze5u/vT2BgIHv37s0yOdbr9ej1evPjmJgYAAyKgsFkymv4pU56X0mf5Z70meVKXJ8pCoZcNpXkWAghSjFFUZg4cSKtW7cmMDAw168LDw9Hp9Ph5uaWYbuPjw/h4eFZvmbWrFnMmDEj0/bgO3dwiI21LHDBlmz6WWRP+sxyJanPEnLZTpJjIYQoxcaNG8eJEycICQnJl/0pioJKpcryuWnTpjFx4kTz45iYGAICAgjy8cHD2Tlfjl8aGEwmtoSH08nXF61abh3KDekzy5W4PlMUYi5fzlVTSY6FEKKUGj9+POvXr2fXrl2UK1fOotf6+vqSnJxMVFRUhtHjiIgIWrZsmeVrbG1tsbW1zbRdq1KVjD++hUyrVku/WUj6zHIlps8UBW0um5aAsxVCCGEJRVEYN24ca9asYfv27VSqVMnifTRu3BitVsuWLVvM28LCwjh16lS2ybEQQhQHMnIshBClzNixY/n5559Zt24dzs7O5hphFxcX7O3tAYiMjOT69evcvn0bwDwPsq+vL76+vri4uDBixAgmTZqEh4cH7u7uTJ48mbp165pnrxBCiOJIRo6FEKKUWbBgAdHR0bRr1w4/Pz/z16pVq8xt1q9fT8OGDenRowcA/fv3p2HDhnz77bfmNnPnzqV379707duXVq1a4eDgwJ9//olGoyn0cxJCiJzojQpxuZyCXUaOhRCilFEU5ZFthg0bxrBhw3JsY2dnx7x585g3b14+RSaEEAVjb3gSw47k7oO7jBwLIYQQQogS7cTlOyhkPZPOf0lyLIQQQgghSrR/E3Nf7iXJsRBCCCGEKLEUReFEQu4riUtkcvzNN99QqVIl7OzsaNy4Mbt377Z2SEIIIYQQwgpuJhi5Z1Rjk7uqipJ3Q96qVauYMGEC33zzDa1atWLhwoV069aNM2fOUL58+VzvJz4+Hjs7u0zbNRpNhu3x8fHZ7kOtVpunRbK0bUJCQrY3zahUKhwcHPLUNjExEVMO66Q7OjrmqW1ycjLx8fFotVlPsf1w26SkJIzG7G8ZdXBwMK+wpdfrSUlJyZe29vb2qNMmMk9OTsZgyH6VdUva2tnZme/Ot6RtSkpKjn1ma2uLjU3qr6jBYCA5OTnb/T7cNiUlBb1en21bnU5nPqYlbY1GI0lJSdm21Wq16HQ6i9uaTCYSExNz3TanPrOxsTEvMqEoCgkJ2S8WaklbS37vLWmb03kLIYTIH/+evAo4Ud1FQ2gu2pe4kePPP/+cESNGMHLkSGrVqsUXX3xBQEAACxYsyLK9Xq8nJiYmwxdAhQoVcHJyyvT17LPPYjAYzF/e3t5ZtnNycqJr164Z2lasWDHbtk8++WSGtrVr1862bZMmTTK0bdKkSbZta9eunaHtk08+mW3bihUrZmjbtWvXbNt6e3tnaPvJJ5/g5uaWbfuH2w4cODDbdk5OTkRHR5vbjho1Kse2YWFh5rYTJkzIse3ly5fNbadNm5Zj2xMnTpjbfvDBBzm2PXjwoLnt559/nmPb2UvX8Pvh66w8eI0Fv2/Osc9Gzfyejzee4cMNp+n3+ic57nfkjK+Zv+0CC3dcZPxHC3Js+8PSpeZ4//rrrxzbLliwwNw2ODg4x7aff/65ue3BgwdzbPvBBx+Y2544cSLHttOmTTO3vXv3bo59NmHCBHPbsLCwHPc7atQoc9vo6Ogc2w4cODDDz3BObS15j3j22WcL8+1RCCFKpX/TSirquuVujbwSNXKcnJzMkSNHmDp1aobtnTt3Zu/evVm+ZtasWcyYMSPXx4iIiGDjxo3mxzmNgN6/fz9D25xG/qKjozO0zWkUKy4uLkPbuLi4bNsmJCRkaBsdHZ1t2+Tk5Axt79+/n21bo9GYoe2jPNw2fcGB7Pzzzz/mkbebN2/m2Hbr1q24uLgAcO3atRzbBgcH4+PjA8CVK1dybLt7926uXbuGosCZ8xdzbDt22T60m++jN8LtPRdybDt32yXsLqaO5Mfez/mz6V+nwglOTP2MG3cx++8FwF8nw9lhSI0z/tztHNu+9ccZZl/5B1sb0F8+mmPbjQdOo3f9Gxedwu0LJ3Nse+7cOfP3+eLFnPvs4sWL5rbXr1/Pse2VK1dy/bN27do1c9ucftYh9WcrvW1Oo9yQ+jOb2xgseY+IjIzM1T6FEELk3fG0m/ECc5kcq5TcTHhZTNy+fZuyZcuyZ8+eDMuXfvTRRyxbtsy8wtPD9Hp9hsvKMTExBAQEcPnyZdzd3TO1l7KKzG3TRyDbtWtXLMsqFEXhXlwyFyPiuREZz80HiYTHK9x8oOdGVCKxCYkoOcSrstGiUqf+4ilGQ4a2tjZq7HUaHHVqHLQ2ODnZ42inQ6dWcfdOGN6e7mjVGjRqFRo1aNRq1GrQqFXYppU0aNQqTMYUjCkG8/dZUcCoKJhMCkYFVBobjGhIMSrok5OJT0oiQW8kPjmFeL2ROH3q//UpJlQaG1Sa1M/FismIkpJ9Gch/27raQllXOwJcHajgaU9FD0cqezpSydMRJ3vbAi2rMBgM/PPPP7Ru3brElFXExcUREBBAdHQ0ZcqUybZdSRUTE4OLiwv3tm/HoxSef14ZTCY23r5Nd39/tOoSdwG4QEifWa6k9FmKSSFwTThJioq1oxrQqGq5R77nlqiR43TpyVI6RVEybUtna2tr/gP5MBcXF1xdXR95rNy0yUvb9NHQ/G6bXVLxuG11Oh2urq65ek1BxZCbtiaTQuj9eI5df8CJmw84Hx7LhTuxRCXklCBq8SjjiE8ZOzyddHg46vBwssXdMfXf7o46ythrcdTZ4GCrMf/fQavBRpP1G4rBYGDjxo10797SonN8XAajiXh9CrFJKcQnpxCXlEKsPoV4feq/49Kei9OncD9Oz904PXdi9IQ9SCQ+GaINEH3XwJm70XDxfyOzNmoVVb2dqOPvQv0AFxoGuFHLr0y25/9fWf0OZkWtVuf65wwwJ+D53Ta/fu/VxfgPjhBCFAfnY1JIUlQ426io5OGUq9eUqOTY09MTjUaT6bJ9RESE+XK6KF1SjCaO33jAnkv3OXo9iuM3HhCdmDkRVqugoqcjlT2dqODhQHl3BwLc7Snv7kA5NwfstCVjOVytRo2rgw5Xh9wngpD6ATMmMYWbDxK4EZnA1fsJhN6N59LdOC7eiSUmKYVz4bGcC49l9dHUUhgHnYYmFd1pVcWDNtW9qOnrnO2HVCGEEKIgHD99HXCkvrsWtTp3f4NKVHKs0+lo3LgxW7Zs4ZlnnjFv37JlC08//bQVIxOF6daDRILPRbD74l32XrpPrD5jqYWtjZp65VyoX86V2v5lqO7jTFVvpxKTABcElUqFi4MWFwcX6vhnvFKhKAph0Umcvh3DyVvRHL/xgOPXo4hJSmHXhbvsunCXWX+fw9/Fjg61fOhW15dmlTzQ5PJNSgghhMir42k34zXwyP1V2hKVHANMnDiRwYMH06RJE1q0aMGiRYu4fv06o0ePtnZoogDdepDI3yfD2HAijOM3HmR4ztVBS6uqnjSr5E7DADdq+jmjzeXlfvFoKpUKf1d7/F3t6VQ79QqNyaRwLjyWfVfuE3LxLnsv3+d2dBLL919j+f5r+JSx5ekGZenbpBxVvZ2tfAZCCCFKqmOJacmxeylOjvv168f9+/d5//33CQsLIzAwkI0bN1KhQgVrhybyWUJyChtOhLHq0A2OXIsyb1epoHF5N9pW96JNdS8Cy7rIKGUhU6tV1PYvQ23/MoxoXYkkg5E9l+7xz+lw/jl9hzsxehbtusKiXVdoXtmdYS0r0am2j3yf/iOrm4JzolKpOHr0qLzfCSEEEJ1s4rI+dTCsQVATMGU/r//DSlxyDDBmzBjGjBlj7TBEATkbFsPPB67zx7Fb5pIJlQqeqOjOU/X86FrHF+8ymRdwEdZjp9XQoZYPHWr58GFvE9vPRfD7kRtsPxfB/iuR7L8SSSVPR15pV4VnGpaVkf00Dx484IsvvsjVTbeKojBmzJgcZ4IRQojS5MQ9PQoqAhw1eDrZEhNTipNjUfIoisLey/f5dudldl+8Z95ewcOB/k+U59lGZfGRhLhY0Nmo6RroS9dAX24/SGTF/mv8dOA6offimfL7Cb4JvsTkLjXoUddPbuAD+vfvj7e3d67ajh8/voCjEUKI4uPYxXDAnoYWlFSAJMeiiDOZFP45Hc43Oy5z8lbq1GEatYoudXwY2KwCLSp75PruU1H0+LvaM6VrTcYGVeWnA9dYuPMKV+8nMO7nYyypcJVP+tQt1TXJOc0znpXY2NgCikQIIYqfY2k34zW04GY8kORYFFGKorD74j0+/eccp26lLultp1XTr0kAI5+sTIC7wyP2IIoTR1sbXmpThYHNKvDd7iss3HmFI9ei6PFVCG/1qMXg5lJDK4QQIvcUReFY2sp4jVrVs+i1khyLIufkzWg+2niWfVdSl0x21GkY0boSw1pVwt3Rsvl5RfHiaGvDhI7V6fdEAFN+P8Hui/d4d91ptp+L4KOna1s7PKu6f/8+Hh4eANy4cYPvvvuOxMREevXqxZNPPmnl6IQQomi5EmfkgVGNTg21/CxbgVOSY1FkRMUn89nm8/xy8DqKAjqNmsEtKjCmXRU8nHK3gpooGfxc7Fk2vCk/7rvKrL/PseP8XXrM38sz5VR0t3ZwhezkyZP07NmTGzduUK1aNVauXEnXrl2Jj49HrVYzd+5cfv/9d3r37m3tUIUQosg4dvIa4Eg9Ny06G8tu8s5Vcrx+/XqLg+rUqRP29vYWv06UPiaTwqrDN/hk0zkepC3j3LuBP5O71KCcm5RPlFZqtYphrSrRsqonE1Ye50xYDD9c0BD7x2mm9wrE0bZ0fLafMmUKdevWZcWKFaxYsYKnnnqK7t278/333wOpN+F9/PHHkhwLIcRDjqbVGzeysN4YcpkcW/qmq1KpuHjxIpUrV7Y4IFG6XE2boeDg1UgAavo6M6NXHZpV9rByZKKoqO7jzNqxLZm96Rzfh4Ty25FbnLody9LhT5SKGUoOHTrE9u3bqVevHg0aNGDRokWMGTMGtTp1JGT8+PE0b97cylEKIUTRcjS93tjD8nLMXA+9hIeH53o6IWfn0nt3ucgdk0nhx31X+WTTeRINRhx1GiZ2rsHQFhWwkTluxX/Y2miY0qU6tpGX+eWaPWfDYnjm6z0sGd6UGr4l+/0mMjISX19fAJycnHB0dMywOIibm5vMUiGEEA+JNZg4n5SWHAc1tvj1ucpChg4dalGJxKBBgyhTxrLiZ1F63HqQyIDv9zP9zzMkGoy0rOLBpgltGNG6kiTGIkfVXBR+e7kplb0cuR2dxHPf7s2wOmJJ9d/5nmX+ZyGEyN6/aYt/lHPQ5GlRsFyNHC9ZssSinS5YsMDiQETp8M/pcF7/7V9iklJw0GmY1q0mA5tVkLmKRa4FuDmwenRLRv14mMPXohiy+ABLX2zKExUtW2q5OBk2bBi2tqk3pSYlJTF69GgcHR0B0Otzt+KTEEKUFkcupC7+kZd6Y5DZKkQhSTIYmbXxLMv2XQOgfoAr8/o3pLyH3HAnLOfmqOPHEU0Z9eNh9ly6z7AfDvLr6BbU8X/0MsvFzdChQzM8HjRoUKY2Q4YMKaxwhBCiyDuSdjNeY89CSI6Dg4M5evQozZs3p1WrVixcuJCZM2eSmJhI7969+eqrr2SGCpHJjcgERq84wunbqYt5vNSmMpM717B4ahUhHuags+H7IU8wfOlB9l+JZOSyw6wb2ypPl9CKMkuv3AkhRGlmVBTzyniNW9fP0z5ynZ189913dOrUiQULFtChQwdmzZrFpEmT6NGjB3379uXXX39lxowZeQpClFx7Lt2j5/wQTt+Owd1Rx5JhT/Bm91qSGIt8Ya/TsHBQEyp7ORIWncTIHw+TmGy0dlhCCCGs5GJMCrEmFQ4aFTXzeMN2rkeOv/zyS+bOncv48ePZtGkTPXv25Pvvvzdf8mvXrh3Tpk3j448/zlMgomRRFIXFIaF8tPEsJgXqlXPh20GN8XeVKwsif7k4aFky7Al6f72HEzejmfTbcea/0KhE1LE/++yzuW67Zs2aAoxECCGKh8OnrgOONPTQ5vkm/1y/6sqVK/Tq1QuArl27olKpaNq0qfn5Zs2acePGjTwFIUoWfYqRSb/9y4d/pSbGfRqV49eXW0hiLApMBQ9HFg5uglajYuPJcOZsOW/tkPKFi4uL+atMmTJs27aNw4cPm58/cuQI27Ztw8Wl5NVaCyFEXhyJf7x6Y7Bg5DgpKSlDPbGtra357un0xykpKXkORJQM0QkGXl5xmP1XItGoVbzdoxbDWlaUqadEgWtayZ2Pn63HpN/+5evgy1T2dKJP43LWDuuxPFxv/MYbb9C3b1++/fZbNJrU+TuNRiNjxoyRqTOFECLN4bR64yYNquR5H7lOjlUqFbGxsdjZ2aEoCiqViri4OGJiUm+ySv+/KL1uRCUwavkxLt+Nx8nWhm8GNqJNdS9rhyVKkT6Ny3HlXhxfB19m6poTVPR0pHEFN2uHlS9++OEHQkJCzIkxgEajYeLEibRs2ZLPPvvMitEJIYT13Uk0csOgQQ00rO6b5/3kuqxCURSqV6+Om5sb7u7uxMXF0bBhQ9zc3HBzc6NGjRp5DkIUf9di4fmFB7l8Nx4/Fzt+f6WFJMbCKiZ1qkG3QF8MRoVXfzlGdKLB2iHli5SUFM6ePZtp+9mzZzGZTFaISAghipZD/4YCUNPVBme7QiirCA4OzvNBRMm2+9I95p/RkGxKprZfGZYMfwKfEjadlig+1GoVnz5XjzNhMVy7n8Dbf5xi3gsNrR3WYxs+fDgvvvgily5donnz5gDs37+fjz/+mOHDh1s5OiGEsL7DafXGT3jqHms/uU6O27Zt+1gHEiXTXyfCmLDqGAaTiiererBgcBOcbGVtGWFdznZavuzfkD4L9vLnv7fpVNuHXvX9rR3WY5k9eza+vr7MnTuXsLAwAPz8/JgyZQqTJk2ycnSPx6Qo1g5BCFECHEqvN36Mm/Egl8mxJfXEcmNI6bHy4HXeXHsSkwINPUx8O7AhjpIYiyKiQYAr44Kq8uW2i7y37hStqnjg4WT76BcWUWq1milTpjBlyhTze3JJeb/97lw8bzaTGTeEEHkXazBxNin1noym7Zs81r5ylcm4urrmerYBo1Em4C8NFu68zKy/zwHQr0k5mttclYU9RJEzrn1VNp+5w9mwGGb8eYavSkB5BZScpDjdtxeTaFw2kS7lZLpHIUTeHPk3FBOOlHfUPHZpZ66ymeDgYLZv38727dv54Ycf8Pb2ZsqUKaxdu5a1a9cyZcoUfHx8+OGHHx4rGFH0KYrCnM3nzYnxK+2q8EGvWpSA9RZECaTVqPm0Tz1UKlj/723WHrtp7ZAs0qhRI6KionLdvnXr1ty6dasAIyo4Ew8+4EJ0ybh5UghR+A7Fpaa0TzxmSQXkcuT44Xrj999/n88//5wXXnjBvK1Xr17UrVuXRYsWmVfMEyWPoih89s95vtlxGYCp3Woyum0VDAb5gyaKrrrlXBjRqhLfh4Ty+ZYLdAv0w06refQLi4Djx4/z77//4u7unuv2er3+ke1mzZrFmjVrOHfuHPb29rRs2ZJPPvkkw6xDiqIwY8YMFi1aRFRUFM2aNePrr7+mTp065jZ6vZ7Jkyfzyy+/kJiYSIcOHfjmm28oV86y+aWfKOvEkXsmXtodybrOXrjo5CqUEMIyB9Nuxmvq9Xg344EFU7ml27dvH02aZK7laNKkCQcPHnzsgETRpCgKnz6UGL/7VG1Gt837BNtCFKZXO1YD4EZkIt/uvGzlaCzToUMHGjRokKuvxMTEXO1z586djB07lv3797NlyxZSUlLo3Lkz8fHx5jaffvopn3/+OfPnz+fQoUP4+vrSqVMnYmNjzW0mTJjA2rVrWblyJSEhIcTFxfHUU09ZXF73Sd8GlHXWcjVRYdye+xjlBj0hhAWSjAr/JqYlx+0aPfb+LL57KiAggG+//ZY5c+Zk2L5w4UICAgIeOyBR9CiKwsebzrFw5xUA3utZm+GtKlk5KiFyr4ydlvkDGjLu52Ms2HGZPo3KEeDuYO2wHik0NNTi1+Rm1HbTpk0ZHi9ZsgRvb2+OHDlCmzZtUBSFL774grfeeotnn30WgGXLluHj48PPP//Myy+/THR0NIsXL2b58uV07NgRgBUrVhAQEMDWrVvp0qVLrmN2c9SxaFgz+nyzh933jHx6PJppDV1zf9JCiFLteKSBZEWFl52aih6P/95ucXI8d+5c+vTpwz///JNhrs3Lly+zevXqxw5IFC2KovDx3+dYuCs1MZ7Rqw5DW1a0blBC5EGPun78VPk6+67c55NN55g/4PFHFwpahQoVCuU40dHRAObyjdDQUMLDw+ncubO5ja2tLW3btmXv3r28/PLLHDlyBIPBkKGNv78/gYGB7N27N8vkWK/XZyj7SJ91w2AwUN27DB/3rs2E1adZeCmJ6q5x9KpQ9D/AWIMhbdEXgyz+kmvSZ5YrTn2278wtwJ4nPLWkpKRk2y63ZaAWJ8fdu3fn4sWLLFiwgLNnz6IoCk8//TSjR4+WkeMSRlEUZv19jkVpifH7T9dhSIuK1g1KiDxSqVS8/VQtnpoXwoYTYYxoHUXD8iVjaenHoSgKEydOpHXr1gQGBgIQHh4OgI+PT4a2Pj4+XLt2zdxGp9Ph5uaWqU366/9r1qxZzJgxI9P24OBgHBwcUAEd/dVsva1m6pFYwvQPCHB63DMsubZk088ie9JnlisOffa3PnWaTgdtAhs3bsy2XUJCQq72l6dJacuVK8fMmTPz8lJRjMzdetGcGH/wdB0GS2Isirk6/i4816gcvx25yay/z7Hqpea5nqaypBo3bhwnTpwgJCQk03P/7RtFUR7ZXzm1mTZtGhMnTjQ/jomJISAggKCgIDw8PADoYlJ4eelBdoZG89MFG9Z29MTDTm7Qe5jBZGJLeDidfH3RqqVvckP6zHLFpc+STQpv7I8A4MUeT1LNJ/tP1LldtyNXyfGJEycIDAxEncvOOX36NDVq1MDGRhaEKK4W7rzMV9suAqk1xpIYi5JiYufqrPv3NgdDI9lx4S5BNbytHZLVjB8/nvXr17Nr164Mtcq+vr5A6uiwn5+feXtERIR5NNnX15fk5GSioqIyjB5HRETQsmXLLI9na2uLrW3mhVi0Wi1aber0S1rgqyHNeObLnVx5oOfVvZH81N4LrcwXmYlWrS7SSUtRJH1muaLeZycik0lSVLjrVNQqm/O6HOnvM4+Sq7Nt2LAh9+/fz12UQIsWLbh+/Xqu24uiZfn+a+Z5jF/vUkNuvhMlip+LPUNbpNbyztl8HqUUzoygKArjxo1jzZo1bN++nUqVMv6OV6pUCV9fX7Zs2WLelpyczM6dO82Jb+PGjdFqtRnahIWFcerUqWyT49xysdey6MVmOGnVHIwy8f6RB4+1PyFEybX/dOrc7k29dPl2JTBXQ7uKovDOO+/g4JC7myOSk5MfKyhhPWuO3uSdP04BMKZdFcYGVbVyRELkv1faVeXnA9c5dSuGbWcj6Fjb59EvKkHGjh3Lzz//zLp163B2djbXCLu4uGBvb49KpWLChAl89NFHVKtWjWrVqvHRRx/h4ODAgAEDzG1HjBjBpEmT8PDwwN3dncmTJ1O3bl3z7BWPo6q3M1/0a8CoFUdZflVPHbc4+leVAmQhREb70uY3buH9+PMbp8tVctymTRvOnz+f6522aNECe3tZBrS42XQqjMm//QvAsJYVeb1LjUe8Qojiyd1Rx+AWFfl252W+3HaRDrW8i2TtsZubW67jioyMzPV+FyxYAEC7du0ybF+yZAnDhg0DYMqUKSQmJjJmzBjzIiCbN2/G2dnZ3H7u3LnY2NjQt29f8yIgS5cuRaPJn0VWOgb6MbF9ZeZsv8I7x2Op5qKlsVfmsgwhROmUbFI4kpCayjZv2zDf9pur5HjHjh35dkBRNO28cJfxvxzDpMDzjcvx7lO1i2SyIER+GfVkJZbtvcrJW9HsOH+XoJpFr/b4iy++KJD95qaURKVSMX36dKZPn55tGzs7O+bNm8e8efPyMbqMxnWqyZlb0fx9/j6j90bxZ2cvfO2LxwqHQoiCdSLSQGJavXH1HG7Es5TcMSc4dj2K0cuPYDAqPFXPj4/71EMtN7+IEs7DyZYhLSqwcNcVvtx2kXY1vIrcB8KhQ4daOwSrU6lUzB7QhCtf7eL8/URe3nWPVR29sdMUre+VEKLw7TudOr9xc+/8qzeGPCwfLUqWy3fjeHHpIRINRtpU9+Lzvg3QSGIsSomRT1bG1kbN8RsPOBCa+7IEa7l8+TJvv/02L7zwAhERqVMXbdq0idOnT1s5soLlaGvDoheb4WKr5t8YhbcPRZXKGymFEBntNdcb52+5lSTHpdidmCSGLD5IVIKB+uVcWDCwETob+ZEQpYeXsy3PNU6dwix9Tu+iaufOndStW5cDBw6wZs0a4uLigNSpNt977z0rR1fwKng48vXAxqhV8PuNZJZeiLN2SEIIK0oy/q/euEW7/Ks3hmKUHM+cOZOWLVvi4OCAq6trlm2uX79Oz549cXR0xNPTk1dffVVmzshGdKKBoT8c5NaDRCp5OvLDsCdwtJUqG1H6jHyyMioVbD8XwYU7sdYOJ1tTp07lww8/ZMuWLeh0/7srOygoiH379lkxssLTuro3b3auDsCHJ+LYe0f/iFcIIUqqo+EJJCsqfOzUVPFyzNd9F5vkODk5meeff55XXnkly+eNRiM9evQgPj6ekJAQVq5cyerVq5k0aVIhR1r0JRmMjPrxMOfCY/F2tuXHF5vi4SR3gIvSqZKnI11qpy568V0RHj0+efIkzzzzTKbtXl5eFs1DX9yNaFeVZwK9MaJi7N5IbsSnWDskIYQV7LmYWlrWMp/rjSGPN+RduHCBHTt2EBERgclkyvDcu+++my+B/deMGTMAWLp0aZbPb968mTNnznDjxg38/f0BmDNnDsOGDWPmzJmUKVOmQOIqbowmhf9beYyDoZE429qw7MWmBLjnbv5qIUqqUW0qsel0OOv+vc3UbjWL5IdFV1dXwsLCMi3YcezYMcqWLWulqAqfSqViVr9GXL67mxN34hm16z6rO3nhKCVhQpQqe+JSV7tr6ZN/8xunszg5/u6773jllVfw9PTE19c3Q7auUqkKLDl+lH379hEYGGhOjAG6dOmCXq/nyJEjBAUFZfk6vV6PXv+/S3Pp624bDAYMBkPBBl3IFEXh3T/P8s/pO+hs1CwY2ICqnvaPfZ7pry9p/VWQpM8sV5B9VtfPibply3DyVgwr9l1lTLvK+X6MrFhyLgMGDOCNN97gt99+Q6VSYTKZ2LNnD5MnT2bIkCEFGGXRY6fVsPDFZvT8Yhfn4lJ4bW8k3z7pgbqIzTYihCgYMQYTJxJTp3Rs1aFJvu/f4uT4ww8/ZObMmbzxxhv5HszjCA8Px8cn4ypXbm5u6HQ68+pPWZk1a5Z5VPphwcHBuV4RsLj4+4aKTTc1qFAYWNnA/bP72Xg2//b/8DKyInekzyxXUH1W317FSTT8sOsiAXHn0BTCQGRCQkKu286cOZNhw4ZRtmxZFEWhdu3aGI1GBgwYwNtvv12AURZNfi72LBr2BP0X7mPznRTmnohhUn0Xa4clhCgE+45ewYQTlZ00+Lvm/6JzFifHUVFRPP/88/ly8OnTp2eZmD7s0KFDNGmSu08FWdWcKIqSYy3KtGnTmDhxovlxTEwMAQEBBAUF4eHhkavjFge/H73Fpn2p0z1N71mbAU0D8m3fBoOBLVu20KlTJ7Rabb7ttySTPrNcQfdZxxQTm+bs4l5cMjYVG9Et0Dffj/Ff6VeqckOr1fLTTz/x/vvvc+zYMUwmEw0bNqRatWoFGGHR1qiCO7OeCWTS6lPMu5BIdVctPSuUrEENIURme+JS09dWPgVTAmdxcvz888+zefNmRo8e/dgHHzduHP3798+xTcWKFXO1L19fXw4cOJBhW1RUFAaDIdOI8sNsbW2xtc3cuVqttsQkLSEX7/HOujMAjAuqytBWBXPJuCT1WWGRPrNcQfWZVgv9nyjP/OBLvLrqBFcb5t8HyOyPmfvz2LlzJ23btqVKlSpUqVKlAKMqXvo8UYHzt2NYtO86kw9HU8FZSz13+Z0SoiQLSas3blUA9caQh+S4atWqvPPOO+zfv5+6detmenN/9dVXc70vT09PPD09LQ0hSy1atGDmzJmEhYXh5+cHpN6kZ2trS+PGjfPlGMXR+fBYXllxhBSTwtMN/JmUNg2SECKz/k0DmB98CYArd+Oo7JV/y5E+rk6dOuHr68uAAQMYNGgQgYGB1g6pyHijZyAXI2IJvhzFSyH3Wd/JC29ZYlqIEulWgpEryRrUQMvOTQvkGBYnx4sWLcLJyYmdO3eyc+fODM+pVCqLkmNLXL9+ncjISK5fv47RaOT48eNAarLu5ORE586dqV27NoMHD+azzz4jMjKSyZMnM2rUqFI7U8WdmCSGLzlIrD6FppXc+fS5ekVueVwhipJybg40q+TOgdBIVh66wZvda1k7JLPbt2+zcuVKfvnlFz799FMCAwMZNGgQAwYMoFy5ctYOz6o0ahVfDn6CZ7/axaXIJEbtvs+qDl6yxLQQJdDuY1cBRxp4aCljVzBXiSy+5SQ0NDTbrytXCm6O0HfffZeGDRvy3nvvERcXR8OGDWnYsCGHDx8GQKPR8Ndff2FnZ0erVq3o27cvvXv3Zvbs2QUWU1EWr09hxLJD3I5OorKXI4sGN8bWRkZShHiUkU+mlh39fuQm+hSjlaP5H09PT8aNG8eePXu4fPky/fr148cff6RixYq0b9/e2uFZXRk7Ld+/2Dx1ieloE9MORMoS00KUQLvTSiqeLKCSCnjMRUAURSm0N5+lS5eaj/fwV7t27cxtypcvz4YNG0hISOD+/fvMmzcvy3riki7FaGL8L8c4dSsGD0cdS4c1xdWh4H6IhChJgmp44VPGlsj4ZLaeibB2OFmqVKkSU6dO5eOPP6Zu3bqZruKVVhU9HflmYGM0Klh7y8DCs0V3xUMhhOWMikJIfGrRQ5u29QrsOHlKjn/88Ufq1q2Lvb099vb21KtXj+XLl+d3bCIPFEVhxp9n2H4uAlsbNd8PbUJ5D7l7W4jcstGoeb5x6s14vx6+YeVoMtuzZw9jxozBz8+PAQMGUKdOHTZs2GDtsIqMVtW9ea97TQA+OR3PtltJVo5ICJFf/o00EG1UU0aron451wI7jsXJ8eeff84rr7xC9+7d+fXXX1m1ahVdu3Zl9OjRzJ07tyBiFBb4fncoy/dfQ6WCL/s3oGF5N2uHJESx81zj1BreXRfvEhadaOVoUr355ptUqlSJ9u3bc+3aNb744gvCw8NZsWIF3bp1s3Z4Rcrg1pUZ0MgPBRX/d+ABF6JlsR0hSoKdJ28B0NpHh00BTkZv8Q158+bNY8GCBRlWZHr66aepU6cO06dP57XXXsvXAEXubTwZxsy0VT3e6l6LroF+Vo5IiOKpoqcjTSu6c/BqJGuP3WJMu6rWDokdO3YwefJk+vXrl2+z/JRUKpWKGX0acDkijgM3Yxm5O5J1nbxws5UlpoUoznam1Ru39S3YklmL3ynCwsJo2bJlpu0tW7YkLCwsX4ISljt6PYrXVh0HYFjLioxoXcm6AQlRzPVpXBaA1UduFokbu/bu3cvYsWMlMc4lrUbNguHNCSij5Xqiwpg99zGYrP99FELkTZTexL9pS0a36ZT/S0Y/zOLkuGrVqvz666+Ztq9atapUr9RkTTciExi17DD6FBMda3nzzlO1Zco2IR5T97p+2GnVXL4bz4mb0dYOB4Dly5fTqlUr/P39uXbtGgBffPEF69ats3JkRZO7o47vhzfH0UbFvvtG3j/6wNohCSHyaNfRKyioqOlig59L/i8Z/TCLk+MZM2bw7rvv0rVrVz744AM+/PBDunbtyowZM3j//fcLIkaRg9gkAyOWHeJ+fDJ1/Mvw1QsN0aglMRbicTnbaelUO3UJ6T+O37JyNLBgwQImTpxI9+7defDgAUZj6jRzrq6ufPHFF9YNrgir4VeGL/o1QAUsD9Wz/GKctUMSQuTBjtjUkop2BVxSAXlIjvv06cOBAwfw9PTkjz/+YM2aNXh6enLw4EGeeeaZgohRZMNoUnj1l2NcuBOHt7Mti4c+gYPO4jJyIUQ2nmnoD8Cf/94mxWiyaizz5s3ju+++46233kKj+d+c5U2aNOHkyZNWjKzo61TXn8ntU+evnn48lr0ReitHJISwhFFR2JFWbxzUtm6BHy9PmVTjxo1ZsWJFfsciLDTzr7MEn7+LnTZ1yjZfFztrhyREifJkNS/cHXXci0tmz+X7tK3uZbVYQkNDadiwYabttra2xMfHWyGi4mVMp5pcCI9h3Zl7jNkTxbpOnlRwksEEIYqD45EGooxqnLUqGlco+Fm4cjVyHBMTk+HfOX2JwvHzgev8sCcUgM/7NqBeAc73J0RppdWo6V43tbTiz39vWzWWSpUqcfz48Uzb//77b2rXrl34ARUzKpWKT15oQn0fBx6kwMhd94k1WPdqgBAid4LTpnBr42NboFO4pcvVEdzc3IiISF0pytXVFTc3t0xf6dtFwdt76R7vrjsFwOTO1eleV6ZsE6Kg9KqfOmvF70dukmSw3nLSr7/+OmPHjmXVqlUoisLBgweZOXMmb775Jq+//rrV4ipO7LQaFo1ogY+DDRfjFSbsi8RYBGYiEULkbGtavXEH/8JZ9ThX15S2b9+Ou7s7AMHBwQUakMjZlbtxjF5xhBSTwjMNyzI2yPrzrwpRkjWp4IZGrcJoUth69g5P1fO3ShzDhw8nJSWFKVOmkJCQwIABAyhbtixffvkl/fv3t0pMxZFPGTsWDXuCvgv3s+1OCp/9G8PUBi7WDksIkY1bCUbOJdmgBtp1aVoox8xVcty2bdss/y0K14OEZEYsO0xMUgqNK7gx69m6MmWbEAVMrVZRt6wLx2884J/T1kuOAUaNGsWoUaO4d+8eJpMJb29v4uPj2bVrF23atLFaXMVN/fLufPpMIP/3+0m+vZhIDVctz1R0sHZYQogsbDt6DXCgsacWd0ddoRzT4sKNTZs2ERISYn789ddf06BBAwYMGEBUVFS+Bif+x2A08cqKo4Tei6esqz0LBzfGTqt59AuFEI/t3Z6pNb3bz96xamlFOk9PT7y9vQG4dOkSQUFBVo6o+Hm6SXnGtCoPwBuHozl2P9nKEQkhsrIlraSio3/hTTpgcXL8+uuvm2+8O3nypHnezStXrjBx4sR8D1CAoii8u+4U+67cx1GnYfGwJng6FU7djRACGga44u9iR3yykZ0X7lo7HJFPJvcIpGNVN5IVFS+HRBKeaP0PPkKI/4kxmNgfn1rk0LFTo0I7rsXJcWhoqPnO6NWrV9OzZ08++ugjvvnmG/7+++98D1DA4pBQfjl4A7UK5g1oSE3fMtYOSYhSRaVS0TUw9cbXTafCrRyNyC9qtYovBjelhocdEcnw0u77JBnlBj0hioodh69gUFRUdtZQxcup0I5rcXKs0+lISEgAYOvWrXTu3BkAd3d3mcqtAGw/d4eZG88C8Gb3WrSv6WPliIQonbqlTem29ewdklNkCrCSwsnWhu9HtMDNVsOJaBOv749EkRkshCgSNsem1hh3LsSSCsjDIiCtW7dm4sSJtGrVioMHD7Jq1SoALly4QLly5fI9wNLsXHgM438+hqLAC00DGNG6krVDEqLUalzeDS9nW+7G6tl7+R7tangXynHXr1+f4/OhoaGFEkdJFuDuwILBjRm0+CB/3jZQ80wsY+vIFTohrElvVMxLRnfpUL9Qj21xcjx//nzGjBnD77//zoIFCyhbNnUO0L///puuXbvme4Cl1b04PSOWHiY+2UiLyh68/3SgzEwhhBWp1So61/bhpwPX+ed0eKElx717935kG3lveHzNq3rxfs9avLn+LJ+dSaCqi5Yu5eytHZYQpdaeI5eIMznjY6emfiEvdGZxcly+fHk2bNiQafvcuXPzJSAB+hQjLy8/wq0HiVTydGTBoEZoC2FFGCFEzrrU8eWnA9fZciaCmb0V1OqCT0pNJinhKCwDWlbm/O1olh2+zWsHHrDayYZarlprhyVEqfR3dGpJRZeydoXyXvswizOuo0ePcvLkSfPjdevW0bt3b958802Sk2UqnMelKApvrz3FkWtRlLGzYfHQJrg6FM68fkKInDWv7IGzrQ334vQcu/HA2uGIAvDOM/VpVb4MCSYVI3ff575ePpwIUdgMJsU8hVs3K6wCbHFy/PLLL3PhwgUArly5Qv/+/XFwcOC3335jypQp+R5gabNkz1V+O3ITtQrmD2hE5UK8O1MIkTOdjZqgmqnlFJtPy6wVJZGNRs3Xw5pR0UXHrSR4Zfc9kk1yg54QhWnf4Us8MKrxsFXTtGmNQj++xcnxhQsXaNCgAQC//fYbbdq04eeff2bp0qWsXr06v+MrVXZduMuHf50B4K0etWlT3cvKEQkh/qtT7dQZY7aevWPlSERBcXXQ8f2I5jhr1RyMMvHeoSiZwUKIQrQxJr2kwhZNIZdUQB6SY0VRzDVwW7dupXv37gAEBARw7969/I2uFAm9F8+4n49iUuD5xuV4sVVFa4ckhMhC2xpe2KhVXL4bT+i9eGuHIwpIVW9nvhrQEBXwy/Vkll2Is3ZIQpQKBpPCPzGpJRU9yhXuFG7pLE6OmzRpwocffsjy5cvZuXMnPXr0AFKnE/LxkTl48yImycDIZYeISUqhUXlXPnxGZqYQoqgqY6elWWV3ALaeKZ6jx7t27aJnz574+/ujUqn4448/Mjx/584dhg0bhr+/Pw4ODnTt2pWLFy9maKPX6xk/fjyenp44OjrSq1cvbt68WYhnUfCCavnyZpdqALx/Io7gW4lWjkiIkm/P4UtEGdV42qpp1qW5VWKwODn+4osvOHr0KOPGjeOtt96iatWqAPz++++0bNky3wMs6Ywmhf/75RiX78bj52LHt4MbY2ujsXZYQogcdKyVOhCw7VzhJscPHjzg+++/Z9q0aURGRgKpN0nfunXLov3Ex8dTv3595s+fn+k5RVHo3bs3V65cYd26dRw7dowKFSrQsWNH4uP/N1I+YcIE1q5dy8qVKwkJCSEuLo6nnnoKo7FkLcE8sl01+jbwxYSKcfsfcPqBwdohCVGi/Zk2S0W3cnbYWGmmLouncqtXr16G2SrSffbZZ2g0ktRZ6tN/zhF8/i52WjXfDWmCt7N1LiEIIXKvfU1vZvx5hsNXo4hONOBiX/DTfZ04cYKOHTvi4uLC1atXGTVqFO7u7qxdu5Zr167x448/5npf3bp1o1u3blk+d/HiRfbv38+pU6eoU6cOAN988w3e3t788ssvjBw5kujoaBYvXszy5cvp2LEjACtWrCAgIICtW7fSpUuXxz/hIkKlUjHz+YbcitrLnmvRvLjzPn908sLPQf7eCZHfkowKm9PqjXu2qWm1OCxOjrNjZydJnaXWHrvJwp1XAPjsufoElnWxckRCiNyo4OFIFS9HLt+NZ/fFuzxVz7/Ajzlx4kSGDRvGp59+irOzs3l7t27dGDBgQL4dR6/XAxnf0zUaDTqdjpCQEEaOHMmRI0cwGAx07tzZ3Mbf35/AwED27t2bbXKs1+vN+weIiYkBwGAwYDAU7RHZrwY2ot+3e7kUqWf4znv83N4DZ611RrUMaff9GGQO7FyTPrOcNfpsy6ErxJqc8LNXU7+iR76/L+R2f7lKjt3d3blw4QKenp64ubnlWA+bfqlP5Oz4jQe8sTp1BH5cUFV61i/4P65CiPzTvqY3l++Gsv1cRKEkx4cOHWLhwoWZtpctW5bw8PybVq5mzZpUqFCBadOmsXDhQhwdHfn8888JDw8nLCwMgPDwcHQ6HW5ubhle6+Pjk2Mss2bNYsaMGZm2BwcH4+DgkG/nUFAGVoS5sRrOxcGAnRG8VNOENddn2pKP3/fSQvrMcoXZZ4vjU98HarulsGnT3/m+/4SEhFy1y1VyPHfuXPNIxRdffJHnoESq8OgkXvrxMMkpJjrV9mFip+rWDkkIYaGgmt58tzuUnefvYjIV/Gp5dnZ25pHWh50/fx4vr/yb9lGr1bJ69WpGjBiBu7s7Go2Gjh07ZluG8TBFUXIcPJk2bRoTJ040P46JiSEgIICgoCA8PDzyJf6CVv+JBwz8/hDnotUcCLPjgyYuhX4DtcFkYkt4OJ18fdGqZfXU3JA+s1xh91l0sonJ++8CMOGZVtT0dX7EKyyX1XtoVnKVHA8dOjTLfwvLJRmMvLz8MBGxeqr7ODG3X4NCXxZRCPH4mlRwx1Gn4X58MqduR1OvnGuBHu/pp5/m/fff59dffwVSa2GvX7/O1KlT6dOnT74eq3Hjxhw/fpzo6GiSk5Px8vKiWbNmNGnSBABfX1+Sk5OJiorKMHocERGR443Ztra22NraZtqu1WrRaovHMs2NKnnxVf8GvPTTMVZdT6ZSmQRG18r/P+K5oVWrJdGzkPSZ5Qqrz/45EopBcaSmiw11A9wL5Bi5fZ/J89lGRERw6tQpTpw4keFLZE9RFKauPsG/N6NxddDy/ZAncLLNt7JvIUQh0tmoaV3NE4Dgc3cL/HizZ8/m7t27eHt7k5iYSNu2balatSrOzs7MnDmzQI7p4uKCl5cXFy9e5PDhwzz99NNAavKs1WrZsmWLuW1YWBinTp0qFbMWdarrz7tdU6/4fXwqng3XZYo3IR7XmgepH5yfrWBv5UjycEPekSNHGDp0KGfPns20YpBKpSpx0/jkp4W7rvDH8dto1Cq+GdiI8h5Fv8ZOCJG9djW8+ef0HXZeiOD/OlYr0GOVKVOGkJAQtm/fztGjRzGZTDRq1Mg8W4Ql4uLiuHTpkvlxaGgox48fx93dnfLly/Pbb7/h5eVF+fLlOXnyJP/3f/9H7969zTfgubi4MGLECCZNmoSHhwfu7u5MnjyZunXr5ime4mh4u2pcux/H0kO3mXjwAX4OGhp76qwdlhDF0pXYFI4k2KAGej/V1NrhWJ4cDx8+nOrVq7N48WJ8fHxksYpc2n7uDp9sOgfA9J61aVnF08oRCSEeV9u0Jd6P33hAdIIBF4eCKQ1ISUnBzs6O48eP0759e9q3b/9Y+zt8+DBBQUHmx+l1wEOHDmXp0qWEhYUxceJE7ty5g5+fH0OGDOGdd97JsI+5c+diY2ND3759SUxMpEOHDixdurRUTen5zjMNuBmVyNZLUYwMiWRtR08qOsnVQCEs9fvhG4A9bXx1eJex/uxnFv8Wh4aGsmbNGvPiH+LRLkXE8uovx1EUGNisPINbVLR2SEKIfODvak81bycuRsQRcukePer5FchxbGxsqFChQr5dmWvXrl2mK38Pe/XVV3n11Vdz3IednR3z5s1j3rx5+RJTcaRRq/hqSFP6z9/NiYgEhu+8z5qOXrjZSk2rELllVBRWp5VUPF+xaFxRt/g3uEOHDvz7778FEUuJ9CAhmZHLDhOnT6FZJXfe61nH2iEJIfLRk9VSR493XyzYuuO33347w8p4omhw0Nnw/agWlHXSEpqg8NLu+yQZs//gIYTIaOehS9xJUeOmU9HxKessF/1fFo8cf//99wwdOpRTp04RGBiY6c6/Xr165VtwxV2K0cS4n49x9X4C5dzs+WZgI3Q2MqIgREnSpronP+wJZdeFu4+cyuxxfPXVV1y6dAl/f38qVKiAo6NjhuePHj1aIMcVj+btbMeSkc3p8/UeDkUZef1AJF+2cEctZYdCPNIvkamjxs9UsMfWpmiUZVmcHO/du5eQkBD+/jvz5MxyQ15GMzeeJeTSPRx0Gr4b0gQPp8xTGAkhirdmlTzQadTcjk7i8t04qnoXzLRevXv3LpD9ivxR3bcM3w5uzNAlh/jzloHyJ2J4vb6seipETsITjWyPTR1kfeGpJlaO5n8sTo5fffVVBg8ezDvvvIOPj09BxJTJ1atX+eCDD9i+fTvh4eH4+/szaNAg3nrrLXS6/90dfP36dcaOHcv27duxt7dnwIABzJ49O0ObwrLq0HWW7LkKwOd9G1DLr0yhxyCEKHj2Og1PVHJjz6X77L54r8CS4/fee69A9ivyT6vq3nz0dG2m/HGGry8kUsHZhr6VHR/9QiFKqVUHr2PEnic8tVTzsc584Vmx+Br//fv3ee211wotMQY4d+4cJpOJhQsXcvr0aebOncu3337Lm2++aW5jNBrp0aMH8fHxhISEsHLlSlavXs2kSZMKLc50h69G8vYfpwCY2Kk6XQN9Cz0GIUThSa87Drl4z8qRCGvr27wS45+sAMCbR2PYHZ5k5YiEKJpSTIq5pGJg5aJxI146i0eOn332WYKDg6lSpUpBxJOlrl270rVrV/PjypUrc/78eRYsWMDs2bMB2Lx5M2fOnOHGjRv4+/sDMGfOHIYNG8bMmTMpU6ZwRm5vPUhk9IojGIwKPer6Mb69zOohREnXumrq1Iz7r9zHYDSh1eT/vQVqtTrHemYpaSs6Jnavw/X7Caw7c5cxex/wewcPargUjxUAhSgsWw9eJjzFCXedim69Wlg7nAwsTo6rV6/OtGnTCAkJoW7dupluyHvU9D/5JTo6Gnf3/y0vuG/fPgIDA82JMUCXLl3Q6/UcOXIkw5yeD9Pr9ej1evPj9HW3DQYDBoPBopgSklMYufQQ9+KSqeXrzEe9a5GSkmLRPoqj9H6ytL9KM+kzyxXlPqvmaY+bg5aoBANHQu/RuILbo1+EZeeydu3aTK89duwYy5YtY8aMGRbFKwqWSqXi0wGNCft2DwdvxjJ8533WdvLCx75o3GwkRFGwLG3UuH9lhyJzI166PM1W4eTkxM6dO9m5c2eG51QqVaEkx5cvX2bevHnMmTPHvC08PDxTqYebmxs6nY7w8PBs9zVr1qws/7AEBwfj4JD7YX5FgaUX1Zy9r8bJRqGvfxQ7tm7O9etLgoeXkhW5I31muaLaZxXs1UQlqFm6aT93AnI3lVdCQkKu95++dPPDnnvuOerUqcOqVasYMWJErvclCp6tjYZFLzbn2a92ceWBnhE777GygxdOWpmxSIhz0Qb2xWvRqGBQ72bWDieTPC0Ckl+mT5/+yBGPQ4cO0aTJ/+5gvH37Nl27duX5559n5MiRGdpmdcnxUVMrTZs2zbw6FKSOHAcEBBAUFISHh0duT4Vvdlzh+P1LaDUqvhv2BE1yOXJUEhgMBrZs2UKnTp0yXUkQWZM+s1xR77MYr5scX3+GexoPunfP3fKn6VeqHkezZs0YNWrUY+9H5D9XBx1LRrXgmXm7ORVrZPTu+yxu64mtRqZ4E6XbDwdvA7Z0LWuHv6u9tcPJ5LHXuTQajZw8eZIKFSrg5mZZQjhu3Dj69++fY5uKFSua/3379m2CgoJo0aIFixYtytDO19eXAwcOZNgWFRWFwWDI8eZBW1tbbG0zT7Gm1Wpz/Qd429k7fLH9EgDvPx1Ii6reuXpdSWNJn4lU0meWK6p91qaGN3CG4zeiSTapcLR99Nvr455HYmIi8+bNo1y5co+1H1FwKng48sOLzRiwaB8h941M3BfJV63c0cgcyKKUuptk5I/o1FnEXqxWtG7ES2dxcjxhwgTq1q3LiBEjMBqNtGnThn379uHg4MCGDRto165drvfl6emJp6dnrtreunWLoKAgGjduzJIlS1CrM16aatGiBTNnziQsLAw/v9QlXDdv3oytrS2NGzfOdUyWuhQRx/+tTF0aenDzCrzQtHyBHUsIUXSVd3egrKs9tx4kcuhqJO1q5O+HZDc3twxXwRRFITY2FgcHB1asWJGvxxL5q0F5NxYNacLwpYf4K8yAy6EoZj7hVmALxghRlP24/zrJij0N3LU07lK0bsRLZ3Fy/PvvvzNo0CAA/vzzT65evcq5c+f48ccfeeutt9izZ0++B3n79m3atWtH+fLlmT17Nnfv/m+ZVl/f1GnSOnfuTO3atRk8eDCfffYZkZGRTJ48mVGjRhXYTBXRiQZe+jF1aeimldx5t2ftAjmOEKLoU6lUtKziwW9HbrLvyv18T47nzp2bIZlSq9V4eXnRrFkzi6/aicLXuro3X/RtwLiVx/n5WjIetjFMkkVCRCkTn2Lix7Qb8V6uUXTnALc4Ob537545Id24cSPPP/881atXZ8SIEXz11Vf5HiCkjgBfunSJS5cuZbp8qCipN75oNBr++usvxowZQ6tWrTIsAlIQjCaFCSuPceVePP4udnwzsFGBTN8khCg+WlZNTY73Xrqf7/seNmxYvu9TFK4eDcryIEHPW+vPMu9CIu52aobXKDoLHwhR0H7Zd5VoowOVnDR07tnS2uFky+JszsfHhzNnzmA0Gtm0aRMdO3YEUu+61mgKZiqOYcOGoShKll8PK1++PBs2bCAhIYH79+8zb968LOuJ88OczecJPn8XO62aRUOa4ClLQwtR6rWonFomdvp2NNGJ+Tvl3KZNmwgJCTE//vrrr2nQoAEDBgwgKioqX48lCs7AlpWZ3D51nYAZJ+L5IzTeyhEJUTj0RoXv7tkBqaPGGnXRLSuyODkePnw4ffv2JTAwEJVKRadOnQA4cOAANWvWzPcAi6I//73NNzsuA/BJn3oElpVLY0II8HWxo7KnIyYFDoZG5uu+X3/9dfPsFidPnmTixIl0796dK1euZJhxRxR9YzvVYHiz1Kugk4/EEHwr0coRCVHwft13hTspavzs1Tz7TCtrh5Mji8sqpk+fTmBgIDdu3OD55583j8xqNBqmTp2a7wEWNadvR/P67/8C8HKbyjzdoKyVIxJCFCXNq3hw5V48+y7fp1Pt7GfKsVRoaCi1a6fe17B69Wp69uzJRx99xNGjR+nevXu+HUcUPJVKxTtP1+NBfDJrT0Xwyv4HLH1STXNvuQIpSia9UWHBvdQp20bXdERnU7TLUPM0ldtzzz2XadvQoUMfO5ii7n6cnpd+PEKSwUSb6l5M6Vo6RsqFELnXvLIHPx+4zoHQ/K071ul05kVDtm7dypAhQwBwd3fPl/mSReFSq1V8+kJjYpYcYNulSF7cHcmPbdxp4iUJsih5Vu0L5bbBAR87Nf2eLdqjxpDH5Hjbtm1s27aNiIgITCZThud++OGHfAmsqDEYTYz9+Si3HiRS0cOBef0bFul6GSGEdTSvlLqs/ZmwGKITDLg45M+czK1bt2bixIm0atWKgwcPsmrVKgAuXLgg8xwXU1qNmq+HNmXU4v3svvqAYbsjWdHOgwbuOmuHJkS+SUxRmHc3tdZ4XC0n7LRFa6norFg8rj1jxgw6d+7Mtm3buHfvHlFRURm+SqqZf51l/5VIHHUaFg1pkm9/8IQQJYt3mdS6Y0WBg1fzr+54/vz52NjY8Pvvv7NgwQLKlk0t6fr777/p2rVrvh1HFC47beoy080DyhBnVDFkZySnovL3Zk4hrGnJ3lDupqgp56ChX5+iP2oMeRg5/vbbb1m6dCmDBw8uiHiKpF8P32Dp3qsAzO3XgOo+MvWOECJ7zSqn1h3vv5J/dcfps/H819y5c/Nl/8J67HUaFo9swdBFezh8K45BO+7zS5AHtVxlEEYUb5F6EwvSRo0nBjoV+VrjdBZHmZycTMuWRXduuvx29HoUb689BcCEjtXoXMfXyhEJIYq65pVTSyvye8YKo9HI6tWr+fDDD5k5cyZr1qzBaDTm6zGEdTja2rBkVEsa+DnyIAUG7rjPxZgUa4clxGP5KuQ6sSY1tV1t6N27eIwaQx6S45EjR/Lzzz8XRCxFzp2YJEYvP0Ky0UTn2j682r6atUMSQhQDzSp5AKmz28Qm5c8l8kuXLlGrVi2GDBnCmjVr+P333xk8eDB16tTh8uXL+XIMYV3OdlqWvdSKQG8HIg3wwvZ7XI6VBFkUT5diUliRthreW/WcURej+7QsLqtISkpi0aJFbN26lXr16qHVZrzs8/nnn+dbcNakTzExdtURImL1VPdx4vN+DYrVN1YIYT2+LnZU8HDg2v0EDl+LIigflpJ+9dVXqVKlCvv378fdPXVk+v79+wwaNIhXX32Vv/7667GPIazPxV7LitGt6P9NCOfuJdJ/+z1+DvKkWpk83T8vhFUoisKMkDBS0NLR35ZW3YtXxYHFv20nTpygQYMGAJw6dSrDcypVyUkeZ/19nmPXoyljZ8OiwU1wspU3JiFE7j1R0Z1r9xM4cCUyX5LjnTt3ZkiMATw8PPj4449p1ar4XK4Uj+bqoOOn0a0Y+O0ezt1LpN+2eywP8qCO1CCLYmLTgcvsjndCp4Z3BrawdjgWszjjCw4OLog4ipx1/4ZhY+fA/AGNqOjpaO1whBDFTNNK7vx+5CaH8mnGCltbW2JjYzNtj4uLQ6eTqb9KGg8nW355pTVDF+3lxJ14Xth+jx/betDAQ77XomiLM5iYEeYAwOgajlTwKH45VPG4bdBKpnarSZvqXtYOQwhRDDVLm+/4xM0HJBke/6a5p556ipdeeokDBw6gKAqKorB//35Gjx5Nr169Hnv/ouhxc9Sx4pVWNPZ3IsaoYtDO+xy6q7d2WELk6LNd1wlPUVPBUcOYAU9aO5w8yVOtwKFDh/jtt9+4fv06ycnJGZ5bs2ZNvgRmbd3r+DDqycrWDkMIUUyVd3fA29mWiFg9x288oHllj8fa31dffcXQoUNp0aKF+V6PlJQUevXqxZdffpkfIYsiqIydlh9fbsXIxfvYdz2GIbsimdfMxdphCZGlg4cvsiwydbrbmY3LFIsFP7Ji8cjxypUradWqFWfOnGHt2rUYDAbOnDnD9u3bcXEpOb+w7zxVs0TVUAshCpdKpeKJtNHjQ/kwpZurqyvr1q3j/Pnz/Pbbb/z222+cP3+etWvXlqj3XpFZ+jRv7Sq7kWhSMXp/NAfvyt8nUbTEp5h4/VZqOUXfiva0LmY34T3M4uT4o48+Yu7cuWzYsAGdTseXX37J2bNn6du3L+XLly+IGK2iuH7aEUIUHU9UcAPyd6W8atWq0bNnT3r27EnVqlXzbb+iaLPTavhuRHOeCfQmRVHx0yUN35/LXIMuhLXM3HGDa8ka/O3VvD2seJZTpLM4Ob58+TI9evQAUm8QiY+PR6VS8dprr7Fo0aJ8D1AIIYqr9JHjY9cfYDQpj72/xYsXExgYiJ2dHXZ2dgQGBvL9998/9n5F8aDVqJkzoAkvNktdOvyT04l8eCQKk/L4P1tCPI5NBy7xc1TqnMazm7pQxq54z6xicXLs7u5uvmO6bNmy5uncHjx4QEJCQv5GJ4QQxVhN3zI42doQp0/hXHjMY+3rnXfe4f/+7//o2bOnuayiZ8+evPbaa7z99tv5FLEo6tRqFdOeqkOv8qk3eX5/Rc/YkPskpkiCLKzjRnwKU26mllO8XMORlt2KbzlFOotvyHvyySfZsmULdevWpW/fvvzf//0f27dvZ8uWLXTo0KEgYhRCiGJJo1bRqIIbuy7c5fDVKOr45702eMGCBXz33Xe88MIL5m29evWiXr16jB8/ng8//DA/QhbFRIeyCm2a1OHNP07zd3gKt7dF8F1bT7ztpCRQFJ4ko8KY7eHEmGxo4K5l0uA21g4pX1g8cjx//nz69+8PwLRp05g8eTJ37tzh2WefZfHixfkeoBBCFGdN0uqOH3e+Y6PRSJMmTTJtb9y4MSkpssRwafR0w7IsH9kcV1sN/8Yo9PrnLv9G5s9y5UI8iqIovLX9OieTbHDTqfj6pSfR2ZSMGYItOouUlBT+/PNP1OrUl6nVaqZMmcL69ev5/PPPcXNzK5AghRCiuGpSMfV98ci1qMfaz6BBg1iwYEGm7YsWLWLgwIGPtW9RfDWr7MHa8U9S1d2O8GR4fvs9fr8Sb+2wRCmwcHcoqx/YolHB/OaulHW1t3ZI+caisgobGxteeeUVzp49W1DxCCFEidIgwBWNWkVYdBK3HiQ+1h+QxYsXs3nzZpo3bw7A/v37uXHjBkOGDGHixInmdp9//vljxy2Kj0qejqx9tQ0TfzrMlouRTD4Sy6nIZN5q5IpWLVO+ify3Yf8lPr7jBMA79Z1pVYynbcuKxTXHzZo149ixY1SoUKEg4hFCiBLFQWdDHf8ynLgZzeGrkZRtUDZP+zl16hSNGjUCUmcNAvDy8sLLy8t8YzQg87OXUs52WhYOb85Xm8/yxY5QlobqOR11ly9beeDvIHXIIv/sOXSRiTdTE+NhVR0Y2q94T9uWFYuT4zFjxjBp0iRu3rxJ48aNcXTMuGZ2vXr18i04IYQoCRqVd+PEzWiOXIvi6Twmx8HBwfkclShp1GoVE7rWpnY5NyatOs6hBya6/3OXz55woVO5knPJW1jPocMXGHXdmWRFRbeytrzzYrsS+YE81zXHL774IjExMfTr14/Q0FBeffVVWrVqRYMGDWjYsKH5/0IIITLKj7rjO3fuZPvciRMn8rxfUfJ0DvTjrwltqefjyIMUGLUvmumHI2W6N/FYDh6+yLBrziSYVDzpo+OLV4LQlNCynVwnx8uWLSMpKYnQ0NBMX1euXDH/XwghREaN02asOBceS7w+bzNL1K1bl/Xr12faPnv2bJo1a2bRvnbt2kXPnj3x9/dHpVLxxx9/ZHg+Li6OcePGUa5cOezt7alVq1ammwH1ej3jx4/H09MTR0dHevXqxc2bNy0+L1Ewyns48Pv4NoxoHgDA0tBkum66w74IvZUjE8XRjoMXGXLViXiTilbeOhaNbY+tTckt18l1cqykrcBToUKFHL+EEEJk5Odij5+LHUaTwr83H+RpH2+88Qb9+vVj9OjRJCYmcuvWLdq3b89nn33GqlWrLNpXfHw89evXZ/78+Vk+/9prr7Fp0yZWrFjB2bNnee211xg/fjzr1q0zt5kwYQJr165l5cqVhISEEBcXx1NPPYXRaMzT+Yn8p7NR807veiwZ2hhfRy3XEuGFnVFMOxhFjMFk7fBEMbFmfygjrzmRpKho56tj8fj22OtKbmIMFk7lVhLrSoQQojA0Shs9PprH0opJkyaxf/9+9uzZQ7169ahXrx729vacOHGCXr16WbSvbt268eGHH/Lss89m+fy+ffsYOnQo7dq1o2LFirz00kvUr1+fw4cPAxAdHc3ixYuZM2cOHTt2pGHDhqxYsYKTJ0+ydevWPJ2fKDhBtXzZ/HoQAxr6AfDLNT2d/45g++0kK0cmijKjovDnNTVv3HIkBRVPl7dj0bgO2GlLdmIMFt6QV7169UcmyJGRjzfRvRBClESNyrvx14kwjl5/kOd9VK5cmTp16rB69WoA+vbti4+PTz5F+D+tW7dm/fr1vPjii/j7+7Njxw4uXLjAl19+CcCRI0cwGAx07tzZ/Bp/f38CAwPZu3cvXbp0yXK/er0evf5/l/VjYlKX1DYYDBgMsnhFbqX3lSV9Zq+BGc/WpXt9P95cc4rrMcm8uOcBvfxteKOBC972JTvhMZhMGf4vchapNzFpRxghcVoAXqnhwIQBrVApRgyG4nt1KLe/MxYlxzNmzMDFJe/LnwohRGnVqLwrAMeuR6EoisVX4vbs2cOgQYPw8PDgxIkT7Nmzh/Hjx/PXX3+xcOHCfF2E6auvvmLUqFGUK1cOGxsb1Go133//Pa1btwYgPDwcnU6X6Zg+Pj6Eh4dnu99Zs2YxY8aMTNuDg4NxcHDIt/hLiy1btuTpdeNrwt831ASHqVh/O4VN4fdo76/Q3t+EbcnOkdmSw8+nSHUhWsWKi2qiDVq0aoX+lU3UdI9h06a/rR3aY0tISMhVO4uS4/79++Pt7Z2ngIQQojSr4++CzkZNVIKB0HvxVPZysuj17du357XXXuODDz5Aq9VSq1YtgoKCGDx4MHXr1s3Xm+G++uor9u/fz/r166lQoQK7du1izJgx+Pn50bFjx2xf96ikf9q0aRkWK4mJiSEgIICgoCA8PDzyLf6SzmAwsGXLFjp16oRWq83TPnoDJ24+4IN1pzkeHs+mmyqORKh5tbYjz1VywKaEzUJgMJnYEh5OJ19ftOqSscRxfotPMTFn902WR9oBUMlJQ9/Keob2zvvPWVGTfrXqUXKdHEu9sRBC5J3ORk3dsi4cuRbF0esPLE6ON2/eTNu2bTNsq1KlCiEhIcycOTPf4kxMTOTNN99k7dq19OjRA0idv/748ePMnj2bjh074uvrS3JyMlFRURlGjyMiImjZMvuVsmxtbbG1tc20XavVlpg/voXpcfutcSUv1v5fWzaeuM0nG89wPTqZd47Hs+RCPGPrlKFXefsSt8KeVq2W5Pg/FEXhn4OXeT/MgduG1MR4QGV73hjYgh1bN5eo38/cnofFs1UIIYTIm4dLKyz138Q4nVqt5p133nmcsDJIr/9V/yeB0Gg0mNLqNRs3boxWq81wWT8sLIxTp07lmByLokelUtGjflm2vt6Bd7vXwNVWw5UEmHQohqC/7rD0QpzMbFGCnTx6gYF/32T0dSduG9SUc9Dw45NufPRSexx0Fq8TV2LkOjk2mUxSUiGEEI+hUfm0GSssuCmve/fuREdHmx/PnDmTBw/+9/r79+9Tu3Zti+KIi4vj+PHjHD9+HIDQ0FCOHz/O9evXKVOmDG3btuX1119nx44dhIaGsnTpUn788UeeeeYZAFxcXBgxYgSTJk1i27ZtHDt2jEGDBlG3bt0cyy5E0aWzUfNim6rsntaBNzpXw9PehptJMP3fOJqvj2DaoShOP5CbJkuKU3fiGP3PdXpeLsPeeC06NYyr5ciWqZ1o00M+4JbejwVCCFHIGqYlx+fDY3K9GMg///yTYYaHTz75hBdeeAFXV1cAUlJSOH/+vEVxHD58mKCgIPPj9DrgoUOHsnTpUlauXMm0adMYOHAgkZGRVKhQgZkzZzJ69Gjza+bOnYuNjQ19+/YlMTGRDh06sHTpUjSaEn5HVwnnbKfllfbVGda6Cr8dusbyPaFcjEzil6t6frmqp6GrhkHVnOhS1hYnrZQnFCdGRWHXoUv8cM+O3fFaQIcK6F3ejon9WxDgLjfFppPkWAghComvix1+LnaERSdx8lY0tT0fXf/235K2/Chxa9euXY778fX1ZcmSJTnuw87Ojnnz5jFv3rzHjkcUPfY6DUNaVWZwy0ocCI1kechl/jl3l2MPjBw7FM20w9DG24auAQ50KmuHi04S5aLqRnwKaw/f4NcoHTcNzkBq2UDP8naM69OUaj7O1g2wCJLkWAghClHD8q6EnQzn2PUH1Pb0snY4QuRIpVLRvLIHzSt7EBGbxKoD1/n90HWuRevZeieFrXdisDkSQwsvLV19bGhX3omyDnL1wNquxqWw5dh1NkbrOJZoA9gDUEarom8le4b2biYjxTmQ5FgIIQpRgwBXNp4M59j1KAY2enRyrFKpMs0WJLMHCWvwdrZjfMfqjOtQjXPhsWw6eZt/ToZx7m4CuyMM7I4wwMlEKjioqO+uo56HjnpuWuq42eBoIyPLBSlKb+Lg8SvsjbNhd5yWK8kaIDX5VQEtvXX0qWhP954tSsUKd49LkmMhhChE6XXHx288yFWJhKIoDBs2zDwFWlJSEqNHj8bR0REgQz2yEIVBpVJRy68MtfzK8Frnmly5G8c/R66x5coD/r3xgGsJCtcS9Ky/mfqzqQKqOqmpZ2egnpc9df2cqO2qxU4jH/LyIj7FxLnoFM6cvcm/iRqOJ9pwSa8B/jc9pI0Kmnrp6FLWlm7dmuJdxs56ARdDxSY57tWrF8ePHyciIgI3Nzc6duzIJ598gr+/v7nN9evXGTt2LNu3b8fe3p4BAwYwe/ZsdDqdFSMXQoj/CfR3QaNWERGrJzw66ZHthw4dmuHxoEGDMrUZMmRIvsUnhKUqeznxStc6vALEJBk4djWSkzcfcOLqfU6GxxEWZ+BinImLcRpW30uGs5FoUKhWxoYqDlDeyYYKZXQEONlQ1lGDn70G21KeOCcZFW4nGLkRb+T6pZtcTdYQmqzmYpKGG4b0kd+MZRFVnDW08NbR2tuWll2aUsauZMxNbA3FJjkOCgrizTffxM/Pj1u3bjF58mSee+459u7dC4DRaKRHjx54eXkREhLC/fv3GTp0KIqiyA0jQogiw16noaavM6dvx3DyVvQj2z/qxriSID4+Hju7zCNbGo0mw/b4+Phs96FWq7G3t89T24SEhGxH8VUqVYalrS1pm5iYaJ4bOivpo/+Wtk1KSiIpKYn4+PgsFzX4b1uj0Zjtfh0cHMxlOnq9npSU7GdRyU1bDdAkwIknq3uhVtcA4Ob9GI4fu8ipW9GcjkjgVKSB+3oTZ+7pOQOotDpUqtRRZsVoQDEacbMBL1vwslPjZavG3U6Nm50Gbyd73Bx0uGhV2KuM2KuMOGnVONio0P1nwRI7nc48e4ohJSW1zxITs1wExFarxcbGxtw22ZD9tHUPt01JSUGfQ1udVotaoyE+ReFBooH7CXpiUxSik008CL9PdEIykUY191NURCo67ila7hjU3DcoKCnp+01Phk1pXwa8HLXU9bCnrpuWQF9HajesirvjQwOBxmTi45OB1IUv0gcJTSYTiYmJ2cb737Y5/ZzZ2NiYr2gpipLj0syWtLXk997S94jcKjbJ8WuvvWb+d4UKFZg6dSq9e/fGYDCg1WrZvHkzZ86c4caNG+bR5Dlz5jBs2DBmzpxJmTJlstyvXq/PcFkyfWnB9InwxaOl95P0V+5Jn1muJPVZ3bJlOH07hmPXI60dSpFQoUKFLLd3796dv/76y/zY29s72z+qbdu2ZceOHebHFStW5N69e1m2bdKkCYcOHTI/rl27NteuXcuybe3atTl9+rT58RNPPMGZM2eyPY+rV6+aH7dp04bDhw9n2dbT05O7d++aH3fr1o2dO3dm2dbBwSHDH/1+/frx999/Z9kWMs5oMnjwYH7//fds28bFxZmT6Zdffplly5Zl2zYiIgIvr9Q6+YkTJ/LNN99k2zY0NJSKFSsC8OXHHzB79uxs27485zcSHHy5FZ3Ev3/9zP3dP3Mjm7a+Qz7H1q86ANEHVvNgR/YfHp8YOhO/Wo2x1ScSemgjhzd8l23bZ4a+SaWajVGAU4e3s2X119m2bd9/MpUCW2ICrpzcy85V2Z+bb/f/w7ZuJwASLh/i7u8zsm3r3mk0zo2eAkB/8wR3fnkz27bjP/2U1ye8DsChQ4co7+Oebdv33nuP6dOnA3D27FkCAwOzbTt58mQ+++wzIPVqfP/+/bNtO2bMGL7+OrWf7t27l+NaGOnTRELqB0wnp+xXCH3uuef47bffzI9zamvpe8T69euz3dfDik1y/LDIyEh++uknWrZsaf40s2/fPgIDAzOUWXTp0gW9Xs+RI0cyzOn5sFmzZjFjRuYf1uDg4AwjAOLRHl4tS+SO9JnlSkKfqSJVgIaQU9etHYoQVje+Sy3q1KkDwHsJu3l/d/Ztm5R1xsbHkeikFC5o1TzIYb/Xk1VERKUAWmL1Od+EFhKv5eiD1JHNuMScyxFOJNpwOTZ1dDU+Kec0yoCK9AXTH5Vw9S5vx6DhT+DjbMflf3X0+uURLxAFRqUUo3Wh33jjDebPn09CQgLNmzdnw4YNeHh4APDSSy9x9epVNm/enOE1tra2LF26lBdeeCHLfWY1chwQEEBYWJh53yJnBoOBLVu20KlTpxKz/npBkz6zXEnqs4sRcXSftxedKYmLnz1HdHR0tle3SrKYmBhcXFy4du1alu+3UlaRddvY2Fg2btxIly5dilxZRTp7e3vzZezk5OQcr/hY0tbOzs5cKpHe1mA0kaA3Ep+cQmKykUSDkcTkFLDRkWJSoU8xERMby+Fjx6np6w9JSRgMRlIUSDGlfi+1Oi1ajQ1qlQpjSgomowG1KnU+YJUK1KhI+w9bnRatjQ0qW1tMdrak2Nigs9Nha6NBZ6NCZ6PGQWeDnVaDi6M9rk72OOg0aDCRnJyc7bnpdDrz99NoNJKUlP09CQ+XP1jS1pKyCr1ezx9//JHtz1lxLKswGAy4uLg88j3XqiPH06dPz3LU9mGHDh2iSZMmALz++uuMGDGCa9euMWPGDIYMGcKGDRvMv6xZTW+kKEqO0x7Z2tqav2EP02q1xf4PcGGTPrOc9JnlSkKf1fRzxcnWhpiY7JOh0sTR0TFDQpdTO0v2mVuWXCW0pO3DCXh+trWzs8POzg5HR8dH/i5kVcudnez+Hj5uW51Ol+sb4/Pa1vURbQ0GTxzunaV792ZWfP/Q5PrYGo0m1z/DlrRVq9UWtc3tz5lKpcr1fi1pC/n7e5/bsjyrJsfjxo3LsZ4FMNcsQWqNlqenJ9WrV6dWrVoEBASwf/9+WrRoga+vLwcOHMjw2qioKAwGAz4+PgURvhBC5IlaraJeORdCzsRYOxQhhBD/YdXkOD3ZzYv0y1rpJREtWrRg5syZhIWF4efnB8DmzZuxtbWlcePG+ROwEELkk/oBroScye62IyGEENZSLG7IO3jwIAcPHqR169a4ublx5coV3n33XapUqUKLFi0A6Ny5M7Vr12bw4MF89tlnREZGMnnyZEaNGlUqa/mEEEVb/XIu1g5BCCFEForFeo729vasWbOGDh06UKNGDV588UUCAwPZuXOnueZJo9Hw119/YWdnR6tWrejbty+9e/fOcfoYIYSwlvoBrtYOQQghRBaKxchx3bp12b59+yPblS9fng0bNhRCREII8Xh8y9jh6aTLdj5XIYQQ1lEsRo6FEKKkUalU/PXqk9YOQwghxH9IciyEEFbiaFssLt4JIUSpIsmxEEIIIYQQaSQ5FkIIIYQQIo0kx0IIIYQQQqSR5FgIIYQQQog0khwLIYQQQgiRRpJjIYQQQggh0khyLIQQQgghRBpJjoUQQgghhEgjybEQQgghhBBpJDkWQgghhBAijSTHQgghhBBCpJHkWAghhBBCiDQ21g5ACCGEEEWD0WjEYDBYO4x8ZzAYsLGxISkpCaPRaO1wioXi2GdarRaNRvPY+5HkWAghhCjlFEUhPDycBw8eWDuUAqEoCr6+vty4cQOVSmXtcIqF4tpnrq6u+Pr6PlbMkhwLIYQQpVx6Yuzt7Y2Dg0OxSoZyw2QyERcXh5OTE2q1VJTmRnHrM0VRSEhIICIiAgA/P78870uSYyGEEKIUMxqN5sTYw8PD2uEUCJPJRHJyMnZ2dsUi0SsKimOf2dvbAxAREYG3t3eeSyyKx9kKIYQQokCk1xg7ODhYORIhHl/6z/Hj1M5LciyEEEKIEldKIUqn/Pg5luRYCCGEEEKINJIcCyGEEEKIArNjxw5UKlWxmQ1FkmMhhBBCFEvDhg1DpVJl+uratau1Q7OarPqjdevWhXb8du3aMWHChAzbWrZsSVhYGC4uLoUWx+OQ5FgIIUqZXbt20bNnT/z9/VGpVPzxxx8Zns/qj6tKpeKzzz4zt9Hr9YwfPx5PT08cHR3p1asXN2/eLOQzEQK6du1KWFhYhq9ffvnF2mE9lsddiGXJkiUZ+mP9+vX5FFne6HS6x557uDBJciyEEKVMfHw89evXZ/78+Vk+/99E44cffkClUtGnTx9zmwkTJrB27VpWrlxJSEgIcXFxPPXUU8VmJS1Rctja2uLr65vhy83NDUi9nK/T6di9e7e5/Zw5c/D09CQsLAxIHekcN24c48aNw9XVFQ8PD95++20URTG/JioqiiFDhuDm5oaDgwPdunXj4sWL5uevXbtGz549cXNzw9HRkTp16rBx40YAli5diqura4aY//jjjwyJ4vTp02nQoAE//PADlStXxtbWFkVRiI6O5qWXXsLb25syZcrQvn17/v3330f2SfpCGOlf7u7uAFl+GHZ1dWXp0qUAXL16FZVKxZo1a+jQoQP+/v40bNiQffv2ZXjNnj17aNu2LQ4ODri5udGlSxeioqIYNmwYO3fu5MsvvzR/qL569WqWZRWrV6+mTp062NraUrFiRebMmZPhGBUrVuSjjz7ixRdfxNnZmfLly7No0aJHnnt+kORYCCFKmW7duvHhhx/y7LPPZvn8fxONdevWERQUROXKlQGIjo5m8eLFzJkzh44dO9KwYUNWrFjByZMn2bp1a2GeiiggiqKQkJxS6F8PJ6T5If0S/9ChQ4mOjubff//lrbfe4rvvvsuwSMSyZcuwsbHhwIEDfPXVV8ydO5fvv//e/PywYcM4fPgw69evZ9++fSiKQvfu3c0jvGPHjkWv17Nr1y5OnjzJJ598gpOTk0WxXrp0iV9//ZXVq1dz/PhxAHr06EF4eDgbN27kyJEjNGrUiA4dOhAZGfn4nZODt956i4kTJ7Jr1y6qVavGCy+8QEpKCgDHjx+nQ4cO1KlTh3379hESEkLPnj0xGo18+eWXtGjRglGjRpk/XAcEBGTa/5EjR+jbty/9+/fn5MmTTJ8+nXfeececpKebM2cOTZo04dixY4wZM4ZXXnmFc+fOFei5gywCIoQQIgd37tzhr7/+YtmyZeZtR44cwWAw0LlzZ/M2f39/AgMD2bt3L126dMlyX3q9Hr1eb34cExMDpF5CftzLyKVJel/lV58ZDAYURcFkMmEymQBISE4hcPqWfNm/JU5N74SDLvepiaIobNiwIVMiOmXKFN5++20A3n//fbZu3cprr73GhQsXGDRoEE8//bT5XAECAgKYM2cOKpWKatWqceLECebOncuIESO4ePEi69evZ/fu3bRs2RKA5cuXU6FCBdasWcPzzz/P9evXefbZZ6lTpw6QOuoJZOjTh4/3322KopCcnMyyZcvw8vICYNu2bZw8eZLw8HBsbW0B+PTTT/njjz/49ddfeemll7LtlxdeeCHDAhg//vgjvXv3zhTTw/E8vH3ixIl0796d2NhY3nvvPerVq8eFCxeoWbMmn3zyCU2aNMlw5alWrVrmf+t0Ouzt7fH29s7yfE0mE3PmzKF9+/a89dZbAFStWpXTp0/z2WefMWTIEPPrunXrxujRowF4/fXXmTt3Ltu3b6d69erZnrvJZEJRFAwGQ6ZFQHL7OyPJsRBCiGwtW7YMZ2fnDKPM4eHh6HQ686XrdD4+PoSHh2e7r1mzZjFjxoxM24ODg2UBijzYsiV/klcbGxt8fX2Ji4sjOTkZgMRk65THxMbEkqLL/apmBoOBJ598MtMleTc3N/OHL4BvvvmG1q1bExAQwIwZMzI8l/L/7d15WBPX/j/wdwgEQtgXWRTBiuAuCtqilcWviqJW6664RJZqlYoLLlRbN7zcKra2el1uVaDWqr116bdqFaoodQcVrcWiWBD9CXJRkD1BMr8/IPMlJECCgRD4vJ4nz8OcOTPzmU/gcHJyZubNGwwYMADFxcVsWb9+/fDll1+ioKAAt27dgq6uLnr06MFup6enB2dnZ9y9exd+fn4IDg7G8uXL8euvv8LHxwfjxo1D7969AQAVFRVgGEbmmOXl5QD+7wOiSCSCg4MD9PX12bKrV6+ipKSE7SzX3vbBgwcy+6tr8+bN8PHxYZdtbGzY+uXl5TLbMgyDiooKFBUVoaSkBADQtWtXNh/GxsYAgMzMTNjb2+POnTsYP358vcd/8+YNxGKxzPqysjIAQHFxMXR0dPDnn3/C399fpk7//v3x9ddfo6CgAFwuFxKJBC4uLjJ1rK2t8ezZswbPXSwWo7y8HElJSexod904GkOdY0IIIfU6cOAAAgICYGBg0GhdhmEavOAmIiICy5YtY5eLiorg4OAAX1/fNvvY4uZQWVmJhIQEjBgxAnp6em+9v4qKCjx9+hRGRkbs+2zMMLi/fsRb71tVfD2uShdt6enpwcTEBG5ubg3Wu3fvHgCgsLAQb968gYmJCbtOV1eX3Q8bR81jiE1MTGR+rj0SqaOjAwMDA5iYmCA0NBTjx4/H6dOnkZCQgGHDhiE6OhqhoaHsB7+6x6xdpq+vD2NjY5k6PB4PdnZ2uHDhgtz5mJmZydSty8nJSWFOOBwOG7PUmzdv2DLpCLyZmRmMjY1RXFzMdo75fD5MTEwgEAigr69f7/F1dXXB4/Fk1ktzID3H2rmTkv7uSfOso6MjlxNF71VdFRUV4PP58PLykmu3GupUy5yDUrUIIYS0O7///jvS09Nx9OhRmXJbW1uIxWIUFBTIjB7n5eWxXzsroq+vz349XJuenp5aOnntjbryVlVVBQ6HAx0dHejo/N+lSEZc5UdwNUV60VftuOt6/Pgxli9fjq+//hq//PILhEIhzp8/L7PNjRs3ZJZv3ryJbt26QU9PD71798abN2+QnJzM/n6/fPkSDx8+RM+ePdntHB0dsXDhQixcuBARERHYt28fFi9eDBsbGxQXF6O8vBwCgQDA/3XWpdtKPxDUjsHd3Z39lkY6TUNZdd9LKWtra7x48YJd9+jRI5SVlbH1peU6OjpsTLVj09HRQd++fXHhwgVs3LhR4bF5PB4kEonM8WvvV0dHBz179sSVK1dk6ly/fh0uLi4yv9OK3tvG3m9p7Ir+PpT9e6EL8gghhCi0f/9+uLu7o1+/fjLl7u7u0NPTk/laPycnB/fv32+wc0xIcxCJRMjNzZV55efnA6ju+M+ePRsjRoxAQEAADhw4gPv378tNw3j69CmWLVuG9PR0HD58GDt27EBYWBgAoFu3bhg/fjxCQkJw+fJl3L17F7NmzULHjh0xfvx4ANV3bzl37hwyMzNx+/ZtXLhwgZ2H++6778LQ0BCffvopMjIy8MMPP8hdeKbI8OHD4enpiQkTJuDcuXPIysrC1atXsXbtWqSkpDQpV8OGDcPOnTtx+/ZtpKSkYMGCBSp/wIqIiEBycjIWLlyIe/fu4a+//sLu3bvZnDs5OeHGjRvIyspCfn6+3PxmAFi+fDnOnz+PTZs24eHDh4iLi8POnTsRHh7epPNSN+ocE0JIO1NSUoLU1FT2ivjMzEykpqYiOzubrVNUVIT//Oc/CA4Oltve1NQUQUFB7D+4O3fuYNasWejTpw+GDx/eUqdBCADg7NmzsLOzk3lJH3qxefNmZGVlYe/evQCqv/XYt28f1q5dy/7+A8CcOXNQXl6OQYMGYdGiRfjkk09kLniLiYmBu7s7xo4dC09PTzAMgzNnzrAdy6qqKixatAg9evTAqFGj4Orqil27dgEALCws8P333+PMmTPo06cPDh8+jPXr1zd6XhwOB2fOnIGXlxcCAwPh4uKC6dOnIysrCzY2Nk3K1bZt2+Dg4AAvLy/MnDkT4eHhKs/3d3FxQXx8PO7evYtBgwbB09MTP//8MztVJDw8HFwuFz179oS1tbVMuyI1YMAA/Pjjjzhy5Ah69+6Nzz//HBs3boRQKGzSeakdQ2S8fv2aAcDk5+drOhStIRaLmZMnTzJisVjToWgNypnq2mLOpO3N69evW/S4iYmJDAC519y5c9k6e/fuZfh8PlNYWKhwH+Xl5UxoaChjYWHB8Pl8ZuzYsUx2drZKcVB72zTq/lsoLy9n0tLSmPLycrXsrzWqqqpiCgoKmKqqKrl13t7eTFhYWMsH1co1lLPWrKHfZ2XbXJpzTAgh7YyPj0+j95P96KOPGrxVlIGBAXbs2IEdO3aoOzxCCNEomlZBCCGEEEJIDRo5JoQQQki7dfHiRU2HQFoZGjkmhBBCCCGkhtZ1jkUiEdzc3MDhcGSuNAWA7OxsjBs3DgKBAFZWVli8eDH7tB9CCCGEEEIao3XTKlauXAl7e3vcvXtXpryqqgpjxoyBtbU1Ll++jJcvX2Lu3LlgGIYuGCGEEEIIIUrRqpHjX3/9FfHx8YiOjpZbFx8fj7S0NHz//ffo378/hg8fjm3btuHbb79V+nGBhBBCCCGkfdOakeMXL14gJCQEJ0+eVHjD6mvXrqF3796wt7dny/z8/CASiXDr1i34+voq3K9IJIJIJGKXpR3pyspKVFZWqvks2iZpnihfyqOcqa4t5qwtnQshhLQVWtE5ZhgGQqEQCxYsgIeHB7KysuTq5Obmyj0xxtzcHDweD7m5ufXuOyoqChs2bJArT0xMVPmpMe1d7UfJEuVQzlTXlnJWVlam6RAIIYTUodHO8fr16xV2TGtLTk7G1atXUVRUhIiIiAbrcjgcuTKGYRSWS0VERGDZsmXsclFRERwcHODr6wtLS8tGzoAA1aNfCQkJGDFihMrPaG+vKGeqa4s5oylfhLSM2NhYLF26FAUFBUpvIxQKUVhYiJMnTzZfYFri4sWL8PX1RUFBAczMzOqt5+TkhCVLlmDJkiVK7dfHxwdubm7Yvn27WuJUF412jkNDQzF9+vQG6zg5OSEyMhLXr1+Hvr6+zDoPDw8EBAQgLi4Otra2uHHjhsz6goICVFZWNvgMcn19fbn9AoCenl6b+QfcUihnqqOcqa4t5aytnAchmlJfB7ZuZ27atGkYOnSoZoKsh7IdTgDYu3cvdu3ahYyMDOjp6aFLly6YPn06Vq1a1SKxDh48GDk5OTA1NQVQ/WFjyZIlKCwslKmXnJwMgUCg9H6PHz8u0w6q2rluLhrtHFtZWcHKyqrRet988w0iIyPZ5efPn8PPzw9Hjx7Fu+++CwDw9PTE5s2bkZOTAzs7OwDVF+np6+vD3d29eU6AEEIIIa0en8+HtbW1psNokv3792PZsmX45ptv4O3tDZFIhHv37iEtLa3FYuDxeLC1tW20nqo5trCwaGpIzUor7lbRuXNn9O7dm325uLgAALp27YpOnToBAEaOHImePXti9uzZuHPnDs6fP4/w8HCEhITAxMREk+ETQgghRINiY2Ph6OgoUxYZGYkOHTrA2NgYwcHBWL16Ndzc3OS2jY6Ohp2dHSwtLbFo0SKZC2nFYjFWrlyJjh07QiAQ4N1335V54t6TJ08wbtw4mJubQyAQoFevXjhz5gyysrLYGwWYm5uDw+FAKBQqjP2XX37B1KlTERQUBGdnZ/Tq1QszZszApk2bZOrFxMSgR48eMDAwQPfu3bFr1y52XVZWFjgcDo4fPw5fX18YGhqiX79+uHbtWr2x9unTB/Hx8QCqR7k5HA4KCwtx8eJFzJs3D69fvwaHwwGHw8H69esBVI/8SqdIzJgxQ252QGVlJaysrBATEwOgelqFdJTYx8cHT548wdKlS9n9lpaWwsTEBD/99JNcTgQCAYqLixXm7G1pxQV5yuByuTh9+jQWLlyIIUOGgM/nY+bMmQpv+0YIIYSQxpWWlta7jsvlwsDAQKm6Ojo64PP5DdZV5ev4t3Xo0CFs3rwZu3btwpAhQ3DkyBFs27YNXbp0kamXmJgIOzs7JCYmIiMjA9OmTYObmxtCQkIAAPPmzUNWVhaOHDkCe3t7nDhxAqNGjcIff/yBbt26YdGiRRCLxUhKSoJAIEBaWhqMjIzg4OCAY8eOYdKkSUhPT4eJiYlMfmqztbXFpUuX8OTJE7kOvtS3336LdevWYefOnejfvz/u3LmDkJAQCAQCzJ07l623Zs0aREdHo1u3blizZg1mzJiBjIwM6OrqysV6//59cLlcuWMNHjwY27dvx+eff4709HQAgJGRkVy9gIAATJ06FSUlJez6c+fOobS0FJMmTZKrf/z4cfTr1w8fffQRm1+BQIDp06cjJiYGkydPZutKl42NjRXm421pZefYyckJDMPIlXfu3BmnTp3SQESEEEJI26Oo0yPl7++P06dPs8sdOnSo9w4s3t7eMiOqTk5OyM/Pl6mj6P+6Mk6dOiUXZ1VVVYPb7NixA0FBQZg3bx4A4PPPP0d8fDxKSkpk6pmbm2Pnzp3gcrno3r07xowZg/PnzyMkJASPHz/G4cOH8ezZM/Y2suHh4Th79ixiYmLwj3/8A9nZ2Zg0aRL69OkDAHjnnXfYfUunFHTo0KHBOcfr1q3DxIkT4eTkBBcXF3h6esLf3x+TJ0+Gjk71BIBNmzZh27ZtmDhxIgCgS5cuSEtLw969e2U6x+Hh4RgzZgwAYMOGDejVqxcyMjLQvXt3uVidnJwUXjTM4/FgamoKDofT4FQLPz8/CAQCnDhxArNnzwYA/PDDDxg3bpzCb/QtLCzA5XJhbGwss9/g4GAMHjwYz58/h729PfLz83Hq1KlmvXORVkyrIIQQQghRxNfXF6mpqTKvffv2NbhNeno6Bg0aJFNWdxkAevXqJTN6amdnh7y8PADA7du3wTAMXFxcYGRkxL4uXbqEx48fAwAWL16MyMhIDBkyBOvWrcO9e/dUPj87Oztcu3YNf/zxBxYvXozKykrMnTsXo0aNgkQiwX//+188ffoUQUFBMnFERkaycUj17dtXZr8A2PNRR6y16enpYcqUKTh06BCA6m8Lfv75ZwQEBKi0n0GDBqFXr1747rvvAAAHDx5E586d4eXl9VbxNUQrR44JIYQQ0vzqjqTWVvcrd2knSxHpCKeUoucVNJVAIICzs7NM2bNnzxrdru5tXhWNXNe9owyHw4FEIgEASCQScLlc3Lp1Sy4X0pHs4OBg+Pn54fTp04iPj0dUVBS2bduGTz75pPETq0N63dWiRYtw+fJlDB06FJcuXULPnj0BVE+tkN6kQKpuXLXPR3r+0vNRFGtkZCTCw8NVjlUqICAA3t7eyMvLQ0JCAgwMDDB69GiV9xMcHIydO3di9erViImJwbx58xq8Te/bopFjQgghhCgkEAjqfdWeb9xY3brzaRXVaUmurq64efOmTFlKSopK++jfvz+qqqqQl5cHZ2dnmVftaQEODg5YsGABjh8/juXLl+Pbb78FUD09AWh8Cogi0g5xaWkpbGxs0LFjR/z9999ycdSdQ92Y2rEuW7YMcXFxCuvxeDyl4h48eDAcHBxw9OhRHDp0CFOmTGHPW5X9zpo1C9nZ2fjmm2/w559/ykwVaQ40ckwIIYSQduWTTz5BSEgIPDw8MHjwYBw9ehT37t2TmRPcGBcXFwQEBGDOnDnYtm0b+vfvj/z8fFy4cAF9+vSBv78/lixZgtGjR8PFxQUFBQW4cOECevToAQBwdHQEh8PBqVOn4O/vDz6fr3CO98cffwx7e3sMGzYMnTp1Qk5ODiIjI2FtbQ1PT08A1Q9VW7x4MUxMTDB69GiIRCKkpKSgoKBA5kFnDakba2JiIlxdXRXWdXJyQklJCc6fP49+/frB0NBQ4VOFORwOZs6ciT179uDhw4dITExsMAYnJyckJSVh+vTp0NfXZ2/3a25ujokTJ2LFihUYOXIke6ey5kIjx4QQQghpVwICAhAREYHw8HAMGDAAmZmZEAqFcqPhjYmJicGcOXOwfPlyuLq64oMPPsCNGzfg4OAAoHpUeNGiRejRowdGjRoFV1dX9hZrHTt2xIYNG7B69WrY2NggNDRU4TGGDx+O69evY8qUKXBxccGkSZNgYGCA8+fPs0/yDQ4Oxr59+xAbG4s+ffrA29sbsbGxKo0c143VxcWl3jt+DR48GAsWLMC0adNgbW2NLVu21LvfgIAApKWloWPHjhgyZEiDMWzcuBFZWVno2rWr3D2Tg4KCIBaLERgYqPQ5NRWHaerloW1UUVERTE1NkZ+fT4+PVlJlZSXOnDkDf39/euKXkihnqmuLOZO2N69fv26X92On9rZp1P23UFFRgczMTHTp0kXlzqG2kEgkKCoqgomJidz8Z6kRI0bA1tYWBw8ebOHoWidlctaSDh06hLCwMDx//rzBqRkN/T4r2+bStApCCCGEtCtlZWXYs2cP/Pz8wOVycfjwYfz222/Nensw0jRlZWXIzMxEVFQU5s+f32DHWF00/1GAEEIIIaQFcTgcnDlzBkOHDoW7uzt++eUXHDt2DMOHD9d0aKSOLVu2wM3NDTY2NoiIiGiRY9LIMSGEEELaFT6fj99++03TYRAlrF+/nn08dUuhkWNCCCGEEEJqUOeYEEIIIYSQGtQ5JoQQQgghpAZ1jgkhhBBCCKlBnWNCCCGEEEJqUOeYEEIIIYSQGtQ5JoQQQohiYjFQVtYyL7G4RU7JyckJ27dvb5FjaUpsbCzMzMw0HYbWovscE0IIIUSeWAzcvAmUlLTM8YyMgEGDABWegCYUClFYWIiTJ08qvU1ycjIEAkETAnx7Pj4+uHTpEgBAT08PDg4OmDp1KtavXw99fX21HWfatGnw9/dX2/7aG+ocE0IIIUTemzfVHWMeD1Bjx00hkaj6WG/eqNQ5bgpra+u32p5hGFRVVUFXt2ldqJCQEGzcuBFisRjJycmYN28eACAqKuqt4qqNz+eDz+erbX/tDU2rIIQQQkj99PUBA4Pmfamp8+3j44PFixdj5cqVsLCwgK2trdzT1WpPq8jKygKHw0Fqaiq7vrCwEBwOBxcvXgQAXLx4ERwOB+fOnYOHhwf09fVx8OBB6OjoICUlRWbfO3bsgKOjIxiGqTdGQ0ND2NraonPnzpg0aRJGjBiB+Ph4dj3DMNiyZQveeecd8Pl89OvXDz/99JPMPv73f/8X3bp1A5/Ph6+vL+Li4sDhcFBYWAhA8bSK3bt3o2vXruDxeHB1dcXBgwdl1nM4HOzbtw8ffvghDA0N4erqijNnztR7Hm0ZdY4JIYQQ0mbExcVBIBDgxo0b2LJlCzZu3IiEhIS33u/KlSsRFRWFBw8e4IMPPsDw4cMRExMjUycmJgZCoRAcDkepfd69exdXrlyBnp4eW7Z27VrExMRg9+7d+PPPP7F06VLMmjWLnY6RlZWFyZMnY8KECUhNTcX8+fOxZs2aBo9z4sQJhIWFYfny5bh//z7mz5+PefPmITExUabehg0bMHXqVNy7dw+jR4/G/Pnz8erVK6XOpS2hzjEhhBBC2oy+ffti3bp16NatG+bMmQMPDw9cuHDhrfe7ceNGjBgxAl27doWlpSWCg4Nx+PBhiEQiANUd3dTUVHaaRH127doFIyMj6Ovrw83NDf/973+xYsUKAEBpaSm+/PJLHDhwAH5+fnjnnXcgFAoxa9Ys7N27FwCwZ88euLq6YuvWrXB1dcX06dMhFAobPGZ0dDSEQiEWLlwIFxcXLFu2DBMnTkR0dLRMPaFQiBkzZsDZ2RmbN29GaWkpbt682cSMaS/qHBNCCCGkzejbt6/Msp2dHfLy8t56vx4eHjLLEyZMgK6uLk6cOAEAOHDgAHx9feHk5NTgfgICApCamopr165h6tSpCAwMxKRJkwAAaWlpqKiowIgRI2BkZMS+vvvuOzx+/BgAkJ6ejoEDB8rsc9CgQQ0e88GDBxgyZIhM2ZAhQ/DgwQOZstq5EwgEMDIyUkvutA1dkEcIIYSQNqP2FAWgei6tRCJRWFdHp3qMsPYc4crKSoV1697hgsfjYfbs2YiJicHEiRPxww8/KHWLOFNTUzg7OwMAvv/+e/Tq1Qv79+9HUFAQG+fp06fRsWNHme2kd7NgGEZu2kZDc5ylFG1Tt0yV3LVlNHJMCCHtTFJSEsaNGwd7e3twOByFt8GSzqs0NTWFsbEx3nvvPWRnZ7PrRSIRPvnkE1hZWUEgEOCDDz7As2fPWvAsCHl70jtX5OTksGW1L85rTHBwMH777Tfs2rULlZWVmDhxokrH19PTw6effoq1a9eirKwMPXv2hL6+PrKzs+Hs7CzzcnBwAAB0794dycnJMvupe2FgXT169MDly5dlyq5evYoePXqoFG97QZ1jQghpZ0pLS9GvXz/s3LlT4frHjx/j/fffR/fu3XHx4kXcvXsXn332GQwMDNg6S5YswYkTJ3DkyBFcvnwZJSUlGDt2LKqqqlrqNAh5a3w+H++99x7++c9/Ii0tDUlJSVi7dq3S2/fo0QPvvfceVq1ahRkzZjTp9mkzZ84Eh8PBrl27YGxsjPDwcCxduhRxcXF4/Pgx7ty5g3/961+Ii4sDAMyfPx9//fUXVq1ahYcPH+LHH39EbGwsAPnRYakVK1YgNjYWe/bswaNHj/Dll1/i+PHjCA8PVzne9oCmVRBCSDszevRojB49ut71a9asgb+/P7Zs2cKWvfPOO+zPr1+/xv79+3Hw4EEMHz4cQPXXww4ODvjtt9/g5+fXfMGTlldzwZnWH6MeBw4cQGBgIDw8PODq6ootW7Zg5MiRSm8fFBSEq1evIjAwsEnH5/F4CA0NxZYtW7BgwQJs2rQJHTp0QFRUFP7++2+YmZlhwIAB+PTTTwEAXbp0wU8//YTly5fj66+/hqenJ9asWYOPP/643geJTJgwAV9//TW2bt2KxYsXo0uXLoiJiYGPj0+TYm7rqHNMCCGEJZFIcPr0aaxcuRJ+fn64c+cOunTpgoiICEyYMAEAcOvWLVRWVsp0IOzt7dG7d29cvXq13s6xSCRir+wHgKKiIgDVczzrm+dJ5Elzpa6cVVZWgmEYSCQS2fmlOjqAoWH1wzkqKtRyrAYZGVUfU4U5rgcOHAAANm7pXSlqn8fx48fBMAyKi4vBMAxEIhEMDQ3ZOq6urrhy5YrMfqXfgEgkEnh5ecks1/X8+XP07t0b7u7ujc7PVRQfAKxevRqrV68GUD0XODQ0FKGhoXLbS7cbO3Ysxo4dy5b/4x//QKdOncDj8SCRSDBnzhzMmTNH5jjz58/H/PnzFe6v7jlL43jy5AmMjY21at6xRCIBwzCorKwEl8uVWafs3wx1jgkhhLDy8vJQUlKCf/7zn4iMjMQXX3yBs2fPYuLEiUhMTIS3tzdyc3PB4/Fgbm4us62NjQ1yc3Pr3XdUVBQ2bNggV56YmAhDQ0O1n0tbp4579wKArq4ubG1tUVJSArFYLLuye/fqp9a1BF3d6k54M3XEy8rKkJiYiBcvXsDJyYn9cNZUJSUlePjwIXbs2IFPP/30rfenin379mHAgAGwsLDA9evXsXXrVoSEhDRLDMXFxWrfZ3MSi8UoLy9HUlIS3tT53S0rK1NqH9Q5JoQQwpKOEI0fPx5Lly4FALi5ueHq1avYs2cPvL29691W0dXvtUVERGDZsmXsclFRERwcHODr6wtLS0s1nUHbV1lZiYSEBIwYMULu7gJNUVFRgadPn8LIyEhmXnlbwjAMdu/ejejoaISFhbHTgd5GWFgYjhw5gvHjx2PhwoVyo5TN6dmzZ/jyyy/x6tUrdO7cGcuXL8fq1aub/EhrRaSj7cbGxko/1KQ1qKioAJ/Ph5eXl9zvs7IfHqhzTAghhGVlZQVdXV307NlTprz21e62trYQi8UoKCiQGT3Oy8vD4MGD6923vr6+wjmRenp6aunktTfqyltVVRU4HA50dHTYW5u1NRKJBB9//DFWrVqltnOMi4tjL5Jradu3b1fqtnFvQ/pBWfq7oS10dHTA4XAU/n0o+/eiPWdLCCGk2fF4PAwcOBDp6eky5Q8fPoSjoyMAwN3dHXp6ejJf6+fk5OD+/fsNdo4JIUQb0MgxIYS0MyUlJcjIyGCXMzMzkZqaCgsLC3Tu3BkrVqzAtGnT4OXlBV9fX5w9exa//PILLl68CKD6IQZBQUFYvnw5LC0tYWFhgfDwcPTp00ctX1cTzVDmQRKEtHbq+D2mzjEhhLQzKSkp8PX1ZZel84Dnzp2L2NhYfPjhh9izZw+ioqKwePFiuLq64tixY3j//ffZbb766ivo6upi6tSpKC8vx//8z/8gNja2ReddEvWQftVcVlbWpPv0EtKaSC+6e5spR9Q5JoSQdsbHx6fR0ZXAwMAG79tqYGCAHTt2YMeOHeoOj7QwLpcLMzMz5OXlAQAMDQ216gIsZUgkEojFYlRUVGjV/FlN0racMQyDsrIy5OXlwczM7K0+qFPnmBBCCGnnbG1tAYDtILc1DMOgvLwcfD6/zXX8m4u25szMzIz9fW4q6hwTQggh7RyHw4GdnR06dOjQJh/IUllZiaSkJHh5edGdUZSkjTnT09NTy9Qu6hwTQgghBED1FIu2OG+cy+XizZs3MDAw0JqOnqa155y1/kkkNZycnMDhcGRe0kctSmVnZ2PcuHEQCASwsrLC4sWL5Z/2QwghhBBCSD20auR448aNCAkJYZeNjIzYn6uqqjBmzBhYW1vj8uXLePnyJebOnQuGYeiCEUIIIYQQohSt6hwbGxvXO8k6Pj4eaWlpePr0Kezt7QEA27Ztg1AoxObNm2FiYtKSoRJCCCGEEC2kVZ3jL774Aps2bYKDgwOmTJmCFStWgMfjAQCuXbuG3r17sx1jAPDz84NIJMKtW7dk7ulZm0gkgkgkYpdfv34NAHj16lUznknbUllZibKyMrx8+bLdzUtqKsqZ6tpizoqLiwG034cvSM+7uLi4zbynLUH6t1BUVER5UxLlTHVtMWdFRUUAGm9ztaZzHBYWhgEDBsDc3Bw3b95EREQEMjMzsW/fPgBAbm4ubGxsZLYxNzcHj8dDbm5uvfuNiorChg0b5MpdXFzUewKEEFKP4uJimJqaajqMFvfy5UsAQJcuXTQcCSGkPWmszeUwGhyyWL9+vcKOaW3Jycnw8PCQKz927BgmT56M/Px8WFpa4qOPPsKTJ09w7tw5mXo8Hg/fffcdpk+frnD/dUeOCwsL4ejoiOzs7Gb5ZzVw4EAkJyc3y3aN1alvvaLyumUNLRcVFcHBwQFPnz5tlukr2pozRWXSZW3OWWP1tDVnDcWujm0U1WMYBsXFxbC3t9eKm+yrW2FhIczNzZutvQVa/j1tbJ2y5drW5qojZw2tp/9T9H9K1e3eps3V6MhxaGhovZ1WKScnJ4Xl7733HgAgIyMDlpaWsLW1xY0bN2TqFBQUoLKyUm5EuTZ9fX3o6+vLlZuamjbLLwOXy23SfpXZrrE69a1XVF63rLFlADAxMaGcqZhHbcxZY/W0NWf1xaOubeqr1x5HjKWk/5yaq70FNPOeNrRO2XJta3PVkbOG1tP/Kfo/pep2b9PmarRzbGVlBSsrqyZte+fOHQCAnZ0dAMDT0xObN29GTk4OWxYfHw99fX24u7urJ2A1WLRoUbNt11id+tYrKq9b1thyc9LWnCkqa6m8NWfOGqunrTlr6rHUkTPSfDT1nqryd6CovL3+HdD/KdXraGubq8n/U43R6LQKZV27dg3Xr1+Hr68vTE1NkZycjKVLl8LDwwM///wzgOpbubm5ucHGxgZbt27Fq1evIBQKMWHCBJVu5VZUVARTU1O8fv2a7nChJMqZ6ihnqqOctT30njYN5U11lDPVteecacUFefr6+jh69Cg2bNgAkUgER0dHhISEYOXKlWwdLpeL06dPY+HChRgyZAj4fD5mzpyJ6OholY+1bt06hVMtiGKUM9VRzlRHOWt76D1tGsqb6ihnqmvPOdOKkWNCCCGEEEJaQvu7PJoQQgghhJB6UOeYEEIIIYSQGtQ5JoQQQgghpAZ1jgkhhBBCCKlBnWNCCCGEEEJqUOdYBR9++CHMzc0xefJkTYeiFZ4+fQofHx/07NkTffv2xX/+8x9Nh6QViouLMXDgQLi5uaFPnz749ttvNR2S1igrK4OjoyPCw8M1HQpRA2pzVUNtruqovW26ttze0q3cVJCYmIiSkhLExcXhp59+0nQ4rV5OTg5evHgBNzc35OXlYcCAAUhPT4dAINB0aK1aVVUVRCIRDA0NUVZWht69eyM5ORmWlpaaDq3VW7NmDR49eoTOnTurfI9z0vpQm6saanNVR+1t07Xl9pZGjlXg6+sLY2NjTYehNezs7ODm5gYA6NChAywsLPDq1SvNBqUFuFwuDA0NAQAVFRWoqqoCfYZt3KNHj/DXX3/B399f06EQNaE2VzXU5qqO2tumaevtbbvpHCclJWHcuHGwt7cHh8PByZMn5ers2rULXbp0gYGBAdzd3fH777+3fKCtiDpzlpKSAolEAgcHh2aOWvPUkbfCwkL069cPnTp1wsqVK2FlZdVC0WuGOnIWHh6OqKioFoqYNIbaXNVRm6s6am9VR+1t49pN57i0tBT9+vXDzp07Fa4/evQolixZgjVr1uDOnTsYOnQoRo8ejezs7BaOtPVQV85evnyJOXPm4N///ndLhK1x6sibmZkZ7t69i8zMTPzwww948eJFS4WvEW+bs59//hkuLi5wcXFpybBJA6jNVR21uaqj9lZ11N4qgWmHADAnTpyQKRs0aBCzYMECmbLu3bszq1evlilLTExkJk2a1NwhtjpNzVlFRQUzdOhQ5rvvvmuJMFudt/ldk1qwYAHz448/NleIrU5TcrZ69WqmU6dOjKOjI2NpacmYmJgwGzZsaKmQSSOozVUdtbmqo/ZWddTeKtZuRo4bIhaLcevWLYwcOVKmfOTIkbh69aqGomrdlMkZwzAQCoUYNmwYZs+erYkwWx1l8vbixQsUFRUBAIqKipCUlARXV9cWj7W1UCZnUVFRePr0KbKyshAdHY2QkBB8/vnnmgiXKIHaXNVRm6s6am9VR+1tNV1NB9Aa5Ofno6qqCjY2NjLlNjY2yM3NZZf9/Pxw+/ZtlJaWolOnTjhx4gQGDhzY0uG2Csrk7MqVKzh69Cj69u3Lzmk6ePAg+vTp09LhthrK5O3Zs2cICgoCwzBgGAahoaHo27evJsJtFZT9+yTag9pc1VGbqzpqb1VH7W016hzXwuFwZJYZhpEpO3fuXEuH1Oo1lLP3338fEolEE2G1eg3lzd3dHampqRqIqnVr7O9TSigUtlBE5G1Rm6s6anNVR+2t6tp7e0vTKgBYWVmBy+XKfSrKy8uT+/REqlHOmobypjrKWdtD76nqKGeqo5ypjnJWjTrHAHg8Htzd3ZGQkCBTnpCQgMGDB2soqtaNctY0lDfVUc7aHnpPVUc5Ux3lTHWUs2rtZlpFSUkJMjIy2OXMzEykpqbCwsICnTt3xrJlyzB79mx4eHjA09MT//73v5GdnY0FCxZoMGrNopw1DeVNdZSztofeU9VRzlRHOVMd5UwJmrhFhiYkJiYyAORec+fOZev861//YhwdHRkej8cMGDCAuXTpkuYCbgUoZ01DeVMd5aztofdUdZQz1VHOVEc5axyHYeg5iYQQQgghhAA055gQQgghhBAWdY4JIYQQQgipQZ1jQgghhBBCalDnmBBCCCGEkBrUOSaEEEIIIaQGdY4JIYQQQgipQZ1jQgghhBBCalDnmBBCCCGEkBrUOSaEEEIIIaQGdY4J0RJCoRAcDgccDgcnT55U674vXrzI7nvChAlq3TchhGgjanPbL+ocE42p3fDUfmVkZGg6tFZr1KhRyMnJwejRo9my+hpuoVCodKM7ePBg5OTkYOrUqWqKlBDS2lCbqzpqc9snXU0HQNq3UaNGISYmRqbM2tparp5YLAaPx2upsFotfX192Nraqn2/PB4Ptra24PP5EIlEat8/IaR1oDZXNdTmtk80ckw0Strw1H5xuVz4+PggNDQUy5Ytg5WVFUaMGAEASEtLg7+/P4yMjGBjY4PZs2cjPz+f3V9paSnmzJkDIyMj2NnZYdu2bfDx8cGSJUvYOoo+9ZuZmSE2NpZd/n//7/9h2rRpMDc3h6WlJcaPH4+srCx2vXSEIDo6GnZ2drC0tMSiRYtQWVnJ1hGJRFi5ciUcHBygr6+Pbt26Yf/+/WAYBs7OzoiOjpaJ4f79+9DR0cHjx4/fPrF1ZGVlKRwx8vHxUfuxCCGtF7W5/4faXFIf6hyTVisuLg66urq4cuUK9u7di5ycHHh7e8PNzQ0pKSk4e/YsXrx4IfO11IoVK5CYmIgTJ04gPj4eFy9exK1bt1Q6bllZGXx9fWFkZISkpCRcvnwZRkZGGDVqFMRiMVsvMTERjx8/RmJiIuLi4hAbGyvT2M+ZMwdHjhzBN998gwcPHmDPnj0wMjICh8NBYGCg3OjNgQMHMHToUHTt2rVpCWuAg4MDcnJy2NedO3dgaWkJLy8vtR+LEKKdqM1VH2pztRxDiIbMnTuX4XK5jEAgYF+TJ09mGIZhvL29GTc3N5n6n332GTNy5EiZsqdPnzIAmPT0dKa4uJjh8XjMkSNH2PUvX75k+Hw+ExYWxpYBYE6cOCGzH1NTUyYmJoZhGIbZv38/4+rqykgkEna9SCRi+Hw+c+7cOTZ2R0dH5s2bN2ydKVOmMNOmTWMYhmHS09MZAExCQoLCc3/+/DnD5XKZGzduMAzDMGKxmLG2tmZiY2MbzNf48ePlygEwBgYGMnkUCASMrq6uwvrl5eXMu+++y4wdO5apqqpS6hiEEO1HbS61uUQ5NOeYaJSvry92797NLgsEAvZnDw8Pmbq3bt1CYmIijIyM5Pbz+PFjlJeXQywWw9PTky23sLCAq6urSjHdunULGRkZMDY2limvqKiQ+fqtV69e4HK57LKdnR3++OMPAEBqaiq4XC68vb0VHsPOzg5jxozBgQMHMGjQIJw6dQoVFRWYMmWKSrFKffXVVxg+fLhM2apVq1BVVSVXNygoCMXFxUhISICODn15REh7Qm0utbmkcdQ5JholEAjg7Oxc77raJBIJxo0bhy+++EKurp2dHR49eqTUMTkcDhiGkSmrPW9NIpHA3d0dhw4dktu29oUrenp6cvuVSCQAAD6f32gcwcHBmD17Nr766ivExMRg2rRpMDQ0VOoc6rK1tZXLo7GxMQoLC2XKIiMjcfbsWdy8eVPuHxEhpO2jNpfaXNI46hwTrTFgwAAcO3YMTk5O0NWV/9V1dnaGnp4erl+/js6dOwMACgoK8PDhQ5nRBGtra+Tk5LDLjx49QllZmcxxjh49ig4dOsDExKRJsfbp0wcSiQSXLl2SG12Q8vf3h0AgwO7du/Hrr78iKSmpScdS1rFjx7Bx40b8+uuvzTLHjhDStlCb+3aozdVeNL5PtMaiRYvw6tUrzJgxAzdv3sTff/+N+Ph4BAYGoqqqCkZGRggKCsKKFStw/vx53L9/H0KhUO5rrGHDhmHnzp24ffs2UlJSsGDBApkRiYCAAFhZWWH8+PH4/fffkZmZiUuXLiEsLAzPnj1TKlYnJyfMnTsXgYGBOHnyJDIzM3Hx4kX8+OOPbB0ulwuhUIiIiAg4OzvLfDWpbvfv38ecOXOwatUq9OrVC7m5ucjNzcWrV6+a7ZiEEO1GbW7TUZur3ahzTLSGvb09rly5gqqqKvj5+aF3794ICwuDqakp2xhv3boVXl5e+OCDDzB8+HC8//77cHd3l9nPtm3b4ODgAC8vL8ycORPh4eEyX60ZGhoiKSkJnTt3xsSJE9GjRw8EBgaivLxcpVGN3bt3Y/LkyVi4cCG6d++OkJAQlJaWytQJCgqCWCxGYGDgW2SmcSkpKSgrK0NkZCTs7OzY18SJE5v1uIQQ7UVtbtNRm6vdOEzdiUCEtDE+Pj5wc3PD9u3bNR2KnCtXrsDHxwfPnj2DjY1Ng3WFQiEKCwvV/hjTlj4GIaRtozZXedTmtk40ckyIBohEImRkZOCzzz7D1KlTG22kpU6dOgUjIyOcOnVKrfH8/vvvMDIyUnhBDCGEaDtqc4kq6II8QjTg8OHDCAoKgpubGw4ePKjUNlu2bMHatWsBVF8prk4eHh5ITU0FAIW3bSKEEG1GbS5RBU2rIIQQQgghpAZNqyCEEEIIIaQGdY4JIYQQQgipQZ1jQgghhBBCalDnmBBCCCGEkBrUOSaEEEIIIaQGdY4JIYQQQgipQZ1jQgghhBBCalDnmBBCCCGEkBr/H5Zc9ICW7WvlAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Calculate weighting and exposure functions\n",
+ "weight_func, exp_func = acoustics.nmfs_auditory_weighting(spsd_300s[\"freq\"], group=\"LF\")\n",
+ "\n",
+ "fig, ax = plt.subplots(1,2, figsize=(7,4), subplot_kw={\"xscale\": \"log\"}, constrained_layout=True)\n",
+ "ax[0].plot(spsd_300s[\"freq\"], weight_func, label=\"Weighting Function\")\n",
+ "ax[0].axhline(y=0, color='k', linestyle='--', label=\"Highest Sensitivity\")\n",
+ "ax[0].set(ylabel=\"Transmission [dB]\", ylim=(-50, 20))\n",
+ "ax[0].legend(loc=\"upper right\")\n",
+ "\n",
+ "ax[1].plot(spsd_300s[\"freq\"], exp_func, label=\"Exposure Function\")\n",
+ "ax[1].axhline(y=exp_func.min(), color='k', linestyle='--', label=\"Highest Sensitivity\")\n",
+ "ax[1].fill_between(spsd_300s[\"freq\"], exp_func, np.ones_like(exp_func)*300, color='red', alpha=0.2, label=\"Injury Region\")\n",
+ "ax[1].set(ylabel=\"Exposure Level [dB]\", ylim=(exp_func.min()-20, exp_func.min()+50))\n",
+ "ax[1].legend(loc=\"lower right\")\n",
+ "\n",
+ "for a in ax:\n",
+ " a.grid()\n",
+ " a.set(xlabel=\"Frequency [Hz]\", xlim=(10,48000))"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
diff --git a/examples/adcp_discharge_example.ipynb b/examples/adcp_discharge_example.ipynb
new file mode 100644
index 000000000..f8d1e96c4
--- /dev/null
+++ b/examples/adcp_discharge_example.ipynb
@@ -0,0 +1,1773 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# ADCP Discharge Example\n",
+ "\n",
+ "This example notebook overviews how to calculate discharge from an ADCP transect. The example data used in this notebook was taken by a Teledyne RDI RiverPro ADCP, an instrument purpose-built for calculating discharge from a survey transect, but the following workflow can be used with any ADCP's data, given that there is GPS information and/or bottom track measurements stored in the ADCP file.\n",
+ "\n",
+ "The basic steps that the notebook conducts are to\n",
+ "1. Read in the binary ADCP file\n",
+ "2. Rotate the dataset into the Earth coordinate system (\"East\", \"North\", \"Up\")\n",
+ "3. Correct vessel motion using stored bottom track (You can also use the GPS's velocity measurement, found from the VTG sentence and converted from speed and direction to velocity-east and velocity-north)\n",
+ "4. Rotate the dataset into the water current's principal coordinate system (\"streamwise\", \"cross-stream\", \"vertical\")\n",
+ "5. Calculate the distance from the ADCP to the riverbed/seabed. (We use the bottom track ping here, but can also use the ADCP's altimeter, if available)\n",
+ "6. Finally, calculate the water discharge. Additional parameters that are not availble within the ADCP's dataset are required here.\n",
+ "\n",
+ "We'll start by immediately jumping through steps 1 and 2. Note if that quality control is required, that should be done here.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Reading file c:\\users\\mcve343\\mhkit-python\\examples\\data\\dolfyn/RiverPro_test01.PD0 ...\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mhkit import dolfyn\n",
+ "\n",
+ "ds = dolfyn.read_example(\"RiverPro_test01.PD0\")\n",
+ "ds.velds.set_declination(18) # Set declination to 18 degrees East\n",
+ "ds.velds.rotate2(\"earth\")\n",
+ "\n",
+ "# # Note, if the range coordinate has not been adjusted given the depth of the ADCP \n",
+ "# # below the waterline, do so using the following line.\n",
+ "# ds = dolfyn.adp.clean.set_range_offset(ds, x.x) # Set range offset to x.x m"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can plot the dataset below so we know what we are looking at"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Text(0, 0.5, 'Depth [m]')]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAE3CAYAAAAJ2HoWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeGklEQVR4nOzdeZwcZZ348U/dfffck5kckwsC4SZZkftwRQ4FBAVXliMcLj9AhAhI1JXgqgiyiKAgKhAQF2UFXVAUUQREEOSWK0BMSEgyyZw903fX8fvj6XQy5KBnmDDJ9Pf9evVrpq6nvnV0feuprnpKC4IgQAghhBBCCCGEENsFfawDEEIIIYQQQgghRPWkIi+EEEIIIYQQQmxHpCIvhBBCCCGEEEJsR6QiL4QQQgghhBBCbEekIi+EEEIIIYQQQmxHpCIvhBBCCCGEEEJsR6QiL4QQQgghhBBCbEekIi+EEEIIIYQQQmxHpCIvhBBCCCGEEEJsR6QiL4QQQgghhBBCbEfGZUX+xhtvZNq0aYRCIebMmcNf/vKXsQ5JCCHEdujKK6/kX/7lX4jH47S0tHDcccexePHi95zu0UcfZc6cOYRCIaZPn84Pf/jDDyDa7YvkaiGEEKOhVnP1uKvI/+IXv+DCCy/kK1/5Cs8//zwHHnggRx55JMuXLx/r0IQQQmxnHn30Uc477zz+9re/8dBDD+G6LocffjiZTGaz0yxdupSjjjqKAw88kOeff54vf/nLXHDBBdxzzz0fYOTbNsnVQgghRkut5motCIJgrIMYTfvssw977703N910U6XfzjvvzHHHHceVV145hpEJIYTY3nV1ddHS0sKjjz7KQQcdtMlxvvSlL3Hffffx2muvVfqdc845vPjiizz55JMfVKjbNMnVQgghtpZaydXmWAcwmorFIs8++yyXXXbZkP6HH344TzzxxCanKRQKFAqFSrfv+/T29tLY2IimaVs1XiGEqGVBEDA4OEh7ezu6/v5uEMvn8xSLxWHN+93HeMdxcBxni9OlUikAGhoaNjvOk08+yeGHHz6k38c+9jFuueUWSqUSlmVVHed4JLlaCCG2H5Krt13jqiLf3d2N53m0trYO6d/a2kpnZ+cmp7nyyiu54oorPojwhBBCbMKKFSuYNGnSiKfP5/O0h2P04VU9TSwWI51OD+l3+eWXs3Dhws1OEwQB8+fP54ADDmDXXXfd7HidnZ2bzEOu69Ld3U1bW1vVcY5HkquFEGL7I7l62zOuKvLrvPvKzaau5qyzYMEC5s+fX+lOpVJMmTKFFStWkEgktmqcQghRywYGBpg8eTLxePx9lVMsFunD4/bQdCJVNP2Sxee09D83Os6/1xX+888/n5deeonHH3/8PeexqTy0qf61THK1EEJs+yRXb7vGVUW+qakJwzA2uqK/du3aja64rLO52zMSiYScHAghxAdgtBJm1DSIasZ7zy9QvwYM5zj/+c9/nvvuu4/HHnvsPX+RmDBhwibzkGmaNDY2VjW/8UxytRBCbH8kV297xlWr9bZtM2fOHB566KEh/R966CH222+/MYpKCCHEB0Gz9Ko/1QqCgPPPP597772Xhx9+mGnTpr3nNPvuu+9GeegPf/gDc+fO3S6eudvaJFcLIUTtklw9esZVRR5g/vz5/OQnP+HWW2/ltdde46KLLmL58uWcc845Yx2aEEKIrUg3NHSzio9R/a8K5513HnfeeSf/8z//Qzwep7Ozk87OTnK5XGWcBQsWcOqpp1a6zznnHN5++23mz5/Pa6+9xq233sott9zCxRdfPKrLuz2TXC2EELVJcvXoGVe31gOcdNJJ9PT08PWvf53Vq1ez66678sADD9DR0THWoQkhhNiKNEtD09878Wt+9ScH616Pdsghhwzpf9ttt3H66acDsHr16iHvP582bRoPPPAAF110ET/4wQ9ob2/n+uuv54QTTqh6vuOd5GohhKhNkqtHz7h7j/z7NTAwQDKZJJVKyXN3QgixFY3W8XZdOfdP34Wo/t7P3WV8j0/88xU5zm/HJFcLIcQHQ3L1tmvc/SIvhBCiNulGdbfi6d720RqtEEIIMd5Irh49UpEXQggxLmiGhlbFyYGGnBwIIYQQY0Fy9eiRirwQQohxoeqr/HJyIIQQQowJydWjRyryQgghxgVNr7IBnUBODoQQQoixILl69EhFXgghxLigGTqa8d5vVdWQNl6FEEKIsSC5evRIRV4IIcS4ILfrCSGEENs2ydWjRyryQgghxgVNG/130wohhBBi9EiuHj1SkRdCCDEuaAZVXeXX5G49IYQQYkxIrh49UpEXQggxLlT9ShtpQEcIIYQYE5KrR49U5IUQQowLmq6j6VU0oFPFOEIIIYQYfZKrR49U5Ddj2T+XUAxPJWQUAGgpvkOnNQWAuD6AHngALM1PYbb+Cq94uwCwT/9v6J6wK700AZDUU2SDKKbmYuACkA/CuIFBznVU2U43fmAAYFIi5ScBsDSXgVKUdFGNF7WLDBQciq4aN5U1CDs+U+tSACxPJUnndOqiKrZ0Xscv35aSjHis6VebuynhEQ+VAOjL2gAEARg6LF4WMHeWirNr0KazB/J5n1BIfZnWrMkTjVrEYgaFgg/A1Ik6qbSGVr5wFg0HhGw142UrYTCt4mmfYLFydZGWZkvFUQeptEY0rMZdtTagt7cIgOv61Nc75PJq2mjEoFhU82tqtEhEYW2vms6x12+3aFijWAKrvGcXS7D8nUJluO8H2LaOZavlyWU9CgWXnrVpAGKJENGYTSat4hjoy5JsjNLWFgUgk3HpXpvBDqkZGIZOQ0OIVErNY9WyHizHqszPsk1mzmpgzZpceXyN9EABv7xhEnUhUn05HEeV17W6nykzW+gtx2OHLEpFl8VPvwrAkScfQCKu8/byHKWiWjeZdIHOZWuJJqPEkpHKvOsaI5imWs5IxMT3oVBQ0ySTFj09BfK5Esm6EAD1dRaLX+9j9dI1zNxd7ev9PRkGegfJp3NYjs1ATz8ALVMm0NCaZN0jTm8vXoVprT+c6KZOMVccEtPqpZ1qm+QKTNxhEgAr33wHt6T2xUgiRrBuvTQl8Uoq1lKxRKZ/EADP8/Bd1X/yzlOJxkOVdRkEAcV8iXgyXN4WXSSbEmq/iDlk0gXcdWUWSoQiDjNmqe9pKlXALfnE4mpncl2f3u4sTsikr0tti/rmGLG4w/Il3WrdrO2jY+fJuCUPvbwi+roGAGhoSVLMl5cr7rBqWZfq31pHXUOE7jVqeQrZAsnGOOkBtX/4ns+0HZsB6F6bQTd0pk1PsGpVFoC2tgjZrEdv77r9SadUcCkUXFomxAFYs2qAxuYYyTq1LI6tsXat2j/9IMDz/PX7SJ06tuiGRlDubRgamYxLLKa2p2lqBIH663lqXcej6tiia+AHYK/f5dE0dTxxLDUs2ODWOMcKMI0A2wwIAshlPEZT1a+0qWIcsX1YfdkZrEllqZ/RBkC+d6AyLNrWhGYale7Bt1cTm9gCwOL7nmW3sw7nnT/+HYDklGaseASvUEQ31DSB7xNqVccIfJ+Bf75DZEJjpbzMKnUsqNtpKmg6mbdXAmA4Nr6n9u3UsrXUTWvFK5Qq02W7+tHLcWm6hpOMUcqo77STjBKZNEFN+8bbGOUvl51UOUjTdLxCkeJglvjUdgAG/vkO2e5BwvXRyvExn8ri5ktYEae8fE0U03niU1oByK3tQ7dNel5XMTftPIlMZy8AxUwBr+hhhtS8c31ZwvWRStnh+ihuXuXIwc4B1j7fy/SPdQAQa2uorHM7ESPf3Y9uq2NJcSCLHVP5xs2XcJJRul9bAUC8vYHIhEasOnX+42UyahuU16ObyeE0N+AX1HxLA2ns+mRleL6rF6exHmfyRBXXP17DrktQ6FPnR+EJzXQ/v7iyTGbYQTcNzKjKF16hyIon3mTqwTur8jN5Mmv6iLbWq+HFEnWzZ+Ll1HYKXI/MyrUMrlLrTDcNBlal2PH4/QBY+diLFAbzuAWPSIPKgaVciQl7TcUvupV1gu9TyhYYXNWn9o3eLI0zmrDKcYWb6jBjETTHxkurPLD2+TcJJcPEJrbw1u+eB6DruX4m7NuEYemsfb4Xu0GVn34rh5kwiU1R6z3WGsWOqn0CwC242FGb9No0hqVXlsV3PeqmNND1+hoAEhOTxNsbVJmdfXjrzj+604TrVKz101sJfJVI/JKLU69yUr5ngFxfhsKgykN1UxqItjdVtmuouQEvnwdgYFknkeZkJT7dsrDr4mjl76Tm2JR6+vHK+wGA09yAVj7/0AwDL5PFTWeI7LyTGiEcxVu5nOLaHtjg2G8lYpT6B3EmqWOHbjsE5UToDQyg2zZ6TC2D19dHEPiYjeXjQUMz/jvL1P9BgJ/JoNk2Rov67lIsQBAQFNRyaYk61S+ivsdkM5CoA92AohqHTBpv0nQVSyFHoU7FFep9h01xo3V4dgTd3eAc13QwSjlcW83HtcLovkugG/ha+VhYTtK+rtZZoOlYbq7S7ekWnm5iekX0wCNApzdfYjRJrh49UpEXQggxLlTdEq7crieEEEKMCcnVo0cq8kIIIcYFucovhBBCbNskV48eqcgLIYQYFzStyufuNHnuTgghhBgLkqtHj1TkhRBCjAtylV8IIYTYtkmuHj1SkRdCCDEuVP3cnS8nB0IIIcRYkFw9eqQiL4QQYlyQq/xCCCHEtk1y9eiRirwQQohxQd5NK4QQQmzbJFePHqnICyGEGBd0U0c33zvx64GcHAghhBBjQXL16JE1JIQQYlxYd7teNZ/heOyxx/jEJz5Be3s7mqbx61//eovjP/LII2iattHn9ddffx9LJ4QQQmz/JFePHvlFXgghxLigEn81t+sN7+Qgk8mwxx57MG/ePE444YSqp1u8eDGJRKLS3dzcPKz5CiGEEOON5OrRIxV5IYQQ44KmV9cSruYN7+TgyCOP5Mgjjxx2PC0tLdTV1Q17OiGEEGK8klw9eqQivxlTp88YcnUGJtBS+X/9fx3AC292cOjscLnPp5kCTKmMsfFVnRVvvsqSwjQmhHsASLlJokYWAA+jMp5GQL09AKg4DC0g6eTp89W8gsDA1ANWp+OVaVau8QhPUTt+IuJRdNUVr3xJpynhAeD6Gp6v+i9Zoaab0qahaQG2raOVvze9A5BKuZiWhmOrnpl0kVjcIpP1CDvlsosahgH5QgBQHlf9391TxLTUeGEHXDcgm1PDilGdXD4gCFTZuhYQBGpYS0uIdNpl3cW41iaDN5aU1Poa0AEDs7yqCkUwyhf2ggBsC1y1qCRjAY2NNpmM6pHPexSLPlp5IXM5VWZ9U1R1Z0p4XkAuU1Tbw/VxSz6mqcaPxUzyeYdwxFLbRNdwHJ18VpVTKrj4foBeDlzTNAxDw/N8Nf+sRyhsVbpNUycac+juHKiMn0kXK9vTMDTS+RKmYwMwMFAkGglhGBqZolqmuoYIq5Z4pPsHiSUjAFi2SV9Xhnid2lccx6CuziKVqhRNEAQYhk6qPw9AJGLiez4D3b0M9jeX569TzBUJ/ADd0AlFVHmWY1HIFivPONlhm1KhVClb0zXSfSkiiQhuScUZq48T+AGlQhHLUYce3TQICmp5dcOgWCpUYvMDv1JePp1RMdYlKPoq3sAPyGeL2CG1LYr5EnbIwvPUPhSKOGRS6nsVCtvE68IY5R1l6asrCcdCpAdVzG7Jx7R0+ntzanlCJun+DM6EJOn+NABNExIMpvJkUioWwzJJJB2KRY/BlIqpmCtS15LEtHQ0XW2zns4U7VObKzHbtlGJS9M1LMcg1a02TLIpuX6Zs0Wa2xJ4XlDZv3p7C8TiFrZtVPaXQl7tA74fVKaNxS1c1y9PU6zs78k6u/K9zRV89HL/YtGvjG+aOoODBb51pgPAVb/08byASFgjV/5eeeV5hUIamVyA+a6EPO9QNkMrf5SBAWNzI47IcFvCHRgYGNLfcRwcxxm1ePbaay/y+TyzZ8/mq1/9KoceutkVI0ao7du3vitXb97AOcdT/5WbAPjwV1S/WWdvfvzcT79R+T+9eAl2PEJpQB0Pwu2t2DH1v5vOkl6xhsiEBgA0w0ArH9d81yPwPLyi+g7b8QiDnQMk2usAMMMOge+jGUal3PwadW4QeD7hlnoAjHgMgEJnF0bYYXDxOyRmTVWxdfZjhS3cfLGybxcGCxiWjhMPqenDIfy+NIPL16j5NCYoZfJkutUyJAazeEVXLU++hFvwKstuOgZW2GJgVfk8pegSrlc50yv5FHtLpNcOquX1Alr2nFFZD7pt4mbVcT21vJupR+0LwNqn/kFmbQo7qr5vhVSG2ORWir19ap7lXKNZ5VzrB2i2jVde/0Y4hB4KkV/TpbodGyPsQF2jWndBAIGPGVbl+/k84cYEg6t6AXD8gEhLPV55O3n5IoXBIrkedUwwQzZmyCLUpLZTZlUX6Bq6rY7rxXQfge9X1m9hME/g+7jl+PqX95PrLdC4Qz2x1kS5Xy/4PrqpY8VUrs6s7MKOh2nYsV3F/fpKvKJLMaNyglMfx0gm8FIDuFmVn6ItSQLfx4xF0MrH3vBEh3BdmPSaQcITbAbezFa2X6jFwgyZ5biLOPEQ4Xo1/1xfFt/1MSwdv5w786ksifY4g50DFAbX7cc+hXLuizQlGHhH7aO6aVT2uVzPAFZErW87HsEqb8Oe11eimzrxCWo96JZZ2b6lwSxGLIJf3g7FTIH4JBvKv9b6xRJGNEpuZacqty5OKZ3BaVTfi2L/AEYiTlBU02u6TlAqYTg2/mD5+D5hCqxcjmauzzd2azN+Pk9oykQof/ewbbS42t6mEyLIZgjcUmX/0UMh/IzavnokWtk38QP0aFR9h51QeaWHIT0AWvnk1LLBLUFebUO/ZSKa7xEYFnpft+o3YQqBrrZToBs4/avVtJ5HqaFNxZXuQyufJ+nFPK4TI/6ho9V6fvkJfM3AMB10v3zOa8dx3CwFM4Lpl5dFM3B1i0DT6Zg5i2qE3pUr3y/J1aNHnpEXQggxLqxrCbeaD8DkyZNJJpOVz5VXXjkqcbS1tfGjH/2Ie+65h3vvvZdZs2bxkY98hMcee2xUyhdCCCG2V5KrR4/8Ii+EEGJcGO5V/hUrVgz5NXe0rvDPmjWLWbPW/9Kx7777smLFCq655hoOOuigUZmHEEIIsT2SXD165Bd5IYQQ48JwW8JNJBJDPqN5q967ffjDH+bNN9/cauULIYQQ2wPJ1aNHfpEXQggxLmx4K957jfdBe/7552lra/vA5yuEEEJsSyRXjx6pyAshhBgXhnu7XrXS6TRvvfVWpXvp0qW88MILNDQ0MGXKFBYsWMDKlSu54447ALjuuuuYOnUqu+yyC8VikTvvvJN77rmHe+65Z3gLJIQQQowzkqtHj1TkhRBCjAtb6yr/M888M6QV2/nz5wNw2mmnsWjRIlavXs3y5csrw4vFIhdffDErV64kHA6zyy678Nvf/pajjjpqWPMVQgghxhvJ1aNHKvJCCCHGB02j8v7M9xpvGA455JDKqzE3ZdGiRUO6L730Ui699NJhzUMIIYSoCZKrR41U5IUQQowLmlbl7XrDPDkQQgghxOiQXD16pCIvhBBiXNiWG9ARQgghhOTq0SQVeSGEEOPC1mpARwghhBCjQ3L16JGK/CjYc4fmYY0/eYfZTAZg0gZ9GwFYvGQFIb0AQM4PQQAhswhAE2tZG0yg4KorVJoGyVCRXKm8GQ2fSNjA9VRn0dUr/3u+hqmr50bSOZ11m74uocpa0xOQjOsMDJTIlQwABgb9SnS+r6Z1Sz62pTOYdrEtNa1lBjgWeJ76whk6lFz1fzxuMTCg4g/ZqrxcTgU1mNVxbA3XC8rzc4lGLQCCABJxk/4BVw1LB0RjZmW5gyDAUGFSKAYUCkF5OXWa6zXSWdVtGhr5vMfqVWkAIlGLRMImFFITd6910XQN01LdhqGRz5UIR20VY3+GzEAO142reRV8whGLwZTaRrG4TSJmEY2pd1rqpk4mlSHZlKysu97eIkF5/WXTeVzXomWCKm9wsEA+WyKTyqjt0ZKkmC/heWpdmZaB7/m4hWKlvGhEo1DwMAytvK4CLMcml87iltS61Q0d3Vx/JbNY9DF0CIVUv0zWo78nSywRwjD0crk6mq7hux65jFq+UNgmCHzCiQi+6zPY0wdAQ1sjTsSuLFcoEiKTShOvS5TX2wCWo4aXim4ljnw2T0NbE53L1qq4cnliDYlKGYaptoMdsivT9HX2oJf759MZ9PKG9z2PeHOMgb6s6vYDfNfHcNR+YljrD2+NzRHSg0VWv90DQH1rHU7IQi+vQ8/zy5/yfu76GJZJqehVyujvydDcliASD6vtuqaXxkaHN17vxSnPU9M1+tb0A3XE69R4TsQhPZAHYOKUOkpFH8uxKus31ZMhloyqOFviFApeeX3YdK0ewHVjJOtDAEQiJv19Bazy/loouPjl2DeUyZQIhVRM4YhV+a6ahsbateu2rYHrquW1LJ1Uv4oxFneoL88P4Euf2vCK+KaS6raTaOUqv9iSKT+8d1jjh0/56vr/3zUs/+vrsVpbAXC71mI4FkZIfW+yq7tw6tUx3o469P1zDdFmdZwbWL6Wpllt2PEIoI7f+D5e+Tip6Rp2nZo21NqIHosBoJfL7nnuNaxoGK/o0vfSGwBYYYvADwg3JsisUcdor+gSbUpilI81frGEGXYqJ8b5vkECz6dxhjp/MUM22d5sOWYbt+ARSqqlTq8dxAw7NMxoAaA4mCXXp3KWV3ArywkQ+D5mncp/fr6Amy1U1lmkMYZWPi4Pdg5gWDr5VFCZp2ZZuL2p8nrQMSJhSqkBNf7yNSRcD6uxDoBSX4rALaFbZmV8PRqFlFr+UHMDumXil0+C3EwOKx4h2qK6cz0DWOVtAFDoTVE3OUEpo46D0fYm8n2DlfWV3LEDPRwhsEqqvJWd6KZRyU1W2MLNe3jlXD24LEtiehTD0isxArj5EqHGBLpV3i6uRyGVIdJSD4ATd4i1NdD9+ko1ga+O7UYyQemdNWpe0RCF8jlDrEXtK5m1OXRTxyup8RM7qGVLvZrBy/nEdlQ5Jj9QwImHKGZUnLEJdRQHs/iuR9+yfgDqp9bhFjycuIMTt8vbLorhqP/dXKFyDDUdEyeu9s266W1k1/ZVlnXdugh8n8JgqbKuAj9LoWfdfqrWJ+X13Lz7dKxEjEJXr1rWeBQ9GiXSMVHNOzUAuo4RU8tneR667RCU4/GzOQDsCa0E5XWnp3qguQVvMI0RV98nLzWA2diIn8tC+TzGMK3KM9lBNkOxcw3OjJlqOZubCHK5yrKRzVT+1RJJtFIRP9WPls+WF96DUBitTp3bB7qhxqlX3yEvHEPzXALDxO+YpWK3QhRC6rtTMkKEimrftzO9eIZa91o4RhCrr8x7TWIH6sr/N+66H+9Wt1GfbYPk6tEjFXkhhBDjgqZXdwVfk3MDIYQQYkxIrh49UpEXQggxLsjtekIIIcS2TXL16JGKvBBCiHFBMwy0dc/cvMd4QgghhPjgSa4ePVKRF0IIMS7Ic3dCCCHEtk1y9egZN2to2bJlnHnmmUybNo1wOMyMGTO4/PLLKRaL7z2xEEKI7d662/Wq+YixIblaCCFqm+Tq0TNufpF//fXX8X2fm2++mZkzZ/Lyyy9z9tlnk8lkuOaaa8Y6PCGEEFubpkM1V/ClBZ0xI7laCCFqnOTqUTNuKvJHHHEERxxxRKV7+vTpLF68mJtuummLJweFQoFCYf3rUQYGBrZqnEIIIbaSaq/gy1X+MSO5Wgghapzk6lEzri91pFIpGhoatjjOlVdeSTKZrHwmT578AUUnhBBiNGmaXvVHbDskVwshRO2QXD16xu0aWrJkCTfccAPnnHPOFsdbsGABqVSq8lmxYsUHFKEQQohRpWvVf8Q2QXK1EELUGMnVo2abr8gvXLgQTdO2+HnmmWeGTLNq1SqOOOIIPv3pT3PWWWdtsXzHcUgkEkM+Qgghtj/rWsKt5iNGl+RqIYQQ1ZBcPXq2+Wfkzz//fD7zmc9scZypU6dW/l+1ahWHHnoo++67Lz/60Y+2cnRCCCG2FdW2cist4Y4+ydVCCCGqIbl69GzzFfmmpiaampqqGnflypUceuihzJkzh9tuuw19O7ySM2vG0Of+nn49RdTMApDV4uCBUV4sx/JpDA3S6dcB8PZqC9MEQ/cB8HwwDSr/h22vUq5W/m5EQupvEGikswGhkE5/Rk1kmj75fEAiZuKrIkkkQ/T1FWlosCkUVU9DN0jnNPKFAIDWer9Svq5DS4uaSTqn4fsBAwPqNUOxmEk25+HY67fTusdhfD+gWAroXpMBoJgPEYtbANQ3GDTV+WTzauSubpd4TMVcKPi4nlGJNwggFtUrd+f4foDvQz6v1kUmXSBZH8E0VVn5bIC5wYHDDtn4fkAqpWJubwuxtquIaanxDUOjt98jnlSxZVJpTMuiVCyV56/WyUBftlx+AdM0yKRVeZGIRXawQLJJ/boUrwtTKng0T4ireL2ADRUKHoYOyaTDsrd6AAi1JbBsC2IRinlVbkNLjFRPlljcVstRXseOo/5msh6WbVLIu4SjKvZszkfTNBLNDSQbY2r7aRCri5PP5LFDNk2T2wAIxxx8z8cOqUOIaRl4RRc7rOYX9Kq4S4USkXi48n8oEiKfyZPuSwHgFor4rtpYpWIJvbxzF7IFAl+VYTk2sXq1frKpQQqZHACDfWkmTGnADlnl8l2ciE15MkzLIJ/Oq+XNlPA8H6+ktrtlmwz2ZwlHVbyxuEOp5OF5artlBwuEow7xZIj+aKiy/jPpIk3tdQB4ns+aNTmK+RK5dKG8XsIUc0XckkcmpeadS+fJDqrtX98UJdWTpa+zF4C6ljp8P6CuSW3vnrWDxOsiAPR1DdAysR635JFI2JUY2iaE6epW8xtM5cmlC8SToco4ruuTSRfxyvtOS0uIS09Q6/WbP19/DPj6aevLVJJs9zStulZuNTk5GG21lqtDx10wpNv89fX4/X2qY3UXmVXdlWENO7RX/g98n8FVfbTu3QhAZmUX0YnNlLLqO51b3UW4rRmAQlcvev8gAOEdZgAQa28i1zOAYZv8889LVPkz6sn354i21lfm48RDFDPrX+kXbW8m3ztApEWN0/n8P4m1Joi21gFQTOfxXXV86F/eT92UOtyCC4BXdPEKRQynnE9iYVa/uFr9H7XQLI1cvzouxyck0AyVj41oBDdXwI6rY1qkOUmxS+Ut3/UoZgo0TFPrYV2sdjJWGR54Hl5+/TLotrn+mVk/wMvmsBvU8pT6UwSlEpTnHZRKYJn4hfL0uo5fLGHYKmfFJzcT+AFB+WTBcGxirUn0dSdNQLhx/bKYTU1gOXirVwJgRcKkV3ZjRZzK+HbMrqyj5j3q6X61n/a9JuEVVF6JNEQIfJ/A9TCT6pivm4Za1nLiSq9NY8cjRMo52Cu5lLp7sdsnVLZP4PtYEQcjuf6uFDNkVGLwvYBCav16i7SGSK1U+1HjjAY0XcOJq7xWHMwS+AFeySfeFiuXZZHtSbGhxLR2Miu71PCwA+VzGt/1KAyqXOfmCoQaVEzpVT1E2xoq2za9JoMVtsrxG5X1GqqP4+cLOO0TAMgtXa7mEVXnDWYigZfqp1T+HpSyuSFx6Y5NEPhqewNB4KOHQmAY6JGoijHZiLZ0MUY0itE+SW3v9ADewABGLE5xtdqXjQltBOW4NNvGalj/fQpyOfTmVoKB8npJNlB69R9qusE0RmsrelMLfn2LiqtvLX6sDky1zMVIPWY4Ti6hltNwC3iGTc5OEC6Vl80I0T5rdwBWLX6JnKNycsNuB7A5szY7ZBsnuXrUbPMV+WqtWrWKQw45hClTpnDNNdfQ1dVVGTZhwoQxjEwIIcQHQa7yb/skVwshRG2TXD16xk1F/g9/+ANvvfUWb731FpMmTRoybN2vokIIIcYxvcp3026HvwCPF5KrhRCixkmuplAo4DjOe4/4HsbNGjr99NMJgmCTHyGEEOPfezW2tuFHjA3J1UIIUdtqMVc/+OCDnH766cyYMQPLsohEIsTjcQ4++GC++c1vsmrVqhGVO24q8kIIIWqcpq+/0r+lj7ybVgghhBgbNZSrf/3rXzNr1ixOO+00dF3nkksu4d577+XBBx/klltu4eCDD+aPf/wj06dP55xzzhnyuFk1tv81JIQQQrD+ubtqPsPx2GOP8YlPfIL29nY0TePXv/71e07z6KOPMmfOHEKhENOnT+eHP/zhCJdKCCGEGD9qKVd/61vf4pprrmHVqlXceuutnHPOOXziE5/gX//1XznxxBP5+te/zp///GeWLFlCIpHgjjvuGFb5UpEXQggxPmh69Z9hyGQy7LHHHnz/+9+vavylS5dy1FFHceCBB/L888/z5S9/mQsuuIB77rlnJEslhBBCjB81lKuffvppPvGJT7zn21kmTpzI1VdfzRe/+MVhlT9uGrsTQghR43QNqrmCP8yr/EceeSRHHnlk1eP/8Ic/ZMqUKVx33XUA7LzzzjzzzDNcc801nHDCCcOad7VKpRKdnZ1ks1mam5tpaGjYKvMRQggh3pcaztUb8jyPf/zjH3R0dFBfX//eE2yC/CIvhBBiXNA0veoPwMDAwJBPoVAYlTiefPJJDj/88CH9Pvaxj/HMM89QKr/veDSk02luvvlmDjnkEJLJJFOnTmX27Nk0NzfT0dHB2Wefzd///vdRm58QQgjxftVarl7nwgsv5JZbbgFUJf7ggw9m7733ZvLkyTzyyCMjKlMq8kIIIcaHdVf5q/kAkydPJplMVj5XXnnlqITR2dlJa2vrkH6tra24rkt3d/eozOO73/0uU6dO5cc//jGHHXYY9957Ly+88AKLFy/mySef5PLLL8d1XT760Y9yxBFH8Oabb47KfIUQQoj3pYZy9YZ++ctfssceewBw//33s3TpUl5//XUuvPBCvvKVr4yoTLm1XgghxLigGQaaYVQ1HsCKFStIJBKV/qPxTtfKPN712px1r1cbrdfpPPHEE/z5z39mt9122+TwD33oQ5xxxhn88Ic/5JZbbuHRRx9lhx12GJV5CyGEECNVS7l6Q93d3UyYMAGABx54gE9/+tPsuOOOnHnmmVx//fUjKlMq8kIIIcYHXVOvrKlmPCCRSAw5ORgtEyZMoLOzc0i/tWvXYpomjY2NozKP//3f/61qPMdxOPfcc0dlnkIIIcT7VkO5ekOtra28+uqrtLW18fvf/54bb7wRgGw2i1HFhY1NkYr8Nu5DOyWBZKX78VczJEJFABIh6C9GiVqq2/MtmurANtXVpGxBZ7CovgT1MY8J0RQAbxUaaY7mAehLRwCIhiGd1dB1jVRaTd/fXyIWMymVAuqSenkePqCTTruEQmqns8yAwQwY5e9kPOQykLfKw6C1/F1Y2xvguj7RqBqWz/vEowaWpWIcGAS3pOZtWzq6D6WiC8DgYIHGJnUFLp3xSUQ1yoMIgoDBtAeA4+j4AbiqEz+AlSvzlfVXvtBGsegDEArb6IaGbatl0XSN7GCBcNRWMabz2GEb11Xjm6ZW+R9gYKDIjOlR1nSpZ2myAxksx0Yvr4xYIoLvBaRTGQAi8QiGZeA4Zjleg1gihFtSAZcKHuGohWGodRIOG0TiITZULEGp5FeuGpaKHrlMFt/1idXFAOhZM4hpGpVYEwkLXYdIWJXb3R1gWirGaEwtaybj4pU8IvEoTkjFlxksEI2H6e/qo5grkO5T+1BDax2WbZLPquWOJ8OEE1Fy6RwAhmFgRkIEQVCJ0y25aLpGKBrCLcUBSK3pwYmo5cukBkk2qcY+wrH1y5zP5isHOM/1sMJqmGEapAcK1DVEKuN2rxkkl1bbu5AtUNeivju5TJF0KocTUfuQV/LwXI/0gBrX82wCP6iUY9kmuUyB7jVuJZZVS1YxZafJ6JpaN7l0DrfkE0+G6VrdD0Ao4hCvq6N3TQrfU+u+ZVI9rz2l3guaz7nkc0VaprSobZkv8otrOviPb/cCcOc32zfY0nVsXvhdfzcU2+xUX/mMsZlpxglNU59qxtuK9t13X+6///4h/f7whz8wd+5cLMvaqvMG9Tzhww8/zKxZs9h55523+vwEhI67oPJ/BMj9j7r1s/epFwg1N1AaTKthLfW4+RIDS1cBEJ3QiG5Z6KY6xoXbmqF8vLPrk5WTXT+XBcBpbsCMholNauGte5cBMOlfJhJKhjEcCycZBaAwWMAKW5XjmmYY+K5HKaOOeWbIwiu6leGDq/pwCyoPBX6AEw9RzKjnUL2SOpZl1qrjf6QxhlHOmbn+AkEpwC8nXa/o4var8eyODgZX9zN5p6kAZFeuRXdUvok2x8l0DVbmX8wUKaUGKJZzpVMXR9M0dFt9X5xkDDSdwFU5xysUCQIfK7T+lzkvk8VonwSA1dyElxpA3+D75pZylfmFmxvwC0WMcj4ppbMYjoWbU8vsl1yKg1ki7epY7Q0MYGxQkdDMoSfdXsnHidlDGudKTo3i5kuVdeMWXEL1ccxoGD2s8pYdD+M0JCkNqu0ba4nhl1zCjWpeViyCVZ/E6+vDqVd5M7e2D9/10OvqSa8dVMvTEEbTNZyYTfOsVpY/qfaNQlin/7VB2g9Qtw9bYYtQfZx8n5oun8oRbY6TnFRH6p3+yjYM1YWxwha5PpXTrWQCs3cAgIF3unHiar2v2w8AioNZou1NKp7GBLkuVZ5uGpghk/QaNc/ExGRlP/Rdj+juu63f5xsHQdPxCuq81tQ1zImT8Av/VPtBWwvuwCB+VsVlNtSjOSGC8vPMfr6AEQ6jxRIQUus40A0o5AkCnyDVp7ZfQzOG5YCuYbe1qWnrmtA8VY47dWfMd96C8v6mT55G6PB55B7+KQChw04hNPTR6i1ad5ay+ew8VPus3asvfHtUo7l63rx5nHjiibS1taFpGh/96EcBeOqpp9hpp51GVKY8Iy+EEGJc0HS96s9wpNNpXnjhBV544QVAvbLmhRdeYPny5QAsWLCAU089tTL+Oeecw9tvv838+fN57bXXuPXWW7nlllu4+OKLR21ZN3TiiSdWXreTy+WYO3cuJ554Irvvvru88k4IIcQ2pVZz9cKFC/nJT37C5z73Of76179WHhEwDIPLLrtsRGXKL/JCCCHGh2rfOzvMd9M+88wzHHrooZXu+fPnA3DaaaexaNEiVq9eXTlRAJg2bRoPPPAAF110ET/4wQ9ob2/n+uuv32qvs3nssccqDeX86le/IggC+vv7uf322/nGN77xgbxGRwghhKhKjeXqz372sxx33HEcccQRfOpTn9po+GmnnTbisqUiL4QQYnzQqnw37TBv1zvkkEMqj4hsyqJFizbqd/DBB/Pcc88Naz4jlUqlKu+N//3vf88JJ5xAJBLh6KOP5pJLLvlAYhBCCCGqUmO5etasWVx11VWceuqpHHTQQRx77LEcc8wxTJ48+X2XLbfWCyGEGBeG+27a8WLy5Mk8+eSTZDIZfv/731fei9vX10coFHqPqYUQQogPTq3l6ssvv5xnn32Wt956i+OOO4777ruPHXbYgb333puFCxfy/PPPj7js8bGGhBBCiGG+m3a8uPDCCzn55JOZNGkS7e3tHHLIIYC65X5zr6cTQgghxkSN5upJkyZx7rnn8uCDD9LV1cVll13Gm2++yUc+8hE6Ojo4//zzeeWVV4ZVptxaL4QQYnzYSs/dbevOPfdcPvShD7FixQo++tGPopcbCJo+fTrf+MY3xjg6IYQQYgM1mqs3FI/HOfHEEznxxBPxPI9HHnmE++67jyeffJJddtml6nKkIi+EEGJ82EZeafNB2XfffTnuuOM49thjmTt3LnPnzh0y/Oijjx6jyIQQQojNqLFc/V4Mw+AjH/kIH/nIR4Y97fi91CGEEKK26Hr1n3HgnHPO4emnn+Zf/uVf2HHHHbnkkkv4y1/+ssXGfoQQQogxVWO5ep2enh7OO+88Zs+eTVNTEw0NDUM+IyG/yAshhBgfaux2vdNOO43TTjuNQqHAn/70J/7v//6Pk046iVKpxNFHH82xxx7Lxz72MSKRyFiHKoQQQig1lqvX+fd//3eWLFnCmWeeSWtrK9oo3HEgFXkhhBDjQ7WN44yzBnQcx+Goo47iqKOO4uabb+app57ivvvu42tf+xonn3wyhx12GAsWLGD//fcf61CFEELUuhrN1Y8//jiPP/44e+yxx6iVKRX57cwBs6OV/5e99QbL8pNpCfUA4LpRGqIlMgUDgHxRw1T/0p8x0OvV7Zamvv62y7b6IgC9aYvuPo+wo1euEGWzJdrbbFIDPr39vppHyae9I8LatXliMbX7uJ5GT0+RRMICYHW/g6aV52VC1FHTBoFOfb1DKKSusOXzPp4PXkGNa+gaiYQqs1DwMU0Ny1bdPZ397LRTshK3rkMur6YLhQxcNyjPA1KDAbYKBc8D3dCIJRwAMukiuayLZasYnJBJNl3EttWKKuZLeJ6PbqrhoViIaHz965t6+11MUycUUnH19uYouZDLltT8fZ98OoMTUdOkB7I0tcYr04ciNpGojef75eUETdfI59T0q5d2MmP3DtbdGev7VNYBQD5bIpsPhqwbz/MpZPJE69bPp1Qo4YRtDEMtRyyq09vvkogZlWkAQmGrEns4YmE5qsxIxKqMN9jvqu1jmeiGUf7fIPADTEt1R2MObqFEqLzcpmPhex6mZeK56/Ydl1gySv/afsIJ9QuhFQ7hllT5lmNX5j/QM1i5PVjTNdJ9AwDUtTTS19kNQLIpQRAElWWxbYNozKGYV8szaWYrPZ0pFY9lEK+L0NPZD0BDa5xi0aXrHfXd2XnvDgZTeUxLra9cpohh6FiOiVvy1PqJRchni2QH8wA0tzdi2QbpgTy5dE6tF0PHNA3+97vTGGr9s8ufv07nhgsTQ4befNnIbqkS76JpVV7lH18nB++2zz77sM8++/DNb36TJUuWcN9997F69eqxDqumhD+7AICJn4XME/cSevNlAPRkHYPv/AmvqI57kY6J6PWN+AWViwM/wJo0EYDikrcIiqq/1TFVFex5YBjo4TCNe6uc6JU8EpOaANDKt6ImJjUQeD7pNeoYmO/qxY5HyPcNAuDEQ3hFF99Vx7dYa4JC+diWL6p+Rvn4Hko4FDNFrLDKC2teWUWiXeWbVX9fq6ZvUd3FTJHcGnVctTs6CCXDlPrV8XvgnW6cBnXs810PO2qjlU/UDUu9aioo50bf8ygNpikNZlW5g1ms+Po7S5zmBgLPw+tXy2dEwhiJOITUOHo4jJ/J4JXXK0C2K0WsvVGNH40QuB6F7j4VayJGKZ3DKJ88WIkYYddDj4TVdim5YDlQzoFmPIaTjKKXT7Kijk24IYaXK6j5mwZWBJxklHRnX3mZfXTLAk0n8NT21wwDIx7DTKj1kl3bh24a2OV8XhpIY8ai6CGnsq50yyQ6sUXFUc6Z2d48LTu3sXbtagZW9hGqU7m4P5fGTJgUBvKV9WDHI4Tq4+X9RUPTdXJ9mcr2jbfVUcoWaNi5Ayv8TwAGlywn26XWddMuHaTf6aqUFXhqf7Gi4cr2suKRSrwDq1LUT62vrCvTMbGiKr7A8/D7egh23hMA7/XXMZNxQpPVd0CPRKFUwkyq9aNPnIKpv0NQ3q56PAGhMH7n6sr69HI5DKBUp9ZRKZwk0tSCns1AY0tlPbgTpxPb5xNszjv1LzNpx12H9AsfdspmxxfDUKO5eqeddiKXy41qmVKRF0IIMT5IAzqk02n8cmUIoLm5mYsuumgMIxJCCCE2UKO5+sYbb+Syyy7ja1/7GrvuuiuWZQ0ZnkgkNjPl5klFXgghxPhQbeM446wBnaVLl3L++efzyCOPkM+v/+UtCAI0TcMr/2ImhBBCjLkazdV1dXWkUikOO+ywIf3fT66WirwQQojxoUav8p988skA3HrrraPWgI4QQgixVdRwrrZtm//5n/+Rxu6EEEKIIWq0JdyXXnqJZ599llmzZo11KEIIIcSW1Wiufvnll3n++edHNVePrzUkhBCidumGaozqvT66MdaRjqp/+Zd/YcWKFWMdhhBCCPHeajRXz507d9RztfwiL4QQYnyo0av8P/nJTzjnnHNYuXLlJhvQ2X333ccoMiGEEOJdajRXf/7zn+cLX/gCl1xyCbvtttuo5GqpyAshhBgfavS5u66uLpYsWcK8efMq/TRNk8buhBBCbHtqNFefdNJJAJxxxhmVfu83V0tFXgghxPhQoy3hnnHGGey1117cdddd0tidEEKIbVuN5uqlS5eOeplSkRdCCDEuBJpGUEUltppxtidvv/029913HzNnzhzrUIQQQogtqtVc3dHRMepljq9LHUIIIWqXpq1/9m6Ln/F1cnDYYYfx4osvjnUYQgghxHuroVz95JNPVj1uJpPhlVdeGVb58ou8EEKI8aFGG9D5xCc+wUUXXcQ//vGPTTagc8wxx4xRZEIIIcS71FCuPvXUU5k6dSpnn302Rx11FLFYbKNxXn31Ve68805uu+02rr76anbZZZeqy5eK/HZs6swdCZa8RbfbBMCMiR71oSx+EFEjxGBtv3p1Q1uDR28hDkBduEhf1gGgL62Gh+wAAMvSiJcnD/yAQhFiUZ2BtGqAQdM1sjmPbLaEZatp+2M22WyJZFKdPKaz4Jbba0gNuKxxVH/P89E0GBhw1TxDOpmMRySsvqiJhEngqzj6+4o0NTu45YJMyyST9QFobjRIpUHT1LgNdQY9fWq8RFxH08A01FW8hoTP2phJqaimzWY1TEunUFhXro5eXH+gaGyO0dOVZrA/B0A0HiISs8lmSmp4YwjD0DAtVX40atPTUySfVcPrJzQR+AF22AYgHA1RV2/jhFS3W/JI9WUJlYcbhsbEyfHKRcdUd5Rcpohe7lFXr+YXikUBGOzP0tMTIZ93sWz19Q2FLcKJKPlsDieitmso4hCJ2rRNUPPJ5XzcUoCnVgOGoaPpGqGwiW2p5S+WfEoFl1R3HwOpRrV8MZuB3ixuoYiu6XilUmV6z/MJlbdtNlskVh8nl85VtpdhGFiOhWGq8n3PI5fO40RCeCW1/n3Xo5BV04RiEaxyeanuFPGGhCp7MEsQ+OX+ffjlxkCyAzniyTCWqfbDNasGMC2DwFfjlooekXi4Em84alXWT3awQP/a/sp2KpU8ulb3M3FaU3m5HbpWp0g0RCjk1f4ab4iTrI/guqr8my9rKO81EaCZat1wYaLqccXwbM3b9W688Ua+853vsHr1anbZZReuu+46DjzwwE2O+8gjj3DooYdu1P+1115jp512Gva838s555wDwNe//vWNhkljd2Mvut/x5DvLrxzyPMKNCZyGJADF7l5sw8BpawFAD0fUa5cAa0IrfiajpivkAfCLRYxolGLnGtr2aAcg9U4/bn41dVNb0HS1b2u6gQ848ZDqNg2yq3uxY6FKXL7roZePn9H2JrI9aQC6XuyDOVDMFAHoW9ZPYmICK6yOz82zWivDrLiBEQ6RXjsIwMDbGeIT1DEuaRhYEYfeN1eVY9IZfLtTLc5ggVKuRCmnckrgB7i5PMXBLABm2CEIgsrxPNuTJtJSj1aOVzMMjEgYNzWg1ptj4/b0YrdPAcDt7kaPRjHCapn8kothm5hRlRMKa7owy3kVwMvlcXOFynJFMzk008CIqfOmUnc3BD66rXKGZlmE6uN4BTV+cTBHtmeQup2mAlA/tZ/F971BclI9kUZVRnpNCt/zMB27Mt/4Lup44A2o5Qg1JtA0Das+WRlHD5XzelurGjdfJCh/p+unqlwdSmbRDJ3AD9BNg1L5nASgbscYVmT9xb3A88j1DAzZB0zHJJ/PlbeFjxVxcDO5yv5h2CbhRrVdA3f98aSQylT+T86cTLFf7Qe6YVT2RSts4eZL5PrVPBumNWLF1bovDWbQ6+phsE+tR99HtyyColqv2A5B4KOF1XZjoB+9fQqkelW3aUEQYM4sv5c71UfQ3IYXitLdqPpNmzETdjuA4Zq0467DnkZUp5Zy9auvvsrNN9/M1772NU4++WR23HFH2tvbCYVC9PX18frrr5PJZDj++ON56KGH2HXX4e13VVXkB8oHmOFIJORkVQghxAdoK13l/8UvfsGFF17IjTfeyP7778/NN9/MkUceyauvvsqUKVM2O93ixYuH5MLm5uov+AyHX67sCCGEENu8GsrVlmVx/vnnc/755/Pcc8/xl7/8hWXLlpHL5dhjjz246KKLOPTQQ2loaHjvwjahqop8XV3dsFrB1TSNN954g+nTp48oKCGEEGLYttIrba699lrOPPNMzjrrLACuu+46HnzwQW666SauvPLKzU7X0tJCXV3dsOYlhBBCjGs1mqv33ntv9t5771Ets+pb63/5y19WdbUgCAKOOuqo9xWUEEIIMWzDfKXNu+82cxwHx3GG9CsWizz77LNcdtllQ/offvjhPPHEE1uczV577UU+n2f27Nl89atf3eQtfCP185//nM985jNVjbtixQqWL1/O/vvvP2rzF0IIIUakhnL11lZVRb6jo4ODDjqIxsbGqgqdPn36Ro3tCCGEEFvTcJ+7mzx58pD+l19+OQsXLhzSr7u7G8/zaG1tHdK/tbWVzs7OTZbf1tbGj370I+bMmUOhUOCnP/0pH/nIR3jkkUc46KCDhrFEm3fTTTexcOFC5s2bxzHHHMPOO+88ZHgqleKvf/0rd955J3/84x+55ZZbRmW+QgghxPtRS7l6a6uqIj/cF9i//PLLIwpGCCGEGLFhPne3YsWKIc/FvfsK/5BJ3nXSEQTBZh85mzVrFrNmzap077vvvqxYsYJrrrlm1E4OHn30UX7zm99www038OUvf5loNEpra2ulAZ3Ozk6am5uZN28eL7/8Mi0tLaMyXyGEEOJ9qaFcvbWNy1brC4UC++yzDy+++CLPP/88e+6551iHJIQQYisLNJ2gipODdeMkEon3bJi1qakJwzA2uqK/du3aja78b8mHP/xh7rzzzqrHr8bHP/5xPv7xj9PT08Pjjz9eaUCnqamJvfbai7322gu9mtsXx4jkaiGEqD21lqu3phFV5J9++mkeeeQR1q5du1Fruddee+2oBPZ+XHrppbS3t/Piiy+OdShCCCE+KFuhAR3btpkzZw4PPfQQn/zkJyv9H3roIY499tiqy3n++edpa2urevzhaGxsHFYs2wrJ1UIIUYNqNFcvXbqUadOmjWqZw67If+tb3+KrX/0qs2bNorW1dcjtCsNp2X5r+d3vfscf/vAH7rnnHn73u9+NdThCCCE+IAFVXuVneL9Sz58/n1NOOYW5c+ey77778qMf/Yjly5dX3t++YMECVq5cyR133AGolnKnTp3KLrvsQrFY5M477+See+7hnnvuGf5CjVOSq4UQojbVaq6eOXMmBx10EGeeeSaf+tSnCIVC77vMYVfkv/e973Hrrbdy+umnv++Zj7Y1a9Zw9tln8+tf/5pIJFLVNIVCgUKhUOl+d8uIQgghthNb6ZU2J510Ej09PXz9619n9erV7LrrrjzwwAN0dHQAsHr1apYvX14Zv1gscvHFF7Ny5UrC4TC77LILv/3tb+WNLmWSq4UQoobVaK5+8cUXufXWW/niF7/I+eefz0knncSZZ57Jhz70oRGXOeyKvK7r2+QrbIIg4PTTT+ecc85h7ty5LFu2rKrprrzySq644oqtG5wQQoitT9OqbEBn+HePnXvuuZx77rmbHLZo0aIh3ZdeeimXXnrpsOdRCyRXCyFEjavRXL3rrrty7bXXcvXVV3P//fezaNEiDjjgAHbYYQfOPPNMTjnlFJqbm4dV5rBbwbnooov4wQ9+MNzJRmzhwoVomrbFzzPPPMMNN9zAwMAACxYsGFb5CxYsIJVKVT4rVqzYSksihBBia1r3SptqPmJ0Sa4WQghRjVrP1aZp8slPfpK7776bq666iiVLlnDxxRczadIkTj31VFavXl19WcOd+cUXX8zRRx/NjBkzmD179kbvi7/33nuHW+QWnX/++XzmM5/Z4jhTp07lG9/4Bn/72982eiXB3LlzOfnkk7n99ts3Oa3jOFt8jcG2btqMmWzYbMJzb3jkigYAhg6up/q7voalq46iZzAhngbgxcXqtsZddjCY2GoSdgImJHIAPG9ouG5AoRAQj6oyB1MGpaKPYeiUiqq8fCEgHLZoqlfXhbp61zeAmMt5gNpHHFvDNDUyGVfFPslkVRckYuqLuqbLo1gc2niiW1Lz0DQNzw8AKBQDomGNYolKdzaryrQsi0hYq1zEG8zqpAcLuK4qNxyy0A0NvTyCD+ga5HNqetPSSaeymJb6aviej+f5RGNqHwkCcByDZEIta39fgZ6uPIahusOxMLqhUyqo4Ooao2gaGOXysoM5GifUYdtqfVrlv+vmb4dt4skQqZ4sALqhkR0soOnrD2aeF1AseoSjar3mMkUGe/qxwyHCUfW8TaIhQihsVtaRaWq4rk8ut3792rahlj3vVfoN9mcoZHPkc2rCltYobsnD9wOcSIhiPgyAYWiYlonjqOVK9eUI/KCy3krFInbIwTB0LNssb0OdSCJC4PuV7RqKR8j0pgCIJuOVOKLJGEGgtnffqrUkWxsBKOYKWI5dnkcJ0zJI9av9NRS2SQ/kSDaqckIRq7IfFPMurutXttMt/9kMNPPvX1mltoNlkGiI0dedAWDRwlZgfTxKHWLbFmgGgWZUNd548sgjj3DIIYeMaQySq7csdPwX1v9/AuT/978B8AdSpP6xmFBDEoDwDjOgWATUMTPYTd1yGfzzFQB0y8LLZLDb2gh19w+Zh5srDOn2im7lf8OxsWMhtPJbDMywg+HYGOXjqabp1M9UDTz1L+/HDNlke7sBiLVGKQzkh5Rrhdef+8XbI2TWquNwoiNKfFL5F6VSCScZxY6r84zU8i76l/eqeCydwdV56qao5U6vzaCbRiUer1DCzRWw4yrn1E1twXBs/IJaN7ptE7gelJdHMwz1f193eYHVd9zN5MrLG0K31p/y+kUXN50h3K5as86uWIXh2CQbVcvYpWyOUGMdRKKquHieIJdDs8vnAp4Luo4Vi5bHL2BHncp8B1b24eV8At/HKyfiUDKMbhgY0QiascHpdzxB0NenyknnsOMR3NSgWk7Lwmhtg0Ier1+NYydjBH4AnocZVvEk45HKenbiDnVT6gAYXJYl0Z4glFTrUdM1NMOgmFHngNGWJMXBLE4yim4alX0j35cmrOuVcw8zGsauU+vGTMbxSm55ubuItTWodZ3NYdepvGlEo+jlbdlkWaRXdVfKCjcmKtslCAKCQh6/Td36bNUn0RNJqFM5P/TR09X6fO4htd10i0ykkUS/uj06/qGj2ZzRbVJMjKZazdXrPPPMM9x66638/Oc/JxqNcvHFF3PmmWeyatUqvva1r3Hsscfy9NNPV1XWsCvyn//85/nzn//MoYceSmNj41Zv4K6pqYmmpqb3HO/666/nG9/4RqV71apVfOxjH+MXv/gF++yzz9YMUQghxDZguK+0GS+OOOIIJk6cyLx58zjttNOYPHnyBx6D5GohhBDVqNVcfe2113LbbbexePFijjrqKO644w6OOuqoymtip02bxs0338xOO+1UdZnDrsjfcccd3HPPPRx99Oavgo2FKVOmDOmOxWIAzJgxg0mTJo1FSEIIIT5Iml7lc3fj6+Rg1apV3HnnnSxatIiFCxfykY98hDPPPJPjjjsO27bHOrwhJFcLIUSNq9FcfdNNN3HGGWcwb948JkyYsMlxpkyZwi233FJ1mcNeQw0NDcyYMWO4kwkhhBBbVa0+d9fQ0MAFF1zAc889xzPPPMOsWbM477zzaGtr44ILLpD3tAshhNhm1Gqufuihh/jSl760USU+CIJKa/q2bXPaaadVXeawK/ILFy7k8ssvJ5vNDnfSD9TUqVMJgoA999xzrEMRQgjxAVh3u141n/Fqzz335LLLLuO8884jk8lw6623MmfOHA488EBeeeWVsQ5vI5KrhRCittRqrp4xYwbd3d0b9e/t7WXatJG16jDsNXT99dfzu9/9jtbWVnbbbTf23nvvIR8hhBBiTKx7N201n3GmVCrxy1/+kqOOOoqOjg4efPBBvv/977NmzRqWLl3K5MmT+fSnPz3WYQohhKh1NZqr1zXi/G7pdJpQKDSiMof9jPxxxx03ohkJIYQQW1W1V/DH2VX+z3/+89x1110A/Pu//ztXX301u+66a2V4NBrl29/+NlOnTh2jCIUQQoiyGsvV8+fPB9QbuL72ta8RiUQqwzzP46mnnhrxXWnDrshffvnlI5qREEIIsTUFaAS89xX8asbZnrz66qvccMMNnHDCCZtt3K69vZ0///nPH3BkQgghxFC1lquff/55QP0i/49//GNInrZtmz322IOLL754RGUPuyIvhBBCbItq9ZU2l19+Ofvttx+mOTSlu67LE088wUEHHYRpmhx88MFjFKEQQgih1FquXncRfd68eXzve98jkUiMWtlVraGGhoZNPpy/OVOmTOHtt98ecVBCCCHEsGlU+dzdWAc6ug499FB6e3s36p9KpTj00EPHICIhhBBiM2o0V992222jWomHKn+R7+/v53e/+x3JZLKqQnt6evA8730FJoQQQgxHgE5QxfXpasbZngRBgLaJRoF6enqIRqNjEJEQQgixabWUq48//ngWLVpEIpHg+OOP3+K4995777DLr/rW+uG8006Mnb13bGTduwOee6OHkBUHYHpsJWEvDcAqYzKur74c06dYACRDBWKORsnTWZ1SLSeGw0XyeY9s1sUwHAAKBRfd0GhoCFXaoCiWAkIho9K4ZCbjEg4bANTX25X+IUfj9TfS2LYalkprpNMuuqa6HVvDNNX/nh/gugGZlHrN4aQZzQS+KiefDzANjWhYFdzd52OaKphSKYCwRianWoasi2tomlYZbhg6bsknky4AoJs64ai9wXCNhtYkuYwaXiq4hMIWjqO+Kqn+Isk6G8tU885nSyTq1rc0+c5bq0k2JSnmi2qZHJNSKcAruZX5t7RGcV21MAMDBfJ5E7ekLnx5roeua7iu6nZdH8/ziSbVdqxvjuG6Pr1rBmmasP6qnmEa2CEHw1DLkUg4lIo+ga/Wg2lr2LbO4GAJAN8LMHQdzwtwSyqWkusR+AHRZKIyXV9fnlwmR+D7RBIR9PJ68gOIhi3q69V+kc+VqGtJ0PVOj1pPa3qIN9YzfXY7A/15AOywTT6bxwnZOBE1XYPVQG4gXdkWhZxab3XNCTrfXquWub2FwZ7+chkhijlVnhMJ0T4xSldXvrLtfvilerZs6JXQO7/ZvkHXyFoMFduOat87O17eTbvupEDTNE4//XQcx6kM8zyPl156if3222+swhNbEPr0Fyv/B0/+msKffgeA27UWc9pM1b++CTPVpUZK1Km/nocZT4ATwk7EAIi0t+CXXNY8u5i6qS0AZLtS5PoyhOvVhRwz7KBbJmbIHjJ83fhhZ/0zm6GkQzGdw7DU8T7bmyeUdPDLeSnSXEdquYqrZXYz8fZ6+paq7khDBN1W+dLr78OKRygNqjwero9SzKhjfCFdxM17eOX8Y9g6umURlH8EsuIRDGd997rcY4TUPq5HI/iZ9a9B9rM59JCDu8Hdo7oTQrfVOY4RDeMko/gFNf9Ix0TSby0j3DFZDQ+HcLtSJHfsULFnc5TSWex1869vBE3D71qjutsmUXzpdeI7qPGLS1Zihiz08rOvvhcQarEwQzZeUeX/cGMCqz6JFgoRFFUcA3M+RvLNv6EZ6tzHijjotoWmq2OUmYwTxBJoQYC2wXO1RiQMoXAlV+d6BohMaMR0DEq5Eg0z1Xuqe97qwS24WOWcWxjIYscjlf0i15umblorTkOSfDnPutkCyeltuJkc4UaVM81YFLNO/ZgXFIqVC4f1O05Ct9Q6thrq8LM5NU7gY8bV/unsuCMxXQdb5djCSy+QvPh7bNJ+m67oJPb+aOX/OgB22/T0YrtQS7k6mUxWvi/V/iA+HFVV5H3fH/UZCyGEEKOp1p67W3dSEAQB8XiccDhcGWbbNh/+8Ic5++yzxyo8IYQQYiO1lKtvu+22Tf4/WqSxOyGEEONCrbWEu+6kYOrUqVx88cVyG70QQohtXq3l6nWWLl2K67rssMMOQ/q/+eabWJY1olfEbv+XOoQQQgjWX+Wv5jOeXH755VKJF0IIsV2o1Vx9+umn88QTT2zU/6mnnuL0008fUZnyi7wQQohxoZaeu9t7773505/+RH19PXvttdcmG7tb57nnnvsAIxNCCCE2r5Zy9Yaef/559t9//436f/jDH+b8888fUZlSkRdCCDEu1NLtescee2ylcbvjjjtubIMRQgghqlRLuXpDmqYxODi4Uf9UKjXit71JRV4IIcS4UEsN6Fx++eWb/F8IIYTYltVSrt7QgQceyJVXXsldd92FUX5Thed5XHnllRxwwAEjKnNEa8j3fd544w0ef/xxHnvssSEfIYQQYiz4GPhaFR+MYZd94403Mm3aNEKhEHPmzOEvf/nLFsd/9NFHmTNnDqFQiOnTp/PDH/5wpIv1nv7+97/z1FNPbdT/qaee4plnntlq8xVCCCGGq1Zz9dVXX83DDz/MrFmzmDdvHvPmzWPWrFk89thjfOc73xlRmcOuyP/tb39j5syZ7Lzzzhx00EEccsghlc+hhx46oiCEEEKI92vd7XrVfIbjF7/4BRdeeCFf+cpXeP755znwwAM58sgjWb58+SbHX7p0KUcddRQHHnggzz//PF/+8pe54IILuOeee0ZjMTdy3nnnsWLFio36r1y5kvPOO2+rzFMIIYQYiVrN1bNnz+all17ixBNPZO3atQwODnLqqafy+uuvs+uuu46ozGHfWn/OOecwd+5cfvvb39LW1rbFBnaEEEKID4pqQKea2/WGl7euvfZazjzzTM466ywArrvuOh588EFuuukmrrzyyo3G/+EPf8iUKVO47rrrANh555155plnuOaaazjhhBOGNe9qvPrqq+y9994b9d9rr7149dVXR31+QgghxEjVaq4GaG9v51vf+taolTfsivybb77JL3/5S2bOnDlqQQghhBDv13Ab0BkYGBjS33GcSgNy6xSLRZ599lkuu+yyIf0PP/zwTb5GBuDJJ5/k8MMPH9LvYx/7GLfccgulUgnLst4zxuFwHIc1a9Ywffr0If1Xr16NaUpTOEIIIbYdtZqrAfr7+7nlllt47bXX0DSN2bNnc8YZZ5BMJkdU3rBvrd9nn3146623RjQzIYQQYmtZ90qbaj4AkydPJplMVj6bumLf3d2N53m0trYO6d/a2kpnZ+cm4+js7Nzk+K7r0t3dPUpLu95HP/pRFixYQCqVqvTr7+/ny1/+Mh/96EdHfX5CCCHESNVqrn7mmWeYMWMG3/3ud+nt7aW7u5trr72WGTNmjPg1sVVdqn/ppZcq/3/+85/ni1/8Ip2dney2224bXa3YfffdRxSIGH1779i4Qdc0VrypbrFsMrrp9RoAMPQAgIZwBj/QGSiGCAL1xfF9NWwgVSDVlwfAcgxMS13/CXxVsmNrRMIGxZLqNgwN11PTZlIlImF11UzTwHV9LFM1XhEEUCz5uK4qL1fw8cvTAQwMlDAtNW4uU6KuTpUTDuuU3IC13epVDe0TTHp7iwBEowamoZHJquBKrobvBay7g0fTIAgCyouGDniej2Gsu+pXJBQ20csXCou2iecFRGPqq9LbkycUCuHYang05uAHAba9bpl8SsUS0WQUgFR/rrzerMo67e3NVcZ3HBPL1glF1PBUT0B6oIBulNdJpkgkHqJndS8A+VyJKR1xulYb6OWY9UCnZcoEdMNgsD+j1klHHbl8iWxOlWuaBp4XEARqwTUdLNsgky5W1nc+55JoiKGbOpG4Wteu6+O7Pk40jOd6WLZVjqtAKGySzboARCI2lm2Qz8YB6Hmnk/oJDSSTDn1dKiav5BGJh0k2xinm1c7y5stLCMUi5f3GIF6v1pvv+TS2qX20f22KR365L5sX2cIwUUuCQKscv95rPIAVK1aQSCQq/d99hX9D736MLAiCLT5atqnxN9V/NPz3f/83Bx10EB0dHey1114AvPDCC7S2tvLTn/501OcnRld03+OI7ntcpbvvxUcBKFlRwll1Mmm98wYAgedBsYhW10hQTsJGPIaWLxCuj2KUk1OsvQnDNvGK6hit2zahxiR6uaXkvn+uwS14aOVkZzc1kHn5TQAS7XXk+jJ4pXL5lk60KYpbPm7rtkm4fKwONyXpX7qmko8izUnMSBgAtz9FZlV3JSYz7GCFVQ4p5UoYto7vqjwergvjex66pXKtpmsU+tPYcVWW4djotklpMK2GOzYEPkF5enQNXdPRnHJL0OkMfiFfWd5ib0qtu/L5h+aEsOsSaMl6Nb2/DN00MKIqn7gDacITJ0BBnfsQT+Anm9BLKmcG4SihhiSlnn61/uJhAj9AD6vpTcck83aebE+axCR1LmZFQ+h7/Ata10qCSTMAWGV2EO/6v8q2910frVhCr1//61xgWGhOCK18vm3EYwQllyCaJNxcp/rZJpplUTelATdfIjK5XS2n8Rp1Uxqwy+ckdjJKoW+Q+GRVeYl6HnZ9EiMRJ9HRAUD6xZfRNB3DsbE3iEOPJ8rxZAg1q/yceWcNiV13LA9PEj37C7yX0OHvOYoY52o1V1900UUcc8wx/PjHP67cLee6LmeddRYXXnjhiBqNr6oiv+eee6JpWmXhAM4444zK/+uGaZo24vfgCSGEEO+PTlDVjWZqnEQiMeTkYFOampowDGOjK/pr167d6Er+OhMmTNjk+KZp0tjYuMlp3o+JEyfy0ksv8bOf/YwXX3yRcDjMvHnz+Ld/+7etcmugEEIIMXK1maufeeaZIZV4ANM0ufTSS5k7d+6IyqyqIr906dIRFS6EEEJ8UIb73F01bNtmzpw5PPTQQ3zyk5+s9H/ooYc49thjNznNvvvuy/333z+k3x/+8Afmzp271SrW0WiUz33uc1ulbCGEEGK01GquTiQSLF++nJ122mlI/xUrVhCPx0dUZlUV+Y7y7TYAjz32GPvtt99GDei4rssTTzwxZFwhhBDig7I1Tg4A5s+fzymnnMLcuXPZd999+dGPfsTy5cs555xzAFiwYAErV67kjjvuANTbXb7//e8zf/58zj77bJ588kluueUW7rrrruEvVJWWLFnCddddV2lAZ+edd+YLX/gCM2bM2GrzFEIIIYarVnP1SSedxJlnnsk111zDfvvth6ZpPP7441xyySX827/924jKHHZztoceeiirV6+mpaVlSP9UKsWhhx4qt9YLIYQYE1vr5OCkk06ip6eHr3/966xevZpdd92VBx54oHLhevXq1UPeUztt2jQeeOABLrroIn7wgx/Q3t7O9ddfv9VeZ/Pggw9yzDHHsOeee7L//vsTBAFPPPEEu+yyC/fff780eCeEEGKbUau5+pprrkHTNE499VRcV7VfYlkW/+///T++/e1vj6jMYVfkN9doQE9PD9FodERBCCGEEO/X1jo5ADj33HM599xzNzls0aJFG/U7+OCDR9wK7XBddtllXHTRRRudCFx22WV86Utfkoq8EEKIbUat5mrbtvne977HlVdeyZIlSwiCgJkzZxKJjLzR5qor8scffzygGrY7/fTTh7QY6HkeL730Evvtt9+IAxFCCCHej+G2hDtevPbaa9x9990b9T/jjDO47rrrPviAhBBCiM2o1Vy9TiQSYbfddhuVsqquyK97UX0QBMTjccLhcGWYbdt8+MMf5uyzzx6VoIQQQojh2ppX+bdlzc3NvPDCC+ywww5D+r/wwgsbPQYnhBBCjKVaytXrfgivxr333jvs8quuyN92220ATJ06lYsvvlhuoxdCCLFNqaWTgw2dffbZfO5zn+Of//znkAZ0rrrqKr74xS+OdXhCCCFERS3l6nU/hG8tw35G/vLLLwfUe/YWL16MpmnsuOOOctVfCCHEmKqlk4MN/ed//ifxeJz//u//ZsGCBQC0t7ezcOFCLrjggjGOTgghhFivlnL1uh/Ct5ZhV+QHBgY477zz+PnPf15pod4wDE466SR+8IMfbPUrD0IIIcSmBFT53N04ODnYkKZpXHTRRVx00UUMDg4CjPidtEIIIcTWVKu5GtTr2h955BGWLFnCZz/7WeLxOKtWrSKRSBCLxYZdnj7cCc466yyeeuopfvOb39Df308qleI3v/kNzzzzjDwjL4QQYsz4aFV/xqt4PC6VeCGEENusWs3Vb7/9NrvtthvHHnss5513Hl1dXQBcffXVXHzxxSMqc9i/yP/2t7/lwQcf5IADDqj0+9jHPsaPf/xjjjjiiBEFIT4Yk3eYXfm/6/UUAO11eQAm+m+TN6Pk9InEnQCARMImFNIpFsP0dGUBME0d29KZ2WGw9B0fgEIxwLY06uJBZZx1bygslTx0XXVEQhD4AbqhuvOFANvS8dVkFAo+bkmV6XsBmXSBaFK9kiHVM8hOO9cBkMn6NNTpDJpauTsgHDYA0DU1n3RGlVksBVi2TiZTqix7KGSSzZbK42sMpvI0Nq9v88H3AkxLldffk6GuMUqxqOKaOClKfWL9gaWlxaG7p1hZXicSwnd9bFt9tTRNI5st4oRtFU++hFvyMQx1Da2+3qZQWN9t2RbpVI6GVnUibhg6DQ0h3n7NKw83CQJobU/S0qLeHLFyVZae1T3sPHcm4Yil4u7N0bWqn6amcGUbpfoLbEjTNOJxm1XvDJS3m4Hn+Vi2he+q5dV0DTtsk8tkSfcPEk3GKnG5rk8+r96DOXFihFWrcpXlBqhvUuOGo2rZ89kcO+/dQSZTpHet2v/CiRiJBnUXj2kZDPSmAbj7v6duEGkrQlSjlm7X22uvvTb5KthN+aBerSNGR/0eB1f+X/7mawA0vfwUAEGphF7fCG4JTVN5Q4/FCXbag2hvH16+CEB8j10JXnyZcLs6frqDaaI7z6LU2QlApDFGMdOLbhqVeYWb6wDQ9BSFwTyBX87xg0UKgwV8V+UhTdOIT1bleoUima5BkpPqVSymQWlAHcfRdXJ9Geqmq3yWWd2LVj4f0A2NXGeRUJ1TjieKpms45RzjNDcxuHwN6Co3645N4AeVZfbSWfxCESOspjcbGyh19WDVq3xi1CXRbYdCv7pDxSuWSO7YsT42QLdMKKhzIKsuAZ29eJns+uGJJBgqpwWRGJnGDqKBOmHxIgmCwMduUMsdc2wKfSn8rDr5sKM20Y4QoWQYM6TycnjqZLpbZlMXimFmVd5tpAsvnUEPhQDwXY9IWxNGdP3rqPRCDj+SQM+XY+vrw5owgQDwi+pcJvAD8H3CjQmKgzn0kFov7Xu2o1smoca6yvYKtzRiNjaqbVnfQKl1Kvo7b5CdvpdaFsuGXIbA8yiuXKWWp60N4uX9IxzFKN+RO+EL/40Qw1VLuXpDX/jCF5g7dy4vvvgijeXvIMAnP/lJzjrrrBGVOeyKfGNj4yZvn08mk9TX148oCCGEEOL9qqVX2hx33HFjHYIQQggxbLWUqzf0+OOP89e//hXbtof07+joYOXKlSMqc9gV+a9+9avMnz+fO+64g7a2NgA6Ozu55JJL+M///M8RBSGEEEK8X36g4Qfv/cSYPw5ODtY1PCuEEEJsT2opV2/I9/1K+3Ibeuedd0b8SNywK/I33XQTb731Fh0dHUyZMgWA5cuX4zgOXV1d3HzzzZVx5XY+IYQQH5RavV0PoL+/n1/+8pcsWbKESy65hIaGBp577jlaW1uZOHHiWIcnhBBCALWbqz/60Y9y3XXX8aMf/QhQjyml02kuv/xyjjrqqBGVOeyKvNzOJ4QQYltUq7frvfTSS/zrv/4ryWSSZcuWcfbZZ9PQ0MCvfvUr3n77be64446xDlEIIYQAajdXX3vttRx22GHMnj2bfD7PZz/7Wd58802ampq46667RlTmiN8jL4QQQmxLAsCvcrzxZP78+Zx++ulcffXVQ27PO/LII/nsZz87hpEJIYQQQ9Varr7uuus49dRTmThxIi+88AJ33XUXzz33HL7vc+aZZ3LyyScTDodHVPawK/Igt/AJIYTY9tTqVf6///3vQx5rW2fixIl0llspF0IIIbYFtZarr7jiCi677DKOOeYYzjrrLObNm8cZZ5wxKmUP+z3yL730EjvuuCNXXXUV11xzDf39/QD86le/YsGCBaMSlBBCCDFc6567q+YznoRCIQYGBjbqv3jxYpqbm8cgIiGEEGLTai1Xd3Z2csstt9Db28uRRx5JR0cHl19+OcuWLXvfZQ+7Ir/uFr4333yTUPm9l6Bu4Xvsscfed0Dv129/+1v22WcfwuEwTU1NHH/88WMdkhBCiA/Auqv81XzGk2OPPZavf/3rlErqndKaprF8+XIuu+wyTjjhhDGObtMkVwshRG2qtVztOA4nn3wyf/zjH1myZAnz5s3jjjvuYObMmfzrv/4rP//5zykUCiMqe9gV+b///e/8x3/8x0b9t4Vb+O655x5OOeUU5s2bx4svvshf//pXeT5QCCFqRK1d5V/nmmuuoauri5aWFnK5HAcffDAzZ84kHo/zzW9+c6zD24jkaiGEqF21mqsBpk6dyhVXXMHSpUv5/e9/T2trK2eeeSbt7e0jKm/Yz8hvq7fwua7LF77wBb7zne9w5plnVvrPmjVrzGISQgjxwfED9almvPHgwgsv5KyzzmLXXXfl8ccf5+GHH640oLP33nvzr//6r2Md4kYkVwshRG2rtVy9Obquo2kaQRDg+9U0/7exYVfk193Cd/fddwPbzi18zz33HCtXrkTXdfbaay86OzvZc889ueaaa9hll102O12hUBhyO8OmLlKMRx/aKQnA60veUT1KEC4NYuo+2ZIFQEOdQaEYsNtONk9l1S2buq6xdk2GxoYkpqmulIVDGoVCQCqtbvBoaTLo7Vc7ZKovh98RAcDzNTwvwDDUdJmsTz7vVWIqFT1CIbVLuq6Ppms0NkcBKOZLuK76RsejOo4F9UkDgMHM+p3fcTRMI6h8+fv6PWIxk1JRjWPZBqWST7JOPRbS1ZlG0zRcVw2PRm0ymSKRiFWebxHdjDMwoPaRCa022XxAyFHLYJpqWt9T3aFIiOxAFj8Iyt0W0ajFm6+sBiCWiKBrEIvbANi2Tjyukyuv3741vYRiYRynHgDD0DBNjfrWBgDqG8KEHI1CwaV/QC1/PueS7R+gc0UvB32kA4CXXsxiWibZrAtANuuSSRfIpdVyTJrWQCRikh4sYRh6ef27ROIhlr2ynIZW1fL1QG+Wvs4eTMuikMnTPEldrDMtg3jcwbLUtIYOvWvTpAeylW3x9uJVhKNTsRy1TXfcazq5bIli3qWYKwLwh5/uhRCjpdbeTfv73/+eG264gTlz5nDWWWfxmc98hsMOO2ysw9oiydXDM2WHnQHI/3MSAJmnniI8a3c0t0Bo2hQ1Uki1dqwZBuFJEwBw165Bty38ojrWhqZMBtvBmjwZgPhAmvSaFF5R5Qh0DTOiyjEzOeqmttDzVo8aZGgYlk4xo9Z/oT9Nvlet/3BTHbppUCof0w3HrsTuZnLkU3lSy9ZW+pnlfBBtjpNpz5KcpHJdpClOvmeAxEwVn5fLEfgBhb5BNXxyG8XuXjRD5b1i/wBeoYQdqNxtxIsYsQh6Qp3beL29ePkCdjJaiUszrUocgVvCiMfAdlRc8RiGY1XKd9paIJ4kKA/XulZjNUzGjZVzc34QIxRCL6+zoFRCNwyC8sm4YZtM+peJRJqTGGF1vuHNnsvLgzPZJanT+NRtADQBxXyhsp2cZBSzLgnlcwjNtiHwcaNJ7HS/6mdaYDv4toMZDVe2idXcROB5OI316DGVwyOt9Tj1SeyJ5V/76pspNE3GK6pc/WbjfkzLvEx6p4OIZrsAyEzfi3DvO2SaphKdtExt54NORIjRUmu5ekNvv/02ixYtYtGiRaxYsYKDDjqIH//4xyOuQw/71vpt9Ra+f/7znwAsXLiQr371q/zmN7+hvr6egw8+mN7e3s1Od+WVV5JMJiufyeUkJ4QQYvtSa8/dvf766zz22GPstttuXHzxxbS3t3PaaadtE+3VbI7kaiGEqG21lqvz+Tw/+9nP+MhHPsKMGTP4yU9+wsknn8wbb7zBww8/zMknnzyk3bnhGHZFPpFI8Pjjj3PPPffw7W9/m/PPP58HHniARx99lGg0OqIgtmThwoVomrbFzzPPPFO5JeErX/kKJ5xwAnPmzOG2225D0zT+93//d7PlL1iwgFQqVfmsWLFi1JdBCCHE1hcE1X/Gi/33359bbrmFzs5ObrjhBpYuXcohhxzCDjvswLe//W1WrVr1gcQhuVoIIUQ1ai1XT5gwgTPPPJP6+nruv/9+3n77bb7xjW8wffr09132iN4jD3DYYYd9ILfwnX/++XzmM5/Z4jhTp05lcFDdfjV79uxKf8dxmD59OsuXL9/stI7j4DjO6AQrhBBizPho+FXcilfNOCPV19fHBRdcwH333QfAMcccww033EBdXd1mpzn99NO5/fbbh/TbZ599+Nvf/lb1fCORCPPmzWPevHksWbKEW2+9lauvvpqvfe1rFMu37W5NkquFEEJUo9Zy9de+9jVOPfVUmpqa3nfc7zasirzv+yxatIh7772XZcuWoWka06ZN41Of+hSnnHIKmjb6K7ypqamqBZ8zZw6O47B48WIOOOAAAEqlEsuWLaOjo2PU4xJCCLFtqfZWvK15u95nP/tZ3nnnHX7/+98D8LnPfY5TTjmF+++/f4vTHXHEEdx2222Vbtu2tzD25mUyGR599FEeffRR+vv7P7BG5CRXCyGEqEat5er58+e/v2C3oOqKfBAEHHPMMTzwwAPsscce7LbbbgRBwGuvvcbpp5/Ovffey69//eutFuh7SSQSnHPOOVx++eVMnjyZjo4OvvOd7wDw6U9/esziEkII8cGo9la8rXW73muvvcbvf/97/va3v7HPPvsA8OMf/5h9992XxYsXb7FS7TgOEyZMGPG8H3vsMW677TZ++ctfAirvXXXVVey///4jLnNrkFwthBC1rZZz9WiruiK/aNEiHnvsMf70pz9x6KGHDhn28MMPc9xxx3HHHXdw6qmnjnqQ1frOd76DaZqccsop5HI59tlnHx5++GHq6+vHLCYhhBAfjOG2hPvuls/f7+3bTz75JMlksnJiAPDhD3+YZDLJE088scWTg0ceeYSWlhbq6uo4+OCD+eY3v0lLS8sW5/fOO+9w++23s2jRIpYsWcI+++zDd7/7XT7zmc8Qi8VGvBxbm+RqIYSoXbWWq7emqhu7u+uuu/jyl7+8USUe1PPyl112GT/72c9GNbjhsiyLa665hjVr1jAwMMBDDz20xdfZCCGEGD/WvZu2mg/A5MmTh7SEfuWVV76v+Xd2dm4yobe0tNDZ2bnZ6Y488kh+9rOf8fDDD/Pf//3f/P3vf+ewww4b8rq1TZk6dSrXX389xx57LK+88gpPPvkkZ5111jZdiQfJ1UIIUctqLVdvTVX/Iv/SSy9x9dVXb3b4kUceyfXXXz8qQQkhhBDDVu3rasrjrFixgkQiUem9uSv8Cxcu5IorrthikX//+98BNtlWTBAEW2xD5qSTTqr8v+uuuzJ37lw6Ojr47W9/y/HHH7/Z6e6++26OOeYYTHPE7dYKIYQQH6way9VbU9XZv7e3l9bW1s0Ob21tpa+vb1SCEkIIIYbLCzS8Kk4O1o2TSCSGnBxsTrUtsr/00kusWbNmo2FdXV1bzJ/v1tbWRkdHB2+++eYWxxurEwchhBBipGotV6/jeR6LFi3iT3/6E2vXrq28jnWdhx9+uOp5r1N1Rd7zvC1e9TcMA9d1hx2AEEIIMRq2VgM61bbIvu+++5JKpXj66af50Ic+BMBTTz1FKpViv/32q3p+PT09rFixgra2tuEFKoQQQmzjajVXf+ELX2DRokUcffTR7LrrrqPytrdhtVp/+umnb/Z2hrF8PkAIIYQY61fa7LzzzhxxxBGcffbZ3HzzzYB6pc3HP/7xIY3n7LTTTlx55ZV88pOfJJ1Os3DhQk444QTa2tpYtmwZX/7yl2lqauKTn/zkVolTCCGEGCu1mqt//vOfc/fdd3PUUUeN2rJUXZE/7bTT3nOcsWyxXozMTjMmAfDaEg0TFzevE7bUnRV1cYtUWsPQfaZ2RAHwyneB1McDGpPqC7aqC5IJHcdSw7J5ME01LJ4Mkc2pS2rFEgR+gOMYgBonFDLwvKDcrdPflwcgGrPR9PVf4GRjtFKmY0PY8cnm9Uo5/f3qQlJLk0VPKsCx1bhvL02TrA/jly/r5bIlTFPHsszKPO2QWbkq5ro+8biDbpTnFXGIRm2C8vTZXEBdQq9cJSwUAyKR9dMnG2OEwjau6wGw8p9d7LznRHLpHAA77NLG20t6aG1TjVEt+2eK1rYYDQ0hACLxKG7JxTTVsgVBgOsGJBrU+p880SGT9Xnu4Rf46In7qvWaL1E3oZlwLEREFUM4ahMKWxSLKg7fC0h1D9I4oU6V64PnBQyk8pV17JU3brovRSRilcu2mbnnDHrXpCjmizgh1T9ZF8bzfEIhtS3XrC3SNjnJS0/1ALDXR/bCd31SfTmaW9WyhiMGSxb3sGhhK9CAEKNtw8Zx3mu8reVnP/sZF1xwAYcffjgAxxxzDN///veHjLN48WJSqRSg7mb7xz/+wR133EF/fz9tbW0ceuih/OIXvyAej2+9QMV2JfSxM9U/+RzkBqGQB7OcdE0L451/Yjc1oIdUEnB7+3BaGsFTOcCbOgtjzXKIqH1KMw2ad5mCbqsyvEwWIxIGwHBU/m3fayIAb/zfEmZ9ooPVzy0FINsziKarHBWb2IKma2R7MgC0zlnf0KIZi9IwPY+bL6rukI0VVfH1L1uLHbWINKl40p391E9vJSjnTs0wiLTWV3KrblmYsSilftV6tRkOodsWhb5BtX7aWtEMA8IRNX0ogx6OYLul8vJa+Pk8dlNDpXw9EoVy+X4+j6brmO3t5RUeodjSgZnpV+M3tODrBumI+rWvYbAHp2MKxJOV8jXTQI+qXG3HI8Qmt2I2NrD6T08B0FbKgwmJTCfG7D3UdH1rKQ1mMMNqvViJGEHJRY/HKuXieRjFXGW9+vk8RiSGFgQ4LSoeIxxCa5+CEwqDYUL5/Cm+00y0ZD1BvE6V193JkqnH0Kyp24qjehajmKE7tjNBVG3TAbMBY+JEdpjRAXwIIUZbreZq27aZOXPmqC5H1RX52267bVRnLIQQQoymsX43LUBDQwN33nnne8x/fQDhcJgHH3zwfc3zjDPO4Hvf+95GJxOZTIbPf/7z3Hrrre+rfCGEEGK01Gqu/uIXv8j3vvc9vv/974/KbfUwjIq8EEIIsS0b7rtpx4vbb7+db3/72xtV5HO5HHfccYdU5IUQQmwzailXv7tR2ocffpjf/e537LLLLliWNWTYvffeO+zypSIvhBBiXPCp8na9rR7JB2NgYIAgCAiCgMHBQULl26pBNVD7wAMPbPJduUIIIcRYqaVcnUwmh3SPdts3UpEXQggxLmwLt+t9kOrq6tA0DU3T2HHHHTcarmnae75TVwghhPgg1VKu3tqPpktFXgghxLhQSycHAH/+858JgoDDDjuMe+65h4aG9Y1I2rZNR0cH7esa7xJCCCG2AbWWq9c57LDDuPfee6mrqxvSf2BggOOOO27rvkdeCCGE2Jb5gYZfxetqqhlne3DwwQcDsHTpUqZMmTJqjecIIYQQW0ut5ep1HnnkEYrF4kb98/k8f/nLX0ZUplTkhRBCjAu1epX/tddeY8WKFRxwwAEA/OAHP+DHP/4xs2fP5gc/+AH19fVjHKEQQgih1Fqufumllyr/v/rqq3R2dla6Pc/j97//PRMnThxR2VKRF0IIMS7U2snBOpdccglXXXUVAP/4xz+YP38+X/ziF3n44YeZP3++vD5WCCHENqPWcvWee+5Zac/msMMO22h4OBzmhhtuGFHZUpEXQggxLgRBdS3hjpeTg3WWLl3K7NmzAbjnnnv4xCc+wbe+9S2ee+45jjrqqDGOTgghhFiv1nL10qVLCYKA6dOn8/TTT9Pc3FwZZts2LS0tGIYxorKlIi+EEGJcCAKNoIpn6qoZZ3ti2zbZbBaAP/7xj5x66qkANDQ0MDAwMJahCSGEEEPUWq7u6OigVCpx6qmn0tDQQEdHx6iVrY9aSUIIIcQYWne7XjWf8eSAAw5g/vz5/Nd//RdPP/00Rx99NABvvPEGkyZNGuPohBBCiPVqMVdblsX//d//jXq58ou8AGDnGaqRhVWvZLF0D4BcQSMeCcgXdQxDfZsyWZ/ddwjozxi4JXWlLBKCWDjAsdQ4rqfj2GpYLBIjnVX9l7+dJhy1iEbV7SMhR2Pt2hzhiAWAYWh4ng/AQCpPeiBPPO4AEA5ZrHhH/eK0z15h0jmdwbQat1AMaGkJV5alWIKgfM9Oy4QonhdQKKhuzwuIRg2SSbXrB0GEbNYlKB8tTFPH9wPCERVjc1sCxzHo78ur5c8YFEs6TfVq+r4+1fpkJLL+q5RsjNC1Wv0KFq9T88+nVexvL+khHHXIZl0A7JBJsegTCqn5ORGHta+vIjerDQBN10gkbGxbDU/GApYszRP4PlMmqnmueFtnhz2mkMuU6E2p5ejrSjNrl2ZWr85U4mqf2oSmr7+6WSh4JJIhQmGjvCx5TFNnxl47smaVit8JWSTrQpSKLhCtbJ9Uf46JkxNo5UuBuVwJxzGZudtkAL57foxNa91MfyHeP7/K2/WqGWd78v3vf59zzz2XX/7yl9x0002VRnN+97vfccQRR4xxdGI0hY49H4A1rz1LvGuJ6hn46IFP/tXXCU+bAoAxdz+0Yp51B+mSHSaYMBW9oHKRpmtY8Sih3XYHwO9cCeVbO4uDWer22ImB5WsB2OmEHQi1NpGc1FeeXUC2J63KzebIdGWIT1DHfCPsVGL1cgXQNIqZAgDxSc2UMiqXWmGLaHMU3VTztKMOTkMSPRRSMXT3kthjV9zeHhWvE8KybYxoRJU9mMZPZ4lObAFAn9CO37UGnPK5gOvit3VgFPLlmH10oNTbD4AzeSIYBn6yUU3f263Kssvzb+mg4CRwTdXtNdgYfol+vQmAWHICeqweX1fnL6GBfoxEArenVy1fNAS6jt7aju+pA07x8T+zYq8TOLA+w4rJ+wMwqfPvxHfbmVLnGjWffAHd89Ca1TkAvWob+FYIv0l9r414PYVoPYVQHbEd1Pma5RYYbN0Rq2ESnhXC19X5QSjbSz5cT6Cp9ey17cKy/nrSUbVcB+0ShRlT2A1Yl5/lhZVia6vVXH3cccfx61//mvnz549amVKRF0IIMS7UWgM660yZMoXf/OY3G/X/7ne/OwbRCCGEEJtXq7l65syZ/Nd//RdPPPEEc+bMIRqNDhl+wQUXDLtMqcgLIYQYF2r15GBDuVyOUqk0pF8ikRijaIQQQoihajVX/+QnP6Guro5nn32WZ599dsgwTdOkIi+EEKJ21erteplMhi996Uvcfffd9PT0bDTc87wxiEoIIYTYWK3m6qVLl456mdLYnRBCiHHB86r/jCeXXnopDz/8MDfeeCOO4/CTn/yEK664gvb2du64446xDk8IIYSoqNVcvaEgCCrtc70fUpEXQggxLtRiS7gA999/PzfeeCOf+tSnME2TAw88kK9+9at861vf4mc/+9lYhyeEEEJU1GquBrjjjjvYbbfdCIfDhMNhdt99d37605+OuDy5tV4IIcS4UKvP3fX29jJt2jRAPQ/f26tazj7ggAP4f//v/41laEIIIcQQtZqrr732Wv7zP/+T888/n/33358gCPjrX//KOeecQ3d3NxdddNGwy5SKvBBCiHHBp8rn7rZ6JB+s6dOns2zZMjo6Opg9ezZ33303H/rQh7j//vupq6sb6/CEEEKIilrN1TfccAM33XQTp556aqXfscceyy677MLChQtHVJGXW+uFEEKMC+ueOavmM57MmzePF198EYAFCxZUnpW/6KKLuOSSS8Y4OiGEEGK9Ws3Vq1evZr/99tuo/3777cfq1atHVKZU5IUQQowL28Jzd9/85jfZb7/9iEQiVf8aHgQBCxcupL29nXA4zCGHHMIrr7xS9TwvuuiiymtrDj30UF5//XXuuusunnvuOb7whS+MZDGEEEKIraJWc/XMmTO5++67N+r/i1/8gh122KHqcjYkt9YLIYQYFwIf/CruxQu24v16xWKRT3/60+y7777ccsstVU1z9dVXc+2117Jo0SJ23HFHvvGNb/DRj36UxYsXE4/Hhx3DlClTmDJlyrCnE0IIIba2Ws3VV1xxBSeddBKPPfYY+++/P5qm8fjjj/OnP/1pkxX8akhFXgxx8C6Ryv/77Qw/fUxjxWqPaETdvNFYbzCQDWiIuqzqs1S/pM/yTo1oWI3TWu/h+poqJAxvLskDsHp5D7vsNRHPU5fYdE2jkHeJxWwADEN1A3glj8aWGI2NatiqVVmiUTW/mOMxkNUxTTWPvv4SobABQDYfEHI0lq9Q82xucgiHdV59JQtAy4SoCstR02ZsnXxPibqGsIpB18jnXaIRVV6qX8e219+4Eo2aZDIuWnnxVq/oZ2JHPfm8ekdG4AfouoZpqenrm6NEIiZNE5sByKfz9K3pZXLHTgBM6wjx9FNdhMN1APR39WE5NuGIWtZMpsg/3+xl6sx6AOJhj+VvrQWgUFQx9HT2sXaFR1N7A729qmcuk8cwNAxDL8dt0dxk07mmoNa9rhGNmoRCOomYWphE3GRg0OW758fevVsAoU3029CmphHig7UtNKBzxRVXALBo0aKqxg+CgOuuu46vfOUrHH/88QDcfvvttLa28j//8z/8x3/8x2anPeqoo7jrrrtIJpOA+oXhvPPOq/y60NPTw4EHHsirr7468gUS26TWnefAznMq3dlbLyey4ww0S+VM3/cpJZooOerk0kl3U4g14SYdAJJTV+J2dRFE1HA9WYef6lfDdpqOZts0zFYNKBb7BwAIN9cBUErnSEZVTrBiEUJJh+TkRgAKXb1E994LAPe117AiDnVTWwCIztqB0lqVv5yGBLppUBpUudkMO2iWhZFIqOGWCbaN2TJBLaBtg+9jJNSX14hlcJf8EyOuco8fb0B3XXxHncPoiSSB56JNmASA5rl4by8lNF0tE8kGKBXQvJIa3tyKEw6DqXJvT3IaHgb1OXW7ayrUwqR/3E+wq/rVLBVrI1wcxNPVabQ+YzeMQgYznwEgPiWFX9dET9suxP5zrlrG1AqSnjpIpT11LuKbNoWd9iHsqEdjLNOCcBTfVNuxtMPe+IZFKtpGTlPT1JW6yNoJZkyfDsyt7ANhNu3d1Qt1lIluZmwhtr5ay9XrnHDCCTz11FN897vf5de//jVBEDB79myefvpp9tprrxEth1TkhRBCjAt+UGUDOuVxBgYGhvR3HAfHcbZCZJu3dOlSOjs7Ofzww4fEcfDBB/PEE09s8eTgwQcfpFAoVLqvuuoq/u3f/q1SkXddl8WLF2+12IUQQojhqrVcvaE5c+Zw5513jlpc8oy8EEKIcWG4z91NnjyZZDJZ+Vx55ZUfeMydnZ0AtLa2Dunf2tpaGbY5724IaLw1DCSEEGL8qbVcvTVJRV4IIcS4EPhB1R+AFStWkEqlKp8FCxZsstyFCxeiadoWP88888z7il1b97zOumUJgo36CSGEENu7WsvVuq5jGMYWP6Y5spvk5dZ6IYQQ48Jwb9dLJBIkys/kbsn555/PZz7zmS2OM3Xq1Coi3NiECeoZ4M7OTtra2ir9165du9GV/3dbd2Ly7n5CCCHEtqrWcvWvfvWrzQ574oknuOGGG0Z8R51U5IUQQowLW6sBnaamJpqamkYW1HuYNm0aEyZM4KGHHqo0dlMsFnn00Ue56qqrtjhtEAScfvrplWcF8/k855xzDtGoashqw+fnhRBCiG1BreXqY489dqN+r7/+OgsWLOD+++/n5JNP5r/+679GFJfcWi+EEGJc8P2g6s/Wsnz5cl544QWWL1+O53m88MILvPDCC6TT6co4O+20U+UKvaZpXHjhhXzrW9/iV7/6FS+//DKnn346kUiEz372s1uc12mnnUZLS0vlucF///d/p729vdLd0tLCqaeeutWWVQghhBiuWsvVG1q1ahVnn302u+++O67r8sILL3D77beP+JWx8ou8EEKIcWFbeKXN1772NW6//fZK97or93/+85855JBDAFi8eDGpVKoyzqWXXkoul+Pcc8+lr6+PffbZhz/84Q/v+V7a2267bfQXQAghhNiKai1XA6RSKb71rW9xww03sOeee/KnP/2JAw888H0vh1TkhRBCjAvbwsnBokWL3vO9tO9+Fk7TNBYuXMjChQu3XmBCCCHENqDWcvXVV1/NVVddxYQJE7jrrrs2eav9SElFXgghxLjgBwF+FZm/mnGEEEIIMfpqLVdfdtllhMNhZs6cye233z7kToAN3XvvvcMue1w9I//GG29w7LHH0tTURCKRYP/99+fPf/7zWIclhBDiAxD41X/E2JFcLYQQtavWcvWpp57KiSeeSENDQ6UNm019RmJc/SJ/9NFHs+OOO/Lwww8TDoe57rrr+PjHP86SJUsqrw0QQggxPvl+gOdVcZV/KzagI96b5GohhKhdtZar3+sW/vdj3FTku7u7eeutt7j11lvZfffdAfj2t7/NjTfeyCuvvCInByN0ykEABj/4nepORAMGMhr5ooVjqX4ddYOkMklyefWFW9mt01B+3WNXH5SKHgDxuijJhEnnGvVKpGQ8hOcF2La6MaRY9InG1WuUbMtANzRCjnoncl29Q0Od2l2XroF4BAxDzSMUNmhuUMMiIVi6olS5iheL6hSKAfVNEQB0Q6OtZf1u39xgEnbivLMyC0B9vUNzk0N9Qs03k7VJxHVMU73OydAhHDZY96rm+uYYTU02K1ZkAIjGbcIRi6B88EkmHYpFn/apjQC4JZ9n//gczY1meTlh6sx6clm1jnbYYyobvgY6kXCIRm06V6pWND/xb3V8Ys5UYGplnP84fCZHnv4SdshC09XELRPr6ezM0twcVsuRcRkY9AiHjcp6APjicRu+c1oHbITYXgVBUNW7WEf6vlbx/kmu3joiZ1wBQPb2/9/evQc1deb/A3+fEAhBIFxSCAhVFhFdtdZirdj+LLZK7ajF3ZHW6rplerWKXddqq+5WsTPV1nXttNursxbbnW7td7Zlt7MdtV5RKl4rrlpFsSioIK1CuBog5/n9kZIargEPJCd5v2bOaE6ec/J8fEzeeU5OTl4FANSF3Q4fuQmyxpY118MT4Gu1QGu15a8cGQutry+a/W3ZpvXXQ1y/BgAQQoZoaoIuIQEAYD1xApKvFroQ2wWdfHy10AbattP1j0b4oKvQ6m3ZrTPdBvjZ/q4NCoSQZfiFhdo6GWaEb4Tt95elwu+hCdBD8qkEADTV1kM7agxgaQAAaG7UwxKTCN2PFwEAlxMmIPjGT7BobVnu31gDacT/Q62P7bF8m+qh02ohfq5X9I+DVdcPFv8QW79uVKE5OhFWra29f+2PqA65HQEN1wEAzVp/9PupGI0G2/8/P2sDrohY+PvZsl0nN6ApOh7Nwpahx82DMDi0DNafb1sMtn7VwvbmZ/gg234CHEbpTugOWXE1/Ne4XhcIALgWPhgh1aWo/5XtQltC4wNZ8rGPm1XjC7M2HEPj+9+0n/4gUjNmtXI8ZiIfHh6OoUOH4pNPPsFdd90FnU6HDz/8EJGRkUhKSupwO4vF4vBbu9XV1X3RXSIiUpgsbIsz7cg1mNVERN6NWa0cj5nIS5KE7du3Iy0tDUFBQdBoNIiMjMTWrVsREhLS4XZr1qzBqlWr+q6jRETUK4Qs7GfDdNWOXINZTUTk3ZjVynH7i91lZWVBkqROlyNHjkAIgXnz5iEiIgL79u3DoUOHkJaWhqlTp6KsrKzD/S9btgxms9m+lJaW9mF1RESklJaftHFmIWUxq4mIyBnMauW4/SfymZmZmDlzZqdtBg4ciF27duG///0vKisrERxs+47Se++9h+3bt+Pjjz/G0qVL291Wp9NBp9Mp3m8iIupbsiycujiOp1xAx50wq4mIyBnMauW4/UTeaDTCaDR22a6+3naxMo3G8SQDjUYDWfaQ3y8gIqIO8QI6rsOsJiIiZzCrleP2p9Y7Kzk5GaGhoXjiiSdw/PhxnD17FkuWLEFxcTGmTJni6u4REVEv87bfplUjZjURkXdjVivHYybyRqMRW7duRW1tLR544AGMHj0aeXl5+M9//oORI0e6untERNTLZCGcXsg1mNVERN6NWa0ctz+1vjtGjx6Nbdu2ubobRETkAjxdTx2Y1URE3otZrRyPmsgTEZH34gV0iIiI3BuzWjmcyBMRkUdw9udqeJCfiIjINZjVyuFEnoiIPIIQAsKJI/g8XY+IiMg1mNXKkQT/lRxUV1fDYDDAbDbbf+OWOne4sArXGgLQ2OwDALjRJKHeYruOYlMzcMNi+y9WXSMjOEiDhhu222Ehtr/X1NouS+njI6FfgAQAkCQJAf6ApfGXx9H52f701QrIsgS9Tv75MSSYa23bNVgEZKtAU7Ow7zM4UGO/3dQMaCRA5+fYvsFi25efr8bhVB5frYS6eiuCgmzHvG7ckKHVSrBabW1kGfD1lRCgt+2vrl7AbG7C6qdsv3f86qfNuPZTA8KNegBAc7OMmppGhIX72x/v5Rkec81Jom5R6vW2ZT/PrimFn3/X+2m8UY0Ny2L5Oq9izOruKzl3GoaaywCAJr9+8G2sg6bZYrvtHwz99UsAALnwJHyCgwHtz5/1yFY0lpXDLzYWANAcMwgNgRG2v/voIEHAog2w7Ufygwa2PG2GLwQkNMi2vGuWtQjwaQAA9EMNBCRoZVvI3/Dph4rGX36+UOfThLomHfx8mgEAfppmNMtaaKSf3y9orJCF5pfbkCFJAlqp+efbVtTLemhgy+pm4QNfTTN8pSYAQJ01ALLQ4O7EEADAsXM/IURThevWMABAoE8dKpuCUdlgq2tgcAWGxve/pX9/IrViVrsvfiJPREQeQchOHuXn9+6IiIhcglmtHE7kiYjII/DNARERkXtjViuHE3kiIvIIsrAtzrQjIiKivsesVg4n8kRE5BF4lJ+IiMi9MauVw6tsERGRRxBCOL30ltdeew3jxo1DQEAAQkJCnNomIyMDkiQ5LGPHju21PhIREbkKs1o5/ESeiIg8gtUqYLXKTrXrLY2NjUhPT0dycjI2btzo9HaTJ09Gdna2/bafn19vdI+IiMilmNXK4USeiIg8QndP16uurnZYr9PpoNPpbqkPq1atAgBs2rSpW9vpdDqYTKZbemwiIiJ3x6xWDk+tJyIij9Dy5sCZBQBiY2NhMBjsy5o1a1zW9z179iAiIgKDBw/GM888g4qKCpf1hYiIqLcwq5XDT+SJiMgjyBCQnfhOnQxbm9LSUgQHB9vX3+oR/p56+OGHkZ6ejgEDBqC4uBivvPIKHnjgARw9etRlfSIiIuoNzGrl8BN5IiLyCN09yh8cHOywdBTEWVlZbS5w03o5cuRIj/v92GOPYcqUKRg+fDimTZuGLVu24OzZs/j66697vE8iIiJ3xKxWDj+Rp1t2d2JIFy2kn//0wT/2Agum2G5v3i+g9ZGg9/ex3asBmq22ls3NgKURmPtQZ/uzHYfatAd4fvLN90ltN2l33c3tOzumdfN9Pp20a9nfLy8wK2ZrAQS1asOLWBH1BmevctvdK+FmZmZi5syZnbYZOHBgt/bZmaioKAwYMADnzp1TbJ9EtycMBTC064YpQPH5IsTFDwIAlJ0pgDRSoEZje8vY4BOIWjkQABCOHyFLPhgwKLHL3f5fvoxHk0M7vH9Q1z3rNaMSjACMiLOvCWvVon+f9ofIkzGrlcOJPBEReQQhC8i98Nu0RqMRRqOxp93qtmvXrqG0tBRRUVF99phERER9gVmtHJ5aT0REHqG7p+v1hpKSEhQUFKCkpARWqxUFBQUoKChAbW2tvc2QIUOQk5MDAKitrcXixYuRn5+PCxcuYM+ePZg2bRqMRiN+85vf9Fo/iYiIXIFZrRx+Ik9ERB6ht07X644VK1bg448/tt8eNWoUAGD37t1ISUkBABQWFsJsNgMAfHx8cOLECXzyySeoqqpCVFQUJkyYgM8//xxBQa2/lkNERKRuzGrlcCJPREQeQcgyhCw71a63bNq0qcvfpb35zYler8e2bdt6rT9ERETuhFmtHE7kiYjII8hOfu/OmTZERESkPGa1cjiRJyIij+AOp+sRERFRx5jVyuFEnoiIPIKzF8fpzQvoEBERUceY1crhRJ6IiDwC3xwQERG5N2a1cjiRJyIijyBDhiy6vjiOjN67gA4RERF1jFmtHE7kiYjIIwjZuSP4Trx/ICIiol7ArFYOJ/JEROQReLoeERGRe2NWK4cTeepTc8b/8veZ4yRF9pmRoshuiEjleCVcImXExQ+y/z1qyJ2dtLzN6X0+mqzpeYeIyGMwq5XDiTwREXkEa7MVGo3VqXZERETU95jVyuFEnoiIPIIQMoQTX6pzpg0REREpj1mtHE7kiYjII/B7d0RERO6NWa0cTuSJiMgzOPnmAHxzQERE5BrMasVwIk9ERB5BFk7+Ni1P1yMiInIJZrVyOJEnIiKPwNP1iIiI3BuzWjmcyBMRkUcQQoaQeQEdIiIid8WsVg4n8kRE5BF4lJ+IiMi9MauVw4k8ERF5BP6kDRERkXtjViuHE3kiIvIIsgzIThzBd+KMPiIiIuoFzGrlcCJPREQeQchOfu+O7w6IiIhcglmtHI2rO+Cs1157DePGjUNAQABCQkLabVNSUoJp06ahX79+MBqNeOGFF9DY2Ni3HSUiIpdo+d6dM0tvuHDhAp566inExcVBr9cjPj4eK1eu7DKHhBDIyspCdHQ09Ho9UlJScOrUqV7pY29jVhMRUWeY1cpRzUS+sbER6enpeP7559u932q1YsqUKairq0NeXh42b96ML774Ai+++GIf95SIiFyh5Xt3ziy94cyZM5BlGR9++CFOnTqFN998Ex988AGWL1/e6XZr167F+vXr8c477+Dw4cMwmUyYNGkSampqeqWfvYlZTUREnWFWK0cSQqjqkoCbNm3CwoULUVVV5bB+y5YtmDp1KkpLSxEdHQ0A2Lx5MzIyMlBRUYHg4GCn9l9dXQ2DwQCz2ez0NkRE1H1Kvd627Gfsw1ug9e3XZfvmpjoc2PJwn7zO/+Uvf8H777+PH374od37hRCIjo7GwoUL8fLLLwMALBYLIiMj8cYbb+C5557r1f71FmY1EZFnYFa7b1Z7zHfk8/PzMXz4cPsbAwB46KGHYLFYcPToUUyYMKHd7SwWCywWi/222WwGYPvPRkREvafldVap48nNjTVOfafO2lzn8PgtdDoddDqdIn1pYTabERYW1uH9xcXFKC8vR2pqqkM/7r//fuzfv1+1E/mOMKuJiNSFWe2+We0xE/ny8nJERkY6rAsNDYWfnx/Ky8s73G7NmjVYtWpVm/WxsbGK95GIiNqqqamBwWDo8fZ+fn4wmUw4svNRp7cJDAxs8zq/cuVKZGVl9bgfrZ0/fx5/+9vf8Ne//rXDNi351Dq/IiMjcfHiRcX64i6Y1URE6sSsdr+sdulEPisrq91gvtnhw4cxevRop/YnSVKbdUKIdte3WLZsGRYtWmS/Lcsyrl+/jvDw8E6360h1dTViY2NRWlrq8af7eUut3lInwFo9lbvWKoRATU2Nw6ezPeHv74/i4uJuXTCtvWzo6Ah/T7LqypUrmDx5MtLT0/H000932Z/Wfekqu/oSs1rdvKVWb6kTYK2eyl1rZVb/wt2y2qUT+czMTMycObPTNgMHDnRqXyaTCQcPHnRYV1lZiaampjZHT27W3ukZHV1ptzuCg4Pd6knYm7ylVm+pE2Ctnsoda72Vo/s38/f3h7+/vyL7aq27WXXlyhVMmDABycnJ2LBhQ6fbmUwmALaj/VFRUfb1FRUVnWZXX2JWewZvqdVb6gRYq6dyx1qZ1e6Z1S6dyBuNRhiNRkX2lZycjNdeew1lZWX2f+BvvvkGOp0OSUlJijwGERF5n+5k1eXLlzFhwgQkJSUhOzsbGk3nPw4TFxcHk8mE7du3Y9SoUQBsV37Pzc3FG2+8cct9VwKzmoiI3J03ZrVqfn6upKQEBQUFKCkpgdVqRUFBAQoKClBbWwsASE1Nxa9//WvMmTMHx44dw86dO7F48WI888wzbndUi4iIPM+VK1eQkpKC2NhYrFu3Dj/++CPKy8vbfPd7yJAhyMnJAWA7TW/hwoVYvXo1cnJycPLkSWRkZCAgIACzZs1yRRm3hFlNRETuzJOyWjUXu1uxYgU+/vhj++2WoyG7d+9GSkoKfHx88PXXX2PevHm49957odfrMWvWLKxbt65P+6nT6bBy5UrFr6bojrylVm+pE2CtnsqbanWlb775BkVFRSgqKkJMTIzDfTdf7bewsNB+1XUAeOmll9DQ0IB58+ahsrIS99xzD7755hsEBQX1Wd+Vwqx2P95Sq7fUCbBWT+VNtbqSJ2W16n5HnoiIiIiIiMibqebUeiIiIiIiIiLiRJ6IiIiIiIhIVTiRJyIiIiIiIlIRTuSJiIiIiIiIVMSjJ/Jr1qzB3XffjaCgIERERGD69OkoLCx0aCOEQFZWFqKjo6HX65GSkoJTp051ut8bN24gIyMDI0aMgFarxfTp0ztt/+2330Kr1eLOO+/sss/PPfcc4uPjodfrcdtttyEtLQ1nzpxxaFNZWYk5c+bAYDDAYDBg1KhRuOuuu1xS5549eyBJUpuldZ9bs1gsWLBgAYxGI/r164dHHnkEly5d6rTOOXPmYMWKFS4b057W2pMxdXWtgG2M/vSnP2HAgAHQ6XSIj4/HRx991Om+1TiuPa1Vbc/VjIyMdv//Dhs2rNN993RMq6qqOt0vUQtvyWpXv9b1ZV6r8X2JGscUYFYzq3/5t2FWex+Pnsjn5uZi/vz5OHDgALZv347m5makpqairq7O3mbt2rVYv3493nnnHRw+fBgmkwmTJk1CTU1Nh/u1Wq3Q6/V44YUXMHHixE77YDab8fvf/x4PPvigU31OSkpCdnY2Tp8+jW3btkEIgdTUVFitVnubWbNmoaCgAFu3bsXWrVtRVFQEWZZdWmdhYSHKysrsS0JCQqftFy5ciJycHGzevBl5eXmora3F1KlTO62zoKAAH3zwgcvHtLu19mRM3aHWRx99FDt37sTGjRtRWFiIzz77DEOGDOm0VrWOa09qVdtz9a233nL4f1taWoqwsDCkp6d3WmdPx3TOnDmd7peohbdktTu81gF9k9dqfF+i1jFlVjOrAWa11xJepKKiQgAQubm5QgghZFkWJpNJvP766/Y2N27cEAaDQXzwwQdO7fOJJ54QaWlpHd7/2GOPiT//+c9i5cqVYuTIkd3u8/HjxwUAUVRUJIQQ4vvvvxcAxIEDB+xt8vPzBQBx5swZIUTf1rl7924BQFRWVjpdU1VVlfD19RWbN2+2r7t8+bLQaDRi69atTtephlrb05MxFaJva92yZYswGAzi2rVrTtel1nHtSa3tcffnams5OTlCkiRx4cKFDtsoOaZEzvKWrBbC/TNMqdcAd6+zPWoYU2Z19zGrmdWexKM/kW/NbDYDAMLCwgAAxcXFKC8vR2pqqr2NTqfD/fffj/3799vXZWRkICUlpduPl52djfPnz2PlypXt3t9y+teFCxfavb+urg7Z2dmIi4tDbGwsACA/Px8GgwH33HOPvd3YsWNhMBjsfe7rOgFg1KhRiIqKwoMPPojdu3d3WufRo0fR1NTk0J/o6GgMHz7c3h9n6lRDra31dEz7utavvvoKo0ePxtq1a9G/f38MHjwYixcvRkNDQ4e1qnVce1Jra2p6rrbYuHEjJk6ciAEDBnRYp5JjSuQsb8lqV9QKuCav3b3O1tQypsxqZjXArPZmWld3oK8IIbBo0SLcd999GD58OACgvLwcABAZGenQNjIyEhcvXrTfjoqKgizL3Xq8c+fOYenSpdi3bx+02vb/mQMCApCYmAhfX1+H9e+99x5eeukl1NXVYciQIdi+fTv8/PzsfY6IiGizr4iICJSXl/d5nVFRUdiwYQOSkpJgsVjwj3/8Aw8++CD27NmD8ePHt1tneXk5/Pz8EBoa2qY/LX3tqk6g78e0J7W2uJUxdUWtP/zwA/Ly8uDv74+cnBz89NNPmDdvHq5fv27/PpqnjGtPam2hpufqzcrKyrBlyxb885//dFjfW2NK5CxvyWpX1OqqvFZDnS3UNqbMamZ1S3+Y1d7JaybymZmZ+N///oe8vLw290mS5HBbCOGwbs2aNd16LKvVilmzZmHVqlUYPHhwh+3GjBnT7sVXZs+ejUmTJqGsrAzr1q3Do48+im+//Rb+/v7t9vfmPvdlnQCQmJiIxMRE++3k5GSUlpZi3bp19sDsqM6Oauiov63bqKnWWxlTV9QqyzIkScKnn34Kg8EAAFi/fj1mzJiBd999F3q93mPG9VZqVdNz9WabNm1CSEhImwvt9NaYEjnLW7IaUFeGdVZHe/29uY2a6lTbmDKrmdWdYVZ7Pq84tX7BggX46quvsHv3bsTExNjXm0wmAGhzJKqioqLNUbbuqKmpwZEjR5CZmQmtVgutVotXX30Vx48fh1arxa5duzrd3mAwICEhAePHj8e//vUvnDlzBjk5OfY+X716tc02P/74I3bs2NGndXZk7NixOHfuXIf3m0wmNDY2orKyssP+dFZnZGRkn49pR7qqtUVPx9RVtUZFRaF///72sASAoUOHQgjR5iqoN/dHjePak1pbqPG5KoTARx99hDlz5tg/keiIEmNK5CxvyWo1Zditvgao5X1JC7WNKbOaWd3SH2a1d/LoibwQApmZmfjyyy+xa9cuxMXFOdwfFxcHk8mE7du329c1NjYiNzcX48aN6/HjBgcH48SJEygoKLAvc+fORWJiIgoKChy+n+JsHRaLBYDtyLLZbMahQ4fs9x84cABmsxknTpzo0zo7cuzYMURFRXV4f1JSEnx9fR36U1ZWhpMnT9r7016dBw8ehNlsxo4dO/p8TDvSVa0d6WpMXV3rvffeiytXrqC2tta+7uzZs9BoNA5hdjO1jmtPau2IGp6rubm5KCoqwlNPPdVl21sd0954zpHn8ZasdvVrXXt6K6/d4bXuZszqXzCrmdUtmNUeQLnr5rmf559/XhgMBrFnzx5RVlZmX+rr6+1tXn/9dWEwGMSXX34pTpw4IR5//HERFRUlqqur7W2WLl0q5syZ47DvU6dOiWPHjolp06aJlJQUcezYMXHs2LEO+9LelXAPHjwoEhMTxaVLl4QQQpw/f16sXr1aHDlyRFy8eFHs379fpKWlibCwMHH16lX7dpMnTxZ33HGHyM/PF/n5+SIsLExotVqX1Pnmm2+KnJwccfbsWXHy5EmxdOlSAUB88cUXHdYphBBz584VMTExYseOHeK7774TDzzwgBg5cqRobm7usM4RI0aIAQMGuGxMe1JrT8fU1bXW1NSImJgYMWPGDHHq1CmRm5srEhISxNNPP+1x49qTWtX4XG3xu9/9Ttxzzz1t1is9plOnTm33MYha85asdvVrXV/mtdrel6h1TJnVzOpbHVNmtbp59EQeQLtLdna2vY0sy2LlypXCZDIJnU4nxo8fL06cOOGwnyeeeELcf//9DusGDBjQ7r470t6bg5afSCkuLhZC2H4q4uGHHxYRERHC19dXxMTEiFmzZrX5WYhr166J2bNni6CgIBEUFOTSOt944w0RHx8v/P39RWhoqLjvvvvE119/3WmdQgjR0NAgMjMzRVhYmNDr9WLq1KmipKSk0zpnz56tulp7OqaurlUIIU6fPi0mTpwo9Hq9iImJEYsWLXIIMU8Z157UqsbnqhC2n6jR6/Viw4YNoj1Kjumt/vQTeQ9XPy9u1ptZ7erXur7Ma7XVqdYxFYJZzay2YVZ7J0kIIUBEREREREREquDR35EnIiIiIiIi8jScyBMRERERERGpCCfyRERERERERCrCiTwRERERERGRinAiT0RERERERKQinMgTERERERERqQgn8kREREREREQqwok8ERERERERkYpwIk+ksKysLNx5550ue/xXXnkFzz77rEse22Kx4Pbbb8fRo0dd8vhERETOYFYzq4nUjhN5om6QJKnTJSMjA4sXL8bOnTtd0r+rV6/irbfewvLly+3rUlJSsHDhwjZt//3vf0OSJHubzuoaOHAgAKC8vBwLFizAr371K+h0OsTGxmLatGn2enU6HRYvXoyXX36512slIiJqD7OaWU3kDbSu7gCRmpSVldn//vnnn2PFihUoLCy0r9Pr9QgMDERgYKAruoeNGzciOTnZHubO+vLLL9HY2AgAKC0txZgxY7Bjxw4MGzYMAODj44MLFy7g3nvvRUhICNauXYs77rgDTU1N2LZtG+bPn48zZ84AAGbPno0lS5bg9OnTGDp0qKL1ERERdYVZzawm8gb8RJ6oG0wmk30xGAyQJKnNutan62VkZGD69OlYvXo1IiMjERISglWrVqG5uRlLlixBWFgYYmJi8NFHHzk81uXLl/HYY48hNDQU4eHhSEtLw4ULFzrt3+bNm/HII490u66wsDB7DbfddhsAIDw83GHdvHnzIEkSDh06hBkzZmDw4MEYNmwYFi1ahAMHDtj3FR4ejnHjxuGzzz7rdj+IiIhuFbOaWU3kDTiRJ+oDu3btwpUrV7B3716sX78eWVlZmDp1KkJDQ3Hw4EHMnTsXc+fORWlpKQCgvr4eEyZMQGBgIPbu3Yu8vDwEBgZi8uTJ9qPxrVVWVuLkyZMYPXq04v2/fv06tm7divnz56Nfv35t7g8JCXG4PWbMGOzbt0/xfhAREfUWZjURqQkn8kR9ICwsDG+//TYSExPx5JNPIjExEfX19Vi+fDkSEhKwbNky+Pn54dtvvwVgO1qv0Wjw97//HSNGjMDQoUORnZ2NkpIS7Nmzp93HuHjxIoQQiI6OVrz/RUVFEEJgyJAhTrXv379/l59IEBERuRNmNRGpCb8jT9QHhg0bBo3ml+NmkZGRGD58uP22j48PwsPDUVFRAQA4evQoioqKEBQU5LCfGzdu4Pz58+0+RkNDAwDA399f6e5DCAEA9gvudEWv16O+vl7xfhAREfUWZjURqQkn8kR9wNfX1+G2JEntrpNlGQAgyzKSkpLw6aefttlXy/fiWjMajQBsp+3d3CY4OBhms7lN+6qqKgQHBzvV/4SEBEiShNOnT2P69Oldtr9+/XqH/SQiInJHzGoiUhOeWk/khu666y6cO3cOERERGDRokMNiMBja3SY+Ph7BwcH4/vvvHdYPGTIER44cadP+8OHDSExMdKo/YWFheOihh/Duu++irq6uzf1VVVUOt0+ePIlRo0Y5tW8iIiI1YlYTkStxIk/khmbPng2j0Yi0tDTs27cPxcXFyM3NxR/+8AdcunSp3W00Gg0mTpyIvLw8h/Xz5s3D+fPnMX/+fBw/fhxnz57Fu+++i40bN2LJkiVO9+m9996D1WrFmDFj8MUXX+DcuXM4ffo03n77bSQnJzu03bdvH1JTU7tfOBERkUowq4nIlTiRJ3JDAQEB2Lt3L26//Xb89re/xdChQ/Hkk0+ioaGh01Psnn32WWzevNl+2h8ADBw4EPv27cP58+eRmpqKu+++G5s2bcKmTZuQnp7udJ/i4uLw3XffYcKECXjxxRcxfPhwTJo0CTt37sT7779vb5efnw+z2YwZM2b0rHgiIiIVYFYTkStJouXKGESkekIIjB07FgsXLsTjjz/ukj6kp6dj1KhRWL58uUsen4iIyJ0xq4lICfxEnsiDSJKEDRs2oLm52SWPb7FYMHLkSPzxj390yeMTERG5O2Y1ESmBn8gTERERERERqQg/kSciIiIiIiJSEU7kiYiIiIiIiFSEE3kiIiIiIiIiFeFEnoiIiIiIiEhFOJEnIiIiIiIiUhFO5ImIiIiIiIhUhBN5IiIiIiIiIhXhRJ6IiIiIiIhIRTiRJyIiIiIiIlKR/w8ib2evrxZKhAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "fig, ax = plt.subplots(1,2, figsize=(10,3), constrained_layout=True)\n",
+ "e = ax[0].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][0], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "n = ax[1].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][1], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "fig.colorbar(e, ax=ax[0], label=\"East Velocity (m/s)\")\n",
+ "fig.colorbar(n, ax=ax[1], label=\"North Velocity (m/s)\")\n",
+ "for a in ax:\n",
+ " a.set(xlabel=\"Time (UTC)\", ylim=(-10, 0))\n",
+ "ax[0].set(ylabel=\"Depth [m]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The next step we need to do is to make sure we correct the ADCP measurement for the vessel motion. This is not done natively in the raw ADCP file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Correct velocity\n",
+ "ds[\"vel_bt\"] = ds[\"vel_bt\"].where((ds[\"vel_bt\"] < 5) & (ds[\"vel_bt\"] > -5))\n",
+ "ds[\"vel\"] -= ds[\"vel_bt\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then rotate into principal coordinates."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Rotate to principal reference frame\n",
+ "ds.attrs[\"principal_heading\"] = dolfyn.calc_principal_heading(ds[\"vel\"].mean(\"range\"))\n",
+ "ds.velds.rotate2(\"principal\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And replot...\n",
+ "\n",
+ "The sign associated with the streamwise velocity is a byproduct of the principal direction calculation; it should be associated with ebb or flood tide based on visual observation. The sign associated with the cross-stream (transverse) velocity is related to the streamwise velocity by the right-hand-rule."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Text(0, 0.5, 'Depth [m]')]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAE3CAYAAAAJ2HoWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClwElEQVR4nOzdd5wdZb348c+0M6dv382mN0IJxZggBBQISiheAeFSLl6aAuYCIkTgR0ClXAERRBSlKE0uFtQgF5V6BUKVIiWUECkhCcluku17+rTfH8/ZkyxJ4OyyYZM93/frdV67Z87MM995Zs5855kz84wWBEGAEEIIIYQQQgghtgn6cAcghBBCCCGEEEKI8klDXgghhBBCCCGE2IZIQ14IIYQQQgghhNiGSENeCCGEEEIIIYTYhkhDXgghhBBCCCGE2IZIQ14IIYQQQgghhNiGSENeCCGEEEIIIYTYhkhDXgghhBBCCCGE2IZIQ14IIYQQQgghhNiGSENeCCGEEEIIIYTYhozIhvwNN9zApEmTCIfDzJw5kyeffHK4QxJCCLENuvLKK9l9991JJBI0NjZy+OGHs3Tp0o+dbtGiRcycOZNwOMzkyZO56aabPoVoty2Sq4UQQgyFSs3VI64hf/fdd3P22Wdz0UUX8fLLL/OFL3yBgw8+mBUrVgx3aEIIIbYxixYt4owzzuAf//gHjzzyCK7rMnfuXNLp9GanWbZsGYcccghf+MIXePnll7nwwgs566yzWLhw4acY+dZNcrUQQoihUqm5WguCIBjuIIbSHnvswWc/+1luvPHG0rAdd9yRww8/nCuvvHIYIxNCCLGtW7duHY2NjSxatIh99tlnk+P8v//3/7jvvvtYsmRJadi8efN49dVXefbZZz+tULdqkquFEEJsKZWSq83hDmAoFQoF/vnPf3LBBRf0Gz537lyeeeaZTU6Tz+fJ5/Ol977v09HRQV1dHZqmbdF4hRCikgVBQG9vL6NHj0bXP9kFYrlcjkKhMKB5f3gfb9s2tm1/5HTd3d0A1NbWbnacZ599lrlz5/YbduCBB3LrrbfiOA6WZZUd50gkuVoIIbYdkqu3XiOqId/W1obneTQ1NfUb3tTURGtr6yanufLKK7n00ks/jfCEEEJswsqVKxk7duygp8/lcoyOxOnEK3uaeDxOKpXqN+ziiy/mkksu2ew0QRAwf/58Pv/5z7PzzjtvdrzW1tZN5iHXdWlra6O5ubnsOEciydVCCLHtkVy99RlRDfk+Hz5zs6mzOX0WLFjA/PnzS++7u7sZP348K1euJJlMbtE4hRCikvX09DBu3DgSicQnKqdQKNCJx6/Dk4mW0fVLBp8TU+9ttJ//uDP8Z555JosXL+app5762HlsKg9tanglk1wthBBbP8nVW68R1ZCvr6/HMIyNzuivXbt2ozMufTZ3eUYymZSDAyGE+BQMVcKMmQYxzfj4+QXq14CB7Oe/9a1vcd999/HEE0987C8So0aN2mQeMk2Turq6suY3kkmuFkKIbY/k6q3PiOq1PhQKMXPmTB555JF+wx955BH22muvYYpKCCHEp0Gz9LJf5QqCgDPPPJN77rmHRx99lEmTJn3sNLNnz94oDz388MPMmjVrm7jnbkuTXC2EEJVLcvXQGVENeYD58+dzyy23cNttt7FkyRLOOeccVqxYwbx584Y7NCGEEFuQbmjoZhkvo/xfFc444wzuuusufvvb35JIJGhtbaW1tZVsNlsaZ8GCBZxwwgml9/PmzWP58uXMnz+fJUuWcNttt3Hrrbdy7rnnDunybsskVwshRGWSXD10RtSl9QDHHHMM7e3tXHbZZbS0tLDzzjtz//33M2HChOEOTQghxBakWRqa/vGJX/PLPzjoezzafvvt12/47bffzkknnQRAS0tLv+efT5o0ifvvv59zzjmHX/ziF4wePZqf/exnHHnkkWXPd6STXC2EEJVJcvXQGXHPkf+kenp6qKqqoru7W+67E0KILWio9rd95fxl8nRi+sffd5f2Pb7y3huyn9+GSa4WQohPh+TqrdeI+0VeCCFEZdKN8i7F071tozdaIYQQYqSRXD10pCEvhBBiRNAMDa2MgwMNOTgQQgghhoPk6qEjDXkhhBAjQtln+eXgQAghhBgWkquHjjTkhRBCjAiaXmYHOoEcHAghhBDDQXL10JGGvBBCiBFBM3Q04+OfqqohfbwKIYQQw0Fy9dCRhrwQQogRQS7XE0IIIbZukquHjjTkhRBCjAiaNvTPphVCCCHE0JFcPXSkIS+EEGJE0AzKOsuvydV6QgghxLCQXD10pCEvhBBiRCj7kTbSgY4QQggxLCRXDx1pyAshhBgRNF1H08voQKeMcYQQQggx9CRXDx1pyG/GuT/vJtXTQ/P4GgAyaYe+2znqG2MYxTNJuZxHZ0eWZJUNwFsvr+ALB2zHC8+sVOOOqiIUNinkXCxbVXc+51JbFynNq2VlNw3NCQACH3q6cwA0j4mjaRotq1MA2GGTXMahbXUnAH/66WSO/s771I2qBqBtdSeu42Jaaj521CaXUmVV1SdIVKt5rn6/jcBX16tE4mEAYskI+UyBno4U2+82BoBVK7pw8i522CISCwGwrqWLwA/QDb00ra5pRBM2HWt7AQiFLdLdGQCiiUjpPpjAD2hv6SAcVdNpukYuk8MO26W6yPSmAShk8+RSaerHNQNg2VYp5pqmKtZ90I5TKJSmMy0LgERtgobmJG8897aq/zENZHoyJOtU/WaL9dE3H9dxqW6owTANAHo7e2kcW1+a15qVa2meNApNU8vQ05EiEg/j5F0AJm5Xz9tvtJTqPNOTIZ/JEUlGS7E5eYeaRrWOutt6yPSkSp+F41EaRtcxZfs6AJa8tgbD0Cnk1LI1jqkhncrTOErF392ZpaY+StuaNIWcA8BtFzeyz1efYpe9d2b50tUATN99Eh1tGdpb1bZihSwax9aQ6c0DMGZ8Ffm8h6ZpuK4PQD7vkkza5PMenqeGFXIuvd1Zxk2qZemrq8im1XqtH12PZZul7aJzXYppOzXy8O+fLi5XjGRDNWuXrWK3fXcDYO2qTmJVUVzHwyj2VqrpGt1tPWqaqE2yNg5ALlMoxfD5fUbzyitqOeJJm7o6tb24XsD3/sPk/Juy6+szYmDbal16XkBnp1rfPZ1Z6hriVNeoeJe928Wuu9XiuKVJyWb90nfNtAyamiJYpkZTvYq1Jw2ptF8av7FOp73TZ11bnupqVW5rS4aqahvD0KirVdtEZ7fHmpZ0KaYddqiiuV5tXy1tGqm0T221ijkRCyhuinT1auQLAaapESl+RXQdsjnoSak4xjdrrGgJaG7QyavNgVw+IBJefxa7Za3LqAYVi2nAqGo1YluvRbGKiYV9ejNqOWviHrbpYxrrr2kreDqupxG2PAAsw8fzdTQCTH19neh6QMRw8AINS/fwAx0fMDU1TtjIk/XCpZ5oM+luhlLZj7QpYxyxbeh48znWNU7B8tS+rabzPdprtwMgWujB8NW+9P3QDkzreZ5/JT8HwPQlv6V36u6kwmrfG8+1kwslsJ0Mpqv2KYFuEBQ7Wwp0g/jad0vz1Zw8TlUDALrnkI/VkQ+p/XQss468nQTAMSOM3n5XPvjX6wDUrlvKuqad0QP1XfI1A1e3yPoqZ1T7bXTp9WpZ/HWEirF02U0qDjQ0ApanR7Gb8QoAuVCCbq2WjBshYal9WGchSdgoYOlqJ5d2w4wxVtGlqeXVCIjTQ6zQBUCLNZGCr/Jok95CJ/XEdZXTq9OrydlVxNNrAGirmkzKV8vqBgY1RieZIFaqm7SrliVupqny2+k11HFU3OvC9NX+J5peS6AZ6L6KzwnF+CCyPU6g9lVhPU8hsGgMWgDIGnEKgU2Xo+abtNKYmkvaU/PKuSESVoaErvKJi0WXW0XSLB6XkCfi9NJjqeVP+1GCQEMrXrtrawUmrnqCtWM+W9oe1oYnkA9CpXjcwCSJqq817iiazFbafbWumv2VpKwaXm0bB8AXki8Te/RumPl5OurU9jh+ux155NU8u4ZeZ601VpWr5WjJ1bO9/pbalgIPXzNI2arOYoVuOswmPAwSqP1lbc9yWqp2wAsMRmXfK24DSbJWnKwfxdRcOgpVANSHOvHRS/UUN9Jk/TBRXW1XOh6rck1MtFdiFNeNrxm8l59Ird3LlHVPAfBK9VxilprG0Hw+6K0FYGpyNSZquna3jjHBcgB6rDp6XZXPR2mrGDttZ1YvXay2vcAnban4rKDAaqeZUaG1pXpvCU2imnYA8noUF5PGrCo3Fa7D9AtYrvq+h/I95CI1pKxqADxMEm4ntpNiXWQ8AAU/RFjPUZ9eTjasxksZ1UT8FAVdHY8CxJxuuiz1nTbwqM2uImOr8U3fwTHs0vrOexbTPPWdXhuZgEZAY3oZnXF1/JzIdeAaIXxN5VVXD5HToviBem9pDr1enISRIhSo45RIoZegeKyZDlWTDdQ6KwQWNVqHms7P42vFYxzNJE2CcHFdGr6Lo9mYODio7daiQIBGoGn4gVGs8zyebhIUf+3W8dEISrE6QQibHHrglfZ/Xen1x1lDQXL10JGGvBBCiBGh7J5w5XI9IYQQYlhIrh460pAXQggxIshZfiGEEGLrJrl66EhDXgghxIigaWXed6fJfXdCCCHEcJBcPXSkIS+EEGJEkLP8QgghxNZNcvXQkYa8EEKIEaHs++58OTgQQgghhoPk6qEjDXkhhBAjgpzlF0IIIbZukquHjjTkhRBCjAjybFohhBBi6ya5euhIQ14IIcSIoJs6uvnxiV8P5OBACCGEGA6Sq4eO1JAQQogRoe9yvXJeA/HEE0/wla98hdGjR6NpGvfee+9Hjv/444+jadpGr7feeusTLJ0QQgix7ZNcPXTkF3khhBAjgkr85VyuN7CDg3Q6zW677cbJJ5/MkUceWfZ0S5cuJZlMlt43NDQMaL5CCCHESCO5euhIQ14IIcSIoOnl9YSreQM7ODj44IM5+OCDBxxPY2Mj1dXVA55OCCGEGKkkVw8dachvxjVnVvU7O7N5Jqdc3stVp1UX32+v/hwxYfNl3+NTcAJWr0oBEApbpHryANQ3xig4FgCZjEv7ujS1dTFAPa4h8AP8wC+V5TouRvHL0NPRTShsE4lHSp8blgFATX2MtjW9APiuT3WjWjYrZBbL8QiFLbrWdhAKjQOga2038Zo4ruuVysumskTiEexICDus4sym86xb3UUsoeabzzmku1Olaeyorebr+RRy+dIZtmgiimmZZHrTAHieh2mpeILiMqY6e9SymwbNk5rVMhk6mq7h5B1VT1097Dh7ZwDaWztZ4/lYtlWK17ItUt3p4vJaBEFAKGwX69TAtEycgirLsi1CYYuONd3F8UNYIZNEwi7WcQpd0whHQ6reXJ9EdYyONV3Fusio8oqxAbh5h5723tJ7yw4RTcSKdaXqo+/EZCFXIBy1S3XmeT6+65NOFQDoWNtTLMMgHLVKZfrFddS37jMZB9MyaBpXX1pHvuvT26XqwR9XRSxm0d2dJ5dRsVbXRjCL9yyl06r+I7EQhYJHPu8RjofpWtuxfjlCJoahl+I2NtgpW3YIz1Ex+QGldVE3qpqWNWuJVcVKZfSt/8axdXieX1rHQaAm7En5FHIqxuioGLat5tnZkgNMqqrVuujtdYhEDBxHTReLGXR3q5hymQLhiEE4rKb1PZ9IWKNtlSrXtnWyOY9wRNWpU/CIx3S89Zs+rhtgmhodHWpdTBtv0tGtY5o6enGbrqtX9d/UsH7XaugaTc2xYrk+IUuj4KrP8oUATVPLCGBZOtVx9b9pahiGhqZB8WtBxPZxXB2tWNWmoabPO9BQpYJd02kQCwesaVfjjGowKa4mTAPaU33fMahPqkAKrk6x6sm7OmHLZ+5uql6fWdJL3jXBAsdX+5OoWSDvWdiGg+MbGJqq87BZIKQ77DK1iXL09BhljVeugfaE29PT02+4bdvYtj1k8cyYMYNcLsdOO+3Ed7/7XebMmTNkZQuldqc9PpSrdySxifHqgPfe3Y6ZU2rVgGlnEgbW/+4ydaNpUs/9hXX1OwLQsO5N8lVN2N1rAAjM9ftfAp9IxwdoNaMB0DyHcEZ9Ab1EMW/56ruWqpmAFvi00QhAQuslXujCK37J82aUardNTauZuLr6Hi5PjwJgTKwNA4+Q4ZZmn9aT9BRiaARYqP1TxgkRNgpk3TAApubj6DYmarqMFyFirt9PdRViREy1Pwy5WTxTp0AxD5k2eTNKKBQHQA88vOKdmbV6Ow42uqZ2IFVuO22eqkufGJblYKLKdfUQgbb+VzjDyeJbKj473U4y2kVGi5c+d30T11DLnw/CBGhUWyqXFgILjYC8p9aDG+i4gYFWPHaI+L04hkXUV+OHnRQEAU5xvXm+gRvomMW4fUNH89bn7XwojqU5+MXlNPAwNZdUoLY1TQvIaxECtFKdOIGFbfql9RgDNN/FMdbvU7xAIxOqIig+VsvUHDoyYXI18VKckWwHBVPlEi3w8dHR8cmgxkmEYvjo9Lgxkna1Ksd3cAJVVxoBYUNtByYOKT9BwVPrOmTkSQfR0nIBpPMWga3h6apuYrkOYlYeXfPRHFVO3/rdcDnUOtZLdaBpATkzXlquD/OL694zbMzAKQ4zCBku2SAKQFzrIKqniafVd6Anuh2G5lEwo6XxTa9Ab1h9j2vcLOlQFRoqB2W8CFVBG9lQkoyn6jCkO0S9HqxcD6mIOibK+zY1zhqcsI3lqePvbque2kKrqpNQNbrvktNV7o77XZh+gV5HlRk1C1A8Psj7Iar0bgLdoBAUjxXtOuJOV2l7BAiMGPFAHVtmNLWXCvtpPE2tm3WhMdS5av6xQhcxugBI2TVoxQOpDfcJgaaRdcJMn6r2Me++9x5eYBAKchRXCR4qx4a8HHld1aERuASBjq/pTJk8eaP1tCkfzpWflOTqoSP3yAshhBgR+nrCLecFMG7cOKqqqkqvK6+8ckjiaG5u5pe//CULFy7knnvuYfvtt+eLX/wiTzzxxJCUL4QQQmyrJFcPHflFXgghxIgw0LP8K1eu7Pdr7lCd4d9+++3ZfvvtS+9nz57NypUrueaaa9hnn32GZB5CCCHEtkhy9dCRX+SFEEKMCAPtCTeZTPZ7DeWleh+255578vbbb2+x8oUQQohtgeTqoSO/yAshhBgRNrwU7+PG+7S9/PLLNDc3b5Gy8/k8zz//PO+//z6ZTIaGhgZmzJjBpEmTtsj8hBBCiMGq1Fy9JUhDXgghxIgw0Mv1ypVKpXjnnXdK75ctW8Yrr7xCbW0t48ePZ8GCBaxatYo777wTgOuuu46JEycyffp0CoUCd911FwsXLmThwoUDW6CP8cwzz3D99ddz7733UigUqK6uJhKJ0NHRQT6fZ/LkyZx22mnMmzePRGJTXcAJIYQQn65Ky9VbkjTkhRBCjAhb6iz/iy++2K8X2/nz5wNw4okncscdd9DS0sKKFStKnxcKBc4991xWrVpFJBJh+vTp/O1vf+OQQw4Z0Hw/ymGHHcYLL7zAcccdx0MPPcSsWbOIRqOlz9977z2efPJJfve733Httddy5513csABBwzZ/IUQQojBqKRcvaVJQ14IIcTIoGmUns33ceMNwH777Vd6HOKm3HHHHf3en3/++Zx//vkDmsdAzZ07lz/+8Y+EQqFNfj558mQmT57MiSeeyBtvvMHq1au3aDxCCCFEWSooV3+Y4zi0traWboOrra39ROVJQ14IIcSIoGllXq43wIODrdEZZ5xR9rjTp09n+vTpWzAaIYQQojyVlKtBXfL/m9/8ht/97nc8//zz5PP50mdjx45l7ty5nHbaaey+++4DLlt6rRdCCDEiDPTZtCPFypUr+eCDD0rvn3/+ec4++2x++ctfDmNUQgghxMYqKVf/5Cc/YeLEifzqV79i//3355577uGVV15h6dKlPPvss1x88cW4rssBBxzAQQcdNOAe8+UXeSGEECPClupAZ2t33HHHcdppp3H88cfT2trKAQccwPTp07nrrrtobW3l+9///nCHKIQQQgCVlaufeeYZHnvsMXbZZZdNfv65z32Or3/969x0003ceuutLFq0iO22267s8qUhPwRuuah+QOOfe0TfGaaqjT67+WEYPcoCoHWtQ7dpEI4YAHR25jBNHTvc/57I9tZuAEZNGIWma+jFS1E8z6dQvFdE1zTiyTAA1XUxQpYq07RULEteXoFlWzj5Am8vWaemMXV8z6eqJk6h4AHg5h0iTTWYloHrqGGhsIo33ZsFIAgCapvrAPA9n3R3GoBkreo1ORKPqPgcj3DULg3vWtdNqlMti+cWy46oZ0UWsnkS1ZHSMhdy6y9LsWMRDEMtR/faDmisJdXRA0C8Nkk4apPq7FXxRMNE4mG6e1VM6Y5ufM9j1IQmVcfrunEKLpZtlZYlHDHp7soWlyGOaRkUcg4AuaxLPBnGdYrLsLaDWFW8tI5ymTzhaLg0/5pRtXS25tFNFe/oSU3oho5tq/dO3iESC5fWoRUycF2PXFbNL9WdZtzkBgqOV1qHfcJRC7M4zHV8sun1dWaHLWrqo6x6b21xvQQEZkA8HqJznaqL0WMT5POq3pPJYvxZD13XSvccheOqMy3D0An8oDTeWsvEDq3f4SbqkqX/0z2q7hI1cVzXw47apTijiTCRmCozn3MIR1R5gaFjFMdprNP5V7G+/AAcp//9T4WCD0A24xAEAbbdVy9G6bKsKTs0UFVl4bpBcb42UTuguUmt544utdzRqNolFkwdy9TQdfBU8QQBNNRodHerMrvSBo210N2tUZ1U8b33fp66OptcPihN5/lBaX1mMi5r2zSaalWM9TU6a9o8ipsv+YKaD0Ay6uN6Gp29Gn25zPN1LBNGN6oBkZCHaRo0VXtEQy4AqYhOJOQzeXSxTFcjElLB1EayZN3i9zVvYepquBny0ZLFfYIRMDG5FhgDwF47bqq38759UGQTnw2frfmRNlvS66+/zuc+9zkA/vCHP7Dzzjvz9NNP8/DDDzNv3jxpyBdNnjJlQOPH9/gK8b43U6b2+yz9zD3ontov+6EogWFhOmpfZ61YijdaPfrPMVQOi+S6APDMEBpRQpqa1sOkYITxKO63Agg0tX2m9SSmrr7XcXIAdBaSRM0cqXwIL6q+h2kvikZAgIZfLMf1NSzdJeWovB82XIzAxdZUOa5uYvgujqE+j1LA8Yv7AC9PYGhkffVZzopj+gVcU71PkyCqF/M9OhGvl25d5fyMmSASOKV6CtDQNbVT8zFwNbX/yUdqiHZ9gBupBkDzPfJahLacOi6qDqWx9QK2mwGg26hR5RX3pToBeT+Ebah5ZZwQKcLUhFXd5c0oVuCQ0dT+y9LzRDNthMIFAAq6RVc2Sk04XYrTqR5VqvusEScf2ER0Nf8eL4mpeWTdYn2ZWZzAwg/U+Lrv4qOzrlvlEC0Z4KYyGFYYPfBL9WEZPgVs3MAozdc01uc0x7CJACE3W6r7HidG0kpjaCpPWYU0WiTA8w1yVkzFE/TiBzphLYuLRU9B5dWqaDchvUBGU9uh5eXIexZVpjrW6vUSmEaAr60/ngh0g7xn0aS3kK0br+rLN6nTu0rjRCy1XVoU0AMVV1c+SmO4VZWrVZfG9XS1zguGyhdG4JY+M3wHQ/PQNVVHdraTwG6iM67yT8LvxmH9Ma+v6RTMCF6g6tkzbQzfJaep5Q0CjZRVTaLQQSSktvWcbxPLtuNEqjB9tb3ohk+33UDet4n4qeK6KZAJqe0vnu8ETcNEjR9y0rRHxhIL1LFnldmD6xfrVHPp8Grxozpxr7sUa18cAAU9ghcYuLpaFi8wCNDI6bHS+CEK2Hl17FoIxekIjQJAC4LS9yZMhpTft007RI0soL4bUyZPZltRSbn6j3/8Y1nj2bbN6aefPuDyt/0aEkIIIQBNX3+m/6Nfwx3p0HIcB9tWB5X/93//x6GHHgrADjvsQEtLy3CGJoQQQvRTqbn6w3p6erj33ntZsmTJoMsY4VUkhBCiUpR3YFDeJX3bkunTp3PTTTfx5JNP8sgjj3DQQQcBsHr1aurq6oY5OiGEEGK9Ss3VRx99ND//+c8ByGazzJo1i6OPPppdd9110M+ul4a8EEKIEUEzjLJfI8lVV13FzTffzH777cd//Md/sNtuuwFw3333lS65F0IIIbYGlZqrn3jiCb7whS8A8Oc//5kgCOjq6uJnP/sZP/jBDwZVptwjL4QQYkSopPvuQD3SJh6Ps99++9HW1kZPTw81NTWlz0877TSi0egwRiiEEEL0V2m5uk93d3fpufEPPvggRx55JNFolC9/+cucd955gypzxNTQ+++/zze+8Q0mTZpEJBJhypQpXHzxxRQKheEOTQghxKeg0i7Xq6+v5+CDD+bGG29kzZo1/RrxABMnTqSxsXGYots0ydVCCFHZKi1X9xk3bhzPPvss6XSaBx98kLlz5wLQ2dlJOBweVJkj5hf5t956C9/3ufnmm5k6dSqvv/46p556Kul0mmuuuWa4wxNCCLGlaTqUcwZ/hPSgs3TpUu677z4WLlzI2Wefza677sqhhx7KYYcdxq677jrc4W2S5GohhKhwFZar+5x99tl87WtfIx6PM2HCBPbbbz9AXXK/ucfTfZwR05A/6KCDSh38AEyePJmlS5dy4403fuTBQT6fJ59f/yiznp6eLRqnEEKILaTcM/gj5Cz/hAkT+Na3vsW3vvUturu7uf/++/nf//1ffvzjH1NTU1Nq1O+7774YW8m9hpKrhRCiwlVYru5z+umn87nPfY6VK1dywAEHoBdPZkyePHnQ98iPrFMdH7LhvQibc+WVV1JVVVV6jRs37lOKTgghxFDSNL3s10hTVVXFf/zHf/D73/+etrY2br75Znzf5+STT6ahoYHf/OY3wx3iZkmuFkKIylFpuXr27NlcddVVvPXWW8yaNYuvfvWrxOPx0udf/vKX2XvvvQdV9siooU149913uf7665k3b95HjrdgwQK6u7tLr5UrV35KEQohhBhSulb+awQzTZO5c+dy/fXXs3z5cv7+978zbdq04Q5rkyRXCyFEhamwXD1v3jyef/55dt99d6ZNm8Z5553Hk08+SRAEn7jsrf7S+ksuuYRLL730I8d54YUXmDVrVun96tWrOeiggzjqqKM45ZRTPnJa27axbXtIYhVCCDF8KrUnXIBcLsfixYtZu3Ytvu+Xhmuaxle+8pUtPn/J1UIIIcpRabn6xBNP5MQTTySfz/P3v/+d//3f/+WYY47BcRy+/OUvc9hhh3HggQcO6ikzW31D/swzz+TYY4/9yHEmTpxY+n/16tXMmTOH2bNn88tf/nILRyeEEGJrUW4vtyOtJ9wHH3yQE044gba2to0+0zQNz/O2eAySq4UQQpSjUnO1bdsccsghHHLIIdx8880899xz3HfffXz/+9/na1/7Gvvvvz8LFiwY0GX2W31Dvr6+nvr6+rLGXbVqFXPmzGHmzJncfvvtpU4EtiXfnLvhO4ubH64hnVWXXrSvy9DRkek3frI2QeAXP2/pYOzUZjrXqU6AapuqKOTUI3062tNU1UQA6FyXxi9ezjF2onpcUV1zDV1re7DsEO8vfhuAWG0V2Z4MNfXr7+MIxyNk0zmskEV1XQyAdCpPKGyx6m11qWNNUz01DWqa1uXtpWk71nRiR8M4eQcA3/PxPI9QOASAHbVp/yALgGmrYemuXvU+ZGIYan2GIyau42JaavONxKOlZfZcj2xPhlh1AqBUN+F4ZIN5+hSy6ztNskKh0s7Cd31ymQJVNeqsWFurg+uu/3XL93ywDFxn/YFxPudi2SqWmlF1AKXPTcskWRsvrYfA94nXJErLUtcQI593yeX84rJE6O1K0TB6/f2iobCFFTKK67SG3t48Y8claG1NF8dQy+Z5AdFEpDhfvbTsAL1dGaqqI8Rr4sX4fDIZh4aGCJ6n5p3Pe9i2gWlqpNNuqRxN07Dt9fUPEE3YmJZBZ2cOgER1/7OI2VSWcFQ9SiNRpWLq7gwo5BzymTxWyAKgeXSc1e+tAcAOW6XLjFzHwymoGBwXqmtV+b3deaIRVReZTAGIlNaP63iYiRDxuFlcHp+GBhVDR0cesLBDaj0nkzY9aY11HWoe6ZRLKLR++UxL/e/7AaCmCdsamkap/OqYx+p2g3DYoKlGre/elE0271NbbdKyVpUdsnRcVy1XKGQQj5t4xXWTyQXU1xpkit/xRBTautS8C05Ac31AbRLiYVV+KmcQs31cX8VUF8kwqi7B6EQPjq/qpTGpUW1nKfgqTtfX2W9ntQ6eWQIJS237X9wlDGyuA7Qxmxm+ldO08nq51UbWwcGZZ57JUUcdxfe//32ampqGJYZKy9WxvY7o977z1UVYuWIHfMkaNF99Z/VA/Q11twKQr26mjUYimtp36vj4moGBGk8jIOSqPBgzNXxNfUejhvre5v0QGTeMbXlkLZXnLN+lgEnczBIU91eJUIFeJ0oipMpKOxEM3yGtq2kc3yTi9ZbiMyyPhJkCoOBECdDIOGr/mQyHyfkRYqbKxwEaBm7p/4IRoSuvytW1GJqm9mdJM01tdhWuqcppN0cRR9WRY4QJDAtfV/upQNOI+Clgfe7z0XAMdRVGxrOJm1kMTcWbD0JoWoDvq20nZKh4UoGKY1R+OZ32qFKcuu+RjdQS9dT8W5x6DM0v7Tf7liUdqBxpaB5OYKL7KnZbK5APQiQtVQeWVsANLOpNdfLMyKsc37cp5/UIMcchlOkhUxMrzcPSPcJBhnavGoCI30sQQKTQW1z/PgQ+plc8RrHi2IZDwbewi9tAX30mQ2niThcAppsjZthkiWHiUB/uVpN7efJaGNtQx12G5+IFBlZf+aj68jAJBbliPeiEjQJ5PYoeUvWdzZj4YbVwXmBgFNexQ4iQpsqyDY9oXsWTi8RwfFWXOVPl75CXLa5rvbTdFYwIVuDiBOqYwLET+OgEgdqOQ0GOTBAjZKjYooUeNAJyuqrTnBUn5OXQdVWer+sE6OSsONXOOrVNWDX0xEYRdlL0mGr7snCwgjzpIErWUnHm/TD5QB17mlaBtF1Nt18FQNhKk/dt4qY67upyqwgX/+91o1RbvbiBVdyGwdNNqrOtOKbKvSmSpNwIUUtNE9Ey6IZPyo+hoeqyjnXU7LYvAKuXLi7VwY5Tt9F8/FEqNFd/2B577MEee+zB5Zdfzrvvvst9991HS0vLgMrY6hvy5Vq9ejX77bcf48eP55prrmHdunWlz0aNGjWMkQkhhPg0VOpZ/rVr1zJ//vxha8QPhORqIYSobJWaqzeUSqX63QbX0NDAOeecM+ByRkxD/uGHH+add97hnXfeYezYsf0+G4rOBIQQQmzl9DKfTbsN/gL8Uf793/+dxx9/nClTpgx3KB9LcrUQQlS4Cs3Vy5Yt48wzz+Txxx8nl8uVhgdBMOjb4EZMQ/6kk07ipJNOGu4whBBCDBNN09DKuBSvnHG2JT//+c856qijePLJJ9lll12wLKvf52edddYwRbYxydVCCFHZKjVXf+1rXwPgtttuo6mpaUiWb8Q05IUQQlQ4rcyz/CPk2bR9fvvb3/LQQw8RiUR4/PHH+x0caJq2VTXkhRBCVLgKzdWLFy/mn//8J9tvv/2QlTmyakgIIUTF6rvvrpzXQDzxxBN85StfYfTo0Wiaxr333vux0yxatIiZM2cSDoeZPHkyN9100yCX6uN997vf5bLLLqO7u5v333+fZcuWlV7vvffeFpuvEEIIMVCVmqt33313Vq5cOaRlyi/yQgghRgZNL7Mn3IGdw06n0+y2226cfPLJHHnkkR87/rJlyzjkkEM49dRTueuuu3j66ac5/fTTaWhoKGv6gSoUChxzzDHbZO/vQgghKkyF5upbbrmFefPmsWrVKnbeeeeNboPbddddB1ymNOSFEEKMDLqmXuWMNwAHH3wwBx98cNnj33TTTYwfP57rrrsOgB133JEXX3yRa665ZoscHJx44oncfffdXHjhhUNethBCCDGkKjRXr1u3jnfffZeTTz65NEzTNOnsTgghhNA0Ha2MM/h94/T09PQbbts2tm1/4jieffZZ5s6d22/YgQceyK233orjOBudhf+kPM/jRz/6EQ899BC77rrrRuVfe+21Qzo/IYQQYrAqNVd//etfZ8aMGfzud7+Tzu6EEEKIfgZ4ln/cuHH9Bl988cVccsklnziM1tbWjZ7p3tTUhOu6tLW10dzc/InnsaHXXnuNGTNmAPD666/3+2yk9forhBBiG1ehuXr58uXcd999TJ06dcjKlIa8EEKIEUEzDDTDKGs8gJUrV5JMJkvDh+IMf2keH2pA9z0jfUs0rB977LEhL1MIIYTYEio1V++///68+uqr0pAXQgghNqJr5T3SpniWP5lM9js4GCqjRo2itbW137C1a9dimiZ1dXVDPj8hhBBim1GhuforX/kK55xzDq+99hq77LLLRpfuH3rooQMuUxryW7lvzgXoOytUzY/vDXjj1XWlz03LIFEVBqC3K0Xb6k5qmqqKn63/ktTWxdANVU6iOoLn+QDksq4quTaKaRpUNyZ56x9vABCJRYkmo5iWQSisNpW21WCFLFzHxbTUmTLf88k5HqYdAsB1XAJfndHqWttBvCZZHM8jmojh5J3ieA6RUJSejl4AjA3Ozrn5QmkaACfv09uVBaC+sZZ0RzcTdlZntHo6erBs9WWI11Sh6RqFXL5UTk+HRi6VASBalSjWjVoe37WKf/1S7IVcgVBYxRwEAdl0gVhcnf2zqyN0dmRKy67pGp7nl5Y3WZugp6OXUFjVRTadxbQMClkVTygcIpvKUlWv1lFvbx7D0DGK60Y3dPQP3Tdk2yaGsX5Yssomn/co5NzSMNMOYdsGTkQtTyRsERtXTapXzTdZE8NxPapqogCEIwbhiEF3V4FEdQSAfN5D0zTqay1aW1X919aFMS0dy9IZN7mWjjWdxektOtvSNI1W9dQLJOLrY8ylMiRqEoTjsdLjQzzHJVIdw47apWGxmIEdtYvrMUXTuFpV735AOqViz2QDTFMvzteku1vF1lcnqd5CaV1kMg7Fk6lMm2JT3IxwXbU+ips9hqHRVOPRk1Jl1IxR465pzQFQ32Bjh8BxKZWhaRAPeyTjat0buke+UNzO02pYdRXEHB3bgsY6tY1ZJqxao9bV1Ek2alNR041t8Dl8d4M/PKveHz17wzPAGuu/+xvuqjc8i51ktloC+guxKXvtmNjk8BFD09SrnPG2oNmzZ/OXv/yl37CHH36YWbNmDdk9d/PmzeOiiy7a6JLDTbn77rtxXZevfe1rQzJvsbGa3fbt977rlccBiOS7AXAS9QCYhTR+RKfaUXk8ayVwNJteLw5And5GvHM5AJmmXUlk1XgdIXVQGTbyuH4E39fIBmp/3lmIEzPzOIFJMugCwAtq0dHIOOr4QNd8TN8hy/r3dq6bfFjlIktzqc23ANATrscpGERMtQ8uBDYRLUOkoHJ1ykriorbjcJAh0HTcQO1LXc+kNpwCIO1F8XWLgqHmGaCR1WJqfuQJNB1fX/99aKehdLWth45GgKurfVkocNEIMFDHBIbm0+tECelq35pzLUKGh+MX95VBgI+OXhw/bVdT07OCXGKMel8IEQRgGSopJMwMgW6ScVU+rLU68DQDU1PlawSYmosdqOOQHNHS/wBWrodwLItpBMVl1THCYTAtAtbvbzKORSEcRtfUfLusBlxPw9NV3HahFy0IsAppVQ+RJjQCLN3F9tVxTCEUxw90QloBy1UxOGYE283QadQSEKanoLaNuN2DoXlkneIxjJsiHCqQ19XnRuBjmy4eRilOTzfxAx3bzxAurnPf1wihtodOv6YUf4g8tqviCukumqvq28XENpxS3QHEsu3qve/RlRirtqUgQWc+zujwWgDyVpxeN069obZ7TzNxfYOsob4fjmFjeflSfRq+i2PY9FCtllfrpaXQRGOoDd1QseQDG0NzsXPdeNZoFatWIJFro9VsIqSp7bPaa+N9fxIA2VAcH506VBy+prPrdo288Y76juy+fTUU56n2wFXFiDa9P15/gXbVJj9XGkr/jd5+V0Z/xJjbvArK1RuaN28eAJdddtlGn0lnd0IIISqaputoZZzlL2ecDaVSKd55553S+2XLlvHKK69QW1vL+PHjWbBgAatWreLOO+8EVLL++c9/zvz58zn11FN59tlnufXWW/nd7343sAX6CA0NDey8887stddeHHroocyaNYvRo0cTDofp7OzkzTff5KmnnuL3v/89Y8aM4Ze//OWQzVsIIYQYrErK1RvyfX/Iy5SGvBBCiJFhCz2b9sUXX2TOnDml9/PnzwfUY9/uuOMOWlpaWLFiRenzSZMmcf/993POOefwi1/8gtGjR/Ozn/1sSB9n89///d9861vf4tZbb+Wmm27aqJO7RCLBl770JW655ZaNeuUVQgghhk0F5eotTRryQgghRgatzJ5wB3i53n777VfqAGdT7rjjjo2G7bvvvrz00ksDms9ANTY2smDBAhYsWEBXVxfLly8nm81SX1/PlClTpMd6IYQQW58KytW///3vOfbYY8sad+XKlaxYsYK999677PIHdqpDCCGE2Er1PZu2nNdIU11dzW677caee+7J1KlTpREvhBBiq1RJufrGG29khx124KqrrmLJkiUbfd7d3c3999/Pcccdx8yZM+no6BhQ+fKLvBBCiJFhgM+mFUIIIcSnrIJy9aJFi/jrX//K9ddfz4UXXkgsFqOpqanUn01raysNDQ2cfPLJvP766zQ2Ng6ofGnICyGEGBm20H13QgghhBgiFZar/+3f/o1/+7d/o729naeeeor333+/dBvcjBkzmDFjBvoAO/brIw15IYQQI8NW8kgbIYQQQmxGhebquro6DjvssCEtUxryQgghRgZdV69yxhNCCCHEp09y9ZCRGhJCCDEy9F2uV85rBLnkkktYvnz5cIchhBBCfLwKzdVbgtSQEEKIkaGvA51yXiPIX/7yF6ZMmcIXv/hFfvvb35LL5YY7JCGEEGLTKjRXbwlyaf025juHa3D4+h4NG0clmDrJBmDl2zqe59E8JgFAPG5SyLkAeL7P6NFRAN55J08u6wAwZmwcgHTGw/N8bDuCbhoAuI5L3agkfhCgo75MNQ1VhMIWa1e109mWAiASs2ldvo5QWMXheR6u4wOQqKvCMFR5uVQWTdewbAsA0zLJZXJE4hEAWt/7gHA8Vhw3rZahpgqA3vZOutp7iktdixUJk+pS8+9e214qw3NcwvEInqOW2zcM9OL8+z7P9GTIpTIABL5PNp0hn1PzTdTECYVD9HarA+Fw1Ka6NophqOU3TR3TMsjkVP05eZeejhTJWlWPVsikB+hu6wagqr4KTdMwLPVVi1VFCYVD2GGrOL2HnVz/NQxHQ+i6RiishiWTNnq1TcsqtayarmGaOrGYie+vf1amYRoYhk7fIN3QiMVNYnFVTtvarKrPpFpH6bSDaeqEwgbZ3Ppla2xQcYVCxXWW9YjFQ+TzHul0oVTPfdtPtvg33Z3DcRNYkXBpveuGTi6Vxi4uS3VDkmjMoq4hRj6v1s/q1Rm627oA2G329qXlsUI6fvFZoGFbI50uADB6dAzXVucfXVdtY7V1ap49PQXCYZNwRMXemw4Y26DGWbnaIxbVaaxV5QeBhRcERMJq2UfXB7T36PREVayJmE44FLC2PSAW0UrlAdQmi/ON5qivjtGT1qlLqOVZ120ytsHlKzM/vGtd//7Nd1az09TR/T49eracUx0SmlZmBzoj6+Dgn//8J4sXL+b222/nnHPO4YwzzuDYY4/l61//Orvvvvtwh1eRqj+zX7/3nqn2vXbnapyEQTTTBkCqqppcEEbX1H6llyrqdbW/MP1Cafo6vTg+SdqzUWzDIyjm5axj0mB30e3E6dVVzix4Js3RDtblqgGIWXlczaIrr44DomaBrsRY9MADwNA8rILKi75tkDTTGJr6zAsMAl3DMdQymJpLJFA52tNMTL+Aoan949p0iNHRPAA5QPN8CrraR9vkSzH7mk4hWoNRXEZft9AIiFkqV3m+gR/oaMV6sfUCeT+Eaah9bc6zcX2diKlitE2XqLm+vnrD9Rh4RN1eNb4ZI9ANclq0uEwaOUcnZqt40q4a7hent4ICvmbgsf74wcCjoKllWZluZGJsNQZq/ugGOj7hkKoHJ7Aw4lHwPCzNKZWRLRhYQb70K5obmJjG+lxu5XvJRetK6yXQNDQtwNIccpo6TrHdTGl7MYvrTAt88lYcnQBd89BQZRqBS6BpWLoqz8p245gGWnFJTc0lCDQMPHyteOxnhDACj26tloS3FoBoyMUvRq1rPqaupk8FCRwzpGJwA3K22v4SXifpYAwAcbcLGI9nqPFCXgrbVXGnzCSjw2vJBqr+I1qKqJ4lr6ljjSqnDcusoi1fA8A4ayW+ZmCgtgNXt9ADj5BeKNVD2ChQCGxyxTKSQScBOk4oRtZT6083fQpmlD13qAKqirU/mvWZOcGKt5cwfrsd2dD0qc2IIVChuXpLkKNHIYQQI0NfBzrlvEaYXXfdlZ/85CesWrWK2267jVWrVrH33nuzyy678NOf/pTu7u7hDlEIIYSo2Fz9+OOPD3mZ0pAXQggxMvR1oFPOa4TyfZ9CoUA+nycIAmpra7nxxhsZN24cd99993CHJ4QQotJVaK4+6KCDmDJlCj/4wQ9YuXLlkJQ5smpICCFE5arQs/ygLq8/88wzaW5u5pxzzmHGjBksWbKERYsW8dZbb3HxxRdz1llnDXeYQgghKl2F5urVq1fz7W9/m3vuuYdJkyZx4IEH8oc//IFCofDxE2+GNOSFEEKMDBXaE+6uu+7KnnvuybJly7j11ltZuXIlP/zhD5k6dWppnBNOOIF169YNY5RCCCEEFZura2trOeuss3jppZd48cUX2X777TnjjDNobm7mrLPO4tVXXx1wmSOrhoQQQlQu3QCjjJdufHxZ25CjjjqK999/n7/97W8cfvjhpQ5GN9TQ0IDv+5uYWgghhPgUVWiu3tBnPvMZLrjgAs444wzS6TS33XYbM2fO5Atf+AJvvPFG2eVIQ14IIcTIUKFn+YMgoKamZqPh2WyWyy67bBgiEkIIITajQnM1gOM4/OlPf+KQQw5hwoQJPPTQQ/z85z9nzZo1LFu2jHHjxnHUUUeVXd7IqyEhhBCVqULvu7v00ktJpVIbDc9kMlx66aXDEJEQQgixGRWaq7/1rW/R3NzMvHnzmDZtGi+//DLPPvssp5xyCrFYjHHjxvHDH/6Qt956q+wy5TnyQgghRoZye7kdYT3hBkGAtokDnldffZXa2tphiEgIIYTYjArN1W+++SbXX389Rx55JKFQaJPjjB49mscee6zsMqUhL4QQYkQINI2gjDP45YyzLaipqUHTNDRNY9q0af0a857nkUqlmDdv3jBGKIQQQvRXabm6z8UXX8xee+2FafZvfruuyzPPPMM+++yDaZrsu+++ZZcpDXkhhBAjg6aVd0/dCDk4uO666wiCgK9//etceumlVFVVlT4LhUJMnDiR2bNnD2OEQgghxIdUWK7uM2fOHFpaWmhsbOw3vLu7mzlz5uB53oDLlIa8EEKIkaHcznFGSAc6J554IgCTJk1ir732wrKsYY5ICCGE+BgVlqv7bO42uPb2dmKx2KDKlIb8Nq62xqLgqP+rG5PEk2E6O3PFT8PU1EUBqKpaf4DX2BSjo0ONk82qsz9OwSMatVjbmqJ5yjgAOlraaFnWRl1zNWZc3cthWOpREFbIQjfUF6yrrRfd0EufOXmnNK+ahipymQIAmZ4Uibok2VQWgFwqg+d5GKaarmniGDK96eJn6m+qs7tUVs+6LgBClo5lh2j/oBUA0w7RvmotAJqmo+kave3FcSM2hVyefDpbGtd1XIINHsMU+AGGqZbFMHWiiTDZdL64nCbdnVmqaiIqnp4s0ZiF76npTctA1zXCUVW/7a09WCELz+mrVwen4JJLZQDIZ+IYlkk0Yav3ORdd07BD6osdi9uYpoFRrFvX9cnlXOoa1HrM5UKsbU2h6QlixTIAfD/AsnQCPwBg6uQw2VxAb0rFmaiy0TWwQsVynYAgCIrbQ7RfOYGuUVdnF+taY+26Ap7no2tav3VbXRfFKq5zPwgIAnCyudI24IScYn37pXq2LIN83i0tn2FoxKripTIMQ9VDqrdALqPmVVflEwqp+ei6hl5cdWZxnXV25kvlh2sMDF2VURXX6M0axc9cTBNcT31WKHjkCjphuzi/rEZTtUc6YxbLBs+HKeMgZKh1ObmxgKV7hAwXgN23r+bzAGj035V+9G51p6mjP/JzMXhb8nK9G264gauvvpqWlhamT5/Oddddxxe+8IVNjvv4448zZ86cjYYvWbKEHXbYYcDz3pSenh6SySQAM2bMIJvNks1mNzlu33hi+EQ/WAKAUz+GMcYqzN52AMLxZiy9wCpX7RdGWy3k4g0ARPLd9EbU/x2e6usgrKv9nW26hDSVW3UNPAxiZo6Cr3KRpgXkfJtMQe2PggDS0Sqyjnofs/LktCgeah/Z60SJxNfvmzQtIOOrvBfTM+T9MCFN7d9tcviami7lJ6imHS9Q3ynLUPPtizVl12Kg9qERp4uMpbbFaL4Lw8mV5mf1thFJ5nADFV9e09A1H0dTZZm4ONr6fWvS7MXxq+ktqBijZoGokaXbUfnE0F18TUcP1LzDbppUtIFCoI5l6iIZ8iGLiKHyTMTMEUq3E46pOvU0k5S3/sA6QGOc+x6OaRfHryMXRNBZfyyhBx5hS73vcWOYdfU44Vi/ceK2S0ELU/DVskQJCJse8Z5VADjhJJ4RIvBV3FoQoBFgk8PyVH0Fmo4bmOT9ELmIelpFONtJEEriBCYGHp6vl2JyAxNDU+V5oRhxK4uDqgcdH0v3MHHQAhWnrxnknBAJO4VvqO3JCzTyQVitC83D1NS4jm+S1LtUXEEVQTH/poxqfEfFkA2pdWK6atvtiTfj6VapXl0soro65tNdj5CRL20zeTNKTyGGrq2Prd2vp05vA8B2M6TsGkzUejR8l4iRI0y2tG2Pn7pjqf4bSv/VAGP4KOO32/EjPxeDV0m5GuCII44AQNM0TjrpJGx7/fG753ksXryYvfbaa1Bll9WQ7+npGXDBcuAghBDiU7WFzvLffffdnH322dxwww3svffe3HzzzRx88MG8+eabjB8/frPTLV26tF8ubGho2Oy4A1VTU1O6RK+6unqTZ/n7zv4P5nI9IYQQYouooFwNlG57C4KARCJBJBIpfRYKhdhzzz059dRTB1V2WQ35zR0kbI6mafzrX/9i8uTJgwpKCCGEGLByH1czwLP81157Ld/4xjc45ZRTAHVv+kMPPcSNN97IlVdeudnp+hrZW8Kjjz5a6pH+0UcfHVCOFkIIIYZNBeVqgNtvvx2AiRMncu655w76MvpNKfvS+j/96U9lPcYmCAIOOeSQTxSUEEIIMWADfKTNh682s2273yVvAIVCgX/+859ccMEF/YbPnTuXZ5555iNnM2PGDHK5HDvttBPf/e53N3kJ32Bt2KvtfvvtN2TlCiGEEFtUBeXqDV188cVDXmZZDfkJEyawzz77UFdXV1ahkydPlk53hBBCfKoGet/duHHj+g2/+OKLueSSS/oNa2trw/M8mpqa+g1vamqitbV1k+U3Nzfzy1/+kpkzZ5LP5/mf//kfvvjFL/L444+zzz77DGCJynP77bcTj8c56qij+g3/4x//SCaTKXWKJ4QQQgy3SsrVn/3sZ/n73/9OTU0NM2bM+Mir51566aUBl19WQ37ZsmUDKvT1118fcCBCCCHEJzLA++5WrlzZ7764D5/h7zfJh5Lv5nqfBdh+++3ZfvvtS+9nz57NypUrueaaa7ZIQ/6HP/whN91000bDGxsbOe2006QhL4QQYutRQbn6sMMOK8V7+OGHD0mZGxqRvdbn83n22GMPXn31VV5++WU+85nPDHdIQgghtrBA0wnKODjoGyeZTH5sx6z19fUYhrHRGf21a9dudOb/o+y5557cddddZY8/EMuXL2fSpEkbDZ8wYQIrVqzYIvMcCpKrhRCi8lRSrt7wcvphu7T+w55//nkef/xx1q5di7/BY7xAdTQw3M4//3xGjx7Nq6++OtyhCCGE+LRsgQ50QqEQM2fO5JFHHuGrX/1qafgjjzzCYYcdVnY5L7/8Ms3NzWWPPxCNjY0sXryYiRMn9hv+6quvln1L3HCQXC2EEBWoQnP1Cy+8gO/77LHHHv2GP/fccxiGwaxZswZc5oAb8ldccQXf/e532X777Wlqaup3ucLW0GvuAw88wMMPP8zChQt54IEHhjscIYQQn5KAMs/yM7BH2syfP5/jjz+eWbNmMXv2bH75y1+yYsUK5s2bB8CCBQtYtWoVd955J6B6yp04cSLTp0+nUChw1113sXDhQhYuXDjwhSrDsccey1lnnUUikShdDrho0SK+/e1vc+yxx26ReX5SkquFEKIyVWquPuOMMzj//PM3asivWrWKq666iueee27AZQ64If/Tn/6U2267jZNOOmnAM9vS1qxZw6mnnsq9995LNBota5p8Pk8+ny+9/3DPiEIIIbYRW+iRNscccwzt7e1cdtlltLS0sPPOO3P//fczYcIEAFpaWvpdwl4oFDj33HNZtWoVkUiE6dOn87e//W2LPdHlBz/4AcuXL+eLX/wipqnSuu/7nHDCCVxxxRVbZJ6fhORqIYSoYBWaq998800++9nPbjR8xowZvPnmm4Mqc8ANeV3X2XvvvQc1sy0pCAJOOukk5s2bx6xZs3j//ffLmu7KK6/k0ksv3bLBCSGE2PI0rcwOdAZ+9djpp5/O6aefvsnP7rjjjn7vzz//fM4///wBz2OwQqEQd999N//93//Nq6++SiQSYZdddikdvGxNJFcLIUSFq9Bcbds2a9asYfLkyf2Gt7S0lE7CD9TArlkAzjnnHH7xi18MamaDcckll6Bp2ke+XnzxRa6//np6enpYsGDBgMpfsGAB3d3dpdfKlSu30JIIIYTYkvoeaVPOaySaNm0a//7v/86Xv/zlT70RL7laCCFEOSo1Vx9wwAGlXNanq6uLCy+8kAMOOGBQZQ64+X/uuefy5S9/mSlTprDTTjtt9Lz4e+65Z1CBbM6ZZ575sff4TZw4kR/84Af84x//2OiRBLNmzeJrX/sav/71rzc5rW3bH/kYg63duUdscC7mwHqu/d+Ari4HgHffWkc0EQagtrYG1w0AdRLss7vGAVj8ZgaAcMQkm3FoHpPAMFSZvueTqI6RyxSwQgYA+WwBTdPQdQ3TUsMs28JzPOyoqkfTMrFs9ZlTcBk1rhqA7rZuQuEQ7avWApCsr6FtZSuuo+L1fR/dMEqLE47HyKXSpfe1o+sBKDg+0UQMozhuursHN18AIJKMk89kMSy1aefTWexoBKO4nbr5Ak6+gG6qaXXDwLIt8lk1fThq4zoeenHnoenqb2ebiiMSC6FpGvmcijkaD/WL2XVcnLxDTZNa5p6OXqyQWYo9m8rRMLaOaDSk6i5kkM052KFIqQzD0AiHzdL8bdvEMIpxrEuj6RqBH+B56zua1HWNcFgvjadrEI9qdHapdZ7LukSjJqleFXcsZlFXa5HLB6RSLgDxuInvg+MGhCxVTmMtZLImXZ0FIlGLmoYqNX08RCxmEY2obSWXi6Hr63e40YS6XDZWnSBRtf775bo+uq6V6jcaNUnWJgCoq7Pp6zszn/eorVdlZPM6yaSqr+qkjuupcZLFbTsaVevWNDWyGY94XNVdwYXGKjVyVZVFMqYxrjYLwAn7qvp+dom6PNfQAmqsLvxgLACH724AWvHVJ4LYugWaQaAZZY030tx5551cffXVvP3224Bq1J933nkcf/zxn8r8JVd/tPAhp6m/QALIrF4MQN6MEnFSBIHa13i6ieGpfOSaYZJZlS9fz08EYFp1C83xHkK6Q11aXSK6jGYc38T1TRJWCoCsYeP5BqahckDeMygEIWyjuE+0UqTcWCm+nBvCL+Z0Axdd80j7ah9cn11Od6yZWLYDgLboeNxg/eFjoOml+AE8v5j/sYjRg2Oo9eYYNgWK/5sRDCe3fppokqwfxvVVuREjhxcYaKikEKDKLAQqF5iaS7oQwtTV5xk3RBBohHS3VKYVFIhm2gDoSoylizq8QOWsiJknZLg4xVjjWi9s0HlznjC2XsALiscKmo+GT8FQeSAUuES1NO2u6kwyF6khp0XRUfWtAxgmgRki7K8/junOWfhxnbCh1nFMSxEykwSeWi7DzeOFq/F0s1i3GobmE6CV5q0RkHIj+IFO3izm2sIq3IRF4GuEdIdQcT1rQYCpuQTF/OyEogSBhqF5pfrUNBWzEbjFutaImHnsIIvhFo+NQi5dBZWrq0Ip+moqYuTwi+umPRtlkq1yrGZUEyouYyFQ6zwTqVXrxcuTM9S2F6cXANtRx6J64OFiYaDimzB1eyYALy7tLNVhWM/TGaiyJu44jfL7Ixdbi0rN1T/+8Y/ZZ599mDBhAjNmzADglVdeoampif/5n/8ZVJkDbsh/61vf4rHHHmPOnDnU1dVt8Q7u6uvrqa+v/9jxfvazn/GDH/yg9H716tUceOCB3H333Rt1KiCEEGLkGegjbUaKa6+9lu9973uceeaZ7L333gRBwNNPP828efNoa2vjnHPO2eIxSK4WQghRjkrN1WPGjGHx4sX85je/Kd0Gd/LJJ/Mf//EfG/0wXq4BN+TvvPNOFi5cyJe//OVBzXBLGT9+fL/38bj6xXnKlCmMHTt2OEISQgjxadL0Mu+7G1kHB9dffz033ngjJ5xwQmnYYYcdxvTp07nkkks+lYZ8uSRXCyFEhavQXA0Qi8U47bTThqy8ATfka2trmTJlypAFIIQQQgyFcu+pG2n33bW0tLDXXnttNHyvvfaipaVlGCISQgghNq1SczXAu+++y3XXXceSJUvQNI0dd9yRb3/724NuWw/4VMcll1zCxRdfTCaTGdQMPy0TJ04kCAI+85nPDHcoQgghPgV9l+uV8xpJpk6dyh/+8IeNht99991st912wxBR+SRXCyFEZanUXP3QQw+x00478fzzz7Prrruy884789xzzzF9+nQeeeSRQZU54F/kf/azn/Huu+/S1NTExIkTN7qm/6WXXhpUIEIIIcQnsoWeTbu1u/TSSznmmGN44okn2HvvvdE0jaeeeoq///3vm2zgCyGEEMOmQnP1BRdcwDnnnMMPf/jDjYb/v//3/wbVc/2AG/KHH374gGcihBBCbHHlnsEfYWf5jzzySJ577jl+8pOfcO+99xIEQemsf1/PuEIIIcRWoUJz9ZIlSzZ5cv3rX/8611133aDKHHBD/uKLLx7UjIQQQogtKUAjoIz77soYZ1szc+ZM7rrrruEOQwghhPhIlZqrGxoaeOWVVza65e2VV16hsbFxUGUOuCEvhBBCbI0q6ZE2PT09ZY+bTCa3YCRCCCFE+SopV2/o1FNP5bTTTuO9995jr732Kt0Gd9VVV/Gd73xnUGWW1ZCvra3lX//6V1nPiAX1eJknn3ySCRMmDCooIYQQYsA0yrzvbotHssVVV1ejfcyyBkGApml4nvcpRSWEEEJ8jArK1Rv63ve+RyKR4Mc//jELFiwAYPTo0VxyySWcddZZgyqzrIZ8V1cXDzzwAFVVVWUV2t7eLgcOQgghPlUBOkEZD2MpZ5yt3WOPPTbcIQghhBADVkm5ekOapnHOOedwzjnn0NvbC0AikfhEZZZ9af2JJ574iWYkPh3zD9OAEAB//Ecz//d4FwA9vS5jm9Xwuhqdju4AgNpaGwDPD4hFw1imRneX2iwmTGvCtg3+9dpqmkarkzgda3spZAvYUZtwRD2xwHU87KhNqiul5tXeRbI2DoBurP8ShqNh0t1pdMMAIJfKoukaruMC0NRcx5oVawBINtRSP6aelUtXqHJ0DdNScXV15onEwxRyeVVuPEamS11mWsiqYX7xRJJuGhiWWXofSVRj2gWyPSpWwzTQNJ1wVNVDJGbjeX4p5lymQE1DnJZlbQCEwrXYtoFpqWWwbZN4VQTXUdM0jqnhvddXEIs3qHhyDoWcQ22jqr+ezjSFnIMfqPqvrrYpFHyyefW+rj7Ce2+3M2ac+mK3t+eIRC1sW81P0zWskIlhaPju+jgTtdVEwjqep8rZc/xq/rFiNIahFeM0MAyNoDhJPG6QiILrgmlusI5sDcuErl5VTndKw7Z1rJBOLufSPE4tRyik47o+4bBR2gZMo1QMvR09TNhxHImaGLU1ajvp7soxqinM8hUpRo0Kq7hCGvVNalkNQyMo1sv48TGyWRVsfcJhWfHMbRBAVE3KxPocEOHIL6QBeObtGr715Q+fvlVBHTqr732k36ezd9zwkuMqthvcYzzFVqKSnk277777DncI4hOI7nssAFOAnn8+xLik2k82LnsBUiqf5cftgGepHd64ZCcAMa8bW8/iaDad8TEAWGmPrGuT80zChsqBjqejYZC0swC4vknBtwiZKhcaeOS8EGGjAEAylEFD7X8tL8dKbzyGpt7n7CqyQZSwpfK6obmYOABkieJoIXrzKv76WA4/UDml4FsUzDBhV+2j82YUM1DTuUYIjYC8rfbB4Uy7Klsvxqd55HybXKD22QEaYT2Pjl+KoSacIeOq4xo/0AkZBUxNTZ8mQZQUmqfml9ejRMjiFxsGrbk6YmaevKfiNo0CvmXj+uo4I6LnqPLayZgqP3V7VeTNKH7xUl/HN9ADj4Knxg80Az/QidlqflVWD5gmqVgTvrZBcgQsrYCuqeUKeVmCYP39wrrvYvguvVZtabk0AvwNGj4FI0LgaUTNXOnS40K0hpweI/A1wlqWRPF4KQg0QuSxdLWeDTdPwu6hgDrm6XFiZJwQNfkP6I2pe3RN3yHr2RACw1GPmq6Kp8h6alvU8Uv1FPN7SOtqHdZEMmSNRGmcghcqrqviOvNV3dj5Xpp2nMnmNG1i2Kzta4r/1WziU7GtqaRcvTmftAHfp6yGvO/7Hz+SEEIIMYwq9b47gCeffJKbb76Z9957jz/+8Y+MGTOG//mf/2HSpEl8/vOfH+7whBBCCKCycvWMGTM+9ja4PoN5hLt0dieEEGJEqNSecBcuXMjxxx/P1772NV566SXyefWrbG9vL1dccQX333//MEcohBBCKJWUq7f0Y9ulIS+EEGJEqKSz/Bv6wQ9+wE033cQJJ5zA73//+9Lwvfbai8suu2wYIxNCCCH6q6RcvaUf277t15AQQgjB+vvuynmNJEuXLmWfffbZaHgymaSrq+vTD0gIIYTYjErN1aA6kL/llltYsGABHR0dgLqkftWqVYMqT36RF0IIMSJU0uV6G2pubuadd95h4sSJ/YY/9dRTTJ48eXiCEkIIITahUnP14sWL+dKXvkRVVRXvv/8+p556KrW1tfz5z39m+fLl3HnnnQMuU36RF0IIMSL0Xa5Xzmsk+eY3v8m3v/1tnnvuOTRNY/Xq1fzmN7/h3HPP5fTTTx/u8IQQQoiSSs3V8+fP56STTuLtt98mHA6Xhh988ME88cQTgypzUDXk+z7/+te/eOqpp3jiiSf6vYQQQojh4GPga2W8MD6+sA+54YYbmDRpEuFwmJkzZ/Lkk09+5PiLFi1i5syZhMNhJk+ezE033TTYxfpY559/Pocffjhz5swhlUqxzz77cMopp/DNb36TM888c4vNVwghhBioSs3VL7zwAt/85jc3Gj5mzBhaW1sHVeaAL63/xz/+wXHHHcfy5ctLz3zuo2kaXvF53UIIIcSnaUtdrnf33Xdz9tlnc8MNN7D33ntz8803c/DBB/Pmm28yfvz4jcZftmwZhxxyCKeeeip33XUXTz/9NKeffjoNDQ0ceeSRA5r3R/nMZz7DKaecwte+9jUuv/xyLrroIt58801832ennXYiHo8P2byEEEKIoVBpubpPOBymp6dno+FLly6loaFhUGUO+Bf5efPmMWvWLF5//XU6Ojro7Owsvfpu2hdCCCE+bapznHIu1xvYwcG1117LN77xDU455RR23HFHrrvuOsaNG8eNN964yfFvuukmxo8fz3XXXceOO+7IKaecwte//nWuueaaoVjMkj322IPvfve7jB49muOOO45nn32WWbNm8bnPfU4a8UIIIbZKlZar+xx22GFcdtllOI4DqB/AV6xYwQUXXDDoEwcDbsi//fbbXHHFFey4445UV1dTVVXV7yWEEEIMh76z/OW8AHp6evq9+p6/vqFCocA///lP5s6d22/43LlzeeaZZzYZx7PPPrvR+AceeCAvvvhiKYEPhZtvvpnW1lZ++ctf0trayty5c5k4cSKXXXYZK1asGLL5CCGEEEOl0nJ1n2uuuYZ169bR2NhINptl3333ZerUqSQSCS6//PJBlTnghvwee+zBO++8M6iZCSGEEFvKQB9pM27cuH4noq+88sqNymxra8PzPJqamvoNb2pq2uw9ba2trZsc33Vd2trahmhplXA4zPHHH8+jjz7KO++8w/HHH8+tt97K5MmTOfDAA/nDH/4wpPMTQgghPolKy9Vnn302r7/+OslkkqeeeoqFCxfywx/+kDPPPJP777+fRYsWEYvFBlV2WffIL168uPT/t771Lb7zne/Q2trKLrvsgmVZ/cbdddddBxWIGHpH7alz1J61pfcPv1oAwDZdVociALz9vurnQNPB9QKqk+s7lojFLEIhnUg8jG6oL1NtY4Jc1iGbymOF1LiJ6ghO3mPdB2sB8N31/SRU1URI9agzZ1X1CVa/24LruABYdohYVRLdVOeTdEMnEosCUD+mlo41XRiGmke8Jkk4EgIg1ZOnY00HXkGVE6tOkOlaf8+JGTLJp9WZtEgyiee4GJZZXE6NTFfv+nHtEKZlkunNAhAEAaGwhV/s/yHw1d9Qcd5OwSWf9zAMFXOqN4/n+ejF93bYJByPUF2r6rettRtN14gl1PTd7b3UNsbJ51XsNTU2iYRJTVIrzt8gngzT06PiD4dNLFMjHF5fR4WcQzrtEIvbpeXYdY+JxKIak6eqq2JGZd9gTVtTaTk8L8DzAkLh9etX1wPskEYur+Ydi6i/iaiPVuwp1DSg4EBdXYg1a3yaR6nlaO9wqau1CNtqmobGKK4HNaMbAahrrqWhMUou67HTBLUsa9ZYaLqGbZs01qs4Ort9Egm1D4mENcxiPbZ1uoxqUOusJpLi+1/b1NU+qo5nTqst/t3EKKKiBIFGEJRx311xnJUrV5JMJkvDbdve3CRoH7rELwiCjYZ93PibGj6UJk2axH//939z2WWXsXDhQr75zW/yf//3fxx99NFbbJ7ik0vOPJDSVrjdjuQevAWAUFcLuTp1X6eh+QDEU2vxDYtUpB7TV/tW19exDJ+erEXWUfvDkOETsQqlefgBWJpLVSitpglMDM3DD9Q+t7cQJhFNARAYGr6ro2kqlweahhuYuIba/xeC9d8TH51sEMXQ1PadcSxMu5ibjRw+Bm2aOlAenVtOW2g0AAmvA8338HW1n/fMsPoF7kPf3774+ualF+sh48ewjQJacb6eb+AHOraeASDtR6n2c+hODoCI10vejGIEKjbf1yj4JhFD1WFGT5AIJzF19bmOT7dZV4rH0lx03y/VeRBoZLUYlq7qKG9ECWtZXF/Vf9638da0YE3N4enrD7XrY3mihR5Wus0ANNgGBc/ACamDeKuQxteM0i+RGgGW5pALIpiais3DIGFlCGkFwgW1zjwjhIeBqbv96ilnxPADA8e3SuVHrW4MUx1rre4Zw4TqHszOHgpJta2FyBHCJZrvQvPV8q1O19IY7S4tR8TMF7cNnYTXCUA3ccZvtyMbU/m7aceZm/hMVKJKy9UPPvgg119/PTNnzuSUU07h2GOPZf/99x+SsstqyH/mM59B07R+ndt9/etfL/3f95l0dieEEGL46ARlXWimxkkmk/0ODjalvr4ewzA2OqO/du3ajc7k9xk1atQmxzdNk7q6ujLiG7zHHnuM22+/nXvuuQfTNDn11FO36PyEEEKIgamsXP3WW2/x9NNPc9ttt3Huuecyf/58jjzySL7xjW+wzz77fKKyy7q0ftmyZbz33nssW7Zsk6++z957771PFIwQQggxWAO9764coVCImTNn8sgjj/Qb/sgjj7DXXnttcprZs2dvNP7DDz/MrFmzNrqKbSisWLGCyy67jMmTJ/PFL36R5cuXc8MNN9DS0rJFH6UjhBBCDFQl5uq9996bW2+9ldbWVq6//nqWLVvGfvvtx3bbbccPf/hDVq9ePahyy2rIT5gwofRavnw5Y8aM6TdswoQJjBkzhuXLlw8qCCGEEOKT2hIHBwDz58/nlltu4bbbbmPJkiWcc845rFixgnnz5gGwYMECTjjhhNL48+bNY/ny5cyfP58lS5Zw2223ceutt3LuuecO6fL+9re/5YADDmDy5MncfPPNHHPMMfzrX/9i0aJFnHDCCUQikSGdnxBCCPFJVVqu3lA0GuXkk0/miSee4O233+boo4/mRz/6ERMnThxUeQN+jvycOXNoaWmhsbGx3/Du7m7mzJkjl9YLIYQYFlvq2bTHHHMM7e3tXHbZZbS0tLDzzjtz//33M2HCBABaWlr69RI/adIk7r//fs455xx+8YtfMHr0aH72s58N+XNpTzrpJL785S9z7733csghh6DrA+6/VgghhPhUVVqu3pR0Os2iRYtYtGgRXV1dbL/99oMqZ8AN+c11GtDe3j7oHveEEEKIT2pLHRwAnH766Zx++umb/OyOO+7YaNi+++7LSy+9NOD5DMQHH3yw0Ul1IYQQYmtWabl6Q0888QS33347f/rTnwA46qijuOqqq9h7770HVV7ZDfkjjjgCUB3bnXTSSf16DPQ8j8WLF2/2HgQhhBBiSxtoT7jbOmnECyGE2NZUWq7+4IMP+PWvf80dd9zBu+++yx577MFPfvITjj32WOLx+Ccqu+yGfFWVenxEEAQkEol+996FQiH23HNP6R1XCCHEsNmSZ/mFEEII8clVWq6eOHEidXV1HH/88XzjG99gxx039ZjGwSm7IX/77beXgjn33HPlMnohhBBblUo7OBBCCCG2NZWWq//whz9w6KGHYpoDvqP9Yw24xIsvvhhQz9lbunQpmqYxbdo0ucRPCCHEsKq0gwMhhBBiW1Npubrv9vQtYcBd3Pb09HD88cczZswY9t13X/bZZx/GjBnDf/7nf9Ld3b0lYhRCCCE+VoBWuvfuI18j5OBgQ11dXdxyyy0sWLCAjo4OAF566SVWrVo1zJEJIYQQ61Vyrh5qA27In3LKKTz33HP89a9/pauri+7ubv7617/y4osvyj3yQgghho2PVvZrJFm8eDHTpk3jqquu4pprrqGrqwuAP//5zyxYsGB4gxNCCCE2UKm5eksY8KX1f/vb33jooYf4/Oc/Xxp24IEH8qtf/YqDDjpoSIMTQ2vubqHifyGeeCMNwCtpdS4nnrCoqTJwvQDTUsMScYOdJnp0dCTxvQCAHXZI8u57aSZPrWHVyl4Apm1fxfvL08RrEgDk01kMQ5URBAFVNWEA0qkCurn+3FE+kwXAsCwAdE2jrrkGUE9H6G3vJl6TLI2fTecA8LwQ2Z4U8RrVAWOqc/2VIJqukU9nS+8t20LTdCJx1adDVX0VnavXluZphUK4jksoouoml8nj5B2iCdWZY6Q2RqY3XyqvujZKNGrS+oGKJRwN0TgqQTpVKMVtWiZOwQcglogQ+AG5jFMqI5m0SRXHj0V1RtVDMuwU68viHS+gqkrFF4/pFBzIZD0A7LBJEDKIxax+j4GcOjHEuNosr2ZUXbdHx5FKuYQjBgC+FxCLmXjF9ahrUHA0krGAfEGV4/kwus7D9TUKxXCLq5FkXKO728Qy1bjjRltk81AVU8vZkzAZ3+gyelITANtNq2bXKS7/eN1iWmI5AOt2mEI87BG2o+TyKo7aap10SJVZVwWuWkz+66ANd01VCFGOSrtcr8/8+fM56aST+NGPfkQikSgNP/jggznuuOOGMTIxGOGDTin9n3rjOQAa3NXqsxVvElTVkWuuIlzoASAWKmDpHtURnbRjlaY1tIBGYw0AH/hjyHk2uqb22QmrF0OLoWlqX+z4BhrqM9vL4AUafSU5uo2JW+pB2vEtvOLvQH6gU/BMoiEXgLW9NmNj6vgi64dJaF3kNfWUo7wVJaSpfKoHHka2Fz1aC4BnhbE0l143CkBId7D1AhoqPh+dlBuj2lL5XsfHCwwMTSWNHidCTbiAWzysrQ/WEM12oAVq+mSqhbaqyaW6sU0XP9CxTBVPgIYTimLrKjcbuOSCcGn+ET1LXo+iB2p+uuaT8SJETHUsYBcyxLwOfH8sAKbmouk6kZ5WQqFoca470dIdZkakjXHV6tgmEyRY22MR1OqlekibVeQDu7ScGgFhLUunq46P4maagm8RNdL4mlGMx8OiQDYIk/Lj6MW4ATwMcr4qz+pogVhDabl6MzqRuhxoGoav1mFGT9BEC3rg4YSTpfqK6ykAXCx68uoYaeYu6599PRYhylOpuXpLGPAv8nV1daUe7DdUVVVFTU3NkAQlhBBCDFRZl+qV+dibbckLL7zAN7/5zY2GjxkzhtbW1mGISAghhNi0Ss3Vfd555x0eeughsln1w2MQBB8zxeYNuCH/3e9+l/nz59PS0lIa1traynnnncf3vve9QQcihBBCfBJ+oOEHehmvkXVwEA6H6enp2Wj40qVLaWhoGIaIhBBCiE2r1Fzd3t7Ol770JaZNm8YhhxxSakufcsopfOc73xlUmQNuyN9444384x//YMKECUydOpWpU6cyfvx4nnnmGW6++WY++9nPll5CCCHEp6Xvcr1yXiPJYYcdxmWXXYbjqHtiNE1jxYoVXHDBBRx55JHDHJ0QQgixXqXm6nPOOQfTNFmxYgXRaLQ0/JhjjuHBBx8cVJkDvkf+8MMPH9SMhBBCiC2p3EvxRtrletdccw2HHHIIjY2NZLNZ9t13X1pbW5k9ezaXX375cIcnhBBClFRqrn744Yd56KGHGDu2f48S2223HcuXLx9UmYN+jrwQQgixNQmg2F3Xx483kiSTSZ566ikeffRRXnrpJXzf57Of/Sxf+tKXhjs0IYQQop9KzdXpdLrfL/F92trasG17UGUOuCEP6nm1f/rTn3j33Xc577zzqK2t5aWXXqKpqYkxY8YMKhAhhBDik6jUs/x99t9/f/bff3+A0iPohBBCiK1JpebqffbZhzvvvJP//u//BtRtcL7vc/XVVzNnzpxBlTnghvzixYv50pe+RFVVFe+//z6nnnoqtbW1/PnPf2b58uXceeedgwpECCGE+CQq9ZE2V111FRMnTuSYY44B4Oijj2bhwoWMGjWK+++/n912222YIxRCCCGUSs3VV199Nfvttx8vvvgihUKB888/nzfeeIOOjg6efvrpQZU54M7u+p5X+/bbbxMOh0vDDz74YJ544olBBTGU/va3v7HHHnsQiUSor6/niCOOGO6QhBBCfAoq9ZE2N998M+PGjQPgkUce4ZFHHuGBBx7g4IMP5rzzzhvm6DZNcrUQQlSmSs3VO+20E4sXL+Zzn/scBxxwAOl0miOOOIKXX36ZKVOmDKrMAf8i/8ILL3DzzTdvNHxreF7twoULOfXUU7niiivYf//9CYKA1157bVhjEkII8emo1LP8LS0tpYb8X//6V44++mjmzp3LxIkT2WOPPYY5uo1JrhZCiMpVqbkaYNSoUVx66aVDVt6AG/Jb6/NqXdfl29/+NldffTXf+MY3SsO33377YYtJCCHEp8cP1Kuc8UaSmpoaVq5cybhx43jwwQf5wQ9+AEAQBHieN8zR9Se5WgghKlul5uoHH3yQeDzO5z//eQB+8Ytf8Ktf/YqddtqJX/ziF9TU1Ay4zAE35PueV/uHP/wB2HqeV/vSSy+xatUqdF1nxowZtLa28pnPfIZrrrmG6dOnb3a6fD5PPp8vvd/USYqRaJ/pMQBefk99S957L8XU8XHSOY3mUREAIhEd8LBtk9oaC4B1bS6GoZPJeowZlwAgZGmMGR0l1aM2wN72bjxvfX+U4bDazAoFj7rmOnrWdarpIjaapuMVn33c25XGdVwAGsfWoel66X00ub6Xx0KugO969KzrAMCwrNJnibpqsj1pdNMAIFYVZ93KNTRPHlOaFijNM1YVo7dj/TpPd6fQDQPdMErDIrEQmq7OCjoFj17PJ5ZQt5XU1EUxzfVnDD3PJ5qIYFp6sfwwTn79gXTdqCoScYNQKFyszwK1VTbJahXXu1mTUMggElbTm4aGv8GezA6bNDZGME2NTHZ9uZ8ZvRZD83jj9RAAO01oxil4uK5aD+GIQTym096h6tOyNPwA4mGfnpBa1iAA2/TB1YkW75rJO1CV0IjaPs1NFomoiiUS8knGNBrjWVUPUZPpoSUs2W5XAL6y2ypWphvZfacABxXT9FHt5D2LcVUeBV9tE3vtmIAReMZVDI9KPct/xBFHcNxxx7HddtvR3t7OwQcfDMArr7zC1KlThzm6/iRXD0zDdHVFReof96kBgY+W6UUPPBxT5eqklSbvh5gSfp+l/mQAdD2gLRMjmkgCoGkBpu6SdVXPyD16khqri14vrt7nTLy42i/7moHn65iWyhc5LUreD2EbalrXNQjral0UsNA0g2o7BUBHxsajmH+NDJaTJ2l2AeDo63tl1n0XfA9PV/k7E6oiomfI6ir5mJpL1g9Tq7UDsNZrwtA93EDFGNazpL04tq5yp+Mb6ASkXHVsU+e14FgRTDNUqjcPs/TdDxsFuvNRgmL+DpHHznXTq6sTSraVU381tZyhIEcs10HGrgagKxchFioQC2cAMPwCmu9RU3wfoxc/X8APRchF1LFRFbCmHTp3Gk9D59sArK6eTsgMSusyY1ST9SN0FtR6aQ63YWguOT+Crql87gYmESNHl1dNLOgq1V+XW42u+eS8EDWW+n7ogU+IPL5evJPWMGi3mtE0lcvrEh4re+toSjRh+qouq9Mf0Jqchh7yMH11rLTvDlFgUmn97YAQg1epufq8887jqquuAuC1115j/vz5fOc73+HRRx9l/vz53H777QMuc8D3yF9zzTWsW7eu3/Nqp06dSiKRGNbn1b733nsAXHLJJXz3u9/lr3/9KzU1Ney77750dHRsdrorr7ySqqqq0qvv8kQhhBDblkq97+4nP/kJZ555JjvttBOPPPII8bhqBLS0tHD66acPc3T9Sa4WQojKVqm5etmyZey0006AusXsK1/5CldccQU33HADDzzwwKDKHHBDvu95tQsXLuSHP/whZ555Jvfffz+LFi0iFosNKoiPcskll6Bp2ke+XnzxRXxfnam86KKLOPLII5k5cya33347mqbxxz/+cbPlL1iwgO7u7tJr5cqVQ74MQgghtrwgKP81kliWxbnnnstPf/pTZsyYURp+9tlnc8opp3wqMUiuFkIIUY5KzdWhUIhMRl2183//93/MnTsXgNra2kFfZTao58hD/+fVbklnnnkmxx577EeOM3HiRHp7ewFKZzoAbNtm8uTJrFixYrPT2raNbdub/VwIIcS2wUfDL+NSvHLGGazOzk7OOuss7rtPXQp96KGHcv3111NdXb3ZaU466SR+/etf9xu2xx578I9//GOz09x3330cfPDBWJZVmtfmHHrooeUvwCBJrhZCCFGOSsrVG9p7772ZP38+e++9N88//zx33303AP/6178YO3bsoJZjQA153/e54447uOeee3j//ffRNI1Jkybx7//+7xx//PFo2tBXeH19PfX19R873syZM7Ftm6VLl5Y6EXAch/fff58JEyYMeVxCCCG2LuVeirclL9c77rjj+OCDD3jwwQcBOO200zj++OP5y1/+8pHTHXTQQf3ujwuFQh85/uGHH05rayuNjY0cfvjhmx1P07RPpcM7ydVCCCHKUUm5ekO/+MUvOOOMM/jTn/7EjTfeyJgxqv+uBx54gIMOOmgQSzGAhnwQBBx66KHcf//97Lbbbuyyyy4EQcCSJUs46aSTuOeee7j33nsHFcRQSCaTzJs3j4svvphx48YxYcIErr76agCOOuqoYYtLCCHEp6PcS/G21OV6S5Ys4cEHH+Qf//hH6bFvv/rVr5g9ezZLly79yJ7Zbdtm1KhRZc+r7xL1D/+/tZNcLYQQla2ScnUf13V57LHH+OUvf0lzc3O/z37yk58MuLw+ZTfk77jjDp544gn+/ve/M2fOnH6fPfrooxx++OHceeednHDCCYMO5pO6+uqrMU2T448/nmw2yx577MGjjz46qO78hRBCbFsG2hPuh+9J+6SXbz/77LNUVVX1e3b7nnvuSVVVFc8888xHHhw8/vjjNDY2Ul1dzb777svll19OY2NjWfPNZDJEo9GPH3ErIblaCCEqVyXmatM0+a//+i+WLFky6Lg3pezO7n73u99x4YUXbtSIB3W//AUXXMBvfvObIQ1uoCzL4pprrmHNmjX09PTwyCOPfOTjbIQQQowcfc+mLecFMG7cuH49oV955ZWfaP59l7p/WGNjI62trZud7uCDD+Y3v/kNjz76KD/+8Y954YUX2H///fs9bu2jVFdXs9dee3HhhRfy0EMPkU6nB70MnwbJ1UIIUbkqNVfvsccevPzyy4OOe1PK/kV+8eLF/OhHP9rs5wcffDA/+9nPhiQoIYQQYsDKfVxNcZyVK1eSTCZLgzd3hv+SSy7h0ksv/cgiX3jhBYBN9hUTBMFH9iFzzDHHlP7feeedmTVrFhMmTOBvf/sbRxxxxEfOF2DRokUsWrSIxx9/nJ///Ofkcjk++9nPst9++7HvvvuWnisvhBBCDLsKzdWnn3463/nOd/jggw+YOXPmRk9723XXXT+2jA8ruyHf0dFBU1PTZj9vamqis7NzwAEIIYQQQ8ELNLwyDg76xkkmk/0ODjan3B7ZFy9ezJo1azb6bN26dR+ZPz+submZCRMm8Pbbb5c1/uzZs5k9ezYXXHABnufxwgsvcNNNN/HjH/+Yq6+++lPp7E4IIYQoR6Xm6r4TAWeddVZpmKZppRMIg8nVZTfkPc/DNDc/umEYuK474ACEEEKIobClOtApt0f22bNn093dzfPPP8/nPvc5AJ577jm6u7vZa6+9yp5fe3s7K1eu3KhDnI/y1ltv8fjjj5d+mXcch6985Svsu+++ZZchhBBCbGmVmquXLVtWdtnlGlCv9SeddNJmL2co9/4AIYQQYksY7kfa7Ljjjhx00EGceuqp3HzzzYB6pM2//du/9es8Z4cdduDKK6/kq1/9KqlUiksuuYQjjzyS5uZm3n//fS688ELq6+v56le/WtZ8R40aheM47L///uy3335ceOGF7LLLLltkGYUQQohPolJz9ZZ4xGrZDfkTTzzxY8cZzh7rxeB8+yvqS/KLBxKkspDOBFiWGmaHYMU6i+pqn6qk6hexN+XR0BCm4PhsN0GNt7YT4jEd0zIAGLPdWOLJMAC5jENdnfo/FDKIxGyap44DoOWdlUyZMY2WZS0ApLtTuI66qsOa3IhhGGR7UwA0jl1/hs2OhuhuqyXd1QtANBlH01UsvudhhExiVXEAutZ2YlomnqsuV9E0jWh1Es9x1Hxsi2giVpqvHQ1jhSzS3aqzqHhVBDtslsq3bZNI1EQvvk8kLHp6CtQWlzGdcqmqidJ3i02mN084YtE4KlasA51RDRpr2vvq2ELToN5Wt6U4bpQxY2M01fUtbYDjagSBqlvXCTFlHDguPPVsqjhONbrm01lIMn1n1XN1R1qdXNMNNZ/q6hCOExCN6KV163mQKeilWPOFgGjIJePY1MRVfRhaQMj0iJoF4naEjKPimFDdhRcYxIwMAG+0jaLm/aeZNEbd3+MEFo6n0xjrpbqwFoCkZmB5Wep3nI0QW8KGneN83Hhbym9+8xvOOuss5s6dC8Chhx7Kz3/+837jLF26lO7ubkBdzfbaa69x55130tXVRXNzM3PmzOHuu+8mkUiUNc9Ro0axZMkSVqxYwYoVK/jggw+YNGkS8Xh8aBdODJv4nocCkHruL2ieg68ZhJ1inrJ60PU4WhAwOtZRmsZHJ47q7dkO5ehyq0lYap9t63lcTDRNfRmSYZe8r36oCXQNL9BLnxl4WJqLF6hDRkt36XFVTgsbBXRAR41bFSmg46+fzs3iGKpcHY8uvxqAenc5hWQjppsDoNUYi7HBYxRzvo3rm2i6GqZrPmE9j66p915gEtZz6KjcHjI8bH39D0p5PUos10GgF3OnFcX2M/iaeh83ABv8QOXENYUGGrylpB31TOgp7ho+0EYxLqyOM1Y7zYwOQzTfBUAsVMDz1/cXHaDhGSFipqrfmu4V6LEob0Y/x1TntdJ4o+oh7KbR3QIAkSBNXbyAq1sAFLQwPYUYMTNfKtcPDDJepLTsQaB6/E45YYxAlWMaBcYEy+kx6zA1Gws1POyk6LVqS/Mv1DST9DtoDdTzq2cm36RTbyCl1RIrLpvdvYbO8Cx22HEsQmwJlZqrAf7nf/6Hm266iWXLlvHss88yYcIErrvuOiZNmsRhhx024OUouyF/++23D7hwIYQQ4tMy3M+mBaitreWuu+76mPmvDyASifDQQw99onm+8sordHV18cQTT7Bo0SK+973v8cYbb7DrrrsyZ84cfvjDH36i8oUQQoihUqm5+sYbb+T73/8+Z599Npdffnnpnvjq6mquu+66QTXky378nBBCCLE163s2bTmvkaa6uppDDz2Uiy66iAsvvJCjjz6al156iauvvnq4QxNCCCFKKjVXX3/99fzqV7/ioosuwjCM0vBZs2bx2muvfcSUm1f2L/JCCCHE1synzMv1tngkn64///nPPP744zz++OO88cYb1NXV8YUvfIGf/OQnzJkzZ7jDE0IIIUoqNVcvW7aMGTNmbDTctm3S6fSgypSGvBBCiBFha7hcbzh885vfZJ999uHUU09lv/32Y+eddx7ukIQQQohNqtRcPWnSJF555ZWNOr174IEH2GmnnQZVpjTkhRBCjAiVenCwdu3a4Q5BCCGEKEul5urzzjuPM844g1wuRxAEPP/88/zud7/jyiuv5JZbbhlUmdKQF0IIMSL4gYZfxuNqyhlnW7R27VrWrl2L7/e/IHHXXXcdpoiEEEKI/io1V5988sm4rsv5559PJpPhuOOOY8yYMfz0pz/l2GOPHVSZ0pAXQggxIlTqWf5//vOfnHjiiSxZsqTUy66maQRBgKZppZ5xhRBCiOFWqbka4NRTT+XUU0+lra0N3/dpbGz8ROVJQ14IIcSIUKkHByeffDLTpk3j1ltvpampCU0bWb9iCCGEGDkqNVdfeuml/Od//idTpkyhvr5+SMqUhrwQQogRIQjK6wl3pB0cLFu2jHvuuYepU6cOdyhCCCHER6rUXL1w4UIuu+wydt99d/7zP/+TY445hoaGhk9UpjxHXgghxIgQBFrZr5Hki1/8Iq+++upwhyGEEEJ8rErN1YsXL2bx4sXsv//+XHvttYwZM4ZDDjmE3/72t2QymUGVKb/ICyGEGBEq9XK9W265hRNPPJHXX3+dnXfeGcuy+n1+6KGHDlNkQgghRH+VmqsBpk+fzhVXXMEVV1zB008/zW9/+1vOPvts5s2bR09Pz4DLk4a8AOCMg9Xfx17L0Z6xAXBc9SV6+90syXgMgJk76Wiaj+PpmLr6ho1r8OhKGxiGOnMWi9t8dtc4AEvfzROLqgs/Vq7IM3psgq62XgCmzdqBRHWEbKoGgEKuQKa1DYBsukCqs5todQIAOxrCKbgA6MUTdJ7jABCvSZDuTgFghUKEwjaGYRSnC2NaJnYkBEDn2i62220S61q6AAhHQ9hhC91QMaa60vh+QP2YWgBGjU6QzbhEwurzguMxZVSE1a0qBtPUsG2Drq68mp9tYoUMaqrVgXSqN0xVtU0opKYf1WCQjHi41Sq+ZDQgnYNqZx0AjbVjiNrQGFdn5lp7I9hWwLvLVWdVsZiaribmoOnrz1Q2FVbQ4uzGZ6eo6fKuybRpCVa3qLhcT62rxjoVR15VHWHLJ6oWlapInga7i5gVJWpk1ed6Fj8wSDgdjKpKkCcMQEN2BQBaQfWObTfmyD/5FjvupB6DtfPUUagnWdcWX0JseX6Zl+uVM8625JlnnuGpp57igQce2Ogz6exuZInv8RUA2t9eUjrKzWlRImRwNBsdtU/uduJM8d6iJ6Iu2yz4NiHdIaznALCDLHktQkxXOSMWz1AIVJ5szdYRMlyiusoDoSDH2kIdNSF1kNk3D4C0E8HxDaKmGtc2PFan1T5/p8i/yIUS5HR1/OCjU2N0AhBoGr4ZxjPUPGu0DlIkcX2Vo0xdQ9d8Io46XqiywxQCGy9QOdDUHHwMDNS2XW2nsCjQ46tjhrwZIR8dQ4OjljcTrsExbEKeeo8GcSNNh1Ollt/M4Zlhso46LG5NTiLiOWSDqBpdC3D19SfILN1jVVeUKjsCgGuGsdwsIU3lXDPdhT5qDG+2VrGr846aaJfPM6Wum1AhTapqLAA9VFNjp/GKZfvoNNltZH1VboCGE1hEjSzh4vooBDYGHuPCLXQwprQ+E7m12GYU03AoBOo4rmDZhMhTQNVzPlyFq4cY7a0EYPS0XYslbGCnWcz+8DAhhlCl5uoPi8ViRCIRQqEQvb29gypDLq0XQggxIvSd5S/nNZKcddZZHH/88bS0tOD7fr+XNOKFEEJsTSo1V4Pq0+byyy9np512YtasWbz00ktccskltLa2Dqo8+UVeCCHEiFCpl+u1t7dzzjnn0NTUNNyhCCGEEB+pUnP17Nmzef7559lll104+eSTS8+R/ySkIS+EEGJEqNTL9Y444ggee+wxpkyZMtyhCCGEEB+pUnP1nDlzuOWWW5g+ffqQlSkNeSGEECOC56lXOeONJNOmTWPBggU89dRT7LLLLht1dnfWWWcNU2RCCCFEf5Waq6+44op+7z3P47XXXmPChAnU1NQMqkxpyAshhBgRKvVyvVtuuYV4PM6iRYtYtGhRv880TZOGvBBCiK1Gpebqs88+m1122YVvfOMbeJ7HvvvuyzPPPEM0GuWvf/0r++2334DLlIa8EEKIEaFSDw6WLVs23CEIIYQQZanUXP3HP/6R//zP/wTgL3/5C8uWLeOtt97izjvv5KKLLuLpp58ecJnSa70QQogRwWf9vXcf+RruQIUQQogKVam5ur29nVGjRgFw//33c9RRRzFt2jS+8Y1v8Nprrw2qTPlFXgghxIgQBAFBGafwyxlnW/PBBx9w3333sWLFCgqFQr/Prr322mGKSgghhOivUnN1U1MTb775Js3NzTz44IPccMMNAGQyGQzDGFSZ8ou8EEKIEWFreDbt5Zdfzl577UU0GqW6urrMuAMuueQSRo8eTSQSYb/99uONN94oe55///vf2X777bnhhhv48Y9/zGOPPcbtt9/ObbfdxiuvvDK4BRFCCCG2gErN1SeffDJHH300O++8M5qmccABBwDw3HPPscMOOwxmMaQhL4QQYmQIfPDLeAVb8Hq9QqHAUUcdxX/913+VPc2PfvQjrr32Wn7+85/zwgsvMGrUKA444AB6e3vLmn7BggV85zvf4fXXXyccDrNw4UJWrlzJvvvuy1FHHTXYRRFCCCGGXKXm6ksuuYRbbrmF0047jaeffhrbtgEwDIMLLrhgUMshl9aLfubsEun3/tr/DRg3Nko0vH5YVThPyHBZ2ZUAoDmZJWHrfDAmDkB3d4F4RH37aqotHEedUhs3PoGmwYSpjQB4vo/r+FTXq3J6OlLUjm4AIBS2CMej1Bffd7en2GEXdV9Jy+oUobBNsqEWgPHbNbKuRQUYS0aoqY3w/tvr1PuqKNlUjmhcfW6adYTCJg3N1QCEoxaeFxCLqcc1RWMh1q7qJJ5U41dVmdi2TiarnoERiZo4bkBzk1UsD9JpGDcuBqizh51dDo6rlrmxKUpttUE2r96Prc0TsVy6M2r80cle/vRPi7kNqr7qEw6W4ZO00gDEazO4vok3rQqARNhlTLyTBN1MO6zvMpwqeu06vIJG3MoV6zbKbhPS6JqaT321T9x26c2paaY0ZMi6FrXhFEmjBwADj2R2LXU77wVUf2jLmPCh92P7vasFOO96qhBi+GwNHehceumlANxxxx1ljR8EAddddx0XXXQRRxxxBAC//vWvaWpq4re//S3f/OY3P7aMJUuW8Lvf/Q4A0zTJZrPE43Euu+wyDjvssAEdqIhtw/jtdiz9Xwu89+67tOSbqA6pA8oaq4e0WUO0oPbvGTNGXO/lg5zKo3Erx6hgFY6hDiRNv8Cq/FQAPuiMMH1UO06g8lwYyHkmuqbyVIBGzg0B4Hg69dFeEnQD0BEksE0XALuQIh2uLcWZ9qIYhsqleTtJqJCiK6KOB5JOOzVannVeNQB1oS7SfhTDU7eJGHjkfJu4oXKjGTjkNIuwkwKg10iiB+ufVRXyc2T1OIGmfq9aSzM1QSc5XeVEHx0DD0tX08T1XgwnS20yo+rLi7C8K8mMhg4AJrKGFm8cMUMtZ3smiqEH2LqKr6CFWWuMobGwCgC9kKV37M70vh9QGNVcqsdlHUkmVoXosepUnThhTG19a8UOsiSza/9/e3ce3lSZ7wH8e9KkSbqlLaEb1FJKKQyLYFEojFIWKzzAlPGCIlwufdwFdBhEBrwjlJkBhGFw9KqDzGXzPjODzx3tXGd8AFkrVUC2yiJba0sLtFTovqVNznv/iI2EbmlImu37eZ7zPM0573nP79fT9Jf35Cy4GRD/Yy6SAWq5AQH1lQAAk8IfDf7BiOuXBGtJCEdnotCz0zZEzuWrtRoAZsyY0WrevHnzbAu6DRzIExGRV2i5QY4t7QCgurraar5arbYcIe8uBQUFKC0tRVpamlUcLY+lseXDQWBgIAwGAwAgJiYG+fn5GDRoEADg1q1bzgmciIjIDr5aqwHzpXD79+9HWVkZZNn6lIOtW7d2OS6eWk9ERF6hq9fdxcbGQqfTWaa1a9d2e8ylpaUAzDfBuVNkZKRlWWdGjRpleWzNlClT8Oqrr2L16tV4+umnMWrUKMcGTEREdA98tVavWrUKaWlp2L9/P27duoWKigqryR78Rp6IiLyCkAWEDYf5W9oUFxcjJCTEMr+9I/yZmZmW0/Dac/z4cYwYMaIL0VqTJMk6RiFazWvPxo0bUVtrPsU4MzMTtbW1+Oijj9CvXz+89dZbdsdERETkaL5aqzdt2oTt27dj7ty5dm//bhzIExGRV+jq6XohISFWHw7as3DhQsyaNavDNn369LEhwtZanilbWlqK6Ohoy/yysrJWR/7b07dvX8vPAQEBlkfaEBERuRtfrdVNTU0YPXq0XdtvDwfyRETkFZx1Ax29Xg+9Xm9fUJ2Ij49HVFQU9u7di+HDhwMwF/vs7GysW7fO5n4qKyvx97//Hfn5+XjttdcQHh6OU6dOITIyEr169XJK7ERERF3lq7X62WefxV//+le88cYbDouLA3kiIvIKsiwg23CY35Y29ioqKkJ5eTmKiopgMpksz3Hv168fgoLMT/YYMGAA1q5di5///OeQJAmLFi3CmjVrkJiYiMTERKxZswYBAQGYPXu2Tds8c+YMJk6cCJ1Oh8LCQjz33HMIDw9HVlYWrl69ig8//NBZ6RIREXWJr9bqxsZGbN68Gfv27cPQoUOhUqmslm/cuLHLeXAgT0REXsEdHmmzYsUK7Nixw/K65cj9wYMHkZqaCgC4dOkSqqqqLG2WLl2KhoYGzJ8/HxUVFRg5ciQ+//xzBAcH27TNxYsXIyMjA+vXr7daZ/LkyTZ/wCAiIuoOvlqrz5w5g2HDhgEAzp07Z7XM1uvs78aBPBEReQV3+HCwffv2Tp9LK+4KQJIkZGZmIjMz065tHj9+HB988EGr+b169bL5brpERETdwVdr9cGDB+1aryMcyBMRkVeQhYBsQ+W3pY0n0Wg0rZ6zC5i/TejZs6cLIiIiImqbr9ZqZ/Cq58hfvnwZ6enp0Ov1CAkJwZgxY5xy9IOIiNyPkG2fvEl6ejp+85vfoLm5GYD5W4OioiIsW7YM//Zv/+bi6FpjrSYi8l2+WqsB8xl0S5cuxaxZs/D4449bTfbwqoH8lClTYDQaceDAAZw8eRLDhg3D1KlTeWohEZEPkGUBk6nzyZk30HGFDRs24Pvvv0dERAQaGhowduxY9OvXD8HBwVi9erWrw2uFtZqIyHf5aq3euXMnxowZg2+//RZZWVlobm7Gt99+iwMHDkCn09nVp9ecWn/r1i3k5eVh69atGDp0KADgzTffxPvvv4/z589bnv9HXbM43XzzhU17zK8HRtVACPO8PmHmUzn9JBPKjUGI6ukHAFAq1dAoTT/8rERDo/mQWss1MbGxGgBASWkTACOCVGoAgLHZhJBw850iY+8LRnV5FNQa8x0dA3UaqNXm405qjRJBYUHw9w8FAPTooUFEhBYAUF5ugE6nQmCI1pJD/wd7o77BHE9jgxGJCQH4rrABADB2hBK3alQICzICAKrqgxCQEogAf/Pr8lrA0OyH0u/NfenD/RCoEegZbDDHLCsQHyFDqTD3V/B9ABJ6+aG63vy7CAkwATBB/uF31mxSIDqwBqGB5pwbjf5IiNdCIczxDVefRbl/FIJNFebfrWyE0mSAXh9m/p336w8g8ofpR01QIyG4BArJ3I9OWYWiumgMiq0zx+FfD5VkRJ02AAAQpKyDXm1CUkIsgB539NQPRJ5KCNHqmrb22nmTkJAQ5OTk4MCBAzh16hRkWcYDDzyAiRMnujq0VlirnaNvQgL6AriYXwkA0Ih61CEYtUrzs5cVkKGv+g5VweYPi41Gf5QpoxGsqAEAVIkwGGVzjdUFmBDkV4fSRnNtCPGvgCxL8IO5vhiEGmo/89kfAUoBP8hQmcw1MUjVCI3C/PNN9EGIqIAkmd9vKsmIQKP5xlEB9bdQHhIH+Yfvk9TNtagKiEKwZK6lEgTCpdtQmMy1WNtcAz+/ZpQZzX8foUoTNKIeKqO5fYCqDtqmGvTwN9deyIA/DBAK8+sgvzpom2tQ6tfbnJOiGkKSYJLNy9Woh8k/EHpVOQDAX27EFyU6jA2+ZY5HNiFSuoEmP/Pnl/uCy+EXYrLEr2muQ7BahVKY+4+aMBwaAC8PAoDHLPupyShBkk2W12GqahTUROI+/3wAQLW6B2o1PSy/az/JCJNQIjbxJ+3vfCIP46u1es2aNXjrrbewYMECBAcH4+2330Z8fDxeeOEFq2fTd4XXDOR79OiBgQMH4sMPP8QDDzwAtVqNDz74AJGRkUhOTm53PYPBAIPBYHnd1nWGRETk/mRhnmxp5y2MRiM0Gg1yc3Mxfvx4jB8/3tUhdYi1mojIt/lirQaA/Px8TJkyBQCgVqtRV1cHSZLwy1/+EuPHj8eqVau63KfXDOQlScLevXuRnp6O4OBgKBQKREZGYvfu3QgNDW13vbVr19r1iyMiIvciZAFhQ+W3pY2nUCqViIuLg8lk6ryxG2CtJiLybb5YqwEgPDwcNTXms6B69eqFc+fOYciQIaisrER9fb1dfbr9NfKZmZmQJKnD6cSJExBCYP78+YiIiMDhw4fx9ddfIz09HVOnTkVJSUm7/S9fvhxVVVWWqbi4uBuzIyIiR2m5fMeWyZv8+te/xvLly1FeXu6yGFiriYjIFr5aqx9++GHs3bsXAPDEE0/gF7/4BZ577jk89dRTmDBhgl19uv038gsXLsSsWbM6bNOnTx8cOHAA//rXv1BRUYGQEPM1Ye+//z727t2LHTt2YNmyZW2uq1aroVarHR43ERF1L1m27eY43nYDnXfeeQd5eXmIiYlBXFwcAgMDrZafOnXK6TGwVhMRkS18tVa/++67aGxsBGA+OK1SqZCTk4PHH38cb7zxhl19uv1AXq/XQ6/Xd9qu5ZQEhcL6JAOFQgFZ9sLnFxARkRVfvYFOeno6JElyaQys1UREZAtfrNVGoxH//Oc/8dhj5ptfKhQKLF26FEuXLr2nft1+IG+rlJQUhIWFYd68eVixYgW0Wi3+/Oc/o6CgwHJjASIi8l62PnfW255Nm5mZ6eoQbMZaTUTk23yxViuVSrz00ku4cOGCQ/t1+2vkbaXX67F7927U1tZi/PjxGDFiBHJycvB///d/uP/++10dHhEROZkshM2TN+nbty9u377dan5lZSX69u3rgojax1pNROTbfLVWjxw5EqdPn3Zon17zjTwAjBgxAnv27HF1GERE5AK+eLoeABQWFrZ513qDwYBr1665IKKOsVYTEfkuX63V8+fPx6uvvopr164hOTm51f1shg4d2uU+vWogT0REvsvXbqDz6aefWn7es2cPdDqd5bXJZML+/fsRHx/vitCIiIja5Gu1+umnn8Yf//hHPPnkkwCAV155xbJMkiQIISBJkl2PkeVAnoiIvIKtj6vxloP806dPB2D+IDBv3jyrZSqVCn369MEf/vAHF0RGRETUNl+r1Tt27MCbb76JgoICh/fNgTwREXkFIQSEDUfwveV0vZa7vMfHx+P48eM23TWeiIjIlXytVrfkERcX5/C+JeEtvyUHqa6uhk6nQ1VVleUZt9Sx83kluFqth8rP/KGyoVlp+VkIwCib76l4uUiCLAB/lfkxSRq1hIuXaxHfx3yNSLReIDTACAAI9m+EnySgVJhfN8lKNJnMx52CVI1oNPlDpTCfghLoV4/K5mAAgFKSEaBswPcN5lNMQ9QN8JNMUMD8Z95oUkOrbESdUQMAkIUC/gqjZTvNsgpav0YISD9sVwV/RTOu14YBAEI1DQhSmvsEgBBTOQx+ATBCZe4PCjTIGgxPNH+gPpt3E0rJCAXMv4/yJh30/hVQohkAcMuox4NJofe+E4g8kKP+37b08/zaYvhrOu+nqbEam5fH8v+8B2Ot7rrqk3tQExwDADD4BUBIEozCXLtMws/SziD8EayoQb1srs2huA2jwh/N8AcAGIUSasn8LGRJElAb69HkpzWvC42lHwkCCsjQyrUAAIUwoVmhtlpuVJi3L4QESRJoEublShjRIGsRYboOAGhUBkJICkv//jBY4gEAFZpggAb+kuGHfJRQwAR/udGybVnyg8pksLyu9I9AUkIsAKDoygVI+PHjsKa5FtdV8dAozO39YEJiguM/hBN5Atbqe6NQKHDz5k307NnT8X07vEciIiIXELKwefIGx44dw65du6zmffjhh4iPj0dERASef/55GAwGF0VHRETUmq/VagDo378/wsPDO5zswVPriYjIK9ha+L3lw0FmZiZSU1MxefJkAMDZs2fxzDPPICMjAwMHDsTvf/97xMTEeNRz5omIyLv5Wq0GgFWrVlndkNZROJAnIiKvIAvzZEs7b5Cbm4vf/va3ltc7d+7EyJEj8ec//xkAEBsbi5UrV3IgT0REbsPXajUAzJo1CxEREQ7vlwN5IiLyCr52lL+iogKRkZGW19nZ2Zg0aZLl9YMPPoji4mJXhEZERNQmX6vVkiQ5rW9eI09ERF5BCGHz5CyrV6/G6NGjERAQgNDQUJvWycjIgCRJVtOoUaM6XS8yMtLyOJumpiacOnUKKSkpluU1NTVQqVR25UFEROQMvlarnZkHv5EnIiKvYDIJmEyyTe2cpampCTNnzkRKSgq2bNli83qTJk3Ctm3bLK/9/f07aP3jOsuWLcO6devwj3/8AwEBAXj44Ycty8+cOYOEhISuJUBEROREvlarWx4V6wwcyBMRkVfo6ul61dXVVvPVajXUanVbq9hs1apVAIDt27d3aT21Wo2oqKgurfO73/0Ojz/+OMaOHYugoCDs2LHD6kPF1q1bkZaW1qU+iYiInMnXarUz8dR6IiLyCl19pE1sbCx0Op1lWrt2rctiP3ToECIiItC/f38899xzKCsr63Sdnj174vDhw6ioqEBFRQV+/vOfWy3/3//9X6xcudJZIRMREXWZr9VqZ+I38kRE5BVkCMg2XIsmw9ymuLgYISEhlvn3eoTfXpMnT8bMmTMRFxeHgoICvPHGGxg/fjxOnjxpU0ztPdLG3ufSEhEROYuv1mpn4DfyRETkFbp6lD8kJMRqaq8QZ2ZmtrrBzd3TiRMn7I77ySefxJQpUzB48GBMmzYNu3btwuXLl/HZZ5/Z3ScREZE7Yq12HH4jT/dsUL9oDGo11691wxHA2bybGNLP/Liks3k38ZPeQQhQVgIAlAojAhQNAIBqYzCUCiOGJfZsY4uBVq/Kz5zFT4Y+fMecO7+d0raxftvfXnVkiOUn/7vW79Xxev0i25j741HF+C5HQkTtsfUut129g+zChQsxa9asDtv06dOnS312JDo6GnFxcbhy5YrD+iQKSX7sjurTsat5tzE00Vyhrl++CSEU8JfN9VmW/GCUfrgXgwCa/TToa8NNFb/Lz7epnTXHP3e5xZ3V+b7Ega2Wt/Xpg4juHWu143AgT0REXkHIArITnk2r1+uh1+vtDavLbt++jeLiYkRHR3fbNomIiLoDa7Xj8NR6IiLyCl09Xc8ZioqKkJubi6KiIphMJuTm5iI3Nxe1tbWWNgMGDEBWVhYAoLa2FkuWLMGRI0dQWFiIQ4cOYdq0adDr9a1uXkdEROTpWKsdh9/IExGRV3DW6XpdsWLFCuzYscPyevjw4QCAgwcPIjU1FQBw6dIlVFVVAQD8/Pxw9uxZfPjhh6isrER0dDTGjRuHjz76CMHBwU6Lk4iIyBVYqx2HA3kiIvIKQpYhZNmmds6yffv2Tp9Le+eHE61Wiz179jgtHiIiInfCWu04HMgTEZFXkG287s6WNkREROR4rNWOw4E8ERF5BXc4XY+IiIjax1rtOBzIExGRV7D15jjOvIEOERERtY+12nE4kCciIq/ADwdERETujbXacTiQJyIiryBDhiw6vzmODOfdQIeIiIjax1rtOBzIExGRVxCybUfwbfj8QERERE7AWu04HMgTEZFX4Ol6RERE7o212nE4kKduNaRfZBs/B95Tn+FDH76n9YnIO/BOuESOEdcvyfJzr/5DHNJn34QEh/RDRJ6NtdpxOJAnIiKvYDKaoFCYbGpHRERE3Y+12nE4kCciIq8ghAxhw0V1trQhIiIix2OtdhwO5ImIyCvwujsiIiL3xlrtOBzIExGRd7DxwwH44YCIiMg1WKsdhgN5IiLyCrKw8dm0PF2PiIjIJVirHYcDeSIi8go8XY+IiMi9sVY7DgfyRETkFYSQIWTeQIeIiMhdsVY7DgfyRETkFXiUn4iIyL2xVjsOB/JEROQV+EgbIiIi98Za7TgcyBMRkVeQZUC24Qi+DWf0ERERkROwVjsOB/JEROQVhGzjdXf8dEBEROQSrNWOo3B1ALZavXo1Ro8ejYCAAISGhrbZpqioCNOmTUNgYCD0ej1eeeUVNDU1dW+gRETkEi3X3dkyOUNhYSGeeeYZxMfHQ6vVIiEhAStXruy0DgkhkJmZiZiYGGi1WqSmpuL8+fNOidHZWKuJiKgjrNWO4zED+aamJsycORMvvfRSm8tNJhOmTJmCuro65OTkYOfOnfj444/x6quvdnOkRETkCi3X3dkyOcPFixchyzI++OADnD9/Hm+99RY2bdqE119/vcP11q9fj40bN+Ldd9/F8ePHERUVhUcffRQ1NTVOidOZWKuJiKgjrNWOIwkhPOqWgNu3b8eiRYtQWVlpNX/Xrl2YOnUqiouLERMTAwDYuXMnMjIyUFZWhpCQEJv6r66uhk6nQ1VVlc3rEBFR1znq/21LP6Mm74JSFdhpe2NzHY7umtwt/+d///vf409/+hO+++67NpcLIRATE4NFixbhV7/6FQDAYDAgMjIS69atwwsvvODU+JyFtZqIyDuwVrtvrfaaa+SPHDmCwYMHWz4YAMBjjz0Gg8GAkydPYty4cW2uZzAYYDAYLK+rqqoAmP/YiIjIeVr+zzrqeLKxqcama+pMxjqr7bdQq9VQq9UOiaVFVVUVwsPD211eUFCA0tJSpKWlWcUxduxYfPXVVx47kG8PazURkWdhrXbfWu01A/nS0lJERkZazQsLC4O/vz9KS0vbXW/t2rVYtWpVq/mxsbEOj5GIiFqrqamBTqeze31/f39ERUXhxP4nbF4nKCio1f/5lStXIjMz0+447pafn4//+q//wh/+8Id227TUp7vrV2RkJK5eveqwWNwFazURkWdirXa/Wu3SgXxmZmabhflOx48fx4gRI2zqT5KkVvOEEG3Ob7F8+XIsXrzY8lqWZZSXl6NHjx4drtee6upqxMbGori42OtP9/OVXH0lT4C5eit3zVUIgZqaGqtvZ+2h0WhQUFDQpRumtVUb2jvCb0+tunHjBiZNmoSZM2fi2Wef7TSeu2PprHZ1J9Zqz+YrufpKngBz9Vbumitr9Y/crVa7dCC/cOFCzJo1q8M2ffr0samvqKgoHDt2zGpeRUUFmpubWx09uVNbp2e0d6fdrggJCXGrN6Ez+UquvpInwFy9lTvmei9H9++k0Wig0Wgc0tfdulqrbty4gXHjxiElJQWbN2/ucL2oqCgA5qP90dHRlvllZWUd1q7uxFrtHXwlV1/JE2Cu3sodc2Wtds9a7dKBvF6vh16vd0hfKSkpWL16NUpKSiy/4M8//xxqtRrJyckO2QYREfmertSq69evY9y4cUhOTsa2bdugUHT8cJj4+HhERUVh7969GD58OADznd+zs7Oxbt26e47dEViriYjI3flirfaYx88VFRUhNzcXRUVFMJlMyM3NRW5uLmprawEAaWlp+MlPfoK5c+fi9OnT2L9/P5YsWYLnnnvO7Y5qERGR97lx4wZSU1MRGxuLDRs24Pvvv0dpaWmra78HDBiArKwsAObT9BYtWoQ1a9YgKysL586dQ0ZGBgICAjB79mxXpHFPWKuJiMideVOt9pib3a1YsQI7duywvG45GnLw4EGkpqbCz88Pn332GebPn48xY8ZAq9Vi9uzZ2LBhQ7fGqVarsXLlSoffTdEd+UquvpInwFy9lS/l6kqff/458vLykJeXh969e1stu/Nuv5cuXbLcdR0Ali5dioaGBsyfPx8VFRUYOXIkPv/8cwQHB3db7I7CWu1+fCVXX8kTYK7eypdydSVvqtUe9xx5IiIiIiIiIl/mMafWExEREREREREH8kREREREREQehQN5IiIiIiIiIg/CgTwRERERERGRB/HqgfzatWvx4IMPIjg4GBEREZg+fTouXbpk1UYIgczMTMTExECr1SI1NRXnz5/vsN/GxkZkZGRgyJAhUCqVmD59eoftv/zySyiVSgwbNqzTmF944QUkJCRAq9WiZ8+eSE9Px8WLF63aVFRUYO7cudDpdNDpdBg+fDgeeOABl+R56NAhSJLUaro75rsZDAa8/PLL0Ov1CAwMxM9+9jNcu3atwzznzp2LFStWuGyf2purPfvU1bkC5n30n//5n4iLi4NarUZCQgK2bt3aYd+euF/tzdXT3qsZGRlt/v0OGjSow77t3aeVlZUd9kvUwldqtav/13VnvfbEzyWeuE8B1mrW6h9/N6zVvserB/LZ2dlYsGABjh49ir1798JoNCItLQ11dXWWNuvXr8fGjRvx7rvv4vjx44iKisKjjz6Kmpqadvs1mUzQarV45ZVXMHHixA5jqKqqwn/8x39gwoQJNsWcnJyMbdu24cKFC9izZw+EEEhLS4PJZLK0mT17NnJzc7F7927s3r0beXl5kGXZpXleunQJJSUllikxMbHD9osWLUJWVhZ27tyJnJwc1NbWYurUqR3mmZubi02bNrl8n3Y1V3v2qTvk+sQTT2D//v3YsmULLl26hL/97W8YMGBAh7l66n61J1dPe6++/fbbVn+3xcXFCA8Px8yZMzvM0959Onfu3A77JWrhK7XaHf7XAd1Trz3xc4mn7lPWatZqgLXaZwkfUlZWJgCI7OxsIYQQsiyLqKgo8eabb1raNDY2Cp1OJzZt2mRTn/PmzRPp6entLn/yySfFr3/9a7Fy5Upx//33dznmb775RgAQeXl5Qgghvv32WwFAHD161NLmyJEjAoC4ePGiEKJ78zx48KAAICoqKmzOqbKyUqhUKrFz507LvOvXrwuFQiF2795tc56ekGtb7NmnQnRvrrt27RI6nU7cvn3b5rw8db/ak2tb3P29eresrCwhSZIoLCxst40j9ymRrXylVgvh/jXMUf8D3D3PtnjCPmWt7jrWatZqb+LV38jfraqqCgAQHh4OACgoKEBpaSnS0tIsbdRqNcaOHYuvvvrKMi8jIwOpqald3t62bduQn5+PlStXtrm85fSvwsLCNpfX1dVh27ZtiI+PR2xsLADgyJEj0Ol0GDlypKXdqFGjoNPpLDF3d54AMHz4cERHR2PChAk4ePBgh3mePHkSzc3NVvHExMRg8ODBlnhsydMTcr2bvfu0u3P99NNPMWLECKxfvx69evVC//79sWTJEjQ0NLSbq6fuV3tyvZsnvVdbbNmyBRMnTkRcXFy7eTpynxLZyldqtStyBVxTr909z7t5yj5lrWatBlirfZnS1QF0FyEEFi9ejJ/+9KcYPHgwAKC0tBQAEBkZadU2MjISV69etbyOjo6GLMtd2t6VK1ewbNkyHD58GEpl27/mgIAAJCUlQaVSWc1///33sXTpUtTV1WHAgAHYu3cv/P39LTFHRES06isiIgKlpaXdnmd0dDQ2b96M5ORkGAwG/M///A8mTJiAQ4cO4ZFHHmkzz9LSUvj7+yMsLKxVPC2xdpYn0P371J5cW9zLPnVFrt999x1ycnKg0WiQlZWFW7duYf78+SgvL7dcj+Yt+9WeXFt40nv1TiUlJdi1axf++te/Ws131j4lspWv1GpX5Oqqeu0JebbwtH3KWs1a3RIPa7Vv8pmB/MKFC3HmzBnk5OS0WiZJktVrIYTVvLVr13ZpWyaTCbNnz8aqVavQv3//dts99NBDbd58Zc6cOXj00UdRUlKCDRs24IknnsCXX34JjUbTZrx3xtydeQJAUlISkpKSLK9TUlJQXFyMDRs2WApme3m2l0N78d7dxpNyvZd96opcZVmGJEn4y1/+Ap1OBwDYuHEjZsyYgffeew9ardZr9uu95OpJ79U7bd++HaGhoa1utOOsfUpkK1+p1YBn1bCO8mgr3jvbeFKenrZPWatZqzvCWu39fOLU+pdffhmffvopDh48iN69e1vmR0VFAUCrI1FlZWWtjrJ1RU1NDU6cOIGFCxdCqVRCqVTiN7/5Db755hsolUocOHCgw/V1Oh0SExPxyCOP4O9//zsuXryIrKwsS8w3b95stc7333+Pffv2dWue7Rk1ahSuXLnS7vKoqCg0NTWhoqKi3Xg6yjMyMrLb92l7Osu1hb371FW5RkdHo1evXpZiCQADBw6EEKLVXVDvjMcT96s9ubbwxPeqEAJbt27F3LlzLd9ItMcR+5TIVr5Sqz2pht3r/wBP+VzSwtP2KWs1a3VLPKzVvsmrB/JCCCxcuBCffPIJDhw4gPj4eKvl8fHxiIqKwt69ey3zmpqakJ2djdGjR9u93ZCQEJw9exa5ubmW6cUXX0RSUhJyc3Otrk+xNQ+DwQDAfGS5qqoKX3/9tWX50aNHUVVVhbNnz3Zrnu05ffo0oqOj212enJwMlUplFU9JSQnOnTtniaetPI8dO4aqqirs27ev2/dpezrLtT2d7VNX5zpmzBjcuHEDtbW1lnmXL1+GQqGwKmZ38tT9ak+u7fGE92p2djby8vLwzDPPdNr2XvepM95z5H18pVa7+n9dW5xVr93hf92dWKt/xFrNWt2CtdoLOO6+ee7npZdeEjqdThw6dEiUlJRYpvr6ekubN998U+h0OvHJJ5+Is2fPiqeeekpER0eL6upqS5tly5aJuXPnWvV9/vx5cfr0aTFt2jSRmpoqTp8+LU6fPt1uLG3dCffYsWMiKSlJXLt2TQghRH5+vlizZo04ceKEuHr1qvjqq69Eenq6CA8PFzdv3rSsN2nSJDF06FBx5MgRceTIEREeHi6USqVL8nzrrbdEVlaWuHz5sjh37pxYtmyZACA+/vjjdvMUQogXX3xR9O7dW+zbt0+cOnVKjB8/Xtx///3CaDS2m+eQIUNEXFycy/apPbnau09dnWtNTY3o3bu3mDFjhjh//rzIzs4WiYmJ4tlnn/W6/WpPrp74Xm3x7//+72LkyJGt5jt6n06dOrXNbRDdzVdqtav/13Vnvfa0zyWeuk9Zq1mr73WfslZ7Nq8eyANoc9q2bZuljSzLYuXKlSIqKkqo1WrxyCOPiLNnz1r1M2/ePDF27FireXFxcW323Z62Phy0PCKloKBACGF+VMTkyZNFRESEUKlUonfv3mL27NmtHgtx+/ZtMWfOHBEcHCyCg4Ndmue6detEQkKC0Gg0IiwsTPz0pz8Vn332WYd5CiFEQ0ODWLhwoQgPDxdarVZMnTpVFBUVdZjnnDlzPC5Xe/epq3MVQogLFy6IiRMnCq1WK3r37i0WL15sVcS8Zb/ak6snvleFMD+iRqvVis2bN4u2OHKf3uujn8h3uPp9cSdn1mpX/6/rznrtaXl66j4VgrWatdqMtdo3SUIIASIiIiIiIiLyCF59jTwRERERERGRt+FAnoiIiIiIiMiDcCBPRERERERE5EE4kCciIiIiIiLyIBzIExEREREREXkQDuSJiIiIiIiIPAgH8kREREREREQehAN5IiIiIiIiIg/CgTyRg2VmZmLYsGEu2/4bb7yB559/3iXbNhgMuO+++3Dy5EmXbJ+IiMgWrNWs1USejgN5oi6QJKnDKSMjA0uWLMH+/ftdEt/Nmzfx9ttv4/XXX7fMS01NxaJFi1q1/cc//gFJkixtOsqrT58+AIDS0lK8/PLL6Nu3L9RqNWJjYzFt2jRLvmq1GkuWLMGvfvUrp+dKRETUFtZq1moiX6B0dQBEnqSkpMTy80cffYQVK1bg0qVLlnlarRZBQUEICgpyRXjYsmULUlJSLMXcVp988gmampoAAMXFxXjooYewb98+DBo0CADg5+eHwsJCjBkzBqGhoVi/fj2GDh2K5uZm7NmzBwsWLMDFixcBAHPmzMFrr72GCxcuYODAgQ7Nj4iIqDOs1azVRL6A38gTdUFUVJRl0ul0kCSp1by7T9fLyMjA9OnTsWbNGkRGRiI0NBSrVq2C0WjEa6+9hvDwcPTu3Rtbt2612tb169fx5JNPIiwsDD169EB6ejoKCws7jG/nzp342c9+1uW8wsPDLTn07NkTANCjRw+refPnz4ckSfj6668xY8YM9O/fH4MGDcLixYtx9OhRS189evTA6NGj8be//a3LcRAREd0r1mrWaiJfwIE8UTc4cOAAbty4gS+++AIbN25EZmYmpk6dirCwMBw7dgwvvvgiXnzxRRQXFwMA6uvrMW7cOAQFBeGLL75ATk4OgoKCMGnSJMvR+LtVVFTg3LlzGDFihMPjLy8vx+7du7FgwQIEBga2Wh4aGmr1+qGHHsLhw4cdHgcREZGzsFYTkSfhQJ6oG4SHh+Odd95BUlISnn76aSQlJaG+vh6vv/46EhMTsXz5cvj7++PLL78EYD5ar1Ao8N///d8YMmQIBg4ciG3btqGoqAiHDh1qcxtXr16FEAIxMTEOjz8vLw9CCAwYMMCm9r169er0GwkiIiJ3wlpNRJ6E18gTdYNBgwZBofjxuFlkZCQGDx5see3n54cePXqgrKwMAHDy5Enk5eUhODjYqp/Gxkbk5+e3uY2GhgYAgEajcXT4EEIAgOWGO53RarWor693eBxERETOwlpNRJ6EA3mibqBSqaxeS5LU5jxZlgEAsiwjOTkZf/nLX1r11XJd3N30ej0A82l7d7YJCQlBVVVVq/aVlZUICQmxKf7ExERIkoQLFy5g+vTpnbYvLy9vN04iIiJ3xFpNRJ6Ep9YTuaEHHngAV65cQUREBPr162c16XS6NtdJSEhASEgIvv32W6v5AwYMwIkTJ1q1P378OJKSkmyKJzw8HI899hjee+891NXVtVpeWVlp9frcuXMYPny4TX0TERF5ItZqInIlDuSJ3NCcOXOg1+uRnp6Ow4cPo6CgANnZ2fjFL36Ba9eutbmOQqHAxIkTkZOTYzV//vz5yM/Px4IFC/DNN9/g8uXLeO+997Blyxa89tprNsf0/vvvw2Qy4aGHHsLHH3+MK1eu4MKFC3jnnXeQkpJi1fbw4cNIS0vreuJEREQegrWaiFyJA3kiNxQQEIAvvvgC9913Hx5//HEMHDgQTz/9NBoaGjo8xe7555/Hzp07Laf9AUCfPn1w+PBh5OfnIy0tDQ8++CC2b9+O7du3Y+bMmTbHFB8fj1OnTmHcuHF49dVXMXjwYDz66KPYv38//vSnP1naHTlyBFVVVZgxY4Z9yRMREXkA1moiciVJtNwZg4g8nhACo0aNwqJFi/DUU0+5JIaZM2di+PDheP31112yfSIiInfGWk1EjsBv5Im8iCRJ2Lx5M4xGo0u2bzAYcP/99+OXv/ylS7ZPRETk7liricgR+I08ERERERERkQfhN/JEREREREREHoQDeSIiIiIiIiIPwoE8ERERERERkQfhQJ6IiIiIiIjIg3AgT0RERERERORBOJAnIiIiIiIi8iAcyBMRERERERF5EA7kiYiIiIiIiDwIB/JEREREREREHuT/AU0jKaenzlbuAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1,2, figsize=(10,3), constrained_layout=True)\n",
+ "s = ax[0].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][0], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "t = ax[1].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][1], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "fig.colorbar(s, ax=ax[0], label=\"Streamwise Velocity (m/s)\")\n",
+ "fig.colorbar(t, ax=ax[1], label=\"Transverse Velocity (m/s)\")\n",
+ "for a in ax:\n",
+ " a.set(xlabel=\"Time (UTC)\", ylim=(-10, 0))\n",
+ "ax[0].set(ylabel=\"Depth [m]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next step is to calculate the water depth from one of the ADCP's measurements. This can come from the bottom track ping, an altimeter ping, or an external depth sounder. You may need to do some quality control on this measurement, and make sure to add the `range_offset`, the depth of the ADCP below the waterline, to this array."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Find the water depth based on the average bottom track pings\n",
+ "water_depth = ds.attrs[\"range_offset\"] + ds[\"dist_bt\"].mean(\"beam\").values"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And we can superimpose that on our plot."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Text(0, 0.5, 'Depth [m]')]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAE3CAYAAAAJ2HoWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADofklEQVR4nOzdd5gURfrA8W+nybN5WXJYkCAocqCIemZR8Wc6z3xmVE7RE86E54minjmcegoeYvYMh2cEFQNJBMWEKGIAAWEX2LyTp8Pvj5odWAHZxV1m2anP88wD29Nd/Xb1TL9dPd1ViuM4DpIkSZIkSZIkSZIk7RLUTAcgSZIkSZIkSZIkSVLTyYa8JEmSJEmSJEmSJO1CZENekiRJkiRJkiRJknYhsiEvSZIkSZIkSZIkSbsQ2ZCXJEmSJEmSJEmSpF2IbMhLkiRJkiRJkiRJ0i5ENuQlSZIkSZIkSZIkaRciG/KSJEmSJEmSJEmStAuRDXlJkiRJkiRJkiRJ2oXIhrwkSZIkSZIkSZIk7ULaZUP+4YcfplevXng8HoYOHcq8efMyHZIkSZK0C7rtttvYe++9CQaDdOjQgRNOOIHly5dvd7k5c+YwdOhQPB4PpaWlTJ48eSdEu2uRuVqSJElqCdmaq9tdQ/6FF17giiuu4G9/+xuff/45v//97zn66KNZvXp1pkOTJEmSdjFz5szh0ksvZeHChcyaNQvTNBk5ciThcHiby6xcuZJRo0bx+9//ns8//5zrrruOyy+/nOnTp+/EyNs2maslSZKklpKtuVpxHMfJdBAtafjw4fzud7/jkUceSU8bMGAAJ5xwArfddlsGI5MkSZJ2dRs3bqRDhw7MmTOHAw88cKvzXHPNNbz22mssW7YsPW3MmDF8+eWXfPTRRzsr1DZN5mpJkiSptWRLrtYzHUBLSiQSfPrpp1x77bWNpo8cOZIFCxZsdZl4PE48Hk//bds2VVVVFBYWoihKq8YrSZKUzRzHob6+ns6dO6Oqv+0GsVgsRiKRaNa6f3mMd7vduN3uX12utrYWgIKCgm3O89FHHzFy5MhG04488kgee+wxkskkhmE0Oc72SOZqSZKkXYfM1W1Xu2rIV1RUYFkWJSUljaaXlJRQXl6+1WVuu+02brrppp0RniRJkrQVa9asoWvXrju8fCwWo7M3QDVWk5cJBAKEQqFG0yZOnMiNN964zWUcx2H8+PEccMABDBo0aJvzlZeXbzUPmaZJRUUFnTp1anKc7ZHM1ZIkSbsemavbnnbVkG/wyys3W7ua02DChAmMHz8+/XdtbS3du3dnzZo15OTktGqckiRJ2ayuro5u3boRDAZ/UzmJRIJqLJ70lOJrQtcvEWzOCa3Y4ji/vSv8Y8eOZcmSJcyfP3+769haHtra9Gwmc7UkSVLbJ3N129WuGvJFRUVomrbFFf0NGzZsccWlwbZuz8jJyZEnB5IkSTtBSyVMv67hV7Ttr88RvwY05zh/2WWX8dprrzF37tzt/iLRsWPHreYhXdcpLCxs0vraM5mrJUmSdj0yV7c97arXepfLxdChQ5k1a1aj6bNmzWK//fbLUFSSJEnSzqAYapNfTeU4DmPHjuXll1/m/fffp1evXttdZsSIEVvkoXfeeYdhw4btEs/ctTaZqyVJkrKXzNUtp1015AHGjx/P1KlTmTZtGsuWLWPcuHGsXr2aMWPGZDo0SZIkqRWpmoKqN+GlNf1XhUsvvZRnnnmG5557jmAwSHl5OeXl5USj0fQ8EyZM4Oyzz07/PWbMGFatWsX48eNZtmwZ06ZN47HHHuPKK69s0e3dlclcLUmSlJ1krm457erWeoBTTz2VyspKJk2aRFlZGYMGDWLGjBn06NEj06FJkiRJrUgxFBR1+4lfsZt+ctAwPNrBBx/caPrjjz/OueeeC0BZWVmj8c979erFjBkzGDduHP/617/o3LkzDzzwACeddFKT19veyVwtSZKUnWSubjntbhz536quro7c3Fxqa2vlc3eSJEmtqKWOtw3lvF46EL+6/efuwrbFsSu+lsf5XZjM1ZIkSTuHzNVtV7v7RV6SJEnKTqrWtFvxVGvX6I1WkiRJktobmatbjmzIS5IkSe2CoikoTTg5UJAnB5IkSZKUCTJXtxzZkJckSZLahSZf5ZcnB5IkSZKUETJXtxzZkJckSZLaBUVtYgc6jjw5kCRJkqRMkLm65ciGvCRJktQuKJqKom1/VFUF2cerJEmSJGWCzNUtRzbkJUmSpHZB3q4nSZIkSW2bzNUtRzbkJUmSpHZBUVp+bFpJkiRJklqOzNUtRzbkJUmSpHZB0WjSVX5F3q0nSZIkSRkhc3XLkQ15SZIkqV1o8pA2sgMdSZIkScoImatbjmzIS5IkSe2CoqooahM60GnCPJIkSZIktTyZq1uObMhvw5UP1RKqq6NT93wAIuEkDY9zFHXwo6WuJMViFtVVUXJy3QB8+/lqfn/EbnyyYI2Yt2MuLo9OImZiuEV1x2MmBYXe9LrK1tRS3CkIgGNDXW0MgE5dAiiKQtm6EABuj04skqRiXTUA//1nKaf89ScKO+YBULGuGjNpohtiPW6fm1hIlJVbFCSYJ9a57qcKHFvcr+INeADw53iJRxLUVYXoN7gLAGtX15CMm7g9Bl6/C4CNZTU4toOqqellVUXBF3RTtaEeAJfHIFwbAcAX9Kafg3Fsh8qyKjw+sZyiKsQiMdwed7ouIvVhABLROLFQmKJunQAw3EY65vySXDb+XEkykUgvpxsGAMGCIMWdcvh60fei/rsUE6mLkFMo6jeaqo+G9ZhJk7zifDRdA6C+up4OXYvS61q/ZgOdenVEUcQ21FWF8AY8JOMmAD13K+L7r8vSdR6pixCPxPDm+NKxJeNJ8juIfVRbUUekLpR+zxPwUdy5kN79CgFY9tV6NE0lERPb1qFLPuFQnA4dRfy11VHyi3xUrA+TiCUBmDaxAweeOJ899h/EquXrABi4dy+qKiJUlovPiuEy6NA1n0h9HIAu3XOJxy0URcE0bQDicZOcHDfxuIVliWmJmEl9bZRuvQpY/uVaomGxX4s6F2G49fTnonpjiL67d+Cd5z9MbZefnOI8Nqxcy+CDBgOwYW01/lwfZtJCS/VWqqgKtRV1Yhmfm5yCAACxSCIdwwEHduaLL8R2BHLcFBaKz4tpOfz9dJ2rJ0c31adXw+0W+9KyHKqrxf6uq45SWBwgL1/Eu/LHGvYcXEDSTC9KNGqnv2u6oVFS4sXQFUqKRKx1YQiF7fT8HQpVKqttNlbEycsT5ZaXRcjNc6NpCoUF4jNRXWuxviycjql//1w6FYnPV1mFQihsU5AnYg76HVIfRWrqFeIJB11X8Ka+IqoK0RjUhUQc3TsprC5z6FSsEhcfB2JxB69n01Xssg0mHYtFLLoGHfPEjBX1Bqkqxu+xqY+I7cwPWLh1G13bdE9bwlIxLQWPYQFgaDaWraLgoKub6kRVHbxaEstRMFQL21GxAV0R83i0OFHLk+6JNhKupSU1eUibJswj7RqqvlnExg69MSxxbMuvXkFlwW4A+BJ1aLY4lv7k6k/fuo/5LmcfAAYue476PnsT8ohjbyBWScwVxJ2MoJvimOKoGk6qsyVH1Qhs+DG9XiUZJ5lbDIBqJYn7C4m7xHHaH9lI3J0DQFL30rnfnvz83VIACjYuZ2PJIFRHfJdsRcNUDaK2yBl5dgU1apHYFnsjrlQsNe4SEQcKCg6rwh0ZrH0BQMwVpFYpIGJ6CRriGFadyMGjJTBUcZALmx66aGupUcT2KjgEqMOfqAGgzOhJwhZ5tEQto5oiAqrI6XnhdcTcuQTC6wGoyC0lZIttNR2NfK2aiONP103YFNsS0MPk2pXUa+I8KmDVoNvi+OMLb8BRNFRbxJd0+fnZ24+kI45VHjVOwjHo4JQBENUCJBw3NUmx3hwjjK6YhC2xrpjpImhECKoin5gY1Ji55Oip8xLieJP11Bli+8O2D8dRUFL37rqVBD3XzmVDl9+lPw8bPD2IO650PKajk4Oor/VmR0r0ciptsa862WsIGfl8WdENgN/nfI7//Rdg6AFUFYrPY/fdBjDryzh7upaywegqylVilMWK6Kd+Kz5LjoWtaITcos78iVqq9BIsNIKI42VB3SrKcvtjORodoytSn4EcokaAqO1DV0yqErkAFLmqsVHT9RTQwkRtDz5VfK5ULNbGSujpXoOW2je2orEi3pMCdz29N84H4Iu8kfgNsYym2PxcXwBAn5x16IjlKs1CujirAKgzCqk3RT7vqKyla99BrFu+RHz2HJuwIeIznATrkp3o6NqQrvcyVy/yqAQgrvow0ekQFeWGPIXodgLDFN93V7yOmDefkJEHgIVO0KzGnQyx0dsdgITtwqPGKAqvIuoR84W0PLx2iIQqzkcB/MlaagzxndawKIiuJeIW8+t2kqTmTu/vuGXQ1xLf6Q3eHig4dAivpDogzp+DsSpMzYWtiLxqqi5iig/bEX8bSpJ6K0BQC+FyxHmKN1GPkzrXDLvyiDpinyUcg3ylSixnx7GV1DmOohMmiCe1LzXbJKm40UmSRHxuDRI4KDiKgu1oqTqPY6k6TurXbhUbBScda9Jx4SaG6ljp419NeNN5VkuQubrlyIa8JEmS1C40uSdcebueJEmSJGWEzNUtRzbkJUmSpHZBXuWXJEmSpLZN5uqWIxvykiRJUrugKE187k6Rz91JkiRJUibIXN1yZENekiRJahfkVX5JkiRJattkrm45siEvSZIktQtNfu7OlicHkiRJkpQJMle3HNmQlyRJktoFeZVfkiRJkto2matbjmzIS5IkSe2CHJtWkiRJkto2matbjmzIS5IkSe2Cqquo+vYTv+rIkwNJkiRJygSZq1uOrCFJkiSpXWi4Xa8pr+aYO3cuxx57LJ07d0ZRFF555ZVfnX/27NkoirLF69tvv/0NWydJkiRJuz6Zq1uO/EVekiRJahdE4m/K7XrNOzkIh8MMHjyY8847j5NOOqnJyy1fvpycnJz038XFxc1aryRJkiS1NzJXtxzZkJckSZLaBUVtWk+4itW8k4Ojjz6ao48+utnxdOjQgby8vGYvJ0mSJEntlczVLUc25Lfh7rG5ja7ObJvO6FvrueOivNTf/cQ/f+ix7bJftkkkHdatDQHg8hiE6uIAFHXwk0gaAEQiJpUbwxQU+gExXINjO9iOnS7LTJpoqS9DXVUtLo8bb8Cbfl8zNADyi/xUrK8HwDZt8jqIbTNceqocC5fHoGZDFS5XNwBqNtQSyA9gmla6vGgoijfgxe114faIOKPhOBvX1eAPivXGY0nCtaH0Mm6fW6zXsknE4ukrbL6gD93QidSHAbAsC90Q8TipbQxV14lt1zU69eoktklTUVSFZDwp6qmmjgEjBgFQWV7NesvGcBvpeA23Qag2nNpeA8dxcHncqTrV0A2dZEKUZbgNXB6DqvW1qfldGC6dYNCdquMQqqLg8blEvZk2wTw/VetrUnUREeWlYgMw40nqKuvTfxtuF76gP1VXoj4aLkwmYgk8Pne6zizLxjZtwqEEAFUb6lJlaHh8RrpMO7WPGvZ9JJJENzRKuhWl95Ft2tTXiHqwu+Xi9xvU1saJRUSseQVe9NQzS+GwqH+v30UiYRGPW3gCHmo2VG3aDpeOpqnpuLXNDsqG24WVFDHZDul9Udgxj7L1G/Dn+tNlNOz/Dl0LsSw7vY8dRyxYF7JJxESMvo5+3G6xzuqyGKCTmyf2RX19Eq9XI5kUy/n9GrW1IqZYJIHHq+HxiGVty8brUahYK8p1u1WiMQuPV9RpMmER8KtYmz76mKaDritUVYl90be7TlWtiq6rqKnPdGGRqP+S4k2HVk1VKOnkT5Vr4zIUEqZ4L55wUBSxjQCGoZIXEP/XdQVNU1AUSH0t8LptkqaKkqpqXRPLx5NQnCuCXV+t4fc4rK8U83Qs1kntJnQNKkMN3zEoyhGBJEyVVNUTN1U8hs3IwaJeFyyrJ27qYEDSFscTn54gbhm4tSRJW0NTRJ179AQuNckefUpoiro6rUnzNVVze8Ktq6trNN3tduN2u1ssniFDhhCLxdh99925/vrrOeSQQ1qsbEko2H34L3L1AIJbma8QWPHjbgztXSAm9B2LB9j0u0ufLZYJLXqdjUUDACje+A3x3BLctesBcPRNx18cG2/Vzyj5nQFQrCSeiPgCWsFU3rLFdy2U3wPFsamgAwBBpZ5AogYr9SWP6z7yzAqxrKJjquJ7uCrcEYAu/go0LFyamV59WM2hLuFHwcFAHJ8iSRceLUHU9ACgKzZJ1Y2OWC5iefHqm45TNQk/Xl0cD11mFEtXSZDKQ7qbuO7D5QoAoDoWVurJzAK1kiRuVEUcQHLNSiosUZc2fgwjiY4o11RdOMqmX+G0ZBTbEPG5w5Xk+GqIKIH0+6atY2pi++OOBweFPEPk0oRjoOAQt8R+MB0V09FQUucOXruepGbgs8X8nmQIHIdkar9ZtobpqOipuG1NRbE25e24K4ChJLFT26lhoSsmIUd81hTFIa54cVDSdZJ0DNy6nd6PfkCxTZLapmOK5ShEXLk4qWG1dCVJVcRDLD+QjtMbrSKhi1yiODY2Kio2EcQ8QZcfG5U600+OO0+UYydJOqKuFBw8mvgc6CQJ2UESltjXLi1O2PGltwsgHDdw3AqWKurGH6vCb8RRFRslKcpp2L+bb4fYx2q6DhTFIaYH0tv1S3Zq31uaG91JpqZpuDSTqOMDIKBU4VPDBMLiO1Dn2w1NsUjovvT8upWg3iO+x/lmlLArFwWRgyKWl1yngqgrh4gl6tClJvFZdRixOkJecU4Ut93kJ9eT9LgxLHH+XWsUUZAoF3XiykO1TWKqyN0BuwbdTlCfFGX69ASkzg/itotctRZH1Ug4qXNFdyGBZE368wjgaH4Cjji3jCjiKOWxw1iK2DcbXV0oNMX6/Yka/NQAEHLno6ROpDY/JjiKQjTpYWAfcYz5ccUKLEfD5cRI7RIsRI51WTHiqqhDzTFxHBVbUeldWrrFftqaX+bK30rm6pYjn5GXJEmSdjrHcdiwYUOLltnQE25TXgDdunUjNzc3/brttttaJI5OnTrx6KOPMn36dF5++WX69evHYYcdxty5c1ukfEmSJEnaWSoqKlq0PJmrW478RV6SJEnaKRYuXMjs2bNZt24dL774IuvXr2/R8pt7lX/NmjWNfs1tqSv8/fr1o1+/fum/R4wYwZo1a7j77rs58MADW2QdkiRJktQaPvvsM9555x02bNjACy+8wLp161q0fJmrW45syEuSJEmtyrZtrr76au65555WXU9zTw5ycnKa+AjVb7fvvvvyzDPP7JR1SZIkSVJzOY7DTTfdxM0334xt29tfYAfJXN1yZENekiRJanGO4zBv3jz++9//8tlnn/Hhhx8CsM8++1BUVMS5557LgQceSMeOHVtsnZvfire9+Xa2zz//nE6dOrVK2fF4nI8//piffvqJSCRCcXExQ4YMoVevXq2yPkmSJKl9cByHRYsW8eKLL/L5558ze/ZsAIYOHUpxcTFnnnkmhx12GJ07d26xdWZrrm4NsiEvSZIktRjHcXjvvfe4+uqr+eyzz9LTFUXhySef5KyzzkpPy3QHOk0VCoX44Ycf0n+vXLmSL774goKCArp3786ECRNYu3YtTz31FAD3338/PXv2ZODAgSQSCZ555hmmT5/O9OnTm7dB27FgwQIefPBBXnnlFRKJBHl5eXi9XqqqqojH45SWlnLRRRcxZswYgsGtdQEnSZIkZSPHcZg/fz5XXXUVCxcubPTev/71Ly655JL03zJXt12yIf8rqquriUQihMNhEokEAwcORFGa96GSJEnKBpZlMeXh23n+6UeprxM983q9Xk477TT23Xdf9tlnH/baa69WjaG1rvIvXry4US+248ePB+Ccc87hiSeeoKysjNWrV6ffTyQSXHnllaxduxav18vAgQN58803GTVqVLPW+2uOP/54PvnkE8444wzefvtthg0bhs/nS7+/YsUK5s2bx3/+8x/uvfdennrqKY444ogWW39bUlNTQzgcJhKJEI1GGTRoEGoGfsmRJElq6xzHYfKUKfx76mNUV1cD4pnzk08+mQMOOIDf/e537L333q0aQzbl6tYmG/LbsOeee7Jq1apG0x566CEuvfTSDEUkSZLUNtXVVHHj1Rfw8YfvAmAYBhdffDETJ06kqKho5wWiKNCUi63NvCB78MEHp4dD3Jonnnii0d9XX301V199dbPW0VwjR47kpZdewuVybfX90tJSSktLOeecc/j6669bvLOitmLIkCGsWLGi0bRbb72V6667LkMRSZIktU2hUIjLr7qCt2aJXK1pGueddx4333xziz7mtl1ZlKt/KZlMUl5enn4MrqCg4DeVJy9Zb0NDI94wDLxeMW7knXfeiWmav7aYJElS1nAchzdffoqzT9yXjz98F7fHyy13PkBdXR0PPvjgzm3EI27fb7hl71df7eDOqksvvXSbjfhfGjhwYLv9Nb6hEb95rr7vvvuIRqOZDEuSJKlNeeP1Vzn2mCN5a9a7uAyDm2++mfr6ev7973/v3EY82ZWrQVxAmTJlCgcffDC5ubn07NmT3XffneLiYnr06MGFF17IJ598skNly4b8Ntxxxx3U1NSQSCSoqqqiuLiY1atX8/LLLzdp+fLycn788cdWjlKSJCkz4rEoN119IXfecAkVG8ro0q2Ux194i+NOPAWPx5ORmJo7Nm17sWbNGn7++ef03x9//DFXXHEFjz76aAaj2jluvPFGKisrSSQS1NXV0aNHDyoqKnj22WebtPzGjRv57rvvWjlKSZKkzEgkElx7/UTGj/sLa9eupVPHjjz/n+c4/Ywz0hc/d7ZsytX33XcfPXv25N///jeHHnooL7/8Ml988QXLly/no48+YuLEiZimyRFHHMFRRx3F999/36zyd/0aaiVjxowhNzcXAI/Hw5///GdAPGdx7rnn8sYbb7Bhw4at3sLx3nvv0adPH/r378+8efOIxWLMmzcPy7J26jZIkiS1hvq6Gq758wm88+ZLaJrGmHE38fRrH9O3/6CMxtWkK/xN7GRnV3LGGWfwwQcfAOIi8hFHHMHHH3/Mddddx6RJkzIcXesaN25c+tZEXde57LLLALjkkks488wzeeWVV1i/fv1Wc/VHH31E3759GTBgAG+99RaJRIJ58+aRTCZ36jZIkiS1hnA4zCV/vpj/vPgSiqIw9rK/MPvtN1q9v5rtyaZcvWDBAj744AMWL17MDTfcwFFHHcUee+xBnz592GeffTj//PN5/PHHWb9+Pccddxxz5sxpVvnyGfkmuuKKK3j33XdZsGABTz75JE8++SQgni8xDIPlbw0jJyeHFStW8P3336cb7SeeeCJFRUUsX76cSy+9lIceeogr/9Bw/SR3i/VMeQc6dzQAKN+QpFbX8Hg1AKqrY+i6itvT+HbKynLRsVTHHh1RVAU1dSuKZdkkUicvqqIQyBG/kuUV+nEZokzdELEs+3w1htsgGU/w/bKNYhldxbZscvMDJBJie8x4Em9JPrqhYSbFNJdHxBuuF7cyOo5DQadCAGzLJlwbBiCnQPSa7A2IK4BW0sLjc6en12ysJVQttsUyU2V73QAkonGCeZuuHCZi8fT/3X4vmia2o3ZDFXQoIFQletgMFOTg8bkJVdeLeHwevAEPtfUipnBVLbZl0bFHiajjjbUkEyaG20hvi8erU1sTTW1DAN3QSMTEiV4sahLI8WAmU9uwoQp/biC9j2KROB6fJ73+/I4FVJfHUXURb+deJaiaitst/k7Gk3j9nvQ+NFwapmkRi4r1hWrDdCstJpG00vuwgcdnoKemmUmbaHhTnbk9BvlFPtau2JDaLw6O7hAIuKjeKOqic9cg8bio95ycVPxRC1VV0ifBnoDoTEvTVBzbSc+3wdBxuzYdcIOFm8b7DNeJugvmBzBNC7fPnY7TF/Tg9Ysy47EkHq8oz9FUtNQ8HQpVvkvVl+1AMtn4hDyREGOdRiNJHMfB7W6oFy19W1bv/sXk5hqYppNarxuf26FTidjPVTViu30+cUhM6CqGrqCqYKWGUnUcKM5XqK0VZdaENToUQG2tQl6OiG/FT3EKC93E4k56Oct20vszEjHZUKFQUiBiLMpXWV9hkfr4Ek+I9QDk+GxMS6G6XqEhl1m2iqFD5w5igtdloesaJXkWPpd47CfkVfG6bEpTI8XETQWvSwRT4I0SNVPf17iBrorpustGyUkdEzSHnjkbgC4A7DegcW/nr776Kpdccgnr1q0jGAzy6quvNupcJpPa8pA2rWnp0qXss88+ALz44osMGjSIDz/8kHfeeYcxY8Zwww03ZDjCnefiiy9m5syZvPfeezz33HM899xzgMjVuq4zZMgQioqK0rm6odF+2mmn0bVrV77++mvOOussnnrqKQLDjyXQUHDvPo3WE17wMqollrVdPhzNQE+KY52xejlWZzH0X1ITOcwbqwHA0l0o+HApYlkLnYTmwSJ13HLAUcTnM6zmoKviex0gBkB1IgefHiMUd2H5xPEybPlQcHBQsFPlmLaCoZqEkiLvezQTzTFxK6IcU9XRbJOkJt73kSBpp44BVhxHU4ja4r2YEUC3E5i6+DtMEJ+ayveoeK16alWR8yN6EK+z6UKIg4KqiIOajYapiONP3JuPr+ZnTG8eAIptEVe8VMTEeVGeK4xbTeA2IwDUavmivNSxVMUhbrtwa2JdkaSLEB7yPaLu4roPw0kSUcTxy1Dj+CIVuDwJABKqQU3UR74nnI4zmdcxXfdRLUDcceNVxfrrrBx0xSJqpupLj5J0DGxHzK/aJjYqG2tFDlFyHMxQBM3woDqbxuM2NJsEbkxHS69X1zbltKTmxgu4zGi67uuSfnKMMJoi8pSRCKN4HSxbI2b4RTxOPbaj4lGimBjUJURezfXV4lITRBTxOTSsGHHLIFcX51r1VhBdc7CVTecTjqoRtwxK1DKihd1Ffdk6hWpNeh6vIT6XBglUR8RVE/fRwVMuylXy0vNaqtjnCU2cj2jOpkdUNTuJplioiqgjd7Qax11CdUDkn6BdS5JN57y2opLQvViOqGdLd6PZJjFFbK/jKISMPIKJKrwu8VmP2W780UqS3lx0W3xeVM2m1l1M3HbjtUOpfZMg4hKfv0C8GhQFHTG/Kxmm0tsVvyPOPXP1Okw7VaeKSZVVgO1TCVi16Vgb4gBIqF4sR8NUxbZYjoaDQkz1p+d3kcAdF+euCVeAKpe43V1xnPT3xkOEkN3wmU7i06KA+G70Li1lc++88w4XXXQRq1atwuv18tJLL3HMMcfQFmRTrn7ppZeaNJ/b7W40UkBT7fo1tJPk5+czf/58PvroI8aMGUOfPn1QFAXLsojFYsyfP58ZM2bw7bffYlkWf/zjH9lzzz2prKxk+fLlADz88MPp/0uSJO1KLMvivPPO44QTTmDdunX06dOH2bNnt5lGPICiNvVKf6YjbVnJZBK3W5xUvvvuuxx33HEA9O/fn7KyskyGttMFAgHeffddFi9ezNixY+nXr186V8fjcRYuXMgbb7zBN998QzKZ5JhjjmHEiBHU1tby9ddfA/D00083GjpRkiRpV+E4DpdddhlHHnkkq1atonv37rz77rttphEP2Zurf6muro5XXnmFZcuW7XAZ8hf5ZlAUhX333Zd9990XgFgsRmVlJaFQiPnz52NZFqWlpfTu3ZtevXoRiUR44403KC8v59lnn+Xjjz/m+uuvb/LVGUmSpLbimmuu4YknnkDTNK688komTpyYsefrtqW1xqZt6wYOHMjkyZM55phjmDVrFjfffDMA69ato7CwMMPRZcbQoUMZOnQoAPF4nIqKCiKRCB9++CGxWCzdq3/v3r1JJBK8+eabrF69mldffZXZs2czYcIE3n777QxvhSRJUvPcfPPNPPTQQyiKwmWXXcatt95KIBDY/oI7Ubbm6lNOOYUDDzyQsWPHEo1GGTZsGD/99BOO4/D8889z0kknNbtM2ZD/DTweD126iNt/+vXrt8X7Pp+PU045BYCDDjqIvfbai1deeYX6+nqCweAW80uSJLVFt99+O/fccw8gfq08/fTTMxzR1imahqJpTZqvPbnjjjs48cQTueuuuzjnnHMYPHgwAK+99lr6lvts5na707l6t9122+r7f/jDHwA47rjj6N27N++88w7r16+npKRkp8YqSZK0o/71r38xceJEACZPnsxFF12U4Yi2Lltz9dy5c/nb3/4GwP/+9z8cx6GmpoYnn3ySW265ZYca8u38poW2Y/DgwfTq1QvTNJk/fz7RaPRXxzqUJElqC5544gkmTJgAwG233dZmG/GQXT3hghjSBsTYuRUVFVRUVDBt2rT0+xdddBGTJ0/OVHi7pNLS0nRHULNnz5a5WpKkXcLLL7/M2LFjAZgwYUKbbcRD9uXqBrW1tenOWd966y1OOukkfD4fxxxzTLN7q2/Qbmrop59+4oILLqBXr154vV569+7NxIkTSSQSmQ4t7dBDDwXEePRFRUU71KmBJEnSzrJ+/XrGjRsHwPXXX8+1116b4Yh+XTb1hAtQVFTE0UcfzSOPPML69evJz89v9H7Pnj3p0KFDhqLbul0hVzf0+/DQQw/RsWNH/vSnP2U4IkmSpG2rqanh0ksvBeDyyy/n1ltvzXBEvy7bcnWDbt268dFHHxEOh3nrrbcYOXIkANXV1Ts8bG+7ach/++232LbNlClT+Prrr7nvvvuYPHky1113XaZDS2toyM+ePZtIJMLTTz9NPB7fzlKSJEk7n+M4XHrppdTU1DBkyJD07XptmqKC2oRXO+lBZ/ny5YwaNYrp06fTq1cv9t57b26++WaWLFmS6dC2aVfK1fPnz6euro4XX3yRurq6DEclSZK0dePGjaO8vJy+ffty5513pkfsabOyLFc3uOKKKzjzzDPp2rUrnTt35uCDDwbELfd77LHHDpXZbp6RP+qoozjqqKPSf5eWlrJ8+XIeeeQR7r777m0uF4/HGzWmWzNZ/7J353A4zPz58znssMNabZ2SJEk74r777mP69Onous6jjz6Kru8C6aKpV/DbyVX+Hj16cNlll3HZZZdRW1vLjBkzePXVV7nnnnvIz8/nuOOO4/jjj+eggw5CayPPGu4KufrAAw9E07T0MLKmafLee+9x4okntto6JUmSdsTUqVN54oknUBSFRx99ND2CSZuWZbm6wSWXXMI+++zDmjVrOOKII1BTjw6UlpZyyy237FCZ7etSxy9s/izCttx2223k5uamX926dWu1eDp16pR+9q6h450ZM2a02vokSZJ2xOJPFnH11VcDcO+99zJs2LAMR9Q0iqI2+dXe5Obmcvrpp/P8889TUVHBlClTsG2b8847j+LiYp599tlMh7hNbS1X5+TksP/++wMyV0uS1HZ9vXRJ+rn4m2++mYMOOijDETVNtuXqESNGcMcdd/Dtt98ybNgwTjzxxEYjCRxzzDHpnNNc7aOGtuLHH3/kwQcfZMyYMb8634QJE6itrU2/1qxZ06pxvfTSS7z66qvce++9AMycObNV1ydJktQc1ZXrGX/5n7Esi9NPPz19krBLUJWmv9oxXdcZOXIkDz74IKtWreK9996jb9++mQ5rq9pqrn7qqaeYPn06U6dOBUSulp3eSZLUVtTV1TLusouIx+Mce+yx6U5pdwlZlqvHjBnDxx9/zN57703fvn256qqrmDdvXovklDZ/r+SNN97ITTfd9KvzfPLJJ41+MVq3bh1HHXUUJ598MqNHj/7VZd1u9069DaVPnz706dOHmpoaNE1j2bJl/PTTT/Ts2XOnxSBJkrQtz02+kYqNGxg4cCD//ve/2/6zdptpai+37a0nXIBYLMaSJUvYsGEDtm2npyuKwrHHHtvq629vubpHjx706NGDWCyG1+tl7dq1fPXVV+y55547LQZJkqRtmfLwA6z9eQ2lpaU8+eST6du0dwXZlqvPOecczjnnHOLxOO+99x6vvvoqp556KslkkmOOOYbjjz+eI488Ep/P1+yy23xDfuzYsZx22mm/Os/mjeB169ZxyCGHMGLECB599NFWjm7H5eXlsd9++zFv3jxmzpzJn//850yHJElSlvv5p2+Z9drjAEyZMgW/35/hiJqnqb3ctreecN966y3OPvtsKioqtnhPUZT0s96tqb3mao/Hw6GHHsqbb77JzJkzZUNekqSMK1v3M88+9QQgRtf45YglbV225mq3282oUaMYNWoUU6ZMYdGiRbz22mvccMMNnHnmmRx66KFMmDChWbfZt/mGfFFREUVFRU2ad+3atRxyyCEMHTqUxx9/vM1fnRo1ahTz5s1jxowZ6Yb8xSM3n8Ngyjv5hKPi1ovKjRGqqiKNysgpCOLYqffLqujapxPVG0UnQAUluSRiYkifqsowufleAKo3hrFTt3N07Sm+/IWd8qnZUIfhdvHTEjGWob8gl2hdhPyiTc9xeAJeouEYhssgr1Cc5IdDcVweg7Xfi1sd80uKyC8Wy5SvqkwvW7W+GrfPQzKeBMC2bCzLwuVxAeD2uan8OQqA7hbTwjX14m+XjqaJ/enx6phJE90QH19vwJfeZsu0iNZF8OcFAdJ14wl4N1unTSK6qdMkw+VKHyxs0yYWSZCbL66KVZQnMc1Nv27Zlg2GhpncdGIcj5kYbhFLfsdCgPT7uqGTUxBI7wfHtgnkB9PbUljsJx43icXs1LZ4qa8JUdx50/OiLo+B4dJS+zSf+vo4XbsFKS8Pp+YQ22ZZDr6gN7VeNb3tAPU1EXLzvATyA6n4bCKRJMXFXixLrDset3C7NXRdIRw20+UoioLbvan+AXxBN7qhUV0dAyCY1/gqYjQUxeMTQ2kEc0VMtdUOiViSeCSO4TIA6NQ5wLoV6wFwe4z0bUZm0iKZEDEkTcgrEOXX18bxeUVdRCIJwJveP2bSQg+6CAT01PbYFBeLGKqq4oCB2yX2c06Om7qwwsYqsY5wyMTl2rR9uiH+b9sOIJbxuBUUhXT5eX6LdZUaHo9GSb7Y3/UhN9G4TUGeTtkGUbbLUDFNsV0ul0YgoGOl9k0k5lBUoBFJfceDPqioEetOJB06FTkU5EDAI8oPxTT8bhvTFjEVeiN0LAzSOVhH0hb10iFHIc8dJWGLOE1b5eBBYh8sWAZBQ3z2D9vDA2zqAM1xHEZNvBLbsjjuuON2+HmtjFKUpvVyuwvdZdAUY8eO5eSTT+aGG26gpKQkIzG091z95ptvMmPGDK655hoA/Pv9odE81V/OwYilOuDLyUexxXdWdcS/rtpyAOJ5naigA15FHDtVbGxFQ0PMp+DgMkUe9OsKtiK+oz5NfG/jtouI6cFtWEQNkecM2ySBTkCP4qSOV0FXgvqkj6BLlBVOetHsJGFVLJO0dbxWfTo+zbAI6iEAEkkfDgqRpDh+5ng8xGwvfl3kYwcFDTP9/4TmpSYuylUVP4oijmc5epiC6FpMXZRTqXckgKijpObB0QxsVRynHEXBa4eATbnPRiGpibswIpabgB5FU0S8cceFojjYtvjsuDQRT8gRcXSMr6La3TEdp2pbRL0F+Cyx/rJkEZpip4+bDdsSdkSO1BSLpKOj2iJ2t5Ig7rjIMUQdGEoC0zEo0sXFMy0ucnzDRzmuevEnk7gidUTyN10QNVQLjxOh0soDwGvX4zjgTdSn9r8Njo1upc5RjABuLUnCNnCnPgMN9ZnjChNI1gCgmzH8mpsofnSSFHlqxeJWnLjiwa2J8y7NMrEcDaOhfER9Wei4nFiqHlQ8WoK46kN1ifqORnRsj9g4y9HQUvs4iQuXIspyaxa+uIgn5vWTtEVdxnSRv11WNLWv1fTnLqF5MRyTpCPOCZLuIDYqjiM+xy4nRsTx49JEbL5EHQoOMVXUacwI4LJiqKooz1ZVHFRiRoC85EbxmTDyqfN3xJMMUaeLz5dBEsOJE3Z8RA0RZ9z2EHfEuaduJAi786i1cwHwGGHitpuALs67asxcPKn/15s+8ox6TMdIfYbBUnXyouUkdZF7Q+QQMr34DLGMV4mgajYh24+CqMtCNpI/WDzjvm75knQdDOjThc05jsOt119GIhHn4IMPbtR56C4jS3P1Lw0fPpzhw4dz66238uOPP/Laa69RVlbWrDLafEO+qdatW8fBBx9M9+7dufvuu9m4cWP6vY4dO2Ywsm0bNWoUEyZM4P333ycWi+3wGIKSJEm/1T//+U/eeust3G43t99+e6bD2SHZepV/w4YNjB8/PmON+ObYFXP10UcfDcCHH35IbW0tubm5GY5IkqRs9cQTT/Diiy+iaRp33XXXLvX4W4NszdWbC4VCjR6DKy4uZty4cc0up21fBm+Gd955hx9++IH333+frl270qlTp/Srrdpjjz3o0qULkUiEuXPnZjocSZKy1EsvvdSol/oBAwZkOKId1JRxaRte7cgf//hHZs+enekwmmRXzNW9evWif//+WJbFrFmzMh2OJElZ6s033+TSSy8FRC/1u8qIMlvI0ly9cuVKjjnmGPx+P7m5ueTn55Ofn09eXt4OPx7Rbn6RP/fcczn33HMzHUazKIrC0UcfzdSpU5k5cyYjR47c/kKSJEkt6IEHHuAvf/kLAKeddtou3V+HoihN+nViV/wF49c89NBDnHzyycybN4899tgDwzAavX/55ZdnKLIt7Yq5GsQddN9++y0zZ87kj3/8Y6bDkSQpy0ybNo0LL7wQ27Y55phj0o/57IqyNVefeeaZgNiXJSUlLbJ97aYhv6s6/PDDmTp1KvPnz890KJIkZZl//vOfXHHFFQBcdtll3Hfffbt24lSaeAW/nYxN2+C5557j7bffxuv1Mnv27Eb7UFGUNtWQ31Udfvjh3HvvvTJXS5K0002bNo3Ro0fjOA7nn38+kydPbvN9i/yqLM3VS5Ys4dNPP6Vfv34tVmb7qqFd0PDhwwH48ssvicViGY5GkqRs4DgOf//739ON+Ouuu45//vOfaJr26wu2cQ3P3TXl1Rxz587l2GOPpXPnziiKwiuvvLLdZebMmcPQoUPxeDyUlpYyefLkHdyq7bv++uuZNGkStbW1/PTTT6xcuTL9WrFiRautN5vss88+AHz33XdUV1dnOBpJkrKB4zjccccdXHDBBTiOw9ixY5k6deoWd13tarI1V++9996sWbOmRcuUDfkM69GjBx06dCCZTPL5559nOhxJktq5srWrGXfxKdxyyy2AGP/7lltu2bV/iW+gqE1/NUM4HGbw4ME89NBDTZp/5cqVjBo1it///vd8/vnnXHfddVx++eVMnz59R7ZquxKJBKeeeuqu/QtNG1dYWEifPn0A+PjjjzMcjSRJ7d3GDesZd9lFXHvttQCMHz+eBx54QObqX9HWc/XUqVO54447ePLJJ/n0009ZsmRJo9eOkLfWZ5iiKAwfPpzXX3+dRYsWMWLEiEyHJElSO1RTU8NDd03k5eceJR6P4XK5+Ne//sXo0aMzHVrLURXxasp8zXD00Ueney5vismTJ9O9e3fuv/9+AAYMGMDixYu5++67Oemkk5q17qY455xzeOGFF7juuutavGxpk+HDh/PDDz+waNEijjzyyEyHI0lSOxQKhbjj/of491PPEo1E0DSNu+++O30HXbuQpbl648aN/Pjjj5x33nnpaYqi4DgOiqJgWdavLL11siHfBmzekJckSfqtopEwJi7cHjGG7Zo1azjyyCNZtmwZAL/be3+eefLfu27v9NugKCpKE67gN8xTV1fXaLrb7cbtdv/mOD766KMtOi898sgjeeyxx0gmky1+W6RlWdx55528/fbb7LnnnluUf++997bo+rLV8OHDefbZZ2WuliSpRcRiUbAtvD4/AOXl5YwaNSp9h+6eg4fw1JOPM3jw4EyG2eKyNVeff/75DBkyhP/85z+ys7v2pOE5eXlyIEnSjohGwvznmceoq6nC5S/m6cmTcGybHr37U9yhC0s//5BwOEyHjl2YcNP9jPj94QwYkJfpsFteM6/yd+vWrdHkiRMncuONN/7mMMrLy7cY072kpATTNKmoqGjxoda++uorhgwZAsDSpUsbvdcubsNsIzbP1Q2/oEiSJDVVPB7n2WefpaysjKKO3bj/njswzSQ9S3ejZ5cSFn/+BXV1dRQVFnDDzXdx6OFHMnC3LpkOu+Vlaa5etWoVr732WvoxrZYgG/JtwN57742iKKxcuZJvv/2W/v37ZzokSZJ2AWvXrOT5p/7Dh29No6py4xbvr/jua1Z89zUAgwcPZuK9/6FL5847O8ydRtE0lCZ02Ncwz5o1a8jJyUlPb4kr/Ol1/KKR5zjOVqe3hA8++KDFy5S2NHjwYFwuF5WVlXzyySfpDvAkSZJ+TVnZWv7z/Eu8Of1J1q9fv8X7K35YzooflgPQv39/pv7zLvJLf7ezw9xpsjVXH3rooXz55ZeyId/e5ObmcuSRR/LWW29x6qmnsnDhQrxeb6bDkiSpDXAch/feeIrF82dSWbGBouKO5Bd3YfWPS/ly0az0fJ279qCwuCPffPUpf77iBg45+lS+++YLfv55NeecdBDDhg3jo29DgJ25jWltqtK0IW1SV/lzcnIanRy0lI4dO1JeXt5o2oYNG9B1ncLCwhZfn7RzuN1uTjjhBF588UX+9Kc/sXjx4lb5/EiStGt6dcZbvPXu+6zfWElJfg4lHTuxcvUa3p87H9sWubdjSQk9evRg8aefcv6YcZx8+jl8+/USKlYt4chjjmPfffel/Pul1GR2U1pXlubqY489lnHjxvHVV1+xxx57bHHr/nHHHdfsMmVDvo2YNm0ae+21F0uWLOGGG27grrvuAuDikQANV4XyuOcVh6+/3PTLm25oBHM9ANTXhKhYV01+SW7qvU1fkoJCP6omygnmebEscUCJRU1RcoEPXdfI65DDtwvFL3hevw9fjg/d0HB5xEelYh0YLgMzaaIb4kqZbdnEkha62wWAmTRxbHFFq2ZDFYH8nNR8Fr6gn2Q8mZovidflo66qHqDR0FdmPJFeBiAZt6mviQJQ1KGAcFUtPQaJK1p1VXUYbvFlCOTnoqgKiVg8XU5dlUIsFAHAlxtM1Y3YHts0Uv/a6dgTsQQuj4jZcRyi4QT+gLj6587zUl0VSW+7oipYlp3e3pyCIHVV9bg8oi6i4Si6oZGIinhcHhfRUJTcIrGP6uvjaJqKlto3qqai/uK5IbdbR9M2TcvJdROPWyRiZnqa7nbhdmskvWJ7vB4Df7c8QvVivTn5fpKmRW6+DwCPV8Pj1aitSRDMExeN4nELRVEoKjAoLxf1X1DoQTdUDEOlW2kBVeurU8sbVFeEKeks6qkeCAY2xRgLRQjmB/EE/OnhQ6ykiTfPj9vnTk/z+zXcPndqP4Yo6VYg6t12CIdE7JGog66rqfXq1NaK2BrqJFSfSO+LSCRJ6mIqfXu7SX2MME2xP1IfezRNoSTfoi4kysjvIuZdXy6GgCwqduN2QdIkXYaiQMBjkRMQ+15TLeKJ1Oc8LKbl5YI/qeI2oEOh+IwZOqxdL/ZVn15uxEdFLNe12OaEvTVe/Ej8fcqIza8AK5imxeWXX84jjzzCtowcOZKLL76YY489FsMwiMfjm65WH9q30bz7DQhus5x2QVHEqynztaIRI0bw+uuvN5r2zjvvMGzYsBZ75m7MmDH87W9/2+KWw6154YUXME2TM888s0XWnc0efvhhFi5cyPfff89VV13FlClTAMgffFCj+Wq+mA2AN14LQDJYBICeCGN7VfKSIo9HjSBJxU29FQCgUK0gUL0KgEjJngSjYr4qlzip9GhxTNuLbStEHXE8r04E8Otxko5OjlMDgOUUoKIQSYrzA1Wx0e0kUTb97Y7VEveIXGQoJgXxMgDqPEUkExpeXRyDE44brxLBmxC5OmTkYCI+xx4ngqOomI44lpqWToEnBEDY8mGrBglNrNNBIaqIZ4EN4jiKiq1u+j5UUpy+29ZCRcHBVMWx2+WYKDhoiHMCTbGpT/pwqeLYGjMNXJpF0k6d1joONipqav6wO4/8utXEguI25XDCheOAoYmkENQjOKpOxBT5sMCowlI0dEWUr+CgKyZuR5yHxPCl/w9gxOrw+KPompPaVhXN4wHdwGHT8SaSNEh4PKiKWG+NUYxpKViqiNudqEdxHIxEWNSDtwQFB0M1cdviPCbhCmA7Ki4lgWGKGJK6F7cZoVorwMFDXUJ8NgLuOjTFIppMncOYITyuBHFVvK85Nm7dxEJLx2mpOraj4rYjeFL73LYVXIjPQ7Wdn47fRRy3KeJyqSaKKerbRMetJdN1B+CPVoq/bYuaYFfxWXKCVMcDdPZsACBuBKg3AxRp4nNvKTqmrRHVxPcjqbkxrHi6PjXbJKm5qSNPbK9ST1mihA6uClRNxBJ33GiKiTtWi2WIO9JcSoJgrIJyvQSXIj6feVYFP9m9AIi6AtioFCLisBWVPXfrwNc/iO/I3v3yILXOboBtB7n22mvT5+5bc/DBB3PxxRdz4okn4na7G+XqI/YfBJyRnrdzvz1pv/fOkVW5enNjxowBYNKkSVu8Jzu728V16tSJBx54gNNOO40333zzVw8GkiS1f8uWLeP8889n4cKFKIrCNddcw5577klZWRlr164lJyeHs846i9LS0kbLteQtZ7saRVVRmnCVvynzbC4UCvHDDz+k/165ciVffPEFBQUFdO/enQkTJrB27VqeeuopQCTrhx56iPHjx3PhhRfy0Ucf8dhjj/Gf//yneRv0K4qLixk0aBD77bcfxx13HMOGDaNz5854PB6qq6v55ptvmD9/Ps8//zxdunTh0UcfbbF1Z7PCwkImT57MqFGjePPNNzMdjiRJGfbjjz9y4YUXph9xuuKKK9hnn31Yv349a9euxePx8Kc//Yl+/fo1Wk7m6uzI1ZtruCujJcmGfBty4IEHArB8+XIikQg+ny/DEUmSlAm33347119/PZZlkZOTw7Rp01plKJR2p6njzjZzbNrFixdzyCGHpP8eP348IIZ9e+KJJygrK2P16tXp93v16sWMGTMYN24c//rXv+jcuTMPPPBAi+7Dm2++mcsuu4zHHnuMyZMnb9HJXTAY5PDDD2fq1Klb9Mor/TYHHHAAiqKwdu1aNm7cSHFxcaZDkiQpAx566CH++te/kkgk8Pl8TJ48mbPOOivTYbV9WZSrW5tsyLchnTp1oqSkhPXr17NkyRL23XffTIckSdJO9uqrrzJhwgRAPC/1wAMP0KNHjwxHtYtQmtgTbjNv1zv44IPTHeBszRNPPLHFtIMOOojPPvusWetprg4dOjBhwgQmTJhATU0Nq1atIhqNUlRURO/evWWv6q0kGAzSp08fvv/+ez7//HN5oUSSstB7773H5ZdfjuM4jBw5koceeojddtst02HtGrIoVz///POcdtppTZp3zZo1rF69mv3337/J5TfvUofU6n73O9FLZWufAEqS1PZUVVVx3nnnATBu3DheffVV2YhvhoaxaZvyam/y8vIYPHgw++67L3369JGN+FYmc7UkZa9wOMyf/vQnHMfhggsu4K233pKN+GbIplz9yCOP0L9/f+644w6WLVu2xfu1tbXMmDGDM844g6FDh1JVVdWs8nf9GmpnGsYC/vzzzzMciSRJO9s///lPqqurGTRoELfffnumw9n1NIxN25SXJP0GMldLUvaaPHky5eXllJaW8uCDD8oLp82VRbl6zpw53H333bz//vsMGjSInJwcdtttN/bYYw+6du1KYWEhF1xwAT179mTp0qUce+yxzSpf3lrfxsiTA0nKTpFQLf/85z8BmDhxIi6XK8MR7YJa6bk7SfolmaslKTvFYtF0h9R/+9vf5HDROyLLcvX//d//8X//939UVlYyf/58fvrpp/RjcEOGDGHIkCGozezYr4FsyLcxDbfrffXVVySTyVYZ/kCSpLbFtiwevvV8amtr2X333fnDH/6Q6ZB2TW1kSBup/WtoyH///ffU1dXJ8eQlKQs4jsNNf7+G9evX06NHD9mx3Y7K0lxdWFjI8ccf36Jlto9LHe1Ir169yM3NJZFI8M0332Q6HEmSdoJnHrqaT+a8gsvl4tFHH93hK7NZT1Wb/pKk36C4uJiuXcVY2F9++WWGo5EkaWd4+MF7eP2V/6JpGo8++qj8sW1HyVzdYmQNtTGKorDXXnsB8pY9ScoGn376KW++cD8ATz75ZLN6K5V+oeF2vaa82pEbb7yRVatWZTqMrCNvr5ek7LF8+XImP3QfIDowk6NV/AZZmqtbg6yhNkj2hitJ2eOBBx4AYP+Rpzd5iBJpG7KoA53Nvf766/Tu3ZvDDjuM5557jlgslumQsoLM1ZKUPR566CEcx+GgQw7nwgsvzHQ4u7YszdWtQT4j3wb92lX+v56gwAkd0n936BikTy83AGu+V7Esi05dggAEAjqJmAmAZdt07uwD4Icf4sSiSQC6dA0AEI5YWJaN2+1F1TUAzKRJYcccbMdBRXyZ8otzcXkMNqytpLoiBIDX76Z81UZcHhGHZVmYSRuAYGEumibKi4WiKKqC4Ra3IumGTiwSwxsQHYWUr/gZT8CfmjcstiE/F4D6ympqKutSW12A4fUQqhHrr91QmS7DSpp4Al6spNhuW9NQU+tveD9SFyEWigDg2DbRcIR4TKw3mB/A5XFRXytOhD0+N3kFPjRNbL+uq+iGRiQm6i8ZN6mrCpFTIOrRcOnUAbUVtQDkFuWiKAqaIb5q/lwfLo8Lt8dILW/hztn0NfT4XKiqgssjpuXkuFHz3JStFduqqAq6ruL369j2prEyNV1D01QaJqmagj+g4w+Icio2REV95oh9FA4n0XUVl0cjGtu0bR2KRVwuV2qfRS38ARfxuEU4nEjXc8PnJ5r6N1wbI2kGMbye9H5XNZVYKIw7tS15xTn4/AaFxX7icbF/1q2LUFtRA8DgEf3S22O4VOzUWKAet0I4nACgc2c/pltcfzRN8RkrKBTrrKtL4PHoeLwi9vqwQ9diMc+adRZ+n0qHAlG+4xhYjoPXI7a9c5FDZZ1KnU/EGvSreFwOGyod/F4lXR5AQU5qvb4YRXl+6sIqhUGxPRtrdboWmxw79JeH1k1/f/PDOnbv0xmADRs2cOrzzwNwz6S/IP1GitLEDnTa18nBp59+ypIlS3j88ccZN24cl156Kaeddhrnn38+e++9d6bDa7d+LVfn7XVwo78tXRx73dXrSAY1fJEKAEK5ecQcD6oijiv15FKkiuOFbifSyxeqqfnJoTLqw61ZOKm8HE3qFLtrqE0GqFdFzkxYOp18VWyM5QHgN+KYikFNXJwH+PQENcGuqI4FgKZYGAmRF223Ro4eRlPEe5aj4agKSU1sg66YeB2Roy1FR7cTaIo4Pm4Iu+jsiwMQAxTLJqGKY7SbeDpmW1FJ+PLRUttoqwYKDn5D5CrL1rAdFSVVL241Qdx2oWviWBuz3Ji2ilcXMbp1E5++qb7qPUVoWPjMejG/7sdRNWKKL7VNCrGkit8t4gmbYrqdWt5wEtiKhsWm8wcNi4QitmVNuAM9/evQEOtH1VCx8bhEPSQdAy3gA8vCUJLpMqIJDcOJp39FMx0dXduUy414PTFfYXq/OIqCojgYSpKYIs5T3GYk/XnRU/tMcWziRgAVB1WxUBBlao6JoygYqijPiNaS1DWU1JbqionjKGhY2Erq3E9zoTkWtUoBQWsDAD6XiZ2KWlVsdFUsH3KCJHXRMatiOsTc4vMXtKoJO10ACJg1QHcsTcznskK4TRF3SM+hs2cDUUfUv1cJ4VOjxBVxrpGbrMDQc6mI5wPQzViDrWhoiM+BqRqojoVLTaTrwaMlSDhuYqkycpxqHFSSLj9RS+w/VbdJ6D727Z8L5KZqvzOd03siyOrvl9F9twEA1NXVpccg/9uEq5F+oyzN1a1B/iLfBjWcHHzxxRfYtr2duSVJ2lVde+21JBIJ9t57b4YPH57pcHZ9DR3oNOXVzuy5557cd999rF27lmnTprF27Vr2339/9thjD/75z39SW1ub6RDbnYZc/c033xCPxzMcjSRJreWGG24gFArRv39/Dj/88EyHs+vL0lw9e/bsFi9TNuTboP79++PxeAiFQvz444+ZDkeSpFbw8ssv8/jjj6MoCnfffXemw2kfZAc62LZNIpEgHo/jOA4FBQU88sgjdOvWjRdeeCHT4bUr3bp1o6CgANM0Wbp0aabDkSSpFcyaNSs9NOw999wjx4xvCVmaq4866ih69+7NLbfcwpo1a1qkzPZVQ+2EruvsueeegHz2TpLao3A4zNixYwG45pprOPDAAzMcUTuRpVf5QdxeP3bsWDp16sS4ceMYMmQIy5YtY86cOXz77bdMnDiRyy+/PNNhtiuKosjn5CWpHYvH44wZMwaASy65hFGjRmU4onYiS3P1unXr+Mtf/sLLL79Mr169OPLII3nxxRdJJBLbX3gbZEO+jZK94UpS+3XPPfdQVlZGaWkpN954Y6bDaT+ytCfcPffck3333ZeVK1fy2GOPsWbNGm6//Xb69OmTnufss89m48aNGYyyfZK5WpLar0ceeYQVK1bQqVMn7rzzzkyH035kaa4uKCjg8ssv57PPPmPx4sX069ePSy+9lE6dOnH55Zfv0FCm7auG2hF5ciBJ7dPGjRvSJwS33XYbbrc7wxG1I6oGWhNeqrb9snYhJ598Mj/99BNvvvkmJ5xwQrqD0c0VFxfLPldagczVktQ+1dbVcfPNNwMwadIk/H5/hiNqR7I0V29ur7324tprr+XSSy8lHA4zbdo0hg4dyu9//3u+/vrrJpcjG/Jt1Oa36zmOs525JUnaVTzy4L2Ew2H22WcfTj755EyH075k6VV+x3HIz8/fYno0GmXSpEkZiCh7NOTqL7/8EsuyMhyNJEkt5eEp/6aqqordd9+dc889N9PhtC9ZmqsBkskk//3vfxk1ahQ9evTg7bff5qGHHmL9+vWsXLmSbt26NevcsP3VUDuxxx57oGkaFRUVrF27dov3y8rKGD9+PJXl32cgOkmStiUaCXHjjTfyxz/+kauvvpra2lreeecdxo8fz8iRI/nvi88BcNddd8lOc1palj53d9NNNxEKhbaYHolEuOmmmzIQUfbYbbfd8Pv9RKNRli9fvsX7lZWV/PWvf+Wb72XHtZLUlsTicW699VZOPvlkrrjiCqqqqvjggw+46qqrOPLII5n2xFMA3Hnnnei6HK27RWVprr7sssvo1KkTY8aMoW/fvnz++ed89NFHjB49Gr/fT7du3bj99tv59ttvm1ym/GS2UR6PhwEDBrB06VI+//xzunbt2uj9J554gvvuu4+hh8YYPuLhDEUpSdLmHMfh4X/8mTlvPZ+e9uCDDxKLxRrNd8IJJ8gO7lpDU3u5bWc94TqOs9WLQl9++SUFBQUZiCh7qKrK4MGDWbBgAZ9//jm77757o/eff/557r33Xn7+7kgeufVvGYpSkqRfuvG2u3nqhf+m/54yZcoWufqwww6THdy1hizN1d988w0PPvggJ510Ei6Xa6vzdO7cmQ8++KDJZbavGmpnfq033IqKCgDi0bqdGpMkSdv2yewXmfPW82iaxqRJk+jRowexWIxgMMiFF17ItGnTeHDy4zz99NOZDrVdchSlya/2ID8/n4KCAhRFoW/fvhQUFKRfubm5HHHEEZxyyimZDrPda0qurg+Hd2pMkiRt25zZ76Ub8TfccAO77bYbsVgMr9fLeeedx9SpU/n3ww8yffp0eedcK8i2XN1g4sSJnHzyyVs04k3TZO7cuYAYueyggw5qcpnyF/k2bMiQITz11FNb7USnrk404K1kfGeHJUnSNsx+fTIA1157LX//+9+5/PLLefvttznssMMoLCwE4Jsf1hEIBDIZZvulKE17pq6dnBzcf//9OI7D+eefz0033URubm76PZfLRc+ePRkxYkQGI8wOv9bhXUOujsd3fHghSZJa1kvPi0fcLrvsMm666SauuuoqZs6cyUEHHUSHDh0AWP39skbHVKkFZVmubnDIIYdQVlaW/ow1qK2t5ZBDDtmhflZkQ74NGzp0KAALFy7c4tbJ2tpaAJLJaEZikySpsVBdNd9/NQ+A888/H4Dc3Fz5i+jO1NTOcdpJBzrnnHMOAL169WK//fbDMIwMR5SdGnL14sWLSSaTjfZDQ66O/4ZxgiVJajmxWJQF8+cAcMEFFwAQCARk57M7U5bl6gbbegyusrJyh0dFkA35NmyfffbB6/Wyfv16li5dyh577JF+r+Eqv0KcRFJMy+uQQyDHQ3V1wzM+HvILfQDk5m46sehQ4qeqSswTjYqrP8mEhc9nsKE8RKfe3QCoKqugbGUFhZ3y0APiNhDNEENBGC4DVRNfsJqKelRNTb+XjCfT68ovziUWEScwkboQwcIcoiFx8SEWimBZFpoulivp2YVIfTj1nvg3VF27aZs31gDgMlQMt4vKn8sB0N0uKtduEPWhqCiqQn1lal6vm0QsTjwcTc9rJk2czYZhcmwHTRfboukqvqCHaDie2k6d2uooufleEU9dFJ/fwLbE8rqhoaoKHp+o38ryOgyXgZVsqNckyYRJLBQBIB4JoBk6vqAYciweM1EVBbdLfLH9ATe6rqGl6tY0bWIxk8JisR9jMRcbykMoahB/cNOwZbbtYBgqji1GOOhT6iEac6gPiTiDuW5UBQxXqtykkx4NoUOJr1E5jqpQWOhO1bXCho0JLMtGVZRG+zav0IeR2ue24+A4kIzG0p+BpCuZqm87Xc+GoRGPm+nt0zQFf24gXYamiXoI1SeIRcS6CnNtXC6xHlVVUFO7Tk/ts+rqeLp8T76GpooycgMK9VEt9Z6JroNpifcSCYtYQsXjTq0vqlCSZxGO6KmywbKhdzdwaWJflnZIYKgWLs0EYO9+eRwAgALoPPfcLGzbYuDAgZSWlrItu/fpvM33pN+mqbfi7cjteg8//DB33XUXZWVlDBw4kPvvv5/f//73W5139uzZHHLIIVtMX7ZsGf3792/2uremrq6OnJwcQPwiHI1GiUa3fmG3YT6pdQwaNIjCwkIqKyv5+OOP2X///dPvpX+Rr6vB9/MykkVd6KKtRa+vBMAT6IShJlhriuNCZ6OMWKAYAG+8lnqv+H+VJfo68KjieOfWTVyKyK2qAhYafj1Gwha5SFEcYrabSEIc0xwHwr5coknxt9+IE1N8WIhjZH3Shzew6dikKA4RW+Q9vxohbntwKeL47iaGrYjlQnaQPCqxHPGdMjSx3oZYQ+4CNMQx1JusIWKIz6IvXoOW3PQ8slFfgTcnhumI+OKKgqrYJBVRlo5JUtl0ypqj15O086hPiBh9egKfFqU2KfKJpprYiorqiHV7zDAhXzEJR5zLFHojxF0GXk3kGa8ewxWuxOMXdWopOiFr04m1g0I3cwVJ3Z2av5CY40Vl07mE6lh4DPF3nelHLywi6fE3mifgNkkoHhK22BYfDh7dIlAnOjVOenKwNBeOLeJWHAcFBzcxDEvUl6OomI5O3HYR84rRKjzRahxXDklHR8PCstV0TKajoymiPMvlJ2BESSLqQcXGUC10kiiOiNNWNGJJF0F3CFsTnyfLUYg7HrEvFAtdEfMmbZ0ctUbE5eTipPJvSMvDTooYoi6xT3RTfHbrAp2wVCNdryYGPlWc86mmhUuLpz8zcd1HXcKPqmyKrdIuolAVj6y4zQghdz46Yj9qtolXi+Ehmv5sd+8zIF3/xcCbby4gFovRrVs39txzT7al+24Dtvme9NtkU64G+MMf/gCAoiice+65jYYdtiyLJUuWsN9+++1Q2U1qyDckouaQJw6/ndvt5uCDD2bmzJm88847W23Imwl5a70ktQX/+9//ADjuuOMyHEkWa6Wr/C+88AJXXHEFDz/8MPvvvz9Tpkzh6KOP5ptvvqF79+7bXG758uWNcmFxcXGz1vtr8vPz07fo5eXlbfUqf8PVfzksWuvSNI3DDz+cF154gXfeeWfrDfmkmanwJEnazMsvvwyIXC2ff8+QLMrVQPoRDcdxCAaDeL3e9Hsul4t9992XCy+8cIfKblJDflsnCduiKArffffdr/4qJTXNEUccwcyZM5k1axZ//etf09PTDflkbFuLSpK0kyxatIjp06cDyNvzMqmpw9U08+Tt3nvv5YILLmD06NGAeDb97bff5pFHHuG2227b5nINjezW8P7776d7pH///fflCWmGHXHEEbzwwgvMmjWr0ZB/Dbk6lkhua1FJknaSpUuX8uSTTwLIx94yKYtyNcDjjz8OQM+ePbnyyit3+Db6rWnyrfX//e9/mzSMjeM4cqiGFjRy5EgA5syZQywWw+MRtzY1nBwkE/IZeUnKpJUrV3LBBRfgOA7nnntuuuMrKQOaOaTNL+82c7vdjW55A0gkEnz66adce+21jaaPHDmSBQsW/OpqhgwZQiwWY/fdd+f666/f6i18O2rzXm0PPvjgFitX2jFHHHEEIC7q1dTUpE8KZUNektqGn3/+mXPPPRfLsjjxxBPlELCZlEW5enMTJ05s8TKb1JDv0aMHBx54YLrX5e0pLS2Vne60kN13352OHTtSXl7O4sWLOeAA8VTuplvr5S/ykpQpq1atYq+99qKuro6ioiLuuOOOTIeU1Zr73F23bt0aTZ84cSI33nhjo2kVFRVYlkVJSUmj6SUlJZSXl2+1/E6dOvHoo48ydOhQ4vE4Tz/9NIcddhizZ89ulZPHxx9/fKudNb300ktEIpF0p3hS6+nevTu77bYb33//PQsWLEj/oCEb8pKUeevXr2fIkCFUVFSQk5PD/fffn+mQslo25erf/e53vPfee+Tn5zNkyJBfvXtua0OYbk+TGvIrV65sVqFLly5tdiDS1imKwn777cfLL7/MggULOOCAA7Bte9Mv8vLWeknKmOnTp1NXV8fuu+/O66+/vsWQItJO1szn7tasWdPoubhfXuFvtMgvku+2ep8F6NevH/369Uv/PWLECNasWcPdd9/dKg3522+/ncmTJ28xvUOHDlx00UWyIb+T7L///ls05Bt6rZcNeUnKnNdff52KigpKS0t58803f/V5aWknyKJcffzxx6fjPeGEE1qkzM21y17r4/E4w4cP58svv+Tzzz9nr732ynRIv8n++++fbsgDhMPhdI/j8hl5Sdr5bNsmHA7zwQcfAHDeeefJPkHaAEdRcZpwctAwT05OznY7Zi0qKkLTtC2u6G/YsGGLK/+/Zt999+WZZ55p8vzNsWrVKnr16rXF9B49erB69epWWWdLaI+5+oknnkjnatu2qa+vByCWlA15SdrZHMchFAqlc/WZZ57Zor2RSzsmm3L15rfTZ+zW+l/6+OOPmT17Nhs2bMDebBgvEB0NZNrVV19N586d+fLLLzMdSotoGJJgwYIFOI7T6FkR+Yy8JO1cZjLJlZeeweKFc0mkxoZureeppGZqhQ50XC4XQ4cOZdasWZx44onp6bNmzeL4449vcjmff/45nTp1avL8zdGhQweWLFlCz549G03/8ssvm/xIXCa011y9aNEikskksVgsfdE9aVpYlv1ri0uS1IJs2+aKv1zOu+/OIpm6kCZzdRuRpbn6k08+wbZthg8f3mj6okWL0DSNYcOGNbvMZjfk//GPf3D99dfTr18/SkpKGt2u0BZ6zW0Yqm369OnMnDkz0+G0iCFDhuB2u9m4cSM//PADprlpGBv5jLwk7Vz33XYdC+a+m/7b7/fv8r8kthcOTbzKT/OGtBk/fjxnnXUWw4YNY8SIETz66KOsXr2aMWPGADBhwgTWrl3LU089BYiecnv27MnAgQNJJBI888wzTJ8+PT2yQUs77bTTuPzyywkGg+nbAefMmcNf/vIXTjvttFZZ52/VHnN1//79ycvLo6amhiVLltCxY8dG78eTJrL3IEnaOe679x5mzpzRaNq+++6boWikzWVrrr700ku5+uqrt2jIr127ljvuuINFixY1u8xmN+T/+c9/Mm3aNM4999xmr6y1rV+/ngsvvJBXXnkFn8/XpGXi8Tjx+Kax2H/ZM2Jb4Ha7GTZsGB9++CHz589n9913T79n2xaWZaJp7fIpCUlqU155cRovPTe10bRevXqhaVqGIpIaaaUhbU499VQqKyuZNGkSZWVlDBo0iBkzZtCjRw8AysrKGt3CnkgkuPLKK1m7di1er5eBAwfy5ptvttqILrfccgurVq3isMMOQ9dFLrBtm7PPPpt//OMfrbLO36K95mpVVRkxYgQzZ85k/vz56VFnGkQTCdmQl6Sd4NXXXmPy5EcaTSspKWk0freUQVmaq7/55ht+97vfbTF9yJAhfPPNNztUZvMudSAS1f77779DK2tNDUM/jRkzplm3Jtx2223k5uamX7/sGbGtOPzwwwGYNm3aFicwSfmrvCS1ui8+mct9t/4VgD9fcT3PPvssubm53HLLLRmOTEpTlE2d6Pzqq/l3j11yySX89NNPxONxPv3000Yd4TzxxBPMnj07/ffVV1/NDz/8QDQapaqqinnz5rXqsKwul4sXXniBb7/9lmeffZaXX36ZH3/8kWnTpuFyuVptvTsim3J1Q0d3DWSHd5LU+r5a8gXXTrgOgIsuuphXX32V/Px87r777gxHJqVlaa52u92sX79+i+llZWXpi/DN1eyG/Lhx4/jXv/61QyvbETfeeCOKovzqa/HixTz44IPU1dUxYcKEZpU/YcIEamtr0681a9a00pb8NhdddBGGYTB//nxmzZrV6D15e70ktZ4PZjzDA5NGM3H8mVimychjTuLci8dzxhlnUFNT06xnr6TW1TCkTVNe7VHfvn354x//yDHHHJP+BWJnkblaOO+88/D7/SxZsoSXX3650XvxpLmNpSRJ+q1mzJjBX6/9G2PHXEA8HueQQw5l/F+v5LjjjqOqqoo//elPmQ5RSsnWXH3EEUekc1mDmpoarrvuOo444ogdKrPZzf8rr7ySY445ht69e7P77rtvMV78LxPXbzV27NjtPuPXs2dPbrnlFhYuXLjFkATDhg3jzDPP5Mknn9zqsm63+1eHMWgrOnfuzBlnnMGTTz7JXXfd1ei9U0dE6dYNOLKIe191qKkRV/1//HYjvqAHgIKCfExTdLqjqPC7PQMALPkmAoDHqxONJOnUJYimies7tmUTzPMTiyQwXOLW4Xg0gaIoqKqCbohphtvASlq4faIedUPHcIv3kgmTjt3yAKitqMXlcVG5dgMAOUX5VKwpx0x1QmLbNupmtyh7An5ioXD674LORQAkkja+oD99O3O4tg4zLjod8+YEiEeiaIb4aMfDUdw+L1rqc2rGEyTjCVRdLKtqGobbIB4Vy3t8bsykhZo6eCiq+Le6QsTh9btQFIV4TMTsC7gaxWwmTZLxJPklYpvrquoxXHo69mgoRnHXQnw+8SuZ4dKIxpK4XZtu99I0BY9HT6/f7dbRtFQcG8MoqoJjO406TlJVBY9HTc+nKhDwKVTXiH0ei5r4fDqhehG3329QWGAQizuEQuLkMhDQsW1Img4uQ5TToQAiUZ2a6gRen0F+ca5YPuDC7zfwecVnJRbzo6qbDri+oLhd1p8XJJi76ftlmjaqqqTr1+fTySkIAlBY6Kah78x43KKgSJQRjavk5Ij6ystRMS0xT07qs+3ziX2r6wrRiEUgIOouYUKHXDFzbq5Bjl+hW4HoHPLsg0R9f7RM3N2iKQ75Rg220xWAE/bWAIWlS7/mtEkXYFminGHDhvHKS0/L2/PaKEfRcJTtP+bQlHl2NU899RR33XUX33//PSAa9VdddRVnnXXWTlm/zNVCfn4+559/Pg8++OAWudrZ9wSCAwcSBCLrlgAQ1314kyEcRxwTLVVHs0Q+MnUPOVGRL5fGewLQN6+MToE6XGqSwrC4RXQlnUjaOqatEzRCAEQ1N5atoWsiB8QtjYTjwq2ljolGiJDpT8cWM13YqZyuYaIqFmFbHIOLoquo9XfCH60CoMLXHdPZdProKGo6fgDLTuV/DPzUkdTEfktqbhKk/q970TYbdcfy5RC1PZi2KNerxbAcDQWRFBxEmQlH5AJdMQknXOiqeD9iunAcBZe66WKJ4STwRSoAqAl2pYZCLEfkLK8ex6WZJFOxBpR62Kzz5jge3GoCy0mdKyg2CjYJTRz7XY6JTwlTaYrOJGPefGKKDxVR3yqApuPoLjz2pvOY2piBHVDxaGIf+5UQLj0HxxLbpZlxLE8elqqn6lZBU2wclPS6FRxCphfbUYnrqVybWIsZNHBsBZeaxJXaz4rjoCsmTio/J10+HEdBU6x0fSqKiFlzzFRdK3j1OG4nimamzo1cJjUJkatzXSEaasqrxbBT+6Yy6qOXW+RYRcvDldrGhCP2ecRbIPaLFSemic9eADGqgzspzkVVx8LEQEPE16NPP3oAi5dXp+vQo8apdkRZPQf0pQRYsWIFV115Zfrxm4EDB/LKK//bbk/nUmZka66+5557OPDAA+nRowdDhgwB4IsvvqCkpISnn356h8psdkP+sssu44MPPuCQQw6hsLCw1Tu4KyoqoqioaLvzPfDAA41ucV23bh1HHnkkL7zwwhadCuyqRo8evdWTnFhM/iIvSS3NcRwuu+wyLMti+PDh7L333lx33XWyEd+GNXdIm/bi3nvv5e9//ztjx45l//33x3EcPvzwQ8aMGUNFRQXjxo1r9Rhkrt5k9OjRPPjgg1tMj0blKDOS1BrGjRtHPB5nyJAhjBgxgmuuuUY24tuwbM3VXbp0YcmSJTz77LN8+eWXeL1ezjvvPE4//fQtfhhvqmY35J966immT5/OMcccs0MrbC3du3dv9HcgIH5x7t27N127ds1ESC1u8ODBW50uG/KS1PJmzJjB7Nmz8Xg8vPDCCzv9VmVpBzQ8V9eU+dqRBx98kEceeYSzzz47Pe34449n4MCB3HjjjTulId9U2ZCrBwwYgMvlSg9P2UDmaklqefPmzeO1115D13WeffZZBgwYkOmQpO3J0lwNYqSjiy66qMXKa3YNFRQU0Lt37xYLQGq6YDC4xTjBIE8OJKmlOY7DrbfeCoi7kGQjfteQrc/dlZWVpccw39x+++1HWVlZBiLKboZh0L9//y2my1wtSS2vYWSOCy64QDbidxHZmqsBfvzxRy677DIOP/xwjjjiCC6//HJ+/PHHHS6v2Q35G2+8kYkTJxKJRHZ4pTtDz549cRyn3Y3vvMcee2wxTd6uJ0kta86cOXz00Ue43W7Gjx+f6XCkJmq4Xa8pr/akT58+vPjii1tMf+GFF9htt90yEFHTZVOulg15SWpZn376KW+99RaapnH11VdnOhypibI1V7/99tvsvvvufPzxx+y5554MGjSIRYsWMXDgwC06Mm+qZt9a/8ADD/Djjz9SUlJCz549t7in/7PPPtuhQKSm2WOPPXj99dcbTZMnB5LUcizTTN+KfMEFF9CxY8cMRyQ1WSuNTdvW3XTTTZx66qnMnTuX/fffH0VRmD9/Pu+9995WG/hS65MNeUlqXbZt85e//AWA008/ndLS0gxHJDVZlubqa6+9lnHjxnH77bdvMf2aa67ZoZ7rm92QP+GEE5q9EqnlyJMDSWpdM6c/whdffEF+fj433nhjpsORmqOpV/Db2VX+k046iUWLFnHffffxyiuv4DhO+qp/Q8+40s4l756TpNb1xisv8OGHH+L3+9O310u7iCzN1cuWLdvqxfXzzz+f+++/f4fKbHZDfuLEiTu0IqllyIa8JLWetauW88y//gbAbbfdRnFxcYYjkprDQcFh+1fwmzLPrmbo0KE888wzmQ5DSpG5WpJaz7q1a7jnH38HRLukW7duGY5Iao5szdXFxcV88cUXWzzy9sUXX9ChQ4cdKrPZDXkps/r27bvFNHmVX5Kax3Ec3nvvPe68fwo9e/fn/IvHU1NTw90TziYei3DYYYdx4YUXZjpMqZmyaUiburq6Js8rh2Ha+bbWA79syEtS882bN4/b7n6Ijp26ct0VFxCK1jNh3EXU19UyfPhwrrjiikyHKDVTNuXqzV144YVcdNFFrFixgv322y/9GNwdd9zBX//61x0qs0kN+YKCAr777rsmjRELYniZefPmyZ6eW4FhGOy999588sknDBs2jMWLF8uTA0lqhkQ8xnnn/Zknn3wyPW3Jpwso/3kFq1b9RE5+MU8//TSq2r4SSFZQaOJzd60eSavLy8tD2c62Oo6DoihYlrWTopIaKIrCYYcdxnvvvcfw4cNZtGiRzNWS1AyJRIJLL72Uhx9+OD1t2Rfz2VhZw48/fEcgmMN//vOfHR5/W8qgLMrVm/v73/9OMBjknnvuYcKECQB07tyZG2+8kcsvv3yHymxSQ76mpoaZM2eSm5vbpEIrKyvliUMrmjdvHjU1NVxxxRWyIS9JzXTnDWN4f+aLaJrGwSOPZ/as11j04fsAFHfszt/ufZVOnTplOEppRzioOE0YjKUp87R1H3zwQaZDkLZj5syZVFZWMnHiRBYtWiTvnpOkZrjp5pv5z3+eFxfFjjqeue/NZOGijwEoKu7AfY88Q69evTIcpbQjsilXb05RFMaNG8e4ceOor68HxNDiv0WTb60/55xzftOKpJbjdrspKSnB4/EAjW/XG3+8ArgAeGlhJ96dXQNAXb1J105iemG+SlWtA0BBgRsAy3bw+zwYukJtjfhY9Ohbgtut8d1X6yjpLC7iVG2oJxFN4Pa58XjFVVAzaeH2uQnVhMS6KmvIKQgAoGqbvoQen4dwbRhV00TcoSiKqmAmTQBKOhWyfvV6AHKKCyjqUsSa5atFOaqCboi4aqrjeAMeErG4KDfgJ1IjbjNNRMU0O3UhSdU1NENP/+0N5qG7E0TrRKyarqEoKh6fqAev341l2emYY5EE+cUBylZWAODyFOB2a+iGltoXOoFcL2ZSLNOhSz4rlq7GHxDPVidiSRKxJAUdRP3VVYdJxJLYjqj/vDw3iYRNNC7+LizysuL7Srp0E1/sysoYXp+B2y3Wp6gKhktH0xRsc1OcwYI8vB4VyxLl7Nt9HQtXd0bTlFScGpqm4KQWCQQ0gj4wTdD1zfaRW8HQoaZelFMbUnC7VQyXSixm0qmb2A6XS8U0bTweLf0Z0LV0MdRX1dFjQDeC+X4K8sXnpLYmRscSD6tWh+jYUXx23S6FohKxrZqm4KTqpXt3P9GoCLYomGRl6sqt44BPLErPohjg5aTfhwFY8H0+lx3zy8u3Iqjjhom/Nm4MMeed6QC88cYbHHXUUSxatIjXX3+dgoICzjrrLPlc/C6sqePOtoexaQ866KBMhyBth2EYdOzYcau52nfQaQD0Buo+fZtuOeI42WHlJxAS+SzerT+WIZbtllMNgN+qxa1GSSpuqgNdxHrCFlHTTczS8WgiByYtFQWNHLe4eGDaOgnbwKWLXKhhEbNceLQEADmuCAri+GtYMdZY3dEU8XfMnUvU8eExRF7XFBOdJABRfCQVF/VxEX+RP4btiJySsA0SugePKY7Rcd2H7ojlTM2FgkPcLR778EQqRdlqKj7FIma7iTleQDwr61HjqNjpGPI9ESKmOK+xHRWXlkBXxPJhgvgIoVhifXHVh5codqphUB4rxK/HiVsibl1LYBtuTFucZ3jVGLlWJRFd5KdaK5e47sNO3eqbtDVUxyJhifkdRcN2VPxusb5cow50nZC/BFvZLDkChpJAVcR2uawojrPpeWHVNtFsk3qjIL1dCg72Zg2fhObFsRR8eix963HCl09M9ePYCh4lSjB1vuQ4Ci7iGKrYz5oZJ+iuI4E456lL+okkXeTHf6beL57R1e0kUcsNLtCSYqjp3ECIqCU+iyp2up78dh1hVezDfG+EqBZMz5OwXKl9ldpntqgbd7yekgFD2ZYSIBQK8corrwLw/PPPc8opp/D555/z8ssvk5OTw5lnnknnzp23WYbUtmVTrt6W39qAb9Ckhrxt29ufSdrpGk4O5FV+SWqa//73v1iWxdChQznqqKMAGD58OMOHD89wZFJLyNbn7kDcqTVlyhRWrFjBSy+9RJcuXXj66afp1asXBxxwQKbDy2pba8hLkrRtr776KtFolD59+nDyyScDMGTIEDkKRzuRTbl6yJAh230MrsGODOEuO7vbhXm94oquPDmQpKZ57rnnADHmrNT+ZGtPuNOnT+ess87izDPP5LPPPiMeF7/K1tfX849//IMZM2ZkOMLsJnO1JDVPQ64+44wzmtwIknYd2ZSrW3vYdtmQ34XJq/yS1HSzZs1i/vz5KIrCqaeemulwpFaQTVf5N3fLLbcwefJkzj77bJ5//vn09P32249JkyZlMDIJZK6WpOZYsGABb7/9NiAvurdX2ZSrW3vY9l2/hrKYPDmQpKZZt24dZ555JgAXXXTRVoeGknZ9Dc/dNeXVnixfvpwDDzxwi+k5OTnU1NTs/ICkRuRjcJLUNBUVFZx66qlYlsXpp59O//79Mx2S1AqyNVeD6EB+6tSpTJgwgaqqKkDcUr927dodKk/+Ir8LkycHkrR9pmly2mmnsXHjRgYPHsx9992X6ZCkVpJNt+ttrlOnTvzwww/07Nmz0fT58+dTWlqamaCkNHnRXZK2z7Ztzj77bH7++Wf69u3LlClTMh2S1EqyNVcvWbKEww8/nNzcXH766ScuvPBCCgoK+N///seqVat46qmnml2m/EV+Fyafu5OkXxeJRLjooouYN28ewWCQl156Kf29kdqfhtv1mvJqTy6++GL+8pe/sGjRIhRFYd26dTz77LNceeWVXHLJJZkOL+vJXC1Jvy4ej3PFFVcwc+ZMPB4PL730Uov16i21Pdmaq8ePH8+5557L999/n77AC3D00Uczd+7cHSpzh2rItm2+++475s+fz9y5cxu9pJ1HXuWXpG2LRqPst99+PP744wBMnTqV3XbbLcNRSa3JRsNWmvBC235hv/Dwww/Tq1cvPB4PQ4cOZd68eb86/5w5cxg6dCgej4fS0lImT568o5u1XVdffTUnnHAChxxyCKFQiAMPPJDRo0dz8cUXM3bs2FZbr9Q0MldL0rYlk0kOOeQQHnzwQQAeeugh9txzzwxHJbWmbM3Vn3zyCRdffPEW07t06UJ5efkOldnsW+sXLlzIGWecwapVq9JjPjdQFAUrNV631PrkyYEkbdt///tfvvzySwoLC3nmmWfSw81J7Vdr3a73wgsvcMUVV/Dwww+z//77M2XKFI4++mi++eYbunfvvsX8K1euZNSoUVx44YU888wzfPjhh1xyySUUFxdz0kknNWvdv2avvfZi9OjRnHnmmdx666387W9/45tvvsG2bXbffXcCgUCLrUvacfIxOEnathkzZvDRRx+Rk5PDE088wYknnpjpkKRWlm25uoHH46Gurm6L6cuXL6e4uHiHymz2L/Jjxoxh2LBhLF26lKqqKqqrq9Ovhof2pZ1DnhxI0rZNnToVgHHjxslGfJYQneM05Xa95p0c3HvvvVxwwQWMHj2aAQMGcP/999OtWzceeeSRrc4/efJkunfvzv3338+AAQMYPXo0559/PnfffXdLbGba8OHDuf766+ncuTNnnHEGH330EcOGDWOfffaRjfg2RF50l6Rta8jVY8aMkY34LJFtubrB8ccfz6RJk0gmk4D4AXz16tVce+21O3zhoNkN+e+//55//OMfDBgwgLy8PHJzcxu9pJ1HPncnSVv33XffMXfuXFRV5dxzz810ONJO0nCVvykvgLq6ukavhvHXN5dIJPj0008ZOXJko+kjR45kwYIFW43jo48+2mL+I488ksWLF6cTeEuYMmUK5eXlPProo5SXlzNy5Eh69uzJpEmTWL16dYutR/ptZK6WpK1bu3YtM2bMAOCCCy7IcDTSzpJtubrB3XffzcaNG+nQoQPRaJSDDjqIPn36EAwGufXWW3eozGY35IcPH84PP/ywQyuTWpa8yi9JW0omk1x66aWA6ECkS5cuGY5I2lmaO6RNt27dGl2Ivu2227Yos6KiAsuyKCkpaTS9pKRkm8+0lZeXb3V+0zSpqKhooa0VPB4PZ511Fu+//z4//PADZ511Fo899hilpaUceeSRvPjiiy26Pqn5ZK6WpC3Zts3YsWOxbZvf//739O3bN9MhSTtJtuXqK664gqVLl5KTk8P8+fOZPn06t99+O2PHjmXGjBnMmTMHv9+/Q2U36Rn5JUuWpP9/2WWX8de//pXy8nL22GMPDMNoNK/soGLn2d7Jwcn7qpy8b0H673e+TADg1k3WucQvBN//JPo5UFQwLYe8nE0dS/j9Bi6XijfgQdXEl6mgQ5BYNEk0FMdwiXmDeV6ScYuNP28AwDY39ZOQm+8lVCeunOUWBVn3Yxlm0gTAcLvw5+ag6uJ6kqqpeP0+AIq6FFC1vgZNE+sI5Ofg8boACNXFqVpfhZUQ5fjzgkRqNj1zort04mFxJc2bk4OVNNEMPbWdCpGa+k3zul3ohk6kXjye4DgOLo+Bner/wbHFv67UupMJk3jcQtNEzKH6OJZlo6b+dnt0PAEveQWifivKa1FUBX9QLF9bWU9BhwDxuIg9P99NMKiTn6Ok1q8RyPFQVyfi93h0DF3B49lUR4lYknA4iT/gTm/HnsN74vcplPYRd8V0jH7N+oqS9HZYloNlObg8m/avqjq4XQqxuFi33yv+DfpslFRPoboGiSQUFrpYv96mU0exHZVVJoUFBh63WKa4gw/TgvzOHQAo7FRAcQcfsajF7j3Etqxfb6CoCm63TociEUd1rU0wKI4hXo+CnqrHimqTjsVin+V7Q9xwZuO7fX7++Wc+/vhjKjsfxNC+hQCU+H7m+OMv5auvvmLlypX4/X7+8Y9/IGUPx1FwnCY8d5eaZ82aNeTk5KSnu93ubS2C8otb/BzH2WLa9ubf2vSW1KtXL26++WYmTZrE9OnTufjii3n33Xc55ZRTWm2d0vZtL1fnDD2S9KdwtwHE3hK3GrtqyogViuc6NcUGIBDagK0ZhLxF6LY4tpq2iqHZ1EUNokmR812ajddIpNdhO2AoJrmusFjG0dEUC9sRx9z6hIegLwSAoynYpoqiiFzuKAqmo2Nq4vifcDZ9T2xUoo4PTRGf70jSQHencrMWw0ajQhEnyp1jq6hwdQYgaFWh2Ba2Ko7zlu4Rv8D94vvbEF/DutRUPURsP24tgZJar2Vr2I6KW40AELZ95Nkx1KSoc69VT1z3oTkiNttWSNg6Xk3UYUQNEvTkoKvifRWbWr0wHY+hmKi2na5zx1GIKn4MVdRRXPPhUaKYtqj/uO3GWl+G0SeGpW461S7yx/El6lhjdgKg2K2RsDSSLnESbyTC2IqW/iVSwcFQksQcL7oiYrPQCBoRXEoCT0LsM0tzYaGhq2ajeoppfmxHI2kb6fJ9Ri2aLs611tV1oUdeHXp1HYkc8VlzEcOFiS9eg2KL7VsXLqCDrza9HV49nvpsqAStagBqCdB9twGN9t/69euZN28eJTkHUjJgKAAbNmzgj3/8I19++SU//PADbrebO++8Eyl7ZFuufuutt3jwwQcZOnQoo0eP5rTTTuPQQw9tkbKb1JDfa6+9UBSlUed2559/fvr/De/Jzu52Lp9PHIhDoVCGI5GknaeqqooDDjiAVatWoWkao0eP5tRTT+XCCy/kxx9/BEDTNJ577jl5YTHrqDhNutFMzJOTk9Po5GBrioqK0DRtiyv6GzZs2OJKfoOOHTtudX5d1yksLGxCfDvugw8+4PHHH+fll19G13UuvPDCVl2ftH2b5+rtnVRKUnsRCoU46KCDWL58OaqqctZZZ3Heeedx6aWX8vXXXwOi/TBt2jT23XffDEcr7VzZlau//fZbPvzwQ6ZNm8aVV17J+PHjOemkk7jgggs48MADf1PZTbq1fuXKlaxYsYKVK1du9dXw3ooVK35TMFLzdO3aFRC3hshb9qRs4DgO55xzDqtWrcLj8WBZFlOmTOHQQw/lxx9/pFevXrz55pusWLGC4447LtPhSjtZc5+7awqXy8XQoUOZNWtWo+mzZs1iv/322+oyI0aM2GL+d955h2HDhm1xF1tLWL16NZMmTaK0tJTDDjuMVatW8fDDD1NWVtaqQ+lITdO5s/gVOhwOy06BpazgOA4XX3wxy5cvx+PxYNs2Tz75JAcffDBff/01nTt35rXXXuOHH37gjDPOyHS40k6Wjbl6//3357HHHqO8vJwHH3yQlStXcvDBB7Pbbrtx++23s27duh0qt0kN+R49eqRfq1atokuXLo2m9ejRgy5durBq1aodCkLaMcXFxfj9fhzHkXUvZYUXXniBN954A7fbzYIFC/jggw/Yc889KS4u5vTTT2fOnDmMGjVqq8OMSO1fa5wcAIwfP56pU6cybdo0li1bxrhx41i9ejVjxowBYMKECZx99tnp+ceMGcOqVasYP348y5YtY9q0aTz22GNceeWVLbq9zz33HEcccQSlpaVMmTKFU089le+++445c+Zw9tlnpztZkzLL5/PRqZO4lVr+4CFlg5kzZ/Lcc8+haRrvvvtuekSNwsJC/vjHPzJ37lyOPfZYSktLMx2qlAHZlqs35/P5OO+885g7dy7ff/89p5xyCnfeeSc9e/bcofKaPY78IYccQllZGR06dGg0vba2lkMOOUTeWr8TKYpCaWkpX331FStWrKBfv36ZDkmSWk08Hue6664D4G9/+xtDhgwB4Msvv8xkWFIb0lpj05566qlUVlYyadIkysrKGDRoEDNmzKBHjx4AlJWVNeolvlevXsyYMYNx48bxr3/9i86dO/PAAw+0+Li05557LscccwyvvPIKo0aNQlWb3X+ttJOUlpZSVlbGihUr2HvvvTMdjiS1GsuyuOaaawAx/Ov+++8PwCeffJLJsKQ2JNty9daEw2HmzJnDnDlzqKmp2eE2XLMb8tt6vquysnKHe9yTdtzmDXlJas+mTp3KypUr6dSpE+PHj890OFIb1FonBwCXXHIJl1xyyVbfe+KJJ7aYdtBBB/HZZ581ez3N8fPPP29xUV1qm0pLS/nwww9lrpbaveeee46lS5eSn5+fvvguSZvLtly9ublz5/L444/z3//+F4CTTz6ZO+64I33Bq7ma3JD/wx/+AIhfgc8999xGPQZalsWSJUu2+QyC1HoabkuSJwdSe/fKK68AcOWVV8qLhtJWNbcn3F2dbMTvOnr37g3IXC21fw25+vLLLyc/Pz+zwUhtUrbl6p9//pknn3ySJ554gh9//JHhw4dz3333cdpppxEIBH5T2U1uyOfmiuGfHMchGAw2evbO5XKx7777yt5xM0A25KVsYJomCxcuBODwww/PcDRSW9WaV/kl6beQuVrKBo7j8OGHHwIyV0vblm25umfPnhQWFnLWWWdxwQUXMGDAgO0v1ERNbsg//vjj6WDkL2Jthzw5kLLBV199RSgUIicnh4EDB2Y6HKmNyraTA2nXIXO1lA1WrFjB+vXrMQyDoUOHZjocqY3Ktlz94osvctxxx6HrzX6ifbuaXeLEiRMBMc7e8uXLURSFvn37ylv8MmTzkwM5Pq3UXi1YsACAfffdF03TMhyN1FZl28mBtOtoyNWrV68mmUy2yjCEkpRpDbl66NChctQMaZuyLVc3PJ7eGprdxW1dXR1nnXUWXbp04aCDDuLAAw+kS5cu/OlPf6K2trY1YpR+RcNwBaFQiI0bN2Y2GElqJQ236u1oZyBSdnBQ0s/e/eqrnZwcbK6mpoapU6cyYcKE9Fjln332GWvXrs1wZBJAx44d0+Npy+FipfZK5mqpKbI5V7e0ZjfkR48ezaJFi3jjjTeoqamhtraWN954g8WLF8tn5DPA4/Gkh1X49ttvMxyNJLUOeXIgNYWN0uRXe7JkyRL69u3LHXfcwd13301NTQ0A//vf/5gwYUJmg5MA0ncvgszVUvslc7XUFNmaq1tDs2+tf/PNN3n77bc54IAD0tOOPPJI/v3vf3PUUUe1aHBS0wwaNIhVq1bx1VdfceCBB25zvpGDXan/uZj7dRiAL8LiWk4gaJCfq2FaDrohpgUDGrv3tKiqysG2HAD698/hxxVhSvvks3ZNPQB9++Xy06owgfwgAPFwFE0TZTiOQ26+B4BwKIGqb7p2FI9EAdBStxiqikJhJ9HDqaIo1FfWEsjPSc8fDccAsCwX0boQgXzRAWOoetOdIIqqEA9H038bbgNFUfEGRJ8OuUW5VK/bkF6n4XJhJk1cXlE3sUicZDyJLyhuCfMW+InUx9Pl5RX48Pl0yn8WsXh8Ljp0DBIOJdJx64ZOMmED4A96cWyHWCSZLiMnx00oNb/fp9KxCHI8yVR9GfxgOeTmivgCfpVEEiJRCwC3R8dxafj9RqPHKPr0dNGtIMqXEVHXlb5uhEImHq+4Dd22HPx+HSu1H1UFEkmFHL9DPCHKsWzoXGhh2gqJVLip3UhOQKG2VsfQxbzdOhtE45DrF9tZF9Tp3sGkc68SAHbrm8eevU0WLjXoGxS/Pm3s35uAx8Lj9hGLizgK8lTCLlFmYS6YYjP581GbDk0//1zP6tWrUVWVffbZB0nalmy7Xa/B+PHjOffcc7nzzjsJBoPp6UcffTRnnHFGBiOTNjdo0CCWLFnCV199xf/93/9tcz7PUaPT/w99vQiAYnOdeG/1Nzi5hcQ65eJJ1AHgdyUwVIs8r0o4uemWfU1x6KCtB+Bnuwsxy42qiGN20KhHU/woijgWJ20NBfGe24pgOQoNJSVVNzpmugfppG1gpX4Hsh2VhKXjc5kAbKh309Uvzi+itoegUkNcEaMcxQ0fLkXkU9Wx0KL1qL4CACzDg6GY1Js+AFxqEreaQEHEZ6MSMv3kGSLfq9hYjoamiKRRl/SS70lgpk5ri5z1+KJVKI5YPidURkVuabpu3LqJ7agYuojHQSHp8uFWRW7WMIk5nvT6vWqUuOpDdcT6VMUmYnnx6uJcwJ2I4LeqsO2uAOiKiaKqeOvKcbl8qbXuTlmthyHeCrrliXObiBNkQ52BU6Cm6yGs5xJ33OntVHDwKFGqTXF+FNDDJGwDnxbGVrRUPBYGCaKOh5AdQE3FDWChEbNFeUZVGfiL09tVH1HxFsZAUdBssQ8japASylAdi6QnJ11fATUEgIlBXVycIw3dY9PY14GaGr7++msAOYqV9KuyNVe3hmb/Il9YWJjuwX5zubm5cpiJDNljjz0A0SGYJLU3Dc/cDR48uFEjRZJ+qUm36jVx2JtdySeffMLFF1+8xfQuXbpQXl6egYikrZG5WmrPFi5ciOM49O7dm5KSkkyHI7Vh2ZqrG/zwww+8/fbbRKPih0fHcbazxLY1uyF//fXXM378eMrKytLTysvLueqqq/j73/++w4FIO06eHEjtmbxVT2oq21GwHbUJr/Z1cuDxeKirq9ti+vLlyykuLs5ARNLWyFwttWcyV0tNla25urKyksMPP5y+ffsyatSodFt69OjR/PWvf92hMpvdkH/kkUdYuHAhPXr0oE+fPvTp04fu3buzYMECpkyZwu9+97v0S9o5Gk4Oli5d+puu6khSW9RwciBv1ZO2p+F2vaa82pPjjz+eSZMmkUyKZ2IURWH16tVce+21nHTSSRmOTmrQkKu//fZbEolEhqORpJYlc7XUVNmaq8eNG4eu66xevRqfz5eefuqpp/LWW2/tUJnNfkb+hBNO2KEVSa2nX79+6LpOXV0da9asoXv37pkOSZJaRCgU4osvvgDkVX5p+5p6K157u13v7rvvZtSoUXTo0IFoNMpBBx1EeXk5I0aM4NZbb810eFJKt27dyMnJoa6uju+++45BgwZlOiRJahHJZJJFi0R/DjJXS9uTrbn6nXfe4e2336Zr166Npu+22247PJrJDo8jL7UdLpeL/v37s3TpUr766ivZkJfajU8++QTLsujatav8XEvb5UCqu67tz9ee5OTkMH/+fN5//30+++wzbNvmd7/7HYcffnimQ5M2oygKgwYNYsGCBXz11VeyIS+1G0uWLCESiZCXl8fuu++e6XCkNi5bc3U4HG70S3yDiooK3G73DpXZ7FvrQY5X2xbJZ++k9mju3LmAvMIvNU22d6Bz6KGHcuWVV3L11VczbNiwTIcjbYXM1VJ71JCrR4wYgaruUNNCyiLZmqsPPPBAnnrqqfTfiqJg2zZ33XUXhxxyyA6V2exf5JcsWcLhhx9Obm4uP/30ExdeeCEFBQX873//Y9WqVY0ClHaehiugcnxaqT2ZNWsWAIcddliGI5F2Bdk6pM0dd9xBz549OfXUUwE45ZRTmD59Oh07dmTGjBkMHjw4wxFKDWSultojmaul5sjWXH3XXXdx8MEHs3jxYhKJBFdffTVff/01VVVV6T4mmqvZl80axqv9/vvv8Xg86elHH310+opcJr355psMHz4cr9dLUVERf/jDHzId0k7Rr58Yy3P58uUZjkSSWkZtbS0LFy4E4IgjjshwNNKuIFuv8k+ZMoVu3boB4oR61qxZzJw5k6OPPpqrrroqw9FtnczVMldL7UM8Hmf27NkAjBz5/+3dd3hTZfvA8W9296J0AGXIRoYMQUBlCYIgS0HEl1dcgIiIogg4AH8yBBTELb6AE1ABGcree2/ZliUtq7R0Z53fH4cGCi2kJW2a5v5cVy5IcvLkfnKa3Oc55xlt3BuM8Ajemqtr1KjBvn37aNiwIa1btyY1NZWuXbuye/duKlasmK8y83xFfvv27XzzzTe3PF4U1qudM2cOL730EmPGjKFly5YoiuI13deqVasGqGf5FUVBoylef/zC+6xevRqbzUblypUpX768u8MRHsBbz/LHxcU5GvKLFi2ie/futGnThvLly9OoUSM3R3crydVw7NgxrFYren2eD8OEKFI2bdpEeno6UVFRMu+DcIq35mqAqKgoRo0a5bLy8nxFvqiuV2u1WnnttdeYMGEC/fr1o0qVKlStWpUnn3zSbTEVpkqVKqHRaEhMTOTixYvuDkeIu7Zs2TJAzvAL59kV52/FSWhoKGfOnAFgyZIljknuFEXBZrO5M7RbeHuujomJwdfXF4vFwsmTJ90djhB3LStXt27dWi4iCad4a65esmQJGzZscNz/4osvuO++++jZsydXrlzJV5l5PhWctV7tr7/+ChSd9WqzJtvTarXUrVuX+Ph47rvvPiZOnMi9996b6+syMzPJzMx03M/pJIUn8PX1pXz58sTGxnL48GEiIiJuu/3D9/oDsPsf9Vvyzz8pVCobQGqGhugo32tlagEbJpOesFADABcvWdHptKSl2ygdEwiA0aChdCk/Uq6GApB8OQmb7fp8lD4+6p+Z2WyjRHQJrl5U/1iNviY0Gi22a2sfJyemYrVYAYgoUwKNVuu47xd0fZZHc4YZu9XG1YvqRIs6g8HxXGCJENKvpqLV6wDwDw7g4pnzRN9T2vFawPGe/sH+JCdc3+epSSlodTq0Ot31z9bfiEarJieL2UayzY5/oDqsJLSEH3r99cRls9nxC/RFb9BeK98HS+b1A+kSUcEEBugwGn2ufZ5mwoJNBIWocZ1I12M06vD1UV+v12mw3/BLZvLRExHhi16vIS39ern3lbqATmPj4AEjADXKRWMx27Ba1f3g46sjwF/L5QT18zQYNNgVCPCxc9Wo1lVRwKS3g1WL37VRM5kWCA7U4GeyEx1pINBPjcXXaCfIX0NEQLr6Ofjpudd4iEOVawPweJ1/OZMawf01FCyoMd0bdZlMm4GYYBtmu/o30aR6IORwxlVRFJYuXQpIQ144z1vP8nft2pWePXtSuXJlLl++TLt27QDYs2cPlSpVcnN02Xl7rtZqtVSpUoW9e/dy+PDhO+6fkveqPSpStixQH1DsaNKS0So2LHo1VwcZUsm0G6noc5Ij9nuuvY/CpTR//AKDANBoFPRaK+lWdWbkq9ogQg2JJNsC1PsZemwB6u+yXaPDZteiN6j5IkPjR6bdiEmnvtZq1eGjVfeFGQMajY4QUwoACWkmbFzLv7o0DJZMgvSJAFi012dl1tqtYLdh06r5O80YjK82jXStmnz0Givpdh/CNJcBuGCLRKe1YVXUGH206aTaAjBp1dxpsevQopBiVY9tStjisBh80euNjs/Nht7x3ffRmUnK9EO5lr+NZGLKSCJZqw59MBky1H81aj2NSgb+GQmkmUIASMzwxd9oxt8nDQCd3YzGbiP02n1/krFnmrEbfcnwVY+NgoHzl+FKjbKUvHIMgHMh92LUK459maYLId3uyxWzul+ifS6h01jJsPui1aj53Kro8dVlkGgLwV9JdHx+idYQtBo7GTYjoQb1+6FV7BjJxJ41AZ1Ox2VDNBqNmstLBNo4k1yCyMBI9Hb1swxJPUt8UBW0Rht6u3qs1KyaH1DBsf+qcZ3kapFX3pqr33rrLT766CNAnfD0jTfeYPDgwaxatYo33niD6dOn57nMPF+RnzhxIhcvXsy2Xm2lSpUIDAx063q1//zzDwAjR47k3XffZdGiRYSGhtKsWTPHzPo5GTt2LMHBwY5bVvdETyRj70RxsWfPHv755x9MJlO+Z/IU3sdbx91NmjSJAQMGUKNGDZYvX05AgNoIiIuLo3///m6OLjvJ1ZKrRfFx4sQJdu/ejVarlYa8cJq35urY2FjHhKdz5szh8ccfZ8yYMXz55ZcsXrw4X2XmuSGftV7tnDlzGDduHAMGDOCvv/5i7dq1+Pv75yuI2xk5ciQajea2tx07dmC3q2cq33nnHZ544gnq16/P9OnT0Wg0/Pbbb7mWP2zYMJKSkhy3rO6Jnijr4EBmwxWe7pdffgHg8ccfJzAw0M3RCE+hKM7fihODwcCbb77Jp59+St26dR2PDxo0iBdffLFQYpBc7TzJ1aK4mDlzJgCPPPLIHXuCCpHFW3O10WgkLU3ttbNixQrHya+wsLB89zLL9ywrLVu2pGXLlvl9udMGDBhAjx49brtN+fLlSU5OBq4v7QJgMpm45557OH36dK6vNZlMmEymXJ/3JDdOeCeEp7Lb7cyaNQuAnj17ujka4UnsaLA70RXPmW3y68qVKwwcOJAFC9Su0B07duSzzz4jJCQk19f07t2b77//PttjjRo1cqzakJMFCxbQrl07DAaD471y07FjR+crkE+Sq50nuVoUB4qi8PPPPwOSq0XeeFOuvlHTpk154403aNq0Kdu2bWP27NkAHD16lDJlyuSrHnlqyNvtdmbMmMHcuXM5efIkGo2GChUq8OSTT9KrV68CmeQiPDyc8PDwO25Xv359TCYTR44c4cEHHwRwTCZTrlw5l8dVFGUdHBw6dMjNkQiRfxs2bODs2bMEBwc7xvoK4Qxnu+IVZHe9nj17cvbsWZYsWQJAnz596NWrFwsXLrzt69q2bZttfJzRaLzt9p07dyY+Pp6IiAg6d+6c63YajaZQJryTXO28G3O1rDIjPFXWPA8mk4kuXbq4OxzhQbwpV9/oiy++4JVXXuH333/nq6++onRpdf6uxYsX07Zt23zUIg8NeUVR6NixI3/99Rd16tShVq1aKIrCoUOH6N27N3PnzuWPP/7IVxCuEBQURL9+/RgxYgQxMTGUK1eOCRMmANCtWze3xVWYsiYKio2NJSUlxTFOUghPktWt/oknnsDHx8fN0QhP4mxXvILqrnfo0CGWLFnCli1bHMu+TZ06lcaNG3PkyBFHl+qcmEwmoqKinH6vrC7qN/+/qJNcDdWrV0ej0XD58mXOnz+fp/0uRFFx4xC4oKAgN0cjPIk35eosVquV1atX8+233xIdHZ3tuUmTJuW5vCxON+RnzJjBunXrWLly5S2TT61atYrOnTvzww8/8N///jffwdytCRMmoNfr6dWrF+np6TRq1IhVq1YRGhrqtpgKU8mSJYmMjOT8+fMcPHiwSK4fLMTtmM1mxzhZ6aon8iqvM+HePCbtbrtvb968meDg4Gy/vQ888ADBwcFs2rTptgcHa9asISIigpCQEJo1a8bo0aOdHnOalpaGn5/fnTcsIrw9V/v6+lKpUiWOHTvG/v37pSEvPI7dbneMj5dcLfLKG3O1Xq/n5Zdfdnmvaacnu5s5cybDhw/PcQbpli1bMnToUMdYGXcxGAxMnDiR8+fPc/XqVZYvX37b5WyKo1q1agFw4MABN0ciCsOmxZ/SokUL0tJS3R2KSyxbtoyEhASioqJo3ry5u8MRHiava9PGxMRkmwl97Nixd/X+WV3dbxYREUF8fHyur2vXrh0///wzq1at4uOPP2b79u20bNky23JrtxMSEkKTJk0YPnw4S5cuJTW1aP8eSK6+nqv379/v5khEYfjpt3k89NBDpCbnvjKDJ5EhcOJueGuubtSoEbt378533Dlx+or8vn37GD9+fK7Pt2vXjilTprgkKJF/tWrVYsWKFXJw4CV2rPyOS+cOs3/vLpo0aeLucO5aVle9Hj16oNPp3ByN8DjOLldzbZszZ85k6xKa2xn+kSNHMmrUqNsWuX37doAcxzvfaRz0U0895fh/zZo1adCgAeXKlePPP/+ka9eut31fgLVr17J27VrWrFnD559/TkZGBvXq1aN58+Y0a9ZMDrSLoFq1ajF37lw56e4lfv79D3bvP0iVh9ZBI88/aSVD4MRd8dJc3b9/fwYPHszZs2epX7/+Lau91a5d+45l3MzphnxCQgKRkZG5Ph8ZGcmVK1fyHIBwrZo1awJyRd5bWC0Z1/61uDmSu3f58mXmz58PSFc9kT82RYPNiYODrG2CgoKcGtvp7Izs+/bt4/z587c8d/Hixdvmz5tFR0dTrlw5jh075tT2jRs3pnHjxgwdOhSbzcb27dv5+uuv+fjjj5kwYUKhTHYn8iYrV8tJd++QaTYDYLWa3RzJ3UtJSeHXX38FJFeL/PHWXJ11ImDgwIGOxzQajeMEQn5ytdMNeZvNhl6f++Y6nQ6r1ZrnAIRrSXc972KzqN15LBbPPzj4+OOPSUtL47777qNBgwbuDkd4oIKaQMfZGdkbN25MUlIS27Zto2HDhgBs3bqVpKSkPPWYuXz5MmfOnLllQpzbOXz4MGvWrHFcmbdYLDz++OM0a9bM6TJE4cnK1QcPHsRms0kPpGLOfK0hbysGDfnPP/+cK1euUKlSJRkCJ/LFW3N1bGys02U7K0+z1vfu3TvX7gzOjg8QBatGjRpoNBouXLjAhQsXnJ4sSXimrIMCi4dfkb906ZJjaM7IkSNlOSaRL+5e0qZ69eq0bduWl156iW+++QZQl7Tp0KFDtslzqlWrxtixY+nSpQspKSmMHDmSJ554gujoaE6ePMnw4cMJDw93ekmnqKgoLBYLLVu2pHnz5gwfPtzRUBRFU6VKlTCZTKSnpxMbG0ulSpXcHZIoQGaLeqHL0xvyV69edawy8f7778sJKJEv3pqrC2KJVacb8s8+++wdt3HnjPVC5e/v75gNd/v27bRv3/6227/2uPol+WJxICnpkJqmYDCoj5mMcPqigZAQO8FB6ryIySk2Spb0wWyxU7mcut2FKxDgr0VvUH/QS1cuQ0CQOmYqI81CiRLq/41GHb7+JqIrxQAQd/wMFetWIS42DoDUpBSs15Kd4Z4IdDod6ckpAESUuX6GzeRnJOlSGKmJyQD4BQWg0aqx2G02dEY9/sHq0nuJF66gN+ixWdXuKhqNBr+QIGzXGr4GkwG/QH/H+5r8fDAYDaQmqZNFBQT7YvLRO8o3mfT4+unRXrsfGGjg6lUzYdfqmJpiJTjUj6x2aFpyJj6+BiKi/K99BlqiSmo4fznrMzag0UC4SR2WYrH6UbqMP5ElsmqrYLFqUBT1s7VajFSMAYsVNmxOwXLtirzVkskVcxD31lRnrk5IVU+uaXXq+4SEGLFYFPx8tY59a7NBmlnriDXTrOBntJJmMREaoH4eOo2CUW/DT28mwORLmkWNo1xIIjZFh78uDYCDl6IIPbmRCqXV8T0WxYDFpiXCP5kQ8wUAgjQ6DLZ0wqs35kaKojB48GBSU1OpV68eHTt2RIj8uHFynDttV1B+/vlnBg4cSJs2bQDo2LEjn3/+ebZtjhw5QlJSEqD2Ztu/fz8//PADiYmJREdH06JFC2bPnk1gYKBT7xkVFcWhQ4c4ffo0p0+f5uzZs1SoUEGWIC3CdDodNWvWZOfOnWzbtu2ODfmAB9TfxZStC9HYLNg1Onws1/KU4SpabQAaRaGU//XJ1OxoCUCd7dlkzCDRGkKgQf3NNmkzsaJHo1G/DEE+VjLt6oUaRavBpmgdz+mwYdBYsSnqIaNBa+WqVc1pPjozWkCLum2wrxkt9uuvs6Zj0anlarGRaA8BINx6CnNQBHqrOjwsXlcG3Q3LKGbYTVjtejRa9TGtxo6PNhOtRr1vU/T4aDPQouZ2o86GSXv9glKm1g//jAQU7bXcafDDZE/DrlHvB+gAE9gVNSeeN5ekpO0IqRZ1TeiK1vOc1UQR46MeZ5yzRFPKB/wyEwHwN5qx2a/PF62gwaYz4q9XP9/QpNNo/f34268hlSz7MZvV2PxMZnysqWivNeh9lVRKBJixag0AmDU+XDX746/PdJRrV3Sk2XwddVcUdcbvFIsPOkUtR68zU1o5xVV9CfQaEwbUx30sKSQbwhxxmkOjCbInEK+o61fXD/qbK9qSpGjC8L9WN1PSea74NKBa9TLcSFEUhg8fTkJCAlWqVOHpp59GiPzw1lwN8OOPP/L1118TGxvL5s2bKVeuHJMnT6ZChQp06tQpz/VwuiE/ffr0PBcu3KNly5YcO3aMpUuX3rEhLzybzZrVtd5zr8i/9957/PDDD2i1WiZMmCBX40W+uXttWoCwsDB++umnO7z/9QB8fX1ZunTpXb3nnj17SExMZN26daxdu5b33nuPgwcPUrt2bVq0aMG4cePuqnxRMFq2bMnOnTtZunSpjDUu5sxmNUd78hX5CRMm8MUXXzj+f7vhtkLcjrfm6q+++or333+fQYMGMXr0aMeY+JCQECZPnpyvhrzTy88Jz/Hoo48C3PUfnCjaFEXBblMPDjx1jPy4ceMYPXo0AF9//TUtW7Z0c0TCk2WtTevMrbgJCQmhY8eOvPPOOwwfPpzu3buza9cuRzdYUfRk5eply5ZlO2AUxY/52sl2q4fm6i+++IK3334bUOezkZ5z4m54a67+7LPPmDp1Ku+88062YSkNGjTI99xm0pAvhlq2bIlOp+Po0aMFMrGCKBrstusHBJ52Rf7q1asMHjyYYcOGATB69GheeuklN0clPJ0dJ9emdXegLjZv3jxee+016tSpQ0REBC+//DKpqalMmjSJffv2uTs8kYsHH3wQPz8/4uPjZT8Vc1lX5D2tIZ+WlsZ7773HgAEDAHj77bd544033ByV8HTemqtjY2OpW7fuLY+bTCZSU1PzVaY05Iuh4OBgGjdWxyHLVfniK6tbPXjOFfk9Bw9RuXJlIiIi+OSTTwAYNWoUw4cPd3NkojjI6q7nzK046du3L//++y8vvfQSe/bs4fz58/z+++8MGDCAe+/1/DWriyuTyUSLFi0AydXFmaIo16/Ie0jX+tjjh6levTrh4eF8+OGHALz55puMHTvWzZGJ4sBbc3WFChXYs2fPLY8vXryYGjVq5KtMGeBSTLVt25YNGzawdOlS+vXr5+5wRAGw2a5fhfeUK/JjP5vK8ePHAXXW5okTJ+ZrTJAQOSkK4+7c4cKFC+4OQeTTo48+yp9//smSJUsYMmSIu8MRBcByw9LMnnJFftqX4zh8+DCgzrT90Ucf0b17d5nDRriEt+bqt956i1deeYWMjAwURWHbtm3MnDmTsWPH8t133+WrTGnIF1OPPvoo7777LitXrsRisWAwGNwdknCxbFfkzUW/IX/k2AlWbdwCqGNCs4aACOEqdkWD3YnlapzZxhNlLTtqt2fvkFi7dm03RSTuJGuc/IYNG0hJSZGVBoqhzBvysydckT8Vf5HVy+YDMGfOHDp27CgT2wmX8tZc/dxzz2G1WhkyZAhpaWn07NmT0qVL8+mnn9KjR498lSnfzGKqXr16hIeHc+nSJTZv3szDDz/s7pCEi904+60ndK3/bOo0ALp27Urr1q3dHI0ojrz1LP/OnTt59tlnOXTokGPSNI1Gg6IoaDQax8y4ouipXLkyFSpUIDY2ljVr1tChQwd3hyRczGy+np894Yr8pFmLsNvtPPLII3Tt2tXd4YhiyFtzNcBLL73ESy+9xKVLl7Db7URERNxVeTJGvpjSarWOxpKMvSuesk12Zy7aBwc79+5n7sK/ABwT3Anhat467u65556jSpUqbNq0iX/++YfY2Nhs/4qiS6PRyEozxZzZcmPX+szbbOl+h44d538LVwLwzjvvuDkaUVx5a64eNWoUJ06cACA8PPyuG/EgDfliTQ4OijdPmexOURRGfDQJgB6dHqNBgwZujkgUV4ozs+AWw4OD2NhYxo8fT6NGjShfvjzlypXLdhNFm+Tq4i37FfmiPQxu1IRPsdntNG/9OM2bN3d3OKKY8tZcPWfOHKpUqcIDDzzA559/zsWLF++6TGnIF2Nt2rQB1G6XBw4ccHM0wtU8ZbK7rTv3sGPPPkxGI++8JhMvioKjKBqnb8VJq1at2Lt3r7vDEPnUsmVL9Ho9x44dY8uWLe4OR7hY9ivyRfek+4FDR1i9cQs6rZb+gz9wdziiGPPWXL1v3z727dtHy5Yt+eSTTyhdujSPPfYYv/zyC2lpafkqUxryxVh0dLRjfNPbb7/t5miEq9mzXZEvug35r6b/CEC3zo8TVTLczdGI4sxbu+t99913TJs2jVGjRjFnzhwWLFiQ7SaKtqCgIP7zn/8A6qzGSnH7A/Vy5hsa70V5sruvvv8ZgC7NGlKm7D1ujkYUZ96aqwHuvfdexowZwz///MPq1aupUKECgwYNIioqKl/lyWR3xdy4ceNYsGABf/31F2vWrMm1q9Qr7dR/V+/P4HKaCQCLVf0SHTuRTlCAPwD1a2jRaOxYbFr0WvUbFlPSRmKqDp1OPXPmH2CiXm115t0jJzLx91PPF505nUmpMoEkXkoGoEqDagSG+JKeEgqAOcNMWvwlANJTzaRcScIvJBAAk58Ri1k9q629doLOdq3xGhAaSGpSCgAGoxGjj8kxG7rJzwe9QY/J1wjAlQuJVK5TgYtxiQD4+Bkx+RjQ6tQYUxJTsdsVwkuHARBVKpD0NCu+PurzZouNilG+nItXY9DrNZhMOhIT1Ua1yaTHYNQRGqKuEpCS7ENwiAmjUX19VEkdQb42rCFqfEF+CqkZEGJRu9dEhJXGzwQRAeqZufhkX0wGhROn1Mmq/P3V14X6W7JdkddlXiHdoqdeRfV1mVY9VaoEci5OjctqU/dVRAk1jsxrL/Ux2PFTq0qwbyYlTYn4G/zw06Wrz2vTsSs6Ai0JRAUHkokPACXTTwOgMauzY5siMshcf5jqNdRlsGpWiqImcOTIRZatWQ/Aux+MJrxqVYQoKFnd8ZzZrjjZtGkTGzZsYPHixbc8J5PdeYb/+7//Y/bs2WzYsIEFCxbkuixnQKPHAbh87JDjKDdD44cvaVg0JrSov8lJlgAq2g5z1bckAGa7CaPWgo82AwCTkk6mxhd/rZoz/APSMCtqnoxPL4FRZ8VPq+YBo5LBBXMJQo1XARzvAZBq8cVi1+GnV7c16WycS1WTSg3fo2QYA8nQqscPdrSE6q4AoGg02PU+2HTqe4ZqEkghCKtdzVF6rQatxo6vRT1eCDb5YFZM2BQ1B+o1Fuzo0KH+bYeYUjBg5qpdPWbI1PuS6Veakha1vmk+oVh0Jow29T4aCNClkmAJVuuvz8Cm9yHdoh4WxwdVwNdmIV3xUzfXKFi111f/MWht/JvoR7DJFwCr3geDNR2jRs25+tREtFGl+Ts+mEpx1+epMGlSMVpSSQkuA8BVQgg1pWK7VrYdLZGmS6Tb1XIVNFgUA366dHyu7Q+zYkKHjRifOBIo7difgRkXMOn90OssmBX1OM5sMGEkEzPq55zpE4xVa6SU7QwAparUpjRw9uxZ/li8HIC3x39Gg+pBCFFQvDVX38zf3x9fX1+MRiPJycn5KkOuyBdzlStX5rnnngPgl19+cXM0wpWyTXZ3Q9e9omTSpEkoisLjjz9OVWnEiwLmrWf5Bw4cSK9evYiLi8Nut2e7SSPeM5QpU4b+/fsDMHPmTDdHI1zJbL3+HSyq89lMmTIFq9VKs2bNZB4bUeC8NVeDOqfN6NGjqVGjBg0aNGDXrl2MHDmS+Pj4fJUnDXkv0KVLF0Bdu1u67BUfN052Zy6CXesvXbrE999/D8Cbb77p5miEN/DWg4PLly/z+uuvExkZ6e5QxF3IytXLly+XEzDFiNlctOezSU5O5ttvvwVg8ODBbo5GeANvzdWNGzemUqVK/Pbbbzz33HOcOnWKVatW8eKLLxIcHJyvMqUh7wUefvhhjEYjp06d4tixY+4OR7hI9nXki97Bwdy5c8nIyKBu3bo89NBD7g5HeAFnZsF1tkufJ+natSurV692dxjiLjVs2JCgoCASEhLYvXu3u8MRLpJ5Q4+5onhF/s8//yQpKYlKlSrRvn17d4cjvIC35uoWLVqwb98+9uzZw1tvvUXp0qXvukwZI+8F/P39efDBB1m1ahXLly+nSpUq7g5JuMCNXevNRbBr/aJFiwB48skn0WiK18yjomiy2dSbM9sVJ1WqVGHYsGFs2LCBWrVqYTAYsj0/cOBAN0Um8sJgMNCyZUv++OMPli1bJl2ciwmz9cZZ64veSfesXN21a1e0Wrm+Jwqet+bqMWPGZLtvs9nYv38/5cqVIzQ0NF9lyjfWS7Ru3RpQu9eL4qEoX5FPT09nxYoVAHTo0MHN0Qhv4a3d9b777jsCAgJYu3Ytn3/+OZMmTXLcJk+e7O7wRB5Iri5+ivIVeZvN5pgkU3K1KCzemqsHDRrE//73P0D97jVr1ox69eoRExPDmjVr8lWmXJH3Em3atGHYsGGsXr0au90uZ12LgaI8Rn7JkiWkp6cTExNDrVq13B2O8BLOJv7idnAQGxvr7hCEi7Rp0waAjRs3kp6ejq+vr5sjEnfLnK0hX7Ry9dq1a0lISCA0NJTGjRu7OxzhJbw1V//222+OpUYXLlxIbGwshw8f5ocffuCdd95h48aNeS5TWnNeok6dOvj5+ZGcnMzRo0fdHY5wAZutaF6Rv3o1iUGDBgHQvXt36VYvCo0dJ8fduTtQIXJRsWJFSpYsidVqZd++fe4OR7jAjQ15axG6Ip+WluZYKeHJJ59Er5dre6JweGuuvnz5smO9+L/++otu3bpRpUoVXnjhBfbv35+vMuVb6yV0Oh1169Zl48aN7Nixg2rVqrk7JHGXsnetLxpj5C1mM2+/0Z/Tp09TsWJFRowY4e6QhBdRFMWplTmK4+odZ8+eZcGCBZw+fRqzOXtj4ZNPPnFTVCKvNBoNDRo0YPHixezYsYNGjRq5OyRxl4pi13qr1cqgYe9z5MgRSpcuzdixY90dkvAi3pqrIyMj+fvvv4mOjmbJkiV8+eWXgHpSTafT5atMuSLvRbImztmxY4ebIxGuUNS61tvsdt4a1I8Na1fh6+vLL7/8QmBgoLvDEl6kKIy7Gz16NE2aNMHPz4+QkBAn41YYOXIkpUqVwtfXl+bNm3Pw4EGn33PlypVUrVqVL7/8ko8//pjVq1czffp0pk2bxp49e/JXEeE2kquLl0xL0Vp+TlEU3nhnBH8uXY7BYOCnn36iRIkS7g5LeBFvzdXPPfcc3bt3p2bNmmg0GsecKFu3bs33BVZpyHuR+vXrA7Bz5043RyJcwW4r3IOD+Ph40tPTc31+7t5jrFy+GIPByB9//EHDhg0LPCYhbqTYwe7ETSnA/npms5lu3brx8ssvO/2a8ePH88knn/D555+zfft2oqKiaN26NcnJyU69ftiwYQwePJgDBw7g4+PDnDlzOHPmDM2aNaNbt275rYpwE8nVxcuNs9ZbzAV/Rf7ixYukpqbm+vyq1WuYM38ROp2O2bNn07x58wKPSYgbeWuuHjlyJN999x19+vRh48aNmEwmQO01PXTo0HzVQ7rWe5Gss/y7du3CZrPl2I2jRa3sE+t8Ml8hpowffj7XHwv2ycSos3ImUb3aGh2UTqBJy9nSAQAkJZkJ8FW/faEhBiwW9ZRaTNlANBooVykCUK/gWi12QsLVcq4mpBBWqiQARh8DPgF+hF+7n3Q5hWq11HElcedSMPqYCCoZBkDZyhFcjFMD9A/yJTTMl5PHLqr3g/1IT8nAL0B9Xq8vgdFHT8noEAB8/AzYbAr+/upyTX7+Ri78e4WAIHX74GA9JpOWtHR1DQxfPz0Wq0J0pOFaeZCaCjEx/oB69vBKogWLVa1zRKQfYSE60jPV+2XCMvE1WElKU7cvFZTM7zsNtCmpfl7hgRYMOjtBBjUJB4SlYbXrsVUJBiDQx0rpgCsEksR95RPJOszLtNqxKRoCDBnXPls/6pRLRatR3yc8xE6AyUpyhrrPK5ZMI91qIMwnhSDdVQB02AhKv0CJmk2AEMf+vnjxIq+++ja//vorUVFRPPfcc1y8eJGUlBRSU1NJSUkhJCSEFSu2AvDee+86JmwSojAVhQl0Ro0aBcCMGTOc2l5RFCZPnsw777xD165dAfj++++JjIzkl19+oW/fvncs49ChQ8ycORMAvV5Peno6AQEBfPDBB3Tq1ClPByrC/bJy9cGDB0lLS8PPz++WbcpWru74fxjwz4kTxGVGEmJUDyhDDVdJ1YfiZ1Z/39P0/gRokzmboebRAEMGUcq/WHTqgaTebubfzEoAnL3iy71Rl7Eoap7zATJserQaNU8paMiwGgGw2LSE+yUTSBIACUogJr3acDWZU0j1CXPEmWrzQ6dTc2mmKQijOYVEX/V4IMhymVBNJhdtIQCUMCaSavdDd20uGB02MuwmAnRqbtQrFjI0BnwsKQAk64LQKtfXqjLaM0jXBqBo1OtVF4gmVLlChlbNiXa06LBh0KqvCdAmo7OkExaUpn5eNl9OJQZRt2QCAOU5T5wtBn+dWs/LaX7otAomrRqfWePDBV1pIsz/AqA1p5NcpibJJxXS9dePq8wWCzadkasG9Qp4qsUHveZ6a8WkpBOUfoHzfhWu10WTicmejl9aIgA2rZF0YyDlKlXlRomJkYx47TV++uknwsLCePHFF0lISCAlJcWRrwMCAhwTar3++ut06dIFIQqbt+ZqUOejuNmzzz7rXNA5kIa8F6lSpQoBAQGkpKRw+PBh7r33XneHJO7CjeNgbx4T6yqXLl2idevW7N27F4C4uLhb1sG8Wb9+/QokFiHuJGuCHGe2A7h69Wq2x00mk+MMeWGJjY0lPj4+28kvk8lEs2bN2LRpk1MHB/7+/mRmqkNtSpUqxYkTJxy/75cuXSqYwEWBKVWqFFFRUcTHx7Nnzx6aNGni7pDEXcg039B7zpx5my3zLykpiXbt2rFlyxZA/d6PGzfutq959dVXCyQWIe7EW3M1qEPhVq5cyYULF7Dbs3c5mDZtWp7jkoa8F9HpdNSrV49169axY8cOach7uBu70xdEd73x48czYsQIMjIyiIyMZN68eaxfv54jR45Qrlw5AgMDCQgIwM/Pj8mTJ7Njxw769OlDyZIlXR6LEM7I61n+mJiYbI+PGDGCkSNHuj6w24iPjwfUSXBuFBkZyalTp5wq44EHHmDjxo3UqFGD9u3bM3jwYPbv38/cuXN54IEHXB6zKFhZE94tWrSIHTt2SEPew5mt13O1zWpx+QReX3zxBUOGDCEtLY3Q0FD++OMPdu3axb59+yhXrhxBQUH4+/vj7+/PN998w/r16+nRowdly5Z1aRxCOMtbc/WoUaP44IMPaNCgAdHR0S5Z1Uka8l6mYcOGrFu3jjVr1txVVw7hftmuyLt4jPyJEycYNmwYdrudmjVrMnPmTGrWrJnrOrOdO3dm8eLFtG3b1qVxCJEXil1BceI0f9Y2Z86cISgoyPF4bmf4R44c6eiGl5vt27c7ukTnx80JXVEUp5P8J598QkqK2sV45MiRpKSkMHv2bCpVqsSkSZPyHZNwn4YNG7Jo0SLWrFnDwIED3R2OuAtmc/b8bLFY1fEKLhAXF8cbb7yB2WymSpUq/PzzzzRo0ICHH344x+2feOIJ/vzzT1q1auWaAITIB2/N1V9//TUzZsygV69e+X7/m0lD3su0a9eOiRMn8tdff2G329FqZb5DT3VjQ95ice1Z/okTJ2K322nbti1//fXXHX+k/P39cxz3I0Rhymt3vaCgoGwHB7kZMGAAPXr0uO025cuXdyLCW2WtKRsfH090dLTj8QsXLtxy5j8399xzj+P/fn5+jiVthOdq164d77//PsuXLyczM7PQu5EK18m8qSHvyhPvkydPxmw207RpU9avX3/HXO3j48MTTzzhsvcXIj+8NVebzWaX97CShryXefDBBwkKCuLChQts375d1qj1YDd2rVcUBbvNdputnXf+/HmmT58OwNChQ13S9UeIwlBQE+iEh4cTHh6ev6DuoEKFCkRFRbF8+XLq1q0LqMl+7dq1fPTRR06Xk5iYyO+//86JEyd46623CAsLY9euXURGRlK6dOkCiV0UnHr16hEdHU1cXBxr166VCUQ9mOWGWevBdavMJCUl8fXXXwPw9ttvS64WHsNbc/WLL77IL7/8wnvvveeyuKQh72WMRiNt27bl119/ZeHChdKQ92A3T3BnsbhmnPxnn31GZmYmjRo1yrV7nhBFkd2uYHfiNL8z2+TX6dOnSUhI4PTp09hsNsc67pUqVSIgQF3Zo1q1aowdO5YuXbqg0WgYNGgQY8aMoXLlylSuXJkxY8bg5+dHz549nXrPffv28cgjjxAcHMzJkyd56aWXCAsLY968eZw6dYoffvihoKorCohWq6V9+/Z89913LFq0SBryHuzWK/JWjC4o95tvvuHq1auOuTGE8BTemqszMjL49ttvWbFiBbVr18ZgMGR7/pNPPslzPaQh74U6dOjAr7/+yqJFi/jwww/dHY7Ip5sb8larGbh1ScG8SE5J5YsvvgDkDL/wPEVhSZv333+f77//3nE/68z96tWrHes1HzlyhKSkJMc2Q4YMIT09nf79+3PlyhUaNWrEsmXLCAwMdOo933jjDXr37s348eOzvaZdu3ZOH2CIoufxxx/nu+++Y+HChXz66afye+yhbm7IWyyWu27IZ2RkMHnyZED9/ZBhksKTeGuu3rdvH/fddx8ABw4cyPZcfn/fpSHvhdq1a4dWq2Xv3r2cPn1aZi71UDfPVG+1mAHfnDd2QmZmJn0GDSMxMZEqVarQsWPHu4xQiMJVFA4OZsyYccd1aW+ez0Kj0TBy5Mh8z8K7fft2vvnmm1seL126tGOmXeF5WrVqhclk4uTJk/z999+y0oyHurlrvdliwf9uyrNYGfDGEOLi4ihTpgxPP/303QUoRCHz1ly9evXqfL3uduQUnhcKDw93zD7+559/ujkakV+u7FpvsVh4ZcCrrN+6k4CAAH788Ud0uru7ui9EYbMritO34sTHx+eWdXZBvZogy0F6Ln9/f8fs4gsXLnRzNCK/croin182m41Xhr3PilWr8fHx4ccff8RodEVHfSEKj7fm6oJQrBryR48epVOnToSHhxMUFETTpk0L5OxHcfD4448DcnDgyW7pWp/PhryiKAwfNpRVq1fjYzKyaNEiGjZs6IoQhShUit35W3HSqVMnPvjgA0cDQaPRcPr0aYYOHVokZ6iWXO28Dh06ALBo0SI3RyLy6+ZZ6s0Way5b3tmwsZOZv3g5BoOBOXPmOLoAC+FJvDVXg9qDbsiQIfTo0YOuXbtmu+VHsWrIt2/fHqvVyqpVq9i5cyf33XcfHTp0kK6FOcg6OFi1ahWpqalujkbkx81n9fPbkP/xxx/444956PV6vp88lmbNmrkiPCEKnd2uYLPd+VaQE+i4w8SJE7l48SIRERGkp6fTrFkzKlWqRGBgIKNHj3Z3eLeQXO28rFy9efNmLl265OZoRH7c3JDP7xX5WfP/YtrsuWg0Gj79eAKPPfaYK8ITotB5a66eNWsWTZs25e+//2bevHlYLBb+/vtvVq1aRXBwcL7KLDZj5C9dusTx48eZNm0atWvXBmDcuHF8+eWXHDx40LH+n1DVqFGD8uXLc/LkSVasWEGnTp1y3O6NTurkC18vVe9Xj0pGUdTHyoeqXTl1GhsJ1gCiSqpdsfV6Ez5627X/60nPUE+pZY2JiYnxASAu3gxYCTCo6+NaLTaCwtSZImPKBnI1IQqTjzqjo3+wDyaTet7J5KMnIDQAozEEgBIlfIiIUMeGJyRkEhxswD/o+ljxKveXIS1djScj3Urlin78czIdgGYN9FxKNhAaoJ4hT0oLwK+xP35G9X5CCmRadMRfVMsKD9Ph76NQMjBTjdmupUKEHb1WLS/2oh8VS+u4mqZ+FkF+NsCG/dpnZrFpifZPJsRfrXOG1UjFCr5oFTW+uqb9JBijCLRdUT9buxW9LZPw8FD1M69UBYgEIm/pchRlPEewXv38gvVJnE6N5t4Y9SRNkDENg8ZKqq8fAAH6VMJNNsKCfPho3FgAJkyYQPd+gxDCUymKcsuYtty2K06CgoLYsGEDq1atYteuXdjtdurVq8cjjzzi7tBuIbk6b2JiYqhTpw579+5l8eLF9OrVK8ft7qlYkXuAwycSAfBR0kglkBS9uvayFjvhSf+QFKgeLGZYjVzQRxOoTQYgSQnFaldzbLCfjQBdKvEZJQAIMl7BbtegQ81TmYoJk05tjPrpFXTYMdjUnBhgyMBHq/7/POUJUq6g0ajfN4PGir9VnTjKL+0SCUHlsF+7nmSypJDkF0WgRs2lGhTCNJfR2tRc7GtJRqezcMGq/n2E6G34KGkYrOr2foZUfM3JlDBeGxJmByOZKFr1foAuFV9LMvG6MmqdtFdRNBpsdvV5E2nYjP6EGxIAMNozWBcXTLNA9eSJxm4jUnMOs049fikbmIAuyOaI38eSSqDJQDxq+VGt6uIDvHovTH8v+9w1FnOm4/+hhqvEJkdS1ngCgKumEqT4lHB81jqNFZuiJyQqhqHjPgVg5MiRvPzqazn+HQjhCbw1V48ZM4ZJkybxyiuvEBgYyKeffkqFChXo27dvtrXp86LYXJEvUaIE1atX54cffiA1NRWr1co333xDZGQk9evXz/V1mZmZXL16NdvNG2g0Gkf3+pkzZ7o5GpEfmZmZ2e7n5yz/7NmzMZvN1KtXj9dekwMD4dnsivO34sJqtaLX6zlw4AAtW7bkzTffZMiQIUWyEQ+Sq/Pjxlxd3A5svYErcvW8efNISUmhcuXKvPvuu64KTQi38MZcDXDixAnHUpEmk4nU1FQ0Gg2vv/463377bb7KLDYNeY1Gw/Lly9m9ezeBgYH4+PgwadIklixZQkhISK6vGzt2LMHBwY5bTExM4QXtZlkznc6ePZupU6e6ORqRV7dOdpf3g4OffvoJgF69esnSRsLjKXbF6VtxodfrKVeuHDabzd2hOEVydd51794drVbL4sWL87XOsHCvm3N1fsbIZ+Xq//znP7LUnPB43pirAcLCwkhOVntBlS5d2rEEXWJiImlpafkqs8j/GowcORKNRnPb244dO1AUhf79+xMREcH69evZtm0bnTp1okOHDsTFxeVa/rBhw0hKSnLczpw5U4i1c6/GjRvzf//3fwD079+fnTt3ujkikRdZZ/mzZpe/eTm6O9m8aQNbt25Fq9XSo0cPl8cnRGHLGr7jzK04effddxk2bBgJCQlui0FydcGpVasWkyZNAuCtt95i3bp1bo5I5MUtuTqPJ9337N7FypUrAXjmmWdcG5wQbuCtufqhhx5i+fLlgHqC9rXXXuOll17i6aefdqxQkldFfoz8gAED7tjIKF++PKtWrWLRokVcuXKFoCB1TNiXX37J8uXL+f777xk6dGiOrzWZTJhMJpfH7SneeecdduzYwfz58/niiy+YNm2au0MSTso6yx8YGEhiYuItZ/1vZ9OGdfTv0xtQf0xkXKooDux25ybHKW4T6EyZMoXjx49TqlQpypUrh79/9lWqd+3aVeAxSK4uWK+++irbt2/np59+4tNPP+Xhhx92d0jCSTfn6puXo7udXTt30vvZZ7Hb7Tz22GNUrFixoMIUotB4a67+/PPPycjIANST0waDgQ0bNtC1a1fee++9fJVZ5Bvy4eHhhIeH33G7rC4JN3c50mq12O3FcP0CF9FoNAwePJj58+fz+++/8/nnn+Pn5+fusIQTss7yZx0c5OUs/+SPx2KxmOncuTPTp08vqBCFKFTeOoFOp06d3D40RnJ1wdJoNLz55pv89NNPjhMhoaGh7g5LOOFucvUnn3xCeno6bdq0Yfbs2QUVohCFyhtztdVqZeHChTz66KOAmvOGDBnCkCFD7qrcIt+Qd1bjxo0JDQ3l2Wef5f3338fX15epU6cSGxvrmFhA5Kxp06aOGewXLFgg3aw9gNVqdRz0BgYGAs531zt0YDcHD+zDYDAydepUfHx8CixOIQqTs+vOFre1aUeOHOnuEJwmuTr/6tSpQ61atdi/fz+//fYbffr0cXdIwgk3NuTh1uXocvPPPyfYsmULWq2WqVOnEhAQUGAxClGYvDFX6/V6Xn75ZQ4dOuTScov8GHlnhYeHs2TJElJSUmjZsiUNGjRgw4YNzJ8/nzp16rg7vCJNq9Xyn//8B4Aff/zRzdGImymKwuYtW1iwcBEDBw6kfv36rFixwvF8VnK3OLmO/NxZ6vCJR9s95tQVNCE8hV1RnL4VJ/fccw+XL1++5fHExETuueceN0SUO8nVdydr+TnJ1UXTnp1bWbxwDm+99Rb16tVj6dKljq7113O1c5PdzZ75MwDNmrWgbNmyBROwEG7grbm6UaNG7N6926VlFpsr8gANGjRg6dKl7g7DI/Xq1YsPP/yQpUuXcv78eSIjI90dkte7mpzMmjVrWLJsBQuXrcr2XLt27Rz/z8tZ/n27t7Jonnpw0ONpmTRHFC/e2F0P4OTJkznOWp+ZmcnZs2fdENHtSa7Ov549e/L222+zYcMGYmNjqVChgrtD8nppqanMX7mcv9Zt5Y/587M91759e8d3My+5+vChv/n5J/VkTY+ekqtF8eKtubp///4MHjyYs2fPUr9+/Vvms6ldu3aeyyxWDXmRf1WqVKFhw4Zs27aNKVOmMHz48Fv+wEThOXbiH/770suc/fccoM52W69uXSIiI8nIyHDMYAs45jSw3GECnaSkREYM6YPdbufxTl1pcH+jgquAEG7gbRPoLFiwwPH/pUuXEhwc7Lhvs9lYuXKlNPSKmdKlS9OqVStWrFjB5MmT+fDDDx0NRFH4zp4+xcsv9uRU7AlAncvgvnoNiSwZilar5a+//nJs6xgGZ719rk5NTWXw6wOxWMw88sgjNGvesuAqIIQbeFuufv7555k8eTJPPfUUAAMHDnQ8p9FoUBQFjUaTr2VkpSEvHHr16sW2bdsYM2YMv/zyC9u3b5eu125wPj6Obv95jssJCZSOjqLZA/fT/T//pU7t2pSvVIXMzExq1arFsWPHABwzOd9ujLzFYmHwwD6cO3uK6FIxvDNidKHURYjC5OxyNcXlJH/nzp0B9UDg2WefzfacwWCgfPnyfPzxx26ITBSkXr16sWLFCqZMmcJvv/3Gtm3bKFOmjLvD8jpXEi7z3DNdOB9/jqiIkjR98EEee+I56t3/APdVLonVaqV58+Zs3LgRuN61/nbryNvtdga9+TbHjx+jZMmSjB4zxu0TWQrhat6Wq7///nvGjRtHbGysy8uWhrxw6N27N+vXr2fFihWcPHmSIUOGyHJ0hcxqtfLm669xOSGBGtWqMnvaV0QG+ZFquj47sclkYtOmTXTv3p2aNWs6xsbmtvycoiiMHz2cLZs24Ovnz/gvfiEwMAjI+5k/IYoyRVFQnDiDX1y662VNeFmhQgU58epFunfvzvLly1m6dClxcXEMGjSI33//3d1heRW73c7wIa9xPv4c5SpUZMG0zwiMqUyS/XqvGL1ez19//UWPHj2IiIjA19cXyD1XA0ycOJ5lK1dhNJr47ItvKFGiBLbi8XMlhIO35eqsepQrV87lZWuU4vIpucjVq1cJDg4mKSnJscatt9m0aRNNmzYFYN++fdSqVeu22x88Hsepq+EYdOpBZbpF7/i/ooDVrs6pePS0BrsCRoN6dtnHpOHw0RQqlFe78EeHK4T4qWeqA40Z6DQKeq1632zXY7ap550CDBlk2IwYtGpD1F+XRqJF7bKm19jx06dzMV1NpkGmdHQaG1rUP/MMmwlffQapVnWmdruixai1Ot7HYjfgq8tAQXPtfQ0YtRb+TVEb0iE+6QTo1TIBgmwJZOr8sGJQy0NLut2HupXVA+r9x8+j11jRon4eCeZgwo1X0KNePb9kDef+qiGOz/Kjjz5i6NChBAYGsmvXLipVqnTbzx7gzTff5OOPP6Zs2bJ89913VKtWDYBx48ZRu3ZtTpw4wYQJE9BoNPzxxx907NjxjmUKURhc9XubVU6fsWcw+ty5HHPGVb4dFuPVv/OeTnK1mp/r1auHzWZj48aNNGnS5LbbX925lOTAUgBk6vxQNBqsipq7bIrOsV2mYiRQm0yaXc3NIVzGqjViwQiAVdFj0qhrIWs0CiZrGmad2kjN5PoqKBoUtNjxtacAoFVsWLSmbM9bter7K4oGjUbBrKjP67GSbvclwvYvABl6fxSN1lG+kUxHPAAGzGTig1GTea0+erTYMNozHO9t1+gw2DId9xONEVStGAPA6WOH0HD9cNjHksK/hgr4aNXtddioXPH6QfhXX31F//79MZlMbNu2zamxrR988AEjRowgMjKSGTNmULVqVfz8/Bg9ejRVqlTh8uXLjhUofvrpJ555RsbGi6JBcvXd0Wq1nD9/npIlS7q8bLkiL27RpEkTOnXqxPz585kzZ84dG/LCNY4dO+ZI4lOmTHGqEQ8wZMgQFi5cyNGjR2nTpg1arZagoCASExOzbffRRx9JI14Ua4rdybP8xWTc3datW0lISMg2+eUPP/zAiBEjSE1NpXPnznz22WeO4TeieKlduzY9e/bkxx9/5Pfff79jQ164xtmzZ3n77bcBGD9+vNMTVA0cOJA5c+awb98+2rVrh0ajITQ0lISEhGzbvfvuu9KIF8Wat+VqUOciu9MwmZt/C5whDXmRo86dOzN//nwWLFjgUWsUe6rU1FS6d+9ORkYGbdq0uWW86+1ERESwfPly+vbty/Hjxzl+/DiJiYlUq1YNo9GI0WjkzTffpHv37gVYAyHcz9sODkaOHEnz5s0dDfn9+/fzwgsv0Lt3b6pXr86ECRMoVaqU/IYXY507d+bHH39kwYIFfPzxxzKeuoBlZmbSo0cPkpOTady4Ma+88orTrw0JCWHp0qX06dOHw4cPc+zYMRISEqhYsSLBwcHq+PhBg/jvf/9bgDUQwv28LVcDjBo1KtuEtK4iDXmRo8ceewyNRsPu3bs5e/asTKRTgBRF4YUXXmDPnj2ULFmSqVOn5vlgrGzZsixevBiAHTt2sGnTJnr37u3RXZGEyCu7ot6c2a442LNnD//3f//nuD9r1iwaNWrE1KlTAYiJiWHEiBHSkC/G2rRpg9Fo5MSJExw+fJjq1au7O6Ri7dVXX2Xjxo0EBwczY8YMdDrdnV90g6ioKMdqE/v27WP16tX85z//oUSJEgURrhBFkrflasAxV4araV1eoigWIiIiaNy4MQDDhw+/7eQs4u7MnDmT2bNnYzAYmDt3LmXLlr2r8ho0aMDAgQOlES+8TtZZfmduxcGVK1eIjIx03F+7di1t27Z13L///vs5c+aMO0IThSQgIIBWrVoB8N5775Genu7miIqvRYsWMXXqVLRaLbNnz6ZKlSp3VV7t2rV57bXXpBEvvI635eqC7CklDXmRq0GDBqHRaPjxxx+zrXkoXCf+3BleffVVAN5//30efPBBN0ckhOdSFMXpW0EZPXo0TZo0wc/Pj5CQEKde07t3bzQaTbbbAw88cMfXRUZGOpazMZvN7Nq1y3ECFiA5ORmDwZCvegjP8eqrr6LT6ZgzZw4vvPCCu8Mpli5evEDfvn0BGDx4MI8++qibIxLCc3lbri7IekhDXuSqW7du/PbbbwDMmDHDscyZcI2EhARefeEJEhISqFevnmPyHCFE/thsCjab3YlbwSVVs9lMt27dePnll/P0urZt2xIXF+e4/fXXX069ZujQoaxfv55hw4bh5+fHQw895Hh+3759VKxYMc91EJ6lXbt2jr+X2bNnc/bsWTdHVLykJCfz4vO9OXfuHNWqVWPUqFHuDkkIj+ZtudputxdIt3qQhry4g65du1K3bl0yMzOZMWOGu8NxOUVR2Ld7GxcvnM/T69avXc3ypX/l+yxbWloaL77Uh1Oxx4iJiWH+/Ply5UyIu5TX7npXr17NdsvMzLzrGEaNGsXrr7+e59U+TCYTUVFRjltYWNgdX/Phhx+i0+lo1qwZU6dOZerUqRiN15fkmjZtGm3atMlzHYTnadOmDc2aNcNutzvmSChu9u7dS3xcXJ5es3HzFhYsyn+uzszMYMDLL3Lo0N9ERESwcOFCx3rwQoj88bZcXZBksjtxWxqNhpdffpk+ffrwzjvvsH79embMmOF0NxR3S7ySwP++HE+Hjk9Qs3ZdQD0ztmvbBrRaLZvWreTHqR+j1Wp5rOOTDP/wC5JSErHbFbZsWse+ffvp0+8VLl5O4bcZEzm8dwPhJcLYvHEdAOs6deCVga+zZt1GTD4+dHmyxx1jstvtDHxtEHv27iUoOJSlS5fKZIJCuEBeZ8KNiYnJ9rg7J4Zbs2YNERERhISE0KxZM0aPHn3HM/glS5Zk/fr1JCUlERAQcMvEW7/99hsBAQEFGbYoQl5++WXWrl3LuHHj2LZtG99//32BXQVyteTkZKZMmUyrRx+nfoOGgHqifduuPVgsFrbuP8KEjz9Bo9HwaNv2fDLxI1LNGVgtVnbu3M6ubZt4ts+rGDVmvv32WzZv3kJEyZKsW7cWgMVLWzNk8Ots27wJm81G76e63jEmRVF4d+ibbN2yCX9/fxYvXuz0srBCiNx5W64uSNKQF3f09NNPM3bsWGJjY5k/fz5Dhgzh22+/dXdYuVIUhWULfiYoJIzt6xcwb/b3LJw7i+m/zAdDMEMH9uTEsSPZXmO321n0x6+cOX2K/Xu2Y7fbHc8d3LudY8eOkXL1CgDHwDE2Zs78RcyZv8ix7bFjxwgqEU1Gl7bZxqoCnD1zml1/n+V87C5WrV6NyWRi0jezZZZhIVzEjoLdiStvdtRtzpw5k21SSHett96uXTu6detGuXLliI2N5b333qNly5bs3LnTqZhyW9LG3VcKROHq0qULNWrU4O+//2bJkiUMHDiQWbNmuTus2/pz0SL0BgO7d+9hxvTpzJ41i2k/ziY6ogQvv/wyhw7uy7a9oigsWbyI8/H/sn//fqxWq+O57Tt3EXfuXy5dugTA4UPq43q9nr+WLuevpcsd2x4+eoyIclVo307tyXCjuPh4juzdxYHzK/lz4Xz0ej1ffPUt9erVK6BPQQjv4q25uiBIQ17cUUBAAEeOHGHx4sV06tSJqVOn0r17dx555BF3h5ajtauWM+7dl9BqtWivXaFKSUnm5Rd6EBIazoljR/DzD0RR7KSnpfLyoHeoUKECQ157kb27tjrKCQgIxGKxsHvnNgDuqVqHns/24eTRPbRq9QgajYYvJ41l287dlCxZkosXLzJjmtqlccqED+jSpQsG3yB2bN1ISkoyF85n774/bOhQat13fyF9KkIUf3k9yx8UFOTU6g4jR46847jY7du306BBA+cCvclTTz3l+H/NmjVp0KAB5cqV488//6Rr1ztfORQCwGg0snfvXtauXUubNm2YPXs2Tz31FF26dHF3aDnavHUrr732GoBjSEh6ejr9XvwvMWViOHRwP76+Puh1epJTUujT5yXqN3qIfi8+y+7dux3l+Pn5AbB/314AKlWuzPMv9OH40cM0a9KQoKAgJnw8iU1bt1EyvAQXL13m+1m/AzDhozF06NCBEiFBbN66jatXkzl/4UK2rvivvjaYJk2aFspnIoQ3kFztOtKQF04xGAx07NiRl156ialTp9KxY0fmzp1L27ZtubdSNPfe8ooc1lZtAPuPn6dWJXW5pP3Hz1OjTAB++kQA9Forflp16Zyr1kD0Wiv3VS6ZQzT+2e4l7NtPpWqNmDlzJkePHnVcgbDb7djtdho3bkxqair79u3j0sULhIaGsn//fvz8/Dh9+jR16tQBwJJynilTpvDBBx/wzDPPYDQamTZtGv369aNatWps2LDylmVinn2mG4mJiQQEBDB+/Hi+/PJLqlatyqpVq5g3b162bTUaDWXLluXUqVO0b9+e90eMKNAlKYTwNs7OcpvX8bIDBgygR4/bD5spX758nsq8nejoaMqVK8exY8dcVqbwDnq9nlatWvH666/z8ccf06NHD2bOnEnXrl0Jqv8ozi5Keur4ZWpXrgDAv0fPoyhajHY1P9s1Oqyaa3MxKGDR+XCPE5Mq/nPiBGXLlePXX39l//79jvXUQZ14qk6dOvj4+LB161aSEhPx9/dn7969lCxZkuPHj1O3bl00Gg0ZKVcYPXo0Q4cOpW/fvuj1en7//XeeeeYZypcvz7q1a4mOjs723p279SApKQl/f3++/PJLPvroI6pXr86qVatYtGjRzaFSvnx5Tp48SbNmzZjw0eg8rxcvhMid5GrXkYa8yJPJkydz5swZlixZQseOHfn555/p1q1bgb7nlStX2L59Ow8++KDjzPuNTv8bx5Nda3DixAnHY9HR0YSEhHD48GHGjBlDrVq1aNOmDXv27OGbb76hdOnSAISGhjpeM3z4cIYNG5atcd23b1+aNGlCxYoVc3xvwDFfwPDhwxk+fDgAO3fuZPHixVy6dIkWLVoQExND6dKliYiI4MyZM0RHR0sjXggXU+wK9jyc5XdWeHg44eHh+Q0rzy5fvuz4nRAiP8aMGcPJkyeZM2cO3bp147vvvuO5554r0PdMTk5m06ZNNGnShMDAwFuev3DhAh0ef5xDhw45HgsLC6NcuXLs3r2bDz/8kIcffpjHHnuMTZs2MWXKFMeqCzd2ax84cCCvvvpqthzas2dP7rvvPsqWLZvrvBBZQ1AGDhzoWFJ33759/Pnnn8TFxdGsWTMqVKhAVFQUpUqV4uzZs5QsWVIa8UK4mORq15GGvMgTPz8/5s+fT69evfj111/p3r07/fr1o3379jz88MNOdX3Ji7///pv27dtz8uRJ/P39qVWrFvfccw8DBw6kUaNGJCYm0mPA25z45yRRUVE0b96c/fv3M2HCBJo0acLZs2e59161v8C2bduIj493NOJzklPjOq8zWgLUr1+f+vXr5/hc2bJl81yeEOLO8tpdryCcPn2ahIQETp8+jc1mY8+ePQBUqlTJ0cCoVq0aY8eOpUuXLqSkpDBy5EieeOIJoqOjOXnyJMOHDyc8PLzIdokWRZ/RaGTWrFn07duXadOm8fzzz7Nu3Tq6dOnCQw89lO0ktiucOHGC9u3bc+TIEXx9falduzbly5enf//+PPzww6SmpvJSnz4cOnSI8PBwWrduzb59+xg1ahRt27bl+PHjjt5x69at49y5c7edBDanXF2jRo08x127dm1q166d43MyCa0QBUNytetIQ17kmdFo5JdffiEqKoopU6bw9ddf8/XXX1O6dGkWLFjgsglhdu/Ywusv9yIpKQmDwUBqaipbtmxhy5Yt/PLLL/Ts2ZO///6bI/+cpFSpUmzduvWWxHvjJFA6ne62jXghhGcrqO56efH+++/z/fffO+7XrauulrF69WqaN28OwJEjR0hKSgLU36X9+/fzww8/kJiYSHR0NC1atGD27Nk5XtUUwll6vZ7vvvuOqKgoxo4dy4wZM5gxYwYlS5Zk3rx5NG3qmnHf+w8c4MWX+nDx4kUMBgPp6els3bqVrVu3Mnv2bJ544gnOnTvHgQMHCA8PZ8uWLY4r7VmyGvEAWq1WGtFCFGOSq11HoxTkp+SBrl69SnBwMElJSS6/ulwcrVy5kq+++oqtW7dy9uxZ/Pz8WL9+fa6N+ZvHyF/JDMBPbwayj5FfvHILQ1/rTUZGOk2bNmXevHn8+++/nDhxgoULF2b78pUMC2X5qtXZDgSEEEWfq35vs8p5YuABDKY7J1RLZjJzptSU33kPJrk6bzZs2MBnn33G1q1bOXXqFEajkZUrV/Lggw/muP2p40coV6kqAP8e3Y9Va0RntwDXxshr1THyW7ZsoW/fvqSkplKvXj0WLlzI5cuXOX78OEuWLOG7775zrAITFBTE0qVLeeCBBwqhxkIIV5FcXXRp3R2A8GytWrXi999/58CBA7Ro0YK0tDQ6d+5MfHx8vsv868+FDH7lGTIy0mnfvj3Lli2jZMmS3HfffTzxxBPMmDGDHTt20KZNGxo3bsySH7+SRrwQAvu1cXfO3ITwJg8++CCzZ8/m4MGDtG/fHrPZzBNPPMGpU6fyXeaqVat47vnnSUlNpUWLFqxevZpSpUpRq1YtunTpwjfffMOePXvo0KEDDRo04Ldff5VGvBBCcrULSdd64RLBwcHMnTuXRo0acfToURo2bMjAgQNZvnw5UVFRPP/887es1ZolPS2VxQt+48DerdxTvgxffPYpNquVxzo+wbzfZ2IwGG55Tf369Vm6dCkACfvWF2jdhBCeoSh01xOiKPP392f27Nk0bdqUvXv38sADDzB48GBWrlRXZfnvf/9LmzZtcnxtRmYm8xf9xZbtuyhX4R4++/xzzGYzbVq3Zv6CBfj4+Nzymlq1arFw4UJAnbVeCCEkV7uONOSFy4SEhPDnn3/Svn17jh49yltvveV4btasWaxfv57LqfDdZ2NYt24dV5KSebBVF5Yt+JmLF+KylfVohyf5v/Gf59iIF0KInBSFCXSEKOr8/f1ZuHAh7du3Z//+/dly9cyZM1mxYgW+ei2ffT2V1atXk3D5Eu3aPsqiRX9x5t9/s5X1SKtWfP7ZlBwb8UIIkRPJ1a4jDXnhUpUqVWLbtm307duXLVu28OKLL7J+/XqWLVtGs2bNyMzMzHaG7dR3EwEoVbosTR5uwYolC6hXrwEjxnyOVisjP4QQzpODAyGcExMTw+bNmxkwYAArVqzghRdeYM+ePcyfP5927dphsVgcY9sBvvpmKgBRkRE80qolS5atoGrVqkyePBm9Xg4lhRDOk1ztOvLrK1wuODiYWbNmOe5fvXqVRo0acfjwYQDatGlD37592Xsollm//MT9jZrSb+AwAvyNfPjBKACSbUbA6o7whRAeyo4du2J3ajshvJ2/vz/Tp0933E9PT+fBBx9k165dADRr1oz+/fvz7z9HmfHLbOrWrsnQNwbhFxjEqA8+RFGUa8vAycG2EMJ5kqtdRxryosAFBQWxceNG9u3bBz7hNH+gJgCVj5+nVed+jlnrwZrj2rBCCOEMxe7cGXwnjh+E8Dq+vr6sXr2anTt3EmDSc3+ThwB11vquT3a7Pmv9te0lXwsh8kNytetI32VRKMLCwmjevDklwku6OxQhRDGV1V3PmZsQ4lZBQUG0aNGCiIgId4cihCimJFe7jlyRF4Uqaw357P/3v6syw2o/dFevF0IUDzITrhCukbWGPEDpKrVcUuY9FSu6pBwhhGeTXO060pAXQghRLNisNrRam1PbCSGEEKLwSa52HWnICyGEKBYUxY7ixKA6Z7YRQgghhOtJrnYdacgLIYQoFmRJGyGEEKJok1ztOtKQF0IIUTw4OzmOHBwIIYQQ7iG52mWkIS+EEKJYsCtOrk0r3fWEEEIIt5Bc7TrSkBdCCFEsSHc9IYQQomiTXO060pAXQghRLCiKHcUuE+gIIYQQRZXkateRhrwQQohiQc7yCyGEEEWb5GrXkYa8EEKIYkGWtBFCCCGKNsnVriMNeSGEEMWC3Q52J87gO9GjTwghhBAFQHK160hDXgghRLGg2J0cdydHB0IIIYRbSK52Ha27A3DW6NGjadKkCX5+foSEhOS4zenTp3n88cfx9/cnPDycgQMHYjabCzdQIYQQbpE17s6ZW0E4efIkL7zwAhUqVMDX15eKFSsyYsSIO+YhRVEYOXIkpUqVwtfXl+bNm3Pw4MECibGgSa4WQghxO5KrXcdjGvJms5lu3brx8ssv5/i8zWajffv2pKamsmHDBmbNmsWcOXMYPHhwIUcqhBDCHbLG3TlzKwiHDx/GbrfzzTffcPDgQSZNmsTXX3/N8OHDb/u68ePH88knn/D555+zfft2oqKiaN26NcnJyQUSZ0GSXC2EEOJ2JFe7jkZRFI+aEnDGjBkMGjSIxMTEbI8vXryYDh06cObMGUqVKgXArFmz6N27NxcuXCAoKMip8q9evUpwcDBJSUlOv0YIIUTeuer3NqucB9otRm/wv+P2VksqWxa3K5Tf+QkTJvDVV1/xzz//5Pi8oiiUKlWKQYMG8fbbbwOQmZlJZGQkH330EX379i3Q+AqK5GohhCgeJFcX3VxdbMbIb968mZo1azoODAAeffRRMjMz2blzJy1atMjxdZmZmWRmZjruJyUlAeofmxBCiIKT9TvrqvPJVnOyU2PqbNbUbO+fxWQyYTKZXBJLlqSkJMLCwnJ9PjY2lvj4eNq0aZMtjmbNmrFp0yaPbcjnRnK1EEJ4FsnVRTdXF5uGfHx8PJGRkdkeCw0NxWg0Eh8fn+vrxo4dy6hRo255PCYmxuUxCiGEuFVycjLBwcH5fr3RaCQqKoodK7s7/ZqAgIBbfudHjBjByJEj8x3HzU6cOMFnn33Gxx9/nOs2Wfnp5vwVGRnJqVOnXBZLUSG5WgghPJPk6qKXq93akB85cmSOiflG27dvp0GDBk6Vp9FobnlMUZQcH88ybNgw3njjDcd9u91OQkICJUqUuO3rcnP16lViYmI4c+ZMse/u5y119ZZ6gtS1uCqqdVUUheTk5GxXZ/PDx8eH2NjYPE2YllNuyO0Mf35y1blz52jbti3dunXjxRdfvGM8N8dyp9xVmCRXezZvqau31BOkrsVVUa2r5OrrilqudmtDfsCAAfTo0eO225QvX96psqKioti6dWu2x65cuYLFYrnl7MmNcuqekdtMu3kRFBRUpL6EBclb6uot9QSpa3FVFOt6N2f3b+Tj44OPj49LyrpZXnPVuXPnaNGiBY0bN+bbb7+97euioqIA9Wx/dHS04/ELFy7cNncVJsnVxYO31NVb6glS1+KqKNZVcnXRzNVubciHh4cTHh7ukrIaN27M6NGjiYuLc3zAy5Ytw2QyUb9+fZe8hxBCCO+Tl1z177//0qJFC+rXr8/06dPRam+/OEyFChWIiopi+fLl1K1bF1Bnfl+7di0fffTRXcfuCpKrhRBCFHXemKs9Zvm506dPs2fPHk6fPo3NZmPPnj3s2bOHlJQUANq0aUONGjXo1asXu3fvZuXKlbz55pu89NJLRe6slhBCiOLn3LlzNG/enJiYGCZOnMjFixeJj4+/Zex3tWrVmDdvHqB20xs0aBBjxoxh3rx5HDhwgN69e+Pn50fPnj3dUY27IrlaCCFEUVaccrXHTHb3/vvv8/333zvuZ50NWb16Nc2bN0en0/Hnn3/Sv39/mjZtiq+vLz179mTixImFGqfJZGLEiBEun02xKPKWunpLPUHqWlx5U13dadmyZRw/fpzjx49TpkyZbM/dONvvkSNHHLOuAwwZMoT09HT69+/PlStXaNSoEcuWLSMwMLDQYncVydVFj7fU1VvqCVLX4sqb6upOxSlXe9w68kIIIYQQQgghhDfzmK71QgghhBBCCCGEkIa8EEIIIYQQQgjhUaQhL4QQQgghhBBCeBBpyAshhBBCCCGEEB6kWDfkx44dy/33309gYCARERF07tyZI0eOZNtGURRGjhxJqVKl8PX1pXnz5hw8ePC25WZkZNC7d29q1aqFXq+nc+fOt91+48aN6PV67rvvvjvG3LdvXypWrIivry8lS5akU6dOHD58ONs2V65coVevXgQHBxMcHEzdunWpV6+eW+q5Zs0aNBrNLbebY75ZZmYmr776KuHh4fj7+9OxY0fOnj1723r26tWL999/3237NL91zc8+dXddQd1H77zzDuXKlcNkMlGxYkWmTZt227I9cb/mt66e9l3t3bt3jn+/9957723Lzu8+TUxMvG25QmTxllzt7t+6wszXnnhc4on7FCRXS66+/tlIrvY+xbohv3btWl555RW2bNnC8uXLsVqttGnThtTUVMc248eP55NPPuHzzz9n+/btREVF0bp1a5KTk3Mt12az4evry8CBA3nkkUduG0NSUhL//e9/adWqlVMx169fn+nTp3Po0CGWLl2Koii0adMGm83m2KZnz57s2bOHJUuWsGTJEo4fP47dbndrPY8cOUJcXJzjVrly5dtuP2jQIObNm8esWbPYsGEDKSkpdOjQ4bb13LNnD19//bXb92le65qffVoU6tq9e3dWrlzJ//73P44cOcLMmTOpVq3abevqqfs1P3X1tO/qp59+mu3v9syZM4SFhdGtW7fb1jO/+7RXr163LVeILN6Sq4vCbx0UTr72xOMST92nkqslV4Pkaq+leJELFy4ogLJ27VpFURTFbrcrUVFRyrhx4xzbZGRkKMHBwcrXX3/tVJnPPvus0qlTp1yff+qpp5R3331XGTFihFKnTp08x7x3714FUI4fP64oiqL8/fffCqBs2bLFsc3mzZsVQDl8+LCiKIVbz9WrVyuAcuXKFafrlJiYqBgMBmXWrFmOx/79919Fq9UqS5YscbqenlDXnORnnypK4dZ18eLFSnBwsHL58mWn6+Wp+zU/dc1JUf+u3mzevHmKRqNRTp48mes2rtynQjjLW3K1ohT9HOaq34CiXs+ceMI+lVydd5KrJVcXJ8X6ivzNkpKSAAgLCwMgNjaW+Ph42rRp49jGZDLRrFkzNm3a5Hisd+/eNG/ePM/vN336dE6cOMGIESNyfD6r+9fJkydzfD41NZXp06dToUIFYmJiANi8eTPBwcE0atTIsd0DDzxAcHCwI+bCridA3bp1iY6OplWrVqxevfq29dy5cycWiyVbPKVKlaJmzZqOeJyppyfU9Wb53aeFXdcFCxbQoEEDxo8fT+nSpalSpQpvvvkm6enpudbVU/drfup6M0/6rmb53//+xyOPPEK5cuVyracr96kQzvKWXO2OuoJ78nVRr+fNPGWfSq6WXA2Sq72Z3t0BFBZFUXjjjTd48MEHqVmzJgDx8fEAREZGZts2MjKSU6dOOe5HR0djt9vz9H7Hjh1j6NChrF+/Hr0+54/Zz8+PqlWrYjAYsj3+5ZdfMmTIEFJTU6lWrRrLly/HaDQ6Yo6IiLilrIiICOLj4wu9ntHR0Xz77bfUr1+fzMxMfvzxR1q1asWaNWt4+OGHc6xnfHw8RqOR0NDQW+LJivVO9YTC36f5qWuWu9mn7qjrP//8w4YNG/Dx8WHevHlcunSJ/v37k5CQ4BiPVlz2a37qmsWTvqs3iouLY/Hixfzyyy/ZHi+ofSqEs7wlV7ujru7K155Qzyyetk8lV0uuzopHcrV38pqG/IABA9i3bx8bNmy45TmNRpPtvqIo2R4bO3Zsnt7LZrPRs2dPRo0aRZUqVXLdrmHDhjlOvvLMM8/QunVr4uLimDhxIt27d2fjxo34+PjkGO+NMRdmPQGqVq1K1apVHfcbN27MmTNnmDhxoiNh5lbP3OqQW7w3b+NJdb2bfeqOutrtdjQaDT///DPBwcEAfPLJJzz55JN88cUX+Pr6Fpv9ejd19aTv6o1mzJhBSEjILRPtFNQ+FcJZ3pKrwbNy2O3qkVO8N27jSfX0tH0quVpy9e1Iri7+vKJr/auvvsqCBQtYvXo1ZcqUcTweFRUFcMuZqAsXLtxyli0vkpOT2bFjBwMGDECv16PX6/nggw/Yu3cver2eVatW3fb1wcHBVK5cmYcffpjff/+dw4cPM2/ePEfM58+fv+U1Fy9eZMWKFYVaz9w88MADHDt2LNfno6KiMJvNXLlyJdd4blfPyMjIQt+nublTXbPkd5+6q67R0dGULl3akSwBqlevjqIot8yCemM8nrhf81PXLJ74XVUUhWnTptGrVy/HFYncuGKfCuEsb8nVnpTD7vY3wFOOS7J42j6VXC25OiseydXeqVg35BVFYcCAAcydO5dVq1ZRoUKFbM9XqFCBqKgoli9f7njMbDazdu1amjRpku/3DQoKYv/+/ezZs8dx69evH1WrVmXPnj3Zxqc4W4/MzExAPbOclJTEtm3bHM9v2bKFpKQk9u/fX6j1zM3u3buJjo7O9fn69etjMBiyxRMXF8eBAwcc8eRUz61bt5KUlMSKFSsKfZ/m5k51zc2d9qm769q0aVPOnTtHSkqK47GjR4+i1WqzJbMbeep+zU9dc+MJ39W1a9dy/PhxXnjhhTtue7f7tCC+c6L48ZZc7e7fupwUVL4uCr91N5JcfZ3kasnVWSRXFwOumzev6Hn55ZeV4OBgZc2aNUpcXJzjlpaW5thm3LhxSnBwsDJ37lxl//79ytNPP61ER0crV69edWwzdOhQpVevXtnKPnjwoLJ7927l8ccfV5o3b67s3r1b2b17d66x5DQT7tatW5WqVasqZ8+eVRRFUU6cOKGMGTNG2bFjh3Lq1Cll06ZNSqdOnZSwsDDl/Pnzjte1bdtWqV27trJ582Zl8+bNSlhYmKLX691Sz0mTJinz5s1Tjh49qhw4cEAZOnSoAihz5szJtZ6Koij9+vVTypQpo6xYsULZtWuX0rJlS6VOnTqK1WrNtZ61atVSypUr57Z9mp+65nefuruuycnJSpkyZZQnn3xSOXjwoLJ27VqlcuXKyosvvljs9mt+6uqJ39Us//nPf5RGjRrd8rir92mHDh1yfA8hbuYtudrdv3WFma897bjEU/ep5GrJ1Xe7TyVXe7Zi3ZAHcrxNnz7dsY3dbldGjBihREVFKSaTSXn44YeV/fv3Zyvn2WefVZo1a5btsXLlyuVYdm5yOjjIWiIlNjZWURR1qYh27dopERERisFgUMqUKaP07NnzlmUhLl++rDzzzDNKYGCgEhgY6NZ6fvTRR0rFihUVHx8fJTQ0VHnwwQeVP//887b1VBRFSU9PVwYMGKCEhYUpvr6+SocOHZTTp0/ftp7PPPOMx9U1v/vU3XVVFEU5dOiQ8sgjjyi+vr5KmTJllDfeeCNbEisu+zU/dfXE76qiqEvU+Pr6Kt9++62SE1fu07td+kl4D3d/L25UkLna3b91hZmvPa2enrpPFUVyteRqleRq76RRFEVBCCGEEEIIIYQQHqFYj5EXQgghhBBCCCGKG2nICyGEEEIIIYQQHkQa8kIIIYQQQgghhAeRhrwQQgghhBBCCOFBpCEvhBBCCCGEEEJ4EGnICyGEEEIIIYQQHkQa8kIIIYQQQgghhAeRhrwQQgghhBBCCOFBpCEvhIuNHDmS++67z23v/95779GnTx+3vHdmZiZly5Zl586dbnl/IYQQwhmSqyVXC+HppCEvRB5oNJrb3nr37s2bb77JypUr3RLf+fPn+fTTTxk+fLjjsebNmzNo0KBbtv3jjz/QaDSObW5Xr/LlywMQHx/Pq6++yj333IPJZCImJobHH3/cUV+TycSbb77J22+/XeB1FUIIIXIiuVpytRDeQO/uAITwJHFxcY7/z549m/fff58jR444HvP19SUgIICAgAB3hMf//vc/Gjdu7Ejmzpo7dy5msxmAM2fO0LBhQ1asWMG9994LgE6n4+TJkzRt2pSQkBDGjx9P7dq1sVgsLF26lFdeeYXDhw8D8Mwzz/DWW29x6NAhqlev7tL6CSGEEHciuVpytRDeQK7IC5EHUVFRjltwcDAajeaWx27urte7d286d+7MmDFjiIyMJCQkhFGjRmG1WnnrrbcICwujTJkyTJs2Ldt7/fvvvzz11FOEhoZSokQJOnXqxMmTJ28b36xZs+jYsWOe6xUWFuaoQ8mSJQEoUaJEtsf69++PRqNh27ZtPPnkk1SpUoV7772XN954gy1btjjKKlGiBE2aNGHmzJl5jkMIIYS4W5KrJVcL4Q2kIS9EIVi1ahXnzp1j3bp1fPLJJ4wcOZIOHToQGhrK1q1b6devH/369ePMmTMApKWl0aJFCwICAli3bh0bNmwgICCAtm3bOs7G3+zKlSscOHCABg0auDz+hIQElixZwiuvvIK/v/8tz4eEhGS737BhQ9avX+/yOIQQQoiCIrlaCOFJpCEvRCEICwtjypQpVK1aleeff56qVauSlpbG8OHDqVy5MsOGDcNoNLJx40ZAPVuv1Wr57rvvqFWrFtWrV2f69OmcPn2aNWvW5Pgep06dQlEUSpUq5fL4jx8/jqIoVKtWzantS5cufccrEkIIIURRIrlaCOFJZIy8EIXg3nvvRau9ft4sMjKSmjVrOu7rdDpKlCjBhQsXANi5cyfHjx8nMDAwWzkZGRmcOHEix/dIT08HwMfHx9XhoygKgGPCnTvx9fUlLS3N5XEIIYQQBUVytRDCk0hDXohCYDAYst3XaDQ5Pma32wGw2+3Ur1+fn3/++ZayssbF3Sw8PBxQu+3duE1QUBBJSUm3bJ+YmEhQUJBT8VeuXBmNRsOhQ4fo3LnzHbdPSEjINU4hhBCiKJJcLYTwJNK1XogiqF69ehw7doyIiAgqVaqU7RYcHJzjaypWrEhQUBB///13tserVavGjh07btl++/btVK1a1al4wsLCePTRR/niiy9ITU295fnExMRs9w8cOEDdunWdKlsIIYTwRJKrhRDuJA15IYqgZ555hvDwcDp16sT69euJjY1l7dq1vPbaa5w9ezbH12i1Wh555BE2bNiQ7fH+/ftz4sQJXnnlFfbu3cvRo0f54osv+N///sdbb73ldExffvklNpuNhg0bMmfOHI4dO8ahQ4eYMmUKjRs3zrbt+vXradOmTd4rLoQQQngIydVCCHeShrwQRZCfnx/r1q2jbNmydO3alerVq/P888+Tnp5+2y52ffr0YdasWY5ufwDly5dn/fr1nDhxgjZt2nD//fczY8YMZsyYQbdu3ZyOqUKFCuzatYsWLVowePBgatasSevWrVm5ciVfffWVY7vNmzeTlJTEk08+mb/KCyGEEB5AcrUQwp00StbMGEIIj6coCg888ACDBg3i6aefdksM3bp1o27dugwfPtwt7y+EEEIUZZKrhRCuIFfkhShGNBoN3377LVar1S3vn5mZSZ06dXj99dfd8v5CCCFEUSe5WgjhCnJFXgghhBBCCCGE8CByRV4IIYQQQgghhPAg0pAXQgghhBBCCCE8iDTkhRBCCCGEEEIIDyINeSGEEEIIIYQQwoNIQ14IIYQQQgghhPAg0pAXQgghhBBCCCE8iDTkhRBCCCGEEEIIDyINeSGEEEIIIYQQwoNIQ14IIYQQQgghhPAg/w8D7dVoDkOdSQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1,2, figsize=(10,3), constrained_layout=True)\n",
+ "s = ax[0].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][0], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "t = ax[1].pcolormesh(ds[\"time\"].values, -ds[\"range\"].values, ds[\"vel\"][1], cmap=\"coolwarm\", vmin=-2, vmax=2)\n",
+ "ax[0].plot(ds[\"time\"].values, -water_depth, color=\"k\", label=\"Water Depth\")\n",
+ "ax[1].plot(ds[\"time\"].values, -water_depth, color=\"k\", label=\"Water Depth\")\n",
+ "fig.colorbar(s, ax=ax[0], label=\"Streamwise Velocity (m/s)\")\n",
+ "fig.colorbar(t, ax=ax[1], label=\"Transverse Velocity (m/s)\")\n",
+ "for a in ax:\n",
+ " a.set(xlabel=\"Time (UTC)\", ylim=(-10, 0))\n",
+ "ax[0].set(ylabel=\"Depth [m]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we can use the `discharge` function to calculate discharge, among other values (including power [W], power density [W/m^2], and the channel's Reynolds Number). This function does quite a number of things internally:\n",
+ "1. Linearly extrapolates velocity to the riverbed/seafloor (assumes velocity at the seafloor, specified by the \"water_depth\" input, is 0 m/s)\n",
+ "2. Constant extrapolation of velocity to the water surface (water velocity at the uppermost bin is the same speed as that at the water surface)\n",
+ "3. Remaps the velocity transect from \"time\" onto \"distance\" based on the GPS-measured location (`latitude_gps` and `longitude_gps` variables). It does this by converting the lat/lon to UTM and interpolating the UTM location onto the timegrid.\n",
+ "4. Velocity data is then integrated over the cross-sectional area to find discharge [m^3/s], power [W], power density [W/m^2], and hydraulic depth [m]. The last is used to find the Reynolds Number. \n",
+ "5. Values are saved into the returned dataset\n",
+ "\n",
+ "The inputs are as follows:\n",
+ "1. `ds` - ADCP dataset\n",
+ "2. `water_depth` - as calculated above\n",
+ "3. `rho` - water density for the water current in question\n",
+ "4. `mu` - kinematic viscosity, based on the water temperature and salinity. Can be found from a look-up table online.\n",
+ "5. `surface_offset` - Location of water surface on a vertical datum. Typically will be 0 for a river. In a tidal channel, this will depend on the height of the tide relative to MLLW (or MSL or desired level) at the time of the transect measurement. If the water level during the transect is above MLLW, this value will be negative. If above MLLW, this value will be positive.\n",
+ "6. `utm_zone` - UTM zone at the survey location. Can easily be found for a specific location by searching here: https://www.usgs.gov/media/images/mapping-utm-grid-conterminous-48-united-states"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
]
@@ -3923,7 +3956,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 61,
"metadata": {},
"outputs": [
{
@@ -3932,7 +3965,7 @@
"Text(0.5, 1.0, 'TI Difference')"
]
},
- "execution_count": 29,
+ "execution_count": 61,
"metadata": {},
"output_type": "execute_result"
},
@@ -3970,7 +4003,7 @@
"#### Quick 5-beam ADCP lesson before we dive in:\n",
"\n",
"There are a couple caveats to calculating Reynolds stress tensor components:\n",
- " 1. Because this instrument only has 5 beams, we can only find 5 of the 6 components (6 unkowns, 5 knowns)\n",
+ " 1. Because this instrument only has 5 beams, we can only find 5 of the 6 components (6 unknowns, 5 knowns)\n",
" 2. Because the ADCP's instrument (XYZ) axes weren't aligned with the flow during deployment, we don't know what direction these components are aligned to (i.e. the 'u' direction is not necessarily the streamwise direction)\n",
" 3. It is possible to rotate the tensor, but we'd need to know all 6 components to do so properly (\"coupled ADCPs\")\n",
" 4. Measurements close to the seafloor can be suspect due to increased vertical flow. ADCPs operate under the \"assumption of homogeneity\", which means that they can only accurate measure consistent horizontal currents with relatively little vertical motion.\n"
@@ -3985,16 +4018,14 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "c:\\users\\mcve343\\mhkit-python\\mhkit\\dolfyn\\adp\\turbulence.py:407: UserWarning: The beam-variance algorithms assume the instrument's (XYZ) coordinate system is aligned with the principal flow directions.\n",
- " warnings.warn(\n",
- "c:\\users\\mcve343\\mhkit-python\\mhkit\\dolfyn\\adp\\turbulence.py:417: UserWarning: 100.0 % of measurements have a tilt greater than 5 degrees.\n",
+ "c:\\Users\\mcve343\\anaconda3\\envs\\work\\Lib\\site-packages\\mhkit\\dolfyn\\adp\\turbulence.py:407: UserWarning: The beam-variance algorithms assume the instrument's (XYZ) coordinate system is aligned with the principal flow directions.\n",
" warnings.warn(\n"
]
}
@@ -4034,14 +4065,14 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "c:\\users\\mcve343\\mhkit-python\\mhkit\\dolfyn\\rotate\\api.py:72: UserWarning: You are attempting to rotate into the 'principal' coordinate system, but the dataset is in the inst coordinate system. Be sure that 'principal_heading' is defined based on the earth coordinate system.\n",
+ "c:\\Users\\mcve343\\anaconda3\\envs\\work\\Lib\\site-packages\\mhkit\\dolfyn\\rotate\\api.py:72: UserWarning: You are attempting to rotate into the 'principal' coordinate system, but the dataset is in the inst coordinate system. Be sure that 'principal_heading' is defined based on the earth coordinate system.\n",
" warnings.warn(\n"
]
}
@@ -4068,12 +4099,12 @@
"metadata": {},
"source": [
"### 7.8 TKE Balance \n",
- "We can plot the production rates and the ratio of production rates to dissipation rates to get an understanding of the TKE balance.We always expect production to be greater than 0, though negative values can give us an indication of uncertainty. In a well mixed coastal environment, we expect production and dissipation to be approximately equal. Our production estimates are possibly high because our stress components aren't aligned with the flow (4x10^-3 $m^2/s^3$ is quite large), but if this weren't the case, we would conclude that TKE is produced (kinetic energy is lost to turbulence) but not dissipated (turbulent energy is lost to entropy) here."
+ "We can plot the production rates and the ratio of production rates to dissipation rates to get an understanding of the TKE balance.We always expect production to be greater than 0, though negative values can give us an indication of uncertainty. In a well mixed coastal environment, we expect production and dissipation to be approximately equal. Our production estimates are possibly high because our stress components aren't aligned with the flow (1.3x10^-3 $m^2/s^3$ is quite large), but if this weren't the case, we would conclude that TKE is produced (kinetic energy is lost to turbulence) but not dissipated (turbulent energy is lost to entropy) here."
]
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 64,
"metadata": {},
"outputs": [
{
@@ -4082,7 +4113,7 @@
"Text(0.5, 1.0, 'TKE Balance')"
]
},
- "execution_count": 32,
+ "execution_count": 64,
"metadata": {},
"output_type": "execute_result"
},
@@ -4098,7 +4129,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAHiCAYAAAB1Bw2oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcu0lEQVR4nOzdd3wT5R8H8E+StuluKXsUKHu0iOwhS5DlQGSDKEuWCoooWxCBguKCnwIKsmUPFVBRLIIMQWTvvcpq6V5pkuf3xyVH0yRt2ktLUz7v1+teJHfP83yfSy7XLzeeUwkhBIiIiIjoiad+3B0gIiIiooKBiSERERERAWBiSEREREQmTAyJiIiICAATQyIiIiIyYWJIRERERACYGBIRERGRCRNDIiIiIgLAxJCIiIiITJgYElGBYTQasX37drz44ouoXLny4+4OEdETh4khPdFKly4NlUqV62nBggW4e/dutuXWrl0rx3zrrbfslmvdurVc7saNG3jnnXfQtm3bXPXt4sWLDn0GO3fuxPDhw1G5cmW7bXl4eCAwMBBVqlTBiy++iM8++wwPHjxw6nexZs0ahIWF4YUXXsC2bdtgMBic2j4RETlAED3BvL29RePGjcX+/ftFXFycSE9PF+np6eKPP/4QAAQA8dprr8nzU1JSxMWLF8WECROEWq0Wc+bMEUIIkZaWJv777z/RqFEjuV7RokXF9u3bRWJiojAajXJMg8Egrl+/LsqXLy+X7d69u9i/f79ISEiw2c9BgwbJZb/88ktx584dq+nq1ati3759okePHgKAOHLkSI4+i6SkJFG2bFk5zoYNG8T9+/eFTqcTiYmJ4vTp0+LLL78UFSpUEACEt7e3WLhwYe4//EySk5OF0WgU7du3FwBEhQoVnNY2ERE5xu2xZKNEBYDRaISnpyd+/fVXBAYGWizTaDTya5VKBTc36afi5uaGKlWqYNasWQCAhIQEAICHhweefvppvPfee+jVqxcAoGfPnujcubNVXLVajYCAACQmJsLX1xfLly/HK6+8kmVf69Wrh++//x4AEBAQgFKlStksV7FiRTRt2hTXrl2T++Yob29vNGrUCFu2bAEANGjQAMWLFwcAuLu7o1atWqhVqxYGDRqEF198EX/99ReGDx8ONzc3DB48OEexbPHy8gIA1KlTBzt37lTcHhER5RxPJdMTKz4+Ht26dbNKCh01fPhwq+SraNGiNl9nlJ6ejt69e8PNzQ1///13tkkhICVtjlKpVHj11VdznBgCgJ+fn0Nl1q1bJ/dp7NixSEpKynEsezw9PZ3WFhER5QwTQ3pieXh4YMSIEbmuX758efTo0cNiXsYjjRlfm+l0OvTs2RPHjh3D7t278dRTTzkUS6VS5ahvffr0Qd26dXNUJydxSpYsKV8PGRsbi7///jvHseyx9bkREVH+4KlkemJ5e3vj6aefVtRG8+bNHS6bnJyMV155BadOncJff/2FatWqKYqdFfMp4LxkPvULSEdfiYjI9fGIIVE+iIqKQtu2bXHu3Lk8TQrPnTuHadOm5UnbGRmNRhw+fFh+X716dZvlfvrpJ3Ts2BHFihWDu7s7SpYsieeeew4bNmzIdeykpCRMnz4dTz31FHx8fODl5YVKlSrhjTfesHkntsFgwJYtW9CuXTu0adMGAJCamoqPP/4YlStXhq+vL9q0aYMTJ05kGXfz5s3o1KkTihcvDg8PD1SuXBljxozBw4cP7dbZu3cvunfvjlKlSsHDwwPlypXDgAEDcP78+VyvPxFRXmJiSJTHLl++jGbNmiE6Ohp79+7N0/H5Tp8+nWdtZzRv3jzcuHEDANCqVSvUqVPHqszkyZPRpUsXCCFw6NAh3LlzB1OnTsXu3bvRs2dPLFiwIMdxY2Nj0aRJE0ybNg2DBg3C7du3cfz4cYSGhmLx4sVo3LgxIiMj5fILFy5Ew4YN8corr2DXrl0QQiAyMhLNmjXD3LlzkZCQgKSkJOzevRtt27ZFTEyMVcyUlBR069YNo0ePxsiRI3H16lWcOXMGZcuWxRdffIH69evj9u3bVvXGjx+PkSNH4o033sC5c+dw9OhRNGnSBMuXL0e9evXw+++/53j9iYjy3OO+LZqoIIqIiJCHbXn99ddzVW/q1Kni4MGDonjx4qJ27drizp07ue7P0qVL5XaXLl1qs8yFCxdEWFiYmDp1aq7jvP7663KckydPWiwzGAzi1KlT4s033xRqtVoAEDVq1BA3btywaufEiRN22+nXr58AIKpWrWqzD1OnTrU7XM17770nAIj69etbzI+Pjxeenp4CgJg5c6Y8PyEhQRgMBlG7dm0BQNSpU0e0a9dObNq0SRgMBiGEEPPmzZP7+umnn1rFfOWVV4S7u7s4ceKExfw///xTrtevXz+LZV988YUoVaqUuHfvnsV8g8EgGjRoIACIoKAgERMTY/MzICJ6XHjEkCiP/Pnnn3j22WedPhD06NGjUapUKYspICAA1apVw8mTJ50WJywsDL6+vihevDiKFy8OrVaL0NBQfP3111Cr1Zg6dSoOHTqE4OBgq7pnz56VXwcFBVksa9iwIQDg5s2bOe7TmTNnbLbp5+eHGjVqWLXr6+sLtVqNWrVqAQCio6OxdOlSvPLKK1Crpd3fiBEjUKRIEQCwOD0OSKePN2/ejO7duyMsLMxiWf369eXrLO/evSvPj42NxZQpU9C3b1+UKFHCoo5arZZPZz98+FDRKXUiorzAm0+I8kjFihVx+/ZtXLlyBadPn0aLFi2wa9culC9fXlG706dPl8dKNEtISMD+/fvx/vvvK2o7oz/++AO1a9cGICU79+7dw+7du/HDDz/gwoULmD17Ni5cuICZM2ciJCTEom67du3QoUMHVKhQAWXKlLFYZh4SJy0tLcd9GjlyJB4+fIg333zTallW7Wq1WgBAlSpVUK5cOYtlbm5uqFChAmJiYhAbG2ux7JtvvgEAPPfcc1Zt+vv748CBA9izZw9eeuklef6mTZuQmJiIxYsXY/Xq1Vb1EhMT5dfOTOSJiJyBiSFRHqlUqRLmzJmD5557DqdPn8alS5fk5LBKlSq5btfWANelSpVC1apVYTAY5Gv/lKpcubIcp1SpUqhRowZatWqFiRMnYtq0aZg1axbWrFmDX375BRERERbD4wQFBeHXX3+1aG/Pnj34/vvvsWPHDgCAECLHfXrhhRfwwgsvyO+TkpKwZs0arFixQj7aZzQareplNwROQEAAAMuk0mAwyMPwZE4mzZ566imrIYcOHDgAQLrGsn///lnGzcn4lERE+YGnkonyUOnSpbFnzx40atQIgPT845YtW8qnRJ2tWbNmedJuRu7u7pg5cyZ69uwJQDqa2Lt3b5vPNjYYDFi+fDmeeuopfPHFF+jXrx/mzJmjuA93797F2LFjERYWhitXrmDFihVo3Lix4nYzio6OlhPF9PT0HPUNkNY98yn/zJO/v79T+0xEpBQTQ6I8FhQUhF27duHZZ58FANy5cwetWrXC0aNHnR6rRo0a+TJcDQCMGTNGfn3+/HkcPHjQYvm5c+fQqFEjzJo1C4sXL8aWLVvw3HPP5Xiw7syWLFmCqlWrIioqCkePHsWsWbNQsWJFRW3akvHI45UrVxyuZ04ijx8/7vQ+ERHlNSaGRPnA19cXO3bsQJcuXQBI4xq2adNGPu2YV/R6fZ61nflmjFu3bsmvz58/j+bNm+PSpUuIiIiQbzhR6tNPP8WQIUPQsWNHLFu2TD4FnBeKFi0qPyM7u6Fljh8/Lg/yXaxYMQDAr7/+ipSUlCzr7d+/3wk9JSJyHiaGRPlEq9Vi48aN8nVncXFxaN++PSIiIvIkXmRkJIYNG5YnbQNS/zPKeNRu0qRJePjwIdq1a2d180luRUdHY/LkyQCA1157zSltZsXd3V1+Ms6OHTtw4cIFu2WnTJkCHx8fAI/uuo6NjcWXX35pt86vv/6Kf/75x3kdJiJyAiaGRDZkPI1o62YGR+rZuubOzc0Ny5cvl++qTUxMROfOnfHTTz9l2W5ubtT44IMPLG7UcERO4qxbt05+HRISgvr168vvzQNt37t3z6pexuv1bH1G5j5k7sulS5eg0+mybddWm45+h5ljvvrqqwCkI68DBgxAamqqVZ1PPvkEFStWlG9w6dGjB9zd3QEA06ZNw7Zt26zqxMTE4IMPPkDv3r0d6hcRUX5hYkhkQ8bEw1YS4ki96Ohom2VUKhX+97//oXPnzgCkx7N17doVs2bNspvAZDwlaSvxyezbb7/FTz/9hE6dOjncd8ByKJWsHDhwAFOmTAEgjc33xRdfyKddAchD8uzbtw/fffcdAOkI2qxZszBx4kS53K1bt/Dzzz9j9+7d8jzzkciEhASLmBmH+Zk5c6Z8BO/EiRPo0qWLfM3mrVu3kJ6ejnHjxsnlzd9Fdqd2Mz/zeejQofKQPQcOHEDjxo2xZs0aHDt2DD/++CNeeOEFfPLJJ/KRTAAoW7YsPvjgAwCATqdDly5dMGzYMERERODIkSP47rvvUK9ePXTr1g2lS5fOsj9ERPnucY6uTVTQpKWliaNHj4o6derIT7Xw9PQUGzZsEHFxccJoNNqsl5qaKo4dOybq168v1ytWrJj4+eefRWJiolW9u3fvivbt28tlzVO9evXE999/L65fvy70er1cfvDgwXKZnj17itjYWJGeni5POp1OxMXFiePHj4t33nlHqFQq0b9//xyte0JCgihXrpwcZ968eeLEiRMiKipKpKamiqioKPHXX3+JN998U7i7uwsAIiAgQKxYscKqrY0bN1qsl7+/v3BzcxMDBw4U69evl+d7e3uLrl27CoPBIPR6vTh//rwIDg6Wly9YsEAkJCTI7b744ovyMpVKJYoUKSL8/f3FunXrRPfu3S3ibdiwQeh0OnHgwAHh4+MjAAitVit++eUXkZycLH9v+/btE76+vgKAcHNzE9u2bROpqalyzMuXL4tKlSpZfVfm7/jgwYNW66/X6y2eIpN56tWrl/zkFSKigoSJIZFJTEyM3T/k5mn+/PlW9e7cuZNtvTVr1sjlb968mW15AGL16tXi448/tkiGcjJt27bNofXetWuXGDVqlKhWrVqW7Wk0GuHr6ytCQkJE+/btxYwZM8SDBw/strtkyRJRvXp14enpKerXry82btwohBAiOTlZNG7cWAQGBoqxY8cKnU4nhBAiPDzcbmxzchgTEyMGDRokihcvLgICAkSvXr3E1atXhRBC/PHHH6Jo0aKiRo0aYvv27UIIIXr16mWzvaJFiwohhKhQoYLN5ZkfuRcXFyfGjx8vKleuLDw8PES5cuXEyJEjxe3bt7P8bDdt2iSeffZZ4e/vL7y8vET9+vXFokWLmBQSUYGlEiIXFy8RERERUaHDawyJiIiICAATQyIiIiIyYWJIRERERACYGBIRERGRCRNDIiIiIgLAxJCIiIiITNyyL0JGoxGRkZHw8/ODSqV63N0hIqICTAiBhIQElClTBmp13h1/SU1NlR8TqYSHhwc8PT2d0CMqDJgYOiAyMhLBwcGPuxtERORCbt68iXLlyuVJ26mpqSjq5YtkZP+IzOyUKlUKV69eZXJIAJgYOsTPzw+A9CP39/d/zL0hIqKCLD4+HsHBwfLfjryg0+mQDAP6oSw8FFwVpoMRq+/ehk6nY2JIAJgYOsR8+tjf35+JIREROSQ/Lj3yghoeqtwnhho++4wyYWJIRETkojQqFTQKElANVNITwolMmBgSERG5KLUK0Cg4MKkGmBiSBQ5XQ0REREQAeMSQiIjIZTnlVDJRBkwMiYiIXJRG4alkjfO6QoUETyUTEREREQAeMSQiInJZPJVMzsbEkIiIyEXxVDI5G08lExEREREAHjEkIiJyWTyVTM7GxJCIiMhFqaDs1B/TQsqMp5KJiIiICACPGBIREbksnkomZ2NiSERE5KJ4VzI5GxNDIiIiFyUlhkqOGBJZ4jWGRERERASARwyJiIhcFk8lk7MxMSQiInJRvPmEnI2nkomIiIgIAI8YEhERuSy1wlPJPDpEmTExJCIiclE8lUzOxv8sEBEREREAJoZEREQuy3xXspIpt3Q6HWbPno3q1aujcuXKaNWqFfbs2ZPjdu7evYthw4ahUqVKCAkJQa9evXDjxo0s62zcuBENGzZEpUqVUKdOHSxevDjbOKmpqfjmm29QsWJFXLt2LdvyuYlRGLhsYrh9+3Y0a9YMy5Yty7Lcf//9h+effx4hISGoUqUKxo0bh5SUlPzpJBERUR56XIlhWloaOnbsiJUrV+L333/H5cuX8dZbb6Fdu3bYsGGDw+1cvXoVDRo0QExMDE6fPo1Lly6hTJkyaNCgAc6fP2+zzsSJEzFw4EDMnTsXV65cwfr16zFx4kSMGjXKZvnk5GR89tlnqFatGt58801cv349237lNEZh4nKJ4fr169G4cWO88MILOHDgQJZlf/75ZzRr1gxt27bF1atXceTIEezbtw9t27ZFUlJSPvWYiIiocBk3bhwiIiKwdOlSlC9fHgDQo0cPdO/eHQMGDMDVq1ezbcNgMKBHjx7Q6XRYunQpvLy8oNFoMHfuXHh6eqJnz55IT0+3qLN161aEh4djypQpaNWqFQCgRo0amDFjBubPn4/169fbjPPaa68hIiICanX2aU9uYhQmLpcYNmjQAHv27EHVqlWzLHfz5k3069cPzz77LMaMGQMACAgIwJIlS3Dw4EG8//77+dFdIiKiPGO++UTJlFPXrl3D119/jVq1aqFRo0YWy/r374/k5GRMmDAh23bWrFmDI0eOoEePHvDx8Xm0ThoN+vTpgxMnTmDJkiXyfKPRiA8++AAqlQoDBgywaKtv377QaDQYM2YMDAaDxTI/Pz8UL14clStXRrFixbLsU25jFCYulxhWqlQJWq0WTz/9dJblPvroIyQkJGDgwIEW86tXr46GDRti4cKFOHv2bF52lYiIKE9poPBUci5irlu3Dnq9Hs2aNbNa1rhxYwDAli1bEB0dnWU7q1evBgCb7TRp0gQA8N1338nzDh8+jIsXL6Jy5cooUaKERXlfX1/Url0bt2/fxo4dO+zG9PT0zLJPzojh6lwuMTTL6stNT0+Xr3Gwt8EJIZ6YC0mJiKhwUis8WqjOxRHD7du3A5AO1GQWFBSEsmXLQqfTYd++fXbbSE5Oxu7du+22ExYWBgA4evQoYmNjs42bsU5ERITduKps1tcZMVydyyaGWX25e/fuRXx8PLRaLcqWLWu1/En4YomIiPLC0aNHAQDlypWzuTwwMBAAcOzYMbttnD17FqmpqXbbMbchhMCJEyecFjc7+RGjoCuUA1ybv1hbSSHw6Is9efIkDAYDNBo+RpyIiFyP0iFnzHXj4+Mt5mu1Wmi1WqvyqampSExMBPDob2lmAQEBAICoqCi7cR88eCC/ttWOuY2M7ZjrKImbnfyIUdC57BHDrDj6xer1esTFxVktT0tLQ3x8vMVERERU0Djr5pPg4GAEBATIU3h4uM14Ga8b9Pb2tlnGfOev+YhgbtrJePewuR1zHSVxs5MfMQq6QnnE0NEvFrD95YaHh+Ojjz7Km84REREVMDdv3oS/v7/83tbRQgDw8PCQXwshbJbR6XQApOsN7cmuHXMbGdsx11ESNzv5EaOgK5RHDB39YgHbX+6ECRMQFxcnTzdv3sybjhIRESngrAGu/f39LSZ7iWFQUJD8N9beeMDmm0WyGhqmVKlS8mtb7ZjbyNiOuY6SuNnJjxgFXaFMDB39Yn18fGze3azVaq1+JERERAVNfo9jqNFoUKtWLQBAZGSkzTL37t0DANStW9duO6GhofJNpLbaMbfh4eGBmjVrAgDq1KmjOG528iNGQVcoE0N+sURERHmjQ4cOAIDTp09bLYuKikJcXBx8fHzQokULu20UKVJEHhzbVjuXLl0CALRs2VIe/DqruBnrdOrUydFVsZIfMQq6QpkYtmnTBh4eHrh//77NO4eehC+WiIgKP7VpLEIlU04NHjwYarUae/bssVpmflRtt27d7J6ONhs6dCgAZNlO37595Xnt2rVDSEgIzp49a3FXMyCdCTx79ixCQkLkwbFzIz9iFHSFMjH09/dHr169ANjf4NRqNXr27JnfXSMiInIalUaleMqpqlWrYujQoTh58qTVeH7Lly+Hl5cXpk6dKs+LiIhA48aNMW/ePIuy/fv3R1hYGNavX29xI6hOp8PatWsRGhqKV199VZ7v5uaG8PBwGI1G+akpZqtWrYLRaMTMmTOzHIJOr9cDgN1H2jkjhqtz2cQwuy936tSp8PHxwYoVKyzmnzp1Cv/99x+GDBmS7fOWiYiIyNrcuXNRv359DB8+HA8fPoQQAvPnz8fPP/+MFStWWDw55LPPPsOhQ4cwadIkizbc3d3xww8/QK/XY8yYMdDr9UhOTsagQYNgNBqxceNGuLu7W9Tp1asXhg0bhhkzZsgDX+/duxeTJk3Cu+++iz59+tjt89WrV3H//n0AwMGDB+2WUxKjMHDJ4WpSUlLkL+vgwYMYPHiwVZnKlStj0aJFGDBgAFatWoVXX30VN27cwKuvvormzZvjiy++yO9uExEROZVao4JanfsRrnNzKhmQbt6MiIjAlClT0KBBA6jVaoSGhuLw4cPydf5mffr0wZ49e/Daa69ZtRMaGooDBw5g/PjxqFq1Ktzd3dG+fXscP37c6lnFZgsWLEBoaCh69+6NtLQ0lCxZEitWrECXLl3s9rdChQqIjIyUDyq9+uqreP/997Fjxw6b9xvkJkZhoRL2xnQpoHr37o2ff/4ZycnJ8rygoCDMnDkTw4cPtyr/+++/Y+rUqbh79y68vb0xcOBAvP322xZjKGUnPj4eAQEBiIuL4x3KRESUpfz4m2GOsbFiGHzUuT+tmWQ0oPu1k/z7RjKXO2K4du3aHJV/7rnn8Nxzz+VRb4iIiB4flTp31wnK9aHgeXpUKLnsNYZERERE5Fwud8SQiIiIJGqNCmoFRwzVPGJImTAxJCIiclEqtRoqde5P/qlc6zYDygc8lUxEREREAHjEkIiIyGXxVDI5GxNDIiIiF5Xbp5fI9ZkYUiY8lUxEREREAHjEkIiIyGVJRwwV3HwCoxN7Q4UBE0MiIiIXxWsMydl4KpmIiIiIAPCIIRERkctSqVRQqRXcfGLkEUOyxMSQiIjIRak1aqgVXGOoFjxxSJaYGBIREbkoxcPVCB4xJEv8rwIRERERAeARQyIiIpfFI4bkbEwMiYiIXBSvMSRn4xZBRERERAB4xJCIiMh1KTyVDJ5KpkyYGBIREbkotUoFtYJxDNUqJoZkiaeSiYiIiAgAjxgSERG5LJVGDZWCm09URh4fIktMDImIiFyUWqOCWsE1hmo+Eo8y4X8ViIiIiAgAjxgSERG5LMUDXPOIIWXCxJCIiMhF8RpDcjYmhkRERC5KrYHCawyd2BkqFPhfBSIiIiICwCOGRERELkulVkGlYIBrJXWpcGJiSERE5KLUajXUCq4xVBt44pAscYsgIiIiIgA8YkhEROSyFA9Xo6AuFU5MDImIiFyU4uFqFNSlwolbBBEREREB4BFDIiIil6VSq6FSKzhiqKAuFU5MDImIiFyUWqPwrmSeSqZMuEUQEREREQAeMSQiInJdCm8+AY8YUiZMDImIiFyUSq3wrmReY0iZMDEkIiJyUbz5hJyNWwQRERERAeARQyIiIpclDXCtUVDf4MTeUGHAxJCIiMhF8ckn5GxMDJ0gJTUVAODl6QkASExOAQD4envZrZOcItVRmR5TqRICAODpZb8OERHlvwfxyQCA4v7ej7knRHmPiSEREZGLUqvVUCu4gURJXSqcmBgSERG5KJ5KJmfjFkFEREREAHjEkIiIyGXxiCE5GxNDIiIiF6VSKRzgWsXEkCxxiyAiIiIiAE9AYvj333+jc+fOKFWqFIKDg1G9enVMnToVqaYhZoiIiFyV+VSykokoo0K9RWzYsAGtWrVC48aNcfPmTdy8eRNr167F0qVL0bZtW+h0usfdRSIiolxjYkjOVmi3iLS0NIwYMQLt2rXD1KlT4e7uDgB4+umnMXPmTOzfvx9Llix5zL0kIiLKPbVGrXgiyqjQbhEnTpxAdHQ06tata7WsXr16AICTJ0/mc6+IiIiICi6H70oeNGhQnnRApVLlyZE7Hx8fAMDBgwetliUkJACAzaSRiIjIVajUKmV3JatVTuwNFQYOJ4bLli3Lkw7kVWJYs2ZNVK1aFXv27MGSJUswePBgedmWLVsQFhaG119/3elxiYiI8gvHMSRnczgxLFOmDFavXu3U4EII9O/f36ltmqlUKnz77bfo0KEDRowYAU9PT/Tr1w/79u3DkSNHsGvXLmi12jyJTUREROSKHE4Mvb290apVK6d3wMvLy+ltmrVu3RqbNm1Cz5490b9/fxw+fBhubm747bffoNFo7NZLS0tDWlqa/D4+Pj7P+khERJRbPGJIzubwFiGEyJMO5FW7Zi+88AI++eQTjBo1CvPmzcM333yDDRs2ZFknPDwcAQEB8hQcHJynfSQiIsoN85NPcj0pePKJTqfD7NmzUb16dVSuXBmtWrXCnj17ctzO3bt3MWzYMFSqVAkhISHo1asXbty4kWWdjRs3omHDhqhUqRLq1KmDxYsXOz3G3bt34enpCZVKZTGVK1cO6enpOV5PV+HwFvH000/nSQfyql2zTz75BGXLlsWXX36JtWvXQq/Xo2/fvvjf//5nt86ECRMQFxcnTzdv3szTPhIREbmStLQ0dOzYEStXrsTvv/+Oy5cv46233kK7du2yPfiS0dWrV9GgQQPExMTg9OnTuHTpEsqUKYMGDRrg/PnzNutMnDgRAwcOxNy5c3HlyhWsX78eEydOxKhRo5wWAwA+//xzi7OHZqNGjZKHwCuMVCKvD9mZnD9/HtWrV8+PULK5c+di48aNFncmb926Fd27d4fRaMTevXvRvHnzbNuJj49HQEAA4uLi4O/vb7U8ITkFAODn7fhp8RTTk1e8PD0BAKkpUhueplPr5vcAIFTSXWMqo0Eq4+1j0VZaknSXtdbHz+H4RETOlmjaF6pN+yydwQgACPT1zrauvM8TUp3M+znAer/piJzsn3OzLzeLS5LqBvh4Zfs3wxnMMa599g78vXJ/vXx8Shoqvvdljvv6zjvv4KuvvsI///yDRo0ayfP79u2LH3/8EadOnUJISEiWbRgMBjRu3Bg3btzA1atX5dFEDAYDQkJCUKRIEfz7778WSdjWrVvRtWtXzJkzBx988IE8/9tvv8WwYcOwbt069OzZU1EMAIiJiUFYWBi2b99udT9CxYoV4ZmDbdDV5MvFBUajEc2aNcuPULLr169j8uTJeP755y3mv/zyy5g9ezaEEPjoo4/ytU9ERETO9DiefHLt2jV8/fXXqFWrlkVSCAD9+/dHcnIyJkyYkG07a9aswZEjR9CjRw85YQMAjUaDPn364MSJExajlhiNRnzwwQdQqVQYMGCARVt9+/aFRqPBmDFjYDAYch3D7H//+x9effVVPPXUU6hRo4bFVJiTQiAHN5/Yk5CQgF9++QU3btxASkqK1TWD6enpOHDgAGJjY5WGypHt27cjLS0NJUqUsFr2zjvv4JNPPsGhQ4fytU9ERESubt26ddDr9TYP+DRu3BiANCxcdHQ0ihYtarcd80gnttpp0qQJAOC7777D8OHDAQCHDx/GxYsXUaVKFau/7b6+vqhduzZOnDiBHTt24MUXX8xVDABITk7GvHnzMHDgQOzbtw9NmzaFWsFYka5GUWJ48OBBvPTSS4iOjpbnZU4MVSoVhBBQqfJ3EE3zc5Bv3bpltczNzQ0VK1bEtWvX8rVPREREzvQ47krevn07AKBSpUpWy4KCglC2bFncvn0b+/btw0svvWSzjeTkZOzevdtuO2FhYQCAo0ePIjY2FoGBgVnGNdc5ceIEIiIi8OKLL+YqBiCdlo6KisKnn36KTz/9FMHBwRg3bhyGDx+e5YgmhYWixHDkyJGIiopCuXLl8OKLL6JYsWJWWbUQAvv27cOff/6pqKM59cILL2Ds2LHYuHEjpk6dCje3R6saFxeHc+fOoV+/fvnaJyIiImcy312spH5OHT16FABQrlw5m8sDAwNx+/ZtHDt2zG5iePbsWaSarhm11Y45SRNC4MSJE2jZsqVDcQHg2LFjuY4BAP/++y9CQ0Nx5coVJCcn4+bNm3jrrbewceNGbN68GUWKFLEZv7BQlBieP38ebm5uOHjwIMqUKWO3nF6vt3lKNy9VqVIFn376KcaMGYOBAwfif//7HwICAnD37l0MHDgQFSpUwKxZs/K1T0RERM7krCOGmcfr1Wq1Nh8CkZqaisTERACPEqvMAgICAABRUVF24z548EB+basdcxsZ2zHXcTRubmIAwKpVqwBIZx7/+usvTJw4Ef/++y92796NV155Bbt27SrUp5YVrVndunVRpkyZLJNCQDp1m5Pb153l3Xffxfbt2xEZGYmQkBBUqFABrVq1Qr169bB///5Cn/UTERE5Ijg42GL83vDwcJvlMl465u1t+25zc9JkPlqXm3YyJl7mdsx1HI2bmxgZeXh44LnnnsM///yD0aNHAwB2796NH374wc5aFQ6KjhjOnDkTnTp1wu3bt1G2bNksy/79999o27atknC50rlzZ3Tu3Dnf4xIREeU1lVql7IihWrr+/+bNmxbD1dh7ZKyHh4f82t5od+Zr/IOCguzGza4dcxsZ2zHXcTRubmLYolar8eWXX+LGjRvYsmUL1q5di1dffdVueVen6Ihh69atsWbNGowdOzbLctHR0ZgzZ46SUERERJSJoqeeZLg+0d/f32KylxgGBQXJCVdSUpLNMuZRSIoVK2a336VKlZJf22on40gm5nbMdRyNm5sYWZk9ezZUKhUuX76cbVlXpni4mjJlyuDBgwdo2LAh/PysB1g2GAy4dOmSzdHDiYiIyHVoNBrUqlULx44dQ2RkpM0y9+7dAyBdbmZPaGioPGpJZGSkxfV+Gdvw8PBAzZo1AQB16tTBn3/+6XDc3MTISrVq1VC+fHn4+vpmW9aVKUoMly9fjiFDhsBoNGb7zOP8Hq6GiIiosFOpNVCpcz+ESm7qdujQAceOHcPp06etlkVFRSEuLg4+Pj5o0aKF3TaKFCmCRo0a4Z9//sHp06etErNLly4BAFq2bCkPTN2hQwd8+eWXNuNmrNOpU6dcx8hO6dKl0aBBA4fKuipFp5KnTp0Kg8GAJk2aYOXKldi1axciIiIspl27dmHy5MnO6i8RERGZqTXKpxwaPHgw1Go19uzZY7XswIEDAIBu3brZPR1tNnToUADIsp2+ffvK89q1a4eQkBCcPXvW4o5jQDotfPbsWYSEhMgDV+cmRlb0ej0uX76MESNGOFTeVSlKDGNiYuDl5YXff/8d/fr1Q5s2bdCqVSuLqU2bNpg+fXq+D1dDREREzle1alUMHToUJ0+elMcMNFu+fDm8vLwwdepUeV5ERAQaN26MefPmWZTt378/wsLCsH79eou7gnU6HdauXYvQ0FCLmzzc3NwQHh4Oo9EoP9HEbNWqVTAajZg5c6bFINQ5jQHYH2Zn/vz5eOedd1CrVq1sPiHXpigxfOWVVxAUFGT31vGMLl68qCQUERERZaZWK59yYe7cuahfvz6GDx+Ohw8fQgiB+fPn4+eff8aKFSssnjTy2Wef4dChQ5g0aZJFG+7u7vjhhx+g1+sxZswY6PV6JCcnY9CgQTAajdi4cSPc3d0t6vTq1QvDhg3DjBkzcOLECQDA3r17MWnSJLz77rvo06ePohiff/45ihcvjk6dOuHcuXMAgLS0NMybNw96vR4TJ07M1eflShRdY/jZZ5+hZcuWOHDgAJo2bZpl2V69esmPsyEiIiLlVBoNVAoe05bbuj4+PoiIiMCUKVPQoEEDqNVqhIaG4vDhw6hTp45F2T59+mDPnj147bXXrNoJDQ3FgQMHMH78eFStWhXu7u5o3749jh8/bvdM44IFCxAaGorevXsjLS0NJUuWxIoVK9ClSxeb5XMSo0ePHvjzzz+xb98+PP3002jYsCGaNWuGAQMGoEaNGrn6rFyNSmR310g2YmJi8OGHH2LOnDk2jxwajUYcOnQILVu2tBgzyJXEx8cjICAAcXFxFuM8mSUkpwAA/Ly9HG4zxXRI28vTEwCQmiK14enlZfEeAITpxh2V0SCV8ba8SDYtKQEAoPWxviuciCi/JJr2hWrTPktnMAIAAn2zP6sk7/OEVCfzfg6w3m86Iif759zsy83ikqS6AT5e2f7NcAZzjLurZ8Hf2/HPw6qd5FSU6jcxT/tKrkXREcMiRYrIj9H55ptvnNKhgiw5JdXmD8e8E0lOkXZa3l72f6T2dmzmhNDMiEd3cZtfqUw7TLO0xDgAgNbX8hZ8Z8mcrBJRwWP+neoz/Bff105ikznxeZiQLC8L8vO2KONu2vFk/v3HJj6qkznhM5j6ICC98LAx8LK5fY0peTSYjk24mQZaFtBYlAMAg1Eqo3Wzfdozq31vTpK83CSE5s/Q/Pnlu1zeQGJRnygDRdcYvvvuuxBCODQRERGRk6nVCu9KLrzP/KXcUZwYhoSE4MyZM0hNTYXRaLSadDod/vjjD4u7hIiIiEg5Zz35hMhM0Rbh5+eHCRMmoFKlShbPJMzIzc0Nzz77LPr3768kFBERERHlMcWPxBsyZIhD5ZYsWaI0FBEREWWkUniNoYpn88iSw0cMM44k7kx51S4REVGh9xiefEKFm8OJYXR0dJ50IK/aJSIiIqKccfhUskqlyr5QLuRVu0RERIWd0htIePMJZeZwYhgfH4+VK1c6feiZhIQEp7ZHRET0xOA4huRkDieG9+/fx4ABA5waXAjBI4ZEREREBYTDieHUqVPzsh9ERESUU+YBrpXUJ8qAiSEREZGLUmk0UCl4gISSulQ48b8KRERERATACQNcExER0WOiVis7HcxTyZQJE0MiIiJXxbuSycmYGBIREbkolVoDlYLkTkldKpx4DJmIiIiIAPCIYY4Y7QzunZKamuO2klOkOmpIbXp6eQEA0hLjpAIarVxWZYqr9fGzaEOoLb++xOQU+bW70Nssa47jiJyUfVJk/Ix9vaXP53ZMEgCgbBGfx9Inyjvm37bBKP0Gzd+5s5m3K/Mexi8HcYRpLFhfL89sy2ZuV53FMLLmdh8mJAMAgvy8AQDpRuuycv9N+yo/H6mseT9nqw/mZeb3mfejtj4DW+0B9vfN+cFD85jH4lUpvMZQxeNDZIlbBBERkYsyn0pWMpFruH//Pr788kucOnXKYv7SpUsxZ84cREdHOyWOUxLDhIQEbNq0CV9//bU879ChQzh48KAzmiciIiJ6YkVGRqJevXp477338N5771ksGzhwIOrUqYP69etj27ZtimMpTgxXrFiB4OBg9OzZEx999JE8v06dOvjtt9/QtGlTXL58WWkYIiIiysz85JNcTzxx6Ao+/PBDREZGwsvLCy+99JLV8k6dOmHcuHHo3r07/v33X0WxFG0R27Ztw8CBAxEfHy9fW2Lm6emJqVOnomXLlmjUqBEuXbqkqKNERESUiXkcQyUTFXh//PEH1q9fj/j4eLz55ps2y/Tu3Rs6nQ6TJ09WFEvRFjFjxgyUL18e69evx9mzZxEUFGRV5vXXX0dMTAwmTpyoJBQRERHRE8nNzQ3du3eHOotE3t3dHQDw999/K4ulpPKpU6dw+PBh1KxZEwBsdtjf3x+AlO0SERGR8/BZyU8GX19fJCUlwcfH/ugXK1asAAB4KRxRRNERw/Lly8tJoT179+4FAKSnpysJRURERJkpur5Q4VNTKN/07dsXAwcORHJystUyg8GARYsW4b333oNKpcLzzz+vKJaiI4ZVqlTB+fPnUb16dZvLHz58iClTpkClUqF+/fpKQhEREVFmfCTeE2H06NFo2bIlKlWqhF69eqFKlSowGAy4fPkytm7disjISAghULp0acyaNUtRLEWJ4YQJE9CtWzcsW7YMDRo0sFj2xx9/4O2338aVK1egUqkwfvx4RR0lIiIiehJptVrs3LkTb7zxBubPnw+V6tHA6uabfxs1aoRVq1ahTJkyimIpSgybNm2KsWPH4plnnkHJkiURHR2Npk2b4tKlS3j48CGEEFCr1fj000/RsWNHRR0lIiIiSyq1GioFdxYrqUv5KyAgAOvXr8epU6ewY8cOXL9+HUajEeXKlUPr1q3RvHlzp8RR/Ei8AQMGoEmTJpg/fz4iIiJw8uRJ6PV6lC9fHi1btsSoUaN4GpmIiCgvqBSeSlbxVLKrCQ0NRWhoaJ6175RnJdeoUcPiqSdERERE5Fx//fUXNm7ciIcPH2L16tUAgIiICBw6dAivvfYaSpcurTiGosRwxowZDg+keOfOHWzduhXp6eno0KGD3RtWiIiIyEEqFaBScDo4w7VqVHAJITBkyBAsW7YMAFC0aFF5WZs2baBSqdC8eXN88skn6N69u6JYii4uWLlypfw6KioKsbGxNsv9+++/qFGjBtasWQM3NzcMHz4c77//vpLQREREpFIrn6jA++yzz7B06VKoVCqULFkSmkzjT7Zu3Rrjx49H7969FY8brWiLiI6OxssvvwwvLy+ULFkSRYsWRYUKFfDxxx9Dp9PJ5SZOnIjExEQsWrQII0eOxB9//IHz589jzJgxijpPREREVNh99913aN++PSIjIxEZGYnAwECrMs899xyMRiM++ugjRbEUJYYPHz7Ezz//jLS0NAghIITAzZs3MXXqVLRq1UoeiPHw4cMAgEqVKgEANBoNwsPD8dVXX+Gff/5RtAJERERPKqFSK56o4Lt79y7Wrl2LEiVKAIDFcDVmBoMBAPDff/8piqX45hN/f3+MGjUKPXr0QIUKFSCEwPHjx/HBBx9g9uzZmD59OhISEgBI4/CY1a5dG4GBgfj666/RuHFjpd3IF77elo+ZSUlNtXivhrCY7+XpadWGwSiVUZu+VE/To2tSU1KkAhoPAIC3l3XdzIymu8nMdTP3L+MyT4WPyLGIe+Vf+bW6UoMsSuYfw82T8mtNcFiexbH1GZctYvsRReY+ZexPYrL0fSSnGwEAJQKkurGJ0n+iAn29LcoBQJpB2maK+knL4pKkZQE+ln1JTU6SX3t6S+2at0VNWqL03s3HZt2MMc3raC9OfklLSpBfa338bJZ5mCB9bl7u0h83tSE92zpmmdcXAJJTLH/TRtP4YJm/d/P3BTz6zpzBz8b2ZWb+PtzVln8QDKY+piXGyfPS1dJ+JHO/E0zrnFUcN1P75v2XzpBisby4v/X6CtO/pt2bHMfcVsbP1fyZumX6u2aOl3m/mpG5bubvztbvMjvmPjmyr83M/F0A1r+P5JRUq+0oTyk9HczE0CVUrFjR5lHCjLZs2QLgMT8SD5AGsv7oo48QGhoKPz8/+Pv7o0WLFtiyZQt+/PFHCCFgNBptPke5aNGi2LNnj9IuEBERERVajRs3xrZt2+wu//fff/Hxxx9DpVKhbdu2imIpOmJYpkwZu2MUFilSBElJSfKI3BmPFpqlpaXh/v37SrpARET05FKplN1ZzLuSXcKHH36IZ555BufOnUO3bt0AADqdDufPn8e6devwxRdfICUlBb6+vpg+fbqiWIoSw4CAAOzfvx/NmjWzmG80GjFp0iRUrlwZer0egHTKOaPU1FRERkbC29t5p2GIiIieKGq1NCmpTwVeuXLlsGXLFvTq1Qvjxo2DEMLilLH5Ocnr1q1TPBygosSwf//+aN++PV599VV5FO7r169j06ZN0Ov18PT0xO7duwFISWRG27Ztg8FgQO3atZV0gYiI6Iml9AYS3nziOp5++mmcOXMGW7ZsQUREBG7cuAG9Xo/SpUujZcuW6N27t+LrCwGFieH777+PPXv24Ntvv5XvkBFCoFq1ajh06BAmT54sPyO5fPny6NmzJ9577z1oNBq8//77UKlU6NGjh+KVICIiIiqs7ty5g9KlS8PNzQ09evTI09xJUWKo0Wiwbds2LF++HNu3b4dOp0PTpk0xcuRIBAQEYOHChWjTpg0uXbqE999/HxcuXEDv3r1x9uxZCCFQs2ZNjBw50lnrQkRE9GThXclPhKpVq+L27dtWZ1/zguLhatRqNQYOHIiBAwfaXN6rVy/5dWhoKI4ePYolS5bg6tWrePfdd23elJIX9Ho91q1bh23btsHNzQ3lypXD0KFDERISki/xiYiInI6J4RMhOTkZdevWxbhx49C/f3/4+NgeJs0ZFCeGjlqyZAkGDx4Md3d3DB8+PL/CApAGe3z11VdRo0YNfPHFF6hQoUK+xiciIiLKLa1Wi7lz5+Lff//F008/jfbt22PEiBF5cp9GvvxXITo6GqNHj86PUFZ+/PFHNG/eHL169cLmzZuZFBIRUeHBZyU/EaZPn45u3bohPDwcZ86cQatWrTB69Gi0bt0a69atk0eAcQbFRwz//vtv/PDDD7hx4wZSUlLkcQvN0tPTce7cOaSkpNhpIe/89ddf6NWrF4YMGYKpU6fme3wiIqK8JFQqhXclcxxDV/D+++/LrzPegHLhwgUsWrQI06dPR9euXTF06FCUL19eUSxFieGCBQvw1ltvAYBVQpiZref65aV79+6ha9euKF26NObOnZuvsYmIiIjyWrVq1dClSxdcunQJ4eHhmDNnDjp16oSffvop120qSgxnzpwJAHj22Wfx+uuvy7dSZ/bvv//igw8+UBIqx8aPH4+YmBjMmjULnjaeWUxEROTyePPJE+HPP//Es88+K79PSUnBqlWr8PXXX+PkyZMQQkCr1aJXr1548803FcVSlBimpqYiICAAv/32m81nIZu1atUKX331lZJQOXLr1i0sX74cWq0WVatWxbBhw3Du3DlcuXIF1atXx8SJEy0+YCIiIpfER+I9EV588UWcP38e0dHRWL58OZYtW4a4uDgIIVChQgUMHz4cQ4YMQdGiRRXHUpQY9u7dGxs2bMgyKTQ7f/68klA5snHjRggh4OHhgYMHD2LmzJkoVqwYfvnlF/Tp0wfPPfccVq5cib59+9qsn5aWhrS0NPl9fHx8fnWdiIiIyEJKSop886wQAiqVCu3atcObb76JF1980amX6yk6hjxnzhyUL18e27dvz7Zs/fr1lYTKkb/++gsAMGjQIEyaNAnFihUDAHTq1Alz586F0WjE0KFD8eDBA5v1w8PDERAQIE/BwcH51nciIiKH8a7kJ4YQAv7+/hg1ahTOnTuH3377DS+99JLT7+FQtEVER0fj+++/x8KFC3H06FHcuHHDarpy5QpWrlyJCxcuOKvP2bp16xYAoGzZslbL+vXrh4CAACQlJWH9+vU260+YMAFxcXHydPPmzTztLxERUW6Yn5WsZCLXMHDgQNy8eRNffvklqlatmmdxFJ1Kbty4Me7fvw8A2LFjh1M65AzmU7/+/v5Wy7y8vNCmTRts3boVZ8+etVlfq9XafCJLSmqqRZtepptaUlJTpRnCaIrhY1XPzNfb8gHXaUkJ0gu19FWkm27uzup2mYztAYCn6aHZqRmGBDLP83TCA7UzU1dq4PQ2HZWcIq27t5flJ6QJDnsc3bEpLkn6HnwNBgBAWmKcvMzXV3qckbv5ezcJ9PW2eK9RP/ofoMpgece/xs5/DlX6tAzvpG1QZZT6YPSQ3mtN26h5G/LK4sasAB/LbSchWVqvjOEzb8+OSDS1Y66b+b3M1PeMzNu4ebs2f0zqdNNvIsP/nM2/LYPa3aINcxFbfTdvV+btzFwm8+eV+fuyxfx5+ZnaML8HAA8hjTlm/qNsEJZ/nFOTkwAAnt6P9iXuassvPvNvQBf7aJty03oAyOKzNZfL0KZ5HdWGdABAbKK0rXho1BZtqTN8xuaX5nWMTkiW5puWmz8v8+eZsS/m7+ehqU6Qn/SZGozWI1xk3ue52fkNZIyT+fMxs7UdZ66fuW7m+fZ+g+Yy+nSd/QLOplIDDlzOlWV9KvDKli2LRYsW2bzB11Hm5y1nR9EW8f7770MIAXd3d5QqVQrBwcEoX768xVSiRIl8H6qmePHiAOxfG1iuXDkAgNFozLc+EREREeXGzZs3FSWFgHQjsCMURRkxYgSWLFmCw4cPw9vb/v+gL168iLCw/Dui06BBA+zbtw+nT5+2udw8fE21atXyrU9EREROx+FqyEHZjTdtpmiL8PLywocffggPDw+7ZVJTU1G1alWMHz9eSagc6d27NwDg999/t/mYmKtXr0KtVuPll1/Otz4RERE5HW8+IQc5evZW8RbRq1evLA9v7tq1C2+++SY+/PBDpaEc1qRJE3Tt2hWRkZFYtWqVxbL79+/j119/xdChQ1GxYsV86xMRERFRQaf4WckAkJCQgLi4OKtr9oxGI0qUKIG1a9dCrVZj/vz5zgjnkKVLl+LixYsYNWoUKleujBYtWuDhw4d47bXX8PTTT+OLL77It74QERHlCZ5KJidTlBjeu3cP3bt3x/79+7MsJ4TAypUr8zUxDAgIwN69ezFp0iT07NkTWq0WgYGB6NmzJ8aOHZvl6W8iIiJXIFQqRUPOCD75hDJR9F+FiRMnYt++fXB3d0fZsmWh1Wqt7kp2d3dHnTp1MH36dGf12WGBgYH4+uuvcefOHVy7dg3Hjh3DxIkTmRQSEREppNPpMHv2bFSvXh2VK1dGq1atsGfPnhy3c/fuXQwbNgyVKlVCSEgIevXqhRs3bmRZZ+PGjWjYsCEqVaqEOnXqYPHixY89RmGhKDHcuXMnPv74YyQkJODGjRsYPHgwfv/9d1y9elWexo4di6FDh2LUqFHO6jMREREBj+3mk7S0NHTs2BErV67E77//jsuXL+Ott95Cu3btsGHDBofbuXr1Kho0aICYmBicPn0aly5dQpkyZdCgQQO7j9KdOHEiBg4ciLlz5+LKlStYv349Jk6caDfPyI8YhYmixFCv12PSpElwd5cGkB0yZAi+++47izJjx47FBx98gIiICCWhiIiIKDOVSvmUC+PGjUNERASWLl2K8uXLAwB69OiB7t27Y8CAAbh69Wq2bRgMBvTo0QM6nQ5Lly6Fl5cXNBoN5s6dC09PT/Ts2RPp6ekWdbZu3Yrw8HBMmTJFHpevRo0amDFjBubPn2/1RLP8iFHYKEoMS5QoYTEczFNPPYUzZ87IT0MBpNO5gYGBeO+995SEIiIiogLg2rVr+Prrr1GrVi00atTIYln//v2RnJyMCRMmZNvOmjVrcOTIEfTo0QM+Po+e8qPRaNCnTx+cOHECS5YskecbjUZ88MEHUKlUGDBggEVbffv2hUajwZgxY2AwPHpqUn7EKGwUJYZ16tRBr169sHz5chw5cgQA8Pbbb6N3796IjY0FACxZsgSRkZG4ePGi4s4SERFRBo/hVPK6deug1+vRrFkzq2WNGzcGAGzZsgXR0dFZtrN69WoAsNlOkyZNAMDiLOThw4dx8eJFVK5cGSVKlLAo7+vri9q1a+P27dsWj+jNjxiFjaLEcNq0adi1axcGDRqE5s2bw2AwoH379ihTpgxKly6NYsWKYejQoQAebSxERETkHEKlVjzl1Pbt2wEAlSpVsloWFBSEsmXLQqfTYd++fXbbSE5Oxu7du+22Y35a2tGjR+UDTVnFzVjHfOlafsRwJfny5JPKlSvj0KFDGD16ND7//HNoNBoAwOLFi9G9e3fExMRACIEmTZpYXXtIRERECj2GI4ZHjx4FAJQrV87m8sDAQADAsWPH7LZx9uxZpKam2m3H3IYQAidOnMhV3PyI4UocPUCneIDratWq4fPPP7eY5+npiZUrV+Kbb74BAPj5+eHSpUtKQxEREVEeiI+Pt3iv1Wqh1WqtyqWmpiIxMRHAoyQps4CAAABAVFSU3XgPHjyQX9tqx9xGxnbMdRyNmx8xCoIffvgB+/fvR7ly5fDGG2+gaNGiNstlfhKcPU558ok9fn5+AID09HSEhYUhJSUlL8MRERE9UaQBrnM/SLW5bnBwsMX8qVOnYtq0aVblM1436O3tbbNNtVo6Cmk+WmdLdu2Y28jYjrmOo3HzI0Z+qVevHgDAzc0Nzz77LGbPng0A6NOnD9avXy+fJl6wYAEOHz5sdX1kTuRpYmi2Y8cO6HS6/AhFRET0xBBCmpTUB4CbN2/C399fnm/raCEAiwdE2Ltmzfz3PigoyG7c7NrJmDOY2zHXcTRufsTIL8eOHUPTpk2xatUqhISEAABWrFiBdevWwcPDA3PnzkXr1q3xzTffYPLkyfj2229zHSvPE8OoqCi8//77eR0mX2TeTpJTpP8xGE0LfL19bC43ZPGrNWrcLd6rbJRNS4wDAGh9pUPYXp6eNtvy9PKympeYnGLqm/Wy7Jj77+0lxdPFSYfOPQKK5bgtWww3TwIANMFhDtcx9yW/Gc7tBQBoarTItqx5h6KpWBcAYLz3aDwv4z1pMFVt5UZW9SziGR9tBx4a6X/0upi7AAC9u7/NOlr/Rzsq8/fuoUuS6milOt6ZttGMMm8jcUlSGwE+0ny/XGxDmdvK2J69uGZav0DrmUJ6HvvDhGQAgJe76X/8Omm+Kv3R/+I9gsoAsP79pCXESgXs/I4A66Hd7P3mACA1WfqM04TUF/P6aUyNmL+LjJ+f+bvUFikl1TV9PvJvzvQ9pSUlyHXc0qUyws38B9vToow20P4RAvNv18/029U9jAQAqL0ebTOaNOn0oDDtk1Qq6c+DxpAmlVVL79Wpj/oE07w0nfR9eHtIR1nMn5e5b5oMfUmLl8qqTN9lkKlP5m3EvL2nZDgiY94vuhtNf8gzXReXYOMzNtc39yXVdMbK/L3YOsjm6P4l4zarZB9bkPj7+1skhvYEBQXBw8MDOp0OSUlJNsuYb+QoVsz+34pSpUrJr5OSkixO62ZsI2M7pUqVwpkzZxyOmx8x8otKpcLatWvlI7vp6emYMmUKVCoVpk2bhrfeegsAMG/ePDz11FOKYuX4qtPz589jxowZeOedd7BkyRKkpaXZLXv27Fk0b96c1xcSERHlAaMQiqec0Gg0qFWrFgAgMjLSZpl79+4BAOrWrWu3ndDQUKhM2bmtdsxteHh4oGbNmgCkIfJyEjc/YuSXsmXLWpzuX7JkCW7evIny5ctbjBPt5uaGu3fvKoqVo8Tw22+/RZ06dTB16lTMnz8fQ4cORe3atXHhwgWrsosXL0bDhg3l8QtHjhypqKNERERkSThhyqkOHToAAE6fPm21LCoqCnFxcfDx8UGLFvbPsBQpUkQeHNtWO+YDSi1btpQHps4qbsY6nTp1yrcY+aVIkSLyw0Pu37+PadOmQaVSYerUqfLT5wBg3759FkdCc8PhxPC///7DyJEjkZ6eDiGEPF25cgW9evWSy8XFxaFnz54YNmwYkpOTUbp0afzyyy+YP3++oo4SERHR4zd48GCo1Wrs2bPHatmBAwcAAN26dbN7naKZeZzjrNrp27evPK9du3YICQnB2bNnLe44BqRTvGfPnkVISIg8cHV+xcgPw4cPx7PPPosPPvgATZo0wf3799GkSROLp7NcuXIFgwYNUhzL4cRw/vz5MBqNaNu2LbZt24azZ8/ip59+Qv369XHixAn88ccf2L9/P+rWrYtNmzZBCIFu3brh5MmTcgZOREREzmMUyqecqlq1KoYOHYqTJ09ajee3fPlyeHl5YerUqfK8iIgING7cGPPmzbMo279/f4SFhWH9+vUWd/nqdDqsXbsWoaGhePXVV+X5bm5uCA8Ph9FolJ9oYrZq1SoYjUbMnDlTHlM5v2LkhxEjRuCNN97A5s2bERUVhRdffBGbNm2Slw8bNgxNmzZFZGSkxaP/csPhxPDQoUPo2rUrfv/9d3Tu3BnVq1fHCy+8gL1796Ju3boYPXo0WrdujevXr8PPzw/Lli3Dhg0b8v3OHSIioidFxjN4uZ1yY+7cuahfvz6GDx+Ohw8fQgiB+fPn4+eff8aKFSssnhzy2Wef4dChQ5g0aZJFG+7u7vjhhx+g1+sxZswY6PV6JCcnY9CgQTAajdi4caPFaVIA6NWrF4YNG4YZM2bIg1Lv3bsXkyZNwrvvvos+ffrke4z8Mnr0aFy6dAnx8fH48ccfLW6uWbRoEe7du4eEhASrMSlzyuG7ku/cuYP169dbzff09MS0adPQpUsXAECrVq2wfPlylC9fXlHHiIiIqGDy8fFBREQEpkyZggYNGkCtViM0NBSHDx+Wb+Aw69OnD/bs2YPXXnvNqp3Q0FAcOHAA48ePR9WqVeHu7o727dvj+PHjdsfiW7BgAUJDQ9G7d2+kpaWhZMmSWLFihZyHPI4YhYnDiWFKSgpq1Khhc1mbNm3kw69jxoyR7wLKqGfPnjYTSyIiIsqd3J4Ozlg/t/z8/PDll1/iyy+/zLJcv3790K9fP7vLq1atanFaNDsqlQpvvfWWPESLI/IjRl7KfBTQPLRQVFQUJk6cKD/5ZPLkyXjmmWcUxXL4VLJOp4Ner7e5zNfXV75l2lZSmJaWhl9//TX3vSQiIiKb8vOOZHo8AgMD5buszY8bTklJQevWrbFkyRKcOXMG//77L5577jkcP35cUSyHjxgKIfD555+jZMmSNpenpKTgu+++s7peITk5GTt27LA7WCQRERHlzuM8Ykj5a/DgwViwYIF848usWbNw5swZlCxZEjt37kRYWBh++OEHTJw4Edu3b891nBw9+WTy5MlZLh8+fLjN+UIIm0cSiYiIiChrbm5u+Oqrr+SkMDo6Gl9++SVUKhW++eYbhIVJTxDr27cvPv74Y2WxctqxEiVKwM3N8WrJyclWYwERERGRckruLDbXp4KvfPny8Mrw2Ns5c+YgKSkJTZs2RdeuXeX5RqMRN27cUBTL4Qyvbt262Lt3b67Gx9m1axfat2+f43pERERkn9E0KalPBV/JkiVx6NAhNGrUCAcOHMC8efOgUqkQHh5uUW7VqlUW4zXmhsOJYZcuXXI9aGLbtm1RunTpXNUlIiIiepLNmDED7du3R7Vq1XDs2DHo9XoMGTIELVu2lMv88MMPePPNNxXHcjgxVPqYlc2bNyuqT0RERJaEkCYl9anga9OmDXbt2oUFCxagVKlSaNOmDUaNGiUvHzlyJG7evInWrVsrjuVwYhgcHKwokPlB1kREROQcvCv5yVG/fn0sXrzY5jLzEDbOkKObT8g2X28vi/epKSmmV9Kd2H4ZlienSOf+vb08Lep4eXpmqpuBynK4ydRkaegfT+/sT+1n7ltOZL6R3COgmFUZw9X/AACakHo5bl8THJarftmijzwvv3YrU91p7ZpparSwu8xwbq9FGa2b5fflXjLk0RvT6zux0neo1UgfcpCft0WdBN2jK3+KpUdL7RSXniaUlixtI7qHkQAAofUDAKjSEh7F9JC2DeEmPcQ+8/b2MCFZ6rPaerSAAB8vi3/N22y66S+IeT4AJJr6kt125m4jTk6YfxfmbT7dFFdlNEj/6pJN7x+NtWr+fLRBZQAAaYlxUhm9tD7622cBAG5la9qNa66j9Q2wW0ZlSAcAqDXSZ51iur5HYzTNN/1+zW0BgCY5RnpRRHqkVcbP1KLtlEd1zOvmESg9qUEXc1fqm6kNw82Tclmjp9Rfo9bXIl6aWtrlmz8TmD4jaT2k9oWXVNdT6KT5uiRTfGmb9ChWzqqf8u/PzzScmWl/pk6MApDpN2Cuc+ei1CeN9DgyT/N+TvpKITLs98yfsZnW18/ivXkfm5Lh2irzPtW8jbqZr6ZTaSyWZyRvZ16W30fm309GSvaxRLkRFRWFW7duoW7duvL7gIAAq0f75ZbDA1wTERFRwfK4npVM+e/06dNo06YNSpYsiQ4dOsjz79+/j169emHcuHFIT0/PogXHMDEkIiJyUUYnTFTwnTlzBs888wz++usvq4S+Vq1a2LhxI86dO4fmzZsjISEhi5ayx8SQiIiIqACbOHEiUlJSMHLkSCxcuBB+fpaXU6jVaowbNw7//vsvpk6dqigWE0MiIiIXJfDozuRcTY97Bcghu3fvxtq1a/G///0PQ4cOhVartSpTsWJFAMD69esVxXJKYiiEwJEjR/DTTz/J8y5cuIA7d+44o3kiIiKywSiE4okKvqCgILz88stZljl37hwA6XF5SihODHft2oWqVauiUaNGGDJkiDzfz88PkydPRq9evfDw4UOlYYiIiCgT4YSJCr6yZcsiPj7e7nKj0YiZM2cCAKpUqaIolqLEcP/+/Xj++edx5coVqzubSpcujSVLlsDHxwf169fHvXv3FHWUiIiI6En0xhtvoH///khKSrJaFhcXh759+yIiIgIqlQpvvPGGoliKEsMpU6bAx8cHn3zyCX755RcEBFiP9TVq1Chcv34dEydOVBKKiIiIMjEPcK1kooLvtddeQ7FixVClShW8/vrriIqKwoQJE9CtWzcEBwdjw4YNAICXX34Zb7/9tqJYiga4PnToEH777Tc0a9YMAGwOrliihDQY688//6wkFBEREWWm8JF4PJfsOpYsWYKlS5fis88+Q1RUFObMmSMvCw4OxrvvvovRo0dDlfnpFDmkKDEsU6aMnBTa899/0pMxEhMTlYQiIiIiemIZDAYMHDgQAwcOxP3793Hjxg3o9XqULl0aFSpUcFocRaeSg4ODs7zzODU1FR9++CFUKhVCQ0OVhCIiIqJMjBCKJyr4Ro8eDa1Wi08//RSAdDa2QYMGaNKkiVOTQkBhYvjuu++ie/fuuH37ttWyixcvon379jh27BgA6VpDIiIich5FYxgqPQ1N+WbZsmUQQigeisYRihLD559/Hh07dkS1atXQqlUr3LlzB3369EH9+vVRs2ZN/P333wCAt99+G6+++qpTOkxERET0JOnWrRv8/f3x4YcfZlt22rRpimIpHsdwypQp2LZtG/z8/KDX67Fu3TocPXoUGo0GLVq0wObNm/Hll18qDUNERESZ8K7kJ8OiRYvQs2dPLF++PMty169fR3h4uKJYim4+MWvTpg3atGkDo9GIhw8fQq/Xo2jRojbvUiYiIiLnUHo6mKeSXcPw4cMhhMDXX3+NFStWoGbNmlZlkpOTsXv3buj1ekWxnJIYmqnVahQrVszmsuXLl+P11193ZjgiIiKiQi8yMhI7d+6UHybyzz//2C37WIercVRycjJGjRrl8omht5cnklNSLd7b4unlZfE+JfVRHUOm/54ZMh3HVxkdyPRVtq8AyBjHy9N233LC3EZqsjTSeqpR2ti8jI/iaEPqAQAMV6VhiTSm92bp96/Jr91LVAQA6G+dBgAYvYsAADyCykht3DwptREcluO+Gr2sB1fPCcO5vVLsGi1yXNdc52FCMgDAy93+FRpxSyZLdbpPAAAE+XlbLNdHngcAFClSXp7nHii9TkxOAQB4CGkb0XlKn5+7XpqvMjzadjx8pc8j/cENqawhXZofIP3HTWfa7rzUj3Yg+kzbYoIpnp+3l0X8jHy9vazmAZB/J+bfiL3fiq2yurgoi74C1r8pM6NKIy0vVk6qG3tfXqaJM42YYNq+1ClxAAD34qbPtkgpu30yb/u6mFgAQFqC9Nlo/QKtyqr0Uv81blIdtemzVumk343K/HvN+LtVS7te46WDAACh9QEAGLyk79S8H9CY+gwAQmO5u9bERgIA9EnSxehuGX43GtO/5t+aW7naUrvXj0txbku/NY8M23v63ctSmdQEqU7sLamsX0mpzQTp6VW6s3/LdTxa9JZe3LsqlRFG6b3pc3IvGYLMzNukJsH0XZnW1fwbFubP0dwWLLeFjMz7JnWq9Dl5mb7rjNxMm7inl4/NNjIyb2eZt8mCTOmdxbwr2TWMHTsWO3fuxIQJE1CpUiW4uVmnb0ajEbt378aqVasUxXIoMRw8eLDVI+8clZ6ejkOHDnEcQyIiIifjqeQnQ9u2bdG+fXv5ecj2DBw4ENu3b1cUy6HE8PLly9i7d2+uk0NA+aFNIiIismQUAkYFf5uV1KX88/PPP+P777/Pttzq1atx4sQJRbEcSgxHjhyJs2fPYsyYMShWrJjNQ5j2pKenY8+ePVi9enWuO0lERET0pHrvvfdw4cKFbMs1aNAAmzdvxltvvZXrWA5leN26dcMff/yBcePG5SrIkCFD8Mcff+SqLhEREdlmMEqTkvpUeJQsWRILFy7M+8RQo9HIj2HJrVu3bimqT0RERJZ4Krlw2rt3L2bOnAmdTgcAuH37Np599tks66SmpuLs2bOKhwp0+JxwQICyuz63b9+OF198UVEbRERERIVdixYtsGTJEgwZMgS//fYbVCoVdu/enW09d3d3LFy4UFHsfBmuJiUlBf3790dsbGx+hCMiInoiGIWwGgYtp/WpYCpbtiy2b9+OoUOH4rfffstyGBqVSgUvLy9Uq1ZN8YE8hxLDGTNmYP369Rg3bhz69esnz3dkGJv09HQcPnwYCQkJijrqDNu2bcOLL76IpUuXYsCAAY+7O0RERIpIj7VTkhg6sTPkdGq1GosWLULv3r3RqlWrfInpUGL4+eefIzY2Ft98841FYpiTYWwe93A10dHReOONNx5rH4iIiIhyQqPRYPHixYiPj5fn+fv7AwCioqIwceJE7N+/H+XKlcPkyZPxzDPPKIrnUGK4du1aDB8+HC+//LLF/OHDh+PkyZMYM2YMSpYsafOCR51Oh4iICKxbt05RR5UaPnw4B9kmIqJChXclPxmCgoIAAFWrVsWAAQMwfvx4pKSkoHXr1jh79iyEELh79y6ee+45HDx4EE899VSuYzmUGMbHx+PatWv45JNP8P7778vzu3Xrht9++w2TJk3Ksv4bb7yBP//8M9edVGr16tW4d+8eunbtipUrVz62fhARETkT70p+MgghMGTIECxYsAAajfTQy1mzZuHMmTMoWbIkdu7cibCwMPzwww+YOHGioqef2H+oawazZ8+GRqPB9OnTLea7u7tj9uzZDgU6ffp0znvnBLdv38bEiROxfPlyqNUOrS4RERFRgeHm5oavvvpKTgqjo6Px5ZdfQqVS4ZtvvkFYmPSs9L59++LKlSuKYjmUKZ07dw4//vgjRowYYTHffArZEUeOHMl575xg8ODBmDp1KkJCrB/mTkRE5MoMpruSlUxU8JUvXx5eXl7y+zlz5iApKQlNmjRB165d5flGoxE3btxQFMuhxDA0NBSdO3e2mr9t2zaHA40cOdLxXjnJggUL4OnpiUGDBuWoXlpaGuLj4y0mIiKigsYI853JuZwe9wqQQ0qWLIlDhw4BAA4cOIB58+ZBpVIhPDzcotyqVauQmpqqKJZDiWHr1q2xf//+XAc5f/684gw2py5fvoxPP/0U3377bY7rhoeHIyAgQJ6Cg4PzoIdERETKGIxC8UQF34wZM9C+fXs0atQIrVq1gk6nw+DBg9GyZUu5zA8//IA333xTcSyHbj4ZN24cGjduDLVajaJFi8LDwwMqlcqhR7QkJCTg9OnTMBgMijvrKKPRiNdeew1ffPEFSpQokeP6EyZMwJgxY+T38fHxTA6JiIjosWjTpg127dqFBQsWoFSpUmjTpg1GjRolLx85ciRu3ryJ1q1bK47lUGJYpEgR/PXXX3j33XexdetW+dl9ABx6RAuQv+MYfvLJJ6hRowa6dOmSq/parRZardbmMm8vT4fbSU6RDuem6B8drC/q521Rxtfby+I9jNYJtNbHz+K9p5dlndSUFACwuP4gNTlJKuvt43B/MzO3qxJS/wN9zf14tA7pD6Qjwe4h9Rxu161cbZvzVSnWp+xTf5WO+LqFNs+yrkeRUvLra+NeBwBUnLM8y36k370sv3av0cLmMnWaNMSRpoL9W//1R6S7v4LqPw8A0D2MBACk/LFFartsZblswOAZUvv3r5nmWH4/bmWqAwDuPnw0tFKZm/sAAFp/aR3jfUoDAIr6mb9v879B1p0zpEvrkXAPAJDqLpXVmH6PAT5eVlUSk6Xv3S/Ttmm1rWYh8+8kNjFZfu2pkWKbt+PMZT0Cikl9NW3DAGBUSRdca/TSb8rPL9CijPnzVKen2O2T0Ut6GkDaH0sBAIa4aCl+t7FyGV1clPTCIO3jVHrpX/P2pYu9b2pML9dRJ8dIs7RS+96m36vhgbQNaSrWld5f/e9RZ5KkOrpIqd/u5asBANx0Uv/VlRvZX48r/wIARMw9Uwekzybm50cjLmg8PQAA/gOlGwaTN82V1sddmi9SpM9Nq3+0L1f7FjW9kh5GoL8j9U2dECv9+3RHqa0/f5LriHSpvvbZ16zXEYD+9lmr/qsTpM9YbfrN2Ttt9eg3AgDFLJbpYu5K6+Mh/X5U6Wl2Wnm0naUlxkl99bV8KoR5PwcARkjb5mMedjdHhMK7kh0Zh5gKhvr162Px4sU2l33zzTdOi+PwI/FKly6NtWvXIikpCVeuXMHDhw/Rr18/rF692m4dIQQSExOxadMmrFixwikdzs6JEyewbNkyHD58OF/iERERPS4GIU1K6hNllONnJfv4+Mi3RXt5eTn0iJaOHTtiy5YtOe9dLnz11Vc4f/68PCq4LQMHDsTAgQPx+uuvY9myZfnSLyIiIqKCLseJYUbTpk1zLIibG3744QcloRxWokQJVK9e3eayO3fuID4+HqVKlUJAQABKly6dL30iIiLKCxzgmpxNUWKY8bnJ2bE13E1eCA8Pt7p922zAgAFYvnw5wsPDMWDAgHzpDxERUV5Remcx70qmzBQlhmZCCGzduhXbt2/HjRs34O/vj7CwMPTs2RM1a9Z0RggiIiIiymOKE8Nr166he/fuOHr0KIBHdzht3rwZ06dPR79+/fDVV1+hSJEiSkMRERFRBjyVTM6mKDGMiYlBq1atcPPmTWi1WjRr1gw1a9ZEkSJFoNfrcfPmTfzxxx/o3LkzIiIi4Onp+FAvRERElDXelUzOpigx/Pjjj3H37l18+OGHePfddxEQEGBVJi0tDYMGDcK8efPwwQcfKAmn2LJly3gXMhEREZEdDj0Sz54ff/wRy5Ytw7Rp02wmhYA0WPS3336LdevWKQlFREREmZhPJSuZiDJSdMQwLS0Nffr0ybacj48P4uLilIQiIiKiTIxGAaOCO4uV1KXCSVFiWKxYMRiNRqjVWR94jIiIQEJCgpJQRERElIlR4TWGzAspM0Wnklu0aIG5c+faXS6EwPr169GjRw+nPNiZiIiIiPKOoiOG48aNQ/369fHrr7+ia9euqFixIlQqFW7fvo3z589j/fr1uHPnDrRaLaZOneqsPhMRERE4XA05n6LEsFy5ctixYwd69+6N0aNHQ6VSWSwXQiAwMBBr165FrVq1FHWUiIiILBmEgEFBcqekLhVOik4lA0D9+vVx8uRJ/O9//0OzZs0QGBgIDw8P1KxZE+PGjcO5c+fQvn17Z/SViIiIiPKQosQwJSUFERERUKvVGDlyJPbu3Yvo6GikpKTg1KlTCA8PR4kSJZzVVyIiIsrAfFeykik/CSGwaNEihIWFoXLlymjYsCG2bt2aq7bi4+Mxbtw4VKlSBZUqVULnzp1x6tSpLOv8+eefaNWqFUJCQlCjRg3MmTMHBoPBqTFSU1NRqlQpqFQqi8nb2xvR0dG5Wtf8pOhUcseOHfH3339j8ODB+Pbbb53VpwItMTlFfu3r7WWzTHJKKgDA20t60osuMdmqTGpyEgBApU8DAGj9g6T3Rr3d2OY6nt4+AICUVCmOl5d1P8xlMvfFEbq4KACA0PpKM9RuFvM9AorJZYXGchPS3z4rzfeQ4qt0SY+WRZ4HALiVqQ4AMF7YJzVfrblUR59uUQ4APDsOBQCkxT+Uyl46aOqb1L7+/L9SHC8fuY67t7SuiaunAwB8+30IADBcPw4A0FR4SipXqrLVuhtN7btXaWK1DADS/lwhv9YUkf7T41b/eQBA+uGfpAVVGgEAPGo3lcqF1LNqR6ht//RSdywAAJTrPOLRzCDp88HlQwCAopn6bf5s3KOuyPMM3tIjKI0+RaU+xN8BAKjTpe1XL6RtJiHD9uxn2p4d3a6zkpoitetp2jYzXmbiaWN7tUWd9mgkA88ipQAAuth4ABm2B53023IvUREAYLh27FEDGg0AIP3eVakPnn4AAI92Ay3i6O9cfPTGVAZGo1TH9Ps08wiUvnNdzN1HM6NvS1VN36kxMkaar5M+r+RN0g163t3GylVStn0NAPB64U2pj6ZtJ+7AXwAAn0qHAQDaanXlOnfXrwIAlHy5u1Tn5gWpjZfflequXSOXrThnOQDAcGoXAMC9XBXp38YvAwDODnwJAFCl4qNn2avV0udliJbWLeWC9MfPp660HSevCwcAJN5+INcJHDoLGakMOgBA6s4lAAC32s2ktpMeymXS794AAGhqSO8NZ3ZLL7z8LdoSAaXk17rY+xbLPIqUsngPH+l7M+8jgUf7QDOtrzTWblqStF1pTXVsbY/mbd28vzf/JjK/LwgMUPjkE6f1JHtCCPTv3x8RERH49ddfERYWhr1796JDhw6YMWMGxowZ43BbDx8+RKtWrRAUFIRDhw4hKCgIn3/+ORo3bozffvsNzzzzjFWdhQsXYtSoUVi1ahV69uyJO3fuoHXr1vjnn3+wYcMGaEz7DCUxAOD777/HvXv3rOYPGDAARYsWdXgdHxdFieHp06cBSKeTiYiIiOz56quvsHr1aqxbtw5hYWEApNFN3nnnHbz//vto1qwZmjSx/Z/yzAYNGoQLFy7g8uXLCAqSDqyMGTMGGzduRM+ePXHmzBkEBgbK5Y8cOYK33noLQ4cORc+ePQEApUuXxvz589GhQwd89tlnVk9ny2kMANDr9fj888+xe/dulCxZ0mJZ2bJlHf6sHidFp5I//PBD+Pv7Y+jQodmWbdeunZJQRERElImrPPkkISEB06dPR0BAALp27WqxrH///jAajXjnnXccamvfvn348ccf0a5dO5QrV86qrTt37mD27NkW88eNGweDwYCBAy3PGLRv3x4lS5bEtGnTEBMToygGAKxZswYNGjRAq1atUKNGDYvJz8/PofV73BQlhqNGjcI333yDt99+O8vz5jt27EBERISSUERERJSJ+a5kJVN+2LFjB2JiYtCwYUO4u7tbLKtRowYCAwPxzz//4OTJk9m2tWqVdFlFs2bNrJaZjzguXbpUvnbw7t27+PPPP+Hp6Yl69awv7WncuDFSUlLkdnMTA5BOlc+ZMwfe3t7YtWsX0tPTs12XgkhRYlizZk1MmjQJGzZsQEhICCpVqmQ1lSpVCi+++KKz+ktEREQuZvv27QCASpUqWS1TqVSoXbs2ADh0EGnHjh122woNDQUA3L9/X77cbceOHRBCoHz58lbXEQKQT2tnjJ3TGADw448/4vTp01i6dCnatWuHMmXKYPr06UhJSbFqoyBTlBg+88wzuHbtGh48eIDExERcu3bNarp//z4Ex0kiIiJyOqNRwKBgyq+7ko8ePQoAVqdlzczX6h07dizLdqKjo3Hjxg27bbm7u8PHx8eirZzGzk0MQDr9XKdOHQQESDc6RUVFYerUqWjcuLHcnitQlBi+99578PLywm+//YaLFy/i6tWrVtPly5fx3XffOau/REREZKIkKTRPgDQsS8YpLS0tm8g58+CBdDd75ps1zDImU460k5O2cho7NzEA4NNPP8Xx48cRHR2N/fv347nnngMAnDx5Eh07dkRSUpLNtgoaRYlhjRo18Oqrr+K5555D5cqVUaFCBaspJCQEgwcPRsOGDZ3VZyIiIoLzEsPg4GAEBATIU3h4uM1448ePtxqfL7tpwIAB8n0I3t7eNttVq6V0JNU0DJs9Ge9ncLStnMbOTYyMNBoNmjZtip07d+Kzzz4DAJw9exZffPGFnbUqWBQ/+WTRokUOlTt48KDSUERERJQHbt68ibi4OHmaMGGCzXKzZ8+GECJH07Jly+Dh4QEAdi8t0+mkMTDNw8LYY24nJ23lNHZuYtgzZswY+W7rtWvXZlm2oMhxYvjNN98gNDQUPj4+qFKlCqZNm+b0Q85ERESUPYNR6VFDqR1/f3+LSavVOrWfpUpJg5LbO50aGxsLAChWrJjN5ZnbyUlbOY2dmxhZ+fDDD+Hn54fLly9nW7YgyFFiOGzYMLz99ts4e/YsUlJScOXKFXz88cd4/vnnYTQ9KYCIiIjyh7NOJee1OnXqAAAiIyNtLjc/KaRu3bpZthMcHIwiRYrYbSs2NlY+mmduK6excxMjK0WKFEG9evXg6+ubbdmCwOHE8I8//sB3330HIQQ8PDxQv359+TbuiIgILF26NM86SURERK6rQ4cOAGAxvIuZEAJXrkiP9OzYsWO2bbVv395uW5cuXQIAVKlSBVWqVLGIffbsWZunhs11OnXqlOsY2SldurTDT3V53BxODJctWwYA6N27N27fvo3Dhw/j0qVL2LNnD0qWLIn169fnVR+JiIjIBlc5Yti7d2/4+/vjwIED0Ov1FstOnTqFhIQEtGzZ0u6QMhmZn7a2Z88eq2UHDhwAAPTt21eeV6NGDbRo0QIJCQny0DVmRqMRhw4dgp+fH55//vlcx8jOqVOnMGrUKIfLP04OJ4aHDh1C9erVsXLlSouLLZs3b44FCxbgwoULedJBIiIiss1VxjEMDAzExIkT8fDhQ2zbts1i2fLly6FSqTBr1iyL+SdPnkTz5s2tboR59tln0bFjR+zcuVM+DWy2YsUKlCxZEu+++67F/NmzZ0OtVmPFihUW83fs2IEHDx5gwoQJFkPT5CbGw4cPbR6R3LJlC5o2bSoPX1PQOZwYPnjwAK+88orNUcM7d+6cbX2eaiYiInpyjR07Fp07d8bYsWPlAZ83bdqE+fPn44svvkDz5s0tyi9atAj79+/H7NmzrR67u2TJEpQpUwbDhg1DcnIy9Ho9PvjgA5w/fx4bN260Gn+wWbNmmDlzJhYuXIhdu3YBkE4TjxgxAt27d8e4ceOs+puTGJs3b0bRokXRpEkTHDp0CABgMBiwcuVKHD58GN98843Sjy/fuDlaMCEhASVKlLC5zN3dHcHBwVnWnzhxotXDq4mIiCj3DELZ6eD8elYyII3vt3XrVoSHh6Nt27YwGo0ICQnB77//jpYtW1qV79atG9asWYNnnnnGaliYMmXKYP/+/ZgwYQJq164NNzc3NGnSBMePH0dISIjN+OPHj0fFihUxduxYxMfHIyAgAB999BEGDBggj0uY2xjPPvss+vbti507d6JFixZ46qmn0KxZM/Tt2xf9+/dX8KnlP4cTQ6PRiMjISJt3H8fExCA4OFgesyijxMRErF69Gvfv31feWyIiIpIpvU4wv64xNHN3d8eHH36IDz/8MNuybdq0sTpSmFGpUqVyfDayd+/e6N27t8PlHY0RGBiI1atX56gvBZXDiSEAzJ07F3PnzrW73FUGb8ytlNRUlCzhn205NSx/aIG+1iOnqwzpAACtv+X/goSb/bGjVMIyKdcZpDhepvfJKY9GYNcY002dcQcAJCZLD/H29faCPanJ0nhNKpXl/5xUemmcSoNWutU+Lf6hvEytk9o1XDsmlTVdamD0kNbZvXh5u/GMCbHSevz6rVS2RiMAgFuZ6nIZw7m9Upwi0gXJqUelC4E9KkkPXL+yegsAoMILj/636VuuuNTPmASp7IFN0r9NuwEAro6V/vdWpNqjo9x+zdpKdc5LFyZ7V5HuHkv7U7oeRfvsaxb/WqzHlX8BAMknpNMH2ge3AQCq+tLddalrZshlPcOaAgA0vkWldT+/HwCgj7wmLa//rBQ3MU6uo/WVHr0kUhKsYmekrtRAfi1M34fB3zQel/k7NUoXfZcuIj3nMyHZ+uHuaUmWcbQ+flnGtUWf6W+Nu1plt6y9bVNoPKzKegRanrXQxVn+JjQV68qv5W1HL/0WxN2L0oKnpLsNDaek00luoW2t4ujipMdcuRWTtjvjJWmAfoNfSakfJR8dLTDcNt21aPotQC3tVtPOStuFPj7eqn2vF960eO/e8CUAQPJmaXv2KW+Km+G70CUkAwDSb0ljoZ1c+DMAoNHL0nVOibcePZrrTrjUflBDaZtIu3kVAPD3cOlpFm2O/iO19c9WuU7MH1J7qdFSf4VpgDufutJy717SdV5x4Y/6bq5//9dfAADFn20DAEg4fUqKX76atB5pj7Yz9/LVLeqqPDwBAGrTv8Y4KRFQe2bY7kz7PqOHtN3qom5Js037JE2c6TcX+OjGhTTT/kXrFyi9N3+WmfajGfeb3l6eFv9mltX+k6iwyFFiaG8EcEeoVPb/MBAREVHOudoRQyr4cpQYDh06FF26dLH77EBbEhMTsWHDBqxcuTLHnSMiIiL79EYBjYLkTs/EkDJxODEMCAjAwoULcxWkU6dO2LJlS67qEhERkW08YkjO5vBwNSNHjsx9ELUab731Vq7rExEREVHec/iI4cyZMxUFUlqfiIiILBkVHjHMrwGuyXXk6BpDIiIiKjgMQigaizA/xzEk1+DwqWQiIiIiKtx4xJCIiMhF8eYTcjYmhkRERC6KiSE5G08lExEREREAHjEkIiJyWTxiSM7GxJCIiMhFGYQRBqMx+4JZ1CfKiKeSiYiIiAgAjxgSERG5LA5wTc7GxJCIiMhFGYwCal5jSE7ExDAHvDw9HSrn6eUFAEhOSQUAeHs9qpeakgIAUBt0Fu+NUEnz1fa/Eq2PHwDgYUIyACDIzxsAkJIqxdGkJz8q6x+UZR/NfdMZHl1fEujrI82Lk/qkN+0w/PwCM63go/VJT4kDAAitVFeoTFcnGPVSG0e2y2WFPl3qZ5Hi0owy1aTm6j8PAEjbvRoAYLhzWa6jcnMHALjXaCG1Uaq8VCYuWprvI/VFU7T0oz7FxgIArv12DAAQWisMABA5YwQAIGTuSgBAyk/z5Dpppw8BANzKS33a27Q5AKDeqE7S/OvHpfix9+Q6sX/9BgAoNuozaT2unAQA3NgkrXOwWgMAeHDsolynYp/JFn3xKV0UABAweIa0Xlf/AwBofQOQmf7uDemFn9QXfZFgAIA6OUaqe+vEo8Km2J7e0vdivBNn0Vaam/S5qTTaR/MSTd+lxkNaZtpG5SZh/Qck8zaekCxtO37eXhblMv4G7DH/FlTp0r+2tmFdzF2pTFqS9K9pvvHBJVMnH/1+NKZtxnjpoPRvycoAAMO1Y9Ly0LZW7affvyYte3hTmhEgtaGu0kT611ROf+t0hkrSdi0eSN+P2sv0W9BJn016Uor1euxda+qv1OK9X6RtKfF2FACgmMEAAEg5eVCuk3grytTHSABAo1//BACcG/IyACB09aPfmtmd8DcBAIE1qwAA2hz9x2L5lSUr5NfGdOk3W3PpTwCAuCXStgrTb/Doy+0BAFr/R9tMUON4AMCRhfsAAB1atQQAPDx7HQBQ/F3p80s//NOjdT93GADgXrEmAEBTq7UU3/Q9pZyWlvsUKSnXUVdqINV9KK27yiD11cO0bzLESt+XyPD9q03bkS5O+ty0AcWk9k37S7OM26Z5mXlfn5osbWfm35F5uc7w6LfgrlZZtZOf9EZApSC50/MSQ8qE1xgSEREREQAeMSQiInJZPJVMzsbEkIiIyEUxMSRn46lkIiIiIgLAI4ZEREQui0cMydmYGBIREbkojmNIzsZTyUREREQEoJAnhkIILFq0CE899RQ8PT0RFBSELl264N9//33cXSMiIlLMYDpiqGQiyqhQJ4bDhg3D8OHDceLECej1esTExOCnn35Cs2bNsHnz5sfdPSIiIkWEEBBGBZNgYkiWCm1i+Msvv2DLli1Yvnw54uPjkZqaiq1bt6J48eJIT0/HwIEDERUV9bi7SURERFRgFNrEcNmyZfj999/x2muvwc/PD25ubujSpQvWrFkDAIiPj8dPP/2UTStEREQFl9EoFE9EGRXaxLBFixaoW7eu1fy2bdvi6aefBgA8ePAgn3tFRETkPEIIxRNRRoU2MXzrrbfsLqtatSoAoEKFCvnVHSIiIqdTdH2haSLKqNAmhlmJioqCVqtFx44dH3dXiIiIiAqMJ26A6+TkZBw4cABDhgxBYGCgzTJpaWlIS0uT38fHx+dT74iIiByn9DpBXmNImT1xRwwXL14MPz8/TJ8+3W6Z8PBwBAQEyFNwcHA+9pCIiMgxwqh8IsroiTpiGB0djZkzZ2L58uUICgqyW27ChAkYM2aM/D4+Pj5HyWFqSgoA21m3p5eXVMb8azT9q1JrpPdGo0UbACBUKos2PDTS+7SkBGmGxh2mRqzipaSmAgC8PD0t3nt7Se+NyY/iyO2Z2nFTm+IkxAIAtH6BAABd7H25jsrUN5Veald4+Ep1H1yW2i9ZUS6rTnwo/VutuTTjijTQeOrOJQCApAvnAACB7V561KeTBwAA7g2leW5lKkl9OH8EAFCsThUAQNRfex6t84MYAEDpxtKy2z//CgAo1ayu9P6jYRblAEDtLv0UKvWaAAC4eWkKAKDazXsAAMOfmwAAHiVLy3Wu/XoMAOBddq7Ux3JSPLWH1NbByUsBALX7NZHrpP+zFQBw/c8zAACvItL3UHewtFwTUk9av33r5ToezXtKfYiLlv49uAMAoG3SGQAgHt6RCrq7y3WMSdJRbuODG1K7hnSpb6nSdyw0HgAAN/9Sch2VXjpKrvUNAACkJTw6ag4AetOBBfM2BDzajsz8vKXtOzohGQBQ1M8b2fE11TFLMW1TqclJj2aatkmNLsViPaCRfjfqKtJnnPrrt3IVd1NZlbtWKpOWKC0w/eZ0DyMt2wIAtfTd6e/eMNU9BAAwxkvbrtvTpstPHtx8VKdkiBSvTHWL9YhevUpq0sN6N+vRojcAIHG19B/Uks9L32Vw024AgJgF4wEARUbMluuEvmbZxrFuHQAAFTvUBwCkbP1CXnb37/+kOKbP3+vldwEA/zzXBgCw9I+rAICJ49vIdYJCpfW4PFrqW3D3lwEAcXt/N62H9FkHVC4j19HdugIAOBwjfdYvte4HAKhu+vdO+JsAgBJde8t10m9ckF54+QMADKd2AQCMKdL3nXxX2s69tD5yHXH9uNQHN9N2W7amxWdh3p4z8ggoBuDR/ivz/tK8fRlVGrmOxij9TlJMm7gwLUsw7SfN27flFmspNjEZ8YnJWZQgKtieqMTwjTfewPvvv5/ttYVarRZarTafekVERJQ7Su8s5l3JlNkTkxjOmjUL5cuXx9ixYx93V4iIiJyC1xiSsz0RieGqVatw/vx5LFu27HF3hYiIiKjAKvSJ4ebNm7F161asXbtWvh7OzGAwIDIykjeXEBGRS1I6FiHHMaTMCvVdyVu3bsXy5cuxevVquLlZ5sB3797FgAEDcOXKlcfUOyIiIoWUDm7NxJAyKbRHDFevXo0BAwbA19cXZcuWtVim0+mQkJCA4OBgrFix4jH1kIiIiKhgKZSJ4fbt29G/f38IIRAbG2u3XJ8+faxOLxMREbkKoxBQKbiz2Mi7kimTQpkYPv/88zAaOWonEREVbkIovMaQiSFlUigTQyIioicBbz4hZyvUN58QERERkeN4xJCIiMhFGY2AStEA107sDBUKTAyJiIhcFB+JR87GU8lEREREBIBHDImIiFyWMEqTkvpEGTExJCIiclFGo1B4jSFPJZMlnkomIiIiIgA8YqhIQnIKAMDP28tivqeXl8VyT5t1fByOk5ySCgDw9vK0uTwtIRYAoNKnWi3z8rRdx8wtw4NfDCp3AIDGdG7BYPqfpJdfoEUdlS5Zfu1eoqLFMhF5HgCgrtZc+tdGzNRfv5Xqlq8m1UlNAgAUfetTAED6P1vlsonXbwMAUv73PgAgoGlrAIA+5oFU1yD11bOov1zn1t8XAABFalQAADw8e8My3qmLUpvRiXKdsDU7AAB3wt8EANRsXg4AUPKD+RZ93/dMC/l1sVrFAQCXN/4p1fm0EwDgxLqTAICud08DAKLmvSfXSb91SWr3KekxjfeOS+sXOWMEAKDM5AUAAINp/QAg9tuJAABtGamOe8WaAADj/esAALVfEQCApsajvum2fgEA8PCRPhfh5W+qI30W8C0GAFClp8h11EnRAIBkrVTWO9P3bt5WPDNsU4mm7dnX9Bt4mCBtG0X9vOEocxvm9lWm7U+oNVZlhaef9K9RL/U5Jc5iudrn0XYgfIMAAJpytS3K6G+flZZ7SL9BVdzdR/VNn4d7635SWdP27Fa5EQDAeOVfqY720Wdg1HhIZY/+Kr1PjgcAlA9fCgDQ7V0LAEhaM0Ou49NnshTPQ2rHo2k3AMCNCQMt6iasmCbX8XtNen1uyMsAgLqbfrNYL92BTY9ex+8FAHiXCLRoN7hVDQDAwt8jkFn80g8BAJW/kvp7bdzrUt9M3+VT63+xqpO8LhwA8HHqZWndTZ+PulIDAEDpCV8DANJ2r5bruJUJAfBo2zN/z+4NXwIABJluk3UrW1Ouk37/GgDA4Cv95sx/uNLiH0ptmbYLlSFdrpOWlAAA0Jq249RkaT+T9T7Rcpm9fXxWAn29oTZtn/mB4xiSszExJCIiclFMDMnZeCqZiIiIiADwiCEREZHLMgoBlYKxCI0cx5AyYWJIRETkongqmZyNiSEREZGLEkJhYsgjhpQJrzEkIiIiIgA8YkhEROSyhFEoGqSap5IpMx4xJCIiclFCCMVTfvd30aJFCAsLQ+XKldGwYUNs3bo1V23Fx8dj3LhxqFKlCipVqoTOnTvj1KlTWdb5888/0apVK4SEhKBGjRqYM2cODAZDlnUMBgNWr16N0NBQ7N69O9t+5SZGQcLEkIiIiPKcEAL9+/fH9OnT8cMPP+Dy5cv4/PPP0bdvX3z++ec5auvhw4do3rw5Dh48iEOHDuHKlSto164dGjdujL///ttmnYULF6Jjx4548803cfXqVUREROD7779Hjx49bCZuer0e3333HcLCwvDqq6/i9OnT2fYrpzEKIiaGRERELsp8V7KSKb989dVXWL16Nb744guEhYUBAFq0aIF33nkH77//Pg4ePOhwW4MGDcKFCxewevVqBAVJTzkaM2YMnnrqKfTs2ROxsbEW5Y8cOYK33noLQ4YMQc+ePQEApUuXxvz587FlyxZ89tlnNuN06NAB+/btQ2BgYLZ9ym2MgoaJIRERkYsymq4xVDLlh4SEBEyfPh0BAQHo2rWrxbL+/fvDaDTinXfecaitffv24ccff0S7du1Qrlw5q7bu3LmD2bNnW8wfN24cDAYDBg4caDG/ffv2KFmyJKZNm4aYmBiLZW5ubihfvjyKFCmCatWqZduv3MQoiJgYEhERUZ7asWMHYmJi0LBhQ7i7u1ssq1GjBgIDA/HPP//g5MmT2ba1atUqAECzZs2sljVp0gQAsHTpUvnU7d27d/Hnn3/C09MT9erVs6rTuHFjpKSkyO3a4pnlM7adE6OgYGJIRETkooTRoHjKD9u3bwcAVKpUyWqZSqVC7dq1AQARERHZtrVjxw67bYWGhgIA7t+/L18TuGPHDgghUL58eWg0Gqs65tPaWcVWqVTZ9klpjIKCiSEREZGLcpXE8OjRowBgderXzHwN37Fjx7JsJzo6Gjdu3LDblru7O3x8fCzaclbsrORHjPzCcQyJiIiecPHx8RbvtVottFqt09p/8OABANi9iSMgIAAAEBUV5VA72bWVlJQkt+Ws2I70Ky9j5BceMSQiInJRwmhUeMTQCAAIDg5GQECAPIWHh9uMN378eKhUqhxNAwYMQHR0NADA29vbZrtqtZSOpKamZrm+5nZy0pazYjvSr7yMkV94xFABP2+vHC/Pro4t3l5ZX/Sq9Qt0uC2vTBfQenrZ6o9Uxt7/Fd1LVLTbvluZ6tn2wbPjUMs+1Wpt2X7jl+XXJTK8zsi3/vN22y/6Vtbvy5natHXAv/SEr6V/7bTd/O+9duOadb1rOdZVsVHWQxRU6mb6104bXi+8+eh1thFt1H/5XZvzNSHWF0XL/KUhH+ztFGxtK76ZtucgP9s7xaxkbiNL5u03oJjNxR4temfbhFvZmtK/cgfsfyaZt2d1pQZWZeSriUqGZNknDxvLvHt8YPG+fPhSi/d+r02zqlNj8VbbcZp2k19Xz/DaUf4Dp1u8rzhnebZ1vHtNsHhv6/MBAG3rfg73w93Gb968z3HPNF9r2mYd4ent43BZs9zsr/ObMBggFIyPZ6578+ZN+Pv7y/PtHS2cPXu21R2/jtiwYQP0er3dAbV1Oh0AyEPP2OPh8eiX5Ghb5jpKYzvSr7yMkV+YGBIREbkoIZRdJyiEVNff398iMXS2UqVK4cqVK0hKSrK53DzuYLFitv/Tl7EdM0fbMtdRGtuRfuVljPzCU8lERESUp+rUqQMAiIyMtLn83r17AIC6detm2U5wcDCKFClit63Y2Fj56Jy5LWfFzkp+xMgvTAyJiIhclKvcldyhQwcAsPlYOSEErly5AgDo2LFjtm21b9/ebluXLl0CAFSpUgVVqlSxiH327Fmbp3rNdTp16pRtbHvyI0Z+YWJIRETkolwlMezduzf8/f1x4MAB6PV6i2WnTp1CQkICWrZsaXe4l4yGDpWuU9+zZ4/VsgMHDgAA+vbtK8+rUaMGWrRogYSEBHlYGTOj0YhDhw7Bz88Pzz9v/9r17ORHjPzCxJCIiIjyVGBgICZOnIiHDx9i27ZtFsuWL18OlUqFWbNmWcw/efIkmjdvjgkTLG9yevbZZ9GxY0fs3LlTPkVrtmLFCpQsWRLvvmt5A97s2bOhVquxYsUKi/k7duzAgwcPMGHChCyfh2xOZg1Z3OijNEZBwcSQiIjIRbnKEUMAGDt2LDp37oyxY8fKg1Rv2rQJ8+fPxxdffIHmzZtblF+0aBH279+P2bNnWwxTAwBLlixBmTJlMGzYMCQnJ0Ov1+ODDz7A+fPnsXHjRqsErFmzZpg5cyYWLlyIXbt2AZBORY8YMQLdu3fHuHHj7PY7OjpaPhV88OBBu+WUxChIeFcyERGRizKPY6ikfn7RaDTYunUrwsPD0bZtWxiNRoSEhOD3339Hy5Ytrcp369YNa9aswTPPPGM1zEuZMmWwf/9+TJgwAbVr14abmxuaNGmC48ePIyTE9tBR48ePR8WKFTF27FjEx8cjICAAH330EQYMGCCPM5jZM888g3///RdpaWkAgMmTJ2PevHlYsmQJXnjhBafEKGhUwt6gOyQzf7lxcXF5ejs/ERG5vvz4m2GOUfzF2VC7Zz3WbVaM6al48PN4/n0jGY8YEhERuSij0QAoOGJozMdTyeQamBgSERG5KKXXCebnNYbkGlzjhDcRERER5TkeMSQiInJRPGJIzsbEkIiIyFUZDBBqBcldFuPy0ZOJiSEREZGLEkLZzSdCMDEkS7zGkIiIiIgA8IghERGRyxJGo7Ijhvk4wDW5BiaGRERELkooHMeQN59QZjyVTEREREQAeMSQiIjIZUmnknN/OpinkikzJoZEREQuiqeSydl4KpmIiIiIAPCIIRERkcviEUNyNiaGRERELspoNEDFxJCcqNCfStbpdJg9ezaqV6+OypUro1WrVtizZ8/j7hYRERFRgVOojximpaWhU6dOuHfvHn7//XeUL18eGzZsQLt27bB69Wr06NHjcXeRiIgo14TBCKgUHDE08K5kslSoE8Nx48YhIiIC//zzD8qXLw8A6NGjB7Zs2YIBAwagQYMGCAkJecy9JCIiyh0+K5mcrdCeSr527Rq+/vpr1KpVC40aNbJY1r9/fyQnJ2PChAmPqXdERETKCaNB8USUUaFNDNetWwe9Xo9mzZpZLWvcuDEAYMuWLYiOjs7vrhEREREVSIU2Mdy+fTsAoFKlSlbLgoKCULZsWeh0Ouzbty+/u0ZEROQUPGJIzlZoE8OjR48CAMqVK2dzeWBgIADg2LFj+dQjIiIi52JiSM5WKG8+SU1NRWJiIoBHCWBmAQEBAICoqCirZWlpaUhLS5Pfx8XFAQDi4+Od3FMiIipszH8rhBB5H8yQDkVRDOnO6gkVEoUyMcx43aC3t7fNMmq1dLA0NTXVall4eDg++ugjq/nBwcFO6iERERV2CQkJ8kEIZ/Pw8ECpUqVw98x6xW2VKlUKHh4eTugVFQaFMjHMuIHb+x+bTqcDIF1vmNmECRMwZswY+b3RaMTDhw9RtGhRqFQqJ/fW+eLj4xEcHIybN2/C39//cXdHMa5Pwcb1Kdi4PvlPCIGEhASUKVMmz2J4enri6tWr8t8yJTw8PODp6emEXlFhUCgTw6CgIHh4eECn0yEpKclmmdjYWABAsWLFrJZptVpotVqLefZOSRdk/v7+BXbHmRtcn4KN61OwcX3yV14dKczI09OTCR05XaG8+USj0aBWrVoAgMjISJtl7t27BwCoW7dufnWLiIiIqEArlIkhAHTo0AEAcPr0aatlUVFRiIuLg4+PD1q0aJHfXSMiIiIqkAptYjh48GCo1Wrs2bPHatmBAwcAAN26dbM6ZVwYaLVaTJ06tdCsG9enYOP6FGxcHyLKCZXIl/vpH48RI0Zg4cKFOHr0qMUp4+7du2PHjh04deqUzQGwiYiIiJ5EhToxTEpKQqtWreDm5oYdO3agSJEi+N///oexY8di9erV6N69++PuIhEREVGBUSjvSjbz8fFBREQEpkyZggYNGkCtViM0NBSHDx9GnTp1Hnf3iIiIiAqUQn3EkIiIiIgcV2hvPiEiIiKinGFi+BjodDrMnj0b1atXR+XKldGqVSubd08DwOXLl9GvXz8UL14cWq0WNWvWxMyZMy2e5ZxXsc3+++8/PP/88wgJCUGVKlUwbtw4pKSkKGrTzGAwoEmTJqhYsWKhWJ+LFy9iwoQJeOmllzB69Gh8//33LrU+ycnJmDJlCqpXr45y5cqhVKlSeP7557F///4crUdero/Z9u3b0axZMyxbtswp7bnC+rjC/iAn65NZQdwfED1xBOWr1NRU0aZNG1GrVi1x/fp1IYQQ69evF+7u7mL9+vUWZU+dOiWKFCkiAAg3NzcBQJ6eeeYZkZycnGexzX766Seh1WrFZ599JoQQIjY2VjRv3lw0bdpUJCYm5qrNjD7++GMBQFSoUCFH61LQ1ken04nx48eLEiVKiBUrVgiDweBy65OSkiIaNWokqlevLk6cOCGEECItLU2MGTNGaDQasXXr1se+PkIIsW7dOtGoUSP5t7B06VK7fXCkPVdZH1fYH+RkfWwpaPsDoicRE8N8Nnr0aAFA/PPPPxbz+/TpI7y9vcWVK1fkeY0aNRLdu3cXp0+fFkajUdy6dUv0799f3uFOmDAhz2ILIcSNGzeEn5+f6NSpk8X8c+fOCZVKJUaMGJHjNjM6evSoCAoKyvUfgoKyPklJSaJt27YiJCQky/Ut6Oszd+5cAUDs37/foqzBYBBVqlQRpUuXzlHCmxfrI4QQly9fFqmpqaJq1apZJh6Otucq6+MK+4OcrE9mBXF/QPQkYmKYj65evSrc3NxErVq1rJbt2LFDABC9evUSQghx7Ngx0bNnT2E0Gi3KGY1G0bJlSwFABAcH50lss8GDBwsANv+3bT4ikNM2zVJTU0VYWJj49ttvc/WHoKCsj16vFy+88ILw9/cXly5dytE6FLT16dy5swBg88hT9+7dBQBx7969x7Y+KpVKnDlzRp7Xs2fPLBOPnLZXkNfHFfYHOf1+MiqI+4OcbB9EhQmvMcxH69atg16vR7NmzayWNW7cGACwZcsWREdH49atW5gzZw5UKpVFOZVKhffeew8A8ODBgzyJDQDp6enYsGEDANis06RJEwDIUZsZTZkyBa1atcJzzz3n8DoUxPWZMmUKtm3bhjlz5qBy5cq5WpeCsj4+Pj4AgIMHD1qVT0hIQJkyZVC8ePHHtj5CCCxevFie5+npaTd+btoryOvjCvuDnKxPZgVxf5CT7YOoMGFimI+2b98OADafthIUFISyZctCp9Nh3759eP755+1egF21alUAQIUKFayWzZ07F35+fvj0009zHRsA9u7di/j4eGi1WpQtW9aqTlhYmPza0TbN/v77b2zfvh2ffPKJzfVzlfW5ePEiPvvsM5QrVw6DBw/Odl0K+vq89NJLAKQnBiUlJcllo6OjsXfvXnz66adWiUl+r09ERIQ8L3NfMspNewV5fVxlf+Do+mRUkPcHmbcPoicBE8N8dPToUQBAuXLlbC4PDAwEABw7dizLdqKiogAAXbp0sVq2fPlyJCYmYsWKFYpim8vb2mlmLA8AZcqUcahNQHoazZAhQ7Bs2TJ4eXnZrJdRQV6fTz75BDqdDi+//DIWL16MLl26oGrVqqhRowbGjRuHxMREl1qfvn37omPHjjh//jw6duyImJgYGI1GjBw5El9//TX69u372Nfn5MmTMBgMNsvYip/T9grq+mSlIO0Pcro+BX1/4Izvh8jVMDHMJ6mpqXKikPGPdkYBAQEAHu3o7fnjjz/g6emJt99+22rZpEmTUL9+fUyaNElRbPNpKXvlM+7E3d3dHWoTAMaMGYM+ffqgYcOGNutkVlDXR6/XY8uWLQCA48ePIzQ0FJs3b8Y///yDp59+Gp988glat26N5ORkl1gfAFCr1di0aRM6dOiAv//+G82bN8ewYcMwefJkDBgwwGYb+bU+5vJ6vR5xcXE2y2SU2/YK6vpkpSDsD3K7PgV1f+DM74fI1RTqR+IVJBmvS/P29rZZRq2W8vTU1FS77aSlpeG7777D5MmTbf7vuHfv3ujdu7fi2OY69spnPBqm0WgcavPXX3/FsWPH8PXXX9ssb0tBXZ/Tp0/Lbf7000/yH5igoCAsW7YMhw4dwpEjRzBt2jSLU2QFdX0yxl+zZg0mTZqEvXv3YvHixbh69So2bNiAIkWKWLWRX+tjLp+5v/bktr2Cuj72FJT9QW7WpyDvD5z1/RC5Ih4xzCceHh7ya2HnKYQ6nQ6AlFzYM3v2bFSpUgXjx4/P09jmOvbKZ5zv5+eXbZsxMTF4++23sWLFCri5Kfv/SEFYn1u3bgGQ/rBkPuqg1Wrlaw4dGdy3IKyP2fXr1zFq1Ch89dVX+Pvvv9GyZUvs2rULzzzzDO7fv5/tuuTV+pjLZ+5vdn1wRnsFYX3sKSj7g5yuT0HfHzjr+yFyRUwM80lQUJC8M8p4YX9GsbGxAIBixYrZXH748GGsXbsWGzdutHsUyFmxS5UqlWX5jNfdpKenZ9vmiBEjMHr0aFSvXt3hfttTENYnPj4eAODv72+z7PPPPw9AOmWV3aUBBWF9AOk0W+vWrdGvXz+4u7sjICAAv/zyC1q0aIEzZ86gf//+Wa5HXq6PubyPj49Dd7s6s72CsD62FKT9QU7Xp6DvD5zx/RC5KiaG+USj0aBWrVoAgMjISJtl7t27BwCoW7eu1bK7d+9ixIgR+PHHH1GiRIk8j12nTp0sy2ccGiO7NkuVKoV169bh7bffhkqlsphCQkIASEeqzPOuXbtWoNenbt268rAt5gQxs4yn9YxGo80yZgVhfQBg8uTJiIyMRLt27eQy3t7e2Lp1K4KDg7Fz506HHo2XF+uT1W/DFme2VxDWJ7OCtj/IyfrcunWrwO8PlH4/RK6MiWE+6tChAwDg9OnTVsuioqIQFxcHHx8ftGjRwmJZQkICevfujW+//RbVqlXLl9ht2rSBh4cH7t+/b/OI16VLl+TXjrRZvXp1m5N5eAk3Nzd5nr2bJQrS+tSrVw8ajQbJyck2/3CZjzIUKVLEobH/Hvf6AMDmzZsRFBRkdWovKChIHivv0KFD2a5LXq5Pp06dHIrv7PYe9/pkVJD3B46sj0qlcpn9QW6+HyKXl39jadOFCxeEWq0WYWFhVst++uknAUC89tprFvMTExNFhw4dxF9//WWzTUcfwZab2ObHbW3atMmqTr169YRKpcpxm5ldvXo1V086KAjr06FDBwFAfP3111blT548KQCIgQMHusz6BAQECLVaLdLS0qzKb9++3e665tf6qNVqceHCBXne66+/nuWTNXLaXkFfHyEK9v4gN+uTWUHaH+Rk+yAqTJgY5rPhw4cLAOLo0aMW87t16ya8vLzE5cuX5XmJiYmiY8eO4rfffrNqx2g0iu3bt4uuXbtazF+7dq1o0KCBzcc85SS2EEJcunRJ+Pj4iC5duljMNyc9Q4cOzXGbmWX3h6Agr8+RI0eEm5ubqFatmkhNTbUo/95779l8PmtBXh/zH/KVK1da9W3KlCnCw8NDXL9+/bGuT0b9+vUTAMTixYutYuemvYK+Pq6wP8jJ+thS0PYHRE8iJob5LDExUdSvX180btxYREdHC6PRKObNmyc8PDzEhg0b5HIxMTGiadOmwsPDQxQtWtRiKlKkiHB3dxcAxHfffWfRfu3atQUAERoamuvYGa1atUq4ubnJycL169fFU089JZo3by6SkpJy1WZG2f0hKOjrs3jxYgFA9O3bVyQlJQkhhNi0aZPw9fUVmzdvdqn1uX//vqhataooVqyY+O2334TRaBRGo1GsXbtWeHt7i4ULFz729TFLTk4WYWFhAoAYMmSIzbZy0l5BXx9X2R84uj72FLT9AdGTiInhYxAfHy9Gjx4tQkJCROXKlUWXLl3E8ePHLco0atRIAMhy0mq1IiYmxqLerFmzhI+Pj5g9e3auY2e2c+dO0bRpUxESEiJq164t5s6da3G6MTdtmmX3h8AV1mfbtm2iSZMmIjAwUNSsWVO89NJL4vDhwy65PtHR0WLMmDEiJCREFC9eXJQtW1Z07NhR/PnnnwVmfXr16iW8vb0tfgtBQUFiwYIFuWrPFdbHlfYHOf1+MiqI+wOiJ41KCDsDORERERHRE4V3JRMRERERACaGRERERGTy//buPSiq8o0D+He5LRd3Qy4iiiAlpql4KRoRbLJQIWMsJ3W0KUVTU5tJyrIw1MFUsho1tUblEkJkmpdxTBFNTU208TYjIYaKgjjJRQFFSITn94dwfqy7KC7LLuL3M3NmlvfyvO+7qPu455z3MDEkIiIiIgBMDImIiIioDhNDIiIiIgLAxJCIiIiI6jAxJCIiIiIATAyJiIiIqA4TQyIiIiICwMSQiIiIiOowMSQiAEBiYiK0Wi0SExMtPZXHkohgzZo16Nu3L+zt7eHi4oKRI0fi+PHjjfY5efIkRowYAV9fX3Tr1g1z5sxBZWWlyeI/6hjGOnbsGN59912TxjSna9euYc6cOfD3929S+61bt0KlUukdY8eObeGZEpmBZR/VTEStxWuvvSYAZMSIEZaeymNpypQpAkAAiLW1tfLa1tZWNm/erNd++/btolar5dtvvxURkdLSUgkKCpLAwEC5detWs+MbM4axxo4dK2q1Wq5du2aymOaQn58vkZGR4uDgIADEx8enSf0CAgKU97/hcfTo0ZadMJEZMDEkegL98ccfemW7d++WgIAA2b17twVm9HjbuXOnuLm5SVJSkpSXl0t1dbVs27ZN3N3dBYBotVopKipS2ufl5YlGo5GwsDCdONnZ2aJSqWT69OnNim/MGMa6cuWK2NjYCABZuHChSWKaS0FBgVRWVkpCQkKTE8M9e/ZIcHCwnD17Vuc4d+5cy0+YyAyYGBI9YWpqaqR3796WnkabMmbMGDl16pRe+d69e5Vvk+Lj45XyyZMnCwDZuHGjXp8XX3xRVCqVZGVlGR3fmDGM9dlnn4lGoxEA0rlzZ6murm52THPLyspqcmL4yiuvyK5du1p+UkQWwmsMiZ4wS5YsQWZmpqWn0aYMHjwY/fr10yt/9dVX0b9/fwBAUVERAKC6uhqbNm0CAAwaNEivz8CBAyEiiIuLMyq+sWMYo7KyEnFxcfj1119ha2uLgoICbNmypVkxLcHe3r5J7f766y8cOXIEly9fRnZ2dgvPisgymBgSPUESEhIQHR1t6Wm0OR988EGjdX5+fgAAHx8fAMChQ4dQXl4OtVqNzp0767Xv06cPAGD//v1GxTd2DGMkJyfj+eefx7Bhw/DWW28BAFauXNlo+1mzZkGtVis3axw4cECp6927t1LetWtXg/3XrVuH/v37w8vLC1ZWVkr7p556Cn5+fpg2bZpR61CpVE1qt3jxYlRVVeH9999Hz549ERAQgN27dxs1JlFrxcSQ6AmxdOlSLFmyBCICAOjWrRu6deuGqKgoVFRUYN26dRgwYAAWLFig06+8vBwxMTFwdnYGAFy/fh0RERHQarXw8fHBjz/+qLQ9cOAAgoKC4OjoiP79+yMjI8PgXLKysjBu3Dj07t0b7dq1g7+/PxISElpi2RZXXFwMtVqN0NBQAMCpU6cAwGDCBkB5n8+cOYOamppHjt8SYzTmu+++w8cffwwAiIyMBAAcPnwYp0+fNth++fLlyM3NhZubm15dZmYmkpOTGx1r6tSpmDp1KqKionDlyhXk5OTA29sbANC1a1fk5ORgzZo1Rq/lYUpKSlBcXIxnn30W1tbWAIDjx48jNDQUkZGRyt8roseeZc9kE5G5oe6atHpZWVkybtw4sbe3FwAyf/58pW7t2rXi6+ur9CkpKZHnnntOOnXqpLS3srKSjIwM2bp1q6jVaunSpYty16yrq6uUlpbqjJ+WliZdu3aVQ4cOici9O0P79esnAGTBggVmeQ/MpaKiQhwcHGTmzJlK2Zw5cwSADBgwwGCf9PR0nff7UeObeozGpKenS58+fXTKBg0aJABk0qRJD+w7ePBgASD79+/XKT9//rzBa/327dsnACQkJESnPD4+XlnHlStXjFqHiEhubu4j3ZV848YNSUhIEE9PT2X86Ohoo8cnak34jSHRE65nz55ITU3F22+/rVf3zjvvYMeOHcrP0dHRWLt2LQoKClBUVITAwEDU1tZi7ty5+Pnnn/HPP/8gLy8Ply5dgpeXF0pKSrBr1y6lf0lJCcaPH4/Y2FgEBwcDALy8vLB27VoAQExMDM6fP9/CKzafuLg4aDQaxMTEKGUlJSUAAEdHR4N9rKz+/89yVVXVI8c39RiNWbFiBT766COdslmzZgEAUlNTlTk8bPyG6r+Ju1/9n8H6U+D1Ro8erbwuKCh46JxNxdnZGREREcjOzkZQUBAAIDY2Frm5uWabA1FLYWJIRAAADw8PvTJ7e3s888wzys+xsbHKB2G7du0wY8YMAEBpaSk2bNignNrz8vJCeHg4ACAvL0/pn5CQgJs3b2LkyJE649RvLFxbW4utW7eacFWWU1JSgkWLFiEpKQkuLi5KuZ2dHQA0eurxzp07yuuG/Zoa35RjNCYnJwenTp3C+PHjdcpHjRoFb29vVFVVNfvGloYazrchjUaD9u3bAwBsbGxMNl5TabVa7Ny5Ez4+PqiursbmzZvNPgciU2NiSEQAAFtbW4PlarVaea3RaHTqOnXqpJTffwF//XVkDZ+ysW/fPogI+vXrhx49eihH37594erqCldXVxQWFppkPZY2ZcoUfPLJJzrX/gFAx44dAQAVFRUG+5WWlgIAnJycHni3bGPxjR3Dzc3N4PHnn3/q9V+xYgXu3LkDf39/nd9jr169lN/3999/36zrFxsKDAwEAFy+fFmvTkRgZ2eHHj16KGUjR440uJalS5eaZD4NabVafPHFFwCACxcumDw+kbmZ/79YRNRmNHZKsGFdw2+t8vLy4OLi0ua3+li8eDG8vb0xe/Zsvbr6b0evXr1qsO+1a9cAwOD2NE2Jb+wYjZ36ra6u1vm5rKwMGzZswNmzZ+Hu7q7XvrCwEF26dEFeXh62b9+ON998s9F1NNXo0aOxevVqpKeno7S0VLl5Jj8/H6WlpZgwYYLOafOysjKD67l9+3az52JISEgIgHvfohM97viNIRGZzd27d1FUVKR8Y9UWpaSk4Ny5c1i2bJnB+iFDhsDOzg6FhYUoLi7Wq6+/xjIsLMyo+MaOIfceeKB3vPzyyzp94+LiEBYWZjApBIAOHTrgjTfeAHDvrmVDmro9TD1bW1ukp6eje/fumDZtGm7evImysjLMnDkTTz/9NL7++mud9gcOHDC4lvvvuDcVT09PAPf2hyR63DExJCKz8fT0hIhg48aNButFRGdvu8fNli1bsG3bNsTHx+slPzU1NcjPz4dWq8XYsWMBAAcPHtSLkZGRASsrK4wZM8ao+ACaNcaD1NTUYNWqVZg+ffoD202dOhXAvQTtzJkzevUODg4A7m191FBZWRkAw9cUrly5EgUFBbh9+zb8/f0xcOBAeHt7IyMjo9Ek1VwyMzPh6+uL119/3aLzIDIFJoZEZDYvvfQSAGDu3Lm4ePGiXn1SUlKjpz9bu23btiEpKQk//fST3o0Q//77LyZOnKisef78+XBycsL69et12mVmZuLkyZN47733lI2rjYlv7BgPk5qaChEx+DSVhoYMGaLc1LJkyRK9+vrNuBMTE5W7otPS0pS7nIuLi1FcXKxchnD06FFERUUhJiYGmzZtQk5ODv7++2+sWrUKHTp0eKQ1GHL37l0AeOA1kbW1tbhx44bButjYWCQkJOhcj0v02DLv7jhEZGkODg4CQCorK3XKP//8cwEgUVFROuV37txR9mq7/zm4v//+uwCQ4OBgvXHmzZunFy8/P1+cnJwEgHTo0EF++OEHuXjxopw7d06++uor6d69u9y8edOEqzWPlJQUsbGxEWdnZ3F1ddU56p8j3KVLF6mtrdXrk5ycLCIily9flr59+0pQUJBUVFQ0O/6jjvEw2dnZ4uHhId7e3lJcXPzAttevXxd3d3flz01iYqJOfcNnPGs0GvHw8BB/f385ceKEUu7j4yNxcXEiIpKcnKyUNzxUKpW0a9dOBg0a1KznF9fHt7OzkwsXLhhsEx4eLtbW1vLhhx8qez8WFhZKZGSkpKWlGT02UWvDxJDoCfPCCy8IANm7d69UVFTIl19+KTU1NRIcHCwAZPDgwXL37l2lfX3yB0COHDmiEys6OloASMeOHaWoqEgpr66ulpCQEAEgQ4YM0Yn3yy+/iI2Njd6HvFqtloMHD7b8G2BiO3bsEJVKZTBxaXh8+umnen3T09MlMDBQfH19pVevXvLNN9/If//9Z7L4TR3jYRYtWqQzBzs7O71NtestW7ZM2fy84dG+fXudcVevXi2enp6i1WplwoQJcv36dcnNzRU3NzdZuHChzsbotbW1MnHiRPH19RVPT09xdHQUKysrnfjW1tZy4sSJR1rX0aNHdTapBiA2Njbi5+en13b//v0SEBAgTk5O4uzsLOHh4RIbG2v0BuFErRUTQ6InzLFjx8TPz0/c3d0lMjJSDh06JC4uLnof4sePH5eIiAjlKSb1H76hoaFSXl4uHh4eeondvHnzZM+ePeLs7KxT5+zsLFlZWcocjhw5IsOHDxeNRiNOTk4ydOhQOXbsmAXfFWrNrl69KsOGDZOqqiq9uqqqKsnJyZFRo0bJ7NmzLTA7orZFJcIHPBIRUes1dOhQRERE6G2o3dBvv/2GPXv2YPny5eabGFEbxJtPiIio1UpLS8PevXsf+mST1NTURrf4IaKmY2JIREStVv2d1jNmzEB8fLyypU29S5cuYdKkSaisrMTw4cMtMUWiNoWnkomIqNW6desWwsLCcPjwYQD3Nsf29PSEo6MjysrKUFRUhNGjR2P9+vUPfIQgETUNE0MiImrVampqkJiYiJSUFJw+fRq3b9+Gq6srAgMDMXnyZIwYMcLSUyRqM5gYEhEREREAXmNIRERERHWYGBIRERERACaGRERERFSHiSERERERAWBiSERERER1mBgSEREREQAmhkRERERUh4khEREREQFgYkhEREREdZgYEhEREREA4H+xLtIYENQomQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAHiCAYAAAB1Bw2oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACShklEQVR4nOzdd3hT1RsH8G/S3dJBWaW0hbJHy94bQaaKygZRliwVBdEyhR8KRURRUDay91QBBYEiyAbZe6+yWrp3k/P7I+TSNEmb5qZpU76f57kPyb3nnPfcJE1e7r3nXIUQQoCIiIiIXnnKvO4AEREREeUPTAyJiIiICAATQyIiIiJ6gYkhEREREQFgYkhERERELzAxJCIiIiIATAyJiIiI6AUmhkREREQEgIkhEREREb3AxJCI8g21Wo0dO3bgzTffRLly5fK6O0RErxwmhvRKK1myJBQKhdnLvHnz8Pjx42zLrVu3Tor58ccfGy3XsmVLqdy9e/fw2WefoXXr1mb17fr16ya9Brt378bQoUNRrlw5o205OjrCy8sL5cuXx5tvvonvv/8ez549s+h7sXbtWgQHB+ONN97A9u3boVKpLNo+ERGZQBC9wlxdXUWDBg3E4cOHRUxMjEhLSxNpaWliz549AoAAIN5//31pfVJSkrh+/boYO3asUCqV4ttvvxVCCJGSkiL+++8/Ub9+falekSJFxI4dO0R8fLxQq9VSTJVKJe7evSsCAgKksl27dhWHDx8WcXFxBvs5YMAAqeyPP/4oHj16pLfcvn1bHDp0SHTr1k0AEKdOncrRa5GQkCBKlSolxdm4caN4+vSpSE1NFfHx8eLixYvixx9/FKVLlxYAhKurq5g/f775L34miYmJQq1Wi7Zt2woAonTp0hZrm4iITGOfJ9koUT6gVqvh7OyMv/76C15eXjrb7OzspMcKhQL29po/FXt7e5QvXx7Tpk0DAMTFxQEAHB0dUatWLXz++efo0aMHAKB79+7o2LGjXlylUglPT0/Ex8ejUKFCWL58Od59990s+1q7dm38+uuvAABPT0/4+PgYLFemTBk0atQId+7ckfpmKldXV9SvXx9bt24FANStWxfFihUDADg4OKBq1aqoWrUqBgwYgDfffBP//PMPhg4dCnt7ewwcODBHsQxxcXEBAFSvXh27d++W3R4REeUcTyXTKys2NhZdunTRSwpNNXToUL3kq0iRIgYfZ5SWloaePXvC3t4e//77b7ZJIaBJ2kylUCjw3nvv5TgxBAB3d3eTyqxfv17q0+jRo5GQkJDjWMY4OztbrC0iIsoZJob0ynJ0dMSwYcPMrh8QEIBu3brprMt4pDHjY63U1FR0794dZ86cwf79+1GjRg2TYikUihz1rVevXqhZs2aO6uQkTokSJaTrIaOjo/Hvv//mOJYxhl43IiKyDp5KpleWq6sratWqJauNJk2amFw2MTER7777Li5cuIB//vkHFStWlBU7K9pTwLlJe+oX0Bx9JSIi28cjhkRWEBERgdatW+PKlSu5mhReuXIFkydPzpW2M1Kr1Thx4oT0vFKlSgbL/f7772jfvj2KFi0KBwcHlChRAq+//jo2btxoduyEhARMmTIFNWrUgJubG1xcXFC2bFl8+OGHBkdiq1QqbN26FW3atEGrVq0AAMnJyfj6669Rrlw5FCpUCK1atcK5c+eyjLtlyxZ06NABxYoVg6OjI8qVK4dRo0bh+fPnRuscPHgQXbt2hY+PDxwdHeHn54d+/frh6tWrZu8/EVFuYmJIlMtu3ryJxo0bIzIyEgcPHszV+fkuXryYa21nNHv2bNy7dw8A0KJFC1SvXl2vzIQJE9C5c2cIIXD8+HE8evQIkyZNwv79+9G9e3fMmzcvx3Gjo6PRsGFDTJ48GQMGDMDDhw9x9uxZBAUFYfHixWjQoAHCw8Ol8vPnz0e9evXw7rvvYu/evRBCIDw8HI0bN8bMmTMRFxeHhIQE7N+/H61bt0ZUVJRezKSkJHTp0gWffvophg8fjtu3b+PSpUsoVaoUZs2ahTp16uDhw4d69caMGYPhw4fjww8/xJUrV3D69Gk0bNgQy5cvR+3atfH333/neP+JiHJdXg+LJsqPwsLCpGlbPvjgA7PqTZo0SRw9elQUK1ZMVKtWTTx69Mjs/ixdulRqd+nSpQbLXLt2TQQHB4tJkyaZHeeDDz6Q4pw/f15nm0qlEhcuXBAfffSRUCqVAoCoXLmyuHfvnl47586dM9pOnz59BABRoUIFg32YNGmS0elqPv/8cwFA1KlTR2d9bGyscHZ2FgDE1KlTpfVxcXFCpVKJatWqCQCievXqok2bNmLz5s1CpVIJIYSYPXu21NfvvvtOL+a7774rHBwcxLlz53TW79u3T6rXp08fnW2zZs0SPj4+4smTJzrrVSqVqFu3rgAgvL29RVRUlMHXgIgor/CIIVEu2bdvH1577TWLTwT96aefwsfHR2fx9PRExYoVcf78eYvFCQ4ORqFChVCsWDEUK1YMTk5OCAoKwi+//AKlUolJkybh+PHj8Pf316t7+fJl6bG3t7fOtnr16gEA7t+/n+M+Xbp0yWCb7u7uqFy5sl67hQoVglKpRNWqVQEAkZGRWLp0Kd59910olZqvv2HDhqFw4cIAoHN6HNCcPt6yZQu6du2K4OBgnW116tSRrrN8/PixtD46OhoTJ05E7969Ubx4cZ06SqVSOp39/PlzWafUiYhyAwefEOWSMmXK4OHDh7h16xYuXryIZs2aYe/evQgICJDV7pQpU6S5ErXi4uJw+PBhfPHFF7LazmjPnj2oVq0aAE2y8+TJE+zfvx9r1qzBtWvXMH36dFy7dg1Tp05FYGCgTt02bdqgXbt2KF26NHx9fXW2aafESUlJyXGfhg8fjufPn+Ojjz7S25ZVu05OTgCA8uXLw8/PT2ebvb09SpcujaioKERHR+tsmzt3LgDg9ddf12vTw8MDR44cwYEDB/DWW29J6zdv3oz4+HgsXrwYq1ev1qsXHx8vPbZkIk9EZAlMDIlySdmyZfHtt9/i9ddfx8WLF3Hjxg0pOSxfvrzZ7Rqa4NrHxwcVKlSASqWSrv2Tq1y5clIcHx8fVK5cGS1atMC4ceMwefJkTJs2DWvXrsWff/6JsLAwnelxvL298ddff+m0d+DAAfz666/YuXMnAEAIkeM+vfHGG3jjjTek5wkJCVi7di1WrFghHe1Tq9V69bKbAsfT0xOAblKpUqmkaXgyJ5NaNWrU0Jty6MiRIwA011j27ds3y7g5mZ+SiMgaeCqZKBeVLFkSBw4cQP369QFo7n/cvHlz6ZSopTVu3DhX2s3IwcEBU6dORffu3QFojib27NnT4L2NVSoVli9fjho1amDWrFno06cPvv32W9l9ePz4MUaPHo3g4GDcunULK1asQIMGDWS3m1FkZKSUKKalpeWob4Bm3zOf8s+8eHh4WLTPRERyMTEkymXe3t7Yu3cvXnvtNQDAo0eP0KJFC5w+fdrisSpXrmyV6WoAYNSoUdLjq1ev4ujRozrbr1y5gvr162PatGlYvHgxtm7ditdffz3Hk3VntmTJElSoUAERERE4ffo0pk2bhjJlyshq05CMRx5v3bplcj1tEnn27FmL94mIKLcxMSSygkKFCmHnzp3o3LkzAM28hq1atZJOO+aW9PT0XGs782CMBw8eSI+vXr2KJk2a4MaNGwgLC5MGnMj13XffYdCgQWjfvj2WLVsmnQLODUWKFJHukZ3d1DJnz56VJvkuWrQoAOCvv/5CUlJSlvUOHz5sgZ4SEVkOE0MiK3FycsKmTZuk685iYmLQtm1bhIWF5Uq88PBwDBkyJFfaBjT9zyjjUbvx48fj+fPnaNOmjd7gE3NFRkZiwoQJAID333/fIm1mxcHBQbozzs6dO3Ht2jWjZSdOnAg3NzcAL0ddR0dH48cffzRa56+//sKxY8cs12EiIgtgYkhkQMbTiIYGM5hSz9A1d/b29li+fLk0qjY+Ph4dO3bE77//nmW75gzU+PLLL3UGapgiJ3HWr18vPQ4MDESdOnWk59qJtp88eaJXL+P1eoZeI20fMvflxo0bSE1NzbZdQ22a+h5mjvnee+8B0Bx57devH5KTk/XqzJgxA2XKlJEGuHTr1g0ODg4AgMmTJ2P79u16daKiovDll1+iZ8+eJvWLiMhamBgSGZAx8TCUhJhSLzIy0mAZhUKBn3/+GR07dgSguT3bO++8g2nTphlNYDKekjSU+GS2cOFC/P777+jQoYPJfQd0p1LJypEjRzBx4kQAmrn5Zs2aJZ12BSBNyXPo0CEsWrQIgOYI2rRp0zBu3Dip3IMHD/DHH39g//790jrtkci4uDidmBmn+Zk6dap0BO/cuXPo3LmzdM3mgwcPkJaWhpCQEKm89r3I7tRu5ns+Dx48WJqy58iRI2jQoAHWrl2LM2fO4LfffsMbb7yBGTNmSEcyAaBUqVL48ssvAQCpqano3LkzhgwZgrCwMJw6dQqLFi1C7dq10aVLF5QsWTLL/hARWV1ezq5NlN+kpKSI06dPi+rVq0t3tXB2dhYbN24UMTExQq1WG6yXnJwszpw5I+rUqSPVK1q0qPjjjz9EfHy8Xr3Hjx+Ltm3bSmW1S+3atcWvv/4q7t69K9LT06XyAwcOlMp0795dREdHi7S0NGlJTU0VMTEx4uzZs+Kzzz4TCoVC9O3bN0f7HhcXJ/z8/KQ4s2fPFufOnRMREREiOTlZREREiH/++Ud89NFHwsHBQQAQnp6eYsWKFXptbdq0SWe/PDw8hL29vejfv7/YsGGDtN7V1VW88847QqVSifT0dHH16lXh7+8vbZ83b56Ii4uT2n3zzTelbQqFQhQuXFh4eHiI9evXi65du+rE27hxo0hNTRVHjhwRbm5uAoBwcnISf/75p0hMTJTet0OHDolChQoJAMLe3l5s375dJCcnSzFv3rwpypYtq/dead/jo0eP6u1/enq6zl1kMi89evSQ7rxCRJSfMDEkeiEqKsroD7l2mTNnjl69R48eZVtv7dq1Uvn79+9nWx6AWL16tfj66691kqGcLNu3bzdpv/fu3StGjBghKlasmGV7dnZ2olChQiIwMFC0bdtWfPPNN+LZs2dG212yZImoVKmScHZ2FnXq1BGbNm0SQgiRmJgoGjRoILy8vMTo0aNFamqqEEKI0NBQo7G1yWFUVJQYMGCAKFasmPD09BQ9evQQt2/fFkIIsWfPHlGkSBFRuXJlsWPHDiGEED169DDYXpEiRYQQQpQuXdrg9sy33IuJiRFjxowR5cqVE46OjsLPz08MHz5cPHz4MMvXdvPmzeK1114THh4ewsXFRdSpU0csWLCASSER5VsKIcy4eImIiIiIChxeY0hEREREAJgYEhEREdELTAyJiIiICAATQyIiIiJ6gYkhEREREQFgYkhEREREL9hnX4TUajXCw8Ph7u4OhUKR190hIqJ8TAiBuLg4+Pr6QqnMveMvycnJ0m0i5XB0dISzs7MFekQFARNDE4SHh8Pf3z+vu0FERDbk/v378PPzy5W2k5OTUcSlEBKR/S0ys+Pj44Pbt28zOSQATAxN4u7uDkDzR+7h4ZHHvSEiovwsNjYW/v7+0m9HbkhNTUUiVOiDUnCUcVVYKtRY/fghUlNTmRgSACaGJtGePvbw8GBiSEREJrHGpUcuUMJRYX5iaMd7n1EmTAyJiIhslJ1CATsZCagdFJo7hBO9wMSQiIjIRikVgJ2MA5NKgIkh6eB0NUREREQEgEcMiYiIbJZFTiUTZcDEkIiIyEbZyTyVbGe5rlABwVPJRERERASARwyJiIhsFk8lk6UxMSQiIrJRPJVMlsZTyURERJRjqampmD59OipVqoRy5cqhRYsWOHDgQI7befz4MYYMGYKyZcsiMDAQPXr0wL1797Kss2nTJtSrVw9ly5ZF9erVsXjx4mzjJCcnY+7cuShTpgzu3LmTbXlzYhQEPGJIRERko/LqVHJKSgo6dOiAJ0+e4O+//0ZAQAA2btyINm3aYPXq1ejWrZtJ7dy+fRvNmjVD48aNcfHiRTg6OmL06NGoW7cuDh48iEqVKunVGTduHObMmYPt27ejRYsWuHLlCpo3b45z585h9uzZeuUTExMxb948/PTTT7h//75J/cppjIKERwyJiIhslAKaH3JzF3NTypCQEISFhWHp0qUICAgAAHTr1g1du3ZFv379cPv27WzbUKlU6NatG1JTU7F06VK4uLjAzs4OM2fOhLOzM7p37460tDSdOtu2bUNoaCgmTpyIFi1aAAAqV66Mb775BnPmzMGGDRsMxnn//fcRFhYGpTL7tMecGAUJE0MiIiIy2Z07d/DLL7+gatWqqF+/vs62vn37IjExEWPHjs22nbVr1+LUqVPo1q0b3NzcpPV2dnbo1asXzp07hyVLlkjr1Wo1vvzySygUCvTr10+nrd69e8POzg6jRo2CSqXS2ebu7o5ixYqhXLlyKFq0aJZ9MjdGQcLEkIiIyEZpTyXLWXJq/fr1SE9PR+PGjfW2NWjQAACwdetWREZGZtnO6tWrAcBgOw0bNgQALFq0SFp34sQJXL9+HeXKlUPx4sV1yhcqVAjVqlXDw4cPsXPnTqMxnZ2ds+yTJWLYOiaGRERENko7KlnOklM7duwAAJQtW1Zvm7e3N0qVKoXU1FQcOnTIaBuJiYnYv3+/0XaCg4MBAKdPn0Z0dHS2cTPWCQsLMxpXkU0ibIkYto6JIRERkY3SJHdyjhjmPObp06cBAH5+fga3e3l5AQDOnDljtI3Lly8jOTnZaDvaNoQQOHfunMXiZscaMfI7jkomIiJ6xcXGxuo8d3JygpOTk1655ORkxMfHA3iZJGXm6ekJAIiIiDAa79mzZ9JjQ+1o28jYjraOnLjZsUaM/I5HDImIiGyUpU4l+/v7w9PTU1pCQ0MNxst43aCrq6vBMtqRv9ojgua0k3H0sLYdbR05cbNjjRj5HY8YEhER2ShLzWN4//59eHh4SOsNHS0EAEdHR+mxEMJgmdTUVACa6w2Nya4dbRsZ29HWkRM3O9aIkd/xiCEREdErzsPDQ2cxlhh6e3tLyVNCQoLBMtrBIllNDePj4yM9NtSOto2M7WjryImbHWvEyO+YGBIREdkopczTyMocHmy0s7ND1apVAQDh4eEGyzx58gQAULNmTaPtBAUFSSOEDbWjbcPR0RFVqlQBAFSvXl123OxYI0Z+x8SQiIjIRuXFPIbt2rUDAFy8eFFvW0REBGJiYuDm5oZmzZoZbaNw4cLS5NiG2rlx4wYAoHnz5tLk11nFzVinQ4cOpu6KHmvEyO+YGBIREZHJBg4cCKVSiQMHDuhtO3LkCACgS5cuRk9Haw0ePBgAsmynd+/e0ro2bdogMDAQly9f1hnVDGhO8V6+fBmBgYHS5NjmsEaM/I6JIRERkY3KiwmuK1SogMGDB+P8+fN68/ktX74cLi4umDRpkrQuLCwMDRo0wOzZs3XK9u3bF8HBwdiwYYPOKN/U1FSsW7cOQUFBeO+996T19vb2CA0NhVqtlu6aorVq1Sqo1WpMnToVdnZ2Rvuenp4OAEZvaWeJGLbOZhPDHTt2oHHjxli2bFmW5f777z906tQJgYGBKF++PEJCQpCUlGSdThIREeWivEgMAWDmzJmoU6cOhg4diufPn0MIgTlz5uCPP/7AihUrdO4c8v333+P48eMYP368ThsODg5Ys2YN0tPTMWrUKKSnpyMxMREDBgyAWq3Gpk2b4ODgoFOnR48eGDJkCL755htp4uuDBw9i/PjxGDlyJHr16mW0z7dv38bTp08BAEePHjVaTk6MgsDmEsMNGzagQYMGeOONN6RDzcb88ccfaNy4MVq3bo3bt2/j1KlTOHToEFq3bm10xBERERFlzc3NDWFhYWjYsCHq1q2LChUqYO/evThx4gS6du2qU7ZXr15wd3fHBx98oNdOUFAQjhw5gidPnqBChQqoWbMmvLy8cPbsWVSqVMlg7Hnz5mHy5Mno2bMnypUrh5CQEKxYsQI//PCD0f6WLl0aFStWRFpaGgDgvffeg6+vr9E7mJgTo6BQCGOT9eRTt27dQqlSpRAcHIzr169j6dKl6Nevn165+/fvo1q1amjatKnOza6vXr2KKlWqYOjQoZg7d65JMWNjY+Hp6YmYmBideZ6IiIgys8ZvhjbG3MIV4KIw/7RmklBheNR1/r6RxOaOGJYtWxZOTk6oVatWluX+97//IS4uDv3799dZX6lSJdSrVw/z58/H5cuXc7OrREREucoOMk8l5/UOUL5jc4mhlrOzs9FtaWlp2LhxIwCgcePGetsbNmwIIQQWL16ca/0jIiLKbUqZU9UoZdw1hQomm00MFVl8mA8ePIjY2Fg4OTmhVKlSetuDg4MBaEZKEREREZFGgbxX8unTpwHAYFIIAF5eXgCA8+fPQ6VSFehh50REVHDJGVmsrU+UUYFMDLWTUmoTwMw8PT0BaOYziomJ0bsZdkpKClJSUqTnsbGxudNRIiIiGcy9e0nG+kQZ2eyp5KxERkYCAFxdXQ1uVypf7nbGSTW1QkND4enpKS3+/v6501EiIiKifKRAJoaOjo4AAGMz8aSmpkqPMx8tBICxY8ciJiZGWu7fv587HSUiIpIhrya4poKrQJ5K9vHxAQCjk1hHR0cD0EzQaWh0s5OTU7b3eCQiIsprPJVMllYgjxhWr14dABAeHm5w+5MnTwAANWvWtFaXiIiIiPK9ApkYtmrVCo6Ojnj69CkiIiL0tt+4cQMA0KFDB2t3jYiIyGKUL+YilLMQZVQgE0MPDw/06NEDAHDgwAG97UeOHIFSqUT37t2t3TUiIiKLUdgpZC9EGdlsYpieng4AUKlUBrdPmjQJbm5uWLFihc76Cxcu4L///sOgQYNQoUKFXO8nERERka2wycQwKSkJ586dAwAcPXrUYJly5cphwYIF2LFjB1atWgUAuHfvHt577z00adIEs2bNslp/iYiIcoPSTiF7IcrI5hLDnj17omjRojh//jwAYPHixShSpAjmz5+vV7ZPnz7YuXMn5s6di7Jly6Jjx47o27cv9u3bZ3SOQyIiIpthp4RCxgI7m0sDKJfZ3HQ169aty1H5119/Ha+//nou9YaIiCjvKJTyrhNUgEcMSRf/q0BEREREAGzwiCERERFpyL1OUMkjhpQJE0MiIiIbpVAqoVCaf/JPYeTWsfTq4qlkIiIiIgLAI4ZEREQ2i6eSydKYGBIREdkouXcv4ahkyoynkomIiIgIAI8YEhER2SzNEUMZg0+gtmBvqCBgYkhERGSjeI0hWRpPJRMRERERAB4xJCIislkKhQIKpYzBJ2oeMSRdTAyJiIhslNJOCaWMawyVgicOSRcTQyIiIhsle7oawSOGpIv/VSAiIiIiADxiSEREZLN4xJAsjYkhERGRjeI1hmRp/EQQEREREQAeMSQiIrJdMk8lg6eSKRMmhkRERDZKqVBAKWMeQ6WCiSHp4qlkIiIiIgLAI4ZEREQ2S2GnhELG4BOFmseHSBcTQyIiIhultFNAKeMaQyVviUeZ8L8KRERERASARwyJiIhsluwJrnnEkDJhYkhERGSjeI0hWRoTQyIiIhultIPMawwt2BkqEPhfBSIiIiICwCOGRERENkuhVEAhY4JrOXWpYGJiSEREZKOUSiWUMq4xVKp44pB08RNBRERERAB4xJCIiMhmyZ6uRkZdKpiYGBIREdko2dPVyKhLBRM/EUREREQEgEcMiYiIbJZCqYRCKeOIoYy6VDAxMSQiIrJRSjuZo5J5Kpky4SeCiIiIiADwiCEREZHtkjn4BDxiSJkwMSQiIrJRCqXMUcm8xpAyYWJIRERkozj4hCyNnwgiIiIiAsAjhkRERDZLM8G1nYz6Kgv2hgoCJoZEREQ2inc+IUvjJyKPJSUnIyk5Oa+7QURERjyNScDTmIS87gaRVfCIIRERkY1SKpVQyhhAIqcuFUxMDImIiGwUTyWTpfETQUREREQAeMSQiIjIZvGIIVkaE0MiIiIbpVDInOBawcSQdPETQUREREQAXoHE8N9//0XHjh3h4+MDf39/VKpUCZMmTUIyp4ghIiIbpz2VLGchyqhAfyI2btyIFi1aoEGDBrh//z7u37+PdevWYenSpWjdujVSU1PzuotERERmy8vEMDU1FdOnT0elSpVQrlw5tGjRAgcOHMhxO48fP8aQIUNQtmxZBAYGokePHrh3716WdTZt2oR69eqhbNmyqF69OhYvXmzxGI8fP4azszMUCoXO4ufnh7S0tBzvp60osIlhSkoKhg0bhjZt2mDSpElwcHAAANSqVQtTp07F4cOHsWTJkjzuJRERkfmUdkrZizlSUlLQvn17rFy5En///Tdu3ryJjz/+GG3atMHGjRtNbuf27duoW7cuoqKicPHiRdy4cQO+vr6oW7curl69arDOuHHj0L9/f8ycORO3bt3Chg0bMG7cOIwYMcJiMQDghx9+QEpKit76ESNGSDlFQVRgE8Nz584hMjISNWvW1NtWu3ZtAMD58+et3CsiIiLbFxISgrCwMCxduhQBAQEAgG7duqFr167o168fbt++nW0bKpUK3bp1Q2pqKpYuXQoXFxfY2dlh5syZcHZ2Rvfu3fWOzG3btg2hoaGYOHEiWrRoAQCoXLkyvvnmG8yZMwcbNmyQHQMAoqKisGbNGpw5cwaXL1/WWYwloAWFyaOSBwwYkCsdUCgUuXLkzs3NDQBw9OhRvW1xcXEAYDBpJCIishUKpULeqGSlIsd17ty5g19++QVVq1ZF/fr1dbb17dsXa9euxdixY7Fu3bos21m7di1OnTqF4cOHS7/ZAGBnZ4devXphxowZWLJkCYYOHQoAUKvV+PLLL6FQKNCvXz+dtnr37o3hw4dj1KhR6NKlC+zs7MyKofXzzz/jvffeQ40aNXL8+tg6kxPDZcuW5UoHcisxrFKlCipUqIADBw5gyZIlGDhwoLRt69atCA4OxgcffGDxuERERNaSF/MYrl+/Hunp6WjcuLHetgYNGgDQ/M5GRkaiSJEiRttZvXo1ABhsp2HDhgCARYsWSUnbiRMncP36dZQvXx7FixfXKV+oUCFUq1YN586dw86dO/Hmm2+aFQMAEhMTMXv2bPTv3x+HDh1Co0aNXqlbB5qcGPr6+kovsKUIIdC3b1+LtqmlUCiwcOFCtGvXDsOGDYOzszP69OmDQ4cO4dSpU9i7dy+cnJxyJTYREVFBtWPHDgBA2bJl9bZ5e3ujVKlSePjwIQ4dOoS33nrLYBuJiYnYv3+/0XaCg4MBAKdPn0Z0dDS8vLyyjKutc+7cOYSFheHNN980KwYALFy4EBEREfjuu+/w3Xffwd/fHyEhIRg6dKh0JLIgMzkxdHV1lc7nW5KLi4vF29Rq2bIlNm/ejO7du6Nv3744ceIE7O3tsWvXrizf3JSUFJ0LTmNjY3Otj0RERObKiyOGp0+fBgD4+fkZ3O7l5YWHDx/izJkzRhPDy5cvS9PGGWpHm6QJIXDu3Dk0b97cpLgAcObMGbNjAMDJkycRFBSEW7duITExEffv38fHH3+MTZs2YcuWLShcuLDB+AWFyZ8IIUSudCC32tV64403MGPGDIwYMQKzZ8/G3Llzsx0xFRoaCk9PT2nx9/fP1T4SERGZQ3vnE7OXF3c+iY2N1VkMjcYFgOTkZMTHxwN4mVhl5unpCQCIiIgw2u9nz55Jjw21o20jYzvaOqbGNScGAKxatQrnz59HVFQUdu/ejbp16wIA9u/fj3fffRdqtdrofhUEJieGtWrVypUO5Fa7WjNmzECpUqXw448/Yt26dUhPT0fv3r3x888/G60zduxYxMTESMv9+/dztY9ERER5yd/fX+eASGhoqMFykZGR0mNXV1eDZbTX42V1I4ns2sl4TZ+2HW0dU+OaEyMjR0dHvP766zh27Bg+/fRTAJrkcM2aNUb2qmAw+VRy5iHgOXX16lVUqlTJ4u1mZebMmdiyZYs0Mrl79+5wdHRE165dMWLECNSqVQtNmjTRq+fk5GS16w9dnJ0BAMlJSQAAZwOn1pNefGAVapWmjKubwe3atoiIcsvzuETpsbe74R9oUyQmab63XF1M/97Kq++64p5u2RfKIwo7OyhlXPemeFH3/v378PDwkNYb+w10dHSUHhs746e9eYS3t7fRuNm1k/EGFNp2tHVMjWtODEOUSiV+/PFH3Lt3D1u3bsW6devw3nvvGS1v66wyzEatVhscEZSb7t69iwkTJqBTp046699++21Mnz4dQgj873//s2qfiIiILMlSdz7x8PDQWYwlht7e3lLClZCQYLBMdHQ0AKBo0aJG++3j4yM9NtSOto2M7WjrmBrXnBhZmT59OhQKBW7evJltWVtm8hFDY+Li4vDnn3/i3r17SEpK0svK09LScOTIEZ03wBp27NiBlJQUvSHtAPDZZ59hxowZOH78uFX7REREZMvs7OxQtWpVnDlzBuHh4QbLPHnyBEDWcwUHBQVBoVBACIHw8HCd6/0ytuHo6IgqVaoAAKpXr459+/aZHNecGFmpWLEiAgICUKhQoWzL2jJZieHRo0fx1ltv6ZzHz5wYat8UhSLnk2jKoT1E/ODBA71t9vb2KFOmDO7cuWPVPhEREVlSXoxKbteuHc6cOYOLFy/qbYuIiEBMTAzc3NzQrFkzo20ULlwY9evXx7Fjx3Dx4kW9xOzGjRsAgObNm0sTU7dr1w4//vijwbgZ63To0MHsGNkpWbKkNBiloJKVGA4fPhwRERHw8/PDm2++iaJFi+pNAimEwKFDh7Bv3z5ZHc2pN954A6NHj8amTZswadIk2Nu/3NWYmBhcuXIFffr0sWqfiIiILEk7ulhO/ZwaOHAgvvvuOxw4cEBv25EjRwAAXbp0yfZa/cGDB+PYsWM4cOAAunbtarCd3r17S+vatGmDwMBAXL58Gc+ePUOxYsWkbdHR0bh8+TICAwOliavNiZGV9PR03Lx5M1duypGfKISM+WLc3NyQlpaGO3fuwNfX12i59PR0FC9eHM+fPzc3lFlmzZqFUaNG4b333sPPP/8MT09PPH78GP3798eDBw9w4MABk+Yjio2NhaenJ2JiYnQuzrUkDj4hIlvwKg4+ySlr/GZoYzyYPwYeLuYPloxNSoHf0Ok57uuwYcMwf/58nD59WueUcdeuXbFz505cuHBBmlQ6LCwMY8aMQZ8+fXTuM5yWloY6derg6dOnuHPnDpxfvK+pqakIDAyEt7c3/vvvPzg4OEh11q9fj549e2LWrFn47LPPpPU///wzPvnkE6xZswa9evWSFSMiIsLgNYezZs1CUlISxo0bZ/LrZItkDT6pWbMmfH19s0wKAc2p2+zmDswNI0eOxI4dOxAeHo7AwECULl0aLVq0QO3atXH48OECP0klERFRbpg5cybq1KmDoUOH4vnz5xBCYM6cOfjjjz+wYsUKnTuNfP/99zh+/DjGjx+v04aDgwPWrFmD9PR0jBo1Cunp6UhMTMSAAQOgVquxadMmnYQNAHr06IEhQ4bgm2++wblz5wAABw8exPjx4zFy5EidpNCcGD/88AOKFSuGDh064MqVKwA0N72YPXs20tPTC3xSCMg8lTx16lR06NABDx8+RKlSpbIs+++//6J169ZywpmlY8eO6Nixo9XjEhER5TaFUiHvGkOledf/u7m5ISwsDBMnTkTdunWhVCoRFBSEEydOoHr16jple/XqhQMHDuD999/XaycoKAhHjhzBmDFjUKFCBTg4OKBt27Y4e/aswcGjADBv3jwEBQWhZ8+eSElJQYkSJbBixQp07tzZYPmcxOjWrRv27duHQ4cOoVatWqhXrx4aN26Mfv36oXLlyma9VrZG1qlkANi2bRvWr1+PtWvXGi0TGRkJf39/JCYmGi2Tn/FUMhGRBk8lZ8+ap5LDF4+Hh6v5r0dsYjJ8B03N1b6SbZE9XY2vry+ePXuGevXqwd3dXW+7SqXCjRs3jN5eh4iIiIjyB1mJ4fLlyzFo0CCo1eps73ls7elqiIiICjqF0g4KpYw7n8ioSwWTrMRw0qRJUKlUaNSoEYYPHw5fX1+96WrUajXCwsIwdepUWR0lIiKiTJR2mkVOfaIMZCWGUVFRcHFxwd9//230ptYA0KpVKyxatEhOKCIiIiLKZbKmq3n33Xfh7e2dZVKodf36dTmhiIiIKDOlUv5ClIGsT8T3338PT09PafbwrPTo0UNOKCIiIspEYWcneyHKSFZi6O3tjYMHD2LNmjVGp6JRq9U4evQo/v77bzmhiIiIiCiXybrGsHDhwoiNjQUAzJ071yIdskXxiZo5CJUvRl5nNS+Xsbm7Ms9fqG0TAOyMTECakhAHAHBx058miIhIjsxzBmq/u3Iyd6Gh77uYBM13m6eb5jsv7sV3nV2mmSsMfY/m9/kL8wQHn5CFyTpiOHLkSAghTFqIiIjIwpTKl8mhWQuvMSRdshPDwMBAXLp0CcnJyVCr1XpLamoq9uzZAztex0BERGRRCqVS9kKUkaxPhLu7O8aOHYuyZcvC0dHRYBl7e3u89tpr6Nu3r5xQRERERJTLZN8Sb9CgQSaVW7JkidxQRERElJFC5jWGCp7NI10mHzFs2LBhrnQgt9olIiIq8GRdXygzqaQCyeTEMDIyMlc6kFvtEhEREVHOmHwqWaEwPGWKXLnVLhERUUEndwAJB59QZiYnhrGxsVi5cqXFp56Ji4uzaHtERESvDM5jSBZmcmL49OlT9OvXz6LBhRA8YkhERESUT5icGE6aNCk3+0FEREQ5pZ3gWk59ogyYGBIREdkohZ0dFDJuICGnLhVM/K8CEREREQGwwATXRERElEeUSnmng3kqmTJhYkhERGSrOCqZLIyJIRERkY1SKO2gkJHcyalLBROPIRMRERERAB4xzJH4xCR4eHjorS/k6mJyG64uzgbXp8RFax5o53VUOkrbXJwN13Fyc9d5HpeYJD12z0GfyHTR8YnSY69CrgCApzEJAIDinm550icic8UkvPzO8HRz0Vmnfa5l7LsL0Hw3AkCKSnMDhCLumr8NtYEbImjbTUxKBvDyuyopWfNcpTZ+EwVtnMzfudrvvlfye08h8xpDBY8PkS5+IoiIiGyU9lSynIVsw9OnT/Hjjz/iwoULOuuXLl2Kb7/9FpGRkRaJY5HEMC4uDps3b8Yvv/wirTt+/DiOHj1qieaJiIiIXlnh4eGoXbs2Pv/8c3z++ec62/r374/q1aujTp062L59u+xYshPDFStWwN/fH927d8f//vc/aX316tWxa9cuNGrUCDdv3pQbhoiIiDLT3vnE7IUnDm3BV199hfDwcLi4uOCtt97S296hQweEhISga9euOHnypKxYsj4R27dvR//+/REbGwuR6VoSZ2dnTJo0Cc2bN0f9+vVx48YNWR0lIiKiTLTzGMpZKN/bs2cPNmzYgNjYWHz00UcGy/Ts2ROpqamYMGGCrFiyPhHffPMNAgICsGHDBly+fBne3t56ZT744ANERUVh3LhxckIRERERvZLs7e3RtWtXKLNI5B0cHAAA//77r7xYcipfuHABJ06cQJUqVQDAYIe1o3j37NkjJxQRERFlwnslvxoKFSqEhIQEuLkZn/1ixYoVAAAXF3mj82UdMQwICJCSQmMOHjwIAEhLS5MTioiIiDKTdX2hzLumkNX07t0b/fv3R2Jiot42lUqFBQsW4PPPP4dCoUCnTp1kxZJ1xLB8+fK4evUqKlWqZHD78+fPMXHiRCgUCtSpU0dOKCIiIsqMt8R7JXz66ado3rw5ypYtix49eqB8+fJQqVS4efMmtm3bhvDwcAghULJkSUybNk1WLFmJ4dixY9GlSxcsW7YMdevW1dm2Z88efPLJJ7h16xYUCgXGjBkjq6NEREREryInJyfs3r0bH374IebMmQOF9mYYgDT4t379+li1ahV8fX1lxZKVGDZq1AijR49G06ZNUaJECURGRqJRo0a4ceMGnj9/DiEElEolvvvuO7Rv315WR4mIiEiXQqmEQsbIYjl1ybo8PT2xYcMGXLhwATt37sTdu3ehVqvh5+eHli1bokmTJhaJI/uWeP369UPDhg0xZ84chIWF4fz580hPT0dAQACaN2+OESNG8DQyERFRblDIPJWs4KlkWxMUFISgoKBca98i90quXLmyzl1PiIiIiMiy/vnnH2zatAnPnz/H6tWrAQBhYWE4fvw43n//fZQsWVJ2DFmJ4TfffGPyRIqPHj3Ctm3bkJaWhnbt2hkdsEJEREQmUigAhYzTwRmuVaP8SwiBQYMGYdmyZQCAIkWKSNtatWoFhUKBJk2aYMaMGejatausWLIuLli5cqX0OCIiAtHR0QbLnTx5EpUrV8batWthb2+PoUOH4osvvpATmoiIiBRK+Qvle99//z2WLl0KhUKBEiVKwC7T/JMtW7bEmDFj0LNnT9nzRsv6RERGRuLtt9+Gi4sLSpQogSJFiqB06dL4+uuvkZqaKpUbN24c4uPjsWDBAgwfPhx79uzB1atXMWrUKFmdJyIiIiroFi1ahLZt2yI8PBzh4eHw8vLSK/P6669DrVbjf//7n6xYshLD58+f448//kBKSgqEEBBC4P79+5g0aRJatGghTcR44sQJAEDZsmUBAHZ2dggNDcVPP/2EY8eOydoBIiKiV5VQKGUvlP89fvwY69atQ/HixQFAZ7oaLZVKBQD477//ZMWSPfjEw8MDI0aMQLdu3VC6dGkIIXD27Fl8+eWXmD59OqZMmYK4uDgAmnl4tKpVqwYvLy/88ssvaNCggdxuWEUhV8O3mUlKTgYAuDg7m7TeELWDs05Zp6wKZ5KclAQAcDfQP+02Z5m3yMnv0sOvSo/tfXPv+lWvQq5664p7Gr9FUWbxiZr3I/Nn6Vms5j9RxTw07UfHv5zdXqWZogpF3DXbYhI0bXi66baRnJggPXZ2Nb1PpC8xSfO36+qS/d+utRh73+MSjf/9Zy6jfvFZytxGRlltM0b7eU6MSdCJZ6/U/HhpP/cZy2Z+bU35njQmq30v8OSeDmZiaBPKlClj8ChhRlu3bgWQx7fEAzQTWf/vf/9DUFAQ3N3d4eHhgWbNmmHr1q347bffIISAWq02eB/lIkWK4MCBA3K7QERERFRgNWjQANu3bze6/eTJk/j666+hUCjQunVrWbFkHTH09fU1Okdh4cKFkZCQIM3InfFooVZKSgqePn0qpwtERESvLoVC3shijkq2CV999RWaNm2KK1euoEuXLgCA1NRUXL16FevXr8esWbOQlJSEQoUKYcqUKbJiyUoMPT09cfjwYTRu3FhnvVqtxvjx41GuXDmkp6cD0Jxyzig5ORnh4eFwddU/NUdEREQmUCo1i5z6lO/5+flh69at6NGjB0JCQiCE0DllrL1P8vr162VPBygrMezbty/atm2L9957T5qF++7du9i8eTPS09Ph7OyM/fv3A9AkkRlt374dKpUK1apVk9MFIiKiV5bcASQcfGI7atWqhUuXLmHr1q0ICwvDvXv3kJ6ejpIlS6J58+bo2bOn7OsLAZmJ4RdffIEDBw5g4cKF0ggZIQQqVqyI48ePY8KECdI9kgMCAtC9e3d8/vnnsLOzwxdffAGFQoFu3brJ3gkiIiKigurRo0coWbIk7O3t0a1bt1zNnWQlhnZ2dti+fTuWL1+OHTt2IDU1FY0aNcLw4cPh6emJ+fPno1WrVrhx4wa++OILXLt2DT179sTly5chhECVKlUwfPhwS+0LERHRq4Wjkl8JFSpUwMOHD/XOvuYG2dPVKJVK9O/fH/379ze4vUePHtLjoKAgnD59GkuWLMHt27cxcuRIg4NSckN6ejrWr1+P7du3w97eHn5+fhg8eDACAwOtEp+IiMjimBi+EhITE1GzZk2EhISgb9++cHPLvSnJZCeGplqyZAkGDhwIBwcHDB061FphAWgme3zvvfdQuXJlzJo1C6VLl7ZqfCIiIiJzOTk5YebMmTh58iRq1aqFtm3bYtiwYbkyTsMq/1WIjIzEp59+ao1Qen777Tc0adIEPXr0wJYtW5gUEhFRwcF7Jb8SpkyZgi5duiA0NBSXLl1CixYt8Omnn6Jly5ZYv369NAOMJcg+Yvjvv/9izZo1uHfvHpKSkqR5C7XS0tJw5coVJCUlGWkh9/zzzz/o0aMHBg0ahEmTJlk9PhERUW4SCoXMUcmcx9AWfPHFF9LjjANQrl27hgULFmDKlCl45513MHjwYAQEBMiKJSsxnDdvHj7++GMA0EsIMzN0X7/c9OTJE7zzzjsoWbIkZs6cadXYRERERLmtYsWK6Ny5M27cuIHQ0FB8++236NChA37//Xez25SVGE6dOhUA8Nprr+GDDz6QhlJndvLkSXz55ZdyQuXYmDFjEBUVhWnTpsFZxj04iYiI8i0OPnkl7Nu3D6+99pr0PCkpCatWrcIvv/yC8+fPQwgBJycn9OjRAx999JGsWLISw+TkZHh6emLXrl0G74Ws1aJFC/z0009yQuXIgwcPsHz5cjg5OaFChQoYMmQIrly5glu3bqFSpUoYN26czgtMRERkk3hLvFfCm2++iatXryIyMhLLly/HsmXLEBMTAyEESpcujaFDh2LQoEEoUqSI7FiyEsOePXti48aNWSaFWlevXpUTKkc2bdoEIQQcHR1x9OhRTJ06FUWLFsWff/6JXr164fXXX8fKlSvRu3dvg/VTUlKQkpIiPY+NjbVW14mIiIh0JCUlSYNnhRBQKBRo06YNPvroI7z55psWvVxP1jHkb7/9FgEBAdixY0e2ZevUqSMnVI78888/AIABAwZg/PjxKFq0KACgQ4cOmDlzJtRqNQYPHoxnz54ZrB8aGgpPT09p8ff3t1rfiYiITMZRya8MIQQ8PDwwYsQIXLlyBbt27cJbb71l8TEcsj4RkZGR+PXXXzF//nycPn0a9+7d01tu3bqFlStX4tq1a5bqc7YePHgAAChVqpTetj59+sDT0xMJCQnYsGGDwfpjx45FTEyMtNy/fz9X+0tERGQO7b2S5SxkG/r374/79+/jxx9/RIUKFXItjqxTyQ0aNMDTp08BADt37rRIhyxBe+rXw8NDb5uLiwtatWqFbdu24fLlywbrOzk55eiOLC4vBrckJyYAAJxdNTOSq9RZj9TOWMfFNeezmMcnaqYAKuSquWl2UnKyXp+cLXBD7fwkMUmzj64uugOK7H0r5UV3DHoelwgA8HZ3BQCkJMRJ21ye39GsU2umE3AqpLm9UTEPV5027JQv/weoUul+jjzdDL+nzgY+Q8kvpolKf9GEPdQAAKG00/QnDwZmGXsPzRGToNk/7Wui/XsCDL8e2cn8N2XJvhmS+TsjKw5Kw0cF3E3oq7EyhtrUfl6d3Nx11ht6bbTvpfaAhfbIhbZVhVoFAFAJpV4dO3WayXG0323G3pe4F3VMeS0KHIUSMOFyrizrU75XqlQpLFiwwOAAX1Np77ecHVmfiC+++AJCCDg4OMDHxwf+/v4ICAjQWYoXL271qWqKFSsGwPi1gX5+fgAAtVpttT4RERERmeP+/fuykkJAMxDYFLKiDBs2DEuWLMGJEyfg6upqtNz169cRHBwsJ1SO1K1bF4cOHcLFixcNbtdOX1OxYkWr9YmIiMjiOF0NmSi7+aa1ZH0iXFxc8NVXX8HR0dFomeTkZFSoUAFjxoyREypHevbsCQD4+++/Dd4m5vbt21AqlXj77bet1iciIiKL4+ATMpGpZ29lfyJ69OiR5eHNvXv34qOPPsJXX30lN5TJGjZsiHfeeQfh4eFYtWqVzranT5/ir7/+wuDBg1GmTBmr9YmIiIgov5N9r2QAiIuLQ0xMjN41e2q1GsWLF8e6deugVCoxZ84cS4QzydKlS3H9+nWMGDEC5cqVQ7NmzfD8+XO8//77qFWrFmbNmmW1vhAREeUKnkomC5OVGD558gRdu3bF4cOHsywnhMDKlSutmhh6enri4MGDGD9+PLp37w4nJyd4eXmhe/fuGD16dJanv4mIiGyBUChkTTkjeOcTykTWfxXGjRuHQ4cOwcHBAaVKlYKTk5PeqGQHBwdUr14dU6ZMsVSfTebl5YVffvkFjx49wp07d3DmzBmMGzeOSSEREZFMqampmD59OipVqoRy5cqhRYsWOHDgQI7befz4MYYMGYKyZcsiMDAQPXr0wL1797Kss2nTJtSrVw9ly5ZF9erVsXjx4jyPUVDISgx3796Nr7/+GnFxcbh37x4GDhyIv//+G7dv35aW0aNHY/DgwRgxYoSl+kxERERAng0+SUlJQfv27bFy5Ur8/fffuHnzJj7++GO0adMGGzduNLmd27dvo27duoiKisLFixdx48YN+Pr6om7dukZvpTtu3Dj0798fM2fOxK1bt7BhwwaMGzfOaJ5hjRgFiazEMD09HePHj4eDgwMAYNCgQVi0aJFOmdGjR+PLL79EWFiYnFBERESUmUIhfzFDSEgIwsLCsHTpUgQEaCbs79atG7p27Yp+/frh9u3b2bahUqnQrVs3pKamYunSpXBxcYGdnR1mzpwJZ2dndO/eHWlpaTp1tm3bhtDQUEycOFGal69y5cr45ptvMGfOHL07mlkjRkEjKzEsXry4znQwNWrUwKVLl6S7oQCa07leXl74/PPP5YQiIiKifODOnTv45ZdfULVqVdSvX19nW9++fZGYmIixY8dm287atWtx6tQpdOvWDW5uL+/+Y2dnh169euHcuXNYsmSJtF6tVuPLL7+EQqFAv379dNrq3bs37OzsMGrUKKhUKqvGKGhkJYbVq1dHjx49sHz5cpw6dQoA8Mknn6Bnz56Ijo4GACxZsgTh4eG4fv267M4SERFRBnlwKnn9+vVIT09H48aN9bY1aNAAALB161ZERkZm2c7q1asBwGA7DRs2BACds5AnTpzA9evXUa5cORQvXlynfKFChVCtWjU8fPhQ5xa91ohR0MhKDCdPnoy9e/diwIABaNKkCVQqFdq2bQtfX1+ULFkSRYsWxeDBgwG8/LAQERGRZQiFUvaSUzt27AAAlC1bVm+bt7c3SpUqhdTUVBw6dMhoG4mJidi/f7/RdrR3Szt9+rR0oCmruBnraC9ds0YMW2KVO5+UK1cOx48fx6effooffvgBdnZ2AIDFixeja9euiIqKghACDRs21Lv2kIiIiGTKgyOGp0+fBgD4+fkZ3O7l5QUAOHPmjNE2Ll++jOTkZKPtaNsQQuDcuXNmxbVGDFti6gE62RNcV6xYET/88IPOOmdnZ6xcuRJz584FALi7u+PGjRtyQxEREVEuiI2N1Xnu5OQEJycnvXLJycmIj48H8DJJyszT0xMAEBERYTTes2fPpMeG2tG2kbEdbR1T41ojRn6wZs0aHD58GH5+fvjwww9RpEgRg+Uy3wnOGIvc+cQYd3d3AEBaWhqCg4ORlJSUm+GIiIheKZoJrs2fpFpb19/fX2f9pEmTMHnyZL3yGa8bdHV1NdimUqk5Cqk9WmdIdu1o28jYjraOqXGtEcNaateuDQCwt7fHa6+9hunTpwMAevXqhQ0bNkiniefNm4cTJ07oXR+ZE7maGGrt3LkTqamp1ghFRET0yhBCs8ipDwD379+Hh4eHtN7Q0UIAOjeIMHbNmvb33tvb22jc7NrJmDNo29HWMTWuNWJYy5kzZ9CoUSOsWrUKgYGBAIAVK1Zg/fr1cHR0xMyZM9GyZUvMnTsXEyZMwMKFC82OleuJYUREBL744ovcDpMvOLu66Twv5OqSbR2h1FyXmZik+d+Hq4uzyfEyt+/irF83LlFzlNbdhL7Ygpy8PvmFk5v7yydumguX7XJS307zP/rUqMcAgOdKTXs+nm5G60THJwIAXFWaf9PtNP/7LVTIeB1jbXgVMvw/Z3OZ+h6mxrw8VePoWdRgGU83zec6NVozRZZSZLhf+4u/x5S4aACAk7tXtjG1f1NJL44GGPqbMiYmIUmnTw5Kzftm6G9Q+146F/YxuX37lBen+l68fvEv2nUQminDFClxUllHb1+duimxzwEATh6aH7PU5+EAANdM5YCXn1ft/jirUwAAhQy8fpnfy8xvbXJigqbNDJexKdI0nyuF6sWPcqZ4ji8+70kZjsgossl8VGoZmZEJzPl+tjUeHh46iaEx3t7ecHR0RGpqKhISEgyW0Q7kKFrU8N8tAPj4vPzsJyQk6JzWzdhGxnZ8fHxw6dIlk+NaI4a1KBQKrFu3Tjqym5aWhokTJ0KhUGDy5Mn4+OOPAQCzZ89GjRo1ZMXK8VWnV69exTfffIPPPvsMS5YsQUpKitGyly9fRpMmTXh9IRERUS5QCyF7yQk7OztUrVoVABAeHm6wzJMnTwAANWvWNNpOUFAQFC9OYxtqR9uGo6MjqlSpAkAzRV5O4lojhrWUKlVK53T/kiVLcP/+fQQEBOjME21vb4/Hjx/LipWjxHDhwoWoXr06Jk2ahDlz5mDw4MGoVq0arl27pld28eLFqFevnjR/4fDhw2V1lIiIiHQJCyw51a5dOwDAxYsX9bZFREQgJiYGbm5uaNasmdE2ChcuLE2Obagd7QGl5s2bSxNTZxU3Y50OHTpYLYa1FC5cWLp5yNOnTzF58mQoFApMmjRJuvscABw6dEjnSKg5TE4M//vvPwwfPhxpaWkQQkjLrVu30KNHD6lcTEwMunfvjiFDhiAxMRElS5bEn3/+iTlz5sjqKBEREeW9gQMHQqlU4sCBA3rbjhw5AgDo0qWL0esUtbTzHGfVTu/evaV1bdq0QWBgIC5fvqwz4hjQnOK9fPkyAgMDpYmrrRXDGoYOHYrXXnsNX375JRo2bIinT5+iYcOGOndnuXXrFgYMGCA7lsmJ4Zw5c6BWq9G6dWts374dly9fxu+//446derg3Llz2LNnDw4fPoyaNWti8+bNEEKgS5cuOH/+vJSBExERkeWohfwlpypUqIDBgwfj/PnzevP5LV++HC4uLpg0aZK0LiwsDA0aNMDs2bN1yvbt2xfBwcHYsGGDzijf1NRUrFu3DkFBQXjvvfek9fb29ggNDYVarZbuaKK1atUqqNVqTJ06VZpT2VoxrGHYsGH48MMPsWXLFkRERODNN9/E5s2bpe1DhgxBo0aNEB4ernPrP7MIE1WtWlW8++67euuTkpJE7dq1RdWqVYWDg4NQKBTC09NTLF++3NSm872YmBgBQMTExFi87cSkJJGYlCQSEjWLpcUmJIrYhESLt0vGRcYmiMjYBFltaN+32IREEfdiSXn+SKQ8fyQeRceLR9HxWdaPiksQUXEJIiX6mUiJfiY9zwlz6liStu8p0c+yLxv1RLO8eI1Snj+StiXHRonk2Kgcxdb+XeZEdHyiiI5/+bem/Zs29DeYuY+m0O6jlvZzkRwfK5LjY0VK5ENpySw5JlIkx0S+bMtIOUP7Y87rp5WUEK9ZEhOlRduXzK+BNp72tc+4aOsak9uf1Zx+P+fmb0bmGHcfPpL235zl7sNHZvU1Pj5e1KlTRzRo0EBERkYKtVotZs+eLRwdHcXGjRt1ynbq1EkAEIUKFdJr5/z586JIkSJi2LBhIi0tTSQkJIg+ffoIHx8fceXKFYOxhwwZIooUKSLOnj0rhBDiwIEDwsPDQ4wcOdJgeWvEKEhMHpX86NEjbNiwQW+9s7MzJk+ejM6dOwMAWrRogeXLlyMgIEBexkpERET5kpubG8LCwjBx4kTUrVsXSqUSQUFBOHHihDSAQ6tXr144cOAA3n//fb12goKCcOTIEYwZMwYVKlSAg4MD2rZti7Nnzxqdi2/evHkICgpCz549kZKSghIlSmDFihVSHpIXMQoShRCmDUlycXFBfHy8wcOn8fHx8Pb2RmhoKEaNGiWNAsqoe/fuBhNLWxAbGwtPT0/ExMSYNJw/J7RTMmjfBUtPh1DQpquxBc/jNNNxeLubP82L9n0DAO1fk2NKjKZ9M6arSXwxXU1Opp7JrelqTGXKdDVS2RfT1SDDdDWOL6aCycl0NVqWmK5GO8WJ6sUft6HpahxzMF2Ndh8dvTQ/ZJaYriZzOUP7o52uJievn5Z2upqMt11TpGna1U5Xo30NMk9Xk5F2uhpnF8PfY7n9Wc3pdDW5+ZuROcbtB49kxYiNjUWgX8lc7SvJl/nONNr3KiIiAuPGjZPufDJhwgQ0bdpUViyTrzFMTU1Fenq6wW2FChWShkwbSgpTUlLw119/md9LIiIiMsiaI5Ipb3h5eUmjrLW3G05KSkLLli2xZMkSXLp0CSdPnsTrr7+Os2fPyopl8qlkIQR++OEHlChRwuD2pKQkLFq0SG+28MTEROzcudPoZJFERERkHnMHkGSsT7Zh4MCBmDdvnnTmdtq0abh06RJKlCiB3bt3Izg4GGvWrMG4ceOwY8cOs+Pk6M4nEyZMyHL70KFDDa4XQhg8kkhEREREWbO3t8dPP/0kJYWRkZH48ccfoVAoMHfuXAQHa+6q1bt3b3z99dfyYuW0Y8WLF4e9venVEhMT9eYCIiIiIvnEizmF5dSn/C8gIAAuGa6x/fbbb5GQkIBGjRrhnXfekdar1Wrcu3dPViyTM7yaNWvi4MGDZs2Ps3fvXrRt2zbH9YiIiMg49YtFTn3K/0qUKIHjx4+jfv36OHLkCGbPng2FQoHQ0FCdcqtWrdKZr9EcJieGnTt3NnvSxNatW6NkyZJm1SUiIiJ6lX3zzTdo27YtKlasiDNnziA9PR2DBg1C8+bNpTJr1qzBRx99JDuWyYmh3NusbNmyRVZ9IiIi0iXEy+nOzK1P+V+rVq2wd+9ezJs3Dz4+PmjVqhVGjBghbR8+fDju37+Pli1byo5lcmLo7+8vK5D2RtZERERkGRyV/OqoU6cOFi9ebHCbdgobS8jR4BOyPFMm0E2J10xs7FTIM8ft2+XyaHD1rZMAAGXZurkaJztpT+9Ijx2Kl8mzfgDyJrbWik15eeVPqcIvLuF4MUGyw4sJtFMjHgAAhIvmc+Hk5i7V0U70m5Kg0jx30+2ToUm4M08SnFcTW2tlN6l1Roo049fUaCdmzsnfUU4mttbSTmytldVkyKZObK19jwFAoUrTbSNVM6G1dsJrZHj/055pLj53KKa5A5VdQqRmw4sJrrUTW2snus64Tuvl/rjo9MWxqJ9eP9PDrwIAVIWKAXg5kbZdrGYibwefci8LG5mkOvPrZ4h2om7thNkqe+cXPUwzVsUiLH3jASI5IiIi8ODBA9SsWVN67unpCQcHB4u0b/IE10RERJS/aEcly1nINly8eBGtWrVCiRIl0K5dO2n906dP0aNHD4SEhCAtTf5/kpgYEhER2Si1BRbK/y5duoSmTZvin3/+0Uvoq1atik2bNuHKlSto0qQJ4uLismgpe0wMiYiIiPKxcePGISkpCcOHD8f8+fPh7u6us12pVCIkJAQnT57EpEmTZMViYkhERGSjBF6OTDZryesdIJPs378f69atw88//4zBgwfDyclJr0yZMmUAABs2bJAVyyKJoRACp06dwu+//y6tu3btGh49emSJ5omIiMgAtRCyF8r/vL298fbbb2dZ5sqVKwA0t8uTQ3ZiuHfvXlSoUAH169fHoEGDpPXu7u6YMGECevTogefPn8sNQ0RERJkICyyU/5UqVQqxsbFGt6vVakydOhUAUL58eVmxZCWGhw8fRqdOnXDr1i29kU0lS5bEkiVL4Obmhjp16uDJkyeyOkpERET0Kvrwww/Rt29fJCQk6G2LiYlB7969ERYWBoVCgQ8//FBWLFmJ4cSJE+Hm5oYZM2bgzz//hKen/vxgI0aMwN27dzFu3Dg5oYiIiCgT7QTXchbK/95//30ULVoU5cuXxwcffICIiAiMHTsWXbp0gb+/PzZu3AgAePvtt/HJJ5/IiiVrguvjx49j165daNy4MQAYnFyxeHHN5Kt//PGHnFBERESUmcxb4vFcsu1YsmQJli5diu+//x4RERH49ttvpW3+/v4YOXIkPv30Uyhk3thCVmLo6+srJYXG/PfffwCA+Ph4OaGIiIiIXlkqlQr9+/dH//798fTpU9y7dw/p6ekoWbIkSpcubbE4sk4l+/v7ZznyODk5GV999RUUCgWCgoLkhCIiIqJM1BCyF8r/Pv30Uzg5OeG7774DoDkbW7duXTRs2NCiSSEgMzEcOXIkunbtiocPH+ptu379Otq2bYszZ84A0FxrSERERJYjaw5DuaehyWqWLVsGIYTsqWhMISsx7NSpE9q3b4+KFSuiRYsWePToEXr16oU6deqgSpUq+PfffwEAn3zyCd577z2LdJiIiIjoVdKlSxd4eHjgq6++yrbs5MmTZcWSPY/hxIkTsX37dri7uyM9PR3r16/H6dOnYWdnh2bNmmHLli348ccf5YYhIiKiTDgq+dWwYMECdO/eHcuXL8+y3N27dxEaGiorlqzBJ1qtWrVCq1atoFar8fz5c6Snp6NIkSIGRykTERGRZcg9HcxTybZh6NChEELgl19+wYoVK1ClShW9MomJidi/fz/S09NlxbJIYqilVCpRtGhRg9uWL1+ODz74wJLhiIiIiAq88PBw7N69W7qZyLFjx4yWzdPpakyVmJiIESNGMDE0IC4xCQDg7uoCAEhJiAMAOLm5vyyk0D3jn5ykqePs4qKzPjEpWXrs6uKs868lxCRo4nq6vYyrLFs3yzppj29Kjx18ygEAVHfPAgDsStewWN/ULl4Wa0uu5ETNzPTOrm45rqt9vUq9eK0yin/xWSni7goAiFFq/vid1SlG21MkxQAAUtM1ZRw9Nf9xSzVw/ihNrfvc0PudG7SfWzmfVYdiAQCA1OinRss4FdKfgN8SUp+HAwAcvX1118dE6DzXvvYAkB5+FQBg71spy7bt4l+2YVempm57XsWN1tO+HukPL2vilNI/ugAAysSol08y9T8zx6J+Rrdp9yPzD4qDgc9xZqr75wEAdv7BAICUWM0tVBXi5QdS+9o5eXjr1NX+rSlStXeDyP49lvP3mR/JHVnMUcm2YfTo0di9ezfGjh2LsmXLwt5eP31Tq9XYv38/Vq1aJSuWSYnhwIED9W55Z6q0tDQcP36c8xgSERFZGE8lvxpat26Ntm3bSvdDNqZ///7YsWOHrFgmJYY3b97EwYMHzU4OAfmHNomIiEiXWgioZfw2y6lL1vPHH3/g119/zbbc6tWrce7cOVmxTEoMhw8fjsuXL2PUqFEoWrSowUOYxqSlpeHAgQNYvXq12Z0kIiIielV9/vnnuHbtWrbl6tatiy1btuDjjz82O5ZJGV6XLl2wZ88ehISEmBVk0KBB2LNnj1l1iYiIyDCVWrPIqU8FR4kSJTB//vzcTwzt7Oyk27CY68GDB7LqExERkS6eSi6YDh48iKlTpyI1NRUA8PDhQ7z22mtZ1klOTsbly5dlTxVo8jlhT095I/p27NiBN998U1YbRERERAVds2bNsGTJEgwaNAi7du2CQqHA/v37s63n4OCA+fPny4ptlelqkpKS0LdvX0RHR1sjHBER0StBLQRUPGJYIJUqVQo7duzA4MGDsWvXriynoVEoFHBxcUHFihVlH8gzKTH85ptvsGHDBoSEhKBPnz7SelOmsUlLS8OJEycQFxcnq6OWsH37drz55ptYunQp+vXrl9fdISIikkVzWzs5iaEFO0MWp1QqsWDBAvTs2RMtWrSwSkyTEsMffvgB0dHRmDt3rk5imJNpbPJ6uprIyEh8+OGHedoHIiIiopyws7PD4sWLERsbK63z8PAAAERERGDcuHE4fPgw/Pz8MGHCBDRt2lRWPJMSw3Xr1mHo0KF4++23ddYPHToU58+fx6hRo1CiRAmDFzympqYiLCwM69evl9VRuYYOHcpJtomIqEDhqORXg7e35q4/FSpUQL9+/TBmzBgkJSWhZcuWuHz5MoQQePz4MV5//XUcPXoUNWqYf2cxkxLD2NhY3LlzBzNmzMAXX3whre/SpQt27dqF8ePHZ1n/ww8/xL59+8zupFyrV6/GkydP8M4772DlypV51g8iIiJL4qjkV4MQAoMGDcK8efNgZ2cHAJg2bRouXbqEEiVKYPfu3QgODsaaNWswbtw4WXc/UWZfBJg+fTrs7OwwZcoUnfUODg6YPn26SYEuXryY895ZwMOHDzFu3DgsX74cSqVJu0tERESUb9jb2+Onn36SksLIyEj8+OOPUCgUmDt3LoKDNfca7927N27duiUrlkmZ0pUrV/Dbb79h2LBhOuu1p5BNcerUqZz3zgIGDhyISZMmITAwME/iExER5RbVi1HJchbK/wICAuDi4iI9//bbb5GQkICGDRvinXfekdar1Wrcu3dPViyTEsOgoCB07NhRb/327dtNDjR8+HDTe2Uh8+bNg7OzMwYMGJCjeikpKYiNjdVZiIiI8hs1tCOTzVzyegfIJCVKlMDx48cBAEeOHMHs2bOhUCgQGhqqU27VqlVITk6WFcukxLBly5Y4fPiw2UGuXr0qO4PNqZs3b+K7777DwoULc1w3NDQUnp6e0uLv758LPSQiIpJHpRayF8r/vvnmG7Rt2xb169dHixYtkJqaioEDB6J58+ZSmTVr1uCjjz6SHcukwSchISFo0KABlEolihQpAkdHRygUCpNu0RIXF4eLFy9CpVLJ7qyp1Go13n//fcyaNQvFixfPcf2xY8di1KhR0vPY2Fgmh0RERJQnWrVqhb1792LevHnw8fFBq1atMGLECGn78OHDcf/+fbRs2VJ2LJMSw8KFC+Off/7ByJEjsW3bNunefQBMukULYN15DGfMmIHKlSujc+fOZtV3cnKCk5OThXtlmLuri85zJzd3/f5kWufs4qJXBgBcXZwt1zEASS8OR7s4a9r1dDMcNysOPuX01tmVNjyMXnVpv2Z71Zb62+6f12zzDzZY18ndK8d9y0r6A81gKXu/atmWTTu2DQDg0OBtAICzq5vZcQ29XlrO0S+OurtW0jxHOoCX+5725PbLdkporqlVqDVllNEPAQBJToWMtl/Mw1XnuTnvtzmMfW5TEl5Oiq/9G0iJi9Y8z/R+a/ddmZb4cqVXzv9TmFna45sAsn5fHL19AQCJSZq/F+3+2D3XvF92gbUBAOqbx19Wio8GACQd36lpP1DzObOv0VanbfWTO9JjuzI1s+zrs1kjpcf2zprvr8LDdAcHJq7XnHZy7TFWsyJD+3jxWVfd/k+n35k/3zlhyt9R5r9pJw/vHMdRpCbluI5WctLLusa+W/MzIXNUsinzEFP+UKdOHSxevNjgtrlz51osjsm3xCtZsiTWrVuHhIQE3Lp1C8+fP0efPn2wevVqo3WEEIiPj8fmzZuxYsUKi3Q4O+fOncOyZctw4sQJq8QjIiLKKyqhWeTUJ8oox/dKdnNzk4ZFu7i4mHSLlvbt22Pr1q05750ZfvrpJ1y9elWaFdyQ/v37o3///vjggw+wbNkyq/SLiIiIKL/LcWKY0eTJk00LYm+PNWvWyAllsuLFi6NSpUoGtz169AixsbHw8fGBp6cnSpYsaZU+ERER5QZOcE2WJisxzHjf5OwYmu4mN4SGhuoN39bq168fli9fjtDQUPTr188q/SEiIsotckcWc1QyZSYrMdQSQmDbtm3YsWMH7t27Bw8PDwQHB6N79+6oUqWKJUIQERERUS6TnRjeuXMHXbt2xenTpwG8HOG0ZcsWTJkyBX369MFPP/2EwoULyw1FREREGfBUMlmarMQwKioKLVq0wP379+Hk5ITGjRujSpUqKFy4MNLT03H//n3s2bMHHTt2RFhYGJydLTudChER0auMo5LJ0mQlhl9//TUeP36Mr776CiNHjoSnp6demZSUFAwYMACzZ8/Gl19+KSecbMuWLeMoZCIiIiIjTLolnjG//fYbli1bhsmTJxtMCgHNZNELFy7E+vXr5YQiIiKiTLSnkuUsRBnJOmKYkpKCXr16ZVvOzc0NMTExckIRERFRJmq1gFrGyGI5dalgkpUYFi1aFGq1Gkpl1gcew8LCEBcXl2UZIiIiyhm1zGsMmRdSZrJOJTdr1gwzZ840ul0IgQ0bNqBbt24WubEzEREREeUeWUcMQ0JCUKdOHfz111945513UKZMGSgUCjx8+BBXr17Fhg0b8OjRIzg5OWHSpEmW6jMRERGB09WQ5clKDP38/LBz50707NkTn376KRQKhc52IQS8vLywbt06VK1aVVZHiYiISJdKCKhkJHdy6lLBJOtUMgDUqVMH58+fx88//4zGjRvDy8sLjo6OqFKlCkJCQnDlyhW0bdvWEn0lIiIiolwk64hhUlISjh49iiZNmmD48OEYPny4pfpFRERE2eCoZLI0WYlh+/bt8e+//2LgwIFYuHChpfpU4MQkJEmPPd1c8rAnpkmNiQAAqBzcAABJyckAAGVqIgDAycP7Zdnn4QAAR29fAED6g4sAAHu/anrtZrUNAOyqtjTap3TPUpoymdYnbf9Fs75wMWnd4+1/AgA8AksCANybts22fSnO2d2aPtYwfJRbGw8AXN74CADg0OBtAEDqoQ0AAMcm3bONk53ncYnSY293VwCAMjFKp4yTmzsAICUuWvO8RKBeOw7Fy+g8t4t+CgDw8SoOwPBnMyVBM4OA2s4BAODy4o5FiUmaz4GrS/Z3MEpOTAAAOLu6ZVvWGEVqwssnL/bVyd1Lp0zas3sAAIcX+666/Z+0TXX3LABAOGpeP/uSFQzGSQ+/Kj1WO2viaD/PCqHOtp/pp3Zo6viU1awopbk/vIjV/B0lrg8FALj2GCvVSdk2CwDg8vZIAEDqwXUAgPBvhgEAfCfM0+zXi8+WKYqNnCU9vjJIU097I9KU/av1+gAA9nU66bWjCr8BALALrK3Zj/RUozG1fw/av4XMjP2tZ0V966SmH+7FpXUOxQIMl1VovhGcfcrpbTP2Gcz8XGS6BMrWqCDzzicW6wkVFLJOJV+8qPmhr1OnjkU6Q0RERER5R1Zi+NVXX8HDwwODBw/OtmybNm3khCIiIqJMeOcTsjRZieGIESMwd+5cfPLJJ4iMjDRabufOnQgLC5MTioiIiDLRjkqWsxBlJOsawypVqiAlJQUJCQlYsWIFihYtqlcmMTERz549kxOGiIiIiKxAVmLYtGlTLFmyRHoeHx9vtGzmOQ6JiIhIHrVaQMVRyWRBsk4lf/7553BxccGuXbtw/fp13L59W2+5efMmFi1aZKn+EhER0QuqF4mhnMWahBBYsGABgoODUa5cOdSrVw/btm0zq63Y2FiEhISgfPnyKFu2LDp27IgLFy5kWWffvn1o0aIFAgMDUblyZXz77bdQqYyPzTYnRnJyMnx8fKBQKHQWV1fXLC+7yy9kHTGsXLky3nvvPbz++utZlhs4cCCTQyIiIguTm9xZMzEUQqBv374ICwvDX3/9heDgYBw8eBDt2rXDN998g1GjRpnc1vPnz9GiRQt4e3vj+PHj8Pb2xg8//IAGDRpg165daNq0qV6d+fPnY8SIEVi1ahW6d++OR48eoWXLljh27Bg2btwIOzs72TEA4Ndff8WTJ0/01vfr1w9FihQxeR/ziqzEEAAWLFhgUrmjR4/KDUVEREQ26qeffsLq1auxfv16BAcHAwCaNWuGzz77DF988QUaN26Mhg0bmtTWgAEDcO3aNdy8eRPe3pq5dUeNGoVNmzahe/fuuHTpEry8vKTyp06dwscff4zBgweje3fNXLMlS5bEnDlz0K5dO3z//ff48ssvZcUAgPT0dPzwww/Yv38/SpQoobOtVKlSJr9WeSnHp5Lnzp2LoKAguLm5oXz58pg8eTJSUlJyo29ERESUBZVa7ulk6/QzLi4OU6ZMgaenJ9555x2dbX379oVarcZnn31mUluHDh3Cb7/9hjZt2sDPz0+vrUePHmH69Ok660NCQqBSqdC/f3+d9W3btkWJEiUwefJkREW9vImAOTEAYO3atahbty5atGiBypUr6yzu7u4m7V9ey1FiOGTIEHzyySe4fPkykpKScOvWLXz99dfo1KkT1GorfbqIiIgIgO1cY7hz505ERUWhXr16cHBw0NlWuXJleHl54dixYzh//ny2ba1atQoA0LhxY71t2iOOS5cula4dfPz4Mfbt2wdnZ2fUrl1br06DBg2QlJQktWtODEBzqvzbb7+Fq6sr9u7di7S0tGz3JT8yOTHcs2cPFi1aBCEEHB0dUadOHZQtq7kFVFhYGJYuXZprnSQiIiLbtWOH5taR2rwhI4VCgWrVNLdPNGXO4507dxptKygoCADw9OlT6e5sO3fuhBACAQEBetcRApBOa2eMndMYAPDbb7/h4sWLWLp0Kdq0aQNfX19MmTIFSUlJem3kZyYnhsuWLQMA9OzZEw8fPsSJEydw48YNHDhwACVKlMCGDRtyq49ERERkgK0cMTx9+jQA6J2W1dJeq3fmzJks24mMjMS9e/eMtuXg4AA3NzedtnIa25wYgOb0c/Xq1eHp6QkAiIiIwKRJk9CgQQOpPVtgcmJ4/PhxVKpUCStXrpQuwgSAJk2aYN68ebh27VqudJCIiIgMU8tMCrXzGMbGxuoslh47oL3RRebBGloZkylT2slJWzmNbU4MAPjuu+9w9uxZREZG4vDhw9KMLefPn0f79u2RkJCQ1a7lGyYnhs+ePcO7775r8DBsx44ds63PU81ERET5k7+/Pzw9PaUlNDTUYLkxY8bozc+X3dKvXz9p/j5XV1eD7SqVmnQkOTk5y35mnAfQ1LZyGtucGBnZ2dmhUaNG2L17N77//nsAwOXLlzFr1iwje5W/mJwYxsXFoXjx4ga3OTg4wN/fP8v648aNy1nPiIiIKEsqIfNU8ot7Jd+/fx8xMTHSMnbsWIPxpk+fDiFEjpZly5bB0dERgGaAhiGpqakAoHNG0hBtOzlpK6exzYlhzKhRo6TR1uvWrcuybH5hcmKoVqsRHh4OtVqtt0RGRsLf3x9CCL1tsbGxmDdvHp4+fZqb+0FERPTKsdQ1hh4eHjqLk5OTRfvp4+MDAEZPp0ZHRwMAihYtalI7OWkrp7HNiZGVr776Cu7u7rh582a2ZfODHE1wPXPmTMycOdPodlvJhq3N081Fepwao7kewdEz+w9TduISNSOd3F1d9LalxMcAAJwKeZrcXvKLkVMKheb/C4VetKttS+Wgf0jd0dtX57m9XzWj7We1zZj0s7sBAMoS5TQrPHT/d+byxkcAgIS130jrAkJ1L1tIPaQZGKW9COJy/7cAAFWW/q7fxxptAQA3PtZMgFr+Z91BVdp4Galu/wcAcGzSPeudyULies1pG9cemv+lu4mMpyc0r7s6IRaA/v/mnNy9sm0//cGLkXOFiumsz/jZ1BIv3n8XZ+ds2zXG2dXN7LpajoV99NalPdNcwO1QLEDnXy27wJdTUagu7QcA2JeuAQBIP/2X5nmt9jp17H0rvaxz5wwAINVOc8RAqU7Xjf9Y88Xu4FPuZf06nQz2P/XKKQAv39OMXN4eqenTKc1ITcdmPQEAvi/+NcXfVeoAAF6/rIlzsmNraVvJBuV1yjq17GNyu9rP8ZVBbwMAKi/eZrSsXRHd9yhl3woAwLN/DgIA/P6nueOVdj8B46+X+uZxAIDq+WMAgEPZutK29PCrmroZ3isAsEvX/J2kP9C8Lxm/YzJ/BlMS4gAATm66c8nJ+ZyT6apXr45bt24hPDzc4HbtnUJq1qyZZTv+/v4oXLgwoqKiEB4ejho1auhsj46Olo7maduqXr06AJgc25wYWSlcuDBq166tM4I5P8vRPIY5PXyccSEiIiLLspVRye3atQMAg8mREAK3bt0CALRv315ve2Zt27Y12taNGzcAAOXLl0f58uV1Yl++fNlgPqKt06FDB7NjZKdkyZIm39Ulr+XoiOHgwYPRuXNnoxdjGhIfH4+NGzdi5cqVOe4cERERGZeuFrCTkdylWykx7NmzJ0JCQnDkyBGkp6fD3v5l+nHhwgXExcWhefPmRqeUyWjw4MFYv349Dhw4gNGjR+tsO3LkCACgd+/e0rrKlSujWbNmOHjwIE6fPq0zybVarcbx48fh7u6OTp1eHs3OaYzsXLhwAT/88IPJ5fOSyYmhp6cn5s+fb1aQDh06YOvWrWbVJSIiIsPkHvWz1hFDLy8vjBs3DmPGjMH27dvx9ttvS9uWL18OhUKBadOm6dQ5f/48hg4diubNm+uMkn7ttdfQvn177N69G0+ePNG5J/GKFStQokQJjBw5Uqet6dOno1mzZlixYoVOYrhz5048e/YM06ZN05maxpwYz58/R+HChaFQKHTWb926FY0aNZKmr8nvTD6VPHz4cPODKJX4+OOPza5PREREtm306NHo2LEjRo8eLU34vHnzZsyZMwezZs1CkyZNdMovWLAAhw8fxvTp03WmkAGAJUuWwNfXF0OGDEFiYiLS09Px5Zdf4urVq9i0aZPe/IONGzfG1KlTMX/+fOzduxeA5jTxsGHD0LVrV4SEhOj1NycxtmzZgiJFiqBhw4Y4fvzF9bIqFVauXIkTJ05g7ty5cl8+qzH5iOHUqVNlBZJbn4iIiHSpZR4xVFvpiCGgmd9v27ZtCA0NRevWraFWqxEYGIi///4bzZs31yvfpUsXrF27Fk2bNtWbFsbX1xeHDx/G2LFjUa1aNdjb26Nhw4Y4e/YsAgMDDcYfM2YMypQpg9GjRyM2Nhaenp743//+h379+knzEpob47XXXkPv3r2xe/duNGvWDDVq1EDjxo3Ru3dv9O3bV8arZn05usaQiIiI8g+VeDkXobn1rcnBwQFfffUVvvrqq2zLtmrVSu9IYUY+Pj45vnlGz5490bOn6aP/TY3h5eWF1atX56gv+VWORiUTERERUcHFI4ZEREQ2ylYGn5DtYGJIRERko5gYkqXxVDIRERERAeARQyIiIpvFI4ZkaUwMiYiIbJRKqKFSq2XVJ8qIp5KJiIiICACPGBIREdksW5rgmmwDE0MiIiIbpVILKHmNIVkQE0Mrc/QsmuX25KQkAICzi0u2bbm7Gi/jVMgzy7rxiZo4qaqXXwre7q6adSlxBttKiYt+scY5275ppR7ZLD12bNTF5Hpa6tjnmro12mZZzq3XBONtJGj259bI3gCAKkt/BwDErZgslXF/f7JOnfI/b9B5rrpzRvPvo5vSuqiD+wEAxbp+kGXfbnzcXa/d26M1t0gKnLkSAODaY6xOHfuYhy+feGhuBWVv5DVIe6a556hDsQCjfVAma14De79qRsto319ndy8A+p9FVxfT3/fcIhw0fUh7rHkfHHzKGS1rV7UlAEB97RAAwL5We83zWyc1/7poPtf2JStIdbTrlHf+02x78Zon714CAHBuO9DkvmZ+Tw1RvXjNjX0RR80bIz0uPGw6ACBi9ucAgNcvn9Ipa+doJz0uNWmBSX289P6b0uOqK/4AAJzv1REAELx2JwAg9ZDmM+vYRPM5Ptu9g1Sn0qCuAICFhSsDAAZHXQEAPJu9CgDg96KcfZ1O2fZFpKUAAGKPHQQAFKn3lrRNkZpksI7Ti8+q6vldvW0pL747nF78/Ti5uWfbB1uUrgYUMpK7dF5iSJnwGkMiIiIiAsAjhkRERDaLp5LJ0pgYEhER2SgmhmRpPJVMRERERAB4xJCIiMhm8YghWRoTQyIiIhvFeQzJ0ngqmYiIiIgAFPDEUAiBBQsWoEaNGnB2doa3tzc6d+6MkydP5nXXiIiIZFO9OGIoZyHKqEAnhkOGDMHQoUNx7tw5pKenIyoqCr///jsaN26MLVu25HX3iIiIZBFCQKhlLIKJIekqsInhn3/+ia1bt2L58uWIjY1FcnIytm3bhmLFiiEtLQ39+/dHREREXneTiIiIKN8osInhsmXL8Pfff+P999+Hu7s77O3t0blzZ6xduxYAEBsbi99//z2Pe0lERGQ+tVrIXogyKrCJYbNmzVCzZk299a1bt0atWrUAAM+ePbNyr4iIiCxHCCF7IcqowCaGH3/8sdFtFSpUAACULl3aWt0hIiKyOFnXF75YiDIqsIlhViIiIuDk5IT27dvndVeIiIiI8o1XboLrxMREHDlyBIMGDYKXl5fBMikpKUhJSZGex8bGWql3REREppN7nSCvMaTMXrkjhosXL4a7uzumTJlitExoaCg8PT2lxd/f34o9JCIiMo1Qy1+IMlKIV+jK08jISFStWhXLly/P8jSyoSOG/v7+iImJgYeHR672MTkxAQDg7OqWq3FMkZiUDABwdXHO456Y507IBwCAMt8uN7j9fK+O0uPgtTt1tk111VyHOj7xutH299dtBABoefKIwe1/ldMMcgp+v760rtSkBdl122Tqm8c1/0brD6Kyr9MJAJD+SNN/+5IVdLanPbkNAHAoEWix/lhDbvQ7Pfyq9NjetxIAIGXPUs1zv/IAALvKzSwWDwAS1n4DAFDYOwIAlO5eAADn9oMtGiezAw0aAwCaHzsMALg1sre0reysNTplk7bNAgC4vD0y23aHKsoAAOaLOyb3RX3jKABAWb6hyXXSH1wEANj7VTO5Tl6IjY2Fp6dnrv5maGM0mPwH7J3N/71IT07AsclvWuX3jWzDK3Uq+cMPP8QXX3yR7bWFTk5OcHJyslKviIiIzCN3ZPErdGyITPTKJIbTpk1DQEAARo8endddISIisgheY0iW9kokhqtWrcLVq1exbNmyvO4KERERUb5V4BPDLVu2YNu2bVi3bh0UCoXONpVKhfDwcA4uISIimyR3LkLOY0iZFehRydu2bcPy5cuxevVq2Nvr5sCPHz9Gv379cOvWrTzqHRERkUxyJ7dmYkiZFNgjhqtXr0a/fv1QqFAhlCpVSmdbamoq4uLi4O/vjxUrVuRRD4mIiIjylwKZGO7YsQN9+/aFEALR0dFGy/Xq1Uvv9DIREZGtUAsBhYyRxWqOSqZMCmRi2KlTJ6jVnLWTiIgKNiFkXmPIxJAyKZCJIRER0auAg0/I0gr04BMiIiIiMh2PGBIREdkotRpQyJrg2oKdoQKBiSEREZGN4i3xyNJ4KpmIiIiIAPCIIRERkc0Sas0ipz5RRkwMiYiIbJRaLWReY8hTyaSLp5KJiIiICACPGFpdXGISAMDd1cXgdmdXN7PbTn0eLj129PY1u52UuGgAgKu7l9ltmEJ1YS8AwC6oda607+juqvM8Zf9qAIBTyz4AgOC1O43WHZ94Pdv2W548kuX29jdPZ9vGvur1AQCBbStp/p25Mts6WspymrpZ/e/OvmQFAID61kkAQPrDGwAAx2Y9TY6TnziUCMxye/LuJdJj57YDTWrT3reS3jqnNv11nqvunAEA2JWpqXn+4rMLmPf5des1AQCQsPYbAIBz+8E5bsMczY8d1u1HySJGy7q8PTLb9uJWTAYAzBd3ctwXZfmGAID0s7sBAPY12mZbx96vWo7jFHScx5AsjYkhERGRjWJiSJbGU8lEREREBIBHDImIiGyWWggoZMxFqOY8hpQJE0MiIiIbxVPJZGlMDImIiGyUEDITQx4xpEx4jSERERERAeARQyIiIpsl1ELWJNU8lUyZMTEkIiKyUUIIWaeDeSqZMuOpZCIiIiICwCOGRERENoujksnSmBgSERHZKLVaADKSOznXJ1LBxFPJRERERASARwyJiIhsllCrINQqWfWJMmJiSEREZKOYGJKl8VQyEREREQHgEUMiIiKbJdRqmUcM1RbsDRUECsHZLbMVGxsLT09PxMTEwMPDI6+7Q0RE+Zg1fjO0MXy7z4XS0cXsdtSpSQjfMJy/byThEUMiIiIbJYTMawwFrzEkXbzGkIiIiIgA8IghERGRzeKoZLI0JoZEREQ2iokhWRpPJRMREZFVCCGwYMECBAcHo1y5cqhXrx62bdtmVluxsbEICQlB+fLlUbZsWXTs2BEXLlzIss6+ffvQokULBAYGonLlyvj222+hUmWdHKtUKqxevRpBQUHYv39/tv0yJ0Z+wsSQiIjIRmmPGMpZrNZXIdC3b19MmTIFa9aswc2bN/HDDz+gd+/e+OGHH3LU1vPnz9GkSRMcPXoUx48fx61bt9CmTRs0aNAA//77r8E68+fPR/v27fHRRx/h9u3bCAsLw6+//opu3boZTNzS09OxaNEiBAcH47333sPFixez7VdOY+RHTAyJiIhslHYeQ/MX681j+NNPP2H16tWYNWsWgoODAQDNmjXDZ599hi+++AJHjx41ua0BAwbg2rVrWL16Nby9vQEAo0aNQo0aNdC9e3dER0frlD916hQ+/vhjDBo0CN27dwcAlCxZEnPmzMHWrVvx/fffG4zTrl07HDp0CF5eXtn2ydwY+Q0TQyIiIspVcXFxmDJlCjw9PfHOO+/obOvbty/UajU+++wzk9o6dOgQfvvtN7Rp0wZ+fn56bT169AjTp0/XWR8SEgKVSoX+/fvrrG/bti1KlCiByZMnIyoqSmebvb09AgICULhwYVSsWDHbfpkTIz9iYkhERGSj1GqV7MUadu7ciaioKNSrVw8ODg462ypXrgwvLy8cO3YM58+fz7atVatWAQAaN26st61hw4YAgKVLl0qnbh8/fox9+/bB2dkZtWvX1qvToEEDJCUlSe0a4uzsnGWfLBEjv2BiSEREZKNs5RrDHTt2AADKli2rt02hUKBatWoAgLCwsGzb2rlzp9G2goKCAABPnz6VrgncuXMnhBAICAiAnZ2dXh3tae2sYisUimz7JDdGfsHEkIiIiHLV6dOnAUDv1K+W9hq+M2fOZNlOZGQk7t27Z7QtBwcHuLm56bRlqdhZsUYMa+E8hkRERDbKUvMYxsbG6qx3cnKCk5OTrL5l9OzZMwAwOojD09MTABAREWFSO9m1lZCQILVlqdim9Cs3Y1gLjxgSERHZKpUKQsaCF9fh+fv7w9PTU1pCQ0MNhhszZgwUCkWOln79+iEyMhIA4OrqarBdpVKTjiQnJ2e5u9p2ctKWpWKb0q/cjGEtPGJIRERko4RQAXKOGApN3fv378PDw0Nab+xo4fTp0/VG/Jpi48aNSE9PhxDC4PbU1FQAkKaeMcbR0VF6bGpb2jpyY5vSr9yMYS1MDImIiF5xHh4eOomhpfn4+ODWrVtISEgwuF0772DRokWzbUfL1La0deTGNqVfuRnDWngqmYiIyEbZygTX1atXBwCEh4cb3P7kyRMAQM2aNbNsx9/fH4ULFzbaVnR0tHR0TtuWpWJnxRoxrIWJIRERkY2ylelq2rVrBwAGbysnhMCtW7cAAO3bt8+2rbZt2xpt68aNGwCA8uXLo3z58jqxL1++bPBUr7ZOhw4dso1tjDViWAsTQyIiIspVPXv2hIeHB44cOYL09HSdbRcuXEBcXByaN29udLqXjAYPHgwAOHDggN62I0eOAAB69+4tratcuTKaNWuGuLg4aVoZLbVajePHj8Pd3R2dOnXK8X5ZM4a1MDEkIiKyUZpTyfIWa/Dy8sK4cePw/PlzbN++XWfb8uXLoVAoMG3aNJ3158+fR5MmTTB27Fid9a+99hrat2+P3bt3S6dotVasWIESJUpg5MiROuunT58OpVKJFStW6KzfuXMnnj17hrFjx2Z5P2RtMqu9m4ohcmPkF0wMiYiIbJStnEoGgNGjR6Njx44YPXq0NEn15s2bMWfOHMyaNQtNmjTRKb9gwQIcPnwY06dP15mmBgCWLFkCX19fDBkyBImJiUhPT8eXX36Jq1evYtOmTXoJWOPGjTF16lTMnz8fe/fuBaA5FT1s2DB07doVISEhRvsdGRkpnQo+evSo0XJyYuQnHJVMREREuc7Ozg7btm1DaGgoWrduDbVajcDAQPz9999o3ry5XvkuXbpg7dq1aNq0qd40L76+vjh8+DDGjh2LatWqwd7eHg0bNsTZs2cRGBhoMP6YMWNQpkwZjB49GrGxsfD09MT//vc/9OvXT5pnMLOmTZvi5MmTSElJAQBMmDABs2fPxpIlS/DGG29YJEZ+oxDGJt0hifbNjYmJydXh/EREZPus8ZuhjeHW6GMo7M2/Q4lIT0HCkZ/5+0YSHjEkIiKyUWq1CgoL3BKPSMs2jmvKkJqaiunTp6NSpUooV64cWrRoYXAkExEREdGrrkAfMUxJSUGHDh3w5MkT/P333wgICMDGjRvRpk0brF69Gt26dcvrLhIREZlNqNSAQsYRQ5V1RiWT7SjQiWFISAjCwsJw7NgxBAQEAAC6deuGrVu3ol+/fqhbt67Ri1SJiIjyO0vdK5lIq8CeSr5z5w5++eUXVK1aFfXr19fZ1rdvXyQmJurNjURERGRLbGm6GrINBTYxXL9+PdLT09G4cWO9bQ0aNAAAbN26VW9uJCIiIqJXVYFNDHfs2AEAKFu2rN42b29vlCpVCqmpqTh06JC1u0ZERGQRPGJIllZgE0PtvQqN3XdROyv6mTNnrNQjIiIiy2JiSJZWIAefJCcnIz4+HgCM3pfQ09MTABAREaG3LSUlRZrlHABiYmIAaCYUJSIiyor2t8Iq949QpUFWFFWapXpCBUSBTAwzXjfo6upqsIz21jTJycl620JDQ/G///1Pb72/v7+FekhERAVdXFycdBDC0hwdHeHj44PHlzbIbsvHxweOjo4W6BUVBAUyMcz4ATf2P7bU1FQA0Lv/IgCMHTsWo0aNkp6r1Wo8f/4cRYoUgUKhsHBvLS82Nhb+/v64f/9+gbjFEfcnf+P+5G/cH+sTQiAuLg6+vr65FsPZ2Rm3b9+WfsvkcHR0hLOzswV6RQVBgUwMvb294ejoiNTUVCQkJBgsEx0dDQAoWrSo3jYnJyc4Oenee9LYKen8zMPDI99+cZqD+5O/cX/yN+6PdeXWkcKMnJ2dmdCRxRXIwSd2dnaoWrUqACA8PNxgmSdPngAAatasaa1uEREREeVrBTIxBIB27doBAC5evKi3LSIiAjExMXBzc0OzZs2s3TUiIiKifKnAJoYDBw6EUqnEgQMH9LYdOXIEANClSxe9U8YFgZOTEyZNmlRg9o37k79xf/I37g8R5YRCWGU8fd4YNmwY5s+fj9OnT+ucMu7atSt27tyJCxcuGJwAm4iIiOhVVKATw4SEBLRo0QL29vbYuXMnChcujJ9//hmjR4/G6tWr0bVr17zuIhEREVG+USBHJWu5ubkhLCwMEydORN26daFUKhEUFIQTJ06gevXqed09IiIionylQB8xJCIiIiLTFdjBJ0RERESUM0wM80BqaiqmT5+OSpUqoVy5cmjRooXB0dMAcPPmTfTp0wfFihWDk5MTqlSpgqlTp+rcyzm3Ymv9999/6NSpEwIDA1G+fHmEhIQgKSlJVptaKpUKDRs2RJkyZQrE/ly/fh1jx47FW2+9hU8//RS//vqrTe1PYmIiJk6ciEqVKsHPzw8+Pj7o1KkTDh8+nKP9yM390dqxYwcaN26MZcuWWaQ9W9gfW/g+yMn+ZJYfvw+IXjmCrCo5OVm0atVKVK1aVdy9e1cIIcSGDRuEg4OD2LBhg07ZCxcuiMKFCwsAwt7eXgCQlqZNm4rExMRci631+++/CycnJ/H9998LIYSIjo4WTZo0EY0aNRLx8fFmtZnR119/LQCI0qVL52hf8tv+pKamijFjxojixYuLFStWCJVKZXP7k5SUJOrXry8qVaokzp07J4QQIiUlRYwaNUrY2dmJbdu25fn+CCHE+vXrRf369aW/haVLlxrtgynt2cr+2ML3QU72x5D89n1A9CpiYmhln376qQAgjh07prO+V69ewtXVVdy6dUtaV79+fdG1a1dx8eJFoVarxYMHD0Tfvn2lL9yxY8fmWmwhhLh3755wd3cXHTp00Fl/5coVoVAoxLBhw3LcZkanT58W3t7eZv8Q5Jf9SUhIEK1btxaBgYFZ7m9+35+ZM2cKAOLw4cM6ZVUqlShfvrwoWbJkjhLe3NgfIYS4efOmSE5OFhUqVMgy8TC1PVvZH1v4PsjJ/mSWH78PiF5FTAyt6Pbt28Le3l5UrVpVb9vOnTsFANGjRw8hhBBnzpwR3bt3F2q1WqecWq0WzZs3FwCEv79/rsTWGjhwoABg8H/b2iMCOW1TKzk5WQQHB4uFCxea9UOQX/YnPT1dvPHGG8LDw0PcuHEjR/uQ3/anY8eOAoDBI09du3YVAMSTJ0/ybH8UCoW4dOmStK579+5ZJh45bS8/748tfB/k9P3JKD9+H+Tk80FUkPAaQytav3490tPT0bhxY71tDRo0AABs3boVkZGRePDgAb799lsoFAqdcgqFAp9//jkA4NmzZ7kSGwDS0tKwceNGADBYp2HDhgCQozYzmjhxIlq0aIHXX3/d5H3Ij/szceJEbN++Hd9++y3KlStn1r7kl/1xc3MDABw9elSvfFxcHHx9fVGsWLE82x8hBBYvXiytc3Z2NhrfnPby8/7YwvdBTvYns/z4fZCTzwdRQcLE0Ip27NgBAAbvtuLt7Y1SpUohNTUVhw4dQqdOnYxegF2hQgUAQOnSpfW2zZw5E+7u7vjuu+/Mjg0ABw8eRGxsLJycnFCqVCm9OsHBwdJjU9vU+vfff7Fjxw7MmDHD4P7Zyv5cv34d33//Pfz8/DBw4MBs9yW/789bb70FQHPHoISEBKlsZGQkDh48iO+++04vMbH2/oSFhUnrMvclI3Pay8/7YyvfB6buT0b5+fsg8+eD6FXAxNCKTp8+DQDw8/MzuN3LywsAcObMmSzbiYiIAAB07txZb9vy5csRHx+PFStWyIqtLW/oSzNjeQDw9fU1qU1AczeaQYMGYdmyZXBxcTFYL6P8vD8zZsxAamoq3n77bSxevBidO3dGhQoVULlyZYSEhCA+Pt6m9qd3795o3749rl69ivbt2yMqKgpqtRrDhw/HL7/8gt69e+f5/pw/fx4qlcpgGUPxc9peft2frOSn74Oc7k9+/z6wxPtDZGuYGFpJcnKylChk/NHOyNPTE8DLL3pj9uzZA2dnZ3zyySd628aPH486depg/PjxsmJrT0sZK5/xS9zBwcGkNgFg1KhR6NWrF+rVq2ewTmb5dX/S09OxdetWAMDZs2cRFBSELVu24NixY6hVqxZmzJiBli1bIjEx0Sb2BwCUSiU2b96Mdu3a4d9//0WTJk0wZMgQTJgwAf369TPYhrX2R1s+PT0dMTExBstkZG57+XV/spIfvg/M3Z/8+n1gyfeHyNYU6Fvi5ScZr0tzdXU1WEap1OTpycnJRttJSUnBokWLMGHCBIP/O+7Zsyd69uwpO7a2jrHyGY+G2dnZmdTmX3/9hTNnzuCXX34xWN6Q/Lo/Fy9elNr8/fffpR8Yb29vLFu2DMePH8epU6cwefJknVNk+XV/MsZfu3Ytxo8fj4MHD2Lx4sW4ffs2Nm7ciMKFC+u1Ya390ZbP3F9jzG0vv+6PMfnl+8Cc/cnP3weWen+IbBGPGFqJo6Oj9FgYuQthamoqAE1yYcz06dNRvnx5jBkzJldja+sYK59xvbu7e7ZtRkVF4ZNPPsGKFStgby/v/yP5YX8ePHgAQPPDkvmog5OTk3TNoSmT++aH/dG6e/cuRowYgZ9++gn//vsvmjdvjr1796Jp06Z4+vRptvuSW/ujLZ+5v9n1wRLt5Yf9MSa/fB/kdH/y+/eBpd4fIlvExNBKvL29pS+jjBf2ZxQdHQ0AKFq0qMHtJ06cwLp167Bp0yajR4EsFdvHxyfL8hmvu0lLS8u2zWHDhuHTTz9FpUqVTO63Mflhf2JjYwEAHh4eBst26tQJgOaUVXaXBuSH/QE0p9latmyJPn36wMHBAZ6envjzzz/RrFkzXLp0CX379s1yP3Jzf7Tl3dzcTBrtasn28sP+GJKfvg9yuj/5/fvAEu8Pka1iYmgldnZ2qFq1KgAgPDzcYJknT54AAGrWrKm37fHjxxg2bBh+++03FC9ePNdjV69ePcvyGafGyK5NHx8frF+/Hp988gkUCoXOEhgYCEBzpEq77s6dO/l6f2rWrClN26JNEDPLeFpPrVYbLKOVH/YHACZMmIDw8HC0adNGKuPq6opt27bB398fu3fvNunWeLmxP1n9bRhiyfbyw/5klt++D3KyPw8ePMj33wdy3x8iW8bE0IratWsHALh48aLetoiICMTExMDNzQ3NmjXT2RYXF4eePXti4cKFqFixolVit2rVCo6Ojnj69KnBI143btyQHpvSZqVKlQwu2ukl7O3tpXXGBkvkp/2pXbs27OzskJiYaPCHS3uUoXDhwibN/ZfX+wMAW7Zsgbe3t96pPW9vb2muvOPHj2e7L7m5Px06dDApvqXby+v9ySg/fx+Ysj8KhcJmvg/MeX+IbJ715tKma9euCaVSKYKDg/W2/f777wKAeP/993XWx8fHi3bt2ol//vnHYJum3oLNnNja221t3rxZr07t2rWFQqHIcZuZ3b5926w7HeSH/WnXrp0AIH755Re98ufPnxcARP/+/W1mfzw9PYVSqRQpKSl65Xfs2GF0X621P0qlUly7dk1a98EHH2R5Z42ctpff90eI/P19YM7+ZJafvg9y8vkgKkiYGFrZ0KFDBQBx+vRpnfVdunQRLi4u4ubNm9K6+Ph40b59e7Fr1y69dtRqtdixY4d45513dNavW7dO1K1b1+BtnnISWwghbty4Idzc3ETnzp111muTnsGDB+e4zcyy+yHIz/tz6tQpYW9vLypWrCiSk5N1yn/++ecG78+an/dH+0O+cuVKvb5NnDhRODo6irt37+bp/mTUp08fAUAsXrxYL7Y57eX3/bGF74Oc7I8h+e37gOhVxMTQyuLj40WdOnVEgwYNRGRkpFCr1WL27NnC0dFRbNy4USoXFRUlGjVqJBwdHUWRIkV0lsKFCwsHBwcBQCxatEin/WrVqgkAIigoyOzYGa1atUrY29tLycLdu3dFjRo1RJMmTURCQoJZbWaU3Q9Bft+fxYsXCwCid+/eIiEhQQghxObNm0WhQoXEli1bbGp/nj59KipUqCCKFi0qdu3aJdRqtVCr1WLdunXC1dVVzJ8/P8/3RysxMVEEBwcLAGLQoEEG28pJe/l9f2zl+8DU/TEmv30fEL2KmBjmgdjYWPHpp5+KwMBAUa5cOdG5c2dx9uxZnTL169cXALJcnJycRFRUlE69adOmCTc3NzF9+nSzY2e2e/du0ahRIxEYGCiqVasmZs6cqXO60Zw2tbL7IbCF/dm+fbto2LCh8PLyElWqVBFvvfWWOHHihE3uT2RkpBg1apQIDAwUxYoVE6VKlRLt27cX+/btyzf706NHD+Hq6qrzt+Dt7S3mzZtnVnu2sD+29H2Q0/cno/z4fUD0qlEIYWQiJyIiIiJ6pXBUMhEREREBYGJIRERERC8wMSQiIiIiAEwMiYiIiOgFJoZEREREBICJIRERERG9wMSQiIiIiAAwMSQiIiKiF5gYEhEREREAJoZERERE9AITQyICACxduhQeHh5YunRpXnfFJgkhsGDBAtSoUQPOzs7w9vZG586dcfLkSaN1/vvvP3Tq1AmBgYEoX748QkJCkJSUZLH2cxrDXMeOHcP7779v0Tat6cmTJwgJCUH16tVNKr9161YoFAq9pUePHrncUyIryNtbNRNRftGxY0cBQHTq1Cmvu2KTPvzwQwFAABB2dnbSYwcHB7F582a98r///rtwcnIS33//vRBCiOjoaNGkSRPRqFEjER8fL7t9c2KYq0ePHsLJyUk8efLEYm1aw/3798XIkSOFi4uLACBKly5tUr169epJr3/G5ejRo7nbYSIrYGJI9Ar6559/9Nbt2rVL1KtXT+zatSsPemTbdu7cKYoWLSqWL18uYmNjRVpamti2bZsoVqyYACA8PDzEs2fPpPL37t0T7u7uokOHDjrtXLlyRSgUCjFs2DBZ7ZsTw1wPHjwQ9vb2AoD4+uuvLdKmtTx8+FAkJSWJX3/91eTE8O+//xZNmzYVly9f1lmuXr2a+x0msgImhkSvGJVKJYKCgvK6GwVK9+7dxenTp/XW79mzRzqatGTJEmn9wIEDBQCxYcMGvTr169cXCoVCXLp0yez2zYlhrjFjxgh3d3cBQJQqVUqkpaXJbtPaLl26ZHJi+Nprr4k///wz9ztFlEd4jSHRKyY0NBQXLlzI624UKM2aNUPNmjX11rdu3Rq1atUCADx79gwAkJaWho0bNwIAGjdurFenYcOGEEJg8eLFZrVvbgxzJCUlYfHixdi0aRMcHBzw8OFDbNmyRVabecHZ2dmkcsePH8fhw4dx9+5dXLlyJZd7RZQ3mBgSvUJ+/fVXTJw4Ma+7UeB8/PHHRrdVqFABAFC6dGkAwMGDBxEbGwsnJyeUKlVKr3xwcDAAICwszKz2zY1hjpUrV6JOnTpo27YtunbtCgCYM2eO0fKfffYZnJycpMEa+/fvl7YFBQVJ68uUKWOw/qJFi1CrVi34+flBqVRK5T09PVGhQgUMGTLErP1QKBQmlZs2bRqSk5MxdOhQVKlSBfXq1cOuXbvMikmUXzExJHpFzJgxA6GhoRBCAADKly+P8uXLY9y4cUhISMCiRYtQu3ZtTJ48WadebGwspkyZAi8vLwDA8+fP0b9/f3h4eKB06dJYtmyZVHb//v1o0qQJXF1dUatWLRw5csRgXy5duoRevXohKCgIhQoVQvXq1fHrr7/mxm7nuYiICDg5OaF9+/YAgNOnTwOAwYQNgPQ6nz9/HiqVKsft50YMY2bPno3PP/8cADBy5EgAwL///oszZ84YLP/jjz/i9u3bKFq0qN62CxcuYOXKlUZjDR48GIMHD8a4cePw4MEDXL9+HQEBAQCAMmXK4Pr161iwYIHZ+5KdyMhIREREoFKlSrCzswMAnDx5Eu3bt8fIkSOlvysim5e3Z7KJyNrw4po0rUuXLolevXoJZ2dnAUBMmjRJ2rZw4UIRGBgo1YmMjBRVq1YVvr6+UnmlUimOHDkitm7dKpycnIS/v780arZIkSIiOjpaJ/5ff/0lypQpIw4ePCiE0IwMrVmzpgAgJk+ebJXXwFoSEhKEi4uL+Oijj6R1ISEhAoCoXbu2wTq7d+/Web1z2r6lYxize/duERwcrLOucePGAoAYMGBAlnWbNWsmAIiwsDCd9Tdu3DB4rd++ffsEANGmTRud9UuWLJH248GDB2bthxBC3L59O0ejkqOiosSvv/4qSpYsKcWfOHGi2fGJ8hMeMSR6xVWpUgVr1qxBnz599Lb17dsX27dvl55PnDgRCxcuxMOHD/Hs2TM0atQIarUa48ePx9q1a3Ht2jXcu3cPd+7cgZ+fHyIjI/Hnn39K9SMjI9G7d29Mnz4dTZs2BQD4+flh4cKFAIApU6bgxo0bubzH1rN48WK4u7tjypQp0rrIyEgAgKurq8E6SuXLr+Xk5OQct2/pGMb89NNPGDVqlM66zz77DACwZs0aqQ/Zxc9IeyQuM+1nUHsKXKtbt27S44cPH2bbZ0vx8vJC//79ceXKFTRp0gQAMH36dNy+fdtqfSDKLUwMiQgAUKJECb11zs7OKFeunPR8+vTp0g9hoUKFMHz4cABAdHQ01q1bJ53a8/Pzw5tvvgkAuHfvnlT/119/RVxcHDp37qwTRzuxsFqtxtatWy24V3knMjISU6dOxfLly+Ht7S2td3R0BACjpx5TU1Olxxnrmdq+JWMYc/36dZw+fRq9e/fWWf/uu+8iICAAycnJsge2ZJSxvxm5u7ujcOHCAAB7e3uLxTOVh4cHdu7cidKlSyMtLQ2bN2+2eh+ILI2JIREBABwcHAyud3Jykh67u7vrbPP19ZXWZ76AX3sdWca7bOzbtw9CCNSsWROVK1eWlho1aqBIkSIoUqQInj59apH9yWsffvghvvjiC51r/wDAx8cHAJCQkGCwXnR0NADAzc0ty9Gyxto3N0bRokUNLocOHdKr/9NPPyE1NRXVq1fXeR+rVasmvd9z586Vdf1iRo0aNQIA3L17V2+bEAKOjo6oXLmytK5z584G92XGjBkW6U9GHh4emDBhAgDg5s2bFm+fyNqs/18sIiowjJ0SzLgt41Gre/fuwdvbu8BP9TFt2jQEBARg9OjRetu0R0fDw8MN1n3y5AkAGJyexpT2zY1h7NRvWlqazvOYmBisW7cOly9fRrFixfTKP336FP7+/rh37x5+//13vPPOO0b3w1TdunX7f3v3F9LUG8YB/KuuhS5lZW7tImOB3gR2U5Bl0UCzUUIE1aVaUVQXIUSQkUF/yCgwSOlGG+oSKggvCsY0Cgv/QEaQRSJZMYpww1zmtNr2/C50B09nmak/nfb9wLk573ve9z1jcB7Oed/nRVVVFdxuNwYGBpTFMx6PBwMDAygsLFR9Nvf7/VHvJxAITHss0eTm5gIYfYtONN/xjSERzZpgMAiv16u8sVqInE4nuru7UVFREbXcZrNBr9ejr68PPp9PUx6ZY2m326fU/lT7kNENDzTH1q1bVddWV1fDbrdHDQoBwGQyYdeuXQBGVy1HM9n0MBGLFi2C2+1GZmYmDh8+jMHBQfj9fhw7dgyrV6/GlStXVPUfP34c9V5+XXE/UywWC4DR/JBE8x0DQyKaNRaLBSKCO3fuRC0XEVVuu/nm3r17aGxsRE1NjSb4CYVC8Hg8SElJwb59+wAALS0tmjba2toQHx+PvXv3Tql9ANPqYyKhUAiVlZU4cuTIhPUOHToEYDRAe/nypaY8MTERwGjqo/H8fj+A6HMKr1+/jo8fPyIQCCArKwsbNmxAeno62trafhukzpauri5YrVbs3LlzTsdBNBMYGBLRrNmyZQsA4PTp0+jt7dWU19bW/vbzZ6xrbGxEbW0tbt26pVkI8fnzZxQVFSn3fPbsWRgMBtTV1anqdXV14fnz5zh48KCSuHoq7U+1jz9paGiAiETdTWU8m82mLGq5dOmSpjySjNvhcCirol0ul7LK2efzwefzKdMQ2tvbUVpainPnzuHu3bvo6enBq1evUFlZCZPJ9Ff3EE0wGASACedEhsNhfPnyJWpZeXk5bt68qZqPSzRvzW52HCKaa4mJiQJAhoeHVedPnTolAKS0tFR1/sePH0qutl/3wX348KEAkJycHE0/ZWVlmvY8Ho8YDAYBICaTSW7cuCG9vb3S3d0tly9flszMTBkcHJzBu50dTqdTdDqdGI1GSU1NVR2RfYRXrlwp4XBYc019fb2IiHz48EHWrl0rmzZtkqGhoWm3/7d9/MmbN2/EbDZLenq6+Hy+Cev29/dLWlqa8r9xOByq8vF7PCcnJ4vZbJasrCzp7OxUzq9atUqqq6tFRKS+vl45P/6Ii4uTJUuWyMaNG6e1f3Gkfb1eL2/fvo1ap6CgQBISEuT48eNK7se+vj4pKSkRl8s15b6JYg0DQ6J/zLp16wSANDc3y9DQkFy4cEFCoZDk5OQIANm8ebMEg0GlfiT4AyCtra2qts6cOSMAZMWKFeL1epXzP3/+lNzcXAEgNptN1d7t27dFp9NpHvKLFy+WlpaW//8HmGH379+XuLi4qIHL+OPkyZOaa91ut2RnZ4vVapU1a9bI1atX5fv37zPW/mT7+JOLFy+qxqDX6zVJtSMqKiqU5Ofjj6VLl6r6raqqEovFIikpKVJYWCj9/f3y7t07Wb58uZw/f16VGD0cDktRUZFYrVaxWCySlJQk8fHxqvYTEhKks7Pzr+6rvb1dlaQagOh0OsnIyNDUffTokaxfv14MBoMYjUYpKCiQ8vLyKScIJ4pVDAyJ/jEdHR2SkZEhaWlpUlJSIk+ePJFly5ZpHuLPnj2T4uJiZReTyMN3+/bt8vXrVzGbzZrArqysTJqamsRoNKrKjEajvH79WhlDa2ur5OfnS3JyshgMBsnLy5OOjo45/FUoln369Em2bdsmIyMjmrKRkRHp6emR3bt3y4kTJ+ZgdEQLS5wIN3gkIqLYlZeXh+LiYk1C7fEePHiApqYmXLt2bfYGRrQAcfEJERHFLJfLhebm5j/ubNLQ0PDbFD9ENHkMDImIKGZFVlofPXoUNTU1SkqbiPfv32P//v0YHh5Gfn7+XAyRaEHhp2QiIopZ3759g91ux9OnTwGMJse2WCxISkqC3++H1+vFnj17UFdXN+EWgkQ0OQwMiYgopoVCITgcDjidTrx48QKBQACpqanIzs7GgQMHsGPHjrkeItGCwcCQiIiIiABwjiERERERjWFgSEREREQAGBgSERER0RgGhkREREQEgIEhEREREY1hYEhEREREABgYEhEREdEYBoZEREREBICBIRERERGNYWBIRERERACA/wBAQRZh46T4JAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
@@ -4131,11 +4162,8 @@
}
],
"metadata": {
- "interpreter": {
- "hash": "5cfd453a1a1cce2f32ea80f99ff7da863344217116d39185ac62b248c2577445"
- },
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "work",
"language": "python",
"name": "python3"
},
diff --git a/examples/adv_example.ipynb b/examples/adv_example.ipynb
index 7ea0582d5..b497a8635 100644
--- a/examples/adv_example.ipynb
+++ b/examples/adv_example.ipynb
@@ -1,943 +1,1325 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Reading ADV Data with MHKiT\n",
- "\n",
- "This example presents a simplified workflow for analyzing Acoustic Doppler Velocimetry (ADV) data using MHKiT. MHKiT incorporates the DOLfYN codebase as a module to handle ADV and Acoustic Doppler Current Profiler (ADCP) data.\n",
- "\n",
- "A standard ADV data analysis workflow can be segmented into the following steps:\n",
- "\n",
- "1. **Raw Data Review**: Evaluate the original data by verifying timestamps and assessing the quality of velocity data, specifically looking for any data spikes.\n",
- "\n",
- "2. **Data Cleaning**: Identify and eliminate any spurious data points. If needed, bad data points can be replaced with interpolated values.\n",
- "\n",
- "3. **Data Rotation**: Transform the data into the principal flow coordinates, which are the streamwise, cross-stream, and vertical directions.\n",
- "\n",
- "4. **Data Averaging**: Aggregate the data into bins or ensembles, each of which spans a predefined time length, typically between 5 and 10 minutes.\n",
- "\n",
- "5. **Statistical Analysis**: Compute turbulence statistics such as turbulence intensity, Turbulent Kinetic Energy (TKE), and Reynolds stresses for the observed flow field.\n",
- "\n",
- "Start your analysis by importing the necessary tools:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "from mhkit import dolfyn\n",
- "from mhkit.dolfyn.adv import api"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Read Raw Instrument Data"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "DOLfYN currently only carries support for the Nortek Vector ADV. The example loaded here is a short clip of data from a test deployment to show DOLfYN's capabilities.\n",
- "\n",
- "Start by reading in the raw datafile downloaded from the instrument. The `dolfyn.read` function reads the raw file and dumps the information into an xarray Dataset, which contains three groups of variables:\n",
- "\n",
- "1. Velocity, amplitude, and correlation of the Doppler velocimetry\n",
- "2. Measurements of the instrument's bearing and environment\n",
- "3. Orientation matrices DOLfYN uses for rotating through coordinate frames."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Reading file data/dolfyn/vector_data01.VEC ...\n"
- ]
- }
- ],
- "source": [
- "ds = dolfyn.read(\"data/dolfyn/vector_data01.VEC\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "There are two ways to see what's in a Dataset. The first is to simply type the dataset's name to see the standard xarray output. To access a particular variable in a dataset, use dict-style (`ds['vel']`) or attribute-style syntax (`ds.vel`). See the [xarray docs](http://xarray.pydata.org/en/stable/getting-started-guide/quick-overview.html) for more details on how to use the xarray format."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
APL-UW vector on Tidal Turbulence Mooring in Admiralty, times PDT
user_specified_sound_speed :
False
analog_output :
False
output_format :
Vector
serial_output :
False
power_output_analog :
False
n_pings_per_burst :
1
pressure_sensor :
yes
compass :
yes
tilt_sensor :
yes
carrier_freq_kHz :
6000
serial_number :
VEC 9062
ProLogFWver :
4.08
PIC_version :
0
hardware_rev :
4
recorder_size_bytes :
4074766336
vel_range :
normal
firmware_version :
3.34
fs :
32.0
coord_sys :
inst
has_imu :
0
"
- ],
- "text/plain": [
- " Size: 11MB\n",
- "Dimensions: (time: 122912, beam: 3, dir: 3, x1: 3, x2: 3,\n",
- " earth: 3, inst: 3)\n",
- "Coordinates:\n",
- " * time (time) datetime64[ns] 983kB 2012-06-12T12:00:02.9687...\n",
- " * beam (beam) int32 12B 1 2 3\n",
- " * dir (dir) : Nortek Vector\n",
- " . 1.07 hours (started: Jun 12, 2012 12:00)\n",
- " . inst-frame\n",
- " . (122912 pings @ 32.0Hz)\n",
- " Variables:\n",
- " - time ('time',)\n",
- " - vel ('dir', 'time')\n",
- " - orientmat ('earth', 'inst', 'time')\n",
- " - heading ('time',)\n",
- " - pitch ('time',)\n",
- " - roll ('time',)\n",
- " - temp ('time',)\n",
- " - pressure ('time',)\n",
- " - amp ('beam', 'time')\n",
- " - corr ('beam', 'time')\n",
- " ... and others (see `.variables`)"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "ds_dolfyn = ds.velds\n",
- "ds_dolfyn"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Quality Control"
- ]
- },
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Reading ADV Data with MHKiT\n",
+ "\n",
+ "This example presents a simplified workflow for analyzing Acoustic Doppler Velocimetry (ADV) data using MHKiT. MHKiT incorporates the DOLfYN codebase as a module to handle ADV and Acoustic Doppler Current Profiler (ADCP) data.\n",
+ "\n",
+ "This particular dataset is an excerpt from a cabled ADV mounted to a Sea Spider tripod, where the ADV was sampling on a duty cycle where 5 minutes of data was recorded every 20 minutes. All of the steps for a non-cabled ADV still apply, excepting the probe-inst rotation step.\n",
+ "\n",
+ "A standard ADV data analysis workflow can be segmented into the following steps:\n",
+ "\n",
+ "1. **Raw Data Review**: Evaluate the original data by verifying timestamps and assessing the quality of velocity data, specifically looking for any data spikes.\n",
+ "\n",
+ "2. **Data Cleaning**: Identify and eliminate any spurious data points. If needed, bad data points can be replaced with interpolated values.\n",
+ "\n",
+ "3. **Data Rotation**: Transform the data into the principal flow coordinates, which are the streamwise, cross-stream, and vertical directions.\n",
+ "\n",
+ "4. **Data Averaging**: Aggregate the data into bins or ensembles, each of which spans a predefined time length, typically between 5 and 10 minutes.\n",
+ "\n",
+ "5. **Statistical Analysis**: Compute turbulence statistics such as turbulence intensity, Turbulent Kinetic Energy (TKE), and Reynolds stresses for the observed flow field.\n",
+ "\n",
+ "Start your analysis by importing the necessary tools:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from mhkit import dolfyn\n",
+ "from mhkit.dolfyn.adv import api"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Read Raw Instrument Data"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "DOLfYN currently only carries support for the Nortek Vector ADV. The example loaded here is a short clip of data from a test deployment to show DOLfYN's capabilities.\n",
+ "\n",
+ "Start by reading in the raw datafile downloaded from the instrument. The `dolfyn.read` function reads the raw file and dumps the information into an xarray Dataset, which contains three groups of variables:\n",
+ "\n",
+ "1. Velocity, amplitude, and correlation of the Doppler velocimetry\n",
+ "2. Measurements of the instrument's bearing and environment\n",
+ "3. Orientation matrices DOLfYN uses for rotating through coordinate frames."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
{
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "ADV velocity data tends to have spikes due to Doppler noise, and the common way to \"despike\" the data is by using the phase-space algorithm by Goring and Nikora (2002). DOLfYN integrates this function using a 2-step approach: create a logical mask where True corresponds to a spike detection, and then utilize an interpolation function to replace the spikes."
- ]
- },
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Reading file data/dolfyn/vector_cabled_imu01.VEC ...\n"
+ ]
+ }
+ ],
+ "source": [
+ "ds = dolfyn.read(\"data/dolfyn/vector_cabled_imu01.VEC\")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "There are two ways to see what's in a Dataset. The first is to simply type the dataset's name to see the standard xarray output. To access a particular variable in a dataset, use dict-style (`ds['vel']`) or attribute-style syntax (`ds.vel`). See the [xarray docs](http://xarray.pydata.org/en/stable/getting-started-guide/quick-overview.html) for more details on how to use the xarray format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Percent of data containing spikes: 0.73%\n"
- ]
- }
+ "data": {
+ "text/html": [
+ "
300.0 second bursts collected at 32.0 Hz, with bursts taken every 20.0 minutes
fs :
32.0
coord_sys :
inst
has_imu :
1
"
],
- "source": [
- "# Clean the file using the Goring+Nikora method:\n",
- "mask = api.clean.GN2002(ds.vel, npt=5000)\n",
- "# Replace bad datapoints via cubic spline interpolation\n",
- "ds[\"vel\"] = api.clean.clean_fill(ds[\"vel\"], mask, npt=12, method=\"cubic\", maxgap=None)\n",
- "\n",
- "print(\"Percent of data containing spikes: {0:.2f}%\".format(100 * mask.mean()))\n",
- "\n",
- "# If interpolation isn't desired:\n",
- "ds_nan = ds.copy(deep=True)\n",
- "ds_nan.coords[\"mask\"] = ((\"dir\", \"time\"), ~mask)\n",
- "ds_nan[\"vel\"] = ds_nan[\"vel\"].where(ds_nan[\"mask\"])"
+ "text/plain": [
+ " Size: 25MB\n",
+ "Dimensions: (time: 216039, beam: 3, dir: 3, x1: 3, x2: 3,\n",
+ " earth: 3, inst: 3)\n",
+ "Coordinates:\n",
+ " * time (time) datetime64[ns] 2MB 2025-02-25T10:00:03.587208...\n",
+ " * beam (beam) int32 12B 1 2 3\n",
+ " * dir (dir) \"inst\"<->\"earth\"<->\"principal\"), done through the `rotate2` function. If the \"earth\" (ENU) coordinate system is specified, DOLfYN will automatically rotate the dataset through the necessary coordinate systems to get there. The `inplace` set as true will alter the input dataset \"in place\", a.k.a. it not create a new dataset."
+ "data": {
+ "text/plain": [
+ ": Nortek Vector\n",
+ " . 7.37 hours (started: Feb 25, 2025 10:00)\n",
+ " . inst-frame\n",
+ " . (216039 pings @ 32.0Hz)\n",
+ " Variables:\n",
+ " - time ('time',)\n",
+ " - vel ('dir', 'time')\n",
+ " - orientmat ('earth', 'inst', 'time')\n",
+ " - heading ('time',)\n",
+ " - pitch ('time',)\n",
+ " - roll ('time',)\n",
+ " - temp ('time',)\n",
+ " - pressure ('time',)\n",
+ " - amp ('beam', 'time')\n",
+ " - corr ('beam', 'time')\n",
+ " - accel ('dir', 'time')\n",
+ " - angrt ('dir', 'time')\n",
+ " ... and others (see `.variables`)"
]
- },
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ds_dolfyn = ds.velds\n",
+ "ds_dolfyn"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Set rotation for cabled ADV head\n",
+ "For cable-head ADVs, be sure to record the position and orientation of the ADV head relative to the ADV pressure case ‘inst’ coordinate system. This ADV was set up in the same orientation as the one shown in Figure 1 [here](https://dolfyn.readthedocs.io/en/stable/motion-correction.html); the rotation matrix for this setup is written below. Per the Nortek documentation, in this orientation, the probe \"X\" direction is the IMU's \"-Z\" direction.\n",
+ "\n",
+ "If utilizing a non-cabled ADV (the standard version), skip this step."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This is the rotation matrix per Figure 1: https://dolfyn.readthedocs.io/en/stable/motion-correction.html\n",
+ "dolfyn.set_inst2head_rotmat(ds, [[0, 0, -1], [0, -1, 0], [-1, 0, 0]])"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Quality Control"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "ADV velocity data tends to have spikes due to Doppler noise. There are multiple approaches to removing bad values, including trimming beyond a maximum range, removing values with low acoustic correlation values, and finally another is to \"despike\" the data is by using the phase-space algorithm by Goring and Nikora (2002). DOLfYN integrates QC functions using a 2-step approach: create a logical mask where True corresponds to a spike detection, and then remove and/or interpolate those values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "# First set the magnetic declination\n",
- "dolfyn.set_declination(\n",
- " ds, declin=10, inplace=True\n",
- ") # declination points 10 degrees East\n",
- "\n",
- "# Rotate that data from the instrument to earth frame (ENU):\n",
- "dolfyn.rotate2(ds, \"earth\", inplace=True)"
- ]
- },
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Percent of data containing spikes: 0.12%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Remove low correlation values and noisy beam measurements\n",
+ "ds.velds.rotate2(\"beam\")\n",
+ "# Start a mask by copying the velocity data-array\n",
+ "mask = ds[\"vel\"].copy() * 0\n",
+ "# Now we'll remove values with correlation < 80% and velocity outside of +/- 0.7 m/s\n",
+ "# We decide this +/- 0.7 m/s threshold by looking at plots of the along-beam velocity\n",
+ "mask = mask + (ds[\"corr\"].values < 80) + (ds[\"vel\"] > 0.7) + (ds[\"vel\"] < -0.7)\n",
+ "# Set the mask to boolean\n",
+ "mask = mask.astype(bool)\n",
+ "# Replace bad datapoints using the ensemble mean over a 5-minute window\n",
+ "ds[\"vel\"] = dolfyn.adv.clean.fill_nan_ensemble_mean(\n",
+ " ds[\"vel\"], mask, int(ds.fs), window=300\n",
+ ")\n",
+ "print(\"Percent of data containing spikes: {0:.2f}%\".format(100 * mask.mean()))\n",
+ "\n",
+ "# How to use the Goring+Nikora method to clean spikes in ADV data:\n",
+ "ds_ex = ds.copy(deep=True)\n",
+ "# Clean the file using the Goring+Nikora method:\n",
+ "mask_ex = api.clean.GN2002(ds.vel, npt=5000)\n",
+ "# Replace bad datapoints via cubic spline interpolation\n",
+ "ds_ex[\"vel\"] = api.clean.clean_fill(ds_ex[\"vel\"], mask, npt=12, method=\"cubic\", maxgap=None)\n",
+ "\n",
+ "# If interpolation isn't desired:\n",
+ "ds_nan = ds.copy(deep=True)\n",
+ "ds_nan.coords[\"mask\"] = ((\"dir\", \"time\"), ~mask_ex)\n",
+ "ds_nan[\"vel\"] = ds_nan[\"vel\"].where(ds_nan[\"mask\"])"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Coordinate Rotations"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that the data has been cleaned, the next step is to rotate the velocity data into true East, North, Up (ENU) coordinates.\n",
+ "\n",
+ "ADVs use an internal compass or magnetometer to determine magnetic ENU directions. The `set_declination` function takes the user supplied magnetic declination (which can be looked up online for specific coordinates) and adjusts the orientation matrix saved within the dataset.\n",
+ "\n",
+ "Instruments save vector data in the coordinate system specified in the deployment configuration file. To make the data useful, it must be rotated through coordinate systems (\"beam\"<->\"inst\"<->\"earth\"<->\"principal\"), done through the `rotate2` function. If the \"earth\" (ENU) coordinate system is specified, DOLfYN will automatically rotate the dataset through the necessary coordinate systems to get there. The `inplace` set as true will alter the input dataset \"in place\", i.e., it not create a new dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# First set the magnetic declination\n",
+ "dolfyn.set_declination(\n",
+ " ds, declin=15.3, inplace=True\n",
+ ") # declination points 15.3 degrees East\n",
+ "\n",
+ "# Rotate that data from the instrument to earth frame (ENU):\n",
+ "dolfyn.rotate2(ds, \"earth\", inplace=True)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once in the true ENU frame of reference, we can calculate the principal flow direction for the velocity data and rotate it into the principal frame of reference (streamwise, cross-stream, vertical). Principal flow directions are aligned with and orthogonal to the flow streamlines at the measurement location. \n",
+ "\n",
+ "First, the principal flow direction must be calculated through `calc_principal_heading`. As a standard for DOLfYN functions, those that begin with \"calc_*\" require the velocity data for input. This function is different from others in DOLfYN in that it requires placing the output in an attribute called \"principal_heading\", as shown below.\n",
+ "\n",
+ "Again we use `rotate2` to change coordinate systems."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ds.attrs[\"principal_heading\"] = dolfyn.calc_principal_heading(ds[\"vel\"])\n",
+ "dolfyn.rotate2(ds, \"principal\", inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Once we've done quality control and coordinate rotations (not necessarily in that order), we can plot the velocity vector to see how it looks:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
{
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Once in the true ENU frame of reference, we can calculate the principal flow direction for the velocity data and rotate it into the principal frame of reference (streamwise, cross-stream, vertical). Principal flow directions are aligned with and orthogonal to the flow streamlines at the measurement location. \n",
- "\n",
- "First, the principal flow direction must be calculated through `calc_principal_heading`. As a standard for DOLfYN functions, those that begin with \"calc_*\" require the velocity data for input. This function is different from others in DOLfYN in that it requires place the output in an attribute called \"principal_heading\", as shown below.\n",
- "\n",
- "Again we use `rotate2` to change coordinate systems."
+ "data": {
+ "text/plain": [
+ "Text(0.5, 1.0, '')"
]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
},
{
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "ds.attrs[\"principal_heading\"] = dolfyn.calc_principal_heading(ds[\"vel\"])\n",
- "dolfyn.rotate2(ds, \"principal\", inplace=True)"
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHBCAYAAACFa9TrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqotJREFUeJztnQd8E3Ubx3/dm5YuSqEFyt577yFbGYrKxoGCgqhsFRCVrYKIiCIKvLIEGcqUvTeUvVsoUEppge7dvJ/nn6akbXYuTZo+Xz5HkrvL5X/J9e53z7SRyWQyMAzDMAzDFENszT0AhmEYhmEYc8FCiGEYhmGYYgsLIYZhGIZhii0shBiGYRiGKbawEGIYhmEYptjCQohhGIZhmGILCyGGYRiGYYotLIQYhmEYhim22Jt7AJZOdnY2IiMj4eHhARsbG3MPh2EYhmEYHaB60QkJCQgMDIStrXq7DwshLZAICgoKMvcwGIZhGIYxgPv376Ns2bJql7MQ0gJZghRfZIkSJcw9HIZhGIZhdCA+Pl4YMhTXcXWwENKCwh1GIoiFEMMwDMMULbSFtXCwNMMwDMMwxRYWQgzDMAzDFFtYCDEMwzAMU2zhGCGJyMrKQkZGhrmHwVgojo6OGtM3GYZhGPPAQkiCOgVRUVF4/vy5uYfCWDAkgipUqCAEEcMwDGM5sBAyEoUI8vf3h6urKxddZNQW5Xz06BGCg4P5GGEYhrEgWAgZ6Q5TiCAfHx9zD4exYPz8/IQYyszMhIODg7mHwzAMw+TAQQtGoIgJIksQw2hC4RIj8cwwDMNYDiyEJIBdHYw2+BhhGIaxTFgIMQzDMAxTbGEhxFg9w4YNQ+/evc09DIZhGMYC4WBppoBooADwzZs3w1r44YcfRJkDhmEYhskPW4QYgyhKxSM9PT3h5eVl7mEwDMMwCpKfAlGXYQmwECqmbNiwAbVr14aLi4tI/e/UqRPGjx+PFStWYMuWLSK4l6YDBw7g7t274vm6devQtm1bODs7Y9WqVWI7v/32G6pXry7mVatWDYsXL87zORMnTkSVKlVEZl1ISAimTJmSR0R9+eWXqFevHn7//XdRY8fd3R0ffPCByK6aO3cuAgICRHmCGTNm5L5n3Lhx6NmzZ+7rBQsWiPHt3Lkzd16lSpXE2FS5xlTte1JSUu5ybfvEMAzDGMm3VYAlLYHI8zA37BqTEHK/pGSYJz3axcFO58wkKuzXv39/ITT69OmDhIQEHD58GEOGDEFERATi4+Pxxx9/iHW9vb1F/Rti0qRJ+O6771C/fv1cMTR16lQsWrRIzDt//jyGDx8ONzc3DB06VLzHw8MDy5cvR2BgIC5duiSW07wJEybkjufOnTvYsWOHEDL0/LXXXkNYWJgQUAcPHsSxY8fw9ttvC8HStGlTIcZIrJBYsrOzE+v4+voK0da1a1c8fPhQbKddu3Y677vCdabLPjEMwzBGkp1zQ3xnPxBYH+aEhZCEkAiqMXWXWT776ldd4Oqo289JYoAK+/Xt2xflypUT88hCQpCVJC0tTVhi8vPxxx+L9yiYNm2aEEaKedRC4urVq/jll19yRcMXX3yRu3758uWFNWft2rV5hBBVXiaLEAmkGjVqoH379rhx4wa2b98uWlNUrVoVc+bMwf79+4UQat26tRAwJFIaNmyIQ4cOCWuWIq6JBFGZMmWEVUiffdd1nxiGYRjrgYVQMaRu3bro2LGjEABdunRB586dhRWmZMmSGt/XqFGj3OfkSiKryzvvvCMsJgpIZFBMjgJypy1cuFCsm5iYKJaXKFEiz3ZJIJEIUlCqVClh6VFuUkrzoqOjxXOK96F9IMFDhQppeu+994SIoc8gCxFZjfTdd133iWEYhrEeWAhJ7J4iy4y5PltXSGTs3r1buJz+++8//Pjjj/j8889x8uRJje8j95ACEhzE0qVLhZUm//aJ48ePY+DAgZg+fboQHSQmyBpEFhdl8recIBefqnlkOVJAbi8SQk5OTkL0kAuP4nqOHDkihNDYsWP13ndFhXBN+8QwDMNYFyyEJIQu1rq6pyxhrC1bthQTxcSQm2jTpk3CuqJLGwiy0FDcD8XykNhRBYkN2i4JDQX37t2TZPwkfsidZm9vL+KCFOJozZo1uHnzpsr4IG37/umnn2rdJ4ZhGMa6KBpXbUZSyPqxd+9e4RaijCx6/eTJE2FRSU1Nxa5du0SMDmVUaXIJkaXno48+EuuQGKHYojNnzuDZs2dCVFSuXFkEX5MVqHHjxti2bZsQHFLQpk0bESe0detWzJ49W8wj8UNurtKlS4tAa333XZd9YhiGYawLFkLFEIrRoQBjSjunDDGyiJC7qlu3biIOiFxO9EjuLwpQphgeVbz77rvCnTRv3jwRrEyuM4q9oaBq4pVXXsEnn3yCUaNGCUHRo0cPkT5PKfPGQjE99FmPHz8WKe4KcUTuM3XxQdr2XZd9YhiGYawLGxmX3NUIXSzJOhAXF1cgyJesJ+Hh4SKziNLJGUYdfKwwDMMo8WWOt6HjVKC16phOU16/leGCigzDMAzDFFtYCDEMwzAMU2xhIcQwDMMwjHmwgOgcFkIMwzAMwxRbWAgxDMMwDFNsYSHEMAzDMIx60hKA69uAjFRYIyyEGIZhGMYaobZE4YeBlOfGbWfdIGDtAGDXZ5AejhFiGIZhGMYUhP4JrOgJ/Kq+5ZBOhB2QP55bCWuEhRDDMAzDWCOXN8ofn4WbeyQWDQshpshBLT+oRQbDMAxTmMhgjbAQYrSSkZGBokZWVpboO8YwDMMwmmAhVEwhkTB37lxUqlQJTk5OCA4OxowZM3D37l3Y2Nhg3bp1onkp9cVatWqVWP+rr75C2bJlxfr16tXDzp07c7eXnp4umqtS53d6DzUznTVrllhG7eyo0Sp9Br03MDBQdHhXh6b1qcP8vXv3RDNXGidNxPLly+Hl5YV//vkHNWrUEO+jzvfU7HXcuHEoU6aMaKDatGlT0VRWQWxsLPr37y+WU7NVarC6Zs2aPOOhzxw9erRovErNXkuVKoWlS5ciKSkJb731Fjw8PMT3uGPHDsl/J4ZhGIPJOT8ymmEhVEyZPHkyZs+eLbrBX716FatXrxYXeAWTJk3CmDFjcO3aNXTp0gU//PCD6NL+7bff4uLFi2IedZe/deuWWH/hwoVChPz111+4ceOGEE+KrvV///035s+fj19++UWsv3nzZiE41KFp/Y0bNwoxRqLs0aNHYlKQnJyMOXPm4LfffsOVK1fg7+8vxNnx48exdu1aMe5+/fqha9euueOmZqgNGzbEtm3bcPnyZbz33nsYPHgwTp06lWdMK1asgK+vr5hPomjkyJFiWy1atMC5c+fQuXNn8T4aA8MwjFUis07XGN19MxqIi4ujX1485iclJUV29epV8SjIzpbJ0hLNM9Fn60h8fLzMyclJtnTp0gLLwsPDxf4uWLAgz/zAwEDZjBkz8sxr3Lix7IMPPhDPR48eLevQoYMsW8U4vvvuO1mVKlVk6enpOo1P2/rlypWTzZ8/P8+8P/74Q4w7NDQ0d969e/dkdnZ2socPH+ZZt2PHjrLJkyer/fwePXrIxo4dm/u6bdu2slatWuW+zszMlLm5uckGDx6cO+/Ro0fi848fP65ymwWOFYZhGFOzsrdMNq2EfDKGaTnb+LKkVCN7sc0Dc2XmuH4rY29uIWZVZCQDMwPN89mfRQKObjqtSlYechl17NhR7TqNGjXKfR4fH4/IyEi0bNkyzzr0+sKFC+L5sGHD8NJLL6Fq1arC4tKzZ09hJSHIckLBzSEhIWJZ9+7d8fLLL8Pe3h4zZ84UkwKyTmlaXxOOjo6oU6dO7utLly6JWKEqVarkWY/23cfHRzyn5fT5ZMl6+PChcPHRcnKTKaO8XTs7O/F+ZauWwpoWHR2tcYwMwzCFR1FwjcnMPQCwECqGuLi4aF2H4mn0oUGDBggPDxdxMnv27MHrr7+OTp06YcOGDQgKChLuMpq/e/dufPDBB5g3bx4OHjyIESNGiHUVUDwQCR516zs4OGjcL0XMEJGYmChEy9mzZ8WjMu7u7uKRtktuPxJeJGxovykWiASRMvk/lz5HeZ7iczlAm2EY60UGa4SFkJQ4uMotM+b6bB2pXLmyEA179+7Fu+++q3X9EiVKCIFy9OhREUCtgF43adIkz3pvvPGGmF577TVhzXn69Cm8vb3F55FVh6YPP/wQ1apVExYbElC0PD+a1ifLD1lytFG/fn2xHllpWrdurXId2odevXph0KBBuULm5s2bIuCaYRiGsX5YCEkJWQV0dE+ZE8rqmjhxIiZMmCBEBbm4njx5IgKM1bnLxo8fj2nTpqFixYoiY+yPP/5AaGioCIomvv/+e5ExRuLD1tYW69evR0BAgMjkoowuEiSUsUUupz///FMIHcosU4W29SkI+9ChQ3jzzTdFdhgFMauCXGIDBw7EkCFDRKA3jY32kwQgubp69OghRCFZrY4dOyYywmg/Hj9+zEKIYZiij6VmjWVYVs8yFkLFFMoWIxfU1KlTRfwPiRhyU6mD0tfj4uIwduxYYWEhoUBZYiQkCEohp3R8ysYiN1Tjxo2xfft2IYpIDFGG2qeffioEDrmg/v3339w4nfxoW58yxt5//30hyiieh9Lt1UGC7ZtvvhHjphggEk3NmjUTMUzEF198gbCwMJEFR6KLssZ69+4t9pVhGKZoY2OZWWOh8htoS8GGIqbNPQhLhgKFPT09xYWRXD/KUOo1xcVUqFBBWFkYRh18rDAMU+j8+Rpwe7f8+ZdG3Nx96ZnzxAb40sgGrsTRhcDuKfLn7T8H2k5AYV+/leE6QgzDMAzDFFuXHQshhmEYhrFGJBccMom2ozSuG9thblgIMQzDMAxjHoEWeR4IzdvWqLBhIcQwDMMwTCGSz1K1WX2iTmHAQohhGIZhrBLLisWxVFgIMQzDMAxTeNhYlvSwrNEwDMMwDGMc6clAigRp7qqIewCj4awxhmEYhmFMxuwgYE45eSNwqZlfEzi9DNYECyGGYRiGsSayM+WPsbdNs/09Xxq5AbYIMcWMdu3aiY7uUjFs2DDRBoNhGIYpgthYlhDiXmOMZBw4cADt27fHs2fPRL8wBRs3boSDg4NZx8YwDFP8sCzBYamwEGIkISMjQ+0yb2/vQh0LwzAMQ8gsU2DZWJZAK3KusZ9++gnly5cXjSubNm2KU6dOqV13+fLlsLGxyTNxw0vg119/RWBgILKzs/PM79WrF95++23xfMuWLWjQoIH4vkJCQjB9+nRkZmYqHcc2+Pnnn/HKK6/Azc0Nw4cPF9YgomTJkmI5ubBUucaoY/zEiRMRFBQEJycnVKpUCcuWyYPvqNv8O++8I5qTuri4oGrVqvjhhx8K5XthGIZhCgPLEkJFyiK0bt06fPrpp1iyZIkQQQsWLECXLl1w48YN+Pv7q3wPdZyl5QroAm0qZDIZUjJTYA5c7F103rd+/fph9OjR2L9/Pzp27CjmPX36FDt37sT27dtx+PBhDBkyBAsXLkTr1q1x584dvPfee2K9adOm5W7nyy+/xOzZs8XvYGdnJ0TRq6++Kr5v+t5JyKiCtn38+HGx/bp164qu7DExMWIZibOyZcti/fr18PHxwbFjx8Rnly5dGq+//roE3xTDMExxwcYyN2vDQshgvv/+e2F5eOutt8RrEkTbtm3D77//jkmTJql8D4mDgICAQhkfiaCmq5vCHJwccBKuDq46rUsWm27dumH16tW5QmjDhg3w9fUVVp3OnTuL73Po0KFiGVmEvv76a0yYMCGPEBowYEDub0GQoCFIlCrHCClz8+ZN/PXXX9i9ezc6deqUu30FFEtE1icFZBki0UTvYSHEMAxjCa4xY7EsIVRkXGPp6ek4e/Zs7sWTsLW1Fa/pQqmOxMRElCtXTrhhyPVz5coVjZ9Dbpv4+Pg8kzUycOBA/P3332J/iVWrVuHNN98U3+mFCxfw1Vdfwd3dPXciAfro0SMkJ7+oS9GoUSO9Pzc0NFRYj9q2bavR/dmwYUP4+fmJzyZXXkREhIF7yjAMw0BmqaLI/MKoyFiEyHVC8SOlSpXKM59eX79+XeV7KL6ErEV16tRBXFwcvv32W7Ro0UKIIXK/qGLWrFl5LBL6uqfIMmMO6LP14eWXXxauPLKoNW7cWLjD5s+fnyse6Tvo27dvgfcpx1hRbJDe41TjLlOwdu1ajBs3Dt999x2aN28ODw8PzJs3DydPmud7ZRiGKbooCYyVrwBD/pHILWVj5NstywZTZISQIdCFlCYFJIKqV6+OX375Rbh6VDF58mQRh6SALEJkTdIFcsPp6p4yNyRoSOiQJej27dtCNFJwNEGPFOdDQcz64OjoKB5JsKqjdu3aIg7o4MGDeax7Co4ePSp+pw8++CB3HsUoMQzDMEYQfgjISAEcLeAaZWNZrrEiI4QofoVcKo8fP84zn17rGgNE8Sf169cXF351UBYTTcUBco/17NlTWMgGDRqUO3/q1KlifnBwMF577bVcd9nly5fxzTffqN0euSBJDG7duhXdu3cX1h9ybSlDGX8Ue0TZaYpg6Xv37iE6OlrEAFWuXBkrV67Erl27RHzQ//73P5w+fVo8ZxiGYSxAcNjYWJUwsiz7lBZrA8WN7N27N3ceWRbotbLVRxNkqbh06ZLIQGKADh06iBo/ZP2hwGcFlIlHYua///4TbrNmzZoJtxkJHU2UKVNGuNQo0JpclqNGjVK5HqXdk8Aiq0+1atVE/FFSUpJY9v777wtL1RtvvCEyA2NjY/NYhxiGYRhdsSzLSy4JUbAkbGQUKFKE0ufJmkCurSZNmoi0bcomohghuvBSWjZdjCnOh6CAX7qIk4vn+fPnItZk8+bNIui6Ro0aOn0mucY8PT1FjBGlhCuTmpoqMqXIWsH1iRhN8LHCMEyh8aWn/LFEWSBeqVv8Z48Mc419mbM9BS7ewER5lrBBzC4HpD7PGzM07RmkRtP1u0i6xgiyEjx58kS4bqKiolCvXj1R+0YRQE2ZReTGUUCtHsjaQOtSyjhZlKguja4iiGEYhmGKKv86An8GlsKCxzEorSF2s1BJjcsrggScNaYX5G5R53KhXlfKkDtHkQnFMAzDMMWJzzzIMOCEmT4l8WM0Fa01zgGUDeC9AH+UhB3mGbqRcysLzpOZV6QVmRghhmEYhmH0J1nJU2IMdxwccNLFGTtdDGyinZUBnFgCS4OFEMMwDMMwWsk21oN1dUvemCULgYUQwzAMwzCqeX4fkkB5WccXwRJhISQBRSjxjjETfIwwDGMujDr7XPpLmu3cOwZEngfsnYGafWBJsBAyAirQSCj332IYdb3yCCoKyjAMo5FsCks2AfrekMlkQOgaaT77+E/yx7pvAm5+sCSKXNaYJUEXNeqyTlWRCVdXV1FZmWGUocKfVPaBjg97e/6TYxhGA+uHAY8uACOPAw5mrjn28BwQeyv3ZR4ZtbQj0PpToFoP7duJvQPc2C5/3uxD4MwyWBJ8VjYSRXsPhRhiGFVQfStqWcJCmWEYjVzZJH+8sw+o1t28Y7mgwRr08AywdgAw9Slga6eDNUgGVO4C+FUxe92g/LAQMhK6sFHLDn9/f2RkZJh7OIwFt4hRLvbJMAyjEXPfNGWmA5c35Jml0rH24AwQ3FT9dpKfAqGr5c9bjLKMfcsHCyEJ3WQc/8EwDGPlXN8OhK4CXvkRcPVGUcCgIOdbu4CUZ4B7AJBoRG8wcoNlpgABdYDyrV+01ACwzc0VM3y8MS0mFl1gPvgWlWEYhmF0ZW1/4PpWYO90FD30kEQX1sof67yu+d2arDuZacCppfLnzUe9WPf5PUTY22OSvy8S7GwxrpQf8OQmzAULIQtg68VI9PzxMO7FyjuwMwzDMBZOoqnjQs3oPkqKBW7ukj+v29/w7VzaACQ+BjwCgVp9X8xPjMZVJ8e86yZTCxDzwELIAhi1+jwuP4zHhA0XzT0UhmEYprhzZSOQnQGUrguUqqFFnNloKKCYkzLf9H3ATqktR45rrMD6ZoKFkAWRmJZp7iEwDMMwOpApk1lvodTQ1bpbg9S5xijrLfoK4OAGNBya7z2WJT0sazTFHGv9m2IYhrEmKD+4W8ZNDNkxxPiNPY8AlrR6IT5MgF6Xlic3gMhzgI0dUOs17dtJUBNIrbAGNRgMuJTMt9DGuCrVEsNCiGEYhmH04JqTI6KQgdAnocDdI0CWEdb8HROBqEvA5pF55xuaYk4BysbcbV/ICZKu/BLgrkMF6N1TC857fBW4s1du+Wk6ouBylfvGrjHGrIcBwzAMYxDLexiXQZaulCQTfli6goxKyGz0aO1xcZ1at5jKa1RmasF5J3KsQdV6At4VCi63YYsQowar9TczDMOYC7q4m/rceuJnw9+rHC+zoqdx46D91DSW/TM1v//uISD+IeDsCVTpWmDxRg+3gu+h9ZVJeAxczGnU2mK06s/hYGmGYRiGKQSyMoDFzYC1AyXdrI2U12wpqyzfPwU8ClW//OTPurnFavZV2edsQwkP7WM4vRTISgfKNgGCmqhex8YWEQ6WU8/ZckbCMAzDMFIScQKIuSGfKI7HzlSXPAux5msTOppISwSu/mNc7aD0ZOB0TkPV5h9qWNEGP5X0yjfLfHWT2CJkQbBnjGEYRkKUL647Jki32fwzsjOB+EgDNybRZTjuwQshYwjXtwIZSYB3iHpLjvLH2dqobtKa8hTwKgdUf1n9m119Cs5j1xhDyCzlroJhGMYaIIGi3PPKBKQrnnxfXZ4tpTdqLCGxt/XbzOnfAFkWUK6VeKncAvycszO+L+mFB/Z2utUOsik4pmWeed1i7waUKhiLdWKx/HmzkZo70vtVhSXBQsiCYIsQwzCMhISuMclmlWXCr16eL15cM8Aio84ltOsz/VxSZ5fLnzcbgYMuzmhQITjPKn94lcBbpfOJF2VrUvihAr3FlFngnbcW0PX8LTKoSSuJNydPoP4gzePl9HmGYRiGMTGZ6cDFnOBficlWen7UtWBQsX5IEBtz6S95p3ivYKBqd3xETUxVEGWvJkbqImV5yYByLYGS5Q0bw7FF8sdGwwAnD8vto6YCFkIWBBuEGIZhJOL8/0y26XdL++c+v+zkhNsODogkt5MhZn1jg4TpM0/+In/e5D3NLilFJl3+919Ya1CQdKJi7JHngXtHAFt7oMn7Bu1zprIbs5BhIWRBcB0hhmEYCaDqyoe/M9nmk23zXjr7lC2NLkFlcDcj3uhg6R+9PPGlr7fu7yeXVvRVwMEVqD9YvklN6+cvgBh5Tp5VZ+8M1Oil+i1qNtU/MCBvOw1Ku/cso8OgC44wMvUpzAULIQuCZRDDMCjuAub6NiDVAEGhzLmVBQv9ETsmAc/vA1c2A3EqlhvJ0dRH+r9JyUJz1skJv5b0xN8e7gjNH4OjjpNLXlhzXPKlpOvChbUvqkA7l1C5ijpX211HB/l16/JGHVLmtVzrHl2AuWAhZM1kpHAENsMwRYf/vgDWDgAW1pPXtTGEjNQX1qCcDKo8dXYW1ALWDwV+qAvp0fN8S7WNbu/GZD8fDAvwx7DAF8HMwwP8EZ0crfn9T8OAGzvkz5V6emXp6m6jOKpLG7S6xQ67uqhddtzFWZ6tVr41EFhPp4+9p8JyZkOp92aChZAlIaVmoZoWMwKA1aozABiGYSyOczlxPcmx8orQBm1jBZDwCChRFmg4VP162fliZQr7HE7p5v9+JN6y1d0NZ0lQKJFqa4tx24dp3sappfIPrdgR8Kui/3hv75bX/XEvBYS00//9op5QjoxoPkrn98jMWDxRFSyErE0HpcYByU9fmDtv/SfFVhmGYQr3LBh33zAruMIa1GYsYO8Ei6wFR5b6XZOB0FVq42+IC4kR6hemJQDn/3xRt8cQFLWD6rxuXNVtn8pA5c46r67qW7ppbz45wkLImoKl6f2zg4G5FVR3BGYYhrFkjD0HnvkDSHwMeAYD9QZJV7VZR2SUwq4LB2blxvZs8HBXvz1tNZLS4gGfSnKLkL7QDfPNXca11FCMsfkHQL4Aco2osAjdlKXAXLAQsiays148VxUoyDAMY8nIlCv06AkVFTwyX/68zTjA3lGlEDJl1KRMF3cb1ds5OEf+vPu3uOvgoL8LidxqiiBpig3SR4QouPy33D0YUBsoVROGkkytNvQWUgX3S5MgNDUshCyIu7HJaP/tASSkGuq7VvoTL+Q7IYZhGClItbHBJnc3PLHT8xxGLTSSouV9ruoNUHkeXFHCA3UqBOM/DcG/xiCLvqZ5hbMrgP8+lz/vMAVoMtwwYXZ7D/D0DuBUAqj7pl5vTc7MsbwYWDsoP9N9fQAH/b7PexlxBeZFqyv2WAjw1dKMZGfL8M3WvL1pwmOSsPaUAb5x4uG5F89ZCDGMdWBo9lSRRIYfSnpiqp8PBlKNGrJyL6gDLKgtz3BSR3oScGSB/Hmb8YCdg0rLw7c+8jYRY9WkgxvLGUd7zRaYf8fIn7ccA7Qea3yXeaobpLWKc14S0hOBmFvAwzOAjR1Qux8Km4cZCbAk+GppRnZfe4zfjoQXmP/nyXv6b4xOGL8rBauxEGKYos/uqcCsMnILQBGIcYxJiTF2I9jv6iqePiILAWWAPb8HPI8Abu7UnD2VHAOUrJDXQpJzHhSZWW7y7SowyAmX8Fjj4sfqrBo3/wM2vicfScO3gE7Tc+NkZPomUD25AdzZJxd5TYbr+WYSjYnyLvFEpU6A+4sq2YWFpRV14aulGYlJTFM5/15ssv4by1+e/MzvBo6KYRiL4egP8sddX8BiIZHyezcs3PMR2v/VHuuurzN8W7KsPBfJfdc3vOiiTrVq1GVPKb6nthOUrEFyIUSCZ7qPNyb7++Z5W7NyZfW3zK02wHpy9wjw12D5OZqsLz2+M66thqKdRtXugHcFvd9uExsGXMj5jfR0q0kGp88zCmwsrPEcwzAWCmUjmaASshRk//MR9sScx2+RB8Trb05+Y1gG7MOzBSwkY7LuY7mn6mrHuZz6VV4Lx7siUDtf3TQbG/QsWxp/lygYiJuiT4AxFT7c8Laofrwzn2VJa7jC6jflWbxVugK9fy7QCyxb3+NAYc1p9qKAol48OAXEP5B3ia/azbBtWBkshMyODHVtbqMEksw9EIZhLJXEKGB+DXnKs1Q8DTe6lcUP535Aq+wwfJIv5mb4bgNcNgdmi4f8Euo/TcKDxn/sR/nzthML1sKxscV9DVlZOkGibvs44NYuwN4F4/NZltRCgdN/9gXSE+RVl/stz2utyuGMs7N+BSczkgH/GvJtGoANtRchavbWO8hZKiyt4QELITPTyfYctjhNxW6n8eYeCsMwloSqq0XsbaM3m5ieiPsRR3BgaXPIvqtq1LZ+u/QbEmwKjvPko5P6bejB2dzir+n53CbXnRzxkDq7q3MTkZWECvrVfs00LhhKyT/7hzwm59XfNK56TdEfjETmyt7ysZVpCPRfo1Z05FZm1sUqJSpJ56TMG7pviTn90BSZdebAwpwhLITMCB3H3e3kJ4xSNs9RyybM8i1D1Jcm/LC5R8Ewlsfp34CjC3NfPkh4gPPR5w3f3s5Jkt9KJ6QnoPma5ui+fyRGB/hhh459PU0OFRjM4aldQdEzsHSAXAjkr6J/PMca1G5SAZeTJEkjF9cDe6fLn3ebA1TvqVt7o5W95FY8stwM3KAxsytWncjLz80dQFwE4OItrwRtjAYpWR4IagrzYQNLgoWQBbHV6QtcdB6OnrbH9X5veqYRhch0Jfo68Pc7wAodTgYMU5ygi/S2scDuKfKsHrpubuyGITuG4PYzA604ioJ5EnIl9kqe19Tsc/D2wYhNiYXZuH9a3vPKxk5tvIwQC/mbcp5YIhdDvlWBmn1Uv9EYIURBzls+eNFHq+n7ur2PLEGU6UYZbIM3Aa7ekATaX6LhMONdWlQ7yKwByzawJFgImZFF+26rTCP80mGF3tvK1nSnSFVIpcCQ3j/5oXEaGZfAMBZdEfmnJvKaMTlce6qlyF5hQW6aLaPzzMq2sUHok1BMPDTR/Naguv01Bw5TQHTu8+fA8Z/kz9tNVG0NMkYI0U3f2gFAVjpQoxfw0te6vzfmBuARCAzZAngEaFz1cZLmdPxcHl0E7h2R1/1p/C6MIYriqOq8AXMig2Wh01ESHx+v98Ro5mlSOh4+T1Gpi22kPkyiLhj3/hM/y6uQShHhtuEtYHaQyL6QFBpb1GUgK0NeU8mYsZIf/ueWWmuGMIVscUmIgsWS/4K7fbz+jThNjOz4z/jSXnVxxpNResb0SMX9U8CdvfILfJuxSNQQLyNTTp8/sRhIiwP8qgM11FiDDLU80HG26jW5tSmoGdDnV/1aWLj6AEM2AyXLaVwtOSMZo/aN0i9lnkSZZxkYw3O3kgal3VuxQQg61bT28vKCjR5mNFr35s2bCAkJMWZsVs2vh8LULjNMCJnGIiR7Gg4bRazCgL9gNFc2yR/XDAA+zWumN4rji4D/vpDX1qC7J69g4O0dhm2LMkSIfV/JTe7P7gGN35FurIz+/NEVeHAaGL5PHnxqaeScHynw1VmWDaf88SxSWnXIZVOupd6ujVOpj/DQwXxtDDRag+r1B7xDMM1XvRtpCeIheqxT5tzxxUqxQRpEijpLkaZaQav6ya3flI4vgpz1yOoiBm0E/DQHoWdlZ2H8ofG4/vS69u0lxQCX1r8IkjaWCm2N34aVofNfxYYNG+Dtrd3XSfUjunfvbuy4rJ60zCx4Ix6l8VQSsXwiLBbt1C41/I705LVwNMvdjIR3tlTHQkoUQao3tku3fboj/PNV+XO6+AbWM36bjGGQCCLO/2kaIUTHtlExEzZ4ZmuLNuXKomRWFg5FUM0fz5xNy4xroEya3NUF87y9MGfjYNRJSwf6LtU7YDbJmIamhkBJFRU0pHhHnJRXSLa1l7fFoP3UkCr/p0OGXAiRS4xS0kvVAqq/omUQevymJF7XDwOiLgKuvsCgDYbF92g5T9DxMOf0HBx6cAhOdk5Iy1JdWDeXM38AtE5gfSCoCYyGRLSZ2fZcBwFoaUKoXLlyaNOmDXx8fHTaKFmCHIyt3WDlnDx2AOecP1O5TF4LVT/CYpLVC6HEaBjKs6TU3OeyNW9Ka9Ek1xOVd7ewKqO5XPv3xfMESjllIWQQFM+x72t5XIKxJ3JTFCD58zV5sO6k+4CzluJ96rCxwXlnJ/H0mZ0dBpculbtIlvREfxH0z4tYHjobjMmp0/NBKT8cIZG1cbjeQsjGkA7lxhCn5WbkwMwXadyUxaSFeMomI2uQIohcmzVInxghOq62fSI/Duxd5NZvb9N4NFZdW4U119eIgrqzWs/Cpwc+1Z6NSDQdWeBcSSKKshPvJ9xHRHwEIhIixGtNnEu4i1YwHzEpMbiW+rjoCaHw8IL9sDRx+fJlQ8dTbHjdTl6FVRWeNskifqiMl0TFrugOqlp3oy88Rscu5bvLxXdVgNbjgI5TjNvu3q/lXacZaS5e51cBjd4G3CVqTLlnGnB2ufyE/mXBrtN6IZVVg+q8ULxayzHYG3kEN71KYMSyTrD58JThQ1N6HpojigSHvwPq6hjgSm7sfz4CQleJl9SFnRqQKndmNxTRWqEw0SRC7h0Hwg7IrUF0DtCVYwvlvbICagPVdMhe1fXrot/o3Er5mF/7HShrGvfrvoh9mHt6rnj+acNP8VK5l7S+JynpMe57BiDCwwP3Ly2Ti56ECPFIwdb6xqAtvfM3Pmr1JczFzJM5AtiCsDCHcfFBfaKonPbzDmBA02B80L4i/D309FHnh7INDCE7CzXuLINkhO0vOO/wt8YLIdpGcer0TcHckaHAK+QOtNEvkFMbK14GnobJj5mhShYxY6BO15IhkUXo34+AyPPCFfJxhWAxq2bUPbSh75YsLc5yt5bO2NjgYzUdzS/KUtBbZxE0Ggj9U35BlmXnEUFEmq0tzjo5oWGaFneKuqyrwqwbpEm05cYGDdQaVJyHk7/KH9t9ppslWReLEPXdIosl0W2u4TeNOpQumHR4khAu/ar0w9CaQ3V6X7PyQfInh1Vn9rk5uCHYIxhBHkEILiF/nHZsmsZthkaHop5/4Vu4/7v7H3bf2w2rFUKPHz/GL7/8gqlTp0q1SaumrI1mc3l6VjaWH7uLtacjMLRFeYxoUxEl3TScxbJN4DI4/yfKRe+VbnuZ6bB4MlJMJ5CobMDer4BKHYHABoDHC/eJQcHcdMGkuIHh+41zL1JwORWN6zhVLoKI8EOwSKRyjT0sWOjwU39flA/9FkMOTcMr4yKl+RwA60t4YKouIuhfJRFEFYypt5UKhgWWwk9R0WijT1PU86twNekh4KinwDMKNcfkvWNA+EHA1gFoo4c1iMhIAkrX07lHlkybSSjsILDlQ/nzFqMN6+auA48SH2HU3lFIyUxBy8CW+KzpZ3olIJV09ESQZzm52MkRPQrhU9KpZIFtaRNCSy4swZKXpK9TpYnnqc8x4+QMWCKSCaGoqChMnz6dhZCOtLfTnD6+6t2mmLfrBkLvP8cvB8Ow+kQE3mldAe+0qgAP54LxVyZJ0aUCcVJClVZVcXAe0PpT/TM8TIG6Dtcb3wXqGNB5WkH8I+D7avLnp3PK5BsTk6KArBrJsYCbjv2PVLG8B5AWL79ASU1mmnTuLIUQSk8CDs4FyjbWrdKvKijYNh9kbbnh5IjP/XygLQRXUoQI+kgeCE4iiAKha72Kb/ar//v7MMAfl7TddFDiALl7KCAZMoQGSOTq1BH61VXaY/bnuEbqD5Jnd+pLex2tQfRnl6XmxkbBOuoKnyHPDu30FUwBtTT5cN+HIjamcsnK+Lbtt7Anl6COHPNoCo++mlt76MvRyKO4+OQi6vjVQWFBAeJPU58ixDMEZbNtcCjhDiwFnX+Nixcvalx+44a8miojDS0r+aJFRR/sux6Nb/+7iWuP4rFgzy1hJXq/TUUMbVEOro4m9mzSCUJK9qm5G9j/DeDmI49LMXPwbGJiHAr2qZbgQrdDRS+5Z+FA6brGb39eReC9g4ZntZEIIqiZozJUk0lFk0jdBUsiMKts3vl39gMV2xu0yQMuLkhOf4zuuz6TxxwR7+w2OACb7JP/urvBrNCxsXUMcP5/L0RQTs+sdSXUt2VQC1W1JvFDVZhJICuo0Aa2yYVb2DEmMxH++WdS6v/dw3JrUGv9b7Q2B9VE5/KtoHv/dy2CiWoRBTcHei+R1sWcQ2Z2JsYdHIdbz27B18UXP3X4Ce6O+p1hPJrpWGtIT365+At+6phTlNLEUIbc1rCtsLWxxdctv8byo6YRnYai85W0Xr16wvymKhVUMV8fUx+jHfo+O1YvhfZV/bHjchS+330Dd54kYc7O61h2JBwftq8o4oic7CniyMayUmNVkRyjftnWTwwTQoq6RBKReWCe5vTa/N2ttfH8PrCkpTwVvwAS/ma/tgU+OAn451idDITiT37w9sRnsc9Q7cgCoO14w6xAS1rLK+zm53+9DQ6Ypt5YSLmB+jf2YV8Jd2TABr3/6AKvifcBJ/0uLqFOjhgcqLnqr+SCJ/+FVoigj18E6VLhPlWNQ7VBFjLqKE7buX/ixXz3AKD+QLnlxTsEdj9XMn4/lMeuJTZvXPgGrGzwlsoO82gwBPDKiX3Rgyn2CZi5vj26lO+C3pV6o4F/A83XHW0xQtSs9c3VOtcKSqdK0zpC10QKDCbri4u9CxZ1XITS7qWhNxKX7RhUvgdW39shxAnFLdX0qQlTQv3tph+X92sbXH1woVqhdEXnszrVEJo7dy46duyocvmVK1fw8ssvSzm2YgHJylsODqiQkQF19962tjboUac0utYKwObzD7Fg703cf5qC6f9exdJDYRjdsTIys9S4dCQkycYG9x3sUTU9AzZUbVpPIUT7etXRAXvcXNE+OUVeD8UYKG6HMn8krA3jdSOncJkq6A5b37ieQ3PViCATsLgpMPEu4FLS4N+X4k+I9wP8cfD8SsOE0O29BUTQCWcnYX2Z8PRZTnUd/YhWasTZOfhFZd3vfEriEgmA5jk9oXTkbaX09sLgSewN+FEVZGUhQena51bkiKBf8rhedao99PCcXPxQI2SFq48qNFfpKhcalTrlEe62UllP6XjeNBK4sQ3ICTRXxeP0uII3T2QNsnOUu8INgOJjKGNq8+3NYqI4mV4Ve+GViq+oFhna3O0D1yPD2QNPkx4jJjVG9FyjidxYsak5j0qv6aKuKyuvrsT6m+tFmvzs1rNNLjh0pZxraXSv0F1YaChW6McOOY1rTcR3Z75DdHK0+O0+rP+hRZaW1lkINWzYEJGRkaKmkCqeP39uWOGwYgp9Ux/5++JATgGxFskp+CL2KYIy1QsaO1sbvNqwLF6pF4i/ztzHj3tvIzIuFZM3XoIT0jHSyOQyTRfIWDs7vBfgLyrTikDNzBf1hXQi8Ql2ublivL88luU3L09cCo8wbmA5AmO2d0mk2wBTY58ZLYTu2dtji4cbBscloGT+itzkjqG+RnphA3IwksilraXY2MBN8XdCaeXUlNEAjjk7446jA/olJIrt/ufmipuODhh/YR1smulRfZbcX+TGsLVF+3Jl83YApyBbI4+bZFsb3HNwwPAc4eEkk2kPHFbBdg2F9q5EX4C+l5iMQrZeR6fGIjdCh46r7WPlxxOJIHLL5NQEepb6DP/c+Qcbbm7QvtGlSi5GavBJ4odq8mjpb2UU5HqjHlyxtwE7pRIBKohMj8OB+wfQLqid/G9RkSlG4/TM5zLVka19tuJ89Hkhgnbd3SVSyBeFLsJPoT+haemmwkrUMbgjnO1zToZaLkmt/huMOHKPScyee3uEACDGNx6PDsEdYEm8V+c9bAvbJn6fa7HXUN1HSaRLyPHI4/j7lrzv3vQW04VlTGBTRIXQiBEjkJSUpHZ5cHAw/vjjD6nGZfU8trPLFUHEMVcXdHctgznRMeielC9WIx8OdrYY2LQcXm1QFqtPRmDxgdvwTg5D7Zy7s633I1Eu0/gS/5H2dljv4S5EizI/l/REG32aGV7fJmqjrCuR130RZWcH/6wsxNvawsuQNiB2Drjs6IhVnvJYippp6Xg1UekYFUG6+vn93ygTgCRbW2Gl+zE6RlzMc4XLxbV6C6Go7DR0KR8k7n+ycv74lz56jEOuLhh69yAMsUvQ2N4vLY++mOuT1/rTKvkBWuiyEdonCqbdPRX7XV3wkYrU77883PH6md/1d1lmZ+Qei/m56KT54qmStARh+VFHZGaizkKIWhvcjb+rdb1sWbaIZ5CKdEW8HX3vlPVH3ysdFb2XQFbndZyJOi2sB3QBzdA1No+ECPWeImFB1YLVxLjQ3fjV2Kt5zjeqOPHoBFIyUpCcmSyymxQT9cQSz2NuICXiGFLss5FcNggpPiFAvOYac6P3jcarlV/FBL8WcL13VG4NamWYNYggN1iDUg3ENKnJJOyJ2CNE0emo02L8NHk4eKBrha5CFAVrueAqRJC9jT28nb3h4+IjJornocnHWf5ceX7LNZorM196cgmTD08WCSz9q/XHoOqDYFnIUMGzgviOdoTvwK8Xf8X89vMl/xQ6bhQusTervolGAY1gqegshPr00dTYDihZsiSGDtWtLgIDPLJXbbKd6O+Llvce6OQ+cHaww9utKuCNxkH4aPkGUO1jomdQIBqkpqJRShreSEgUYuPo4X1o2bKtXplZZAGiu/n8XHZywtHos2ipi8Vm5+Tc4nAZnnkv+y8puThWP4xCbeiHzNYB/cu8uPv90s9HCCGyurjQBYfabOhQsVYZEkEEXTSUL+ZH7t2HpyK1XA8Wp4SLDt/KKKwj//MsoTnzRw19y6qPM3iepYOljhre7vpc7qYgYasmVuZrX2903D4WPnoKoeT8hTOVoKwsvbixQ5696KP+uH2Snao2UPXO8zui+zsJAbrzvRF7FSnZ2l2yfbf0xYi6I0TBOzsJshltqbq2qF48FjhDtbls8Ozl7/GPfSo2bH4ljzir4VMDr1V5DV8d1xJQOu5GATeoQvQoT09SdKtsPfw/HVLHXZWErBYRpIAsAqdvbsFMJ0fUrTvM6KahuUNxcBUuMZrIMkSWtH9u/4PIpEghKmny1lIuYOMrG4W48XTylEz4UiPV1KxUtCnbBhMaT7DA2Fn5jd17td/DzvCdQkzefHYTVUpWkfRTfjj3Ax4mPkSgWyA+bvhxnmUO5MK1IIxKOzp69CgaNWoEJ0Pu8gzkp59+wrx580S6ft26dfHjjz+iSRP1WSPr16/HlClTcPfuXVSuXBlz5syxiF5ok/3Upzuv8PTAR3psy83JHn4e2RA+mBzOOTuL6deSnrgYHoGWe/sg/VAJOFZoIb97LN8SCKirMfhXlQhSMKOEE3K6eqmG4gE2j5Q3L6Q735ZjcCFyo9rVB5QJ0FsUPE8raPdWiJdxsc8wVMK07VblgvBnZBT0yvFKjceO1IfGZ6NQbaOHZ+XVeOmuWgMyTSfz+Ehg3zdA6Gr5yZAsCi1G4doD9XFR75b2hyrnHVkIIhMjxYmOLkL0+DDhIR4kPhAnVUnar+yYAFzdLH/toz4WZWnKXfTLysDt57fzip5nN1T2cXLJzkaKlt/kTtwd0RSzomfFvIKIXInkMqSMP6pO/eyuvPYSPdcQr21DZRm2j4PszDKccXbGhurtsfvqolzrj6u9K7qHdBcCSBFLok0IPc5Ox9WI/bj69IXooViW/NAFnlKW6fvRRCWvSmIc5L5QTK42tnAJPwqX5/fgki2DS7lWcK3ZFy6O7mI5WXw08Vvn3/D5gXGISH+OIaVLYbi3D97PzoADZY1JCMUKfVjvQ4ysO1JYh8hKRNa1p/njlPJB6exSQyni1byrYV6beXqlyRc2lUpWEsf1f/f+E1YhSuuXirOPz2L1dTrPANNaTBNFH5Wp6xaE7c8spwOFUb9St27dEBoaWmhd5tetW4dPP/0US5YsQdOmTbFgwQJ06dJFpO77+xdI1MSxY8fQv39/zJo1Cz179sTq1avRu3dvnDt3DrVq1YI50dQFeqmXp15CiHBJjaZy1SrpFBSIzRHP4JERD9zcKZ8IRw8guKlcGNFExfnsjSw9m5EqLxp4Iict06ucPBC0XHNghXohpBd0Z/3wHFxOkntBNd/6lMSQ7GxkZ2chm/7JsoVbhB7Fv+xsZMlyXudM9FoTgwJ1EGs0tvun5EGsVzYis4xu/fkKWNJoGyR6SPxEngOUs1U0BKjOizqA9FubhOk7xCsEJRxLyLOKjv0IHP3hRYp87X7yAopUx2WFeiF029ERm25teiF2Eh+KXkYUOGoS6Puj7273FPn3QHeOLUYBkepjqWJk6Wi6uqlKl5KbrQOqp2WgRnI8qqelo0aWLcrV7o96Mbs0DuPDSv2wMvzfXEEUAgeMSMpE5ycPYKfuOHFX/7vEHf8RK57fwYYypXHX0QF4fkXMr+5dHf2q9hPBq/kvFtrotKGTWtFDViWaSFTRnT5ZT6auao9NmeozNzf1yvcdR10C1g4Ent+T99/qtUjvrLamAU2wMdkZM1OTsM3dDb/cWIUjMaGixxYdo1JD+0+xQjRR0cJlp7/Hsts6xFtJiL+rPxZ1WCS+c0vERun+8f267wshRBWf79S9g4peFY3efmpmam5Bx76V+6JFYEFnvaUZyYwSQoUdHP39999j+PDheOsteaYQCaJt27bh999/x6RJkwqs/8MPP6Br164YP16e+fL1119j9+7dWLRokXivJbPl2lp4ugeICxmZbWmi547kY1eBnQbrR7S9PWbU2oYr546hmd01vFXmIQLjzssvNLf3yCfCwRWyso0QH9QEUf6azaT3HRzw+r+vw8HOQdzdOdo6wjEjBQ5Rl+CQGg9HX284+FSBY7kWcIg+CsfYnO7hxkB33hfXAxfXQfb0jtgvBAWqXb3ONs3uXEOgO2C6a6aTnOLRzd4NrtnZcHl0Aa7hR+D6/L6IK3KFDPVS03DGRX0U++Dtg+HnWAJ+GenwS3oGv2f34ff0HvwzM+GXlYUS2TmFESgVmsRkcAvguvosj9isFEw99iIc2dfeDSHJCaiQmoQQZ1uElK6HkLZfwC+kk84me+XtKePu4I6yHmVRxr2MmMq6l0WZLBnOnVqIZXbq4wnpbt3PxU+4JOii4eXkJR9LzG3g3zEvWsJQBWFqI0K1llZoDionEeTh6IEa3jVQw6McqsfcQ40bexCU9EweJUbdxJt+CDR+V95RfIVmITRi93cYaGMj4s9WliiBMLsMTHADfnbwx4iEZHRxKg07aspJQcreFYASZYCT6uPHPrB7CuTEOamy/hiCnY2dELtin3OET1Xvqi8CUvNhmxMYrxP0d0btPjJT5O7lN1YBAQbcPIbtR4n7pzDb3hnt2s/AVxd+FCnbdO4Y22gs3qj6hslcR3Q89AhqX+hCiGrzlHIr3KxE/Xhx3SaR3Cm4k3CPUV2huW3kfdCMYXHoYtyLvwd/F3/xGxcFLNdul4/09HScPXsWkydPzp1na2uLTp064fjx4yrfQ/PJgqQMWZA2b84xt6sgLS1NTAri43OKzRUyX5xSXXzQxdYJJZw84OnsLRdIjnKRtNnunsbtzXy1Ab6wd8TSk+WwLDIeIzoMRw3P+4h6dBaRT2/hUUo0omyy8Sg7DEn37wLk0dICuSFUHlGKInXpkcCtDXrfTZB5X5G2Ght3DzH3jyLm8SXEpMaK7LUYVzvElAhCugQnUEpttctJLSYxqc1lQlkWGqFrkIvuJ8HQJ6F5Z5DOVaoA7GhjBz8XX/i5lYafqzf8bZ5q3F4A7FC+dGOExV5HdPpzxGQmIcbRFqfI+id4Chz5FO4n3cUduS535dQSQIgdjxyxk/NIwtwmO1NuubqxEzj2p3AV2bg4Y1lAQQutgilH8/aWI/eBr40j/JOfw5cEoJ8ffINbw79Kd/hmxcEvVnshwO19t6NsShJsji8CTi18YUHzrii3KNXtDzjo0cTY2Qse3hUwomQFDPQqi9VZsVgZexbhSMZEH08s8SyFEXUGi3o25DKTZaQBJzVvsrpLKfSr975B1h9VHB9wXK3oUYkurmISS7unAicWy19TCj4VeSTxqCeVspTqBjV8C11r9Ee9cu3xxdEvcPLRSdFu4cCDA/i6xdfwczVN1WsHNTeOpoTcYpZMfgPG+3XfF0KI4oXIDUwWRUOhQPEVV1eI51ObT5VbpNWcd61GCFFvsVKlCkf5xsTEICsrq8Dn0evr16+rfA/FEalan+arg9xo1CrE3LRMThHZVHF2toiztRXPZTY2SMlOQ0pKGh7njwXQclwN2zUUjzIfwaP6Y3FH8L/8mdFOeQ+FktkyPLPVvNHFHRcj43kE0k8uRsbTMJGSnF66LjJq9kK6nYO4S6cCZPRI06pr8qBpdTRf3RyJGWp6epFa0ZL1kp8d7ZfAzb+GMJfT3TM92j6PgF34IdjeOQDbu4dho6iqnIO6bCcF05pPQ3JiFJLvn0RyVCiS0xOQbGMr0sSTnUsg2d0PSY4uSMlKE1kTz9LypfTn4/vHTxBtb4cnHgF44uGLJ47OeIIsPEl/LjJa0mVZeJj8WEy68PWjSDRzSgZuXESijQ3C3bwQVrMHwnzLIywhAuFx4cLNRd/zpZhLYtJGgZ5EyU+B6+Ri3SGvGaT8Hdo5wS5XdKkXVtEp0YhJjhHfDwU1RyETURRIrQimfnoGOHEGuhL073j5eHJnNAVafARU7W5YjNakFzcWtDfvU8mZ9EQR97DiygrxPU48PBFLLi7B+3XeR5cgzenRC33boH0Paav46iWCCNHIVcPyxCeiCW2uRY66wlM7CwODxbvHPQfiIgBKZW8lD5YNcAvAry/9itXXVmP+2fk4+vAo+v7TV/xddSpX0NVnLPR3z+RHVkC4tQtqJ27yfrv4G2a2Nqw7PJ3ryXpMYQY9QnqgbVBbtevaWJjb0CghNGDAAGExIQtL1apVUb26aWoRFCZkcVK2ItH+BQXpXwHVWJa8fT4nEFMekJn9NAyJT+8gLv4e4hMfI84WQiCJyc4Wm9zdNcYdUe0NBbawR2a6J7IzPFE7oDzaVKiMQPdAcZIq7VZaPLrYOaP2SvUVQBulpKJ15HXgvyly87mTJ9B9nrweihpLjTYhpBBBVGvGNzMLPllZ8KXJqSR8S9WGT1Ar+JaskJvampmagh7b1Pf19nYsAVdSUBS4TRds6rlEQa7KUNZNSHugYgd564fNmps5vnb2b+Dmrhc9yZxKAHVeBeoPVlkBdsKaTtiRrl7EvNTrD/lFW8UdNwX6Pkl+IqxjlA1E2T/0etllyjpSjbjkX98qYmvcG72F2u0mo3a+PmR0wiLTNV3Mw+LCRA0WjdAdJHWQJ6FBlh+qXqxsXXDzA6p0Aap0A0LaATc2AufnaRZWaQnA3q+RcepXxNjZ4ombN540HIKYUlUQnSLfZ9pXxT5rjUkSIsgGqNZDLoAo9k0DDjKZ3rWEqDUC1V8ZUG1AHkFEHcWXeGjuoF6jwbswN7bahBBVJ4+nxqweQJ+fgerGFcgtrSjh0eidPLWNaByDagxC88Dm4ru7/vQ6Pjnwicj+khpbmyLj9ChECh4EI+qOEEJoW/g2YSEqV0Lz8awKCrimgHwqQzCpccFQFWVs9MzmNTV6HyWvv/462rRpg1GjRiElJUVkjVFGFpnb1q5di1dffdUkA/X19YWdnZ3ocq8MvQ4IUJ3+S/P1WZ+gDLjCzIJTPxAPIKC2fMq5wJGRsYTCfE3ZWEIkybNXPC8vxwxf9eZrygggkUMTHajf/ncLPx+4g1MRQEefauhbX78gudYpKS+6oFdoC/RebHCRNAX/3o8Uwofia2woiLfOQKD264Cf6nildAfNqeJ2K3sBIm1ZKbiVsjhIeAjh00Eef6J0x9s5MQn/qek/tfP+QyAzx5RG/YkaDJXXcXFUf3czxaWSRiGkqYu2k52TiMGhSRlNQkhc3Ct3Bl76Wm27DYozo2wZRcaMViH0Y4MXXekV+NcEqnaVi58yDfNaXbSlIZOQ3PqpKG9AuUOla/ZD6S4z5f3m1FB7hfriCpNjngrXC5qPAnx1ayNhiBBSJYjWXF8jXAF3EzS7pi3DFaBlDCSCFC0n1PzN6YOom0VWq5ZjVC6nwNzV3Vdj8YXFWHZpmUh/lxpbfVviFAdUiOGaPjVFuj+13Vh6cSm+afWNXpskMUu/IfF508/h5eyl7xDMit4240OHDqF1a3lrhU2bNgkBRFWlFy5ciG++0e/L0wdHR0dR3Xrv3r258yjzh143b95c5XtovvL6BAVLq1u/MKmbWjCtV8EOuuBqghphUqBmpY7y4M8uM+DsrbnWC8UyUI8X8sVTTMOELlXxUUf5hXDWjuv4ce+tAu9Z9kj9BfzVhCS5ybvbXGDwZp1E0A+P1dczqZOahvIOHnBv+BZs3t4FjLkIdPhC4wnZzs4ek2LVx8w4UksMEkE+lYAm7wH918pbULy1HWgzDijToIDZ/7snqi0PryYkogxV/W4xGvjwNPD2TqBef40iiPBw9RNuzsLigqe/aBugT8+xU3fVB4SVT8+QiyCKtSDh2G0e8PEl4INj8qyzoMYFXE81PdWLkU+ePgNWvy6v8UQZhYM2An1/0SiCtEHVtfHyAp1FEBGUYXzBURJEw+sMx86+OzGyjh7VvM1ENLTsc7WewPB9koggghII0JisQerDJyjZYkyDMVjedbmIQ5MaW3aN6SxD3q9DDmCI1hvkPteHqUenIlOWKdLxO5fvrHV9codbEnrL5bi4ONF3jNi5c6ewALm6uqJHjx652VmmglxWVLSRrFBUO4jS56natSKLbMiQIShTpoyI8yHGjBmDtm3b4rvvvhPjI4vVmTNn8Ouvv8LcDImLx1jnvAGCbZNTsEiDWNCEvUz93R5dxPNDmRqfvlQFDrY2+G73TTFlZGXjk5eq5GZxNElNw7nwCKGWV5XwQJ20NBxxccHrCYnwpJPcyMN6nTQ7JKcgJD0DYZQ+nI+XqJr22DC90vdtbGwxMD4RdxwcsN3dDY1S03DQVR438dWTWMQ3Gw/PpoP0Lqp4ITwCU3y9kWxrK/qiER8+ey5f2FlPse8RgCWPn4hLEFVqLp+ZKfp4EZTObQi/P3qMuw72aJiaBtdsGQKysnJjm0q5qc+iUwcVn6RaUzTGTR7uaJaSCrfsbNEbrCdV6n59pVwEkZVSBzw9SuPwvQdordSyg/jo6XO8HZcgtxg1/xBoNxlwND5o2JBLnaOGjNeZ0RqaA6sRRMNqDsPPF5dY9D2wnTaL0Ov/k7QDu3CeqrEG5YcqRW94eQOar5H2JpVdY7pne9fxqyPi96hJLFl3vmzxpc7bpMQZStqhkgVFEb2PEoqXoWwsEkMkhEhcEM+ePYOzs4maXeXwxhtv4MmTJ5g6daoIeK5Xr54YgyIgOiIiQmSSKWjRooWoHfTFF1/gs88+EwUVKZ7J3DWEiJeSUzDzSQwi7B2wpKS8+ukCA0UQUcHHFci5VuenrwohpIAatjrY22L2jutYuO82MrJlwlqkEEMKyTIkXt5ssJ7yxduAO8duSUn4ydEr1xJBwuWQiwv6JyToXcMoLUsmkrSox5iiz1gy9beysYFvdjYe13gdngb4oukImkHuFvIW2NogycYWflkGFmd8fCX3D21Azu8QGh6BB/b2CDawDUrj1DQxKVMjLQ1XnZzQNVt1loY2bHJ+axK5Cobl/ObC/acPXsGiZcrs6BhM8vcVwq1BatoLwTJ8v94dtUmQbVXhsqR2MoZcuqtkZOCSc0EXOFVkf1lLixuVaHWzmV8I+ds65qgTNUgogghK7oC7+uxBVYJSashqzORFli9mMH+sEAmhLbe3CGunPla6iY0nithNnbCwQkJ6HyUff/wxBg4cCHd3d9GAtV27drkus9q19W2SoD8Um0STKg4cKJja3K9fPzFZGnQYvJyYLE6PLVJSEJKRaVTkejU/9zxCiOImZuXEDJXS0MiVGNG2ouhf9vXWqyJuKCMzG5/3qG6SqIa3n8eLYOhWyanCEtE1KVlM+e9Y4lMzERWXikdxKXgcT4+p4nVUvPyRXselZOBuPu3tSvV7cu54pKhPUiJbhhLQ/P1pJKzgMUmCQIpecMqsi5S7MZNDLCBhIed775GUjO7hEQWPIz1FEDHzSSymxTwVZQ4eONhjtk9JjHwWZ/D3OCH2Gf72KHjh/fSpmrsJI3HXN8NLuO8yRL0uqXBz9QfiDb/Z0pcmKXo2ZjYBJbW02CiOBPtUVbusnn89NCvdTPRsI6sQpcDrAsUX9QzpqfMYLCNm7gV6X3s/+OADUdWZrC8vvfRSrgWGqkubMkbIWqHDob6BLpL8F9e1D6PwZk7vrWapqVgVGYUEW1uUytJ+IX+nVQU42Nlg6pYr+O1IuHCTSVFEID41A6fDn+L4nVh8kVMm5y1yj6hgwNITuSInJcMI8ZFDUkY2ohNSkZklE/uTkfNIr9PFY8687Gwh/jKzZZC8+YqLtzwItZCwrNOLdOOh7TjnCFy6afg1yrgLOonls+ER4u+mnlLJhLoG/i1Sg011ULsXVzv9reU10tLVCqFyGXoUR8yhVpnmQLzcQikVvzyKzm0AnB9vg2x10mIjQZ84ayPYQ3OJkBF1RwghtOn2JpEUQFnE2pjSbIoF9lTTHYOMEBS0TJMyFIPDmBFZNqqn5z2J19HzpD6keXlhGfps0yWsOH4P0zWcuxNlzipbKyWlZeL03ac4HhaLE3dicelhHLJzrhFfaLkWHLuTN1DZy9UBASWcEeDpjNKezihVQv4Y4Oki5rs72wML1G+v/a/UW0lzf6X85LcwGUtq5W5wfmxIa1XDCHOto3MndlORnJ4Jy6oSohpTldrzzMpCnJ2diCsbGpcgbwBsgGtM+R0UTzYoPgGf+/kUaJOgKx199OqUpxMtUjVYfSTuJ2YQRfjibC4almqIxgGNRc82sgp93uxzre/RRSwpE5wvE9bcsAPVapDlufsO0OIOU0f/JsFCDI3fcEHjes/hLoRQSnoWztyTW3xOhMXi4oM4YVlRpryPK5pX9AEuav7s+W/UzRE7cqHj4qj5bo4+Wxcc7WyFtctePMqf06O9nY1YRo9iPlk31dfaxBNZCURHxqFmoO7m9pj4FBTmn3x4pq/ZhdC1RwnIe5tkgXiUBhIeiafu2dlINDI+Rrn1zd8Po0QAf9PUVIMCufPE2OTwV6T8wFQIIUOw0SDGXqYsUAP5POap6tIdlN2qJ1Q/LMZeQisOZ40ZxIg6I4QQ+vvW33i3tvQ1sOr6mD9OVxkWQtZCdpYQQpStQ1ETijgZwUjVLUjU8VrDskIsQH0nEmTLbNBvyTGE3n8u3EvKBHm7oFkFHyF+aCJhQ8RfcEEJG/Wp5H3q6ycZtF27bs3oBntbG/1MthoSJW5mB2HgwiOoFuCBVxuURa96gfAvodmEdPx2NKSOUFuR+RKG2u9WuczWAMsDCTw/G+layWgpSG4ZUBB9jhAKzsgQgebGQP32/nr4CNQZjlzRBdzRBvRlbJySit1qqqlrSBLVgEwEl1OCAom/jskp6BwUCDsZJQcY3kT3zYRE1UJIWz0pFZBV+7AB8VRqMUCMFTZlMjI1FsM1B40DGqOBfwOciz6HP678AWvH/E5cpiBvrtH/PTmVfilbhzKm8lCqht6b61WvDG5kqxcmt2VlcPruMyGCAj2d0bdBGcx7rQ4OT2iPwxM6YF6/uujboGyuCCL2Z9eHlNhrUUJk5dHXb90/Xb0ZeGLmcGFBuh6VgBnbr6HZrL0Y+vspbAl9qNY6ZSuTvl7G95nqpdUTD/2DpTV9Q7uyGum9Pdui4I54eWHu02+jY9EsJQVLNdTN0oXq6Rmomc89bQxUH4lS+UUhTyly0GztRXA5ZYD2TUwSJTBO3nuAYxEPjI7lap2vVtbuiIcGiRAqeyEtln8sLoguvAB2XQOVbWxsRKwQseGmKZrWFhzD64osVTNgWTKUkWNIl2c1p8bw7FLQ3lZTNcuyumGu7VKVyx7KfDG7b21h8Qn2dtVJcHydMRi97I6pXLY+s43elhNTWB6OZ9fEosxeGGW/Jc/8oekT8UDmjwufd8LWS5HYeO4hzt57hoM3n4jJ3cke3WsHCPHXpLw3bHMG99hW9/RhXYlTGZ0lJ9FVf0dcnMwNvmosQp9mjMQVSxdC9Qbq/x6l0g9BmZlYqhx8Xa4lJMcAixCdnPOn8ldLS8d1J0d5fSd9McV+5TA/+gkalZcH4XZLTBK1rUQRTj2hmziKh7qm6DlnLIUcLH00Sf8SANWoaKka+plRHDQr3Qx1/eriwhPNYRJSMdZEGZsmswilpqbi1KlT2Lp1K/755588E6Mjb/wp7fbUNLpsnz7f4E2uz1LfNI94s0kwyvm46Wx1iUHe2Jp42Quz/+RM/f3Q9LlZhvkINPJt5hsFLEOHs+WlITxdHTCwaTn8PbIF9o9rJ6pzly3pgsS0TPx15gHe/PUE2szbj+//u4HwmCRsdVCfh0biasPZB0iVIEOO+CR9pN4ihD47QVRjKsjZ7MpIggsiYpP1GiMNYXj6i359yqTJDLv3GpU+Wv1CA4oyngpXX5HcEJeOdgyw4QQWtKAui3qMn6Ki8a6z5syfwhYFTjKIcbVLShalCQyOz/GtCn8dslwtUQi9GZ+AElQtXUIGxKuvAWdqbJSsQibYeIFZecI5Chm9z0pUwJAqOFM3eJUXJikPYmuGGhqOvwPMryVvWpoHAy7u1XsCOydCSmQm9pwuy+yGTxz+Fs8NraI0OGMyVjsW7Jb8ato0yLdsuGVIZMbZyLNislV8FxV83UR17o87VhaZcmQl2nbpER48SxHFKWkiymM17joPyPPejmnzcEdWBgfXXxD1mygua0DTYFSkelB6sDOrMdZmtce57EqIhzsmazl0qEbTnSeJOHgzBodvPREB7kvz5XjRfvdMn4G7stLiNQk7wsPZHv4eTiKgnR79cx798s3TFJh7XlYZzaA/W7Obo0nmdQxRGRul/9/LxQfP0UQPAWI0hpzkVcTKUF2rNlSfp/cUWBo0LjE2Bc4GFPe0d8KUJ0+R7euNwzlV4o3FOysLT+3scssO3Le3x4D4BIyT2AJBld4Ne+Mw4Ok+vQPcC4OWgS1R27c2LsUUXuarOdD76jN69GhRoJCqOysqOjMGQhU+qXN3XE4jTwWGuBaoi3oRIxKGZ8AoCM+WX6wVNEv9EcE20TgrU180TFd0DTwmN1jTEB8xfflKTey+9hgbzz3AoZtPcksH5CcrR1iRNYmE07Ij4WJqUdEHg5qVw0s1SokYJ238l9UQB7I1FyiMS87AkdsxYjwkfiLj8qY8f2bzDg7bfSKe1079LcdC9OIYdLK3RVpmNhJSM8V054l2t4wvVFcdn5XRH3mdjrozNfMtxMO1gNsyveZreqfCrz19H6pskOcD+iGk2bh8tksz8cpCYJGaGC1qHmzpUC9EvZGJQPPFj5+Aoq3uOjjggwA/PLa3F9YmQ1gcFY03y8jPE988ic1bHd8A7GQyeUNZJWZFx6ALjc+Qc7edo7CmfZjTegcSZP9qwkON90CTVejDvR9CUiwsm0/vvybq3k49v1gESYRU8RTkHnh3H5AWD5xbCVzZCEtnY1ZrVLZ5iOPZ+gdzK8ivM6LggyiZ8QKLsNXYj0A1lPL/St1AMUXHp6LJTHnT36WZ3dHA9hZckA4HZCJCJv/7OTi+vRAoq07ew77r0aKWEk1kZXmzcZBwP5bx0v3OmEoEUKHICw+eC6sPbZusH8qCzNHeFk0reKN1ZV+0qeKHrgsOIyT1TzGuNBWS4vrXXUWl7ycJqXgcnyaKVEaLR/lElb+f0PP4VCTlBI2TG7Rh6s/oYHce8xzkvf1eSfsaF2UVYQy/ZL6cK4Tqpv4KN6TCdm0ijuhpDL0dnQioSPjrc7cPXtt1F9/2k7rmjgF39r6V5XE2WekW2bJDK3XeMOrtjjmtUNZERmGnmxt6JSYaHMQuJaq++Z65Is2w8zlZ0oY/j8NSr7wS3M0E7iJtneHz07qMvMm6lNg7Gd9j0KxC6LXXXhOtLCpWNO6ExuQgZWBp2ZzqLTG3TCKE9mfVRXs76QLnsmCHmZkGBLqqrZ70gndbGRoi/gJjfxlyE9UN8sKF+88xI3NQzjaz87gd7Wxt0L6av5gePk/BmpMRwlpBwuLHfbfx0/7b6FDNHwOblUObyn5ifU18s+0qFuy5KSw3ylT2dxeih8RP0wo+BWo0ketPlQgSY7axgaeLg5gq+Wu+m6SCmiuP38OcndcRC0+kyl5s01gRRCTAFRMyhovxUtC4CBx/pr4kgyb+zmqNV+0OF5hPv5fkGHpBy87SmCVq0RhSUFHF10R9/gYbETQstYNf8y9pwO+c81tSDSVLxMYEyQ8uUpZIMIcQWrRokXCNHT58WPQWc8hXAv6jjz6ScnzWD9UzeXbXYlM+N2e1QO+cTK9NWa1yhZCvh2F1V/7OaoVX7Y5INj51Qogu+saiEC0KKEtOX8LI8qBj3BVZfsZ1qYoxnSrjvyuPhZWIrEN7rkWLidxoFEek7XpLIohES6vKvmhb2U88BuphVTIGNyd7lClp2s/6K6u9JNsZmzEC0zMGo7XtZfzk+CKd3jQYKIRk6oRQEbAIeehXbbgwULRpMYbSmVmIVFf3x5Dtu8u/p+aaqnQXB6rp3qvM7EJozZo1+O+//0SnebIMKatFes5CSE96LQZ2TgLqDQDWvCnNNpV+E20XTm18kvEBrmSXR1mbJyJgdSF+EvNLaykkqI40mbQFzhLVZDwZypSeNUTwMkGxN53tziIsW36ieqNxkN7byzbgxEixQT3qlBYTBTavOhGBDWfvi1iiuTtv5Fk3vwxsV9UPH3eqgtplPLVaj0yF8seqGgHVXepZJ9Bs43uBjQgwfyTLWwwwNsnAGJL3DgK39wD7vi64zNf4mLUiZxEyJFjaRIx++hxR9naoKoGbbPHjaPQuG5j7uo6hQdIK/OTHRoWMTGy//xB9ypRGmpGVzifGPsMcnyIWN2pnqqY32tH72/78888xffp0xMXF4e7duwgPD8+dwsLCTDNKa8azDPDG/4BgQ3JptDOzj/5WjPwWjKVZPTEt8608mVM2LoaFk87P7Ifr2UHiTlwKkuGMgemTkSmzxerMDi/GZ+A1lprPKhiX8T6+yRiIN9OnGGwiNvb+k7LIpr5cA6c+7yQKVtYLyuvfz8jXxIHcaLSOOUUGVfNWoCo1f8zaUHSef1AIoix10eRm5KmBQuiha1WE1xiZJ5CZjh9Me669DLo6HN2lFUKjzgBtxsNiaWmaG+n34uIxNfaZJLb2ihmZohq0ZJRvlfs0KDNLkjTywixOWNpCXXr6oPdfZ3p6Ot54443crvOMRChngdgbV+5fKihzKT/jM97DDbdGqPbaVL23903vWngCL3RNn4M/srpJNErgaHZtVEr7E10nr9Oreqo6FG41shb8ltUD0SiJhf0NS6mWyoPh7GCHfo2CsPlDeVG8xZmv4HR2FezMzpsEnpZhfkuBci2jA9l1RSyOsvAltx1lnpEg6rLgEP65EGlWQRSWUybAGKgsQcvZ+9D+2wM4VltuEVqd2V4cP0bFAaqrS1PawGBuCsDu8AUsFvcikITj7IV/HkRKtz0TxOAU5m3QqPii79LTW80MHToU69a9uOAwEuHkIT9BtZssT6u3AJTv7BWsz2qHquP3wsldf7PrgCbGuem0YZfHTSvttikLzBAMcY3pwtzMN9Ev/UuRg6aMJXS3UBZCZFEcmzEyj/A9PLE9xr5UBSWc7UX21kdrzqPrgkPYejES2SYWRCS49l3P20rjOTzQKm0BGqX+LMlnDDhZDk1TF+EzA4qEFiTv9yEy8dK+xd1MFb29dOSzTZfwTYPDQKN3jB9e5c6QFE0HcL/lsAhGHtO7XINGnPK6EKX4C6CzwksGlhvQly4p0rWVKTIxQlQwce7cudi1axfq1KlTIFj6+++/l3J8xQupTNaWcDVUgaLthCqqltK9toU63JxeuImk/Aaojo6hFHZMq/njbgB3Z82nlRLODhjdsTKGtiyP5Ufv4rfDYbgVnYhRq8+jSqlbGNOxCrrVCtB4vOjLg2fJ+Ov0fVH9O0rFHSy1T5GSxzBcqCiTnpmV56JLmXixMk9M2XIZ/3unqd7bexSXgtUn5XXLxk35Es5nlhk3wD6/AHONz9DUiZp9YDHhDFKSr/q1VKeM76NjEG1nh47BEo83H04SXG8qU48+1f2FLVMIXbp0CfXry90Ely9fNnmaHWMA3tKUNlB1EX+/bQik5o9hjdEg2LDAvt71ArE5NDK3ho7U+Lo74qcBDQx+v6ksQpbc8LRmoG5BsiSIqEXJ0BY5guhIGG4+TsSHq88JYUzZc11rGi6I0jOzsefaY1GOgApJKn6Kkq4OeJYsbW0ZTcQmpsHHXX93d0xiGp7FJKJyzmF9ou5M4KT8eUaWYS5QZdepjRS1XFzVCL52nxm2PVP8vXiHAE+LZ/wqtSs5cu8+WpULyq2ybWkEZ2RgZeRjIFCam4dCEUL798vL7TMWTEg7oMf3QKmaRm1GpuLexNBsMU1QDR1Dmf5KLVGIsG3VfNuQSA+c/ryTUQK/sCNfLMAgpPf3RTFDJHqGtSyP34+Ei+nG4wR8sOocqgV4YEzHynptjzLtyPpDfdyUM8BaVvLBm42D0blmKVT9YiekRNP1m+pBUcVxfbn1OBHpMh9Uhrz7/O8JZAHK69bTl91XH0sSR6eVdga2+yldR+qRAEP/BeYbdy7URBWyZkiI1OcMz2wZtjyIRIydHWobWVXbFHwW+wzu9AfUPm9/x8KkCNRpZ/SGLkSNJfD/m4AlgxpixJ9nJdseNUE9N+WlAi4hqU7yxlo5S3k4FWhpYUoswSpr6AhIEH3yUhW83bIClh0Nxx9HwnE9KgEjV53T+l5qCrvj8iOsOXU/T0NV6n/Wr1FZvNEoGME+5rG9Lz921yAhREzMGI7pWIHlWV1wXEnEGMq9py/ao+T5k7GzjAQN0SqIYpcULrvW44A7+4CORvRWc5Wm0nx+/nr4CDvc3ERF6Fws4O9PFSEZmWJCg6FGb6tZSgpOuChlg1LpFyNwUNxFqLMuWooQ6tu3L5YvX44SJXQzeQ8cOBDz58+Hv7+0fnem6BPoJb1FSZVLTDleSF+kPJVV8HMrVCFkCTFCxl4LSNxSM9t3SBAdCcPvR+8iMU1zunKTGXtEGxCCvoL2Vf1Fe5L2Vf1M4jItLKhlzPsZn0q2vT9PRKgWzU3fh8XQ83ugZDng/il58ogxIshU9WleX4nqfw1B9fR8VcjLS9+OQlI6f2P0JmqnpecKoTpuQcBLX6Goo5MQ2rJlC548eaJzGum///6Lr7/+moVQEccU7nplS83LdQPRo7bxqcvKfN69Ou4/SxYFBS2BxQMaou5X/xXa5xmigxzsbJCRpfrHpngafXGyl6ahohBEnavi7VYVUO8rVV3nX0AiiCpzU3+21xqVRWlPzYU2K/m7y/uNWTCmNi6MXnMOyekT8LLdcbzccpy0mVDG0nKMyYKR0XwUcHyRcdt08zdZM9zAzCzE29lZVJHLD+t9iJ9C5cV0hwd1QWbkAZRpMhK9GnxgdLkXS6gkZq+ruKlSRXU3aYbRh9JKFqEfDazNo4nhbaQP5jb2Yn5nZndU/Gy7xQZLk3DJyFJtcSllQEyY1FYpL1ftl+iVbzdBq0q+OgdWU/VuS0fTnkhRZWD7pSjya4gK6j3UFW60RigWxa8a4FnWIlUqZXvN9fbCO3HxwIenYQnU9Hnh2nXpuxSfZmcbXiTUArE3VYB0mTKmTdljTM9bLSvgv6uPhXth/w3dLILa8HV3EkUBXfM1/bRmSBh4ONsXaIRqCgzp82WKc7omK5Mp0Le33LVH8ZJ+vqyQ472U46AYPRh5DHB0BRpIU9leMoZtB5Z3F0+DMjPxY3SMfL6fhRogbKUTQUXGItS2bVvTj4SxOJpX9MGpzzvC180JIRJaNPK3iSgOnJ/yEip9vsMiLUKmSLn/okcNTPvnCooqVyLjUDPQMtyrxaXsQuFg4v009Hss3xL4Mg64dxyIPAfsMrD8gIJBG4G9XwGPQiEFHo7G13nTSLMPYU6sx7bFmAR/D2dJC9sVVyhg9+7sHib/nNKexrmyqNGrFAxqVg4z+tRCUeWtP07j4fMUybb32IA2BM+TCy/V2SgLWY1e8sdKL8HikUrwSVSrrQDlmhvePkWZSh2B9w9KMSJBXb+6GFZzGKY217+1kk4WISMzz4yF0+cZvWNerJ0QPzccvCmNK1ATVNfGWDaMaC5OJJlZMnHhLOejf5E8CjBefOBObrq5FJC4Gti0HD7flLfoqqVARR+vRKq/+EcnpOGtP05h/YgWIq3fWKg4or7xVu/9T7oyE9r4/Wg4fnjTwJi915YDCY8Aj9LAtS1AmUawXCQSQu5+wAcngfBDwLO7wAl5ILEkOJixxLIGN+3YRmNhOszrIGMhxOjE3NfqiLiEl+sY1nOrKDG2c1WRMddTIuuIOnpK8F1SRW5jLXZUu0chhGi/u9cOyAmklTZzkDK15rxqgoJ5BlDe102jEAoo4SyqXL//vzNY8XYTrZlwlFBSlEk0Jn7N1hYLTifhauQ5/Dyot0WUcCiAjS0gy5an5UuFfzX5REgphALrAw3fknasFoysUFvEqoZdY4xOvN4oCN/2q1uka7LoiruTvSiA16i8aQt8SXHtlMLSr5xBRRd05ZYixtRjInzc5BlfU3rWwJ5P26JhOcNaqRR2TMzvwxqL4+BE2FNM2HDR6Gawx+/EWrRYMrYVzII9t0RixZHbOUG+lsbkh8Ck+4CD/skEhQ4dmy8vAFp9AmvmpaRkVExPR+PU1MJvypgPva9q06ZNw71790wzGoaxcr7uXUtjCxNdoCw+U0HXezKDLxpQX7S3IPFrDDs/biOqiQ9rUR6mgipR64s2/VgjsAR+HtQA9rY22BIaiXn/3YAxfLPtGl5bchxn7kqX7aXcLsNYpLoMpWVYXi8rAWWKGVhDhzFdmYBND6NgCcEWegshKq5YsWJFdOzYEatXr0ZaWpppRsYwVsjgZsabuyd3rw5ToRBn5LYjERPiZ1x9GT8PJ3StFWBSd4khVrGwGO3FFFtX9sOsvrXF858P3MGfJ4y7ATx775kQQ++uOINbjxNgLJ/+FYqI2GRIgaFNXBnGGMzvFDNQCIWGhuL06dOoWbMmxowZg4CAAIwcOVLMYximsF1j0pxKyPJBtKpkOmuTMVBAtzoq+OofIE714HShX6MgfNJJXstl6pbL2KPGCqPtp9w6uhX6NwkWgnDPtcfosuAQJmy4gEdxhmemUV2qkavOij5runD/qXrRdPR2LKRg3PoLiE0shjfH9jmB8BW41IxBGFPcUgIMCvioX78+Fi5ciMjISCxbtgwPHjxAy5YtUadOHfzwww+Ii1NqQscwjEosKWLk2OQO+N87TdClZilYIq0q+6qc37qyr0aRpA599ONHHSvhjUZBwm04es15XLifr7+UDlDGGFmXdn3cRnzHtK2/zjxAu3kHMHvHdcQlZ+i9TW83RxHwPf1f3eo1PTGRQMlUsiZRq5OpEtePovisp0mW1zU9D+NuAqPPWW4BRIvGxqwNVwmjIl8p+C8jIwPp6eniecmSJbFo0SIEBQVh3bp10o2SYRiT14siV5AldK9XRbdapdGvYcG7xqVDGhkUwN+lZoDO69J38k2fWqJ6dUpGFt5ZcVpvl5TC5UiZc78MboS/R7ZA4/IlkZaZjSUH76DNvP349dAdna07xA9v1hOCbs2p+9hw9oH2/YD0UDPcBl/n7QN3L/ZFh3tj+HHvLZSftA1VvtghPuPyQwu+wXb2BHxMVFvI2vE3navfpELo7NmzGDVqFEqXLo1PPvlEWIiuXbuGgwcP4tatW5gxYwY++ugj6UfLMNaEgb4xC04+MhnkUpqXL3D7m9614OxgWFZboJeL3pl1iwc2EPWHYhLTMeyPU3hmhJWCsuf+er85lg1thCql3BGXkoGZ26+jw7cHsP7MfWTpkKVGwlXhtvti8yXJ24bowr7r0cIKpMzlh/FGW5jIjffd7pvy1znfxaqTEUZtl7FQZLKiJ4Rq166NZs2aITw8XLjF7t+/j9mzZ6NSpUq56/Tv31/nbvUMwzCG9jMzFCd7/e8BKZ3+j2GNRZf7sJgkvLvyTK4FR9u5nApeqrI0daxeCjvGtMG81+qIquCRcakYv+Eiuv9wWKcxjWpfCW2r+CE1IxsfrDqH+FT1Lrb0TOkDolPSpe2fRwKw9dz9YmKYwkLvs8Hrr7+Ou3fvYtu2bejduzfs7Arekfn6+iJb12hEhimmGJuRxRgOlQYwBP8Szlj+VmPRRJeywD5ZF6pTjSFNgcpk7aKg7P3j2mFyt2oo4WyPGzpmlVExzQVv1EOgpzPCY5IwYf1FtfWKTNH0d+LflyTdXnRCKh7FqWtHYn7LAWOd6C2EFLFA+UlJScFXX30l1bgYxmrZ/GFLUam7ZSXVAcDaKGtAh3lrhFLzDcWYS2rlUh74dXAjONrZYsflKMzYfg1SQG6+99tWxOEJHfB+2xCd31fSzRGLBzUUFrKdV6Kw7Ei4yvUsNPwrDzYaIpnOR+gfpF7c+TJjCCwfWdETQtOnT0diYsEaHMnJyWIZwzCaqRfkJSp1G4qbkz1Ofd4RoVOLQJNLE9K+qr/B79XkynJz1B531LyiD+b1k7cLIeHxx9FwzZ+nZz+/yd2q631MUfVugrLQVBVupBY5lo4msXY9yvjaS8WN5VldYfE4uBZNi5CqzJILFy7A29u8KXAMU5yyvLxc5e0riiNNKngbleHmpaF58JkvdBOYveqVwcSu8l5Ts3ZcN3s8KBXrfLluoAgu/nD1OdHoVZnH8epcTgxjRso2RpERQuQOI6FDJ58qVaqI54rJ09MTL730kogfYhiGsXQ0dYJ30cEipGBE2xAMahYMS4DOzbP71hYp+o/j0zBm7fk82WdGtksrFEztvqPMOkrJf3cFFwC2HGTmHoDu3ecXLFggrEFvv/22cIGR+FHg6OiI8uXLo3nz5qYaJ8MwjKTnzt+GNBKZX7paitSJjy9frol7sck4fEt9w1FD+8oZ4jb9eWAD9PrpqKgWvWDPTYztXFUsy7KANGVjYoSMZdP5B/hk3QXxfM+1aJN9DlP00FkIDR06VDxWqFABLVq0gIODJbRKYximOKKu0rQ+NK7grTJFXl+ooOP3r9dD4xl7YAlQMDdVsR6zNhQ/7ruNBsEl0b6aP7JUpPAXJ4uQQgQxFoZMVjRcY/HxLwpkUfFEyhCjeaomhmEYU2OIYMmPp4sDTkzumGeevkHKCpwctJxKC/lcT/FLiga/H68LxYNnydh/w/KtIIWZ2PbZJmlT/xkD8a4Ac2Ova3zQo0eP4O/vDy8vL5VBioog6qws3UvEMwzDmJMAzxexQpR+3qNOaZPc1OpbyVoKvuhZHRcfPMeFB3Gi2CK18ygs1CXVaKMwW7ysPhmBmX1qF9rnMfkYtg24vQdoPBxFQgjt27cvNyOMnltqPyKGYYoHpjgFlTRhFh7F7hQ2TvZ2+GlgA/T88QguPijcPl3z99zCpy/p34C0qF5ZFu69hZuPE7DwzfqiyCWjA+VbyScLQKe/zrZt2+Y+b9eunSnHwzAMoxUfd8OLKarDGu/vypZ0xfw36uGtP04XujAwSAgVod9g5+UolHR1QNMQH3yf0xetf5NggwulKtqgDFh6QtSF+iKnLhRjgXWE/vjjD6xfv77AfJq3YsUKqcbFMAyjsuM6xb70qG2YC8tcMZvURsOchSdHd3jRC5IxHmqZMuLPs3jj1xN55qdlZhnsSqSU/jrTd+HMvWf4TU11cEN4KnO3mMKFViOEZs2aJXqJ5Yfih2bOnCnVuBiGYVQGAX/du5ZZhYUqnLUES3u7mbf45cc5XeotnbWn76MooL4fmmHcjU0WKf3UPFdq3kyfgtNOzYB3/pN828VWCEVERIgU+vyUK1dOLGMYhiluUDyOJUPCMcTXDZbO4VtPUBRYc0raa12Wiibl6prn6stNWRDmeX8JBFhWYPjpu0+x6uQ9FEkhRJafixcvqmyx4ePjI9W4GIZhChVj41OoorMlE+Rt+a4RKgJZFNh0/qHJP2PlcQlFgvlL9RSg35Lj+HzTZRy7rb4QqcUKof79++Ojjz7C/v37Rao8TZRJNmbMGLz55pumGSXDMIyFY1nOuoK4Oxd+5prUZBvQJ4Tidt7LV0Hc0lBl/Hn4PEWy7Yc+eA5L5W5sctGpLK3g66+/xt27d9GxY0fY28vfnp2djSFDhnCMEMMwRRZbI01Cpb1ccCs6ERZLIVsFUjOy4Owgrcvw8O0YtK3ip9d7/jp9H/9dfYziDGWjMRJahKiv2Lp163D9+nWsWrUKGzduxJ07d/D777+LZQzDMEWJ71+vC193J/w8qKFR25nzasEYDIrpXjKoASyBwup3poDq6kjNymN39X7PlC1XYEqS0zONDqKWFUELY1E9LlVhsK2UOtBXrlxZPOcCiwzDFFX6NiiLPvXLGH0eK+3pgrCZ3RHy2fbceWGzesAUvNk4CJbOltBI1CnrJek2992IRkRsMoJ9zBfvlF/gKbu1sgxw3eXfBlMELELEypUrUbt2bbi4uIipTp06+N///gdT8vTpUwwcOBAlSpQQbT7eeecdJCZqNkNT8Uc6uSlPI0aMMOk4GYYpekh1M1dYVYUndq0GS8dQUaBNMPzvhP5WISnpPP+QVVpFijN6C6Hvv/8eI0eORPfu3fHXX3+JqWvXrkJgzJ8/3zSjBIQIunLlCnbv3o2tW7fi0KFDeO+997S+b/jw4aJPmmKaO3euycbIMAxTM7CEyT+jpJnrEulCpoqUcClYd/o+UtItp6dl2JMkk2z3l0NhOB/xDNaOTFYEhdCPP/6In3/+GXPmzMErr7wiJhIXixcvxsKFC00yyGvXrmHnzp347bff0LRpU7Rq1UqMY+3atYiMjNT4XldXVwQEBOROZFFiGIYpbhT2Bee/K9IHKAd7uyI+NRNbQk2fvq4rLy86YvR3/PfZByrn91l8zNBhMaYUQmRVadGiRYH5NI+WmYLjx48Ld1ijRo1y53Xq1Am2trY4efKkxvdSQDdVwq5VqxYmT56M5GTNqXppaWmIj4/PMzEMwxR1ClsIpWdJbxGi9irEiuP3JCs4KCXXowwLEF96WLqWGkwhCKFKlSoJd1h+KJNMETwtNVFRUaKQozKUuu/t7S2WqWPAgAH4888/Rc0jEkEUxzRo0CCtLUQ8PT1zp6Agyw9KZBiG0Ua2BQoHfenXqKxoZ3LtUbzoyWVpbL/0qFBqI1kTMnMPwJCssenTp+ONN94QMTotW7YU844ePYq9e/eqFEiamDRpknCxaXOLGYpyDBEFd5cuXVrUP6J0/4oVK6p8DwmmTz/9NPc1WYRYDDEMoyum1hs+BsYHFfb1Vp+w8aS0TKw/o73PmJerI3rXKyN6ki0/dheNy3vDkjDESmUJQqC4o7cQevXVV4U7igKjN2/eLOZVr14dp06dQv369fXa1tixYzFs2DCN64SEhIjYnujo6DzzMzMzRSYZLdMVii8ibt++rVYIOTk5iYlhGMYSGdFW9blLG/aF3KhWl0y8R3EpQtCsORkhYn90YUjz8kII7bochai4VAR4OsNSYFFTNDGojlDDhg2Fy8lY/Pz8xKSN5s2b4/nz5zh79qz4bILaelBFa4W40YXQ0FDxSJYhhmEYU+BgZ1rBYWiqta2WQIiXfzwCTxcHeLo6yB+VJq+cxxKKea4O8HAyvGXH5Ydx+O1wGLZefITMHFNVBV83hMdoz8CqEVgCTcp749Tdp1h9KgKfvlQFFgMrIf2xAJetTkeyPgHDpsjKIosTpehTKvySJUuQkZGBUaNGid5mgYGBYp2HDx8KtxfVOGrSpIlwf61evVqk+VMzWGoU+8knn6BNmzai7hHDMIwpmPtaXQz9/RQ+7mRczORLNUpht4rWEKa6blx6GKd3R3t9Y2H2XY/Gb0fCcCLsae78ZiHeeLdVCDpU889TjFITQ1qUkwuhkxEY1b4SHO0NKoknOea/pDMmE0KUsaXNzEm+UVqHmrCaAsr+IvFDYoeyxchFp5yuT+Loxo0buVlh1O5jz549WLBgAZKSkkScD73niy++MMn4GIZhiKoBHjjxWUejt+Pt6ijpxZYqX2ti2dBGiEvJyJ2eJ2cgXul17vyUDNG7SlvBxKdJ6eKRav5sOPcAvx8Jz7X4kJuuZ53SeKdVCGqX9dR7X7rUDIC/hxOiE9Kw4/Ij9KpXBpaAJWayMRIJIcq6MjeUIUYWHnWUL18+z0FIwufgwYOFNDqGYZjCcYEZeq19vVEQlh1Rn6bdsXopvRqqkihqOnOvxvW+3XUDf568J0QV4eFsjwFNgzGsRXmtwkwTDna2GNi0HObvuYmVx+9ZjBAytldZUeCrf6/Cy9UBH3WUJktcVlSEUNu2bU0/EoZhGCYXqY0L9hLGLlFXeV06yy/af1s8Bnm74O2WFYQYczMitkiZ/k2DsGj/LZy990zEHNUqo79lSWoMycwrrBpCLWfvw55P28LFUfvvpo67MUn4/ah8vFIJIUvAIMfq4cOHRT0eKqJIsTkE1eg5cuRFhU2GYRhG+osqWVQMwdet8LNhG5YriSWDGuDAuPZ4q2UFyUQQ4e/hjG615IkvKwzoSm8pgexPk9JQGDx8noJWc/YZtY01pyIgNZbgTdRbCP3999/o0qWLaLZ67tw5UYmZiIuLw8yZM00xRoZhmGJH4/IlC8xb/W5TkbVlCJTptfa9Ztj0QcHOAKbi75Et0LVWab0Dq3VlaIvy4nHLhUg8y4lJKmqYor7TsTsxmLW9YA2+WCO/o18OhcEa46r0lufffPONyNwaMmSI6PWlgIor0jKGYRjGePo1ChLZUGRVCb3/HE72tmhRydeobTYL8UFh4WaEC0ZXGgR7oVaZErj8MB7rztw3uMaSVBhyTTeFEBiwVHPrKcZIixBlZlEKen6oHQXV+mEYhmGMh6wofRuURTkfNxEMTJYVJi+UqUwFFon/Hb+nNZPN1Bjy6dnSt2QrFN5beUYEzRdLIUSVnKkyc34oPoiqQDMMwzCWzVe9apr8MwpLk7xSN1BkMVEMzN5r0ne8N7V1JzxWexFJS+BpPrfaf1cfW0xsVqELISpqOGbMGNFmg9R4ZGSkqPEzbtw4jBw50jSjZBiGYSRjUNNy2PyhvFdkUW/yStlrbzSW94OkVPqiRmhE0fCkNPh6d4F5VELBWMwfIWRAjBA1SqXWFlTYkIoXkpuMenOREBo9erRpRskwDMNIhq2tDeoFeZn0M3RoNSapsFt6KAxHbsfgdnQCKvl7mCUQ15CPy7KAYGFDkWLklx7oV9HcrBahRo0aiSDphIQEfP7556Lh6eXLl3HixAk8efIEX3/9tWlHyjAMwxQZCvP6HuTtmlsQkmKFFEQ8lXcaKCwMsYKZO65JFxJSM0z2G288/xAxiYVTQsBoIVS3bl1MmDBBNCyljLFjx46hRo0aoq+Xu7u7aUfJMAzDFCncJawZpAtDc4KmN5x9kHvhVjR0ZYzj5uMESRsA56fRN3uQmZVt+UJo2bJliIqKwk8//YSIiAjhGqtUqZKoHaQoqsgwDMMUHbrWDDDZtvs2KNy2Fy0r+SDEzw1J6VnYeE5+TSpE75yAZZfhJJsxA02vYGlXV1cMGzYMBw4cwM2bN0X3919++UX0+erRowc2btxoupEyDMMwkvLzoAaY91od7P6kYEkUY7G3K9yO8JS8o7AKrTh+N7cReGFShMN9DCIto4jm/ufD4CO1YsWKooDi3bt3sWbNGhEr1K9fP2lHxzAMw5gMEgpUuLFyKXlwcVEXBWSFokKOYU+ScPR2bOEPwEqRqfktt196BGvAKMlOliGyENGUlZUlUusZhmEYxhytEzycHfBqw7K5ViHGtEQnSBfknJiaiSIjhB48eCAsQRQf1KFDB2ERWrx4MR49eiSyyhiGYRimvK+bWT5XUWmaiitGPk8xyxisDZmGZWfvPZXkM65ExsNc6BzW/9dff+H333/H3r174e/vj6FDh+Ltt98WgohhGIZhlDFVo1VtVPJ3R6tKvqKm0J8n7klm3aLt/XJQ+qajRQGZTLOAaVjOG0UZnYXQoEGDRED0pk2b0L17d9jaFm4gHMMwDFOEMGPg8JDm5YRw2XE5yqjtUEr3tkuPhAC6+sh8FgtLJluiEgXmkc16CiFyiZEliGEYhmG0IVWNGUOg4oplvFxE/zFDSE7PxF+n72Pp4fDcbbg42OHNJkH446h0sUdUDbuoI5NoO4Wc4GeYEGIRxDAMwyhDGVpUt0cVUsdK6+NpI7fcoGblMGfndb0+IzYxDSuO38PK43fxPFlelNHHzRHDWpQX2yvp5iiZEKLCjzO2X9O63m+Hw/B64yCUcHaANWNrRiVUuKU/GYZhGKvhz3ebos/iYyqX9ahTWu/tKWJ7VNGnvjwbTFeoEauuQuhebBJ+OxyOv87cR1qmvDZOOR9XDG8dgtcalhWNXaVkz9XHmPj3RZ3W/WbbNSzYcwuvNwrCWy3Li3YiVpkBaAOzwUKIYRiGMYjqpUtoTGXXl/FdqqoVQl/3rqnXtrzdHNGkgjdOhavParr44Dl+ORSGHZceQRHqUqesJ0a0rYguNQNMEvB9MiwWH64+J3qMvdqgLPbfiMbTpHS161f2d8et6ET8fjQcy4+Fo3ONALzbugIalitZ6AUjrRW9hBDVCjp69Cjq1KkDLy/Tdi5mGIZhLBupr8N1g1RfVzyc7OHqqP99e/8mQRqF0CuLjuY+b1fVD++3qYhmId4mExhXI+Px7oozwurUqXopzHm1NhrP2KPxPf990gaHbsVg2ZFwHLr5BDuvRImpbllPvN2qArrXLg0HE1fxlll5NW29jiw7Ozt07twZ165dYyHEMAzDWDS+7k4al9vb2uCVuoEY3iZEo3VLCsj9NuT3U0hIyxSWqkUD6uvUhoREWdsqfmKi5qe/HwkXHdsvPIjDmLWhmL3jOoa2KI/+jYPh6Vr4cUQyA94TnZBaNLPGFNSqVQthYWGoUKGCaUbEMAzDFAkc7Wzh6+6ImET1rh0pUFSL1hcbLZfXgxPai+wyUxMdn4rBy04hJjFNCK7fhjbKjTvSR0hUKeWB2a/WwbguVbHqRAT+d+IuHsWlCjG0cO8t9GtYFm+1lP7anK3B7GNI/FBmVsH3aHIPmhq97WlUVXrcuHHYunWrqCYdHx+fZ2IYhmGKB2StOD65Y4H5ZPEwlMndqhWY93mP6gZtS5uHqzBEUFxKhrAERTxNFgHYK95unCcDzJA6PGTpGtOpMo5O6iCa5lYL8EByepbIeGv/3QGJ9wAYsPSkpNtTtcc3HiegyFiEqJgi8corr+Txoyo6/VIcEcMwDFM8yB+fcvHLznA3IJ5HwfttK2LWjrzZXqaOgTEVKelZeHfFaVyPSoCfhxP+93ZT+Hs451kn3ogeW072dqJpLmW2HbsTK1Lt9994AksnNOJ5gXnpOdl65kDvo3X//v2mGQnDMAxTpPFydbCoejdO9uYTUBlZ2Ri1+hxO330GD2d7rHy7CYJ9TJP6TkaIlpV8xXQ7OhGdvj8ISyYuRV6jSZnTd6XpWVYoQqht27amGQnDMAzDWEG/M3J3UZ2gvdejhRj7fVhjkwdjK/daY/TDILl8+PBh0XusRYsWePjwoZj3v//9D0eOHDFkcwzDMEwRpmM1eeeBt1pwEg2Ficzcfg0bzz0UQuznQQ3QuHzRbkqqiUwDYpzM2X5FEiH0999/o0uXLnBxccG5c+eQlpYm5sfFxWHmzJmmGCPDMAxjwfw0sAE2jGiOUR0qwZIwR8HBnw/ewW9HwsVzCmTuUK0UrJlsKygkZFDW2JIlS7B06VI4OLzwBbds2VIII4ZhGKZ4Qangjcp7S+aKer2RYeny+TGHY2zuzhvi8Yse1dG3gTT7YcnYGPAtq9JO5tRTeguhGzduoE2bNgXme3p64vnzgpHgDMMwDKMPc1+ri6LMh+0r4t3WISgOyAxwc6l6hzm7hegthAICAnD79u0C8yk+KCSkePzwDMMwTOEVbSxK9G8SjHGdq5p7GIwe6H2EDR8+HGPGjMHJkyeF/zUyMhKrVq0SRRZHjhyp7+YYhmEYRi1tqvihKPFN71rcDFUbKvxg5nSN6Z0+P2nSJGRnZ6Njx45ITk4WbjInJychhEaPHm2aUTIMwzCMnphDj5grZb8oIVMxz5zaUW8hREr3888/x/jx44WLLDExETVq1IC7O9cuYBiGYYp2IC9jeop8sPTbb7+NhIQEODo6CgHUpEkTIYKSkpLEMoZhGIaxBHzcHc09BKtHJpGAKVJCaMWKFUhJSSkwn+atXLlSqnExDMMwxRhFe4w2VXwN3kaglwuGNi8n4aiY/ETEJkNfDOlYbxGuMeosT4OniSxCzs4vGsdRo9Xt27fD319eXZRhGIZhjOHg+PY4e+8ZutYKMGo703vVQmpGNtaduS/Z2JgX0Pc657U60AfLkkF6CCEvLy8RH0RTlSpVCiyn+dOnT5d6fAzDMEwxJMDTGT3qlJZkW5zEZVnIZEVUCFHXebIGdejQQbTZ8PZ+0TuF4oXKlSuHwMBAU42TYRiGYRgrQFZUs8YUXefDw8MRFBQEW9uiVeSKYRiGYRjLxN/Dqeikz5Plh6AaQhEREUhPT8+zvE4d/XyFDMMwDGNK2DXGSCqEnjx5grfeegs7duxQuZwCpxmGYRjGcnihhHrVC8SW0EhYCuV8XHHPgMyrooxMVWVpmA+9/Vsff/yxaK5KLTZcXFywc+dOkVJfuXJl/PPPP6YZJcMwDMMwjCVYhPbt24ctW7agUaNGIk6IXGUvvfQSSpQogVmzZqFHjx6mGSnDMAzDWJlrrLK/RzG0CEGneRZrEaIK0op6QSVLlhSuMqJ27do4d+6c9CNkGIZhGIl4tUFZ8Vi9dAlYAqM7VCrUz3v4vGBBZEugSLnGqlatihs3bojndevWxS+//IKHDx9iyZIlKF1ampoPDMMwDCMV7k72ebrZ7xvbFps+aGHQthYNqC/hyAAXRzsUJmFPEmFuZBZWUlFv19iYMWPw6NEj8XzatGno2rUrVq1aJWoJLV++3BRjZBiGYRiD+bBdJZy79wy965cRr0P8DG8S3rNOIEatPi/Z2Aq7Wb2thfoJZWb0jekshKh+UIUKFTBo0KDceQ0bNsS9e/dw/fp1BAcHw9fX8J4wDMMwDGMKPF0dsGGkYRYg01O4wsQSZJDMsgxCuguhihUrisDo9u3bi+rS7dq1Q9myZeHq6ooGDRqYdpQMwzAMY4UUtoGG2mGZGxmKqBCibLEDBw6Iac2aNaKQYkhIiBBFJI5oKlWqlGlHyzAMwzBMkXHFFYWsMZ2FEFmAaCJSU1Nx7NixXGFEdYQyMjJQrVo1XLlyxZTjZRiGYRirobB1iZ0FKCGZCpvQ7ejEohMsTTg7OwtLUKtWrYQliKpMU/YYxQoxDMMwDGOZripLcI2pIio+FUVCCJE77MSJE6ITPVmCqLo0NWBt06YNFi1alNuYlWEYhmEY7RS2LLEAgxAsLVha5zpCZAGiAooffPABoqOj8f777+POnTuiptDSpUsxePBgkTlmKmbMmIEWLVqI4GwvLy+d0/GmTp0q6htRO5BOnTrh1q1bJhsjwzAMw1gylmoRKhJC6PDhw/Dx8RGCqGPHjqKtRmEWUCRrVL9+/TBy5Eid3zN37lwsXLhQFHsk65Wbmxu6dOkiYpwYhmEYxtwUti6xDIuQDEVSCFGj1V9//VVYZObMmYPAwEDRVmPUqFHYsGFDbqsNUzF9+nR88skn4jN1/aIXLFiAL774Ar169UKdOnWwcuVKREZGYvPmzSYdK8MwDMPogr2d3g0erLKgojnR+RcgawpVkZ49e7awrsTExAiLCwkjeqSaQrVq1YKlQAUgo6KihDtMgaenJ5o2bYrjx4+rfV9aWhri4+PzTAzDMAxjCgI9nQv181wLuaVHUcBgKUrCyNvbW0wUO2Rvb49r165JOzojIBFE5K9tRK8Vy1Qxa9YsIZgUEwWDMwzDMEz+xq0K6pb1FI9bR7ey+Jgde1vpLVCxiWl6rW9hnjHdhVB2djZOnTolrD/dunUTAcsUvLx48WIEBATgp59+QlhYmF4fPmnSJHEQaJoKOyV/8uTJiIuLy53u379fqJ/PMAzDWDb1guTCR8GWUa1wd3YP1CqTd35xofmsfRi95jyO34nVKf7HwnSQ7unzJHySkpKE6KHaQfPnzxcFFqn1hqGMHTsWw4YN07gOVa82BBon8fjx4zxB3fS6Xr16at/n5OQkJoZhGIYpDNwc7ZCUnlVgfoivG4oC6VnZ+PdCpJhozP2bBOPVhmXh7eZYJCxCOguhefPmCQFUpUoVyT7cz89PTKaAGsSSGNq7d2+u8KF4H4pv0ifzjGEYhmFMyfA2IViwp2Bpl7Gdq6IosHV0K6w+FYEt5x8iLCYJM7Zfw7xdN9C1VgAGNA1G0wreFp22r7MQorpB5iQiIgJPnz4Vj1lZWQgNDRXzK1WqBHd3d/GcWnxQjE+fPn3El/7xxx/jm2++QeXKlYUwmjJlish26927t1n3hWEYhrEOtn/U2mTbdnOSPrDZFHqkVhlPzOxTG591ry6sQqtPRuDSwzj8cyFSTCF+bhjQJBh9G8itRKpabJgTg1psmAMqjEg9zRTUr19fPFKVa0UPNCruSHE9CiZMmCDcee+9955I/6eWIDt37hQtQhiGYRjGWGoEljDZti1LLmjH3cleuMVouvQgTliJ/gl9iLAnSfhm2zXM3XkD3WoH4GlSOiyJIiOEli9fLiZN5A/SIqvQV199JSaGYRiGsURC/ORejfy4OBTdVPfaZT0xq2xtfN6jOv4JjcTqU/dw+WE8toRGwtIo3EpODMMwDFPEcXGU1obQs3ZpVC3lUWA+xdYUddyd7EWc0NbRrfHvqFbo38TyStKwEGIYhmEYPajoJ202l62tDX4d0rDAfEsOMDbYStS3Dn4e2ACWBAshhmEYhjEz5XzcMLVnDRQHXJ0sKyqHhRDDMAzDWABvt6pg7iEUS1gIMQzDMAxTbGEhxDAMwzAWxrAW5WGtyCystLRlOeoYhmEYphhzYnJHUYywYzV/WCsyWBYshBiGYRjGQgjwdBYTU3iwa4xhGIZhmGILCyGGYRiGKSYkq+hyX9x9YyyEGIZhGKaYcObeU3MPAdejEmBJsBBiGIZhGKbQeJZsWU1XWQgxDMMwTDHBBuZv22Fva/4xKMNCiGEYhmGYQsPSWqixEGIYhmEYptCwsHqKLIQYhmEYRh+CvV1RVNl5JQqh95/jcXwqsrLNo0jM9LFq4YKKDMMwDKMHPu5O2P1JG7g42qGocejmEzERdrY2KOXhhNJeLqKIY+kS8mKOgYrXns7wc3eCtcNCiGEYhmH0pHIpDxRVAj2d8TghTViEIuNSxaQOU8Q1yyyskBALIYZhGIYpJrzXJgSfda8uRNCThDQ8iktBVI4YiopLwSPxmCoeyX2WaQo/lmXpIBZCDMMwDGNNUHq6NgFDbjFtfc2ysmWITUxDk5l7JR1ftoVFS3OwNMMwDMNYEVLJDDtbG/iXsP4GsCyEGIZhGMaKoaBnS0JmWQYhFkIMwzAMU1zS/S2hlqG3uyMsCRZCDMMwDGNF5Bc77k6WFQ7cILgkLAkWQgzDMAxTTKgRWELS7TUP8dH7PZZglVKGhRDDMAzDWBGaQnD8PKQtkFg1oOjWU1LAQohhGIZhmGILCyGGYRiGKSYWoioWUBG7hsTuOWOxrAgqhmEYhmEk5+wXnZCUlgVfiXuHyQzIhfdwdoAlwRYhhmEYhikGjWKDfV6k0evbm8yaYSHEMAzDMFaE1FlZq4c3U9t81cJqIxoECyGGYRiGsSKkFiflfd0wq29tWCsshBiGYRiGKbawEGIYhmEYK8aQgGZdcbIv+jKi6O8BwzAMwzCFTu0ynvigXSUUdTh9nmEYhmEYvfl3dCtYA2wRYhiGYRgrwhSuMBsTdwjrU78MzAULIYZhGIZhNNKzbmmYkgFNg2EuWAgxDMMwjBVhYyO99cbV0bSRNI3Le8NcsBBiGIZhGCvGGooemhIWQgzDMAzDFFtYCDEMwzAMo5XPu1eHKfByNW8TVhZCDMMwDGNFmKqAYvOKPrnP/xnVUrLthvi6wZywEGIYhmEYRi/qlPWCtcQwsRBiGIZhGMZsmLADiE6wEGIYhmEYK06fN7fQsHRYCDEMwzAMY9aeZeaEhRDDMAzDWBGm7DYvFYcntM997u3mCHPCQohhGIZhmEIlyNsVlgILIYZhGIZhzIaro535PpyFEMMwDMMw5uCrXjXRqpIvBjcvB3Ni2i5qDMMwDMOYFUuNGBrSvLyYzA1bhBiGYRjGijBF93nCRJs1OyyEGIZhGMaKKApZY5YECyGGYRiGYYotRUYIzZgxAy1atICrqyu8vHTrcTJs2DBhIlSeunbtavKxMgzDMAxTNCgywdLp6eno168fmjdvjmXLlun8PhI+f/zxR+5rJycnE42QYRiGYZiiRpERQtOnTxePy5cv1+t9JHwCAgJMNCqGYRiGsWw4ZshKXGOGcuDAAfj7+6Nq1aoYOXIkYmNjNa6flpaG+Pj4PBPDMAzDFBUal/c29xCKFFYthMgttnLlSuzduxdz5szBwYMH0a1bN2RlZal9z6xZs+Dp6Zk7BQUFFeqYGYZhGMYYfhxQHx+0qyj5dm1gnfnzZhVCkyZNKhDMnH+6fv26wdt/88038corr6B27dro3bs3tm7ditOnTwsrkTomT56MuLi43On+/fsGfz7DMAzDFDb+Hs6Y0LWauYdRZDBrjNDYsWNFZpcmQkJCJPs82pavry9u376Njh07qo0p4oBqhmEYhikemFUI+fn5iamwePDggYgRKl26dKF9JsMwDMMwlkuRiRGKiIhAaGioeKQYH3pOU2JiYu461apVw6ZNm8Rzmj9+/HicOHECd+/eFXFCvXr1QqVKldClSxcz7gnDMAzDMJZCkUmfnzp1KlasWJH7un79+uJx//79aNeunXh+48YNEddD2NnZ4eLFi+I9z58/R2BgIDp37oyvv/6aXV8MwzAMwxQtIUT1g7TVEFKuleDi4oJdu3YVwsgYhmEYhimqFBnXGMMwDMMwjNSwEGIYhmEYRis21llGiIUQwzAMwzDFFxZCDMMwDGPFcKsxzbAQYhiGYRim2MJCiGEYhmGYYgsLIYZhGIZhii0shBiGYRiGKbawEGIYhmEYK0YGaaKlbTh9nmEYhmEYxrpgIcQwDMMwTLGFhRDDMAzDMMUWFkIMwzAMwxRbWAgxDMMwDFNsYSHEMAzDMFYMt9jQDAshhmEYhmG04uniAGvE3twDYBiGYRjG8int6YI5r9aGu5N1CSIWQgzDMAzD6MQbjYNhbbBrjGEYhmGYYgsLIYZhGIZhii0shBiGYRjGymN7GPWwEGIYhmEYK+TPd5rilbqB+KJHdXMPxaLhYGmGYRiGsUJaVfYVE6MZtggxDMMwDFNsYSHEMAzDMEyxhYUQwzAMwzDFFhZCDMMwDMMUW1gIMQzDMAxTbGEhxDAMwzBMsYWFEMMwDMMwxRYWQgzDMAzDFFtYCDEMwzAMU2xhIcQwDMMwTLGFhRDDMAzDMMUWFkIMwzAMwxRbWAgxDMMwDFNsYSHEMAzDMEyxxd7cA7B0ZDKZeIyPjzf3UBiGYRiG0RHFdVtxHVcHCyEtJCQkiMegoCBzD4VhGIZhGAOu456enmqX28i0SaViTnZ2NiIjI+Hh4QEbGxtJlSqJq/v376NEiRIoLhTH/eZ95n22VnifeZ8tGZI3JIICAwNha6s+EogtQlqgL69s2bIm2z4dVEXpwJKK4rjfvM/FA97n4gHvc9FAkyVIAQdLMwzDMAxTbGEhxDAMwzBMsYWFkJlwcnLCtGnTxGNxojjuN+9z8YD3uXjA+2x9cLA0wzAMwzDFFrYIMQzDMAxTbGEhxDAMwzBMsYWFEMMwDMMwxRYWQgZw6NAhvPzyy6JIExVZ3Lx5c57lFHY1depUlC5dGi4uLujUqRNu3bqldbsHDhxAgwYNREBapUqVsHz58gLr/PTTTyhfvjycnZ3RtGlTnDp1Cpawzxs3bkTnzp3h4+MjloeGhuq03YsXL6J169Zif6hg19y5cwuss379elSrVk2sU7t2bWzfvh3m3ueMjAxMnDhRjMfNzU2sM2TIEFF805p/5y+//FL8FrTPJUuWFMf2yZMni/Q+67LfyowYMUKss2DBgiK939r2ediwYWK+8tS1a1er3mfi2rVreOWVV0T9GTrOGzdujIiICKs8jxE2+X5jxTRv3rwi+zvrCwshA0hKSkLdunXFj6wK+iNYuHAhlixZIi4S9MfUpUsXpKamqt1meHg4evTogfbt2wsR8fHHH+Pdd9/Frl27ctdZt24dPv30UxG9f+7cOTEG2m50dDTMvc+0vFWrVpgzZ45e1UpJPJUrVw5nz54Vf3h0of31119z1zl27Bj69++Pd955B+fPn0fv3r3FdPnyZZhzn5OTk8VvMGXKFPFIQvDGjRviBKqJov47V6lSBYsWLcKlS5dw5MgRcZKj3/DJkydFdp912W8FmzZtwokTJ8RFRRuWvt+67DMJn0ePHuVOa9assep9vnPnjjiPkWChCz0JHPobpwu5NZ7HiEdKvy9Nv//+uxBCr776apH9nfWGssYYw6GvcNOmTbmvs7OzZQEBAbJ58+blznv+/LnMyclJtmbNGrXbmTBhgqxmzZp55r3xxhuyLl265L5u0qSJ7MMPP8x9nZWVJQsMDJTNmjVLZs59ViY8PFwsP3/+vNbtLF68WFayZElZWlpa7ryJEyfKqlatmvv69ddfl/Xo0SPP+5o2bSp7//33ZZayzwpOnTol1rt3757V/84K4uLixHp79uyxin3WtN8PHjyQlSlTRnb58mVZuXLlZPPnz9e4naK036r2eejQobJevXrptZ2ivs801kGDBum1HWs7j/Xq1UvWoUMHq/mddYEtQhJDSjkqKkq4DBSQiZXMgsePH8+d165dO2F6VkDLlN9DkHpWvCc9PV3cbSivQ+0/6LXydi0Z2l/abwU07jZt2sDR0THPPpNl5dmzZzp9L5ZEXFycuJPy8vIqFr8zjZXueun4prs9a95n6jk4ePBgjB8/HjVr1lS5jjXuN1lF/P39UbVqVYwcORKxsbFWu8/0G2/btk1YPWnMtN903lblMrTW89jjx4/Fd0CWK2v9nVXBQkhiSAQRpUqVyjOfXiuWEcHBwSKGSPl9qt5DZteUlBTExMQgKytL63YtGdpf2m9t+6xYpmkdS9tncntSzBCZv5V78Vjj77x161a4u7sLd8H8+fOxe/du+Pr6WvU+k8vX3t4eH330kdp1rG2/yS22cuVK7N27V+z/wYMH0a1bNzFma9xnctkkJiZi9uzZYt//++8/9OnTB3379hX7XhzOYytWrBANxmmflbGm31kV3HTVTNAJprgxa9YsWCMUOP3666+LIPmff/7Z6n9nRVwAneyWLl0q9p1i4egO2hr3me5sf/jhBxHnQBY/dVjbfr/55pu5zym4t06dOqhYsaKwEnXs2NHq9pksQkSvXr3wySefiOf16tUT8T0U79m2bVurPo8RFB80cODAAjFR1vQ7q4ItQhITEBCQa2JUhl4rlql7n6r3kHWBMs/ojtvOzk7v7Voy6vZZsUzTOpayzwoRdO/ePWEZ0daZ2Rp+Zwr+pyyRZs2aYdmyZcJSQo/Wus+HDx8W1gK6K6Z9pYl+77Fjx4pgcWvd7/yEhISIMd++fdsq95nGRr9tjRo18syvXr26xqwxaziPKY5zcudR0LM2ivLvrAoWQhJToUIF8UOTOVkBmQvpjrl58+Zq30fLlN9D0IVV8R7yPzds2DDPOnQHQ681bdeSoXFTaieJCeV9pngESs3W5XuxBBFEpRH27NkjSgdowxp/ZxpfWlqa1e4zxQZR9hBZwRQTZY1RvJByloy17Xd+Hjx4IGKElF0k1rTPNDZKlScxoMzNmzdFRpi1nscU0M0M/TbK8X7W+DurxNzR2kWRhIQEkRVFE32F33//vXiuyBaaPXu2zMvLS7ZlyxbZxYsXRRR+hQoVZCkpKbnbGDx4sGzSpEm5r8PCwmSurq6y8ePHy65duyb76aefZHZ2drKdO3fmrrN27VqRfbZ8+XLZ1atXZe+99574nKioKLPvc2xsrHi9bds2sZzGSq8fPXqUuw3aX9pv5Wy6UqVKiXmUiUPvoe/gl19+yV3n6NGjMnt7e9m3334rvpdp06bJHBwcZJcuXTLrPqenp8teeeUVWdmyZWWhoaFiPxWTcvaINf3OiYmJssmTJ8uOHz8uu3v3ruzMmTOyt956S4yVfr+ius/a9lsVqrLGitp+a9pnWjZu3DjxW1MmKGUFNmjQQFa5cmVZamqqVe4zsXHjRnF++fXXX2W3bt2S/fjjj2L8hw8ftsrzmHL2p6urq+znn39WuY2i9jvrCwshA9i/f784oPJPlG6qSKGfMmWK+OOgA6Fjx46yGzdu5NlG27Ztc9dX3m69evVkjo6OspCQENkff/xR4LPpDzM4OFisQ+mJJ06cMPHe6rbPNFZVy+kPXgGtS/utzIULF2StWrUS3xOlJpOIzM9ff/0lq1KlithnStkksWXufVaUCVA10fus8XcmId+nTx+RAkvjKl26tBCDVDZAmaK2z7oc37oIoaK235r2OTk5Wda5c2eZn5+fuGDT/g4fPrzARcya9lnBsmXLZJUqVZI5OzvL6tatK9u8eXOebVjTeUzBL7/8InNxcRGiThVF7XfWF+4+zzAMwzBMsYVjhBiGYRiGKbawEGIYhmEYptjCQohhGIZhmGILCyGGYRiGYYotLIQYhmEYhim2sBBiGIZhGKbYwkKIYRiGYRiTcffuXdGnj6qyWyIshBiGYRjGzFAzV2rxQd3fqYFx7969C7T7SE1NxYcffija+bi7u+PVV1/N08/rwoUL6N+/P4KCgkTPL+qTRg2DlaGmuSRK8k9RWrrCt2vXTuX7MjMzJf4m8o6VmuBSWxfqcUhNcFetWpVnneXLlxcYU/6msdpgIcQwJmbYsGHipFbYKJ8gPv74YxRlaF+8vLxMsm1qnLpgwQKTbJthdOXgwYNC5Jw4cUL07aLeZZ07d0ZSUlLuOp988gn+/fdfrF+/XqwfGRmJvn375i4/e/asEFF//vknrly5gs8//xyTJ0/GokWLCnweiaxHjx7lTvQ+bQwfPjzPe2iiRrWm4tixY6hTpw7+/vtv0e/vrbfewpAhQ7B169Y861GzV+UxUVNkvTB3aWuGKcqoa7Oh3GKEytY/e/as0MdGJe9LlCgh+p/Fx8fLijK0L56enibZdnR0tCwpKUlmTg4ePCjr2bOnaFtCx82mTZsKrEPtLajNAa1D7RC6dOkiu3nzZu5yTW1fqL2DAuox1b17d7ENaqFBPcUyMjK0jpG2UbVqVdFGolatWgVaRPz999+yl156Sebt7S0+k/pZ6QL1KRwwYIDMw8ND/MZvv/226I+lgFq70H7TZ1I/K+rdWByg45K+Rzo2CDqPULuT9evX565Dfb5oHeoJp44PPvhA1r59+wItN/Q9J7Vt21Y2ZswYtcuXLl0qq1atmjg+6Dih/mP5j801a9bImjdvLtahNiMHDhyQ6Qsdu9TjUMpzA1uEGMYIlO9CyKqQ/85k3Lhx8PT0NJk1QxtkDQoICBDmdkY1fn5+cHV1NesY6K6fun7/9NNPKpeT5iarYlhYGLZs2YLz58+LjuidOnXKtRiQOyT/3fr06dOFC6Vbt25inaysLPTo0QPp6enibnvFihXC2jZ16lSN46N1yeXyzjvviM+msdB0+fLlPPvQqlUrzJkzR699HzhwoLBekBWE7vSpk/t7772Xu5zGTG6ejz76SOxvcSEuLk48ent751p7yEqk/B1Uq1YNwcHBOH78uMbtKLahDLmZyOX00ksv4ejRo0aNldxVdAzNmDED165dw8yZMzFlyhRxfCkzfvx4jB07VhxD1IX+5ZdfRmxsrF6fpWp/EhMTxd8D/Q2QK42OJ70wSkYxDKP1zoTuZpXvYunOatSoUeLuirox+/v7i27X1N192LBhMnd3d1nFihVl27dvz7Md6lTdtWtXmZubm3jPoEGDZE+ePNF7PHSnRk0l6a6MtvPqq6/mLsvKypLNnDlTVr58edF0sk6dOnnuQAnqsN2jRw9xB09jpWaTt2/fzn3/9OnTReNJarRITSt37NhR4M6QrAft2rUTVgn6jGPHjhUYe1BQkFjeu3dv0bVbeV9CQ0PF++nzaRzUGf306dMqvwdqgkyWOdqeolns6NGj1TZQpfHR3S19Ln0+fVdbtmzR+TvQdnesDVUWIWraTPPpcxXQd00WHfosdVBTTLKwKKBjytbWNk/zVOo4TpbDtLQ0tdt5/fXXxf4q07RpU9n7779fYF3Fb6yLRYi6ktO6yr8dHS82Njayhw8fav1bslbot6Xvu2XLlrnzVq1aJY7f/DRu3Fg2YcIEldtRdL3ftWtX7rzr16/LlixZIjtz5oxY/tZbb4l1zp49q3FMdN4iixSdfxTTp59+KpbR+Wr16tV51v/666+F9Uf5mFBuRktWyLJly8rmzJmj8/eybt068R0o/x3QuWPFihXieCMLE1lW6Xi+f/++zttlIcQwZhBCdAGlEwW5NuiRTP7dunUTgojmjRw5Uubj45PrsiEzNl30Jk+eLMzh586dE24IZZO3LuOhCw59Fp207t69K7bzww8/5C7/5ptvxAV8586dsjt37oht0MVcYcJ+8OCBcH307dtXbIsu0L///rs4uRLff/+9OAmRCZzm0QmaTp4KF47ihEifsXXrVvH+1157TYgRhXuGOlTTxZpOkLScxkeCUXlfyKxOQpC+C9o2uW1IHKmChByNiUQAuYVOnjwpvmdNQohO0PQd3bp1S/bRRx8JsUMuHF2+gz///FOILRJ7YWFh4pHWX758ucxQIXTx4kUxX1lsETTO/F3BFdCFjt5DFzsFU6ZMEeJUGRojrUfHgjpIRCp/R8TUqVOFiDVGCFGnd/ptlaHjgI7RjRs3FlshNGLECHFcKl/M9RVCdOPk6+srzi/aaNOmjfh7Uhy/ymLn0KFDuectulGjvwnFRDdidANHvzfdNCi/T3GjpXxMKNx8Cuhmg7ZJ1KhRI/e9dMOXn3379slcXV2F6NFEenq6EGZffPGFTFdYCDGMGYQQWRAUZGZmij/+wYMH586juB5l3z+dzDp37pxnu3SSpHXoQqzreOiiTKJAVcxQamqqONHkt8688847sv79+4vnJMQqVKggTjaqCAwMlM2YMaPAiZriFJRPiL/99lvu8itXroh5JGoI+iyKA1DmjTfeyLMvJCR1FRbfffedrEqVKmrHrEoIKZ9EFSd6hWVL23eg7e7YECFEnxUcHCzr16+f7OnTp8J6Q3fXtG7+40IBienq1avnmTd8+PAC65PYpu3kt0AqQ2I2/z6RlUtxoTNUCNGxQr9Nfkj0L168uFgKoQ8//FAIXBKoyuzdu1dlbA8dF3QDogz9TdFv89lnn+n0mePGjZM1a9ZMPKdzg7LYSU5O1hgjRNZFGhcJKOX30aTYB12EEN2YKd5HNxvK0I0YnSN/+eUXnfaHbq7efPNNma5wjBDDmAHKhFBgZ2cn0mFr166dO69UqVLiMTo6Ojctdv/+/SLeQzFRfABx584dnT+X4gHIlx4SEoLBgwcL335ycrJYdvv2bfGc1lH+nJUrV+Z+BtUBad26NRwcHApsOz4+XmSxtGzZMs98ek1xA+r2n+IUlPeV1m3atGme9SmeQJlPP/0U7777roiXmD17tsbvoF+/fkhJSRH7TFkvmzZt0pryqzw+Stul2C/F+DR9BxQnQ2OhWBrl7/Cbb77R63fKD33Wxo0bcfPmTREfQTFNdDxQ7I+tbcHTOO3v6tWrxTj0ISIiIs+4KdZDKkaMGJFn20xeSAOPGjVKHJ/79u1DhQoV8ixv2LChOA727t2bJ/OLfjPlvw+Kj2nfvj2GDh0qYnZ0ITQ0NPfvkOIJK1WqlDtRfJYm6FwVGBgo4teU30dT/n2gjDgF9DdIcU+U4k/QeUnxvjJlyuRJoae4Noo9U44dUwfFlF26dCl3f3TBdHlvDMOoJf9FlIKalefRayI7Ozs3GJACC1UFourzB08nuXPnzomTy3///ScCHL/88kucPn1afAaxbdu2PCciwsnJSTxqOynqiqZ91QUa84ABA8RYd+zYgWnTpmHt2rXo06dPgXUpgJIuGHv27BEBuR988AHmzZsn0o9ViZn841OMUTE+Td+B4jtcunRpATFHgtcY6EJIFywKFqVgZwryps9o1KhRgXU3bNggRC2lGitDgfOnTp3KM09Rh4aW0QVNueidIiiVlinXq1G8j+bryldffSWSB/KPRyEwlS+QT58+1Wvb1gClzpN4pWB4+jtV1PWhZAs65uiRhC3dBNDvQuJ89OjRQgQ1a9ZMrEvB6x06dECXLl3Eeopt0LFHxwtBSR0kUGrWrCnqEv32229CeNH5wFAoKJ+C2WmMXbt2RVpaGs6cOYNnz56JcSigZIDKlSsL8TN//nyx/O2331a7XRL7PXv2xJgxY0TNJMX+ODo65h6bdFzR/pOAev78ufjbpvR5ulHSGZ1tRwzDSOYay29izu+eye8iIRM3Bd3qkuasbTzKkNuHAiXJZUYmcfLrr1y5Uu36X375pUGuMTL3q3ObkKmf5lFarzrXGJm5Ne0LLX/55ZdlukCxPPR5iuBQVa6x/K4p+mz6PnX9Dr766iuZoahLn88PxUZRLJVyIKzyMaYcBJ8/WPrx48e588jdQO5Sco1qCpamIFRlyNUnVbA0xTMpoP0pjsHS6kofKI47RSkBcjOXLFlSuLH79Okj3OgKKClA1TboGFdAsXfkvqVkCIpda9eunYi/MTZ9nmKYKDif4phofBR3pIjzUhwT5F5t0qSJWIdigrR9Lv3eqvaHxqLg448/Fu5B2mapUqXEuUNTvJsqWAgxTBEQQnRRoLgJ8n2fOnVKBM1SQDP51ynGSNfx/PvvvyL4mC5S5JOnOAy6MCqyMD7//HMRpE3xN/QZJBYWLlyYG48TExMjlisCheliTMJJEShM+0AX1bVr14p5EydOVBksrUkIUVwUjWnevHnifT/++GOeYGmKWSBhRevTPhw5ckSc2NVlztD3QDFJFDxKAeAU/0OBnbQvhgghbd8BZXHR9ul7pvgtCnSmYGqKVVIH1c2h74Qm+nyK+aDnFNytgALCaZ9pHzZv3izGTWPID8VYkJBQztZTQMcK1eOhOCEKLqdjSBGErwlF9hFl71EsF11w6Xel71QBBZPTmKm+EO0DHQP0WvlCrQoKjK1fv74IYqffsnLlyrkxacoxL7QtErt04VZ8VwwjBSyEGKYICCGCLrh0B0iigC60lHlFd0OUHq7reA4fPiw+n+7YFKnrlJKqgLa1YMECYX2iCx1dJKlwn3KQ44ULF8SFlO5IKWi5devW4uKsSPsliwmlz9P71aXPaxJCimwiChilMdLFTzl9ngKFyQKkSIcnCwyVI6C7ZVXQd0ip3iTQKOCSgkL37Nmj9rvXJoS0fQfa7o5VoShyl39SzggjYUXfCX2vdAdMgk5VyjuJGvpu6LdQBYlHylCk75ayisaOHatzQUUKbKZ9oqy9/AUV6ftRV1RUEySgSPhQZh79RpTOrVxQUfEbqdo2w0iBDf1nsGOQYRiLhQrlUWsN8pszDMMwquGsMYaxYiiwljJ0Jk6caO6hMAzDWCRsEWIYKyUhISE304dafPj6+pp7SAzDMBYHCyGGYRiGYYot7BpjGIZhGKbYwkKIYRimkClfvrwo0kgTB7MzjHlhIcQwjNmhirMkDpydnUW1ZOXqx1T9lqruUhsSCvymCrP5qxyrYv369aINCW2T2pds3749z3KKCqDK2lSZmyr3UruOW7duad0uVeVu0KCBqLZN1WwpO0+f/SGokvfff/+t9bMYhjE9LIQYhjEr69atE2X4qU0Gtf+oW7euaBGgaL3wySef4N9//xXChtpiUD+zvn37atzmsWPH0L9/f9GS4Pz58+jdu7eYqAWBgrlz52LhwoVYsmQJTp48KXqK0eeS8FJHeHi46HtEvZyoFQWVJ6BS/rt27dJ5fwhqd6BoEcAwjJmRpBoRwzCMgVDJfUULDoIKAVKRxFmzZsmeP38uCgiuX78+dzlVNqZTF1Wg1tQSokePHnnmUVFFRUsIKhwZEBAgqlcroM+iFiNr1qxRu12qXk3FBJV54403RNFJXfZHVRHF/N3EGYYpXNgixDCM2aDmodSBmtxSCqibOr0+fvy4WJaRkZFnObm7goODxXIF5IaiRqwKaJnyewiyyijeQ5YdauCovA41jCQ3lvJ227Vrh2HDhum8XW37wzCM5cFCiGEYsxETE4OsrCyUKlUqz3x6TUKFJuo0TXWQVC1XULFixTx1kmiZum0qlivmadouCS6KIdK23fj4eKSkpGjdH4ZhLA97cw+AYRjGWPbu3WuS7a5cudIk22UYxnJgixDDMGaDrDh2dnYFssDodUBAgJjI3ZQ/xVyxXB20TN02FcsV86TYbokSJUTmmbb9YRjG8mAhxDCM2SC3V8OGDfNYdLKzs8Xr5s2bi2UODg55lt+4cQMRERFiuTpoWX4r0e7du3PfU6FCBSFMlNch9xZljxmzXW37wzCMBVLIwdkMwzB5WLt2rcjWWr58uezq1auy9957T+bl5SWLiooSy0eMGCELDg6W7du3T3bmzBlZ8+bNxaRMhw4dZD/++GPu66NHj8rs7e1l3377rcgymzZtmsg+u3TpUu46s2fPFp+zZcsW2cWLF2W9evWSVahQQZaSkpK7zuDBg2WTJk3KfR0WFiZzdXWVjR8/Xmz3p59+ktnZ2cl27typ8/4o4KwxhrEMWAgxDGN2SMSQ2HF0dBTp5ydOnMhdRsLkgw8+kJUsWVKIkD59+sgePXqU5/3lypUTYkeZv/76S1alShWxTUp537ZtW57llEI/ZcoUWalSpYRw6dixo+zGjRt51mnbtq1s6NChBQRMvXr1xHZDQkJkf/zxh177o7wdFkIMY3646SrDMIwZoArVVJjx2bNnBbLiGIYpPDhrjGEYppCpWbMmwsLCzD0MhmEAsEWIYRimkLl3754oFEmEhISIoosMw5gHFkIMwzAMwxRb+DaEYRiGYZhiCwshhmEYhmGKLSyEGIZhGIYptrAQYhiGYRim2MJCiGEYhmGYYgsLIYZhGIZhii0shBiGYRiGKbawEGIYhmEYptjCQohhGIZhGBRX/g/ZDsHlQZPCLQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "plt.figure()\n",
+ "ds[\"vel\"][0].plot(label=\"streamwise\")\n",
+ "ds[\"vel\"][1].plot(label=\"cross-stream\")\n",
+ "ds[\"vel\"][2].plot(label=\"vertical\")\n",
+ "plt.legend()\n",
+ "plt.title(\"\")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Averaging Data\n",
+ "The next step in ADV analysis is to average the velocity data into time bins (ensembles) and calculate turbulence statistics. These averaged values are then used to calculate turbulence statistics. There are two distinct methods for performing this operation, both of which utilize the same variable inputs and produce identical datasets.\n",
+ "\n",
+ "1. **Object-Oriented Approach** (standard): Define an 'averaging object', create a dataset binned in time, and calculate basic turbulence statistics. This is accomplished by initiating an object from the ADVBinner class and then feeding that object with our dataset.\n",
+ "\n",
+ "2. **Functional Approach** (simple): The same operations can be performed using the functional counterpart of ADVBinner, turbulence_statistics.\n",
+ "\n",
+ "Function inputs shown here are the dataset itself: \n",
+ " - `n_bin`: the number of elements in each bin; \n",
+ " - `fs`: the ADV's sampling frequency in Hz; \n",
+ " - `n_fft`: optional, the number of elements per FFT for spectral analysis; \n",
+ " - `freq_units`: optional, either in Hz or rad/s, of the calculated spectral frequency vector.\n",
+ "\n",
+ "All of the variables in the returned dataset have been bin-averaged, where each average is computed using the number of elements specified in `n_bins`. Additional variables in this dataset include the turbulent kinetic energy (TKE) vector (\"ds_binned.tke_vec\"), the Reynold's stresses (\"ds_binned.stress\"), and the power spectral densities (\"ds_binned.psd\"), calculated for each bin."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "# Option 1 (standard)\n",
+ "binner = api.ADVBinner(n_bin=ds.fs * 600, fs=ds.fs, n_fft=ds.fs * 600)\n",
+ "ds_binned = binner.bin_average(ds)\n",
+ "\n",
+ "# Option 2 (simple)\n",
+ "# ds_binned = api.calc_turbulence(ds, n_bin=ds.fs*600, fs=ds.fs, n_fft=ds.fs*600, freq_units=\"Hz\")"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The benefit to using `ADVBinner` is that one has access to all of the velocity and turbulence analysis functions that DOLfYN contains. If basic analysis will suffice, the `turbulence_statistics` function is the most convienent. Either option can still utilize DOLfYN's shortcuts.\n",
+ "\n",
+ "See the [DOLfYN API](https://dolfyn.readthedocs.io/en/latest/apidoc/dolfyn.binners.html) for the full list of functions and shortcuts. A few examples are shown below.\n",
+ "\n",
+ "Some things to know:\n",
+ "- All functions operate bin-by-bin.\n",
+ "- Some functions will fail if there are NaN's in the data stream (Notably the PSD functions)\n",
+ "- \"Shortcuts\", as referred to in DOLfYN, are functions accessible by the xarray accessor `velds`, as shown below. The list of \"shortcuts\" available through `velds` are listed [here](https://dolfyn.readthedocs.io/en/latest/apidoc/dolfyn.shortcuts.html). Some shortcut variables require the raw dataset, some an averaged dataset.\n",
+ "\n",
+ "For instance, \n",
+ "- `bin_variance` calculates the binned-variance of each variable in the raw dataset, the complementary to `bin_average`. Variables returned by this function contain a \"_var\" suffix to their name.\n",
+ "- `power_spectral_density` calculates the power spectral density (velocity spectra) of the velocity vector\n",
+ "- `cross_spectral_density` calculates the cross spectral density between each direction of the supplied DataArray. Note that inputs specified in creating the `ADVBinner` object can be overridden or additionally specified for a particular function call.\n",
+ "- `turbulence_intensity` is calculated from the ratio of the standard deviation of the horizontal velocity magnitude (equivalent to the RMS of turbulent velocity fluctuations) to the mean of the horizontal velocity magnitude\n",
+ "- `integral_length_scales` estimates the integral length scale in the streamwise, transverse, and vertical directions from the first crossing of the autocorrelation function\n",
+ "- `turbulent_kinetic_energy` calculates the TKE (Reynolds normal stress) components\n",
+ "- `reynolds_stress` calculates the Reynolds shear stress components\n",
+ "- `dissipation_rate_LT83` uses the Lumley and Terray 1983 algorithm to estimate the TKE dissipation rate from the isoropic turbulence cascade seen in the spectral. This requires the frequency range of the cascade as input.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "# Calculate the variance of each variable in the dataset and add to the averaged dataset\n",
+ "ds_binned = binner.bin_variance(ds, out_ds=ds_binned)\n",
+ "\n",
+ "# Calculate the power spectral density\n",
+ "ds_binned[\"auto_spectra\"] = binner.power_spectral_density(ds[\"vel\"], freq_units=\"Hz\")\n",
+ "\n",
+ "# Calculate the cross power spectral densities\n",
+ "ds_binned[\"cross_spectra\"] = binner.cross_spectral_density(\n",
+ " ds[\"vel\"], freq_units=\"Hz\", n_fft_coh=ds.fs * 200\n",
+ ")\n",
+ "\n",
+ "# Water speed and direction\n",
+ "ds_binned[\"U_mag\"] = ds_binned.velds.U_mag\n",
+ "ds_binned[\"U_dir\"] = ds_binned.velds.U_dir\n",
+ "\n",
+ "# Calculate the Doppler noise level from the white noise floor of the auto-spectra\n",
+ "ds_binned[\"noise\"] = binner.doppler_noise_level(ds_binned[\"auto_spectra\"], pct_fN=0.8)\n",
+ "\n",
+ "# Calculate the turbulence intensity and subtract the average horizontal velocity noise level\n",
+ "ds_binned[\"TI\"] = binner.turbulence_intensity(\n",
+ " ds.velds.U_mag, noise=ds_binned[\"noise\"][:2].mean(\"S\")\n",
+ ")\n",
+ "\n",
+ "# Calculate the auto-covariance to find the integral length scales\n",
+ "autocov = binner.autocovariance(ds[\"vel\"])\n",
+ "ds_binned[\"length_scale\"] = binner.integral_length_scales(autocov, ds_binned[\"U_mag\"])\n",
+ "\n",
+ "# Calculate the TKE components and Reynolds shear stresses\n",
+ "ds_binned['tke_vec'] = binner.turbulent_kinetic_energy(ds[\"vel\"])\n",
+ "ds_binned['stress_vec'] = binner.reynolds_stress(ds[\"vel\"])\n",
+ "\n",
+ "# Calculate dissipation rate from isotropic turbulence cascade\n",
+ "ds_binned[\"dissipation_rate\"] = binner.dissipation_rate_LT83(\n",
+ " ds_binned[\"auto_spectra\"], ds_binned[\"U_mag\"], noise=ds_binned[\"noise\"], freq_range=[0.8, 2]\n",
+ ")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Saving and Loading DOLfYN datasets\n",
+ "Datasets can be saved and reloaded using the `save` and `load` functions. Xarray is saved natively in netCDF format, hence the \".nc\" extension.\n",
+ "\n",
+ "Note: DOLfYN datasets cannot be saved using xarray's native `ds.to_netcdf`; however, DOLfYN datasets can be opened using `xarray.open_dataset`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Uncomment these lines to save and load to your current working directory\n",
+ "# dolfyn.save(ds, 'your_data.nc')\n",
+ "# ds_saved = dolfyn.load('your_data.nc')"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Visualization\n",
+ "Plotting can be performed using matplotlib. As an example, the mean spectrum in the streamwise direction is plotted here. This spectrum shows the mean energy density in the flow at a particular flow frequency."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
{
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Averaging Data\n",
- "The next step in ADV analysis is to average the velocity data into time bins (ensembles) and calculate turbulence statistics. These averaged values are then used to calculate turbulence statistics. There are two distinct methods for performing this operation, both of which utilize the same variable inputs and produce identical datasets.\n",
- "\n",
- "1. **Object-Oriented Approach** (standard): Define an 'averaging object', create a dataset binned in time, and calculate basic turbulence statistics. This is accomplished by initiating an object from the ADVBinner class and then feeding that object with our dataset.\n",
- "\n",
- "2. **Functional Approach** (simple): The same operations can be performed using the functional counterpart of ADVBinner, turbulence_statistics.\n",
- "\n",
- "Function inputs shown here are the dataset itself: \n",
- " - `n_bin`: the number of elements in each bin; \n",
- " - `fs`: the ADV's sampling frequency in Hz; \n",
- " - `n_fft`: optional, the number of elements per FFT for spectral analysis; \n",
- " - `freq_units`: optional, either in Hz or rad/s, of the calculated spectral frequency vector.\n",
- "\n",
- "All of the variables in the returned dataset have been bin-averaged, where each average is computed using the number of elements specified in `n_bins`. Additional variables in this dataset include the turbulent kinetic energy (TKE) vector (\"ds_binned.tke_vec\"), the Reynold's stresses (\"ds_binned.stress\"), and the power spectral densities (\"ds_binned.psd\"), calculated for each bin."
+ "data": {
+ "text/plain": [
+ ""
]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
},
{
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "# Option 1 (standard)\n",
- "binner = api.ADVBinner(n_bin=ds.fs * 600, fs=ds.fs, n_fft=1024)\n",
- "ds_binned = binner.bin_average(ds)\n",
- "\n",
- "# Option 2 (simple)\n",
- "# ds_binned = api.calc_turbulence(ds, n_bin=ds.fs*600, fs=ds.fs, n_fft=1024, freq_units=\"Hz\")"
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGbCAYAAADKlJnyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAArppJREFUeJzsnQV8E/f7xz+RunspFHd3G+4uGzBl2IzBjP98Y8yVDX4TxsYGDDY2BgwY7u7DXYuUQqFI3Zv/6/leLrlYm3qbPG+4V85yd7k093wfV+l0Oh0YhmEYhnEa1KV9AQzDMAzDlCws/BmGYRjGyWDhzzAMwzBOBgt/hmEYhnEyWPgzDMMwjJPBwp9hGIZhnAwW/gzDMAzjZLDwZxiGYRgng4U/wzAMwzgZLPwZhmEYxslg4c8wDMMwTobTC/+VK1eiTp06qFWrFn755ZfSvhyGYRiGKXZUztzYJysrC/Xr18eWLVvg5+eHFi1aYPfu3QgKCirtS2MYhmGYYsOpNf/9+/ejQYMGqFixIry9vdG3b1+sX7++tC+LYRiGYYqVci38t2/fjoEDByIiIgIqlQrLli2z2OeHH35A1apV4e7ujjZt2giBLxMTEyMEvwzNX79+vcSun2EYhmFKAy3KMcnJyWjSpAnGjh2LBx980GL7woULMWnSJMycOVMI/unTp6N37944e/YsQkND832+9PR0Mcnk5OTg7t27wk1Agw+GYRiGKU3Ik5+YmCiUYrU6F/1e5yDQR1m6dKnJutatW+smTJhgWM7OztZFREToPvvsM7G8a9cu3ZAhQwzbX3rpJd0ff/xh8xxTpkwR5+GJJ5544oknlOHp2rVrucpMhwn4I8176dKlGDJkiFjOyMiAp6cnFi9ebFhHjBo1Cvfv38fy5ctFwF+9evWwdetWuwL+zDX/+Ph4VK5cGVFRUfDx8UFp8eeff+Lll1/Gm2++iVdeeQWOTmZmpgjS7Nq1K1xcXEr7cpwS/g5KF77/pUtmGb7/pPVXq1ZNyDmSaw5p9s+NuLg4ZGdnIywszGQ9LZ85c0bMa7VafP311+ILJBP+66+/nmukv5ubm5jMCQwMhK+vL0oLMu3QZ/3kk0/QqFEjPPzww3D0Hx4N7Oi7Kms/PGeBv4PShe9/6ZJZhu+/fD15uaIdVvjby6BBg8SUHyiIkCYSuGWB559/HufPnxcxDWTZiIyMRPv27Uv7shiGYZgySrmO9s+N4OBgaDQaxMbGmqyn5fDw8EIde8KECTh16hQOHDiAssLUqVPFIIbcEoMHD8bFixdL+5IYhmGYMorDCn9XV1fhw9+0aZNhHZn2abldu3ZwNGigs2DBAjRv3ly4PPr37y8yERiGYRjGocz+SUlJuHDhgmGZAu+OHDkifPAUiEdpfmQGb9myJVq3bi3M4pQeOGbMGDgiXl5eWLFiBdq2bSvSGalcMcUxMAzjfJBbknzTTNGTmZkpYsbS0tJK3P1LPn1S9pxa+P/3338iWE+GhD1BAn/u3Lki8O327dt47733cPPmTTRt2hRr1661CALML2XN56+EcjupXwFNr732WmlfDsMwJQwlcNHzjqK9meK7x+Hh4bh27Vqp1Hjx9/cX5y/MuR0m1a80SEhIEKkUlPJXmtH+eUFfsSMVIaJR9+rVq9GvX78yF2nrLPB3UHbv/40bN4Tgp0JmFJHuSL/9skJOTo6wPFNZ+FwL6RTDszwlJQW3bt0SA4AKFSoUWC6Va82fyRtyc4wcORLDhw/Ho48+WtqXwzBMMULWSFnwc4Oy4hX+GRkZomx8SQp/wsPDQ7zSAIC+54K6ABw24I+RIL8/FT8aPXo0du7cWdqXwzBMMSL7+EnjZxwXT/33W5iYDhb+BYD8/dQKuFWrVijrvPDCCxg6dKgYpVKlQ2WAJMMwjgmb+h0bVRF8vyz8HSTP3xZkkvr999/FQOXOnTvCR0ivDMMwjPPCwt9JTET//vuvSH+kSoDUAVHZo4BhGIZxLlj4OwmUFrJq1SoR/bl9+3ZMnDixtC+JYRjGAKVljx8/Xigp1EOFnlnUgn3Xrl2lfWkOCUf7O1ief240bNhQdDmk4L+nnnqqtC+HYRjGwEMPPSRik3777TdUr15dlGKniqzspiweWPN3cJ+/OT179hRBf23atCntS2EYhhFQeuKOHTvwxRdfiMJtVapUEVVZ33rrLdGzhNquU8l22kfmyy+/FKluNEggqwFZCj799FPDdmrPTu9RlnhnjLDm74TIeaLEoUOHRNGIDh06lOo1MQxTPEVhUjNLx0Lp4aKxOyqdiuXQtGzZMlGe3Lx1epcuXfDyyy+LmiVHjx7FpUuXMHnyZCxatMhQsXX27Nkio6lXr16oU6eO2Jfcm927dy+Wz1feYeHvxOzbt0/8MOiHtmfPHtSuXbu0L4lhmCKEBH/999aVyrlPfdgbnq72iRiqk08l2Z9++mnMnDlTNCjr3LkzHnnkETRu3Fjs8/HHH2PDhg145plncOLECVHGXdmOnTKZ6P2PP/646OdCvU4+++yzYvt85R02+zsx9KOiOADq/kddAKkbIMMwTGn5/GNiYkRmUp8+fYSpnwYBNCggyIT/xx9/YMmSJaKhzrRp06y2Ns/KyhIWAdrX3ILAGGHN34kC/qyZ/5cvXy7MbBQHQCazjRs3ipKVDMOUf8j0Thp4aZ07v9Czh+KSaCKzPgUmT5kyRQQpy358ghQWmki7V3Lx4kUxgKDyu5cvX0ajRo2K6NM4Hqz5O1nAnznkL6MUQGoEQSk1Y8eOFX5ChmHKP+RzJ9N7aUxFUYWOKqlSfxJZsL/yyiuYNWuWCFgmsz8JeRnKFHjiiSdEN9ePPvpIDByo/j1jHRb+jPiBUQog+d3+/PNPMdJmGIYpKSidr1u3bqIa6bFjxxAVFSVM9xTRP3jwYGFlJcFOef9jxozBnDlzxH5ff/214RjvvPOO6GT37bff4o033hAxTKTMMNZhsz8j6NGjhwi0odHywYMHhd+MBgMMwzDFDUX6kzZPfnzS8KlhTWRkpAjge/vtt/HJJ5/gypUrWLlypdifWtn+/PPPolMpRfffu3cP06dPx5YtWwxtbOfPn48mTZrgxx9/FMWDGFP46c4YGDduHEJCQkTULAt+hmFKCgrMo8h8W9H57733npiUmJcpN+9wV7VqVWEJYKzDZn/GBEqdkQU/+f65uhbDMIzjwcKfsQqNoimflqpsUfUshmEYxnFg4V8AKM2PguSoTa6jkpCQgM2bN4tKWhRwQ3m1DMMwjGPAwt/JU/1sERQUJFIA/f39RfU/yrNVptUwDMMw5RcW/oxN6tati3/++UfEACxcuFAU3WAYhmHKPyz8mVyhDltUVIOgjlmUX8swDMOUb1j4M3lCJv93331XzD///PO4efNmaV8SwzAMUwg4mZuxiw8//FCUyhw6dKjom80wDMOUX1j4M3ZBdbp/+umn0r4MhmEYpghgsz9TIKgLINXaTk1NLe1LYRiGYfIJC/8C4Ax5/rlBTTb69+8v+mWbd9ZiGIYpCFRMjGrwV65cWZT7JfciNfKhbqNM0cPCvwA4Q55/bmg0GtFUw8XFRXTeom5aDMMwheGhhx7C4cOH8dtvv+HcuXP4999/0aVLFy4xXkywz58pEJ07d8avv/6KJ598Ep9//jlq1KghOgIyDMPkl/v372PHjh3YunWreLYQVapUEeXFCWrNSwHHclc/uQR5xYoVRTMgUkReeeUVxMTECKuBzJAhQ+Dj4yM6/DGmsObPFJiRI0caOm0999xz2LBhQ2lfEsMwSnQ6ICO5dCY6dz5a+tK0bNkyk059MqRYrF27Fjdu3DCso4FASkoKHn74YQwfPly4I8laIEODBapSSgMHxhLW/JlC8f7774vgvwULFmDYsGHYvXs3GjRoUNqXxTAMkZkCfBpROud+OwZw9bJrV6oiOnfuXDz99NOYOXMmmjdvLiwAjzzyCBo3boz27dujTp06QoN//fXXxXuo4BgJfRo0EI899phhHfH777+L+AFyHTCWsObPFDoFcPbs2ejQoYMIggwJCSntS2IYppz6/MlsT9p7nz59hAuABgE0KJC1f7nCaGxsLNasWWOi1dPAYf369bh+/bpYpvdRgTJ6RjGWsObPFBrysdEP1t3dHR4eHqV9OQzDyLh4Shp4aZ07n9AzpGfPnmKiXiIk8KdMmSKEOMUXvfnmm6LRGFkYq1Wrho4dOxre26xZMzRp0gTz5s1Dr169cPLkSWH2Z6zDwp8pEgICAkyWN27ciG7dukGtZuMSw5QapPXaaXovi5A1keIA5E6jFMBH2j8NAMaMGWOxPw0Wpk+fLrT/Hj16IDIyshSuunzAT2amyPnggw/EyJ1G6QzDMHlB6XykLJCf/tixY4iKihJpxF9++SUGDx5sItwpFfD06dOixog55PePjo4Wzcg40C93WPNnipxatWqJ16+++kqkAD777LOlfUkMw5RhKGivTZs2mDZtGi5evCjS+EhrJz/+22+/bdiPtPkKFSqIoOKICMtARj8/PxE7QOZ+shIwtmHhzxQ5NPqmHzClAVJBpKpVq4pKXQzDMLbihihfn6bcSE5Oxr179zBu3Dib+5DJ//HHHzfJ92csYbM/UyxQC2AK0KHcW0q9OX78eGlfEsMw5RQqIU55+x999BH8/f0xaNAgi31oULB06VKRJUBKB5M7rPkXsLY/TSTYGOtQeg2VAL5y5Qq2bdsmegHs27dPmOwYhmHyw9WrV0V0f6VKlUQKH9UFMIei/WkA8MUXX4iaAEzusPAvADSqpCkhIUH4mBjrkNntn3/+Qbt27USt7tWrV+dqrmMYhrEGuQ51eVQMvHz5coldjyPAwp8pVgIDA4XQpyZIVK2LYRiGKX1Y+DPFDkX80ySTkZEBV1fXUr0mhmEYZ4YD/pgS5ebNm3jggQcwY8aM0r4UhmEYp4U1f6ZEWbhwIf777z8cOnRI+PH69etX2pfEMAzjdLDmz5QoL774oqjTTak71Irz6NGjpX1JDMMwTgcLf6bEUwB/+ukndO3aFUlJSRgwYIDo5MUwDMOUHCz8nZh9l+7gveUnsOtCXJ5pNEUJBfstWbIEdevWFXW4aQBAAwGGYRimZGDh74Rcu5uCCX8cwsM/78W8PVfw+C/7MHTGbmw8FVtigwDqAkj1t0NCQnD48GHhDmAYxnm5ffs2xo8fj8qVK4saIeHh4aIs+K5du0r70hwSDvhzIlIysvDj1ov4efslpGflQK0COtYKwd5Ld3Dk2n08Ne8/1A33wYSuNdGvUQVoaIdipHr16vj3339FwSTqA8AwjPNCDXkoDZi69tGzITY2Fps2bRId/5iih4W/E0Da/PIjMfh8zRncTEgT69pWD8R7AxqgfoQvbiem49edUZi/5zLO3EzEC38exjcbzmF85xoY0qwiXLXFZyBq27atKACkVrMRimGclfv372PHjh2iLn/nzp3FuipVqqB169Zinkr6jhkzxuJ9U6ZMwfvvvy9iicyh93PVP9uw8Hdwjl67jw9WnMShq/fFcqUAD7zbvx56Nwg3/GBCfNzwZt+6QtjP3X0Zc3ZHISouGa8vOYbpG8/h2c418HCrSLi7aIrlGpWCf8WKFdBoNJwCyDBFNPBPzUotlXN7aD2sCmVbLX1pWrZsmVAIzDvyUWZQnz59DMs0SBg5cqSoGULcuHHDpPMf7UtlxRnbsPB3UG4lpOGLtWex5FC0WPZ01Qhz/rgO1WwKcT9PF7zUoxbGdayGBfuuYNaOKMTEp2HKvyfx3eYLeKpjNTzRtgq83Yrnz2bjxo0YPHgwPD09sXPnTjRt2rRYzsMwzgIJ/jYL2pTKufc9tg+eLp527UuNeki7f/rppzFz5kw0b95cWACoJHjjxo3h4eEhJoLahZOr8NNPP0XPnj3FOooPkAc75D6gniuUVcTYhm2tDkZaZjZmbL2ArlO3GgT/g80rYsurXYTwt0d7J+H+TKca2PF6V3w0uAEq+nsgLilduA0e+Hwzpm04h3vJGUV+7fRj79atmxi5UxdAygRgGMY5IKFNab8UB0SaO2n3NAigQYFMfHy8yA6i58Nrr71mcYy3334be/bswfLlyw2DBcY6Kl1J5niVQYYOHSr+yLp3747Fixfn671yVz/6g/T19UVpQl/jupOx+HT1aVy9myLWNY30x5SB9dGsckChjp2ZnSNiBmhQcel2ssGSQFYAsgaE+rijKH1/ZMo7deqU0Py3b98OHx8f0+vJzBTNgsg14OLiUmTnZuyHv4Oyef/T0tIQFRUl2t+6u7uXG7O/LZ566ils2LBBtAanFuok9KltL7UJp8+n5Pfffxf70/OcXAfFSU5Ojnj+03O/NOKVzL/ngsglpzf7v/TSSxg7dqyIMC2vnLmZgA9XnMLui1JUbJivG97oUxdDmlaEuggi9l00agxrUQlDm1XE2hM38f2WCzh9I0FkDVCMwCOtIkXMgKdr4f+c/P39RQpgmzZtcOTIEWH2o1G8tf7dDMPkDglfe03vZZH69euLOADilVdewfHjx0V5cHOBR9o+CX4y9Re34HcUnP6J2qVLFzFSLI/cTc4QJvg/9l1Bjg4iKv+ZjtUxvksNeBWDX55S//o3roB+jcKx5ewtfL/5gggkpFoBWTk6fDq0UZGch2r+U+AfuQFIu3n55Zfx3XffFVqLYBimbELpfMOHDxeKGPn4ydpHQv7LL78UcUBz5swRzcCWLl0qngPUIIygIEEqEEYWXFIUqC6AvI0Ch6mOCFMOff5k8h04cCAiIiLEFy6PAJX88MMPQljQSJC0xf3798PRITP8nF1R6PLVFszfKwn+vg3DsWlSZ7zau06xCH4l9F10qxuGJePb48fHm4t1f+2/KqwBRQWl+JAZjyDTpZN7pxjGoSEhTs/vadOmoVOnTmjYsCEmT54sAgC///57YeYns/+gQYNQoUIFwzR16lScOXNG1AQg661yW6tWrUr7Y5VpyrTmT4FfTZo0EaPBBx980GqHuEmTJonoUPrDmT59uhj5nT17FqGhoWIf8htnZWVZvHf9+vViUJEf0tPTxaT0rcj+N5pKgh3n4/DJmrO4qPe91w3zxrv966JNtUDDtZQkPeoGo2+DMKw5GYsP/j2BeWNaFpmGTj/0vXv3olmzZuKHT5PyM5b0Z2WM8HdQNu8/LdNAmXzSNJUXKG7hk08+EZM1Zs+eLSZbyM8Gc4rrHuj0yoh8r0saOiedm75vsnAosfc3WW4C/kigkMlnyJAhhnUk8Gl0RyND+YZERkbihRdewJtvvmn3scnsT8fIK+CPikl88MEHFusXLFgg0tOKk1upwLIrapy8JxlrvLQ6DKicg7ahOlGprzS5kwZ8ekSDLJ0KY2tno0lQ8fxJ0SCOSoDSqJ5hGEsoNobS3ug5SD00GMckIyMD165dEy4Oc+U2JSUFjz32mOMG/NGHP3jwIN566y3DOoq67NGjhwj+KA7oXGRpUGr+9CPr1atXsUX7J6Zl4oetlzDv+FVkZuugVaswsm1lTOxSHb4eZSfKOs73AmZsu4T1t70x6ZH2cCvigkD0h0w+PcoCoMHa6dOnRY4vR5qXDqRdUBQ2fwdl6/5TFDgJBTKjmwfFMUWHTqdDYmKiiE0ojVgk+p4plZFcJNai/e2h3Ar/uLg4YeoJCwszWU/L5AOyFxosUE95cjFUqlQJixYtslkZiqpOmVeeIujHV9QPwOwcHRYfvIav1p1FXJKUU9+1Tgje6V8fNUO9UdaY0K0Wlhy+juh7qZi3PxrPd6lZpMen+0t+ParkNXjogxjw3Lvoqdaw4ClliuNvnyn4/adnIgkjUoS4ZHbxkaM39cv3uqShc9K5rf3+7P09llvhX5RV5fILBRnSZMvPVFj2R90VJXlPxkgjuOohXpjcvz661pXiGMoiFGRI6YWT/j4qsgCGNa+EUN+i0zwob1VOATxz6iQuT5sK3yr1MHlQkyI7B8MwjLNQboeGwcHBItCBtEEltCyXeiwuqLQkmZ+pIU1Rcv1+KiYuOIQRP+0Rgt/HXSvq8K99qVOZFvwyVFegSaQ/UjKy8eW6s0V+fGr1uXjpMqi0bkiLOoipH7yNC7cSi/w8DMMwjk65Ff4UzNKiRQvR8lFpiqHl8tjQ4adtF9Ft6lasPHYD5EJ6rE1lbH21C57qWL1Yu+oVJVRQiCoKEosPRuNYtNRMqCjJCKiG4IGvksENCYdW45EXJnMaIMMwTD4p01KFijdQlTeaCCpnSPNXr14VyxR8N2vWLJHfSQFg48ePF757a60fywPpWTkiZW/lCx1EwZwgb8v4grJO88oBohIg8cGKU0UumLeeuQXP2u1Qu5/0HR9a/gsW7TpVpOdgGIZxdMq0z58qPHXt2tWwLEfajxo1SjR7oDaPlPr13nvviZQHyulfu3atRRBgUVMcPv/RD1RF9RBv9KgXWu4r2ZHvn8oAH7xyD/8ejcHgptJgoLDQQGLL2dti/omHBmGbvxtOudXH/3bGYmDruvBwLZ6WwwzDMI6GuqyX3pWruyknZZeniRMniqYPVHxn3759IiCsuCkOn7+bVoOe9cPKveAnwv3cRYlhgjoBpmYUzSDpUlyyaFrkolGhjj/wz8/foFrt+iJWgpoOsfmfYRjGAYQ/U355plN10Qr4Rnwaftp+sUiOueXMLfHaqmoA3DQQmv7kAfXEuum/r0D7jp3tznFlGIZxZlj4M8WCu4sGb/WrK+ZnbruImPuFbyu6VW/y71Lb2Kyjd4NwPFDNHzf/nYq9u3aI5iBccpZhGCZ3WPgXAPL3U6tJbhyRO/0bVUDrqoFIy8wR5v/CkJyehX1RUsvizrWCDevJTfLhg00Q/tDbULm4iZ4NVN6ZXQAM4/hQUzfqAkjxXsr4MOLRRx8VcWMtW7YU26lZEAWIMxIs/MtQnr+jQYL5vYH1ReoiBf4dvHK3wMfadSFOlDeuHOiJasGmfRRqhHhjwrBeCB74Op1U9PT++uuvi+ATMAxT1tm9e7fIAtuyZYtJ2vfFixdFUzDqDkvbKSbs008/Fe2DGRb+TDHTsKIfRrSINKT+5VD/4QIgR/lTiWNrQZEvdKuJ6i06I6DbU2L5tddew5IlSwp17QzDlBxkrXvmmWcQGBgofuNyindBoL4vzZs3F4Xg5KZrFBRemPbgXbp0wcsvvwxHgYU/U+y82rsOvN20OBYdjyWHovP9fvqxbj0rBft1sVHpkMoLv9m3LnxaDEJ4O6nz4xNPPFGoBwjDMCUHpWlTJtfKlStFDw8y0+cFDRI6d+4sXLB//PGHYT25/6jhGnH//n3RGp56t5BSQNVhmTKe519WKe7a/o5GiI8bJnarKfz+VPa3b6MKYjBgL2djE0XWgLuLGu2qB5FRz+p+nWtLVgHXDmPQxz8Dvj7eqFOnThF+EoZhigsy01O77vbt2xvWka/evGWtLNwjIiKwc+dOVKxYUQwWqElbo0aNRAwAVXqlNHDC399fNG+j0u8PPvgghg0bVuy1YMoDrPkXAPb5558xD1RFlSBP3E5Mx4wtF/L13i1nJJN/+xrBIovAFgFergj2doNKrcH7//sFf/75p2h7yTBM2Wb06NEiUJeqt9IAngL5CLLcnThxwmIiwU+Q4Cdo0NCvXz8cOnRItNolnz81A1NCAp8sADt27LB5HYsXLxYDCHpuBAUFiQEFVY21BrkRXnrpJYSGhoq2uh06dLCQCeQqoEEITXQ9ZHWYPNlYkpyu87PPPkO1atXEOen66BpKAhb+TIlARYze6Sfl5P+yIwpX7lj/QVlji97kT/7+vKgdJrU7vhqfZWi1ST+wX3/9lVMAGaeFBJitiXrD27tvaqppyq6t/fLL//73P3z44YfCNE9avD2KFZ2HBL1cCn7z5s1o0KCBeJUj/0nbl/eJj48XwX+2rIE3btwQGQJjx44V5eK3bt0qLAW2YgSmTJmCf/75R5SXp0FHzZo10bt3b9y9axrYTNu1Wi32798vPuc333yDX375RWwjwT9v3jzMnDkTJ0+exCuvvCLcldu2bUNxw2Z/psSgCoYdagZj54U4TFhwCIuebZ9nSd741ExRJpjoUifvzoa1Qr2x++IdXLiVZFhHQUQk/Pfs2SNSfRyhiiLD5Advb2lQbA3SmKldtgxpsikpKVb3Jf86CUUZ0tDj4uIs9stvUB1pxT4+PiJAz96urCTYhw4dKubJBfv0008L3//zzz+PkSNHivVU/ZV+/3KgH1kXSLO3JfzJxUACv0qVKmKdrX1p4DF79mwx9e3bV6yjZ8uGDRvEs4ZiC2QiIyMxbdo08dyhgcfx48fF8pNPPimyD6itvNyMrnr16sKVQRlLdK+LExb+TIlBf/yfPdgIg77fiRPXE/DmP8cw/eGmuQrjnefjkJ2jQ81Qb0QGmqb4WaNWmI94PRdrbPU7ZMgQzJkzR/woa9WqhTfeeKOIPhHDMKUFCUry5ZtDGvZ3330n5lu3bm130G+TJk3QvXt3IfBJg6eAQYoPCAgIsBqfQJbEBx54wLDOxcVFnI+sBkratm1r8owjQU+pyBcuXBCDrJ49e5rsn5GRIVIUixsW/kyJQgJ8xuMt8MSv+7D8SAzqV/DFs52lPgCFNfnLmj9xXqH5DxgwQJjbaNT/5ptviocGVQJkGGeBzOK2IG1bya1b0m/OGrIrTeby5csoa1Bhn4Kg0WiE5k51AyigkAYQ77zzjqgPQD754vpOyOoixy7IuLkVf0dX9vkXAK7wVzja1QjClIH1xfzna88Y0vjMoZoAcknfrnaY/Inaes0/+l6qqAooQwE3FJxDkEmQXAAM4yx4eXnZnChYzd59zQNobe1XXlGpVEKb/+CDD3D48GG4urpi6dKlFvvVqFFDbNu1a5dhHVkCKFaBZIMSGjwo2bt3r7BA0n4k5CnIkeIFlBO5CoobFv4FgKP9C8/ItlXwSKtIkGvwhT8P49JtS83kZEwC4pLS4eWqQcuqgXYdV4r4dxXzF82OSaa2gQMHiijdwYMH49KlS0X0aRiGKe/s01cAJMsBCWQK5qOW8fXqSYHKSmiAQ4GB5EKk+gQkDyjmgMz448aNM9mXjkXt6M+ePSsykMiiQIoIxTi8+uqrIsiPggLJlUCBg7SdlosbNvszpTbC/mBwA+GbP3T1Pp6e9x+WTXgAPu4uFib/DrWC4aq1f5xK8QFxSXdxPjYJjSv5m5j1FixYgE6dOonIWgq8IRcAwzCMr6+vyAaYPn266A5KQX+kMMgBfdai/SmKnyyJlFFAPQTWrVtnESNAgX2UJUHxAPQMIsFPQYjERx99hJCQEBH1T8oI1SSgyoRvv/12sX9eFv5Mqab/zXyiBQZ9vwsXbyfj5b+OYNaTLaFWq8z8/faZ/JWm/72X7uLcLWPQnzLqmSqI0Q+N8nIZhikbUOnc0iyfW69ePaHF20KZ5UCQu4RiieTgQltQICANKH788UerShANBmSXZEnCZn+mVAn1dcdPI1sIzX7TmVv4ZsM5sf5ucgaOXLtvd4qftaC/C7HWg5yoQIhS8N+7d4+7ADIM41Sw8GdKnSaR/vj8QSmf9vstF7Dq2A1sP3dbxAPUq+CLcD/TgCS70/2saP7mkOmfUnzI7MYwDOMssNm/AHBt/6LnweaVcPpGAmbtiMKri46ibgWffKX4WdP8KeI/JSMLnq62/8wp6v/atWsipYf8/4888kghPgXDMIxtV0FZgjX/AsDR/sXDG33qomOtYKRmZuPwVcnk39VGF7/cCPJ2Q5CXq7AcXLxlvdTorgtxeHvpcYwcPU5E4sr1xSnHl8jMzsHMbRdNKgUyDMM4Ciz8mTKDVqPG9482Fw2ACF93LZpFGqP18wNF/BPnbZj+3//3JBbsu4plR67jyy+/FKl/cgogpdxQASLqQkhWCIZhGEeDhT9TpvDzdMEvT7ZE3XAfPNelhhgQFAS52M85K0F/sQlphgqAJ67Hi/Qb6gXeokULUae8f//+OHDmqthOQYcx902bmTAMw5R3WPgzZQ4K2Fv7cic836VmIY6hj/i3ovnvvmhsRELCXy7asWLFClFZi4pxLPrxc8M+60/eLPB1MAzDlEVY+DMOSa1QH4sa/zI7z98xzJ++mSj8+3JPcKqzTZ3CvDqONuyzloU/wzAOBgt/xiGRNf+rd1OQmmHMyqB8fqXmn5GVYxLURx29ZsxZgESdG+RGXPuj7uJOUnqxXWt6VjZmbL2AszetxycsP3Id63gAwuQDrlvh2OiK4Ptl4c84JBTtH+DpIkX8K2r8R8Ul40Z8Glw1ajSp5Gdi+pc5fTNBvNYI9oLnuXVIOLEFG0/HFtu1rjsZiy/XnsVna0xbgRLxqZl4ZeER0f+ABgkMk1c1OYJqzDOOS4r++5W/74LAef7OnOcffRA4tQxoNwHwCYcjQWUzKXaAtHaK+G9YURL0uy5KJv/mVfzRIMIPR6PjRQMhZYNfWQN3vX4Qp5d+B2i0+K1hLTzc6tliudbLcVI64s34NItt95IzkKOTLBS3EtJFS2SGsQUFr1J9eLktr6enp0kveaZoyMnJQUZGBtLS0izaHBe3xk+Cn75f+p7N2zHnBxb+Bczzp4maP/j5SUKlXJGdCWyfCmz/CtBlA3cvAY/8AUeDiv0I4a+I+N91XjL5d6gZjEoBnlY1/zM3JM2/b/+ByDm3A+tWLce6/72Ow493RLOGpu06iwI5myAuKcNiW0JapmH+ZkIaC38mT8LDpYG8PABgikcIp6amihbHpTG4IsEvf88FhYW/sxF3AfjnaSDmkHHdmZXA7bNASB04Eubpftk5Ouy5JGn+7WsGizoCxKkbCWKbRt9Q6Ixe868f4YexC/9AhXotkXjtDAb0H4Bjhw4gKCioSK/zul74301OR06OztDYiEhIzTLMk7uCYfKChBEFr4aGhooe80zRk5mZKToAUofQwpjeCwKdrzAaf6GE/7///pvv9/Ts2VOMkphSgpzf/80G1r8LZKYA7n5A/2+AE/8AZ1cBO6cDQy27TpVnDA1+9Ol+p2IShA/dx02LxhX9xEPSw0WDlIxsRMUloWaoj0kAYN0KvvDy8sBLn/+Mz8YPQ8zVKJEJsGHDBri5uRW58Cfz/v3UTAR6uVrX/OO53gBjPyQgikJIMJbQfc3KyhKd/Upa+BcVBRL+Q4YMydf+9JA9f/48904vLRJjgX9fAM6vk5ardQKG/Aj4VQICqkrC//jfQNe3Af9IOApyg58rd1OQlpmNnRckk3+b6oGG4kH1I3xx8Mo9nLieIIT/pbgkZOXo4OOuRYS+odCITo3x67ApiP3jNezYsQPjxo3D/Pnzi8TcR+ZDZRGhuKR0U+GfahT+rPkzDFNUFDhS4ebNmyLowZ6Jgk6YUuLMKuDHdpLg17gBvT8FRi6XBD9RqSVQtSOQkwXszr0vdXkj2NsV/oqIfznF74GawYZ9Gkb4mvj9z9yQrARUYVAW7g0r+qJarboIHvI2tC4uaN26dZH5+ah1cVqmVGdAFv5KyFIhYy0gkGEYpsSE/6hRo/Jlwn/iiSfg6ys9ZJkSIj0RWD4R+OsxIOUOENYQeGarFNlvHp3aUWpsg0PzgGRjDnx5hwR0bX2xn5PXE3Dg8l1L4a/PAjgRE2+S5lc33NfkOM90qg6Pqk0R9tQsVHzgwSK7xpj7pgL9jlnQn3nAH8MwTKkJ/zlz5sDHR3qo2sOPP/6I4GDjA5cpZq7uA2Z2AA7PJ9EFPPAS8PRmIMxGpHr1rkCFpkBWKrDXsfz+NfXFfhb+d01o2CE+boZYAKXwp8EBBdvJaX51wk3/vp9sVwVPdagGrW8wXl9yDJvPxOL+/fs4ePBgkfj7ZcyLCSkD/vKr+VP8gly9kGEYRgkX+XEkKIVv00fAnD7AvcuAXyQweiXQ80NAm0uAGpmwZe1//ywgTdJ+HYHaekFPfn3igRpBJiZ76v7nqlUjMT0L1+6lGMz+9SqYCn96z9v96uHBZhVFZsAzMzegReu2IpCVegEUmfBPtq3530pMR5adwpz2G/T9TvSatl0MAhiGYYpU+Hfr1g0ffPCBxfp79+6JbUwJcfsc8EsPYMdUQJcDNH4EGL8LqNrBvvfXHQgE1QLS44GDc+BoQX8ylOKnxEWjRj29lr/jfJzBtC6nCSqhFLwvhjVG1zohyNB44k6GRvydUxdA6gZYEORgP3k8Yp7rrwz4o0GHtVoA1jh87b5IWaSKhudirZcNZhjGeSm08N+6dSu+//57kQGQnCxVKiOo+tG2bdsKe3gmLyiajbT1nzoBN44A7v7A8LnAgz9J6Xz2QnEAHV6W5vf8AGQ6hn9ZaeI39/ebm/4XH4wWr5UCPODjbj19hwYL0x5uCi9PT/gMfBsVKlXGxYsXxd8/VfvKL9fvScK/Roi3dbN/mtHsT9ywM91v61ljgRdbPQMYhnFeisTsv3HjRhH937ZtW1y+fLkoDsnYQ8IN4PeHgNWvSv76Gt2A5/cADYYW7HiNRgC+FYGkWODoAjgC5OP385AEebVgL1T097Ap/I9cu28R7GcNf09XPNSiIjRe/mj//FeiyuOuXbswduzYfDfciNEL88b6PgMWZn+95i9bBnLz+yemZeKo/jNsPXvbsP60vmIhwzBMkQp/qiZFWj51RGvVqpWwBjgyVNe/fv364rOWGqeWSyl8FzcBWneg75fA40sA34iCH1PrCrR/QZrf9T8g21TrLLc1/vXaf/sa1ivzNYwwtZCY+/utMfaBauL1v3gvfPfr79Bqtfjzzz8xZcqUApn9m1Tyt6H5S8K/ir6sb265/k/8uh+Df9iFP/dfFf0KZOSKhQzDMEUm/OXgKap4tmDBArz00kvo06cPZsyYAUeF6vqfOnUKBw4cKPmTUzDe0vHA308CqfeA8MbAM9uANs9apvAVhOZPAh6BUsAgNf1xAAY3qyi0/4dbWS9gVDvcG1pFSV3zSH9rVA/xRve6oWL+nKYqfvrpJzE/d+5cxMeb9gqwBRUekn34jWTN38Lnn2USgxCbkCaCBLtO3Yq5u6JM9pW1/rf+OW6y/ow+fZFhGEam0NLC3Mz57rvv4o8//sDXX39d2EMz5lzZDcx8QDLJq8hHPwl4ahMQWrfozuHqBbQdL83vnCbFFJRzRratgqNTeqGxXrs2x02rMQnwy8vsLzOuQzVDrMCDjzwhUlr37dtnd7MnWev3ctWgRrBknaCsAxoUEBmxZ/Fozkp0UR9GwyBpcEIBifsu3RGBfCuO3cj1+B1rBQt3AQ0wbieaWhQYhnFuCi38o6KiLHL4H3roIezduxezZ88u7OEZIisD2Pg+MKcfcP8q4F8ZGL0a6DFFMtUXNa2fBly9gdgTwPn1cAYa6f3+blo1qgbZV5GyXY0gUQkwNTMbf+6/hueee064wGTyaqoiF/iJ8PeAr4cWLhqVoeofDbrUC5/Aey7zMdf1K4w5+SRUyEFSWhaS0yVrgPxqCxrQVNa7Cy7dNnY2ZBiGKbDwp3a2NAUEBCApKcmwLE+VK1cWTVCYQnLrNPBLN0kLhw5o+gTw3C6gSrviO6dHANByjDS/4xs4A1TCl6gV5m2o+2+Py0vW/snPrrSCkfWrSZMmuH3bGHhnS/Ov4C+1BQ3ycjOa/i/vgPbuOaTqpMGdT0o0fJEiLAM0EUl5CH8S/HKfAGWZYIZhGHVh+gmT4Lc1yduZApKTI1Xb+6kzcPO45IcfMR8Y8gPgXgKlkttOADSuwLW9krvBwRnSrCIGNYnA//XMX1vj/o0riM6AV++m4Gi05OunlD8K/Dt9+jQGDx5sMwUwLlkyxYd4S0I/yNvVuJ46MAJYkt0RiZC09yBVgonmn5fwjwz0gK8+ZdE8ZZBhGOemQF39iC1bthjmSePp168ffvnlF1SsWLGors15SYgBlj0PXNLf45o9gcHfAz7hJXcNvhWApo8BB+dK2n+V9nBkKK//20eb5ft9nq5a9KgfhhVHY8TUNNJftPlctWoV2rVrhz179mD06NEiGFZtFpB5T5/WF+glCegg/SAgKe46cHqFmP8juwe6uJ6GT04KgpCA2HQS/lJMAA0E6Ldnq8kQaf6++jRH1vwZhikS4d+5c2eL/saU589tewvJiX+Ala8AafcBrQfQ6yOg1VPGRO+ShHoCULOfCxuAG8eACo3hNFBWxYbJQOp9yQJCsRVUA4GCLF2kVr8yZDEgwb/yWAze6VdPVAKsU6cO/vnnH/Tq1QsLFy5EjRo18Mknn5i8726yJJAD9eb+YL2JPuTiP6LL4t3ApjgdUwVJGn8gJ0Zo/hfTswwaP7UeTs/KgbuLRj8IMI3PrBTgCV93rUWlQIZhGK7tX1ZIiwf+eQZYPEYS/BHNgOd2SMF3pSH4icDqxoJBIubAiaA0R7J60Ovxv4HDvwPbvpDqK5jRqXYwfNy1iE1IN3QOJLp06SKsYcSnn35qEQB7V2/2N2r+kvAPviOlkF4K6yNeU1wCpfWqeKHt0yQjDwQysnNMBD8VN6JBgVzgSNkjQCb6XgpG/roP28/ZjktgGMYxYeFfVlj6HHBsoZTC1+l1YNwGILhWaV8V0OEV6ZWE4J2LcBrizkuv1ToDvT4BqjwgLd86aTVVsE8DySWz4liMybYRjz6OB4Y/K+afffZZHD161LDtbookkAM89UJfmP11qJAoneOKZ0Pxmu4qxc6Q2Z+E/N0UYy0A2f9PFgAlcpS/bPZXdgeUmbjgsOhn8OTs/fm6NQzDlH+KVPjb8j0ydtD9PSCkHjB2HdDtHUBjvbZ8iRPeCKjVS2oWRFX/nIW7l6TXugOA9hONFhBqoGSFgU2kyoqrj9806bw3e1cUrlUbgIBGXfH666+LKpjmPn9Z468f4YuqqpvwykmATuOGKE1VsT7DXapMSGZ/udCPTKLeCiDXBrAQ/u6Wmj8VCXpwxi5DOWOGYZyPAvv8KY1PKewpopnynL28vEz2I78nYweh9YDxu4umSl9RQ35uyvc/+ifQ5S0pGNBZhD+5Pojg2tJrnPX2vVQ6mNLqKEd/18U76Fw7BHFJ6Zix5aL4nfj0fQXvf9jfJOhP5PMrNP8ONYPR1z8aSAViverivl7Bz/GQ6miEahKBLNP6/gbNP9M44BjarKIhBZHqB5gH/H26+jQOXWXBzzDOTKFS/aiSmTw98cQTiIiIMFlnb6UzRk9ZFPwE1RSo3A7IzgD2fA+nSLO8qy+dGygJUYToUwCp7HGWZbU8qg3Qr5Fk+v901WlcvJ2EaRvOGXzyKpXaULo3NTUV70yejIQkqQumnItPg4SHQm+K+c1JkYhLlPbXeYVIl6BOtDDxy8dPz5I0f39PF9F1UG5WZND8FcJfthbISO4GhmGciQJr/pUqVRI5zC1btizaK2LKJqT9LxgO/DcH6Ph/gKcUhOaQJN6QuiSqtYB/FWmddxjg5gekx0uxD2H1rTb7WXXsBs7GJuLVb39Hd90euGEIcjRuyMzWCUtAuJ87RowYgZUrV8KzzgMIG/qmQUAT1TNOi9ddadWx6UysmFd7hxgC/syRhX+aXvOnCoVK5IA/pcDP0A8UZEJ9WPgzjLNRYFXz+vXrIrefBgHjx4/H2rVrkZFh2pSEcSBq9QTCGgGZycD+WXAKkz+VUdbox8fk4grJ3fRPzX7WvtwJD9QIxKeq7zFRuwwfVvwPNUOlvgEk/InXXnsNWhcXpJzdhZRdv4vUQEFmKtRUUpnaC+fUEAMGwiNAsigE6Cwb9Jhr/hThr8QY8GfU/K/eSTHZJ4ssHbmQk6PDpIVH8P1mfRAkwzDOK/wpbenmzZuijamPj4/o5kc1/qmu/7x583D3rjHlqaxy7do1kY5F7XkbN26MRYsWlfYllV1I+HV4WZrfNxPIkEzWZZ7Em9JgZd07UhfEfPn7a5iuD66Ta9AfEebrjvn93FFPfU0sD/Y5hWC5cp/e7N+pUye89ZkUPBm7YyFmzdIPpqiWQk4W4BWKeZMewht96uLFbjXRop6U9eGrS4AGplq7nPZnS/OX8/ypJHC2qAuQjRuKgEFrmQLm7I26g38OX8fU9bY/N8Mw5YtCOZkpeKljx4748ssvcfbsWdHRrE2bNqK9Kfn/6SE3depUYSUoi1AP9unTp4v2vOvXr8fLL7+M5ORyItRKg/pDgIBqQOpd4OBvKLNQ86M9PwC/9ga+rgusflWKVdjymX3vv3vRNNhPJg/NX0Z97C/DvHv0HoTr+wTd0Wv+RMseg+H3wGNinixnGzZsAE7/K22MbI0aoT4Y36UGJvWqA603RftL1oEAmDboSc5D86fKhTKJaZm4djdV1AOgToJfD29iESxojfv6lESGYRyHIo0wq1evnkhn2rVrl9CqR40ahR07dgjrQFmEOrA1bdpUzIeHhwvLRXmwWJQaZAKnqn8ECVPqNliWoGC82X2A6Y2AdW9LfQmoGVKo3j9P1QqT7+Q/0j8fmr+4J8f+luapZkNWKprqTpuY/cWlJmfA74FHUeuBvsjOzsawYQ/hxKqfpI0tRpseU60BPOV0P1O/v9zkx5bm76pVi94Dcq7/1bvS4LZykBcaV/IzGTjYQrndvIU3wzDlk2ILLw8JCcG4ceOwfPlyvPrqqwU6xvbt2zFw4EBhRaBI6GXLllns88MPP6Bq1aqinjpZHfbvL1jBkoMHD4qHcGRkZIHe7zRQvX/vcCDhulSUqKwQcwT4pSdwdY+kJVNRnj5fAK+clFIowxtLQXwHpIp7uXJHL/yDaljX/O+cB3JsCMzz6yTLCN2jRsPFqoap/5mY/eU0P/qbfmL8K+jY4QG4IAsJyalSZceaPSyPq4/4l3P9zc3+tjR/QlnljzR/onKghyhOJL03d81faRmQ4xAYhnEy4U9pStbM+CdPWlY+Kyxkgqe2qCTgrUE10ydNmiQ6qB06dEjs27t3b9y6dcuwD2n2DRs2tJhiYoyV2Ejbf/LJJ/Hzzz8X+WdwOLRuQLsJ0vyu6baFYElyYRMwtz+QfAsIawi8fAwYsxpo+xzgV0mKV5AtFvt/AjJMA95MIM3WluZPkf8aNyArTXItWOOI3srVeIRUHIkyJeP3WWj+JPxbq07jvfPDsLTjOewd44H2kVqg8xvWyzl7Sbn+wTAV/skZ5pq/pfBX5vrLAYI0IHBzUdsn/BXbqcIgwzBOluq3ePFi4Rcn83hOTo4IVCJtmxg5cqQQwEVJ3759xWSLb775Bk8//TTGjJF6z8+cOVN0U6NgxDfffFOsO3LkSK7nSE9Px5AhQ8T+7du3z3NfmmQSEqQHcWZmppichiZPQLvja6juXEDWiWXQ1RtUoqeX7zW9qo7/Dc3KF6HKyUJO1Y7Ifug3qeWx+fdRuz+0fpWhir+K7IPzkdNyrPWDJ9yAS1YqdCoNsrwqWBxHG1QDqlunkHXzFHQ+lUzfmxwH7fl1wjuf2XCE0Na1UME/4RxCcA+3E30M134nKQ1dNFKp3yDXdAS5ArqwRsiq1h2Xzp4V1ixlQSCNZ5AYqZub/SmKn46ZnCZZFVw1xvsj4+Mm/czvJqUhSb+fm0YFNVVtBEQgYGpauqhVYI2UdOPxUtLS4abWmXwHTMnD9790ySzD99/ea8qX8P/444+FeTwsLEy8kk//7bffxmOPPVbivkBKK6RreOuttwzr6GHZo0cP0UbVHuiaqd1qt27dxOAlLz777DN88MEHFuspWNDTUx/V5STU9e+MOjeXI2nNh9h2SVPyzYd0Olye/yLq35AyNKID2uKQ3xjoNu+0+ZZqPp3ROH4+0rZMxcbYUMknb0ZQ4hl0IDnuEoRN6zZYbG+Z4Q1qWn1m57+4eN60WE7luK1olpOF+x5Vse0AWQ8uobNHFfinXkYn9XFsuOOP1atXi33PX1XjIZWUEXA+tB+S3cJwy7cRdn3yCb766ithwaK/TZlGt5NR3YrZP/pmnDjmset0/zWIi72B1atNLXNpifQ51di5/xBiU2k/Na5fu4Ktm6IMj4AVq9fCzdJoIDh6TXo/sXb9RvhJyQsCEajIlBp8/0uXDWXw/qek5GLZLKjwpxEFCX6iRYsWwidPZX4vXLhQ4nX94+LihI9evh4ZWj5z5oxdx6DARHIdUJqfHE8wf/58k/rrSmigQW4GpeZPMQLUttXX1xdORUob6L7fIARb/3qe0FXvWmKnzkxPw825o1E9bqNYzm47EWHd3kNfK8LchIzO0H2/Cl6pt9C/ejZ09QZY7KI6fAe4AHhWaiTqWJij3n4c2LEf9UM0qGO2Xb12G3AN8GkyAP26S9vUHoeB3dPQSXMMy7I7o0+fXiKvf8al3aibLrkOqvV5HrrItmhAqX9pfwnXGv090kD2mWeekY6z4xRwewOCIWn+FK2fnJENF09v9Ov3AC5uvghcvYjqVSujXz/TAkTb00/g5L0YVKpeBxpK87sRjQZ1amJglxp4bb/08OrSvYehzLA5R9acBaKviPmOnbuiUoCHeBbQg69nz55wcTHtQ7H57G2cjEnA2PZV4KW3OjBFS273n3Hu+5+gt0jnRb5+maGhoTh27JgQlkRgYKC4AWQBoPXljQ4dOgj3hb24ubmJyRz68svaH0Cx4xcONB8F7PsR2j3fAnUk/3axkxwHzT/PoHrcJuiggqrPZ9C0HQ8bSqspLv5A62eAbZ9Du+c7oNFDlhaLeEnIqYNrQG3tOw2rJ22/c95yuz4FUBPeEBp5W+2eQvh3VR+BW2YqkrOkFr6ZyfdRUSVlHmgrNKI/IjFPFqgrV65g8uTJonZGzZo1hRVAPm879SmRwRDm545Lt5ORnJ4t/vYy9YY3T1fLv8UQHw/xei81G3qXPzzdXOHu5goXjUoE8eVAg7O3UrDq+A1M7FrTRGjTIEMmR6U2Ob61v/2PVp1B9L1UnIxJxK+jW+X5tTAFxymfPWUIlzJ4/+29nnwJf9KKKTdeiaurq0jlmzhxIkoSijvQaDSIjZVKoMrQMqXtFScUgEgTWR6cGup2R9Hzl3dIkfZuPoCrJ+DqDbjQq5c0L9Z5AS607CWVBq7UKv+dC6N2AEuegjrpJrJVLtAN+RHaJlJEvd20flrqTnjjiHTd1TrZl+Nvnu5Hgp5cXfLggeZvnTI2aZKp3FYcy/fuJQzXbENcUi8EeLogLO2i+PVl+VSE1sPf5BTvvPOOsKb99ttvGD58uLBQNarTE9laT1TJuoUmqovw9GkjhL+xvK/0tygH8Zlcsr7I0J3kdGTl6KsG6vejAMHM7CyRLTDgu52G6P73BhqtB/I5iEw7Av5I8BM7L8TluS/DMKVDvoQ/lfI1h0yU5Dt/4AGp3zlpLUuXLhVV88gcXlzQoINcD5s2bRIBewRp8bRc3AORCRMmiInMK07dvIgi6Zs9DhycC0TnM8XSpwLQ/ElpouPkBmUUbPsC2Pal0Hp1wbWxLXgUOlLRofxCUfPNngAOzJIGARbCX27oY5bmJxNUU4oVSIsHkm4BPnq3E81Tih+F+8lNgOQcfcqOWPV/GKdZjej4t0V9/xo6yeSvouwEM8iFRpkn9FvaunUr+vfvLwpoeVTpCf+LyzFIswcn/DpLp03PEr8/OSLf3Uq0v9wymBoLyXUA5JRAWqYkBGVE/+FrppUQTfsC2G8p48wAhim7FNohR819HnzwQdHO9/79+yL6n8wO5JOnaHyqXlZQkpKShAYkExUVJaL3yd1QuXJl4X8nlwM1F2rdurWo1kfpgXL0P1MC9P0SaPCgJAyp5C/V/s+wMmWmABlJ0jyl0lHzHBLo278CavcBKPq+RnfLzoYJMcCSp4Er+kC+Zk8gq8cnSNy4reDXTML4v1+BCxuBm8eB8EZ5p/nJuLhLKX/3oiTtXxb+stZP73ORzOwGmjyGhNUfoLL6NmIvrMa9oIdRTyUJf004efqtD26pHXa7du1E9UyqovnW40OBi8sxRLMTLeK+wRVVMxzS1RZpfrlp/kFeboZUQ3kg4EFpAYqiQMpcfor+tyX87dH8ZbgeEMM4sPCn9L5p06YZUgEp4O7w4cNYsmQJ3nvvvUIJ///++w9duxoDyeRgOxL4c+fOxcMPP4zbt2+L81CfAcrppwZD5kGARQ2b/c3y/qtLWqjdUBW8MyukDoFkej+7WpqokU6LMUCzkQB1sju3Hlj2HJByR3IfDJgONB5umcaXX6hNL1kNTv4D7JwGDJtt7ANAgxSVRroWW5BmT8L/9lmj5eDWaUuTv4yrJ3YGDEG/u/NQ9cyvuNZgCOroa/8jzLrwJwICAkQkP/2tff7556II0H2dF4JUiQi6vRxTXI5jcMbHSEzPNAhvd7MKfyaaf3IGPA1CX2OoAGhexS/LrJAPlQWWyasmADUBUkJWiZIOBmYYpgQq/FFaATX2kVPeyApAKXdt27YVZsvCQE136OFhPpHglyETP52H8u/l3gLFDZn8qR/AgQMHiv1cDonWFWj4EDB6JTDhANBmPODuJxXO2fQB8E09YE5/qYUwCX6qzvfsdknwFxUd9VkbJ5dKLXpNuvlFStdoi2C5xr+izK/B32/Z6pc4ETEC6ToXhCScgOb8GtRR5S38ierVq+Prr78W1jRvby+8nDkBC7O6iG0NVJfhAcrdl3z2tir8BXu7GQoLpeiD94yav2WVP2WXP/q9KWv726rwt+7kTXy36byFqT+vwQLDMOVU+FM0MqUlUS3/devWGfz8VGXP6dLfmPxDJXP7fg5MOgMMngFUbAHkZBrN/K2fBZ7aaFlqt7CQqb9Wb4AK3ZDv355gPxlZYF+l3gHIW/PXt+Wdmy39NurveRU+qlRkwkWKIbATDXRYtn4vnt8fgVSPcGhVOWiiviT8/oYKf1bM/nIKH5nzY/Ud/WQLgbHKn0LzV2jv52KThMXAxOeffAfqHV/BPcPYB+PZ+Qfx9YZzWHnshk2XAcMwDiT8yeROtfupIhlp3eSjlK0AzZo1K4prZJwBygig4MGnNwPPbAPavwg89jfQ70vJtVAcyNr/kQVSbIGtVr7m1OwpuQZuHgPiLpCtG7h9JlfNP9jHDV9njcBl11pwyZaKcNxyq5KvjAdyq8UfXIm7G3/G0htSRktz1TmhmRs0fysBf2Tal1v73tNr8eY+/9QM6z7/vYeP4GHNFrhCX9GMNPsFI6DZ/gWCz8wxxBrI7L6ojPDXwW39a8Cmj+z+jAzDlBPhP2zYMFy9elX458nfLtO9e3dDLICjQT5YymZo1YpzmIuFiKZAr4+A2r2L9zyUhkcNgMjSsPt7o/k/L83fKwiooY9FobiB+GtSMKOaNHnrA4cgL1dkwAWfe72GdLUUEHjH236tn6AYlwqt+gprxTM/78PRm9loqT6HeykZuWr+StO/jDHaX3qlY1jz+Q85MBJfuMzCeI3UbjgrPQW4LjUqqpd1BvP3mfY4uHDL2HK4tioavsd/A3ZMLRs9IBiGKbzwJ42fyusSlFdPWr6yFjlF39etWxeOCPv8HQhZ+z84R8r9J+xxMVDMAnHiH6PJn2IBbGjypPkT/yUG4tXsibiYUwEasnTkAwqcWzjvV9Rt3g7JqenovyAF4UlncC8pLVfNXxn0JyO3+ZU1f2oxbM1P75cjpf111Uj3ptO2hw3bjuTUwI14Y68L4lxsovEzK/sQUJaHGFgYMxMYhimHwj86Olo03aHcf4roX7Nmjai3zzDlCkovrNBEivKXO/XlpfkTdfsDGlfg9mngxJJc/f1EiF7zpra+K9Kb4Snfmaj/wMB8X27HuhWwZ9Nq1KtXF9cTdXjirzikRR/PU/OX0/1k5P3k17sKzZ9a/5qjonoFFAuZeN6wLg5+IgaABLqMfB1EIBIthH/v6dvRcMo6JCsKBynfzzBMGRf+1DmP0uuouh9F+8vd/h566CHMmzdPtMllmDIPpaF1/D/FslrK488Lyk4g3z9xfFGewt9c8360dWSBU+D8/f2xatVqBHlpcfhmDn798j2k6lv7WrT03TMDmD8UFTyybGj+erO/WVCfuXau0UgxAzkU66DHFVkiut9WRH+YSvEMoMEVgIu3k0VA4bFoySrw5dozaPLBely8bXQXMAxTxn3+ZObv2LGjKEBChUjkVLuffvoJERER6NSpE6ZOnYrr1027jJV32OfvYNQdCATVkub98kjzU9LwQf2MLtdgP8LTVWvIsad6+g81z6OqYR5Uq1YNMyb2RLCnCv1aVkGG3k/vbq75r3sLuLgZ3ROkxlUyygp/hDKiX24VnKPQyDVaLTTIhlpnHBS4IAuZWTk2q/5VUAp/iolQIHcBnbH1ougd8Pka+5pxMQxTRgL+lNSrVw+vv/66qEVOqX9UjGfHjh3COuBIsM/fwaBYlc6vS/MVm9v/PqpMqFVU88tF81cG3fVuEI4gswC8glC/RXtEveSNvjV0xgp/Ss1fUWKvUrqxUqZWrYKLRm3q81eY/WWhnJBw3/gejRZu+oh/pfDPTfMPUfj8delJJlkEV+6m4K/ff0ZL1RmLQkIMwxQ/xdZvMyQkBOPGjRMTw5R5Go+QqvrJBXzswc0bqNNHKhREjYzycBc0ruSHmPupGPNA1cJfL5ngg+vA21WF8PQrQgBnxcdi/65tiBzYV9ohxah5+2UYG2ApCwG56efvJZsK37m7L2NglWy00C+7qrLgBtMBgptKqixoS/P3g+TnJzLTk0wsCTOWbsQOt9fwiBtQNW0B1wNgmLKu+VMjH2tm/JMnTxbVNTFM6UCpf9RxMD80fkR6peJE5n0JzPhqWBNsebULWlTJ5zls4BIuWRoq5sQg5+5V3Jj3fxj16HBRXluQdNOwr2/iOWG2txD+es2fqv+Zc+Om8XfunpMMdyuaPwUHZtgoc+2rMgr/rNQkk+JBlAZoRGfSOdAeyG3w5/6rOBmjyChgGKZ4hD8VGalVq5boMta4cWPh45ehPuQM43SQ5v/4EmDIj3nuSoV1IgM9i+zU3qHVkKRzF0K4hj/gGlJVNLYaMGCAyMYRvQr0aLJSDQJXGRdgKPKjdxsMaFwBHULTUUN1HXfjFNaC7GS4qUwHCBTwF5+aaRLhr8QXUpCfQfgrNP9AlTETQIMcpOrLDotrycgWgYBHrhndDuasPxWLt/45jv7f7sSMrRfQ/9sd4loYhikG4f/xxx+L3H7qrDdnzhxh0l+wYIFJAA/DOB21ekj9AEqYAG83XNBFiPk62puIGPaOCESNiYkRA4DE2Msm+9dXXTGJ9LfWC8DbTYvfE8Zgk9trUCt6F7hnJ1rV/KlioK3Wvb4qo/DPTk8y6QugTAPUIlvEIcj8tP2iiDkY8sMum59dWUzoy7VncTImAfP3mH5ehmGKSPhnZmYaOua1aNEC27dvF5H9H374oVN17uJof6Ys4OWqwSVIWQO1VNGoExmGVatWid/o0aNH8cirX5uY2oPUiRYC38vNNOzHU7GtSoJUyY9wzU6BB9KtCv/7ZsGCMr4Kn39OOpn9jYOEAJWp8NdojM+PS7eToUVWnp/dFB24XADDFJPwDw0NxbFjxwzLgYGB2LBhA06fPm2y3tHhaH+mLEAD7utaKciwlvo66ob7iB4b//77Lzw8PLB672m8tCbNYJULc02z0Pzl9EMZX1ej+d0/02j2V0FnWrFPHwRInL6hKOajh4ID3VVGS0FOerJJ2WClS4CEv5Kq2Vdx3O0pvKJdBCTGArO6A4fmm+zjqRi0+CIJu9xeRNeor3K5WwzDFFj4z58/XwwAlLi6uopUvm3btuXnUAzDFAG3PaTMgVqq66gd7mMorf3HH3+I+kX7rmcjRS111wzVplpUASQzvxJfrVEQB6sSTLaF6/P2s3Uqg8+fOHXDdD9z4U7kZKRKTYGsCHwXZJtkDAy89SM8VBl4SbsUWDVJ6iXw70QM/mEXDl+Vyg0r3QSPaTajouoOGl9faMcdYxgm36l+VMrXGmlpaaLf+MqVK5GjMO0RgwYN4jvNMMXEPa8aIOt6dVUMYkONNQeGDh2KpROaoYfPBXhVrAdE70eQJtWK5m/6CPB3MZrbQ2AacPeRy1zxmghP+CPZ0OnvdExCrpH+RE52lkmev6vCKkAm/jSF8HfVGd0LuusHIYv5o9fu47FZ+3D6uRBERm2nIY+wSTiPw5FhylCeP3Xyo0j/O3fuWDVLZttIA2KYgrIyaiVmJMxAtbvV0DisMZyZNM8IpOpchaZc34M0cykAkBhcMwe4pwJC6gjhr06XhLmH4ldvrvn7aI3CX6uy7kRP1HnCX5UsfP7EpThTQS/OYRYfQM8BZcCfsmCQVpUt6gXIyIMKQpV4w+Q4IithVjdQtE0X9WvYmtNMuCQYhinhCn8vvPACRowYgRs3bgitXzmx4GeKGvJfzzo+CzdzbuLd3e8iPdtUyDgbd1OzDRH/IalRxg3k50+SfPa64Nr4cFs6Bk/djXoJezH1fF9g53SxzcvNzOevzTtqjjR/Qhb+1iBTvpKc7ExDwN/H2l/RV3PAZF/qSng7UfouXXT2NQiro4oW1gmTHgIMw5SM8I+NjcWkSZMMWQDOAEf7lx4X7l/AtaRrYj4qIQozjsyAM3MrMQ3ndZI7TnX7rHFDfLTUTEelQYp3NSw6lYlbiZk4ueRbpKalAxunAAkxFtH+Ppq8c+UTIbkXXFXZUMH6YMF8YKDLzhKaP+3/hHaTyTby/5NHoNUnG7Hov2tQ59g3oKP3HXB/HqO0G6zvQO2Wj3IcAMMUi/AfNmwYtm7dCmeCo/1Lj41XN4pXP5WfeJ17ci6O3z4OZ+W13nVxPkcfi0PCP/kOsO4d4LA+Oj6iKbzCqmHVY54I99Hg2q0EjFiUIqUA7vnBQvh72SH8E3SeNjV8GW8XU1N8Tk62KPJj3h/AfKAwefkJaLLt0/xfc/nb9sasDGDxGGDpM9I9YRimaH3+33//PYYPHy4a+DRq1EgE/il58cUXC3sKhjGw6YqkNXZ3747UsFSsubwGk3dNxsKBC+GmKXyznPLGoCYRaJvRG1j1F3D7NLDzG2DP98YdqnYAPPxR2U+NFY96odPcZKy7mI0XVqdhRo0TJnn9hJfa0pSfo9JCrTOuz4KyrW8mMmD6mye8tToojQI6YfbXWcQCyBX+ZCgYUWOn5m+T9ZOB0yuMy+nxgFdQ4Y7JMA5GoYU/pfmtX78e7u7uwgKgLPZD8yz8maLiWsI1nL13FhqVBnVd6qJHix7Yf3M/LsZfxMyjM/FS85fgjIRWbyLNxJ0HPM2EXNWOgLu/mG1ZAVjwVAM8OOMYZh7MRK0VxzBplEqkzcnFgChw0Jx09xB4pBoD7yL9XAB9gT1bfn8v0vzTTTV/SvV7RrvKYl/lMSj7QJtpn+Zvk93fmi6bZSAxDFMEZv933nkHH3zwAeLj43H58mVERUUZpkuXLhXNVTIMaf1XJa2/RWgLeKo94e/mj8ntJot1s0/Mxom4E3BKqJug2gXISgPumZW4jWwDuHoBammcP6RKIqb2kiwkr/5zWRToytHp0EB1Gd+4zIBHvOVvNsPddEDRMMQFOv3xyOxPfnyqMKj0/3ubBQ6Sz9897iTGaxUauZWcf+p/oNIVcaBwDncMZJgiF/4ZGRl4+OGHoc6joxnDFJW/v1tkN8O67pW7o2+1vsjR5Qjzf4ad/mKHQqMFAvRtgpXCv+4AwN2XTHAG7R8pd/BKW1e82NoVvw7yQL06tUWw3e+un+JBzU6oN71vcfgsjxDTFZmpgN7Fss3tFUS5P4ENbq9jnGaNYRdPjanP/25iKrat/svq5VOqn+F9rhoTF0ORwMKfYSwotMQeNWoUFi7kiFqmeLmdchtHbx8V810qdTHZ9lbrtxDoHigyAcj875QE1TBdnngQGDHPuOzhb+KO+19fd4xp6gKkShXzAlTGRjnmZHuZZfJQFoHGxcJN0EptzDbwVFQKJO4lpVoU/rEWNOiptT/VzyrWGozlcLc/hilynz/l8n/55ZdYt26daPNrHvD3zTffFPYUDIPNVzeL18YhjRHqaVpiOsA9AJPbTsYrW18R5n+yBjQIbgCnIlAh/MkFEFgNUCuC+WTNX4Y0d6qRkHQL2SnxGLsuFdN6u8PP3bJeXo6XmebvGSjeZ45c/lecTp1jEdTnY1byV0bZxGdkimLAUhB0lv79b9aeQJ8+NVA/QipzrGT3hTh8tf4sPhnSyOp2hnFUCq35Hz9+HM2aNRNm/xMnTuDw4cOGiVr/MkxRmvx7VO5hdXuPKj3Qp2ofZOuy8eWBL+HUmr9fRVPBb6b5C8GvdxPokmJxe+knmHMkE8MXpZhU4ZNRu3kbFyq2BAb+D9C4GlZtzG4mXiNVxgGBm8KUL06JbJMWv7Z8/v0TFha5if/AhRsYMkPfHpgsHRc2UdUhsfjYL/tw+Op9jPuN03YZ56LQmv+WLVvgbFCRH5q4gmHJEJ8ejwM3pYczafW2mNB0AtZeXisC/7JysqDVB6U5nfD3r2y5Xan5U0aAdygQdxaq5DhEdh+JmAVvYcOlbExYnYafBribZO2oXYw9A/DURimGQG/2J6jIUA8cRqAqSWj3VAGQCgDZq/nbqhVgDgUU6vLSV6iwjxnUgMjQOOjXXkDcOaDvV0CbZwz73El2wlgRxqnhKL0CwEV+Spat17YKjb52QG1U9rUi2PTQNg+tBzJyMnAtUaoC6JRmfz8r98gn3DhPOe+yKT/5FqpX8MNfD3mIBjmzDmVi6m5TQZhdvSsQUA2o3VcS/ITWWFMhTueHezrJOlBBJRXUkYV/hk6yQNRXX7FoCay0CgA6vKrNXeuXBgl51PFfNt5ilbJXgBD8xIkluR+HYRycAgn/Y8eOWXTvy42TJ08iK4sjbpniMfnLqFVq1PCThOD5e+fhVPhWBLTutjV/ivyXcfGUNH8i+TbCVfcwsI4LpveRBPrrG9Ox+JSi8Y5XAPDCQeDRPw3r/nVV45XQYKSqVEiFG1LhaiJoZeGfpl8foopHI7VZGqJ8OapstFOfwkTt8lw/IrkHlAWBrGM5OPjcZRZCcS/X/RQdgjFl9xSMWDECmdkcKMg4LgUS/uTjt9bFzxbt2rXD1atXC3IqxslJyUzBnpg9Yr5bZWOKny1qBtQUr+fvO5nwp1Rb0s4J/0jL7ZXbGuev7TNq/km3MaK29Bh4sY0bXmgtCeuRS1OxL1oasLu6U50AjVHrB/CuaxI2enniL19vVAoNhKeb9D5ZOJOpnUjXC/+8hHoQEuzYL8um8M/NHhCkSsR+9wlmbzA9jrIx8D/n/8Hpu6ex7+Y+sZyTo8OdJOduIMU4HtqCdlabPHkyPD2NNb7zqgXAMAVh5/WdonNfpE+kMPvnRS1/6vEOXLh3AU4H+bAP/wHUtGIhIcHddgKw9weg27tSxD6Rehd9KlcE9Er5tN5uiLqfg7NxOQjylAYFbu62f+f31Wq80rMRsMEdyAAqquJwVFdTaPNEms6VJGuewp9a/uSFK7LxpnauxfrdHu54KyQIH9y+iy6pqbYPoA/ys5YSKI9r6NlmuC59zMj7K05i3p4rWPB0G7SvEZzndTKMwwr/Tp064exZRQcxOzR/Dw9F0BBTJoiKjxLBcaRRe7l4oayb/JVBaLaoFVDLOTV/ouVYabJFr4+BegOAiObAyaXSuqw0aBJjpPmwhtDEnsCfD3kgPUtnEP4uLpL2fjn+Mir6VIQLpRLqUcluBL2gnOH6LSZkGKP9ZbO/kvcyR+FDl98Myw81CcV9TSCQR3+m3poDeExrGWD8bLjkwnghPATHo3KxMOprGkiYCX/9a6aiJoDcK4IEP/HRytNY81LH3C+SYRxZ+DtbFz9HIjY5VkTEr45ajVN3Tol19QLr4ccePyLIo2w1P6Fqfdujt4v57lVsR/lbE/5XE64iLSsN7rIfnJFcA1XaS/Mu+vuSmQYk3jCWAo49AW9XlZhk9u7bh4SQBLy661X0rtobUztPNT0uZQOojKmFr2kXwj94ABADqOg8ZsH8y7IfwKLszvhQOxfDtdvRtIIHrukDBnOjusrYX6BAKDR/MuWrzYMOz61DakgdwzpXRTojkZTOMQCM48DR/k6SKrfk3BKMWzcOPRf3xNT/pgrBTw1ySOMn/+botaMRk6TXAMsIe2/sRXJmMkI9QtEouJFd7wlyD0KAWwB00ImGP4wNtHpLXFYqkBBjGReg59dDGejYsSMmPD9BmMTXXV5n+QAh4a+oK+ClSjNo/hQPYA7FAaTCHen6boCq7HRoNGZ1CawQorqf63YXMtm7Sa2e86oBkJRm6oocqVoLLBiBC9/3Mayj30dexQMZprzCwt9BSc1KFRr+i5tfRJe/u+D9Pe+LDngkFJuHNse7bd7F5hGb8Vf/v1DBqwIuJ1zGk2uexKX7l8pcI5+ulbuKSH57INeAHPRX3v3+R24dwYwjM4on6lzW/LPSgYTr0ny45QAr3FslhP7FDRcRtyrOwi8uHcvTRPP3RBo0+oC/6y5afBQUgGta43ZZ6BtaAWelw1Wx3RYhsJ4qKONDGUi5uYaOGVMJVWZm/z4qqQhQBIyFiqhfhBIW/owj4URVUBwf8lfuu7EPqy+tFoIzJctYVIWC5fpV6yea4ER4RxjWU038eX3n4dkNz+JS/CWMWjtKuAAaBjdEaZKdk40tV7cYqvflBwr6o6JAhUn3o/Pvitkl7gPdo9Lgs/2fCQtNsEcwRtQZke/3f7z3YzEI/PiBjy3jJWR3SMpdIC3emC6oJ1PlKmrs96/tgm+//QoTJ05E7OJYuIa6IvUxY1CdSmdN809Htl7LfktzB6d9fbDf3R0rrstme5XJIEAS/nkP7kJVRp89nXaFtxfqpxs1eHfqUJRbY6dNHxivmy4h9iS2uL6CaVnDjcdV3CaLQQ7DOBCs+Zdz6AFFGuInez9Bj0U9MH7jeKy4tEII/oreFfF0o6fxz6B/sGTQEoxrNM5E8MuEe4Vjbp+5aBjUEPfT7wv3AA0iSpNDtw7hXvo9+Ln5oUVYi3y9tyiC/nZc34EJmybgwz0fojSgwcfF+5LbYk2UsVteflIkF55diH8v/ouYZCvuHFn4J92UXl29pQ6Ao1eLbICjft1Milo1HCoNBqN/jsa/m/81M/tTwJ+p5i535juNNPF62dW054eJ5p+du/Dfl1PXwuy/ydMD74QEYWilCoZ1JLd11NbYDtSk1S99DtXUsfjW9XtDwJ9S3Ftq/jwYYBwH1vzLaXlf0mopaI8Ew/Wk6yaaPAVlkZbfJKSJXRHycnOcX3r/gpe2vCQEPw0ivur0ld2BdsVl8qcOfsrocnuo6V94sz9ZQYj9N/YLQawxr5VfzNxIviFSHImDsQdFoGaYeXe9XEjMSDTMJ2VY6dinLNlL+OoHhVUfEFPWiWdNNtd5sg6uXL6CxMOJeO6x5xD2ZpiwAhiOZeYfV+k1cBeokGkjCz9dJ32v9zMSEZsWC2OonSlxOqnhjq/KaHE45masMChDZ1FZaexjDWH2J5eHnoa4aCn88ywoxDDllyIT/lTulgr5mOf0Dxo0CI4GaUI0JSQkwM8vlwCjIoaEPAl7EvpKk7an1lOYxkngt6nQpsA17Sn4b0b3GXhj+xsixW7Stkl4v937GFprKEoS0rA2XtlYIJO/UvjfSr0lgh3JepBfbqVIvt/EzETRKrhOoC3RVDzIgw+C4jQo0O7JBk/a/f6kTKPAv5tm7LZnQFGe10T466k9bArOzzyA2zWGgvID7mbcReRzkbj06SXEX4mH2x43hA4ORYZKHzxo/jcXHy1efFQuuKtv0UtDZeUQQTb7d03Yi6yEPVjuokX1TMtKoPd0PhbrsqyMaZUm+7wQQl7Rn8BkvQ1Nn/V+xpEotPC/dOkShg4dKrr7kZYp/2BkjZOb3xQOenCvv7xeCPzDtw4b1pM23LFiR/Sr3g+dK3UuspQ2Sm/6qvNX+GjvR6LS2Xu73xMCdHTD0SgpyG0RmxIr6vS3i2iX7/d7u3ojwitCmLtpkNQyvGWBhb/sgihp4U81GOTvmWI5KHgzP8JfqfnfSzMtbXvu3jm8uHECxnt7YXBSsrTSW1H7nyxIoREIfO8QaunN3/R3qHZTo8rLVVD9anVcbSzl02eIJj9aYfY/5uaKf3y88cLd+wiKOSS2e9CgQG8FoIJAQYqy4LLwz9KL1QPu7qiuGLTI3FdZttrNslIUKF/CmZ5TeQSRcsAf48gU2uf/0ksvoVq1arh165ao+Ed1/Ldv346WLVtyPYACQultKy6uEKb3bn93wyf7PhGCn0qQtglvgw/af4AtI7bgf93+J0z8RZ3LTpYD0vjHNBgjlr8++DWmH5xeIj7P+afm452d74j5h2o9ZCi0kl8K6/enwYfM4VjjoKukhf+QmkPE93487jjiUqVoe3tIyEiwqfm/ueNNXE+5iXdDFHUdyN9v61jpCaKxEuES4ILK/SobBvdpKhfp70KlxuMR4Vji443/BRo7CCYoiuYkU50BBYaAPz22FPd78LVP89dPcWbnMZxPBRxycxMWiGt3k5Fs7SCKq7AQ/qz7Mw5EoTX/PXv2YPPmzQgODoZarRZThw4d8Nlnn+HFF1/E4cMl/+Asj1A6F5WyJQ2futilZRsDlxoENRAm/T7V+iDUU9+QpZihh/uklpOEyXz6oen49cSviM+IFymCxeH/pgctDTDmnJwjlh+t+yhebflqgY9Hpv9t0dsK7PdXav4Hbx0UAs7e+ImiNPu3DGspBP+Zu2dEBgNla9hCeY1Kzd9c+MsDCxMo4M8GFASqhOIPiOzUbMz/QwdtwqcYT+0E9LLxiov0WCEDfqLOKPyTlN1zRMc/08ePefqdTLyVAkDZVr4Levd7wYFY5uON72/eQnh2tij9+0R8ohhmvBYSjC1ennj+3n10uwucu52KZmaHUV7Bgct30NLUIMIwDkOhhT+Z9X18JJ8cDQBiYmJQp04dVKlSJV8lgJ2dd3a9YxLVXcW3CvpX6y8e9lX9qpbadVGGAA0AyA2w+NxioQV+1vEzi+pnhR34kHth5aWVYvml5i9hXMNxhRK2hdH8aSASlxJnMhAgFwJlT5QUsoCu5lcNrcNbC+FPdRqsCf+snCxRo4GsJD/3/BkuGheTID9z4U/7m6Nz8bSqedO+yoEocTNZyhBIPJqI6H3ReHffu/j7uapAW0lI+2VLGnOimQYua/5ta2lx6P5KeMIPOcYxignZOhU0Io8QSFJZ9haw1SOUBD8xM8APJ/RBgWodMCohUQh+4ndfH4y/L8UkWNwHxfx3R6ahY7Waxm2s+DMORKHN/g0bNsTRo0fFfJs2bfDll19i165d+PDDD1G9evWiuEanoHvl7gjxCMGT9Z/EXwP+woohKzC+6fhSFfwyw2oPE5H/5A5Yf2U9Jm6aKFLJisrFMXHzRCH4qaLaRw98hKcaPVVoLVsW/qT559ddQcIyS5clCgvVD6ov1h2KlXzYxQFdH2n1FFshn5+0bTL30/dPwl/OPLAVCErWgf9i/8OfZ/40BCpa8/mbm7KJrR4eaHnlDxFbomT39d1ou6Ct4ZjmwYT+bf3RfFhzMX/8lytIPi/FD7jr73e6j2l2gjwYUIf9DrfgrTgSsVOKGdDzYXAQ3gmWairkKB5NaXDHZa0W7wcFiriCX/x8cUNrqbfcUqzTKr7yc2ZphvY0ESI0Htfx9CZjnAXLfsaRKLTwf/fddw0PVxL4UVFRohzo6tWr8e233xbFNTqN8N8wbANea/WaMPOXpInZHnpV7YUfuv8ggvD23NiDp9c/bRBWBYV82GPXjcXumN3iuN91+074uIuCar7VoFVphRBU+u/tQd6fSgW3CmtlCPorLqimAN0HqtVAyFUWqSYD3ZfmYc3FQORq4lWD1q3kdsptw/zMozOFsFf6/KlegjV3hgcVxdE3xMnQZYs+9kqm7Jki0g0p8NMWLca2QFjrMOiydLj6v6tIj01Hkl7IZwZUMdk3WW/2P37niHiNzriDdLO/83/1mnuOQkBnqzR4PTQYS3y9RVwBxRQc8Mg9zkVbQDXd/F1Jmcb7yJo/40gUSvhnZmYKTZ+0f6JmzZo4c+YM4uLiRABgt255919nJEirLulc8vzSPqI9fun1i3ADHIs7JvoByP7f/HIt4ZowVVMFO6rF/2uvX9GxUtF1TCPTt2w1oej2/HArWRKQFF/RLKxZsQf9UZEmgnosEFEJRpM/4ePqg/qBkgWCLATmKAMBabBD7gFbPn9lCmGaiiajkDVPifTSmnZ69Hax9L1HJUUhaFwQPKt5IDspG1emXcGtVElKZtbuZbJvkpXoenPhT1zXagzCf5uHOy5UWI/TbvlzM2kVYpzOmm1nSmDu6YJm0v/+NeDQfJN6AQzjFMLfxcUFx44ds1gfGBhY5jRXpmhoHNIYc3vPFc12KP+dygFTB738cPLOSTyx5glcS7wm/OhUXrhRiH2NewpU7Od+/oL+ZO1YCP9QSfhTk6D7abk3likoZ++dNZjvqaCQ0t8v06pCK0PBH3Nupxo1f4IsMraEv/K70qlU2KnQoM3LGAd7BltUgjSH3BOUAtji5ZoI91cj42YGdsy7C3R5G1l1BpjsKywCvT/NU/j3iayI2YHSQGNieCiSPK3753NDafanMzwWYXRB5KbA26PcG9xIM9oB/04EdnyT7+tjmHIf8PfEE0/g119/xeeff140V8SUeahxzrx+8/DM+meEKfrx1Y8bBC0N+uifmKdX8d+4TNtJ06Xyw3UD64o+AlS7vjggvz/lx+e3xr9s9ifhTwKRhDAJ5CO3j6BLZJciv07ZMkH5/DTwuJIg9Y+v6muM96jiU8WqoLe2jkz+yoA/GghQUCVZQyjGQskcP1+bgYHk9lAS5hkmSg4rU97kYEA/fzf8MtIHDy1OQ8XhkUCXN5B556TJ+5OaPw60mwCcm5mr8Cdm+vtgwj3T+gT5QWn2T1GpcMpKRUDi3eBAEYj4za04xKvVGFzJsvy1TP+sjTj7+Ud4IukFzHq2J5rKA6yLm4CubxX4WhmmXAr/rKwszJ49Gxs3bkSLFi3g5WVqKvzmGx4VOyKksf/W9zdRi4Ai0SnYLD9QJcLpXaaLgjzFBTX4IawJ/23XtmHN5TWY3HayqGxoTfMnYUdQF0QS/hT0V9TCn7R0pR8/OinaqvD3dZOENGVbmKPMTBD7ZCSYaP6y358GMxk5phU4j7m72RT+5oGSni6ewjVgnvpHuKnUaBWiRs1PaiJbLb3XvBthgpWmO7aEf2FRhvhlmp1D/lR0dcv1MQbRWi1We1tmFSj5ADMp+hDjsRhDfvDEZdlocv2QvmgQWzsZJxL+J06cQPPmUsTvuXOmvlU2/Ts2pLHP7zsfe2/sNaaD6aRiKLLgEPOKZdl33KFiB6GJFidya1/yc1PKmlz2mHzkb+x4Q2jBFND3UO2HbJr9CQq4W3J+SbEE/ZkPTGiQEZ0YbUj3lPF11Qt/RSCfueZf2aeysMSQ4DffjwQ7fR5r7YFbpKbhoIe76ABIWRwk5AnzFD93jbsYKFkX/hp45uRApVYhBzpxz6cvnY74Y/Hway3FEsRaKTOcbqMgT2FRav62hH+OYjXFBGTbyAJQiyr/xuscptku2hYbD5gNHP0LaPpokV0/w5R54b9li9R2lXFOqLpgcZjCi8o6QdHyJNTI113dX0o9/e7wdwbzt7U6AObCX/b7U6xCWlZakVZUNA9GpIEUVdOj61YWdMpN+MsBf/T5SPiTdcBC89en+5FrwZzm6ek44eWL9JwMYSEwCH+zDnn0uc2tJIZtKg1cFO6A3t/1xqWPLglJq/XTwquOF26kWbos0twt6/YXBbc0xuBZZTqhEqWwp0A/W218fnP5HCMz3zYs+6pS8IjWrHrp4fks/JlyRaGH3dTMx1YeNW1jmNKC0uPkWARZyFN2wdLzSw37WHMJmJv9K3lXEgGOZD2gBjv2QoKWBh7kf7f1G5GFvxxJvzdmr0HrV1rOcjP7y5p/Db8aRp+/Phdf/gzyYMCa8K+YmWUI9rubatTO5a6CMlREyFrEv9im0pgE2blXcodPEx+RAnjt26tIv5mOmNTbFvchw614hD9ZMmQyzWR/qlqNCWEhhtRDWLEEKOmoOZH3Cct4pg7DFLnwp7r+t29bjujv3LkjtpVl7t+/L3oQNG3aVKQrzpo1q7QviSliDJX+7p0XgueL/V8IN0SdgDom62XI7C0XyJE1bxLCPav2FPOTd03GrGOz8iwc9OORH9Fifgu0/qM12v3ZDi9uftHqfvLgQ05zlM+tNPkTfq6S6Zx89kqNPCM7w1BvQbZskCVAFtxyVULZYkD7mxORlYVADym4T1kTgQYuSsgaIVsFrGn+JP40cmMvtQqVnq4Ej+oeyEqWUgAT7ida1IZIdbVuSShKMq2Y87d7emC7h0eezYJkLrk9bnOb+MRR2wt3kQxT3oS/rZrnSUlJcHcv2oYzRQ2VJaYmREeOHMG+ffvw6aefikEL4zjIQX+U7kdaO/ntyXc9tfNUkX1AZu47aXcstGhqk6wMRvy/lv+HR+o8IgYO3x7+Fq9tf81mlUMSvtQLQRkVvzV6qyGQT1ltT7ZIdKtsWhPDXPiTuZ0qIJqb/mWTP3X/IwuFnDJI0OejQkHK91jV/LOyDRr9K1tfEdYRa5o/mf1ta/6SB9FFMSgSXQBfqgKvUC9kxGbg6rdXEZdkGpyYojDPFxe2zP5kATBvCmQLtb7UsLXqiF0qV8RuK886ejbeiDcdQOXJzmnAf1J/C4Ypkz7/SZMmiVcS/JMnTxYd/ZT1/kmYkkZdltFoNIbrTk9PFz/Wkuhcx5QcctAfCTRZqI1tNFYUAKrsW1kIZNK+5XRDc3+/DAnXd9q+g9qBtfHp3k/FQIL88O+1e8/inL+f+l0IzsbBjTGr1yxM2joJu2J2iaZN45uMN+xHgX2kXZM5/YGIB0yOoYz0l39nVOyHgu3I9C9fn3y9VBpaLtIja+w0YJDXye4Ca5p/eFaWYZBAHL19VJQ1Nvf503Uqff5aaJGlr7Lvpg+mdNGJgHjjPn5a9P24L5a+vBQp51Lw/DPPQzfIqDCk5hIUfHnkImDn/6GwWG3eZ9YfgKwD2QWIT6bqiMSzFUJxPCMZUFgyPl19GrN2SDUbfh/XBh1q6VNaU+5KmQEeAaYHu3cZ2Pi+NN9S6qjJMGVO86dufTSRsDx+/LhhmSaq8tekSRPMnTu3UBdHWvnAgQMREREhHhbLli2z2OeHH35A1apVhZWBegvs32+9/nlupn+61kqVKuG1114TzYkYx9P8byTfEBMVqhndYLTJNqXfX5njb43htYfjq85fifnNVzdbDBZJw/7r7F9innoUkJm8X/V+YpkaNyn3pxRJooZ/DSHYlUV2zDV/ZdAfdVc01/ypII+8XYYsF+aBgtY0f6qd93g9o1lbNs2bR/uT2V8p/Bu6SJU9CXdZ87eiP4dWD0WT/2sC8gvsvbJXxAHIpOgFbuM0yyp5A4tA8JuXClbydZBR+JLgL/Swf+vnUspfqhRcKQt+4olf90kzmWnAl9WAL6oCOcq6g6SBGGszKGsJs0LClCnNX47yHzNmjKjhL3f2K0qSk5OFYB47diwefPBBi+0LFy4UFoiZM2cKwT99+nT07t1bdBMMDZUe3mR9oFoE5qxfv14MKvz9/UVjotjYWHGOYcOGISzMtCEJU34J8ggSQlXOYf+/Fv8nhJhsFdh4daNJxL8tzV9Jp0qdhBZM7gJKaSPhLbPwzEKRSUCBhp0jO4t13SK7if0pjY+q+VFxI4LOrcwmiPSJNFxnbsJfGfQnuylI85eDAmXoM1gIfyupfkSdwDoY23AsZp+YjR+P/ig+Q17R/v5qf5OAP3Ozvwz1WIhoFoH7b90XMQAUD2Ai/HVA4/R03NFocF3fDrgkzP7mkf+29jrp6ooGGZYWEwtunQJWvwYcmAU8scT6PvrS0QK6v8qYB2X5Y2rAdHIZNmx9Hx8H+WJq1+loFS5VeWSYoqDQv7RatWph0aJFQkArocI/FAj4xhtvFPjYffv2FZMtqIDQ008/LQYgBA0CVq1aJc795ptvinXkz7cHEvg00NixY4cYAFiDXAM0ySQk6B+omZliYkoG+V7be88pCp6EatOQpuhWsZvhfdV9pAC583fPG9bdTJQK7gS7B9s8PokJOta+m/uwO3o3KntVNpjb552aJ+ZH1xuN7Kxs0D83lRs6RHTApmubsOLCCtRoVkNE45PlgOhbua84V4RXhDC5+7v5w1PtaXF+2d9+L/WeYdu9FEnL9HXxhTpHLQYZhmA/r4rw0kjCJT4tXrxH3ta3al9R5Gh4gj4LIDMTPlofQyzC3JOWVjsXuMBdbfRtB6iNmrOr3ohoTfhTrALdM8+aRtegKAIUl4nkMGl/zxydyXvpPZTyWBTYM6Agzd+WGfSwu5sQ/tRx8JyrKxbE3DQpIiSTk5MNNQl+4veH0Fj1EY7ppIFhBOKQefcakJNleO8/5//FzlsH8FG7j6QW2dnZhm2ZGelwWTwWk6pVBjISRDGtPQ/vKfBvgClaMsvw/bf3mgot/H/++WcsWLDAYn2DBg3wyCOPFEr450ZGRgYOHjyIt94yltVUq9Xo0aMH9uwx/khyg7R98vmT1SI+Pl64GcaPN/pkzfnss8/wwQcfWLUiKGMemJJhw4YNdu1XJ7MO4rRx6JTWCWvWrDGsv50tac3n7p7DylUrRWrgsWSpV8XtqNtYHbPa5jF90ySNeuWxlfC9KM0fSD8gfPIkFLNPZWP1aeP7QzMkS8LyM8tRM6YmDmccFoI4RB2CqL1RuKy6jLRUSdP2zfIVXTGtWcKIfUf2QXNG0rSPpx4Xr7eib2H1ndVwyXFBOiQBn3YjDeduS6mE125fE8e8mSQNbnxv+eLf2CxU0Q8eaNuVdNOARHOOHz6O+Jx4q8I/+d59g8/fnFs3biEx21h3ICczBzFzYpB4NBHnX3cFqgCeuhyTZjxFJfjthQoBqW1Y11X665I7DlJHwVOurmiXahrMlxp9HMrchX/dJqNq2gJREGi3+4vAt8B9j8qQ7SVT/pP6HLjedkU7t3bwTruO7vpta9esxkDl9WVnWv2bsPc3wBQPG8rg/U9JSSkZ4X/z5k1UqFDBYn1ISAhu3LiB4oI6B1JgobmJnpYp5sAerly5gmeeecYQ6PfCCy+gUSPbDWZooCEHOsqaf2RkJHr16gVfX1OTK1O8I1v60fXs2VM0l8qLfuiHSTB+bzLUROfHv38U6XONOzUWFfIWrlsI3AG6tOyC7pHyo9iSSnGVsGH9BkSrotGnbx8xcPhn4z9AKvBk4ycxsL7y0Q10z+6OFf+sQHxmPG5XvY0rN66IfR9p9Aj6N+gv9gmJDcHWTVvRu15v9GssxQkoObL/CI5fOI6KNSsath/afwi4ADSq3Qj9GvXDryt/RVKC5Dvu2ryr0P5/3/g71B5q9OvXD3+v/xuIA1q1aIXIKhWgXj0JObV6i23u19yxbIdlXI0MpcVSTMS/B/61EP4VgoKB69Y1/7AKYbh79y4gu7R1EK1/s5OzseyHC6jwblW95o9SI1sh5K2h1KX+8fbCOm8v/M8gxiW8MkwzGYhnNCuwMaeFYdk/1bL2ScUa0vepo4Ga1NgRfXr3Ao4a96GYJ/qOKGuFsjnah7XP12+AKd1nUEkiW6SLXfiT8Nu1a5dFTj+tI596WaZ169Z2uwUINzc3MZlDX35Z+wNwBgp738mMTf56aqV7OfEyagTWwG19FboIn4hcj90krInwf5Mv/VLiJQS4B4g0QjJvD6g5wOK9tDym4RhRXfC7o9+JdbTvoFqDDPu2r9Qeux7dJcz71tJn/T0kYZOclWx4T2q2pH36uvuKdcq2vNX8qxlcBVQ/gLZn6aT4Fw9XD2hbjQUiW0IdUhdqrQsCPU27+pmTo8oR1jUZb7Ux7U+ujqfU3mUydZkmaY9qVykF8OJHFxF/Kw2Z316FZqyv1YFDSZFNmr+NbZ8HBYpJ5lo+4hLedvkTb+PPPLOO6Lu5lJAByREFuGhNUyBzcnLEPiNWjxDL83vPl/bjZ0+p4lIG77+911PoPH/yub/88suYM2eO0KRpIp/7K6+8IrYVFxSVTz8aMt0roeXwcMvWo0UJZRjUr18frVpxAI7DFAG6f174uuUmObkF/BHUJ6BFmKTR7b+5X6TxEbTOWutb4pnGz+C1lq8ZlltXaG2xL0X92+qJYa3Er1ymWBbyytLDFEBIx5Mr/JF1S071o9RFkW5WoQmglQa0FGtgjhwcKQdPKq/NRWV8yGToxb+1Kyf3Bt1bJVpfLaq8UgVqTzVSLqRgxsJ70GbbKrBbUpq/fSgrGeYHsh7M9fXBWVfrD+ccnaLuwLp3TLaZn9LQppoGTMlcm4TJP4XW/Ck9jgrjPP/888IPT1DaHfn6lf74osbV1VV0Edy0aROGDBliGB3T8sSJE1GcTJgwQUxkXvHzM2paTPlDme5HQYGkGZMJ3542w63DW2N79HYh/GOTpUGonNZniycbPIkK3hUw98Rck5x/e7Am/OXWvXIUvrKmP2U5yOl65EOnNspUopgQAWZmKK0GMhRASAWRKFOBghzpflEwYJuwNsJ9IJOhF+7W0uooa4Ba45jjHuGOyhMr4/LXl7HtaDqarrwLPCxVJCxpsoqhCdlsPx/c0Grx9p174q58E+iP3/UtlI9HGc3/uuTbFgJeddC+Qj+alS8Ax/6Ssgtq9ijiT8A4MoUW/qQJfPHFF6LQz+nTp+Hh4SEyAKyZx/MLVQm8cEE/wqUKmlFRwkwfGBiIypUrC//7qFGjhC+STPiU6kdBUXL0P8PkR/OXc/ypj73cATAv4U/sjtlt6BrYq0qvPN/Xs0pPMeUXa/X9zTV/Zcc9+m1SNUPS8im///FVj+NywmWj5m9+fLM6AbIlgVIbaRLncfXGqqGrRPqsMgDNQ29EtBamR9YGc81fxru+NyqOrojrv17HsfX3UKNrMNxCC//syC+WycC2uWlmkrfFtEApJmJIYhL8c3IMgt+CFElzd4u/ZFhFAwF7hiNqEvzE9qks/Jl8UWRJtd7e3kVuBv/vv//QtWtXw7IcbEcCnwoIPfzwwyKd8L333hOBh5TTv3bt2mLP0yezP00UcMg4hvCnrn/XEq/ZZfJX5saTwJQ1cWpTbE17Lirk+v4mmr++gY+XPl9caaaXBwB0jVST4GL8RcN6a5q/tW6FNHgwR2n6n9x6MjZf34xHMv1sNsdJz5GqZ9oioGMABkTfR0xdX0SVguAnVnh7YauXfRk7t7TWH5unXF1QPyPTahnhs66m99uksmFONrJzdAjc/ZFY/DgoALs83LH4upSZwTDFQZE006bc+CeeeALt27fH9etSXfH58+dj586dhTpuly5dDJH4yklZOZBM/BRnQPn3VFKYiv0UN2TyP3XqFA4cOFDs52KKF1Ecx9VXmMX33diXL+FP7gFZ+yf6V5Oi9osLg+afi8//w/YfigJB07tOzzVtzprmb4282hcPrTkUM3vMhKfeUmKtOU56VnqeqXvjuniiam3TgUtJYq/gz40fAixjJmz1DZiu2Feny8az8w8i5r7kolno64NoFxes8rbd9Eh1eQf8UqKsVgRkmBIR/kuWLBFV9cjcf+jQIUMRHMqbp0Y5DFOWIS1W1v53X9+dL+FPyFXXqBGQXNGvuDCv8EcDYYPmr/f5NwpphJVDV6J7ZWOaotIVIOOqttT8CWpdrIQ+V36wpvlTICEFH+aGVqczmCHTYtIQ9WUUshLyY4wvfahT4A0bjYp0ZvdlgZ+iImr0f6h7biZyzB7H13NxL6hPLEKXs1MMy/dS7KhAyDBFKfw//vhjUVmP2uEqUwweeOABMRhgmPIS9BeTHCNewzztdxv1rdYXzUObY2KziRYm9+IS/nJbX3qVA/hsddsjrAleF411zX/JoCUm1oz8ujGoTK7Mw3UeFqWLP+rwET7v+HmeEfTUDpgGNNdnXUfyqWRc+d8V5GSUXgZAQXg7RGqNrCRPnTzpFl51WYQIlWmdgNn+ynuvE64BW1y9a6OwC5VzNu8hwDBFIfypjn6nTlIwkBKKgqemOY4Ip/o5FrLmL5MfzZ/y+3/r+xtG1h+J4sa8ra8c6U9QAyFb/K/r/ywGNLbM/v7u/mge1ty4bCX9zyp6s7OyM967bd/FvL7zUN2vOir5VMJ33aT6Btag+gAavSWm0jOVoPHSIPViKqJnRUOXi9Ara/zn4Y4l3l4mAv+tkCB8qQ/+yw1PfWVG66jQ8QupHLR1rNyj7CxgeiPgw0Dg71FA7Mk8r4FxHgot/CmnXhmRL0P+/urV5ZIVjgX7/B2Lwgj/kkRu6yub/mV/Pw0KKP4gt883qcUkuzR/QmnByL/mX7D4AVnzJ9wquCFyYiRUGhUSDiQg9h/TWh5lnfdDgkwSGylAkIL+8kKryt3KERNv2mgpT+5FAYn6KqunlgG/9s7f+xmHpkiK/Lz00ksi2I4eTjExMfjjjz/w6quv5lonn2HKCtSBT0l+zP4ljVwUaOmFpRb+/twwtwzY8vkXWvjnki9vLXNAxry6n3c9b0SMlSqExq2Mw91tUrfD8kKp2SpycoDlE4ADv1huU9SAYJhCp/pR9zwqrtO9e3fRUIBcAJTjT8KfauUzTFmHtOkKXhVwI/lGmdb8iYlNJ2Li5omieyAV4MnL3y9jHo+QW7S/UkjnV/jnFFTzFwWATQcOAQ8EIONWBm4vv42YeTHwCPeAR53SywgoLuFfpAOFc2uAw79L08SDRXlkxsEotOZP2v4777wjGnecOHECe/fuFbn3H30k5awyTHky/ZOQtEeTLi0oo4AC6YhZx2fZLfyVUfsUN6BR244k93DxsKgtkDd6nz8KpvnbKpkbOiQUfm39RDtgr8iy+73Yk/VgC7uK+VhNGDTSRHcWWP8ukGbsuoh4yyZCDFOkef5yud169eqJIDgq+OPIcMCf45r+yeRvq7Z+WWFwjcEmy7kF+1nbJ68cf+VAwe6APz1Vc+klnrvPX2eRDkfQd1FxXEVUfbUqTPrllnGslTm2RaId8QBkF6moyiP2Yfd3pvn+84fafQ2M81Ekwv/XX39Fw4YNRU1/mmj+l1+s+JwcBA74czwaBDUQr5V9K6OsY566l1+zf27BfoU1+39xO06ULv6z/5/58/nnoteqXdRikksEx++PR0562U4BvG+HQFfm/C/yyX1ko1OpkFzdWNyMYUpd+FNpXQr4GzhwIBYtWiQmmqeufrSNYcoDVBTn/Xbv483Wb6KsQwJZjvq3O+DPzOyfG4UJ+IvMysY3Xb5Bw+CG+df8rawf3WC0yXLjw41xbca1Mp8C2Kty/hoUfRhsWR/AnGxX09TptV6emO/rY1pt9fytfJ2XcV4KLfx//PFHUeDns88+w6BBg8RE8z///DNmzJhRNFfJMMUM+cAfqv1QnpXoygJkCldeJzXbyQulHz87j6Ivyg58dgv/Ns9J3uumj9vcRQ5QtB3wZ8r8vvPxfy3/z2Tdcw89B5VWhYT/EhC7uHylABYlmSoVXgsNxpdBAbjkYozb/veoVKiqIFDdiA1XNiA1K7WIrpJxaOGfmZkpuuqZQ+12qfMXwzBFT2WfyvnS/JWpfdS2ODeUQX65mepNCKgCvBsLDLE94FfGUlT1rYpnGz9rEvCnM/sccmyC0mrRsWNHVBwradVxq+Nwd2v5SgHMjd/MtPjc+C7A+B0lKFwMX7n8nL+0wBNLgLtSj4D/2/Z/mLR1Ej7Z+4n9x2CcV/iPHDlSaP/mkOb/+OO2tYDyDAf8MaWNieZvh89fKXipvW9uVPWrKlwg33f7Pn/Bj1r7O/JRvwFlxgHN6aqbVgqV2yoHugearPdv74/QoVI6JqUABlzJu3peeWBqUABy/2aM3Ff0ENDkw/txI16h1Z9YDCweC3zb1NCamlh+cbn9B2Scu6UvBfytX78ebdu2FctU8Ofq1at48sknDW14iW+++QaOEvBHU0JCgihjzDClKfzzm5oo9wPIDXKBFCck/LUqs8ePwjWhFP6vtnoVL295GZ0rGRsnhQwKQUZsBu7vvo+jXx9F6OuhcK9kp5WiDFOQKAYpDdA+Lt5KRgU//X2+XLiuq4yTC3/K7W/eXKoFfvGi1C88ODhYTLRNpqynTzGMI2v+ZRHzWgPU1Mea2Z+CMalTYZB7kMnzJGJMBCKzInF8/3F4n/fOVfhTgGRiOahwZy3d0V7zLfn+3wwJxnP349EtJdVQGaDI8rkZh6LQwn/Lli1FcyUMw9iNMiXRLR/m9rKEueZvHvIna/5EFd8qFu+n9L/3fnoP7tHueOvOW7meq2lIU+y4vgNlnT/y4fc3hwT/aTdXvBQWguNRV/FiaDCiXF2wNPqGSKUkau59C6jyP8CV4ijKbrYEU/wUeFC4Z88erFy50mTdvHnzUK1aNYSGhuKZZ55BenpuXaoYhikoIR4hhvmUTBvtXMsgfav2Fa/1AuuZav5VOlho/krhbwu/AD8MGDDAsJydlm1IAawTUAcVvStictvJNosVNQyyTEksTabZ0f3PFsrAP2KrlyeuuLjgkLtxcBh+8W9g1/8KdY2Mkwv/Dz/8ECdPGltEHj9+HOPGjUOPHj1Evf8VK1aIlD+GYYoeMnv3qtJLCLWOFTuivPBeu/dELYXvu39vqvk/udxC88+rEiGhVjzCMu9mIuqTKNz8+yZ2PboLiwYuwtqH1mJEnRGY2GwigrSW7pFRDUehvKPLw/dvsfbQPODKbumVcVoKLPyPHDkimvnI/PXXX2jTpo3I+acgv2+//RZ///03HBGO9mfKAlM7T8Xm4Zvh756/ErylCdUkeLze46J5Uv/q/UU5ZVGuWKMtkOYvV9GloMeUCylIu5aGO2vv4I9f/zCJM4rwjsCWpm+iRkaG6fvzYfkOL8Opy3fUalxzcbGv1HBiDDBHssAwzkuBhf+9e/cQFmZsfbpt2zb07Wv8gyLBeO3aNTgiXN6XKQuQcMurVG9ZHwisH7YeH3f4OE+fvxJKQZRR6QXblhFbULNzTYQ+KKUATpw4EWvWrDF5n6piMwtBaL2uoHU+uX0HZZHtnh7oUqWS7R3sCCK8nXLb+oYNU6QeAdlld+DDlLDwJ8EfFSUVh8jIyMChQ4cMqX5EYmIiXGyMRBmGYQi1yvgICvYItsvsH+IZYvF+Kkkc5BGEkIEh8H/AX7QZHzFiBI4dO2Z8o39l6AJMezeYWxtyo6zmK/0QkLvlx54uCN0WdTNdcVEfyL1rOnBxszQxDkWBhX+/fv2Eb3/Hjh1466234OnpKapvydCPrkaNGkV1nQzDODgvNnvRpGeBrR4EyvWy5i8PBOQUwC5duiApKQn9+/dHTIyx5G22mTVBWcrYUVF+wmR7U67nDzE7iL3lhxiHF/4fffQRtFotOnfuLPz8NFFbX5nZs2ejV69eRXWdDMMUknfbvCten2/yPMoiFLswrcu0PGuDmAh/xT5yAKFaq8Y///yDOnXqIDo6Gs8+aywjLHcGLAhlVfO3xi9+vhbrtnu4o23VSExTlAZmnJcC5/lTEZ/t27cjPj4e3t7e0CjKTRLU3Y/WMwxTNni47sPoVrmbhXm9LKEs5GNvcSBr6wMCArB69Woh+JXlx82Ff77M/uUoLf5/gUZXgBznMCFcioeY7e+HV+7FG7YrGwPlZ+hDZaL3xOxB09Cm8HW1HGwwDl7kx1Z528BA03rcDMOUPkp/eVmkZkBNTGk3RWQD2EKp+StjBpTzRPXq1bFhwwaTddm6bJMqifkJ+CtPmn9+uKEtmBiYdWwWfjz6o6jZ8PdAx8zscmS48iPDMGWKYbWHoVMl0yY/tjR8pc/foleAGYsXL0b0+mjD8p/9/7Rb8++Q4rhtbtd5Gbsm5ocVF1eI19N3TxfxFTHlprEPwzBMSWEr4C+3ugB79+7F8OHDhfpexacKfJr4wM/NL5+afzmy+5v1C4jWWneVEEt97HDPWom/4H4t5RvW/AsAF/lhmNLDVsCfp4ttDZYKkFEFUpLf1368htQrkibv4+JjYnF4KMsYtKykPIu5Zd5e6BtZMV/voaz+rBUvG1dYsZAoB15M+YOFfwHgIj8MU3qYmP2Vwl9rW/jTfhT459fQDzlpObgy/QquX7+OLpFdTPYb5oDCf3MBzPrNqlVGqzsbccrVdq0W1vzLNyz8GYYpt5q/MnqfSvzmBhUdq/1ibbhFuCHrXpZoCJRq5stvmKPGK3fvWX2/rlwPAfJPlkqFL+VGQ389ChycC1zZY7ACsOZfvmHhzzBMuRX+yoC9vIQ/4enriSqvVIHGVyP6kzzyyCOGLoCCrHQEZ1uvBVA+Pf7WSbJTaz/o4Y7elSJwi1K5V7wEzOmDnP2zkD6tGXRpxnRBpvzBwp9hmHKFMqVPqfk3C22W53u/7fataDs+7bdpcHd3R926dQ3bhCabnW5TyFPgnKMQ5eKCeLMWwLaIcdFipr8xj1+95jW4xV+COumWcafZfYBU6xYTpmzC0f4Mw5QrlFH9SuHfsVJHfNnpS9T0r2nzvY1DGos2v8SAUwPEQGDdb+uMO2RlWBX+KgfT/EdXCEOGWoXl0cbSx7lh0RnQPA7i6h5g5zSg54dFd5FMscKaP8MwDqH5E32r9UWtgFp2HYcEv+E4mTmIPh0NZKU5lJC3BQl+YpmdVVitpTleMg8G3PczMK0RcIvz/ssDLPwZhim/AX9F0JgnOyUbl6dextwJc3HoWorVfVT5KAPsiBxyd8dtTR7iIisViL8KLLPRO4LcAmfXANncJKgswMKfYZhyhTLFLD+1+W2hdlVDpVUhMy0TAxbrEJdo3RvqiOLf3sJFpOV3q1xJzEe5aJGRy7667EzkKIMoZX4bCPz5CLD9q4JeLlOEsPBnGKbcUpgufTIk+CtPqIyQaiG4cesOPlmoRnaqsQeATG5isk9SMsojR9zd8rX/Ng93DKoUgVERYTb3OX8rCUNn7JIWsrOAeUOA9ZOBm8f1B/kCB/btKNR1M4WHhT/DMOWWojD7ExpPDR6b+hjCwsJw5ewVUQVQl63LNeAvM7GeeO1SoT1GJiSivJrz88NEfWfAE262Bw21dVFodGMxUjJTsOXAt0iP2gLs/tZkn1ZrBiD6nnUXC1MysPBnGKbckpNTNMKfCKgQgH///Reu7q5IOpaEG3/cMLgVrurC8E7mGJP9s+JbYPGApfimx/fQNXiwyK7DEfjYZQ4mbZyAF8/OwRdyoSAzbsSnlfh1MUZY+BcAru3PMGUDZYveoqB169Z4ceqLQtW/v/c+Mu9KwWlndJG4jAoW+1fzqw4XtQt0bccX6XU4Artu/Sdel9hoHFR920tAyt0SvipGhoV/AeDa/gxTNshPVz57adOzDSJGR6D6u9XhGiTV+s9JjbR6di5vL3E2lx4Atr6hoKh/gU1cF6C0YOHPMIxTB/xZG1AEdg6Ee4Q7lg1ehgcCxiL9dnurYoxlv8SwihVwwtV6UyRdbiOkxBvFd1FMrrDwZxim3EIV+4qKALcAi/TBGv414H4hBDdmv4ys+/dsph0WhwWivPFoxfD8v0lRsIkpWfjOMwxT7tgyYgsWD1yM6n7VC32srzp/hZ5VemJco3FiuXfV3nDXuKNTpU4ioHDpT18g88413PzjF6spgHm1E3Y26A5t93C3zy3Awr/U4DvPMEy5I9gjGHUC6xTJsfpU7YNvunxj6Aro5+aH3Y/uxvfdvodarcbTH/4AjVcAMmJv4NoPxhRAXY6bwexP15Jxp1ORXE95528fb0zQpwTKvBkSZH3nMysxd+cl3EpIA26fBY4vhq4wGRxJtw0th5ncYeHPMAxjhovGxWDSDwyLQMiwKVC5uCDpRBJi5scg/W5rZCfXMgn4S7/VD87OSVdXbPSytIJcsBEPQLRZPxjvzPwL+KE1sGQcJn38ORb9dw2IPQns+p9otmQXRxYAU2sCGyYX5iM4DSz8GYZh8sAtvCZChz0uIvzubb2HuBW0VmVSavjr4U1M3vNW41lIv93TZF1OzBA4Mo9UDMeZXCL/icNurtjs6WFYrqe+ilkpLxmWq2acw2uLjwE/tgc2vAd8UQX4XxNA2ULYGmvekF53fwckxtrcLTM7B/P3XsHF20lwZlj4MwzD5IJsRfaq3xDhj0hBbfe2zEHqlaMm+z3UQqp9L9O8Qn1kxHU3WZcc3xaOToLG2HhJSYpKhSNurngyIhwvhYXgmtb6fhZkpgD3LgPbp+a+n9Lc/3VtIMF6u+K5uy5j8rIT6P71NmD1a8Dq1+GMsPBnGIaxCx2CegUhsFsgvBp0gXvF+rnuXTfcFx8OblBiV1fWeTY8FCMjjBkBsVqtzWZDVVQ3LTfkWdDJzNd/dY/Vvf67IhUW8kcisP9nYP9PTllsiIU/wzCMXVBRHxUqPFEBQf0nQaXN3bxNPNmuaolcWXlsImQrLO9F7TJsc5uUu2afkQwsHY+Y/cvw2Ky92HvpDpCRhxk/7rxkQdCjVfaFyCnaSpHlARb+DMMwuVDRX/JP56RW1q9xNfj6s7Oz8dVXXyE+Pr4Ur7B8ku+Y/HNrjfM7pwNHFyBi9SjsvngHj/y8N/f3psUD37cUsQM6fbthXeGuptzDwp9hGCYXBjaJwPNdamD2yK7Y9vA2JJ0zRpNPnDgRr7/+OoYPH47MzEw8WvdRsX5MA9MmQEwRkHAd+P0h4M5Fm/582++13F/n5PUZWfgzDMPkgkatwut96qJr3VAEugcCOmPa2tNPPw1PT09s2LABzz//PF5v+ToWDVyEl1u8XKrXXB6Qde1orQb/eHtBaqGUBxc2At81BxJjivhidAV+a3aODq8tOoo1a5abuBXKOiz8KQo1JQVVqlTBq6++WtqXwjBMOaJ58+b466+/hBvgl19+wTdff4O6gXWhzqVyXdvUVMO8RxG2JC5vyJ+8b2RFTAkJwu9+Pva/OeawyaJa6b/Xc/jqfSw7fN3mIXS5LOWHjadjcejQPvTd96SUklhOYOEP4JNPPkHbto6fgsMwTNEzcOBATJ8+Xcy/8cYbWLx4ca77z7x5GxuvXse/0THYdNW2cHJ0zM3uB9zd8/FmU2H/q8tXFrv8ujMKLy88grvJGVbFfKAqMfdT6HR4c8kxfLfpfK77JaZloYHKhsYvpyimWvaFKG2cXvifP38eZ86cQd++fUv7UhiGKae8+OKLeOGFF8T8yJEjsW/fPpv7UnZ7WHY2qmVmwceZS9EWxuVOAXwKumpMay4oSU7PAo78YVi+d+W4eJ3u8kOupzhxPQF/HbiGrzecK/h1/twV2PwRsKLsuYHKtPDfvn27GFVHREQIs9qyZcss9vnhhx9QtWpVuLu7o02bNti/f3++zkGm/s8++6wIr5phGGdk2rRpGDBggJi/edNKnjpjAg17lJX+Ckod1dW8d6Kqf3oW57wiXhupFdp6ZiqNCkzekpppO/1PdWIxBh9+EqqLm3Ifw6Tq6wdc3mm6Pj5asgiUYn2BMi38k5OT0aRJEyHgrbFw4UJMmjQJU6ZMwaFDh8S+vXv3xq1bxjKQTZs2RcOGDS2mmJgYLF++HLVr1xYTwzCMPUzqaf15odFo8Oeff2Lnzp0YPHhwnsfZX/kp6Xh3y55JuKSEP1X6k0lXlEpOUqlwy0alQHPWub1Z+Iv5sT3wv8bA9UNAZhoOXb2HET/tseoKuHY3Bdrlz4ll7V8PF8yMMbuvsAjs+GoYqr65Kk/XQnFgvcRSGYFM8bmZ47/55hsRbTtmjJRWM3PmTKxatQqzZ8/Gm29KfxBHjhyx+f69e/eKYJ1FixYhKSlJpOr4+vrivffes7p/enq6mGQSEhLEK72PJqZkkO813/PSw5m/g2pBRm3V/PO7ubmhcePGhvWkZOiydFBpLYVDhL8noq8EY0x8HL4JDICzYR6it1/RBrhd1UjxuuVKNIILGBT5uGYTQlX3ETbf+vPcooQwMaureHkxnWI4jJ0J5e9zxtZLmLbpAi4rwhNyzAoEHblyB7XDvOGiUUMuA6VTqZCl+FtxiZesFa1yjolXci0816loCkLZ+5ss08I/NzIyMnDw4EG89dZbhnXUfrNHjx7Ys8d6WUdzyNwvm/znzp2LEydO2BT88v4ffPCBxfr169eLdB+mZKH0KqZ0ccbv4MgdEuSSVrp69Wqb+128eBEff/wx0AiIGCO5LpUk3orGocqvoFfcbHpkF/t1l0dOubmiXWoa4jQaVMjOxmWtFj45OQiyY0DQTnNKTLBqWNHl+t4nNRvwadbjhmX5e562x1JkHj161ORoQ37ci6ZBORhTOwey/edecgZ+WbAGVXx0OBSnwhf69cq/iNz+lvKbvebQwj8uLk5U1woLCzNZT8sUwFcc0ECD3AxKzT8yMhK9evUSFgOmZKCRLQmdnj17wsUl7xKrTNHjzN+B+mQs5pyTAsz69bPdxnfNmjWi8l/O9hy4hroiZEAIqgZ5AsnS9tq1a6Fmx2ep6j2woDmcjWsueYufC64umOXvJ0oDf3o7Dm+HBIv1x6Ps8PPnwmV3o2C3xhjNWoPwr4A76Nt7GFQ5mXh3z3rUNYsxCKlcA/cvmcaaHbmjxkWPWoblLJ0KM05rMKhxBfx76Qa+sJLYkNvfUn6QLdIOK/yLmtGjR+e5D5n0aDKHHn7O9gAsC/B9L32c8Tsg375Mbp990KBB+O677zBhwgTELo4VA4DjP3QF3tcfR62BxsnunZLPgwLz3GeNlxfOuElFlWTBXxK4qLJF458H1Cfxg+u32PHJT3jA5SyOu1taaPruHI7zeNBi/bebL2KSmZBff9p2q+Gi+h3Ze5wyHfCXG8HBweJHGBtrejNpOTzc2DmqOKAAxPr166NVq1bFeh6GYco3VPWPOgES0T9H2+2SdFZuajTYoMgAKM1EyCPuzwrBT3TUnIA6x7prprb6ukXNguqqGLgqXDny50jLNHVXuKkyrRYoKgnKrfB3dXVFixYtsGnTJsO6nJwcsdyuXbtiPTeN5E+dOoUDBw4U63kYhin/hD8SDp9mPiLwj6wBl+7l/bBv7FPFMN8/Se8ncAJ6Vq6ISYoMgPLCIM1uw3xP9X/Y7PYq/nT92K4+AiM0W1EalGnhTxH4FK0vR+xHRUWJ+atXJZ8L+d9nzZqF3377DadPn8b48eNFeqAc/c8wDFPaeEKHyOci4V7FXcQqvbkxTdpgFgCo5NEKnUruAssw5aUEUm/Nf4b5UZp14rWF2pi+p4YOgUiAyoqWX0slVXlMomJEJUiZ9vn/999/6NpVSr0g5GC7UaNGiej8hx9+GLdv3xYR+lRUg3L6165daxEEWBxmf5oo4JBhGCY35ty4hc+CAjDttU74+3AkpoX8ned7NCpjXEGj9HSs8vaCM3JO7+8vT3TQnLRYRymHh9yl2gA7sxtYfd8PWy7gjT51UVKUaeHfpUsXUVQhN6ilJk0lCZn9aaKoSj8/vxI9N8Mw5YsGGRn4/UYsUK81ev3yC/D+Irvetzw6Bkfd3NAtJdWu4DimfA4OVHr7Rmy83iJUQpRpsz/DMExZo8Dl+F2M2jspNV8s2CqaillFpUL1zCwMTUo2CAfGMWmuPo9xmtVITi1Z4V+mNX+GYZhyz4BpwH+zgR76HD8A265k483f1lAyG6pVq2bxFrXaaPZXsex3aJqqL4rpo/P0RZdcd1nW/AsAp/oxjPNSNTif1TxbjgWe2wn4VjCs6lJVi/8bIQX1UYBy8jnTiP6uocZni843wuKQLnEjEZmZif+745x9AZSpgdQHwBHopTlYoudj4V8AONWPYZyXBhF++P6xZlj6fPtCHeeLZ/thyJAholT51W+vIj3W2DfENbItULsP4F8ZGLXK4r3atOZYce0mamc4b1ngWI1GpAa2r1IJjkAbdfFUprUFC3+GYZh8MqBxBJpVLlwzHo1Gjd9//x0tW7ZEdlI2rnxzBVlJ+nQvtRp4bCHw8nHovKwH+x3V1YAzc0SfCUBNc5j8w8KfYRimlPDy8sKKFSvgEuSCjNgMXP3uKnTZeTv5Sdw9n/GSSWeYMUkZqOSEXRaZgsHCn2EYpjTQC24qR17llSrQeGng38YfKo2pJms13VkF3IRUNlhm4rClqK4ytqF1dG5rtRZugIEVK2Cer0+pXVN5goV/AeCAP4ZhipIebXqg9pe1EdjN0sSvyyXVT7lFHVIb/nU6wln4IsjU7fJdgB8uu7rgK7P1jHVY+BcADvhjGKYo+aH7D2hZraVh+c6dO1i3TioTy9hHJvv+8wULf4ZhmFLBKKzUKjW8XbzFfFZ8lmhORk2AduzYYVXzl9+p3KLKpXkMw5jDwp9hGKYMUMNfit7X+GjQuHFjkQJIqYDnzxsbxOSGyok136mB/rhoZx97RoIr/DEMw5QBxjcZjxxdDnpV7YXaj9RGdHQ09u3bh8cffBwuL7tA6235uH4+40UAfxk0f2fR/s+bCfrf/HxL7VrKK6z5FwAO+GMYptCYaeqeLp54rdVraBLSBB4eHli+fDmqVq2Kixcuwut3L4ysPVLxVum9yfCwWOcMPFjJWC2RKRgs/AsAB/wxDFPcUGvyVatWic6hB/cexOrPV1tJ+zNddqYBAFM4WPgzDMOUUcjCuHjxYmi1Wpw5fAbZCdmmO7Cst0oiD4LyhIU/wzBMGaZHjx5YsmQJpi6eCq2f5Pf/dEgD8fpgU1Pzt7P4/PNin4c7ngkPwSZPD5MmQCu8PME1ECVY+DMMw5QK9gtqSvvrXr+7mHfTuKFpuBu+bpOFPg3D8nXGnAzrfQIcjS+DArDHwwMvh4UY1g2qVAFvhwZzcKAeFv4MwzDlgAreFbBh2AaMSx2HunXr4mZMdL6PEeTlBmfgHjVGMiNVv263h3spXFHZg4U/wzBMOSHYLRjz58zHrVu38NFHH+H+nfv5CvgL9/GHs5HOnhCrsPAvAJzqxzBMaUCBf5QCWK1aNcTGxuK9Z95DTkaO3e//vOPnuW5/OCERjkCaQvOfEOY8zY7yAwv/AsCpfgzDlBYhISFYtmyZaAd86tApXP/lOnQ5UspfBa/c89+r+FbJdbt7zV5wxOC/7QpTPxsCJFj4MwzDlAbuBQ88q1evHt58801otBrE74/HrX9uifWjG4zGQ7UeKvBxdcG14IhMCGft3xwW/gzDMCVJ/6+BugOAZsaKfQWhUaNG+H7G92L+9srb2LZtG9y17ni//ft4pvEzBTqmM6YKXtVqMTk4EJdcnKvavXN9WoZhmNKm1VPSVASMGz0O169eh4uLCzp16mRY/0KzF9A6vDWeWm96Ho1ag4drD0fCoblY4+0FZ+SWRmOy/Ex4KK67aLHd0wPbrl6Hs8DCn2EYphxDUf/54d22k4F1X1sV/mQ5cHQuu5o2BSLBT9w1GxQ4Omz2ZxiGcRCSk5NFQDJlApjzZus3pRlKBxy9yur76wTWgTOQwuV/WfgzDMM4CmPHjsWMGTMwePBgpKWmGdb/2f9PPF7vceOOVTs4tc9/tp1V/szbKDkSLPwLAOf5MwxTFvnwww8REBCAffv24cOXPjSkADYMbmjX+51F+N/VqGHWIsmCmf6+6Fy5IqK1jukOYOFfADjPn2GYskidOnWwdOlSEQC4eeVmxC6xNP/nhs6hdV0ji3x90LRa5VzN/z8E+OOeRoP/BThmVUQW/gzDMA5E586d8euvv4r5uFVxuLvtrl3vG1pzaK7b26WmwtEYW8F58/9Z+DMMwzgYI0eOxLhJ48R8zLwYbNy40WKff4f8i087fGpYdlG75Gr299C7EByJk255Nzpa66ApkSz8GYZhHJBx/zcOfu38oPHSwMfHx2J7Nb9qGFhjoN3Hc45oAOeB8/wZhmEcEOrwV3FsRWQlZKFNmzaF9/lXaAIknC+6C2RKFdb8GYZhHBAfFx+oXdRwDXI1rDt+/DhSUlIKdDyVyjnEhQ7AZ4EBcHSc49tkGIZxMuoH1cfYhmMxmSr6AVi5ciXatm0r4gFycqy3ATb3+f894G84G6u9PLHAz9JN4miw8GcYhnFQs/8rLV7BiDojxLKfnx+ysrLwzz//iI6A9lAvqB6ciSgXLb4P8IMzwMKfYRjGCejYsSNmz54t5r/66iv89NNP+Xq/MxQAGlQpAtEuprX/iZsOWPefhT/DMIyT8Pjjj+ODDz4wFCtbt26diZsgVzTG2AFno29kBBwNFv4MwzBOxOTJk4XfPzs7G8OHD8enNT/FO23ewZCaQ3J/o7fzFsTJUqmQrgLWennivtoxxKZjfIoShmv7MwxTnmMBZs2aJSoBJiYmYsVvK/BI3UegUZuatn/u+bN4rehdUbz2qtYbzsyDFSvgtdBgdKxSCWkO0BWQhX8B4Nr+DMOUZ9zc3ETgHzUCoi6A1mgX0U68Lh64WHQF7B7ZHc7MVUUswHNhISjvsPBnGIZxQgIDA4ULQKuVar3pdDpU861msZ+3q7fdXQGdhYMe7ijvcIU/hmEYJyczMxPjx4+Hr68v5rw+B0EeQU7b8c9eVnh54oHUNATaqJlQ1mHhzzAM4+Rs27bN0AmwZs2aeP755y320aiMMQE9q/TEhisb4My8HRosXo9HXUV5hM3+DMMwTk6PHj3w8ccfi/kXXngBa9assdiHAgJXP7gay4csh5eLY3a6cyZY+DMMwzB4++23MXr0aFH6d8SIETh69KjFPpE+kajuV71Urq+sk6ZSIQPlBxb+DMMwjEgBpKp/Xbt2RVJSEgYMGICYmBinrfZnLxQJQUK/VdVIdK5SqdxERrDwZxiGYQSurq5YsmQJ6tati+joaAwdOtRmEyBG4qC7G6JdpPC5JLUaBb5bne3rt1BUcMAfwzAMYyAgIACrVq1Cr169RB0AtYNUtCsurmq1CMzONiy/FRKEexo1amVk4qibG+bciIVdhZE9/FGS8LfKMAzDmFC9enWcPn0avXtbr+rXr3o/8VrFt4rJ+nqBztUFkJgSEoQ9irz/Nd5e2Ovhgfl+vjjm7obNXp6wi8CSjaVg4c8wDMNY4KKoaHf+/Hn8/vvvhuW2Fdpi+eDlWDRwkWHd8NrD8VPPn9Aq3PnKnn8eFGhzm9EmkAe1eqEkYbM/wzAMY5Nr166hbdu2uH//vnAJ9O/fX6yv7m+qqQ6qMQgB7gEYWnMoDtzk0uf5poT7BbDmzzAMw9ikUqVKePDBB0Xg38MPP4wjR46U9iWVK1LVtoX6a5nPoLRg4c8wDMPkmgJIzX+oEFBycrLQ/CkTwBZuGrcSvb6yzgfBQbipMe2YKHM5JxylhdML/6pVq6Jx48Zo2rSpyG9lGIZhLP3/ixYtEq3MKfd/4MCBoh2wNbpV7oaOFTuiTYU2JX6dZZXVrR9FWcPphT+xe/duYcrasmVLaV8KwzBMmcTf31+kAIaGhorn5SOPPIKsrCyL/bRqLWb0mIFfev2C3/r8VirXWuao2AKpKhWeDg/BfF8fseq9zFGlekks/BmGYRi7LaUrVqyAu7s77t27JyoBylir9988rHkJX2HZZG/MXizx8RYpgF8GBWBndgPMy+6NFI9b+CLQHyklHOxX5oX/9u3bhXkpIiJC+J2WLVtmsc8PP/wg/iDpj7FNmzbYv39/vs5Bx+3cuTNatWqFP/74owivnmEYxvFo3bo1Nm/eLCayBrzT5h083ehp1AqoVdqXVmbZc2OPqAQoc9RTsphcrbIav/v5YkaAX4lfU5lO9aPgkiZNmmDs2LEi2tSchQsXYtKkSZg5c6YQ/NOnTxdFKc6ePStMUwT58q2ZptavXy8GFTt37kTFihVx48YNEdDSqFEjEQNgjfT0dDHJxMfHi9e7d++KfthMyUD3OiUlBXfu3DHJRWZKDv4OnPv+165dWzyfaeoZ0hPXr18X12KN7FS7M90dmnVqN0B/L34ISIIWfxvuzS73EIyxcf/yixyLodPl0WVAV06gS126dKnJutatW+smTJhgWM7OztZFREToPvvsswKd49VXX9XNmTPH5vYpU6aI6+CJJ5544oknlOHp2rVrucq7Mq3550ZGRgYOHjyIt956y7COalCT9r5nzx67jkGjVspd9fHxEb4rMmNRK0tb0LnI0iBD7yWtPygoSLgPihtyTRw4cKBEj2HP/nntY2t7ftYr1yUkJCAyMlIUH/H19UVJUVbvf1775XebPetK4zvg+1+699/WtTnDM6hVObr/pCuT9k+W7dwot8I/Li4O2dnZCAsLM1lPy2fOnLHrGLGxsaJrFUHHevrpp8XNtYWbm5uYlJDPq6TQaDSF/kPL7zHs2T+vfWxtz896a+touSR/eGX1/ue1X3632buupL8Dvv+le/9zuw5HfwZpytn99/PLO4ag3Ar/ompecfToUZQXJkyYUOLHsGf/vPaxtT0/64viszvq/c9rv/xu4/uf//2d4f478zNoggPdfxmV3p9e5iGz+tKlSzFkyBCD2d/T0xOLFy82rCNGjRolalAvX768FK+WKU7I5EYjWwq4LMlRN2OEv4PShe9/6ZLgAPe/TKf65YarqytatGiBTZs2mfjgabldu3alem1M8UKulylTpli4YJiSg7+D0oXvf+ni5gD3v0xr/hSEd+HCBTHfrFkzfPPNN6IEb2BgICpXrixS/UjT/+mnn0TuKaX6/f3338Lnbx4LwDAMwzBMORD+W7dutVpvnwT+3Llzxfz333+Pr776Cjdv3hQ5/d9++63I+WcYhmEYphwKf4ZhGIZhip5y6/NnGIZhGKZgsPBnGIZhGCeDhT/DMAzDOBks/BmHhspvdunSBfXr1xcNmxYtWlTal+R0UBXNgIAADBs2rLQvxSlYuXIl6tSpg1q1auGXX34p7ctxOoaWk793DvhjHBrq1khlnCkThDJCqDbEuXPn4OVl2XucKb6sHao1/ttvv4miXEzxQR1MaaC7ZcsWUYSG/t53794t+o8wJcPWcvL3zpo/49BUqFBBCH4iPDwcwcHBohkTU3KQ5YWaZzHFz/79+9GgQQPRptzb2xt9+/YV7cuZkqNLOfl7Z+HPlCrbt2/HwIEDRQcqKuG8bNkyi31++OEHVK1aFe7u7qKGAz3gCgJ1gaQGTtSNiyn5+88U//cRExMjBL8MzV+/fr3Err+8s92Jfg8s/JlShdoqN2nSRPygrEFVHKmNMpXSPHTokNi3d+/euHXrlmEf0uwbNmxoMdGDUIa0/SeffBI///xziXyu8kJJ3X+m5L4PpuAkO9P9J58/w5QF6M9x6dKlJutat26tmzBhgmE5OztbFxERofvss8/sPm5aWpquY8eOunnz5hXp9ToaxXX/iS1btugeeuihIrtWZ6Ag38euXbt0Q4YMMWx/6aWXdH/88UcJXrXjgEL8HsrD3ztr/kyZhTo3kqm+R48ehnVqtVos79mzx65j0G949OjR6NatG0aOHFmMV+t4FMX9Z0r2+6AeJydOnBCmfuqNsmbNGqGZMoUnw8F+Dyz8mTJLXFyc8NGbN2miZYrct4ddu3YJUx357sg8TdPx48eL6Yodi6K4/wQ9HIcPH47Vq1ejUqVK5fJBWV6+D61Wi6+//lr0RKG/9f/7v//jSP8S/j30KCd/79rSvgCGKU46dOggWj0zpcfGjRtL+xKcikGDBomJKR02lpO/d9b8mTILpeVpNBqRp6+Eliltjyle+P6XLfj7KF2CHez+s/Bnyiyurq6iSMmmTZsM60iLp+V27dqV6rU5A3z/yxb8fZQurg52/9nsz5QqFJR04cIFw3JUVBSOHDmCwMBAVK5cWaTVjBo1Ci1bthTBTNOnTxfpOGPGjCnV63YU+P6XLfj7KF2SnOn+l3a6AePcUEoM/RmaT6NGjTLs89133+kqV66sc3V1Fak2e/fuLdVrdiT4/pct+PsoXbY40f3n2v4MwzAM42Swz59hGIZhnAwW/gzDMAzjZLDwZxiGYRgng4U/wzAMwzgZLPwZhmEYxslg4c8wDMMwTgYLf4ZhGIZxMlj4MwzDMIyTwcKfYRiGYZwMFv4MwzgNo0ePhkqlEtOyZcuK9Nhbt241HHvIkCFFemyGKWpY+DOMgwgz5aRsTsKY0qdPH9y4cQN9+/Y1rLM1GKD7a68gb9++vTjuiBEjivR6GaY44K5+DOMAwmzOnDkm60JCQiz2y8jIEG1JnR03N7di6b9O95aO6+HhgfT09CI/PsMUJaz5M4yDCDPlpNFo0KVLF0ycOBEvv/wygoOD0bt3b7H/iRMnhNbr7e2NsLAwjBw5EnFxcYbjUYvSJ598UmyvUKECvv76a3EsOk5umrK/vz/mzp1rWL527ZrQgmk9tUQdPHgwLl++bKFVT506VZwnKCgIEyZMQGZmpmEfEqJvvPEGIiMjxeesWbMmfv31V+pGKubpvUqo/WpxWT7o2q1ZWejeMEx5g4U/wzgwv/32m9BId+3ahZkzZ+L+/fvo1q0bmjVrhv/++w9r165FbGysian6tddew7Zt27B8+XKsX79e+LIPHTqUr/OSAKfBho+PD3bs2CHOT4MJslKQBUJmy5YtuHjxonila6XBg3IAQYOQP//8E99++y1Onz6Nn376SRyHhO7YsWMtLB603KlTJzEwKGpoAEJmfXk6fPiwGLDQ+Rim3FHaPYUZhik41Gdco9HovLy8DNOwYcPEts6dO+uaNWtmsv9HH32k69Wrl8m6a9euiZ7lZ8+e1SUmJoo+5X///bdh+507d3QeHh66l156ybCO9l+6dKnJcfz8/HRz5swR8/Pnz9fVqVNHl5OTY9ienp4ujrNu3TrDtVepUkWXlZVl2Gf48OG6hx9+WMzT9dB5NmzYYPWzX79+XXz2ffv2ieWMjAxdcHCwbu7cubner8GDB1usp/O4u7ub3EeatFqt1f1TU1N1bdq00Q0YMECXnZ1t1zkYpizBPn+GKed07doVP/74o2HZy8vLMN+iRQuTfY8ePSq0bNKezSENPDU1VWjmbdq0Mawnk32dOnXydU10HjK9k+avJC0tTZxHpkGDBsJFIUPm/+PHjxtM+LStc+fOVs8RERGB/v37Y/bs2WjdujVWrFgh3ATDhw9HQZg2bRp69Ohhso5cDtnZ2Rb7ktUhMTERGzZsgFrNBlSm/MHCn2HKOSTsbZm5lQMBIikpCQMHDsQXX3xhsS8JXnt95WR2lxRmI0pfPZ2HBh5//PGHxXuVwYguLi4Wx83JyRHzFDiXF0899ZSIWSDBTSb/hx9+GJ6enigIFCthfh9p8EKuEiUff/wx1q1bh/3791sMbhimvMDCn2GciObNm2PJkiWoWrUqtFrLn3+NGjWEQN63bx8qV64s1t27dw/nzp0z0cBJgJPfW+b8+fNISUkxOc/ChQsRGhoKX1/fAl1ro0aNxECA4g/MNXKZfv36iQEOWT4ofmH79u0oTujeffjhh1izZo24VwxTXmF7FcM4ERRNf/fuXTz66KM4cOCAMMGTFjtmzBhh3iZ3wLhx40TQ3+bNm0VmAEXlm5u2KWjw+++/F0FvFDj43HPPmWjxjz/+uMgwoAh/CviLiooSgYMvvvgioqOj7bpWGqCMGjVKmNgps0A+xt9//23Yh9wCdH1vvfUWatWqhXbt2qG4oHtBAYjkCiB3xc2bN8VE95Nhyhss/BnGiSA/OUXek6Dv1auX0K4phY/S8WQB/9VXX6Fjx47CPUAad4cOHSxiByj9j6Lfab/HHnsMr776qom5neZJCyfrwYMPPoh69eqJQQX5/PNjCSCNftiwYXj++edRt25dPP300yIVUQkdl+IUaABTnNAgh6wbZPYnF4k80edjmPKGiqL+SvsiGIYp21Aue9OmTTF9+nSUNciy0L17d1FXgOoW5AZZCciHX9SlfUv6HAxTWFjzZximXEKR/eRCeP/990WEf16CX2blypXCvUGvRT0IoeNaC3JkmLIGB/wxDFMuoeI/ZPIni8S8efP+v307NgEYhoEo6qE0nibQ1MGuXaRIEbj3KjeuPxzo1Z+ZWd193nuy/1JVnfPE7XZKCX9i9geAMGZ/AAgj/gAQRvwBIIz4A0AY8QeAMOIPAGHEHwDCiD8ArCwPWqfBgdEXlJ8AAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(figsize=(5, 4), constrained_layout=True)\n",
+ "for spec in ds_binned[\"S\"]:\n",
+ " ax.loglog(\n",
+ " ds_binned[\"freq\"],\n",
+ " ds_binned[\"auto_spectra\"].sel(S=spec).mean(dim=\"time\"),\n",
+ " label=spec.values,\n",
+ " )\n",
+ "ax.plot(\n",
+ " ds_binned[\"freq\"], 4e-5 * ds_binned[\"freq\"] ** (-5 / 3), \"k--\", label=\"f$^{-5/3}$ slope\"\n",
+ ")\n",
+ "ax.set(ylim=(1e-5, 1), xlabel=\"Frequency [Hz]\", ylabel=\"Spectra [m$^2$/s$^2$/Hz]\")\n",
+ "ax.grid()\n",
+ "ax.legend()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
{
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The benefit to using `ADVBinner` is that one has access to all of the velocity and turbulence analysis functions that DOLfYN contains. If basic analysis will suffice, the `turbulence_statistics` function is the most convienent. Either option can still utilize DOLfYN's shortcuts.\n",
- "\n",
- "See the [DOLfYN API](https://dolfyn.readthedocs.io/en/latest/apidoc/dolfyn.binners.html) for the full list of functions and shortcuts. A few examples are shown below.\n",
- "\n",
- "Some things to know:\n",
- "- All functions operate bin-by-bin.\n",
- "- Some functions will fail if there are NaN's in the data stream (Notably the PSD functions)\n",
- "- \"Shorcuts\", as referred to in DOLfYN, are functions accessible by the xarray accessor `velds`, as shown below. The list of \"shorcuts\" available through `velds` are listed [here](https://dolfyn.readthedocs.io/en/latest/apidoc/dolfyn.shortcuts.html). Some shorcut variables require the raw dataset, some an averaged dataset.\n",
- "\n",
- "For instance, \n",
- "- `bin_variance` calculates the binned-variance of each variable in the raw dataset, the complementary to `bin_average`. Variables returned by this function contain a \"_var\" suffix to their name.\n",
- "- `turbulence_intensity` is calculated from the ratio of the standard deviation of the horizontal velocity magnitude (equivalent to the RMS of turbulent velocity fluctuations) to the mean of the horizontal velocity magnitude\n",
- "- `power_spectral_density` calculates the power spectral density (velocity spectra) of the velocity vector\n",
- "- `cross_spectral_density` calculates the cross spectral density between each direction of the supplied DataArray. Note that inputs specified in creating the `ADVBinner` object can be overridden or additionally specified for a particular function call.\n",
- "- `dissipation_rate_LT83` uses the Lumley and Terray 1983 algorithm to estimate the TKE dissipation rate from the isoropic turbulence cascade seen in the spectral. This requires the frequency range of the cascade as input.\n",
- "- `turbulent_kinetic_energy` calculates the TKE (Reynolds normal stress) components\n",
- "- `reynolds_stress` calculates the Reynolds shear stress components\n",
- "\n"
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGbCAYAAADKlJnyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAANa1JREFUeJzt3Ql0FNWex/F/CCEhQMIiEHYhgBAUEWR7D5AdgrLJiOsTFRcYxAUVhxkRUBEXlMWH4MYugqKAiOwEUAHZQUGRTUENxAckYRGIpOf870z362yQTjrprqrv55w6SVdXuu9NdfKrunXr3hCXy+USAADgGEUCXQAAAFC4CH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHCag4T958mRp2LChREVFmaVly5aydOlSz/Nt27aVkJCQDMuAAQMCWWQAACwvJJBj+y9evFhCQ0OlTp06osWYMWOGvP7667Jjxw5p0KCBCf+6devKCy+84PmZyMhIc6AAAADypqgEUPfu3TM8Hj16tGkN2LRpkwl/d9jHxMQEqIQAANhPQMPf26VLl+STTz6Rs2fPmuZ/tw8//FBmz55tDgD0YGH48OHmgCAnFy5cMItbenq6nDx5UsqVK2cuGwAAEKy0Ffz06dNSuXJlKVKkAK/MuwJs9+7drhIlSrhCQ0Nd0dHRriVLlniee+edd1zLli0z28yePdtVpUoVV+/evS/7eiNGjNDLGCwsLCwsLJZdjh49WqDZG9Br/urixYty5MgRSUlJkfnz58v7778v69atk7i4uCzbrlmzRjp06CAHDhyQ2NjYXJ356+tWr15dfvrpJylbtmyGbVf/kCSvrfhJkk5f9KyrGFVMnulUVzrUryDBLC0tTRISEqRdu3YSFhYmdmDHOinqZR12rJOiXtZx8uRJ09ctOTlZoqOj7dvsX6xYMaldu7b5vkmTJrJlyxaZMGGCvPPOO1m2bd68ufl6ufAPDw83S2Ya/Nr0761vq3LS52/1ZPPhk5J0+rxUKBUhzWqWldAiIZb40OvlD62TXT70dqyTol7WYcc6KeplPSEFfJk64OGfmV6j9z5z97Zz507ztVKlSn57Pw36lrEZDwoAALCzgIb/sGHDJD4+3jTLaweHOXPmyNq1a2X58uVy8OBB87hbt27mqG737t3y5JNPSps2bczYAAAAwILhn5SUJPfee68kJiaaaxsa6hr8nTp1kqNHj8qqVatk/Pjx5g6AatWqSZ8+feS5554LZJEBALC8gIb/Bx98kONzGvba8Q8AAPgXY/sDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA5D+AMA4DCEPwAADkP4AwDgMIQ/AAAOQ/gDAOAwhD8AAA4T0PCfPHmyNGzYUKKioszSsmVLWbp0qef58+fPy6BBg6RcuXJSsmRJ6dOnjxw/fjyQRQYAwPICGv5Vq1aVV155RbZt2yZbt26V9u3bS8+ePWXPnj3m+SeffFIWL14sn3zyiaxbt05+//13ufXWWwNZZAAALK9oIN+8e/fuGR6PHj3atAZs2rTJHBh88MEHMmfOHHNQoKZNmyb169c3z7do0SJApQYAwNoCGv7eLl26ZM7wz549a5r/tTUgLS1NOnbs6NmmXr16Ur16ddm4cWOO4X/hwgWzuKWmppqv+lq62IW7LtQp+FEv67BjnRT1so60QqpLwMP/u+++M2Gv1/f1uv6CBQskLi5Odu7cKcWKFZPSpUtn2L5ixYpy7NixHF9vzJgxMmrUqCzrExISJDIyUuxm5cqVYjd2rJOiXtZhxzop6hX8zp0754zwv+aaa0zQp6SkyPz586Vfv37m+n5eDRs2TIYMGZLhzL9atWrSrl0703HQTkeH+oHv1KmThIWFiR3YsU6KelmHHeukqJd1nDhxwhnhr2f3tWvXNt83adJEtmzZIhMmTJDbb79dLl68KMnJyRnO/rW3f0xMTI6vFx4ebpbM9INhlw+H3etlxzop6mUddqyTol7BL6yQ6hF09/mnp6eba/Z6IKC/hNWrV3ue27dvnxw5csRcJgAAABY889cm+vj4eNOJ7/Tp06Zn/9q1a2X58uUSHR0t/fv3N034ZcuWNeMADB482AQ/Pf0BALBo+CclJcm9994riYmJJux1wB8Nfr1+o8aNGydFihQxg/toa0CXLl3k7bffDmSRAQCwvICGv97HfzkREREyadIkswAAAJte8wcAAAWL8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHKZobja69dZbfX7hKVOmSIUKFfJSJgAAEOjwX7hwofTt21eKFy+eqxedM2eOnDlzhvAHAMCq4a8mTpyY6zCfP39+fsoEAAACfc0/ISFBypYtm+sXXbp0qVSpUiU/5QIAAIE887/pppt8etFWrVrltTwAACCYe/svWbJEnnnmGRkyZIh8+umnPv/8mDFjpGnTplKqVClzSaFXr16yb9++DNu0bdtWQkJCMiwDBgzIT7EBAHC0PIf/8OHDZejQoSaMXS6XPPnkkzJ48GCfXmPdunUyaNAg2bRpk6xcuVLS0tKkc+fOcvbs2QzbPfTQQ5KYmOhZXnvttbwWGwAAx8t1h7+tW7fKjTfe6Hk8b9482bVrl+cOgPvuu8+cpb/11lu5fvNly5ZleDx9+nTTArBt2zZp06aNZ31kZKTExMTk+nUBAIAfwl+b2vVa/ssvv2zCuFatWvLGG2/IbbfdJhcvXpTJkydL3bp1JT9SUlLM18ydCz/88EOZPXu2OQDo3r27aXXQMmTnwoULZnFLTU01X7VVQRe7cNeFOgU/6mUddqyTol7WkVZIdQlxaZt9Lly6dEnGjh0r06ZNk9dff12aNGlimvnXrl1rntMDgwkTJkhsbGyeCpKeni49evSQ5ORk+frrrz3r3333XalRo4ZUrlxZdu/eLc8++6w0a9ZMPvvss2xfZ+TIkTJq1Khsxx7I6YABAIBgcO7cObnrrrvMyXBUVFTgw9/t0KFDMnDgQClRooT885//NKHsD/qaeougBn/VqlVz3G7NmjXSoUMHOXDgQLYHGtmd+VerVs30FShXrpzY6ehQ+0l06tRJwsLCxA7sWCdFvazDjnVS1Ms6Tpw4IZUqVSrw8M91s7+bNvcvX75cZs2aZa7La0c/7bSXH48++qh88cUXsn79+ssGv2revLn5mlP4h4eHmyUz/WDY5cNh93rZsU6KelmHHeukqFfwCyukeuS6t782x2vvfr3m/txzz0nv3r3l22+/lS1btkiLFi3ku+++8/nNtdFBg3/BggXmjL5mzZpX/JmdO3ear3pkBAAACjD8+/XrZ8L+5ptvNvfiazO9NqNrD/3Ro0fL7bffbq7H+0JbDLQjn16P13v9jx07ZpY///zTPH/w4EF58cUXTe//n3/+WT7//HO59957TYtDw4YNfa8tAADIfbO/npnv2LFDateube67169ueg1++/bt8sILL/j05nqHgNJbBL1pp0K9dbBYsWKyatUqGT9+vLn3X6/d9+nTx7Q8AACAAg7/OnXqmJ73Dz74oOlgoT3wvUVERJjbAH1xpb6GGvY6EBAAAAhAs//UqVPN2f8NN9xgmundZ+0AAMCmZ/6NGjUyo/wBAAAHT+wDAABsGv463O6//vWvXL9o9erV5ZdffslPuQAAQCCb/fUefx19Lzo6OtcjFOmQvwAAwMLX/PU+fwAA4JDw10l3AACAPdDhDwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIfxOfxvuukmmTlzpmfaXQAAYPPw14l9nn76aYmJiTFT+27atKlgSgYAAIIj/MePHy+///67TJs2TZKSkqRNmzYSFxcnY8eOlePHjxdMKQEAQGCv+RctWlRuvfVWWbRokfz6669y1113yfDhw6VatWrSq1cvM/UvAACwYYe/zZs3y4gRI+SNN96QChUqyLBhw+Sqq66SW265xVwaAAAAFh7b302b+mfNmmWa/ffv3y/du3eXjz76SLp06SIhISFmm/vuu0+6du1qLgUAAACLh3/VqlUlNjZWHnjgARPy5cuXz7JNw4YNpWnTpv4qIwAACGT4r169Wlq3bn3ZbaKioiQhISE/5QIAAMFyzV+v8ScnJ2dZn5qaKu3bt/dXuQAAQLCE/7p16+TixYtZ1p8/f16++uorf5ULAAAEutl/9+7d5qvL5ZK9e/fKsWPHPM9dunRJli1bJlWqVCmYUgIAgMIP/0aNGpne/Lpk17xfvHhxeeutt/xXMgAAENjwP3z4sDnrr1Wrlrm/37uXf7Fixcx9/qGhoQVTSgAAUPjhX6NGDfM1PT3df+8OAACCM/w///xziY+Pl7CwMPP95fTo0cNfZQMAAIEKfx2vXzv4adO+fp8T7Q+gnf8AAIDFw9+7qZ9mfwAAHDyxj1t2g/4AAACbhP+rr74q8+bN8zy+7bbbpGzZsuYe/127dvm7fAAAINDhP2XKFKlWrZr5fuXKlbJq1SozwI92CHzmmWf8XT4AABDoiX204587/L/44gvp27evdO7cWa6++mpp3ry5v8sHG7uU7pLNh09K0unzUqFUhNxQtVSgiwQAjuBz+JcpU0aOHj1qDgD0jP+ll14y63UAIHr6I7eWfZ8ooxbvlcSU8551MVHh0i0mRLoFtGQAYH8+h/+tt94qd911l9SpU0dOnDhhmvvVjh07pHbt2gVRRtgw+AfO3i6uTOuPp16QqalFpPGe43JLo6oBKh0A2J/P1/zHjRsnjz76qMTFxZlr/iVLljTrExMT5T//8z8LooywWVO/nvFnDn7lXjd66Y9mOwBAkJz56yh/Tz/9dJb1Tz75pL/KBBvTa/zeTf1ZhUhiygWzXcvYcoVYMgBwDp/DX+3fv18SEhIkKSkpy6A/zz//vL/KBhvSzn3+3A4AUAjN/u+9957Ur1/fhPz8+fNlwYIFnmXhwoU+vdaYMWOkadOmUqpUKc/Qwfv27cuwzfnz52XQoEFSrlw5c4mhT58+cvz4cV+LjSChvfr9uR0AoBDCX3v3jx492tzyt3PnTtPRz71s377dp9dat26dCfZNmzaZ/gNpaWnmtsGzZ89muJywePFi+eSTT8z2v//+u+l0CGtqVrOsVIqOkJAct3BJpehwsx0AIEia/U+dOmVG9fMHvVXQ2/Tp000LwLZt26RNmzaSkpIiH3zwgcyZM0fat29vtpk2bZppedADhhYtWvilHCg8oUVCZET3ONPbXw8AvLv1uR//T3w9sx0AIEjCX4N/xYoVMmDAAL8XRsNe6XDBSg8CtDWgY8eOnm3q1asn1atXl40bN2Yb/hcuXDCLW2pqqvmqr6OLXbjrYsU6dbjmKnnrjuvlpS9/lGOp/95XFc19/uekfd2ylqyXHfeV0+plxzop6mUdaYVUlxCXjs7j43X6N998U26++Wa57rrrTO9/b4899lieCqIdB3v06GEmCfr666/NOj3jv//++zOEuWrWrJm0a9fOzDOQ2ciRI2XUqFFZ1utrRUZG5qlsKBh6N9/B1BBJTROJChOJjXIJJ/wAnOzcuXNmLB09GY6Kigqe8K9Zs2bOLxYSIocOHcpTQQYOHChLly41wV+1atU8h392Z/46GqGOQ6CdBu10dKj9JDp16pTlAMyq7FgnRb2sw451UtTLOk6cOCGVKlUq8PD3udn/8OHDfi+EDhqk8wSsX7/eE/wqJiZGLl68aFoDSpcu7Vmvvf31ueyEh4ebJTP9YNjlw2H3etmxTop6WYcd66SoV/ALK6R6+Nzb301DWW/L++uvv/L85trooMGvtwmuWbMmS6tCkyZNzC9i9erVnnX6nkeOHJGWLVvm+X0BAHCyInm5HtG/f39z/bxBgwYmiNXgwYPllVde8em19Da/2bNnm+Z9vddfbx/U5c8//zTPR0dHm/caMmSIGVRIOwDqZQANfnr6AwBQSOE/bNgw2bVrl6xdu1YiIv49EIv2yJ83b55PrzV58mRzXaNt27bmGod78X4dnUvglltuMYP76O1/2tz/2Wef+VpsAACQ12v+OoqfhrOeeWsHPzdtBTh48KBPr5WbvoZ6gDFp0iSzAACAAJz5//HHH2Ygnsx0VD7vgwEAAGCT8L/xxhtlyZIlnsfuwH///ffphAcAgB2b/V9++WWJj4+XvXv3mp7+EyZMMN9v2LDBjL0PAABsdubfqlUrM6GPBr+O8KdD/eplAB1uV2/NAwAANjvzV7GxsWZqXwAA4IAz/9DQUElKSsp2SEJ9DgAA2Cz8c7o9T8fTL1asmD/KBAAAgqHZf+LEiZ7e/dqzv2TJkp7nLl26ZMbl1+l2AQCATcJfR9pzn/lPmTIlQxO/nvFfffXVZj0AALBJ+Ltn89OpdHV43TJlyhRkuQAAQLD09tcJdgAAgIPCX6/vT58+3Uyzq73+09PTMzyvU/Mi7y6lu2Tz4ZOSdPq8VCgVIc1qlpXQIgybDAAIYPg//vjjJvxvvvlmufbaaxnP34+WfZ8ooxbvlcSU8551laIjZET3OOl6baWAlg0A4ODwnzt3rnz88cfSrVu3gimRg4N/4OztkvlGymMp5836yfc05gAAABCY+/y1Z3/t2rX98+7wNPXrGX92Iyi41+nzuh0AAIUe/k899ZSZzCenwX7gO73G793Un5n+pvV53Q4AgEJv9v/6669Nj/+lS5dKgwYNJCwsLMPzehsgfKOd+/y5HQAAfg3/0qVLS+/evX39MVyG9ur353YAAPg1/KdNm+brj+AK9HY+7dWvnfuyu5ii91PERP/fbX8AABT6NX/4n97Hr7fzqcw3Trof6/Pc7w8AKNQz/xtuuCFX9/Rv3749v2VyJL2NT2/ny3yfv57xc58/ACAg4d+rVy+/vjGy0oDvFBfDCH8AgOAI/xEjRhRsSWBo0LeMLRfoYgAAbIxr/gAAOAzhDwCAwxD+AAA4DOEPAIDD5Cv8z59nuFkAAGwf/unp6fLiiy9KlSpVpGTJknLo0CGzfvjw4fLBBx8URBkBAEAgw/+ll16S6dOny2uvvWam93W79tpr5f333/dn2QAAQDCE/8yZM+Xdd9+Vu+++W0JDQz3rr7/+evnxxx/9XT4AABDo8P/tt9+kdu3a2V4OSEtL81e5AABAsIR/XFycfPXVV1nWz58/34z/DwAAbDal7/PPPy/9+vUzLQB6tv/ZZ5/Jvn37zOWAL774omBKCQAAAnfm37NnT1m8eLGsWrVKSpQoYQ4GfvjhB7OuU6dO/isZCsWldJdsPHhCFu38zXzVxwAAe/P5zF+1bt1aVq5cKXak4ZfXWfXy87OBsOz7xCxTCFdiCmEAsD2fw3/Lli2mub958+YZ1n/77bem9/+NN94oVpWfMLRakGp5B87eLpnP84+lnDfrJ9/TOCjLDQAIQLP/oEGD5OjRo1nWax8Afc6q3GHoHd7eYajPF8TPBoK2UOiBSnYN/O51+jyXAADAnnwO/71790rjxo2zrNee/vqcL9avXy/du3eXypUrS0hIiCxcuDDD8/fdd59Z77107dpVgikMrRikemki84GKNy2pPq/bAQDsx+fwDw8Pl+PHj2dZn5iYKEWL+nYV4ezZs2ZwoEmTJuW4jYa9vrZ7+eijjySYwtCKQap9Evy5HQDA5tf8O3fuLMOGDZNFixZJdHS0WZecnCz//d//7XNv//j4eLNc6WAjJiZGgjUMrRik2hnRn9sBAGwe/mPHjpU2bdpIjRo1PIP67Ny5UypWrCizZs3yewHXrl0rFSpUkDJlykj79u3N3ALlypXLcfsLFy6YxS01NdV81dEHcxqBsFxk7n4Nul3m18jPz+aH+7Xy8po3VC0lMVHhcjz1QraXK/T+hJjocLNdYY7amJ86BTPqZR12rJOiXtaRVkh1CXG5XD5fjNbm+g8//FB27dolxYsXl4YNG8qdd94pYWFheS9ISIgsWLBAevXq5Vk3d+5ciYyMlJo1a8rBgwdN64LOJLhx48YM8wp4GzlypIwaNSrL+jlz5pjXyo5ejh+1PVSSL5qSZLOFS0oXExnR+JJkvnMvPz8bSLtOhMjUn9xXfbwL9n8fhwfqpsv15YKnnwIAOMG5c+fkrrvukpSUFImKigqu8C8I2YV/Zjp9cGxsrBlgqEOHDrk+869WrZrpL3C5FoPle47L4Lm7zPfevxB3LL51x/XSpUFFv/9sfo4OdawFvdSS14MuLfdLX/4ox1L//fuqFB0u/xNfz+/lLaw6BSPqZR12rJOiXtZx4sQJqVSpUoGHf54G+dm/f78kJCRIUlKSueffm474V1Bq1aolV111lRw4cCDH8Nc+Arpkph+My304bmlUVYoWDc1yr35MLu7Vz8/P5teV6nU5Wu74hlWCbmCi/NQpmFEv67BjnRT1Cn5hhVQPn8P/vffek4EDB5oQ1o54esbupt8XZPj/+uuvnqOigqAh3SkuJk9hmJ+fDSQtX8vYnFtEAAD243P4a4e70aNHy7PPPpvvNz9z5ow5i3c7fPiw6TxYtmxZs+i1+z59+piDDL3mP3ToUDOdcJcuXSQYw5AgBQDYMvxPnTolt912m1/efOvWrdKuXTvP4yFDhpivOmvg5MmTZffu3TJjxgxzK6EOBKS3Gb744ovZNusDAIACCn8N/hUrVsiAAQMkv9q2bSuX62+4fPnyfL8HAADIZ/hrs/vw4cNl06ZNct1112XpnPDYY4+Jk1ltZj8AgPP4HP7vvvuuudd+3bp1ZvGmHf6cHP5Wm9kPAOBMPoe/dspDVkyRCwCw7cQ+bhcvXpR9+/bJX3/9JU5nxZn9AADOVSQvQw/279/fDJXboEEDOXLkiFk/ePBgeeWVV8SJrDizHwDAuXwOf53RT8f01wl3IiL+Petbx44dZd68eeJEVpzZz0m0xWXjwROyaOdv5istMACczudr/gsXLjQh36JFiwyj+2krgA7E40RMkRu86IQJAH448//jjz/MFLvZzfTnfTDgJHo7nwZKTrXX9fq8bofC74SZ+ZKMuxOmPg8ATuRz+N94442yZMkSz2N34L///vvSsmVLcSK9j1/PJFXmAwD3Y32e+/0LD50wAcCPzf4vv/yyxMfHy969e01P/wkTJpjvN2zYkOW+fyfRJmS9nS8QM/shf50wmY8BgNP4HP6tWrUyk+9oz34d4U+H+m3cuLFs3LjRPHYyq87sZ0d0wgQAP4a/io2NNVP7Iitm9gsOdML0DcNSA86Sq/BPTU3N9QtGRUXlpzyAXzthaue+7K7qh/z/JRk6YXJHBOBEuQr/0qVLX7Env87Op9tcunTJX2UD8t0JU3v16yfX+wCATpj/xrDUgDPlKvwTEhIKviSAn9EJM393ROhhkT6v/VicfpAEODL8b7rppoIvCVAA6ISZM+6IAJzL5w5/69evv+zzbdq0yU95AL+jE2b2uCMCcC6fw79t27ZZ1nn3B+CaP2AN3BEBOJfPI/ydOnUqw5KUlCTLli2Tpk2bmnv+AVgDw1IDzuXzmX90dHSWdZ06dZJixYrJkCFDZNu2bf4qG4ACxB0RgHP5fOafk4oVK8q+ffv89XIACvGOCL0Dwps+5jY/wL58PvPfvXt3lvv7ExMTzXC/jRo18mfZABQC7ogAnMfn8NeA1w5+GvreWrRoIVOnTvVn2QBb3Ev/7eGTsu1fIVJOb5mrXSEoQ5U7IgBn8Tn8Dx8+nOFxkSJFpHz58hIRYb8ewYx3Dv8NmxsqM/dvZdhcANYM/xo1aogTMN458oNhcwHYrsPf6tWr5ZZbbjGz++mi369atUrs9o878+hn7n/c+jyQ12FzlT6v2wGAJcL/7bfflq5du0qpUqXk8ccfN4vO5NetWzeZNGmSWB3/uFGYw+YCgCWa/V9++WUZN26cPProo551jz32mPz97383zw0aNEisjPHOkV8MmwvAdmf+ycnJ5sw/s86dO0tKSopYHf+4kV8MmwvAduHfo0cPWbBgQZb1ixYtMtf+rY5/3Mgvhs0FYItm/4kTJ3q+j4uLk9GjR8vatWulZcuWZt2mTZvkm2++kaeeekrs8o9bO/e5cvjHraOf8Y8bOWHYXAC2CH+9xu+tTJkysnfvXrO4lS5d2gzy89xzz4mV8Y8b/hw2N/PtonrgyO2iACwR/pkH9rE7/nHDn8PmbjyQJCu++lY6t24etCP8AXAWn3r7p6WlSb169eSLL76Q+vXri50x3jn8QT8vzWuWlRM/uMxXPj8ALBf+YWFhcv68c3q5M945AMCOfO7tr/fxv/rqq/LXX38VTIkAAEBwDfKzZcsWM7zvihUr5LrrrpMSJUpkeP6zzz7zZ/kAAECgw1979ffp08ff5QAAAMEa/tOmTfPbm69fv15ef/112bZtmyQmJprBg3r16uV53uVyyYgRI+S9994zIwvqEMKTJ0+WOnXq+K0MAAA4TZ5m9fOXs2fPyvXXX5/jhECvvfaaGWBoypQp8u2335pLDF26dHFUp0MAAAJ+5l+zZk0JCcn5dqVDhw7l+rXi4+PNkh096x8/frwZNKhnz55m3cyZM6VixYqycOFCueOOO3wtOgAAyEv4P/HEE1nu/d+xY4csW7ZMnnnmGb8VTAcWOnbsmHTs2NGzLjo6Wpo3by4bN27MMfwvXLhgFrfU1FRPOXWxC3ddqFPwo17WYcc6KeplHWmFVBefw//xxx/Pdr023W/dulX8RYNf6Zm+N33sfi47Y8aMkVGjRmVZn5CQIJGRkWI3K1euFLuxY50U9bIOO9ZJUa/gd+7cueAM/5xo8/2wYcP82iEwL7QMQ4YMyXDmX61aNWnXrp2UK1fOVkeH+oHv1KmTGXzJDuxYJ0W9rMOOdVLUyzpOnDhhrfCfP3++lC3rv5nuYmJizNfjx49LpUr/HktfHzdq1CjHnwsPDzdLZvrBsMuHw+71smOdFPWyDjvWSVGv4BdWSPXIdfi/8MILZsreVq1aZejwpx3ztBn+jz/+kLfffttvBdOOhXoAoAMKucNez+K11//AgQP99j4AADhNrsNfr6MPGDDA9Lz3Dv8iRYpI+fLlpW3btmbSH1+cOXNGDhw4kKGT386dO00LQvXq1U3nwpdeesnc168HA8OHD5fKlStnGAsAAAAUUPjrGb4aOXKk+It2ENRr8W7ua/X9+vWT6dOny9ChQ81YAA8//LAZ5EdbHfSugoiICL+VAQAAp/Hpmv/l7u/PC20tcB9U5PR+erlBFwAAEIDwr1u37hUPAE6ePJnfMgEAgGAJf73urwPtAAAAh4S/jqpXoUKFgisNAAAInol9/H29HwAABHn4X65jHgAAsGGzf3p6esGWBAAABNeZPwAAsAfCHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhwnq8B85cqSEhIRkWOrVqxfoYgEAYGlFJcg1aNBAVq1a5XlctGjQFxkAgKAW9EmqYR8TExPoYgAAYBtBH/779++XypUrS0REhLRs2VLGjBkj1atXz3H7CxcumMUtNTXVfE1LSzOLXbjrQp2CH/WyDjvWSVEv60grpLqEuFwulwSppUuXypkzZ+Saa66RxMREGTVqlPz222/y/fffS6lSpXLsJ6DbZTZnzhyJjIwshFIDAJA3586dk7vuuktSUlIkKipKHBn+mSUnJ0uNGjXkzTfflP79++f6zL9atWrm4KFcuXJip6PDlStXSqdOnSQsLEzswI51UtTLOuxYJ0W9rOPEiRNSqVKlAg//oG/291a6dGmpW7euHDhwIMdtwsPDzZKZfjDs8uGwe73sWCdFvazDjnVS1Cv4hRVSPYL6Vr/M9BLAwYMHzVERAACwYfg//fTTsm7dOvn5559lw4YN0rt3bwkNDZU777wz0EUDAMCygrrZ/9dffzVBr9dAypcvL61atZJNmzaZ7wEAgA3Df+7cuYEuAgAAthPUzf4AAMD/CH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AABzGEuE/adIkufrqqyUiIkKaN28umzdvDnSRAACwrKAP/3nz5smQIUNkxIgRsn37drn++uulS5cukpSUFOiiAQBgSUEf/m+++aY89NBDcv/990tcXJxMmTJFIiMjZerUqYEuGgAAllRUgtjFixdl27ZtMmzYMM+6IkWKSMeOHWXjxo3Z/syFCxfM4paSkmK+njx5UuwkLS1Nzp07JydOnJCwsDCxAzvWSVEv67BjnRT1so6T/59VLpfLueH/r3/9Sy5duiQVK1bMsF4f//jjj9n+zJgxY2TUqFFZ1tetW7fAygkAgD/pAU10dLQ4MvzzQlsJtI+AW3JystSoUUOOHDlSoL/IwpaamirVqlWTo0ePSlRUlNiBHeukqJd12LFOinpZR0pKilSvXl3Kli1boO8T1OF/1VVXSWhoqBw/fjzDen0cExOT7c+Eh4ebJTMNfrt8OLxpnexWLzvWSVEv67BjnRT1so4iRYo4t8NfsWLFpEmTJrJ69WrPuvT0dPO4ZcuWAS0bAABWFdRn/kqb8Pv16yc33nijNGvWTMaPHy9nz541vf8BAIANw//222+XP/74Q55//nk5duyYNGrUSJYtW5alE2BO9BKAjhGQ3aUAK7NjvexYJ0W9rMOOdVLUyzrCC6lOIa6Cvp8AAAAElaC+5g8AAPyP8AcAwGEIfwAAHIbwBwDAYSwX/r5O7/vJJ59IvXr1zPbXXXedfPnllxme1/6OeidBpUqVpHjx4mbegP3790sw1+u9996T1q1bS5kyZcyiZc68/X333SchISEZlq5du0ow12v69OlZyqw/Z/X91bZt2yz10uXmm28Omv21fv166d69u1SuXNm898KFC6/4M2vXrpXGjRubXsm1a9c2+y+YpuP2tU6fffaZdOrUScqXL28GjNGxRJYvX55hm5EjR2bZT/r/pTD5Wi/dT9l9/vTuqWCaOt3XemX3N6NLgwYNgmZ/jRkzRpo2bSqlSpWSChUqSK9evWTfvn1X/LnCyC1Lhb+v0/tu2LBB7rzzTunfv7/s2LHD/OJ1+f777z3bvPbaazJx4kQzW+C3334rJUqUMK95/vz5oK2X/jFrvRISEswERzq8ZefOneW3337LsJ2GR2Jiomf56KOPJNinY9Z/ut5l/uWXXzI8b8X9paHiXSf9/OnIlbfddlvQ7C8dO0ProQGQG4cPHzYHL+3atZOdO3fKE088IQ8++GCGsAz0dNy+1knDR8Nf/9HqhGJaNw0j/d/hTcPFez99/fXXUph8rZebho53uTWMgmVf5aVeEyZMyFAfHeJXh8TN/HcVyP21bt06GTRokGzatElWrlxpJiLS/9Va15wUWm65LKRZs2auQYMGeR5funTJVblyZdeYMWOy3b5v376um2++OcO65s2bux555BHzfXp6uismJsb1+uuve55PTk52hYeHuz766CNXsNYrs7/++stVqlQp14wZMzzr+vXr5+rZs6crkHyt17Rp01zR0dE5vp5d9te4cePM/jpz5kxQ7S83/bewYMGCy24zdOhQV4MGDTKsu/32211dunTx2++psOuUnbi4ONeoUaM8j0eMGOG6/vrrXcEiN/VKSEgw2506dSrHbYJpX+V1f+n2ISEhrp9//jlo91dSUpKp27p163LcprByyzJn/u7pfbV5I7fT++p67+2VHh25t9ezF2368t5G5wDQJq+cXjMY6pWZTmmpR5SZJ4LQFgI9ur/mmmtk4MCBZpaowpLXep05c8ZMxKStGT179pQ9e/Z4nrPL/vrggw/kjjvuMEfrwbK/fHWlvy1//J4CTYcSP336dJa/K21e1abpWrVqyd13320mDbMCHSBNm4m1deObb77xrLfDvnL/XWmZ9f9HsO6vlP+fYv5yk/YUVm5ZJvwvN71v5mtXbrr+ctu7v/rymsFQr8yeffZZ8+H2/jBoE/LMmTPNPAivvvqqaX6Kj4837xWs9dLQmzp1qixatEhmz55t/vn+7W9/k19//dU2+0uvo2rznTaRewv0/vJVTn9bOsvan3/+6ZfPdaCNHTvWHIz27dvXs07/wWrfBh1ldPLkyeYfsfa/0YOEYKWBr83Dn376qVn0wFr7oWjzvrLDvvr9999l6dKlWf6ugml/paenm8tjf//73+Xaa6/NcbvCyq2gH94Xl/fKK6/I3LlzzVmjd+c4PbN00w4jDRs2lNjYWLNdhw4dJBhpByvvCZs0+OvXry/vvPOOvPjii2IHenai+0PnqfBmxf1lZ3PmzJFRo0aZA1Hva+N6QOam+0jDRc80P/74Y3ONNhjpQbUu3n9XBw8elHHjxsmsWbPEDmbMmCGlS5c218a9BdP+GjRokDnwL+w+IpY/88/L9L66/nLbu7/68prBUC/vMxMN/xUrVpgP9uVok5e+14EDByTY6+UWFhYmN9xwg6fMVt9f2slHD9Ry80+nsPeXr3L629IOm9r72B/7P1B0H+kZpAZE5ubXzDRw6tatG7T7KSd68Okus5X3ldIuAtpi+I9//MPMBBuM++vRRx+VL774wnTSrlq16mW3Lazcskz452V6X13vvb3SHpfu7WvWrGl+Wd7baLOl9p4srCmD8zptsfb21LNhbc7SGQ+vRJvO9RqyNgFaZTpmbYr87rvvPGW28v5y375z4cIFueeee4Juf/nqSn9bVp2OW++w0BlD9av3rZg50csCehYdrPspJ3qHhrvMVt1XbnqJTMM8NwfVhb2/XC6XCf4FCxbImjVrzP+wKym03HJZyNy5c02PxunTp7v27t3revjhh12lS5d2HTt2zDz/j3/8w/Vf//Vfnu2/+eYbV9GiRV1jx451/fDDD6bnZ1hYmOu7777zbPPKK6+Y11i0aJFr9+7dpsd1zZo1XX/++WfQ1kvLXKxYMdf8+fNdiYmJnuX06dPmef369NNPuzZu3Og6fPiwa9WqVa7GjRu76tSp4zp//nzQ1kt7VS9fvtx18OBB17Zt21x33HGHKyIiwrVnzx5L7y+3Vq1amR7xmQXD/tIy7Nixwyz6b+HNN9803//yyy/mea2P1svt0KFDrsjISNczzzxj/rYmTZrkCg0NdS1btizXv6dgq9OHH35o/l9oXbz/rrQntdtTTz3lWrt2rdlP+v+lY8eOrquuusr04i4svtZL7y5ZuHCha//+/eZ/3+OPP+4qUqSI+ZwFy77KS73c7rnnHtMbPjuB3l8DBw40dzBpGbw/U+fOnfNsE6jcslT4q7feestVvXp1E356e8qmTZs8z910003mlilvH3/8satu3bpme701acmSJRme19smhg8f7qpYsaL58Hfo0MG1b98+VzDXq0aNGuaPI/OiHxKlH6zOnTu7ypcvbz40uv1DDz1UqH/IeanXE0884dlW90e3bt1c27dvt/z+Uj/++KPZRytWrMjyWsGwv9y3g2Ve3PXQr1qvzD/TqFEj8zuoVauWuVXTl99TsNVJv7/c9koP3ipVqmTqU6VKFfP4wIEDhVanvNTr1VdfdcXGxpoD6bJly7ratm3rWrNmTVDtq7zUS+mBWfHixV3vvvtutq8Z6P0l2dRHF++/lUDlFlP6AgDgMJa55g8AAPyD8AcAwGEIfwAAHIbwBwDAYQh/AAAchvAHAMBhCH8AAByG8AcAwGEIf8AGrr76ahk/fnzQvp7364aEhJglOTlZCpP7fXVyF8DpCH8ggLp37y5du3bN9rmvvvrKhNXu3bsLvVxbtmyRhx9+2PNYy7Fw4UK/vPYLL7wgiYmJEh0d7ZfXa9eunbz//vtX3E7fsyAOaAArIvyBANKZyHTGLp3FL7Np06aZGRuvNF1zQShfvrxERkYWyGuXKlXKzEqmBxT5dfLkSfnmm2/MQdSV6Hv664ADsDrCHwigW265xQTt9OnTs0w9qlMAu6cp/frrr6V169ZSvHhxqVatmjz22GNy9uzZHF/3yJEj0rNnTylZsqRERUVJ3759s8z/vXjxYmnatKlERESYOd179+6dbbO/fq/0eQ1sffzzzz9LkSJFZOvWrRleU3+mRo0aZkrY3NK6a1O8znd+zTXXmIOO//iP/5Bz587JjBkzzPuVKVPG1Fmnefa2ZMkSady4sVSsWFFOnTold999t/l96u+pTp065gAKQFaEPxBARYsWlXvvvdcEoPccWxr8GnR33nmnmX9cLw306dPHXAKYN2+eORjQecKzo8Grwa9nxTrXubYsHDp0SG6//fYMoalh3q1bN9mxY4eZG7xZs2Y5XgJQGqTadK6PNZA7duyYJVz18X333WcODHyhQT9x4kSZO3euLFu2TNauXWvK9+WXX5pl1qxZ8s4778j8+fMz/Nznn39u6qqGDx8ue/fulaVLl8oPP/wgkydPNgc1ALKRvwkLAeSXztmtf4o6palb69atzTzlqn///mZ+dW9fffWVmZPdPX+3TgOs87YrnTY4NDTUdeTIEc/2e/bsMe+xefNm87hly5auu+++O8cyeb+e0p9dsGBBhm3mzZvnKlOmjOv8+fPm8bZt21whISFm7vTcvq7S6U319b2nWn3kkUdckZGRZo53ty5dupj1bvq+JUuWdH3//ffmcffu3V33339/ju/tfi+dXx1wOs78gQCrV6+e/O1vf5OpU6eaxwcOHDCd/dxN/rt27TItA9qE7166dOlizvAPHz6c5fX0rFcvDejiFhcXZ5rW9Tm1c+dO6dChQ77K3atXLwkNDZUFCxaYx1pG7XznvkzgC23qj42N9TzWZnx9Ha2r97qkpCTP4zVr1kiFChWkQYMG5vHAgQNNy0GjRo1k6NChsmHDhnzVD7Azwh8IAhr0n376qZw+fdo0nWsQ3nTTTZ7r/4888ogJbPeiBwT79+/PEJi+0Gvi+VWsWDFzyULLe/HiRZkzZ4488MADeXqtsLCwDI+1b0F267z7EmiTf48ePTyP4+Pj5ZdffpEnn3xSfv/9d3Nw8/TTT+epPIDdEf5AENAOeXqdXAN05syZJkTdveG1Q5tey65du3aWRQM4s/r168vRo0fN4qY/r/fVawuA0jsI9Dp/bmkQZ+5spx588EFZtWqVvP322/LXX3/JrbfeKoVBr0Roh0X39X437ezXr18/mT17tul8+O677xZKeQCrIfyBIKDN29ohb9iwYaZTnXaac3v22WdNE7Z28NOzfj3jX7RoUY4d/rQj3nXXXWd6vm/fvl02b95sztC1JUFvHVQjRoyQjz76yHzVSwHfffedvPrqqzmWT5vg9WDh2LFjple994FGixYtTBm1c6I/WhRyY9u2baaTYKtWrTzrnn/+efN70csme/bsMXcPaPkAZEX4A0HU9K/BqtfzK1eu7FmvZ+naa/+nn34yt/vdcMMNJui8t/GmLQYagnp7XJs2bczBQK1atcxdAm5t27Y1dxRo07leI2/fvr05SMjJG2+8Ye4a0H4E+v6Zy63N/nlt8s8LrZ/eqaB3S7hpK4gePOnvS+ut/RG0DwCArEK011826wEgV1588UVzIJGbkQi1BeGJJ54wS35owD/33HPmcokvtFOivndhDy0MBBvO/AHkiXZE/P777+Wf//ynDB48ONc/p5cI9DJHSkpKnt5XWxl0zAPt4OcLfc8BAwbk6T0Bu+HMH0CeaL8E7Tegt/xpR0VtZr8S7Y2flpZmvtdLEb4OBpQf2hdAaTlr1qxZaO8LBCPCHwAAh6HZHwAAhyH8AQBwGMIfAACHIfwBAHAYwh8AAIch/AEAcBjCHwAAhyH8AQAQZ/lfKnyzBcU7Xy0AAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
]
@@ -1065,7 +1065,7 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "base",
"language": "python",
"name": "python3"
},
diff --git a/examples/power_example.ipynb b/examples/power_example.ipynb
index 1f9c0b710..516c9c980 100644
--- a/examples/power_example.ipynb
+++ b/examples/power_example.ipynb
@@ -329,7 +329,7 @@
"metadata": {},
"source": [
"## Power Quality\n",
- "The `power.quality` module can be used to compute current or voltage harmonics and current distortions following IEC/TS 62600-30 and IEC/TS 61000-4-7. Harmonics and harmonic distortion are required as part of a power quality assessment and characterize the stability of the produced power. "
+ "The `power.quality` module can be used to compute current or voltage harmonics and current distortions following IEC TS 62600-30 and IEC TS 61000-4-7. Harmonics and harmonic distortion are required as part of a power quality assessment and characterize the stability of the produced power. "
]
},
{
@@ -374,7 +374,7 @@
"metadata": {},
"source": [
"### Harmonic Subgroups\n",
- "The harmonic subgroups calculations are based on IEC/TS 62600-30. We can calculate them using our grid frequency and harmonics."
+ "The harmonic subgroups calculations are based on IEC TS 62600-30. We can calculate them using our grid frequency and harmonics."
]
},
{
diff --git a/examples/river_example.ipynb b/examples/river_example.ipynb
index 964b14048..cb9302d1e 100644
--- a/examples/river_example.ipynb
+++ b/examples/river_example.ipynb
@@ -53,33 +53,35 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Data request URL: https://waterservices.usgs.gov/nwis/dv/?format=json&sites=15515500&startDT=2009-08-01&endDT=2019-08-01&statCd=00003¶meterCd=00060&siteStatus=all\n",
- " Discharge, cubic feet per second\n",
- "2009-08-01 00:00:00+00:00 59100\n",
- "2009-08-02 00:00:00+00:00 59700\n",
- "2009-08-03 00:00:00+00:00 56200\n",
- "2009-08-04 00:00:00+00:00 51700\n",
- "2009-08-05 00:00:00+00:00 52100\n",
- "... ...\n",
- "2019-07-28 00:00:00+00:00 66000\n",
- "2019-07-29 00:00:00+00:00 63900\n",
- "2019-07-30 00:00:00+00:00 63500\n",
- "2019-07-31 00:00:00+00:00 64700\n",
- "2019-08-01 00:00:00+00:00 64600\n",
+ " Discharge, cubic feet per second\n",
+ "2009-08-01 59100\n",
+ "2009-08-02 59700\n",
+ "2009-08-03 56200\n",
+ "2009-08-04 51700\n",
+ "2009-08-05 52100\n",
+ "... ...\n",
+ "2019-07-28 66000\n",
+ "2019-07-29 63900\n",
+ "2019-07-30 63500\n",
+ "2019-07-31 64700\n",
+ "2019-08-01 64600\n",
"\n",
"[3653 rows x 1 columns]\n"
]
}
],
"source": [
- "# Use the requests method to obtain 10 years of daily discharge data\n",
- "data = river.io.usgs.request_usgs_data(\n",
- " station=\"15515500\",\n",
- " parameter=\"00060\",\n",
- " start_date=\"2009-08-01\",\n",
- " end_date=\"2019-08-01\",\n",
- " data_type=\"Daily\",\n",
- ")\n",
+ "# Here we load 10 years of daily discharge data \n",
+ "data = pd.read_csv(\"data/river/usgs_discharge_TRTS_20090801_20190801_daily.csv\", index_col=0)\n",
+ "\n",
+ "# The previous data was created with the following mhkit call:\n",
+ "# data = river.io.usgs.request_usgs_data(\n",
+ "# station=\"15515500\",\n",
+ "# parameter=\"00060\",\n",
+ "# start_date=\"2009-08-01\",\n",
+ "# end_date=\"2019-08-01\",\n",
+ "# options={\"data_type\":\"Daily\"},\n",
+ "# )\n",
"\n",
"# Print data\n",
"print(data)"
@@ -99,7 +101,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAMWCAYAAAC5gwQ2AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX3/8Xdfc+3JstzXupxBBAQEWVnkEMQVFINRTDTBKEYjSiCQn4oHKmou1IjEEw0So0TAI2QxrAvIfaPLodzXLgu7LHvO7Eyfvz96vtXf+nZVTx/VM101r+fjwWNnerp7iqnqqvp+P9/P55OqVCoVAQAAAAAAAAAA9Lj0VG8AAAAAAAAAAABAMwhqAAAAAAAAAACAWCCoAQAAAAAAAAAAYoGgBgAAAAAAAAAAiAWCGgAAAAAAAAAAIBYIagAAAAAAAAAAgFggqAEAAAAAAAAAAGKBoAYAAAAAAAAAAIiF7FRvAIKVy2W98MILmjVrllKp1FRvDgAAAAAAAAAAXVOpVLR582btvPPOSqfD8zEIavSoF154QbvttttUbwYAAAAAAAAAAJPm+eef16677hr6c4IaPWrWrFmSqjtw9uzZU7w1vaVQKOj666/XiSeeqFwuN9WbA8QanycgWnymgGjxmQKixWcKiBafKSBafKawadMm7bbbbt7ceBiCGj3KlJyaPXs2QQ1HoVDQ0NCQZs+ezQkO6BCfJyBafKaAaPGZAqLFZwqIFp8pIFp8pmBM1I6BRuEAAAAAAAAAACAWCGoAAAAAAAAAAIBYIKgBAAAAAAAAAABigaAGAAAAAAAAAACIBYIaAAAAAAAAAAAgFghqAAAAAAAAAACAWCCoAQAAAAAAAAAAYoGgBgAAAAAAAAAAiAWCGgAAAAAAAAAAIBYIagAAAAAAAAAAgFggqAEAAAAAAAAAAGKBoAYAAAAAAAAAAIgFghoAAAAAAAAAACAWCGoAAAAAAAAAAIBYIKgBAAAAAAAAAABigaAGAAAAAAAAAACIBYIaAAAAAAAAAAAgFghqAAAAAAAAAACAWCCoAQAAAAAAAAAAYoGgBgAAAAAAAAAAiAWCGgAAAAAAAAAAIBYIagAAAAAAAAAAgFggqAEAAAAAAAAAAGKBoAYAAAAAAAAAAIgFghoAAAAAAAAAACAWCGoAAAAAAAAAAIBYIKgBAAAAAAAAAABigaAGAAAAAAAAAACIBYIaAAAAABLvzqfW6b5nX5nqzQAAAADQoexUbwAAAAAAdNOm0YJO/+6dkqTHv/QW5TKs7QIAAADiirt5AAAAAIm2YbjgfV0qV6ZwSwAAAAB0iqAGAAAAgEQrV2qBjAoxDQAAACDWCGoAAAAASDQ7qFEiqgEAAADEGkENAAAAAIlmhzEoPwUAAADEG0ENAAAAAIlmJ2dUyNQAAAAAYo2gBgAAAIBEswMZZGoAAAAA8UZQAwAAAECileipAQAAACQGQQ0AAAAAiVYs1QIZ5fIUbggAAACAjhHUAAAAAJBoRavkVJlMDQAAACDWCGoAAAAASLSSlZ5BTw0AAAAg3ghqAAAAAEg0X/kpMjUAAACAWCOoAQAAACDR7OwMMjUAAACAeCOoAQAAACDR/D01pnBDAAAAAHSMoAYAAACARCvRKBwAAABIDIIaAAAAABKtSPkpAAAAIDEIagAAAABItGKp7H1NpgYAAAAQbwQ1AAAAACSar6dGucETAQAAAPQ8ghoAAAAAEs0uOVUiUwMAAACINYIaAAAAABKNnhoAAABAchDUAAAAAJBoJavmVIVMDQAAACDWCGoAAAAASDQyNQAAAIDkIKgBAAAAINHoqQEAAAAkB0ENAAAAAIlWLNUCGVYlKgAAAAAxRFADAAAAQKLZuRllMjUAAACAWCOoAQAAACDR7ObglJ8CAAAA4o2gBgAAAIBpo0yjcAAAACDWCGoAAAAAmDZKBDUAAACAWCOoAQAAACDR7IpTxDQAAACAeCOoAQAAACDRKlarcBqFAwAAAPFGUAMAAADAtEH5KQAAACDeCGoAAAAASDR/+SmCGgAAAECcEdQAAAAAkGh2GIOgBoBOPbFms5b/4aWp3gwAAKYtghoAAAAAEs2OY5TKU7cdAJLhrP96QB+4/F79113PTfWmAAAwLRHUAAAAAJBovkbh9NQA0KE/vrhZkvTf9z4/xVsCAMD0RFADAAAAwLRB+SkAUUmlpnoLAACYnghqAAAAAEg0O45BSANAVDJENQAAmBIENQAAAABMG2RqAIhKmqAGAABTgqAGAAAAgESrWIEMYhoAOlGy+vKkmVEBAGBKcAkGAAAAMG1UiGoA6EC+WPa+zqTJ1AAAYCoQ1AAAAACQaHYco0xMA0AHxool72vKTwEAMDUIagAAAABINDuOQaYGgE7YmRqcTgAAmBoENQAAAAAkGpkaAKIyZgU1iuVyg2cCAIBuIagBAAAAYNoos7QaQAd8QY0S5xMAAKYCQQ0AAAAAiVYRE48AomH31CiQ+gUAwJQgqAEAAAAg0fzlp5iEBNA+f6YG5acAAJgKBDUAAAAAJJodxmBhNYBO2CWnKD8FAMDUIKgBAAAAINms7AwSNQB0omRFRgs0CgcAYEoQ1AAAAAAwbVB+CkAn7HNIsVTR/65YrW8sf1wVzi0AAEya7FRvAAAAAAB0E1ONAKJiZ2oUS2V99L/ulyQduee2et2CeVO1WQAATCtkagAAAABINF+jcJpqAOhAqWKXn6p9/fLmsanYHAAApiWCGgAAAAASrWLlahDTANCJspOpYaRSU7E1AABMTwQ1AAAAAEwbFYpRAeiAXX5qtECjcAAApgJBDQAAAACJ5is/RUwDQAfsRuFbCyXrJ6RqAAAwWQhqAAAAAEg0O45RqRDVANC+UkhyBuWnAACYPAQ1AAAAACSaHccgpgGgE6WQk0ghLNoBAAAiR1ADAAAAwLRRJqoBoAPlkBp2+SJBDQAAJgtBDQAAAACJZjcHJ6QBoBOlkKDGGEENAAAmDUENAAAAAMnmaxROWANA+8LKT5GpAQDA5CGoAQAAACDR/I3Cp2wzACQA5acAAJh6BDUAAAAAJFrFimRUiGoA6EBopgaNwgEAmDQENQAAAABMGyGLrAGgKWGZGvTUAABg8hDUAAAAAJBoFXpqAIhIkfJTAABMOYIaAAAAABKNnhoAolIKCWoUKT8FAMCkIagBAAAAINHsQAY9NQB0Iizbq1iuqFKp6JXh/CRvEQAA0w9BDQAAAADTBiENAJ0IS8golsv66rLHdMgXl+n/Hn5xcjcKAIBphqAGAAAAgESrWKEMemoA6ETYOaRUruiSG56QJP3TdX+czE0CAGDaIagBAAAAINH8jcKnbjsAxF94T43a4wu3mzFZmwMAwLREUAMAAADAtEGiBoBOhAY1rMe3ndE/WZsDAMC0RFADAAAAwLRBo3AAnQgrP1Wwmm2kUpO1NQAATE8ENQAAAAAkmh3IoKcGgE6EZWrkiyEdxAEAQOQIagAAAABINHsKkpgGgE6UQk4iY0UyNQAAmCwENQAAAAAkGo3CAUSlHHISGSuWJnlLAACYvghqAAAAAJg2KiKqAaB9pZAqU2OUnwIAYNIQ1AAAAACQaHYgg/JTADoR1pdnrEBQAwCAyUJQAwAAAD2rXK5o40hhqjcDMecvP0VUA0D7whqF2+WnOM0AANBdBDUAAADQs/7qh3froC9cryfWbJ7qTUGM0SgcQFSaaRRO8BQAgO4iqAEAAICedcvjL0uSrrzn+SneEsQZmRoAohLeKLwW1AjruwEAAKJBUAMAAAA9L51KTfUmICGIaQDoRFj5qTyZGgAATBqCGgAAAOh9xDTQEatRuJhsBNC+8PJTtZ4aYYEPAAAQDYIaAAAA6HkpohrogK/8FGVhAHSgufJTBDUAAOimWAU11q1bp+9///t6xzveob322kuDg4OaM2eOjjrqKF122WUqOyOUZ555RqlUKvS/008/PfR3XX755Tr88MM1c+ZMzZkzR8ccc4yuvfba0OeXSiV97Wtf04EHHqjBwUHNmzdPS5Ys0e233x7Z/z8AAMB0RfUpdIKeGgCiUgo5hdinFoIaAAB0V3aqN6AVP/vZz/SRj3xEO+20k4499ljtvvvueumll3TNNdfogx/8oK677jr97Gc/U8oZ9R500EE69dRT697vgAMOCPw95513ni6++GLtuuuuOvPMM5XP5/XTn/5Up5xyii655BKdddZZvudXKhWdfvrpuuqqq7TvvvvqrLPO0iuvvKIrr7xSRx99tK6++mq9/e1vj+zvAAAAMB0UrU6rxDQQFaYaAXTCZGqkUuE9esJKVAGAUSpX9MgLm/QnO81SNhOrNedAT4hVUGOfffbRr371K731rW9VOl37wH/5y1/W4YcfrquvvlrXXHONTjvtNN/rDj74YF144YVN/Y7bb79dF198sfbcc0/dc8892mabbSRJ559/vg499FCdd955Ovnkk7VgwQLvNT/96U911VVXadGiRVq+fLkGBgYkSR/+8Id11FFH6cwzz9Rxxx2nWbNmdfYHAAAAmEZGi9QJQjTsPhoVJhsBdMBkYfRn0xotBF+nwkpUAYDx9d88pktueELvOXw3feVPD5zqzQFiJ1ahwOOOO06nnHKKL6AhSTvuuKM+/OEPS5Juuummjn7Ht7/9bUnSBRdc4AU0JGnBggX66Ec/qrGxMf3whz/0veZb3/qWJOmiiy7yAhqS9LrXvU7vfve7tXbtWl111VUdbRcAAMB0M1qoNV3duLUwhVuCuLPjGMQ0AHSi6AU1MhM+BwDCXHLDE5Kkn9z9/BRvCRBPsQpqNJLL5SRJ2Wx98skLL7yg73znO/ryl7+s73znO1qxYkXo+9xwww2SpJNOOqnuZ295y1t8z5Gk0dFR3X777RoaGtLixYubeg0AAAAmZgc1fnzXc6x8RdvsI4eeGgA6Yc4h/dnw6RTOMwAAdFesyk+FKRaL+tGPfiQpOBixbNkyLVu2zPfYMccco8svv1y7776799jw8LBWrVqlmTNnaqeddqp7n7333luS9Nhjj3mPPfnkkyqVSlq4cGFgQCXoNQAAAJiYW9Zj3XBe283qn6KtQVIQGwPQCVN+aiAXnqlBo3AAALorEUGNT3ziE3rooYe0ZMkSvfnNb/YeHxoa0mc+8xmdeuqpWrhwoSRpxYoVuvDCC3XjjTfq+OOP1+9+9zvNmDFDkrRx40ZJ0pw5cwJ/j3l8w4YN3mPtvCbI2NiYxsbGvO83bdokSSoUCioUKLdgM38P/i5A5/g8AdHiMxWtrWN53/cr123R3IHEJBqjCVF9pkrlWoCsXC7zGcW0xXWqc8VS9XzSl0k1fA5/4+mBzxSiwPFTw2cKze772Ac1vvGNb+jiiy/WfvvtpyuuuML3s+23315f+MIXfI8dffTRuv7663XUUUfprrvu0ve//32dffbZk7nJgb7yla/o85//fN3j119/vYaGhqZgi3qfm30DoH18noBo8ZmKxsphyb5d/d8bb9Nz81j9Oh11+plauTItU3l3zdq1Wrp0aQRbBcQX16n2rVlbPZ+MjmyRFBzYWLvuFc4z0wyfKbSueo+bUoXzRQA+U9PXyMhIU8+LdVDjm9/8ps4++2ztv//+Wr58uebNm9fU67LZrD74wQ/qrrvu0s033+wFNUxWhcm+cJnH586d6z3WzmuCfPKTn9S5557rfb9p0ybttttuOvHEEzV79uyJ/6emkUKhoGXLlumEE07weqkAaA+fJyBafKai9fALm/QvK+70vt9z/wO15JBdpnCLMNmi+kzdeNWDumftaknSttvO15Ilh0W1iUCscJ3q3I9X3yNtWq/tt91GK4c3BD5nzty5WrLkiMndMEwJPlNo19l3XC9JGurLasmSN0/w7OmDzxRM9aKJxDao8fWvf13nnHOODjjgAC1fvlzbb799S6/fbrvtJFX7aBgzZszQLrvsolWrVmn16tV1fTUef/xxSdI+++zjPbbnnnsqk8noqaeeUrFYrOurEfSaIP39/ervr68Rncvl+BCH4G8DRIfPExAtPlPRSGf89crT6TR/12mq089UKm2VLUulOI4w7XGdap/JF2zUU6NSEX/faYbPFNo12Jfh2AnAZ2r6ana/x7Io8T/90z/pnHPO0cEHH6wbb7yx5YCGJN15Z3XVn+m1YRx33HGSpF//+td1r7nuuut8z5GkgYEBLVq0SCMjI7rllluaeg0AAAAm5vZZpe8qolCucCABaJ9pAt6XDZ9OKXGeAdCkRgFSAOFiF9T44he/qE984hM69NBDtXz5cs2fPz/0uffff7/KVlNAY/ny5fra174mSXrve9/r+9mHP/xhSdKXvvQlrV+/3nv8mWee0aWXXqr+/n69//3v973mIx/5iCTp05/+tEZHR73H77nnHl155ZXabrvtdNppp7X4fwoAADC9uZPPzBGhXRXr4CE4BqATpfFzyEA2fCKyWOJEA6A52XRwbx4AjcWq/NTll1+uz372s8pkMlq8eLG+8Y1v1D1nwYIFOuOMMyRJ5557rh5//HEtWrRIu+66qyRpxYoVuuGGGyRVAySLFi3yvX7RokU699xz9dWvflUHHnig3vnOdyqfz+vKK6/UK6+8oksuuUQLFizwveb000/XNddco6uuukqvfe1rdcopp2jdunW68sorVSqV9L3vfY++GAAAAC2qOFEMVtijXfaRUyaqAaAD5hwy1FcLamwzlNP6kULtOVyvADQplSKoAbQjVkGNp59+WpJUKpX09a9/PfA5b3zjG72gxvve9z79/Oc/1z333KPrrrtOhUJBO+ywg971rnfprLPO0uLFiwPf4+KLL9ZrXvMaXXrppfrud7+rdDqtQw45ROeff75OPvnkuuenUin95Cc/0aJFi/SDH/xAl1xyiQYGBnT00Ufr05/+dF3gBAAAABNz557dIAfQLPvQoSwMgE6Y8lODVlBj7lCfL6hRIngKoEnc3wLtiVVQ48ILL9SFF17Y9PM/8IEP6AMf+EBbv+uMM87wgiPNyGazOuecc3TOOee09fsAAADg566oZ8iHKJCpAaATJgtjMGcHNfxNTZmjBACgu2LXUwMAAADTgzsnxGQ02mUfOWRqAOhEKaD81NxBf1CD8lMAmsXZAmgPQQ0AAAD0JHdSiJgG2mWXdiiVp3BDAMSeCYwOWEGNWQNuUGNSNwkAgGmHoAYAAAB6krvQlTkitItG4QCi4jUKt8pPzej3V/YmUwNAszhdAO0hqAEAAICe5E4K0UgRUaD8FIBOmHPIUF8tkDHDytqQmKQEAKDbCGoAAACgJ7kL6ln5irZZhw6ZGgA6UR4vYWeXnyJTAwCAyUVQAwAAAD2JnhqISsWKapCpAaATpYDyU7MG/EENTjMAAHQXQQ0AAAD0JLfcFJNEaJd97JSIjgHogAmMDlqZGoNO+SkyNQA0q0LXOKAtBDUAAADQk0yJD+97JonQpgrlpwBExJxDBqxMjVzGP7XCaQYAgO4iqAEAAICeRKNwdAPlpwB0wpxDZvTXghrbzer3PYfrFYBmcboA2pOd+CkAAADA5HNXujLoQ7t8PTXKDZ4IABMolarnk75MWtedvVjFUiWgBxQXLAAAuomgBgAAAHqSu9KVch5ol6/8FJONADpgMjWy6bQW7jRTkvTHFzf5nsP1CgCA7qL8FAAAAHqSOyfEZDTaZR85NAoH0AlzDklbsyl9dT01OM8AaA6nC6A9BDUAAADQk+ipgW6gUTiATphrUyad8h7ry/qnVrhcAQDQXQQ1AAAA0JPqempMzWYgAewJRhqFA+iEydTIpMKDGmRqAADQXQQ1AAAA0JPqe2owSYR22Y3COY4AtKdSqXgB97SVqTGjz9+ulOsVAADdRVADAAAAPcmdFGIuGu2iUTiAKNjXITtTY6gv43sepxkAzaK8KtAeghoAAADoSeWy/3vGfIgCmRoA2mWfP+xMjZQV4JC4XgEA0G0ENQAAANCTaBSOqNhHTrnCsQSgPfZ1yW4U3uh5AAAgegQ1AAAA0JPcOSEmidCu+v4sU7QhAGLNztTIpAhqAAAwVQhqAAAAoCfRUwNRcQ8dSlABaEepYpefCn8epxgAzeJ0AbSHoAYAAAB6kjspxMJXtMs9dghqAGhHuUGmxseP39v3PWXuAADoHoIaAAAA6En1mRpMECEaJY4lAG3wlZ9yemqce8I+uueCN3nfEzsF0AxuSYD2ENQAAABAT3LHeKx6RbsoPwUgCiYgmkpJqYCeGn3Z2hQLgXgAALqHoAYAAAB6khvEYHoI7Vg/nFepXPY9ViaoAaAN5lQS1iTcfpigBoBmVLjDBdqSneoNAAAAAIK4E89MEKFVj720WSd+7ea6xyk/BaAd5tyRTgcHNdJWVIPTDAAA3UOmBgAAAHqSu5iexfVo1VX3rQx8nEwNAO0w546wTA071kFQAwCA7iGoAQAAgJ7kZmbQUwOtCjtmyNQA0A7Tj8dtEm7YmRpkFwIIwz0t0DmCGgAAAOhJ7niP8R+iUixxMAFonVd+KjimQU8NAE2xTw+cKoD2ENQAAABAT3InhJggQlTWj+SnehMAxFC5pUyNSdkkADHE6QHoHEENAAAA9CR6aqBTYXGwl7eMTe6GAEgEk6nRTFCD8jIAwtjnB84UQHsIagAAAKAn1ffUmKINQeK8vJlMDQCtM6Xr0k00CicQDyAMpwegcwQ1AAAA0JPcVa6sekWnBnMZSdLLw2RqAGidCbZnQzI1UjQKB9AETg9A5whqAAAAoCfVl59iBIjWuEfMjP5qUGM0X5r8jQEQe6XxC1M6rFO4atkaXLMAhLHPD5wqgPYQ1AAAAEBPqis/NUXbgeToz1aDGmOl8hRvCYA4Kk/QU0OqZWswUQkAQPcQ1AAAAEBPcieEqE+OTvVlq8OfQpGDCUDrTDw0E9JTQ6plahDUABDGf37gZAG0g6AGAAAAepLbQ4NSHmiVe8j0ZarDn3yJ8lMAWtdM+SmTqcE1C0CYCoEMoGMENQAAANCTTGaGKfNBo3B0qj9HpgaA9nnlp5rI1CCoASCMfXrgVAG0h6AGAAAAepJbu5xBH1rlroSsZWrQUwNA65prFM41C0BjnB6AzhHUAAAAQE8ymRrZNKU8EA3TUyNfJKgBoHUlL9ge/pw05acATMDOPuZMAbSHoAYAAAB6UsUp80GjcHTKC2qQqQGgDeXyxOWnUl75qcnYIgBxxPkB6BxBDQAAAPQkr/xUhlIeaI97zPSTqQGgA62UnyJTA0AoTg9AxwhqAAAAoCe55adoFI5O9WUzkqQCmRoA2tBKo3CuWQDCuD2/ALSOoAYAAAB6ktsonFWv6JTXKJxMDQBtMPHQ5jI1JmOLAMSRfUtLABRoD0ENAAAA9CQzxqOnBqJiemqQqQGgHaUmMjVqPTW4aAEIxtkB6BxBDQAAAPQkMyFkVsQyAESnTE+NMTI1ALTBaxTeIFMjlaIPFIDG7OwMThVAewhqAAAAoCdV6KmBiHmNwsnUANCG5hqFV/8lUwNAGPvswKkCaA9BDQAAAPQkN1ODCSK0yg2EUX4KQCdq5afCn5MmUwPABOx7WhbtAO0hqAEAAICeVK7L1JjCjUEiZNPV4U+pxMEEoHXNlJ+qNQrnPAMghK9R+NRtBhBnBDUAAADQk8zKtYyZiKZTODqUHV9eXeBYAtAGk6mRbqJRONcsAGEqIV8DaB5BDQAAAPQks8o1l2HVK9rjHjHmWGKyEUA7msnUyFIyEcAE7NMD5wqgPQQ1AAAA0JPc8lNMRKNTuQw9NQC0r6lG4eM/K1LmDkCIiuyeGlO4IUCMEdQAAABATzIr17LjE9HMD6FV7kSBCWoQIAPQjqLJ1GhQfopAPICJkKkBdI6gBgAAAHqSGeN55aeYIEKH+saDGqygBtAOL9jeIFPD6wPFRCWAEL6eGpwqgLYQ1AAAAEBPqk0esboe0chlx8vClCk/BaB1pnJdo/JT47FTL6sDAFwVK5JRoVU40BaCGgAAAOhJZTdTg6VsaJE7UWDKT5UrZP4AaJ25DjUqP2UyNTjHAAjjLz81ddsBxBlBDQAAAPQkMjUQNXMsSayiBtC6ZhqFj8fhOccACGUHNSos2gHaQlADAAAAPckM8jLjM0TUJ0en+rK1iUhKUAFolQlqZBrMpBCIBzARO5OUUwXQHoIaAAAA6Eleo/A0jcLRHjcOZmdqFGgWDqBFzZWfGg/Ec80CEMK9PyFbA2gdQQ0AAAD0JK/81PiSWDI10KlspjYRyYQjgFY1VX6KoAaACbhnB25xgdYR1AAAAEBPqmsUTrUgtMidI8ikUjJzkcUSBxSA1pTI1AAQATczg7MF0DqCGgAAAOhJFadR+KoNW/WLB1ZN5SYhZtxJg3Q65R1PNPEF0Kqy11ODoAaA9rlnhzKpGkDLCGoAAACgJ5n5ILtk0N9d+bup2RjEkpvdk1LteCrSUwNAi0yCVzPlpwicAghTl6nB6QJoGUENAAAA9CSzai2X4ZYV7XFXPqZSUtabcKT8FIDWNNMoPOtlanCOARDMDWKQqQG0jhEiAAAAepKXqdFgRSzQSH1z+ZTXeJ5V1ABa1UyjcPOzz/zyYa3euHVStgtAvHAHAnSOoAYAAAB6ktdTg0wNtMmNafgyNSg/BaBFzTQKtwPx31j+RNe3CUD8kKkBdI4RIgAAAHqSV36KTA20qa78lCg/BaB9tUbh4c9pFPAAAEmqiJ4aQKcIagAAAKAnmTlnMjXQrvpMjVr5qQKZGgBa1Ez5qYz1M8onAghCpgbQOUaIAAAA6Em1RuFMCqE97hRBOmU38WUCAUBrmio/ZV2zsly/AARwYxjckQCtI6gBAACAnmQGeKx0RbsqdeWnUt4kY7FE+SkAramVn2rQKDxFpgaAxtzMjAq3JEDLCGoAAACgJ4U1CncnqoEw7pFSbRRePZ6KZGoAaJGpWpduslE45RMBNMPtsQFgYlxhAQAA0JPMnLNbforJaDQt4FDxMjVoFA6gRXc+tU7SBJka1s9yZGoACFDfU2NqtgOIM4IaAAAA6EkmNd+srDeKNHhGk9yVjymrpwbHEYBWDI8VtXbzmCSp0KB8nd1vI5NmygVAPff+hCxkoHVcYQEAANCTzKo1t9FqgRX2aJI7R5BSivJTANoyPFb0vn765eHQ59lnFhqFAwhCpgbQOYIaAAAA6Elm1VouQ6YG2uNOGqTTdvkpjiMAzRsr1gLqcwZzoc8rWeeWRmWqAExf7h0ImRpA6whqAAAAoCfVyk+5PTXI1EBz6spPKeVNMhYblI8BAJcd1PjQ0QtDn2f3EHevXwAg1QcxCGkArSOoAQAAgJ5kYhdkaqBddeWnUrXjieMIQCvGiiVJ0vaz+jV3qC/0ebvPG/K+LrP6GkAAN1mUcwXQOoIaAAAA6ElepoZTk5zJaDTLPVJSqpWDofwUgFbkxzM1+rKNp1GO2mu+9zUJYQCCuY3Cp2gzgBgjqAEAAICeZAZ4mRTlp9Ce4EwNE9TgOALQPFN+qn+CoMbeO8zSLnMHJbH6GkCw+kbhnCuAVhHUAAAAQE/yBnhOSXJW2KN59bka2TTlpwC0Lu8FNTITPvfofbaT5G8aDgBGfaPwKdkMINYIagAAAKAnmaBG2snUKFDPA00KytTIpsnUANC6sSbLT0n2eYaZSgD13PsTghpA6whqAACA2Prve57X2y+9Tbc/8fJUbwq6wIzv3KAGK+zRLPdISadSXo8WJhsBtMI0Cp+o/JRU691T5jwDIEDFiWJU6u5YAEyEoAYAAIitf7h6hX7//AZ9ffnjU70p6AIz3ktTfgptcicNqo3CKT8FoHXNNgqXasH4EsuvAQRwzwzc2gKtI6gBAABiya5TTc3qZDLlp1JOpkb9UBAIVtdRw24UThkzAC0Ya6GnRmZ8poVMDQBB3Mbg7iIMABMjqAEAiIXHX9qsJ9ZsnurNQA9ZvXGr9/W2M/qmcEvQLbWeGv7HGfehWXU9NZTyysKQ8QOgFbVG4U1kaoyfZ1h0ASCQc2rgVAG0jqAGAKDnPf3ysE742s16x7/fzspaeDaMFLyvGQgkk+nj7PbUYH+jWUGZGqaB7xV3Pjv5GwQgtgrj96Am26uRDOWnADRQf2bgXAG0iqAGAKDnLf/DS5KkzaNF5QlqYJy9ytpN4UYyVLxMDTeowf5Gc4LKOfx+5UZJ1WsKADTLZF2YvjyN0CgcQCPu7QmnCqB1BDUAAD2P3gkIUirXAlyUkUkms1tTKelf3nmg9zgxDTSrrvxUSnpizRbve1NOBgAmUvSCGhM/lzJ3ABqpyO2pMUUbAsQYQQ0AQM+z7/EYG8IolKxMDQ6MRCpbmRp/dthu2nO7GZJopojmuZMG6VRKpx2yi/f98BjZGgCaU24lU2M8w5DMQgBB6jM1OFcArSKoAQCIFSavYRStoEaxzGrrJDIfdzN/lBtfHstpAM0KytQ494R9ve+3ENQA0KRWMjVoFA6gEffMQEwDaB1BDQBAz7Nv8ljFAqNgBTKYNEgmk5GRUnVyKDW+8tVdfQ+EqQtqKKXBvozmz+yTRFADQPPMPWi2hZ4atIIDEMQd0zLGBVpHUAMA0PPsm7wSN3wYZ2dqENRIJrNXTZ/w8TkiMjXQNDcAZo6lGf1ZSZSfAtA8k6mRNieSBig/BaAhTg1AxwhqAAB6nj1hzdgQRrFEpkbSVbyeGtXvU15Qg/2N5tRnalTN6KsGNcjUANAsUwI1m5k4qEH5KQCNuIsuuLcFWkdQAwDQ8+wBIYNDGIUyGTxJV9vF1ckhb3UsuxtNqjtUxg+hmQMENQC0prVMjeq/3J8ACFLfKHxqtgOIM4IaAICe5ys/xR0fxtmZGnYpKiSH11PDy9SgnAda5BwqZjJyJuWnALTI3INm000ENca7iZe4PwEQwL2VrXBvC7QsO9UbAADARCg/hSBFMngSz+xVMxFtppHY3ZhIvljWbU+8XJeJ4ZWf6jeZGqVJ3jIAcWXuNdLNBDXGr1tkagAI4p4ZuLcFWkdQAwDQ80o0CkcAX6NwjotEMrvVTB+ZeSRWs2Ei/3jdH/WD256uezzlZWpkJJGpAaB55l6jqUyN8ZoYZWYqAQSov5flXAG0ivJTAICeZw8IKTsDo1imUXjShZefmqotQlz8+K5nAx83U5Ez++mpAaA1ppRUpomgRppMDQANuPey3NsCrSOoAQDoeVbrBFa8wVMoUX4q6cxeTXmNwscfZ5IIEwg7REyAbAZBDQAtMgGKZoIa5jncnwAI5j83cGsLtI6gBgCg55UpP4UAdqNwJg2SqRySqcHexkQqIUeJCZDRKBzARL56/aM65IvLtPTB1ZJq9xqmX0YjJqhBhjGAIO6pgXMF0DqCGgCAnmdPWFsVhzDN2Y3CiwQ1EsnrqWGCGuOPM/DDREJPCeMHkVd+apSgBoBg37jhCb0ynNenfv6gJCuo0Ur5Ke5PAASo66jBqQJoGUENAEDPs7MzmMyEUbAyNShLlkxe+amUKT81nqnB7sYEwq4VacpPAWjRhpGCKpVKS0GNLOWnADTg3qZQWhVoHUENAEDPo1E4ghRLZGok3vhuNfNH6fE7V84DmEh4Tw2n/FSeoAaAYNsM5byvt4wVW8vUIKgBoAG3TCZnCqB1BDUAAD3PHhAyOIRRKJOpkXReT43xmkHmX2IaaJeZipzh9dQoTd3GAOhpuUxtumTDSMFbQNFUo3BTforrFYAA9NQAOkdQAwDQ8/zlp6ZwQ9BTyvTUSLxa+Sn/v2FNoIGJpJyeGpvpqQEghL2QZv1I3pt0bCqoYRqFc38CIAA9NYDOEdQAEBt3PrVOf/vj+/TSptGp3hRMMspPIYg9T0AGTzJVvEyNKtNTw0rSAVpisn288lP01AAQwl5U88pwvpapkaL8FIDOuD003DEu5w5gYgQ1AMTG6d+9U0sffFEX/Pyhqd4UTLISk9cIYN/8lwh2JZL5uJs+CGYeieAm2pXyGoVnJElbCyWuKwAClawb0I1bC94im2ym+fJTXK8ABKlrFG59/cPbntarP/dr3fHkukndJiBuCGoAiJ1n1g1P9SZgkpGpgSBlp9eKu+IJyWEmok2mBnsanTI9NSSahQMIZi+YGB4rqTieJphuKlNj/D0ImgIIUNco3DrffP5/HtFooayr71852ZsFxEqsghrr1q3T97//fb3jHe/QXnvtpcHBQc2ZM0dHHXWULrvsMpVDahHcfvvtWrJkiebNm6fBwUEdeOCB+vrXv65SKbwx4LXXXqtjjjlGc+bM0cyZM3XEEUfo8ssvb7h9l19+uQ4//HDNnDlTc+bM0THHHKNrr722o/9nAPWYuJx+7AEhZWdguPMETBwki32ur5Wfqv8Z0AozGdmfrQ2DxgpcWADUs/t1jeSL3j1otomeGtnxqAb3JgCC1GVqBJwq+rKxmrIFJl2sPiE/+9nPdOaZZ+quu+7SEUccob/7u7/Taaedpoceekgf/OAH9a53vatukPvLX/5SRx99tG6++Wa94x3v0FlnnaV8Pq9zzjlHp59+euDv+eY3v6lTTjlFDz30kN773vfqzDPP1AsvvKAzzjhD5513XuBrzjvvPJ1xxhlavXq1zjzzTL33ve/Vgw8+qFNOOUXf/OY3I/9bANMZQ4Ppx98onCMAVe6xQLPwZLF3b21VrCnnMfnbg2SoNZ1PqS9THQrlSwQ1ANSzAxJbxoq1TI2mGoWPvwf3rYn364df0vJVEx8TgM09NQTd23L6ABrLTvyU3rHPPvvoV7/6ld761rcqna7FY7785S/r8MMP19VXX61rrrlGp512miRp06ZNOvPMM5XJZHTTTTfpsMMOkyR98Ytf1HHHHaerrrpKP/3pT33BjWeeeUbnnXee5s2bp3vvvVcLFiyQJH32s5/V6173Ol188cU67bTTdOSRR3qvuf3223XxxRdrzz331D333KNtttlGknT++efr0EMP1XnnnaeTTz7Zey8AHeLiPu34ygxxd4dx7s1/oVTWQC4zNRuDyNlBq1r5qeq/nAbQLnvaqS+bVr5UVr5IUAOAX6VS8QU1RvIlr8dbM5kaJhhPpkbyfeynv5eU0V+t3KhDXzV/qjcHMeGeGcwCbf9Cbc4fQCOxytQ47rjjdMopp/gCGpK044476sMf/rAk6aabbvIev+qqq7R27VqdfvrpXkBDkgYGBnTRRRdJkr71rW/53usHP/iBxsbGdNZZZ/mCENtss40+9alPSZK+/e1v+15jvr/gggu8gIYkLViwQB/96Ec1NjamH/7wh23+XwNwcWmffnyZGgwOMc7NziyUODaSxN6bqfGp6DSNV9GhlFUL35R1IKgBwOXebm4ZK6rUUqbG+PWK+9ZEK1qZfhu3FqZwSxA37jjGnCrsUwZll4HGYhXUaCSXy0mSstla8skNN9wgSTrppJPqnn/00UdraGhIt99+u8bGxpp6zVve8hbfczp5DYD2UUt9+vH11GD3TytfXfaY3vv9u1QIKA9TV36KEjKJUvFHNar/0FMDHfJlaozXhwk6vwCY3twMi+GxogrF6mPm3NGIl6nB9SrRNo0Wva+zGUpQoeqV4bxGC+E9fKWgrOPqA/b4xm0mDsAvVuWnwhSLRf3oRz+S5A8sPProo5KqZatc2WxWr3rVq/Twww/rqaee0p/8yZ9M+JqddtpJM2bM0MqVKzUyMqKhoSENDw9r1apVmjlzpnbaaae61+y9996SpMcee6zh/8PY2JgvuLJp0yZJUqFQUKFAxN9m/h78XaaXitNTgf0fjbh8nkrWhFOe8+K08o3lj0uSrluxSm85YEffz9wgxtaxvAqFqS0/FZfPVBzkrcFgqVhUoSBvBFgslfgbTxNRf6aKxYKXrZEbn4AaGc1zPGHa4DrVnNG8f0Jy89aCN0mZVnnCv1+lXH1uqcy4JcnWbR7xvt46xhgF0rotY3r9P/1W28/q123/8MbQ5xVLRd/3+UJRhUJBY1b2aKk88bkmibhOodl9n4igxic+8Qk99NBDWrJkid785jd7j2/cuFGSNGfOnMDXmcc3bNjQ0muGh4e1ceNGDQ0NtfU7gnzlK1/R5z//+brHr7/+eg0NDTV87XS1bNmyqd4ETKLquKJ6ytoyPKKlS5dO6fYkTa9/nta8nJZJLrz3vvtVfIZVK9NH9XN/z30PqPKcf78/v7J2XEjSb264UfMHJnPbwvX6ZyoO7PP+smXXayAjvfhidZ8/9NDDWrruoancPEyy1j9TwcOc6667zvs6P5qRlNLNt92h1Q9xXcH0wnWqseoC/Np55IUXX9LGrSlJKd171x1a83Dj168eqb5+6+gY45aEundtSlc/k5bJAbzr3gc0+jTXkunugZdTkjJas7nxZ3/FS9XnGfffXx3r2Pe/zz+/UkuXPtfV7e1lXKemr5GRkYmfpAQENb7xjW/o4osv1n777acrrrhiqjenbZ/85Cd17rnnet9v2rRJu+22m0488UTNnj17Cres9xQKBS1btkwnnHCCV3YMybdlrCjdXS3jlu0b0JIl4ase0Ly4fJ6ueOFuadMGSdLBB79WS16zY+MXIDHOvuN6SdJrX3uwlhzoz4i84aoHpbWrve8XHXW09tp+5qRunysun6k42Jov6fy7l0uS3nziiZrRn9X1W1bogXUvar/999eSI/eY4i3EZGj3M2XOHa4lS5Z4X3/r6Tv00tbNOuSw12nx3jR3xfTAdao5G7cWpHtu9L6fO29brV0zLOXzOvboxdp3x1kNX//U2mH94+9vUyab05Ilb274XMTT2Z/xX2f22f8ALTl0tynaGvSK0orV0uMPSvLfc7g237tSeuoR7/uDX1sd447kizp/fN5jl1120ZIlr+nuBvcgrlMw1YsmEuugxje/+U2dffbZ2n///bV8+XLNmzfP93OTJWGyKVzm8blz5/pe8/LLL2vjxo3adtttQ19j3rud3xGkv79f/f39dY/ncjk+xCH420wvaSv7bHisyL6PWK9/nipWFfRUJtPT24ru6Mtl6/d7yqldnO6dY6PXP1NxUKjU9m9/X59yuYyy43XM0z20rzE5ovpM2e/Rn6uukPx/P39Yd33y+Kaa/wJJwXWqsdSYv8RlsSzlx8teDg30Tfi36++r/rxcEX/naSJfZl9DSqVrWeSNjod02l8yN5VOK5fLKVNO2Q9O62OK69T01ex+j22j8K9//ev62Mc+pgMOOEA33nijdtyxftXuvvvuKym4n0WxWNTTTz+tbDarhQsXNvWa1atXa3h4WLvuuqtXEmrGjBnaZZddtGXLFq1evbruNY8/Xq0FHtSjA0DziuXawGI4X9L/PfziFG4NJpuvUTidwqellOonG90mnsUSx0aS2LvXxK/MUUCjcEShfzxItnbzmH77+Nop3hoAvcRt8F0oV7xa933ZiadRMuNBUvdeBcm1Nd+4MTSmB7vlX6P71bAm4L5G4dzvAg3FMqjxT//0TzrnnHN08MEH68Ybb9T2228f+LzjjjtOkvTrX/+67mc333yzRkZGtGjRIl+GRKPXmBq85jmdvAZAa9wBwd9ccd8UbQmmQqFkN0zj5m66sG/kgxZQu/f5hXK5/kmIraCBXHo8usEYD1GwJyZf2ZKfwi0B0Gvc+81Csax8C0ENk/nlBkeQXFsL3IfCvwCv2GDc6p4aTDCjYgdFIt0yIHliF9T44he/qE984hM69NBDtXz5cs2fH17/9p3vfKfmz5+vn/70p7r33nu9x0dHR/XpT39akvSRj3zE95r3v//96u/v1ze/+U0988wz3uPr16/Xl7/8ZUnShz/8Yd9rzPdf+tKXtH79eu/xZ555Rpdeeqn6+/v1/ve/v73/YQCSGt8QIPnMyjjJv3oFyWZ/7lNuqSnVHwuFIoPJJLH3rpepMf4F5wFEwT6tFAmKArC42Z+jhdoq/P5sxn16nYy5XjGGmTbI1IDkD2TaC/Nc7uId860/UyPabQOSJlY9NS6//HJ99rOfVSaT0eLFi/WNb3yj7jkLFizQGWecIUmaPXu2vve97+md73ynjjnmGJ1++umaN2+efvWrX+nRRx/VO9/5Tr373e/2vf5Vr3qV/uVf/kUf//jHddhhh+nd7363+vr6dNVVV2nlypX6+7//ex155JG+1yxatEjnnnuuvvrVr+rAAw/UO9/5TuXzeV155ZV65ZVXdMkll2jBggXd+rMA04K7WipgfhMJZg8kmcycPuwJhaBMDfdYIPiZLPZKNZOhYc797GpEwb63yFO+DoDFvcfYMlb0vu5vKlOj+i+ZGtNHvsEENqYP+96i0ODewv1JOSCowbgXaCxWQY2nn35aklQqlfT1r3898DlvfOMbvaCGJJ166qn67W9/qy996Uu6+uqrNTo6qr322ktf/epX9fGPfzxw5efHPvYxLViwQP/6r/+qH/3oRyqXy9p///110UUX6a/+6q8Cf+/FF1+s17zmNbr00kv13e9+V+l0WocccojOP/98nXzyyR3/vwPTnTtZudd2M6doSzAV/JkaU7ghmFT2yul0YKaG//tGq6EQP3atYbP3TXArrA4x0Ap74mFrvtjgmQCmG3fsMWwFNfoyTfTUsMollssVrxwVkitPxjDkBjUaZWq431cfsE89BDWAxmIV1Ljwwgt14YUXtvy6N7zhDVq6dGlLrznllFN0yimntPSaM844wxdQARCdklMWYsc5A1O0JZgKdqYGq/GnD1+mRsD8gZu2TaPwZLF3r1mEQk8NRGmor1ZCZuPWwhRuCYBe45aNGh4vLZRNp5oKUGStG5dSpaK0CGok3RhBDUgaK1rj1kaZGiHlp+zHGdsAjcWupwaA6cmdyKZm6fRiDxKKrMafNiZq/E2mRrLZuzft9dSo/kuNckRhqK+2vmvDCEENADVhi2iaaRIu+RdjuGV0EX/uhLTkn8zG9DVqNYxvmKlR9z2ZGkCrCGoAiAV3lcIwQY1po1yu+NK5WbEyfdiTAEFjgrpG4ZM0afDk2i264s5nCaJ0mb1/U15PjfFMjSnZIiQNmRoAwoQFIprppyFJGSubg4nJ5AnqlUD5KUj+4FYr5aeCempQoQBoLFblpwBMX+7AgtrX04fbdG+i1ftIDjuAFTS54D40WVk8x1/8W0nVwesHjnrVpPzO6ShoDijtNQpnkIfOvW7BPP3svpWSCGoA8AsLajSdqWH1AiNTI3mCJqspPwXJP35ppVF4JSCowbkDaIxMDQCxUHImsLaO91h49MXNuv7hF6dikzBJ7H4aEpka04k9YAxK85/qnhr3P7d+Un/fdGPS8O0e8anxmuSM8RCFdx66q47aa74kaRNBDQAWM/Zwm4I3G9TwZWow150460fydY+RqQHJn13ROFPDfzNrghn2wwQ1gMYIagCIBfeCbiYv3/z1m/WhK+7TipUbpmCrMBnsuqQSfROmE3tQ4AY2pfrzwqSv3mec0VVmd9qrXb05IjI1EIF0OqWz37S3JDI1APiZ3k1uuSk3yBEmY2dqcM1KnK8ue6zuMTe7HNNTqemghvP9+L9kakwvazaN6iP/eZ9uf/Llqd6UWCKoASAWTBAjl6kOENybxifWbJn0bcLkcJvuNUrjRbJMXH7K/xiTBslidqeVqOH11GCMh6jMHshJkjaPUtYSQI25zvTn3EyNTMCz66XTlJ9KsmWPvFT3GOWnIPk/7416YlSc1VEmc4NG4dPL5//nEV330Iv68+/dNdWbEksENQDEgrk5GBgfSBRKZW21moUP5JobYCB+3BUuk9U3AVOvaNVrCLqpd8cJvkFAuaIvXvuIfvHAqm5tHrossPwUPTUQsYHxCUu31CGA6a3kZWr4xxjNNgqXpOx4YMO814/ueEb/9pvHI9pCTKW3H7xz3WOUn4LkX2RVaHBM1GVq0Ch8WnDLjq3csHWKtiQZaBQOIBbM5OZAX0abx4oqlCp6xaplmk6FvRJx58YwuLmbPuysnKB61OamMJNOqVSueKUiJOneZ9frslufllQdeKZS0Z8k3BVWiJaXqeErP1X9mr88omIWRYwyGQXAYu4x6spPtRDUSKdTUrmiUqV6j/LZXz4sSXrHa3fR7tsORbexmHTZdP1xQKYGJKlkjV8alSRz72VrPTXs8Q93vEkyPFbUkm/cosMXzNO//NlBkqT+JksaIhh/PQCxYFY4DY5PPpTKFb2ypRbU2MoKy8RyU/bpqTF9lCboqWF+7K6ElPwNOl/YONqlLUQ3mcGdHY5Kk6mBiJkM0FK5wvUFgMdrFJ5N+zIGW8nUMH01yuWKhvO1Enf5EuOWuAu6XpDxB8k/ZmlUei48U6P2GIv5kuWXv3tBz64b0c/uW+k91kqgHPX46wGIhaIT1JCkl4fHvK9H8txEJlVYk3gkn11qLGilkpnYNkENe6I7awU1nnl5uFubiC6qZWrUHjNZG8Q0EBW7Xj4TUgAMc9uRTqV8gYxmG4VLtQUWpXJFw2O18wvXsPgLCmqsHynUlZbB9DFaKOmptVv8i7Ja6KlhxjHNvh7xs2WsUPdYK4Fy1KP8FIBY8Hpq9NWCGiPW4GArQY3EclfoF4LqECGRfCudGmVqZNKSSr6ghv01q6/jLWXlapgAR5STBrc+/rKee2VEf37E7pG9J3rP507ZX4v3nl/3eP/4KuxKpZr1OWu8cTiA6a1slbgcyGU0WqjeS7RUfmr8mlWqVHyTWZQpir+gRVZjxbKG8yXN7GeabTq68FcP66f3PO97rFFmcTM9NQhqJIsd3Dbsa0qlUulKyeQk42wLIBZMpsaAddK3S04R1EiuUtltFM7N3XTha/wdsNvNxHYukwp4fvcHBCzG6y6zD+2eSSbAEdUuXbN5VO+97C5J0iF7zNV+O86O5o3Rc96w13zttf2susdTqZQGshltLZQ0VmCiEUCVyRBNp6qZ4htUDUq0VH4qXSs/tWWsVn5qrMi4Je7CeiW8vHmMoMY05QY0pMblo9wFOiZzw344aFEX4mvYug6YAEbOyv4byZc0g/NHS8hzARALZmK7L5v2Jri2WrVp6amRXPWNwpl0mi58mRcNyk9lAnpq2E9nlVM8BTcK9/+sU3c99Yr39ZNrKFOWZI3WvQ2Ml6Ci/BQAwys/NZ6pYbSSqeHdn1ScoAYB1NgLW2T18paxwMeRfLMG6iejW+mpUSZTI/GGrYW4hZBsL7SGoAaAWDA3jpl0LZpt99Ggp0ZyuTdz64cL3OBNFxMEJkzAK5uunhMqIUEQjpd4MnvN3yi8vn9KJ55aWwtkPL9+JJL3RG9qlM1vJixHmWgEMK7kZWo4PTXaCGoUSxVtGbUzNTjXxF1YadPNVvAK08v8mf11jzXuqeF8H9AonDFMsrxi9YQ1GXv2gs0814aWEdQAEAt2Q2DToM/OzqBmfnK5N3N3PLVO7/+Pe6ZoazCZwnpkGG75Kfs0YB82jVK/0bvM/vU3Cvf/rFNPrt3ifb1mE6srky08quEFNSgJA2Ccuc5kUk6mRiYT9pI6GSsQby/AovxU/BVC7i0piTx9jeTrA1qtZWpUfP9O9HrEyxNrtuj/Hn7J+94EMOzMPYIarSOoASAWCnamxvgKKfumkQtAcgXVEr35sbXs82kgrEeG+1h2PNBpHyuVCQIiUaDMbXeZ/W+XnzJfR/Wnf+rlWlCD0nbJ1ihTw6zCpvwUAKNkBdbtTI2DdpvT9HukrfKYdnYGmRrxV3D24WCmerxQPWD6Ctr3jTM1gn9WIaiRSJfd+pTve9OXx74e5EucP1pFUANALJiJhsFcxluVPZInU2M6COqlIPlXWCOZ/Df19T83h0Z2fNLAH8ioPY/m8nFVn6lhempEMcirVCp62io/FVTbFsnRqKeGKSfDvQQAw+upkUr5ssOXvGanpt/DaxReqShvZWfQUyP+3IUQg+PtFLYGrNbH9BC0MKJRo++6TI2yydSwXk9QIzHcfellaljXBsqgto6gBoCe8sBz63Xuf/9Oazf7y4CYrIzBvoxXP98OauSZiEissNJBrwznJ3lLMNmaz9SobxReYpVT7HmNwq3HsunoemqsXL/VadjHdSTJUg1SNcxxRWALgOGVn0qntH6kds9pevs1w5SfKpX9q3EpdRd/eed6MThelYxMjempUCoH3kM0Lj/l/5n5rhwynkG8uXMaJqhhn0uY02odQQ0APeVDV9yna+5fpQ9dca/v8REvUyPrrajcWqithMkXueAnVdjNIDVrky+s8Xft59V/TaAzLAjSrQFBWNo4omGvkjXSVtPVTj364mbf90UGEomWbpCqYUrYkdUFwDD3n6mUdOy+20uSDtl9bkvvEVZ+ilJ38efeM5hMjaCgxoMrN+qB59ZPxmZhimwN+Uy30ii81lOjudcjXtx9aa4J9hiX8tqty071BgCAzWRoPPDcBt/jtUyNdGD5KaLayWVuAGb0ZXyrqlnllnz2rV9QYMLL1AhYvW8HRGgUHk+VgPJTZl9HEah6eYs/I5BV+smWalCAytxX2OVExoolfW3Z4zpm3+30+oXbdn37APQWc+uQSaf0/07aT0cu3FaHLZjX0nvYjcLtySquN/HnZndWe2qk6ia3V64f0SnfvFWStPzv36g9t5s5WZuISTQastiulUbh5nt6aiSTG8w2QY0iQY2OkKkBoKeYiQWXCWoM9WW9tG97pb7brA3JYSYv583s8z1OpkbylSfI1HDLT9nPsUsdlwh6xlJt91uZGqn6UmPtcoPhlJ9KtkaNwk22lz3ReOU9z+vbv31Sp3/3zm5vGhLoi9c+ohO/9lttGaO+flyZe4p0KqUZ/Vm95TU7abtZ/S29h+mpUSxXfHXTud7En5vZZzI1hp3P/EubRr2vn3tlpOvbhakRtoCqlUbhFTI1Em39cMH3fZ5MjUgQ1ADQU8JWUpryUwO5jBfUsKPdZGokl7nQz5vhH0iSup98vpv6oEyN8Y+9mZC0n+MvP9Wd7UN3mV2YDsrUiCKoUSSokWSZRvWmHGZBhX0MrN44GvZ0oKGRfFGX3fq0Hntpi+56at1Ubw7aZO4jWjiV1PEahZf9mRqUuou/gtMofGC8p4a76Mre11tGCXImVVivt0bZ4nWZGgHvRVAjOdYNuxni1XOIPX4dI6jRMspPAegtzsDhgp8/qJc2jXqTm0N9GfVlAhqFcwFILHMzOHvAf8kaLbDPk87XUyPgnr7SKFPDt8qJYyWOzKDOXmGfiTCoYQYOfdm08sUyZcoSJpNKqWStgmyUqZHzemrUzhVzBnPe15VKpWGjccBm9+uZNZBr8Ez0sqC+Tq0K66nhTogjfkpOYGogpFG4fW9B5lZyhX2kgzLNDfcnI/mSXt4yNil9ATH5XhnOS5L6s2mNFcteyVN7TJMvsWizVWRqAOhZI/mifnzXc/rNH9bo3mdekSQN5jLeBKZ908gK2+QyN4O5TFr77FCrQxvWkA3JYd/HBw0KSl5PjcaNwrs1Wc04Y3LYGXwZk5UTYVBjZn81YEpwPFnSziinUVDCNAq3y0/Ntiajr7jz2Wg3DolmH0esso2vkpep0X5Qw1TVLVX8QQ0yNeLPvbfsy1S/Hyk0CGqQqZFYYZkajYIS7o8uu/VpHXbRb7weo+Y5jQIjiIdiqawNW6vlp3aYPTD+WHW/lig/1RGCGgB6ip3i/fwrW72vN43fBA721cpP2ZPaXACSyx5U/s/HjtKfHbqrpODyUxtHCnWPIb4mCkyYh0zpmNDyU0wexJLZhf5Mjeq/UZafmtFfXV5JpkayZJyJyEbTkjmv7n3tXmKoL+N9/dlfPhzptiHZyiHXIsSLyQZtpZSdK7z8FOOWuHM/27PG4+Bb8/7Ahb2vydRIrtCgRgs9NYz7nl3vfw+uI7H39MvDqlSkGX0Z7TC7WlLbjDsIanSGoAaAnmKvyA1qpjarv9YofMS6aaSnRnKZC34mLfVnM16TRjdT4z9ue1oHfeF6/fyBlZO+jegO+x4+aFDgTjiElatiMBBP5YBVspmA/int8oIafdVMDTL+ksU9Qho2Cvd6agRPRr/pT7aPctOQcP5SiFx/4srcd3RSec5cv6qZGlaGOUH02DPHxz+ctK/+/T0Ha/Z4UIPyU9NT2Ee6YVAj5EdpJ5BKxl/8PfpStSzlPjvO8uayvJ4a1v6lp0br2gpqZDKZjv/7whe+EPX/C4CE2bS1ftX9rIGc+rLVC73dU4GodnKZyQFTYmgwV1096/bUuPB/HpEknXPl7ydx69BNEzXKM4+ZPjv2cyoTvDYKDDG6K+jvG2mmxnjd2hn9JqgRfIyR9h9P7mRBqkGuRtbrqRGcHTZ3qC/ajUOi+Xs6cf6Iqyh6amRCemqQqRF/5hpx0qt31An7b++Vn2rUKDxobItkqLSTqRHyGjc5jOtI/Jl+GjvNGai75ywS1OhIW43CK5WK9thjDy1YsKCt1958883t/FoA04A9bhgt1pcXmjlQy9SwscI2ucyF3qxaGfCCGvTUSDr7Xj+oNJC5yc95QY3azyajpwa6ywz2/OWnOuupsX44r9+v3KA37rOdxgqm/FRwpka5XNH7LrtLT6zZouvPOZqJ7Zhxyzo0bBSeNpkatWPADmZxvUErKD+VDOYcEEX5qVK54rtu0VMj/tzjo398eDqSL+nZdcN6YcOojtxzW19Zw6vuX6l/Ou3AupX4iL9IMzWcGxbGMfFn7iMHshlvYaY5Nuz7BBbqtq6toIYkvf/979dnP/vZtl6bdjv3AcA4+xLurnSRpFkDWW/Fvo0LQHJ5g4bxg2Ogj6DGdGFPSgatavSCGtmA8lN2gIPBQCyZveYrP5UyvQ/a26f/cv2j+q+7ntNfHrmHV7Zwpump4Rxj9z23Xrc/uU6SdNOja3Xqa3dp63diatRnaoTzSgFYJ46iL6jBPQaaV/JlCk7hhqAj5YDAeqvsoIZ9TqH8VPy5jeRNG6aRfFFv/JebJEnXfuwoXwCrUpGWPrRaJx+486RuK7ovLIDd6H417CfuezGOib+t+erNQH8uo+x4Gbp8QPkpSqq3jugCgJ6SskYOpjm4bdZA1is/ZQsqG4JkKHl9E6qXrIFsfaN4qT5VF/E3UQkPc2x4mRohq2O7tcKJBbjdFZypUWu62o7/uus5SdKP7njWC4YP9QWXnzKp4pL0hxc3tfX7MHXqjpCGPTXqy0/Z55CxgMxRIMxklD9E95ldl+mk/NT4a8sVfylDyk/Fn4mBm/uSvvGZNXt88uCqjb5MDUm6++lXJmX7MLnCzvWNsvXCfjTmLKQgUyPePnnNg/rabx6TJA3k0t649dO/eEhPrNlMo/AOtZWpsXbtWg0NDbX9Szt9PYDksocNW5ygRl8mrf5sJrD8VL5UVqVS8QVFkAwlL727+v1gSKaGfbv3j9f9UScfuJMO2GXOZGwiumSiwITbU8N+ykT9OND7zC60z+pm8iCKAZ4ZOMwMKT9l17UtFDmGYqeFnhq58VRAe6LRDnCQGYhW2HOYYTXT0fvKzkr8dqS9TA3/dYvFWPFnghVZJ6jh7lv3fmXBtjO6v3GYdGGn+saZGsE/c1frU8Yw3n5y93Pe1wO5jK+k4T9e96jTKJz7zVa1lamx7bbbanBwsO1f2unrAUwPm0f9zdRmDVQnnoKCGhIDhKSqBTXGe2pkq0GNrc4qFvt+79u/fVKfvObBydlAdI29Txs1CjfnBHsVJI1a48/sNTtYbSYP2h3g2XNTZtA4NB4orQtqWBPZpTIrp+KmlZ4apqxlwXcOofwU2uMLqjMZFVvmnqKT/gcmU6NUcXpqcE2JtUqlUmskb3pqZIKf6/ZPMUF0JEvYfWmjzOKwy4O7Wp9MjfhyF8UMZDPKWueAvmzKd234zzuf082PrZ207UuCSMpPfepTn9Jhhx2mV17xp9IVCgWtXLkyil8BYJqwL9qbnUyNiYIa1CBMJjeo4WVqBPRcsT24amN3NwxdV6mETwDYA0ovqDHJ5afCq+EiCmYgaE9Gm8mDdpus2mVE3Ebh7nv6MjUYUMZOKz01sgGZGvYgk0wNtIJMwWSo9Uxo/z1y4yVTC8UyjcITxP5Ym/uKTCq4qbx7D5pn3ydSWz01Ql7jBjV+88hL7W8YptSLG0d93w/k0spZ/WGH+rJ1ix/+8gd3U4aqBZEENZYvX65SqaR58+Z5jz3wwAPaZZddtMcee2jhwoW66aabovhVABLOnrjcPOZmauQkSX0hK1wKnPwTyQtqjA8aBnLVS9co6ZmJZ48D3AkAe3LANAovhWZqcG6IIy9Tw3qs00wNu4zIWMlffsoNjNtBDeqfx497hDQqT2lWztoZn75G4Vxv0IKwUoiIF28lfgflp/rHgxpjTlDDzQxEvNjjVbPYIpWSBnP16Rru/QP7PpnCYhcNMzVCHnfvRz/3q4fb3CpMtXXDY77vB3L+TI2hvkzg4gfKUDUvkqDGM888o8MOO8z32AUXXKCXX35Zb3jDG7RhwwadfPLJevLJJ6P4dQASqlKp+CYU3EwNM/GUJVNjWjH71azGHxgfMGy1MjWYcEymSoNsC3tVS19Apkaj1yIevJ4a1oSSmVxqd59ai6O8VVBepobznvaAglW18eOugGzU7NdcX+zJprIvU4NrDJrnz9SYwg1BR8pOpnA7vIU4hZLvvoWJ7Xiz18pk0/4JSltK9fcWLMJLprCsi8aZGsGPjwUcI2T9xVPe6ck3kEv7gllBgdAvnnqAt5gXE4skqLFp0ybtsMMO3vcbNmzQsmXL9K53vUs333yz7r77blUqFf3zP/9zFL8OQEK5F323UbgpP2UGCC7S9JLJBLfMxd1c/O1yICMhpUE4JuKtUV8MX6ZGUKNwO2uDgUAsmZ4I9nySWd3UaJ9+9pcP6TO/eCjwZ/bE9h9Wb5IkzRifhCiVK773HbMmsgmMxY+7x9INRj1msUQxJFODwDla4c8a5NwRV2bfdZCoof7xPnBupgbXlHizA1R20MudoPzNH9boX/7vUd9jBLSSyXykd5jdr8V7z9fe28+U1LivkrnPdQOnQceIOy+CeHDHrwO5jEbGavsyqKz6jL6QBj0IFElQY5dddtHLL7/sfX/99derXC7rQx/6kCRpr7320tve9jYtW7Ysil8HIKHclbCb6oIa1UntnecOBr6eTI1kGh6/8M/0glomqFGue07YaxFP5QY9NYKCGvZj9umEyYN48jI11HymxoaRvH50x7O64s5ntWEkX/fzoIavJlNDkgrWceYrP0UJs9hx5xEarbbOmV4t1n4u+1ZVcw5B8yohAXbEi9l1jbK8JmJnatjnF84p8Wbfb9rlydxMjd/8ob4Xwhjj1UQyx8TM/qyu+MAR+stFCyQ11yjcvT0JWpT3f4+8GMl2YnK5Qa3+bFrDVrWJoPkr9zyCxiIJahx44IH6v//7P5VK1Z3z4x//WENDQzr66KO95yxcuFAvvPBCFL8OQEK5J/Wtebf8VPUEv+PsgcDX3/zY2u5sGKbUFhPUGN//ZhVUvlRb9TY8Fpyp0Wh1DOKlYU+NTH2fhcokNGrl8OquWvmp2mOmzEPYPh2xBwoBg8KgiW07qGEfZ3b5KSag4q9RXfysV34qeCU1iybQCl/5KS4UsWX2Y1AwvFl2poYdGyf7K97se5BMg/JTQQpFzglJZMYd5njINFEu1fzEvT8Jun/9h6tW+KoUIB7cvo592bRv0WXQPh3qy9Y9hnCRBDXOOeccPfvsszr++ON15pln6tprr9WSJUuUzdZ2xpYtWzQwEDwRCQBS/Q2+W1Kof3wye+8dZnmPzR6onWc+/z+PdHHrMFVMuu3M/mqmzoCV2m1uBMIyMqg/Gm/lRj01AstPBZf84DiIp0pAC8XMBEGNJ9du8b62AxxG0MT2jP7aOcVO+adReHwF1bZuFNQwgVFfpgblp9CmsFKIiBez7zopP2UyNcacTA2CXfHmz9SoPT7YTFCD60kimUPC3GuYRTjNZWo4QY2QY+TlLWOBj6N3uYvychl/pkZwUINMjVZEEtRYvHixLrroIt1222267LLLNHv2bH3uc5/zPefee+/VTjvtFMWvA5BQ7kpY937fTDrMGczpln84Vtd+7Cj9+u+OFpJti1N+qj9bu3R5QY08QY0kathTw6ygTAVPdDd6LeLBHSBK1r4OmRB632V3e19vDRgoBE1sD+Ws8lN2pgY9NWIr6PBoVH4qO95ww15BW3TOJ5xH0Cx7EovjJr7Mdaaz8lPjJVOLJV/TeIJd8Va2VuWnrOMjqOmvq1Aq6zePvKRPXsPK+ySp9eCpHg/pdBOZGuOvybo9NUJ6Qm4YKXS8nZhc7j1ANp329dQIagrP1aE1kQQ1JOlTn/qUVq1apZtuuklPPPGE9t9/f+9nTz31lO68804dfvjhUf06AAk00coVu5HSbvOGdMAuc0L7ayA5No9Vb+BmjpeISadTXmBjq5epEVJ+ikFjrNkTk2GZGpl0ypuo9q2ObZDlEdn2deVdYVS8AWLtsYkyNWxBmRoB/fjUl02rzys/VLsO2ZMN7kor9LagvdWogoxZNGH3VHGPMVbXoln+rMEp3BB0JGwVdSvM/epYoewrQ0KgPN7M/nMDXo1WWNvlcz/4o3v1k7uf18/uW9m9jcSkKluLrSQrU6NBVpY3lsk0l6nxynB9rzj0Nvdc35dNBY417FPJbtsMTcq2JUWkxbq23357bb/99nWPb9q0SWeccYZOPfXUKH8dgISZ6AY/FzQbhUTbMJLXyvVbJUm7bVMLYA32ZTRWLHvNwsNWOhHUiDdfYMK5wbeDGubUYK98rIQEOBAfZq+1G9TYGhTUCJic6s+mlc2klC/5gxdbrJVUNAqPl6DyU6mG5aeqJxF7/7vnjXyp7Ct/CIQJC7AjXsx1ppOeGnamhi/7i/vTWCt7x4b/8Ublp+bN6NOqDVu1aWvt3mIkpHwu4scNgnqZGg0WxZS8TA3/gRS0el+S1o8Q1Igbd7ySy6T1r392kN757TskyZvLyKRSuvH8Y7Rxa0E7zqFtQyvaniE8++yzdfPNNwcOGlwHH3ywLrvsMp1yyint/joA08BEqyD7CGpMO4+s3qRKRdpj2yFtbzWIHxhvvGiCGWHHDivh4q1Rs++StUqulqkR/HxW2ceUaRQuq/xUKjyo4T4WVH4qaGK7L5v2JrW3Fkp6aNVGlcsVX1CDRuHx0ureyppMjVL4SuqwchCAq0RPp0RwV163w87U8PXp4biINfO5diejhxoEvufN6JMkPbNu2HuMQHlyhGVqNOqfU/aOo4kbhUvSpq2Un4qboKDGYQvm6ZNv2U9SbS4jk055lUjQmrZnCC+99FIde+yx2mGHHfTBD35Q//u//6t8nsghgPZNFNSYP6sv8PGvvusgSdJe28+MfJswtcxK6zmDOd/jZiXU1gmCGqyQjLdmyk+lrfJT9rzzZDQKb2ZhB9oXNKGU8WoU13/m3cHeSEivHVc1qFF930/9/EGdfMmt+uaNT2jLKJkacdXqR9NMTDVaSU1gC83yBeS5TsSWOQV00lOjbzyokS+VnT49HBdxVgoJeDXK1Jg7VB3LbB6t3avYXyPevD5w4wdFusEiHPc1bs8vM65NpfzHWJ77kNipD2pUd6i5NoyOB7Aa9X1DY20HNV544QV961vf0qGHHqr//M//1Nve9jbNnz9fp59+uq688kpt3rw5yu0EMA2EraZ+20E769SDd9YpB+4c+PM9tp0hKXxVA+LLpN+azAzDS+cfD2qYm7x9d5il4/erlUFkhWS8NWr2XfZStlPejWAlpI45E9Lx5O1Oa0IpqEyQsdEJagSVpQuaSMqmU9773vfseknSV5c95i8/xUAyViot5mqYQWaxUaYGPTXQpHKD4Bjio2wtnmiXCZgWSpVJWWyByWGXQLU1ahRuMjXsPoCbRyk/lRTeYqvxe9ZsE+VSvfJTTk8N85IlB+ykR75wkk47ZFdJ3IfEkXsvacYb2YzJ4hvP1OggeD7dtR3U2H777fWhD31I1113ndauXasrrrhCb37zm7V06VK95z3v0fbbb6+TTz5Zl112mdauXRvlNgNIqLAL9V8euYe+fvprvZO/ayA3flEoBvdVQHyZScn+nH/fm31uMjlMQGvfHWfpsjNepx3HS1UxaIw3f7Nv//mhaA0ozX2gvb/9K2W7uJHoGi+mYT1mBn7FcqUuU8ZtrGjq1Nrcc8K+O8xSKpWqG1BKbk8NDqI4aTlTI1ObeDTcyeiwxp2Ay99TY+q2A50x9yCdzDXZpe3s6wjXlHgLC2o0ahQ+o7/azta+t9hEUCMxKk72TjM94Mohx5GRSlUX8gUtvEA8lJzxqwlq9I3v0+HxrHKTuYHWRfKXmzVrlv78z/9cP/vZz7R27Vr98pe/1Omnn6677rpLZ555pnbeeWcdffTR+rd/+zc9++yzUfxKAAkUVtphonS8/vFV/GFNtRBfZp/2O5kaZiWUW37K3Ci00kwYvcvee+5KeX+j8Pr97V8R2Z1zA0dXdwWVn8pZ9avdSSE3Wy/o8+9mavzyrDdU3zcgaO7P1OD6kmRmRWWjnhpk66BZrMhPBrOKuqPyU17AtOwLtpLBE2+hmRoNghpBx9EWGoUnhvlIp5xG4Y3LTwX31DDMe5l7VMpPxU9opsb4eGZkPHOLoEb7Iv/L9ff365RTTtEPf/hDvfTSS1q+fLk+8pGP6Nlnn9U555yjhQsX6tBDD4361wJIgLASMW4TNpfdhA/JYjI1BpxMjdkD1bq0poa+aeBqbghqdfe5+YuzSiV8VWNQo3DfhIFdfopBQCxVnAGi5E/Rd/dr2DHS6DmmlF0u4Dpjv55+CvHSaqaGuXbYx4fbC4GyD8n15Not+p/fvxBZn6SyrxQi5464Mrsu3UFQw2SBueUQuT+NN/se1NaoUfhrd59b9xjBreQIbRTeqPxU2Tw3eK7DHF1ZMjVia6KeGpvHA5tBi6vQnGw33zydTuvYY4/Vscceq2984xu69957dc011+gXv/hFN38tgJgKmzCYMFPDKj9VqVR8E2CIt7BMDdM43NTQN8eOSeU0xwyTCfHWaLVrcKPw4NIxUR4HNAefTOOlP6xH7KBGoVzWoGrnBvcaEjRpFDa4zGUbXzdYbR0vrfbUCMrUoPzU9HH8xb+VVA1ynrD/Dh2/X6N+UIgPb5Kyo54a1de62eTcn8ZbKeTYCMrUuOQ9r9XrF26rR1+s7znLcZActaCG0yi8wT72MjUCSqBW36P6b87K+EK8hGVqmEVVeWdhJlo3qX+5ww47TF/+8pf1yCOPTOavBRATYSthcyEXesNMeJcrrHxKmrBMjTlD1aDGjY9WezaZdFzKTyWLPQ5wM7nMvrUbhYetjo3yvMD4c/LUMjVqj/nKTznXjEJd+an6wZ89UX3eift4Xw/lGq/zodl8vLT6OQ1qQF/XKJwSl4n3++c3RPI+pQYZP4iPWuPf9t8jF5Kpwf1pvIX1QgjqqbHTnAFtN6s/cDzLcZAcbmaXCVQ0ysYxY5Xwnhqm/JRZeMHxEjf1mRomqJEOfByta/kv99BDD+l73/ueHn74YUnSI488ojPPPFN/+Zd/qeuvvz7yDQQwfbSdqWFFtn/+wCp9+hcPspIhIUyjXzdTw+zz+55dr82jBW+VQ86Un0oR1EiCsBJS5XLFydSoPR702iiPA46oyePWJ5b8+9tNwy+4PRCCMjXGB5Dffu8h+sgxe3mPz+gPLxkhcS5JOruZr8nGcicimExAs+yMPmIa8RVN+anqa0cLbqYGmZ9xFlZ+ajCg/NRQX3XRRC5gJTa3FsnhZnaZ80ajhVX2Aq0g5vAy5alYYBM/YeWnBpxzBZka7WvpL7d06VIdcsgh+sQnPqFDDz1U1113nd74xjfqmWee0apVq7RkyRL95je/6da2Aki4sLr3zfbUkKR/uGqF/vPO53TVfSsj3TZMjbFicKbG+pG89/WazWN1jcKbac6G3uf21KhUKrr18Zd14Oev18/GP+PZdMrb3/bu7laj1jKTVZOmElB+SqrVKC+UKyqWyrrjyXUayRcDMjXCy08dtNtcX8B8qL9xpgbnknhpdW/VJgwqevPXb1ahVK7P1GCxROJFVb2U8lPJYC+eaFdQvyb3/RE/rZSfMtkbfQErsSk/lRxuZlczPTXM/g9bpZ+Sv/9CocjxEjfuvaRZqDXgLNjsm6AyCcK1FNS46KKL9A//8A9at26d/uM//kN/8Rd/oQ996ENatmyZli9frvPPP1///M//3K1tBZBwoZkaE5zkU6lUXXR79YatkW0Xpk5YpsZ7X7+H9/WGkbx37JgAVzM3kuh97t4rV6T/d/UKbRkreoHLtNUo3N7flS5NKjH+nDxB5aek2ue7WCrrWzc9qfd870599Mf3111DGgU13NWVM/saBzXY7/HS6gpoeyLqsZe26I+rN9dNNtFTI/mimlLwlZ/iPiS23Ma/7WjUr4nSZPFldl1do/AGQY2giWuCGsnhZnY1UwrZ/Cwow0eyMzXGs0nJ1IidoFK4Uv2CTTI12tfSX+7hhx/WGWecIUl617vepc2bN+ud73yn9/O/+Iu/0IoVKyLdQADTR1hph7CUTFu/cyFwy5AgnsZCemrst+NsHbjrHEnS869s9SabTEpnWKbGD259Wid89bd6au2Wrm43ouGWfymWy3X7dPZAzhtUTkZPDQagk8dtumh4QY1yRf9x+zOSqv113PO+e6xUKhVvBbW7unJoovJT7PdYaXVvDTkTCv25dH3PFoIaaFIl5FqEePHq3XdSfopMjUQy+849NALLT41nggb11OAQSA43COoFNRo2Cq/+OxAQDLPfq9YonAMmbuwx6EWnHuB97ZafoqdG+1r+y6XTae/fgYEBzZkzx/vZrFmztHHjxui2DsC0ElYncqKeGlL9Sn4aeibDcL4oSZoRUBpmxcrq9ebvrvydrrl/laTaDYE96Wn7wrWP6PE1W/Tn37ura9uM6LiDvWKpUjf5fMx+28nMGYQFNbo1ccDQYnK4kwZ2U2d7H7jnfffzb3/rTlLNmCBTg8mneGl1HjmovIw7EUFQA82i/FQyeEHwDoIa7kS2vQiLYyO+who8B2VqmEBH0ErsRk2kES9uH7hmMjXM/ncXVhim/JQ5j7i95ND7SuOBqL9540JfpYl+Z8HmROXWEa6lv9yCBQv0+OOPe9/fcccd2n333b3vn3/+ee24447RbR2AacWsipw14J9calSP1nAzNaJcmY2pMzxWzdQIauK7346z6h4zk51BK/dtL24ajWoT0UUVJ2xQLFfqBoBzB/us8lO1x/1fU34qjrzyU05RmKCmzuZ7m7vf7e/dsoZBgVMbq61jpsPdlS/WZ4WxQjKZfKXKnMnri659RO+77K6WryH+AHtHm4cpZPZjJ71Wss7qW/taQ1AjvsKayLvjUak2uU1PjWQLzdRoVH5q/DVBvVik2rmnlqlBUCNuzJyUW3nEzdTgXNC+loIaf/M3f6N8vtac9YADDlA2W7sw/+///q+OOeaYyDYOwPRiMjXmDOZ8j0/UU0Oqj3Zz0U8GL1MjYBX1Z07ev+6x+TP7Jclbuc+AMd7c+7tSuVI3sdiXTXsDB3tyqtKlTA1uOidP2ISS3dTZl6lRcjM1woMcbqaGe91xcS6JFzcg2qp8qRbUMOcX7iuSyV4E495tfv/Wp3XL4y/rjifXtfSedpYPK7Hjyz0HtMOdyLLLE3FdiS+3KbSRSqV09UeO1Plv3leS9Kr5M7yf0VMj2SpeUGM8UyOg35/L/Ci8p0b1PbKUn4qtWlaX//Pv7nPuMdvXeFma42//9m8b/vwrX/lKRxsDYHozF+qd5w5q5fpao+/memr4LwxuLWzE0/BYePmp3ecN1T32+oXzJNUmPd0byVSKlfZx4g72iuVyXbPe/mzaG1SWQspPhZW2a4e9Ra02I0Zrao3C/dcAOw3f3gXuYK8uU8N6sjtJteOc/sBtSKeqg85ypbq/3W1Bb+r0o1kolr1zyEA2reF8ibKWCdXMREKhVNbNj63VN294Ql/+09dor+1nNny+ffzRjye+wlbjt8KdyB7sy3j3ohwb8eWtyg8Yox66xzwdusc8/dWiBb7MjVxg+anubSMml9uzrZXyUxNnarC4Iq7CMjXca0Oee8y2UbgLQM8wgQh3sNhcTw3/6YyBQjKY8lNBNWrdMmVnLn6V5g71SQpvFG6vxh4rliLdVkQvKFPDrSfbl01b5aeCS35EOWgkkDF5zF/avQLYK9YalZ9yg9v28eFOUu04ezBwG+wa2CyqjY92dpW9ai5fKnvHjykRwArJZCoUrUwN67Tgnuv/8gd36+5nXtGH//O+Cd/Tzs4gUyO+vNX4HWRqZNIp32r+gVy6qRXc6G1lZ1V+kJn9Wd/EZXCjcI6BpKhl7zQf1DA/C8vUcBuFs2gzfkxPjaD5rB/99eHe1245KjSPoAaAnmFWU+fSKS3ee773uFsmJIgb1OAeMf42bi1o1YZqxs7MgEwNN3vjxFfXejplQ24kB6yMHhMwQe+qy9QoBZefMgMI++ndytRgDmLymEnF+vJT45ka5XLD8lPu59+eXHQHFzvMDs7UsGtgMwEVH+0EH//xtNd4XxdKVqbG+EDTzRJDMoyVavcC9jnCLktllzN7Ys2WCd/TXljDIpv4cmvkt8vuq9GfzTQ12YneZnZdM2NUI6hHJEGN5AjtqdFgH5vXhGZqyN+PhQV58WPuJYKCGkfvs50+fvze2nWbQX3o6IWTvWmJEWlQI5/Pa/369VG+JYBpxExWZjNpvTJc69/TzAqpfie6XSKfN/auXfGC9/VQQFAjl0n7gln2Khdv5b5zI2l/z41h73PH+8Vypb78VCYdOEHgD3BEmLLN+HPShJX+8K1Ya1B+qlgO//y7l5XZIT017GsLkw/x0c6eevvBu+jQPbaRJOWLFe/4MT27KPuQTPZ5o2CdMzrZ3+71B/Hk1ULvsOxgzrrg9GeD71kQL+00kU+nU3XNwll4nxzuPav9OQ9baOEunnCZ42vOUPUedePWQlSbi0li5qTCyqmfe8I+uvX/Hac37DU/8OeYWCRBjeeff17HHXechoaGNH/+fM2dO1fHHHOMzj33XP3nf/6nHnnkEco1AJiQKSuTzaS0346zJTV/s+hmariTWYgf+7Kx0+yBwOfYGRz2KpewTA17kmK0wARV73PLB5XrJpr6smkv8GlPOrv7fvNoMaIt4twyWczfur78VK22sL03TEaO12PFDWpYq6Xq+3SkA683ZGrEU7vDDrtuddkpC0FQI5nsXil2eUO7vnWlIu00p3Yf8vTLww3f074WUX4qvsyu67SXkj9Tg6BGErilhpplguQGc2TJ4Qa67GBo2Ed94vJT1ffYZjyoYS/6RDw0ytRANFpqFB7mb//2b3XTTTdpt91207777qtnn31Wt9xyi26++WbvJmBwcFAHHXSQbrvttih+JYAEshspfXLJfpo1kNXph+/W1GvdOqWsqI0/M7nw1gN3Cs3WsVe22H03wgaMdi3S0QKZGr3OTbgaK5brJiv7sxlvEts3keQ8cdPWgubN6Ot8mzi1TJpao3D/46aEQ7Fc8QU8zHxkXzat0UK5ruyYF9QImYTIZdJ1jfrsgDllZOKj3eBj33iJwnyx7N2T0FMj2exglb2P7azAUrmi2QM5rd44Kqk6sfSq+TNC37NRgB3xEVX5KXuMMpCrlZ9irBJfZte1OlE5mMv4FtlwDCSH1yjcZGpYn/tiuaxM2h+42DRa0JNrqwHysKCGsc14z8hNo0UVS2VfoBS9zXzGwzI10LlIghq33HKLXve61+nWW29VLleNIg4PD+uBBx7QAw88oPvvv1/33Xef7rnnnih+HYCEMgPLbDqt+TP7deHbXt30a7NOndJGjbT++OImXXnP8zrr2L207czgOuqYemPjk4tuFo4ta90w+spPhQQ17EmKsSKrbnudO9jbmq8PRPVla0037d3tjhM3jUaTss2quslT25/+gYCdqWGfA0yKdy5TDWq4C+trTV+Df19/QFDDbvJZ4ZQRH21+TPusY8tdQUmmRjLZ9wX5kABHoVTRcL42ETlR+Ur7UCEYGl/liFbY2mOUfuuehazy+DLXh1aTeNwyQ1xWksMNgto9VIKC23/9w9rcaFhPDRMgmTOYUypVHdts2FrQfOYvYqPoNQonENUtkQQ1+vv7dcwxx3gBDUmaMWOGjjrqKB111FHeY/k86VIAwpkLvpt10YxsC5kaJ339FknS6g2j+vb7Dm35d2Fy5JsIati7uZnyU0Vf+SkyNXqd+yneGrDP+rJpLyvU3t/uOSCqOrTMQUwes9renU/KWj017KDDyHjQqz+b1mbV91aaqD56XzYtjQU8No7Jyfhod0+Z48nfKJyeGklmnybsUlT21/lSyRdUH5ugfGWF8lOJ4K68bpc9RqFReDJ49xMtBrwGKD+VWBXnmLCPjaBMz3ufrfUiHurL6IIlf6K1W8b03Zuf8h43p55sJq1tZ/Tp5S15PbtumKBGjJSsSiTojkjCRW9605v06KOPTvi8vr7Oyz5g+vm/h1/Uf9757FRvBiaB3Si8VW7jtWZWPz30wsaWfw8mTy1TIzwl1564to+BoEbhpXLFNyFNpkbvcwMTQX1Q+qz61FJtAqm+/FT0PTUoG9Bd4eWnzCrXcmBQw5wL3OvARHVt+wICqDlfJgj7Oy7a76lRPQbGrPJTpll8ocj+T6KwUlG+slTF1jI1GpVCRHzUsvs6m4yy708HcvTUSAK3KXSz3EwNzg/J4fbgsSexJ/qsp1MpnXn0Qp19/N6+x+2j63UL5kmS7n56vRAf9NTovkiCGhdccIGWL1+uu+++O4q3AzyVSkV/c8V9+vQvHtJz60amenPQZab+eTuRbDdTo5mBAveRvc3Urm42U8Nu5BiUqeGusiVTo/e5n9HATI1M2reS3wwQ3VNAVOWn7CXgbs8PRMv8qVNO+SkzMHBXvg2PVScdTXDCvQ5MVEokFxBQz1rHF5MP8eH21JjZ31xyei1To0Kj8GnCF9SwvvaVqyyVfUH1oAC7zV9+KoKNxJSIqqeGL1MjR6ZGEpS8Y6PFoEbWLT/FMZAUtebx1e/T6ZT3dXGC+wdzTnDnM+yA6s5zByVFl3mOyVEiqNF1kQQ19t9/f/3kJz/RO97xDv3kJz9RqcREEaJhr6zNc1wlnqk5GDSxNBG3pwY3ifE2ki/q6vtXSgpePW2ETTIF9dRwV20T1Oh9dfssoKfG7MGs76bfDDTdkh+bulB+qt1mxGiOSeV3y9DmvPJTZd+EpMnUyIVkapQmKBcRFEDNplNMQMWQneXz1XcdpOvPObqp1/Vlaz01ao3Cq8dFnqBGItkfa/trO2g65twvTJSpQfmpZGh3Nb6rrqcGjcJjr92AV39d+amotghTrRIQ6MoG3I+u2zKm7/z2Sd9rzWtyzg2vfXiZgMdEARL0FrNol6BG90TSU+Oll17St7/9ba1Zs0bvfe979fGPf1zHHHOMDj30UB122GE69NBDtc0220TxqzDNrN1SK25Nc53k8xqFt9FTw+3D0czkU4djFHTRi+NZGlLjUmJhgYnATA2n3BTlp3qfOxkUlKnRn814AVGpNkA0A84ZfRkN50vRNQr3lZ+K5C0RwpuYDmkUXixXfJ9xUx4mLFOjtoqu+fJT1UyNlKQKQY0YMXsql0nrTw/ZtenXpa3+POb8Y1bWkqmRTGEBCHt/b3UC6hNlaoSVtEK8tLsa32WPUQZymVqjcNJ4Yqs8wf1EmLpG4UQ1EiOoB082nVJe/s/6x3/6gG57Yp3vtWaaKz2+kMa7bliHlwl4NFNiG72DnhrdF0lQ4yMf+YiWLl2quXPnasGCBXr22Wd19dVX6+qrr/bKgeyxxx467LDD9N///d9R/EpMEy9bQQ0GBclnLtLuKoVmuH04OF7izZ5cHBkL74UQFpgIWlldcGoFuSsv0XuKzj4zQY2hvozOO3FfHbvf9pL8Awizz82unzvUp+H81uh6atiZGgxGu6pSqR/USbVVr8VyxZ+pMTbeUyMbPPAzh1PYwCIoqJFJiVW1MWSOnVaHkFlrX9cyNUxQg/2fRPZpImwhhBtQn7inhvWenDdiK7ryU8GZGhwb8WU+4603CqenRlKZfWnHucw9hT2ecQMakrxAp1QNggYtwqkt6GGBRZxQfqr7Iglq3HDDDXrNa16j2267TTNnzpQkPfvss7rvvvt8/1199dVR/DpMIwQ1ppeOMjWcCwUDhXiz79eGA0oOGWFBjaBG4e6EFBNUvc8974+Nr46dNZDVXx/1Ku9xOw7qlZ8a/3fuUE6rNmzVFXc+qw8c9SotmD+jo22yB6CcZrorYKGapNqq12KpHJypkTGZGv7zgxkIhjV9DSp9OHMg5w02uQ+Jj7Am8xNJexMQFe9cMthHpkaShTX1HrP290iLmRol33WC80ZcTdSHqVl2IN0X1OCaEltBE9jNGHAWTzA/nRxeoGuC8lNB7PvSXDqtUVUPDPvwqpVe5bwRJ16mRhvzW2hOJEGNTCajk046yQtoSNXMjD322EN/+qd/6j323HPPRfHrMI3sus2Q9zU3fslnLtLtDB7aydRgnNm77AkBt+xDM8yNg6+nhjMhxTml97n7aLTo75lg2CuZKuO72RxCc4dy3s++cO0j+sEZr+tom+zzBivsusv8dd3yDubzXSj5S0KZc4WXqeEM/Mz+aqWnxjZDOW+wyf6OH7d02US8TA2rtJk5LvKULEyksKCGnalhl8OVWuupwb1GfHmB9Q7LT9lZgDQKT4Z2V1+7GaHcVyRHrQ+cv/yU5L8f7cuk63p0BWVk1D2ert37Ij6K3rmCUvrdEslfdvHixXrqqacmfN7uu+8exa/DNHLwbnO105wBSdz4TQdmH7fVKLyNnhroXfb+22PbodDnvWaXOZKkBc5z0gErq91VtmTz9L6w5u7uOcJeFeVmauy5XW3BxeaI+moYnGa6qxKyErJWfqrs2wcmU6M/tKdG9d9MWE+NgGvPNkN91gRUa9uPqRNJpoZTfoo61slk3wr47xlqX6/ZNGq/ZOKeGtaPmX+Kr6jKhoRlajChHV/tNpF3n88xkBzNlp8ayNXfa9pjVHuMY79XJuC90PvoqdF9kQQ1Pve5z2np0qV6+OGHo3g7wCeojAySyfQ8aOek7/bhoFF4vNk3+R89dq/Q533rvYfojEULdMUHjvA9HtgovOROcHJO6XV1mRrjE0k5J4hpr4oyx4557SG7b+P9bJ8dZkW6fRxBkyO8/JQ/U8McHxM2Cg+5xgz0ZeoemzOYCwySordV1FlPDTuzbzBH+akk8wU1rK/t/f3SptYyNewxS5nzRmx5K68j7amR8a4plJGJr1Kb5afc53N6SA5zyUhPUH5qMOBe065K4AtqWM+h/FQ8mX3fagAUzYskqPGTn/xEb3rTm3TCCSdo2bJlUbwl4KmVkWEwmXTmIk2mBsyxMH9mv2b0h1dK3HWbIV34tldrt3lOpkZgUIPyU3HjroweCyk/JdUmHcwEkplT6sum9ZYDdpQkzWxwLDWLRuGTp9ak1S0/Vd3/hVIlcMGD11OjEhzUCAuc/78376d5M/r00WP39B6rBjX824PeV8vUaG0QabJ47NIQJlOD8lPJ5O+TVPvaPgbWbG4tU4PyU8lgdl2nk1H2QoyBXLpW5o5rSmx55Sw7zdTg/JAY5YAgaFD5qaE+/1hk3x1maf+dZ3vf2+eLVEBZKhZYxAs9Nbovkp4a//qv/6pUKqVKpaKTTjpJCxcu1Jve9CYdeuihOuyww3TAAQcom43kV2EaqjXonOINQdd10ii8nZ4a6F212vftvT4TkOHlZmpQSqT3uYM90yjc/bxL1bTscqniTULYE+KmOXgUdWgrsifAOn47NOD9fZ1LQs5KwQ+aEAjrqVEKCZIYu287pPs+/SalUim9fuG2Wvrgi3rrgTvpX69/VBITUHEScuhMyNQ8HivWl4pgIiGZyiEBCHt/u0GMsWJZ67aMaWuh5Ov/V3vP4PdHvEx0zWhWNu1kalDSMPbaLT/l4vyQHJWA80XWyyyuXyghSSfsv4O++75DneBFcPmpXLo+6wO9L6oyhggXSaThhhtu0P333+/999hjj+k73/mO9+Hs6+vTa17zGh122GH693//9yh+JaYRmqlNH0VvFW3rM9k550LRTLky7iN7V6mDY0GyMrxKwRMUEquj4iCsp0ZfQOCzL5NWoVTynmOvmMplujMpyWC0u2oT061lapj97d43lJsYWJh718V7b6fFe28nKbhHD3qbt1K+xTGkmUuwgxq18lPs/yQK7anRIDPnleExHXrRbzSjL6M7PnW8Zg/kfD+334frRHzVGv929j72Yq2Z/dnAOvuIl4nKWYap76kR2SZhipl9aQcoMgGBCLunRjpVn1FqZxPb979kasQTPTW6L5KgxjHHHKNjjjnG+35kZES///3vfYGO3//+97rvvvsIaqBlBDWmD7OKwa2X3wx35Tb1JuOt1OFAMqgXj3tMsNKl95nzfipVnXgyE41B5admDmQ1nC9py1i1WbRdNiIX4QSCPT/FIdRdQU0XJf/ALmi+0MvUaLGnRhiausZPp5kadqkp02uFiYRk8pefqj3eKIh12xPrJEnD+ZIO/eIyffd9h+nY/bYPfE/GL/HlrbDttPyUdTM71J/hmpIAQaWGmlHXU4PzQ2IElSTzesBZ4w97n7ulqKTaPazklLKip0YsmX1Ppkb3dKUm1NDQkI488kgdeeSR3mP5fF4PPfRQN34dEo5G4dOHGUAGlZaZiBsIaWagQL+m3tXpQDK4UbiTqcE5peeZ/deXSWusWPayMAKDGv1ZvaQxL6hhr7DMZc1EZbT7nJ4a3VUr7+B/PBcw8WyrNQp3+uhU2lstlaFUyLRhjg1f+aksQY0ks+cU7bFGvsn9XShV9MEf3asnv7zEe4zgdzIErbxuh5upQaPw+DMT062Wn3KfzVgkOcoB96yZgJ4avkzQgKbhvkwNX/kpMrziqNPqE5jYpP1l+/r6dMghh0zWr0OC0Ch8+jAX6XbS89wLBavw463T+pNuo/A7nlyn9//HPb7nMJjsfV5QY3ySetRrFF5/XJgm4Bu3FiT5JyOiLPVgHzWMRSdHffkpM/FcCnx+f6ZxpkbrjT39r0fva7dRuLl25MePrXRK6s81DqIh3sKyKlrZ326Am0yNZKhNXHf2PvZpaKgvQ6PwBDAf61bHKW6mKKeH5KgtprIyNQLKT9kLJF63YJu698n5emrU99qgFGa8FDuc08DECBeh59VqWU/xhqDril6mRusnfTtVU2IQGXfN1L5vxMvUGL/BfM/37qz/HQwme54JQvSPf75No/CgTI11w3lJ0t9ccZ8kq9RQKuWdH6JYaW1PXnEMdVclrPxUwGp6Wy1TI6z8VGvbQamQOAo+dibiHluZdEp9IUEyJEPFV34qPLuzkZ3nDvq+p6dGMnjlZDqcjLJLzAz1ZWkUngBh5TEn8o7X7iJJ2nZGnyQqUSSJXTLX8DI17ID5+Af/T1+7i95+0C5175MLaRSeDShlhd5n+nsS1OietoIa+++/f0e9MTp9PaaXWhmZWukRJFMnjcJNI0+jmaAG95G9y+up0WbKvzdgbLCahZvC3mc+xuYGv5apUX+OWLl+q/Pa2qp8c06JenUTp5DuCiv9YVarmSCXK6ynRrsTVDQKj582+4RbmRq1oEYuUwuKVioV7kUTJqz8VCtBDTfD2Fd+ivNGbNm9uToxq78W1MikU76xLeKpZN1jtuJPdpqtuz51vH7+t2+QRBnTJAk6X3iBCOt6Yu4v/vqoVwX2eLMXd9qZyl7WB5kasVKb3yKo0S1tBTX++Mc/6uWXX277l3b6ekwv5mT/6V88pIM+f72eWLNlircI3dJJo/DBPjI1kqTTVM1ME714WCHX+0zgySs/NT6J3Uw2l92PIWc1lu6UfUSxAre7aiWE/I/XVtMHTy6blfWhmRotl5+qPp+9HR9eo/AW93XWCWpk02nr/FHRmT+6T6//ynJtGMlHtq2YWv5SUbXHWwmCu8eZ7z25TsRWKaCcTDu2ndnv+94tkYr48e4x2zg2dpg9oIHxsoYcAsnhlZ+ysyuCMjWK/rGNy164Fdifg4MmVkoRZfwhXNuNwm+66aa2f2mnzbYwvZiLwctbqgPIq+5fpQOncoPQNQUTyW6jUfhAG5kanIp6V7nDVQ1BjcJdrJDrfSbTps9bmV/yfW/7h5P21T//+lHv+1ppgNpK6yhWN9nzU8xVdVfFlBByHjf7M6yRb994Y+dSuaJKpeLdd7a7WsokD7LiOj7azdQwAXFzbGXSKfVb9xe/+cNLkqTrH35J73rdbh1vJ6Ze2XdOb71RuFR/nJVCAiWIl6BJynac+tqddcWdz+r1C+dJqp1nmJyMr3YXSRgpMkATpxxQZSAbMP7wghoh8x324k5fo/CArA/0vhKZGl3XUVCjk8AG0Cw3qrnrNoPSuinaGHSVl6nRxkm/nfJT6F212vfRNAoP/h1tvTUmkZkYqpWfCu+p8baDdtY///pRr/9G2ZqMsMvHRImyAd1VKz/lf9xk6oxOUH7KvIcZH7bbq8dMQJGZEx+VNntqmGPDlDbLWj01bIN9mbrHEE8VXwCi4v277JGX6p47ayCrzaPFCd/TvvXgvBFfnU5cG0N9WV139mLvexqFx1+5w4CX/Tp78QXiK6j8lAlE2AvpTMA8LFPDLsMdFCChUXh8VCoV7zpCpkb3tBXUuPHGGzv+xQsWLOj4PTA9uDeS7uQ1kqFcrng3A+1kargTDKT7x5t3A9DmTX4zA0YyNXqfOQ7Mjb9XEiag/FT/+Or8sWK17r1dGiAbYfkpuwgRsdMuC+mtYwZ8oeWnrIFisVxWJj2eudFmr56UF9Ro6WWYQrVTf4sBLFN+qmT31EgplfJnZrHiLjmCSkUte+RFrd08VvfcbWf0KV8se43kPc7hYAdKmLiOr6h6arhoFB5/lQ6PDXuCs1SuNFVWFb0tKNCVcXr6VSoV7+tmyk/ZaqWsOHHEhb24sp2esWhOW0GNN77xjVFvBxDKHTiSqptMBesC3c6N3UC2PlNjopUvjDN7V6f1J82A0aT7ZtKp+vr67P+eVywH3/gHrZw29Yml6oRkyRpcmOdHcf3wNYDlJNJVXl8E53Gz8s2spnc/3/bxYT/ebqaGeTr7Oz7C+rFMpJapUQ2YZdMppVLVbA17InsrzcITw54femrtsN7wjzfo8FfNC3xuOp3SjnMG9Oy6Ed/j7mFWDsj+QLzY5QajjmHSKDz+Os0ot8ennCKSIajPSs77rFd/aJc1DA9q2OWn7KwPGoXHjT3uJKbRPfxp0fPcmwXqCCaTfYHOtXHWDyoFwU1ifHWaqukNGBsERxhM9j63p4YRtIqp3wpsjhXLvtq2JlCad1fXdog57u6qTUw7mRqmx4pXjizlGwT2+zI16icXW52E8BqFs8NjI6wfy0TqMjXGj6t+Z/JhJE9QIyncT/WqDVv18wdWed/vse2Q93UmldKe282sew/3HGUPVejFE092YCrqsiFkasRflOWnWDCRDOYe074emHOHWbxpj0PCe2oENwqPNusck4FMjcnBXxY9z83UKDA4SCQ7qNHO4MGdcJCC0zPtwSXlS3tXudNMDacBn13Gyrwlqyd7nwlKuauZgoIapkSMVF3Bbz7+abtReBSZGvbXDES7qtbs3f+4Wflmyk9lUinfucI+XkrWtcXs/1b7NqUpPxU7nWZqmPIQZhDa75Q+HclP3FcB8dBoQvHdh+2mo/aa732fSaf0ugX1WRzuYVYJKGmFeLHP91H3O8h496hMTsaVN06JoPwUQY1kCAp0mUU45l60maCGXbHCPrrMok+qlsSHva/oqdE9BDXQ8+ozNTiRJ5FdfirXRvmpoAFH0FjBvnHkHrJ3mc95p7VqgzI+Zg3kfD9D7/LKTzk3/oN99bcvqVTKC26OFUvepFI1qBHd6ib7vMER1F218lONMzXS6ZRvBZS9GCIoUyPT4mopcxpi4iF+3GNnIu5CGnPtcM9BZGokR6Pg9KyBrIasTOBMOqVthnJ1z3NvVexzBfPW8dTNTI2Mk02M+PEWznS4+EpiwURSBPXgyXqZGv7yU9l0KvTYsRdu2fMbJtjBXFh8lH2ZGgQ1uoWgBnqeuwKC8lPJZE8+t7si6u/etLdO3H8H7/vATA17QpLBRM8yg8l2bwCyTlDDfpuZ/Vnfz9C73EbhxmBfcEswu1m42b2pVPfq0DLJ3V1hq+3NwM78PJP2Z2pk0qm6c4BUC3C0el4hUyN+2s3UcCcZzLHSnyOokVSNPtf9ubSGrOtNJp3SQK6+3KkbPPP18uE6EUv2fot6Lqq28Cba98XkCcskbZb9Os4RyVAJzNTwZ2WZTI2wfhqSf3FnYPkpIuWxUSzXzhPtBkAxsbYahQOTqa78FNHpRCpYKxfa9Xdv2keFUll7X3CdpIkzNVgh1btKna6AapCpYSanSN/tbZVKxdt/brmpwYBJJalWhm6s4O+pYSal81FkasierOr47dCAGSDWNQp3Mi0yqZTvSenxIEexXPEFt9vuqZH2bw96X7s9Ndx7EHPucB+n/FRyNJpQ7M9mfNebtJURaHMnNu235F4znuzAVLtZw2FoFB5/pU7LT9mZGtxMJoI97jDMZ73olJ9qFNTw9V6wG4WPP16pVM9PlDPqfaU2F1OhNWRqoOe5kw9Ep5Np6/iqx6GAht+tsG8SgzI17LEl95C9q9PBgrl5COrNYcqIsDKqt9kTCu4q6bDzhBkkjBZLtcFFWurLmkEFjcLjxPx561bPOyUK026mRqpbmRrs8LgIazI/EfeaY4610YL/3EGmRnI0zNTIprXNjD7v+7BMjfr39Jc6JSAaP/ZxEXVQg0bh8Wc+0u0eG5SfSob/+f0L+psr7tWWsWJw+Smnp59ZXBXWT0PyBzzs29VMpvEcB3qP2U8EoLor8kyN4eFhPfbYY9qyZYsWL14c9dtjGnInH6gjmEybx6qrHmf0d3ZaSqerzYIrleDVcfYqa8aYvas0ftOXaaO/ilS7oTQ3kfa+7lYpIkTLzsobyPonkcIyNfqsfWsPLsyqpygy/Xw9NTiJdFVopoZzXsikUv6BnxXksDOyygGZW80wE+OMIeOj3U+me2yY70cL/iDGyBhBjaRodB7vz6Z9PTQyoZka/uPGnaQslSt1wVj0Nvu4iLz8FI3CY6/dzE+D8lPJ8LGfPCBJ2vumJ32LqYxapkbz5afsuS+7tKGdpVwsVdThlAkmgVcxIuLAOPwiy9RYuXKlTjvtNG2zzTY67LDDdOyxx3o/u/XWW7X//vvrpptuiurXYRqpaxTOcoZEGh4PasyM4AodtELXoKdGPJi557bTuk2mhrMyRqqtvGUQ0dvsfTaQc3tqBAc1TMCqUPKXn8pla493yp/txTHUTd6f1+2p4ZafSqd8AdBcJu2tjosmU6P6L/s7PryAWIuXkKyzetIcK6YpvTFSIKiRFI1Kv/TnMr5MjXS6+pjLPczc+09KUMWPvQ9pFA5X7R6zvdenrMUYlJ+Kv5c2jQZm73iLqsx4tJmghq9RuP24lanBwrxYKLa5mAqtiSSosXr1ah1xxBH65S9/qZNPPllHHnmkb7LwiCOO0Jo1a3TllVdG8eswzdRnarCqJYm2jFaDGrMGOg9qpFONghr01IiDdldUG+4qbXsy26x0IUDa2+x95t78h5Wf8prolcreMZROSbl07fEocQR1V1Aqv1R/Xkin/YEOO1PDvg6YVbGtZoCZ388lIz68eFiLlxC3JIQ5juzV+pI0MkZPjaSYqPzUvCF/+amgTA034OkumuHcET/2cdFqGbuJ0Cg8/sxnupPJylppyyi2CFOpZPUBTPnKT41/1k1PjWbKT4U1Cre+oRx7PJixqLtgBtGK5K/7+c9/XmvWrNGyZct0zTXX6IQTTvD9PJfLafHixbrtttui+HWYZtzJjAJX/kSKqvyU1DhTo2LdA7AypneVrFX27XAnNO2yQzvPHZDE/u91ZhVSLpOqC26HlZ+yS4vZK6ZyXh+V4PNCK3yNwjmGuiqs2bPbOD6T8vfUyKaj7qlR/ZdMjfjwemq02Co8l3V6aowHyxbtNd/3OD01kmOiRuHbzer3vh/JlwJ7arjXlaDyU4iXTlfiN1K7R2ViMq6CJrBbRb+u5KhUgs8Z5n7TBCHMvUNYxrnkZGpY9zApq18cmRrxQKbG5IgkqLF06VK97W1v85Wccu2+++564YUXovh1mGbckwAn8WSKsvxUulFQg54asVBr8N3e6+0JTfOfJL394J319oN3kUSmRq8zWRXZdLquDGF4+SkrU8MKjNkp251ma/h7anT0VphArdmz//GgRuF2oCKsp4ZX2zbd2oklxWrKGGpvQrIuYDb+Bp98y376s0N31Tlv2keS9MjqTfrve57vfDMx5Rqdx/uyad9im0pFgZkaE5WbIjM4fmr3odFPRpGpEX9RBL3MrQhBz3iyM/LKldpiKrt0srvIbrNXmcKf/WnLhZSfkvwZ6eh9pTYXU6E1kQQ1XnrpJe29994Nn5PL5TQ8PBzFr8M0Q/mp6cGUn5rUnhod/yZ0S1Bd0lZ4JcgqFd+N30WnHuDdLDKI6G0mRTuXSdX1VpkoU6NQrniTSKmUf4AQZTCLI6i7ao3C/fs/5/bUcDI1cpm0dR2off69FVMtnlfI1IifshcQa21fuyUhzHE0ayCnf/mzg3Tcftt7P/vx3c91tpHoCY0+1zkngPrqnWcHNvx2gxZu+Smy+uInipX4YTKs0I89L+gVQaYGh0E8bbV6a5WtTA37nGFnkEvSltGCJGlWg/kO+7rjnn8ooRwvZGpMjkiCGvPmzdPzzzderfTYY49pxx13jOLXYZpxV+hSfirenls3opO+frOuvm+l73Ez8dyocVazGjXg8/XU4FjqWeUOB5NeM/CyP6iRy6RZGRUT9jnBvRkc6gseDJiU7UKxXOvHkE75ghqFYnSBcSYkusv8dd2xgDupaGdmuN/b2Z2mpnHQpGQj5r3ciUr0rlr5qdYEZQHZ5s2s9VcYCgmuIl4a3QqYa8f3//IwnfTqHXXeifsGrrCl/FTyBK26jkpQJiHiJaznVysIbsXb8FgtqFH0ZYjXnlP7rFfHHpub6CFq94gLu/9lkW88mIVVZGp0VyRBjTe84Q361a9+pRdffDHw548//rh+/etfNyxPBYQhUyNZPverh/THFzfr73/2e9/jtVrn0QU1gkqVEdSIh9pgob3Xm0FGsVzx9dOoruAez9RgENFTRvJFfe/mp/TcuhFJtc9vNp2uGzQGlf+Qas31iuWyNwFtVvGbY6nT5nr2YcNAtLu8P6+z/+smnlP+XI5sWKPwNsuJmOAq14z4qFiZWq1wy0+5mRu7zB3Uuw7bVRLlH5Ki0iDnzoxB3rT/Dvr2+w7VNjP6NLM/q59+6PU64lXzvOe5mRgTBTnQ+yajpwYZPPHlHR8dHCDm+sR4JJ5G8kXv6y1jxcBAVy7jn5MwPUQbBTXsTI3+rH/xhLd4i3LssWD2eyfnCUwskqDG+eefr9HRUb3xjW/Uddddp5GR6oTE8PCwrrvuOp1yyilKp9P6+7//+yh+HaaZukbhnMRjbTikuaYX1GhxBW2QTKMJKOuhIg36elZUjcLL5YoXCDWrtzNkavSkL/3vH/SlpX/Q2y69VZJVfiqbUs4KYgzmMqE3hyZglS9V6gJj3RgIMA7trtBG4W75qXR90CMTkKLfbm3bND01Yqfd8lNuUMMtPyRJS16zkyR/6QnEV6PzeC4kgP76hdtq8d615vHuins34E0APH7M9aKTlfhh3NXbiJ/a8dH+e6TJAo21MSvze9No0duP9i2qey+62Su33VxPDXcRV45zR6zQU2NydF68XtIRRxyh73znO/rIRz6ik08+2Xt89uzZ1V+SzeoHP/iBXv3qV0fx6zDNuJMVDCLjLeycbiLZUdQczGQalZ/yf12pVLpSLxedqbS5otrIejd9FV9vhup70lOjF934xzWSpA0j1XqzpkxULpP2MjAkaSikSbjkT8t2a9v2ZdLKF8sdZ/vZq3oZh3ZXWHmH9HjmjV1izN4Z2XQ6sLdSu7Vt6akRP2EBsYnU9dTI1E9qm54+3I8mQ6PV8m4A1TZnsDYp5Z4b3FMF9xvx47u+RIxG4fHXae8/yS4/FcUWYbLlraDG5tGCNz5JBWVqeOWnxntqNMzUsIIaOWcRj9conIMmDmoZ4pHkEiBEZH/dv/7rv9ZDDz2kj3/84zr88MO155576pBDDtHf/u3fasWKFfqLv/iLqH4Vphl38mEkZKU/4iHs5s/UHMxFEdRokKnhDjwZaPamcpulQwwzCK02Cq++l7lJbJjJgynjZnGZ/daXSftu8Aca1LHv87IxytaAs/pv1hsIRFd+qlHZEnTO64sQcB6wJ5vdxfS+nhq+TI32atvSzDOGGhw7jbiZGW7mhiQNjk9cjHI/mgiNbgUaZQ//2WG7adsZ1R4r9eWmuNeMu0kpP8VFJba8TI2Oyk8xHomzfMkOahRlkifsuQ63JHZTPTUalJ/KsTAvVopkakyKSDI1jL333ltf+9rXonxLICCoUQx5JuIgLKhRW0EbYaPwJoIaxXJFWXp99pxOG/CZmwe7UbiZ8G50fGDquOd20/sim/E3+m4mU8NePWWOoVwXyk9xCHVb+Gr7XDql/PjXmXTKF7zIplNWpkbtWKhlBLZ2nTGnIfv68cpwXnc8uU4nvnqHwIlvTK1ak/nWm8KnrMSfoPJTZGokS6OJ5Uaf7YFcRv/94SN1/MW/rbufmCjIgd5X7jBjuBGzuIZG4fEVRdCLLNB4KziZGibInbHuO7JO+aktLffUcEti1hZvofeVIqxEgnCMwtDz3MjmVlbGxVrY/ILXFDiKnhoNJq0pCRAPnQ4W7EbheauMkURQo1e5wQa7/JQ9sTTYIKhhnjcWENQwQa3RDici7a1kINpdJh4xUaZGUHmq4EwNM7hobTuCemp84PJ79NH/ul//9pvHW3szTIp2P5uplD+IGjSpPUBQI1Ea1bMPCmrZgsrcSUE9NdrcOEwZs0+7UaKWRuHxZz7imU7KT3nHQRRbhMlmj1tGC2Uvc8Meu9bKT5lMDVN+qsmeGk75qVx2fPEWQY1YMMEnMjW6K3ZBjauuukof+9jHtHjxYs2ePVupVErvfe97A5/7zDPPKJVKhf53+umnh/6eyy+/XIcffrhmzpypOXPm6JhjjtG1114b+vxSqaSvfe1rOvDAAzU4OKh58+ZpyZIluv322zv+f57u3MmKsEbTiIeJMzWiCGqEp2a6Y1dWSfWmTmvV2jcPZoLb3Ah6QQ0mpHuaXTas32kUHiYwqDH+UpPh8affiu66zCHUXV5fhIDzgD3ZmEmn6rI5TIA8uKdGa7e/QaspH3hugyTpmzc+oesffrGl90P31UqXtX4NsftqBC208MpPFcpMSiZA4/JTjc8V5h7FvZ9w7y1ZRBE/UUxah6FRePyVKp0HvWoLJjg/xJGbLbFpazULwz4mauWnTE+NJspPWfeodeWnTKZGkXNHr7vnmVf0kR/fL6k7vZlQE0n5qYULF074nHQ6rdmzZ+tP/uRP9Kd/+qc67bTT2vpdF110kX7/+99r5syZ2nXXXfXHP/5xwtccdNBBOvXUU+seP+CAAwKff9555+niiy/WrrvuqjPPPFP5fF4//elPdcopp+iSSy7RWWed5Xt+pVLR6aefrquuukr77ruvzjrrLL3yyiu68sordfTRR+vqq6/W29/+9rb+f1E/oGRlXLyFndPbrXUexIxB6akRX+UOV8jZNw9mZX5dpgZN1npawWrwbq9amj3YaHVTdd+OWdcJM2h8fM0WSZ0HItxVvZVKpSsrOTFBTw1r0JdJp+q6mwQFt835v/2eGsEHz4euuE/P/ONbW3pPdJfZU+18Mu2Amds4XPIHVseK5YbZY+h9DctPTXCuCFppXS5X6q4zTFrGz6T01GBeMraiOD6CSlsiPtxsiU1bq1kY/kwN/73olvGgxsz+8GnYvmx4+am+LpTSRXd84D/u8b4OupdEdCIJapTLZRWLRb3wwgvVN81mte2222rdunUqFqsf3J133llr1qzR7373O/30pz/VkiVL9Itf/EKZTGsDga997Wvaddddtddee+m3v/2tjj322Alfc/DBB+vCCy9s6v1vv/12XXzxxdpzzz11zz33aJtttpEknX/++Tr00EN13nnn6eSTT9aCBQu81/z0pz/VVVddpUWLFmn58uUaGBiQJH34wx/WUUcdpTPPPFPHHXecZs2a1dL/K6rcldqjhTJp3DEWNvkXZSOlRpkaBDXiodZTo73XZwKCGuaGIkumRizUUnbTvknGxs31qvvYHmi0m+0Txj1qypX6RtWIRm1iuv4PbC94CNrH2YDyU8U2a9umvNWULb0MU8gEoNpp02UHUbMBbzBgBTW2FkoENWKu0ed6on45QZmf9te5TEqFUoV7zRiajPJT3If2rkqlokdWb9Kr5s/QUF/9fWc5ggoDNIyPt7yTLWHGHn1Z/6IbqTqmKZcr2pI3mRrhC7Tse9q6oEbWjHNY5NvrNo3WekUONKgygM5FEjJasWKFdtllFy1evFi33nqrRkdHtXr1ao2OjuqWW27R4sWLteuuu2rVqlV69NFHddJJJ2np0qX6t3/7t5Z/17HHHqu99967a6siv/3tb0uSLrjgAi+gIUkLFizQRz/6UY2NjemHP/yh7zXf+ta3JFWzSExAQ5Je97rX6d3vfrfWrl2rq666qivbOx0E3SxQgSq+wu79vMmmCCLZZq4rqLSU+wgDzd5UWwHVefmprU6mRjpgshO9w9zAl6xAZ866qZ/dRB3asUJtoGEOoX9+54HeY8UIa9E2qseOzjRaCWl/xoPuE4J655TaDJ7TzDN+vCyfNnI1fD01ssHHlplYIHs4/hqdwyfq82afZ8z72Oecvkz4Ihv0NrPLaBQ+Pf3mD2v01m/cqndcGlyytLb4KoryU22/BaZQWLNuewI7Z5VCHc4XvXuTRgu07OOhPxdWfoqDJk4GcmRqdFMkf90LLrhAGzdu1PLly7Vo0SKl02biKK03vOENWrZsmTZs2KALLrhAe++9t372s59pl1120Y9//OMofv2EXnjhBX3nO9/Rl7/8ZX3nO9/RihUrQp97ww03SJJOOumkup+95S1v8T1HkkZHR3X77bdraGhIixcvbuo1aE3QzeSWYsATEQsTZWpMlOrfDLOyMmgCyh28Us92amwZK+qlTaOhP690mNZtDzJGC7UyRlJtQpNa6L1pxnhKtlnBmEmnfGm7sxsMBMz5YywgU+OUA3f2HhvroBZtfVmRtt8KE2lUfsppFO5eWwIzNcbP961OUrkTD5ff/kxLr8fkq/Vjaf21dmPOXEiqhylBtZVVNrHXsPzURJka1gFmzg92AMME5ImHxs/klJ/iwOhVP39gpSTp0Zc2B/7cOz46OEC88lMcB7EUFtTo92Vq1MpFmX4auUyqLgPDZs9VhJWfolF4vJCp0V2RlJ/6+c9/rj//8z9XNhv8dn19fTrllFP0k5/8RN/4xjc0NDSk448/ftKyF5YtW6Zly5b5HjvmmGN0+eWXa/fdd/ceGx4e1qpVqzRz5kzttNNOde+z9957S5Iee+wx77Enn3xSpVJJCxcuDPz/D3oNWhPUoG1zYQo2BJGYqKdGFCuizBxE0Aoo9yFWz02NI770Gw3nS7r7guO1/ayBup+XvcnMzjM1TPkpMwmaZoVcTzMNvb1V9ZmUL5W7Ucq2mUCyMzXMoWC/R75Y1oz+drfQf9ywer97Gpaf8mVq1Ae7ar1zaseCfUy1wvwqM9D83K8ebun1mHy1TI3WDWTrV1m6BnMZbdxa8K4viK+GjcInuCe1JzRL5Yoy6ZTv3sKrp851InbMRHM3GrxmAoLu6C0TZfmZ+4lODg8zx8H5IZ7yIX0t7AnsrJXNV2sSnms4vt192yEN5NKa2Z+ruwaZcY5b+gq9jUyN7ookqLFu3Trl8/mGzykUClq3bp33/Y477uj12+iWoaEhfeYzn9Gpp57qNTNfsWKFLrzwQt144406/vjj9bvf/U4zZsyQJG3cuFGSNGfOnMD3M49v2LDBe6yd1wQZGxvT2NiY9/2mTZskVf9uhcI0n8Gv1J+0NxdS/F3iyrpxs/ehuTinKuWO961Zrb11LF/3Xvm8//vRsen9GTP/75P9NxgeX916/9PrdPyfbF/38+J4rdBKBMfDxpHquXUgWz1vVMq1a8/YWL4rA1a0xi4HNZhLq1AoaKxQ3U+pipSq1CYOZ/SFn//T49Pgo4XaPi4Vi6qUa1k6xXJFW0bHNLOvvf1eLPonMQuFgjIq+763/0X7zHmgXC7V/T3tgV5K/qBGoVDwUpHzxdprzaq6Srm184oJZhSL9dth/050RzufqYI1xmh13/Rn7WOrEvh6M0DdvHWMfR9zhfFz+sL5MzSjP6MHV23yflYuFVUoh18ryiXrfiKfV6qS0ehYbUzcNx4Uy+d7616T69TEzDkkpej/TpVy9ZgrlTq/x0V3lMv193X+n1fvCyrj9yftfKbMmaVQKHIcxNDWsbCxiPW5Hv+sF0plbRiuViiY0ZdpuL/Tku755LFKp1J186XZlBnn9NY1pRuSdJ3qSzN32Y5m/2aRBDUWLlyoq6++Wl/84hcDm2Fv2rRJV199tV71qld5j61evVrz5s2L4teH2n777fWFL3zB99jRRx+t66+/XkcddZTuuusuff/739fZZ5/d1e1oxle+8hV9/vOfr3v8+uuv19DQ0BRsUe9Y8XJKkj9la3NBddk3iIeXXkzLVL5bunSp9/iatdXHH1zxe+Ve+F1Hv2PDuup73fvACg2s/r3vZ6uGJfvUd+Nvf6s/Tu+PmKTJ/TxV41fVffD7B+7T2NP1K12efba6D594/DEt3fpoW78nrYzKSul3Dz8qKa2N69Zq6dKlGinWfv+1S69TgwxgTBJ7n+RHtmjp0qV6+IXquf/FF1/QrTev9H7+zB8f1NKXgstIPvZi9TWrX3pZZrj4619f5/08o4yKSun639yg+fUJQk15alNtWyXpul//n/oDsoq5RnVu1arqeeCPf/yDlm58xPezLZsyMvt4zYurNSMr2deW1aurr33o4Ue0dEM1s2L9xupr7rvnHm15vPmVkeZ89PgTT2pp4XEF3T7/z/8upWF8l7XymXrwleq5YOOGDb57jWZs2Vi7T/njIw9p6csP1j2nsLV6LN18251a8zCrbOPsyaer+3ufgU06YZeK/n6VdX6/7rrwF8r0+Ks+31wLNuVrj42NbpWU0q23367VD3Vj6zvDdSrcoxur55DhLVtaPodM5ImNkpTVxs2bI39vROPFkPGqsXFz9Rpw9113a/0fa9eAVj5TW7ZU3+POu+7Whke5jsTNQ6vq56gk6eYbfuONC17aKklZbR0d0w233CEpo0p+pO3P/YsvVI/Lhx/5o5Zu+kObWx4v8b1O1e4lVj77tJYufXIKtyWeRkZGmnpeJEGND33oQzrnnHN0xBFH6IILLtAb3vAG7bDDDnrppZd066236ktf+pJeeOEFffWrX5VUXfF200036eCDD47i17csm83qgx/8oO666y7dfPPNXlDDZFWY7AuXeXzu3LneY+28JsgnP/lJnXvuud73mzZt0m677aYTTzxRs2fPnvh/KsHSD7+kyx+vTkwP5tLaWigrX5JOOOEE5XLhZUjQm/5v8+/1u1dekiS9+aS3eCnYV7xwt7Rpgw479BCd9OodOvod129ZoQfXv6i999tfSxbt4fvZI6s3SSvu9L4/8g1Haf+dpu9nrFAoaNmyZZP6eVq3ZUy667eSpDcceYSOeFV9gPu2XzwsrVml/fbdV0veuLCt33P+Pb9RvljWjrvuIa16Xgv32FVLlhyg4bGiPnlPtc/RiW9+M3Uue8ALG7ZK99wiSdpu2220ZMnhWnnL09Kzj2v3XXfRiW/aR5+/v3rMnHzcUfqTneoXUEjSpntW6qqnH9HMOXOlzRuVTklLlizxfn7h72/U2EhBRx51tPbefmZb23rvs+v1bw/f431/4oknen1ApKn5TCXV9VtWSOte1P77768lR/rP5Ve8cLee2bJBkrTrLrvo6L231S1XV2cNlyxZolt+/rDuWbtKe+9TO4dc8sRt0siwFoWcd8Ks+PWj+u3qZ/WqhQu15M376Ow7rq97znFv8h8HiE47n6ncI2ukR3+nbbaZqyVLjmjp9/183f16fNPLkqRDDj5ISw7eue45/7HyLq0a2ajXHHyoTti/PtsQ8XHLzx+WXlqlV++3r045+lX6+7tqEyj29SNIvljW+Xf/RpJ0/JtO0OzBnF7cNCrdd7Oy6ZRmzxzSy6MjOvyI17d0zuk2rlMTm/3EOumR+zR39iwtWbIo0ve+99n1uuSRezQ4NENLlhwV6XsjGtdvXqEH1r0oKfg88G+P3yptHdGRRx6hwxfMa+sz9Z1n7tALI5t12Otep6P3nh/p9qP7nr7pKem5J+oeP2XJSV7J42fXjejLv7tVqWxW+71mf+mPD2qX7edpyZLXtfU777n2D7pjzfNasOfeWnL8Xh1tf6+L+3XKHiu8er99tOSY9uYzpjNTvWgikYy+zj77bD366KP69re/rb/8y7+s+3mlUtGHPvQhL3iwZs0avec979EJJ5wQxa9vy3bbbSep2kfDmDFjhnbZZRetWrVKq1evruur8fjjj0uS9tlnH++xPffcU5lMRk899ZSKxWJdX42g1wTp7+9Xf399ge9cLhfLD3GU+nK1v+lgX1ZbC3mVK/xt4iqTsSaQ0xnlxieUTVnZ/ly24/061Fc9Zgpl1b1XJuP/jJaV5jjS5H6etpZqpRnS6Uzg762Mr8DOZoN/3gxTq3Y4X00hn9lf/X8cUC01I5XJKpdjInKqFSq18osVpar7PFXdT7lsRv19tWNg53kzQo+JAfPZL5laxynfc/uzGUmFjj737nU+kw0+Z3GN6pypOZzN1J8H+qy+B9lsWqcdtrvWby3ptbvPrf7tx39eSdX2tXed6Wtt32THr1updPhxU0m1f65Cc1r5TKXH91m6wT4LM2QFpwZCjhXznEKl/j4D8WLKog/259TX1+f72UT7Np2pWF9XrwWpdLVcQjqd8prEpgPOYb2A61S4lNl3bZxDJtJnXZP4+/emdKY2Vmg0Tul3PkOtfKa880PIWAi9LaglTjad0uBAbU5voL+6X4ulisbGq9ea8Wg7+sfHrKVKatocM0m4Ts0YiP//w1Ro+p4/ql/47//+77r55pv1/ve/X6997Wu1cOFCHXzwwXr/+9+vm266Sd/+9re95+6www76yle+ouOOOy6qX9+yO++srtQ2vTYMs02//vWv615jUpDt7R4YGNCiRYs0MjKiW265panXoDV2o/DB8QnwkL5MiAG7fUHBqqNfbLOBaxCz8n4soImW29SXRluTb/NorT7iWCn4729uFDNtNgqXajX3N403ZjMNqDNOY09MvYr1uTSfUbNvMum0tp3Rpzfus53e/OodtO2MvsD3kGpNWcfGa6SnnePHNAsPOjc0v63+7zmEusf8rd39KMlbBSdVzxOpVEpnHr1Qhy2orobOBjRiLXrHVGvnFRNcKTfY2fmQcxmmSvtNXP2NwoOHSuZ+dGueRuFxZ+4D3X29/az6xWYu+/gyzX5NKf5sOuWdu8qcHmLHXH9avV40w24ejN400V43+65Rw+eJmEPLHZsiHkbGr/99Vh3jfqemcXY8cFUqVzRaqD6/kwoB5ncVuOeMlX6qQnRVJMtTb775Zs2ePVtHHXWUjjqqd1Io77//fh188MFKp/0nl+XLl+trX/uaJOm9732v72cf/vCHdcUVV+hLX/qSTj31VG2zzTaSpGeeeUaXXnqp+vv79f73v9/3mo985CO65ZZb9OlPf1rLly/XwEC1UPc999yjK6+8Utttt51OO+20bv1vJl7GmuQe7COoEXf25FTB2pHFUm0Cs1PmhmKsUD/Z4N43MhE1+TaPWg1cQyaXzSR30GRms0wDcBNEMRk8dqCEAWVvsPeC+YzWJqCrg8bL//rwCd+nFtSoHlfu4eOdG4rtT0RW3JMIh1DXVGQmDep/lrMmmoImnUyA3B74mc97tsVJqtrEQ/hzxgpcS3qJ2VepCaem6g301Qaf2wyFZIWZoEbAfQbixdwHmsmiA3edoxUrN+q0Q3ed8LWpVErpVPV4M0HP4ngEI5NOefchJSYtY8dcL7oQ0/CuWdyD9q6Jhh8mENFJ0CvNcRBrW8aq49md5gzo2XXV2v9uwMLcixbLFY2Oj036c+3PdZhxDosye5s7Vpw7SJZGN0US1Dj22GP1N3/zN/r3f//3KN6uoV/84hf6xS9+IUl68cVqncM77rhDZ5xxhiRp/vz5+td//VdJ0rnnnqvHH39cixYt0q67Vm9MV6xYoRtuqNZS/+IXv6hFi/w1MhctWqRzzz1XX/3qV3XggQfqne98p/L5vK688kq98soruuSSS7RgwQLfa04//XRdc801uuqqq/Ta175Wp5xyitatW6crr7xSpVJJ3/ve96Z9X4xO2BOQZqV1uUI3zrgqB6zIlmo3dLkIRg+tZGqw0mHyjVqTQGFBJbOfOohpeBOXm51MjXQ6pVSqOnnOQKI32J/Lirfa1UxAN3/zbwYP5rPvBsXMQCLKwQAr7Lqn4k1M17Oz+tIB1w2zkt4+35jJxlaDpd5q6wb7Ol9icruXeLuqw0yN+SGr9QcJaiSGm6lx2V+9Tg+u2qBFezZX4z6bTitfKnuB+JKVEWaSPxpleaE3mfN90PWlUxmCXT1vor1ejiDoVbu3aP89MHVMUGPH2bWgRn2mRu0AMZkd/dkOMjUCFuyg9xSdD/XhPdRTK4kiCWrMnz9fg4ODUbzVhH73u9/p8ssv9z321FNP6amnnpIk7bHHHl5Q433ve59+/vOf65577tF1112nQqGgHXbYQe9617t01llnafHixYG/4+KLL9ZrXvMaXXrppfrud7+rdDqtQw45ROeff75OPvnkuuenUin95Cc/0aJFi/SDH/xAl1xyiQYGBnT00Ufr05/+dF3gBK2x5x52mTuoFSs3kqkRY/YkctlXFqS2sq1T5oZiNGCywb1xZKXD5LOPgbCbMvOUTjI1zKrLjVvHMzX6azeRmVRKxUqFoEaPsMf1ZpcUvQFj88dAn7OCyT2f9GUiKD/lfE9Qo3u8v20T5adctaBGQKZGi2UOmykR0ckxheh5WT5tvNY+nObPDAlqjAfJRyk/FXsFJ1Nju1n9Om6/HZp+fTotqVQ7vxStjDBzbuJeI36iuA8NQ6ZG75uorFQUx4e5t6jLAEYsmKDGznNr86DbzR7wPce+Vx0ef/5AB5ka5jpFpYneZs9vnP/mfbWDc1wgWpEENY455hjdfvvtUbzVhC688EJdeOGFTT33Ax/4gD7wgQ+09XvOOOMML/ujGdlsVuecc47OOeectn4fwq3dXGsgu9u8IUmUn4ozX3ZGxQ5qRN9TIyio4d44MhE1+exBXFhQyVsh18HhYIJb60eqjcmHrJIimXRKxXKFVXI9IiiDy/zbyjmhlqlR/ey7Y00zuChGeBHhCOqeWk+N+p9NVH4q6DpgTza2ItUgU6M/m9ZYsUyAvMc06scykd22qU1QzB4IHiqRqZEc5rPb1+b9Z8Y5P9iZGmaVP8Hv+PEWW3UxqFFkYrJnTZipEUWZXBP05PwQS1tGa+WnjF3n+hd62/ebJqjRSaaGySgsMBnW0+wxwd8cvbDBMxGFSBqFX3TRRXr00Uf1mc98RoVCYeIXAC3YY9sh72uzypaFLfFlTyb6VuyHNGpsh1kBERSwcA8dJqImn33zng+5KfMmpDqIapibRpPuO5irTU55q+S4KewJgZkapdrEULNMqap8SPmpPm8wEGWjcI6hbqlVEGqcqRE0qWD6ItiNnO3m861oVCKiUblDTJ1OShj+xev30PvfsECff9urQ1fr0lMjOdxMjVa5dfFrvXvSTZWuQ2/q9LhoJJsOv6YgHmrlydp/D8pP9YavLXtMb7/0Nt/9YpjhsaKef6VaasruqWHsPNfJ1LDGMFu8oEYUPTW49+hlJpMmlYqmCgkaiyRT4ytf+YoOOOAAffnLX9Zll12mgw46SDvuuGPdQCCVSumyyy6L4ldiGjl0j3n69nsP0V7bz9S1K1ZLIlMjznwrsq05IDO5HUVQw0xmB5afcu4cWekw+VrJ1Jgo/bsRtxHbjH5/pobE6qheYe+GirfatfVVkn1Z/wDRvY8Mah7dqooTGuUQ6p4G1aeUs1ZVB102glbSd9oovOKUrMukU9puVr82bi1Emv2D6LRzCcll0vrcKa9u+JxBL2hGMCvuxjpcVJN1ghpe6cS0tSKfWcvYKRSr+6wbQQ1zXFAXv4dZ145KpVI3HjEf6U4yeUxAhJ47U+vflj8uSbrq/pV63+v3aPjct33zVj25dlg3nneMFdSoZWfsOMefqZEJyNRwm4m3oo9MjVgw+6cvk+5oLgPNiSSo8R//8R/e1y+++KLXwNtFUAPtOumAnSRJ2XT12OI8Hl/2wM6eUDY39lEENWaOl4swDaJt9T01WOkw2ZrrqRFd+SnDLj+VJfW/pwSVnzLnh3YyNQx3BX830rYJanRPpcF5wD4uGjUK31oo6eUtY5o31Oddf1pdNeWVkCn7z1l3f+p4ve+yuyURIO01tSbz3RlMBjWiRzx5K/LbvP90F0l4pRPT6bqAB+Ij741Loj+HmHsRgl29y752lMqVulKo5jPdyYQlmVy9ZaIx4caRgp5cOyxJuv/Z9d61Y9uZfd5z5gzmfK9JpVLKjpc8Hh4zjcI776lBQLS3FYqd3VegNZEENZ5++uko3gaYUJbyU7FnD+yCJrc7udAb5obCNIi2uT01aLQ1+YpNZWpU/+2kVq1bs3Sor3bJoyZpb7H3gvmIltqYgHaDou5g00xOFMsdfO4pPzVpGpafsgJYQZkXpgzh3U+/osMu+o3e8dpd2s7UMIdRuVLxDSRn9Gethq9cS3qJ1yi8Swvk6KmRHN7kdbvlp5xm4HbpxFrvBK4TcRPlYiuXHewKygLA1LN3SbFckdsGIYrFV5Sf6i0TjTmffWXY+3qbGTnvnD9oLZqbbwU4DNPH0Ss/1UGjcHM+ouRpbzPXjyh6xWJikQQ19tijcZoWEBXvJpCLf2zZgQx7MjAfYU+NhkEN53t6aky+chOZGo1WaDerUaZGLoLeCohOYKZGW0EN/3Pd00mtFm0n5af8CGp0T6W23L6Ova/7MvWp/INOev/PH1jlfd1qrx574sEOhOYyaauefktviS4zMaZuTRYG9WxBPHllhjrM1DDHnHftSqW8aw6ZGvGT7+JKWzsoXyxXupINgs7Ye6RQKteVDDK3J53UyzcvpfxUb5hoV9pjxkKp4lsoc+biV+mJNVt01F7z61431JfRWLGsDSN5SdJAR43CKV0XB4UIy6pjYpEENYDJ4g0OuPbHVlBQo1yueKv3o7ixbxTUcCcgwxpVo3vsTI2gEmFSbdVSlD017JU0pO/2Fn9Pjeq/xTZW1bs3j+6qKzOREGXJB2Ia3VMOj2n4GoXnsuGNwoN00lPDlCdIjzf/M5csJi17Sy3LpzvI1EiOsfEypO32TnDLT9mlE+mpEV9dbRRujXWKpYo6KLGPLvFlagSMFc01v5OMci8gyo1kT5hozGkvaimWanMX6VRKF7x1/9DXzR7Maf1IQWu3jEnqLFOD8Ws8tJsZjvZEGtRYvXq1li9frlWrVmlsbKzu56lUSp/5zGei/JWYZmoX/yneELTNvm8zJ/yCVbaj3fR/25yhalBjrFjWaKHkW11T31ODm4LJZk/+vbRpNPA5tbTu6MpPzfCVn6q+L+XHekMlokwNd/LBPX5MI/FOeqm4Y0/Got1j/rRB54GcdVwEraTdfd5Q6Pu23FPDqnudd0qSMCnRm8w5pdvlp+ipEW8r149o/UhBmXRKO80ZaOs93BJ0tz6+VpK0abSgPdJDvp8hPvJdXGlrX4Oq5TCJavQa+5JeCPj8euOUDiYtU5Sf6ikTjTnt4FahVPYybNx+fq5Z470+TVDEHZ+2oi+CjHN0nylznCELb1JEFtT43Oc+p3/8x39UsVhbdWvXiDRfE9RAJ8xEJIvr48tXZmb8emxfmKNI855pTV5vHi06QQ0nU4ObgklnBzVWbwwOatRWQLX/e9zyU3Y5Gnpq9BZ7L5jDo52ghrvP3fGJGXh0kqFVcQpQud8jOo0mpu1MjaCVtPNn9mu/HWfpjy9urn/tBANQlz3x4K6+YiV2b2oUEIvCYF/1GCJTI94eHT8/7LvDLM0ayE3w7GAZr6dG9fvv3VLtNbly/VYdvNtcSdxrxFE3e2rY70m/ld5UssaLQfsoip4a3rmDRRE9YcLyU2W7/FS5lqkxwSliVr//2jLQSU+NLOPXOCg1GfBCNCL5K//4xz/WF7/4RS1evFhXXXWVKpWK/uqv/kr/9V//pTPPPFPpdFqnn366brjhhih+HaYxc2JgcXV82UEFcxPn1ijvVDqd8iY3TVkBj5upUWJCYrLZQY01IZka5jDpLFOjdiwN5jK+1VReUIOgVk8oB5Slayeo4dY8do8fs987ydRwMZfdPV5LjcCgRuNMDUmBtY2l1jM1zK8qVyre/k47QQ1qYvcWLyDWpfc35xp6asTbaKF6LZg50P46v1pfnfpzAD014svrqdGF8lOZdMq7rgVlAWDq2Z/ZoM9vO/eoLjPfWSGoMWXsfdtKpkaxXPHGK81mahhkaiRfMYLzA5oXSabGt771Le2666769a9/rWy2+pYLFizQ6aefrtNPP13veMc79Na3vlXvec97ovh1mMayZGrEnn1f6JWfGp9gtOsPd6o/m9ZYsawx56LvZmqYBpGYPPaKpOGQCaEo0rr7rQnuIae+fh+NwnuK/Sk0h0cUmRruS6NosOeOPSk71D0mCyYVMDWdswaRYcHwPbYNLkHVck+NtMk6ri+Nl06FT2hi6jQKiEWB8lPJYBa2uNeOVmQblKAjkyu+vJ4aXSofkk2nfM2G0VuKAYttvO/LtQUOnazE9rJAOQamjD0emOh+oVhqL1Nj9qA/U6OT642536V88v9n783jJanLe/9P9X72mTM7A8MMIKuCCwiyi1F0IkYjEW+CN2hiboxLosFfNm+CN2gWRWPEJe5mu3qDUWNAo1FBBVRAkX1nhmVmmP3svdfvj6rnW9/6dlV3dXct3+p63q8XL87p0+d0Tde3v8vzPJ/PozfiDBvVJpRxEUrpwd13343t27eLhAYAtKTq54svvhgXX3wxPvCBD4TxckyGoY1D2+QJIq14eedTtUEYTcIJCmjXGmpSw/083hTEj3yA87PuCEPW7VJqKEkNaizM918P5AOjqSg1+glAF/I5VxJETYqFYTum/ibnNKIjsFLD54CoHiTpb/WbLDWknhqmMjepTYIZPXDuRlT2U5TU4DUkzYhq/CFUwpTYpADXSZumAQAfet1pYv3inhrpI0r7KcA507L9lJ60pPuiJp7khMcwxXiO/dTAf4IZkn7uZUN6br3ZFnvUXomt1eOq/dQQSo3C8MVZTPSwUiNeQlmlG40G1qxZI74fGxvD3Nyc6znPfvaz8Ytf/CKMl2MyDCs10o+XUkNtvBoGfvZT3FMjeVrKptCrSk1YvIRkPyU3CQekShe+/1ogfyzp3osKqD7HQEW67+rvFkJQaqiwbUB0OEmNzjEg99TwWztmPJIag1RN0ZmkbZrC/pLGVoHtp7TEsTCM5u+TUqPeaodqZ8fESxgWQ6oFHe07N68aY6VGiqnbSu5iBPZTgLMf4bGhJ92UGvK5pV/lpwz9Ku8jk0Nev3sFoOXnyk4QvfaVG6Yrru+HUWqU8tbeg+2T9YYKGQrcKDwWQlmlN23ahN27d4vvt2zZgrvuusv1nF27drmUHAwzCNwoPP24G4W77aeGWeRVnKSGe9FX943qz5noUQ9wXvYdajX0IMiepR1KDW4UrhXupIbp+n+/G0LZdqzTfmr4ykj18MnxiOigMeA1AorSzfVbOzyTGgNMKjmpUbhqjadWaTN6IMZOROdJudKyyvuI1FILIamh9tQghXC5mA9lzWGSwbGfikqpYa8dnBTVElcPSOUWNSXl1TBBy5ykAmWSwescuFBt4OM3PoInDy67Hpfncfnsmu8xBjbOKEmNoRqFs9NAGqCxwkqNeAhllX7e856He+65R3x/0UUX4Yc//CH+6Z/+CUtLS7j++utx3XXX4XnPe14YL8dkmLywn0r4QpiBcSk1qFE4VUOFqtSw7ac6khpKTw3eFMSOWtHsldSgp3hVaAelIm0aJ8rcU0NnXMlOUmq0BlNqlLsoNcLoqaFidhhSMWFB76zXGAii1PCynxqkqlKuplSt8USVNgcltILuhlc/ljAoF3IiYcLNwtML7RGHKaqheFbLNLHzwBIWqg0A1h6ElRrpRVjjRqbU4OIanXEnNbopNcJIiA78J5ghkRNUdF/ff8MD+NtvPYj/+bmfup7bkJ7rSmr0qdSoDNEoXC7KY4WPvgxiocwMTiir9Ctf+Urcc889ePzxxwEAf/zHf4yZmRlcccUVmJ6exqte9SqYpomrr746jJdjMkxReFcnfCHMwJgewUtq1BimRI+qIGoN1X7K/Ty2H4of9XDv1VdDbcY7CC6lRlG1n2JPUp1wNwofTsElV1CrSTFxGBgiwKT+JlulR0iXnhrFAD01Nq8a6/Ay7refhvX6jlLDsTUyXH+Pm71qRsRKDcMwRGCCkxrpJQz7KQpq/t+fPoELPnAj5qtNAFbgintqpBeyEStHpNQo8tqhNfJtUYsW5ETUMDFL2dqSSYamR++Ub9+7BwDw+P4l3+e67Kd6DALVAnkYpYa8VnFCVF+4p0a8hLJKX3HFFVheXsa2bdsAAEcddRRuu+02vOUtb8HLXvYy/M7v/A5uu+02nHXWWWG8HJNhqKqFNhp8kEwfXvZTTqXc4JULKn72Ux09NTioHTvqPZCrXRqtNurNttRTY/DXkTeN4z72U3z/9cCt1HAnNfpVcLmVGu6ficrIYZKZyhmCD6PR0c1+Sq6OLPokxCvFPL73hxfijK2rXY/1CyUwWm2zI+Fa4MCUlnRT+YQFqQHV3l1MeqgLi6HB9580Fd344D7X42VWaqQaKrhR7UvDgixrGpzw0hIzgFKjkDOGUpTT+sQV98khF7f12s/Lz3UpNXocVitKEmOYeIdsh8eFefrizBHRJMUZN5E1udi2bRuuvfbaqP48k1HyklLj/d98EJ+/ZSe++ntn43lbVvf4TUYXvBqFhyH/V/G1n1Kex0qN+FG9pVfq1j1otU2c89ffQ9sENkyXAYTXKFwdW1TpQtZnTMJ4NAqnz+5wSQ33+CmJxpz8uU8DwkLIYxooBFBqAMDqiRJWj5fE9xMDBKjkakrHGs/6f549sbVE2BxGWCRn7TMa3JsrxYSh1PBbo9xKDZ4f0gYVzo0NkAgPQjHH/VZ0xmU/pazvzZCaALP9VPLICWe6D7Kit9U2Rfyp4eqp4dy0XgV4cmK0kDOGqt6X15t6s42J8sB/iokQVmrEC6eOmFQhNwr//C07AQDXfPuhJC+J6ROvTaJoqhhJo3B3BSX31Ege1Yahat+jw8t17F2oYf9iDQeX6gCGsw6RK2FUqW+Re2pohTwvqPZT/Sc1nPuuVvBTxUx9mEbhSmqUg9nRYQoLoc6JQJbzT5a71+jIzePHSv3X8zjVlJ3WeDmuxNYSp6dGdJQURSgHrtMH7RGHSWr47V3LxRz3TUgxpNRQlb5h4ah4eB+qI/JtUXsBhlWFzfZTySOfAykuIffIkIsfmx5KjSBqHTkxOmz/0HzOEOOGz7D60pbUXEz0RKbUYJgoKHg0CucMaLqQ92004deFd36I9lP2BqLWcC/4tHEsF3KoNdus1EgAteKJNoZe8aDwlBpKo/ACJzV0Qh4S9DUFgfoNNskJLNVqiBp+Noe47+rZk+OY0dEtMH3mMbP43QuOxcxYEUevmej6dyrSGBpEqWHISo220iiclBo8ELSCPqfDWIP0Qi6e2LtQxcUf/gFeeeoR+MtXPzuy12TCpR6CUthvjSoX8o7CnAPXqWPZVmpUIkpqUMKLlRp6IhewqAlr2p8OG4PIsdIzceTPX9ujur7ebAulhdyPj4oZgvRpc/f6G+56AWvNqTbabKGsMazUiJfQyqJvuukmvPKVr8T69etRLBaRz+c7/isUOIfCDIes1FAfY9KB6anUsJvxDdE4S8W3p0a7+8+Z6FEPB7Twex0ghkpqSONJDTrQvMEbQj3o1lOjNIRSQ7WNKAoJeXj3nb2Qo6PdJTBdzOfwx684EW+58Nief2dCUnIM4o8uBx6cfj/WY+SLzlOJXjg9NaJ7DVpX6s02vvzTJ3FouYF/+vHO6F6QCZ1Qkho+a1Q+Z4gqTVZypY9qxEqNItthao3LLlnZ59EZZdgYBCc1kkf+/HmpLeVzop9SoxdhOlEAUl9IjmFoCxUycFIjHkLJMlx//fV49atfjVarhS1btuCEE07gBAYTCTQxsFIjvcTXU8PHfop+XswD1SYHtROgo+GenaWUq2Uo6DxUo3DZfqojqcFKDZ2QhwR9LeynCv0Ngq5KjRCsQFipESPC6mm4PyMHpSaGsJ9qy/ZT9kWRUkMNejDJIqzLInwNuThCTpaZphmpQoQJj1oIPTW6/a6j1OD5IW0sR9xTQ9hPsVJDS0yXLar7Z82QApby3oJJBvf5w3T9H1CSGh5KjXyAtV7eD4SxMyixraH2sFIjXkLJPFx11VUoFou4/vrr8bKXvSyMP8kwnlBASp7DC0N6EzLx4lWR7RwqQ7Sf8mkUTq9ZKXJQOynUikX6Xr4X9T5kvX7IAe1OpQY3CteLLvNCn3N8pUsvFWrqOMznvnPE8BiKim6NwvtBVmoMUnVL05BpmlJPDesxtpfRk3jsp6yxVG+2MV0piscXa01MSd8z+kLVtmoCvB+6JTVor8FKjXRhmqboqTGIui8IolG4PTaWak18/MZH8Ipnb8KzN89E8ppMcLyK8AhKRIXWU4Pnh8QwPZIa8v2W1RBe59R8Ao4hbKGsP07fHU5qxEEo0eB77rkHl112GSc0mMgpeNlP8WSRKtw9Naz/k5oiVKWGHcxUe2pQ5U1FCkYw8eLXcE+uOKGA9jDS7qmKE8hUA+MlVmpohTwkTNP6nC5UmwAGaBTeRalRisDDms+i0dEW1fbDrfNyH43x8gBJDUklSmuYaBROSg2eSrSC7AzjahQuJ+APLNYjfFUmTETgeoikRrc1yqnG5wkiTdzz9LyY66NSahSE/ZT1Qn//3Yfxse8/ild+9EeRvB7TH3IRnqzEvG/XPH7lYzcDGL4K23Gg4I1kUrhssdv0f++kRs31tbV2BFFqyIRRaEFrDlto64uj1ODi6zgIRakxOTmJ2dnZMP4Uw3RFVESahvQYTxZpwmuTGIansYqf/RQtMlR5xUmN+OlUalj3oOEh8R2mCmqy7L/EUbKkxoEGLVArpf5Z8qXvu1G49PyKov4qhJDMUntocIVddIi3elj7KWkumCz3X0Hv7qlhB8upp4Y93DgooRdxNwqXE2+UkGX0Z8UufBkmcN1tjSqw/VQq+fFjB8TXg1gWBkFNeN23ez6S12EGw2VLJH3zB1/+ufi6MGSVvsH2U4njZT/V9ElqVOtOTEHYT/WZ2FquD78/KIagOmeihZUa8RLKKv2Sl7wEt956axh/imG6UvQIcHKj8HThsp/q6KkRXjUUVWh3Ngo3XT9vtk202+ZQNkdMf6hV8rTwe1XPD3NgkG1m1N4pRZLuclJLC+R5wQRw9fX3i+/7VWrI6oyxkneD+MYQVkHqKOWzaHSoqohBkROcq8cHSWpY/7d6argfo8IKDlrqhdNkPrrXkBuFy3Dj3/RAQaphLIbKQZQaPD+kisWaFXh83elHRnY+KCrKUfZe1wxXBb/z9eHlhvh62IAl/TrvH5LDROd9dik1Wk4ig5R9wOBJjTBuNdl1c1JDX8S8znHKWAilLPpv/uZv8Oijj+Lqq6/uqGBkmDDxCnByL8Z04fIoJe98u1JO9b8fBrmBpwwdLLsFvJloUQM+dE+87kO/AW0ZuUJX7Z3BjcL1Qr47bdN0BYDCVGpE0UuFK/SjIyShhmu+Xz1R6vv3KalimqZIjOcUpQYHJfQiDvspuXeXnNjgsZAeVkRPjWgahYtegDwmUgUlNQZZL4JSUBJeXNGrF14V/CrDukVQQJzjZwni0TtFPqfKcQQ5qVHvM6mxJsS5pGTHw9htQl+ozx7P6/EwkFLjTW96U8djp5xyCv7iL/4Cn/vc5/Dc5z4Xq1at6niOYRj47Gc/O8hLMgwA7wAn+wmmC9NTqRFBTw0KNjTc9lMtn6TGME0imf5o+Co1Oj/LYW0G5EobQO6pwQcJHZDnBdN0+xf3q8aTFV/q59pp2jqM/VT375nwMIXV03B/58jVY+LrVWP9KzUModTwaBQuemrwQNAJx34qutegQozFatMV2OZ1JT2sRNwonAJeXECRLpbspMZkRNZTgNxTwxobwyoSmXBx2SX7fHyHPaOw/VTyqEVVgHs/J6/nKy77KbunRsAx8MU3vRB/8u934/97+QlDXK0FF+bpj9NTg+f1OBhopf7CF77g+7MdO3Zgx44dnj/jpAYzLF4TAx8e08P3HngG+6UGmi2R1AjffqqXUkOu4OZKh3jxU2p4fZaHUWrIqNVU9HdZpaMH3RIDXraD3ZArblVLkUIE1U2c1IiOsOyntq6ZcP7mAL8vemq0Jfspez+SE72+eCDoSJSBQrIyu/b7j+BXn79ZPM4JrvRQjbhROPfUSCek1Jjo0pttWKhnHO19h+3PwISLl7OAyrD3TNhP8f4hMdoeNmO+PTU8moYHDVo/e/MMvvH2c4e6VqLkE+Ng9IHGUr+N5JnBGGilfvzxx8O+DoYJhFdFRF1pBM3oyR07D+FNX7jd9RjFsGnD0K/NTDeogrLqo9Qo5A0U8wYaLZOTGjFD1j+GYVfl24kFrz4Hw1Y4vPviE/Afd+7CG8/e6nqcm6zpRTcLp379rOWK2xmlKr8klBrDHCCVRuF8GI2MsCyECvkc3nTONty24yDOf9a6vn/fq1E4PUb7Em4Yrxd0P6I8T551zBp87PuPAgD++75nxOPcUyM9iKTGED01gig1uKdGemi1TZHUmKxEmdSghBcrNXTEy1lAZVilRl6ytmSSwVSSV+226XqMYgRLtSZ+8eThjt9LImhNaw4X9uoL3ZtiiLEtxp+BVuqjjz467OtgmEAYhoFCzvDNoDP68tAzCx2PxWI/pYyPliQHLOVzaLRaHNiOGUpejBXzWK63HKWGx2d52Cqot774OLz1xcd1PC4ahfO91wL1vHjETAW75qr4zRf1v9+QG0GrSQ1h9zDEQUA9e3JSIzrEuAjhzPjnl5w88O9S3MI0neADPZbjSmwtce5GdAGHc49bK76erzbF18PML0x8NFttEXhQ+y/1w7hHQuTiUzYAcNYcnh/Swb/+5Alcff19WLZtZiajVGqI4hruqaEjXhX8KsMWXuVEUcRQf4YZApf9VNvsSECTffF1dzzl+ftJ2As5bhRc2KsrFF8Iy3GC6Q6/y0zqUBcPto9JB14HA9owOvZT0TUKp0CU7HFIlQ6cGIsXCviQ3YOX3Jfo13ooKOUIGkYzg6NWqdXtMfKa5x/Z999aO1kWX6tJDdl2LKzKOB5B0SF6akTa7rk3hkup4X6Me2roSRw9NQzDwIded1rH41yVnw7kopfyEI3CZyfKru+vfvWz8ZHXPw+AYzHEia508KdfvVskNICI7afy7rEh26Sy8i951Ap+Ql5TxofsuUJ/i+2nksN0Ja8693IUI/Bb15NIapRE31COX+gKJTVKbCsYC6FEi/7t3/4NF110EXbt2uX586effhoveclL8O///u9hvByTcdTKbQ5IpwOvpAZt4mhRLofYrJuSGsv1Ji74wPex7U9uwN9/92FxUCjkcuxJmRC00JNNkNNTI3ylhh+s1NAL9TxH92WQysU13ZIaUtBg0CC0+ltsGxAd9M4mXcBKr+/ZKJx7amiJep+i4oytsx2PcYIrHcjnh9IQ1ZRrJ0uu7889bq3Y3xSE/RTvNdJIpEoNxX5K3u/wuSR5ZKWGvM8bNpEhk5cKJphkkN/6tml2zNW0TqjnCSIJhZVf31BGH+qs1IiVUN7lz3zmMzh8+DCOOOIIz59v3rwZc3Nz+MxnPhPGyzEZR63c5qRGOvCqZIjUfso+UO48sIydB5YBAB/6zkMupQY3i04GClhTZWRLJDWiaxTu93f53uuBqaQKmq3+GvDJyAEm1Q+7WBg+aKCePfksGiGKKiIphEWEKTUKJ6UG209pieNcFu3Yma50Bjo4gJ0OaC+SM5yq+UFYN+lWaoyXnQId7qmRbqJNatjFNfbYkPuHqf0AmfhxKTWkKb3uahY93H3KiZ4aQ/0ZZgjk80fbNDuVGvbZ1C/e1G/fvzBg+yn9ET01OKkRC6G8y3fffTdOP/30rs8544wzcNddd4XxckzGUSu3OUudDryqWGmTGKX9lIocLBWNtngMxQod7seCKDUi2ixSo3CeP/RAjfc4m8H+7/9UpYh3/tLxeNuLj3NZUQHWmKvYybQDi/XBLlaBY1XRQdWLSfdPdSk1KAClJDW40lIzYho7Xk2i2WooHdD6P2zQYXbCrdSQK7m5p0a6ibJReFEZG7LlFKuIk8fVU0P6Wj43XHzKxqFeQ9hP8fyQGO7klUdPDft+UwJh00zF9fNklBrefUMZfaDYEjcKj4dQVuqDBw9i/fr1XZ+zZs0a7N+/P4yXYzKOWrnLG7900PI45NMmsS6SGuHbT6nsma8CcBqFA7wpiBsK+FRETw1/v9KovEon7KDDcq3Z45lMHKjx4LpIPg62Gfz9X3qW5+OGYWDjdAU7Dixjz3wVW9aM9/23VVUJB7OjQxf7KXdPDXdVbY57amiJM3aiHTxeSQ0eC+lAeF4PGXQo5HNYM1HCgSUrUT4mWalyT4304GUlORmi1ZAK7W9pHDYkhVeD55DEkW+BnHCi4PYf/NKz8Osv3DLUa3BRRPK47af8e2pQrGCs5I5VRL3H8IKcDtitRF+4p0a8hJI6Wrt2LR5++OGuz3n44YexatWqMF6OyThFbhSeSryUGo79VDgHSxm//hxUnV3IGRi3NyYrLPOOlbroqWEf9j2q1ACrii0q2xlq/rjcaHFDRg3wO9BFUQG1Ydqqsto9tzLQ77P9VHw4723C9lOU1GjL9lPW/9l+Sk/iChJZVpbu8clWQ+mgLoIOw+89j1w9Jr6WizF4fkgPXp/biXJ4xVYqaqNwOfHV5LNt4riUGq6khnVvfu30o4ayrQOkvQVvJBNDfudN00Op0bJiBNT/c0JJdEbV+7EbTlEmxy90hXtqxEso7/I555yD//iP/8ADDzzg+fP7778fX//613HeeeeF8XJMxlE3EJylTgdegWPRKDyKnho+f2tupQHA2khSYHuJq/VjhQ5rVM1IKh51Ux+VSgNwDqqmyUktHfA7zkUxBsiS6tBSOPZT3Cg8OnSznzJdjcK5p4bO0McyjrGjBsW5p0Y6aDStQRJGQc1qxYKKoIAXjwn9UVXblWJu6KB1N4pKvxXZecCrxxwTL2oDaesxU8QdKiHMG6JfF08PiSGfPdum2eEsodpPqYnOQRXlw0BKDUq0MPrR4KRGrITyLl955ZVoNps499xz8fd///d46KGHsLS0hIceeggf+chHcN5556HVauHKK68M4+WYjKNW7nJSIx14VUCpSg2q3A+DXkmNQs4Q1RZLdQ5qxwlVo5WVnhpqULAY4UZxrJgXwa6lOie1ksYvMRCFUkMcBgZtFK58z7Hs6BCB6WQvQ6qmdMaqUGqQ/RSPA62Iq1E40KkMZauhdEAVuGEEHbwaxgPOGsbqHf1Rz5NRNgkHgDwlvMh+SlZqcJQ7cUwPpYa8b/RzBOgHuV8XkwzyW2+anZ891X5KVWok4S7EPTX0hxuFx0soq/UZZ5yBj3/843jrW9+Kd77znXjnO9/p+nk+n8cnPvEJnHnmmWG8HJNxOKmRTrw2bGKT2CALgDB7arj/lmFYmxVKauTzBsbtagvuqxAv5BtcKVBPDW+lRpSSXsOwklqLtSaWai1gKrKXYgLgZwEWhVKDerlUQ6pwUntsMOGThGex1+tbPTWsxwy1UTgHLbWClpM4+rGoSg1W7aSDeohKjQ3TZc/HqYrXq68coxfqeXIi4qQGFe54KTU4MZo88jROzgJf+ukT4rEw3AXYfkoHZKWGR0+NlttVYlyZFxJRahTYfkp3nJ5dSZdlZYPQVus3v/nNOPfcc/Hxj38cP/nJT3D48GGsWrUKZ511Ft7ylrfgpJNOCuulmIzTYT/FvqOpwOuQTw+F1axRxurH4AQ21k6WsW+hhkU7gZE3JKUGJzVihaoXxkruA536UY5S9g9YEmIrqcH3P2n8jnOFCA4Lwx4GVFUJxy+jw9TFfsoehm0Tkv0U/Yztp3QkzrFTVlSmDa6yTgVhel7/3oXH4QcP7cernnuE63FWaqSH2JUaytiQK8QbfLZNHJctkX2PrvrGfeKxMJTEeUkFyiSDW6nh0VODlBqip4ZqPxXt9XlB5xgu7NUXujes1IiHUFfrk046CR/96EfD/JMM04Favd1omTBNM7KGwkw4eNpPmaZrA6E22xwGwzBQLuRENTYlNYh8TuqpwfZTsWGapgj+OUoN6x6plUrFiEtsraRWjZMaGuB3oItCrRO6UoMr7CJDqCI0aRRumqYIbtBjBU5qaImwn4phb6hW7HJVfjqgoENYPTX+653ndzxOaxjPD/pDdmRE5EoNe9w17HEo50I5CZY8LqWGx3YxjLWF/gQrNZJDvs9t6YxKUPKbrJ7G1UbhifTUYPsp3eGeGvHC7zKTOrwqI1itoT+ejcLbpstDNuzKfNmCau2ku4mj1VPD+jkHteNDvt8VpaeGOkbC8KvtBh1YlzmplTh+iYEo7KfClm3zWTQ6yNor6ZoF2feapilSaORETw0eCDohlBoxvJYaFOeAZDoQKuEIrS5pDWP1jv6ohQ5TESc1aNzROJQD26zUSB5XT42I1nexf+A1IzFMxX6qU6lhnRXozDCpNArPxeFxqUCWl5zU0BenYJfD7XEQ6bt84MABfPWrX8V//dd/odXioBETDp5JDZ7UtcdrQ9gyTdfGXfWlHha58fi6SbffcT6fE76YrNSID/l+j9lJJfIOVsdI2ONBZdx+/UVOaiWO33kxikbhwyo11GvlCrvoEI3CE05qGJJFhGM/5e6pwUEJvXDGThxKDaVROAewU0GYSg0/qIrXNLnvju6oBXJRKzVo3NHrylsJ7qmRPPIdoATHiRvDbcBH+wfeRiaH/N5bSg3vRuH0f7WnRhTnlF6Q5SX31NAXUuBFHctgLEJ5l6kJ+MGDB8Vjd9xxB0488URceuml2L59O84++2wsLS2F8XJMxvGq5uekhv549tRom66Ne9hWM/JBde2UktSw7akApwqDiR75ftP73/JRakQZaAAcv+TlOic1ksav2XYkjcLtcVUdtKeGcq0cp4oO3eynXEoN+5JoS8LJLb1ox5gQUw+trNRIB/VW9EEHeV/L40JvYm8Unnf74strCCdGk0e+H3ROOXbdJADgzedtC+U12H4qedzJq86Eomo/pfbUyCVQdSMU5yHZ6DLhQw3mi9woPBZC2cV9+ctfhmEYmJ2dFY+9+93vxqFDh/DGN74R27dvx2233YZPfvKTYbwck3HYfiqdeCU1Wm3Tde/CrnaQJX9rJjrtpxwbGh4/cSHf77Kwn6IDnfu5USc1qNpmscZJraTxivXkc0YkVdbCi5Z7aqQAveynTNO533SQpf9zZa1eCOuyGF6ryD01UkkcjTzlfS2rufRGTWpMVaK2n3IrNdz2UzxWkkYutCIlOd2rY+zkxrCw/VTyyHt4r54ajab1vX9PjSSSGtxTQ3fImSKJnitZJJR3+eGHH8app54qvt+/fz9uuukm/NZv/RY+85nP4Bvf+AbOOOMM/Ou//msYL8dkHK/Fg4MJ+uOZ1DBNEdAu5sMPYMrVd6vGi66f5XOGI/3mTUFs0P0u5XOiETiNjbjtp8gXdZntpyLh5kf24//+9IlAz/XKC0Sh0gAcW7pBZdvqtXJOIzrovU2iEk7GrdRwJ1rowMKVlnoRp3VZUZmruCI/HYieGhEWUMjrGPfV0JsOpUYppkbhrc7CHj7XJo/Llsi+OWEnQml+4P1Dcqj2U+r6XRNKDevMoCq4kuipUeb4hfY0YlCCMg6hvMsHDhzA+vXrxfc333wzAOA1r3mNeOy8887Dzp07w3g5JuN42U9xQzX96WU/FUWlnHxQnSx3JjW40iF+qOKlkDfEZt6/UXjUPTVspQbbT0XCb3zmJ/iTf78bv3jycM/neh3o1EBhWIjPfUg9Nfyss5jhoXc2aaWGbBHRVhItVITFlZZ6EkdCTN2/sHVMOqjH4HldlKo0G7zX1JrOnhp5n2eGQ1mxnzLZfioWvv/gXvzKx27Gw88sdH2e237K+j/FG4oh2SVToSYrc5JDbRSu7uXo80lnhnHFfioZpQb31NAdMVew/VQshLKLm52dxf79+8X3N910E3K5HM4++2zxmGEYqFarYbwck3G8Fg/eDOiPV6PwtukcIqLYFOxbqImvJyudlRXcaCt+Gm2nyom8poVSQ+2pEXF1A1XbLLP9VKTsOrzS8zleFk5RKTXKQ/bUUOFYdnQIVUTC15GTGoXTPCV6apB9BFdaakWcY0ftB8YJrnQQh1IjlzNEAJStcvVGPQtMRt1TQyg17MIeadrgc210vPHzt+EXTx7G2/71512fJ98PWk9oziiHNGewY0DyyFs300OpQX03Hfspd1IjqrNKN7goU29M0xRzeJT2loxDKO/ySSedhG984xs4cOAADh8+jC996Us444wzMD09LZ6zY8cObNy4MYyXYzKOd1KDJ3XdUavwAdt+yp70ozhUnnXMGgDA8RsmhdUQsXq82FElxUSPXOWUtysYmx4HOiD6nhpT9oH10HI90tdheuMVD/ZS5YVBSQkk9Iv6W2wbEB2OhZAe9lOmaXb01BD2ERzI1grxsUxAqcEByXQQR08NQOqdwHtNrVEtn6IOVqrjwtUonM+1kXNgqdb153IFPyWq6yEHKkVSg+93Yrjtp4CWXXxHH/+6Yj9VKeYhTw2JJDVEUSaPGx2R94Cc1IiHUN7l3//938fu3btx5JFH4qijjsIzzzyD3/u933M958c//jFOO+20MF6OyThsP5VOvDym220z0kZKf7r9JFz5suPxz799Zof91MbpCm8KEoDsp4r5nEhQ0mFBDQ5HndQ4Zt0EAOCRvYuRvg7TG79G4VFAG8xB1w1VVcI5jeig9zpp+6mcsJ9yxir5KKs2eowekHImH8PgUYttaE1bqbfw9TufxmFOnGtJPcKiGhmuxk4HcSusaC9SE0kN52cNXk8ip9feTb4FolF4yIlQ7o2QPPLZ02oUbn1NFsXCfsr+f6WYc8UsklFqWK/fapucANUQ+XzJPTXiIZR3+VWvehU++clP4pRTTsEJJ5yAD37wg7j88svFz2+88UYsLi7i4osvDuPlmIyjyvwBDiakAU+lhpzUCMmfVGbdVBlvu+hZWD9V6bCf2jhTGdpbn+kf2X7KCQZaj6kHyrDk3X4cv2EKgJXU4CrrZPHqSxGVT21Rqo5crDXxrv93J255ZH+P3/LHyzqLCQeh1Ej2MoRSpNV2GoUL+ylWamgJ3Y8o9hYqRWWtoj3p+2+4H7//pTvxW1+8PfJrYPonNqVGgQto0kDcZ0kn2dVCs9V299TgQGXk9FLZyveD1hNHbR6SUiNvnUM5qZEc8igwTedMOlZy3xuKFZQLede+Ikn7KYBVPjoiJzXC6r/DdCc0s8jf+Z3fwe/8zu94/uzCCy/EoUOHwnopJuN4NY/l5nv6491Tw/EcjDqTLXvj5nMGpipFp0KGNwSxQZ/VQt7oUGqoY0TetEXB2skyAOsgu9xoRe6fzPjjFUuoFKO5/yVJqfGpmx7Fv//safz7z57Gjr/+5UC/32k/FfIFMgLHQShp+ynna6enhuH6P/fU0Iumcp+iRN2Xkn3F1+58GgBwx04+A+lIHD015L/Pe029UQtrTt86G+nr0V5kvtrEBR+40RUcVa2wmPDp9Q67lBpKUiOsOYPnBg1QeqfQvabeGY2WZTtK9lPlQs71WY1DDaoij79qo43xUuyXwHSBPs+GkUzSK4uwHoZJHV6TA8t09cerAkqWTUZdTTlR6gyQiuq5BjeKjgsaByWXUsN6TK14jzrQUCk617BUa0b6WkwPPALC66fKkbxUsWDd80arjUPLDfH43ErD71e6wkqN6DAVVURSyFYDVG1Nj+VFcjb+62L8ocraOJT/qi0qFWtEnZhnhoMqcKNWhXJPDf2RGwSfe9xa/NcfnI9taycifU15j/v04RU8cXBZfE+qZiY6ettPST01qFG4/RkOqxCPremSR1aKW0oN6/uxoqPUaLZNkeQqF/IuJXkSQet8zhAKAEq2MPogNwlPuigrKwxUlvqmN70JhmHg/e9/PzZs2IA3velNgX7PMAx89rOfHeQlGUbg2VODNwPa490o3MlmRy3/l8cNBcqE/RSPn9iot2SlhuMJKv+fiDrQYBgGJkp5zFebWKg2sWE60pdjuuCVl944U4nkteQAk3yQnF9pYGas6PdrDsq1ckFldAilRsIGVJQIA6w+CYAjKXcUZ7yO6ERLJMSiHztqUIPWsqjXMGY4HCuZiBtCF9hiRmeWak388t//EDsOWEmF9VNlnLBxKvLX7TbuWKkRPb3tpzq/Fo3CC+HMGZzUSB75/OGl1Ki32qhKxY/lYg75hHtqAFbSpdFqYrnOSQ3dCDv5yfRmoKTGF77wBRiGgT/6oz/Chg0b8IUvfCHQ73FSgwkDL/upJgcTtMerirXdNsXG3StZFRW0f6GAQ7NtbWJYIhg9DcnDWlVqqGMkUIB5SKYqRcxXm1hkpUao9NtfwKunxobpaJIaTqNwE88sVMXj1YCKLfVauZdCdFDQIelCJznpTgdImr9yio0eowe0rkTVm0emoSxeTU5qpIJaK57AAwcu9ebrd+4SCQ0gviBluYvFJvfUiIEuS7aqwKX1vd6kooawemo49lOmaXJVdwKYSlKjKZIaTph0qeacD0r5nCshmVhSwy7KW+GkhnbEVTDBOAyU1Hj88ccBAJs3b3Z9zzBx4LV41KWKlicPLmP1RIn98TXjkX2LHY9ZPTXoUBnfxE8bGFn6XW+2RVMwJjpos1jM5YTlWMvHfmo6hqQGzRNsPxUu/fYX8IoHj0f0eZQ9jOX7vjKgDR33UogO0Sg8cfspSanRsMYMJeLJT5lzGnrh2E8lkNSIqVcDMxyiyCLi+1SWApeMfqiFClHb4RKT5QLe8ZJn4e+/+3DHz9hWOXq6vcPq2y/sp0LuA+k6h7babFmYAPLnv20CLXuelvv6LVQte9pSPodcznD31EhQqQEEL8hi4iMuFxLGYaCo79FHH931e4aJEq+KfjpA7jywhAs+cCNmJ0r42f9+adyXxvhwyyP78YOH9gEAtq2dwG+ftw1/9tV70GqbIpAYVVPgbshVlLVmi5MaMSCqFwqGpNSwHlODw3EoNSbK1j1fqHJSI0z6rVr3sgGIajNIf7fVNl2y7aDVTuqlcoV+dOjSKNwwLP/iRst07Kfs+SvPSg0tEQ3dYwg4qBX4rNRIB3VWajDobPQbZ5DyXS89Ht974Bnc8/S863FWakRPN/sp9WeUJA+7UXhZKa7jpEb8uG3GZKWGcy/m7TMi3S+50CWpwDXFTQYtyGKiQ+6pwcRDqKXsO3fuxL59+2AYBtatW4ctW7aE+ecZBoC3lQBtMm6yA+cHl+qxXhPTnX/96RPi60tfcCRmx0sArE0jBZOnKvErawq2BVKrbXJfjZiQF3rhRd/y7qkRh2xzsmIlTth+Klz6Fi94PD8q2xh5XMnJrKAHA/VS2X4qOki9pYOAu5jPodFqiXGSzytJDVbsaAUFpdSAZRQ0FP97WstYqaE3YQco/eCkht6ofXcKuXg/t16BbHVOYcKn25KtJjVabdOyTG6HG6yUE6o8PySD7BLQNp31u2jbTDVaJuZtpUa5aCt0pfNJnE4TMlSIyfZT+hHX3oJxGPqd3r9/P971rndh06ZNOOaYY3DmmWfihS98IbZt24YjjjgC7373u3Hw4MEwrpVhAHgHOmnzV2vwhkBH5K3hWDHv8iAnSedUOfqq/A3T5Y7H5KbBTPTQQl/IdfbUUA8RpXz0FUtTbD8VCf3bT3U+P6pqSXmTSfMPMLiEm4PZ0aGL/RTgJNkcpYb7cMtKDb1oxmg/pdoKNaV1jtGXejMeiwjaZ9a4+l5L1PUlbjsZL0UX94qMHq9ebuJnyo/apomGdE/CKrrK5Qzxt9ieLhnkWy331CjkDGHxNLfs2E8B7jUjqWp8UpKwUkM/nP6hGhxeMsJQn8KHH34Yp59+Oj7ykY/gmWeeQT6fx/r167Fu3Trk83ns2bMHH/rQh3D66afjscceC+uamYyTd0n+rK8pUMobAk2RdgxjpbyonGyZwL6FGoB4lBqfu+IMnHbUKvzLb58pHqOqi1qTNwVx4HiNGyLgQ8FAOi/MjBXxkhPX46xjZiO/HrKfYqVGuPQb4PXKC0RmP5WTkxoDKDXUwy4HsyOD3lm1kjYJKBlG44R81+naWm2zoy8QkxytOHtq+NhPycOWx4Z+xGURwUoNvVHtDaNSifrhmdRgpUbk9KvUkD+/Yc4ZXFyXLO5G4dLeIW+IZuGHli0HkLKd5MhrYD/FPTX0hXtqxM/A73S73cZv/MZv4IknnsAFF1yA//7v/8bi4iJ2796NPXv2YGFhAd/+9rdx/vnnY8eOHbj88svDvG4mw8g9NWhCp80fWwjpibw5HCvmxWag3mzji7fuBACMx9DY/ZQjZvD1t56Dc45bKx6jw0SVVT6xUG9RBUynUoMq3v/o5Sfis1ec4dk/J2wmbYUQ99QIl34D/V5PjyoYmcsZImjRlF54pR5sDlCr+1ipER262U8BclKDKvacq2O1hj4I+6kEGoWLfh5SsJTtZPSDquGjbgzNSQ29UaeI+JUabD+VBN22bh2900z3PQmzDw/PD8kiFxyYilKD1BCHbFtzr54aUa8fflBPjWW2n9IOikdyX7X4GPid/va3v43bb78dr3vd6/Dd734XF110EUqlkvh5uVzGL/3SL+F73/seLr30UvzkJz/Bd77znVAumsk2RWkhIT9ByojKGwKuntUHOalRkeyn9i/WxOM7DyzFfl2Ac5hglU88NKTqhYJi29IWlbXxXc9khe2nokD+zAeZib1sAKKU7XpVzyzXBxsDPHVEh1jGNchq0MH14KJ1uKX5Sw6ANXnfoQ1U7BKHyueEjdOu72mdk19aTXwwyUNjpBixTRgHLfVGTWLErtQosv1UEnSzn/JqFO7Y5xriHBsGND9wYWYyyNu2tmmiZX/28jkD47aa/5BtP0VBandPjWSVGmw/pR+knqHEExM9A38Kv/KVr6BcLuOjH/1oh2xTxjAMXHvttSgWi7juuusGfTmGEcgLCckC6WAiHxg4SK0P8t5wrJQXB4ZlKZB8yalHxH1ZAKTNJCs1YqEpkhqGpNSwHqOK9zitZqinBttPhUvLVfnU+/lez8lHGGjyCiIElXB7eS0z0aKD/RQlwpbsqjhax+QEGSc19IE+l3EEKN/xkuPw1hcfi6suORmAt2KHkxr6EVffFWEv0+LgUxqIcu/hBdtPJUN3+yn397L9VNiWMiLpyWtEIrh6arThVmoUrTPiQbKfsgsh5X5ZidlP2YW9VVZqaAcrNeJn4Hf6Zz/7Gc455xysW7eu53PXr1+Pc889Fz/72c8GfTmGEciWNNSHgQ6Lcl8E3hzog7w5LErWL0vSQvySk9bHfVkAnAWHe2rEQ13ysKbKZ6HUsMdJnNL/CTupwfZT4SIXGQaxZ/Lym49SqTHmUT0TuKeG8j1bDkWDPCaST2l0VnPTQVYOmjd536ENwgIqhvVkvFTAuy8+Ec/dshqAExSRpzW2k9EPucgiSspcPKM16hoet52Mt/0Uj5Wo6VaQou5JW6YpKc3DHR/cUyNZ5HvdNk20WpTszonEwWHRU8Pe90ljICn7KVZq6EuNlRqxM3BS48knn8Qpp5wS+PmnnHIKdu7cOejLMYxAtp8SSQ07giZbyKiNG5nkUDeHaq+EDdPlroqvKCmz7DdWmpL9lNpTo+3hQx411Cic7afCRU5kBLECjLOnBuCd1PjWPXsGOlRyUiMa5Lc1qfVBRk3O5dl+Smsoh5CPceyIXj32i8uBSQ5S6gclmqLu38WV2HqjzttxKwM9lRq8lkROt32F+vabpik+v6WQq69LZIPM51AtkJUadEY8tOS2n5LXjMTsp0qc1NAV6tPKSo34GPidnp+fx6pVqwI/f9WqVVhYWBj05RhGIGfEJ+0q60bTWoAOrzTEz/jwoA/q1ly1g/CqUooL9jqOF7nSiTaCpmk9HmdlLUFVFFVW6oSKnMgIYs/k9ZxChBYQdBiQeXTfEv7hpkd7/7Lqtcz2U5Ggm1JDTV5RtaZhGB3BbCZ5ZF/suFAT9XJgkpMa+tGSgldRwpXYetOh1NCgpwbPF9HT7Tar+7pW2xSxhrCD2NxTI1nkW2311HBsCcds+6kDS1YP0LJ9ZhyTPrPFhALXQqlR53GjG+T+wUqN+Bj4U1iv15HPB79RuVwO9Xp90JdjGIF8QJ0sFwE4nvyHlpwxRpsPJnnkg/1Rs+MdUs2Kx4Y+LiihwpvJeGhI9lNyMqvWbItK6Dgra0VSg20hQkU+EAZRMng9I8rAgpdSAwB+8vjBvv8WKzWiQX5XdeipoTZulZNutKZxIEof6FbEmdQoCktF68WbLqUGzxO6QZ/pqO1DuHhGb1RVRJxzBuBd2MUJ8ugxupRLqLUqLdMplgw7iF3mpGeitF32U26lxljJujek1JiwC6Kopys9LwkcpQY7DegGxRQ4qREfQ83KOtgBMNkj72U/ZW80Di3LSg2uvNYFOti//oyjcNTseEdTrSSVGtxTI17os1rIGy4Jd63REpXZce4PK8Lrmu9/mLT6VGp49dSIMtDkpdQAgiVY1StlpUY0uN5WDbabSk7DNT6p3wZbhuhDW6q2jAtqMOzYT7FSQ2eE/VTEjaFFJTaPAS1pKfcl/p4aXvZTPFYip8ttVvek7bbcUyOqRuF8DkkCV6Nw03RUnnlDFEBRQouSGXKwOqlG4RWh1OBxoxsUU2L7qfgo9H6KP1dddRWuuuqqkC6FYYLRkg6JTlLDRLttYt9CTfyszkoNbaAD/vnHrwPQWdWQpFKDK+jipaH01CjmDTRapqXUSNJ+ipMaoeJWavR+vldeIFL7KelAMl7KY7lOG9DeCdaOCj4OZEeCPIZ0qKHptChxxmdeqdBnwmHX4RVsnK4M9LsUFIxT5VNQ7KdabD+lNXE1Cud9pt4kr9Twsp/ifUUUBLW1VLd1rTiSGjw/JIK8pzcVpYZaaT8mlBrO42H3WAkKNwrXF9FTg5UasTHUp9A0zb7+Y5gwkDefslLjyUPLromde2roQ0PxtlaDlckqNdh+Kk4owUWetBXp/acAUNQBBhnasPL9Dxd5+h24p0aE40A+kByzbkJ8PUiCgpea6NHBfkpV98jjk9Y0DkSFx7fu2Y2z//p7+OtvPTDQ79NHOc4AZUEkt2ylhpTk4rGhH82Y1DzcU0Nv1KRG/D01POynOEEeCfK97ratUPekbdPE4/uXAABrJkqhXpM8P5imiS/f9gQe3MN9aOPClLQack+NnNGZ1CD7qTENlBrjwn6K5wrdYKVG/Az8Trfb7b7/a7GsjgkBOehEAelmy8Rj9maD4Ko4fVCD1Vr11CiS/RCPlzioS/ZTgPT+N1si6JOP2ApChsYeKzXCxe1RG8R+qvOxuAILJ2+aFl8HsaHrsCXgoo1IkN/W5FMawGTZLW6WJf+0trEPeni85V9+BgD41A8eG+j3W4nYT9m9VeyAJCs19KYp9qbx2E9xUkNP1GKGOPeggI/9FK8lkSDf627FEl6Nwn/+xGEAwAu3zYZ6TXKj8G/ctRt/9JW7cfHf/SDU12D8URuFd1dqFOz/O48n3VNjodro8UwmboRSg5MascHvNJM65CoLCozWW+0OT0E+POiD6lusJjV06KnBXqbxoMq3hVKmISk1krCf4vkiVOSDYxD1g9dTChEGmp69eQYAcMoR03jjOdvE40EUO+qlsv1UNOhmPzVRdq9TJ26aEl/TmsbVteExbK4wiaQG7XFM0/Jg56SGvphSRW7UQSlnn8ljQEfUBELchddeZyA+w0aDS6nR5XmdjcJNLNethsxrJkNWakjzw11PHg71bzO9kQuV2m3H5jyfz7kUGYCjjtChp8bmVWMAgKcPrbAjjmaQc4zcUJ6JFk5qMKljw3RZfE0LSbPV7jgwcsNOfWgq1fmq/VRSfpTya7NSIx7o8EiVzWWpQkm1KYsDsr+S/XKZ4XErNXo/3+xIFUQbaHrTOdvw9beeg//7O2fhpE3TeM8vnwRgMBuyFh8mIsHdJzz5rMYZW53qzB/90YuxaWZMfF/gRuHaIZIacfbUkAo2mm3TFRjj9UUvXAVSEVfmOzanXDyjI2ovpLiDlF7VvGyJGg3NgPOwuq1rt02RaAp7fJQlJVecPQUZC3dPDVWp4b7XlNTYecBxBwk7yRWUI1aNIZ8zUGu2XT1lmfh4ZO8Cfu9f7sADe+Zdj5P7w1iJQ+1xwekjJnW8cOtqvGpLC5dccDoW69YGgxoNy3DDTn1QJf6qUiMp6SbAPTXipq4oNRzZdcupmoyxp0ZZ2rBWG63EKm5GDblCuR0g0OtpPxXhOMjlDJx21Crx/bHrJwEEtZ9yfx/k38f0j6mZUuOtLz4Opgm89OQNOHL1uOtntIZx4FofKNkYp5OMvJdpdSg1eJ7QCbk6P+o9B9mELNc5qaEjDWUNL8Wd1PCw4GVVTzS4e2oEt59qtk0xh4dtKVORGj7Ll2SaZtdrZMJBvtNt04kf5XOGh1LDCp2+9OQN+Mdbd+LUI2cSOzcW8zlsmCpj11wVu+aqWD9dSeQ6sszln/kp9sxX8aOH9+Ouqy4Wj5N7jDp+mOjgpAaTOgzDwEs2m7jw+HX4r/v3AbACCapUl/1I9YECPVSBX1SiDFHazPSiLAXVmeihzyXdc2qQWGu0nZ/FGIWSDyfVRhtTvCcMBTlGEETJ4CWdjjPZWe5DscX2U/HgUmpocK6vFPO48uITPH9WEKpRHgu60G7Hv57IKsNGu+2a+9hORi/kJu5RJzWoH89yjfeZOqKu4XGrx73sp2rc5y0S5DW6297Nq6dGVEoNqv6v1lsYl3p3rTRabF8TA2oPwG49NahR+LnHrcXX33oOjlk3Ed+FejA9VsSuuSr31UiIPfNVAMB8tel6nOyn1PHDRAeXpDKphg6rDbaf0hqnV4K3UqMYY2W+SpkbOMYKJY9KoqeG9f8DSzXhRx+n/ZRhGOIauFl4eMiHhIF7asSa3LI2noNUR3Kj8GgwpVuhg/1UNygBxwkufaA9YJw1E3LBRqtlulRcvMfQCzm4qRbahA0FLZdqzR7PZJJATUbHndRQLW4AVmpEhdz3qlvBjbqUN1omavY9CVvJQ4HP5XrLtZ9cqPJ8EQfuRuHuflydjcKt7w3DUntPVYqxXacXUxUr6cVjRS8oqcFKjfjgpAaTakoFas5pdio1OLigDaJRuOipodpP6aDU4ANEHCzZlYpUuUgJrc/fvMNJfsWs3KFNK6t1wkMO7gZpYOeVGIgzudWXUsOjgo8JH7nPiu4207S2sf2UPlBCIRejzCeXM4SqqNk2XUGzKq8vWkHBTcNA5D72tN9Zqje5oauGqHbFsdtPcaPw2JD3a932bp37vDYapNQIOelFSc/lRsuV+OTq+3iQ77S7p0bOo6eGXsqZaTupwmNFL6p1bhQeN5zUYFINBcPrTS/7Kd4Q6gIdHimAbRiGK2CZrFKDe2rEyaK9YZ8oW+/7CRumAVhBZUp+xRnMBpwquSo3iw+Ntuvg2Pv5XkfLOJNblNTYM1/FS665Ef9w06OBf5cdh6JBjino7itd5Ebh2tFMwH7Kej0qtmm75sEgCVMmPqg6P2qVBgBhKdM2ea+pI+q8Hb/9VOfrtU0+x0bBkwdXxNfd7afc3zfbplDPhJ30ku2nFqWKez6TxIS02TThnF/yOUMoM4jxkl6V96TUmF9hpYZOLHOj8Njhd5pJNRT0arTaHVJdDi7og1evBFmtEWdjaJUS20/FylLd2nhR5eLLTtkAwJLOOkqNuJMa9oGC7adCI4yeGvEqNZyDyqP7lvBX33yg5+9QnJ0bhUeDrN7RO6XhrGG87xiOWrOFT9z4KO7fPT/U3zFNUyjvvJrwRgnNW82W6ZoHWamhF01FQRwl45IFxSJbUGlH0vZTfnMUW1CFy9xyA5d/9ieux/z2b6ZSatNsmUKJSS4RYSHbTy1KfXdYPR4P8hDo6KlR0D2pwUoNHaFG4dxTIz44qcGkGtoI1poeSQ0un9UGtVE4oCQ1tLCf4s1jHCwJpYaV1CDp7Hy1mUhPDQBi08pVUeEhJzKC2G14PSXO5JZXUMHP/5yuVa7IZsJHt0bh3XAC2TwWhuEzP3wcf/OtB/CKj/xwqL/TbDsJBa8q6Cihyv9W23RVAvP6ohdx7jdyOcOxmOFm4drRodTQwH4KYHVX2Ny7a67jMb+iG3VbJzcKL+XDDVSSRc2KYj/Fa0Y8yAmstrRu5/OdSo2Jsl52QkKpwT01tKHdNoUik3tqxAcnNZhUMyZVWKuV9qpHKpMcXr0SCtLXidpPSYkxJlpqzZawmKKNodPkrOGp6IkDx36Kgw1h4bafSk9PDZk989Wuv0PXx0tNNKTKfspez7iYYjjufqoz6DQI8nruFzCMinzeSXbKATMunNCLpse+NEoocMlKDf3o6Kmhgf0UwEqNsJn3qGb325/SnpT2eY12WxToFUNWalAsY6XeEmp2gNeMuJD3mqaJrkqNuIskejE9RkoNXld0QVblqkkxJjr0+mQyTJ84SY3OnhoNDi5ogavpVl7uo5Hz/DpuKODB9lPRsyRVKE7YCz0pNWrNtuc4iYMyzSN8gAgNufIxmP1U52NxzgteQQy/JBdVdVHyLci/j+kfUvhons8A4Kh2Gpzh0oKa9NmNO0DpKLhMl0qNq67jpdFqCwsIv58DbtVwlEyWyWKGg0+6oVtPDVrz+FwSLl7V7H5JDZq6SbVjmo5yImwlz/SYlfB8+vAKdh12iml4zYgHeQS0TVMkOfM5A5WS+tnUa0PqKDXYfkoX5H2HmhRjooOTGkyqoQzoiqdSgwNNOiAfFuSGjPImvpBgUqNUYKVGXJCsulLMiXs+WemU8sYVZCAqRbafChu58jFIzN9ruo5TqeF1SPUbD/TvoevjtSYa6F3V6wjpDSVieSwMR1jxAlrPi3kjdjtDSnY2W277Ka66jZdXf+xmvOivv+ubRBCNwlmpkXnUeTtu+yn1DEQFe3wuCZf5FQ+lhp/9lNnZ44/mkrDnjFOOmMHxGyaxWGti/2JNPM73Px7kIdBsyz01cq65IO69RBC4p4Z+rNhFNeVCDjkNx8yowkkNJtVQMLLVNrGsVGRxxaQeyHYccgV+pSgrNRK0n6KkBlsPRQ4d5iclT9J8zhCqDSLuJFelwPZTYSMr5YIFejufE2dyq5DPdbxerzlB2E+xUiMS6G3NaVYZ5wUFslkhqgcUDIrbegqQ+qu0lUbhnDSPjVqzhXt3zePwcgN3+ViaUeAqrkAV7XvUswqTPOq8HbdSQ4XOtqzUCJclj342fo3CaV8nj4Wo+jTlcwZe/bzNHY9zIjweZEWlpdRw1gZZmZFkrMIPx8KZk+W6QLEE3ZrKjzqc1GBSjRwYV6V3LQ4uaIGcXJIPjxWpeVKyjcLtwwN710aO2iScIE9QIjmlBh8gwkJunh2sp0bnY3HLvNWDqp8dGV0qKzWihWy+UpDTEAl7bhQeDWafiUMKBiXhf01jQQ1IfuuePTw+YuLAYl187Zd0pnsRl93luG0/xUoN/ejoqZGgehxwCm04qB0u9Vbn++nfU8P6v5cqIwp1F1Xcy7BSIx7kEdBomVJ/R/fakKRVth/TnNRIFK/zCRUucJPweNHv08kwfVDK50BrzpwtK6VMeoMDTVogJ5fkDYErqZFg9YOwn+Iqysihw/xEyZ3UmFIsqOKW+Fa4WXzoyAqtIEoGHdQOZWUD2st+qsBJjUiht9VIgQEVWSuq3uxMf/glsPpVwNB6nkhSI+ed1FhptHD93btjv54sIic15pa9bTlEo/CYimqomGOZkxraoc7bSVjiljzOR6zUCBev99N//+ZvTxeFkkdVrAN8Lo0LtWiCihzVs6iOO9FpD/upfotAmMHxGhPUU6PCSo1Y4aQGk2oMwxCZUPLKHBOWVLwZ0AFSahiGqtTQzH6KDw+RQ9LvybKa1NBDqcEWZOEhBwmCJCx02IOr1Zm9lDtki6RDQmYUEQczHU+SCnmh1OCxEAWNPhUOwn4qgUo5Up56VQXfvuNQ3JeTSWRf+kM9khpxFVFQ0HKJ7ae0gwLbJ26cwvte8+xErkE+B1HQnBXk4eKZ1PDtqWH9v5AzoE4RUVTsqwp2gJU6caEOAdr7qwWXXo3mk4bOz/PVJkzTxI8fO4Dn/eV38LWfP53wlWUDL3tc6qnBSo144aQGk3qoWTgtNtSMjysm9UA0Y1Sq4SoFXeynnMODn7cqEw6O/VT3hT5u2yFhP8WJrdCQ598g53IdEgPloprU8FFq2BV83Bw6WpyeGsleRxCKoo8CzyHD4KfK6Te4l6T9VN5DqfH8LasAAKvGOy1GmPD5xVOHxdeHluuezyH7qbiKaihoucRKDe2gc8o7XvIs/MaZRydyDXL1vziX8J40VLzWEV/7qbZjf6meUaOYM2QF+4bpMgAutosLdQjQ+04Fdltmx13/1wlyOmi1Taw0WnjTF27D4eUG/uDLdyZ7YRnBK6lR5aRGInBSg0k9lMQ4uFS3v7cmEa6Y1APhTalsAmX7qSSVGvJBgquiouWZ+SqAzookejwpytwoPHRk7/i0JAs7emr4jAcKtjuNwiO9rMziCDX0z2qQXQk3Co+GfptsC/upBA6VtJ+RA1KnHrkKgGNLwETLPU87zcH95vGG2JvGZD9V4kbhukLJ6LitT2Xks0iJkxqR4GXn5FeH0BZFFYZrXJTyuUgKr+Rir21rJwBwUiMuTLj3bfS5y9vJrC++6YV45amb8MnLXxD7tfVivJQX43Oh2uT1JW48pgKh1GD7qVjhpAaTemYnSq7vaRLh6lk98DssyFXROjQKB3gDGTUf/f4jADqrF373gmOTuBwBNwoPn1af9lNaKDUK7nG50mM85A1WakRJqhqFi/4qvIZEQb82HFSgUEqgYILmETm4QJaLveYUJhzI6hLwX9dpbxqX3SU3CtcXWsOTLLCSt0AltsWNhJpH4ZqfupLsLw3DXZQXRT8N9e8ePWslNbg4Mx78jh+0NmxbO4Frf/35OPmI6RivKhiGYQi1htxXg4kJj7FTFT3dOKkRJ50GfgyTMtZOll3fUzVUvx7MTDSIZoxKNZwc2FZtX+KkmDdgGNamxgqcsD1EVMyMFbFvoYbnbVntevzys47GpS84En/+9Xuw1a5QihNHqcFzRljIFet+nsUyGuQ0MDPm/uz36rGS50bhkWJKlZK6Q0EPVmoMic+t7ndupn1HEgUTtJ+RkxqkTuQ1Jh7k5JFfYJjmbVVFHBWU2Fquc1JDN5z+KsmdReRtBPX3YqVGuHi9n34FNbJSQ058RpX4kgs019v2U2xnmSxJKrf6YapSwOHlhpY9P0YdVeUDOPNMEvanWYaTGkzqWTvJSg2doeSSWg0n209tXjUW6zXJGIaBciGHaqPNB4iIWbQ3XOc9a23HzyrFPP720tPiviTx2gArNcJErlgPYj+lg1JDXUvqPgFqquBz7KeSv/ZRhN7VNBwrKXjOQYho6HduJvu7uALWMlSdtyIFr8kWldeYeJDfZy/LGUCyn4opkE1WuYs1HgO6IRJcCQYxTWkfQXOIl7KAGRzPRuE+b7GjFDVcFnVRKTU2zYzh0//zdKweL+KWRw8A4N6gceG3h09yPuiHqXIRwArmV1ipETdeQ4eUxVHNFYw3/G4zqWeNEoiiwyP3R9AD0ShcUWrIVdFHrk62+RZVRbHUOzqarbaonpws65VP50bh4eNWavR+vuifkOAZQlX99VL7FVipESltp6mG9hS5aXwo+N3qwZUaCSQ1FKVGznCUqWw/FQ+upIaPdVncjcInbfupZbaf0g5a65OszJYDq9xTIxq8kxq9lBpQlBrRhc5eevIGnL511lEBs/IzFvzqktKk1ACsnhpMvHglxFipkQz8bjOpZ7ritgwhmT97UeqB8C1WDo6vfcGRKBdyOP3o1Ylns6mZqF9FHzM8sse12ig8aSpFbhQeNnLFehAlAz0lycqotVPupIZfQKGzUTivNVGQopyGsC1h+6loqPbZU4P2f0nYydBBlpIa+ZyBSonUG7zGxEEQ+ynHciimnhpCqcGBJ93QQanhsp/ipEYkULHjJy9/ATZOVwB0s5+yHu9oFB7DeZXGYYOVn7HgZSEEJNvvsx+m7DiYmtQIopJnhsPrHaZ5O+nYVtbQK7LEMAMwWXEPY6oC582gHjjBBfdhYfOqMfzwj17c0TQ6CSgIweqe6FioWbLYUiGn3UJfIak/JzVCQ5bN92M/ZfVPSGYj3q9Sg3tqRI09JlJQLUfV3k1eQyKhf6VGvFX4MqT8WxFKDUPsc/pNzjCDISePfJMawqIsnv3IhOipwWNAN4SyK6ax4IWXUsNPZcQMBr2f5UJO7N/8LJ5MsSd11PyA++uo4L1lvPgqNRLYPwzC9Ji1thxcqrker7faqOSSj7GMMvLYMU0ThmEI28A45grGgd9tJvWoVjYTtsSbG4XrgWgU7lHxsH6qIioMkkQcIDioHRmk1JjSTKUByD01eM4IC1kpF+RgRs9IUu7d0VPDT6lh/58PntHSTpFSw6ms5LEwDIaP/1y/azPNP0kEKalIYsnuqZHPGeIxVmrEg2wl6Ws/Jfam8cww03YB1uHleiyvxwRHB6WGXOBVZqVGJMgV1L32b0IkYRiuQqw4irLI4op7asSD37uclp4a5Fiyd8Gd1GBL7XihjysrNZKB320m9ahJjcmyNblz1b0eNBJs2BkU0ZSPNwCRsWgrNXSzngIk+ymuigsN+aAY5FxGVYrHrpuM6pJ6oio1/NaQTvupSC8rszh9VvRdO4i8HYRgD+xo+M79e/t6vrC9TKKnRsHdFDwnBcV4Xxo9+xZqrmBwz0bhMSW+NsxYdjfz1SZ+/sShWF6TCUbcVmRefOLy52PDdBkf/R/PY/upiKDPvJzU6G0/5Q5ORtlTg+CeGvFi+oyBtPXUeGa+6nqclV7xQufemuipwSqZONEvusQwfdKZ1LAbhfNmUAuSrJgMBQ58bgAA47JJREFUSllIvXnMREVN48ZZjlKDN4BhISvl+ump8b8uOAZ37DyEl568IapL82VmzK0a81dqUFWnHcjmrEYk0PuchnNlUVhZ8BoyDH63eseBZWAm+N9JslF4xaNROAcp4+MLtzzu+t6vWKEVc+JLVqm+5uO3YMdf/3Isr8v0RliRJbjYvODoWfzkT38JAPDwMwsAOAkaNjT/FvM5sa/w27/RoznDcNkQ7Tq8EuUlAnDGIe8n4sHXfioFBTWAk9RQlRq834gXOuuyUiMZOKnBpB618pu+582gHghva40jUxxwiB65Qko3nEbhfP/DQj4oBrKfsjeDY8U8/uKSUyK7rm4csWoMz9k8g7ufngPgb2FI/xzy629xo/BIcN5WfdcOgpL23Cg8GvodAU4xRXJKDblROHkr8x4jfnorNeIZI2lQnGUVHZQaMnwmiQa511Iv+ym5p4bcMHr3XNXz+WHSq98HEy5ehVc5Ix393ABgg930/uFnFl2Pc6FmvNBcwkmNZOB3m0k9qlKDvAW5p4Ye6HZY8KLMTfkiR66Q0g3VLoQZHjm4G0ipYf8/l2DgJ58z8PW3noMPX3YagC6JcdM9pwVphM70D42bNMQCRYKLx0Ik9NurxFFqJNdTY9mjpwbvS6OH1pBTj7SkPQ/vXRSV+DI0v8e5J/nrX32O+Jr3m/pASVBd9qdFToJGQkO6zzRP+PbUkOwv5eBkHPsRuv+8n4gHryOKzjELlRM3TgMAFmtN1+M8f8RLS1Fq6OhMMcrwu82knvGS41lXzBvie57M9UC3w4IX3FMjeiiYU9JwHJD9VK3Z9vVWZfpDls0HSWqI5yR8jsjlDDEfNJrdD7tUnc9KjWjQZEgEgg7AHLSOhmafChgKYicRmCh32E8ZXHkdI1ScsH7K6ZF09fX3dzyvkUA15WVnHCVeb+98rcezmbgQ+1NNglB0HTVeT0KlIRVXFXoobf16anz6DadHfJWSUoOVn7HglTtKU1LjmHUTWDNR6nicYxrxQgVudc3Wk6zA7zaTeipSUqOQy6FYYBsInUhFo/AiBxyihsZBsaDfOCD7KYA3gWHR7Nt+yvp/kkoNghJvOw8ueSa56LBLlnqm6d9okBkeHcZEL0gRwHYRw+F3q/v1Fqc5p5jAvqNiJ0VXpKSGqLzmIGXkkI3ketuSAwC+cMuOjufRvSjHWGhhGAY22td10TU34trvPRzbazPetNummLd1Kb6iYFiD96Oh0pDtp4zuStu2tCeVg5NHzY5He5Hgnhpx47V/T0LlOSjFfA4XHL+u43GOaUSLOm6aolG4tfdjpUa88LvNpB46QALWgZi9i/UiSRuIoNChlu0AokN4TGpyaJQhpQbg77/N9EdLtp8K8Ja2NarKp8T4M/M1/M23Huz4uarUANgmIArSaD/lZXPDBMfvVvdbser0S0jAfkpRauRzTlCs0TLZri5ivJQaXiTle01JjUbLxAe//RCePLgc6+szbhrSBiWJJKgXJU6CRoLLfqpH3wpT2n/IiU/ZHSIqaN3iIol48HqX06TUAIB1053rHcc0okX9eNLebqlmve9jxejnCsZBv+gSw/SJugktigA1bwZ1oNlyKmN0hYIQHNCOjobGNmTFfE5sYKu8CQwF+TAWqKeGkPonP0/IibdP3vRox89NUKLWuVa2oAqfNNpPcRAiGhp9VqxShWshCfspUmrYwfVczh0450BltFTtvf+U3V/Pj8SSGjMV1/dPH16J9fUZN7KqX5f9KY3JhWqTe72FRKttSgq+XE+lhqwelgPcsSQ1ejQxZ8LF64ySxN5hGNZNdiY1uLg3WtTPJ50DDy/XAQCzHpZgTHTosXozzBAYUhDMgCTb5YOjFtQ1DmYTXBUVPXU7WVDUVI5JMlE+QIZDSwpCBgn4OwfIqK4oOGqQS612MoVSQ0pq8OEzdOgdNTRIdPWC1jf2wI6GvntqaNAonCjmc65EKe8zooXWcNlW0otaQn2+1KQGNZRnkkG2eNLlnEJzyB07D+HCD9zI6q4QkGMCxbyTqOjVU8MwDNdzJsqFCK/SwunRxfc9DtLeUwMA1nJSI3bUZBidAw8uWUmNVeOc1IgTPVZvhgkJwzDYfkozVuwDWxzVLYPCTTyjhzbnOtpPAY4FVZXVOqEgn8WCHMh1aRQOAMetn3R9T1Jiou0RMOWkRviYKbKfoqq+fhUFTHcoMN2vAqaZYC+vimI5UFKTGrzPiBSR1Cjk8T9eeJTv8+g+xF1osXHandRYrHEhRZJQsDufM7QJZMrJlT3zVSxzsc3QyGuIrM7227u1pUIb+Tlx+OQ7Sg1eK+LAu6eGHnNBUJ6/ZbX4+qjZMQDsWBI16r603bb2nvNVK+7FSo140TO6xDADIis1uBpOD1ZE1Zz+SQ3eAERHXXMbsgorNUJFPowFiUfSU3Swn5oZK+Jf33ym+H6p5q6kpWuVxzKfPcNH9FlJfkj0hDywObk1HKoqh6yc+lXeOkqNJOyn3EerUsHyb6f5gpMa0UI2opViHu+++ETxuPrZbCSk1FiveJ8v11ipkSQ67k071KK8Lx0aVZHTO6nhWKLunquKx+NQjnJPjXjxEuvkNZoPgrBlzTj+4Q0vwPte82w8a/0UAN5rRI06dzTbbRxeaQCwzi0zY90tMJlwSV1S47rrrsPb3/52nHfeeZienoZhGLj88su7/s4tt9yC7du3Y3Z2FmNjYzj11FPxd3/3d2i1/DcJ//mf/4kLL7wQMzMzmJycxJlnnokvfvGLXV/ni1/8Il74whdicnISMzMzuPDCC/Gf//mfA/07mQExgDFbEdBqm9wkSQOoWabWSo28dW2c1IgOEUDQ1H7KUWrwnBEGsl1MkECvkPpHdkX9cfaxa7F20qqyWVSCTnStrkbh3FMjAmhM6DIq/KHgOdtPDYd6p0mp0WiZnoEHP5oaNAonqOqaVcTxQH2xKsWcS6mjJsaS6qmxasxdvblU5z1HkujY701NtPHZZHjo858zLFUOFdD47U+dPm/AEYplXNT0Srgw4eLdU0Of+SAoF5+yEb9x5tGisIJjYNGiuhC0TVP005gqF7RR/mWF1H1ir776alx77bW48847sXnz5p7P//rXv47zzz8fP/jBD/Ca17wGb3vb21Cv1/HOd74Tr3/96z1/59prr8Ull1yCe+65B5dffjne/OY3Y9euXbjiiitw5ZVXev7OlVdeiSuuuAK7d+/Gm9/8Zlx++eW4++67cckll+Daa68d6t/MBOeEDVOYlPwuF6pcAZU0FCQeS4FSg4MN0SGsHjQ6OMqUKanBYyAU5MNYkEbhJH/IabQJJO/kDqWGfa15qWKPD5/ho1OflV5Q8JR7eYULKTUAoJ93tpWgUqNScO91qAK8yCriWKhK6uCiFJhSq55pTxKHnYyMWr2pri9MvCSl2OmGmmjjYpvhabTdySsKOPrtT53pwsD/9/IT8RtnbsF/v+v8qC8TABdJxA0NAbkPU5oD0uw+EQ9qMVurDczZSo2ZcVZpxI0+K3hAPvzhD+Ohhx7C/Pw8PvGJT3R97vz8PN785jcjn8/jxhtvxGc/+1l84AMfwJ133okXvehFuO666/ClL33J9Ts7duzAlVdeidnZWdx+++342Mc+hg9/+MO46667cOyxx+Kaa67Brbfe6vqdW265Bddccw2OPfZY3HXXXfjwhz+Mj33sY7jjjjswOzuLK6+8Ejt27Aj7rWAk3nLhsZiqFPCBXzsN+ZwhEhuc1EgW0zTxf3/6JABHQaMjbFkWPToeHGVoM8uHx3CQA0hpVGoAwETJWkdUpYZcwdfrYMwMjmM/pdOo8KbIdhGRIBdD9LM8NxLsqeGn1CiyUiMWqsJ+KueyFGqqSo2E1KMdSQ1uFJ4oOhbcdCY1eM4YloZynx01hPfz5aKKI1aN4X2veQ6Os219ooaurcm+prFA+3e5KDZtPTVkypzUiAX1bNtqm05Sg62nYkefFTwgL37xi/GsZz0r0CH3uuuuw759+/D6178ep59+uni8Uqng6quvBoCOxMjnPvc51Go1vO1tb8PWrVvF46tXr8af/umfAgA++clPun6Hvv+zP/szrF7tNOrZunUr3vrWt6JWq+Hzn/98f/9Qpi/+6OUn4hd//jJsWzsBAJiqWAvTvD25MMlw76558bXOSY2yUGpwQDsqdJT4y1B1LSc1wqFfpQY9Q6cA9qRQaiiNwqVge76HhQEzOKaGiS4/RBCCE+OhIldO9vMRS7anRl753m0/xYmvaKE1vFzIu6ptGy1vpQbZj8YFKzX0IskEqB/qHFLls8nQNJTeKWLv5qvUcHpqxI0okmClRizQkjxecpIao6DU4AKKaFHPfW3TSWqoNpNM9OgZXQqJ733vewCAl7/85R0/O//88zE+Po5bbrkFtVot0O+84hWvcD1nmN9hwke2LaGkBis1kkX2c9S50og3ANFT07AaToaCZzWNx2maaLqSGr2fL5QaGp0jJspWYEENOsnXSu4mnNQIH8n9QXvI5oYD1kOi3Gs5uNdPfMdJasS/3tC8QdCaR0FTTnxFi2w/ZRhOg3a/nhpxN4im8wmxXOOAdZJQsksnFfH0mHuMcLHN8KiFVUKp4TMfC0VuAsOC5iR2D4gL615PjIhSg/uExoOnUmOZlRpJUej9lPTy4IMPAgCOP/74jp8VCgVs27YN9957Lx577DGcdNJJPX9n06ZNmJiYwFNPPYXl5WWMj49jaWkJTz/9NCYnJ7Fp06aO33nWs54FAHjooYe6XmutVnMlV+bnrQr3RqOBRoPVBjL0fnR7X6bshenQUpXfvwRpSkmNZ+aWtb0XeXtDU2u0tL3GqAjyeQqDpar19yuF6F9rEEr2IWKpVtfy+tJGs9WSvm73fE+p4Vq7pc9ncNy2vplbqbmuqWVbApjttqj2q0lrdVyfqVGn2bSSSQZS8F6a1nhvBBjrjD+mYrdRyFvJQ9O0khpB39sG7T3M+O9HDsB4KY9luwF03rCum+aKap339VFCfbEKhnXvCzkDjZaJlVodjYZz7KWimxziHyPvePGx+PvvPwoAWKgmMx54nbJYqVmNXQs5Q5v3YrzgDqguVXlfOiyd99nac9ab3ntOZw0xg687IX2mDNOaw3g/EQ9UaDBRcjJYxbw+80G/kMB1FPYaOq9TtXqj4/uDS1Ysd7Kc1/Ka00jQ93Gkkxpzc3MAgJmZGc+f0+OHDx/u63eWlpYwNzeH8fHxgV7Di7/6q7/Ce9/73o7Hv/3tb2N8fLzr72aV73znO74/W5nPAcjhltt+hvZOrpxMiofmDABWYHDtwiO44YZHkr0gH+45YF3nnn0HcMMNNyR9OYnQ7fMUBo89aX0mH3/oftwwd1+krzUIB/Za13fn3fdi9sA9SV9O6pmbz4PKrpeWl3t+rpaXreffesvNeHoy+usLwkF7TPz87vuw/tC94vGdO63HH3n4IbRbOQAGvv/9G7F+zP37UX+mRh1aP5YWF7Wfl+frAFBAs9XW/lp15qmnrM8WcXD/fuRgoAUDLTP4Z2rvPms+ufuuO1F4+ufRXGwXKkYey/b8t3fPLtxww1NYsee4m2/9CQ7cz/vSKGibQL1pHW1/dNP3MVUE0Lbe9+9+/0ZskObohSXr8Z/++Bbsujve6zwWwOXHGfjnR/LYuWtPonNG1tep+w5Z68zy0oJmc7cTornlJ7dj+RGeM4bhsXkAKKBeW8ENN9yAPbuttebe++7DDYfv7Xj+Pbvtc+Hu3bjhhqf7eq1hP1Nz9n6i3mhpNiZHk732Xn9p7iBo/zF/+GBq3/ud9nn74cd24IYbHkv6ckJBx3XqmRVAnqd/dMst+MUB673fv+sJ3HDDjoSubLRYXl4O9LyRTmqkiT/5kz/Bu971LvH9/Pw8jjrqKLzsZS/D9PR0glemH41GA9/5znfw0pe+FMWit7zrO4t34b7De7Dt+JOx/eyjY75Chph4aB9w38+xeVUFb3zt+Ulfji+VB/fh8w/9HJPTM9i+/aykLydWgnyewuBfdt8GHDqEs05/HrY/Z2NkrzMot3z9Xty+/2lsPfZ4bH/xsUlfTuq55sEfAtUVAEC5Mobt27t//v/q3puAeg3nnnMunr1ZjzXvzm8+iFv37sQRRx+L7Rc76s0ffe1eYO/TOOGEE3Dz/p1YWWng3PPOx3HrrWxMXJ+pUWfVowfwsfvuwNTUJLZvPyfpy+nKwaU6/vcdN8KEgZe//BUuO0wmON/9t7uB/bvF9xs3rMcTK4ewXG+hZSLwZ+oLT/0EWJjDC1/wArz05PVRXrInn975Yxy0e4ptO3oLtm8/GZ/aeSt2Ly/g+aefjguPXxf7NWWBlXoL+PF3AQC//PKXYbJcwHvv+j5Wlho4+5zzcMJGp9Hvn9/5PaDRxEUXOHN3nJTu34t/fuROjE+vxvbtZwIAvnnPHnzp9qfwgdc+B+unypG+Pq9TFsX79gIP3Im1s6vEfdCB37/12+LrU55zGrY/94gEryb9/Pixg8C9t2OVvZ+48d/vwR37d+H4E07E9vO2dTz/mVt2AjsexBFHHIHt208N9BphfaYOLdfx53fciDYMXPzyV6S6v0Ma+Mr+O4DDB7B18ybcf/gZAMCm9euxffvzE76ywXjyB4/jW089jI2bj8T27c9O+nKGQud16uG9i8Cdt4jvX3jmWXjyZ08De3bjeaecgO3nd84rTP+Qe1EvRjqpQSoJUlOo0OOrVq1y/c7+/fsxNzeHNWvW+P4O/e1BXsOLcrmMcrlzA1ssFrX7EOtCt/dmZtxq0LNYb/P7lyBN06p42DgzpvV9GC9b11ZvmVpfZ5REPdcs257AMxNlLd/jsZJ1TY02tLy+tCFbjbbN3p8renqxWNDm/Z+yG7396JEDeM8r5WuyDpiFQt5pLprLd1w3r9/Dkc9bW9R8Lqf9+zhWkb7J51EsxNt8eGRQmuoUC3nhbd0yg3+maP4pl5KZT1ZPOE0iK0VrbijaPtcm9B/PaWWx7iw8U2NlFPI5p4+XMkfXm7aPeiWZPcn0uHXmW663xOu/48t3AQA+9cMdeO+vxBOMyvo61ZCaBOv6PjRMQ9trSwumYc0DpQLNx/a8YHjPxzm7mUax0Lm368Wwn6nxirQO5vIoFnk/ESWmvaefkvoglIv933ddqNgNzxut0TnP6rhO5fLuz2Uul8eC3SNrdrKi3fWmlaDvoz5dsSLghBNOAODdz6LZbOLxxx9HoVDAMcccE+h3du/ejaWlJRx55JHCEmpiYgKbN2/G4uIidu/e3fE7Dz/8MADvHh1MdExVrA/AQpX97JKEmpyVC3pPNdQgkBuFR8di1fLHnyrrmUuvFLmxWpjIDdSC9Dqkp+tUkUZX8sCeBcxLawn9y3KGwXNHhFBD9jRQlLqJNvvpaM24UO953jBE8Kmft5WawhYSav57xtZZ8TVdPzV/5Wby0VG1ffALOUPce3r/OxqF29+XEtqfUlPaJY9G4XWeQ2Kj1rDGwZhmgeP3/PJJ4mtuFD489PmneVg0CveZj+lxI4EtKV0jwM3C42S85JxPi5rHLbpRtucyPpdEi7rXb5km5la4UXhSpPcTG4CLLroIAPCtb32r42c/+MEPsLy8jLPPPtulkOj2O9/85jddzxnmd5homapYC9OCHUhlkqFmb8STOjQGha6PA9rRsVizPosT2iY1rDHAh8dwaLqSGr0/V9QoPJfECdKHw8t18fUzc1XxNQVec4Z0eOCDZ+jQCDI0GhN+yMk4DloPTkdSI28INVQ/bysFpAoJJUkvPsWxWKTgeiHnHVxnwqNqB6grUoCakhruNckUYySxpEbJusalurU3Wq4755WoracYi/2LNXz7vj0AgEpJr6TGb593DF77/CMBOOOaGRwnqWF93mmv6ZvUsNeifAL7D7lIosHn0sihfcekdD4tJ1QQEQZ07XwuiRZ1v9psc1IjSdL7iQ3ApZdeirVr1+JLX/oSbr/9dvF4tVrFe97zHgDAW97yFtfvvPGNb0S5XMa1116LHTt2iMcPHTqE97///QCA3/3d33X9Dn3/vve9D4cOHRKP79ixAx/72MdQLpfxxje+MdR/G9Od6TFWauhAWpQa5QIHJqOGqhEntU1qWGOAD4/h0FICSL2gzaFO54g3vGir+HrfYk18TftYA6zUiBLTfqP1T2m4KyubvI4MjJr/LOQMkQzo521t2H8oqaTGMesmxNc0Nig5w0qe6KCiBCpSAJwxIAcH5fk6qaTGuL0XWq5b1zy/4iQ1ykWNFsIRpdU2ceb7v4v/vn8vAKCioWUgjeNak4tthoXUe0WRZKZkufd8TA8nUWiTyxli3WjwehE5tO+Qi+6KOh1G+qTM80YsqGfbVssUsY6Jsn7ryaijZ3SpC1/72tfwta99DQCwZ49VXXHrrbfiiiuuAACsXbsWH/zgBwEA09PT+PSnP41LL70UF154IV7/+tdjdnYW//Ef/4EHH3wQl156KS677DLX39+2bRs+8IEP4B3veAdOP/10XHbZZSiVSrjuuuvw1FNP4Q//8A/xohe9yPU7Z599Nt71rnfhQx/6EE499VRceumlqNfr+PKXv4yDBw/iox/9KLZu3Rrp+8K4mbaVGvIhgYkfknWXNDwsyNChlgOT0ZG01UMvKPFW5U1gKMiB3SBJDUfqr08I+7j1k3jhtln89PGD2L/oqDZEsN3guSNKhM2XnlOGC8MwkM8ZaLVNDkIMgbf9lNNTIyjNhO2nivkcrvm103DrYwfwP164BYBjc9kMoFxjBoOSGmVpz0ljoCGtQ/J8nVTRzZhkEWLNG841cXFF9Ow4sOTam4yV9FtouNgmPOjzRcnlXK67HSCNjVxCifFiPodGq8V7yxgw7d2mHIjO5/U5i/QLF1vFQ6dSoy32ILKVGRMPqXvH77zzTnzxi190PfbYY4/hscceAwAcffTRIqkBAK9+9atx00034X3vex++8pWvoFqt4rjjjsOHPvQhvOMd7/AMoLz97W/H1q1b8cEPfhD/+I//iHa7jZNPPhlXX301fvM3f9Pzuq655ho85znPwcc+9jF86lOfQi6Xw/Of/3y8+93vxitf+coQ3wEmCKTUIBkYkwxk56S/UoM3AFFimo7Vg049E2RETw22nwoFOVgQxI6H9oZJSP27sW7SsgE5ICk12lIFX7nAFVFR4Sg19BoTfpTyOay0W2wvNATqVJGXeiO0zGDj4PM3P44nDi4DSE6pAQCvfcGReO0LjhTfF7jyNnIc+ylnz1kSChnnc1lrWfO1YSQ3RsYlu6OVhnve4PUkehYVe2LdemoAbIsaJvT5ooAv7TXbPvvTpNXDllKgxQ4CMUBDQHYSSLPi1lFqpPffkAZU1W2zbWLFnqt1XE9GndQlNa666ipcddVVff3OOeecgxtuuKGv37nkkktwySWX9PU7V1xxhVCMMMkyw0kNLaAkga7V+YSotk7xJkYX/vZbD+C79+/FdW95EaYq1udQDnAXNS27dg6PPAbCQE5kBGn43BJ9KvQKYFPgaUUKKrQ9lBp8eAgfYfOl15DwpVTIYaXR4rEwBKYyVxTyhgg6B8kFPLBnHu/9xn2u39cFSs6kOViiO6S0lHtqFDwahYu9aT6XmDqwXMjBMKx5brnedCW7arwPiZylegqSGrbiiJNcw6PaT/VqFJ50nze6zrufPoxj101opWIeNWjfIa8bZAuYRkp5bhQeBy1VqdFykhoVDZV/ow6/48xIQkmNeU5qJAptxHVXalDlTqttcsBhSD5+46N48JkFXHfHU+IxOcCtq6SXDo9cERcO/So1HKl/ZJc0EF72D8IWyTDYfipCnKSGnnOGStEjeMr0hzpX5AxDvK9BkhoHJJs4wGnOrQPFHnYnzPDUGh5JjVynQkaHghvDMEQgvVpvK/ZTvA+JGvI+J3RrFA44FddcbDM8qv1Uvsd8LCtyk4DOze/88i/ww4f3J3INWcHpn+I8tlRLr305KzXiQXUSXaw1xViqaJgkH3X02e0zTIhQUmOh1gzk585EQ13YT+k9ucsHW1ZrhINcwCAfGpK0A+mGCF5zRdzQmKbpuuem6S/xl58D6GdP5mUvZQpVifxznjfCpp2iRuEA2xiGgdpvopjPiSBUkKTGfskmDtBTqcH2U+GxZ67qKkTxsp8qevQyoX1e0gU3lNRYbjQV+ymeQ8LgzicP4xUf+SF+8NC+jp8tp0GpUeRim7BQ7acKPXocJa0elvPxX7vz6USuISs46mvnXi+lWqnBe9E4UJUai1IiTMf1ZNThpAYzklBSA2C1RpLUNKiGC4IrqcGbgIGRrUOK0nsqBx10TWpwRVx4eOUvelUnJ32A9ENUPEnjQpyBDQOlAsu8o4JGjGZDwhe2MRweNeCfz/Wn1Ni3oCQ1NFpviqKnBo+PMLhj50Gc9Vffxf/83E/FYxT8rUiFNEWPXiay/VSSjJG9Yb3luj4OYofDH3/lLty/e941RohFpRJ7oqyfIzcriMNDtZ8qBrSfSmqKOLzkxC6OXTeZzEVkBBoC8m5hNJQaPG9ESUtJiC5Urc9sQdq3MvHB7zgzkhTzOVGppW5cmfhIi/1UIWeIwBkHJwdHri4sSRWyLvspjYJMMlwRFx5elW+9+mq0dU1qCE9r2X7KUWqIiigOVIaO6XHQ1BkRPOU1ZGBU+8dC3hDva5CP2MElxX5Ko4MlWWGxxWU4/MuPnwAA3PLoAfFY1ct+qltPDU2UGlZSg5UaYdNtP7+s2E+tmyxHfTl9w8U24UGfr2LBtp/ySHbKiD1pQmeWBSl2UeNzSaTIlrLTFSu5ecbW2eQuaEjoXMLrSLSoW7mFqvWZZZVGMuhXlsAwITFRKqDaqKe62VPaceyn9AkseGEYBsqFHKqNNm8ChoAWdMAdnG7ahwYreaRniNKpiOP7Pyxeav5uSg3TND09bXXAy35K9lr2UnIwYaFnossP0TSeg9YDo84TxVxOJAOCOImqRSxFjSYUssJqsCVqOHjc2irtOV32U7Z3vmY9NQBg3FZqLNdbrn5jqjUSMxhrJ8t4bP+S58/URuFrNUxqsC1qeIieGjlSanRPMtPDSe0/SvmcKJZJsxVSGhCWsjng+nech/+6dw9e/8ItCV/V4JTYFjcWVJUXxUB07M+UBfSONDLMEIyXrUlF3bgy8VFLSVID4IrrMJADSvL7SJX7uqo0AMcGgpUaw+Ol1Gh18Y5paazk8eqZYUq9Hpx5oyV+xmqvcBCWAHoNCV/Yx3h4vO2ngvfUWKy693s6zSc0PljJEw6GR1bDU6mR61RqUOIx6aSGsJ9qtFxJlxUOYoZCt/28WsCyZrIU9eX0jaMg5jljWGhtoc98ryQzKTXyCW1AxqTAaJqtkNKA07/NwFGz4/jt847BpIZ2dEEpS7a4Zg+VPDM4qgPB4WVLKcxKjWTQP9LIMAMyUbIWJFVizMRHWhqFA2Bv/BBYcsmlnfeRgtY6e0xO2ZLjpXqzZ1NrpjteHsVqQzUZ+elJSf39KNubU1dPDVmpoTSHfuu//gynv/97WORWTkPj2E/pNSb8KHGj8KFRq2aLeUMEpQMlNZTgj072U2XuuRIq8lLxX/fuwUK14TQKd/XU6GzQrk1PDR/7KbbNDQf5PVWDe2pvGy2TGh5KUWYwHKWGNXHQ2uBXcONYosZwcR5c+bLjxdes1IgWM2UFNL2Qk/V+9mrM8KjK4p0HlgEAm2YqSVxO5tFnt88wIUOyblZqJEdaGoUD6AhOMv0jW73Jle20qdKpalaFkhqmCcxXG3jvN+7F1+98OuGrSifyRo8OCV7qDUKudtHNasjLfkooNYxOJccNd+/BSqON2/fr9e9II9S7RLMh4UvRw7uf6Q/1kFjI50RF7UBJDY3WnDL3bQoVea34X/90B972rz+XlBpe9lP69dQYt4uvVhrupAbb5oaDvJ9Xiy3o/b70BUfi5j++SMviq4pHUQUzGKR+okQirQ1+e9Oke2r8xplH4zfOtCyQljnJGSmOKlif/cIwyO4YnBCNDrUAkqwOj14znsTlZB79I40MMyATtnSQvWmTIy09NQCpypYDUgOzIgVr5MANHSZ1CjCplAt5EQj56s+fxudv3oHf/9KdyV5USqH7nc8Z4p57qTcIOamRlNTfD69G4bJSw686n8U+w5M2+ylOjA+PmhAq5AyRLOo3qTE7UdJq78FWMuGSU27tTQ/tEwEcd6PwTpsZJ6mRbCCbrnO53nJV1LJSIxy8imuc762fbV0zjs2rxmK9rqBUOBEaGvSZmrQLmGhv6lfJnnRPjVzOwFnHrAHAxZlRYyasygkbed/D+43o8DvXHqHpejLqpNcwjmF6IJQabD+VGHTATLoaLghkQ8AVUYMjH7zch0lb9p3Xe8c4XSmi2qgJCSkzGE0pqZEzrENjM2BPDd0C2F49NdqSUoOTGtFhSj7HaYAT48OjzhMFOTHaR0+Nv3ntc3DmtjVa2k9xgDIcvKpqhf2US6nR2RC4pon91LjUU0NVapimOTKVw0khv6eNdhtjcJJYNAZ0tkXlOSM8RFLDLngUyXK/nhrSPjYpJspO0pOJDlMqVBoFDMPAeCmP5XrLLuwtJ31JI4mfrfLqcf2sDLOAvis5wwyJ6KnBFQ6JUUtVTw13w1+mf9xJDS+lht5LzvRYEYC7NwhbyfQPeRRbAUnrnqsN1WTkM6VuFmXlIiU7O+eFnGE4yVBOakRGWs6ZRW4UPjSqFYhlP0VzSPfffWa+ip0HrYT06VtnsXXtRCTXOCii6prHRyh4TQtejcK9bOHq9v4kaSWPaBReb7qur9U28f4b7k/qskYGed/xwO4FZW+nf683njPCgxLelNTIC6VGD/upBDcgZE/HjcKjxWkUPjqQWwkX9kaHX0J01Xgx5ithAE5qMCPMOFc4JI6wnyrqP9Vwk9fhkVUucpCXKvf1V2pQItSZM+ggxASHApOk1LAe65LUkH6mW6UUJWTrPkoN0Uickxqhk7bqOUpwsVJjcFQrkGLeED0RWu3u4+C+XfNotU0cs24Cx66bjOwaB4XUA1x1HQ5e84JIakiFNF42M/QZTVpFLBqFN1odY//TP3yc/dCHRF6HX/cPt+LVH7tZfN8gpYbGSnKaM1ptkwtshkS1nxK9dnw2ay0NLImc4kyeB6KERsAoKeMmuK9s5PglNahAkokXfVdyhhmScd4MJI4uEv8geNnMMP1RldUZ0gGdbB90q8JXoY3IgaWaeGyBkxp9I/dQKfSQ+ANuCa9uQ8TTfsr+0pCUGmoguz1SNV/JICeP0gAnxoenqXyO8rmcYx/UI1G4YAet1k/pabVQ8ejPwwyOl/UD2U/JhTS0BskqoLome1NSalg9NTrHxcPPLMZ9SSOFOp88vNd5P+n9Lmt8PpEVR5wMHQ7VfopUxOoYIWh6SfLcQsWZrNSIlrYGCaywcZQaPHaiws+BYIaTGomg70rOMEPi9NTgCT0Jmq029i9aweE0SPE4IDU8rubg0mJPAe2i7vZTFWuc7p13khrz1UZSl5NanJ4aOXEgDNIoPGfoVylVEUoMZ2ybcK6X5g3VnoqVGsPTxbFMS9h+anga7U6lBiUWe72tpKqbqui53xBzCQcnQ8Hrc3Z4xVqv5WBwiRqFS1kxp1G4Jj016i2hHHj5KRvFz7moYji6KUSpEKFY0GvPIcMNf8OjI6nRS6nRpqKKBHtqSMWZZto2RCmC3lrdzh/DMFFi+6mo8TvXclIjGfSOMDHMELBsM1l2HFhGrdnGeCmPo1aPJ305PWHrkOFZqbs9oYmGBg33gjA9Zs0Ze+ar4jEOKvSPrNTIGwGSGvaw0dFmSCg1pIAC/VNyhhNw7VBq8PlzaOgt1HFceEFjgW1CBketmi3kciJA3Sumt2AnoKfsoJVusP1UuHglNaiQRk5qkFKjISk1ajraT9mLxvrpMk49cgYA9wQclmarcyFesc+E9RQ0CjekPQbPG4Px5MFl/I9P/RiHl631gdRRjlKju/1Ukq65pNRotk1W+EWIOZJKDbafihpOauiFvis5wwwJyzaT5Wc7DwEATto0jVwKdgqs1BieqkdzcOtr6z3VvacGbUTkRGiVPa37piUlsSiR1bWnBh0oNJwnRKNwaV4wpaaCfvMGJzWGh+2nskW7bXZ8bgqSUqPR4zOleqbrBvXn4YrrcOia1JCSFdRTQw5e6qLU8LKfKuRyQsHBRVnDIVuOETRG6P3WOakBeKtFmeBcff19uPWxA+J7ej/pPNLwGCOAFOhO0n5KSs7yXBAd7RFUaoyz/VTkcFJDL/ReyRlmCFipkSy37TgIAHjRMWsSvpJgcEBqePzspyiYUNAwaC0z7WFbUuX5o2/kxvCFfG+lBv1Mx+EhGoW32qKhuSxVl+cN2R6AkxohQO9zslcRGFb7DYdXcKmQM/pQapD9lJ5JDaHU4OBkKHgpomgKlpUaRY17alDyotpoSY2rDen8wgGpYfAqpqDkJzVmT3oM9MJRePG6MghqDIDmhmKPvamzL01uB1LI50RSn4PT0ZG2ApogTHIMLHIozlGUCjbHS3ntE+WjCr/rzMgiemrwoSAR9tnVUFtm9beeArhReBjIh662dFAQQW7Ne2qsHi91PMYBqP7xUmoE6amR1/BEIXtaU7Ba7gFSlpr/yv9ETmoMj/M+6zcuvCiKBBff/EHwsgGRgzq9lmZKakyW9aySc3pq8B4jDNT+KzKkgADkXjfO82mfJzcUTwIaE8v1ltgnFXM5qcqW9x+D0mqbnn2ZVuzim4YmFmS9YKXGcKxS9vWk4uplP0XTS9K2udQDhIPT0UHzRFr2mkFgt5LooTiHrMxYxSqNxNB7JWeYIZhg6V2iHLL9S9PQJByQqmw5qTEwcgNUOYiti9VDL47ySMBxdVz/UEWs3FPDywaCaGt8oJCTGhSMlKXqZUmpIY95HjXD05AUP2mAlRrD4RVcKkpKjXqPt3WxZvfU0FSpUZaUGtz0dXjU/isyk1JflZJH3yNSQEwm3H9l3K6mXam3nMbV+RwmhP0Un18GxW/PQerbelrsp9i2bihmpTNoMW+IHjuUrPDrgdXWREE8zr0RImcUe2pMcgwscqgQYVpKZExzUiMx9F7JGWYIKHNKzcGYeDm0VAcAzE50Vr/riNfBl+kPWdXQloI2ZEtV1jypsWWNV1KDq6P6xVFqOE1+V7pUmQmZv4YnikI+Jw6/VCkpH4DkeaPN9lOhQkHLguZBJ8KxIuM5YxC87KfyOamnRrv7/EC2MromNWguNE3eZ4SBX4U14BQ1AZIKV1rLSQFBSYWkkBuF03xXLBjiupa4Ontg/MYHKTWcRuH67TtkRDKU96IDIVdRy4Unji2dn1JDD6WosKJj1VZkiEKl1Jid9obXkOjxVGqkpJB3FEnHSZFhBoAmlsPLDa6KS4BDy1ZSQ5X+6gr31BgeuZJMPjyQ1YPsc60jG6crHZU6XB3XP47dmIEN02UAwDPzNd/n0/yctMzfD9WajkZ2TlJq1Bot1+GYkxrDQ0GpoqbjQoWUGo0uwVbGHz/7KVo3gtpP6ZrUkJP6vK4Mj1+DX8CtwPCyFiUFxEQp2T0J2eSu1Fti3ijKjcK5ynZg/JIa9NmrpURBzEqN4ZCVOPKIIAWon+KLhk/SSQ220o4eEyPYU4PtpyKHemrISY01k+WkLifz6L2SM8wQkD9+vdUWlTlMPDRabRFgSItSQ/bGZwZDrsaXz5NCqZGwf3Uv8jmjY7xydVz/tFpOkmLDdAUAsGe+6v98zaXfTlDMGgtCkaEoNVqc1AgVClqmT6nBa8ggeNmAVIo5SanR/fcXNe+pUcrnRNCkxuvK0PgFrcdLeVeC3OlJICc1rPd/LOGkRkVSasjKAcdyhsfJoPjZT9F5kGyoklbr9IKVGsPRkooa5frGYq6HUqOtR7HNhOipwcHpqNDZAndQWKkRPbRlna44e861KYl5jSLpOCkyzACMl/KicvIQW1DFCll+GYY7g60zHJAaHpf9lHRQoAoz3ZUaALBmwl1lwY3C+6cpHQY3UlJjbsX3+RR70PVAUVYqJeXrlavz5Yo/LtYfHqHU0NwehOA1ZDi8gktjxTzK9rrRK6kxr7lSwzAMrroOEb9g5ITSJ8PLfoqSGupz42ZcSqrMV619cyGfcyxnOJA5MH7jQyQ17L3dmOb7Uto38150MNo+4yAvlBo97KcSTmoIpQbbT0UGqcU1PYIMBPeVjZ6WfRhcK6kzDnK8MTE4qcGMLIZhCAsq6u/AxANZT82MFROvcgkKN3kdHjlQI1fJUYW77j01AGDtlLvKosbBp75pyUmNGVJq+NtP6eJd7AdVSnbaT7mtK2RFICs1hkf01MjpP28AzhpS4zVkILxsQMZKeRHUqfaI6VCj8KSbP3ejUnSrvpjB8bONmVKTGh5KDQr0jCes1JAD6vMr1vgt5XMcyAwBvwbQ1XoLjVZb2H1VNFcQi6QG70UHouVjP022ln6KnpYmjcIpwfnx7z+S7IWMMOYIKjW4UXj00BJTLuawbspKbJx97JoEryjb6L2SM8yQkAUVNwuPl4N2Eml1SvppANzkNQzkSkj5nJAmpcaGqYrr+24Nrhlv6JBYkJIaz8x1sZ/SRObvh2o/ZUpJGFJxAO6x0uSkxtA0qDdLSpQaRbJJYqXGQHj1Ihkr5rF59RgAYKlp+B7Ql+tNsc7o3KiRA5ThIVfin7hxSny9de2E63leiSSh1EjYeiiXM0QCY26FlBoGW86EQMunsqDaaLmsnHTfl1YKbD81DH41BmRr2Ta91RwU6M4nHOim+ezAUp2T4RHRHkGlxqStWF3kpEZk0LjJGwZueMd5+LvLnovXnX5UwleVXTipwYw0M6TUWGalRpwcXqakhr7BBZWSRzNJpj/kQ5dcHUWy+UpB78MjABw1O+76npvz9U/Lw35qdzf7KSHzj/7aBkH02yH7KToAwW2NtCwnNXgaGRqqxC6mpadGnqvwh8GrYrZSzGO6UsQq28byyUMrnsrbPXbSdKKUx1RF330HW8mEB1Xif/6KM/Dm844Rj//Kc49wPU+1DzRNU6zr1LsiScj7/LCd1ChKSo1lLqoYGK8kKWApKklVaRj6K4hFTxhOagxES1pXJiRlllws0fBYe1oi0J1spPvtFx2HnGGdTe95ej7RaxlVZPX1qEBKDepvyoTLUq2JvQvWvjOfM7BuqoxXP2+ztsV5WUDvlZxhhoSC6oc5qRErC8LbWt/ggkqZ/dCHpiq9d3KVHAWDdW8UDgBHr3EnNXhD2D907ws5A2tsr9H5atO3clJ3+ym10lf0CTcMGIYhEqKy/VTT1PPfkhYefmYB//GLXQCscZQGKkVOjA+DVxCS1uVNtuLrz75+L573l9/Bt+/d43rennnrcEnKMF0pc9V1aJAX/rqpMp63ZZV4/ORN067nqUq7aqMt5vCklRoAOpQaxXxOUmrwOBkUv/3GSqOFat2ao8eK+cSD1r3gdWU4ZKXGuGRNJ+8rvPpq6KIgNgwDZ26zLG12HlhK9FpGFVLq6D4X9MOUpNQwfSzYmMGoNlq48IM34oa7rX1o0nMEY6F/hIlhhoDsj7hReLzQZjAtDV4BqacGHxwGpurqKeCl1NB/yTn/+HUuKwuW7vaP3Chc7jnh53Hd1kTm74dQajTdSg3ax1LQbIWVGqHx0g//AM/YfVgKKVFqqBXhTH949UigIMP0mHVAv+spq1L1kzc96nreXnusbJjWO6kxZgew2dZweITNYd7AtrUTuOz0o/Cq047AsesmXc+jSvdGy0SrbbrUlzo0iaakBm2ZinlD6qnB+49B8e2pISk1dLj/vXAs63jOGAT5LOJSakjSYK+m8qayz0uSLbaC/ImDywlfyWgiCpWSvYxQIaVGq23ynjRk9i3UsG/B6RPJSQ09SL5EhWEiZJVIarBSI06amlS49IPoqcFNXgdGPkS6lRp2UiMFB8i1k2V86w/Oxy2P7Mevf+YnWKhyQrRfmkKpkRPJQsD6bHmNgZaokorn+vpFVPoK+xLrcQq4lgs5LECxn+LCqNAopmQdERW1HHwaCK/AEjGtqD63rnH3TRA9EjRuEg6AbYVChJQ9hVwOhmHgby491fN5sr1QvdnGst18e7yUR06DuUUds8V8TihIOKkxOH7zSbXRFgmCNOxJuQ/PcMi2hm+58FjxtVx055VQbwlb1OTniGPWWesd209Fg2M/lfy9DovxUh6GYZ1XFmoNUVDBDI+qmhulcZNm0lH+xjAD4thPcWAyTlpSUDMtUJUtKzUGwzRNl32IK6nRTI/9FCGarLH9VN/QAbGQN1wHR7/PVlvzJGhZtZ+yH6fLpcSNy36Kp5HQSItSQ3if880fCL/KasCxUiAqygE9LUFK6p/ASY3hEetMj3VDTmpUGy2nn4YG1lOAk+gi5EbhS/WWZxNjpjctjz4JgKWSWhHzhf5ri7Cs4z48A0HLystP2ehq4msYhthzeiXA6Pd0sL886xjLfuqnjx9I+EpGE90tcAfBMAzuqxER6llWhzmC4aQGM+KsZqVGIqRaqcEBqYFQDwUu+yk6QKagUTghNoNcKdk3jv2cVUHby9qtpfmBQrWfmre9zymAWi6SpYwzVngaCY+02BjSeKi32r5+7ow/qq/5KUc4vRGmlaSGurVIi8Who9TgdWVYhCKwx/xQyOdE0KHWbIv3fkKDJuFAZ1+PUj4n9h8AsMzKr4GgIps1EyVccfZW/OaLjgbgbhSehurlMttPDQUlBZ9z5ExHzwQ6o3ol1ClpqsM5dput1JivNtm6MALapt5q8UGZKnNxXhSojh5pSI5nAb4LzEizylZqcE+NeKEKqTRlr0sFbsY3DGpASg7qkWxe9ypaGWpyv1hrcqVkn1AwgQ6DFJT2q8RuBQxOJUVZmhv2LdRwYKkOw4DwbqekDdtPRUNa1hH5YFPjqtq+IZuQU46Yxqfe8AJ8/o1niJ+p9lMN5QNWrbNSI2s0peR5L+Rm4fTe69JPYVxJrhTzOVSKOZG4YwuqwaB9xdrJMq561Sk4Y9ssAGoUrtcY6AYlatl+ajCoaMYrOUHWll5FCP3ML1EzVS6IM+r+xVqPZzP9Mqp9tOVzLBMeaoHemCaqz6yT/EzNMBGyesJSasyxUiNWUqnUyHNPjWFQ3zf5jEAVZmmynyK7E9PkSsl+oaQmJTN6qaDoQKlvo3CnV8ITB5cAAEfMjIkqT/r3LXOj8EhIi/1UWVKicQCqfygZOlku4GWnbMT6Kafp99SY+9CoJo2qTUqc6z1WuKdGOJimKdmc9l43ylJfgqWaXv1XVKVGIW/AMBwLKg5IDUZDqbSnBEatIdtPpSCpwUqNoei2v6S9RaPlldTQR6lhGAbWTZYBcFIjCnQvrBoUslFm+6lwUfefaUiOZwG9d/8MMySrxlipkQStVvo2CCUpcMn0j9poT27OJ3pqpMh+qlxwLCu4WXh/dCo1uicMW5onQUVArNkWwUjZ4194XjdYqREG6lySFvupfM7pIcMBqP5pimRo59FkqqwmNdxjhN5v3Q+XE2w/FQpyEDJI0rMiKTV0GyuqUoMKbMiCipUag0HqYZqT6X6vpDWpwZUSA0H7S6+G3wXRU8PLfsoeP5r0hlwzaRVp7l/kIs2wEWoeTQurBmWSE+ORoBboqX2xmGTQY6ZmmIhYZffUmK822OM6RtKo1KDAJCs1BkOtdJLPCNUUNWUkDMMQgWv2I+0Pp4LWut+BlRqazhcUDFmuO37Gshe3l1LDo/CPCYg6Bxc0CSoEgfoGcVKjfxpdiiFU+ym/pEZZ8yDlGNtPhYIchAyS9KRxUWu2RZVlWZP+K+NFValhXRcrNYbD6blivZ+VkpPUICWdLomtbtC+mQuuBsMJWHf+jNYa1T4X0O8cSz1CD7PzRKi026awn9LlXoeFo9TgwrwwUc+yaUiOZwE9dnQMExHUU8M0gbkVntTjQg1qpgFuFD4car8Ed0+N9FTFydCGcJ6TGn3RUHrqlLpI/IHunsc64FTMtkS1pBwM8UpqcA59cNR+CWlS/MnBU6Y/KLDktW+Y7mU/lZK+TdwoPBxcSo0A+0xZTSeUo5oUWagNyylJMyGtO0z/qPZBQqlRb2un1ukG208NBzkH5D0UXTR3NL16arTcNqpJQ/EMjmWES0tqqKHrGWRQuFF4NKiFV6zU0AM9dnQMExHFfE5M6oe4uiE2dKtwCQIFXttmp/0J05uOpIa0UXTsp9K15EyWucnaIIjgZH40lBpyxaxXQ2Iv+ylOagxOreUO3ujQqDMoVFXLAaj+abb9g0iy3RsA1BreSg3d1YDcUyMc5D1aX0qNRlusQyVN5pVxpadGUdhPWdfM9lODodpPyckBL8WlrlDPlUVObg1EN2shGhv7Fzr7VKhKn6SZse20D7OddqjIBXheFmVphu2nokEtWkrDOpIF9JipGSZCVk3QRoCTGnHRUiq104BctccWVP2jVjq17e9N0xQbAN2raFWmWLo7EGoDV5HUaHkfyp2khp5bEqqkXaw2hRe3W6nh2FoQJgzxGWD6Q01+pWkdqUgNiZn+aLT8g0g97adojdG8bxMFsJc5QDkUcuGMEcAHvSx6arS16/HVqdSw7adKHJAahqaiGB+TkxopUg/zPnQ42mKu6PwZFdL89j/ejh8+vM/1M0c5qMf+g3qEslIjXNqmrPrT416HhbCf4jUkVNT9Z5oKr0YZvgvMyOP4UPJGIC7SrNQA2IJqENT3jKqj5MU/DQdImdW23PvQEidE+4FUO2QbJBqF+3TPFvOFptOFsJ+qNz2DITR3qJYyXpYGTG/UuSRNBwah2mly0Lpf9i5UAQBrJkodP+tQaqj2Ux4KKh2hptDLDQ4yDAOtMUH3mGWpUTjtSUqaKEc7lRrWv4kbhQ8HqXkKiv1Us23isz963PWYzlBCV+4HwwSHziI5T6WGMwd88L8edP2MlIO62F/OUCyDkxqhIu/TvcZImplk+6lIUM8oE6zU0AI9dnQMEyFc7RQ/aqV2Gijkc6DL5aRG/6gBXBoDsk1I2uyn1k6WAQD7Fjmp0Q907+nASEF/PwVUW3ulhrOGOLYVzrVScGxFsZRpcVJjIDoahWsSVAhCRdjccPCpX548uAwA2DI73vEzOpwT6hpNSSTt7aeKbD8VBmKNCbjHlBVUujUKJ698oqg0CuekxmA49kG2/VSp836PeTymG5NSQneBg5N901LGgUy3vYVuxXmO/RSfR8JEVlTrcq/DghKirPIKF9p/jpfy+NtLT8X66UrCV8QAnNRgMgA324sf3bxIg1KSLAqY/qDKSdoT0kaRgk35nJGqimvASWrsX+z022X8IRuZvGI/5RfobXaxB9ABuWJWBE8LnT011EAlKzUGo9N+StOB4YHTU4PXkH55+tAKAODI1WMdP1ODDR32Uylp/Ev7UbafGo5uVmVeuBqFN/RqFE5qckJNanAvhcEQSg2luEJmSrG105F8zhB7EE5q9A8lNbyq8P3Wi1bbBLkSFTXZf5D91DwrNUJFLj7y6ruSZighykW94UKFEb/6/M143elHJXw1DKHHTM0wEUJ+tao1CBMdrZZeFS5BoUMPJzX6h5IaFUniD0gNXDWpiuyHtVN2UsOjiSDjj9pTZ7qHFzB52uoavJYT41WPBqN+SQ1WagxGo6XaT6VnHaFkF9uE9A9Zu6mqDC86kxoUqNY7qTFW4v1oGHRrKu+FnJgmJVgpr8dYmVXs1mjfTI3CF2scxByEpqIY9+q9otra6Qr31RicVhfFxYS81kjjg+YXAMhrsv8gRRfbT4ULjQ/DGN1G4ZwMDRdhQ6xJXy7GQs8IAsOECCs14kc9TKQFavjL9lP9Q5WT43bQptFqp7pJOADMcj+egWgon/9ZOoz5vI/UkFHXAwUlxpfqTcePPd9pP1VtqEkNnkcGgcYDkSbFHzcKH5x+7D5U1ZdInmtSfe/HeIntp8LAaeIb7H5PSRWruik1yFZGhc8uw6E2CvdiOgVKDcAZv/MrHJzsl252yH4JdHkPootSw7Gf4vNImLTMdMYrgsBKjWjwKm5jkkePmZphIoQa+CxxZVxsUDAvbUoNqrj28/5n/CGpP8n526Z1qKRgky7+1f0w00NhwHij2j6sspNDB328gNuaHyro4GuaTsWTHGhn+6lwUd83XceFF+Wid4KL6U2zD0shWanxyN5F7LXVdLonz2kukddGpn8aYo0JqtSwrVuqslJDjz2J3z5Z7uXE9A/tQ7qpedKj1GBv/EHp1ijcN6mhYZ+FmXGawxquPhDMcHSzJ0s70/b8xmfYcBFKDc33m1lDjx0dw0QIN9uLn/QqNeykBis1+oaCDPIhodpoiYrlNC7+nNQYDLUyjuw1/BocNjU/VIwV86JXzOEV698gB0pEo/AOpQYfPAeh034qPVvVcoGVGoPSraIWAC7e7LynzbaJZquNPXNVvOzDN4nHdV9nJssFMXccWOKGr4NCa0bQucGt1LALLTRRavgxyWeXoVB7e3mRhp4agBOcZBuZ/ml3UQD6KzWctUYX+0s6j8jFNczwdLMnSztrJiwL5YVqky1RQ2TF3t/r3sMta+i9o2OYEJgo8cEgbsQmIUXBKEBSanBSo2/oADlRzgtr2mqj7Sg1Urj4c1JjMNQmrqt62E/1CmYmjWEYYh2hf4N8rRMBqv2Y4KjJoKDV2DogGoXzAbJvelXfb9/Sxu1/+mLxfb3VxlOHliEPF917NxmGIQINBxc5qTEoYqwEXDOEDUe14WkhmDRewRFWagxHyyPx9aHXneZ6Du1NdIeSL/Os1OgbodTwSmr4KHXkQLdXL5YkKBfyYp6g4hpmeEY5qTEzVhRr5AHeb4RGlZUaWqLPjo5hIkIoNdjDODZSr9Ro8Vjpl4aQ+udEcqjaaIkAQirtp+wD70qjxVUufaAmKXpVnAr5t8bzBa0jlNSQE7Z+1Z6s1BiMhtJTQxdP6yA4PTV4vuiXVgAPfLmyttZodyhi0nDIJOXa/qVawleSXpoBqvBlpqSGqVS0olOhRdOj/9Jkma1zh6HR7kx8/erzj8Srn3uE+H6N0qRdV6ZYqTEwTv+d7koN+acNTQPdlITjQqvwIPtb3e51GORyBtZM2vuNRd5vhAXt78dK6TmbZAG+G8zII5q8crVTbKS18sEJxrNSo1/o4GAlNazPXK3ZSk0DVy+mygXHdoib8wVGrbgeL3VPLOuu1ACcdWTePkwWpWv18+VmpcZgpFmpMcaNwgcmSJ+EfM4Q80St2e5IHqUhqUFBBlZqDA4lAYLbT1nBwMWaY8OhU6GFmsgFuFH4sIjElzKfPPeoVeJrXarwe8FKjcERQWuPe71pZszzd0Q/Fs32pNwsPHxon+41PkaBtZOWMpTtLsNjhRqFp2C/mSXS0SGLYYZgokdAjQmftCo1uP/K4NSlpoyVYg5zK277qTQEm1RyOQPrpsp4Zr6GZ+ar2DBdSfqSUoFacR1UqaFzEpT+DQu1zkbh0z0sDJj+UKuW05TUoORtjZUafRM0uVku5NCsW+o5uY/NETMVrecQgqrDD7BSY2CcpvL92U8tVJvid0oaJTXe88sn4err78d7fvkk8RidXdh+ajCE/ZSi/Pr1M4+GCeD849clcFWD0cvCk/GnmxL42PUTnr/T1HRPKpIarNQIjTScP4aBzi6LrPIKDW4Uriec1GBGnnG7wnaZDwaxQVUuadsksIfx4DRFlW1OLPS1pmM/VSmkc/HfOF3BM/M17Jmr4tQjk76adNBQgpPjPdRyuh4gZdS+GXLgdZrtp0IlzfZTVLmlNo1neiPmjR7V9+ViHkv1FuqSUuPUI2fwz799ZuTXGAZrqHKSlRoD0/QJWPvh2Pc0MF6yPqM6KTV+69xteNnJG3HUrFM5TsGoerONRqsdWJXCWDR8ziGlQg5vPGdbEpc0MOunrDlj70I14StJH92C1idsmEKpkEO92YZcqC/b6eoE20+FD9XQ6Hz+GAZaR5bZxjA00lysOcroNVszTAT0qhJmwoc2hDo1YgzCFFc0DAwFIkv5nEhguBuFp2ssEBtnLHXGnnk+TAal1XbbyExKfY1MszPQnwZP246kRl62n/JOarD91GC0Uq3U4KTGoPSj1ABs+yk7ab5ppuKbXNSNWaHU4KTGoASxKpOZkgpWdOzzZRgGtqwZd9khyWsOn1/6x7FETc/64cf6KWsfunee1V390uqyvzQMA5/+n6cDsHo0EaSImdGskfyqMWvtmFvmtSMsSBms8/ljGJxiTd6ThkVDsttm9IHvBjPy9PJzZ8KnTgFujQ6NQRAyTa5o6Bu5KSNZsMiNwtOq1FhnV8jtX+DDZFCcxozWOKDK2FbbFOPB6/k6HyomO5Qaztw2yfZTodKh1EjRwWHMHusrvN/oC9M0B0hqtITNV5oq5tbaPTUOcOPOgXHsp/rrqdE2gUN2QLCs+Z6kVMiJPTSrh/unGVD5lQbWT1v70H08Z/SNqMT36ZlQkdYT4pCdcF49rlcj+ZmANmRt3nsGJg1FVcPAttrhk9bC3VGH7wYz8siNwr2qhJnwqTf1lO72goKTrNTon0bTrlwoOI3Cq422FHRK11ggZie4yVq/+DUKB7yDM90aOeqCmtSQqz/9msWpvSGYYHQ0Ck/RYdNpFM5JjX6QVU2FHpZCtL7U5J5NmgeoZdbwmjI0olF4wLmhUsyJoNWCvb/TSanhxyQ3Cx+YplRok3bW2ZZ1h5cbruA705tePRPKRee8QhyykwbaJTUC9NT4i6/fgxe+/7vYx4VYgWj1SHqlnYlSd/tfpn8affb0YuJB/x0dwwwJZambbVM0M2aipW5vulOr1ODFv2/kIANZTf3xv9+Fpw9btk3lFFXSylBT14McgAqMWnGdzxliLvBUaqRA/q3aT8nXmpfUSTKs1BiMhrJO6zwuVCoeARKmN01JndProEjrS63ZFu9zmpLms0KpwWvKoPQbVDAMQ/TVINKwP6WiLN6T9k8zoPIrDawaL4qqYA5W90evnm1lj70pqblmJzSznwrQU+OLt+7E/sUa/unHO+O6rFSThvPHMHCv0PDRtedO1uG7wYw841Iwlaud4iGtfoPkyd1L2st0UpcWeQrsLVSb+MrPngLgSLzTBvuf90/DwxqEDuRNj8SyqJTS+FAxWXYn5dS5baLUaUHFPTUGQ33fjBRV0HFPjcGQVU295gHZfiqNDRvXCqUGBycHZZCgwlq72p3Q3X4KcNYVrrLtn6ZQjKZz7yljGIawQt3LSY2+6GUvRGtHTVqzd+xfAuDYz+qCUGrYSZf/vGsXnvMX/4W/+dYDAOByo2C1aDCy0iic15DwaIr9x2iOmbSS/pWeYXpQyOdEFR9P6vFQ17ARYxDIt/YZbgrdN7LHtVeAiZUa2cHLG58qatUqfOv5+ldKdTQKV651vNw5vlmpMRjy+/b8LauSu5ABGOOkxkDISo1egWphP9Vsi+pD9fOpM6TUqDbaWOb+XQOxbPes8Uom+7FxuuL6Pg1KDQ5IDY7T20vffUU/iKQGn0/6gvYTOZ/iCC+lxk93HAQAnLF1NuKr6w9qGL/LVsB/5L8fxkKtiU/c+CgAYF6yTvbaazOdUCN5v/GRdkRPDe7zFhqNdjoLd0cdvhtMJqCDzzJP6rGQVmnexhlrw8hJjf5pisZZhqcqI20JLoICUJzUCI7wspaqWGguqDc7A/297AF0oCOpoVToeAXXWi1OagwCrR+vO/1IXPe7Zyd8Nf1BjcKXOQjZF7I6p9c0IIJQjbawCVk9rpdNSDcmSnnhc71j/3LCV5NOKJnllUz2g/Z3RBr2JGwdMjij1CgcADavHgMAPHVoJeErSRe9empQEVa91RYNtvfbapitayZiuMLgHLPOup5dcyuoNlodqh357NrNoopxaHmcV0YJua8sEw5q30hGD0ZjpWeYHvDBIF5IqZGGSjiZTdPWoeHQcoM3AH1S76HUSJM9iAw1dT20XOfK+4A4Xtad9lNe1WNpUHapjcLVZsbjpc7xzZVRg0Gfs7FiHjmNE11ekG//Ur3F80UfiJ5MeaOn3VhJsp+ihq6rNGvo2g3DMHC6XQF8y6P7E76adEJJQ3Ve7sZ6xUomDftTVmoMjjynjAJbZscBAE8c5ERoP3gph2XkfWetaSU2lm2lZT9J0zhYM1HCdKUA0wT+8N9+0ZG4+M59z4ivD3EhViDoSDKqSg1eQ8Kl1TZBLm/FnP57iCzBd4PJBBRwYql/PNRT6jc4PVbA5lVWYoPkx0wwmpI6xys4ndakBlUAm6bTPJDpjpftA80Fsnc+kYYkaE+lhkdw7TBXyg2EV0+WtCA3I+YiiuDQnBFErSXbhcyJpEZ6lBoAcO5xawEAP3qEkxqDsGj3x+vHdoz6YwHWepQGJbGosuUEed80+phT0gAlNZ7kpEZfCHuhQEmNFlYaLRG07CdpGgeGYeDY9ZMAgOvv2u362eHlOh7YsyC+P8S9IQPRK+mVdsZLXNQbJnJhXlHjM2sW4bvBZALOVMeHaZoiqaFzkNILwzDw4hPXAQD+5cdPJHw16aIhJbK8lRrpGgtEIZ8TATO2oAqGl/1UoYv9lJgvNA4y9WoU7qXUOMxJsIEQDV5TeMgsF/Ji3VuoclAhKBRYCFL5JvfUcOyn0qPUAIAztllKjft2zSd8JemECpQmPOZdP9ZMOmMkLT1Y6DoXqnx26ZeWh2I0zayzG93vX+R9RT+QpVTepxK/kM+JvUa10caSPbcYhtMjSyeOWTvp+fg5f/09fOMXu8T3XIQVDNFzJYX7zSA48S9OjIeBnNRI4xlllBmNlZ5hejBuT+q8GQwPS4LXGaCUpXk6Byn9uPQFRwEA7th50PPfx3gjN87ySmBQICqNUIXnAZ4/AuEoNZxxUAxgP6VzElQNgqnVn149NbhSbjAcL/R0HhimbbXGH3/lbl5DAkKJ0HyAe14uUk+NFg6nVKlxxCqrv8P+xZpI4jHBGaRB/OyEYz/VT4PxJOGCrMFpplQx7sfaKUpq1Ho8k5EJ0rOtLFkaUvB3olToaYWYBMdv8E5qqGoutp8KhijCGtEAtaP24zUkDBpSr8Q0qD2zBN8NJhNstg+Q7/naPS7PSWYwbn30AI77sxvwTz/e2fGzunRA1zlI6ceJG6eQM6yA5L4FPjwEpdF0qvO97rtXJXtaWDPBzcKDYpqmZ1C61MV+qpaCnhpqEEytKJe9l2fGrOceWuKkxiCIAHdKK2ypeOJHj+zHjQ/tS/hq0oFXHx4/aJ44vNIQ+420KTXWTpRRyBlom8A+DlL2zbIdwBvvIzmxZkJWaqRjPzLBSY2BGTX7qbWTTnENJ8uD0Zb6WnUbB6Qurzba4rOm65nl+I1TgZ43X21yX68A0DwxqgFqOTHO88bwULI8Z4zO2jIqjOYnmGEU3nzeMc7X/3g7buN+CUNx9fX3wTSBP//6vR0/azTTncWuFPPYNGP11Xjq8ErCV5MempJ9yKN7lzp+PjOWrkpamVmR1ODgUy/kQ5Rc+dTVfkokNfQ8RAKd3spq4k4OrtFYX+TKqIGgvHhaK+dO2OAEHX76OO81guDVh8cPCkDtOlwFYFVi6xqA8iOXM0Tj6mfmeV3pl3m7X9F0ZbCeGmMpUWpQUoP90Pun1R6tYOVa236q3mpjnu3IAtGSgrh+9lOAW6lBCVPd+mkQZ26bxWlHrQr0XO4j2ptRU3Sp0BrSNq2kHTMcdal/KKMXfEeYTHDMukn8+plbxPc3PcjVk8MgN3BtK5UgtZa1ITSM9AalhMyblRqBET01CgYuOml9x8/TndSwxsMBVmr0pCknNfKy/ZQ1F6TVfmpKCZ6pFmtyUJWCD7UGe9gOAq0pKV0+8H9+5RTx9QO7uWdCEPqxHFtlqzIe278ovtfRJqQXq+0gO3uf988cJTX62FfISQ1136ork2wdMjCNEbOVqRTzoscDJfWY7shFNt1EgOWi06dJKDU0VXONlwr4+lvPwb3vvRi/d+GxXRP63EehN40RS36qjBXzoO0RJ8eHpzniyp40w3eEyQwv2LJafH14hQ+RwyBvqFeUwN39uxcAAEfMjKUy0AA4DfnYFiI4DdHcN4eXnbwBf3fZc10/7yf4oBtsPxWcpo9SgzaAXvZTolG4xkkNuZkk0Kkqke2pyCai2uSqqEGg6sq0Nm4885g1+LfffREA4ME9CwlfTTropzk8fb4e22cpAlenrJ8GQYl+DlD2DyU1+imWqEhNf6spSTjTurLIwcm+aaW8N5MXNN4Pc7+uQLiVw/77S1JqVBstkUDsx9ouCSbKBfx/Lz8RLzlpQ8fPSMHGQezeONbJ+p4/hiGXMzBur31sYzg8jRFX9qSZ0fwEM4wHr37eZiEn3b/AwclBMU0Te+er4vtlpTnZ7ba111nHrIn1usJkna3U4J4awZF9SQ3DwDnHrRU/MwxgSlMpdxBEo3BOavREbnrrldRodLGfKml+qJCDYmr/D7mqj5KiLPUeDKqi7mYXoTsn2L7Xu+aqmOMAVE8cpUbvOYCUUMSqsXT10yAoQDnHSY2+WKo1RR+mmQETWmmpsuRG4YPjWNql414HgeeM/pDtpwIpNaSeGrraT6lQkl+G543gUKFVMaVFNEEQvZlY8Tc0FOsY1SRYmuE7wmSGfM7A+3/1OQBYqTEMB5fqWJISGapnJyk1nrN5OtbrChNOavSP6ksqV92PF/OprboGgDX2oeHgIs8bvWj6NGakcVH3sJ+qNa35RGelBuBOaqjjWVZq0PzB9lOD0TbT3+B1ulIUwfenuTdTT/rpqdGR1Ei5UoOTXv3x6R8+Jr6e7LOa+g1nHY3V40V8WFGS6go3Ch8coR4eoYpaTmr0h6tReJciiQopNZotYdmUlj5NG6crru+vOHsrzxt9MOqNwgE5ycVnkmERSo0Un09GldH9BDOMB6tYujs0u+eqru9Vpcbjts/1s6RmqWmDkxr9U1c2hnLV/VhKDgd+zLL9VGDk4KRsPyeUGp5JDWoUrveWZKzkf31HzY6Jr9fZSTDVmo8Jhj2EUmtfSFAF5YElXkd6QdWSQQKQamXq6nFWamSJHz68X3zdb7HEX7762bjtz35JKKl0hxuFD46wnxohpcY0zxl94Vdko5JmpcaW2XHx9TW/dhquetUpPG/0wSgmP1XkJFe10cIuLrQZGJofJlIyP2SJ0VnpGSYAdPjlxoyDo26SVKXGQtX6Ps2NobmnRv80lY2hXHUvV7inkTWiUTiPh174BSdFT41WF/spzZMalYL/OD5eSuLS3FfjnhoD4dhPJXwhQ8LJ0ODQvJAPEIBcPV5yBajSqtSYsn3Pac/EBIPm2u3P2TjQ76fJNkK2kTHNdDQ314VRDFZyIrQ/aC+RM7oXSVBBTa3ZFk4EuvfUII6SkhqUrJ3kpEZgstD4ecK2x/3L/7wPb/2Xn+Hcv/ke7th5KOGrSifz9n6N9m+MPvAdYTIFHX5ZqTE4K4oyQ1Vq0CYqzRM+KTX2c1IjMHSAJIWGHHQaS3lSY/00JTXqaLTaI735HRY/H2saF2Q1RZimmYpG4UB3xdFUpYi3XHgs9sxVcdIm62CZlma0ukEVtmm2nwKANZO0jnBSoxdUURtE0p/LGZidKAkl5aqUKjUo2V9t8jzRDzSvPn/L6oSvJHooGNU2rR5NaVe9xokzp+i9r+gHOsNyUiMYrYBWlmIubrQkpUY6Pmsnb5rGrz5/MzbNVPDszTMAnHmD7ad6k4XGzzS+H9u/hMf2LwEA/v67D+OLb3phkpeVSuar1tw7neLC3VElvVFHhhmA1XblZK3Zxkq9xQeEAVCTGLJHY6ttip+nRbrrhVBqLNRgmmbqbVDioFvzrLR40/oxO15CMW+g0TKxd6GGzavGev9SRvFTajiN6tzzR7XRBhWg6l4Z10tx9EcvPxEAsOugZcFXbbZ5/hgA6qmR5j48ALDG3m8c4OR4T2jeCJrIWjtZFkmN9VPlHs/WE5pP1EIRpjukDk67AjQIcq+mxVqTzyx9QEmN/AgFKx2lBifKg0BFNrkeezC3UsOaX8ZTcobN5Qx86HXPdT3m2E/x2tKLLDR+fuM523Djg/tcj/G+YzAWhFKDkxq6MbqfYIbxYKKUF40o2YJqMJYUuym5EkT+WZr9BtdOWcGoaqPN8t2AdKt2SXvwIZczsH7Kasa3R+kpw7hptr0b/lLV22LV375Od0VP0HFcKVpbK9NkC6pBEI3CU54MWsP2U4EhdU5QFdzxGybF12npj6AyJpQaPEf0w0rDer/SXiwRhFzOwIT97+S9aHBM03RsLUcoWMn2U/1Bewl1P6pCezZZqZHmM+wkNwoPDBVUjHLj5wuOX4f/+oPzXY89eWg5oatJNwu2UiPNbiSjyuis9AwTAMMwhFUBW1ANhprdPyxtrilgWcwb2jf97cZ4qSA2hdwsPBhNj6DUyZumAQAXnbg+kWsKk00znNQIgp/91GTF+5BFyq5KMae93dBsQO9+OfnBFlT902oHq67UHbafCk6j1Z/l2MWnWP0UVo8Xcdz6yR7P1hOquq9yxWRfrNiJcN2T4GGxmpOjfdOQeneVi+k9i6hwUqM/xF6ix7pStvul1ZptsSedSHHSlBuFB8cpyBudecILtfhjz3yVzycDsMA9NbSF7wiTOVaPF7F/sYbDrNQYCNV+Sn4fHS/SQuotV9ZNlbFYa2LfQg3HrEtn0CROGs3OjeH/ffNZeHjvAp43At7XGyipMc9JjW4IpUZeVWpYh/EFn6TGhObWUwDwR684Eb94ag6Xn3V01+cV8zkUDBNN08BSvYVV412fzihQPCr19lOTtv3UEifGe9Fq9+dr/Ypnb8RXf+9sbJyppFYJSEH5FQ4s9AWtGVmxYlozUcJTh1Y4qdEHcu8uVmpkl3bgnhqs1MgqWbCf8sI0gZ89cQhnH7s26UtJFaTUmGb7Ke3I1ieYYeA0WjvESo2BWFbsp+SDFvnl6+6NHwTRV4P90APRoF4K0uFhZryI07fOal+BH4RN01ZS4xlOanSl2eocB4DTuNDPfioNAapNM2P4/pUX4rfO3dbzudRjkg+V/WOKQETCFzIkbD8VnH6VGoZh4HlbVmPTTHr7G1EFOSc1+oPer6woNWa5N0/fyLaPaVaNq0xzUqMvRF+Vnj01HKUG9YlMQ6GNHyKpUef9Zy+aGWgUTrzjouNc39/11FxCV5Je5lesz9Q0KzW0Y3RWeoYJiLCf4kZrAyHbxQBuGy+ScZZG4BCxbsppFs70hoJSo3DvvdhoKzV2s/1UVxylhnsckFRXlcOnSanRD5TUYPl//4ya/dQBtp/qSavtbVs3yoxxo/CBWBmh4pkgzE7Y8wgnRwMj99NIu2pcRig1uCgvELSuBFVq1BotkQigQpw0wo3Cg0Nn11G3nwKAd770eHzlLS/Cm86xCrPYTrl/FmrUU4OVGrox+p9ghlFYbSs1uKfGYJCs+8jVlqfK7rkV8TPHgij9h4i1tnXIfq6O60m7bUpBqfTfey82kFKDN4FdcXpqeNtP+fXUSINSox9YqTE4o5PUsNaQxVqTvYt7QAURqm3dKCN6avDYCIxpmiK4vypgj6O0Q/PIN+/ZzUrRgJBSY5RUGoCT1FioNcU6yfhjC8h7JjXcSo1RsJ+y/j28/+xNlvYehmHgBUfP4ug1VvyGkxr9sVJv4bbHDwHgnho6MlqrPcMEYLVoFM5VT4NAFVCnHGE1gX7omUVhF1IfoYZbpNTYO89JjV6Q9RQAFEfsEElQo/Dd8ys9nplthA1ZR08NawPY2VPD+n581JIa9sdgiSvl+sZeTlJvWzdVLogEP1tQdSdoRe0oQUqNpXpT7KGY7ty3e17sQWmPNuqQ/dQ9T8/jNR+7mcdKAIRSY8T2o5TUME3H253xp2nvR3sVSLh6apB6OMVJjQnuqREYUpePQtwiKFSkxz0i++NvvvWAiHORFSCjD9n5BDOMzQz31BgKOiycuHEa+ZyBxVoTz9iB/1GSca6nyny2n+oJVecDQHFE7UOEUmO+xkGFLrSEN757HFBSQ+2psVAlf9LR2iBW8tb7wIfK/mmZo6HUMAwDaybYgioIIrAwouuHFxtnKsjnDFQbbbY1DMhl//Bj8XVaG8T3CyU1AGDXXFV4ejP+kKJ81JQapUJOFIBwX43eBG0UTkqN+WpDnHEnU2xv59hP8VzRi0aGemoQ66bsPk1LHN8Iyo79S/jCLTvE96zU0I/RWu0ZJgCs1BgOSlyMl/KiESpZNImeGiOQ1NhIlQxzXJnfC1dSY0Q3hpTUqDfbnBDtAlXGFVX7KXsDuNJoicZ8gHWIBEZvgyjsp7hRY9+MUtU+VZOzbUx3aA3Jj+j64UW5kMex6yYAAA/uWUj4atJBFoN0dGYhuLq2N8J+agQTXzPcLDwwtNXsZYtLSo2dB5YBWMmw6bH07kknWakRGGE/laGCCurTdJCLbQJz9fX3u77fMjue0JUwfmTnE8wwNk4gnifzQahJsu61diPUfUpSo1hIf2CC7IbYc7I3dSlIPQqBSC+s8W7NHbs50eVL0ycgLTddXJIa41LV6ahJeblR+OC0hVIj4QsJAWFbx3NGV/ySoaPOsesmAQA7DiwlfCXpgJKEv/aCIxO+kvhQgyec1OiN3Ch81OCkRnBEf66ASo29tjJ/00wl1Q3mHfsptj/txSg5TASF1H9L9Rb39ArIQUnVcuefvxTjKVZyjSrZ+QQzjM1a+1C0j22FBqIuqTHovdxvv5f15uj01Dhi1RgAYL7aZD/0HlBAqpTPpfog0AvHgoqDCn40fQ4I5UJeBBjkQD8pNUbNfoqSGst8qOwbkdQYgQA3rSO7ODneFScZmv69Qz9QwPqJg8sJX4n+mKaJeTuQ+7aLjkv4auLjhI1T+MjrnyuKKlg93BthP1UcvflkmpMagRGqzx7nEnWc0F4/rZB1Vr3VFudyxptmBu2npivc761fKPb1W+duwypFPcnoweit9gzTg3WSuoC98funbh8W5Mp1Ur2MUsOtiXIBR81aAakH9swnfDV602ha911tDj1qbJqxxsPThzio4AfNAV5jgSyo5L4aFKRKs9TfC1ZqDA4Jv3oFItKAUGoc5jmjG1kMLADAkXZS4yleU3pSa7aFUljuM5EFfuW5m/HSkzcAAPbMcUFWL1ipwQBOf65eCnK1P8+JG6ciu6Y4cCmjeQ/aFVJqFEZwrvDDMAxha8j93oKxbDsMvMxehxn9yM4nmGFsSL5eb7axwIt938hqDEoQjWJPDQB41nprY0s+q4w3jfboKHS6cdx6yyrkwWfY/9yPpvCn7TxE0mH833/+lEgoU6PwqRFTanCj8MFpj1BPDaHUOMxKjW6MksqzH1bZc+JClQOUvZATxBMZtH6g6vE985wA60W1QT01Rm8+oX3UYe7t1pOge4lZpfL6whPXR3ZNcVDI51AudCqjmU6y2CgccAoDuFl4MEh1T9ZujH6M3mrPMD2oFPOYsicltqDqH5LglQs5rJmkTL9qPzUamwORtOFx0pWsbApP2mQluR7YzUkNP4RSw8NGZsO09Xn6h5sew+dv3gFAtp8arY1i2f7nL9fZfqpfqLpyBIQaOGKVFYjcxZYxXanb1ZKlQraOJUK9xoGnnpDCb6KUHwlrun7ZOM193nrxpZ8+gav+417xeRpF3/NVIqnBFda9aAbsqUFWygBwzLoJXPCsdZFeVxyIZuF1Xlu6MUoOE/1A8Ru2nwrGsv05GivlezyTSYpsfYIZxmbdFAerB6Xu0Sic7KdGreHW2imy1+Jx0g3qo+AVyB4lTrAl6Q/uWWDrOh9IqZH3SHDJPsWf/dHjAGT7qdFSarD91OBQT43RsJ+ylBp75qrC35vpRN5XZIlJbugaGJpLJ0csAR6UjWRlx0kNX/743+/GF27Zgf++/xkAVgJs1HAUO3wu6YXTU6P78+RxctYxa0Yiaeo0C+c9aDecorxs7T3WTFjxG05qBIMK1MZHcE0ZFbK5M2Qyz9qpMh7bv4R9HKzum4ZUUbnWx36qOCKBCVr09/Oi35W6uO/pPwh045i1kyjmDSzUmnji4DKOXjOR9CVph6h68jgU0nwBABXbFmLerr4d1UbhfKDsn1Gyn1o/VUY+Z6DZNrF/sZb6BqRRUR8x68qgUFJjocrzRC9EUiOj9g+U1HhmnpMaMrvnVvDB/3rIZTVFfc/GRlCpQZaG3KepN1Qg0avgypAKKJ59xEyk1xQXlNRY5IR5VxpdLHNHGVJqsGNJb+rNtjjbjqL6b1TI1umBYWxEs3CezPtGbsDnl9QYlcDEWlb0BIKUGsURV2qUCjmcduQqAMAtjx5I9mI0pSkC0p1j4Yqzt4oGjHvtzxQpNaZGrPq2wkqNgSH7qVGolizkc9hgryO7OAjlS71pBV6yqtRYrLE/fi/IfiqzSQ07IXpouYFqgwOVxJd++iS+8rOn8K8/eUI8tiTsp0avqnbTKlbsBKUl7Kd6P/fjv/F8/M8XHY3XnX5kxFcVD5N2ZQ0X1nSnOWIOE0E5Zq1VlPfw3sWEr0R/ViQb4VFcU0aFbH2CGcZG2E+xUqNvarL91JTjydhqm07F/oj0Vlg7yfZTQciSfPfMY2YBAHc9dTjZC9GUZpc54KjZcXzlLWcDsCqTDy7VxXwyevZT1kGJe2r0T9saEiNhPwUAm+zK2qc5qeFL1u2nqo22mDsZb7JuPzUzVhQKR1ZrOHjNq2SJO4r2U0eQpeE8Wxr2otWH6nP7czbh//zKs1EYkXOMkzDnpEY3Ri1uEZQTNk4DsOyUme5QX5pSPpeJOEda4TvDZJK1LLsbGLmicna8BMMA2qaV2Gg0R6viYZ3SM4TxRsh3M7ApPNHeCN7PzcI9IXs6v0PkRLmAGTuB8cCeeQBWQ+ipEau+pUbhXCXXP2QZkRuRpMbRs+MAgJ0HlhO+En3JrP1UpQAa5rymdCfr9lOGYXCzcA+8Ejw0n4yi/dS6qTIKOQOttom9CzwOuiGUGiOyl+gH7qkRjMwqNdZZSo1dcyuoNbn4yo+55QaeOGjt3blJuN5k6xPMMDak1OCkRv/IwYdCPofV41aC6Jn5Kuota2Eclc0B2WvNrTREJSnTyag1iO/G8Rss+6TH9y8lfCV6IuaHLhXXm2xvcKoQmiwXRsJqSIYbhQ9OP5YRaWCrLfPnOcMfKojImlKjmM/BzuHhkmt/xHvSLjhJjdFS9fWD0ySag9lEtwTPKFqF5HOGGAe7DvM46EZL9NQYrf1lEMaK1thfYau6rjTb2SnKk1kzUcJ4KQ/TBJ46xCpiL0zTxGn/59t4/ad+DGA0lX+jRLZODwxj49hPcQV+v6g2ESdtsoK8P338IGoN62eV4mhM/DNjRSFJZbm/P90sh0aNLXbV9dxKA3PL7IOu0ghgI0ONLimpMWpNwgGnp0atybYy/UJKjVFoFA44SY0dnNTwpZZRpYbKnU8eTvoStMXpqTEa+8tBoGbhrNRw6FaJPjGiqp4jRF8NDkZ2ox/7qVGDbLRIicB0YppmporyZAzDEOdZUiIwbqoN99mNlRp6k61PMMPYrOVG4QPRbLVBFq4UfHjxCesBAF+67Qnhj18ekWrLXM7AsesmAQAPPcPWEH7UM9RTY6yUF0lR3gh2QmOh3GUs0IH8ATupMWpNwgFHqQEAS9xXoy9EIGJELCOOYaVGT7LaUwMA3vlLx4uvH9g9n+CV6E3We2oAjiXqgSUuyCJqXVTUm+0CilGDCkN2cZ+mrmTZforUKVxU409T6klTHBVpcB9QUuNJPst6MrfiLlwcH0E7w1Eie59ghoG7UXibG60FpiFVfFDw4aUnbwBg+YWTL2O5ODpTy4kbLSXKA9xMyxeqBBqVBnu94OoWf4IEJzfZjS6pKnnUmoQDQCHnKJfY07g/aEk2RiQQQUqNA0t1zFdZ3eWF3Ksra7z1xcfiDWcdDYCbyXeD7aeAtXR24YIsQbekxtFrxmO8kvigPRTbT3WHVJ9ZsxYCnH9zk2McvsgqliyOEXGW5X5vnhxecRcPjKKd4SiRvdMDwwBYM2EdDJptsyMTy/gj95Wg4AM1/a0121iq2UmNwuhM/CduosbQXEHpR0NYh2RjU8hJDX+CJDVIqUGMov0UAEyUuFHjILRHzDJislwQ6lC2oPImSC+eUaWQz+E5m2cAALvZVsgXtp+SVOaLnNQg/JrcjpfyovfEqLHVTtbcx+eSrmRZqUHKeU5q+FOXVCxZTGocudpKjnIxhTeqxTQnNfQme6cHhoF1cF41bgXS+HAQnJrdCNwwHGmrLMc7aEviR8V+CgBOsJUaDz+zmPCV6EujTc34Rue+d+MokdTgAKVKLYAV2TnHrnV9Pz02mpJe2gCz/VR/UHPPUbGfAhwLqn/4wWMJX4meiGRoRtR+KtQrgXt3+cP2U8DayRIA7gdItNqOJ/6fbT/J9bMXbpsdmcS4ylnHrAEA/PyJQ2wv1IVM99Sw/80NHh++yO9NFvcepPw7wOuJJx32UyPao2lUyN4nmGFs1nFfjb6RAw9kDVIq5MRmYBSTGkettgLYu7ghny/UHLo4Qve9G0ezUsOXIEqN9dMVvOmcbeJ76lszakzYFcWs1OgPUV05QtPJMeuspMYtj+xny0sPKDCZRaUG4CQ1WKnhD9tPOUqN/VyMBcCtHv/1M7fgwatfLr4/YcNUEpcUC1Rh3WiZOMxuA76MWn+ufuBG4b3ximlkCV5PurOonN3Gi6zU0Jlsnh4YBjyZD4JfwHLcDt4dXLaTGiM08VOwYaHa5OCkD822ndTISDXUljWc1PAjaMX1SZucgMOoBh8m7KoedWPMdIcCEd3UPmnjT+wq4kPLDTyyj1V/KlRtXMjIGqJCNjlzKw2ssLLLEyepkd1qSTq3HFyqc3IUbuupciGHciGP/3X+MdgyO443SoUTo0YhnxPWv4eXucraD6H6zOC6QucxOp8xnQQpwhpl2M6wO6rKie2n9Cabn2KGgdMsnJUawRG+10qwibzjaYMwSkqNyXJBHKKfPMRBbC+oynaUgpDdoJ4auw5XWdqtEPSQ8IKjVwMAcgZw9nFrIr+uJOCeGv1jmqbwgB6lQMTMWBHPPWoVAMvK8Jt378YZ7/tv3Pjg3mQvTBOaGbMwVJmuFMSBeQ9bUHni9NTIblJjjW0/1WpzhT7gNAnP5wxRmf4n20/CD/6/F4uCpFFltW2hfHCJx4Efrdbo7SWCks+T/RQnP/3Ici8vAFgzYa0nC9Umn2U9kJWAADA9ll2VaBrI5qeYYeAkNdjDODh+AcsJpXHjKCU1AIgmnt/4xa6Er0RPaDOUlUZr6ybLKBdyaLVN7D7M84cMHRJ6zQHHrJvEdb/7Itz07he7+vKMEtxTo39aUvVxccQC3GRB9di+Rbzna/dg30INV3z+toSvSg9EUiMja4iKYRjYaKs19rAFlSdL3FMDxbzTD3DvAo+TWmP0CqmCstoOSB5ipYYvpNTIZTCpQfunFiu6fMl6L68JqUBgucbnFJW6khCc4aSG1mTzU8wwALbajTsf2etYQexfrHU0BmIc/JIaauVcZYTspwDgktOOAADc9dRcwleiJ40AzaFHiVzOEGqNndws3EU/cu7Tt86KpuujyCT31OibpnQAz49YgJt6x/zLT57AgSUnEGWaHHTIuv0U4AQp2U6mk3bbxGKdlRqA00/hyYPc543sp7KY1FjF9lM9aQsFYPbWlUKeG4X3opZx+ym5J+pSnc8pKupnh5UaepPNTzHDADhpo+Xjft/ueZimiQOLNVzwt9/HZf9wa8JXpi9+9lOzE2XX96O2QTj5iGkAwH275jkA5UFT2E9l5+CwhZuFe+JUPo1WYnMQqAqKkxrBkQ8RoxaIOMYupFDthear2R4f7bYJymUVMpIY94KqALmwppPlRgu09cp6UmPrGmse2bGfCypqwvI2e/sN2l8ssxLUF6HUyGATaG4U3pus99QAHKcNPqd00lDsp1ipoTfZ/RQzmeeUI2ZQyufwzHwNOw4s47v378VSvYUH9ixw5YsPfhuAdVMl1/cTI2Ync+LGKVSKORxYquPhvdzkVSVrPTUACIUBJzXc1IVqJ3uHSBVhP8Wy7sDIVgmjltQ4cdO05+NZt8B0qXNG7J73Ayc1/Fm2Ay45A6gUs7PP8EIkNQ5wUqPasJUaGRwTtL/gpIY/o9ifKyjcKLw3foWaWYLsf9kmtxNVqcFJDb3J7qeYyTxjpbxoVvujh/fh9p0Hxc84UOmNX1Jj7aRbqTFqnseVYh6nHbkKAHDP02xBpeL01MjOkkJKjSd5rnAhrMgyXPlEcKPw/pGbWo5aIGLb2gn83WXP7Xh873wt/ovRCDnokuVkKCc1/JEr8o0MVl3LkHUuJzWcgP6o9uXqBv2bl9k2xpd2hpMadB7jRuH+sFKDlRrdqElJjVI+JyxkGT3J7qeYYQCc+6y1AICv/vxp/ORxJ6nBXrXe+FU1yEkNwwDGR6ynBmAFpABOeHlBQalShgJSm2aspq7PZDwgqSKsyEasyfMgjNNhgYMOgSGlRjFvjGTw8tXP24w7//yluPHKC3HmtlkA3Oi16VLnZHfeIL/mj9/4aMJXoh+U1Mhy0ovYusYqqNixn/eiFNCfKI3emaMXrNToDcUkM5nUYKVGTzipwTa53Wg0rb3prz5/M27+44uwbqrc4zeYJMnup5hhAPzaC45EIWfgZ08cxs4DzgFh/yIHKr0IotSYKBWQG8ENJNsN+VO3F/4sKTXW2psbnivc0AGqwMEnVmoMACl9RjkIsWq8hK1rJ7B6nBtDA27P71GzHOuHY9dNiK8Xec5wQfNCKYO9E1RIqbFrbkXYL2UVsnYcz2CfFZHUYHtLX1r2fjQ/ggUSvaA9OPfU8Kfesu3rspzUEPZTvOdQoX3HkavHOaGRAjLxKd66dSsMw/D8b+PGjZ6/c8stt2D79u2YnZ3F2NgYTj31VPzd3/0dWi3/zcN//ud/4sILL8TMzAwmJydx5pln4otf/GJU/ywmBNZPV/D8Las7HudApTdOE2D31LFm0umpMapNHNluyB8KZGeppwYl8vYt8FwhQ1XXWQ5OElQ9yl61wRFKjQxU7K+esNbNg0vZthui9SNnYCQLIoLyqtOOEF8/cYD3GTJ1YT81+vNCL9ZMlDBZLsA0eT+abaWGbT+V8cRWN0Sj8AyuK6R6lJWQjBu/mEaWcOyneB5RoaQG7zvSwWhGHz2YmZnBH/zBH3Q8PjnZ6Y/29a9/Ha997WtRqVRw2WWXYXZ2Ft/4xjfwzne+EzfffDP+7d/+reN3rr32Wrz97W/HmjVrcPnll6NUKuG6667DFVdcgbvvvhsf/OAHo/hnMSHw62duwU93HHQ9xkkNb4T9VBelxqj10yCOtiX/OznY0EEjg82h19qJvOV6C8v1ZiY9nb2gqrAsqXb8YK/a/qEAdz4Dc8nqcctuKPP2UzRnZCCR1Q3DMHDaUavwiycP44mDyzj5CO/G8lnEb++ZRQzDwNa147jn6XnsOLCMZ22YSvqSEmMp0z01SKnB+ws/hP1UBpUaRaHUYPspP9h+ihXl3ahnMLaRZjKzC1i1ahWuuuqqns+bn5/Hm9/8ZuTzedx44404/fTTAQB/+Zd/iYsuugjXXXcdvvSlL+H1r3+9+J0dO3bgyiuvxOzsLG6//XZs3boVAPDnf/7nOOOMM3DNNdfgta99LV70ohdF8U9jhuRVpx2BP/jyna7H9i9mO8jgh98GQJbljWqFNik19i7UMF9tYLpSTPiK9IEa0WVJqTFZLmCyXMBirYldh6s4bj03EAMk+6kRnQf6gbxq2fM6OI0MBbhnbaUGJzUoEcpzxpbZcfziycOZr8BXqXNPDRdb10xYSY392W4WTgF9KiDIEuO8v+gJNQrP4trCjcJ7U+OkhtNTg+eRDpx9R3bHR5rgu6Rw3XXXYd++fXj9618vEhoAUKlUcPXVVwMAPvGJT7h+53Of+xxqtRre9ra3iYQGAKxevRp/+qd/CgD45Cc/Gf3FMwORyxn49jvPx2WnH4U/3X4iAM5Y++HXKHxaUmfUR7QqZNV4STRoPPWqb2NuOduWITKk1MhSINswDNFn5Z9/vFNsfrIOBygdqJKS/fGD08qQfRn11DiU8bVEqHMycM97sWV2DAD37lJhpYabrWusvhoP711I+EqSJdNKjaKt1GD7KV/IeimXQaUGNwrvjV9MI0uMs6LcF8eFIrvjI01k5i7VajX88z//M97//vfjIx/5CL7//e979sf43ve+BwB4+ctf3vGz888/H+Pj47jllltQq9UC/c4rXvEK13MYPTl+wxT+5tJTcew6q9qaJ3dv/JQahrRhfPYRM7FeU5z82ulHia//3+1PJngletHMoFIDAI62kxpfuGUH/uZbDyR8NcljmqbUUyNbY8ELodTg9SQwIkGagaTY6gnbfmop40qNdjbXDy9IEfpPP96J//21e1ixYcPe526ef/QqAMANd+8RieAssVxv4ppvP4j7d88DyGhPjTLbT/WibffUyOK0IZIarNTwpdbgZPkk9ebhRuEdkMqJ9x3pIDOlDXv27MEb3vAG12Pbtm3D5z//eVxwwQXisQcffBAAcPzxx3f8jUKhgG3btuHee+/FY489hpNOOqnn72zatAkTExN46qmnsLy8jPHxcc/rq9VqrkTJ/Ly1UWs0Gmg0sl3Fp0LvRxTvCymYF2tNft89qNqLXiHX+f5/6bfPwL/89En87+0njOx79zvnHo2nDy3hX3/6FJ44uDQS/84wPk+1ppUgzqE9Eu9JUK540VF4YI/la/1/f/oE3vWSYzO9OZa9e812E41GNt8L+gyUDGtDvFRvoVarZ7JZZb/U6tZ7lzeMkZ9LpkrW5+PgUg1/df19uPOpw/j4/3gupseyZW1YrdE991+Hotz36cTmGcfK859+vBPL9Qb++jXPTvCK9GDFHiPF/OjPC0E4005qLNaaOLS4gpkB5ow0f6Y++K0H8blbdorvy4XsjQt7+cBync+rfjTsswlMM5b3SKfPlGFa+/FGK1vnsn7oFtPICuWCdS6ZX9Ez3pjkZ6rasMZHzohn/mC8CfreZyKp8cY3vhHnnXceTjnlFExNTeGxxx7Dtddei0996lN4xStegVtvvRWnnXYaAGBubg6A1VjcC3r88OHD4rEgv7O0tIS5uTnfpMZf/dVf4b3vfW/H49/+9rd9fyfrfOc73wn9bz6xCAAFHJhbxA033BD63087D+zIAcjhqZ07cMMNj3X8/JcmgFtufCr+C4uRpWcMAHnc/4j3e5BWhvk87dufB2DgF3f+HOYT2aoK+v1nAf97Po/Fegv/cN23cGyGe7taRU/WtuL7//3fqGRih+HPT350E+j9+Pr130QGbb/75uE5a36triyN/Bq8bwUACtg/v4J/+OHjAIB3fPa7eN0x2bKLoH1Xo17rec+j2PfpxMEaIB/N7n/sKdxwwxOJXY8u3LbPmhfmDh4Y+XkhKEUjj4Zp4Bvf+g5my72f70caP1Pfv8facxKPPXgfbjh8b3IXlAC7lwGggMOLK/yZ8OGpXdaZ9cH74x0fOnymaF1dWFrm8eHDgz1iGlngMTumseOpXbjhBn3jN0l8pnbvtdaZ++66E8Wnfx776zMWy8vBFMuZCDn8xV/8hev7Zz/72fjkJz+JyclJXHPNNbjqqqvw1a9+NaGrs/iTP/kTvOtd7xLfz8/P46ijjsLLXvYyTE9nOErmQaPRwHe+8x289KUvRbEYbkXjo/uWcM3dN8PMF7F9+8Wh/u1R4Lb/vB/Y/SROeNZx2P5LxyV9OYmwdMdT+PrO+zA5ux7btz8/6csZmjA+T5/e+WNgcR5nvfB0XHj8upCvUH++euAO/ODhA9hw3KnYfvqRSV9OYizWmsBPLKvFV7z8Yoxl0BICcD5T2y/+JfzRbTeibQLnXPgSrJ8aIvKUEW5+9ABw3x1YPT2F7dvPTvpyImX/Yg1X33kTam0nONcaX4Pt289I8Kri5+dPHgbu/immJsaxfft5ns+Jct+nE622iff+zDm8T6/O3njwYvH2p4BH7sMRGzdg+/bnJX05WvB/7roRB5bqOONF5+GEjVN9/36aP1P/b+8deHzhgPj+zBc8F9tP3ZTgFcXP04dX8Ne/+CGayPN51Yfr5+4EDuzFc559CrafuSXy19PpM3X/7gVcc/etKJbK2L79wkSvRVd++g0rpnHi8cdh+0uyGdNo37UbX3rsbkyu0nOvkeRn6pOP3wosLODcs87Aec9aG+trMw7kXtSLTCQ1/Pjd3/1dXHPNNfjBD34gHiO1BakvVOjxVatWuX5n//79mJubw5o1a3x/x0/JAQDlchnlcmfAo1gsJr4w6koU783MhHUPlustft89oF7IY6VCZt+f2ckKAGC+2hyp92CYzxN5oldK2Zyvjl4zCTx8AE/P1TL57yeMhqPSGauUMu+RXyqVMFEqYKHWRL1tZHpsBMU0rDFTKORG/v2aHOt87PDKaK0rgTCs5Gcx3/uej/qeuAjgf11wDP7hJqtqNJPjwYOWXZVfKeX5/bCZrBRwYKmOWhtDvSdp/Ew9fXjF9f30eDl1/4ZhmR639lu1Zhu5fAF5trfswLTnjWIx3jOrDp+psbL1+s22mfi16ArHNIDxSgmA1T9C5/cgic9UzR4gk2PZW190Iuh7n+mIw7p1VkXx0tKSeOyEE04AADz00EMdz282m3j88cdRKBRwzDHHBPqd3bt3Y2lpCUceeSTbSKWAcbthUqNlisaEjEO9xU21yO98boX9FQlq7pvVIDY1d30i401dm1LD0gIfsAE4zTyXuJlnIFqt7DSarxQ7lUz7F2sezxxtmu3sNIcPwh+//ER88nJLBXpoOdtN5Anaj2d1j+HFZNk6ryxUs7W2tNomnjrkTmrQ2S1LjEtKWG7y6027TfuJ7K0teW4U3hOOaThNsBs8TjpYaVg9ecYz6jqQNrL7KQbw4x//GABcCYqLLroIAPCtb32r4/k/+MEPsLy8jLPPPtulquj2O9/85jddz2H0hjeJ3aGDZZY3AKvGrKqGuRUeHwQFs4sZDUptWWMlNZ7MelLD3hTncwYMI5tjQWXCDjwtclIjECLAnYEgRDGf66iunVtpwDSzdbh05o3s7itkDMPAyZssZfc87zMASMEnTmoIJjO6tuyeW3EVUADZDDqVCznQ8rFcbyV7MZpC4ySXwf0oJYAbbS7Q9EPENDK8rlA8hwt5O6GkhlcBEqMfI/8pvv/++11KDGLHjh1429veBgC4/PLLxeOXXnop1q5diy996Uu4/fbbxePVahXvec97AABvectbXH/rjW98I8rlMq699lrs2LFDPH7o0CG8//3vB2BZXTH6U8znxAS/xJvEDqpWJ2CUC9md4GfGLaXGfAaDT340Ml5FyUoNiywFpINSsefKGh8YAlFvUYI0G3PJmHJYarRMsc5mBZo3spoU96JStMZ/rdnifQa4oMYLSmpkTQW4b6FTzZbFoJNhGOLfXcvYmhGUtukU2mQNUj622rx++FET60r25g9CJL9aPIeoULI4q/0h08bI6zW//OUv45prrsH555+Po48+GlNTU3j00Udx/fXXo1qtYvv27bjyyivF86enp/HpT38al156KS688EK8/vWvx+zsLP7jP/4DDz74IC699FJcdtllrtfYtm0bPvCBD+Ad73gHTj/9dFx22WUolUq47rrr8NRTT+EP//AP8aIXvSjufzozIBOlPOrNNpYzdlAIQq1JWevsHixnbPupequNaqPNix2ARjs7ljFebF5tmeMfWm6g2mhl8oANOBXXnNRwoCBcrcFJ8iBkLXhZKeagOk7NVxuZWldkhRdjQYUjbdNKdJUK2X5vsjYvBIGCUfWM2YaQJdvJm6Zx326rgejG6UqSl5QYpUIOy/UW6i3eX3hBAf0sri10Hmu0TJimyeppD9h+SjqjcOGVi1bbsaFXi48YPRn5pMaLX/xiPPjgg/j5z3+Om2++GUtLS1i1ahXOPfdcvOENb8Ab3vCGjon+1a9+NW666Sa8733vw1e+8hVUq1Ucd9xx+NCHPoR3vOMdngvD29/+dmzduhUf/OAH8Y//+I9ot9s4+eSTcfXVV+M3f/M34/rnMiEwXirg0HKDlRoeVFmKh4lSHvmcgVbbxNxKtoJPfjTExjCbm+bJUgGGAZimFZDM6ueDpP6FjFTZB0FIu7kKKhBZC156qR7nVxrYkKEgnbAvzGhS3IuyVDhSa7Yy83nwg21COqFK7GbG1pZDS1Y/u7VTZdz8mxdhudYUCuqsQYktDkh608xwUkNWPrbaJves8qBuF2pmeX2lccJKDTdVqRCNkxrpYOSTGhdccAEuuOCCvn/vnHPOwQ033NDX71xyySW45JJL+n4tRi+yKukOAtliZFmpYRgGZsaKOLhUx9xKAxtnshN88qOZoea+XuRyBibLBSxUm1ioNrF+KukrSga2kemkzH61fSEOmRkJXnqtpfPVRgJXkhxZDjz5UZaCLNVGG1MZ32Y0uKK2A1JEZs1ehpQaq8eL2LxqLOGrSRZaJ3l/4Q01Cs9nUKUgFxc12yYy7LDkCyfLpTMKJzVcrEhJjSzHvNIE3yWGURgvWys/JzU6YaWGBVlQza1kK/jkB22GihkOOExXrDGxUM3uvME2Mp1wUqM/GvYYykrw0mstzVpzaKo050pSB8MwxNxRZes6bhTuQSHv2MtkiYNLlNQoJXwlycP7i+607J4auQzuSWUbWK7C94bWlXJG9pteiJ4aPIe4WKF+GsU8W7elhOx+ihnGh4mSpdRYZvupDqpNTmoAwDQnNVxQUKqYwYMDMVWx5o35DI+JZsZ7q3jB9lP9kbXgpWdSI6NKjaw0hw+KaALMwQapoSuPEcJRamRrfBxatuZHTmo4n4esJbaC0m5nt8+b/G/OmporKMs1K6YxnmEbaT6jeEPFJGwxnh54d8gwCrS4LdWzVS0ZBGE/lXEdKys1HFptE7RfznJQipUaXHHtBQXnaw0+MAQha8HLrWsmOh7LWmKUFV7esFLDgYK2Wd5jqBSEF3q2ApaHbKXG7EQ2+2jIOAFJniO8oIR5FpUaeZdSI1tzRFAWbEeOycrIu/H7UpQUf6bJ44Qg+ynup5EeeHfIMAoTdk+Nj3//UbzuH27NXNVkNxz7qWxPHZTUuH/3fMJXkjyyrDnLwWxSaixkeL5oZrgqzg+uguqPrDUKf8uFx3Y8lrVkeYt78XjCSg0HbujaCSkis1aFLXpqTLBSg3tqdKeV4Z4ahmGINbWZMTVXUMhmfKqc3QSpvKbyOcXib7/1AF517c0AON6VJvhOMYwCKTWePryCnz5+EP/vticTviJ94J4aFhS0/eyPHsdtOw4mfDXJIic1slxFSZZk2VZqsP2USrnAgcl+yFpS47j1k/j8G8/Ae375JPzGmVsAAPMZm0MaQqmRjXseFFJq1Fipkbl5IQi0D21kLGD5/7d33+FRlWkbwO8zJTPpnQTSE3pv0qSDBeydVVTAsrrKYl3QVQFFP3VdRRfbogIqNtBFUVCUKr33TkJLSEjvZcr5/pg5JzNJJpkkk0xmzv27Li/JzGTyBuac8573eZ/nqW4UzqCGNOfm/KJuZlHZWYDSXNzITI1aTGZRLjOu5EwN21KvzOgBRFHEBxvOyF+z/JTn4OyQqAYpU0PCbDwLk1mUL3hKD2rYZmjc/9lORads2k6WlRzUYKZG9W4wJWfs1OTDRp6NIpXRUNK5ZEyXdnhwRDKig/QAFFh+ysyeTHWR5llSLzMlU1qvHWdIjcKVtmDJnhrVOL+on5Q9rNighlyijp+PmkoqqzeP+OuUu6ZhO9fmeaR2prSfVrkBL0/D2SFRDTUbRjEdz8K2rrPS0/FsS4aUVZlwJrvUjaNxL2mXoEpQ7o0DYNMoXGG7rG3JmRpceJJx0aFxDEbLZ0inwB3Z0m7B4kplnUOUvvDkiDTPYj+e6vMCMzWqVTcKV05QQxRFuadGKHtqsLxlA8wKv7ZI5wijgs4RzpKCGj5qlZxRrURqlSAfH7xPAS4XV9p9rWemhsfg7JCoBn8f+6hsnnUCrXR2QQ0FTwAA4MY+HfDbEyPlRYcTmcVuHpH7GLiQDQAItDYKV3IPHvbUqE1uFM7d1k5R8o5suYeCwsoNMRhaN2mhhZkaQKWCzwuOKHEXdnGlUZ5nMFOjOqhh4GJknUzWLHqVAntqAMrN5nKGlBGr5NJTEvZeqXa5yD6o4avwTbyehP9SRDX41UhDZFDDosJYfVOpUviipSAI6BIdiIm92gMAzuUpN1PDyMUGAECQnj015PJTCj8/2GKmRuMouXa+FCSvUNjOfAZD68ZMjWpKPi84osRMjYJSy0Kkn49a8WVwAUCnZqZGfaQ1WqVmamhVXKx25FJhOQDIZT+VTOq9oqRriSOXiyvsvlZwdXGPw9khUQ01MzVyGdQAYNsknKcNibSQXVap3J2U0i5BpfdRYE+N6gmx0j8LtnQsD9EolQpevJQyICsUl6nBa0hddAr9PNSlyqi8XjsNkXZhK6m5ax6bhNvhpon6yfcnCg1qKPEc4ayL+ZagRmyor5tH4n7S4cEyZbXLTyk0ycsjcXZIVEPNnhp5pZUOXqks1UEN7o6SSJ+VEoXVQLclTZaVvtggpTDzs1C964dsghpcdHCKostP+Siz3JAUDFX6NaQmnZSpwXOHfG1RYrDTkepMDeV8PqR+GiF+7KcBVJ8zOb+om1Hh1xZpo4CRm2pqSbcGNWIY1JCDX8zUALJrBDXuHZLonoFQo7GQHFENvWKDEaTXyA1/80qYqQFUl8RgUKOav85yCi2rUvJCtuVzoVXoTihJoPWzUKLk8lPSZ4E7rmXSIhwXJp0j78hW4OKllKlRXqWsoIa0YK3UEiGOSHMtpZUjq4u0aKtT4HnBESmoYVDQQpSUOR8eoHPzSNoGeX7BRes6KT2TnI3CHavO1PBz80jcT5p7sfdKdVDj4ZHJuKZHNAYkhLp5ROQszg6Jamgf7ItdL4zHuqdHAQBySqsgsqgey0/Vwd+6s7ZU0eWn2OQVqA5wlSj4syDdOHFxshrLQzROlVHBmRoK7akh7TRXemC8JmkBX2mZO3WRM7gY1JBVNwFWzvlCypwP92f5KYDzi4ZIi7RahWYPS1nTBgWdI5x1sYDlpyRS8MvMtS4UWUtId2oXwICGh1HmWZ6oATqNWt4JVGU0sx46WH6qLtJCdikzNRS/Oz9ADmoot6dGdW18Ti0kPmrL+ZKLDs6RgqRK3JEtXVsrFbaIbZCDocr7N6+P/HlQWJCrLgajNM/gZ0SixEbhUqZGGIMaAKqD/5xf1E1qkK3UTA3pvkxJ5whnpeeXAQBiQhjUUDOjRyZVW5D6ZJLn4OyQyAHbRRVOGG3KT2kY1JDIQY16+iiYzSJmfX8QL6882lrDalVG9tQAUD0BqjCYFbsrSpoQK7UpY11YHqJxqpTcKFyh5YbYKLxuzNSoVslMjVqU2ARYKgfMoIaFdDwodc5ZH1EUbTLJlXltUeI5whnlVSbkWM8lcSw/pcj+TI5IfTGl9R3yHJwdEjlgG9RgPfTqTA0dy0/JqoMajhcdDqYX4ptdF/DZljQUV3jfLv7qTA1lfy5sJ0D1Bbm8WXVQQ9mfBVtsFN44Si4zU11+SlmL2AyG1o2ZGhaiKCq6LJ0jSs7UYPkpC84vHLM9LpRbfkragc/Ph610a+mpAJ0GQb5cvK6rp8aP+9Px3tpTuFRY7q5huYUU1AhgUMPjKPMsT+QEQRDY5NVGuXWhxZflp2RST41Tl4tx76c7sPFkdq3XbE/Nlf+c44VN55XeiE+iVavkG8wShQY1TFycrKX6GmI5f1YYTIpahGosJS9eStdWo1lU1CKVkX2Z6qRnpgYA+13GSjwvOCLNuZS0S5/lp+xJm4lYIrk221I6Sr0/0cp9dzjntCUt1HcI0UMQlPnZsCVtRJPuTU5mFWPGN/vx9u8n8eS3+904spZlMou4XFRh95h0/87yU56Hs0OiekiLlJUK2zlZF6l5UpCv1s0jaTuk3fkGk4g/T+Xg/s921nrN1jO2QY3KVhtbazGw/JRMmgQpNajBAFdtto08MwsrMOLN9Zj0321uHlXbVang2vmBei2k++uCcu8LgDui5JJj9fG1bpoor1L2/NN20Z6fkWrS/LOw3PsygB2RG4UHMKgBsFF4fWzPG0qcTwDVO/CVFPh0RkGZ5ZzJ4KhFzZ4ap7JK5Oe2p+ahsMz7rjGiKOLhz3dj0Gtr8eGGM/JjUk8Nlp/yPMo8yxM5qbpxJycE0kUtmEENmb9Pwxe9i9ZmZACQ64VBDSmtWemNwoHqSZA0KVIa9lepzbaR51trTiC7uBK7zubjfG5ZA9+pTFXWXelKXLxUqwSEWK+vBV54E+mIXHKM1xA7gXrLZ8Eby1Y2hu2CrRLPC44khfsDANJySmFWSPZfdU8NnZtH0jZI8wveo9Zmm52g1DmpdF/GBtD2pEBwkJ7rGUD1RjQpU+N8nv39yfHMolYfU0s7eqkIa49fBgD8fjQTgOU8Kh0rLD/leZR5lidyko7lp2TSJIBBjWr+uoZLcRXZ7KLL9sLyU1UK3lldkzQJKlZopoY0GVSz/JRMuoaUVhqx6tAl+fHd5/LcNaQ2Tcr80il08TLUunMwr9T7rhWOMFOjblLmX7FCg+QSKeilVgm8ttiIDfWFVi2g0miWa8R7s0qjCaXWrKUwP+6wBpipUR+DdcOVICh3TiqVFWJQwx4rT9irmamRXmAf1Dh5uaTW93i6P0/lyH8+dbkEZrNoV2XBmU2r1LbwDoKoHiw/VY1BjdoaSk8URdGuNEBOsTdmarA5tEQKaryy8qhidk7aMrL8VC06jSXwWVplQplNGZkTmcXuGlKbpuRG4UD1Yl1BmQKDGmr267IlZWoUKai8UF2qN07wumJLo1YhwZqtkZpT6ubRtDwpW1wlsN65RLpOsrxQbXLmsILvTaS5+N5z+Xjpx8OK2ixRH65n2FMLUqaG5TxyuciyViH1eUvN9r6gxqGLhfKfiyuMOJFVLFdZCNBpoFJoINSTKfdMT+QEaUGKmRqcBNSlrt3EtovZ5QaTXZNL7+ypIS1CcgLgZ62BnppTig0nL7t5NK3PyEbhtThanD/GoEYtJrMop78rtSGwdH1VUp18pQeyHAlipgYA2/Jk/HzUlBxhDWp44aJTTfk2JXC54GQhZ2owqFELe7xVZ9D/b186Pt92Do9+ucfNI2obisot11SWn7Komalx2boBc0hyGAAgNdv7gubHrCW1pN/9lZ+PYvRbGwA4V4WD2h7OEInqodNaDpGPN51x80jcj0GN2gSh9mT53s924Klv9+PH/em1Fqa8M6jBTA3JcZuF6rxS5SxKSqT+KvwsVKu5o1S6STh+yftq1DYXa+crs5wIy0/VTcrUKKkyKjLzT1L9+eBCQ00d2wUAAE5meX9QQ8peC2XpKZltzy5bBy4U4LkfDmL/hQI3jKptqL43UW5Qo+bvviONZU+B6vJTwb7M+AJq99TIloMa4QCA1Bzvur6YzSIuWPuG3Dc0AQCw9Uyu/Dz7aXgm3kEQ1UNKW91yOhfncr0vUt0YcmMtBjXs1KzVuuV0Ln7Yl45nlx1EVpF9EMMbU3+l3VDsqQHc0i9G/nO2F5Yaa4iRN5G1+Os0doGNcV2joFEJuFxciT3n8t04srbHdmFGqeeT6p23ylnE5k78uknnDVG0BDaUSjovKLXPTn26tg8C4J2NXGsqkDZW+fEeRKK3loexLW0JAE98ux9f77yA53445I5htQnSJhulziWA2lkqgVysBVBd0pHrGRZq61qXySxCFMVaQY2L+eWo8KIy7HllVXLQc9qVSbWeZ1DDMyn3TE/khDybutalld5zQm8KKagRwhsKO6tnjMBnUwbKX4f5+8BXq0aVyYxtNpF/wDvLSBhNrHct+euoFMSH+QEAsooq3Dya1scd13WLDtLLf44P98MNfToAgF3jcAIqTdXXWKWeT7QOdt56s+rzhjL/zR3Ra9VyoMcb5w7OkhZTpMxpqtYrJhgAcCS9COVV3n2PIvXUCOFCpCzc35K1YrthqrTSiDRrj5Vjl4ogisoJkNuSN9kodC4B1M6aLjeYFPt5sFXEyhN2NDblpwrKDPJGk67tAxHsq4UoAme8qMRhZqHl/jwiQIe4MD88Mb6T3fMmHiMeiTNEonrY7hwsU/BOOZNZlG+qOQmw1zkqEGO7RuGLBwZhfLco/DpjBJIjLXWON53MBgC0D7YsapZ64WdI2lGs5N1QkmBfLaYMSwSgzEwN1savW3RwdVAjIkCHcd3aAQC2nM5x15DaJGnnlI9GVWdpPyVQYuNXNgp3TMrWUHKz8Arr50PP8lO1JIb7oX2wHlUms9eXGiooZ/mpmiICdQAsmRrSPWp6QbndazIKlbfBBmAWOVA7oGM0i3I/CSVj5Ql7UsUJk1lEtrVMdoifFjqNGl2jAwEAxy95Tx/Ay8WWc2JUkOX8OWNcJ2x/bpz8vLdvEPBWyj3TEznh/27tJf+5uFK5EwHbG2oGNeo2olMkPrl/INoF6ZEcaalzvC3VkqkhTQpKvHC3pZHN+OxIN5nZXtg/pSHM1KhblE2mRmSADsNSIiAIlh4sSgx+OSKXmVHwIoSjGunejMFQx6RFFyVnakgLDHpmatQiCAJ6WrM1vL0EldwonNniMn8ftXxc5BRbgj6ZNYIY53KUWTpZanqs5KBGXb97binnnEUVbBRuyzZT47K1bHZkgOVeVg5qeNH1JafEcq6MsP6OgiDYbT7rExvijmFRMyn3TE/khD5xIV69IO0saVeDn49a0RNEZyVH+Nt93SXaUve4pNLodam/lXK9a+6iBICIAMsuwlwlBjVYG79OZptjPjpYjzB/H/kccZQNw2UMitn21FBQUIP/7g5JmRrFFcrN1Kg0SkENzjHq0s0Ld9LWpUAuP8VMDYkgCPLCXJZ193HNoMbZ3LJWH1dbIGVqKLnHW11lPHO9sLdjY4iiKK9pcJOmhZypYTLLfzeh1tJ21X2bvOf6IpXrk8r3Sf51e28M7xiBF67v7o5hUTPxDoKoAXHWGvlK3inHCUDjdGwXYPe1FBgzmEQ5COAtpHrX3EVpIe1ukXaCKAkXJ+tm2+BW+rvpag10HmdQQ8bPj0IzNfjv7lB1UEO5809pjuHLoEadpE0zx7O8Z9GpLoXW8lPs62cvMdyyQSIt25KRkVmjn9u5XGVmavC6Uvc9uxI3XNkqqzLBZM3iCfJlQ2jAPlND2kAhNZXvHGVZvzjpRdcXKagRViOoccfAOHz54OBaj5NnUO6ZnshJ0om9pFK5O+UY1GgcKYghkSYFgKWJnzepMFjrXXPBAQAQbg1qFJYbFLUwCdiUD1LwTWRd/ja6I1Ii/fHyTT3kx1KsgU+l7qKsS5W1UbiSswHlRuEKydQQRZEZXvUI1Enlp5Q7/+Qco35d21sXnTKL5cU6byRnajCoYUfq4Xcmx9LIVyppKQVEzyo0qFHJ+Wid/WeUnqkhrWdo1QID5VZqa0N5k1lEiXWNQjp/dLSW084qqpSf83S51k2HYQEMXngT5Z7piZwUYD2xs/wUm2o5K6lG+an4cD/4+VgmT94yKZDImRoKvnGwFeKrlVN5lVa7toqNGesUF+aHtU+Pxn1DE+XHEqwZgOfzlLngUJdK7qysbhSukICo1BweYFCjLtJO0iIFzz+lOYaO2aB1Sgz3h06jQrnBhPN53hskz5eDGlyIsiWVsky1ZmpITXAHJYYBAM4pdONEFUvj1rnjPFeBWeS2iqwbBIL0WgiCckuT2ZKmXpZMDctcQ1r7CvbTymWapGwwT5dnvTevWX6KPBtniEQNCLBmaii5UTgzNRpHo1bZ1XEN0GmqP0detjhRXX5KuTcOtlQqQZ4oSY0blYLp/s6LD5eCGspccKiL/PlR8OK2VAO7ymRGfmkVXlxxGHvP57t5VC3Hdme5po7630oXaG1kWsRMDc4xHFCrBDkb+IQXNXOtqbDMWn6K9yF2kq07qVOzLZkal62ZGlckWYIaZ3NLva6XnzO4ScI+ACjtvFd6+anCMq5n1CRdWysNpuqghq7670fKBku1ZoN5uuryUzo3j4RcSblneiInSTeVzNTgzURj3D4gFgBwRWIogOpdD15XfopNPGuJkPtqKOvmgWVknBdvzdTIKKiQG1oqnbRrX8mLEFKpDIPJjGeWHcAX28/h8aV73TyqlmMwV3/21Qpu6OoIe2rYzDEUvOO6IZ2s5QzPeMlO2roUSA1smalhRypleS63DFVGMy4XWead/eNDoVYJqDCY5UCHklRazxtKLj8VF+Yr/3lEpwgALD8lZT0Gcj1DZrt5Vyq1Ls09ACAl0ruuL9IxEM7yU16FHXKIGiCXn/KyxejGkKLaoUzVc9rz13XDsI4RGGzdLRWg887PUfUuSuXeONQUEagDLgHZSgtqcGec0yIDdNBpVKg0mnGpoELO3FAyfn5semoYzXKGRkZhBdILyhET4lvft3oko035KZatq03aVKPkoEZ5lbRxgp8PR+S+CtnesZO2pkqjCWXWz0Ewe2rY6RCsR6Beg+IKI85kl8g9NdoH6xEb6otzuWU4m1OKqCC9m0faujifANoF6vHD34ahuMKIgrIqrDqUqfjyU3I5bT2XQCW2ZdZr9tQAgI7WwOkpL2kWLq1psfyUd1HumZ7ISYFeWjaoMaR01QhGtZ0WpNfixj4d5BsJ7w1qSPWuuYtSIh0nisvU4E2k01QqQc7WOMe+GgCqG4UreWeldOxUGs12x9F7f5xy15BalNGaqSEIzNSoi7TwUlSu3PJT2fL8k6UiHKkuQeSd1xKpZIxKqL4nIwtBENCjQxAAYOmOc3LGbGSgDgnhlmCXEvtqVLKnBgBLxs6ozpEIt5baUVqvv5ry5dJDXM+Q2K5P1BXU6BptOb+cyPT8oEZppVEOkIdzTuFVlHvnSOQk9tQAcqw7O3hT2XTe3lPDl0ENWaT1OFHajijpZlrJi9KNER/Gvhq2pKCYknfsS797pdFsd/5YffiSXf8JbyFlamgY0KhTdaaGcoMamYWWxsfRwcraad4Ytpkatv0TRFHEd7svYN3xLHcNzSUKbPr6qXiuqGXKsCQAwJfbzwOw/D3ptWokWjNAz+Z6Z7CrPpXWLHIdM7wAANHBlvuS9PxyRfZYkeQyqFGLbVCjqI6eGl2iLT2b0nJL5cxJT5VeUA7Aco4MYIDcq/BMT9SA6rQ85d5U5nCnXLN5bU8NNvGspWZPDYPJjOOZRfKirbfionTjxFmDGtvO5Lp5JG0DG4VXB4eziipgtAYx9FoViiqMOJRe6M6htQgpUKNRKfffvD4h1lI7BQrO1JCCGkorn9MYieH+UAmWTTPZNv0TNp7Mxj+WH8S0xbtxwYOD5wVl7KdRn2t6RKFffIj8dff2lp3VSs7UkDI/lTyfsBUX5geVAJRWmRTZY0WSZ81UYemhanaZGhW1e2pEBuoQEeADUQROengJqvR8S1DDG8u5Kh3P9EQN8NayQc4ym0X5Zqg9d8o1mbd+jsqZqVFL+xDLcSLtwH9m2QFcO/9PTP/aexv+iqIoZ+0wwOWcnjHBAICfD17Co1/u8bpzQ2OxPw/g52M5djKsu8kCdBqM6hwJAPj9aKbbxtVSDNbsLmZq1E1axM23ae66/0IBftyfrojdtmaziMvFlqAG55+O6bVqJEZYFrCP25QI+elAhvzn1Ycvtfq4XKWgzPL5Zz+NugmCgJnXdpW/HtetHQAwUwPM1JDoNGp5I4239t5xRp6cqcFNmhJp02WxTU+NmlkM3lKC6mK+5b48NpRBDW/DMz1RA4Ks6f8lXlY2yFnpBeUorTLBR62Sb5qo8by1/JR0XASw6ZqsS5QlVfdkZjGyiyvx437LwsJvR7Kw62yeO4fWYsoNJkjVcZjS65wb+3SQdwutPpyJN1Yfd/OI3Esq8ajkc4mf9dgxWMsyBeo1uL53BwDAst0X3TauliJnaqgZ1KhLqL9l/llYboDJLKKwzIB7P9mBGd/sx29HvC/IVVNuaRUMJhGCYNktSo51tZYIkRadRFHEltM58vObT3tuRqCUqRHiy6CGI0OSw/Hg8CSM7doOdw+OB1CdqZGWUwqzF5YvrI9cDpWZGrJk6z28t/becQbLT9UW4lu9eUJao5DWviRSCapjmUWtOzgXuyhlajCo4XV4pidqgFw2qMrklTWtGyKlLceH+7GsTDN4Y/mpSqNJvnHgQna1pAh/aFQCSqtMWH/8st1zvx32zoUoaXePIFTvNqf6+WhUWPv0KFzXuz0A4Oud53FOgTsqJaWVtWv5Kk3NY8dfp8GYrpZdt5eLK1HoZWWIpOCNhnOLOkmLDWbR0ix8R1quHPz7YW+6O4fWKrKKLFkaEQE6zj8bIO2klRadzmSXIquouszMzrRcOZvS0xSUWxYiQ1h+ql4vXN8dn025An4+lvl4YrgffNQqlFWZ5MU8pZAyNXzY402WEhkAgJkaABAewHOJJCLQ8neRW1olN9GuubmoZ4zl+rL7bH7rDs7FLlqzoGND/dw8EnI1numJGuCvq15kUGJ5kHxr2jfrTzaPN5afKq2svkFmUKOaRq2SU1tX1Sj5cMLD65E6Imfs6DQQBO66dpZeq8b7d/fHqM6RMJpFLNpy1t1DchvpMxSo4EyNmmX8AnQaBOg0iAqy7FJP9bLFCKOZ5afq46NRycdDdkklUnOqg57bUnO9fqONtKmGpacaJmVqHL9kmWMctvbgGZgQishAHSoMZuw975kLUrkl3F3dFBq1Ch3bWRayj3v4DuvGKpNK4/oodz5RU6coy2fhVJZ3zSMaI4/nklrC/Hxge9umVgkIrpEVN7yjpQzqofRCu75NnuYie2p4LQY1iBqg06jlnR7etCDtLCmowQlA83hjUENahPTzUUPNRSk7Uu3aDSeyAVhKDQH29a69iRTgCmRwq0n+MigOALDZplyI0jiq5ask/jV+d2lBOznCshjhbWUjjCw/1SCpZMiprBK7oFZxhRF7znnmIrWztqdaSib1iwtx70A8gJSpcfpyCYwms5yx0a19EIZ3jAAAu3JUniS7xNrcl7urG00KatgGRJWgOvOTmcMSOZvrUpEiejLVVGk0yZmO3KhZTaNWIcwmCy4yQFfrnj4yUCdna2w6md2q43OldPbU8FoMahA5QVqoU2JfDSlVk2nfzSMt1BVVGGEyi14xoSyutJRCqbkQR0B8mH1q6z2D4yEIQHZxJXJLPHeXiyP8LDTPFYlhACxlAbypRF1jSDebSv4M1So/Zd1lmhxprYWd4107LI1S+SkVb0cckRaiDmcU4ow1qKW3Nr/9z7pTbhtXa7hgXYDo0SHYzSNp+2JDfeHvo0aVyYyzuaVyb40u0YG40hrUWH0oE0ZryVBPImVqRASwr0pjSdeOM5e969rRkBLOJ2rpEh0InUaF3NIqr80ar4+0nqFRCbV6RihdtE02ZLSDzMjRnS2lUNefuFzn821dhcGEHOu1JI7lp7wO7yKInCCl4RVYsxaURGrQF+bPCUBzSEGNAxcKkPL8Ktz8/hYYPPDm0pZcLoY3DbXYBjVUAtAnLgSJ1qaN+y8UuGlULYcN45snPECHyEAdRBE4kqGsMhGSUmZqQKdR2ZUBkI6nTtbdtl/vvOAVAXEJy081bGBiKADgww1n5MyM+Xf1g1Yt4M9TOdh8yjN33ztD6iET7Mf5Z0NUKgGJ1qyec7llchmqbu0DcU2PKIT6aZGaU4oV+zPcOcwmybFuBIlkUKPRkiOVnanhz/JTMr1WjWEp4QCA9cc9d7d9U13Is5Qe6hDiCxXnHHYSwqvvWR2VexzdxVKC6s9TOR4THL9cXIH31p7CudxSpFnPgYF6DYJ8eV7wNgxqEDmhnbWedaa1aaGSXCq0TAJ4M9E83doH2X194GIhDl4scM9gXKQ6i4cLDjXZBjW6RAdBr1VjSLLlZmLVIe9rFi59FkKZ0dVkQ62fj293XXDzSNyjyLqAGaTgwJggCAixqWUslUgYYl2IyCutwqNf7vWawIaRjcIbNNbaKF7io1ZhdJdI3DM4AQDwxq/HvebzUFOhdVNNiC/nGM6Q5h2bT+cgs6gCGpWArtFBCNRrMfXKJADAr4c9b/6RWWi594oM5H1IY6VIWX5e1o+pIVLDY2Zq2JOuJ+uPe+Zu++Y4l2tZ1K6ZSU9AgnXTXc0/2+obF4JgXy0Kyw3Y5SENw6d/tQ9v/34SDy7ZjUPWPlPd2wex96MX4l0EkROigyxR6yxrUEMURew9n4/Np3JwIa/MnUNrcVKjRkcXOXJOqL8P/j6uk91jX+3w7MVLKcjnKFVVyfrY1AAfZN1pe/uAWADAygMZKKvyrhJDl6yLDlFB/Cw01V8GxQMANp7M9tpFyvrkSwuYCg+M2R5D8dbdc12iAjGik6WEzK9HMnHbh1tdnulXUmmUb/pbi9TompkajoUH6PDT41fKX3frYAmSTx/bEX4+ahxKL5Rv1r0NMzUaR8rUWL7nIgCgf3yovKg7potlMXN7aq5HZQmXVRmRW8qSIU2VHBEAlWC5vmYUlLt7OK2muvwUe2rYGmMNauw5ny9nQCnFeet6TXw4zyM19YkNkf+cFFH3349GrcLV3aMAAKsOXWqNYTXL6csl2JGWBwA4dbkEP+y1XBd7xrCcpTdiUIPICVHWRdtLhRUwm0U8uGQ3bv1gKyZ/ugNXv7PJawMboijKv1scdzY026OjUvD6rb1wz2DL4uX3ey969E2GtHsuOogNt2rqEOKLYSnhiAjwwcOjUgAA/eNDEBPiiyqTGTutEy1vIQV8HaUtU8P6J4TAV6tGTkml4uodi6KIwnJmfgH2x5C0iCcIApZMHSQ3/N17vgCvrTrm0p/796/3YcxbG1q1mbC0uMpG4fXrHRuCewbHQ6sWMPPaLgAswQ6pV4In7r5viOWcYA1qMFPDKYOSLL2Ziq3lIKXPBwD06BCEUD8tSiqNHtUwXJojB+pYMqQpfH3U6G1dsPSkf/fmYjnLusWG+qFPXAhMZlFe5FUKKaiRwPWMWq7sGI6YEF+0D9ZjfLcoh6+b2Ls9AGDlwYw23/9vxb50u6+3p1ruu6WG5+RdGNQgcoJUAqKwzICVBzOw1iZts9xgwje7zrtraC0qvaAcpVUmaNUC0zVdwNdHjUmD4jFzQlf5sce/2uvGETVPdaYGSwLU5csHBmPzzLGICbEEfQRBkBclN530rptL+bPATI0m02nUGJxsWZT6bpeybjbLqkwwWEsRKb2EmW3mm22AQ6US8MUDg3CHNePry+3ncD7XNRsqiisMWHf8Mswi8Prq4y55T2cwU8N5r9zUE/tfuhrDUqoXqm/tFwMA+GbXBZjN3pXdVVJphNH6O4X4Kvuc4KzBSWHQ2gQIh3eq/qyoVAJu6mv5vHy903PuWS7kW4IaMaG+LBnSRNK8c7NCghpGk1kuP8WgRm2TrogDYLluKCkruLryBNczagrUa7Hh2dHYOmsswuspNz6iYwQSw/1QUGbAVzva9nVEamguZcFLBiaEuWM41MIY1CByQpDeskssp7QK/15zEoAlqv3m7b0BAH8cveyVEwOp0WBKZAB8NDxduEqQXovnJ1oCG3vPF+CUh+7KzmTJoXqpVAL0WvvU93HdLKnfy3ZfQL61pII3kD8LzNRolmnWuudfbj+Hi/nemQFYlwLrjmwfjQp6rbKvNWH+1Qu4ETVuLgVBwL/u6IMRnSJgMIn4y8LtKLcu3jTHiczqa1BaTqkcbGhpBjmooex/c2eoVEKt+vDju0fB30eNvNIq7DnvGTWunSVl/wXqNfD1YQkZZ/j5aNA/3lLuMlCnQZ9Y+zIbN1uDYFtP58rledq6i9agRmwoM4KbSurntv9CgXsH0kqk+QTALK+63NCnA/x81EjNLsVvR7LcPZxWYTSZ5XlOSmSAm0fTNmnVqgYDxxq1Cn8b3REA8PGmMygoa5v3sZeLK3AkowgA8PTVnXHfUEsPsgeHJ7HyiJfiXQSRE4Ksk6JNJ7NxPq8MkYE6LLxvIK7qZrmhPJFV7JXNf49nWi4IXaMD3TwS7/PQiGQ5UPTP/x1282iaJlMuOcSbTWeN7xaF7u2DUFxplOtee4NMlp9yiRGdIjA0ORxVJjO+2+09n4+GSAG+EF+t4nfjam2aZjtakJl5rSUonl5QjkGv/YETmcXIbUZ97HM2GR+t2VvDyPJTzaJVqzCxl6UcxNLt59w8GtfKLLR8npn91zgjO0cCsJSe0qjtb/N7xQQjKcIfxZVGLNriGZ+XdDmowYWopurW3nIPdy63rM2XjHEFaT4R7KutdQyQJXvlXusi7zPLDiAtp3V7abnD0UtFKDeYEKjXMKjRTLf0j0FKpD9ySqow56cj7h5OnVYesPT86B0bjIgAHV6+qScOz70GL1zf3c0jo5bCMz2RE6RMDcnfx3WCn48Gof4+eHBEMgDgX78d96jme844bt3V0LU96w+6miAI+OfEbgCAnWfzsOusZ/VYEEXRpqcGFx2cpVIJuM1aPuaPY96xQ6rCYEKBtckzs3aaRxAEXN3DUs/22KUiN4+m9Ui185XeTwOwn2+oHJRl6hkTjMfHWHbLFVcYcc38TRgw7w889tVe/HfTGXy6OU3e6e6MmkGM1trRa2T5qWaTrid/nspBhaH5WTttxaVCy2J2NAPljfLA8CQ8P7ErXrqh9uKNWiXgmastPVk+3XIWxYZaL2lzpIxFZmo0XXiADpGBlqy/kx6aGd4Y+db5aCjnEw49dVVnDEoMQ0mlEc/9cNArq03Y2ngiG4Ala8nRvIqco1Wr8NYdfaASgBX7M/Dj/vSGv6kVpeWU4q3fTgAAbrfOjwCWovN2DGoQOcG2OZ0gAHcNjJO/fmhkMsL9fXA2twxrj12u69s9lhzUYKZGi5g8JEH+8/2f7fSomtgFZQZUGi1BvHZB7KnRGFd3j4JGJWBHWh42nPD8c4YU3PLVqhGk56SxubpZg8g70/IUsasSgBwUY+184M4r4tArJhh/H9ux3tc9c00X/HNiN7nnFwD8cvASXlt1HK/8fBSDX1uL2z7cikn/3YbVhy4ht6QSuSWVKLT+XRdVGOTH1ltv+KWg0jt/nJSzKFqStAjP8kJN1z8+FNFBeuSWVnlVw/DT2SUAwH5ujaTXqvHwyBR0CKk7CDChZzR6xQSjtMqEX863/WWAdGuj8BgHvw85R7qPO57p/UGNPGumRqg/5xOO6DRq/PvOPvDVqrE9NQ/f7b7g7iG1KKm/wtiu7dw8Eu/QLz4Uj1k31jz13QH8b1/bySz/eud5lBtMGJQUhrtr9NMg79X2ZzNEbYDtzslwf51df4kAnQY39OkAAPjzVHarj62lVBhMckpqN2ZqtAi1SsCSaYMAWBrlrvagBQmp3FCYv0+tvhFUv7gwP7lx2ZRFu3D6smffZNqWnlJ66SBXGJAQivbBehSWG7DnnHfVyXekoNxafoo7KxGg02Dl9OF4yrqjuj4PjUzGnhevwuG51+CB4Um4tX8Mru4eJT+/51w+tqfm4dGlezFg3h8YMO8P9Hl5DRJn/YLec9bIjx1KLwQAfDFtMIJ9tbiQV47+r/ze4nX3iyss788ddE3no1HJvRLWHvf8ILlE6unG+adrqVSCXL5u22UVnl52qE3v0r7I8lMu0b2D5Tja52W9d+oiZXm1C+SGq/rEhfnhqas6AwBe/eWY1/ZxO3SxEHvPF0AlAKO7RLp7OF7j7+M64ea+HWAyi3j6uwP4aOMZt19LRFHE6sOW0lNThiWy/JyC8F+ayAlBvrZBjdo7P4Z3jAAAbD6d4/YTuqucvlwCk1lEiJ+WE8MWNKpzJOLCLDvQ5q5sm7Up6yItZLPcUNP8fVwn+c8fb0x140iajw3jXUurVqFHB0uD1/N53nmTWZOcqcGgRpME6DR48fruePvOvvjvfQOx/pnR+GjyALx9Zx+7xuP1uX9oAnrFBmPWBMuCZ1GFEcP+b61cGqwlSEGTmg2wqXEm9ooGAPxyMMPjg+SApdfKbmtJzj6xIe4djBca3ikCV6ZYmkf/dPAShr+xHqsOXYLBZG5T9zCFZQZkF1t6qyREMKjRHMNSrPepp7znPtURaUNeMnsnNGjqlYnoExeCogojHvlyj9dlB4uiiFdXHQUA3Nw3hj0gXUirVuHtO/ti8pB4mEXg9dXH8dcv9qCown11DY9kFOFCXjn0WhUDWArDoAaRE2xLqujrKJMwODkMPhoVzuWWYVtqbmsOrcVI9dy7Rgdy93ULe/vOvgCAy8WV+GrHefcOxknSQjYbQzdNZKAOXz4wGACw8WR2q5R6aSlsEu56UsmV1mrY7G7S+STMnwF0V0iK8Me1PaNxa/9Y7HlhPNL+byLS/m8iUl+biGeu7ozx3aLw6OgUnHltovzc3Jt6AgD+MigeL1qbKRZVGNFn7hq5BIyrSQsogQxqNEvv2BBc1T0KZhH4l7WWtKcqrzJh+BvrUVplQri/j7zDnFzrs/v6IyXQsridXlCOvy3di07/XI0h/7cWP+5Px4FW6qtTn2OZlvuQmBDfWr0NqXEGJYbBR61CRmEFTl0ucfdwWtTBi5bMw+QIfzePpO3TqFVY8Jd+CPP3weH0Isz8/qBHlUJuyHe7L2B7ah70WhWetGalkOuoVAJeuaknXrulF3zUKqw5moU7PtyG3JJKt4xHytIY3bkd/Hw4r1QSBjWInGCbvqbX1D5sAvVa3Nbfkv7vLTWNpcbVvblLrsVdkRiGTu0sO4qe/98hj2j2yd35zTcwMRShflpcLq7EY1/t9djdc/JngUENl+kSbTkf7Dtf4N6BtJIT1jrf0u9NriMIgvyfSiXg8bGd8Mn9AzHz2q5Qq6qfs/XA8CS8dH11o+ErX1+HCy2QNVQilZ9iL55m+8c1XaASgN+OZGGvB5aYuVxcged+OISec36TA+VPjO8ENZu6tgiVSsDjPUx4767edhnoWUWVmPHNftz0/hbc9uFWzPhmH2Z8sw+/WheLWtOuNOk+JLjVf7a38fVRY2Rny87lz7edde9gWtD53DLsv2ApNTSqM3dqOyMuzA8fTR4AQQB+PngJb3p4YFxSUFaF/1t9HADw9FVdEMf+TC1CEATcPTgeyx8diqggHU5kFeP2j7a1+qYsS+kpyxrcBGv2KikHgxpEjeSof8DoLpbmU5tP57TmcFqEKIrYfMrye1xpLa1FLevT+6+Q//zT/gw3jsQ5WdZFh2gGNZpMr1Xj8bGWMlS/HcnCDQs246nv9qPX7N/Q7cVf0XvOb3j+f4daZDHRlXZYFx74WXAdqVTEvgsFKHZjKndrMJjMOJJh2VnJ+vltx7ThSVh430D56xFvrnd5PfbiSqmnBndhN1enqEDc1j8WAHDrB1sx6/uDLd4TpblKKo34dtd5DJz3Bwa9uhZf7zwPk3WX8FNXdca9QxPdO0AvpxIsjcN3vzAeB166Gv++ow+GJofLz+85l48f92fgx/0ZeOTLvbjmnU2tNh+pMpqxbI+l+ezwTrwPcYW7B8cBANYfz/aq3fgSs1nEv3+3LMhf2TEC7TgnddqgpDD83y29AAAfbTyDl3487PGlqOb/cQoFZQZ0iQrE1CsT3T0cr9c7NgRfPTQEMSG+SMspxa0fbMX+Vsz4O3W5BKnZpfBRq9gQXoEY1CBqJL227sNmSHI4VAKQml2KU1meXdM4LacUGYUV8FGrMCgxzN3DUYT4cD8MSbb8XXtCYEwqRxIdzHIxzTFlWCKGWWtbH04vwg9701FcaUS5wYSiCiO+2nEeI95cj2eWHUBGC5WAaY70gnK5VF00MzVcJi7MDwnhfjCZRexIzXP3cFrUgQsFKK0yIczfB53bBbp7OGTjqu5R+PT+6sDGLR9sxaeb01z2/lKmhr+u7s0i1DhPXNVZzmz4ZtcF9J7zGz7ccEYOFLQlm0/loM/cNZj5/SHk2JSquHtwPL58YLBd3ylqWYIgINhPi9sGxOLrh4fgyNxrMO/mnnjhum544bpuCLb2FTyRVYwRb67H22tOtOiiuCiKeOyrvTifV4aIAB1u6RfTYj9LSYYkhyNQp0F6QTnWHb/s7uG4lNFkxjPLDuDH/RlQCcBjYzq6e0geZ9KgePxzYjcAwOfbzmHUvzbgi+3nYPDA8rjHM4vwxfZzAICXbujOhtGtJCUyAP/72zD0jAlCbmkV7vp4Gz7dnNYqQdRVhyzZhCM6RSCQ5QoVh0c4kZOkDPiRDtJZg321GN8tCgDw9u8nW2tYLWKLdVF9QEIofOvoIUIt48nxlnqfPx3IaNOBMYPJjL3nLDt2pYbG1DRqlYClDw7GI6NS0K19ELq1D8J1vdtj/TOjcVX3KPl1y/dcxLDX1+H99afdONra1tvcGA9nVpdLSX+fnhDkbI5NJ7MBAMNSwqFiqZk2Z1y3KKx47Er561d+PoqB8/7A4fTCZr93RqE1OM4dtS4RE+KLA7OvlueiZhF449fjSHl+FeauPCJnWNZn9aFLGPHmOry9pmVKkOSWVOKeT7Zj8qc75GBLjw5B+HzaIBycczVeu6UXd+a7mb9Og8lDEvDgiGQ8OCIZe1+8Cs9N6Co//9660+gx+zdsO+PaHoJVRjPWn7iM3nPX4PejWQCAGeM6sja6i/j5aHCrtVTyhpPOBTWKKgxYvCUNI99cjzFvbcD6E+4NhpjNIo5dKsKec3nYkZqLradzsPZYFh76fDd+2JcOtUrAu5P6YYhNxhE576GRyfjkvoFICPdDTkklXlxxGINfW4t7PtmOuSuP4Ntd57HvfD4yCyvaXLDDbBZRYTAhq6gC/1h+ECaziGt7RLPiRCtrF6THNw8PxZgukag0mvHKz0dx/6KduOzE/KOpRFHE6kNS6an2LfZzqO3iLIHISWufHo2dabm4fUCcw9c8Mb4z1hzNwh/HslBWZfTYifif1tJTvLFsXf3iQ+U/f7vrAl6wqWneluy32VndneVimk0QBMya0BWzbBYNAGDhfQORWViBDzacxufbLDuO/vXbCew6m4d37+qHYD/37kQRRREv/3wUAPD0VZ3hz2a/LjW8YwSW7jiPP09lu3soLcZoMuOrnecBAOO6MV28reobF4INz4zGtCW7kJpdipySSlz/n80Y3y0KT1/duUllw4wmM9LzLUGN+HDWunaVAJ0Gn9w/ENtTc/H66uNy+YdFW85i0ZazuGtgHKaP64jY0Np/50czivDo0r0ALAvXE3q1d2lJuK1ncnD3wh3y1z5qFZZMG4ShKVyAbMvUKgF/HZWCG/t2wCNf7MGBi4UoN5jwl4XbMSQ5DAMSQjE0OaLJ9wyiKOK73Rfw6i/HUFRRXfLmyo7huHtwgqt+DQIwvFMklmw7J5cYrk+FwYTr39uM8zYlx6Yu2oX+8SG4uV8MJg9OaNWNCOuOZ+HVX47hTHbdtfq1agH/+Ut/XNuT9fSbY3z3KIzsHIlvdp3He2tPIaekCltO52LLafsgplolID7MD5EBOrQL0iEh3A/Rwb6IDtIj1E+LqCA9VCpB3qVvFkWYRcvxbnlI+tqyWa6o3IBKoxmlVUYUVxhhMJlRZTSjpNKI0kojqoxmFJYbUG4wyY9nFVWiwmBCucGE4gr7clmBeg1m39g276O9XYBOg8+mXIGlO85j3i9H8eepHIz990bMGNcJ04YnubxX1o60PJzIKoZOo8JV3aIa/gbyOlyBIHJSUoQ/kiL8631Nt/aBiAnxRXpBOR79ci8WT72iVgPOts5oMmNbqmXiwt0NrctHo8Ibt/XCzO8PYdmei/jHtV3hU0djeneTboa4s7rlRQfr8fJNPfH42I6Y+O6fyCmpwoYT2ejz8hq8cnNP3NY/plWDp6IoIqOwAlVGM3adzUOV0bJTawQbMrrcsJQIqATgTHYpLhWWo32wr7uH5HIH0wuRU1KFYF8tru/dwd3DoXokRvjjjydHYdmeC5j5/SEAwB/HLJs4BiaEYvYNPdCjQ5DT14SzuaUwmkXoNCpEBTJTw9WGJIfjf38bhrScUsz+6Yi8WeXb3Rfw7e4L6BwVgCs7RuC+oYmICtJBp1Fjxjf77N5jwrt/YvkjQ9EvPrRJixCFZQbklVUBAHadzcM/lh+Un3tweBKeuaaLwz511Pa0D/bFiseuxOrDmfibNfi1PTUP21Pz8P76M4gP80OgXoOpVyZhQEIoIgN1CHCw2aGgrAr5ZQb8fjQT/1l32m5BMibEF/+4tgtu7NPB4+6h2rohyWFQqwSczS3DhbyyepsnL9l6Vg5o+GrVKDeYAAB7zxdg7/kCvPnrCXw4uT+GJoe7vLyPySziYn4ZzKJlHH8cy8LF/OoSrDqNCjGhvtCoBKgEAd3bB+HBEcno3oEbrVzBR6PCfUMTcefAOJzILMaJrGKcyCzGySzLfzklVTCZRaTllCItp3UbQjsjMdwP7/2ln1fOmz2FIAiYPCQBg5PC8MS3+3EkowivrjqG/6w7hWnDk3B97/ZIiQxo9jleFEUsWGepYnD7gFi3b/gj92BQg8iFBEHAgyOSMHflUWw8mY2NJ7PlBuKeYtfZfBRXGBGk16BXDEsLtbarukdj5veHUFhuQLeXfsW8m3vijgGxbaYeqCiKWHvcUhZgBDN5Wk27QD22zhqHF1ccxre7LwAAXlxxGC+uOIx/3d4bdwx0nEHWVBfyyvDbkUy7euwrD2bgcHqR3euignToGxfi8p+vdMF+WvSKDcGBCwXYfCqnRf6N3c02QKptI+c4ckylEnDXFfG4vncHvL/+ND7YcAYAsPtcPm5YsBkxIb54cEQSbu1X/41lfmkVnllmWeAekBDK4HgLEQQByZEB+OKBwbhcVIF3157C0h2WzKiTWSU4mVWCRVvOAgBu6NMBpy6XAAD+fUcfPL3sAADg9o+2ISLABy9e392pReZKownLdl/EsUtF8s+q6Y+nRqFjuwAX/ZbUmgRBwMRe7XFi3rVYuCkVuaVVWLr9PKpMZnkB/BnrZwcA/joqGWF+PugVE4z+CaFYtucijmYU4uudF2q9d0K4H56f2A3X9OBO+5YSqNeiX1wIdp/Lx9pjWZhyZVKdryssN8jnd2mOaTSZsfDPNPy4Px3HM4tRUmnEvZ/uRIBOg8fHdoQrz+IfbTyD/DJDrcf9fdSYNaErJg9JYMCrFei1avSJC0GfGnN8URSRVVSJ1JwS5JVW4VJBBS7kl+FSYQUuF1Ugt7QKl4stvZJUAiBAgEoAVIIAWP8vWP+vEixZH0F6LfRaNXy1agT5auCjUUGrVsHPR4MgvQY6jQr+Og38dZbn/HzUiA7Sw89HA51WhWBfy/f7qFXQqgV+PtqITlGB+Hn6cCzbfRGv/HIURRVGzP/jFOb/cQph/j4Y3SUSozpHomO7AIT76xAVpHP6385kFvHZ5jRsPp0DjUrAI6NSWvi3obaKQQ0iF5syLBHbzuRizdEsTFm0Cz89fiV6x4a4e1hOEUUR7/xh6QcysVd7l6cHUsPC/H1w9+B4fLXjPExmEc/9cAizfzyCXrHBCNJr8M/ruiPUTwt/ncYtOxx/OXQJh9OLoNeqMLYrUzxbk49GhTdu740pVybisaV7kWrdHfXs8oP4bMtZLJpyRZObdReWG2A0mZFfZsCr1knnHmvfFEcC9RoE6bX4+N4BTfqZ1LDhHcMtQY3TzQ9qiKKIvNKqBl/n66Nulewfk1nEygMZAFjq0NP46zT4x7Vd8dCIZHy96zw+XH8GxZVGpBeUY+7Ko5i78igGJFjKKY7uHIm7B8fjSEYRPtxwBlUms9255brerH/cGtoF6fHqLb3w+NiOOJtTho82nsG+8/lyuR/pWPznxG64bUAsAvUazPz+IPLLDMgpqcKMb/bjhf8dxj+v64Zb+sdAp7HMP0RRRH6ZAVvP5OCLbeewIy2v1s8O1FvOJ2H+PvjygcH17g4nz6DTqPH4WEsz939c0xWH0guRV1qF11YdQ35ZlZx58fHG1HrfJ1CvQYdgX7x2a0/0i2OAszVc17s9dp/Lx0cbUzFpUHyd9xLz/ziJwnIDOkcF4Nb+sQAAjVqFR0en4JFRyVh58BJe+fkososrUVJpxOurj7fIWH21amjVAvonhOKxMR3RKyaY2V1tgCAIiA7WN/meg5RFEATceUUcbuzbAb8dycR3uy9g99l85JVW4Ye96fhhb7r82vgwP4zt2g7Bvlr4+6hwNENAxuazgKCylDAzizCaRaTmlGJnWi6yiizBs6eu7sy5hYIJoii2fDt6arSioiIEBwejsLAQQUFMpbRlMBiwatUqTJw4EVpt20wxyy+twrDX18mpuq/c3BP3DmnbdWErjSbM+ekIvt55AT4aFTY8MxodQpi26S6bTmbj1V+O4UQ9DcMfGZWCBAe1yEP9tLimR3SDux0aczwt33NR3oH36OgUzLy2a72vp5Z1PLMI9366E9nW3VCAJaj63MSu8oKTI6WVRvx6OBNVJjP+ty8dO+tYiJJc17s99Dbv1zkqAA+PTOYuKAdceY3adTYPd3y0DTqNChueHd3kVPojGYW4/7OdyClpOKgBAJOuiMOjo1OQEF5/ycXmkM4nQXoN/vzHWKaMe7jley7ix/3pcpkjZ9w9OB4v39ijwUxET5j3eaqjGUX4fNtZGEwiooN1mDGus13Zy58PZuDFFYftdk0LAjB9bCdEB+nxn3WncKmwdgPQXjHB6BMXjOljOyGKjeDbnJY+pk5fLsGnm9NQZTTjpwPpMJiqlxv6xoWgV0wwpo/riHYsPdfqKgwmjH1rAzIKK/DS9d0xbbh9tsZzPxzC19ZeVwvvG4irujvewLT2WBZWH85ES6wmjevWDhM9qOkvr1NEzqsymrHvfD5+O5KFAxcLkJZTivyyqkafS0L9tHh4pCXYyvtS7+PsmjiDGm0UgxqOecqkYXtqLib9d7v89eNjOuLpqzu3yRNuhcGEa+ZvwrlcS+r4QyOS8M/r2FyrLdiZlof8siocvFiAT/5MQ6W1h4EzIgJ06BUThPAAHV64rhv8fDSW+rM2O+GcPZ6W7b6AZ631sFUCsO+lqxHs23aPP6UwmMxYsO403l17Sn7MR63CyM6RmDwkHsM7RtgtGGYUlOO1Vcfw88FLDt9Tp1HhwRFJ6B0bgu7tg7jzpZFceY0SRRF3fbwdO8/m4a6BcXjj9t6N+n6z2dLMffHWs036+bMmdMUDw5NcXhrq0MVC3LBgMwDguQld8VemjHuN45lF8lzigw1ncMDaqBoAgvQazJrQDeEBPkiK8EfnqECn3tNT5n3eymgy47cjWXht1TGkF5Q7fF1EgA4vXt8NcWF+6B8f2oojpMZqzWOqrMqI7am5MJhERAXpWa6yDVi0JQ1zVx7FkOQwfPPwUPnxnw9m4PGvLL11+sWH4IdHh7XJ+9a2iNcpouYpqzJizZEsHLtUhJJKIwrKqpB5KQNxMTHQaNRyqTKVICAqSI8BCaEYkBDK7C0vxqCGh2NQwzFPmjSYzCKue+9PHM+07LZXCcDLN/VESDN2pKoEAYOTwhAeoHPJGAvLDBj46u/yLqqhyeH4+L4BCNK37b9bJUsvKMebvx5HWZWpzuf3nS9ATkllnc/5atV4+urOcspw7w6B2LdlncPjqazKiFd/OSbXxtaqBWydNQ6Rga75/JFrFFUY8NfP92Bbaq7d42qVgJv7xmB0l0i8t/aUXDNd0ic2GO2C9OjePghPjO/Em1cXcPU1as+5fNz24VaoBGDNkyPRsZ1zC8ErD2Rg+tf2jX8/vKc/JtSz87G4woB5Px+T+7ZIescG4+GRyejePgjJkc2rhf/r4Uw88uUeAEBkoA5//mMMb0ioXp407/N2aTmlePv3k6iwZiILsGTz3dQ3xr0Do0bhMaVs53JLMepfGwAAL13fHdf1bo8lW8/KfTR6xgRhxd+ubDP9/DwBjyki1+IxRc6uibOnBlELUqsELJk2CNO/3oedaXkwi8ALKw675L1v6NPBJU3ZfrLWUQZYUshTxIT44t1J/Rw+L4oifj+ahcJyA3adzcN3uy/Kz5UbTJj3yzG71/cNV2FL1RE8dXVXRAfrkZpdgg83nEGl0YzVhy/JAS+VAOx8fjxC/X1a5hejJgvSa/H1w0Ow9XQOUnNK8frq4yipNMJkFvH93ov4fu9Fu9c/PDIZV3ePwsDEMDeNmJw1ICEUV3WPwu9Hs/Cv307g43sH1vv6/NIqPPzFbuw6W923YGTnSLxzZ58Gg+GBei3euL03po/riEe+3CM3hT94sVDevXljnw54bmLXJpXCWn3oEh5dulf++tP7BzKgQeRBkiL88Z+/OJ5/EFHblxDuj4m9orHqUCZe/vkoXv75qPycVi3gm4eHMqBBREQegUENohYWFaTHd38diq2nc/DhxjOoakT5oJqMZlFusLnSJhjhCq/f2guTBsW79D3JPQRBwNU9ogEAdwyMw8s39USl0Ywz2SWY/8cpVBpMEAG5j8L+XBX256bjuz3p0GtVqDDU/oyO6hyJj+8dwAXINm5YxwgM6xiBuwfFI9fatDPDWi5EEICru0fjniHxDfbcoLblH9d0wdpjWfjtSBZ+OpCBG/t0qPWaKqMZDyzZZdfTIECnwecPDGp0KZjYUD/8PH0EiisM+HzbOWw6mS03AP7pQAZ+OpABvVYFvVaNB4dbSpU15D/rTtkFWjbPHIPYUJY2IyIiam3/vK47DlwotCspN65rO/zfbb0QoOMSEREReQZesYhaibTY2FxHMgqxPdVxU9+m6BsXjAEJ3LHtrfRaNfRaNfrHh+LzaYPkx9NySvHH0UvYtPcY/sy07MiyDWg8MioFkYE6dI0OxJUu+OxS61GpBEQG6vDOXX3dPRRygU5RgbitfyyW7bmIv3+9D6sPXUKnqED8bXQK9Fo1jmQUYvInO+ya+U67MgnPTezarH4YgXotHhvTEY+N6Yisogr8d1MqPt2cBsByrqgwmPHWmpONek9/HzXWPTOazYOJiIjcJCbEF5tnjsFPBzKQW1KF4Z0inO5zRERE1FYwqEHkYXp0CEaPDsHuHgZ5gaQIf0wZmoB2+Ufw7gPjUWqobrEUHuADPx9eIojaimev6YJleyxlxFYfzsTqw5l4b+0ptAvU4XJxdQ+dSVfE4bmJ3RDs69r6s1FBerx4fXc8Mb4TCsoMyC+rwrxfjqG4wujU9wsAxnSNxBPjO7u88TgRERE1jiAI7IdDREQejStWRESEQL0GYYFswkXUVrUL0mPnP8dh2e6L2J6aK5eZsg1ovHNXH9zSL7ZFxxGo1yJQr0VcmB++++vQFv1ZRERERERERHVhUIOIiIjIA7QL1MvloC7klaGoorrcVHyYHwL1DEwSERERERGR92NQg4iIiMjDxIWxyTYREREREREpE4saExERERERERERERGRR2BQg4iIiIiIiIiIiIiIPAKDGkRERERERERERERE5BEY1CAiIiIiIiIiIiIiIo/AoAYREREREREREREREXkEBjWIiIiIiIiIiIiIiMgjMKhBREREREREREREREQegUENIiIiIiIiIiIiIiLyCAxqEBERERERERERERGRR2BQg4iIiIiIiIiIiIiIPAKDGkRERERERERERERE5BEY1CAiIiIiIiIiIiIiIo/AoAYREREREREREREREXkEBjWIiIiIiIiIiIiIiMgjMKhBREREREREREREREQegUENIiIiIiIiIiIiIiLyCAxqEBERERERERERERGRR2BQg4iIiIiIiIiIiIiIPAKDGkRERERERERERERE5BEY1CAiIiIiIiIiIiIiIo/AoAYREREREREREREREXkEBjWIiIiIiIiIiIiIiMgjMKhBREREREREREREREQegUENIiIiIiIiIiIiIiLyCAxqEBERERERERERERGRR2BQg4iIiIiIiIiIiIiIPAKDGkRERERERERERERE5BEY1CAiIiIiIiIiIiIiIo/AoAYREREREREREREREXkEjbsHQHUTRREAUFRU5OaRtD0GgwFlZWUoKiqCVqt193CIPBqPJyLX4jFF5Fo8pohci8cUkWvxmCJyLR5TJK2FS2vjjjCo0UYVFxcDAOLi4tw8EiIiIiIiIiIiIiKi1lFcXIzg4GCHzwtiQ2EPcguz2YyMjAwEBgZCEAR3D6dNKSoqQlxcHC5cuICgoCB3D4fIo/F4InItHlNErsVjisi1eEwRuRaPKSLX4jFFoiiiuLgYHTp0gErluHMGMzXaKJVKhdjYWHcPo00LCgriCY7IRXg8EbkWjyki1+IxReRaPKaIXIvHFJFr8ZhStvoyNCRsFE5ERERERERERERERB6BQQ0iIiIiIiIiIiIiIvIIDGqQx9HpdJg9ezZ0Op27h0Lk8Xg8EbkWjyki1+IxReRaPKaIXIvHFJFr8ZgiZ7FROBEREREREREREREReQRmahARERERERERERERkUdgUIOIiIiIiIiIiIiIiDwCgxpEREREREREREREROQRGNSgVrF8+XJMnz4dI0aMQFBQEARBwOTJkxv1Hrm5ufjkk09wyy23oGPHjvD19UVwcDCGDx+OTz/9FGazudb3nD17FoIgOPxv0qRJrvoViVqNK44nAJg5cybGjRuHuLg4+Pr6IiwsDP369cPcuXORm5vr8Pu2bt2KiRMnIiwsDL6+vujduzfmz58Pk8nUnF+LyG3cdUzxGkXeylXHVE1ffvmlfHx88sknDl/3888/Y/To0QgODkZAQAAGDx6MJUuWNPvnE7mLu46pDRs21HudmjVrVrPHQOQOrjqmEhMTHR4f0dHRDr+P91Pkbdx1TPF+Stk07h4AKcO8efNw4MABBAQEIDY2FsePH2/0eyxbtgyPPvoo2rdvjzFjxiA+Ph5ZWVn44Ycf8OCDD2L16tVYtmwZBEGo9b19+vTBzTffXOvxnj17NuXXIXIrVxxPAPDOO++gf//+uOqqq9CuXTuUlpZi+/btmDNnDv773/9i+/btiIuLs/ueH3/8Ebfddhv0ej3uuusuhIWFYeXKlXjyySexZcsWLFu2zBW/IlGrcucxBfAaRd7HVceUrQsXLuDxxx9HQEAASkpKHL5uwYIFmD59OsLDwzF58mT4+Phg+fLlmDJlCg4dOoS33nqr2WMham3uPKYAYNSoURg9enStx4cPH97scRC5gyuPqeDgYDzxxBO1Hg8ICKjz9byfIm/kzmMK4P2UYolErWDdunXiyZMnRbPZLK5fv14EIN5zzz2Neo+1a9eKP/30k2gymewev3TpkhgXFycCEJcvX273XFpamghAvP/++5v7KxC1Ga44nkRRFMvLy+t8/PnnnxcBiI8++qjd44WFhWJkZKTo4+Mj7tq1y+59hg4dKgIQv/7660aPg8jd3HVM8RpF3spVx5TEbDaL48aNE5OTk8VnnnlGBCAuXLiw1uvS0tJEnU4nhoWFiWlpafLjeXl5YkpKighA3Lp1a5PHQeQu7jqmpJ81e/bsZoyeqO1x1TGVkJAgJiQkOP163k+Rt3LXMcX7KWVj+SlqFWPGjEGnTp3qzKJw1tixY3HDDTdApbL/2EZHR+ORRx4BYEmRJvJ2rjieAECv19f5+J133gkAOHXqlN3jy5cvR3Z2NiZNmoSBAwfavc+8efMAAB9++GGzxkTkDu46poi8lauOKcl7772HdevWYdGiRfD393f4us8++wyVlZV4/PHHkZiYKD8eGhqK559/HgDw0UcfuWRMRK3JXccUkbdy9THlLN5Pkbdy1zFFysbyU+QVtFotAECjqfsjnZGRgY8//hi5ubkIDw/H0KFD0bt379YcIpHHWLlyJQDUOkbWrVsHALj22mtrfc/IkSPh5+eHrVu3orKyEjqdruUHSuQhHB1TEl6jiBw7duwYZs2ahRkzZmDkyJHytagu9V2nJkyYYPcaIqVqzDElOX36NBYsWICioiJER0djxIgR6NSpUyuMlqjtq6ysxJdffonz58/D398fvXv3xsiRI6FWq2u9lvdTRA1rzDEl4f2UMjGoQR7PaDTi888/B1D35AAAfv/9d/z+++92j40ePRpLlixBfHx8i4+RqC176623UFJSgsLCQuzevRubN29G7969azV/PHHiBACgc+fOtd5Do9EgKSkJR44cQWpqKrp169YqYydqi5w9piS8RhHVzWg04t5770V8fDxee+21Bl9f33Wqffv28Pf3x8WLF1FWVgY/Pz+Xj5eorWvsMSVZunQpli5davfYbbfdhoULFyI0NNTVwyTyKJmZmbj33nvtHktKSsKiRYswatQou8d5P0XUsMYcUxLeTykTy0+Rx5s1axYOHz6MiRMn4pprrrF7zs/PDy+++CL27NmD/Px85OfnY+PGjRgzZgw2bNiAcePGobS01E0jJ2ob3nrrLcydOxfz58/H5s2bce2112LNmjWIjIy0e11hYSEAS+OuukiPFxQUtOh4ido6Z48pXqOI6vfyyy9j3759WLx4MXx9fRt8vbPXKel1RErT2GMqMjISr7/+Og4dOoTi4mJkZ2dj9erV6NevH77//nvccMMNMJvNrTByorZp6tSpWLt2LTIzM1FaWopDhw7hr3/9K86ePYsJEybgwIEDdq/n/RRR/Rp7TPF+StkY1CCP9t577+Hf//43unbtii+++KLW8+3atcPLL7+M/v37IyQkBCEhIRg5ciTWrFmDwYMH4/Tp0/jkk0/cMHKitiMzMxOiKCIzMxM//PADUlNT0a9fP+zdu9fdQyPySM4eU7xGETm2Y8cOvPbaa3j66acxdOhQdw+HyOM15Zjq0aMHZs6ciZ49eyIgIAARERG49tprsWHDBiQlJWHLli1yiUUiJZo9ezbGjh2LqKgo+Pn5oWfPnvjoo4/w1FNPoby8HHPmzHH3EIk8SmOPKd5PKRuDGuSxFixYgBkzZqB79+5Yv349wsLCnP5ejUaDBx98EACwadOmlhoikUeJiorCLbfcgjVr1iA3Nxf33Xef3fMN7XCVHg8JCWnRcRJ5ioaOKUd4jSKlMxqNuO+++9C5c2e88sorTn+fs9cpRztkibxVU48pR4KCgnD33XcD4HWKqC6PPPIIgNrHB++niJrG0THlCO+nlIFBDfJI8+fPx/Tp09GzZ0+sX78e0dHRjX4PqQwIU9GI7CUkJKB79+44cuQIcnJy5Me7dOkCADh58mSt7zEajUhLS4NGo0FycnKrjZXIEzg6purDaxQpWUlJCU6ePIljx45Br9dDEAT5v7lz5wIAHnroIQiCgCeeeEL+vvquU5cuXUJpaSliY2PZT4MUp6nHVH14nSJyzNHxwfspoqZpyjWH1ynvx0bh5HHeeOMNzJo1C3379sXvv/+OiIiIJr3P9u3bAYATBqI6ZGRkAADUarX82NixY7F06VL8+uuv+Mtf/mL3+k2bNqGsrAwjR46ETqdr1bESeYK6jqn68BpFSqbT6fDAAw/U+dzevXuxb98+DB8+HF26dLErozN27Fhs2bIFv/76a63yOqtXr5ZfQ6Q0TT2m6sPrFJFjjo4P3k8RNU1Trjm8Tnk/BjWozTEYDDhz5gy0Wi1SUlLsnnvllVfw0ksvYcCAAVizZk2DJaf27t2Lvn37QqWyT0pau3Yt3nnnHQDA5MmTXfsLELUhjo6nkydPIioqqlYJDrPZjBdffBGXL1/GsGHDEBoaKj93++23Y+bMmfjmm28wffp0DBw4EABQUVGBF154AQDw6KOPtsJvReQ+rjymeI0iqvuY8vX1dVj/eM6cOdi3bx/uv/9+uayAZOrUqXjzzTexYMECTJ06FYmJiQCA/Px8vPbaawCqyxcQeStXHlO7d++W53u2vvzyS3z77bfw8fHBnXfe6fpfgqgNcTT3O3bsGOLj4+Hv72/3+rNnz+Lxxx8HUHsex/spItceU7yfUjYGNahVrFixAitWrABgaaAKANu2bcOUKVMAABEREXjrrbcAAOnp6ejWrRsSEhJw9uxZ+T2WLFmCl156CWq1GiNGjMB7771X6+ckJibK7wkATz31FE6dOoVhw4YhNjYWAHDw4EGsW7cOgCVIMmzYMBf/tkQtyxXH06pVq/Dcc89h+PDhSEpKQnh4OLKysrBx40akpqYiOjoaCxcutPu5QUFBWLhwIW6//XaMHj0akyZNQlhYGH766SecOHECt99+O+66664W//2JXM1dxxSvUeStXHFMNUVSUhL+9a9/4e9//zsGDhyIu+66Cz4+Pli+fDkuXrzIpuPksdx1TN1+++3QaDQYOHAgYmNjUVFRgV27dmHnzp3QaDT4+OOP5eAhkSdxxTH17bff4t///jdGjhyJhIQEBAYG4syZM/jll19QUVGBiRMn4plnnrH7ubyfIm/lrmOK91MKJxK1gtmzZ4sAHP6XkJAgvzYtLa3WY868BwBx1KhRdt/zySefiNddd52YkJAg+vv7iz4+PmJcXJx45513ips2bWr5X5yoBbjieDp06JD42GOPiX369BHDw8NFtVotBgUFiQMHDhRnz54t5ubmOvz5mzdvFidMmCCGhISIer1e7Nmzp/j222+LRqOxhX5jopblrmOK1yjyVq44php674ULFzp8zU8//SSOHDlSDAgIEP38/MSBAweKixcvbuZvReQ+7jqmXn/9dXH8+PFibGysqNfrRZ1OJyYnJ4tTpkwR9+/f76Lfjqj1ueKY2rBhgzhp0iSxS5cuYnBwsKjRaMSIiAhx/Pjx4pIlS0Sz2ezw5/N+iryNu44p3k8pmyCKotjcwAgREREREREREREREVFLUzX8EiIiIiIiIiIiIiIiIvdjUIOIiIiIiIiIiIiIiDwCgxpEREREREREREREROQRGNQgIiIiIiIiIiIiIiKPwKAGERERERERERERERF5BAY1iIiIiIiIiIiIiIjIIzCoQUREREREREREREREHoFBDSIiIiIiIiIiIiIi8ggMahARERERERERERERkUdgUIOIiIiIiLze4sWLIQgCFi9e7O6hEBERERG1mOXLl2P69OkYMWIEgoKCIAgCJk+e7LL3//333/H0009j3LhxCA8PhyAIGD58eL3fYzKZsHTpUowYMQLR0dHw8/ND586dMXXqVBw5cqTRY9A0dfBERERERETuIAhCo16/aNGiFhoJEREREVHbMm/ePBw4cAABAQGIjY3F8ePHXfr+77//Pn788Ufo9Xp07NgReXl5DX7P3Xffje+++w6xsbG49dZbERgYiEOHDmHJkiX46quvsHr1aowdO9bpMTCoQUREREREHmX27Nm1Hps/fz4KCwsxY8YMhISE2D3Xt29fJCUlYciQIWjfvn0rjZKIiIiIqPW98847iI2NRceOHbFx40aMGTPGpe8/c+ZMvPrqq+jatSsuXLiApKSkel+/a9cufPfdd+jRowd27twJPz8/+blFixZh2rRpmDdvHoMaRERERETkvebMmVPrscWLF6OwsBBPPPEEEhMT6/y+4ODglh0YEREREZGbNSWI8fXXX+O///0v9u3bh4qKCiQlJeGee+7Bs88+C51OZ/faoUOHNuq9U1NTAQDjxo2zC2gAwE033QQAyM7ObtR7sqcGERERERF5PUc9NRITE5GYmIiSkhI8+eSTiIuLg6+vL/r27YsVK1YAAIxGI1599VV06tQJer0eKSkpWLBggcOf9dtvv2HixImIiIiATqdDSkoKnn32WRQUFLTcL0hERERE1ATTpk3D3XffjdOnT+O2227DY489hrCwMLz44ou49tprYTQam/X+PXr0AACsW7cO5eXlds/9/PPPAIDx48c36j2ZqUFERERERIpmMBhw1VVXIS8vDzfddBOqqqrw9ddf47bbbsOaNWvwwQcfYMeOHZgwYQJ0Oh2WLVuG6dOnIzIyEnfddZfde82dOxdz5sxBWFgYrr/+erRr1w4HDx7EW2+9hVWrVmHbtm0ICgpy029KRERERFRt8eLFWLRoEW655RYsXboUvr6+8nNz5szB3Llz8f7772PGjBlN/hk9e/bEk08+iXfeeQddu3bF9ddfj8DAQBw5cgS//vorJk2ahHnz5jXqPRnUICIiIiIiRcvIyED//v2xYcMGOb3+3nvvxciRI3HHHXcgJSUFhw8flnt1PPXUU+jatStef/11u6DG+vXrMWfOHAwdOhSrVq2y6+2xePFiTJ06FbNnz8Y777zTmr8eEREREVGd3n33XWg0Gnz22Wd2AQ0AePHFF7FgwQIsXbq0WUENAHj77bfRpUsXPPnkk/jggw/kxwcMGID7778f/v7+jXo/BjWIiIiIiEjx5s+fb1cveMSIEUhKSkJaWhreeOMNuwBFcnIyrrzySmzevBkmkwlqtRoA8N577wEAFi5cWKtZ+ZQpU/Duu+9i6dKlDGoQERERkduVlZXhwIEDiIiIwPz58+t8jU6nw7Fjx5r1c0RRxIwZM/DBBx9g3rx5mDx5MkJCQrB//348+eSTmDBhAhYsWIDHHnvM6fdkUIOIiIiIiBQtJCQEKSkptR7v0KED0tLSMGDAgFrPxcTEwGg0IjMzEzExMQCAbdu2QavVYtmyZVi2bFmt76mqqkJ2djZyc3MRHh7u+l+EiIiIiMhJ+fn5EEUR2dnZmDt3bov9nCVLluA///kPnnzyScyaNUt+fPjw4Vi5ciWSk5Mxa9Ys3H///QgICHDqPRnUICIiIiIiRQsODq7zcY1G4/B56TmDwSA/lpubC6PR2OBNYUlJCYMaRERERORW0hy3X79+2Lt3b4v9HKkZ+JgxY2o9Fx0dja5du2Lfvn04ceJEnZuJ6sKgBhERERERkQsEBwfDbDYjLy/P3UMhIiIiIqpXQEAAevTogSNHjiAvLw9hYWEt8nMqKysBANnZ2XU+Lz3u4+Pj9Huqmj8sIiIiIiIiGjJkCPLz83HkyBF3D4WIiIiIqEFPPfUUqqqqMG3aNBQUFNR6Pj8/v9lZHCNGjABgaRZeWFho99xHH32EixcvIjo6Gt27d3f6PZmpQURERERE5AJPPvkkfvnlFzz00ENYvnw5OnToYPd8aWkpDh06hCFDhrhphERERETk7VasWIEVK1YAADIzMwFYer9NmTIFABAREYG33noLADBt2jTs2bMHH3zwAVJSUnDNNdcgPj4eeXl5SEtLw6ZNmzB16lR89NFH8vtv3rwZn3zyCQBLWVUAOHXqlPz+ALB48WL5z3/729+wdOlSHDx4EJ07d8aNN96IkJAQ7N27F+vWrYNarcb7778PtVrt9O/IoAYREREREZELjBs3Dq+//jqee+45dOrUCRMnTkRSUhJKSkpw7tw5bNy4EcOHD8evv/7q7qESERERkZfav38/lixZYvdYamoqUlNTAQAJCQlyUAMA3n//fUyYMAEfffQR/vjjDxQUFCAsLAzx8fF49tlnMXnyZLv3On36dK33v3z5st1jtkGNgIAAbNmyBW+//TZ++OEHfPXVV6iqqkJkZCTuuOMOPPPMMxg0aFCjfkdBFEWxUd9BRERERETUxiQmJuLcuXNIS0tDYmJirecXL16MqVOnYtGiRXa7yKTXnj17ttb3jB49Ghs3bkRdt0xTpkzBkiVL6vx5mzdvxnvvvYfNmzcjJycHwcHBiImJwdixY3H33Xdj4MCBzfhNiYiIiIiUjUENIiIiIiIiIiIiIiLyCGwUTkREREREREREREREHoFBDSIiIiIiIiIiIiIi8ggMahARERERERERERERkUdgUIOIiIiIiIiIiIiIiDwCgxpEREREREREREREROQRGNQgIiIiIiIiIiIiIiKPwKAGERERERERERERERF5BAY1iIiIiIiIiIiIiIjIIzCoQUREREREREREREREHoFBDSIiIiIiIiIiIiIi8ggMahARERERERERERERkUdgUIOIiIiIiIiIiIiIiDwCgxpEREREREREREREROQR/h9snHaixrXhswAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAMWCAYAAABWQW8IAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcJHV9//F3X3PtxS6w3LDcSrjklIXlUgRXMCgESTQGIihElB8EEg0eeKBJFC+8bzRGCEeiwcWwLuBy37AccsjN7sLe18zOTF+/P7q/1d+qrurpo7q7quf1fDx47ExPd08xVV31re/n+/l8EsVisSgAAAAAAAAAAIAIS3Z7AwAAAAAAAAAAACZCQAMAAAAAAAAAAEQeAQ0AAAAAAAAAABB5BDQAAAAAAAAAAEDkEdAAAAAAAAAAAACRR0ADAAAAAAAAAABEHgENAAAAAAAAAAAQeQQ0AAAAAAAAAABA5KW7vQHwVygUtGzZMk2bNk2JRKLbmwMAAAAAAAAAQKBisaiNGzdq++23VzLZnlwKAhoRtWzZMu20007d3gwAAAAAAAAAAOr26quvascdd2zLexPQiKhp06ZJKu386dOnd3lr0C7ZbFa33HKL3vGOdyiTyXR7cwBEDOcIABPhPAGgFs4RACbCeQLARBo5T2zYsEE77bSTM7fdDgQ0IsqUmZo+fToBjR6WzWY1NDSk6dOnM3AAUIVzBICJcJ4AUAvnCAAT4TwBYCLNnCfa2UKBpuAAAAAAAAAAACDyCGgAAAAAAAAAAIDII6ABAAAAAAAAAAAij4AGAAAAAAAAAACIPAIaAAAAAAAAAAAg8ghoAAAAAAAAAACAyCOgAQAAAAAAAAAAIo+ABgAAAAAAAAAAiDwCGgAAAAAAAAAAIPIIaAAAAAAAAAAAgMgjoAEAAAAAAAAAACKPgAYAAAAAAAAAAIg8AhoAAAAAAAAAACDyCGgAAAAAAAAAAIDII6ABAAAAAAAAAAAij4AGAAAAAAAAAACIPAIaAAAAAAAAAAAg8ghoAAAAAAAAAACAyCOgAQAAAAAAAAAAIo+ABgAAAAAAAAAAiDwCGgAAAAAAAAAAIPIIaAAAAAAAAAAAgMgjoAEAAAAAAAAAACKPgAYAAAAAAAAAAIg8AhoAAAAAAAAAACDyCGgAAAAAAAAAAIDII6ABAAAAAAAAAAAij4AGAAAAAAAAAACIPAIaAAAAAGLvD0+9oWde39jtzQAAAADQRulubwAAAAAAtOKxV9fpnF88KEl66V/f1eWtAQAAANAuZGgAAAAAiLU/Ld/Q7U0AAAAA0AEENAAAAADEWqHY7S0AAAAA0AkENAAAAADEWlFENAAAAIDJgIAGAAAAgFgjQwMAAACYHAhoAAAAAIi1YpGIBgAAADAZENAAAAAAEGvEMwAAAIDJgYAGAAAAgFgjQwMAAACYHAhoAAAAAIg1whkAAADA5EBAAwAAAECs0RQcAAAAmBwIaAAAAACINUpOAQAAAJMDAQ0AAAAAPYPgBgAAANC7CGgAAAAAiLWCFcTIU38KAAAA6FkENAAAAADEmp2UkSdDAwAAAOhZBDQAAAAAxJqdlFEodG87AAAAALQXAQ0AAAAAsWaXnCqQoQEAAAD0LAIaAAAAAHoGJacAAACA3kVAAwAAAECsFe0MDZqCAwAAAD2LgAYAAACAWLOTMohnAAAAAL2LgAYAAACAWLPLTOWJaAAAAAA9i4AGAAAAgFizgxg0BQcAAAB6FwENAAAAALGWK5ChAQAAAEwGBDQAAAAAxBoZGgAAAMDkQEADAAAAQKzl8lZAo9DFDQEAAADQVgQ0AAAAAMRaUVbJKTI0AAAAgJ5FQAMAAABArNkxDEpOAQAAAL2LgAYAAACAnlGgKTgAAADQswhoAAAAAOgZlJwCAAAAehcBDQAAAACxVizSFBwAAACYDAhoAAAAAIg1OyeDHhoAAABA7yKgAQAAAKBn5OmhAQAAAPQsAhoAAAAAYs1OyqCHBgAAANC7CGgAAAAAiLWiVXSqSEADQBPuf3GNHnllbbc3AwAATCDd7Q0AAAAAgFa4MjRoCg6gQSPjOZ3xg3skSXf803HaadZQl7cIAAAEIUMDAAAAQM+ghwaARm0czTlf3/vC6i5uCQAAmAgBDQAAAACxZocwKDkFoFHjuUpqVzbPOQQAgCgjoAEAAAAg1uwYBlORABo1lss7X+cK1K0DACDKCGgAAAAAiLlKGKNAhgaABo1mydAAACAuCGgAAAAA6BnEMwA0ajxfCWjk8mRoAAAQZQQ0AAAAAMSaHcQgQwNAo8asDI1cgXMIAABRRkADAAAAQKy5emgwFwmgQe4MDU4iAABEGQENAAAAALFWtHpoFGkLDqBBY1maggMAEBcENAAAAADEmqvkFHORABpkZ2jQFBwAgGgjoAEAAACgZzAVCaBRrh4aNAUHACDSCGgAAAAAiDU7iEFTcACNcvXQoCk4AACRRkADAAAAQKy5m4IzGQmgMfTQAAAgPghoAAAAAIg1V1Nw4hkAGmRnZeTooQEAQKQR0AAAAADQM6gWA6BReevEQVNwAACijYAGAAAAgHiz5h/poQGgUXnrvJErFHTVouf0uyXLu7hFAAAgSLrbGwAAAAAArSgGfA0A9ShYGRr3PL9av3l0mSTpXfu/q1ubBAAAApChAQAAACDW7EbgNAUH0Ki81Qd8xcax7m0IAACYEAENAAAAAD2DeAaARuU5cQAAEBsENAAAAADEmj0VSQ8NAI2yS07V8zgAAOgeAhoAAAAAYq3oagreve0AEE9BGRrjdi0qAAAQCQQ0AAAAAMSaqyk4GRoAGhSUiTGWJaABAEDUENAAAAAA0DOIZwBoVD4ooJHPd3hLAADARAhoAAAAAIg1OyujKCIaABoTWHIqR4YGAABRQ0ADAAAAQKy5m4J3bTMAxFRQySkCGgAARA8BDQAAAADx5moKTkQDQGNoCg4AQHwQ0AAAAADQM4hnAGhUUNyCDA0AAKKHgAYAAACAWLP7ZhSJaABoECWnAACIDwIaAAAAAGLNjmEQzgDQKJqCAwAQHwQ0AAAAAMSaPRcZtNIaAIIEnTfG6KEBAEDkENAAAAAA0DOIZwBoVFCGRj7PCQUAgKghoAEAAAAg1lw9NLq4HQDiKR8QCc0VCsrmC1q/OdvhLQIAAEEIaAAAAACINVcPDZqCA2hQIeC8kSsU9ZffvkuHXfEHrRke7/BWAQAAPwQ0AAAAAMSaPRUZNDEJAEGCMjQ2jeb01PINGssV9Oirazu8VQAAwA8BDQAAAACx5s7Q6N52AIinoN7fT7++0fl65lBfh7YGAADUQkADAAAAQM+gKTiARgVldq22ykyR/QUAQDQQ0AAAAAAQc3ZTcCYdATQmqOTUWDbvfJ3Lc24BACAKCGgAAAAAiDVKTgFoRVD2xViuUosqz8kFAIBIIKABAAAAINZcTcGpOQWgQUEZGuNWQKMQ0GcDAAB0FgENAAAAAD2DcAaARgWWnMpVSk6RoQEAQDQQ0AAAAAAQa0VropHGvQAaVVfJKVI0AACIBAIaAAAAAGLNnookngGgUfWUnMoTzwAAIBIIaAAAAKDr1o2M0/sATXM3Bec4AtCYfMBpw52hwbkFAIAoIKABAACArvrT8g068PML9eFfPtTtTUEPYM4RQKOCAup2Dw3K2QEAEA0ENAAAANBVV9/9kiTpD396o7sbgthylZyiLTiABgU3BSdDAwCAqCGgAQAAgK5i0Sta5W4K3sUNARBLgU3BswQ0AACIGgIaAAAA6CpW1CNMBMgANCqwKXiegAYAAFFDQAMAAABdxQQ0wkRTcACNygecN+wgRtBzAABAZ8UqoLF69Wr9+Mc/1nve8x7tscceGhwc1IwZM3TUUUfpJz/5iQqFguv5L730khKJROB/Z555ZuDvuvrqq3XYYYdp6tSpmjFjho499ljddNNNgc/P5/P6+te/rv3331+Dg4OaNWuW5s+fr7vvvju0/38AAIBexBQRWmXPM9K4F0CjgpqCN/ocAADQfulub0AjrrvuOp1//vnabrvtdNxxx2nnnXfWG2+8oRtvvFHnnHOObr75Zl133XVKJBKu1x1wwAE69dRTq95v33339f09l1xyia688krtuOOOOvfcczU+Pq5rrrlGp5xyiq666ipdcMEFrucXi0WdeeaZuv7667X33nvrggsu0Jo1a3Tttdfq6KOP1g033KC//Mu/DO3vAAAA0EuYgEar7LJlHE4AGlVP9gUZGgD8DI/l9OraEb1p2+nd3hRg0ohVQGOvvfbSb3/7W73rXe9SMllJLvnSl76kww47TDfccINuvPFGnXbaaa7XHXjggbr88svr+h133323rrzySu2+++564IEHNHPmTEnSpZdeqoMPPliXXHKJTj75ZM2ZM8d5zTXXXKPrr79ec+fO1aJFizQwMCBJOu+883TUUUfp3HPP1fHHH69p06a19gcAAADoRdYcUbFYrFqcAkzEnaHRve0AEE+m2EMqmQjslUEPDQB+Tr7qTr24ali//NBhmrfn1t3eHGBSiFXJqeOPP16nnHKKK5ghSdtuu63OO+88SdLtt9/e0u/4/ve/L0m67LLLnGCGJM2ZM0cf/ehHNTY2pp/97Geu13zve9+TJH3xi190ghmSdOihh+p973ufVq5cqeuvv76l7QIAAOhV9hRRNs+EEVpDxg+ARplgRX86eIqEgAYAPy+uGpYk3fzE613eEmDyiFVAo5ZMJiNJSqerk06WLVumH/zgB/rSl76kH/zgB1qyZEng+9x6662SpJNOOqnqZ+985ztdz5Gk0dFR3X333RoaGtK8efPqeg0AAAAq7CbOP77zhS5uCeKKGAaAVphyUn0ENAA0aSCd6vYmAJNGrEpOBcnlcvrFL34hyT8QsXDhQi1cuND12LHHHqurr75aO++8s/PY8PCwli5dqqlTp2q77barep8999xTkvTss886jz3//PPK5/PabbfdfIMpfq8BAABAhT1H9O+/f0b/cOwe3dsYxJLdQ4MMDQCNKtSRocG5BUAtg309s2YciLyeCGh84hOf0BNPPKH58+frxBNPdB4fGhrSpz/9aZ166qnabbfdJElLlizR5Zdfrttuu01ve9vb9Oijj2rKlCmSpPXr10uSZsyY4ft7zOPr1q1zHmvmNX7GxsY0NjbmfL9hwwZJUjabVTabrflaxJfZt+xjAH44R2CyGM/lXd9zzNeP80RJwYqK5fOFSf/3AAzOEfUx2Rd9qeAJyfFsnr8jehLniXD0JRP8DdGzGjlPdOJzEPuAxre+9S1deeWVetOb3qRf/vKXrp/Nnj1bn//8512PHX300brlllt01FFH6b777tOPf/xjXXjhhZ3cZF9f/vKX9bnPfa7q8VtuuUVDQ0Nd2CJ0kjeDCABsnCPQ65YtT8quhLpgwYLubUxMTfbzxJo1KUmlZvIvvfyyFix4sbsbBETMZD9HTGRsvHQOyY6OyJxLvP709NNasOlPHd0uoJM4TzSulLhVmlp98c/PaMHI013dHqDd6jlPjIyMtH07Yh3Q+Pa3v60LL7xQ++yzjxYtWqRZs2bV9bp0Oq1zzjlH9913nxYvXuwENEw2hcm68DKPb7HFFs5jzbzGzyc/+UldfPHFzvcbNmzQTjvtpHe84x2aPn36xP9TiKVsNquFCxfqhBNOcPrAAIDBOQKTxU3rHpXWrJAk7bDFgObPP7q7GxQjnCdK/mP5A9KGtZKkHXfaWfPn79PlLQKigXNEff7loUVSPq8tZ07X65s3+j5n9z330vzjdu/wlgHtx3mieWO5gnTvHyRJBx2wr+YfulOXtwhoj0bOE6bqUDvFNqDxjW98QxdddJH23XdfLVq0SLNnz27o9VtvvbWkUt8MY8qUKdphhx20dOlSLV++vKqPxnPPPSdJ2muvvZzHdt99d6VSKb3wwgvK5XJVfTT8XuOnv79f/f39VY9nMhkuKJMA+xlALZwj0OuK1mrYYlEc702Y7OeJhHUMJZOJSf23APxM9nPERExT8IFMjSmSRJK/IXoa54nGDWfHna+n9Pfx90PPq+c80YnPQSw71vzbv/2bLrroIh144IG67bbbGg5mSNK9994rSU5vDeP444+XJP3+97+ves3NN9/seo4kDQwMaO7cuRoZGdEdd9xR12sAAABQUbQardJyFc1wNQUvdHFDAMSSOW/U6qFh9+oBAEkaHq/0gUsl/cvVAQhf7AIaX/jCF/SJT3xCBx98sBYtWqStttoq8LkPP/ywCj53NIsWLdLXv/51SdIHPvAB18/OO+88SdIVV1yhtWvXOo+/9NJL+s53vqP+/n6dffbZrtecf/75kqRPfepTGh0ddR5/4IEHdO2112rrrbfWaaed1uD/KQAAwORQsAIa9tdAvezDhmMIQKMqGRrBUyQ5AhoAPLK5ypwj4w+gc2JVcurqq6/WZz7zGaVSKc2bN0/f+ta3qp4zZ84cnXXWWZKkiy++WM8995zmzp2rHXfcUZK0ZMkS3XrrrZJKwZG5c+e6Xj937lxdfPHF+trXvqb9999fp59+usbHx3XttddqzZo1uuqqqzRnzhzXa84880zdeOONuv766/WWt7xFp5xyilavXq1rr71W+XxeP/rRj+iDAQAAEKBQ9P8aaAbHEIBG5csnjv50ynlsSl/KtfqayUoAXvZZgVME0DmxCmi8+OKLkqR8Pq9vfOMbvs855phjnIDG3/7t3+q///u/9cADD+jmm29WNpvVNttsozPOOEMXXHCB5s2b5/seV155pfbbbz995zvf0Q9/+EMlk0kddNBBuvTSS3XyySdXPT+RSOjXv/615s6dq5/+9Ke66qqrNDAwoKOPPlqf+tSnqoImAAAAqHDfDHI3iMbZR02emlMAGmCXkkqnKiVjthjq0/D4Zuf7PNFSAB5FsoyBrohVQOPyyy/X5ZdfXvfzP/ShD+lDH/pQU7/rrLPOcgIj9Uin07rooot00UUXNfX7AAAAJitXDw3uBdEE+xjKcwwBaEDeOn9krB4aWwxltHRdJaDBZCUAr2LA1wDaK3Y9NAAAANBb6KGBVtlHDY17ATTCzrxIJ+0MjYzreVyeAHjZ5wWyjIHOIaABAACArrIrBDEXjVZRFgZAI+xAetrK0BjMpAOfBwAl9qKcLm4GMMkQ0AAAAEBXFVwlp7gbROPswybPMQSgAbmADI3+tHu6hIAGAC93hkb3tgOYbAhoAAAAoKu4GUSrKDkFoFlBTcH7qgIaHdskADHhGn8wiAU6hoAGAAAAuooeGmiZqyk4xxCA+tll6uym4H0p93QJpxYAXq4s4y5uBzDZENAAAABAV3EziDDRQwNAI+wgaDIRnKFBSUQAXjQFB7qDgAYAAAC6yp5/JkMDzaDkA4BmFQqlf1PJhKx4hk/JKc4tANwomwp0BwENAAAAdJV7Mrprm4EYczUF5yAC0ACToZFKJJSsGdDo5FYBiIOiKJsKdAMBDQAAAHSVK0Wfe0E0wTWhUOjihgCIHdMUPJVMaO7uWzmP95OhAWACZGgA3ZHu9gYAAABgcqMpOMJEU3AAjchbAY0j99hK//Ghw7Xb1lP0P48udT2PUwuAWhjDAp1DQAMAAABdZa+o52YQzaDkFIBmmSCoKTd11J6lLI2+FBkaAGrjtAB0ByWnAAAA0FXuDI0ubghiy55QYNIRQCPsklO26pJTHdskADFBDw2gOwhoAAAAoKu8939FbgjRIPuIIUMDQCOcpuCegIa3KTjXJgBeBXpoAF1BQAMAAABd5V3Rxg0hWkFAA0AjzDkjmZgooNGxTQIQE0WyjIGuIKABAACArvIGNEjZR6OKNJYH0CTTx8mboTHU5245yrkFgFfR9TXnCKBTCGgAAACgq6pKTnVnM9AjyNAA0IhKU3B3QGPaAAENALUVKTkFdAUBDQAAAHQVGRpolbspePe2A0D85AOagk8fyLi+59wCoFrlxECfHaBzCGgAAACgq7y3f9wPohVkaABoRCGgKbg3oMFkJQAvFlQA3UFAAwAAAF1FU3C0yq5bTUADQCMqTcHdj1eXnOrUFgGIC1cPDc4RQMcQ0AAAAEBXmYaszvfcEaJB7hWSHD8A6lcIKDk1lR4aACbA+APoDgIaAAAA6CpvGQ9uCNEo+4ghQwNAI4KagmdSSR28y0zney5NALzsMSunCKBzCGgAAACgq7zzz9wQolF2UIyAGIBGBDUFl6TrPnKEvnL6/pI4twCoZp8W6LMDdA4BDQAAAHRVVQ+NQsATgTqQoQGgEUFNwSUpmUyoL12aNmGuEoCX3cOLcwTQOQQ0AAAA0FXe+WdWwaIRqzeNuSYRCGgAaES+HET3lpzy4toEoAo9NICuSE/8FAAAAKB96KGBZi1+dqU++NP7XY8RzwDQiFolp6RKoINrEwCvYsDXANqLDA0AAAB0VVXJqS5tB+Ln27f9ueoxMjQANMIpORWQoVEJaHRskwDERJEMDaArCGgAAACgq7y3f9wQom4+h0qe4wdAA0wQNBkwO2ISN2j4C8DL7qHBihygcwhoAAAAoKsKnmWvzBmhFbl8gYlHAHWr1RRckhJkaAAIQIYG0B0ENAAAANBV3vs/7gfRikJR2jCa6/ZmAIgJJ0MjsORU6V8mKwF42ecFThFA5xDQAAAAQFd5J4mYNEK9igH1HVZtGuvwlgCIq3qbgnNpAuBlnxbI4gI6h4AGAAAAusp7A0hAA61avWm825sAICYmbApenjWhlB2AKq4WGpwjgE4hoAEAAICu8gYwmDNCs8wK69VkaACoU75Q+jdJDw0ADbKDGIxfgc4hoAEAAICuoocGmuU9Vob6UpKkzdl8F7YGQBzlJ8rQcAIaXJwAuNmnBbK4gM4hoAEAAICuoocGwtKfLgU0xnOFLm8JgLgoTNBDwzxKhgYAL3vIyjkC6BwCGgAAAOiqqpJTXdoOxF9/unR7k80T0ABQH9MUPKjkVKUpOFcnAG5F19ecI4BOIaABAACArvLe/pGhgXp5j5S+ckBjjAwNAHWqNAX3/7mJc3BtAuBlnxfI0AA6h4AGAAAAuqZYLPr00OCOEPXxHit9KZOhwTEEoD4TZWjQFBxAEHcPje5tBzDZENAAAABA19g3fwlnFWx3tgXx158p3d7QQwNAvSZuCl76l2A7gGqV8wLnCKBzCGgAAACga+xU/ZRTp7xbW4O4qSo5laKHBoDGTNQU3GRucG0C4EWGBtAdBDQAAADQNXY2hplMok45mmV6aIwT0ABQJ3O6CG4KXvqXaxMAL/uswDkC6BwCGgAAAOgaV4YGAQ20yAloUHIKQJ0mKjlFDw0AQVwZGt3bDGDSIaABAACArin6ZGgQz0C9vMeKKTlFhgaAek1YcipBsB2Av6IVxuAcAXQOAQ0AAAB0jX3zlyaggRaZDI0sGRoA6mQyNJITNgXv1BYBiAvXeYFzBNAxBDQAAADQNZScQpjooQGgUZUMDf+fJ8S1CYA/+7zAOQLoHAIaAAAA6Br71s8pOdWdTUEMeY+V/nRKkpQloAGgTvlyQCOoKXiCpuAA6sAZAugcAhoAAADomqI175xOloamTBqhWf00BQfQoImagptSVFyaAHjZ54UC5wigYwhoAAAAoGvs4EU5nqEis0ZoUqXkFMcQgPpM2BS8fG1ishKAl90UnPEr0DkENAAAANA1rh4arIJFozwHi2ksny+QoQGgPhM3BTfXJi5OANzs0wKnCKBzCGgAAACga+wVr0lnMpo7QjQnXe7qmyNDA0CdTMudwAyN8sN5ZisBeLgCGnTRADqGgAYAAAC6puisjK1kaDBphGZlyjOPOYJiAOo0UcmpVLnmFMF2AF72WYHkUKBzCGgAAACga8z8UDKRcCaTuCFEvbzTi5lyDw0CGgDqNVHJKSfYznkFgIddio4MDaBzCGgAAACgawrWRFKSDA20KOOUnCIqBqA+lQwN/5+nUgQ0APizh6ycIoDOIaABAACArjEBjURCVoYGd4RoToaJRwANIkMDQLPsrAzW4wCdQ0ADAAAAXVO0Sk7RFByN8k4emAyNLBkaAOqUn7CHBr15APhzNQUnogF0DAENAAAAdE0loCGVF9dTcgpNMwENgmIA6mUyBYMCGmnrcTIIAdiKAV8DaC8CGgAAAOgau4cGJafQKlNyKpvnGAJQHxMADSo5lbQCGmRpALC5e2hwfgA6hYAGAAAAusbuoUFTcDSq6FkP2UeGBoAGmQp1dWVocH0CYLHHIQw9gM4hoAEAAICuMTd/yWQlQ4PJaDQrXQ5o5Ar00ABQH6fkVFBTcDI0AASghwbQHQQ0AAAA0DVFv5JT3BCiSabkFJOOAOrllJyaoCm4/VwAkDw9NDg9AB1DQAMAAABdY+aGErJKTrG4HnXyTh6YpuA5emgAqFOlKbj/z+3MDQIaAGx2Voa3DCaA9iGgAQAAgK6p9NCoZGhcct1j2jia7eZmIaZMQCNLVAxAneppCm5+RDk7ADZXU3BOD0DHENAAAABA1xScklPuyaSrbv1ztzYJMWZKTrGKGkC9zPkiqCm4VGkMzoQlABsZGkB3ENAAAABA15j7wFIPjcrjS9dt7s4GIdacklOFIs05AdRloqbgUiXgToYGAJs90mAtBdA5BDQAAADQNZWARu3VsYCfoB4aElkaAOozUVNwqRLQ+Luf3t+RbQIQD65xCMMOoGMIaAAAAKBr7B4arvrl3BSiCabklFTK0gCAieTLp4paGRqbs3lJ0vMrh+nRA8DhztBg3AF0CgENAAAAdI3TQyPpztDgphDNsDM0CGgAqEehjh4aNrK/ABjuHhoAOoWABgAAALqmYPfQsFbHEs9APbwLql0BDVZRA6hDPSWnbATcAfjh3AB0DgENAAAAdI1Z2ZZMJOqeTAIMb0AjTckpAA2qpym4jQwNAIYdxCCeAXQOAQ0AAAB0jZkXSiTck0lFEvdRh4TcE5DJRMIpG5PLcwwBmFglQ6O+5xdI/gJQZgcxikQ0gI4hoAEAAICucZqCy13ugwWwqId3QXVCUtoENJh1BFCHfKMZGkxaAigrBnwNoL0IaAAAAKBrClbJqRQjUzTIO/2YSFgBDTI0AEygWCzqhZXDkmgKDqBxdnyTHhpA53DbCAAAgK4p0hQcrfCsqE4ooXQ5MkYPDQATue/FNc7XNAUH0Ci7RCqnBqBzCGgAAACga4pWDw33ZBJ3hZhY1fRjQsqkKDkFoD4vrhp2vi7UGQQlQwOA4c7Q6N52AJMNAQ0AAAB0javkVIIeGmhMVQ+NhGgKDqBuM4f6nK/rve4Q0ADgh6bgQOcQ0AAAAEDXOAGNZP31ywHDO3dQagpOySkA9RnPVzK5DtllZl2voeQUAMMOYnBqADqHgAYAAAC6xu6hYZecYpUb6uE9SpKJhNLlklN5Sk4BmMB4rnSeOGavrevuoUGwFIBhnw6KlEsFOoaABgAAALrGrHRNeJuCd2uDEC+ewFciIaXLk5JZSk4BmMBYLi9J6k/Xnhr50FG7Ol/X22sDQO+jhwbQHQQ0AAAA0DUFJ0NDngyNLm0QYsV7mCSUcEpOUecewERMhkbfBAGNfz7pTc7XeS5QAMrsrAyyi4HOIaABAACArrGbgtvFPrglRD2qemgk5JScyuYpOQWgtrFyQKM/nar5vL50UrOn9UsiWAqgwh6HEM8AOoeABgAAALrGrGZLqBTU8D4O1OJXr9qUnGLSEcBE6s3QkKRU+dxCex4ARjHgawDtRUADAADEwjf/8JxO/97devaNjd3eFISoYDUFH+xjaIrG+GdolI4jemgAmEi9PTSkStCdklMAHNb5oMC5AegY7hoBAEDk5fIFff0Pz+rBl9fq+ode6/bmIETm3i+RkAYztUt+AF5VAQ0lnFXUZGgAmIjJ0OjP1J+hwbkFgOHK0ODUAHQMAQ0AABB5y9ePOl+nk4kaz0Tc2D00BqyARiLBfsbEqpqCJ6RMuYdGjrowACbg9NBINVByillLAGUFMjSAriCgAQCIpOGxnBY/u1IFVsFB0itrRpyvOSR6ixPQSMoV0CBuhXp4e60kEwmlkqVbnBwlpwBMoJEeGua6RIYGAIOm4EB3ENAAAETSMV+5TR/86f267ZkV3d4URMD6zVnna1Y/9Zai3UPDCmiwm9GMhCpBjoVPvdHdjQEQeeP5UkAj00iGBgENAGXuklOcG4BOIaABAIic4bGcVm0alyQ9vnR9l7cGUZCzJg9Ydd1bTIAqkUhosC9V9ThQi19T8DueWyVJ+v2Tr3dhiwDEiQlOpOpIC3SyvwhoAChzZWh0bzOASYeABgAgcrL5St3zGYOZLm4JoiJnHRN56uL3lIKToSEdMmdmdzcGsVP0TB/QewVAI3INBTRK/+YJuAMos8chLMYBOoeABgAgcqhNDC87K4OJhN5iNwXvT6f0tTMOcD0O1OJ3mGw9rb/zGwIglsy1pq6ARoKSUwA86KEBdAUBDQBA5NgT1gwMIUnZgp2hwUHRS4pOQKP0faVGebe2CHHidzb4yd8dIonG8gAmZhZM1BPQSJafwzgEgGGfDTg1AJ1DQAMAEDn2RCartCF5MjS4W+gpld1ZmihKllfAeksJAX78GnDuNHNIUunYssvVAYCXk6FRR7k6J0ODsSmAMvc4hHMD0CkENAAAkWNnaHDTCMndV4VmnL3FfMTNXJL5l92MevgdJlP6087Xw2P5zm0MgNhppIdGJUOjrZsEIEbs8SpjV6BzCGgAACLHrk3MwBCSOyuD2tW9xWRimLkkk6HBIjfUxec46Usn1Vfu3rtpPNfhDQIQJ/lGmoKXr0/08gJg2KcDv6xRAO1BQAMAEDn25DXlhSC5szLI0OgtZncmnJJT5nH2MyYWdJRM6U9JkobHCGgACNZQU/AkTcEBuNklUjk1AJ1DQAMAEDnupuCMDOEuOUWQq8eUP+OV8uXUKEf9gq4RpuzUJgIaAGqgKTiAVpChAXRHeuKnAADQWQVXhkYXNwSRQVPw3mX2pik1laTiFOqweTyve15Ypc1Z/x4ZU01AY5SABoBgJnierqvkVOlfSk4B8MOpAegcAhoAgMixbxS5aYQkZQtkaPSqQqXmlKRKYIPdjFouue4x/e7x5YE/NxkalJwCUIspY5lM1FNyqlTggnEIAMPOyuDMAHQOJacAAJFj3yiSugvJk6HBMdFTzN40U0lOT3D2M2qoFcyQrAwNAhoAajBB9XSqnoBG6V8CGgAM+2xAuVSgcwhoAAAix1qMz00jJNEovpeZe7+EU3Iq4XocaMZUMjQA1KGxDA16PAFwc/fQ6N52AJMNAQ0AQOTYK/CZu4ZEU/BeVumhUf6i/C8TRmjFlP6UJGl43L/HBoDJ6eL/elSHXvEHPfzKWkmVMUU6OfHUiAl6MA4BYBRc962cG4BOIaABAIgc+0aRgSEkd8mpHBMJPcWUljLxDHpoIAxTKDkFwMeNDy/Vyo1j+t7tz0uqjDnriGc4GRoENAAYxYCvAbQXAQ0AQOS4Vrpw0wi5m4JzTPSW6pJT5nH2M5pHySkAXvZ15ZFX1kmqZAXXk6GRSlByCoCbu+QU5wagUwhoAAAix9UvgYEhRIZGLyvKnaGRED000DoyNAB42ePL9ZvHXY+l6pgZSToZGuFvG4C4qpxXGLsCnUNAAwAQOfbKNwaGkKRcgR4avSowQ4PEfbRgChkaADzsBRHZfFHFYrFScqqepuBkaADwsE8HnBuAziGgAQCIHGvumslrSPJk7XBM9JSCE9Aw/9JDA62bapqCj9EUHECJd7Jx41iusabg9NAA4OEqOdW9zQAmHQIaACLvmvtf0T9fv4Sbh0nELjPFShdI7sltzgW9parkVPkLPvtoxZQ+Sk4BcPOWrFw7PN5gU/DSv4xDABjFGiWn8oUifTWANiGgASDyPnHj47r2wVd1y5Ovd3tT0CF202cmNSG5m+zRV6W3mN2ZdEpOOTWngKbRFByAVz7vvrCsG8k2lKFhSk4R0ABgeG9LzD1LLl/Q3/zoXh1/5R81liNbFAgbAQ0AsbFuc7bbm4AOobwQvMjQ6F3mxs/EMZJkaCAE9NAA4OVdEDEynnceq6cpeKoc9GBhBQDDe1tivr/vxTW678U1enHVsJavG+38hgE9LlYBjdWrV+vHP/6x3vOe92iPPfbQ4OCgZsyYoaOOOko/+clPVLCLrlvuvvtuzZ8/X7NmzdLg4KD2339/feMb31A+Hxwlvemmm3TsscdqxowZmjp1qg4//HBdffXVNbfv6quv1mGHHaapU6dqxowZOvbYY3XTTTe19P8MTHZFmkNPSu6SU13cEESGHcTIBVzvEU+VpuDuf/nsoxUDmVIPjbEc5wsAJd4FEcNWD41UPRka5acUuEABKCt6UorN/MXG0cpiTIKgQPhiFdC47rrrdO655+q+++7T4Ycfrv/3//6fTjvtND3xxBM655xzdMYZZ1TVp/vNb36jo48+WosXL9Z73vMeXXDBBRofH9dFF12kM8880/f3fPvb39Ypp5yiJ554Qh/4wAd07rnnatmyZTrrrLN0ySWX+L7mkksu0VlnnaXly5fr3HPP1Qc+8AE9/vjjOuWUU/Ttb3879L8FMFnYExGs1p08XCWnuGmE3J//XJ5jopdU9mYpkmGagntvEIFGZFKl42icgAaAsqqAxrgV0DDR9BpoCt77Xli5SVf87imt2MiKetQpIEOD7HKgvdLd3oBG7LXXXvrtb3+rd73rXUpaKyi+9KUv6bDDDtMNN9ygG2+8UaeddpokacOGDTr33HOVSqV0++2365BDDpEkfeELX9Dxxx+v66+/Xtdcc40rsPHSSy/pkksu0axZs/Tggw9qzpw5kqTPfOYzOvTQQ3XllVfqtNNO0xFHHOG85u6779aVV16p3XffXQ888IBmzpwpSbr00kt18MEH65JLLtHJJ5/svBeA+m0er2RSMQyYPGgKDi/7MMgS0OgplR4apX/NlBKJOGhFX7p0rzCe50ACUOKdVBwZz1cCGqmJAxpODw3Gpj3rvd+7W+tGsnpuxSb9/OzDur05iAHv2cAsyLHvYQloAOGLVYbG8ccfr1NOOcUVzJCkbbfdVuedd54k6fbbb3cev/7667Vy5UqdeeaZTjBDkgYGBvTFL35RkvS9733P9V4//elPNTY2pgsuuMAVgJg5c6b+5V/+RZL0/e9/3/Ua8/1ll13mBDMkac6cOfroRz+qsbEx/exnP2vy/xqY3IbHK7WvR8dppjVZuHpoMP6DPBkazHT3lEJVD42JJ5WAidgBDW8GN4DJqWbJqTquPaly5J3s4d61bqRUJujhl9d2eUsQF94xRpEMDaAjYhXQqCWTyUiS0ulK0smtt94qSTrppJOqnn/00UdraGhId999t8bGxup6zTvf+U7Xc1p5DYD62BkadnADva1AhsakdMXvntKHfv6A70SBfRxkKSHTU8yeTZRzM0xAg88+WtGfKvXQKBalHBMJAFR9Ltg0lnMey9SRoZEkQ2PSMEFxTG4rNowqN0GmZ1WGRtH8S4YG0E6xKjkVJJfL6Re/+IUkd1DhmWeekVQqVeWVTqe166676sknn9QLL7ygN7/5zRO+ZrvtttOUKVP02muvaWRkRENDQxoeHtbSpUs1depUbbfddlWv2XPPPSVJzz77bM3/h7GxMVdgZcOGDZKkbDarbDYb9DLEnNm37ONg60cqn4uNm8f5W00S49lK8CqXy0/a/T7ZzhE/uuNFSdK9z6/UoXNmun5m3whkC8VJ8zeZDPL5UuC6WCwom80qny99/gvs57pMtvPERJy/Q7FyHRnePKYp/T1x2wM0jHNExdj4uOv71VafhET5GlRTsTSxmc3V8VzEWiaVnFT7mPNEtUdeWaczfnS/jtpjS/3s7w4OfF7eE/AYGx9XOpFW1rqfHWNeDz2gkfNEJ473nhjZf+ITn9ATTzyh+fPn68QTT3QeX79+vSRpxowZvq8zj69bt66h1wwPD2v9+vUaGhpq6nf4+fKXv6zPfe5zVY/fcsstGhoaqvlaxN/ChQu7vQmR9dz6hKTSKsun//yiFix4vrsbhI54dEVlvy9//XUtWLCguxvUZZPnHFEaltx9z71a+ZR7JdPq1SmZ7grZXH7SHxO95LlXkpKSeuXll7VgwYt6bViS0to8Osp+bsDkOU8Y/rcx5pgplSssPWfB72/RlEyHNguIqMl3jqi2tHx9MZ5+4WWZohW3/eEWTbQo/8+vlcanL7/yihYseKlNW4luWD0qXfNCaTwiSdmxzZNyDMJ5ouLqZ0vHw51/Xl3zWFi2rHLcSNL//d8tGkhLj6ys3M/eedfdWj69vdsLdEo954mRkZG2b0fsAxrf+ta3dOWVV+pNb3qTfvnLX3Z7c5r2yU9+UhdffLHz/YYNG7TTTjvpHe94h6ZP58zXq7LZrBYuXKgTTjjBKZsGt7ueXy099ZAkacttdtD8+ft1eYvQCRsffE16/ilJ0tazt9H8+W/p8hZ1x2Q6RxSLRV14T2lw9Na3Hq7Dd53l+vnVS++XNq4rPVcJnXTSO5VM0muhFzy98Dlp6YuaM2eO5s9/k55+faO+suQe9fX3a/78Y7u9eZE3mc4TtgvvucX38fnz5ztfX3LfLSoUpWOOf5tmT+vv1KYBkTJZzxF+nli6QVpyr/P9zK23lVaukCSd8q53KjFBH41XF7+o3736nLbfYUfNn79vW7cVnfXBnz2oZ9evcb6fMW2q5s8/sotb1FmcJ6r938bHpNVvSHKPLWo9T5JOeMcJmjaQ0eaHl0p/flKSdNjhb626twHippHzhKk61E6xDmh8+9vf1oUXXqh99tlHixYt0qxZ7hOEyY4wWRRe5vEtttjC9ZpVq1Zp/fr12nLLLQNfY967md/hp7+/X/391TdamUyGC8okwH6uIVFZ7bBxLMffabKw9ntRiUm/3yfDOcKuT9vn8/9bVXk2lVImnWr/hqHtEsnS5z2VSpaP9dLwtFhUzx/3YZoM54l62H+DTCqpsVxB31v8or54KgsiMLlxjpASKfe4YXO2NPboSyfV19c34ev7Mub1jE17zYqNY67vU8nJuY85T1QUVQlw1vqbJBLu1K5UqvQ3TCYr55tEMsXfFT2jnvNEJ4732HY6+sY3vqGPfexj2nfffXXbbbdp2223rXrO3nvvLcm/f0Uul9OLL76odDqt3Xbbra7XLF++XMPDw9pxxx2dMlBTpkzRDjvsoE2bNmn58uVVr3nuueck+ffkADAxu27+bc+s1Gtr25+6hu6jKfjkYzfq9Eu88PbSy+Y5LnpFUFNw9jBaNZYrTVb+x72vqEBDTmDSyxfcte6Hx0o17vtT9U2LpMoBeG9zccRf0pOdQxNn1HsMFD0jVvN9gabgQFvFMqDxb//2b7rooot04IEH6rbbbtPs2bN9n3f88cdLkn7/+99X/Wzx4sUaGRnR3LlzXZkRtV5z8803u57TymsA1Md7w/DLe1/u0pagk8ZzlRtOBoCTg/1Z9yv5UPQEtnKeBnyIL7NrTSDL7H2CmQjTxtHcxE8C0NO8Q4fhsbykUoZGPVLlC1Se61PP8QY02MWodxzqfZq5pbFvYTlnAOGLXUDjC1/4gj7xiU/o4IMP1qJFi7TVVlsFPvf000/XVlttpWuuuUYPPvig8/jo6Kg+9alPSZLOP/9812vOPvts9ff369vf/rZeeukl5/G1a9fqS1/6kiTpvPPOc73GfH/FFVdo7dq1zuMvvfSSvvOd76i/v19nn312c//DwCTnncye2hfrSnmo05gV0GD8NznYAQr/DA33gUCGRu8wwSozl2ACWnz2Eab1m7Pd3gQAXZbzZmiMlwKddQc0ygMUMr56j7cvGxPQqDtDo+j93idDg/sWIHSxmhm8+uqr9ZnPfEapVErz5s3Tt771rarnzJkzR2eddZYkafr06frRj36k008/Xccee6zOPPNMzZo1S7/97W/1zDPP6PTTT9f73vc+1+t33XVXfeUrX9HHP/5xHXLIIXrf+96nvr4+XX/99Xrttdf0j//4jzriiCNcr5k7d64uvvhife1rX9P++++v008/XePj47r22mu1Zs0aXXXVVZozZ067/ixAT/NmaEwdiNVpC00aI0Nj0pkoQ8MzB1E1KYH4ckpOJUzJqdL3ZGggTAQ0AHiHDiPjjWVomElvxqa9x7uYJscE9KRX7yHgLTllTg92djkBMiB8sZoZfPHFFyVJ+Xxe3/jGN3yfc8wxxzgBDUk69dRT9cc//lFXXHGFbrjhBo2OjmqPPfbQ1772NX384x/3nTT52Mc+pjlz5uirX/2qfvGLX6hQKGifffbRF7/4Rf3d3/2d7++98sortd9+++k73/mOfvjDHyqZTOqggw7SpZdeqpNPPrnl/3dgsvLWuuUGYnIYy+adr5nUnBzsG0e/fV6VoZHjuOgVZGigEwhoAPAuhthU7qHRV28PjfL1ibFp7/GWnLIXV2FyqjcTqypDw+mhUXmMOQwgfLEKaFx++eW6/PLLG37dkUceqQULFjT0mlNOOUWnnHJKQ68566yzXMEUAK3zro4xtW7R28jQmHyyVskpvxuIqoAGGRo9w+zuSlPw0vfevilAKzaMEtAAJjvvmNL0bCNDA96SU2M57jknu/qbgnu+d3po0BQcaKfY9dAAMLl4JzFHsjT1nAxGrQyNLAPAScEe6PsN+r0PUQqgd5jTvFkcmXRWwHZpg9CTyNAAEDSpWH9T8HJAg+tTz0l5CneMk6Ex6dVbJsq7AKcS0LDei0EtEDoCGgAizdtDY/M4q2UmAztDw24Wjd5ll4Hwu4Gobgre/uOiWCzqugdf1ZLX1rX9d01mJjXfWwSUkh5oVcpacUtAA0DQpGI/TcEnPb+SU2SKTm7Nlpwy49ciGRpAWxHQABBp3ov/CAGNScHO0GAl/uSQtfaz3/2j9zFvsLMd7vzzKl16/RK9+9t3tf13TWZm35rJBFP2gU8+WjV/v+2crwloAAhacd2XTtX1ekpO9S6f1qqusSkmt1qf+aqSU+V/CzQFB9qKgAaASPNOZm8uT3Tf9vQKPbF0fTc2CR1gZ2jQK2FymLjklPuxTmTuPPP6xrb/Dvg0Bfc8DjTrivfsq6G+0kQlAQ0AgSWnGmwKzuRk73ngpbVVj9FHY3Kzs3ZqZYZ7x6sms4OSU0B7EdAAEGnei38uX9Azr2/U2T9/QCdfdWeXtgrtRobG5GPfKNRTcor7gt5hdqW5baSHBsIyfSCjS0/cWxIBDQCVsYS3xFSjJaeYnOwty9Zt9n18jD4ak5qdtVMzoBHwOE3BJ4disajLf/ukfrT4hW5vyqST7vYGAEAt3rIy2XxRf1q+oUtbg06hh8bkY3/W/VbmexN1OnFjkPCrP4DQObvblJxKmMe5+UPrpg9kJEkbR3Nd3hIA3WbGEn3ppGusWXdTcAIaPWndiH/Am8bgk5udoVFrgV1wD43KY5wzeteflm/Uz+9+SZJ0zrxduX/sIDI0AERavnznYVZOZfMF1+p9mvL1JnsVTJZ9PCnYNwp+MSzv5Lb9/epNY/rn65fooZerywUg+kxTcKd/c/lfPvoIw0CmVHLKHjsAmJzyToaGu2dG3SWnyk8zE5abxnL65I1LdPefV4W3keg4bxawQYbG5Fa0ci8aydAwh1NhgnK6iC/7PnTcOjZGs5wzOomABoBIM9eHwXIN7PGcO6CxmQmKnmQP+sjQmBxyVgqGfw8N9/d2Wapv3/ZnXfvgqzrte3e3bfvQPmbfJmQyNCorm8jSQKsGMqXbnTHGC8CkVwwoOVVvhoa5PplxytcXPqtf3/+q/ubH94W4lei0oMlqMjQmN/t+ZLyRHhpFemj0sst/+6SO/NdbtW5kXJKUTlbuWzaOUt60kwhoAIg0k6ExWF5hmSsUtdmKfBPQ6E3ugAYDwMnA3s9+K+XMY0mf1fvUxo83s7tNHMMd0OjCBqGnVDI0mJgCJjszdjCBTqPZklN/XrEpvI1D13hLHBtk9k1u+TozLLxjVfOtq4cGA9qe8fO7X9Ky9aP670eWSnJncm2gvGlHEdAAEGlmgGkmJLL5givyvXmcgWYvsgeNWW/zBPQk+2bSP6BR+jedLA1d7DTuXbec4nwd5jmBCqid4g5W2X/3oDIQQL3MxOVojvECMNmZ8eWUfncr0boDGuWAu7k21SpDg/jIBmRirC2vwMbksnE0q1fXjChfZ4ZF0VN0quhkaFByqpeZ68aYNb4kQ6OzaAoOINLynoDGeK7gunkgQ6M32atYyNCYHCZaBWVuCtKphMbz7psEeyIiWyhoUKmq1yO6TMwykfApORXS73h59bB+++gyfWjerhrqY/jbi75y+v6au8dWVY+bWvmstAVgJhpN5rfhLUEVJOnJ0CCg0RuC+vWt2kRAYzI6/z8e1p2evji1FthUZWiYHhoENHqOvXBuSvl+ws7Q2EiGRkdxRwcg0syq7cFMpSm4vZKbDI3eZK++zxWKKhaLzmQnepNdf7ZWyam0ZzJBck+AF7hhiB3vyraENa8URoZGsVjUMV+5XVKpH9M583Zr+T0RPe/YZ1vNGMpUPU7JKQCGGTsM9XmagjdYcsoMNcZZdNMTgvr1rd401uEtQRR4gxlScFkyqTqgUSi6/5UIaPSKNVbWViZlerRVzh+bxghodBIlpwBEmjdDI1coulbsjxDQ6EneQWOtQSR6g72L/aqMmUCFGTwGTXSHeawQQ+sMbw+NhM/PWrHSmpB4fOn61t8Q0RTweXVKTpGhAUx6ZojgzdTrSzXXFDyoVBHiJSjTZhUBDZQ1VHJKlJzqVWuHKwGN8XxpXGmXnBqjvGlHEdAAEGm58sym00MjV3Aek5ig6FXeVfbrRqhH2evsmwG/xnnmIe/qyNLX3DDEmdljSb+SUyHszhdWDjtfkwreu4ICkGb8MJYruDLBAEw+ZryQSSWUSVVOGvWWnPI2BafkVG/IBmTasNoaRiNNwc1Uhf04TcF7w/rNlTkJk5lhl5waJ8jdUQQ0AERa3ik5Ve6hkS+6Bp3j3Ej0JO+g79Ar/qA3Nox2aWvQCe4MjeCSUyZDw76xsJ9ONk/8mH1rppbsiekwSk69uKoS0GC1Ze8KSqgasGrlj3GjCUxq5pqSTCRcwfN6S055y14ySdkbggJTVAKYfIKOhdoZGt7vyxkaE/QHRPy8/8f3OV+beSgCGt1DQANApJnyUk6GRr7gqnPKRaM3+Y0lf33/K53fEHSMvXLab4LA3AekUyZDw7/nBj00YshTcirspuAvrNzkfB20ChPx4pdpEdRnacCaqKTvFjC5mSFCMplwTULN3X2rul7vlJzyzSTl+hJXuYCxAQGNyWdzQPWH2hkanpJT9NDoSd57TDMPNZa1S04xN9VJBDQARJoZVEwfLNW6zeULyloXE1K9e1Pep4nC6k3jPs9Er7DvBfzG/CZoUSk5VXmSfSNBhkb8mD2WKK+xt+elw7gBtEtOBTX+RLz4zRsGZWikU0nnmMr6NegBMGmYa0rSc8LYadZQXa93xiAFd2ahRNZ4nAVdGwiCTz6jAfu8kZJTlYAGGRq9xC43JVWCF64MDa4DHUVAA0Ak/OGpN/TJGx+v6olhvp8+kJFUWl1Lhkbv8xv05ZiI6mkTZVmYH2eS5abg1uHgXgEV3nFCT/DOMAEpM+mcsiIaYWTcPLtio/M1QfDe4HdUBPXQkCrnjaBVuAAmh6JVcsrwBjdqMb3D/TI0WJkbX0HN3UfG6aEx2QRl5TRScsrc0xQJaPSU1cPuxZVmHirL3FTXENAAEAnn/OJB/fr+V/TV/3vG9bgZVEwfLAU0xvMF14QEk1O9yW/MZxpvoTdNlJbtzdDIB5Sc4pQQP2Z3m5JBKWt2qdWMm+GxnF5ds9n5npJTvcG35FSNEKQpVUdAA5jc7JJTc3ffUpL0VwfvVPfrnZJTPtcm76IsxEfQWMNvcvu1tSO6/ZkVZHz2qMCSUzVKylWVnCr/67q3oSRd7K3xBDRMENtefEVgu7MIaACIlJufeN31vVNyaiBd9ZhUahKO3uOXjTGa40axlxUDAhTexzLlicliQEYHmTzxUyk5Vf43kXBWzLbaFNxbqo4geG9oNEPDNPK1y4q8umZEn//fp7R03eaglwHoMXbJqW/99Vv0vfcfpE+fsk/dr/eWnLLLixAwj6+gMjF+k9vv/e7dOutnD9Dbr0c11UPD870Zu7oWXHF+iL01w2Ou7002hh0QJUOjswhoAIgU7+qmzZ4MDckT0OCi0ZP85qSpY9vb3D00gpuCOxkagSWnwrthCGoyjHBVSoBUHkubEkEt7s/xvPu8QY+V3tBonCuTqi45de4vHtRP73pRZ/30/jA3DT3uZ3e9qGO+cpteWjU88ZMROeZ6k0oktNXUfr1zv+00tT89wasqvE3B7fsQVuzHlzd7zyye8cvQWLGxNKn56Kvr279h6Lig+4jmemhYrydDI/bWDLt7aJh7DHvfMjfVWQQ0AESK91Jvghcz7ICGNbhktW1v8hv0jVJyqqfVKhtlZ2OkyxOTwSWnuGGIG7P77ABSOZ7Rcg8Nb+p3UJ1sxEvRJ0ejZoZGeXLKHjM8/Xqpt8pzKzaFu3HoWcViUZ/736f08uoR/foBVmfHkRk7NLtgoZKhUfrevsaQoRFf3mDUYCYlqXoxlT0eJXO8NwWNOxvJ0DDHCT00eos3QyObK2fikKHRNfUvRwCADigWixrPFfT3P39A+2w/3RlI2qunyNDobcVi0XfQF5QCjN5g73FvhoZ9PJjSMe4SVf7PRTyYyelEVYZGoeX96b1GZClJ1hP8FjrW7KHhk/GTSiY4X6Ah60YqqzO3nzHYxS1Bs5weGi0GNHwzNLi+xJY3e3NKf1obRnPanM2rWCw6ATD7mjHGfUlPCsqkqDle8LxmxcYxjeXyLLjqMaYpeDJRupaYewpXySkW23YUGRoAIueuP6/SnX9epR8ufkHDYzlJ0lBfyjf9lwyN3mOP9z5y9G7O1zRb7G32oN+7Osr+1pSOsW8M7OAGJYXix8nQsB4z5adaLjlVnmwyQXFW0PYG34BGjfnJjE+Ght2b6+XVlA/CxOzjpz/NbXQcmbFGqsndZzcFLxaLrgwNb9kixId3snmoL+U8bk9Q2mMSFlr1pqDKULVKRnmHqv/wq4c1/5t3UHKqx5i+fLOnDUiqnDfI0OgeRmIAIqUoad3mShPX4XLwYqgv7UxkjloBDW85EcSffVPxD8ftoR/87cGS/Pf1+s1Z12Q24svejd5JbDvYYSYm7afUCoaEt30cZ+3iV3LKlBZrtSm4mYiwJyfYl/HnW3KqxvPN8WRPSKespi33v7gmtG1D73Jfd7q3HWieGSM0m6GRts4b2bw7o5hFVvHlDWgcu/ds5+ugUseUwu1NQePO2iWnqn/2/MphmoL3mBdWlUqU7rb1FEmVILYdrGJuqrMIaACIlGJRWrp2c9XjUwcqAY2RLBkavcwe/KWTCe2wRamsg7eO7dOvb9ABn7tF//hfj3V0+9Ae7hJSRc/PKl9X6lf7l5wKM0PDnu9g8qp9zP62/95msqnVFa/eDA2JLI1e4J+hETxB6dcUfJ/tZzhfTxvIVL0G8LInLVhtG09OyalkcwEN+3XeFfpkiMaX+Ty/a7/t9Kl3vVmXnri3b2UAe1KbzPHeFPQxbqQpuN/jXDPiLV8o6tk3SgGNfXcojR/NPJR9bFByqrOaCmikUqmW//v85z8f9v8LgB5QLBa1fnPW9VgiIQ1lKiWn8qT19TRvjfOBcmM+b/O9Hy5+QZJ04yNLO7dxaJtaQQn7JsBv5b59TmhXjdpWMwUQzPxl7R4IZhVsyxka5WvEUH/KecwbCC8Wi1UNQRFtfkdFrelJM36wa9zPGqoEMcZo7oo6uALpTF7HUt7J0Gju9XZml3dCm0VW8WU+z7ttPUXnzNtNA5mU0xjcXeq48rkfGee60YuCxp21ApZBQ1V6aPSOkfGcc0+x48zSYkuzT+mt0z1NNQUvFovaZZddNGfOnKZeu3jx4mZ+LYBJoKjqFN6p/WklkwlnhaWNm4feYw8KkomEBjKl/e7N0JjOitqeUqwx6Le/7zM9NKzn13pteNvXlreF7JJTlcfMpFEzK17zhaL++OwKHTpnlpP6PaWvMuT1Zn189rdP6toHXtX/fuwo7bXNtIZ/HzrPr2xYrQoyJkBmT0bZhwErbVEP12pbJqdiyZw7mm4Kbr1uzHO/Qg+N+DJjSjtgNdRXagy+cuOYXlw1rKP32sr1uX9x1bCGx3Ka0t/UlBoiKqgsaa0gdtBPClwzeoaZn0okSucGScqW9ylNwbun6bPv2Wefrc985jNNvTaZpNIVgArXBb5YvVJyWnmg6B/QYHDQawoBGRpjuYIKhaKT7j/Naug6Mp5zBheIJ1eGRj44oGFWWtv3G20rOeXaPs417VO9YtZMKjRzA3j7Myv0oasf1LSBtD79rn0kyTXhYN9srB0e1y/ueVmSdM39r+ozp+zT8O9D5/lmaNSYoEz7lJyyrzXUQkc9XP2auCbEklNyqsmAhj2N4Z24sjPAEC9mrGEHrEzvrb/72f0azxV09pFz9PdH7up63ad/84S+dsaBHdtOtF/Qx7hWyajAIAgZGj3DLHzpTyede9FsedEUTcG7h8gCgK7zZll4JxZMbWtz8bDReKn35FwZGnJSviX3/rYnr1ZvqjSSRzzZg37vpEDeFeRKVj3WiRsG5q7ax+wyu+RUKwGNJ5dtkCRtHM1p9XDp3NCXSvqWHVpnlTh8Zc1ww78L3dHo59Fv39tfk6GBeuQJaMRePsQMDe/EFYus4sspRWatrBgsBzTMfr7m/lerxiQ3PkzZ217TTFPwIJ3IIEf73f3nVZr377dJkgYyKece5Z4XVuvnd73oyvgloNFZTS1nXblypYaGhpr+pa2+HkBvsQMaRVVnaEwdqJWhwUWj1xSstO9EopKhIZUmncwNxshYznn8G394Tm9/82y9c7/tOruxaAtvloU5JtLJhMxpwB3QqDy3XU33ioEJ5WiVc8MXUobGFlZvhI2jpYBFXzqpdDKpbD6vbM6qdZvzr42NiGtwV6XLgVBXySlr+ECGBurhnpzq4oagaZWSU8293i5J5L0HoeRUfJld6S45lap6nnfBTZ/PvSniLcym4K4efwTBY+tvfnyf8/VAOuWMKSXp8v99SvP329b5npJTndXUGXjLLbfU4OBg07+01dcD6C32DUCxWKzKuphWI6BBFLz3eNO+U8mEc8Ow2VpFO2z11Ljh4dd0/q8e7uBWImyuLAvPpEDOWjlnVlXaE0vuSaYQzwnWSkwWVrVPpSl4hfn8NxPQsFO/TdPOPjtF3DpG7BrolAuJj0YDjE6GhnWjaZ9zRmkKjjrYpyMyNOLJbyV+IxKJhDM0oORU73AWUyXsDI3qtb/eBTcn7btt1XMQb81kaAQ2EnctouCa0QsGMsmqqiH2vn159Yi+tei5Tm/WpBVKSPlf/uVfdMghh2jNmjWux7PZrF577bUwfgWAHmZPLuWLxarSD1OdHhrVNx9kaPQeJ6Bh3Wz2lxuD28fGsJWhYXizexAftfpgmAnqtBXQCCr90a4VkkH1cdE6v5rmToZGE393+xDYVD5PlAIaZpW+FdCwguJkaMRHo4dFJUPDDmDZPTS4dmBirh4aTE7FUqs9NKTKAqvN4+7zBteQ+Mr53HsMZdwZGomET483xoY9p5mARtBP7KDnQy+v1WtrR1rZNESAXXLK8E5HfW3hs/rzio0d3KrJK5SAxqJFi5TP5zVr1iznsUceeUQ77LCDdtllF+222266/fbbw/hVAHqQPTjM5v0yNEwPDZ8MDQIaPccvoGH6aNhlQUbGqwMa60ayVY8hHuz7B2+WRc7K2jHHhavMlPX0dq2aZe6qfUywKOFbcqrxc7w90WgCn32ppNLOKn3/klOsnouPRveU2fdZmoKjBZQPib9KWdPm36M/XXrxiCegkeOeJLYKfvceviWn3J/7LJUCek7QUNC7721Bi568cxrvt0oXIZ76M6mqOalQqwOgIaEENF566SUdcsghrscuu+wyrVq1SkceeaTWrVunk08+Wc8//3wYvw5Aj7FXTOYLxaoVT5ScmlxMkMrOyDF9NFwlp8aqV9SuGaY5eFy5m4J7VsC5Sk6Vn289p1jjta2w19+QodF+dkAj6QQ0Gn8f+xgwGRr9QRkadskpJqNio9HPoylbGNQUfIwMDdTBPuzI0Igns99aydAwY1JvpnCWYyK2ajUFN4rF6nEClQJ6T9D4otY5P+gn3uPj5dVkaMTdQDqptDdDw3MAnPQX22qP2dM6uFWTVygBjQ0bNmibbbZxvl+3bp0WLlyoM844Q4sXL9b999+vYrGof//3fw/j1wHoMd4U7Y2j7huEaeWSU37ZGGRo9B6z/00zeKmSoWFPOvllaKwdIaARV8UaZaPspuBJJ0PDv+RUu1bZE89oH/O3tSeY0hNkaNz2zAqd+cN79IrPzaF9PNzx3CpJ3pJTlZ/b1xDKhcRHOBkalZ8zEYl6uK41XBRiyXzUEy0ENCoZGu5xKEHx+DKfZ7uHhrfk1OZsXn/1g3tcjzFu6D3mPL/rVlN0+K6ztO30AUkTnPMDfsTCy94zkEk5Y0rDe6/il92F9ggloLHDDjto1apVzve33HKLCoWCPvzhD0uS9thjD7373e/WwoULw/h1AHqMt4nexlF32SAzse3Xv4+VMb3HrHib2p9xHhvIVDcF3+TTQ2PTaPVjiAf7PsGbZWECHHZTcHeZqcrX7Qpo0AC2ffz+timf/Ww7+2cP6N4X1uiT/72k6md+x0C/1RQ85+qhQcmpOGr085g2GRp5/wlpyoagHkGlDhEflYnr5t/DydCoKjnFNSSu7F5txpDPpKT30sPCut5jpiV2mjWkaz9yhE78i9LC7aZ6aPiMLd7YMNrqJqKL+tJJpy+b4T02/Pq+oj1CCWjsv//++r//+z/l86WL+q9+9SsNDQ3p6KOPdp6z2267admyZWH8OgA9JptzXwQ2Z70lp4J7aLy6ZrNWbhxr38ah4zY5AY3KjcSAbw+N6hIhTDrHl3uiqOD5mdVDI9G5DA37nZjrbh+z+xI+TcG9AW8vv/O/3zFg34CMB5ScylIDNz4a/DxmfI4nO3A60XEGSO5zC2UI48nst6TfKqk6ORkaVSWnOI/EVc635FQ66OkOFtb1HnNPYQ6FSgnUiXtoeBO//AJeH/v1IyFsJbqlL52sytDwnvoTIqDRKaEENC666CK9/PLLetvb3qZzzz1XN910k+bPn690unIR2LRpkwYGBsL4dQB6jPcGwJu+O7VccursI+c4j+2wxaDz9ZW3PNO+jUPHVQIalWuIfw+N6myMMPsnoLNq9dBwmoLbPTSK9sRS9XNDYf+OhovcoF7mb2sP/1M+pcUMO8PCrw6632v6UnaGht0U3O6hwT6Oi8ZLTlWXG7PrYY+z71GHYgfKG6K9zC1HKz00TEDDm6FBX5X48msW75eh4UVAo/d4y6Cm6wloyP0awy/78/4X17S+keiaTDJRlaHhXRSzhhLYHRNKQGPevHn64he/qLvuuks/+clPNH36dH32s591PefBBx/UdtttF8avA9BjJppEml4uOXXc3rP1u48fpZs+dpS+/4GDnZ+v2sRFo5eYslFTXAGN0uVqtBzQKBaLVTeSEhMMcWbvOe9+zNsBDZ8bi05kaLAYt338emikajQF/9V9r1Q9z+YX1OpLp/ybglNyKpYa/TymfcqN2ccJJadQD1cmIReFWMo7q69bbwru7aHB3HZ8OU3BE3aGRh0BjVxRTy5br4v/61G9tpaGz72gmQyNSkDMfV7xy9DwNpRGvGRSSdd952AmVdUUfPUmqod0SigBDUn6l3/5Fy1dulS33367/vznP2ufffZxfvbCCy/o3nvv1WGHHRbWrwPQQyZa3WJ6aCQSCf3F9jO07w4zNGtqn/Pz6QMTpwQjPkyGxjSfpuAmoDGWK/gOLJmQjK+6m4I7Jaeqfy6FHNAo+n+NcFVKTlUeS9VoCn7TkmVVz7P5rZK1U8TtBtCbx+2m4MxGxUWjGVOZ8mo6O4hhHyfse9TDVeqQ8UYsFT2Tlc1wMjTG3Atr/K5XiAd74YxRK0PDTEpn8wW961t36saHl+qzv3myvRuJjvAGPU2p21oZ4Oaj7w1WjPkslpg5pa/qMcRHOpV0VYwYyCSrzv3vPWjHTm/WpBXqLODs2bM1e/bsqsc3bNigs846S6eeemqYvw5Aj5hoIsH00LDZA4apBDR6ylPLNkiSdpw55Dw24A1oZP2PGQIa8eUuOeXev3ZTcKcUUcEOYljPDfEYCOrTgXDVKjnld3noS1fW4/itsg3qoeFkaFg3mMPWCltK1sVHsxka9njD1RScgAbqUHBlBnZxQ9A0ZyV+CxENpym4p/QpWTvxZY6LiZqCG9MG0lo7knWtwH9p9XD7NhAdY87t3pJTte4D/I4fyX9ssXZ4XMVi0dU3DvHRl0po3+1nKJVMKF8olv8r/ey77z9IWwxmdPhuW3Z3IyeRpjM0LrzwQi1evLiuhmgHHnigfvKTn+iUU05p9tcB6GETlZyyeykYdjmioTqatiE+nli2XpJ0yC4znce8TcH9UnglJp3jzN513glpuym4Gf+7e2jYwY3wJibtbeLYah/fDI1EcIZGJlV7+Oo3qVTqoWFW6Rf0p+UbNJrNa+OoFdBgUjs2Gv00+pUby7syNPh8Y2KUnIo/72RlMyo9NCg51Sv8SpENZoLvL1PlrL9xa4HE1tP627R16CQni6s81DTBz5oZGiaT3DM+HffJ0MgViq4V/oiXTCqpvnRSt/7jMZJK40ez2GHGYEZz99jKN3sc7dF0QOM73/mOjjvuOG2zzTY655xz9Lvf/U7j49SxB9C4iTM0qgeUU/vTOnROacKbicbesrncG2PGUCUzx9sUPOiYYYV1fNm7zrsf7VIAzkR3QPZEmBMK9NDoDPOntVerpVLBN5B2Mz6/gLdfKZhiseg0Bb/hoaV65zfv0DlXP+haYcv5Iz7qWVBlM6sm7QUUeUpOoUGUnIo/b338Zpgswc2ebGFKTsVXocGSU2be2l5gxe7vDeZYSHgzNJrooWG/xD6esjmuH3HhHW+aoJW5DuQKBaeyQCuBcjSn6YDGsmXL9L3vfU8HH3yw/uM//kPvfve7tdVWW+nMM8/Utddeq40bN4a5nQB6WDZggHD6wTvq48fv4Uxme721nM7nt/oB8WXqjQ6kK/vd20PDTD71pZI6ef/tnOcxwRBfdk38Wk3Bzc2CO3vCfm6YGRp2FkhobwsPcyNo3wZkfCagjY2jWedrv/O/38rpNzaMOjch97+0RpJ0559XOT17gn4XoqnRz6OToVEgoIHmtatfEzonaOKxEeZaMpb19tBofrvQXU6GRp0BDTNxOWL1URnLseq+F3izuOppCh5Ucsr49t+8RQ9/+gTn+6BKA4ge737vS5lAl8n8Lfr24EFnNB3QmD17tj784Q/r5ptv1sqVK/XLX/5SJ554ohYsWKC//uu/1uzZs3XyySfrJz/5iVauXBnmNgPoMUFlPj57yj66+B17B77OpHwzgOwtZn/2ZyqXqIGMWQ1X+pmZxJzSn9K3/+Ygvasc1GCCIb7sCUrv5KI9UEwkqm8s3P032tQUvOEiN6hXpeRU5UYg7UxAV18f7BvBUZ/zv9954MR9t3WCJDZXQIPllT3LZOfkKDmFFrj7KnVxQ9A0c5pvpX69uZaMegIaZIzHl7k02BPSg3UENOzxiF8DaMSPN4srXUdAw/woaEI7oYQGMqnKWITxZmx4F0mZBTJ9VnkxMz9h9/hDZ4TyF582bZr+5m/+Rtddd51Wrlyp3/zmNzrzzDN133336dxzz9X222+vo48+Wt/85jf18ssvh/ErAfSQoFWxdlkRP/3lFfxBDaIRP/lC0ZlYcmVolG8qTDkqcwNhBhWmDBElY+KrELByWqrs11LJqfLzA7InwszSsYMYHFrtY/609n1gZQK6+g8f1Ach6LFb//EYbTdj0Lf3xiarh0ahSJZXXDTeFLyyks6gKTgaZc9BMXkdT3ZPrmaZa4l3AptJyvgy2b32cVGrR6PfxDWr7nuDObU7GRo+pW69ChNkaFSCI+UyRSyiiA3vPYUpiZtOVfa1ydTqm6DHH8IX+l+8v79fp5xyin72s5/pjTfe0KJFi3T++efr5Zdf1kUXXaTddttNBx98cNi/FkCMBQ0AJ0rbMyv4WRHTO+xsGztDY/pAqZ/GhnKpGTMp5QQ0TH1TJhhiy95z3sCUPQGR9NnX7crQsN+KY6t9TGkve36pctPn01AxoA9C5TH397tuNaX0nj43Gt4Vtn4ZIYieRjOmnB4ahaAMDfZ7L9o8ntd1D76qVZvGQnk/Sk7FXxg9NMy1xHv94DQSX+bzXG/JqY8dv0fVYwwTe0PBMyZNJSdeNGeCHX7jTPu9zGIdgl/x4d3vpv+JnY2xsZzt3Zem5FSntTWElEwmddxxx+lb3/qWXn75Zd1///3653/+Z23evLmdvxZAzASVnApa5WBQcqr3jFrZNv1WhsaMwVJAY/1mE9Ao99BIuwMaZGjEV62JIrvklFkpZc8752tkd7TCVXKKQ6ttnJJTVheNWp9p+0bQ7+fe4JMpLdKXqr6mBDWgR7Q120MjuCk4+70X/evNf9Kl1y/R3/zo3lDez9WviYtCLJl92FLJqfK1xLugiqbg8eVXMqjfp3zMB4/YRXf803Gav992VT9j4UtvyHuyuBppCh40d2HON35jEURb3rOvzLxTJpWsWnzblwoOgqI9OpoTc8ghh+hLX/qSnnrqqU7+WgAR5zchlUi4V8n4cUpOkaHRMyqDhIRrkDC9HNB4YukG5fIFZXMF53lSZdBJuZj4su8DgyaZ7YBGPqDkVKgBDdm/g2OrXZy/s1/JKZ/92UjJqb/Yfrrz9aBP+Qjv65nYjodGJ45MaQD72LGvF6yW7E2/e/x1SdKzb2wK5f3cpQ45V8RRGM1bTQYhGRq9w8nQsAJdfkGvKf1p7TRryLeEJQsiekNVyak6Fs2ZWGZwD40Sv7EIos273+15pwFP0DNDhkbHNRzQeOKJJ/SjH/1ITz75pCTpqaee0rnnnqsPfvCDuuWWW0LfQAC9z28iYaLsDKmycmY0m9cVv3tK//XAq6FvGzrLZGjY/TOkSoaGJP3Po8s05s3QSJmGbZ3YSrRDMSBDo1AoukoBmHtIezKyXWVAXL05uE9tG+/No2T3PGim5FTpsb8+bGdd+5EjnMen9levnNrsberKjo6FRveSmYDMBmT3MLnQq8L9PFNyKv6KoZScMqUv3Y+zQj++6g10mfvTjE/GJ7u/NxSce47S9/VkaDhZHXVmaDDmiA/ved2uDDKQcd9X0EOj8xr6iy9YsEAHHXSQPvGJT+jggw/WzTffrGOOOUYvvfSSli5dqvnz5+sPf/hDu7YVQI/yS7usZ+WU6bHwwEtr9aM7XtQ/3bAk9G1DZ5lBgt0/Q5KmD1ZWVt/29AorQ8PdFJx0//iy7xPMQP83jy7V/p+7Rbc+s0JS6abC3BR0ooeGHWRptGY/6ueUALEey5gVceXrwwsrN+nPK0qrrOvN0Nhn++ma2l85d/g1+NxQLmPnvJYZiVhovORU6Xh6+JV1uuS6xyRVZ3kxQY2JuEpOMdyIJbMPJ8oCr8VvMlui7Gmc1dss3tyfJhKJquOAgFZv8JalM4ttamZomL4bAT83pxun5BTnitioytCwymOnPeeAjE+ZOrRXQ3/xL37xi/qnf/onrV69Wj//+c/1/ve/Xx/+8Ie1cOFCLVq0SJdeeqn+/d//vV3bCqBH+fXQMKspa+lPV6+2pQRAvJkMDe++3WpKv/P19lsMBDYFZzIyvvxWvl54zaPaNJbT75Ysl1S6qXCCVwHZE2EeA64MDSav2sa3Kbhz01dQNl/Q8Vf+UW//2h81Mp7TeM5eZV+9Y7z1jw07uFF5vft4YUIiLhrbT/Yquusfek1S9WpLVkz2nrA/zsWAQDriw6+0UKOC7lHI8Isvp1n8BLefdgUBb9kpguK9oeDJ4qpkZPnv32KxWMk0DszQKP1rgmBZymXHhreHxrYzBpyv39gw5voZGRqd19Bf/Mknn9RZZ50lSTrjjDO0ceNGnX766c7P3//+92vJElZIA2jMuE+Ghjfi7cevWZu3fAjixdQj9mZoJJMJ/eMJe0mSnn59Y6UpuDeg4Rkf/uGpN3T0v9+mu59f1c7NRgjss0DQyqXpA2lnX7uyJ+xgSIg9EOzNIEOj/eym4JU6w0WNjFfO6+tGsq7jw28CoeCUjnA/PuRTcqr6tQ1tMrqk0bnkeoJZ9NHARFzlEAloxJJ3srIZQRkaTGjHlzn9TxToSlsDC29Ag93fGypl6dwZGkGfb/vhwKbgMg3GyyWnOFhiw144dcYhO+ojx+we+FwCGp3X8F88Wf4QJpNJDQwMaMaMGc7Ppk2bpvXr14e3dQAmBb8yQfX10KienNo0lgtlm9AdI+Ol/ec3+WRW2N7x3Cp9c9Fzkqym4E5Aw30sfWPRs3plzYj+5kf3tW2bEY6gHhq2Y/be2lnl5J5Yqjwn1JJTrqbgob0tPCo9NCqPZcrjzVy+oDErUF0oFgP7IBh5z82oMcWn5FTQaxFtje6lKZ5rit9KalZMYiLuklOcK+Ko3tJCtXgnss21izIy8eWdxA5SK0ODKgG9wSlLl3DfYwZ9vu1rQXAPjdK/piQR4434MPt35lBG/376Ab5zFEYrpQzRnIYCGnPmzNFzzz3nfH/PPfdo5513dr5/9dVXte2224a3dQAmBVM+aMBald9IDw3bplECGnE2PFaauBzqqw5W7b3tNOfrF1cNS5JSydoZGiy4jQ87FpUvFH1vDLcY6nP2dVBz1jBXzdr3LqzGbR/nb+sqOVXO0CgUnVJ0UimLK2s3BffJyDHHgzfTzzup7bstTEjFQqMfx2kD7n3vNzGRDTG7C9EQtEf/8NQbeuc379DTr29o6P2CejchPrz18ZuR9kxkm/5MHBPx5QS6PLeWR++1tet7O6DR5xljsCCiNzj9MEzJqQmagtuf+6BydE5TcCc4wg1qXFQavpN9EUUN7ZWPfOQjGh8fd77fd999lU5XbhB+97vf6dhjjw1t4wBMDuaibq90qWdiwS+tz0yII56Gyxk2fiup5+25VdVjm7Ol5wc1BZ85lHG+9uvVgujwlnTKFYpVmVp9qaSzYsre1e1qCi5XWavw3hZu5k/rKjllgpT5oquU4CbPOd43QyOgRvqMwUzVc4Nei2hrtARcVYaGzweaHhq9J2jF9Dm/eFB/Wr5BF/znI02/H+eKeKpMXIfXFNwswuGYiC+z77yBrn87bT996l1v1tbTSr38Ttp3O+dn3gbALIjoDWY3pupsCu4KaASUo0t4fs4CivjIlfdVPdVD0HkTL1Wz/MM//EPNn3/5y19uaWMATE7mQrH71lP16KvrJElrhsdrvKLEL0Nj41g21G1DZw2Xa+X7raROJBJ607bT9PTrG53H3lm+sUgGNAW332fNyLhmTxsQosl7n5DLF6tuHvrSVkAjINjgV8KuWfZvZ+Vl+1RKPVQes5uCuwIaniw8vxWRZmLCO2G1zfT+CbeFFZbx0OhuGsq4s/5GrWOqL5XUeL5AQGMSWjeS1RsbRnXhNY/o/YfvolMO2L7m8+1DhAW28VQoVF9vGuVdhT2lPy1tHCOgEWNFzyS2sd2MQZ0zbzedNXeORrJ5TR+oLIyoLjnV9s1EB1QaxJf7XkzQFNxVciog88vcu5hjhvFGfATdU0il+wpvY3B0FnkzALrOrFI4YZ9tGnqdXw+NUZqCx9qIydAIaN5rByiG+lJ6/+GlsofpgJJT9mrKVRsnDpKhe7w3CmO56s9yfzrpTELkA0p/hDmh4C4vEtrbwsOpOJWoztDI5ovabDUF3zjqDlr7NgUPqJE+YzCj/rT/0HeikgKIlkYnjrx1je0gmVkcwYrJ3lPPHv32rX/WvS+s0cd+PXG2BiWn4i+cklNkaPSaSrN4/+MinUq6ghlSdUCDBRG9oeBk65S+dzI0AsYIdnB7wh4aZrEO443YyNUIaFx/3txObw48CGgA6DpTcipooimI3/NZ8BBv37q11KfJL1gluZuFnzV3jnNDGtQU3J6gGh6nv0qkecb2m32Ck/3pZKWHRkDfjDAnFNz3ptx8tItTcspuCm5laIxawa2NY54MDZ9+K07JKc/NRyKR0DbT/bO0+srXEyYk4qHRklOSdN4xuztf231ZBsrZG6yYnJwaWQjjKjnFuSKWaq22rVdgySmOidgy+66ROJe3hwZBzt7gbQpuMrKC9m9dJafKD5ty2X6LthBNTl8+n2vGTrOG9KtzDteOMwf1/96+Z6c3DQo5oDE+Pq61a9eG+ZYAJoFcjQtFLf4BDSYk4swEIF5aPez7czugMWiVEAlqCm5PUI1lOTaizHujYK/KN9wlpyqP2y8dy7Wr5FRobwsPM0loXwHsOsOj48Elp6TqIJaJY/ql/k8f9K+2agIorLCNh2bmjT7xzjc5GV72+cWMJcYJaPSciY+ToraaVilFN1G5U/v0QDZXPPmVOGyUt+TUYLnvG9eP+HL6JjRwYHgXX7H7e0PBc44wH/egHhp2IDMow8f0iDNj0PWbKZEdFxMFwY/cYyvd+c/H6/+9fa9ObhbKQglovPrqqzr++OM1NDSkrbbaSltssYWOPfZYXXzxxfqP//gPPfXUU4FN2QDANGtOp5LaadagJGnu7ltO+Lp0Kll1cWE+Ir7s68TfvnUX3+fYpagG+6yARkBTcDull3Jk0ea9Txj1CUD1pZOVfikBGRobfSa8m98mmoJ3QiVDwy45ZdLy3T00hseq96/3JtOcB1I+K+Wm9PkHNEyGBjHx3mYCVybrJ5VMOPueEhCTk72Y5nePL6/5XPu6w2r8ePKuvm6GdxX2FEpOxV6lt0oDAY0MTcF7UdFTfszcYwbtX7svT2BAo/zwzKE+SdLaEQIacRFGVh/ap6Gm4EH+4R/+Qbfffrt22mkn7b333nr55Zd1xx13aPHixc7N6eDgoA444ADdddddYfxKAD3ETCJkUgn99O8O1a/ue0X/cNzuE7yqJJ1MuG4gcsxGxZa9sv6wXWf5PsfOyrADGpWm4O7n2ytuw1y5j/B5bxP8Sk71pZKVG4uA/hYbwlz1ZK/GZfKqbQo+pR5MSY9coej67A6PVyaizbm/KkOj/HS/DA07y8tmygAwSRkPzX4e+1JJjeUKToA7lUwok6RJ52RVLEojVrbO+pGJMjSs6w6HSyzli41PXHv1eXonDJGhEXveVfn1GMh4MzTY/73A22cnbY1H/by8ZkRSaTwRdPyY883MKSagQV/HuDBzSwQ0oimUgMYdd9yhQw89VHfeeacymVKzpOHhYT3yyCN65JFH9PDDD+uhhx7SAw88EMavA9Bjsk7JqaT23GaaLn/3X9T92kx5csKoNZj8+V0vqj+T0l8ftnPzG4u2sfdjX0A/FfvmYcgKaAQ19LUDXGRoRJv3s+u3v/qspuBBfTM2jGZVLBZbavhpuEtOcaPaLk5TcOuxtNU40b6JHCn3wsmkKgEN701mocZqqik+AY10MuGUFGA/x0OzuymTTkpjlfNLKpFQJl06Tig51XvqqRBgBzT8MgPd71f5mnNFPDmrr1uoU5GuCmiQoRF3TuZOA5OW1QGNMLcI3eINbpmM4aDP9199/x5JpRKpO88a8n1OJUOjNFe6jgyN2KjVQwPdF0pAo7+/X8cee6wTzJCkKVOm6KijjtJRRx3lPDY+TiQSQLVKyanGLxTe1wSVjFi5cUyX/+9TkqT3HrRDYNNpdM+4HdBI+d9p2n1T7GwNcwPizdCxjwcyNCLO2xQ8qIeGCV65emhUvsnmixrNFlwZPM1yBci4UW0bJ6BhBaEy1mfa3g/DY6Xjoi+VdCYfq3toBK/A9QtopJKJCUsKIFqa3Usm88ccO6lkwilDleUa0XPqWVG5ebxSxm6iRq1BgXTEh1M+pJWSU57jaqhcDpUgVzzZ1/1GMncGM9X3KoVCsaGgCKLH6adiSk4lTU+36jHCuGfccN6xu2vFxjFtHMvpd0sqJQzNETF72oCk4F6RiB5KTkVbKD003v72t+uZZ56Z8Hl9fX1h/DpMIk8t26Bv/OFZZ0UmelOl5FTjpyRvY76gmwn7GKJMQDSZiYS+dDJwdX2/q+RUZWIy7fRVcD/fXnFLhka0VTUFDyg5lfSZePbOK20YDWflE03BO8u+VzA3Drl80TVxuDlrMjSSzoo378RirQyNqf3Vga5ShkZ1bxZEV7O9+cw4Y7NVuswJaNBDo+fYk5N+x0xRlTJ20sQZGnZJOsrTxZO3nEwzvPcrQ5nSeDSoJA2izR5/NhLo8mZoeN8L8VTJ4nKXnPIbH67b7F6wPdSX1r+etr/e/ubZrsfN+eagnWcqkZBeWDmsVZvGQt92hK+SoRHK1DlCFspeueyyy7Ro0SLdf//9Ybwd4Jj/rTv0jT88px8ufqHbm4I2aqU2YcaboVHHzQQ3odFkAg79AeWmvD+zMzT8+ipIZGjEST0lpxKJhFI+pYG8rw2rjwblRTrD6aFhFZ0yJT2yhYLrb2/KwySTCSuQ6S0111jJKTtDg+tDPHj30pu3m17X60z232arh4Z5jB5cvceemwwaHtrXmokyNOzTA6eKeGqmV4JXVVNwk6FBQCOW7N2WaGB2zD+gEcIGoavMmNJcP8xEtt8cw9ph//sN7+S3ea8ZQxlNLS/IC7XnH9qm1j0Fui+UgMY+++yjX//613rPe96jX//618rnWQWLcD2/krS8XmYuFN7gRD28NxX13EywAjeaLvjPRyRJG0eDM7KCemhUSk65922WDI3Y8H4u/TI0pMoqp7wroOF+TlgZGvZEOmeN9qmUnKo85jQF92RojJRLTiUTVhaHZyK6Vnr4lL7qgEYmlXSey5x2PJhjZqup/frqXx2g//jQYXW9Lu2UnKoENMxj3tIR6AWVc4BfULpYdJ9fJsrQsMeYjCXjqVYGX70yyYCm4ES5Ysk+NzRScmrAZwEWi1/iz+mnYpqCOxnD7uvDM69v1DcXPev7Ht4sLvu4qpXxgeih5FS0hdJD44033tD3v/99rVixQh/4wAf08Y9/XMcee6wOPvhgHXLIITr44IM1c+bMMH4VJinTQAm9yZR5aCaVz3tTUVeGBgOISHr69Y0TPsfO0JgxWDkvBDUFz5KhERtVAQ1PDw3TaK/S66DyM5Me3pdOajxX0IbN4Zcp5Ca1fYo+4SJzPcjmi65JouFy+cBUIlF+TqG65FQxuEZ6UIaGX6AMUVbaT0N9KZ1+8I51vyqVdJeXSiUoOTVZ5AtF+Syodp0/JsrQcJWcYiwZS97JymZ4F1OZBTZBffwQbc2WnOqn5FRPKnqyuMzn3TvHcOI3Fge+h3eRpv1dmjFHrJChEW2hBDTOP/98LViwQFtssYXmzJmjl19+WTfccINuuOEG5wZxl1120SGHHKL/+q//CuNXYhKwbxS2GKL/Si8Lsyl40A2m/TBlJXrDDCvQGdgUvECGRlx4bxTMStltpw/onHm76t0HbC+pMgnhV3Jqi8GMVmwcC6+Hhqu+SChvCR9+E0xOhoanKfhmq+RUKiAzy1wH/GLkQz7N4lNJq5QZk5Sx4JfVUw+zn002hl1yyq/hJ+LNXXIqaHxY/8IH+/TAxGU8maBUK42bgwIaHBPxZN87NnJNoeRUb6qUpTMZGsElp4KkU/4lpyQpE3DPimgy9wVpAhqRFEpA49Zbb9V+++2nu+66S1OnTpUkvfzyy3rooYdc/91www1h/DpMEutGKk2W7JXY6D2VklOtNwUPCmjkrUEDq+ria9SabJjq0xTcOzbMWs9n4Bht3s/laHml7FbT+nTOvN2cx81H3n6++XqLoVJA48JrHtU7991OfTX6sdSDyavO8JucNjeDpZJTlcedDA0roBGYoeFz8+F3TEzpT1d6aHB9iAWzlxq9vTQZGuN5uyl46V0IaPQe+/jw+2jnC0XXJNVECx+KPoF0xIt39XUz+rxNwU3JKa4fsWTvtoZKTmWqxxMcA/FXcMak1U3Bi8Wi83gt3gwN+7hKOWMOjpU4IEMj2kIJaKRSKZ100klOMEMqZWTssssueu973+s89sorr4Tx6zBJ2BcLTh+9zUwiNBP59g4YgsqF2PMUDDbja8yabLBX1yUDysVkXZPebd44tMT7uRwrZ2h4A51OrwOf5qxbDFay+W59eoVO2nfblrbJLoXEaaOd3A0YJatmcaHg+lybHhqphJWh4bkpzNdYTeWdiJKkKX0p53xCyal4KHomHOplhgxOyakkJacmC3NesIMSm8ZyrqysiTM0GFPEXTglpzwBjXJTcO4v4sk+JzQyaTmQrs7QKDKGiL2Ct+SUdUzkCsW6en7WWqRpymV7e3Igmsyi2GYqiaD9QmkKPm/ePL3wwgsTPm/nnXcO49dhkpg1pU+nHlgqMcIqqN5WmXxqIkPDM2DIB0xI5MjQ6AnbTB/wfTyo9Iy94jZPhkakBWVoePvk1Co5NW2gsk6jv8XsDKkyaVr6mvNGuxR9JpgyVoaGPeFoMjSSyUQlM8uzb8x5wG/Cyi9Doy+dtHqzsJ/jwHweG729NOMMU3IqmZAyaUpO9Sr7HGA+2/Y4oVCUJ0Oj9jFgHyLcm8RTvsb1oV7eYLkpOUVAPJ7s8Wcja+soOdWbzMfY3Fvacw31ziF4zxHuDGT/e1ZEU617CnRfKAGNz372s1qwYIGefPLJMN4OcCQDJinRW5ym4M300PAMGIIzNCqPczxF0347zJAkfeioXQOfM3+/7fTR43bXz84+1PW4X1PwUmqwrO9D3FiEzvu5dDI00v5p2+6ARulfuzlw2KnBnDbap+AzOW0HKfM++9qVoeEtOVUjPdwvoFEsigyNmHH2UoMfcxMfNSvx08mkU8+agEZvM+cZ735eM1wpcTtRU/Bi0T3GQLzY+6+VIYJ39bXJ/OOYiKdKiaHGsv4oOdWbnDGp00OjckzUO07wniPsyfBmenKge2plfaP7Qglo/PrXv9bb3/52nXDCCVq4cGEYbwlIEjWtJwmTPVFPCqeXd8AQtLo2V+AmNOpMQOvwXWcFPieVTOjSE9+k4/ae7XrcL/jpHXSSoRFt3tWuToZG1U1B6d+8a5Vt6ev9d9oi1Aa/9haRodE+Tj8Eu2midT0Y9ykDY2doeD/bTtNXn4mJg3eZqTdtO01vf3PlHLLnNlMrGRrs5ljwNu2sV1WGhlVyapyARs+xywaa80I25/6Qr9g45nw9NkGGhl9mIOLDHje0sujB+9qgfk6Ih2KT1xO/DA3GivFXq+RUrc/4B95aqUbjvXfxG99Scioe8s4iqVCmzhGyUHpofPWrX1UikVCxWNRJJ52k3XbbTW9/+9t18MEH65BDDtG+++6rdDqUX4VJxm7ChN5l6p83V3LKPfgMWu3gXbmP6MnXWFU9Eb8MjaqABrs90rx9EEy/FO95wRwf7nJQpX+TCWm/HWfooZfXhlIP3/U7Wn43BKn8na0VbNbNoN+q6VRSgT00THzD71ySSSV184XzJEl/XrFJP1z8gv7h2D30yRsfL7+WPR0LZkVtgy8zwW8TvEglrZJTOfZ9r7E/zua84A1c2WPCsVxeY7m8Xlw1rDdtO32C9+N4iRt7lzXaf6cWAhrxlvdMYNfLL0ODQyD+zCXCBLhSrgwN/x38mZP30d9bFQa88xMJn/EtfbviIUeGRqSFEmW49dZb9fDDDzv/Pfvss/rBD37gDBT6+vq033776ZBDDtF3v/vdMH4lJokkGRqTgtMUvKmSU54eGgErY8jQiD6nrnETAwa/puDVjYJZCRNlVU3Byyuo+zwlp0zJoNFsXsViUYlEwrVa224mHSZW47ZP0Wcywb5x8Fs1nUoknPO/99gx54Gg4KgZn+65zTR95a8OKD8m3/dCNPll9dTDHFfjuUrA1OnXwjWi5xR9MipqZe+NZQs69Tt360/LN+j6847QIXPcGaP2+YHydPFTCKnklJe51jBOiKdmG8X3+zQF57wQf94xaaJ8b5ErFAPHiFsMZVzf9wVkl0t2SVXGHHHgLLikKXgkhRLQOPbYY3Xsscc634+MjOixxx5zBTkee+wxPfTQQwQ00JCghp/oLSbY4E3PrIe3TFVQU3B6aERfKzUq/VbHVZecYr9Hmfcm0Exie4OWU/pLQ5dcoaixXEEDmZTz2kSiEvAIpx5+ZZu4DLWP+dvaK2YzrgwN/5JTfqXmisViU9lezjmEHR0LzjHTYI6GmbCq9NBIqC9FD41eZV/2zXmh1n7eOJbTn5ZvkCSd/v179Ml3vkkfOWZ35+euAAmHS+zY95Nh9dnKpIL7OSEeTLZVGCWnyNyKP28PDal0vsgVis71w3tPue30Adf3VRkaviWnOFbiwJzXUyFm9SE8bakDNTQ0pCOOOEJHHHGE89j4+LieeOKJdvw69DCagve+ZiefjHSqmQwN7kKjyAwgmxkw+AY0vKu2OY9EmpOhkyhNQgX10JjSVxm6DI/l1J9OWiWnKhkaYadyE1hvH2e1vfVYKplQIlGauPYtOZWwe2jYq7Ddz6mX00OD80QsmN4IzWdoVHpomHHEOCWneo5fz4tGAldfvvlpV0DDVXKKa0Ls2Puv0cnrIP3plHP9KBZL15BmMo3RPd6eCfXqT1cvxOO0EH9+GTuZVFJjuYIz3vT2dttmhiegkfT20KhuCs4iingw80ZhBcERro51Nunr69NBBx3UqV+HHsEEQ++zAw2ZJnpoZDwXl6BJazuIwYqIaDLHQjM3gt6AxiurR/Te797leg4BjWgz+8cEMEyGhrfkVCqZ0FBfaVXcprGc6+Yxlag0+A2lKbhPnw6Er1j0n5zOeBo425JJ/1Wx9ue8kXNJkgyNWGl2N6U8AY10MtxzBqKl4BPsbCVwZQcxOFfEj319CGuxbTLhnujiuIgfZwK7wfsPv2OI/R9/zgI7a1rCWybKOy6dPa3f9b235JR9qGToERsrZmhID41oolU7Ii3FCb/n2cGFZnpo9HlWxwQHNKyvGWxGUqGFTB0T/DT7/1O/eUJvbBhzPYdMr2gz+87pkZHzbwouSSPjpZ997n+f8tTErkxOhhG4dDcF5/hpF/OX9a6YNdcEv5JTwRkazZUUYQFFvFR6aDR2vXACGvnKijtKTvUu+xxeT8mpidjnl2LRXYIK0Wfvr7DKhwyP590BDa4hsVPJEG7smNjamsSeWi6HSuZW/NlZ34ZTJspkaFjXkR9/8BBNG3D30KguOeWTocG5IhacDA16aERSUwGNffbZp6VeGK2+HpOHGWzmCkWNZqtLTiD+slbmRDMBDW/90noyNLjZiKaJGvnW4q1/v35kvOo53GREm1n1ZFL4TYZGrd46tz69wlVCIpGs3HSEPTlJpbr2Cfpsms+1b0DDytDIB2RoNFRyyue9EF1OVk+Dr3OOqaxfhkZRY7k8k9Q9xB2ACCGg4Xkp54t4aUfJqXyh6Bq3MtaMn2KT9x/96ZQe+8w7tOTydzj3sFw/4i+oh4ZUWSxlAhp96aTevs82Ve/hndOwD62000ODG4s4MEEsMjSiqamAxtNPP61Vq1Y1/UtbfT0mD3PxuOGh17TPZ36v3zy6tMtbhLDZq6ibKTnlrV8adHNpr85npX40mYmCMHpo9Ps06qPUWLSZcb2ZXHR6aKRrHw/eDI20NTnZKjsrg0mK9qk0BXc/7pQf8+mhUep94C4BILkz8BqZnDC/m70cD5UMjcZeV52hkXSOs5UbR3XYFYv0kV8+FNZmostcTcGL1StrG38/T28urgux0mxJwonYwRHuMeKn0jOh8dfOGMpo+kDGyhQPccPQFX49VUxWhZOhUV5o0x+w6Mo7p5Gwll+EmUmO9nN6vdIUPJKabgp+++23N/1LG00Px+Rlbjw3juUkSZdet0R/eeAO3dwkhMysTkgkmru58J5PgjM0rBW8DCAiqZXm8N6AhjdzR2JCOupMFpVTcqqclecX6Dxwpy306KvrtMMWg66SIsmElRYedg+Nlt8NQQJLTnlW09tSCUnlYyPo/N7IucT8buaiYiIgCDYRc0M6ljUl7RLqz5SOo8deWy9JuuWpN8LZRnSdq+eFU3KqlR4a7u8ZVsRL0Weisln/ec7huvT6JbriPfu6Vu5StjB+zLmhlTmqhDOGYP/HnV9T8LRTBt3dQyPj0xheqvR5qxxblZ+ZsWmW1O9YyDnzE3RriKKWAhqtBDWAengjodvOGOjSlqBdzEWimewMqXoyI2i1nGvCi8FmJDlNwVvI0DA3kgM+A0xWzUWb2T99zqr84JJTH3/bHvr7nz+oLaf2BfbQCLvkFGUE2iewKbjnWLClkgklyrskF3B+b2TSyjyXyah4MNlTiQaLTiW9GRqpRFXzTvQOV1C6/PUTS9f7Pncgk9SoT/DUVpWhwfkiVvLF5seZXnP32Ep3feJ4Se7xAcdE/DhNoFs4LpwxBGPF2CsUqgOfThAi7y5dWGv8kA4IaFQWXnGsxIE5HpopjY72ayqgcdttt7X8i+fMmdPye6D3eZvv2M230BvMxbzZi4T3VUGT1q4JL242IsncBDRzLNj9dqSADA32e6SZ/WMmsc09oV/Jqf50af+OZQuuCexEItxme/Y7cI/aPk7JKc8ZvdIU3KfklHV36GoKbt2INrLaMsnqylgJKlM2EW/WTylDo/p64a2Lj3jyZmiMjOf0lf97xve5O2wxqOdXDtf9fhILZOLGWXkd8mc7kUgomSi9P/cY8VNpAt38e1QWVoWwQegqvx4aGU9GsFlo0xeQoSGVgh3meX5NwVloFw+VDA3GhFHUVEDjmGOOCXs7AF/elRKcRnqPSbdsttGSd5VV0KS1fYPBACKa8q1kaJhU4PIg1NtbRWK/R52ToeHZd37ZW07j8FxeRevmMZVIOAGQrM+q/kbZc1UcPu0T1A/BmXwOyNBI1sjQaPTGw0xwsZ/joRLQaGw/O03BTYZGwj9DY3M2r6n9TSeyIyLsAMRffucu/fVhOwc+d/u6Ahqe7zlhxIrfyuuwpJIJFfJFglwxlPeZwG4UiyJ6h1/JqUqGhrvkVK2Ahr1AL+HzOE3B48HMT9AUPJrIsUakEQntfSZDw6+sTD28Y8/6MjQYQERRoYUVECb4WSstlFVz0ZYPCmj47EsnQyNXqC451aaVT9ykts9EJaec5ovWsZFMJpxAZsF1fm8uMEq5iHhxVlA2+DqnKXiu4HxvemjYRsZzLW0fosH7af71/a84X++61RTXz/acPW3C9/OeHxhWxEsYpYWCmGsOY834KTS5EMKWYAzRM4rO8VB5LJNyf75N2cpa8xdp62f2mNRpCs65IhZaKYmN9iOggUjzDiw4j/Qes9IhrJJTQavl3BNeTf0qtJmT0tlCDw3zHn4xK24yos2skPOulvZruGcmIMc9AY1EonIuCaOHRtGaDuPoaR9zeg4uOVW9Ei6VSDirpfxKCjYaJDc3KvRKiYegrJ6JeMeV6YAeGpvHq8ucIV6KxWJgqcDpA2ldNv/NrsfeutusCd/TO8Zk8jpe/FZeh8Vcjzgm4ieMzJ0UWZ49wxmT+mZolHto1FlyyrBPOelkePcpaD+zEJYeGtFEQAORRoZG78s5aXzNnY5mDPX5vp9XngyNyHNKxTTTQ8M6VxQKRd9BIithoqtQqEw8eW8OBn3q21dKThWsG4/SzQdNwePLO8eU8tQstjM0UsmE87m3z+nN1rpNJJiMiJNK35XGeI+LVDKhAd8MDQIacVfrlD1tIKOhPve1ZcupfQHPrqjO0OCEESd+DXrDkiSgEVth9Fah5FTvMPvQDnyabAtvhkZ/zQwNq+SUHdAwGRo0BY+FfJP3FegMAhqItKoMDbpo9JxWo95/c9jOOm7vrXXILjMlBQ8k7ceZ2I6mQisZGtZrcoWib0Noal1Hl/2Z9K6W9k46SXbJqbwTaDA3HhmnNm0I+9vuocHx0xZ2oMj7yc94xgB9nvT9WhkaDffQoFxEzDRX89x7fUknk+pLVZ9jKDkVf7U+y/2ZpIY8PVKG+ibumeK9DDB5HS/FEEoLBams0OeYiBu/CexGOSWnOCfEXiWTq/JYZbzZQA8N6w3sOSzveyHa6KERbQQ0EGntqHGKaDGpm81eJAb7UvrZ2Yfpg3PnSAq+ubTvL7gBjSaTodFMso6d1VEoFn0bQhPIii57AsBbYmqgRoZGNl8JXplTiNN3IZSSU/5fIzz2udk7meANdLtKTiWtDA4reGUCWY0HNMjQiJMwMzT8e2iQoRF3tT7L/emUpva7ry1+wXMvb6Yek9fx0omSU4w14yeUklOMIXqGd6GUVJ1VYQIafn3+jExQyakwF16h7SqZ30ydRxF7BZFWlfpJfKPnmDrVg3XcSNZiBpJBNxJ2LXwCGtFjlxxqNUMjH1ByilVT0WXvr/46Sk7ZE9vmHGJWarcrlZvDpz28PVBs3j4YfVUlp0pf+2VoNBokN0+ntFg8hNZDI+nfQ4OARvzVzNBIJzXTU7K0ngwN7/iRBbbxUik5RVNwVIQR6KLkVLz9532v6GO/fkTZfMG3NJ03q2IsP3GGhj3ecDUFT9IUPE4qmd9d3hD4mnjk1qDh4WE9++yz2rRpk+bNmxf222OSqZqQ4LzfczaNlco6TO1v7XTkpHoHNQUnQyPS8tYNQDP9VOxBY65Q9F2dz8AxurJW8MF7c+A3yWRPdI/lShOPJqhlyhSF0hTcOi6Z6G4P+69a1RTcW3LKE9BIe3psSFYvnqZ7aLCf46CSodFgySnPcZEMzNCg5FTc1foo96eTmjGYcT0WlKFRKBSdBVZVJac4X8RKodi+ialKTyeOibgJteQU54RY+pf/flySdPSeW/n30PBkYFWaggcvyHSXnLIeT9EUPE4qmd9ENKIotL3y2muv6bTTTtPMmTN1yCGH6LjjjnN+duedd2qfffbR7bffHtavwyThvfGk1mDvCTugETRpTQ+NaLNvAJsqOVWjKTh1jaPP7K9UMlHVN2Gwr/qAsFO8Tdq3t+SUXx+VRrlKTnH4tIX9d014dnXam6FhfZ9OJn3P+05fJkpO9TQn67LB+SdveYh0MuH05LGRoRF/ta75felk1fnFmxFm2EEL73syeR0vYUxcByGgEV+tlLw1UgFBT8TL2pFxZ1zqLjnl/nybhXN+GZ6GfW9KU/D4MucHemhEUygBjeXLl+vwww/Xb37zG5188sk64ogjXCsZDz/8cK1YsULXXnttGL8Ok4h3wMlEdO8ZDimgkZ5g0poeGtFm77dmmjXaL8kViq4V/06TaPZ7ZJmARiaVqCo16NdDI2E1hB5zAhqm5JSpTRtuAJyAWHu4Sk55fuadfLYzNNLJhO95v/keGtXbg+hqtoeGd9K6VLqs+l02E9CIvdolp0rXlekDlbFn0DnDHjN635LMvXhpZw8NFs/El9MsPoySU9xrxFqh6J/JZTKCs54eGrWbgts9NOySUzQFj5NKySkCGlEUSkDjc5/7nFasWKGFCxfqxhtv1AknnOD6eSaT0bx583TXXXeF8eswiXgjoVki2T1n42gpoDGlxYCGmQQNWu1g33QS0IgeV4ZGEzcUiUTCdTNpZ2i8advpVb8D0WLO7ZlksuqGMqiuuQlcmJsK8zKzWiqcklPW1y2/GybirWvuLT9np/anUpXPvH3eb/bGw1xDmIuKh2Z7aHhX5QetuCNDI/5qNgUvlxmbOaXSRyPolFGoMX6k5FS8FEJYiR/E73qEeDDDxVZ6q7AoIr7MfYRUOseb03zCp+SUyQI2YwS/Pn9GUIaGeZx5rXhwmoK3IRCO1oVyOV+wYIHe/e53u8pMee28885atmxZGL8Ok4h3pW7YK27RfU6GxkB7MzTse1BW6kePvUuaXQGRshoymsHpDlsM6nPv/gvncUSTk6GRTlbt/6CbBbPS2snQSLqbgod9o8BNanu4Sk55flbVQyPln6GRt1a5OTceDc5YOfWvOU/Eglmk0GgPjT5P1o85Tn7z0SN1+sE76qS/2FaS9LWFz+rVNSMhbCm6pVb2RL9PyY+gyUx7zEjJqXgz5/e2ZGiYMShjhdiprMhvIaBByanYsntmFQpF/x4aKXcQYtNYVpI0rcb8Rdoab7iagqeq+78husw9RipFQCOKQglovPHGG9pzzz1rPieTyWh4eDiMX4dJxDuZwUR073F6aASswq6XGSjU00MjT4pn5NgTD83eaNr1i80E+ZVnHKAtp/Y5jyOaapec8h+qmBuC8YCSU6FkaNhfc/i0RVHBn/205+ah39UUPOlMRrt7aDRX65YeGvHU6OXCW3LKHCcH7LSFvvpXB2jVpjHnZ/e/uKbl7UP31Posm+Ngr22mTvw+NUpOMZyMF7Mr27HS1skS5piInaIzgd38eyStRVWIFzMXIUmbs3mrh0blOWa8afavqTBRK6DhytCwHqcpeLyY3UQPjWgKJaAxa9YsvfrqqzWf8+yzz2rbbbcN49dhEvFObHHij69n39ioE7++WDc/vtz1uNNUq0YNynpUbiQm7qFBYCx67F3S7HjBDmiYfZxJJZ2yNdxkRJdZ8ZT2lJwazKQCV82a/gpjuVLatzlu+kJstmcH2qiV3h72x9K7q6uaglvXiUwyUdWk0f6aHhq9za9pZz28AQ3vOPOYvbZ2vh7NUXYqzmp9ls254/N/ua9O2GcbXXfeEYHPzdfI0OB8ES9mX7ajcohTcoqIRuyEWXKKsWL82CUmN47mfDM0Mp7+fJvqCWhYr3dle/gsxkF0ORkaBDQiKZSAxpFHHqnf/va3ev31131//txzz+n3v/99zZJUgB/vChrqksbX/7vmUT3zxkad/6uHXY87q2lT4QQ0ggYH9gCTkiLR42oM3OQNhRln5ItFZU2ztlTSqZVMGYDo2Dye148Wv6CXV5cyN3NWYNOeYBzsC65Na24IxpweGuUMDVObNuRJBU4b7VHr5j9To+RUKpXwzczLtZihwWREPJhrRqsZGt4SVOfM2835msbg8Vbro2yOg51mDelHHzxEh86ZJUm67ZJjddn8N7uea48dvOMIxhXxUgyhtFAQmoLHl1NyKoym4Oz+2Bm2MjQ2jmZ9xxfeeQaToTG1PxP4vva5wLUgxxMcQbRV7iva0HwJLQtlr1x66aUaHR3VMccco5tvvlkjI6Was8PDw7r55pt1yimnKJlM6h//8R/D+HWYRKqbgnPijys7ndPW7OSTl7063w89NKKtEEK6d9qqSTpumkynE84NSrFIMCsq/vXmP+mKBX/Syd+6U1IlUyuTSrgmGGs128t4moKb/ZxJh9gU3P6aQ6ct7D9rIxka7h4a1Rka3pX3E0kwGRErzX4e+9LesmbuY2ywL6UzD91JkjSaJaARZ7WCk0Fjzl23mqIzyvvfsGPj3vMDY4p4MburHT00KiWHQn9rtFkYzeKd/c9gMXbGrKbgG0dzzmfYr++FE9AYmzhDw16HawdR29XrD+1Ryfzu8obAV2tF68sOP/xw/eAHP9D555+vk08+2Xl8+vTppV+STuunP/2p/uIv/iKMX4dJxDshMcJqudgKmlsyqxNaXS3lN7Flc/fQYAARNc2WD7HZ9WsrPRmSrhUV+WJRyQabyCJ8tz2zUlLlhsAuOWWvoK6VoVFpCu4uOZVJhldyyp5tZ9Vle9h/1ol6aPR5emiYn+ZdGRqlz37jGRqlf9nP8WD2UqMZfd4MDe/3kjRQDqRuJqARazV7aNQoczrFc92xSwh5gySMJ+Ml76y8Dn8cWLkPIaIRN34lhhplbjXI8owfewHUxrGc1VOlcjw4GRp5k6FRago+tUZAIyjgnaE8XayYfZ4iQyOSQgloSNLf//3fa968efrud7+re++9V6tXr9aMGTP01re+VRdccIH23nvvsH4VJhHvhMTmbF6FQrHhlZfovqBBYrMNXIPeP2hljP0oGRrR46yqbuFmwg5qOQGNZNK14ipfKKrGon90yMi4O2PLBDYzaXdAY6hWySlPU3Cn5FSbmu1xk9oe9t/V++nPJIMzNDJWsCOcHhpkaMSJOW4avWJUBzSq38EEUjePM9kQZ7WCk95ydrZ0Kqn3H76zfnXfK6X3cWVoUHIqzpzSQm2Yl0o6Y9Dw3xvtVfBZkd+oyhiCc0LcuAIaVg8N+zzhDUKYyhPTawU0Ao6FicpkI1rMfqQpeDSFFtCQpD333FNf//rXw3xLTHJ+gYvRXF5DfaEeuuiAoDGiU3KqxbsLv+awNleGBimekdNsPXRbyi+gkU64MzQYPEaCN9uuEoBKuFbODtSIPvU5TcFLrzW7ORNiKnfRCoVy5LSHfb/nXTVblaFh99Cwxgf2Krfme2iY7als0MbRrBY/u0rHvWlrxh0RU8nQaOx13gCGX4aGKXVHU/B4q90UvPaY84r37KffPrpMG8dy7h4anslq5i7jxW/ldVhSlByKrbxzXDT/HpQci69xV8mprLOwJeHK0KiUnCoWi3X10Ai65wyzNC7aL9fkQil0BnkziDS/5lzDY9xgxlFQenfoGRqBTcGt38nNRuSYXdLKYMFMaOcKRWcyO5PyZGiw7yPBG9AYt/ZXvT00vBka5hxgJr3DKBdjHy6sumsP+6/q/fh7J5v7MxP30Cg4Nx6NDXETPqsrP3nj4/rofz6sT9zweEPvhQ4wEw4Nvsx7TPmNPQbKx9koZU5jrdYp2xss9ZOscX4xWCQRL3618cNSWVjFJGXchNEsnrKV8TVuLYDaNJbzLUGWthp5j2YLzrm/Vg+NoGPB3KdkcxwrUVcsVhZJkqERTbELaFx//fX62Mc+pnnz5mn69OlKJBL6wAc+4Pvcl156SYlEIvC/M888M/D3XH311TrssMM0depUzZgxQ8cee6xuuummwOfn83l9/etf1/7776/BwUHNmjVL8+fP1913393y//Nk5jew2MwNZiwFXQOyIffQCKpXWXStsGMAETVh1K81mRhj1qraqh4aZOdEkl1yyi4rVKvkVMaboVE+drac2iepFOj41qLnQttGThvtYd/weQPf3uuCO0Mj6VoxZ1RWUjW2HX4lp25aslyS9NvHlum/Hni1sTdEW5nsqXb00Bikh0ZPqDWx2FfHCcKcf1wZvpScirVCCCvxg7BCP778VuQ3yux/ypPGT9bTFLxQqD5PpK0yUaZ/RjJR+z4lMEMjRYZGHBQKRb33e3dr3Uh5fxPQiKRQ8ud32223CZ+TTCY1ffp0vfnNb9Z73/tenXbaaU39ri9+8Yt67LHHNHXqVO244456+umnJ3zNAQccoFNPPbXq8X333df3+ZdccomuvPJK7bjjjjr33HM1Pj6ua665RqeccoquuuoqXXDBBa7nF4tFnXnmmbr++uu1995764ILLtCaNWt07bXX6uijj9YNN9ygv/zLv2zq/3ey85vkHsnmfJ6JqGt3D42J6lHaD1OzMnoqNxPNv4c5hMaylQFiXyrpGpAy+RBNrpJT1kRTrZVPlabgpodG6fEp/ZXXfG3hs/r42/Zservsw4VDpz1qrqL2XBf6PT00zOSUXw+NdIMZGn6rK5OJyrnpn25YojMO3amh90T7mN3Ueg8NmoL3qlpDvXrGnN4msFL1BFXQIhpEU2Wisn1NwTkm4ifvM4HdKHqoxJcdWMgXihouL571awqeLxS1ccyUm0rXDIIFnQrMwq1xDpZIW7Z+sx55ZZ3zfT0LIdB5oQQ0CoWCcrmcli1bVnrTdFpbbrmlVq9erVyu9IHffvvttWLFCj366KO65pprNH/+fP3P//yPUqnGurN+/etf14477qg99thDf/zjH3XcccdN+JoDDzxQl19+eV3vf/fdd+vKK6/U7rvvrgceeEAzZ86UJF166aU6+OCDdckll+jkk0/WnDlznNdcc801uv766zV37lwtWrRIAwMDkqTzzjtPRx11lM4991wdf/zxmjZtWkP/r/APaFByKp6CLvhh9dBwBhoBs2OuFXakg0dOmBkao1k7Q6OUkZdKJpQvFMnOiShTIiydcgc0pg8E16Y1kwcmI8evRGGYWHXXHpWV9tU/804229k7qWRCiWL1hGOztW4rqysrj82a0q9Vm8Yaeh90RrM9NLw3pH6lhypNwRlvxlkrPTSkyjXFfp+cZ/zIkCJezP5qx0rb5AQLq9Bd60bGtWrTmPaYXT0fQ8mpyS0oU6LPtYimnBGcr/TPmFbjHkUKPhZMhjkZGtG2bN2o63u77C2iI5S9smTJEu2www6aN2+e7rzzTo2Ojmr58uUaHR3VHXfcoXnz5mnHHXfU0qVL9cwzz+ikk07SggUL9M1vfrPh33Xcccdpzz33bCklsJbvf//7kqTLLrvMCWZI0pw5c/TRj35UY2Nj+tnPfuZ6zfe+9z1JpewRE8yQpEMPPVTve9/7tHLlSl1//fVt2d5e55uhMU6GRhwFjRHDztCoq4cGNxuRUwyhDIC5mTSrahOJynHhNGtk30eK2d/2qvo+V4ZG8M2CN0PDDoZtP6N0Ld5qan9L20dT8A4wE0w+47qqpuDWzWVQDw0TsG70mpLwmYyYPkgj8Kiq7KYGS06lG2gKToZGrNUKQnubw/vxG1eaeIa5TjGmiJd2lpyiKXi0HfzFP+jtX1us597YWPUzSk5NbuMB5Yj7PYtopFJQe5MT0Kg9Rgy6PvR5egAiml5dM+L6fqBGX0d0TygBjcsuu0zr16/XokWLNHfuXCXLq2STyaSOPPJILVy4UOvWrdNll12mPffcU9ddd5122GEH/epXvwrj109o2bJl+sEPfqAvfelL+sEPfqAlS5YEPvfWW2+VJJ100klVP3vnO9/peo4kjY6O6u6779bQ0JDmzZtX12tQP78Vt2vLdewQL0Er783K2lZ7aNg3nn6DSXpodN9Lq4YD//aFGpOa9TLzUqPlklOZVNK5OZko4IXuGOor3QzkrVX19qR1PSWnxj0lpyTpc39ZKim548zBlrbP1RScY6ctnIkEn59lPGWjBtKVm4lSD43qCaRWMzTM9ty0ZJleWDnseg7nj+ioldlTS3/afUPqN7FdCWgw2RBntUtOTXwLbJ6S98nQMNcpVmPHSxjZwEFSpik4q64jyVy/73lhdeDPWjkuktxnxFZQpoQ9gZ1xmoJXemhMFNAIOhTM/UuhyPESZd5F1ANpAhpRFEpA47//+7/17ne/W+m0/4e6r69Pp5xyim688UZJ0tDQkN72trfp2WefDePXT2jhwoU677zzdNlll+m8887TAQccoOOOO06vvPKK63nDw8NaunSppk6dqu22267qffbcs1SH297u559/Xvl8Xrvttpvv/7/fa1A/vwmJVRsp/xBHQXNLuSZX03rZwS+/sQE9NLrrxodf07FfvV2XXveY78/NTWYrq6NMg2CToZGxjikCGtFkSrvYAY36e2iU9um4T4aGWVU1FuLqJw6d9qg1Me3N0Nh6WiXjxs7QyLlWUDcb0Ci/vnwuuuA/H6l6DqvpoqPZHhoDnpIBfhPb/fTQ6Am1gg2ZdAMlp3x69JjrD2OKeCmEUFooSCVDI/S3Roj8TgvOcdFSHz/3ogjER9DYzs4YN/eYOU8PjVr+Zf6bJEkfOmpX9/ta1x/KTkWX9x6ynsxOdF4oufSrV6/W+Ph4zedks1mtXl2JiG+77bZOf412GRoa0qc//WmdeuqpTuPyJUuW6PLLL9dtt92mt73tbXr00Uc1ZcoUSdL69eslSTNmzPB9P/P4unXrnMeaeY2fsbExjY1VJuo3bNggqfR3y2Ynb0ZCsVB9M7lyw+ae+ZuY/49e+f+pl/3/mytfyIvFfEt/h0SxcqwMbx5zJkorv6fy82yuMOn+5t32tYWloO6NjyzVv733L6p+Pl5eBZFMNP95SJYnRjeMlM6lA5mU815O9sZ4vM6pvXiOsLOlhsr7aCxb2v8JFV2f5SmZZOD/u5mPGDWvTRQr+ztROq+MZVs7rxQKdqPA1t4L/rLZnPW1+++bKLpvJmYOVs7rGzePOQ3gc/nKvhk3JedUbGh/Fcu/K5cL3s/Do2NKJ2rXTO6GXjxPTKRyTW9sP6c8s1kJn7FHJlF6zubx3KT6m/aasfHKvjty9y111/OV+9BEceJxoLnGjFn3YpWARmlQkc3F4xiZjOcIP+PmelNs7LxRj0R5DBqXY2Kyyuerz/nZci+2lo4LM4bwef+4mKzniVGfcuZ96aTy+ZzMUMOMR7O5vNYNl+4zp/Slav6t3jpnCz182XGaNpBxP8+6txgZHVNK0RtXovq4aPfcdVw0cp7oxLkklIDGbrvtphtuuEFf+MIXfBtfb9iwQTfccIN23bUSnVy+fLlmzZoVxq8PNHv2bH3+8593PXb00Ufrlltu0VFHHaX77rtPP/7xj3XhhRe2dTvq8eUvf1mf+9znqh6/5ZZbNDQ01IUtiob145L3MH3k6ee1IPtcV7anXRYuXNjtTWi79etSMmspFyxY4Dy+YWPp8Qfuu1ernmr+/UsrokrHyk03/5+meMYGL7+SlElKW7FypWsb0H4bNvnvf+O1YUlKa2xstOl9s6F8jC3503OSklJuzHmvXLb0s9v/+Ec9E8NTai+dI8bykvms5kaHtWDBAv3ptYSklJYvfU33519xfv7c4w8q+5L/+yxfWvpMv7FyjaSENqzf4OzvlzaWfse6jZta+qy//kblvPHiiy9pwYIXmn4v+FszJklpqVCo2ldLVpeOC+PuxbfLHBt3PvCItuqXpJTWrqvs+6fL5/rXXn1FCxa8VPd2PPV6+Rh8/fXye1UPkW/+v4Wa3lf3W3ZcL50nJvJEeX+94eyv+qUSKeXLDeXvumOxnvVUpluxWZLS2rh5jLFCjL28SZLSmtlX1Bmz39CGNUk9vrZ0Pn/skYdVeLn2UuqR4dK44e577tOqp0rPHR0rPZYbH5WU0MOPPKrUa9XZXFE1mc4Rfh5dUTpvrF4V/n3A8mWla8+TT/1JC9a3cEODNild05988kktWPOE6yd/Wlo6LpYtW6oFC15t6t1fd/b/U1qw7skWt7W7Jtt54pmXK2N9I1XMu84Rj68qHSMrVq3WI+MrJaW0ZsUyLVjwWsO/r2jNWSz4v4WaRjwjkp56zX0PwnjQrZ7zxMjIyITPaVUoAY0Pf/jDuuiii3T44Yfrsssu05FHHqltttlGb7zxhu68805dccUVWrZsmb72ta9JKq3OvP3223XggQeG8esblk6ndc455+i+++7T4sWLnYCGyaYwWRde5vEtttjCeayZ1/j55Cc/qYsvvtj5fsOGDdppp530jne8Q9OnT5/4f6pHrd40ps889EdJpfTgfKGorbbZXvPn79/lLQtHNpvVwoULdcIJJyiT6e2r2dVL79dLm9ZJkubPn+88/u9/WiyNjWrekUdq/x39M53q9U/3L1SuUNS8447XttMHXD+7+zdPSm8slSTNmDlL8+cf1tLvQmM+/citUnllnL3/jSeWbpCW3KuhwUHNn390U7/jP19/QM9vXKvZO+wkLV+qLWdM0/z5cyVJX3z8dg1vGtfcI+fpzdtVB96jqhfPESs2jkn3l87rW2+5hebPP1zP3/a89Orz2mWXnXXMYTvpK0vukSS956Tjtd2MAd/3eeCmP+meFa9qaNp0adNGzZw5Q/Pnv1WS9KflG/X1J+5Rum9A8+cf0/S2/nbtI3pi7UpJ0s677KL589/c9HvB32trN+tzD9+hVDql+fNPdP2s708r9LNnH3W+f8cJb9enH7pdknT8EQdran9a3/3TgxqaMlXz5x8pSXrqluekpS9q913naH453b8e6x94Vde9+CfNnr2N5s9/iy6855aq58w79jjtsEVrfVnaoRfPExNZfe8r0otPa7vtttP8+Qc09NpPPXKrNpabep7wtuO0vWefvr5hVFc8uli5YrLqmER8PPjyWunxBzR96hTNn3+UFm5aosfXvi5Jeuthh+iYvbau+frvvXC3Xt+8SYccepiO2mNLSdInH1ok5fPaYtoUrRkb0X7776/5b9mh7f8vrZqM5wg/ww+9pl8//5S22Wa25s8/KNT3vvN/ntT9K5dqz7321vxjdgv1vdE6c01/8z77aP4Ru7h+9uriF6VXntPOO+2k+fOrs8jrcfuNT+iBVcu0195v0vx5u078ggiarOeJRxY8LS1zl6KfOtiv+fOPdb5PP/WGfv7cY5q+xUxtt+MM6bWX9Rd77qb5J+7V1O+89IGFyuaLOvrY4PscdNczf/iz9GplIZvf/MVk1Mh5wlQdaqdQAhoXXnihnnnmGX3/+9/XBz/4waqfF4tFffjDH3YCBytWrNBf//Vf64QTTgjj1zdl661Lg9jh4UrDxylTpmiHHXbQ0qVLtXz58qo+Gs89V8oK2Guvyolr9913VyqV0gsvvKBcLlfVR8PvNX76+/vV399f9Xgmk5lUFxSv/r7K6qm+VFKbC3kVpJ77m0yG/WzXq7X/X03t8/6+1v8G/emkcuN5FZT0eS+7XmWx5//eUTNq1aH0+9snU6UVEMlEoul9ky6XgNg0XvpdUwbSznuZ2qfJVCqW+76XzhG5YqVEZcLs70Rp//SlU8pZn9XtZ05x9qtXX/l6O543NbErn/uhgdIy+rFcoaW/m93TJZHwO6+gVel0KR05oerP/kCf9/s+XXfeEXrs1XU6cd/t9cBLayWValab1xbL+6wvk25of5njSTXOQf7XlujopfPERJLlc7r9ua/XQCblBDQG+/uqXj+9HN/IFYpSMuXq64P4KJavJf2Z0jEyZNU732LKwITHTaq83xPWMWZKTvWVm4MmEvEaU0ymc4SvRGm/pZLh77eMaRjLWCHSkn77vjxuSKea33emH1OiiWtS1Ey284TJ2LT1Z9zHSb+5BhSlzbnSdWDaYPX4oV59qaSy+bwUs2vIZOItfM9+cqvnPNGJv1loI/Tvfve7Wrx4sc4++2y95S1v0W677aYDDzxQZ599tm6//XZ9//vfd567zTbb6Mtf/rKOP/74sH59w+69915JcnprGGabfv/731e95uabb3Y9R5IGBgY0d+5cjYyM6I477qjrNahfymq+Yxoo5ei2Fkv2xKBdQ9/cHHqbvzZjoNzIczRb3WDLbg4ZZqNg1GeiZrpm//j0Z62bCVqYiaohq49Kyqd5MLrD3gXm63yh0th73+2n65BdZuqMQ3YMDGZIUiZd2qdj5drHKZ+m4K02cS66tpVjpx2c5s51NAVPJqVD58zSOfN2UyKR8P1c55wAV6NNwSdu6DlO88bIcHZTE0OHjL3AwuccM9BXeYzG4PE1Vv68mn1s3z/sOXviTE1zDin4jFnNPQnXhXipNAUP/73NGIRxZrT57R2zy5ItNIt3zhfs/9gZGS/3XrN2f3/afZIw49FcvuDcdwxkmj+RZMx9CuPKyMrm+CzHQSgZGosXL9b06dN11FFH6aijjgrjLUPx8MMP68ADD3RWcRmLFi3S17/+dUnSBz7wAdfPzjvvPP3yl7/UFVdcoVNPPVUzZ86UJL300kv6zne+o/7+fp199tmu15x//vm644479KlPfUqLFi3SwEApbeyBBx7Qtddeq6233lqnnXZau/43e5o9QeUENBgoxJI9RMwVisqk3AP/dCsz2WVm8GEGGjb7qMkyeIgc52bCb1azTmbuc9NoacX3YKZyiTM3GnnOH11nBzTN1+YjmU4mlE4ldf35cyd8n0zSHbRI+gQ0/M4FzeLIaQ8nmOnz2fdeF7xBCnMdsc/pzoRVg+cS8/RaE5StBsgQHicQ1sRr7SDF9MHq1WN9qaQSidLvGM3mNX2AVXlxlM25Axpv2m6a9Ii006xBzRiaeJ+ac5I9ZMx5moLnCWjESq3rTauY0I4uv3GnrXJcNP87EnUsikA0bRor3TduP2NQS9dtllRZJGmY8Wi+UNRYeeGk9zmNMNcQxpXRxXxRPIQS0DjuuOP0kY98RN/97nfDeLua/ud//kf/8z//I0l6/fVSHdR77rlHZ511liRpq6220le/+lVJ0sUXX6znnntOc+fO1Y477ihJWrJkiW699VZJ0he+8AXNneueNJk7d64uvvhife1rX9P++++v008/XePj47r22mu1Zs0aXXXVVZozZ47rNWeeeaZuvPFGXX/99XrLW96iU045RatXr9a1116rfD6vH/3oR5O6D0Yr7MmLvvKJn5NLPNnjO9dqt7wJaHQuQ4PVENFTDOEm05uhMaW/MtBME9CIDHeGhglolD6TjayqN6ulzM2Ae2VVyvlduXyhZqZHLfbR4ncTjNaZv6rfns94MzQ854dB55xfmaDONXEs2e9tjk8zoW3jxjM6nOOmiWvG8FjlePE7ThKJhAYzKY2M5zU6zj6PKzPWMwuizpq7q/bcZprevG1992SVcUPpfeyJanNuYvI6Xsz+amUlfhBn4QxjhciZaOzvHBct3IMk61gUgWgyY4JtZww4AY2gDI2slaHhfU4jmNeKPnvM/9bdZnVxS1BLKAGNrbbaSoODnWmS+Oijj+rqq692PfbCCy/ohRdKDVt22WUXJ6Dxt3/7t/rv//5vPfDAA7r55puVzWa1zTbb6IwzztAFF1ygefPm+f6OK6+8Uvvtt5++853v6Ic//KGSyaQOOuggXXrppTr55JOrnp9IJPTrX/9ac+fO1U9/+lNdddVVGhgY0NFHH61PfepTVUET1M++0TQXGSYk46/gs9qt0cknP321MjSsw4ZJqeixJxGbZQaW6zaXVtrYJaeSBDQipLIPzLnAjOcbOQ+Y1U1jPhkafdZNxliu+YCGrcBpoy2KNZbae/eb9/jwC2I7ZQwbDWgk3dszlElpeNx9LaFcYXSY/dTMJaOeRQ0moEHJqfgyE0Vm4qgvndRxe8+u+/WVcUPpeztD3PTQYEwRL2FkAwchEzi6JqruEEqWOBk6sbVxrLQQblurOffsae5G3fbCODMWNIunmmHuUwhoRJe9b77zNwd1cUtQSygBjWOPPVZ33313GG81ocsvv1yXX355Xc/90Ic+pA996ENN/Z6zzjrLyfqoRzqd1kUXXaSLLrqoqd8Hf3bJiF22HNJDL6+lh0ZcWbvNXr1kVtOG0UOjv0aGhr26OssxFDlhlAEwAY21w6Wm03bJqbRPLWx0R1gZGhlPhoZdncg+n7RyzXCVKaDoVFuYv6p/ySn3Y94yUiagsTmbV7FYVCKRqPTQaPCaUsnQKAc0+tNVAQ2C4dHTzCVj3x2m64mlG7Tt9IHA59jHFuLJ1L/ua3IVrTnf5J3rlBXQMBkaXBZixezDEG45qjg9nbjHiBz7s+t3G5AP4R6knj5ciKbhckBjO2tMsP0W7sXaZoFNzio51UqGhnMPQ0Ajssy++ewp+2jLqf1d3hoECaUl1he/+EU988wz+vSnP61sNhvGWwKS3CnBB+60hSQpyzLZ2DMDy2Kx6AQX/BpzNmqgRoaGPcBkUip6wqhf259x99mxS06ZGw168HSf381kM5lamZR7f9s3ovZEeCs3C+5SeU2/DWpwVtr77HrvdcFbJmTQysIyK+aazdBw6l9b/Vy8yNCIjlZ6aPz0rEN16oHb66t/dUDgc8yxtXmcgEZcVZqCNzew8K64thfjmHMTiyTixVuGLEwsnIkue+zvtzgljGbx9fThQnv9/K4X9c5v3qFVm8YmfO6msZxTXmpTuVTxdlYQY/st/DM0cvmiRk3JqVaagtNDI/Kyzhgi/OsFwhNKhsaXv/xl7bvvvvrSl76kn/zkJzrggAO07bbbVtW1TSQS+slPfhLGr8QkcuM/zNXoeN65eLDyJZ6KrjIzpa/tTIkwLha1MjTooRFtZve0lqHhTv21JzvT1LuODPuzaL42/zYyCe0tR2SPORKJhDKphLL5opMF1ipuUtuj1sS0HeDyC3YNWJNSo9m8BjIp3wBXPbz1r+3rk1nRT2mA6DBjimZ6aMyeNqBvnPmWms/x68+CeDFNwfuaLAviLVWZt84JZmUuiyTiZTzXvoCGuUZxnYieiTI0wrgH8WZ0ofMu/9+nJElXLXpOn/vLfWs+98SvL9bSdZt19yeOdzI07KzNHWd6MzQqC+OcpuAtlJzKOD00OF6iyuybPgIakRZKQOPnP/+58/Xrr7/uNOv2IqCBZhy080xJ0uJnV0ri5iGu7PFd3pkwqgz6w7hYTOsvndI2jlZninl7aJjyJOiMVDJRs66w+Vkr+8Sb+juUqQw0udGMDvuzaA4JE6hupFFnn2fVrXcRbiaVVDafb7HklP1N02+DGmo1d7ZXVnvLTUmloJYJXK3aNK5MKulcXxruoVF+f7PPTSDsNx89Uv/+f09LIqgVJa1kaNSDgEb8jbeYoeHUTC8fbHZw3EyI0y8hXtq54tbJGmWCMnLsz65fwCGMexAzfmWY0H0TLVxcuXHMyc54atkG5/lbTu1znlNVcspkaBSspuAtZGjQQyP6nOtFmvmiKAsloPHiiy+G8TZATU5knBN/LOV9VmXbF/Fmbzht0wczkqT1m30CGp7ZyGy+qD4uUB2TSiSUrzEjHErJKW9Ao69yifOWJ0L3+GVoNDMJnU56yhF5bkTNe4VXcopjpx0qKyOrf2Zn4QSVIxvIpJTN5/T2r/1Rg5mU3rrbrNLzG5yw8mZomEmpGYMZpZJMXkaNsyfadBk3ExX00IivrNO4tblJJ3NNyXtKTiUTVj11Jq9jxdsoPkxODw2uE5FjX7vzPp/ZUEtOsf+7bqLA1Eurh52vh/pTzvGxxVDGeXwbT48tMw7M5UNqCp4ioBF1JqPPe7+JaAkloLHLLruE8TZATeZkwkAxnuwBnlkoYyYa7ZvDVsyoEdDwVp3J5gttSTmHv2RSUnleKF8oVk1OmknNRnooePVn3APLIauHBgPH6LDjAubrfBNlgtKeIKj3Bibs1ZJcedqjEijyydCwzgdB5+uBTEoby/WPN2fzenzpekkt9NAob4+5PqVTCSf7h/FHdIRRIqSWQZqCx954i6vxzcucgIbTnydZyd6gr1+shNm3z8tewY1osceBWZ/rOCWnestEw7+s1bcily86+2zWlD695y07KJGQZk9zN4Ee6quMCcz9RxhNwenNFl1mzE8PjWgLJaABdEKldiEn/jiyB3iVklPhXihMQGPD5lzVz7yrq8dzBU3pr3oa2qQvlXR6m2wazWmGtQpGquyfUEtOWT00zMCR5mvd5+qnU/ROFDVScsqboeH+eSaEIFbRlU3S9NugBqd00AQZGkHHxqAnkLlq07ikxoOjSSegUfo+Z02GmpV5rLyMDuea0ab3pyl4/JmJouYDGu4gZ6U0Ious4qrVIFctZAJHl52h4VfpIZSSU56yleieiQJTdlCrVIa69HU6mdTX33eg72umDZSmTfOFotaNlBZOtpKhEcY9Ctor18S9KTov1IDG8uXLtWjRIi1dulRjY2NVP08kEvr0pz8d5q/EJJJJkt4dZ3YcymkKngs39btWhob3qKExeGfZN49vbBz1CWiU/g2z5NRgprrkFM3Xus++1/dmaDQyCe1dsV9VcioVbt8USk61h9Pc2edndhZO0ETDLlsO6ZU1I1WP+/XcqMUcesViUflC0TlOSwGN0tdMVEVPu1ph0UMj/p5cVsrW2nnWUFOv95aceub1jZKk0WzBOTdRhi5eOtEUnNLI0WNfu/2u407JqZYCGu73QvdMFNCwP6Ojuco1vtb+H8ykqvpBDrTQQyNjemiw0C6yTAZmKoSy6Gif0AIan/3sZ/Wv//qvyuUqK6PtprvmawIaaFalqS8DhTiyB3hmMOCslArpxsKsnvBvCl6doYHOsTN0Xl8/qr22meb6eaWHRvODBu8N6hSr5FSG5muR4c56MM1WTUCj/nOBd2WU96V9Ya+W5NLTFrVKPWSsnRp0ajhyj610x3Orqh73liSbiJ2hYWeCppIJZzU2ExXRUXQyNNpzozlAyanYMwGIg3ae2dTrU0l30OLj1zxS9TOCnPGSbbFRfC0Zp9cjx0TU2JPQfvcBYfTxSyQIckbFRLeS9lzSWNYa79U4LyQSCU0bSDvZGVJrGRr9LLSLPHMuJ0Mj2kKZRfzVr36lL3zhC5o3b56uv/56FYtF/d3f/Z3+8z//U+eee66SyaTOPPNM3XrrrWH8OkxSGWc1FBOScWTPA5nJ7fFcuDcWZgLCrx6ld3xJhkZn2U343tgwWvXzYgg3E96BpV1yih4a0eGXoVFwAhr1v0+/Z2WUdwW/k6HRQvDSPm8xmd0etUtOVR4MOjccuftWvo83WnIqYa2utHd1KplQMslEVdTUOm7CYEpOjWa5ZsSV2XdTB5pbv+cNaIxY5cfSSSYv48hpCt6WDA1KTkWVvUjBr3SkkyXcwv1opURd02+BkEyYoVFoPENDqiycNLz3IY0wlQOYj4iuZqoHoPNCuZp/73vf04477qjf//73es973iNJmjNnjs4880x9//vf10033aT/+q//0oYNG8L4dZik0iE3eEVn2ZOBTsmpkGvZmpJD/gENMjS6yc7QGPGpSV5wJqfC66Ex2GeXnCr30GDgGAHhZGgMeAJY3hsRp8xYSHeXBDTao2bJKesmImglflA5mUZXVNkZGva+TiYq78UxEB1OK/k23Wea8wsZGvHVankhb5PffbabXvmZkzXOmCJOxnPta/KaoddjZNmBR7+m3WHUyrfLVqK7JtqN9lySvWhhoonr6QPucsmtlMzOpOntGHXmXNFKKTq0XyhX88cff1zz589XOl2ZPMrnKzcAJ554ok488UR95StfCePXYZIyg4wsA8VYcgU0yl+aNMuwemhUAhrVExDe8SU3oZ1lr1jzmyAKI93bu1JmiqspuKlVyo1Gt9nxBbPfzb+N3Ex697f3pWlnn7eQoWEFX7hHbY9ijWCm/VjQoeFdMWc0EhwrvX+lRKp9jCYTCednrLyNjsrnsT03moN9peNnlKbgsVQsFp0FDM2OMZ0V1+XP/R6zp0qS/u6IXcjQiKmwF1LZ0vR6jCz72u13+5dvYlGNFyWnoiM5wb2EPQdg98maKKAxc6jP+bovlZzw99RCU/DoM5/lRkvYorNCuZpns1ltueWWzveDg4Nav3696zn77ruvHnvssTB+HSYpGvDFm6vklCdDI6zU735TcsqnRAQZGt1lp3hvrpGh0UoPDW/JqUG/gAYDx65zl3Eq/WsmABq5OfBm5HiPnb4QVkv6bSvCZc7NE330g7K3go6ZxjM0KttjXy8SCcrLRJGT2dPmpuBkaMSTnY3Z7Bgz6XzuS9+bia+9tp1WyRrnnBAr7S05ReA7quxrt1/JqTBq5VNyKjomLjll9dCw5gMm2v3bTB9wvm6l3JRUOQdxXxpd5rzQSqAT7RfK3tluu+20fPly5/udd95ZS5YscT1n2bJlrgwOoFFm5Us2XySdM4bcGRqepuAdKDnlPWQIaHSWPXgc9c2gab0puD3BnUomXKsyGThGh30uMPs930yGhieAVdVDI2nq04Z1veC60w71lg5q9H6i0ZVzCbvklHW+SiUS1sQmx0BUOJk9bXp/moLHmz3G8wa/6+UtOWXGlv3pFEHOmHLKkLWzKTjHRORMXHKqdFy0UiufklPdZf/dzb4YGc/9f/bePF6Ssjz7v6r302edMzsMMMMim4Aosu8q6qiJURLJ+2qC5tVX4xI1aDZ/0bxBja/gEjESd6Nv1IhxBVRwARSUxQVBYJBhgBlmhlnPfnqpqt8fVfdTT1VXd1d31/JU1/39fPgwZ5tT01Vd9Tz3fV/XhU/85BE8unfB9b1NaS9Ys5/x+ZzW1fZ43WRZ/HmQQHDAUQ5yPUJd9BCs6JjoCaWKeOqpp+K+++4TH1988cW47bbb8MUvfhELCwu4/vrrcd111+HUU08N49cxGUUOjuYNRPqQT5lQaIQcCk6b1rpfwdxTjOQshfjwTkP5WXgEndLuhLy4rJbyroUpZ2iog7zXoz/TPaGXhlalq+UUBTmzQkNlnMJ053Pf7eteBlNoyJ/XuHipIFFnaJDCz09RyKiPXCQKw3Jq18wy9i3UAFhrTZ7GTydRWk6Ja4LXmcrhl+MoQ8/2QfajOU8DlIkX+V5M5+IjNz+MD3zvQfzxtXe4vrfhytBwGhrdWDMuKTQGVHk5oeB8vaiKk+/IDQ2VCeVp/uIXvxj33XcfHn30UQDA3/7t32JychKXX345JiYm8Ad/8AcwTRNXXnllGL+OySjyzYQ3EOlDXkzqHoVGISyFBllO+YWCez7FExHx4X2/+mZo2KdjIIWGVOCultyTM2w5pQ6mj1qLzksvGwTvdFSr5dTgftamT4A5EzbB8nM6ff1PTtvg8/09NjRylKGBFsupPDc01IOa4FFlaNjriWVWaKQSRwGs9e1zTu/7Xz5+AGe+/4e4b8csAEu94zQ5eU2RJmoDBsV3ohjCmoOJBpftcYdQ8EGsZXKSypOJH/l9RwNtP3xgNwBg73zN/b3SfZvuCUGCn0fLjtvMoJZTvC9VH3q+s0JDbUJ5ml9++eVYXFzEpk2bAACHHXYY7rrrLrzhDW/AJZdcgte97nW46667cOaZZ4bx65iMIk/TNA2Tp+ZShmvS2V7t1Zu9FzE7IVtOeSW/LRkavICIDe9rv+zJOFmq6+GEghfkhobb4pBDwdVBPgO08as3e5+a9BYkvPvQQsiqHO5nRANdA92k/p2+/r4/Oglve+7TXJ/zKni64ZehoWnW7xUNDb4IlCFqhQY1TP0GJBj1oSy1ftUZgNPQeGDnrOvzlkLDscFl0gMN1HiHXsLAUe3wPUM1XEN1EWVoyGsIJn4a0vvO7zTKdQE/hUaQcy+vKwe2nGIrZOVhhUY6iCzUYtOmTbjmmmui+uuZDCI/aL5y5+O48voH8H8vPRl/ctphCR4VExTTZzEp+xGHgVzQruuG6+/1ri95AREfnRQan75tK668/gFceOxqAOGFgnubZCWehFGGznk6wc9/PqehmNfExsRb8HamJcOynOJNahQEzULo9PVCPocjVlZdn5Mn6YLgZGiY4pjofsQKDfWIOkOjJCws+ZmRRuohhD/T82jBM0DlVmjwPSFN0DAcZeSECWdoqIvRZS0XSoaGZFHHxI9LoWGvDArSpNNiXRfrwqaroWGd+yBKvpFi+31mr1COD68x1MXJ0OBQcJXhs8OkBnmRceX1DwAA3nndve2+nVEM92LS+r9QaAwo2yTkgrZ3qrIlQ4MXELHh3fDLFh70Xv7JQ3sAdJ/S7oQ3FFyGMzTUQb4caF8pfK173CBUpPe8dxLXkXMPYjkl/Zn3qJFgdqlMU+Hw6DVjHf8e7+ZypMeClbCLMNCiGOOGhno4KppoWhqy4pPg858e6iFYC5XyedffRZQLOSejia+JVEENDa+KNwyo6MWWU+rhsjr12QaEmaHBwy/JIA8v0Z5fblLI93FZRbXcDK7QkNeVva4xvbDllPrQfSEfUtYrEw3c0GBSgyYFczLpw28qu2YvIsohZWgU85qwn6h5bI1oz0mXEDc04sM7reQ9NzIDWU51aIwVWdqrDL4ZGrYVWK/2IPI5955/2pg2QrJ/8DZFmXCgV7WdOutzr342/vT0w/F3m4/v+Pd4J257tRShe48phYJTsZy8lbmgrQ5RW06VPA2NL/78MZz0nu/jrm37o/mFTKiEoQBu1wypFPNSk5PXFGmCFMKDFiP9YMspdeEMjeGnYchNq9aTIO//5EGnWg8KjbLc0BjQto5DwdXHUWhw/VFlQmto3HLLLXjxi1+MNWvWoFgsIp/Pt/xXKETmcMVkhAJ3SFOLvLYQllONcBUamqZJU5VuiwAqnFLRixcQ8eGdYOzkQz+I5VSnYngY0/pMOMinv0Wh0WtDQypWVTyFq0IYAZ2u7J/+/xqmPWLSvs3XzztmNd7/spOwadVox7/H28Do1XJKLkbQZpgVGuriCHuiVmhYa4n/75v3YbGu4y//3y8j+X1MuISi0Gjzs+VCjqfxU0i9aYj1aBQNDQ4FVxfXUJ3PczyMwqXI0OB1QiLICg3aZ8rnQlZbyt/bt0JjwIaGyNDgAUslMU2TMzRSQigdhuuvvx4vfelLoes6Dj/8cBx77LHcvGAiwdpA8I0/jbgyNIRCI9wMDfq7lhtGq+WUSV/PYbGus0IjRrzy604WDYPYVBakYri3Z8IZGuogKx0GydAA3DZD3gn9or0ADeucs0IjIoQaYrC/Rm5gaFrv/sb0+3UpFDzvydBgexl1oPdj1AoN71phZqkRzS9kQoUaUYOEgpfaPI/cCg2+J6QFOb9t0GKkH/ycUBfXUJ3PUBUNO4WSocGWU4ngZ20tq6Vky2H5PSoUGgEWE/J9IyzLKbZCVhP5espHtdBkQiGUrsN73vMeFItFXH/99bjkkkvC+CsZxhdWaKQXv+kYeogPGqwlI6YqG96Ghml/PQ+gwQ2NGGlRaHQYdR9EoSHj3VCIhSOf98SRTz+dpn6naUuuhkYUGRpy86Xvv4bpQDfLqaDICo1qMd9ztgL9ftlyyhsKzpOXChFxKDgNWtSahmsgg58h6YCCXgcpXHdWaJClId8T0gLlt+Vz2kBZCe0QoeBSgfKubftx28N78ZaLj3YN3TDxIu8J/JqQtC8ZTKHBllNJYvrUGeRzLT+75UEnqkUEqTHJ+4xebU29lArhDl0x4SI3wzhDQ21CaWjcd999uOyyy7iZwUROYZDxbSZR/C2n7Am6MBsaxXaWU9b/aTHCC4j48BYBO8nxe7Ucaod34kXkKfB5Txz57BumCdM0haKq12laWZXhVWgUQlDluO2xeJcaBWFNM45JCo2RPgJfXZZTInDa+hpP3qpH1BkashUmWxWmj+UQshI6ZmjkOUMjbdyyZQ+A/hreQRA2l9Jz4o+vvQMAsGqshD87a2Pov5MJhrzMkNccpmnidV+8B1t2zwPAQE0nYTnFa8VEkF91qjM02zQ0aq4/243OIAoN6XkyaE2KB+3URm6GcYaG2oRSORobG8P09HQYfxXDdMR7Q4liwoaJBncouPV/x3IqTIWGM1UpQ4saJ0ODFxBx0arQaL/YD2vR4C1iO6HgvNFIGve9wMSnbtsqPu49Q6O9QqPkMy05CLxHjQaRhTCoQkNqaLSziukEXXrUZAMcC4kCW0kohymaTtGsA+XmqndAglEfamh4nwu9UMr7N0PKhRyKnKGROh7aNQcAmKs1I/n7Cx0a3w/bBXMmGcw2Co0nZ5Zx0+92i48HsZzK8zohUfysreVzLe8LZfu5XkLB5cGZpcZg9xG2QlYb+T7OGRpqE0oV8TnPeQ7uuOOOMP4qhumIVw7IN5j04DcdU48kQ4MUGu4FAqkEyH6AJyLiw1tQ7tjQCEmh0Wi6fwcvHNXBfS8A3nfDg+LjYo/NzXKxeyh4fSDLKQfepEaDmLQf8O+RJ+f6Uf1RYdwwWi2n6P+s0FAHJxQ8GuRmKa8X0seSaGj0v75sNzSVy2mcoZFCFuxGxlufe0wkf39Buia8ik5+diSLK19Bup179yeDDFU5a4i+/wpmAFx7iy4KjeW61NBoBrcbk/eoe+bqfR8rwIN2qmO4FBrsEKMyoZydD3zgA3jkkUdw5ZVXsiUDEyne6V0O6UkPfv6ltT598zvhZGi4JyrJC5E8L1mhER/exVqnjV1YqqsWhQaHrylDp3VCqKHgZP8wkOWUZE3Q99/CdMJRQwz298gDDv00Rp0MDed5RX8lDVNwhoY6iDMR0TJQ0zTRCPcOSDDqsxSh5RTg3BO4oZEe5u2GxkSlGMnfLxe9esmOY6LHqwwmFuvuveJAoeD2j/qFjjPR47Kc8lFo1KS9wLKkuqRGR685bpSB0S8ltpxSGvkezvPTatNXhsZrXvOals+deOKJePe7343PfvazeMYznoGpqamW79E0DZ/5zGf6+ZUMA6B1ocFLhvTgt5gkG4c4LKdoUUObW15AxEfTCK7QCEt1xRka6tLpvl3ssaotNzHKLaHg4U7Vc90qGpxJ+/B2DDNLjZ5/Rva/pluW1qLQ4PuHKkRx3XgpF3Ko6wY3NFIIhYIPotDo1NDgXJ30QQoN2TYmTGQXgaZuQr70eOmZLIaPHREALNbdtkGD5PjlxVAE3xOSQH7Z6f0mDzTJ+/4ll0LD+nOQUHAA+Pj/eCY+edtW/M0LjhvgaJ1rjfelakK1ikJOi8zalAmHvp7on//859t+bdu2bdi2bZvv17ihwQyKVw7IFiDqY5ombn7gKbG5BFoVGt5C5CA4oeCeIrrpydDgAkVstCo02r/2YYWCkxLH+/d6raiY+Ol03w7iYSsjN0OrniBoel4MosqRj5Q3qdFgwh3AHQb9NMn9QsGpQFFgexnliOK68UJe+8/70C3R/RImEkQoeKn/hkan+4jIS+BiVGoghcZoRA0NeSDHWuc61x4rNJLFz44IABZq4Sk0NGkNwcSPKa3Y6Ry3z9Bw/uy1GO3Gi05ejxedvH6QQwXgNMy5HqEmNKzQ676UiZ++nuiPPvpo2MfBMIHwFjt50aA+tz+yD6/9j7tdn2tpaESSoeFepOp2UZ0K3TwRER/e1zrKUPBP/dlpeN8ND+BDf3KK6/OlAk/CqEKYfQE58HVyxG0jQf60g1lO+f+ZCY8wsxA+e/lp+Kfv/A7/9+Un9/yzmqTQMMUG1/4/NzSUI+oMDQA4feM07ty2n6fwUwhN4A6WocEKjWFBN0zM28XrsUo0DQ35evGGxbNNfrLIxW5ZobHgCYgfZA8iqzyZ+JF7hnSO/TI05pYbeGDnbMvPD7r/7BXR0OB9qZLQ3rEU0qAlEx19PdGPOOKIsI+DYQLRMjnBawbl+e2OmZbPOZZT4T8shOVUw71AaLLlVGLQxq6Y19DQzY4FgEFDwZ93wlo874S1LZ/nDA118G72Vo2VsXe+hv99/pE9/13jkhd2S0MjF27gHm9So0EUpkMYtb/4uLW4+LjW938Q5AwN2gxrHoUGFy/Vo1ff6174yGXPwNn/8qPI/n4mOpZFKHj/awqv0hMADpmsAHDWFNzkVJ+P//j3+MRPHhEKjbFyeENUMvmcBk2zniGcoaEWrmK39OeFEDM06Gc5aysZuik0aN//5Tsf9/35uCfx5Ywu0zTZ1kgxaAAyrGxPJjq45cSkCu9NhQtM6uPnVUvrCwruDtNyqlRwW06RTQxdKxUOBY+dhr2TqNjNJr1DgbkY0YKSMzTUwXvbrttqqpecckjPf5fcDJ3wTF0WC4Ofc/lQeY8aDYZoHiR7HI7llOmEgtuXlyhU8JpDGeK4bg6ZGsF5x6yK7hcwkRGGAnh6tOz6+NXnbMQNf3UeAFZopIkPfv8h0cwAorOcAuTmt2eoiiUaieLKcZTes94MjUEC43NsOZUorgwN04RpugfoaN/fbsgpboWGXPvgmoR61Js0jMnlctUJ5Qx97Wtfw8UXX4wnn3zS9+s7duzAc57zHPz3f/93GL+OyTCFnNdyilcNquPX0KCJiXqEllO/fPwANv7t9dj0dzdgy+45saipFguu381ED23kyrY6JkqFRjtK+XCn9Zn+MT3SOjonQQP5ZOTQVu+1U8iFazPGGRrRQK9q0jNQsl0EnWsqUIjiJd8/lCEOyykAePbG6Yh/AxMFtMbrFOzdjamRomti+/SN05iqlgBwrk6aGS1F2dAgq0v3dcH71WTxFrsJUnIREyP9XxuybSWTLFYWmvtz9ExYOVry/ZlB1Dn9IGc0eXM/meRxFBrc0FCdUM7Qpz/9aRw8eBCHHOI/XXnooYdiZmYGn/70p8P4dUyG8Ra8eB+hPn6BjF7LqX4CXNtBzZGbfrdbfO6q7z8kVAEjJbYeihvyoSTrhygzNNoh20NwASJZvM4LNMnYz7lfN1Fp+zVhMzbIRkHamPIeNRrCtJwaBM0VCm59TjQ0NFZoqIZojEZ83YxH5LfPREtD+F8P4Imf01zFL3k9m28zic+oj9+gVVjI9oTyWpOVPMnSTqHhXR8Osg6h9QLvMZLBG/zuPQ+072+3/4+7oSErzL022UzysOVUegilivjb3/4Wp512Wsfvefazn4177703jF/HZJi45YDM4PjVf7yh4INM0Hnxs69abhpiIoczNOKHFo8jQqHR/rXvZ0o/CEXpGuNznyzeWwIpNPK53u8Df/iMQ/DHz9qAq/74lJavTduFqH0L9Z7/XsJ0/Zk3qVHgqCGSPQ7599MzimobbC+jHnEpNMJcnzDxQeuOQc/f6nHHdkq2Kmo3ic+ohZ+yMlLLqTyp+Qy2OFUIt32o85E8Gb9qzG0x1yu0TuC5h2SQz6vf8Brt/ah54FVq5GMeqtE0TQx08pCletRZoZEaQjlD+/fvx5o1azp+z8qVK7F3794wfh2TYfzsaHgSQm38JlqdhoadoRGqQqP175J9NEdKbDkVN7Thr9gNDcNsH5oXleVUtehMVno9c5l4aTfl3k/DupDP4YN/fAoufdaGlq+RemPXzHIodlH8qIkGx3Iq2Y6GHC5Nz6i8x3KKwz7VQVw3EV82YVpiMvFBa7xBixHHrBkTfx4p+ik0TLYjVBg5OwOwGlxRNilpDds0TG5oKISr2O3T0DhksoJvvemcgX4HW04li7dp5R2eEw0Nu/ZQLbuf7XErNAAp99NjfcYkD9UuuKGhPqGcoVWrVuHhhx/u+D0PP/wwpqamwvh1TIbxK3hxYVpt/CZaabEnMjSKYWZotP5ds8tNUaAiqfkSLx5igxaVFUk9o7dZ8EcVCp7LaajadhELNT73idJmrxe2OmfNhDVtV2samFlq9PV3uCTsvEmNBNPpaCSK3NCg51ZLhgY3NJTBUWhEe+H4FT+5saU+QqExYDHiaevGxZ+rkuWUbEPBl4O6eNf6UdpNAZLllG5yZptCyO9Ruc5NheRLn7UBh06NDPQ7hOUUrxUTQW4sG2brwCs1GKn24M3SSaKhQTULztBQD2E5xSpd5QnlDJ1zzjn49re/jQcffND36w888AC+9a1v4bzzzgvj1zEZxm96mxsaauO38TdMa+ERTYZG6981v9wQCxsKfFusc1E7LhoehQbQXlkVlUIDAKr24nWBFRqJ0q4xEPZmolLMY9wuXuzv03bKZTPFe9RIoNc4acspTbr16HbFw2s5xYpQlXDbgkWF35qCG1vqE1YxQi5yylZF8vOKczTUxetNP1qOVnFFgxkNwxD5cQA/O5LG9NgREbUQB+vYcipZTM9H3ue0o9Cw/l8tJa/QoPUFNzTUI4wcLiYeQqkcXXHFFWg2mzj33HPxr//6r9iyZQsWFhawZcsWfPSjH8V5550HXddxxRVXhPHrmAzjN73NvoNq47eI1w3Tdd6iztCYXXYK2BOVIoBWGToTHbSpk9Uz7Wwaogzfoo0sW04lS7u9XqGPDI1u0CY1jM0CKzSiwYhp0r4bLoWG7q/Q4KKUOiSZocEFbPVpNK0LpDzgkMR0m1Bw+XnF9wV18e4RvVPZYUPXhXefw1krySIP18kKioOLlno3jMG6HFtOJYpbUd16X6b3I+0HvFk6iTQ07JoFD+eqR50tp1JDKE/1Zz/72fi3f/s3vPGNb8Tb3vY2vO1tb3N9PZ/P4xOf+ATOOOOMMH4dk2H8LEm4oaE2fhs9wzBdBcZBLQFk/CynZLuZyRGroVFvWoF9/KCKHlJoyMUAXW8NbAOiXVCSQmOeLacSJS6FBuDYnPXb0PBukJjwocZmzHmMLciXn7Ccsh8PebaSUA7R0GCFBuNDPSSFxoqq09Co+mRoAHw9qIy3UDheicdyqqEbriYGN0GTxW05ZX2wUGvie/fvAhBOQ0PTePAhSdyWU60KjZo3Q0MBhQbVP+iYGHVohJTDxURPaE/11772tTj33HPxb//2b/jFL36BgwcPYmpqCmeeeSbe8IY34Pjjjw/rVzEZJu8zwctdbbXxKwDppikeFEB0llOTI0XMLDVc1wgpNADLdmpyhB9UUdOgDA3p3DQNA7rZ+tpHMaVPjJFCg9U5idKuJtxPKHg36H6w3GdmjnysJntORUryDY32GRo0TMGFCnUwheVUtBeO3/pE52lr5QkrFPyE9RM4/2mrsaJadFliys8rnr5XF+8e0TuVHTZ0jeiGO5SY8zSSRX71aV/6mycOis/51Rd6hQYfeO4hGdyh4K3PaWE51WiToZHAIlSoyBtcy1INYVvJllPKE+pT/fjjj8fHPvaxMP9KhnHhd1PhhobatFNo0OK+kNNCLUjIxYdVY6WWMOByMYdiXkNDN7FYbwrFBhMdtNkv5HPI5zTohqXO8Fv0R7lwcDI0eBImSfysxoBopqPCDNzjActooMshl3BHQ/71ToaG9ckcT14qR1xFIz/VJ0/kq09YoeC5nIb/eM3pvp/XNOs65Ol7dWmxnIq4oUFr2IZuuFQBfI0ki1+Gxrg04Da73Gj5mV6hdQJbTiWDawDJNFvec1SgrukKWU5xhoayOA0NHnxVHT5DTKrwm95usOWU0vgt7HTTFOfNz0ZsEORgt6lqqSVotpDTnMI2T+rHQlOacqAFY9Pwt5zyKx6FBWVo8HlPlvYZGtFZTvWt0AjzYBhfVNn8+2Vo0ONJ9kVn1IDORNR9MM7QSCci0LMQ3QVS5PuC8ngnn8ciztCg4le9abqebaziSRb5XNAf5fv4gcX6wL+DnkV8P0gGr+VUS4aGR6GhguUUNTTqOg/aqQZnaKSHSM/Qvn378I1vfAPf//73ofMblQkBv+I3d7XVxm8RrxvOhGMxZIsh2daoWsr7TmCMlqiwzfelOJAXBQUpXNfPjizMgHgvo0KhwQ2NJDHabPaUV2goUngfNpwsBHVCwXWP5RQ9prhQoQ5xKXt8MzS4OKk8VLwq5aMbkhADGnw9KIu3UBirQkNadrCqK1nkl5+e47IN2JlHrhz4d9D9gE91Mrgsp4zW95wTCk4ZGiooNNhySlVYoZEeQjlDFPi9f/9+8bl77rkHxx13HC699FJs3rwZZ599NhYWFsL4dUyG8ZvgZcsptfErApqSQmPQwEYvsoS4XMhjXNq85DSraEYqDg6Uj4empMaRFRqmz8sfaUPDvhYWuZGVKH6bvXzI1nPEwAoNz8QXEz5i0j7Ro2gTCk4ZGjyJrRwiTD7i3+P3TOLrQH2cNWZ0V4g8oMGoiXePOBZxKHjJLlDWm4ZHocH7jSSRzwUNU8kODxc+bfXAvyMnMjT4fpAERlCFRpMsp9RRaPBwrno0Y1B5MuEQSuXoq1/9KjRNw/T0tPjcO97xDhw4cACvfvWrsXnzZtx111249tprw/h1TIYp+HRJuSitNn4bPd2QLKdCXkCMS5uVSjHnmsaiolRJSML52omDhuRl7RQADH+FRoSTECQvnmfLqUTx2+pFYTcFhKvQ4D1qNNDmP4G9pAvNR6FBn6Lbkt89i0mGuCyn/Kbz2HJKbeSctijXFPm8M6DBqIn32T9Wjk6xAwAlSaEhPy44FDxZ5HNBKmGqH5x06GQoAzW0huF1QkK4MjRa6w/kFkD3hBaFRhKh4KKhwYN2qsGWU+khlDP08MMP4+STTxYf7927F7fccgv+4i/+Ap/+9Kfxne98B89+9rPxn//5n2H8OibD+BW9eOpFbfw2elaGRjQPiglJoZHPaa5pLJq+KBd5AREnDYMC4HPI202ldhkasSg02HIqdO5/cgafvPWRQJlGftNrUTU0SKFR61OhIcM1q2hQxXIKcAoSXoUG3bd0Lkopg6PQiPa68bPF5AK22jSkhlPYKmCZglCc8j5EVbyDS1FbTtEa1goFlxQafI0kiumn0Gg6+X5hkGPFVqK4LKdMs9Vyyj7f9XYKjZAzPYMg6hFsOaUcbDmVHkJ5qu/btw9r1qwRH//sZz8DAPzRH/2R+Nx5552Hz3/+82H8OibD+GVo8NSL2vj55RuG6QqKDhO5gdHUTYyVfRoaBV5AxInYNBQ0pwCgm76FbT+/8rAQ2Sl1bmSFzYv+9acArIXfq8/Z1PF7/YbXopJ6D6rQMF0TX/ysiQIT8VgHBSGnabZVgXW9UC2bJvd48lId4lJo+K07OTNBbeR9QZQKDSp0NJp8PaiKV8U/FnmGhmMhw6Hg8fD2//o1yoU83v+yk9p+j+Fay1nruXrIBUtqfvO5TgaXCsfXcsra+7XN0EhEocEW2KriNDy5oaE6oZyh6elp7N27V3x8yy23IJfL4eyzzxaf0zQNy8vLYfw6JsP4TcoFmQhmksOvABSlQkMujJYLOdfmhb5EE1S8gIgHmpIp5XPi/CQRCl4VGRqs0IiK+5+c7fo9flkUfnaCYVAeNENDmvniLWo0qKXQILsQj0KDrWWUI67ekt8ahSdw1Uaeyo+yGOGsJXlIQlW8g0ujpYgVGtTk0k1XEZ33qtGwa2YZ//3LHfjynY93VF97152y9XFY+w7eWyaLfI5NtKqiRCi4fU+gITciKqV4J0qcoaEsjl128nsTpjOh3MGPP/54fOc738G+fftw8OBBfOUrX8Gzn/1sTExMiO/Ztm0b1q1bF8avYzKM3xQvy3jVxj9Dw3lQRFXIBIBLTlznamhMVUsApKltVmjEQl3KSylIhUFfy6kIrwcKiD+w2IjsdzDd8SsFRqXQKErFhUHhUPBoMERDI9njkI/BydCwGxr2//0Uh0wyOAqNiC2n/BQavO5UGlpf5nNapEGvpTwXo1THu86MOhScLM7qTcOl6uRmeDTIg1GdGs3eL+mmKZRVYTU9qTitt9nfMNHitpxqvR7ofIsMDY9aK5dkKHgItrhMuFCGRpR1KiYcQjlDf/VXf4WdO3diw4YNOOyww7B792785V/+pet7fv7zn+OUU04J49cxGcZvY8lSb7XxW9QZhikKAmFbTgHAl197Jv75D0/E809c6/LLXTdRASBtQnmKJhaEvVjBrdDwqwlFqdA4cvUYAOCRp+bZPihBfBUaEW0kZD/rfnBbToVxRIwX1SynAOeeRY+nfI4VGqpBzaWoh+f8GiZkKfLgrln85KGnoj0ApmdIoRHlgAQgTWRzQ0NZvPfskWLUoeDOmkP+zWxDFA3y3bnTa+xd8xsGJMupcB4i8v6F7wnxI59jU8rQKHuUM2Q5pYJCo8wKDWXhDI30EMoZ+oM/+ANce+21OPHEE3Hsscfiqquuwitf+Urx9Z/85CeYn5/H85///DB+HZNh/LqkDZ6UUxo/WyHDNFEPeTJG5qyjVuJVZ22EpmkYl6ax1k1aDY1yiEHBTHeEvVgu5wrR9CtsR5mhceTqUeRzGuZqTeyerUX2e5jOxJmhUZSKC/c8th9v/+qvsX+hHvjnvSGDTPg4llPJHgfQKRTcOThWaagBDUvkE9hs0u9+wUduw+WfuwsP7uputcfER9iFynZwQ0N9dM8eMernDF0TSw3d9azgvWo0yE/jToMr3uWbYcqWU+E0ueQGKt8T4se7XtftvWfVblx4Q8FHPA2NZBQa7mNj1KER0zqCGZzQdJeve93r8LrXvc73axdeeCEOHDgQ1q9iMoxf0avBDwGl0X0mZnTTUWhEPREhKzRWjZUB8ERE3IhFQUFDPidJsmPMUgCs4vbkSBH7F+qYWWqIBhcTL3GGwZP3aUM3cNknf46GbmLPfA1f/Iszev67uJ8RDfSy5hToaAiFhtdySnpONQ0TpQQ2vowben4kEeTZ8DS1Htg5i+PWTbT5biZuhEIjpEJlO6iAyZ756uJVaBw+XY3091Hx6zM/fRS/3T4jPm/aFjhRWqBlkab03vPel2VaMjSkhkZYBUv576npOoBiKH8vExA5FNxw3vsjxTwOoCFs4GjvXynmUchp4vuSzNBYbvKApWqQ4itK5wgmHPgMManC38uYq0wq46vQiCCMrR1yhgZ55/JUXbyIvBSXQsNMZNKZrod5DgZPDL/GwNqJaJpLRcnjnJRCtz28N/DPeyXsTPjQ66pAP0OEf5N6j9YcLoUGXwdKIBQaCexkvFPfnMelFnGFefJaUm1M08kyuOSEtfjRX18gsvSiQr4X3Lltv+trHAwePnINoNOAo3e7YRhm6NZ0mqbxPSFB5LWZIb33SYlR1w3XIGNJskEGkhmqqQjHCL5eVKPOllOpoS+Fxmte8xpomob3ve99WLt2LV7zmtcE+jlN0/CZz3ymn1/JMACsgqiXMMJemejwK1rrpnPeop6IcDU0ytaiRoSC84IzFoTlVF7K0NDNlg1GHIxyQyNx/M77uogbGvJzot8JSb/mLDM4wnJKgRQNul6W7IYGXSsFj0KDSR7dYwsWJ16vdp7QV4u4BmaEQoPXkspxYKGOF3/sp9hxcAkAsGFFVeSoRcnWvQttv8bPjvCR78WdLac8Cg3DFKG/YRYsy/kc6k2D7wkJ4M28IyeIasmpAyxIe79ywRqyIwPiJBQaFTvTZ4ktsJWDMzTSQ18Njc9//vPQNA1/8zd/g7Vr1+Lzn/98oJ/jhgYzKH4PG554UZt2Cg1ahEZpMQS4Gxq0qCkJyyleQMRBU5J1y+G6foHxUTNuXw8L3NBIDBOt531NVA0N+72+KJ3viUrwpY/Lk5cfNZFgOh2NxKEC5WKdFBrWx3LRPIn7FtMKTWMWEvA31g3TVSDj4pVa0LBK1IWIUoEtp1TlC3dsE80MIL77xNRIe5uhJl8nodOUFmadBhw7W06Fd58oFXJAje8JSdCSoSFZThFzy85eoJR3KzSSsIOjugQ3NNSDMzTSQ18NjUcffRQAcOihh7o+Zpio8St+ywvEp2aXUcjnMD0araSYCc7Du+dbPqfLllMRbzjlUPBRodDgqbo4qfspNAwzEesWugbml7mhkRR+9eDRUjRe52X7/nJwqSE+11MTVTpWVmhEg0oZGlT0WrY3lwUfhQY3NNQgSYVGw9OQZ7WnWjRi8r5mexl18d6m4ypWvuMFx+Jnj+zF7tlay9fYUSB85PtwT6HghmNRVSyEd23wPSE5TI/lFCmiKtL+gtT55UIOmqa59gNJhIJTs2Wpzg0N1Wg07XUEKzSUp6+GxhFHHNHxY4aJCr8JGyqWLtSaOP19PwQAPPr+zSLMk0mOHz/0FH7xqOUhe9y6cfzRqYfi/Tc+CMM0xTRCuRjtg0L25h8pWrc8tpyKl6Y0BeVkaBiJFAbHKtb0HFtOJYdfFkVUSi3aqM4tOw2NfqckuZAdDfSyqvDE9lpO0Zojxw0N5aBiRRJTlbphuOxjajxdqRT1uBQaUkYToxbe20JcdjLrJ0fwyVedhj/8+M9avtZkmWfoyE2iTq+v97EtKzTCLFhyQyM55FNsms5ajZQYumFi1t4L0GCjvH5IwlpopGSHgvMaQjlIZRW1kwgzOH01NNrx2GOPYc+ePdA0DatXr8bhhx8e5l/PML4LUipOPbZvUXyuoZsohThxwfTH//v5Y+LPlz5rg7B/MkxTFBgnKu3l2WGwbtJpaJAigBec8dLwsZxKSqHBoeDJ43faoyo20AZFlpn3Iu32HqphmIlMcQ0zKoWCFz2WU3JuVyGnJWaVx7RC+Vz5hDI0mqzQUJa4FMC0lmTrW/Xw3hfibHy2G9TyZu8wgyM/j+vN4JZThmGKgmWoDY0829AlhTwsZcK5Ngo5DeVCDot1HbNL1l6gZA82FqX7QhKT+JyhoS5sOZUeBn7n7t27F29/+9uxfv16HHnkkTjjjDNw+umnY9OmTTjkkEPwjne8A/v37w/jWBmmTSi4dcORFw+8uVADef04UsqLQqBumKLAON6Dn30/VCTvTDqeMmdoxIocCl6QMjSSaWhY1wNnaCSH33mPyt/ar6Gx3DBEMbQbLUGSbDsVGSpYTtHGheT/8nUpnl98DSgBnYckFBpNw3QpvdhKRi3qEVjJ+MHDMeriHTyIM/CXVOBeeG8aPu4MjeCh4IZpigZIMURrOr4nJId8iuUMjXxeE9ZOM0t1AJJCI5+wQoMtp5QlrsEIZnAGOkMPP/wwTjvtNHz0ox/F7t27kc/nsWbNGqxevRr5fB67du3Chz70IZx22mnYunVrWMfMZBi/LmnDfmDJiwdeNKqBXLisFPJiYko3gd2zywCib2gAwF8/72k475hVeO4JawDIoeB8ncRBQ8g2NeTtpqRumJDfpqccNoWvvO7MyI9lrGwpgua4oZEYfqW/qIoNtBD1KnKW+2xm8nR++NBzIvl2hrOh9WZoyH/WuXitBEaCllNNw3Q1MUzfuxqTFFGE/frBxUt18fbH41RWltsUyJu8fgidZr+WU0aEoeDge0ISeEPBm5JCo2oPsx1YtC2nbBWVS4WbwCT+iJ3vsdzg60U1xDBmxFlczOD0fYYMw8D//J//E48//jguuOAC3HzzzZifn8fOnTuxa9cuzM3N4Qc/+AHOP/98bNu2Da985SvDPG4mo8gb14r9MKIpucW6U7DihYQaGB6FBp2/maUGvn//bgDAeMSWUwDw5uccgy/+xRliaopDweNFnnLwU2gctXoU33rjOTjzyJWRH8soKzQSx1+hEVGGRpu/N+g0VIvlFE/nh454SRXoaNDQhLCckq4fpyHP14AK0HlIwgJO1w1X8YytZNTCKWRFW4gos72MsmhIUqHhf93xsF349G055crQCDEUnO8JieFSaBhW1hVg1Y6qdobmgUVSaOTF14gkJvFJoVHXjb7z/ZhooGy0dvdzRh36PkM/+MEPcPfdd+NP/uRP8MMf/hAXX3wxSqWS+Hq5XMZzn/tc/OhHP8Kll16KX/ziF7jppptCOWgmu8jFKXoINEQouFOg4oWEGsjLx5GiYzm1Zdec+Lwc1hsXHAoeL1TsKeRzQt6r647tT5xWM6QIml/mhkZi+Ow5o5qybud92q9fLSs0wsfpZyTf0aA1xr4Fa9Mr+yuLexcHuyoBPVcSydAwTFcTgwuVaiFP5kYJT2Ori/fU5yNubsmUi/6WU7x+CB9Z9dLRcsrzsW5Eo+Tie0JyyEpJ06PQICXEwQV3KLj8jEjCckq2xV7ma0Yp6HxU2tzPGXXo+5379a9/HeVyGR/72MegddhMaJqGa665BsViEdddd12/v45hALjlgNWSVZikBcl8zSmM80JCDWTP0nLRmc6XF/VnHbkq9uPiDI14qUvBWrJCIwkPdLKc4lDw5PBTOUQVutausLAcsKHhPVSuZYcPvcYqZK3ThlZ4L+d8FBp8DSgB3UfimLz+9pvOwRsvOgovOmk9ALKc4gwNVWlKNpdRwsVLdfEOyqih0OD7RNjIU+2dLKda8tAME3Up3y8shEKD7wmxI/cLDdOxB83ncqiWyHLKGlahe7f8jEjCcqpcyAl7PM7RUAtWaKSHvs/QL3/5S5xzzjlYvXp11+9ds2YNzj33XPzyl7/s99cxDAC3fJwmrWlTKYe+8qJRDVwZGsW82FDICpqTNkzGflxsORUvNCVTzOdE80I3TLH4jFOhQZZT3NBIDj/HnqimJ0faNDSW6sHe+15vfLYbCh+RoaFEQ8NTBJM+zotmLD83VICaTnFYTp28YQrveP5xGCsXxO/WA04GM/HTjKBQ6QcVL2t8/pXDe1+Ic3CmkNN8G/RsKRM+LoVGJ8spz0tvhYJbBctSFKHgfK5jR25atWRo2EOwBxfdCg1575GEQkPTnMDyoINWTDywQiM99P3OfeKJJ3DiiScG/v4TTzwRjz32WL+/jmEAuCdsaGNJGxd6SAFcqFYFufaX07SWxcKJh0zEfEQWHAoeH4ZU+Cl6MzREQSq+46H7BmdoJIef60JU05PtGhp3bdvf19/HlhHRoYLllDfLpejT0OB+hhrQWzHOQiXZjjV1dyg4NzTUoikUVlErNGz/c15LKof3zMep0NA0TVjbynAoePi4sow6vL5eZbAVCh6BQoMH5pTAMGWlrSYUGvs9GRpFl+VUMmtQ2qf0a4XLhE9TN8T1wwoN9en7DM3OzmJqairw909NTWFubq77NzJMB+RpSVJo0BQEyQjlzzHJ4p249W4uk+p6l3kTGhsNabNRyDtNrXrTWSzE6YFeEZMwfO6Twqt6AKIrNlRK/suc//Pd3+HxfYtdf77FcooVGqFjKqTQ8IZCuiynWKGhFHQe4lT4FaRrQL4OWBWsFk3J5jJKuHipLt5ndZyNT8Cy2fXCjc/wkbOMOilovb0OXQ4FL4QfCs4Dc/Ejn35vhoZoaNj5aBX7/UnZGkAyCg3rWOyGBltOKYOcZ+LXnGbUou93br1eRz4f/ATncjnU6/Xu38gwHZAfNmMVywufFRrqIi8uDpmstPhTJtX1po0GLzijRy70lPI5p5mkG2LzEYdlCFER554Xjknht+eMyruWZOZ+7Di41PXnvcfKCo3wode4Ux5bXHgLoL4KDW5qKQH1E+KcvCbb06bBCg2VaYhCVsSWU9zQUBbvtH7sDQ2f/U2TG5+hI6/JjA7rM+8gjWma4n3LCo3hQD7HhmlCtxcJ+ZwmmgbU0KAGhzxYmVRDg5oqrNBQh5p0LlihoT4DnSEVNp9Mtsj7WE7RRpIeUvLnmGShxfufnXUE1kxUWhYLSSk0xAQNLx4iR/YMLuZzTjOpYYjJ7DgVGtRQYYVGcnjDGYHoCk/tLKeA/ppa3NAIH0M0NJI9DqDV9qrgp9DgopQS6DHZCslQ41U3TNezjdecaiEXsqKklG/NhWPUwPusjr+h4Wc5xddJ2DSk89xpfdY6nOLctyNpaPA9IXbkt5dhuq0HvfUGGnaquhQabDnFWNDAaymfi3XokumP9qOLAXjPe96D97znPSEdCsN0pygVF+gBQIuZp+aWxdd4c6kGZDd0ztGrALRuKJJWaPCCM3roNdY06/yXC45Cgl7+OC1D6NwvN3WYpsmN+RDoNBXn+/0xZmjkcxpKhZzvtFw/E3Q8nR8+NFWnwjvRO8UpX5fUeOVg+PDYPbuM6dFSXwUlofCL8R4uN7XkCXBucqmFEwrOllNZxfuejFqt48Vvf8PWdOGjS/u4TuszztAYfuQzbJpOfmMhp7nsQwGnkTGigkKDrJDZckoZKKDdzzqQUY+BzpJpmj39xzCDItuSjNje6E3dQK2pY5vkh84LCTWQFxOAuyEFJK/QaOhmz8VYpje8GwaaWqs1HQ/yqOyG/KBrzjS5oRUWvRb5fTM0ItxItHseBLGc865dWKERPo7lVLLHAbQqeuQmPP2Zr4Fw+NXjB3DG+36It//Xb/r6+UQUGq4MDec64GeJWtC6I8rnCgCU8pzHpiq6Rw2hQoYGKzTCx9VY7hgK7v54sd7ErhlrEHLlaCm04ynn3Q2N6+/dibu37Q/t72faI6/XTZdCIyfshgmVLKcqbDmlHLQ/5PyMdND3O9cwjJ7/03V+ozKDIS9IhUJDN/DE/kVXkYE3l2rg3VSqk6HhPKD4WokWEc5pv3cdhYYhJuji3GhWpMUJ206FQ68T6357zriLDUB/GTqs0AgfM4FJ+3aMlt3C5Uf3Log/O6HgfA2EwT9/93cAgO/85sm+fj6ZhoaToSEXTLlQqRZ0bqLOV2F7GXXx3qfjzNoB/AthrNAIn2ZAyynv2u23O2ZQ1w2sGS/jiJXV0I5HVmg8vHsOb/zPX+LSa+8I7e9n2iOfYcN0BhYL+faWUyWpDpGU5VTVPra55WYiv59pRSg0OD8jFfBZYlKF3D2nh1NTN7FUd28meFpKDbzFbO+GIrGGhvR7a1zUjhThUWu/5k6Ghi42H3FOxRTzGugy5AyVcOi1luen2IxyI3GubXn35ouPxuvOP1J8PkiGhvdIuW4VPvQaJ9/OaG1oPOf4NeLP9PxiVV84PL5/aaCfN5JoaFCGhm667gWNJl8TKsGh4EzyGRqt1x5fJ+ETNBTcu5ibt4vH06OlUK1n5Sbn9gPOM47XDdEj7y28GRpe9S0pNORBmqgVfe04ZGoEALDj4GBrIiY8SC0jZ6ww6jJQhgbDxI28IF0zUQFgLRrqHvUPT9GqQdPwKjTci4VSQg2NQk6DplmSVKuoWUzkOLKAUOnk/Cyn4i9IaZo1qbNY1/ua0Gda6dlyKmaFxif/7Fl4aNccTjp0EjlNw08f3ovf7Zztq7jAdkPh41hOJd/SOHbtuPjzT664EBtXjYqPc6zQCJVBTzcpw/IJZGg0DMN13+PcNrWgYZqo7SzlTDBGLbxqiLjtZLihEQ/yvbeTWti7TqWCZdj7UNrj1JuG6xm3UG9ivMJ7zSiRT7HhydDwWsCN2IXqrXvmxedGEypeHz5tNTQel6zTmfj46M0PQzcMvP2SY8XnSKExwg2NVMANDSZ1/OufnorZpQY2rbQKDU3dbClMsqxXDciGId9GoZHUNISmWeHUyw2Di9oRQ5uNUt5rOaU7GRoxT85RQ2OZFRqh0LvllE+GRoSTtNVSAacevkJ8fMIhE/jdztmAGRruj7lZHj4iFDz5fgaec/wavOP5x+LEQyZczQyAFRphM+htn4oVcWb9FqQcFfk6aLDllFI0pUJWlND05hKHuSqHN0Mj7gEqP8sptiYLn6AKjXYNjbAbXZTVsNTQXcH0c8vc0Igadyi4W6HhtZwatS2n/ujUQ/GD3+3GOUevTGyohhQaO2eXE/n9WWah1sSHb94CAPjzszdi5VgZAITzS1JZr0xvcEODSR1/cMohAIAHd80CsAqm3gYGT9GqQVMEQtsNDc+0XDEB33yilOeGRhx4c1T8MjTibmzRMXCGRjj0WuD16wnEGQxPhY0gdnPeAHN+toQPvaSaAqZTmqbhjRcd7fs1siZghUY4DJqZosdkKyRTkFQ6ciOXJ6/VIq61BfmwL9R1GIYpVFxM8njv07E3NHxCwfk+ET79hoJTE7IU8j1ixL4nLNV1LNSdTATOR4ieVoWGMzTXznLqBU9fh2/85dk4dt04kmJixGp0zS03EjuGrCLfM+SGMzU8vdcNoyacocGkFtrENnSjZZHIBQc18NoNeQsPSSk0ACcYnK0CooVe35LI0LBe918/cdAlB44TmrhY5nMfCr3ebv2+P85rYBCbkF7VKEx3HMupZI+jG9R0Y5VOOAzc0KAw+RiXEXl7zWJlaHBDQ1VI/Rl1yOuYlLmzxIpPpfAOH8Qd+OtnOcX7jfBpBrSc8ma3CYVGyI0uKoAuNXTM1+SGBhero0YeQDJMUzS287lcy6Q9WQlpmoZTD18hmtNJMF6xfjc3veJHHsiTHxnc0EgX3NBgUgtNVTR0s8W/uMmyXiXwbiq9G4o4p7K9lDnMMRYWa9aigMJ2yaPUNIFt+xYAxN/QcBQavLkMA5fkP0Cx16t6AOJtbsoex91osZziZnnoCMuphI+jG0KhwZaWoTBIP8M0TfHejDNDw1FoGK57A6v91MIpZEV7bVSKOXEdy9PYTPJ4B9v8GgxR4ms5xfuN0GkGtpxyf7wYkUJDtqFbqLFCI07kc2yYcA3NVTyKqdGyOiY1ExVWaCSFfP/QpbX9cp0zNNIENzSY1ELF8KbBCg1V0T2yf+/mshjnaKWHkmR9xEQHbfKpkXHKYVPia1v32A2NmBtbQqHBRahQkJsYQYbXfS2nElBofPnOx3HBB3+MLbvn2n6v91DZcioC7JdUdbsWkZ/ACo1QGEShIa/xErOcko6h1tRbJoCZ5KDrI+o1pqZpwot9ocYDEirhfVaX8vEWpjgUPHoMw8T9T86KjzvNMrYoNKihUQh33VFxKTScewIPUMWA5xw3pAwN76S9SpP3pNBYbhgtA7pMtDSlrCU5C40UGpyhkQ64ocGklqKk0PDKeHmCUg0antBnb/hasgqN4FPaTP+Q5JqmYYr5HJ55+BQA4MBiHUC8BSnACe3jDUY4yIWDIAV/v8JfnA0NamYu1HU8tm8Rr//iPYF/lovZ4UMNMbXbGU5Dnpta/WOaJv7jjm2445F9Ayk05Oe2n1d9VNCaRfdkaBgmWrLcmOSgolAca8zRsrWWlKexmeTxFgaVyNDgYmWofOSHD+POR/eLjzsphFsVGtb7NfQMDamhsSjdE3h4Lnq8Z7/RdJ4D3sJ0VaHJe9m6kJU88SLXCxucoZFa1NFbMUyPyIvFec9klG7wwkEFnGBGOxQ857WcYoXGsEObfHnBNm7La6mhEbUthBdqZvG5Dwd5Exmk4O+foRGn5ZT7d23du9D2e1stp6I4omwjXmPFOxrc0Bic2x/Zh3/81v0AgE2rRsXnTdOE1kOHQ753h12Q6kReym7z2pvUmnrsRVPGH12azI0aS6FRExY2jBokn6HRWgjjNWe4/OsPH3Z93OnZ7G12kELDO2g3KC7Lqbrc0OD7Q9R41+s0fZ/TtJYGo0qWU4V8DtVSHot1HXPLDUyPlpI+pMwgq30bTefPS8Jyitd0aYDPEpNa5K7p7JLbd5Atp5LHNE1xHqhY2Wo5lXyGBi8yo2VeZGg471eS1x5YtN638YeCs0IjTOQif5CMCb/viFOtVe5p4sZdGGOFRvg4/Qy1Oxrc0Bicx/cvij/L/Yte1Q303C7lc7FalRWka8B7GXCxUh1omCbsYqUfVVZoKIl3Hxi7QoMtp2Kn097fu3RbbJDlVMgKjZK/5RQ/H6LHq/6u01Clj+VU3Jk63eBg8GSQB6DreqtFHCs00oFa72aG6YFiPic2l7PL3NBQDbnoQ5NRmqa5pqSSVGhwKHg8LHgspwBHoVEXcuC4LacoQ4MbGmEge5AGCQX3+544VTr9bGQoeJhDwcOHrgfFIzTEdD6vL8JBztBo9ih9qtn5R3EXJVwZGp77GD9P4qNbeKrX7jRKRIYGh4IrRUuGBjc0hp7OoeDu4ZTFiBQaVJjWDRO/fuKA+HyNM/six3v6yXIqn2u1nOpFERoHtC/21rOYaJGHaeqyQoMzNFIFNzSYVEM3mtkl90aCMzSSRy76yMVKWYYdtwRcpsyWU7EgLKdKTkNjouKW+sau0GDLqVBxZ2gE+AFFQsGDQDVLns6PDnqNFdtftkCKwib7oPeNfIpzAyk07IZGjPkZgDtDo9Vyiq+LOPjhA7tx0nt+gGtveaTt99B9Op4MDWs9s8ih4ErRotCIeXBGVoLSXoczNKKlk4KWvkTXATWXwm50VUsFPP/EtQCAJ/Yvic+zG0D0eM9+XcpSikOtNwis0EgGeU/nytAQllPc0EgDar+7GaYL1NCY8VhOcYZG8sgPBnkhUZEKEHGHQctwKHg8eEPBAWfhRsQdDs+WU+EiFyOHVqHBllORo7rlFN2nWKHRP+2aVt4A325QccjPpz5KnAwNs6W5yc+TePjrr/0GAPAvNz7Y9nsawmokBsspu+Axz5ZTSuHdB8Y9kS2vM8QQDU/pR0oQhYZ3kC6KRtfLnrmh5XPc8I6eFsspodBwn+O4m5tBmLAVGtzQiBd57cmh4OlFvXc0w/QAhfV4JXoNLjgkjrzZL7RRaMRdyJYpcYZGLHQKBSfiz9Bgy6kwkd/r/TY04iw29FIEpSOlhgZbToWPmRLLKbLG67X4zvgj3zd6VdUKhUbMNjJFodQyWu5jD+yci/VYskoQlVxTmsyNGlrbLLLllFL0qvoKG3mdQWoNVmhESyCFhueZEcXkvndoC+CGRhLQHs+7x0zSHaIdjkKDLafiRF5PyAOunKGRLrihwaSaEWE55VFosOVU4sibCXn6WlZoKGE5xRNTkbJg2zBUfULBCe/0TNSw3Vi4NKRJyCDFpqRFDr1ZTjmhggArNKJAXDKKe045llN8DYSBfKvoWaHRiMYupBt5KUPD29C4wlYOMNESpKksLKdiUWhQhgYPSKhE0vaQLoVGkTP74qCTetJRaHim9SN4hoyWfBoaPEAVOd7leU3K0JBRLT8DcAb9ZIWGV3HChI8rQ8NHoVFhy6lUwA0NJtXQpDU9AKjB0WDLqcRpSqGM8uJBDlhK1nLK3mDwxFSkUFCmXyg4EbdKpswKjVDpXaER5dF0x893v9vGIccZGpFh2joY9baYbkihwZZT4SAHgff6HBaWUzFPzwnbMd30zQti9U70BHn/iVDwWDI0rGtwgS2nlIKukxPWT+DDrzgl9t8vrzNo38MNjWgJZjnlVWiEf48YLbc+l3iAKnq8+w9aJ3gVGiraA054FBpv+NI9eP5HbmUXiYhxZ2hIoeB1VmikCW5oMKmm4lFokJctF52Sh6ZYvRtKV0NDCcspXmRGib/llHt6ae98LdZjciyn+NyHgVzEC9ZLTvb+XMoH32zSkdKGKEjDhumNtISCFzgUfGDknBRZSdtroS8pyylSE+qSQuMlpxwivs5N8mipNfVAazZafxZjGJqhYY0FDgVXCsrQeOcLjsUfndqaaRA18l5HKDT42REafvv8Tnt/+pK3gRHFM6QqKTRWVK0BLt5rRo/37NMejxQaG1dWAQAbVozEeViBoH3x7FITyw0dN963C1t2z+O+HTMJH9lwIw9Ay3tZuna4oZEOuKHBpJpRu4ExZxdNR+yPeYIyeegceDeUbsup5EPBWQYcLdv2LQJwS7BbGhpz9ViPiUPBw0XeRAaxZEr69uyn0Gh3LdA/R4SC8540dOhyyCne0eBQ8HCR7xW93oudUPB41xDU1KrrhpgGHivnRTNuiZ8pkbJ1z4Lr43bNRXqPeq1GooD2IZyhoRbNGIPh/ZALYdWiteZlhUZ4+L2WnQZO6CslT4ZaFPtQWZG+YYVVROdJ++hpd/rpHvD5V5+OF5+8Hv/+qmfFeFTBEJZTtQa2H1gSn+flZrTIgzW+oeBsOZUKWk3+GCZFTI+WXR+TQoMnKJOnXShjRQ4FTzAFli2noudXjx8Qf5abGJtWjWLtRBm7Zy1lxphPgF6U0DW4zJvLUJAzBYL4myftC+tXBO2m1uFQ8Oig60HtdoazKWZboXCQG6G9quWomFWKeShC9sLXRZi9hkohj6WGzplcEeNtGtSahrCCk6H1Zxw5bTSNraKNSZbRY2xq+SEXwqZ4Sj90/BoanRQatM4oee4JUTQ0qtK5XzlW6npsTDiYbdTfQqGxahTX/I9nxnlIgXFCwZt44sCi+PzMIoeER0mzTQYkDdlUCtzQSAOs0GBSzSp7oUCM2BsLXjgkT0NYTnkVGs7DoZzgg6LEoeCR84g0TSlLfKulAm7/2+fg0392Gi4+bg3e8fxjYz2uCmdohEozZRkakyPFls+1V2i4iyIcCh4+abGcKkr5CczguDaPPU6v0j0nbttKoexs6qK5mc9ponjJCo1o8Ta+2hWIm23Wn1FA09iLHAquFEndIwhZobGiau1V6zylHxo1vfW17PRojjMUXP4dJ6yfAMDrhjhoq9BI0N46KKTQmF1uuoLBZ5a4oRElcm6GvCYVQzMxq4CZ/mCFBpNqVo15FBpFtpxSBTkUXEaeoDh0KjkfS5rSrvG0bWTM2+FmLzppvSsYHrCKQM89YS2ee8La2I+rzPkpoSIr4oLs2ZK+O/s1NNpN3XszNLhZHj5OQ0PtTScVRxvBgmIYP6RTLG8ke7V+TMpOhuzqah6FBhUvl7ioHSne17edjYsoZsdhOcWh4EpCe5CkFBrylD5NX/OaMzz8FRrtX1/6UmsoeDTPkK+9/izMLDZw0C5Ic10ietqpv5O6B/TCuBQKviw957ihES0uy2T7z7phivcrNzTSAZ8lJtVMj7oVGrSxYEuI5Gk3HSVbRExWWwuLcVESGRp8rUTFgr0okwPBVYAUGpyfEg4uhUYKLKf8CufdrOco34FDwcOHmtyK9zO4qRUydZ8AxqAkrdAwTeeYc5omGh2s+osWrwKm3XUjBmpitJxa4AwNpdD1+JpafshqdFJw1XUj8fXPsCA3hyjsuXMouK3Q8BQoo8phevbGaTz3hLVC2cnrhuhp99bKq764hNtySn7OyWoNJnwaroE86wKSm6Xc0EgHfJaYVDPhmbSljUWDpZ2JQxOU3lDw1194FDQNeF4Ck/kyzpQ+FyCighZio8o1NLj4FCbtPEjbocJ+3rtIbRvWaR9rgTelkUEvqaZ4igZNcrJ1RP/IZ7jhamj0qtBIZvpaLn6RxVA+59jLsOVUtHivE7/1m2majuVpDAoeGthYrPG5VwlHpZNMqUO+V1BzwzR5Uj8saM22aqyEd77gOACOCqMTcWRoyNAzqsnKzshp985Kg0JjgkLBlxuu5xzXKKJF9xnIczU0Ys5pY/pDrSoTw/QIKTKcj61Lum1xiomNdqHgx62bwB1/+xxMjCR7+ylL4Z5MNJAFQ9yh391wMjT43IeBKxQ8UIaGM5GfVHOjUsi53vvdmuA04cUNjfBJS4YGbYpZAdo/sjpKfu/33NAw/AcmokYuUi7ZE/m5nGM5xU3yaGlpaPg8w+VbdBzT+WQtxAoNtdATztCQ73XyfaPeNCIvomcB4XGfzwkFbaeMM1p3erMbo57ApnsQD0JET7ozNKx98nLDcKky2KYuWpouyynr/3I+TzEF1w7DCg0m5YyX3QqNMbacUoaGCMxsvc2sm6wINU1SUNedFwvRMU8NjXJy4e9+CIUGT76EQq+h4PQtScrAZTsIoHuGBhWz2XIqfMhySvUhOhEKzk2t0Fnu8TlMxaF8zJtNTdNEcVIoNFyWU7yeiBKvAsZv/Sbfy+MoZNFk7XLD4IaWQjTFHiT5B4tsu8pDVOFAloWlQk6c486WU9b/6V5NRF2wpD0wrxuip936XIV7QDfke8SeuZr4M98vokW+ZryWU6VCTvlsP8aCGxpMqmGFhrpQOJuq3e2yXdDkayU6qKGhmuUUTWhx8SEcmj6hap2gBeRRq8ciO6ZueBsa7e4D5HftbJijPa4sIhQailtOkXUJD0yEzzd/taOn7xfriwQKFdTQoOJ6TtPEgES3LB5mML5293bXx352HPLzKI5JeFltfMNvd0b++5hgCIVGgsXMV515BI5eM4Y/eMYhYg3B94hwaEhFxyD5VrTu9K79IldosF1pbLR7hZOyneuFQj4n1H5PzS2Lz7PlVLR0spyKKl+HCR+1qkwM0yNeKxvqcHPBIXkaCQfydcNRaPBiISqcRYFaCg15mtY0TZ7AGJCmdL8NImCg7/nfFxyJ3+6YSSRPx9tka1dkoH8ObYhYoRE+pmRBpjJUmGDriPCRJxKD0EkBGjXlYh5YbgqFRi6niaIYD0hEy8NPzbs+9rOc0qX3ZxyTufL64e3/9Ru87JkbIv+dTHcaCeXsyPzzS58u/lzK57Bk6HyPCAlasxXzOeQCNDRo6eYtUkbtkS8sp7ihET0pVmgAlu3UYl3HU6zQiA35nkHvUbq3cEMjPfCZYlKN13JqtMyh4KpARZ+Col6xVNRmy6noaEiScJWQJ7R4Wm5w5AJvJw9jgiyGRop5vPslJ+Lso1ZFdmzt+MDLTwpkA0ENDJ6yi460vKI07c3XQP+0Kyv02syic5CEAtTPcqpUYMVnEvhaTknhu0kM1Jjc9FYCPeFQcC90r+I9RzjQurOYzwn70k4DJ+0yNKLeozrqXj7vUdNuaabqYKWXtRMVAMDDu53GPe9Ro0X3sUyW83mYdMBnikk1lWLO5btNXra8YEyepuqWUzxRGTmioaHYNVCRNjTseT44vVtOWf9PUhlz8oYp/Obdl+C8Y6xmStsMDftYg1gaMP1Br3FOcYkGXQMNLkz0Tbt3T69DKElOX1NDnELB8zmw5VQMmKYp1vvHrRsHAGzdM9/yfQ3dWXvG9Yz50l+cIf68a3a5w3cycWCapliXqLIHoaYnOwiEg/w+p55VEIVGxZOhMTlS9Pnu8KCGGis7o8dss8JIi0Lj2LXWc01eR/ipEJnwkIfwdI/llGrDmEx7+EwxqUbTNIxI09a0MOEFY/KI0E5FpqO8UEODm1/RQYuCOHyse6GY10RhpJ8iCvwAANxGSURBVMY5GgPTu+WUGiHQ+ZzWtbFJ/x66htlyKnyMlFhO0TXAhYn+aff+afa4ZhPT1wk8W7wKDctyym528XoiMpqGKZrhq8fLAICrb9qCueWG6/uSmK4895hVWD9pTdfumuGGRtLIDdKiIkUpHqIKl4bRqtDopBD2y9BYN1HB9GgpwqN0iulsORU9aVdoPHvTdMvneEgiWgyfgbwaNzRSB58pJvXIG1pqaPCCMXmaCYZ2BoFkx5yhER11SRKuEpqmiU0NKzQGJ40KDYKuzZ1tilC0CWa7oeigVzT5q6EzVJjggYn+aWfH0+jxfZVkRheHgifDsjR8IA8ybdu76Pq+pKYryS7kj/7tdrz/hgdi/d2MG/kerYptiMjZ4XtEKFDzuJDPCUtQo8cMjYuOWxPdAdoU2a40NtoNTKRFofEcn+uRFRrRIt+OWyynuKGRGvhMMalH3iCzQkMdRMFBEbm3FznEkz2Po6Ghq6nQAJxNzTI3tAZG3qgFy9CwUGGPQfeBj/7wYdy3Y6bl63SswgeZ7xXho1CDqxMiFJwLE33T7qXrXaFBxawkGhpkOSVnaPD0ddS0Gz7Yv1h3fZzUdOU6u6EBAP9+61Y8uGs21t/POMh7QFXWn1TY5ntEOMiWtmRX2enZ7KfQqJby7b49NByFBp/3yPE5/flcfNaDg7Ki2qoWqnE9K1LkbBvayy7YdqLVYsH3Zxj1UOMpzzAhMVq2FidNw+w4qcFEDxUolA0FL5CFDBeoosIJBVdvMekoNLihMSjy+yfIfddUyGJIDgz94Pcfavm6NxScnyvhQ77HKjS4OuFYTvEGs1/aTVAaZm/vrWaCCg3yYKf7nmU5xRaWUUPP6nIh53rm7Pao6+oJDVKsm6y4Pn5i/1Ksv59xoGsgp6kznU33iL3ztYSPZDhwWU7luq/PnFBw574QR0ODMzTiw299ocr7Pwg5n2PlBmi0+GVoHFi0bCxXjEabr8OEh5qVRobpAfnxJU9ksaw3WUihoarllOta4QVDJDQUzdAAnIYGF6AGR95EBMmYoG9RYWpK9l8fK7dO44gMjRxZTsVyWJlCDEgpcD10osBe2APT6aXrJWydzkEhgYwuUmgQpbwmnnG87owOsgetFPOue/UBj0KjkZRCw9PQWLSnPJn4cRTi6qw9yfrqr77ya3zp548lfDTpR7acygXI0HBCwWWFRvQT2JyhER9+L3Fa8jPawbbY0SIv2URDY8FaU/gpZhg1UedJzzD9Ij3AuKGhDhSYORLDgrEfZF9dbmhEA2VoqOhDKSynWKExMPLkWbAMDVuhEdkRBedZR6wQf/Y2t2QrujwpNNhyKnRIoaHC9dAJDgUfHK+9o1xr6OV1bSZpOVV0P89KhZx4xnEoeHSQ5VSlmMM7nn+s+Ly3UFgXVjTJWU4BwEKN1xZJ0UggGL4b8jr4Xd+8L8EjGQ4cS1vNsQTtcPul20TcCg3O0IgPv+V5XvFBGS/nHbMKgHOdcn0iWuQ9HTVEaUhixSg3NNKCOk96hgmBYo6L1KpAgZlxLBj7wZrqsf7Mza9oUDlDg0PBw0P2IA2yZ6P1Y06Bjcb/Ou9InLJhEgCwUHNP1Mr/lmKON6VRodL10AknQ4PvGf3iff/I07I9NTT0JBUa7t9ZzOc4FDwGaPigUszjsOkq/ucZhwNozcyjtb/3PEXNmvGy62Pv84SJD7nYrQqlgpp7obRCjcySbDnVUaHRmqERR8GSMzTiw9dySqF7QBA+8cpn4a3PPQb/99KTAbCLQNTI606yrDtIllNVtpxKC+pVmbpw3XXX4c1vfjPOO+88TExMQNM0vPKVr+z4M7fffjs2b96M6elpjIyM4OSTT8ZHPvIR6Hr76Znvfve7uPDCCzE5OYmxsTGcccYZ+MIXvtDx93zhC1/A6aefjrGxMUxOTuLCCy/Ed7/73b7+nUxw5FDfXE4T/sYU2MgkA20+R4rqLuI5yDNa6gpOyRF0n2CFxuC4MjQCKBgMhTI08jkNf/XcYwA4QXCE/G8h6woOBQ8funxUuB46QcXzBis0+sbbD5SnlvuznEouFJwo5nM8TRkDQqFhv/7tFFP1hKwuJ0bcxQ/v84SJD2F5q9Das5Sywqrq1JuOSk80DTo0lGk9Jw/ZPXvjinbfHhoFYVfK64YkSJvl1Fi5gLc+92k48RBr0IrXFNHiVmhY/z9oKzSmRlihkRbU9ILpwJVXXonf/OY3GBsbw4YNG/Dggw92/P5vfetbePnLX45KpYJXvOIVmJ6exne+8x287W1vw89+9jN87Wtfa/mZa665Bm9+85uxcuVKvPKVr0SpVMJ1112Hyy+/HL/97W9x1VVXtfzMFVdcgauvvhobNmzAa1/7WtTrdXzlK1/BS17yEnzsYx/Dm970ptBeA8aNt7gwXiliuVHDrOSNzsQP+QePKKrQAKxC+3LD4AmIiFBZoUFFKW5oDI68Uetl06bKRP6obYs336LQkBoaAUInmX5Jh+VUIUDRhOmM13KqkMuhkNPQNMweLafIIz+5UHCimM85GRq8logMJ0PDeq3p/dii0CDLqZgVGpOehsYiD1UlhoprTxWtV9OMfI7JVqjT8oy+Nl4p4l0vOh7lQg7rJ0eiPkzRbGnoJkzTVCI7blihNXsxr4naUJpCwWVoSIIzNKJF3rPS/m5myaofeocUGHVJ3dP1wx/+MLZs2YLZ2Vl84hOf6Pi9s7OzeO1rX4t8Po+f/OQn+MxnPoMPfvCD+PWvf42zzjoL1113Hb7yla+4fmbbtm244oorMD09jbvvvhsf//jH8eEPfxj33nsvjjrqKFx99dW44447XD9z++234+qrr8ZRRx2Fe++9Fx/+8Ifx8Y9/HPfccw+mp6dxxRVXYNu2bWG/FIzNv7zsJFSKOfzn/zoDADBesYpTc8s8HZUUpmniv+7eDkB1hYZ1bFyECB/DMEXRSSXZPyEUGnzuB6ZvhUZkR9Qbo3bArNciRP6nFNgHOTLMtCg07GugwddA33jvD/mc9Lr20CiiplISxYqWUPACh4LHASk0yvaaklRz3qGmekKh4JMeewpvg5yJj0ZCTa1OyEplFVXLacPPcqrT+oyePTnNshp91VkbIz9GwL3/4aVDtDgqHGdeOwlbyjBg1Wc8yKp73dPQ8A4pMOqSunf5RRddhGOOOSZQh/u6667Dnj17cNlll+G0004Tn69UKrjyyisBoKUp8tnPfha1Wg1vetObsHHjRvH5FStW4O///u8BANdee63rZ+jjf/iHf8CKFY58cePGjXjjG9+IWq2Gz33uc739Q5nAXHb64fjdP70AZx9tBSmNV6wbEDc0kuO+HbPizyorNMSCgYsQoSPbhxQV2lQS5KNbY4XGwLgmXAJs2ByLITUq2E5Dw30tuBoaObacigp6RVW5HtpBRWtuavWP96Ur5HIi+8wb7twJp1muRoaGyFdhO7LIkDM0AMfCx+tNn1Qo+FjJbXqwyA2NxKgrmKEhN0LjzncZRmTLqRw1NDqtzxLK6pKb7r007ZneodM/KtUd0qrQoGasYbIqOEpk1X1TNDSsZzc3NNLDUD9Rf/SjHwEAXvCCF7R87fzzz0e1WsXtt9+OWq0W6Gde+MIXur5nkJ9hwiUnPbAmhEKDLaeSoi7l06hs6cMZGtEhv6YqTqORDzfbjQ1Or5ZTpjQppwKjZetaWKg3XZY4bDkVD6opdtpRkKZAvdZJTDC894d8TpOaAelQaFTL7sK1bDnFwa/RQXl5VAzuptCIe5Ai57kW52vqrn2HHRUzNCZGnPtGuajOcaUVX8upQAqNeJ8Z8jXIDY1oodM/WpYVGqqvLP2R1WW8T40Or8OAaZqYJYUGh4KnhtRlaPTCQw89BAB42tOe1vK1QqGATZs24f7778fWrVtx/PHHd/2Z9evXY3R0FNu3b8fi4iKq1SoWFhawY8cOjI2NYf369S0/c8wxVtjoli1bOh5rrVZzNVZmZ60J90ajgUaDC/O9QJ35gws15V87Oj7Vj7NXmpLn4+6ZJWX/fUV7obOwXFf2GNPK7KJ1P8tpQM7U0WiotSCjAZ6FZbXvsWm4RzQ8Hq+1Wr2luCNDm05d15X4d5Vz1vGYJjC7uCzk6vWGM2Gr2eN9Dd1Q4piHCcMuAhuGGtdDWwznOl9critlZ5KG+wTgXhsA1vOBCg6LteDPYWpoaGb878eJsvu852BAM63jqTf5/hAVC/aQUimvodFoIGffk+vNpus1X6pbfy5q8b8f/v6Fx+ID398C3TCxUFNrbZGWe0QYLNWsUNd8Tp1/b1FaE5ULOWWOK63U7WdJDiZMw1qr6abZ9nWlhoauN+N97aWC6eJyHRV1TQsApPs+odvDlHLwe9F+XqQNTRqOWFiuoZTjIZookNekTV3H3GJNKPyqhXS+D+Kgl/tEHK/hUDc0ZmZmAACTk5O+X6fPHzx4sKefWVhYwMzMDKrVal+/w4/3v//9+Kd/+qeWz//gBz9AtVrt+LOMm4N7cgByuOfe+7Fy/31JH04gbrrppqQPIVQentEAWAuKlbMP44YbHk72gNqwtJAHoOH2X9yJ2S28WAiT3UsAUEA5Z+LGG29M+nBa2PG4dZ94YMvvcUO9c8NZBVS+R+zYab2WxPU33ohOTg/z9vvuFz+/A3t+F/nhdcU0AQ15mNDw7Rt+gImS9XlLdWwtk36/5UEAeex48knccMP2pA51KHnqKev6uffee1HZ+ZukD6ct1sC1dT1cf+P3UFawMKHyfQIAHtrurA0AYGlxAZaIU8Mtt/0U28aC/T37Dlj3kF/eczeWHon32f37A+5/w5133I7ZhvW5fQcO4oYbboj1eLLCvTus13jvLuse/PCT1sfbHt+OG254XHzfffY1tnvnDtxwwxOxHuNaAK85RsOnHsrjyaf2KXktqH6PCINf77OugfmZGWXOwe8fd9ZJtaUlZY4rrWx7zHo9H3n4Ifzo4IMACjBN4LvX3+Cr/m02rWfGT37yY0yX4z3WHPIwoOH7N92MyVK8v7tf0nifePwJ65pYmjsAeq8tzs+l9r1G182N378ZUzFfs1nhiR3OfXn3U3vwjeu/D6CAHEzccvMPlM/2S5og94nFxcXIj2OoGxpp4u/+7u/w9re/XXw8OzuLww47DJdccgkmJiYSPLL08ZsbH8LPn3oM6484Cpuf36q0UYlGo4GbbroJz3ve81AsDo+07ZYte4Df/QqHTlVw+cvPT/pw2vKFHXfiiYWDOPkZz8QLTlyb9OEMFb/dMQP8+heYGhvB5s3qXQNbfvh7/GjnVhxy2BHYvPn4pA+nLWm4R3xr/6+A/XvEx5c8/wUdPaKvfug2YHkJZ599Np55+FQMR9idd/3qR5ivNXHmeRdg48pRAHYw3F0/BgA8/cQT8M3HHsKateuwefMzEjzS4eNre+4BZvbh1FNOweZnHJL04bSl3jTwzjtvBgA857nPw4RC/rppuE8AwCM/egR44hHx8eT4OJYaOg7Wl3DGmcHvBx9/5HZgcR5nn3k6zjpyZURH68+h22fw7w/+Qnx80QXn4am5Oj754D0YHRvH5s1nx3o8WWHLD38PPL4VR2+yntl77ngM33rsIaxdtx6bN5/i/r4ntuKoTck826e37senHrobhZExbN58DgDgxvt24St3b8cHX34S1ownU5lKyz0iDJq/2Qls+S3Wrl6JzZtP6/4DMfDgzQ8DOx4FAOTLFWzefEHCR5RufvBf9wJ7d+GkE0/A859xCP7hbmut9vwXvMDXauyKO28CdBPPufhirJ+sxHqsf3v3zVhqGDjvgouwYcVIrL+7V9J8n7j1G/cBTz2Jw9evxZYZa0+yeuUKbN58esJH1h9/d88PsVjXce4FF+LwaR5ujoIffNW6jwDA9MpVOO3sY4Ff3oHJagkvetFFCR+duvRynyDXoSgZ6oYGqSNIReGFPj81NeX6mb1792JmZgYrV7ZukryKjH5+hx/lchnlcusit1gspu6BkjSTVet1XKgbqXnthu0863a3e+1ERel/F4X0GdCUPs40smy79YyVC0q+ttWydUx13VTy+LyofI/wmonl8wUUi+3H12meulhU59oYLecxX2ti+0wdx6ybAgAUGs7kd6VkHadh8r0ifKwRqEJBnevBj3xeUgLk8koeq8r3CQBAzl1oKuRzKNpWIKaWC3zsTftnygn8e1dPuAtSI+USKjXreJpGOp4naYRcK6v2moLuyboJ12vetN+mlYSeL5Oj1h5kqa6L3/+Wr94LALj21m3455c+PfZjklH+HhECdA1US+o8U8ZHnNH8ejM9+1NVoTiKcqmIcsl5LXNt1p8Ue1UuxX/9F/M5LDWMnp5xSZPG+4SmWeuLsYpz3OWCmmu1IJQKOSzW9VRdN2lD3r8aJrBguyNNVUv8mgcgyH0ijtdRHQPgCDj22GMB+OdXNJtNPProoygUCjjyyCMD/czOnTuxsLCADRs2CBuo0dFRHHrooZifn8fOnTtbfubhhy2rHb9MDiYaxjkUPHEowIoaBqpCHugcuBU+8zWrozFWUbNvXilyKHhYeIN+9S6ByWQNm1dIy7t71sp8ee0X7hafk/9ZdL3UOdQxdEy7xaXQ5eBLLqcJKwvvNc8EwxumXshrKNpNjqYe/DWl7y0kEPp76NSIa8LXCgW3g835uoiMmuVNJu7F4jVvEwqeVMYNZTAt1FtDwTkUOB6W7e5XpcNgRdy88swjsMIOmV1WLFMujdB7qZTXkJc8pow2609alyaxzqB7UaOHZxzTO3Tu5VDwokJZZ71CSne+X0SH7gkFp0BwlRTYTHfS+y4PwMUXXwwA+N73vtfytVtvvRWLi4s4++yzXcqITj9DPvD0PYP8DBMdTkOj2eU7maigjadKoal+0GKhzkXt0BENjbKqDQ1aKLYWHZje8BaU9C6bNtp05BSsYDc9i1uC7hU1vl5Cp0v/SymogN7gwnVfeBtBOU1DwS5MN4zgz2H6ewp+ZukRU8jncPFxa8THpUJOXBe9NGWY3vAWqQs5//di0g2NUTtcZ6HWhGmaWJIaG2sm4rW6ySJPzS3j5gd2A1CroTFRKeL7b7PsV5ebektzl+kNet8X8znXWtJv2MA0TbHOSGKQhiyweK8ZLXSO5X1nqVOgn+LQM4wHqaJD3uc1DdOyGgYwoegwJuOP2tXGAbn00kuxatUqfOUrX8HddztTl8vLy3jXu94FAHjDG97g+plXv/rVKJfLuOaaa7Bt2zbx+QMHDuB973sfAOD1r3+962fo4/e+9704cOCA+Py2bdvw8Y9/HOVyGa9+9atD/bcx7Rm3pYazrNBIDHr4dvLRV4ESNzQig6YTR0tqLgoqtnpomc/9wPSs0KCGhkK3h4uOXQ3AXSClf4amSc1P3liEjsoNLi/FHE2F83XQD95aUyGn9dUMoOncQkLFiuPWO9l2lWJe3Dd4Aj86lpvWmoLuxaIR5nmGJ93QIIVG0zDR0E2XWlz1NXHaaeoGTn/vD3Hbw3sBACMltV5varCYJq8lBoXe94V8zrVu82toyJ9KYp0hGhp8ziOFmoRVad+ZZjVtKU+DVHzdRIV8feiGiYW62sOYjD+pO1vf/OY38c1vfhMAsGuXFeJyxx134PLLLwcArFq1CldddRUAYGJiAp/61Kdw6aWX4sILL8Rll12G6elpfPvb38ZDDz2ESy+9FK94xStcf/+mTZvwwQ9+EG95y1tw2mmn4RWveAVKpRKuu+46bN++HX/913+Ns846y/UzZ599Nt7+9rfjQx/6EE4++WRceumlqNfr+OpXv4r9+/fjYx/7GDZu3Bjp68I4TLBCI3Ho4VtWaDrKD55+iI6kiwrdKLNCIzS8DYxml0lrerupVMB+14tPwI8fusU10WlKhXZufkaH3DhSHav4rnPhuk+8U8m5nAYS9vfSJHIUGsk8X176jEPwuydncdTqUUyOFLGLmjIpLp6oDj2ry8Jyil5zT0NDWNEkc22MSM+QpYbuWl+yxWW0bN274Pp4RLE9iNzQWm4Yytvyqkw7yym/Arb8uVwCqj6yx+N1Q7TQaSaVHJDuZzLdH7hGER3yHE1TN8U6Y6TE9+Y0kbqGxq9//Wt84QtfcH1u69at2Lp1KwDgiCOOEA0NAHjpS1+KW265Be9973vx9a9/HcvLyzj66KPxoQ99CG95y1ug+eyg3/zmN2Pjxo246qqr8B//8R8wDAMnnHACrrzySvz5n/+573FdffXVOOmkk/Dxj38cn/zkJ5HL5fDMZz4T73jHO/DiF784xFeA6Qb53pFsjImfpDeUQWHLqejQ7SJDEpYgQSCFBlsIDY53w9DNOYaKmnmFro1VY5b15HytieWGjkoxLzZHGljNFSV09WhQ53poh3MdpHeTnCRef/NCToNhn/YgNl6maeLTtz2KfQt16+cTUmiMV4p4/8tOEh8XuGAVOcJyyn4PUkPD60tfFxluyaw/i3aBVTcsuylZecTrjWjxZieqZDkFWHsiTbOa+LWmDoB92vtFtpzSNE28rn4KYfm5k8Sy07lX8fMhSgyfvUWabSB53xE9urRhbRoGlurWx6o1w5nOpK6h8Z73vAfvec97evqZc845BzfccENPP/OSl7wEL3nJS3r6mcsvv1woRZjkmOSGRuI4Cg21Gxol9jUdmNnlBi79xO245IR1uOL5x4rPU5E7qYJTN2ijy2Frg6N7OhhdFRpC+RDZIfXMqDSNQw0NCqvOaZqTocH3ivCx95sqXQ/tKHFhYiC8PYt8TkMewW28fvn4Abz3hgfEx6o0zPsJNmd6Y9kTCl4QQexqWU5pmoZqMY+5WhNLDd11XfPzI1oWau6GkWoNDU3TUCnksdTQ2UZmQGTLKcDKxmiapu9AjdzQSGKQhtaPv378IM49epXvMC0zOHSWZfX3YoqbyM6+I73/BtWR1VtN3cSSZ53BpAO1q40M0weTVauhUW8abCeTEHXdDgVXXKHBllOD86WfP4Ytu+dxzY9/7/o8FXbyKgUlSIhQcF4oDkxLKHiXSWvDUC8zoZDPiY0uFZ2EQkOTpN9ckAodKjYodDm0hZ8Zg+G9N+RzmmhKBGkG7Juvuz4uKLLGaFdcZ8KD8q6o0NCuiSQUwgnaXVbsBvlivelSkPCeJFoW626rYRWnbCtsdxoKNFRAdk60fvO7B6uSoXH1TVvwtXu2x/77s4Lps5ZcqKXXfpwVGtEj3y4ahlM3VPHZwbRHjZ0Aw4TIWKkgJj1ZpZEMqVFo8GJhYBZr/psyodBQZILWCxVFeEpucFpCwbs1NMREvlrXhpiGsq8JarxoGheyo8S5WtS6HvxgVd9geJUthVxONCUaAZoBBxY9DQ1Fni+O5ZTZkhPC9I5umNg5s+T6XE1MTrpDwb33ZGpIl/LJFSSqJVKAuvN2WKExOFt2z2HzR2/D9+7b2fK1ec96VEUfdFYHh0NTspyS/+/XGHdlaCTY0ACAT966NfbfnxWcPDZJoZHihgYrw6NHtqjjDI30ona1kWH6IJfTOEcjYWiDWVZkerIdtOHlxUL/tCtCiQwNZS2nWKERFr02NOjrKmVoAO3l3TlN40J2hPhN1alKseBfRGWC4S02FXKamLANotDY61VoKHIPKUpKxG73P6Y7r//SPTjr/T/CrVv2iM/VvAqNNgXMpC2nAGe6c6luuBoaPJU/OO+9/gH8bucsXv+lX7Z8zavQGC2r56xN6wxeew4Gvc/pPuAoNFrvv2bCllOyUP3YdeOx//6sYPjY2c6nuqHByvCoke8XDclyKqkMLqY/+GwxQ8mYvYhNs9QwzTgKDbU73KzQGJxGm3BcKjKoUnDyQgtFLjAMjncD6behlFHVYoiuCcdyyrHG4ntFdPj5HqsKN7YGw9sAL+Q1FHLBc0laLKcUsTSUG/fd7n9Md2763W4AwGd++qj4nMjQKFBDwz97RYWGBjVdvJZTPDwzOEYHBZQ3Q2PVWCnqw+kZVgeHA1lL0X2g2MH2z63QiOHgPCzWneuSrWyiQ9jEQsORq0cBAOc/bXWCRzQYvO+IHkPO0JAtp1ihkSrUG11gmBAYLVmXtryIYOJDeBirrtBgG5mBaVeEckLB1bwGysLH2IBpmhzSNwC9W04pqtAouhUazubIfa8wDBM5xY49zcivs+oUORR8ILzT9MV8TjQ2gzQC5mtu1a0qCkDZUqShGxwoGRJy8XrZazlFjTDPdaPC+pMsp5Yauuta8CoImN5ZNVYWf27qhmuN6X195e9VhXKRh2nCgBqFdO8ttMnUAdx5aEms9eXnA5/36KDHRU4DvvzaM/HtXz+JPz5tQ7IHNQAcCh498n5V100s2Y1mbjymCzUrTQwzINRZZYVGMtDDNz0ZGrxY6Be5sNf0+bOqCg15scJTk4PRb4ZGXrEmkjdDQ7ZCkuXHVDDjqamQUFSx4wdPzA2Gd3o2n9OkcOfur6nXPkKVpqhcsApincUEQx7Gp8yBcgoUGo7llDtDY4mHrAbGteb0rDW8xWIVGxoVtpwKhUYPllOy2jYJqiW5qcnnPSpM6TyvnajgtecfiamqeiqtoPB6M3rkoYmGYYi6ITc00oXa1UaG6ZPRMsm9eeGQBFQQVF2hUWb7kIGR7RTqPhtNVQpOXkZLBVFAnVvmxucgeDeQepdQXGp4qKaKabWcsj6fy2mu4lhdN3DPYwfwtHfdiI/e/HDsxzls0NWi2OXgS5k3mAPRaFFoaK5A7W54Q3+Liqwx8jlNNO+5QR4eW/fM445H9sE0TVEAdkLBSS3ln6GRpAf2iKTQkI8vzX7uqiDfe71KOe+1MGXnKaoEh4KHA9kX0n23XYMTkHLbElpk/PnZG8WfedAyOkRxOgVrySBQDYXXFNEhD+A1dRM7DiwBANZPjSR1SEwfqLETYJiQqbLlVKKIUPC0KDTYPqRv5OkG2ROYFgmqFJy85HKayNqZWWrgX258EF+58/GEjyqd6J6p604KjaTDGTvhlXcLhQbczdl608A/fed+AMCHb94S70EOIWIPmoKOBltODYa32FTI5ZxwZx/vcy/zy27LKZVuIRW2kgmdJ2eW8aef+jnuf3JW3CfKRbdCw/teFJZTKig0Gm6FBu9JBsc1OONtZtlf++NnbcDP/+45SlpDso3M4BiGKRpC1Dxs1+AEks9tu+jYNbjikqcB4HtAlKQpjy0Ijg0urzejwtXQMEzsml0GABw+XU3qkJg+4AwNZigZLTmBfEz8OAoNtSV7LOccHHlzWXNNzqmt0ACAiUoRc8tN/PThPbj2lkcAAJedfnjCR5U+RF5KTkPTMDtariQdztgJ7+ZB3hxpmoZSPoe6bqDWNJS+rtOGITWOVKdU4A3mIHjVXLKyIYhVkxz6e+jUiFJNsEoxh/kaW8lEwd3b9os/k0LDaYT5KzSSVAgLhYbHcoqnswdHbhg2PE1QsiHatHoU6yYrsR5XUFihMTgL0t6eBpPoOeI3UEOXSZLrtmdvnAbgPnYmXNKUxxYERzXOa4qo8HMUGCnmsaKqnrqPaQ83NJihpGovcBZq/BBIghopNBKckAtCiS2nBqYmbS7lRZfukYOryMRIETsOLmHHwSXxuYZuKKsqURXaQJYKOTTruku140Xea6o2PSk2Dw2ynHJbY5ULVkOj3jSUy/9IM+lUaHBOQj+0hoJryOeCv6Zk2XPVH5+CMzZNh3+AA+C9fzDhsWBPNWuas26TC5imaYr7hxIZGlJDQ77mF+u661iZ3pEn3L33jIYCgfDdoIYcK7n6h54DhZwm9pnCutBH6UdruSTXbaN2XWKR6xKRITI01H3790RV5MHyNRMVfg3QqWqRn9EpY0je8gzjhhUayUJF7iQ3lEHgadvBkafM5NdRntpXlYlKqzXdPOdp9ExTamjIH/shNztUk4V7rSBoX0yHKSu6VGvGpBlHCZPoYQSCVX2D4bWVKuRzjvd5F8up7QcWRfP5zCOncZhilgBlLlRGBuVcVQp5UWgoSEVrKmybpqmU5dRiQ2/JFvvA9x5K6rCGAvneu2XXHOYkGzq6DlTee5BCo8b3ib4hpdNYpeDcD+wqtp/ST0/YcgqQitNcl4gM2l6otrfoF1IfcS0rOgyf/eqkgtlLTGfUfeIzzACMcIZGotRTotDggNfBkYs38mQqbSryCk/KTdiLlv0LdfE5DgjvHZpwofeTN1PD73uBZKfl/Ch7GpymXWrP+TQ0VG7UpQ0nq0T911So+nReW/SDd6K6kNNEIaqbQuP+J2cBAMetG8eGFWo1MwCr2A4Ay7yeCJ2nbF/ripTLRo0wwJnMl5sHSRa1qXi5XNdbcmOuveURzuAZAHlg4tWfvwsv+Mht4mM6/yqrbIXlFN8n+obW6aMlx2jEUWy1vq60xkjSckooNGyVFhM+ndThaYTdRqLHbwBvghsaqUPdJz7DDMAoT0IkisjQULyhwQqNwZH9wuUJ23QoNKxFy267WAIAs57QWaYzpmm6LKcAoFOtRt5wKNbPkPxq7YaGZ9pLNDR0nTM0QsSxnEr2OIJA1wBbTvVHi0Ijl0Ox4B/u7IXUc2smVPXGZ4VGGPgV+3bOWM9oukcD7qI1DVDIwymJZmi4QsFb/z2P7JmP+5CGBm+DSLYMpfOvckNDDE7wfaJvqMA7XpEaGmQ55afQsC+ZJCf3qcmpGybvOSNi2BQaXMuKHr8mGCs00oe6T3yGGYAqe1Umhm6Y2LdQAwBMVUsJH01nnAIlLy77RbackhcG6cjQsO4TT83VxOdYodEb8nALFZs6KTTkL6nWFBCh4HahwRtWTQWyWoNDwcOElDBpeEU5d2kwvHYghbzW0khsB/mmj5fVjP8L+u9gOuO3Hts7bz2jZYWGvLYg33xVGho0hb9YdyynnnfCWvF1trbsH7+JWrINaQiFhrpPEw4FH5z5mjV4NCo9C6iJ5WddaIhshSQbGs6xsntENIjzPCwNDaHQ4OdFVPhlaHBDI31wQ4MZSrirnRyP7VvAcsNApZjD4Yp5XHthy6nBWZIW5nKxSig0FN5YkkLjqVmnoTHPC8eekDeP5R4VGspbTnnCqkXDQ2fLqTBJYyg4N8H7w6vCKOQ0UaTuNrFM9+YxRRsarNAIB7/12B7R0HAUGpqmifuwUGhIBW0VipdLDScUfPV4GSesnwDABc1B8MtIIGVtGkLBaZ0hq5uZ4PzX3U/g9V/6JQBH9QA4AzK+GRqG2z40CfLSs44L1NGQJrVvEEbZPj1yuKExHKj7xGeYARCbCX4IxM4vHz8IADhu3YTyU8ylvLUY5oZG/9SkTZkuFatpU0H+6CpCPplycZKLUb0hLwadUPAOGRopspxypvqsr8vT+cMyAaYChgKBnUHhUPDB8E5XF/I58b7r5ilPRUvZZkQlOOw3HPzeWwcXrXNflhoagGwz41ZoJF3QHilZv3+prruK7KNlUm5wQbNf/BQapOCppygUnNea/fHO6+4Vf5Yt6EQouM/1QcvOpIdouEAdLd7cu7RTtZ8XPGgXHT63C25opBB1n/gMMwBVodDgRUPc3PPYfgDAWUetTPhIusOWU4PjspySXkY9FRkarYUx3mT2hrx5dBQa7fMFHEm4ehP5jkKDLKesz1NYtSsUXGHlUdqgqyUNryg3NAajxXKqF4WGbdMzpnhDg61kBqNTPk3FU6guikB5d0OjmHBBe6ToKDTIDquY1zBS4pDXQfEbmJi3X89GCjI0+D4RHrIFHdmMeTNWAGeQJuk1JxWo2T0iGowUqX2DIDfAOEg+GvyeJ9zQSB/qPvEZZgB4Cio59szVAQCHrVDbbgqQQ4zNjkVYpj1yA0CevqdNvMoqnRU+GS/dpoQZN7ouKzSc0MN20NpRRYWDk6FB14B72ov+ffWmgbzCyqO0IYIcFb5XECXPRDjTGy2WU31kaKhuOVVjK5mB6PTeGim5FRrFgnsqm66hctINDfs4l+o6Gk2y38wJO1zem/SP7tPwIjW+k6Gh7vPZOzjB9I9sQScsp3zWn7QmTXo/Ui1yvmeUeHPv0g7VsjhIPjpoTyoPOHJDI32o+8RnmAGoljhIKSkOLFoNjRVV9R8IsiydJ257p6kbrs2DIf1ZWD8oLP0/zCfjhe1CekM+/1TsDaTQULB43Wo5ZX2emi8iFLxpQBZo8OTUYFARSmU1F8EKjcHwFpuKuVzg7Ik5W6GhquWUsM7iyeuB8CtIEt5mlmwDCDhr/tGEm16kEl9q6GICtJjPib0JW870T8NnopbuHaS2LhXUfZawQiM83AoNu7np0/CiNVriDQ1WaESK6Vmzpx0Oko8eGsSclGpW3NBIH+pWmhhmAOhmNLPU4GJTzIiGxmjr9LtqyD7LXKDqHa+aQS5kO5OS7olKlThseqTlc2w51RvUoCjkNOFv3mnhrUI4Yzu8oeCG4zllfb1IxTPdpdDoZJHCdIcKECpP1RIcCj4Y3un7fM5RaHR7BgvLqbKam80yh4KHgp9lDOFtaJQ9qphF+7WvlpJdd4wUJYUGqQZympi4ZTvc/vEbmKD3XDosp/g+ERYVV4aGrZ70aXjRNZN0nduxEOKGRhSYKcpjCwIHyUeLaTruHBMVqaGRgoFcxo26T3yGGQCykmnoJm8cYubAAik01G9oFKUx65rO10mveDdksuUUfU2eoFKNaqnQoiTiqbneaEpS/jXjZQDA7rnltt9PDZCkwxn98BbH6Gqmaa+yVMyW6yVc3B4MmmBOQy4JKzQGoyVDI68FV2jU1FZoVES4Oa8lBqEXhYZoQtvPbbJykSdbk4Cm8JcaumiQFws5YUW1yMWpvjBN03eAYMm+d9RSoAyma4MtZAZHtpyi9YOfJRndUpJed4p8T7acigTvmn0YoGceq3rCR15qyKqMVaPlBI6GGQR1n/gMMwAjpbzY6FCBnYkewzAxs9QAkA7LKU3TuEA1AN4ClGw5RY0BecOhIivH3AuXJZ6a6wnaPBZyGtZNVAAAu2c6NTSs/6u44Wi1nPJmaDj3Ctm6gO8dg9EQ15D6S9ISKzQGwhvAWCnme8jQsNYWqoeC17gpPhB+ljGE99x7rx0q+owmrNCQFSKkLCrkNDGhzYNW/dGu10XrNlqTjii87hSNT15rDow8MEXrh4bPReKs5ZJdd5IVHis0osEYMoUGIFuo8/0ibGS1n6zqWzWu/kAu40b93SPD9MlU1bGdYuJhdrkhNhxTKVBoANLUNRcle8arZpAVGjTlnnQ4ZzdWjbmvU95k9kZTCn9fN2k1NHbNtm9oCMspBT2nvJZTpnCcsjM0pK/LToZ87xiMpghyVe+a8EIhxBwK3jt+09WVYr73DA1FQ8Hp/uG1YmR6w88yhvAqNLxB7KR8qCZ8jciDHLQHKRVyTrYGFzT7ot19d7lhwDRN0dhQuaHhKEH5PjEofgoNP8s6VbLbWKERLfTo0Iaoo+FcM/zMCBtD2sjJz4ykFZ5M76hdaWKYASDLI8p0YKJnv62GGSsXlJZ8y4ipay5Q9UyL5ZScoZFShQZbTvUGnfNCPoe1tkJjVweFhirhjH6IaV/7uhYNDcrQkBQa8rXODY3BaEjXkOpwA7x//KarR4p5YcOz1NDb5ieYpulkaCiu0OCm+GB0VGi0WE55FRq25VTC6w7Z+3xWKDRyYkKbFRr94ZefAVjvubpuiHtMJWGFTidYoREe5WJrhobfNaJKdhu9/z/6w4eTPZAhxbGcSvQwQkVYTnFDI3Tke8VLTz0UgJp7U6Y7au4KGCYESKFxYJEVGnFBr/WKUfXtpgi2nOqfWtO/oaEbpmgQqa7QWDtecX3M/ue9IWdokOXUrtllmKbpOyWlm2psLP3w3gu8NgWyQsPV0OD8nYFoSqG5quMoNDgIvlf8pqtHinmsGi2jVMih3jSwc2YZh01XW75vrtYU95qpETXVnxWevA4FuanlqHeszx2xctT1vUIVYxeHl+xGwagCKp5qqYDlRh0z9lBVMe9YnLLlTH+0a3Yt1XXXMIocFq0asiKt3TqJCcZYWVZotH8203BK0sXK49aNiz/vX6hjelTNZ1laMRWxFgsTGuCY54ZG6MiuEhcftwafvfw0HLaidf3JqI/alSaGGQDa9B5khUZs0GudhkBwghsa/dNiOWUXnOTXUnWFxuHTI66POayzN+ic5zXHcmq5YWB2yf91JEm4ihsOr+WU14+3lLeu5bpueOzV+N7RL4ZhiqnaNCg0KEOjxtO1PeMX9lwp5pDLaThshXUffnz/om/uGam+JioFoehQDVZohAMpto5cPYpf/n/Pc60zzjxy2vW9XvseytCoKnCN0DGQ5VQxn2M/9AHxZvAQSw1dvO/yOU1p+0JSFRgmN8YHZZWksKaBCL9rhNapSTePXvbMDcLm9p7HDiR6LMOIWLMnfBxhQgoNbmiEzxP7F8Wf8zkNFx+3FsesHe/wE4yqqL97ZJg+IZXAQVZoxAY9cMcVtYTwo8QWIn3TEgpuLyblz6uu0Dh8pXsagxeNvSErNCrFvAhjbWf1p0o4ox9ljx+7I193KzTYciocDMPEdb/cLj5OenoyCCL4mc95z/jZSdHreciU1dB47/UP4NR/vgnf+NV21/dRQ4OapioiGqLc0BgI3S5IjpULqJYK2LTKUWV4C5KOTaD1M4s1dRQa3gDwYj4nno+s0OgPv6YoYK05SZ0zUswnXrjuhBxk7VU5M72xctRpaOTtUHC/a4QGUFToc52xaSUA4LF9CwkfyfDh2MQqcKJDguopZLnJhMOXfv4YXvSvPxUfp2D7wXRA7UoTwwzAFGdoxA7JwQu59NxaRBGTMzR6xlvUo5eQPl/IacpPXZ++aSVOOWxKfDzHi8ae0KVQcKB7Jo2RigwNCgV322O1tZzi4nZffPPXO/DO6+4VH6s8VUt4LW6Y4PhNI5PaYqJiDaD8bucsAOCD33vI9X1PzdUAQOT0qIicBcL0T0OsI637wSdf9Sw8/dAJfPby01q+1xsKTgoNFUKhq2X3MRTymggrX+QMjb5o19BYaujCLlRuGKhIKZ8Tqk/ObBuMVeOOG0CnUHCVstvIUlGeDmfCwauqHgZYoREN3/zVDvHnnDZcTbAskvwIC8NExNQIKzTiRgQEK7BoDAorNPrH64muexQaqttNAdZi8VtvPAe/evwA/ujfbueGRo+IJma+VcXghyP9j+HgeqTFcor+CfbBOqHgOiTHqbbNG6Yzv9i63/VxGhrhrNDoHz8rEHo9J0bc2xFvVsKSXaimqXcVYTuhcHCeKdb94Ji14/jum8/z/V5vKLiToZH82sNre1WSFBoc8NoffsVqwK3QUH3dqWkayoUclhsGN8b7QNOcSfxpyd64KBoafqHg9LPJLzyPXG092+5/cjbhIxk+6LpQUQHeL2Nlq5Y1x8+MUClKw5YqNDqZwVB/98gwfUI5DpyhER80PZVL0cOBMzT6xztxa9jnnyblVLebkhm3J4R5CqY36D1ftIvRRRHMmEaFhqMuMQxTspyy/i/fKwyTFRqD4t1zpkGhQdO/TcNsW1xj/PErNFXs9xTdf8XnPVPWNMms8vR1lRUaoUCNryD3A69iysnQSL7x5T2GQl4TVljc9OqP9pZThnjfqaDO6YbTGOfroFdorfnff3m2SwEexHJKhWG7s460LKd+/cRBXjuGjHfNPgyMseVUJMhrSc4ySj/q7gwYZkCmqtYG+QArNGKD7GdUWDQGpWRP+PHCsndaFBr2RqImik/qbywJ4VNaawp5OtMdOUMDCKLQsP6fV3CCqixdr3XdwKwd5lqx7xFyw6PJllOhks9pSkxPdoMmwgFgmc97T3ifF+OVgihITXhyt/I5b0ND/elrKqRyPsJgNHqwLvWq6hYVUmiMehQaVoaGdZ3XdYOfG31ATdFyIYfXnLMJf37WEQAsZU4a7hEErSnYcqp3qOF5qJ27RAiFho8SkIYPVBikOXRqBIWchqZhYt9CLenDGSqG0XJqnC2nIqGouB020xt8NpmhZYoVGrHjLW6mAbKcYguR3vFOKHtDwcsKT9N6IZ9S3TB5wrYH6BqgzWRJKDT8m0K6wvcIWVFUaxjYsnsOAHD0mjEA0r2i4cnQ4En9vpD7hmlpgruvEb5P9AKtDyYqBXzu8mfjeslGaGLErdDw7jUdf3x1i5U0fb/suT8wvUHPlCD3BGpC0xAFWTkpodDwBJMX85qr0cK2U71DxeqpahH/+JITcO4xqwHYGRr2NZAOhYY7+4UJhmmaMNrYClED1G/tKZTEChQxczkN06NWfWLvHNcnwsRZU6ZjPRkEVmhEQzsXASadJH9nZ5iIWMEKjdhJY4aG7IvP9Ebds3HQheWUtVCQp5lVp1rKC5kyLxyD01ahofu/n1RuaBRymrgGak0dj+2zQhuPsj2P5cBztpwKFxUKDUHI5TRxHbBCozdoA1kp5nHRcWtw+Mqq+Nq4R6HhbQhQsVLlJrmcmcBN8f6hZ0qhB8spKgxTjoI3vyIJqsVWhUYhnxPHvMBKnp5petQ71BhwZWgocO67UWaFRl/IjwXvGpL2nX7NZLpuVFl3rhorAwD2skIjVNJYg+gGDdtxhka48CDacKHuzoBhBoQUGrPLDZ6WiwmnuJmeW4tcpGR6w6vQaArLKZqmTc91oGkaLxz7wBvgSoXperONQkPhDA0rrNMpNCza1zH5+5clezo5D4DvHf0hD1gGKV6qQsXj288EwylGtp7rCU+GhlcxKexkFG6Slws5cU2z7VT/CIVGgCYnKTSoMKxSjoJXoUFF+DHO0egbb7NrRJx/XZz7Sgqy2+RGDBMceS/f0tCwrwm/yWu9h1yeOFg1bjc05rihESYqD0z1i1Bo1Hg4N0x4EG24UP+pzzB9MmlbGJgmhBc6Ey1pnI4oiQIsP9x6xbtxMDwKDZWLT35Q4XqOFRqBaXpyc2jD2K7ITxtLVTccNNm72Ghi2Z74HLE/1y4U3C/smOmNIH75qlCWimhMcMS9wqdQ7Q0Fb21oqJ/LpGmamMqnaXGmd4Q9TBDLKY9Co6aQOtSboVEqWP+eUfZE7xtvFgLdDyzLKffzWmW8jTgmGPK6q7WhYYeC+6zHGrpaw3bkIDHDtYlQoYEprx1ZmhEZGrwvDRWu+QwXatzZGSYCSoWcmIQ6wDkasSBkvYpMwQShW4gx0x6vVy0tJmspzNAAnMlJXjgGx6vQKNmFpEa3UHBFGxqjYnq2Kfn207/NyduRJwWbrAAcGFUmJ4Pg+J/zM6MXRNizz7meGHFPs7c0NJrpUP1Vefp+YBqeZ0onvKHgtI4rKTCl306hIT9jmN5wml1kOeU0BpYVUud0o8JN8b6Q11r5lgyN9pZTeg9N0jiggcuDbIkdKkYPdoVpwVFoNGGavNcIC16/DxfJr/gYJkKm7CmIgzwFEQu6Z1o7DYgiJdvG9AxN3BLpV2iwtLdXvKqsUlCFhqITVM70rOTJbRcfRCi4p6GhG3zvyBKVAhej+oGan0WfKdkWhYbntXVsDNV+ppDCa6nBxep+oSn8IE1OUmLQPZkKnmUVGhreDI0CWU5Zn+eGRu94M7tGSo5CYykl9whAugbYmq4n5HWX9zFCa9CDS/UW9XhDMWXw1AgrNKKA7g/DpNCgQbuGbnIRPkR4iHW4SH7FxzARIhoarNCIBe9mIw2wQqN/hk6hYTc0ZlmhEZiGp4lJ7yc/H2PAUWjkFL1HyMUmrx+7c6/QxbUOsEIjDIwUTZ5RwazGdiE9Ie4VfgoNTyi493nsWE6p/Uyhe8UiW071TaOHdWS56FhOydeMCgqN0bI3FJwtpwbF2+yi91u9aQhVVBoaGuNltjftB0Naa3ltKim/bcvueTz/w7e6vqb3oPqKg4kRHraMAiOFNYhujJactRE/M8KDm0PDhRp3doaJiBV2MDjLOuOBMzSyhbdoTR/WUqrQoPvFgQVugAZF90i8i13eT97MDdWQi01e336a+q3rBuRLX+cMjYFJU0+ozKHgfbHHDkCdHi21fE3etAPpDAUHZDshvjb6xVH6dt+iOmopQ+RoAIooNDzXdJEtpwbGCQW3XkvZXurzt29r+ZyqjIvhGd6b9oI8SOJdQspF7K17F1xfayi2N52y9xqs0AgXuj5UOc9hkMtpbIccAbKLwBErqwkeCRMGya/4GCZCaJPMG4d4cBQa6bm1sEKjf1pCwe3FpCg+KT5N62WlXWjbxw2NwAi/c/s9LxqEbRQadI2oOkHlytDwKDTK0r1CtpnSU6QuUAlZ2ZImb2Ch0OBnRk88sX8RAHD4dOvm0avYap+hoXaxki2nBkdYkwWxnPJRaOQ0NSaxSSFOCMsp2pewiqdnRE6ffb/wa1yNlJI/990giz1WaPSGLiyFAM2bodHhfkHKHlWyFSbZcioShOWUovuLfhljVV/o0HrhRSevx5f+4oyEj4YZFPWf+gwzAFXhU8obhzhIo0JDnrpmeqPptZyyzz8Vo8qKF5+8rBovAwD22pPETHd0j42MyKRpY8fjLUioxljJp6FRcltOGaa7AeoXQsl0R34N0/QSUqOWFRq9sePAEgBgw4ru03DytD3gWE6pbmPIllOD008ouKXQsK8RRVQ8pPgkaF1M+xIuTvUOKTyp2eVXuPTm8agIKTS4odEbegdLIa8yRx64Um1vSs3OGbbDDhVhOTVEGRqAY4fM94vwoDXm377gOBzmM2TDpAu1dwYMMyBjLO2OlaZiwWtBYIVG/zjT+db5pk2DYw+SrkcMKTT2zHNDIyjea2Ciy+SZUGgouuEghcbMUkNMe5GtiezLLhcsOUOjP+SCQ5oyNMocCt4XpLLwZgv40dZySvEmuVBocEOjb0TROsA6Ul7j0zWjQn4GAKzwWKuRHSPvS/rHGYhof47HPXk8KuI0NHhCvxc6NTTofUXIz5BemqRxwAqNaCC1dIpMIgLBCo1wMQxTDMnQwBqTbobsLc8wbqol9jOOE9WmYILAGRr9QwVJKuLQx8siFDxdCwXydufMneDoHk/rFfbk2cE2k2dUw1a16UnF1v0LzjVABbKStBlekorZrNDoD7flVIIH0iOkEljmZ0ZP9KLOqjcNlw2ZyLNRZPq+HVXO0BiYXoqPNI2/WNdFE0mF/AwAGPUUSui651Dw/gnS7JpIhUKDLaf6odNAzJinkVVzrdHUym6bkhoaBq8fQ8EwTLGODJK/lCaoATpf471pGMjNzjRkLjHdGa53PMN4oA3FYp0XjXEgChaK+JQGgYpTbDnVO7S5pM0ZFZ0c64d0PWJ4aqp3hDexvVEkm439bZpCuuIqLlmhQZCdViGfE8ctT+d7rdeYYDRTqtAQGRptbNUYf6iBVQxYbKDnyCN75rHXVs2pnstEa04uPPQP3ReCPCNktc9+u4muikLD6/FPcCh4/zih4O2vjTQoNCYoFJzXmj3RKSNh1KPQkAcOnFBwNe4NpGQ2TGCe6xOhIGfZqaoA7xe6p83wsF0oyANpqqt+mWCocWdnmIgQGweW/8cCLShUmYIJQinPAa/9Um9a55vksGQpkhZ7EC/c0Ogd70aRGhrtFRpqZ2g4DQ3n+OX7Gak0GlITQw4IZ4KTVoUGqQSWm7yu6IVml/f+u150vOvjWtPA7tllXPLhW8XnVH+mTI9aOUyywovpDXpGBAoFL+RFA4Oyr1QapPA7lrEy56z0S1PvXphOR4YGKzT6wejwDBktdVBo6N0bYXFSKeZFc56L1OEgK6UV6VuFxkp7XbFvgTNXwoAaGiVpSI1JN0P2lmcYNzS9xZNQ8eAUK9Nza+EMjf4hhQZJvWkDIQJcFSosBIEaGrPLLAMPiu6ZmFwxSpZT/pu0bkXNpKFiEx1/Pqe5Jm29U4AAZ2j0i6xsSZNCo8yh4H0hbD/aFJX+13lH4qErXwB6u9WbBrYfWHIVKlRvaFAO074FzmHql16nqcftezK95iWFbMn81AJUeGXLqd4hW1P5HvLRy57h+h4KXFYZztDoj05Dc941pStDQzHLKYAHqMJGXkOqosQJi5Vj1rpi7zw3NMLAGbocrusky/CZZIYaJ0ODNw5x0ExjhgY3NPqGNpek0KANRK2ZToUGycBNE5jje0YgGh7LKSr4t7P5Ex7Iit4jqNhEm0zvvWzCp0DFGRr9oaddocGWUz3RCDBdXS7kRSO81tRdU7aA+htQKjzs50nKviHLqSAKDcApDtP0qkqDFA0fO0IOBe8fP4XnHz7jULzs1EPFxys9YewqQtfsQl3n9UMP0GuVC2ApJDc0VFQGT41wZl+YNIdYobFqzFJokPUmMxiUt5W2GgXTniF7yzOMmzFRXONJyjjQewj9VAW5eML0Bm3WaXO2nHKFhiwDb2eZxLjRPU3MbtOnQqGhqMctPTMO2g2NoieY1m/ilhUa/dEw0pmhMVKynxms0OiJoEWlcsGxgfTaeqkeCj5NCg2epOybXkLBAUchSq+5KhkagP/09SgHx/dNuxyeUw6bEn9ul12iErIt1jzbTgWml8aEX86Zdz2XJKzQCBdZVa/q/qJfVvGgRKjQvWGkpPZ6kgmOOnd2homAaoktp+IkjQqN0RJvLvuFJimdhoY7FDyN0w9rxisAgN2zPAkTBG/xie65yw3Dd/LQ8FhUqQYVm0ix5d04+/lz84Rlf6RWoVHkDI1+CDp5TwXpWsNwqWAOmaz4hsGqBE1SsuVU/zR7tIehJvS+efUyNP7PH54IAHjH848Vn6NnDFtO9U6zTRbCn55+ON79khNw89svSOKweqZUyIm10gEenglMvwoNuqeoNGw3WeWGRpjI60mVznMYjJWta4VrWeFAGRojKaxRMP6os+pjmAhwQsH5IRAHKi4au0HTfby57B0qZotQcHuRUEtpKDgArJuwGhq7ZpcTPpJ0oHve83LGhJ/tVLOHDWkSeDMyvMXXiRFWaIRFI6UZGnRfW2LlZ08Ezc+RVZP0THn6oRP43tvOj/YAQ4AUGssNo63tHtOZdkXrdlCxx7GcUmfd8aozj8Ct77gIf3nhUeJzsuWUmaL7ngq0a3aVCjm8+pxNOHrNWBKH1Rerx63m5x62kQkMrRPa3Ru+/oazxJ9lBWVDKDTUWXeSQuPgEje0wsBpdqVDpdULlAfLdYpwEC4SKaxRMP5wQ4MZaoSfO0/fxwL56ask+e/GmNT04iDo3nAyNKyFOU1EURFKpUnJoKybtBUaM9zQCELTs1EsF3KiYOln9WcoruIa8zQ0vH7/42U/hQZnKfSDnlbLKWposOVUTwS1/ShLuVa08Vw/OYIJH3WUalRLTgYI2071h1O0DrZ+mPBYTqm07tA0DYevrLoKbFScahqma4qc6Y5QgStkHdQvq20111OsBg6MveVoayn0rCOmcdaRKwEAy9J7iyxkJ0fUyVeZYsupUNEVz+cbhFHOXQoVUatSqMHJDEb6VwQM04FRspyq8yRUHDSa1mtcStFmgwqYpgkscoGqJ0RDw5OhkWbLKZqa4/C1YDhT19Z7XtM0YaXgN00kFBqKbjqo2ER4N0deBQfgFGqZ3mi6FBoJHkiPCMspDgXviaAKTleGRsrUfpqmSbZT3NDoB2+TvBsiQ2NBPcspP6ol5xnCBareINs6VQciemHNhK3QmOPhmaDQM6TT+rFcbM24ouDtFVV1muIiQ6NLKDgP2gWjFzuytOG4jXCNIgwawv5U7bUCExw+k8xQU7UfAobJxYc4qKXwIVEpOhPlvLnsDSpOt4aCp1ehIUJduRgVCNpgysWnsQ7TRDRFpWpBYrTU2XLK2/AAOEOjX9Jq1TUiGhq8uewFep90K1SLgpQUCl5J0bOEniH7OUejLxpCxRcwFLzszvBSXSGcz2niHsLZbb3R6NGOTGWEQmOO7xNBMbooNADZstDZ8++3FRorRhVSaATI0HjH136Ds//lR12bHoyzvlB1bzEIYyUn24+K8Uz/eLMfmfTDZ5IZaqrSVB/naERPo5mODaWMpmlCyTO3zNdIL9D5HrcLCrPLTXzp548JqXdapmplqBh1gBsagaBpWnnqms67n52Grqut0MjlHIUJ0LrgrZY4QyMsmindmI2UrGuCLad6o6G71VztcGdopO9ZsnLMeobsZcupvhBT+AGL1uMeK7I0DFJwMHh/6Eawe0gaWGPntXFDIzhBbIW860/dMEXTYEVVnYbGBGVodGhWfO2e7dg1u4xv/npHXIeVWnTF1d+DUJUGqXjwcnCabDk1dKR/RcAwHZCLU5yjET31FCo0AGdhOcPhbD1Bk5Rk+QAA7/rmfWJhWSmm6zoAWKHRK1TML0oFBprA9pskEhtShWXhctPCO+3FCo3wSGsjiCyRWKHRG0EnKEtkOdUwhG1Imp4ljkKDnyH94PhbBzvnq8bcRco0DNSMlR07XCY4QhE6BEVLEQrODY3AGEb3hgY1NOn5vP3AIkzTeu5MKWg5ddButtzw25046d3fx/tvfACAe/1ca/JaoxvGEGdoFPM58VzjJvjgNIR1ofprBSYYfCaZoYeKU/wQiB4nFDxdC4o19sZiN4fz9URThIK3Tq0DTuEvTazkYlRPNH02mLRIbPhkS6RBFj5WlhUa7uMc8ZkUb3IoeF/IDY1P/M9nJngkvTFiD0kssZ9xT4iw526WUxQKrhuYs9dtftk1qkLPkH2cw9QXZMNUDXjO101WXB+nYd3BCo3+aA6RVchqse/gDI2gBMlgkzOYAODOR/cDAE49fEqpYbs149Z9a9fMEgDgYz/6PeZqTfz7LVsBuFXibJndHer/qLy3GATaZy/yunNgaG9aTMHwAxMMPpPM0EMTtYs8CRU5wnIqr/6GUmb95AgAYNcMbyx6gRYF45V2DY30PWJ4urY3/OxBaJHY8LGcUj0UHHAXT70TPH6FVVZo9AddO99763l44UnrEz6a4FBTa6mhwzT53AelGbCZKSynGrrwDlfJKqQba20rmcf3LyZ8JOmE1uqjpWDryPWehkYaFBr0HGHleG8EvYekgQ1T1r5jx4Elfo4ERFiOdTj9smUh4Fj/HbFyNNqD65FNq6zjObDYwIGFeks4/C6p0cUqnu6IwHiF1d+DQLUsboIPjggFH4LnCGOh/qqPYQaEQl4XuKsdOcJyKmUKDSpAPHlwKeEjSRe0KPDzNy8VckoXrduxctSampuvNVnmHYCmT4Ar+ZL6KRfqdpND5Slad0PDfQ1XfYpsHOzaH3TtVIvpmb4HnAZuQzd9c2IYf8R0ddcMDWfC9oAd5qqSVUg3nnXECgDAz7fu52ZnH/Sq0Fg9nr6GBk3bsh96bzR6zFdRmQ0rqgCAuVqzY44C40C2Qp2eISJDw1Y19NogjYuRUh6H2M3YK772m5bMpR/cv1v8mZ6DTHtEYHwK951BELUsfmYMjNi3DsFzhLFQf9XHMANCXW1+CERPvdmb97EqHL9+HABw17b9CR9JuujkdZ1GdQYATIwUxIL4wAJvMrvhp9CgzWbdx3JK3CMUvj5kCzXvgtdPoXGQN5t9kdZNxWipABoCnF3me0RQqMHZreBQLtKErSEKfVMpUmicdOgkxssFzCw1cN+OmaQPJ1XUm4YYjBkrBWtoTFQKIrcJ8G86qwZbTvVHGiwrgzJSygvbqe0HeJgqCE7wc/vv8So0em2QxsmRq8cAAD988CnX5w8s1LFl95zzMa8xuxIkMD7NjIomOA9QDUojpXmvTHv4TDJDT5W72rGR1lDw85+2Gvmcht9sn+ECREAMwwQNn/r5GfupNtKApmnC3mTfAsu8u+FXYOhkOZWGhobctPDey/yKZQd4urIvRDMsZRvQXE4TTa+5ZV5XBIUUGt3WB3JBipqFUyPpUWgU8jmcaqs0Htg5m/DRpAs5l2YkYGNCfmYDziSryozxoFVfNIYoQwMAVo9ZDY29nLcTCD1IKDg1xG2FBr3H2mX9JQnZTnk5619+iB/8TlJo8HBVV/SAAxNpZZRVfaHBDY3hg88kM/TQIsYr52T6wzDMtn6vtNlI23T+2okKzj16FQDgnscOJHw06aAh2QkVfSas03YNyHAweHD8CgzkS+prOWUvJMsKLyTlUHDv5qjqUyxbauhYbvDUVC90a4iqzkTFKrC/87p7YbCtUFdM0xSKnG4Fh1LBKUgdXEpfhgYAYSWyiwN/e2Letocp5XM9Nb0p+wpwVNkqQ02Xec726wkqWqatCd6OVbZCYw83NAIhFBodchKE5ZQ9PLNgv8dUVG4ds3bM9/PeEHBWaHSHBiaGtqFhX78L/MwYGGe4ZjivlSySvl0kw/QIBQZ+4HsP4ju/eTLho0k3v39qDsf94/fwge891PI13TDFYjONXe8TDpkAADy4a67LdzKAU8gG/M/3SEoVGgAHg/eCr0Ijn27LKXnCtyUUXNoUF/Oa+HfzhrM3mlITII0bUFIO3PPYgRa7CKYVuefTbRNJGRrztSYW7Yn9yRRlaABOLtdubmj0xKI9fVrtsSkhNzT8ms6qUeVp275Iq01hO1aN2WpgHrgLhG52txyjYSoaMqFniIrKrWPXjgf6vpklVmh0g/akabO8DgpbToVHXVglD+e1kkX4TDJDz6vP3ST+/OYv/wq3btmT4NGkm8/8dBvqTQPX3vJIy1QqSfgAx3ImTWxcaQX07ZxhL9sgNKXz7be5mEyRRYiXad5kBqbhMzFJ73/5GiFS0dCQrAm8SiPZh7lpmBircGGqHwxJ5ZfGaVvyvgY4eykI8vqgWwOrYluG7JyxmgE5DRhX0C6kE+smqaHBk9e9QJk045XezrdboaH+teJYTnFxqhdEKHinEIUUwZZTvWEEsZwqeBQafTZJ4+CUw6Zw+sbprt+3WNdZCdoFsRcZkmanlzFugodGUPtTJj3wmWSGnkOnRvC/LzhSfHyT5EvJ9IZceNo95548rEl++WmckKBwvj1zvLEIAk04aJq1ufAuytPc0GDLqeA09daJSbKcavg0NGodguRVQb52vQ0NWXmU0zRU7M2z1yKA6Ywubc472UeoyrtfcoL4M6v6uiOf726bSLKX2rp3HoAVCJ5LWdOL/g0HWbnVEzSJ3Ov6YWXaLKc4FLwvhikUHHCUZzyBHwxSaHRaM7SEgtsWPSo2OivFPP7r9Wfhd//n+XjjRUeJZr4fbDXUGbEXGZJmpxeyTONnxuCQHXJxSJ4jDDc0mIzwzMNXiD8vsdd538jqBe9k2YN2+OWqsVIqfQlXj1kTlTwpFQwx4ZDLQdM0/PurnoVnHeG8z9Lc0KBi1H4uRnXFKTBIGRp2wbLhYzlVs++/Kis0piR7m7LHOk2eDMxrmtiAcoZGb+iSQiON+8/TNk7j6284GwDw0C4Ofu5GUw9uMUbF6Sf2W+uNNAWCE/T840Jlb9DrRRk1QZkeLYs/q2gt44Wnbftj2ELB6Trn+0QwgoSCezM0FmvqWk4R1VIB73j+cXjeCetavkb/VFZzdaaRgmGpQaCG3CI3tgam3rTrFwrvQ5ne4DPJZILnHb8Wa+wJ/AM8dd03j+9fFH9eqrsXV3fbYdpnHrkSWgonbleNW0WUvfN1lvYGgBaP1LxaMVrC2UetFF+fSGERilhpW07tZ8uprtB1kHdZTrVXaJCyJzUNjQ7Hmcs5m2dWaPSGfI/Np/B5AQDHrrP8r3fP1nhd0QWaiAO6T1dTUC4xlbL8DEBuaHDxoRce22etMXsdiKBnDpCO64WKq9zQ6I2hU2hw47MngjQ0vBkaKoeCe5GVZgSruYIh7OhSOFAZhDHO0AiNpo9VMpNu1K0oMEyI5HIa/s8fPh0Ah7f2i2maYmISaJ0SINuNEw+ZjPW4wmKlPeGnGyZfIwHwm5STJ2PSrNDgUPDg0AZTtpEhtYZvQ8OemuvUKEiayRFnU1npEG6vQRMKDlZo9IbcM06j5RRgbTBpUGLHQc5e6kRTKkR1G3ggX3liqtpa5FEdspKZXWrANHlAIigfuflhAMCjexd6+rnnHb8W5UIOrzv/SIz3qO5IAi5S9sewFS1pnTzLDY1ABGpoFMlyijI0rLXZmIKWU14oe4l47XmbWM0VkOaQqbe88DMjPJyBzOG8VrKI+nd3hgkJmto6yAvHvphZarjsuhY9Co1Hbb/rY9aMIY2UCjlMVYs4uNjA3vk6VnqKKowb4UEpNzQKw9XQ2LfA9mPd8FNo0HXgZzmVhlDwoAqNpYaOCk0DNrmh0QuuDI0UT0lNj5bw1FwN+7j52ZFmgEIUQQo5Ig0T917o+VfXDdSaRsfGKNNKr4Mxx6wdx/3/9PzUFLPGhH0IPzd6wc/iMs2wQqM3DLs53EnVKULBGwZM03QUGinI1jl8uir+/OFXnII/OnUDfvzQHgDc0OgG7UlLQ9Ls9DJqK4xomHTnzBJWVEu8tuiDebKhS0GTkwnGcKwIGCYATkgjLxz7wTsV4N2IzS1bX09j8YGgyVAOBu9Ogzwo862FbCDdDQ1S67BCozuOQkOynMp3t5xSWaEhe/b75QHRVP54ucCWU30iChMpbmYAwKoxulfwM6MTushc6n6+q6WCyx5kaiR9Co3RUh5Uc5td5jVnEGQlyxsuPKrnn09LMwNwgst52rY3qDE6bAoNbmgEg85/pyEIkWvW1LHcMEC3FZUzNAi5ofG0tZalJRVdF7j52ZH6kIeC03Vw17YD+NcfPoxzP/BjvPO6exM+qnQyZ6/Jxivq3xOYYAznu55hfBAKjUXOSOgHb2aG13KKpkfGUvyAWG0XKjkYvDsNo1X6XxwSyym6Dg4sNlDjyfuONHwmr+k6IMm/TK1BU1TqThXJ167fv+E//uJ0nLFpGp/+89M4FLxPgkxapgGh5uK8nY7Q8yJoA0tWaaRxSELTNFSkSWGmO7Kib/X4cCtkZRsZtiQLjrCcSnkjnKC1xmJd9x0AYdwYATJUZIUGNQw1DRhJwST78esn8LJTD8WbLz5aqNTG7OYnKzQ60xwyOzovKyTrzQ/dtAW6YeLbv3mS9x59QAO43NAYHrihwWQGWjgaJjDHC4Oe8U6HtFNopGEKph2rWKERmEazi+VUCotQxIpqUfxbnprla6ETfhkadA9Y9NxnDcMUtnUjCgc0ypO+3kYuABy3bgJf/d9n4YwjV0oKDd5U9AJdNynvZ0j2dNzQ6ITffaITqyTLxzUpLW7TPY7vDcGQLU3TUHwcBJq2NUxW9/XCsFlOTUjDE6zS6A71fDopNEj9W2vqoglQLeZTYW2Zz2n40Cuegb++5FjxOVpPs5qrM5ShMay5CCceMoFTDptq+fwje+bjP5iUQwqNiRTkbTHBGM53PcP4UCnmxSZphm2neqZFkSF93LB9ooF0d7xZoREckn4XpY2lbCOU5oWCpmlYO2FdC7tmlxM+GnUxTdM3pJFUWuRTSsg5E1WFGxoy3bIxxBS2j5KDaY89sD8EllNWQ2M/KzQ64pe104mnrRl3/rxuvMN3qgutN5e4oREIah4XcprSGUthMFJ0LMnmarwfCUoaMrh6IZ/TMG43t7ih0R09SIaGfd81TOc1rabYK59DwYNRF0HP6V5TtiOX0/Dl156B5xy3xvX5J/YvJXRE6YUVGsPHcKwIGCYgK+yp8QOLXHzoFe+kstwUkhdaaQ5ZYoVGcMTiseAsHsn/tZjXcMhUJZHjCov1EyMAgF0z3NBoR1Oy7pMbW7QBm/cUamRVV1omcDV03hzRFLafkoNpz/BYTlnPjH2codGRXhUal5y4FgAwUSnguJQ2NMq2HR3fG4Ih1HspeTYMQi6niaymAwtcyA7KsDU0AEelwQ2N7ugBrAvlwSrKwRtNyQCNH1W2nAoEKTTSlKXUK9VSAc88YoXrc4/tW0joaNJJUzfEXnQ8xYOXjJv0Vh4Zpg8mqyU8ObOMg7xw7Bmv5ZQcmExS2HIhl2q5Jyk09rBCoytNnwC2Uw9fgRv/6jyMlQupXyisnbQaMrtZodGWpuR5npemopyGhnsDtlhzClaqy///YfPx+PKdj+ONFx3d8ftIabJQ581mL9CkZcr7GWw5FRDKRwiq0Lj4uDX41hvPwarxMqoptbFkhUZvkApYZTvCMJkeLeHAYsNuhqazaRc3pIQsD1FDY3KkiB0HlzDL+9Ku6AGUnfK1Qc/lNA/ajZb9Fc+Mm6bd7CoqvrcYlBPWT7g+vuexAwkdSTqR96Ws0Bge+EwymWKFFAzO9MaSp2B3QFJoULc7LTYy7RANDVZodKXZRt57vGexlVbWkeUUKzTaQhsIwB3SSJZTC54N2GLD9jNOwX3itecfideef2TX7xtlO4C+MHysytKIsJzihkZH9ABhrjKapvn6RaeJEZGvw3Z0QVhOQb5SmKwcLeORPQt87wiIaZpCGTxMCo1JVmgERig7OzxHNE1DuZBDrWnggFBopLfcNVbiNWYQHMup4bk3+HHaRrdC497tMwkdSTohu6lKMd0DuIwbPpNMppgSDQ1eOPYKNS1oISnbdg2LDJyKU3vZD70rw754XDthKTQ4Q6M9skJDLlTS5pEWjgTdQ4apYOX4G/P0XC/oAQoTaUAoNPiZ0RFqgBeG1N/aj0qRQ8F7QTwfMmA5BTj3Dm5oBEPOqRomhcbEiLWGYIVGd6gxnusi7aTrgxQaZNuURoRCg1XAHcmC5RRg2STd+o6LcN3rzwJgOUrokv0v05lZOxA87S4SjJvhftczjIepqrWB4IZG79Bm4tCp1myBxpAUt0mhsX+BFwjdGPbF4zq2nOqKnKEhF6bHK/4TZeQln+ZpOS9sOdUfJO7pVphQnZV2hsZ8rYlalwD5LNMUipzhfF74UWHLqZ6gwv4Ke50+7EzbAzTfvXcn9rLNaVdoiAZI//CUDCs0gqOL50jn76N773472yrNllMcCh6Mdq4Bw8jhK6s49fAVyOc06IbJz48euP/JWQBsNzVsDM+KgGECIEL42HKqZxp2Q+PEQyxLoR0Hl4QXIfljl1Je3J6ulqBpgGFyyGs3qIlVGtLF4zpWaHSFLKcKOQ2aVJimzeNSQxebDMDZkA2nQoM3m71A1hFpb2hMjBSEOoknrdvjhIKn+3z3At3n+N4QjP/8xeMAgFX2YMmwM203bu58dD9e9Zk7Ez4a9alJ1m1p32vIcEMjOHrAxni5aH19/4L1mqY5FJxtTYNR12mNMTz3hk7kcxpWj7E1ci8cXKzjndfdCyD9ew/GTTbe9QxjQ5NfvHDsHZqOWjNeFkqGrXvmAciTEem+pRTyOayyFwhPzXJDoxMNozUUfJggy6ndszWYJqt1/HBUOu6F4agk75etmKgBOkyTMVW2nOoLfUgyNDRNY9upAFADPO3nuxc2rLDUrI/uXUj4SNSn3jTwi0f3A8hOxh3dNwDggZ2zrArugpyfoQ1RMYobGsERVpVdzn+lYK1B98ynX6FB62kOBe9MFm0tV43ba08ewAzEW7/6a/Hn3z81n9yBMKEznJUohmnDZJUVGv0i52SstQOTSeYo8hQK6V9IiMl8nnjoiGhiDZH0X4YaGvWmgQNsUedLs01Tq1zIiwlK2feXPKInhsi7dKzMllP9IBQaQ3D7oAb/U3P8zGiHUGgMwwkPyHHrxgEAD+2aS/hI1Ed+7wxTw7sTEyPu5yDbhnSmZlu3DVN+BsANjV4wAlpOkULj8X1WM5nW82mEVMCLvMbsSDODa4xp2/KUh2m6Y5omfvLQHvHxXz3nmASPhgmb7LzrGQbASp6k7BvK0ChKKoa9c9br2BgiqSctfHey1VBHRG7KkE7clgo5ERLPzS1/dKP9RNSYXZSal4LBZ+0/UwjmMMB2AP0xLJZTALDeztt58iDfJ9rRGBJFTi8cuWoMALBt32LCR6I+clbVP7zohASPJD42raq6PuZ1RmdocGrYGhoT3NAIDBWtc12eI2VboUHDSOtS3NDgNWYwGhnK0CCopsVDut3ZKT1fn3n4FN76XG5oDBPDtSpgmC7QJOWeOZ6E6hVZ7k1BqHttmeOwhIIDjk0ETfYw/jTa2A0NE2tFjsZSwkeiJuIa8Nlc0lTZvLQJm1u2NpfjQ6TQoIBztpzqDYpW6WYdkQYOmbKeGTtn+D7Rjk7Nz2Hl8GmrYL13voalOt8fOrFrxlpLnnbEChxqv5+GnWcevgL/99KTMWIHGHNeV2coQ4OK1cOCo9DggnU3DKP9mlOmUnTvRYdBoTHPDY2ONITlVPrrEEEhG/V9nN/WlScPOuvzT/3ZaUNlW8hwQ4PJGKQs2LfAvvi90pAsp8i30VFoDM9kxLG2TcSDbBPRkWFqYrWDJq938OS1LyJDw0fiPeqzCZu1N+wTQ2QpIgegswd6cPSAk5ZpYP2k3dDg+0RbOjU/h5XJahHj9v1hx0FWaXSCptNXSLkSw46mafiT0w7D+U9bBcCtUmFakYeqhglqaMyyQqMrekBlZ8XT9Hra2rHIjilqqnag+XLDEFa/TCtN4RSRnTXGSttFYD+7jnRl0R4qOX79BFbatUBmeBiuVQHDdIFu/g3dZHlvj4jNRD6HVaOeDI3m8BS3j15jLXwfY5uIjjSHyGasHUettq6FLdzc8qVptA/6nbRtpf7r7ifEVN2srdDweoenGdpsApyj0QumKEwkfCAhcMgUNT5ZodGOYVoj9ALlts0u872hE/M169kwluLw3n7h3LZgLHOGRubRA1oXyo3RUzZMprqAKQeaL7DSry2NNpl+w8y0fZ3vZ4VGVyiDRt6zMcNDdt71DANLqkyLR7ad6g0qSJQlhcY+YTk1PMXt1aTi4YDGjgyTKqcdx3Koa0dECJ/PNUAS/+vv3YkPfO9BAMCcXdQbptDXciEnps4X2XYqMEEnLdOAUGhwQbItjSGdru7GGPufB4KylrLY0Fg7SdaWfP/w43v37cI7vvYbUbQbtoIU7Unna01xn2T8CdrQWCk1NP7yoqMjPaaokdeY/BxpD7lIFDO0xqCGBltOdYcUGsP2/GAssvOuZxgbCvrdwwXrnpAnLEWGhsdyqjQEDQ1S8SzUdfa97oCToZH+c94Ox35sli3qfCCVjt/mUg5h/PdbtwKQFBpDlKGhaZqvvRbTmaCFiTRA1nS7ZpaFGolxU29mu6ExzwqNjszbzeDRDDY06FnJllP+vP5L9+Br92zHv99irSOqpeG6RlZUS2IohK+BzgRdN8hq2ecevzbSY4oaeY3JDY32kGK8OARryqBwKHhwuKEx3GRrZ8EwcHI0WKHRG7J/rZxFAgzXtP5YuSAk7Xu56dUWsXgc4obG0WvGkM9pmF1uYvsBtpPx0ukaoCKvDCk0hslyCgBG7QXyIltOBYb6g8PQ0Fg3WYGmWc9InpTzR1Z4ZomxCjc7g0CWU8Ok3gsKNTRY4eWwUGviH77xW7zja78Rn/v9U/MAhq8glctpWDfJ10AQDHvhkO+i7JQHaoZhjcHB4N3JwpCdF1Jo7J3jXNhuLImGRvbWGFkgO+96hrFZPU75D1x46AV5wpJULvsW6tANc6gspzRNEw0bbmi0RzSxhmCz0I5yIY+TDp0EANyxdV/CR6MezQ7Tci855RBceOxq8XGtqYvQy2ErWrFCo3do0lIbAsupYj4nrAp3znDj04+6PvwNcD+4EBWMBVuhkWXLqd1czBb84He78P9+8Ti+ds928Tm6hwxbQwNwbAuf5BymjtC6Iddl33H5OZvwp6cfhi/+xelxHFbkjJata36BbU3bMkyDlUHZsKKKQk7DQl3nZmgXSLU1MoTPD4YbGkwG4WJ1f8ih4NOjJWiaNWV7YLHuLCSGZPqSGjbc9GpPVqZhzjhyGgDw2+0zCR+JejQ7XAMrx8r43OXPRqVofW3XzPJQWk4BQFXYAfBmMyi6mLRM+EBCYv0UF6Q6IQYihvx54YUtp4IxZzd8smw5tVDXMbfMwdAAsKODInZkCCdsD2GFRiDEEE2XQYixcgHvf9nJOO+Y1R2/Ly3w0Ex3mkM0WBmUUiGHI1ePAuCsx26QQmOUGxpDSXbe9QxjQwoNtpzqjboUuFXI57CiSkX/2lBlaABWMRbgYPBOZGUa5jgpR4Nx07SvgUKbaTlN03CIPXm4de+CaIINm+XUWJktp3rFGKIMDQA4fLoKAHhs32LCR6ImtYxmaNC97taH94jpYqYV8obPokJjtFwQqkXOULDoFJA+jAUpaojv5IZ4R8hyqjDk+w4vY5yh0ZWG0Xk/MqwcuWoMAPDYvoWEj0Rdtu1dwOwyKTSyt8bIAtnaWTAMIKwhWKHRG1TALttNCwqj2j1bkwLDh2Mh4Sg0+BppR1amYY5ZYzU0Ht3Li0Uv9QCNzPVT1uThFnt6KKcNX0GCPFl5ei44VNsdBsspANi00mpobONNpS8NPZsNjUPtQuVd2w7gIzdvSfho1IUULFlsaACOSmPXDK85AWtf0Y5htJwihcaTrNDoiLCcGpJ1Q1AqReuaX26yCrgdw+YUEZTD7bXn4/u5GerH9ffuxIVX/QRfvvNxAMP5/GC4ocFkkFXjXKzuh7pnwvL49RMAgLse3S+mL8uF4XhQkIqH5d/tyYonOi0W987XeTrKg/ee4Ad5Q5McerxSHJoiNsHTc72jBwz3TAsbV1myf258+hPkXjGMrLSHIwDgxvt2JXgkakPN4LEhy1cKCoVCs0LDotOzdBhtyWidxBlMnbGH8IdG2RkUGhakQTKmFTFkl8vWGuOwaWposDrYj2t+/HvXx8M2UMdYZOtdzzBwMjTYcqo3vAWJi46zvEm/evcTWG5YUyPlISlWHL3GknA+vHs+4SNRF2E3NCSqnHZMVIqYqlq2IU8c4AWjTD3A1DVNHj5oNzQmRoavGMGBjb0zbJZT1NDYtpfvEX4EUXMNI2dsWin+vHt2GabJBSk/REOjnM1iA2f7uaEhKT8OXTES45HEAylZdx7khlYnaBAiawqNvF2kb7JtYVucXMdsXRtkd/oENzR8oVoFwZZTw0m2dhYMA2f6ft98XRRVmO54J/Kfc/xaAFZj6OCiFWRYLg7HLeXYtZb65MFds1yAaAMtrIfFZqwTtGB8nP3xXQRSaNiWK7/baWWQjJeHKz8DAEZLrNDoFfLCzg1JQ2PTSquhsWt2WYQPMg5ZVWisHi/jF3//HADA3HJThF8zDqZpSg2N4Xs+BIEsXLmhYVHrYK1D67FhgrLG9i3UxYAY0wrtO7KWk1DMkUKjfaMv6zSN4bK+DopoaBxY5HqFD94mIFtODSfZ2lkwDICVo1ZDo2mYOLjUSPho0oO3IDFWKoCGZPYv1AEMj+XUUWtGkc9pmF1udgwnzDJObsrwP0ZY0uuPN1fHj/W2QoMYToWG3dDgQnZgHC/shA8kJKaqRUzYdjmP7WfbKS9i/ZCB54WXtRMVcW3sZhvLFmpNQ9wPRrOq0JAGrRjnfuFF04Aj7ObxMDFVLWJyxGrmkZqVaWXYlJ1BIdUBKzTa02hSKHi21hiH2OquxbouhksZB2p0EdzQGE6y9a5nGFgFeVo48jRUcLyWEbmchqodVLZ/kRoaw3FLKRfyONK2ENnCtlO+OJNSw3HOO0ETMNsPsL+xTJCm1rOOWOH6eKIyfBO4tEBmhUZwjCHL0NA0DZvsZ8Znbns04aNRjyD2dMMMZSTwgEQrc8vOfXM0o3YQwgqX9yQAHMuptzznGNEMBIBNq0bF/m2Y0DQNp2+aBgDcvW1/wkejLmIQInMNDeu52WCFRlvIcipra4xyIS/ukfsW+PnhRde9Co1srjGGnWy96xnGhmyn9nKORmDqIvjbuW3QZPIBUmgMieUUAGywfXp3HuQith8NUaAa/o3FYStYoeFHEBuZ8UoRb3vu08THVPQdJjgUvHdoXz5MhQnK0bjt4b0s/feQJUWfH2snbI98Vmi0sCDspgpDdT/oBQqPZ4WGRa1h3S8uOWEtfvPuS8TnjxhCuymCBmc437E9wzYIERTHcorXFX6YppnpoQlS+O3l50cLXlETKzSGk+y96xkGwCp788DTUMFo6oZ4KJR8Ghr7hsxyCuCJym6IALYMKTS4oeGmFnADccIhE+LPx64bj/SYksCxnOKGRlD0IfQ7/scXnwDAemawmsuNnqHMJT/W2Q0NtpxqhfIzsmo3BQCrORTcBWVolAs5aJqGd73oeKwZL+MfXnR8wkcWHSuqlvLkwCIXJdvRzKjlFIeCd6YuKVcy2dAY5edHO4qeocsRbmgMJdl71zMMJHk3T8IEQl4syBOW3g3osFhOAc5E5RP7uTDlR1PPzsStCF3bvyg8fBmg0Qwm8T55w6QoZF507JrIjytu6D64UOMMjaBQQzQ/RA3RlWNlHGc37H7/1Dy+etfjOOv9P8Q9j7GFSMMYvvPdCzwg0Z55SaGRVWhPsm+hzmsMOJZTNCT1v847Enf+w3Nx9JrhG4ggVtjB8PsX2Ae/HVnN0KD1M4eC+yNn7mQxp2vavneQWwbj4L0ehtH2mOGGBpNRyHLqKW5oBIIKl4C7eOn1IhwmhcbJGyYBAN+/fxf7lvrQ0Idvwrod66cqyOc01JoGq7ok6rpVwO+2gVg7UcF1rz8bP77iQrFpHybI950tp4IjJvaHrDBx5GrLduqRPfP4m6//FjtnlvEXX7g74aNKHlLkFDLwvPCDBiR2c0OjhfllbmhQQUo3TJ7Qh9TQGCIb226sqFrXwEE+/23RyXIqO5cFAA4F70bWGxqkEp/noaquDGMGE8MNDSajbFxpFR1+/5QT+PzU3DLmlnkyxo+aXbjUNKAgFaDGPRvQYdp8XPi0NRgrFzBfa2LrnoWkD0c5hOVUBhaPxXwOh0xZBSm2nXIIkqFBnHLY1FDmZwBsOdUPDbvAPWyTliIY/KdOMPhygzeZTWFROFznOygrR6lYyWtML3TfHKtkt6FRKuSwdsIatHoi43Z1Td0QDe9hUn13Y2qELae6IULBM5ahQda+PFznT10asMtiDtOYrRJf5D1ICw1P7kwWLcmyAJ9VJpOQLcQDO2dhmiZ2HFzCuf/yY1z+ubsSPjI1EYXLvOVnS0x7pq2HaTIil9OE3/8DO2cTPhr1yJJCA5ByNPZxQ4OoC1uI4Xnf94NoaPB0VGD0IW2I0rCEHP7c1M3M28jQZGkWMpf8oKnAmSVuaHiZsxUao6XsNjQA4Aj73vHYvmwP0NSkaethUn13g9YRS3VeR7RDz+hzhPZZesbXEe2QaxRZpMp7kLZwEzAbZPOdz2Sepx86iUJOw86ZZTy+fxHf+OV21HUD9zx2QITRMQ7tFgsrbd9fYthCHU89bAoA8POt+5I9EAVpipDXbDxGRI7GAW5oEPUM5ah0YtQOmVuoN2GavOEMQsMYzon9Ew+ZbPlc0zCxL+PexuT9nVXLqQluaLRlgTM0AAAbV1prjG17s73GkBVtWZqmrdrriEVW9LVFKDSyc1kAcLKnvNPmjEUvavFhhPYgrNBohRsa2SCb73wm84yWC3jm4SsAAD/7/T48sHNOfG1HxuXeftAiyrtYWDXmVmiMlYfLm/C0jdMAgPuenEn4SNSj0cxWMfswUmiw5ZSA7gtZuQbaQZOVpgksN3jxHIRhzVQ44ZAJXPnSp7d8fm/Gs3eaQ9rACgorNNpTz2Begh+s0LBYtBUKlWJu6CwJOzEiipLc0GiHYWY8FNzg9aUftaw3NESGBjc0vMj5Ki99xiEJHgkTJdl85zMMgHOPWQUA+Oavd+AXj+4Xn9/ODY0W2k0/rPIoNIbNA5n80J/Yz9eEF/LAz0qBap0d6vrUbLYLkzJZn7omRoqOMo03FMEY5kyFV555BO5513Nx2zsvwtFrxgCwL7pzvrO57SCFRq1p4PdPzXX57mzBSj8Lsqvbxg0NANmzIKN/b71piLUV44YUGvnMZWjYDQ1WaPhCz5DMNjTsewc3Q1uhwbvP/PlpuOqPT0n4aJioyOY7n2EA/PFpG5DTgDsf3e+ansz6JKUfdTsUvFtDo1ocLsupw6ZHAFhTlTMc5umi2Ua1M6zQtc73BwfHdixbm0svuZzm2EWw5DsQYmJ/SIuYK8fKOGy6iumqpWI8sJDt54dzvrN5rxiX7JSuv3dXgkeiHqIYNaT3gqAcYVtOPZbxnC4KiSfFQlaQ/71sO+UPPUeyptCgdRLb5/jDGRq27S0PVLVA75mnHzo5tPsNJiMNjY0bN0LTNN//1q1b5/szt99+OzZv3ozp6WmMjIzg5JNPxkc+8hHoevtFxne/+11ceOGFmJycxNjYGM444wx84QtfiOqfxQzI+skRnLxhquXzXLBspdbGXmilZDk1Vi4gN2SLzGqpIGy1ODvBwTTNzFmI0LW+dz7bk9Yy1NTKZ3TqWoaDwXtDqHuG/P4xVbUm8zOv0MiYos9LLqfh8rM3AgB2HOS1hEzW/c8JamjsW6hjdjm7DdCljCo0yoUc6PbIweD+GFltaOQ4FLwTzjMkW01QghUa/hiGmbm8z6ySmdXC5OQk3vrWt7Z8fmxsrOVz3/rWt/Dyl78clUoFr3jFKzA9PY3vfOc7eNvb3oaf/exn+NrXvtbyM9dccw3e/OY3Y+XKlXjlK1+JUqmE6667Dpdffjl++9vf4qqrrorin8UMyP84/XD8+omDrs9xwbIVkaGRb6/QqAyZOoM4bLqKvfN1PL5/EU8/tDXwNYvIwXRZmXhYbV/r+xdq0A0zcxsqP2hzVeTXAqOlPPaAFRpBcRqiw33/WGErNA5mvKGh68OtyAnCqYdP4fO3cw6TlwZbTgEAxitFrBorWevNfdldb9KUMU0dZwVN01AtFTBfa3Jhsg26naGRy5rlFCk0uKHhSyPrllNioIr3HzJ1SdGUdSeBYSczDY2pqSm85z3v6fp9s7OzeO1rX4t8Po+f/OQnOO200wAA//zP/4yLL74Y1113Hb7yla/gsssuEz+zbds2XHHFFZiensbdd9+NjRs3AgD+8R//Ec9+9rNx9dVX4+UvfznOOuusKP5pzAC87JmH4p1fv9f1OVZotNJugm5F1QkBrw2pRPrw6Sp+9fhBbN0zn/ShKIMse86KxHflWBmFnIamYeKpuWWsnxxJ+pASh3JUuLljqbkAztAIishUGPJNxopRq6GxP+OWU1nLXPJjwwprAp8zudywQsNh48pR7J2vY9u+hcw2NLKaoQEA1VIe87UmFybbQJnYWVtzilBwtpzyhZ4h5YzsR72Q5e0CD1S5aLgaGtm8NrICn10P1113Hfbs2YPLLrtMNDMAoFKp4MorrwQAfOITn3D9zGc/+1nUajW86U1vEs0MAFixYgX+/u//HgBw7bXXRn/wTM8U8jlc/5Zz8YrTDsNbn3sMAO5w+9FuwylPW9aGdKF16mFTAICrfrAF3/zVjmQPRhGaLoVGNjYW+ZyGQ1dYTYz//MXjLP2GpNDghSLGyiz57oWsWNZR0z/zCo2MZ2gA1nAEADw5syTWVIxUjOKGBo6wg8Ef3p3dAZqsZmgATmFyaUgHxAYlq9aFpGTlUHB/aBK/WMjWdUGQQmORLW9dyG4SWRm+zCqZObu1Wg1f+tKX8L73vQ8f/ehH8eMf/9g3D+NHP/oRAOAFL3hBy9fOP/98VKtV3H777ajVaoF+5oUvfKHrexj1OPGQSXzg0pOFfy0XpFqhUHC/DSctLJ95+FSchxQbl5zo5Ox86KYtCR6JOsgyzixtLKgg9bEf/R7X/Oj3CR9N8jT0bPoZ+8GhfL3RzIi6Ryg0MtzQME1T3CuG3WKsE6vGShgp5mGawOu+eDe+85snkz4kJaBrgxvjli0ZAHzn3uxdG6Zp4pO3PoLbtuwFYNk4Zo0R9sJvi2maoDmiYctr7AYNAtC6iXFTy3go+Kik0DBNbnoRDSmrL2v3jKyRGT3nrl278KpXvcr1uU2bNuFzn/scLrjgAvG5hx56CADwtKc9reXvKBQK2LRpE+6//35s3boVxx9/fNefWb9+PUZHR7F9+3YsLi6iWq36Hl+tVnM1SWZnZwEAjUYDjUa2rQriomQ/B+eX43vN6feofo6X7CJdXms91uv+9xn41G3b8HcvfJry/45+WD1awM1vPRfP/chP8eTBJdTrdWgZ82/1slSzinPFvIZmMzsF3P91zhHYsmsOu+dq+OLPt+EN5x8R+bWg8j2iaTc6NdNQ8vjiZMRu9s4u1TP/WgSh0bSunRzMoX69JuyFxf6FGt721V9hdqmBj112SujFW5XvE7KazTSaaDSyWXQAgMNWjGDLU/P4yUN78JOH9uCS41ZlfqO93KD15XDfC4JwxkbLZmrXzHLor4XK9wgA+P79u/G+Gx4UH1eKOWWPNSqqReveOLdYy9y/vRvyc8TQM/YcMa3CbEOPfq2t+n3Cj6WadayFnJaq4w6LUs56bximde/IorrNj4Vlq65azGfzuoiSXu4Tcbz2mWhovPrVr8Z5552HE088EePj49i6dSuuueYafPKTn8QLX/hC3HHHHTjllFMAADMzMwCsEHE/6PMHDx4UnwvyMwsLC5iZmWnb0Hj/+9+Pf/qnf2r5/A9+8IO2P8OEy4MHNQB57Np3EDfccEOsv/umm26K9ff1yq92Wa/N/r1P+b42l4wD9/x0e/wHFhOWirOApmHim9+9ERnLKmxh3zIAFKCZRuzvlaR55wnA396Vx975Oj739RuxLqbbs4r3iJnZPAANd935c+x/sOu3DzX7n8oByOFXv70fq/bfl/ThKM/2J63X64Hf3Y8bhvj12joLAAU8unsG9263BlX++Yvfx5lropmiU/E+0TAA2m78+OabUcnEzsOfUsO67omvf+dGjBbbf38W2LHTvhfc/1vc8NS9Xb9/mJlvAEABi3Ud373+BkTR61LxHgEAP3rS2mcQu7c/jhtu2JbY8STBwoz1Xrjj7l9Cf4wnrWWa0nPkhzffjGqGniMP2PWJ/QdmYttzqXqf8OPXO63XZ99TuzK3JwVgK5esN8S3b/w+xjO+piB2LgJAATlTz+R1EQdB7hOLi4uRH0cmHgfvfve7XR8//elPx7XXXouxsTFcffXVeM973oNvfOMbCR2dxd/93d/h7W9/u/h4dnYWhx12GC655BJMTEwkeGTZYf3jB/GJB+5EvlzF5s3nxfI7G40GbrrpJjzvec9DsajuE2j37Y8Bjz6Eww89BJs3n5z04cSOaZr4h3tuRkM3ceb5F2P9ZCXpQ0qUrXsWgF/9DJVSEZs3Pz/pw4mdL+z4Oe7dPosNJzwLl5ywNtLfpfI94qoHbwOWl3DuOWeLrJmscs/1D+IXex7HYRuPxubnHZP04SjPt/b/Cti/B6eechI2P2tD0ocTGQ/umsNH778Dcw2nMjl+yFHYfEmroncQVL5PLNSawC8s29UXvuD5mZ4e/I32EO67/THx8bPPvQAb7dyErPLlXXcBMwdw2qnPwOaT1yd9OIlSa+j4h7t/CAC44DnPw3glvPeyyvcIALj3ew8BjznvjROPPRqbn3N0gkcUP989+Gs8OPMUjjn+6dh8+mFJH45SLNV14BfWe+OFz79E5AZkgRVb9+HaB+7ByOgYNm8+J9Lfpfp9wo/ttz0KbHsYRxy+AZs3Pz3pw0mEv7/nZiw1DJx13oXCHjnr3Lt9BvjNLzA5OoLNm89P+nCGil7uE+Q6FCXZeRr48PrXvx5XX301br31VvE5UlmQ6sILfX5qasr1M3v37sXMzAxWrlzZ9mfaKTgAoFwuo1wut3y+WCym5oGSdiZGrdd/qa7H/pqrfp510yrGVEoFpY8zSiZHitg7X8dCw8zsayDIWQWpYj6XydfiiJVjuHf7LJ6cqcf271fxHkEWAJWSescWN+Mj1r9/qcn3hyBQVl9Jwes6TMZGWtd1O2Zqkf2bVbxPaJLafKRSynRWwv848wh8+a7tIvR3tsb3i4ZtCz9SLmX+tSgUCpY9hm6iZmiYjuD1UPEeAQA7DtZcH4+PZO96GLMbWHWd7wteaoYzFFApl1AsZqcxXilZWVy6iUzvOdohahTF7NYoysU8lhoGTC2b+3I/GvZ1MVLK82sSEUHuE3G89tndVQBYvXo1AGBhYUF87thjjwUAbNnSGv7bbDbx6KOPolAo4Mgjjwz0Mzt37sTCwgI2bNjA1lGKM2qHsS3Us5MJEJS6HbiV5ULEhF2wnFliH0YK2srq9XD49AgA4PH90csoVaZpcNAvUaXnB4eCB4KaYcX8cOcHVIqt740dB5YSOJLkkINMCxnPizh6zThu+5uLcPSaMQDAwQyHxRO0viwX+DmiaZqYPJ9fztazxLueqmZoAp+o2uo1DgVvRc7QyGUsx5BDwTvDzxBnP15vslUdQYMjWVYFZ4XsvvMB/PznPwcAV3Pi4osvBgB873vfa/n+W2+9FYuLizj77LNdaopOP3PjjTe6vodRF1pILjcM18KJcQrYWV4sTHJDQ0DXQ2HIi5HtOGyF1Zx+4gA3NIDsXgcyY2VuiPcC3UPyQ17grhRaN1KzGXuG0H0in9OgZawQ5ceqsbKwrZxdzta14EfWByS80LNkPmPN8Sc8DY3RDBahuKHRHkPalw/7usELDQI0da5N+FG3nyGlDNcoStTQ0LnpRSzb99GRDKm5ssrQv/MfeOABlwKD2LZtG970pjcBAF75yleKz1966aVYtWoVvvKVr+Duu+8Wn19eXsa73vUuAMAb3vAG19/16le/GuVyGddccw22bdsmPn/gwAG8733vA2DZWzFqI/txLnJRysWy3eXOckNjosINDYIKVKWMFiDInzTrCg3R2MrY5tIPmsSvNXgzEYSsFDErPhuprBWx5YYGY1G2G118v3Cma7NcjJIRzfFadoraS3Udc54GTtYav4DzvKg1snPug9J0KTQSPJAEIBV0gxsavohnyJCvJztBz88GNzQEpNDwW4czw8XQ6zm/+tWv4uqrr8b555+PI444AuPj43jkkUdw/fXXY3l5GZs3b8YVV1whvn9iYgKf+tSncOmll+LCCy/EZZddhunpaXz729/GQw89hEsvvRSveMUrXL9j06ZN+OAHP4i3vOUtOO200/CKV7wCpVIJ1113HbZv346//uu/xllnnRX3P53pkXIhh5wGGKY1HRNmGF/aWW7aDY0MPxRIoZHFTZaXRjPbCo1DV1iWUzsPLid8JMmis+WUgDYTtSZvJoKQlYk6vyGA2aUmTNPMjFqhSc2rrFWhOlC2G6DLXLgU98xhvxcEhZq8WSpMHbCt1wo5DStGS9gzV8OzjphO+Kjih6es22OY2VX6FdlyqiP8DHGukTrvQQTCcirDtausMPQNjYsuuggPPfQQfvWrX+FnP/sZFhYWMDU1hXPPPRevetWr8KpXvarlwfjSl74Ut9xyC9773vfi61//OpaXl3H00UfjQx/6EN7ylrf4Pkjf/OY3Y+PGjbjqqqvwH//xHzAMAyeccAKuvPJK/Pmf/3lc/1xmADRNw2ipgLlak33QPSzbU4R+fuBZgRsaDo2MF7JJrbPU0NHQjaGfMm8Hyd+z2tiSKeWtBTNvJoKRlYm6XE5DqZBzXRd13UCtaWRmaoymSlmh4VDmBqjAUWvx9QE4z9MsNjSmqiV8/63n44n9izhpw2TCRxU/Rb4vtIUGaPIZa2YAQMFeJ+ms0PCFVX7Ov52boQ5Ldc7QyApD39C44IILcMEFF/T8c+eccw5uuOGGnn7mJS95CV7ykpf0/LsYdaiW85irNdm/1ANNEfr5gWcFztBwIIVGMaOLx7GK8+icX25ixWgpwaNJDpoWY8spSaHBm4lAUJE7CxvQsqehAViN8aw0NJwA+OE/10Ghc7/MllOiAJNlS1MZep5mKcvv4KK1rp4eLWJ6tITpjK6pSnm2FmoHvR+yOEdF94QGKzR8EYrfDK8xnFBwvkaIZVZoZIbsvvMZxofRklWo5IaGG0ehkd2HAjc0HKiQnVULkWI+JxZIc8vZVHMZhgmqtxQyvIkgqBjHm4lgZEWhAXCORlYC4HvBUWjwWpPuBdzwshB++RlqaOxfcBQaWUZMWfN9oQWynMqiMpxUWxwK7g+9X7IwINOOUgatCrvBGRrZIbvvfIbxoVq2bnoLHArugjbdbDnFDQ0AqOs8cTtuqzSyVJiUkQMauVDJhYheyZLnsd9zc2YpO2sMVmi0wgoNh0ZG8nSCQsVLPUPT2Adty6kV1WxnF5Z4MKIttObM4nKTmjhNw4RpclPDCw2hjpazW7jme0crS3XrtWDLqeGHV48MI1ElhUaNi1Iyy9zlxgQ3NAQU8prl7ARqaGRVoSGHE7L3OfvX9go1frJQ5N60aqzlc1lqhNK9ghufDqzQsDAM07Gfy8C9IAjCXiZD09gHhOVUthUaZV5HtMUwspvFJK+xmxlSbgVl3s49JZeNLMIKjVY4FDw78OqRYSRG7S7u+254AH/22Tu5023DoeCOQuOXjx8UBf2s0uQCBMbtYPC5DBUmZVih4abE/rU9QcW6LPjmv+mio1s+N5uhxjg9L7LcAPfCCg0LuXCb1UwuL3l7GjtLGRpsOWVBDf5GMzvnPii6md2GhmzrmqX7QlDm7cEyOd8wa3CGhsOBhTpe9m8/w5fvfBwANzSyAK8eGUaiWrYehjsOLuHWLXvw09/vSfiI1IAVGk5DAwD+9r9/m+CRJE+dFRqs0JCmR4sZ9DT2whkavVHPkM3M6Zum8bE/PRX/5w9PxHOPXwMAmM3QfYOan3yfcGCFhoU8TZrlAQmZovDLz86zhC2nLOg9UMvQuQ+KnmGFRkH6N/MEfiuk0BgrZ7eh4ajEueF12+/34pePHxQfV9hyaujh1SPDSIx6bnocwGWx3OSGxqS00brunu14ePdcgkeTLI7lVHYfIROZV2hY14CmAbkMbjC9lESBkjeb3dANUxQnslLEfMkph+DPztqIFfYEcqYUGhkuRLWDFRoWcgM4K/eCbtD7JEvWMvtty6kVGVdosA9+e0RDQ8vec0RuaHBdohVuaLBCQ+ap2WXXx6zQGH549cgwElWP/+LBDBUdOiEspwrZfSisGiuhKjW8rrtne4JHkyzsec0KDdpU8dS1Rdm+N/JmojuuImYGFBoyZIlAG/AsQA1wztpxYIWGhVB75jRujNtQYSpLhUtHocENDcDJmGIcqKGRxfuEPAzQMHiNKWOaJjc0AJQK1jXCexBgz1zN9TE3NIafbO0kGaYLo2X3TY98XbOOYzmV3VtGuZDHj6+4EH921hEAgAd3ZVehQQvqQgY3FgSFxM9lqDApk2X5vx9UiGgapgivZPxx+eZnrCnqTOZnp2DFCo1W6DqoZVyhQVkBWWtsdiKLCo0D1NAYzbjlFIeCt8XIcIaGpmliIIAzNNzM15qwLw3O0ACgc8OrtaFR4vXFsMNnmGEkvAoNbmhY1EQoeLa73GsnKnjh09cDAJ7Yv5jw0SQHFSGyHOI5XiaFRjZVXA3OUXEhF+S4GNEZeYIsa1P7pHLMktWQEwqe3eeFF1ZoWNR169/PDQ2HLGZoHFhgyynAUT1zKHgr9HbIouUUABRy2VNuBWHnjGUvNF4ptNRwskQWG+HteMrT0Mh67SoL8AqSYSS8GRr75rmhoRumKNDxQ8GxGlqoZ3MyH3DyE4oZnJQi6DrIUrivDE2JZVmlIyPbr3GORmfkQHAtY8UJUjnWMqXQYEWfF87QsKB7ZdaUWp3IWmGq3jSEZUzmGxqs0GhLM+NDNPT85FBwNzsOLAEANqyoJnwkyUKNPlbwtCo0Dsv4tZEFeAXJMBKtCo1am+/MDvIEYZYtp4hRezJ/sZadgpSXBk/cYswOBZ/PaEODrwE3stKAPWw7Q69POYPXzsj/3959h0dVpm0Av6dPek9IgxQgoUhXSgBBFAQbimV1dUVdXXXFthb0U1HXhpV1basiuLpiQcQGqCCgNAENndASIBDSe512vj/OnDMzyaSXmcy5f9flJZlJZt6Bk/ec8z7v8zz2TRP1CtqZzwyNppihIWI/rqbkndgKKR0i9c9QqRylPJVKz8a+zTLLm2iUOVdIgRylBDrb6lS5GNCID/Xz8Eg8S8PjQ1ZY5WgKrlYBieEMaPg65eZmEbkxsm8o/PUa1JrEm0yWnHLdQajkpuASqc9KjckCQRAUt8MYcOwQUvKuykDpOFB4Dw3uuhapVCrotWqYLDburmyFtFijxJJ1Siw5xbmiKYMCjwN35OCmAueC5mgVlqFRUuNoCK7E/gjOHE3BlT0vuGOR7zuUeYxIGwKYoeHqVJlY/jkhTNkBDem8ofQMDbPVhrJasYThkrlnI61PkIdHRD2BV5BETgbEBOGPxy/AZ7eNA+C40FYyqXmpXqOGWuE3GwAQYM/isQnKXYxQ+o0FAAQa7BkaCg1oyI3hFXwMNGbg7so2kW7Ilbgr22DPclRSU3AzS041IZceU3yGBjdHNCYtXCqlVn6Z/T4rPEDZ5aYA15JTgqCMf/+2UnpWsI4L1m45Sk4pO6ChUUtNwZV9fDhXTZg0IBJxCs/cUQplnhWIWmDUaRARKF5YVym0nIwzaeHFwHJTAAA/pz4iSu2jYbLfWCh5EULK1FFqQMOq8PR/dwxcpGwTqW6+EhsBO3onKOcYkecKBj9lzNAQmRQ8FzRHaTttSxjQkDlfU5sVEtBqK6X3YnJkaPC4cHaaJacAKC+zrznSPblRp1Zs8FOJ+C9N5IZ0s8mdto4bbjYEF6nVKrl5fEvlhpZtP4kbFv/mkwveSm/OBziagvviv29bSDtrlXpz6Q7rX7eNkhcxldgMWt5Zy+CnzDlDQ8k7sZUc3GyOdF2llNIyUmnfCAY0XEqvsXSlK4vCN1LJC9Y8LlxIGRrxis/QkALhyj4+pHtyqYoCKYMyzwpErXBu2Kjkm03A0byUDcEd/O2NwWuaaQxuswl4ZMVe/HqkGJ/vyO3JofUIaQeIEkvGSOSSU/UWRc4R0u5Rpde8dsb6121jUnCZGaP9GFFSU3CrwnfWuiNtmrEJyt5xa2b5yiaYoaFcztfUvI5wZVb4Rio2BW+q3mxFYVUDACAhTNmNn91laOw7XYFXfzqMrcdKPDWsHucIaHATrpIo726SqA2cbzaVfvFQb2+QzobgDlKGxoPLd+P5VQebPJ+VXyX/2RePHhN358slpyw2Qd5lqiRK3y3njnNAw2YTUGdSzqJ1e5gVvCvbz37uUNKx4ah9rtzzRWPOJTyVXKLOka3F60uJ0krLlNaIC5IMaIgZ4NJ1NQMariwKL3MqfW6lr0k4K6wU5w6jTo0wf2XvyNe4CYTf99kuvL7uCK59bxsKKus9NbRuVWuyoKLOLH8tBzTsVRRIGZR5ViBqhevNprIvKivrxRNFsJ+yLxacBdgzNPbnVeI/v2SjtlEvjS3HiuU/O59ofYWj5JRyTyFSc3hAmWWnLMzQaEJaoG+w2vDQl3sw/KkfkZVf6eFReR8pIGpQ4PwR6icu2pXX+t55oTnSwhyDnw4GrRoq+9SppOBWY9JcoORsz8ak68uKOpOHR9IzymrEuZABDZF0HaGUkmNtZVF4Npf0uVlyyqHcPkeG++uhUinzuJA0ztCwWG3ILq6Rn994qMgj4+pOhVX1mLhwPcY885N8ryU1BQ80MKChJLyCJHLD+eaqQUHNO92RFuRDGNCQOS9mA0BZo8UpqUkZAJRUN/TImHqStHNQyYsQbe2l4quUfnPpjvT7sCOnFMt/PwWT1YYvdp7y8Ki8j5J7aIQGiOfROrNVMY3BpYU5Jf57N0elUsk33JX1yjt/SBzHBs8jkuSIAABwWYzyZSXM0HAhBX6VvpmuMUemnzLPI0rL3GqLyjrx3MkNl4DGfnzY7AGNMxX1LtkazpUjfMWy33JRWmOC2Spg0xFxI6mj5BQDGkqizLMCUSvUapW8OKX0i0oGNJryb1SbsazGdSedc1ZGsU8GNJRdy1YipbRWKXBBSunp/+5IC7bLtp+UHzt4hhkajTl27Ctv/ggyaOWddErJ0lByAKslwUbxmqqqXhnHgTvysaHQRUp3kqPEgMbJklpF7MZmhoYr9uJyz2LvxaRTaFawRt6Bz+NCIleQMHJ9onGGxqmyOpfnjxT6XkBj01FH1snBM+Lnq2FAQ5F4BUnUDEdjcGVfPDCg0VSAoXGGhmtAo9IloOF7ZQPMCm7q60w6DhatPeLhkfQ86aZK6UEtZ1LvJeeMraz8KkU2jW+JScE79lUqFUL9xYW70hrfOze4o+QSYy0JUnBAXNLAYFcTscFGGHVqWGwCchstSvkiqWxMmD8DGoAjuGdSQDCrPZTei0naALLxUBH++d0BRWaGNyatTwT7cfFao3LtoVFYJfbMkAId2UW+lfFnswnYd9qxYWzH8VIAjuupxus05Nt4BUnUDKmPhpIbNgLOFwwMaEgaL1A2XpiS0mAB3yw55WgIrcwbi8bWHixAdlG1p4fRo6RjQMmN4RtztyhXWmNCkQ/OAZ2h9EbAIX5SqSFl7MxnhoZ7jgwN5S5McXNEU2q1CsmRgQCgiOsKKVONm6ZEBvbQcMui9JJT9mzoL34/hcWbcvDP7w54eESeV8n1CZmmUYZGUZV43zE2JRwAkFdR51NlTnPLalFn/zwqFXCytBbXv/8b/rVO3GDIpuDKosyzAlEbSLttP92e6+GReFaFfXGeNxsOu06Wu3x9z6e7cP9nu7BwTRbMVlujklO+twvXzHJDAFx3vBRUKmvR2tEUXNnHgLMgpwvoMH8dkiPF0iGHfLB2bWcovRGwFMhRSkkRExet3XJkaCgjsOUOg13u9Y8WAxpHCn07oFFvtspZOqH+vMcA3Jecqjdb8cx3B7Bkc46nhuVxSi851XgD2a7ccs8MxIuw5JSDlLlktf+eSAGNtJhghPjpIAhAjg/1ZTpRUgsAGBgTiDH9wgAAm44Wy88H6hnQUBJeQRI1Q0rXW7rluCLq2DaHJaeaumR4XJPHVmSextsbjmF9ViFKnUpQVTdYfC7LxyzVwFf4IsSVoxPkP+dX+n5pCGfSnMgMDYc+wUb5z/FhfhgcFwwAWL0v31ND8kpKX8TUK2wHrtL/vZvDklM8NpqTFiMGNLJ8vAeTlJ2hUatY89zOoBMD3rUmx33Dij9O4/1NOXjq2wPILa311NA8SvFNwRttHuKcyQoSzuQMDatrhkZ0sAEp9r5MvlR2Kr9SXKPrE+KHOaMSmjzPDA1l4WxI1Azp4gkAahp8a0G6PRjQaOruaQOw6JoRuCkjSX5seGIoAGB/XqV8ISGp9rEFC6XvlJI8fGE6/PXizWd+hbIyNEz2+ZE3VQ59QhwBjYgAA/50diIA4Id9+bDZ2EdD4mgErMz5Q/rcisnQ4KK1W0FsCo56+2YPo0LLzzVnaHwIAGDniTKf7sEk9c8I9dNBpVLm+aCxiACpx5LjmnJrdon85wM+HuRqjryJRqHXDZpGn7vEB7P/20sq7xzMxWt5c5mjh4Y9oBFkQGqUlPHnO9niBRX2gEawAVeOTsCg2GCX59lDQ1l4d0HUBlUNyr3hrGRAo4kAgxazR8bjvgsGYsaQGLxz/ShMS48GAGy2pzz66TTws++08rWAmBTsU3qGRlSQATeM6wcAKFZYnwQuUjYV45ShERlowNjkCPjrNSipMSGLZadkZgU3BQecSoooJUND4SXGmiNlaFT62IaH9qg3i8eGUceAhrOzk8KhUatwqqwOZ+wLN75I7p/BclMyKaDhXK72ZIljZ/VhhV5LSGVOdQotc9p4A1lJjbLuOdyRSk5xfcJR/tfSqCl4VJAB6X2CAPhW+dsC++eLCTZCq1Hj679n4NWrh8vP85hQFmWeFYjaYPGNY+Q/Vzco94bTkdLJaHdjwUYd/nPDGFw4NFaul7/zRBkAICHMT0559LWAmJnlhmSRgQYADGiQa8mpyEA99Fo1xiaLDfm2HCtu7scUp0Hhx47US0IpGRpKD2A1J4hNweUmpUYdjw1nAQYtUqN8vweTFNAI5eKTLMLNNaVUXgUATii25JSyMzQal9qqN9tQa1LuuQNgU3Bn0v24TXAtORUVZECaDwY0SmvEgK90D67XqpHex5GlMapvmEfGRZ7BK0iiZkwbFCPvoPO1kkFtJQgCS061kVSjUhIf5ocge8qjr2VoSAuSBpaJQESguJtOaenfJqt4THPXtYNzyamEMD8AwGh7s7r9ecosE+GOY8e+MucP6XfGuaylL3OUGONc4YxNwZmh0ZI0++KML2f3VUglp/z1Hh6J94gKEhfoCivFBUmL1eZSxvZEie/UwW8PqTeATqHnEXefW2n3HY3JGy7ZFNylh4bz2k24v14OaBwvqZE3EfR20rEfFuA4d6T3CcLlI+Pxt3NT5HmUlEGZZwWiNuob7g8AqFJohkaNySrXY2RAo2UpkYFwLgEcH+on13Cs9rEMDe6qdGCGBo8BiXQsAEBcqBjQUMKiVHtJx45Oq8ydllKpPpPFN24sW8O5wj02BQcaLLyWaI6jTIjvBsOZodFUP/t9Z06xGLgoqTHBuQXX8RJlZmgovXShu3vwkhplBzSkco2sIOHaQ6PObJXnjECjFlGBBoT562ATgKOF1R4cZdeRMjQinAIaarUKr10zAo/MHOSpYZGHKPOsQNRGgQZlZ2hIEX6dRiX3gyD3/PQaOQAGiBka8vHjaxka3FUpkzI0ihW2U0raXa7Um0t3NGoVrj2nL85JCsfEAZEAIJcNOVFS49PNXdvDrPCFCYPCMjSUXmKsOdKu0kpFZ2iwKXhz0mLEgIYvB8PL69hDozEp2zunuAY2myBnakhBv6KqBkWWGpKCnwaFBj/D3PyOlCq8jwZ7fDrIGRo2m7xJQq0S+3mqVCqk2BuDS4HS3k4KaIQHMLuPGNAgapFcckqhGRrOFwsqlTJ307aHtKMOABLC/B0ZGj4UELPaBHmnFAMaQJR9V35pTYOczaQEXKR07/krzsLnt4+Xy7HFh/lBpQJqTVbF76aTmOSSdco8duQeGgppCi4FsJRaKqQ5zNBgyamWSGVCjhVVy79DvsaRocFFKUliuD+0ahXqzFYUVNXLzX37Rwci1L6ofUKBWRpKL10Y5qYsm5JLTtWbrfJ9CHtoOAc0BPmaItCgldduUux9PrOLen9Aw2YTUFbbNEODlEuZZwWiNmKGBhtutUeaU0Oq+FA/ecGixocCYg1OZVJYJsJRv9MmQL7AUgKWkWkbg1aDWHuz8JMKbebZmNKPHanUlsliw7Giasz/cg9OlfnusSEFenUKbebaHEdTcOVmaNSZlb3ruiUJ9ixfs1XwmV21jTl6aPAeQ6LTqOVs7+yiGkdz30AD+kU4Mj6VRu7dp9C5wvl3RNoMouRNMlJmo0oFBOpZckraFNBgtsmbcIOceotIGRrZxb2/5FR5nVkuqRXGgAaBAQ2iFgVKO+h8aEG6PdgQvH1G9Q0FIO6USIkMQIBBvMDwpeNH2lEJsEwEIN58SqngStotZeKu6zZLtC9O5DKgAYDHjtQM3WS1Yfabm/Hpjlw8t+qgh0fVfaTSWhq1Mv+9m+OcoaHUcnSOfly8lmhMpVLJJQuzi3r/IpQ7coYGAxoupMXHo4XVKLQHNKKDjHJ/DSVmaMhZwRplzhXJ9h32AJDRXyxpWqrkgEadfdHeoIVazc0Sjp6dFnkTrnSNATiOH1/I0JCO+yCjVrH3EeSKRwFRCwIN4kW2UjM0yuwnDXeprtTUuQOj8MHcMVhxxwSEBejl48eXMjSkBQi9Rs2LSDslNgY3K3yXfXtIAY2TClyEcIcZGo4MDak0wKq9+S7Zb75EytDQ8nzhQlpssNgEl40CSsIeGi2TFraP+cAilDuOgAbvMZyl9RH/3bPyq+QMjehgA5IixGsJJTYGb1B4qcoBMUH45Nax+PS2cTg7KRyAsjZRNcYKEq6kiiI1JoucvSI9Bogl6wAxSGrr5eWR3TUEJ2VT5lmBqI0cPTSUWRJAWqCNDORJoy1UKhXOS4/B8MRQAE7Hjw8FxOpZIqIJR2Nw5QQ0pF32Bu6OaZVUPiLXh8sKtYeJTcEBACWN5otPt+d6YjjdzmIT/721LDnlIkCvhdSaTIllpyxWm7wwwWtM93yp7rk75fYynaFclHQxJC4EALDuYIFcqjIqSNklp5S+EQIAJqRGYlxKhLyQW6LgpuBlbArtQgpeCAJQUCn23Ql0ytBIivCHXqtGndna68vfSvfaEfbNhETKPSsQtUGgQdlNwYvtuz940uiYAL2467Da5DvHD5t4NuXI0FDObineXLadFNDo7TcRXUXpx46UIp9XXu/y+Kq9ZzwxnG5nkTM0lPnv3Ry1WiVfY1b60KaHtiquNsEmiCU6eY3pXrJUcqpR3fN6sxVvbziGrPxKTwyry5TXseSUO9MGRSM+1A+FVQ3YeLgIABAdZEC/CCWXnLJvplLodYOzmBCxL9vpsjoPj8RzShnQcGHUqeXG4Pn2gIZzDw2tRo0B0Y7Mr95MOu7jQv08PBLyFjwrELVAutmsUuDNJuCcocGbzY4INPpeybI6ueY1Tx8S6fdD2nFdZ7LicEFVr0/rbYm0KM36pa2TSk7tOF4Gi1WZpWWcyQENhR47fvZAt9QIXNql/8fJMtT6UPBbYrGy5FRzpIVcqTmykkiLLtFBBnkhhlylSiWnCqtd+qy8uf4oFq7JwtwPdvTac0qDxYpak3g9GerHRUlnBq0G910w0OWxQbHBcoZGXkWdz5YobI7SN0I4kzK3TpTUyiUdlaa0lgENZyqVSt5EmV9hz9AwuDZLT+sTBAA41MsDGtK1czwDGmTHswJRCwKNys7QkJrYxtp3g1D7BNqbgvtiDw0/ZmjIpN+Pk6W1sNkEXPPuVkx/7Re8tvawh0fWfeotDGy1Vf/oQOi1alhtAsY8u7bX76rtLOnYMSh0DpECGnn2m84RiaGID/WD2SrgF/tuXF/CklPNk/qTldWIO9Uras34YFOOXB/cl0mLLjHBvL5sTkpUADRqFSrrLXIACAC+2HkKgBgU2nO6wlPD6xTpGFepXJvXkujykfEIsi9IGnVq9IsIQGSgHgF6DQQByC1V1u58Rw8NZV43OIsL9YNeq4bJalNsloacocH+OzIpI+NMhZSh4TqvpksBjYLefQ9yulw85hPCGNAgEVciiFogXUz60g77trLZBBwuENPcpag+tY/cVN6HAhpStlLjnR9KNtBp18vvJ8uw55S4wPCfX7JRWFnf0o/2WtIxzeOgdSF+Osyb2h+A2AT1lqU7Fbe70pl0PlXqIpa/3nVBJsiow8XDYgEAy38/5YkhdStHhgZvORqTAxr23aaPfLUHT393AI+v3OfJYfUIqc43N8w0z6DVINm+G1sqE3K6vM4luLH5SLFHxtZZFfaG4CF+OqiZodOERq3CBzedjaHxwVh849kAxF3YUpZGTrGy+mgwQ8NBo1bJDeKPNSpHpxRSQ/Rw9l+Shdh7EUmbURvfn6X3CQbQ+0tOnbIH8eIZ0CA7nhWIWqDkDI3i6gbUma1Qq4Ak+wU0tU+APUPDl44fKdsk0Miax5KBMWJAI6e4BntPOXZLmiw2uf6xr5EWpQMVuijdXvOmDcDLVw0HIC5ILfvtpIdH5Dk1DWIwR6nBMD+d6+cONGhwbloUAOBooW8tTgiC4OihwQyNJsLsJafKak2w2QSs2psPAPhmdx7qTL4d9DzDDI02SW9UJmTLUdcAxqajvTOgIfXPCGFD8GadnRSO7+ZNQkb/SPmxATFiGbLDBb17UbK92EPDVUqkeBxkFykrsCUptTdEj2DJKVlkkFj++EwzJacGx4kBjeyiGrmkeG8kZ2iw5BTZ8axA1IJABWdolNVKzfr0rG/cQUE+GBCrMUk785n2LekTbIReo4bFJmBdVoHLc729Vmlzapih0W5Xjk7AM7OHAgDe35TjUhNdKRosVpjsNd8DFHrsBDSaOwMNWrlWfm5ZnbwT1Rc41/dmD42mwgPEBYjiapN8ky7ZcbzUE0PqMdIu0j7M0GhR44DG/jyxXMj5g2IA9N7eO/IOay5Itouv1MFvD5tNQL1ZPC/66XnvATgCW0cUFtiSOJqCs8enJLJRtkpEo68jAw0YHCsGNTb11sy+OrNcKYIZGiRhQIOoBVI9wmqTxacb/LojXSxIOwip/aQFu5oGi88sXrLkVFMatUqu5bn5aAkAYObQPgCAQz54s2GzCagxKXuXfUddMSoeeo0ap8rqcKKk1tPD6XFSdgag3GOnccmpQIMO0UEGBOg1sNoEnCz1nR2XFueAhkKbwLckOUrMfj1SUNWkhMz6Q4WeGFKPEAQBv+WI58qRiaGeHYyXS2tUJkTqwXTh0D5y750dx8s8Nr6OknYIR3BBsl3624Pf2QoqNVTjFLBT6nVDY1Jg6+CZ3t0PoaPYFLypyEDXudRd9qOUDdxbqwdIPWPCA/Tw13MuIBHvLohaIO2wFwSg1uzb6f+NlddKAQ1eLHSUdOFttoq7i3whKCbtzFfq7urmJIb7u3z957H9APT+WqXuON9c8jhoH3+9FkPixQWqvb20mWtnSNmO/nqNYjP/3JWcUqlUSLEvVB3zoRISFmZotGiQfVFq7+lKZBeJC5TS39NnO3JRVNV7y0K0pN5sQ7F9h75UBoPckzI0jhVWw2oT5J356X2CkNE/AgDw3e48j42vo6SARlQQ7zHaQzpP5BTV+MxGqdbU2jfQaNQqlpyyG54QCgDYl1eJCnv5NqUQBEHO8GLJKYc+jQIY7vpTnTtQDGj8crioV65JSJms8Sw3RU54ViBqgUGrht6+q1Ba4FcKafdDKAMaHRbgtHtg0BNrcM5za3GqrHfvypbKZwVxIdtFX6eARkKYH0b1C4VaBRRVNSCvUSmR3k46BnQa3lx2hLRAtU+JAQ0GRJtmaNg3TvSPFheqvvShxuAWq6N8FgMaTQ2ND4Feq0ZxdQOe/PYAAOCWSckYnhiKWpMVb64/6uERdg9pAU6jVnHHdSviQv2g16hhstqw+1Q5ymrNUKvE+eKasxMBACsyT+NkL8v4kxYkG+8qppb1DfeHRq1CjcmKQh8NeDYmXTf468XgP4mbqPpHB8JqE3pt+aCOKq0xodZkhUrFkoXO+jbaWOcuQ2N0vzAEGrQoqTFhX17vuAc5kFeJN9cfRVW9GcftmayJ4QxokANXIohaoFKpEGVvslRQWe/h0fSsAntTKenzU/up1SqXhf/iahNW7T3jwRF1XkkNA13uOF9InhUfAn+9FsPtpTRW78v30Ki6h7QQEeqv581lB4xLEXfVLv/9lEuPASWorBcXMoMU3Ew+tFEZR6kG9LiUcADAjwcK8OGW4z09rG7hnKGh1Iyclhh1Gky1l4CQDI4NxsMz0gAA//vthNxrwpdUODWE5jmkZRq1Sq4VLgU7B8YEwajTYHS/cIxPiYDVJuCngwUtvYzXkRrXRvMeo130WjUS7cfDsSJllJ1izzb3pHOHL5cndOek1H8p2Aijjj1VJEmRjvvQ6CCD278bnUYtZ/atPeD954yaBgv+9O5WvPTDITy/Ogv77UGYQX2Y2UkODGgQtUKK/udXiDthTBYbfssuwaYjxSip9t3dMdIFQ78I/1a+k1qyeO7ZLl//d+uJXp0mLgW6uCvG1VkJIfKfJw6IBABcMSoBAPD5jlyPjKm7SMHdxunN1DYXnRWLIPsOqf29ZIdUVymvFRcylVzKMMRP55LZJAVDLx4WJwd6FnyzHy//cKjL3/t4cU2PNhC2WMVznVat4sJ1M97+82iXRd0JqZGY0D8SGf0jYLYK+MKHMnYkzgENal2S/Tp8ZeZpAEBG/0j5uSn2Rc0tR3vXLm2pdEhCGO8x2kvK5juQp4z+CVLvLSVndrozNS0aALA+qxBmp2xIXyetTzQu9at0yZGB8p91LfQsu9De43FVL9hs9/3eM6i0l6r9bnce9tgz24fGh7T0Y6QwDGgQtUJatMuvrEe92Yrpr23ENe9uw/WLf8Plb21Bg8U3e2uckC4YeLPRKeckh+Od60fhQfuOy1NldVh3sPfupsm3L2a7S2VVslF9w5AcGYCUyADMHhEPQFy4BsTG4IVVvpPhxWOgc7QaNcbaszSkJvJKUVFnz+5R8EKmc+Yn4EidDzBosenh82DUiZfmb6w/ih/2d90N555T5TjvlQ2Yu2RHjwXVLTZxkYXZGc1Tq1V47ZoR0GlU+Mv4fvKxccmwOADAj/vze/UmCHekgEawgjO12uOcZPF8UWPvJTDRKaAhBTe2Zpegorb31NKXyq9K2SfUdmPtx8OWY8q4fmDvPvfOTg5HZKAeJTUmrM/qvfeV7SWV12tcYknpNGoV5k5IgloFPDwzvdnvmzYoBnqNGkcLq/HHybIeHGH7SUF8AKistyDb3mNuCHtvkRMGNIhaEW5vOFVRZ8ab64/iuFOd2pOltT55ESEIAo4WiKnM0k4g6rgLh8bizimp8s37X/+706W2eG9hswkorBSzkpih4UqvVeOn+yZj9b2T5Juu8AC9fNHlSzVuHVk6LBXRUZPsWTxf/qGsslNShkaIv3IDGoA4X0iinGrIh/jpsHvBdHkjxcI1WV12rvh2dx5sArA9pxT7TvfMzl4pQ6Ol3YIkLkrvemI6nrxkiPzY9CF94K/XICu/CrtP+VYmV5m9R1uIgjO12kMqEQKI2U7nJIfLXw+ODcbAmEDUmqz4Zk/vaA5eWW9GlX3XLZu7tt8E+/GwLbtEETvzqxrspSoZ0HCh06gdmeA7fSsTvCVShgYDGk09cfFgHH5mJi4dHtfs9wQbdbhshPj8mz97b5+u6gYLdhwvBQBcOTpBfrxfhD+iuaGOnPAOg6gVwX7iBVR2UTUWb8oBANyckYy5E5IAiPWufc3p8jpUNVig06iQEhXg6eH4BJVKhaU3nyN//dG2Ex4cTceU1ppgstqgUrHusTtajRoGrWvN0mnpYkr4+7/mwOYjC9f5LDnVabNHxiPET4ejhdX4ymkHkq8rt+/MDvVT9kKmc4NsbaPFfoNWg5/un4wwfx2yi2rw4PI9XfKeRwod9dY3H+uZAKvUQ4MZGq0LMGihdvp7Cg/Qy4HPnw54f2mI9iiUsvx4HdEmQ+JC5PJcI/uGuuxUV6tVcjZPb6iJDgCny8RyU2H+Ou6674BBfYIRbNSi1mTFkQLf76NRVmO/blD4Rgh3rh6TCAD4OasQh/KrPDyannHgjLghIzWKGy4bU6tVTa4p3bljSirUKmBdViF+P1HaAyNrv63HSmC2Cugb7o+nLxuC4Qkh0GvUeGTmIE8PjbwMAxpErQg2ihdQ3+05g1qTFcMTQvD4xYNwiT36/fWuPGT7WGM26aIoNSqQOyu70Ki+YRjTLwwA8OKarq+P3t3y7TvzIwIMPC7a6KaMZAQatDhwphLbj3vnRWN7Sc08WXKq40L8dLhjSioA4ONeGNzsqPJaqaG8shcmtOqW588gow5/n9ofAPBV5mn87aOdOF5cgzpTx0tcnnRqLr2/h2qvSyWndBoGNDri0uFi+cJl23N9JiAOOAXFmenZJhq1Su7NNWlAVJPnLxoWC7UK2Hi4yOtLiACOgAbLTXWMWq1Cur0p7qEC3++jIV03KLn3VnP6Rwfi/EExsAnAX/+7A5X1vafsXEdUN1iQZV+jGNk31LOD6cVSogIxx57d8+DyPag3e1/59G93ixmHU9Ki4K/XYsWdGdi14AK5BwiRhCtSRK0IMrouvDx0YTpUKhVG9wvDeenRsNoEvPLTYQ+NrntIFwtpfYI8PBLf89wVZwEA6sxWvPvLMQ+Ppn3kZtAsNdRmYQF6nGfP0vjZR8rTFXAxqktcMDgGgBhA9qXFypZIJaeUHtCIasPO9BsnJGFovLho9cP+Akx5eQMGPbEGr/x4CO/+cgxf7Gz7IrfFasOp0jr56z2nynvkmJNKTjFDo2OmD4lBgF6D0hoTMnPLPT2cLpNfIZauZFC87R6/aDAemZmOWyelNHkuJSpQLsnx4posr++5IvfPYLmpDpPuz7LO+P6u/FIpoBHAgIY7C+echcRwP+SW1uHlH3rfZrn22Hy0GFabgH4R/ojj/NEpj100GNFBBmQX1eD5VQe96rzx04ECfGMPaEhl1TRqFfz1zOijphjQIGqFVHIKABLC/OQGfADw4Iw0qFTA93vO4ExFnbsf75WkgIa0A4i6zsCYIIyy7yp5blUWqu3N7noDlhrqmIuGic3Bl2zOkUtt9GZSpg6Pg85JigiAUadGndkq14n1dXIPDQU3BQeAJy8dgv7RgXjxymHNfo9Oo8bKOzNw4ZA+CHJqnvzvn4/iuVVZeHD5HgxesAZz3t6CO/6XieJ6oKTGhJLqBtSbrbDaBJRUN6CkugEbDhXBZK+17qfT4ERJLVb0QKkzadefn07TyneSOzqNGjOGiLsR/+dDmVzH7FnNSREsadpWfUKM+Nu5qfDTu/9duuf8gdBr1NiWXYq1B71788TpcvF+KSGMNfA7Sg5oKKDMUJn9uiFM4RshmhMRaMALV4jXEh9tO9ErsrQ6asOhIgDA1LRoD4+k9wvx12HhHPG4+XDrCTz7vfcENZZsFku8z52QhBGJoZ4dDHk9BjSIWhHslKHReAFvUGwwhieEAgA2Hy3pyWF1q0P5YgpzOjM0usUb142S/9ybdtMUsNRQh0wfHINhCSEwWwVMfXmDV6b2tlWdyYpKezPPGGZodIpGrcLMoWKwa52PZO+0Ru6hofDSEcmRAVh7/7ly/evmaDVqvHPDaOx9cga+v3sirhmTiCtGxSMpQlwIrDfb8PuJMqzNKsI/M7UY98IGjH5mLdIfX4PUR1dh9DNrMfqZtfjrf3cCAC46Kxa3nyuWOnvgi91Ytv1kt37OKnvAnnXyO07aef/LkWKYLL2/AXCtyYLjJTUAmAXcleJD/XDD+H4AgFv/uxPfeXGDcCmgwQyNjhscJ244291D2XaedMZ+vEQH8ZqzORn9I3HFqHgIAjD/yz2dKk/prcprTXIZIinznTpnano0HrtI7Enx/qYcryg/VVpjwm854iavmzOSPToW6h0Y0CBqRbDTTtLo4KZlIibaMzY2HSnqsTF1J5PFhuwi3mx2p7hQP1x0lriQuXTLcdSaekeWBjM0OkalUuGJiwcDAGpMVny9q/c2gZaOAX+9BkFcpOy0YQkhAICTJbWtfKdvqJB6aCg8Q6MjhsSFYOGVw/Dq1SOw/oEp+OTWsXjn+tG4KSOpTT0qQv11uOu8/rhlUjL0WvHy/5EVe/HZju4LatTYAxqBnCs6bHRSGCID9SiubsBnO3M9PZxO23m8DIIAxIUY21R6jdpO6rsDAHd9kombl+7AiZIaWKzeFQg7WmjP0IlkhkZHnRUfggC9BuW1ZrlJsq/KKRbvSXm8tOyxiwYjMlCPwwXVeGTFHq/Zbd9V/rXuCKobLBgUGyyvvVDn/XVSCp67/CyoVcDy30/hyne2ILfUc/ckaw8UwGoTMDg2GH0j+DtPrWNAg6gVwU6lHqICm958TR4oNuj7YX8BympMPTau7nKsqBoWm4Agoxax3IHdbZ66bIj850dX7PXgSNouv9Je95rHRbuNSQrHPdMGAOjdvTScy02pVKyL31l9w8WL9RMevHnoKRarDcXV4jkynLWwO0WlUmFCaiQuHNoHCy4Zgv0LzseicRYcfvoC/PrQVFw6PA4XDumDT24di5znZyHn+VnIfPwCDIoNRqBBi22PTJODGg9/uRev/tg9mYLV9mwu55JZ1D4GrQbzzhPPHf9ed6RX77zde6oCf/lgOwD3za2pc8ID9Nj2yDRIp+afswpx7ksbMPCx1bjjf5nYVaJCcXWDR8foummKZW07SqdRY1xKBACxGbyvOlVWi7JaM1QqlqhrTXiAHq//aSQ0ahVW7srDu79ke3pIXWbPqXJ8uOU4AGD+zHSo2ZerS103ti8+umUswgP02He6ErPf3IwjBZ4pZ7d63xkAwEw2/6Y2YkCDqBXOGRqRbgIaZyeFYWBMIOrMVvziA1kaUi33YQkhXLDsRpGBBlx7Tl8AwMpdeb2it4JUcoqBro6ZPkRsAv3D/oJuL/XSXdgQvGtJWXBHCqp6VT+djjheUgOT1QZ/vYalRrqYSqWCSiX+PzHcH69fOxLv3DAaE1Ij7c+pXM7n4QF6bH90mtys+/Wfj+KF1VldPq5qlpzqEtee0xcJYX4orGrAUvuiTm+y43gp7l6WiUve2CQ/duvkps2tqfP6hBix8//Ox93TBkBa87MJwNqsIiw5rMH4hRtx97JM3PNpJh5ZsReFVT177bkrtxwWm4CIAD3ieB3RKdI15cfbTvjcbnzJt7vFxc2xyeE8j7TBhP6R+L9ZYgmh51dnYY19cbg3s9kEPP71ftgEYPaIOJw7kMHw7pDRPxLfzZuIIXHBKKkx4er/bMXvJ3q2v19lvVku4X4hAxrURgxoELXCeWehu2Z8KpUKU+zNqTYfLe6xcXWXTUfEzzAhlemc3e3JSwfLf35/U44HR9I2UuN7lpzqmCFxIZg+WLwBfWTFXjy+ch8uev1XDHp8DQY9vgZjnvkJy7af9OqFbam0AY+BrpEQ5o++4f6w2ARsz/GdPkzu7M6tACAGcbi7zvNC/fXY/9QM+Xf5nY3H8MAXu7t0YayaJae6hF6rxv0XDAQALFyThTlvb5GDy96qoLIez3x3AMOf+hFXvbMV3+x29HRY+fcM9I8O9ODofFtEoAH3XzAQWf+ciczHL8Cfx/bFqL6h8vPf7M7D17vysGz7SZzz7Dq8sDoLDZaeyfz51L6ZY+KASG6a6qTLRsTDqFPjTEU9Dp7xvebghZX1+GjrcQDiZ6W2mTshCdeNFTfM3fVJJj7edqJX91n5evdp7M4tR6BBi0ft/R6oe8SF+uF/fx2L4QkhKKs147r3fsOP+/N77P3XZxXCZLUhJSqA1wjUZgxoELXCoHUEMQy6pgENQIxqA8D6Q0Ueb6bUGRarDVuzxUU11qfsfgatBrdOEhtebTnm3cGwqnozm0F3gRevHCbviv5o2wnsz6tEndmKOrMVxdUmPLJiL8568gf8Z+MxWL3sBsRmE+QUdh4DXSdD7sPk2wGNzfY5TiqTQZ5n1Gmw4cEpSAgTM2aW/34Kl76xucsyBqWSUwxodN5lI+Ix3N5z5/cTZRj73Do8+c1+VNSaPTyyppZszsHY59bh/U05qKgTx6dRq/DwhelY/8AUjEgM9ewAFUKvVSMsQI9nLz8Ln916Dh4eZsGjM9Pw2EWD5AVPQAxmnvPsOuw7XdGt4/l0+0msyBR7iN0ykc1eO8uo02CyvXTbx7+d8PBoutaZijpc8+425FXUo1+EPy4bEefpIfUaarUKT186BJcOj4PFJuCxlftw0b83YePhol6XyVPdYMHC1WJJzL9P7c/G8D0g1F+PZbeNw3np0Wiw2HD7x79j4ZosmCzd34tpzT4xeDJzaB8GvKnNGNAgaochce7rvY5LCUefYCOKqhp6bSkZANiXV4mqeguCjVoMjQ/x9HAUQSq7sO90ZY/ugmivncfLAAAJYX4INrKhb0dJu6KnpUdjUGwwhsQF48EZafjfX8diaLw4vwiCmCo+6PE1XtXsMSvfsQOQN5ddJ6O/uMDvCxl+zbHZBPnzMVjuXYw6DX55cKrcoH7v6Qqc89w6/GvtEZg72Uw4z57VF8OMrk7TqFX48o4JmHeeo/Hz0i3HMfzpH3Hbf3fiuL1xbkt+OVyEc19aj39+d6BbxpiVX4lxz63DU986Xn/ywCisvX8yDj59Ie6YkorkSNbB95S4AOCmCf3kJrA7/u98ObhUUWfGxf/ehPs/29XlWaJHC6twzX+2Yr69X9yss/pgWEJol76HUkmBqQ1ZhW1arK43W/H9njOY+vIGTH5xPT7bcdKju/frzVbszi3HzuOl2JZdgs1Hi/FV5ilc9c5W5BTXID7UDx/fMhb+egbF20OrUWPRNSPw6Kx0BBm1OHimEjd+sB2TX1qPW/+7E6/8eAjf7s7DofwqlFQ3eFWgQxAENFisqKgz48lv9iO/sh59w/1xU0aSp4emGP56Ld69YTSuPacvbALw9oZjuPKdLW26zuioWpMFGw6JpdsvHBLbbe9DvodnB6I2+PauiTheUoNRfcPcPm/QanDHlFQs+GY/vt2dh5syeufOI2nBaXxqhLyLnLpXdJARUUEGFFU14POduZg+xDtrRnIxsusYdRosnnt2k8e/mzcJ27JL8Oz3B7H3dAVMVhsue2sbrklRYZYHxtnYy/bGwVPSopDOZp5dRirvd6igCoVV9T65A+2ngwUoqGxAkFGL0f3cn0fJc9RqFVbemYGXfjyEtzccAwC8tvYwlm7JwWMXDcYVo+I7tFvupL3ZfWK4f5eOV6m0GjX+MT0Nl4+Mx2trj+BbexmnHw8U4McDBZg8MAoPzUhzuyHlREmN3JB78aYczDortkt/F9//NRvPfH9Q/jopwh9LbzoHSQxgeK2oIANW/j0D3+7Ow7xlmQCAFZmnsSLzNP52bgqCjTrcOCGpwxlWO46X4rlVB5F5slx+LMRPh2dmn9UVwycA5ySHQ69RI6+iHsdLalsMGAqCgL9+uBObnDZPPPzlXvxnYzauOTsRN05IgrGZSgRdzWYT8Mn2k/jndwfQ0MzO777h/lh22zj23OogtVqF2yan4qrRiXhz/VH8d+sJ5JbWIbe0Dj8dKHD53gC9Bv0iAhDqr4VQpcaJjdlICA9AZKABUUEGhPjpYBMECIK46comCBAAp8cE2ARAgICqegvqTFbUm60orzOjwWKDxWpDnVkMUpgsNtQ0WFBVb4HJYkO9xYr8inrUNFjlQEbjGNszs4f22LFJIq1GjeevOAvnDozEw1/uxZ5TFZix6BfcNjkFd53X36WCSVdY/vsp1Jmt6BfhL2/wI2oLBjSI2uCshBCcldByxsK0QdFY8M1+/HGyHB9tO4EbxvXrodF1Hal/Bhete9Y714/GnLe3YO3BQlTVmxHkhRkQ0g1QBo+NbjUuJQLf3JWBHw8U4G8f/Q4A+Cxbg+2LNuGt60cjvU9Qj6bhltaYUFFnRnW9BT9nFQLg/NDVwgP0GBIXjP15ldh6rMQna0Wvtx87V41O5E2pl1LbSwLdMK4fbl66A1n5VSirNeMfX+zGc6sO4p7zB+DK0Qlt3ilrsdqQUyTu5usXwYBGV0qJCsS/rx2JR2el419rj+DTHbkAxAyMXw4XoX90IAbFBuO+8wcgMsiAIIMW93++2+U15ry9BZ/cOhbnJIVDq2l/wn5xdQOq7CXFvtiZi7fsgTAA+OfsofjzOX3ZK6eXuGR4HKakReGRFXvx3R6xifB/NorlJV/64RAGRAdiYEwQ/jF9IIw6DWJDjG6vQ0wWG06X1+FMeR2eW30Q+067ZpjeOikZD8xI6/KFMCXz12sxql8otmWXYtPR4hYDGhsOF8nX8sFGrVxGNru4Bs+vzsLzq7Pw1p9H4fxBMdBru7aIR73ZijMV9bAJAp5fdRAbDxfBbHWsWseH+sGoU0OrVkOvVePcgVG4eWIywgP0XToOJQoL0OOxiwdj3nkDsD+vAocKqnAovwpZ+VU4VlSNqnoLakxWp4xwNbauPerRMUtC/HR46tIhmMxG4B5z4dBYDEsIxT8+342t2SX4989H8f6vObhxQhJmj4zDwOjO98UzWWzyOefmjGSWm6J2YUCDqIskhPljSloUNhwqwsLVWbjorNhedSFWUWvG7yfEskITuGDZo0YmhiLUX4fyWjPOevJHPDorHTeMS3LbhN4TTpfXyeWGJqSy/n13U6lUmDGkD9bePxnXv/8b8isbkFNSi5n/+hWpUQH4YO7Z6BfRtbteTRYblv9+ClX1jnrsB89UYuWuvCbf++exvS9Y6+0y+kdif14lNh0p9rmAhiAI+NUeLJ80kOcWbxcX6oc1907G93vO4J/fHUB+ZT1Kakx44uv9eOLr/Zh3Xn/MHBqLwc2U4ATEYMbjX+9DjcmKED8dUqPY3LE7xIb44YU5w/DkpUPw1vqjeP1ncRHqaGE1jhZWyxkcFw+Lla/vnrv8LDz6lVj657r3fkOov7hgdOnwuFYXESrqzPjqj1PYcbwM3+890+T5IIMWmx85j2Upe6Egow5vXDcKN08sw3e7z+BoUTV+OSyW/zhSWI0jhdXyv/mIxFDMHNoH/gYtrhqdgB3HS7HvdCUWrT3sdrf9Qxem4bZJKR0KnFHrMlIjsS27FD8fLGh2M53NJuClNWKW7W2TU/DorEEQBAEf/3YSX2eexk77/HDn//6ATqPCvecPhLaLApImiw2vrj0Md1WNUqIC8PjFgzE1LbpL3ouaF+Kvw4T+kU3u8U0WG06W1iK3tBaFlbX4efteBEYn4ExFA0prTMivrEdtgxUqFaBSAWqVCmqVCirYv1aLf1arVFCpgACDFgF6LfRaNUL8dPDTaaDTqqHXqBHqr4NRp4afToNgPx0MWjUMWg2igwzy10FGHfwNGug1ahi0ai5ue4G4UD98cutYrN6Xjye+3ofiahPe2XgM72w8hhA/HaakReG89GikRgUiMtCAmGBDm//d6s1WPPP9AZwur0NkoAHXnJ3YzZ+GfI1K8KaieSSrrKxESEgIKioqEBzMtKveos5kxaQX16O4ugGRgQas+8e5CPFr/sbObDZj1apVmDVrFnQ6z94AvrA6C+9sPIb0PkFYfc8kXkD0sDfXH8VLPxxyeWx0vzD46zV4+MJ0xIYYEWDQemR3872fZmLlrjyMT4nAstvG9fj7K1ldfQMe+uAH/Jinc1koeHBGGu44N7VDu2LqzVbU2Gtkv/trNnYeL0PmybImKd7Ogoxa6DRqPDIzHVeN4cVmV9t4uAg3frAdcSFGbJ5/XqfmX0EQUFZrbrUmsr9e2yNB099PlGHO21ug06iw64npCGCD6C7XXdcSVpuA33JK8NhX+5DdqHbyiMRQaNQqxIYY8dhFg1FntuKZ7w6gvM6MPafK5d23156TiOevGNZlY6LmldeacPBMFT7fmYv1hwpR3qhh+O3npmL+zHRsPFyE+z/bhZIak/xcgF6DJy4ZjMtHJsi7s202AWW1Jvx4oABf/XEa24+XNnnPIKP4+5waFYhlt47zmo0Y5Kojc8TRwmoUVTVg+e+nsC6roMnx1Jwgg3humTdtAGaPiPPKrGNfcrSwChe89gsEAfjmrgy3/Uk+35mLh5bvQZBBi18emoqwRhvufj1ShIeX70FeRX23jlW6lpw5tA+uHpOIYQkhvN/0It60LkHeyWSx4eesAizbnovtOaWoM1ubfE/fcH+clx6NUH8dgo1iuTKbIMBqg/3/AixWGw4VVOG3nFL53PKfG0ZjhpeW3iaH9swTPbGmzYCGl2JAo/f69UgRbli8Xf76h3snI61PkNvv9ZYLB+lCFwDe/8sYnD84xmNjUbLdueV49vuDbhcNJDdnJGNAjPvdrpGBBpw/KLrLbg4EQcDfP/kDq/aKzcq/vGM8RvcL75LXprZxniM++u0UnnZq5hpo0OLjv46Vm3q25LfsEmQX1+BUWS3eXH+s2e8bHBuMQbGOc06QUYv7zh+IEH/e2HSnOpMVo/75E+rMVrz3lzG4oINz8JGCKtyweDvyK9u2KHFTRhJum5yC2JDuqVEtCAKufW8btmWX4qrRCXjpquHd8j5K1xPXEgfPVGLp5uP4bGdum39mVN9QvH/j2b0qW9WX5JbW4u2Nx9BgtiHMX4f7LhjoElBcvfcMHv1qL8qcFqpVKuDeaQMRGaTHyz8ccnlOktE/Aul9gnF/o9cj79UVc4TNJuDtjceQXVSDY0XV2JVbLj+n16hx6Yg4XDo8juVhPOD+z3ZhReZpnJcejQ8a9Wj75LeTclbW/RcMxN3TBjT7OluOFuOrzNMtbnDpCI0auHpMIsYk8R7Cm3nLugT1DmarDbtzy7FmXz525ZYju7gGZbUmt9lYLYkP9cM/pg/EFaMSumeg1KUY0KA2YUCjd/vX2iN4be1h+evmggTecOHwyIo9WLZdXKAY3S8My28fz90yHrY7txz5lfU4WliNN34+6nb3Q3PiQoxI6xOEuFA/PDJrEPQaNXQaVbv/TaXmgevste8vGByD9/4ypl2vQZ3XeI44XV6H2z/6HXtPV8jfc05SOPrHBOLRWYMQoNfI/9ZWm4Alm3OwctfpJrWsJSoVMD4lAjdOSEJkoJ4BKw96cU0W3tpwDANjArH6nsnQtCP7RhAEvPLjYbyxvmN1jxfOOQtXjEqArotLgvzzuwNYvCkHeo0a6x+cwuae3aQnryVKqhvw+4kyCADWHSzAysw8mKxi9pheq8ZNGUkY1TcMYf56nJPM+cTbWaw2/LC/AM9+f6DF3dnxoX547KJB6BcR0GK5MfJO3TFH7MotR0FlPXQaFcanRDI7x4OOFlbh/Fd/gU6jwu4F0+VeR9lF1TjvlY0AxPn5j8cv6HCTd/J93rAuQb1brcmCH/bn4+CZKlTbm7+rVYBGpYJarbL/XyxRlhjuj9H9wjAyMZQlCXsRBjSoTRjQ6P1yimsw9eUN8tdD4oJxx5RUl++xWqzIzMzEyJEjoWlDk7zoIGOXLRDYbAJu/nAHNhwSa+RGBOjx6W3jMCDGfTYJeVZhVT1eWJWFKnupoMa255Sios59OYAgoxaPzhqEIKMWGpUK41MjEOrf/I7Z/Ip6XL/4NxwtrAYg7sb8+JaxDHR5QHMXDeuzCnHT0h1Nvj88QI/HLhqEA3mVeH9TTpPnLxgcAz+dBg/OSENiOBv1epOKWjMmvfgzKusteOWq4Zgzum07lX45XIS5S7a77Kj8159GtNiLo6S6AU99ewDf7HbtkTJpQCT+dHZfjO4Xhj4hxg59DkAMsNz1SaZcc/2Wicl4/OLBHX49ahkXIagrHC2swqK1R+TyhioAc0YnsASED+Ac4dsEQcDkl9Yjt7QOM4bE4NnLz8K6gwV4+EsxM8NPp8Hm+ecxW45axHmCiFrDgAa1CQMavuGPk2W44f3fUGNq+w771qT3CcLALgg6bMsuQWFVAwBgWEIIvrxjQpfvzqWeY7UJ+OlAPqrqLdhwqMhtw05nlw6PQ1SQAQ/OSINRp8GvR4rw5e+nYLYJ+H6P42enpEXhgxvP7lCvBuq8li4aymtNWH+oED9nFcnNX91J7xOEO6ak4oLBMfKuPfJOb284hoVrspAQ5od1/zgXhhYC3XUmK+7+NBM/HSiQHzsnKRxvXDcS0cFtC0ZkF1XjxiXbkVta1+S5G8f3w0MXpre7pEzj7K7UqACsumdSi5+FOoeLEETUEs4Rvu/jbSfw2Mp9bp/78b7JXXLvSL6N8wQRtcbbAhpc2SDqRqP6hmHvkzPwn1+yseFQYZPnBUFAaWkpwsPDW939vvNEGaw2AVn5VcjKr+qyMU5Lj8biRvVWqffRqFW4cGgsAOCqMYl42WSFyWrDHyfK8MHmHJgsNjRYbHLNY2ln9uJNOTBo1S4NpyUPTB+Iu85rvtYueVaovx6Xj0zA5SMT8OKcYViXVYBl20/CYm/GG+KnwxOXDEZCGDMxeou5E5KwZHMOTpXV4bnvD+Kpy4Y2+R6bTcA/vtiNrzJPy4+pVcCHN5+DSQPaV7s8JSoQvzw4FVUNFiz66Qj2na6Qe/h8uPUEPtx6AkadGkFGHR6+MB3RQYYWX6+kpgEPfrEHFnu6yNjkcHx62zhmdxEREXWja85OxLbsEnzntClpSFwwnr5sKIMZRETkkxjQIOpmarUKd0xJbVJuCnCOcJ7daoTTZLHhq8xTqG7oumyP6CADLh4W22WvR97DT6+BHzSYmh6NqenR8uN7TpVjx/EybM8pwQ/7xZ3dUjDDoFXjH9MHQqtW49y0KKRGuW8+Tt7HT6/BxcPicPGwOE8PhTrBT6/B3dMG4LGV+/Dh1hPYc7oCY/qF4dbJKYgOMiK3tBZzl2zHsaIa+WeuGBmPZy8/q8P1y1UqFYKNYvALAI4WVmPR2sPyoki92YZ6cwMe+GJ3u153aloUFt94NoMZRERE3UynUeON60bh+nEl2J9XibSYIEwcEOnpYREREXUbBjSIegm9Vo1rzu7r6WFQLzcsIRTDEkJxy8RklNaYUOPUkyM2xMimXEQeds3ZifhgUw6yi2uQebIcmSfL8d6vOYgOMshlAgGxmftbfx6FsC6uid0/OhBvXDcK/7zMhOoGCw6eqcRbG465zeJyx6BVY955/TFtUEyXjouIiIhaNi4lAuNSIjw9DCIiom7HgAYRkUKFB+jZIJDIy+g0aqy+dxI+3nYS+09XYIW9tJRzMOPBGWm4c0pqt2Y/hAXoERagR2K4P6azKTARERERERF5CQY0iIiIiLyIQavBLROTAQDzZ6WjyCmY0SfYiIjAlntZEBEREREREfkqBjSIiIiIvFR0kBHRQUZPD4OIiIiIiIjIK7BYOhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHX03p6AOSeIAgAgMrKSg+PhLqT2WxGbW0tKisrodPpPD0cIvIynCOIqDWcJ4ioJZwjiKg1nCeIqDXtmSektWxpbbs7MKDhpaqqqgAAiYmJHh4JEREREREREREREVHbVFVVISQkpFteWyV0Z7iEOsxmsyEvLw9BQUFQqVSeHg51k8rKSiQmJiI3NxfBwcGeHg4ReRnOEUTUGs4TRNQSzhFE1BrOE0TUmvbME4IgoKqqCnFxcVCru6fbBTM0vJRarUZCQoKnh0E9JDg4mBcORNQszhFE1BrOE0TUEs4RRNQazhNE1Jq2zhPdlZkhYVNwIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg8iDDAYDFixYAIPB4OmhEJEX4hxBRK3hPEFELeEcQUSt4TxBRK3xtnmCTcGJiIiIiIiIiIiIiMjrMUODiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABlELSkpK8P777+Pyyy9H//794efnh5CQEEycOBGLFy+GzWZz+3NbtmzBrFmzEB4eDj8/PwwbNgyLFi2C1Wpt8r3l5eV46aWX8Oc//xmDBw+GVquFSqXC2rVrWxyb1WrFa6+9hmHDhsHPzw/h4eGYNWsWtmzZ0iWfnYjaxhvnCUEQsGbNGsybNw8jRoxAWFgYjEYj0tLScO+996KgoKBL/w6IqGXeOE+4U1xcjNjYWKhUKkycOLHDn5eI2sfb54j8/Hzcd999SEtLg5+fH8LCwjBq1CjMnz+/05+diNrGm+eJnJwc3H777UhPT4e/vz9iYmIwfvx4vPvuuzCZTF3y+YmodT0xT+zatQtPPvkkMjIyEBsbC71ej/j4eFx77bX4448/mh1bl69hCkTUrLffflsAIMTGxgrXXXedMH/+fOGmm24SQkJCBADCnDlzBJvN5vIzK1euFDQajRAQECDcfPPNwgMPPCCkpaUJAIQrr7yyyXtkZmYKAAQAQkJCghATEyMAEH766admx2Wz2YQrr7xSACCkpaUJDzzwgHDzzTcLAQEBgkajEVauXNnlfxdE5J43zhN1dXUCAEGv1wvnn3++8I9//EO49957hWHDhgkAhJiYGOHw4cPd8vdBRE154zzhzhVXXCEEBgYKAISMjIxOf24iahtvniM2bdokhIaGCnq9Xpg9e7bw8MMPC3fffbcwa9YsoV+/fl3510BELfDWeWL79u1CQECAoFarhVmzZgkPPfSQcPvttwvx8fECAGH69OlNxkVE3aMn5omxY8cKAITRo0cLd955p/DQQw8J06dPFwAIWq1W+PLLL5v8THesYTKgQdSCdevWCd98841gtVpdHj9z5oyQmJgoABCWL18uP15RUSFERUUJer1e2LFjh/x4XV2dMH78eAGAsGzZMpfXKi0tFdauXSuUlJQIgiAIN954Y6sXDZ988okAQJgwYYJQV1cnP759+3ZBr9cLUVFRQmVlZac+OxG1jTfOEyaTSXjmmWeE0tJSl8etVqvwt7/9TQAgXHzxxZ363ETUdt44TzT24YcfCgCEt956iwENoh7mrXPEmTNnhIiICKFfv37CoUOHmjxvMpk69HmJqP28dZ6YNWuWAEBYunSpy+PV1dXC4MGDBQDCxo0bO/y5iajtemKeeP3114UjR440ee+PP/5YACBEREQIDQ0NLs91xxomAxpEHfTss88KAIS77rpLfmzx4sUCAOEvf/lLk+9ft26dAECYPHlyi6/blouGSZMmCQCEn3/+uclzN9xwgwBA+OCDD9rxaYioO3hynmjO6dOnBQBCYGBgu3+WiLqeN8wTJ06cEEJCQoRbbrlFyMnJYUCDyIt4co6YN2+eAEBYvXp1xz8AEXU7T84T6enpAoAmG6kEwTGHOC+gEpFndNc84WzAgAECAGHnzp0uj3fHGiZ7aBB1kE6nAwBotVr5sZ9//hkAcOGFFzb5/smTJ8Pf3x9btmxBQ0NDh9+3vr4eW7Zsgb+/PyZNmtTk+ZkzZ7qMhYg8x1PzRHvHRESe4+l5QhAEzJ07FyEhIXj11Vc7/XpE1LU8OUcsW7YMYWFhmDFjBg4cOIB///vfWLhwIZYvX47q6upOvTYRdR1PzhNDhgwBAHz//fcuj9fW1uLnn3+Gv78/xo8f36n3IKLO64l5wt17dNcaJgMaRB1gsVjw3//+F4DrL/6hQ4cAAAMHDmzyM1qtFsnJybBYLMjOzu7wex87dgxWqxUpKSluFyQHDBgAADh8+HCH34OIOs+T80RLPvjggyZjIiLP8IZ5YtGiRdiwYQMWL16M4ODgTr8eEXUdT84ROTk5KC4uRv/+/XHfffdhyJAhuPvuuzF//nxcddVVSEpKwqpVqzr8+kTUNTx9LfHMM88gNjYWc+fOxaWXXor58+fjzjvvRHp6OkpLS7F8+XLExcV16j2IqHN6Yp7Ytm0bDhw4gPj4eAwdOlR+vLvWMBnQIOqA+fPnY9++fZg1axZmzJghP15RUQEACAkJcftz0uPl5eUdfu+eeA8i6jxPzhPN2bFjB5566ikEBQXhmWee6fLXJ6L28fQ8ceDAATz66KO4/fbbcf7553fqtYio63lyjigsLAQA/PHHH3j33XfxxhtvoLCwEHl5eXjxxRdRUVGBOXPm4ODBgx1+DyLqPE9fS6Snp2PHjh2YMGECvv32WyxcuBBvv/028vPzcf3112PcuHGden0i6rzunidKS0vxl7/8BQDw2muvQaPRdPl7NMaABlE7vf7663jllVeQnp6Ojz76yNPDISIv5I3zxOHDh3HJJZfAbDbj448/RmpqqqeHRKRonp4nzGYzbrjhBsTGxuLFF1/s8fcnopZ5eo6w2WwAAKvViieeeAJ///vfERUVhdjYWDz44IO4++67UV9fj0WLFvX42IhI5Ol5AgAyMzMxYcIE1NXV4ddff0VVVRVyc3Px9NNP49VXX8XYsWPlBU0i6nndPU/U1NTgsssuw5EjR/DQQw/hqquu6vL3cIcBDaJ2eOONN3DPPfdg8ODBWL9+PcLDw12elyKLzZ2wpcdDQ0M7PIaeeA8i6jhvmCcaO3z4MKZOnYrS0lJ8+umnuPTSS7vstYmo/bxhnnj++eeRmZmJJUuWIDAwsMOvQ0RdzxvmCOefvfzyy5s8Lz22ffv2Dr8HEXWcN8wTFosFV199NYqKivDtt99i4sSJCAwMREJCAubPn4958+bhyJEjeO211zr8HkTUcd09T9TU1OCiiy7Cpk2bcP/992PhwoVNvqe75iIGNIjaaNGiRZg3bx6GDh2K9evXo0+fPk2+Jy0tDYD72m8WiwU5OTnQarVISUnp8DhSU1Oh0WiQnZ0Ni8XS5PkjR44AcF8Dj4i6l7fME84OHjyIKVOmoLi4GF988QXmzJnTJa9LRB3jLfPEH3/8AUEQMGXKFKhUKvm/5ORkAMDmzZuhUqm4QYKoh3nLHJGamirXunY3D4SFhQEA6urqOvweRNQx3jJPZGVl4ejRoxg0aJDbMUydOhUA8Pvvv3f4PYioY7p7nqiqqsLMmTOxceNGPPTQQ3jllVfcjqO71jAZ0CBqg4ULF+K+++7DiBEjsH79ekRHR7v9vvPOOw8AsGbNmibP/fLLL6itrcWECRNgMBg6PBaj0YgJEyagtrYWv/76a5PnV69e7TIWIuoZ3jRPSPbu3YspU6agtLQUK1aswGWXXdbp1ySijvOmeeKCCy7ALbfc0uS/a665BgAQExODW265Ra6HS0Tdz5vmCL1ej0mTJgEA9u3b1+R56TEpCEpEPcOb5omGhgYAQHFxsdvni4qKAIjzCRH1nO6eJyoqKjB9+nT8+uuv+L//+z+3mRmSblvDFIioRU8//bQAQBg9erRQUlLS4vdWVFQIkZGRgl6vF3bs2CE/XldXJ4wfP14AICxbtqzF17jxxhsFAMJPP/3U7Pd88sknAgBhwoQJQl1dnfz49u3bBb1eL0RFRQkVFRVt/IRE1FneOE9kZmYKERERgp+fn7BmzZr2fSAi6nLeOE+4k5OTIwAQMjIy2vVzRNQ53jhHrFixQr7nqK6ulh8vKysThgwZIgAQPvzwwzZ+QiLqLG+bJ+rr64XQ0FABgPDee++5PFdWViakp6cLAIQ333yzjZ+QiDqru+eJ0tJSYcyYMQIA4amnnmrTmLpjDVMlCILQvhAIkXJ8+OGHmDt3LjQaDebNmyfXfnOWlJSEuXPnyl+vXLkSV155JYxGI/70pz8hPDwc33zzDQ4dOoQrr7wSn3/+OVQqlctrPPDAA/Kuhk2bNuHYsWOYPn06YmNjAQCzZ8/G7Nmz5e8XBAFXX301li9fjvT0dFxyySUoKSnBZ599hvr6enz55ZfciU3UQ7xxnigrK0P//v1RWlqKadOmYeLEiW7Hfu+997KcDFEP8MZ5ojnHjx9HcnIyMjIysGnTps59cCJqE2+eI26++WYsWbIEycnJmDlzJqxWK7777jucPn0ac+bMweeffw61moUfiLqbt84TH374IW666SYIgoBp06Zh5MiRKCsrwzfffIOioiKMGzcOGzZs6JLscyJqWU/ME1OnTsWGDRuQmpqK66+/3u04Zs+ejREjRshfd8saZrvCH0QKs2DBAgFAi/+de+65TX5u06ZNwsyZM4XQ0FDBaDQKQ4cOFV599VXBYrG4fZ9+/fq1+B4LFixo8jNms1l49dVXhaFDhwpGo1EIDQ0VZs6cKWzevLmL/xaIqCXeOE9IO6xb+y8nJ6d7/lKIyIU3zhPNYYYGUc/z5jnCZrMJ7733njBmzBjB399f8PPzE0aPHi288cYbgtVq7eK/CSJqjjfPExs3bhQuv/xyoU+fPoJWqxUCAgKEUaNGCc8//7zLbmwi6l49MU+0NkcAEJYsWdLk57p6DZMZGkRERERERERERERE5PWYG0pERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIurVli5dCpVKhaVLl3p6KERERERE1I20nh4AERERERGRRKVStev7lyxZ0k0jISIiIiIib8OABhEREREReY0FCxY0eWzRokWoqKjAPffcg9DQUJfnRowYgeTkZIwbNw6xsbE9NEoiIiIiIvIElSAIgqcHQURERERE1JykpCScOHECOTk5SEpK8vRwiIiIiIjIQ9hDg4iIiIiIerXmemgkJSUhKSkJ1dXVuO+++5CYmAg/Pz+MGDECK1euBABYLBY8++yzGDBgAIxGI1JTU/HGG280+14//PADZs2ahcjISBgMBqSmpuLBBx9EeXl5931AIiIiIiICwJJTRERERETkw8xmMy644AKUlpbisssug8lkwrJlyzBnzhz8+OOPeOutt/Dbb79h5syZMBgM+OKLLzBv3jxERUXhmmuucXmtp556Ck8++STCw8Nx8cUXIzo6Gnv27MHLL7+MVatWYevWrQgODvbQJyUiIiIi8n0MaBARERERkc/Ky8vDqFGjsGHDBhgMBgDADTfcgMmTJ+Oqq65Camoq9u3bJ/fmuP/++5Geno4XXnjBJaCxfv16PPnkkxg/fjxWrVrl0stj6dKluOmmm7BgwQK89tprPfnxiIiIiIgUhSWniIiIiIjIpy1atEgOZgDApEmTkJycjLKyMixcuNAlOJGSkoKMjAzs27cPVqtVfvz1118HALz33ntNGpPPnTsXI0aMwP/+979u/RxERERERErHDA0iIiIiIvJZoaGhSE1NbfJ4XFwccnJyMHr06CbPxcfHw2KxID8/H/Hx8QCArVu3QqfT4YsvvsAXX3zR5GdMJhOKiopQUlKCiIiIrv8gRERERETEgAYREREREfmukJAQt49rtdpmn5eeM5vN8mMlJSWwWCx46qmnWny/6upqBjSIiIiIiLoJAxpEREREREStCAkJgc1mQ2lpqaeHQkRERESkWOyhQURERERE1Ipx48ahrKwM+/fv9/RQiIiIiIgUiwENIiIiIiKiVtx3330AgFtvvRV5eXlNnq+pqcG2bdt6elhERERERIrCklNEREREREStmDZtGl544QU88sgjGDBgAGbNmoXk5GRUV1fjxIkT2LhxIyZOnIg1a9Z4eqhERERERD6LAQ0iIiIiIqI2ePjhh5GRkYHXX38dmzZtwtdff42QkBDEx8fjtttuw3XXXefpIRIRERER+TSVIAiCpwdBRERERERERERERETUEvbQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6/w8xJdYJ2Xl7fwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
@@ -194,9 +194,17 @@
"execution_count": 7,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\users\\sterl\\codes\\mhkit-python\\mhkit\\tidal\\graphics.py:290: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n",
+ " ax.set_yticklabels([f\"{y:.1f} $m/s$\" for y in ax.get_yticks()])\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAALeCAYAAABslti+AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT1/vA8c9NgLA3ishSwL1X3QOt1lFHf1arbZ2d2tpp1WodVavd1g7b2uGqfh11tmqduLeIExEFxQEKsjfJ/f0RiUZwoAiO591XXiV3nHvuTWLy3HPOcxRVVVWEEEIIIYQQQognjKa0KyCEEEIIIYQQQpQGCYiFEEIIIYQQQjyRJCAWQgghhBBCCPFEkoBYCCGEEEIIIcQTSQJiIYQQQgghhBBPJAmIhRBCCCGEEEI8kSQgFkIIIYQQQgjxRJKAWAghhBBCCCHEE0kCYiGEEEIIIYQQTyQJiIUQ4gkyfvx4FEUhJCSktKsiikBRFFq3bl3a1TAzYMAAFEUhOjr6gR6ndevWKIryQI/xsHqSz10IIUqKBMRCCHGP9Ho9M2fOpFWrVri6umJpaUmZMmWoVasWr7zyCitXrizxOs2aNQtFUZg1a1aJH/th8jAGkDfat28fL774In5+fuh0OhwdHQkICODZZ5/liy++ID09vbSr+MCkp6czbdo0goODKVOmDFZWVjg7O9OoUSNGjx7NmTNnSruKj6z8APpubnjl39C48aHVanFzcyM4OJi//vrrnuqQnJzM2LFjqVWrFvb29jg6OlKjRg1ef/11cnNz76lMIYR4kCxKuwJCCPEo0uv1dOnShbVr1+Ls7Eznzp3x9vYmJyeHY8eOMX/+fMLDw+natWtpV1U8ZObNm0f//v1RVZXg4GB69OiBjY0NZ8+eZfv27fzzzz8899xzBAYGlnZVi93u3bvp2bMnFy5cwNvbm06dOuHl5UV6ejqhoaF8/vnnfPnll+zevZt69eqVdnWfCN26daNOnToA5OTkcObMGVauXMnmzZs5fvw4kydPvuuywsPDad++PRcuXKBdu3Z07NiR3NxcoqOjWbRoEV9//TWWlpYP6EyEEOLeSEAshBD3YMGCBaxdu5batWuzZcsWnJyczNZnZGSwZ8+eUqqdeFhlZGQwdOhQFEVh3bp1tG3btsA2O3fuxN3dvRRq92CFh4fToUMH0tLSmDp1Kh988AEWFuY/Q6KiohgxYgQpKSmlVMsnT/fu3RkwYIDZsgMHDtCgQQO++eYbPvnkE6ytre9YTkZGBl27diU1NZUdO3bQuHFjs/V5eXlotdrirLoQQhQL6TIthBD3YOfOnYCx2+HNwTCAra0tbdq0KbA8OzubqVOnUrNmTWxtbXF0dKRFixYsWrSowLYhISEoisL48eMLrYO/vz/+/v6m561bt2bgwIEADBw40KwrZGHjPJcsWUKjRo2wtbXF1dWVF154gQsXLhTY7sCBA7zzzjvUrl0bV1dXrK2tCQoK4oMPPiAxMbHA9jd2216/fj0tWrTA3t4eDw8PBg4cSFJSEgChoaF06dIFFxcX7O3t6dq1a6H1zO8Gmp2dzZgxY6hQoQI6nY6AgAAmTJhATk5OgWMDbNmyxewa3HwdFy1aRMuWLXFycsLGxoaaNWsyZcoUsrOzb3mt09PTGT58OL6+vuh0OgIDA/n8889RVbXAPoU5evQoKSkp1KhRo9BgGKBp06Y4OzsXui4+Pp7XXnuNcuXKodPpqF69On/++Weh2xoMBn7++WcaNmyIvb09dnZ2NGzYkBkzZmAwGApsv3z5cl566SUqVaqEnZ0ddnZ21K9fn+nTpxe6fVG9/fbbpKSkMGLECEaMGFEgGAaoUKECixYtokmTJgXW5eXl8dlnnxEUFIROp8PHx4cRI0aYvf73ei43jof+5ZdfqFmzJtbW1pQtW5bXXnuN5OTkAvvc63tiz5499OzZE09PT6ysrPDx8eH111/n4sWLd3MZS0T9+vVxdXUlKyuL1NTUu9rn559/5tSpU0yZMqVAMAxgYWEh46GFEA8laSEWQoh74ObmBkBERMRd75OTk0OHDh3YsmULVapUYejQoWRkZLBkyRJ69+7NoUOH+Oyzz+65TgMGDMDZ2ZkVK1aYdYMECgRYP/30EytXrqRr1660atWKPXv2sHDhQsLCwjh06BA6nc607cyZM1m2bBmtWrWiXbt2GAwGDhw4wDfffMOaNWvYs2cPDg4OBeqzcuVK/vnnH7p06cIbb7zBzp07mTVrFtHR0UyZMoW2bdvSokULBg8ezJEjR1i1ahVnzpzh8OHDaDQF79f26tWLffv20bNnTywtLVmxYgXjx49n//79rFy5EkVRqFOnDuPGjWPChAn4+fmZtXzdOKb4448/ZsqUKbi7u9O3b1/s7e1Zs2YNH3/8Mf/99x/r1q3DysrK7Pi5ubl06NCBixcv0rFjRywsLFi+fDkjR44kKyuLcePG3fE1yn/fXLx4kfT0dOzs7O64T76kpCSaNWuGlZUVPXv2JDs7m8WLFzNo0CA0Gg39+/c32/7ll19m/vz5+Pj48Morr6AoCsuWLWPIkCFs3769wBjRkSNHotFoeOqppyhfvjzJycls2rSJd955h3379jF37ty7ruvNoqKi2LBhA9bW1nz00Ud33P7G91++vn37sm3bNjp27IijoyOrV6/miy++4PLlywVuCtzruXz00Uf8999/PPvss7Rv357Nmzczc+ZMIiMj2bRpU4Hti/qe+OOPP3jttdfQ6XR07doVHx8fTp06xW+//caqVavYvXs3vr6+d7w+D9rBgwe5evUqfn5+eHh43NU+8+fPR1EUXnjhBaKjo1mzZg1JSUn4+vryzDPPmN77Qgjx0FGFEEIU2cGDB1VLS0tVURT1pZdeUv/++281Ojr6tvt89tlnKqB27NhRzc3NNS2Pi4tT/fz8VEDdsWOHafnmzZtVQB03blyh5fn5+al+fn5my/78808VUP/8889C9xk3bpwKqA4ODurhw4fN1vXp00cF1IULF5otj46OVvPy8gqU9dtvv6mAOnXq1ELroNVq1ZCQENNyvV6vtmvXTgVUFxcXdd68eWb7DRo0SAXU5cuXmy1v1aqVCqhBQUHq1atXTcszMzPVxo0bq4A6Z84cs30AtVWrVoVeg507d6qA6uPjo166dMm0PDc3V+3SpYsKqJMnTzbbJ//16dixo5qRkWFaHhcXpzo5OalOTk5qTk5Ooce7kcFgUBs2bKgCau3atdUffvhBPXjwoJqdnX3b/QAVUAcPHmz2Whw7dkzVarVq1apVzbafP3++Cqh169ZVU1NTTcvT0tLU+vXrq4D6119/me0TGRlZ4Lh6vV7t16+fCqi7d+82W9e/f38VUKOiou543nPmzFEBtVmzZnfc9mb5r3+9evXUhIQEs3MJCAhQNRqN2et4P+fi4+Ojnj171rQ8NzdXbdGihQqoe/bsMdunqO+JkydPqpaWlmpAQIB6/vx5s7I2bNigajQatXv37oWe+93K337z5s133Db/nLt166aOGzdOHTdunDpq1Ci1T58+qp2dnert7a1u3br1ro6bk5OjWlhYqGXKlFG/+OIL1cLCwvSeBVQ7Ozv1999/v+vzEEKIkiQBsRBC3KOFCxeqnp6eZj/8XF1d1e7du6srV64ssH1gYKCqKIp64sSJAuvyg8uBAwealj3IgHj06NEF1m3atEkF1A8++ODWJ30Dg8GgOjo6qm3atCm0Di+99FKBfWbPnq0CaosWLQqsCwkJUQF1/PjxZsvzf+TfHPSq6vVr1Lp1a7PltwuIX3nlFRVQf/nllwLrTp48qWo0GrVChQpmy/ODn1OnThXYJz/IOnLkSKHHu9nZs2fV1q1bm71vLC0t1UaNGqlTp05Vk5OTC+wDqLa2toWua9mypQqYBb75Nx7++++/Attv2LBBBQq8brdy4MABFVAnTJhgtrwoAfHnn3+uAmrv3r3v6pg3yn/9169fX2Dd2LFjVUBdtWrVXZV1p3OZOXNmgX3++OMPFVC///57s+VFfU+8++67KqD+888/hdate/fuqlarVVNSUkzLSiIgLuxhY2OjfvTRR2piYuJdHTc2NtZ0E0yr1aoTJkxQY2Ji1Pj4ePW3335T7e3tVUVR1I0bN971uQghREmRLtNCCHGPevXqRY8ePdi8eTPbt28nNDSU7du3s3z5cpYvX06/fv1MY1pTU1OJjIykfPnyVKlSpUBZwcHBgHFcbUlo0KBBgWU+Pj4ABcYF5+bm8ssvv/C///2P48ePk5ycbDYOs7Bxx7c6hpeXF2Aco3iz8uXLA3D+/PlCy2vVqlWBZc2bN0er1Rbpuh08eBC4fs1vVKlSJby9vYmKiiI5OdlsfLiTk1OhmZ9vdd1uxdfXl82bN3PixAnWr1/P/v372bt3r+nx008/ERISQoUKFcz2CwoKwtHR8bbHt7e3N52jRqMpdOqpVq1aFXrNEhIS+PLLL1m9ejVnzpwpMPXTrV7nklKU9+y9nktRjgFFe0/s2rULMI5t37dvX4F9Ll++jF6vJyIiotDPx4Py559/moYW6PV6zp8/z+zZsxk/fjwrVqxg//79pvfVreT/e6DX63n99dcZO3asad3gwYPJyMhg2LBhfP7554V+7oQQojRJQCyEEPfB0tKS9u3b0759e8D4g/Dvv/9m0KBBzJkzhx49etC9e3dTUp5y5coVWk7+8vyEUw9aYUmb8pMc6fV6s+W9e/dm2bJlVKxYkW7duuHp6Wka4zlt2rRCk1ABhSYbyz/G7dbdaq7SsmXLFrqPu7s7ly9fLnSfwtzNa3Hu3DmSkpLM6nmrRFe3um53UrVqVapWrWp6Hh4ezqBBg9i1axfvvfcey5cvN9u+KMdPTk7G1dW1wDjo/O1vvmZJSUk0bNiQqKgoGjVqRL9+/XB1dcXCwoKkpCS+++67W77OdyP/Wt9PUH2379n7OZeifC5utf2t9klISADgyy+/LHSffGlpabdd/yBptVr8/PwYO3YsERER/PXXX3z//feMGjXqtvvd+Dnp0aNHgfU9evRg2LBh7N27t9jrLIQQ90sCYiGEKEZarZZevXpx5MgRJk2axKZNm+jevbvpB2NsbGyh+126dAkw/2GZn1gqLy+v0H2SkpJu+YO8uOzfv59ly5bRrl071qxZY5YZ2GAw8MUXXzzQ498oLi6uQMKhvLw84uPjC205vZUbX4uAgIAC6wt7LUpClSpVmDt3LoGBgYUmcCoKJycnrl69Sm5uboF5Xwu7Zr/99htRUVGMGzeuQDbuXbt28d13391XfZo3bw4Y3083t7wXtwd9Lvcq/5yTk5OL9H4tLU899RR//fXXXQWxtra2+Pj4EBMTU+i/SS4uLgBkZmYWdzWFEOK+ybRLQgjxAORnXVavTb3i4OBAQEAAFy5c4NSpUwW237x5MwD16tUzLcv/ERkTE1Ng+8jIyEKngsmf57OorZW3EhkZCUDXrl0LTJOzd+/eEv2Bu2XLlgLLtm/fjl6vp27dumbLNRrNLa9B/rYhISEF1kVGRnL+/HkqVKjwwG82FObm9829qlu3LgaDga1btxZYt3XrVvR6vdl7Lf91/r//+78C2xd23YuqQoUKtGvXjqysrDu2kAL31Rr9oM/lXuVPRbRt27ZSq0NR5Hf3vtspt9q1awcYpxa7Wf6ym4cBCCHEw0ACYiGEuAcLFixg/fr1hf5YjI2NZebMmQC0bNnStHzQoEGoqsrw4cPNgrX4+HgmTpxo2iZflSpVcHR0ZMWKFWbdWzMzMxk2bFih9cqf2uTcuXP3cXbX5c9zfHPwePnyZYYOHVosx7hbEydONBuTmZWVZerKmT//cj43N7dCbyTA9Ws8adIkrly5Ylqu1+v58MMPMRgMDB48uLirDxinH5o+fXqhNzNUVWXy5MmA+fvmXuSf46hRo8jIyDAtz8jIYOTIkQBm53ir1zk0NJQpU6bcV13yTZ8+HUdHR6ZMmcLXX39daM+Hc+fO8cILL5jG296LkjiXe/HWW29haWnJe++9V+h0bTk5OQ9NsJyYmGiayqqwceiFGTp0KBqNhqlTp5p9rrKyshg9ejQAffr0Kfa6CiHE/ZIu00IIcQ/27NnDd999h6enJ82bNze1fERFRfHvv/+SmZlJt27d6Nmzp2mfDz/8kDVr1rBixQpq165Np06dyMjIYPHixVy+fJmPPvrI1LUUjOOT33nnHSZOnEjdunXp0aMHeXl5rF+/Hi8vL1OCqhs1adIEW1tbpk2bRkJCAp6engC8/fbb99RNtWHDhjRr1oylS5fStGlTmjdvTlxcHGvWrKFy5cqF1uFBqVq1KtWrVzebh/j06dN07tyZl19+2Wzbtm3b8r///Y9nn32WevXqYWlpScuWLWnZsiVNmzblo48+4osvvqBGjRr07NkTOzs71qxZw9GjR2nevDnDhw9/IOeQnJzMO++8w/Dhw2nWrBk1atTAwcGBy5cvs2nTJs6cOUOZMmX4+uuv7+s4ffv2ZcWKFSxatIjq1avTvXt3FEVh+fLlREVF0bt3b1588UXT9v369ePLL7/k3XffZfPmzQQFBXHq1Cn++ecfnnvuORYuXHi/p07VqlX577//6NmzJx9++CHfffcdbdu2xcvLi/T0dMLCwtixYweKojBixIh7Pk5JnMu9qFKlCn/88QeDBg2ievXqPPPMM1SqVInc3FzOnTvHtm3b8PDwIDw8/L6PNXXqVGbNmlXoumHDhpn1Dli+fDnR0dHA9aRaq1atIiEhgYYNG/LGG2/c1THr16/PuHHjGDduHDVq1KBr165YW1vz33//cerUKdPnTgghHjqlm+RaCCEeTefOnVN/+OEHtXv37mqlSpVUBwcH1dLSUvX09FQ7duyozp07V9Xr9QX2y8zMVCdPnqxWr15dtba2Vu3t7dVmzZqp8+fPL/Q4BoNBnTJlilqxYkXV0tJS9fHxUYcPH66mp6cXOu2SqqrqmjVr1MaNG6t2dnamaVTyp8bJn3apsGlZoqKiVEDt37+/2fKEhAT1zTffVP38/FSdTqdWrFhRHTVq1C3rcLupn243ldStjp8/lUxWVpY6evRo1d/fX7WyslIrVKigjh8/Xs3KyipQVlxcnNqnTx+1TJkyqkajKfSYCxYsUJs1a6ba29urOp1OrVatmjpp0iQ1MzOzQHm3utaqevtrerOsrCx12bJl6ptvvqnWrVtXLVOmjGphYaE6Ojqq9erVU0ePHq1evny5wH7cZhqpW01/pNfr1R9//FGtX7++amNjo9rY2Kj16tVTf/jhh0Lfm8eOHVOfffZZ1cPDQ7W1tVXr1aunzpw585avS1GmXbpRamqq+s0336itW7dWPTw8zM5/5MiR6pkzZ8y2v93UQ7d6rxXnudzqPXuv74nDhw+r/fv3V319fVUrKyvVxcVFrV69uvraa68VmJboXqddut1j2bJlZud888PBwUFt2LCh+sUXXxT6WbiTv//+W23RooXq4OBg9rkq7HMqhBAPA0VV73OgkhBCCPEAtW7dmi1bttz3uFohhBBCiJvJGGIhhBBCCCGEEE8kCYiFEEIIIYQQQjyRJCAWQgghhBBCCPFEkjHEQgghhBBCCCGeSNJCLIQQQgghhBDiiSQBsRBCCCGEEEKIJ5IExEIIIYQQQgghnkgSEAshhBBCCCGEeCJJQCyEEEIIIYQQ4okkAbEQQgghhBBCiCeSBMRCCCGEEEIIIZ5IEhALIYQQQgghhHgiSUAshBBCCCGEEOKJJAGxEEIIIYQQQognkgTEQgghhBBCCCGeSBIQCyGEEEIIIYR4IklALIQQQgghhBDiiSQBsRBCCCGEEEKIJ5IExEIIIcQjSlEUFEXBz8+PrKysQrfx9/dHURTy8vJKuHZCCCHEw08CYiGEEOIRd+7cOaZNm1ba1RBCCCEeOYqqqmppV0IIIYQQRacoCi4uLiiKgl6vJzIyEnd3d7Nt/P39OXv2LLm5uVhYWJRSTYUQQoiHk7QQCyGEEI8wW1tbPvnkE5KTk5kwYUJpV0cIIYR4pEhALIQQQjzihg4dSkBAAL/88gunTp0q7eoIIYQQjwwJiIUQQohHnKWlJVOnTiU3N5cRI0aUdnWEEEKIR4YExEIIIcRjoGfPnjRp0oRly5axffv20q6OEEII8UiQgFgIIYR4THz99dcAfPjhh6VcEyGEEOLRIAGxEEII8Zho0qQJPXv2ZM+ePSxcuLC0qyOEEEI89CQgFkIIIR4jU6ZMwdLSklGjRpGTk1Pa1RFCCCEeahIQCyGEEI+RwMBAhgwZQlRUFN9//31pV0cIIYR4qElALIQQQtyH8ePHoygKISEhd71P69atURTlgdVp7NixODs7M3nyZNLS0h7YcYQQQohHnQTEQgghxA0URbnjoyjBb2lwdXXl448/JjExkYSEhNKujhBCCPHQsijtCgghhBAPo3Hjxt1ynb+/f8lV5B4NGzaMn376iejo6NKuihBCCPHQkoBYCCGEKMT48eNLuwp3pKrqLdfpdDqioqJKsDZCCCHEo0e6TAshhBDFZPbs2dStWxcbGxvKlCnDoEGDiI2NveX22dnZjBkzhgoVKqDT6QgICGDChAmSHVoIIYQoIRIQCyGEEMXg22+/5Y033qB27dq8++67VK5cmT///JOmTZty5cqVQvfp1asXf/zxB88++yxvvfUWiqIwfvx4/u///u+2rb9CCCGEKB7SZVoIIYQoxK26TFtbWzNy5MgCy9esWcOePXuoW7euadl7773HtGnTGDlyJL///nuBfU6cOMGxY8dwcXEBYPLkybRp04Z//vmHefPm8fLLLxfPyQghhBCiUIoqt6CFEEIIkztNh+Tk5ERSUpLp+fjx45kwYQKDBg0qEPQmJyfj5+dHdnY2SUlJ6HQ6wDjt0pYtW5gzZ06BoDckJIQ2bdrQunVrNm/eXDwnJYQQQohCSZdpIYQQohCqqhb6uDEYvlGrVq0KLHNycqJOnTpkZWVx4sSJu9qnefPmaLVaQkND7/schBBCCHF7EhALIYQQxaBs2bKFLvf09ASMrcV3s4+FhQXu7u6kpKQUbwWFEEIIUYAExEIIIUQxiIuLK3R5fpZpJyenu9onLy+P+Ph4HB0di7eCQgghhChAAmIhhBCiGGzZsqXAsuTkZA4dOoS1tTVVq1a9q322b9+OXq83S84lhBBCiAdDAmIhhBCiGMydO7fAuN/x48eTnJxMnz59TAm1bjRx4kQSExNNz7Oyshg1ahQAAwcOfLAVFkIIIYRMuySEEEIU5lbTLgF0796dOnXqmC3r2LEjzZo1o1evXpQrV47t27ezfft2/P39mTp1aqHlVK1alerVq9OzZ08sLS1ZsWIFp0+fpnPnzjLlkhBCCFECJCAWQgghCjFhwoRbrvP39y8QEL/33nv06NGDadOmsXDhQuzt7RkwYACfffYZZcqUKbScRYsWMXHiRP766y8uXrxI+fLlGT9+PCNHjrzj9E9CCCGEuH8yD7EQQgghhBBCiCeStBALIYQQJSw9PZ2EhARSU1NJTU0lLS3N7P/5f6ekpJj+n/93amoqmZmZGAwG00Ov16OqKgaDwZTVuly5ciiKgkajMT20Wi1arRZ7e3scHBxMD0dHR9PfN67L/zv//46Ojri7u2NhIT8fhBDidrKyssjJySmVY1tZWWFtbV0qx34USQuxEEIIUQxUVSU1NZWLFy9y6dIl0+PChQtcvHjRtDw2Npa0tDQURcHW1tbsYWdnZ/a3nZ2dKSB1dHQ0/d/Ozs4U3CqKYvpbo9Fw9OhRkpKSaNy4MRqNBr1eT15enil4zsnJMQXZNwbf+Y+MjAzTIz093ex5dnY2Go0Gd3d3PD09KVeuHOXLl8fLywsvLy/KlStnenh6emJlZVXaL4sQQpS4rKwsKvjZE3tZXyrH9/T0JCoqSoLiuyQBsRBCCHEXVFUlLi6OiIgIIiIiOHnyJFFRUaZANy4ujszMTKytrXF3d8fV1RVHR0d8fX0pV64cXl5eeHt74+vri5+fH2XKlEGr1RZ7PXNzc1m9ejWdOnXC0tKyWMvOysoiJiaGs2fPcu7cOS5cuGA698uXLxMfH098fDxXr17FYDDg6upqCpy9vb0JCgqiUqVKVKpUiaCgIGxtbYu1fkII8TBISUnBycmJswf8cXQo2Ul9UlIN+NWPJjk5Weazv0vS50kIIYS4QXJyMqdOnTIFvuHh4Zw8eZLIyEjS0tLw9PTEz88Pf39/AgICaNmypSnQ9ff3x9XVFY1GQ0pKCtu2baNz586lfUrFxtramqCgIIKCgm67XU5ODjExMabH+fPnOX/+PDt27GD+/PmcO3eOtLQ0vLy8CAoKokqVKlSuXNkULPv7+xd7MC+EECXN3kHB3qFkEyQakISMRSUBsRBCiCdSXFwcBw4c4OjRo5w8eZLw8HBOnTrFlStXcHZ2NrXkBgYGEhwcTPXq1alZs+Zd33HX6XTk5eWRl5f3xI25tbKyIiAggICAgELXGwwGYmJiOHLkCMePH+fkyZOsWrWKs2fPEhMTg6qq+Pn5UblyZSpXrkyVKlWoW7cuNWvWlC6AQgghitWT9Q0thBDiiRQbG8uBAwc4cOAA+/bt48CBA1y6dAlfX18qVapEQEAAPXv2pFq1atSqVYty5crd9zGtrKxQFIXs7OwnLiC+E41Gg5+fH35+fnTp0sVsXV5eHidPnuTo0aMcP36cU6dOsWPHDsLDw8nIyKBq1ao0bNiQBg0aUK9ePWrXri1BshDioaRXDehLeHCqXjWU7AEfA/INLYQQ4rFy6dKlAsFvXFwcfn5+VK1alTp16vDKK6/QvHlz3NzcHlg9FEXB2tqarKws7OzsHthxHjcWFhZUr16d6tWrmy03GAycOHGCHTt2sG/fPubMmcOoUaNIS0ujSpUqpiC5fv361K5dGxsbm1I6g5KxZMkStmzZwqFDhwgLCyM1NZUXX3yRefPm3XfZ8+bN4+WXXwZg5syZvPLKK/dd5v2Ii4vDy8uLIUOG8P3335dqXYQQjx8JiIUQQjyyMjIy2LlzJ9u3bzcFv5cvX8bPz49q1apRp04dXnvtNZo3b46rq2uJ10+n05GVlVXix30caTQaU6D82muvAcYgOSIiwvT6//XXX4wZM4bU1FQqV65Mw4YNeeqpp2jVqhVVq1ZFUR6fsXWTJk0iLCwMe3t7vL29CQ8PL5ZyY2JieOutt7C3tyctLa1YyrxfK1aswGAw8Nxzz5V2VYQQjyEJiIUQQjwy8gPgzZs3s2nTJg4cOICbmxv16tWjXr16DBkyhGbNmuHs7FzaVQWMSaiys7NLuxqPLY1GQ5UqVahSpYqpFdNgMHDq1ClTkDxr1izef/997O3tadWqFcHBwbRu3fqRD5C//fZbvL29CQwMZMuWLbRp0+a+y1RVlYEDB+Lm5sZzzz3HV199VQw1vX/Lli3Dzc2Nli1blnZVhCgSAyoGSrbPdEkf73FQsnnAhRBCiCLIyMhg48aNjBkzhqZNm+Ls7MxLL73E4cOHee655wgNDeXChQv8+++/TJw4kc6dOz80wTBg6jItSo5Go6Fy5coMHjyYn3/+mT179pCYmMjs2bPx8fFhzpw51K9fnzJlyvD8888zY8YMTpw4waM2C2WbNm0ICgoq1qB++vTpbNq0iT///POeu/lv3rwZRVH48MMPOXjwIN27d8fV1RUnJyd69OhBbGwsAMePH6dv376UKVMGJycnunTpwrlz5wqUl5KSwqZNm3j22WcLTFO2bds2nnvuOQICArC2tqZMmTI0atSIUaNG3VPdhRBPJgmIhRBCPDQKC4BffPFFwsLC6NGjBwcPHuTixYusWrWK4cOHU716dTSah/erTLpMPxysra3p1KkT3377Lbt37yYhIYFZs2ZRvnx5Zs2aRd26dR/5APl+nThxgpEjR/LOO+/cV0vswYMHAYiIiKB58+ZotVoGDx6Mr68vy5cvZ9CgQaxatYpGjRqRlpZG//79qVSpEv/++y/9+vUrUN4///xDTk4OPXr0MFv+2Wef0bJlSw4cOEDbtm15//33efbZZ8nOzua///675/oLUZwMpfSfKBrpMi2EEKJUnTx5kpUrV7JixQr27t2Li4sLDRs2pHv37vz6669Uq1btoQ56b8fa2prExMTSroa4ia2tLZ07dzbNEZ2RkcHmzZtZv349f/75J++99x4ODg48/fTTdO/enQ4dOuDk5FTKtX5w8vLyePnll/H19eWzzz67r7LyA+K9e/eye/duatWqBcDYsWPx9fVl3bp1hIaGsn79epo0aQIY560ODAxk69atZGVlmWUNX7ZsGXZ2drRv3960LC4ujrFjx9K8eXM2btyIlZWVWR3i4+Pv6xyEEE8WCYiFEEKUqLy8PHbs2MHKlStZvnw558+fp2HDhjzzzDPMmDHjoW/1LQppIX40FBYgb9iwgVWrVvHxxx/z0ksv0aJFC7p3786zzz6Lv79/6Va4mH366aeEhoayffv2+87OnR8Qz5o1yxQMAzg4OODv78+hQ4f48ssvTcEwGKcoq1y5MjExMaSnp5sC4qysLNauXUvHjh3NguTw8HD0ej2VKlUqEAwDuLu739c5CCGeLBIQCyGEeOBSUlJYu3YtK1as4N9//0Wj0dCyZUtGjx7Nc88991CN+y1OklTr0WRra0vXrl3p2rUrAEeOHGHhwoXMnTuX999/n0qVKtG9e3e6detGgwYNHukbOHv27OGzzz7jgw8+MAtS70V6ejoRERFUrFiRZ555psD6s2fP4urqSu/evQtd5+DgYDYV2vr160lLSyvQXbp69eo4OTnxxx9/cOXKFV588UXat2+Pi4vLfdVfiOKmV1X0JTz8oqSP9zh4dP8FF0II8VCLjo7m+++/p127dri7u/Pxxx9ja2vLwoULuXz5smk84eMaDMP1gNhgkDFdj7KaNWsyadIk9u7dy8WLFxkyZAgHDx6kbdu2lCtXjldeeYVVq1aRkZFR2lUtkry8PPr160elSpWYOHHifZcXFhaGwWCgXbt2BdZFR0eTmJhI69atsbS0NFuXlpZGZGQkderUMVu+dOlSrKysTC33+dzd3dm+fTs9e/Zk48aNvPDCC3h4eNCxY0dTC7UQQtwtCYiFEEIUm8OHDzNmzBhq1KhBUFAQc+fOpXHjxhw4cIDIyEhmzpxJhw4dsLB4Mjoo6XQ6AGklfox4eHgwdOhQ1qxZQ3x8PD///DM5OTm8+eabuLq60qVLF37//fdHYux4WloaERERnDhxAmtraxRFMT0mTJgAwKuvvoqiKLz77rt3LC8/GK1fv36BdQcOHLjlutDQUFRVpV69eqZler2eVatWERwcXOj47Ro1arB48WISExNZv349zz33HGvXrqV9+/byeRMPjfxpl0r6IYrmyfhFIoQQ4oE5d+4c8+fPZ86cOURFRdGyZUvefPNNevXqhYeHR2lXr1RpNBqsrKzIzs6+77GZ4uGj0+no0aMHPXr0wGAwsH//fhYvXsy3337Lm2++SadOnXj55Zfp3Lmz2RjYh4VOp2Pw4MGFrjt48CChoaE0b96cypUr31V36vyAuEGDBgXW5QfEha0LDQ0FMAuIt27dSkJCQoHu0jezsrKiXbt2tGvXjhYtWrB9+3bi4uLw9fW9Y32FEAIkIBZCCHEPEhMTWbJkCXPnzmXXrl00atSIN954g379+j3WXaDvhSTWejJoNBoaNWpEo0aN+PLLLzl06BC//fYb7777LoMGDeL555/npZdeomXLlqUy5vj06dPk5uYSEBBg6rJsY2PDb7/9Vuj248ePJzQ0lP79+/PKK6/c1TEOHjyIlZUVNWrUKLDudi3E+YH0jQHxsmXL0Gg0dOvWzWzb0NBQHB0dCQgIMFseGRnJ0aNH8fX1xdvb+67qK8SDZkBFX8ItttJCXHQSEAshhLgrWVlZrF69mjlz5rB69WqCgoL4v//7P+bOnYufn19pV++hJYm1nkx16tThhx9+YPr06axfv57Zs2fTo0cP7Ozs6Nu3Ly+//DI1a9a85/KXL1/O8uXLAYiNjQVg165dDBgwADCOs/3qq69M27dt25azZ88SFRX1QLJkZ2dnc/z4cWrVqlVo5ucDBw7g5+dnljQr38GDB7GxsaFq1aoAqKrK8uXLadKkCWXLljXb9vvvv2fWrFk0btyYBg0aYG9vz5kzZ1i5ciUAf/zxxyOd5EwIUfIkIBZCCHFLBoOBrVu3Mm/ePBYvXoyjoyNdu3Zlz5491K1bt7Sr90iQFuInm0ajoUOHDnTo0IHs7GyWLFnCvHnzaNSoERUrVqR///706dMHHx+fIpV76NAhZs+ebbbszJkznDlzBgA/Pz+zgPhBO3r0KLm5uYW2AJ89e5aEhARatWpVYF12djYnTpygfv36aLVaAPbv309MTEyh45a7detGbm4ue/fuZdasWWRlZeHl5UXfvn0ZMWIEQUFBxX5uQojHm6KqkptbCCGEuePHjzN79mz++usv0tPTeeaZZxgwYABPP/20tL4U0bFjx8jLy6N27dolcrzc3FxWr15Np06dCmTzFQ+Pq1evMmfOHBYtWsS+ffto2rQp/fr1o1evXjg4OJR29UrVxx9/zJQpUzhz5gwVKlQo7eoIUWQpKSk4OTlxOtwTB4eS/c5MTTUQUCWW5ORkHB0dS/TYjyr5VSOEEAIwttTMnz+f5s2bU7duXcLCwpg6dSqxsbEsWLCADh06SDB8D6TLtCiMq6sr7777Ljt37uTUqVO0aNGCL7/8knLlyvH666+bEk09iZYtW0bt2rUlGBZClAj5ZSOEEE+4U6dO8eGHH+Ll5cWoUaNo1aoV0dHRrF27lpdeesk0dZC4N9bW1tJlWtyWv78/kyZNIjw8nJUrVxIfH0/Tpk1p2LAhf/755yM3v/H9OnHiBIcOHSrtaghx3/SqWioPUTQSEAshxBMoLy+PpUuX0rZtW6pXr86RI0f4448/iIqKYvLkyZQrV660q/jYKOoY4rxcPQdCTnBwazh6veGB1Cn5aho71x4m6sTFB1K+uHfBwcH8/fffxMTE8Oyzz/LZZ59Rrlw53n77bcLDw0u7ekII8diRpFpCCPEEuXz5MjNnzuSnn34CoE+fPsyaNavICX3E3cvvMq2qKoqi3HZbvd7AJy/P4ND2CAAata3O+Fmv3XG/oog9l8A7nb8iJTEdgHe+eIFn+jYttvJF8XB3d2fs2LGMGTOG9evX88MPP1C7dm2aN2/OsGHD6NKliykJlRBCiHsnLcRCCPEE2LdvHy+//DI+Pj6sXLmSyZMnc/bsWb766isJhh8wnU6HwWAgNzf3jttGHo4xBcMAezceIzr8UrHWZ+2CXaSlZJqe//Xt2mItXxSv/CzVq1atIjIyktq1a/P6669ToUIFPv/8cxISEkq7ikKIWzCU0kMUjQTEQgjxmMrLy2PBggU0bNiQ1q1bk5eXx44dO9izZw8DBgzAwkI6CZUECwsLtFrtXXWbtrYtOH9rYcvuh7WtFfkTTCiKUuzliwfHx8eHb775hnPnzvHJJ5+waNEiypcvz6BBgzh27FhpV08IIR5JEhALIcRjJisri59//pmgoCA+/PBDOnXqxLlz51iwYAENGjQo7eo9cRRFuetM036Vy/F/bwSbnvd99xnK+bkXa3269GtOQHVvAHQ2lrz1Wa9iLV88eFZWVrz66qscOHCAzZs3k5ycTL169UxzhAshHg561FJ5iKKR5gEhhHhMpKamMmPGDL7++mscHBx47733eOONN7CykhbA0laUxFqvjOlOzzfboigKTq72xV4Xeydbvvv3A+IvJeHoao+1jbw/HmVNmjTh77//JjIykkmTJtGmTRsaNWrE6NGjadeuXbGOPxdCiMeRtBALIcQj7sqVK4wZMwYfHx/mzZvH559/zsmTJxk2bJgEww+Jos5F7Ozm8ECC4XwajYYy5V0lGH6MBAYGMmvWLM6cOUOtWrV4/vnnadCgAUuXLsVgkFGFQghxKxIQCyHEIyomJoZhw4bh5+fHxo0bmT17NocOHWLAgAGSffYhU9Spl4S4V56enkyfPp3o6GieeeYZ3nzzTapWrcqsWbPuKrGbEKL46NXSeYiikYBYCCEeMeHh4fTv35/AwEBOnDjB6tWr2bVrF926dUOjkX/WH0ZFbSEW4n45OzszefJkoqKiGDx4MOPGjaNChQpMnz6djIyM0q6eEEI8NOSXkxBCPCIOHDjAc889R+3atUlJSWHXrl2sX7+e1q1bl3bVxB3c2EKcmpRBVmZOKddIPClsbW356KOPOH36NJ988gk//fQTPj4+TJo0iaSkpNKunhCPNZl26dEgAbEQQjzkjh07xrPPPkuLFi2wt7fn6NGjLFu2jHr16pV21cRdsra2Jisri2nDF9Crxkh6Vv2I9YskG7AoORYWFrz++uscP36cn376iWXLluHr68ukSZNIT08v7eoJIUSpkYBYCCEeUmfPnqVfv37Ur18fR0dHTp48yZw5cwgKCirtqj22rlxKYsnPm1gzfxc52XnFVq61tTXp6Rn8t2AXAPo8A999tICsDOlGLUqWRqOhd+/eHDhwgLlz5/K///2PihUrMmPGDBljLEQxM6CgL+GHAcksX1QSEAshxEMmPj6e9957jypVqnD16lX279/PX3/9hY+PT2lX7bGWFJ/K252+4o+pq5g+ciGTXv+j2MrW6XSoqgGt5fWvXX2eoViDbiGKqlu3bhw+fJjJkyfz+eefU6VKFRYuXChZqYUQTxQJiIUQ4iGRnp7OxIkTqVixIvv27WP9+vX8888/1KhRo7Sr9kQ4uPUkyQlpqAZjis59m46TmlQ8XUl1Oh2KolCxRjnTsnbPN8LRxa5YyhfiXmk0Gl555RUiIiJ4/fXXGTZsGPXr12f9+vWlXTUhhCgRFqVdASGEeNLl5uYyc+ZMxo8fj6enJ/PmzaNr166lXa0njns5J9PfigLWtjqsbXXFUraiKOh0Okb+3J/IgxextbemXqsqxVK2EMXBysqKjz76iCFDhjBx4kR69uxJ/fr1+eKLL2jQoEFpV0+IR5JBNT5K+piiaKSFWAghSonBYGDBggVUrlyZr776iqlTp3Lo0CEJhktJrSZBvPhuB3TWlji7OzD6l4FYWhXffWOdTgeKgZbP1qNBm2oyRZZ4KNnb2/P5558TGRlJQEAALVu2pGfPnkRERJR21YQQ4oGQb2MhhChhqqry33//Ua9ePd577z3efPNNwsPDGTRokARJpeyl9zuyPOJL5h+YSP2WxduC+zDPRbxr3RE+6fcLX7//FwmxyaVdHfEQ8PDwYObMmRw5cgSAWrVq8dprr3Hx4sVSrpkQj46STqiV/xBFI7+8hBCiBJ08eZL27dvTu3dvOnbsSGRkJMOHD8fKyqq0qyYesPyplx42J8POMfHVP9i/5QSblh1g7IBfC90uJzuXTUv3sW7hbtJTM0u4lqK0BAQEsGTJEnbu3El0dDSBgYF8+umnD+V7WQgh7oUExEIIUQLS0tIYMWIEderUoWzZspw6dYopU6Zgb29f2lUTJUSn0z2UQcTJ0LOoqgoqGPQGzhy/QG6OefZrg8HA2Jdm8OXbc/j2/b94v+s3ZGfmlFKNRWmoV68e69atY9myZSxYsIBq1aqxevXq0q6WEELcNwmIhRDiAVJVlcWLF1O5cmXWrVvH+vXrmTdvHh4eHqVdNVHCHtYu01Xq+qEoCiig0SpUrFa+wNjpi1HxhO08ZXp+LiKW4/vOlHRVxUOgQ4cOHDlyhEGDBtGnTx+6du1KdHR0aVdLiIeSdJl+NEhALIQQD0h4eDjt2rXjzTffZPjw4Rw4cIDmzZuXdrXETfZvPs53Hy1gyYwNBVpGi9P9thDv/O8wk9/4k8UzNhpbdItJpdq+fDJzEA1bV6Xtcw2ZOPu1AtvYO9ug0Zj/yHJyk94NTyoLCwvGjBnD8ePHsbS0pFq1atKNWgjxyFLU4vxWFUIIQVpaGp9++inff/89PXv25Ntvv8Xd3b20qyUKEbo1nI/7/IhGq0E1GOjQpynvfNmHlMR0wkPP4uXnhndA2WI51tWrV9m7dy/PPPOMaVleXh7Z2dlkZ2eTl5d3y8e5U5eIOHIOS50WS50WZw973Ms5mQJjVVVNf+cHJdbW1saWX4zTPuU/tFotlpaWaLVaLCwssLCwICUhg4S4ZDw8XfGuWBYLCwvTektLS6ytrQlZdpCfPl6MXm/gpfc70ufdZxACYN26dbzzzjtkZ2fz/fff07lz59KukhClKiUlBScnJ7Yf9cLeoWTbH9NSDTSvcZHk5GQcHR1L9NiPKpmHWAghikl+9+h3332XsmXLsmHDBpo1a1ba1RK3sT/kBFqtBr3eAMDudUfo9dbTvNv1W1IS01EUheHfvUSb7vWLVG5ubi7Z2dlkZWWZHmlpaWRnZ7Njxw7Tsry8PBRFwcrKCktLS1OAmv/ID0rDD8Rw5WIKuVl55GbrMeSpjP/jtQIBLxh/iIWFhVG3bl20Wi1wPWBWVbXQYHv3xqNYWmuJijhPcqovjq62pvW5ubnk5uaCLQyZ0QGdzhobG2sOHTqEtbU1Op0Oa2tr00On00m29CdM+/btOXLkCF988QV9+/alZcuWTJ8+nQoVKpR21YQQ4o4kIBZCiGJw4sQJhg4dyuHDhxkzZgzDhg2ToOAR4Fe5nCkY1mg1+Ff1YvW8naSlGLMoq6rK3K/XFBoQ5+TkkJaWRnp6OmlpaWZ/6/V6NBqNWbCYn0nc09MTe3t7s+X5weytzInczJHdMabntg7WtxyH7uDgQFhYGC4uLlhaWt7xGvzvq23sXh9Jfn+xuJM5fL5gqNk2er2+QICflZVFZmYmiYmJpuc5OcZEWzqdDnt7e7OHnZ0ddnZ28rl4TFlYWPDxxx/Tv39/3nnnHapXr86IESMYMWIE1tbWpV09IUpFaYzplTHERScBsRBC3If87tHTp0/n+eefZ9GiRdI9+hHS7vlGxJ5LYMuKA/gElGXYFy/wz7wd5EeHFpZaXL3suHjxYoGgNycnB51Oh52dHfb29jg7O1O+fHlTsGtpaVkg0L148SLu7u44OTkVqZ4fTnuJIU9/TnpqFhqtwgff9C22a+BaxglFo6DqVTRaDW5lC9ZNq9Via2uLra3tbcsyGAxkZ2eTkZFhulZXr14lJiaGtLQ0VFXF1tbWFCDfGDDf2MX7cbdkyRK2bNnCoUOHCAsLIzU1lRdffJF58+bd1f4JCQksW7aMf//9lyNHjnDhwgWsrKyoWbMmAwcOZODAgaV246F8+fIsWbKEDRs28PbbbzN58mQ6dOjAqlWrSqU+QghxJxIQCyHEPdq4cSMDBw7Ezc2NjRs3SvfoR5BGo6Hf8M70G96ZvLw8kpOTqd++Aqk5dbBxtsDF0w6tVktERIQpcPPw8DD9fTctsDfKT6xV1IC4jJcLC8Mmc+ViEs4eDljbFN+81S+//wxR4Rc5cSCagOrleeXjZ++5LI1Gg42NDTY2Nri5uZmtU1WVzMxMs5sKsbGxpKenk56ejoWFBc7Ozjg5OeHs7IyzszN2dnaPZZA8adIkwsLCsLe3x9vbm/Dw8CLtv3jxYt58803KlStHmzZt8PX1JS4ujqVLl/LKK6+wZs0aFi9eXKrXrl27drzzzjtMnz6dkJAQevfuzY8//ig3DIUQDx0JiIUQoohSU1MZPnw4c+fOZcSIEYwePdo0VlM8GvKD36SkJJKSkkhOTiY1NRWdToezszNtujbEkKvBy7ssLm7OxRZYWFtb33MmXq2FFk9ftztvWEROrvZ8vWQYqqoW+TwNBsNdt0QqinLLVma9Xk9qaqrpNTl9+jQpKSloNBpTgJz/f3t7+0c+SP7222/x9vYmMDCQLVu20KZNmyLtX6lSJVauXEnnzp3Nrv9nn31Go0aN+Pvvv1m6dCn/93//V9xVL5IVK1Zw+fJlwsLCGDx4MFWrVuXXX3+lR48epVovIUqKHg36Ep7UR1+iR3s8SEAshBBFsGnTJgYOHIiHhwd79uyhRo0apV0lcQeqqpKamkp8fDyJiYkkJSWRlpZmCn6dnZ3x8vLC2dn5gXfbzQ+I1/+9j+jwS9RrWZn6LSo/sOPdjZNh5/h82FyuXknhmd6Nee2TbncMcvV6A9M/+h8bluzF2d2B0b8MpFqDivdcB61Wa3ot/Pz8AGOwnZqaarppERUVRXJyMoqimAJkNzc33Nzc0Ol093zs0lDUAPhmwcHBhS739PTkjTfeYPTo0YSEhBQpIN68eTPBwcF88MEH9O3bl08//ZStW7ei1+sJDg5mxowZeHp6cvz4cSZNmsSGDRvIzs6mRYsW/PTTT/j6+pqVl5KSwqZNm+jbty8VK1Zk48aN/PjjjwwcOJAff/wRnU5HeHg4Fy5cwNHREX9/f9q2bcuUKVPu69oIIURRSUAshBB3IS0tjY8++ojZs2fz0UcfMWbMGGkVfkjdGAAnJCQQHx+PXq/H1dUVV1dXypcvj5OTEzY2Ng/k+FEnLhJ+6CyVavkSUL282TqdTseRfZH8PnYzGq2Gpb9vZdzMgTRuW714jh0Ry+Z/DuIWADnZuXfVpXvykFnExyajGlRWzNpGtfoVaNmlzm332bL8AOsW7gYg8UoKU4fOZs6eCcVxCib5rcNOTk63DJLDw8NJTU3F0dERNzc33N3dcXd3NyUwexLlv+YWFkX7iXfw4EEAIiIiaN68OR07dmTw4MGsXbuW5cuXk52dzZtvvkmfPn0IDg6mf//+hISE8O+//9KvXz9CQkLMyvvnn3/IyckxtQZrNBrefvttLl++zPz58zl//jytWrWid+/exMXFsX//fv777z8JiMVjRVUVDGrJ9mhRS/h4jwMJiIUQ4g5CQkIYMGAAbm5u0ir8ELpdAOzu7k5AQADOzs7FkmQoNuYqR/efwT/Ik8Aa3gXW79t8gnGDZ6IajN2Px/46iMZPX3+/WFtbEx+XCIBBb0CjVdi59kixBMQXz8bzbq8fUbQwcGwDvhq5mHE/9L/tPqqqcjUuBdVgTCKmKApXLiXd8VhXL6cYE3EZVFSDStKV1Puu/90oLEjOzs42ve43Bsju7u6mIPlJCZDz8vKYM2cOgNl813cjPyDeu3cvu3fvplatWgCMHTsWX19f1q1bR2hoKOvXr6dJkyaAMdN6YGAgW7duJSsryyyb9LJly7Czs6N9+/amZXFxcUyZMoXGjRvz1ltvMX78eNzc3Pjhhx9wc3MjPj7+vs5fCCHuhQTEQghxC2lpaYwYMYJZs2YxfPhwPvnkE2kVfkhkZGQQFxdHfHz8Aw2Ar15OISk+Fb9KnpwJv8SHvX8kJzsPFPjwixdo28N8OqZ/5m2Ha9MXqaismrvdLCDW6XQ4utmg0Wow6A2oBvDyL3z6pKI6sP0UOdl5WOq0pue5OXlYWt36q15RFIJ71Gf9kn2gKFjqLGjy9J2D82adajP/u7VkpWejqtDxpabFcg73QqfT4eXlhZeXF3D7ANnDwwN3d/cit54+KkaOHMnRo0fp1KkTHTp0KNK++QHxrFmzTMEwGKfx8vf359ChQ3z55ZemYBjAysqKypUrExMTQ3p6uikgzsrKYu3atXTs2NEsSA4PD0ev11O5cmXee+89unfvzoABA6hatSozZ86kW7du93P6QghxTx7PbwQhhLhPW7ZsoX///ri6urJ7925q1qxZ2lV6oqmqSmJiIrGxscTFxZGammpq/atYsSIuLi7FPs3MpmX7+fr9vzDoVSpWL09ALV/y8gzXKgRLZoYUCIidXOxRNKDqQaNRcHKxM1tvbW2NWzkHAquXJ/pULD4BZej8YhPuRlJ8KqsXGLspd+rTGGd3B7P1Xv7mCbdcyzhgYXnnGziW1lagGK9dzacC7ypxl6evG0Mm9mTfpuPUahpEp5cengzrhQXI+TdOjh49SmZmJh4eHnh6euLp6fnYzJE7ffp0vv76a6pUqcLcuXOLtG96ejoRERFUrFix0Jbls2fP4urqSu/evQtd5+DgYJZVfP369aSlpRVInlW9enWcnJz4448/uHLlCi+++CJLly5l7ty5vPzyy3Tp0oUffvgBV1fXItVfiIeVzEP8aJCAWAghbpCens6IESP4448/+PDDDxk3bpy0CpeSvLw8rly5YgqCDQYDZcuWpVKlSpQpU6bIUx4V1c/jlmLQG5t7zxy/gKO7g2l+Yo1Gwd6p4Bjkfh92JOLwOc5GxOLl78HAEV3M1ltbW5OdnU3E0fMAnD5+kQlvzOKr/w0ptA452blYWlmQk53Hez2/5/J5Y3fr9Uv28fN/w9FZX78G9ZtVYuD7Hfj32tjeUV/3vWOCsEvnElj91y7T8wNbTxJxOIYqdfxuu9/cr1azYPo64z5bwqnfquoDyYBdHHQ6HeXLl6d8+fKoqmqa7ikmJobDhw/j5ORkCo4dHR0fyQzWP/zwA++88w7VqlVj48aNRQ4ow8LCMBgMtGvXrsC66OhoEhMTee655wp85tLS0oiMjKR58+Zmy5cuXYqVlRWdO3c2W+7u7s727duZMGECq1evZtWqVWi1Wp5++mkWLlzI1KlTTa3FXbt2LdI5CCHEvZKAWAghrtm7dy8vvPACzs7O7Nq1i9q1a5d2lZ44mZmZxMXFERsby5UrV7CxscHT05MGDRrg6upa7K3At6PXG0x/K0CtRhVJTc7i9PELOLnZM2Rc9wL7uHs6M+O/j8jKyMHa1qpAcKXT6VBVA5Y6LbnZxskxju2PKjDlUXZmDpNf/4N9m47jVtaJAaO6Envuqml9bMxVosIvFghce73amh4DmrF69WoqVvEk8Uoq86evIzU5g059m1CrcWAxXBlY9luI6e/M9GxCVhzghbfb33oHIDcnj8U/beDM8QvUb1WVZ/o2KfHgU1EUHBwccHBwICgoiOzsbNP77dSpU1hZWZmCYzc3t0fiZti0adN47733qFGjBhs3bqRMmTJFLiO/u3T9+vULrDtw4MAt14WGhqKqKvXq1TMt0+v1rFq1iuDg4ELn265RowaLFy8mJyeHrVu38uuvv7J48WL27dtHTEwMP//8My+99BLdu3fnp59+wt7evsjnI8TDQq9q0KslPO2SWqKHeyxIQCyEeOIZDAa++eYbxo4dy7Bhw5g8efIj8UP4cZGRkcH58+e5dOkSycnJuLi44OnpSfXq1Ut1ztnBo57l+9GLQYVy/h50ebkZL7z1NKlJGdg52qDVGn/kpKVksHHZQVzc7WnRqTaKomBjV/g0QJaWlhgMKrYOliRnX58tMisjx2yff+ZsZ//mE4Axi/Oin9YZk1ipKly7Hm5lCwYbN1JVldH9fubsqVhUFbavCeOnNcPxDSxr2qacrxtdXmrKP/N2AtCiUy0q1fK547VxdLEjOzMXVVUxGFQcXe8ctPzx2UpW/L4FUNmxOgythYb2vRvfcb8HSafT4evri6+vL3q9nvj4eGJjYwkNDSU3N5eyZctSvnx5ypYt+1D+m/D5558zcuRI6tSpw/r163F3d7+ncvID4gYNGhRYlx8QF7YuNDQUwCwg3rp1KwkJCXeca9jKyop27drRrl07WrRowfbt27ly5Qrvvfcezz77LH369KFevXosXrxYbk4KIR4oCYiFEE+0+Ph4+vXrR1hYGMuXLzfLiCoenJycHC5evMj58+e5evUqHh4eVKhQgbJlyz6wOWW3/nOIw3siqVTLl6d7NrxjoN3ppWbUaV6JhLgUKtX2QWdtzFRsMKiEbo/AJ7As1rZW9G8xmeysXABWztnBVwuH3rJMRVFQVC22jlYkx2eZlsecvmwWiCYnpBkDYL0x4Ey9mmHM1XVDnePOX8WjnPMtj5WZnkNU+CXTc71B5cSBKLOAGGDIhB50ebkp+jwDFaqUu6sbEB9Oe4mJr/5OalIGTTvW4unnG91xn9Ct4caAHmOX88M7T5V6QHwjrVZL2bJlKVu2LLVq1SI5OZnY2FiOHz9OaGgoXl5e+Pj44ObmVuI3aU6fPk1ubi4BAQGmbssTJ05k7Nix1K9fn3Xr1t3XuNuDBw9iZWVVaAb927UQ5wfSNwbEy5YtQ6PRFEiQFRoaiqOjIwEBAWbLIyMjOXr0KL6+vnh7GzO3BwYGsmvXLt5//32aNGnC119/zRtvvPFIdmcXTzYDCgZKtoXYgDQRF5UExEKIJ9a2bdvo3bs3VatW5dChQ3h4FE+2X1E4vV5PXFwc58+fJy4uDkdHR3x8fGjYsOEDC4LzrV+yl2+G/w+tVsO/83aScjWNnq8H33E/L38PsyzQUeEX+aD3T2SmZ2NhoaVRm6qmYBjg2IFokhLScHa7dYuphYUltk46s+A2MyPHbJvg5xqw8o8tZF/rtt2+d2MW/b7VbJusm/a5mY2dFWV9XLlyMRHDtWmV/Cp5Mufr1Zw+ep66zSvTbVBLFEXBL8jzDlfCXM3GgfwvbDK52XnobO5uSqPK9fyJiYzDYDAG+UG1fIt0zJKkKArOzs44OztTuXJlEhMTOX/+PPv27UOj0eDt7Y23t3ehXYLvxvLly1m+fDkAsbGxAOzatYsBAwYAxrG2X331lWn7tm3bcvbsWaKiovD392f27NmMHTsWrVZLixYtmD59eoFj+Pv7m8q7nezsbI4fP06tWrUKnZ7qwIED+Pn5mSXNynfw4EFsbGyoWrUqYOyVsHz5cpo0aULZsuY3Xr7//ntmzZpF48aNadCgAfb29pw5c4aVK1cC8Mcff5gNibCwsGD69Om0bduWV155hQ0bNvD777/j7Ox8x3MSQoiikIBYCPHE0ev1fPbZZ0yZMoWRI0cyZsyYEh2b+iRRVZWEhATOnz/PhQsX0Ol0eHt7U61atQc6NvDKpSS+eHsOZ09eonH7mqSlZYFyfVzwznVH7yogvnwhkS/encu5U3E07VCLPINKdpYxENXr9ZwMO2fcMD+4VVWzsceFcXVzwsntekIuW3sdgdW9zLbxr+LFTxtGcnBrOF7+HtRrWYUr8alsXmHsohpU05tajQMJ3RnJ8dCzVK3jS71mQWZlKIrCZ3NeZ+bklaQkptN9YEu2rjrE8t+3oKoqezcex8JKS5eXzRMi3S2NRnPXwTDAGxP+D0tLLZFHztMwuBpdBrS4p+OWNEVRcHV1xdXVlRo1anDlyhXOnz/Ptm3bsLOzMwXHNjYFk6zdyqFDh5g9e7bZsjNnznDmzBkA/Pz8zALim0VFRQHG9+C0adMK3aZVq1Z3FRAfPXqU3NzcQluAz549S0JCAq1atSqwLjs7mxMnTlC/fn1Td/L9+/cTExPDu+++W2D7bt26kZuby969e5k1axZZWVl4eXnRt29fRowYQVBQUIF98verX78+vXv3pk6dOixevJiGDRve8byEEOJuKWp+/yUhhHgCxMbG0rdvXyIjI5k3bx4tW7Ys7So9llJSUoiJieHChQvo9XrKly+Pt7c3Li4uJdLt8ZN+P3Nw60kMegOKArWaV+bwntOoBhWNRqFD76cY9lmvO5bz8UszCNsVaSqncv2KRBw5b3yuUaha24fjh2LM9hk7oz9N2t16Lt+wsDDSU7PZvuw0AL1eb4N/pTu30BoMBg7vOUNOVi51mgayc8MxPv9wIYpiHFs8/PNeBHetS25uLqtXr6ZTp04FsgIPfeZLzhy/AICiUWjRuTZVGgSw478j+AaWYfCIztg53H1g9yTLy8vj0qVLnD9/nitXruDm5oa3tzdeXl4PPAP6w+rjjz9mypQpnDlzhgoVKhRr2Xq9no8//pjvv/+eSZMm8d5770kXavHQSklJwcnJiZWHA7BzKNn8A+mperrWOk1ycjKOjo4leuxHlbQQCyGeGOvXr6dv3740atSIQ4cOyVyXxUyv13Px4kWio6NJTk6mXLly1K5dGw8PjxJvgb8YdQXDtZZaRaPBs7wLZXs2InT7SarW82fwyGfvqpwLN5VT3teV+Nhk4mOTsbXT0X94J0a89As3DtnS5xXeQpydmWPMPm1tTV5eHh993ee2x87KzGHLyoOoBpWWz9bF1t6aOk2uZ4n+9397gOuHXjl/F8Fd6962zGoN/IkKv4hqUFENKlorS379bBUAJ0LPkpKUyZgfXr5tGcLIwsICHx8ffHx8yMrK4sKFC0RFRXHkyBG8vb3x9/d/4rr3Llu2jNq1axd7MAzGMd6ff/45wcHBDBw4kI0bNzJnzpxCu3ILIURRSEAshHjs5eXlMXbsWKZNm8aECRP44IMPpIt0MUpNTeXs2bOcO3cOnU6Hv78/Tz31VKHjEUtKmx4N+OvbtWi0GgwGAy2frUu9llWKXk73+iz8cQMarQbVoNKuZyOGTeltSmhlbWvFC28E878ZmwCoUseXRm0KHmfH6kN8MeRPcrLz6PJGY+q0q3jb4+rz9Izo9QMR17pkr/hzK9+t+gAr3fWv7bgLSaj5LWSKQmxMImNe+5PDh6IYPLo+29cdpU1n8wD5lTHdsNJZEnE4hnotK5OYmIFWq0GvN2AwqIQfOlvka6SqKvOnr2fLP4fwrujB25N64uLhUORy7oY+T0/kkfM4ONviVeHhGfNvbW1NQEAAAQEBJCUlcfbsWbZv3469vT0VKlSgfPnyWFg8/j+5Tpw48cCP0aFDB0JDQ+nTpw+1atVi4cKFBeZBFuJhUTrTLt1b59/z588zduxY1q5dS0JCAuXKlaN79+6MGzcOFxeXO+4fEhJCmzZt7rjduXPn8PG582wGJenx/9dZCPFEi4mJ4YUXXiA2NpbNmzfz1FNPlXaVHgsGg4HY2FiioqK4evUqXl5eNGrUqFQy8BbmxfeeoZyfO5FHY/CuWIagmvf25dvvg46Ur+BBTGQcjYKrUaORMUNuZkY2G5bup3IdX/q//wwtO9cmPTWLKrV9sbA07x6nqipfvzOHnOw8AA5vj8S3tiuqqpKcmI69g02BfaLCL5mCYYDo8EucOnyO6g2vB9K5OcbyUBRQVVLTMtm/+zSWOuOPr2kTltGqY22zmz86ayte/aS76fm2NYdZNXfntWIUsxbou7Xh7/3M+24dAOejrpCdtYDJs18rcjl3kp2Zw4he33My1Bi0v/JJd/7vLsaBl7T8ZFzVqlXjwoULnDlzhqNHj+Lj40OFChVwcHgwNwueJGXLlmXDhg18+umntG/fntGjRzNq1Ci50SnEPTp9+jRNmzbl8uXLdOvWjSpVqrB3716+++471q5dy44dO+7YG8Pf359x48YVuu7IkSMsXbqUGjVqPHTBMEhALIR4jK1fv57evXvTpk0b1qxZI2NpikF2djZnz54lOjoaMH4BNmjQ4IFniS4qRVGoVNuXXycsIyUxnd8mreCz+UOoWr9oXTk1Gg1P9zSfUmjHuiNMGjLH9HzUdy/RsvOt50k16A1kZ17PRJ2RnI1e1fNhnxkcP3gWe0cbJvw6gGr1/E3bOLnZGwPd/HsLKji7mychy84PiK/R69Xr2wMG1djt2tbO2my7EwejSYxPo3aTQPLy9KaEYCrQsE3VW57HrezdfL1VUDWoRByOuc3W927HmjBTMAzw52cr6TqwJZZWD+dPGUtLS/z9/fHz8yMxMZGoqChCQkJwc3OjYsWKlC1b9qG4efSo0mg0jB8/njZt2vDyyy8TEhLCwoULZSiMEPdgyJAhXL58menTp/P222+blr///vt8++23jB49mp9//vm2Zfj7+zN+/PhC1/XpYxwi9OqrrxZbnYuT3EoTQjx2VFVl2rRpdOvWjU8++YS///5bguH7lJSUxMGDB1m3bh1XrlyhZs2aPP3001SqVOmhC4bzLf5pA2kpmQBkZ+Uy+8t/Tev0efp7Lnf212vNns+cYhyDe/FsPJHHL2AwmI8h1lpoee6Ntqbn1tbWKBqVk0eMgWNaahbTP1lqto+Tqz0WOotrQbECGoXLF5LMtrFzsLme3VpR0FpoUTUa1GutZDqdBbZ21qQkZZCalAHAnG/X8n7PH5j4xiyGdvmGf+fvvl6gAiGrDhX5epyPvmL23Nbe+hZbXhd14iIfPPcdr7b5jDXzd93VcR7V4DE/S3X9+vV5+umncXNzIywsjA0bNhAZGUlubu6dCxG31KpVK0JDQ8nNzaVBgwYcP368tKskhIlxHuKSfxTF6dOnWbduHf7+/gwdOtRs3YQJE7Czs2Pu3Lmkp6ff0zWIj49n2bJl2NjY0K9fv3sq40F7OG+rCiHEPcrOzubNN99k1apVLF++nPbt25d2lR5Z+VMmRUREcPXqVXx8fGjVqtUjc3OhwDAqFZIS0hj36h9EHI6hYlUvJswchLvnneeSPbovij0bj1G+gsf1rsrXZKRl8df365n3/QYA6jYN5NOZg8y6QQ8a3Y0GbaqRFJ9KnZaV2bxlI9Z2lqQn54CqknA5xazMnOxc8nLNg/bE+BQ2rjrEqaMXqP1UBV54vTXfT1hhWl+1ri9HQs+ZguTsPJVfv1zN0lk7AOj7RmsW/bTJtH1czFWcPRzQaBUMemP2bbeyRX9t484lmD2/0/U0GAyMeflnkuJTMRhUpo9ciH9lzzu23jd9phZV6vsTfiAagMFjuj20rcO3Ym1tTeXKlQkKCiI2NpYzZ85w8uRJ/P39CQgIwNr6zjcTREFubm5s3LiRt956i8aNGzN//ny6dOlS2tUS4pGwefNmANq3b19g2IGDgwPNmjVj3bp17N69m7Zt2xZWxG3Nnj2b7Oxs+vXr99AmGny0vkmEEOI24uLi6N69O8nJyezatYvAwKKPhxTGQDg2NpZTp06RlpZGxYoVqV+//kPbEnwrPd9sy+71R0lLzsBKZ8lLH3Rk9jdriTx2HoDoiEv88eXqO2Z7PrLnNB/1mWF6HlizvNn6Rm2qMu+HDabnoTsjObg9gkY3dD9WFAW/yuWIPRfPiX1RKKoGO0crY0CsKKSnZpGbk2cK8OwdbajesCLHDkQbW3+1Gs5FJ/C/mVtRNArL5+3knU+741bOiYQrqVhaarG2NX99VODvWTtMbQXzfw7BysoCfWaOaZvgrnXJzsrj7Ok4KtXyod87RbuBpKoqmek5Zsssdbf/aZGVkcPVm24AnIuMu2NArLOx4qu/3+HM8Qs4ONvh6fvoZhfWaDR4eXnh5eXF1atXOXXqFOvXr8fX15fAwEDs7OxKu4qPHK1Wy4wZM6hVqxa9evVi7NixjBgx4pHtWSAeDwY06Eu4Q67h2twDKSnm/87qdLpCv8dPnjwJQKVKlQotLygoiHXr1hEREXFPAfHMmTMBeP3114u8b0mRLtNCPMEURTH+UPfzIysrq9Bt/P39URSFvDxjq9iBAwdQFOWWyakWLFhgKjcqKqrA+szMTKytrbG1tSU7O7vYzuXgwYPUq1cPFxcX9u7dK8HwPTAYDMTExLB582bCwsLw8vLi6aefpkqVKo9cMAzgV8mTP3d8wldL32HWrnHUaBRAUkIaqsH4Y8GgVwsEZvlysnM5vDuSc5FxLP19q9m608cu8vak/6PJ09V48e2neXVUV7Npl6DAUxKvpDAkeDLT3v+LCf1/Ji0pC1uH63PVqiqmbs354i4mmVp7DQaV1Yv3gcYYhKKB37/5j4QrqQDk5uo5ciDqehdqQFtIgqGu/ZubWq4btKqM3gDRpy+jonA1Pg1DEbOTGgzm45aBO86pbGOno2p9fzQaBY1Wg6XOgppP3d3nVWuhJaiW7yMdDN/M1dWVp556ilatWpGXl8emTZs4cOBAgR+z4u68+eabrFmzhmnTptG3b18yMzMf+DHv5bv05n1v9wgJCXng5yAePz4+Pjg5OZkeU6ZMKXS75ORkAJycCu/dk788KSmpyHXYsmULJ0+epEaNGjRt2rTI+5cUaSEWQnDu3DmmTZvGyJEj77ht3bp1cXFxMf1gu7n77MaNG1EUBVVV2bRpE4MHDzZbv2PHDrKzs3n66aeLLchatGgRAwcOZMiQIXz++eeSabSI9Ho9586dIzIyEkVRCAwMxMfHB61We+edS1BuTh4zP13GgS3hVKrly1tTemHnaHPbfeydbM0yM3d4vhF7Nh4HjIFc82dqArBxxUG2/BNGxSqe9BjYkhF9fuRsRCwAflXKmZWpGlSe6dWITi80Ni3rM7QtC37cCIBvQFnqNQsy22fXmjASrwWvAFcvpWJzQ0AMkJyYgWuZ65+nG7tMKwrk5o97vhaAZmWZjz3Nyc5DMajk3+su425HTHIWaK7tYFDp2LsRfYcEk56ahbunE93rjjUd4PKlZNYt3U+vV1oXdikLpdVq6Plqa5b8GgKAo6sdfd9++rb7KIrCxNmv8/evm0lNyqBD76fw8ne/62M+rhwdHalfvz5VqlQhMjKSLVu2UKZMGYKCgiRRVBG1atWKPXv20LVrV5o3b87KlSspX778nXe8T0X5Lr3ZrbLzgjGYFo+m0px2KSYmxuw3Wmnc2P71118BeO214p95oDhJQCzEE87FxQVFUZg6dSqvvPIK7u63/2Gq0Who3bo1y5YtY8uWLTz77LNm6zdt2kTr1q05fPhwoQHxpk3GMYz30u3mZgaDgbFjx/Ldd9/x888/8/LLL993mU+S3NxcoqKiOHPmDDqdjqpVq+Ll5fXQ3lBYMmMj/8zebuzSfTYeS50F73/zYpHKaNy2Gr3eCGbhL8YxU799sZqU5EzmTjNOG7RvSzg71h/l/LVgGCDmVBwajWJsDQXqt6xc4BrVbRrIghmbURQ4d+YyC2ZsMut+7Oh6Q4ZoBXIycnF2twWNggK4uNvj5Wfe6tn//Wf4bswSUMHFw5FKDSuwc+NxUxkVKnly6vhF0/b29jrS4tNQrlUt9txVtDot+jxjki87Zxs8y7ugtdBia2+NXm8gJ0dv1qp89tTlIl1PgMEju9Dk6RokXkmlTtPAO96kALBztKHfh52KfKwngZ2dHbVr16Zy5cqcPn2aXbt24eTkRKVKlfDw8JAuwHfJz8+PXbt20bdvX+rXr8+KFSse6LR7Rf0uvdmtsvMKca8cHR3vKudHfgtwfkvxzfKXF3X879WrV/n777+xsbF56H+fPZy/eoQQJcbW1pZPPvmE5ORkJkyYcFf75Aez+cFtvujoaKKiomjbti2tWrUyJWq4UXEFxKmpqXTv3p3Zs2ezcePGh/4f24dJbm4u4eHhrFu3jri4OOrUqUPr1q3x9vZ+aINhgOiTl0ytowaDypnjF+5qv6zMHH6duJyPev/Aohkb2bomzLQuJyuP5bO2mW1//ky82XMLSy3Tlr9Dz9da89roroz9ZUCBY6xfegCU/O7MCstmbzdb37RTbdr1NrYo29jpqN20CrWbVkDRKKiKgsZCy81xzjO9n+LXtcOZ9Ocr/LL2Q4Z90o1qdXzRaBSq1/Vj4o8v06BlZSzsdLh6OePp6QLc0INZUYxTMWk0oNGQnpbNpZirHN57hmMHozEYDGi05q+3dwV3pr43n1EDZrJrwzHOnYplQItJ9Kg+ks/fmWc8v0JUq+9Ps2dq3lUwLO6OtbU11atX5+mnn8bDw4MDBw6wZcsW4uLibvk6CHO2trYsXbqUV199leDgYObOnftAj1XU71IhHgaVK1cGICIiotD1p06dAm49xvhW8pNp9erV66FNppVPWoiFEAwdOpQffviBX375hWHDhhEUFHTb7YODgwFj9+gb5T8PDg7GycmJpUuXcvz4capVqwYYEzzs378fFxcX6tWrd8/1jYqKokuXLtjZ2bFv3z48PW8/ZlEY6fV6oqOjiYiIwN7enqeeeqrIrRilqVFwNbauPIhGq8GgN9Ckfc272m/mxOWs/d9uDAaVI3tO4+p9vSVWVVWzOYLzVarlS8ThcyiKwpvjehBUw5ugGt63PEZ6WpZxIPC1qDYrMxd9nh6thbHbuUaj4YNpL/PWlN5YWFlw9mw0qxZtNWXCjo9L4bP35jP+p/5m5WZn5xEdeRlFq6Fe0yC+mXs9KUnIuqPs3X3auH9COlY6C1RFwWBpDHI1lhrUnBvH+CpM+2SpMVEX0KpTLQa8254/rk0j5R9Ulg1/HyA2JgGDqhK26zTWOg2ZqcYxkSErD1LOz41+73e85XVQVZV/5u7g0M5TBFb35vk3gs2ybQMc3x/F8t+3oLOx5MV3n3msxgM/CFZWVlSuXJmAgACio6M5ePAgDg4OVKtWTbpS3wWNRsPEiROpWbMmr7zyCocPH2bq1KkPZEhIUb9LxePPgAZDKSXVultt2rQBYN26dcYbpTfcGE9NTWXHjh3Y2trSuHHjWxVRqPxkWg97d2mQgFgIAVhaWjJ16lSef/55RowYwdKlS2+7fdWqVSlXrhxHjx7lypUreHh4AMbWX3t7exo2bGjqprNp0yZTQLxlyxb0ej2tW7e+55bILVu20KNHDzp16sQff/yBlZXVPZXzJFFVlfPnzxMeHo5Wq6Vu3bqULVv2ket62bZnI7SWWsK2RxBQw5tOLzcD4PKFRH6dtIKEuGQ6v9iUdv/X0Gy/Y/ujTN2dNRoFBwcdVy9fH8+bk22e5MbaxoovFw3l0tkEHFxscfW4c5ezOk0C2bnBfP7Tq1dS8SjnbLbMytqSjLQsdDodtvbmY4gjj18ye3543xlGDfwdVVVRVRj6SVcq1fZlR8gJPL1cCDsQZRwffO1lvBibjHU5J/JUYxfpwHr+HN17Q2I7BY4ciDb9NNuy+jC9X2uNlbUl2Vk5PN21Hn2bTTJtrqKSmWae+O7ItQD8Vv79ayc/jVsKCuxad4TMjGwGjbg+/c3lC4mM7PMj+lxjV+2wnaf4Y9snBYJmUZCFhQWBgYH4+fkRGRnJzp078fDwoFq1ajg4OJR29R56vXr1olKlSvTo0YMjR46wcOHCWyYRuldF/S690a26TFtbW9/TmGQh7lZAQADt27dn3bp1/Pjjj7z99tumdePGjSM9PZ3XX3/dLPt9eHg4AFWqVCm0zG3btnHixImHPplWPgmIhRAA9OzZkyZNmrBs2TK2b99O8+bNb7t927ZtmTdvHps3b6ZXr16AcS67Fi1aYGFhQfXq1SlTpgybNm3irbfeAu6/u/SCBQsYPHgw48aNY8SIEfdUxpNEVVXi4uI4ceIEubm5VK1aFW9v70cuEL5R6271ad2tvtmy8a/8RnRELKoBwkPPUtbblZpPBZjW124SyLlTxm6mBoNKjYYVOXv6WrdoBaysLOj3XnuWzNyKvZMNH3zeCyudJUf3R/H371txcLLh7YnPEXUyll+n/gvAayM78/RzDUzHCKzmVaCuly8msW9bBKePX6ROkwCCqnoxuu+PXIyOp07ritRob57kp0bDCnw/eSW7NofjF1AGRwdrYzdsY3zL0jk7uHB1nbFVWVVxcrXDmM/a+HqqikJmdh6WVsaQ90RELOq1LLXGDVSzhNAq8OWYvzlz0jhe+lhYDL6BZYg5cwVVVdEoCraO1qQlX8/S26B14T9+8h3ZfdqUVE8FQrdHwA0f1VNHYsg13YBQuXIxiYTYJMr6SCvx3bK0tKRq1apUqFCBiIgIQkJC8Pb2pkqVKtjYSJf126lTpw779u2jW7duprlVvbwKfnbvR1G/S/Pdqpu1k5OTBMSPML2qoFdL9jv3Xo73008/0bRpU4YNG8bGjRupWrUqe/bsYfPmzVSqVInJkyebbV+1qnFawVsN33hUkmnle3gHiwkhStzXX38NwIcffnjHbfO7TecHuSdOnODSpUumrjcArVu3JiQkBIPBYLbtvQTE06ZN49VXX2XWrFkSDN+Fq1evsmPHDkJDQ/H19aVt27b4+Pg80sFwYfR6A1Hhl0xBI4qGpX9sMdtm8Mfd6D20HY2Cq/HGuB68Oa47fpXKGltXNRpycvUkXklj6pzXqNMsiB3rj7E3JJwfxi3j0rkEIo9dYMzA3/j2479JS84kLTmTbz/+m8sXk0zHqFjFC2c3O2OXaUVB0WgIWR3G9+OXs/bv/Xz23gKmvDOP2JgEAKJOxGLrYImjsy0aCw01GvgTWLM8/yzZT0JCGqH7o4gIv2Sav0mjVUjP02MAVI3xkZyUgal5WKXAGOQbu3AbC9HQ/rm6pqdtutYxBcMAe0LCqVrPHzBOh/R/r7Ri+sr38A0qi4OzLV1ebkbr7vX5+qOFTB+zhOSraaSlZPL3byEs+nkTSQlpBNX0RuV6a3yVun5mVapY1QsLSy2KoqDRKDi7OxC26xRfvzePjUv3y9jYIrC2tqZWrVoEBwej1+vZuHEjx44dIycn5847P8Hc3d3ZvHkzQUFBNG7c2DQHa3EqyndpPmNPkIKPe5nqRoiiCggIYP/+/QwYMIA9e/bw9ddfc/r0ad555x12796Nm9vd37RMTExkyZIlj0QyrXzSQiyEMGnSpAk9e/ZkyZIlLFy4kN69e99y2/ygNn/c8I3jh/O1bt2aRYsWmYKyI0eOUL58+Vt2sSmMqqqMGjWKX375hRUrVhRLdurHWUpKCidOnODKlSsEBgby1FNPYWlpeecdH1FarQYnNweSr6aRHxzGRJpnSrbSWdD/pozGCTdMgYSisGrBblYv2U92Vi6oKptWhppWGwwqyYkZxuRU16iqytUrKZTxcgZAZ22JnaMtSVcz8otk239HjfvrDSgahcuxyRj0xoAvPSkbjUahdvMAtv53nHPnEtDuOGWaIkkFriamUadJAId2ncanYhmyLTVcTcs2Fq6qqAYVV3c7EhPSQYGWraoQsvkEqs217sfXuiWbGgtUeOntDrw0tD0arcKWdUfZvObI9aBZVVm7eB8KoOph6Z/b6P16G35ZZ7wBlZqUwYvNJpKbY5z+KeSfMDzKOBBz+goosHrBbt6Z8jzlfD1ITkyjXvNKDB5lnoW+nJ87E/58jcU/b8Ta1goXDwe+/WABABuW7OPKhUReuMO0TcKcnZ0dDRo0ICkpiRMnTrB+/XqCgoKoWLEiFhbyM68wVlZW/P3337zxxhs0adKEtWvX0qhRo2IrvyjfpUI8LHx8fPjzzz/vatvb3bx0cXEpkfm/i5O0EAshzEyZMgVLS0tGjRp125YGX19fAgICiIyMJCYmhk2bNuHs7Ezduje0QF1rLd60aRObN29GVdUiBbS5ubkMGDCAuXPnsmnTJgmGbyMrK4vQ0FC2bNmCjY0N7dq1o0qVKo91MJyv7XP1TUGdolHwC7pzkjWtVmPWepqTk0dmejYGvQGDQeVqfBpWOgs0Wg2KRqFKHV/cPZ2MMbdGAY1CZqb558PaxsoYgAIGFRydbNBorrfgVm9QwXhMjYa8XJW8XANHQ41jfFOSMjl66Nz1Vl1FISsrj8kzB/HPkUn8vOIdXDwcUa+VrwJoFYZP6EH9VpVp/1x9Wj5dHb29JQadMSDWOuhAq4BWY6yzVsG9jANlvJxxL+vEtnVHzVuQb2pi1ucZSEvOMD3fuPyAKRgGyEzP5lzkZWNLlkElLuYq4wf/Tuz5q2Sm57AvJLzQhGX1WlZmyvwhjPvtFbb9c8hs3b9ztxXYXtwdZ2dnmjRpQqNGjbh06RIbNmzg7Nmz0up+CxqNhl9//ZW33nqL4OBg1q5dW6zl3+13qXi86dGUykMUjVwxIYSZwMBAhgwZQlRUFN9///1tt80PUDds2EBISAitWrUyS5ZVpUoVPD092bRpU5G7S2dkZNCtWzd27tzJ9u3bzQJtcZ3BYOD06dNs3LiR3NxcgoODqVWrFtbW1qVdtVs6GXqWWZ//w7qFu03d6e/Hy+92oGn7mljbWlG1rh9DJvQA4MjeM3wy+HcmDp3N2RvmFQbo2Nt8PlJbO52pO7miUbB3tObL+W/S5cUm9BjYgjE/9sOjvPP1gFSjsPp/e8zKaP9/9U25PVXAwcWeZu1r4OntQqfejahVz88s6ExLysbO0XjDQlVV9AYVVaMxHuPa48DuSEYPm8fEjxZSpVp5Y3dpCwXVUsGg0TDqo4Xs23uG/9Ye5ouv15hamAFyNMZxxTcyzj2ch6qq6KwtTcF3/sOj3PUEYnWbBlKmvIvpuce11nAzNxxPUYwJylSDMUDOzszl/Jnbz2tseVMyLRv7h/d9+6jw8PCgZcuW1KpVi5MnT7Jt2zbpdnsbn376KZ9//jnPPfcc8+bNK7Zyi/JdKoQoXdKXRghRwNixY5k9ezaTJ0++bTbo4OBgfv31V7799lsSExPNxg/na9OmDStXrjSN07qbgDghIYHOnTuTm5vLrl27HqmpgUpSQkIChw8fRq/X07BhQ8qUKVPaVbqj8NBoPugxDVAw6A1EhV/k9XHP3VeZ1rY6PplhPl3RlYtJjB4wk7xcPYoCx/ZFMXvraGMQCPR5M5iII+c5uOMU1jZWfDytL+kpWfz10yYMBgPPD26Jf5VynJgYw6mjF1g+dyfl/NyuBYDGIPDgTRmX01OzjLeZr/VRPnH4HKsPX8/a/M9c87mJM1NycHK14RwpAFSv5cORw+evb6AojB72lzEZlqJgld/iq1yrg4Ipe7aqQkZmDlje9Hm9ocUZYEC3acTHpaLRKLz0WivC9kWTP/eTnYM1Py1/l61rDmNlbUmrzrWJj00m8tgF/Ct50vTpGtRuHEDYtfN+Krgqx/ZFkZZi7BrXsU9jtv0bRnpqJqhgY6+jvL87ly8k4lrGsdBM0q+Pf46pb80GFTRaDcOmvnCrl1kUgaIoeHl5UaZMGU6dOsX27dvx8fGhatWqkpm/EEOHDqVMmTIMHDiQ2NjYIo39vZ27/S4Vjy+DqsGglvC0S9IrpMgkIBZCFODq6srHH3/MRx99dNvtgoODURSFI0eOmJ7frE2bNixYsICoqCgqV65M+fLlC2xzo5iYGJ5++mnKly/PypUrzdL8C6OsrCyOHz/OxYsXqVSpEgEBAQ9kTs0HYceaw+QHwwDrF+2974D4Rhlp2cTHJXM+6jK5OcZsxqoKyVfTuXIxEe+KxpsGVlYWTP5tEPNnbGLt0gPM+2kTr43ohN6gcj46gW8+Wcb6FaGcOnoBMAae56PjQbn+wyY9NZusjBysbY0BRnk/N1MSLBTjj5LLl5Ioc23qpTbdG/DvnB1En7wECnj5euBapixHD8UbY1KNsVUY7bVWV4NqvE6KAiqkZeaAzsJszK+qGlurNQp4uNgRl5RGnp3xveBsaUGuozVpqcapkzzc7Ym/lgjMYFCZ++sWPv6iF4tnbcfFzZ5hY7pi52hNsw41cXS24dTRC4x48Weys3LRWmgY/8tA3v+8F8f2R1OxmhfrFu9lX4hx6g1FgeMHovly4RAW/rQJVVUJ7l6PYV2/5cpFY0D8+YKheAeY37Rp1bUegTW9ORcRR6Xavrh5Fu80OE86CwsLqlatio+PD0ePHmXjxo1Uq1YNX1/fxy7B3v16/vnn8fDw4LnnniM2NpYvvvjivoPYu/0uhVtPuwTQvXt36tSpc191EULcmgTEQohCDRs2jJ9++ono6OhbbuPh4UHNmjU5fPgw7u7u1KhRo8A2N7Ya36l1+NixY7Rv355mzZoxf/58SQhzE4PBQFRUFOHh4ZQpU4a2bds+ctOsePq4Xg/yMLaq7vzvME071Lqn8lIS07l0Nh7fIE+iTsYyauBv5GTl4uBsg4WlFr3egAI4udmbdf8FOLDjFHN+MCaDi49NZvyQucbkWdcc2R8NcH2qovwZjjTXn9/Y5VtVbtzYaMeGY/S4Nl+ynYM13/3zAaePxuDs7sCFy+dYvexAfgMth0PPgdUNNzYsNMb4Or9bssW1gNk0LFnB0t6KnNw89IClizV5+mw0FsYNUq0VFv/1DqH7onB1s2fSR/8z70JtUGnZvgYt2xs/t7EXEhnU8Rtizyfi6e1ChYoeppsKBr2B3z//l/NnrpCXp8fOwZqn2lZDvXb++efgF+TJR9/2BeCr9/8iIS4JgKT4VP784h8++WUQNytfoQzlKzz8vRseZfb29jz11FPExsZy9OhRzp49S61atXB2di7tqj1UWrduzaZNm+jcuTOxsbH8+eef952H4W6+S+HW0y4B+Pv7S0D8iCqNMb16pIW4qOTXphBPsNslW9HpdERFRd2xjLCwsNuuDwwMvKukLjt37qRz58689NJLfPfdd9K97Cb53aMNBsMj0z26MM/0acJf3/1H4uVrWZ4V2Lhk3z0FxEf3nGbMy8YWTGd3e3QuDuRkGZM4pSZlUqGyJ14+LljqLHnx7aex0hl/2MbHJpNwOYXoU3GmskyZpG9gYaEhL+d6wGtja0nmDUmlUGDd8oNsXX2YM+GXqFrv2hRD17JAA2Rl5jL0hRnERF2hcasqfDixB1XrVwDg0pWL2NpbGn+65MepN7faaa53d1YNKqpWuZ6J2qCSnae/9lzl7KUkVCsN6rX1WaoKCjS/Nnewm4cj8fHp17NUaxR+/vY/joSeo2ZdXxIvJJqmkrp8MQkFY3IwMAbfVy4lkac3nn9mRjbH9kVx40c7uHs9s6onxaeZsmobDCqZ6dncTnpqFtNHLSQpIY0XhrajbvPKt91eFI2iKJQrV066Ud9BnTp12LFjBx06dODZZ5/l77//vmNPpfv5LpWkZ0KUPgmIhRClbtWqVbzwwguMGjWKMWPGlHZ1HipZWVkcO3aMS5cuUblyZQICAh7pmwVaCy11mlViy8pQDHoDGkXB7VqX4qKa9cU/5FxrwUxJzECbY/7DMj4uhZ9Wvmu2LGRVKF8O/x8GvUoZbxcsLLXGzNKqSqXq5XF2tWPv1gjQKHR7uSkVgzxZ+OtmnFzseGt8d4Y8/wP6vOtB8oblB4k8cQlUldBdp9FaGVuludaSu3rpfhIup2IwqGxbf5SAKp7UqudPxNHzlKtoi1sZO9RrY2sVjYKtgzWpWcaMtIqqQn6SZgVAY5bEStUoN7RKK6gq6K1ArzOuNygqVpbXv+Zzcm9KYKYoLL2WGOzUyUuU83Aw/ThXVUi/NjY4PyB3dLUnIz372jYKVy+nmIrSaBXSkq9Ps2EwGIg6edHscC271OF2Xg3+jMRr02Ed3hXJN3+/Q9X6/rfdRxSdVqulSpUq+Pj4cOTIEelGXQh/f3927tzJM888Q5s2bVi9erXkshDiMfbo/qoSQjwWFixYwAsvvMC0adMkGL6BqqqcPXuWjRs3YjAYaNu2LUFBQY90MJzvldHdqFTbB62FhhpPBfDy+8/cUzmqaf4hIzcPB7P1gdULjlf/9bN/TK2WVy4m0ah5EKpibEmNOH6BClU8USyMwezfc3Zw8vgFfv33fb6c9zp+gWV59YOO16Zd0mChs+T82QRjwdcCCb0hPxi+Nu43JcuYPVoxBrCH9pzh/b4z+HnyKmZOXYtGq5r2V1XIvSEJlqrRoGoxJsqy0KBojd2y9RYKeksFgwYMFmCwVIwPnYKqNS4H0Fsp/P7HFvr0ncGIkYtwdLU1ZshWburefe3vPEUxvb80GoWUxHSza2fvaG2cWgpw9XCgQpVyaLTG7Q16Fb9K16e7Sk3K4Gpcitn+Fpa3vgeflpxhCobzrZojUzA9SHZ2djz11FPUqVOHiIgItm3bRmpq6p13fEK4ubmxZcsWnJ2dad68ObGxsXfeSYibGAC9qpTo4/7nbnjySAuxEKLUzJs3j9dee41Zs2bRq1ev0q7OQyMzM5NDhw6RkpJCgwYNKFu2bGlXqVi5lnHk2+Xv3Xc5/T7sxJh+P5OXq0drqaVlxxpEn47n8N4zVKxSjg8/L/ieurl7YlxsEoqimJavnL/HrBvwv4v2Ur9ZIH9OW4dGUWjQojLqtcRaeXqVPAwYUyRfn2/4xu7Pika5duvZOF3TmYhLpiA+IzUHWzsLVIvrrXJZOXmmYFVBMWsRBgXVWoshv4BrgbupS7VWxWCJMYjGGCz/b/FeFAVir6Tg7el0fYyyqmKh1ZCXqzfVVaNVmLHsbSKOXSCwWjne7DzN7FrZOdowb/torlxKopyvG/GxyXz54f9IvJzC0z0b0qbr9anRzkZcKnDtK1T1KrAsn62D9Y09zQHwvYv5pG8n8mgMP368mLTkDJ4f0o72vRvfV3mPo/xu1B4eHoSHh7NlyxaqVKlCQECAtBYDtra2rF69mh49etCyZUtCQkLw8rr1+1gI8Wh69JsahBCPpFmzZvH6668zd+5cCYavyW8V3rRpEzqdjuDg4McuGC5OtZsG8eK7z4BGg15vYNGMTVSv68Oy0E/5esGbuN7UYgzw6qgupgDS1k5Heb/r3SAVjYKlzjxbt8GgMvGd+ZyNjCPqVCxLZm837n+tu7KKgqrVXB/7qxhbV/PLs7K2QNFqTEFyRlYummtZpDPT87DSadFaaq7PP6xVMFhqMFho0FsooL3+NW3QQB7Gsb+q9trxFcXU4qvXKhi0xpZhuBYYa64F1YrK+bhkUDAl6tLDDa3ZKs5u9tg52lCjvj8urvbXzuf6HMVN2lbH1t4avyBPcnP0fPrmbMIPnSPuYhKOLnZmAVTilbQC1979NhmkNRoNb0/uhdbCeL41nwqg15C7m7O8MPo8PZ+89DMRh85y/vRlvv1gPhFh5+65vMedhYUFNWrUoEmTJkRHR7N9+3bS0gq+hk8iCwsLli1bRvXq1WnRogXnz5+/805CXGNAUyoPUTTSQiyEKHEzZ87k3XffZf78+XTr1q20q/NQyMzMJCwsjKSkJOrXr4+n5/21jj0pjh+MBq7Px7t/Szi93rh1IBXcrR7LZm0j8thF0tOy2fpPGH5Vy3H2zBVUFMp6uZKafNHUYly/WSD7t0WY9jfk6eHGrr9mDbjGaNOtrCOXL6egKgplvV25mnjeNH9wOV83lIxczkZdwc7JAb3egJ2jJWlpemzttNg4WWFrZ4mVToOVpQY3JxtyM7KxtNLg7GZLlpqHpYVxnZWlBksLBUVRrk81rFFwtDbW7812fpB7bWomVcVgUMnLMZCTYyA3R4+qh8yMXOPzXANly9gzedSf5GYbqFTDm0p1PDl/OoGMtFw0ikLtxgGmUw1ZFcrZG5KS/f75v3R5sYkpKK7XohKuZRxJvJKCqkKj4Go45QfZt9CxbxM69m1y223uVnpqFknx5t1/Y07FUqm2732XvWTJErZs2cKhQ4cICwsjNTWVF198kXnz5t1TeefPn2fs2LGsXbuWhIQEypUrR/fu3Rk3bhwuLi53LqAYubm50bp1a06cOEFISAje3t40bNiQN954g++//75E6/IwsbCwYMmSJfTu3ZsWLVqwZcsWfH3v/70khHg4SEAshChRM2bMYPjw4SxcuJAuXbqUdnVKnaqqxMTEcOTIEcqVK0dwcLBkfC2CgGrljXPhXgvE0lKy0OfpSUpM53joOcr7uVGxcjnT9jk5eUQeu5bsSVFQVJX4y6lotBoMBpXI8Et0f6kJCZdTuHQ+ES9fd5xdL5CSbMxA7eRix9WULLM6WNlYkZediwp4+7ly/kKyqT4njpzHzsUaBydL7B2tcHK2wMHehoBGTtjaWwAKfV4MwMpKi8Ggkp6RR3qmnuwcPbm5BlRVoXm72ujzVAyKwpL/wsjJU8nJM5CdayBbVTEoxqBXr4DBEso66ni2pgfLwy5jeSnP2EAMaDRgrYKVlQZLSw06Ky0WWgUrKw12Dpbk5GTiX9kZSysN1rZ5BPcNACpgMKhYaC2JvhhO7NVodDodmYYkqj5VlozUXFISMslO15tdEwdnO37490O2/hOKrb01rbuZZ6B+0BycbQmq7cvpIzGgKFhaaqnROLBYyp40aRJhYWHY29vj7e1NeHj4PZd1+vRpmjZtyuXLl+nWrRtVqlRh7969fPfdd6xdu5YdO3bg5uZWLPW+WxYWFtSsWRMvLy9CQkL49NNPadiwYYnW4WGk1WpZuHAhffv2NQXF/v7+pV0tIUQxkIBYCFFifvjhB0aOHMmiRYvo1KlTaVen1Emr8P3r83Z7Niw7QPy1BE5RJ2OZO309KxftJSM9GxR4f8JzePu7s2LODnQ2VmbTIqEoxszJ18pTNApnT1/m4K7TAESGX6Jxy8rEXkjk7JkrWOossbbWk5V5Lf2zAh17NuDfv/fh5KpD56RQr0JZnF11OLlZ4+ymw9rGgvS0XFKTc8hIyyM9JYfEhFwuROdi52zFsWNJhIcnk5mpJ1enMY4pVoxTKVkoCn16dyLs6HnKlXNkb3iysSu0AgYDqDquT8OkquTYK1wy5PAsHly4nIkuNte43gCgos3UG6Njg3FUs5J/4qoKWXlob8hE/dlP/ajzVAWysrLIzs4mKyvL9Ei4nEjFWm7YOlrh6GaNhaWGDRs2YGdnh729venxdO8G2NjYlPh4VEVRmPzXEJb+uon05EyeebEpZb1di6Xsb7/9Fm9vbwIDA9myZYvZXOtFNWTIEC5fvsz06dN5++23Tcvff/99vv32W0aPHs3PP/9cHNUuMjc3N2bNmoW/vz9ZWVmcPn2aihUrPtFji7VaLQsWLODFF1+kefPmbNu2jQoVKpR2tcRDTK9q0KslPA9xCR/vcSABsRCiRMyYMYORI0cyfvx4Kld+sucXzW8VPnr0KGXLlpVW4ftgpbMwSzyl0WrYtyOCzEzj1EWo8Ns3a8lIyjBNl6RoFdS8G7I35enB4nqyKSudJRqNgsGgohpUDh+IIj3VOIduwuUU/Cu541nREQudim9FZywss3htVB2ys/QkJWSRfDWbxIRsok+nkBSfRXqGgaxsPSpgaaEhNzPP1ILsX8WZPINKWq4BLBQUCw2m3zKqQp4KL7z+G2CMaVX76+tVzbWM0teqnmehoFpdn7c4z1lBF5s/Blg1FqDVGINfLah69dqMTdeun5XWNPGwnZ2OWg390Wq12NnZobOyZsOSw0SdvESDFpVZN+8kGWnXW8rLV3RlytxBpKenk5aWxuXLlzlz5gwZGRkoioKdnR3W1ja4urrg4uLC1UvpHN93joDq5anTNOg+3gG35uBsS/+Pir8Xyv0EwDc6ffo069atw9/fn6FDh5qtmzBhAr/++itz587l66+/vuM8uACbN28mODiYDz74gL59+/Lpp5+ydetW9Ho9wcHBzJgxA09PT44fP86kSZPYsGED2dnZtGjRgp9++qlAF+CUlBTWrVtH3759ady4MaGhoVy8eJG6desSGhrKt99+S1hYGBcuXMDR0RF/f3/atm3LlClTiuX6PKz0ej2vv/46mZmZtGrVim3btuHn51fa1RJC3AcJiIUQD9zMmTMZPnw4ixYtokmTJuzatQuAgICAO+z5+MnJySE0NJTExETq1q1LuXLl7rzTY+bontN8+c5cUhLT6T64Nf2Gd7qvVqc2z9Zj8a+bUTTGbs/2TrbXsxUrCinJmZBnMA33NU6je/14Fgo0bl+DbeuPYVDhaOhZDAYVRQMu7taU9bbH1bMMHl52uHvaAJB0NYdL59PZu/0COZkqF8+lkJlpnBPZxsaSzPRrLbMqNG5ViZ17ToMK2dfqpFzLPJ2enoetg6UxMRcYM0ir+dmjuZ61WgGNCrlaUK8l5TJwLXFWflbpm++pKAp5GIcvoxpbTVXjH8ZrodWA/npL+Y1zWKWnZ3M1PhVnF3t01pb8+fUalv25DUVRCFl1iLLeLmYBsW+AMVOxh4eHWRUMBgNX4hL4duR80OrxrOBEheplQGsgyzKLkE2nuXDxLA1a1MTJyQlra+u7fNUffZs3bwagffv2BaZTc3BwoFmzZqxbt47du3fTtu2dE4wdPHgQgIiICJo3b07Hjh0ZPHgwa9euZfny5WRnZ/Pmm2/Sp08fgoOD6d+/PyEhIfz777/069ePkJAQs/L++ecfcnJy6NGjB+7u7rRp04bjx4+zbt06fv31V06cOEGHDh1wd3cnLi6O/fv3899//z3WAXFubi67du1Cp9OxePFiXnrpJVNQ7OPjU9rVEw8hAwoGSrZXRUkf73EgAbEQ4oH6888/effdd1mwYIGpm/STGhQnJCSwf/9+nJ2dn9hWYYPBwKev/kZaUiaqqvK/79dRvWFFGrSpes9lDvjwGWLOXGb3phNotBrCdp4CK0uzoBfzeA+XMg7GeW8VBa2lBTs2Hsfa1gIvP3vK+dtTxssON08bUCE+NoP42AxOHLjC5fPpVKziy779UQUrcu14mVl511utNbBzV+T1bM+qClYaU0tsWpYeB1edaaokDBi/mW8IhFGvV920XX6vbwtjlmkAxQAGBfSW17ZVVRStguFasi2NXkW1MNZTNagouappX1RQ9BgHGhuzcDFy0B9cOneVgCrlyErNNCXn0mgUfALKkJKUQWZaNr6BZXh30v8V+tpoNBp++HgZYVvPAhC2+Tw6mwhAxdXLDg8fB2xsYrF2UUhLS8Pa2hpnZ2dcXFxwd3fH2dn5sZh7uzAnT54EoFKlSoWuDwoKYt26dURERBQpIN67dy+7d++mVq1aAIwdOxZfX1/WrVtHaGgo69evp0kTY/KynJwcAgMD2bp1K1lZWWY3JJYtW4adnR3t27cHjGOLy5YtS79+/Rg+fDiBgYHUq1cPS0tL0z7x8fH3cCUeDfnBsKWlJY0aNUKr1TJ//nx69+5tCorLly8497kQ4uEnAbEQ4oGZO3cuQ4cOZcGCBXTt2tW03MXF5YkKilVVJSIiglOnTlGtWjUqVKjwxI7Dy83OIzUxw2zZqSMxBQJiVVX573+72b/5OBWqetFr6NNYWlmYrZ8xbilr5+/C2s4KKwdjl1KDQUWj1aCx1JKXd308rEZngZqVBwrodJYEVCvP0QNnKFfBAa+KjngFOOHqYc3Vy5lcPJvG0b2XuXIxg+SELFQVqtXxwdW1DFnpSbiXcTSVq1ybeslsAl24NpdwflB8LWjV5K/ANHY3LSMXT2/bawGvMVu0g40Oz/JOeJdzZevuCHIMqimY1gNYYhoHrNdw/ZtcBb2NioUpflSNzcPXgmsDxlZirgXIFpZa1BvmIUavXh9LrSjEnk8EIOpULJ5ezqZu5AZVJWz3GXJzjF2/c3P02DvZ3PI1P3/6itnz3Bw9qCqXTicTF52KraUzr3/QltzcXJKTk0lOTubq1aucPn0avV6Pq6sr7u7uj12AnJycDICTU+HTUeUvT0pKuqvy8gPiWbNmmYJhMLY2+/v7c+jQIb788ktTMAxgZWVF5cqViYmJIT093RQQZ2VlsXbtWjp27GgWJIeHhxMWFsb27dupWLEiISEhNGjQwJQN2939+jRmj5P/Z++846Mo8z/+fmZ2N70QEgiEQOiE3mvoxXqKFQt279TzVOz17Hrqz8LZ9VSwe6cIVpQiSEsIofdAIAkdEkJ6tsw8vz9mZgsJ1UBC3PfrtZDsPDPPs7PJZj7z/X4/35rEMPiMti699FKvKP4zZv0EOTLBGuIzg6AgDhIkyCnhyy+/9PYZrqm10p9FFFdVVbFixQoqKipIS0sjNja2rpdUp4SEORh8TneWzFzjfe7rd+Yw5rL+JDSL9T43d9oy/v3AVyBgyS9rKSkq57anL/VuX/DDKn6YuhDAEGblbhS7iq5J0HUaxUVyYH+Jd7yuw2U3p4HqpmPvRLbn7KDP2b05uK+S3dtLWD53J/v3OSk55KRrr5bsza2gtNQJGPW3edsLKFuzC4Dcrfto0ymRnfsOgRC0adeUjWt8vUmt4K73ewG6txexkbIsFSP1ubzcQ0S4zUiDFgIpJeU2jfV7Cli/pwBbiEB3YohpDbALbyq2rkhDHFuv0WHOZTNriCMUpNB92dDCb2EC3LqOaop2gWEoZiliCUgzii11SGwRR2RECAf3ldCsVWPWZeV6592z4yAz/5tJZYWLbv1a07F7YOpoRHQYZo44SEnHHsnYHXbWLs2hVfum3Pr4eADsdjvx8fHkrTvA5hUFdOqdQofeSRQUFFBQUNDgBfIfoby8nOzsbNq0acPZZ59dbXteXh5xcXFMmDChxm1RUVEBbtazZ8+mrKyMiy66KGBsly5diImJ4d1332XXrl1ce+21LFq0iM6dOzdYw60jiWELVVX55ptvuOiiixgxYgQLFiwI9o8PEuQMIyiIgwQJUuv89NNP3HTTTUyZMoVLLqk5lRIavijev38/K1asID4+nn79+gWkFv6ZmfTSFQGCuLLMyYrfN3LWFb7I1ZolW4xWSJqORLJiweaAY6zL3Bp4UJebdj1asiu/kDadm9O0ZWNmf7+KxolhpHSKpXWnWOKbeyg75GHhr2spP6ixftluKis8ICUtWjdm7Pi+TPt0CevW7CA83OEnbAXlZc6A6fK2H8DtUFFVwYaNu1HsCrqU3l7EUpOGiMXMjlaFX8RYGqbPQlBepRMRbvMKVY8q8Oi6N1LrltL4Sy2sY5gbDDcsNAWk+WOlC9BDhDetWrdJdJ9hNUI3jLjA/F71pVtLXaJI3yu2O2xolS6vkM7dtIdDB0oBiSQwGg7w5tPfmS9P8Mz719MnzUgDLiupJGfDbt9AIbjwhuEMP78nuq5XE7Nzpy3j5UmfeaPR979+DaMu6kubNm2QUlJaWlpNIDdp0oTExESaNm1KSEhItbXVV6wIsBUpPhzr+eO5ibZ69Wp0XWfMmDHVtuXm5lJUVMTFF19c7TOorKyMrVu3kpaWFvD8t99+i8Ph4Lzzzgt4Pj4+nkWLFvHUU0/x888/88MPP9C5c2cefvhhtm7dysiRIxtUKcixxLCFqqp8++23XHDBBYwdO5aFCxceMfIfJEiQ+kfwtmqQIEFqlYyMDCZMmMCrr75aYzTicCxRvHnzZnJyck7DCk89uq6zceNGMjMzSU1NpU+fPkEx7EdEdBhRseEB0aQmh7XEad+9JbpmpDwriiC1T2Brk0HjugV8LxTBnc9eghpqp6j4EFWeQq67vwfjb+pEXNNwCvforJxziM//byW/T9/OigU7SEiMM6KiikLBgXKmfbrEe7yKCpdXfCqKIMpKCTajrLoqUBSBZppS2UNsSCGQwojgSlX46oZtfmIYjHGqQNoE5U6N8FAVaRPoNsBmukerAt1mjlMxxLCCIbYleMwyZN0Bumo8tBCMMdZUNoGumvMpxv/YrIeZ6i3Mh6ogLHEqBC1bJ/D6V7fxj39ewF1PXEjR/hKkNPodH9xfSkiY3TtPSLghgCw9PWfGCt/7gt96TMLM8TVFdn+bngUYqe8Av327zHcsIYiOjqZNmzb079+fs88+myFDhhBiD2Xbtm38+uuvLFy4kC1btlBaWoqU1YV7fcJy28/Ozq5x+5YtW4Aj1xj7Y6VL9+nTp9q25cuXH3HbypUrkVLSu7evT7Smafzwww+MGjWqRlHXtWtXvv76a4qKipg9ezZdunThtttuIz09nXnz5lFYWHjM9Z4JHK8YtrDZbEyfPp2oqCguuOACqqqqjjo+yJ8DDaVOHkFOjGCEOEiQILXGxo0bOffcc7nvvvu49dZbj3u/hhQprqysZPny5bhcLoYNG0Z0dPSxd/qToSgKj394M6/c/Tmlhyq46K8j6JUW2IrrvGuHUFZSSebc9bTtksRNjxpp99s27OI/z39PVbmLkRf1Jf3XNUTEhHDFvSNZvmI5l96RirPSQ+7GQyz9dRfZmw6hazpCCFRVQdMlQgh0oOBAiREhlVBZ5QKrRtnsU9woIZLUzi1o0iyWceN78ferfP1gdU3HKtZVFIHNbgOzHleCz0DL+4T5n1XLawrmCrextrAwlTKnjpTSaKVkClupA1J42yN5pERGGgpTwxDC3r/kqm8uzLlQBVKCwEjH1oVvoyL8BksICbXjrHChKILhozvz0b9nI6XOORf3DTAlE6rA6fQgVAWpS5LbNmHbpt3oZhunOL8a64joMK675xw+fmUmAJ37pPD+v37gmds/Yfj5PZn0/GXY7D6hkZgc580MUFRB0xa+NN7DKT5YxiMT3iN3024aJUTx5Mc344gW7N27l02bNhEWFkZiYiKJiYnExcXVu9Rqq33TrFmzqkXLS0tLWbx4MeHh4QwcOPCYx7IEcd++fattswRxTdtWrlwJECCIFyxYQGFhYbV06cNxOByMGTOGMWPGMHToUJ566imysrJIT0+nQ4cOtG/f/oxNoT5RMWwREhLCzz//zJAhQ7j66qv53//+d9z7BgkSpO4ICuIgQYLUCjt37mTs2LFMmDCBJ5988oT3bwiieO/evaxcuZLExEQGDhyIzRb8iD0SXfu3Zcrix4+4XVEUrrxzHFfeOc77nMvp4eFr3qXsUAX2MBUl3MVNL47ErTnZs2sXe3PL2bymkILdRu/bmIRIb+9hKSW6rgVEaivKnIbwVPz0nrVdCFS7impXmfHfpfw+e51vcUIgPJLIGAchUaE0aRZDeLiDzMztfnpUeo8lpOEOrZmRYgGmSDVqmyuqNCKi7ZQechotOvwEsVnCjGa1SY4005yFESGWdrxtl4w8bJ8ltVouvRFaiTFOWopYGonPft2pmPrN7Wxev5vGCZE8dOOHVFW5QcKmNTu5+cHz+Ort31BUhahG4ezKKzRqjAXExkXQukMztmfvoVvfNlx568iA9/KK20cz8sJeVJQ5+b/7vmRPXiG6Lpk7fTlxCVE4y6qIaRzJRTeP4PoHzmdPXiEbl2+nc9/WXP9AYMquP1+/NYf8LXsBKC4s48Nnf+TF/91BSkoKHo+HAwcOsHfvXrKystB1nWbNmtGiRQvi4+NPq1DLycnB7XbTtm3bgEyRtm3bMm7cOGbNmsVbb73FHXfc4d32xBNPUF5ezi233HJcPYhXrFiBw+Gga9eu1bYdLUJsCWl/QTx9+nQURanm/bBy5Uqio6OrfTZv3bqVdevW0bJlS3r16kXbtm3JysqioKCA3r17n3GttE5WDFvExMTw66+/MmTIEO644w7eeuutM/bGQJA/ji4Fujy97//pnq8hELxaCxIkyB/m4MGDjB07lgEDBvDWW2+d9HHOVFEspfSmfHfv3j3Yj/IUcXB/MfHJYQwan0LLznEU7CpjxdztrFmQT/khJ0IRxLYwXG5Dw+xcf8dYJj/3A0gjKtw4IYoDOw4eeQJNB5vv4rdgXykLd28AoKio3HjSK3IlFeVODuka+w6VY7Mp6Iowm/6aYteleY2qNLviFbJSmi7TwjDBKqvyEBFmQ5a4DKGqWvMYglNaNcRgmnH5jhMQIdZAqZRElAKdISpf4rYWY82H9TIEuh0UzThQqMNG4/goBg/vyOZ1O6mscHnPg7PKzYJf1xISZqdTr1YUHiiFfN95bNmuKc+8f4PR5ukIF/5NzZT4gr3F3nRoRRFMe38eaEZkfF3mNp7//Dae/+LvR36P/Kgo9aWk6rqkvNjnXm6z2WjWrBnNmjVDSklRURE7d+4kKysLRVFo0aIFLVq0OKk6zxkzZjBjxgzAuAkGkJ6ezvXXXw8YdbYvv/yyd/zo0aPJy8tj+/btpKSkBBzr7bffZvDgwdx5553MnTuX1NRUli5dyrx58+jQoQPPPffcMdfjdDrZsGED3bt3r7F+d/ny5bRq1SrANMtixYoVhIWFkZpquLxLKZkxYwaDBg2qZgz1xhtvMHXqVAYOHEjfvn2JjIxk27ZtfP/99wB89NFHKIpCbGwsw4cPZ/Xq1fz+++/079/f60Jd3/mjYtgiKSmJX375hWHDhpGYmMjjjx/55l+QIEHqnqAgDhIkyB+ioqKC888/n6ZNm/Lll1/+4bTEM00UezweVqxYQXFxMUOHDg2mSNcyUkoKCgrYuXMnu3fvZvD4dmzO3MvSH7dRWeIhtnEE5Yd8hldpIzty2a2jiW4UQUionUYJUfzwv0yiY8K59tYRvP3cD2QuMGo2B43uRPq8Tb7J9BpqThUzFKtjpB+Dt+7WFaJ6haZb002naHPdGOMtfagLiW4Za0lJSKiNKnQQRi/iyHAVabVlEobwtQy6hJBG/S8gFcOsy0r11u3SiBALQAG1HCJ3mq9DNwW0MAy1hARpN4+jS8Nh2gwhu/3qbV1OT2APZ2Dzqh0IYPGv6xC2wN/xdp2bY5yWY0clzr58AF+/P8+4USAEutvjVekrF27G7fIEtNc6GudMHMJv07NwacZ5vPTv1Q2lrHXFxcURFxdH165dOXDgADt37mThwoWEh4eTnJxMUlIS4eHhxzXvqlWr+PjjjwOe27ZtG9u2bQOgVatWAYL4aFjR1Mcff5xffvmFn3/+mWbNmnHXXXfxxBNPHJeQXLduHW63u8YIcF5eHoWFhQwfPrzaNqfTycaNG+nTp49X+GVlZbFjxw4mTZpUbfyFF16I2+0mMzOTqVOnUlVVRfPmzbnqqqt48MEHad++vXes3W6nT58+5OTksHjxYnr06FHvbxTWlhi26NSpE99//z3jxo2jadOm3HLLLbW00iBBgtQ2QUEcJEiQk8bj8XD55ZdTWVnJrFmzas1d9EwRxRUVFSxduhSHw8Hw4cMblLtqXVNSUsKOHTvYuXMnuq6TlJTEoEGD0JyCQzm/ETM0gQuuS2PH1n383z1fGJFVCUvnbuDqu84iJNRITR0wtAM9+qbw1ZSFfPLefM69cgBuTWNleg7p8zYRExdO8UEjstixaxKbs/cFLsQUmggrVdnXPsjq5xuQA23tA976XQDdNNIyRK6gSuheN+gypxkhttKiFUsQY74u4bXAlKrwCWCMlGmpml2MVXD5ZddKMIy6MN2l3b7sahSjjlo1a509mq9n856jRdGp1nK52vdH44b7z6F91yT27DhITGwYk+//yliOIohvFhtQT3wsOvRoyfvzHmFD1nZadWxGm85Jx9xHURSaNm1K06ZN8Xg87Nmzh507d7Jx40bi4uJo0aIFSUlJRzXBe/LJJ0+oLCQ3N/eo25OTk5kyZcpxH+9w+vTpc0QDsVatWh1xW0hICG63O+C56dOnA9RYP3zhhRfW2ELvSAghaNeuHVFRUWRlZVFSUkLnzp3rZfpwbYthi4EDB/LFF19w+eWX06RJk2PWZQdpeOh1YHKlB021TpigIA4SJMhJIaXkb3/7Gxs3bmTJkiVERkbW6vHruyguKChg2bJlJCUl0bVr13pn2HMm4vF42L17N7m5uZSUlNCsWTN69uxJQkJCwPm9/ZlLqKp0kTF3A/ZQB40Soig6UApAwZ5D/PTZEkRYCL/PWkfL1glUOt0sS9+KAObOXAMuj1ezFh+s4JGXr6BDlyQSW8Rx6agXKS2p9M5lBGn9wr7CeljO0dLcbtUe4xuLKWwRSFtg6rM/ZVUaEaGqUTts7eO9Hhde92ZrmyWcPUikTRpRYzOFWkZICnoYg/VQkG5zRwWEHdB8NcQoIA0fMFRV4cpL30ACEyYMMIytTCHlsCm4qnzCqUmzWPbvOQRAy7ZNGDQqtfqLOgJlJZV06NGStHO6I4SgsszJd1MW0Cg+ijtfnHDCYqlpcmOaJh/ZeOto2Gw2kpOTSU5Opqqqil27dpGXl8e6detISkoiJSWF2NjYeingThXTp0+nR48etG7dutaO2bRpU4YNG8bSpUspLS2td677p0oMW5x//vm89dZbTJw4kZkzZzJs2LBaPX6QIEH+OELW974EQYIEqZc88sgjTJkyhYULF9KuXbtTNk9RURHp6el07Nix3oji3Nxc1q1bR9euXavVBAY5cUpLS8nNzWXHjh2EhoaSkpJCcnLyES+a3S4P917+FlvW7QTAbldxVxk1r4oiGHBuT5YsNFrWKKpAqoq3blUIgXR7EH4R0b/eezaXXD8UgJJDFTz70P/YsGYn9hCVyjKXN8JmpEErXnHqjrCh21UjSgymIjV1sxAI6evY64xRwWamXFtRY7sR8e3XJoZWCaH8d+V+43lVemuRvRObYtkZAdKBkaYtJXpj3XtrW0odQiBUKLzUuD0P7NxC1ArFdwwdVM13TKVMw2Yt0KUTUqF5p1TLXaBJhID7nrqI6R/+zu7cAlp3as49/7qEhbPWEx0bzugLehEadnyZEb9+vYzX//kNuibpP7IT/3zruhOKCJ8uiouLyc3NZefOnURERJCSkkKLFi2CJnl/ELfbTVZWFhUVFQwYMKDWb6Ke7JpOpRj258UXX+T5559n0aJFdOvW7dg7BDmjKSkpISYmhuczRxIaeXo/O6rKPDzSfx7FxcXBMq7jJPjpHiRIkBPm9ddf55133mHOnDmnVAxD/YoU67rOunXr2LVrF4MGDarRpCbI8aHrOvv27WPbtm0cPHiQ5s2bM2DAAOLi4o4Ykdu8Ko+lv21ASukVwwBut+at9W2cGEtMk2ijxZKmo2sSxSZQFMN4SUqJqgh0n/ajc+9WuN0estftIiwihPWrd+LWNFwevfoiFKN9EUIgqzwQajPSkcFoXRRup8rlMTSvBxQdU0BLo7+wmX6tI9FDFKQCpR6NyFBfyrQ3DduqEwZfGya7L53aJgUumy9l2kjhlsYDIEziUTVUXfUdy5xD6NIIQlvtoQ5LcNAVgaIZaehT3prL57/cC0D2+p3cfvnbOKvc3jrgnA278Lg1Lrp2CK07NqvxvfO4Nd584lt0s29z5rxNpM9Zz9Bzutc4vi6JiYmhR48edOnShZ07d5Kbm8v69etp2bIlrVu3rhdC7kzEbrczcOBA1q9fz4IFC+jbty9NmjSps/WcTjEM8OCDD7J3717Gjh1LRkZG8GZqkCD1iKAgDhIkyAnx3//+l4cffpjp06fXaOJyKqgPotjlcrFs2TJcLhfDhw8/bgOeIIE4nU7y8/PZvn07ACkpKfTt25eQkJCj7rdh+Xbuv/wNAENU+UfrBLz29Z2UFldQuLeY/QdK0TQdRTHSjYcM74gmYe/uIsac14PULkk8/LcpVFUaacCvP/0dBftLKS2uNFoRefsRG//FJURxsNBwmVaEQPObWPplS0shqHT5GVLZQHebYtMl0cOFmUJttGCyUqhLNY3IEBXp8+gyRLDlSm3VMXNYfTEgbRrYfY2OhYrhoAWgSnSMqDkShCL9WiMfdtPBZq7N7MUk/G4GOP3SpX/4cilul8c4hi5567nvkW5j7O8/r+HjOQ8Q27i6YNR13dsCq6bj1kdsNhspKSm0atWKoqIitm/fzrx584iPj6d169Y0bdr0T5VOXRsIIejatSvR0dFkZmaSmppKmzZtTvt5PN1i2OKVV15h3759jB07lvT0dOLj40/LvEGCBDk6QUEcJEiQ42bx4sXccMMNfPDBB4wbN+7YO9QidSmKS0pKWLp0KTExMQwYMCCYOnkSVFRUsHXrVvLz82nUqBFdu3YlMTGxWu11SVE5uZv30LJdU2Ljo7zPL565BhDoZqpzWJidqioPiiK4+eHzSW7XlDv+8hp78gsB6DKwLS6hkL/9ABvW7OSOh8/jq48X895rs4iKDqOyyu2VhNuz91VzVfbvR2yJYQBN95lpCfBFVgVm5FgJOIa0GdFkBYnbT9xK1awFVqDEoxHp8KshxhS9/t9brZb82i4hMcSwqhvL1azprbphiaqYaeem6ZhPB0s0IYxsbzOoLE3X6cgwB85Sp3eO8VcM8L6ksHBferQQxvthHdLl9LAqYysjzusJwG8zlvPxyzOxOWzc+viFXH7LCP777jwAkts2YdCYLpwJ+LtUd+nShby8PFavXo2qqrRv357k5OSgh8AJ0rJlSyIjI8nMzKSkpITu3bufNlFaV2IYDFO3Tz75hHPPPZfzzz+f33///Zg3A4Oc2WgItJrMI07xnEFOjOBVXZAgQY6L/Px8xo8fz0MPPcRVV11VJ2uoC1G8f/9+li1bRtu2benYsWMwInSClJSUsHXrVnbt2kViYiJpaWnExsbWODZn/U4euOxNKsqqCAm18/wXf6dzX8Pcp0mLRl4xrKgKrTsm8vxntyGEwBFiY+HPq71iGGBd5jaIMqL4VVVunrjnSzBFS2lJJdhtYEY6/REYkc+AGl5/pDTqiAEbVrTYZ6wlrZZJxtMIjLRiiSGOdbMGWSpGuyQdKPZ4sKsKIQ6FKk036pD9BbHgMAdqM+osQdg0FEssq0aLJtUU5ULVDQFuvjKh+CLQ4J9qLRAVHm9LqLJKFzZL8AsYdnZX78u/5Po0Fs5eT1FBKaFhdipLfS2vAH7+bAm/fr6EwWd3552nvjN7E8Mzt33MF0ufYNCYLhQXldN9QNvjrj0+EQr2HOKTl3+iuLCM865Jo//o2hXdoaGhdOzYkfbt27Nz5062bNnCpk2baNeuHa1atQreLDsB4uLiGD58OEuXLiU9PZ3+/fufcqf+uhTDFjabjW+//ZYBAwZwyy23MGXKlODflSBB6pjgJ3eQIEGOSXl5OX/5y18YOXIkjz32WJ2u5XSK4h07drB69Wp69uxJixYtTtk8DZGioiKys7PZv38/ycnJjBw58pi1l9+8+xtVFYbAcrk8fPn6rzzzya0AnHf1ELZt2M3Cn1YRGhFCUpsmHNhVRIu2Rg1iVKyZwm5dVzpshzk6V7/glDU+C1ExoZSWuQKfNNOXw8IdVLg0XzqzW0cPU70RZa8gNsUlGL2IFUBXzRpic7tmM8ZWIXFpOlGhKpVVfoL4cGdpU0h7twlQrOxuYQhPRdG9Wl5VdaSQxsW2xBSnPmMv30W4RAtRUSt0QxxLv4RqCW+/+DM9eiTTqUdL/jdlIUWFZUbU22apdOl13F672OjxvGrxFjDFhpTgdno4uL+Ejj1a1nDGawcpJY9NfIcdW/chdZ1lv23gjZn307ZL7f/uKopCy5YtSU5OZs+ePWzZsoXs7GzatGlD69atgy3YjpOwsDDS0tJYvnw5ixYtYtCgQYSFhZ2SueqDGLaIjIzk+++/Z+DAgUyePJm77767ztYS5NSiSwVdnt4MktM9X0MgKIiDBAlyVKSUXHfddaiqyieffFIvUgNPhyjeunUrmzdvpn///nVq/HImIaWkoKCA7OxsioqKSElJYcyYMcd9gSsUnzwVgFAUNI/G/96aw/pl2+jYO4WY+Cj25hcy++tMfpuexdSFjxGfGEuPQe3oOaQ9q9K3GvvrpsOzV/MdJn+FMKLAum9Cm03F7dEpLaowIsj+mGurqvIY/YXN9GLVLdHCLRMsgRSGeZYRahZIpBXMNcSw3RDNOqbBlTlNiVsjIkRFusy6Wj9BrFttmKyUa9VngiWEjsPhQQjQdZBSWAFsFFVDU6XX1VooZs2zlAifz5YhghXzfEjpbcVksTJ9K2sWZhtO3Tbf7395aRUI8/hSgu7XtOKwiJfdodK81amtl3RWucnbvMf3hJRsXpl3SgSxhRCC5s2b06xZMw4cOMCWLVvYsmULKSkptG3b9pSJu4aEzWajX79+rF69moULFzJo0CCioqKOveMJUJ/EsEXbtm358ssvueCCC+jcuTNnnXVWXS8pSJA/LUFBHCRIkKPy7LPPsmTJEjIzMwkNDa3r5Xg5VaJYSsmGDRvIz89n8ODBNGrUqFaO25CRUrJ3716ys7MpLy+nTZs29OvX74SjZBNuH8vy+ZsoKSonNCKEa+45h/+9NYdPX/kZKWH5gk3eqCOA5tGZ8uKPrF2RT8HeYhwhdq/btPBoSP8YsCkEvQg/G2eM/9weP3XsjXqa31rHsNKjTV2o24Q34gtmHa6fmMXS3EIYdcP+dcE2X+S31O0hMsyGrLTOKb76ZBWfeZcufTXEQKjDg6JIFKGjCwVNl15BrKo6bsUSrASkT6MFdlwUHl/6NIdrBY+GrMFwGyC+aQyFe4pRFIFe5ap5ENA4Mfa4WiyVl1bx2gNfsT4zhy7923L3S1cQEXV8nzshoXaS2zdl17YD6LqOQNCh56mLSPsjhKBJkyY0adKEgwcPsmXLFubMmUNycjIdOnQImvAdA0VR6NmzJ5s2bWLRokVex/naoD6KYYsxY8bwr3/9iwkTJpCZmUmHDh3qeklBahmN01/Tqx17SJDDCAriIEGCHJHp06fzwgsvMGvWrHqZMlzboljXdVatWkVhYSFDhw4Ntlc5DgoKCtiwYQMVFRW0a9eOlJSUk66jbNUhkalLHmfX9gM0a9mYiOgwPn7pR5+OldX3Wb4kh+KiCsB0LTaaAPsilqrw5UZLadQRS1ntYFakFO9QnyC22RQ8Qnj7EXsjtUIg3BIpRECKs+7nCm1WEXtTqb0PTEFsCt0STSPKoXprg1F8AlYK0G3mcw5rm7EWVdWwqdZL1lF0sJsGWzZFx60SeHVk3gOQqr9A9gV6jdMgCIkIASQpLeLIWb0DHWmIXv9DCcFrn99KWUkla5du5Z3Hph1+Rr1cf+/Z1d67mvj45Z9I/3UNui5J/3UNjZtGc9uTFx/XvkIInvv870x54QeKC8v4y3VDadc1+bj2rU3i4uIYMGAAJSUlbNmyhblz55KSkkKHDh2CBkpHQQhBamoqISEhLFmyhH79+tG0adM/dMz6LIYt7rrrLtasWcP5559PZmbmET0WggQJcuqo+9zHIEGC1EvWrl3Ltddey7///W+GDBlS18s5IpYo3rx5Mzk5OSd9HI/HQ2ZmJsXFxUExfBwUFxeTkZHB0qVLadq0KWPGjKFdu3Z/2FQoLCKEdl1bEBFtpJqm9m3tZ/gsSOmY6B2rqEq11Fxv2rUQ4HT7UqJ142G3KSiKoFuvVnRIbe7dLyTMHrgQTRIe6QAFPJqOlNJ0fxZeMYwiUIXw1vVKxUpvFsY4RSBtAl0FqQqvCMZ8SOGLEpdoGlEhKpoNb22x5UStm72GpSIDDLlQwaZKHKobh+rGrrixKTqK2YfYpkqEkMY85n0B63/LhMtyuha69PU61nSqnG5cbo1KKenatzV2h402nZohVMW4qaAojP5LLxKaxdK6YzMqSqoC34rDSiui42r+fZJSMv+7FXw++Re2rNlhRneN9eu6ZNe2/TXudyQSmjfigdev5bnP/87Acd1OaN/aJjo6mj59+jBs2DDKy8uZM2cOmzdvxuOpbuYWxEebNm3o1asXy5YtIz8//6SPcyaIYYv33nuPJk2aMGHCBDQtGN8LEuR0E4wQBwkSpBoFBQWcf/753HDDDdx88811vZxj8kcjxS6Xi4yMDFRVJS0tDbvdfuyd/qSUl5ezadMmdu/eTevWrenVq9cpjXpd8Y+xICVrl+bQpV8brrhjHBmz17E+azs7th1g3+5iig/62iI1bhrDwf3F6JpE0Yw+vP7BytjYCCoqnaxdkYfdoTL6wp7M/3ktzioPik0xehwDqAoVFb4UYAm+VGhpCGPAFy0OSJs+bKw0a4o1ia76pVurprBVoETz0Mzh8DlL+6U464oEuzWXNNyhzW0hqssXIVZA0aQRIXaDqvgEMf5RawUjamxFoAFNAcUoMPb2INZ1Sd62A4S1jqdNl+Y0Sohia85+7+ncvH6n9/wMGNOFz1/7BV2Xpht44I0K5xHSqT99+We+fH0WiiL4cvKvXHzbaFYs3IyqKmiazpBzetS435lETEwMAwcOpLCwkPXr17N9+3Y6dOhASkpKvfBkqI8kJSVht9u9vd/btWt3QvufSWIYjDrqGTNm0K9fPx588EFefvnlul5SkFoiaKp1ZhAUxEGCBAnA7XZz8cUX06FDB1577bW6Xs5xc7KiuKKigvT0dKKioujTp0+9v3CqK5xOJ9nZ2eTm5pKUlMTo0aNPeV1kRVkV65dtY/A5Pbj67nO8z6f2ac2Lk75AM9sw2Rw2UlKbk9q7FVffPpp/PzaNDctziYoNR3PY2LXzkLmn5MD+Yq9wdbs05vy8FiwB6NHp0qsljRpHMeLcbjzzyDd+qzmsxzASqVj5zXhNtoCA3Cuf6zTGP/51xKoZMRZQIjU62G2+bVYNsQBs0ogog5Hb7CeIbaqOXdX9SqQVFLNHk13VQNr9jMUISJn2llALwCbAjVHrbFfAZYbWNY3sdbvM9Zqq2kxJd4T4LiFad2rO5O/vZuFPqynYW8zcGSu82+wOG73Taq6N/PW/S41zr0sUVeCpcvPI29excXkunfu2Jq0BCGKLxo0bM3ToUPbu3cvGjRvJyckhNTWVpKSkYNudGmjSpAlDhgwhIyODqqoqunTpclzn6UwTwxbx8fFMnz6dYcOG0b17d6699tq6XlKQIH8aAgRxfn4+BQUFdbWWIEG8xMfH07Ll6TFDCRLInXfeyb59+8jMzDxjLiQsTlQUl5SUkJ6eTmJiIt27dw9elNaAx+Nh69atbN26lYSEBIYPH050dPQpn/dQQSl3/uVVDuwqAuCWJy5i/E3DAciYs94rhgE8Lg9X3jqSQeO6UlZcyWV/G8G9V7xDaUmV4R0V6hfxP7zXkrcu2HiyUeNI/vnyBAAUVfgixtIUvebuulcAC6949a/J9dYMm/MJIaAKv7ZLpihVjXTrYjxE2VV0m28+b2snFW/vYWMun8u0XTXaLFll0xINB4ZTtZU67RW+llAXGCnk1muQEt3jV0Os+J+ggDzowDfJ7wbBhqztTP9gPiGhdqIaR/m6Tpnn0RFSc9ZF0xaNOFRQgq4ZkeXVGVvZvHYH5141qEGJYQshBM2aNSMxMZEdO3awYcMGtmzZQpcuXYJu9jUQGxtLWloa6enpOJ1OevXqddSo+pkqhi169uzJhx9+yHXXXUeHDh0YOHBgXS8pyB9EkwraaY7Ynu75GgJeQZyfn09qaioVFRV1uZ4gQQAIDw9n48aNQVF8mnn77bf573//S3p6OjExMXW9nJPieEXxoUOHWLJkCW3atKFjx45BMXwYUkr27NnD2rVrCQsLY9CgQTRu3Pi0zf/b9CwKdh/yfv/pKz97BXHzVtXXoUnJbee/Rt6WfYSbrsS6KZqFZZAlpeGW7C/4hDCiribrVubzy4wVLPxtA3GNIigoKDM26H7i0sSqxVUqNTyhii/dGV/kFyGQuiGOHQLcii9iLG2WY7SkWHcTraq+yK3uK482aobN/sPooErvNkVIHIrmFaChqkaI6aIVrjgDRLz0+0IogbZXqr8Bt1v3nhp52A0Df+ftSPM8H9hdxENXvoXHbawjqlEkNocNj1tD6pKzLh9Q7f2yuPe1q3nu1ins3n4Ae6iD3Ow96JpkQ9Z2miTF0W3AqeszXpcIIWjZsiVJSUls376drKwsGjduTLdu3YKO1IcRGRnJ0KFDycjIYNmyZfTt27dGoXumi2GLyy67jDVr1nDhhReyYsUKkpKS6npJQYI0eLyCuKCggIqKCj777DNSU1Prck1B/uRs3LiRiRMnUlBQEBTEp5H58+dz33338fXXX9OxY8e6Xs4f4liiuKioiPT0dDp06HDCtWl/BkpLS1m7di0lJSV07tyZ5OTk037DwBFiN9smGdgcvoSm3kM70jutAysWZQPQfWBbVqVvZYdpwFRZVhUQnYyODuVQSZXxhJQEtFQCs1UToIA9ROW1Z783hgrw9jAynsEI92IIZJvxtc2N0d5I8dUQe3sRg9dAC3wu0yh+5lgCStEIV1VUO3iQoPuZXykS7P69h6U3euxQPNi8kWCJTQG7+eLD7B4QGqAatdR+dc1GerTvJal+pyM2OpTyqnKjjrfc5afMfedNVRW2rcnnwu6P0a5zc9xOj/cMFReWkZiSgLPKzeiL+nDDA+fW/CYDSa2b8PavD6JpGue3vS9g29a1OxqsILZQVZV27dqRnJzMhg0b+O2332jfvj3t2rU7YwXdqSA0NJTBgweTnp7OsmXL6NevX8D5aShi2OKpp55i3bp1XHDBBSxatCjYzzpIkFNMtRri1NRUevfuXRdrCRIkSB2xd+9eLr/8ch577DHOO++8ul5OrXAkUXzw4EHS09Pp1KlTrfUubih4PB42b97M9u3badWqFf369aszg7Exl/Zj7rRlbFqZh82ucsfzlwdsf/bjv5K7eS+aR6NN5+a8dO9X3pCnlJDQLIZDRRW43RqHDpaDzbhA9kZK/VBUBd1stFtcXOnb4OtDhCKlEXdVahCHVmqz8BfEvlph8IsKK/hMsQRgOlSX4kGTkii7wkHdc1h9rwRV9/UHVqQ3W9mm6KiKNVxiV1yEmRPbFA2paqCr1VK6/fsk4ytJBuCc8X245PzePH33F2xeu9PXqkpAl14tUW0Km5duo6zUuMmwYWU+wmEHt8d8jSp7dx5EAN9NXcTFNw2nUUIUR2PpnA3VnuvSv81R92lIhISE0KtXL1q1asWaNWvYsWMH3bp1+8NthxoSDofDK4ozMzO9wrehiWEw+jJ//vnnDBgwgEmTJvHee+/V9ZKCnCQSgX6a+xDL0zxfQyBoqhUkyJ8cTdO46qqr6Nu3Lw899FBdL6dWOVwUx8bGkpGRQWpqKm3a/Hkuto+FlJLdu3ezbt06wsPDGTp0aJ2mzB/cV8y8GcsZc0k/7npxAo0TY4mKDUwjFULQulMzAPbvLqL7gDYs/nUduq4hhGDQ2K58/7nxvqMHRoWFlF7xipTofqbIrip3tVZO5oRGHTHWWBHg3myZannbG/mlRntNrLBcovGJYVV6xWqpbtQRH3S7A+t+bWaatBkJFn5f24T0GlwLXESobkKl8ac93OYEofqcsIXfemy+r9H9vgaGDGxH44QoSg5VBN48UBXWr843ToUIrChu1z2Z6AgHLpeHtctyvefK7fKwb9fBYwri/K17EYpAmqnpqk2hQ/c/X4ZQXFwcw4cPJzc3l+XLlwfTqA/DbrczaNAgb8u33r17k5mZ2aDEsEV4eDhff/01/fv3Z/To0Vx++eXH3ilIkCAnRVAQBwnyJ+df//oXW7duZdWqVQ2yBYglihcvXoyUkm7dupGSklLXy6o3+KdHd+nShRYtWtRpPXVpUTl3nPsyRQdKkVLSY0h7/vXl7UccP/O/S3n9n9NAQos2CYy/fiipPVuybfMe7xgBSI+GIzIUV5Ub6ZEYvYlM5OExY3M/IQIEodB0dLsCijD1s0R6U6qlN01aYhph+QtQP7HsNdXSMYp3zQhvqdSItiu+ul0rQqxKFJuO8Cv0tQyzzHbIAISrbsJUjy9lWtFQFB1dqoFtl8DcSZqGX34nCvj5p1WsWLqNSqfb10/48NOlKgH+ZOdcMZBzLu9PZbmTm8e8yCGz9jq6UTgbludyqKCMAaM7H/Fnq8+wTnz66kyEqiB1ycCxXWsc92dACEHr1q1p3rx5MI26Bux2OwMHDiQ9PZ25c+fSqFGjBieGLTp16sTkyZO5+eab6dOnTzCr6QwkaKp1ZhAUxEGC/IlZuHAhzz//PDNnziQuLq6ul3PKsASGEAJN0+p4NfUDXdfZvHkzOTk5dZ4e7c/q9C0c3F/i+37xFg7uK6FxYvWItZSS95//wRvZ3LntAEhJm9TmJCQ1OmywGf3FMlY+rI4YfFbN1teA0CEiNpSKShc2RaHSz5BLqn4CWPfLO7Yisla/YYHx11Zgtl2yxpp1web3JdJNtM0GlrO1jpkmLVHtmiGCBUhdeIWs/2VPiKJjUyTC3N+uaGYNsd2v9ZP18qTPyNrtq39Gl/z60xoUQHdr3rLjw8+ValPo1LMlBwtKOfuy/pxzeX8AwiJCeO2bO/hu6kLKSipZMHMN//nXjwBc+rcR3PRAzSUZFaVVDBrblYMHSuk7vBOX/G1kjeP+TNSURt2zZ0/i4+Premn1AiklQgh0XffdRGqA3Hjjjfz2229cdtllpKenn9K+70GC/FkJ3kIIEuRPSkFBARMmTOCBBx5g+PDhdb2cU4ZVM9ylSxeGDBniFYF/Zg4dOsTvv//Ovn37GDp0KN26dasXYhggvlms7xsBjlA7ETFHNpQ5/EJ43bLtAERFhzH8vO5Hnujw6+fDXZRNFAFuj46U4HZrvjFWCrUQSEWgVhoiOKCtkjBTpc30aWkDNHO7AoqiGvXAQgKSYukhxmYzIsHWQ5GgaKiqht2mY7fp2GwaqqKjCD1grRIIV500chi1vXZFQ5f2wHRpq94Z37oUl7/FtCHuNd2MfntrpgNPV+PGkbiq3PRJa8/4a4cEbGuS1Ii/PnoBzVrFe29CAPz42ZIa34q1S3N46Oq3SZ+9no3LcyncV0JIqKPGsX9GrDTqNm3akJGRwZo1a/B4PHW9rDrDqhl2OByMHj0aKSWZmZkN+mbn+++/T2VlJQ8++GBdLyXICaJLUSePICdGUBAHCfInRErJtddeS6dOnXj88cfrejmnDMtNOjU1ldatW3vTp/+soljXdTZu3MiiRYto3rw5w4YNq3fttTr1SuH6B88nNNxBbONIHnnnekLDahZHQohqEcf5P65i+ULDfbr/8E4BY72tk6Q085X9OExY2+0qEsPt2uXyoHv3Nf6RAqRHesWmw22YWqFiRIFNAy0d83/VeEinEZk1Uqil0fJJkQhVUio9RCsqqDpC1RE2HcWuodh17DYPDrubEJsbh82NEBqqUk3VE644CRdOAMLVKqRUfHXNwvfwClwJ7sjD+wvji2B7I+b4bgQIwYHcA+Rs3M0v/83kw//7ucb3p1F8lPe8CUUQExdZ47jM39ajKIq3TdbimWtqHHc4azK2cvf4yUy64FVWLtx8XPucqQghaNOmDSNHjqSkpIR58+ZRUFBQ18s67RxuoBUSEsLAgQPxeDwNWhSHh4fz1Vdf8cEHH/D999/X9XKCBGlwnLAgzs3NRQjB2WefXasLmT9/PkIInnzyyVo97h+hqqqKe+65h2HDhtG8eXNCQ0NJTExkyJAhTJkyBbfbHTB+6tSpCCGO+hg9evRxz6/rOm+++Sa9e/cmPDyc6Ohohg0bVuOH4a5du5g8eTLjxo2jZcuWOBwOEhMTueSSS1i6dGmNxy8pKeHmm28mPj6e1q1b8+qrr57YCQpyxvLqq6+yatUqvvzyywZZNwxGFNRyk/Y30PqziuLDo8IdO3ast+/9hH+MZfrm/+PLlc8xYMzRa0kHjelS7bl5368AYMDIVJ+IA1/LJUDoEtXqNeQ/xsSjGY2AK6vc6B5TPAsQbs3X29evNthrroWfsZaK0XLJZv6vGJ2aLBGMCkKRKIphklUq3EQrKopNmg8dRTUeIXYNh+rBYfMQYvNgVz2oaqCoD1dcRChuq8kS0YrTjD7ja7lkPfx3PdKPgRCEhYcYp0c9bJBZr6nrki1rd9a4++iL+jDiLz1BQGxcBA++emWN41q0beoVw4qqkNz+2M7KJUXlPH7te2xemUf26h08ccN/AlLtGyoREREMGTLkTxktPpKbtGW05Xa7WbZsGbquH+NIZyY9evTgxRdf5LrrriM/P7+ulxMkSIMiWEN8FMrKynjnnXfo378/5513HgkJCRQVFTFz5kxuvPFGvvrqK2bOnOm9qOzZsydPPPFEjcf65ptvWL9+PWedddZxzS2l5PLLL2fatGm0bduWm266CafTyXfffceFF17IG2+8wT/+8Q/v+DfeeIMXX3yRtm3bMm7cOBISEtiyZQszZsxgxowZfPHFF0yYMCFgjptvvpnZs2dzzTXXUFBQwP33309kZCR/+9vfTvKMBTkTyMzM5LHHHmPGjBkNtqVHaWkpS5YsoUOHDjWakByrT3FDQtd1srOz2bp1K+3ataNDhw71VggfDx63RlWFi4joUIQQxMZHoqgCXfNFS7v0bQ1ARGQoIWF2nJXmzUuJ121aIEhKbkx+XmHgBKbY1XUZIKSFoiCRWPoSs35XE6aZliK87tLedGnra4w6YiN9WgFVM4WpIYSFWRtciptoxYaqat7lKoqOEOBQPdhVo5mGroKUOh6pBLRUjrQ5/V8CigDVpqN5lMC+StZajoPpCx5C1yUXj3wBZ5XHez6kJlEUgZSS3kM71Livza7y4GtXc9//XYGiKkc01Bp7aT92bdvP/O9XkJSSwN3/V7Nw9mdPfiFOv3Rst8vDnrwC4ppEH98LO4MRQtC2bVuaNm3KypUrmTdvHr169WrQtcXHaq1kieIlS5aQlZVFv3796tQc8FRx++23M2/ePCZMmMCCBQvqTalLkCOjoaCd5oTc0z1fQyAoiI9CXFwcxcXFOByB6Xoej4exY8cya9YsZs6c6e3b2rNnT3r27FntOC6XizfffBObzcZ11113XHNPmzaNadOmMWTIEGbPnu1tyv7888/Tt29f7rvvPs4//3yvW27//v2ZP39+tVrQhQsXMnr0aG677TbGjx/vNWOoqKhg2rRp/PTTT95of1JSElOnTg0K4gbMoUOHuOyyy7jzzjuP++bMmUZlZSVLliyhdevWtGvX7ojj/gyiuLi4mBUrjGhpXbdSOlm+m7qA2d8sIzE5jmHn9+TfD/6PirIq+gzvxOPv3Ygj1M7jb1/H/933Fc4qN8PP78nZl/encF8xX7w1F4fD5hXEAsvZ2Uhv3rFtvzfSeTQUIdCt1GGzRZHRfkkYAWdL+LpM92orGmv+L8w2R9Iy0LLMtMy0ZKFIhIAy4SZa2FEUI8IlhMRmRoEdqptQm0SxMr+lQqXHESB0KzwhJIccJFYxHJ6F1PF4jnBh5H0N+EQ+gGWwJSVhdhtnD3yW0DA7VVUe31RCMOGvw9mXV0D7bi246PqhRz1/qk1l67qdzPwyncjoMC69ZSRRsRG+86so3PjQX7jxob8c9Tj+tGrflEYJURQfLAcgMiaMlI7Njnv/hkBkZCRpaWls27aNjIwMWrVqRWpqKjZbw7q0O94+w5YoXrhwIWvWrKF79+4NUhR/9NFH9O7dm8cff5x//etfdb2cIEEaBKfsFoLL5eKNN97grLPOIjk5mZCQEJo0acLFF1/MypUrA8Y++eSTjBxpOEo+9dRTASnGubm5p2qJx0RRlGpiGMBms3HRRRcBsHXr1mMeZ8aMGRQWFnL++ecfd0Tuu+++A+CRRx7ximGA+Ph47r77bpxOJ1OmTPE+f/HFF9dojDR06FBGjhxJUVERa9eu9T4vpURKGRApUlW1waYaBTHe85tuuokWLVrw/PPP1/VyTgkul4v09HSaNm1Kp06djjm+oaZPSynJzs5m4cKFNGvWjOHDh9d7MaxpOponsP4vY/Y63n1yOjnrdpI+ax3/N+lzKsuNKOjy3zcx6+tMAAaM6sw3K57mhw3/4r6XJiCl5KFr3ueX/y2l9GAZ/o5QTZMaoSimIZbnGJ93iiFuda97tPC16zX7DgtpfO1vUmX5mViRYd1mOEtLm/T2/7VSrYVpqiWEpBQXkdiw2zTsNg2bavzvsGmE2zVCVI/xUDyE2z2oQkeXZptlwCkFifYSQhXjPDYRJUihBMwXUENspk/3aNOMfr1ScACKWzfTvgUVLiMiXGXeUJB+j7Mu7cfDk6/m0puGo5rp1Plb9zHpkje4Ju1ZvnhzDvN+WMnUV2ay4KfV3Hfp6/zyVQbfvPcbD1/9DisXbWbbhl3H+dNRndDwEF759i7OvXowZ185kFenTyIi+sjma/7s3LmTG2+8kebNmxMSEkJKSgqTJk2iqKjohNbw008/MW7cOFq0aEFYWBht2rTxOgGfLqxo8YgRIzh06BDz58/3vo59+/ahqip33HHHaVtPbXO8YtjC4XAwaNAg9u7dy+bNDbOuPDo6mi+++ILXX3+dWbNm1fVyghyDoKnWmcEpu4148OBBJk2axNChQzn33HNp1KgR27Zt4/vvv2fmzJksWLCAfv36ATBixAhyc3P5+OOPGT58OCNGjPAeJzY29lQt8aTRdZ1ffvkFgK5dj90r8YMPPgCMFOXjZe/evQC0bt262jbrud9++42nnnrqmMeyUmr87xpHRERw7rnncuWVVzJx4kQOHjzIl19+yWuvvXbcawxyZvHOO++wcOFCVqxY0SD7NXo8HpYuXUpERMQJRQYaWqS4qqqKFStWUFFRQVpaWr38DD2cX79M5+3HvkbTdK6571wu+utIfv9hJYtnrjF6AUuJrunofnpZUQRlJRU1Hq/4YDk7tx/wPaFrjBzfhx4D2xIdF8FTd37m2yalr9eun7GWwBK2wldya9XfSjOKKkBIiWZGg22VAlek8bWwUqZtPrdpI2XaMuKS3mMJc3wZLlQhiFZslAsPqjDTpAWEKB4cqkSY/Y6FpqMqOroU3hTp9mEHCBEuQhUPJUCEw4Xd5sbpsfsZZRlz2ot9p6BC83DLxYNZvjgnsMWSf+jY7/cpuVVjkpKrt2l75raP2Z1XgK5LPp38q/E+WensmuY9vznrd/HIlW8DcPXdZzPxnnNqfB+PRbNW8dz+7KUntE9OTg6DBw9m//79XHjhhXTq1InMzEz+/e9/88svv7B48WIaN258zOM8+OCDvPTSSzRu3Jjx48cTHx/P1q1b+e6775g2bRqffPIJEydOPKnXdTJY0eKtW7eyePFiUlNTmTt3Lrquc/HFF5+2ddQmJyqGLcLDwxk0aBCLFi0iJCSkxuuoM53+/fvz5JNPcvXVV7NmzRqaNftzZUcECVLbnDJB3KhRI/Lz80lKSgp4fv369QwcOJBHHnmE2bNnA3gF8Mcff8yIESNO2Fhr8uTJHDp06LjHjx8/vsbU5iPhcrl4/vnnkVJSWFjI3Llz2bRpEzfccMMxTbLy8vKYO3cuLVq0OCEjMqsWaPv27aSmpgZs277daCuSnZ19zOPk5+czZ84cmjVrRrdu3QK2TZ06lbvuuotPP/2UyMhInn322YC65CANh1WrVnHffffx5Zdf0qJFi7peTq2j6zpZWVkIIejbt+8J18g2FFG8f/9+VqxYQXx8fL3pK3wsig6U8O8HvzL6+AJTX/iRhb+sJWe9FT2UZsYQJLVOYEfOfgAiosIYeWEfAMpLKtm/+xBJrRNwhNiIjg2ncdNoig6Uopu9Ss+7oj+fvD6HjavyUVUFTdPNFGrpy5USAkUR6LokKiaMknJnYLchSxPq0ttXWPUIPGZU2C7BpZg1xVgp0sY4qYBUzbmkL2Va84A9xBC6GpJKPERhowI3DpsHh2qs06G6Cbdpvgg1AsUUxEijtlnVNaKUKsAojYlWKnBraqAYNl+n8HOozt6+n3sf/xrCFKjUCZAdCr6wsPWemWnKh2OJYX90s9ZY1811CoH0y0T68t+/cvntY3GEnJ4037///e/s37+f119/PSByes899/Daa6/x6KOP8u677x71GHv37uXll1+madOmrFmzhiZNmni3zZs3j1GjRvH444+fVkEMRrS4ffv2NG7cmKysLCorK2nZsiXDhg07reuoDU5WDFtER0czYMAAb9/e5s2bn6KV1h333nsvv//+O1dddRVz5sxpkDe6gwQ5XZyyv0AhISHVxDBAly5dGDlyJL/++itut7tWLtgmT55MXl7ecY9PSUk5YUHsH4kVQnDfffcdV+3GlClT0HWd66+//oQ+rM455xy++uorXnjhBUaNGkVoaCgAhYWFTJ48GeCYNwHcbjfXXHMNTqeTF198sdr88fHxfP7558e9piBnJk6nkyuvvJIbb7yRCy+8sK6XU+tIKVm9ejWVlZWkpaWd9EXBmSyKdV33pn1369aNli1bnjG1c2XFlV4xDIAQfmIYQNB9UDs69WzFhNvHsHXdTvbvOkivtI7ENYlmbWYO/7zhA5yVbpokNeLBf1/NrGlZtOuaTNkhQ7hdcvNwfpmWxZrMbQBI1c9VWteRKCAM5RcRHcozr17JhrW7+OjdubjcejUHauHWkSGqL4Va4BPB/k7Ois9cSyrS/N5qY2REfvGAQJpG14JS3DRWFUptbmyKhxDVSKcOUzVCFTeqkEgEAhWb0HFLgV0XZhTZRaRwgVAoBEKFG5uq4dKr3yDyhEKIpWvd1poEOACX79xbqeH4mZaFhlX/u11WUklImIPKCnNnv2i7rksaJURRWVpJVGw4B3Yc9G5TVMVIYT8MzaORvTqf0PAQWqfWjpjJyclh1qxZpKSkcPvttwdse+qpp3j//ff59NNPeeWVV4iIiDjCUYwb3bquM2DAgAAxDDBy5EiioqI4cODAEfaujiWi7733Xq666iqefvppFixYgKZpjBo1infeeYfExEQ2bNjAs88+y5w5c3A6nQwdOpS3336bli1bBhwvLi6OPn36sGDBAl544QUOHTrkjXovXLiQ1157jdWrV7Nr1y6io6NJSUlh9OjR9aYe9Y+KYYvGjRvTt29fsrKycDgcDc50TFEUPvnkE3r16sWrr77K/fffX9dLClIDOgr6aTa5Ot3zNQRO6S3ZVatW8dJLL7Fo0SL27t1brU1RQUFBraR5nOo648jISCNlT9fZvXs3P/zwA4888gjp6en8/PPPREfX7Gqp6zpTpkxBCMGNN954QnNeddVVTJ06lXnz5tGtWzfOPvts3G53gDPw0aJglghfsGABf/3rX7nmmmtOaP4gDQcr4+KVV16p24WcIjZu3MiBAwcYOnToH77BdiaK4srKSpYvX47T6WTYsGFH/Dyqj7hdHrZv2EVskygO7S8NbI/kJ0JveXw8rTsZoqjbgLaA7335z3M/4DLdjw/sLebRmz7C5XSDNHoIfzj7fuISopjyml+tnS7BbLkkrE5MZnp0SXEVd//tY6Ru1Odi8zk0WyZUigQN42YMQgS2XsL3tZUqbaUeeyPE/qIZFSF0s44YKnCRIMNw627iiCBadxCGjVjNjQMVu7Sh6HYU3cEATxgOqWJHQSCIKunHTgGaOxaAgs2Pcl+XCHQJGhKXLnFqOk5d4q7Q0JIlLo+Oy6khy3UqKjXKy9xUHXJTXu6mstjlDQwLBa+hWIcaBOrvP67yieEaKNpXbNw80HS6DmjDuqXbEEJw61MXY7MHCh63y8OjV73N2gzDo+PS20Zz06O+m3l78go4VFhG2y4tTiiyPG/ePADGjRtX7e9nVFQUQ4YMYdasWWRkZBw1+6t9+/Y4HA4yMzMpKCgIEFoLFiygtLSU8ePHH/e6LOO77Oxs0tLSOOecc7jpppv45ZdfmDFjBk6nk9tuu40rr7ySUaNGcd111zF//nx++uknrr32WubPn1/tmL/++ivPPfccM2bMID09nQ4dOvDNN9/w6KOP0rJlS8466yzi4+PZt28fWVlZ/Prrr/VCENeWGLZITEykW7duLF26lLS0tHrvpXCixMXF8c4773DppZfyl7/85bi8M4IECVKdUyaIlyxZwqhRowDjj0/79u2JjIxECMGMGTNYvXo1TqfzVE1/SlAUhRYtWnDbbbcRHx/P5ZdfznPPPceLL75Y4/g5c+aQn5/P6NGjT7iGxWazMXPmTF544QW++OIL3n//fWJiYrjooou477776NChQ7U70xa6rnPjjTfyxRdfMHHixGOmfwVpuCxbtozJkyfz22+/eR3GGxI5OTnk5eWRlpYWYD73RziTRPHevXtZuXIliYmJDBw48Ixyl9V1nX9e8w6rF28xnvDWrRoRSIkwaorvOdsrhmtC8+j45/NW+YmyqkoXWzfsov/wTrTr3NxwlcZvuKL4q2Hf2jQ/sy0/Qy3rCWE5NJt1xNKbQm1usCLDuhkRNsWkVHRCbIIEWwhNHHaaqA4aqw7ihCBK2InCTgQ2WnmiqdBcVChVOBUnbsWNXSkH1YVbKccjPLiFh22V0biFhiY0pJBcnZBOc0cZzsoW7MifSHKrKbz/64U4tRBsNoFDUQhRFEIUQVi5QqQUOGwK0TYbofEKYaEqURE2IsJsOBxGWnlFuYfyMg8VZW7KStxUlmuMv7IH5eXlhIWFeYWlzX6Mnz1dGsZflW6uvvsc4pvFEhEVSqOE6jdwVi7c7BXDAN+8M5fL/j6G6EYR/PjxQt765zcgIaVTM17+dhIRUaFHn9vEMlnq0KHmNlHt27dn1qxZZGdnH1UQx8XF8eKLL3LPPffQuXNnxo8fT+PGjcnJyeH7779n7NixvPfee8e1JvAJ4szMTDIyMujevTsAjz/+OC1btmTWrFmsXLmS2bNnM2jQIMDIXGvXrh0LFiygqqrKm0VmMX36dCIiIjjrrLOorKxk6dKluN1uxo0bxw8//FDNMLSgoOC413uqqG0xbNGqVSucTifp6ekMHTr0qNH/M5Fzzz2Xyy+/nOuuu44lS5YEU6frGZoUaKfZ5Op0z9cQOGVXT8899xxOp5OFCxeSlpYWsC0jI4PVq1fX2lynuoa4JsaNGwdQ451Zi5Mx0/InJCSEJ554olpvY2vOvn37VttH13VuuOEGPvnkE6688kqmTp16RvccDXLyVFVVce2113Lrrbd6L6IaEjt37mTjxo0MGTKEqKioWj12fRfFuq6zceNGcnNz6d69O8nJyXW2lpKict5+7GvyNu8l7dweXDnprOP6zMnbvNcnhsE0lxJExobz8FvX02NIe6TE62B8JK655yyeve1jNI9ORGQIuqJSVeFESomqqrRqZ2TU/O2h81j46xo8brN2GOEXiTZFsdc0C69otqLCvjZJJrqO9F54ShCK0WtYM/aJdqg0DQ+hSYyNBIeDBIedBIedGNVGua6xX3dxQHdSqLnY5aigHBelws0QNRpF6GREZuNQXISoHlQBzUIPEq66sZnLduqQK9uA6TKtSQU1LJ/48FL0iP3syJ9IXGQeuSUunNb6/XDsloRWGec9tNAvwc6jo5gB9GghiIywERFlp1uP5nQenEBktJ3Col3kzzU8LKSmIHSVZi2bMPj8duSs3cfBvRX0HtKBpb9tQGCIbrfHiOI7whykdGpObOPII76n1VKozXRyKSUfPPed973J3bSH+TOyOO+atOoHqYHiYsNJ7EhRQuv547memDRpEikpKdx444385z//8T7frl07rr/++iPesK4JSxBPnTrVK4bBiFqnpKSwatUq/u///i/gc9zhcNCxY0d27NhBeXl5gCCuqqril19+4ZxzziE0NNT7KC0t5cYbb6S4uJiEhISANdR1OvGpEsMW7du3DxDFDe0G8ZtvvkmXLl145ZVXeOCBB+p6OUGCnHGcMkGck5NDXFxcNTFcUVHh/fD3x/rw0zSt2rZjcapriGti9+7dAEdM0SwsLOS7774jLi7O26KptrDqfq+44oqA5/3F8IQJE/j000+Ddwr/xFip0kfKYDiT2b9/P6tWraJfv340atTolMxRX0Wxy+Vi2bJluFwuhg8fTmTkkYXF6WDyfV+wdM56dE0nd9Nu4prGcM7Vg4+5X0R09ajem78+QOtOzQPqnwv2FrNs/iYSmsXQZ1jHarXRA0d34cN5D/HlW3OZO305UncT3zyWpi0accWto2jSPJZ3n/2en7/KMILBVr2y1EExPx/dGoT6UqOtZr9CmunPlkCTplGW13ba+DraZqNpYhjNGoXQNCaUpEYOImwqB6rc7PG4OOBxs720ir2OCvbjohINs1sTAFHh5WYNMZTbbDTTorErHuyKi1BVxyYkoYoLh9CwCcOlWhEKKtK7ZqcmaWLzoAiBYj6pCnFYk2EfNutPrRDeCDbS6N8kAY8OJeUuSg8ZEfetG4oQwPW3jGDEqB6Ehdv5110fc+hgMTFNwmiclE9c81Da9elEWISdqOgozr2xKzHRMXiq4Mcp6XhcOpf/fcxRxTBAr6Ed6TeqM8t+2wDAtfedR1RsuJGiflg0v65q5V966SUeeeQR7rzzTv7xj3+QmJjIpk2bePjhh7n66qu9JWPHory8nOzsbNq0aVOj8WZeXh5xcXFMmDChxm1RUVHVXLFnz55NWVlZwLVH165dGT9+PGvXrvVeF4waNYq4uOpu4aebUy2Gwfg56dq1K06nk4yMDIYMGXJGZdQci8jISN577z0uvvhi/vKXv1QzYw1Sd9RFG6STnW/nzp08/vjj/PLLLxQWFtKsWTPGjx/PE088ccLXWitWrODll19mwYIFHDhwgNjYWDp16sRNN93Etddee1LrO5Wcsk+DVq1akZ2dzfr16+nSpQtgiN377ruvRrMJ60N5x44dJzzXqaoh3rBhAykpKYSHhwc8X1FRwT333AMYqSo18emnn+JyuZg4ceIx70Tm5OTgdrtp27ZtgMAuKSmpVg/4zTff8NFHH9GvX7+AVgpWmvQnn3zCZZddxmeffRYUw39irDYi8+bNq7GX9plMaWkpy5Yto3v37sfd1/tkqW+iuKSkhKVLlxITE8OAAQPqxQXdlrU7vCnGiqqw/Th7yzZJiuOvj4/nw+e+R+qSq+85mzaphhHj1rU7WJ2+lUZNonn76RmUl1QBMOG2UVx/b80ten79X6b36/07CrnlkfPZun4X875fyZzpy40NfuJJ0STdB7YmJ3svbTo2I2/PIQoLy3wHFAIhjQJjaZlLYbQRatosnOYtwmmeHEHTxiGEhagUlLvZXexke0EFcw8VsbvKhVtK3JHSMNQSoNvcCFV6g9H46TtraVVKJRGeeByKRqiiEaK4UQSECA8hiu7V5oqUKKICMG4s6AiKPWGkhLjRhfHZH4rqi3gfhrAsPaQ0Urut12wNtgLoEHCAqe/N55N//YSqCHSXG3SdHZsAv8+ZiBgHf3/6PKKiIykqPsihQ4foNDqWqKgoSj0HyMvTiY+PJzw8vJqgdVW5ef7Wj1j22wZiGkcy7oqBZM3fyOZVefzt8Yu45cmLeOOh/yGlpG3XFoy8qHqm1JGwIsBWpPhwrOeP1aps/vz5PPjgg1x00UW8+uqr3ud79+7N9OnT6dChA6+88gq33norbdq0OeqxVq9eja7rjBkzptq23NxcioqKuPjii6vdfC8rK2Pr1q3Vgg4A3377LQ6Hg/POO8/7XHx8PIsWLeKpp57i2WefZdKkSTz++ONs376dZ555ht69ex91naeK0yGGLYQQ9OrVi4yMDJYvX07//v3PGPPB4+Hss8/2pk6np6cHrwGDnBC11ZIOjIyFu+66i0aNGnHeeeeRlJTEwYMHWbduHT///HPDEsRr167l+uuvr3Fbp06duOOOO5g1axZpaWlcfvnlhIaGMn/+fHbt2sWIESOqpRp36tSJ5s2b89VXXxESEkKLFi0QQnDHHXfUmQnC//73P1599VXS0tJISUkhOjqaXbt2MXPmTAoLCxk6dCh33313jft++OGHwPGlS48ePZq8vDy2b99OSkqK9/kBAwaQnJxMamoqoaGhZGZmMn/+fNq0acPXX38d8GH39NNP8/HHHxMZGUmHDh149tlnq81TG6niQeo/Vqr0bbfdxsCBA+t6ObWKy+Vi6dKltG7dupqz6qmivojivXv3snz5ctq2bUvHjtUjpXVF/1Gdmfl5OkIYtbe9hnU87n0v/tsozrsmDQmEhhmCavWSLTxy9dtIXSKFgvAzXJoxdWGNgnjr+t3Vnnvloa+pKDN9Krxp0EaK9EU3DGXM+F608atNvuWa9wxB7CsVNrojSWiSFE5SiwhaJEfQrHk4bo/Ozl0VbN9ZTvqagxwocnKokfDWFFc0MSPJ+NUQC8NNGkUGeIdZEwohEYDbVkmYMwSbouFQ3DgUHVXoOISOXXhQhXnzQSpEK07KCUVI8Gg6sarEJlSsxkl2YfV9OgwZqJC9GcpWCrm0Gjv5/yP9xhjO0agq6Lqvj7NJebGLg7ucjDon1dxFUlVVxbbsfDat2crOiL1g8xAaGkp8fDyNGzf2CuQfP1lI5tz1AJQcLOfrt+caa1QFuZv3MmXxP+k7IpVDBWW0Tm1ezZDraHTsaPxsHqll4ZYtRgr/kWqMLX788UfAcJQ+nPDwcPr378/06dNZuXLlMQWxlTHXp0+fatuWL19+xG0rV65ESllNyGqaxg8//MCoUaOqXTt17dqVr7/+GpfLxfz58+nduzdJSUlccsklbNq06bSnEZ9OMWyhqir9+vVjwYIFbNq0qcFFUt988026du3Kyy+/zIMPPljXywlyBlEbLekAZs2axZ133snYsWP55ptvqpW0HW6wXF84aUG8e/duPv744xq3DR8+nIceeohvvvmG559/ns8++4zw8HBGjRrF9OnTefrpp6vto6oq3377LQ8++CBffvklpaWlAEycOLHOBPH555/P7t27WbJkCenp6ZSVlRETE0P37t254ooruPHGG2uM0GRmZrJu3Tr69+9frffviTBhwgS+/fZbMjIycLvdtG7dmscee4z777+/WuTYipKXlZXx3HPP1Xi82kgVD1L/eeKJJ1AUhRdeeKGul1KrWL2Go6KiTvtFTF2KYiklW7ZsITs7m169etXYzq4uufXpS0lIimPHlr0MHNeNQWd1P/ZOfoSEBWYwzPnGiPQa2bHSq92EgOjY6mY45SWV7N950Ns/2MIrho29AzJtGzWOCBDDAOPO68m7r882tseH0LptFC1aRdIsKRyPR7JzZznbckqZv3AfB033ZU+E6mcGJnzu0uaUAeJaAKpEKLqhHy3TLV1BSultveRUKgnTQrAJDYfQCVE0FCFRhIcQ4fGKV1XRCbF5qPBIFAE2KUi0O1FRjIg2oAoVu+rG6ale2nM06SGt6Lhi1O1GhtmpKDXOp6hyIw4PO+t6NWfwweO6+M6+EJQUVvLPKz/CWeFC1yUjxvfihsfOoaCggPz8fFavXk1oaCjukEra9U0kb10BrkqP95i6Jtm3o5CK0ioSmjciofmJl0pYAnbWrFnouh5Q615aWsrixYsJDw8/5o1EyxD0SK2VrOePJzvHEsQ1eYJYgrimbStXrgSoJogXLFhAYWHhUUu1HA4H48aNw+Px8PLLL/PII4+wffv20+pQXBdi2MLhcNC/f38WLlxIdHR0vftM/SNYqdMXXXQRF1xwQYMT/GciUiro8vR6+cgTnK+2WtIB3H///YSFhfHFF1/U6O9SG+12TwUnLIhTUlLMOp5jc8kll3DJJZdUe37q1KlMnTq12vMDBgw4qknV6aZv3741/iE6Fv379z/ucwRHTvl+8sknvXWgx+JI5zTIn4ulS5fyxhtvNMhU6Q0bNlBVVcXQoUPrJDpaF6LY4/GwatUqDh48SFpa2jFTOesCu8PGFXeMq7XjxTWJ9motIQSxjSMpKiwjMjqM+14O9E1wOd3cc9mb5G/ZZ4xXFd9n72ECzZ9fp2Vx0fVDvdFFj0cjOSWStFHNSGkXRWSknR15ZeRuLWHxnN0cKHaBqphtlARSNeuNTdEIgCaRNkN4CxfIcFMEu0Hazdxjj0QJ8dPQKmi6YfJl1RA7lUps2AgXApuioQojQmzDg2q2ZrK0dnN7ESWeWDRAFyGADQXNFKygoGBTzR5Rh+PnJWacr8DnfaJe0H9oRy66uC9TXp7J2vScmo9lmp8J4LKbh9G8ZaBJU+bc9VT63aSY/91K7n1lotd8yuPxcPDgQXLCtlMxrowR16SyZ+sh8tYVkreugLKDTlp1SCT8OB2la6Jt27aMGzeOWbNm8dZbbwVEQZ544gnKy8u55ZZbAi74aippGjp0KG+++Sbvv/8+t9xyS4CgmjlzJosXLyY0NJTBg49dS79ixQocDgddu3attu1oEWJLSB8uiKdPn46iKAE951euXEl0dHS1z6zc3FxefPFFLrnkEpo1a0Z0dDTNm9dOz+ejUZdi2CI6Opo+ffqQlZVFREREvfxsPVnOOussrrjiCq699lrS09PrRWlNkPpNbbWkW7duHWvWrGH8+PHExcUxb948li9fjhCCnj17MnLkyHpr9Bv8LQkSpIFgpUr//e9/Z8CAAXW9nFolLy+P/Px8hg8fXqd3F0+nKLZapaiqyrBhw6q1VTkT0XWdH6YsZOOK7XTu24bzr0ur9sfx8tvHkr06n9VLttKyXROe/PCvNGoSjd2hVhubvWanVwwDSF0/ogj2Z9f2An76cjF523YQ1yKM0BiB26VhtwsWzdvDztwyPB4JmiFWsSlIU4lKrxu1QLhAD5VIIVCqJHoooICtClwReKPAXgXrkohIHaH4zK2lTeDRJA6HEdet0J1oaITrDjyqkSZtEzoOIVGFzw1aEZAQUk62UyKkwKNr7HFG0she4hXEAkG5+yg3xo4kig8rOl6RtZ1HHh9PRHgIQhFI3XAEV4RA8whEqAOhKOhma6U2nVtUmyqhmS+iKxRBTFwEqs33ftpsNpo0aUKTJk1o1aINyxetp2uPprTrWkGlswxPlaRN+xSKiopo1KjRSd8Ue/vttxk8eDB33nknc+fOJTU1laVLlzJv3jw6dOhQLcOqppKmSy+9lDFjxjBnzhxSU1O56KKLSExMZOPGjfz4449IKXnhhReOWW/ndDrZsGED3bt3r/EG5vLly2nVqlWNx1mxYgVhYWEBEUApJTNmzGDQoEEB/gpvvPEGU6dOZeDAgfTt25fIyEi2bdvG999/D8CVV15J586dWbFiBSUlJae0JKM+iGGLxMREOnbsSGZmZoP5jLV44403vKnTDz30UF0v50+NhkDj1Pw+HW1OMHxH/AkJCamxNKK2WtItW7YMgCZNmjBixAgWLFgQsL1bt258++23tGvX7vhfzGkiKIiDBGkgPP7449jtdp5//vm6XkqtcvDgQdauXcuAAQPqRf/I0yGKi4qKWLp0KU2bNqV79+4Nxhzlm3fmMuVfPyAUwe/frcDt8nDJLaMCxkREhfKvL2+vltK6fOFmXr73S8pLq7jk5uFce8/ZNbgVC2/LHl1Keg5qy9ZNe6ksd6J5NFRV0Cq1Ee17JaBFFBLZVJC9dg/bcyvYt6fSGxW9dOIgVi3bTk72Xl9NrfBzmMbbbhhNgrSB6hK4hRGVVk2RKa1AsjAHIxCKRFHMemJTYLtcEBFq7FPkCsOpVhKuOygTGg7hQVEkSB3Fa21tHNehgCIkEknjUDcbKuLoHBl4AYRQfG2kjnBN5g0OW+uUBESV7WYk/YpbR7JqyVaqKl1ICbrbaKUkpdmLGaPWN2/LXiAwdX7A2C5ceusofvxkETFxkdz/74lHFF3NWyfQvPUI7/dut5v9+/ezd+9eMjIyUFWVFi1a0KJFC6Kjo09IvLVt25asrCyvk+rPP/9Ms2bNuOuuu47bSVVRFH7++WfeeustvvrqK6ZPn05FRQVxcXGce+653Hnnnd7WjEdj3bp1uN3uGiPAeXl5FBYWMnz48GrbnE4nGzdupE+fPgGfDVlZWezYsYNJkyYFjL/wwgtxu91kZmYydepUqqqqaN68OVdddRUPPvgg7du3B4zI99KlSykpKaF37961HlmsT2LYol27dpSUlLBs2TIGDx5cL9ZUG0RERPDee+8xfvx4LrjgAjp37lzXSwpSBxzekvGJJ56oMfO0tlrS7d+/HzB8lJKSkvjpp59IS0tj3759PP3003z22Wecd955rF27tt5lMQYFcZAgDYCMjAzefPNN5s+fX+8+ZP4IlZWVZGZm0rlz52p9M+uSUymK9+3bx7Jly0hNTaVNmzb1xjyrNlixYBPgE08rF26uJogt/MWwx63x3N8/MfsLw1dvzaX7wHb0GtKeWx+/kI9e+hldl3Tq1ZLQMAcR0aGMvaQfm9bsZNWy7TRvHU37XvG06RpHVbmH/fmV/O+l5RQfqEILtUNkGOALLivAM69cwVV/mWx8r4NHMQYIIQxZaplm2QwzLdWqHw74X6Ii8AjdjBI7UIThGm3pbFWR6CIMqEAA5VoEbrWKCBlGhaJjUySK0NHxenYZ8wLGSiRCCBRF0ieyIOAcGj5iOlhu00fCz+RLWLnbfi0Qx55tiNuO3ZOZ8tsDrFu2neduneKLI+s6wqYizDru3mlGlOHHjxcyb8ZymqXE89d/juemRy7gpkcuOMpCasZut5OUlERSUhK6rnPgwAF27tzJwoULCQ8P94rjwztCHInk5GSmTJlyXGOPVNJkt9uZNGlSNfF5IvTp0+eI5VWtWrU64raQkJAajWmmT58OUK1++MILLwxIoT4S0dHRDB8+nKVLl5Kens6AAQNq7e9JfRTDgDeVc9GiRaxZs4aePXs2mM/ccePGceWVV3LttdeSkZERTJ3+E7Jjx44Az6FTbZyn68ZNW03T+Oqrr7y906Ojo/nkk0/YtGkTWVlZTJs2jSuvvPKUruVEqZ+J3EGCBDlunE4n1113Hbfffjv9+/ev6+XUGh6Ph6VLl5KYmEjr1q3rejnVsETx5s2bycmpoa7yJMjPz2fZsmX06tWLtm3bNpgLM4v23VoiFMtVWdCuW/Ix9jBwVrqoLHcGmCMX7jPuaF94/VDuePYSPB6Ndcu2k7VgM02aN6Jd90Tc4hATH+zF2Kva43Fp/PThRr58eRW/fZ1NcbHHPLgLkAF/DbM37iE+IRopRGDysBJonCVNE2cpqj8w+wV7o8o+7y2EkChCoirS+Np0njacpu241QpCNAeqABUjTdotZICmFUCIYolkidOjkmCvDDhvAoi0V9XYekn6PbyDzdcrpfS2LxYCLrzYV6caGxfJoDGdiU2INuqGVQVVSC66Lo1xF/Xluf/cSNc+KSyeuZq3HvuGDVnbmTc9ixf/8clR3+PjRVEUmjZtSp8+fTj77LNp3749hYWFzJkzh0WLFpGbm4vL5aqVuc40pk+fTo8ePf7Q56XD4WDw4ME4HA4WLVpEZWXlsXc6BvVVDFuoqkr//v3Zt28f27Ztq+vl1Cqvv/46Bw8e5OWXX67rpfxp0aWvF/HpexhzR0dHBzyOJIhrqyWdtT0xMdErhi2EEN4bc5mZmYfvWucEbxcFCXKG88orrwAc0V38TERKycqVK1FVle7du9dbYVibkeKtW7eyefNm+vfv7zUaamhcc9+5uFxu1mXk0H1QO66adNZx7RcRHcagsV1In22041FVhbUZOURGh/LNe/PIyzHStGwOhbY9E9DCD7Fw4UIaN4vih6kr2bW1OMCBWlqGW6qC6tHQNA0pbF5RuHXrXq645A2kQwVNN/OifUZTEgwh7HcsaYlOSyBbKcpW9NUriA0xbP1IqwpowoNZnYwQEpdaSYgWik3YEcKJKkDW0EzY+q0QAkJUF9urIulm913QSKDMc1jU1Gvb7RskFQG6KbitlGm37h0+a+ZaLryoL+ERxsXU/O9XcehgOZZ7d7f+7fjrg+cFTLMxa7u33ljXJNmr8gDTLX7+JspKKhkwqjMR0WE1vOPHh81mIzk5meTkZKqqqti1axd5eXmsXbuWpKQkUlJS/lC98ZnGxo0ba+U4VmuiNWvWsGDBAgYPHlyjW+zxUN/FsEVYWBj9+/dnyZIlREVFNZjP4IiICN5++20uueQSrrrqqtPWrjDImUVttaSzjnMk4WyVpNTGjbbaJiiIgwQ5g8nPz+e5555j2rRpDSpVOjs7m6KiIoYPH15vHQkt/qgollKyfv16du7cyZAhQxqU2+nhOELt3Pb0pSe17yNvXssr93/F/O9Xomk6s7/NYvY3y0DqxCSGM+SiNnTo04SyIicb0vcw/tJziYqJ4J1H5x3edteHqoDHg6h0IWPs3pzpkio3uDy+MegIl4ZuV7x9eaVipErjAWk3RWUFyFgMUekB7Hj7GRtY7ZV8ghjjcAEi2WOrIMwdhYJExdKuoUhZ5ethDH4VxRBuhzJNBKTZ6ui+1lVWurUIWJB3fhSB1HxhYV0V4DG+//Ct3/jk3fk888oV9B3Qls1rdqCqCpqmg4Sd26u3H1qbmWOkxpvnq01Xw2jrtQf/y5xvDOOVxJaNefOHe/6QKLYIDQ2lbdu2tG3blpKSEnJzc0lPTyc8PJyUlBSSk5ODKaMngKIo9OjRg02bNrFw4UIGDhxIXFzcCR3jTBHDFnFxcXTv3p2srCyGDRtGZOThHgVnJmeffTajR49m0qRJfPvtt3W9nD8deh20XTrR+WqrJd3AgQOJiIggNzeX8vLyar4v69atA6iXWX/1+0ozSJAgR2XSpEmMGTOGs88+u66XUmvs37+fLVu2MGDAgFNe71JbnGz6tK7rrFixgj179tTbtkr1BZtdRVUVr2kWUtKqSxzn3dadS+/tgyNE5ef/rOfrV1ZSkFdFXEI0oWEOxoyvbljkRRiiVlT6Umy97Ya8JlRGayXVcotG+KLApmCVivFQXYBipEpTZUaQBYZBlTDEoWWE7f+wq9Ks3zXEsketwKGHoQh/yeswK4atyDSGYZbfS2nqqMCDhsd0xNLRcNgOqzU9XAt7DGHtM/4yn7fGmZFjTdN54v6vePzWqSg2UwwLQFUod2tcM/Yl/vuf+bz7zHd89NJPZK/eYd5gMN6vHoPbU1ZS6RXDAHvzC1n2+6Yjvz8nSXR0NN27d+ess86iTZs25OXl8euvv7J27VrKyspqfb6GihCC1NRUOnXqxJIlS9i7d+9x73umiWGLli1b0rJlS5YtW4am1dSv7MzkjTfeYPbs2cyaNauulxKkHmK1pMvNzeWtt94K2Ga1pLvmmmsCBO6mTZvYtCnw8zs8PJybbrqJqqoqHnvssYAbtGvXrmXq1KnYbDYuvfTkboyfSk5YEOfm5iKEaFAX4LXFZ599xi233ELfvn0JCQlBCHHU3sC7du1i8uTJjBs3jpYtW+JwOEhMTOSSSy5h6dKlf3j8ifLiiy8iTNOYjIyMWpm7pKSEm2++mfj4eFq3bs2rr776h9cZxGDWrFnMnj2bN998s66XUmtUVVWxYsUKunbtekS3w/rKiYpiq0a6tLSUoUOHNphoxKmk24C2KKqg69DmXPloP9IubcfurYf44umlLP85n4SmCSh2lX17SrhuxAs8detUfv9+BVExgaZZAVhBTJNqY/yfkCB9IVsjKuxnpGVTfMIyxBTORv9h61jgqQyMDgsBxs14aQVqcdvKcXjCvC2OfShIv4fmJ26lhDJNQUdHmrFjXUrc8jBDrcPFvhtQhSHq/dK8FU+gozWA26WRuXALMz7PYPwNQ+k3ohMi1E5FpYsDe4uZ8vpsvv9sCd988DscFo2NaRyFI8SGqh7W47IWosNHwmaz0apVK4YPH86gQYNwuVzMmzePjIwMCgsLT9m8DY02bdrQq1cvsrKyyM/PP+b4M1UMW3Tu3BlVVb3RrIZAq1atuOeee7j99ttxOp3H3iFIraEj6uRxorz99ts0adKEO++8k/Hjx/Pwww8zatQoXnvttRpb0qWmpga0fbN45pln6NmzJ5MnT2bQoEHce++9TJw4kQEDBlBVVcXLL798SltWnizBCHEt8thjj/H++++Tl5dHs2bNjjn+jTfe4O6772bbtm2MGzeOe++9l7S0NL777jsGDx7Mf//73z80/kRYt24dTzzxxBHb2pzs3DfffDPTpk3jqquuYtCgQdx///28//77J73OIAZOp5Pbb7+de++9t5qt/pmKlJIVK1YQHx9Pq1at6no5J8XximKn08nixYvRdZ0hQ4Y0qP6Xf4T9uw7y/K1TuP/S1/n9+xUB29xuNyk9Yrj5hTT6jG6FQ4uib48BNIpMYNi5vfj3d3ezO78Q3VSJhftKyPhtIy6nh9KiCsCvfFaAogh6D2prhGylJLTKiVT8aoEPE5G6AsKjG2NUY6MUGKnF5teWgZYUoPvtr+ITBG6nLWAd3v+l73tNrcSuhXOYpRceaRi0SGkEnXW/P+EC0IQTj9TRzQlcUvMGtX01w353AIRAhvh9LXx10Yrud2BrP9238L17irnuvnPN2mzfi9WlNFKlD1Pz/UZ08qa7Wwwa15XewzpyqhFCEBcXR58+fRg7dizR0dFkZGSwaNEi9u3bd0Q35yA+kpKSGDBgAGvXrvXWE9bEmS6GwUgX79u3L7t27WLXrl11vZxa49FHH0UIEQxMBKkRqyXd9ddfz9KlS3nllVfIycnhrrvuIiMj45h91S2io6NZuHAhjzzyCAcPHuTNN9/kxx9/JC0tjV9//ZW77rrrFL+SkyNYUFOLfPDBB7Rv355WrVrxwgsv8PDDDx91fP/+/Zk/f361PoMLFy5k9OjR3HbbbYwfP96bNnqi448Xt9vNddddR8+ePWnfvj2fffbZH14rQEVFBdOmTeOnn37yZhQkJSUxdepU/va3v53QGoME8sorryCE4JFHHqnrpdQaW7ZsoaKign79+p3RJjjHqimuqqpiyZIlREZGVusjeroo3FvMGw//l93bDzD60n5cfvvYenHOH7/2PXbk7EfXdNZl5tCkRRytOyeSk5NDbm4uMTExDBoykISEBO96O/b03TwpNoVvdUxHLCEQAoaf14N7nrsUu8PG5tX57M0vJK55LHff9YUh5A7XR0J4o6aakIb7tMAQxpaIVDDqcHUzimxFh5XDDxaGEKUBhwZLaxpjnUoFNj0UcVgdmFvakOjeMmCXDEyZjraX45IS3UyZdqFjt1VRpTu8AWGrqNnbe1gxxb5utlxCIjxWAPlwa2rp/T+2cSRzf1jl16tK8YpmoQhUVcHjMtK1J95zNk2TGzP9rx96D6Wogpi4yNP+cxcaGkrnzp1p374927dvZ+XKlYSGhtK+fXuaN29eL34P6isJCQkMGTKEjIwMPB4PnTp1CjhfDUEMW4SHh9OzZ09WrlxJbGzsEYMFZxIOh4PJkydz2WWXcfXVVwcNtoJU40Ra0h3tRmJkZCTPPffcGWX2esojxFOmTGHAgAFERkYSGRnJgAEDakwjnj9/PkIInnzySbKyshg7dixRUVHExMRw0UUXHbEXYH1izJgxJxTZuvjii6sJTIChQ4cycuRIioqKWLt27UmPP16ee+451q9fz0cffXTEP2AnM7eU0og0+BXnq6rq7VMW5OSwjLQmT57cYIy0CgsLyc7Opm/fvtjt9rpezh/mSJHiqqoqFi9eTExMDH379q2zC8YX/jGVZb9tYMfWfUx94cdq0di6wO3ykJe9F92MIEbFhZK9ZROzZ8+mtLSUQYMGkZaWRpMmTYxewLrOnGnLmPLij6xbto3SQxU0alxD2rmwFCuoNgUpYf5Pq/nff+YD0LFHS5b8uob7L30Dr02VoGbjKWkKYUWY0WRpCGHNFyFWnBg1xgpe4Slr0FiH6y6X38diuXQhkdi1MPzMsXFLFZf3YUOTxs+PtdQqXVCFjlM3BbGU6OZ9b+n/j3+qtWat1xf9tSLgNZ5HICwihIn/GM2WDbsCX4wQJLdJoF3nJF78/Fa+XPEMX616lqsnnY2u6xQfLPfNq0uiYo+vb/CpwG6306FDB8aOHUvLli1Zv349c+fOJTc3t0HVjtY2sbGxDBkyhLy8PDZu3Oi9KG5IYtiiefPmJCcnk5WV1WCuW84991xGjx7N3XffXddL+dOgSVEnjyAnximNEN9555288cYbJCUlcdNNNwEwbdo0brjhBlauXMm///3vavssW7aMl156iZEjR3LLLbewcuVKZsyYwdq1a1m3bt2fJrXQEgXH64p5ouMtVqxYwXPPPcfTTz9N586dT2yRx5g7IiKCc889lyuvvJKJEydy8OBBvvzyS1577bWTmieIwaRJkxg9ejTnnntuXS+lVnC5XGRlZdG5c+cGZSp1eKS4efPmLFmyhNjYWHr37l2nkajtG3Z7haeiKuRu2gMX1tlyALA7bHTo0ZJdefvofVYKHQcmEtMogt79ehAdHV1t/Kev/sJXb85GURW+fncuEZGhlB2qgNAQr0ALiwihssKJQBDZKJzSYrPVg4TP3pzLhROHsGXdDhb8tNqIiHp0cCiIw/sPgxFd9rZeksb7Zxb9qhhRVilAdYLH7E+MB+OvbE1p2NUObwNcKALKdQWPWonNE4Zu92U8e1C8Gc9SgscUxFbE+Md9qVyR5Lsx6ZJQ5Qk5bF4R+J/ZLxlFIISRjy3c1o2BQEfqAcM6MnhwOwaOSKVRfCTOKk+Aso9LiOI/sx6o8fWlz15H0QH/yLjgkr+NOPIJOU2oqkqbNm1ISUlh165dbNmyhezsbDp16kRycnIwYlwDUVFRDBkyhMWLFyOlpH379mRkZDQoMWzRpUsXFi5cyIYNG+jatWtdL6dWeOONN+jatSuzZ89m7Nixdb2cIEHqBadMEC9YsIA33niD1NRU0tPTvQY5Tz75JAMHDuT111/n0ksvZejQoQH7/fzzz3z11VdMmDDB+9y1117Lp59+yowZM7jiiiuOa/7Jkydz6NCh417v+PHj6dmz53GPP5Xk5+czZ84cmjVrRrdu3Wp9vIXT6eTaa6+lZ8+ePPBAzRcxf3TuqVOnctddd/Hpp58SGRnJs88+yz/+8Y+TmiuIz0iroZh9WHXDsbGx9dKG/49iieIlS5aQnZ1NYmIiPXv2rPOL7P6juzB/xnKEYkRaT0cd57Fwu91c//QYcnO3U3rATVKjtgwc3eOI43+bngWArukIISgrMcVulRN7mIMnPryZdl2S+PXrZei65MC+Yn7+b2bAMQ7sPUTu5t2+J6qcEHKUDAVTiUqheOuFdaS39lgqpvGzZbTlBKx7uFVAGF6n6UDNYAhsxXSdLnSG4THriKukIcSNHxkVXaoIqSNRcPsymJFAkR5BhQTVfL5Is+Mxla/3R86MlnsDCLphqCXMULS3Fto71ieIJ/5tOEnNG/G/jxZw6GA5O3ILAgTxoJHVDVYsSvyiw2DUGoeF194N7oP7ivl+ygJ0XXL+dWk0STqxFkGKopCcnEyLFi3YuXMnmzZtYuvWrXTu3JmmTZvW+e9sfSMqKoq0tDQWL17Mjh07iI6ObnBiGIwbJn379uX333+ncePGx+UPU9+xDLb+/ve/s27dujOmm8OZypnQdinIKRTEH3/8MWAIYH+32EaNGvHEE09w9dVXM3Xq1GqCeNiwYQFiGODGG2/k008/ZdmyZSckiPPy8o57vSkpKfVCELvdbq655hqcTicvvvjiMf+4nOh4fx5//HG2bNnC8uXLT+qP2PHMHR8fz+eff37Cxw5SHctI65577jljTacOZ9u2bZSUlDBixIgGe8EZGhqK3W6nqqqKqKioevE6J/3flSS3a8re/ELSzutJ90Ht62wtmqaxfft2srOziYmJYfiIYcfV77R5SgIFe4vRNd1I2/QTbu5KFz98uoRVmduIignn/pcup3HTGGb+b5k3xTM8MoQ5363k26mLjKiy24NSWoUeHYH0b/Z72NulVuq4Q1SkariHSisaLPF+7XWdFgpu/zRsyzTLYzlLG5Moh/UlLnDF4FYrsHnCcKMg0FGkt4sxUqpogKYr3pRqKQXNwoop0CKxS+NPeyUOHDYPLo/DOD1WVrTVQkqCogK6b80gwKH40qr9MkVDHDaevPMzNqw0/rbqQqAoimmsBZ26tTji+zVgdGeiG4VTYtZ5nz1hII6Q2rkEcVW5uWf8axzYfQiAudMy+c/vjxEeeeKCWwhBcnIyzZs3Jy8vj5UrVxIZGUnnzp2P21Tmz0JISAgOh4OysjKioqLqfc/4kyUyMpIePXp464nDwk6dM/rp4tFHH+WLL77g1VdfPabfTZAgfwZOmSBeuXIlACNGjKi2zWoAvWrVqmrb+vSp3jOyRQvjj+yJRHxPRc3xk08+We25SZMm1Vqap67rXH/99SxYsIC//vWvXHPNNbU63p/09HRefvllnnzyyZNKA/ojcwc5OV599VWEEDz66KN1vZRaoaioiI0bNzJ48OAGUwt9OJaBVnx8PCkpKWRkZCCEqPOWA45QO1fedVadrkFKSX5+Pps3b8bhcNCnTx9vffDxcPdLV/DiXZ+Sv2Uf/UelMu/bLJ/Jh6Kw9PfNALiqinnmH5/x36X/5LX//p1PX59NeGQIZ13al8f+OtUYLwQ47PTp05ZNReWUlJltSWrwDLG7waXgNdqyosO6nyAGn8C0fKyEUJFSAwHOKhs2u8ecWpr9iK3JJB5CcZsRYolAk4o3oqtLcOsqOuDRVaQUZoRYUOoJQSJw6jZzrMBjfo3w9RYWlveYMNyqVWFFtv1SpCUIK/RsbkpqEce65bn+7yJNW8ThcnkYdW4PRp9fc0Tf7fLwf/d84RXDYy7uxx3P1V4fyvwte9m346D3+4P7Sti2fhddB5z875mVSp2cnExOTg7p6ekkJCSQmppaYwr/nw2rZjg0NJQ+ffqQnp6Ooih07ty5Xtz0q21atGhBQUEBWVlZDBky5IwX/5bB1uWXX87EiRMbTLeKIEFOllMmiEtKSlAUhYSEhGrbrPSjkpKSattq+kNj1abWtdHFU089Ve2566+/vlYEsa7r3HjjjXzxxRdMnDiRd999t1bH++PxeLjuuuvo3r07Dz300Clfa5A/Tn5+Ps8++yxff/11gxCPbrebrKwsOnbseFzRwDMRq7VSbGwsvXr1QghxVPfpPxOFhYWsWbMGj8dD586dSUpKOq6LaCklVRUuwiJCaJLUiFe+udO7zaYqzPqv2RPd71hSQllJJQX7SujYrQXP/ucGPn97Li/eV71VXJeB7eidEMm7b/9mHqeGNQh8rtOAJqShKBGGMZUQRlTVRs0tnABPpQMZ6fHqTyGkOUR606M9tgrsWjigokkdyxdalwK3ruBBxS0VJB4kRgTYhZ1y6TB6IAMleiiK0NGFEiju/ZN5TPtp72Zh5HT7L1ma59fusBETF0HxoQpvOvU9T46nW9+jlztkztvAqsW+Vj2/zcji9mcvITSsdj7LEpIaYXfY8Lg9SEBVFJom187nit1up1OnTrRu3Zrs7Gx+//13WrZsSWpqaoP4LD4ZajLQGjJkCIsWLUIIQWpqaoMUxV27dmXBggVs2rTppD1X6hPnnXceo0aNYtKkSUybNq2ul9Ng0RHop9nk6mT6EP/ZOWWCODo6Gl3XOXDgAE2aNAnYtn//fqSUp/Qu66moIT5VvQp1XeeGG27gk08+4corr2Tq1KlHvft4ouMPp6yszNtH8Eh/0AcNGgTA9OnTGT9+fK3NHeTkuPfeexuUkdbq1auJjIykXbt2db2UU4LL5fK6SfsbaB2rJVNDp6qqig0bNrB79246dOhA27Ztj7tcY0fOPh699n0O7C6iU89WPD31r0TF+FyK7/jXBBb9tJqKsirQNUtpesXoP2/6iPd+vod5P67iszfnVp/AbCUkxFE+exUBNsUoAhaG07RRLyxQhZFCLAXIMpCNMebWoXqo2YjsClOMWpcuQpqRWsCtVhLqagQIJCoey7FaCjxS4MKGS1OQUvPWEIfY3TilHY80PterdDseiS80bIaspfcvv/RGsQMunzzV/9ZFRIaStXgLhw5VGqMFNGkWe0QxXFXh4rk7PiV77U6atQwUp1IaLtO1RUxcJP/84GY+eGY6ui65/qG/kNC8Ua0dH4z04G7dutG6dWvWrl3L3Llz6dy5My1btmyQ4u9IHMlNOjIy0mu0pSgKnTp1quOV1j42m42+ffuyYMECEhISagz4nGm8+eabdOvWjblz5zJ69Oi6Xk6QIHXGKRPEvXr1YuXKlcyfP5/LL788YNv8+fMBTmnN7plSQ+wvMCdMmMCnn3561AvEEx1fEyEhIV7X78NZsGABW7Zs4YILLiAhIYGUlJRanTvIiZOZmclPP/3E+vXr63optcLu3bvZv38/o0aNapAXkh6Ph4yMDCIiImp0k/4zimJd19m+fTubNm2iSZMmjBo1ivDwE2u58/YT31K49xAA2Wvy+fS1X3B7dPbkFXL25QMY8ZeeNG+dwLb1O42aVo8HHD6DrPztB9i5/QC/z1xTXQBKSbsuzVmbkcOCmWsRjcORDr8/j9YOZt9hR6lOVZyKtJlHMeuGpfm1Q4BTYAhRD+Aw99cworPCiPSim7XDspqhMy61ApsW7p1el8IQw4CGSoVmQ9PtZlslgQYoiuSgFkGYDpHAIS0Cm92Nx636XgcYIt1/XiFA80WJVX9BbP78lpZU8srT35k3GQRSSg4UlDHrx1WkjUwlPCLQmOepW6eyKn0rACVF5YREhuIsqzJOlyr425gXuP+1q+k+sHZuivUb1Zl+o0591C4yMpKBAweyd+9e1q5dS15eHt27d29QDvlH4litlaKiohg8eDCLFi0iJCSkQRolRkdH07lzZ1atWsXIkSNPuLNHfaNVq1bcdttt3HfffSxfvjwY4DgFSMRpj9jKYIT4hDllv8nXXXcdH330EU899RRnn322NxpcXFzsTT2+7rrrTtX0Z0TfYiv1+JNPPuGyyy7js88+O6YYPpHxFjk5Objdbtq2bYvdbicsLIwPPvigxrHXX389W7Zs4eGHH2bgwIF/eO4gfwwpJQ888ADXXHNNg7i4cDqdrFmz2gTOLwABAABJREFUhu7duzfIFmq6rpOVlYWiKPTt2/eIFxcNSRRP/888fvh4EXFNo7nrxStIbtc0YLuVHq1pGv369auWMXS8FB8s95o36brkl/8tw+02IsGrM3LweDTuffUqnr75Q/btKKRt1yS2bDng3V8Crz89gzVZuYaAtcyihOCf/76Kzj1bcVXac8ZTFW5DEHv764LV70hKidDNyDDSqOH1jjHTpBVjRil8HZeMRViDQNcFQgUp7QjhxtSk3mxmt60KuyfMz9NK4EFFk6BJBbfuwK1bbqICXYeDVeHEOpy4dQeRGON0j933GswToVT5fa8YStxyzUaCWqlV68OseXQOFpQa504CNgVdUXj56e/55vMM3px6c4BJ1qZVgTeknZVuI/wtJZpHp3BfMU/fMoX/rngGVT2zLsKFEDRr1oyEhAS2bNnCokWLSE5ObtBp1MfbZzg6OpqBAweyZMkSQkJCaN68+Wle6amndevW7Nmzh/Xr19Ojx5Gd8M8U/vnPfzJ16lS+/vrraqa2QYL8WThpQbx27Vquv/76Grd16tSJhx56iDvuuMPb7+ySSy5BSsm0adPYuXMnd955J8OGDTvZ6eslH3zwAYsWLQKM82M9Z0XE09LSuPnmm73jn376aT7++GMiIyPp0KEDzz77bLVj+qdyn+h4i9GjR5OXl8f27dsDIr4nwsnOHeSPMXv2bFatWsU333xT10upFdauXUtcXBxJSUl1vZRaR0rJqlWrqKysJC0t7Zg3jBqCKF7++ybef3oGAPt2FvLkjf/hwwWPAUba+Lp1604qPbomLrpxGK/e/5X3e7fL441WAvzvvd94/5f7+WjRP5FSoms61415icJ9hleFalcMMQzGPqYzNMC/7v8fX/z2EDa7isetoTg96DVkL0hdIm0KCGFst3ScWTssJYZgxBSNAhQh0KyJdLBUsqYZwsp/Gv8s4ipRgU0LA1NwSwluaQhgp67i1Gy4dQVdqkYEQoKm2KjQVUJ1M6orQxGqRGpm1rT5sEqKha8ZsZ/jFgjNZ6zlW5xfb2KBv002uTn72bhuJz36pHifa5QQzZ78wmrn0AqFSwnlJZW4nW7U8DOz7YvNZiM1NZXk5GRvGnWXLl0aXP/i4xXDFnFxcfTt25esrCzsdnuDSC32RwhBz549mTdvHs2bNz/jX19kZCT33HMPjzzyCBdffDF2+1FazwU5YXRZBzXEp3m+hsBJC+Ldu3d7WysdzvDhw3nooYd4/fXX6dWrF++88w7vv/8+YDQ5f/rpp7nhhhtOdup6y6JFi6qdk8WLF7N48WLv9/6C2Ipil5WV8dxzz9V4TP9U7hMdX5vU5dx/VnRd54EHHuDWW28lPj6+rpfzh9m9ezcHDhxg5MiRDepi0WLDhg0UFBQwdOjQ476gONNF8Y6te71f65pkd+4BNE1n//59rF69mtjY2JNKj66JsZf2Z/pHv7N94x7fk1YUUwjsfinOQghUm8o7303in7dMYfPqHeiaNFsfVf/Z87g1Nq3dwcR/jOGTN2abZb+y+liPBLswHZslulDMlGPQhTR6+oIR5tWAw34MrEAzgNQEUpUBgVjdb1qn4kRBRWgheBQnoODWQZMqurTh1G14dIEmjRxsHYFLV6nQwnCbRcJOzYZuqtqAUmIzZdr7Ev2Fr5S+cd6F+T3nbUkVeH5iYsNZszSHHz9bQkR0GHc+ewnP3/kZpYcqjLG+/lDeffqNTCX0DBXD/lhp1Hv27GHNmjXs3r2bHj16HLU9z9qMrbz9z2+oKndy9T3nMObS/qdxxcfPiYphi8TERLp160ZmZiZpaWkB7TcbAhEREXTu3JmVK1cycuTIM15E3n333bz77rt8+OGH3HrrrXW9nCBBTjtCmk5RK1asoE+fPixfvpzevXvX9bqC/IkJ/iwafPXVV0yaNImcnBwiIiLqejl/CKfTyW+//Ua3bt28bdQaEjk5OWRnZzN06FAiIyNPeP+ioiLS09Pp2LHjGSWK8zbv4R/n/B+6LpFS0n90Kn+5vS/79u2ja9eutR4pm/7R77z/zHeoqoKm6QibzUhhVgRP/+dG+g6vbuRz47j/Y8+Og6ZQFaCqPiGn6V6h1rRpNPt3FSEdxnZ3o7CAKChSokmQEcZ2Zzi4Yoy0ak3FEL8C3JGGQHarEhkNKKCF6L5osmoKQpsLR4yGEJLoMKd3SWE2F0JAn0bbGLLzSjY2/5lKxyF0oNKj4JShuHTBvqpoNF2gCMWsMYbEkGISw0oJkSq98q4hPfkrps3vja6roIOj1Ch0FiUQ4jbmE2bzBuHRCSkzXmfE7ioax0cSHh7Cnh0H8Tg9RgsmCLxJoCooAq67ZSRDh3fktnNeQdN1hBA0b9WYd2feS+mhCv465iXKiiu959FS4Pe+fAVjLqmfQvBkcblcrF279qi/A1WVLq7q9ShV5S7DrFPAu3MeplXHZnW06po5WTHsT3Z2Ntu2bWPo0KFn/N+xw5FSsmTJEm+f4jOdDz74gEcffZRt27Y1uPeqLigpKSEmJoZL5lyHPeL0llK4y11MG/MxxcXFwTZxx8mZ7QYQJEgDxeVy8cgjj3Dvvfc2iD9Ma9asoXHjxg0yVXrHjh1s3LiRIUOGnJQYhjM3UtyqYzP+b9qdzP1mGfEtI4huqeB2uxk5cuRRo2Mny/gbhhHTKIJNq/LpNqAtHbonk712J21Sm5GUUnPaYptOzdiz46ARndUBm/AFRFUFuw169mvNyoXZvp2khDIXRPvVuQuBqut4MHoPO6rAFYshdMVhfYcVsCNwCdOoyjLWAp9Bl6YidQ0UI91Z9dNMEnDpCi61ElULR5PFZtRa4JYqmhS4zf7CVjq1Lo007grdgS4N4VKu2QEd5GGmWv4lu2bquOIKPG+FBWUUUmaeJ2FEvL37COMhjGBzlx7JbF6Vj8ejmdNIdm4v4N+PfctlNw/ns/THWfLrWl657ws0P8OuuCYNK2oIeHtq79mzh9WrV9cYLS4uLKPS6nUNIGHX9gP1ShDXhhgGaN++PU6nk/T0dIYOHUpIyJmfEWDR0FKnb7zxRv79738zefJkHn300bpeToNBl4rp9XB65wxyYgTPWJAg9RDL9Oyuu+6q45X8cXbv3k1BQQHdu3dvcKnS+/fvZ/Xq1fTv359Gjf5YmxdLFG/evJmcnJxaWuGpp02X5gy8uA1RydClS2cGDBhwTDGs6zr/eWYGV/X5J/dd8jp7a6o1rQEhBKMu6svfn7qYoef2oGmLOIae0/2IYhjgmjvHBXxvGGD5amcn3jGGdqnNq41RPboRQfbmOJupxx6jltYSwFjlt5aZlm46Tguf/jRyof0XAEgVXVfQNeEz+DKHAhQ7Q3Gpldg8Eego6ChIIfDoCh5d4PQoaLpA0436NI8ucGkqVZqDcs1Q35Zo9q4Tc60agTbbAlRP4HmTGO7TRmRdMeuufULYWyct4fe564mMDTe3CSOyrijM/W4F91zxDlUVLuITYwgJ9UVJLrg2jV5pHWioNGvWjFGjRmG325k3bx47duzwtm6MbxZL69TmKIpAURUiY8LofIxezqeT2hLDYPzOdu3aldjYWNLT03G73bW40ronIiKCLl26sHLlyjP+tSmKwrPPPsuLL75IYeHxfSYHCdJQCAriIEHqGWVlZTz55JM89thjZ7xjqdPpZPXq1Q3SVfrQoUMsW7aMHj16nLRz8uGcaaL4wIED/Pbbb96o8PH2ZJ39dSbf/mc+RQdK2bB8Gy/e+ckJz713RyF3XvAq4zs/xPP/+BiX01PjuOQ28SS3bYKiChSv07L0CrvpX6Rz3hUDCAkzf9c0HRQFoSiopU5f7aspCMX/s3fe8VXV5x9/f8+9N3uRAUkISYAQdth7KVIcVVFrq7VV66qtu9raWv052oqrddVtHXXUulEcCLI3hIQNIYEkJAESEiA7d5zz/f1xzrkjCULCuLn0vvu6Te496zn3Ru75nOd5Po9L84hhpGeEk7lvF24Bai5UzK9aL2Mr0DPWUgocDu/WWl2E7m2Jw25pwaqGo2GIXqnglAKntKJqCqrUHy5Nz0A0Oa20aAotqi5gHKoV6Z0pMI/tJcBNZSvcqWZPllt/CLdBmJkJl15mZhIo2FzGY3e9r6/gtUxTJQ11zRRtr+DxO96ludGTFR0wMuOMu0HWGjNbPGLECLZt28a6detwOBxYLApPfHQ7P7/zXC698Sye++r3xCVG+ztc4OSKYRMhBCNHjiQkJIT169ejadqxNwogMjMziYyMZPv27f4O5YSZNWsWQ4YMYfbs2f4O5YzBNNU63Y8gHSMoiIME6WI888wzJCcnH9XFPZAwS6XPtNEbLS0trF27luzsbHr16nVS9x0IoljTNHbs2MHatWsZMGDAcWWFvanYcxBhqFOpwc78UjYs23nM7aSU/OeZefx82J/5zcwnKdxSjr3ZwfKvN/H8fR+2u42iKDzx9o1cdNUEZlwykrPPH4pbGQs4criJ5Yu3k9bHMK5TpZeTstCzoyZCoLjwuFM1Ghf2pt4VYGktNtv8LtzPpaYgNUGzw+ZV+qyvoxFCi9KCzRWBJhVcUkGg4NSsqNKCKl2o0pMh1qTAIW20uEJwarqIadGsPm7abpdprzDcRmPGOrZapyfT614uPeXgxvvg/ikEu/L36mOVPB+Ue7HFotAzI5HaQw3uDKkQgsMH69t+WGcoZrYYYMmSJRw6dIjobpH88p4LuPH/LiG1d9cotT0VYthEURTGjBmD3W5n69atJ22/XQGzdLqsrIyqqip/h3PCPP7447z00kvs3bvX36EECXLaCAriIEG6ENXV1Tz11FP87W9/O+oM20ChoqKC6upqhg0bdkZlglRVZd26dSQmJpKVlXVKjtGVRXFzczOrVq1i3759TJ06lczMzA59vlJKwiJsSO8ZQxIe++3bx8wcrV+0nXf//jVHquuxN/s2vS77eiOvP/oFd136LO88Pc9nX90So/nNny/i7kcv56a7z/WIXUPQ/fvlxXRL0DN07rynWyhKH2dkxcj8SgHhTZ5xRdJrKpFbPHq1iXqfq5lilipITSC1UDTpOZT+sNBi0WcRu6SClAoqoGoWnJoATUM1MsN6pljgVBUcmhWHUTLt0BSkWR7t9XZb8XpuxBtutWCrc2FzaL7l1EBqr3iERXGXQrdGqFobR+7uPbvRZ0AqD7zwS5J7xfPjX0x0L4uIDmPy+YFvQtQRQkJCGDt2LH379mXVqlUUFha6bxB0BU6lGDax2WyMGzeOiooK9+SKMwWzdHrjxo0BXzo9depUzjrrLB588EF/hxIkyGkjaKoVJEgX4tFHHyUnJ4eLL77Y36GcEE6nky1btpCTk3NGmahIKdm0aRNSSoYPH35KhX5XNNqqrKwkLy+P5ORkxo8fj9Xa8a+Q/zw7j/f+8a2hLD3vX2N9Cy6HSkjY0W8E7S856HnSyonK6VD57F9LASjYuJdDVbXc9fgVbfaRkBSDMMuADVqanfzs5rPIXVaApklwqUirxXMcRfiIYppdEBXi0YACvS/XeDvMecRWVZ/U5F0+ra9gnoNAGtlXVRVgAVXzzCZuVuwkauGoRubYJS04pYKmCSwWgVMq7l2pGkiLglNTsBj3uh2aFRQNVIsnOyyNO+HeIllK7A4VoixYHCqK5vt3PW5iP+b8d117H4lebq3p52CxKthsVnLG9eX6359PRr8e7tVufvAScsZnUVNZy4QfDSEp9cR67gMRIQR9+/YlPj6e3NxcqqurGTlypN//jTwdYtgkIiKCMWPGsGbNGqKios6IkYImmZmZ7Nu3jx07dpCTk+PvcE6IJ598kjFjxnDvvfcyaNAgf4cT0GjGWLzTfcwgHSOwU1BBgpxBlJaW8vLLL/P444/7O5QTZseOHcTExJxxpdK7d+/m4MGDp/yi0aSrZIo1TWPbtm2sX7+eIUOGMGLEiE6JYYAFH641duqbHZt+2WhCwn54lufoswcREmZDsSigqe6y6/ZY/EVeu6+XFR8kNrbtXOSI6DAef+cmwiJCUFxmKbSiK81WKHbppeX1PmKfvwYjK+u+YSLRe4tbJwSdelOu1ISe6dUETpdHrDcLOyFqOC5pQZUWpNEv7M4YawouVcHp0n93qAKHZtNLpdFnFgtNMSuejT7ho75l+ggpq4JEuo3BENA70xAtXvcw9PnFEhyqfp5CEBkbSXS3SNYtK+A3Fz/LB68s9rxnisKk83K4+Nop/5Ni2Jtu3bpx1llnYbVaWbx4MdXV1X6L5XSKYZPExESGDBnC+vXraWpqOuXHO10IIcjJyaG0tJTa2lp/h3NCDB06lEsvvZQ//elP/g4lSJDTQlAQBwnSRXjwwQc555xzmDx5sr9DOSFqa2vZu3fvGecqXVlZyc6dOxk7duwpGSl0NPwtipubm1mxYgVVVVVMmzbtB3umVZfKC3/+iJ8Pv597f/o8B/cdbrNOj/QEXdACSI3xPxrCH/95NXf/46pjxtKzT3ee/er3/OQ30/n1Q5dxxW/PaV2p66Y9rVxTWcfdv3iVIwdqfTK+MbHhbMvfy5P3f0qzU/VoRikRLt+SaTATwboQVhpN0y3cYlFp8VrZHFekCY+hlTutK5CG6nSpoGkCl9EPLKWgUXEQqoahGmM7XFLoJlpSQQjFPc5Dov9scYYao5X1QFQNME21zOO2FsStngvQbwQYIjc0PISN+aVt+orPPmcw4YClyVMXXne4kYMHPELgvRcW4LA7mfffNfz97v/w5b+Xn7ChUnl5Oddffz2pqamEhoaSmZnJXXfdxeHDbf/WjoeFCxdy6aWXkpycTGhoKKmpqZx77rl88803JxTnsbDZbIwePZoBAwawZs0aCgoKfEqoKysrsVgs3H777acsBn+IYZPMzEx69uzJ2rVrcbnaN8QLRKKjo+nTpw+bN2/uUiXxneGxxx7j+++/Z9WqVf4OJaAJmmoFBsGS6SBBugC7d+/mgw8+IC+v/axWoCClZPPmzfTp06fTM3m7IvX19eTm5jJs2LATHq/UGfxVPn3o0CHWrVtHjx49yMnJOeYF81fvrODrd1eA1MXR03e/z2P/vc1nnbue+jmzf/sW5UWVTDh3KHf9/SpCQn84M+xN74Gp9B44S4/vYB0LP8vl4P4jAFhDLLgcugK97t4L3dtIKbn/utfJW1kEITa9WtjuAqtC1qCeXHzFOJ7+v089ZlM2CzhcEB7iVV4tfY2mWlSIsBLaBE3RRj20WSoNOIyXhEt/zSIEqrts2rxQtoCqgoI+gklIhBCm2TONwoFN2kC14RQqmhQ4NQUpBRLhk2SXUtDisBARYsFq3Otuqgv3mv8k2gpitzBHF/0qKC5D6htGWy0tDhYu3G54X+uiWBFw+x/Oo7Gqlh2b9tJY67kDoJ+e+V4JvvnPal79yxwURbDw81yaG+1cccuM4/68vdm9ezcTJ06kqqqKWbNmMWDAANatW8dzzz3HvHnzWLlyJQkJCce9v3vvvZennnqKtLQ0Lr74YhITEzl48CAbNmxgyZIlXHDBBZ2K83gRQpCZmUm3bt1Yt24ddXV17uqLL774Ak3TuOyyy07Jsf0phk2GDBnC6tWrycvLY8yYMWfMDdT+/fuzcOFCysrKSE9P93c4nSYzM5Nf/vKXPPzww8yfP9/f4QQJckppI4h37NjhjziCBHHzv/g3+OSTT/KjH/2IIUOG+DuUE6KsrIzm5mays8+c+aJOp5O1a9eSmZl50h2lO8LpFsV79+5l8+bNDBw4kD59+hzXxeq+4oMoioKmamiqRvmeto6rKRmJ/PObP5yUGOOTYnhl/r0UbNxLUkoccUnRbM8tJik1jt4DPOX633+WS/6KQv2JIdaEBOnU2Ftawz8enQuhNnCpej+sNPqITWMtTYJV8QhLwNas4fCuvJYSXAJaT0pzATbc/bsIdKMrsz5LE0gkLpeCEBIIRZN2FKBRutDQsLrCsVubDFdpB5IwXFIvl1YMUy99JrFCkz0Ei3F/oaE60qh7xqeH2AfT+VkKFLuRznaPTpLGhCrhidfoZ778gqeRdc36+6XgPo6U0vhbkWQNTmPjyl36aRrqPXfpTh9BvODjdSz6dD3J6Qlcd99FxHSLPNrHzS233EJVVRXPP/+8T+b07rvv5plnnuH+++/nlVdeOer23rz++us89dRTXHvttbz22mttRtydTmOk2NhYpk6dyvr161m+fDnjxo3j888/JyEhgalTp57043UFMQwe5+mlS5dSUFDAgAED/BLHycZqtTJkyBC2bNlCSkoKNtvx3/Dravzf//0f2dnZ5OXlMXLkSH+HE5D4I2MbzBB3HLcgTkxMJCIigl/+8pf+jCdIEEA33jiTzDZ+iP379/Pvf/+bJUuW+DuUE8LpdLJt2zaGDRvW6f7SroaUktzcXKKiorqEscjpEMVSSrZv305paSljx47t0IzlCefl8OXby1Asuig+6+JRJz2+1kREhTFisucGzNjpbT+nsj26GZcA3d1aQRd8VgW7U3WvJ616ZlgIgWKxoBou00ITHldsIRBSomgC6dLApoBdQpiCRcWTBfb+6T32SGu1XAWkwNWioFgkQkj3xYxDKjQrdkLUCGotLbg0QYiQNKmKnlHWFI/elWCzqlis4DLGLkWmNVJ3KFQXq6ohhtupWBaqPodYhihIu+YxK5Po544hcr1KQFVNQngIlka7z9gmr70yZko2mt3JukU7dKGsCPoO7uleY/3i7Tx99/sAKGsEB8pqeOyDW9sGiJ4dnj9/PpmZmdx6q+86jzzyCK+99hrvvvsu//jHP4iMPLqoBn0++v333096enq7YhjokIhZvHgx06dP55577uGqq67iL3/5C8uWLUNVVaZPn87LL79McnIy27dv529/+xvff/89drudKVOm8NJLL5Genk5oaCgTJ05ky5YtLFmyhH379nHRRRe1EavLly/nmWeeYdOmTVRUVBATE0NmZibnnHMOjz322DFj7Spi2CQkJIRx48axfPlyoqOj6dmz57E3CgBSU1MpLS0NeIOtXr16cdlllzF79mw++eQTf4cTJMgpw33Vmp6ezo4dO/xq7hAkiEliYmJAlxp1hKeffppx48Yxfvx4f4dyQuzYsYPY2FhSUlL8HcpJo6CggKamJqZOndplyvlOpSh2Op3k5ua6z7mjZe/DJ2XzxIe3s3bhNnr17c7MK7vG3/T5V47j41cNgyeXC0JNASQ85b2G4JPCk8nFpYFVadev0135LARWB7haGwW7gBCwInCZItxwohbScJcGBEIf2WRXUEM1FEUvhZaAXbXSrNixqWG4jBFLFgVcTtNUS7jHJKsahIe007MoNZAWhAq0nqhkrK7YMd4HfJy7EXqcbv0uzJlT+jKfRm1z3rGxz+Re8fz0xmkIIWhsaGHTqkIGjcrkV3/4MfZmB3VHmtixoVg/X02iqZLt6/dQc6CWhOTYNqexeLH++c2cObPNSLro6GgmTZrE/PnzWbNmDeecc07b98GLBQsWcPDgQe666y4UReHrr79m69athIWFMXbsWCZMmPCD27fGbHXZtWsXkydP5vzzz+eGG25g3rx5zJkzB7vdzm9/+1t+/vOfM336dK699lqWLFnC119/zTXXXOO+GaooCsOGDaOgoIA///nPhIWF+Rxn9uzZbiF/7rnnkpiYSGVlJbm5uXz33XfHFMRdTQybxMTEMHLkSDZs2EBMTAzR0dH+DumEEUIwdOhQlixZQkZGBrGxbf+mA4UHH3yQnJwcdu3adUZVfwUJ4o1PGic9Pf1/RoQECdIVOHz4MC+//DKffvqpv0M5IUwjrWnTpnUZ4XiiHDx4kKKiIqZOndrlSt5OhShuaGhg7dq1REZGntA550zsR87Eficcz8kkpVcCP735bF0UCy8R7FIhpJUosFn1/mEhEE12ZHSYMXaJNvN5zTJiSwuoUcY+NXTL6Rb0UmkBwjC0Ero2bbUfoffnaiFoqj5bWdUULIqk2WmhSdgJVcNRpQVVgjQdpqVA9RqPpGrgUhVCrCo+e9eExxka2ukhFggzbWxmgIVX2tk0C5NeolgYpdStHbi91j18sJ5QwzX8tw9d6l5l8+pCHr7+dZob7PTsk+QupQZw2F1cP+WvPPbBrQwa3dtn1wUFBQBHvSDv168f8+fPZ9euXccUxOvXrwcgLCyMESNGsHXrVp/lU6dO5ZNPPiEpKekH92NiCuJ169axZs0ad0bwwQcfJD09nfnz55Ofn8+CBQvcYtvhcJCVlcWyZctoaWnxEb8ff/wxJSUlPPLII2zevJkhQ4Zw8OBBHnzwQSZPnszChQvbZLWPlczoqmLYJCUlhd69e5Obm8vUqVO7XHydwdtga/LkyQH73di/f3/OPfdcnnjiCd544w1/hxNwBEumA4Ogy3SQIH7khRdeYMCAAZx77rn+DqXTeBtpnQl39gFaWlrYsGEDQ4YMISYmxt/htMvJdJ8+dOgQy5YtIzk5mXHjxnW5GwDHi5SSD1/8nmsn/YV7fvIcZUWV7mVX/OZsXeSCab+MUNBFX2shaKAAosXpKQmWuMdFSSSKXU+5WswUqoZ7vFKIub5RdiykQJFC/93Uke7D6UpSqgqaS6AZ/cC1DhuNwkGoFoZLClyagoridp2W0oKq6Q8pLTQ2W/V5xMbp2A/b9LPQ3C3BXm8W7p5i97WT1uo98Pnds5n5vEfPbghr28sIISClV3yb1wGe/9NHtDTqwn9fSTVTLxpBbIKnEsHpcPHxywvbbGeOsTlaps18/ciRI+0u96aqSu9tf+qppxBCsHz5curr69m8eTMzZ85k2bJl/PSnPz3mfkxMQfz222/7lMdGR0eTmZmJqqo89dRTPpnnkJAQ+vfvj5SSxsZG9+stLS3MmzePzMxMpk2bRnV1NevWrWPHjh2oqkp2dna7Jd4/1GLU1cWwycCBA7FYLG1uUAQy/fv3p6mpibKyMn+HckI8+OCDvPfee5SXl/s7lCBBTglnRqNfkCABSGNjI88++ywvv/yyv0M5Ic40Iy0pJXl5eSQmJpKRkeHvcH6Qk5EpPnDgALm5uQwaNIg+ffqc7BBPK2sXbuPtp74GoHr/Ef5y85u8vvA+ACKjw+mRFk9l+SGElMbQJKGXRYd4fRUaajI8zEZzveouC/bOrmoSsApszZIWMzPslGATCNXYhZkZVnAbawmzRBvDqMvipVAFoAqQAlUVCCGRrnCcNkk3Zwy9WlII10IJU0OxOiOJkiGEWmxYEFiELrYtVrA4IBa9fvu2yIG4+imoUqJpIFWJU5U0tqg02F00NKs0tKg01Dpw2pw01LmwO12e+wMY5+AjpqVbHO/ffwQLCqB53KUlhEeF8qd/XNnuZ9TSZHePoxFCkJqZhKpqrJ63GU3Ty7NtrbP2Jxlz9JPVauXLL78kMzMT0Gevfv755/Tv35+lS5eyevXqY5ZPNzY2smvXLvr06cN5553XZnlpaSnx8fFcccUV7S6Ljo72ccZesGABDQ0NXHrppURGRjJlyhTWrl2Lpmmkpqby5ptvcvDgQX7xi18wc+bMY7reB4oYBr1kfPTo0SxZsoTExMQzop/4TDHYGj16NJMmTeIf//gHzzzzjL/DCSiCGeLAICiIgwTxE//617/o3r07l19+ub9D6TROp5Pt27eTk5NzxhhpFRYW0tTUFDBjQE5EFJtO0iNGjDgjLj7L9xw0xhZJNE2yr6Tay/UY7px9Off/6l+e+aBCoGgamtMFFoX+g9P41W/PpldGAlEx4WxcvZtmu5PHH/vK5zhCSqRQ9BIrVUKIQHGCZtM1rgt0AamiC2PwNdMC3awL6G4JoZctlBRrKLFWCzEWK3FCIUazES6saA6JhkaoDKFR2KnHSQ0OimnksFOgComGRJWSkFAHwqLRg3AuVHsz11JMfUUUFmlB0SC0WRCCIMZmITrUQnykjYz4MKIzYogKsxIeZkHTJE3NLhqaVBobXTTVO6mvc1BV2UxVZQstzV4zY1UNFJh6Xg7Lv96kvzdAU4Odlub2XZqvuvNc/nnfRwBERocx84pxOOwutq7dTW1NA9HdIvnl3ee32c7MAJuZ4taYr8fFxbW73BtznREjRrjFsElERATnnnsub7zxBuvWrTumIN60aROapjFjRttRUiUlJRw+fJjLLrusjRBqaGigqKiozdz5zz77jJCQEH784x8DurnXhAkT2LBhA6+//joffvghn3zyCXPnzsVisfCjH/2IRx99tF0H4EASwyYREREMHz6c/Px84uLijmmQFgikpqZSUlLCzp07GTp0qL/D6TT3338/F198MQ888ECHxpsFCRIInBlXsEGCBBgOh4Mnn3yShx56qI1BTCBRUFBATEzMGWOkVVNT4zbGCaQ7+R0VxVJKioqK2LVrF+PGjTvuXsmTyZ7tFWxdt5u+g9MYPKbjmekjNQ04HS6SUuLcr42a0p+3n/xKn9OrScbNGOxzU2PEhCxemHMHm9ftoXDHPhZ+sxnQe2GlplG8az9/vu1dEhKj6duvB06nyqyfjyM9I4GyvTV65tTttCyRXnXIFgfIcM/8XgTgAKygSN3bqnuYjZTIEHqFh9IzNIS00DCEgH1OOxUuO5VOB4WOJmpFC/YIO/XCydAwwSRXJv+NyEOT4NIUapsj0KSgyRlmjgZGSogOa8SqQJVs4kJ6UyYaOFSvAFaEHULr9YyvYswdVhy6uA87qKKoEqsQREZaiYy0EhVhJTLcQnSYlcSkMAYNjiMuLtQQxy1UVTZRvbeR6n2NxMRFtGmv/v3PX+aeJ37GWT8exr6SavYWHiA7pxcX/HIS2cMzOLC3miFj+xKXqLdZ/Hv1Q1SWH6JHWjyh4W1Lgvv37w/oxlXtUVioj9U6nkoVc19HE89m1rW5ufmY+zLLpUeNauuovmHDhqMuy8/PR0rpI2RVVWXu3LlMnz7dpzTcYrEwZswYNm3axFVXXcXTTz9Nfn4+r732Gh9//DHr16+noqKC0FCPs1sgimGT1NRUqquryc3NZcqUKQH9HQl6JUROTo7bYKurtuEci3POOYchQ4bw/PPP88gjj/g7nCBBTipBQRwkiB94//33sVqtXH/99f4OpdM0NTVRXFzcpRyYTwSHw0Fubi4DBw48rixTV+N4RbGUkm3btlFeXs6kSZP8cq75Kwp44Jcvo6m6mLznmV8w4/Kxx739x68s5M0nvgIJM34ymrv/fhVCCHoPTOXvH9/Bki82EN8jllnXTWmzbZ+BqWzZUMKiL/L12cKgK0qLgtMYwVRTXU/NwTqEhI3ri7n74VksXVrA3rIa9u8/AppuKoUFrM0qrhALFvTqa4REUQWJMTZSokNJ7RZKz8hQUsNDQEBFi4Nyu511tQ18bK2iUnV4JiEZfb0SF6HhDhSgTkgitBCjbxg0qaBqCpomABdIq7sNWn/NqwxbglCEMdrJawaxmSCXgNTLvAUCVZPUNbioazCywFJicWju3unQEEH37uHGI4yBA+OISwijobaFc6/O5mBFA9UVjRwsb6S5zsEz931MiFUw++a3UFWNsMhQ/vHZnWQNSSNrSJrP5xIaHkJ6v+SjfuZnn302APPnz0fTNB+RVF9fz8qVK4mIiDgut/5zzjkHIQTbt29vsy/A3cPau3fv9jb3wRTEo0ePbrPMFMTtLcvPzwfwEcTLli2jpqaGSy+9tM36Qgi3A/XatWsZP348H330EVOmTGHFihVUVla6TVEDWQybDB48mOXLl7N9+3aGDBni73BOmOjoaPc0l3Hjxvk7nE7zxz/+keuvv54//OEPHZ5C8L+Kbi9xeq+R2pk3EOQYBAVxkCCnGVVVeeyxx7jtttsCusx4586dpKamBvQ4CRMppbtEL5D7aI8lijVNIz8/n0OHDjFlyhS/lSPO/3Ctzzf2V++sOG5BfKSmwS2GAb7/NJeZPxvP0HH6uQ4YkcGAEe33fmuaxn+en8+n/16pv6BqYDXFgpf7tJEFNjPC/3h4DmqIBWwW96q4NLBZsTjBhSQsRCE7OZLslCiykiJQFNjf4KC8xc7ag3VUNNmpcjhxCokM1/ehxqgeZ2YTp0AIG1I60YAj0kkENlRVQUPg0nThK6VixGyMbZKguixIm+reoSYFqIqvQ7apvt2mWhKz1VkfpYTnPVDRe6g1fQOHXaN8byMVextBkyh2lZAQQVJSGN1TI0jqEU728ETiksI5XNlEyfbDzPtoGZrUD+pocTDnjaXc/Y+rjuuz9qZv377MnDmT+fPn8+KLL3L77be7lz300EM0NjZy8803+/xN7969G6fTSd++fX0qPjIyMrjooov48ssvee655/jd737nXjZ//ny+++474uLi2u0Jbk1eXh4hISHtirYfyhCbQtpbEH/++ecoisKsWbN81s3PzycmJoa+ffsyYMAAQkNDWbVqFT179mTr1q2kp6eTlqbfYDgTxDDoWfHRo0ezdOlSEhMTSU4++s2SQKF///58//33HDp0iPj49k3nujqXXHIJDz74IK+++ir33HOPv8MJEuSkEbhX40GCBChz5syhrq7O54Iu0Kirq6OiooLp06f7O5STwp49e6itreWss84K+Gz30USxpmnk5ubS2NjIlClT2sw4PZ3EJUS5BZpiUeiWdPwlhC6nq83tb0dL+/2qi7/YwPyP1pKU2o3r7r2Q5d9s5P3n5oPVChbFHHhkjEvScA/1NfEWq63m8wok0TFW+vSJITMrmrTu4VTVOth1sIlVu/dR7rIjhcAZDhiaFAWswphLLLyO4Y0qQSiG9bOkTtUQCMK0UOpxohnziE0RDMZP6RHBnklGxlBlTXjmEBsi3/vUrKYIBq+ScP01KTV9TLP5PpnLpT5b2eGQ7CtpYH9JAzhcCCAkRNCzbyyTLuhHaJRk0PQe7N1aw97tNYRFdL4V4aWXXmLixInccccdLFy4kIEDB7J27VoWL15MdnY2jz76qM/655xzDqWlpRQXF7fpFX7xxRfJz8/n7rvv5uuvv2bEiBEUFxczZ84cLBYL//rXv455s89ut7s9FNpzft6wYQMZGRnt9lvm5eURHh7OwIEDAf2m3Jw5c5gwYQI9evTwWfef//wnb7/9NuPHj2f06NFERUXhdDoZPXo0OTk5PPjggyiKcsaIYZOoqCiGDRtGXl4eZ599NuHh4f4O6YQICwujb9++bN++nUmTJgXkd42iKNx9993cf//93HbbbT5l+kHaJ2iqFRgEBXGQIKcRKSWPPvooN954o18FyYmyY8cOMjIyzgjDk/r6enbs2MGECRPavagNRFqL4szMTHJzc2lubmbSpEl+P8+f33kuBRtL2bGhhJ69k7jZa07tsUjoEcvIqf3JW6bPpR04MpOcCVlt1tu8uogn73wPAMUiqNhTRWqf7vpClwsprOAtGHz6g3VsIRZcqobUdPdkISA5JYLefaPp3TeamNgQyiuaKCyq4+v1VdQ0uYzsr0BG6vsTdgFhhuZW0TOw5sVK67o2Aai6HlZVUBSBXUITTsLUMI4ITZ9FrGlomgWwePSpJnA5LdhCNaSxfylBuHSRr9hNMezldm2MipJHGbUkhHEupjGZ5jV32FTdxuohoVYUi8De7MThkCR178FV119C4eYynr3/PbpnRjH+4ixikkJZvXo1ycnJJCcnd0jk9O3bl9zcXB588EHmzZvHN998Q0pKCnfeeScPPfTQMR2XvUlLS2PDhg385S9/4csvv2TZsmXExMRw0UUXcd999zF27LErFrZu3YrT6Ww3A1xaWkpNTQ3Tpk1rs8xut7Njxw5GjRrlFq25ubmUlZVx1113tVl/1qxZOJ1O1q1bx9tvv01LSwupqamEhIRwzz33MGDAgDNODJukpaVRVVXFxo0bGT9+fECKSG+ysrIoKSmhqqqqzY2PQOHaa6/l0Ucf5d133+XGG2/0dzhBgpwUhJSy9VdykCBBThHff/89P/3pTykpKQnYUuNDhw6xatUqZsyYEdCiHvQbFMuXLyc+Pv6M6FNrzeHDh1m1ahXh4eFYLJYuJ/pdThWrrWMX7v95fj7vPv0tACFhNp6dcxe9B6S2We+jl77n7b9/o4tZ9B7M6/90IW88rjtGS0WBMD27Id2l0MKTFZYSNIiKCyOpZziZA+PI7BsDAkr21FO8u57i0kYcFoFmAWesBYTAGQrSInCFADaBJkA1NZ/ht+WK1H93xrmgdcLUDha7BZnahBAQGmrnLmUQ3yvl7BK1qBo0NlqAUDQXRsm0AJeCLcxJWLSdcCF4QI7kEfJpyosBTWCtB6tDN9USRk+w1QE0q4Q10zZTLQGnhkXVhbOi6mpaqBJcGoopiJ0aQpOkpcezr7DSZxcfrXqA6LgI7M0Oairr6N6zGy32Zg4cOMCBAwc4dOgQMTExJCcnk5KSErD/Jp4M/vznP/PYY4+xZ8+e4+pdNqmsrGT9+vWEhYURGRl5RolhE6fTyaJFixgwYECXH4V3PBQVFVFWVhbQFUnPPPMML7zwAoWFhQFvenaqqKurIzY2lulf/wZr5OnNpLsa7Sz68SvU1tYGrInb6SaYIQ4S5DTyzDPPcMUVVwTshZ+Uku3bt5OVlRXwYhj0CxOHw8GAAQP8HcopISYmhpiYGA4fPsyAAQO6lBgGOiyGAea8udT9u8vpYvk3m9oVxING93aLYdD/dtcv3k5oRAj2Jic+ClCTnnJpQyzGdw9j0OhEsnMSaGlW2V1whK+/KOXA/mZ3b7EGEGlDSEPpIlFcQu/JtYNm1RPCqtnDaxhbCRf6t28T0PqfAuN1TVVQLOB0KdSFuHRjLaGgaoAwS6b1HmIEoIHqsKBJBZdUdPHtsCA0PTZpHtu7n1gFYVUMldzOm+09e9hrVJUt1Ira5MBw+QL0UUved9cFniRyaHgIqZmJAETZosjKyiIrKwuHw0FlZSUHDhygqKiIqKgoMjIySEtLCyiX95PB559/zrBhwzokhgHi4+MJDw+nsbGR/v37n3FiGPTRU8OHDyc3N5fu3bsHfOl079692bNnD+Xl5fTq1cvf4XSKW265hdmzZ/Ptt9+6R4QFaZ9gyXRgEBTEQYKcJvbs2cOCBQvYtm2bv0PpNJWVldTX1we0S6ZJfX09BQUFTJgwIaDNzY6G2TOsaRoTJkxg/fr1WCyWDs0p7kpIKXnloU+pP9zoLuvVNElsfPtl+0PG9mXyBcNY8c0m92u7Npdx52NX8OTv/mOYRhl9w5rUHaNtClmD4xg0MpHElAh2bz/Mtx/uZl9FMwiBZhE+ztQKuu8UgHBKZIhuQCUARQNN6upTaGB6YAnQBxUrIFpAxuArRhUQqgAHyFBQVYU6zUUkIbgQupO0MLLCGPvUAFWghBhO00aImgJSkwiERwyDLsxVUKRsXwgb+8UomXYrW+OHKnWXbaFJzMlTqb26cfhArflh0S0xkojIH74BExISQq9evejVqxdOp5OKigpKS0vZtm0bPXv2JCMjg27dugVsFq0j7Nixo8PbmGXSERERDBo0iA0bNmCxWEhNbXuDKNDp0aMHKSkpZ0TptMViYcCAAezcuZOePXsGZIY1NDSUn//85zz//PNBQRzkjCDw/isMEiRAefHFFznrrLPo16+fv0PpFFJKduzYQXZ2dsBnb0xX6czMzHYNbwIdUww3NzczYcIEkpKSmDBhAgUFBezevdvf4XWK9Yu28+Wby3QRa2Qrx00fzPk/n3jUbS74hb5MCL0fN2d8FqOnDcBqteg60OEEu5OU5AjOvjiDa+8ZyrAJPSjcdph//2MTC+eUsH9vo74zs4y6PQRYnHqTsWJkjxXTpdnsP5aGcJUg7PpPm2z/RoxuYKVngTWnQp10EoVNH7ckFaRqOj+bmWnTbVoX4Jqmf7VLKXRNa/QKe5tw6VpdgKohkabptC/ejtSGAJGgj8uyWZCG0ZhiFWzNLfE6AcGhynru+fnL2I9ieNYam81GZmYm06ZNc8+eXb16NUuWLKGkpARVVY+9k/8hWvcMp6SkMHr0aPLy8ti/f/9JO86RmnpWfL2Roq1lJ22fnWXo0KHU1dWxd+9ef4dywvTq1QuLxUJJSYm/Q+k0d999N4sXLz7qbPAgOmaG+HQ/gnSMoCAOEuQ00NTUxBtvvMFtt93m71A6TXl5OU6ns41bayBSVFSE0+l0O7yeSZhiv7GxkYkTJ7rLpE2jrUAVxUeq6z1PVA1cKtffdyGv/uVznrn3v5QUtBUBIyZlc/Xd59NvaC/Ou3I89z53NdFxEVx07SQA0rLjOP/6gVz824FYrPDVe4V8+OoOtqw/iN0hfY8nhJcZlfcyXagJDdAkQkrd0dkUwejZXm8xasVc5nmtDbUYKV4LtapKNCFIzRDDKJ5yaWmIYxWk5huaNEu5vQWxKcqFhBYVa73m46btqZKWWIyf7heN9dzWIxa9NDspORalnVRz4ZZy1i/diaZpqKrWZvnRiI2NZdiwYZx77rn06dOH4uJivvvuO7Zv305zc/Nx7+dM5WgGWsnJyYwaNYoNGzZw8ODBEz5OZVkNN581m0dvfpPbz3uKr/69/IT3eSKYpdNbt24N+L8DIQQDBw6koKAAp/P4bhp1NTIzM5kxYwYvvviiv0MJEuSECQriIEFOA++//z7du3fnwgsv9HconUJVVXbs2MGAAQMCvkfNLJUeMWJEwJ9Le2zfvp1Dhw61a6AVyKJ47DmD6ZYU7X4+ddZI/vzLV5j33zV8/+k67rn8eY7UNPhs8+ELC3j379+wa+NeVny9ica6ZlRVZfSPMvnZH0cy4+oBVO9v5L2nN/P9x3uo3Nfke1AvESfN8mIpfJ2Y7dIohxaejKqG3lfs0p9aDIHsFqPm76ZI9daSApzSBQ5TzCrUairR2NBUBU2zoLmMkmlT7Dr044kQiaYJVNV7BJPmOab00r4aCKtAswqfY7sxZg/DD1woSP3C/vxLRnL59VO8tvUo8/zlBVySfS+X9P8Dc95YepQdtY/VaiUjI4OzzjqLMWPGUF9fz/fff8/69es5dOhQh/Z1pnAsN+mUlBRycnJYt24dR44cOaFjzf9wLQ11nv8m/vPsvBPa38mgR48epKamsnHjRgLdEzY5OZmoqKiA+7fYmzvvvJO33nqLhoaGY6/8P0owQxwYBAVxkCCnGCklzz//PNddd11A9goBlJSUYLVaA9YAxETTNPLy8ujduzfx8fH+DuekU1RUxN69e5kwYcJRTc8CVRTHJUbzwnd/5NbZP+VPL/2Kn936I2oO1KKpGpoqaapvIW/ZTp9tPnp5ofv3hromlsxbzbxvv+PgoQNEhyfw3l/Xsf67vTTVORDSYxAF6L87dWEnzNJiRfH01RoPqymOBZizmUzxaW1BL5/GkxF2r+aC9uuUgRhQnIqR4RXUqi6isaK6hNtZGk3PCOsOXqZxljRGLpk91sLtKq2o0isjbZRzC4EMwWsGsddyc86U9zbmTyGQAnqndUO2OPn30/P5+I1lnuWafqz47jF88+4KnA4XLofKq498zr6SjmcuhRAkJSUxbtw4pk+fTnh4OKtWrWLt2rXU1dV1eH+ByvGOVkpPTyc7O5s1a9bQ2NjY6eOFRYTof2Pon0HYaXbKPRpDhgw5I0qnhRAMGjSIoqIi7Ha7v8PpFD/60Y9IS0vj3Xff9XcoQYKcEIF5dR4kSACxYsUKSktLufXWW/0dSqdQVZWioiIGDBgQ0EYmALt378blcp2RrtJlZWUUFBQwfvx4oqKifnDdQBHFqktF85p9GxkdRt2hJvKXF1BVVkN4ZKhPVvO5+z6ieOc+9/OIqDCEgIwhCfzk3tG4bI1899Ymnv3tt+zJP4jqkghNgtPoT9V0o63IcBvCoepfkGbPsjmSCVrXJbufC69rWmGWHHv37npjjj9qaWeZAlasbtFb51KJEVavEmmBUBWEquhl1QjDiEvRs8hGhlhqXmXeqles3gZb3vhkqr1EsrcYNlcTgtIdB9ruxz26ShAWbmtz7rWHOi/QACIjIxkyZAgzZswgPDycpUuXkpeXR1NT07E3DmA6Omc4KyuLtLQ0Vq9eTUtLe39kx+bH10ym/wh9zFFouI07nriyU/s52ZxJpdMJCQkkJCSwZ88ef4fSKRRF4YYbbuD5558P+Ix9kP9tgoI4SJBTzIsvvsill14asLPgysvLsVqtpKSk+DuUE6KpqYmCggKGDx9+xpVKV1ZWsmnTJsaMGUO3bt2Oa5uuLorff+ZbZvW9h8v6/4HvP1kHwNP3/If3nv6WBR+v5a83vcmN919MSKjH4M3lVPnuv2vcz295bBaX3D2KaT8fwME9Tbz/yGoKN1SBhMWfb6B7mlEl4O4R1oViU72d3gOSARAuQwQaY5XaiGIhsDS49EywhjsjbApJ4TI2McumQXeGNjLE1kO0FcwWc3sjQ+zSsAmFcGnRS6VVb3Hu9bPFglRxO1BLJ8bYJX1902nazGAjpd7f3BrTWVrz7h82suJm+7BV6Jr5B+6R7dtd6bM8oUcMWUPSjr5BBwgLCyMnJ4fp06cjpWTRokVs3bo1YDNtP0RHxTDo2cfBgwfTrVs31qxZ06k+1YioMJ7+4ne8u/4v/HfTbIZPyu5M+KeEHj16kJyczNatW/0dygnTr18/iouLA7aX+Oabb2bfvn0sX+7fHvOuipTCL48gHSMoiIMEOYUcPHiQzz//nDvvvNPfoXQKKSWFhYX069cv4LPDW7duJTU19YxzlT506BDr169n+PDhdO/evUPbdlVRXLSljPf+8S2qqmFvdvLMPf+h/nAj6xZuQ0qJpkqEAjX7j9B7QAqKYmYzJREx4dTV1bFmzRoONe9j8ozRzDz3R8y4cIrujuxFSnoCKIpectyKK399FpffNJVJMwZy/S3ncN5Fw4lPMDLvpjg0sEiwHXEgXB4nZFN4KuZLrrbnKSTYfmj6oSGi7ZrELjViNJsuhl3CV0RruqmXpoHmUtBcRmyqxeMybQpysxramGNsaefcQR/L5BbGiifrqy80bhSYm3pdSSSnxoHTBU6nHpCxjVAEY6YPxhZyckecRUZGMmrUKKZMmeLuMS4oKMDlaucND0A6I4ZNhBCMGDGCkJAQ1q1b1ymnbiEEiSlxhIZ3rRnmAIMHD6aqqoqqqip/h3JCJCQkEBUVFbCO01FRUVxyySW8/PLL/g4lSJBOExTEQYKcQt566y2GDh3KyJEj/R1Kp9i3bx+appGWdnKyOv6iqqqKgwcPMmjQIH+HclJpbGxk7dq1DBw4sNOf0ckUxdX7j/i6QXeS1vvQVI2GumYyB6SiWBTjNUlm/xRu/evlRMdFADBoXAa9ciJZunQpkZGRzJgxg+4Jqaz+bhsN9c2MnuYplbeGhbJp7R59VJIQDBiUSmS0XmJ97qUjWTRvCx+9t5oVKwpxqhq/uGEqL//reoQivHWlW5dqFiBEAaev6LY49DJl0cpkWXdwPsrDQOBxkq5TXURLGzgFQioeUy5D2KqqhBABTgWchmjSFFSp6llr6Z0hllg0/WebKkep904rmjsI74Dc46dUhwtpuEwjITounH+8+2v+9NTPEKqqi2FzM6PHeepFIzhVxMbGMmHCBMaNG0dlZSXff/89xcXFPiX3gcaJiGETRVEYO3YsLpfrjDCi8iYsLIwBAwawefPmgB7LJYQgOzub3bt3B+x53HnnnXz22Wcnxd38TEND+OURpGOc3Fu1QYIEcaNpGq+++iq///3v/R1KpzCzw1lZWQFrBgZ6D/TmzZsZOHDgUY2mAhGn08natWtJS0ujb9++J7QvUxSvXr0aoMP7k1Ly/B//y7z/6Ntf84cf8/M7z+10PEPG9aVnn+5U7NEzP8MnZ5OcnsB9L13L325+i5oDRzj3yvFM/vFwhBC8teJ+tmzeRnlFGesX72DDvBKu/2N3lJZ9PHzTmzTU6X2G5105jumXjGLRnA24XKqeHRYCKcGqCH7/yCXsLzvMgm82sWe3J+v07quLeffv3xISG44WZjNuJXsuOKQQaIqeNVZUj9k0Ul9VogvgNjlLbxHcqgRaRd+RMA5Vp7mIFVaEZohhi1eW2Mz+qoDVt45ZkcIz4sldXq27Tyv46l2zTFso3iu3QpPg0hAuDSwKUtUQAiKiQ1k+bwvx3aM5+5KRLJ6TB8DIydlkDUljzNmDGDLuxP5Oj4fExESmTJnCgQMH2L59O7t372bAgAH07NkzoKpcToYYNrFarYwbN45ly5ZRWFhIdnbXKX0+UXr37s3evXvZvXt3QJ9Xjx49CAkJYe/evfTu3dvf4XSYkSNHMnToUN566y3uvfdef4cTJEiHCQriIEFOEYsWLeLw4cNcd911/g6lU1RVVdHc3Ex6erq/Qzkhdu/ejcViOSPmJ5tIKcnLyyMsLIzBgweflH2eiCguyC91i2GAd576mplXjCchObZTsYRFhPLcV/ew/Kt8QkJtTLloBEIIPn55IYWbywCY/9E6Lr5uKg3NtWzZsoXmOpVPn93Aof26adPz932E5tLcohfguw/XkdbHKJnXNLBY3KXA2zeVsfWWdyHMhhRCF5w+QVlxIBAuDRnaSpy4JBanRIvWM7GapjtTS2+Rq3h+NVWo0NCVshNoVZGq2tBLo40W6TpVJUaxGllhIy3rDtHo53WCtHntxGWMfzIzw8ZmSKm7Y7va5hF8bn1JaSaA3VibnL7bGO9tZcUR5nywGkWDkROz+PntP2LBJ+toqGtm6kUj6Tu4J0fjk5cX8v0n60jL6sHtj/2M2PgfNoU7FkIIUlJS6NGjB2VlZWzbto3S0lJGjBhBRETECe37dHAyxbBJWFgY48aNY/ny5cTExJCcnHwSIvU/iqKQk5PD6tWr6dWrF+Hh4f4OqVMIIejXrx87d+4kIyMjIG9C33DDDfz973/n97//fUDGH+R/m+BfbJAgp4iXX36Zyy67LGCzkoWFhfTt2xerNXDvmzU3N7Nr1y5ycnLOqC/onTt3Ul9fz+jRo0/qeXW2fNrR0tYMxmE/MYOYyJhwzrtqItN/MgZbiBWnw8XX765yL29qbGL5kpVs2bIFWR/O639YwKF9nlmYmtnPa/awCoiKDaf/MOMGj6aBpmeJpRBo7l5ZTz+yGykx0qY+pcBuLMJjpOVlPOU7xgiki7azfiVgN0qjzZpkKSAKPaVsZJC9BbEwRbH7YewLBeEUnlS0S2AWYCrtlWUrgrY1014xm2OojPckISGSAUO9hK0xXsnbhVpKyYaVhXzwzwVU76+laGs5D1732lFLdT97fTFvzP6S0l0HWPntJn416a+88diX7f5NdRRFUcjIyGD69OlERkayaNEiiouLu3TZ8KkQwyaxsbGMGDGCDRs2nFHjqhISEkhJSQl4g62ePfX/tvbt23eMNbsm1113HYcPH2bRokX+DqVLEZxDHBicOVeIQYJ0ISorK5k7d27AmmkdOnSI2tragCzd8uZMNNKqqKhgz549jBs3jpCQk2900xlRPGhMH4aOz3I/P+uSUSSnn9z33GJVCIvQz7fvyO787M9jsYZYmD59Ou/MXtC2wtd0Udb0sUkR0eHc+pfL+MWd59Ivp5dbuLo3MzPJUuoziVuJWRy+TtLeQjKtVzf921STvoLYwD2OScXTh+uVPRaNtBWrAHbcYrdOdRFjiCPh8nWMFpqeYRIqukA2xi6hgYJeMq2Y5+R2mZa+Rlmmi7Y5R9gcC+VlqFVT3cj2wip9Nq0qPecrPMJaUQSR0Z6bgJomOVRVh725PTtrmP/hWuNN0o/R0uzg09eX8OYTc9tdvzOYY3rGjh1LYWEhq1at6pJjmk6lGDbp2bMnffv2Ze3atTgc7X8mgciZYLClKApZWVkUFhZ26Zs2RyMsLIzLLrssaK4VJCAJCuIgQU4BH3zwAUOHDmXo0KH+DqVT7Nq1i8zMTGw227FX7qKYF0dnkpHWkSNHyM/PZ9SoUURHR5+y43RUFFttFmZ/cCuzP7iVJz+5gz88f/VJ79dUFIW7n7mS824ayuTL+3G4RGXmBecQGhqKxWpmb3WRdsl1Uxkx2egn1DRmXDaKS2+YyuN3f8B15zxJRKxRktuegY0xgknvydVF5NQZg3jwuV8QExeh6za773bl5YeRFoHSpKdmhROvrClYnQKJ1zgm0J2ajXrkcLulXXMti+kmLaHezBAjEJoufoVmPvSRUUqT8boRnuISWMxMgdlLbApjHyGM53dz1JKUvlcIZhOyVdEfrTPpQiCEoFff7vz+scsJCbOhWBSEIsgZn0VYRGi7n2tSapz3AfRdapKt64rbXf9E6N69O2effTaRkZEsXryYkpKSLiM8TocYNunfvz+xsbGsX78+oE3HvDENtrZs2RLQ55Seno7dbqeystLfoXSKW2+9lblz53L48GF/h9JlCI5dCgwCtxYySJAuzDvvvMOVV17p7zA6RV1dHQcPHmT48OH+DqXTaJrGli1bGDBgQMCWrLempaWFtWvX0r9//9PS/9fRnmKrzcKIKf1PWTwVFRXUywOMnzmU/v36Exfv6U++5a+X89gtb6O6NDKzk/nFXecSHhnKjg0lWEMsJKV245dTZrvX37R2N4k946muOAQuF3jf+NEMV2gvwbj8u21s3VBCcmo36mqbsaiyrUGWEFg1cEiJRQj0qUQSqQjdUVqAgtTdP1tliBHoZc5Wr9dUsKCgSv3ivlZVibFY9aytIYLdWtQU0FIgW0CEGGXiTryywrLV+t5ZcO+fQr8pYJzTcWGWhAO2ECvjpw/imc/uZMEn64jpFsms66YeddM7Hr+CW859kob6Fk+mWQiGTcg66jYngpktTk1NZePGjezbt4/hw4f7tbf4dIph0KsJRo4cyfLly9m6dSs5OTmn9HinC2+DrX79+vk7nE5hsVjo27cvhYWF9OjRI6CM4ABGjBhBv379+PTTT7nxxhv9HU6QIMdNMEMcJMhJpqCggG3btgWsmVZhYSHp6ekBLSSLi4sRQgR8ybeJlJLc3FwSExPJyjo1QqE9usKcYrvdzvr169m8eTM5OTmMGzfWRwwDTDp/GO9v+CsvL/gjL8z7A1GxEVisFoaM68uAEZm4XG0zRlIIxs4Yoos/Q9AJRZCYFO0WxfqK+s/D1Y0UbSlv21vcGoeenhUuPD3C4JOVlZ7Er3tsESpeY5T0WKSU7rLoepeLGMUomVaFu5dYGNuY4tciBRanfhzFEM1mctc9k1jDPWPYu4Lb7URtClwpPXFKqW/nVMHr/dTPwVOiXbhjH6qqkdE/hf4jMomIiaCpwc7RSErtxoipAxDGOC2EoEeveH5174+Pus3JwMwWR0RE+DVbfLrFsInpPF1RUUFZWdlpOeapRlEUhg4dyq5du7Dbj/4319XJzMykrq6Ompoaf4fSKS677DLeeecdf4fRZQj2EAcGQUEcJMhJ5r333mPKlCkkJSX5O5QO09TUxL59+06r6DrZOJ1Odu3axaBBg84YI62CggLsdjvDhg077RkDf4jifSXVfPrqIhbMWc6iRYuQUjJ9+nS36Ux7xMZHkTkgFYu1raDo0bMb2UN95zTXVNaxbslOhKKA3QktDhLjwmlosnuMs1oJJGkKZdNwyvuzEJ6xS/rKeibO7Wpl9A9L83mrXmIhhf4w/gfgUjx9v3UulQiLhRCjV1i4cJdHC5feK6xoXkIcYx2zUVqTbsHt6SH2it8Q5UJKveRaoPdVG+eW1jOen102mhCXqm9m9h979Q8DZA1IxWJReO6+j3nizvd59S9zuOWCf1BTWXuUTw5Cw0PcoSiKIDM7BVvIqS9gM7PFY8aMoaCggNWrV5/W3mJ/iWGTiIgIRo4cyebNm2loaDj2BgFAYmIiCQkJ7Nq1y9+hdBqbzUafPn0oKirydyid4sYbb2T16tXs3bvX36EECXLcnBlXi0GCdBGklLz33nv8/Oc/93conaK4uJjk5GQiIyP9HUqn2b17N1FRUfTo0cPfoZwUDh48SFFREWPGjPGb4/fxiuLK8kN88Nx3zPnXElqOYqJ0LPaVVHPHj5+isLiAmsYD7NvWyJgxYwgNbb8H9Xi5/a+XIRThcZI2H+B+/UizkxaHClZL+9lfIcDu1LOiDq3ddYTDFM14xhZJCQ36c6W107SJdw22udswj3FWk6aiSkmUYkHR9P5goer9xIpqSGjDbEsxBbGmC200fR6xoulu08I8F+ER3Pr6utBX0DPohqoHJGXlh/jkk3W4VM0j5BWvEzGOee5PRuFyqiz4dL1+KhLqjzSxesG2o342V90xk/juMQDEdIvkulOcHW5N9+7dmT59OuHh4SxevJgDBw6c8mP6Wwyb9OjRg8zMTNavX4/aXk99ADJo0CBKSkq6pHHa8dK7d28OHjwYkDcqMjIyGDNmDP/5z3/8HUqQIMdNUBAHCXISWbNmDTU1NQEpiF0uF6WlpQFdZmy32ykqKmLQoEEB13vVHna7nQ0bNjBkyBBiYmL8GsuxRPGR6nruOP8p3vvHN7z2yGc8ePUrnSpBXTV/IzNuGERCahSfPL6eOS+tOimfZdagnjz29k2k9+3ucU62eMyhwqJCcXqXVrd3TKcLRdXPyeJtPoXnpwKgSSxGibEwFocZyy3evbveGeJmfF2mpbEzTbjNn01jLZdR6qyooLg8pc6KCooTt7hWXJ7+4qPhrqzTdAdtgZEJV4z3wNuJGtC8M/DubT3PI6N1k7PomAift7Bb0tFN4FLSE3hzyf28seTP/Hvl/5GRffpn5NpsNkaMGMHw4cPJzc09pU6/XUUMmwwcOBCLxRLwY4tMYmJiSE1NZefOnf4OpdOEhYWRkpJCcfHJN5c7HVxxxRW8++67/g6jSxA01QoMgoI4SJCTyLvvvsvMmTP9atDSWSoqKggPDw/oEUUFBQUkJSUF9DmYSCnZsGEDiYmJZGRk+Dsc4IdF8aZVhdQdbkTTdPOmLWuKOFJd36H9HzlyhJDuLTQcauGLZ/NoqnPQLenEbwRomsbmNUW4nC5soYaBlpeBE0LgaNFVpBTC/XD3tYK+rkUxMqfmjr3KjoXw9AS3Lqc2j2f27prruZeBtYk2LtMCjJ5iAZrQBbHFqBLwTuZp6NlhTRfEFmOZxeGZrtSuKPaqDHeH4xbrreL3eq98lmmGirboWfaXn/iG6so67nvhamK6RaJYBBdePZEJPxrcTgAebCFWUjMSCQn1r7N9z549mTx5Mnv27CEvL++kZ027mhgGvfd29OjRVFRUBOwM3NYMHDiQioqKgJ633KdPH/bu3YvL1cbCr8tz7bXXsmfPHjZv3uzvUIIEOS6CgjhIkJOE0+nkv//9L9dcc42/Q+kwUkqKi4vp3bt3wGZWGxsbKS0tZeDAgf4O5aRQWFhIU1OTX/qGf4ijieLuPbu5fxcCwiNDiYwJP+79VlRUsGLFCgYMyiZUjUMgSEyO476Xf9XpWNfM38pvfvQEV4x8kD9e9QoPXPs6h6tq9RJpNxLFIujTPxmLzVec6OLey2DLzJg2GeXgXmXT0lSwisBiN7YxtZRLX8Onn9gbAVYUzxglaWZ2hb6tYbRVZxhrCUXPBuMy9qXqZdJC07PCFiM895gl4/BtkBgpYd8sN+1qNPOcvByojZJwb3FfX9vM/DkbGDGpHx+sf5gvdjxO1uCePHH7u3zwwgIcdiev/nUOlw76Izec9SiFW7qeoVNcXBzTpk2jsbGRFStW0NzcfFL22xXFsElERATDhw8nPz+fxsZGf4dzwkRERJCZmcn27dv9HUqn6datG5GRkQFpehYXF8fZZ58dzBKjZ4hPt6FWMEPccYKCOEiQk8R3331HaGgoP/7x6e1/OxkcOnSIpqYm0tLSjr1yF2Xnzp307NnT76XFJ4Oamhp27drF6NGju+Qs6PZE8cBRvbnx/y4hOi6C7j3j+b83bjyubJ+Ukh07drBx40ZGjx5NdnY2tz92BXP3PM07ax9m4MjMH9y+/nAjT93xLndc8He+eGuZ+/XKshr+dvOblO7aT0Ndi/v1Q/uOMGnGIAaNzGDsWQPo1ac7w8Zn8cALV5OaGuubBfWetWs+hPHF2WjH4nD5ZnWN9RWjlFoxtrEYVdKKHY9bc2vc5dHC81Maxlhup2mVGIsFKXQzLUUzyqRNky1zv7LVz6MlmLzj0KTnZ7vl4hJcGhbzPFsbinlxuKbeeFmw5Is8nr33vyz/ZhPv/uMb/vabt5jzxlJamhzs31vDo7e8fZTg/EtYWBiTJk0iOjqapUuXnvBc1a4shk1SU1Pp1asXubm5AT3L1yQ7O5vq6uqAdWs2JyUUFxd3mXnZHeGXv/wl77///hnxtxTkzCcoiIMEOUm88847XHjhhV3yQudYFBcXk56e7jfTphOltraWffv2MWDAAH+HcsK4XC7y8vIYOHAgcXFx/g7nqLQnin9y83Q+2vo4b695mBGTjz2T2OVysW7dOioqKpgyZUqn5ivf9/OXWPR5LoVbynjlwU/57LVFAFQUV6OqWruZ0Z9cN4XZb9zAkcON7C2tIW/tHt74+zz27tjvK37B4zjtjRAoigCrQLQ70glwaXp21u3oDDaXsU9zPnDr3XqNXcI7U2y8Xudy6bOIQ4QugJ2Gy7TDEOHgLp0GfRkaCIWjHNAcz6Qv0x2mpTFuyTNySUqJaHGhODW9nNx4zacE3CvLPO/91fzpl6+wI6+EjSt3oVgUfZ8Stqzb7d5GapLq/UfaxtVFsFgs7rmqK1eu7HSmLhDEsMngwYPRNI2CggJ/h3LChIaGkpWVxfbt2wNSUAKkpaVht9uprq72dygd5vLLL6elpYWlS5f6O5Qgx0l5eTnXX389qamphIaGkpmZyV133dWhG4JnnXUWQoijPlpaWo69Ez8QmFe/QYJ0Merq6pg7dy5Llizxdygdxm63s3//fs4++2x/h9JpduzYQWZmZkD2brdm27ZtRERE0KdPH3+HckxMUbx69WoA+vbte9zbNjY2sm7dOkJCQpg6dSohISFt1ln7/VbeePRLAK7/88WM/9GQNuvs2V7u8/yb91dx2a+n0y8njei4CBrrW5BSQ+qqkAuumkDv/ik8dud7FGypcJf+Ll+wTa/8bWxBhlgB4RlZpHhnTQ13ZgRYFLczszSNuoxVFBdoNqELTKvQM69GT7INXRO7MUuXXSCsePYjzcPp2eJ6l0ZaqDGLWGvVG+xl4OUWxFI/C7frtc8xzVJvMGcS67ONJdjMcUvGD4eGJcSKdGr622BmkWWrJmQpweFCVTU2rd3Nfde+RvbgVDR3mTW0NDmNBLNA0yTTLx3d5jPtSggh6Nu3L9HR0eTm5lJXV9ch075AEsOg3wQYOXIky5cvJyUlpUvflDse+vbtS3FxMZWVlZ264eZvLBYL6enplJSUBNwox5CQEM4//3zee++9gL6+OFG8vRdP5zE7yu7du5k4cSJVVVXMmjWLAQMGsG7dOp577jnmzZvHypUrO+TP8tBDD7X7eldNvHTNqIIECTA+//xz0tPTGTdunL9D6TB79+4lPj6eqKgof4fSKWpqaqipqWHEiBH+DuWEOXjwIGVlZZx99tldqm/4h+iMKK6urmb9+vWkpaUxePDgdudFH6qq42+/fhOXU2+4/euN/+KFb/9A70G+s4hj4qOorfGMJknoEQtAdFwkz3zxO758axkWq8KMn44lLiGa+O4xvPh/n7Bm4TYwRbg5finEBg4nwmHUGNv0r0hp/p/7I/GIXyGlxxDaWMktMqVEQegtw5rQe3M19J+q8dNL/Io6kN08z90uXZr+o87pItpi1deVhhu0MEqrNSMjjNc+NSPra/Yhm8Le6G/2fteFKo2sNp7RVODpE8Y4SYluoKV6iWxhjH1qtnt2KMHe7GTL2t3udVpc9RQeWU11cwkqdhLiE8m2axw+fB7dunl60DvKe++9x9VXXw3A66+/zo033tjpfR2N7t27M3XqVNauXUt9fT2jRo06ajtDZWUlqamp/OY3v+GKK64IGDFsEhsbS79+/cjLy2PatGkBE3d72Gw2+vfvz/bt2+nRo0fA/LvqTUZGBosXL6alpYWwsDB/h9Mhrr32Wi6//HJefPHFgIv9f41bbrmFqqoqnn/+eW6//Xb363fffTfPPPMM999/P6+88spx7+/hhx8+BVGeOoIl00GCnATeffddLr30Un+H0WGklJSUlAT0qKVdu3bRu3fvE55T62+cTicbN25k0KBBATcH+njnFIN+A2bNmjUMGjSIoUOHtiuGAaoqDrnFMOgGV/dd9RKNdb4GR4+8/WvCInRhGx0XwZ1PXOle1rN3Er/9y0/49YOX0mdgT2yhVop37mPjqkKEy9i316370HAvgSMEOF1YrErbnl+zj9ap+mZKVekjlH1u07uMY7U3Xgn0hLNqzBZWDYGrCT2bapRR1ztVYqwW93OhCR8jLrx/x+gt1oSeKW6tAxSMrK4el3TpGWzZOrcg9Cy3x1gM980Bb3ExelIW1lamZN7HbHIeYdW+/1DRsI2kmF7cfc/dZGT05vl/Ps+okaM73edZVlbGbbfddlpu6EVFRTF16lQAli1bdlSzrS+++AJN0+jXr1/AiWGTfv36oSgKu3bt8ncoJ0xGRgYOh+O0zJc+FURFRREfH8/evXv9HUqHmTFjBnFxcXz99df+DsVvaAi/PDrC7t27mT9/PpmZmdx6660+yx555BEiIyN59913zwjDvaMRFMRBgpwg+/fvZ+nSpackK3GqOXjwIKqqBmQpGehjempqajpUqttV2b59OxEREQF7c+J4RHFJSQlbtmxh3LhxxxwllTkglfjuvrNra2saPBlHg/7DM/hk2+O8s+4RPsj/G6m9PWWFUkpamnXL5Q3LdvKLsQ9xy3lPcaiyVl/B6fJRbUNGZaJYPNlRqSi4pGTMzMHYIkJ03Wukg4UA4VTBpYJTd5sWZsuyKZi9ZhWb5VhWpyEufWqmdSzCFLTCeODpJ9Z0QRxlteiJXoySaFMAq0YCWHplivWz0EMw5wpj/DRLnA2baGHRX5Ne528izJJnb61slIlLmwVpsxCTGMMNf/wxKRkJ7n1Ls4dbCLbVLMKhNTGm9wV8/e1cfjz5SuIPjCEjajjFJXu48Zrftn1DjoGUkuuuu46EhAR+85vfdHj7zmCz2Rg3bhwJCQmsWLGi3QvEzz77jNjYWEaPHh2QYhj0UUwjRoxg9+7dJ2wo5m8sFgtZWVmndLb0qaZ3796UlpYGXPyKojBr1izeeecdf4cS5AdYvHgxADNnzmxzkzo6OppJkybR1NTEmjVrjnufH374IY8//jhPP/003377LXa7/dgb+ZGgIA4S5ASZM2cOOTk5ZGVl+TuUDlNSUkJ6evpRs3RdncLCQtLT0wM+O2yWSg8fPjwgS/pMfkgU7969m23btjFhwoTj6oULCw/h8f/epptXeZGYEtdmXYvVQlJKHBarR3jsLark8pw/c+mgP3H5sPt58YFPcBml0C1NDl3zOZ3gcICqgsvFHQ/NoqcpqIVAhlrRQm2sXVmEXYI0MqCxcZH8YfZPEYoCUr/oQzNKi71cmoUqPLOEjZ8Wo8TZ4sJXYHr3/xpmWO6Mr/FocKhYhCDSouhi1iX1bLJLd5z23o8brZ3ssFeps+kuLdvRvO7mNwmi2YmQxpgpTdOz44pHYH//7WZefvxr9u895JX9liAUmlx11LSUEm6NIV7L5sk73+NLwxG8X8x4LMLG1/O/6HD24fnnn2fRokW89dZbna6qWLx4MUIIfv/735OXl8cll1xCfHw8sbGxXHrppe6s4vbt27nqqqvo3r07cXFxPPDAA0RGRrJixQoaGjwl+zU1NSxatIhJkyYxYcIEHzG8fPlyLrvsMvr27UtYWBjdu3dn7Nix3HfffZ2K/VRjlk7n5+fT3NRC8fYK6o80+TusTpGRkUFDQ0NAmlMBJCcno6oqBw8e9HcoHeZXv/oV8+bNO6Oziz+ENMYgne4H6P423o+jiVLTRC87O7vd5f369QPoUMXIlVdeyX333cc999zDBRdcQHp6Op988skPbtOnT58Tfjz//PPHHaM3gXkVHCRIF2LOnDnMnDnT32F0mJaWFg4cOEBmZqa/Q+kUDQ0NHDhwICBvRHjjdDrJz89n8ODBAVcq3R7tieJdu3ZRUFDAxIkTiY+PP+599eqXzP2vXk9sQhThkaHc9H+XkDXk+EaD/e23b9HUoH/5N9Y1U7X/iKc6WkB6drLueqlqiBY7OJzM/v1/2Vt2SDfIArCaqWDjEWIhvnsUF105jqnnGgZfhpJUVAkuFaFJd7m0InXDLUUFMHp50cWtYmR3TVdpb0dp78yv8FrPpUqaXCoxFiuqWVKtee3HzGCbuJ2yTdMr94I275dp0CVtFi8TLgmq1I22VA2lxYXS4kI4VP3GTevxS1bTjMvrdSGoadFLPRPCMhBCUFNZR8GWcoRFwaqE0C00BafL0aHsw44dO/jTn/7EnXfe6S5j7gx5eXmA/jc6efJkLBYLN9xwA+np6cyZM4frr7+euXPnMnbsWBoaGrj22mvJzs7m66+/5s9//jNpaWmsWLGCuro6nE4nzz77LE6nk5tuuslHDM+ePZupU6eyYcMGzjnnHO6++24uuugi7HY73333XafjP9X069cPTZX885F/c8vMJ7h69P+xaWXglVHbbDb69OlDYWGhv0PpFIqiuM21Ao1Ro0aRnJzMggUL/B3K/xy9evUiNjbW/XjsscfaXa+2Vq+aio2NbXe5+fqRI0eOecxZs2Yxd+5cysvLaW5uZufOndx3330cOXKEK664gnnz5h1125KSEg4fPmxMJej4o7S09LhibI+gqVaQICdAQ0MDS5Ys4YknnvB3KB2moqKChISEgHVmLioqomfPngEbv8nOnTuJjIwM2BsT7WGK4lWrVlFZWUltbS2TJk066pftDzHxvBwmnpfT4e1qD/lmI6w2K1LT0FRJTLdIuvdKorT4kL5QSkJjwti5pVwXcjYL0qXqetInvSqoPtLCey8t4uM3l6FYBJrZXysE0sgYm/vEqLxQpERDL4GWUiKagQjhGYnkpU+FC/2b2RSwZobYCKPepfcRVyropdumyPYS+964S6il8USaZll4fkqJogdnVCgItx42R2VgU8CpeQzDWhlv6WXgqs/4JYDQMBtNh/SS28gQz80QVdWIiA6j8UgTqT16UV26l127dnHOOee082n64nK5uPrqq0lPT2f27NnHXP+HMAXxunXrWLNmDTk5+t/agw8+SHp6OvPnzyc/P58FCxYwYcIEABwOB1lZWSxbtow+ffpgsVhYuXIloaGhrFy5ksjISM477zz3MSorK3nwwQeZPHkyCxcubOOo3pWzloqisDe/jr6jk9i8JIpD+xr519/m8M9v7/V3aB2mT58+FBUVcfjw4RMycfMX6enpLF68GIfD0a4rf1fm7LPP5ssvv+SSSy7xdyj/U5SVlRETE+N+fjqq6X73u9/5PO/fvz+zZ88mNTWV22+/nfvuu8/n38f2tn/wwQc7dewTqXYMZoiDBDkB5s+fT2pqKsOHD/d3KB2mrKyMtLTjy7Z1NZqbmykrKwv47HBtbS2lpaXk5OQEdKl0e3Tr1o2ePXty8OBB0tPTOyWGT4SzLvJ1HZ9ywTDeWHI/s9//La8vvI/1yzxzVqUQ2B1ejbdSN5jC7vI1kxKAVf+c7C0uNLuK0DRwaXpvn7s1V+qC0XBzBqELYUPkWlXT1dnsMfY8hMO3bNocoWQur3foghib/qJQ9cdRMbPDaisxbIpkd6m08FwRGM7SQggw+4c1Q+Cbf6fm+ZmoUp9nbLpYG/ObLTaBEqL/blV8L+IHju7DVyXPcOEvpgHHl30A+Mtf/kJ+fj5vv/024eHhx7XN0TAF8dtvv+0Ww6D3zWVmZqKqKk899ZRbDIM+TqZ///5IKWlqaqJv374oikJDQwP79+/n/PPP93HU3blzJ6qqkp2d3a6QSUxMPKFzONU4GjS2Li1n8hX9AYnazuztQCAkJISMjIyAzRJHRUURExPDvn37/B1Kh7n00kuZO3cuWntz3c9wNCn88gCIiYnxeRxNEJvfz2amuDXm6ycyhu3GG2/EarWyceNG6uvrO72fU0VQEAcJcgLMmTMnIOfr1dfXU19fT2pqqr9D6RS7d++me/fuPnc+Aw0pJZs3b6ZPnz5ER0cfe4MToLG+mT3bK9wGU6eDwsJC9u/fz6hRoygtLT2m+7Q3jhYnbzz6Bfdd+QKfvLywUxdRv334Mq679wKGjO3DVbf/iN89eQXJvRIYMSmbFfM2e7Ka6HoxIsJLqBglv4o5h9h9r8JwYrZ4fXUqimcEkdo2TmH24arGfjQQ6KXOtua2pdHCrmd0FU1/mOZZqPqj3uki2mrVTbAsXocUunFW6x5gt9GW4iWGpeeUhOY5R2n+7t5eYmkxsr6tRXdrDe597l43d5rqWtxl7pf/+ixsIXphmlAERZv2cvM5j3Gg7FCb9+1orF27ltmzZ3PPPff4iNTO0NjYyK5du+jTp0+7GYvS0lLi4+O54oor2l0WHR1NTEwMq1evJiYmBk3T+NOf/sRll13ms+7gwYOJjY3lzTff5OKLL+bDDz8MKKOqi6+fyq41lUTHh9F/fArX3Ptjf4fUabKysqisrOySF+THQ1paGuXl5cdesYtx/vnn43A4WLdunb9DCdIO/fv3B47eI2zeRDpaj/HxEBYW5r7WOVo/+fr167nppps6fYwT2T4oiIME6SSqqvL111/zk5/8xN+hdJjy8nKSk5OPOkezK+NwOCgpKTmhf5i7AmVlZTQ1NZ3y89i1aS/XjH2IW2c+wXUTHqF8T9UpPR7oNywKCwuZOHEiaWlpxz2SyeSNR7/g01cXsXHFLt549Au++veKTsXxs9/O4KkPb+Pqu893l1K1NDt47a9z3BlMAITA3tj2ZoEt3MbFs4brZc16ylR3T7a0cmE2M8LmLr3Eo1t4Gu7S7tJmDRRNH7GEC1B14WoDH1Mtd4+x6TTtUIk2zcOEcC93H9H7W13xlD6bcZqZXyGNXmev90BPcRs/9dpoPX5V871YEPiah2kSYXe02peHytI6AHZs2s1dT1zBbx66FM3p4kh1PfuKD7L4y7XAsbMPLpeLa665huzsbP7617/+4LrHw6ZNm9A0jRkzZrRZZvaynXXWWW3+nWxoaKCoqIhhw4axevVq92ilL774gkWLFhEXF+dzwZeYmMiKFSu4/PLLWbhwIVdeeSVJSUmcf/757gx1VyY1M4lXF95P7/S+/OhXwxh11gB/h9RpwsPDSUtLC9gscc+ePTl06BBNTYFlbhYSEsLkyZP54osv/B3Kace893q6Hx3BTOzMnz+/zQ3o+vp6Vq5cSUREBOPHj+/0+1BQUMDhw4eJjo4+alXMqFGjSElJ6fQxTmT7oCAOEqSTrFmzBk3TOPfcc/0dSoeQUlJeXh6w5dJ79uyhW7duAdkDZuJ0Otm+fTtDhw7Faj21Vg7vPPkVLY26uVTd4QY+/Of8U3q8kpISdu7cyYQJE9xlWB2ZUwywde1uPVuJnknckVt80uL7601v0Nxg1wWxy+V+XXOqbsdlE6dD5Wc3TmP0+CyP27UQelYVDGHomUGsGIJZAR/BiApWr35bIQ2DLU0f1aTgyeQCXnOIWz3MkmmbBcwRT0Iax5Kesm5Tj2oSRQq3GHcjpf7UjNXUv62vqFQNmp0IuwsJJKfH68ZZFgUsAotF4crrJtMzPsIj9IHxMwZhDfH8XTtr9d9XLcvlqbs/YH9ptVukSwl1dn0G8aESO/dc9hxP3/Mf6g63zSA0NDSwa9cuduzYQVhYmLu/WQjBI488AsBNN92EEIK77rqrzfatMcXoqFGj2izbsGHDUZfl5+cjpXTfVBw7diwAc+fOpaqqil69erFy5Uof0TJkyBA+/vhjDh8+zIIFC7jsssuYN28eM2fO7PLjSACiYiOYcPYoYuNi2blzp7/DOSGysrKoqKgIOFEJepYtKSmJiooKf4fSYS666KL/SUEcCPTt25eZM2dSUlLCiy++6LPsoYceorGxkauvvtrH+HPnzp1t/i0oLi7m0KG2FT8HDx7kuuuuA3T36VN93dMZul5EQYIECF988QWTJ0/ukv9h/xCHDx/G6XTSo0cPf4fSYVRVpbi4uN2L1EBi586dxMTEnNCd0OPF5dI8WkhySvv/ysrK2Lp1KxMmTGhzw8IUxatXrwb4wdnRQydkUbxzH1KTSE0yaMzJmc3saHGSZ/YOm3N5vbOZLg1CfGfG3n31q9x4z3lsWlOEQ9OwhFhRw2xgdyFcqt4zrKrgEnp/sYouGM1SaSHc4g9NIqyKXqFsZn+dEkK8YlA9RlmAR9waWeAGh0q0zeruLZYWwCX09mDjFrfZKixc6C7RivDaj5eY94oLgW6c5Y2m6YZgYXqGdF/FEZ+3S1U1/vvWCm66dTofvfA99bXNjJjYj+kXjWDN/K16ObmEhLB0AGqaS5BSUrCpjJj4SBpqm3GqdmqdBwgLDWPJ+4VYFRs780s5dLCOv73jO1s4NDSUG264gfbIy8sjPz+fyZMn079//+MqpzYF8ejRo9ssMwVxe8tyc3MBGDhwoHvO8OLFi6mpqeHSSy9l8ODBqKrKqlWrmDx5sk8/cUhICDNmzGDGjBlMmTKFFStWUFlZSXp6+jHj9TdCCHJycliyZIlffAFOFtHR0SQnJ7Nnzx6GDBni73A6jJnhzsrKCijvicsvv5zbb7+dPXv20KdPH3+HE6QVL730EhMnTuSOO+5g4cKFDBw4kLVr17J48WKys7N59NFHfdYfOHAggM9s7KVLl/Kb3/yGyZMn06dPH+Lj49m7dy/ffPMNtbW1jB49mieffLLTMR48eJAXX3yRbdu2AfqNxltuueW4Rjkei8C6kg8SpAvxxRdf8Pvf/97fYXSYsrIyevbsGZCzh8vLywkNDT0p//j5C9NIa9q0aaflYuaqu85le+4enHYXYRGhXP7bY7v4doaamho2bdrE2LFjSUhIaHed4xXF1//5YsLCQyjaWs6IKf358TWTTyg21aXyxmNzWbNgKyHhNpx2l5GBlsR0i6DusJ4pEsDwcX3IX7vHvW11ZR1/v/9TnE4VIkP1GwoCZJgVmjS97FgIvWLaO8OsSfcYIoHenyscAmnFmEesjz9WXHrvrylQBaC59OemyA2xCKKtVmJCLSSF2UgKt3F+ZjwxIRaibRairBYUi0ARAosiiA3Tv9p/O70XmqrH5XRqNDarNDS7aGhy0djgorHJRVO9i8YGJ81NTsMAzEACFgUt0mPCIq2Aw9Xm7/aj15bw8ld343K5mP/hWv79928RhpEYSCJC4kgIz6CmuZSyho2cnT6SPz33C779YA0fffsmrjIHk0adR0hVKJqqoakaG9ZsZOfOnfTt29ddshweHs6//vWvdj/jhx9+mPz8fK699lpuvPHG4/q7yMvLIyQkpF1RdLQMsdPpZP58vcriJz/5iXu00ueff46iKMyaNcstHPPy8li8eDFZWVnuOZ4mRUVFbN26lfT09ICq1omOjqZPnz5s3ryZyZMnB5Qg86ZPnz6sWbOGAQMGBNxN7ZSUFDZt2kRdXV1A3ZRITExk1KhRzJ07lzvvvNPf4Zw2vOcCn85jdpS+ffuSm5vLgw8+yLx58/jmm29ISUnhzjvv5KGHHjquqrxRo0Zx5ZVXsmHDBvLz86mrqyM6OpqhQ4fys5/9jJtvvrnTDumrVq3i/PPPp6GhgcTERFpaWvj000955plnmDdv3gmVc0NQEAcJ0imKioooLi4OuP5hTdOoqKhg3Lhx/g6lw0gpKS4upnfv3gF7ESalZMuWLfTu3fuUG2mZ5Ezox1srH2Jv0QF6D0wlLuHkH7epqYn169czePBgunfv/oPreotiTdWoKbWjqRr7SqvZuGIXWYN7ctXvzudXf7ropMX35dvL+fzNpbrJlCKIiA4nIjKEWddPo9+wdB648U2cdhcWq4WduSVuo2QTl1Ntm00GvW9YNRyVpYJwaSghFlQp9XlKUiKFcItdqwoOt1GXQFFBtABWowdZQlyYlZS4UFJiQ+gZHUpKdCiRNgtOTaPertKiaoRbFaxCUNXoZHdLE/bDGi1hUm85lpIekSFcPDCJL7ZWIRrAqknCFIXICCtREVaiI6wkx4cSFa4/jwjXRd3hIw6qqlqoOthCVVULByubUL3P2eyjNjHepPqD9Xz38TpWfp1Pyc79aMLjRi0UhZi4CMZHXcyC7W+wvXoRSwvCOfLSVj37sETPPtx/3//x9B0fgQBFCFbt/4SBA1+luLj4lIwks9vtbN++nZycnHYv0DZs2EBGRobPzR2n08nq1aspLCwkPDzcLaSllMyZM4cJEya4K2+EEAwfPpx3332Xb7/9ltzcXEaPHk1UVBR79uzhyy+/BODNN98MuJuT/fv3Z+HChZSXl9OrVy9/h9Mp4uPjiYyMpLy8POBG3lmtVlJSUigvLw8oQQxw7rnn8sUXX/xPCeJAolevXrz11lvHta5sp1F56NChvP322yc5Kp077riDkSNH8s4777j/3Vm6dCk//elP+d3vfue+0d5ZgoI4SJBOMHfuXEaPHk18fPyxV+5CVFVVYbVaAy5u0Eu9GxsbA/YCDODAgQM0NDSc8J3MjpKQHEtC8qm5cHK5XKxbt46UlJTjvrDs1q0b48ePZ/HCpaz9sogtSzyuqXlLd9Lc5OC3fzl5N5tKCw+gKIqefdQkcYlR/Gvxn3n/ue/441UvoaswBVVVUZuN9K2llUgxe2q93Zqdet2y0CTSpSJsRlZU1RCKontsmeXL5rWDCsKqK+6wEAsDuofTIzmUlBj9EWpVqGpwUNFgZ/vBRhaUHKam2UmLUeoeZlV4YFIm3xcfwqFJcGqE1QrssbhFaFW9g4sHJlFWZ0dUayguDcUlfMqkhVPTXawlKEISiaB7j3C69wijZ2oEI4bHEx1l48ghO1WVzRysbGZ/RROVJfW+DtOqBlJStruKPdv3eU5SUVBsVrJzevF/L19LfPcY5n/xU277zV0s/n4pCxZ8R1xMPAOTx3FO9iwG5WTxxxeuYcXXG0lOT2Dra59xpKGmU5+3pmnM/fcKdm4oZtDoPvz4mkltROfWrVtxOp3ttl+UlpZSU1PDtGnT3K+ZYlhKSWlpKaNGjXJnh3NzcykrK2vTt2yxWOjWrRsTJ06ksbGRt99+m5aWFlJTU7nqqqv44x//2CZzHAhYrVYGDRrEjh07SE1Ndb8PgYQQgt69e7N7924yMjIC7iZrWloaGzduZNCgQQEV+5VXXsns2bOpra0NODHfWQIlQ9xV+Oabb7jgggvavL5p0ybmzZvncw04bdo0fvGLX/DKK6+c8HGDgjhIkE4wZ86cHxws3lUxZw8H0heoyZ49e8jIyAi48jYTKSU7duwgOzs7YM+hNVJK8vPzsVqtDB06tEN/V7WVzXzx7AYuvG04gFsUSynZvPrkOsCOOXsQ3324FsWii+IJM4dQtruS9579Tu9zBU+vrwCpSmh1jS8Amh0QYkUKgcVmgehQaNZLjU0TMCRYVHDZJGjC17pSShJDbPTOiqZfaiRpiWHU1Dkor21hx/5GFhUcprLegVNKpFUvmZYW8JhkQYvUcGoa0aFWapqdoOgjnPB+6xXPT6FJUA23aOmJw/TgAj3B3ehQKSmup6Skwb1OpFWhe3I43XuEk5wawcixeqtCSWEdJYW1lO+px3XYAUKwYsE2wiJDsTc59JsCUuOFuXfRe4A+2s1hd/Hq/d+QFTaNvj2n6sdw6TXaezZX8rdfv8HL39/HWRePBODG+2d16DN++OGHefjhhwH46KXveeuxuQhFsOSLPJwOF5f92nc83qhRo9rNcABkZGT4LDPFsGmg5XQ6fdb//PPPAX3WamtmzZrF4cOHiYqK4rHHHjtmBUWgkJaWRlFRESUlJT/oB9CVSUtLY9u2bdTU1HT5WdCtSUpKQtM0qqurA6qFaODAgWRmZjJv3rx2x5kFCXLhhRdy9dVX8+yzz/qUaSclJbFq1SrOOcfT9qVpGmvXrg32EAcJ4g8OHz7MqlWreO211/wdSodwOp0cOHDAJ+sRKLS0tLB///6AnPlsUlZWhqqqAVee90Ps2rWLw4cPM23atA6XfYZHhnFwbz1fvbDRRxQLRTBk7Mm5wHY6XDTUNjHx3KE88Mp15C7dQWZ2ChdeM5miLWX6SlLqoljTwMh0CSC9b3dKd/uOqBJCIJ0qRIR42m3DbYgGO93io6hrcSKdKtIwsdIFpyQlOYK+GZH0yYgiNsZGaVULO8sb+GpdFXXNLpwWibTqc4X1+cegqejPvcSu0CuzabCrRIdYqGly6OLXuzQbj6kW6GOZhPSUaZtziE13ab1pWc9Yu29oGGKwpVllb3EDe4sbjONrJKeE07tfLOOmJTPzkgwqdtdSuu0wJdsPMeuqaaz6diMtjXauuutcFIvCdx+to9/QNLolRtPU0OL7ARnZdg0oKaqi+sAREpPjOvw5tyZvme58at6kyF9R0EYQHy+txXB72dDPP/+cYcOG0bt3++Zv3bp1Y9iwYeTm5jJ16lSioqI6FUtXQgjBwIEDyc/PJz09PSBH+FksFjIyMiguLg44QawoinsmcSAJYoBzzjmHOXPm/M8IYk0KxGnO2GoBnCGeP38+v/71rxk8eDAvvvii+0bjr3/9ax566CFWrFjBiBEjsNvtzJs3j4KCAv72t7+d8HGDgjhIkA7y7bff0rdvX/cg80Bh//79REdHExMT4+9QOszevXtJSEgI2AtJVVXZuXMngwYNCrh+waOxf/9+CgsLmTJlCqGhocfeoBXJ6Qlce++Peeepb/jqhY3MumsUqX2SiLJ14+p7zj/h+AryS/m/a16h/kgTWUPTmP2fW5l0Xg6gzyLetLqQxORYqg/UgqoSHhNOc4vL7Q4948LhvPH8fK+sKrp4VDz9seZPGWLhcEMLikXRq5KdKknxEQzJSaBfVjQC2LO3kVW51ZTsa6IhXOgC1kBx6SJWUzzHEapxUK8LG7Piud6hC2L362Zs4JspFiA1Q/dKz6l49LLxmyIN4e21I/dYJ3wyywcqmjhQ0cSmZQcIk04yBsfTd1gCE2dlEhVp4Q+zfqpn3taXcusFT6OqGkIIHnj5GgaP7s32DSUIBULDQ2iub/HEIeDF//uUh15v30W6I/Qb2ovNq4t0IzMh6Du4c6ZVxyOGAXbs2HHMffXq1Yu6ujrWrl3L1KlTA1JAtqZHjx5ER0dTVFTkdpwNNDIzM1m0aBEtLS0+buCBQFpaGqtWrSInJyegytYvu+wyfvazn+F0Os+I/w6CnFxmzJjBli1b+OMf/8jll1/O5ZdfzosvvshDDz1EXFwcf//731mwYAGgz+V+7rnnuP3220/4uEFBHCRIB5k7d25AZir3799Pamqqv8PoMGbP3uDBg/0dSqcpLi4mJCSEnj17+juUk0JdXR15eXmMHDnyhPrArrx9Jhf9aipIiUNtYXXkavr3709o+NFdKB0tTtYv3o7FqjDm7EFYrO1fCL74wMc01DUDsGdbBZ+/vphr/vBjAP7y6zfZuLIQBFhsVvoN60X5nmrQ9FJYoQi25xZj0XTPLJMePbtxYH+tZ5ySSYgV6XBhsQoGDElg0KhEuiWGUVBYx9zvKthX1eIx6VLQ3adDcO9DzwhLhEXo4lQaGWZV6COBzXsoxj4aHCpRIRZM9y/vhLAvxpxhr0lL5oxh6WOWZYxtMvWwOTLKFOgKumu213sRHR5CdXkjm5cfYPOy/SSnx/HwG1dRWlqql6GWNdM9I5r9e2qRSL7890r++u+b+fr9VTQ1tPCjy8fw8kOfkbtkhzETGfbvrW73s+woV99zAY4WJ1vX7SFnQhZX3dXx9pbjFcMdYdCgQdTX15Obm8v48eMDsnXFGyEEgwYNYtWqVfTu3TvgBCVAZGQkCQkJ7N27l+zsbH+H0yHi4uKw2WxUV1cH1BjFc845B4vFwurVq5k6daq/wwnSBYmMjOSFF17giiuu4MYbb2TgwIE8//zz3HXXXdx1113U19cDnFRz0qAgDhKkA0gpWbx4Ma+++qq/Q+kQqqpy8ODBgLyLX1VVhaqqJCcn+zuUTuF0Otm1axejRo0K+Atg0N15165dS1ZW1km5wRIZrV9ERxJ+zJFMLqfKH3/2T3bmlQB6b/Aj79zc7vvaWN/i6esVwl2u29LsIH/FLv11CarQ5+J6BKtAIlizeCdS1XRzLYteUj357IF88p81+rxiqydTHBMXytARKQwcnkDtYTvb86rZubueZgTSprgzoABooDg01FCvr18hUDSpj1uyoYthqf97IxTc5XZmjPUOF9EhP/D17ZUt1s28zOZo2XYdc3mbdlozVW2srghiYsJAlTRUHKLaGFVlxu9oVkmM705GRgZ1dXXM+c8Czr1hIA2H7WxZsZ/w6BDCI0O53Kt0+eJrp7B+yQ4Ui0BTJTMuG3P0c+oAIWE2fvvXyzu9/akQw6ALyFGjRrFs2TK2b98e0Df5TOLj40lKSmLXrl3k5OT4O5xOkZmZydatW+nXr19A/RsthCA5OZkDBw4ElCC2WCyMGTOGxYsX/08IYuMe5Gk/5pnAlClT2LRpEw888ADXXHMN//3vf3n11VdPyfXgmVG7FyTIacLsmZwxY4a/Q+kQBw8eJDQ09LSN+jmZlJSUkJGREbClxkVFRcTGxp4RZjqaprF+/Xri4uJOSTalW7du5AwZwfbtO9i5o6DN8p35JW4xDLB+8XbKiirb3dcVt3r+Gw0Ns3H+VRPdv3dLjEYowj1KyffiwatE2aIgVBXhcCJcKp+9uUw3gjLSxt1Twjn/sgyuuimbyBgbX32wm4//VcC2vBrUWjuK3dk2aQtYnLS9YpEgHMaVk6aBphtf4ULPzmqGQZbUM8TeJdMqtNmX969CCp+yZ7cINnuI8fIQM+PyDk9KpCa57jfn0FxSjeJsc0QOVdXxzwc+IX95Ac11Lur2C95/dAPbVh9g2LSeDJwWy7at23A4HO5tRp81kCf/extX3Poj/vzStfykk32+J5NTJYZNbDYb48aNo7S0lLKyspO6b38xcOBASktLaWxs9HconSI5ORlN06iqqjr2yl0MUxAfzSCuqzJ16lQWLlzo7zCCBABhYWH8/e9/Z+XKlRQVFTFo0KDjHg3VEYIZ4iBBOsCSJUsYOnQokZGR/g6lQxw4cIDk5OSAuvsNuplWZWUlQ4cO9XconcJut7N7924mTpwYcO99e5ijak5VuefmVYU8eM0rxHQP46I77OwrPkjhuiriEqOYdcNZREa1LckMj2y/f3nGT8cSFRtObU0jo6cPIiklDtCzKg+/cSPP3PsBe3dX6aORjBLouKRojtR4XdQLdOMnTYLVU6LcLTGUcTN6kt4nmi15NSxfsI+GeqeeOTZv3Gga1mYVR5Rn/yYK6KLaMNEyk7FWp8Slec07bt0bLAFNUu9QyYg13gshUG2miJW+2Wj0Cmw3RmmycO/Qa9/eyNb7E6BqzJubj9VmwelUfc/JqHle+kUeSz/LJTQ2EofDhUSwY20VO9ZWkdYvltDrwykpLSU7ux99+vTBYrEwdFxfho7rGi7Fp1oMm0RFRTF69GjWrVtHVFSUj5NqIBITE0NaWho7d+5sd4xVV0dRFDIyMigtLQ2oTCtAYmIiLpeL2tpa4uLi/B3OcXPeeefxyCOPBGTvdkfRM8Sne+zSaT3cSaeyspJ3332X0tJSMjIy+MUvfsHYsWPZuHEjjzzyCDfffDMffvghr7/++kkbxRmYKZcgQfzEokWLmDhxor/D6BBSSrcgDjQqKipISEggIiLC36F0ij179hAfHx+Qc59bU1lZSVlZGePGjTtlY6PefOxLHHYXB/fWM/ef+VTXHmBP8R7+/cTXPHrTG/Qe1JOf3TpDr+QVghvun0VSalsxYW928IefPM9fb3qTF+7/mC3GGKfG+hbWLdqGzabwxAe3ork0UI1spyY5crDeEHoYD6ELXMNIKzI2lLMu6c3Pbh5IU72T917ZyerF+2moM7Ke5oxic1tAOFUfd2cwfppDit1V3cJd4uw+PLqzNBqeHl4V6u1eJdMSNGvbbLMbzdNjLCSeecj4ruPezohNGLOZ9df1YxcUHGDchcN8ZzSb9YCadM9ptrc49XJ1r1rB8l1HeOWu71j2nwLK9pbx/fffU1paiqZp7QR0+jldYtike/fuZGdnk5eXh6q2zbgHGv369WPfvn00NTUde+UuSK9evaisrPSpYAgEFEWhe/fuHDhwwN+hdIjhw4cTExPD2rVr/R1KkC5Gfn4+AwYM4N577+XFF1/k3nvvZfDgweTl5WGz2fjb3/7GunXrqKysZMiQIbz88ssn5bhBQRwkyHEipWTJkiUBVy595MgRVFUlISHB36F0GHNuciDidDopLi4OOKOW9nA6nWzcuJEhQ4ac0psT7p5foHpvPV/9M59R52Uy5Kw0cpfswOVUue6+i/lk2xN8suMJLv/tOe3uZ/GcDWzPLQZAUzVeuP9jDlXV8dsZj/HQta9xy8wnWfjpeuISojxiTvHOduKT0Q2NtDH+vHSuvCcHW6jCf5/fwvJvy2iqdfiuqwj9W1UAFqELxxZVH3vUCqFqPsJX3x5PSbOXEZbQvB523WU6KtTiXkeRQq+bbidr7zbScvcJe4l2/YTBJY3ZxBKhSYSmtcoaC73EHMmS5YVoVl+n7fN+MgrM2bzeN0vMLLKU4NCXb15WwoYvKxgyZAiFhYUsXryYffv2+bXk83SLYZOsrCysVis7d+48Lcc7lURFRZGSkkJRUZG/Q+kUUVFRxMTEsG/fPn+H0mHMsulAQlEURo8ezeLFi/0dSpAuxj333IPFYmHJkiU0NTWxdOlSLBYLv//9793rDB8+nNzcXP7whz/wu9/97qQY3QYFcZAgx8muXbuora31GQoeCJiGG4HWg1tfX099fX1AOmOD3vscFRUVkDciWrN161ZiYmJIT08/pce59o8XYrXpYiQ8KlSfU/zPfEZf0JsJl2Rjsep/w5Ex4US0Uz5t4nK4fJ87VRZ9tp7q/bXu1957+lvCww0Hq9aYQtMiGH5WT6764wgSUsL54uVtLPxPIfWVje0KZ+9tQTeLVozzcWeeDWxN+Na1SUOU2/EIYuOhmA8NrC5oaHERabPofb8SVKtxGu55w+ZOhaGB9Uy0MDO2rRymzbJqoRlmXkL4JLS91wUJYTYURaBYBKnpCdz0wCwy+qd4yqu9uPGPFxCmGH3RAIpg0Rd5LPjPRqZPn06fPn3YvHkzy5Yto6ampu1ncRTWLdzGP+/7iDlvLEF1dT7D6i8xDLooGDlyJMXFxRw6dOi0HfdU0a9fP/bu3UtLS8uxV+6C9OrVi/Lycn+H0WF69OhBXV0dzc3N/g6lQ0yZMoVFixb5O4xTjpTCL49AJS8vj2uuuYapU6cSFhbGlClTuPrqq8nLy/NZz2Kx8MADD5CXl3dS/s0JrCvkIEH8SKD3Dwca5eXlJCcnB+ScQlVV2b17d8C5lrZHZWUl+/btY/jw4af8XEZOHcDbqx/iqc/u5J21j3Dj/12CUK1s+e4AI8/NZM+ePce1n2mzRpHaO8n9/No//JiQMBvSS+LZQqzsL6nWhZqZJTYFnZQkJIdz2a1DyBqewHfv7eLrf+2gurxB7w22KuBUdd3pXfJriF6JISrN7KhLa1M2rYBRBu3b5Ks4PMLUXeJsmGohQajQZFfRpCTSZkFoIM0pVeZFUOsqZFMkm+XXrbOxLo+K1kDPbit6CbcUeEqqAVRJeGQoo6f1Z/zZA/nJryaycWUhpQUHPO+BgRCCCTMGc9ODl+jnb/Fklj98aSH5KwqpP+CiPLeF+ioHq1evZsuWLbhcvjc0WrNu0TYe+tVrzPtgNa8+8jn/+tsXP7j+0fCnGDaJjo6mf//+Z0TpdGxsLImJiT7/ndqbHTx685tc0u8e7rrwH1RVdF3h37NnTw4dOhRwZd8hISHEx8cHXJb4/PPPZ+3atQF7AyXIqSE+Pp6Kigqf1yoqKo7aejZo0CBWrlx5wscNmmoFCXKcLFq0iAkTJvg7jA7R1NREfX19wDkcSykpLy9nyJAh/g6lU5SVlRESEhKQNyK88S6VDg8PPy3HjO8RS3yPWAB+cvN0fnLzdAAOHz78gyOZvImOi+DF7+5lR24x3ZKiyRyQSkuTncWf5bIzvxSrzcLtj/2Md576hrI9lUip6UrQqqAogpHT0xh2Viqblu0nb3EFmtNLYQqBqqEL4RBplCp7xLT0ysAK47lwSbC1yrhKwK5BuMUn2yysmlf5sDFn2EtIW6TEKQWNDpUYm5X6ZhWk0HuNFV3Yum9buIz+YdOQy12H7XsvXGjSU9at0G7ptR6zXk7dfKSJdct3QWMzq77cgDXEapSLK7qAtlgIDbPym/suJDUjkZT0BL79z2qKtlX4vDfLv8pn/gerURSBqmr87PbpxMYeYcmSJYwYMeKo1RXrF25HsShoqv65rPpuCzc/fFn7MR+FriCGTbKysti/fz87duwI2H/zTPr168eaNWvo168fNpuNT15ZyMpvNyE1SeGWMl647yP+8s5v/B1mu4SGhpKUlER5eXnAtbqYZdO9e/f2dyjHzbBhw9x9xNOmTfN3OKeMdqttTsMxA5WrrrqK2bNnExMTw5gxY9iwYQOffPIJf/rTn466zcmogAwK4iBBjgNz/vC//vUvf4fSIQ4cOEBCQgIhISHHXrkLcejQIZxOZ8A5foI+mqiwsJABAwYEfHZ4y5Ytp6VU+njo1q3bMecUexMWHsKIKf09zyNC+cecuzhQWkNMfCRRsRFkD8/g3098xZGaei68Zgq7C8tpEXoGa87LW6nZb5QgKsLdhgu6eFSEQGt2IMJDjZe9Mszg+alKFAVUc3axN06gdeW30sr4SupqVmga7lpozRi9ZPQRCwnSa7EpsBWX2UNsPoRvXZixntu4C3Plo//dCpeGoho7tNlAteNyqWCzIRXF7cZtd0k+fXc1510xDiEEs9+/hTsufpoD5YcMfS5prGtGGGIYYNGneaRkns/6lVuoPVJPfGwiU86e0MbELb1fslsMKxaFzP4pR423PbqSGAb95sCIESNYunQpKSkpAd1mkZCQQExMjNs/4WDFYf3GEBJN1Tiw9/jL4v1BWloahYWFAVfdk5yczI4dO3C5XKfM9PBkY/YRL1q06IwWxEE6xkMPPURTUxOvvfYab7zxBuHh4dxxxx08/PDDp/S4wZLpIEGOg4KCAurq6gK2fzjQKC8vp2fPngHX9wy4TVl69uzp50hOjAMHDrB///7TUip9vJiiuKCggN27dwOgulS+eW8l7zz1NcU7ftgQR1EUUnsnERWrG4MlpcTx+2d/yV/+fTMNjkOEJTVRsqWar17Zhsvu+duTptu01QIWi1sAu0caqaZLc9seXUUK9+vuHl5jdZuLVn3ExsxgVXrKn83XNWGUT+tl0w12lWibRc/uqmBx4XGv1oxtrZ4Zy3qWWXqMu8Adp+LSvPqLvf6bM7O55nPDfEyXw77jnTyO3J7Xy0uqefWvejlzdFwEL3x1D5ddP43J5w/j4ddvYOi4vm6XacWikNAjlufu/ZBVc3bxyePrKdpewuLFi9v0Fl9w9SR+cvN0ktMTGDN9EHc9dSXHS1cTwybR0dEMGDCA/Pz8Y5aMd3Wys7PZs2cPqqoybdYopCZRDNO6mVeM93N0P0xKSgpNTU3U1dX5O5QOERUVRXh4eMDNUv5f6CMO9hB3DJvNxtNPP01DQwOVlZU0NDTwzDPPnPL2ucC4jRQkiJ8JxP5hp9NJTU0NOTk5/g6lQ2iaRkVFBePGjfN3KB1GSklRURF9+/YNSDFv4nA42LRp02ktlT5eWmeK57ywhu8/WYdiUfjklUX889s/kJF9/KXqDQ0N5Obmsm9/JQv+vZXqsgaEInC4jlJ0JgT9h6VTtLUcTZPExoVTW9eiO2QL09vK2yJa6OXVLgEW6XNzwSIlLhfGPGI8I49cGoQKpKktvTK4Ar0yuqFFH70kVMPU2i6RIYou1BVz5JPU73pLaYxSMnW2r6O2tAiES0MzZxh7zxf2fhucLp9+YpvQk9wxiVHU1jvB6m3WpR/zy/dWceN9F2G1WYiMCeemB2a5V1FdKmVFB1jx9UbSsnow/bIxFGwqA+BIVROfP72B2Z9dz+rVq+nduzcDBw5EURQsFoUbH5jFjV77Oh66qhg26du3L/v27WPnzp0BXTrdvXt3QkNDKSsrY8SU/vz98zvJX1ZA5oBUJp7ftb+PrFYrKSkplJeXExsb6+9wOkRKSgqVlZUBZUR5/vnn/8/MIw7ScZKSko690kkicK/YggQ5jQRi/3B1dTXh4eFERUX5O5QOUVVVhdVqDcjZvYcPH6axsbFLlBifCKfLVbqzeGeKq49UAvp4JZdLZe33W497P1VVVSxbtozExESWvFekm2YZaE61rfmUABQo3LmP6NhwUDVqyw61FY7uWcZm2bQuft1lyaaJlwRh1xCqvo4w5v8KFXcpNKY5talVpQQXNLSoRIdY9I5hVX9dcWiemcVA6GFP77PQjiLwJbqJFujC3RTF4DECMzPJCLf5WHxSNB9v/BvvrX+EtH6pejm4W1DjvhEQGmpj+Teb2LB0Z5vRSharhVv+9lNenP8nZv/nVibMHEpUXASKRe/l7jOoJzkjhjBt2jQqKytZs2ZNp+fEdnUxDJ7S6ZKSkg45bnc1hBD06dOH4uJipJQMGt2HX9x9PpMuGNZlqk1+iLS0NMrLy/06Cqwz9OjRg8rKyoCK2+wjXrNmjb9DCfI/TlAQBwlyDAJ1/nB1dfVpvbt2sigvLyctLS0gLpxas2fPHtLT0wOmh6s9umKpdHuYonjkeZnkTO8F6HOMk3sdu/9S0zS++2IpK1esQjRHMnjwYG7400VYjKx+QvcYuiVGgeptpuW9veRIXTMS40u0ocVr3bbvmfuL1hDBPm7TdrOc2nxdIhSBUM2ZwNKrFFr/3doiaWh2ERli0XuUNYlmFaAJFFUgjIpbR5Sib+M0+ozBV7iDV7k3ENJaJEqv/8cj/KUkNMyGLdTKwi/z2Z6/17Pca12bAoqQPHnXezzwq9f45/0f++y9sa6ZOy/8B78Y+QA/H34/+0oO8tyXd/OTX5/NL353Ho99cCuKohAdHc2UKVOwWCwsW7asw+WsgSCGTc6U0umePXvS3NwckMI+KSkJKWXAxd6tWzecTicNDQ3HXrmL8D8xj1j66RGADBo0iJdeeskv2wcFcZAgxyBQ+4drampITEz0dxgdQtO0gCv5MmlpaWH//v0B5fLZGpfLxaZNmxg6dGiXK5Vuj27dujEoewhjLujDqPN6c/lvpjPlwuHu5UVby1nw0VrK93j66lRV5evPv6emtpIvX9zM83+Yy3vPfkdYRCjPzf0d//j0Dl745vccrqrTBZ5L9VxctO6ZNZ4rZn+u4UfVRhIb45fcIldKdyLVKj0uz8IQxgJQWjS3EZbQDPNnDENrTdLYrJtqKarRd+wdn3EjQ9r0owiL0QdtruRtsiW9tjHnDHvty72ZqscjDMev/Xtr2LahlOICPUPvnUlGStL7dmfMlGya6j0jVb79YA1NDZ7nX7y5lN1b9BLppoYWXvjzR6RmJnL9fRdx1Z3nEh0X4V7XFLM9e/Zk+fLlxz1iJpDEsEnfvn0JDQ2loKCg0/vwd5bQarWSkZFBcXGxX+PoDIqikJyczP79+/0dSoewWCzEx8cHnJD/X+gjDnJ87Ny5k+rqar9sH7hpjCBBThMrV65k0KBBAdU/7HA4qK2tDTi30urqaqxWa8D1bgGUlpaSmJgYcCXq3uzevZuIiAh69erl71COm8EjsknNTCIiejX9+/d3Z7WXfpnH47f9W8+o2iw8/uFt9B2ayvr162loqOezZzfSWKuX337wwvdITSMsIoQn/3srYRGhrY4iPeLRuxQ6xIq0u/QyZlUDm1XP5Ar02b5Wr3VdEsUm0QxjKrw0rHBKXbzqDcj6bGGLQNG8pLUpcCQoKoYgtuoCWdXNsiSAxat829s8S2ju8mvvTLFAL9829bGJcGeDzTJtVT9HIUDowv0f9/6Xy66fypKvNuqZaJeh3FVJ+c59OA95ZaoMs7HDVfVEROm9gk31LW4RLjXpI57bQwjBwIEDiYmJITc3l/79+5OVlXXUSoZAFMOgn2dOTg7Lli2jd+/eREREHHsjg40rd/HEbf+m/nAjF147hZsfvsxvlR6ZmZksXLiQ5ubmgLjB5k1ycjJbtmxhyJAhXbpSpjWJiYlUV1eTmZnp71COm5kzZ/KXv/wloByyO4Q/TK4C2FRryZIlnd72RP5bPQP/8oIEObnk5uYGnMFJTU0NUVFRAWdSceDAAZKTkwPqAgT0bExpaSlDhw71dyidxm63U1RUxPjx4wPu/W9vJNPnry9xiz5N1Vg4ZzXlhxJJTEykttTiFsMgdcdkRcHe4uTT15fQPa1V/7qq6Q7TpiD2xqqAKhEOFzLUdMEUprbFSKvqY5okCFVDmk7ORnxWh8RlpoClsa3P7CU860td2zY2OokMs+gjkCRIFwgrSMWzX1TpFa5An83U6hQcElSJ5jVLGSmRQuijnowybcXuMkY4Sbdwr6w4zL+e/IbxPxrMnu0VVJUfBmNmswT6DU/nQPkhn1NY9s1Gfn7bjwCYcuFw5v57BQ7NARKuvH1m23Nuh549exIZGcnatWupq6tj+PDhbcRuoIphk9jYWFJTU9m5cycjR448rm2klMy++U0aapuQEr54YynDJ2UzfqZ//l2KjIwkKSmJvXv30r9//2Nv0IVISkrCbrdTX19PTEyMv8M5bhISEty924Hy7/jw4cNRFIXt27cHnAlokJPPkiVLTkgUd5agIA4S5BisX7+ea665xt9hdIjq6uqAK5eWUlJZWRmQX4imkUkgjrgy2bVrFwkJCQFXVWDSWhRHx0WgWASaKknpF0evUZH07t2bfv36sWl+hcdAymKKU10ENjXZ+fi1JZ4dS4lQFKSqecYKec8cNmasKoBsdqCFh3iWqxJsns4koWogLAhVoino+0IXuBaHRLMZ+VupG2VhkW6B6u4vBnBBY6MLiyIItyi0ODTdkEuRSFUvkQZQNKFfGIPHHdpww9bPDSyanu2VXnG6j4meDUbV9PfJzBCrmr7cYsGhSVYvK9Bft1nArrl3n5qZREioFUeL0/1eRsfqmcL62iYevfUdHC4VLBZGTRvAeVdNPO7POy4ujmnTprFu3TpWr17NuHHj3GM5Al0MmwwYMIBFixaRlZV1XKLM5VSpr23y6R88VOXf8UGZmZls2bKF7OzsgBFooJcfJyUlceDAgYASxN59xNHR0f4O57iwWq3079+fDRs2BOT3f5CTx8noJe9sdURQEAcJ8gM4nU62bNnCpEmT/B1Kh6ipqaFfv37+DqND1NfXY7fbA07IA5SUlJCRkRGwo5aampooKSlh2rRp/g7lhPAWxZfcNp7SXfsJjVU479c5DOw/kOzsbABcDhUFiSYN8enun4XKiiNt9hsdF079Ed1ECw2P+4Y0yp9tFqRTbePk7DuCyejnldJwhcZ9TADFaTYP66XTUgj3KCfv/ZkaVTZp2J0qMaFW7E0O/p+9846Pqkrf+PfcOyW9Q0ICofciTRQEAbsi2FbF3uvq6q7uby1rW9ey67quuuvaxdW1N8SGBRBFadJ7D6QXUifJlHvP749775QkSICE5LrzfD4DmbnnnvPOZDJzn/O87/OqQqIHjOOK6cWkBEyzrnBYRBdAN+uaJUT0Hw4fKzEIsGKSdCz926xLVpXQ83CoEa2Z3n5uPj26p7InrIZ7wAjDufynBZsoK6wMPv7Tt5uoq24gIbn1qbUxMTFMmDAhSIqtTgC/BDIMhsLas2dPNm7c2Ko2dE6Xg+POGsu8D5YjhCAhOZZxxw89DJHuG5mZmaxZs4aSkhKyslrfDq0zICsri7y8vODnhh0QXkdsF0IMMGzYMJYvX84VV1zR0aG0OawW74d7TTuiI69B7Hn1FkUUhwkbN27E4XAwcuTIjg6l1bBr/XBxcTFdunSx3QVsY2MjpaWl9OzZs6NDOWhs3LiR7OxsWykh+4JFiksqCvnts2cy4+bRjDtqLIOGhlI2T71oAjFxrpBqGqb27t5WiuqIVEs9VfWkd00Mphw3M6JSRFA5Fl5/6Fxp1tWahLGZUmvdpFnLa/Y+lpgmWmb9rojkxcFaYE+9RoJLNQitLlB0DIdpcwnVR3PHUeu+5V6tGCpyC+bYRsq15YCtSVAUkpPjDFHdctVuqvqFvZZI2LO9NKz+WbJ+2Q4AktIiPRlUh8K/H/iAD15YQMCvtRBMy3A4HBx11FG4XC6+//57Fi1a9IsgwxYGDhxIWVlZq42SfvfExfz+qUu45r4z+deXfyCjW0r7BrgfKIpCz549ycvL69A4DgaZmZlUVVXh9Xo7OpQDglVHbCeMGTOG5cuXd3QYUfwPI0qIo4jiZ/DTTz8xcOBAW11Y2b1+2G4oKCggPT3ddqYxFmpqaigsLGTw4MEdHUqbITU1lQEDBrB7925ycnKamYT16JfJCwvu5u5nLyctI8wEzSRuUkJcYkyQ7Om6pMHjNdXWELkLJ3o4FKQuEd5Ak2NNxxr3lSApNUmxBiJg/mw1IW5KZoMuzoAOdQ0BEmJVowexqfYqGjis8mjFVKiDSm8TBduq97WMwsLJrZRB0dhyxAao3ushENCNemkl9JpZ5yhWz2JFkJKeQFJqXDA1HCHI22q4Q4+aOIAZl08CYZieaQGdeR8s54WHZvPQDa+gBTQ2r8ojf3sJ+4OqqowaNYqGhgY8Hk+LNcV2hdvtpl+/fmzYsKFVztGqqnDc2Udy1tVT6ZKdehgi3D+6d+9OaWnpQfeQ7ijExMSQkpLSakfzzoL09HTKy8s73Gn8QDBhwgTWrFlj61Zj+4I0TbUO9y2KA0OUEEcRxc9g+fLlDB3asSlnBwo71g83NjZSVVVlS0K8Z88eunfv3tFhHDQ2bNhAr169DsjJtrOjtLSUTZs2MXjwYIqLi9m+fXuzMWldk5h42kh0n99I8w27eNR1iSvGqEdVzBpjVRFG3XFAJ2TRHNabyGrDpIiItkohVdhUiU0yS5M2S0JAkMKZ6dSiKSE2ZjD+1cHTECA+xhHmKt1cSQ4+LiWKYrRwMto/meHrEqm2dCkgQkqyNZVF4FUlFLSUBt/VdPAFkBIGjOjBuddO4R/v30zuwG7GXOZrVLRnr/mSCW64/2xmb3qMrNzIbJYl8zbwh/Oe5tbTH+eayQ/xxj++aCG+EPx+P0uWLCElJYX09HSWLl2K3+//2XPshL59+1JXV0dJyf43BzojEhISSEpKorCwsKNDOWBkZmbajhDbsR/x6NGjEUKwadOmjg4liv9RRAlxFFH8DJYtW8bYsWM7OowDgh37D5eUlJCSkoLb3bTdTedGbW0ttbW1tuybDMZ7pby83FY1cvtDeXk5S5cuZeTIkQwYMIDx48ezYcNGnrj3Vc4bfS9/vvE/NHhCKZBTzhwDmmaQXRNCQFJKHNfeNT2o7tZW1RskVtPAGzCIcTOVWDXUUL8WqZyaBNhSf0NpyITODZ8Hk4AqIdfnUO9gg/UKjNZLCbFqqD9xeCq0OUko3Tr0b5CoC4y653AWHVSUpZEyrclgrbS0jMisuEwoukQENMM0SRFs21TEuddNJTMnlV4DugXrpxGCgUfkRvy+XG4HrqA7twGnU2X90h3B+68//nlE/+JwhBtoHXXUURx55JG4XC4WL178i1GbnE4nAwYMaLVK3BnRo0cP8vPzOzqMA0a3bt0oKytD01qfxt/RsOqI7ZQ2HW6s9YuDFB1zi+KAECXEUUSxDwQCAdsZatm5ftiO6nB+fj5ZWVlBd1s7QUrJhg0b6Nevn+02IvaFmpoalixZwvDhw4Oq/Tdvr+DdvywlZ3A8vUak8MPcNfzn75+j6zpv/fNL1i3ZweCxvTn9oqOD9ZYOl4Nr75rBqh+2Gn2Dm9TJCiEMIunTQmnIFlFUFeOYHiK5QsoQ4Q5TXAU0T60OSNAJtj0OIsKcy/j9eTwB4mObKMS6cTPWDSm7ItxMy1ovYNY4q00unmQYcQ4SMGG6bBNZJywEAV8g4jXSdcnOjYVIKVm2cLNBlE1SfNQJzVvY3fDA2cG6baEITr9kYrMxLTkUt+QmraoqRx55JIqisGzZMtsSyKbo1asXmqbZklSC0Spr79691NfXd3QoB4TExETcbretyCUYdcStrTvvLBg6dGi0jjiKDkPUZTqKKPaBjRs3IoSwlaGWHeuHdV2nrKyMQYMGdXQoBwQpJfn5+bbrUW2huLiYuro6jj766I4O5ZCx5sdtzHntWwYcm0avXj2DBmeN9V5eefhjdEXlk2fXcfr1xu/qo1e+Z+m8jRSG1af6fQFe/uYP5O8sIyMrmcTkON55bl5okaaEzOzzKTXdaDcUfkiYhFgxewpjEjqzHZMOwe1ooctQDS+AXyIcFnkNI+NhCrEQgCrwmDXEwRARhu+XxQF1MzXakpTDSbH1cxO1N7hYOAE3yX2jv5rtJQspr9uBT2vA7Uiga9IA+qVMwOWMDZsXli7YSN8hOZSYKdI+rYGS+q2cfMIpKAmNlJWX4HK5GD58OFdccQWzvr+H/B1l9BrYjfjEGLatzmPNj9sAuPT/phEbH7lp83OtlRwOB+PGjWPhwoVs2LDhgMpeSkpKyM7O5sYbb+Tpp59u9XntDVVVGTRoUNAAz2410m63my5dupCfn2+rjBQhBF27dqW0tNRWbfUyMjJs1494zJgxvP322x0dRhT/o4gqxFFEsQ9YhloOh332jSorK0lLS+voMA4I1dXVKIpiO4fjvXv34vf7bXWRZEFKycaNGxk4cKAt1e1wFOWV88dL/k1aH5X8TeU8fctsvvt0Fc898CHzPvzJaK2k65TtqeOTf69l7Mm5DD82m8K8iggiuG1tPlpAo/fAbiQmG/XUl/72lFCtrKKEuSc3UR2bGEsFL0B13bg1UXcjao6FCCnFUuKQYXMG4xNBHht+cetp0EyFWIYNC7VaUvxGf+SINOiwmISU6OFkPBijSYI1aTpQC+obK1i87WUKqtaQFJdNz4yjiHWlsLtiGUv2vIYvEKb8BXQa6rzk7yyje9+uoAiK6zazvvwrymvzEZ4ExgyYSprai+XLVnD11Vdz/U1Xc8T4fqSkJ+B0OXj4rZt4+ovf89L39zDz5pMiXu7W9Bm2Uqjz8vLYvXt3s+P7wuzZs9F1nbPPPrvV5xwudO/eHafTya5duzo6lIOClTZtN9XejmprSkoKPp+PhoaGjg6l1bCMteyUnt4ahH/8Hs5bFAcG+1zpRxHFYYYdDbWqq6ttR9DKy8tJT0+3zS62hfz8fHJycmzZe7ioqAi/33/QDew7E7aty+foM/rginHw2b9XE/DpPHzDLFRVQdN0DHMoCX4/Zfl1EUrx2gX5wSsHRVVwOB0E/BrPPfABi79aT58hOaR2SaKyPMycJvx9GgiAwxHKfw6vA9Z1MImapRIHoctmacoRAq5lwiWajGhykeOpDxAfq0aOE6A0GjnTqs/stWzGJEzVGjBcrQHpaPL+tcYHZIiU6xobCz7Hp9UzqNtJ5HY9KrgxsDl/LnkVS9lSvpBh6Scaz1vAnp1l/OaspwDDwKyiLoXRXWbQJba38bdeIxiUPIi+ieNZUfUe77//Ph988AHnnHOOEbuq0G9YpDs4tI4MW0hISGDs2LEsXbqUhISEVm0Wfvjhh6Snp3Psscfud+zhhhCCQYMGsWbNGnr37m27z56srCxWrVpFTU0NycnJHR1Oq5Gens7y5cvx+Xy4XK6ODqdVUFWVxMREqqqqbGOYOGbMGKSUbNq0yXbXXlG0D4444giuv/56Lr744nbvq22vT9MoojiMWLZsGWPGjOnoMFoNKSVVVVWkpKR0dCgHBDu6Yuu6TmFhoW3dpXfs2EGfPn1sd0HdEhIzVfqM6srcF9aiB0x3aIFJhptAM5XiZ9cx9uRcxk/vB4CiCn73twtwOFU+eulbPn1tEeVFVSybv4GavZ7Q+SKSpKqqyoBhOWY/YT1iXLPtHa2F2uHwWlxC6q/w68GexJGI3Pr3NARwu1ScTsv12YzRfO7B+l/LXCusxjgYn9k/OfwmdLONkxlPvXcvFXU7iXEm06PLuIhNgb5Zk1EVJ0XV6/HjA0XgcDtZ/WPI2XtvWS3ZaX3pGtcntPFlxuZU4hjRx/BpWLBgAYs+X81Lf57ND1+soaywkpf+PJuX/jybssLKZmR44cKFCCG4/fbbWbFiBWeeeSZpaWkkJydz1llnUVxcTNeuXUlNTeXLL79kwIABJCcnc/rpp7eoGtfU1DBv3jymT5/ejGh/9913nH322fTt25eYmBi6du3KuHHjuPPOO1v4PbUfsrKyUFXVlo7NDoeDbt262a4OOiYmhoSEBNupxMnJyVRXV3d0GK3GL9ZYS3bQ7ReADRs2cNNNN5Gdnc0111zTrjXm9r8aiiKKdkAgEGDNmjVMmDCho0NpNRoaGvD7/bbaedd13Zau2JWVlQC2S08HI4ugqqoqWGdrZ5SXl5NfnEfPnH4MHNGbY047guPOOTLYC7dZ3piuQyBA2c4qPvnnKkaf3JPHP7uODzf+lePPORKAPdtLEOZGgdQlmteH5ewcZJGqglAVnp17O0+9fzO/f/RcupqGXBEIaJGKskWarbrccJiKq5ASJWDcmqZiN/25waujadJovRQGad0NI8LBFkqWC7WpYoc/LTDrjQO65agFUrK3Ng+AjMQ+wdfGitkhXKTEdkeTfqq9xYbJVkCPfN7ABTefhNPlCJmNCREc0m+o4Tydv62UP1/zEh+8MJ8Hr36RG098lA9emM8HL8zn/857kkWLFkUowytWrABgy5YtTJw4EVVVueqqq8jNzeWjjz7iyiuvZM6cOZx88sns3r2be++9lyFDhvDpp59y6aWXNvt1ffLJJ/h8Ps4666yIxx9++GGOPfZYfvrpJ44//nh+97vfMX36dLxeL3Pnzm02T3tCCEHv3r3ZsWPH/gd3QnTr1s12bYzASJu2m7FWSkoKVVVVHR3GASFqrBVFOPLz83nwwQfp0qULL730EkcddRRjx47lhRdewOPx7H+CA0A0ZTqKKFrA5s2bAWylEFdVVZGYmGgrs5Wqqipb1g8XFxeTmZlpuzRvMNTh7t272yb1b1/weDwsW7aM4cOH07NnT8ZPHQVAY4OP6oo6Vn63GZfbYSi8Ai7+3akkJMXy0kMfIwScf/0pTDhmKD/++CMAaxYWMv/jldRWeQyuqiqWG5ZBZBU1zOBKIoXgmtP+zkW/Pp7Jp46gYs9esNKPLaVXEqzBFYDUZGgbWoZMtqw5rfsKxjA9oo4Yg6Rq5vym1OxpCBAfp1JVF9Z31yTbgiYkOmIta0Jjroi3siJC6wiJp9FQxuLc6ZHzGT8Q506jwrMTj6+SjLhezTYixk4awKy/fIJQTBMvXaIqgqlnjeWoE4dww+0XA+BuyKAR0E2Fu67aqH90xagcfU4fAl6dSZNCadIWIV66dCmLFy8mJbYrm1bs4qJfXcnUUybw5ZdfsnLlSr766ivGjRvHDz/8wJNPPsmvfvUrFi5cSGNjY4QB4Ycffkh8fDwnnRSqWS4pKeHee+9l4sSJfPPNN83+bjqCJOXm5rJp0yb27t1ru025Ll268NNPP1FXV0dCQkJHh9NqZGRksHXr1o4O44CQkpLC5s2bbWes9e6773Z0GFF0EmRmZnLXXXdx1113MXfuXJ5//nnmzJnD9ddfz+23385FF13Etdde2ybmt1GFOIooWsD69evp06ePrQy1qqurbaUOg+GKbcf6Ybu2ifJ6veTn59OnT5+ODuWQIKVkxYoVZGdnN1O6G+t9rF+6A1+jn9qqBgaO7sXbqx7ioltP4YwrJ/PR1sf4cMtjTLtkIqmpqYwZNZb16zeyYtlqdm8tNuqFHSoIxTDSCvK+MMU27P3632e+YdPq3UZ7Jn+YGYw1PmCQOwkRdcMCIlowSWko0hE1vFb9c9iaIjiZgaCxVjisOmHrfKt+OJyoWrXK0pSPw9PszJgt4hzQjb7NDjUmcg5dR0iJU3GbpzXpFSwEp84cR1ysE6EI4/kBXXuk8exXf+C2v13AR1+9xrp16zjttNOYdMxkFMVKHzdaMLljVU67aRT+xgCjRo6K2PCzCPGsWbPAE8uNJz7KE7e9wV2/epYuaZlomsZjjz3G+PHjg+2Y9u7dyxlnnGG2rQopDI2NjXzxxReceuqpESR506ZNaJrGgAEDWtxE6ojsFqfTSW5uri1VYqfTSUZGBiUlJfsf3ImQnp5OdXU1Pp+vo0NpNZKSkvD5fDQ2ttzDuzNi7NixbNy40XbGaz8HKUWH3H5pOPnkk3n//ffZs2cPDz74IBkZGTz33HOMGTOGo48+mlmzZh3Sez1KiKOIogVs2bLFdoZD0frhw4Pa2lrq6+vp2rVrR4dywNi1axfp6em2U+SbYvv27Xi93haNV9b+uI2aSg+6bjgkb16ZRyCMqCqKElE7nb+1kjnPrGHsSbkMPzYnNFH49UR4X2EpDe4ohHFD0G9od1xuh7Gxo0USZ6HrSK8/TBkOXegJCTJg9klSBTgUpEl8Fb+OaGxSBy1Bx6wNNslqXb2f+Bg1YoxUjcV0k/QKK03aMuayGHhLT1YaztQW8d7vZVVLrtthGwZfvb+cgKYHhyiqwtAj+9C9T1eeeuopHn/8cQYNGsRrr73G5X+YzlEnDiMpNZ6jTxrBH/55CWfeNg5FKBx55JGkZ6YG5/V4PGzZsoU+ffpwyimn8Olri9DMntES2L1nN2lpaZx//vnBc2JiYhg5ciTHHHMMubm5Ef3av/rqK+rq6pqlSw8dOpTk5GRefvllZsyYwdtvvx0smehI9O7dm6KiIlu5CFvIzMy0Xdq0HeuIHQ5H0FjLLhgxYgTV1dW2ep2jOLzIzMzkzjvv5O9//zvZ2dlIKVm6dClXXXUVPXr04B//+MdBzRslxFFE0QI2bdpE3759OzqMVsOOhlp2rR8uKSkhIyPDVtkDYLxH8vLy6N27d0eHckiora1l06ZNjBo1qsXfQXpWc7K/Y+O+DYhSMhJCRlsn9WD4pG4hgqeEiJ3TpYIujb7DTdon3XXNK3Tvn0lal4TmBFIIgyiHmWdFSLxK5FhL1BUSHAEZqv2VkeOt2mBPvWb0Ig4j7Yomw8aGCKuIuJnpy00VcF1GPgddx6GaCrDWaBzTNIRZf4wQ+E0F2anGRDJoKQl4A/wwdy3C4QCnk+SuyVx15wz++c9/cssttzBkyBDmz59PWloa8Umx3PvSNby99hHufPYyREo9A4/oxZU3XcBRJwyPeFlXr16NruuccMIJADTUe7EWr9dq8PobmDJlSrO2YgkJCSxevJhbb701QoX64IMPcLlcTJs2LWJ8RkYG33//Pb/61a/45ptvmDlzJl26dOHUU08NKtQdgYSEBLp06XJALaU6C7KysqioqLCV2grROuLDgZSUFLp06cKWLVs6OpS2xaEaZB3o7ReKgoICHnjgAXr27MnZZ59NcXExM2bM4KOPPuKee+5BVVVuu+027rnnngOeO0qIo4iiBWzevJmBAwd2dBitRmNjIz6fz1bKn53rh+2YLl1aWoqU0nZtucIhpWTlypX07NkzQt0Lx4cvLGiWGvzkH97e55x9h+Rw0W9OpKzAwyfPrjWV4uww0gu9BmUxdGwvHE6lxbTpyoo6tm8qpqLcTMHVQ0W5EpCKCBpqhVKew2MUkT/LMBW4xRcidE59gxZpqqVJRJiwHCR9TVOmgy7XNEuDDv1sjImPMV7reu9eI/26STj1PkMxjXelmXHJUP9lXYKqBuOoLK/jmktu4eabb2bYsGHMnz+/2d9Ta1orWWTU8nnI7Z8VfP1qfKURx8KxcuVKXnzxRXJycti8YQvP3P0uD9/wMh99+BHHHXdci2Unw4YN491336WyspKvvvqKs88+my+++IKTTjoJr9fbbPzhQs+ePcnLy7NdemlcXByJiYmUlpZ2dCgHBDv2I7ab0zQY7+tfHCGO4qAhpeSzzz7jjDPOoHfv3jzwwAP4/X7uuusuduzYwUcffcSMGTO4//772bp1K2PGjOGll1464HWihDiKKJpASsnWrVsZNmxYR4fSaliGWnZSLffu3Wu7+mGfz8fevXttSYh37dpFbm5um7RayttSxDv//IqFc1Yc1ovx7du34/P5GDx4cIvH/b4A33+22rgT1nJob2k1F4z6Iw9e+zKemlCK6ZbVu3n6zneY98Ey0DTKdteGSPGkbJCSlIxEdm0pYdWibQR8Wqhl0r4gJUILI4SKQKiKkesMzdyXI1KsLSgy1CLJLyPP0SLrfT31ARLiHAjdPEeAtPijlc4sLafpUNp3eAp4RBp1WBm0tWpaYi8AKup2GL/vsHgDgUaq6vNRhZPk2OzQa99ERbfu76hcwodfzWLkyJHMnz+/WelBa/sMW4R47Nixxv9TQu+JWn9ZxLFwrFy5Eo/Hg9/vZ9369Sz4ZDmz3/+Equoqjp1wXItrWXC5XJxwwgm88847TJw4kYqKig6thc3MzETXddsRSzBUYrulTVt1xH6/f/+DOwkshdhOmyY9e/YMGptG8b+NBx98kN69ezN9+nTmzJnDhAkTeOutt4J1xD16RPaqT0xMZPr06Qf1uRwlxFFE0QQVFRVUV1czfPjw/Q/uJLBbujTYM+aSkhKSkpKIjY3t6FAOCI2NjZSUlLRJq6WdGwq4+ZTHmPXXT3jkhlm88sicNohw/9hfqjSAw6mSkpHQjHRKXVJVUcfiL9cy66+fAlC4q4zbz3mKL95aTNHuiiA5NEixkT494tgcqvfWGZOEpzz7/JHk0mpRZGUgC0LGVOZ5wYhMhVWYqdCKlRIdDkUx+HNAR23Ujbl0o4BYsdKcTSLr8fiJj1UjnrMMS/UWCCs0kMIg5mbZcqRBlwRNRw0nvOb/ce400hP60OCrYneF2RJFlxDQ2Fa8EE36yU4eikNxBeNq1KvpOyYVXejBebbt/YEtFQvJyezNN99806xcorVkGAxC7HK5ghuXI48ZwB3/vJRxxw/BmWGk4rakEFtEemD/wexYWcqk8wdQXL8dEPRMj9xoWblyJdu3b282x7Zt21i3bh25ubkd2otcURRyc3PJy8vrsBgOFllZWZSUlKDr+v4HdxLExMQQExNjK8U1OTkZr9drK2Otfv36/aIIcdRU6+Bx3333UVVVxY033si6detYsGAB55133s+KP2PGjGmxrd7+YB85KYooDhO2bNlCRkaGrdpZVFVV2c7kqaqqqtnuXmdHeXm57V5ngN27d9OlSxfi4uIOea6Fn6xE0/SgY/AXb/zAlXfNOOR5fw5WqnSvXr32mSoNRo/We164msdueY2q8lpGjO9PVUUdW1YbdZa6Lsnfbqhpaxdvx+8LmCcGJwApqSquZ8Gb2zjh0kFIJGu/KwpfBCEl0uc3WjM5VQj2LZLBtkJCCKSmGU7VFq8L6EZrpqYKqk5ojAUVQw1GGn2VwzmzIhG6AEUaKdNx5ld5UxFIl+aut0FyhaUYi1BDpmCGhsRw1rYk4kBE3jWDc05h6fZX2VQ4l721O4l3p1NdX8De+t3EOdPo32WyMVYz2PaavR+y4J0yju11HXGOJApq1rFt7yIECuecP52nnnoqIlRN0wgEAsyYMWO/ZNjr9bJhwwZGjBgR4fw8ecZoJs8Yzb8y7tpnWv2KFSuIjY1l5OgRvHDH50y+rB9DJnSn5tsyxh4zImLs008/zaxZszj66KMZO3YsCQkJ7Nixg48//hiAl19+uU0yLg4FPXv25JtvvmnWQqqzIyUlBSEE1dXVpKam7v+ETgJLcbWL90W4sZZdNnIHDRrEnDmHZ6M1is6NZ599losuuoj4+PhWn3Paaadx2mmnHfBaUUIcRRRNsGXLljZR0g4nqqurGTBgQEeH0Wr4/X48Ho/tFOLy8nKOOOKIjg7jgGCZabXkyHwwyOiWEuwTqyiCjOyUNpn355CXl/ezqdLhGDK2N68sujd4f+7bi9myejeKItB1ycTTDNKTO8BMe5cSixH36J/JmVcey2kXTqCxwcd1p/yZadePAARrvy+KWEcABDSkU22uSCtWHTBIv2aQYKsXcWi5sBOIJMkAusmRvRp6XGQPZHSrJlmhri5AXIyK0CXS6imsGHRX9WlGOygwU6RNkqvrZguosDkhdNyKJax1VLw7jaP7Xsm2km8pr9tOWe023I4EclPH0j9jomGoBaBroOnU14XV1gpBfaDafKp6MzJsoX/fQVx63rXommTBR8to8HiZdPpIktOMfrV7S2so3FVOVUMRfr+/RQU4Ly+PiooKJk+e3OyY1+tl48aNjBkzBofDwX0vX8u/H5vFxZddyIA+QxlwRG7E+DPOOAO/38/SpUuDLT2ys7O58MIL+cMf/kD//v1bfB6HE/Hx8WRkZLB7925bfQcIIUhPT6e8vNyWhNhOsOqIu3Xr1tGhtArDhw9n+/bt6Lre4RtObYKOMLqyT4b8z2LQoEFUVFT8LCHes2cPO3fu5Nhjjz2ktaKEOIoommDz5s22arnk9/vxer0kJiZ2dCithrVb7Xa7OzqUVqO+vp6GhgZbZQ4AVFZW4vf726zu+eSZ49m0Yhffzl5BZvc0fv/kgacmHQgCgQCbNm1ixIgRP6sa7gvHnj6K1/72GRXF1SAlaxdvY9olExk8uhcp6QlUldca6qkiGDqmF6ddOCF4bvmeOj55Zg2n32iQ6LXfF9F3SDbjjxvC609/Zai/mm70LQ43qTIhdYsU6+BSjWsUXUb0IwajdknXpMGALeKrCnS/jhqAQKMOblOJlhAfo5CVHkd6mpuEBKPd04XTc3G7VZyqIDHBcFa+6NJ+eL06njo/9TV+6uv81Nb4KC9uoKzCS0DTDUVbmKq238yjtgg6hFLFpSTWmcjw7qebpJxI0hysURTgcDCl9/URz7F/+kTOOuUSHvtv5OPfvL+Ebbs34asP8OWLa/nLDbPIHZjNsnkbAHjnma/595d/YMvq3dx3xQv4fQGS0uLJ31FKTu8uzX7fPXv23Ge9pNvtjqj/zO7VBS25ku3bGzj/0jObjT/jjDM444wzWpyrM6FHjx5s27bNVoQYDJOq0tLSTrGx0FqkpKSwZ8+ejg7jgJCYmEhtbW1Hh9FqDB06FL/fT35+Prm5ufs/IYpfLKZOncp9993Hvffeu88x//nPf7j33nvRNG2fY1qDKCGOIoom2Lx5s60uLDweD06nMyJ1sLOjurq6RTfXzozy8nJSUlJsZVwGhit2ZmZmm+20O5wqtz1xMbc9cXGbzLc/7Nixg9jY2INWN1Ys3ERFUVXw/rezV3Dd/WeT2iWJgSNzWTZ/o6F4S0l2rxDBiol1ccltp/LqY5/xyTNrmHHzSM65ejJHjh/Jqh+3hYirWd8bG++i+4BubN1QGJYObairQteRuhJq4xSuEptEWtEkunVcmP84FYRPJz3OQa+BSfTIiSczw018nIPKKh/l5V7qPAH8fo3tu2opKvMS8Ot0SXVxwuRufDO3AFWB+DgHCQlO4hKcdMmO46jJ3XDHqOwtb6SkqIG8HTXs2V5LAIL1xeF1xMFaYyuLuinftJ6vLo1NgpaOIRk0MvLi1u/3U6OV4GsIMPf5NWgBnYqSakoKQr+vsoJKVn6/mfeenRfsJ11X3cCHLy7gpofObeE3fmD48MMP6d27N6NHj6ahocE2aaXhyMzMZOXKldTX17dJWcThQkZGBhs3brSVEpicnBw0ZWva0quzIiEhgaKiov0P7CSIiYkhOzubLVu2/EIIcVg2zmFd0/5ojRmctMqBDhH2urKLIorDgM2bNzNjRvvWRLYl6urqSEhI6OgwDgh2NNSyY89kMAixnVqIhcPn87F161bGjRt30F94icmRBEFVFdyxxubRbx49n8dufZ1dmwo56sRhnHlVZJrtzF+fyKTTRlJX00BGTjxLli5h586dNNR5g0TPIosX3XA8W7YUG4TYghChmuFAANyuiLToECc2XamFgsWWu2bG0H9AEr17J5Kc4mJ3QT15BfUsX1VBeVEDfr8eVG9ze8RRVuFjT74HEFSUNXLC5G4UF9QT8Gqh3sJhadeJSU66dIsjKzuOoydlcfL0XPLz6ti1tYZt6/bi9Zi77VZPY4EhZWtNLlAslVgPc9aGZsR43ORBXHLLScH7loFWSnoyL9+5AE0KUFV69O/Gnu0lBHyh3f7ULkkIJfL331bu9Bs3bgRg2bJlbN68mZEjR7bJvIcTLpeL9PR0iouL6dOnT0eH02okJSWhKApVVVW2ybwJN9ayy/dBfHw8dXV1bUYcDges1ktWn/EootgX8vLy2iRDMkqIo4giDLqus2PHDls5TNuVENvRUMtu9cMej4e6ujpbGoEBbN26ldTUVLp0aZ4a21oMH9+P0y+fxCezvsPhVPnNX2YSl2DUu6ZlJvPIm7/+2fOttNwfvlrHqi9LaKj3suZbU20x1V1VVXC5nWxZtTt0YpPewkLXkZppqkXI3ArMnsMIHAoMGpbG8BGpJKe42L61hsXfFZO/o5Z6hxpUjoWp2kqzVtjjCZAQoxoKriKNFG5Aj1HBq0XWJ5uEtbbaT211NTs2VfPDvCKSU1z06p9E/yEpHHNCNjs3VbF2aSklu+oi20IphJRiEw+/eAV7i6tZ8s06flywGc0izaYSnpIWzyW3nEjpnr3k9OlCIBAIukknOdMJ+EMT7txUxG/+ch4v/OkjfI1+zvv1iQw9sg9X/OF07r3sebyNfpLT4jn7mik/+3s7UAwePJj58+fTt29fW5WfWLDaGNmJEFt1xBUVFbYhxGA/Y634+HgCgQBer9c2xmu9e/f+RTlNR9F6/OlPf4q4v2DBghbHaZrG7t27eeutt5g4ceIhrxslxFFEEYaCggJ8Pl+bGRAdDng8HlsRYstQy04p03atHy4uLiYjI8M2qX3haGhoYOfOnYf8RSeE4Nd/Ppcr7piOw6Hiimn5tZBS8upfP+WLtxbTJTuV3//jInL7G3XXm9fs4cEbXgVg06p4Tr9uOA0er+E+LSVHnzCEfz842zDTcjeZP8zZWWg60hlSgS2i6XIpjDyqK8PHpFNb62fNqr1s2VwTVEmVRh2RoEamWgMiYDh3eeoDxMc5EBh+W9IUZzWXAgHTpTocutUqymrhBNWVPlYvLWf10nJSUhwMHZ3BtAv6Ub3Xy/L5BeRttlrNCATSyJo243/zX9+wbtlOU0VWQs8ZyeARuQw+ojs3T3scgEnTj2DiuX2CrZXWLdnR7HcxbupQTpk5Hl2XqKrxZEaM789/ltxP8e4KcvtnEhPXtv4DCQkJ5ObmsmnTJo488sg2nftwICsri/Xr19sqlRfsW0dsp9ZLDoeD2NhYPB6PbQhx//79WbRoUUeH0TaImmodEO6///7gz0IIFixYsE9SDJCTk8Ojjz56yOtGCXEUUYRhy5Yt5OTk2OZLAwyFuK0Mkw4Hqqurg2lndoGd64ft4izaFJs2bSIrK6vNUuvjEmKQUrJi4SbqqhsYM2Uw8Ymh9+DCOSt5+19fA1Bb5eGh61/huW/uBGDloi3BcWX5Hj55bh2nXzcMJKz9rpCNy3YgFGG0ovJrRiumJops0GXaMuECVFUwbHQ6YyZkUlHWyOfv7yK/uDFEVk1IAYpXQ3eHmYrpodre+roA8bEqupCghq1tmXfpZjsok6RGlJeFSnyDsVaVe/nhywKWfrWHIWO6MPXM3lRVNLJ47h6Kd9ZGnJaakWCSYdNQLGguZowo3lXKxqXbAHDFqKT3VWjw+DnmpGNQVZVh4/owZvIgfvp2EwAzLp9EelZy8PUJR1JqPEmprW+/caAYMGAA33zzDZWVlbZyPgZDBUxISKC0tJScnJyODqfVsGsdcX5+fkeHcUCw0qZ/rm1dZ8LgwYN55ZVXOjqMKDoA8+fPB4xN6uOOO47LL7+cyy67rNk4VVVJT09n4MCBbfLZYa+ruyiiaGds2bLFVqm8UkrbpUzbsX64srLSduqw3++noqKCUaNGdXQoB4za2lry8/OZOnVqq8avW7KdXZsLOWLCAHr0y9znuH/e9S6fvW6oDtm9Mnjq09uJTzJMlArzyoOtmXRNUry7Iniep7o+gtiW5deZpHgo6DprF+SDy2lwQE1HuhwRacYyXKENSFAkfQanMPH4bBobNb6es5vdO0wXWFVp5kItBSiajt4ojZRlk1xbDtGeOj853eObtX9CCLPuF1MVNs1dRHgKdZMXSZMIkxwHNJ21P5awaXkpRxzTjWmXDaRgew2LPt5FXbUPgMqy2uaeMRYpDmhUltYABhk+7foR+BoCpMd1CzqGqw6VB2Zdy9Y1u3G5nfQenL3P3197IzY2lj59+rBhwwaOOeaYDovjYGGlTduJECclJSGEoKamxjbfCykpKdTV1dlKjU9ISKCurq6jw2g1RowYwe7du/H5fLYyDG0RUYX4gBDeMu+yyy7jzDPPbLGNXlvDHttxUURxmLB7925bXUx4vV4CgcABNS3vaNTW1pKUlNTRYRwQ7EjiS0tLSUxMPCyuswG/1io3yNZi+/btdO/evVUbPZ//9wd+f86T/Ouud7nxxEfZ+NPOFsc1eLxBMgxQuKucJd+sD94/+oRhKKqCYpo39RvWHc3st9x3SI7Z95cg0S3Lq+aTf65m7Ck9GT45h4knD0N1OQxC6wsEx0mIIKqxCU5OOrMnU07pzuKFxbzzylZ27wy7UA13n7Zg7n6rukTVQTHbOaEZZlb1dX7i4xyo/sgYkTLyS95qj6SHtUmy2iw1HaNpZm0z+P2S5fMKeOOxVTR6/Jx763AGjc1obqBlKcO6BJ8fzDYYrlhHkAwXrmtg5IRIkzdVVRg0qhd9huR0uOlPv379qKystF2vWTAIcUlJCbqu739wJ4EQItgn1y6IiYnB7XbbimDajRD37dsXgMLCwv2MjOKXjFdeeeWwmdxGCXEUUYQhPz/fVunHVk2QnVJ57aZo67puK/Vi27o93Dnzn3z69ny0hvb9iNcCGn+56VWm9/ktFxxxN+uWbD/kOb1eL3v27Gm1OdDslxcEf9Z1yZdvL2lxnOpQcbgi+xhb5loAvQdnc8fTl5h8VLJh2Q6eufsdNE1n1MQBTD1jlEHwdN34X0rKShr55PkNjD21N9WeCrSAQUSE5RptKaXSSFnuMzSVmTcORlUFb76wmS3rq0LBBFsX6WYEhrIsBUhVgKYHU6SFlAhdokgQupEyHRfnQPHqiMZAkOA6qnzm5DIo4gopQ4qFLsNaKclQ7FIa/4eTU0XQ0KCx4IOdfP3GNsae0J1pVw4iPskVGT8YDZjN5xFOhpfO2UNVRT2bV4eZj3UyuFwuevTowfbth/5ePtxITU1FCMHevXs7OpQDgmVSZSdYKch2QXx8PB6Pp6PDaDUcDgdpaWlRQhzFYUOUEEcRRRgKCwttpRDbjVyC/UzAampqUBTFFiq8t8HHXTP/xdrF20jpFsN/H/2Gwp1l7bbevA+Ws+Cjn0BCTaWHv9786iHPmZeXR1paWqtN15LTE4OqLlKSnN7ye8vldvDbv12Iw2mQ4uPOHsu444dEjCnYUWaoa7pBDue+vYSLxtzDzJF/pHTPXs65dmpIQTVVUSt9euxJuQyfaG6mCYHQzHpiKRGKYPyJOUyZnsuiLwv44t2dNNT4IlTkYFadbqnKGCnRipFCrenhhJXg8xVS0lAXID7BSNN2eHWcdX5jrKlwBxVhi+wKYaZFE6FEC7+hClukOAJWjbCA3ZsqeeeJNdTX+vnVb4aT1TMhOERRRVBZDqZJ1/uZ+/J6youqydtazF2XPMtD17/Cfx7/DG+jj86GPn36UFhYSGNjY0eHckAQQgRVYjvBjoTYboprQkICHo+nTTN52htdunSxVf/kfUKKjrnZEIqi4HA42LJlS/C+qqr7vbWFKGQfWSmKKA4DioqKooS4HeH3+/F6vbYglxaqq6tJTk7u8FTO1qCipJraqnqy+6egBXSKd1axe2sx2b0Pvm3Rz6GqvDZoJiWlpHrvoSkQuq6zc+dORowY0epzfv3Qudx7ybOU5O9l8NjenHvD8fsce9xZYznmlBH4Gv0kmuZMFSXV1FU3ADB/9k+GMRagKAKhKNRU1QOw4addjJk8GKdTwR/WIxdMUvzsWk6/fjgIhbWLigGDPzqdCiee35ekNDfvv7SZ6kpfmMGWRKqE1FXrcV2a7ZkItloi3oVsCCBUEVSKLTrtqfPjcCi4Y1W8PhmZwtw0ezboAB3q5Su9PoQe1qNUN1m5rhsmXU3PVwS+Ro35725nyFFdmXbVYCp2aXz51jpUAbWeRtxxDk69dniQDGsBM1pd4mv08/0XaxBfQFl+Jbc9cdE+f2cdgcTERDIyMti1axeDBg3q6HAOCJbbtJ06JSQnJ1NTU2MrY62EhARbpXnHxcUhpaS+vt4237+/GEIcRatx7LHHIoQIlnpZ9w8HooQ4iijCUFRUZCtTLY/HYxvXSDAIvMvlspVJhp3qh7vmpJHZI51eR6Sze30FMbEu+o/Ibbf1Jp0+iref/hJPraGkTb9s0iHNV1JSElS5Wovc/lm88uN9+Br9uGP3/75yx7qC4z797w/86573kVKiqsJIeVZV0HVSM5OREvaaplBCCOqq6znxV+P47L8/GGnTYRfvZbtr+PS5tUy73uhhvnZRMYmpbk67fCA1VV7ef3EjPl8oDVlCZI5WuCu1jtGVKXgMw2hLYDpGEzSLlorA75f4fTpxCU4aq3xoLnMNVQEZaG621SQdWqgKaIHQMQgadkXAqg9WFKRupHBvWFJKVVkjJ17Un1FTslg0ZweuBDfTrx9GoyeSDIdNBEIgdY3lprt0Z0OfPn1YtWoVAwYMsA1JA4NENDQ0UFtba5t+ygkJCSiKQm1trW3a8cXHx1NQUNDRYbQaiqIQFxeHx+OJEuLDjJYSbg7HmnZE0/ZKP9duqa1hn0/5KKJoZ3i9XqqqqsjNbT8C0dbweDyHxTSprWA3RRvsRYgdTpXH3v8Ng4/OITkxlcc+uCXYwqY9kJWbzr+/uZNfP3Qu971yDVf98YxDmi8vL4+ePXse8I6wEKJVZDgcWkDj2Qc+DKYQaloYEVQVRk8ZzAW/OSk43uV2cNJ5R3H2tVND9bd+PwQCZHRN4Nkv/w9VieGT59Yz9vgcxp2YwxnXDSF/WzWfv7IJX00oNThIhi0TqiYtmhQpjR+tl0FgkFCHgtClYaYVljotAY/HT2yCE2+KE3+CsdftS1AhoBnnBBcPuWUHoarG89bDjoXHFH4LvehBwl64o4YPnlpNj8GpHH/BAE67egj1tT4+f2FtEzIsQCihuRUVr88fNC/rTOjatStCCEpLSzs6lAOCw+EI9va1CyxjLTulTVsp03ZKQbZb3XNmZqatNh2isDeiCnEUUZgoLi5GURRbKcSNjY226udrt/phy1DLLqoFQEqXBJyxClfcfhZut7vd1+uSncrph6gMAzQ0NFBaWsoRRxzRBlH9PBrrvbz37DwCgcjU51DqssK3n6zit3+dSd+hOeTvKGPIkb1xuZ2U5O8104bN/WRNp+/gHG445TGkMB5b8M5WTrp0EAXbqlk0Jw+kQXL1gAZOB4a8q4QU4DBXaIuMCr+OjHFEtDTSXSqqTwtLmZZIHXBCvSdAbKoL6v3BpyPjHMEY0UWoT7Dawl64MNsxtfR6WLE1E3pD6de1FV4+f2kD5/5uJN6GAG8+t84UnS1irUco6tbcDR4fKxZsJLtPF755bxkfvfQtSanx3P7kxQwb17d5nIcJQghyc3PJy8uzldEiQFpaGpWVlR0dxgHBqiPu2bNnR4fSKsTHx6NpGo2NjcTGxnZ0OK1CbGwsXq+3o8NoNXJycoI9aW2NaNslWyBKiKOIwkRRURHp6em2cWzWdR2fz2crQlxXV2erlkt1dXUIIWxF4qurq4NtQeyE3bt307Vr13a/uFz5/Rbuu/x5/L5AUHkFCEqyigJS4vNqzJ71PWdeMYnE1HjuOP9flBdVkZaVDI6wPsMOh9G+SQhQITHVzTEz+rDlpzJ6DU1j+DFZrP2+yDCzCuhIoZm9homoHY74X0oUBJqUoRpiAIfRJ1kRRtqyAIPsCgee+gDx8Y6Q+ZV5mlQEwnSojlCdw9Ompak67yu1OqiCmRM0UYrRdVyxDqbO7E/xrhoSUtwcc0Yfvn17a9g8LSWkGXXL9172XMTzb6j3csf5/+TMqyZz6e3TcMV0TK/X3Nxcvv76axoaGmxDesAgl3v27OnoMA4IycnJ7Ny5s6PDaDVUVSU2NhaPx2Ob94bb7baVUVx2dvYvImU6itbjT3/600GdJ4TgnnvuOaS17XHlH0UUhwGFhYW2qse1dnrtRHzq6urIzs7u6DBajbq6OhITE21hqGXBTine4SgoKGDgwIH7H3gI8HkDPHDVCwYZBoPfhafrqkoEUVw0dy1nXjGJVx/7lL0lhoHO3tIaUNRmLYnQJU6n4JSrhpC3oYLv3ttGl+4JnH7DCJA6a78vNlKSAzpCVQw3azV8njC2aj4mAhq62xFGcAW4VGRAD6m9plN0fV2ABJdqPmaeEAjrQ2wpw2r4BoAJsx64RULczG3aKl4WodZKbpXTrhqMryHAV//ZjMutcOZvRjDy+O6sml9gPC9dEpcQQ32dcUGuqoKk1Hgqi6qa/6IkaAGd95+fj88b4MYHf9V8zGFAXFwc6enpFBUVtboNWGdAcnIyHo8Hv9+P09kxmwkHisTERFul80IobTojI6OjQ2kVYmJibJWW3qNHD4qLizs6jP8p5Ofnc++99/LFF19QUVFBt27dOPPMM7nvvvtITU09qDkXLlzI1KlT0XWdu+++mz//+c/7HHv//fcf1BpRQhxFFG2IoqIiunRpHzfe9kBjYyNut9s2hi9SStvVENstXrAnIfZ4PNTV1dG1a9c2n1tKyat/+4zP3vgBp8uBt8Hf4rj4pFgGH9mHnxZuNjmgpK7Kw6zHPmPtsl3oioLREymSJKoOFYdDwdvo57iLBtJQ4+X797eCFMGWTKdfNwwQrF1UjNB0dG8Axe1AV2RI0RVhRNUq5Q1IcOhIp+X0LPEnOnHV+oPKrSIkulfD4/GTlhmLo15DxBvE1lnrN4mwMEJWWtjYkWZ7qNbs+QQVZUxiLHC5BKddaZDhuf/ZTM9+mZTm7+WHj3Yz9YK+7C1pYPeGvaZJl+Tv79+MoggGjOjBTws2cs8lz0bGEpGmTZv0tj4UZGVlUVxcbCtCHBMTQ0xMDNXV1bYha/Hx8fj9fnw+n21MF+3WeikmJsZWKdO5ublUVFTYamOnRXREG6SDWG/79u1MmDCB0tJSzjjjDAYNGsTSpUt58skn+eKLL1i0aNEBi0a1tbVcdtllxMXFtepvpSNT5KOEOIooTBQVFbXLBXl7wW71w16vF03TbONwCQYhtlO8YBBiO9XBg1G/n5GR0S4XPfNnr+Dtf30desAyjwq7XjhifD9OvmA8/77/Q6RuWjwj2bWpkF1bzZ6uQhip0rpuKqPGBDFulT+/fj1vvvwJad3i+eDJNUhpnA+KQYpf3MDp1xg9j9cuKkboEqnpCCGQqjTrigmtE9YWSehGrbDxuAAFAjEqqlcPPh+hSTx1AXr0dqBo4GzQzfPD2i81TZU2U53RZcvqcPhjzWqcAWmR4UEGGX59C5pfZ8d6wwSnrroB8Y7O8RcO4KN/rqGypIH6Wi+9B3UjxjRAGzlxICMnDmDV91tACAaN7kVCUizLF2wMPv8R4/u15tfcbrDaGNntotyqybULIXY6nbjdburq6khLS+vocFqF+Ph4ysvLOzqMViMmJsZWKdO5ubkIISguLrbdd5odceONN1JaWspTTz3FzTffHHz8d7/7HU888QR33303zz777M/M0By33HIL1dXV3Hnnndx99937HT958uQDjrutYA9pKYooDgMKCgrIzMzs6DBaDUshtgsaGhpwuVyoTfuadmLYTSH2+/14PB5bmYCBQYjby7ioYEcLbrvhNbtCsHrxdh679XVqKz2mQqtHqpVBN2iMNGeHwzik64w/eRjzP1/KsGOy+OKVTXgbApG9e6WkLK+GT15Yz9gTujP8mCxTldURut68TzBhm/sSlPCUbmHEojuVkLGXed/j1YiLcyClDPmpaFpzJ+uwuMLnjBgTNnfz4AyF3OVSmHaVSYZf24zmN9O4HapB8FWFHavLWfd9ISddOgjVIcjtl0lZQSXrlm7H5w3gcKr85q8X4I5zo6gKm1flgYDLfj+Nkcf057wbj+fKuw7NufxQER8fT0JCgq1cm8EgxHbqkwv2U1xjY2NpaGjo6DBaDUsh1vXO5+reEtxuN6mpqbavIxayY24Hgu3bt/Pll1/Sq1cvfv3rX0cce+CBB4iPj+e1117D4/G0es7Zs2fzyiuv8NRTT9miVC5KiKOIwkRBQQHdunXr6DBaDbspxHaLF+znim0Zatnpdfb7/VRUVLQbIR533JDm6cAWCQzDPrunhKdIW2OEwBHnZuJpI1k4ZwVJ3SQ/fpJHZWnTi+NQjW9ZXq1Bio/vzohjMhFmqrIiZbDdkQSkgpHirAozM7kFUqoqIdIsBDgUPJ4A8XEOdKfAl2h8tcs6f/MnJolsr9TUTKvpzxY5VpSgW6rLpTLtioH4GjTm/ner0VpJbzKPSajXfV8MUnD2DWOZeMowrj3hUX5/3j/5zYzHqa9rZPWiLXgb/ei60Wpq+YJNvPq3z1i1aCt+v4bL3fGJbFbatJ1gtzZGYD9CbDfF1dpAt1PadEZGhu0JsR1gpSqfdNJJzcrwEhMTOeaYY6ivr2fx4sWtmq+0tJRrrrmGM888k4svvrjN420PRAlxFFGYKCoqIicnp6PDaDW8Xq+tiI/d4vX5fPh8PlulTNuxfri0tJTExMR266c9cGRPHpx1LZk90nC49pGdoJj9cRU1WMs79YzRJKbEhdTiJq7Mfm+A779cx/iz+lFZ7GHjj2EXbZrZzimci+qSsp01fPLiesYe34MRE7oidMAfAF/AmN/6RrbUaMVInxaNARACGXbT1TDyGdCor9eIiVGRqQ6kwzjm7RnfpCY3rP+HRYzD1CIJoTVaep1UBVesg2lXDMTboIWUYfNYcyVa0lDjZfSYUXTtE8uCz5YFj+RtLubbOSvJyg3VpAnz+Vok/oPn57Ntbce7JWdlZVFSUmIbZQ0Mhbiurg6/v+Wa+c6I+Pj4A1KgOhqW4mqXXsSKouByuWxF4qOE+NBQU1MTcdvXZsjmzZsBGDBgQIvH+/fvD8CWLVtate4111yDrusHnGKtKAoOhyO4jqIoqKq631tbdIfp+K3XKKLoJLBbnUpjY6OtUmPtphDX1dXhdrttVTdYXV1tO0LcnunSFsZOHsys7+6hptLD+aP+2Oy4w+kg4A+RHaEIZt58EpOmjeShG2ehBXRSuyYRmxRHYV6FMUiXdB+YQp9RXXn3kaXg95OUkUTN3jCFK4zUWip12e46PnlhPadfMxRQWPNjCQoBdCEgxgGKSUYFRmumAKgB8FtzmIRTj1FR6gIIXSK8ARqqvei6JD5GpcFnkVSBTtjOdzhZ1QziKcyaZRneW9m8wJdSGkq2OcblVpl26QC8DQHm/neLoQw3IcEivN5YgqII/nDucxw1rQ/Hnt+fd/+yHC1gxKeqCiOPGcDl/zeND19cQGxCDMV5kTWZ9XUdr2alpqaiKAp79+61TU2u1XrNTsZaCQkJ5Ofnd3QYrUa44mqX7za7qdpdu3alsLCwo8M4NITtQx7WNaHZNe19993XopOzVV6xr2tK6/HWZJ28/PLLfPzxx7z99tsHXIZ47LHHIoQIbpBb9w8HooQ4iigwLvyqqqra/cK8LWG3GmK7xWu3+mEwvqzslOWg6zolJSUcffTRwcd2bChg4SeryOiWzCkzx+Nwtl3NeVJqPOffeAJvP2OYbOX0zuDuf1/BA9e8QklBpTFICIYe2YcefbuyctFWho0fQEZWEtfeNYO9ZTX8etoT6LpECJhwZh+WfbqTuiov3ftkMvPmE3j89reMa5GWauVNYlm2J5wUS1b/UILi0NEDOrpLJfzqSToE+CVqo4YW5wh7XEFzChyaANWFHuPA0xAgPtZJgy+MRDbrJUyzY0a84cZbIpjqLYVAQIgMNwaY+8YWNJ8eWXNsztd3SDYxMU6qS2to9HipKK4CYNncneQOSWXoMd1Y820BqRmJHDt9FADn33Qi5990IlJKHrjqRZZ8tQ6AQaN7MWRs79b9ctsRQggyMzOD5m92gVVHbJeYExIS8Hg8xkaMDVrdqaqK0+m01Wav3ZymU1NT2bt3b0eHYVvs2bOHpKSk4P32vgbbtWsXt956K+eeey7nnXfeAZ+/YMGCn73fnogS4iiiwNjhDQQCUcW1HdHY2BjxwdzZ0dDQ0G5pvO0Bv99PXV2drRRia7fZ6m+Yt7mIW2c8gabp6JrOxp928ft/tG390eX/N42iXWUs/PgnCrYW839n/4MZ1xzPG09/ZQyQknU/buWf97zPZ28tAQxC5HA4WPTZSnRNAwkDjsxEdShsWFICDgfFRVWsWrydLrnplBZURS4qwlKBzQv9CFIsBKsXFaEENCROpLtJVoIDhNY8XVePcYAngFQNldbToJEQo1JueSlFmmmHeLYMU3KbktrgWDNWXeJyKyEy/OY2s2ZYN1y3m5yTEO+mW/dUTvnVWLasyuPT//6I1CR6QLJ4zg6Ou3gQG38opLKkGqlHknQhBPe8cBU/fbsRPaAzevLgNt0QORR07dqVrVu3dnQYBwTLadouiIuLQ9O0qOLajnC73baKNyEhwVbv4RbRgW2XkpKSWnXdZV377suIz3p8f9cXV155JbGxsTzzzDMHEGznQLSGOIooIGjkcbCNxw83dF231UUD2JPA2yleOxpqWSnelhq05Ov1BAIaukn+Fs5Z2eyc1T9s5fk/fchnry9Ca4Ek7g+6rvP9JyuDaWx1NQ0kJrrJ6Zlm1P5qGkIRLP92E4rZt1dKyTcfLqeuugGkRHUqjD21J8u+yEM3TakCAZ1vPloRIsPhzs37IJ0WKR57XA5HTMhCaBLF37zXsZF2TUS9r/G42RJYB3SJpz5AfEwYgRQYLtaahIBupFdbZDjCRTtsTmn+Y8btig1Lk35jq+kmLQwnaWHWPSvmOZrO6h+28sW7y3j8928TmxCLO8Yk94rCnq01VJY0cMQJPXE4VVRHc7KrqgrjjhvK0ScN7xSGWhZSU1OpqalBs+rDbQC7EWJLcbWTgmk3xdVuBD4xMdFWRmt2xcCBA4F91whbm4H7qjG2sGLFCkpLS+nSpYvRNtC8XXHFFQA89NBDCCE488wzDzhGv9/PmjVr+O6771izZk2b+yN0nm+bKKLoQNTW1qIoim0UQeuDwE4pyHYjmI2NjbZKma6rq7OVAg/NTcC69cwIqoaKIsjsHtmPdNWiLdx54TOoioKm6RTsLOOae848oDWFECSlxlNdUWeY4UhI7ZJI38HZFO0qNwgukNMrg9Iic7dcSgK+QPDnIRO64fUE2LayLILktuitE/6g+bMuBLidoCiUFDUafYqvHmIoxcvKEd4AMiZSJRa6juLV0WMj97F1AYpfQ6kNUF/rJyGMEDuqfJH1w/tKm8bsSawoBJ2xAZdLcPol/fHWmzXDethcVqvl8BiljKhD/uGr9Tz+/m946dFP+Ok740Jr8Sc7mX79cCZNHdepCO/+EBsbi8PhoKamxjYbp0lJSdTV1aHrejPn2M4Ki7DZJVvLbgTT6vVsFyQlJVFTU9PRYRwaOrCGuLWYOnUqAF9++WWzz4va2loWLVpEXFxcRHlTS7j00kupr69v9vjWrVtZuHAhI0eOZMyYMYwaNarVsVVUVHDHHXfwxhtvRPytxcTEcOGFF/LII4+0SVmIfb6NooiiHVFXV0dcXJxtLhoCgQBCCNvEK6WMKtrtDLvFCwYhtnamASZOO4LzbjyeL95cTHpWMr9/MjJd+se5a1FMMgyGgnwwhPjs647ntcc/w+/zc/LMo5k0fRTDx/enqqKObWvzGTlxALf9/QI+ef1Hvv5wOXu2lgQVVaHAiMk5/DB7hynPhk1uEc7wv0uLiCpK6His23BllhLcDkpKGpnzwnqmXzsUgNVLywg4VHCEm1wJFJ+O7tSNx825tHgHoh50l0p9vUZSvANHnaFixpQ2oIXHJYP/RMQnAHSQlvqpKLjcJhlu0Jj71jbDOFsJU7qb1SY3mVdR8PkC3HXxc1RV1AUNwUp311G8q4YaV4CV36cx8pgBtqgXFUIEFVe7EGLr88Dr9RIbG9vB0bQOdkvptVu8DoeDQCDQ0WG0GgkJCdTW1nZ0GL949O3bl5NOOokvv/ySf/3rX9x8883BY/fddx8ej4frrrsuouvGpk2bABg0aFDwsaeeeqrF+WfNmsXChQuZNm0af/7zn1sdV0lJCccccww7duwgOTmZcePGBdvgrVq1ipdeeon58+ezaNGiAzbwaoooIY4iCowdMDu11wkEAjgcDltcSEKo72FU0W4/2C1eTdOora2NUIiFEFxxx3SuuGN6i+fk9OkaTKdWVIXu/UJfgBuW7+D1xz9HCMElt5/GoNG9Wpzjy3eW8PKjc8wFFTRNoigKaV2T+MvbN0WMPe/645h02hFcNeVhQ00Wgl7DjJ3oXWvLuOGBs/n3/bMjF2hpZz6cQEIksRSAS6W03MvHz69nxrVDkcDqFRVIp4KuKuBQkE6jrZHq19EcSkS6sxTG/576AF26xOBolOb0CmCSXL9mtHhyOSAsVTnoaG3WCwsJLqdgWhgZDvhDKdTBT5wwIy2kBMulWwmliJeW1iB8zS++136bz+TzB/DHi/7NCecdxW8fu6CFF63zwTKpsgvC2+zYhRDbTXGNiYmhvLx8/wM7CexGiJOTk22laNsZzzzzDBMmTOA3v/kN33zzDYMHD2bJkiXMnz+fAQMG8NBDD0WMHzx4MEC7th2766672LFjB7feeiv3339/RBZcTU0N9913H08++SR33303L7744iGtZQ95KYoo2hmWQmwXBAIB1JZcbDspvF4vDofDNjFHFe32R01NDQ6H44Au1KddPIEZl08irWsSw4/qy+8evxCAqopa7rrgGVYt2sLK7zdz5wX/oray5X6m7/77m4j7337cvE45HN1y00lNjwu6Lg8Z340NPxTijnHRf1gLbdqkaTjVrA64ha9bi10KAQ6VsqoAH7+ymSOPz+GI0ekofr25+ZU1r5nujZRoMQ5EQMfjCRAf7yAQa/ydSWHGYim/LqehTIdDEWYPYcCh4oyxaoY15r69nUDAVLcdarAXcoRJmC7BGzCeStO5dbOdE4RqoP0Bdq8rRwvo9ByewZdvLaZmH7+rzga71eRCtMa1vWG319duhDgxMdH+CrHsoNsBom/fvixfvpzLL7+cJUuW8Pjjj7N9+3ZuueUWFi9eTHp6+v4naWN88sknTJo0ib///e/NSsKSkpJ44oknOOaYY5gzZ84hrxVViKOIAkMhthshbotG5IcLgUDAVv18fT4fUkpbEUy7tbWy6ocPJMtBdajc8KdzuOFP50Q8XrCjDG+DL3i/0ePloetfoaywkqNPGs6Vd04PGjglJEUScFfMz78vv/90NXtLjAuyhBQ32f1T+P69bRw5dTB3nP/PsNpbwkhwGGG0NoHCFWKf3yCnYX2Fgy2Zyhr5+OVNTL9yEAhYtboSaYUopUE8NWm0STJORAgJmqSu3iDEuss41pgZh3NHjRGDErpCkuHrhqnVLpfg9IvMmuE3txLQCEvbbuHF0QyjrgizsKY/hztJ63pwok0/FDFofDfy1lXgdNnjsyw5OTlorGWXzT27pfRGFdf2hd3iTUlJiSrEhxE9evTglVdeadXYA1GGL7/8ci6//PIDjqe2tpaJEyf+7JhJkyaxYsWKA567KaIKcRRRYPzR2SWlDIx0U7sRYjvF29jYaCtFG+ynEFdVVbWZcU7PAVkkJMeiqAJFFTicKmuXbKNwVzkfPD+flx8J7R7f8c9LiYk3Ng4URXDbExftc97CXWX85dbXzDRg6D2iC0Xbq6jd28B3n6zC5w0YJC8QMG6aRgRzFCKkFocRRUWXRiqx1ryeFyEo2+tnzn+2GO7TR6SFxpnHFV0iEAiLIANSFXh8GnExKsL8ZtfjHM14rAxXhMO4q8utcPrFRpr0F29vJyAFONWWnah1GSS6EfObinVQGQ9ooAWMmx6qT0YIti4vpvugNG586Bxi4zvnRk5NpYeSPRXBC7+4uLigsZZdEFVc2xd2I5h2izc5ORmPxx4ZJPuETRTizohBgwZRVFT0s2OKiooivEgOFlFCHEUUGCnTdqoh9vv9tiKYdiPEdkuXtmOKt9VyqS2QkBzHY+/fwpQzxjD1zLGkZSUH3aIBPnxhPnmbjS/VzB7pfLjxL7y54kHm7Hic8ScO2+e8H728EC0QanXUc3gGu9ZWoDfpnxue+jzuuCFGu6am7tKaHsqalhgtkHwB8AYiSaTVp7jUy5xXNjPuuGxGDU2OSJUWft0gm9bcPg0hoL7Wj6IIYs3evcKnN1fgw+uZzZ9dLsHpF/YzyPBb2wz+rTRReq27lsorzDFq2DhdN28SGr3g8wWfb9PXq/fgniQlJzFySm8AtICGp7bzELdPX/uemSPu4vLxD/Cnq15EC2gIIUhOTrZVHbHdCLHdFG27EUxVVW3VOiw5ORmfz9fmLXaisAduueUW3n77bdasWdPi8VWrVvHOO+9w6623HvJa9rlCjSKKdkQ0Zbp9Ybd4/X6/rVK87Wha1tDQ0KabUL0GZfP7py4F4KWHP+a9f38TJH5SwpKv19FzYLfg+JSMxP3OKRSBUARSk7hiVLr1S+bbNzc1G5eclsAlt53KM/d+wNJ5GyLIZkgZluieRqMW1+k0iK1JgqUf43ElkryWFdYz5+XNTL9yIAhYua4KFAUBqI06UmhIh2qYZ0mJ7tNp9GrEuw1C7CqrjyS/mm70Dg5zr3a5FCNNulHjize3oWkywhgrwqFaSoNgN1G8g+OsuuZwBmxuHjjdDvw+60Jc4I51kp3djeLiYkp21PHnG16hoc7LhJOHc+c/L8Ph7LjsDF+jn3//8b2gMrz4y7Us/WY9408eQXx8PA0NDR0W24EiJibGVjWYTqfTVuTHIsTS+tvo5HA4HOi6bptWXJaje11dnW3c3aM4eCxcuDDifu/evTnxxBMZN24cl156KcceeyyZmZmUlJTw7bff8tprr3HqqafSq1evQ17bPleoUUTRjrCbQhxNmW5f2C3exsZGXC6XbVK8dV3H5/O1G4G//A+n89Xbi6ne6wkSukVz1/Lle0vJ6dOVPoNzmHDycPoP78H3n6/m0//+SGpGAlf84XS6dEsJzjNm0kC+fn8Z9bWN9BicTlVxPbUVjSG1VIKiCh5/72Ze+etnYTVVkp79M6kq9xgxCIw4nA7jf6/XqOs1Wy8JTYKuIZ0y5ACtGUprWX4dc17axPSrBoFDZdXqvUEyKk1yHIQQeDwBEk3Cq8e7USp9IfMrS7nWdKNmODxN+t0daEIxao2Dz898PrpBdCPIsK6HjplrB021JIY6bL0ciqDngCy2rSsIhjrwiFyysrJYvHgxr983m0aPsanzw9y1zPtwOSedd9RB/ObbBpqmo+l6xGM+r6ECxsTE2I4Q201x1TTNVgRTSomu67b4/LW+1wKBAC6Xq4Oj2T8SExMRQlBbW2tfQiytVgCHeU0bYsqUKS3+3UspefHFF3nppZciHgOYPXs2H3/88SFnPtjnii+KKNoRNTU1JCQkdHQYrYbdCJvdXLHt9vq2laGWp7aB+R8uB+C4s48kLuHQU7AbPF4+fGE+1RV1nHjeUfQb3iN4gd5ehFhVFR59+yb+dstrlBVWEZcSx7b1BeiaTsGuCpbN38S7z83jlkfO4+//95ZB3IRgxfdbeGn+XcQnxvDdJ6t4+Nezgspotz7JFGypDJlmmdA1yV0z/8WwCUY/XYlxIZ+3qQiUsPd80MRKCSm2ujTqfaVE6jr4/aZSrBjHrPTpAg9zXt7M6VcORKqC1Sv3tvi8pQBPg0Z8nPHelS4VrJTv8LZJElwuhWmWMvzuDkMZtlKjw9O9NTOO8MfDlWCLaEc8T4maGI9W4wFFIFQlRIbNOeZ9uJwLf3MSuq7jjBVhGeOCyopaFn2+GneMi9GTBx52JSs23s051x7H+8/NA4zsg6NOMHpEu91uKisrD2s8hwI7piDbiWBaMdrlOy48XjsQYlVViY2NtVWWQxQHj3vvvbfDNsLsc8UXRRTtiNraWhIT959C2VlgN8IWjbd90RaGWn5fgNvP+ge7NheBhM9eW8STn95+yA7AD1z5PGt+3IYQgs//+wPPfH0HcSkO3G53uxKdXoOy+efcPwBw8VH3B/sXg7GzLKVgwccrCTbilVBd4eG2Xz3Nv7+4nbef+RqEYpA9XScjN5H1C/ObLyQlpYWVdMlKonufLuzeWoIiBJoujfRkCBHgJucBRm9gIRCabpJViXQ6I92ngdJCD3Ne28r0S/qDhNUr9qIEdHRX5EW4pyFAnEmIUQRSEaYTdGgul0th2qX98TYE+OLdnSEyHIQIGWQJEanWWWoz5jkqSE0Gn6oFLaBBjAuHAgFfWL2zCV+jP1iTe/JFY3ntEYN8JiTHMu/dZezeWgzA5BmjueNflzV/3dsZV/3xDCZOG0lddT3Dj+6HO9YgD3ZTXC2TKjsprmBPgmmHkhUhhO3qnuPj423tNC3CvgoO55p2xP33399ha3f+AoIo/ifx008/IYTgqKNaTpt78803EUIghGDnzp3Njjc0NBATE0NcXFyrHCujhLh9EY23fdEWhlrb1+Wza1NRMM1158ZCdmwo+PmT9gNfo5/Vi7YidYmu6fh9AVYv2tJuBmANHi+rvt9MwY7SiMePOmFoiBCapEzXdPoMzo4knkKQt6WY2S9/y56d5cFjwqmSkZNAWWGDUf8b3mYJQChUVXg484pJJCbFGOTbGiPCyKWFcJXYWl81yXd4yyZzDSkluFTKiuqZ89pWxk3oysgjUhFeDbXOh+INILwail/HUx8gLsY01WoMGNOrIYXX5bbIsMYX75hkuCmsh1rqORzQwwaEPZ/gc7VSqg0VOUiGreMm6j1etm8oICUlhWHje/Lw69fzu79dwPX3nRkkwwDffryC8qIqSgv2Ul5U1TzWdoIQgkGjezF26pAgGQb7uSDHxMQETffsAEVREELYhrBZBNNORlV2I8RxcXGHpBBb14o/d1uwYEHbBRyFLWGfK74o/qcwatQoUlNT+emnn6ipqWnWkPubb74x0hOlZN68eVx11VURxxctWoTX6+XEE09s1a6t1+u1xe6uBbsRNk3TbOWAbLfXty0U4tQuiSZpMu4LIYzHDgFOt4Mu2SlUFFcHnZl79M1slxZRlWU13DLtb5QVVIKAW/92ISfPHA/ADfefTUpGIu888xUBf4hs/rRwEzN/fQJv/esbYxKT+P20YINRM2oSuJSucUgJ1WVm7aiihPoPmwrR3PeWM/fdZSCtFGUl0phqX+pcOCnWNNB1hFTMjGQZSdiBsuIG5ry+jekX9wNg7dIydK+GcCpIv059lY/s7oYfgqvcQyBsE8DlVpl2Sai1kqZhyhdhpNcXgPD3vmX+FU6cI7PGw1Rj3Tgg9UhSH36i+Tzq67z86dqXefCNy8jLy2PSpEkArFu6PfLlUQT/eewzvnp3CQDn/foErrhjesuv5WGARYjtYkqkqipOp9M2LvR2VDCj8bYvXC5Xm2Rl3Hffffs81hamTPuEmVBzWGFThbgjYZ8rvij+p6AoClOmTOHDDz/k22+/Zfr0yAugefPmMWXKFNasWdMiIZ43z0i/O/7441u1nl3SsyzY5WLMgt0IZiAQsMXFowW/33/ILumZPdK5+ZHzefHBjwC45t6z6JqTdkhzCiF44NXreeoPb1FVXsuZV09hxIT+bNy4sc03oL58azEVloIoYdYjc4KE2OFU6T+sOwF/pFHSzo2F3PzQuWxctoPVi7ebxE6j3/Bcqqq97NhQiK5LUrvGUllcH8nvhEA41GaPhS5ETNYYXneriMgLFSEi1WZVDZpeCVPRlpaabKU9A2WFnqD7tJCSNcvKkX7jHG95Awm9DT8EoYdIqcvVhAwHLCUXk8SbxlmKYtQzW0TcMpcShAy0wgmxBPxhKdERRJnghkHweJhZVVlhFQkJCRHqz9Aj+zDtkmP49LVFKKrCOdcfx7v/+jp4/J1/fc2pF04gKzedjoD1vvV6vbbpXe90OvFZLbBsALsRNrvFa7fWS4qioDcxuTsYdGQ6bhQHDykl7733HnPnzqWgoKDFbBchBN98880hrWOfK9Qo/udw/PHH8+GHHzJv3rwIQrxr1y527tzJVVddRWpqKvPnz2927oESYrsYeFiwSz2YBU3TbPX62o3At9UGyWkXH8OpF00AaLP3V+/B2Tzx8e8iHmsPhVh1KBFcU3VEvh77IlC7txZz38tX8+KfPmTD8p2MPGYAF9xyMmdePZW/3fYmyxdsJC7Zhacm9CU8dGwvrrvnDO6/5hX2ltZEThj+uul6mBmVaL5rrzdJrbb+D7JsYaizUiIbfEa7JEVBBHTKC8JqioVgzZJSkFBf4yM23nzvmsqEy6Uy7fKBeBs15r61LUSGw+IQYTFE1AtbjtLhrqUWOZbSOM9yxg7fHdClUZRlkevwPsvmz+NPGkZcXBx+vz/4GSGE4KaHz+Oy309DdarkbSmOIMQAAX/HkQ9FUYKKlV0IsaIoYQ7onR92JJh2itduaCtCHIX94PV6Oe2001iwYEHwujf8s8y63xbXK/aRmKL4n8Nxxx0H0GzXx7p/3HHHMXXqVIqKitiwYUPweE1NDcuXLyc1NZXRo0e3aq0oIW5f2C1euxH4tnx9rZqq9oTP52tzh9NTLpxAzwFZACgOFXd8DH/9zWtUlRvqY6+B3bj1rzNJSA4jMbrkH79/izf+MZebH53Jv7++k+seOAeX20lyWjxTZ4wEJPFJLuprfKBrJCa6eeDFK+k/vAe3Pz4zgnhn5qREBtXUmVnTQm2PzBrbUP/esFuwvjg0jSIEiiZR/JpBkhVB2Z465ry2jbGTMhkxLgM8Xur3NhCXYPbQ1sya4SsG4G0MBMmwCI/HIsPhaEqehDCuFsLrkRUBqmHaJRWBFMYt5KYtQgp4GNl3uBxkdk+je58uqKqgorgWIUSzlMjE1HjiEmIYcEQuY6cMDj4+ecZocvp0bflNcJjgdrttpbg2vYjs7LCbgmmn7zaw3/shSoj/d/GXv/yF+fPn88c//pHy8nKklNx///0UFhbyxhtv0KNHD2bOnNkmn8f2kUCi+J/D4MGD6datG+vWraOsrIwuXboAhvqbkJDAkUceGawtnjdvHkOGDAHg22+/RdM0pkyZ0mrVTNd1232pRdG+sNP7wW4bDlLKNk/5T0iO459z/8DHs77j+T99ROGucor37KWyvJZH3rgRgJPPO4rJp4/k4V+/yrL5G4PnfvDSQlK7JjPljFGoqsLbz8zD5/UzbFxvkJK4JBc1FY0gJbWVHnZvLaF730ycLgf//OS33HXxs1SW1VKS30I7pCaKr5H6HPa7CmiGwtq0zljKkHrcEszfeXl+HZ/M2sz0ywciAjqbVpThNJ2nnXEOTr7AcJMOKsNmTCL8grhJnXKz2IPGX01MtsynFEyV1ps6UuuRc+g6AV/AfJ0kBTvL2Lgij4vuOwqv19usF3xjvZdv3l/G6MmDmHbpRBJT4hg8pleHv9eFELa6QLcboejo3+8vHXZ7fds7ZTomJoY77rjjkOePou3x7rvvMnr0aB544IGIx7Oyspg5cybjxo1j5MiR/OMf/+C22247pLWihDiKTo3jjz+e119/nfnz53PeeecBMH/+fCZNmoTD4WDo0KF07dqVefPmcdNNNwEHni4NUYW4vRGNt31ht5ry9opXdahUV9ShqAq6pqNrOltX7w4el1Jy75UvstYybjJdnXUJLz7yCe+9sIDGeh8NHiM9+vM3FwMQm+CkeGd1ULXdtqGAP179MvW1jSiKQG+WwhuqH1YdimFeZT1fSzGVhBRjfyCkqDYlxdAyUQ2vKS6oD9YUAwQCOg6HwikX9afRE2Dum1sjyHCzecNTpJuipb+DCJIfPqaJQRcicnzQXEYElysvqkIRjmZ1YZqmc8f5/2LzqjyEgKzcDJ758v86xfvcbinIdlMEAVvFG3192xdttQHVlFRZSE5ObldCLODwt106vMu1G7Zv384111wTvC+EwO/3B+/36dOHadOmMWvWrEMmxB3/zRJFFD8DK23aIrkbN26kqKiIqVOnBsdMmTKFBQsWBD8wD5YQd4YLrQOBnQgbRONtT9iNwLdnvMPH90PXjIwPRRGMnDggeKyuup61S7abfDUspdeMqbKsNkiGAXRd4nA5DFJrGnIJAf9+4CMa6rzBMcYc4USWoPOy5tMMYykhQv9jDneooThkcFGDKAfMW1O3ZqvOFxCa2QZJl5QVeJjzymbGHpcTjNXXoDH3ja1ofhmaPzwtuwmstOdg+rPZ8mmfJqnhcVmvadP5rWUsQ64WyH3RrnJefOgjPnt9UfDhwp1lbF6VF1ymKK+cjSt2tRTFYYfdCFA03vZFNN72RVspxNL6PGtyq6qqOvQgo2gXOJ3OCL+RxMREysrKIsb07NmTHTt2HPJaUYU4ik4Ni9RadcPh9cMWpkyZwjvvvMPKlSvJzc1l7dq15OTkMGjQoFavo+s6UsqInafODF3X0TQtGm87wY7x6roejRcYMb4vd/77Mn74fDVdu6dy7g0nBNdxulVSuybgqWkMuyDcR7qwifSuCSgOgaIKnG4zi0RRmvci1sNoY9jFpsPlMFr3hjtKh0NTQNeazxdUkk1nZtVSmCOVZGm5VwNVZQ18/fY2TrvMUIq//WiHEbujBSW4iRotW3r+epM4LBMtIxBzjOVCbY4JKBAIEJfgJjE1nvikGMoLq6nd6wlzmA4n0pLGBh8VJVU8e/97JKbHcfQJw4hLchMT50QLuxBOTo/vNO9xv9/faWJpDewUr5SSQCAQjbedYLd4hRC2qimPou3QvXt3CgoKgvcHDBjAjz/+GDFm5cqVpKUdWkcMACHttE0Uxf8k+vXrx/bt29m9eze33HIL8+fPp6KiIqjobtq0icGDB/PXv/6Vnj17cv7553PppZfy6quvtnqNSZMmMXbsWKZMmdJOzyKKKKKIIooooogiigPB3Xffzd13380FF1xwUOeL8M3Dw4iamhqSk5Pp+ehDKIe5jaPe2EjeHXdTXV0d9NqxI6699lq+/vrroAL88MMP88c//pErr7ySs846iwULFvD3v/+dCy+8kNdee+2Q1ooqxFF0ehx//PFs376dr7/+mgULFjB58uSI9OZBgwaRlZXFvHnz6NmzZ/CcA4GiKHTv3p3TTjutTWNvLyxZsoScnBy6d+/e0aG0CtF42xdLly6lW7du9OjRo6NDaRU6Q7ybVu7i+fs/pMHTyDnXHccJ5x4VPOZt9KHrklf/+infvLeMk64exo5VZWxZXgzACb8ax8W3nsJzD85m48o8MrunUl1eS1lRFVqgSWqflBx94jDGHjeY+R+vZv2KvEjn6ZbMs8JTji2F2OpTHH487ALPGaNy8uWD8Xo1Koo9jJqUg7chwIrvilj3U7kxSDMcpY0y3pDWK8y06Ag1OBxhj4mmsTWFlKBJoweyBfPnbrlpFO0qjxwLzLhhOGvm72bXesOULLVLIi/Ou7P53J0EixYtok+fPnTr1q2jQ2kV7Bbvjz/+SM+ePcnOzu7oUFqFH374gV69ekXjbSfcd999titpi6JtcOGFF7Jnzx527dpFr169uPXWW5k9ezYvv/wyr7zyClJK+vXrx6OPPnrIa0UJcRSdHscddxzPP/88TzzxBJWVlRH1wxamTp3Kxx9/zObNm4GDI8S6ruN0Otsk5vaGUR+p2CpeVVWj8R4iNv60k1cemYMW0Ljod6cy+lijLEBRFFu9Hw5XvCX5exECuuY0T6caPq4/T3/2fy2eZ8V1wtnjmPvmEhpqfThdKv56wzxr0/Jd3HTy3xg8thdPfnArt5z5BBXF1UY9cThMwlecV8FJZx/FSWcfxWO3v8W82SsijiPC0o4hsj+xlBDscRoIkVZdDxJkV6yDky4bRGODxtzXt9B3uNFz+bM3tnLqhf3RdIw+xeEu1+G9HE3CLZUWnK6DNc4GMY+o/bbisH625rRaQwXnMebavbkkcl7zZ1esiqfGj99rpEU2evyd/r3sdDo7fYzhsFu8DofDNvEKIWwXr53eD3b0eInAPk0Y2nnNXwCmTJkSkbkZFxfHokWLmD17Ntu2baNXr15Mnz6duLi4Q14rSoij6PQ47rjjEEKwdu3a4P2mmDp1Km+++SY7d+5k4MCB5OTkHNAaqqraymTCTgZKYD8Tj84Yr6e2gbsveobGeh9IuO+y53h50b10yU61XVuV9o5XSsmz977Px68sBODMqyZz3QPnHPA8g8f05l9f/B+fffg1cUmGiZYQgp0biwD44Yu11FbVU1ESRoYjWhIZf6f5O8q44YRH6do9laFH98fhVAn4zZo4TTMuXhym+qubPYqt18dSkK15LbXYnNsVo3La1UPwNhpkWAtIqiuNWMtLG5nz2lamX9IfBKxZUgYOJeQArROaS1EMEhthiCWM66pm9cOEYg296ObzMeKXphQt9LDWS5o5XolUmBPTYohxu8014bLbO3emjt3a9EVN99oXdozXTmirLiD7arsEcOaZZzJy5MhDXiOK9ofD4eCccw78+3y/87b5jFFE0cbo0qULw4cPZ82aNWRkZDBs2LBmY8JV4wNVh8G4QLeTaUNnJGw/BztdLICxQdLZ3g+le/YGnY0BAn6N/B2ldMlOtd37weFwtKuhy+4txUEyDPDRS99y6sXHkNs/64Dn6jkgixPOPoqy0nJGHDGCZ+/7wDhgvqe3rtnD5OmjmP/RirBUaCJMpxtqG9hV08CuneUs/X6b8fegaSFyC+DTQrv64e2QnI7mSi2AqobIcEOAuW9sM9o7CUFNZSMAMW6FsuIG5ry+jekX9wNg9dJyw6BLlwgVQCB1HXQz5CZ/qwL23f4p/LHwjQBHKLVbKsIgxbpp/qUb7tt/fet6Mrun4YpR+fa7+Tz8+o1sW1NIl+wUcvtltup301Hw+zu/gh0OuylsdovXTp+9YD8C31bvh321XQLo1atX+xHiqELcZqipqaG6uprk5OQ2r42OEuIobIHVq1f/7PF+/fod0peS3fpK2g1223DojIQ4u3cX0jOTqSyvBSA23k2fIUYmhN0IcUxMTLO+s20Jf7O+wIQU2YNATEwMutQYemQf4wGLmArBiAn9OP7MMeRtKmLHhoKwCxEBikkMhUL4Fe7UMwQAAQAASURBVIqUki45afjrG6gqrzMOWanQxoDI1Oam/YIBl1vhtKuH4GsIMPc/m9FQgsbPAbPncHJ6LLU1NZQV1QdJsVRVVv9UAUikX0cgDYIsJGgGAZaCkIqrGy2bREAzxzVxqg4+3bA2S02JvdVuSkqQGhmZyfQbmsOmVbupqa1FURSSkhMYc+zAg/n1HFZIKfF6vRGtQDo77EaAAoEADod9Lk/tRuDtBinlIb2+dvpujKI5fD4fjz32GC+//DK7du0KPt6rVy+uvPJKfv/73+NyuQ55Hft84kQRRTvCboTNbvE6HA4CgeYkpbOiM8brjnXxtw9v5d1nvkYLaJx1zVSS0xKAzhnvzyEmJoaKiop2m7/PkBzGnzycH+caZRYTTj2C3oMPzkBG03RiY2Opq6sje2QXo5bYZ/3tSeprGvnjJc81P7Fpil+T2tyKkir+/Mo11FR6ePRmyx3TyjMWZqNhQkQy7ILQUoYtMhwISIhRmim4KWku8rcD6JQV1fPxWzuZcUFvELB6eTk4FaQujVRpRSDRQZOhFk9gkGxFIBVh1AajRxL0iFrhn7nwtNK+HYJbHvkVz/75Y758dxm9hqYxfkYfavZ6SE5P2Pf5nQQ+nw8pJW4rxdsGCAQCbZJyerhgN0Jst3jtRuDtFm8UbYfa2lqOP/54fvrpJ4QQ5ObmkpWVRXFxMXl5edx77718/PHHfPPNNyQkHNr3h33+gqOIoh3hcrnw+XwdHUar4XA4ooS4HdFZ483KTefmR89v9rjb7aaxsbEDIjo4tHe8iqLwxxeuYsPynQAMGdv7gBSydUu28+OXa9m2Lp+1S7aTnB7HzHvHUZxfFkaGAQnrlu5oeZKmCmqT+7ovwF0XP2vlKYepwYqRSi0I1ej+HBnWgBhnaIwQmJ7RJKXHGA7S0li3tLiBj9/ZxYzzegOwesVepJBITUex+hk3NQYLqrxGfNI6ruuIQCDSmdpUk1tMo7ZSvoXk4V+/SkOj8TpmdE+geFcNt/zqaZ7/4ve43A5qKj08duvrbFqxixHj+3Pb3y8kLqFzKLKNjY04HA7bECBd122naNuNYEbjbV/YLd6mENK4He41fwm47777WL58OWeffTaPPfYYvXv3Dh7buXMnt99+Ox9++CH33Xcfjz/++CGtFd1yiSIKICEhgbq6uo4Oo9XorIRtX+iMKcg/B7u9vu2dgtzWiImJaXcCrygKw8b1Zdi4vgekLqxbsp3/O++ffPTSt6z5cRtSl1SVeags9vC33/+HmHg3QhEoqkJ84s+QjPD6YDBNpTTDMVrTDOIrFDM/2USQFBPZmsmEK0bltGuGGmR41kZDGXYqIVLaJMU6Oa2JiqnplBbV8/E7OznymExGjEk3iK5TMRRgIZAuFakqyKYbCBZhdqrmzYFUjFpkfAGEN4DwawhNB3/AeJ66HmrTFDQFkzR4fAhzvS7dEyjPr6Mkv5KNK3cB8NLDH/PTwk3U1Tbyw5drefDal1t8iX1eP/nbS2hsOHybmXYjl9bngl0UbV3X0XXdVgRI0zRbxWs3gllfX09iYmJHhxFFB+Ddd99l5MiRvPfeexFkGKB379689957HHHEEbzzzjuHvFaUEEcRBZCYmEhtbW1Hh9Fq2I2wReNtXxwOgtmWsAh8R9d21dc18v2nq1j5/eZgLIu/XodQRLMWSmW7a0nPjqex3scRE/oz/fJJPPnpbWR0S2558nACLMNaE1lE2IKVHh1+nyYkWYgQGa4PMPfVTWiBMOU1XIm11gaS02NACEMtkBgqsF+jtLiB2e/sZNyErhwx2mjRJB0KutMkwgJQxc/7sijCuDlUcDmQDtUg1Rg17UJikGNNN520TYdsczNg6OheICUZ3RMoyzc2I+MTYwHYtakw9HSEYNWP24Jk2ULhrjKuPOZPXDP5IS4dd69Rv30Y0NDQYDtC7HK5bJMybX3u2iVeOxJ4uxFij8djb0IsO+j2C0B5eTknn3zyPo8LITj55JPbpAQrSoijiAJISkrC4/F0dBitht0IWzTe9oXdCLHb7UbX9XZ1mt4fPLUN/Oa0v/HQdS9z18x/8c+7jB3m7J4Z6FrzllAleTVk9UlGURX6j8jl+vvPJqd3VypL97ORFlR7LTIcVn9rcV9FMf8XRv2uQwWHI6j8OmMNMuytDzD31Y0hMhxMUw67KRjO1EByqjtUh6xLCGjG8ppGaUkDs9/dybjxXTliTIbZekkgVREk4TgUpMMiyaK5y3T4c3Eo4FTN8SBUq70TwbUJe13XLd1BYqqbmDgH5QV1ICWf/vcHVv2w1diMaLJe/o6yiKXfevpLKsuM195T3cCsR+f8/O+hjWA3hbixsdE26jAQzCSyC2GzvifsEq+maUgpbROvrus0NDQccn1oFPZEr169qKqq+tkx1dXV9OrV65DXihLiKKLAUIijKdPth2i87Qu3290pFNfWwul0oqpqh5L4ZfM2ULCjNHj/s9cW4alt4ITzjiKnd0aQzB194jAmnDKc3esr6NYvBXesg8kzRgXP639ED5QwE6oRE/qFFrEcly3yG9G+qAnpa0o4FQUcDpyJMUy7drjRZ/iNrUbNsDT7/LodoAhDkYUWnZ8T0tyGWKCaai6mYhzQI0mxqRSjCPSmbZZUgRQiMo06vF444nkADhXdGqPpkf2Kw9BraBqF26oJNGqgS754awl3Xvwc2zYWR5B8oQhGHNU34lx/YyD4ekoJvsbDs7liN4LZ2NhoKwLv9/tRVdU2rth2U7StDQe7xNvQ0EAgELC3QhzFQeOaa67hnXfeIT8/v8Xju3fv5u233+aaa6455LWihDiKKDBqiOvr6zs6jFZDVVVbETa7EUy7xRsTExNsB2MXxMbG0tDQ0CFrz375W15+JFJRdDhVnE4HKxduosBSI6Vk2bz13PTQufQf1ovq0nq69Uvmq3eXBs+75/mrmHrmaEaM78epF01gzeLtIbXXVF2tuYL/S9k8pa1p2jNGzfC0qwcbfYb/u9VQhi2i4HREEtEWUqZrqrykpMeEYoAgOVUAfBqlRfXMfq+JUuxU0K2rA2sNVUSmUQe0EGmJ6L9skn1VIJ1qkIS3hJ5D08jbsLf5YctcDOPU6+89k8zuaRFDzrp2Kk630QtYdSic/5uTWlyjrdHQ0EBsbOxhWastYDdCbLd0XiveKIFvH1RWVgLYWyGOpky3Grt37464nX322UyaNInRo0fz8MMP8/3337N161a+//57HnroIcaOHcvkyZM566yzDnlt+3zqRBFFOyIxMdFWhNhuhM1u8bpcLluRS1VVcTqdtkrnTEpKorq6mszMzMO67vL5G3n2vg+MO6arsupQ+M1fZ+KKcdJQF/l71zTJRUfeh9QljqQ+9BqeweyXFzL1jDEMHNWTtK5J3P7ExVSW1XLx0fcZJ7XUlkgokcc0LZQuHa7smuOtmmFvvUmGg550Vmp08/RlEe4CDVTvbSQlPYY9O0Jp3UKC9Bsu1sKhIqUwaorf3ckZ55ru0z9VgAK6lAhdhviqMFK6pW72tbV6E0uMOmkRNg5CradU03wrqBRLXG6Vbn2TyV/rCV28NVG407OSeeg/19NzQBZNMeCIXG7960zee24eqV2S6Jqd2mxMe6CmpoY+ffoclrXaAnb6TAAjXjsp8FEC376orq5GVVVbvYejOHj06tWrxfemlJJ77rmnxcdnz57NnDlzDvka0z5/xVFE0Y6wm0IcbbvUvoiNjcXr9dqq/6FVR5ycvA+Tp06G5ORkqqurD/u6OzcVIoQw0sslKKrCu+sfJTbeuOAad8JQevTryp5tpUFyZpHMXWvLmXbDCFSHwl0XPcOTc35H974Goa+prEPX9rMtH056FQUQZoulyDRnV6yD064ajK/ebxhooRpkU9OJcSg0WueEOzibSq7wBYI9N2oqvKSku03l1jS0Ngm4DOigKkYmt4aRPv3eTs74ldWSqQIcxusk/XoonSzM7Ar0UJsm3STp4TGFP28RGetRp/bHqbr58yvX89uznmLr2qYpcZIhY/u0SIYB8reX8LdbX0fXdYQiuHPmP3nlh/tQHe2nfPl8Purr623zNwaGQmwndc2OirZd1FawH4GvqqoiISHBNgS+JUTbLrUel156aYf9ru3zVxFFFO2IqELcvrBbirelUHi9XtukR9qtF3FKSgp5eXmHfd1REwcwSwGBgpSS0ZMHBckwQFxCDE9+cjv/feIL3n9+fsS5pbtqqK/x0eeIDLatKOXDFxdw8yNGX+jufTPpP6IHW9fsMQaHf6fLFnLYwlXkMDjNPsPeBsNNWvfrCHSD0+oSr26aboWR4HBIpwNcxgV6VaWX3gNSDN5tkXAhEFip3DLoQi01o09xkBRLWL3SdO50Kki/HrrIksZzkg6HcUeCECoE/MYaZn3xz13W5AxMZMDAfqiqitQ10LVmDtuLv16H3xfA6Wp+qbJtXT6aadIlNUlZYRXVFXWkZbYfWa2qqiIuLg6Xy9Vua7Q17EYw7aZo241g2i3e6upq4uPjOzqMKA4TZs2a1WFr20P6iCKKdkZCQkLUZbod4Xa78fl8tjF9UhQFl8tlK4JpN6fplJQU6uvr8fkOXw9ZgH7De/DImzdx4rnjmHnzSdz17yuajYmNd3PRb0+hR79QOvdJ5x9Fr4FZbPyhiCETcxBCRChDqqowckL/0CQmaQw6QesaqsNMjw4EIo+ZcMY6mHbNUNNAaxsaIVdqIUxTLCFAp7kKaxFkRQQ5ZU2lj+R0N1JVINYVPF8KEepdbAYrkKBBaZFptGW1ZDJJtwyvH5a60YvYYZJz1exjrJr1wro0+g+H103rofupWXEkpLlYMX83OzcWsn19YXMHa8DvDezTLGvAiFwcTtXsCS3Iyk0nOcMw3tECWrt81lRVVZGSktLm87Yn7EaI7Ravz+eLpni3I2pra22V4dAipOiYWxQHBPv8VUQRRTsiMTGxwwx+DgZ2JMRgr91/q1euXWA3QuxyuYiNjaWqqoquXbse1rVHjO/HiPH9mj2+dc0eHv31LCpKqjnp/KP5x8e3svK7LcQlxDBy4gDWL93Bn659gSOn9ab3sK6cc93U4LkfvrSAd5+d1/KCZqqy5g8E63CbEkBXrMOoGW7UQgZaioJEM/itohhtkcAk1ZphrNWU+AmCc1fvbSQx2YUS6wi1ajLrpi1lF4scg0FiNRkkxWec2xukNNKnFYF0CaRXR1WUyHUFoIDUhUGsFQG+QPN0cIz1hk/MZtvKMmLQmPfRTyE3buu5medMnj6K+KTmGRqFu8p59oEP6dojndg4F70HZ3PxbadRXljJ03e8zU8LN5GclsDdz13J8KOb/54PFtXV1bZKl7aM9uzymQsGIU5KSuroMFoNu7mO240QV1dX258QR9EmyM/PZ+XKlVRVVZGcnMzo0aPp3r17m81vn7+KKKJoR9hRIdZ13TY1rpbpk512/+1GMGNiYigvL+/oMA4IKSkpVFdXH3ZCvC88cuMrlOzZi65L5sz6juS0BDJ7pDHgiFyEEAw7qi/PfHEHi75bzNm/GU9mD6NVUUVxNc8/8FFzU6kgmqQ2h6u7iggZaDUEDGU40ITkhpNhi8A2bbEEpuocmrveo+H36aSkuKgo94bFFnZuC8qs0CWlhfUhUiyEQYrBcKD2S5SgP5YMzaMoSF1HKGbqtkncRZhSHJfkov/oLnz09Bpue3QquzYWhNRcATGxLoaM6c2x00dywjnjgjH5vH6kLnHHurjviucp3FUe7Bd97f1ns2N9Pg9e81Kw3rtmbx2P/vpV/vvTg82e38GiqqqKnj17ttl87Q0rK8cun7lgP4XYbvHakRBHWy79byMvL4/rrruOr776qtmxE088kWeffbZN+hDb568iiijaEYmJifj9ftt8uTmdRrsRn89ni3jBfgTTbjW58fHx7Nq1q6PDOCCkpKRQVVXV0WEEUV5Uja6HCN7rT3wBGCnU//j4t6R2SeIP5z1NdVUtM+89mneem8t5153M0nnrjXNM8yqkpP8RPZhw0gi69UznjSe/ZPe2kiarSRAKLrfCadcOw9e0tZKUoGmIphteltFXeMqzrof6EIe7T0tJVUUjKakGIQ72EVYMR+oIMhxGSo1exZLSgjBSLE2jLSHAqaL7NRTrtQrn78JUoMPaQ0mf35xWMOaE7uzeVElFfg1Dx/Zi6JherF22g8VfrkXqksY6LysXbqKuqp5xU4fy8qNz2PjTTgp3lIGUXHDLyeRvLyUcOzcU8Nlr30c4bEtpkOK2gmWoZaeU6draWtxut61Mn+zyHWzBboq23+8PXj/YAXV1dfYnxB3RBske1Wn7RXFxMRMnTqSgoIBevXpx7LHH0q1bN4qKivjuu+/48ssvmThxIsuXLycrq2UDxtai80tLUURxGGB94Hami/OfQ3ibHbsgmoLcvkhOTqaurs5WqfSdjRCfcO6RAIgmLY28jX6+fGcJC+esoHBXOZ4qL+u/zaesqhBd14lPjAmrlwV0yYOzrmPmTSeSlZvBnh2lLZJPl1sYZLhRY+7rW0wDLYxU44AW6RQa5t4swajftaAYrZCaeXcJQVWFl5QUt1FSZqY2oxAix83coEXYXUFpfl1ETbFFbHEo6IqIfN5CgKnaBlO3hVlbrKokp7kYeGQmSz/dQVZuOk6XA1eMk3ufu5Lk1Phg7FLCltW7ue+K55n3/jIKtpeaJdmSN/7xBf2Hd0cxa4cVVTD86H7NNw6A0y+d2Oyxg4UdDbWqq6ttReDtmuJtt3jtlOJdW1trf0IcxUHjwQcfpKCggL/85S9s3bqVWbNm8cgjjzBr1iy2bNnCX//6VwoLC/nzn/98yGtFCXEUUQBxcXEIITrVxfn+YDcF027xxsbG2qquPDY2Frfb3SGtjA4WqampNDQ0dBqH918/dB7X3X82SjCl2WBoUpckJMfhcoeUlZVf5dElN4ny8nKOOmEY/YZ3N4isrnPOdVNJTjPq3jau2BXinBZBVFRcsU5O//VIYuNjmfv6llCatJQIXUcEtCYkOizQcLJp3ZwO4xZWQwxQXdFISprLVH7D0pvDOX+4WmwdM18DgaAsr5aP3zFJ8Zh087UxTL50k4xbinZwHYt8B5+85KgZ/di1vhJ/g6Q4r5yrpz5M4a4yAGqrIv/W4pNi2LZ2j6HYNzEQu/h3p3L2tVOZeuZYHnnjRvoMyeHqP54RdKNOSInj1r9dwLX3n/0zv+0DQ3l5OWlpaW023+GA3UzArO8HOxHMKIFvX9TW1tpKgW8JVtulw337JeDTTz/lpJNO4ve//32zTBdVVbn99ts56aST+OSTTw55rWjKdBRRYCghiYmJtqrBtJuCabd47VZXDiHFNT09vaNDaRWcTifp6ekUFxfTp0+fjg4HVVXI6d0FLWD1+DbIYd+hOcy4fBIOh8rX7y1lzY/bCHh1kmLSWLduHZMnT+bvH/2WjT/tJD4plr5Du1NRXM3Td7/Lzo2FoQWkmSYdo3La9cNprPMzsM9QdG1F6DiAXwsb30RZtlKSm5lpWYovBjEF0HWqyhvp3jepyRjjfKmEnUMYR7bqjDFJsapQmlfLx2/vYMb5fQyjreVWTbGK0KVB4JvGYk2qKmT3TqB7/2TefmwF9fWGc3TxngqefeAj/vTKNUycdgTfzl4RPOd3f7+I95+bx6YVuyL6O/cf0YNRkwYy7vihEU9/7NQh/GfZA5QXVtGjXybu2LZVcouLixk4cGCbztneqKqqIicnp6PDaDXq6uqIj4+3hS8GRBXtw4Gamhp69+7d0WFE0UEoLi7moosu+tkxY8aMYcGCBYe8VpQQRxGFia5du1JQUNDRYbQadiOYdjN9sgixXYzLoPOlILcGWVlZnYYQA/Qa1A2n20HAJKUJybE89t7NxMQZaYaPvn0TRXkVJCbHEp8cy8KFC9m8eTNDhgxhxPhQ26W//OY11i/dbiqcoDhUdE0abtLXDcNXH2DuKxvIH9uAbPQZ7YsAfAGGH9WXbZuKaGjwR5BioUukYqR0S10PukM3R9Ddy0iZTo9BBHSk01xDEqo1thRhPcx1WspQ26hg2yejD/PHb+1gxkzjd7V6WblBrJ2qkZLt14y0swiuLnDGKEw9tx+LP9uFp9oXNODSNZ2qilpK8veybtkOUASqQ+WmP59DfLybU2eOp3ufrlSW1dDD7PN89EnDW+xLDJCSnkhKetunV3o8Hurq6jqN+VtrEAgEqKurs5UrtkWI7QKv14uU0lYpyHYjxGVlZYwfP76jw4iig5CcnExeXt7Pjtm9e3ebfM5FCXEUUZjo1q0b+fn5HR1Gq2FHQmy3eFVVxePx2KaGKTk5mcLCwv0P7ETIyspi/fr1ncbspUt2Kg+/+WvefeZrnC4Hl9x2WpAMg5FNkt0rI3h/9OjRLFy4kG7dupGamhp8fMeGgpBBF6BruqEMh5FhLSBZ8+M2Y4Df7E2s66iqoKHeF1nTayrCQpNIRTVMsXTd4J6W67QiaJoOXbXXS2ycgxinQqNXM4irJiFGjSTUCkhNhjKrpQxNY84tAlC6s4aP39zOjAv6gIQ1yw1SjGr2OPYFjNZLFsEGxp/Sg+qKRjYsKwtTto3ZZ1w2iQ9eXEBlWa3xOuk6rz72GVUlRup/j/6ZPPnJ7cTGdxzpKC4uJiMjo1O8P1uL6upq3G43sbHN21Z1VtTV1dmqxU5jYyNOp9M2pmV2VLTLysro1q1bR4dxaIiaah00Jk6cyHvvvceNN97IhAkTmh1fsmQJ7777LtOmTTvktaKEOIooTOTk5NiKTMTExFBRUdHRYbQadiPEQgji4+Nt5XKZkpJCbW2trVprxMfHk5CQQGlp6WFP75RS8trfPuOLN3+ka04qtz1xMT36ZTJsXF+GjevbqjmSkpLo26cv875cyLLZexg5YSDn3Xg8Q8b0Ytm8DcYgYbZWun4EPo+fuS+vN7OaI8mhlaq8asmOEBkOT40OBJBOp9HHOPQkIklweG2wAL9Px1PrJyU9hqLCeqRTAXeoj3BEmrRfM2LSJbhUs+ex8bcAgEtF+DTKdtXy8X+3MePCfiAla5aamR+KglQV0CXCTNvOHZBM/yPSeffJtcbTdaiG8ZaAy34/jRPOOZJNK3cFHaKlLqkqrw0+hT1bS1g+fwOTTh/Vqt9He6C4uNh2F+V2qx8GQ4m3kwpvN3JpteGyk6JdXl5OdnZ2R4cRRQfh7rvv5tNPP2Xy5MnMnDmTqVOn0q1bN4qLi1mwYAFvvvkmiqJw1113HfJa9sgDjCKKw4Ds7GyKioo6OoxWw24E03KZlk1rHzsx4uPjbVVHHBMTg9vtpqampqNDOSBYadOHG99/uoo3n/qSyrJatq7dw0PXvXxQ8yx4awMleyrpOsDNq499yuyXF3LrYzNxuBwGGXabZLghwNxX1qPp4ew1PHVZgMMRTCkOOTibhlWKAlbac3idrq4TNLIKzkvw3KqKRlLS3UiHCKnCYU7aUkrj5lCMc51hipcIExuEMEgxUJ5Xx8evbePIiZmMODKkmKMq4FCQTpXkdDcnzOzHdx/torYyrA+yEKAI/GZaer9hPYwUcOu56pGfEeEK/eGG3++noqLikFt6HG7YkRDbUSG2EyFubGzE4XDYZrNU13XKy8tttxnVDB1hqGWfy6yfxejRo3nvvfdISkriv//9L9dccw2nn346V199Na+99hpJSUm88847jBkz5pDXssdfRRRRHAZkZ2ezevXqjg6j1bCjazNAfX29berEEhISqKtru16m7Q0hBMnJyVRVVdnKETcrK4vFixcf9nrtgp1lZj2uRNckhbtarnHXdR0toO+zdnX98p0U7Czh7NvHMPbUXmxamcdZV0/hr+/cxOtPfMagKV1ISolnxecFaFq4GkxzcywlTBmOMKcKEcmmrZGaX/vIiHOqyhtJSXOb54YNE4YiG3SVdoCUolnbKaQebLFsza5ISdmeWj5+fRszLu4HwJolpcG2TK5YlVMvG8iGJSVsXVnW4uu2Z4fxuB7QTBIceiaKItB1ydSzxzJmyqAWzz8cKCkpITExkbi4uA6L4WBQXV1tK2VN13Xq6+ttRYjtVvNsNwJfVFREIBCwPyGO4pBw+umns3v3bmbPns2KFSuorq4mOTmZUaNGceaZZ7bZ32CUEEcRhYns7GxbmT6FK65CiP2f0MFQFIW4uDg8Ho9tLiISEhLYvXt3R4dxQLCjsVZqaiqKorB3714yMjL2f0IbYdzxQ3n9758jhWFSNfG0I5qNWfrNev5y06vU1zVyygXjufnR85uR9hFH92PH+gI+f34tZ/12NG49BYCE1FjGTO+Bqqg0lrpYOm8TkenRgNRBUZsTYAvhKrGiGOnGDjWCSFue0M1OFQKpKFRV+sjsEW+QzqbljuEtnBSQDoEIujqbMwvFiNOCU0X6JYouqdhTx8evbmHGZQMQUrJmaRlCwIm/6kNNpY8l84uQQhg1zxDhkD16omFCNmbyIGLj3Xgbfei6ZOzkwWT2SKO8uJopZ4xp9nprmk5laQ0pGYk4nO1bv1lcXGw7dTgQCFBbW2srhdjj8SCEsFXNs8fjsY2jP9iPEO/evZuEhATbXC9E0fa48sorGT58OL/97W+58MILufDCC9ttrSghjiIKE926dbMdIdZ1Hb/fj8vVti1G2guW4mqXOjG7KcRgEGI7pf6DoXJmZWVRUFBwWAlxnyE5/P2j3/Ltxyvokp3CtEsmRhzXdZ1Hfz2LBo8XJHzxxo8cedxQJpwyImLcFXecTky8i+3r8nH4klDSGti8fhvfzVtMQ52PuS+sRZPh+mpkn2MCgaAq7EqMxecN3beMtlBVo9xAYPb7tYh183piaR1TjFvVXi8Dj0gDPTRmnwq1qhhKvW7l3oUIfGjzTYKqIDUjzvLCeua8tpXpl/QHJF2y4khIdvHRi5uM6V0OpNeP0GXEmk/e/R7PP/Qx1949g6c+vY35H/1EUloCiz5bxef//QEpYcnX6/j7h7cyeIzReqWiuJr/O+9pCneWkdolkYffuJFeg9pHCQ0EApSUlLRo5tKZUVNTg9vtthX5sdRWO2zuWqirqyM3N7ejw2g17FbzvGfPHjIzMzs6jENH1FTroPHGG2/w29/+9rCsFa0hjiIKE926daOsrAxd1/c/uBPAqgWyU9q03QhmYmIiXq/XVq9xuLGWnZCbm0t+fv5hj3vAEblcc8+ZnHnVlGYp0QG/FiTDFqormr9/nS4Hl952Gg+8ci1nXXoiw4YNY9PW9ei6ztzn16L5m36mSGLinAax1fQQ8QW6ZiUxbGxv43HrZhFohxpJZs259n3tY9QoV1X6SEl1t/yF31JatiqQalh9c9NxGOozLkewJrlsTx1zXt3M0cfn0KNfEh/P2ozPG/a8XQ6j73G4Ei6hwePjybveQygKl9x2GmdccSzrl+1E1426ZoFg3dIdwWnefGouxbsNM8Hqijpe/PPsfT77Q0VBQQFxcXG2UlohVD9sJ3JppUHaBVJKPB6PrVK87aYQ79mzx1Zp/1G0PXr16kVpaelhWStKiKOIwkR2djY+n4+yspbr3Toj7FZHbDdC7HQ6iY+Pp7q6uqNDaTUsYy07xQxG2nRsbGyncnp3uZ2cPDPUAzO1SyLjTx7+s+f4/X52796N0+EmrVsC2QNSQAiDA1rCrSLoMyQnRIQVszZYVSgtqCQ2zonqCP96NkmvECG1weoTHMxubkqUCXp21VT7UFRBQpLLUImbkuAISOPKQBgX/YTfrPXN86Tlbq0oCHRGHJ1JQ60fVREMGN6khl0IcDsNF+oW1v3u85B/Q9+hOSjmOCkl/YZ3Dx4zNiiMIHQpqa9rv8+/vLw8evbsaStiCVBZWWkrcgn2I8QNDQ1IKW1VW97Y2Ggrh+nCwsJfBiGWHXT7BeDCCy/k888/p7Kyst3XihLiKKIwYRmn7K8JeGdCXFwc9fX1HR1Gq2E312awX02uEIIuXboctl3VtoIQgp49e3a6v7/f/OV87nnxan7zl5k889UdpGTsuwWX3+/nxx9/xOl0cvKpJyJrYzjpquEMnZSDQ1U49tSRuNwOdF2yccUuHLFu0rOSUSzlF/B5AyybvxHNHwir2w1rvxTuwGzV+u7Lud0kybqEmiofqWmuiBre4LnBuzLocC1bMOsK1gFb5NskxO5YldMvH0xGVhzvP7eBOa9sZuyUbEYc1aXFlOxmkJJX//YZX7+/DIC7nr2CMVMGMXBUL377twsYNXFgcOiMy49FNeuGFUVw7g0nGK+9L8Bz973PjSc+ytN3vk1jg6/l16SVqKmpoaamhh49ehzSPIcbUkpKS0vp0qVLR4dyQLCbK3ZdXR1xcXGH1QTwUFFfX28rAl9cXPzLIMRRHDTuvPNOxo4dy9SpU/nkk08oKSlpt7WiNcRRRBGGzMxM9uzZw7hx4zo6lFYhISHBVgQzISGB+vp6NE1DVdvXDKetkJKSYqt+z2C8j7du3crgwYM7OpQDQo8ePdi4cWOnUosURWlWM9wSwsnwuHHjmPvWEma/sBRnjOSkq4aRnh3Pog9Xo5kkVuqSgK5x9b1n8ebTX7Fne0kLvDbMTdrirUGVWAYJaYtmXGGQGHXEKWlu9uR50HVLBbbqg62lwuZRBLhVpFczHg0PThAk5qkZMZw2sw8VJY188NZmAg1+Gur8zHllM9OvGAgS1iwuCdVEB5+DNBy+Nd1sGwWv/2MuR4zvzx0XPUtJfiVxCTF89e5SfvxyHRf99hT6DevOwFE9eWH+XWxetZteg7qR298wvHrzybnMfnkhUkryNhfhcju57v6z9/t72xd27txJdnY2TqfzoOfoCFRWViKltJXLfGNjI42NjZ3mb741sFuLKCml7WIuLS1l1KiO6z/eVgi2QjrMa/4SYKX4Syk544wz9jlOCHHI5VZRQhxFFGHo1q0be/bs6egwWo34+HjbGYGpqorH4yEpKamjw2kVUlJS2L59e0eHcUDIzMxkxYoVtlMEXC4X3bt3Z8eOHba6EGpKhjeuyOPpu981DkrJB48v5+SrhzPthhF885+NeKq9wXOf/9NH3PjnX/HoTf9B05rXGhsOzzLUPzicVJpDWnP1U1XpM1ovtcSdm3ZZgmCfYulSUAMGG5e6NJY1Y+g7MImp03uydmkpS+cVmgKzQXbLCj0hUoxJinUJujTSpqWZBh7QgstXVdTyt9vfpKzISPevr2tk3U+7UHSdNT9u5T+L7yc+KZbMHulk9oh0992xviDY41zXJdvWHPznuN/vZ8+ePUycOHH/gzsZiouLyczMtJVyWV1dTXx8vK02H+xGLr1eL5qm2cqxuaysLKoQ/49j0qRJh61kJUqIo4giDDk5OZ2qhnF/SEhIYNeuXR0dRqshhAjWEduFECcnJ9PY2IjX67VN/ZXT6SQ9PZ3i4mL69OnT0eEcEPr06cO3337LkCFDbPF6W2S4sc5H4fYG4vTtFOSFbVIJQV2Vj9lPrODYCwZy3p1H8sOH29i8pBh0SWVpDf/4vzdJTI2nqrw2dJpi1dDy8wqwDHOCts61DgHSrAXeW+2lT78kdJcCft0wuApTl61Zgv9bfEooaAEN1XKXluCOdXDsiTnk9k1k/ie72bGxKhSLxKhTBsryPcx5eTPTrxwIUrJ2UbFRd6xAsGLLoSA9XgQSb4OfNT9uQ6jh5F+gC0F9vY8f5q7lxHNbzt4ZPXkQS75eF+xfPPoQehfn5eWRnJxsqxReC8XFxQwcOHD/AzsR7JYuDUbLJTu146qr+3/2zju+rrr84+/vuSt7p9nNapLOtKXphg7KUkAEAdkiKCpDAfWniAIqIiiiICiKDEVAEASVWQvde6+kadKMZjR773vv+f7+OPfe3KQpzb455bxfr9sm957x3HNHzuc8z/N52vD399dNZRZAXV2dMYP4M866devGbV+GIDYw8CI+Pl5XI2vcJdOqquomIzDSPmJVVfnrY++y9u1dxKdGc+8T1zMpYezKA93GWk1NTboaAREbG6tLQRwSEkJERAQlJSUT/sTeLYZbGzv543c+0JyRVcnXH7wci9WM06kipSRuciQ3f/9i3n91C4W7c1l+bRZps6PZ8NoR2lvttLd0AS5zKJf7llS93Zi1MUfCPVZpsAG6Ba8iaGi2My/chmoSgNIrod3bE3hcoD0a25XtlVYF2aOCSSE1NYiVn0ukuqKDfzybR0dbvzI1t0GYKxtcW9HOf58/wqW3agL1wOaqfgJfgJ8N2d3t6lGWKELgRLpKs1XP8s8/9t9TCuJLbz4Hs8XEwW2FTJ2bwqVfPWewR6kPUkqKi4uZPn36sNb3Je3t7boaa+emqalJV/N8QX8ZYr3Fq6qqIYgNqK+vRwgxLi0g+jiDNjAYJxITE3UliN3lsJ2dnT6OZPAEBwfT0tIy7PU/fnMnbzyzhtrKJg5uO8Zjd/5tFKMbGL0Za4EmiOvq6rDb7b4OZcikp6dTVFQ0oWP3LpPe9uYxnA5VE7HA7nV5PP7mXXzu2sVcc+f5PPWfe7F3O9i38SjHD9fz+iM76Grr4ZqfLGT+51Ow+nllbU4qidbEMK4yY+8RTa4FTr6/3zacAppa7ISEWFBMCtKsuByivXqI3RljRfQ9MxCAWSEqzp/Lrk5l1SVJbF5Tyfv/LO4Vw+75yB5xrTlm4yqvdovinFUJZC+K7s0ku28CsPaWy6pOJ3f+/ArCI4P6iOeO1t5S8/4IIfj8DUv5wdNf4bJblw/7AmF5ebl2EUOHJ+JVVVVERUXpqvQY9JchdjgcdHR06Epgtre366pcurq6mu7ubqNk+jPKv//9b6ZMmcKkSZOIjo4mMzOT//znP2O6T0MQGxh4kZGRoaseYiEEgYGBuhplFBoaOqKRQGWF1Z6RLKpTpaywarRCOyXh4eHjYvs/mgQGBhIUFKQ7t2nQeqCDgoIoKio6/cI+oH/PcFRsOIpJE26KSTApIYLM7Mnc+fCV3HTv5wgM8aehtsXTC9XT4WDj6wWkT55GXHoY1/1kEdkrEvuOWvIedeR9w1US7VTx2EN7hG1v+bP7f+kSp60dThwOSUiEFamI3nJq14gld8rYs47r97AwK5+/KIErr0mjpqaTvz5/lCOHGvvsp3+M0h2/0htvXUU77z6XS875k8leHNO7trskXFE0USwEUlWx+Vn4wlf69vDOPTtzwNejq6Obje/uZecnuSOaI+90Ojly5AhTp07VTcWNN1VVVboq4wXtYq7eDLWam5ux2Wz4+/v7OpRBo7cM8YEDB4iOjtZNa9WnYoxdGhLbtm3jS1/6EkVFRUipzaMvLCzkS1/6Etu2bRuz/ervG9/AYAzJzMzk+PHjOJ1OX4cyaPQ22zcsLIzW1tZhOwIuWDUDqUqPKF76udmjGd6AREZGUl9fP6KTbV/gLpvWG0IIpk+fTmFhId3dp84K+oL+YthkMnHzfZcyfX4aZouJ6fPTuPmHl5y0XnxyFBZrb5fS529YwtxF01l1/kq66iwsviSTm36+hJzPpRAQ7NXNJFWCwk4+8Raq6zuqn1j2iGjQ/sIrWhmwFJLG5h7Cw23afQqoJqHdXOu5BbJUICEhkEs+l8AN16TS3e3kxVeOsWVTDd09KtKqDNzXPIDjtfdvteXtvPuXXHLOTSR74aS+I6TccVstoCikz0jgmjvP5/afXUHm7CTO+1IOP/nTzSftsquzh7svfYJHvvkiD9z0LL+6a/gVIyUlJZhMJt2NWgLtfVlfX687QVxXV0dYWJiustp6y2iD/gRxbm4uGRkZvg7DwAc88cQTqKrKAw88QHV1NVVVVfz4xz/G6XTyxBNPjNl+jR5iAwMv0tLS6OnpoaioSDdfxnoTxH5+fthsNlpaWobVFzJzYTqPvn4nmz/YT2xyJJd+ZdkYRNkXd/aiubmZ8PDwMd/faBEbG8u2bdt01WPuJjIyksjISI4ePcqsWbN8HQ4wsBgGCI0I4tdvfueU663/zx4evfOvLtNowbXfuZAb7rkIgMzsyWRmT0ZKyc5N+6lKaub6BxdxPK+Bgl3VlB1pZNrcFHZuyO8Vm+oArtPeQrhfesAkwaEIlyC2IksAi4JwZ3MVUB2SsDArU9KCmZkVgr+fmUO5TazbXE1ruxOkRFFASAFmBafdoRltnWIckzumPpZfolcUX/L16YRFBtHTbmXbJ3muqU+uJS0W8g+WExoRxIb/7uXo3uMc3VNKU00LD73wdUzm3hLz/ZuPUprf2+ay/t97uO2By4mIGVrG0W63c/ToUebOnTturqajSXV1NcHBwbpylQetRzAqKsrXYQyJiTQWbjCoqkp7e7uuBHF+fj5Tpw7fGM9Av2zdupVzzjmHhx56yHPfz372M9avX8+WLVvGbL/6OkMyMBhjbDYbSUlJHDx40NehDBq9CWIhBKGhoSPqyc1eksG3fn4ll39tJWbL2LtmCiGIiorS3Tzi8PBwFEWhoaHB16EMi+nTp1NSUkJHR4evQzmlGB4M/3lxQx+NWl5Qjb3HySu//ZCHv/EiH72ulYEtOGcOjcWSfzyyg/rKduZ/PoWbf7GE2CwTMxbFEBJu00ql+4hfXOXTXrgrGbxKrCXQ0GInPMyCtChIk8BkESQkBrBs8SS+cl0aN12dwuT4ALbtbeDPrxWxcVctre4+YSFQrabeHmGbSTPicofhyVTTt5/ZJJAmoS3nuqu2vJ13/3SYKXPD6eisJzDI5SYu8az3/us7uOeKJzm0o8jT27xr3REeu+tvlBVWa8fxWDX5+473eeqKScHmbx30a+Pm2LFjBAUF6co4zxs9lkuDliHWmyDWW4bY7TGipxLvoqKiCW+qOFjcc4jH+6ZXampqWLRo0Un3L1y4kNra2jHbr5EhNjDoR2ZmJrm5uVxxxRW+DmVQjNS12Rfo0aQqMjKSuro6pkyZ4utQBo0QgpiYGI/Zjt4ICQkhPj6eI0eOcNZZZ/ksjpGIYYDQyCAUk4LqVBFCEBIRyHM/f5v3/r4FpGTzB/uxWM2ce3kO3/vNddzzpafY9UEJuz4oIT49kqiUQNKzI1lyaQoOu0pDVQc1ZW3UnujQXKrbHbR3OLF3OTVR6s7SSm1usL+/mdBoG2azIDE2gIvOiSEm0o/IMCud3U6Ky9vZuLuOsvJ2ehy4UrpaD7Bwep1ZKQLVBCan9rgU2ntMOmWf0mhxUuZYaMJYVREqrjnFHbz758NcctsMkMc56OU+LYQgMMhGQUVjX+GvwMb397NrbR63P3wlv/veazidKsKkIJ0qJpPC7b+4isCQoZ34d3d3U1hYyOLFi3WZHVZVlerqapYsWeLrUIZEZ2cn7e3t4+IgO1o4HA5aW1t1JYjb2toIDAzUVZVQaWkpmZkDewYYjB3l5eU88MADfPjhh9TX1xMXF8cXv/hFHnzwwUFXx/36179m7dq15ObmUldXh6IoJCcnc/7553PvvfeSmJj4qevb7fYBDeACAwOH3Wo3GAxBbGDQj6lTp5Kfn+/rMAZNUFAQnZ2dOBwOzGZ9fKTDwsJ05eYNEBUVRX5+vu7Kj2NjYzl8+DAzZszQ5cn+tGnT+Pjjj5kyZYpPDFaGKobz9pTw7l83svUjrcrkqz+8lK//5IscL6iioqiWtGnxXH/PRXz3iic9rtSKSWH/lgLOvTyHwBB/nnnvuxTlVdJU18pDX3+RyqJGDqyrRDELJiUFEx7jT1RiEDMWxhAYYiEg2IrZomC3qzjtKqpLjH71tqlYrAqKIujsctLV4yQ40Exru4PC0jpONHTT2unqRZYSYZcoipdTNBJVCI/YFQBmk5aBNptRhYqpxwkmwKF6Gbr0M/tyY1KQUkWgCeba8jYvUaxycHO1x1QrZ2kGBzblo3qJe4QAp0pnezf//OPHfXr656+awY+e/Sp+w8gO5+fnEx0drbvRP27q6+sxmUy6Emmgz/7hlpYWbDYbfn5+vg5l0Oitf9jpdHL8+PEzSxDrIGN77NgxlixZQk1NDZdddhlTp05lx44dPPnkk3z44Yds3rx5UN+Rf/rTnwgKCmL58uXExMRgt9vZu3cvv/3tb3n++edZt24dc+fOHYdnNDT0cfZsYDCOZGVl8Y9//MPXYQwam82G2Wymvb1dN31N3sZaehHxoaGhCCF010ccHR1Nd3c3TU1NuorbTUBAACkpKeTm5rJw4cJxFfVDFcObP9jPw994oc/Jzx9+8iZ/Xvsjnlt3P91ddo9g8wuwekSe6lRJmtJbqmuxmsmaPZmmulbMFhMOhxMhVaRTUFXcTFVpK+yoQSqKlnm1mLH6mQgItmBSBBY/hStumcq/3y6lvc1BR4eDLquCJcTMt6+fwo7cRrq7nGBWtMYpl9OzNNE7kxi0PmWpIpz0Cl3vzK9Jwak4MalCeyou8Sq9DL5EnxFRmuO1dHqJ4rJW3n32AJd8U+sTP7i+AqTkLw+/AxZLn3nIOJ2aIEfQ0tzluV8ICIkIHJYYbm9vp7S0lOXLlw953YlCeXk5cXFxurvgpddyafffAr2gN0FcVFREd3c36enpvg7lM8Xtt99OTU0NTz31FHfddZfn/nvvvZff/va33H///Tz77LOn3c6hQ4cGvGD03HPPcdttt3H//ffz/vvvf+o2XnrpJdatW9fnvpKSEgDOPffck5YXQvDxxx+fNrZPQz9pDgODcSIzM5PS0lJfhzFohBCEhISMaJTReOPn54fVah3RPOLxRgjhcZvWE2azmcTERF29p/uTlZVFU1MTFRUV47bP4ZRJv//KlgEzAQ012sglt2CTUnLcbQQlJUit3Lc/YVHBXHPnedgCbJj9LL29tnBS9rWnW6Wprpv66k7qqrSewYb6blrb7DhViWJX6XSotHc5CA+3IS3a/qRAE8KK9j/glSEGaXKXP0vNFMze7wm6qyUsijbCyb2uovQKWU/GWPvPFmDjh09cyy9e+hqzF0/Reor/eICcC5OZtTyhd33v5+m5T+tVbm7swD9EM5CalBDBjd/9/MkH/jRIKdm7dy+TJ0/W7XgXu91ORUUFycnJvg5lyOjRUEtv/cOgZbX19P4+ePAgSUlJ2Gy20y+sB3QwdunYsWOsXr2alJQU7rjjjj6P/fSnPyUwMJCXX355UO15p6qeuPrqqwEoKCg47TZKSkpYt25dn1tJSQlSypPud99Gij5SMwYG40hmZiaVlZV0dXXppixqpLN9xxshhKePWE/9Y1FRUdTU1OiqjxggOTmZTZs2MXPmTN1k5L2xWq1kZ2ezb98+oqKixvxzOdye4chJISgmgerVdxufEkXW3JPFis3PgqO1S/tFCN54Zg1R8eG8+Ni7OB1Ovvp/l5A+M5FXn16jlQ1Lib3b4XKYxpVdhj7XtV0Z516p3BuHUAQoQjPWCrFwoqEbqapallnpLXGWTkmfGmkhcFoEph6J6HEizQJVBUV1PW7ReqMVV/bXLZzdsXhcpqV0qW/o7uwhd18pR/aWUnCwHGE2UXuii3efPcQl35wJwMH1lX2eU/8ybCFg0QWzuOb2VUTHhw0rO1xcXExnZ+eABi56oaKigqCgIN2JtI6ODjo6OnT1/Q+aII6Li/N1GINGSqk7V+zc3Nwzq1xaB6xduxaACy644KSWsODgYJYuXcrq1avZtm0bq1atGtY+/vvf/wKQnZ09qFjGG/2dGRkYjDFJSUmYTCZyc3N9auQzFMLCwnSXARyp07QvmDRpErm5uboq9Qbt/REUFKTbTBJAfHw8lZWV7N+/nwULFoxZyeJIDLRu/sEllBw5QcHBMqLjw7no2kVc+pVzThJrQgjueOQqfvXtv3uEXlNdK4/e+VdtZrCEX93zd77+wOW9PbTeI5W8n7uqojXx4iUcvbKquMuYtVtDq52IUKvm+iwEKLK3xNkkcQowuccxuXdjAkwC1c/kEbnSqWKyu0SvnxnZ6UAoXgZbnlnIihaj6rU94D9/39rXHVsIaivaeffPuVxy23RAcHBDRb9MuPbcFEWgqpKq0jpuO/9X2Pws/PD3N7Bo1YxBvU6glUq7y/D19FnuT0lJCSkpKb4OY8hUV1cTGRmpq/5hPRpqtba2Apqo0QtHjx41Ri6NM27fnFNdiMjIyGD16tUcPXp00IL4L3/5C+Xl5bS1tXHw4EHWrFlDcnIyjz766Keu56v2Ff3+FTAwGCMURSE9PZ1Dhw7pShAfOHAAKaVuepsiIiI4dOiQr8MYEsHBwfj7+1NbW6urLAFoWeKSkhLdCmKAWbNmsXbtWsrLy0lKShr17Y/UTToiJpSn3v8eTufAJdDeZM1N1X7w+ryqXjN8pSr57/PrNBdn1Vs4ev/oKmv2zp56f/779O9q6za09hAbYdMSy8LV7+vp0wVpBWmXYHL3AQOKwIHE7L1pRaAitfy0EKgWBZNdBbMAu9qbnPYIYzwC+JTfUEJoPcUeUQwHN1SCqmIyC2YvziRzTjKOHidCCP75Jy2T0N1t5/HvvsY/9/58UN9/7lLppKQkoqOjT7v8RKWpqYm2tjYSEhJ8HcqQ0eOYqMbGRvz8/HRTOQb67HkuKSnxlNeeCfhiDJJ7f/3b0mw224Cl6O4Kw1NVErjvH0oS4y9/+Qvbt2/3/D5//nxeffXVCVthZ/QQGxgMQFZWFnl5eb4OY9C4DTPcV4P1QGRkJO3t7Z4ZiXohLi6OqqoqX4cxZBITE2ltbdVVaX1/bDYb2dnZHDx4kK6urlHd9kjFsDenE8MA0fFhBIV6jQcSMCnBZXrm6rutOl7PrHmTe/twVamZSinCq6xZgN3Zr1f35JNft6N1fZud8GCrJ2PsNtBy/y5NXgODXXFpY5O8tut6WDV57cf9sxCayHbF450tFqraK4ZVrTRbKAKLxdQnds1o6xA5F05m1jlxgMTpUNmz8Sj+/lZu/eElRMeFeT056Grv6XNB4dMoKiqis7OTGTMGn1GeiJSWlpKQkKCrLCton7W6ujrdzXx2m4DpSVzqrVwajJFLo0lSUhKhoaGe2y9/+ctx2/e2bduQUlJXV8fq1asBmDdvHh999NG4xTAUDEFsYDAAWVlZg2r8nygoiqI7Yy2LxUJYWBh1dXW+DmVIuOf6yv7ZtwmOxWIhISGB4uJiX4fiobWpg5Ijldh7Bj9bMD4+nkmTJrF///5Rew1GUwwPFovVzO/f/z5LPpdN9uIpPPb6XTz133sJCvHXBKeqVXtERAXxhRuXkJQarfXoejKuAmFy9eiaTV59uv2OibehlVPS0NpDRHCve7NEE8EeUWxyLey9HSk1Ed5nuyBMAqf7caHgdMfn1sZSukq60bLDThUcDnC4Bby2nV/9/Rt9t+0Wxc/sJ+cil9GWi/1bte/lcz6fTcSkXqOgy29dNqgLEW1tbeTl5TF37lxdl0rb7XbKysp0WS5dW1tLQECArpyPQb+u2Hoq8e7u7qaiouLMEsQ+NNUqKyujubnZc7vvvvsGDNF90eRU55Du+4fzXoqMjOT8889n9erV+Pv7c+ONN07IRIghiA0MBkBvTtOAx6RKT0RFRenOtTkiIgIpJY2Njb4OZcikpaVRXl5OT0+Pr0Nhz4Yj3JDzE7513qN889xHaKobfHVDdnY2jY2NlJeXjzgOX4hhN7GTI/nJn2/lsTfuYnJmLH/48Zv4+Vk8YtRkVlj/7n7+89JGyo5V911ZukqsFVwZY69yaW8x687OOiXCCU3tdiwmQbC/yaV7XWdP7u0o4DQLl7G07HV3NgtU8GpPFr2ZY/edFgWnO5MNoEpMimDl52Yh3P3C0mt94NzL5vLhG71ldR4URZtT/Ide92khBJnZkwHNgfuPH3yX7z9xHY+8/A1u+cHFpz3eUkr27dvH5MmTdSds+nP8+HFCQkJ0OUpNj+XSDoeDxsZGXb1v3IZaehLEubm5mEymMWmJ+SwSEhLS53Yq5+6srCxA698eCHeCaCQXKsLCwli8eDG1tbUcPnx42NsZKwxBbGAwAFOnTqWoqAjVu3dvgqNXQay3DLGiKJ4ssd4IDQ2dMAZsf3rwLezddgCqyur59wvrB72u1Wplzpw57N+/f0RVEWMthqWUOB3OQS37+N1/Z9P7+6k70QTA529YQvaSDLyacUEO8H3UvzwZtHm97nXcP6nanGCnCk3tDiKCbZ6+4T4l1kKgWrz6ir3vt/bPEmuZY9VrGazmXnFuUnB2O1j3733EJkej+FsRNgsLz5vBzfdeyF0/vZwrv7acj97YcXJG2pV1rqvsYN2rx8i5MIWlX8zg89f1OkKHhAcyIyeFkLCAQZVL5+bm0t3dzfTp00+77ERGSklRURFpaWm+DmXISCmprq7WnSB29w8HBAT4OpRB426h0lMmfu/evUyZMmVcL0wawMqVKwFYvXr1See9ra2tbN68mYCAgBE78rtHJ07E6hxDEBsYDMDs2bNpamri2LFjvg5l0LhHL+mplDciIkKXfcSxsbG6FMSgZYmLi4t9frHHYXd6aSCBwz444egmNjaWzMxMtm/fTnd395D3P9Zi+PDOIq6bcz+XpNzNr+7862mFccGB46iuLKpiUvALsBEVF97brygA90lE/35hr+ywQMsGe35xIUwCxaV/G1rthAdbkN6O1e4eYgG45hKfhMm1AWQfI68+yyrg9O5vtpiQQFV5A6pTc9DeviGfTe/v4/f3vc73r3qqt6y6//MyKUig+FAN7/7xABnzo3jtz//17OqV333IzWf/nDsvfpwffPlperrspzy+x48fp7S0VPeu0qBlWFVVJT4+3tehDJmGhgYA3Y1bqqurIzIyUnf9wyEhISeN0ZnI7Ny5k3nz5vk6jFHFbao13rehkJ6ezgUXXEBJSQnPPPNMn8cefPBB2tvbufHGGwkMDPTcf+TIEY4cOdJn2ePHj1Nd3a+aycWf/vQndu7cSVJSErNmzRpagOOAfj4lBgbjSGBgIBkZGWzevNnXoQya4OBgpJS0tbX5OpRBo9c+4kmTJtHW1qarY+0mLi4OIQQnTpzwaRxf+cElKC4jppDwQC656ewhbyMjI4OIiAh27tw5JIE/HmXSv7rzJZrr20DC2rd38fFbOwdcrjivklvO+TktTR0gBEIIVKfK9PlpFB4q88p8eglfz831kFtIegTlySftKnjGKzW0ufqIceth6XVxQmoCt3/PsGthVfGshHvesFBcY5rcJdb+FqRF0USzovTtfXatV3BEu6DU3tKlzUim3xmc94U9RVBb3s67T+8nbmoQx44d492XN/P3J1d7tnt4VzFbVh8c8Bg3NDRw4MABcnJydJUtOxVFRUWkpqbqSui4qaqqIiYmRlfCEoz+4fHi4MGDzJ8/39dhfCb5wx/+wKRJk/j2t7/NF7/4Re677z7OPfdcfvvb35KZmckvfvGLPstPmzaNadOm9blvz549JCYmsmzZMm655Rbuu+8+brvtNrKzs/nmN79JUFAQL7/88oSsANDft6mBwTiRk5PDzp0Dn8RORBRF0eVsXz2WTVssFiZNmuQp/9ETQghSU1MpKiryaRzLLj2Lv2z4CY+8dgfPrb+fmKTIIW9DCMGcOXNwOByesWOnY7x6hpvr2jzxCEXQVNsy4HKP3/MK1WUNHj0YkxTBxTcupe5EE8cOu95fwlUurfYXvi7cP0uJdDhPzu4KoRlnuQRsQ5udyGCLR1RLiWcMkya8QVUE6gBJbSm894eXju29Tyiu7K5ZcWWchXYsvG+KAjYrUkoiJwVz0ZXzmZWTyqT4sJONwVzUlrVSndtNfn4+m9ft6PP8tKd/8nqdnZ3s2LGDadOmMWnSpAG3qydaWlpoaGjQ5fg0KSUVFRW6y2zrsX8Y9CeIVVUlLy/vjMsQ+9JUayikp6eza9cubr75ZrZv385vfvMbjh07xne+8x22bdtGZOTp/0afddZZfOc736G7u5v33nuPxx9/nNdeew0hBN/97nfJzc0d0pzhtLQ0nnrqqU9d5plnnhmV9hF91w0ZGIwh8+fP58033/R1GEPCLYj1ZEgRFRXFwYMDZ3YmMklJSRw5coTMzEzdZTuSk5M5evQoNTU1PhUJcclRxCWP7CTTbDazcOFC1q9fT0hIyKf+YRxPA61Lbl7GW89+DIB/gI1zLh14pnlDTXOf/teq4/W897dN+HuPZHJnXnt6wGrBnQH25FXdglAIsFnAz+tPu8tJGo+QFdS39jB/SqhXhtkrIJcoVk0Sxey1b1cc0qog7c5e/Szdy+BKQ0uQWizC7MoSqyAUwCn7ZopdGc4vfOUcZi2cwr1fetLz3HpLuQUBgTYmp0UxbW4yfoE2OqutzD0vCadT5eB67aJBTFIESy7sW4bndDrZvn07MTExuuy3HYj8/HwmT558SnOciUx9fT1Op1N3Fyb02D/sNtTS08ilY8eO0dTUxJw5c3wdymeWpKQkXnzxxUEtO9AFyMmTJ/P444+PWjwlJSWnTfI0NTWNii+KIYgNDE7BvHnzePjhh30dxpAICwvj+PHjvg5jSERERNDR0UFnZyf+/v6nX2GCEBMTw969e3Xn4glahnvKlCnk5eURHR2tO0HfH39/fxYsWMCWLVsIDg4mOjr6pGXG20361h9fxowFadRWNrLw/FnEJA7cMzlnaSbr/r1H+8VjJiXobOvuKx7RMq82Pws9PQ4Cgvy44MsLeevlLX36gPEePSTcklkiheISrYKGNgdhgRYUASoCHPLkswETSDPQQ69wdmWUnVaB0qV63KQ98lyqWu+aBBSBlAJhUkCV2hxkVUWYTn6vvfDou1j9LK5ZydKlnrXjER4VyI+evon41Gi+cf6v6GjtREpJ1rwEFl+hZUlri7t48p27sflZPduUUrJ3715MJhPZ2dm6f4+DJsyqq6tZtWqVr0MZFuXl5cTHx+uu1FuP/cNuQ63g4GAfRzJ4Nm/eTGZmpq4uPAyKYWZsR7zPzwitra1YrdbTL3gaDEFsYHAK5syZQ319PceOHSM9Pd3X4QyKqKgo9u/fj8Ph0I1xjLuPuKamRldlgGazmfj4eMrLy3UniKHXXKuyspKEhITTrzDBiYiIYNasWezcuZOzzz6bkJDeGbW+GK0khGDxhdmnXc4/0OaqiPY6g/EWta6sbuq0OHrsKidc5lTtzZ3kHyzX+ndVd+Z1ABdoLRjcg4aFKmnpdOCUkrBACw1tdhQFVO9lPU/CZULdP2izwOPQpUptZjJoWtbT8uxaSxFIoSCEBOnQDLTcgsjeO3+6jyGWkB6jrabaVh762vN866dX0Nbc4VnkyK4Krr/7QvyvsJGZlUVIeK/ZC2iZ1Pr6elJiM3nzjx+TmBbDks/pWxjn5uaSlpamqwuHbpxOJ5WVlSN2qfUFtbW1uvrbBFo2Pjw8XFcXH85EQy2DodM/qdPU1DRgosfpdHL8+HHeeuutUakA0s8nxcBgnAkKCmLKlCm6MtYKCAjAZrPpbkZuTEzMKZ0JJzKJiYmUl5frytnbjdlsJisri7y8PJ87To8WycnJpKWlsWXLFo/hmS/nDA+GpPRJHjHs7r3tgxAIAff++lrMVjOqy0FaCDC7xTBo4ldVex2b3Qvh7hEWKEJqk5ukpNHdR6wtCKo4SQw7XSZaJ/X/CrDjKtF2e3up9JprgSaUhcAzDEqq2nNTVU0Id9vB0SuIPetIyeT03pJaKSXtLZ2EegleIQQBQX7Mnj+Vs885m2PHCvtMBCgsLKSoqIiY0CS++4Un+euv3uPh257ntSc/GsxLMiGpqamhubmZjIwMX4cyLKqrq7FYLLqbm9zV1UVTUxMxMTG+DmVI6NEE7MCBA4ahlgEpKSmkpqaSmpoKwJNPPun53fs2ZcoUzj33XI4dO8bXv/71Ee9XHykkAwMfkZOTw44dO7jpppt8HcqgEEJ4TKoGKhudqMTFxVFQUIDT6ZxwguXTcB/j2tpa3fXFgdbvU1hYyPHjx0lJSfF1OKNCVlYWTqeTzZs3s2jRIvbv3z9hxTDApTcvo7K0ji0fHiAlK447Hr6SB7/2POXHagAIjw7mh0/dhMVmJjDYT1tJSlQUcneXEJ8cSWWZdgFMSIm0O8H9NL2TxkKiKgqKWdOdDa12IoIsA/tXuZuOFallgx3e3lma0BX+QLvrPtU7i6z1DHtw9y6bTL0bcThBQGJ6DOXHei+ECUUwfV4K9/3hZr5x/mN0tnchVZgxP5V5y6fytR99gX8++zEBQX7c/diXsVjNhFvDWbx4MVu3btW2IQRHjx5lyZIl/OOJj7XEuOuiwYevbuG6uy8a/IszQZBSkpubS0ZGBhaL5fQrTEDKy8tJTEzUXYa+urqasLAw/Pz8fB3KoJFSUldXp7u++SNHjpyRGeLhjEEajX3qlZtuugkhNCPGv/3tb2RnZw/YV24ymYiMjGTVqlVccMEFI96vIYgNDD6F+fPn8/bbb/s6jCERFRWluz7i4OBgrFYrdXV1uroSL4TwZIn1KIgVRWH69OkcOHCAxMRE3ZTZfxpCCKZPn47D4WDDhg2Eh4dPWDEMYLaYuOPhq7jj4as89/3u7bvZ+P5+TGaF5ZfMpa66mdsufBynU9XEpVl7Lj12B5XHG/oYUAk4SXS4zaNRXC7RQH1rDxFBVs2ReoBqa9fmPOsI7ztVd5+vExBIqfZd3W3E5Y7DYkI6VU2wq1KLTwieeOsuju4vo7yohuK8SsKjg7nyG+cSGOLPU/+5hzVv7SQg2J9LbliCEIIvfX0FX/r6ipPiDA/XRPHmzZuRUrJ06VLCwsIIDPX3VD8oJkF0gr5m37qprKyku7tbdwLHjd1up7q6+qQRLXqgqqqK2NhYX4cxJFpbW3E6nbrKxh87doz6+nrDUMuAl156yfPz3/72Ny6//HIeeOCBMd+vUTJtYPApzJs3j7y8PF+HMSSioqJobGzE0b8ccQIjhCA2NpaqqipfhzJkEhMTqays1NXx9iYuLg5/f3+fj2EaTRwOB01NTdhsNtrb2+ns7PR1SJ9KS2M7z/3sbR6/++8c2n6MwBB/LrpmEedfuQCrn4UXfv2BJoah7xxiy8kXMCSguoWoQ5ubJACpiD7Z4PpWhzaL2CWGpfvmely49wVIpd90JXcVtNu0y22U5XKY7v3Zqy/ZbNJmGLvmGweF+BEcFsi85VNZcdk8LAE2jhfXcXBnMQDxKdHc9N3Pc+VtK/ELOL2jsrtNRAhBY2MjB7YW8M9nP9GEu6IQOzmKe35z3Wm3M9Fwj6KZOnXqhL2oczoqKysJCQnRlcETaD2KtbW1uhPE9fX1RERE6Kp/ePPmzWRkZJwRc8JPQidjlyYiqqqOixgGQxAbGHwqc+fOpb6+nuLiYl+HMmgCAgLw8/OjoaHB16EMCbcg1ls/bmhoKIGBgVRWVvo6lGHhzqgWFBTQ09Pj63BGjLtn2Gq1cu6555KQkMCmTZs8rqsTkQdufJZ3nl/H2rd38sMv/57Soyc8jxUeKmPbx4cHXtE7C4vrPMhmBpsmlKWijT2S4JozLFwZYkFDW48miHFNS1LQZhWb0ISrC9U9q9hTeo1nlJPq2qYApFPtLZ2W0pN0Ft5mYWazth0hUMwmnE5NsP/s9r/y/j+2sXXNYX76rZc4sm9oFS4FBQUcOXKEpUuXsnTpUvLz81nz7iYcPdr2FZNC9uIMEtP0V8VRWlqKEEJXo/T6U1paqsv4a2trsdlsuhPybldsPbFjxw5ycnJ8HYbBZxj918cZGIwhwcHBpKens3nzZk+D/0RHCEFkZCT19fW6KuONiorC4XDoboyREILk5GRKSkqYPHmyr8MZFtHR0YSHh1NQUMCMGTN8Hc6wGchAa8aMGZhMJjZt2sSiRYsmXBlhV2cP+fu8ZyhKDu8oIjkzDoCff+NFnD323lFEoJUsKwKcqqd8GtDu8zblUoTH0Vki+ojahjY7wX5mLGZBt5QegyxNZEutGtqzHW0dnPRmiE2ATQGH01UhrTlY4/oZZ78LW555xgJpUmhu7OBfL2zkS7cuI29PSW/2WsDezUdpaWglNimSyRmnzs5JKTly5AglJSUsWbLE872xePFiOtrWMqs8kQNry1zb1VfvKmiVDvn5+WRnZ+sq2+dNc3MzLS0tuhTE7nJpPfU967V/+MCBA1xxxRW+DsNgAtLQ0MALL7zAjh07aGxs9FxI9UYIwccffzyi/RiC2MDgNLiNtW644QZfhzJo9NhHrCgKkyZNoqqqSleCGLRh9rm5uTQ3NxMaGurrcIbF9OnT2bRpk27HupzKTVoIwbRp07BYLGzevJk5c+aQmJjo42h7sflZiJ0cSU1FI6qrLDp1WjyglYvVnWjSBLDJKxssVUwmM8kZMcSnT2LjmlwGdsfqRQqpZXtdTtCddpWObicRIRYqW3p6+4hds4pVpFZC5h5ljJZJVrxnEiNxABahPSAdqlfZmXdttfRkjbGYNG0sJa1NHSiKwpQZCRzLq9QctCW89vvV2Dt6AMk9v76WC7588qgeh8PBnj17aG5uZsmSJeTtKKOlMZ+F580gPCKclPhM1IskUkqOH2ziym+eO/gXZYJQVFREQEAAcXFxvg5l2JSUlJCQkKA7MzApJVVVVbozedJj/zBAXl6e7o71oDHmEA+bI0eOsGLFCmpraz+1enA0Llrp85KjgcE4Mn/+fA4cOODrMIaEHvuIAd32EVssFhISEigpKfF1KMMmLCyM2NhY8vPzfR3KkBnMaKUpU6Ywf/589u/fT25u7oQpzRdC8PDfv8VZy7KYkp3E9353A9PmadUoiqJw9ufnuJb06iE2mXA6JcX5VWxac7hXDDsl0qkOeC4kJC6DrF6HrPo2OxFBVm2bSm8PsVY+jVdDsWvusPc5hxBaEtlP8eprprd32D0CSkqElL2rmhSPuL/o6gUAPPjszSz7/GyS0ieBlNjtKlgtIBT+9vj7Jz2Xjo4ONm7cSE9PD8uWLeNvj37ET2/9C7/93mvcfsGvaKpvI+fsmSxesphzrprKg6/cQEKqflz3AXp6eigoKGD69Om6ylB6Y7fbKS8v16WDfVNTE06nU3elx3V1dbrrHy4uLqa+vp65c+f6OhSDCcb3vvc9ampq+MEPfkBRURF2ux1VVU+6DZQ1Hir6+cQYGPiIBQsWcODAAV3NatVrH3FMTAwtLS0T3gRpIFJTUykrK8Nut/s6lGEzdepUysrKaGpq8nUog2Yoc4ZjYmJYtmwZlZWV7Nixw6evVWtTBz+56VmumPZ//PGBt/i/p27i9+9/n1VXLuiz3PeeuI47fn4l195xPklpLlHnEsBSSlRV9vpYgSY4BxBQokcinS7Rq2i3hvYeooI0Yy1vISwVUF2H0ZMglrJ3nJP7d7M2I9nzuFC0bLZTukaNSMJDBhhXY1aQwIu/+ZBP3tlNcFgAP3jiOlfS2VVa7XLTNln6vp719fWsX7+eiIgIlixZgsDE+69u8TzeUNPCttUHAUhKjufss5dSXFLUZ06xHsjLyyMiIkJ3s2S9KS8vJzAwUHcVP6CVS8fExOhKWIL2+dDbe+bjjz8mKyvrzDTUonfs0njfzgQ2btzIxRdfzCOPPEJKSsqYGgvq65NuYOAD5s+fT2dnJ7t27fJ1KIPGu49YT1itViIiIjhx4sTpF55ghIWFERISortSdW+CgoLIyMhg7969urgANBQx7CY4OJhly5bhdDrZuHEj7e3tp11nLHj58ffZs+EInW3d7N2Yz4uPvTvgcharmUtuXMpN935Oy3K6Ta2kRDWbtPm+LpMraTMNKIYloDhdglaRHlFc32YnIlArZe0zfkmAtOARysAA29WyyioCp0l6MsgCgXBnrCVIh1PrdfYE4xK8FhObPjzIr7/3D3781b+gqip+/ieX1abNTKLwYBlN9W2UlpaydetWpk6dyuzZs1EUBbNFwb+fC3VweKDnZ/dIpvz8fN2I4traWsrKysjOzvZ1KMNGSklxcTFpaWm6zHDrcdySu39Yb4J47dq1nHuu/loaDMYeKSXTp08fl30ZgtjA4DTYbDYWLVrEhx9+6OtQhkRUVBR1dXW+DmPIJCQkUFFR4eswhkVaWhrFxcUTphx3OGRmZiKEmPCl08MRw26sViuLFi1i0qRJrF+/ntra2jGMdGCqyuq1nllAVSVVx0/+rNZXN/P43X/n519/nqMHjvPNn1xGaESQJoBNSq+hlvcoJugtbXa6UgWucUcmt8u061bXZicyyOo1RqlvBln1EsRSyr5tyi63aonUXK3dfcaKKw5X31xzU6eWNVZV7X+Jl8GWxsEdRVQU1/GdX1zZmx12cWBLId++5Dc888hf2bltN0XbmjA5envcFUXh/568Eb8AKwDnX72AxRfM7HMc9SSKHQ4H+/btY/r06QQGBp5+hQlKXV0d3d3dJCQk+DqUIdPS0kJ7ezsxMTG+DmVIuPuH9ZaR37FjBytXrvR1GGPHWI9XOtXtDGDevHnjdi5iCGIDg0Fw3nnnsWnTJl+HMSSio6NpbGzU3Sid+Ph4GhsbfZa5Gwnx8fE4HA5qamp8HcqwURSFuXPncuzYsQlbOj0SMexGURRmzpzJjBkz2L59O4cPHx6VPqTBsuKLmoGM4prhu/KLfUeOOJ0q3zzvUT7+1y62fHSQey77LYAmhLUn0HeDLgfnPn2+/YypNQtoPMs0tNmJ9CqZ7mOsJQR2pXdZzbHa1cnsdcIlTV4ZYfdynmWkZyyTuwVa6zEW4FB7ha8QBIX6kzYtge8/fo1HUNtsFvyCBJd/bx5x6WG88cvtfPTyTv7vyqdoa+nkyf97jS/Puo83n13DHz76P97O/xX3Pn7dgGWuehHFhw8fxt/fXzdTDU5FUVERycnJupydXFZWRmxsrO6MwGpqaoiMjNRVmXdFRQXHjh1j+fLlvg7FYALywAMP8P7777Nu3box35fhMm1gMAhWrFjBb37zG1RV1c0fm4CAAIKDg6mpqZlQrrqnw2azERMTQ3l5OVlZWb4OZ0goikJqaiqFhYW6yy54ExoaSkZGBnv27GH58uUT6qR2NMSwN8nJyURERLBnzx7WrVvH3LlziYiIGKVoT825l+cQEhZI7q4ips5LYcG5M9i7KZ8N/95DdEI40xek0dbc20uvOiWfvL2TzvZu1x39UgBygLSAywlaAiYkPd5ZXSFo6LRjNQmCbCaae5y94tf9fwDQ1nez0gLY6RXFJoHsciKl1CZDqa5YFLQUs8tYSzPaQhPyqhOhqkhFAVUlMjqY8Cht1uu5X5zHzPlpVJbWcWj/IfyjJAfWlbH7vWKcDk1VN9e38frvV/PRa1uREvJ2l/DUD/7BL/9x56cec7co3rp1KwDp6emfuvx44y6VXrlypS7LjN20trZSU1Ojy5JvKSUVFRW6jL2qqkp3GfkPPviAqVOnEh2tL9M7g/GhrKyMyy67jAsuuIBrr72WefPmnbIC4qabbhrRvgxBbGAwCNx9xDt37mThwoW+DmfQuF2b9SSIARITEzly5IinfFdPpKamUlBQQENDw7gIq7EiIyODEydOcPToUaZNm+brcIDRF8NugoODOeecczh27BhbtmwhNTWVqVOnjvmFgJyV08hZqR3bvN3F3H/tHxCK1h885+yTLwaFRARj79Gy2EJKpNPZN1Pszsq68S559hq55C6vdkho7nQQEWih2e70rNObFdZ+VqVEcZdkS4kTMMnexVSrCdUkUTodICXSpCCcXhlgb5dpdxbeXVqtCLo6+1ax+AWbaLZXMiktiP88vZtj+1yeAkKgCAgM8ae9pRNFUXA6VVSnSmXx4MreJ6ooPlNKpQEKCwtJTEzU5fi2+vp6nE4nkyZN8nUoQ6Knp4eGhgbdjS765JNPzvj+YV+YXJ0pplo333wzwuWZ8fLLL/Pyyy+fdE4opUQIYQhiA4PxwGq1snjxYj788EPdCeItW7boKrMNmhvwvn37aG5u1l0/lNVqJSUlhYKCAl29V/rjLp3euHEjsbGxPp9rOVZi2I2iKGRkZBATE8PevXvHNVsMsGf9EYTAM4v48I5jLLloFls+1ByTo+LDqK1sICo2lLqqZq1M2e4Eq3ZyIIXQzKu8XJk94he8SqldbtAu6tvtRAaYKW3WEroevLPF3icgQoAie0ufAemvQLsTh5RYXOtI16KeEzPptU13fbZr26tc5eOqqlJYWMjRo0dJnpzMW7/bwrG9lfgFWLnyW6s4uv84ZrOJG777eVoa2vjw1a0oJgXVqbLy8r4l55/GRBTFhw8fJiAgQPel0h0dHZSXl7NixQpfhzIsysvLSUhI0NXfS4Dq6mpCQkJ0dxFix44dPPbYY74Ow2CC8uKLL47bvgxBbGAwSFatWjUufQyjSVhYGCaTifr6el2VJJnNZuLi4igrK9OdIAbtBHvNmjW0tLQQEhLi63CGjbt0eu/evT4tnR5rMexNSEgI55xzDoWFhZ5scVZWFmbz2P65TJkaj+oqg1ZMCilZcfz4T7dQlFvB4/e+SmlBFf989hP8A/0wmwQOu9o79xcAiZAK0qnSp3nY1cMrQTPZkn1P9Ovb7UQFWXuTuf0KMlRAEbLvA+42YXfmV2iCXFhN4HRq2tfVSyxV1zIScLiyw16vn9Vq5mv3XUxzczP79u3D4XAwJ3seG985wPbVhwHo7rTz0Wvb+NuOnwLaaKWgsAAe++dd7Pwkl6QpMay6cv4QjvbEEsVnSqk0wLFjx4iNjSU4ONjXoQwZp9NJRUUFixcv9nUoQ0aPrtjl5eUUFRWxbNkyX4cytvjC5OoMyRB/5StfGbd96esSmIGBD1mxYgW7du3SxTgaN0IIT9m03khMTKSiokJXx9uNv78/SUlJFBQU+DqUEZORkYGiKD5znR5PMexGURQyMzNZtmwZDQ0NrFmzhqKiojF9Ly75XDa3/OgLJE2J4axlWdz/51sQQhAWFUxJ/gmkKlGdkvaWThxddi0b7C2eFAWpCM15WngUa+/jfZyn8dzq2+1EBrqMtbyfngAUgWqWfYW3K9Oreu9bCqRJ9s5AdrtIu0qihaIQYFPAqSKcKnPmpxAQaCMqJoQfP/VlDh48wIYNG4iOjsbREMQ3Vj3B3373P3BdhJBS0tbcAcDfn/iA63Me4KaFD/HJO7v56n2Xcv7VC4eV0ZsIRlt2u529e/cyY8YM3ZdKd3d3U1paSkZGhq9DGRbV1dXYbDafV8MMFVVVqamp0Z0gNvqHDSYSRobYwGCQzJ8/n+7ubl32ER88eJCZM2fqKvvg/iNZV1enu34u0ITkJ598wrRp0wgICPB1OMNGURTOOussNmzYQFxc3LieLI5EDDtdfaXB4QGERQ4vWxUSEsLZZ59NVVUVeXl5HDt2jGnTppGQkDDqnyUhBFfdfh5X3X5en/uDQwPwD7TR1dGjjfNy9wJLiTSbtB5i6RKtlgGOj1eYJrvEYVPwHnvU0GZnfrKrikH2XR5ANWnu0jjxmFS7zboQ2v0CUIWCSUgcCpilopVzgyaqnSo/fvpmmutaiYwJIXthOt3d3eTn51NaeoyEwARWrVqFzWrjh1fc7xlHhaK4TLhUrrhtJbUnmnjldx95Yvvw1a1cdM0isuYkD+eQA77PFOfm5hIYGEhKSsq47ncsKCoqIiIiQpdVPaBlLBMTE3X1dxK0v5Fms5nQ0FBfhzIkjPnDBhMJQxAbGAwSvfYRR0dH093dTWtrq67Kd4UQJCYmUlZWpktBHBgYSFxcHIWFhbp0LPUmJCRk3EunRyKGuzp7uO/LT3NkTwmKSeG7v72ec68YWkmtGyEEcXFxxMbGUlZWRm5uLgUFBUyfPp1JkyaNycmzlBLVqWIym7D6WXjoL1/jqR+9QUNjO53dWhpXWsy9xlRugdq/TE4IrySxwNItUW0qdmvfHuLwAAuK8BqppC3uMsjSflYBU5/xSrgcpV2LmzTzLZNVgQ5HnxgCg/1InjKJyCVTsNvtHDlyhMLCQqKjo1m+fLnne8ne48Dp6Df6ymwGu51taw6Tc+6Mk45VT7fjpPuGiq9E8ZlUKm232ykuLmbBggW+DmVY9PT0UF1dzfTp030dypBxl0vr7T20Y8cOfvWrX/k6jLHHKJkeNGlpaQghWLNmDampqaSlpQ1qPSHEiKt8jJJpA4MhsGrVKt3NIzaZTERHR+u2bPrEiRM4HCM/6fUFGRkZHD9+nK6uLl+HMmIyMjIwmUwcPHhQy1SOISMtk/7krZ0c2VMCaCZVz/zonyOOWQjB5MmTWbVqFZMnT2bPnj1s3ryZ+vr6UT0eW1Yf5Mrs+/nC1P/juV/8Bykl03NSefyfd2H2s/Uu6BbD0FvO7HD2KZOW3qOZpDZ+yWnpu05zhx0JhPmZtROCPk9FaJfNXZnjk5+lJsSFqi0gXa7U7r5iN+3Nndzy+d+w7n/bWLNmDbW1tSxevJiFCxf2uUhnsZr58u2r+u5CSlAUivMq+ORfO1lx2Vmeh2YvyWD6vJQBj+NQGe/y6c7OTnbv3s3MmTN1XyoNUFJSQlBQEJGRkb4OZVhUVlYSEhJCUFCQr0MZElJKo3/Y4IxBVdU+rUmqqmrVUKe5jUY7k5EhNjAYAitWrODXv/617lybY2NjKS0tJTMz09ehDInQ0FACAwOpqKggOXn4ZZG+IjQ0lEmTJpGfn8/s2bN9Hc6IUBSFBQsWsH79ekJCQgZ95XaojEbPsMPudGs1gJOzjiPAZDKRnp7O5MmTKSwsZNu2bQQFBZGWljZid9qebgePfefv9HTZAfjXX9YRHhXEy4+/T0+3AxGkOch6hKlb/LoyxEJR+olW6SWaXRlgRXito5lhNbj6iBs6HQOUTQscSMyKtg2pusaIeA6IQDhdKRCTgB6XEZcrkKAQCzPPjWP63CiOFRZxeHM1pYfqScs6wP/97nqi48L6RHzTvRfxyTt7qC5v6HtwJLQ2dfD9J2/g4huWYrc7yV6Ujsk8etUK45Updjqd7Nixg5iYGF1+r/XHbrdTUFBATk6O7rKUbkpLS5k8ebKvwxgyLS0t9PT0EBUV5etQhsQHH3zAtGnTdBf3cPCeZDee+9QjJSUln/r7WKKfM3oDgwlATk6Op49YT8TExNDU1KS7TKUQgpSUlHH9Uhxtpk2bxvHjx2lra/N1KCPG39+fBQsWkJubS23t4Oa+DoXRMtBaeXkO8Sm9Ri1f+eElo36ibrFYmDZtGhdccAFJSUnk5+ezevVqjhw5Qmdn57C22d3V4xHDbl5+4gNPWbDs6h54Ra95v95GW96zKCVaWfNApdX17T1EBVj7ruPW2oBqps/4JQEude3ebd9tSquJxJQgLvhSCtffMZ2wCD8+/Ech/3z6MLnbT9DR3sOh3SXcdt5j3Hnx4xzYWtgnnu88ciVWP0vvHaqKUASfu24JiqIwc2E6c8/OHFUx7GasM8VSSvbt24eiKGRnZ+tWQHpTUFBAaGiobs2RmpqaaG1tJTEx0dehDJmqqiomTZrkswkAw8XoHzaYaBgZYgODIWC1WlmyZAnvv/++rvqI/fz8CAsLo7q6WncZicTERA4fPkxTU5MuzVqCg4NJTEzkyJEj5OQMflbqRCUiIoJZs2axc+dOli9fPmrlnqPpJh0cFsAzq39A3u5iIiaFkJwZNyoxDoTFYiEtLY3U1FSqq6spKSnh6NGjTJo0ieTkZGJiYoaUNQ4ND6S5sR2A8OhgGqubex90qASGmGhr70FYzF6zgoVrrJKqmVm5yqKFdNU5Ky5jLK9ssTf1bQ6P0zTSJYq9dZoFsLtEtaL9rI1S0jakAiYnBAWYmTkrnJnTw7FYBPn7G3j1j3m0NnaD3anNTnbH4FTp6uihKLeSB255jle2P0RgiJYBn3t2Jq9se4D66mbamzsoPVrF9Jw0kjPHpyx0LDPFhYWF1NfXs2zZMt2JmIHo7OykqKiIpUuX6lbcl5SUkJiYiMViOf3CE4yqqipdzq7+TM0fNnqIR43W1laampoIDQ0ddU8cI0NsYDBEPv/5z7NmzRpfhzFkYmNjOXHihK/DGDIWi4XExERdZ4mnTp1KVVUVTU1Nvg5lVEhOTmby5Mls374du91++hVOw1iMVvLztzL37KwxFcPeuEecLVq0iPPPP5/w8HAOHjzIRx99xJ49e6isrDztsXr1yY9oaWwHKRECMmYm9sl0IwQRsaGYBNDZDarEajNDtx1c834VhxPR4y4R96ptVuntdfY6QZNAfYdr9JJ7cel1U+m9dC60ccSeZYDwIAvzZ4dz9aVJfO26dBISA9m8sZoXnzzM1jUVtDb1aCLYYkIqIEwul2tFU99SSro7e6iraupzLIJC/EnOiGV6Thqfu27JuIlhN2ORKa6qqiI/P58FCxbg5+c3Ktv0Ne6LP3obVeTGbrdTXl6uS5fvzs5OmpubiYmJ8XUoQyIvL4/S0lJWrVp1+oUNPvM4HA4effRRpkyZQlhYGCkpKYSHhzNlyhQeffTRUfOYMQSxgcEQufTSS9m5cycNDQ2nX3gCkZCQQE1NDd3dpyi7nMCkpKRQXl4+KuLLF/j7+5Oamkpubq6vQxk1pk+fjr+/P7t37x6RqZQv5gyPNf7+/mRlZXH++eezYMECbDYbeXl5fPjhh2zdupWioiI6OjpOWq+hptUjYKUqaWls51dv3MnMBelExoWh+FupKK5DCoHwt4JAK7E2KQh7b5+0zV9TsKLHqeladxObyZVJpq8wrm/vITLAMnDjmbeBtdCEekKkHyvmRPC1LyTz1S9MJjkukKPHWnj+lULe/k8ZhQXNAycobK4MnOKaV6woKCZBdHwYT/7wDb4898f8/kdvnNTzXX6shjsufpwrZt3HUwM8PlaMpihuaWlh9+7dzJ07V5eVLgPR1tbG8ePHmTZtmq9DGTbl5eUEBwfr8jUpLy8nKioKm812+oUnEP/4xz9YunSpLo+5wfjS09PDBRdcwP33309JSQlJSUksWLCApKQkSkpKuP/++znvvPPo6ekZ8b4MQWxgMEQyMjJISUnhrbfe8nUoQyIwMJDw8HAqKyt9HcqQCQsLIyQkhLKyMl+HMmwyMjJoamoak95bX6AoCjk5ObS1tZGXlzesbZyJYtgbIQSRkZHMmDGDVatWsXLlSiZNmsSJEydYs2YN69atIy8vjxMnTtDZ2cn5V87v44O16oocHv768xzaXkhHaxeqU6KqEtVdIu1GEUivctVud4bYpHjSue7qafAqd3bdajt7CPUzYzW5tuEepyS1k4SYIBvZycFcOi+Guy9J5fLlsQT4mdmwt46n/1HEW2sq2X+oifY2B4pT1WYWm039DKs1V2zVYvIIb4ufhSu+tpKo2DCO7C2lpbGd91/dyp9+9k6f4/ire16h+MgJOtu6+eC1bfzlkf+O7IUZAqMhint6etixY4fHeO1MIS8vj6SkJIKDhzfn29dIKSkuLtZldhg0QZyUlOTrMIbMRx99xOWXX+7rMMYNIX1zOxN44oknWLduHRdffDF5eXmUlJSwdetWSkpKyM/P59JLL2Xjxo088cQTI96XIYgNDIbBF7/4Rf773/E7KRstEhMTKS8v93UYwyI1NZWioqIxH/kzVlitVqZMmUJubq5un0N/LBYLCxcupLi4eMjvqzNdDA9EUFAQ6enpLF26lIsuuogpU6bQ2dlJXl4eq1evpq6rlHv/dClf/8UFPPDSjbQ0tnB0/3EAOttdhniCvolct7C1mLReYpOCdPcsW00eMyzFtS5OTXG7T5gE0OFQ6bQ7iQywEBNs5ayEYC7JjOS2nHjuX57CrTnxZCcH09rt4I1tVfzuvWI+2FJNQWk7dru2IaFKzW1aAmZN/F79lbP7HgAp0eyqNfwCrNx636VUltT2Ked+/9Ut2Ht6y+Cqjtf3GSH1n79upKG2ZQSvxNAYiShWVZWdO3cSHBzM1KlTxyjC8aexsZHq6mqysrJ8Hcqwqauro7u7W5dmWi0tLbS3t+tu3FJdXR27d+/m0ksv9XUoBjrg1VdfZebMmbzzzjtkZGT0eSw9PZ1//etfzJgxg1deeWXE+zJMtQwMhsFll13Gc889h8PhwGzWz8coISGBgwcP0t7errvZl/Hx8Rw+fJja2lomTZrk63CGRVpaGsXFxVRUVOjyJGwggoODycnJYefOnZ4qhNPxWRTD/bFarSQmJnreBw6Hg+bmZpqammiO0v4PmNzDDb9YSnNNBx3NPTgdYLX50VjfSfnxJjpaemhvtdPdoblcSUUgrb1mW96XXRQFggMtREaYCA60EORnJshmItjPTGCACZMi+PqCBOyq5ERLN5Ut3Ww93kxlaw8N7VqPssVtnq1411GDYle1MUvC7coFK1dNp6q0ru+TFgJUFVRNlF92kyaYp85NZvvHuR6TLmePk462LkIjtJmwZy3LZP1/93k2o6qSfZuP0ljdQkJqNAvPnznmhk7DNdo6fPgwPT09LFy4ULemU/2RUnL48GFSU1Px9/f3dTjDpri4mMmTJ+vy+6esrIzY2FjdGYG9+eabTJkyZczG9k1IDFOtYVNYWMhdd911SmNKRVH43Oc+x+9///sR70s/Z/IGBhOIRYsWoSgKH330ERdffLGvwxk0VquVmJgYysvLdXdl32QykZycTFFRkW4FsdlsZsaMGRw6dIiYmBjdncycipiYGKZOncqOHTtYvnz5pxoGGWJ4YMxmM5GRkURGRnruK8or59Fvv4AtyExAiJWzL8kmLjWC40VVpGaHEBBkxepnQnVKnE4V1WWc5U6m3nJLhlaprAgsZgUpJe1dTlq7nbR1O2jrctLa5aC8vRuLWeFEazcfHmvQpjc5vdym+9RaazhVMCMRKkinxCnApLpmETsk6z86gOx0IBSl1+FaSkS301MTnrN8KrvXHyEg0IbZrOBwqCAls5dmEBLee8Hurl9cxc61eXS0dYOAoGB/fnvvqzgdTqSEG777Oa6/+6IxfX1g6KK4tLSU8vJyli1bpqsLp6ejvLyc9vZ2XU1a6E9HRwdVVVWcd955vg5lyEgpKS8vZ86cOb4OZci8++67fPGLX/R1GAY6wWq1nnZkZXt7+6icS50539AGBuOIyWTi4osv5l//+peuBDHgGQGUmZmpu4xFSkoKa9asoa2tjaCgIF+HMywSEhI8/S8zZ870dTijRnp6Oi0tLWzdupWlS5ditVpPWsYQw0MjbVoiv/jrXRzcVkhC2iSy5mgj06aktXPXNc9Qe6IZs1ngH2jRkrbBNoTNgtWm8KVr03jn32V0OlWcJrA7VFqcEocQOIPpM4KpJwD8/U1EBVhQFe0+nH3dpIV2l6v0WuD0l5g7XIbRilbH7XSCyak5RzvMJkxWkA4nQhWaula18m4pwCQExw6V8fsfvo6iKKiqypSZSZx31QIuunYRQgg627uoLmsgMjaUsKggOlq7QILZrOBUpWf88nt/2zQughgGL4pPnDjBwYMHWbRoke6qcT4Nu93O4cOHmTlzpq4v6BUXFxMTE0NAQICvQxky9fX1qKqqu7nPPT09bNy4kfvvv9/XoRjohOzsbN58800eeuihAd/vdXV1vPnmm8yePXvE+zJ6iA0Mhslll13GJ5984uswhkxsbCxdXV26HAHk7+9PfHz8qI1B8QVCCLKzsykpKaGlZfz6IMcaIQRz5swhMDCQLVu2nOQIbojh4REdH865V8z3iGGAgkPlNJ5oBoeKs0elrb6LpnYnDfXd1Nd2UVej9Rs3NHRT32qnqdVBe6eKREvg9kEADqjrtBPp73KaFiAV7X+PQYt73pJbR7v6hPHuhze5V9bcqCWA2aQto2oOXTLAigyw4pCSP/z8PwhFQXWqIKGmooHLvroMm5+VwoNl3DTvx3xr5S+4ZclPqSzuLb9uqm9DqiqgifHImNDRPOSn5XQ9xdXV1ezevZt58+YRFRU1rrGNNfn5+QQHB+vaHMxut1NSUsKUKVN8HcqwKC8vJyEhYUjzzScCH374IVarlQULFvg6lPFHjvPtDOHOO++ktraWBQsW8Pzzz1NUVERnZyfFxcW8+OKLLFy4kNraWu68884R70tfnyYDgwnEBRdcQGVlJfv27fN1KEPCZDIRFxenW3OtjIwMjh8/TldXl69DGTYhISGkpKRw8ODBM8ZgC3qdp/38/Ni6datHFBtieHR55ek1OJ2qpk+lZtyEEAi1/3tJukqeXcZXTtlXwLow2aGuw05UgEVzo/YSxNL7JMt9xiAA90voNrJ2/StVCSaT5lSteKnv/kLc34rqlEihbVQxKX1mRv/tsf/S3qp9xttb+o6oEkKw4NzpKIogJimSe5+4vs/jFUU1PPfzd/jbr9+jueHTy+2Gy6lEcW1tLTt37mTu3LnExY3PDOzxoqWlheLiYmbNmqW76iJviouLCQkJ6dOeoBecTqduPSj+9a9/cckllxjf/waD5uqrr+aHP/whpaWl3HbbbWRkZBAUFMSUKVP42te+RnFxMd///ve5+uqrR7wvo2TawGCYBAcHs2LFCt544w3d9fIkJiayZ88eZsyYoburzCEhIUyaNIljx44xY8YMX4czbLKysvj44491e3JzKhRFYf78+Wzfvp3t27eTk5PDjh07DDE8ipitZoQQSKmVJwtF6w9GRTOtki6x4hYtrsSt4ur19ahTV3+wCajr6sHfbCLQqtBuVz1l0wgQ7jFM/TRQtwSb20gLtP0qwlMa7Vnes57XHQJUk0Lm9Mm01WvmWN957BrPtu09jt5ybQmpU+M4fqwGxaTwrYeu4KJrFmnPvZ8wa6pv5e5Lf6P1G0vJlg/388zqH2Iyjf73XP/y6bCwMLZv387s2bN1nUEdCCklBw4cIDU1lZCQEF+HM2ycTidFRUW6+5vtprq6GpvNNijzwonGunXr+N3vfufrMMYdX4xBOlPGLgE88sgjfOELX+D5559n7969NDc3Exoayty5c7nllltYvHjxqOzHEMQGBiPgsssu44UXXuCRRx7xdShDwt2LUVdXp0uDqoyMDLZs2UJGRsaAvap6wGKxMHPmTA4fPnxGGWyBVoWwYMECtm7dyscff0x4eLghhkeRW797ET+69QW6Onu08mSp9eriZ+kVwW5UiVR6BbDikH2zva777VLS1O0gyt9Cu6NbU8l2ejWslH1L8YRABkpEm6bBFUB4LyPcv0tNJDtlX0EtAT8LD/7p5gFLnq+9+yIO7ziGvduB1d/KPb+6htQZiQiB5yLeQFnKI7tLaGvu9Pxeml9FbUUjsZPHJhvoFsWbN29GSkl2drYuZ8OejoqKCtra2nRtpAVw/PhxbDYbMTExvg5lWJSXl5OYmKi7DP2ePXs4ceIE559/vq9DMdAhixYtYtGiRWO6D32lhgwMJhiXXnop+/fvp6qqytehDAkhBImJiZSVlfk6lGERERFBWFgYxcXFvg5lRCQkJBAYGEh+fr6vQxl1pJSoqooQAlVVz6jScF8zbW4yV9+2wpWJ1e4T3U7odpy8sEATpAIkAqe/0qeM2jtpW99pJ9Lf2rcdzSOIxclZB5Orj1iRCCm1WcS4jLNcIlh45gu7xi25s81SM8X6+oW/4Yn/e52efrFnL8nkha0/5eHX7uSFrQ8xJXsyJpNy2oqW+NRoj1gQQuAfZCMsOvjTD+gIcTqdnp8djgFeA51jt9s5dOiQ7o20VFWlsLCQjIwM3QlK0EypqqurdVlR9Prrr3PuueeeUQZzg2a8+4fPsD7i8cIQxAYGIyApKYnp06fzxhtv+DqUIZOYmMiJEyd0ewKXmZlJUVGRbuMH7YR99uzZlJSU0NDQ4OtwRg13z7DVamXVqlUIIfr0FBuMHNH/AoMQoIJZ6XuiL71/FS4zLAlSiL7nTj1Q22UnKtCCNGk9xNJtonWqkyt3wt8kEE4tU62JbwFmBSm8jLekAIfT9bN0h0NHt501b+3i7efXn7T5qLgw5q2YRnj04Et0J2fE8r0nbyA+NZqUaXH87K/fxM9/7KpIampq2LZtG7NmzeLss88+pdGWnjl06BAhISG6LwOvqKhACEF8fLyvQxkWlZWVhISE6HLCwv/+9z9j3JLBhMYQxAYGI+Syyy7jvffe83UYQyY0NJSgoCDdmmtFR0fj7+9PaWmpr0MZEcHBwWRlZbFnz54+mSa90t9Ay2azsWjRIsxmM1u2bKGnp8fXIZ4RSLewdPURS5sFLCYcaq/gHMhAS7vbq8fYlSkzd0Fdl50oP1cGUAGn6wxBe1e6srv9cLh6hfvIcKFtW7rPMFy9xUJ1ZZLxWt6sgCI4cbx+6AfhFJx7xXye3/gT/rD6h8xc+OmzgkdCdXU1O3bsYPbs2SQnJ5/WfVqPVFdXU1lZyZw5c3SZVXUjpaSgoIApU6bozjcDtPhLSkpITk72dShD5sSJExw4cIBLLrnE16EY6ACTyTTkm5+fH5MnT+aaa65hx44dw9qv/r4VDAwmGJdffjmbNm3S3QgdIQQpKSmUlJTospxVCEFGRgaFhYWay66OmTJlClarlby8PF+HMiJO5Sbt7in28/Njy5YtdHd3+zjSiYPD7uTpH73BDTk/4cfX/4GGmsF/jwhv0yxFIM2K+wHt/36lc+5kr5Bey7iXl5qxVpSf1+glKye7Q/cNAHuQJqo9l3K8+oilIvpkhLVeYrWvYBcCVUqWXjRr0M97IlBZWcnOnTs566yz+vQMn0mi2G63s2/fPmbOnKnLeb3eVFVV0dPTo9v+7qamJtra2nSZpX/55ZfPSKO5weI21Rrvm15xm0UO5dbT00N5eTlvvPEG55xzDhs2bBjyfg1BbGAwQubMmUNiYiIvv/yyr0MZMgkJCbS1telyJjFAfHw8JpNJt73QboQQzJ07V9el06cbrWQymZg/fz5BQUFs3LiR1tZWH0U6caitbOT3973Oey9vor6qmb2bjvLUD/5x0nL2Hgdv/ekT/vCTNzm4rRCAhSunoZgEiiJco5GkR9i6E8BS6dv3K0ETuieNZ9KcpOu67ET6WfAYUZtc/5tBIBiwdNqiCWLVJjxiWLh3ZjOjOl0rqaomiKXrZ6dWPq0ogp/84Sbmr5g2nEM47kgpKS4uZs+ePcybN2/A8tszRRQfPHiQkJAQJk+e7OtQRoR3dlivxn4lJSUkJSXpsof7jTfe4KabbvJ1GAY6QVXVId8cDgeVlZU8/fTTOJ1Ofv7znw95v4YgNjAYIUIIbrzxRv7xj5NPZCc6FouFpKQkSkpKfB3KsHBniQsKCnSfJQ4ODmbq1Km6LJ0e7JxhRVE8ImLjxo3U1NSMc6QTh4PbCrn1nIdZ/fp23GlY1alSVlh90rK//vbL/OXhf/Pfv27kB1c/Td6eEtKmxfPAH29i8fkzuOKr52gLOrXPgPQeMeQSpJLe2cLC1dfrNs2SaCcDjS5jqzA/c98xS95nCv1FsXsZs4JQXZkJ9zJCoPqZ+pZIg6f0Wgi45mvLiYrTxwgZVVU5cOAA+fn5LFmy5FPnDOtdFFdVVXHixAndl0qDNhu6ra1Nl+XGoH2/VlRUkJKS4utQhkxBQQH79+/ny1/+sq9D8R2GqdaYoygKsbGx3H777Vx11VXs3Llz6NsYg7gMDD5zXH/99Wzbtk2X/bgpKSlUVFTo1vDIXQJ3/PhxH0cyctLT03VXOj1YMexGCMH06dPJzs5mx44dFBYW6rJkf6S88YePcdhdFz7c2V3gnEvmnrTspg/2u5bTsl0fvbaVQ7uKefjOv7P5o0O89+pWbFYTikMFVe3t3cWV2cWVNVaER/xqv3sWQgqBCjR024n2s7jmKHkJae+5wt4lz9Lr/MvL9dqD1dxveVfJtFNiEQqv/eET7v7yH/jV/2nGhHVVTexcm0tdVdMQj+jY0t3dzZYtW2hsbGT58uVEREScdh29iuKenh7279/PzJkz8ff393U4I0JKSV5eHhkZGbrMrgKUlZUREhJCaGior0MZMs899xwrV64kNjbW16EYfEbIyMgYVgujIYgNDEaB1NRU5s+fz/PPP+/rUIZMaGgoISEhui07VhSFadOmkZ+fr2vHaehbOl1fP3omQ2PFUMWwN4mJiSxdupRjx46xd+9e3WXFR4rVZva08QqTQmJaNN9+7Bpu+v7n+yxn73EgvftuAYfDyT+e/QS7K6PbY3dqY4uk1ESpZ+6wd58wLtdn6K1rxtUv7Pq9v7EW4FBcy7sW9TQLS8/KqGZtX07vcU7gEdGqlwEYCISqEhkdhL2n9/O69t19bP/4MLee8wse+MqfuXXZL8jdVTyUQwrAO8+v40vTf8C1c3/Mlg8PDHn9gWhubmb9+vXYbDbOPvvsIYlEPYpit6u03kulQev17urqIjU11dehDAs9m2kBvP3229x4442+DsPgM8TPfvazYVUMGoLYwGCUuOmmm/jXv/7l6zCGRWpqKsXFxbrN1MXHx2Oz2XQ/lxi00ulp06axe/fuCe3IPBIx7CY8PJzly5fT1tbG5s2b6erqGoNIJyY3fe/zBIdrMznDIoN48MXb+Nz1S05ywLVYzSSkRfeOL0JyyY1nU15Uqy0ghEcAS7OCMLlSu/SWQ2vl0bI3c+wWxp5aZuHpGe4jiF39w4henasZtohe8xZAde3SGaC4ssReRlpCaCXcQvQ2N6uShuqTr+C/+ee12O2aSLb3OPjnsx8P6ZgW5Vbwp4fepqO1i6a6Vn55x0u0t47sPVVZWcnGjRtJTk4mJycHs9k85G3oSRSXlZVRVVV1RpRKq6pKXl4eWVlZw3rdJgL19fV0dXXpcvbw5s2bqaio4PLLL/d1KD7FMNXSB4YgNjAYJa666iry8vI4ePCgr0MZMvHx8fT09FBbW+vrUIaFuwy3oKBgQovIwZKWlkZoaCh79+6dkBcpRkMMu/Hz82Pp0qUEBgayfv16GhsbRzHSiUtyVhx/3fogz637ES9teZDEtEmnXPaX/7iTlZfPY845mdz/7C1MPSulVzi7raO9yq7dGV13mTRCIKXQfvfuDXYt45nCZD85Q4xJyyw7vV9ib9ErJarJ1ZOsKL2xeHYgkVZT35Jr4bUNF5ExIQSHBvRZxGIdmoipO9HU53dHj5OWhrYhbaM3bMmRI0fYu3cv8+bNIysra0QCUQ+iuK2tjQMHDnDWWWfpvlQaetto9JzpLioqIjk5WZdmYC+88AKXXXaZLucmG3z2MASxgcEoERkZyYUXXshzzz3n61CGjMlkIiUlRdcZ1kmTJhEWFkZBQYGvQxkx7tLp5uZmioqKfB1OH0ZTDLsxmUycddZZpKens3nzZl324g8Hm7+VxPQYrH6f3tsYHR/O/z11E7987U7OvngOAPOXZ/UKYCk152a702OWBYAQ2iKu2b99+oKlSwi7RywJbRZx7QCCGAGqtz5yp57datrs2pbZe9xTb3OxcMfoubm241Q9t5/87nq+4pU1Dw4P5IZ7LvLssrK4lpcff593/rKO7s6BL3rNmJ9GVFwYQtEy3lPPSiEm6fS9vv1xOBzs3LmTsrIyzjnnnE81zxoKE1kUO51Odu3aRXJy8hnR7+lwODhy5AjTp0/X5dxhgM7OTqqrq3VZ7u10OnnvvfeMcmkwTLV0gj5rSAwMJig33XQT3/ve9/jd736nuz/CKSkprFmzhvb2dgIDA30dzrCYPn06mzZtIi0tTfcZDqvVyrx589i6dSsRERGEh/veiXcsxLAbIQRTpkwhODiYXbt20dLSwrRp03RftjlW3PqDiwkM8Wff1kKOHa2i2+5EUVXUHmffTCx4TpCk0DytPOOU+i2noGWIw20WzELg8M70KnhEtXDiJca1DagWgckO0gSKw9XH7BLjSpe9dydOhytL7SXmAbPFRHJmLH/d+gDVZQ3EJEVg87MC2niquz73a7o6e5Cqyq61uTz8yu0nHZPAEH+eeu+7fPzWTqx+Fi64euGQv4c7OjrYvn07VquVZcuWYbPZhrT+6XCL4q1btwKakd5E4PDhw55KmzOBoqIi/P39R+1ihi8oLi5m0qRJupwB/e677+JwODj//PN9HYqBwaDQ1xm7gcEE55JLLqGhoYG1a9f6OpQh4+/vT2xsrG5HMAGEhYURExNDfn6+r0MZFSIjI8nMzGTXrl0+dwEfSzHsTUxMDMuWLaOyspJt27bR2dk5JvvRM61N7dRVNnLtt1by6N9u49UNPyI8KggsClhNCId7/JLmEC0AxV0q3f/6guhN9EoBbXYnXU61b5a4byV2n+yvG9UEEonDpiBUiUUILv7cLESnA2k2aaX/UoLZ3NfsC5i/YipJ6dEc2XechppWJmfEesQwwN6N+XS0daE6VaSE3euP0NnePeCxCY8O4cpvruILNy/DL6CvmC06XM6h7YW97t79OHHiBOvXryciIoLFixePuhj2xDjBMsWVlZWUlZWRk5Ojuwu5A9HT00NBQQHTp0/X7QU1p9NJaWmpLrPDAH/961+55pprdOvsbfDZw8gQGxiMIv7+/nzpS1/ipZdeYtWqVb4OZ8ikpqayY8cOXZuQTJs2jbVr15Kenk5wcLCvwxkxGRkZ1NXVsW/fPnJycnxygjdeYthNcHAwy5cv58CBA6xdu5aZM2eSlJSk25Pb0eSTt3fxxPdewylBWC1IIbD4WTFbTSQkR1N2osljqCIVgTQB0mvUkvsYOuh7BuDWQWpvH3GVqzRZFeCtk4TH4Ev0imVFgALOQDO0OXE4VD764BDYzJp2tppRmjtRXMLYajNz6w8uISktmoxZidx71dMcy60EIC4xDEVKLr15GZd9dRmxSZG9+1YEQaH+2PyHdqL94i//wxtP/w/QSqkf++e3PaXqPT09HDx4kOrqambNmuUZ5TaWTJRMcXt7O/v27WPu3Lm6rQzqT0FBAeHh4URHR/s6lGFTXl6O1WrV5XNob2/nf//7H2vWrPF1KBMDX5QwGyXTQ0b/lwINDCYYN954I++//74uzZ0iIyMJDAyktLTU16EMm6CgICZPnqyrWb6fhhCCefPmUV9f75Ps/XiLYTcWi4V58+Zx1llnkZuby/bt2z/z2WIpJb+//584nSqYzaiqRApBT7edjrZuykrrALD7uf60uwy1PMZbXhlixSvJ68kQK4AD6rp6+mSItWUEdrP2i5SA6nrEq2fNibZ9h6tU2ulUXfsXYFKQJrd7F/R0OwgMtjF3aQabPzzoEcMAJ8oaqSiq5dkH3mLvpnyyl2Tw1R9eSkhEIPHJUTz04m1DymS2t3byxjP/8/x+ZE8JO9fmavs6cYJPPvkEu93OypUrx0UMu/F1ptjdN5yQkEB8fPy4738s6OzspLi4WNel31JKCgsLmTJlii4vAr766qtER0ezYMECX4diYDBoDEFsYDDKrFixAqvVyttvv+3rUIaMEIKMjAwKCwt1PRc2KyuL2tpa6urqfB3KqGCz2cjJyeHw4cPjOp/YV2LYm9jYWM4991wsFgtr167l+PHjE9J5ezyQUvaW+7qFpvsGnjSutGivU6/Y7R3D5DbV8hhdKXhuEhAOqOt0GWu5D7Mrk+ww4xHUQoiTxi9ppl2CnmBXk3IfIy2JDLD2xg5ERIec9jkfL6gG4Oo7z+fVvb/gmdU/YHpO2pCOm6IoKP2EhVAku3fvZu/evUyfPp2FCxf6xHfAV6JYSsmBA9qc5pkzZ47bfseaw4cPExcXR1hYmK9DGTYnTpzA4XCM68WZ0eS1117jxhtv1KWYHwuMsUv6wBDEBgajjMlk4vrrr+fll1/2dSjDIi4uDrPZrGunXz8/P7Kysjhw4MCwBrRPRKKiopgxYwY7duygo6NjzPc3EcSwG7fB2Ny5cz/T2WJFUbjx3s/1vdMtOAUEusuIXRcMpOISw97mWd59xK4zALdw1uqqtZLp6JOcryX4u060PD3FfZ2jPee/fqbe+70xKZrGVgRX3baCOUumoKoqZ38umykzEnqXU1WEScFsMTFnSQYA29cc4qoZP+SLmd/nN/e+MqTPtX+gjVvuv8zz+3nXz6VFVnmywpMnT/bpybsvRHFRURHV1dU+/2yPJrW1tVRXV+s+O1xQUMCUKVN02c9dVVXFpk2buOGGG3wdioHBkNDfp83AQAfceOONfPzxx+OazRst3FnigoICXWfi0tK0LNJEG1s0ElJTU4mPj2f79u04HI4x289EEsPexMXF9ckWl5WV6fo9Ohyu/tYqfvD7m3rvEIBJE70dDW195/t6jVRyI73FMa4ksNJbMq0IqO3sN3pJwdMj7L2uZwOy3/3eWWvptRwCVRFYbRa+cNNS3n15C1+c/iOunf8QKy87i7MvmAEOh6fC++sPXk5yVhyqqvKru16ms0Mz0lrzzx1s/Who896/9M1VvLDtAX70ypeZujzGp1nhgRhPUVxTU0NeXh4LFiyYMM9/pKiqysGDB8nKytL1c6qtraW9vZ3k5GRfhzIsnnvuOWbPnk1GRoavQ5k4jPV4pVPdDIaEIYgNDMaA2bNnM23aNP7whz/4OpRhkZiYiKqqVFZWnn7hCYqiKMyaNYv8/PwzKps4a9YsrFYre/bsGRMxOFHFsBvvbPHhw4fZsWMHXV1dvg5rXDnn87OZMS/FZR/dq06FEIi2rj4C2L2MVOXJYljFI4a9l6/rshNgNhFg8kohe603EMLVV+zOAKti4BWkzUxPp53vXPk0f/jp29h7HNh7HDz38H84sK1QW0ZKTCaFquPaBUWnQ9Vcpb3e7i2N7acOZgCqqqrYf3g3Fj8z5557rs+zwgMxHqK4ra2NXbt2MXv2bCIihj6jeaLivvDpvhCqVwoKCkhLS9OlqaWqqvz973/nm9/8pq9DMTAYMoYgNjAYI+644w7+/ve/67JkV1EUpkyZovsscXR0NDExMeTm5vo6lFFDURRycnJobm4e9fFSE10Me+POFpvNZj755BNKSkp0+VkbDiaTwiMvfY0lF5zc+ykkHpHs7h+WgHR4ZY3dKPQtr3aJ4x6npKXH0aePuP+R9fzuFtdOEF4btwe63jvuEU3un83a/Y21rSdlMcKighGu2J1OlcT0SQBYrGY+d/0Sz3Lhk0JYfMGsgQ9OPzo6Oti9eze7d++ecFnhgRhLUWy329m+fTvJycm67U8diM7OTo4cOUJ2drYuy4zdNDY20tjYqFtRv2bNGk6cOME111zj61AMDIaMfr85DAwmONdccw0nTpzgf//73+kXnoBMnjyZzs5OampqfB3KiJgxYwZVVVVnjMEWaCZbCxcu5NixY6OWxdeTGHbjnS0uLCzkk08+oaKiQtcXcQaL1Wpm8aqBeyUVRz/5KgQm0Iyt3MbQAi2j6xLMnt5ihT6jl/pvx2Hh5NJoAbjGO7kfcgaZe0u3VVW7oY1NcioK4VHBZMxK9Gw6JjGc40erkKpECLjw6oVc+OVFnsfvfOQqHnrx69zz+LX8YfUPCIv69JFqPT09HDp0iI8//hgp5YTNCg/EWIhiKSW7du0iICBA1z22A3H48GFiY2OJiorydSgj4ujRo6SkpGC1Wk+/8ATkmWee4cYbbzxjxneNFkJKn9wMhoYhiA0MxojAwEBuvPFG3ZZNm81m0tPTKSgo8HUoI8Lf3/+MM9gCCAkJ4ayzzmLPnj00NjaOaFt6FMPeuLPFU6ZM4dChQ2zYsIHa2lpfhzXmzMpJxWQx9enXVYA52V7ZPy8TLVOrs7cf2FsIey/nauCt69dH7BG6tn53gLZ/r2yz+3HVS3wKtBNDJOBnobG2lXOvyOGex67mnseu9q78RigK/kE2TKbeUxQhBAvPm8kFX15EWGTQKY+Jw+EgPz+f//3vf7S2trJs2TJycnImdFZ4IEZTFEspOXToEB0dHT6bZT5WuI20ZsyY4etQRkRLSws1NTU+m0c9Uqqrq/noo4+McmmdU15ezi233EJ8fDw2m42UlBTuvvvuQZ9jtLe388orr3DdddcxdepUAgMDCQ4OJicnh9/85jcTehypIYgNDMaQb37zm6xevZrq6mpfhzIsUlNTaW5upqGhwdehjAh3CVpxcbGPIxld4uLimDZtGtu2baOtrW1Y29C7GHajKAopKSmsWrWK+Ph4du7cyZYtW2hqavJ1aGPG5o9zUZ2uizyuWb/h8WFUHKgCXCXTSKRTaklcp5fZFbiEMV7L9o5kqvUaveTdDux0a2Sv5SWyd5STGyG0ZYXoa6wlAZNASsmfH3mX0qMn6OnqwT/Q5imXRkr8AmwMBVVVKS4uZs2aNVRVVbFw4UIWL15MaGjokLYzkRgtUVxYWEhFRQWLFi3CYunvHq5fzhQjLdBeo6SkJN0+j6effpq5c+cya9bgWhk+U+jEVOvYsWPMmzePF198kQULFnDPPfeQlpbGk08+yeLFiwdlErtx40ZuuOEGPvroI2bOnMldd93FddddR0VFBd/73vdYuXLlhPX8MASxgcEYMmvWLObMmcMzzzzj61CGhcViISUlhaNHj/o6lBHhNtg6cuTIhP0yHi7p6elMnjyZLVu2DNk87EwRw96YzWYyMjI477zzCA0NZdOmTezcuXPYFwwmMiaT0puUlZoorWvupKXe9VxdDtSuXDAOv36ZQfspNiygvstOtL/VNa/Y6zG314+30ZardNrje+46IbOHeM0dVtEcsOn9X0rJv15YzzM/eQuzxYTZom18ckYMl9+6fFDHQEpJRUUFn3zyCUVFRWRnZ7Ns2TLdl8+6GakoLi0t5ejRoyxevPiMK2U9U4y0Ojo6qKioYMqUKb4OZVioqsorr7zC7bff7utQDEbA7bffTk1NDU899RTvvPMOjz76KJ988gn33HMP+fn53H///afdRmxsLH//+985ceIEb775Jo8++ih/+tOfOHr0KGeddRZbtmyZsOfDhiA2MBhjbr/9dl5++WXdluump6dTW1tLS0uLr0MZEW6DrQMHDpxxPabTp08nKiqKbdu2YbefSuX05UwUw95YrVZmzJjBqlWrPGOa9u/fr/sLIk6Hk+aGNqSURMd6ZT+9Mr/OAJdqdSdcrQpSESg9/d73ap/F+pRX13XYifQzn+wT7Z6J1GdF188W+ohnYRaex6T7+09VUTpdZXNS4j4NOXqwHLtdBcXEVd86j5Dw04u3mpoa1q9fz6FDh8jIyGDlypXEx8efUSXBMHxRXFVVxcGDB1m4cKGuM+UD0d7ezpEjR5g1a5aujbRAyw7HxcURFHTqVoCJzH//+18aGhq48sorfR2KwTA5duwYq1evJiUlhTvuuKPPYz/96U8JDAzk5Zdfpr39093958yZw/XXX39SH3xwcDDf/e53AVi3bt2oxj5a6PtbxMBAB1x11VW0tLTw1ltv+TqUYeHn58fkyZM5cuSIr0MZMbNmzaK+vl7X46QGQgjBnDlz8Pf3Z/v27Tidzk9d/kwXw974+/szZ84cVqxYQXd3N2vWrCE3N1eXo7gKDpRxfc4DXDPnx9y64pf8/mfv9F1AAFLitPQThFKiSjD3a99SoI8RljeN3XYUIQi1nDz+ReKlv73/V/q2IrvLqhEC7A5El53k2BAUp+pyn3apZ0XBO4q/PfHRKY+BlJLa2lo2b97Mrl27SEhI4LzzziM5OVn3wujTGKoobmhoYNeuXZx11llnTLbcjZSSffv2kZiYSHR0tK/DGRGdnZ0cP35c13N7n376ab7+9a/rttx7rBHSN7ehsHbtWgAuuOCCk75Hg4ODWbp0KR0dHWzbtm3Yx8HdrjFRR4qduX89DAwmCH5+ftx22226NdcCyMzMpKamZsTmTb7GZrORnZ3NgQMHdJ8p7I97HJOqquzevfuUWfDPkhj2Jjg4mAULFrB06VJaWlpYs2YNu3fv1tV7+pkf/5PWpg4wmThR1UJTfVuvqPR6vWX/DKnb9Eqlj2I1fUoi1alCY5edKP/enlO3uO12Gzy7s8XCvX/Rr3+tt0cZk4JQJSsvmUtgiJ92l9mEf4CFwOC+J9LV5Q0UHirvG4/TSWlpKevWrWPnzp1ERERw/vnnk5GR8Zl5Dw9WFLe0tLBt2zZmzJhBfHz8OEY4PpSUlNDe3q57Iy2A/Px8YmNjdZvBLygoYP369Ua5tM5xj3DMzMwc8HH3BZuRtM+98MILAFx00UXD3sZYMjFluoHBGcbtt9/Ob37zG/Ly8pg2bZqvwxky/v7+pKWlkZuby5IlS3RdkpiQkEBlZSUHDhxg/vz5un4u/TGbzSxatIiNGzeyf/9+Zs+e3ef5fVbFsDfh4eEsWrSItrY2iouL2bx5MyEhIaSlpREfHz+hs4ztrV2oqgSr63Wzq70/A/TYwaSVR/dBalpYkfQKV9H38ZNQXKOX/C0UNndqy7urnm0gW/tWT2uiW6JKiSKEp0/YaVEwdzsRigI4+Meza3n6rTtpaWwnMTWasMggCg6W8e3Lnuyz+0e/83cCA6wsPH8as1dN5vjx49hsNtLS0khMTJywWYaxxi2Kt27dCnCSK3FHRwdbt24lLS2N1NRUX4Q4prS3t3P48GEWLlyoe4Ow1tZWysrKWLlypa9DGTa/+c1vuPDCC8/I99qoMUyTqxHvE05qdbPZbNhsJxsWNjc3A5zywoz7/uGaVD799NN8+OGHzJkzh1tuuWVY2xhrJu5ffgODM4ikpCQuvvhiHn/8cV+HMmwyMjJobm4+I8bZZGdnU19fT0VFha9DGXWsVitLliyhpqaGQ4cOeTLFhhjuS1BQELNmzeLCCy8kISGBvLw8Vq9eTW5u7mn7pHzFVd9apf0gXWdY7sys+yYUbbawxfWn3ctxVCq4ZhG7/ul/kub1sxTabcBZxP1X6VMyLVBNaGJYav87A03aIqqKkGDvcXB4dwnJmbGe8UlTZiYSkxTu2a4QoFgdpOQE4xffRWFuCTk5OaxcuZKUlJTPrBh2c6pMcWdnJ5s3byY2NpasrCwfRjg2uEulk5KSdF8qDZCXl8fkyZN12zvc0dHBG2+8wbe//W1fh2JwCpKSkggNDfXcfvnLX457DP/617+4++67iY2N5a233pqwF7IMQWxgME585zvf4a233tKt263FYiEjI4Pc3Fzdm1LZbDZmz57NwYMHz7jSadAy+kuXLuXEiRMcPnyYnp4eQwyfAovFQnp6Oueddx5z586lra2Njz/+mC1btlBRUTGhzPAuuHohT737XW5/6DKyZk9GsXrNIBaid75wjxazp58M1wxgD71mV56SZyf9nKOh1pUhlm7Rq3gt339+sQvVJnr3iUCaBaoArGacNhNSwO8f+S9Xnf0LHrjzZex2B0IIvnDjUgJDrcy7YDLX/Xg+K67NpKmmkzd+uYOCzY1ER0efUdUcI6W/KHaL4ejoaLKzs8/IY1VcXEx7ezvTp0/3dSgjpqGhgZqaGl1fuPjzn/9MVFQU5513nq9DmdD4soe4rKyM5uZmz+2+++4bMEZ3BtidKe6P+/6wsLAhPfd33nmHa665hkmTJrFu3boJ7QhvCGIDg3Fi+fLlJCQk8Mc//tHXoQybtLQ0uru7zwhTqvj4eKKios5I12mAwMBAli5d6hlJYzabDTH8KQghiImJYcGCBVxwwQVERUWRm5vLRx99xKFDh6ivr58Q4jgjO4mw6BCOHa5AdfTGIxRBbFIESIm1tZ97lpQIt8+ap2yavo7QvYt68M4Qu7PGfUy4BP2yzPLkxmQpsAe5Mro2i5ZFdpVT79iQzz9f2kBZWRmx061c/8ACJiUHs+2/Jbzy4DZ2vltMc20n2Uv0azg0lrhF8ZEjR1i3bh2RkZEntUmcKbS3t5Obm8vcuXMnbIZpsEgpycvLIy0tDT8/P1+HM2z+8pe/8O1vf/uMfL+dKYSEhPS5DVQuDXguzJyqR7igoAA4dY/xQPzzn//kqquuIiYmhvXr10/4iz+f7bojA4NxRAjBt7/9bR5//HG++93vTuhexVNhMpmYOnUqeXl5xMXF6fI5eJOdnc0nn3xCRUUFiYmJvg5n1LFarVitVtra2ggODtb96zVe+Pn5kZmZSUZGBnV1dZSVlbFjxw4AYmJiiI2NJTo62icn5lJKnrz/LRx2p6dMGSEICLBy+Q1LefbXH2g9vOAqWwYQmpGz010nLTTxqggtM+zK/Lozu6p79FKXnTCbGbMicKjS1XqslUM7BZhk77q9AaKVTLtiEIA0K9rvrlnJYRE2UqaGkTI1DP+oFo4dO0ZcXByzZ89GXSmwfMfM239ZR1FuBWctm8r5Vy0Y46OqX/z8/LBYLHR1dREcHHxGihMpJXv37j1jSqVrampobm5mwQL9vq8/+ugjSktLuemmm3wdisEo4O5jX716Naqq9jlXaG1tZfPmzQQEBLBo0aJBbe+VV17hK1/5CgkJCaxdu3ZCZ4bdGILYwGAcuemmm/jxj3/Mq6++yg033ODrcIZFUlIShYWFlJaW6t5Iw106vW/fPqKionR9tb4/7p5hPz8/5s2b5zHhmTlz5hl50jwWCCGIjo4mOjoaKSUNDQ1UVVWRl5fH7t27iYqK8gjkgICAcYuru0ubNS0kSIdK6tQ4rvnGuSy7aCYN9W28/f7uvs/DJUQRAqFqWVxPdbQDpJm+5dNoPcfNDid2VRLub6a2w66Zc0mBAjj9JCb35KoB1lXUXpUsBMQlBpAyJYTU9GBCwm1UFLVQeLCBrR9W8tcP/u+k9+S1375gUMfiRGkduTuLSJkWT/qMM++i1qfhXSadnJzMtm3bEEKcZLSld4qLi+ns7Bz0yfhERkpJbm4umZmZus50P/LII3zrW98iJCTE16FMfHxoqjVY0tPTueCCC1i9ejXPPPMMd911l+exBx98kPb2dr7xjW8QGNg7H949inPq1Kl9tvXXv/6VW265heTkZNauXUtycvLwn8c4IuSZWCtoYDCB+eUvf8nrr7/Ovn37fB3KsHG7NJ933nlnhMHNrl27sNvtLFq06IwQiwMZaLW3t3sMd2bNmnVGPE9f0tbWRnV1NVVVVdTX1xMcHExsbCyxsbGEhYWN6fF99Zk1vPzk/7QMr9eV/J//6SvknJNFe0cna/63mt/94xg9dhVUiblDRQhBW7QCFqGNZlI0YezwBwSaIZYApxXNgUvAXdMS+KSikdyGDm0n3WBWJdjB1s8OwfOMe5wEd0FKQiDpSUGkTQ4ECSXHWijJa6Iirx673XXqoUq+fOtyvnrvhQM+13eeX8+/X9xAWFQQ33nsGlKy4jyP5e8t5ftXPom92wECfvD0V1hx2byRH2Ad0NHR4RHD7jLpxsZGtm7dSlZW1hkjiltaWtiwYQMLFy48I7LD5eXl5ObmsmrVKt22r2zbto0VK1ZQUlJCbGysr8OZsLS0tBAaGspZ1/wCk3V8L7Y7e7rY84/7aW5uHvRFi2PHjnkMOS+77DKmTZvG9u3bWbt2LZmZmWzZsoXIyEjP8u6/cd4ycu3atZx33nmoqsott9xCUlLSSfsJCwvj7rvvHtkTHAMMQWxgMM40NzeTlJTEq6++yiWXXOLrcIaFlJKNGzcSExMz4ftCBoPdbmfdunWkpKR45u3plU9zk3afREdERDB37lyjhHqU6OnpoaamhqqqKqqrqzGZTERGRhIWFkZoaChhYWFYrdZR3Wf+/jLuvtbLj0BK0qbG8b3Hrmbte3uJTOuhriOcF1/dhskutSSuELTHKNpoJgmYtRMahx99BLHDD6TrbXNd6iQqOrrZUNmsCV4HmHsAVWJrxpMdjgiyEBdmIy7USmy4jcQIP5pb7BwraaOopI3aklaULq2RWWnu1MS8q0R7cvok/vTfu/s8v9amdt5+fj2vPblaW0cRRMWF8dKWBzwnYk989xU+fnMHqlM7jZmSncTv3//+qB7niUhLSwtbt24lLi7upItbZ5IodjgcbNiwgbi4OF2OK+yPqqp8/PHHZGZm6iZrNhAXX3wxSUlJPPvss74OZULjFsTzvuwbQbz79aEJYtBMuB544AE+/PBD6uvriYuL4/LLL+fBBx8kPDy8z7IDCeKXXnqJr371q5+6j+TkZEpKSgb/ZMYJ/ad2DAx0RmhoKHfccQePPvqobgWxEILp06ezfft2UlNTR/1kf7yxWCzk5OSwefNmIiMjiYiI8HVIw+J0o5UCAgI455xz2LZtG9u2bWPBggVnRIbf11itVhITE0lMTERVVerr62lsbKSxsZGSkhI6OjoICAjwiGP3bSSfm6zZ/a68C0FrSwffue6PCJPklh/N4x//3IkJASaQrv5h4dRKmvsg+/4vVTwZ4tpuO9F+1l5zaQWi/C3EB1pJSrIRF24jJtSKWRFUN/dQ1dTN4bI2PvnfCZqae0u7sShYu1WQElUBk1efcUpGjCeU3euPsHdjPv/7105aGjvApIAqUVVJTUUjDrsTi1V7zwYGu1LbSBRFEBTiP+zjqRfq6+vZvn076enpZGZmnlSJcLo5xXri0KFDWCyWM+KiK0BJSQkmk4nJkyf7OpRhc+jQIdasWUNeXp6vQzEYA5KSknjxxRcHtexA+dSbb76Zm2++eZSjGh+MMyEDAx9wzz338Lvf/Y6NGzdyzjnn+DqcYREVFUVERAT5+fnMmjXL1+GMmPDwcKZNm8auXbtYsWKF7kT+YOcM+/n5sXTpUnbs2MHmzZtZtGjRKZ0nDYaOoiievmM3PT09NDU10dTURHNzM6WlpXR0dODv7+/JIoeGhuLv74+fnx9Wq3VQJdfRcaHUnmj2WENnzEpi88e5mP37vfaK0IyuANEtweweR9wrSgGECiig2EHYINhiRiJJDrJxSXIkiQFW4gNsKEB1Ww9V9d0cPN7K6uZualt6UNXesmlbq91r7jF9x0PZLNBpRyiCjBnx3P3wFaz99262rj7Exv/sQSiukm73Oq5s8twlGR4xDPDlO89n36ajlBypJCw6mG88dMVgXiLdcuLECXbv3s3MmTNJSUk55XJngiguLy+nsrKSlStXnhGVLHa7naNHj+reBfxnP/sZV1xxhS5MkgwMhoIhiA0MfMCkSZO45ZZbePjhh/noo498Hc6wmTFjBhs2bCA5OfmMMNdIS0ujtraWvXv3smDBAt2cuAxWDLuxWCwsWrSIPXv2sHHjRpYsWTKuplCfNaxWK5MmTWLSpEme+3p6emhubvYI5fLycrq6unA4tLm8fn5+2Gw2/Pz8+ty87/v9m3fyyD2vUlPZxIy5ya7ULqjKqd+3VgT+fmYC/c0EBZkI9jMTEKD9H2w1EWwzE2QzEWgxoUpJp1PFT1EwiU5217Xxn7Z6Gmtd4rdTYvGeRCW0EATg8BeY2qTHbEt4JRNMNgvnLMviy99YSfq0eJ796dv8+6WNrgcVpOpywHZhtpi49o7zuPxrK/o8l7CoYP7wvx/Q0thOUGgAJpP+hdOpKC0t5eDBg5x11lnEx8efdnk9i+K2tjb279/PvHnz8Pc/M7L++fn5Hp8BvVJSUsJ//vMfdu7c6etQ9IUOTLUMjB5iAwOfUVpaSmZmJtu3b2fOnDm+DmfYHDp0iObmZpYsWaIbAflp9PT0sHbtWqZMmaKLk8ihimFvpJQcPHiQyspKFi9eTGho6BhGajAYHA4H3d3ddHV19bn1v89u18qRpaucWHVq/0tVogIBgRa6up0oQhu5JITA5JoR7FQl7V1OWnsctHY5abW7fu520tqj/Vzn76TN6cRmUvjZrBQePFBCT7cKEpQWbeSScEgsPX3PvYRTc7WmRxJY7/CMW1K6nSg9Ti2DLCVKUycC+PoPL+avv36Pnk7X7GQptWy2a5yU1c/CD568gSUX6L8KZThIKTl69CiFhYUsXLiQqKioIa2vt55ip9PJxo0biYqKYubMmb4OZ1RoaWlh/fr1LF++XNcXjm+99Vaqqqp47733fB2KLvD0EF/tox7iN4beQ/xZxsgQGxj4iOTkZK6++mp+/vOf89Zbb/k6nGGTlZXFxx9/fMbM8rVareTk5LB161aPMdJEZSRiGDSRNGvWLGw2G5s2bWLBggVnhJOrnjGbzZjN5j7jLQaiva2Tr676JVJq/bNC0YSvYrVgDjRx+dem8/YH5XT3qKhOFdWpjSTuViQtVqG5SdsAIXC6xy6JXnHbZdF+71JVWu0OovwsVHR3a+ZbCpgd4BpJrCF6fxdCINwpYSnBoaWNVYuCya6C0EqihZQ89+h7oKpgMoHTqY2GMsHsRVO44xdXMSkhHKtNv+NpRoKqqhw8eJATJ05w9tlnD+uCld4yxYcPH/Z4VJwJSCk5cOAAqampuhYmtbW1vP7666xevdrXoegSYaQeJzxnbn2RgYEOuO+++3j33XcpLCz0dSjDxmKxMHPmTA4fPuzJWumdyMhIMjMzPeOYJiIjFcNuhBBkZWUxc+ZMtm/fTnFx8YBmGQYTDAmtDV20NXbTUt9Fc20njbVd1Fd1UF+ujUiqr++moaGbpiY7La122trsdLc6EVL2nqBJ2SfFK6TXyZur4KOu2060zdIrmv209QYsCHGdVUiXg7XA1QrsNeYJCdLP0rt/z7oKSImU8PkblpKYNukzK4Z7enrYtm0b9fX1LFu2bETVG25RnJ+fz7Fjx0YxytGlsrKSsrIycnJyzoi+YYCKigra2tp0bwz2yCOPMHfuXJYsWeLrUAwMxoQz4xvHwECnTJ8+nYsuuoiHH37Y16GMiISEBAIDAzl69KivQxk1MjIyCAgIYP/+/RNOII6WGPYmOTnZc9J84MABVFU9/UoGPiMw2J+Lr1vk+d3mZz7pD7pwSISq3VypW03jOqWWlbVrDb5CpU+fW/9sRm23nSibBc87wgRCeqnh/sJYahdaugPc2xSe/6VEK4l29/ueosvi47d3eX4uPlLJ/97cQfmxmlMdjjMK9+xdk8nEOeecMyr9/RNdFLe3t7Nv3z7mzJlz2uoIvWC32zl06BAzZ87EYtHvhZ2WlhZeeukl7r//fl+Hok+k9M3NYEgYgtjAwMfcf//9vPHGG5w4ccLXoQwbIQTZ2dkUFRXR0tLi63BGBSEE8+bNo76+fkJl8MdCDLuJjIxk2bJlNDY2smXLFrq7u0dt2wajzx0PXc5jf/8GD/zxK/xj+0O8l/8YN911HsFhmhGRIl09vdArdgUoDrejtEuNuoyw+mSHva6H1PbYifbzOqFXtO0J2WcxTwbZfZ8z0KyJ3z5ZYK03WEhJYLAfVov2/hWK0EqmXQSHaaJo6+qD3PH5x3nie6/xzQsf48DWifNZHAuqqqrYuHEjCQkJLFiwYFSF1EQVxXa7ne3bt5OYmEhCQoKvwxk18vPzCQoK0v1zevzxx0lOTubCCy/0dSgGBmOGIYgNDHzMggULWLhwIY888oivQxkRISEhpKamcvDgwQmXUR0uNpuNhQsXkp+fT1VVla/DGVMx7CYgIICzzz4bm83Ghg0baG5uHvV9GIwOQgiyF6az+LwZ+AVoY8Ku/da5PPfu3V4LQe8QYfd6oDjRMsduvD+yEszNrpSx6Fcy7Z1FluLkDK/o3UafUUtSIpwqQghS0qN5+f17eXPXQ/x984956u1vc9/vrkdxmX75BVi54tblALzz4gbP94mqSv778qZhHq2JjZSSgoICdu3axZw5c5g2bdqYmBRONFEspWTPnj3YbLYzxkQLtKxqcXEx2dnZujab7Orq4s9//jM/+tGPdP08DAxOhyGIDQwmAPfffz8vv/wyTU1Nvg5lRGRlZdHa2kplZaWvQxk1wsLCmDt3Lrt376a1tdVncYyHGHZjNpvJyclh8uTJbNq06Yx6PT8LePovVbVX6PYTvCAwd6MJVXe5tNfN2oNH0LpLpoVCX8ErT1Hx7LUvpzvr7JV9njYzgQ/e3k1TYzvBoQEEhfjzvzd3kjglji98dRkvrP8xqdO00UJBIf4orjiEEASF+NPa2M7hnUW0NrYP+xhNJJxOJ3v27KGoqIizzz57zDOKE0kUHzlyhJaWFubPn3/G9A273fv1bqQF8MwzzxAUFMSXvvQlX4eiW9yVN+N9MxgaZ8a3j4GBzlm1ahVZWVn87Gc/83UoI8JisTBjxgwOHTo0Yc2ohkNCQgJpaWls376dnp6ecd//eIphN26zrblz57J3714OHz5s9BVPcKSU/PHn/+a6JZongZbR0c6MBGjly6DVNEuJcAJOiUD2PZlCK7V2lzrX99gxC0GIrfd9p0qpjVc6KQi0+RWuPmKnzbUv9zglKXn/nb289sJG7v7qX3A4nDz4tefZvTGf4wXV/Oevmykr6u0VvvW+S4mODwcgISWKJRfO4iuLf8r3rniSryz+KQUHykbvAPqA1tZWNmzYQEdHB8uXLx83V/uJIIorKiooKipi4cKFWK1Wn8QwFlRUVNDa2qp7I62uri5++9vfcv/994/L3xwDA19iCGIDgwmAEILHHnuM5557Tte9xACJiYlnnMEWwNSpUwkODmbXrl3jKgx9IYa9iY+PZ9myZdTU1LBp0yY6OjrGdf8Gg2frmlz+8/IWnA7t/Rna2kN8bJgrmytdpcsgnG6TLa13V7gfdztO98smOyU09ji0smkXPcHa/8KrFFu7w7VdtG06/RWXEHdt1CWOpZScKG/kqZ++Q1lRHaqzd6fFeb0VCfEp0byw4X5e3/swf1rzQz54ZQvdrpnFXZ09vPbUR6Nw5HxDWVkZGzZsYNKkSSxduhQ/v/GdVepLUdzU1MTevXuZN2+e7rOo3pwpRloAjz32GEFBQdx4442+DkXfDFCBMy43gyFhCGIDgwnCihUrWLx4Mffdd5+vQxkRZ6LBFmjP66yzzqKrq4vDhw+Pyz59LYbdBAcHe0a/rFu3ziihnqA01Pb9vLWpkuqiOk3wel3DEVLrH5ZOLxEMn3oS5S6b9ixj61cu3ecXidO1XWkzaQ8JgUTt7Vt2CfCP/rNXc5w2m8AkUEyCWQv7zspVFIWQ8EDXfOPeHWnTnPTX1+hwONi7dy+HDh0iJyeHGTNm+Kxc2BeiuKurix07dpCZmUlsbOy47HO8OFOMtJqamvj973/PL3/5S8xms6/DMTAYcwxBbGAwgXjsscd4/fXXyc/P93UoIyIkJIS0tDT27t17RpXZWiwWFi5cSFlZGaWlpWO6r4kiht2YTCZmz57NnDlz2Lt3LwcOHMDp5Qps4FvKj9UQFGwjMNivVyQqAsWugkObPexxe1YlAs2F2qNkvX924/Xy1nXbibZaUUHblqsa25NU9tLVCIF0PS7U3vswKdoYKPdyUmqzh12PR8SE8cuXv0HatHhydxfz7subKD7S9+LLdXdfiF+gDQC/QBvXfkdfzrctLS2sX7+e9vZ2VqxYQUxMjK9DGldR7HQ62blzJxEREWRkZIzpvsabhoYGSkpKdG+kBfDQQw+Rnp7OF7/4RV+HYmAwLhiXfQwMJhBz587lsssu44c//CFvv/22r8MZEVOnTmXdunUUFhaSmZnp63BGjcDAQObPn8/27dsJCgoiMjJy1Pcx0cSwN/Hx8YSGhrJr1y42btxITk4OQUFBvg7rM80Hr23lqR+9ARIiYkK54pYVgFbaLs1aVlWoEm9tKqXQxjJ5lVL3caRGQI8Ef+2+2i47U0MCXGJWW1BKtMvqwlUj7a2KzSDsIBA4FTCpaK7U0CvMhQBVenY5KSGMneuO8M6LG9n60QEAFJPCIy9/k9lLNPGUPiORv259kIqiWhLSogkKHfmM3vFASklpaSmHDh0iPT2drKysCWUi5RbFW7duBSA9Pf00awwdKaXnQtrcuXN1Lxq9cTqd7N27l8zMTN2XgFdUVPD888/z7rvvnlGvka8QqteFwXHcp8HQmDjfxgYGBgD84he/4IMPPmDHjh2+DmVEmEwm5s6dy9GjR8+o0mmA6OhoZsyYwY4dO0bdeXoii2E3gYGBnHPOOURFRbFu3TqKi4vPmFFbeuSlX73rEaKNtS2YTb0nsSe9KlJqc4dVl9GVW5v26xtGSsyt7p+1kuloP8sA/cJedwjRuz+l113aHmjyzDpW3XOJVVdzMmgl08CRfWW89fwGtv7vMJqltRbHR29s7/MUgkIDyJqbrBsx3NXVxc6dOzly5AgLFy5k2rRpE0oMuxnrTHFBQQHV1dUsXLhwQn6vjYQjR45gNpuZMmWKr0MZMT/60Y9YunQpy5cv93UoBgbjxsT7RjYw+IyTnp7Orbfeyg9/+ENfhzJiIiIiSE1NPeNKpwFSU1NJTk5m69atdHZ2jso29SCG3SiKwsyZM1mwYAEFBQVs2bLFMNzyEWaLV7GXlJgtJs/Pnnpm8JRFC5W+xisqHsHquQmB2dnrPF3f1UOE1axpV9e66qmugXh6kjXxK61KryO1cO3Pe12lN3MsvbPHLkIjAgd/MCYQUkoqKipYu3YtQghWrlxJdHS0r8P6VMZKFJeWllJQUMDixYvx9/cfte1OBBoaGiguLuass86akBc6hsKRI0d4/fXXeeyxx3wdypmDYaqlC/T9yTUwOEN54IEH2L59Ox99pF8HVTdTp07F6XRSWFjo61BGnWnTphEdHc3WrVtHPGZKT2LYm0mTJrFy5UoCAwNZu3YtJSUlRrZ4nLn9Z1/yiODUafGsumI+AN++7xKSp0RrJ0eu3l3N/dlrVmU/cex9PqW45hQDNNudOKQkwuoy1pIC56km5bhKru3CqyTbjblXrAtcjyunKssUZGRP5tq7LhjqIfE53d3d7Ny5kwMHDpCdnc38+fOx2Wy+DmtQjLYoPnHiBAcPHmThwoWEhoaOQoQTB/cM6aysLIKDg30dzoj5wQ9+wBVXXMHs2bN9HYqBwbhi9BAbGExAYmJiuPfee7nvvvs4//zzdX3V2V06vXnzZmJjY3XfX+WNEILZs2ezY8cOtm/fzuLFi4clZPUqht1YLBbmzJlDfHw8e/f+P3v3HRfVlf5x/HOn0Xuvgoio2MXeQI1Gk2iapieasvnFFFM3yZpqkk3b9LJms5tkk2yMcTfRVDX2BlhRVEREQBDpvU659/fHMANYoigwMJz36zVRptx5ZoJwv3POec4+8vPzGTp0KM7O3WNKa3c3/vLB/Gfni5SXVBMa6YesmGdjbF+bSvGJsubp0E3h1DJVWrGMFqtBrYBRVkDdPFprCc+WP0oazJ2my6rMH/7IasCotFhDjHUEWALQAkbz+mWTAmrreuXmPYwlCZSWi5slFZZuXuExQby78uEOetc6zsmTJzlw4AC+vr5MmTKl2wThltprTXFpaSl79uxh+PDh+Pr6tmeJXUJaWho6nc4upkpbPoRPS0uzdSl2xfrhYyc/p9A23fcsWxDs3BNPPEFOTg7Lli2zdSmXzMvLyy67ToN56nBcXByyLF/UHsXdPQy35O/vz5QpU3BychKjxZ3M3cuFXtGBqDXN3z8pOzNpqKxvntusAJbvT1kx70csKy2GhFscUJLMH5nLWO9T0mDA37Fpb1VFOcsZhNK8B7HlS/NVGN0sI8Ny8/RpwMfPHQzG5kOoJJAkVGoVgWHeF/1+2EJ3HhU+m0sdKa6qqiI5OZnY2FiCg4M7oELbsnSVtpcGYU8++ST33HMPkZGRti5FEDqdCMSC0EW5u7vzzDPP8OKLL9rF9jYxMTF2O3Vao9EwZswYampqOHDgwAWHQHsKwxZarZZhw4YRFxdHeno627Zto7Ky0tZl9UiySUElK6gbjeb9f01y0wgx1qnSkvzHIxiSsWlNsWLeesnXQds0i1oC65Tp1ut+ZUvAtkyZljE3zmqatq003XX+/VP554+LUJ8WJlQaFZ4+rkQPCqWhXt+eb0mHUBSFrKws1q9fj6IoJCQkdPt9aC0uNhTX1dWRmJhI79697TJg2dtU6V9//ZXdu3fz7LPP2roUQbAJEYgFoQtbuHAhDQ0NfPjhh7Yu5ZLZc9dpAJ1Ox7hx4ygsLOTIkSPnvb89huGWAgICmDp1Kt7e3mzZsoUDBw5c8jproe1UahWKJCHpTUiSytrZ2bKeWK1vsVXSWaj1gCyBDCX1Bnwdtc37C1saZJ3WadrayEsjmTN4i35aKOYRYMUg8+9313LPFe+gcWruXj0wLhJXNwcqSqr55v3feXbBP7v0LIOysjI2b97MsWPHGD58OKNGjcLR0dHWZbWrtoZivV5PYmIigYGBxMTEdEKFnc+epkrLsszixYt57LHH8Pf3t3U59seyB3xnX4Q2EYFYELowBwcHXn75Zd544w0aGhpsXc4ls0yd3rt3r91NnQZwcnJi7NixZGVlcfz48XPez97DsIVGoyE2Npb4+HhqampYv349J06c6NIBx57c99SVjLtsQNPaXPPYrGQZIW4KrZJebtGNuumB1u5boK02rwGWaA7E1tFkGc46eUVt3n9YkiRM2qbnsZyjWdYxN921pKASfYMRVCri5wzjqptGU1VWhyyb9zk+uPM45cXmrc1qq+p5+7FvuH/GG3z55i+YTLb7GdLY2Mi+ffvYsWMHQUFBTJkyhcDAQJvV09EuNBQbjUaSkpJwc3Nj8ODBdjGV+HSlpaV2NVX6m2++ITc3l8cff9zWpQiCzYhALAhd3C233IKXlxdLliyxdSntIiYmBlmWOXr0qK1L6RDu7u6MGTOGw4cPc+LEiTNu7ylhuCU3NzfGjh3L4MGDSUtLE9OoO4lGo6KxrrF5xEBuMXJgHUlomjZtakrErfYZlsw52gQYoKTWgLtOg4Pa3IxLQkLWtj5Wq5EJxfwfyWRp4tXEcJYUrSik7DhGQMt1wxI4OOlwcTdv0/P35/7H+v/u5Pjhkyz7YC0/fr6lXd6ntmg5PVqv15OQkEBMTEyP+Hd8vlBsMpnYuXMnKpWKESNG2EVYPJ3BYGDfvn3069fPLqZKNzY28txzz/Hss8/axevpiixLUjr7IrSNCMSC0MWp1Wo++OAD3n///XbdF9JW1Go1I0aM4NixY5SUlNi6nA7h7e3N6NGjOXDgALm5udbre2IYtpAkieDgYKZOnYqPjw9btmxh//79djHzoav68IVV7Nqc0RxSjc0jqtYTJ8saYSz/aUFqmuGMORg3GGVqDSZ8nS2NtTB3klZaPrhFx2kF0Kisz2VyVJmbejmokU+f3idJ1FTXc2T/CQaOjcLBSYtOpyGsjz+Hd2cBcHT/CeSmBmEqlYrjh062+3v2R4qKiti8eTOZmZmMGDGC0aNH4+LSPfdIvljnCsWWMGwymRg9erRd/mxTFIUDBw7g5OR00V23u5oXX3wRBwcHFi5caOtSBMGmRCAWhG4gISGBK664ggcffNDWpbQLDw8PYmNj2b17N42NjbYup0P4+fkxatQo9u/fT15eXo8Owy1pNBoGDBhAfHw8jY2NrFu3jrS0NLG+uKOYZCSjCUmW0TQYzWt/LcsVFNAoNHehrj/tsUrr5cFw2jriFs25TmcdKNZKzeFYq27O3Dp18/NirsmkN7H05Z84uCubRoOM3mAi82Aez975T/726H+oqao3521JQjbJDJvY92LflTYpLy9nx44d7N69m5CQEBISEggICOiU5+6KTg/FJpOJXbt2YTAYGDNmDFqt1tYldogTJ05QXFxsN6PfmZmZvP/++/z973+32/9ngnChxD7EgtBNvP322/Tr149Vq1YxZ84cW5dzySIiIigpKWHv3r2MGTPGLk4wTufv78/IkSPZtWsXjo6OuLi49Ogw3JKbmxujRo2irKyMw4cPk52dTXR0NJGRkeL9aScqlXmtriIrSJKMQlOnZwkUSYGm27WVRozuWtydVbRsd6dYho5NmD8+l5oCsZMOSa41h2ItoOfMLZskxdp4y6SAplWjF8m8vRK0mmKttFwT3HS9ooDJKLPh+90osgJIRA4I5pq745ly7ch2fLfOVFNTQ1paGoWFhURGRhIXF4dOpzv/A3sASyjesWMHOTk5qNVqxo0bZ7fBqqqqitTUVLtqmvbggw9y5ZVXEh8fb+tS7FvL/gyd+ZxCm4gRYkHoJkJCQnjuued47LHH7GJUVZIkhg4dSk1NjV1uxWTh7e2Nk5MTdXV1hIaGirB3Gm9vb8aPH8/w4cPJzc0VjbfakaOjFkUxN9JCxjpCKzWtG7ZMV1ab4Imb4/lw8Y3Wx1pnQUugkpvWGctQUmfAz0kLMuZmW5ZjnUa2fL6ltGispTc1H1eRmpYYt2jodXq36hZfK02jyZIkERzhx7TrR3VYU62Ghgb279/Pxo0b0Wq1TJ06ldjYWBGGT+Pu7o67uzvV1dUEBQXZbRg2Go3s3r2b3r17200X5lWrVrF161befvttW5ciCF2CCMSC0I08/PDDaDQau2mwpdVqrfvVlpWV2bqcdmeZJu3s7ExcXJx1+rTQmiRJBAQEEB8fz4ABA0hPT2fjxo3k5eWJYHwJ6msbm/cfBlQtAqQESKamUGtS+PaHnbz2zq+tD2ANtc0hurTOgI+Ttulm8x1UZzTTUqDF5z6yi4RkUFCp1aBSWbdqauq5ZX2sVtf8II1WhZNTi4ClVpvXNCsK0YPCWHTlW1wZ8QgPznyT0oL2adDW0NDAoUOHWLduHXq9nvj4eIYOHYqTk1O7HN+eWKZJy7LM2LFjOXbsmF30uDibgwcPotVq6devn61LaReNjY08+uijPPfccwQHB9u6HLsnmmp1D2LKtCB0I1qtlo8//pjZs2dz9913ExkZaeuSLpmXlxf9+/dn9+7dxMfH280ozNnWDGs0Gnbu3ImiKISFhdm6xC5HkiRCQ0MJDg4mJyeHtLQ0jhw5Qp8+fQgLCxOj621kGVVFb0Tn4oCblwsF+ua12pLKvL7XqJXIr6qFyhoIUFtHZhVLIDZibp4lQUmdHl8nbfOosCKhWFpIK4o1RJv3HAZJUUCjsn76rkgtenc5aKDBXM+Cxy4nuJcPsklGlhXCo/y5/4oWo1eSRNTAUGbMG03mwTyOHTR/sHQ87SSfv/YTj79760W/T7W1tRw7dowTJ07g7+/P+PHj8fLyuujj2TuTyURycjJGo9E6TXrs2LEkJiYC2E3DKYC8vDzy8/NJSEhApbKPMaQlS5ag0+l4+OGHbV2KIHQZ9vGvWxB6kClTpjBr1iweeOABW5fSbnr37o27uzv79u2zixHBczXQ8vf3Z/To0ezfv5+cnBwbV9l1qVQqIiMjmTp1KjExMRw/fpzff/+dY8eOieZbF0GSJAwNBspyy1o3smoiO6qtnZ6B1qO9Tct9zVszQXmtEa1awtVBbZ1GLauaRiXAOiWblmuGW3ytnOX5B8ZFsHp5Eq/c/yWvPvQ15cXVhPcJwNnVscVxzCPMV90xkfLiKus+5rJJoazo4kaIq6qq2LNnDxs2bMBoNDJ58mRGjx4twvAfsOwzbDKZGDt2rHWa9IXuU9yd1NTUsH//foYPH243swSysrJ47733+Pjjj+12inuXc3pH/c66CG0iArEgdEPvvPMOmzdv5scff7R1Ke1CkiSGDx9ORUUFWVlZti7nkpyvm7Sfnx9jxozh4MGDZGRk2MUHAB1FpVIRFhZGQkICQ4YMIT8/n99//50jR47YxTr6Die1/tNo+ausNO1JjHWv4NPbSVu2YbKMElsCr0lWqGww4uuibb1+2LK1sNJ8BLnp+JIimbdZMilIOjUygKLg4e2CpJI4uDubUyeal0z8+63fyEo/RfTg0BbTthWy008BcPlN41rVOvPm1l+fT1lZGcnJyWzevBmNRsOUKVMYMWIE7u7ubTpOT9PY2Mj27dsBWoVhC3sKxSaTid27d9OrVy8CAwNtXU67eeCBB7jiiitISEiwdSmC0KWIKdOC0A1ZGmw9+uijzJgxAwcHB1uXdMl0Oh1xcXEkJibi7e2Np6enrUtqswvdWsnX15fx48eTlJREQ0MDAwcOtMsu2+1FkiSCgoIIDAykpKSEjIwMjh07RmhoqHV2gXCmiTMGsWvzUWrrGpFNltFac5OtVh/DGGXz9kgABgV05s/KW2RbWl5RWmfAx1lLrtxgvq5ppFhRtb6vJJlHlZGh0UWDc7XRfKXK3Hq6qqK++fCS1KKztMJD175vPrZKBSYTKrVEv2G9ABg7YxDvrHqEtD3Z9BvWi/4jzr90RJZl8vPzycrKoqqqioiICIYMGWI3HYM7Wl1dHTt27MDDw4Phw4ef82ebJRR39+nThw4dQpIkBgwYYOtS2s2qVavYvHkz6enpti5FELocMUIsCN2UpcHWSy+9ZOtS2o2Pjw99+/Zl9+7d3W5qbFv3Gfb09GTixIkUFhayZ88e6xRQ4dwkScLPz49x48YxceJEFEVhy5YtbNu2jfz8fPEenubhv17Pdzuf57oFk4CmT8DP0plZrW8eLVYbTpux0PJzmqb7lNQamtYRK+aLmlbdqyXZ/HdFah5ZVlxa/HvQqJoPq259GqJSS7h7u1rDt6RW4RvixfTrR7H44zvMZSgKvfuHcM3d8ecNw/X19Rw5coS1a9dy5MgRgoODmT59OrGxsSIMX6DKykq2bNmCv78/cXFx5/3Z1t1HivPz88nNzSUuLs5u1g03Njby2GOP8fzzzxMSEmLrcnoU0VSrexAjxILQTel0Oj7++GPmzJnDXXfdZRcNtgCio6MpLS1lz549jB49uluMnLY1DFu4uLgwYcIEkpKSSEpKYuTIkWJd1wXy8PBg2LBhxMbGkpOTw6FDhzhw4AC9evWiV69eODs727rELmP+I9PxD/YkK/0Uw8dFU17fSNbxIlau2mcemTVh3TP4rHtmtvwnaIKyWgNRPk4ocnMzaZWiYJKl5o/ZLbOwLflbklo03mqxVlmlwjLfOijCj7eXL+Sl+7+krKgKWVaQgIQ5I7jziVkAFOaW8sztn5CXWUT04DCW/PtePH1cW5WrKArFxcVkZ2dTUFCAn58fw4YNw9/fv1v8POlKSkpK2LlzJ1FRUfTt2/eC37/uOlJcVVXFvn37GDZsGC4uLrYup90sWbIEjUYjGmkJwjnYx0dfgtBDTZkyhZkzZ/Lggw/aupR2I0kScXFx1NTUcPjwYVuXc14XG4YtHB0dGT9+PAA7duwQa2PbSKfTER0dzbRp0xg2bBhVVVWsW7eOxMRE8vLyMBqNti7RpupqGlAUuPKmMTz4wjWMnz6QK+eM4IGHL0elkkBWUFCsI7zahhZpWKF1GG4KzKW15inTLdcgK4BKVqzNt6yjxJaHKkqLnK00r51vcfyC3DJ0DloWPnc1Ht7mMBLZL4jr755svc+nL68iP7sYgMxDJ/nm3dXW22pra0lPT2fdunXs3bsXV1dXpk6dytixYwkICBBhuI1OnTpFUlISsbGxxMTEtPn9624jxXq9nuTkZKKiouxqOyLRSMvGFBtdhDYRI8SC0M2988479OvXjxUrVjB37lxbl9MutFoto0ePZsuWLbi7u3fZLYouNQxbaLVaxowZw969e9m6dStjx461q9GJzmDZyzggIID6+npOnDhBeno6KSkpBAcHExoaip+fX48KRS8/8CU71x/BzcOJ5z5ZwMC45lkkkiRZ1xVLMtaAKutpPpkyceZZgmQeIfZy1qJSN92naesl85RppXk9cNOIsHkLJgmjA2jrzV8rquaGXJbcrSgK5SXVRA0I5quti6korSEr/RTZRwsYODISlUpFRUm1tW5FUaipqiUrK4vc3FwqKioICAhgwIABBAUF2c10V1vIzs7m4MGDjBgxgqCgoIs+TncZKZZlmV27duHh4UFMTIyty2lX9957L7NmzWLKlCm2LkUQuiwRiAWhmwsJCeGNN97goYceYsqUKfj4+Ni6pHbh5ubGyJEj2blzJ66url1uK5T2CsMWKpWKESNGcPDgQWso9vDwaKdqexYnJydiYmLo27cvlZWV5OXlsXfvXgBCQ0MJDQ3Fw8PD7sPxvu0ZANRUNfD2k8v5bP1TrW63zJBWK2A0KaCWzFOcLaHWdMYhQQWVtUYURcHTWUtlpaF5vW+LEWGUFl83rSOWNVKLAeGmZ5ckJK0aySQT1tuPwFDzv3NFgVcX/YdDe7IBiL9yKH9++yauvGMi6ftz6DXQl74jA+g10JO8vDzCwsIYPXq0XTQYtCVFUTh69CiZmZmMHTu2XX6fdIdQfPDgQfR6fbdZpnOhPvnkE/bs2UNaWpqtSxGELk0EYkGwA//3f//HihUrrH/aC39/f/r168fOnTuZNGlSl9kLsr3DsIUkSQwcOBAHBwe2bdvG8OHDL2l0pqeTJAlPT088PT2JjY2luLiYvLw8tm3bhpOTk7VztZeXl12dBFuoml6ToijUNHV0bkmnU6PXt0i9JnCQwNLOzjxqC6dvy6QAZXVGfFy1VFUYrKPAUlPHaVSK9Y6SCiSj+UCKpmlIWQG0atA3rx2eMmMgs28bh1pj/rd0aE+WNQwD7FiXSlrqCNxCFP70dgKyEQL8gxg0rL+YTdFOTCYTKSkplJSUMGHChHbt3t6VQ3F2djYnT55k8uTJaDT2c1qcm5vLU089xSeffIK/v7+ty+mxbNHkSjTVajv7+ZcvCD2YJEl8/vnnDBw40K6mToP5xKmqqoqdO3cyYcKEdgufF6ujwrCFJEn07dsXV1dX9uzZQ3R0dJua2QhnJ0kS/v7++Pv7M3jwYAoLCykoKCApKQmVSkVAQACBgYH4+fnZzUmxo7OWxnrzGupr75p0xu3uHk6UFNeYvzAp5g5ZSvP2R2rAqNCiCRbWP0tr9Pi6aslWwLxhsWLefgkFZKk5TcuWPxXQtpjC3OLbubi4ipsfmNpqirPOQYubtwO9BngTMcCboN7uZOdmEREZzoSJE/D09BT/JtpRfX09O3fuRJIkJk+e3CEduLtiKC4pKeHgwYOMGTPG7hrx3XnnnUyZMoV58+bZuhRB6PLs47e+IAj06tWLv/3tbzz44IN2NXVakiSGDBnC9u3bSUlJYfjw4TY7Ee7oMNxScHAwLi4uJCcnU1VVxbBhw+wmqNmaRqMhJCSEkJAQZFmmrKyMgoICDh06RH19PX5+fgQGBuLv79+tT5Lf+d9DpCZlERDixZCxfc64vaK8zvp3tV5GdlRbt0o6Q4vrJAVKawx4u2ib50QrCpJs7iStSJZ1xE3bMclY1xXLinkbYuTmtcMGvYmqijokoNFQR0lpCafKTnHTUyPIP1ZJ9qFStvz3GKG9Anjru8vb8R0SAMrLy0lOTsbf358hQ4Z06M+1rhSK6+rq2LVrFwMHDsTX19dmdXSEpUuXsnfvXjFVuiuQmz4Q7OznFNpEnF0Jgh3505/+xHfffce9997Lf//7X1uX027UajWjRo1i8+bNZGZm0qfPmSf3Ha0zw7CFh4cHkydPZteuXWzbto1Ro0Z164DWFalUKnx9ffH19SU2NpaamhoKCgrIzc3lwIEDODk54evri4+PD76+vt3q/fcN8GD69SPPebtWp8ZoNHe2UlRScwMsvQK600aFLQuOUaydpgeHuJqbaLW4WWV5jOVYxqYDyCApEkYHFboG8x5PkloiIMiZ4AhXln/9Iz6BjphMCo01sHv1UXKOVKDXK9YR61LHqvZ6a4Qmubm57N+/n/79+9O7d+9O+bCxK4Rio9FIcnIyISEhREREdPrzd6Tc3Fyefvpp/vGPf4ip0oJwgUQgFgQ7IkkSn332GQMHDuS7776zq6lSjo6OjBo1iu3bt+Pm5kZAQECnPbctwrCFg4MD48aNIzU1lS1btjBy5Ei7Gf3vaiRJws3NDTc3N6KjozEYDJSVlVFSUkJ2djYpKSmtArKPjw/Ozs7dZupuVXktOgctjs46AEaP6cOmDYcBqdUmjFq9glFjvvqMTtNN+bSsxoCPqw6TYrm5eaq1ZJkqbdmnuKmbtFolERDpSoSnI8G9XAgOc8FkVMjPrubYwVK2/FBBWVG9eXSjvqHpQWrrlO2QSD9KCir4/budyLLMzJvH4e3ffutcexJFUTh8+DA5OTmMGjWq04OTLUOxoijs3bsXnU7HwIEDO+15O4MsyyxYsICpU6fa1dKpbs0W2yCJAeI2E4FYEOyMZeq0peu0PU0F8/LyYujQoezevZuJEye2a9OXc7FlGLZQqVQMHjwYd3d3EhMTGTRoEL169er0OnoarVZr3coJOGtA1mq1eHh4WJt3eXh4dLmQLMsybz+1gvWr9qFSSzz8yvVcds0IcyBefxhQzMFXbU7FkmyZ5gwqI8hqmjtJY95iqaxaj7uTBq1OQtEr1q7S5pM/Ca0E/j4O+Ps6EODjSICvA75eDugNJvKzazhxrJrE9fmU59daR5QxmMyjypLUvHWTLINajSSZu2b/6bI3aKw2NwhbszyZf6x/CkfnMztLN9br+fSllaQmHmPQ2D7c8+zVODjpOvqt7hYMBgN79uyhpqaGiRMn4ubmZpM6bBWK09PTqaysZPLkyXa3Ndff//53UlJSxFRpQWgjEYgFwQ5Zpk7/6U9/4vvvv7d1Oe0qNDSU6upqkpKSmDhxYod2nu4KYdhCkiQiIyNxdXVl165dVFVVERsba3cndF3Z6QHZZDJRVVVFRUUFFRUVHD16lKqqKjQajTUcu7m54erqiqurKzqdbQLZnq0ZrF+1DySQZYV3n/kfk2cNZsrUWJJ2ZLB5YxrOWjWR/YM5mJaPk1FFTVMAVhkVFJ3U3ASraV50nV6mXm/Cx02LoU7G202Ht6uGAE8HAn0d8fHUodfLFJY0UFTcwM59NRQVN1BZYcChvLHpWE17F0NTCKZ5ZEOrAb0B3yBPykprkU0yoFBfp7eujys+Wc6x1DwGjj4zSH391m/8+vV2FFkhN7MQJ2cH7npmToe9x91FTU0NycnJODs7M3nyZLRarU3r6exQnJOTQ2ZmJhMnTrTZv8eOkpOTwzPPPMOnn36Kn5+frcsRhG5FBGJBsEMtp04vW7aMm266ydYltat+/frR0NBAYmIiEyZM6JATm64Uhlvy8/Nj8uTJ7Ny5k23bthEXF9et1rXaE7VajZeXV6s9sluG5MrKSk6cOEFNTQ2NjY3odDpcXFysAdnV1RVnZ2ccHR1xcHDosFHlY4dPNnWywtzYyiRTVVGPb4A7vr7m0cHGBiM+Lo6sXvUoR7ILuXfJcvMIsWzOqm6OGtwdNfg4afFx0ODrokWjklgwNQyAimoD5VV6Ssr1JKaUUlhUT02VsbnLtGRZo6yYd2YCkKTTmniZR58BdC6OPPHOzdTW6nnvL6dtJaeSQFaQVBJ+IWffnzzzUB5KU3BWZIXjh0+22/vZXVnWxUdERDBgwIAuM4uhs0LxqVOnSE1NZcyYMZ0yu6gzWaZKT5s2jeuvv97W5QgtWLek6+TnFNpGBGJBsFO9evXirbfe4pFHHuGyyy6zq6nTls7Tu3btIjk5mXHjxrVrYO2qYdjCxcWFSZMmcfDgQTZt2sTQoUMJDg62dVkCZw/JYP6eqq2tpaamhpqaGqqrqzl16hS1tbUYDAYkScLBwQEHBwccHR1bXbRaLRqNptVFrVZb/zxfsAkM8wbMmVTroEHroKauvobjmVUkJx0iMsoNrVZFbW0piTt2odFJ3BwfjKujBlcnNY46NSZZobrRSFmtgdJaAydKGnBQqyiqamTzzlIUWUFSFFRNew5LMqhMzd2mLeuLreuVZcsbpgKjZZGxZG3CZTTJjLlsIBqtmqVLVtLY0LQ7skrC2dkJZ2cdd/3lKgJCvc/6muMS+rNvazoqlYQsK4yI79e2/5F2xGg0kpqayqlTpxgxYgSBgYG2LukMHR2KS0tL2bNnDyNGjLCr34UWH3/8MQcOHBBTpQXhIkmKooil14JgpxRF4bLLLsPNzY0ffvjB1uW0O6PRSGJiIjqdjpEjR7bL9OGuHoZPd/LkSVJSUggLCyM2NrbL1yucyWQy0djYSENDQ6uL5TqDwYDRaGx1afmrW6PRIElSq2Cs1+vR6XQoioKiKDTU69G02AdYlsFkVKit1WMwyBj0MnX1RuoaZKprDFRKCtUNJmobjJRqZer0cvOwg6ygaYTxfT3xcdPx2+YCawdqtYHmPYlN5pBMy72MZQVdpb75xSsKKoPJ+ndrOAa+3vBnfAM8ePi698k4mIdsMr/mPy2+in2b0ji4M5N+wyJ46qM7cPdyafWeKorCb//ZweFdxxkwsjczbxnXZUZEO1NVVRW7d+9Gq9USFxfXoUtM2kN5eTmJiYnExMS0Wyiuqqpi27ZtDBgwwO46SgNkZ2czdOhQ/vWvf3HdddfZuhyhSVVVFR4eHoyf+gIaTfvv6/1HjMYGtq9/gcrKSrubDdFRRCAWBDt34sQJYmNjWbp0Kbfccouty2l3er2ebdu24e3tzZAhQy7ppLe7hWGL2tpadu/ejaIoxMXF4erqauuShA5mMpkwmUxnBGRFUTAYDOzYsYPx48ej1WqRJIma6gZ2bU7HwUHHP5duoarS3JhK1kigMQdl2aH5+73BQ2PeikmCRg+pxZRrQDEH4n4hLoyN9uTrX3KtnVSlRhkVTVMEDea/Y1JQaVXmdcAyqBtNqAxNwVdR0MjmadxqCUx6cziWVPDuN/9HzKAw8rNLeP3Rb8jPKSH+qmFIRhO/fL0N2aSgUktMnzeGRW/c2OHveXeiKAonTpwgNTWVqKgoYmJiuk2/gfYMxXV1dWzdupWIiAhiYmLaqcKuQ5Zlpk6dip+fH999952tyxFaEIG4e+kePx0FQbho4eHhfPDBBzz44INkZWXZupx2p9PpGDt2LEVFRRw5cuSij9NdwzCYp1BPnDgRX19fNm/eTF5enq1LEjqYWq1Gp9Ph7OyMu7s7Hh4erbpdA9br3N3dCQ7xZ87NExk4so81DJtJ1i2SaPH5uGRpeGVSwKCYG1lZpj433a2sxoC3q9a61bCkmA/X3G1aQaWXUcmKORzL5pMOpcVINZLElfNG8uiL1zDpsljr1YoMz933JQDBEb689/1DrNizhPtfuIbCk2XW0WLZpHAqp6T93lg7YDAY2Lt3L2lpaYwaNYr+/ft3mzAMzdOn09PTyczMvOjjNDY2kpiYSGBgIH379m3HCruOV155hSNHjvDxxx/buhRB6Na6z09IQRAu2h133MHMmTOZN28eRqPR1uW0OycnJ8aOHUtWVhbHjx9v8+O7cxi2UKlUDBw4kOHDh3PgwAFSUlLs8v+1cGk02tbf25bmzqfPq5BkkEwykmLuNI1CU2iWkGRzPi6vMuCoU+PqoLY2jZEsnaIVc9MrCZpCdNMdFHNbacXyd2DmdXFMnzOMkqKqVjVUltfRUNd4xmtImDMCAJXaXHXCNXEX92bYoYqKCjZv3kxDQwPx8fGdvr9we7nUUGw0GklOTsbd3Z3Bgwfb5XT5rVu38uqrr/Ltt9/a5bpoeyEptrkIbSMCsSD0AJIksXTpUioqKnjsscdsXU6HcHNzY8yYMRw+fJiTJy+8o6w9hOGWgoKCiI+Pp7q6ms2bN1NWVmbrkoQuJDDIs/UVsnL2vxtka3dUlWzZm1gxXwAUMJoUquqMeHlqm/YhNoddSVZan5SdfnKmgNJ09qECVn6bDEDc+Ogz6n3/hVVnXBd/9Qhe/ur/uOH+y3jxiz8x48YxKIrCplV7+OT5/7H9t/0X/obYCVmWOXr0KNu2bSMsLIxx48bh6Ni50zTb28WGYlmW2bVrF2q1muHDh9tlGK6oqODWW2/lqaeeYvLkybYuRxC6PRGIBaGHcHNzY8WKFXz66aesWnXmSaY98Pb2ZuTIkezbt4/i4uLz3t/ewrCFs7Mz48ePJywsjB07dnDo0CFMJpOtyxK6CsuIraKAqWVabQ4OGkPTbbKCqrF5v2BLGFZjDryl1Xq8vXRI1inVzdOtLVs8WY5jnXYNoDaPHiuKQkmheWR4+rVnjvQeS8vnsWvf465JL/PjF1ut14+I78/tT1zBqKnmadY/fr6F1xd+wU+fb+Hlu//J798lt9/71cVVVVWxdetWcnNzGTduHDExMXYTAtsaihVFYd++fTQ0NNjVz/SWZFnm1ltvpXfv3ixevNjW5Qjno9joIrSJCMSC0IMMHTqUN998k3vuucdu15kGBAQwePBgdu7c+Yejo/Yahi1UKhV9+/Zl0qRJlJSUsGnTJsrLy21dltAFqFpOk1a3CE4tAqt5qrR56yRtoyXQAibz/SwzoMurDXi7ac1fKM2B2Xp/BVQtA7hyWjBWFPbuzOSLD37n+Qe/RtK0Pi0pyyvlyN5s8rNL+Ptz/+NAYgYmo4n62tZTqbf9vA8Ak8ncrGvHbynt8E51bbIsk5GRwZYtW/D19SU+Ph5v77NvQ9WdXWgoVhSFgwcPUlZWxtixY9FqtZ1YZed55513SEpK4ptvvrG731uCYCsiEAtCD7Nw4UImTJjADTfcYLejhuHh4fTv35+kpKSzhkB7D8Mtubu7M3HiRMLCwti+fTuHDx+22//vwoXROWjOfsNp2djcVAtUJnM4luTmoCw1JeKyaj0+brpWU6Rly/RqzHlbBfQK87EGZcvUaktnbNmksOyfWzh66CSSSsLF0wkffzcWLJpObWk1coup3Ft+SeH6IYu5duDTvPbQV9YAHNYnwLqmWKWSCOkdcMbL2/LTPp69fSnv/flbKkprLuk9tLXq6mq2bt3KiRMnGDdunN1vuXa+UKwoCocPHyY/P98upoufy86dO3n22Wf55ptvCAoKsnU5gmA3RCAWhB5GkiQ+++wz8vLy7Hq6Ve/evYmJiSExMZGKigrr9T0pDFu0HC0uKipi8+bNYrS4BwtouY5YbtnwiubmWXLrx0iKebRYJZt/hljCbZllhFhpenDTVGkwj0QH+7mh6E3kZhQ17UtsPraEZG66JUm4ujlaw6wsKzg46fjPxqe44U+TGTo+GkkloVKr0GjVbFi1l4Z68z7Gm3/ax9ZfzeuF71w8h9GXDcLLz52JVw3j1sdmtqo/NekYry78gt0b01j7XTIv3fPPdnxHO4+iKGRkZLB582a7HhU+m3OFYkVRSEtLIy8vj/Hjx+Pi4vIHR+m+qqqquPnmm1m0aBHTp0+3dTnCBTIvIen8i9A25/iYWBAEe+bp6cmKFSuIj48nISGBGTNm2LqkDhEVFYUsy9Y9WZ2dnXtcGG7J3d2dSZMmcezYMbZv32790KCnvQ893cyrh/PJO2vNX0jmztCKoiAZFBS1ynK1eQTXshbVpIBGarXtEkBZlR4vV515cLlpirQakIwySHCysAo1tAje5uNNntKfPr39UatVuLk58G6L5lnlJdWczCnFyVnH/X+dx+ZVe6gsq2XqNXE8Ovf9Vs9fU1EHgKuHM8/9655zvua0vdlIkoTStK45fW/OJbyDtlFdXc2+ffvQ6/WMGzeuxwThliyhODExETD/jE9PT+fEiROMHz/ervdgv/POO/Hz8+Oll16ydSmCYHdEIBaEHmrUqFG89NJLLFiwgH379hEQcOYUQ3sQHR2Noijs2LEDR0dHHB0de2QYtrCMFgcGBrJ3715OnTrFoEGDuu32LELbZWUUWgOvZFJAoz5jnw4V5tFapSkPSyZazClTQDY3xaqsMW/t5eaqpbrCYI67Uou1xE0kAL2Jm/80mYje/kxM6I9araK2poGTJ0pbPbeiwCdv/MKuDWkAXH37eO578VokSWL2HRNZ+dkWALz83Bh/+eALes39h0dYp2ir1BIxw3td0OO6ApPJREZGBseOHSMiIoL+/fv32J9f0DoUFxUVUVlZyfjx43Fzc7N1aR3mww8/ZP369ezfvx+NRpy6dytnmXHTKc8ptIn4VyUIPdijjz7Khg0buOmmm1i3bh0qlX2uooiMjCQrK4vq6mqGDh3ao08mLSyjxVlZWezatQt/f38GDhyIk5OTrUsT2kn6/hP8c8kq6uv03PzQdCbPHg6AWqNqGgI2/xES6EG90YRKJXGqsq75ADJITT8SJKWpSZYkgSI1TXs2q6gx4Ompo6bCYE6zKsn6PEq9wXwnxbymOONAHlWltRzam0N0TBAfvvITer0RtUaNyWiyTrfeuemI9fgrv9zOZdeOoHdMEH96Zg5xk/pRXlJNXHx/PH2aRwRNJhm1+uw/wwaN6cPTH89n7fIk/IK9uOPPV1zy+9vRFEWhoKCAgwcPotPpGD9+PF5eXrYuq0vw8vIiODiYnJwc+vTpY9dheP/+/Tz11FN88803hIeH27ocwY7l5eXx3HPPsXr1akpLSwkKCuLqq6/m+eefv+CfPb///jurV68mJSWFlJQUysrKGD9+PNu2bevg6i+NCMSC0INJksS///1vBg8ezJIlS3jhhRdsXVK7s6wZdnd3x8vLi6SkJMaNG4eHh4etS7M5lUpFVFQUISEhHDp0iPXr1xMTE0NUVJTdfjjSk7zyp8+oLKtDkRVee/Arjh0r4lReOR6+rigmGSQJRVbIO1UBNA3oOqibpkkrSEhN3bUkJJOCYmlPbdlWqWk6dVmVHm8vLXnHzdOiPT2dkasbqa/Vmx9jlK3hdk/ycetIrSQBRvNQhqU5lpVKarUv8rbVqfSOCUKSJEZM7tfqriezinhh/qfkZRUxbEIMz/zjTpxdz2yqNOmqYUy6atglvaedpaamhoMHD1JeXs6AAQMIDw+3m62ULpWiKBw5coSCggJGjBjBgQMHcHR0JCoqytaltbu6ujpuvPFG7r77bmbPnm3rcoSLYIs1vRfzfJmZmYwbN46ioiLmzJlDv3792LlzJ++99x6rV69m+/bt+Pj4nPc4H330EatWrcLR0ZE+ffr84W4fXYkIxILQw/n6+rJ8+XJmzJhBQkICkydPtnVJ7eZsDbRUKhXbt29n3LhxeHp62rrELsHR0ZERI0ZQWlrKgQMHOHHihJhGbQdqaxpQmkKl4qhlxRfmT+gVtQQqlXk0VpJode5kUsxnBpatk1TmdcNSA+Yp05ap1Urz38sq9Xh7OFhPwsrL61DXGZu2dVKjmJpOCJXmztLQ3IdLsnzRspDTwl9B7rlPqj78ywrys4tBgZTtR/nv0g3c/vistr1ZXYTRaCQjI4PMzEzCwsIYPnw4Op3O1mV1GZYGWpY1w25ubri4uLRaU2xP7rnnHpycnHj99ddtXYpg5xYuXEhRURHvv/8+Dz74oPX6Rx99lHfeeYfFixezdOnS8x7nySef5JVXXqFfv37k5uYSGRnZkWW3GzEEIAgCEydO5Nlnn+XGG28kNzfX1uW0i3N1k+7bty99+/Zlx44dotPyaXx8fJg8eTIRERHs2rWLXbt2UV9fb+uyhPagO8eerE1BVNXU8VmllsxbKNG07ZJsvqgMlu6lTdcrCioFVAqUVxnwdtc2358Wy4ctU6hlWq0ptjrLWYharSImNripUZe5vj6xIed8aaUFldatmSRJory46kLflS5DURROnTrFhg0bKCoqYvz48QwZMkSE4RYsWyvl5ua2WjN8ofsUdzfvvPMOv/zyCytWrMDBwcHW5Qh2LDMzk7Vr1xIREcH999/f6rYXX3wRFxcXvvrqK2pra897rLFjx3bLbeBEIBYEAYCnnnqKSZMmMWfOHBoaGmxdziU539ZKffr0ISYmhh07dlBaWnqOo/RMlmnUU6dORa1Ws379eo4ePSr2LrYnltnJlr2DDSZkk4win6UTi2V6s2xuwGW9yFg7TpdX6vFy1zUP+cqKOfuePm3PMgrc8iIr5o2LZXNi1qhVmPQm0g+cJCDch6gBwdx4bwJzbh9/zpdz1R0TrX+XgGnXj7rot8YWqqurSUpKIiUlhZiYGCZNmiTWCp9GURQOHjxo3Vrp9DXD9haK16xZw+LFi1mxYoXdjXr3OIqNLm2wceNGAKZPn37Gcik3NzfGjx9PXV0dSUlJbTtwNyKmTAuCAJhHVj7//HPGjx/Prbfeynfffdct15Fe6D7DUVFRqNVqEhMTiYuLIzAwsJMr7docHR0ZPnw4vXr1IjU1laysLPr160dYWFi3/L7oieJnD+P373YDoNOo0Jss050tDbLMX0pqyRpeZcs0aVqM9CoKGsBgOclqukGRARTKyvW4u2rRqCSMRsuIM9D0GYrUYi0wzTsvNdfS4jajvvmDl1N55fy8fwkazR+PNFw1fyKhffzJST/FkHF9iewffAHvju3V19dz5MgR8vLy6NWrFyNGjBAjwmchyzJ79+6loqKCCRMmnHOf4bNtydQdHTt2jFtuuYW//vWvXHbZZbYuR+gB0tPTAfMMurOJjo5m7dq1HD16lKlTp3ZmaZ1GBGJBEKycnZ358ccfGTFiRLdssnWhYdgiIiICnU7H7t27GTRoEL16dZ+tWDqLZRp1fn4+aWlpHDt2jP79+xMUFCSa/HRx978yl4lXDKeuuoE+Q8J56u7PKS6qxMPDmcqqhrOPIhhl0Kmtt7X8PyzJoKiwjkBYOlDXN5ho1JvwdNNQWqoHICDIkwAfV4aNjMRBreLLjzagVksMGh7BrsRj5gda9yU2r2XWaFQYG1vPRKgsq8XH3/28r3XYhBiGTYhpw7tjO3q9noyMDLKysggMDCQhIcGu98+9FAaDgV27dqHX65kwYQKOjmc2S2upu4fimpoaZs+ezezZs1m0aJGtyxHaw+n9ETrrOYGqqtbLRxwcHM46/b6yshLgnM1GLddXVFS0Y5FdiwjEgiC0EhYWxqpVq5g6dSqDBg3iuuuus3VJF6StYdgiODgYnU5HcnIyjY2NREdHi6B3GkmSCAkJISgoiBMnTnDgwAEyMjIYMGAAfn5+ti5POAeVSsXIhAEA/PhNEsX5FQBUl9chqVXNeVimqWEWTU20znG8BhnZsXl2wLTx/Vi3NR1MMhUVejy9HCgtaQQFKivr+M+KBwAwGIykJB1nb1Imu3ccO6MD6qQZg+gdE0hIuA+vPLLMer2DkxZvP/vZTsdoNHL8+HEyMjLw8vJiwoQJorHfH2hsbCQpKQmNRsP48ePRas+xDv403TUUy7LMvHnz8PDw4O9//7v4PSRcsrCwsFZfP//8891uoKOziEAsCMIZxo4dy0cffcSdd95J3759GTRokK1L+kMXG4YtfH19mTBhAomJiTQ2NjJw4EBxMnIWKpWKiIgIQkNDOX78ODt37sTLy4sBAwaIE/su7tjhk6jUErJJQZEV1FoJk6UDNTRvcfQHIxkqGSS9jCKZR4s3bEizNiIpq9Dj5eOAlA5I0FBn4Lcf9nAw5QQoCnuSMjnbvyhJgoeem4Orm3nk74WPbuPf7/+Op7cLT7w2zy7+HcqyzIkTJzhy5AhOTk6MGjVKfJB0HrW1tSQmJuLp6cmwYcPa/DO9O4biJ598kv3797N3717RREtoF7m5ubi7N8+wOdf3lWUE2DJSfDrL9fb8e14EYkEQzmrBggUcOHCAOXPmsGvXrgvaf84WLjUMW3h4eDBx4kRrKB4+fLhYK3sOGo2Gvn37EhERQUZGBtu2bSMwMJCYmJgzmt0IXcPgkb1Z+8NeJMm8w7BiaYClYN1+CYBGE6hVp217pFi3WZIUVfPOSy0eV16hx9PTwbpdkwS888pPzSFYapG1JQlJlkExN9/64MWVPP23GwEYE9+PMfGt9xkGqK1uQJI46/7CXZWiKNalBgCDBw8WSw0uQGVlJYmJiQQHBzNo0KCLfr+6Uyj+6quv+Pjjj9m6dSsBAQG2LkdoR5bO/J39nADu7u6tAvG5xMSYl5scPXr0rLdnZGQA515jbA/E2Z4gCOf05ptvEhUVxTXXXIPRaLR1OWdorzBs4eLiwsSJE6mtrSUpKQmDwdBOldonnU5HbGwsU6dORaPRsGnTJnbt2mXX64y6q6mzh7LoxasZPy2Wa24fa26eZVknrJgDrASoVNIZewBbp1Arra+TWjSlLq/Q4+Wlsx4LWWm157ClUZfl2C1v27wm9Q+7mH/59m9cP+QvXD94Mcs/XteGV20bsiyTk5PD+vXrOXToEH369GHKlCkEBweLMHweJSUlbNu2jd69e19SGLboDt2nd+7cycKFC/n8888ZPny4rcsReqCEhAQA1q5di3zabgPV1dVs374dZ2dnxowZY4vyOoUIxIIgnJNGo+G7774jPz+fhQsX2rqcVto7DFs4ODgwbtw4ALZv305jY2O7HNeeOTk5MXToUKZNm4ajoyPbtm1jx44dlJSUtA5Fgs1IksTM60fyzLs386cnZjFgaDiS1BSAVZK18YtiOsvWSxZNo7/WIC0rSEYZyaRQUabHy8uhaRsl87GsYcbyPSC1CMWWf69NA9UZB0+e9SlPHCtk2Qe/mwepFYUv3vyVgtyuuVWa0WgkMzOT33//nWPHjtG3b1+mTZtGRESEmG1yAfLz80lKSmLgwIH07du33T486MqhuKCggOuuu45FixYxb948W5cjdISzbTfXGZc2iIqKYvr06WRnZ/PRRx+1uu3555+ntraW2267rVWH9yNHjnDkyJF2eYu6AjFlWhCEP+Tl5cXPP//M6NGjGTx4MA888ICtS+qwMGyh1WoZM2YMe/fuZevWrYwdO/acW30IzZycnBg0aBB9+/a1rjF2dXUlOjqawMBAMTrWRUiSxF//fgerf9hDQ72ewwfzSN56FCQJlaJgkmVzaJWkVidWEqCYWs//k9Tm/6eVFY04OqpxcFChr28x2mt5/NnOz1qMPCuKwqNzP6Sqopbr7o5n5g2j0TcaqSitOeNh9TVd60MqvV5PVlYWx48fx9nZmUGDBomp0W2UlZXFoUOHGDFiBEFBQe1+/K44fVqv1zN79myGDx/OkiVLbF2O0MN9/PHHjBs3joceeoj169fTv39/kpOT2bhxI3379uWVV15pdf/+/fsDrWf7AGzbto1//vOfgLlrOpinXM+fP996ny+++KLjXshFkhTx8b0gCBfgt99+47rrruPnn39mypQpNqujo8NwS4qicPDgQU6ePMmoUaPw9vbusOeyRwaDgezsbDIzM9HpdERHRxMSEiJGyzqYwWDg119/ZdasWRfUmfe7f2/jXx+saw6vThqMTXv/OjhoaGw8bblE03ZJCoC6OfTddVc0v32fTVFeHSjgoFGhbzQvO5Cw7FtsptOpMTQF26iYAE5lFlJfq7fePvOmMaxdsQtZVvANcKM4rwyAYRP68vK//9Qlvofq6+vJzMwkOzsbLy8voqOj8fPzE0G4DRRFIS0tjezsbEaPHt3hvSrKy8tJTEwkJibG5qH4lltuYf/+/SQlJYltt+xQVVUVHh4exI9+Bo2mc3sfGI0NbEp+mcrKygtaQ2yRm5vLc889x+rVqyktLSUoKIhrrrmG559/Hi8vr1b3lc6y/AXMYXfBggV/+DxdMXqKQCwIwgV78803efPNN9m+fTvR0dGd/vydGYYtFEUhKyuLw4cPM3jwYMLDwzv8Oe2NyWQiNzfX2pijd+/ehIeHX/A2KkLbtDUQFxVUsGDO+xiN5pHdoF4+FFbVozeYmppwnaapaZYC5unWTV9ce30EaftKOXqgDBQFtco8omwJwiqVZF67LMHkaQPYsmof0DSTWlag5dq100LlvX+5isAwb+Im90Oj7fh/93+koqKCrKws8vLy8Pf3Jzo6WnxYdhEMBgN79uyhpqaG0aNHd1pDvq4Qiv/617/yt7/9jT179hAZGWmTGoSO1R0DcU8mpkwLgnDBHn/8cdLT05kxYwY7duwgMDCw057bFmEYzJ+C9u7dGzc3N3bt2kVVVRUDBgzoEiNU3YVarSYiIoLw8HBOnTrF8ePHSUtLIywsjMjISPEL28byc0oxNhqtwTavoBJJp7Z2iG45c9rLy5nyohpzp2hFQaNRYTCZFwKXlzXg7a0zd5AGZCPWNK1Wq3By1lFX24gsK2z+/TCSSkKyrEk+z6Bq7wHBePu5sfXnfUQNDCU0yp/Nq/ZyKruE0ZcNJGpgaKv7V5XX8uPnW2hsMDDz5nEER/he0nskyzL5+flkZWVRWVlJaGgokydPFt+7F6mmpobk5GScnZ2ZNGkSOp2u057b1tOnP/vsM1555RXWrFkjwrAgdBEiEAuCcMEkSWLp0qVce+21XH755WzZsqVTTghtFYZb8vPzY/LkySQnJ1NVVUVcXFynnsTZA5VKRUhICCEhIdZRts2bN+Pt7U1ERARBQUHigwYbOJlbZs6j1q7TzbepJInwcB+ysksAqK6sRzLJ5gFcBUz1zc2zKkv1BAU7nRFw1WoVJpNMTXVD6ydWqUC2rDeW0DlqMeqNjJ42gPoaPSmJxwDoExuCocHA/019FZNRRqWWGDtjMNt/3odKJfHNu7/xzk+PET3YPHvDZJL589wPyM0oAElizbJEPt28GA/vtk9Lra+vJycnh+zsbDQaDZGRkYwePVr8278ExcXF7Nq1i/DwcJt9uGirUPzjjz/ywAMPsGzZMiZMmNApzynY2EU0uWqX5xTaRARiQRDaRKPRsHz5cqZNm8aVV17JunXrOvTksCuEYQvLtkx79+5ly5YtnTrNz954enoybNgwYmNjycnJIS0tjdTUVMLDw+nVq5doYtYOyoqqeOeJ5WSl5TN6WiwPvDwXncOZv/ZHTWi9t6Sq0YCLrytVVfW4uTly4kSpNd+aTApoVEhG8yiweXti837EFWUNDBjctM5MgXsfnUH2sUI2/pqKRqPG28+dgpMVzevHWpy0Obs68J+ti8nPKSE7vYCYIWEcP3IKk9HEmGmxvPHgl8gm8/0VWSFpbSoAsqygkiS2/rzPGoiL8srIST+FpZDqijrS9mQz5rKBF/S+KYpCUVER2dnZFBYW4u/vz9ChQwkICBDrgy9BV1t+0tmhODExkVtvvZX33nuPOXPmdOhzCYLQNiIQC4LQZk5OTvz8889MmDCBG264gf/9738d8il/VwrDFpZa0tLS2LJlC3FxcQQEBNi6rG7L0myrT58+FBcXk52dzfr16/Hz8yMsLIzAwEA0GvGr6mJ8smQlqcmZyCaZdf/dSWikH/MWTjvjfl6+Lq3X78rg4ayjqryO6op65NMzoFoFTYE4PNybEyfMa4YrShvx8NTx6f8ewNXNEY1GzU1TX8fUdN9TJ0qta4NVkoRvmDc+Hk7odBru+vMsktYf4vWH/wMK6Bw0/O27B4geZJ4K7eLmhKSSUEwKkkrCydmBOpMJ2aQgm2T8Q5rX8Hr5ueHorKOx3oDStP3ThUyZrq2tJS8vjxMnTmAymejVqxeDBg3C2dm5LW+7cBayLHPgwAEKCgoYN25cl1lz3VmhOC0tjdmzZ/PnP/+Ze+65p0OeQ+iimraW6/TnFNpEnGUIgnBRvLy8WLt2LWPGjGHhwoUsXbq0XY/fFcOwhSRJDBgwAHd3d3bt2kW/fv2IiooSo0eXQJIk/P398ff3p76+nhMnTpCenk5KSgrBwcGEhoaKDr5tlJ9djNy0r7CkUpF9tIB//+1XDHojV9w6DrVWw9r/7cYv8LRlDxoVeScrmjpDK6DijCZXb354G7XVDexKziQ3pxQUheryBiSVhLuXAxXFdVRV1FnDMLReJqwoCsWFVTzz5g18/6/NfP/ZFrIO5VlP5IxGE79+k8iiV+cCcNvjMzm06zinckrwDfLkoVdv4J8v/UDBiVImXjWMmbeMsx7b0dmBF7/4Ex8/+18a6w3c+uhMwqPP3u+gsbGR/Px8cnNzqaioICAggNjYWAIDA8X0/XbS2NjIzp07MZlMTJ48GScnJ1uX1EpHh+KTJ09y+eWXc8MNN7B48eJ2PbYgCO1DdJkWBOGSHDlyhHHjxvHAAw+0216KXTkMn668vJydO3fi5+fHkCFDunSt3Y2iKFRWVpKXl0deXh4AoaGhhIaG4uHhIcLxOVi6TNdk6/j6nbWo1Cpkk4xPoAflRVUgSTi6OlCvV1BkxZxBW0ylVjQqZGeH5q/PEogdahoxGWUcXHTUG0zWzlu33NefIzsr2Lf1hPmOmtNC5WnH0ZlMGBoMoJhHfhVZAVlBpZa4ev5E7lk823pfk0mmqqwGd29X1OqLD6tGo5HCwkJyc3MpKirCy8uL0NBQgoODcXBwOP8BhAtWWVlJcnIy3t7eDB06tEvP9uiI7tMVFRVMmDCB/v378+2334rfDz2Itcv0yMW26TK96xXRZboNuu5PJkEQuoV+/frx22+/MXXqVAICArj//vsv6XjdKQyDeXRh8uTJ7Ny5k23btjFy5EgxxbKdSJKEp6cnnp6exMbGUlxcTF5eHtu2bcPJyckajsV647Obe99UAkJ9yTl6ivA+Abz9xLdNtyjU1Rqg6d+WBCgGIw7uThgajYyN70dOcTU5WeZGWiq1ZF6/26LdtGXkWd9gwMnFgYZ6837DhkYwGFo0z2paX3wueqNsHjmWJBQFHB21NNTpCe8TyNz/a73fuVqtwsvv4k7uFEWxfv/k5+dbv38GDRokvn86SF5eHikpKfTt25fo6Ogu/wFWe48UNzY2MmvWLPz8/Pj666+7/O8yoWNIimLus9DJzym0jQjEgiBcstGjR/Pf//6Xa6+9Fn9/f+bOnXtRx+luYdjC0dGR8ePHc/DgQTZt2sSwYcMICgqydVl2peWU6sGDB1NQUEBeXh7p6em4u7sTFBREYGAg7u7uXf7Eu7NIksS060YCUFtVzzt/Xs65JoWpkFiV/Lz164YGA/t2Z+Hi6sgXn23iQEruWTuXSsDE+H6kHzpJSWEVlSUNePi2GA05reO0k7OOxgaDeT9iMK9dbnHcEZNjeODFa3H3drnkKctGo5Hi4mIKCgooLCwEzDMMJkyYIGYYdCCj0UhqaiqnTp0iLi6uU7fnu1TtFYpNJhPXXXcddXV1rF69Wsw8EIQuTgRiQRDaxeWXX84nn3zCggUL8PPzIz4+vk2P765h2EKtVjNkyBB8fX3Zu3cvYWFhxMbGdrvX0R1oNBrr6HBjYyOFhYUUFBSQkZGBTqcjICCAoKAgfHx8xPvfxKA3opjk5nCqN6Bx12E0mLc9uuHe+Fb3d3TUMrap+/TIkb05sC/Xuk8xCkg6DUqjEV9/dypKaziZVYxsUjiZXUFkP8/mA5lkevUNoriggkHDI7j9gWl88uZvnMorZ8zkGH77chsmU/PdQ3v74+l77s7tiqKw8l+b2LclnT6DwrjxoenoHLTW2+vr663fD8XFxTg5OREYGEhcXBw+Pj4iBHewqqoqdu/ejVarJSEhocutF74Q7RGK77rrLg4fPkxiYqKYstrTiW2XugURiAVBaDe33XYbhYWFXHfddWzYsIEhQ4Zc0OO6exhuKSQkBE9PT3bv3s3WrVuJi4vD1bXt+58KF8bBwYHw8HDCw8MxmUyUlpZy6tQpUlJS0Ov1+Pv7ExgYSEBAQI8epXH1cMbdy4Wayjrz6KwEb371J+rr9YRE+uEf5HnOx6buz23VKVUCZt86hukzBhMa4cuDN/7duiVSVWkjnn5OrU7I7n3scn5ZsZO87BJ2bT2Kf4A7B5Iz+embRMKiA8g9nI8E+AS4M/v28Wc8/86Nh/nhX5txcXMkIjqQ/7z9GwC7N6VRX9vIjY9MpaCggIKCAiorK/Hy8iIwMJDY2FixLVonURSFEydOkJqaSlRUFDExMd26KdmlhOKnnnqKX375haSkJLEDgSB0EyIQC4LQrh5//HEKCgq44oor2Lp1K5GRkX94f3sKwxaW/YoPHz7M5s2bGTJkCKGhobYuy+6p1WrrtGpFUaiqqqKgoICsrCxSUlLw9PTE19cXX19fvL29u3SDn/am0ap5+av/46NnVlBb3cC8hVPpN6zXHz6mprqBnKxipl8+mF1Jx1vdFh7izQsLv8RklOk3rBc5mUWo1SrKiutx83TAzcPR3OH5/ml899kWDuzOQjYpfPHe2lbHyc0q4cl3b8HH143oQaE4ubT+0CIno4AX7/onsmLeb3j3pjRcfZwI7uNBcLQXHn1ktm7dir+/P5GRkT3+gw9bMBgMHDhwgOLiYkaNGoW/v7+tS2oXFxOK3377bT7++GM2b97c4fsaC92EAsjnvVf7P6fQJj3nbEBL8bzNAABJ9klEQVQQhE7zxhtvUFJSwpQpU9i0aRO9ep39xNsew7CFSqVi4MCB+Pj4sG/fPkpKShg4cGCPCmG2JEkSHh4eeHh4EBMTQ319PcXFxZSUlLB//37q6+vx8vLCx8enxwTk6MFhvPvjoxd035ysYh6+5zNqaxrR6TTET+nPlk1HALh23kg+fG6ldT3y9rUHmXnDSHZvzcDNzRGVSsU/Vy+yrude8e+t1hFka4OuFgJCvRgw9Ow/IzIP5uHsoSO4jyfB0Z4E9/HExdOB4pwqTh2roDYf5t40065+dnQnFRUV7N69GycnJ+Lj43F07Nxuuh2tLaH4ww8/5Nlnn+Wnn35i2LBhnVWiIAjtQGy7JAhChzCZTNx2220kJSWxefNmwsLCWt1uz2H4dHV1dezZsweDwUBcXJxYU9YF1NXVUVJSYr00NDS0CsheXl5otdrzH6gLsmy7NGvWrDa9BkVRyM8pRatT89E7a0jcerTpBvALdKe8rBajUcbBUYuhuBpJbj59kKSmPYuB6x8aRGREb37+Yi8qlYSDuyN7EzORJJBlhalXDWX9TykAXDZnGI++dJ11ba+iKNTW1lJWVkZJSQmFBUXUN9RTfKKa/GMV5GdUEBYeRG1lA30GhXH747NwcNK1zxsnXDBFUcjKyuLw4cNER0fTt29fu16ffb4tmZYuXcpjjz3GDz/8wPTp021QodDVWLZdShj+NBp1J2+7ZGpg495XxbZLbSACsSAIHcZoNHLrrbeyZ88eNm3aREhICNCzwrCFLMscOXKE48ePM2jQIMLDw+36BLK7aRmQS0tLqaurw8XFBQ8PDzw9Pa1/6nRdO3yZjCaOHcrlSPb+NgViWZZ58/HlbPo5BQDncG+qqxubGmkpoFJZd11SqSSUBgOqev1Zp+ZNvbEPZafq2LfBvHe01kHDNXdPIjujiNhh4Vx7+wQqy2vR6424eeqoqKigsrKSiooKKioqkGUZfZ1C2s6TlObXk3OwkPpqPWAO3rcsmsEtD1/eHm+XcBH0ej0pKSmUl5czYsQIfH19bV1SpzhXKP70009ZtGgR//3vf5k1a5YNKxS6EksgnjLsKZsE4g37XhOBuA3se36YIAg2pdFo+Prrr7nhhhtISEhgy5Yt+Pj49LgwDOYp1AMGDLB2oS4sLGTIkCFivWMX4ezsbG3OBeY9RC0hrby8nOzsbOrq6nB2dm4VkD08PNDpdF3iw42Gej1Pzn2frCMnueuteH77zw5mz5/c6j5lRVWcPF5EZP9gXD2a98s+vDfHGoYBqstqQavG2pZaUVCa/i7L5vW851qnVlnSgIdP8/e1odFITkYh6ak5lJUVU1x2ksFjwqiqqkKWZdzd3fH09CQ0NJTY2FgOJp/glUe+sj6+5VurUquI7Bd8cW+QcMmKiopISUnB3d2d+Pj4HvXz62zTpz///HMWLVrE8uXLRRgWhG5MBGJBEDqURqPh22+/Ze7cucTHx/Pmm2/i6+vbo8JwS/7+/iQkJLB//342bNjA4MGDrSPnQtfh4OBgbdBlodfrW41m5uTkUFdXh1arxcXFBVdXV+vF8nVnrkve+tM+jqacQOto/nf1xes/ccVtE1Grzd1+U7Yf5bnblmLQG3HzdOatlY8Q1sfcBbcov6L1wUwKWPKwgvk/arAME+tcHDDUNgLg4uZI736BpO7KxtlNi5unM4ERToy5sheevk54+Dni7uPIoPiBlBbUUXyyBn2tBmO5K7nHyhgVH8CQIf2sT7132/pWpSgKeAe4U15YhWyUef2hr/hk3VMEhvu0/5sonJXBYODQoUOcPHmS2NhYevXq1SU+BOpsLUPxzz//zNNPP81//vMfrrrqKluXJnRVCjbYdqlzn84eiEAsCEKH02q1fPfdd1x77bU89thjbNy4sUeGYQsHBwdGjhxJfn4+Bw4cID8/n8GDB/eo0ZbuSKfTnRGSjUYjtbW11NTUWC+FhYXU1NRgMBhwdHS0BmQnJyccHR1bXdpzdPmMFVCnffnVm79Y9x2urW7g+39sZNEbNwIQEtF62qskK005uGkPTUlCJUm4uGpwdtXi6qblxmcTqK6qxcvfGb2hgQnXBaGg4ODgQH1dPWq1iryMCg4mNlBRrqemQm89Lyw6buRoSg5qlYpfvknixX8sYFS8ORSPmxbLb8uSWtVTVlgFTWuU9Q0GDu/OEoG4k1hGhV1cXEhISMDZ2fn8D7JjXl5e5OXl8dRTT/HVV19xzTXX2LokQRAukQjEgiB0Cp1Ox/fff8/1119v7T4dFBRk67JsRpIkQkJC8PHx4cCBA9Z9m4ODxXTQ7kSj0Vi7WbekKAp6vf6MsGxp4NXY2IjBYECSJBwcHFqFZAcHB7RaLRqNxnpRq9WtvrZc1zJMT7pqGD9+voUTx04BcNsTs6yjw4B5tFclodOp0Tlp0DlLlJeXYzQacfaS6DvCD41WhdZBjYOLFmdvR1zcdDi7anBx1eLorEGWFepqjdTVGHB0k/Dw9cHFxQUXFxcUo4o9m4+hcXVApc7nwNZTVJfWgyTh6OHUPEiiKBxLywcFTCYZtVrFrk1HrIE4bnI/NFq1NbxLKgkHF0f0tQ3WPZTD+wZ22P9TwcwyKpyXl0dsbCwRERE9clT4dJ999hkPP/wwX3/9Ndddd52tyxEEoR2IplqCIHQqg8HADTfcQGpqKhs3bhT782IOTydPnuTAgQP4+fmJ0eIewmQy0dDQYA3Ilr83NDRgNBrPuJhMJoxGI7LcvKmlJRRbgoqEhMkkY5KN6HQ6FEWxjhwb9AYkVXOgUWRwdHJAo9GgklSk78/D0GjC0Giiod5InR5qq/TU1hiorTZQW2eiod7U1E1a4eufHsE/0PxBQHVlHffNepvSokpQYP5LY/jtX4cpzKk21+WgRW4RiDUaFYrBaN2C6b5n5zD7tnHW2t5/5r/89m0yKrUKlUriz2/dxE+fb6Gmqp7r753ClGvjOup/i0DrUeFhw4b1+FFhC0sDrWXLljFnzhxblyN0YdamWkOeRKPu3N/nRlMjG/a/LppqtYEYIRYEoVNptVqWL1/OzTffzOTJk9mwYcM59ynuKSRJIjQ0FF9fXzFa3IOo1Wrr6GpbyLLcKihD83RpRVEwGAzs2LGDkSNHotVqrWH5g6e/Y+/mdAwNJgx6EwNHR9GrXzCHd2czeGwUx4/Ucmh3NpJKQuOgoUHVelmDom4O0xJQWVFLdVkNp3JLMTSaKC2stN5edqoWDz8nayB20KmpbzRZp19Hx4bg7uZIdkYh46fHcsXNY1o91/0vXotPgAdrVuxEAUoKq3hjxYNtep+EtjMYDBw+fJjc3FwxKnyapUuX8uijj/Ldd99x5ZVX2rocQRDakQjEgiB0Oq1Wy7Jly7jtttuIj49nw4YNREZG2rosm3N0dGTkyJGcPHmSlJQU8vPzGTRokBgtFlpRqVTodLpzbgFlMBgA8PDwaLXtUmCIP/XVB1FkBZVKor5Wz2/fJCLLCtnpp7j+/xIYObkf1RV1TL1mBK898z1ZGYUAqDUSMrSa9vzJX3/i0I5j5ttbTs0GqssaCI3y5ujuItRqFQ88N4eNvx5g7/ZjhET48virc89Yt9ySWq1iw4/7KC2sQpYV/vHXnwjvE8CIiX0v8l0Tzqe4uJh9+/ZZ1wq39YMae/bBBx/w5JNPiq2VhLaTsTbr79TnFNpEBGJBEGzCsiXT/PnziY+PZ82aNfTr1+/8D7RzLUeL9+/fz8aNG4mNjSU0NFSM1AiX5NZHLqe6opYDOzKIHRVF/olS85pczCPLuRmFPP/pXdb7BwZ5kJ1RgKKASS+DStV8YqdA6q4sLDHYZJLxCXCnsqwWByctw8f1x83HgatvnI5PgAfefm5MvXoEsiyjUrUOz2djMsnk55S0agx24lghIyb2peRUBQC+QZ6X/qYINDY2kpaWRl5eHgMGDCAyMlL8rGnhzTff5IUXXmDlypVMnz7d1uUIgtABzv9bSRAEu2Yymfj000+ZPHky3t7eaLVa/P39GTx4MHfffTc//vgjAG+99RaSJPHkk0+e9Tj33nsvkiQRERFx1ts3btyIJElMmTLFep1areaLL77giiuuYNKkSSQlJZ31sT2Ro6Mjo0aNYtCgQRw+fJjt27dTWVl5/gcKwjk4OOl4+I2b+Gzbczz29i2MTBgAgKppXfHQcdGt7p+dUQiygqQoqFUSWo2qaQsRzEPFpwVbQ6ORVYf+yoo9S4gd1oe6ulqiB4bi7edmvU/xqUqW/2MTOzcdwWSS+fuLP3BT3HM8PvcDCvPKzME8s5CSUxXETYxBkiRUahVqjYph46P59KWV3DbqeW4b9TyfvPh9h75f9k5RFLKzs1m/fj2NjY0kJCTQu3dvEYabyLLMY489xssvv8wvv/xy3jB8ob9LATZt2mRd+/9HF6H7kxTFJhehbcQIsSD0YCaTiSuvvJLVq1fj6enJFVdcQWhoKHq9nkOHDvHNN99w5MgRZs+ezdSpUwHYsGHDWY+1fv16JEkiJyeHzMxMoqKizrgdYNq0aa2uV6vVfPTRRwQGBjJ9+nSWLVvGFVdc0QGvtvuxdKIOCAggPT2drVu30qtXL/r169dqKqwgXIx5903B0VlHekoOA0dFMevmsa1u79M/iIKT5aAoyDIoRrnVfprSadOkg8J9rKO/rq6u1NbW0lCvJ21vDh7eLphkhUXzPmpqygX9BodyZGcmAFUVtbz56H/w8nVj228HAJj7f1PoP6wX5SXVTJkzHLVK4vt/bLQ+38p/bubym8bRS3ScbrPy8nL279+PwWBg+PDhBAaK97Alk8nEHXfcwe+//86WLVsYMmTIee9/ob9LW+rVqxfz58/vwFciCMKFEIFYEHqwZcuWsXr1aoYMGcLmzZvP2Dqmrq6O5ORkAIYMGYKPjw/79u2jsrKy1X1PnDhBZmYmc+fOZcWKFWzYsOGMQGwJ0pZg3ZIkSTz33HMEBAQwd+5cPv74Y3GS0IJGoyE2Npbw8HBSU1NZv369mEYtXDKVSsXVCyad83ZHRy0STfsRyzJaRy36RqO1MZaXlzMVdY3WkGwymqyPdXZ2xmQy8edbPyLjgHkbqMAIX2sYBjhyIA+VSkKWFWSTwvHD+dTXNlpvX7F0A9/sfBGvphHmzEN5Z9RoaDRcylvQ47ScHh0dHU2fPn169J7wZ9PQ0MDVV19NRkYGSUlJF9Tfoi2/S1uKiIjghRdeaK/SBUG4SGLKtCD0YDt27ABg/vz5Z/wCB/NJbUJCAmAOrQkJCZhMJjZt2tTqfpaw+9BDD+Hj43PGKHJ1dTW7du3Cw8ODuLhzb5dy77338p///If777+f119//VJeml1yc3Nj7Nix1mnU27ZtE9OohQ7j4e1iXjKsmJtwxQwIMm+zJEk4OmgYMDAUlSSBAipJws3DGX2jkS0/7WPbL/tBVlNXV2c9XkFuWasRZhSsa5iBVmHYouUWU5H9gxkzfZD169GXDaR3bEi7vmZ7pSgKWVlZraZHx8TEiDB8mrKyMiZPnkxRURGJiYkX3OyxLb9LhR5GUWxzEdpEjBALQg/m4+MDwNGjRy/o/lOmTOG///0v69evb7UH4/r163FxcWH06NHWrtEtbdmyBaPRyOTJk897AnbNNdfw22+/MXv2bAoKCnjrrbcuqAlPTyGmUQud5ca7J7M/OZNjaadwcXMkYeYQ3n9xFQCNRhMpe3IIifAlN7MIDx9X7nr6Shbf8jEHdx4H4JpH4/Dwc+LkMfOHNipJQm4ViM88cYscEEJWWj4AV942Hp+A5nChUql45h93cqjp+LGjeoufDRegrKyMAwcOiOnR55Gbm8v06dMJCQnhhx9+wM3N7fwPatLW36WCIHQtIhALQg927bXX8vrrr7N06VKqq6u55pprGDFixDn3BT7XOuKNGzcyYcIEtFotCQkJ/O9//+PgwYMMHDiw1f3PNl36bCZNmsSWLVuYPn06hYWFfPXVV2Ik4zRnm0Y9YMAAwsLCxDRqoV1otRrqKuvBJFNdWsv/Pt9qvU1RoLa6gX///hiGBhPuXs5kHTllDcMAhdkVhPXx5nBiASgK4VF+GE0yecdLABh72QDSdx6jorQGRQGNVs1zSxdQVlyFzlFL1IAzR3/VahWDx/bp+BdvB8T06At38OBBZs2axfjx4/n3v/99zi3NzqWtv0stsrOzzzllul+/ftx4441tqkPogmwxYitGiNtMBGJB6MGGDRvG119/zaJFi/j666/5+uuvAfD29mbSpEnceeedXHXVVdb79+3bl9DQUA4dOkRRURH+/v6kp6dz8uRJHnroIQDrtLANGzZcdCAGGDx4MElJSVx22WXMnDmTlStX4uzs3C6v255YplGfOnWK1NRUjh8/zoABA/D397d1aUI3ZNAb2bnhMCajjM5Zx6kTZdadlk5ml8BpH7YUnaykd78gAFzdnVrdVllcR0CkFxLmxtTZ6adY8PgsgsJ90DlqiZsUQ2FuKV+9s5rGegPX3hNPYLgPgeE+Hf9C7ZjRaCQzM5Njx47h6+sr9hQ+j61bt3LNNddwyy238M4771zUrIO2/i61yMnJ4cUXXzzrMefMmSMCsSB0EjHXSBB6uHnz5nHixAnWrFnDs88+y5VXXoksy6xcuZLZs2dzxx13oLT4tNGybZIl5Fr+tAThAQMGEBAQYL2+tLSU/fv3ExgYSGxsbJtqi4iIYMeOHZSVlREfH09paeklv157JEkSwcHBTJs2jZCQEHbv3s327dspLy+3dWlCNyLLMs/f9U9evu8LXn3wSz5/4+dWt6tVZ848MOiN1r8Hhvtw1+LZqNQqVCqJ0fGDcXbXWn9+qFQq6moamDhzMKMT+qNWqwiO8OPJ927juX/cycCRvc9Z2+7NR/jkpVWsXbGz1c8joZksyxw/fpx169ZRWFjI6NGjGT16tAjDf2DVqlXMmjWLxx57jHffffeSpuC39XcpwOTJk1EU5ayXlStXXuKrEwThQolALAgCWq2W6dOns2TJEn766SdKSkpYvnw5Li4ufPnll6xatcp6X8sor2UbpfXr1+Ph4cHw4cOt95k8eTKbN2/GZDKxceNGFEVp0+hwS35+fmzatAlPT08mTJhATk7OJbxS+6ZWq4mOjuayyy7Dy8uL7du3s2vXLmpqamxdmtCFlRVVUZhXRm5mEfu2Na+BPJFewKx5o9DqNDi5OPDYa3NxdNAggfmiKORlFbc61vX3TuH7tNf4/sjrXHnrZFy9HFCpzUFaq1WTMHs4p8s8lMfCGa9z07DF/Ofd1WeEhsTfD/Lsgn/y05fbeefJ7/jmg9/b/T3ozhRFIS8vj/Xr15Odnc2QIUOYOHEivr6+ti6tS/vHP/7BTTfdxPvvv8/TTz/dLktN2vK7VOghRFOtbkEEYkEQzqBWq5k3bx6PPPII0HrNcMsRYkVR2LRpE5MmTWq1Ni0hIYGKigr27t17UdOlT+fq6srPP//MsGHDmDBhAnv37r3oY/UEWq2WAQMGMHXqVHQ6HRs3biQlJYX6+npblyZ0Mcs/Wscto55n/oSX+OqtX8+4/aqbx7AqZQn/2/U8U64ahtFoaj7hkiTKS8/8sMXBUYeDow5HR0c0GjXPLr2V+1+4ho9/eZRe0QFn3P/FOz8l63A+FSU1fP3WbySuSW11e+Lag6jUEiaTueP0lp/3t9Or794URaGoqIjNmzdz+PBh+vbtS0JCAkFBQaKPwB+QZZkXXniBRx55hO+++44FCxZ02HP90e9SQRC6DhGIBUE4J0uXzZYjNqGhofTt25fjx4/z448/Ulpaag3JFi3XEbdHIAbQ6XR8/fXX3HLLLcTHx7N8+fJLOl5P4OTkxJAhQ0hISMBgMLB+/XoOHTqEXq+3dWlCF1BRWsMXb/5i/Xr76lSuvG0ckkoCCWbfMYGIGHO4sgSsmfNGAealxE7OOsZfNvCcx5ckCRcXF3r18+PKW8cR3OvMEUtZlinOr2h13ZpvE1t9HRzhh9K0+5JKrSKsj1gfX1ZWxo4dO9i9ezehoaFMnTqVXr16iSB8Hg0NDdx444189NFHrFu3jiuvvLJTnvdsv0uFHkK20UVoE9FUSxB6sGXLluHr68vUqVPPWDtVUFDAp59+Cpi7Prc0ZcoUjh49yrPPPgtwxv6KMTExBAUF8fXXX5Oenk6fPn0IDw+/5HpVKhWvvfYagwYN4s4772T//v28/PLLYuuV83B1dWXkyJGUl5dz+PBh1q1bR3R0NL179xZdZ3swo8F4xnX1NY0oTSOxa75NYtYt4+gV3bxNz32Lr2JQXCSlhVWMnTaAwFDvP3wOV1fXP5yyr1KpcHFzpLa64Zz3ufbuyZzKLWX3xjQiBwTzwJJrz/fS7FZ1dTVpaWkUFRURFRXFqFGjxHZrFygvL4/Zs2cjyzJ79uxpl99JFhf7u1QQhK5BBGJB6MGSk5N57733CAwMZMKECURGRgKQlZXFL7/8Qn19PXPmzOH6669v9bipU6eydOlSUlNT8fHxYfDgwWccOyEhgW+++cZ6//Z0yy230LdvX2bPns3BgwdZtmyZaBxzAby8vBg/fjxFRUUcPnyYzMxMoqKiiIiIECfVPZBvoCczbhjDmuVJAMTGRbJrU5r1doPBxMaVe5j/xBXW61QqFRKwc2MaGam53PnELHwDPU4/tNX5AjHAFbdP5LuPfsfSjnrilcNa3a5z0PDIa/Pa/gLtSGVlJRkZGZw6dYrw8HCmTZuGo6OjrcvqNrZv387cuXOt2yq1944FF/u79I+2XQJ4+OGH8fT0bNdahc4lKQpSJ88M6OznswciEAtCD/bYY48RHR3NunXrOHDgAGvWrKGhoQEfHx/i4+O5+eabufnmm8+YhpeQkIAkSSiKQnx8/Fmn6XVkIAYYOXIke/bsYc6cOYwZM4Yff/zRehIi/DF/f3/8/PwoLCwkIyODo0ePEhkZSVRUFA4ODrYuT+hEi16bx/R5o2hsMDBoVBQPXPE3airqkGUFWZbx9HFtdf8jKSf466KvQQGVWiL7aAEf//TIOY/v4uJy3u7wtz8xC+8AdzIP5jF0Ql+mXBPXLq/NHpSWlnL06FFKS0sJDw9n6tSpYvu5NvrnP//JokWLePrpp1m8eHGHTCu/2N+lf7TtEsD8+fNFIBaETiApYkGDIAjdWENDA3fffTe///47y5YtO2M9s3B+p5909+nTR5x0d2MGg4Fff/2VWbNmtXnkPyM1lxfv+RelhZWMvWwgT31wBzqH5s/OV325naUvte6U+9PhV9Fozz71vqysjJ07d3L55Ze3+XUc3Hmc31ck4+HtyryFU3H16Bnfk4qiWD+sqqqqIjIykt69e4sR4TYymUw88sgjfP7553z11VdcffXVti5J6EGqqqrw8PBgWt9H0ag794Nmo6mRdUffprKyEnd390597u5KjBALgtCtOTo68tVXX/G3v/2NK6+8kjfffJP777/f1mV1Kz4+PowdO5aKigoyMjJYv349ISEhREdHW5vBCD1D9KAwvkp8Htkko9acGXL7D2tad9n0Wbqj8x+f6Lm6utLY2IjBYGhTOM9OP8VTN35ofhpFIW1vFm+ueOiCH98dybJMfn4+GRkZNDY20rt3b8aMGSOWM1yEyspKrr/+eo4ePcqOHTsYNGiQrUsSeipbbIMkxjrbTARiQRC6PUmSeOKJJ4iNjeWmm24iNTWVjz76SDSMaiNPT09GjhxJTU0Nx44dY9OmTQQEBBAdHY2Xl5etyxM6kEFvRKsznxJIknTWMAzg4ubY6mSroa6Rw3uzGTw66qz31+l06HQ6ampq2vQ9dCDxGCZjc6vUg8nHW9VoT0wmE7m5uRw7dgxZlomOjiY8PFz8/LpIR44cYfbs2QQGBrJnzx6xH7MgCOclWrMKgmA3Zs2aRXJyMuvWrWPKlCnnXbsonJ2rqytDhw5l2rRpODs7s337drZv305hYaHYNsTOlBVV8sAVf2N23ydYePmblBRU/OH9HRx1Z1zn5HL+UeJzNdZqqNcjy2fuERLZP7jV1yq1iury2j98nu5Gr9eTkZHB77//zvHjx4mJiWHatGlERkaKMHyRfvnlF8aNG8fUqVNZv369CMOC7cmKbS5Cm4hALAiCXenXrx+7du1Cq9UyatQoUlNTbV1St+Xk5MTAgQOZPn06Pj4+7Nu3j/Xr15OZmYnBYLB1eUI7+PfffiPrSD4AORkFfP76L394f99ADxY8McvcERq4esFE+sSG/OFjXF1dqa1tHWYNeiMv/d/nXNP/SW4Y9gwHko61un3Q6Cic3ZrXzCqyzOpvky70ZXVplZWV7Nu3j7Vr11JYWGjdKzwsLExsIXcJXn/9debOncvLL7/M3//+dzHVXBCEC2Z/c48EQejxvLy8WL16NY8//jgTJkzg3XffZcGCBbYuq9vS6XT069ePvn37kp+fz/Hjx0lLSyMsLIzIyEjRtKMbqyitRm4aTZBNMuUlVed9zLx7E5h10xhMRhkPb/N2Z1t/3sf/lm7A1dOZPz1/DeEt9i52cXGhqqr1cdd/v5sdqw8AUFvVwN8e+Q9fJj7f6j4ubo7U1TSAAkgSanX3DYuyLHPq1CmysrKoqKggNDSUiRMn4uFx7i2rhAtTVVXFggUL2LhxI7/++ivx8fG2LkkQhG5GBGJBEOySRqPh3XffZezYsdxzzz1s2LCBTz75RHRPvgQqlYrQ0FBCQ0OpqKjg+PHjbN68GS8vLyIiIggKChJTPbuZmTeNZdeGNBQUkOCKW8Zf0ONc3Z2sf888lMer932Boiio1BKLb/6YL5JesAZYV1dX8vPzWz2+qrwWSSWhyAqKolBVceZ06PuWXMdf7/sCo8FEWJQ/s269sNq6krq6OnJycsjJyUGtVhMZGcmoUaPQ6c6cei603c6dO7npppsICAggJSWF8PBwW5ckCK2JplrdggjEgiDYtRtuuIG4uDjmzp3LiBEj+PbbbxkyZIity+r2PD09GT58OLGxseTm5nLkyBFSU1MJDw8nIiICFxcXW5coXIAx0wby3o+PkLY3m5gh4cQM7dXmY2Sl5VvXlssmhZJTFdRW1ePuZf4esKwhVhTFug/r5KuGsWLpemoq6wGYPnfUGccdO30Q/9m9hLKiKkJ7+59za6euxrJtUnZ2NkVFRQQEBDBs2DD8/f07ZA/cnkiWZd566y2ef/55Hn74YZYsWYJGI05pBUG4OOKnhyAIdi8qKorExESefPJJJkyYwBtvvMF9991n67LsgoODA3369CEqKoqSkhKys7PZsGEDPj4+hIeHExgYKE5Uu7joQWFEDwprdV11RR11NQ34h3idN8QNGBGJRqtGNskgQVifQNw8m2diuLi4YDKZ2L3lMJ+9thrZZOKOx2dxy0PT+eTFlQCsWZbE9Hlj6DMwtNWx3b1crMG6q6utrSU3N5cTJ06gKAq9evViyJAhODk5nf/BwgUrKyvjtttuY+fOnaxcuZLp06fbuiRB+AM2GCFGjBC3lThLEQShR3BwcODdd98lISGB+fPns2HDBj7//HNcXV1tXZpdkCQJPz8//Pz8aGho4MSJE6Snp5OSkkJQUBBhYWH4+vqKpkHdwJpvk3j/qeXIJpnR02J59tO7zrkNE0BwpB+vr3iQX77chou7Mzctmt4qRKvVahwdHfn0jVXkHS1DAf56/5cEBDevnzUaZVYvS+SBV+Z25Etrd42NjZw8eZK8vDwqKioICAhg0KBBBAQEiO/1DrB161ZuueUWoqKiOHDgAEFBQbYuSRAEOyACsSAIPcqcOXPYv38/N9xwA8OGDWPZsmXExcXZuiy74ujoSN++fYmOjqayspK8vDz27t0LQEhICGFhYXh4eIjpo12Q0WDiw8XfmUd7geR1h9ixJpWJVwz9w8cNiOvNgLje57xdo9Lh6qmzDpSYTDIanRqVSjI39VIU8x7H3YDRaKSgoIC8vDyKiorw8vIiLCyMMWPGiLXBHUSWZV5++WVee+01nn76af7yl7+IfgVC9yDWEHcLIhALgtDjhIeHs2XLFp577jkmT57MSy+9xKOPPmrrsuyOJEl4enri6elJbGwsxcXF5OXlsX37dhwdHa0NusR6465DNsmYDK33BdY3XPoWWz6+XvgGu2KdyqfA+JmD+bloG9XldTi7OTJ8cr9Lfp6OIssyJSUl5OXlkZ+fj5OTE6GhoQwaNEh8/3aw4uJibrrpJg4dOsTq1auZNGmSrUsSBMHOiEAsCEKPpNVqefXVV4mPj+eWW25h48aNfPXVV3h6etq6NLskSRL+/v74+/tjNBopLCwkLy+P9PR0vLy8CA0NJTg4GAcHB1uX2qPpHLVcNm8Ua5cnm7920DJ4bJ+z3tdoMFFbbW6edb7RfncPd7wDna15WKWSKC2oQiWBJEFtVT1L7vwn/9r2LJ4+XWMZg6IoVFRUWKdEA4SGhjJhwgQxw6GTrF27lgULFjB48GBSU1Px9fW1dUmCINghEYgFQejRZsyYQWpqKjfddBNDhw7l66+/ZsKECbYuy65pNBpCQkIICQmhsbGR/Px88vLySE1NxcvLi8DAQAIDA3F1dRWhwwbyjhcjSeZZdwa9gV++2s78J69sdZ+0vdk8P/8fVFfUMSAukpe+vBdn13NPeXZ1dcU7yA2VCmRZQZYVfIM8qCxt3m6prqaBrLSTDJsQ02Gv7XxMJhMlJSUUFBRQUFCA0WgkKCiI4cOH4+fnJ74fO4nJZOKZZ57hvffeY8mSJTz66KNiTbbQPckKnd7kShZTpttKBGJBEHq8oKAg1q9fz8svv8z06dO5//77eeWVV8R6wE7g4OBAZGQkkZGRNDQ0WIPIkSNHcHJysoZjb29vcULcSWoqaq1L0CSViuqKujPu896Ty6muNF9/eE8WK/+1mZsXzTjnMV1dXXF0VXP5TWPIPnKKMdMGMvPmsaz8dBMNtY0ogEarJrxPYEe8pD/U2NhIYWEhBQUFFBUVodPpCAwMZNiwYfj4+Ii1qp3syJEj3HHHHZw6dYqNGzcyevRoW5ckCIKdE4FYEAQBcyfc559/nhkzZnD77bezevVqvvjiC0aMGGHr0noMR0dHIiIiiIiIwGg0UlxcTGFhIbt370aWZQICAqwXrVZr63Lt1rV/msK7TywDQK1RMfPmsWfcpyivrHnQQ4E9m4/8YSB2cnJCkiQWPDWzVWf31759gH+/+Qsmo4mbHpqBT6DHOY/RXhRFoaamxvrhS3l5OR4eHgQGBhITE4O7u7sYCbYBWZZ57bXX+Otf/8qNN97I2rVr8fDo+O8HQehQimy+dPZzCm0iArEgCEILY8aMYf/+/Tz77LNMnDiRBx98kFdeeUXspdvJNBoNQUFBBAUFoSgK5eXlFBYWkpGRwd69e/Hx8SEwMBBfX18RYNrZjBvHEBETxImMAgaOjiKo15nrNj19XamvbbR+rdH+8SiqJEm4uLhQU1PTKhBHDw7j5a/+r/2KPwej0UhZWRlFRUUUFBRQX1+Pv78/YWFhjBw5EkfH7tHh2l6lp6dzxx13kJuby//+9z9mzDj3hyuCIAjtTZzhCYIgnMbJyYm//e1vXHfdddx+++389ttvfP7552K02EYkScLb2xtvb2/69+9PXV0dBQUFFBYWkpaWhkqlwtfXFx8fH/z8/HBzcxMB+RLFDOtFzLBe57x96nUj+frt1davR0+LPe8xXV1dqampaZf6zscSgEtKSigpKaGiogInJyf8/PyIjY3Fz89PfMjVBciyzOuvv85f//pX5s2bx5o1a8SosCAInU78NhAEQTiHsWPHcuDAAZ555hkmTpzIQw89xMsvvyxOpG3M2dmZ3r1707t3b2RZpqKigpKSEoqKikhLS0OtVuPj44Ovry++vr4iIHeAGx+cjs5BS3pKDgNHRTF7wcTzPqYjA/G5ArCvry8RERH4+vri7OzcIc8tXJyMjAzuuOMOcnJyWLFiBZdffrmtSxKE9if2Ie4WxFmdIAjCH3BycuKtt97i2muv5Y477uDXX3/liy++YPjw4bYuTQBUKpV19BhoFZALCws5fPhwq4Ds7e2Nu7u7aNB1idRqFXPvm9qmx7i4uFBeXt4uz9/Y2EhFRQWlpaUiAHczsizzt7/9jZdeeonrr7+e3377TYwKC4JgUyIQC4IgXIDx48dz4MABFi9ezIQJE1i0aBEvvfSSGC3uYv4oIBcUFJCWlobJZMLd3R1PT088PT3x8PDA3d1ddBPuYG5ubhc1QmwJvxUVFVRWVlJRUUF9fT0uLi54e3uLANyNZGRkMH/+fLKysvjuu++YOXOmrUsShI4ltl3qFsSZnCAIwgVydnbmnXfe4brrrms1Wjxs2DBblyacQ8uA3LdvXxRFoba21hqsTp48yeHDhzEajdaQ7OHhgaenpwjJ7czFxYWGhgYMBsM5u4Q3NDRY/99YLg0NDbi4uODp6YmXlxeRkZF4enqKTuPdiCzLvPXWW7z00ktce+21/PLLL3h6etq6LEEQWsjLy+O5555j9erVlJaWEhQUxNVXX83zzz+Pl5fXBR+nrKyMJUuWsHLlSk6dOoWPjw+XX345S5YsITQ0tANfwcUTgVgQBKGNJkyYQGpqKn/5y18YP348999/Py+99JLoVNsNSJKEq6srrq6uhISEAOZteOrq6qwB7NSpU6SlpWE0GnFzc8PNzc36GBcXF1xdXUUYuwg6nQ6tVktNTQ2Ojo7U1NRYL5YPKVqGXx8fH6KiovDw8BDvdzd28OBB7r33Xo4fP863337LrFmzbF2SIAinyczMZNy4cRQVFTFnzhz69evHzp07ee+991i9ejXbt2/Hx8fnvMcpLS1l3LhxHD16lClTpnDjjTdy5MgRPv/8c3755RcSExPp3bt3J7yithGBWBAE4SI4Ozvz7rvvcv3113Pvvffy3//+19qZWuheLFsCubi4tArJ9fX1VFRUWENbUVERtbW16PV6HBwcWgVky99dXFzEqDLm90+v11NbW9sq9MqyzNatW1EUxfp+ubq6EhAQQJ8+fUT4tSM1NTU89dRT/Otf/+K2227j559/btMokyDYhW7SVGvhwoUUFRXx/vvv8+CDD1qvf/TRR3nnnXdYvHgxS5cuPe9x/vKXv3D06FEeffRR3nrrLev177//PosWLWLhwoWsXr36D45gG5KiiFZkgiAIl8JgMPDhhx/y/PPPM2bMGD766COio6NtXZbQQfR6fauQ1/LvJpMJJycnnJyccHBwwNHRsdXFcp1Op+uwztcGg4Fff/2VWbNmdUi4lGWZhoYG66WxsfGMr+vq6jAYDNYPDiyXwsJC3NzcGDhwoGhsZse+/PJL/vKXvxAYGMjSpUuJi4uzdUmC0Kmqqqrw8PBgWvC9aFQOnfrcRrmRdfmfUFlZibu7+3nvn5mZSZ8+fYiIiCAzM7PVz+bq6mqCgoJQFIWioiJcXFzOeZyamhr8/f1RqVScOnUKNzc3622yLNO7d29ycnLIzMzscqPEYoRYEAThEmm1Wh555BFuvPFGHn/8cYYOHcr999/PkiVLxDRqO6TT6Vo17rJQFIWGhgZqa2tbBcSqqiqKi4utXxuNRiRJahWQHR0d0Wg0aDQa1Gq19e9nu1huv9hALcsyRqPxrBeTyXTGdQaDoVXY1ev1AK1qt/zd09MTR0dHnJyccHFxOSOQm0wmampqRBi2U6mpqSxcuJBDhw7xxhtvcOedd4r/10LPpmCDEeK23X3jxo0ATJ8+/Yx/r25ubowfP561a9eSlJTE1Knn3l0gKSmJ+vp6pk+f3ioMg7mfx4wZM/jHP/7Bxo0bRSAWBEGwV0FBQfznP/9hy5YtLFy4kBUrVvDGG28wd+5cW5cmdAJJkqyjw3/EaDSeMbLa2NiI0Wi0/nmucCrLsvU4lqnZkiRZw3HLkLxu3ToURcEyEczy99OP8UfhW6PR4OzsjLe3d6vw6+DgcFFBx9XVlYKCgjY/TujaampqePLJJ/nss8+44447WLly5QWtNxQEwfbS09MB6Nu371lvj46OZu3atRw9evQPA/GFHAfg6NGjl1JuhxCBWBAEoZ1NmjSJlJQUPvzwQ+666y4+/fRTMY1asNJoNNYpxG3VcnTXZDK1CruWPw0GAzt27GDkyJFotdpWYVmSpFYjzR01bftcXF1dqampQVGUTn9uof3JssyXX37J4sWLCQ4OZuvWrWJ6tCC0ZMM1xFVVVa2utnyYebrKykqAc+4Hbrm+oqLiD5+2vY5jC2IeiyAIQgfQaDQ8/PDDHD16FH9/f4YOHcoTTzxBQ0ODrUsTujGVSoVOp8PZ2Rk3Nzfc3d1xd3fHw8PDul2UZTsby3WW+1i6ZVumZ9sikLq4uFhHwoXuLTU1lUmTJvHoo4/y4osvkpycLMKwIHQhYWFh1t8DHh4evPrqq7YuqcsSgVgQBKEDBQYG8vXXX7N69Wp+++03+vXrx4oVK2xdliDYhEajwcnJiZqaGluXIlykqqoqFi5cyKhRoxg4cCDHjh3j7rvvFmuFBaGLyc3NpbKy0np5+umnz3o/y8itZYT3dJbrz7d3eHsdxxbETy9BEIROMHHiRFJSUnjkkUe46667mDJlCrt377Z1WYLQ6VxcXKitrbV1GUIbGY1G3n33Xfr168euXbvYunUrS5cuPaO5nCAILciybS5gnR1kuZxtujRATEwMcO61vRkZGcC51wa393FsQQRiQRCETqLRaFi0aBEZGRkMGDCACRMmcPXVV1t/SQhCT2BZRyx0D7Is89VXX9G/f3/eeecdXn/9dTE9WhDsSEJCAgBr165t1XQRzNsubd++HWdnZ8aMGfOHxxkzZgxOTk5s376d6urqVrfJsszatWtbPV9XIgKxIAhCJwsICODDDz/k8OHDODk5MXjwYObPn8+pU6dsXZogdDgRiLuP1atXM2LECB5++GEeeOABjh49ym233SamRwvChbI01ersSxtERUUxffp0srOz+eijj1rd9vzzz1NbW8ttt93Wag/iI0eOcOTIkVb3dXV15bbbbqO2tpYXXnih1W0ffvgh2dnZzJgxo8ttuQQgKUpntz4TBEEQWkpJSeHJJ59kx44d3HPPPTz//PPn7NIoCOdjMBj49ddfmTVr1hn7AHcFhYWFHDx48A+37xBsKzk5mSeffJLdu3fz2GOP8fjjj5+xr6ggCOdWVVWFh4cH0/zuQqPSdepzG2U964r/RWVlJe7u7hf0mMzMTMaNG0dRURFz5syhf//+JCcns3HjRvr27cuOHTtabaVmacp4eowsLS1l3LhxHD16lClTpjBq1CjS0tJYtWoV/v7+7Nixg6ioqPZ7se1EfMQnCIJgY0OHDmXNmjX89NNPbN26laioKF5++WXRiVewS66urtTW1p4xNU+wvfT0dObMmcPkyZMZNGgQx48f58UXXxRhWBDsXFRUFLt372b+/PkkJyfz1ltvkZmZyaJFi0hKSrrgfcV9fHxITEzkoYce4tixY7z11lskJyezYMEC9uzZ0yXDMIgRYkEQhC5FURR++OEHnnrqKRobG3n66ae55557UKvVti5N6Ca6+gixoij89NNPTJ06tdUUPMF2Tp48yeLFi1m+fDnXXHMNL7/8cpec1igI3YV1hNj3TtuMEJd81qYR4p5OjBALgiB0IZIkce2113L48GGeffZZlixZwqBBg8RWTYLdkCQJFxcXsY64C6isrOThhx+mX79+FBQUkJSUxDfffCPCsCAIPYoIxIIgCF2QRqPh7rvvJjMzk/nz53PPPfcwcuRIvv/+ezHVVOj2RGMt2yorK+Ppp58mKiqKxMREfv75Z1avXs2QIUNsXZog2BdZsc1FaBMRiAVBELowJycn/vznP5OVlcWsWbO48847GTx4MJ999hkmk8nW5QnCRRGB2DZOnTrF/fffT2RkJOvXr+ezzz4jKSmJyZMn27o0QRAEmxGBWBAEoRvw8vLixRdfJC8vjwULFrB48WL69u3LO++8I5pvCd2OCMSdKyMjg9tvv52oqCjS09NZuXIlycnJzJ4929otVhCE9qcosk0uQtuIQCwIgtCNuLq68thjj5Gdnc3TTz/Nhx9+SGRkJC+88IIIGEK3Yek0LXSsffv2cc011zBw4ECqq6vZsmUL69atIyEhQQRhQRCEJiIQC4IgdEMODg7cfffdHD16lHfffZcffviB8PBwHn30UYqLi21dniD8IRcXF+rr6zEajbYuxS5t3ryZyy67jDFjxuDu7s7+/fv54YcfiIuLs3VpgiAIXY4IxIIgCN2YWq1m3rx5pKSk8M0337Br1y569+7NPffcQ05Ojq3LE4SzcnBwQKPRiFHidiTLMqtWrWLs2LHMnDmT/v37k5GRwb///W/69etn6/IEoWdSbNBQS+yo22YiEAuCINgBSZK4/PLL2bp1K6tXr+bkyZP069ePG2+8kYMHD9q6PEFoRZIksY64nRiNRr744guGDh3KHXfcwdSpU8nJyeH9998nPDzc1uUJgiB0eSIQC4Ig2Jnx48fz66+/kpycjCRJDB8+nEmTJrF8+XLRmVroMkQgvjSFhYU8/fTTRERE8PTTT3Prrbdy4sQJXn75Zfz8/GxdniAIYB6ttcVFaBMRiAVBEOzU4MGDWbZsGVlZWcTHx/Pggw/Su3dvnnvuOUpLS21dntDDiUB8cbZv3871119PZGQkW7du5e233+bEiRP8+c9/xt3d3dblCYIgdDsiEAuCINi5kJAQlixZQm5uLq+++ipr1qwhPDycG2+8kZ07d9q6PKGHuphO0weTM1n12WayDp/soKq6psbGRv7xj38wYsQIpk2bhqenJzt27GDbtm3MmzcPrVZr6xIFQRC6LY2tCxAEQRA6h4ODAzfffDM333wzu3fv5v3332fSpEkMGDCA+fPnc9ddd+Hi4mLrMoUewsXFhZqaGhRFuaAtgNZ8m8i7jy8DQK1W8ddv72fw2OiOLtOm0tLSePfdd/n+++9xcXHh/vvv56677sLb29vWpQmCcCFkGaRO3hdY7EPcZmKEWBAEoQeKi4vjyy+/JD8/n9tvv50PP/yQ0NBQ5s+fz759+2xdntADuLq6YjAY0Ov1F3T/n77Yav27gsLa5ckdVZpN6fV6vvjiCyZMmMCQIUMoLCzk66+/5vjx4zzxxBMiDAuCILQzEYgFQRB6MG9vbx5++GHS09P54YcfqK+vZ/To0YwaNYoPPviAyspKW5co2CmNRoOjo+MFryP29nNHpW46bVHA08e1A6vrfKmpqTzwwAOEh4ezePFipk+fTnZ2NitXrmTGjBmoVOKUTRC6HdFUq1sQP10FQRAEJEkiPj6e5cuXk5eXx7XXXsuHH35IUFAQV111Fd99990Fj+QJwoVqS2Ot/3vpOoIjfAHoHxfJDQ9O78jSOkVeXh4vvvgigwcPZsSIEeTk5PDpp5+Sk5PDc889R3BwsK1LFARBsHuSooiPEQRBEIQzKYpCSkoKX331Fd988w1Go5FZs2Yxf/584uPjxYhVF2UwGPj111+ZNWtWl2+2tH//frRaLQMGDLjgxxgNJjRadQdW1bGqqqr48ssvWb58OUlJSYwcOZI77riD66+/Hh8fH1uXJwhCO6iqqsLDw4MpzjeikXSd+txGRc+Gum+prKwUnecvkDibEQRBEM5KkiSGDRvG22+/zcmTJ/n222+RJIk5c+bQu3dvFi1axMGDB21dptCNWRprtUV3DMN6vZ7vvvuOq666iqCgID744AMuv/xyMjIy2LFjB/fee68Iw4IgCDYiArEgCIJwXmq1mmnTpvHvf/+boqIi3njjDTIzMxk+fDhDhgxhyZIlnDzZs7bCES6dPe9FLMsymzZt4vbbbyckJISHHnqI6Ohotm3bxpEjR1i8eDERERG2LlMQBKHHE4FYEARBaBMnJyfmzZvHzz//TH5+Pv/3f//H6tWriYiIYNKkSXzwwQcUFxfbukyhG7DsRWwvq7dkWSY5OZmHH36YqKgorrrqKgCWLVvGyZMnefvttxk2bNgFbTMlCIIdEE21ugURiAVBEISL5uvry3333ceOHTs4evQo06dP55NPPiE4OJiRI0fyzDPPkJqaausyhS7K2dkZRVGor6+3dSkXrbGxke+//57bbruN8PBw4uPjyczM5LXXXqOwsJAvv/ySadOmoVZ3v6negiAIPYEIxIIgCEK7iIyM5JlnnuHgwYMcO3aMO+64g6SkJEaMGEFUVBT33HMPq1evxmg02rpUoYtQqVQ4Ozt3u2nTxcXFfPjhh8ycOdP6oZCjoyN///vfKS0t5aeffuKGG27A2dnZ1qUKgmBLsmKbi9AmGlsXIAiCINifXr168cADD/DAAw9QVVXFmjVrWLlyJTfddBOSJDFx4kRmz57Nddddh6enp63LFWzIso7Y39/f1qX8odTUVJYvX86aNWtISUkhJiaGq6++mhdffJG4uDjRdV0QBKGbEoFYEARB6FDu7u7MnTuXuXPnYjQa2bFjB6tWreLVV19l4cKFjBw5kssvv5wbbriB6OhoW5crdLKu2ljLaDSybt06/ve//7FhwwZyc3OZNGkSd9xxB//973/p1auXrUsUBEEQ2oEIxIIgCEKn0Wg0TJo0iUmTJvHWW2+Rnp7OTz/9xA8//MALL7xAeHg4I0eOJCEhgZkzZ4rQ0QO4urqSn59v6zIwmUwkJiayevVqtm/fzt69e5EkiSuuuILXXnuNGTNmiD09BUFoG0UBZBs8p9AWIhALgiAINhMTE0NMTAyPP/44ZWVlbNmyhY0bN/LRRx+xcOFCIiMjrQF51qxZhIWF2bpkoZ3ZaoTYEoDXrFnD9u3b2bNnDyaTifHjxzNz5kxef/11hg8fjkYjTpUEQRDsmfgpLwiCIHQJ3t7eXH311Vx99dUAlJaWsnXrVjZu3MiHH37IfffdJwKyHXJxcaG+vh6TydShnZhNJhNJSUmsWbOGbdu2sXfvXoxGI+PHj+fyyy/ntddeEwFYEIR2pcgKitS5I7b2so1dZxI/9QVBEIQuycfH54yAbBlB/uCDD7jvvvvo3bs3I0eOZPLkyUyYMIEBAwaI5kbdjKOjI2q1mtra2nadklxTU8OOHTvYtm2bdQTYaDQybtw4ZsyYwauvvsrw4cPRarXt9pyCIAhC9yMCsSAIgtAt+Pj4cM0113DNNdcArQPy0qVL+f/27j2m6vqP4/jrgILG5QAiHBQ4UIBaEiKyBpFkFzYvJYS6RS2ZmbXcsrVqza3VHyxm8w9ttWZ2MWextbXESwpdpgmKLTo1bwnk4ZZAwuRwMcBz+f3RPL+dJEtD4HCej+2Mw+f7/n4/ny9/sL3O5/P9nOeee05Tp07V7NmzNXfuXC1YsEDZ2dlKTU0lJI9jBoPBvWz6RgNxX1+fqqurVVNTI4vFotOnT+vcuXMKDQ3VggULlJeXpzfeeIMADGB0uZwa/WeIR7m/CYBADADwSn8NyIODgzp58qRqa2v1ww8/6L333tOGDRsUGBjoEZLvvvtupaam3tTlubg+1/MccU9Pj44ePapjx47JYrHozJkzslqtMhqNmj9/vjIzM/XEE08oIyND8fHxMhgMN3n0AABvRiAGAEwIgYGBysjIUEZGhtatWydJGhoa8gjJH3zwgV544QUFBARo1qxZmjt3rtLS0nTHHXcoLS1N0dHRY3wXvmm4QGy321VfX68TJ07oxIkT+umnn9zhNyIiwh1+16xZo4yMDMXGxhJ+AQDXzeDiyWsAgA8ZGhrSqVOn3CH5559/VkNDgzo7OxUeHq74+HiZzWYlJSW5Z5ZTU1MVHBw81kP/Vy5fvqwvv/xSS5YsGffLg51Op3777Td99913slgs6u7ultVqVVNTk1paWuRwOGQ2mzV79mz3hx0ZGRmaOXMm4RfAuNXT0yOj0ah7DQWaZBjd/8N212Udcn0hm83GV8X9S8wQAwB8SkBAgNLT05Wenq61a9e627u7u1VfX6+6ujrV1dXpl19+0TfffKOGhgZdunRJ0dHRMpvNSkhIUEpKiubMmaNZs2bJbDYrPDyc55T/ht1uV2trqxobG3Xq1CmdPXtWv/76q5qamtTU1KS+vj6ZTCYlJSXp9ttv19KlS5WSkqKUlBQlJiaO+1APAPBuBGIAACSFhYUpMzNTmZmZHu0ul0vt7e3uoHz27FlZLBaVlZWppaVFg4ODmjJliqZPn67IyEhNnz5dUVFRMplMmjFjhmJjY92zzlFRURMmOA8ODqq5uVnNzc1qaWlRa2ur2tra1NHRoQsXLuj3339XV1eXurq65HQ6FR4erttuu02zZs1SVlaWVq9erZSUFCUlJXnN7DsAXBc21fIKBGIAAK7BYDAoJiZGMTExys3N9Tjmcrlks9nU1tamtrY2nT9/3v2zublZNTU1On/+vDo6OtTf36+AgABFRkYqMjJSYWFhCgoKcr9CQkIUEhKi4OBghYaGKjQ0VEajUUaj0f0+LCxMYWFh/3lDsIGBAV28eFE2m03d3d2y2Wzq6emRzWZTb2+venp61NfXp97eXvX29urSpUvq7+9Xf3+/Ojs71dnZqYsXL0r6c3OzK+F/5syZmj17thYtWqQZM2a4/24mk0mBgYH/acwAANwMBGIAAG6QwWBwh9Q5c+Zcs7avr88jNHd2dnqEzp6eHrW1tamnp0e9vb3uY/39/err69PAwID7WoGBgTIYDPLz85Ofn58MBoP8/f3dbQ6HQ9Kfgd3pdMrlcsnhcMjlcslut8tut0uS/Pz8FBQUpODgYHcoDw4OVkhIiEJDQxUSEqKYmBiPtujoaHfYjYqKYkkzAPwNuy5Lo7xbk12XR7fDCYBNtQAA8AJ2u139/f3uGdsrYdfpdMrhcHi8vxKU//ry9/eXv7+/O+BOnTqVzakAYIQNDAwoMTFR7e3tY9K/yWSS1WrVlClTxqR/b0MgBgAAAIARNDAwoKGhoTHpOyAggDB8HQjEAAAAAACfNDG2ugQAAAAA4DoRiAEAAAAAPolADAAAAADwSQRiAAAAAIBPIhADAAAAAHwSgRgAAAAA4JMIxAAAAAAAn0QgBgAAAAD4JAIxAABezuFwaPv27crNzVVERIQmT56sqKgo3XnnnVq7dq327Nkz1kMEAGBcMrhcLtdYDwIAANwYh8OhZcuW6eDBgwoLC9PSpUsVGxuroaEhnTp1SkeOHNH8+fNVVVU11kMFAGDcmTTWAwAAADeurKxMBw8eVFpamg4fPiyj0ehx/NKlSzp+/PgYjQ4AgPGNJdMAAHixo0ePSpKKi4uvCsOSdMstt2jRokWjPSwAALwCgRgAAC82bdo0SVJdXd0YjwQAAO/DM8QAAHgxi8Wiu+66S3a7XY899pgKCgqUkZEhs9k81kMDAGDcY4YYAAAvlp6erl27dik6Olq7du1SYWGhEhISNG3aNBUUFGjv3r1jNrbi4mIZDAY1NjaO2Rj+aseOHTIYDNqxY8dYDwUAMA4QiAEA8HKrVq1Sc3OzKioq9Oqrr2rZsmVyOp3avXu3Hn74Ya1evVojtSDMYDBc80XQBAB4E3aZBgBgApg8ebLy8vKUl5cn6c+vY/r888+1Zs0a7dy5UwUFBcrPzx+x/l577bVh2+fNmzdifQAAcLMRiAEAmID8/f21atUqnThxQiUlJfr2229HNBC//vrrI3YtAADGCkumAQCYwEJCQiRpxJZMj5TPPvtMCxculNFo1NSpU5WamqrS0lINDg4OW19bW6vCwkJFRUUpMDBQZrNZzz77rNra2oatb2ho0MqVKxUeHq6goCBlZ2dr//79N/OWAABeiBliAAC8WFlZmSIjI3X//ffLz8/zc+729nZt375dkrRw4cKxGN6wNm7cqNLSUkVGRqqoqEjBwcE6cOCANm7cqIqKClVWViogIMBdv2/fPhUWFsrlcmnFihUym82qra3Vu+++q/LyclVVVSkxMdFdX19fr6ysLHV1dWnx4sWaN2+eGhoalJ+fr8WLF4/FLQMAxikCMQAAXuz48ePaunWrTCaTcnJy3MHQarVq//79+uOPP7R8+XKtWLFiRPsdbsl0QkKCiouLr3nesWPHVFpaqri4OH3//fcymUySpNLSUhUUFGjfvn3avHmzNm7cKEnq6+vT6tWrZbfbdejQId1zzz3ua23atEmvvPKKnn76aVVWVrrb169fr66uLm3ZskUbNmxwt5eXl4/osnEAgPfje4gBAPBiLS0t2rNnj77++mudPn1abW1tGhgY0LRp05Senq6ioiIVFRVdNXt8owwGw98ey83N1aFDh9y/FxcX6+OPP5bValVCQoIk6amnntL777+vbdu2ad26dR7n19XVac6cOTKbzTp37pwk6ZNPPtHjjz+uRx99VJ9++qlHvd1uV3JyshobG9XU1KT4+Hi1trYqLi5OiYmJqq+vl7+/v8c59957rw4fPqyPPvroH8M7AGDiY4YYAAAvFhcXp/Xr12v9+vWj2u+Nfp7+448/SpLuu+++q46lpKQoNjZWVqtVNptNRqPxmvWTJk3SwoUL1djYKIvFovj4eFksFklSTk7OVWFY+n8gBgBAYlMtAAAwimw2myQpJiZm2ONX2ru7u/9TfXR09LD1V5ZoAwAgEYgBAMAoMhqNkv7c8Gs4V3aNvlJ3o/UdHR3D1v/ddQAAvolADAAARk16erokeTxrfEVDQ4NaW1uVmJiosLCwf6y32+06cuSIJGn+/Pke9VVVVXI4HFedM9x1AAC+i0AMAABGzZo1ayRJJSUlunDhgrvd4XDoxRdflNPp1JNPPuluz8/PV0REhMrKylRTU+NxrS1btshqteqBBx5QfHy8JCk2NlYPPvigrFar3n77bY/68vJynh8GAHhgUy0AADBqsrOz9fLLL+vNN9/U3LlztWLFCgUFBenAgQM6efKkcnJy9NJLL7nrg4OD9eGHH2rlypXKzc3VypUrFR8fr9raWlVWVspkMmnbtm0efbzzzjvKysrS888/r8rKSqWlpamhoUFffPGFHnroIe3du3e0bxsAME4xQwwAAEbVpk2bVFZWpuTkZO3cuVNvvfWWnE6nSkpK9NVXXykgIMCjfvny5aqurtaSJUtUUVGhzZs368yZM3rmmWdUW1urW2+91aM+OTlZNTU1KiwsVHV1tbZu3aqWlhbt3r1bjzzyyGjeKgBgnON7iAEAAAAAPokZYgAAAACATyIQAwAAAAB8EoEYAAAAAOCTCMQAAAAAAJ9EIAYAAAAA+CQCMQAAAADAJxGIAQAAAAA+iUAMAAAAAPBJBGIAAAAAgE8iEAMAAAAAfBKBGAAAAADgkwjEAAAAAACfRCAGAAAAAPik/wGyJaIMzu9zKwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAALeCAYAAABslti+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U+Xfx/H3SZqme1Pa0knL3ntDGYI4WCJLVAQXKg5cKP4YiuJ4EHCiOHCiomxkQ0H23htaWihtaemeGef5I20gtFAKpWV8X9eVC3LmnZNA8jn3UlRVVRFCCCGEEEIIIe4ymsougBBCCCGEEEIIURkkEAshhBBCCCGEuCtJIBZCCCGEEEIIcVeSQCyEEEIIIYQQ4q4kgVgIIYQQQgghxF1JArEQQgghhBBCiLuSBGIhhBBCCCGEEHclCcRCCCGEEEIIIe5KEoiFEEIIIYQQQtyVJBALIcRdZMKECSiKQlRUVGUXRZSBoihERkZWdjFsDBs2DEVRiImJuanniYyMRFGUm3qOW9Xd/NqFEKKiSCAWQojrZDKZmDlzJp06dcLLywudToevry8NGzbkySefZOHChRVeplmzZqEoCrNmzarwc99KbsUAeant27fzyCOPEBISgl6vx83NjfDwcB588EE+/vhjsrOzK7uIN012djbTpk2jS5cu+Pr6Ym9vj4eHBy1btmTs2LGcOnWqsot42yoK0Ndyw6vohsalD61Wi7e3N126dOG33367rjKkp6czbtw4GjZsiIuLC25ubtSvX59nnnkGg8FwXccUQoibya6yCyCEELcjk8nEAw88wLJly/Dw8OD+++8nMDCQgoICDh48yO+//86RI0fo1atXZRdV3GJ+/fVXHn/8cVRVpUuXLvTt2xdHR0dOnz7Nhg0bWLx4Mf369SMiIqKyi1rutmzZQv/+/Tl79iyBgYHcd999BAQEkJ2dze7du/noo4/45JNP2LJlC02bNq3s4t4VevfuTePGjQEoKCjg1KlTLFy4kLVr13Lo0CHef//9az7WkSNH6N69O2fPnqVbt2707NkTg8FATEwMf/31F1OmTEGn092kVyKEENdHArEQQlyH2bNns2zZMho1asS6detwd3e3WZ+Tk8PWrVsrqXTiVpWTk8Pzzz+PoiisWLGCrl27Fttm06ZN+Pj4VELpbq4jR47Qo0cPsrKy+PDDD3n11Vexs7P9GRIdHc2bb75JRkZGJZXy7tOnTx+GDRtms2znzp00b96cTz/9lP/97384ODiUepycnBx69epFZmYmGzdupHXr1jbrjUYjWq22PIsuhBDlQppMCyHEddi0aRNgaXZ4eRgGcHJyonPnzsWW5+fn8+GHH9KgQQOcnJxwc3OjQ4cO/PXXX8W2jYqKQlEUJkyYUGIZQkNDCQ0NtT6PjIzkiSeeAOCJJ56waQpZUj/Pv//+m5YtW+Lk5ISXlxeDBg3i7NmzxbbbuXMnL730Eo0aNcLLywsHBwdq1KjBq6++SmpqarHtL222vXLlSjp06ICLiwtVqlThiSeeIC0tDYDdu3fzwAMP4OnpiYuLC7169SqxnEXNQPPz83nnnXcICwtDr9cTHh7OxIkTKSgoKHZugHXr1tlcg8uv419//UXHjh1xd3fH0dGRBg0aMHnyZPLz8694rbOzs3n99dcJDg5Gr9cTERHBRx99hKqqxfYpyYEDB8jIyKB+/folhmGAtm3b4uHhUeK65ORknn76afz9/dHr9dSrV48ff/yxxG3NZjMzZsygRYsWuLi44OzsTIsWLfj6668xm83Ftp8/fz5Dhw6lZs2aODs74+zsTLNmzfjss89K3L6sRo0aRUZGBm+++SZvvvlmsTAMEBYWxl9//UWbNm2KrTMajXzwwQfUqFEDvV5PUFAQb775ps37f72v5dL+0N988w0NGjTAwcGBqlWr8vTTT5Oenl5sn+v9TGzdupX+/fvj5+eHvb09QUFBPPPMM8THx1/LZawQzZo1w8vLi7y8PDIzM69pnxkzZnD8+HEmT55cLAwD2NnZSX9oIcQtSWqIhRDiOnh7ewNw7Nixa96noKCAHj16sG7dOmrXrs3zzz9PTk4Of//9NwMHDmTPnj188MEH112mYcOG4eHhwYIFC2yaQQLFAtZXX33FwoUL6dWrF506dWLr1q38+eef7N27lz179qDX663bzpw5k3nz5tGpUye6deuG2Wxm586dfPrppyxdupStW7fi6uparDwLFy5k8eLFPPDAAzz77LNs2rSJWbNmERMTw+TJk+natSsdOnRgxIgR7N+/n0WLFnHq1Cn27duHRlP8fu2AAQPYvn07/fv3R6fTsWDBAiZMmMCOHTtYuHAhiqLQuHFjxo8fz8SJEwkJCbGp+bq0T/Hbb7/N5MmT8fHxYciQIbi4uLB06VLefvttli9fzooVK7C3t7c5v8FgoEePHsTHx9OzZ0/s7OyYP38+Y8aMIS8vj/Hjx5f6HhV9buLj48nOzsbZ2bnUfYqkpaXRrl077O3t6d+/P/n5+cyZM4fhw4ej0Wh4/PHHbbZ/9NFH+f333wkKCuLJJ59EURTmzZvHc889x4YNG4r1ER0zZgwajYZWrVpRrVo10tPTWbNmDS+99BLbt2/nl19+ueayXi46OppVq1bh4ODAG2+8Uer2l37+igwZMoT//vuPnj174ubmxr///svHH39MUlJSsZsC1/ta3njjDZYvX86DDz5I9+7dWbt2LTNnzuTEiROsWbOm2PZl/Uz88MMPPP300+j1enr16kVQUBDHjx/nu+++Y9GiRWzZsoXg4OBSr8/NtmvXLi5cuEBISAhVqlS5pn1+//13FEVh0KBBxMTEsHTpUtLS0ggODubee++1fvaFEOKWowohhCizXbt2qTqdTlUURR06dKj6zz//qDExMVfd54MPPlABtWfPnqrBYLAuT0xMVENCQlRA3bhxo3X52rVrVUAdP358iccLCQlRQ0JCbJb9+OOPKqD++OOPJe4zfvx4FVBdXV3Vffv22awbPHiwCqh//vmnzfKYmBjVaDQWO9Z3332nAuqHH35YYhm0Wq0aFRVlXW4ymdRu3bqpgOrp6an++uuvNvsNHz5cBdT58+fbLO/UqZMKqDVq1FAvXLhgXZ6bm6u2bt1aBdSff/7ZZh9A7dSpU4nXYNOmTSqgBgUFqefOnbMuNxgM6gMPPKAC6vvvv2+zT9H707NnTzUnJ8e6PDExUXV3d1fd3d3VgoKCEs93KbPZrLZo0UIF1EaNGqlffPGFumvXLjU/P/+q+wEqoI4YMcLmvTh48KCq1WrVOnXq2Gz/+++/q4DapEkTNTMz07o8KytLbdasmQqov/32m80+J06cKHZek8mkPvbYYyqgbtmyxWbd448/rgJqdHR0qa/7559/VgG1Xbt2pW57uaL3v2nTpmpKSorNawkPD1c1Go3N+3gjryUoKEg9ffq0dbnBYFA7dOigAurWrVtt9inrZ+Lo0aOqTqdTw8PD1TNnztgca9WqVapGo1H79OlT4mu/VkXbr127ttRti15z79691fHjx6vjx49X33rrLXXw4MGqs7OzGhgYqK5fv/6azltQUKDa2dmpvr6+6scff6za2dlZP7OA6uzsrH7//ffX/DqEEKIiSSAWQojr9Oeff6p+fn42P/y8vLzUPn36qAsXLiy2fUREhKooinr48OFi64rC5RNPPGFddjMD8dixY4utW7NmjQqor7766pVf9CXMZrPq5uamdu7cucQyDB06tNg+P/30kwqoHTp0KLYuKipKBdQJEybYLC/6kX956FXVi9coMjLSZvnVAvGTTz6pAuo333xTbN3Ro0dVjUajhoWF2SwvCj/Hjx8vtk9RyNq/f3+J57vc6dOn1cjISJvPjU6nU1u2bKl++OGHanp6erF9ANXJyanEdR07dlQBm+BbdONh+fLlxbZftWqVChR7365k586dKqBOnDjRZnlZAvFHH32kAurAgQOv6ZyXKnr/V65cWWzduHHjVEBdtGjRNR2rtNcyc+bMYvv88MMPKqB+/vnnNsvL+pl4+eWXVUBdvHhxiWXr06ePqtVq1YyMDOuyigjEJT0cHR3VN954Q01NTb2m8yYkJFhvgmm1WnXixIlqXFycmpycrH733Xeqi4uLqiiKunr16mt+LUIIUVGkybQQQlynAQMG0LdvX9auXcuGDRvYvXs3GzZsYP78+cyfP5/HHnvM2qc1MzOTEydOUK1aNWrXrl3sWF26dAEs/WorQvPmzYstCwoKAijWL9hgMPDNN9/wxx9/cOjQIdLT0236YZbU7/hK5wgICAAsfRQvV61aNQDOnDlT4vE6depUbFn79u3RarVlum67du0CLl7zS9WsWZPAwECio6NJT0+36R/u7u5e4sjPV7puVxIcHMzatWs5fPgwK1euZMeOHWzbts36+Oqrr4iKiiIsLMxmvxo1auDm5nbV87u4uFhfo0ajKXHqqU6dOpV4zVJSUvjkk0/4999/OXXqVLGpn670PleUsnxmr/e1lOUcULbPxObNmwFL3/bt27cX2ycpKQmTycSxY8dK/Pdxs/z444/WrgUmk4kzZ87w008/MWHCBBYsWMCOHTusn6srKfr/wGQy8cwzzzBu3DjruhEjRpCTk8OLL77IRx99VOK/OyGEqEwSiIUQ4gbodDq6d+9O9+7dAcsPwn/++Yfhw4fz888/07dvX/r06WMdlMff37/E4xQtLxpw6mYradCmokGOTCaTzfKBAwcyb948qlevTu/evfHz87P28Zw2bVqJg1ABJQ42VnSOq6270lylVatWLXEfHx8fkpKSStynJNfyXsTGxpKWlmZTzisNdHWl61aaOnXqUKdOHevzI0eOMHz4cDZv3swrr7zC/PnzbbYvy/nT09Px8vIq1g+6aPvLr1laWhotWrQgOjqali1b8thjj+Hl5YWdnR1paWlMnz79iu/ztSi61jcSqq/1M3sjr6Us/y6utP2V9klJSQHgk08+KXGfIllZWVddfzNptVpCQkIYN24cx44d47fffuPzzz/nrbfeuup+l/476du3b7H1ffv25cUXX2Tbtm3lXmYhhLhREoiFEKIcabVaBgwYwP79+5k0aRJr1qyhT58+1h+MCQkJJe537tw5wPaHZdHAUkajscR90tLSrviDvLzs2LGDefPm0a1bN5YuXWozMrDZbObjjz++qee/VGJiYrEBh4xGI8nJySXWnF7Jpe9FeHh4sfUlvRcVoXbt2vzyyy9ERESUOIBTWbi7u3PhwgUMBkOxeV9Lumbfffcd0dHRjB8/vtho3Js3b2b69Ok3VJ727dsDls/T5TXv5e1mv5brVfSa09PTy/R5rSytWrXit99+u6YQ6+TkRFBQEHFxcSX+n+Tp6QlAbm5ueRdTCCFumEy7JIQQN0HRqMtq4dQrrq6uhIeHc/bsWY4fP15s+7Vr1wLQtGlT67KiH5FxcXHFtj9x4kSJU8EUzfNZ1trKKzlx4gQAvXr1KjZNzrZt2yr0B+66deuKLduwYQMmk4kmTZrYLNdoNFe8BkXbRkVFFVt34sQJzpw5Q1hY2E2/2VCSyz8316tJkyaYzWbWr19fbN369esxmUw2n7Wi9/mhhx4qtn1J172swsLC6NatG3l5eaXWkAI3VBt9s1/L9Sqaiui///6rtDKURVFz72udcqtbt26AZWqxyxUtu7wbgBBC3AokEAshxHWYPXs2K1euLPHHYkJCAjNnzgSgY8eO1uXDhw9HVVVef/11m7CWnJzMe++9Z92mSO3atXFzc2PBggU2zVtzc3N58cUXSyxX0dQmsbGxN/DqLiqa5/jy8JiUlMTzzz9fLue4Vu+9955Nn8y8vDxrU86i+ZeLeHt7l3gjAS5e40mTJnH+/HnrcpPJxGuvvYbZbGbEiBHlXXzAMv3QZ599VuLNDFVVef/99wHbz831KHqNb731Fjk5OdblOTk5jBkzBsDmNV7pfd69ezeTJ0++obIU+eyzz3Bzc2Py5MlMmTKlxJYPsbGxDBo0yNrf9npUxGu5Hi+88AI6nY5XXnmlxOnaCgoKbpmwnJqaap3KqqR+6CV5/vnn0Wg0fPjhhzb/rvLy8hg7diwAgwcPLveyCiHEjZIm00IIcR22bt3K9OnT8fPzo3379taaj+joaJYsWUJubi69e/emf//+1n1ee+01li5dyoIFC2jUqBH33XcfOTk5zJkzh6SkJN544w1r01Kw9E9+6aWXeO+992jSpAl9+/bFaDSycuVKAgICrANUXapNmzY4OTkxbdo0UlJS8PPzA2DUqFHX1Uy1RYsWtGvXjrlz59K2bVvat29PYmIiS5cupVatWiWW4WapU6cO9erVs5mH+OTJk9x///08+uijNtt27dqVP/74gwcffJCmTZui0+no2LEjHTt2pG3btrzxxht8/PHH1K9fn/79++Ps7MzSpUs5cOAA7du35/XXX78pryE9PZ2XXnqJ119/nXbt2lG/fn1cXV1JSkpizZo1nDp1Cl9fX6ZMmXJD5xkyZAgLFizgr7/+ol69evTp0wdFUZg/fz7R0dEMHDiQRx55xLr9Y489xieffMLLL7/M2rVrqVGjBsePH2fx4sX069ePP//880ZfOnXq1GH58uX079+f1157jenTp9O1a1cCAgLIzs5m7969bNy4EUVRePPNN6/7PBXxWq5H7dq1+eGHHxg+fDj16tXj3nvvpWbNmhgMBmJjY/nvv/+oUqUKR44cueFzffjhh8yaNavEdS+++KJN64D58+cTExMDXBxUa9GiRaSkpNCiRQueffbZazpns2bNGD9+POPHj6d+/fr06tULBwcHli9fzvHjx63/7oQQ4pZTuYNcCyHE7Sk2Nlb94osv1D59+qg1a9ZUXV1dVZ1Op/r5+ak9e/ZUf/nlF9VkMhXbLzc3V33//ffVevXqqQ4ODqqLi4varl079ffffy/xPGazWZ08ebJavXp1VafTqUFBQerrr7+uZmdnlzjtkqqq6tKlS9XWrVurzs7O1mlUiqbGKZp2qaRpWaKjo1VAffzxx22Wp6SkqCNHjlRDQkJUvV6vVq9eXX3rrbeuWIarTf10tamkrnT+oqlk8vLy1LFjx6qhoaGqvb29GhYWpk6YMEHNy8srdqzExER18ODBqq+vr6rRaEo85+zZs9V27dqpLi4uql6vV+vWratOmjRJzc3NLXa8K11rVb36Nb1cXl6eOm/ePHXkyJFqkyZNVF9fX9XOzk51c3NTmzZtqo4dO1ZNSkoqth9XmUbqStMfmUwm9csvv1SbNWumOjo6qo6OjmrTpk3VL774osTP5sGDB9UHH3xQrVKliurk5KQ2bdpUnTlz5hXfl7JMu3SpzMxM9dNPP1UjIyPVKlWq2Lz+MWPGqKdOnbLZ/mpTD13ps1aer+VKn9nr/Uzs27dPffzxx9Xg4GDV3t5e9fT0VOvVq6c+/fTTxaYlut5pl672mDdvns1rvvzh6uqqtmjRQv34449L/LdQmn/++Uft0KGD6urqavPvqqR/p0IIcStQVPUGOyoJIYQQN1FkZCTr1q274X61QgghhBCXkz7EQgghhBBCCCHuShKIhRBCCCGEEELclSQQCyGEEEIIIYS4K0kfYiGEEEIIIYQQdyWpIRZCCCGEEEIIcVeSQCyEEEIIIYQQ4q4kgVgIIYQQQgghxF1JArEQQgghhBBCiLuSBGIhhBBCCCGEEHclCcRCCCGEEEIIIe5KEoiFEEIIIYQQQtyVJBALIYQQQgghhLgrSSAWQgghhBBCCHFXkkAshBBCCCGEEOKuJIFYCCGEEEIIIcRdSQKxEEIIIYQQQoi7kgRiIYQQQgghhBB3JQnEQgghhBBCCCHuShKIhRBCiNuUoigoikJISAh5eXklbhMaGoqiKBiNxgounRBCCHHrk0AshBBC3OZiY2OZNm1aZRdDCCGEuO0oqqqqlV0IIYQQQpSdoih4enqiKAomk4kTJ07g4+Njs01oaCinT5/GYDBgZ2dXSSUVQgghbk1SQyyEEELcxpycnPjf//5Heno6EydOrOziCCGEELcVCcRCCCHEbe75558nPDycb775huPHj1d2cYQQQojbhgRiIYQQ4jan0+n48MMPMRgMvPnmm5VdHCGEEOK2IYFYCCGEuAP079+fNm3aMG/ePDZs2FDZxRFCCCFuCxKIhRBCiDvElClTAHjttdcquSRCCCHE7UECsRBCCHGHaNOmDf3792fr1q38+eeflV0cIYQQ4pYngVgIIYS4g0yePBmdTsdbb71FQUFBZRdHCCGEuKVJIBZCCCHuIBERETz33HNER0fz+eefV3ZxhBBCiFuaBGIhhBDiBkyYMAFFUYiKirrmfSIjI1EU5aaVady4cXh4ePD++++TlZV1084jhBBC3O4kEAshhBCXUBSl1EdZwm9l8PLy4u233yY1NZWUlJTKLo4QQghxy7Kr7AIIIYQQt6Lx48dfcV1oaGjFFeQ6vfjii3z11VfExMRUdlGEEEKIW5YEYiGEEKIEEyZMqOwilEpV1Suu0+v1REdHV2BphBBCiNuPNJkWQgghyslPP/1EkyZNcHR0xNfXl+HDh5OQkHDF7fPz83nnnXcICwtDr9cTHh7OxIkTZXRoIYQQooJIIBZCCCHKwdSpU3n22Wdp1KgRL7/8MrVq1eLHH3+kbdu2nD9/vsR9BgwYwA8//MCDDz7ICy+8gKIoTJgwgYceeuiqtb9CCCGEKB/SZFoIIYQowZWaTDs4ODBmzJhiy5cuXcrWrVtp0qSJddkrr7zCtGnTGDNmDN9//32xfQ4fPszBgwfx9PQE4P3336dz584sXryYX3/9lUcffbR8XowQQgghSqSocgtaCCGEsCptOiR3d3fS0tKszydMmMDEiRMZPnx4sdCbnp5OSEgI+fn5pKWlodfrAcu0S+vWrePnn38uFnqjoqLo3LkzkZGRrF27tnxelBBCCCFKJE2mhRBCiBKoqlri49IwfKlOnToVW+bu7k7jxo3Jy8vj8OHD17RP+/bt0Wq17N69+4ZfgxBCCCGuTgKxEEIIUQ6qVq1a4nI/Pz/AUlt8LfvY2dnh4+NDRkZG+RZQCCGEEMVIIBZCCCHKQWJiYonLi0aZdnd3v6Z9jEYjycnJuLm5lW8BhRBCCFGMBGIhhBCiHKxbt67YsvT0dPbs2YODgwN16tS5pn02bNiAyWSyGZxLCCGEEDeHBGIhhBCiHPzyyy/F+v1OmDCB9PR0Bg8ebB1Q61Lvvfceqamp1ud5eXm89dZbADzxxBM3t8BCCCGEkGmXhBBCiJJcadolgD59+tC4cWObZT179qRdu3YMGDAAf39/NmzYwIYNGwgNDeXDDz8s8Th16tShXr169O/fH51Ox4IFCzh58iT333+/TLkkhBBCVAAJxEIIIUQJJk6ceMV1oaGhxQLxK6+8Qt++fZk2bRp//vknLi4uDBs2jA8++ABfX98Sj/PXX3/x3nvv8dtvvxEfH0+1atWYMGECY8aMKXX6JyGEEELcOJmHWAghhBBCCCHEXUlqiIUQQogKlp2dTUpKCpmZmWRmZpKVlWXzZ2nLcnNzMZvN1ofJZLL+PT4+HoBq1aqh0WhsHlqtFq1Wi4uLC66urtY/L/371Za5ubnh4+ODnZ38fBBCiKvJy8ujoKCgUs5tb2+Pg4NDpZz7diQ1xEIIIUQ5UFWVzMxM4uPjOXfunPVR0vPMzEwURbnuYOro6IhWqy0x8B46dIjo6Gi6d++ORqMpFpgNBgPZ2dnXFcTz8vLQaDT4+vri7+9v8wgICLB57ufnh729fWW/LUIIUeHy8vIIC3EhIclUKef38/MjOjpaQvE1kkAshBBCXANVVUlMTOTYsWPWR0xMjE3YzcnJwdHREX9/f6pUqYKjoyMNGzYsMTh6enqi0ZT/ZA8Gg4F///2X++67D51OV67HLigoIDEx8YpBv+jvSUlJmM1mfHx8bF53REQENWvWpGbNmtSoUQMnJ6dyLZ8QQtwKMjIycHd35/TOUNxcK3ZSn4xMMyHNYkhPT5f57K+RtHkSQgghLpGens7x48dtgm/RIzMzk6CgIGrVqkXNmjVp0aKFTc1oQEAAbm5uKIpCRkYG//33H/fff39lv6RyY29vT1BQEEFBQVfdzmg0kpSUZBOYz5w5w6FDh5g/fz7Hjh0jIyODwMBAa0C+9BEaGlruYV4IISqai6uCi2vFDpBoRgZkLCsJxEIIIe5KiYmJ7Ny5kwMHDtiE3sTERLy9va3hrH79+vTr14+aNWsSERFxzbWaer0eo9GI0Wi86/rc2tnZERAQQEBAQInrVVUlKSnJ5rqvX7+e7777jhMnTmA2m6levbr1PahVqxZNmjShQYMG0gRQCCFEubq7vqGFEELclRISEti5c6fN4+zZs9SoUYNGjRpRq1YtOnbsaG3K6+3tfcPntLe3R1EU8vPz77pAXBpFUahatSpVq1alQ4cONutMJhOxsbE2Yfmvv/5izJgxZGZmUr9+fZo1a0azZs1o2rQpjRo1kpAshLglmVQzpgrunGpSzRV7wjuAfEMLIYS4o5w7d65Y+D137hw1a9akWbNmdOrUidGjR9OkSZOb2r9KURQcHBzIy8vD2dn5pp3nTqPVagkLCyMsLIwePXpYl6uqSkxMjPU9nTdvHu+88w7p6enUq1fPGpKbNWtGo0aNcHR0rMRXIYQQ4nYhgVgIIcRtKycnh02bNrFhwwZrUEpISKBWrVo0a9aMzp0789prr9GkSRNcXV0rvHx6vZ68vLwKP++dSFEUa1Du378/YAnJsbGx1vd+0aJFTJgwgdTUVOrWrUuzZs1o2bIlnTp1ok6dOiiK9K0TQghhSwKxEEKI20ZRAI6KiiIqKopt27bh5+dHx44d6datG2+++SaNGzfGxcWlsosKgIODA/n5+ZVdjDuWoiiEhIQQEhJCv379AEtIjouLs4bkf/75h1dffRVXV1c6depEZGQkkZGREpCFEDedGRUzFdtmuqLPdyeQQCyEEOKWlZOTw+bNm60BeOvWrVStWpXOnTszYsQIfvnlF0JDQ2/ZYFPUZFpUHEVRCA4OJjg4mL59+wKW6aK2b99OVFQU8+bN47XXXsPV1dUajiMjI6ldu/Yt+zkSQghx88g8xEIIIW4ZVwvARcElLCzstgkuR44cIScnh6ZNm1bYOW/mPMR3ivz8fGtAjoqKYuPGjbi5uUlAFkKUi6J5iOOPBlbKPMQBtc7IPMRlIIFYCCFEpTp69CgLFy5k8eLFbN68GV9fX2sA7ty5820VgC8XExPDuXPnaNOmTYWdUwJx2V0akNeuXcumTZtwc3PjnnvuoVevXvTo0QN3d/fKLqYQ4jYhgfj2Ik2mhRBCVCij0cjGjRtZtGgRCxcuJDY2lq5duzJ48GB++OEHqlevftsG4MvJoFq3B71eT/v27Wnfvj3vvPMO+fn5bN26laVLl/Luu+8ydOhQOnXqRK9evXjwwQcJDQ2t7CILIYQoJxKIhRBC3HQZGRksW7aMRYsWsWTJEuzs7HjggQf4+OOP6dat2y0zCFZ5k0G1bk96vZ6OHTvSsWNHJk+ezMmTJ1m0aBHz589n9OjR1KlTh169etGrVy+aN2+ORlOxNUBCiNuDSVUxVXBj3Io+351AArEQQoibIiYmhkWLFrFo0SKioqKoWbMmDz74IEuWLKFly5ZotdrKLuJNVxSIzWazhKbbWHh4OC+//DIvv/wyaWlpLFu2jIULF9K9e3ccHR154IEH6NWrF127dsXJyamyiyuEEKIMJBALIYQoN/v27WPOnDksXLiQQ4cO0bFjRx588EG+/vprwsPDK7t4FU6v1wOWPqqOjo6VXBpRHjw8PBg0aBCDBg3CYDCwYcMGFi5cyMsvv0x8fDz33HMPvXv3pl+/fnh6elZ2cYUQlUimXbo9yO1qIYQQNyQ2NpaPPvqIBg0a0KZNG44fP85bb73F+fPnWb16NS+//PJdGYYBNBoN9vb20mz6DqXT6ejcuTNTp07lxIkT7Ny5k3bt2vHNN9/g5+dHv379+Oeff6QfuRBC3MIkEAshhCiz1NRUZs6cSWRkJOHh4URFRTFmzBgSExP5448/GDRoEB4eHpVdzFuCDKx1d1AUhbp16/Lmm2+ybds2Dhw4QMOGDXnzzTfx8/PjqaeeIioqCrPZXNlFFUJUEDMqpgp+SA1x2UkgFkIIcU3y8vKYO3cu/fr1w8/Pj5kzZ9KvXz/OnDnD0qVLeeSRR+7YwbFuhAysdXeqUaMGEyZM4Pjx4yxbtgwHBwcefvhhQkNDefPNN9m/f39lF1EIIQQSiIUQQlyF2WwmKiqKp556Cj8/P9544w0aNGjA/v372bZtGy+++CJVq1at7GLe0qSG+O6mKAqtW7fm888/Jz4+nhkzZhAXF0erVq1o2LAhH3/8MXFxcZVdTCGEuGvJoFpCCCGKOXToED///DO///47ubm5DBw4kGXLltGqVas7Zo7giuLg4CCBWACWPsf33Xcf9913H5mZmcyfP5/ffvuNsWPH0r59e4YOHcqAAQNwdXWt7KIKIcqBDKp1e5AaYiGEEIBlJOTff/+djh070rRpU06fPs3XX39NfHw8X3zxBa1bt5YwfB2up8n0haQMMtNyblKJQFVVzsenkpcjTbkri6urK48++ijLli0jLi6O3r178+WXXxIQEMCzzz7L7t27K7uIQghxV5BALIQQd7njx4/z+uuvExgYyMSJE+nbty9nz55l9uzZ3H///eh0usou4m2tLDXEZrOZ/3vpFx5p+g6DGr7Folnry708+bkFvPnw5zzWcjwDG77NttUHy/0comz8/Px4+eWX2bVrF2vXrsVkMtG+fXtatWrFjz/+SE7Ozbs5IoS4eUyqWikPUTYSiIUQ4i5kNBqZO3cu99xzD/Xr1ycuLo45c+Zw5MgRXnnlFby9vSu7iHeMsvQh3rvxOKv/2Q6A2awyY9w/ZGfmlmt5Vv61lf1bTwBQkG9g2mu/l+vxxY1p3rw5M2fOJD4+nscff5ypU6cSEBDAiy++yJEjRyq7eEIIcceRQCyEEHeRpKQkPvjgA8LCwnj11Vfp2rUrcXFx/PHHH0RGRkqT6JugqMm0eg137S9vwmw2qxgKjOVanrycgovvswr5uYZyPb4oH+7u7jz33HPs3buXpUuXkpaWRuPGjbnnnntYsGABJpOpsosohBB3BAnEQghxF9i+fTuPP/44wcHBrF27li+//JITJ04wZswYfH19K7t4dzS9Xo/ZbMZgKD14Nu1Ym/B61azPewxug4d3+Q6w1KVfczx8Lh5z8Es9yvX4onwpikKbNm34+eefiY2NpXPnzrzwwguEh4fz8ccfk5KSUtlFFEJcgbmSHqJsFPVablkLIYS47RiNRubMmcO0adM4dOgQjz/+OM8//zx16tSp7KLdVVRVZcmSJXTs2BE3N7dSt8/PLWDPxmM4Oulp0CaizLX2BoOBf//9l/vuu++K/b8zU7PZt/kEPgEe1GocUqbji8pnNBpZsGABn3/+OVu3bmXIkCGMHj2aevXqVXbRhBBARkYG7u7uHDlcFVfXiq1/zMw0U7tOIunp6df0nSOkhlgIIe44eXl5zJgxg1q1avH2228zdOhQzp49yxdffCFhuBIoilKmkab1jva06lafhm1r3LQm7K6ezrS7r5GE4duUnZ0dDz30EFFRUWzbtg2NRkOzZs3o06cPW7dureziCSEKmVAr5SHKRgKxEELcITIzM/nkk08ICwvjyy+/5N133+X48eOMGjVK7hJXsrIMrCVEWTRo0ICZM2dy8uRJIiIi6Nq1K126dGHlypXX1G9dCCHudhKIhRDiNnf+/Hn+97//ERwczNy5c/nmm2/Yu3cvjzzyCHZ2dpVdPMH1zUUsRFlUq1aN//u//yM2NpbIyEgGDRpEy5YtmTt3Lmaz9CoUQogrkUAshBC3qbi4OF566SVCQ0PZtm0b8+bNY9OmTfTq1QuNRv57v5VIDbGoKF5eXowbN47Tp08zZMgQXnzxRerVq8esWbOuaWA3IUT5MamV8xBlI7+YhBDiNnPkyBGeeOIJatSoQXx8POvXr2f58uUybdItzMHBgby8POZ8tYqnI99n3GMzOB+fWtnFEncwFxcXXnnlFU6ePMlrr73GBx98QHh4OJ999hk5OTmVXTwhhLhlSCAWQojbxM6dO+nfvz+NGzdGo9Gwd+9e5syZQ7NmzSq7aHeMnKw8ju2NJTOtfAODXq8n8WwyP3ywkLgTiexcd4QPnv2xXM8hREn0ej0jRozg8OHDTJkyhVmzZhESEsL7779PWlpaZRdPiDuaTLt0e5BALIQQt7iDBw/Su3dvOnbsSFBQEMePH+f777+nVq1alV20O8qZk4k80f49XnrwUx5rM5HDu2LK7dhFfYg1GksNvtlkJuZIfLkdX4jSaLVaHn74YXbu3Mmvv/7KypUrrcE4Ozu7sosnhBCVRgKxEELcok6fPs2wYcNo3rw5ISEhREdHM3XqVIKCgiq7aHekv75aTVa6pWY4P7eAn//v33I7toODAzoHDaoKGq0GRVFo0UXmjBUVT1EUevToQVRUFAsWLGDhwoVERETw9ddfSx9jIcqZGQVTBT/MSNepspJALIQQt5jk5GRGjx5NnTp1MJlMHDx4kM8++wxfX9/KLtodzWy+ZCQSFVRz+Y1MotfrMatm3v31Ge55uCVDX+3Jq1MfKbfjC3E9IiMj2bJlC19++SXTp0+nbt26/PnnnzIqtRDiriKBWAghbhHZ2dlMmjSJ8PBwjh49yubNm/nll1+oXr16ZRftrvDws11wcnEAwF5vx9BX7i23Y+v1ehRFoW6LUF7+vyEMefle9I725XZ8Ia6Xoij069ePAwcOMGbMGF599VVatGjBypUrK7toQghRIWSCSiGEqGQGg4GZM2fy7rvvEhYWxqJFi+jYsWNlF+uuE1LLnx/++x+nj54jMNwXDx/Xcju2oijWqZecnJzK7bjlJTMtmw3/7sPByZ4O9zfGTqet7CKJCmZnZ8eIESMYMmQIX3zxBQMHDqRp06Z8+OGHNG/evLKLJ8RtyaxaHhV9TlE2UkMshBCVxGw2M3v2bOrUqcMXX3zBjBkz2LRpk4ThSuTq4UT9VuHlGoaL3KpzEWdn5jHqvil8NuZPPn7xFyY98wOqWvIvqrycfFLPZ1xxvbj9OTo68vrrr3Pq1ClatGhBp06dGDBgAMeOHavsogkhxE0hgVgIISqYqqosX76c5s2b88Ybb/D222+zb98++vTpI/MI38GKRpq+1ezZeIzEMxesz7euOkhqUkax7f5btJuH673JkMZjmfjEtxgNpoospqhgHh4eTJ48mePHj+Pp6UmjRo145plniI+X0dGFuFYVPaBW0UOUjQRiIYSoQEePHuXee+9lyJAhPPLIIxw7dozhw4djZyc9WO50Dg4Ot2QNsYe3i81zO50Wx8K+1EXMZjNTX/0NY4ElBG9deYD1i3ZVWBlF5QkICOCbb75hz549pKamUqNGDd57771b8rMshBDXQwKxEEJUgKysLMaMGUOTJk2oXbs2J0+e5NVXX8XR0bGyi3bXi48+z86ow2Sm5dzU89xok+nc7HyO7Y0t93LWbR7GwOe7odFqcHCy57Wpj+DorLfZRjWrFOTZTsmTl33r1XaLm6dWrVr89ddfrF69mgULFlC/fn3+/bf8piYTQojKIlUSQghxE6mqyt9//83o0aMJDQ1l8+bNNGrUqLKLJQpFzd/Bx6N+RjWruHu7MH3Ja1QN8r4p53JwcCA9Pf2q26iqitFotD5MJhNGo5HTJ87x8/8tQWunoHOwo9vDzQkI9bHuU/SnqqpER0cDcPDgQbRaLYqiWJviK4qCnZ1dscf9w1vToU8DvHzccXJxxGQyodForPtp7bT0H9mVP7+wjDzsG+hF+/ub3JTrJG5trVu3ZuvWrcycOZOhQ4fSsWNHpk2bRmhoaGUXTYhbTmU0YZYm02UngVgIIW6SI0eOMGrUKPbv388nn3zC0KFDpY/wLebnT5ZY5xvOTMthyS8buHdIWyY98yNnTyXRunsDXv30Eez11/91aTKZyMvLo6CggMzMTE6ePEl+fj55eXnWR0FBgTUAF9FoNNbAmhB7gTpt/THkmzDkm9i//Ti+gR7WsFv00Gg06HQ6DAaDNQwXBeWiR25urk3oLsgvICUpHY0WdHo7NNri4Vmv11OnS1XeaPYwhnwzoTWqkWvIwpxmwMHBwTqtlLg7aLVann32Wfr3789bb71FvXr1GDNmDK+//joODg6lH0AIIW4hEoiFEKKcZWVl8d577/H555/z9NNP8/fff+Pu7l7ZxRIl0OnsUBRQVUBVsdPZMfW12Zw+loDZZOa/xbup0TCI/s90ueIxDAYDWVlZ1kdOTo5N2DUajSiKYg2qycnJODg44OTkhJeXFw4ODtjb26PT6awBVKvVotFc7NX0RPv3SIhNsT53dNYzesKTJZanZs2a/Pvvv9SuXRudTlfqNfh+8kLmztyE2ayiaBTqNA3hg9+etQZmg8FwMcC7WF5T8oXznImPIy8vD4PBgKIo2Nvb4+DggIODA46Ojjg7O+Pi4oKLiwtOTk42r0fcGXx8fJg5cyZPPvkkzz//PD/99BPTp0/n/vvvr+yiCXFLMKsKZrVibxZW9PnuBBKIhRCinKiqypw5cxg9ejRhYWFs2bKFhg0bVnaxxFU8++5DTHziW/LzDASEVaH3iE6snrsDs8kMgKLRcP5sKiaTiezsbGvovfTvBQUF2Nvb4+LiYg2BPj4+1nBYFHhzc3NZtWoVLVu2LHNt6sMju/L5W39Zn/d8pE25XYO8nAJQFEBFNavkZOaj1+vR6/Wl7guWGvDLa7xzc3O5cOECsbGxZGdno6oqTk5O1oB8aVh2cHC462qX//77b9atW8eePXvYu3cvmZmZPPLII/z666/XtH9KSgrz5s1jyZIl7N+/n7Nnz2Jvb0+DBg144okneOKJJyr0BkSrVq3YunUr3333HY8++igdOnRg2rRpODk5ERAQwHPPPcfnn39eYeURQoiykEAshBDl4PDhw4waNYoDBw5I8+jbSJOOtflt9/ukJKYTEFoFrZ2Ge4e2ZOPK3fgGu+JVzYXgeo4sXrwYrVZrE+h8fHysf7e3ty/1XHq9HlVVyc/PL3Oz0vseaYt/sDcbl+6jYZsIOj5Yfv137x/ajtVzd5CbnY+iKAx8vluZ9tdqtTg5OeHk5FTi+qJm2pfeTEhISLDWpmu1WpydnXF1dcXd3R0PDw/c3d2v6ZreriZNmsTevXtxcXEhMDCQI0eOlGn/OXPmMHLkSPz9/encuTPBwcEkJiYyd+5cnnzySZYuXcqcOXMq9P8grVbLM888w0MPPcTbb79N/fr16dq1K2azmX79+lVYOYS4lUgf4tuDBGIhhLgBRc2jP/vsM5555hn++ecfaR59m1BVlezsbNIy0sgsSGfrtpOkpaXhEmzm3uFNyMswERQaQHjtYJydnW+4JlOr1aLT6a4rEAM06VCLJh1qXff5ryS0lj8z17zF4V0xBIX7ElLTv1yPryiKNTD7+vrarDOZTOTk5JCVlUVGRgapqalER0eTm5uLk5MTHh4e1oDs4eFxx4TkqVOnEhgYSEREBOvWraNz585l2r9mzZosXLiQ+++/36Ym+IMPPqBly5b8888/zJ07l4ceeqi8i14qHx8fvv32W5588knuueceNBoNmZmZFV4OIYS4VhKIhRDiOq1evZoRI0YQFBTE1q1bpXn0LcwaftPSSEtLIz09nbS0NMxmM25ubnh4eBAYGEi9evVwc3O7ac1Ni6ZeUo1a0pIzCQr3RWunvSnnulZGg4l1i3YTfzoZZ1fHaw7EMUfiWfjjeuz1Oh5+rhvefmW/EaTVanF1dcXV1RV//4vnzc/Pt75HqampxMTEkJOTYw3JRQHZ09PzmvpJ32rKGoAv16VLyX3a/fz8ePbZZxk7dixRUVFlCsRr166lS5cuvPrqqwwZMoR3332X9evXYzKZ6NKlC19//TV+fn4cOnSISZMmsWrVKvLz8+nQoQNfffUVwcHBNserXbs2ubm5tGrVimHDhtGjRw8+//xzfHx8+O+//5g6dSp79+7l7NmzuLm5ERoaSteuXZk8efINXRshhCgrCcRCCFFGmZmZvPHGG/z666989NFHPPvsszJg0C2mKAAnJydbHwaDwSb81q9fH1dX13J/71RVxWQ0Y6crHnQdHBzYu/UYn726CJPJTHi9anw8eyROLuUzMq/ZbOZszPky7fPV+H9Y9scWFI2GJb9t4qPfn6Nh64ir7pN6PoNX+0wjL7cAgK2rDjBz3Tslvubrodfr8fX1talRLigosLmhcfr0aXJycnB3d8fHxwcfHx+8vb1vy4Bcnopev51d2X7i7dq1C4Bjx47Rvn17evbsyYgRI1i2bBnz588nPz+fkSNHMnjwYLp06cLjjz9OVFQUS5Ys4bHHHiMqKsrmeIsXL8ZgMDBmzBhatmzJyJEjqVevHt26deP3338nODiYHj164OPjQ2JiIjt27GD58uUSiMUdxYQGExX7+8BU+ibiMhKIhRCiDNasWcOIESMIDQ1l7969VK9evbKLJLhyAPby8sLHx4fQ0FA8PT3Ram9ubezx/XFMfOp7UhLSadO9PmM+f9xmyiYHBwdWrd6KqXDQrlOHzrLy7+30Htbhhs9dkG9g7JM/cHR/HCMmtmD1gl3c279VqfttWr4fVQXVZEaj1bB97eFSA/GxvbHkZOVZnyfEppB05gIBYVVu+HVcib29fbGQnJeXR3JyMikpKRw8eJCsrKy7OiAbjUZ+/vlnAO69994y7VsUiLdt22YzIOC4ceMIDg5mxYoV7N69m5UrV9KmjWVQt4KCAiIiIli/fj15eXk2XQHmzZuHs7Mz3bt3x8HBgblz5zJjxgyee+45qlSpwpYtW2xaBQAkJydf92sXQojrJYFYCCGuQVZWFm+++SY///wzH374ISNHjpRa4Up0tQDs7e19UwJw7IlE3nvuJ86dTqF1t3q88elg7PW2YWvKq7+TmpQBwOaVB/j3t430Gd7Jul6v1+PgdOlXr4LJaC6X8v23bD8HdsSg01te83ef/Ms9fVug1V79cxpcw4+DO05hNqmYTWaCIqqWeq6g8KpotIplDmdFwclZj9d1NJm+UQ4ODgQGBhIYGAhAbm4uKSkpJCcnc+DAAbKzs++qgDxmzBgOHDjAfffdR48ePcq0b1EgnjVrlk33D1dXV0JDQ9mzZw+ffPKJNQyD5SZFrVq1iIuLIzs72xqI8/LyWLZsGT179rQuUxSFunXrAuDo6EiTJk2YMWMGffr0sR7Px8fnul63ELcqtRKmXVJl2qUyk0AshBCliIqKYvjw4QQHB0utcCUymUykpKSQkJBAQkIC+fn5NzUA7/7vKD9PWYpWq/DEmAf57qMlxMckYzarbFqxn4W/BNP/yUibfdJSsjCbVQA0Gg1pKVk26x0cHKjTPIioP48BUCXAnW4PNb/mMiUnpGNnp8HDx7XYOqPBtqGcyWQunGD56h5+tgunXjpHXm4BzTvVvqbyBIRV4Z1vR/Db1KXoHex5enw/HBwrf8ArR0fHUgOyt7c3VatWxc/PD1fX4tfxdvXZZ58xZcoUateuzS+//FKmfbOzszl27BjVq1cvsWb59OnTeHl5MXDgwBLXubq64u3tbV22cuVKsrKy6Nu3r8229erVw93dndjYWJo0acLQoUPp2bMnM2bMsNlfCCEqklRvCCHEFWRlZfHCCy/w4IMPMnr0aNasWSNhuIIVFBQQFxfH9u3bWbZsGbt370ZVVRo1asR9991Hu3btqF27Nj4+PuUahlMS0hn/xEyO7j7NoZ0xvPPoDM6fS7OGXUWjISUho9h+vR6/2PRZp9PSuU8zm/V6vR4XDwdcPJxAo5CSlMnxg2dKLY+qqnz+zt882vY9BrecyO+fryy2Tft7GxAccbE58eBnu5Q6YJfRYOL/XvuD3Ox8TEYzW9ccIuZoQqnlSYxL4adP/uXkwXg0dtqb2lT6RhQF5MaNG9OtWze6d+9OYGAgKSkpREVFsWrVKg4cOEBycjJmc/nU1FeGL774gpdeeom6deuydu1avLy8yrT/3r17MZvNdOtWfMqtmJgYUlNTiYyMLFa7npWVxYkTJ2jcuLHN8rlz52Jvb8/9999vs9zHx4cNGzbQv39/jh49SnZ2Nn///TcBAQF8+umnZSqzEEKUF6khFkKIEqxbt44nnniCoKAg9uzZQ3h4eGUX6a6RmZlJYmIiCQkJXLhwATc3N/z9/alRowbu7u4VMrfq2egkDAVGyxMV8nIK6DqgHkt+34yiKGgUhchexecCHjzqHmo0CCIhLoVmnWoTEGLbBNTBwYHkpFSyMnIBSy3uJ6Nn88e2CcWOtW7hLnauO0xYnQBqNQ3j39+3WNf9MnU53R9uic8lzZSdXRz4bM4LHNwVTdz5w/R9vD0Ap48lkH4hi9pNQm36MwNkpGaTcSH74gLV0jS8ep2Aq16fGRPmEXciEYBDO04xe/pynh7f96r7AGRn5nJ8Xxx+Qd74BVd8jaCjoyOhoaGEhoZiNBo5f/48CQkJbN++HVVVrTXHvr6+t03T6mnTpvHKK69Qv359Vq9eXWxqq2tR1Fy6WbNmxdbt3LnziuuKblA1bdrUusxkMrFo0SK6dOlS4hR09evXZ86cORQUFLB+/Xq++eYb/v77b1577TW2b9/Ol19+WeZAL8StSuYhvj1IIBZCiEtkZ2czZswYfvzxRz744ANeeOEF6St8k6mqyoULF0hISODcuXPk5uZSpUoVAgMDadasGY6OjhVeprA61XDxcCIn0zJwlIe3CyPG3E+zDjU5G5NMs461CKtVfHoiRVFo0bnOFY/r4OCAVmf7YyU9NafYdlHzd/LRCz+h0Wowm81E9i1sxly0q2oZROtyegcdDVqEEffvYQD++no1P368BLDMN/zpPy/i6Ky3bu/h40JYbX9OH0sARUFnr6Ves7ArX5hCFxLTMRcODIZqGXW6NOfjU3npgSmkJmWgaBTe+PwxInsXD1kVxc7ODn9/f/z9/VFVldTUVBISEjh69Cg7d+7Ex8cHPz8//P39K+UzeC0++ugjxowZQ+PGjVm5cuV198EtCsTNmxdvLl8UiEtat3v3bgCbQLx+/XpSUlKKNZe+nL29Pd26daNbt2506NCBDRs2kJycTL169fjmm2/o1avXdb0WIYQoKwnEQghRaNu2bQwZMoSAgAD27NlDRMTVR9oVNyY9PZ0zZ85w5swZzGYzfn5+1KtXjypVqpR5yphrkZacSVZGLtXCqpRay+zq4cSUf15k3swoNFoN/Z/tgqOTnjb31LfZLi+3gNcGfsmpI+dw93Rm8q/PEFrD74rH1ev12Ok06PRaDAVFTXRVzGazzY2XHWsPodEo1tB5Ym8sWp0Wk9HST1ir0+J0SbAticlo4ucpS63PY46eY8PSvdzTv6V1mUajYfKvz/L3t2vJycrn/kfaUCXA46rHBbj/0XYc2xtbWHroPrB1qfss+WUj6SmZln3MKj99tLhSA/GlFEXBy8sLLy8v6tatS3Z2tvUGzYEDB/Dy8iIoKIiAgIBKqTk+efIkBoOB8PBw6/nfe+89xo0bR7NmzVixYsUN1aru2rULe3t76tevX2zd1WqIi4L0pYF43rx5aDQaevfubbPt7t27cXNzK9ba5sSJExw4cIDg4GCWLVvGb7/9xuOPP07v3r354osvcHFxue7XJURlM6kaTGoFT7tU+tAR4jISiIUQdz2z2czUqVMZN24cEydOZPTo0VIrfJPk5uZaQ3B2djb+/v40btyYKlWq3NRr/u/vm/ninb9RVZUm7Wsy8fsn0dlf/SswuIYfL308yGbZ+fg0pr71F/ExyUT2asKZ6POcPBQPWAbUGvvYt/y2edwVj6nT6TCbVZzc7ElPLpq2SCErIxc3D2frdqF1AlDnFg7OpVXwC63CmbPpUBjkTSYzsSeSShxcy0pR0Gg11imeALRaDSkJ6Zw+lkBobX+8fN1w93JmxJgHrnotLtd9YGv8gn04degM9VuGE9EgqNR9tFqNJT1bilbq6NeVydnZmfDwcMLDw8nLy+Ps2bPExMSwb98+qlatSmBgIFWrVr3ufuvz589n/vz5ACQkWPpsb968mWHDhgGWvrb/93//Z92+a9eunD59mujoaEJDQ/npp58YN24cWq2WDh068NlnnxU7R2hoqPV4V5Ofn8+hQ4do2LAh9vbFB0bbuXMnISEhJQ56tWvXLhwdHalTx9IqQlVV5s+fT5s2baha1Xa08s8//5xZs2bRunVrmjdvjouLC6dOnWLhwoUA/PDDD2i1Wh577DG6du3Ko48+SvPmzfnzzz9p1KhRqa9DCCGulwRiIcRdLTk5mWHDhnHw4EHWrFlDq1alz9sqysZgMBAfH09cXBwXLlygSpUqRERE4O/vf1NqggGy0nNY9fc2FEUhsnczvp4wF7VwxOXdG46xacV+Oj1QvA/w5fJyC1j193YK8g106dOMj1/9nUO7YjCbVP78eg1evm42218+qvTlFEXBTqOzCcQajYLewTaI9H0yktSkDLatOUhEvSCGvfUgz/eaSm5WPqoK9g52BNeoiqqq5GTn4+SsL1brrdVqeHZ8X+uNgPotq+Pl68bwjpMoyDOgd7Tnoz+fp1bjkFKvQ0katomgYZtrb0Xx4BMdiFqwk/jo89jp7Hj23Yeu67wVzcHBwRqOs7KyOHPmDAcPHmTPnj0EBAQQGBiIt7d3mfq279mzh59++slm2alTpzh16hQAISEhNoH4ctHR0YClv+60adNK3KZTp07XFIgPHDiAwWAosQb49OnTpKSk0KlTp2Lr8vPzOXz4MM2aNbPeGNixYwdxcXG8/PLLxbbv3bs3BoOBbdu2MWvWLPLy8ggICGDIkCG8+eab1KhRw7pttWrVWLlyJe+//z5t27ZlypQpPPPMMxUyfoAQ5cmMgrmCxzA2I1XEZaWo6jXMySCEEHeg//77j8GDB9OqVSu+//57PDw8KrtIdwyTyURiYiJnzpwhMTERNzc3AgMDqVatmnVe0pulIN/IC/d+zJmTlkGfgmv4ERuTbJkzt9BrU4bQtd/VpxdSVZXXH/6cgzuiURQFbz938gvMZKZb+vxqtBpCa/lxqrCGGEBjp2Xe3veKzU98qfXr13Nw4zkW/rATjVbDS5Meonv/FqW+rpOHzvLrZysxGU0Mfq4rXlXdeXvE98SfTiE43Jf3vx+OT1V3DAYD//77L/fddx86nY4L5zPITMshKNyX8U/MZOe6I6hmFUWj0O7ehrz08SAObD+Fj58HEfWqlVqOG2EoMHLmZBI+fu64ejqXvsMtqqjP8ZkzZzh79ixarZZq1aoRFBSEm5tb6Qe4Q7399ttMnjyZU6dOERZWel/0axEVFcWQIUNo164dM2fOlP+nxW0hIyMDd3d3luyrjrNr+c2AcC2yM03c3/AU6enpd/X/R2UhNcRCiLuOyWRi8uTJTJ48mU8++YSRI0dKzUM5SU9PJyYmhrNnz6LT6QgKCqJu3boV2g/w5IE46wjIYBll+d5H2rLsz62AZXCptj0alHqcpDOpHNxhqYlTVZXkc2k0jazD7o3HUTQaVLNKh54NOXX4nHUfs8lMckJ6sdGlL+Xg4ED3Ac0Z/PT96B10NoNcXa7onrWiKITXrcb4GcOs6z54+XfiYy8AEHvqPD9NW8mrk/sXO4ZXFTe8qlh+FOns7VCwtFxWsDS9frbnFFKSLINiPf32A/R9omOp1+Z66eztCCtlBOvbwaV9juvXr09SUhJnzpxh/fr1ODs7ExISQlBQ0G0zUnV5mTdvHo0aNSq3MAwQGRnJ3r17efzxx2natCl//vknLVqUfgNJCCGulQRiIcRdJSEhgaFDhxIbG8uGDRto0qT0ZrPi6kwmk7WPZUZGBgEBAbRu3RpPT89KudHg5euGoigXw6RGYchLPXjgsfZkXMimXouwq9bgFnHxcMJOp8VoMFmXPfZyD5p3rM252BTadK9PUHVf/vhqjWWKJkXBq4orVfw9ih0rMS6Fv79ahclootmDYeTl5eHhffWbBP98u5Zf/u9f7HRaXvjg4WIDUB07eAZQC/sVqxzafZpjB87wz4/rqNvRhYICY7FA9uirPTmw9SSZaTm4ejrjH+bLlvXHrOt/+3zVdQXi7Ixctq09jLObI8071bqr+uBrNBr8/Pzw8/Ozdg84ffo0hw4dIjAwkJCQEDw9PSu7mBXi8OHDN+W4VapUYfHixUyZMoXIyEgmTZrEyy+/LDcyxS1Ppl26PUiTaSHEXWPlypUMHTqUe+65h6+//hpX16sMSCRKlZWVRUxMDLGxsej1ekJDQwkKCipxYJ6KtvyPzXz77nwUReGZCf245+GWpe9Ugk3L9zP9rT8pyDMw9JV7eeipzsW2Obo3lrk//oder2Pw813xv2x+3fzcAka0m0hqYS1sq94RdB/amtZtrtxfPfpIPM91/9j6XKvV8Puu93C7pJnxwHaTbKZscnbRk51nQGev8OT/mvPvDyf5ZsHoYsfOy8knIe4CfsHeLJ+znRmTFlirjD29Xfl98/+u+foAZGfmMerBqZyLTQHgnv4tGP3xwDId41qdO53MzPfmk56cSe8Rnej4YNPSd6okaWlpnD59mri4OFxcXAgLC6NatWo3rd/83WLLli0MGjSIBg0aMGvWrBIH+xKishU1mV64L7xSmkz3anhSmkyXgfyvLIS44xmNRsaPH8/06dP5/PPPGTZsmNQsXCdVVUlMTCQ6Oprk5GT8/f1p1aoVXl5et9Q17TGoDY3a1uSHDxay+u9tOLs60PbehmU+TtseDYo1rz5x4AzvPf8zqecz6dqnKaMmPcRb0x654jHio8+Tci7N+jw1MZu0Cxms+Gc7+7dFU6thEPcNbmVTq3qhMDxbbvQrmExmMlKzbQJxQYHJOuo0QE6eAVQVFMtx4s+mkpdTgIOT7Q0KByc9oYVzKLfrXp+fpi4nNysPFIXHR/coy+UBYNuaQ9YwDLDy7+08804vnN3Kd+5eVVV555GvSIi7gNlk5tDOaKoGeV/3oGA3m4eHBx4eHtStW5ezZ89y6tQpDh48SHBwMGFhYTg73759qCtT69at2b17NyNGjKBx48bMnj2b9u3bV3axhChR5Uy7dH11nWfOnGHcuHEsW7aMlJQU/P396dOnD+PHj7+mVi5RUVF07lz8pvHlYmNjCQoqfWaCiiSBWAhxR4uLi2PIkCGkpqaydetW6tWrV9lFui0VFBQQGxtLdHQ0ZrOZ0NBQmjRpctMHyLpeqqoy9pGvSIhLwWxS2bf5BJ/9+xoR9QNv+Nj/G/G9dTTpZX9tI7hG1as2M/YN9MLRWU9ebgGoKvnZBnJz8/j27b/RaDWsmreTrIxcBo3sYt2nduNg7PR21ubaWns7XD2dbI6raJTCAGwJxQqgKsrFkKwo2DvYfs3Hn05m2pi/SIpP494BrUhPzyE/t8AyRZOisH3dUXqUsTb9+P4ztgsU0OlL/3lx8uAZTh2Kp27zMKqFVSl1+/zcAuJjki8uUOHkgTO3bCAuotPpCA0NJSQkhAsXLnDq1CnWrFlDlSpVqF69OlWqlD4vtrDl6enJP//8w5dffkmPHj0YO3YsY8aMuaua6gtRnk6ePEnbtm1JSkqid+/e1K5dm23btjF9+nSWLVvGxo0bS22NERoayvjx40tct3//fubOnUv9+vVvuTAMEoiFEHewlStXMmjQIPr168f06dNxcnIqfSdhIycnhxMnThAbG2ut7fL397/lf3jmZOXbhCdVVTmxP47AcF/+/X0zmem5dO3bjMBrCGJgmas6JysfZ1eHYlMrbVx+gLDaAfz93Tr0jvYMe6UHQeG+1vXObo5Mmv0CP0yaj9FoYsDLXTiXFguKZRAugK1rD9kE4tTzWRiN5ovzDhvNHNsbR9P2NclMz8Xdy5nw2v7s3xFj3aeKvzsJiZmWUAw4uzmRcCaVf2ZtQFVVHhrWnvef+4nTxxIwm1R+mrKUui2rWyfoMJtVkhPTr/kaF0k6e8Hmud7BvtQ+2v8t3sPk539CVVXsdFo++vMF6ja/+kBMekd7wusHEn04HlVV0ShKqfvcShRFwdvbG29vb3Jzc4mJiWHXrl3odDoiIiIIDAy87nmN70aKovDCCy/Qtm1bBg4cyLp165g9ezZeXl6VXTQhbjvPPfccSUlJfPbZZ4waNcq6fPTo0UydOpWxY8cyY8aMqx4jNDSUCRMmlLhu8ODBADz11FPlVubyJIFYCHHHUVWVzz77jLFjx/LVV1/x2GOPVXaRbjsZGRkcP36c+Ph4/P396dChA+7u7pVdrGvm5KInpJY/cScSUM2WVsS1m4Tw3sif2L3xGIpGYcGs/5ix7DV8A67eFCz6yDneGjqD9AvZBEdUxdnNgeyMPOv6Kv7u/G/ED5hMZhQFjuw+zay1Y9DZX/yKrduiOv9X2J83NzeX8yvOoNFqMBeG3rSUbJtzevq6odPbYTCYAEtNsNFoZmiXj0lNyaJ6LT/emT6EN4Z9R/L5LJxd9NRvGU7C4r3WEJ2Vlceoh78kOysfgHXL9lOQlo3ZZInAGo1CQLA3h/fEUjT09H2Dyj4P98FLQjmA3rH0Acv+mbnWOuiZ2WRmyS8bSw23iqIw6deR/D51Gemp2dz3SFtCa9+eI1Y7OjpSp04datasydmzZzl+/DhHjhwhPDyc0NBQ6WdcBk2bNmXnzp089thjtGzZkoULF1K3bt3KLpYQQNE8xBXbAqSs5zt58iQrVqwgNDSU559/3mbdxIkT+fbbb/nll1+YMmXKdXX1SE5OZt68eTg6Ot6yv8du7Vv8QghRRvn5+Tz55JN89NFHrF69+pb9z/dWdeHCBbZu3cq6deuws7OjS5cuNG/e/LYKw2AJTx/8NpLuA1rT5t4GTPplJFWDvNm14RiqCmaTSm5OAbs3Hi/1WB+99CvpFyyBNfZEIqERfujsLTV5fsFeNO1QG6PRhKqqmM0qF85nkpKYYXMMo8HEtFd/4+E6r/POoK9QVRVHF501vCZftr2zqwP+ob6WJK8ooNUw67NVpKZmgQKnjicwfcI8kpMtz7Oz8zlarOmyQlZhGAbIzsijZuMQFEVBo9WAAl16N6VJ+5p4+7lz78CW3FPK3MwlycstsHnudJVppIq4ujtZylBYThf3a+tv7OHjynPvP8xbXw2jUbuaZS7rrUar1RIcHEyXLl1o2LAhZ8+eZcWKFRw5coSCgoLSDyAAcHNzY+7cuQwePJg2bdqwePHiyi6SELeNtWvXAtC9e/dirb9cXV1p164dOTk5bNmy5bqO/9NPP5Gfn8/DDz98y84jLrcghRB3jMTERPr160dBQQHbt2+nWrVqlV2k24Kqqpw/f57jx4+TmppKWFgYDRs2xNGxfAdFulFms5m9G4+Tl5NP04610TtefTRrr6ruvPTxIJv93TydyEzPRTVbaif9gyx9onKy8km/kEXVQE9MRjM/T1nK/m2naNCyOolnU22Om3jmAn9un0jq+UyqBnqSnJiBzl5raeIMePu64eNnewNh0Y/rWDF7E6oKR3bG0HJACM5u9mSnW0KP0WCiIN9gbWpsMpmJvWQuZVSIP3vh4gTCwKG9tgH4XFyKpS9qYc2rf4AHcUeTbLZ56KlOnOlYi/Pn0uj0YBN+n7GG3ZtPgqqy7O8d1GsWRrc+ZRu5uUGr6mxfe8T6PPLB0qcye3pcH8YO/Zrz8WkERVRl0KjuZTrnnUZRFPz9/fHz8yM5OZnjx49z4sQJQkNDCQ8Pv+X+Ld6KNBoN7733HvXr12fQoEH873//44033pD+2aJSmdFgquD6R3NhR5iMDNsbrXq9Hr2++A3Lo0ePAlCzZsk3GWvUqMGKFSs4duwYXbt2LXN5Zs6cCcAzzzxT5n0ritQQC3EXUxQFRVEICQkhLy+vxG1CQ0NRFAWj0QjAzp07URSFVq1Kblo5e/Zs63Gjo6OLrc/NzcXBwQEnJyfy8/NLOML12bVrF82bNyc0NJT169dLGL4GqqoSHx/PunXr2LlzJz4+PnTv3p169erdkj/Ap47+nbcHf8m7I77jlV6fWgaDKgONRsOEb4fjXdUdjZ0Wdx9XsrPy2LzqIP2bj2N4t495rNNkfvx4Cf/MjOLontP8MzOqWO1laG1/HJ31BIT6oLXTUrWaJ699PBAHJ3tUFTyruJKbY/vZPnc6GaXwzrvZZCYnswAn14tNi+10Wps781qthrBa/mi0F3/Mu11WDr2DbdNkrVYDeQVQ2C85MSYZrb0W7DSgVbDT29GoRXUGjOzC8+/2o36LMEsf5KIRSRWFLWsPlemaArwx9REiezWmWqgP/Z+OZOgrpY9UHRRRlVmbxvHXvg/4esUbeFaRKdDA8n9ylSpVaNu2rbVWZtWqVezZs4esrKzSDyAYOHAg69ev54svvmDo0KHk5ube9HNez3fp5fte7REVFXXTX4O48wQFBeHu7m59TJ48ucTt0tMtY0dcqSVY0fK0tLQyl2HdunUcPXqU+vXr07Zt2zLvX1GkhlgIQWxsLNOmTWPMmDGlbtukSRM8PT3ZuXMnGRkZxea4W716NYqioKoqa9asYcSIETbrN27cSH5+Pvfcc0+Jdyqvx19//cXw4cOlRuAamc1mzpw5w/HjxzEajURERBASEnJL91tMPZ/Bqr+3WZ9HH45n94ajtL6nwVX2slBVlZij5zAZzVQN9CTtQjaqqpKems37L/6K1k6DasmQpCRmsGr+Lmv/VlVV8avmib29jvjTyVQL8+HF9/sXO8fKuTvJzTWAAscPxTPr0+WMmtjXur79/Y1Z/ON6S79hkxkXFydqNw0i5nAqaDQMfr4LdjrbAZUmzhzOzA8XcSEpg/sGtyHfaGL6hPmgWCqJn32jJ19OXkJOrgGNBvz83Ig7cR6N6WLZC7MxKApGk5m8PAPOrhdHBjebL45Sjaqi09mRFJ9KSlIG4XUCsNfrOHHgDAd3RNMisg4BoT7FXruLmyNvThta6vtwOY1Gg6uHDHR3JZ6enrRs2ZLMzEyOHz/O2rVr8fPzo2bNmrddF4aK1rRpU3bs2EG/fv3o2LEj8+fPr5CbpGX5Lr3clUbnBUuYFrenypx2KS4uzuY3Wnn95iqLb7/9FoCnn366ws9dFrfurx8hRIXw9PREURQ+/PBDnnzySXx8iv/gvZRGoyEyMpJ58+axbt06HnzwQZv1a9asITIykn379pUYiNesWQNwXc1uLmc2mxk/fjyfffYZf/zxBw888MANH/NOVlQjfPjwYcDSDCooKOiWHzEawF6vQ6NRLAGukKPTtX25f/HO3/z72yYAGrarYZ3KCCyjN5uMZpvt8/IMgCUnqiq06FyHASO7kp9nKFYrW+TU0QSbKZC2rTtis75h25p8PO9ltq86SGCNqnhH2HNs/04ovPa/fL6a9j0aEFz94ujUVQI8ePuzR22OU9Xfk5NH4mnQPAwPH1fsnPWoRjNmwMXTBdRLmkgXlqXoiinAns0nWDV/J6pZZegL3ajbJJiDO2MslcSKglcVV4Z1+QjVrFIt1IfI+xrw2/QVAMx4dx4Tv3+Klp3rXPV6m81m4mOScfN0tpk3+VIXEtPJzsyjWvUqt8XnrzK5urrStGlTateuzYkTJ/jvv//w8/Ojdu3auLi4VHbxbllVq1ZlzZo1jBw5khYtWjBv3rwrtmwqD2X9Lr3clUbnFeJ6ubm5Fau0KEnRDbaimuLLFS0va//fCxcu8M8//+Do6Mijjz5a+g6VSL6FhLjLOTk58b///Y/09HQmTpx4TfsUhdmicFskJiaG6OhounbtSqdOnawDNVyqvAJxZmYm/fr1Y/bs2WzevFnCcCmSkpJYt24dBw4coEaNGnTp0oWQkJDbJow4uzkyclJ/60BMPQa3oWHbGgAU5Bs5sO0UZ04mFdsv/nSyNQwD7Nt4vNgcuZeOBg3g7evOk2/3ok33Bjz5di/6P9MZKN5E2WafqrY/OnKyincHqN8qgifG9uaeAa3BrEGjVW3Wf/2+7UBAWRm5jHv2J/q1mMjYJ38gIy2Hpm0j6Pd4e2o3DGLp/J2kZ+SBBlQFomNTwMkeo6vlRkFAqA+qRgGt5aEqCtPHz2Pv1lPs2xbNO0/9yKhxvenSqwn1m4Xy0rt9WT1vp7V/dfzpFP78JupigVT47oOFV7wGAPl5Bbw+4Aue6vohQ1qMZ+2CncW2WfTTfzzScjxPd5nM2KEzMBQYSziSuJyTkxMNGzaka9eu2NnZsXbtWvbu3XvFJrrCUiP2/fff8+abb9K1a1d++eWXm3au6/kuFeJWUKtWLQCOHTtW4vrjxy2DT16pj/GVFA2mNWDAgFt2MK0iUkMshOD555/niy++4JtvvuHFF1+kRo0aV92+SxfLfKmrV6+2WV70vEuXLri7uzN37lwOHTpknQIjIyODHTt24OnpSdOmZRu451LR0dH06tWLqlWrsm3bNpl38ipSU1M5fPgwaWlp1KhRg+rVq9+2c50+8FgHOvdtjqHAiIe3pc9pTlYer/b/nJij5wB4amwv+j0Zad2npNbz/oFexBaFZwUi6gZwZG+stSvtk2Puo133BrS/rxHH9sURH5NMYHVfEs9cYMvaw1Tx96BN17o2TfNrNQzi+MGz1ue5OfmYjJaa6Lw8A84uDphMZlb9tZVzp5Op3swXR1fbQcHs7DScOZ3MsQNniagTwJLZW9i54Rhms8qeLSf57pN/Sc3OZ9umE1T198DRWV94W9syZ1JWbgE42qOzs9w0yFRV0BQ1hwa0kJ9TYL0Tnp9nYNeWk8SeTsZsUvGu6k5ps3VoSlm/Zt5ODu2MASwDg33xzj9E9mpqvVYF+Ua+mTjPWm29Z8MxNi/fT8drGIhLWDg6OtK4cWPCw8M5fPgwq1atIjw8nIiICHS60qe8utsoisJLL71EnTp1GDhwIPv372fy5Mk35f/Bsn6XijufGQ3mShpU61p17my56btixQrMZrPNjfLMzEw2btyIk5MTrVu3LtNxiwbTutWbS4MEYiEEoNPp+PDDD3n44Yd58803mTt37lW3r1OnDv7+/hw4cIDz589TpUoVwFL76+LiQosWLazNdNasWWMNxOvWrcNkMhEZGXndNZPr1q3joYce4pFHHmHKlCm3dL/XypSVlcXhw4dJTEwkLCyM5s2bY29/9VGZbwfOrrYDS61fvKcwDFsC13eTF9NrWAfs7Cw/dv2DfXjw8fYs+mkDAB0faEKDtjX4csJ8a7rLySngy4Uvc2RPLAGhPtRvHsaRPbG8MXQGhnwjGo3CC+/2Y+ZH/5Kbban5fWh4R5588z5rORq0CGPx7ItTUuj0OvZuO8Wkl34nNzufVp3r4OvlwKIf/0Oj1RDWuArN74+wbq/RKHTt05RnHvoCk9GMRqNQo5aftYm42ayyZ3csCclZoCgkJKSj02kujjqtKMXSf1p6LmrhoDyFB8HNw5GcTEuNoqOTnu+nLcdgMAMqE178hWHPd+OHT5aCqhIQ7EXX3k34ecpSwBIsnp1g6RetqmqJffWNBpN1TmMAo9Fku4GqWudBLmIymTEUGLHTaaX/fxm4urrSsmVLLly4YA3GNWrUICws7La96XUzde/enW3bttGrVy8OHDjA7Nmzy70vdlm/Sy91pSbTDg4O19UnWYhrFR4eTvfu3VmxYgVffvklo0aNsq4bP3482dnZPPPMMzZzEB85YukWVLt27RKP+d9//3H48OFbfjCtIvJLUggBQP/+/WnTpg3z5s1jw4YNtG/f/qrbd+3alV9//ZW1a9cyYMAAwDKXXYcOHbCzs6NevXr4+vqyZs0aXnjhBeDGm0vPnj2bJ598kunTp/Pkk09e1zHudHl5eRw9epTY2FiCgoLo2rXrLTlidPkqDFGKgqrC3s0naNahlnXtyAn9eODR9piMJkJr+ZOTlc+X7y6kKLWdPpHI1nVH2LDsACePnMOriivhtfwwFfY1Nqsqf3y9xma+3cW/b7YJxG3vqYejs94SmBWFggIjH73+p3W06a1rD+OgFIZbk5mcjALcvBx4+MmOHN4XR7c+zVi34gBGswoaMKGSXXi+or7TBaqKekmNcIHRbMnAhfnS1VVPZk7BxVGjTWbLAHdFV0mjYfyXj7Hinx2oZpXmHWoyecycwiCtYDKp/PvXtsLLqaBotTz0VCStu9Xn2L5YmnaoyeZVB3lnxA+YTWY6P9iE+wa35uNXfictOZMHhrZl4PNd+fvbtSQVTlX12OieNiHX3kHHIy/34NepywCoXrcaK//awsejfkant2PsjOG06lbvej8IdyUvLy/atm1LUlIShw4d4tSpU9SqVYvg4GC5wXCZGjVqsGXLFgYPHkyHDh1YtmwZAQEB5XqOsn6XFrlSM2t3d3cJxLcxk6pgUiv23+H1nO+rr76ibdu2vPjii6xevZo6deqwdetW1q5dS82aNXn//fdttq9TxzKWRNEAlJe7XQbTKnJ7dB4TQlSIKVOmAPDaa6+Vum1Rs+mikHv48GHOnTtnbXoDEBkZSVRUFGaz2Wbb6wnE06dP55lnnmHevHkShktgMBg4dOgQq1atoqCggMjISBo3bnzHh+FW3eoWqx29kGg796KiKARHVCWsdgCKoliC7WW1qgt/2Uz0sQQA0lKyOHn0nDVnaxQFJxe9pW+tAmgU7B1tm6YW5BvJzSlALQygqlrYj1i9WAZXT2fL1EuKQnZqHhqtypxfNnFwbxxTx8/j0L64i+VCIel8JpO+HcbApyOZ+PVjODjrC8t8sezPv3ovQdV9aNm+BmPf7YtZVTE5WGoH9XYaVAVLH+LCyuSAYB9Gv9+fVyc/zJm4CxevQeHjXGyKtcxnos9z/MBZwmr702NAKxxdHPj63YWYjGZUFdYs3M34J7/n/Lk0CvKNzP1+PbM+WUrSuXRQNATV8OP+R9oUe88eeeVevlrxBh/99QJt7qnH7v8s/dYM+UYmPf39FX9giStTFIWqVasSGRlJ3bp1OXbsGGvXruXcuXNyPS/j7u7OwoULadGiBW3btrXOwVqeyvJdWkRV1RIf1zPVjRBlFR4ezo4dOxg2bBhbt25lypQpnDx5kpdeeoktW7bg7e19zcdKTU3l77//vi0G0yoigVgIYdWmTRv69+/P1q1b+fPPP6+6bVGoLeo3fGn/4SKRkZGkpqaye/duzp8/z/79+6lWrdoVm9iURFVV3nrrLSZNmsTq1avp3r17WV/WHU1VVU6fPs2qVatITU2lXbt2tGjRAlfXu2NeV08fN1oX1igqCrh5OtGsk6V2OC+3gOgj8eRk2Q465O3rhnJpZ1hFsQzWZW1ZrOLi5kTVapa+6e5ezrz2ySAcXfQUbZSZnsv+7Rfn2XZ0sqdaqI9NuGzTta51vau7I/f0a27JmopCTpYBRaPg6KS1NovOzMyzBGqNBlVjqWVu0jaCjvc3IrxuAEGhPpawrVVQNZbH5u2niDmXxva9p1mweA9mV3soHHgsx15zsdOvooCdBg+vi03eDu2JLd7J+tLniuVaFTl3OqXY9c/OzLcOwgWwYs42a6COO5FE1KI9xfYBCKsdQMPWERzdc9pmudFgshlJXJSNoigEBgbStWtXQkND2bt3L5s2bSIjI6P0ne8idnZ2fPfddwwZMoR27dqxbdu20ncqg7J8lwpxqwgKCuLHH3/k3LlzFBQUcPr0aaZNm4anp2exbYtu2JTE09OT3NxccnJybvnBtIpIIBZC2Jg8eTI6nY633nqLgoKCK24XHBxMeHg4J06cIC4ujjVr1uDh4UGTJhcHxymqLV6zZg1r165FVdUy1Q4bDAaGDx/OH3/8wcaNG2nRosX1v7A7UFpaGv/99x9Hjx6lcePGtG3btsQvrlvJ9rWHGNL0HfrWep3Zn60ol2O+/cWjvPzhAIaPeYAvFo/Gq4obZ2PO80TnyTz3wFQe7fA+xw+csdnngUG206/cP6jlxX6XCgx8OpJvl7/GcxP60LxLXU6fSCInp8ASRBXLY//2U9b9FUUhol7AxUGpFMugVR98P5zRH/RnxsKXuJCQZh0l21hgpiDfhKOLpaZZo1VwdLK3CdSqouGNZ3/imYFfMeS+T9HZa1F1iiUQ2ylo7bVs32Ypg9FoZuPWE7YXRqtBvbQGGDi0P5ZP31vAnJ830KxdhO32isKTb9yHs6sDTi56Rk3si1/QxQHrwmr5YX/ZCN01GwVZa80dnOzRlDbq1mVadqtv89zDxxWtVn6a3CiNRkP16tXp2rUr7u7urFu3joMHD2IwGCq7aLcMRVH44IMPGDduHF27dmXZsmXlevxr/S4VdzYTmkp5iLKRPsRCCBsRERE899xzTJ8+nc8///yq23bt2pWTJ0+yatUqoqKi6NSpk81gWbVr18bPz481a9YQEhJi3eda5OTkMGDAAOLi4ti0aRP+/v7X/6LuMAUFBRw+fJi4uDjCw8OpUaPGbTG4WEGegfef+YGCPAOqCj9/soRGbWtQt3nYDR1XZ29HjwEtbZb98dVqMlKzAcjLzuenKUuZ9ONT1vXPvP0gASE+HNp1Gt9AL7r3a06Hexvy3f8tJTkxndMnk/hr5jp++WwlACvn7kSnt8NgMFGUepfP28WQ5y5+nk2mwibVhf16Tx1PoEmbi6EzokEQy/6wDLyl0SioRmjYMpT1y47j6e1CSE0/tm05adm4MMDu21VYg6rC+qgjYK+1hm6j2Wxbo2sCNBfv2itG08VBo1UVnb0do4f/YF0WUr0KAUFexMddAKBj93r0f6ID/Z/oULiLyuLfNrN+6V4CQ6sw/I37+HrxaKa+NYfcnAJ6PNycGe8usNa2+4f4cO/Alnw9YT4A1esEEBjmw3cfLMS7qjsPPNqu2BRXDzzWnoTYFFb9vQ3vqu6M+8523nJxY3Q6HfXr1yc4ONg6N3y9evWoVq2a9C8u9OKLL+Lr68tDDz3EN998w9ChQ8vluGX5LhVCVK5b/xeUEKLCjRs3jp9++on333//qqNBd+nShW+//ZapU6eSmppq03+4SOfOnVm4cKG1n9a1BOKUlBQefPBB7O3tWb9+fbmPBHq7UlWV2NhYDh06hIeHB5GRkbi4uFR2sa5ZTlYe+bm2NVTbVh+84UBcJCk+jYW/bEJRIDszz9p0V1UtNaiX0mo1BEdU5bspyzEaTSyavYUuDzZma9QRVBVOHk7AwcH2K9JyDMUaSFMvZNusd3S+ZBRvBc4npFOQV4C9g2V5z0fakJGazZaVBwir408VPy/2bD2GWYHklCwMR+ML+/taTqCaVBTV0jQaLE2lLwZgy5RKzm56MvIMoMK9Xeqy/L/DGF0s5a5dy4/mjaoz94+tuLg6oFVV4rMvzo98+tR5lmwZx+F9cTg42RNR258DO2PYtekEYTX9UE0mvpwwD4CD26O5cD6DRq0jcHJ1oEGr6phNqk3z5uij57h3YGtadq5DWkoWWq2G0f2mYzarmM1mju45zZjPH7O5Zoqi8NT/+vDU//qU/gaL6+bm5ka7du04e/YsBw4c4PTp0zRo0MA6G8DdbtCgQfj4+NCvXz8SExN59dVXy+W41/pdKu5cZlWDWa3gaZdk3IAyk0AshCjGy8uLt99+mzfeeOOq23Xp0gVFUdi/f7/1+eU6d+7M7NmziY6OplatWlSrVu2qx4yLi6NHjx7UqVOH3377DQcHh+t/IXeQtLQ09u3bR15eHo0bN8bPz++2q+Fx93ahTrNQDu+MsQa7ed+vY+AL91jm1C2j+Jjz/PPtWhRF4b6h7Rgz7Dsy03IAcHDUodPbkZ9rwM5ey5AXuhXb/4+ZUZhMlpGkDQVGaxgGy82Hy/uy2tlpMFwSrFVU8vMNHNwZQ/qF7GKhGyArO4/oXbGkpWbTol0NBr/YncEvWvrBr1i2FrNqtJ7nwoVsuLQGVWtpNm2lKKgaCgOygmpWSc83QuEP7eWbjmLQaymK5fviU/h06mMMHd4RgGcGfXmxCbWqgqpiMJjQO9pTNcCTXZtOMPaZWZZRrU0q9ZsGo9VqMJnMmM0qezefZOuawwBsjzpCy862YwH4B3tjr7fDL8gbvyBv/vpqlWXapcLLuHHZvpLeRlFBivoXV61alaNHj7J+/XpCQ0OpVauWzF8MdOvWjbVr19KzZ08SEhL46KOPbjjEXut3KVx52iWAPn360Lhx4xsqixDiyiQQCyFK9OKLL/LVV18RExNzxW2qVKlCgwYN2LdvHz4+PtSvX7/YNpfWGpdWO3zw4EHuvfde7r//fr788kuZS5Pbt3l0SRRF4aFnujDpmR+tywryDKQlZ5Y5EGdn5jG673RrAF63eDdZeRcDaV6ugWGje1CzQSDB4b54V7W0Mjh9PJGFP2+wNN1VLWVSVdU6gNSF5MzC5dDh3gasXbDLGlj7PNqOObP+s57DUGDk84kLWDV/FwBuno4Xw2Zh4J/x0VLWrzgIWI7/5R8jrQNbubo64+iiw6yx1DprNBpMcLEfcmH5ip6rZtVSS1y02q6wNrmoCbWqoipgKvx4qArk5OTj4mIZadzX34PoUynW8ikaDY/3/Yy01Bzs9XY0aRRkDcMA8XGpmEzmojcPZzc9+fkGSzlUlYM7Yi5ePyCifqDNe2Q0mq1hGKBKwNX7t587fZ6X+0wjIzUHD28Xps1/haqX9GEW5ePyZtSrV6+mfv360owaaNasGRs3bqRHjx4kJiby/fff3/DNgmv5LoUrT7sEEBoaKoH4NlUZfXpNSA1xWd2ev6qEEOXiatNx6PV6oqOjr7i+yN69e6+6PiIi4pqm/di0aRMPPPAAL730EuPGjbvrf5hd2jza09PztmsefSUN20Tg7u1CZlo2qgphtf3xDSx76Ik5Ek96Spb1eVZqDjjatiaw19vRpG0N6/O0lCxGD/ySvBzLADcePi44uejJyswDBRq3CqNp2wiWzNmGwWBCa6fhhxWvc/zgWUIifLF30DHv100YTSYUxTII1qoFuy0HVxQyUnPBTmPTr/e/lQetf09JymDlgl0c2HaKM6fOc8+gOnh4O1pGhVYUzICXrysphSFfq1Ew5RmtfXQVBeu0TpYFYNZgHR7TrIJJr1B0H8lsZwnUu3bHULWqO5kZ+daygiWrpqXngAYKDEZOnDpvrSHXaBVyMnNtXouLmxMpiZmWQxQOopWVnmM9pCHftjn8xmW2/zc0bHPZIF6XGTf8OzJSc6zv1YSnvuPrZaXXrInrc3kz6piYGBo1anTXjFB/JTVq1GDTpk307NmT3r17M2fOHJydna+6z418l8q0WEJUPgnEQohKt2jRIgYPHsz//d//8eyzz1Z2cSpdTk4Oe/bsISsr67ZtHn0lrh7OTF80muV/bMHeQccDj7a7rlGFA0KroNPbYSyw3AvX2WsJqRfAiYPxADg42tOhZ0ObfY4fOENO5sUpmC4kZhBQ04+cnHzMZpU5szZQxd/DEpCB5fN34eLmyKPPdeXE4Xh8qrrxyHNd+OnLNahAbp7ROoBWEY1GsdQoF75fGq3GMvhVoRXzdhJ/6jxmk5lNq45Qu7WfpRkzlh/GRWEYwGRWwU6xOb5qr8FU+FHQaSisUS7qY6xi1iqYCttMm+0VHh32DampuShA1w61UQ+eKUzWoNUqmE0Xy5ZvMNKhe322/3eMsBpVObq7cECvwlrvvFwDj4++l10bjlGjQSA16lfj41dmF9awK/Qc3PpiOVWV+Jhkm+uv0129xUdacqbN89SkG58qKDMth+jDZwms7otXVRmL4HKXN6Net24dtWrVIjw8/K7u8+rn58e6devo06cPXbt2ZfHixfj4+FR2sYQQN4kEYiFEpZo9ezZPPfUUP/30Ew899FBlF6dSFc0pfPDgQapVq0aLFi3uyL59VQO9eOy1+27oGJ5VXJn449N89vZfJJ65gNGk0qRVdXoOaEVGWg6R9zfC57IAFFTdF61Wg7lwdGZHJ3sSz6VZm0QrGoXky0LY5qjDbFx1kISzqSiKQmhtf7jYBRe0GhTFbA2ZikYDqiVkKoqCq6eTzeBbiQnp1hCam2XEyUVnCb2WPSy1vloFVQHFDIpZsVbSqhowXlIjXKBiU4OrahTMdhcH4TJr4UJaHorGUqu8bstx6xzFAFqd1lKWwsBrp9Py9pRB1vUP1H272DUfNLILg0Zaxgo4fTyB1vfUIysth/5PR9Iyso512+Rzadaa+CKhta8+Unzb7g0s8xgXatez0VW3L03s8QRe7TuNrLQcdPZ2TPz5GZq0r3VDx7xTFTWjDggIYPfu3cTHx9O0adO7urbYzc2NpUuX8uijj9KxY0fWrFmDn59fZRdL3GbMgEmt2BvaxUezEKW5e2//CSEq3a+//spTTz3F3Llz7/ownJOTw+bNmzl69CgtWrSgcePGd2QYLk81GwZxPj6tMJyqzJmxhuq1/Bj0bGeb+XOL+AV58c6Xj+Lu7WoNtDXqBlj70wK4ezrZ7GOnsyPxXBpgOUdc9HlUFMu3p0ZBsbP9GtVoLaFWxTLSp4ubpf+uWvhw83K29BfWKmSn5+PsbGed1xhFwWynsfQT1ljmGnZw1lkzr2KvoHfU4Oqqw9tLj5+vI0EBjgQHORES7ERoNSfCqznRqa7ltYcFOBEa6kxwsBNBgU74VtXj4+eAu7ceJxc7dHqNtQm2qigEBHrx908b+GH6Ck6fTELvqLsYuBWF1l3rWl+npfn5V2xdc5iDu07zxfh5FOQbresdnR2K1fxXr331AfVe+WQwj7zUnbrNw3hsdE9Gvf/wVbcvzbxv11pbBBgNJn79v39v6HiX+vvvvxk1ahQdOnTAzc0NRVFuaLqeM2fOMHz4cAICAtDr9YSGhvLyyy+TmppabmW+Fl5eXkRGRuLj48O6des4fvw4CQkJaLVaRo0aVaFluRXo9Xpmz55NixYtiIyMJD4+vrKLJIS4CaSGWAhRKWbNmsWoUaNYsGDBNc9NfCe6tFY4ICDgjq0VvhlysvIuDvpUKC0l8wpbW9g72JNW2Pc4N6eAw9tj8AuvQsLZNEDBxc0Jk8lMZlou/kFetO9ah9knk6z7azUaDJrCuYiLaok1Ckrhn95VXMjMKSAr09Jf12gyFQZcDagqLTrVIvH0BY4eOkNAhDf2ei216rrj4GiHs7MdTq46nJy02NtrsddpcHKwQ6fToNVammOD5TNTYDBTYFQxmMyYzZYRr1XArICfm2WAsk61vNCEWTKtolj2t9dp0BU+ihQUmDAUmMGskJ4dh0ExsWDuMga81IL9W2PIyShAUbS07laTvLw89Ho9Jw+dtWl+fj4+jYS4FIIjqgLg4u7ISx8N5PO352A0mOj/TGdqNw0p9T0d+kpPhr7Ss9TtrkVR32vLE0vz9fIyadIk9u7di4uLC4GBgRw5cuS6j3Xy5Enatm1LUlISvXv3pnbt2mzbto3p06ezbNkyNm7ciLe3d7mVvTRarZZ69erh7+/Prl27SE1Nxd/fn379+lVYGW4lWq2WH374gaeffppOnTqxdu1aAgMDS99RCMCMBnMF1z9W9PnuBBKIhRAV7rvvvuOVV15h0aJFREZGVnZxKk1RX+HMzEyaN29O1apVK7tItxUffw+aR9Zmx/pj1prM/5btp06zMGZ9tpLkxHTu6d2Ujj0aoKoqOVn5HNlj2y8W1MIwbHEmJpnn33qAX75azbkzqWzfeIJqIV6ciUlB0Who1r4GG6MKw09h3vIP9ORcfDqKRsE3yItzO05jZ6/Fw1uPkxs0D/fDw0uPs4sOZ9cc/Ku70qpnfUwmM6qq0rSpNxkZBrKzjaSmFxCXaKLAaKagwIyTgz0fjn8YOzs7tu87zYTPl1NQOAo0Cph0QNEgWoDJQYNOpzD2njC+33gW+5iCi/3PzSp2uZZpphQNlnCspTB8a7FXVPQa0Om1ODhqCYuoRtd+jcjNycXeUcuhY/vYc8DSDFqjaHno5UbkZBSQmZpP5oV8FJ2B7OxsnJycUBSFe/q3pHPvZphNZuwdKv4mT/+RXdmyYj+p5zPRO+gYNubBcjv21KlTCQwMJCIignXr1pU4B/u1eu6550hKSuKzzz6zqYUdPXo0U6dOZezYscyYMaM8il0mXl5edO7cmUmTJvHpp59SrVo1VFW9Y8YzKAutVsvMmTN59tlnraE4ODi4soslhCgniirD2wkhKtCMGTN44403WLJkCR06dKjs4lSKy2uF69evL7XC12nXhmOMHTbTZlnNFtU5dugsamHf4Hc+HcxP01Zw5tR5PHxcSEvMsBlpmcvCWlCYD2dOp6CaVRSNQqceDVi/fD9ms4rWToODmwNZGXloNNCoRTA6BygoyMfdyx4PbwfcvfS4uNmTl2skLSWftNR80lPzycowkJ1lIDutgJxsI3m5Jh57sS7Llp3lbGIuigoGJ+3FqZRUsLfT0LltbY6eSCAioirLth9F1WJpXm1WMdtb+hsDmFQweYBep+F/7cP4YPlJHGKMlubdljbcaPMvqVE3mdFc8gtAp4I5u6CwgzR89O0wGresbnNtDAUGDEYDn779B2djz+Psao+rlx5PXyfqtQwiOzsbRVFwcnLCxcXF+nB2dsbFxQW9Xl+hgSovJ58zJ5OoGuSNq4dT6Ttch6ioKDp37swjjzzCr7/+WqZ9T548SUREBKGhoZw8edJmIKvMzEz8/f1RVZWkpKRSRzoGWLt2LV26dOHVV19lyJAhvPvuu6xfvx6TyUSXLl34+uuv8fPz49ChQ0yaNIlVq1aRn59Phw4d+Oqrr4qFvIyMDKpUqcILL7xAz549sbe3p0mTJri6uvLff/8xdepU9u7dy9mzZ3FzcyM0NJSuXbsyefLkMl2H24XZbOaFF15g6dKlrF27ltDQ0MoukrhFZWRk4O7uzte7WuDoUrH1j7lZRkY23U56ejpubm4Veu7bldQQCyEqzBdffMHbb7/N0qVLadeuXWUXp1Lk5uayZ88eMjIy7tpa4dTzGRzeGUO16r6E1LyxQWr0jsVvJBwvCsOFwWvmJ0tJirsAQFpyliVwXqxkxc/PncTzGZjNEBJehezMPGuYVlWVfTuiUTTgU9UJ32rO1G3mj6OLFkcXBVBIS84jNUVL+oV8juxNIe1CAWkX8snLNYGq4hPgTtL5LFAgvHoVy1zHhbKzDDi422NOsTSxVrRF8/payl5gMrN83SFQ4OTZC5hdNZgLa4RVRSkMx5bnZkcsr62QyUnBpFUKK5DVi+uKasc1is3oKwaTCa1iWa8oEH7JIFgZqdlMeHYWh3fHElKjKoqiEHPsgnW9zt6OF98ahtlsJjc3l6ysLOvj7NmzZGRkkp+fh4IGnyrepCbmsn3lMcwFGoa/0YvQmlcfcOt6OTjpiWgQdFOOXR7Wrl0LQPfu3YuN6uzq6kq7du1YsWIFW7ZsuaauJbt2WebEPnbsGO3bt6dnz56MGDGCZcuWMX/+fPLz8xk5ciSDBw+mS5cuPP7440RFRbFkyRIee+wxoqKibI63ePFiCgoK6NSpE507d+bw4cOsW7eOs2fP8txzzxEYGEiPHj3w8fEhMTGRHTt2sHz58js2EGs0Gr788kteeOEFOnbsyLp16wgLC6vsYolbmEnVYFIreB7iCj7fnUACsRCiQsyYMYOxY8cyfvz4u3akzvj4ePbs2YO/vz/Nmze/K2uF404k8kqvT8nOzENRFF6bPpQufZtf9/HqNg2la5+mrJ6/CxQFFw8nFEcdGWm5lg1UlfOXT99jbS5t0aR1OCuW7EVVzcRFJ+PoYk+VACeqBDjh4++MbzVnvHwdMBrMJCfkkJtjZNf2c5xPyCEzw4De3o7cnAJrAHdwsCMv31QYQBVyDSbLHEnAydMpoFWs/Vuzc0w4O9thSaLYBHnLAqzDX2oUMNhhDbaqCqqdYg3EJf0GMhf2H0ZVUEyqZQRqxbLikjryogtjvTaqCisW7MLJ0Z6wmn6sXbCLo3vjAIg7lUT1y0aM7nBvA0sZNRqcnZ1xdna23uxJT83i8fbvYTKa8A5woU7LQBQ7E8EN3PD0c2brjo3EJwfg4eFhfTg6Ot4VTXOPHj0KQM2aNUtcX6NGDVasWMGxY8fKFIi3bdvGli1baNjQMvXYuHHjCA4OZsWKFezevZuVK1fSpk0bAAoKCoiIiGD9+vXk5eXh4HBxPu958+bh7OxM9+7d0Wq11K9fHwcHB+Li4pg2bRqPP/54sRqo5GTb6bbuNEajkQEDBnD+/Hk6d+7MunXrCAkpvX+8EOLWJYFYCHHTfffdd7zxxhssXbqUunXrsnnzZgDCw8MruWQVw2QycfDgQeLi4mjcuDHVql19tN072ZJfN1rCI5ba19+nLb9iIDaZzKhmy3RAJTlzKon4mGR6D+vAmsV7Uc0q2Rm5qLmGwmbHhSM3X1IbDGCvt8Pb141zhbXGqxbvpmqIK9VCXQkIdcW3mhNGg5nz53I4H5/D7g3nyMsyc/Z0OlX9PWjUvgbRx05aB/SyzEd8MUzm5RkpmkIJIDM7/2Ls1CgoOo2lfbOikJVntIw0XVR7a1ZRdIV5vWhRUeELl5kBNKCaQFUuBmGlAEyuKkb9xcCs0WIZFRtL82+1aBJjjYpiuCREm0Exmmxex3dTlqMaLH2Oa9UNsL4Gs0nFaDTjUcWV3Mx8mneqxSuTrzwi9OzPV5GfYwAgMSaDxJhD1nV2Og1eAc68/XVDcvKyOXr0KJmZmeh0Onx8fPDx8cHb2xtXV9c7MiCnp6cD4O5e8hzJRcvT0tKu6XhFgXjWrFnWMAyW2ubQ0FD27NnDJ598Yg3DAPb29tSqVYu4uDiys7OtgTgvL49ly5bRs2dPm5B89uxZRo8ezSeffMLGjRtp1qwZvr6+1vV38ny9BoOBzZs3Y29vz++//86LL75oDcVBQbduSwRRecwomKnY/7sq+nx3AgnEQoib6scff+SVV15hyZIl1mbSbdq0uWtCcVZWFjt27EBRFCIjI6+pH+CdzMHRHtV8sZ1u6vkMUs9n4FnFtpYpasEupr3+O4Z8I/1HdmXYmw/YBKLlf21l2muzAdDo7FC1hQ2DVVALjOBob3teVwfyC0dFfuqt+5n/axQtugcSUN0d30BncrKNxEdncnRPMttWG4mPSbPsWBgOBz0VyeI520lIyMBh3xlMJjNarYLJpGJnp8FotB3tWi1segyFdbDaS2tfL84tnJ1jws3DvnB7wKzQuG4QirOWKt5urIk6QL5Bte5r0iqFg2gpqFoVsw5rDbKqBbNesT436y3lKLpqZi6pfFYUVJ2CYjBbCqi1FNQa3BUFs/niz6r0jFyb1xd7Isk6f/PGFQeIOZFARJ2Sb/QYC0P1xVQPWjsNqqpiNql4eHhSs3YN6/trMplIS0sjOTmZc+fOcfDgQbRa7V0RkG9EdnY2x44do3r16tx7773F1p8+fRovLy8GDhxY4jpXV1eb0axXrlxJVlYWffv2tdm2Xr166PV6Ro0axSuvvEJ+fj7BwcE0bty4WLPvO0lRGNbpdLRs2RKtVssXX3zByJEjraH4br7ZKcTtTAKxEOKm+eWXXxg1ahSLFy+mY8eO1uWenp53RSg+c+YMe/fuJSQkhLp1697RPxavVd+nIlnx5xZSz1v60eZl5zP9zT+Z8MNT1m1ys/OZ8sqv1iD115eraNm1HvVaXBzgaea7861/NxuMaO11FI0RWTXIi3PnM62tojUahcbtg+nyYG0yMzMwqkl07l+ds6cyOLLjPGv+PIFfkC86Z3tSz6vUb1ad+NjdXKxaVvjn103WeXZjjiXSqFUo0WfTyM7Jx9fXzTIKtYJl/mAzF8OaammmrBbOW2yZ/0fFbG85bnauEb8AJ8vUTIBZo7LtdPzFJt0aCsM0ln0Lw7Bl1idL+FULtzNrwaQtHHkabAbcQlVQFJVLa67NqsnydwUUtXBaJ9PF8K1ccv1c3Z1wqlGV9NRsmraryar5u2ze128nLyE7M4+QGlUZObYXru6O1nWGAqNlWGtVBUVD9Tr+jJrUn2V/bMHVw4kBI7vYhNulv25i/g/r8PBxZdTkgbRu3ZrU1FSbgGxnZ4e3tzc+Pj74+vretjeaimqAi2qKL1e03MPDo9Rj7d27F7PZTLdu3Yqti4mJITU1lX79+hXrqpGVlcWJEydo3769zfK5c+dib2/P/fffb7Pcx8eHDRs2MHHiRL755hvmzJnD66+/zvbt22nSpAktW7Ystay3m5LCMFi6CHz99dc89dRT1lDs739z+sOL25P0Ib49SCAWQtwUs2fPZuTIkSxYsKDEqZXu5FBsNBo5cOAA8fHxNGvW7K7tM10Sdy8XWndvwPI/tmA2mTGbVU4fPWezTW5W3iW1ihbphXMHFzEZbdd7eTjQqW9zDu6Jw8PHBSfvNLAzEFrLneAa7tjrdcSeSmBHVAzxpzLQanSkpmRZB5ca9HQDvv96DUajmXPxqWjsNJgNlhpSRVGsYbjI4eNJFJhMmM0qZ86mYqfXYjRbJibW6Cz7FgVgVSlsu1xILWrOrYHMbBMuTnaWUKuA2U4pDLgXm1BzycBZYPt3oxbUwnxj0gCXTsOkUy+eS1XBxMVBuMygXH6D5pIqZJ3ejohwX47uP4NXFVfiTyaSl52P2awWC8MA+7dHAxBzLAFjgZG3pz1iXbdn0/HCclv6TtdpFkbtJiHUblK83+W+zSf48p2/ATgXk8y4x2cwa9N4vL29rbWXl9Ygx8fHs3//flxcXPDz88PPzw9PT8/bpva4Vq1agGUQrJIcP265dlfqY3ypoubSzZo1K7Zu586dV1y3e/fuwum/mlqXmUwmFi1aRJcuXUpszl2/fn3mzJlDQUEB69ev5/vvv8fDwwNXV1f8/PzuqCmJrhSGi2g0GmbOnMnw4cPp0qULUVFRd+VgiULcziQQCyHK3ZIlS3jyySeZO3fuVQeCuRNDcUZGBjt27ECn09G5c2ccHR1L3+ku0/qe+iz9bRMarQazyUzbexvarPf0daPVPfXZuvIAAFWDvGnUzhIIzGYzKQnp3PNwSxb9tMG6T69hHThy9Cw6FwM+YSr1I6uRm2Xm2L5kFv1yAgcHZ+IOx19ylnwCw3w4E5OCRqPw3eersEbswimNioKkvd4ONy9nks6lX9KvV7U2GdZqNRjN5sJ+wIrlOJrCZtGKYju6MwCqJZhqFHLyTTg7alHtLOtVrYpZw8XQqygoZrWwglhBNYFJD9iByYilprlwe1WHbXDWKJi1hS2oVVD/n73zjq+iTNvw9c6ckh4CAZJQElrovfemYAfRtaJiW3Xtba2fveGuva5lxbKurgUsWAAR6Qm9BgiQAgQCJJB+2sz7/TFzGgkQICHFc/mLSaa+MyecM/f7PM/9SIHq7bOkggzQ+BIzvdqMFLdt15wX/nUNxYfLEcA1Y14I2FiS1L45edkFgCQpJZ59uw/5JjgyN+0Jej2TUxM5uK8Y3awJb54YS/rvGbTt2JKENk2Dts3N3Of7Wdcl+3cfwu3SsNn9jyuqqvoEctvWKSyavRq320VZdDnLly9HCEFCQgItW7akRYsWWCz191HH2794zpw56Lpeqe3SkiVLiIiIYMiQIcc9llcQDxhQuSbfK4irWrdmzRqAIEG8cOFCCgoKKqVLH4nNZuOMM87gjDPOYOTIkWzYsIHo6GiKioro1q1bJfHY0DieGPaiKAoffvghV199NRMnTuSPP/44al14iBAh6h/191MiRIgQDZLly5dz2WWX8dFHHzFx4sTjbt9YRLGUktzcXDZs2ED79u3p0qVLKEX6KAwa350nZ/yV9N820TY1gXOvCk7VFELw6L+uY/FP63CUOxl+dm8io8MoOVzGg1e8w86MPCKiwrjk1vEcOnyYpklh2FqU0615FHt2SHZuLGTBt1lEN2tC3q5CdF2iKBVIi4LQpJm6K9idXWBEZaVEuj1gtQQOgrOm9KVNcjx2uwWL3cKrT3/vE7XuMhfYVBTFaJNktVlwubWglkbeFG6kRArFEMEYqc7CTJEur/AQEaYa9b+mGzRKgNmVBHSjxRKAJ1yC1UyZVkFa8B23so+KcZ3S6zItJZrF79RlUYyosZfhY7qwckkmCYlNGDEylYuHP4um6Yw/vw9tO7Zgd9YBQKCoCnm5xr1TVIXIqDB0TTfvBQwYGRzNvOuFv/DaQ1+Ts20fPQa144t35uMod6FaFB7/17UMHN3Ft23vYZ2wWFV0XSKlpNeQjkFiOBCX0819F77Kzs2GAO82oB0vfHU7RUWHyc/PZ/PmzaxatYr4+Hhf9LiuJqh27NiB2+2mQ4cOQSnLHTp0YMKECcyZM4e33nqL22+/3bfu8ccfp6ysjJtuuqlaKeGrV6/GZrPRo0ePSuuOFSH2CulAQTxz5kwURWHSpElB265Zs4aYmJhK79Pbt29n48aNxMTEMGbMGFatWsWiRYsYOHBgg01nr64Y9qKqKjNmzGDSpElMnjyZn3/+OciMLMSfEw0FjdOcMn2az9cYENL3iR0iRIgQp0ZGRgYjRozgySef5LbbbjuhfQ8dOsSyZcvo3LlzgxPFHo+HdevWceDAAfr16xfkuBqi5vj0lV/44s25xLYIJ3VgS7oMSkS1CrI2HCRnYwEH9nsoLXWha8bHWuvOCezKMlrAKIogzG6h4nC5T9QKb/0tZsmu3RLU8mjIqE6k/ZGJ1KXRHzhgLBLoO7wD5bokNjacPbsPkZNTgFQEAglaQFRXSkQTGy5d+kt4NYkQAkWBu65L5fUfsih16uhSotv8xlhG6BbTj0riilV8BlweQEZjCGgzDRpFYrcqPNO1Hc/O34FyQPq9rHSJ6gk4boWGxfQCExLm/HAvNpsFR7mLi0Y8gxZgFPbQPy5l25ocnA43hwvLWPrbZl+v5sQ2Tbn6zgmk/7GFth1acNG1I7HaqhaxL/39C+bPWo2uS4SANu1b4Klw4nS4ueqes5l42RC2rs1h7v/SiG0WxUU3jSMiqmpRsTF9B/dPeS1o2dtzH6Rd1yTf7yUlJeTn57Nv3z4KCwtp1qwZrVu3Jikp6ZTans2aNYtZs2YBsG/fPn799Vfat2/PyJEjAaPO9p///Kdv+5SUFHJycsjKyiIlJSXoWDt27GDYsGHs37+fSZMm0bVrV9LS0vj9999JTU1l6dKlQWZXVeF0OomOjqZXr16sXLmy0vr4+HiioqLIzs6utK5Xr15s376dkpISVFVFSklycjJt27Zl8eLFQdted911zJgxgyFDhjBgwACioqLYuXMn33//PQA//PAD48ePR9M0Nm/eTG5uboN01j9RMRxIWVkZ48aNo23btnzxxRcNPkoe4uQoLi4mNjaWf64cQXjU6Y0/VpR6uG/AYoqKiiq1RQtRNaEIcYgQIWqE3bt3M3HiRP72t7+dsBiGhhspLi8vJy0tDavVypgxY0IRgVqioqICEe5kyr39aNI8nOyNBaz8OZeMZbt9qctSCAZM6EXRoXLOuqg/UXGRPPfgV0agVBEMHpnKHz+tR+rSEMhRNspLnYA3sBvcA3j5okyfuZV3nU9AA+u27MUZ4JiNxYjGSoRRg+zSjeMKgVtKn5A1WioJI+1ZmGnTERZKXC6k8BpweQeFUUds5F+jK9LfsxjDSMv3SS5BKZY03a1BVwg7BK7AmyjMKLSJagE8xjlUq8BqtrdyuT2GGA7o1/zaI99QUeLAarPQfUCK/xqkpMeAdow5tzdjzu193NfRZrd6GyMjhGDXjv3gdiMlvPrAF3Tpm0znPsbX8YhtGhW8QEB0k4igRdHR0URHR9OxY0ccDgd79uwhKyuL9evXk5CQQOvWrWnZsuUJZ3OsXbuWjz/+OGjZzp072blzJwDJyclBgvhYdOjQgZUrV/LYY4/xyy+/8NNPP5GYmMidd97J448/Tlxc3HGPsXHjRtxud5UR4JycHAoKChg9enSldU6nk4yMDPr37+8TbitXrmTXrl3cddddlbafNGkSbreb9PR0ZsyYgcPhICkpiSuuuIIHHniATp06AUa0tGfPnsTHx7N69WqKioro2rVrg6jtPhUxDBAZGcns2bMZMWIEd9xxB2+++WaDuO4QtYMuBbo8va//6T5fYyAkiEOECHHKFBYWMnHiRCZOnMhTTz110sdpaKK4oKCA9PR0WrVqRY8ePUIp0jWM2+0mLy+P3bt3U1BQQFKnWH75ZAdb0vbidmlMvXMim5bs8m2vCLjriUnEJ/oFRGKrOHZs3Ue33m1omdQEVRGsXJxJbFwETVtEszZtp39/i0KgvsUr+swQrWF8JUxhLHFquunSLHxu0n4HZ0D1u03rwmtoZWxrsau4TLFZ6vAQEa6iF3tbNPlTpH0X5v3TUoVPWOuAbpE+Uy10sAiJtcIUzJohmL21wcIDwuIfoI4wtLUAjy59Y83PO+yfGDC/l5c4EBiO0evS/fdMKAoxcdVPib30lnGs+GMLB/IOExZhp/xQCYGzDPt2FZLcuXouvW06tuS6hy/g4+k/IlTBTU9MIT6xyVG3DwsLo0OHDnTo0IGSkhJ2797Nxo0bWbNmDa1ataJ169Y0bdq0WuLliSee4IknnqjWOIEqI7NB19KmDR999FG1j3ck/fv352gJf8nJyUddZ7fbcbvdQctmzpwJUGX98KRJkyqlUR+LxMRERo0aRVpaGiUlJfTr1++UIvO1zamKYS/x8fH8+uuvDBs2jISEBP7v//6vhkcaIkSImiQkiEOECHFKlJeXc8EFF9CxY0feeeedU54JbyiiODs7m40bN9KjR49KKZAhTh4pJfv37yc3N5d9+/YRHR1N69at6devH+Hh4fTp1Y/NK7NoldKcdl2T0HWdz1+fa+4L0+/6Dy9+cStul4eyUieduiWxecMu7rnx39jtVs6/aAC//biWosNl5GYdIKF1HIcLy2gWH037Xq1ZOHdz8IC8ghd8Ytg4mXcdZgskqnCC9rc9kiroqmIoUxRcSN/2JQ7TadpiHFcKs4bYmwYN/l7DAtOAy6x9tskg52hnlPB1bMLiF9YSjHZQ3nWKMNos6X6hVFHhQvPoOCuC4sr+6/GXRKMohvGYRNKsZfVT8lokxfHhvAfYn3eIJvHR/P3i18nashcBRMdF0m1ASrWPBfCXv53BhTeORQhQLdUXL9HR0XTt2pUuXbpQWFjI7t27SUtLw2Kx0Lp1a5KTkxts7eupMnPmTHr37k27du1q5HjR0dGMGjWKlStXsmjRIgYPHlwv721NiWEvycnJ/Prrr4wcOZKWLVvy17/+tYZGGiJEiJomVEMcIkSIk8bj8TBlyhQOHTrEnDlzatSwpr7WFOu6zsaNG9mzZw8DBw4kPj6+rofUKHA4HOTm5pKdnY2u67Rt25bWrVtXWf+k6zrff7KEjSuysIdZmP9tcM3k39+8htee+R5HhZvUnq3YmmG0dRJekepw+bSrqirMXvs0YAjCq859mZJiBwDtOrUgK3O/77jSbJXkM9aKsRl6VRE+gRw0HaRLn8O0I0YFi/DVAhMgVM8d0oLCCg8Ldxw2dlMDos3eGmJTEDujMdoqKeCSEr2Z7muzhA5S0QmzKLyY2Inn5+3AU4LvOAKJGhAMFOUaFo8xDlWApchY2advMqV7DpG1Ld+4Dx1akL1pj+/a+gzvSP6ew+TvOcSwM7pz/4uXYDtKzfCRbFyRxY6MPHoNak+7LomUFpXz46dLcDncTLxsCC1bNz3+QWoJXdfJz89n165d5OfnEx8fT0pKykmlVIeojK7rvrrigQMH0rx587oeko+aFsOBLFq0iLPPPptPP/30uK7dIRoP3hriF1aMJuw01xA7Sj08OPCPUA3xCRASxCFChDgppJTccMMNpKWlsWjRomrVuZ0o9U0Uu1wuVqxYgcvlYvDgwURERBx/pxBHRUrJwYMHyc7OZt++fTRr1oyUlBQSEhKOKUC+/fAP3n/+R3+Jq66DNEyabGE2Ilo149DBEqQZbUU94lhOd5Bwnb3mKV908XBhKXdc+wH78oq8g/RtKwEs5rGEwBlpAZvib6skQWpGxDapeTT5+0p8kWNnEzVI5ErAEyZAEZzROQ6rTWF2RoFxGFPwBkZlfUOP8UeIXejIeOkTxBIdrJIwReHFpqn8/UAmUcv81y484O26JHRQyzRUU3ALt46tzG85LcpdKB5j4/Hn9mbgoHYsmL2Orn3a0rlvMgt+XkfzhFgunjaSsHDbUV+rQOZ8vYJXHvoKMCLMz3/yV3oNrvt/11XhcDjIyckhJyfHZzKVnJwcaqNWA+Tk5LBhwwa6detGu3bt6ry+tjbFsJfvvvuOK6+8kp9++olRo0bV+PFD1D9CgrhhEUqZDhEixEnx6KOPMm/ePJYuXVorYhjqV/p0cXExaWlpxMbGMnjw4Hrd27S+4/F42LVrF1lZWTidTtq2bcu4ceOOmUaZl3OQd5+YyeGCErzmx97p3ITkeEoPlRIWYefO5//Ccw9/61snhCAswobD4QYpSenQguyMPF+qcKuUeBRVYc6s1axevh17hN0QwwFp0lI3DKaaNI3kUJHfpRo9sG7YqCsmzBCgeYfLwCpQvGMFdAs+8exRQNqMn4s9GskxNn+dsMBwjpaGE7a3HllitloyxbIFgUvVQdX9oWkVv+pVJZqqoUqLUeOsGmnTSJCqxBJQIy0DXLQFGJMIHkMgL/h1A39/ZgpjL+hLxrpc7rnqPcOhW4cNK7PJzy2kqLCMsy8ZyI1/P+eoAueHz5YG/T7n6xX1VhCHhYXRuXNnUlNT2b9/P1lZWWRmZpKQkED79u2rXWscojLJyclER0eTnp5OcXExvXr1qrMI/OkQw2DUXr/66qtccMEFLFq0iJ49e9bKeULUP3SpoMvT+/d9us/XGAg90YUIEeKEeeONN/jXv/7F4sWLa72dRn0Qxfv27WPVqlV06NCBzp07hx6ET5KysjJ27txJbm4ukZGRdOzYkVatWlXrIfSxae+xN7cAXTPEqbCopmAUjDi7F9PuPZtZHy1k7jer6NM/maULtyGBmOhwnn5rKutWZlFe5qJ7n7Yc2HuIN54y2sTsySlg2tkvkb/XiAjrqoAjJjssNgu6LikqqggWyhazptjXIinAeAtABd1bK+yRyHD/Q4puxZf6XOLWiLarhmM0+EyzMNtC+X7HEMO+vsMIsGqmeZcRcRcqCGGeRzGUtM9wVIDuDXBLQdCfseq/DqmDcPmjxV73aYDVS7cjBL7WVuvSdxq9nYGZHy+hU/dWjD2vj2/7QwdKKC91kJQST1zzaF/tMUBssyNcoushQghatmxJy5YtKSsrIzs7m7S0NMLDw2nfvj2tW7cOtdU5CZo2bcro0aNJS0tjyZIlDBo0CLvdflrHcLrEsJcbbriB/Px8Jk6cyNKlS0PeEyFC1CNCgjhEiBAnxJdffsnDDz/MvHnz6NKly2k5Z12JYiklmZmZbNu2jX79+pGUlHT8nUJUoqioiMzMTPbu3UtiYiJDhw4lLi6u0sRCyeEyfvnvcqQumXDZEJqYgsnt8rAn64B/QynpO6wjZaVOuvdvx1V3TuCLN+fx2etzEEIgdckZlw3mj/lbKC6u4IG/zuCsKQOY9WUaAKoZDfWePchVWT8iRxnwBPTjRTVFsACcGoT5P0alABRTFHujr4pRRyyE2fLITHfG4k+NLtE0ouyqT+hKs2bYZ8gFvk9rqQQYbgFYdBTVFN26QAjpF+iKjlRUYyjS75aNlEhpdFzySgBFkz4DLtVqGm6ZYfY7HjnPd40pqS19glZRhDFBEcDKhdsYfY4R8Zv9n6W89dhMpJT0G5nKLY9fyJO5BezeeYCu/ZK57JZxle51fSYyMpLu3bvTuXNn9uzZw44dO8jIyKBDhw6kpKTUa/fk+kh4eDgjRoxg7dq1/PHHHwwePJjY2NjTcu7TLYa9PPzww+zbt4+JEyeyZMmSkAdFiBD1hJAgDhEiRLVZsmQJ1113HV9//TWDBw8+rec+3aJY13XWrVvHgQMHGDly5Gl7UGtMFBQUkJmZycGDB2nTps0x06LdLg/3Xvgau3ceAAE//3cZ78x9gLBwG1abha79Uti6NgcwonY3PHQ+7br4JyhWLdpqpAJLQxwuWbAVl9MDAhwOt08MA2iaBIvqSwkORJF+Y+cjEYrAZrfiNPdTPBIdafR8DIzm+mqK/U5bQhP+qDAgFWFEhAUUeaoQxF7naGkKYPN3qRrpzl5BrFglQgnoo4xENVOmFYuOMMcidXNcujkkAZoizOEIqDDvhRBoujQ1v7FvRYDrdO+B7ek5oB07tuTRMqkJWRn7gu7Ryt83cW67pfQZ0ZkN6Vm+dj+rF20ja0se7/96Px63hsVaOwKkoszJ87d8xOqFW0jpksT/fXBDjRt1WSwWkpOTadu2Lfn5+Wzbto3MzEzatWtH+/btT3uksyFjsVjo378/mZmZLFq0iEGDBtGiRYtaPWddiWEw3rteffVVLr/8ci644AJ+//330N9LI0dDoAXbLZ6Wc4Y4MUJJ5iFChKgWubm5TJkyhX/84x+cffbZdTIGryjeunUrO3bsqLXzeDwe0tPTOXToUEgMnyBSSvLz81m8eDHLly8nJiaGM844g969ex+zRjhn61527diPlBKpS/blFrB9w27f+if/fQOTpo2iVYcWRDWJ4P1nvuPwwRLf+tRebQ3xJwAhKK9wB7VF4kj/SCX4gUExfxeKICys8lyxxW6kHutSN4SvAhZVoLt1pBUjfdpMO5a+L2F8NyPKUhXoQqCrAl0xaop1KxTpHqyKgt2q+MSvt/WSVA0TLaNtkyGGZcA5jOxoaUSG0VAtOopZuKyoOroiTZGO0XPJgq+XsdfAGkC3K8Z4vcsDbtdn7/3BA9M+4O1nvueRW2awYVU25WUu04Fb+jeWkuL9RjPltYu2oh0RPXabadi1JYYB/vfWXFYuyEDz6GRl5PHWw/+rtXMJIUhISGDkyJEMGjSIw4cPM3fuXDZs2EBFRUWtnbexIYQgNTWVPn36kJ6ezq5du46/00lSl2LYi6qqfPzxx3g8Hm6++eaj9ogOESLE6SMUIQ4RIsRxKSsrY9KkSVx44YXccsstdTqW2o4Uu1wu0tLSEEIwcuTIUBpkNZFSkpeXR2ZmJhUVFXTo0IHBgwdX+/41bRGDqio+ESUUQfPEWObPXMm7j32Drkv6je3Kru1GG6Q1SzK5/9I3ef+3h9iTfYBhZ/fk16/TcZSb0UzNA9Zjf8RJIfyZxzYVp1NDSnCUuYKdqQVmz11we3Skz2kaU1z606ilYghW3zm8cVYhDDGrGmfUFVPoKuBA4tJ0osNUKpx6cI9jjogQSyAwQqx4sNl0I0Ksgy4FqnedqqMJHSEUo94ab42zsT7M1/pJGunrvkkCGTRbfuhACUW7D7FhZRb6ERMJfqtvUxj73cwq3e+eg9sf/cUIQErJgbzDRESFERV7Yq7OB/ceNtLmkeiazoG8wye0/8kghCA+Pp74+HgOHz5MZmYm8+bNo1WrVnTq1Ino6OhaH0NjoHXr1thsNp+Tf02/t9cHMewlPDycWbNmMWDAAF577TXuuuuuOhtLiNolZKrVMAgJ4hAhQhwTKSXXXnstMTExvP766/XCUKq2RHFFRQXLli0jMjKSAQMGhMxyqoGUkt27d7N161Z0Xadjx460bdv2hF24m7aM5f7XpvLeU7PQdcn1D5+P1W7lpbs/8xk4LfphDQS40e7eeYAnbp5B2vwM4AgN5jpCEAdGYXzGWPhCpE6HxxS1gkrRZMw0al9aMr5ItFQMIemr9xX+9Gljs4B1Kr5orVSMiK9X6Ba7NSLDVKTb7R+ur8A3wFhLyKAaYrtNQ1V141IEaLqCRRhnVxXdOIfX6TqglZPvXglzlIHRXEUJcpxWzHV6QF9lL/2GdWTn5jzCwm3k78ivdN+8WG0qsU2PniHgxePWeOrGD1mxIANVVbj7H5cxfsrA4+7nZdxFA/ntmxUIxaglP+uKodXetyZo0qQJAwcOpKSkhO3bt7NgwQISEhLo0qVLSBhXgxYtWjBs2DCWL1+Ow+GgW7duNfKZU5/EsJekpCRmzZrFuHHj6Nq1KxMnTqzrIYUI8aclJIhDhAhxTJ599lnS09NZsWIFNlv1+o2eDmpaFJeUlLB06VJatmxZp21AGgre1OiMjAzcbjedO3emTZs2p3TfRl/Qj9EX9PP9vmPTbp8YNk9aaR+vGD5ytaLJYAHndbpSFCOwa1XxuANqiL1i2LutrhviW0BSm6bs2XvYcLcWwjDH8qZYu3S0cDWgFzABrZikPyIrDGGsm0ZaEn8/YYBij4dom8UQ3WbasjdM640mo2CkZyv+CLFF1VFV6bt+RdGxoIAGFkXHJfzmXMI3FiOa7AsiSBBmBNy7iWq3oCiCESNTWThrjXFPFYElzILLadZQC8Ftj00iqU0zMlZlcc+Fr1V6fbzc8ND52OzHzxZY/NM6ViwwXlNN03n94a8YM6k/6pG9pI9C3xGdeeW7e1i3dBvturZi4Lhu1dqvpomOjqZv37506dKFbdu2sWDBAlq3bk2XLl1CvYyPQ1xcHCNHjmTZsmU4nU769OlzSu8r9VEMexk0aBDvvvsul112GWlpaaSmptb1kELUMBqnv6a3sjtGiOMREsQhQoQ4KjNnzmT69OksWbKE5s2b1/VwKlFToriwsJDly5fTrl07unTpUi+i4PWZwsJCNm/eTElJCampqaSkpNTKQ2ZyaiLtu7UiK2MPIEhIboYlzOpLmz7vquH8+EV68E6Br51HN8yzvEjo3CMJTdfp2TeZ1Yu3kbvjAEIImic1Yb/ZekkAUpe+T8g9uwuRqhJck2ymSKuaxKP6HZq99cU+9SmkLwXa6zItlYDtzAhxiWa0XtKs/rH6xGtQ7bA09/FHge2qZrhYS/DoAlVaDUGsSiwBjZCljk9Ie4/rXSc0DAEuQXp0NE1H02Dxom3c9NC5rF6ynciYMH6fs8l37SmpCSS1aQYYpmhBBAgYoUBBfnGVr7GUkh8+XkTa3I0kpyaS1D74fcbj1ozX4gT+vDr3TaZz3+Tq71CLhIeH07t3bzp06MCWLVv47bffaNeuHZ06dapXE4z1jaioKJ8oTk9PZ8CAASfV+70+i2EvU6dOZcOGDVxwwQUsX76cJk2a1PWQQoT40xESxCFChKiSDRs2cM011/Dxxx/Tq1evuh7OUTlVUbxv3z5WrlxJt27daN++ejWOf1aKi4vJyMjgwIEDdOzY8YRqhE8Gi1Xlxa/vYN5XaeiazhkXDyIiJpwNaTv4z2tz+OPHdYRFWHGUG2nGtjArkVE2igrLAYnNquI4IqisKoKtm/ayPWMv9jArrdvHszurgP15h1FUxddSqGlCDIWFZf4dg9yj/SnMijclOqD+lsC2SDKgbldIo8+xt9+vaohuCRRrHqLsZqRZBp9DVyVYZYBA9keI7RY3FjNCrGLUs9oQ4AaLIpFKQP52gHO1L1psotlAcZsrA0LtbrfGx2//hu7W6NSrje9QSMja5neY7j6wPb2HdWTd0u3GqawqmtmuSuoQGRNW5Ws87+sVvPN/3wCwdvE2Rp7fl6R28eRlHQTg0r+Nr1UTrtNFVFQUAwYM4PDhw2zevJm5c+fSqVMn2rdvf1JC789AWFgYI0aMIC0tjaVLlzJkyJATmkRoCGLYy3PPPcfGjRu5/PLL+fHHH+v1WEOEaIyE3oVDhAhRiYMHD3LBBRdw3333MWXKlLoeznE5WVGcm5vL+vXr6du3L61atarNITZoysvL2bJlC3v27CE5OZkzzjiDsLCqBU5NoXk05n29goN7DzPinN4kd070rZv50UI2rsjy/d6mcwLjLujLeVcOpazEyedvzWP98h0IRXCw1InT6U8g2xzgXO10uNmVU+D7Xdd0bnvoPNqltmTW1ytY+NtmAF99Lpg1wlIG1PRipkMbhbkSESQ0pQgQtorw9R4GM/KrGL8XSY1Eq82Xxix1DPMsAIs09jNNu4zexuYqVceq+Ot/JYo3eIzVohn51t6L8CIIMv5CmC7ZbuNasCj++mopKS9zIYANK7PNNHLjHkQ38dcEqxaVZz+7hU0rdrI76wBvPPotgQw9swdVkbEqy2empuuSrWtyeHvOA6xfvp3YplF0qSeR3pqiSZMmDBs2jAMHDrB582Z27txJ586dSU5ODpVpVIHVamXo0KGsWrWKRYsWMXToUCIiIo67X0MSw2A4T3/++ecMGTKEBx98kH/84x91PaQQNUTIVKthEBLEIUKECMLtdnPxxRczYMAAHn300boeTrU5UVGcmZnJtm3bGDx4cL1MB68PuN1utm7dSnZ2NomJicfsI1zTvP7Q/5jzZRqKIvjy7Xm8+dN9tO2UAMDWNblB2x7cfYjLbhlP5sbdlJc6ObiviP17i9A1Hd2qgs0aEPWswiXZG/cUgibxkfTom0xKh5Y+QQzGJtIXBRb+tGkC6obNVd50aOk9tDAit4oHPKYABjMN2gywF0sPnW3hRjQYc5tA4eyNCotgQWxVdBQhfV5gNsVNuHk9QgS4ZwU6V3sj0AF3RLoCfhfCf42Bd6ySYPNHktcu2cbrD/4PR4WLMZP6cSS2KlpZAXTt346f/7PUOI8icDjd/KXXw3Tq1Yb/+9d1Ve7TGGjevDmjRo1i7969bN68mR07dtCtWzcSExNDJRtHoKoqAwcOZP369T5RHBMTc9TtG5oY9hIbG8v333/PoEGD6NmzJ1dffXVdDylEiD8NQZ9Qubm5HDx4sK7GEiKEj/j4eNq2bVvXw/hTcuedd1JUVMTs2bMbXMSiOqJYSsnWrVvJyspi+PDhoXqtKvA6R2/atIno6Og66cX8+8xVgNnuyK2xfM5GnyBOTk1g/XJ/H+rmibF8MH0233y4EADVoqCbzsgWM5qr+1rlBlos46uHBUOQrVicyVcfLwmKHPv2C9jFa36FADwa0mrxR5EDaoONfY3IsHAAcf7orLRgRJYVoxdxtKr6BLLXGdrXyskizbphCar0jUERZg0xflOtMHOs0RYH++URqtabMq1gpHmbwtgiArYxzcaEEEhNr9p5W0CzFjF4PB48bp0nr/8AZ4UbKSUz319Al4Ht2WJOXJx12WBatmpKVZxx8UAqyhykzd3IoYJSsrfuRUrYtj6Xf7/wA/e9fGWV+zUGhBAkJSWRkJBAbm4u69atIycnh549exIVFVXXw6tXCCHo1asXdrudJUuWMGzYsCrfkxqqGPbSqVMn/ve//zF58mRSU1MZMmRIXQ8pxCmiSQXtNEdsT/f5GgM+QZybm0vXrl0pLy+vy/GECAFAREQEGRkZIVF8mnnnnXf4+uuvWbly5WmLBNY0xxLFUkoyMjLIzc1l+PDhx4wy/FkpKipiw4YNlJWV0bNnT5KSkuokYhWf1IT83AJDEOuSFm38guqxd6dx10VvsHvHfuKaR3PvS1dw50Vv+NZrHt0XldU1nchIG6XFDnOlDDbaAkMYmudZnbaTA/tNAyhV+MWzJsGKP0Val2A11llcEmcEZu2wAEUiva2YJL62SRYBToGvxlgK07hLSIpxE2OxGJFgILARsFR1sHgLf6UR+TWPYVc0VF+EWGJRJBZTvNotGqgekJYg12oESLfv6MaiAFvS5PbNce4rRSAp3FXovwe6jjXchtulYQ+zsmtzHud3f5SIKLu//zPGPdi5OQ+AgWO7cutTRy+7EEJwwbRRXDBtFLec9aJPd+ua5MDew0fdrzGhKAopKSkkJSWRkZHBggULaN++PampqaH64gCEEHTp0gVFUVi6dClDhw4NmtBs6GLYy5lnnslzzz3HhRdeyMqVK0PlPCFCnAZ877QHDx6kvLyczz77jK5du9blmEL8ycnIyGDq1KkcPHgwJIhPIwsWLOC+++7j119/bfD3vSpRLKVk8+bN7Nq1i+HDh4d6gh6B2+1my5YtZGdn0759+1o3zDoej7wzjem3f8rBfYeZeOkQRp3Xx7cuMiac9+f+Hc2joVpUKsqcKIrwGWIBdOmTzJb1u0AISosqglOHjyAqxu4TzD4xDEZU1NwvsI7Yh7lOdWKKXmGmTAujdDfwlN6IseqvB0b11gRDsdCIUFQsKri9YVvd3M8qwSL9gW1VGhFeDJdpi0/oSsJVJ2Gm8rUID9IqzdrggPELEF6tYEZ/fceW0L1Ha/7+wdm8/Ni3zNl1yH/vBMQ2jUBVVcoOFFNuOkuXlzoJi4vCWWSYkElFxWWuW/F7Bkt/3cCoc/2vX1UU7i8ie8veoGX9RnY+5j6NDZvNRu/evUlOTmb9+vXs3r2bHj16hNKojyA1NRUhhE8Ux8XFNRox7OWOO+5g/fr1TJ48mYULF4ZadYUIUctUmnrs2rUr/fpVrv8JESJE42Xfvn1cdtllvPLKK4wYMaKuh1MjBIpiKSUOh4M9e/YwYsSIUDpiAEemR48ZM6ZOJwvcLg9fv/MbOdv2cemtZzD+ooFH3Va1qBwuKCX99wzOnNKfX79ZCRIGj+3K/n1F/g09OphOxQKw2S04nWabICkpLXH4tw1MqdYxosQYwVUNv+gV5mpUv1j2tlvSvWI3UBB7o8IKfoMsYaQ/o0hK0dGkJMqicEh6/GLYFNFC0X2th4TQEaa3lapIXzmziosw1UOYmS4XaXEaRcteMRzQd9gnys0sbJ/cEtCnlzEhtie3MHgSQBEc3F/iu0+BWdaxzaI456YxlJc5+d+/FhgRdJPiQLfuo1BSVFFpWdd+KcfdrzHSpEkTRo4c6Uujzs7OplevXqH3rQA6deqEoigsW7aMgQMHkpGR0WjEMBjR8LfffpsxY8Zw99138+6779b1kEKcJBKBfpr7EMvTfL7GQCgXJ0SIPzmapjF16lTGjx/PjTfeWNfDqVHi4uIYMmQIS5YsQVVVRo8e3WBTwWuDoqIi1q9fT3l5eZ2mRwfy/tOz+PHjxSDgj+9Xo1rUKk2aAA4dLOHW81/h0MFSAM6Y0p/LbhlPUnIzbpn0mm87ISXSo/lSpZ2ljkr9iStxxH2QgPDo6HbVv071il3hF5xeEXyEk7MeIIjxbRtcD1wiPcTYFAo16ROqhrmWjrDohqeVL23azM7G3/EpwuIiXPVg1Y2PdruioVjc6Joa3AoK707+Vk4+cQz8MGsVi+ZtprC4HF8oOqDWOuh3c5/zrxzGRdePAqCizMX3nywBIKpJBNsz8nj/uR+YfO1Imic2qeJmQ5sOLeg1pCPrlxttm9p3TaJL35Qqt/0zIIQgOTmZxMREtmzZEkqjroIOHTqg6zrLli2jSZMmjUYMe7Hb7XzxxRf06dOHcePGcckll9T1kEKEaLSE3lVDhPiT88ILL5CTk8PMmTPrXAzVNFJK8vLysFqtaJrGvn37TrhPcWNE0zS2bt3Kjh07aN++PUOHDq03D9krF2QYBlYSFFVh3ZJtRxXES+ds9IlhgN9mrubOZy5GCMHEiwbw3guzg7ZXBEFp1cdDANKj0ywploMHSk1VbKZQC6O/sFQVM6rsjyx7Xaa9AlIHs1YYI7Xa6xKtm/uZ25boHmKsFgQOo5ZWYjpKSyxWHaEYYzeC2AGp3OZ3myJRhcQiDEcuq+KPS/gMwMydhCaNMepgcUrfcoCMDXsQEqSuowh8bZyO5Nq7J7JlXS6jzurF2Av6+pbf/Phk+o3szL5dBfznzXnM/WYlIFn86wben3M/NnvlVPwta3KwWFU69GjN8Ak9ufCG0djs9eNvsi6x2Wz06tWLtm3b+tKo+/TpQ4sWLep6aHWO2+1m7969REZGUlJSQnFxMXFxcXU9rBolOTmZjz76iGuuuYb+/fuHPr8aICFTrYZB6I6FCPEnZtGiRTz33HN8+eWXja6m1lsz7E2THjZsmE8E/pk5dOgQf/zxB/v372f06NF079693ohhgM6926KYacq6ptOhR+ujbhsTFxztl1KSudHoM3zBlUOJiQvuV6r7raarcE0W/i+CA8QHD5Sa+xO0jTT7D0tVoLikUfZrOkx7I8RSBSzGd10FifSZbPkiwMIQxsXSQ4xqAVUHVUd4U6UVHVXVsFo0bBYPFlVHEcYX+HWurkO06iDa6gTArnjQpLWSGIaAoLiCP03c/NJ0iS6lkR6uHvGYYB4rNjac/771G7t3HiAlNeGIWykYPL4byZ0TKTlcbrS/0iT79xxiT9YBjuTQgRIevvId1izZxs7Ne/jmgwVoWvUnLv4MeNOoO3XqRHp6OuvWrcPtdh9/x0ZKYM3wmDFj6NKlC8uWLePw4cN1PbQaZ/LkyUybNo1LL70Up9NZ18MJEaJREhLEIUL8STl48CCXX34506dPb3S+AVJKtmzZ4jPQioqK8tUU/1lFsaZpbN68mSVLltCqVStGjRpVL122b3vuEs64eBAde7Zh6r1nc87UYUfddtiEHrTrkhi07KFr3gOM+uKE1k39Qk/iE8Jm1vExiYoJRyiCxLZ+d2sV4xjGfwEtnATYis1ewaq3pZEhjnVTGOuK0WYJtzdaKxGKCsIUvqqkGA+xqur7XVg1FJuOatGwWtzYrR7sVg2b1Y2qaKiKHjRmIQQRiosoYdRER3jdvkSAQBcBYtzEEx5oaR2QRg2+9lX+vsvGV1F+MU6Hm7zsg0y/979V3sOk5GaoFsV8CQT2MCvNkypH8HZtz8fpcCNNp++y4gr25hy/BeS+3AL+NvFFzu9wL09e/wGOCtdx92nICCFo164dY8eOpbS0lN9//50DBypPMDR2qjLQ6tChA6mpqSxdupSioqLjH6SB8eKLLyKl5MEHH6zroYQ4QXQp6uQrxIlRf8ICIUKEOG1IKZk2bRqDBg3i1ltvrevh1Dhbt24lJyfHJ4a9VKdPcWPk0KFDrFmzBkVR6q0Q9hIZE87d/7yiWtuqqkKT+GCjIWeFG03TUVWF4RN6sG3jHsBMLQ40zPJo2KLDcLnMfkMBIlEKYbgkC8G+vMNB4WJVCDw+wSh90VfhFZrmsbyGW76fLabZlguI8qdJCwVfKnQJbmJVC0L3pjp73aQ17BYdi9lv2KJAhZQc+REepToJUzwIzUhJjlacRjTam1PtRQToYW+UOgAlYLuuPVpRsK8Yh9tNWYnTt1xYVHBr6PrR2yO1SIrj0beu4ZOXf0G1KNz40PlExVR2y03unEB4pB1nhQsERMVE0Kpd8yqPGcjrD31Jzra96Jok7bdNfPOv+Vx511nH3a+hExkZybBhw8jKyiItLY02bdrQrVu3OnWFP10cy026Y8eO6LrO0qVLG11bPbvdzpdffkm/fv0YO3YsF1xwQV0PKUSIRsUJR4izs7MRQnDWWTX7obNgwQKEEDzxxBM1etxTweFwcM899zBq1CiSkpIICwsjISGB4cOH89FHH1VKV5oxYwZCiGN+jR8/vtrn13WdN998k379+hEREUFMTAyjRo3i+++/r7Ttnj17ePXVV5kwYQJt27bFZrORkJDARRddRFpaWpXHLy4u5oYbbiA+Pp527drx8ssvn9gNCtFgeeWVV9i4cSMffvhho6sb3r59O1lZWQwbNqzKNPA/U6S4oUSFq4vm0cjcsIv8XYW+ZaPO7hW0TXSTCFQzzffsvwwKPoDu17YRkXbsgbWsgaJRShwOj9EDWZOg6b6oqe7RfNsJtwhIjRZBUdjAqCwBEWKLqgSlSQvF/70YNzHCgsWio6r+NGmrRcNu8WBXdewWN3aLTpjFjaroQYHucNUVmNFtOE+rmrGNOOJLwb/8GNz1fxfw/re3ERZm8x/Y1POK6eZ15pQBR91/yPhuvD37Ht747i56Dal6Aiq2aRQvfnkbI87pw+jz+/GPr24nPNJ+7IEBB/IOo5up1UIIDuYdPu4+jQUhBO3bt2fs2LGUlJSwYMGCRh8trk5rpdTUVNq3b8/SpUspKzu+u3lDomPHjrz33ntce+215Obm1vVwQoRoVIQixMegtLSUd955h0GDBnHuuefSvHlzDh06xM8//8x1113HF198wc8//4yiGA9fffr04fHHH6/yWF9//TWbNm1i4sSJ1Tq3lJJLLrmEb775hg4dOnD99dfjdDr57rvvmDRpEm+88Qa33Xabb/s33niD6dOn06FDByZMmEDz5s3JzMxk1qxZzJo1i88//5xLL7006Bw33HADc+fO5aqrruLgwYPcf//9REVF8de//vUk71iIhkB6ejqPPvoo8+fPb3QGJLt27WLr1q3HjQ78GSLFhw8fZvXq1SiKwsiRI4mNja3rIZ0w2zfu5sW7PqMwv4gJlwxi86octq7NAeCmxyYz+brRnHXJYAoPlPDzl2nENYvmkTemAjBrxmJ+/To96HgCCA+3UVHhoqLMiXR5QFGCtwgQxUIRZnQ1QGV6JNiMKLIKaAK/zbMpqn1pyYEu0ypGiyUIMtISQqIohmt0KS5iFAsKZm2wkKiKjhACm+oizGLsr0sNXSroHptPEEugyB1Bh7ADxChG1FuROh7NUik6bKz07xekqt3Sdz0W4JYr3/PfD/Ddh2vuOhPd4aFlqzjGnNc76D57+0MHkrs9nxkv/khFuYu/3DSuUo/hjj1a89CbV3MinH3FUN5/+jvzdZKMPYYwb6xERkYyfPjwoGhxffMFqAlOpM9wamqqb/sRI0YQFhZ2Gkdau1x22WXMnz+fyy+/nAULFvwpsgIaOhoK2mmuUD3d52sMNK53zBqmadOmFBUVYbPZgpZ7PB7OPPNM5syZw88//8y5554LGIK4T58+lY7jcrl48803sVgsXHPNNdU69zfffMM333zD8OHDmTt3rq8p+3PPPceAAQO47777OO+880hJSQFg0KBBLFiwgNGjRwcdZ9GiRYwfP55bbrmFyZMnY7cbs+7l5eV88803zJ492xftb9WqFTNmzAgJ4kbM4cOHufTSS3nyyScZMmRIXQ+nRsnPz2fdunUMGjSIJk2aHHf7xiqKpZRkZmaybds2OnXq5OvXWZ9xOdzs31NI86Q47OH+99tn/zaD/bsL0XXJzA8XBu3zwXPfc95VI7BYVa649QyuuPUM37rlv23mX8+amTSqAMV4eFYUQUR0GOXlZq2pLoPzpMyUam/2tGpT8Xj8dboSQK8isupNixbSNNoyt/NGiIXpLK0GR4+9kWEhTEEsXMRgwWoxBK0QOhazTjjMomFXJELo6FJBoOPWdKQUaEgUATZcNLWUgWbcwwTLYb9gPiISLHT/NQzu3pYuzZrx849rKXd7fPu4pfQ/JAhhVE6bK3v0a0f33m2Cjpm/u5DHbvg3udvz6dY/hbEX9GXjiizadGjBjx8vpLiwDClhw/Lt3PDQBURGhzHsrF5EVpFGXR2m3DiWVu1akLN1L31GpJLau2219929ezePPfYYv/zyCwUFBSQmJjJ58mQef/zxE5oonD17Nq+99hqbN2/2Had///7cc889DB069GQu64TxRotbtmzJmjVr+P333xkwYABxcXHk5+eTlJTE3/72N954443TMp6a5kTEMBj3o3v37jidTpYvX87w4cMblXB89dVXGTx4MI8//jjPPfdcXQ8nRIhGQa09JblcLt544w0mTpxImzZtsNvttGjRgilTprBmzZqgbZ944gnGjh0LwJNPPhmUYpydnV1bQzwuiqJUEsMAFouFCy+8EDDSM4/HrFmzKCgo4LzzzqNly5bVOvd3330HwMMPP+wTwwDx8fHcfffdOJ1OPvroI9/yKVOmVBLDACNHjmTs2LEcOnSIDRs2+JZLKZFSBj0oq6qKruuVjhGicSCl5MYbb6Rr167ce++9dT2cGqWwsJAVK1accDuSxpY+7XA4WLZsGbm5uYwYMYLOnTvXezG8Z+d+rh32JDeOfparBz9O9pY8ls/bxL+enkW+KYZPlKwte33pvGiGqHv09Sv51w93MXh0F/+Gge93gVFgk0piWBDQC9j4LnRp1AarAukJ6Ees+l2mpWqkSxumW2bdsSJ9EWJvHXGJcBMprIaGV8CmatgsupEirWrYVA92RcOueghTDVMtzRyYLgVtwguJEA7iFCNVNMLiwmZ1+V2mzfRthMR2yH+dW3P34/ZolJe7gqLAR94Pb7F0eKSdbr0qu3+/+8z37M7aD0DG6hzeenwmC39ax39en8PhwnIjBV1KNI/Ov574lpfv/Zy7LngZR/nJO+cOPqM7l9x6xgmJ4R07dtC/f38++ugjBg0axN1330379u157bXXGDp0KAUFBdU6zgMPPMB5553H6tWrOeuss7jzzjvp168f3333HcOHD+ezzz472cs6KbzR4pSUFJYsWcKOHTv47rvv0HWdKVOmnNax1BQnKoa9CCHo27cvNpuN9PR0NE2r5ZGePiIiIvjyyy954403mDNnTl0PJ8RxCJlqNQxqLUJcWFjIXXfdxciRIznnnHOIi4tj586dfP/99/z8888sXLiQgQMHAjBmzBiys7P5+OOPGT16NGPGjPEdpzqRntONruv88ssvAPTo0eO423/wwQeAkaJcXfbt2wdAu3btKq3zLps/fz5PPvnkcY/lnRkNTKGKjIzknHPO4fLLL2fq1KkUFhby3//+l1deeaXaYwzRsHj33XdZunQpa9eurfci6UQoKSkhLS2Nrl270rr10Vv0HI3GEinev38/q1evJj4+noEDBzaYiMh/X/uVQwdLACg+VM6zt8xgd/ZBVFXxdUZSVIFqUWmV0pzsrXsBuO7B87FYVTSPxsYVWaiqQrcBKSiKQp9hHfn0tTkoitEruP/ITpSXOrj5glcNkWsx/v6FN+Bp9hQWAmJiwnE6PXTsmsDGDXsCsomDioyNtGIhEB6Q4UaqtbUcXJGGEBbCbLnkFdCKNH73Wlx7a5IlqEIikJTiREUQiUq5cGNVPdhMIy274iTMIgP6DgsUxYgWa2Y6syIlkYoLiddUqwKXx3zfD4poC7QwCYYZNYeLK5g1ey3YFNB0giSHYp4wYF6iotyFy+nBHhb8N1aQ76/pleaLJ80JDdWqIj3SMPrW/BMNu3fsZ/2y7Qwa373Kv4/a4G9/+xv79+/n9ddf5/bbb/ctv+eee3jllVd45JFHePfdd495jH379vHPf/6Tli1bsn79+qCJuN9//51x48bx2GOPMXXq1Fq7jqoQQtCpUyeaNWvGypUrKS8vp23btowaNeq0jqMmOFkx7EVRFAYNGsSSJUtYvXo1AwYMaDSeGd26deP111/nqquuYu3atSQmJh5/pxAhQhyVWhPEcXFx5Obm0qpVq6DlmzZtYsiQITz88MPMnTsXwCeAP/74Y8aMGXPCxlqvvvrqCfWemzx5cpWpzUfD5XLx3HPPIaWkoKCA3377jS1btnDttdce1yQrJyeH3377jdatW5+QEVl8fDwAWVlZdO3aNWhdVlYWANu2bTvucXJzc5k3bx6JiYn07NkzaN2MGTO48847+fTTT4mKiuKZZ54JqksO0XhYu3Yt9913Hz/99BPNmx/fvbWhUFFRwbJly0hOTj4lIduQRbGu674Id8+ePWnbtm2DeuhzOt1BLYF379yPUBU0UzS1aN2UMy8ayMjz+tAqpTnbN+4mJi6CpJTmaJrO/133IWsWG++FI8/tTcdebVj08wZ6De1IbFwErZLjOf+qYUwd87xPrHGE27S0WnyiuFVKPFdeP4plC7eyYcOegHZDAWgSLMYyEVA3bNHBqfhbMSHMvsQB5lrSJ4b9YxEYKdO6kFTgId4qOKB4sCkerBYdBQi3aISrHhSM9GyBgkXoeKRAmJ5fYTiJFB50GUYBEC49WBUPTr1yplPQIu99EQLCBDjMa9ADrkX3p0vbw6yVxLDHrVF8uCLAeCs4sh8eYcfjFMQnNmHP9vygsuWYpsH9pI3dJeuWZnL4QAn9R3chOq7yNifDjh07mDNnDikpKZUc9p988knee+89Pv30U1566SUiI49+zpycHHRdZ/DgwZWyUsaOHUt0dPQJmVx5RfS9997LFVdcwVNPPcXChQvRNI1x48bxzjvvkJCQwObNm3nmmWeYN28eTqeTkSNH8vbbb9O2bXCEvGnTpvTv35+FCxfywgsvcPjwYZo1awYYpVSvvPIK69atY8+ePcTExJCSksL48eN5/vnnqz3m2uRUxbAXi8XCkCFDWLRoERs2bKBnz54N6v3xWEybNo358+czdepU5syZc9L3KESIELUoiO12eyUxDNC9e3fGjh3Lr7/+itvtrpEoxquvvkpOTk61t09JSTlhQRwYiRVCcN9991Xrg+Ojjz5C13WmTZt2Qm9WZ599Nl988QUvvPAC48aN85lCFBQU8OqrrwIcdxLA7XZz1VVX4XQ6mT59eqXzx8fH85///KfaYwrRMHE6nVx55ZXcf//9VabVN1S8D0zNmzevNGl0MjREUVxRUcGqVatwuVwN0kF6zaKtRMdGGL8EpOl6xZKiCnoO7sDUu/2TiV36Jvt+3ro21yeGARb9tJ5Fczb59h0wqjNX3z2RokNlfjdiAtoQCWFEMAMekDev380jd35uOlVLzL5HRk2wxdzPJcEeUFMsJFLxi2Bv3bAekBqNMFOmFUNYelv66g5QwozUaRsWKnDTTo+hOXbipEqMx4odC9EuHZtUsUgLim5FlVakZjeWoaIg4NCZBH4S7t30D542W4x7dIlT13HqOi5N4nLpeDrquDw6LpeGXi6pcGiUlrmpOOymvMxN+SEnDpeRWS6E8PUobpsSX+m13LZhF/m7A/KwvdublBaVgUdnd2Y+510zgl8/X4bm0bjk1jPp0jel0vE+fOY7vvnXfACaJcTy5q9/p0kzwzX+QN4hMlZlk5yaQHLnE4uM/f777wBMmDChUqZMdHQ0w4cPZ86cOSxfvvyYE96dOnXypeMePHjQN4kNsHDhQkpKSpg8eXK1x7V69WrAmOgeMWIEZ599Ntdffz2//PILs2bNwul0csstt3D55Zczbtw4rrnmGhYsWMDs2bO5+uqrWbBgQaVj/vrrrzz77LPMmjWLZcuWkZqaytdff80jjzxC27ZtmThxIvHx8eTn57Ny5Up+/fXXeiGIa0oMe7Hb7QwbNoyFCxdit9vp3Lnz8XdqAAghePvtt+nfvz+vvPIK9913X10PKUQV6Cjop9nk6nSfrzFQq6Zaa9eu5cUXX2Tx4sXs27evUpuigwcP1kiaR23XGUdFRSGlRNd18vLy+OGHH3j44YdZtmwZP/3001EfQnVd56OPPkIIwXXXXXdC57ziiiuYMWMGv//+Oz179uSss87C7XYza9YsXx3ysdJevSJ84cKF3HjjjVx11VUndP4QjYcnn3ySsLAwHnnkkboeSo2haRppaWlERETQu3fvGpvxb0iieN++faxZs4aEhASGDBnS4Fxl53+zgn/c+SlCEcGOzppOtwEdyMspILV3G/766KSjHsNmP+KahUBRBbom0TXJdrMHcWxcJNGx4ZQUVRjbaTqoxr6GQA4WxYARoTafwyX4UqTByCLWpJE2rfgMsowvSYCBlRJgqqVJLIqkuc1GC4uVFjYbzVUbzRQLTVCJxoodFYlkiLs1RWoFFUoFLtWJW3FSbi3GobqQiguP8OBEY1t5HC40NEVDCsktCb+TbC9Gdzdhy5aH6djtMf721ZU4ZBgWi8CmKNgUhTBVEF4qiPYo2FRBuEcQpipER1po1TKcyHCV8DCViAgLUkoqyj1UlGmUFLuoKNMYc0Zv9u/fT1RUFOHh4QghiGkSUfkFChTF5oSEogji4qOZufVFdF1itVX+u9U8GjM/WOD7vWBfEUt+Wse5V41g+4Zd3DflNZwON0IIHnpnGiPP7XPUv5Ej2bp1K2A4EVdFp06dmDNnDtu2bTumIG7atCnTp0/nnnvuoVu3bkyePJlmzZqxY8cOvv/+e84880z+9a9/VXtcXkGcnp7O8uXL6dXLaCf22GOP0bZtW+bMmcOaNWuYO3euz6zL5XLRsWNHFi5ciMPhqOSmPHPmTCIjI5k4cSIVFRWkpaXhdruZMGECP/zwQyWPlIMHD1Z7vLVFTYthLxEREQwdOpTFixcTFhZGcnLy8XdqAERHR/PRRx8xYcIEzjvvPLp06XL8nUKECFGJWnuCWrp0KePGjQOMmdhOnToRFRWFEIJZs2axbt06nM6TN9KoCxRFoXXr1txyyy3Ex8dzySWX8OyzzzJ9+vQqt583bx65ubmMHz++ylrgY2GxWPj555954YUX+Pzzz3nvvfeIjY3lwgsv5L777iM1NfWo5kG6rnPdddfx+eefM3Xq1OPWQoVovKxYsYJXX32VtLS0BlNTejx0XWflypVIKRkwYECN10PXd1Gs6zoZGRlkZ2fTq1cv2rRpc/ydanEsM174kbn/W06LVk2577WraNOxesaBc78y+qN7a0wjosOw2qxMuHQw0x44r1qTHB26t+KcK4by0+fGazXq3F4s/GWjIbKBfsM7+cZ54wPn8vJDXwUL3wBHacBvM+mtmdX8qc7+2l9hCOLA/URAqyUBdosgKdJOy0gbLSKtNLdZaW61Eme14tA19usu9usuDuguMt1luCJLKRMuiqWbi9VEiqylrAvPIkx1Y1M8KEKnVdghwlUPqln47NQFBR6jzlqXoEkV1VJCrL0EzeoBINZWTJEmqdA00wbbj7pfElkKSElYoY7ivRiP8bPUJbYKjcgICxFRFjp1bsHwUR1pnhCBw1HB+vXrKS83jLJ0F8Q1i+Pi2weyfmk2B/eUMeLMPiybu4niQ2W0SIxl17Z9KKqClJL+Y7qiWlSOJnUUVSEswkZ5icO3LDLaMJf84eNFuN3G9Ukp+d9b805IEBcVFRn35ihtyLzLq1OGddddd5GSksJ1113H+++/71vesWNHpk2bdkIGf15BPGPGDJ8YBkPwpKSksHbtWv7xj38EOVfbbDY6d+7Mrl27KCsrCxLEDoeDX375hbPPPpuwsDDfV2lpKddddx3FxcVBUW2g0u+nm9oSw15iY2MZPHgwy5cvx2azNZq62+HDh3PzzTdz7bXXsnjx4lDqdD1DkwLtNJtcne7zNQZqTRA/++yzOJ1OFi1axIgRI4LWLV++nHXr1tXYuWq7hrgqJkyYAFBlmpKXkzHTCsRut/P4449X6m3sPeeAAZV7Luq6zrXXXssnn3zC5ZdfzowZMxqVgVKI6uNwOJg2bRqPPPJIpfrxhoqUkvXr11NWVsaIESNqLSpaX0Wxy+Vi5cqVOBwORo8eTVRUVJ2O54/vVvPV2/MAKD5UxnM3/5t35j1UrX1btGqKoiromo6iCkZf0I/bnw/ula5pOvO/W83BfUWMmNiTNh2CBYYQgtufuYjzrxrOI9e+z8LZ61CtKj0Gtqf7gBQu+esYcjL38ch1H1KQX+yLWPrSpr25y24NwrzmU2bqs6+uNnjcPhMuYexrsym0aGYnoVk4ibFhJDSx0SzCSrFbY0+Fk3zNxeqyUg643ewLK6dE8QQYYxn/ixZlxmkVcFgcRGLFpmpYFZfhJi0gTDHEsQVDeAshjH7FwjDYcmqC5lYjamo1lb0ihOHSXcWzkcXju4noFlC8CVy6/xo9QGmJm9ISN/v3ZLF0fhaDh3fiiquG0zLOyozpP7BtUzZNWkQS0zKSJs3D6TY0gfikSGx2lRvHjiI2NpaoyGhWzcskP7eI0Rf0o/NxHKGFEPzt6Yt5/YEvcDk9DD+nNyPP6wNAeFSYeeek0UYryn7MY9UmL774Ig8//DB33HEHt912GwkJCWzZsoWHHnqIK6+80pcldzzKysrYtm0b7du3r9JrJCcnh6ZNm3LppZdWuS46OtpXH+xl7ty5lJaW+jpigGECOnnyZNavX+8TTePHj68X/ehrWwx7iY+Pp1+/fqxatYqhQ4dWum8NlWeeeYY+ffrw8ssvc//999f1cEKEaHDUmiDesWMHTZs2rSSGy8vLfTOhgXjf/E7GGr+2a4irIi8vD+CoUbeCggK+++47mjZtGvSBVBN4634vu+yyoOWBYvjSSy/l008/Dc0U/ol58sknCQ8P54EHHqjrodQYO3bsID8/n1GjRlXZEq0mqW+i2OumHR0dzciRI+tFxD8v+wCKYoguXZPsy61euxqAax8+n705B9myOptuA9sx7e/nAVBWXMFP/1mKy+Fmz65Cfv9+DYoi+OKtebz5/d2VRDHABy/8QOH+YgA0t8b2jbs494ohvP/CbNYt307B/pJK+3Ts1IJmrZtyYF8RY87uxfvvLQjeQPhdqKU5qSiBmCY2WreJJKltBEkJEcTF2Cguc5NX4iKv2MmavSVk252UaoZYdUdLUzyDHu4xDqqYnlqmKha+L4lDcZCgxWIVHsIUN3ZVQwWsigeb0FFNcatIgapIn7DXpMIhdwQpNje6WfccLiyYTl6VUM1WzEiJcPs3CQqg+2qA/QdIW5LJip/WIzQdNA00jcP5FbClyLezUOCcKwbSe1oyRUVF7MnbTXgrFymtwjnk3MOmTQ7i4+Np2rRplX/HH7/4I1+8brSTOfOSQeRu389fxz7HlL+O5ZK/ncHqP7awa3s+0XGR3PTEibUT8kaAvZHiI/EuP16HiwULFvDAAw9w4YUX8vLLL/uW9+vXj5kzZ5KamspLL73EzTffTPv27Y95rHXr1qHrOmeccUalddnZ2Rw6dIgpU6ZUulelpaVs37690nMWwLfffovNZuPcc8/1LYuPj2fx4sU8+eSTPPfcc9x555088sgj5OTk8PTTT9OvX79jjrO2OF1i2EtSUhJOp5P09HRGjRp1TPO0hkJ4eDgfffQRZ555Juedd16N+GqEqBnqog3SyZ6vpvqzg5H18s9//pOFCxdy4MABmjRpQpcuXbj++uu5+uqrT2p8tUmtCeLk5GS2bdvGpk2b6N7daKegaRr33Xdflc6LTZs2BWDXrl0nfK7aqiHevHkzKSkpREQE10aVl5dzzz33AHDOOedUue+nn36Ky+Vi6tSp2O3HnsHesWMHbrebDh06BH3gFRcXV6pP/vrrr/n3v//NwIEDg/oKetOkP/nkE/7yl7/w2WefhcTwn5j09HRee+010tPTG1xt6dHIz89ny5YtDB8+PKg3d21SX0Txvn37WLVqFe3bt6dLly71xiV1yISe/Pe1X81IpM7I8/pWe98mzaJ58es7gpZpms4Dl73Fzs17DGNj829X1yVut8ayuRtp02FcpWMd2BcsbsrLnDx3Z9WGgVabyqNvTKXPsE7YbP7jf/jBH+g+ty2zrZIuiWlio1XbKFq1iaR16wgiIq3sy68gd085GTkHyC90UubQKG+h+KLL5S3NVGsMwy1vyrXRc1gGtTKSZvhWMV2nnWoFEZ7mWFUdm6JhEx4UAXahYxMuvyBGQRFOEHaEBE1308yiYxEq3sZJFgSqqoF27MkT4csbl0gzjRwpfQ7aBCeW+39WVUMU+w5irtUhN7MgyPlYSkne7nwW/rySffbDxLTcjcvlpEmTJjRr1swnkPdmF/jEMMDc/6UjVAWpS958+CvadW3FO/Me5PCBEmKaRlZZg3wsvIZKR+vSkJmZCRy9xtjLjz/+CBiO0kcSERHBoEGDmDlzJmvWrDmuIPYGCfr3719p3apVq466bs2aNUgpKwlZTdP44YcfGDduXKXU8B49evDVV1/hcrlYsGABAwcOpFWrVkyZMoWtW7ce93mlpjndYthLu3btKCkpIT09nZEjRzaKz8lhw4Zxyy23cO2117JkyZLQM2CIE2LHjh0MGzaM/fv3M2nSJLp06eJ7lvzll19YsmRJtTMq3nzzTe68807i4uI499xzadWqFYWFhWzcuJGffvqpcQniDRs2MG3atCrXdenShdtvv505c+YwYsQILrnkEsLCwliwYAF79uxhzJgxlVKNu3TpQlJSEl988QV2u53WrVsb6XC3337UWp/a5n//+x8vv/wyI0aMICUlhZiYGPbs2cPPP/9MQUEBI0eO5O67765y3w8//BCoXrr0+PHjycnJISsri5SUFN/ywYMH06ZNG7p27UpYWBjp6eksWLCA9u3b89VXXwW92T311FN8/PHHREVFkZqayjPPPFPpPDWRKh6i/uNNlX700Uer1Se7IVBSUsLKlSvp3bv3aU/vq0tRLKVk+/btbN26lb59+1bp3F+XdOjempe/u4dFP66hZeumnHXFsFM6Xv6uQnZs3A149ZnfbEvqkuZJlV/7NYu3Ed8yhtzMfN8yoQjkETWzXsHmdml065/iE8NgGD21SYknJ/sgVptC23ZRpLSPoVXbSCKjLOzbV8GeXeXMnZNH3oEK3LohfD0RCijC5xjtF8GB5w0w3VIkQtV9xtVSx+zLJBGmIHarFYTrdixCwyo82BSJIiQqLmxCR/EJYp1wNBxIw9hLShJUJyreomdQhYqoKjwsJSLg/nh7MHs39U0LmMK9aVwEhw6UGisd7qB9A48ZKIonXBRc0uNxazx+1YfszT4IQhDbNJI3fr6bcmcZBw8eZP369VRUVGC3hjPwvPbkbDjI/txiQPjqzAF2bd9HtwHtaJZwcs8FXgE7Z84cdF0PKikqKSlhyZIlREREMGTIkGMex+uBcrTWSt7l1clk8QriqsqgvIK4qnVr1qwBqCSIFy5cSEFBwTGz02w2GxMmTMDj8fDyyy/zyCOPkJ2dfVodmOtKDHvp0aMHy5YtY/Xq1QwcOLDeTDSeCk8//TR9+/blpZde4u9//3tdDydEA6Im+rOD8d56xx13cOaZZ/L1118THR0dtP5Ig+X6wkkL4ry8PD7++OMq140ePZoHH3yQr7/+mueee47PPvuMiIgIxo0bx8yZM3nqqacq7aOqKt9++y0PPPAA//3vfykpMVLcpk6dWmeC+LzzziMvL4+lS5eybNkySktLiY2NpVevXlx22WVcd911Vc4qpqens3HjRgYNGnRKtZuXXnop3377LcuXL8ftdtOuXTseffRR7r///kqRY2+UvLS0lGeffbbK49VEqniI+s8TTzxBZGRko/kwdLvdpKWlkZKSUmcGUnUhijVNY+3atRw8eJARI0YcN4Wzrkjt3ZbU49SEVpcm8VHYwqy4vb2JPR6aJzen6FAZEy8exOjzegdtv+indTx326coqmI4S5lqUdcqu0YH8t0nS7jyVn966r69Bxk6KoneA6No1TaSw4dcZG8vZv5Pu9i3pxyXIkBRkEh0q+JzlA4sBva5SwsMAyuLabSlAaq3jtcQw76hKSClHiRaXUo5YXoYNqFhVSSq0FGFjlXoqEL6BLEAWtoK2e1KRAOQFnRhRREeNN/hFSwWHaqoRFIDxh7oMuEVxoZINoR/s5YxvP3hDXz+9nx+/u/yqm+qAFQFAYy7oC9nTA6OaO7JOsCenV7xKDl0oITcbQfpOyLV9++6vLycAwcOsHvbAXqMbo3HrZO39TA71uazZ9thBIJeQztVff5q0qFDByZMmMCcOXN46623gh78Hn/8ccrKyrjpppuC0miryuIaOXIkb775Ju+99x433XRT0GTVzz//zJIlSwgLC2PYsONPEq1evRqbzVblBOaxIsReIX2kIJ45cyaKojBpkt+hfc2aNcTExFR678rOzub555/nL3/5C4mJiURHR5OUlHTcMZ8qdS2GwTBKHThwIH/88Qdbt25tFA7N3tTpM844g/PPPz+UOl0PkFJBl8rxN6zhc54INdWfHeD+++8nPDyczz//vJIYhqOXmtY1JyyIU1JSjBYV1eCiiy7ioosuqrR8xowZzJgxo9LywYMHH9Ok6nQzYMCAKmdlj8egQYOqfY/g6CnfTzzxBE888US1jnG0exriz0VaWhpvvPFGo0mVllKycuVKoqKi6NatW52O5XSK4oqKCtLT0xFCMHr06ErtVBoqGauy+Prd37DZrVx591m07hDsSB0RFcZj71/Hm498jdPh5qp7zubsK/yuui6nB6tN+CI5f/y4FiFA144IWeo6KP4UZrvditPhn5We++0q3K5yiksPk9AxBqsdHI5ScnaWsGBuHsWHXXjtmwWAXTXFrvmQITCO7ZJIuzCFrwSLMKKqFSBjCHCm9v4MQugo3lZMEqQuzOCqca4KpQKLtGBDQRE6NsVIk7YKiUXoPn8sRUCi/TB5ngSEFGhSZ7czmqZWQzgawxSUu21Vmmr5rsOXFk1wVnTAPlk7DxLfIoaY2HBfzTiKQFUEukcgbFakoiLNiH5MXOUWTM1axmK1W3C7PGZ7Z0FCm6bBr39EBMnJyVzzt9asXLAZt+6gSzeVDn13gSqJjW6CizIcjqhT+jfx9ttvM2zYMO644w5+++03unbtSlpaGr///jupqamVJpWryuK6+OKLOeOMM5g3bx5du3blwgsvJCEhgYyMDH788UeklLzwwgvHTTF0Op1s3ryZXr16VRlNXrVqFcnJyVUeZ/Xq1YSHhweJHikls2bNYujQob4WjQBvvPEGM2bMYMiQIQwYMICoqCh27tzJ999/DxgT8F27dmX16tWUlJSQmppaaxHT+iCGvdhsNgYPHsyiRYuIjo6ud1k4J8PQoUO59dZbmTZtGkuWLGkUzwIhapea6s++ceNG1q9fz+TJk2natCm///47q1atQghBnz59GDt2bL01+g39KwkRopHgTZX+v//7P1/dfkNn06ZNlJeXM2rUqHqRznY6RPHhw4dZvnw5LVq0oHfv3o2mDuzg3sM8eOmbuF2Gy/K6JduYsewJbGHBs8X9R3flo8X/F7TM5XTz3G2fkvbbZuKaR/PE+9eR2qsNLVs3RQjhE2LC7BUspaRd5wQiYiPYtmE3TrcHhKBJ8zBS+8XTuX8LLDY3BzOc/DE7i9zcMpwOHQlYrAqPPjWF5x/7xuhUJITfWdpMIZbm36Kqg1uAVASqAzzhGBFXDTzez3wPEAYoEtygREhfvTACpEXgdEls5m0o0zQ0NCJ1G5rUzDRpiZA6wuyd5P2XEKEa6ySSOLuLbeVx9Io6HHzjRdWmWoEEGm4TOG4Tm934G5x01TAW/bSevNwCIxDu8piiHtMlzKjH3pNT2VwtukkEj39wPe88/i2aR+eav59LYnLVbX4sVpUhZ/qzq/r270tJSQn79u0jJyeHdevWER8fT+vWrUlMTDzhiEOHDh1YuXKlzzzmp59+IjExkTvvvLPa5jGKovDTTz/x1ltv8cUXXzBz5kzKy8tp2rQp55xzDnfccYevG8Wx2LhxI263u8oIcE5ODgUFBYwePbrSOqfTSUZGBv379w96j1i5ciW7du3irrvuCtp+0qRJuN1u0tPTmTFjBg6Hg6SkJK644goeeOABOnUyIu+RkZGkpaVRXFxMv379avz9pz6JYS8xMTH079+flStXEhkZWW+zcU6Ep556ypc63ZiMNRsiGgLtqLOStXdOMLyIArHb7VX6BNRUf/YVK1YA0KJFC8aMGcPChQuD1vfs2ZNvv/2Wjh07Vv9iThMhQRwiRCPh8ccfJyYmhvvuu6+uh1Ij5Obmkpuby6hRo+pVik1tiuL9+/ezYsUKUlNT6dixY72YBKgpdm7eg8uM0krg0IES9u8prBQlrorZ/1lG+vzNABwuKOWl+7/gX7/ez5V3nEle9kHWLs0kJi6SlC6JhEfaadO+OZOvHcn1Z/0Ti13QZVACnfrEE9cygr07S1g7fy+bluxC1yRaXKQRTVaMuKrm1hkxugtnnd+Xn74zajRx60ir6s91DkiX9vYptrjBLbxmXObAvTbVihkl9thQRLnPVVpKUBVp+FJJYxgHnZG41AoiZRilio5FSITQ0TEOHRzM9WDUH4OCZGD0/irungZH7fjrHad5TGmmScvgVk0jRxuppHHx0bw7+252Zx3kvotfo9ypmbtL4zLNNlojJhqpv8vnbuS/r/2KLczKjf83mf6ju/LBgkeOPZaqhicEMTExxMTEkJqaSkVFBXv27GHnzp2sW7eOxMREWrduTYsWLaodfWjTpg0fffRRtbY9WhaX1WrlrrvuqiQ+T4T+/fsfNaMsOTn5qOvsdnuVtXgzZ84EqFQ/PGnSpKAU6qMRGxvL6NGjSUtLY9myZQwePLjG3n/roxj2kpCQQGpqqs95uqFn5YSFhTFjxgzGjRvH+eefX+cZViHqhiPLzB5//PEqM09rqj/7/v3GZ9CHH35Iq1atmD17NiNGjCA/P5+nnnqKzz77jHPPPZcNGzbUeqeQEyUkiEOEaAQsX76cN998kxUrVjSK9KjCwkLWr1/PoEGD6rzXblXUhijevXs3a9eupXfv3nVWK12btOuahNVmwePWEAKi4yKrNMmqiqLCMsMoS5NIXVJUaBg8RUSF8X/vXsMt57xE7vb97N97GNWi8O4v93CwcD8jL2xLYvsY9maVsHFZPtkZh3A7NDPlVwWPG1waRAQ8mCuQvjSTKZcOZrYpiIVX+PrCqIYbs9e/SgqzfNmsJbYI8AiJVEAVCprQfG7NQhiO0sJrtgXoejhCVACSCj0St1qBXbNTKjwoppGWRA+KMQggSvUaaoFDt9DU6qx076KsDg65bMGp0VQRNDbH59VfgeeafKE/emm1WWjXOYGULklsXp1jXLNH4+q7JlJa4qB7/xSGndGdvOyDPH3jh4ZxlRA8cuXbfLriKcLCT/0hKDw8nI4dO9KxY0eKi4vZvXs369evR9M0kpKSaNOmDXFxcY1qQqm6zJw5k969e9OuXbuTPobdbmfYsGGsXLmSxYsXM2TIkFN29q/PYthLp06dKC4uZsWKFQwfPrzepnZWl8GDB3Pbbbcxbdo0li5d2iieDUKcGLt27QryHKptF3ldN2aDNU3jiy++YOhQo+QpJiaGTz75hC1btrBy5Uq++eYbLr/88lody4nSsP+1hwgRAqfTybXXXstjjz3WKGaBvfWzXbt2pUWLyj1n6wteUbx161Z27NhxSsfasWMHa9euZeDAgY1SDAM0T4rj2c//xoCxXRk6sRfTv7odezXF0bjJ/YLa61itFhZ8v4Y3H/2KG8e/QO52Y1a6WatIhk1qR/qqZezcuZPiAg+fT1/Djx9ksHXVAZzlHkMMgxluFYjScgyBa6Q+SyH47JPF3Hj9h0irglQEiimsZIDolYowvjBaK0nfckMI+wy2vNFXUwALIVEUw1VaERJVkWapszSHJAxBrNuxmC7RCpKqjJ19AWsBERYnO8qDJ48kUOw2DVB8oeXKite47oDxKgLc/jPO/GYlh8xJCICM1dlsXpNr3D8hiE+K47JbxnHjA+cy7AyjXCN7a55R2y2NNOrSogoKzfZYm1ZmMfs/S9m1w+8MfrLExMTQrVs3zjzzTJ9/x/Lly/n999/ZsWMHLpfr+AdpRGRkZLB27dpTPo7FYmHQoEHExsayaNEin9HpydAQxDDgq3PUNI1169adkBdMfeXJJ5+ktLSUl156qa6H8qdFl/5exKfvyzi3N7PG+3U0QVxT/dm96xMSEnxi2IsQwpelkp6eXp1bd1oJTReFCNHAefnllwkLC+Pee++t66GcMpqmkZaWRsuWLY/bu7M+cKqRYiklGRkZ5OTkMHz48NPeUup003NIR3oOOfHaobYdW/LWD3dzx+TXqChzcjC/iOl3/QfQURVB5wEt6TYsiaYJEWxfc4CMhYU88tpkDmQKFhZvP/qBVYHiAY/TDeF2X73wFm8LJyEMt2i3RLp1pF31GXX5hKNu1AEbIV/8ec3eiKwIiMYKQwh7Wyz5EG7fMiHAbSnDroWjYEXFhQDcBAd5JQSJ5EirxKGJoId4HQ1F0fFohgAR3hMc+aBvmoRJT0CqtEWAqSXnzF7HvB/Wceu9E5l08SB2ZOT5dpUSDu4rwu3yYLP7U2s3r8wKcvqOiYugReum/PLFcl576H/GKawqL355K137plT58pwIQgiaNWtGs2bN6NmzJ3v27CEnJ4eMjAySkpJo165do//3VdMoikLfvn3JyMjwRYpP9B42FDHsxWKxMHjwYP744w927txZZ73na4qwsDA++OADJkyYwOWXXx7UGzxECC811Z/de5yjCWfv+0dFRcXJDLNWCQniECEaMLm5uTz77LPMmTOnUaRDbdiwAUVR6NWrV4NJdzxZUazrOuvWrePAgQOMGDGiyvYEIfyER4dRXupPCY5qYqfbsAS6Dk2gotTNpqX7yFy1H5dD468Pnw/ABVcN49uPF1NUWAaAalHQPAEyUlXBoyFcHmSEWTN4ZF4yAhSJokk0Uwx7o70I01DKjLAKF0i7PxXaF3UFn+mUV4wG/nn72y6ZlcFqBWGeGJSghr/h6LLC13bJ2NKf5CUEtLCX4kHDYzpi6ehYVQ2XFlADeoSTtPAYwlpgmmjrR2wY0LP4rZd+Zdns9bTvnGC0upJGZNwaFc6V46cz9pzeWAU4K9ws+mE1gbTv1gqLVeW7GX6TFV2XzPkyrUYEcSCqqtK2bVvatm1LUVER2dnZLFmyhJiYGNq3b09SUlKDT4c9XQgh6NatG3a7nSVLljBo0KBqZ+40NDHsJTw8nEGDBrF06VLi4uJo2rTp8XeqxwwbNoyLL76Ye+65h6+//rquh/OnQ6+Dtksner6a6s8+ZMgQIiMjyc7OpqysrFKLpo0bNwKcUklHbRH6RAgRogFzzz338Je//KVavS7rO7t37yYvL48BAwY0mAcnLyeaPu3xeEhPT+fw4cOMHDkyJIarQZNmUbTp2ILmbaI585ouXP7IAOJahvPbJxn87/kVRFhjiGvRBBSF916YzbO3f8rNZ79E+eEyIiLtldozGaXApjh1+y2Vpff/gSnGAoQmQUik6o8QeyO20ky5tlQY6dMoQCn+SLIzwFX6iBbJQoDVYpxTMWuR3ZZybFq4T/waWDGss8wvqaAFiFtNh2KPio5uWlyBLiVuqVQh8r3fDedrVMNBW/cuF6B4b0mgv5aUrEnP4ttPljLx0iGMvaAv4XFRuNwaJUUVfP/f5cz8eDE/f5lGcbEj6PULizBS9cLM18J7vJimx+5pearExsbSu3dvJk6cSKtWrdiyZYvPLbUqU6oQVdOhQwf69OlDeno6u3btOu72DVUMe2natCldunRh5cqVjSLtfvr06cybN485c+bU9VBC1EO8/dmzs7N56623gtZ5+7NfddVVQQJ3y5YtbNmyJWjbiIgIrr/+ehwOB48++mhQxtKGDRuYMWMGFouFiy++uHYv6CQ4YUGcnZ2NEIKzzjqrNsbToPnss8+46aabGDBgAHa7HSHEMXsD79mzh1dffZUJEybQtm1bbDYbCQkJXHTRRaSlpZ3y9ifK9OnTEWZN2PLly2vk3MXFxdxwww3Ex8fTrl07Xn755VMeZwiDOXPmMG/ePKZPn17XQzllSktLWbduHX379iUionIP04ZAdUWxy+Vi6dKleDweRowYccpmNY0FKSXffbSQuye9wj/v/sxnnOVdV1hYyNRHhnLhXb1p1rwJnZK7k9qhG527d+C2Zy7mslvPJH/3Id8+i3/dSH7eYdwujfIyp9EeyPvZLCCueTQdUluClChujSaRNqRi9jgOiqKaKlUxDKek6SQtAV01+ulKxTDdUnwmWxIrAanVAYFed3nwob3fRcDvHrUcqyc8IHJsLpfeejTDO1oL+AhXBUjFhUfq6OaFuqTmC3JX3WtYIO3+n33RbylRvTXERyRqeI+3aW0O9/7jMsrKXb62VJiXqms6Pittk1Hn9yUrI48dm/b4XofmreL4y81Hb+FRk1itVjp06MD48ePp27cv+/fvZ86cOWzevBmns7IZWYjKtG7dmkGDBrF+/Xq2bz96KUJDF8NeOnToQExMDGvXrm3w9cQtW7bk6aef5vbbbw/9vZ9mjIZ5p//rRHn77bdp0aIFd9xxB5MnT+ahhx5i3LhxvPLKK1X2Z+/atWtQD3QvTz/9NH369OHVV19l6NCh3HvvvUydOpXBgwfjcDj45z//WS9LERp+jmU94tFHHyUnJ4f4+HgSExPJyck55vZvvPEG06dP983MNG/enMzMTGbNmsWsWbP4/PPPufTSS096+xNh48aNPP7440RGRlJWVnbKY/Vyww03MHfuXK666ioOHjzI/fffT1RUFH/9619PapwhDJxOJ7fffjvPPPNMvTaeqg6aprFy5Uratm1LYmJiXQ/nlDhe+rTT6WTp0qVERETUWSTc7fLwwTOzWL1wC136pnDL0xcTEVX3LUYWz17Lu499A8C2dbkUFZTy1Mc3kZ+fT2ZmJsXFxbRv357BQwb5jEF6DkjlnCuM7Ig/Zq+rfFBvOPaIsOzz/76ePkM64nFrrFuaCQIycwr44L0F5n5HHMd0lhaaRLcpQTXE0tvmV8FXgywVglKlVVQ0jBZFLkcYEbGOYDHsD8EC4FbLsWqVJ4bc0mK4TQtDFLsDBLGiQIy1FJeU6N5zoWO1OHDoNl9A2Hsa39yAAroCQgdhDlpIyZFlzkEzChKim0Sy9PeMyvcpwLRLtShobo3hZ/di1Hl9+PCFH/G4Nf8hdUlUzOmdEBJC0LJlS1q2bElBQQGZmZnMnTuXtm3b0rFjxwY7IXe6aNGiBcOGDWP58uVomuarGfTSWMQwGH8r/fr14/fffycrK6tB+Foci1tuuYUPP/yQV155hQcffLCuhxOinlET/dnBMPJatGgRzz//PF999RVvvvkm4eHhjBgxgvvuu69a/dnrgpAgrkE++OADOnXqRHJyMi+88AIPPfTQMbcfNGgQCxYsYPTo0UHLFy1axPjx47nllluYPHmy7+HvRLevLm63m2uuuYY+ffrQqVMnPvvss1MeK0B5eTnffPMNs2fP9mUUtGrVihkzZoQE8Sny8ssvEx4ezs0331zXQzllNm/ejBCC7t271/VQaoSjiWKvGI6KiqJ///51VsP4v7fm8sNHi5BSkrfzADa7ldtfOLmJtJpk2/pdvj62UkqcWikLFizA6XTSoUMHhgwZEtQP9cDew8z5Xxr2MCtnXzGMhKSq+ycCoEsUm2I4TEt46rZPeeWLv5HcsSWderfhlrP+wcGCMkhs4t+nUm4zCE0HRUUK0IXw9SBGx9eGSXowjLjMNk3S3NePFfCnE3tPo2kSr3ZwigosehiKVIKMtNxSRTdlq5QCTQZHASp0gQMNqZuCWEo8uvExL/GWMcsgwW/UQJuRb49xMqlWEV0QAsyWGqpV5ZaHz2X+T+uD7xHQLjURNJ3Lbh3P4LFdcZS7aBJvlATsyy1A6v4a6timddtSzWvCVVRURGZmJr/99htJSUl06tQpqFVJiGDi4uIYPnw4S5YsQUpJ586dDXf0RiSGvdhsNgYMGMCyZcto2rTpcV126zMWi4W33nqLiRMncsUVV4QMtkJU4kT6sx8rayIqKopnn322UlS5PlPrT2QfffQRgwcPJioqiqioKAYPHlxlGvGCBQsQQvDEE0+wcuVKzjzzTKKjo4mNjeXCCy8kOzu7tod6ypxxxhkkJydXe/spU6ZUEpgAI0eOZOzYsRw6dIgNGzac9PbV5dlnn2XTpk38+9//PuoH2MmcW0qJlDLowV9VVV+fshAnh9dI66233mrwRlp79+4lNzeXAQMGNCqTmyPTpx0OB0uWLCE6OrpOxTBAVkYeXkWk65Idm3bX2VgC6TW0I7qm075Pcy59ZBADz2tPSkoKZ555Jp06dQoSwyVF5dx5/st8/tqv/Hv6j9w8YTp3XfAKBNSEWqyqry0QYEQizc/vijIXT9/2KQCv3P8FhfnFCI/mU6fGPkemTht1tdKMDAuB/xNUF75+xBY3PqHsE8NV6EtfINVc55L4WjGViwokEosWjiaNNGQJeFDwSO+XwC2D369n53fFpRtlwd5junT7EWMQ/jRwYYprYQp6M4wsvOnSRzzwpHZrxd1PX8iHs++mQ5ck3E5PUN63alF467s7eeenexl9bh/CIuw+MXy4oJTlv20Kuv4pN1b+TKkLYmNjGTBgAGPHjkVVVf744w9WrVpVZbZUCIOYmBiGDx9OdnY2GRkZuFyuRieGvTRr1oxOnTqxcuXKBl93Pnz4cC6++OJG0ZWioaCZk5en+yvEiVGrT9N33HEHb7zxBq1ateL6668H4JtvvuHaa69lzZo1vPbaa5X2WbFiBS+++CJjx47lpptuYs2aNcyaNYsNGzawceNGwsLqPrXvdOB9+Kuu4DnR7b2sXr2aZ599lqeeeuqke9ge7dyRkZGcc845XH755UydOpXCwkL++9//8sorr5zUeUIY3HPPPVx88cUMHz68rodySpSXl7NmzRr69OlTyYmwMeAVxUuXLiUzM5PmzZvTt2/fOhf+A8d2Y8lP63zR2MFn9KjT8Xhp17MFt755Fg6HA2ehwjnnTSAyuup02s0rszh00N8X9eDew8YPHg00nT6jOnPX9MsoyC9i5aJttO3Qgn89/2PQMYoOlSGlJH+PUXcclFLsJciMyhTKwjTR8vYgVgSKAh4h0RWB7hXEAqNtkTcD14MRHMYQg8F/BhIhVAQehACnpuBRK7B4wtEsAuELVqvoUkVIHYmCO8C4WpdQICMpl6Cayws1Kx6zljkoK1sPEOvSiHQLKc2eymbk23cD/Ddlwvl9GX9+X777fBm7sg6wZeMe370BSO3R+qh/32XFFb7osJfYuJqLEEsp+e2bFezctJu+I7swcNyJf55FRUXRp08fUlNT2bJlC/Pnzyc5OZnOnTufcObVnwGvKF6yZAm5ubnExMQ0OjHsJTU1lYKCAtatW0f//v0bTBeEqpg+fTqdO3dm7ty5nHnmmXU9nBAh6gW1JogXLlzIG2+8QdeuXVm2bJmv6fMTTzzBkCFDeP3117n44osZOXJk0H4//fQTX3zxRVA96tVXX82nn37KrFmzuOyyy6p1/ldffZXDhw9Xe7yTJ0+mT58+1d6+NsnNzWXevHkkJibSs2fPGt/ei9Pp5Oqrr6ZPnz78/e9/r5WxzpgxgzvvvJNPP/2UqKgonnnmGW677baTOlcIv5HW1q1b63oop4Su66xcuZJWrVrRqlWruh5OrREeHo7VasXhcBAbG1vnYhhgwmVDUK0q65dmktq7LedcVbcTK0VFRWzevJnCwkJSu3aiffv2x53Ya9na3walUltdKdmUtoMX7/uCnVv20nd4J/5yw2i2btjNrE+W+DYbOKoLd136NlnZhRBmB6cLXG5k+FGEj/kALN0SGaYgVYLqhXUAFazC0L4IjB8Cc579QwwYsxEVFsL/t1GsheNRK7BqEThREOgoEiQCKQUSFQ3w6Ap+jSloFV5MgR6FxUyTdmDDZvHg8tjwZkuDUS/s1bqKNxgujdbDAFi84W1JoJW13W7hXy/O5scv0xCKQNdBqKqZCSTo2qtN1fcOSEqJp9uAdkZ/YiA5NYFuA1KOuv2J8uWbc/l4+o+oqsLM9xfw6PvXM/zs3id1rIiICPr160fHjh3JyMhg7ty5dOzYkQ4dOgRlKoQw+tza7XZKS0uJiYmpF+9xtYG3nnjBggXk5uaeUDZgfcNrsHXbbbexfv360GRPLdMQ2i6FqEVB/PHHHwOGAPaKYTCiJo8//jhXXnklM2bMqCSIR40aVcmc6brrruPTTz9lxYoVJySIj2dqFUhKSkq9EMRut5urrroKp9PJ9OnTjzvTeqLbB/LYY4+RmZnJqlWrTmpGtzrnjo+P5z//+c8JHztEZbxGWk8//TQtW7as6+GcEhkZGWiaRo8e9SM6WRt4a4abNWtGu3btWL58OUKIOndXFEJwxsWDOOPiQXU6jrKyMrZs2cLevXtJSUmhf//+2Gy2au2b0jmR25/9C5++8jO2MCudurViyc/rfevdOmxZm4uuS5b/tpkv31vATQ+dR7MWMaQv3EKfQR0oL3fye4ARlzU6grMn9uC7hZnGgqMEgKwVGs5I1e/ILAJ6EnvTqM2fLULBbbhVGbbQppbSPKDYvKeRprGW3/Eqt7wZbrUciyccHYEmFV9vYx1w6yo64NFVQyCbYrnEY0eXAqcpiHUpfDXECPxGWd4SZmEMSxWGuZbfgAyj3ZIkKGo+fHRnPn31V+N8mkRRFVokxeJwuOk1oB1X3TL2qK/Zl2//5hPDqb3a8OynN2EPq97rXR3++M7oe6xpOooiWPrzupMWxF5iYmIYPHgwBQUFbN68maysLFJTU0lJSWmUUdATxVszHBYWRr9+/Vi2bBmqqlbpPNsY8F5neno6cXFxDbrO/JZbbuGDDz4IGWyFCGFSa4J4zZo1AIwZM6bSurFmA+i1a9dWWte/f/9Ky1q3bg1wQhHf2qg5fuKJJyotu+uuu2rMZEHXdaZNm8bChQu58cYbueqqq2p0+0CWLVvGP//5T5544omTEiWncu4QJ8crr7xCeHg4t9xyS10P5ZTIz88nKyuL0aNHN9qHSqfTyZIlS4iJifGlSR/LffrPhMfjYevWrezcuZPWrVszbty4ajv76rruaw13zpXDOOdKw2G6YF8RqxZuwVFm9gsVpoEWhpPxuuVGG6yLrx/FBVcN49k7/8Pa5TuCjLPcLg/T7jmHdbv+Q3b2wconlxIpBEIjqIWRz1jLm2rsLT32CmQTgYqUGghwlluxWI1aRK8YNuPPpna24zYjxKCiSX9vYU0quHUFDypuafQkRhjmWC6pUi5tmJ7SFOthKEJHF0qQsBWB/+yE71LwDUiXQfMB3iB3VHQ4TZtHc/BACUijvdJfrhnBuZcce3Kl+FAZH7/0k+/3bet3sX3jHvoM63TM/U6ENh1bkpu5zzRlg1bta859v1mzZowYMYL8/HyfMO7Zs2eDn5g8Faoy0PKmTyuKUsl9urHQokULnxvvqFGjGqyPh9dg66yzzuLKK6+kTZujZ3eECPFnoNb+JRcXF6MoCs2bN6+0rmXLlgghKC4urrSuqhk37xuOpmmV1p1OnnzyyUrLpk2bViOCWNd1rrvuOj7//HOmTp3Ku+++W6PbB+LxeLjmmmvo1avXSc0Mnsq5Q5wcubm5PPPMM/z6668N9gMYwOFwsHr1anr16kV0dHRdD6dW8PYZjo6Opl+/fr4UwuO1ZGrsSCnJy8tj48aNREREMGrUqKDsoePx1bvz+eTln7FYVW57+mLGTxngW9csIZYb/28ybzz4P2OB5gHV5hN7W9bl8vP/0jn7kkE8fP2HbFplZg8F9j6SkooyF60Tm1QtiDHcl4VihE8lAkUYflpSmHnSdkM0o4G04C/BVY7oJ+y0IKUHIQzjQa/nVaD3lcfibb0kkCh4THNoKQVuKXBjwaUpSOlESjs6YLd6cEgrbmlEXp3SgsdvL41XrcsjBLEUZhq1F2+atNdoS0osFoW83AJ2bM1HYpiK2cNtnHFBn6rvlZR89tpc5s1cSfOkJpXqsz1uT5X7nSx/e/Ziyksd7Ni4mwFju3JxDfc3FkKQkJBAy5Ytyc7OZtWqVTRr1oyePXv+6Vo1Hc1NOjo6mmHDhrFkyRKEEKSmptbxSGuHzp07U1BQwMaNG+tFZuHJMmLECC666CLuuecevvrqq7oeTqNFR6CfZpOrk+lD/Gen1p6sY2Ji0HWdAwcOVOqTun//fqSUtZpuUhs1xLXVmF3Xda699lo++eQTLr/8cmbMmHHMOpwT3f5ISktLycw00gKPlqI4dOhQAGbOnMnkyZNr7NwhTo7777+/wRtpSSlZv3498fHxjbbdg6ZppKWlERERUaWb9J9VFJeUlLBhwwaKi4vp3r07rVu3PiFTmqyMPP493TDF8rg1Xv77fwmPDmPh7HVEN4lg6h0T6NgjIMLh0cAmzTxgg/+89RtnXzKIzE17gg9uvq9PuXYED057n727CiEhulI7IaPXsCEQlQodd5QKqvClSSsCNDNKrJSBFoYhRHUJKoawNFscISxG/a0Q3kN6Wx37FLFLrSDMFWcOURhO01LgAXSpUq5b0HQrupmjrQOKCoVaBOG6IAo45InCYvHg8agBFxFwHjM92hfRNlcrniM+64RA0yWP3vkZHt1wBNOlpMLp4aeZaxh/Ti9iYoMN0L799yI+f2seAPvzDhMWHY6jpAIAq93Cy/d/wVV3n8XZlw898uU+KZo0i+aZz2o/e0YIQbt27UhKSiIjI4P58+fTqVMnOnbs2GgzXgI5XmulmJgYnyi22WykpKTUzUBrEUVRfP2Jk5KSKj3jNiRefPFFOnfuzG+//cb48TU7iRQiREOi1gRx3759WbNmDQsWLOCSSy4JWrdgwQKAWp1Zayg1xIEC89JLL+XTTz895ofqiW5fFXa73ef6fSQLFy4kMzOTCy64gObNmwd9mNXEuUOcOOnp6fz4449s3769rodySuzZs4eCggLGjRtX10OpFbxGYcAxWys1JlGcm7mPfz0xk9Kicqb8dSyjL+gXtN6bHp2VlUVycjIDBw48KVOiQEdpAF2TPHPrJ6aWlSz5dQP/Wfp/XHn3WXzx+hwsNpXw+GgOF/rb5pSVOrhp8ms43ZqvdzBAXPNopn90PVvW7uLbXYsMPerWwB5gCe3DiAxbKiTu2AB9aYpi73eLMFynfcZavnlHU/VKw/REETLQswpd+js5udUKLFqEr+USCDyoaNJov+TWbbh1r3mKYXBV4Aynic2BW7cRBegoaJol6NQAigOf8BaKMNPB/duoTi34uqVE1yV7cgsN5S8BVQFV4Z1XfuWrz5by9md/pUmc3y1+wY9rgl4zR7nLN0Hhdno4dKCE1x/+iq79UkjpnEhDw26306dPH9q2bcv69evZtWsXPXr0ICEhoa6HVmtUt89wbGwsgwYNYvny5djtdhITG97rezwiIiLo3r07a9euZezYsQ3WbK1ly5Y88sgj/P3vf2fFihWhAEctIBGnPWIrQxHiE6bWBPE111zDv//9b5588knOOussXzS4qKjIl3p8zTXX1NbpG0TfYm/q8SeffMJf/vIXPvvss+OK4RPZ3suOHTtwu90+h8zw8HA++OCDKredNm0amZmZPPTQQwwZMuSUzx3i1JBS8uCDD3LXXXc16IcKh8PBhg0b6NWrV6N0tJRSsm7dOsrKyhgxYsRx09obgyjWNJ2Hr3ibQ/uL0XXJC7d9TOsOLejQ3fB8yMvLY8OGDURERDBy5MgTSo8+km4D2pHQthn7cguMBUIE6DXBoYOlbEjbwdR7zubyOyYgFEH6gi08eeunvmMIq8qurAO+/VEACYcKynj/H79w5gV9/dt6dKT3z9SMFAtdGuLUDOcaEWOjdjcw1zkoM877bOmNyOqYts5gtGMXCGHD6M9EUFqxU63A6gn3HViX4JaGq7RLV3FqFty6gi5V44FLgi4sVOgqYXpADbEi8egBWdPmWIxvASnj3g2E0YLpyPH47Kx95mH+Cz14oIRFv2Vw/sX+NPbW7Zqz3duW6RjZVfm7CxukIPbStGlTRo8eTU5ODqtXr6ZZs2b06tWL8PCqW4Y1VKorhr3Ex8fTv39/Vq1axZAhQ4iPjz9NIz19JCcnk5eXx6ZNmxp06vRtt93Ga6+9xldffVXJ1DZEiD8LJy2IN2zYwLRp06pc16VLFx588EFuv/123njjDXr06MFFF12ElJJvvvmG3bt3c8cddzBq1KiTPX295IMPPmDx4sWAcX+8y7wR8REjRnDDDTf4tn/qqaf4+OOPiYqKIjU1lWeeeabSMQNTuU90ey/jx48nJyeHrKysk05fOtlzhzg15s6dy7p165g5c2ZdD+WkCUyVbqwtlrZs2cKBAwcYOXJktZ2SG7ooLiuuoGBfkX+BhOwte2nTqQXr169n//799OjRgzZt2pxyz86wcBt3PPsXHr7K9CvwCTa/0KooN0SlajEe1IeM68YT71zDC/f+F3z2ihQAAQAASURBVGeFm/JSR6U0aC9r03byyMuX0X9kKisXb0O6NDiyNbYwy2aEYhxGGPFiFIEUpuWVNPOfA4IsKgqaGY4WAe2WdF0EOEsbuKX/Q9kpHFi0cHQdM0qs4NHBI1V0acGpW/DoAl1azNbChrt0mRaOSxpHcekWnxlXUCmxVxR7PcWOiAYr7soCVgT2EK7iPkZG2Tm4r4hvP/wDj1tj8tXD2bI2l327Cs0LrnzM6CYRdOufUml5Q0MIQUpKComJiWzatIn58+fTo0cP2rZte8y//Z8+W8JPny6mactYbn32L7Rs0+w0jrr6nKgY9pKYmEiPHj1IT09nxIgRDdqVuSqEEPTp06fBp06Hh4fzxBNP8OijjzJlypQGG+2ur+iyDmqIT/P5GgMnLYjz8vJ8rZWOZPTo0Tz44IO8/vrr9O3bl3feeYf33nsPgO7du/PUU09x7bXXnuyp6y2LFy+udE+WLFnCkiX+3peBgtgbxS4tLeXZZ5+t8piBqdwnun1NUpfn/rOi6zoPPvggDz300ClF1+qaxp4qvXPnTrKyshg5cuQJR4UasiiObhJBSpdEcjPzAYmqqiR0jGH+/PnExcUxbtw4wsLCaux8XfomE9c8mqLCMkPPCb/GSkxuRu8hHSvtExsXYaTqgqEqVQGK4m8v5DGEaniEjamjnqe0xAF2FYuu4wlwoPYj/dFgj0TaDXGsgxEx9QBhZgTVg/EJe4RblpDGeo9DICIEIiAMa5hmGaetUB0oqChaOLrqRGIIZl1acEuBU1PRpMB7BF2CU7fg1FUkhmCp0KyGydcRl+BNF/fXDweLc1WDFi1jaBYfRW7WQcoOVxjZ1IYltu9AQlGQumT42C4MHdmZW875JwfMSZLfv1/DB/P+jpTw0FXvkr1ln7mbP9I8YHQXopscOfPQcLHb7fTr14/8/HzWrl1LXl4effr0qfJ9Yc3irbzx4JcAZG3ZyxPXvsc78x463UM+Licrhr2kpKT4WtCNGjWq0RmQeVOn16xZw7hx4xqsmJw2bRovvfQSH374ITfffHNdDydEiNOOkKZT1OrVq33pLf369TvefiFC1Bqhv0WDL774gvvvv5/MzMwaFRanE4fDwfz58+nTpw9JSUl1PZwaZ8+ePaxZs4Zhw4bRtGnTkz7OoUOHWLZsGZ07d25QovjwwRK+eGMO5eUV9JnQBoe7jJ49e56waVZ12ZtbwLfvL0AimTRtJLnb9+N0uBkyvhsRUZX/jRQeKOGqMS+gG/nJSIuKVAPCt7okOtJGTHQY+3YVoksJVhWEwB0TZvwcgEfTkdEWUARuVeBsYTF6+ap+V2l3JKCCS5EQY4hf3aaD91CKKaotDqwxRg/i2AiHT2eGW1wIAf3jshm2+1I2J/1MufUwOlDhVqggAo8u2FcRaxhYmxMDuoTE8CLibA7sUmXYrkv5Lekbfl7UHV2zggRbsZn+XQ52B0G9hoVDx14BSElkniPoutElwhNgQ+1NmTYH/cjTU0hp24ybz3kpYBvBqHN7c/ENo2nfNYlFs9fx8cs/G2nvUqIogik3jOH6h86v9uvfkHC5XGzcuJG9e/dWGS3+5l/z+fCZWf75ASGYnftqrfy7OVlOVQx78WYJebNoGlvZjJSSZcuWER4eTt++fY+/Qz3l22+/5dZbb2X79u1ERjaeiaq6ori4mNjYWC6adw3WyJrruV4d3GUuvjnjY4qKihpdZkZtEaqeDxGiHuJyuXj00Ud58sknG6wY9tbVNm/evFGK4QMHDrBmzRoGDhx4SmIY/JHirVu3smPHjhoaYe3TJD6aSTcPo9v4eCJjwhg3bly1UqSzt+7loSve5o7zXmLhD2uOuW0giW2bcevTF3Hb0xfTpkNLhk/sybhJ/aoUwwBNm0cz9rzelVeY7YRUm4V/fX8XmltD6tJXMysBtdxVKZXYErC/optbei/V14/YEMGq/3BwZMdACXgUdE2gayL4NOb3Ck3gUitQPZHoKOgoSCHw6ApuXeD0KOhSmGnTAk1XcOkqFZqNMs14+HLrAUlgZpmwkBjR66D7ARZX5SFKX620KX4V/5cMGOv336ykSfNoI109YJvFv27knkvfISdzH/1GphLXLMq3V+v2zbnor2MrvzaNBJvNRr9+/ejfvz8ZGRmkpaVRUVHhW997WCfj70gxvvqM6NQoxTAYYr9Xr17ExsayfPlyPJ6abblV13hTp/Py8sjPz6/r4Zw0F154IcnJybz22mt1PZRGhS6VOvkKcWKE7liIEPWQDz74AJvNxtVXX13XQzlp9uzZQ2FhIb169arrodQ4RUVFpKen06tXL1q2bFkjx2xootjtdrNq1SrWrFlD9+7dGTRoULUmbzRN55Er32H90kwy1+/ihds+YefmPcfd70gW/riWmyZM57bzXmLTyqyjbjfhIr/Rk5B6UO9hTdeZ9d/lXP43I53fZ8SsKAgpUMrcASm+pig0ha7iqyPGn4KM32RL8ZpOieD1/p9tSCmQUqAFmDpLs4XS7tImuFQHVi3c18dSkwpuKfBICx5dwaMraNL/vdxtw6kruHVDvDg1CxLFL9ohQKUfgTdf2yvkvQJfEcG7BKRZe3fLzzvMo9d9iKZ73cOML12X6LpO2u9b+Pf0H9m6LgekcW/6juhMk2ZRRxlM4yEhIYFx48Zhs9mYP38+u3fvBqBjzzY8999bGTtlIBfdPJ5H3qu680NdUJNi2IsQgn79+mGxWFixYoUva6OxEOg67Xa763o4J4UQghdeeIHp06dTUFBQ18MJEeK0EhLEIULUM0pLS3nqqad47rnnjutWXF9xOBysX7+e3r17N7r0OIfDwfLly+nUqVON91NuKKL48OHD/PHHHzgcDsaOHXtCxlklh8spNJ2pwcgkmPHi7Go9IB8uKOH5m//NjaOe5vnbPyE3M58dm/bw98veoqiwtMp9eg1qz0MvX86AkamcNWUAVrvq/+QT8L9PljD2/D7+HTTdF0E2Ir4B16UIqPD4BaYuTfGLXyi6CBaggIISIES9dtQgdYHUBWUOJVCPIqWgXA/DqTiweCLQpYJHKigoeHQLmlTRAU0KNDNCrEuBW1dxaDacmiFgHLrFqDAONNOC4Ii1ORzFLMy2lHn8aj9wGwWkVxwHTCogBPt3FbB9c16V91/XJYltmrI3pwDd7DGl65L83YVVbt8Y8UaL+/Xrx/r161m7di0ej4c+w1O579WpXPfwBURG1w9X6toQw15UVWXQoEFUVFSwcePGGjtufSE5OZno6OgGfW1jxoxh6NChPP/883U9lEaD9/35dH+FODEa5tN2iBCNmFdffZX27dszadKkuh7KSeFNlW7RokWjS5XWNI0VK1YQHx9Pp06dauUc9dloS0pJVlYWmzdvplOnTqSmpp5wmqeUOs0SYoMcqlfM38yC71Yz7sIBx9gT/nnnp6xZuNUQ01b/x5eu6Xz26q8AaB6dKTeMpnV7v+PrqLN7MepsI1PhYFE56YszzSCmYa71w1fp2OwWXE4PRmPgwEhn0OCx6OBGIoVALZJ4zG4yhlD0R5l9kePA1ks+zOiqJkABj9uOLiuM9si60eLXKa04VQcWLQKPVJDS0LGaruKWoOkuhAjzjVAz2zG5NAuKNESMW1fQdREcpZb+cmbfYAXEhFmp2F+OrUwLvmwBUdHheCrcOB1uU/0fgafyZEZEpB2LzcKEiwYw+tzeVJRUsH75dhRVQdd0Rp7bp/JxGjmJiYnExsayatUqFi5cyIABA+pVfV9timEvVquVwYMHs3DhQmJiYk6680V9RAhB3759mT9/PklJSTWWPXS6ef755xk+fDh33HFHjU/6hghRXwkJ4hAh6hEHDx7kH//4Bz/88EO9qic7EfLy8igsLGx0rtJeYxhd1+nTp0+tvj71URS73W7WrFnDoUOHTrqv6OGCEm6b+CKF+cX+FGSMFNq9OQePu/+ODbvQNVN8HeEC/eNnS3yic+7X6Xy85DGaNo+udIxzpgwwBbE/yvnffy/mrEsH8f0nSw1RKiVSVZCa7j+PmdMshJkWbRVYPeDBXK8BVuND1QWGEHYAVWUFe/W2brRsQqpouiGOpTR6CguhUqE6iHU1QTNNszRU3FIxttUVNG8LKIzAtq4avYoVs37MpatGMbO3ZNO8dSocIZIlJWUuRISK7tBRtIB7KyXderRi9bIdleYHvAi35ptgUIRR6/3/7J1neBzl1Ybvd3ZXvdiyJNuyJKu5997lApiOgUDokBBaQugQAuQD0kghgVBDCBBCSQIhFBPAGHdwky3JtmzJlmxLsmWrS1bXlpn3+zEzu6tiLLmt1tn7uvaytNPO7K6188w55zlPvHITSamemxLnXzOL/rGR7N52gDHTUpm2YFT3OzvDCQsLY86cOezevZt169Yxfvz4kzKa7EQ5HWLYJDw8nGnTprFp0yYiIyMZMKBvjps6HkJDQxk7dizbtm3jrLPO8ssqr0mTJnHppZfy5JNP8sYbb/g6nAABTguBkukAAfoQTz31FHPnzvXbGd0ul4udO3cyZsyYM65Uev/+/VRWVp7yi0WTvlQ+XVdXx5o1a9A0jQULFhyXGAbYuCxPF8MmUqJYFIQimHH22GNuP3XhaIRhRITaKSvplYF1OVXef3lFt/uIjAjpMk7JYXdx208vYsmNc/R9uzRD3JkWzl4iHNzzntzJXzN92wmrt/OUSsfSZQloQhfFUiANoatqRvZYCtqEnSA1DFVaUKUFKRWcml4+jaIbbLlUgUvVTbVUTcGuWmlX9Ytwl7SCKnStak6Mkt3rWgEgBK5go3xbmA/BorPH6v3BZim5+zWXoGrupyL7hzN1wSgOHajjtgue5ZVff4r0cgybec5YvvfQBf+zYthEURRGjx7N9OnTyc/PJycnx6d9p6dTDJvExsYyZswYsrKyaG1tPeXHO50kJycTFhZGYWGhr0M5bn75y1/yz3/+k/z8fF+H4vdoCJ88AvSOgCAOEKCPUFpayp///GeeeuopX4dy3OzZs4ewsDCSkpJ8HcpJpaqqioKCAqZPn97rWcMngq9FsZSSffv2sWHDBlJTU5kxY8a33ujYs62Un133Mj+96kV2bCzqsjyyn9cMUimxBVm47Jb5PPPRvWSMTTxmPHf99mque+B85l86hZ+9ejMhoUef+SmUrhcE27P28+CNf+1S4jtldjr/fmMdG9ftRhWAy1C3QoDTe9yQkdVudXkEoyEULebhBOA0fxR6FlaCvmM6CHfpcKtOw1hLoKoCzRDJrYqDIC0E1XANdRnGWi6pYBEKUipo0oJmiOVWuxVNCqRxMaRqIKTimT0sOx6/czwAQkqPq7QQBAVbsbd1sqAWMHJMAuFBVqwtdv1oikJTQxtZa3a7V/vknQ0U76mgtKiCd5/7ki/+uRHV1c2dg15SVlbGzTffTEJCAsHBwaSkpHDvvfdSX19/XPtbuXIll112GYMGDSI4OJiEhATOPfdcPv/88xOO9duIj49nwYIFtLe3s3btWhobGzssr6ysxGKxcNddd52yGHwhhk1SU1NJSEhg8+bNZ5TztOmqvX//fpqamnwdznGRnp7OD37wAx599FFfhxIgwGnB/2o5AgQ4Q3nyySf5zne+w4QJ3YyJ8QOamprYv38/mZmZPi//O5k0NzezdetWJkyYcMLjlY4HX5VPq6rK9u3bqa6u7tGc5ZamNh69+iXaWu0gIX/rft7c8AQxA6Pd68w6bzxnXTGNlR9sISQsiIdfuomZ54zrcUxBITauu+989++lRZW8/ewyAKw2Cy6nLrZswVYuvHa2e72GumYeuOolyg7Wg8UCTsPW2aJwwXemEBMTzpsvGBlli4IQEikl0qJnV6X351lKgjVoN4SjtVHi8n5pJFjsoAah9xQbrtMC3URL/0G6+3elJvSKa00BIdEQWPXxxjQLO8FqCC6jjFozMsTSaFg2K5ul1MW00xlEmCqxGPe621uCdcGNvn4XQWz+rOF29LI48ThLS3A4VZ754xf6DQav7PKjP7+M1Utz+e+/NlNX5bnoNzPN5mtVtr+KPz7wD1wOF5omyc8u5oE/XNuDd7t79u3bx+zZs6mqqmLJkiWMHDmSrKwsnnvuOZYtW8b69et7VYL7k5/8hKeffprExEQuueQSYmNjqa6uJjs7mzVr1nDBBRccd6w9ISQkhNmzZ7Nnzx6+/vprJk+ezODBgwH45JNP0DSNyy+//JQc25di2GTcuHFs3LiRnJwcpk2bdsZ8d0RHR5OcnExeXh6zZs3yy/P62c9+RkZGBhs2bGD27NnH3iBAt/jC5CpgqtV7AoI4QIA+wL59+/jHP/5BQUGBr0M5Lsz+2pSUFKKjo4+9gZ/gdDrZvHkzQ4cO9WnW+3SL4vb2drKysgCYP39+j8YpVRyopbW53f270+7i4N7KDoLYYlF48E838OOnvostyKrPrT0Brr17MaOnplJ1qJ7J84ZTuqeCirI6ps4fycBEj0r9xQ/f5FBxjW4IZTFEm0tDqhpZG/dTXdUINivCpeoXrkKCywW2YIQQXmW/ptGWxNqi4oqwYHEIXGafsQZY9B5ddx5UBRRQEGhIXcyak5ywIDUVKcClKoBECBuadKIALcKJTdqQriA0RUWVAk1TDIdpvcTavM7WNIFTVWhuD8YapGe1Gw5Hewli/bjiaBliKbC2uXSRbhqOod8YEMbPGOJbEXD3LW/QeKgeoRlPmGOjpHSL5uDQICoO1OK0u9yv4epPcjoI4qpDdXzyxjoALv3BfOIS+n/re/6jH/2Iqqoqnn/++Q6Z0/vvv59nn32Wxx57jFdeeeVb92Hy17/+laeffpqbbrqJV199laCgoA7LT1cZsxCCkSNHEhUVRXZ2ttuw7qOPPmLAgAGnpIWmL4hh0MvHp06dyrp16ygsLGTEiBE+ieNUMGrUKFauXEl5eblfGkwOGjSIu+++m1/84hcsW7bM1+EECHBK6SKI/fWCPMCZw//iZ/Dpp5/myiuvJC0tzdehHBeHDx+mqamJ6dOn+zqUk4aUkq1btxIWFsbo0aN9Hc5pE8X19fVkZWURFxfHhAkTenyhPCQ1jn6xETTWtwAQEhpMyqjuLwJDwk5ef/nE2R6379hB/bpdp7SoUv9B8zLJAmSQVRfDoGdFLQrCHLukepX2qno22UQIgcUpcQr0UmlTVDrxsnA2t0X/pjWEsJ4p9lrPcJpWnQpCaCjCgpQuNKBZc6GiYVNDsYtWXBqosh1N6qOYVNWCEOb4KoFNUbHZJE5N/2qPSG6iKS9GV7iacSOgyxxiCZo+dkkLtiDsLoRXM5VA6KObvIzFNAlHGtogPBilqd3IChv7FsL8h/RRgxmcFOMWw4oiiBvseY/aWuzcv+RP1Nc0AZK1S3N4be1jR/187Nu3j+XLl5OSksKdd97ZYdnPf/5zXn31Vd5++23++Mc/Eh4e3u0+TOx2O4899hjJycndimHQHZF7yurVq1m0aBEPPPAA1157Lb/4xS9Yt24dqqqyaNEi/vznPzNo0CDy8/P51a9+xYoVK7Db7cybN4+XX36Z5ORkEhISCA8PZ/PmzdTV1fHNN99wxRVXdPk/+PXXX/Pss8+yfft2Dh065HZrPuuss3o0LqeviGGT4OBgZsyYwddff01kZKRfisfusNlsjB49mry8POLj4/3SYOvee+8lJSWFnJwcJk+e7Otw/JJAhtg/cP/vjI2NJSwsjOuvv96X8QQIAOhOnMdr3ONvlJeX8/e//50tW7b4OpTjwjTSGj16dK8uIPs6u3fvprW1tU+VgJ9qUXzw4EG2b9/OyJEjSU9P79V5h4QF8/SH9/LeC8vRVI3v3HEW0THdWSyfflKGDWJXdokhRjU9U2z2A3u7VSu6s7RAz+iqAFIiNNFF6CqqaRUNOCUEeZUke40zUjTDg8t0de6sPQyxqtkVNAu6ODaSri4stCt2bGooLqUdTSrYELRqek+xphkGY+j9wqG2jmpXF7YaSAvCCXSaqGRisUuPYZiivw7m6yI16dbQnYVvB3My80dj5aAgK3c9eSlDMwbynVsX8MU/NxEzMIqH/+S5xijZfZjaygb377UVDRTklDJp7vBuotRFJ8DixYtROo1/ioyMZM6cOSxfvpxNmzZx1llndbsPk6+++orq6mruvfdeFEXhs88+Y+fOnYSEhDB9+nRmzZr1rdt3JicnB4DCwkLmzp3L+eefzw9+8AOWLVvGxx9/jN1u54c//CHXXHMNixYt4qabbmLNmjV89tln3HjjjaxZswbQS23nz5/PZ599xs9//vMu/8efeuopt5A/99xziY2NpbKykq1bt/Lll18eUxD3NTFsEhUVxeTJk8nOziYyMpLIyK4O8f5IUlISpaWlFBYW9okbq70lPj6eW265hd/+9re8//77vg4nQIBThlsQJycnU1BQQE3NsUdfBAhwqomNjf2fmX/37LPPcs455zB27LFddvsiZ6KRVnV1Nfv27SMzM7PPifxTIYqllOTn51NSUsK0adOOe35mYlo8Dzzb926q/vyvN3PdnF/pc3Q1Te8jBoRLRQYb76/hoCwVBaHpWWLR6kCGBXn1/XYjJ4XA0g6aMXLJbQ3kAIJBEQKpSl1oquj9xEIgjXSxbrwlwSHQgvX+YM0Qye0uhTbFTrAWiiYb3T3DmlEu7dKEW19rml427Z0ClhJdzAMo3WSITaMt4dnAfRPEvFmgGCXkpgg21pPG6+cWye7XQ1/dYXcRHBKEEIJbHr2EWx69BNCzwk/e/Fdy1u0mOWMgFquCqmruuP7vhj/z0HM3MP+SrtmoPXv2ADB8ePeCediwYSxfvpzCwsJjCmLzBmRISAiTJk1i586dHZZnZmbywQcfEBcX9637MTEFcVZWFps2bWL8eH3u9eOPP05ycjLLly8nNzeXr776yi22HQ4HGRkZrFu3jvb2dndrQnBwMO+99x6DBg1i1KhR1NXVERMTQ2VlJY8//jhz585l5cqVXbLax7p+66ti2GTw4MGkpqaydetWMjMz+1x8x4NpsPX111+TlJTkl0L/wQcfZPjw4RQWFh71/16AAP5Oh/qN5OTk/xkREiBAX6C+vp4///nPfPXVV74O5bg4E4202tvbyc7OZuzYsURFRfk6nG45maJYVVWys7NpbGwkMzPTLy/YTNpb7bz73Jcc3FvFrMVjWfzdGQghCI8K5fp7FvP67z4zHJc1vQS6Uwm1brQl3PN5FaeK5lQhxKaXOZsNuMI02jIcph367GJ3H7ECwgHS0CvCLFl2os8FBrdplTm/FxmE5nIiFImmKaBImhxWWoSDYFcILpsxkklRUA0naSkteJs2N7cJgoK8+ribFTBmEh/NUEvg1SPtLXqN8zRHTJn9w+bTCIgdFI1oavMy1fIcQFEE4ZFde8/fe/ErslbuQmqS4t3lDBufRG1FAzXlRwBQXRrP/eRfZF48qcvflIYGPZt8NJ8C8/kjR450u9ybqqoqQG9XGT16NF9//TUTJ06kuLiYBx98kOXLl3PllVe6M7fHwhTEb775plsMg565TklJYdu2bTz99NMdMs9BQUGMGDGCgwcP0tLS4hbE7e3tfP7555x33nmMGDGCDRs2MGnSJPbu3YuqqgwfPrzbEu9vq6rq62LYZNSoUdTW1rJz506/NZjsjL8bbCUnJ3P11Vfz+9//ntdee83X4fgdgZJp/8D/GhoCBDiDeOmll5g6dSozZ870dSi9RkpJXl4eQ4cOPWOMtKSU5OTkEBsby9ChQ30dzrdyMkSxaRqmaRqZmZndXmT7Ey889m9Wf5KD1CSbV+4iNDyYzIsmATB9wUhe//3nerJX1cCquBO/prA17J71nWkSRRGoRu+wd3ZVE+gO000qzn4KFqFXTQN6ijgIbNKYvmSOPDIrfE2n6e4crjTdtEsPQdDuCqJZOAhTw4hwRhGiBhOshqC4IgmXQQQpQVjQ5yUrEiyKIMihkS77AXBVUAbtSVbdhEuTCDu4NElLm4tmu0pTq0pLu4vmRgdqi4bLZUyBMsLprn/Y82JAdXUjllaXnk3vIKrhzv9bQpT3mC2DmvIj7qprTdVw2l1cfdc5vPjov93rOOxONE1isZy6izrNmC1ttVpZunQpKSkpgO56/NFHHzFixAjWrl3Lxo0bj1k+3dLSQmFhIWlpaZx33nldlpeWlhITE8NVV13V7bLIyMgOzthfffUVzc3NXHbZZaSlpREWFsbWrVvdf2vfeOMNqqurue6661i8eDH9+3+7EZm/iGHwmGytWbOG2NhYhgwZ4uuQTgr+brD18MMPM2nSJJ588kkSE489Ii9AAH8jIIgDBPARLS0tPPfcc7z77ru+DuW4OHz4MI2NjUybNs3XoZw0ioqKaG1t9ZvxHyciitva2ti0aROhoaFMnTrVLw1fOrNj4159LjC6o/XOrP1uQZycMZAxU1L0XmLD+AkAhxOCrCAEU2ak8Z1rZhIbF0njkRZ2ZZeSt6ecLVuKOx7I2NjmkDjNsmJVglXoZdHePcMKCBdIG1ikQHULR71k2oogwRbMYGsQUVYL0RYr/aQgWlqJdNmIJggFwUj7EFoVB004qJcqjdJJhWpHExJVSD3pHeREUTTsmspoOYA9lnramsNQpIJFCoLsYBMKUTYLcRFBRA62EBlsJSLYgqII2u0qLa0u/dGi0tLqpKXJSXODk+qqNhobnB2Fsaafw8SZ6ezctA9VlW6tHxbZvTHWwkunsOrDrSiKQNMki6+aQeZFk/j3n1dRebAWgGvuXozFonTZ1rzxZmaKO2M+369fv26Xe2OuM2nSJLcYNgkLC+Pcc8/l9ddfJysr65iCePv27Wiaxtlnn91lWUlJCfX19Vx++eVd2i+am5vZu3cvc+fO7fD8hx9+SFBQEBdeeCGgu/3Onj2bTZs2sXTpUl544QU+//xzPv30UywWC+eccw6//vWvuzU98icxbBIWFsbEiRPJzc2lX79+xzRI8wdMg62dO3f6pcHWqFGjuOCCC3jmmWd45plnfB2OXxHIEPsH/vU/MkCAM4jXXnuN5ORkzjnnHF+H0mtUVWXXrl1nlJFWbW2t2xDHn87peERxc3MzGzduZMCAAUycOLGLQdGpRkrJvl2HQErSxyaetJsPo6em8s3n29E0iapqjJzUMcv/qzd+wEdvfkNdZQPZWfs5XFavJ24dLqQQ7M0/xC8ffp/zlkzCZrUQHhnCDT/I7CiIpXQLXglukynRDjIcrBJcpmY0e4aNn62KICk4iCEhwSSGBpEYHMxgazBtUqPcZeeIy0mDprLP0UprkIMm4WRskJVENZpPInagaQKXpnCkLQxNCtqcIZ4ssxREBLdiVSQ7RS2jXQPYJmqoq43WTbUcENwEQgVF1c9DceibhtS7iBAKESFWIiJshIdZCA+zEhFmJWFwGNEjbAwYEIzTqVFV2U51ZRtVlW1UlTbR4lCJiA5Dqp5xSwAv//ITpCpZePFENE2jtrKR6P7hTFkwij98eA/b1xeSNmYIM87WvRNeXv4Tdmwoon9cFCM6vW8m5kiewsLCbpcXFRUBR+8x7m5fRxPPZta1ra3tmPsyy6WnTJnSZVl2dvZRl+Xm5iKl7CBkVVXl008/ZdGiRR0qb2JiYpg3bx4bN27kscce4+233+abb77h1Vdf5d///jdbtmzh0KFDBAd7bkT4oxg2SUhIoKamhq1btzJv3rzT/jfqVGAabBUVFTFq1Chfh9NrHnnkERYuXMhjjz3Wq1nfAQL4AwFBHCCAD3A4HPzhD3/g2Wef9YtMZGf2799PUFDQGWOk5XA42Lp1K6NGjepRdqmv0RtRXF9fz6ZNm0hOTmb06NGn/fMnpeSZ+99lxQe6qdH8Sybz8Is39jgOR7uTPz74Tzat2ElSejyPvvw9EobqvZN3/+YqovqHU1pUwZxzx7Pw0o4iJCQ0iGt+uIinH36Pw8U1YNMFggSwKjQ26OLn439t1sWdBlu+KeKBRy7kn29toLGpjabGNn1Wr7vfWM8MW116ObI5k9dmEQwODmJI/2ASw4MZEhZEfEgQbapGmd3OAXsbX7paOOhsp14zrLhMb6ngdkJsGkJK4oSNYcSjahY0qc8f1jQF1Wh/NucMS9kxeWuemLvUWwOhdVzsXuaEdlWjvdVOTb3D+81C2DUU9FONHRBEfHwo8fGhTJ4WS+wFibicGtXlrcw4P4nqsmZqDrXQUNtOU10rT//kPZLT4/jTA/9g784ywiJC+PmbtzF2Rjqjp6Z2iCUsIoSZi8d963u/cOFCAJYvX46maR1EUlNTE+vXrycsLKxHLShnnXUWQgjy8/O77Atwm2ylpqZ2t3kHTEE8derULstMQdzdstzcXIAOgnjdunXU1tZy2WWXdVk/MjLSLYq3b9/OwoULOfvss5k3bx7ffPMNlZWVbh8YfxbDJmPGjOHrr78mPz/fb00nvRFCMGbMGDZs2EBqamqP5rv3JaZNm8bMmTN54YUXePLJJ30dToAAJ5WAIA4QwAe8++67hIWFdXvR09dxOp0UFRUxdepUvxTznTH7hvv16+e3c6ChZ6K4qqqKLVu2uMcq+YIDhRVuMQywdmkOV/zwLDLG9qwv7ZM31/H1Z7lICcW7y3nu4ff43b/0mbThkSHc+csrjrqtvd3Bv15ayaql2/QnTAHbeYQQ6KXXEnZtP8CuvAOoITZjXaOlVpN6H3KrioxWsAoY3C+EEYPCSY8PJT4iiBanyqE2B4da7eyqb+FQu51a4UJaAQFqlDEHyWtMk3AJaFOQUXrvbhMq4VoQTk0XbC5N4FL1wVCggrQawhicTgtWq5GWRp9NjKZ0cpL2+tcUyN5CWcHTM6zp5lhIUFU9O1xV0Y6QdQBYHRox8SHEx4cQPziMCfMGM2BQGC6XRmVJE6UF9Xz6ztfszz8E6A7TLz72Pq+seKRH73Vn0tPTWbx4McuXL+ell17irrvuci974oknaGlp4fbbb+9QYrtv3z6cTifp6ekdKj+GDh3KxRdfzNKlS3nuuee477773MuWL1/Ol19+Sb9+/brtCe5MTk4OQUFB3Yq2b8sQm0LaWxB/9NFHKIrCkiVLOqybm5tLVFQU6enpzJ07l82bN7Nx40bi4uLYuXMnycnJ7t7OM0EMA1gsFqZOncratWuJjY1l0KBBvg7phImJiSE+Pp49e/b4pWnYo48+yhVXXMGDDz5IRETfGKvX19H/1J7mG8+n9WhnBgFBHCDAaUZVVX73u9/x8MMP++WFSlFREdHR0T0eR9LX2b9/P42NjSxYsMDvBf63ieLy8nKys7OZMGGCTzP7Qun6GivdPHc0qg8fQRjzgjVVo/JQXbfraZrGqo+yObi3kmkLRzF2ejq/v/ddNnyZB8H6OCCpaWAxvga7pFdxG2FJiS6GwcuRGqw2hdFJ4aSMjCJ9cDgIKKxqYU3hEQ462mm0qzjD8JRXG2JTWLztmun4swqIYKTWihRwRHMRhg1NVdBAd6BGQTNHJoExPkm4TaE9mteYgaQJvbJaGlliI3MspHstPQXc+aJNCCSa516B99xmKdGQ1FS0UXuwmd0ALhWLgP7xISSmRTFiykDikkK4fMhUSnbUUJJXQ1uLgxPh5ZdfZvbs2dx9992sXLmSUaNGsXnzZlavXs3w4cP59a9/3WH9s846i9LSUoqLi7v0Cr/00kvk5uZy//3389lnnzFp0iSKi4v5+OOPsVgsvPbaa8c0DLTb7eTn5zN+/PhuTemys7MZOnRotyWmOTk5hIaGustnpZR8/PHHzJo1q8vosxdeeIE333yTmTNnMnXqVKKiokhISMDhcGCz2XjjjTdQFOWMEcMmERERTJgwgZycHBYuXEhoaKivQzphRo0axZo1a0hPT/c7Ublw4UKGDRvGq6++yv333+/rcAIEOGkEBHGAAKeZjz/+mJaWFq6/vu/Naz0WbW1t7N+/nzlz5vi9eARobGykoKCAWbNm+b3Dskl3ovjw4cPk5OQwZcoUBg8e7NP4kjIGct61s1j2Dz2+c747ndRRPXddnXvhRP77zjdubXbud2d0u97bzyzjXy9+hWJR+Pcrq/jNuz9k88pd+kKnC2mzgjAcpIXQM77ewlxAVHSou4zaFIIRkTZS0yJJSY8kMTmcxgYnhYea+c/6ckoa2pE2PYXsDNPXFypg0fcnNd13y2U6TUs87tMmLomwKGiaQFGgQVMRCEK0YJpwokqBpglDv1vweHQJNNUCaHpm2AzZNPlq8xLD3iOYPFXeXRDGSCgpJYoQ+pgqc8eamdL2jJEKC7HS3uqktryN2AExXHrlhbQ1tfDCv//BoPQoLl44ieCQILZv387AgQOJi4vrtWBLT09n69atPP744yxbtozPP/+cwYMHc8899/DEE08c03HZm8TERLKzs/nFL37B0qVLWbduHVFRUVx88cU88sgjTJ8+/Zj72LlzJ06ns9sMcGlpKbW1tcyfP7/LMrvdTkFBAVOmTHG/Blu3buXgwYPce++9XdZfsmQJTqeTrKws3nzzTdrb20lMTOShhx7irbfeYu7cuWecGDZJTEykurqa3Nxcvxxb1JnIyEiSkpLYvXt3t6X0fRkhBI888gh33nknd955Z4ee9QDdEzDV8g+ElN3dFg8QIMCpQErJtGnTuP7667u96OnrbN++Hbvd3qMLxb6Opml8/fXXxMbGMmbMGF+Hc9Kpr69n48aNDBo0iMOHDzN16tQ+U3IopaRsXxWaJkkeNrDHF7hOh4v/u+kvbN+4F4CzLp/KA3+8ttvtb5rzC6oO1QP6Rdysc8eyO/cAdVWNegxWK9isYFGQZtm0WS4MoEnd6dgi6B8XTMqYGFLTo4iJDaH8cCvFexvZd6CF+hYXjjCBDLWgAa5QAIErHFAELgtI45rRPZkpHFDAGePqKogbwCIsyIRWhAIhwe08JibyjmU35aIVl6rQ0mIFrGguBaRAagJcCrYQO6FRDkJQ+JmczM/JpTU3CjSBpRlsdl0g6yZfEqtdgioJaZRdksNICSpYnLoIVlx6k7LQdDEsXJohrCXCqRE/OJqakpoOu3j6ndsYOzmF+upGdm3Zz6ChA4iKC6aiooLKykrsdjtxcXEMGjSIgQMH+l1P5cnm0Ucf5Te/+Q379+/vUe8y6H/HzDniFouF4ODgM0oMmzidTlatWsWIESO6ZPr9kba2NlauXMncuXP9zrdC0zTGjRvHfffdxy233OLrcPosjY2NREdHs+izO7CGn94bB64WO6sufIWGhgaioqJO67H9Ff+37QsQwI9YuXIlJSUl3Hrrrb4Opdc0Nzdz4MABv3TH7I69e/ficrkYOXKkr0M5JfTv35+MjAwOHjxIYmJinxHDoAvUpIyBDB0+qFfZns0rd7nFMMDqT3Jw2J3drjskNc5T3SwlG77MY/a5pmmTANNESZNeZdDG+CRVEhpuZfysOK6+YyRLbhhO/35B5Gyt4fVXdvPR+8Vsy66hvq5d31W7vrmCPmJJSGMIsab/biphs0xZaPoyXN0EHqIvk5qC1AQuVaEJJ6FqCC7VYpRMC6RUvGyu9WNoLiuatKBKwyzMqYBLP55weZlqec0MFma2uvPbIAzDMDptIwRCEWaXMhiCuaWpHe/EM8D+/MMA9I+LYu4FE8kYk0R8fDzjx4/n7LPPJjMzk379+lFaWsry5cvZtGkT5eXl7hnB/2t89NFHTJgwocdiGPS5vePHj8dut9Pc3MyECRPOODEM+tiiSZMmsWvXLlpbW30dzgkTGhpKamoq+fn5vg6l1yiKwsMPP8zvfve7/9n/qwHOPAKCOECA08hzzz3HHXfc4ZdzFQsKCkhKSiIyMtLXoZwwjY2NFBYWMmnSpDPy4hH0OdGFhYWMHTuWw4cPs2/fPl+HdEI0HWll6d/WdXhOarLb1l+Ae393dYf3VhECq81C8jDjxoCqeQlho7xZQHJGFOddlcaN948jMTWKjSsP88Zzu1j+8QEK8+uxtxkq1hCMUggs4BaPwhCZVoe+X4vZ1Gv28JqOz0YZcxdsIFSBdIHUBKpmoVG6CJdBqJqCqilIBFIDU8UK9G2QeJVTexm5mFrWPL6+EEUzqsbdPcKdHt4GW177UawK0qWB09NfnJAUY2ynz3iWAmYuGt39m4N+UyQqKooRI0aQmZnJOeecQ//+/cnLy2P58uXk5+fT0tJy1O3PRAoKCti2bVuvtnE6nWzevJl+/foxcOBANm/ejN1uPzUB+pj4+HiGDBnCtm3bOBOKG4cNG8aRI0eorq72dSi95pprrqGlpYUvvvjC16H0ecyS6dP9CNA7AoI4QIDTxP79+1m+fDl33HGHr0PpNfX19VRWVrpnd/ozmqaRm5tLamoqMTExvg7nlFBeXk5OTg5Tp04lPT2dWbNmsWfPHr8Wxc/95J/s3Lyvg/nV9fedR0ho973f8UP6M3LyUBSL/jWnaZIhKXGcc+V0XfxqGtgd4HQxblIiUzIHcf09Y1h46VDqa9v55/M7+fTdvewrOIKmakbPb0c3aot7CDEIpyGIVX2Z4ja9EnqG1hx7JAGHsVkbdGnedbflKkgNVKegSbqI0IJwqQqqJpCqAM1QrWaWWNOztlIKI4uMfp6GCDb8s3Sk0DPUptiVsntXUndGGfd5SylRXRoEW5FW02gMWo60eLL9QoCq8ewj/6a9tWcmWqGhoYwYMYJzzjmHSZMm0dzczMqVK9mwYQPl5eVnhAA62Xj3DM+YMYMpU6YQERHBxo0bcThOzLzMGyklR2qacDnVk7bP42XMmDE0NzdTWlrq61BOmKCgIDIyMsjPz/e7z7fNZuOOO+7gxRdf9HUoAQKcFAKCOECA08TLL7/MkiVL3KMx/ImCggJSU1PPCIfPM71Uurq6muzsbCZPnuwukzaNtvxZFBdtP4BUNVA1FCmZf9EEMi+cyGfvrGfnlv3dbvPgH68jY2wikf3DuOiGOZx/zUwuvHYW4VF6r2rsoDAWXJnOrIviSRgazjdflvHWn3ayedVhGhuden8seARhp4tW73vwiktfZpHo2WIjCyzAcIHGk2F16suCZCdfS+/dtwFSQaoKDZqLCGxIKZCaoqd1pTBmEBuiWAVN7Rii5nVct7mWaayl6L3ASr3aYTcdzlDDPX7JfcKKJwONxeLOJttbHZ7npW64tX3TPj7++zfdvjdHQwjBwIEDmT59OosXLyY2NpYdO3awYsUK9wilAN2PVlIUhSlTphAWFsbGjRtxubqrye8dTUdauefCP3DNxMe4bvLP2LPNt0LUZrMxceLEM6Z0Oi0tjfb2dsrLy30dSq+57bbbWLVqFYWFhb4OpU8TyBD7BwFBHCDAaaC1tZXXX3+dH//4x74OpddUVVVx5MgRhg0b5utQThizVHry5MlnZKn0kSNHyMrKYvz48SQkdHRu9ndRPHnBKL13VRFoqkbqqCH88Lzf8+LPPuChK1/g839s6LC+lJJ3n1tGYW4pLfWtDB02CIvVQkhYEOffOJlL7hzPpfdMQAM++PMuPn2riOLdRwwtZ2SCDdMoNDOD6iWKzXWcKlIBRcWYeSQ9pcmmGPXWcBpYuyhPA+9ZwU7z+AoNmkokNlSXgqYqoBpi2BS4ThBSIGwSTROoqr4jTSp65skrHne7sAThkoggr6y39zWUlFiMILteKMgO68+aP4Il183uuIqmZ9UrD9Xx1I/e5P7L/sSX723q5qSPTkhICMOHD+ecc85h9OjRHDp0iC+//JIdO3bQ3Nzcq32dSXybm7Qpiq1WK1lZWSfc4/nRX1ezb2cZAE0Nrbz82L9PaH8nA7N0Ojc31+8yq52xWq2MGDGC/Px8v+vHHTRoEFdccQUvv/yyr0MJEOCECQjiAAFOA++++y7JycnMmzfP16H0Cikl+fn5DBs2zO/HEmmaRk5ODqmpqb0azeIvNDc3s2nTJkaMGEFycnK36/izKP7hL77DdfedR+bFk/jJCzdSdagezcv06cNXV3dYf9v6Ir56PwvQy6X//Ph/2L+vhFWrVjFkdBh15e2888strPuomPqqNo+BlKkYVQ2casc+Y8VY6FU2rZhiVzHNqYQnC2uURAvVKJn2NnNW8WSOvRHgxAXN6GXRqoUGl4sobLrRliqMTDGelK7RPyyRxsglz9glMAS6Kj3HNhyksQg0m9exvWNRDbOxoyQaJJCY2J8gRWHzV/l8+NZ6rDaL/jq6VPdmBZv3sf6LHRRkl/Cnh/5F7je9zyYpisKQIUPIzMxkzpw5OJ1OVq9eTXZ29v9cn3FPRitZLBamT5+Ow+E4YdHY2tTuKZfXJC1N7ce9r5PJmDFjaGlpoaSkxNehnDDm3+sDBw74OJLe8+Mf/5i//e1v/9M3qI5FIEPsHwQEcYAApxgpJS+++CI//vGP/W5+YmVlJe3t7b1yPe2rFBUVoWnaGVkq3d7ezsaNG0lMTCQjI+Nb1/VXURwUbOPSHyxg1rnj6RcbSWT/cKRXRuVQSQ3/+atHFNu9elcThvfj0vsnk70lm2V/y+XLv+zG4gzD3qaC0+UpjTYcptMzBiIcqj5iyFgmhWfmrjcWwD1TWPUy1gKsLvRMa+fNTJF8tExxKFg1qzsZ3aiqRAqrLoY1IzvsMh6qPhpKGKOXNNWTIZaaoj/vLpmWxsPLcbrT7GV9QwkW4V7X/Zz3ioqgYm81zlYHUpM01LXoPaYC3cFbCIKCbRworNB7sA2KdpzYRX///v2ZMmUKZ511FkIIVq1axY4dO2hv7xtC7VTSmznDNpuNmTNnUl9fz65du477mOddO4ugYE9p/3fvPPu493UyMUun8/Pz/b50WlEURo0aRWFhod9liWfOnMmwYcN4++23fR1KgAAnhPXYqwQIEOBE+Oabbzhw4ADXXXedr0PpFVJKCgsLSU9Px2r17z8VLS0tFBUVMXv27DOuVNrpdLJp0yZiYmJ6PE/ZFMUbN24EID09/VSG2Gva2xy8+dtPKdp+gCkLRnHVXYtpbWrnrguepvJgHQDnXzeb1JEJ7C847N7utV8vZeGSycTERzMpczgTMlNJHBtF/NBISrbV89+Xt+NoV1EsCmFGH7FAIJ0qhFiMfl9J8e5yFEXoLtaqUW+savrcYnC7UnsCViHUiuIAzWroY02iGKZWevrWK9tqCmiJngmO7vQCBIHSYswYBhpUlShhBdNBWhWYg4/cglUD2i3IEE9s0gWKUVqtCI/hl3s7KcEpofO+vH8213M/L92nrtpd3d9VN87P3mqns+IfN/Pbb9j0lLCwMCZPnkxGRgYFBQWsWLGC9PR0MjIysNlsx96Bn9EbMWwSEhLCrFmz+PrrrwkJCTnmzbLuSBmZwKtrHmNX1n4S0+PJGJd0POGfEszS6R07djBz5kxfh3NCJCQkUFBQQFlZ2VErfPoiQgh+/OMf8/TTT3PHHXf43U3/AAFMAhniAAFOMX/+85/5/ve/T1hYmK9D6RW1tbU0NzeTkpLi61BOCCkleXl5JCUlnXGu0qqqkpWVRXBwMJMmTerVxUhfzhS//quP+fRv68jfWszbf/ycpW+sZdPyPLcYBvjiHxv43k8u7LJte6uD5uZm8nbuYM5VaYwYl0pG0hjsDRacdj37oqka7c0OomMjDKXY8XWTEv7vhesYkhJLfGwEo8YlEhfjNSrNe30psdk1lCYnwqW5M8ruZLKKp4zaC+EEJNgaRGfNaKSd0bfR9AyxTSiESIteHq12ep+NjK90gOYSaC5TECsoUhflmqvr+khhOGWbQXmtoxrZYU26zbTcfdVAsM2iJ5cV3FcSiiJQLAqKlKCq4HR2eK3iEvoxanIKJ5OoqChmzJjBrFmzqKmpcZtvqarvHZFPFscjhk3Cw8OZOXMme/bsOe6S3LiE/iy4dEqfEsMmo0ePpq6ujoqKCl+HckIIIRg2bBhFRUV+1xd91VVXUV5eztdff+3rUPokUgqfPAL0joAgDhDgFFJdXc2HH37I7bff7utQek1RURGpqal+n22pqKigrq6OUaNG+TqUk4qUkpycHFwuF9OmTUNRev/nvK+K4oKtxe7+YCEEe7aVEhYZ0mGdoGAb42akM3LSUPdzmZdMoLrhMKtXr8ZisXD22Wczb9FsBg6JZdGlU/EeLlRaUktDfasxf1gQP9iTpr3oqul8s3o3R9ocDM6I5/+evop/LnuQ714z0zNnF3Pikb69FBJh6ShuhZQoxjgmutFnQoIVCx126JWwNccj2VWJXWpEazZwCYSquMWy21hLAxkswGnRy6gBNAVVqiB192vhfkgUVf+322tvDRQXXmZbXqZbxs+ONgfS4pVZVuCa2xfwx7duRbbboZPDsaIIJsw6dcZ8AwYMYO7cuUyaNIkDBw6wcuVKDhw44HfiojMnIoZN+vXrx/Tp09mxYweVlZWnIErfERQUxOjRo8nLy/P7myCJiYm4XC6/c5wODQ3le9/7Hn/5y198HUqAAMeNf9dBBgjQx3nzzTeZNWuW383vPXLkCLW1tUyePNnXoZwQqqqyc+dORo8e7femYJ3Zs2cPR44cITMz84RK2k9G+XT14XqefeAfHNpfxcLLpnLjTy48LoFuMnHuCPbnH0ZKidQk42ZmMHPxODIvnsS6T3Ox2BTu/+O1hIQF87t//Zita3fR0FpLm6uBb5blojjCOf+88ezLP8RjN71KS2M7g5Ji+L+/fJ+//nIpFQdraWm2ew4oJVfeOIeElFhcLo1P/rWZ7M36DYLtW0u47TsvEh1kISKhv0fvGmXBEl1YaiEWY/6u7NCXK1yGRjbHHhmeVxbpbjnuiLeg1tD3JaFRdRGFlUrN5TbEcq+vgWqagknhEcRSuF2vZYd9C/3mgBCIzunpLkF5K3TjdykRDhWsFqTThQDCwoOYPDsDhGDehRP5+rNtCCGwBVsZnDSAEROTue3xy7o54ZOHEIJBgwYxcOBAysrKKCgoYO/evYwePZqBAwf6XTnnyRDDJnFxcUycOJGtW7eSmZlJZGTkSYzUtwwdOpTS0lKKior82iPCYrGQnp5OUVERgwcP9qvP6+23386ECRP405/+RFxcnK/D6VNoCLSjuROewmMG6B0BQRwgwClC0zReffVVfvWrX/k6lF5TVFTE0KFDCQ4O9nUoJ0RRURFBQUEMHTr02Cv7EYcPH2bfvn3MmzfvpLxHJyqKf3/XW+RvLUZTNd578SsSUuNYfNXx9/Td9PBFhEYEs2/nISbOHc4F18/BYXfSeETP6NqCbET2C0dKSVV1BQ3qYWprm1n57i4q9jeAgPxNBygpqsTl0muVqw4fYfvG/VQcrNUPYmYOFQUEvP38VzTWt0KIDentGA00N7fT7FCRDe0QYvUIXlOTOvVMsBYEONG/WQ3BbNXAhcQqBK5O1dHC1Joaer2W19glVaq6y7RxnEZNJUqxgdpuPO9lWS2FLp4dIK1e+1HNHmLd2EuYMbtNxLq5bBJGd7L0DB/2jllpdaJoXo7VxmvU2uLggRteBQlzzh7N7U9cyuYV+QxJjeXKO85iYOLR2xVam9tZ+Z8tKIrCwsumEBYRctR1e4IQgqSkJBISEigpKSE3N5eoqCgmTpxIeHj4sXfQBziZYtgkMTGRxsZGNm/eTGZm5hlzk1AIwfjx41m/fj1JSUl+8x53R0pKCoWFhdTU1PiVsBwxYgSzZs3izTff5KGHHvJ1OAEC9JpAyXSAAKeIVatW0dDQwGWXndqsyMmmubmZioqKPme01FtaWlrYu3cv48eP96s77ceioaGBnJwcJk+eTFRU1Enb74mUTx8o8jgJKxaFg0UnVpZpC7Jy3X3n8/jrt3DJ9zMRQrD8vc1sW6+P7Glvc/DyE++TlZXFzp07aTio8e4vN+hiGN0oa++uMt312Ktk1mF3YrEYX3tmf6shfJsa2sCiePpkvT8zQoBVMYcZdR1FJMDWoh/LCu6srBvDmEpqeMY6KebzeHqCvTK4aiierLKZIVYsoHn6f90PU7tKRe9NNquVXR4x647H2J+lszGYsUwx4zf/9SqXttksjBw5WL8f4OVY7ca4UbBhRT4fvr6OHRuL+OKfm7jv0j/R0thGdzjsTr43++e8/LMPePHR9/nenF/w1QdZqK4TL381M25nn302ERERrF69muLi4j5fRn0qxLDJqFGjiIyMZOvWrX7naPxt9O/fn8TERPLy8nwdyglhtVpJS0ujsLD348l8zR133MGrr756Rn2uAvzvEBDEAQKcIv7yl79w8803+91d+KKiIoYMGeJ3JmCdycvLIzEx8YyaOWy329m8eTPDhw9n8ODBJ33/xyuKZ583HiF0MaxpGtPOGn3SY2ttaneLs4zJ8Sy+bRQWi4XB0an8/ZfLPXOE0furkRK8LsxCQm0suWkutz9xmTtLChJp9gR3nrlr7gPPuoA+m7gT4eFBXg7S3oZbXvsyjbW8j2H2ADvpKHABggEHXoJYJUqxGgLa6AXWvOYbC6G7SKuKPo7J2L9pruIe8eTuUxZer0MnDEHvHs0kdBXvdKrsLa5BM4W6KjvebPLaV7UxJ1pTNeprmijMO9j1OMB/3/qGpnpjbI4iaDrSyjMP/pOnfvxWt+sfDzabjQkTJjBjxgyKiorYsGFDnx3VcyrFMOifk8mTJ9Pe3n5C45j6IqNGjTojDLbS0tKor6+nvr7e16H0issuu4yGhgZWrVrl61D6FIE5xP5BQBAHCHAKqKysZOnSpdx6662+DqVXtLW1UVZWxrBhp8785nRgGmmNHn3yhZmv0DSNrKwsYmJiTun7czyi+M5ff5dbH7+MC6+fw1P/vJPxp8A8adHlU4kfEsXiW8Yy5zvDUNoimDp1KvWVzfoKpgDWJEu+N1fPgioCVJXFV0zh/Otm84s732Lz2j1MzhypZzO9MxlmZtjMjhqLBLBo8RjOXjwWAItKB/EN0C8uUjeYcnVvoKW0offsHiXpqdTRdeSRpJMgdhFlsQD6zGGh4jbTEpqhb+3CLZJBH7NkxWOk5TbV8k7gdMgSS/3cTHdp00FawZ1idlkE0qZ0FPudOO+KqViDLO5dKxbB4OQB3Z67NF9Ls0Td2GjDsh00HWnp/gU7TuLi4li4cCERERGsWrWqz2WLT7UYNrHZbMyYMYODBw9SWlp6So7hC4KDg88Ig62goCBSUlIoKirydSi9IigoiJtvvjlgrhXALwn0EAcIcAr45z//yaxZs/yu7Hjfvn0MHDjQrw1XVFUlLy/vjDLSklKyY8cOVFVl4sSJp7wEvLc9xVabhctuXXjK4pFSYtdauPLRGQiXlcRBqYyfoYvuSZkj6BcbQUNtC1JKpi4Yye1PXM6E2cPZvqGI4ROSQVF4+qH3AKg4WEdMXJQxekhzO0W7celmUcLM6EqNXdvKWHDeOKKiQ2lsaENpd6GFedzXDx2qB0VgaXOhBln0kmWLx4zK5hKoAhRp6GyjbFoYSegQl4VWTfWUU5tZYJcwyqwlTarKiGCrvooKUhGesA3RbHUJXA4QNiMr7DBLsWUHAdulnFt49uF2r+6cMRdGs7OZ7RaiGzEsGDY2gR8/cSlzzx7Nq7/4GFXVuOnBCxiU1L0gPvvK6fzjT8tobXV0eD44xEZw6Mn3MDCzxYMHD2bbtm0cPnyYSZMm+bwi5nSJYZPw8HCmTZvG5s2biYiIYMCA7t8ff2Po0KGUlJT4vcFWeno6K1asoKmpya++j2+++WbGjRtHfX39GVWddSL4YgxSYOxS7wlkiAMEOAW8++673HDDDb4Oo1c4HA5KSkr8Pju8d+/eM85Iq6SkhIqKCmbMmHFCjtK9oa+MZLLb7WzZsoW8vDwmTZrIBUsWu8UwQHRMBC98/hA3P3oJd//uKv7vtVsQQjBr8TjuePJyFl02lQP7qtw3EaSE2qpGltw8n2HjkvR5uSZCgGHC5S32qsqP8P6bX9PSoPfBHu1Sw8weW0HP3JrJT2NfiqFK3ZXLphAFo2waT9bXKrAJxSh1FjS4VKIs+nsvVONhZodVEA59O4sqsBhC2KIJXb8aMQt3b7Bxfhru34VbKBvRSam7fHuFaL4mwuVJMXvanvUMe9GuwxzcX82UzJG8+PmD/ObdHzH7vPFHecX09++u311tmJsJ9+Ph524gKPjUfdbj4+NZuHAh4eHhPu8tPt1i2CQuLo4xY8awZcsW2tq67/H2N4QQTJgwgb179/r1OYWGhpKUlOR3WeLhw4czYcIE/vOf//g6lAABekVAEAcIcJLZs2cPeXl5fOc73/F1KL1i//79xMTE+PVdXYfDwd69exkzZswZY6TV0NDArl27mDp1KqGhoaf12L4Sxa3N7VSW1VFWVsaqVasQQrBo0SISEhK6XT92cD+uuGMR5187u1sRNTVzRBexs/w/WyncdRhUDRxOcKksPHeMPs6o275aUB0uT4a1u3UUBWGUYQsvselt1CU9ieMOGWEhjFJoKTB8nlHRDLEKTS7dVEvPEIsuoliRQi+HduFWqcLp1Tts9iubP5v/P0yPMDPjK0GYo5e8SphDQmxccsEkIoWCMMucTRFLx9cjMjqUffmHuH72L7lx7q+4ffHT1FU1dn29DOxtji7PTZ5/6kfV2Ww2Jk6cyLRp03zWW+wrMWySkpJCXFwcOTk5fap8/ETo378/gwYNYvfu3b4O5YTIyMjg0KFDfbbf/Whcd911vPPOO74Oo88Q6CH2DwKCOECAk8y7777LRRddRL9+/XwdSo9RVZWSkhIyMjJ8HcoJUVhYSExMDLGxsb4O5aTgdDrZsmULw4YN89k59UYUN9Q1U1pYjqoev8vohmU7uGH647zz6gdsWp/F6JGjmTZt2gmNlxo7NZVRk4Z2qIxuM0p03ZlTTWXzxn1gMwS1t6mWgd5brGdO3f3C0EE4CqdpxGUs04wfTUMtFx4hjNe/3WgRTTF6foEmVSXMYsGGQFFBUYXuTq0KhCpA8QhkxeXZtSnKFSOTrKheX/yd2odRQWgSRe1qMtbW5uSzpbm0NLV59RXTQVgDzFo0igHxUbz6q6U0H9Ev5MsP1PL+K0c32pm2aDRR/cPdu5p/8SSCQ05fu0PnbPHBg90bgJ1sfC2GwZNRbWtr80tn46MxcuRIysrKaGw8+o2Yvk5ERAQDBw6kuLjY16H0iquvvpr169dz4MABX4cSIECPCQjiAAFOIlJK3n33Xa677jpfh9IrDh8+jM1m86u5h51pbW2lpKTkjDHSMvuGQ0NDGT58uE9j6YkoXrs0h+sm/Yw7Fv2G+y7+I20t9uM61uu/+5iL7ppASLiNd5/cQN7XJ0ecPPKnaxk2NhFhUfTxSubDyHIGR4XR2maMYvLOfBoIAbhURJsDhEBxeI108hLOil0X0vpoJE8ZsrVR/13pzuvHFMr6qp5sbrDn9xZVRZWSCMUomzaEr+IyxC662HWbbWGUUXs5S3c4I9Nl2zymlPp+DNftDlcHijlwSqIFeYk2U3Grnh7l2IHRALS12NHcr4ukraVrFtgkJi6Klz5/gFt/toSHnrmWh5659qjrnirMbPHUqVPJy8tj586dpzRj2hfEsInVanVnyWtqanwWx8kkIiKC5ORkCgoKfB3KCZGWlkZpaalfmYQNHDiQs846i3/+85++DiVAgB4TEMQBApxENm3aRF1dHRdccIGvQ+kV+/fvJzU11a/LjHfv3s3gwYOJjo72dSgnhQMHDlBdXc2UKVP6xPtyLFH88mP/dmeGi/IO8tX7m3t9jOrqahbfOpqy3XV89vJ27C0uHO3OE44dIG5wP3720o0dE7FmVlcRhPfTTZU8/b0CoXjKgU03ZM90pa7viVkdjQTFLD82trMaR7aYK5o7Mx7WFjxC2FhH97HSRzFJKWhSVaIUC1L19P+6y7KdgAqKEyyGuLY4DUfp7nSd13xh6SWa3Zlxt+uz19kJod9E6HDSZvm0/sjZvJfGI61c9cOz3K+RLcjKxTfM7iYID7GD+nHZzfNZdNlULFbficOBAweSmZlJZWUlmzZtwuk8OZ8/b/qSGDaJjo5mzJgxbN26Fbv9+G5m9TVGjBhBdXU1dXV1vg7luBkwYAAhISGUlZX5OpRecf311/Puu+/6Oow+gWmqdbofAXpHQBAHCHASeeedd/jud797QuWdp5v6+nqamppISkrydSjHTWNjI4cOHfJrV1FvGhsbycvLY/LkyYSEhPg6HDffJopdXvN5BQKX09V586MipaS4uJjNmzdjdUay4cO9SE0SMzCKhZdNOe5487cW8+6flvHIDa+wZNRPeeS6VzonfvV4FYWhqXFddKOwWDqWTStCLyU2e2idXuZSpjpVDGMur75hd8+u9wE6xWFtFZ6xSNI05BIden+bVN1YSwr0EU7mw6U7WCtS7xtWjGSsIr0O1Z0o9upnFuDJiJpO0t2hdVqmap4rCSE4VFrL319awZzzxvGXLx/isZdu5MX/3k9ddSO7c/URP9XlR3jtqaX89VefUHmw74mViIgIMjMzEUKwdu1ampqaTtq++6IYNklJSWHAgAFnTD9xSEgI6enp5Ofn++35CCFIS0vrcyPCjsWll17Kvn372LFjh69DCRCgRwTGLgUIcJJwOp289957fPjhh74OpVfs37+f5ORkbDbbsVfuoxQUFDB06FDCw8N9HcoJ43K52Lp1K2lpacTHx/s6nC4cbSTT9356ES//7AMABibFcNYV03u0P03TyMvLo7y8nFmzZjFgwAAmTB5NTfkRxs3MIDzq243EWpvbyf16D5H9whk3M92dldyyOp/Hv/cqCI97cXlpDbEJ/aita0FTJTabglPVGDikH/f84lJuuvA5/aLT2IeZ8dYFpZe6bHNAiA0hFaTNYqpJvdQaEA6JtEm9x1cBXCCt6OJVoas4FSCkIX5NcWmWObs8YrvRpc8ilkIvlXYnmqWXwZaCZ86wWSatGvFJr4yvNOIz9yKNQ2tSNxbrjKqPXHI7TCsKqFq3jtuFO/VsVlJ6PAMGRnHvpX/i4N5KAC6/dQFf/3cbtYbJ1uqPs/nr6kcJj+w7N37AM6s3Pz+fr7/+mqlTp57w/8e+LIZBF18TJ05kzZo17N271+8nDoBuTFVSUkJVVRUDBw70dTjHRWJiIrt27aKurs5vxmNFRERw6aWX8s477/D73//e1+H4FOkDk6tAhrj3BARxgAAniS+//JLw8HDmzp3r61B6jN1u5/DhwyxYsMDXoRw3tbW1VFdXc/bZZ/s6lJPCrl27sNlsfTrb3Z0ovvh7mUyYM5zaigZGTUkhJOzYVRLmSCWXy0VmZqZ7FmzGuCQyxh27YqGlsY1bF/ya+mo9gzd2ehpP/+ceAFZ9uNXTD2ugaRJ7q4MPNj9BU0MbbzyzjLwtxYycnMKqj3KRdicEGzeGpEQoooNANkuJFQk4XBBsRdWknhU2XZqFwCLBJSUKur5UhEBFQquAaIw5xZ1ORsHd+6sfC4/RlfFN3eTSS6YJEog20x3a2M5MyJuiG10kS83dAtwxKy2ErqQlKJrHQExonUYtmZu1OnXRLYQxLkrqL4vXeZuBV5fV8/k/NzJ78Tiy1xa4xTDAh39d0+G062uaKC44xNjpfW9muxCCMWPGEBUVRVZWFiNHjiQ9Pb3bcvlj0dfFsInNZmPq1KmsX7+e2NhYv546APr5DBs2jPz8fOLj4/tE+0lvsVqtDB06lOLiYr8RxKCXTd9666389re/RVECBakB+jaBT2iAACeJd955h2uvvdav/vAfOHCAmJgYIiMjfR3KcSGlJD8/n4yMjD5VWny8VFVVcfDgQSZPntznP0fdlU8nDxvEpHkjeiSGGxoaWLt2LcHBwcydO9cthr3Ztr6Qd/+0jOy13Y9PWf1JtlsMA+zM2s/unBJAH8Wku0J3dLxefMU0gkNtvPzLj1nzRR61Nc2s+mwHH769HuF06UJXSiwWBewuvQfYnR02hK9iaFergnBpxpxhXRi7DakcxsxfDfcc4mDDaMtizhw2MUqX3XOFO5ROG5ljFRqdLqKtVrcoV5zGw2WYPhvbul2m3aXXR0F2Er4aukEWeNVZ6/3TFovFq+/Y6wZAZzQ4Un6EF/7vQ354wR+pr/EqNza2E4qeqRYCLFaFQcl9+yI/KSmJOXPmsG/fPnJzc3ttcOQvYtikf//+DBs27LjOtS+SmpqK0+n0uz5cb1JSUigvL6e9vd3XofSYc845B4fDwdq1a30dSoAeUlZWxs0330xCQgLBwcGkpKRw7733Ul9f3+N9LFiwQB8jeJRHX/0MBzLEAQKcBBobG1m6dClbtmzxdSg9RkpJSUkJY8aM8XUox01lZSXNzc3MnDnT16GcME6nk23btjFmzBi/Kf0+Wvn0sTh8+DA5OTkMGzaM4cOHd5u1Wbs0h9/e+Xe37rr3D9dw7lUd32fT6MobUyBffddiSvaUs319EQlpcUw/awxpo4eQeeEEfnPnW2xaVQBWz1dgU5NdF5oOJzicenWx1bDC6pAlpkMPrSKlLo419KyvMAy5zFVVibQonuXo4lU19wW4V3YAQXiVNRuLjVLnJpdGYrCxE3N/ZjpXw2205b7VbWoZY5neZOzJdpsGYO5juFQUCS7TOMt48YUq9ffIKjzHQyA16ZlhDNDuAPM54EhdM+88t9yzL/O0JAxOHkBQsI3v/eRCYgf1o6/Tv39/MjMzycrKYv369UyfPr1HN+H8TQybDBs2jPLycvbs2eP3zv0Wi4WRI0eye/duhgwZ0udvNnZHREQEMTExHDhwwOdTB3qK1Wrl6quv5t1332XhwoW+DsdnmF6Fp/uYvWXfvn3Mnj2bqqoqlixZwsiRI8nKyuK5555j2bJlrF+/vlcVCk888US3z1utfVN69s2oAgTwMz766COGDx/uV+KyuroaVVUZNGiQr0M5LqSU7Nmzh2HDhvl1/7PJrl27CA8PJyUlxdeh9IreiGIpJYWFhRQVFTFlyhQGDx581HVXfbjF2Eb//YWfvk/6mEQyxia61znv2lm8/ccvaKpvASCqfzjjZ+t9j+GRIfzy77d32e/h0hq++WI7BHX9zET2j6C5rtkI1uMYLY3fPScCiiI6VDjrFc+mS5U+dklKiVsemtubQrZzvzBgaRZo/WQHQSyEXvaMovcQR1qtHndpFY+YNrPBRh8xGDOHDQdqL+3rjkMYTthICU7pKb+GDjcBzAx3x3Sy9JiLASGhNuytndyJJdjbOo5banc1UXRkI9nN1TQ0HuGLPX/m0kuX8OSTT55Qee4777zDDTfcAMBf//pXbrnlluPe19EIDQ1l7ty5bNu2jbVr1zJjxoyjzpuvrKwkISGBJUuW8NBDD/mVGAZQFIXJkyezbt06Bg8e7Pel00lJSRQVFXHw4EGGDh3q63COi9TUVHbt2sWwYcP8pvT7uuuuY/Hixbz44otnRBXXmcyPfvQjqqqqeP7557nrrrvcz99///08++yzPPbYY7zyyis93t+TTz55CqI8dfjfbbIAAfog7777Ltdff72vw+gVxcXFJCcn++XdcoCamhpaWlr8TkB2R1VVFYcOHWLSpEl+c6HjTU/mFEspycvLo6SkhMzMzG8VwwDxQ2I6/K6qKq888Z8Oz9lsVt7a/CQ3P3Ix3//pRfzlW8yZdmzay0PffYGn73tHf8Lh7HLbfuiwgR3KgqVTJSY+kqmZIz2rejfYtuvl1e6ybFW6K42F4SptQS+5Fk70f9s67cNEYMwQFrrZlSqMkUueUupmh0qU1eIRwN4l1qoxh9gw4nKjSSNr3el4ive/xkJFoCnoplpen0Nhuml3ilkIgbQoSIvChJnpPPrC9YycNNQzrkrTvESzpNV5hA2H/8Gh5l3MnDWDGaPPorlS5fnnn2fyxCnU1tZyPBw8eJAf//jHREREHNf2vcFisTB58mTS0tJYv379UWP+8MMP0TSNRYsW+Z0YNomKimL48OHk5OT4fem0EIKMjAyKior8yq3Zm0GDBqGqKtXV1b4OpcdMnz6d+Ph4PvvsM1+H4jM0hE8evWHfvn0sX76clJQU7rzzzg7Lfv7znxMeHs7bb79NS0vLyXxp+hT+eSUcIEAfory8nNWrV3PNNdf4OpQe09bWRmVlpV+LycLCQtLS0vps+U1PMUulR48e3W0frb/wbaJYSsn27duprKxk7ty5REVFHXN/Nz54AQMGRXvtBFoau/YehYQGceWPzua7d55DvwEeQVRxoJZHr/8z913+HF9/to3/u+lVdm0pZs+2A1gsin65YLe7RXFUdCg/+f13Pf2xgBZio6bFwZYtxSjhQYCefQ0KtjJwSD9j1rAElyF6NXN0kZFZ1UAYP5tyyOo0trHTJetsUcxtjIcpdg3h2+RUibBaUDRPNtgcvSQMvdKlZ9gMx/vb3lsQmMnfTolsN0LoL4er05Bkh6oHrAiwKGxav5fXn/mS3dsOGHONpSfLLBQQFvLrVuPQWjl76pXcdsVDhNcMY3rc5aRETKTkQDGPPfZYl/f3WEgp+f73v8+AAQO44447er398SCEYNiwYYwePZpNmzZRU1PTYbnT6eTNN98kOjqa2267zS/FsElGRgZWq5Xdu7vv4/cnkpKSUFWV8vJyX4dyXCiKQnJyMsXFxb4OpccIIbj++ut55513fB1KgG9h9erVACxevLhLkiQyMpI5c+bQ2trKpk2berzP9957j9/+9rc888wzfPHFF31+vnlAEAcIcIJ8/PHHzJ49myFDhvg6lB5z4MAB4uLi/FaA1dfXU19fT1pamq9DOWH8tVS6O7oTxVJKcnNzqampYe7cuT3uj47sH87P37yN4FBdiCLguz86q0fbOuwu7jj39+SuL2J3bilP/fgtHHanXsKsSVRV03WaqkFrG7S2MSA6mBWfbkMas4alEBBk9Zg9SwiPi2T0xBR++/rN/OCec93iWRECXJq+P++GMUMou+cVa7rjNJohYGXHh7f4NcUwGGZXGjQ5VCxCEKEoejbaZZRFG5nhbjPP0ih57i5h4D1T2fzHIjruQzPib3OgtDkRdpf+MDLP3pnkcmOUEuAeQQUCoSi0Oo9Q01ZCqDUKS/UQ/vXSSve2GVEzsQjbcWUgnn/+eVatWsXf/va34+69X716NUIIHnzwQXJycrj00kuJiYkhOjqayy67jIqKCgDy8/O59tpriY+PJzo6mrvuuouEhAQ2bdpEVVUVoIvhFStWkJuby6WXXkpQUFCHY3399ddcfvnlpKenExISQnx8PNOnT+eRRx45rthPNYqiMGnSJPbv3887z3/KXec/zQs//Rftncvj/QBFUcjIyKCwsNBvs8QpKSlUVlbS1tbm61B6zFVXXcUXX3xxRmcXvw0phU8eoPvbeD+OJkr37NkDcNT+dHMEW2FhYY/P++qrr+aRRx7hgQce4IILLiA5OZkPPvjgW7dJS0s74cfzzz/f4xi9CQjiAAFOkKVLl3LJJZf4OoweI6XkwIEDfttHBVBUVERKSkqXi01/w99LpbvDWxTv3buX7Oxsjhw5wty5cwkN/faZwp1JH5PIq6sf4eEXb+LlL3/Cwsum9mi7g/sqsbc7OzxnC7aiWBQUi0L0gAiSRiSAzYaw2UARVNa38taLK8CqgFVBmrrQzBgLQVOznbycEn77k/fZ+o1+AYFTn8+raFI305Kesmm3JNT0J9zuzxrYunGUBjzzhL2zw8Zy1SVpdalE2az6CGGhZ6XNbdymWiZGltYtvr2Xyk7rGc3SwqoY23nWUYRA2CxG1lp6jMU6f2a9Tc4MwWELsiKlpLb9AAADQoYihKC2uhHFpmdOrUoQIzPG9DoDUVBQwE9/+lPuueceMjMze7xdZ3JycgD9Ym/u3LlYLBZ+8IMfkJyczMcff8zNN9/Mp59+yvTp02lubuamm25i+PDhfPbZZ9x3331MnDiRrKwsysrK2LhxI1lZWTidTi6//PIOx3nqqafIzMwkOzubs846i/vvv5+LL74Yu93Ol19+edzxn2qioqJwHrHiDGpif0EZy/6xkVd//pGvwzouhg4dSltbm1+VHXsTFhZGbGysXzlmjxw5kuTkZL766itfh/I/R1JSEtHR0e7Hb37zm27Xa2hoACA6Orrb5ebzR44cOeYxlyxZwqeffkpZWRltbW3s3r2bRx55hCNHjnDVVVexbNmyo25bUlJCfX29fvP6OB6lpaU9irE7/LvWMEAAH9Pc3MyqVauO+46UL6ivr8fpdDJw4EBfh3JcNDU1UVlZ6fdzh1VVZceOHYwaNcpvM/VHo3///syYMYP169cTHBzMggULCA4+9iim7ogfEtOln/hYDErquv41dy2m4kAtiiIYOTWNPz36gUfQ2Wy0tniZPykCoYmuWSQhwKpQdfgIyz/O1ddTNaTeKey2j5YW0NWlopdCC4FbnkuJ0i7QQvEYWHkbYzm9tKsplM0Er9DLpiOtFioVPbsrXBz91rYQesm2lHpptcWsnzYywxI9i23uQtGXu2/OmMLYeE0wM+dCeIYbe49fanfo+/bqqw6LDKaxvo0WZz0A4TbDnEnqZdr3/P4qYgf1528fuNhVtI3CwkLOOuvYlQAul4sbbriB5ORknnrqqWOu/22YgjgrK4tNmzYxfvx4AB5//HGSk5NZvnw5ubm5fPXVV8yaNQsAh8NBRkYG69atIzY2lgkTJpCdnU10dDR5eXmEh4ezePFi9zEqKyt5/PHHmTt3LitXruxyM69z2XVfo3BzJfGjrUxYlEzu8lIKt5X6OqTjwmq1kpaWRlFREfHx8b4O57hISkpi79697qydP3DJJZfw6aefcumll/o6lP8pDh482KFF6Xi/h3vDfffd1+H3ESNG8NRTT5GQkMBdd93FI488wnnnnfet2z/++OPHdewT8cQJZIgDBDgBli9fTlpaml99MR08eJCEhAS/7WsrKioiKSmp19nGvsa+ffuwWCxnRKl0Z6SUFBcXExYWhsvl6nU2w+VUyVm3m52b9x1XaWN4ZCh3PHEZFqv+FTdr8ViuvvNs7vv91dzz26vYtqGoc8Bdd2IRHtMsswdXAYIsHtdpl6FonZrHkdltAS08/cXGMUzXaouqZ1pFO11Lph10nUcMuniWuiCOsliQQXo8QpOezGznIgNNzw67Y+pUou2O1/hBdlqGEHqvMIBL9azc3Y0CTaLQVSQ31DWz+IqpjJqqt5RYFV0IKhbBoKQYWprsJA8f5HZr7und/V/84hfk5uby5ptvnvDfAlMQv/nmm24xDHrvXEpKCqqq8vTTT7vFMEBQUBAjRoxASsmRI0coLi4mOjqapqYmKioqOP/88zu46u7evRtVVRk+fHi3lS2xsbEndA6nmgmzhvP1e3uYfF4KkTHBTJ4/ytchHTepqakcOXKEuro6X4dyXAwaNIiWlhZ3Vs8fuPjii/nvf/+L1mku/P8CmhQ+eYBe3eH9OJogNjPAR/tMmc8fzVW/J9xyyy1YrVa2bdtGU1PTsTc4zQQyxAECnABLly7l4osv9nUYPUbTNA4fPsy0adN8Hcpx0drayqFDh/x+pmFrayuFhYXMmjXrlLp8Syn59M2vWfdpDonpA/nBY0uI7Hdqs9Fmz3BDQwPz5s2jtbW1V3OKXU6Vn171Aruy9gNw1nem8eBzN/Q6jiXfm8eS781DStmhHL38QA1rPskGxbghZKjF6P5hNNS3enYgBKHBVuxCoHkLTdNISvMoSqFJXUOq0pjVKz0ZVLOnWPP8LoQueK1OiStIeISs9JQ+dxC3ZqZYgyaHMXrJTPSiL5NCdi1hNmu3zUXeM4jdi4XH/Eoz4jfjBixmH7TqdU6gZ4Atns+usHcsUTdRhKCm4ghhEbo4vOCaWQQ3JVK2v4ry/dW8/uul/OuF5SQucnS7fXds3ryZp556igceeKCDSD0eWlpa3AZ93WUtSktLiYmJ4aqrrup2WWRkJIWFhe45w5999hk//vGPu6w7ZswYoqOjeeONN6iurnaPo/GXcUbnXTsLKSXVNYe4+pH5LLnyfF+HdNwEBQWRkpJCUVERM2bM8HU4vcZmszFo0CDKysqOWuLa15gzZw5Op5OsrCxmzpx57A0CnFZGjBgBHL1HuKhIv4l8IjOwQ0JCiIyMpL6+npaWFiIjI7uss2XLFhISEo77GCeyfSBDHCDAcaKqKp999plf9Q9XVVVhsVh6NVy9L7F3714GDRp0WsarnEp27txJQkLCKX8f1n2ay5//7wN2Ze3nq/c28cf7Tq3Tp+kmXVdXx5w5cwgODu7RSCZv8jbvdYthgJX/2ULVoePP5HiLYdWl8vS97+rCz+VyZzEF0FDV9Y51xtgh/O2jruLGjdLRgEqoxi8q7n0rxvEVc+yS2edrzAju/LBi9AR37iU2Hk1Oz+glKYRemezu6aVrllgKhEt6hLkRl+kEfVTDLfc5adDuRAGi+oUartJ66XhCYn8uunwqaUP6IRyeWU+h4XoWQgiBpkmy1+0he/VeAJb9ZwMX3ziXipIaIw5Jc0Mbewv0EtzG6nay1+1GdXU/5sflcnHjjTcyfPhwfvnLXx498B6yfft2NE3rtgXD7GdbsGBBl1nnzc3N7N27l9TUVLcYtlgsfPTRR7z22mtERER0GMkUGxvLN998wxVXXMHKlSu5+uqriYuL4/zzz3dnqPsyQgguuH4OV918CcFRgtq64xuR1VdIT0+nqqqKxsbGY6/cB0lMTKSsrMxvzMGsVisXXHABS5cu9XUopx3zz+7pfvQGM8mwfPnyLln8pqYm1q9fT1hY2AndzNizZw/19fVERkYetSJmypQpxxzJ+G2cyPYBQRwgwHGyadMmpJQnnKE4nZSVlTFkyBC/NHCy2+0cOHDAr8rTu6Oqqorq6mpGjx59yo9VuK0Ui5HF0zTJ7pySU3YsKSU7d+6kurqaOXPmdCgX7Y0oDg6xdXnOajs5xUybvtpJwdZizxWD5lXqLOloCgUUbDvAoeIaLrx0svu56KhQpEV45vqqqr4fl+aePdzli1X1jF0CdCHqMrPB0l0OrdtZGw7U5kPzekjdaToyyGIYdYFA6qcjpJ7sFSCNAIQTFE1fq6volUYZt3D387oz3+br41SxtDpASjRF0NDY7u4lBsHhQ0f44pMc5iweqx/POMaPnljCmGlpeOWhCQ/S+7rrm6v540/eIyI6tMPfoeo6fRTOynfy+Nn1r/DzW17vtryyubmZwsJCCgoKCAkJQQjhfvz85z8H4NZbb0UIwb333ttl+86YYnTKlCldlmVnZx912ZYtW5BSMnLkSLcYVlWVTz/9FJvNxtixY9m0aVOHstyxY8fy73//m/r6er766isuv/xyli1bxuLFi/v8SBKTkJAQRo4cyY4dO/x6NnFISAjJycnuzJe/ER8fj6Zpxz272xeYfcQB+h7p6eksXryYkpISXnrppQ7LnnjiCVpaWrjhhhs6OPnv3r27yzi24uLiblsRqqur+f73vw/o7tN9cVxm34soQAA/YenSpVx44YV+04vrdDqpqKg4ITdWX1JaWkr//v1PqIfF13gbaXkLxlPFuJkZfPjqahB6pnLC7FN3M6GoqIjDhw8f1U3aFMXHKp8eNSWVxVfNZPl7utvwTQ9fREz8secWfxtSSnK+3kP2OuPLW5MdzaBMXBqRsRE0NeojTTRN8sf/+w8Ohwva7BAaTENjG4QGIZ0qwu7UW3OFQKgq0qYYpcR6BtcsMRZSj0FqIBS9V1fRQLoMEy0rum40s8FOjFSx18MQy812lcj+VqJsFvqFWYmMEERZrYhggVAEFkUwabBeQTE1PQq1TaKpErVdo6XNRXObSnObC3trZzGjl0SbhwIQFoEabINg/VJBulSEamSVDVRVY/M3hfzitZspyisjY+wQyvZVsWtride+BQOCkwCobSuh+Ugrv3rzVv5w3zs01bdy7rVT+ckf/opFWIkO0u/ub1mVT8nuctJGdxxnFxwczA9+8INu3+ecnBxyc3OZO3cuI0aM6NHNSlMQT53a1cHcFMSdlzmdTj766CMAzj//fPd3wLp166itreWyyy4jJSUFTdPYtGkT8+fP73AhGRQUxNlnn83ZZ5/NvHnz+Oabb6isrCQ5OfmY8fYFUlNTOXDgAPv27TuhEkpfk56ezurVqxkzZsxp+Xt8MlEUhSFDhlBWVtbn+89Nzj33XK6//nr2799/RoxMPNN4+eWXmT17NnfffTcrV65k1KhRbN68mdWrVzN8+HB+/etfd1h/1CjdR8C7SmHt2rXccccdzJ07l7S0NGJiYjhw4ACff/45DQ0NTJ06ld///vfHHWN1dTUvvfQSu3btAvSbjD/60Y+Ii4s77n2aBARxgADHyaeffnpSSvZOF+Xl5YSHh3dwHPQXNE2juLi4g+GNP3K6jbRmLh7HQ8/dwDefbychJZbr7j81fX8VFRXukTXfNgv2aKJYSsm+nWU4nSrDJyRz3x+v5foHzsdqs9A/7sQ/r2/+/jPe//NKABSrgubSRyV95wcLyN1ayv6CwwBERYeSPiqBbVn73V/y9TXNAAirRXdYNrFZkO1OhJHaFUJBanpOVNrQM7oWr4pqCYpdotlwZ5E1zTDR8k4pG6XRkRYLCVHBDI4Ion+IlcggK5FBFvoHWwmxKvx05lCaHSpNdhdtrSpORaJK0KRkYKRespwYE4ri1I8VbFWICLUQHmolyKbgchkCuUWlpcVJS4uLI3V2Kqvaqam1o5rl38FelwlWC2gu3IZhxutRtO0Au3NKGTMlhV/c+ro+8sri1aMtJWG2fgwIHUptWykRw48wae5w3t3yCwDuv/9+WttaSQofi1XxVAhUVB/CsbuJ9PR0d8lyaGgor732Wrfv85NPPklubi433XQTt9xyyzE/F6AL4qCgIMaOHdtlWXcZYqfTycaNG92VDt5i+aOPPkJRFJYsWQLoMzVbW1tZu3YtGRkZXcTj3r172blzJ8nJySQmJvYo3r6AoiiMHz+ejRs3+rXBYUREBLGxsZSUlDBy5Ehfh9NrEhMT2bhxI+PGjfOLG/PR0dHMnz+fTz/9lHvuucfX4Zw2vOcCn85j9pb09HS2bt3K448/zrJly/j8888ZPHgw99xzD0888USP/A6mTJnC1VdfTXZ2Nrm5uTQ2NhIZGcm4ceP47ne/y+23337c4zI3bNjA+eefT3NzM7GxsbS3t/Of//yHZ599lmXLlp1wb3pAEAcIcBzs3buXffv2dRir0dcpKyvzq4subyoqKhBCMGjQIF+Hcty0t7efFiOtziz6zjQWfefUmag1NjaSnZ3NpEmTepS9N0Xxhg0b+PJfm/j6g3xCwoKpOKCX/k1dOIon/3YbcQknz2zoo9fXun+WEs69ZibnfncGdTVNrPg0Vy97VhSaGtrY9k2RnuntjHc2uUNmWYDdCaFBeh9tiPFlr+lzEd0l2YBFE2hGmbJEL5lW7JLwCAuDo0NIiAomISqIwVHBRARbqGl1crjZTl27i0NNdprsKhZF8J0RcfxqfTFSA5waIY0Ce7RxFAGfFFTz2IJUPsyrRNSoCBX3DGSAIKsgwqYQGWIlItRKeJiFyCALqamRzJgRR0iwhdo6O9WVbVSXt1Fd2UZNVTsul3SbbndwnG53sndnGSs/2Iyj3eHpVzbWOf+amSz+7nQ2rJ3FfT+7lfe/eI36sw4ycfJ4Vny5mty8rQwbNow7v/swy97aCsA1dy/m2pu+S2lpKcXFxb2+iSSlpGxfFcGhtqOO7bLb7eTn5zN+/PhuL9Kys7MZOnSou9ffFMM2m42DBw8SGhraIUvy8ccfM2vWrA4j7UaPHs3GjRvZsGEDq1evZsqUKURERLB//353P+Ubb7xxWv8mnAwGDBjA4MGDyc/P77ak3F9IS0sjNzeX4cOH+9170L9/f4KDg6msrDwhI6LTySWXXMInn3zyPyWI/YmkpCT+9re/9Wjd7vrXx40bx5tvvnmSo9K5++67mTx5Mm+99RZJSXrF0dq1a7nyyiu577773Dfaj5eAIA4Q4Dj49NNPWbhwYbcueX2RtrY2ampqmDRpkq9DOS72799PamqqX/Y+mxQWFhIXF+e3hmbd4XA4yMrKIi0tjSFDhhx7A4P+/ftTlttCbHowSWP7kbfGM5Zp6+oCCrYWM3bGsR2pe0p4VCgNtU1Ga6xkzLQ0mhrb+NUdb3oymSZS6uOUrJ0ujlUNHC6wGWlfuwuEIGZAOHWVjUiXhrAZI5mcGiLYgsQjCtEMY2uHJCjCQtqgMIYlhJMSH0p4iIWaFieHG+wU17bxzf4GDrfZscuuDckhNoUgi4JNETjMHlt3jTMdeoWlEHpvtGr0SBvLnE5JfYuTRul0i1fFoenrAJGRNuLjQ4iPCSYlLZJps+IJCbVQW91OSVEDJYWNVB9udfdhC6uF3TvLkHaH+16BkBrTF43hgutmM23hKIQQFGwtZlL0d9jLRtat/YaVq1cQpIQxNHwCC1Iu584nruGme5eAEPQbEMHjLx7Pu61XlPzq9jfY8MUOAK6//zyuu69rdcTOnTtxOp3dCrrS0lJqa2uZP3++8Zp5xPCECRMoKChgypQp7szc1q1bOXjwYJe+ZUVRiI+PJzQ0lKamJv72t7/R3t5OQkIC1157LQ8//LDf+iKMGjWKlStXkpGR4Tdux52Jj4/HarVy+PBhv7thLIRwm2v5iyC++OKLuf/++2loaPDbz0xv8ZcMcV/h888/54ILLujy/Pbt21m2bJlbDAPMnz+f6667jldeeeWEjxsQxAECHAdLly7lyiuv9HUYPebQoUMMGDDAL0vbGhsbqa+vZ/r06b4O5bhpaWmhtLTUfXF9JqBpGlu2bCEyMvK4yg33ba+k4otKLvrxRIAOolixnNxMzUPPXsevf/gmrc3tzD1/AguXTOGvv/4EYVE63uX2Hj/UCSEEwqmiOVUIsUGoDQnUNrQhFIXgEBt2VQNVw6JYcAn0UUvGqURFWElLjSA1JYLkQWHUNTkpOtzCx5sqOdDSjhMMwypDo1q8ZxrjFr12p4ZT04gMslKrOsHqEbtSeP0LICRSFSia5vWkfp4Ws4faaBqWQne5lkBTk5OmJifF+UfcN6EiIm0MHhJKalokl1ybjsupUVp4hJIdNRwuctJY38r0+SPI+lIXoZH9wvjRL75D/BBPpv+/76wn1BrJuAGLURSB5lLd/dwHC2opyC5m3MwM9/olJSW9ep+ffPJJnnzySbatL+SRX3qMYd55ZhkX3jiPfgM6utNPmTLlqC69Q4cOdS/zFsOmgZbT2XHMlNlTfNlll3XZ15IlS2hqaqJ///489NBDfie8jkZYWBipqakUFBT47SgdIQSpqakUFxf75fuSmJjI6tWrcTgcx12KejpJSUlh1KhRLFu2rNtRZgECXHTRRdxwww386U9/6lCmHRcXx4YNGzjrrLPcz2maxubNmwM9xAEC+IL6+nq++eYb/v73v/s6lB5TVlZGamqqr8M4LoqLixkyZIhffNkfjYKCAhITE/2yf/to7Nq1C7vdzvTp048rc5950URe+tkHfP7yDi74kd4bnremjPmXTGbk5KEnHN/hkho+eWMtQhFcfusC3t/+axztTvdIoCGpcUjVyLBaFIzZRSAlMbERTMwczqr/7vAYWhnZXmGzIL3m8cpgK9KhEhIWRKjNQn1di54ZDrEQGxvM8GGRpKdEENMvmEMVrRQdaGHZthrqWzw1zKqQCJswMsogDFWsWECqGDHoqlUqhrFWkIXaVoe+vpR6f7N5H8EtiDsZh0mvf71nJQsQbcaxvUuhvTZpbnRQ1GBn7856FAUSBoeSmhLBnItTCIsK4lBRA4MTBnPtnQupKW9kzPQ0Pv7bNyx7bxOxA/vx0DPXMGBQNBUHa9FUaYx9wjPLWAjefnYZv/vXnSdcCaK6urpTy24cq3tCd2K4Oz766CMmTJhw1L+zkZGRTJ06lS1bthAeHu4384ePxbBhw1ixYgU1NTV+Y+7UmaSkJAoKCvwyaxkREUFUVBSHDx8+bd4UJ8oll1zC0qVL/2cEsSYF4jRnbDU/zhAvX76c2267jTFjxvDSSy+5bzLedtttPPHEE3zzzTdMmjQJu93OsmXL2LNnD7/61a9O+LgBQRwgQC/54osvGDt2rN84gjY3N9PY2Og3JVXeuFwuysrK/Gq0VWeOHDlCRUVFh7ua/k5paSllZWVkZmZ2mc/aUy68cS5RMRHsyS1hYHQimVeFcNWPz2Hy9AknLIhaGtu4/9JnaTrSCsD6z7fz17WPERoejKZpPPvwe6z4YAuKRaFfbASDh8axK6cUU/7VVzcxbY4hiKUhlDWIjAmjsc3uKYM2CbXp7tNCEBSkkDFhAKMmDWDAgBD2lTSTlVtHycEW7E4NFEF7pOLOBoOemdVU9NlMZmmzBOmSujjWm3b159BnEUcGWTyC16scGrx+FqAgEHg5QxuxexuECaELbX1mE559KrjFuEToM4nRzcBstnA2fFrChk9L6B8fytAxMYyZNpTCg/qM7ZyN+bz3sm5k1lTfyq9+9HeeePX7/PyW1zhUXMOU+SOJiAxmzafb3HHkbd5HQ11Ll0xub5kwexgTZg9j+wZ9pM6SmzOPy5ytp2IY9Jtex2LgwIGMHDmSrKws5s+f73fOxt0RHBxMRkYG+fn5zJs3zy/bWoKCgkhISKCkpIQJEyb4Opxek5iYyKFDh/xGEF988cWcd955OJ3O4/7+CHDmcvbZZ5OXl8fDDz/MFVdcwRVXXMFLL73EE088Qb9+/fjDH/7AV199BcCQIUN47rnnuOuuu074uAFBHCBAL/nss8+46KKLfB1Gj6moqCA2NtYvv3gOHTpEWFiYX2dTCgoKSElJ8cty9e6ora0lLy+PmTNnfquj9LEQQpB58SQyL9b72uvr69m4cSP790cedSRTW4udF376Hjs372PM9DTu/t3V7oyvN/t2HaKhttn9e035Ecr2VpIxLomslfms+GALAJqqUVfbSl1taefgeO+VVeB06T3GhiYdNTGZzd8UgdWrN1gIsCr07xfM+GlxDB8fQ32tnV159eSXNOsi2LsEXEqESyKDOwpSRZWoqgCLcGekFQDNy6naoNmuEhHkEWfdjRg2j6VosqPJlTlj2DwpU08LPOOojG0779Q8js2qUJZX5t6+vqoNl6OeX708390e0Ogs46qfTmHX+nL2ZFVScbCOxLR4/rrqUTRNQ1EU8jbv8whiAUHBNsK6eT97i9Vm4dfv/pA92w4QFGIjfUzP+9tNeiOGe0N6ejoNDQ1kZWUxZ84cv3AHPhbp6ekUFxdTUVHB4MGDfR3OcZGSksLGjRsZM2ZMn5yR+m0MGjSIXbt2+Y3AnDZtGkFBQWzcuNFvx0AGOLWEh4fz4osvctVVV3HLLbcwatQonn/+ee69917uvfdempqaAE6qj49/WeoFCOBjpJSsXr2as88+29eh9JjKykq/dWcuKSkhJSXFL7MOoM/Mq6ur8+tZnd60traSlZXFmDFjTnp5pOk+vWfPHvdIm868/YfPWPtJNtWH61m3NIe//+6/3a6XkBKL1WZxlwAHhdiIT9Sdhs0ZwwAoilv4uT9iigJCULq3GqFJcDjB7kDaHbha20FqoHrE4tD0SC65Jo0rbxmJYlX4+K29/Pu1PezMrcVhVw0R6hWcBoqzmx5lDV2QGoJVSM9z7nHERqxNDheRQd9y0e4+F8PNunMK2ftXoT8hzLHEphD2FsRCgCK48/7zGJkcg1bZoI+u0l9gEIKm+ha++NdmoqKiGDduHGOHTWbbqjKGT4vn+iems+DqETQ2NhkvsX7pMW5GOtfevRirzUJkdBiPvHgjQSEn54LeYrUwemoqGWMTe/3341SJYdA/jxMnTkRKyfbt24/aw+xPWK1Whg8fTn5+Ptpxlqb7mv79+xMeHs6hQ4d8HUqvCQ8PJzIykqqqKl+H0iMURWHRokWsWbPG16GcFqT0zeNMYN68eWzfvp2bbrqJG2+8kSVLllBRUUFkZORJN7UNCOIAAXpBYWEhdXV1zJgxw9eh9AiHw0Ftba1fCuIjR47Q1NTkl0YnoN88KSgoYNiwYX7d/2zicrnIysoiISHhlPWjHyqqo2B1Ndtz88jdugNV1WhpbHOLhgNFlWiG4ZWmSQ4UVXS7n9jB/Xj89VtIHz2EjLGJ/OLvtxPVX89mzzxr9FFHOiWkxKJYvMSTEB4xalHI3bhfny/sVEnNiOSaHwxnwXmJHCpt4e8v5bPqvwepqtBLp0W7C0uTvVsxpti7u2KRKO0SoRli2HigogtwDd2kS4Nmh1EybcTo+raLH7NX1/2z9y9eMXmvay7yzhZLyZqvdlFdUqPH0/nqS8Bff72UW+b/mree+YIHrnqZPdnVfPh8Hp+/XgCKZPXqVWRnZ9Pa2uo+7g33n8/Swqd5f9uvmXl211nAp5tTKYZNLBYLM2bMoLq6+qg3f/yNlJQUNE3j4MGDvg7luBBCMHToUIqLi30dynExcOBAKiq6/3vYF1mwYAGrV6/2dRgB/ICQkBD+8Ic/sH79evbu3cvo0aN7PBqqNwQEcYAAvWDNmjXMmjXLb3q/qqqqiIyMJCwszNeh9JoDBw4wZMgQvygB647q6mpaWlpIS0vzdSgnhby8PKxWK+PGjTsl+684UMujV7/Eyvdy+ORP2ezdW8STP3yeK0Y/zGPXvoy9zcGsc/VjW4wSZPP3zjgdLvbuOEhSxkAuvXUBE2Z7xtpE9gvnpc8f4KIbZncQpVJKQsOD0MzsryL0Umez3NkQRoOHhvOdW0aw4LxE8nJqePvPu8neWEV7m5FiNecOC4HF2f3tegsYohLPQwgsqvGzhluUmplioeliGSlpchgl08a2Wuf7LV4l0/ooJb22Wc8yC0+uWHg9OmwvEV5ZcIQAVbKnsIJxszL018TIDJvrI8HRaudQcTX/fHkVDrvHNKyytIkV7xay7C8F7NtZxsqVK8nLy8Nut7tfq77A6RDDJiEhIUyfPp3du3dTV1d3yo5zulAUhZEjR1JUVOS3WeLExESamppobGz0dSi9ZtCgQVRWVvrNa79gwQI2btxIe3u7r0M55ehfAeI0P3x91idGZWUlf/jDH7jrrrv4wx/+QHl5OdOnT2fbtm386Ec/4vbbb+e88847qTfg/KtRIkAAH7NmzRoWLlzo6zB6TEVFhV9mhzVN49ChQ0ydOtXXoRw3RUVFpKWl+V0/WndUVFRw+PBhFi1a5C53PdkU7TiA06GLqKqSBj59PoeL7pqEvc3JtjV7+Pzd9Vz6gwWERYSQv3U/o6aksvCy7j8fr/78Iz57ez0IWPNJDlarhcmZI/jrLz+mZHc5s84dR/qYRP1KRTXKmhWFfbsOu8uD3SgKSBgwKIwZ5yUxcGgE2zZUsn1TFU6hePpyhfAyxTK2V0G0uZCh1o5lylJ2qKTWPbMM0SrRVbDpEmqaW5kru6DJ3rFkWrrXN+LwcpkW0uz91bPLGE7Wno2lJ+OLIZZVzZi3bOxP1RAInE6VrfmH0RTFczddCIYMHcChonJ9u6OJWykpySvnbzsruOqehcTFtbBixQoyMjJIT0/3+f+T0ymGTfr378/IkSPJyclhwYIFPn8NTpQhQ4ZQUFDglzN9AWw2G4MHD6asrIzRo0f7Opxe0b9/fxRFoa6uzi/cvocPH05MTAybN28+o8YRBjhxcnNzWbRoEQ0NDe7nnnrqKVasWMHkyZP51a9+xRVXXMH3v/99xo4dy29/+1t++MMfnvBxAxniAAF6iJSSNWvWsGDBAl+H0iM0TfPb/uHq6moURfGLL/buqKuro76+3m9HXXnjcDjYtm0bY8eOPaXGYOljErFYFd1gShHUHGzmvy/kMvWCVMYtSqKpvhUhBAsvm8qdv/4uiy6fdtTM4tY1BUgpkZpEsShsW1/IC4+8z4oPsijcfoC///4zWo60Ygu20H2K1ENk/2AWXTOMy340hvrqNv759HayV5bhckldAEJHgy131lUgFaPkunOcQkC71vHIUurfyJqXGMbIEKueh6UdmuwqEcGeDLEws8rufXn26Z0oEKZ7dOdYjGywUA1xjJfI9z4/JE1N7RDasWrj9scuITw8CKEIsHmJOikJjwhm4MBIaLe7n37/xbWEEcvMmTOpqqpixYoV7N+/v9fZLXubg/Y2R6+26Q5fiGGT9PR0goKC2L1792k75qlCURQyMjIoKiry297oxMREysrK/C5+IYRflU0LIViwYMH/TB9xgJ7zwAMPYLFYWLNmDa2traxduxaLxcKDDz7oXmfixIls3bqVhx56iPvuu++kJKoCgjhAgB5SWFjIkSNHmD59uq9D6RG1tbVYLBb69evn61B6TVlZGYmJvTfD6SsUFRWRmpp6RvQO79y5k+jo6FM+ZiwhNY5fvHUHE+cOZ+bicVx+20KqDzTx3xdymXJeGmPn9zzjNGx8krsXWFM10scMYc+2Unc5tMWikLNuN84WLzHl/VmTEsUimHpOIlfdPwFNk/zr9zls/KSY9sZ2sLs8o4m6cTIxq6A1Reif4W4uroPb6fq8BYS9Yym1XubspbNdust0uM2CxUgKu0K9RjN1QHj0r/Tar3e5M+hO1EZ2WEiJRHpNYDJrt3Fnw4XVc+lw9mWTmTxvGOljk7qepoDv/CCTsy6d7NneMPp69IZXqDnYzNy5cxk3bjwlJSWsWrWKmpqaLq9Vd7z/8gouH/kTvjPyJ7z34lc92qY7fCmGQRcGkyZNoqSkhNra2tN67FPB0KFDsdvtXQyeDhdX89nb37B9faGPIusZ8fHxqKrql2XsgwYNoqKiwm/E/P+KID795dL6w1/JycnhxhtvJDMzk5CQEObNm8cNN9xATk5Oh/UsFgs/+9nPyMnJOSml9/5dnxMgwGnE3/qHzXJpfxOVLpeL8vJy5s2b5+tQjovGxkaqqqr8cp5lZyoqKigvL2fRokWn5XM0OXMkkzNHun+fuXgc5QdqyJiYQEFRHvv2RRx1JJM3d//2KoJDgiguOMSsc8dx/nWz2Z9/iC/e3QiAqmokDx9Ezro9+lBdi1EebJSDDxgczsKrMgD46OWd1B5q8TKPEihWBc2lIYIUpCr1UUmgZ4XNILxHHDk1MHt+vV9GzWtbczOnAO/JQ5JO45Cg1e5Ck5IIq4VGuwpWo0vYMH72Ls1WjH89z3V6sTr1C2vCGP3k9X5L1TNyCePniXOGEWqFoq37+N3db7Nj0179GObrKSA0LJiFl0wmLqEfKz7YQlX5Efc+VVXjXy+vZPjYIfzj2WVYbRZu++2FbNq0ieTkZEaPHn3UEuLDJTX87Tefun9/83f/Ze6FExiSGt/t+kfD12LYJDIykpEjR5Kbm+v3pdMWi4W0tDQKCwsZOHAgAPvzD3HvxX/EafSV3/bEZVx2a99sPVIUhYSEBA4ePMiAAQN8HU6viIuLo62tjebm5pPuwHsqWLBgAXfffTft7e1+c10V4NQTExPTxe390KFDxMTEdLv+6NGjWb9+/Qkf13//6gYIcJrxp3JpKSUVFRWnzADpVFJeXk5YWBhRUVG+DuW4KCoqIjk52e+/4E9XqfS3MXZGOmNn6AK4X2wEGzfqgvZYojgiOowHnr2uw3O3P/kdYuKjOFBYyfSzxzDvwonszi5hd24pSMms8yawdWMRE+YnMGF+AtvWHCJ3Tbnuaq0YZcVmf7GU4FTBqhhjmrovtlKEQJOgqBqaVNxtvpgzgFUJiiFGjecVq0SVXsrZ7AE23LWDgDZN0OJQiQy20tju0t2nJQiLVx8w6K7VoMdtziPujBCGcZdpJkbHbLnR22ymf4WqodldbNu0D1wuaLNTWlSprxsUhFR0IzKhKFx00zwGJekXMY++8n0evOJ5XE7V2K2gtbmdt37/GQAup8pL933CaxseZfv27ZQWH2TSpIkkJnedIdziPTrLoLmh63PfRl8Rwybp6emUl5dTUFDgl3+3vUlNTaWoqIja2loGDBjAin9vRnV5yuE/em1NnxXEAElJSWzatIlx48b5/HPRG6xWK3Fxce6xNH2dYcOG/U/0EZuFOaf7mP7Ktddey1NPPUVUVBTTpk0jOzubDz74gJ/+9KdH3eZkeJsEBHGAAD3AnD98Mhr3TwdNTU3Y7Xbi4uJ8HUqvKSsrIykpye8y2wAtLS1u8yl/Jy8vj379+p3yUumeYs4p7qko7kxQsJXr7ju/w3NP/+ceCrcfICI6lHZHGxmzI2lrc/DxS3nUVbW7S4AlgNXizvgKjHbfVgdEhnr6bc1/vT+7LokIUvR+Y9Od2dypQ+rfwp1bjN09wJ5/hepZT5ijl2wW0IThPg1SER2y0NIqjOSw14l0vr6XEuHQPMfUj9Axw90hNq9ssfdFiM2mH8Vw5ZZS8v7r6xgyNIZzvzONEROS+eMHd/PIDa/Q2tROeEQIc88dx451nt5ZVdX44OU1fPbOBsbNT8ThsFNZmcKESeM7ZE3TxgxhzPQ0dmXtB2DMtDQyxva8pL6viWHwlE6vWbOGhIQEv8tOemOz2dyieMCAAUQPiEAaN1wURdBvQISPI/x2+vfvj81mo6qqisGDB/s6nF4xaNAgDh48yLBhw469so8x+4hXr159RgviAL3jiSeeoLW1lVdffZXXX3+d0NBQ7r77bp588slTetyAIA4QoAfs2bOHhoYGv+kfrqioIC4urk9c6PWG9vZ2qqur/bbceO/evQwePJjw8HBfh3JCVFRUUFFRcdpKpXtKZ1GclpbG33/3Xz5+fS2R/cN56LnrGT+r5xeCVpuFkZOHkr+rgD179rA76zA5K0qNUV+6IJTeok94CUU8uVhpZnqF8JQMe+Pt4OzuyRUE28ERIpHmqCaMLK5T07PPhhW1eyYxuMVxc7suiIWmL7O4JC6Lvl+3F5b58OpH1rPUsqNoNzPSUoLo/DdDeEy3TUduDN2tSRRF6H5eQug3DRQj+20c8/n/+5BpmSOIiYti+IRk3lr/OIdLqklIicNiEXz82hoOF1cDMH5WBsv+sQkk5K0p48CuWq59NJj6hjomTZrkFokWi8JT/7iTzV/lATDjnHFYrD37W9cXxbBJRETEGVM6nZ6ezldffUVDQwNLbp7P9g1F5K7bQ//4KO79w7W+Du9bEUKQmJjIwYMH/U4QDxw4kB07dmC32wkODj72Bj5mwYIF/OMf//B1GKcUX/T0+nMPsc1m45lnnuGZZ56hurqa2NjY03Id4r9/bQMEOI34Y//w0KFDfR1GrzH7RPxxbrLT6eTgwYPMnTvX16GcEGap9Lhx43xWKv1teIvig0WVvPfSCgAcFQ388tbXeW/HUz0un2pvbycrK4vW5jY+ejaX2kPNAKhOB9hsnhnE3goTuPCqGRTnH6axvoWqpnbaHarev+sufzYzxUYmWZPg9BLNxjoCwGWUOguhZ3uRurGWBTqkqA1RLKVESEGzXSUyyKofUuru02oQ7mpsgKBGr+yu5h1Xp4sLmwWcmruau+NYJq+fnVoHZ+3Lb5pDfeURhqTH8/ZLq43eYzyvlZSoDheHS2uJidNbIMIjQxg2Lsm9y+f++wDrPs0lKMTG3AsncO3kx2lr0R2pG6rbCFfiSUmNYePGjQwfPpxhw4YhhCAo2Mq8iyYd9b3tjr4shk3OlNLp4OBgEhMT2b9/P5MmTeKpf9yJo92JLdjap26yHY3ExETWrFmD0+k0bpD5B6GhoURHR1NZWdlnqnu+jUAfcYBv43RWOQZcpgME6AH+1D/sdDo5cuQI8fG9M5jpC5ju0v7IgQMHiI6O9ktXb2/MUumkpKRjr+wjTFHc0F7DuAX650VKSXNDm9u451jU19ezdu1awsPDmTlzNi1HnAjDFdpqjg7ydo/2Enr/fT+LXbmllO2vpr26qYNIdLtKdzDPMiqVNbwsqPVssHBqCE0YmV79OQVPVli4d+Up18YuaW53ERlslHGroFlBcUiwSzBeAuEyzkHDY5zlXY5tOk8LPR5pOkF7j1vyGt2kgNvgKyTUxq2PXcK9f7iWj97e1LEc3HztNI2IyBDe/N1/ue/y58hand/lfWhrsVNf1UhdRQMuh8p9f7gGmzFjecbZY5h/0WTS09OZO3cuJSUl5OTkoKpqj95jb/xBDIOndLq0tNTvXafT0tI4dOgQDofu5h4UYvMLMQy60VlkZCSHDx/2dSi9Jj4+nurqal+H0SPMPuJNmzb5OpQA/+MEBHGAAMfA3+YP19XVERYW1ieze99Ga2srDQ0NJCQk+DqUXiOlpLi42O/nDpeXl1NZWcmECRP6/IVr//79GT9mElMvTGP8Il28z7lgAsGhxx51tW75ZlZ+tZo1/y5g09JSovtH8NRbdzB+Rjpjp6dx7++uBCRoUhepJt4viTF6SAGUFruXeDaWe21nOj0LTfOMUDLLpNul3gOsSY8AFgLh8JrJqwHSNL8Cq0vS3OYiIsiCUPWxSdL4NlcMkywAR6RwbwdeyV73D8I9g9hd8mwuFMaKnbLF7n23OSneU87Xn++gpam9yzkjBJmLx9LW1MaurcXszi3l57e+TvkBj8hrbmjlnov+yD/+tIw3f/9ffnLF88w+bzzv5z3FP7J/yROv34LVpgvXfv36kZmZSWtrK9988w1tbT030fIXMWwSERHBqFGjyM3NxeXq2Q2evkhUVBT9+vWjtLTU16EcF4mJiX4piAcMGEBtba1fjF/6n5hHLH308ENGjx7Nyy+/7JPtAyXTAQIcA3/rH66pqfFLQ5aKigoGDBjgl7N7q6qqcLlcfinmTVRVJS8vjzFjxvjNzZTUYUlomkZQsJXMiyZx7qUL3MsKckp446mlqC6N6+47jynzRyKlJD8/n8r6Mla8vZsD+fVso4xD+6sJjwzm2nvOZfzMDD77x0bD1VnqvVimgDKzqaCPWFKEx50Z9AZdrxbaDr26mgRVGGXVZs8wBAlwSOnlDW2URrs6mld7C3OhQkubSkSwBcUQy/IoV0ASEKYztmYc1XtV0Wlt86DuPmkDVdOfU/SfpYT//nMT0+aN8Jyf1wipYItCv/5haKpH2GuqpDj/EIOT9b9PBdkl1Fc1upcXFxymvLSGxLR4Qrq5sRESEsLs2bPZsWMHa9euZfr06UcdxWHib2LYxMyu7t27l5EjRx57Ay/sbQ7Wf74dKSVzLpzY7Wt5ukhLS2PXrl1kZGT0+ZtsnRk0aBAFBQV+VzYdExNDe3s7ra2tfuFn8b/QRxygZ+zevbvHs+hP9vYBQRwgwDFYv34906ZN85v+lpqaGtLS0nwdRq8x5yb7IyUlJQwdOvSkWP/7iuLiYmw2m1/0nXmTPmIoMfFRbNy4kdIDJaSnp9PS1M5j171Me6sDJDz5/Vf567pHKT20j8bGRj58dhtHqjwZxtwNRYBk04pd/HnZQ0T28/SwCyH0TIvESPV6XdTbLEi7S3dedqrIYKVjSbTN6/OggSKkMcaJDm7TwqFBkILb2Eoa3ladza/M/ajQ0qKXTAuXp+xZuh20OvUpg7v8uYskUSW49P5haQpno2xaqJonSWx3gcsoVTbGUH3+7kYO769ixIQk9mw/iHRq+sqqhkNKaioaurxfuev3MPu88QAMTIpx3z0QAqxBVvrHfvu4GIvFwsSJE9m/fz8bNmxg/PjxR/3M+qsYBv1zN3bsWDZs2EBKSkqPv39Ul8pPr36R3dklAHzyt3U88/F97kz76WbQoEHk5eVRVVXlnkvsL0RERBAWFkZ1dbVf3ey0Wq3079+fmpoavxDE8+bN45577sHlcvm1kdxR8YGpFn5sqnUi1QInctPtDPzkBQhwcsnOzmbq1Km+DqNHmP3DsbGxvg6lVzidTmpqavzSXbqtrY3Kykq/NsBxOp0UFhYyZcoUv8viQFf3acURQluz3b08JMJKzrYt9IuJZv78+bwfls0R2oyMp+kcrc/C/frz7bz9/FcdD6Bq+nqaAGvnGUlGttfhQtos7lFEAvRRM4ZFs4KhW10SaZEdem6tTlAVvezZdITWjZ89jtaAIU4liipoaXURHmJFaBiZX2N1ox8Y9Eyyvp00SqM1I4vtJZgdukmXpnQjvoUAqRkiXOvokm38m7ulBCXIStr4RIrzypAu1S2qp2SOYNPyPP11MM6lbL+nt1F1aSRmDKL8QC0RkcHc/8frCI86dnWCEIL09HQiIyPZunUrTU1NjB49usNn15/FsElMTAxxcXEUFhYyfvz4Hm1TXHDYLYYBirYfYG/eQUZOTjk1QR4DRVEYOnQoJSUlfieIQRf0FRUVfiWIAWJjY6mpqfELc83hw4djsVjIz8/v8ec8wJnLmjVrfFJCHxDEAQIcg+zsbO6++25fh9Ej6urqCA8P95uSV5OqqioiIiL84m52Z0pLSxk4cKBfOmOb7N27l6ioKL80YjPxFsXpaekMGBhNfU0TkQNCuPiuicTGxTF12mQURaGuvA5cLvDORgi9NDr760L3zFQANA1hsejPWZWOAhWhZ4ldqt4X3OZAhntl8lSPIDZ/Vyx6ObTmnqWkj0mytEnUEMXIlgrdGEvx6uGVnkMKTdLW5MKiCMKsCu3tegkzRoLaLFQQprO09NqB+bPUlylS71/WM9R0EMvuBLWm6f3FTpfnvKTUn7MqaMC+wkoItoFLRRgBvPH0FyxYMoXVH23V9yEEo6foffaqS+WxG16hoa4ZTZM0NrQTO7hfD99tnfj4eDIzM9m4cSNOp9Pd+34miGGTUaNGsXbtWtLT03v099G7uuHbnjudDB06lBUrVtDW1uZ3302DBg0iKytLd3f3o5uFsbGx5Obm+kXcFouFSZMmkZ2dHRDE/+OsXr36hPeRkpJyXNsFBHGAAN+C0+lk+/btTJkyxdeh9Iiamhq/yw6D/5ZLa5pGaWmpX2a2Tdrb29m3bx+zZ8/u8xdOx8JbFD/wyhVs+mw38aNsDB40mGnTPdnvwUNjKd59GM27Z9ZYVl/b7Nmh8Vy/mHAaGlrRpNSzxN4lz6ALQ5eKkKKrkY3WjTGVELrrs0VxjycSYMwz1le2SGn4XXn6jb33oTkkdodKpM2KvcWhj3hygaboGV8Aazvu7LG7d9jM1pqxqF7GYZ3ff7Pv2OwDVhRwqoSFB9N2pAVpsXTdJsgKTj013dpsZ+/OMk9PNdB8pBWAxvpW6muavA4lKS2qIG30EHpDREQEc+fOZf369eTm5jJ27Fg2bdp0Rohh0I2phgwZwu7du3v0PTQwaQC3P3k5r/3qY5DwvUcuZkiab290hYaGEh8fT2lpaa/7oX2N2aNeV1fnV94c/fv396s+4ilTppCdnc33v/99X4dy0jH9Fk/3Mf2R+fPn++zY/tvwFiDAaaCgoACbzcbw4cN9HUqP8EdDLU3TqKys9EtBXFNTg5TSL0sBTfbs2UN8fPwxzYn8BVMUH648SPLUcEaNHcGseTM6iP2fvnQTaaOGEBrS9Z5wc2NbFxOihtomrBaLkeU0nvQWkQKkEAhNg1ZPqbYAd2bUM5IJw3HayMxq0jOOyakZu9aFsZ5Elm5nZ/d+jX20tKlEhFj07LQmEaqG4jDGL5lhem9opnzNKzRvIyzvTLZpqOV9fEMUK1aFtpZ2pNWil1N3EdF0uBqztzr0GIyscWlRBQDRA8JJGTEIxSJQLAKLReG5n77H5WMe5vN/bujyvnwboaGhzJ07l/r6elasWIHVaj0jxLDJyJEjOXz4MA0NXXuyu+PSWxbwcdEf+XjvH7nijrNOcXQ9Izk5mYMHD/qF87E3QggGDhxIRUWFr0PpFd59xP7AlClTyMnJ8XUYAf6HCQjiAAG+hezsbCZNmuQXZkn+2j9cV1eHoij079/f16H0moMHD5KYmOi3mdXm5mYOHDjAqFGjfB3KScVm0+edappGUFBQl/cnMX0gL3zxEL9//y69DNirV7exvpX2didBIR5XWQk47Q5dxHZ3u18Io5zaEKZGxlcXxHi2Mdp4MTylhSlKjeppoeKVUTbLmqFj2bTxi4o+einU4h4PJaQ+gkkxe4rdJ2AcAy9XbInbkEt2znh36l32fvU0VUNinK/V0qnHWeqZcov+93L4+CTGz0r37FsIiveUA3pv6W/+cSdLvpfJlMyRqKqGvc1JW4uDFx75N/t2lfH33/+XF376Hnu2HXtsj8ViwWKxuN9zf/ib3VPCwsJITU0lP7/rHOejYbVZfGak1R0DBw7E6XRSX1/v61B6jdlH/P/snXeYFFXWxn+3qtPkAMMMQ845IyggwSxB0XXVNSfUT901rLtrDqtu3jWuOeccAANKEhUJApJzGsLkPD3Tqep+f1RVh5lBQGaYKbff52mY7rp17+nqVG+957zHbrDqiO2AESNG8OOPP9q6zdiBIE1TraN9i+Pw8Mv5xYgjjmbAihUrbJMubdf64YKCArKzs21HKkOhEPn5+XTs2LGlQ/nZ2LRpEx07diQl5aedfe0Er9fLd999R9euXRk7dixbtmxh27ZtbF6dx5ol2wgFtfBYt8dpKLiBYMwcqqoweHQPFFM19SS4TCVXN9KB5YGJsVCEMc56CCK9fq37ugzX4QohDGIsIZq+SCHCvLh+X0kpDALtrQuR5FEjD1rLRocV7m8sDaFagqIbxNmIVSIb++yZ+4RjV4RRRy2JGJEB6DoulwL+IARCCIdKYmoiT3/+ex5+73q69MqJYdT+usixTm+TzNV3T6dTj4YZFv/43Wu8+8RXfPHW9/zh7EfZu6OoYYwmrJpht9vNCSecQGVlJT/++KPt1MifQu/evSkrK7MNwakPRVHo0KEDe/bsaelQDhvt2rWjtraWmpqagw9uRbAIsR0+B3369EFRFDZt2tTSocTxP4o4IY4jjp+AnQhxvH746KKgoIDExETS0tJaOpSfhYqKCgoKCmxX0/dTqKurY/HixeTm5tKvXz8yMzPp1K47P65cwwsPv8+fLnia2y56mmDAUCFyu7blzCsnGARW18McT9N0JkwdysBjDAMoX20gvIbQdURQN9KbY/y1hOEyLQSEjPkijszEjBWW0U1Ihh2hw9bSUoaF4AOexhpZ2nhrNZITHIbaLEzdWY8aF6UGY2nWYXMugwwrmoy0W7JgpVZrEsVSxaNJc3R6tTBTu4m0vPDW+Ni5Od8gQd3aAYpZqy049bxjGzydAcfEtolTVYW8zfnoukTXdIKBEGu/39booahvoJWYmMiYMWMoKSlhzZo1tiADhwKXy0XPnj3ZsGGDbZ9Tx44d2b9/P7quH3xwK4LD4aBt27a2U4kzMjIIBALU1ta2dCgHhdVObcWKFS0dStNDipa5xXFYiBPiOOI4AEKhkO0MtexWP1xTU0NdXR1ZWVktHcphY+/evbZOl96wYQPdunWzXUZBY9B1nYrSapYsWUJWVhYDBw5ECMGuTfu5/dfPMPO/axh5amcGjc9l/fKdvP7Ilyya/SNn9v4Dn7y4iE69cnj8k5uYMHUoPfrncvmtp3Pi9OGsX7HrgO4kAgy1OKiFa4RRzJulpIbHWjW7elg9lpgcsV4qNSEdNEMhDs8ZrRKHOa40Wi8lOGIeD5tXE2nhZKVUG88lKhXbqmFutH7YUJRjSL0gog5H3fxef4Na4sVfrgPg/ecWhj8jQlEoLaxEC2kxY487ZSC/+d0pJKV6aNs+nb++eR1ZuelhhR6gc++GF80O5CadkJDA2LFjKSgoYPv27Y29fLZEjx49qK2tJT8/v6VD+VnIzMxEVVWKig6s9rdW5OTkUFhY2NJhHBbsWEf8iyTEcdgCcZfpOOI4ADZu3IiiKLYw1AqFQrasHy4pKSEzMxOHw15fRX6/n6KiItu2iCguLqa8vNw2/bV/Cvt3lXDHBU8y+OT2pGclMfDsoWECtnz+BrSQTnFeNbOfXsfUawcC8O7T8w3n45BBTvdsK+TdJ+dxx1OXxcydmp5IeUlNhPxBg9raBnRZmI+apFMgTS4ZqaPVhTAbEwuTvJppy1KiBEE6pGmsRb11RXhdhJEynZyghsmqwPC5Cvcllmbnpug5zPUwY5LRJNdSgnUZQ7INZVnHF6hke+EiSmp2ENDqcDuSaZfam57pY3A5PDGx7t1mkB6/LwhIAlodhd6trHj1I/79+h/whWpwqA769u3Ptf93NZffdDmX3HJ6+DA+8Nr/8cQd71JZWsP0qyY2UJEP1lopMTGRUaNG8d1335GSknLIxneFhYXk5uZy3XXX8fjjjx/SPkcLDoeDPn36sHHjRnJycmxXJy2EoGPHjuzZs8d2WUFZWVmsW7cOTdNsZdbWpk0bSktLbdGPeMSIETzzzDMtHUYc/6Ow11loHHEcRaxYsYKhQ4fa4sevsrISt9ttO7XPrmne+/btIyMjw5a9h6WUbNy4kV69euFyuQ6+QyvHi3+ZSceBKWR1TuGj/6xk9w817NtZTG2Nj5zObQySp2kU76mJIcVrF+2PmWf3lojqVlZYSUlBJb//5/ncdeWLsSpxPcMpgyzWSymur6xGkeHIg6JeOybjMYWIWBwzHxF3aWsub51mKMQisqaAsHGWo04nXLErIzXL0ff1aLIf/Rw03agvxiD1tXWlLNv+MgGtlqzU3iR52lJZu5+80uWUVm9ndKeLcDkSzPpojbbZKbzx+Fe0aZ/Ojk37KfBuYUPpXNxqEpnujrRP701VTSU/rlzNVVddxeeff857770Xjq9Ln/b884MbaQyH2mc4IyODIUOG8MMPPzB+/PhDqpX/5JNP0HWds88++6BjWwJdunRh+/bt7NmzxxYkpz46duzI119/TTAYxOl0HnyHVoKkpCRcLhfl5eW2+s1KT0+3TUaBZaxlt4sOB0O87ZI9ECfEccRxANipfriiooL09PSWDuOwIKWkpKTkZzdRb0ns3buXzp07t3QYPwtlZWVUV1czZsyYlg6lSeBM1ukzqjMfP7yCuuoAKxZtQtcMhbW8uDpMYF0OGpLi+XnheUafNACAb2b/yN9/+yqappPV0WxF1ajplDSVWrP3cBTRFEIgNQ1Uh1FjSz0lWSfioGWlE0sZmcc03CJaARTC4N1R03i9QZIS1MiDpjrtqDUkYqFFnYlJidAxWHVYvQbpqE/wTWjmOCGQus7G/V8Q0Grpm3sqnduNDs+5ed+X7C5ZypbSbxjQ5kSDjAuoqvLxxhNzEUKgOh0kqWkMzzqDrIRuEVLuEfROH8uSgrf44IMP+PDDD/nVr37VMJYoHCoZttCpUyeqqqpYunQpEyZMOCgJ++ijj2jTpg3jx4//yXEtBUVR6NWrF9u3b6dz5862K9lITU0lJSWF/fv324rQCyHCJlV2I8TV1dWEQqFWn4ll+Vls2rSJAQMGtHA0cbQGDBkyhGuvvZaLLrqo2c0/7ZVvE0ccRxF2IsSVlZW2M3eqqakhGAzart1SXV0dFRUVtG/fvqVD+VnYsWMHXbp0afUnR4eCyspK+k1ox4LXN1K234uigBbSGzUdcjodCN1Mn35qLSNP68LZvzuOLn1yOPf6E7n0D1MAePbPH6GZPXeL95VFLu9bbNS8eZI9TD5/NNfcNgUFEWuiBQ1JtBZVOwwNVWWMk24BpmlXY5f4Y026vHUabpeK0xFrcqUJPXYXCUI3lGOhE3adRmI4TcvYJYSmo1g1xEBtoJzSmh14nGl0antMzFo9ssejKk7yK9cRUnRQFVAUNq/egzRNsUJBjdOnnU67xO5mL+bIgm5HEt0yhwGwcOFC3n96HpeMuoffTf4nS79ax+8m/5Nz+v+Jx29/B1+dL4YML1q0CCEEt956KytXrmT69OlkZmaSlpbGWWedFWOCtHXrVv7xj3+QkZHB1KlTycuLXAyxUFVVxfz585k2bVoDov3NN99w9tln06NHDzweD+3atWPUqFHcfvvtjbxOzYuOHTvi9/ttUxtaHx06dLCNahmNNm3a2O6Yezwe3G43VVVVLR3KQfGLNdaq7wFxtG6/AGzYsIEbbriB3NxcZsyYwQ8//NBsa8UJcRxxNIJQKMSPP/5oG0JsR4W4tLQ0bLJiJxQUFJCZmYnb7W7pUA4bdXV1FBQU0K1bt5YO5Yjh9/tZunQpffr24Q//vJxb/n0BT311GwNH9zCIZRTxUhRBjwEdDNVW1yjeVUn5Np0O/VP4w9O/5vI/TUN1qOTnlRIK1SOTliOuZfAkBCgKaW2S6DWkM2dcdBwPv3ENKSmemPjCplvmPgIRrlkOzx2zQ4RUK5pECR0gz85i1ALqAjqaJknyOBpMBVH8PYbwxqrG1vgork/Mg0jKq3YB0DalB6Je3apDcZGe2BFNBqn074+tt47i6e1y00lIcjd47ooqGHvqUADKCqt44cFPKN5fwfZ1e3nw6hfYvn4f3qo65r63hDmfzYtRhleuXAnAli1bGDduHKqqcuWVV9K5c2c+/vhjrrjiCmbNmsXo0aOZO3cu3bt359prr+XTTz/lkksuaXBoZ8+eTSAQ4Kyzzop5/C9/+Qvjx49nxYoVnHjiidxyyy1MmzYNv9/PnDlzGszT3FBVlS5durBjx46jvnZTICcnh+LiYtv1nG3bti3l5eVomnbwwa0EQgjS0tKoqKho6VAOCXFjrTiisXfvXh544AGysrJ44YUXGD16NCNHjuS5557D6/U26Vr2lwjiiKMZsHnzZoQQtmhJEwqFqK6uth0htlvqmQW7tokCQx1u164dSUlJLR3KEUFKyfLly8nIyKB3794IIejWrwMAdzx5Gfdc9gz5u0tom52OO9FJr8GdufKOM/h+zhqWzl1P5945/Pr/TsJbW83333/Pym+38MF/l1JZZv7AOiyjKpPR6bqR/hyFovwKHrn7Q/L3luHxuKgprzXV0Xqp0ybpDPf6Dc+J5XhV/8mhCIEizVriaCVZRMZYd7x1IZISVSpqonspWzFEjbcMtWLmaGQs9beD11cKQKI7s+EYKUl0ZVLKTry+Mtp6YtNgM9olM+6Ugcx6aVFMeGkZifz2r+fRZ2gnJp1spCf37jSIJRjKra5LdN0gHi6PypQbhhGoC8WkSVuEeNmyZSxZsgS3lsb7T8/j18f1IC/vNr788ktWrVrFV199xXHHHUdNTQ1paWls3ryZjz/+GJ/Ph8cTuZDx0UcfkZSUxCmnnBJ+rLCwkHvuuYdx48Yxb968BnX3LaUYduvWjblz5+L1em33eU5OTiYhIYHi4mJbZdrYuY7YToT4ueeea+kw4mglyM7O5o477uCOO+5gzpw5PPvss8yaNYtrr72WW2+9lQsvvJCrr76aoUOHHvFacYU4jjgawfr16+nfv78t1MuqqircbnfMiV1rh1U/bKeTCjAuPpSUlNiSEIdCIXbv3k2PHj1aOpQjxvbt2/H5fAwbNqxBDeXbj3/JjvX78Fb5yNteyODjenHDQ78mIcnNCWcfw+1PXsaFN52Gy220JNErk5AuL50HRJUcKEosGYaY1GkppSHmAgtn/4ivLmDw4JBmOjRHsctACGnW1aKKiLkVhGuFpZRIXTcy3aya4lC9PseWmqtDdI9Jb51Gkif2e0qadyUyHI/Q9Jh5QERirU+Gg3qUuCsI6X4AHA5PbAq5boxzqobyG9J9kTnM5xH0hWjfsR6RFoJXl9zH2NMG87d/PcS6deuYPHkyV15/CU63A0VVEEKQ3TEzTIb9tSEG9BsU851sEeKXX36Zjtld+NO5j/Pt56tZ8sVGlIAHTdP45z//yXHHHQcYRGz48OGcf/75ZGZmxigMPp+PL774gtNPPz3mu3TTpk1omkbv3r0bNaFrqe+whIQE2rdvb0uVWAhBTk6O7fr6RtcR2wl2IsSDBw9m/fr1tu213RikFC1y+6Xh1FNP5YMPPmDPnj088MADtG3blmeeeYYRI0Zw7LHH8vLLL+Pz+Q4+0QEQJ8RxxNEItmzZQp8+fVo6jENCRUUFaWlptjJXseqH7aZqFxUVkZiYSHJyckuHctjYu3cvCQkJtutVXR/V1dVs2rSJYcOGNVoHvWtzPrrpsix1yba1e35yvq0/FjL7mfWMPKUzg47PjWwQUX/oMuK6bJldmbfyijpOPns4SckeI1Vbjz2RM1yfdVBEVO1wZJvU9Ej/YiXiPC00ieLVY2cyVWMhpXmDmvq9iKOUbakYBFxEq92IhgQ4+uRTyrDfl1F7HFWQJqPGhuuqzeNTH+a4mspaFn+5FsWhhNs7jZjQF5fbyWOPPca///1v+vbty2uvvUbH7u14eOYtTL9yApfdNpVH5/yeq/55Mpnt0jnptEn0HxFpveT1etmyZQvdu3fntNNOY+fG/fjrAlgtn73+CtLT0jnvvPNiwsrJyWHt2rX87ne/IzMzQtS/+uorampqGqRLDxgwgLS0NF588UXOOOMM3nnnHcrLyxs+3xZA9+7dycvLIxgMHnxwK4PV19duxMeOdcTRxlqtHb169aKiooLS0tKWDiWOVors7Gxuv/12/vOf/5Cbm4uUkmXLlnHllVfSqVMnHnnkkZ81b5wQxxFHI9iyZYst+g+DPeuHrf7DdlDgo2HndOldu3bRrVs3W104qQ8pJatWraJr164HJPbpbWIvVqxfvpO8rQdWogYf28PsU7w2QootomemP3sSXbg8DlMVjU1z9tcFmTH1Uby+IMlpjbQ9E6JxfxNriujaZIvIYtT9qpZ6Gz2B9ZExH6utNXsRW5ASYZ33WoZZloEWVk2xQahRRAMyHFaNwzXYEodqKKYhzWeSft2Yw1KBpaEgOxVP7JwmaV63fCc6CqgOhNPBqb85jieeeIIbb7yR/v37s2DBgjA57TGgIzPuOYuzrp7I6tWraJuTwVnnTaHf8Ni699WrV6PrOieddBIA7bu0NZV9qNWqCUo/QweNbOAqXVNTw8MPPxwmkxY+/PBDXC4XU6ZMiRnftm1bvv32W8455xzmzZvH+eefT1ZWFqeffnpYoW4pZGZmkpSUxL59+1o0jp+DzMxMdF1vNRcXDhV2rCP2eDy4XC5bGGslJyeTm5vLli1bWjqUpkXcUKtJsG/fPu6//366dOnC2WefTUFBAWeccQYff/wxd999N6qq8vvf/5677777sOeOE+I44mgEcULcvCgtLbVdurSUksLCQlsS4oqKCmpqaujQoUNLh3JE2L59O4FA4IC1/Wu+38aiWatiSJ6m6Xz84tfs3lLQqBp1wvThTJg6hOK9Ncx+ag0jT+nEoPGR45SUlkCb9mmEAgdWV3RdooV0qivrIqTShBQYJNFMvY7pA9wYzLZLRmq0bDg2XAts1RBrhqmWLsO3mPbG4SCjUp2teaINsOo/HrVzkse4+FDrr+e6baLWb5CaJHdmRAG3XLd1CSJyqiElXH/lrfz2t79l4MCBLFiwoMFn6lBaK1lk1DI+TE63eoILqgKFAPTq1vB9smrVKrxeLzt27GDdunX88+ZXmNr1Rt5+413GHDu2Ubf+gQMH8t5771FeXs5XX33F2WefzRdffMEpp5yC3+9vMP5ookuXLuzevbtFY/g5UBSF7Oxs26VNW3XEZWVlLR3KIUMIYau06d69e//yCHEcPxtSSj777DPOPPNMunXrxv33308wGOSOO+5gx44dfPzxx5xxxhncd999bN26lREjRvDCCy8c9jpxQhxHHPUgpWTz5s22IMR2NdQqKyuLSVe0Aywlw25togB2795Nhw4dDtqD9VCwdU0ed134JLed9wRrFm9tgugODQdLlQbYuTFKKTMJm67rfP7G91x70t+459Jn0EKGsuOtquP+K5/nnIG38/XMlaBpFO+pZvbT6wxSfLxh9lNX62ffzhJ0LYoI6nqDtYGwqio0PaLMmvWwaA2JJrqE+m7SUoJqqrA6KL56SlQ9JcBbGyI5UY1xidbVqLksdTgm3Rkj91o2snZINiC9mSldASit2WGELiPjQ8E6Kmr3ogonaQm5EWVZCFIzEiNKu/ncd5QvZe3+rxg6dCgLFiygXbt2MU/vUPsMW4R45MiRAKRmJDHhDKN9U1WgCICpZ5/aYL9Vq1YB0LVrVwJVkNBOo8i7B1+wFrXypy/SuVwuTjrpJN59913GjRtHaWkphYWFP7lPc6Njx45UV1dTWVnZonH8HNi1jrhNmza2IsQAaWlptnmP9OrVK06I4wDggQceoFu3bkybNo1Zs2YxZswY3n777XAdcadOnWLGp6SkMG3atJ/1vRwnxHHEUQ+lpaVUVFTQq1evlg7loKiqqsLlctnKUMvv91NXV2c7El9QUEC7du1QFHt9bYZCIfbu3UuXLl2OeK7aGh+3nfcEq77ZzJrFW7nr4qcoLWj+k6xDSZUGGHxcT1SLgNYnn8APCzexfMFGAF7+x6csm7ee2uooEw4pKc6rCqdPjz+7t0GEoyAAAsEoIimNX1LVqP+VliGXZWIV7S5tGWNBWEVWIEJOrXECdCEgpKFo0tiuSRQdFIt0m+O94RpiKx4R+WUXwuw5bBJi3Vor6rlY5NpUl9WoWK01Et2ZtEnuTl2ggryS5ZF075DOtsJv0GSQ3LQBOBSnqURDgGpOv3QQuoj0Z95WtpgtpYto37YL8+bNa5AlcqhkGAxC7HK5GDhwYPixPzx6MXc9ewUZ3Y39xh5/XKP7AQwfPpzibX4yc5PpNioNEKTTMWbsqlWr2L59e4M5tm3bxrp16+jcuTMdO3ZssP1owul00qFDB3bt2tWicfwctGvXjpqaGmpra1s6lMOCncilhbhC3HKIm2r9fNx7771UVFRw3XXXsW7dOhYuXMi55557wIviYGQNNdZW72CIt12KI4562LJlC+3btyclJaWlQzkorHRpO9WFVlRUkJSU1CRq5dFEaWlpk5DKo419+/aRmJjYJMp2YV5pDIEM+kPkbSugTU7DNNOmxLZt2wgEAvTr1+8nx3Xr14G/vHU9X727lNQ2SZxw9khuOO1fMWM0k6ju31kcNt+KThPO7phBn8FdCJR46DE8k/Li9qz9NlbFErpEBoLGPp6o97FiKsGYhllBzSDKDodxP6SDQ4mkKkenK0elFRvbJIoGuiYbv3KtS4SAWm+IpEQHUf2UCDPikB61r0QQtZ6U0Y9YC4M0iXy0CK5L+nU8nWXbXmbT/jmUVe8gyd2Wytp9lNXmkejKpFfWBMJ9m3WdZfvfZv5vn2Z812tIdKaxr3It28q+QwiFcy+czmOPPRaJTEpKCytxJzo559dnH5QM+/1+NmzYwODBg2Ocn1VVYexpg9l10Ta6dOnS6MWTlStXkpCQQL9+/XAGU3j4jleYfvEp/LBqGWddenLM2Mcff5yXX36ZY489lpEjR5KcnMyOHTuYOXMmAC+++GKruEDWpUsXvv/+ewYMGPCTJ4qtDU6nk/T0dEpKSujcuXNLh3PISE9PZ+fOnS0dxmHBMtbSNK3Ve3f07t2bV199taXDiKMV4Omnn+bCCy88rNZykydPZvLkyYe9ln2+OeOI4yjBTvXDVVVVpKamtnQYhwU71jyHQiHKy8vD9Yp2Ql5eHl26dGmSiybtu2WRnpVCVZkXpMSd6KJbv9yD73gE8Pv9bN68mWOPPfaQTuQGH9eTwcf1DN8/7/qTeOe/cwHI7pjJyAlGXenokwey8pvNxiAzD/iSWydz1pUT8CS6WThzJS/+82OmXjcYEKz9Zr9JYKMIb2N1wIpAYiqsOhDQkaq5j6KYYmlsj2J0EasQm0EJBKpPQ090xJJnS9FVoKYmSKJHxalCYoIThyrIzjBIYptkB7VAbU0wth2ULsGpxNYLg6Fqx+REm9B1kpzpHNv9crYVLaKkZjvF1dtxO5LpnDGSnm3H4VI9YRMuNI1QKDatvDZUaYav8+ijjzb20tGza2/Sq3szfOgIXnvsc7av38vw4/sw/aqJCCHYvaWAbz/9kdLafILBYKOfx927d1NaWsqECRMabPP7/WzcuJERI0agqip9hnXh1EuH882y+fzhzhu54LrTYsafeeaZBINBli1bFm7pkZubywUXXMCf/vSnVpNFlJGRQUJCAvv377cVsQTDtbm0tNRWcaenp1NXV4ff78ftdrd0OIeEhIQEHA6HLUqsevfuzdatW9F1vVVccDpitITR1S/EWKtv376Ulpb+JCHes2cPO3fuZPz48Ue0VpwQxxFHPdiJEHu93gY1FK0dlZWVtqvDLSsrw+PxkJiYePDBrQh1dXWUl5czatSoJpnPk+DiXx/cyDtPfIUW0jj7mhNIb9O8mRSbN28mKyvrZ5uwpbVJMvrlKoLCvBI+efFrzr3+ZIYc17Ne/Sz0HtwZT6JxgtuuQ4ZRU/zkGqZeNxghoHRviKvvmMqP32/joxcWGaQ2qIHTIOpCEWbPYaOaV2ISzKAGLodBgHUMldiCECiAHpLgiCLGqoIe1FEkCJ+OdCsIRdAmw01OppvsNm7aZLpJTnYghODGS3uj6RItJHG5jPl/dV53nE4FKSW13hC1NSGqKwOUFNZSVOijsLCOWp8WNr8Kt4ySUUqxESQgSXCmMqjDFPNkqxGHavM44nAwsdu14eeHlPRqM47+7Scwc91fYl6f3Zv38cVncwnUhpjz7BoWf7aG/zjf4JvZq5FS8sOCjThdDoaO683vpv6bUCCErkv+dcsb/P7fFzR4vbt06XLAVj5ut7tBi6Llaxbzxhtv8Nxzz1FVVRVjqnXmmWdy5plnNjpXa4IQgo4dO5Kfn28rYgmGa/OaNWtaOozDgtPpJCkpicrKygY18K0VQgiSk5Opqalp9YS4e/fuBAIB9u7da7v3cxxNi0mTJnHvvfdyzz33HHDMq6++yj333HPEzu9xQhxHHPWwZcsWjj322JYO45BQU1Nju564FRUVdOvW7eADWxFKSkps54oNUFhYSEZGRpOqGB26t+OW/1zYZPP9FLxeL7t3725U7TtUrPzaUIGlSfZWLtrEudefTPuuWWR3zKQ4vwKAxBQPvQZHLi71H9GNK26byjtPzuPb93Zw0mX9GDCgPz169ODL938wWvwAQtORms70S8bw+azV+H1RhEtVIKQbKda6YbAFmOquiFGZFV2iO9RYJdipkJbgoHO/NLr1TCU3JwFdQlGxj+IiHxs3V1LjDTH5lFxmzt3Pnn11gMStCG6Y0YcX/rsRLaiTlOQgOclBYrKD1DQXWTmJ9OyfQUYbN96aEHt2VLNzayV7dtYQCugN3KjDGnIMEZaxsVr/i3pEOQonnz0y5n4wGGRr3iaDDD+3Fs1MN9+2bl/4uAhFsH75Dnx1QYL+UPjxhR+vaJQQHy4++ugj2rdvT7du3di4caNtvvvrIycnhy1bthAKhWyVNp2ZmUldXR21tbW2uuCYlpZGRUWFbQgxGA7ZXq+3pcM4KFwuF926dWPLli2/EEJs2R0e7TXtj0PpUy6jWgAeCezzrRlHHEcJW7Zs+VkF+UcboVAIn893WLUVLQ27GmqVlJTQtWvXlg7jsGHnvskAmzZtokOHDkdUFtBjQAdWLNxo/Ggqgp4DDdLrcjv414c38uGzCwgFNc64/HhSM2I/S7++9kR+fe2JgOEy/v333wMQCmqYvY8M4yrgij9OYdnSnezfY7rPWj/QTpMgBkOgumJTlBuQTeOxlFQX/Qem07NnKukZLvbledm2o5r53xZSXh5ABHTjfMd0b67xhnCaBNsoIbaMvIyla6oCeCsDUQS2xAjNpdAuJ4EuPVMZM6k9ydNd7N1ZzZZ15excX2YQ1GhTMbURszCMzAGhafiq62KfnwUhGD2pL9fdOz38kGWglZScyIaFRca0QuBwO+k3oiv5u0uQ5oWEviO6kdE2JXLxQBG0bZ/ecJ2fgY0bDZM1v9/PV199RWlp6U8at7VWpKSk4Ha7KSkpsdVn3s51xHbroWwpxHaAZaxl9RmPI44DYffu3U3i+RMnxHHEEQVd19m2bZstUqZrampwOp0xpjKtHZWVlbYz1AqFQlRUVNhOIQ6FQhQXFzNgwICWDuVnobKykv3793PiiSce0TwX3HwadbV+1izexsDR3bn41ojZRtv26Vx971nh+766AKUFlbTrkIHTFfl5rK6o5W+/fYf8fYVMvaaO2mC5yYcNUjxyfB/+eOEz7N9RBNEqL0QcmwGp6WZ6tYyt8TIF186dEhkyIovOXZLYvbOGZUuKydtWRag2RCjJGU6vtvaxCKLXGyLZ4zDIq2pkPANoCQ6o9ceS5Kg64qBfZ99uL/t2eVk8N5/0TDfd+6RyzPgcxp/akY2rSli3pIiaCn9kX8s4LOrK/fV3TSMUCLFjUz6L566nrKQmUusMtMtNZ/xpg5j92reMnNCPdh3Tw27SI4aP4IEt74aPVSio0b1/B9LbpLBt7R6GT+jLtEvHIYRg8+o8vnjre9pkp/HHxy4+vDfCQeB2u+nZsycbNmxg3LhxtjIqBCMl1mpjZCdCDEbatB3riO3m7J2cnGybNle/NKfpOA4df/7zn2PuL1y4sNFxmqaRl5fH22+/zbhx44543TghjiOOKOzbtw+/30/37t1bOpSDwuv1kpSUZKsTt4qKipgaPTvArvXDxcXFJCQk2C6l3sLGjRvp1q3bER93l9vJ//35nIOO27pmD3dc+CQ1lXVkd8zkn+//lqxco9b99Ue/ZM0So/3O7KfXMfUao9XP2m/yAUlCgpOV3+xpXB2FsKO00HSks55JjJR07ZnG6Ik5JCY5WLu6nAVz9+OtCYVJpxI2ZYlNU1ZCIJFG66Ukh6EIqyJco6w7FYRuqtDRqWdmynZsHFBR5mfl98Ws/KaADl2TGXRMFhfcOJAtq0v5YcF+gxjLhsl4H7y4iN2bCyI9h63njCTJo3LSmUP4502vA5CY9hnX/uMkklOTGDVqFIqikJqZRFWZN0zwsztmcvaMSQ0O44y7zmTGXc1X09ujRw927txJQUEB7du3b7Z1mgs5OTmsWLGiyVIIjxbatm3L6tWrWzqMw0JaWhq1tbUEAgHbXJS2FGI7vD969+7N7NmzWzqMpkHcVOuwcN9994X/FkKwcOHCA5JigA4dOvC3v/3tiNeNE+I44ojCli1b6Natmy1+4OxaP2w3Qy271g9bSlFrP/FpDCUlJZSWljJs2LAmnXfL6jzmvr+M9DYpnDVjIglJkdrq5x/6JNxSqji/gnf+O5cbHvo1AGuXbQ/XxxbvrWH2MyYplrB20T7WLttuGmZJCITA/RMZECE9bMKV0yGR4yblkp7pYsXiItatKiVk1RlHvW46EsUfRPc4Y52izXTt2poQSQkqUondD8VQi4UuDSdro2g56v/oVk2xCvL+nTXs31pBWqabY07swPm/G8j6ZUWsXLCfQG0ovER2h4wIGY6ex4S3so7Zr34HgMujcuoVA6go9nLCSZPCruF3Pn05f7v+FarKvUy+cAxjTht84OPXjHA6nfTp04eNGzfa8rPTpk0bNE2z3fesHeuIXS4XiYmJtqojTkpKIhQKEQgEWr07dlwh/t/FggULACMD6oQTTuCyyy7j0ksvbTBOVVXatGlDnz59msSNPE6I44gjClu2bGk1rTQOBjsS4srKStvV4paXl9OhQ4eWDuOwIKWksLCQkSNHHnxwK8TGjRvp2bPnIZ207dlWyEfPLUB1KPzqmhPJ6dx4/Wfe1gJ+f9Yj6LpESsm6Zdv5y5vXhbcHfEH0sIoqCfgj5lhqdLqxEIb79NNrmXrtQNA01n+bj3SoBhXUpSnmSnMmIsRTCNDB41EYf2onuvRI4cdlxcx+r4Sg33TIFKZ6G63oKgJFB+ELGfOpAmkRUCGorQmS2zGpoSogRFR7YjOFOWq/qAAjY0I6wjK0AqrK/Mx7dzttshM59tROXPiHISz5LI+Ny4tBSgr3lkWpwvVaOYUMB+uq8lrcCQ5Ov2YQ/togalJqTAutQaN78MYPf24VylXXrl3Zvn07e/futZ2Dv6IoZGdnU1BQYCtC7HA4SE1NpaKiwjaEGIy0aTsRYofDgcfjoaamxhaEeOfOnbZS4A+IuEJ8WIg20bz00kuZPn36ERlrHip+AQ2+4oij6ZCXl2cbwmY3QqxpGrW1tbbqmyylpLKy0lZp3lJKSkvL0HWdzMzMZl9v9+Z8Nq3chabpBx98CCgvL6eqquqQyhaqK2q5ZfrDzHl7CZ+9vphbz3oEf12g0bE/freFUFBD13SkLln1zWbTHMvAb353SsxV5pS0BHTdeE4jxvcBPfb5Fe+uZPaTaxh5eleOOb0b3fu0N+qHVQX8wYhTczQZBnoMSOc3V/dFUeCNZzez/LuiCBmuBymEcV5jEU4r/VkHoUlEyFClvTVBkhIdqH4tlkhruvkjX689kl7vbMm6G+0QrcXOVVpYy6cvb2buW9sYcUIHplzeh+S0xk9UBRJ8fgiFQAhcHpXTrx1MoC5E0ZYgUy9qvN6rpckwGKSyZ8+ebN++/ZAcTlsbrDpiu8Eil3ZCSkqKbUyqLNjFWMu6CL1///4WjiSOlsRLL73EGWeccVTWihPiOOKIwv79+21ROyalDNcQ2wVerxeHw9Hqr0xHo7a2llAoZBsSv3HFTi4acTdP3PM6JXnecKuh5sKLf/mEa0/8Kzef8R/u/M1/Ywjmz8WOHTvo3LnzIRmv7Vi/l5qKWnRNR9d0Sgsr2bezuNGxnXpmh/9WFEF2x0wczohKOerEAZz0q5EgJXpQ48NnFjDr5W/YuHIXg4/tyaQzhhkkMRQy/lcUigt8zH5mPf3HtSepXYRMCiGMMRaEwOVROPmcrkyY0plv5+zliw93U+sNhbeHyaipMEurU4dVF6zpxrwShJTGDRA61FaHSEx0oIYkak0IETTIu6PCvDhgjcXaF8MYSzdVY4u8W+Oi3a+t+BQFVEHelkrefXgNNZUBfn3zYHoPb9vARExGOVG7PCqTrx1MoDbI3Fc28sPCzfz3ng/CFxtaIzp16kRtbS2lpaUtHcpho127dlRXV1NbW9vSoRwWrDZGdoJdyGU0kpOTbdF6SVVVsrOz44Q4jqOGOCGOI44o5Ofnk5ub29JhHBSBQIBgMGgrhbimpsaWJmCpqbHpna0Z//zda5SXVNN5YFuWfbaZr95d2mxrVZV7ee/JeeH7qxdvZeWiTUc0Z11dHfv37z/kPtUdurfD4VQNPqkIPIku2nVoPFV02Lg+XHPfWbTv0pa+w7ty/8tXNxizfd3eGFL70fMLuWX6I9x54VOUFVZx6nlRPWpNNbl4n5fZz6xj5EmdGDQu4u4rdCBoqKxpbdz86qq+uDwO3n56I9vWV5hk1CS/1v+KElFvLZIsBKgKGkQUYisFzyTGdd4QSckOJBJFlzh8BhkXmowZG61aG8SX2H7DIS1iwBXSG6jbxvMW+H0aX7+/nblvbuO4KV0YO60Liln77HI7jFRpiCHDc15cT8BUwr98bxkXj76Pa0/+G2u+3/oTr3DLwOFw0KVLF3bs2NHSoRw2XC4Xbdq0sZ1KbCnEdlLl7UIuo5GUlGQbEp+bm0t+fn5Lh3HkkKJlbjaEoig4HI5w/biiKKiqetBbU/Rej9cQxxFHFPLz822hENfU1ODxeJrkS+BowW4p3mAQYjv1TC4vriI5w016diJ7N5VRXlzdbGs19nOr1HcuPkzs2rWLrKysQ36ftG2fzn0vX81r//oM1aFy+e3TSE47cA3i9CsnMv3KieH7NVV1LJ27nqRUD+uWbGP7hv1hpVZKSeHeSJ/R1Yu3cuKvRjLnzcVGWrSMENfivTVmTfEgEAprv4uQkU7dUzj5vB5sWFnC0vn7sbTXcBsmVQmTa8waWqlL43Ew64kBjwPpMwirMP+RpvO0tyaIw6Hg9qj4g0QIrEOAnwYKbnQqtBAC/MFw3XB4m1XHHG1WYu2rGDHu2VzOh0+s47RL+3D5Xcfyxj+W4Kv24U5wIfVQDBnWQrFEp6yoivKiau69/DneXPFAjMFZa0C3bt2YN2+erYyeLFhp03bolmAhNTWVUChEXV2dbY53UlISgUDAVnWuycnJ5OXltXQYh4T27dv/MghxHIeM8ePHI4QIfwdY948G7HM2HUccRwF2SZm2I7m0Y8yVlZW2eD9YmHrp8WzeuIX8reUoQmX8tKZ1aY5GSkYSF91yOq//53MAjpnUn2HH9/nZ8+m6Tl5eHkOHDj2s/UZM6MeICf0Oe72aqjpumPJvwxQKDKJnEV0pOXvGRD58dmHMPrldsxh98kCWzl1njLMuSEmJoqn8+FUBI0/pAFKydnEhA0a347jJnfn6k91s2VAeNrmSltlVdKp0TNo0GA2VAMyxDgVEyNhmGVFLkIogGJQEAzqJyU5qq4MEE8zKYVU0rGW2nqu1HoBTRfqDDdOkGzsPCRNmBSkl1eV+Pn5yHSec24OzbhjM7GfW4a8NMe36odRVBxolwyBAUZFIfLUByourSEjKOsRX7uggMTGRdu3asXv3bvr1O/z3V0siJyeH9evXEwwGbdPzXVVV2xlrOZ1O3G43NTU1R8WvoSlgqdqtwcDuYPilEGLrK/hor2lH1G+v9FPtlpoacUIcRxwm/H4/ZWVltiBAdlQtvF6vbdw4wUhjraiosNXJ8BV3nMEXs78iUC158qszD+i43FS48JbTOeFXx+CrDdClT84RtT4oLCxECHHU3iPLF2yIkGFokB48+LheJCS6eeOROQCc+KuR9B/ZjaFjexmEWJdh06hLfn86aW1SePzeD9m7q5SpVw8gt3squd1Tmf3CJgryaowzlMQoFUk5sGqrAFoDlVigqyqOoIbUrRZHxjYJeL1BPClOgkIiXEaKvz/NibO4DqEAVtp/lLIdWdBUqXXdmPZASr9utlWKdq4GggGdOa9uZszUrky/YTC11cEDk2ER/R4RoEJ1ZaTetarci98XJKt9euMxHEV06dKF1atXN1lbj6OFpKQkEhMTKSkpscXvmQWrjtgOZUsWrDpiuxDixMREdF3H5/ORkJDQ0uH8JNq3b8+ePXtaOow4/kcQJ8RxxGGioKAARVFsQdr8fj8ej6elwzgsWDXEdoHdDLUsCKfO8aeNOmonaO27NE2P5t27d9O5c+dmVy2klHz5zlLe/u9X0Q8a/wvTekoI3ntmAf969wZOu+A4QgGNmqo6Vny9CV9tABQ1TCjdLoWZL39DRXmtYbSVV82mZYUMHp/L6m/yKcyrCRta6SHNcKJWwPRirhccYTIqghLpiCKfAqRbQQZCxkPm+rouwQm13hCJ6S6oDUX2calIVaBoEqlbbZ0EWMpxTCq1+f+ByHC05NCY/CDhhy/z6D64DRnZicx/awuaJiMEWOqx60Vh7gfLydtSQFlhFa/841OklEw8czh/eOziFiWi1m9BUVEROTk5BxndupCRkWG7DJf09HTbKYJ2qyNWFAWXy4Xf72/1hDg3N5elS5vPB+OoId52yRaIE+I44jCRn59Pdna2LQyUfD6frYiaVWdlp5TpqqoqUlJSbPF+sODz+fD7/bZ6b4BhplVUVMTgwYObdZ2AP8Rt5z/BxhW7jAeEqEcARfi/9T/sYt3ynQw8phvvPPEVL//jUwBS2yTH1PzqQqGq3Bs2rup3bA59R2Uz/+2tjJveHW9lgLXf5htGViHd7B+sIBVi05ZFlOpr1RJLGUmxBlMxjlWTCengceCtDZGU6DC3RZ4HioIMGSQ60nJYhNcJq9NafYJcb4y1W7RzufW4rhsGWlf2oyzfS3lRHZOv6s/Hj67GW2k6XYvGiK3x/Ga/uCh2PmDhJytZs3Q7f3z0YoaMaZne8Iqi0KVLF3bv3m07Qpyenk5xceOO660VaWlpbN68uaXDOCwkJSXZzh3b4/Hg8/laOoyD4peSMh3HoePPf/7zz9pPCMHdd999RGvHCXEccZiwS/0wGMTHTgpxTU0NbrfbNvVsYM+a54qKClJSUmxltgZGdkZmZmazlQFIKfH7gnwze1WEDBsbDCIIhmpaT8HcunYP/Ud04fWHvwg/VlXmjaQfC4GmGQZcSMjtkcqYM7vz6bNrKdheRUW+1zDaQrL22wKj/jeoIVQFqeuRGmSIJaqWC3RIR3erUfXGoLsUFE1iMVyhGc+v1hsi2W2lRZtz+jSUaPKsKpELABbR1fVwuyVr7fB2C9Etkkx1O0yMpTTI8BX9CNSFWP55PsV7y3F5VE69oj+f/HetoRSbrtqeRBe+2gCpGYn0HNiBlfM3HOBVg7KCSu6/8jneXvUQLk/LfHd06NCBrVu3EgqFbPW5Sk9PZ+vW1ufg/VNITk7G7/fbqvY5OTmZvXv3tnQYhwW32x0nxHE0ir1793LPPffwxRdfUFpaSvv27Zk+fTr33nsvGRkZP2vORYsWMWnSJHRd58477+TBBx884Nj77rvvZ60RJ8RxxNGEsIvDNNiPEHu9XtuRSzsS4srKStLS0lo6jMNGQUFBsylwW9fu4e5LnqGy3Is7ofGTbHeCkwlnDGfr+v3s3JQfJoPLF2zg+6/WEhLCSHXW9TCxA0AIcjpmUJJfhjvZycmX9ue7D7dRsK0ChELxnhpmP7ueqVcPAARrvytA6BLdH0JxO9AV3VCbowgvJrkGgxDjVAxzLAABoRQnrqpgWNkVgPRpeKuDZOYk4KjRUJKM8c46PWwWJsEgw9GE17oFtYYGWtF1zfVTna3Ubl3icithMjzn1c0kpSTgSnSyZn4B48/vzsTzejHvzS3GeE3y+MybyGibQlJqApqmc07fP+Kri/RLrr9WXY2fmspaMj0t875OTk4mISGB4uJi2/w+gKG2+v1+6urqWn1qrAWXy4XL5aKmpuZnn3wfbdjJpMqCnRTi4uJiW10gaRQt0QbpZ6y3fft2xowZQ1FREWeeeSZ9+/Zl2bJlPProo3zxxRd89913tGlzeL4k1dXVXHrppSQmJh5Su68FCxYcdtxNhTghjiMOE3bpQSyltF0NsdfrtVX9MBgxH+6Xf0ujoqKCrKzW5dZ7MIRCIUpKShg0aFCzzP/wH9+mstyo8fPXBcPKarhWV8A1957F3A9/YOeGvZE6Yqmz6tstkfRoIUBVcbgVQv6goc4K6D2oA+f830Tyy3aydVUxm1aUGPuYXLJ4TzWzn9/A1Bn9AcKkWGoSIXSkKsEZrRRHiGi4BZMjKq1aCIIeFYffVG0VgdAk3toQnRIdKJLwNhGd6myhvqO1JKYmOQaNqcVR87lcCpOv6GuQ4de3oAV1qkqqQUCgLsiXr2zi7BuHMOyEDqyav884Hvsr6NjdqM1VVYU/PH4Jf7/hFQL+ENmdMjn9wjG88/hXBkmW0GdYFzLatVwJgBAi3MbIToTY4XCQnJxMZWWlbQgxREyq7EKIExMT0TTNFiZVFjweD36/v6XDOCiys7MRQlBQUECnTp1aOpxfPK677jqKiop47LHH+O1vfxt+/JZbbuHhhx/mzjvv5Omnnz6sOW+88UYqKyu5/fbbufPOOw86fsKECYcdd1PBPraJccTRzLBLyrT1Q+Z2t66+nT+Furo6WxF4sKdCbLe+yWAYFiUmJjbbsa4ordeLuV7dsJTwxF3vs+GHnZEHpJUiHEUehQBFIaQTTnV2OlWyO7Zh+45t+Lwhvp+9y9hNUYh2NSneXcXs59Yz8qSODBqbY6qyIYTl6hwFiSkomHeUkBVD1BinEo4HIdDdKl6fRmKiAylluGETgVBs/NFPOroXSP0xUXPHBhcJ1uVUmGKR4dc2owV1I2CHahwfh0pddYAvXtrI8JM60a5zMultk1FUwWdvLGbnpv0AjD5pABnZaSgOleL9Fbzx8Bxu+tf5nHDWSC685TQeeuP/Wlx5y8nJobCw0EiNtxHS09NtV9+alJRkK5MqVVVtk4JswS4KsdPpJCsry/Zp00K2zO1wsH37dr788ku6du3K9ddfH7Pt/vvvJykpiddee+2wPpuffPIJL730Eo899pgtxKY4IY4jDhN2SZn2+Xw4nU7bmT3ZiRAHg0H8fr+tCHFdXR1+v992KdPNmS4NcPZVkw46RtcPcPZgGmU1UEgVQdtObWjfNYvF81eQ3S2RBe9sjfDo2MlBSop3VTH7WYMUDx6bbZywBDUUXYZrdI20Zoyew6rhQq1aMURDVSIZcSbB93oNU62QR8GfahB2EQgd4DlF7atpjZtpWX9b5NgiyJqOy6Ew5fI+BHwac97YihY0a4SjHaGFAFWhdG81hdt8nHHNEC743UncdsGTPH7ne9ww5V+s+nYzZcXVFO4pQ9d0dF0SDIT4+/WvMu+D5Xz66rfURLVkailkZmai6zrl5eUtHcphIT09ncrKypYO47BgKcR2QpwQNx/idcRHB1aq8imnnNLA2T8lJYWxY8dSW1vLkiVLDmm+oqIiZsyYwfTp07nooouaPN7mQJwQxxGHCTsRYjuRS7Bfm6iamppwPZtdUFlZSXJysq2Mf6SUFBYWNishPufqSfzh4Qvp3r8DWbkZDWtlwSR9akw7pT+/fFWEMIZTmK3AoaSgkvx9pUw4vw/ff7SNmjKf9aSMfaLnNvcJK8UndmLwmHYIHfCHIGCuUa9FL4oxn/AZLYtk1E2P5q1BjdraEB6PikhVwbxWVtcpOUKmw8Teug/oEhF1McBQp801rH2ioSi4Ep1MuaIP/lpDGQ4FdUPRVpVYldmqhZaQmZJFanoSeXt2Rhtp89mb35PRNoXMdqkoioiYVpvrVpZ5mfXKt428YEcXiqKQnZ1NQUFBS4dyWLD6+toJdiTEdiKYYK9444T4yFBVVRVzO1CqvOXu3rt370a39+plOP1v2bLlkNadMWMGuq4fdoq1oig4HI7wOoqioKrqQW9Ncd5jnzOnOOJoZsQJcfPBbjHb0QTMjunSluLW3D2TTzhrJCecNZI57yzhkT+9E35cUQTJ6YlUVUSdHAqFPkM6MnJCf667/2yevv8jdF3n1HNGseLbbZQUVhpsTpcce0YPygtq2bjYOGFTPQ40zZSJGyitxp/FeTXMfm49U2cYRltrFheihDR0ISDBEWmxJDCcr0MSNagR1NUYwqwlOlBqjLRr4deoqwyg65Ikj4O6gEnIVdCFMI2h610J0DFUXdNpWpo10kCYCEuirh9IicutMuWS3vjrQsx5cyualc6tKCANt+2YVXQdIeDVf39OenYi59w6gnZdUinaXYUAUjOScDhV/vb29bz411nUef3s31VM8X5LiZWoB+qLfJSRk5PD5s2b6d+/f0uHcshIS0vD5/PZ6vvXIsR2M6myQ02uBbfbjd/vt8Uxzs3NZf/+/S0dxpEhOivnaK4JDWqv77333kadnK1MkgNlmFmPH8oFthdffJGZM2fyzjvvkJ2dfegxA+PHj0cIEe44Yd0/GogT4jjiwFCqysrKaNu2bUuHclDYTW3Vdd12MdfU1NjOBMyOhlpW72/rB89bVcdbj39JaWEVJ/1qJCMm9GvS9SZNH8l3X6xh+YKNqA6FiVOGcsaVE7hx+mMx40759WhK8itZ9vVmcrq1Y+LUoVx04ym8+9Q8Xv6X0YIpIyeR3iPa8c7ffgBFcM7Vk2jfNYvH73q/Yf2tpc6ajxXviSbFsHpxIYqioAd1pEuNtGCSEukQEJSo/hBaYpTTqkOgO0DVFGSSgp7gxFsXIikhihBb6dbRjtHhmMxtimLUxjrqpTub262T5jAZ9oWY86ZhoNWAZAtB9z45HDO+D8V7yijaV8a6ZdsBqCis5cd5eRx7RndmPv4jQhGcfZVhoNKpZzb3vnAVACsWbuT+q54n6A+RlZvJGVe0nMlKNNq1a8eKFStsZRDodDpJTk6moqLCNn2Uk5KSbGlSZRfFFYx47WLO2aZNG9uVKrQm7Nmzh9TUiClhc3vP7Nq1i5tuuolf//rXnHvuuYe9/8KFC3/yfnMiTojjiAODZIZCIVuogj6fz1aGWnY1AWuunrjNhYqKCnr27NnSYRwWSkpK6N69e/j+Q//3Equ/M3qnfv3JSv7z8Y30Hda1ydZzuR3c+NfzmDHhAXx1QeZ/uJy8rQVMPGMYC2euMgZJydP3fcDn73Zkx6Z8dE3nzSfmUl1Ry6yXF4EwyO7oKV3ZuKSA6ooAOBzMnbmK5LREXIluAv56tbuNXOGOIcVCsHpxAUowhEx2I92O2P0cCkKrZ4IFaAlOVG8Iaaqo3jqNZI9KSVTZaMzKFifW6ym5VtunaOgRAu9yiigybCrDujTbOMXu5qvxs+XH3eR2acvpvzk2TIgBVs/fw4CxuXTum0He+lL2bCuiQ7d2MfuPmNiP15f/meL95XTqmYPL3TpOU5xOJ5mZmZSUlNiGEEOkjtguhNgyqbJTuyi3222rWm1VVXE6nbYgxMnJyRQVFbV0GEeGFmy7lJqaGkOIDwRLAT7Q+9h6/GBZaFdccQUJCQk8+eSThxFs60C8hjiOOCBcs5SSktLCkRwcdkp/AyNel8vVwKihNcOOx9huhlq6rlNVVRXzA7t68TZ0XYZNrtYu2R6zT0VpDU/e8wF/vf4VoyXSz8Dapduoq/EjNR2pS7auzuNXMyZAKGTcNI2gP0TetkL0cPozzH59cZgg5nRNIbdnGivm7Q0/VlFSw75dJREyHO3cHO3eHIXivV6jpviEDgw5LttwlQ5qDdVcRRj1xg0eN6fVJWg63toQSQn1zPZ0QJOgGfXCwiLDMT1/o9XsqG1C4PKoTLm0TywZVhRwqkZKt9mlCgUIaezfWcSq77by6VtL+PKDHxgypmf4uQc1wcp5exl9Zg+EgDbZjb9fUzOS6DGgY6shwxbsaFJlxzpiOyqudooX7BNzSkqK7WrK7Yg+ffoAB64R3rrVuFB9oBpjCytXrqSoqIisrCyEEOHb5ZdfDsBDDz2EEILp06cfdozBYJA1a9bwzTffsGbNGoLB4GHP8VNoXb82ccTRQqiurkZRFFuQoEAgYCu11Q5XoevDboS4pqaGhIQEnE7nwQe3ElifueisjO79ctmxcR+6ZqTq9hjQMWafey59hu3r9yGl5NvPfuSJz/9At76H186hQ7dIWrlQBInJHjp0zSK9bTJVZV50KREIhhzbgx8WbQEkUpdI0y0aYNSUrqxZuA9fTewPsox2qz5QqjKmaVSiBwQUFvgMpfhqUyleXozwhZAJ9V5LXUfx6eiJjsj8gC4kSkBDCQlqq4OkuCKE2FXii73qHUOCIxCA1PRIOyopzJphhakX9zIMtF7fjBatcljPzawftlK8o+dfu3wHby+9h1f/M4fZb3wPwPrF+Qwen8u5N0+g12B79RZNS0tj586dLR3GYSE1NZXdu3e3dBiHBbvV5NqFXEbD5XIRCARaOoyDIiUlherq6oMPbM1owRriQ8WkSUY3hi+//BJd12MEjOrqar777jsSExM59thjf3KeSy65hNrahp0Btm7dyqJFixg6dCgjRoxg2LBhhxxbaWkpt912G2+++WbM58zj8XDBBRfw17/+tUnKHeOEOI44MAhFSkpKqzeYAAiFQrZyErYbuQT7paXb8RhXVFSQlpYW85m75/krefreDynOr+C03xzH8PF9wtsCviBb1+wJ35fA+uU7DpsQd+mbS79jerBt3R7S2yZz2+OXkpDk5i9vXMczf/6I2iofv77uREafNIAPXljE3A+Ws3+nmbInBG07JpPVKYUvXtzY+AJR6moMzPs6QHJC5DGXoLDQz6xn1zPtarOmeFkxIadi9PQF0HSkIlBCOnpQB2fkZCWU5MRh9iKurdVISXLgrDRqiN3lAUJWTGCmQVvx1AtPYijJUiJNZXjqxb3w12nMeXu7YZytRindMWSYhmRbgFAUbj77CfbtLA6TbV2T/LhwHwOOa8/Hzy9g4vSRpLdt/Zk5YCjEVVVVDU4YWzPsSNbs2MbILiZVFhwOB6FQI23ZWhmSk5PtT4htgB49enDKKafw5Zdf8t///pff/va34W333nsvXq+Xa665JqZcZNOmTQD07ds3/Nhjj8X6cVh4+eWXWbRoEVOmTOHBBx885LgKCwsZO3YsO3bsIC0tjVGjRpGTk0NBQQE//vgjL7zwAgsWLOC77747bAOv+rDPWXUccTQjqqurbZEuDQYhtlsPYjuRS13XCQQCtiKYdiXE9euRsnIzuPu5Kxsd73Q76Ni9Hft3lxipzAJ6DjQU5IA/yNP3fsAP8zfSa0gnbvrHb0jJaLzO87pT/s6+HcUAFO+vpKbaOPHu1i+Xv711fczY31x3Ij36tufeK58PE76Bx3dgy/ICArUBbn34Qv5169uRHerV+Db4u7HHFAEeB0XFfmY+u54zrh6ABFavLEU6dKRDQToUs15XoGg6ujPKtEsQbsHk9YbIyvKgBsONhiPrBEOg6QbJdkS+P6Q1zCK5EtwuhSlhMryNUEgP9yKOSbeOVr8DmrHNjBMp0STs210SOTZmzFuWFjDq9C58/OR83n96AU999acDvl6tCVY2Q01NzSHV5bUGeDweQqGQrS6k2o3EW79vdsqGsgshjqdMHz08+eSTjBkzht/97nfMmzePfv36sXTpUhYsWEDv3r156KGHYsb362eYXspGsqCaCnfccQc7duzgpptu4r777ov53q2qquLee+/l0Ucf5c477+T5558/orXscYkzjjiaGTU1NbYw1AL7KcR+v99WhNiOJmB2JMSVlZWHVfMshOCBV6/h2JMH0n9kN/70+CVhw633n5rHF298T/H+cpZ8uY6n7/3ggPNYZNjCzJcW/eS6Q8f2MoikBJdHpcewLNZ9u5/RJw2grqbeSbvZjgkrvbr+iUJ0j16IVWmdKsUVIWa+tIljTuzAkOFtUEJ6g32FLiNzm/W+useBCGpGDXGSg2CSQXh1xYxF04zFHA5Q6/3sK0TMsVQFV4LDbK2kMeed7YRC0jAScxg9mqUVi0VwdR18QUQDhThKRQYjVk2HYJBgbYCtywvoN7YDpYWVrPh600++Bq0FQgjS09NtVZPrdDpRFMVWBNNuhDjapMousAsh/kUoxLKFboeJHj168MMPP3DZZZexdOlS/v3vf7N9+3ZuvPFGlixZQps2bX7W0z8SzJ49m+OPP57//Oc/DS5Cpqam8vDDDzN27FhmzZp1xGvZ56w6jjiaEXZSiDVNsxUhDoVCtiJrlqJtl5RIMEi8Xd6/0Lih1qEgp3Mb7n72igaP79lWaBbCgq7prFu2g4uPuQeAGfecxfhpkXol1aGgRRHN3K4/XXt0z2XPGn9ISc+hWZTuq0GRTvy1Af5rtViyUofD6cNRE9RTiBUh0ANBcDlj+hNbBLK42M/MFzcz7QojXfzHtRXIqI97OLVZDe+IEAYRr6kzCLF0GNv8OUk4t1Ua/YWViHotBQYJlkTqhgGXSzD1QrNm+K2thDTMdkwi5jmZFcMQ0gyCHt07uT6siwPRirKAjd/tZ/rvR/Dde1vIaGcPtRUiJlWdO3du6VAOCUKIcN9Zu1z0tVsNMdiHYFpQVdUW8f4iaohthE6dOvHSSy8d0tjDUYYvu+wyLrvsssOOp7q6mnHjxv3kmOOPP56VK1ce9tz1YZ8zvjjiaEZUV1fb4mRB13VbEmI7xWu3FG+wn0JspcA11Wdu9MkDkbpENdXP4v0VlBRUUlJQyd+uf4Vdm/PDY3//8IU4nIaC2r1/LlffO/2A8372xmJWf78trKB2G5LF9lXFlBZU8ON3phunrofdqQWNmFZpDV2jFV0i/EFDMY2GEKAoFJcFmPXqFkae2IEhg9LDtb3WGEWTCAlCRhyjpUPB69dI9KgI85dd96gNhAJpKsExZBwMA62LjDTpL97ZTkgKgwxb46LPFnQ93JYpZv5o4itl5NhIHfQQho22cQGhvKgOb7mfc2+awODjWme7MH9dgM2rdlNWGHGWtptCDPZTXO1WQwz2I8QOhwNN01o6jIPiF5EybROFuDWib9++5Ofn/+SY/Pz8sEv2kcA+Z6lxxNGMsEy1WjusHzA7EUy7EWI71YFZsBshttKlm8qAZuKZI3C6HPz47WYSkz28++S88DYpJQ/OeIHnvr4TIQSTzhzBpDNHHNK8bz42J/y306OS2yudb947QLsnIUhOTWDEhH4s/HR1zOMWmXUnOPH7QiAxyHMghNTNFkYQSS8Giov8zHppM2dc3gcUwapNVeF5REgiFQxiq+uIgIYQhsu0oggSzPkUn9b4MY42/rLcpC/saZDht7ehWcpx/X2lBE03ib/5mENBarqRMi0B3TzJ1jTjFq0MR5Fqh8vJiDGDCAQCCCEIBTVKCirIbJfWKtotlRdXcfMZD1O4pxTVoXD7k5czdvIQ0tLSqKqqspWBkt0Iph1NquyiuFpwOBx4vd6WDuOgSE5Oxu/3EwwGbdVFIY6mwY033sh1113HTTfdxODBgxts//HHH3n33Xd56qmnjnitlv/ViSOOVgC7KMTWD66dCKbdCLEdf3jtpmrX1taSmJjYpHOOPX0IY08fgr8uwJfvLKWiJJJmt29HEVXlXtIyD+8z7kl0h/lcp76ZVBbVUlVS14AoHjOpHz0HdeStx+fy9ayVCEU1WjBZZlUYf/rLa8DpMFKYJUaqc8i8mK8qDXK2ivd5mWWmTwtg5boKUAUCgcOnowsN6VARimrUEgd0fH6NJJcxkavEZ6S1WeTXNCNDRNyhXS7FSJOu0/jirW1ommxYZwyGIiyl+XQOQLIbg64DAqfbQTAqVd3hVGjfvj3Lli0jP6+EP53/JMX7y0lvm8Lf3rqOLr1yfvK1aW58+uq3FO8rA0DTdJ5/8GPGTh5CYmIimqbZqv2d3RRi6/s3FArZ5rvYjgqxHeK1hIqamhoyMjJaOJo4mhuLFsV6enTr1o2TTz6ZUaNGcckllzB+/Hiys7MpLCzk66+/5rXXXuP000+na9euR7y2fc5S44ijGWEXhdhymLbLVXOwZ82z3eK1W512c6rw7gQXf3j8Yu78zZOAUUOZkOLhpjMfRtclPQd1onPPbM687Hg8SW6e/8tMNvywkyFjenHFn6bidBmvvRbSGHv6YD54ZgGaptNlYFt2rSsx2auphgpBVk4a9zx7BRcf92fA9JFCMmh0dzas3GU4NEuQQhpkWEoIBg1SrBrEVGhmn2PMNGUAc7/ivTXMemET067si3Sq/Li6LMJHVSWWmgqB1xsK9yLWUtwo5X4jXl2CIhASZEgDReByq5E06fd2oAkF1OhiYfNvXRIWha3vHt0kt9ZwxUyvVswrCEEzrRrjabXvlsXeHUXoZvp3t77tyczMBOCjl+dRaqYlV5XV8PLfZ3Pv81f97PdAkyPqkDgcDhwOh63MAj0ej63STq3v3zghbj7YJd7ExESEEFRXV9uXEEth1qoc5TVtiIkTJzZ6fiul5Pnnn+eFF16IeQzgk08+YebMmUdcAmCfs7444mhG2MVUy25kDewXs93aWvn9foQQuFyuI5pH03TmvreU4n3ljD19CN36d2iS+BZ+vILl89fTtW8uZ82YhMOp4vP5mtWxcvjxfbnl4Qt5/6l5uD1Otm/Kp3aPQSSL9lew5Kt1fPPZakZM6MNnb3yPlLBzcwF7thfxwEszEELwj9+9xqLZPxoTSklOt1S+eafAJIkRt+ji/eXcc8kzZLZLparci65LdE1nzeKtBuklMjw6TTmcfuxQjdRQXUf6A+ByYBUBW7tZSvHUK/ogVcHqVWXm+sSItVIBb51GUqLxeZNOM53ZmixqXpdTZcqFvfD7TDKsRdU/R6u9mpm2Kuo9Hk2WVSW2xzEg3C7DhDqggaqQt7UwZv/1y3dSXlxNmzZt2JNQGd4mJdTVBlg2bz3lxVWMOnEAGVlH33Rr8sXj+Oq9ZRTtLUNVFa6888zwNktxtVPrpdLS0pYO45AhhLBlCnI83qaHoigkJSXFjbX+R3DPPfe0mOBjn7PUOOJoRtTU1LSIpfzhwm7kEuwXs93UVqt++Eh/RJ686z0+e+07FFXwzhNf8dhnf6Bbv9wjmvPrmSv5+w2voCgCKX+gvLiKq+89+6ikeJ/869Gc/OvRrF26nT+e94T5qHGMdF2yb2cxnkRXhKNJWLFoC889OJOLbj6VRZ+uDhNal0uQlpVI8Z5GTsqkZNWiTdz8yEW8+fhXFO8rR+oy1tPkQK+NlBAMGVHpuvEaBjWkM6p+1/y/KL+WWa9tZdrFvUDC6pVlKEEd3R118UaCty5EYoL5eVNMxdZygjbncrkUplzSC39diC/e22mQ4RiYrtJmunWDWs5oMzBViaRiRz1f4xgoZHVOp3hfeeS5RJFip9tBWloaPYe0x+F0EPAHUVRBUpKbe01377Q2yTw5549kZqc1fgybCZntUnlmwR3s3LCPrNwM2rZPD2+zWwqy3eIF+xA2C3YxqbJgp+Nrd2MtwwDx6K9pR9x3330ttnbcZTqOVokVK1YghGD06NGNbn/rrbcQQiCEYOfOnQ2219XV4fF4SExMPKT2DXGFuHkgpbRdzHZL8W4qcjn/g+UA6JqhcC7+YvVB9jg4Vn69CUVV0HWJlLB8/gag+UzAdm3az7K566iprA0/1nNgR9rkpCGUWFLqcKocM6mfcSdKuf34ha9ZsWhTRN0F2nZJo7rMhz8AOJ0N++2qKlIKho/tbTg+W/13w22YZGxbJiu9OIqkoqqxCm0UcZRSglOh2CTFo8a0Y+iQDERAQ60OoPiCCL+GYvYiTvSYplp1QWNKNaLwutwWGdb44t3GyDCRFGErPl1GbsEo12wr3uhjG60cYzh+N9hm7rv4izWkp6ejK0Gem387dz19Oc989SeWfrUuPKyqrIZvP19NRUk129fvJRg4eifxngQX/UZ0iyHDYD+Cabd4wZ4mVfF4mwdH2nrJOlf8qdvChQubLuA4bAn7nPXF8T+FYcOGkZGRwYoVK6iqqmqQmjZv3jyEqVzMnz+fK6+8Mmb7d999h9/v5+STTz4ksmCXejC7pfPquo6U0lYE024EvqnIZbsOmezdXmik/OqS7E5HnjHRvX8HdFNNVFRBz4GdkFI2Sw3xp69+yxO3vwNARrtUHvvsD7Rtn05CkptHPr6J/971Pkvmrg+PDwVCOBwqvYd2ZsuPeWHyJ0MhVn+31RhkEr6sTskU74lSKBTFcFC2ehADj9z2rllXG2umBTTo9xue2zK8stylNc1QiqVilipbym5kvuKCOma9vo1pF/VEAGuWFaMHNIRTRQahtjxAbkfDsMxZWksoSpV1uVWmXBxpraRpmPJFVF1wIATR7/9oMi+tOOqlTktzX2u71GMvBkQ/Z6v+Gnjk9nd5+stb8Xq9ZLRLZuxpg5FSkpjqoaaiNrxs/u4SLjrmHrSQTsce7fj3RzeRmpHU2NvgqMBurs1ut5tgMIimabb5/bCj4mqn3sl2uuDQVBd07r333gNuawpTpgOiJdog2VQhbknY56wvjv8pKIrCxIkT+eijj/j666+ZNm1azPb58+czceJE1qxZ0yghnj9/PgAnnnjiIa1nlxMFXddtEaeFuCt28yMYDB5x/TDA7U9dxt+uf4WifWWc/OvRnHD2yCOec+plx1NeUs2SL9fSfUAH/u/P5xAMBtF1vckJ8Wv/+jT8d2VJNV+9s4Tf3HQaAG1z0nG4Gr6mX7y9hGfm/omLR99PbY0/TGjHnDqIeZ+sIuAzYk1vl0hZQW2D/aPbJAFR9cEYRDP6pMQii9FEWRFAVF2xqkZqi83CX6kqxpioGt3i/RH3aaRkzfISZNDYx19aR3J3w01b6BGl2eWqR4ZDJhHWASIGWEIIw+ArSq0Oc+AGTtLmcwyGGm63XK0VNZJObfUmFpHdK0tqcblcYRdZIQR/euwS/nLdy9RW+5g0fQTfzP4RzXSo3rezmM/fWMx5N5zc8PU4SvB4PJSXl7fY+ocL6/shGAza5vfDTgom2C9eVVXRdf3gA1sBFEVpklhbMh03jp8PKSXvv/8+c+bMYd++fY1eeBJCMG/evEb2PnTY56wvjv85nHjiiXz00UfMnz8/hhDv2rWLnTt3cuWVV5KRkcGCBQsa7Hu4hNguRNNOfRmB8I+YUp84tGLYjRA31Xuia99cnp53exNEFIGqKlz2p6lc9qep4ceqqqpQVbXJj7HL7Yzxq3J5Yt1pO/XMNtOGY+Mr2lvO47Nv4YUHP6G6wstZMyYxfHxfHv7gtzx03avs3VlEUqqT4rxIyt5FN53KsScP4IapD8cGIUyCK01JILyWBF3EpGGHibOlHEcrxuG5MPv7SmRdwKjXVRWEplOy3xupKRaCNUuLQEJtVYCEJEd4WXSJy+1gymV98Ps05ry9LUKGLYSNtwxy3ui7KYbsmvctbmule+tRUoiUIFSTANdTw83vhexOmfQe3InSpXtiFKARE/vx7tq/EgyE8CS4uHDk3TFLa6GWPZG3Wwqy9f0gG1zQaL2wI8G0k6JtZdjZAXYi73E0Lfx+P5MnT2bhwoXhc53o9611vynOgexzlhrH/xxOOOEEgAZXfaz7J5xwApMmTSI/P58NGzaEt1dVVfHDDz+QkZHB8OHDD2ktXddtQ9rsRIitLy47xWyXbAELdrtI0lz9W2/423nhlklJ6Yks+GQlHz2/MPwePP+6kzj5V6Nwe5xhQleYV8oNp/+TsqJq7n7+Kv7x/o0cd+pgALr2aU/PgR1AShLT3NRW+kDXOGZCHy688RR69O/A1XedEQlAQNsc04dAiCgH6CiCqOkGGdRMRTbcuqieshomkOGpUYRA0SVKUDOUXyEo3lPDrNe2MfL4bAYf0xa8PmrL60hMNi8GaBKXR2XK5b3x+0JhMizC8Zgp2gc6qNFxKWbqtmrGpyqgCqRi3iD8f8zziK6XBoQiaNchg04929EuN501S7c3SjBVVcGTYCibV95xRrgGvE37dE674LgDRXxU4HK5bJUea0dCbDeCaTfY6T3RVApxHPbD3//+dxYsWMBdd91FSUkJUkruu+8+9u/fz5tvvkmnTp04//zzCQQCR7yWfWSQOP7n0K9fP9q3b8+6desoLi4mKysLMNTf5ORkjjnmmHBt8fz58+nfvz8AX3/9NZqmMXHixEMmuXYhxHb48YqG3cga2C9mu7x3LeiWm3ITY9SJA3hz9V+486Kn2bpmD9vX72P7esMheNzkIbg8Tm75128466oJ3H7BU1SWGoqvLiXPPPAxZ1x2PCdMH8HWNXv49M3vyemYSWKy2yDEqS68VQGQktXfbQGgYE8ZvQZ34q+vX81dlz2LFtQpya88eKCx9tMQ0sL9iA+kEscgSgYXQlCyt4bZL29m2mV9EJrOppXFOM0+xM5EB6f+xnCTrq8Miwa1vY2sVz8eVcSsH65vDqeI10sJt64KRD03qUmKTNfpPdsKWbd0B7e/9KtGCaaUkqVz11NSUMk9z19FUoqHXoM74UlsWb8HRVFs911sN1JhJwUT7BevndDcKdMej4fbbrvtiOePo+nx3nvvMXz4cO6///6Yx3Nycjj//PMZNWoUQ4cO5ZFHHuH3v//9Ea0VJ8RxtGqceOKJvP766yxYsIBzzz0XgAULFnD88cfjcDgYMGAA7dq1Y/78+dxwww3A4adLg31Ihd3Imt3itSPsdoyllM32WUtKSWDPtsIoIy+F7ev3Mm7yEMCoP71p+qME/MEwmZMobFu/n//84R3mf7SCHxdvC8+XkOQGIUhIclJXHQAhSEzx8MnL3/DMQ7MMwzinSgMhqzHF13rOQomkHGum+VRIMxXYeoSyvpuz9ZiVnmzVFO+LqikGQiEdh0PhtAt74fOGmPPWVoMM10d9IhxNyuuPqf+8YuYx/wmbatUbZz0Wrmk2jbdMElG4p4LUjOQG037wzHxeeGgmQhEIAX9/97ctTobBnuTHbjHH421eRCvErf33o6kIcX1SZSEtLa1ZCbGAo9926egu12zYvn07M2bMCN8XQhAMBsP3u3fvzpQpU3j55ZePmBC3fgYQx/80rLRpi+Ru3LiR/Px8Jk2aFB4zceJEFi5cGP7C/CUT4jiaH3Y4QYhGPN5YDDu+j0GgFIGu6QwZ0yu8bcWiTQYZhobkE2LIMECd12/wVEWE61Yry7w8+5dZ4ZPfUEBr6OgZdm2WJKUmRNKGVTXiGC0EONTGSbCmGSQ5pEXUWGubtQQgNAkhHXSTFL+0mZEndEALGrEG6jSDDAej6pnrtXSKhhRm6rP5v9VC6oAmqfXnqd9mKhp6FLmPfs5CsH39Pr77/Eeeuvt9Ar7Iyc7nbyw2ptMNEr3goxWNxn20YTfyA/aMOY7mg51+M5qKEEvr+6zeraKi4siDjKNZ4HQ6Yww4U1JSKC4ujhnTpUsXduzYccRrxRXiOFo1LFJr1Q1H1w9bmDhxIu+++y6rVq2ic+fOrF27lg4dOtC3b99DXkfXdTRNi7ny1BoRCoWQUrb6OC1YcdolXjB+NO3wXrAQCoVQFMU28Tb3e+Kmf5xLx55ZFO8tY8zpQxgwqlt4rZwuGTjdZn24RQ4U475QBA6nStAfa+STnGz8GKsOJbKvKlCFEpnHKKAlpl7YREKyi0BIi1WJoxEy1VPLXCsclxKbnmw5UtdTkmXUvhXFdcx9ZxuTLzWU4q8/3oGiChT1AEpw1EmxbOwEWdcbxNFglHWiao3RgJDE6XbQJjudpBQ3vho/+3eWGMZi4fUjx8JbWYfqlCx6ZzWarnHNfWcDkNM5k9KiCnTduIjStn1qq3ifa5qGruutIpZDhRCCQCBgm5itHvZ2iVfXdVu9JyzDskAg0Oo9M4QQ8Xry/1F07NiRffv2he/37t2b77//PmbMqlWryMzMPOK1hIxfMoyjlaNnz55s376dvLw8brzxRhYsWEBpaWlY0d20aRP9+vXjH//4B126dOG8887jkksu4ZVXXjnkNSZOnMiwYcOYOHFiMz2LOOKII4444ogjjjgOB3fffTe33347v/nNb37W/i1lIFZVVUVaWhpd/vYQShO3GTwYdJ+P3bfdSWVlZdhrx464+uqrmTt3blgB/stf/sJdd93FFVdcwVlnncXChQv5z3/+wwUXXMBrr712RGvFFeI4Wj1OPPFEtm/fzty5c1m4cCETJkyISW/u27cvOTk5zJ8/ny5duoT3ORwoisKgQYOYPHlyk8be1Ni1axclJSWMHHnkPWKPBrxeL9988w2nnXZaS4dyyFi4cCGDBg2iTZs2LR3KIWHDhg0IIejXr19Lh3JIKCoqYtOmTYwfP77FYpBS8vHzC/nizcVktEvl+gfPpVOv7PD2Oq8fp8vBtSf9jfLSaq78x3jeeuB7aquDgODuZy4nrW0Kz/1lJkV7y+ncK4c92wqoKKkJ1y9HY8bdZ4AUfPnRCnZvLYxNX9b12HZM1uPRaq6ljqhq7PaoEzynR+XUy/rh92uUFngZdnwH/HUhVn6Tz7oVJcYgs72ShBh1WJhp0Y0q2NZYyzG+fl1zY2nTujTSuaO3m/+lJLuorqyLmXP4SR1JTHby7QeRlPVHPrrRaJXVClFeXs6qVatiMpVaO+bMmcOYMWNISUlp6VAOCatWrSItLY3u3bu3dCiHhL1797Jv3z5Gjx7d0qEcEvx+P/PmzeO0005r9eVif//731t9jHE0Dy644AL27NnDrl276Nq1KzfddBOffPIJL774Ii+99BJSSnr27Mnf/va3I14rTojjaPU44YQTePbZZ3n44YcpLy+PqR+2MGnSJGbOnMnmzZuBn0eIhRA4nc6DD25BOBwOW8Rpwel0IqW0TbxgXE1WVbXVxZy/u4TnH/yYqjIvZ1w+nuOnDgOM9iR2OsZWnM0drxbSKN5fQUZWCm6zfU80zr3uFM697pTGY0w3Yjv9grG88o9P8deFUFWFYG2IlIxEXnhwFgF/kBPOGsmp/z6Oy49/EK0+EY4iivk7Srn67ulMu2gcv53+KNvW74uMkRKURkilEpWSHTRNwAhFUpijiLQrwcEpl/bFV6cx5/Ut9BhkXMz57M2tnH5BLzQdo08xQDjMqHpkM+1ZEpW6ba0d3QbKSpkWEVOscJ/h6H1CZmsoa2zYTAsq/SHjWEURYpfbQW11kKA/khaphVrve1pRFBRFabXxNQYpJS6XyzYxt9bv4QPBbu8JK2Xa5XK1+npi23u8HNCEoZnX/AVg4sSJMZmbiYmJfPfdd3zyySds27aNrl27Mm3aNBITE494rTghjqPV44QTTkAIwdq1a8P362PSpEm89dZb7Ny5kz59+tChQ4fDWiPe+L150Np/aA+E1lZJIqXkrgufpGBPGbqus27Zdh7r3IZegzsjhLDVe/domPuUFVXxx3MeY9+OIpLTEnjwjevoM7TLYc9z/g0n06lHO3bs30RimpuqYh/V5bVUV9QB8MYjc6gs9zYkw/VI4pKv1rFh6XZ6DOrImJMHsH3Dvghf1s2exA5T/bWcp6N7FEeTY12PUZBdHpXJV/XH7zPIsBaSVJYbLYxKCuuY9dpWpl3cCwSsWVoMjihlWSdmLkHsfaLMtcLbo+432kdZN0y+pOkmLaLfm5qGJokl3UDbDikEaiL3R53Qnx4DDu87/GjCbkZ2YL+Y7RZvHM0HXdebpM75QG2XAKZPn87QoUOPeI04mh8Oh4Nf/epXTT9vk88YRxxNjKysLAYNGsSaNWto27YtAwcObDAmWjU+XHUY7NOj0Y5OoXaLtzVeHPHVBti/qyTmsW1r94YJsZ2OsdPpbHbjmQ+enkf+buN4eat9PHPvh/znk5t/1lxjTx+C/Laaof8YxKfPLefrWatithfvLSO3a1v27y6JOCmbnYWs/OT8XcXkS9i8MR+EwOVxEvD6Yvv5+kJRPX2jTLCcjljCaY1X1QgZrgsx581tRma1EFSV+wDwJDgoLqhj1uvbmHZRTwBWLysxCLaUCBVAIDUdpJkOXY+EhElyY2gsbVpi9FVGCbtUC11GXSQwnvMlN53KaeePJhTU2Lh1Dd26dWP8iaORUjJwVI9WrQgFg0EcDvucPlluuq35mNaH3VRBuxF46zfDDjE31XvhQG2XALp27dp8hDiuEDcZqqqqqKysJC0trclro+3zbRPH/zRWr16NlJLi4uJGv8B79uwZ/tH/73//e9jzxwlx88D6EbPDsbXgcDjC6WStBZ5EF937d0BRFYQiUFWF/iO7AfZ571pwu90EAoFmjdlXFwj/LaXEV+c/ovkSEhJwJzroOahThMSan8N+x3TnqjvOIC0jMdJrF0xiqxou1opqEFsTQX+QPsO74vaY6ZW6NEikqhpKsaWgKiI2bVlVweEAhyNMhgN1Iea8sslotSSMM6+Q2XM4LdMDuk5xfi2zXt/GyPHtGXxcNtKpIl0quhBIAdKhIFURdpqWAuO+am4Ho465PjG3EO1YXU/9Ndy1ReT5mRg5oS91Xj87N+dTW1tHQkICg4/tyZDjeqGqrfvUxOfzxbQCae2wE/mxEAqFbHXRwW4EHuzzfjjSY3ugdkvRt8suu6zpAo6jSREIBHjooYfo0aMHGRkZdO3alYyMDHr06MFDDz1EIBA4+CSHAPt828QRRzPCLqTCbumx1glNKBTC5WpYx9kaoapqqyPEQggefOP/eOPhL6gu93L6RWPp0qc9YMRrp5YUbrcbMEhFU9T9NIZplx7Pgg9/oM7rRwjBb3536hHNl5iYiNfrpc+w2LTr5FQP895fxp5tRQ13ik7xU6JaMmH01d23o4hHZ93M6sVbeeq+j80tIjLOOldt5KQ1hgy/utkgwJ6o9kgm0jNd7N0OYJDimW/v4IzfdAcBq38oAaeC1KWhDCsCiQ5aVB2xEKAKUCRSERDUEOixCnZ9g68DXa8TwnhOTgcXXD2ekoIKbvrVqyiq4IqHjmPf9lLatm17gJ1bF+xGiK3vh9beXicaoVDIdvHajcD/rxDiOOyL6upqTjzxRFasWIEQgs75mfonAAEAAElEQVSdO5OTk0NBQQG7d+/mnnvuYebMmcybN4/k5OQjWss+n9444mhGOJ3OJrvK1JxwOBy2Ij/WCY2dCHFrVIgBMrJSueEv5zZ43O124/P5WiCinwdFUcIxNxch7to3l+cX3cWmVbvp1DP7sNyKpZQs/mIN29btZfXirWxfv4/jpvRm5OTu+PK9MWNrKuuoqTrAsa+ffqxLg1xa+5Z7ufaUf6I6FCDKuCqaFFsXvxQlXEfcgAxrEjzOSJ2xomB6RpPaxmM4SEtj3aKCOma+u4szzjWyC1avLAMhkZoeJsXoDdOmDZUXcBgE2opNBEMm8bdUc2IJdWPHQQjefHwuHXrmoEtJVocU/HUh7r7iFZ794lZyOhn9JD96fiGzXvmGjHap3Pi38+jcK6fx49wC8Pv9JCQktHQYhwyfz4eqqrYibHYjmPF4mw92K1GoDyHN5J2jvOYvAffeey8//PADZ599Nv/85z/p1q1beNvOnTu59dZb+eijj7j33nv597//fURrxS+5xBEHkJycTE1NzcEHtjBaK1k7EIQQtovZbhcdPB6PrQgxGDH7/UeWxnwwZGanMea0wYfduufd/87lwWte4u0nvmLjil0EfEFWLtxOdXU1bz0+B6EIFFWgKIKczj/RmqtBerHZPikUMv4XCggFLVQv9Tj6/3rzuBIcTJ4xIJwmHQpJcKoR5+loxRZIy3THxqRJivJrmfnuTo4Zm83gEW2QCkinYijAikC6VKSqhNOnY6AIcCjGmk4HUlUM0h4IgT+ECGrG/ZD5PHXdqB+OTjPXDdIfDBgtrNp2SKJ4bw3BQIgv3l0KwMpFm3n2zx+Tn1fGhpW7uPnsRwn4G/8O8VbXxaTIHw3YTSG24rWLIgiGqm0nEmQnggn2ire6uto27cLiaFq89957DB06lPfffz+GDAN069aN999/nyFDhvDuu+8e8VpxQhxHHBiEuLq6uqXDOCjsRi6hdaYg/xTsdoztSohbQ8xlRVWsXLSJssLK8GNz3lli/BHFU6tLffjrgjhMDjT6pIFMv3ICD7xyDYp6AJKh6wYpDIWMFkVgklaDCIchaKCghvOlLZIrREQZrjVrhkMysm9UTbMRu1lD3MYDQlilxShSQlCnqKCOT97dyagx7RgywkhTlg4F3WESYYGhBouo+Rqoxph1wQq4HOBQkYoIe4kJBELTjeMQds6OtJDqM9iox87qmEzJ3hpAhpfI21YQSbFGUFvt460nvoxZXkrJM/d+wDn9/sQ5ff/Ip6992/jr0Azw+Xzh1H87wG7xgr0IG8RTvJsTtifEsoVuvwCUlJRw6qkHLnkSQnDqqadSWlp6xGvFCXEccQApKSlxhbiZYLeY7Ravx+NB07Rmd25uSrSGNO/NP+7mynF/5s4LnuTysX9m/fIdAGR3zERpxNSpeHc1Od3TkNKoUZ5xz1nUev3o2kHOPARRhDLKfMoifIoSa6KlKoaxlnWyKgROj8rkGQPw14aY88pGgwxbBDOaDEtppjYbJ+ZpGe4Iadal0R/YVKqLCuv45L2djDrOJMWm+ZVUo5RmVTENt6IJfCPp1EIYqrHDHG8ZcelRcYU0Qxk3j8k3n64BXSe7awpFe2pAh92bC1m/fKdxkaHehYIdG/bHLLtxxU4+fuFrADRN58k736O6PDalvbng9/ttpRDbLV4ppa0IG9iLYIJ94pVSUlNTc8T1oXHYE127dqWiouInx1RWVtK1a9cjXitOiOOIA4MQ20khtpPTtN0Ipt3idTqdKIrS7CnITYnWoBC//9Q8/D7jIkIwEOKdxw0F8vLbp+F0qSAlLo+TKRePJSs3g7yNZXQZ2JbM7FR6mz2Nczq3we1xhlNRVYdC515RKdox3LG+ClwP9ZViRQGnE2eqhynXDDL6DL+51UiTlmaVsNthKMCYLZMaqddNznQbY1VhEGVLMQ7psaR4uJn+rQj0+t8viuFALRsY20QU7BiXacspW0pDHbZ6J9dDWtsEUjM97N1YClLy/VfruPW8//LU/TONAVHPaeAx3WP2ramsi7mv6/KopE7rum47gmm3FG+rZMUOhM1CPMW7eeD3+wmFQvZWiOP42ZgxYwbvvvsue/fubXR7Xl4e77zzDjNmzDjiteKEOI44sFcNMWCrGle7EUy7xSuEaBUE83DQkvH66wI8/+AnrFu2PfyYAFSnoarOe385Qb9BlEOBEKUFFTz88U3Ulmnk9EgjFAyyZXUeAKkZSfz51WvoM6wzfYZ2ZtyUoeRtK4ykEzdW2xtWdA9+UcvlUZlyZT+jz/AbWw1l2FKTXY6GZNQineb9qgo/6W08sSZXplGXAoiARlF+LZ+8X08pdiroaj2yqxq3cNQhPULx66dsgzHWYbZaqv9UzftdBrRh39YKQsFGBlhp5RJ6DujAOddMihkxZEwvuvbNDd8fO3kIbdunH/hgNhGs962dUpDtRoit7187EDYLdiGYFjRNs0WKtyVU2FohjqdMHzLy8vJibmeffTbHH388w4cP5y9/+QvffvstW7du5dtvv+Whhx5i5MiRTJgwgbPOOuuI17bPpzeOOJoRdlGIo12b7fLjazeTKrfbbSu1FVpHCvLhIDU1lc2bN7fI2s/++WM+f3NxxC0ZSEpN4JLfTwagsrQmzO10TWfJV+vZsvpflBVXM7ygI+26pfCvm1/n9WX3I4Rg8LE9efjjm1m7dDt/PO+JxtVfaNASCU2LpEVHpzyb41wJDiZf1R9/ncac17eEs42Nkx1Jg36/WNnZkTUqy3ykt/GwZ0fku01IkCE9kq4thVFT/N5Ozvy16T69ohQU0KVE6DJK2zZSuqVu1vtqWsTdOrodnFn7i9NhxOtQjPRpSyk2jbS7Dsxk7+bKyKEJP//IMfu/+85iysVjGxhCuRNcPPTmdfz3jnfxVtVx2gXHHRXTqKqqKpKTk23VBsbn89GuXbuWDuOQ4ff7cTgctjrGdvpNBvvEW1NTg6qqtrqgE8fPR9euXRv9HpdScvfddzf6+CeffMKsWbOOWMho/Z+GOOI4CrCLQqyqKkIIWymYdlNc7UYuoXWkIB8O0tLS8Pv9LaJcrV+2PUyGFUUw8oQB3PbEpSQkGYrfqecfyzefroq5wF5eXA0Sdq8todvgLLb9sI77r3iOu5+7EtWs192/qzh2oej05cYIrKJGyG29dGlXotM00Aoy57XNaNJUmnUdpwJBXcQSb2stIRD+EKhG9FWlftLbuI11LJ6pmn+EdHAqBjfVjJZMn7y/kzPPsVoylYJDIKVEBjSUxoy/dJ0we9WJ7fVRj9hGCLihJme2T6Z9j3TOPPd0vuz5A+88Na/eKyVJSU9kykVjUBup6QZ45NY3WbFwIwBrvt/Gfz65mb7DuzY6tqlQUVFBenp6s67R1LCbQmy3eME+BNOCXeK1DLXs5JBeH/G2S4eOSy65pMVe69b/aYgjjqMAuyjEYD/F1W6E2GoJJKW0zY/w0Whj1JRwOBwkJydTUVFBTs7R7S876Nie5G0rROoSXZeMPnFAmAwDDDu+D49/9gceu+0dtqzZg9SlwWdVwZZlBfz69mPwJDlZOnc9S+euZ8xpgwEYOrY3nkQX/rqgodLWf+9EKaMxqDfMaSnDtSG+fHUzekADzM+7pqO7HIaBVfQaUWtJp8NI1wYqyvx065NucFcpwWEQYMwWS+YeCARSk7GkWMLqVaZzp0tFBs0UaYvES4k008yNDGcBwVBk3hhluR4UhX7HticjPYPcTu3Iap9K2IlbElaYqytq2bBiF4NG92h0mlXfbEY3L24IRbBm8dajQoizsrKadY2mht0Ipt3iBfsQTAuhUAin09nSYRwU1dXV9k6XjuOw8PLLL7fY2vbJR4kjjmaEXdougf0IpsvlIhA4un1CjwQejwdd123l2mw3hRggPT39oO6RzYEZd0/nnGtPYMTEvlx971mcfuGYBmO69+/A5bdNi+mAdPEtp1NZXEvhzir6HNseIKY3bnbHTIaO6x1JWY6uq9V00EI4HCpgpg6LCHG0coadHpUpV/WPGGhZ3Zqsm0M1CKCkIRm2CLISUY+rKoKktXEbPYY9TiPdWVEMTmu5W5tjjRRoKMo3jbbGmEZbpvIso+uHdd10wjZvVt9iK8U1FNV/OPpYhJVs6NQvjVUL8tBCGh88tzBy8KMPOlCwt+yAr2XXfrlhR3CpS7r173DAsU0FuynEoVAITdNsRTDtRoillASDQVsQTAt2IfA1NTX2N9SSomVucRwWWv+nIY44jgLs0nYJ7EeI3W63bS42gHF8HQ4HPp8Pl8vV0uEcEtxuN8XFxQcf2IqQnp5OSUnJUV/X5XFyxe1nNLrt+zlree0/n+F0Ophxz3QenfV71i7ZRrd+uQwd2xtvtY8Vi9Yw5qyeVO0PcuzJA8L7vv6fz1ny5brGF1UMshgKmp/baJMtq2Y40Wm0VvJphoGWBigKUuiGg7SqRtKeJQbJdqgNzayi0q8ry+pISXOhJDjMvsVm6rJuTSIi8SGMdTQZJsXhmuKVpYbTtEsgAxqqrHctXTGkb6mYDtZOFekLGvPVr50GOvfNxOlWWblwBxun7iY/L6qHpLmPogo8iW6Gje3V4HBKKfns9cWkt00ht1sWDofC5IvGMnJSP5bNXc8Lf/kEb1Udv7r2BM66alKD/X8ufD4ffr+ftLS0JpuzueHz+VAUxVZkzW4u3lZGkZ1itgshjivEcVjYu3cvq1atoqKigrS0NIYPH07Hjh2bbP7W/2mII46jgLhC3Hywo3pp1RGnpqa2dCiHBDse47S0NLZt29bSYYRRkFfKQ9e8iG6qt3dd9BR/eet6Bo7qQY+BhvJ45R1nMGpJf3bkb+Tmx87Bk2ikWi9fuIE3HpkTETbD6i0RBTga4Wxlo7bYleCIJcOh+m2PDDVXWnM3kiodnk9GCGhtTYhgQCc9w01piT+KiBNlzlW/x7BhpFW0v7YhKZYSnCq61FD0+kRcgKoiNc14eg7ViDek1es+JRgyIZcNi/Pp3rc9noSGF50GHtONngM7Mu2ScbTNSW+wfc7bS3jizveMrk/AWVdN5NTzj+P2859g9Xdbw+Oeve8jeg3qzMADpFwfLioqKkhOTrYFkbDg8/lwu922Kf8AI+bMzMyWDuOQ4fP5cDqdtnBttmAnQmx7hTiOI8Lu3bu55ppr+OqrrxpsO/nkk3n66aebpA9x6/80xBHHUUBKSgqBQIBAINDqVUGn0xlP521mJCQk2CrmxMREamtr0XXdNs6saWlp+Hy+VpMeuW9HEZpm1bFK/HVBfn/WowAce/JA7n7uCvJ3l/C3618hu2cyVad4UXU33ft34su3lpj7YVk903toZ/oN60pqeiIfvbiImqq68NxAuE7W5VGZPGMAgejWShZ50TRE/dfT3CajjbikWa+rm+7RUdVQFaU+0jNclJb4ozyuREMybcVmxiWkpGhfY6QYgxSHNBQtKiU6vL+ITQl3OpCBYJgUd+yZSpsOScx5cT3X3/cregzowPQrJ/DxC18bA3TJuqXbydtcwHnXn8w3s39k8Zw1bFq5i6qyGo47ZRDBkI6iCHTd6Me86tstdOzeLoYMh1/XnUVNSojtlC4N4PV6SUxMbOkwDgut5TvhUGE3RRsgGAzaghD/MlKmOfptkGxqqlUfBQUFjBs3jn379tG1a1fGjx9P+/btyc/P55tvvuHLL79k3Lhx/PDDD0fsR9L6Pw1xxHEUYH3h1tTUtPor03ZzQbajSZXdjnFycjJCCKqrq22Tzul0OklKSmoRY63G0GtIZ5LTE6mt9oWNmiws+WodG1fs4vM3F1NRWk15STVDTuzEp+8t5Lf3Xkxymkk4pMGIXR4Hj35yCwDLF26kprqR95KUuDwKk68eSMBntFbSQ1GEMqSZxDUy3lJzJRjp0haEQIY0Q42OFqmEoKLUT3q6G0l1uBjZaoMsrHmjP5eK2SLJGErRXm+EFEtYs6LUVIMVdKmjhLRYR2lp1jgrUY9ZypmuMXpKV1Z9lUfQF2LgqO4IIbjm7umgywgpllBV7uWNh79g9qvfRmLTdeZ/uJxjThxomIRhOIX3HdYFX11DUzlPoouh4/o0PPY/E5WVlbRt27bJ5jsasCOJtxshtlu8YJ+Y4ynT/9t44IEH2LdvH3//+9+55ZZbYrIwNE3j4Ycf5o9//CMPPvggTzzxxBGtZQ8pIY44mhmJiYlhQtHaYTfF1ePxIKW0lbFWQkICdXV1LR3GIUMI0WImVUeCzMxMSktLDz7wKCA1I4mHP76JY07oH3E8joKiCIL+EEjDwGnZrJ3k9EkiFAox9dJxOJ1mSyFd57I/TA3vt3jOWsP4KaZtkYIrwcm064eiKKrRZ9hMkxZW799olRVir/hbCm/0zaGC2xmbUi0llaU+0jNdkV/7sPEW4TFYBljRqd6W2RZQvLuame9aRluZkbEOFV1VkJoMk+gYtq1EBS4lvYZnk5jqZufqMpLTEvnL9a+wde0eAIoaMc/au6PIcK+Oet5CUWiTncpFN51Gn2FdmHzRWK6+ZzoTzxxBm5zIxaABo3vw6Ke3kt2xaS5w6rpOaWkpGRkZTTLf0UJlZaWtCLGU0jZkzYKVlm4XSClto2r/ElKmrbZLR/v2S8Cnn37KKaecwh/+8IcGJQmqqnLrrbdyyimnMHv27CNeK64QxxEHBqFITU2loqKCLl26tHQ4PwmPx2ML4m5BVdWwSZVdThqSkpLYv39/S4dxWEhLS6OysrKlwzgs5OTksHHjRgYMGHDwwUcBHXtk0659OoqiGCqxSQrHTx1Kn2FdOPvqSSydux5/XYA9G8pISUlmy5Yt9B/Qn6fn3c7q77bSqWc2A0f3oKSggrce+5Kta/KMumQLQjHSpK8dhL8uRO/eA9FCa41tVupx8AAeAdEpyfWNrcJjMPsDG39XlPjo2MOshY8mwZhp14ow65yVSK2vWUtsuVkLVaHIJMVnnGumT/9gXshwqAaBD2pR+0bHC6gKDgeMOq0Ty+bkUVXph1AIb2Ut91z+LG8su59hx/dh8Zy14V0Hj+nFoNE9ImnQ5nOXuuT4acMYNq4PF958Wni8J9HNU3NvZ83irWRmp9JvRLfGj8/PRFlZGYqi2IoQ67pOZWWlbbJGAGprawFsleZtNwJvteizQ8x2e//G0bQoKCjgwgsv/MkxI0aMYOHChUe8VpwQxxGHiZycHAoKChgyZEhLh/KT8Hg8tlIvIaJq2+WHLTk52Tau4xbS09PZuXNnS4dxWGjXrh0rVqygpqam1aTFdejRziCw0rhQ1m9EV27776UIIegztAsvfnMXOzbsp0ufHNzJKosWLaJ9+/bkds0it6vRn1bTdG4777/k7y4xUnsVESbZrgQHk68ZSKA2xJyXNlAz2QnBIKgOQEIgRO8hndi1vYiAX2tIMHUdoQikrhvpzfVTnqPTl8FImW7jgZAEZz3HZ0sJVk1SLK39ZQNFWggo2lnJzLd3cMb5JilebriES4dqtJsKavXSzkS4rvq4KV2oKvOzeXmhsUlV0TWNipIa6rx+ivLLEaqCUOD404dww0O/piCvlOL95fz47RbS26bQf2RXjjt1MANHNV4TnJKeyNjJzfP9XVBQQHZ2tm3KPsBQ14QQreazdSioqakhKSnJNl4IYBBiO6XSWx0U7HCM8/Pz6d27d0uHEUcLIS0tjd27d//kmLy8vCY5t4wT4jjiMGEV6rd2WDW5doLd0ryTkpKoq6tD0zTbOIemp6dTVVVlK2Mth8NB27ZtKSgooGfPni0dDgBTLxnH/l3FfPfZarr0bs8t/7kwhgRlZqeRmR358e3VqxerVq1iwoQJ4fdKRXE1+3ZGtcHSJbrUDWU4igzrOiz8ZIUxJmR+pkMaPfq2Z8v6/bEO0GD09kUiFdVoaaTrsc7TRlFwDEGuKPeTkOggwSnwBbRwPNKtxqZXKyA1GVGJZezfKAoiqFO0q5qZb+3gjN90Bwmrl5vP0+Ew2kQFQkZslou1hA49Uuk1rC3vPbKGsDW0eaFg8Kge7Ny4n/eemm8spcG3X6xl+bz11Fb7yGyXyj8/vDF8saGlUFBQ0GoyGQ4VVv2wnUh8a7o4dqiwS/qxBTtla+Xn59O+ffuWDuPIEDfV+tkYN24c77//Ptdddx1jxoxpsH3p0qW89957TJky5YjXssdZUxxxHAXk5ubaghC73e6wSZVdYDcS7/F4UFUVr9fb0qEcMqyTSLsp21ZmRksg4Avy4l9nctdFT/HR8wuRUqI6VP7vz+fw+g8P8NCb18XUpTaGXr16IYTgk7e/5LkHPmbbur2ktUkmMcVjEkKDoBpp0oMJeIPMeWEdWlBDaiZBRYAw64wVhc/fXR7ZN/qmachwDXCkTjhChqmnFkMwoOOtDhoqsQTdoaB7HEghjLmI2k/TIKiBz3Cxl5bYbM3vVhFIindVM/ON7Rwzth1DjmkbOflSFKSqIi1jLgkut8qkX3VnyWd5VJf5zJ7FBvoM6cJ9L1xFZVns50wLadR5je+LitIa3n78y0N+TZsD1dXV1NXVkZXVsqT8cGHHdFOv10tSUlJLh3FYsFvKtJ3izc/PJzc3t6XDiKOFcOeddwIwYcIELr74Yl588UU+//xzXnrpJS699FKOP/54AO64444jXitOiOOIw0T79u1tUTdqmVTZjWDaKc3bSjO0E7kUQpCWlmY7Y62cnBzKyspaxHTt2T9/xPtPz2fF15t49v6P+PzN7w97DkVRWPrxTjRHLT/+sIFbpj9C/u4Srrn3rPAYl1sxyHBdiDkvrkfTTQJs2T5DrDlWdEslCKdKIwQ4o5TdaFIcto2GqD9ASqP1Uhs3umq4Q6OIGGIaFjCEEm6rFCHYUaQYwKUigJK8Gma+tpVjxmYz+JiodFFVgENBOlWEgJN/04Oywlo2LCtsYATmSnSTkORmwDHdUJTYmCPX+yQhS9luIRQUFJCVlWWLNjXRsKPDtN0UYssEzC6KK9hH0ZZS/mIU4qNuqGUfveQnMXz4cN5//31SU1N54403mDFjBlOnTuWqq67itddeIzU1lXfffZcRI0Yc8Vr2+naPI45mRPv27fn++8M/IT7aUFUVp9Npq6u8iYmJLaYC/lzYjRADYafpzp07t3Qoh4yEhARSU1MpLCykU6dOR3XttUu2I013ZEURbFi+g8kXNkzL+iloms7XH69h97a2nHBJPz55ZCUrvt7E9CsnULK/gpkvL+SUGQNJTE5g3qxNBhm2YNXriij2KYhNlY6p+W2oDgshzGyRWGU4Mp+gosR0mlZFzLBwCybrb6cC6Mb0MWSbSJxSIqVEAUryqpn5+jbOuMhId1+zLCpNXBWMPqULKRkePvrvWtO4K2pBIdi+YR9gKPV6UIsy/TJeD12TuD0uzr5m0kFfh+ZEYWEhHTt2bNEYDhe6rlNVVWU7Quz1em1FiH0+H1LKuAlYM6C0tJRgMGh/QhzHEWHq1Knk5eXxySefsHLlynDmy7Bhw5g+fXqTZZTECXEccZiwS8o02C8FOTk52Vbpx2DUEdst5vT0dHbt2tXSYRw2rLTpo02IB47uzp7thUhdouuSfiO6NhizaNZK3nxkDm6Pk2v//KsG7sWqqpDdMZO89aX8+FUep109mPZdjFY/p5w/irTukoQED6U7NPbuKDGV4WhEGVhFq74xQ2SkD3F9gmyR4vrjMVOehaCiPEB2p6SGfYqt9cN1xALpEAgtkuptbZPRNcVOFRnSEAhK9tQw69WtTLukF0jJWpMU9x7chn4j2vLhsxvx+/VIz+OoQLv3M1IhM9ul0a5jBiX5lUgpcThVrrnvLDat2s2ICX3pOfDovi+i4ff7KSsraxIF4mjCuphnJ3KpaRq1tbW2Spm2qwmYHVoZ5efnk5KSYqv3QxxNiyuuuIJBgwZx8803c8EFF3DBBRc021pxQhxHHCbsYqoFRh2xnUyqLEJsJ8On5ORkSkpKWjqMw4LVekmaJMkuyMnJYdu2bYRCoaOalnr1PWfhSXSzY/0+Rkzsx+SLxsZs37OtkL9d/wpSlwhFcPdFT/HGygdxJ7hixt37wlU88oe3yVtbyYgTe+FTy9i5eQ/zvvyaumo/c55fh06U4hpWX/WYOmN0HRRHQ+doXQfVdHLWpVHsZI1vQLCjOKeigAoVZX76DMkEnViiG6XWhmNTFaSum8ZYUcqzqUQLIYz1HSpSCwKCkn1eZr22lWkX90IA5SV1TJjSiS/e3k5lqR9cDsNsS9Mj6wC7tuQz49R/cM5VE/n7O7/ljYe/wFfrp9eQzjxx53sIIZj73jJqa/wxyv2ct5fw2r8/w+V2cP1D5zJiQt9DfMUPHwUFBaSlpZGQkNBsazQHKioqSEtLs9X3gNfrRVVVW6iXFixCbCfYRSH+RaRLQ9xU6wjw5ptvcvPNNx+VteKEOI44TFg1xHYgE3ZzbY42qbLDlWmA1NRUqqqqbPF+sGAd2+rqalJTU1s4mkNHWloaSUlJ7Nu376j2AXcnuJhx9/QDbt9rqscAUpd4q32UF1eT07lNzLhufXN5dNYtgKFyLV26lB/Xr8RXG2TOc+vQNIPQGjCIpsOpEvLrEdJpksT+QztRsK+CsqKqiFOzRV4daqT2N0opltFz1DPVAqgoD5Ce4UbB4NPR9cMxaduWGqwCmjBq0eqPszKoAeFygCaRQPFeL7Ne2cKZl/dBVQXzPtzJ3u1R/dKdKhJpqM8mairqqKmo45Hb3+O2Ry/i9w8b/Sb/et3LhuptHvsv314SJsS7txTwyB/fCrdz+vNVz/PWqgdJTG6eE/zdu3cf9cyFpoAd64erqqpISUmxzfct2K/mGezjMr1///64odb/OLp27UpRUdFRWcseUk0ccRwF5Obm4vf7bWFKZDdCLIQgKSnJVjW5KSkp6Lpuq7RpuxprCSHo0qXLQfsNHm30Hd6VxBQPiqqgqIJOPbPJyk3/yX10XScYNFya3QkOVKdlnhWBogpGTugLmm4STKMFEapCRUkN404b1GBeCWbKNFE3Gavyioiaa/xv3KoqAyiqIDnVGTtpoyna0lCdFYto1xtvTWy5VFs1zVKSkKCiKKDrkqSURtZyOZFqI8o08NlbEf+Gtu3Tw0dMURXadcwIbyvcUxpRP6RRf1xR0jzfK1VVVVRVVcUJ8VGCHWO2W82zZcgZV4iPImQL3X4BuOCCC/j8888pLy9v9rXihDiOOExYtSp2SJtOSEiwlWsz2K+OWFEUUlNTbUcu27RpQ3Fx8cEHtjJ07NiRyspKqqqqWjqUMDKyUvnPJzcz5eJxnD3jBP7x/u9QHQfuSx0MBvn+++9xuVxMGD8BdMH0m4eT2tZDt945DDimO063A12TLJm7nuQ2yZHaYJMc7t9dwsyXvzHSoaMNrcJ/Ry2oR535xIyJrTPWdUlVRYCMTDeE9Njt4b+tuYyUaGnVJUe1fRL165ej2j31G5nFqb/pyfwPdvDJ8xsZOTGXwaOzYuMC00W7HgmXkjVLtvHxS4sAuODGUxl2fB+cLge9BnfimnvPDg/tN6Ib6W2TUVSBUATd+3cgu5NRs71/ZzHPPfAxr/xjNhWl1Rwpdu3aRW5uLk6n8+CDWxECgQAVFRW0adPm4INbEexIiO2WMm2ZgMUJcRx2wO23387IkSOZNGkSs2fPprCwsNnWiqdMxxFHFKw64v79+7d0KD+J5ORkduzY0dJhHBbsphBDxLXZTg6zOTk5LFmyxFb12gAul4vc3Fx27drF4MGDWzqcMLr0bs91D55z0HEWGXY6nYwaNYqlczew+bsy0jsqnH3rSL56aQPl26sJ+kPhfWqqfDz66a38/tePEwoeoLWQSR6FLiNc2FKHaUQVjv5bCCzTrIoyP+mZbvbsrkGPrkOuv49xx3SkFsiAFjHEsuaLikEIGHt6R3oNzOTTN7aRv60SBMx6aTPTLu8DEtYsMU9iwjFjuk4TIcuazjMPfMyEqcNY9Nlqtm8ppG3ntgwZ14fP31zMcacOoseAjqSkJ/Lo7N/zxVtLcLkdTL1kHKqqUFlWw03T/o232gdS8t1nq3lq7m0/eQHjpxAKhdi7dy+jR4/+Wfu3JIqKikhJSbGV87GUksrKSgYNapgd0Vqh6zq1tbW2Uoi9Xi+JiYmo6s/7XBxN5Ofn2/LzVx/hVkhHec1fAqwLN1JKzjzzzAOOE0IQCoUOuP1QECfEccQRBbv0Ik5KSqK2ttZWpCc5OZm8vLyWDuOwkJaWxr59+1o6jMNCRkYGiqJQVlZG27ZtD75DK0L37t357rvv6Nevn61UufpkePn8jTxwzYtGJvFyKN3v5bQZA1kyawcV35pZEiYR/OyN7zjrygm89/T8RmY2a3br9xyun+pcX/Gtl+ospQwT4gbqbDTJNfeXFmlVBdKhoGoGeZV6lNO0lHgSVE45uyuJSU4+eG4jVeUBhGKkRBfv80ZIMbBmqVkHpmmGQZgeBClAl4gokv3hi1/z/jMLAagoqeHdp+YjpMbbj3/JIzNvoeegTrTrkMklt06OeRqbV+2muqI2fH/PtkIK8krp0L1dI8f14NizZw+JiYlkZmb+rP1bEgUFBeTk5LR0GIcFy3TRLh4TYMQshLCV4ZqdFO14DXEcxx9//FHzFIgT4jjiiIJdWi8lJiYihLDV1Wm79vVdv369rYy1hBBkZ2dTUFBgO0KckZFBamoqeXl59OjRo6XDOSRYZFhqkJKQRSigsXzBBhRVQTddlTctLaCisJaTLx9A536ZLHpnM97KAOiSOW8vZcTEvrTrkE7RvorwvEJREArolnCs1CPA1vtRl+CIVXqt96rE4JxIKK8I0K1XKrpDQMioWZZgpjybKjRGqjSRh8CloPk0VIQhO5hG0d16pzJxcify93j54r0tBH2hiAJspnIX7/Uy68XNTLuij5EW/V0BAoFUAI8r0tfY6w+T4vefnh/rnC0EUgo0Ce8/u4DbHr+k0dcht2vbcE9mIQTuBCeZ2WmH8Ao2hJSSHTt20KtXL9t87i3ouk5hYSFjxhxeP+2WRkVFBampqba5wAuR+mE7vUfsZAIWT5mOY+HChUdtLft888QRx1GAXVov2dGkKjk5Gb/fHzYc+jnQNJ2Pn1/If255g4Ufr2jC6BpHamqq7Yy1INLX147o3r07O3fubGjo1AphkeGq0lr+deVH/OGsx7ju5L+R3alNmAwLRZDVPp1Tzh7Dso/34vMGOfe2UfQ5JtuYRBGs/GYLRXvLo5RdgZSgh2Jrh0X9Ol4LBzpUJomWDoXSqiAZmW50VUF3KqZJV5SztABdFUjVMMuSQiAV8+Yya5wVBXeCyslndOKEaZ1ZPHcfc97fSTCgE2HQMpxuHVaKX9jEyBM7MHhsjknmiVWqE90RIg4oikBpxE170ac/GinRjaBjj2z++Pgl5HbLokufHO5/+RoSkn6ek25xcTGBQIAOHTr8rP1bEqWlpaiqarta3Hj98NGBXUzApJRxQhwHpaWllJWVHZW14oQ4jjii0KFDB/bs2dPSYRwSkpKSbEXUXC4XLpfriEj86//+jGfu+5B5Hyzn7ze8wvwPlzdhhA2hKAopKSlUVlY26zpNjaysLOrq6qiuPnJjoaON3NxcNE1r9RemotOk33zwG0IBQ8rNzytFajrn/t+JdOyexZhTB/HY7N+TnJbI5hV5LHhtI/Nf28Coad2ZesNQsjqlxJL/aPXXSo1WBDjVCDnU9QMHVj9lWgikgIrqIKmpTlSXCk4FGaU4S2E4XCMw3a6JVaQdClKFgcPbcMHVfXC6VN56eiNb1tZz/hQCqSiGSVhUi6hoUjzouOxInJEdweMOm3jpmsaEaUPpO6wzVg20oRTD5h8P7EQ+cfqI/2fvvOPrquv///ycu7J3kzSjGc1o05km3S0d7B9TEUEQVFRwC4oDUYaKoCIKXxBRFJUhovj1y56ddO+dpG1GM5o0eyd3nM/vj3NX0rRN0iQ3J5zn43Hb5N4z3vfckfM67/f79ebPG3/C0x/cw+wl2Wc+Rufg2LFjpKen66LPsj+ecmk9ZS0BWltbdSeI29vbdSEu/dFLzE1NTfT09Bgl0x9T/u///o+srCzi4+OZNGkSOTk5vPbaa6O6T0MQGxj4kZ2dzbFjxwIdxqDQYwlyRETEeYnLre8dBEB1qSiKYNe6IyMV2hmJjo4eE8v/kcRsNjNp0iRdZokVRSEnJ4cjR46gnk34BZD+PcOynx+WyaTwhR9cyZ/W/IgfP/0FomLDKNl3AsWk/cmtONjIh38uITo6iqu/NZeLP59H5CS/PsQBRO1pY5U8x0b4reP50S8WKQSqImjvcuF0SiKiLFrWFy0rLPtMheo/tknbZ05OBLfcls3s/BjWflDDG/8qp6vT5WfyJfus7nWnNinexxqqOnjj2SMUXpzK7EUJfhH67cts0sQ0IF0qX7rnyj7HVQhBzpyBRyDZex20NLSfd2VBfX09LS0tuinZ90dKqcv+YSmlLjPEra2tREYOryw/EHhMwPSQ1T569CgJCQlEREQEOpTzxxi7NCS2bt3KddddR2lpKVJKpJQcO3aM6667jq1bt47afg1BbGDgR05ODkePHh23J+L+6FEQe1ybh8vUGckoJneJp5SkTxv9q8exsbE0NDSM+n5GGj2XTaelpSGlHJfVGv3FsMlk4o4HPukVuymZ8Vx646LT1svNT9PKqIUm7ApWTOPGL16NvS4Em83KDfcs4MJbpzMpNRyk+/tHamc2iqVvplIAOF14G3oHNMpyi10FEBIptD7iqGgrUtEeUxWBKtx9xmjLqIp2U0yQNy2Sm29IZ/nieLbvbuTFvx/n+PF2Xwm1//76l0H3j1cI6ivbeeNPhyi8MIXZC+PBJX2O2VKCyQRWCyiCqLgwZhRm8uV7ryYiOoTo+HB+8scvEBZxunPyno+KuXH2j/jM3Hv54af/h55u+5levrMipeTw4cNkZWVhtVqHtY1A0t7eTk9Pj+68A1pbWxFC6Er8uFwu2tradCXiu7q6EELown28pKSEnJycQIdhEAAee+wxVFXlvvvuo66ujtraWn784x/jcrl47LHHRm2/hqmWgYEfmZmZ9PT0UFNTM+5H7ehVEB89enTY63/lp9fhcqkcO1DJ/NV5fOLLq0YwuoGJjY1l165dOBwOXTkfJyQksH//fnp7e7HZhtdLGSgURWH69OkcPHiQlJSUcVO6OpAYBq1Ud9aiLBrrWkmfNhmrre/7ZPuHh/jjA/8BKQmLDOH/fXYpN995GYqicNM3LgO0fkRn51rSZ8bRVNvJkS0nKd1bj73HReHyXLavL+qzTWFS8PN89ntA+GVsNUct4QIENLfaiY62Ics7ECbhFsuKdhXeBSgQG2djRk4kedkRdHe72HugmUPFrbhc0l1RrZVUuwDTAPvqQ/9srVCor+7ijWcPc+WX8oiOC+dUpYOjB6twOlxama+UYLEQGq2VdebMnkJMXDi1Jxp57x9bmbMoi5CwvjNUH7/7H/R09QJwYOsx3nlxM9d+aeVZX8uBqKmpoaenh8zMzCGvOx6ora0lPj4es1lfp3YNDQ3Exsbqqsy7ra0Ns9msC3HpwdPzrIfjbAjijy9btmxh+fLlPPDAA977fvrTn7J+/Xo2b948avvV17emgcEoY7PZSE9Pp6SkZNwL4tDQUHp6enA6nbo5AYqKiqKtrW3Y46LCIkP4wZOfG4XIzkxwcDChoaE0NjbqqhQxODiYiIgI6urqmDJlSqDDGTJJSUkcPXrU6/YbaM4khj3EJkYSmzhw+eT//PCf3jnDna3dRMWEYrGa2LX+CA0nWylcOZ3YxEiuveFyvrDi5yRODWPG0iSWfyqbUxXtnChpIzzKRntLrzujqmrZVNAEpKpqKV0/Uy7vY2gi1gk0tduJjrIizQLp0gy/hIDkhBCmTgljanoY4aFmjpV38Oaak1RWdyJUv15jmwl6XZr4DTJBj9PrkaXt1i2yXaovFpPbP9ozXklAfVUnb/zpEFd+eQbN9SeYlBBBXXWLr9xZwj9+v4a4hAge/8E/vc9l64eH+N33X+YrD3ySmHgtm9jV0UNne7efLhd0dQxsvHU2VFXlyJEj5Obm6ub7tD91dXWkpg5cUj6eaWhoYNKkSYEOY0h4yqX1IC49dHZ26qJcGjRBXFhYGOgwRgRjDvHQOHXqFDfddNNp9y9cuHBUS6b1+a1vYDCK5OTkUFJSwurVqwMdylmx2WyYzWY6Ozt108cUEhKC2WzWXalZXFwcDQ0NuhLEoLmm19bW6lIQCyHIy8tj586dpKWlBbSE9Vxi+Fz09jr7aNXeHgd/+/Vb/PPJ9wEIjwrhybe/R3xyNPc+9Xnuvv5/OLy5hrCYIGYuSSU5K5zCS5LpaLZTX91BQ2UHp0520VjXTU+3O/2roplYSakJUuiTtZUCmtsdpKeEkpsVTkJMEAlxQSTE2nCpktITHWzYVk95TRdOl/Saewn/uccCXGYwOfx6hk0C6RowV903Q2xSkKqKcIdWX93FG388xJW3z2Dn+yeorVRPW/WfT31w2iY3vr6H7e8f5KGXvsaHr27n7Re3eMvVQbtodtH1C4by8gB4Z6Tr8bMC0NvbS3NzM/Pnzw90KENCVVUaGxuZNm1aoEMZEnrsedbTyKWSkpIBRZHB6FJVVcV9993HO++8Q2NjI5MnT+baa6/l/vvvJzo6elDb+PWvf83atWs5fPgwDQ0NKIpCWloaF198Md/5znfOmWxyOBwDXrgJDQ3F6XQO63kNBkMQGxj0Iycnh+Li4kCHcU6EEN6yab0IYiEEkZGRujuZiIuL043Zmj+JiYkcPXoUl8s1bsqOh0J8fLy3zH7GjBkBiWGoYrizvYftHx5k8zv7CY8K5eY7L+Oz37mMp3/yKgDRceFcfP1Cbrvg5951Otq62fD6Hj71ldVMn5fO46/dxY61R3A6VV56QhPN1jArCWnhJGVGET8ljBlLJxMebcPlVOlsd9DV4aCrw4nTqXrF6UWXJmOxKISEmgkNtxASbEZKyfyZMdQ19FBc1s66XQ2cau7VRK1ToihopdhCmzusCqG1B3uCNZm0/mUBLqsZk8OluVJ7RLQqvT3DfZASzCakw6VlL9wjmTyiGFXlwKY6r6nWsktmcKKkxre+p5xaCOx2J3988H8p2aeJWNWlYrKYuevRz1CwYhpRceFDeo2dTidFRUXMnj1bV3Nw/amrqyMyMpKgoKBzLzyO8PQP6+VvmIeWlpZxUbkyFDo6OsZ95RtoF0mOHj06sUqmdZCxPX78OEuWLOHUqVNcc801TJs2je3bt/P444/zzjvvsGnTJmJjY8+5nWeeeYawsDBWrFhBQkICDoeDPXv28Nvf/pY///nPrFu3jvz8/DF4RkPDEMQGBv3IycnhrbfeCnQYg0KvfcR6G2Ok1z7iiIgIrFYrp06d0u08x+nTp7Np0yYyMzMJDg4+9wojyFDF8PYPD/Hz2/+Mwz2CSSiCg9uP88yH9zBzwVROVTczY34m4VEhWG1m7D3aTG6pSsKjfL2IWTNSyJqRwpE9FV5BbO+wU3mokcojTZpoFAJzkImQyCBCom2ERFgJCTNjMimYrZoYbajvobvLSUenk1aXxC4kt30yg1feraLHrrrnEOPL9ErpFsO4BShIk0S4K6BFn35hwCxwqS5MLoGUKsItiqVfb3GfDLOqaplip+rtF66v6uCNZw5y5R0zQMKBjTUgJRv/u5Mp05JOLw1HIoVCw6m+I8VcTheLLp5JaMTQ3yOlpaUEBwfr9jMCWv+zHuNvbGzUXf+wHg21QD8Z4pqaGrq7u3Xp9K5nvva1r3Hq1CmeeOIJvvnNb3rv/853vsNvf/tb7r33Xv7whz+cczsHDx4c8MLcn/70J26//Xbuvffec55j//Wvf2XdunV97isvLwcYsHpTCMGHH354ztjOhiGIDQz6kZOTw+9+97tAhzEowsPDaWtrC3QYQyIqKkp32Va99hELIZgyZQoVFRW6PFkGbezV5MmTOXDgAPPnzx+zE+fhlEk/+aN/ecUwaEK38mgdHS1dZOYlk5mXDEBnWzddbd2+mcNSkjo1/rTtTZs7hRVXzWX9G3sBSE6Po7qi0Rdjr0prYzctbQ6fSJUSs01h/ook9u5pwm7XSpGdJnBGmOnscRIVY+NkQw/CbfLsTf+aBLikz6xLAGYBvb70hnD2c+A3m8Dp1GYVqy6EcI9aUhRNwPYZIeUu4TYp5MxIYlZhBuVFNexad4Q3nt7PlV+dDQIOrKsCASdK6337EcKdPdYEe3NjJ9awIOzufuGLrl8wLDHc2dlJSUkJixYt0pUo86e7u5tTp04xZ86cQIcyZPTYP9ze3o7JZNKVoZbdbqenp0cXgrikpIT09HTdmUGekUCMQRri/o4fP857771Heno6X//61/s89uCDD/LHP/6R559/nt/85jfn7EM/U5XKpz/9aW6//fZBGauWl5d7BXB/+gtlYES+uw1BbGDQj5ycHMrKyrDb7eN+9EZkZKS3900vREZGnpexVqCYNGmSLvuIp0yZQklJCd3d3WOeYR0pZs6cyZo1a6iurh6Tkr/h9gx7Mr4ehID45BhCI/se966OHm0EE3jF4pr/3UnUpHDefGEzFquZa2+7AKdTZdemo94y4uryRrxnOl4xfXoc3kyu35mYopiQZoWmNgfRERZONvZoGWGTX0bYhXbz1khrAtZlBpNTInpdIEEVwj2zUYtBKkIrgzYrWuk0vvJmiV+WGN82C5bnMn1OKq89vxksFupP9vDGHw5w5VdmaZniDdW+53j6M0RKicOh8r3HP0tYZAiFq6af6+U5DSkle/fuJTU1VXejivypqKggPj5ed59vvfcP6+kCSmtrK8HBwboQmYbD9Nizdu1aAC655JLTzsvCw8NZunQp7733Hlu3buXCCy8c1j5ef/11AGbPnj2oWMYaQxAbGPQjNTUVs9lMWVkZubm5gQ7nrERFRdHZ2amrUt7Q0FAURdFdydmkSZM4cuQIM2fODHQoQyIkJIRJkyZx4sSJcf9+PhM2m405c+awd+9e4uLiRrVP8nwMtD773ct56t5/AWC2mJi7NJuv/vRTp51gxE2OYs6SbPZtdl8pF4I3n9/E2tf30NNlByn56O19XHPbSjpau30rCryjh88087fPY55SZXCPWIKmNgcxkdosYtBGKEnhywg7Hdo4JW/m2JMldklUm2/+sHRJTE4AiWozo/Q4EYqfwZZ/DFJqcftlxP/x9BomxUfgcDi9y9XXdPPGHw9z5e15WqZ4Q03f5yN9PysmQUJKDJveO0RbSxcOp8rSS2ed5dU5nbKyMjo7O1mwYOgmXOMFKSUnTpxg1qyhPffxQFNTEyaTSZf9w3r62wX6itkQxGOPxzfnTMc9Ozub9957j5KSkkEL4meffZaqqio6Ojo4cOAAH3zwAWlpaTzyyCNnXW/FihVDC36EMASxgUE/FEUhOzubkpKScS8gbDYbwcHBtLS06KbsTAhBdHQ0zc3NuvkDDZrB065du3TTh+VPeno6Bw4cICcnR1dZDX+SkpKorq5m3759LFiwYFSex/m6SV956zJmLsjkVHUzeYUZhEUOXFIphODSm5awb0vf1oGudt+4oOqyeg7vKvU96N+/637uAvxGFQ2QTfV7TLrLo5s67CTG2LT+Ydz9vt7krUDaQNqlW0C7FbEicQJmj7B3Z5ZVp9TmEgtQzQomp6qJZ4fqy1wr7hJq3AGoPtOv1ubO0zLc9VUdPlGM4MD6ai0WKZmUGEFweDD2HifxydHUlDew9cNDqC7JoR1l/M/rdzLVXZZ+Ljo7Ozl8+DALFy7UzcXEgTh16hSqqpKQkBDoUIZMbW0tCQkJuvtOam5u1p1g84yJ0gMlJSVcdtllgQ5jxAjk2KX+LXU2m23AKgGPr8uZ3iOe+1taWgYdw7PPPsu2bdu8v8+fP5+XXnqJrKysQW9jLNFPvaKBwRjiGb2kByIjI3VpUtXQ0BDoMIaE2WwmLi6O2traQIcyZBISElBVlVOnTgU6lPNi9uzZNDU1UV1dPeLbPl8x7CF9WhILLpxxRjHsv1x/+ggDKVn36g4Sk6N8wlaVfY2whLaOcLhO21a/DSNVTZQ2ttuJDrdqxdTurLFEyxJL0Eqo1X7iWgiw9BXOCIF3RLGUYFF8+/Jf1X8bLpdWPu2+2e1+IzT8RjTVV7bzxjOHKLx0CrMuSPLONa4/2cqcRVN5bv2P+MkfPk9DbSuqyz1WSkqOHRzc+0JKyZ49e0hNTdXNhcQzUV5eTlpamq7aT0B7DWpra3XXgmK322lra9Ndib2RIf54kpqaSmRkpPf28MMPj9m+t27dipSShoYG3nvvPQAKCgp49913xyyGoaCvb1ADgzFCT4I4KipqSFftxgOeub5SjvFl0/MkMTFRl4JYURSmTJlyRpMKveApnd6/fz89PT3nXmGQjJQYHgoZ0ybzue9foblCW0x84Z4r+cETt2gPuscXKYpg5RWzWX7ZDC2hqyiaiZVbkArP/F3FZ6jVp0zaD+HO0DZ1OIgJt3j7hqV7fam4xbCCWyH3+2yavOrX959FwQXe/ameONziTHidofHNR1bd2WNVe44AX/ju5ZjMfqcjQmii+Kl9FF6WxqyVvqzv63/fRE+3ndDwINKyE1BMAqEITCaF6fPSBnXsy8rK6O7uDtgor5HCY6alx9nJHR0ddHd36+6CRENDA+Hh4broxfXgcDjo7OzUhSB2OByUlpZOLEEsA3QDKisraW1t9d7uueeeAUP0ZIDPlFzx3D+c91BsbCwXX3wx7733HsHBwdxyyy10d3efe8UxxhDEBgYD4CmZ1gN6FMTR0dG4XC7a29vPvfA4IjExkaamJux2e6BDGTIZGRmcOnWKzs7OQIcCwJvPf8TtKx/i+596ghNHB3+RISkpifj4ePbt2zciF1QCIYY93PjNS3i97DFeO/4brrvjQqRLJTktFoF0TymSvPPP7Wx8Yx/hEcGa8PV7ztKlIt2uzX0k8EDHRYLigpZOBxaTIDzE5Km59mV0hZY1dlkHODVQhNa+7GfkJYTWg+zdhdWkCWRPfbZbAMclRCDsTi1G1SeShdB6rZdcnIfL373aLezrqzp548l9FF6axqwVmii22syYzSaEEPzi+Tu47NMLWXbZLB76++1MyTp32bCnVHru3LmYzfruGisrKyM+Pv6crq/jkdraWiZNmqS716ChoUGX2WG9GGqVlZVhNptJTU0NdCgTgoiIiD63M70HPO2BZzrv9ThDn8+FiqioKBYvXkx9fT2HDh0a9nZGC319ExkYjBHTpk3j8OHDSCnHfX9TZGSk7oy1FEUhJiaGxsZGIiIiAh3OoAkODiYiIoK6ujrd/cEODg4mMTGRsrKygBuDHdh6jCfveQWA6rJT3HfrH3hu8/2D/qzNmjWLtWvXUlZWRmZm5rDjCKQY9uB5zk/88GXee3krQoDJbGLOkmzaWrs4fkgrA25t7tQyryazV/BK0DLGnm3h7imWfe7RflIBp8SlQkunk5hwG+3dXUjVb1EtIFQLKL3SzxhaE+KqVaDYtfSD8KyguHuJPfOLbWbNmQtt5jAOJ801LRQuz2XPlmO4XJLQMBtJabEoJoVbvnUxTz/4v30Mt7yYFOqrO/jw7yVceKvW/776siWYLdpzjomP4JsPfWrQx9rlcrFz506mTJmiu8xkf1wuFxUVFRQWFgY6lGFRW1uru+9Q0OYmj3dvkf7oqX/48OHD5OTkBOS7+OPMqlWrAHjvvfdOmwDS3t7Opk2bCAkJYdGiRee1H0+703i8EGZkiA0MBmDOnDk0NDSMSq/iSBMUFERQUJDRRzxG6LVsGiAzM5OKigqcTue5Fx5FKopPen9WXZK6yiYc9sHHZLPZWLBgAYcPH6a+vv7cKwzAaIvhuqomnvj+yzz67ec5drDyrMu6XCofvKKZj0gJLqeL+RfOwGKzoPYTiH0E4wDl0QJ8PcX+vbyK8C7a1O4gOtyiSWXP2CX/5c34SqT9t2/y/Sw9vcBCuB2r3cErApfnQqIQYDLhckl2bjqmjWuymOjqcXLp9QuYFBfGmv/sYPfGYt/6fZ6MALOZE8VNvPH0AQoumcLubfuw92rvFXuPg8d/+E8+t+ynPPyNv9HZduYyPM+IJSGE7kulAaqqqrDZbLrLVgL09vbS3NysOyOw3t5e2traiI2NDXQoQ0JP/cO7du1i3rx5gQ5jRPGYao31bShMnTqVSy65hPLycp566qk+j91///10dnZyyy239KlGKSoqoqioqM+yJ06coK6ubsB9PPPMM+zYsYPU1NRx6Yo//iS6gcE4IDQ0lGnTprF79+4xmXt6vnjKpvV0chQXF0dpaakusvD+JCYmcvz4cd3NUQaIiYkhNDSUEydOnFdm9XyZszQHs8WEqmqiasaCqVhtQ6tuiImJYdasWezYsYMVK1YMqWx0tMWww+7ke5/8HY21rYBk09v7+PNH9xETf3o1REdrF6/8/gPMVrMm9NyO0DHx4UyaHNXXhbn/+22gj42/qPRfV6D1CqM5TXv6iN1e00jPxgSgaKXTwt+ry5MlFmjO0qr0llxjEqguVbtfSgixoPY4EA4VoQivkNc0tBbUUw/+L9LucHuDCaSq+hyp+5mLIaC+soM3fr+fK782m51bdrNgaQHfv/Epived0Ay3qlsIDgvizkduGPA1OXbsGA0NDaxYsUL32ScpJaWlpWRmZurqu9NDXV0dkZGRupub3NjYqLv+YdAEsV6y8bt27eLyyy8PdBgfS37/+9+zZMkSvvWtb/Hhhx8yffp0tm3bxtq1a8nJyeGhhx7qs/z06drsd//Wpd27d3P99dezePFisrKySEhIoLGxka1bt3LgwAHCwsJ4/vnnx+V3sL7O5gwMxpCCggJ27doV6DAGRVRUlO4yxHrtI46MjMRisejSsVkIwdSpU70XIgJFalYCj/7nTi77zGJu+OYl3P/cl4e1nbS0NFJTU9m2bRsOh2NQ64xFmXRdZRP11c2oLhXVJenp7OXYgYGzxA/c9iyvPrMWhzurq5gE/++zS3A4XKx/fY+2kEdoem79UVXfYy7VJ5LcxlkAqnA7rUhJU7uD2HCLb6awpK+4FuASwuvg7LtfIM3CK1Ld9tRa+bSCJpIlWq+z2YQ0C+19ZnKbd/n3PyPAYkGqEqmqRMWEIuD0iwZ+WfD6yg7eeHIvTR2n+N+X3tPEsGd7UlJedJKBqK2tpbi4mIULF47qDOuxoqGhge7ubl1crB2IkydP6s5dGvTZP6wnQy0pJbt27aKgoCDQoYwsATTVGgpTp05l586dfP7zn2fbtm385je/4fjx43z7299m69atg6qMmDdvHt/+9rfp7e3lzTff5NFHH+Uf//gHQgi++93vcvjw4SHNGc7MzOSJJ5446zJPPfXUiFzgNzLEBgZnoKCggPfffz/QYQyKyMhIqqqqAh3GkPD0ETc0NOiqj1gIQUpKClVVVbo8qUtKSuLQoUPU1tYyefLkgMWRm59Gbn7aeW9nxowZbN26ld27d59zPvFY9QzHJUURFhVCV1s3UkoUk0JazunvFXuvk0M7SvvcJ1XJOy9toaq0HqG4xyV5sqZOJ5jNPvFr6ndNW0qkSUENsWq/C18PsTQpSHfGt7HDwXyP0zR+AteLQJolOP16ej3iWdHErOIW1wJtF8KjkN33SUCYTdrqLhWhACp9t+d2yo6KCeWvH/2Ep37yKu+9sg0U0+nZbyGwWRSu/cJF5Galc6BnL7NXJLN/fbX3gsGSS08vw2tvb2fXrl3k5+frQhQMhmPHjpGenj4u+/DORW9vL3V1dQH3MRgOeu0fDgoK0kVWu7q6moaGBubOnRvoUD62pKam8txzzw1q2YEuqk+ZMoVHH310xOIpLy8/p2lsS0sLFRUV570vI0NsYHAG9JYh7ujoGHSWbLwQFxdHY2NjoMMYMikpKdTW1urueAOYTCZycnI4cuSI7sZeDYSiKBQWFtLe3n5aP5M/Y2mgFRRs5eF/foM5S3PIm5/JA3+9g4TU06+uW6wmrSwafEZZqkR1qezfcgzpUvte6ZcSi2dOsISCpdl9MqhSUcB6ukiS/hljVdDU4SAqxKJNaxKAy7d/bywmkGa8o5G8mBRUi3af8GYjfILa6yRtUrT9mhT3bGKhPZ9+hEaFEJsYya/ufEETw579u/drsZj42gOf4JXdP+Xbv76RvzzyBt+6/Am2/KecgkvTmL1Sy5IuvGgG139ldZ9t2+12tm3bRmZmJsnJyUwEGhoaaGpqIisrK9ChDIuamhqio6N154xt9A+PPrt372b69OmEhJx9hrvu0EmGWK+0t7djtVrPezv6u7xoYDBGzJ07l7q6OmpqakhKSgp0OGclKCiIkJAQmpubiY+PD3Q4gyYuLo7jx4/rro84IiKC0NBQTp48qcsZoOnp6Rw/fpwTJ06Qlnb+WdpAY7VaWbhwIRs2bCA8PPy0UtJAuElnzUzlFy9/46zLCCGYkpNI/ckW7Q7PzN4+mV9fPXNQiI2eHqf3sxIeE+YrpxbitLFMvmwsSKnlcIUKbd1OXFISFWqhqcOBomjJW7/AtP0qmpju/9mUFhPYXVpkUvqEsVuoC09zsqdvWSgIRWo7V9U+Ir6zpYtjjR0cO+BX4SJVbWVV4rSrPPfI68xfOY0nfvQvXG5RfXDLCTLzkll4ZSZLLp7JlTdc1CdOVVXZuXMn4eHhpKVm0NHaRVikvk+0pZQcOnSIrKysETkBDARVVVW6LPXWa/9wU1MTMTExgQ5jUExEQy2DoXPixIk+v7e0tJx2H2hO+ydOnODVV18dkZJpI0NsYHAGwsLCyM3N1U2WOC4uTneuzVFRUUgpaW5uDnQoQ8ZTNq1HFEVh+vTpFBcX43K5zr2CDggPD6ewsJC9e/f2cQEfD6OVzoYtyNJ3vNFAN1Xy0798mYiYMEATRkIR1FU2+dYDbe6vtkCf+6XE/ddeIF1aWXNzh7uP2NNA7K+IPdlqIVAVBhDZEqefqBUShL/JlrfXWcsMa6loAOmbQ+x0IRwOX9b4tP5o7XepSro7e9m9oRino+97dUpGMqtWr8AS5aS8vMx7v6qq7Nq1SyvPPdLD9TN+yPUzfsgf7n9V11URJ0+epLu7m6lTpwY6lGHR2dlJc3OzLrP1tbW1unPFllLqqu95QvYPGwyZ9PR0MjIyyMjIAODxxx/3/u5/y8rKYvXq1Rw/fpwvf3l4PiT+GILYwOAs6KlsWo9jjBRFISEhQZdjjFJSUmhoaKCnpyfQoQyL5ORkrFYrZWVl515YJyQkJDBv3jx27tzJqVOnxr0YBvj01y/CFqxl+4KCrVxxy9LTlrn+axcx74IcouLCNNdmNNEnXC4SU6K8YlIIAQ6nL9PsRoCWqVW09lzQRi/FhFk8j4L0n9GkiV1VAcyeqmip3dyPyyDpNe3SRLZnP+5teHWnr48Zk8ntOA24VEJCbSgesSyEN8v8/d/dTGSs77kCTE6P46ZvXeL7PS2WC66cS3R0NIsXL6a4uNhbbbJnzx7a29uZlTeXP/zkP6hu0f1/f15P0e7yc7wi4xNVVTly5Ai5ubm67B0GLTuckJCgu+y2lJK6ujrdeUa0tbWhqqpuZhBPVEGsh7FL44lbb72VW2+9lVtuuQWA2bNne+/zv33hC1/g7rvv5p133uHOO+887/3q81vVwGCMKCgoYM2aNYEOY1DExcWxd+9eHA4HFsvQRtgEksTERIqLi8nLywt0KEMiODiY2NhYqqurdZmxEUIwffp0du3aRVpamq7eM2cjKSkJl8vF9u3bCQ4OJiQkZNyKYYDcuWk899FPqCipJS0nkai4cGYuzOLff1pLWEQwd9x3LZPT4vjmNY9TVuy+cKQIUBQO768Cm88tGrRyZe/JkLts2Z0n9opiJDS224kJsyKFZpTlr1t9rli415EI6Z3R5M5Qe1yy8IlxT/m2Kn0xeZyuFQFmBemQ2kOK4MLrCpEulaLdFZw4WovqVPnMty5h1bWFTE6bxGPfe4m2pk4+8cWV5C/NIX9pDvNXTqepvo1ZC6YSHKqVr3pE8ebNm6mursZut7Ns2TLaGrtOywh3tevzAlZlZSVSSt22OEgpqaqqYtq0aYEOZcg0NWmVGNHR0QGOZGg0NDQQGxuri/GANTU11NXVGYZaBvz1r3/1/vz3v/+dT3ziE9x3332jvl9DEBsYnIWCggJ+/etfBzqMQRESEkJwcDBNTU26Ku2Kj49n165ddHZ26s5oJSUlhbKyMl0KYtCOfWRkJEePHtXdBYmzkZiYSFFREZ2dncycOXPcimEPkbFhRMaEUl/TTERMKCuvmcfKa3y9dH/8xes+MQy+ecT9XabdeCWgXxmydM8g9iSEmzqcpMQFa4lh9+xh3zpatlZ4e4kF0uUzpQZA1eSwSQImAS5PqbTfMt54BdJiRjqcKCYBLk1cr762kNzZ2nzUxrpWSotOkpGrOZ9Py0/jjx/cc9pzy5o5cP9pVFQUcXFx1NbWkpubS1BQEB9t3U9IpOb2jZRMnZHMrEX6M6NyuVwUFRUxc+ZMXYibgWhtbaWnp0d3WVbwlUvr7djrrVx62rRphIWFBTqUkScQJlc6zhD7o6qnGzGOFvr6dBsYjDH5+fnU1tZy8uTA8y3HG3rsI7ZYLN4TWb2RlJREe3s7bW1tgQ5lWHiyxKWlpbot/e6Pp0w6LCyM2bNns2PHDurq6gId1ln5w32v8tWLHuFb/+9Rfnrbn7zGUQD2Hgfvv7qzX3+tmwEEsWpSkFb3BQCX6jsXUzxJW00BN7bbiQ2zeLPIKqAqoCoCVfTRvZpo9t+VxzVakd4FpWcGsfd/bTay8B9ybDZp6wHWYAtp2dqFu6K9J/jiRb/ivi/9hdsu+iUHdwytjF9VVXbv3k17ezsLFy6ktLSUrRt28pu7XqKrvQehKIRFh/LLV7+NNUh/lRClpaXYbLZxb+54Nk6cOMHkyZPH/cWpgaitrdWdkJdS0tjYqCtBPBHLpQ30gyGIDQzOQnh4ODk5OezevTvQoQwKvY4xSkxM1KUgtlgsJCcnU15eHuhQhk1MTAzx8fEUFxcHOpTzpn/PcHp6Ovn5+ezYsWPcXtSqr2nmtec2eH/f9sEhDrtnE0sp+ekdf6GjpbPvSv7GVX5CWQrAZvaZaZlN7nJlxZP0xd0FTFOHg7BgMxazJoA1R2l3+bS/ZhGaOpaeswXh+1/aTO4f/cy1PA97+tg8s4f7GYX19jh57tdvA/DvZ9fhsDsBcDpc/POZwbepeAy0WltbWbZsGYmJiSxevJi6phpmuUcySSnpaO1GdY5dtmGkcDgc3goOPTnx++N0OqmsrCQ9PT3QoQyZjo4Ourq6mDRpUqBDGRJG/7DBRKGpqYlHH32UT3/601x88cWsXr36tNuFF1543vsxSqYNDM6Bx1jriiuuCHQo5yQ2NpY9e/boso/44MGDuosbNEfELVu2kJeXp1uzm+nTp7Nu3TqmTp2q25K1MxloJScnoygKu3btYvr06WRmZo57YeGJr7Oth13rizQRaTL5xK9LRbGasVgUQmPCaWroQErVr2934Oenenp5BXTbVbp6XcSEWTjZYdfcoP38tZxI7QTBU1KNpm0Vz33ukUxOBSxortfS7kII4etZ7udcLdyxSbMJ4XSxe/NRACwW3+dGAO3NnXx55UMoiuCLP76GBatnDPh8ent72bFjB06nk6VLl3pH4kRHR5OXO4vey+0IRXBwXRWZecmERQYP7gUYRxw9epTIyEhdjdPrT3V1NSEhIbrrwQWoq6sjLi5Od3+X9NQ/DJog/v73vx/oMEYHo2R62BQVFbFy5Urq6+vPOiFgJP6m6+OTYmAQQPTkNO3fR6wnQkJCCA8PH/elrQMRHR1NSEgI1dXVgQ5l2ISHh5OamkpRUVGgQxkW53KTnjx5MkuXLuXo0aPs3bt3XI2ampQUzXV3rPb+vuTyOeTN18ZNBIdaCQ0P0h7w76UyKaiqxN7twOV0IVXV7dx8etbYmy0Gr4j1lEA3djiIibD6xLAnO6xw+tnBQGXTUoLFL/OraHOJ8cTjF4fA/bvFpIlyk0JGrlaGevM3LyIiWvMPUEwKxXtPUFXZzInjp/jZl/5Mc/3pLQmtra1s2LABm81GQX4hD3/l71yddTd3Xv0Y9SdbyJ6eQe7UmSy8aio3/XAlD7341XF/IaQ/3d3dlJaW6r6/v7y8nPT0dN0df9DnuCXQV//wyZMnqa2tJT8/P9ChGIwz7r77bk6dOsUPfvADSktLcTgcqKp62m0k/qYbgtjA4BwsWLCALVu26GZ+pR77iEHLEutREAshSE9Pp6ysTDfvkYHIzc2ltrZWdzOhBztaKTo6mhUrVtDW1samTZsC3jMtpWTT2/v4x+PvsvyqfP604cf8/v0f8uM/3ubN6pjMJu774xdJSI4mJNRKRGSIz1ALrV23pclXTu0dAzyA8FCc0juP2JOwaOq0ExemZb6kp2TaXR4tzXhHKXm31//QmrWMs/dUxOMy7e4lFlIiVBWTInziWEqwmpDA1DxtHm1KZjx/XXcPX/rhFTjtTl+G22zG6XBxqrrve7KmpoaNGzcyZcoUCgsLefUP69ix9jAOu5OjB6p4+r5XAZizYBqrVq8geoqF+ib9tWQUFxeTkJCgy8yqh5aWFtrb20lJGdgMbTxjt9tpbGw0+odHGU+FlV6rk86FMXZp+GzcuJErrriCX/ziF6Snp4+qB4EhiA0MzsH8+fPp6OjgyJEjgQ5lUOi1jzghIYG6uroxdRUcKVJSUujs7NSdmPQnODiYrKws9u7dq5vXYKhzhoODg1m2bBmhoaGsX7+elpaWsQl0AF556gN+fvtfeOGxt7nrmt/SfKqNjOlJp2XRZi/O4q8f/YRXDzxMeFTIaT3DErxGVS6zohlt+W/DPTvYZJcI6e4hdmeAGzscxIT6jLV8olgi3SOKvXsbKLunaPdLEz4LahWE6jHTgqnZCagOly9z7dmOReGvj73LVdN/yB9+9n9YbWZtJJLn+bmXMwVZSXM7T0spKS4uZs+ePcybN4/c3FyEENTXtHhDUl0qp6p8FTL95xTrhYaGBqqqqnSfHS4tLSU1NVV3JccAp06dIjw8nJCQkECHMiT01j+8bt06Vq5cGegwDMYhUsox+w40BLGBwTmw2WwsWbKEdevWBTqUQREbG0tLSwsOhyPQoQyJ6OhoTCYT9fX1gQ5lyFgsFlJTUykrG5o77ngjJycHgJKSkgBHcm6GKoY9mEwm5s2bR2ZmJh999FHASt3ffXkLAKqqzfBd/9rAxn11lY3UlGv9U1fdutQ741cVgNVvBrEQYHYfA492lW7x654FLMxu0esWvg0dDmLDrNqifv3DnhJq1zkrXN3l115zrX6tay7J8aJat/O0X4YYQGinH06Hi//720dsevcAq68t8GWZ3ZgtZn7xled48It/5N03P+RYyXEWFC7s47i86hMFmtZWtIAvuWFRnyj1JoqdTid79uxh+vTpuhtF509vby/V1dVkZGQEOpRhUV1dzeTJkwMdxpDRW//whBfEMkC3CUBBQcGYGX7q49NiYBBgVq1apRtBHBISQkhIiO6yxEIIUlJSqKqqCnQowyIjI4OampqAl+KeD4qikJ+fz7FjxwKaPT0XwxXDHoQQZGdnU1hYyN69ezl48OCY9xUnpMRqM3nRRhZNSjq9LPbhr/+Nzy/9GV+84CEe/OKzXH3rUmJSYnwmW/2cm4G+M4A9J0UCTUB7HnffmjocvtFL4JtJLLS5xU7hJ5TRdKrq/UW737tdd6U0ZneGWsUbk9ZX7OlvRvsZ/MQxNNa1kZwex01fv6jPMo5eB8eLKkiZF0JZURXP3v0hd1/zJM31bXR39vL2i5s5VdXEz56/g1u+ezkPPvdlrv788tOOpZ5E8eHDhwkODiYzMzPQoZwXFRUVxMTEEBEREehQhozdbufUqVO6LPWur6/XTbl0Q0MDBw8eZMWKFYEOxWAcct999/HWW2+Nyfm3Pi1RDQzGmJUrV/L4448jpdSFMYin/FhvvU8pKSls3LgRp9OpO8fm8PBw4uLiKCsrY/r06YEOZ9hERUWRlZXFnj17WLFixbjLMpyvGPYnMTGRCy64gN27d7Nu3TrmzZs3Zv2a3/rlDTx0x1+oPH6KhRfO4BNfWqn1y1Y1EZMQQfmRGja8vse7/LYPDnFweymtzX4jmPxLkOUAaQEFkFo5teIZuORXBt3U5cBqEoTZFFodap+RSgCEAJ24xS1gEkghwYlPIZsE9Kqa6FWET/gq+FymPbOIvWoacDiRqqq5UgsovCAXgFvuupTkjElsfGsvFquZju4G5l2WzsF1Vex4sxTVqWLvbubtFzez5d0DHDtQCUD6tMk8/ubdWG1nLs31iOItW7Ts/NSpU8/2EgWEhoYGTpw4wcqVK3Xxt+ZMqKpKWVkZs2bNCnQow6KmpobIyEjd9bU6nU7q6+t1U2q/YcMGZsyYobuxVgZjQ2VlJddccw2XXHIJn/nMZygoKCAqKmrAZW+99dbz2pe+zjgNDAKEp4/48OHDzJgx8AiQ8URiYiK7d+9m9uzZujqpioyMJCQkhJMnT5KamhrocIZMVlYWO3bsICsrS5c9cx5ycnI4efIkxcXF40rcj6QY9hAeHs7y5cs5duwYmzZtIiMjg2nTpo2qeQfA5LQ4nnzHN2akub6Nuz/5ODVl9QSH2bj6ttMzJuXFJ3G5Z+kKl4o0KX1FMWf+rHv6jD3GWgiBE2jtdhIbaqG1pVdb0Hv9w1durSJRPNsW4AJMbnWtVThLnGaB2SndPc2e2cS+UmkhJbhcfTPZVgtSVZEule4uuzfW1dfOo3B1Fjt37qLyuIU3/mcvdWWt3m1JCS2N7V4xDFBedJJjByrJKzx7VnU8i2L/Umm9CbH+VFZWYjabdVlyDFr8es0OBwcHEx4eHuhQBsXatWsndrk0gTG5miimWp///OcR7okGzz//PM8///xp57SeRJUhiA0MxgCr1crSpUtZt26dLgRxbGwsTqeTlpYW3TmUpqamUlVVpUtBHBcXR2hoKBUVFWRlZQU6nGGjKArz5s1j48aNTJ48+YxXZMeS0RDDHhRFIScnh8TERPbs2TPm2WKAV/+whtoTWptDT5edbe8fQDEpqC5NAJvMCnOW+N5TApAOp9Y37BHF/VzONRHsK0vGdPqc4sZOB7GhVspbe7XyZ+9DAhTp7T/27VhoathzkiclapAJkwpOhxOzO1Msne6ssdd5Wvo27klmu0u/TQJiE7SyWlVVOXbsGCUlJUxOSGZ/8UnMwkr2rFSOH6pEdUlSsuK5/KalvPHXj3zO7gKi4gYnAsarKJ4opdJSSo4dO0ZWVpauLsh66Orqorm5mQULFgQ6lCHjGROll+O+bt06HnjggUCHYTBOee6558ZsX4YgNjAYJCtXrmTdunV8/etfD3Qo50RRFBISEqitrdWdIE5OTubIkSP09PQQFBQU6HCGhBCCnJwc9u/fT0ZGxqhnGUeTyMjIcVM6PZpi2J+IiIg+2eLMzExyc3PH5HW09zq9P0tVIlXJb/97J3/95RvU17ZysqKBr1z8K2YtzeHA7hOAO+vqyZoCOFxaD68/wpurRarQp6paeASxxXu3v24FrTra7F/+jOdxbYyTAFBAFQLFZkK4s8TCI75d0lde7flfKH12cs3nlhMdF05bWxt79uzB6XSyYP5C7vnUH6itaAAhCIsM5pm192LvcTAlOxGzxcQ3H7mBZx74D1JKvvTja0hKH3zZ5XgTxfX19Zw4cYJVq1bpRsyciZMnT+J0OnV5UROgqqqK+Ph4bDZboEMZElJK6urqKCgoCHQog6K+vp5Dhw5xwQUXBDqU0SUQJlcTJEP8uc99bsz2Nb6awwwMxjEeQayXWbOePmK9ERISQkxMTMDcf8+XxMRELBYLlZWV5154nONxnR4rl8eBGCsx7MGTLb7gggs4deoUa9eupaamZtQ/91d9fjnBodoJuFAEN991OTlzpnD3726mquwULpeKlJIDHxVjQoLDeZq4FaLPDz4B6nluLtXtkiW9erSx022s5bcd301ol8396++8Rl3+os1v9JInI+w1+3LvSwWcLhSHyzuSCSB+ciTXf3k5hw4dYsOGDcTGxtJRaeHJe/6PmopGVFWiulTamjqpq2xkSnYirz6zhke+8TfMVhP/Kf4V/z36KFd9fugn1ePFaMvpdLJ3717y8vJ07SoNmigrKSkhKytr3PkPDAYppW7LpZubm1FVldjY2ECHMiiM/mGD8YSRITYwGCTz58+nq6tLN33ECQkJ7Nmzh66uLt3NUUxJSaGioiLgWZvh4HEwLi4uJi0tTdfZnkCXTo+1GPYnIiKCCy64gIqKCvbv38/Ro0fJy8sbtZO31KwEnt3wY4r3VpCcGU9KZjwAnW09p13tdzk0R2xp8ntvKQJpMWnGVh5U1TveCLS+3v6jkRo7HMxPi9DMtlyA/yEW4LKC2SH6rCSEQJWqtit31lmaBAgFp+LCrPqbayngcnHtrUs4uOUYALfedRmdnb10dvaQNi2MLds+IioqimXLlvHey7t57ldvaSOUzGat79jlQiiCyWlxPPfI6/zvs+tBwPrX9iCE4KJPDb+0dTxkig8dOkRwcLBuxxP5U19fT3d3N2lpaYEOZVi0trbS3d2tO0NKgLq6OuLj43VzIWLCj1sy0BWGIDYwGCR66yO2Wq3ExMRQW1uru560pKQkDhw4QEdHhy7NZTxl3zU1NSQnJwc6nPPCUzq9e/duVqxYMWai9HzEsL3XwStPvk/lsToWXDiDC4cpmBRFISMjg9TUVEpLS9m+fTsxMTFMnz59VC4ORMWFs/CimX3uS86cxNyl2ezddBQAS3gIDqeKVAR4jNs8Gdf+J8KK8CWIBZi7VJxBAulXrtzU6SA6xIKCRBV+wte/3dhtEN3nFVAEuCRS1RystQUlWBWtTFpVvVlkKQQ5s1L4yg+vBLQ+4RMnTlBcXEtTcw/z58/3XmjYvVGbgS3dY5cUi4ngMCtLLp1N3ORodq47omXrJSiKYN/mo+cliCGwori+vp7KysoJUSoNcPToUTIzM3U3JcBDVVUVkydP1mX8tbW1ZGdnBzqMQbNu3ToefPDBQIcx+hgl04MmMzMTIQQffPABGRkZgz53FUKcd5WPPi4jGRiMEzxl03ohMTFRl2XTVquVhIQE3c4kVhSFrKwsSkpKdFNifzZycnJQFIWioqIx2d/5Zob/cP+rvPT4u2x8Yy+P3vkCG9/Yc+6VzoLZbCYnJ4eLL76YiIgIPvroI3bu3ElnZ+e5Vx4inW3dvPqndbzyhw9paWhHURR++tzt3PPkrcRMicPhdpmWlgFO2F1qn19lH3ErNNNoe9/3Y2u3EwlEhVi0E4J+b1fpOUvwTxJ7xir5lWYLQCpuQy3oc3YREmZj//ZSmhs7qKmpYc2aNRw7doxZs2ZxwQUX9Mm6Z89K6VONraqSzi4n7/97O49++3ly5kxBcWfBVSmZOmNkSlsDUT5tt9snTKk0QFNTE83NzbrNdEspdWvo2NXVRXt7OwkJCYEOZVB8bPqHDYaEqqqoqtrndynlOW/+6wwX/V0CMzAIICtXruS3v/2tbuYRJyYmcuTIERwOh+7GAKWmpnLgwAFyc3N1caz7k5aWRklJCbW1tbodPeJBURQKCgrYsGEDkZGRo9pfNxJl0rvXFXkzjCaTwt5NJSy/Mv+8Y7NarcyYMYPMzEyKiopYs2YNKSkpZGZmEhkZed7bdzld3P3pJ6koqQUBb76wmf95/Tu89cImaioaaW3u6rtCn5FLmsmW7P+4p4RalbgUgQzqN7ICLUscG2Khqcvdlyz8HtQSwZhMgNNtpOXJeEgJJhAOjyAWCCkRSJ96lpKeHgfHjpbzv/9+nbjEcEyOUKLC40hISDzts33LXZeya2MxZUdOep6VtjMJm97exysHHsZkVjh2sJoFq/O46vPLh3OoB2QsM8WqqrJz504iIiJ0KyD7U1xcTEZGBlarNdChDItTp04B2rQAvVFbW0tsbKxu/s5v2LCBmTNn6vJYD5U+5v1juE89Ul5eftbfRxNDEBsYDIHCwkJd9RGHhYUREhJCfX09SUlJgQ5nSCQkJLBv3z5OnTqlm6ve/phMJnJzczl8+DAJCQm66es6E+Hh4RQWFrJjxw7CwsJGpWR4pHqGc+amUX+yGdUlcblUsmaObMYnODiY/Px8srKyOH78OBs3biQqKorMzEwmT5487As4lcdPUV7sFoISTlU38/0bnqSiyH1fkBVMJk1r9hPDgFs7+iSx8OsnluCreZbuf9zrN3baiQuxcpRuPyHr26hqlZjsaMurnrnC2mNe8esW36oKwqQQYbMgVRczCuKYURCHo9fFgS11FG3dj6vXBS6VuUuyuPrWpcxenE1ouOYob7VZuPWuy3jw9ufcZlxaL7KiCOJTYgiNCObOX31mWMd3MIyVKD506BA9PT0sX75clxf8+lNfX09TU5NuHI4Hory8nLS0NF1+V9fW1uqq79noHzYYb+jvU29gEEA8fcRr1qwJdCiDJjExkdra2kCHMWQURSEtLW1MrxCONGlpaV7X0olAQkICubm5bNu2jZ6enhHd9kgaaH3rlzdw4acWkDNnCp/7wZVc+plFIxipj/DwcObOncsll1xCQkICBw4c4P3336eoqIiurq5zb6Af0ZPCUUx+f5YFPjEM0GPXEr7+FSr+Jfmekmn3fcLlG8uEovVZeUWz/yziDiexoVpmyWMK7X+TCiDR5hQrIPqNb/IWq0nABKmZ4Sy9ZDK3fnsGk1NDWfdGBS89dYiDW+pwOnwO1Hs3H+Ont/+Fr132K9qafeXniy6awQ9+dzPLLpvNjMIMIqOCSJ+WxH3PfnHIx3Q4jHb5dEVFBZWVlSxcuFA3Gb2zIaXk8OHDZGdn6zY73N3dTV1dnS7NwBwOBw0NDboSxGvXrmXFihWBDmNskAG6TUDa29uprKykra1txLdtZIgNDIbIZZddxltvvcU3v/nNQIcyKBITE9m+fTuqquruyndaWhoffPAB3d3dBAcHBzqcIaMoCtOmTePQoUOkpKToei6xh6ysLNra2ti+fTtLly4dkec00m7SYZEhfOc3N593XIPFarWSnZ3N1KlTOXXqFOXl5ZSUlDBp0iRSU1NJSEgYlPDZ9sEhVKfLK1avvnUZr/1lQ59lUlJjOHGsDmlSEJ4+YlVFCkUTvL0OMLn3JfoW63kSw8i+rtGNnQ5mxYT1LZX2xwL0gGfwsFDdC3mWM0niQqxkpYcxIzcSq0XhyIEmXn6miNamXu82pZRa1tolfdlftEz4hjf2cuUtS727XHl1PiuvPv8y9+EyWpnixsZGDhw4wMKFCydE3zBoc4e7u7t1Z97oT0VFBfHx8bqbyABaqXdYWJhu3k/l5eUUFxdz4YUXBjoUAx3gdDp59NFHefbZZykrK/Pen5GRwZe+9CXuvvvuETHB09fZsYHBOOCqq65izZo1tLe3BzqUQRETE4MQgoaGhkCHMmRCQkKIj4+noqIi0KEMm+TkZGw2W58vcj0jhGDu3LlIKdm3b995m4YFcrTSSKMoComJiSxatIiLL76YmJgYjh49yttvv82mTZs4fvz4WY243nl5q/aD1HygW+rbueY2n+mMKcjKidJ6MCkoQmsPttlM2kxip0tbT5VaZhi0jLEikEIgpBiwmU0CjV12YkMsvvHE/hkGz6Yk7m1pdykI0hKDWV0Qx5evy+CmT6SRGB/Exi2n+MsfS9i05iStjX5VBCYFgi3a5rwzin3BOOwO1vx3FyX7Twx4bGorG3n3lW0c3FF6lldgZBnpTHFXVxc7duyYULNXVVXlyJEj5Obm6tKZGbTnUFFRQXp6eqBDGRbV1dW68ql4/fXXueCCC8Z8jJ+B/rDb7VxyySXce++9lJeXk5qayoIFC0hNTaW8vJx7772Xiy66CLvdft770ue3l4FBAMnOziYzM5P33nuP6667LtDhnBMhBCkpKVRWVhIfHx/ocIZMeno6+/bt8zod6w0hBHl5eezcuZO0tLQJUSJpMplYsGAB69evp7S0dNjZs4kkhvsTHBxMbm4uubm5dHV1UVtbS21tLYcOHSIsLIzExEQSExOJjo72lj/HTY5CMSmoLhUhIDYxksIV0+hs66a9vYdt64oBbYyRVBRwqfR2ucBsAqcmfq3BVqLitVFlikNFmlUwK+71+jlFu2noshMZZMZqFthdUquB7vNRE6gmSaiiMDU+hJz4EKYmheB0So5XdbJ2Wz2VZR24HCpCBZNLRZgUpMPVV38LoQljVPccJ22eU15hBn979C16ux0A3HHftVx7m6+csqyohrs++bj38dt+cCXXf2X1iLxO52KkMsVOp5Pt27czefJk3QqvgaisrERKqctSYw91dXUIIXTpVWG326mrqyMvLy/QoQya119/nauvvjrQYYwZwmNEOMb7nAg89thjrFu3jiuvvJLf/OY3fcaKHT9+nO9+97u8/vrrPPbYY/zwhz88r30ZgtjAYBhcffXVvP7667oQxAApKSl89NFHOJ1O3V3F9xhSnTx5UrczfSdNmkRkZCRHjx7V1YnL2QgODmbhwoVs2rSJ8PDwIV9smchiuD8hISFkZmaSmZmJw+Hg1KlT1NbWsnWrlhGOjIwkKiqKT35tMW0trRzYWsGshVOZmpfEvTc/rYlkCVj9S6Hp+7PNDCYFh6rS2NgBgAwya6LTuyzglAirez6xO2nc6VTpdriICbZQ26FdaTcrgsQwK5PDbSSFW0kKsxEfbqW+zc7Rk53s+qCa2oZed/k0mFxSO/FzaT3CQoDJakJ19BuHYTNDl90b0C//+Q02v7OPI7vcFRRS8uxDr3HhJ+cTHqWVr37w7x3Ye53eTTz36ze54Mq5JKTEDP9FGQLnK4qllOzZswez2cysWbMmhIkWgMvloqioiJkzZ+ryYqWH0tJS0tPTdfm61NTUEBERQVhYWKBDGRStra2sW7eOP/zhD4EOxUAHvPTSS8ycOZP//ve/p33HTJ06lf/85z/MnTuXF1988bwFsX6/wQwMAsjVV1/NG2+8gcvlCnQogyIyMpLg4GBdmmsJIcjIyNB1ybEnS1xaWkp3d3egwxkxoqOjmTNnDjt37qSjo2PQ632cxHB/LBYLycnJFBQUcNlll7F48WKSkpJwOBzU1tew5IZ0vv4/F3LV1+dQUVVGVkECscmhhIabsdrcx0nK02/u+b8uswncF72kcuYTfIGWRbCaBDGhFtp7nSycEsE1MybxtUXJ3LsinZvnJDJ9UgiddhfrS5t56r0Knl1byfqiJmobe31NyVKiuCSKp+RaARTBE3/78sDzP9ymXopJISN3MrYgq3dMFmjjp3asOez9PSwqpM/jUpW88fymYb4Cw+N8yqdLSkpobm5m/vz5uhaO/SktLcVms+lugoE/bW1tNDU16TbDXVVVNapj8Eaad999l5ycHF33mw8Zw1Rr2Bw7dozLL7/8jN+biqJw+eWXj0hLi75SRQYG44RFixYhhGDLli0sW7Ys0OGcE0/ZtN7+eHqYMmUKRUVFtLa2jsi810AQHR1NYmIihw8f1vVokv6kpqbS1tbGtm3buOCCC85ZEv5xFsP9URSF6OhooqOjvfe5XC7a29tpaWmh+lgjs1enEh4TRHC4FSklJsVMZ7uD+po2OtsddLbZ6e5w4AJcQkFVFDznDrm5kThN2vglq0UhJMJCcJiZsBAz4UEmwmxmbBYFpypR3aONDp7qpLisk5pWO609Tp+eVSWWHrSMtHQv7y4FFHbVr0RP+2HGjCS+dcPvAU+ZNJoQVt1mXEJw9S1LCY8K4erPLeNfT3+I/ybConzmRtd8fjn//P0H3pJpIaCuuokvXfBzXC6Vz33/SlZeM2+kX57TGE6muKamhqNHj7J8+XJsNttohzhmdHd3U1JSwsKFC3WZWfVQVlbm9XnQG11dXTQ1NVFYWBjoUAbNx61c2uD8sFqt57zY3tnZOSKtaBPnUqWBwRhiMpm44ooreP311wMdyqBJSUnh1KlT9Pb2BjqUIWO1WklJSdF1lhhgxowZnDx5UpcGZ2cjLy+PkJAQduzYgaqqZ1zOEMPnxmQyERUVRXp6Old/+jIaily8+shutr1SxcLCJSxbvpTIsHjKjjTT2WYnJMxCSlYkGTlRZM+IZvrMKPJma6XEOTkR5GSEMzUtjMT4YISAU4297DvRxtsHGnjuo2p+/XYZP32vlA0VLVS19fJBeTOHGrto6XFqItd9E4DLY8qlCJw2tzZWtey0yyJwoT0mJRw4UIULgUR4ZwkD0OMRtYLYxEheeep9PrfoQfdmtSbnSz+ziMKV07zHJCQsiG/94tN9ft/85j5qyuupPdHIr771d2pPNI7+i8PQMsUtLS3s2bOHefPm6fZC3pk4dOgQCQkJxMXFBTqUYeNwOKisrNRttrKqqopJkyYRFBQU6FAGhdPp5M033+Sqq64KdCgGOmH27Nn8+9//pr6+fsDHGxoa+Pe//82cOXPOe19GhtjAYJhcddVV/PjHP+aXv/xloEMZFKGhoURHR1NdXa3LE4CMjAw2btzI9OnTdXk1H3xGS/v372flypUTpnxSCEFhYSGbNm1i586dFBYWnvbcDDE8dIKCrdzz+8+fdv+qS+az7r9H2LexEnuPQ6taNgnUECtYzFisCnd8O4/X36iiCwlmzdHZaRFgEtjD6NuHbIWGbge5cSFeJ2rp9r7yZn6lAEUiPdc7rEIbxaQ9qG3PAthxrwjSYkaoEunyyyBbTaiqxORU2buphF3vH/DFIQR/3nAvSemaA3PxnnI+/Nc2oidFsH1jsVeAd7Z1g6p6ywKlKqmtbCRxSuz5HvJBMZhMcVtbG1u2bCE3N1fXJcUD0dDQQF1dHatXj42x2WhRUVFBRESELt2OpZRUVVX1MRka72zevNn7/f+xY4KUMI813/jGN7jxxhtZsGABP/7xj1m1ahWTJ0+mtraWdevW8fOf/5z6+nqeeOKJ896XIYgNDIbJJZdcwk033cTRo0d180fJ4zatR0EcGRlJbGwspaWlTJ8+PdDhDJupU6dy4sQJysrKRmy26XjAYrGwZMkSNm3axO7duykoKPCWUhpieGT5wy9e58D2UqQq3eN8JQRZ3dncfmdeCl7xK5Duh/3EsARh1wRxXIil73oSpL8oFv4rCe1/RYK/lYIEhILA5a5BE77HhQSTCUwSl9nE7k1HwWLWxkahxe5wm2dVFNdw9zWPoaoSKSVKsM3bR6yYFEIigulq7QIBkbHhZM+ectpxklKOWjnv2URxe3s7mzdvJjMzk6ysrFHZf6BQVZX9+/eTm5ury9nwHlwuF8ePH2f27NmBDmVYtLW10dXVpatxS6+99hpXXHGF8f1vMGg+/elPs3fvXh555BFuv/320x6XUvL973+fT3/60wOsPTQmRnrCwCAAhIeHs3r1al2VTScnJ9PS0jIkA6TxRHZ2NqWlpTgcjkCHMmwURWH27NkUFRXR09Nz7hV0hNVqZfHixbS2trJnzx6klIYYHgX2bjnuE4eKZ76wQLjc6VuPKHbf7/ldOE/fFkK7Mt7QbSfYbCLEpiAVd4bYfzGJN3uszRAGd/Gzn7zW5hQjtASuNxbpqbv2xYoicCkCxeK7Lj9jQSap2dromz0binE6XKguFalKXL0OEJoYlqrku4/dzI3fuoTrv3oRj7/+HULDfWWjZUdquG3ZT7ky/S5+8ZW/YO8dne+LgcqnOzs72bx5M1OmTCEnJ2dU9htISku1OdB6vKjqT2VlJRaLhcTExECHMiyqqqqYPHmyrqZGfFz7hz1jl8b6NlH4xS9+webNm7ntttvIz88nMzOT/Px8brvtNjZt2sQjjzwyIvvRzyfJwGAcctVVV/HKK6/wne98J9ChDAqr1UpCQgLV1dXk5uYGOpwhExsbS0REBOXl5brJyg/EpEmTSEhI4NChQxPKYAsgKCjImyneu3cvbW1tWK1WQwyPIHn5adSfbEFVJaoqtbJkt9P0aRliKbWZxYCQEsUuNbXrcaB2L+6QkpZeJ3EhFjrben2XywXaaKX+J1hC4AqTWNq0FmGFfstILXuNlAiT8M5J7rOMxcyCJVksWT0dk1lh2f+b6y21T832CRVFESQkR3Pll1ZRe6KRpZfNZs6SbBZdNGPA4/PYd16g7kQjqirZ+OZephdm8IkvrRrUsR0q/pliu91OZWUlycnJTJ8+XddmUwPR3d1NcXExCxYs0HW7h5SSY8eOkZubq8vXyFMuPXfu3ECHMmiKi4upqKjg4osvDnQoBjpk0aJFLFq0aFT3od9vNAODccBVV13Fpk2baGpqCnQog8ZTNi37nzjrACEE2dnZHD9+XDcjr87ERDXYAq1XesGCBVRVVdHb28v8+fMNMTyCfOOBa8lfkuV1bRYI6La7M7D9TvBVtHSBexSS9rifMBW+W2O3g7hgq/d+1ZMVBq+5Vp9vDRNuQaGJcuF1kZYIs+ITxZ7MsN/oJE1FK+TkpzGtIIPVn5yPNchXsl2wcjq3P3Adk9PjmD4/kwf+/lU++aWVfO2n1zFnydkvhjXWtqF6M+gKTXVtgzuwwyQ6Opr8/HxKSkoIDg5mxowZuhRa5+Lw4cMkJCQwadKkQIdyXtTU1KCqqm7n2jc0NKCqqq5eh9dee40LL7yQ0NDQQIcy9gRi5JL+Tu8CjiGIDQzOg9TUVGbNmsXbb78d6FAGTWJiIr29vbS0tAQ6lGGRkJCAzWbjxIkTgQ7lvAgODmbatGns27dP9+K+Pw6Hg7179xIdHY0QgoMHD+ryAsx4JSTURkr6pD4nPYpLIrr7OchLqZU+u8WZBJzB7t7f/npNan3EsSEWpEnz0JL+CV3Ztzga8JVjWxTtcZdEePZnEkiXx/VK+gSx5+bmb//zAXdc8ms++M/O057nJ+5YzV+2PMij//0OU3IGX9p6xS1L3eEJFEWwYpRHMnV0dHDgwAGSkpJoa2vzlhVPJE6dOkVtbS0zZgycldcLUkpKSkrIysrSbZa7qqqK5ORkXcX/cS2XNtAP+vk0GRiMU6666ipee+21QIcxaEwmE0lJSboVlJ4s8bFjx8464kcPZGZmYjabKSoqCnQoI4Z/z/DixYtZtmwZDQ0N7N69W/ev13giwm9OL4C0mJAWK7j8jrEnM+uPoind/skEcwfU99qJC7ZoQtjTRyzA5ckUS3cW2A/tUo5EUftlg4VAWjzzh9HUtdPlXV+glXCjCFQpef637573MfFw012Xcd+fv8QXf3wNT777fbJmpo7YtvvT3t7ORx99RFJSEoWFhSxZsmRQI5n0hOcC14wZM3RtpAV4Rw+mpaUFOpRh4XA4qKmpITV19N7TI01jYyObN2/myiuvDHQoBjrAZDIN+RYUFMSUKVO48cYb2b59+7D2awhiA4Pz5Nprr+Wtt96iq6sr0KEMmvT0dKqqqnA6B3LZGf94xphUV1cHOJLzQ1EU8vPzKSsr01XZ/ZkYyEArODiYZcuW0drayq5duwxRPAAtDe3s33yUlsb2Qa/T0+XLBku0EUfSJMDk+7MuZd8aZ7em9Y1O8kNRoaHHQVyQxT1rGFSreyWPbHbRtyRbCOwhWhn2QK+q9O9Tds8Y7iOqPe7XZgWrbeQsTYQQLL50NtfdsZq0nNFz4W1ra2PTpk2kpaV5y6SHMqdYLxw6dIiwsDDdikh/SkpKyMzM1G0LR3V1NaGhoboaFfXf//6XefPm6bZE/XwxTLWGhpRyyDe73U5VVRWvvPIKy5cvZ8OGDUPeryGIDQzOk7lz55KamqqrLHFUVBShoaFUVVUFOpRhoSgKWVlZHD16VPeluBEREeTk5LBnzx5dl06fzU06KCiIpUuX0tnZyY4dO3T9PEea4j0VfGHJg/zg0//DF5b8lJJ9g6vciIh29+K5Twi0MmXtT7rvEzFAH6twlz6LfjcEDd12YoMsPs3reQlNYuBtAdjQDLZsHvHrJ8LNiu/zKSWYFS3d7HGeVlWQEpPFzNce/OSgnvd4obm5mU2bNpGRkXGagdZEEsWnTp2iurqauXPn6r4vurGxkba2NjIyMgIdyrCQUlJeXk56erquXosXXniBm2++OdBhGOgEVVWHfHM6ndTU1PDkk0/icrn42c9+NuT9GoLYwOA8EUJw880388ILLwQ6lEEjhCA9PZ3y8nLdCsopU6Zgt9upq6sLdCjnTVZWlq5LpwczWslms7FkyRLsdjsfffQR3d3dAYh0/GDvcfDib9/mZ7f/mZ5ubSxQb7edfz753mnLFu+t4LblP+MT077Pnx/6P6SUXH7DAqZO07KfJpOfu7TELWDxOUS77/aUQA9kuCKAZrt2oSLKk631LG/CN3apn5O0Vz2bFXd/sHtZCSgKLk9sfq7THuMtpMRiM/O7f3+D/KX6cY2vrq5m06ZN5OTknNGtfyKIYofDwZ49e5gxYwYhISHnXmGcc/ToUTIyMrBYLOdeeBziGZmop0xrZWUlH330ETfccEOgQwkchqnWqKMoComJiXzta1/j+uuvZ8eOHUPfxijEZWDwseOmm27ivffeo76+PtChDJrk5GQ6Ojp0a65lMpnIysqiqKhIt6Leg55Lp4cyZ9hqtbJkyRLCw8NZv3697p7rSPLUT/7Ni799l8baVu99Am3Obn9+fMsfOFneQE9nL//+wxo2v7OfoBAbq67JZ8GqaXzhu5dhtZrA4e7o9cseCb9aZunu79WmM0mfcZaQSDRD6qZeB5M8ZdMe/EYw9aF/lmqgUr1gq69f2LMtVWq9zqokNy+Z537zDkcGmRkPJFJKjhw5wt69eyksLGTq1KlnXV7vovjgwYOEh4dPiFLppqYmGhoadD0/uby8nNTUVF0J+n/84x9ceOGFup33bKA/srOzaWsb+mQBQxAbGIwAGRkZLFiwgFdeeSXQoQwai8VCamoq5eXlgQ5l2GRkZNDb20tNTU2gQzlvIiIiyM3N1VXp9FDEsAeTyUR+fj7Z2dls3ryZysrKMYh0/LFr3ZHTLuSERARz07cv63NfV2cPHS1+/gRSsmdjMS8/vYZnH3mTHeuK+POv3sbR68TkUqHXoWWCwde3iyZ8UTQzLU+PMJ6fPf87/fqI3fepnk14YvXMJPYLXRWa2Jb4lUP7AsblXzbtaR+WYDGbOLSznN2bj/Hdm56hqqyeg9tLeezul/jzL16jo3V4vgwVxSfZ9sFB2po7h7X+QDgcDrZv3051dTXLly8f9Am+XkVxXV0dNTU1E6JU2nMhY+rUqQQFBQU6nGHhcDiorq4mPT090KEMCaNc2mCs+elPfzosrxJDEBsYjBCf/exnefHFFwMdxpBIT0+nuroau90e6FCGhclkYtq0aRw5cmRCmDVNnToVs9nM4cOHAx3KORmOGPYghGDq1KksWLCAAwcOcOjQId1n+YdK9qzUPtngm++6jL9tfYCM6Ul9lnPZXX7l0Nr/U7IT2PjOft9d7hJpFRAWE/iNY/GWKQvt8T5lz94ZxNr6Sk8/Yy0BLrOW9pW4xxlLfGOTVO3msmm/OoNMvm17hHF/t2k0t2mQOB2+Cz9SSl546kN+eOOTfPjqDv7zx7U88MVnh3JIAXjvn1v5ysWP8MAX/sSXVz5EXWXjkLfRn87OTjZu3IjT6eSCCy4gIiJiSOvrTRTb7Xavq/REKJU+deoUra2tZGVlBTqUYVNZWUlERASRkZGBDmXQ7N+/n+PHj/OJT3wi0KEEFMNUSx8YgtjAYIS4/vrr2bVrly5OeDxERkYSGRmp2xFMoM2CFkJQUVER6FDOG0VRKCgo4MSJE5w8eTLQ4ZyR8xHD/sTHx3PBBRdQW1vL1q1bcTgcIxzp+OWu39zEiqvymTojmc99/wpu/s7lhISdnr0Kjw5l5bUFXjE8KSmaCz+1gNZGd/ZT8cveWUyaAHWrUu/oJNyrK7gdnxmg/Fl7vE+GGMCsmW5JP00rAOEesyRwZ59BE74DXdiw+J1quEct9RkP5aanoweXU0V1SVRVcmh7KQ770JzwX3jsba8o72jt5u2Xtgxp/f40NDSwYcMGJk2axOLFi7FarcPajl5EsZSS3bt3ExUVNSFKpaWUHD58mJycHF2VGvsjpaS0tFR3ZmAvvvgi1157LWFhYYEOxcDgnBiC2MBghIiNjeWyyy7TXZY4MzOTsrIy3WboFEVh+vTpFBcX63aMlD9hYWHMmTOHPXv2jEvjqZESwx7CwsK44IILEEKwYcMGOjo6RijS8U1EdCjf/59befKd73PjNy85a1nq9564hfuf+zLfe+IWnv7gh4SGBxMa4RbPbodob9YW/MqkhVesIv3EsfD97505LEDphvr+gtjkHiHsryXUvopaNbv3491X31ikYnLf5zbX8mSZXap32cSUaK66abF3NcWkkJQeh8U6tHFM1iCrt7VZSoktaPgiqKysjK1bt5KXl8esWbNQlPM7ZdKDKC4tLaWtrY38/Hzdl0qDZoDmcDh0Jyb9qa+vx+l0escN6gFVVXnppZeMcmkwTLV0giGIDQxGEE/ZtJ7E5eTJk1FVVdduzZMnTyYkJGTcnmQOlZSUFJKSkti5c+e4KgUfaTHswWKxsHDhQhITE9mwYQOnTp0ake1OFBRFYdHFs1j9yfmERgQDcONXVuMdLAyAhF6HJjQ9QsYzYslzgiSkr/paxa9kWruZ0DLE0TYL5v5iyJMYFX4u0iogBUIIXCZAEagmd2226u4XlhKhqr5yafxilh5zLZVLri2g4IJcvv3LG8iYnsTcpdn89G93eHdfdqSG7177W764/Ge8+fxHZzxWX//5p7AGacGm507mys8tH+xh9qKqKvv27aOoqIjFixePaKZ0PIvi5uZmjhw5QmFh4bAz4eMJVVU5cuQIubm5up07DNpFirS0NF09hw0bNtDb28vFF18c6FAMDAbF0C69GhgYnJUrr7ySL37xi+zcuZP58+cHOpxBoSgK6enplJWV6dYJUghBXl4e27ZtIyMjY0KczM2cOZMNGzZQVFREXl5eoMMZNTHsQQjBjBkziIiIYPv27UyfPp3MzMwJkaUaDS76RAEZuZMpOVDJtg3FbN1QrOljVUV4SqbRsru+0mb3Tx5TLf9D676vw+Gix6USF2Shtruvt4B3cSkRsu/rolqBblBtCia7ExSBYhKoPU5MHb14AxJ+I6K8K0smTdZ6Iy/7zGIu+8ziPg9LKfnJLU/TfKoNVZU8ec8rpOVOZuaC012e85fn8o89P6e5vp2E1BhMA7h2n43e3l527NiB0+lkxYoVo9JD6xHFW7Zo5dzncqseCxwOBzt37iQ3N5eYmJhAhzMilJeXYzKZmDJlSqBDGTadnZ3U19czZ86cQIcyJF544QVuuOEG3ZapG3z8MDLEBgYjSHBwMJ/61Kd0VzadlpZGQ0ODrstV4+LiiImJoaSkJNChjAhms5nCwkJKS0sDnjEdbTHsT2pqKkuXLuXYsWNs27ZtXJaNBxKnw8X7/9rOv/+4lrKSk4RHhXDNLUuZVZCuzQI2KQj3PGFpEd7L3ibwU8b0MdbyCGfp7jHu30fsqZCW7gZir1GXH8Ldu+y0Kd4e4x/9+GoEAjU8GNVqPm0dxSQwmRUuvX4+81dO459Pr+H5371LdVkDVaWnsPe45zP3OGisbUX1KwuvPHrmipbgUBtJ6XGnieGt7x3g9z/+F+/+Y8uAlRe1tbWsXbsWm83GsmXLRtVQajxliqWU7N27l7CwMF0bT/njdDopKSlh+vTpur6o5rlQHRwcHOhQBk1PTw///ve/+exnPxvoUMYHRsm0LjAyxAYGI8zNN9/MTTfdxKOPPorZrI+PWFBQEElJSRw/flx3V6L9ycvLY+PGjWRmZk4Id9SIiAhmzZrF7t27WblyZUBGhoylGPYQHR3NqlWrOHDgAGvXrmXWrFmkpKTo+sR2pPjlt5/no7f2gdmMNLkdpd3GWgmZcdTWt/tcnXH3C0ttDrD0H7fkADyaV/j6irXRS/Y+o5e0xwQORWJ1eauvvY97cAmByQwuNAH+0P3/1WITAhliRXW4MDl9ztK33X05131xBS6Xyrc/8TilRScRwD+e+gDZYycyNoxfvvJN0nISmblwKod3lILQRPScJdlDOm4b39jDL+74CyaTgsul0ljbyk13aSOu7HY7Bw4coK6ujpkzZ3qN+kab8ZIpLi8vp6mpiZUrV06Yz9jx48cJCQnRbdUTaN+9FRUVLFq0KNChDIk333yTuLg4FixYEOhQDAwGjZEhNjAYYVauXInZbObDDz8MdChDIjs7m8rKSnp6egIdyrCJjIxk8uTJFBUVBTqUEWPKlClMmjQpIP3EgRDDHqxWKwUFBeTn53Po0CG2b9+u6/fmSNDT1auJYQDPa+HnMl1b3QKA06b9aZeKQCqKW7QKn3gVnsplicRPKCugOKCh20GczeLLNLhNt1zea0yelDG+XmJPE7IQOCL93id+AksGW7wu04pJUF5cC0BdVRPHD9cgVc1dWnPEFrQ3d/L3X78JwAN/vZ0bv3Up/++zS3jsv3eRlDFpSMdu67sHUBSBy+1uvfGNPdoxq61lzZo1OBwOVq1axZQpU8ZUFAY6U9zc3MyhQ4coKCjAZrON+f5Hg97eXo4dO0ZeXp6uBX55eTkRERG6K2F/8cUX+exnP6vrYz+SGGOX9IEhiA0MRhiTycRNN93ECy+8EOhQhkRERARxcXEBL987X6ZPn05NTQ1NTU2BDmVEEEIwZ84cHA4HBw4cGLP9BlIM+zN58mRWr16N2WxmzZo1VFZW6sq0biSx2CyEhgf1M9PyQ3H3Dpt8plrg7h2W7kyve6aw94+/Wwx7yqZRtZLpScF9naYRgLmvthZux2jPz56Nqp55xJ5ZxJ6bWXF7awlUl2T2Qi0jGhUbhi3I4tPOUnoMqb1l06HhwVz86YXMWpRNUMjQPQJSpsZ7D5liUsiYkcTu3bvZtWsXeXl5LFy4MGBlqYESxT09PWzfvp1p06YRFxc3ZvsdbQ4dOkRcXJyun5PL5eL48eNkZ2frSlg2NTXx5ptvGu7SBrrDEMQGBqPAZz/7Wf7zn//Q1tYW6FCGRE5ODuXl5bqeBxsSEkJ2djb79++fMMLJbDazcOFCampqKCsrG/X9jRcx7MHIFmuYTAr3Pv15wqNCfZlXv6qBpMnR7vu0//xHKml10/SdQazgnluML0MsoL673+glz/om8A4i9uAVvH53e2Pr9/kTAtU9K/mzd17CRZ8soKzoJAe3l/K933yGxNRYrDaz9pwEmMwK13/tIgAO7Sjl9lW/4OGv/ZU7LnyE7WsODenYXffVC7n0psXEJUVx0U35zLo8gd7eXlavXj3mWeGBGGtR7HK52L59O5MmTRoXpl4jRVNTEzU1NcyaNSvQoZwXJ06cwGazkZCQEOhQhsQ///lP5s6dS3b20FoaJjRGD7EuMASxgcEoMGfOHPLy8nRnrhUTE0NkZOSYiK7RJCsrC6fTSXl5eaBDGTFCQkJYsGABhw4doqGhYdT2M97EsD+ebLHJZPrYZovzl+Xyq39+w3eHyT0HSYGTpfXgcOE9G/KIX89feuFxmtbQzpu0dT3CWSpahjjEbCLErPiZb/Utue63EW+Jnuf1kEq/Zdz/S7e5VmtTJ288v5mv/b/fcP+X/sLTD/wvF3+yAHtXD0iJMCnkLchk9mLN5Om1v2zA5e4/VlWVV/+wZkjHzWqz8LWHPsVdz3yCnOWTyMubzqJFi8aVWdFYiWKPiRZof6sCfTFgpJBSsn//frKzs3XtIaGqKseOHdNddlhKyTPPPMPtt98e6FAMDIaMIYgNDEaJr3zlKzzzzDO6O2HPzs7m+PHjOJ3OQIcybEwmE7NmzeLIkSP09vYGOpwRIzY2llmzZrFjxw46OztHfPvjWQx7sFqtFBYWMnfu3I9ttjg9J5HPfHW117DKk5EVikB02b0GWd5EgRCoLr+kgUcouwBF0G+CEnaXpM3u9GWJpTfprP3v93uf0cKqLx5HkPu9o7qj8JRQm7Vy6tdf2MLfHnvbu8/m+na2rzmCorj7n1VJbaWv7SE4zOZ9nooiCA4bmsFcXV0da9as8WaF09LSxqXYGAtRfPz4cRoaGsbtZ3y4lJWV4XQ6de+UXV1dDUBSUlKAIxka27dvp6ysjBtvvDHQoRgYDBlDEBsYjBI33ngjZWVlbNu2LdChDIn4+HiCg4M5ceJEoEM5LxISEoiNjeXw4cOBDmVESUtLIzk5mW3bto1oabsexLA/SUlJrFq1ypstPnbsGC6X69wrThBuvfMSrr51Sd87pdR6ef0zuUIghUB4hKmfBhQKvn5dT3m1/+glm89p2oNnBJN2f99eZX956Qwz+R73vyYoQHUbgZksJj9BLQmPDkF1qQj348sun+Nd7ea7LiM+WSsJj46L4Is/uvqcxwigo6ODHTt2sHPnTqZNmzbussIDMZqiuK6ujqKiIhYsWBAQ1/rRore3lyNHjjBr1qxx/911NqSUHD16lKysLO/FIb3whz/8gVtuuYXQ0NBAhzKuEO7v5bG+GQwNfX3aDAx0RGhoKLfccgvPPPNMoEMZEkIIsrOzOXbs2Ji7Go80s2bNorq6esIYbHmYOXMmNpuN3bt3j0gFgt7EsAebzUZhYSGFhYVUVVXx4YcfUlFRobuqjOEye36m7xfPcxYC6wBPXwDC5ddiJkC6tBJq2Ufk4jXW8s8Qe7btCvPbqN8+cYtrryg2Cbf5tPD1Gbs3L4MtBAVb+MpPrsFi0UbTJWdMYseaQwhFIFXJzIWZ3HbPVd5dTUqK5tkNP+b57Q/y1y33k5p19t7K7u5u9u7dy9q1a7FYLOM6KzwQoyGK29vb2blzJ3PnziU6OnpEtjleOHz4MJMmTdJdz21/6urqsNvtTJkyJdChDInm5mZefvll7rjjjkCHYnAeVFVVcdttt5GUlITNZiM9PZ0777yT5ubmQa3f2dnJiy++yE033cS0adMIDQ0lPDycwsJCfvOb32C320f5GQwfQxAbGIwid9xxB//85z8H/WUyXkhKSkJRFKqqqgIdynkxEQ22ABRFYf78+bS3t3Pw4MHzem56FcP+xMfHs2LFCvLy8igpKWHt2rWcPHlyQr3mA5GQFOXNpqIomM0mMnMSWLUiz7eQW+wKwNro6mOqJRX6CmHPGYH0M9by07wALjPeUUzgFtRoArvPqA8hcAR7FpIIVbqz1IDJRE+XnRf+5wOeXfND/rLuHgqWZ2NSFKR7mZqyBkymvqcoJpNC3OQozJYzv0cdDgeHDx/mww8/xOFwsHLlSubOnTvus8IDMZKiuKenh61bt5KRkUFKSsoIRTg+aGpqorq6mpkzZwY6lPNCSklJSQlTp07V3ffw3//+d+bNm6d7M7NRQSemWsePH6egoIDnnnuOBQsWcNddd5GZmcnjjz/O4sWLaWxsPOc2Nm7cyGc/+1neffddZs6cyTe/+U1uuukmqqurufvuu1m1atW4bXEyBLGBwSgya9Ys8vPzef755wMdypDwZImPHj2qe1ExEQ22QOulXbx4MdXV1Rw7dmxY25gIYtiDEIKUlBQuvPBC0tPT2bdvHxs3bhxVA7JAs3VdkZbxdKtVh0ul9EQTG17dA/iMsnCoWmbW7NdzLIS751fblvSMFXY/1NjtYFKwNt7IK3SlBLNv/9K/ZFoI+hesu0Lc7yeTx54anwM2UFPRyE++8Ed+9/2XURTFOyNYMSmk5SQO6Vi4XC6OHj3K+++/T3NzM0uXLmX+/PmEh4cPaTvjjZEQxZ7PeUxMDNOnTx/hCAPLRDHSAmhsbKSjo4P09PRAhzIkPGZaX/nKVwIdisF58LWvfY1Tp07xxBNP8N///pdHHnmENWvWcNddd1FcXMy99957zm0kJibywgsvcPLkSf7973/zyCOP8Mwzz1BSUsK8efPYvHkzTz311Bg8m6FjCGIDg1HmK1/5Ck8//bTuhGVqaipOp5OTJ08GOpTzYqIabIFWlr9o0SJKSkqG3PM9kcSwP4qikJmZyUUXXURCQgLbtm1j69attLa2Bjq0EScxORrVk3WVUusXNil9/7ILibRoWVzV0nd9xc+Q2re89l9Dt4PYIHPfecUep2nhXq9fqbX0fwtJCRZfhliq+Iy1/L4LTxw7xYFtx/m/v31EYtokgsKCmLkgk+/+5qZBHQNVVamoqOCDDz6gurqawsJClixZMqFKgs9HFHvGKwUFBZGfn6+bkvHBMlGMtACOHj1KRkYGFovl3AuPIzZs2EBtbS2f+tSnAh2KwTA5fvw47733Hunp6Xz961/v89iDDz5IaGgozz///DnNPOfOncvNN9+M1dp3Vnx4eDjf/e53AVi3bt2Ixj5SGILYwGCUuf7662loaODDDz8MdChDQlEUsrKyJkSWOCEhgbi4OPbv3x/oUEacqKgoFixYwP79+6mtrR3UOhNVDPtjNpvJzc3loosuIjQ0lA0bNrBr165RceceS8qO1LD53f20NnVQd9KvFcNP6Lhs7tfTI2JNAhSBqV+lmudV7yN63TT3OFCEINLqTgn7fQWosu+yXiyefmFtYwJwemJTJagqigCls8c92liCoiClRHVJaqua6O1x0tbSQ2xC5FmPg5SSmpoa1q5dy9GjR5k5cyYrVqwgPj5+wok+GJ4ollKye/dunE4n8+fP151J07no6uriyJEjzJ49W/ffYS0tLTQ2NpKZmXnuhccZTz75JF/60pd02ZYwFggZmNtQWLt2LQCXXHLJad8T4eHhLF26lK6uLrZu3Trs4+C50GM2m8+xZGCYWN+OBgbjkKCgIL785S/z5JNPBjqUIZOWlkZXVxd1dXWBDuW8mT17NvX19dTU1AQ6lBFn0qRJ5Ofns3PnznMaiH0cxLA/NpuNWbNmceGFFyKEYM2aNezdu5e2trZAhzZk3n5pC1+79Ff87Mt/4dZlD/HPP23ou4AApMRlOf1PuwqY1X7Lnkk3CnCpmij2GmvhG+HkCPJbtV+WWEjhd5dADXHHYhIo3Q7SJ0chnKovSyylb3yU1MYtlRef5MSxgb9zVFWlurqaDRs2sH//fjIzM1m9ejXJyckTUgj7MxRRLKXkwIEDtLW1sWjRonF7EjpcPLOUk5KSiI+PD3Q4501RURFpaWnYbLZAhzIkKisree211/jqV78a6FAMzoPi4mIAcnJyBnw8OzsbgJKSkmHv4y9/+QsAl1122bC3MZoYgtjAYAz46le/yttvv627Plaz2UxOTg6HDx/WfZY4KCiI2bNns2/fvglXOg2QnJxMXl4eW7dupb29fcBlPm5i2J+QkBDmzZvHihUrkFKyfv16Nm/eTG1trW7e2y/+7h3tB4sZu1PF0ePoKyzP8jSk/z/C/07OuF5Dj4O44NNHL7k8bbn+845Fv814zLhcfTcePSmcaz63DLPFRER0CAXLc5i/4vS+1lf/tK7P62K32ykpKeH999/n8OHDpKSkcNFFF5GRkTHhMp9nY7CiuKSkhJMnT7J48WLdiazBUFFRQXt7u+6NtEDrHW5sbDyjGBnPPPPMM1x22WVkZGQEOpTxSwBNtdra2vrcznTu42kpiowcuDLHc39LS8twjgBPPvkk77zzDnPnzuW2224b1jZGm4l1ydDAYJySmprKlVdeydNPP80vf/nLQIczJNLT0yktLaWyslJ3oyD6k5ycTE1NDfv372f+/PmBDmfEyczMpLe3ly1btrBs2bI+JjMfZzHsT0REBPn5+eTl5VFeXs7evXsxm81kZGQwZcqUcd2/FxRsRQiBVBQto+pUwer3OtodYFZwmf3Uq8fLSgGzv+uVv0717wn2oGh9xP4ZYv/1TtPQHhdqITFJ73BhVJsJehze7PXezcdYeflsXjv0iz4Z3VuX/Zz6mhbv7x/8Zxfvv7KNzJnxfOrOZXR0txAdHc3s2bNJTEyc8Nngs+ERxVu2bAFg6tSpfR4vKyvj+PHjp30HTBS6uro4dOgQ8+fPH9ef18EgpeTw4cNkZWXp7sJFb28vf/zjH3nxxRcDHYrBGUhNTe3z+/33388DDzwwpjH85z//4c477yQxMZFXX3113H5mPz6XVQ0MAsw3v/lNnn32Wbq7uwMdypAwmUxMmzaNoqIiXK7+PrL6QgjB7NmzaWhooLq6OtDhjArTpk0jMTGRTZs20dXVBRhieCBsNhu5ublccsklTJs2jaqqKt5991327NlDU1PTuMwaf/2h67EFW8AzH1zxCU9PPy5S+O73GlnhaypT6WNq5cXvLim0W707Qyz9SqK9DKhHBS6bu95a1TLW0qZoJdTSbTAtJe/97y52fnSU+lqf0dl1X17h/dlsVcgumMQ135rLqltz2L/lKMuXL2fp0qVMnjz5Yy2GPZwpU1xRUcHhw4dZtGgRERERAYxwdPCUSicnJ0+IUuna2lo6OztPu6ihB1555RViYmK46KKLAh3KuCaQPcSVlZW0trZ6b/fcc8+AMXoywGcyn/TcHxUVNaTn/t///pcbb7yR+Ph41q1bN6575A1BbGAwRqxYsYKkpCT+8Y9/BDqUIZOSkoLFYtFdyfdABAUFMWvWLPbv3z8hS6eFEMyaNYv4+Hg2b95MW1ubIYbPgqIopKSksGLFCpYtW4aiKGzZsoW1a9dSWlqK3W4PdIhe8pfl8I89P+dP73+fC6/NJzjcL6Mk3EJYSkSvduFK9Lv5hLBfzbSnr9gjnv1WbOj1yxD7u0vTbzP+v5sFQgivCAaBPUQBkwLhQUgBh/ad4Cdf/zu3XfEYB3eXA3DB/5tL/JRwll83lVseWMjsFUkc21XH33+8mbUvHDljKd/Hmf6iuKKiggMHDrBo0SJiYmICHd6oUFFRQUdHBzNmzAh0KOeNlJIjR46Qk5Ojyx7vJ598km984xvGBapxTERERJ/bmaoQcnNzgTP3CB89ehQ4c4/xQPzrX//i+uuvJyEhgfXr13v3MV4xBLGBwRghhOAb3/gGv/vd78Zl9ulsCCHIy8ujpKQEh8MR6HDOm+TkZGJjYyek6zT4MuHR0dGsX78eRVEMMTwIoqKimDNnDpdeeilZWVlUV1fz7rvvsmPHDiorK8eFOA4KtvLeq7v48H93093hu6CjKILp+WkAWNv7xSklwoHbuMrvu0f4Gn99s4Y9j2k9xFE2M2Yh+iSaBQL7QFljD/7iWpWowWbfsn79vg67kz8//ibFxcXsO7SL6+7KJyI2lG3/V8n/PraXQxtrsHc7+X+fXTqEI/TxwiOKjxw5wv79+1m0aBGxsbGBDmtU8JRKz507d9yWXQ6FyspKXC6X7uYOA2zZsoUjR45w6623BjoUgxFg1apVALz33nuoqtrnsfb2djZt2kRISAiLFi0a1PZefPFFPvOZz5CUlMT69eu9plzjGf1dkjIw0DG33nor9913H2+99RZXXHFFoMMZEvHx8YSHh3Ps2DGmTz/dBEdPCCGYM2cOa9asobq6muTk5ECHNOI4nU46OjqwWq10d3djt9uNsRiDxGw2M2XKFKZMmUJbWxs1NTUcP36cPXv2EBMTQ2JiIomJiYSFhY15bHa7k38/u177xal6M8O5s1K5+Sur+fE3ngeL+8KHxJ0BFihmwIUmSlX3ekJoc5FMuB2i3au5RW6bw4VDlcQEmznVpfUBq4AiwWUDPGOcFHwzhtH+FxLfPvwQZkFyejhp06JJnxZFcKiZpqZmMjIySEpKwnKNJnRqyuvZ+v5B4pNjWHr57JE9iBMMj2O6EILW1lbi4uICHNHII6Vkz549E6ZU2uVyUVRURF5eni5N4R5++GG++tWvTsiy/BHHz+RqTPc5BKZOncoll1zCe++9x1NPPcU3v/lN72P3338/nZ2d3HHHHYSGhnrvLyoqArQ2LX/+9re/cdttt5GWlsbatWtJS0sb/vMYQwxBbGAwhgQHB3PXXXfx8MMP604Qe7LEmzdvJiMjg6CgoECHdF7YbDZmz57N/v37iY2N1f3z8cfTM2y1Wlm6dCkHDx7ko48+YunSpRPSZGc08ZSaTZs2je7ubmpra6mtreXIkSOEhIR4xXFMTMyYlA6aFIHFasLe69SSsy6V2EmRLLswj4IlWdz7qxv45z83A55eMr/eYUA4JVgU7/mS4vKJXLVfHzH4nKZPdWuVIZ7NCRvg33EgvP9gtwpsnkISKQmyKGTPiCJjagRTMsNx2F1UFLWw8fVyqkvbeOIfi0lLm9zneSalT+KTX9ayFi6Xisvpwmo7/ZSl4WQLb72wCZNZ4YpblxEVG37aMhOZ8vJyDh48yKJFizCZTGc02tI75eXldHZ2smDBgkCHMiKUlZVhtVp1eTH24MGDvP/++/zxj38MdCgGI8jvf/97lixZwre+9S0+/PBDpk+fzrZt21i7di05OTk89NBDfZb3JEb8Kx7Xrl3LbbfdhqqqrFq1iueee+60/URFRXHnnXeO6nMZDkLqrXbTwEDntLa2MmXKFN544w2WL18e6HCGzLZt2wgODmb27ImRtdm5cycOh4NFixZNiF6ogQy0pJTs37+furo6li5d2ucqr8HwcDgc1NfXU1tb653TnZCQQGJiIpMmTRrVks41/7ebx+75Fy5PFtbNd3/xKS66dh52u523336b3718HLtDBZfE3K0ihKAzTkFaFE3wmrRSaJe7cMBlAhRwmQF3+J/JjKemq5f1Na1a1tcFZrvWe2zr57/ijUSVJDoUpqaHMXVKGMmJwTTU91B+tI3yo600Hm32M/6SxMaF8+L6gc1eNry+h8fufoneHgfX3nYBt9/3Ce/ntKujh9tXPkTzKS1DOjl9Ek9/8EMs1o/Htf7S0lKOHDnSp0y6ubmZLVu2kJubO2FEcVtbGxs2bGDhwoVMmjQp0OGcNw6Hg/fff5+CggISEhICHc6Q+exnP0t4eDhPP/10oEMZ17S1tREZGUnBDQ9hso7tBXeXvYdd/7yX1tbWIWXxKysrue+++3jnnXdobGxk8uTJfOITn+D+++8nOjq6z7Ke72F/GfnXv/6VL3zhC2fdR1pa2rj0ozEEsYFBAPjRj37E3r17eeuttwIdypBpa2tj/fr1rF69ekIIK4fDwbp160hPT9dFn8vZOJubtJSSQ4cOUVVVxaJFi4bsFmlwZqSUNDU1ebPHnZ2dREREEBkZSVRUFFFRUURERIxoD3dnRw+fWvBT/yBIy0nkc9++mLf/s52Ci6Npt8fxx79+BC53VbMQdE5SwOzOEJsAIXDaAEUbzYQApw2kWxBfPDmaSKuZV0vrNcGrgrkbQGJr0ZYJtZmYHG1jcqSNxCgbk6OshNhMVFZ3cbyig9KydrpaHVg6ndoKrV0objGvtRUL3jzYN/vQ1dHD63//iL8/+jaq0+du/4uXvkb+Ms3YZd+mEn54w5N91vv9ez8gI09/WbehIKWkuLiY0tLSAQ20JpIodjqdbNiwgcmTJ+u+VcfDkSNHaGpqYsmSJbq7CFtaWkpeXh6HDx8e147B4wE9CuKPMx+Py6gGBuOMO++8k/T0dPbu3cvcuXMDHc6QiIiIICUlhaKiIgoKCgIdznljsVgoLCxk06ZNxMbG6tad9VyjlYQQzJw5E5vNxqZNm1iwYMGEyLaMB4QQxMbGEhsby4wZM+jq6qKlpYWWlhZOnjxJUVERDoeD8PBwoqKivEI5MjJy2CI5NKzfCZYQuJwuHrzzRSxWhYKLC/nbP7YiFK3BV7q0a9/CBdLdM9ynv9e/z82JliEW0GB3MDUi2DumONxqIjXERnKYleRpNiZH2QgPMtHY4aC2pZcTDd1sP9ZMc0knLoevp9iTjRYANgui1+nddXK6r+d176YS3n5xM/u3l9La1IFUpZZNdtdztzV1eJdNSI1FKAKpSoQAk9lE7OSoYR1PvSClZN++fdTV1bFs2bIBT3bPNadYTxw8eBCLxTLuHWoHS09PD8ePH9elGAb49a9/zXXXXWeIYYMJhyGIDQwCQHx8PLfddhuPPPIIL7/8cqDDGTK5ubmsWbOG5ubm08po9Eh0dDTTp09n586drFy5EqvVGuiQhsRQ5gxnZ2djs9nYtm0b+fn5uuxhG++EhIQQEhJCUlISoImY7u5ur0iuq6ujuLjYK5IjIyOJjIwkKCiIoKAgbDYbQUFB5xzFkj0ziaMHa7y/z12SReXLjaimfifa7nFMSIm5R+J0Z3+llD5RLEGoIEwQLhRCQsxEWEzE2SwkB1v5fE4CySE2wiwmGroc1LT1UtrQzdajLdS19WJ3anOHPXs22QQ2u/T1FnvUsCo1069uO6FRIWTnJXPPYzfy/r+3s/Gtfexcc0jrU/YYDXlFgyQ+JZqCFT4Dl8QpsXz/iVt57pHXMZkV7njgk0RE679q5Uy4XC527dpFe3s7F1xwwVlN8iaCKK6qqqKmpoZVq1bp0nhqIIqLi4mPj9flhdfa2lr++te/sn379kCHoi90YKplYAhiA4OA8b3vfY/c3FyOHj2qu1LdkJAQpk6dyoEDB1i+fLkur3T3JzMzk/r6evbs2cOCBQt085yGIoY9TJkyBavVys6dO+nt7TWu9o8yQogziuTW1lZaWlpobGykp6fHe5NSYjabTxPJ/r8/8PRNvPj7NZyqbmFySjSnqusJDjVDkPYeCAkyYbUoKAooUqIIgQxVCI61ERZkIizUTFiQmdBgE+E2E2E2M2FWE2ZF0O100e500eF0YTUplHf2sP5kCyc77bhapVby7JRYPcZaHl2taj+6rKLPSZmQ0i2KBZhg9oJMFq6azpU3L2bd/+3mt99/2T0Fyj3s2OvepW34pjsv5drbLiAssq8p3MprC1h5rf4rVc6Fw+Fg27ZtqKrK8uXLB3XRTs+iuKOjg3379lFQUDBh3PGbm5uprKz0jrjRG7/97W+56KKLmDVrVqBDMTAYcYweYgODAPK5z30Oq9XKn/70p0CHMmScTidr1qwhNzdXN7b658Jut7N27VqysrJ0cfI4HDHsT1NTE1u3biUjI4Np06bp5iLAREdKid1up7e3t49I9tw893e0d+FyuVAUgcl85gyaqkrtJsHpUunoVenocdLucNHR46LN4aTN4aK910m73UWH3UV7lC/d+5MZU/hraR3Vbb3aXR1gcYJQJZaevskI4XKLXxVC69xW00Ig7C5MvU7vaCfR0YvicJGSOYnQYDPF+074bK6lJosVs4nw6BBu/talXHnLx3cWcXd3N1u3biU4OJjCwsJzVg70R289xS6Xi40bNxIXF8fMmTMDHc6IIKVkw4YNJCQknDamRg+0tLQwZcoU3nnnHZYsWRLocHSBt4f40w9htoxtD7HT0cOuV4we4qFgZIgNDALID37wA+bNm8cDDzygu9JVs9nMrFmz2Lt3L5MnT9ZdmfFAWK1WCgsL2bJlC7GxsePaeOp8xTBATEwMy5cvZ8uWLfT09DB79uwRNX4yGB5CCGw2Gzab7YwnM61Nndy48MF+K4Jis2AJNfOFe+bx++dK6LG75y2pgCJwCbDHmEG4ZwkLoblKu/W09Db6+v5v6HUwKchCdVuvJn6tIBz4Erl+y0sFhKoNNRbgnoXsQkiJajWh9Lq0HLBZgAOqSuu1uciKCaTLOyN59sKp3PmrG0mcEnvex1PPtLW1sXXrVuLi4pg7d+6wSof1lik+dOiQd8zfROHEiRPY7XbdVYN5eOqpp8jPzzfEsMGEZWI0ZRgY6JS8vDwuv/xyHnvssUCHMiwSExOJioriyJEjgQ5lxIiNjSUnJ8c7jmk8MhJi2EN4eDjLly+ntbWVzZs309vbe+6VDAKOYhJ+c458qC6Jq1d1/4wmSF1+60ktsysk3tnEeJbD7bXVr+etvtdBnM2CKtwLWPD1C/uL5z7iWOA0C99CQrtJgaaizQOMpVL8VLngYy+GT548ycaNG5kyZQr5+fnn1UfrEcXFxcUcP358BKMcWWpqaqisrKSwsHDC9A3b7XYOHz7MzJkzdXnBsauri9/97nfcc8/Ao9EMzoHbv2HMbwZDYmJ82xgY6Jh77rmHZ555hsbGxkCHMmSEEMyaNYvKykpaWloCHc6IkZ2dTUhICHv37mW8dZWMpBj2EBwczLJlywgODmb9+vW0traeeyWDgBIeGcLn7rrM+3t8UhTxkyP7LKO4JMLll6nFLXidElwSPEZYal8RLPq95evdGWIvwrd8n0U9fcRusdwbbfIZykjtASkESAGK5jp9phO3I7vLvT/XlNfzjyff562XNuN0uAZcfiIhpaSkpIRdu3aRn58/Yu0M410Ud3Z2eicvTISRfh6OHDlCdHQ0iYmJgQ5lWDz77LOkpqZy6aWXBjoUA4NRwyiZNjAIMAsWLGDhwoU8+eST3H///YEOZ8iEhYUxdepU9u/fP2EMtoQQFBQUsH79eo4ePUpOTk6gQwJGRwx7MJvNFBQUcPToUTZu3Gg4UOuAG7+6mguvnUdPl52UzEkIIfjo/UO8+rcNgCZahar9IIU7hSuEJoAF2hxiD7Jvwln0gHRrkga7g/zoMO0SujurrAligUT2md7kMZT2jFry9gW7HxTuOBQByWmxhEUEUbKvEovVhKPLV50QEq4ZKdVVNfGNK35Db7cdVZXs3XSUHz31ufM+duMVp9PJ3r17aWpqYvny5URGRp57pSEwXsunPaZhqampE+p7p6WlhcrKSlauXKnLv412u51HH32URx99VJfxGxgMFkMQGxiMA+655x5uuOEGvvvd7xIWFhbocIZMdnY2lZWVnDhxYsIYbNlsNhYsWMBHH31EREREwK/uj6YY9iCEICcnh4iICO94l9zcXONEaBwzqd/c3WUXz6Bg6VTee/9d7Q7/kmb36yjc448Up0A1uaud/cudJVjbJL2hWslzfa+DOKulb4W2J+urcPqIDxPg0sSwiqcUTWriHMjKTeR7D1xLxtR4ALo7e3E6Xdxz89McP1iFyazwrV9cD8COtYfp7vQJ5Y1v7sXx25uxWCfe6Ut3dzfbtm3DZDKxYsUKbDbbqOxnvIliKSW7d+8mKCiIGTNmBDSWkURKyf79+5k6daou/64DvPTSSwQFBXHdddcFOhTdIuTpVTdjsU+DoWGUTBsYjAMuvPBCcnJyeOKJJwIdyrAwm83MnDmTw4cPY7fbAx3OiBEVFUV+fj67du2ira0tYHGMhRj2JzExkeXLl1NZWcmOHTtwOp2juj+DkaWzvUf7QVV9JcnukmXvz4DZrt0npF9ZtftmVn0LNtodmBVBhM39vhO+9uMBT7y85dcCR7DQXKcR3hPDXoeTF/+0jl1bjwHgcqn85u6XqatqYc7SHP687l4WX6KNdolP9s05F4ogKi4Mp8PJprf3sXdTybhraRguTU1NrF+/nqioKJYuXTpqYtjDeCqfLioqor29fUL1DYNmpNXT06NbIy273c7PfvYz7rnnHl32PhsYDIWJ881jYKBjhBA8/PDD/PKXv9RlLzHA5MmTJ5zBFkBycjKZmZls27YtIGJ/rMWwh4iICFasWIHD4TD6inWCy+niZ1//O7dd9CsAQmxWr/hVPHOApbt/WLpVrdN3v0ew+vccg7Z4s93Zp4/YadLMuU7DL2ssAFeoAgiESwWXJtBPlNWz8YPD3PvNFzlefJK//+Ztdqw9QkdbNwe2lfLvP67zbm7+qjxu+PpFBIfZSEyJ4QeP38K3r3yMn9/+F+658Sme/NG/RvAIjj1SSo4dO8bmzZvJyclhzpw5YyYKx4Morq6uprS0lIULF06ISQUePEZas2bNGvKYrPHCn/70J2w2G7fcckugQ9E3MkA3gyFhCGIDg3HCypUrWbx4MQ8//HCgQxkWE9VgC2DatGlERkayY8cOVFU99wojRKDEsAer1cqSJUtISUlh48aNlJWVTZiM3ERk4zsH2Pz+Ie/vSl0r2VMTfFlcodlECxfebLEwCb/ssDz9ZMr9s8dp2nOfGiH9N+lD+K0mJSjCPUrJd59HSEsp+eW9r/LRe4e8GWdVldRUNPg2JwSf/94V/OfgI/xlw49pa+qk8lid9/G3XthEZ1v3kI/VeMBut7Nt2zZKS0tZsmQJmZmZY96eEEhR3NLSwp49eygoKCA8PHxM9z3aHDlyhKioqIC32gyXjo4Ofvazn/HQQw/pVtAbGAwFQxAbGIwjHn74YX7/+99z4sSJQIcyLPwNtiaScBJCMG/ePOx2OwcPHhyTfQZaDHsQQpCbm8uiRYsoLi4e1+OoPu50dfQdmdVjMlG6v0pzg1bxiWC3KBUu2U8E9xNjfh/hhl4Hk2xWn0eW6Sx9agKkkN5tCommnL1ZZeEdDVJReormpk4wmcCknZKsuHLuGZ9jcFjfUmKTWcFs0V85Z2NjI2vXrkVRFFauXElMTEzAYgmEKO7p6WHbtm3k5ubqVjSeiebmZiorK5k1a5Zu/Rd+97vfkZGRwbXXXhvoUAwMxgRDEBsYjCPy8/O59tprefDBBwMdyrDJzs7GbrcHvC9tpDGbzSxcuJDq6mrKy8tHdV/jRQz7ExcXx6pVq3A6naxbt47m5uZAh2Tgx8EdpQipEpcQ4btTCBSXBIcLxb+82V3OrJy1tE6An772zxD7C2Gvnhb9Essm936kwOlx7RLCPQO5706lWzOYrGbu/9MXuOT6BZw4VseLj7/Lu69sw+XyVWUUrJjG6k8WasubFL758A3YgvVTaiulpLi4mC1btpCdnc38+fPHRanwWIpil8vF9u3biYuLIysra1T3Nda4XC727NlDdna2bo20Ghoa+PWvf80jjzyiW0E/nhBqYG4GQ8OogzAwGGf87Gc/Y+bMmXz3u98lLy8v0OEMGbPZTH5+Plu2bCEhIWFClcKFhIQwf/58tm7dSlhYGHFxcSO+j/Eohj3YbDYWLVrEsWPH2LRpE9OnTw9ImadBX15+6n3+9uu3AIiICeX2e67AhVZ2LE0CoYg+8361EmmBlBLhyQqr7gf8XkpLFzhsgIT6HgfLJ1ncltT4ss4m8M1dkprudQ8iFqq2nCPUhLnD5XOdVv1nPAmkoiBcKiaTwsHtpbz78jZ2rj+C6nShqpLDO8u461c3AqAoCt97/Ba+/JNrsQZZCAkLGunDOWr09PSwe/duurq6WLZsGVFRUYEOqQ9j4T4tpWTfvn1IKZk7d+6E++4oLi5GURTdGmkB/OIXv2Dp0qWsWLEi0KEYGIwZRobYwGCcMXXqVL74xS9y7733BjqUYRMbG0t6ejp79uyZUKXToGVKZ86cyfbt20fceXo8i2EPQgiys7NZsmQJx48fZ8uWLXR1dQU6rI81r/z+Q+/P7S1ddJ2tp1ZKTfyqfZ2lRb8eYiElpna8Qrqh106M1YzZ76xBBfoMIfb+rI1r8hh0SZtJW9j/q0B1m3up7j5jwN7r5D9/3sC2NYdxOlVUd1Z7zf/uPO1pRMWF60oM19TUsHbtWqxWKytWrBh3YtjDaGeKS0pKqK+vH7ffb+dDc3MzpaWlzJs3T7du2RUVFTz99NO69TIZlximWrpAn59YA4MJzk9+8hPef/9975V6PTJt2rQJWToNkJ6eTkZGBlu2bKG7e2QMffQghv2JiYlh1apVBAcHs3btWioqKibcxQ+9EBxm82pRqUqCQ919tlKiunt1td8BhDdz20ekqtrFDm+SWAgUj6iV0GZ34ZSSGJvFWyPtOlONmbYBHO55x0LxSz6btPnE3v1KiVAUr+GWFEIL1x2roojTZi3rid7eXnbs2MG+ffuYNWsWBQUFWCyWc68YQEZLFJeXl3P8+HEWL15McHDwiG13POBfKh0REXHuFcYpDzzwANdddx1z5swJdCgGBmOKIYgNDMYhCQkJfOc73+GHP/yhbkWGp3TaM2NyojFt2jQSEhLYsmXLeY9j0psY9mCxWMjPz6ewsJCioiK2bt06YhcIDAbPd371GW8f7bzlOaz+RAEAP/nVp5kxd4pb/PrmDQt8QlcbweTekJRIKb0JBsV7v/Z7g6eP2L2AK5Q+pdhI/1JowObuF5ZowhzAkznzi8UXVL9ss6IwOS2WH/3+cyNwlMaempoa1qxZg5SSVatWkZKSopsS4ZEWxTU1NRw8eJCFCxfqWjCeiYlQKn3o0CFefvllfvaznwU6lAmFd5zdGN8MhoYhiA0Mxil33303hw8f5u233w50KMNmIpdOCyGYPXs2oaGhbNu2DafTOazt6FUM+5OQkMDq1asJCgpizZo1RrZ4jClYMY1/7nmIf+z6GT//+1ewus2v/vPXjzi+v/L0EySPy7SUbgMWicnTE6wIr0CVgHcekoSGHgeTbBZtHUlf8Svwlj57BbYApNCMtYJ8fcxSeoSyv5j2rNNXMD780tfJmpl6XsdnrOnt7WXnzp3s3buXWbNmMX/+fIKC9FPe7WGkRHFDQwO7d++moKCA2NjYEYxwfDARSqUBfvSjH/HlL3+ZjIyMQIdiYDDm6PeTa2AwwYmIiODee+/lnnvuGdPZtyPN9OnTsdvtHDt2LNChjDiKolBYWIgQgp07dw75dZoIYtiDkS0OLFabmajYsD4ZyKIDJ3B22sGlunuHpTYTGLz9wlr5tFv9+r/9pNR+///s3Xd4lFXax/HvMyW9994LCT0EElooIigqKKJYVsH+KqzY17Wh4uq6K2tZey8sdkVURBQINQm9k0IIaZCEJKRN2sw8z/vHZCYJPRAyKedzXSPJlGfOjMlkfnOfcx8jlqnV5Y16vO20LdObW65nbsZl1nIoc+MuqWU9smyvsex1bFlprJLw8HYmMMCt/YZPahWSBPaONri4O3bK89NVzGuFjUYjEydO7FFV4VO50FBcXV1NRkYGAwcOxN/f/yKM0LqMRiPbt28nJiamR1e+N27cyOrVq3nqqaesPRRBsAoRiAWhG7v33nuprq5myZIl1h7KeVOr1SQkJJCVldUrp06r1WqSkpJoaGiwdE89F70pDLfVtlq8atUqcnJyevQHOj2ZbDRVYtVNBlRg2nfYvC+wbDpJBsUyhRpordq2hDhJ3zrFuryx/ZRpSU37MGy+nXnOtYRlyrQkmSrEUsuUbIBBQ0P5YsXD+Pq5omqpLksqFbb2Nji7O5I0sT8lBRUX6dnpXDqdjvT0dHbu3MmAAQMYMWJEj6wKn8r5hmKdTkdaWhpRUVGEhoZexBFaT2ZmJhqNpkdvH6UoCo8//jgPP/wwPj4+1h5O72OeDdPVJ6FDRCAWhG7M1taW559/nqeffvqC16lak4eHB2FhYWzfvr1XhiOtVktycjLHjh3jwIEDZ71+bw3DZuZqcXJyMkVFRaxZs4aysjJrD6tPktSmbY1oMprW77Y0tDKFXAW1vu0a4pNvr2nCUiE+1qDHy05ruT2A8VQrBVr2IEaS0GtaQ7Flw2K1Cgwyu9NzuXncP9m/qxClJRD7BLjRb1AQtcd1rFu+i/lXv86R/PJOfU46k9FoJDMzkzVr1mBvb8+kSZN6fFX4VDoaipuamkhLSyMgIICYmJguGGHXq6ysJC8vj6FDh/boqdLLly8nKyuLhx9+2NpDEQSr6bm/wYLQR9x88804Ozvz5ptvWnsoFyQuLg6DwdAru04D2NvbM3LkSPLz88/4GHt7GG7Ly8uLcePGERYWxpYtW9iyZYuYRt2FHnlhJlNmJJqqtuYKbUsnaXP4VenNFQVa5zq3OakbJCS9aa1xRb0eFxsNdirJEm6NNpyysZb5ELKtZKpEy6CoW0KiZNn9mOrjOpoa9SgKePq78c7PD7Br00HTDG+jTFOjnu3rsy2H/+njtdwz8SWevPkdjloxKCuKwtGjR1m9ejWlpaWMHj2awYMHY2NjY7UxXWznGooNBgPp6em4uroycODAXvfhALR2le7pU6X1ej2PPfYYTz31FM7OztYeTq8kmmr1DCIQC0I3p1aref3113n22Wc5cuSItYdz3tRqNUOHDiUrK4vq6mprD+eicHZ2JikpiczMTPLz80+6vC+FYTOVSkVkZCSXXHIJKpVKTKPuQg26JqqP1bVOoZNPCK6KgtwSVk3TqZWTOj2be2xhgIZmGZ3eiJdDm8Zatubjtd7mxEqzJJvuW24JxFLzqRvQVZTVoNGq8fR1sUyhBvAPNTVi2rJmP+8u+IGCnBJ2bsxi4V0fne9Tc0Hq6urIyMhg586dxMTEkJKSgru7u1XG0tXOForNYVij0ZCQkNArwzDAgQMHevxUaYD//ve/gGl5liD0ZSIQC0IPMGHCBK644goeffRRaw/lgnh4eBAVFcXWrVvPuytzd+fh4UFSUhJ79uyhoKDAcn5fDMNt2dnZMWzYMEaOHGmZRn3kyBHRjfoienvhMtLXHGit4OqNliBsriKoZSzbMZ1Sy75I5opveYMeL/uWfXTN+Vlu+cZcZaYle8stt225D9lGDUYj2KiRJdrsj9y67u2XJZuIHxGBh58rtnZafALcyN5ViNEoczjzqCVgyUaFguySTn2+zqa5uZl9+/aRmpqKvb09l1xyCaGhob029J3O6UKx0WgkIyMDgKSkpF77GldSUkJ+fj7Dhg3r0VOljxw5wrPPPstbb73V7ffGFoSLTWPtAQiCcG5eeeUV4uLiWLt2LePGjbP2cM5bbGwsFRUV7N69m4SEBGsP56Lw8vIiOTmZ9PR0JEnCz8+vT4fhtjw9PRk3bhz5+fns3r2bgwcPEh8fj5eXl7WH1jsZZSS9ATRqtE0KBhsNigpLJVctgb5lqrSqHmTnNlVi8xRqS9tocyC2AUXXrjkXqvaVZXPrLEnVMotaNnWVtlzLRgP1zSd9LP/+i7+2fiPLlB2p4vP/rKAgp4TD+4tNQ2m5r4Rx/TrtaToTo9HIoUOHyMnJwc3NjTFjxuDm5tYl991dmUNxWloaAGFhYWRkZCDLMiNHjkSj6Z1vLxsaGtixYweDBw/GycnJ2sO5II8++ihXXnkl48ePt/ZQerc2HxR26X0KHdI7X7EEoRcKDAzkmWeeYd68eWzfvr3HfqIrSRIJCQmkpqZSUFBASEiItYd0UXh5eZGUlERGRgZZWVk4Ojr2+TBsplKpCA8PJzg4mNzcXDIyMvDw8CA+Ph5XV1drD6/XULXZF1iSZYwteyJJMiiSYgmxNlUG9M4avN3tKZVam/cpLWVhyQhKy49teYMePweblkZbiml5snyK918t54OE3l7CVndC51Pz9kyn2ovYch1TGpckidSftoMsI6kkHJ3tmDZnLDP/75ILfIbOTJZlCgsLyczMxNbWlsTERNGFtw1zKN60aROHDx9Gq9X26jAsyzLbtm3Dz8+PoKAgaw/ngqxdu5aff/6ZzMxMaw9FELqFnjvXQxD6oPnz52M0Gnt8gy17e3sSEhLYvXt3r9yKyczNzQ17e3vq6+sJDAwUYfgEGo2G2NhYJk2ahLOzM+vXr2fbtm3odDprD61XcHCwsTTSQgZJrbJsoSS1BFoUBZUM910zkuXv32e5rQKWzliSsaXC29JYy8te29IoS2rdsunExlpt3l3INi1BXC+32cO4pfu1rJy1gtJ2Wr0iK9RVN3DT/CnY2msvypR7RVEs+wnn5OQwYMAAxo0bJ8LwKbi4uODs7IxOp8PPz6/HflB7LrKysmhubmbgwIHWHsoF0ev1zJ07l2eeeYaAgABrD6fXE021egYRiAWhB9Fqtbz55pssWLCAo0ePWns4F8TX15fw8HC2bt2K0Wi09nA6nXnNsIODAyNGjGD37t3t1hQLrWxtbRkwYAATJ05EkiRWr17Nrl27qK+vt/bQejRdbaMpcBpMDcykNo3MJMxBV0EyKvz4yw7ueOjz9gcwz282v8mSoVzXbFlD3LZb9Ukst1VQNBKSQUZSQNGqWwOwuet0S6iVpNbp0ABBLc20JAnTllEqFSqVRHxiOP977XemRz3CdQP+zqYVu8/j2TmZoiiUlJSwbt06du/eTUREBBMnTiQwMLDPrRM+F23XDI8cOZKDBw/22l0EysrKyM3NJTExscdXwN98800URWH+/PnWHoogdBs9+7daEPqgiRMnMnXqVB599FEWL15s7eFckLi4OCoqKti7dy+DBw+29nA6zakaaJmnTyuKQmhoqLWH2C05ODiQkJBAVFQU2dnZrFq1ioCAAKKjo3v01ibWopi7SusNaLW2uHm5cKSxdUq01LJ9kkENZQ0NlOU1gLcac2tpc5XYMmVagspGA1q1hIuNGl2jERQJRWWu8iqWICwBRgXULWepzP2zpDYhWKOGZgNIEpOuSSBpQhxarYaG+iZCIn3471PfW64K4OrlzPgrBzN0bAzPzvkAAIO+gZfnfcbXe17Czv78tjySZZkjR46Qk5NDU1MTkZGRhIeH9/jgczEZDIZ2a4bN06XNa4ojIyOtPMLO09jYyPbt2xk4cGCPfx06evQoCxYs4KeffurV1fxuxdw0sKvvU+gQ8WovCD3QokWL6NevH+vWrSMlJcXawzlvKpWKxMREUlNT8fLyIjAw0NpDumCn6ybt7e1NcnKyJRSHhYVZd6DdmIuLC4mJidTV1XHw4EHWrl2Lj48P0dHReHh4WHt4PY4kSRia9JTnV4CXI6jbTw6T7dWtjbRUYN5H2BKILZ2kwWhUqG404OWopb7eCArIalDJtM45M78XM3evViRkRTFdrChte3QB4ObhiGww8o+5pgr18PH9WPDebQRHepO5I99y0Lrqemb+30QObM1rN/7mJgMNdY0dDsRGo5GCggIOHjwIQFRUFCEhIWJpw1no9fp2lWHzBwcnNtrqDaFYURS2bduGt7d3r+h38eijj3LFFVcwYcIEaw9FELoVEYgFoQcyN9iaO3duj26wBaaq4NChQ9m+fTtubm44Ojpae0jn7WxbK5m7T2dkZNDU1ERMTIyYinkGTk5ODBkyhNjYWHJzc9m0aRPu7u5ER0fj7e0tnrtzdWLTaHPlWGozJ5q2X7Z0mla1NNaiZU1ay9cV9Xo8HbQUKo2tNzUAbV+GFEwBuWU1hMFWhU29EUmtQlHJSEYFjVaFvbMdVRV1rP5ph+WmW1Iz2Zp6gOAo33aVDqPByKH9RxgyJhYvfzfKS6pAgeET43Hzcj7np0Ov13P48GFyc3OxsbEhLi6OgICAHr2FTldpbGwkPT0dGxsbRowYcVIVvbeF4uzsbBoaGhgxYkSPf71Zu3YtP/30k2ikJQinICliE0hB6JGam5sZMmQId999Nw888IC1h3PBdu/eTWVlJWPHju2RFZqO7DNcU1PDpk2bCAgIYODAgT3+jVZXaW5uJi8vj0OHDmFvb094eDhBQUE98uflYtLr9SxfvpzsDfVkrM6kscmA0Wgq8eq9HFu2RaJlarREsx1gawo29S4SioPp+TRqsDTWamtqjCdGo8Kf+ypNVWA9qAygaGm3dlgygqYZU75uNuJY1jJd2yijajSYDq03tNsf2czJ1YG6mgagZe2zoqDRqvlw9d/xCXSnqryWdb/swN7RjvHTE9DanP3zfZ1OR15eHvn5+bi4uBAdHY2vr6/4/TtHOp2OtLQ03NzcSEhIOOMHCMePHyctLY3Y2NgeG4orKipIS0vrFdts6fV6EhISmD17No888oi1h9Mn1NTU4OrqysjLn0ejtevS+zboG0n77Rmqq6t7/DT/riI+DhWEHsrGxqbXNNgC6N+/PwD79++38kg6riNhGExTglNSUigrK+u1TcUuBhsbG2JjY7n00ksJCwsjNzeX33//nX379okGXKfwwIsz+W7bc1x/d5t9yw2tjbXMFWJNM5Zuz5rm9sc4MQyjQIVOj5ej1tJoS5JATWvjLUlu7XJq6niqgKbl7YZiqj5bcrM5VEmSZTxhsf7U1zVa7lJtq2XomBhe+OxufALdAXD1dGLanBQuvW7EGcOwoiiUlpaSnp7O6tWraWxsJDk5mTFjxuDn5yfC8Dmqqqpi/fr1+Pr6MmzYsLNW082V4qysrB7ZaKupqYmtW7cSHx/f48MwmBppGY1G0UhLEE5DTJkWhB5s4sSJXH755Tz22GN88cUX1h7OBVGr1SQmJrJu3Trc3NwIDg629pDOSUfDsJmDgwNjx44lPT2d9PR0RowY0aOnvncljUZDWFgYoaGhVFRUcOjQIf7880+8vb0JCwvD19dXTH9t4y/zJuHh5Uz2vmIGj4igTpY5mFPK8t9M3ZlNAdYUDCVFabMGuM1BzIuKZVMgTgp2QTEqmH/ajeb/qMzXlZAUBVkBlSKd1OTFMgNbJVm+llQSb3x/P7sycvno5eWW+/X0ceEfn99jup2i8OELP7Hs0/U4uznw2Bu3MGR0zEmPubGxkYKCAvLz8zEajYSFhTF48GDs7e0v5Knsk44dO8bmzZuJiYkhKirqnD9E6KnTp2VZZuvWrXh4eBAeHm7t4VwwcyOtpUuXir8x1nCWbeUu2n0KHSICsSD0cIsWLSIuLo4///yTSZMmWXs4F8TJyYnExEQ2b96Mo6Njt2+gdL5h2MzW1pbRo0ezZcsWNm7cSHJyMnZ2XTu1qieTJAkvLy+8vLxoaGigoKCA3btNIS8kJISgoCCcnc99bWlvJMsyKpWKK28aedJlqakHqNc1I5ubaCmgamx7Y1pKvy3ft0yfrtTpcbfXolJjWjuM6camZtOtbaYlRTLtE9zSXMsggUY2X11pDVaSKTArChwrreaKG0ey8fe9HNiRj62dlvtfuNYypC2r9/PDB6kAVJXX8sI9n/DN7n+gUqmQZZmysjIKCwspKSnB09OT/v374+fnJz4gOU/FxcXs2LGDQYMGnVdTqZ4Yivfs2UNzczNJSUm9YgbB/PnzmTp1KhMnTrT2UASh2xKBWBB6uMDAQP71r39xxx13sGfPnh6/XsTHx4e4uDg2b97MuHHjum1F50LDsJlGoyEpKYkdO3awfv16Ro4ciZOTUyePtvezt7cnNjaWmJgYSktLKSgoIDU1FRcXF4KCgggMDOxzHza88eR3rF66Aw8fF556ezaxg9rPumhs0AOmzGtoCa0aIy3VXMlU8T1F4+aaegOKouDmoKW6Rt+mW1eb5lvmKdPmiKyA3k2LprzJ9L1WBfqWdCy1VqXLiquwc7Bh0df3UVFaQ11NA3XVDTQ16rG101JRWmMZh6KArqaBY2XllJQe5ciRI6jVagIDA5kwYYL4PbpAeXl57Nu3j8TERPz8/M77OD0pFOfl5XHkyBHGjRvXK7bd+vbbb1mzZg379u2z9lAEoVvr+b/tgiBwzz338N133/Hoo4/y3nvvWXs4FywiIoLq6mo2b97MmDFjul3TpM4Kw2YqlYqEhAT27dvHhg0bSE5O7hXr1qxBkiT8/Pzw8/NDr9dz5MgRioqK2LdvH15eXgQHB+Pn59cnpg6u/XUXsqxQUVbDvx5cwker/tbucku3aYWWTYNb1va2bKGkAuSWNb+W67XMfq6sN+DpqKW6yhSIJcy5tk07avO+xOYl8qo2S5LbVt40GlQGI5JKYsjIyJaLJbaszeSNp78HBQLCvHj1m7mMmBiPs5sDaluIGubLoHHBbNu+lYCAAIYPH46np2evqOpZk6IoZGZmkpeXx6hRozplpk5PCMXl5eXs27ePkSNH4uDgYO3hXLCysjLuu+8+3nrrLXx8fKw9nD5LMn9Q2MX3KXSMCMSC0AtIksRHH33EwIEDmTlzJpdeeqm1h3RBJEli8ODBbNy4kZ07d5KQkNBt3uR2dhg2kySJAQMGYGdnx4YNG0hISCAgIKBTjt1XabVaQkNDCQ0NpaGhgaKiIg4ePMiuXbvw9fXF398fHx8fbGw6tn9tT6FSmX5nFFnheHntSZc7ONhQX9/SRUvBFFxbpk+bQ65sTsBSm82JWxpreTppybNUglvehMktX7TsXSy1OV67/Z9Urb/Pdk62TLy0P5fOSCQ0urUS+dHLv1oqx0fzK1j182b6Jwdy96JLqNPVoVHsGDK8P/7+/t3uQ7Oeymg0smPHDiorKxkzZkynzjjqzqFYp9OxZcsWBgwYgKenp7WH0ynmzp3L+PHjuf766609FEHo9kQgFoReIjQ0lH//+9/ccccd7N27t8dPnVar1YwYMYK1a9dy8OBBoqOjrT2kixaG24qKisLR0ZHt27dTU1NDbGxst/kwoCezt7cnOjqa6OhoampqKC4uJicnh+3bt+Pp6WmpKvfkfbBPpLXV0NxoQFFg6o3JJ10eFOxOdlYpAJJRQdGApQRs1qbg27bZVkVdM54tnaYtl8ktTblUtN5IpmVLpZalwrQUhxUJWZJQAY2NBi6/cSTR8e0/AFJrVQREuRIW70FovDs4VXP8uAPRMVEEBAT0iSp/V2poaCAjIwO1Wk1KSspFWWLQHUOxXq8nIyODwMBAwsLCrD2cTvHNN9+Qmpoqpkp3B7JiOnX1fQodIgKxIPQid999N9999x2PPPII77//vrWHc8Hs7OxISkpiw4YNODs7X9A6tgvVFWHYzN/fn7Fjx5KRkUFNTQ0JCQm9Yj1bd+Hi4oKLiwtxcXHU19dTUlJCSUkJ+/btw8nJCV9fX/z8/HB3d+/RzZj+881ctqZm4xPozqjJA066vLCg0vK1Si9jbPmZllqmTAOtCbbN+ytJgYo6PYOCnFuvoyimztJy6xJkFMWyFVPLLZG1KtTNMid2nT6YeYSoOH+am5s5duwYJSUl3Ph4AvW1TeQfqGTj0kMcPVTD5+uews1TrA3ubJWVlWzevBlfX18GDRp0UV/fulMoVhSF7du3Y2try4ABJ/+O9ERlZWXMnTuXt99+W0yVFoRzJN5hCUIvIkkSH374oWXq9OTJk609pAvm5ubG0KFD2bZtGykpKVbpGtyVYdjMvFfxli1bWL9+PUlJSb1iXVt34+DgQEREBBEREej1eo4dO8bRo0fZvHkzRqMRT09PSydrV1fXHhWQ/YI9ueb2lNNebmuroaGlsVbrVGkFmmSwa/kZN4ddqbVMbFSgsk6Pp6MWuWXrJQnJMs3achtAartOWQG9vQZ1U7PpDtUqbG0k/EOd2LNnD0eP5eDhY4+hSeLQrjL2ZxyhtLCuXRivKK0WgbiTmbuzx8XFERER0SUzUrpLKM7MzKSmpoZx48b1qN/t01EUhfvuu48JEyZw3XXXWXs4Aohtl3oIEYgFoZc5ceq0q6urtYd0wQIDA6mpqSEjI4OUlJQuXfNpjTBsZmtry6hRo9izZw9r165lxIgRvWZ9W3ek1WoJCAggICAARVGoqamhvLyc8vJycnJykGW5RwdkxRxSWwLPuAlx/PTDNpAklDZrem0bodkGU7rVA7Zt1v4ioUKhsq4ZF3sNWq2E0tx+42LTWuKWr42KZY9jFAV7JzVhPi4EhjoRGOKEp48dx8sbOZJXy7ZVxRw9XENDrR6am8Eog1qN1LJXsYubA64eTuxYn0VBTglDRscQGut/EZ+x3k1RFPbt20dBQQEjRozo8mqitUNxcXExhw4dYuzYsb2mj8DXX3/NunXrxFRpQeggEYgFoRcyT51++OGH+fDDD609nE7Rr18/ampq2Lp1K8nJyV0SRKwZhs1UKhWDBw/GxcWFtLQ0BgwY0GvWuXVnkiTh6uqKq6srkZGRpwzIRqPRch03Nzfc3NxwdnbuliF5yVur+Ord1djYannwxZmMnjyAhGHhpkCsKEhGWtYQY6r0ypiKuAYw2tBmGyWQJahvkmloNuLhoqWivLm1CtIShiUFHDQqfPzs8PWwxdfLDl8vW9xcbKg81khxfh1bN5ZwJLeGJl3LZsZ6Q+uaZJXKFIiR0drYom82UFtVz31XLKL2mGnrJY1Wzb++/StxCWGnfMwHtuXx3bursLHV8peHLicwQkwfNdPr9WzdupX6+npSUlKstkWVtUJxVVUVO3bsIDExscf32zArLS1l3rx5vPvuu3h7e1t7OILQo4hALAi90IlTpy+77DJrD+mCSZJEQkICGzZsYOfOnQwdOvSiTu3rDmG4rfDwcJydndmyZQs1NTUMGDCgWwav3upUAbmuro7q6mqqqqooLCxk7969yLKMi4sLbm5uuLq64uzsjJOTEzY2NlZrjpa5q4Av3vgDJNDrjbz04Jd8u/kZkkdGM2pMDJs2ZKNSIDzUi9z8cjSNMgYn08+7ythS7G3bWKvl64o6PZ5ONhw/1oyrkxZPRy0+rjb4etri52mHq7OWqppmysqbKD3WyJ79VZQda0A+0tC6/ZLeYFmubAnBkgRqDZLRiEqtprnJYHkstdUNLWuaFWRZ4c/vNp8yEB87cpzHZ72JvtmAJMHuTTl8krYAG1vRiKu2tpbNmzfj6OhISkqK1ZuTdXUo1ul0pKenExsba9W+FJ1JURTuvfdeLrnkEmbOnGnt4QhtWDrwd/F9Ch0jArEg9FKhoaG88sor3HXXXb1m6rRWqyU5OZn169dz4MAB4uPjL8r9dLcwbObl5UVKSgqbN29mw4YNJCYminXFViJJEs7Ozjg7OxMUFASY3pTqdDqqqqqorq6muLiYuro6Ghsb0Wg0ODk54eTkhKOjo+VrBwcHtFrtRQ3LOfuK271DMhqNlJdWExzhw8jR0aRvykGWFaJDvHjxhetQq1Vc8df3TPsGt1R9VZKEs60aDwctXjZavBy0uNhruGyoN3YjfJEVheO1eiqPN1Na3siuA1WUlzXS2CibErXUOm1abatC09TSactSCW652PyFSmLOI1OJHxbO47e8h9y2a6paAoOCoih4eJ+6undofzHNjXrLMSvLajhWfLzPV4kLCwvZvXs3YWFhxMfHd5sO9l0VipuamkhLSyMwMJCoqKiLch/W8NVXX7FhwwYxVVoQzpMIxILQi91111189913PPTQQ3z00UfWHk6nsLe3Z9SoUaxfvx5bW9tOf+PUXcOwmbmqs3fvXlJTUxkyZIjYr7ibkCTJEnTNIRnAYDCg0+moq6ujrq4OnU5HWVkZdXV16PV6VCoVdnZ22NraYmdnd9JJo9GcdOrI7AB3L+c2TbFMZNlIdXUdH3/wJx6etmhtVBw6lM++PQfw83fmiuE+ONmpcbLX4OigxtHG9HtQ1WCgQqensqaZ0qomNGqJFRvLqK3XoxgV1AZau0vrldYc3ibQtl2vjEoy7X984tcSJIzrR3T/IIaP60fGmgOtN9FokA3NDBkdw4y7J5zyMYfHBaC10WDQG5EkcPFwxDvA/Zyfs97GYDCYGpcdPcqwYcO6ZWX0YodivV5Peno6bm5uDBgwoNt8GHChSkpKmDdvHu+//76YKt0dKcpJXfW75D6FDpEURTxrgtCbFRQUMGDAAL766iumTp1q7eF0muPHj7Nx40aGDBnSLnxciO4ehk9UXFzMzp07CQ4Opn///t1+vMLJ9Ho9jY2NNDU10djYaDm1/V6v12MwGDAajZbbqVQqSzhWq9VIktTuDX51dTUuLi5IkoTRYKQ4vxy1VoXWRoXWVo2qJZQajQr6ZiN6vUxDg5HGZpmaGj3Vikxdo4G6BiOVaiN1TUbqmo3ILfsKa5qgX4AjI6PdWPxroelOW0KwSlFMexIbFdO+xJbNh023Vdc0ozYXhRUF9MbWadP61sc47+lpXHlDEt+8u5pPF61AURRUKomI+ACuv3Mc376zCgdnO+5+5hoi4gNPem53p+Xw7Vt/YmOn5dbHriA0pm824DL3XrCxsWHYsGHY29tbe0hndPz4cdLS0oiNje20UCzLMunp6QAkJSX1mtdKRVGYMWMGtra2fPXVV9YejtBGTU0Nrq6ujL7kWTSazt/T+0wMhkY2rnrW8ndAODtRIRaEXi4kJIQ33niDOXPmsGvXLvz9e8ebQnd3d0aMGMHmzZuxsbG54A6pPS0Mg6n7tpubG1u3bmX9+vUkJiZarTmOcH60Wi1arfacthNTFMUSjA0GQ7uT+XLzdXbs2EFUVBQajQZJkggK0LE5NRujWk3atgJys0rRN8voVZJpCjKg2KotU5YbXdQoahVI0OTSeh3TFU2nyjo9Hk5a9IBlFaqstG6/REswlhXs7LU0NjWbKsAaFTS3JGJJApWESjJNyza0CcQN9c0ATJs9hl0ZuWxfn427twuz7pnIi//3sSkgSxJP3PQ2i7c8j0bb/nd20MhoBo2M7sD/jd5FURQKCgrYs2cPkZGRxMbG9oi+A51dKTbvNdzc3Mzo0aN7xGv7uXr33XfZvHkzu3btsvZQBKFHE4FYEPqA2bNns2rVKm6++Wb++OOPXvOGwMfHh8GDB7NlyxZGjRqFu/v5TYnsiWHYzNHRkbFjx7J//37Wrl3L4MGDO61iLnQvkiRZAvSZ6PV6duzYgZ+fn+W6fn4QGx9JU6OeTz566cQDo1KBoc1+w+a1w8iKaesliZZmVlgW+h6v02Nno8bJSU1TrdF0GxVIRvNtQa2XURSF5vrm1iqwjRpFL1sazcT2DyAqxp8hiWG89MjXlmF99J8VTJo2BHcvZ/7xyV00N+nR2mhY/8tOlJYp2LKiUF1RR3VFHZ5+Pb9PQmfR6/Xs3r2bY8eOWWVLpQvVWaFYURT27t1LVVUVY8eOtXoDsc60c+dOHnnkEZYvX46Xl5e1hyOchqRYoamWmPvbYd3/o0JBEC6YJEm8/fbbFBcX8+KLL1p7OJ0qODiYfv36kZ6eTl1dXYdv35PDsJlKpWLAgAEMGzaM3bt3s3PnTkvVUBDaOWHdpCRJSIAin3A9GSRZRgI0TUprOG5ZHywroDco1NTr8XDQtgToltKwbLquubuqdIqepwpY1rldfeNI5j89zRJy215p5dJtlm9tbE3Nx/olhGJrp0WlVqFSqwiK9MHN++wV9r6iqqqKtWvX0tTUxPjx43tcGDYzh+KsrCxyc3PP6xgHDx6kuLiYkSNHYmtr28kjtJ66ujpmzZrF448/zrhx46w9HEHo8UQgFoQ+wtnZma+//pp//vOfrF271trD6VSRkZGEhISQlpZGY2PjOd+uN4Thtvz8/JgwYQK1tbWsW7eO48ePW3tIQjdja3vCxLC2bUSMrV9LLRVcSeakfy17EitQUavHw9XGUjmWME2RluQTtv5oG3YVBUVjevshofDF+6kAxA0JOWm8332y4aTzfAI9+Pf385k0czhXzR7Dy9/8FbVaRW1VPX98nc7G5TsxGk9M+L2foijk5OSwYcMGQkJCGDlyJHZ2Xbt2sbNdSCjOz88nOzubkSNH4ujoeJFG2PXMWywFBQXxxBNPWHs4wtkoVjoJHSKmTAtCHzJkyBD+/e9/c9NNN7Fz585e1ZEyPj7esqXGmDFjzmlaaW8Kw2b29vaMHj2anJwcNm7cSEREBLGxsb3m8QmdQWl9w2RQQN3y2Xib6rFGr2DQmBKuqklBclC1u7n5dLxWj4ebTWvzLMv0QNP3siyjUkBRS6bA3bKHsKRqCcwK1NQ0AOAb6I6kktpVinU1jXz//hr2ZuQSOzSU6/5vImqNmuhBwTz4yk1trtfAXy//F6UFFQCkTEvg7+/c1snPW/dVW1vLjh07aG5uZtSoUXh4eFh7SJ3mfKZPl5SUsGfPHpKSknrFloNtffbZZ/z+++/s2rVLvK4LQicRFWJB6GPuvfdeRo4cyezZs5Hl3lNFkSSJIUOGYG9vT0ZGxhmnDPfWMGymUqmIjY0lJSWFsrIy1q5dS1VVlbWHJXQTGpVpErMErWEYLA2xwBRqVUZTtVdtwBRmZSwnlWKaEl1Zp8fTWdsuJBvN4Vg23Ykk0676DG0KGIqCrqaBlct28PZLv+Ds1n5fbUdnOz584SfS/9jL5//+lSWvrzzlY9qWesAShgHWLdtOdWXHl1D0NIqicPDgQdauXYuHhwcTJkzoVWHYrCOV4oqKCrZu3UpCQkKv+tAXYP/+/cybN4/Fixf3mgaZgtAdiEAsCH2MJEl8+OGHHDhwgP/85z/WHk6nUqlUJCYmArB58+Z229SY9fYw3JaLiwspKSkEBgayYcMGDhw4cMrnROhb7B1Pt5ZSafeVJCuojKCWQW1onTatMrbuL1xZ04yHk7ZlrbBpvbCkMl/XdKakKPh4OZkOajQtQJYUU5gDU9H4v//4mV++3UxdXSMaOy0qjYqAEE9iIj1bx6TAzo1ZLHp4CTcOf4Znbv/AEnpdPNpPidXYqLG1t2l3XnOjnh8/WMPHLy0j78CRC3gGu4fa2lrWr1/P4cOHGTlyJAMGDOjVr2fnEoorKytJT09nwIABvW5/9vr6embNmsX999/P5MmTrT0c4RxJimKVk9AxIhALQh/k5ubG119/zYIFCyx7M/YWGo2GpKQkjEbjSaG4L4VhM3O1eOzYsZSWlopqsYCvn1vrN7Lcuo7Y0lm6zVrhNieV0RSQLR2oFYWKmmbcnWxMZygtp5bmWwATx8YgGWTKi6tMa4tbmnKhgKQ27Z2sAM1NemSjgiwrGAxGPvr1QT7+7SEGDI+0zOSWJAlFkli1dBtV5XVsW5fJu8/9CMDg0TFMv2McSGBjp+Xh127B7oRA/NLcz/hg4VK+f28ND0z7D8V5ZRfl+b3YTqwKjx8/Hk9Pz7PfsBc4UyiurKwkLS2N+Ph4wsLCrDPAi+iBBx7AxcWF559/3tpDEYReRwRiQeijRowYwcKFC7nhhht6XfMlrVZLcnIyer2eLVu2YDQa+2QYbsvV1fWkanFvmjIvnLvLpg81faEoSOa0qSioDK1B9sS+0NIJU57NIblaZ1qa4OKobW26JYNklJFkhdQ1WZbO1JJRQS1JqFUSzk52TJ2ewNhJ8cz/+5UnvRnJzSoB4Pr7LuGGv04mPjGca++egLd/69ZqslGhMNcUaiVJ4v+en8lPB//DD9mvMH76sHbHMxqMpP+xx5TXjTLNjXq2rc08n6fPqurq6tiwYUO7qrBG07fawZwqFB8/fpz09HTi4uIIDw+38gg735dffsl3333Hl19+2ef+f/d4spVOQoeI3ypB6MMefPBB1qxZwx133MH333/f+ua4F9BqtYwcOZJNmzaxefNmmpubsbGx6ZNh2MxcLfbz82PHjh0cPXqUwYMH95nqkmBSWV5r2moJ03Q+BVCpTJVaue1rgGyeBy0hGRRQSyhSS4VXbunBpZj2I3Z3t6G2Sm8K1iqpdRsmVcu+xgB6I0OGhxMS4c30GYkEhbT+3H3/6QaK81vXAP/+/VaW/PcPjuRXMHpyf/751VzTHsS/7mTdrztRq1UYjTIpVw5p99hs7E7dTE+lVuHt70ZFSTVyS9Mu/9Ces3er0WgkNzeX7OxsQkNDiYuL69PBqG2jrYaGBgoKCoiNjSUiIsLaQ+t0Bw8e5J577mHx4sWEhJzciV0QOktRURHPPPMMK1asoKKiAn9/f66++moWLFiAu7v72Q8A/PHHH6xYsYKdO3eyc+dOKisrGT16NBs2nLxjQHfSd19NBUFAkiQ++eQThgwZwltvvcW8efOsPaROpdVqGT58OKtXr0atVjNq1Kg+G4bbMleLDx48SFpaGv7+/vTv37/Hb9EitHf8WC0/vJ9Kg66Jq24dQ9TAYAB0dU3mZs8gK3i62ePk7oRGI5FdWGm5vSRjmkemKCBLphAMLeuCsVQhjtc04+5mQyE6ABTJFLBlWUHVpmO0pCiUFZRz5fQEtqfngqLw0asr2Z6ea9oOyjwoRWHP1jz0uiZkWWH1sp1ExQdyzewxjL1iCM/Z27BzUw6R8YFMvKZ9Jfh0JEnimY/u4tWHl3D8WA1XzUkhcXzcBT/HXaGsrIzdu3ejVqsZOXKk+ACrhbu7OwMHDmT79u34+vqeU/fpnqapqYlZs2Zxxx13MG3aNGsPRzgP1ljTez73l5uby6hRoygrK2P69On069ePzZs38/rrr7NixQo2btx4Tq89b731Fj/99BN2dnZERUVRWVl51tt0B5KiiJXXgtDXrV+/nssuu4z169eTkJBg7eF0GvM0abVajV6vx87OjuHDh4tQ3EZDQwN79+6lrKyMfv36ER4ejkolVtP0ZHq9nuXLl/P7O5nkZ5UCoNWqefKDOzh2rBZZUfjvy8sBU5VY62SLwWBKu3qb1t8NxfxjIEk02Soo9prWrZkUBallYvX4IZ5o1RJrV5eAomBvpyXUy5Wa6nrKi6ug2di6DlglWZYsazQqjM1GkE1VZdnYZj0zgN7YsjWTQmRcAG/+eP9pH/OKL9P45fMNePi4cO/z1/ao6u/p1NfXs3fvXo4dO0ZcXBxhYWHid7ON48ePk5aWRlBQEEVFRcTGxva6UHz//fezadMmNm7ciK3t6ZrhCd1RTU2N6cPnsc+g0XTth80GQyPr1j9PdXU1Li4u53SbKVOmsHLlSt544w3++te/Ws5/6KGHePXVV7nnnnt49913z3qctLQ0XFxc6NevH4WFhYSHh/eICrEIxIIgAPDPf/6Td955hy1btuDj42Pt4VywE9cMy7Lcp9cQn01ZWRl79uxBpVIxcOBAvLx6fqDoq8yB+KNH16FvNDWVU7RqcLQ3fa2SLNstKYBi2zrN2KiVQKMy9ciSsEx5NqjB6Khp7TzSsqUSwKBIF+LDnPhxaWFLhRdUDcbW6rDeiEqWTXemOmFZhiybKtHQ2pTLzGBEajmGRqPm573/OOXj3Z2Ww9+ufxMAlVoiKMKH91Y/0ZGnrFsxGo0cPHiQnJwcAgICiI+PF7M3TmAOw+YQfOL3vcHnn3/O/Pnz2bp1a695TH1JTwrEubm5REVFERYWRm5ubrsP3mpra/H390dRFMrKynB0dDzDkdo7fPhwjwnE4qNGQRAA+Nvf/sbIkSOZOXMmzc3N1h7OBTlVAy3zmmKDwUBGRobYfugEPj4+TJgwgaCgINLT09m2bRuNjY3WHpZwAdq1BLBvU106sVWAubmWZJpa3HYvYqml47RG3zL1T1Ys3aJVsoJKgaqaZtxdbCz7GEvmMN1ybNSm6dbmztQnsXS5br3MP8jdtEWTYnognj6nf1OXu6/Y8rVsVCjIKcVo7JldZUpLS1mzZg1Hjx5l1KhRJCQkiDB8gsrKSjZt2kS/fv0sQbEj+xT3BOnp6dx777188803Igz3dIqVTh2wZs0aACZPnnzSLBRnZ2dGjx5NfX19r9uVpC0RiAVBAExvhD/++GN0Oh3z5s2jp04eOVM3aXP3aaPRSHp6OgaDwYoj7X5UKhXR0dFccsklyLLMqlWryM3NFd2oe6h2v8Jt03Gb8yWFlqnJpu2SNFp1y37C7Q8iYeoSLRlbQrKx9ViV1XpcnLSgkUxr11qqxCjKCan8hAG0DcItP2O+AW4gKxzNr8QrwA2VWsLLx4XHX73xtI9z0MgoVGoJlcp0GpgchVrds97e1NfXs3nzZrZu3UpERAQpKSl4eHhYe1jdTkVFhWVrpRMbaPWWUFxcXMw111zDiy++yKWXXmrt4Qh9QFZWFgAxMTGnvDw6OhqA7OzsLhtTVxNNtQRBsHBwcGDp0qUMHz6cQYMG9bgmW+eytZK5UpyRkcHGjRtJTk4Wa7NOYG9vz/Dhwy3TqPPy8oiLiyMgIKBXdSLv7WIGh7B/y2EkScLYNpxaukebvpVUEopRRgIMzQbLdGpzJ2pLKD5x5yUZQKG+3kBTsxE3Fy3Vx5paKs6tQbpdMJfNnafb7H1svg9JorTouOW88rJa5j0znStvSD7j44zsH8SLS+byxzcZuHs7M2tezwkRTU1NZGdnc/jwYYKCgpg0aZJ4PTqNo0ePsm3bNgYOHEhoaOgpr9O2+zTQ46qrDQ0NXH311UydOpX77z/9mnmhBzlxKUhX3Semadtt2dranvL1pbq6GjA13DwV8/lVVVWdOMjupWd9hCoIwkUXHBzMjz/+yN/+9jdWrVpl7eGcs47sM6zRaEhOTsbBwYH169dTX1/fhSPtOczTqKOjo9m7dy9r166lrKysx84e6Guefu92bp4/hWlzxvL8f2/BzsG0VlitafnTb55a1/YzDkOb2QAt058lpbVCjLm7dNvzFThercfbRWuZUm3vYIuNVk1IqCc33JRseVMY3S+gZWp1y6lNF2pLZbmNLevOrSIxeFQ0j7z2F+54cjpOrg4dep6swWAwkJWVxZ9//olOpyMlJYWhQ4eKMHwa+fn5bNu2jYSEhNOGYbOeWilWFIU777wTGxsb3n77bfHho3DBgoODcXV1tZxeeuklaw+p2xIVYkEQTjJy5EjefPNNrrvuOrZs2dLtP2XvSBg2U6vVJCYmsmfPHtatW8fIkSNP++loX6ZSqQgNDSUoKIhDhw6xdetWXF1diY+PP+d9CQXrcHC24+YHLwNg95Y8Guv0SCqQm42gafM7IgPmb1WqU68/U0BqUsBOsWyP1C/Kl9yCcgxGGV2dAXc3W6AWgKYmPX+sa21sFRzmxRfvrKGmSmdplGXm6u5ARIwfyRP68c4/fm132YQrBl/gs9C9yLLM4cOHyc7OxsHBgaSkJNHA7gwURSEnJ4ecnBySk5PP+bnqiZXif/3rX6xbt46tW7eKD0aETlFYWNiuqdbpfq7M733MleITmc93c3Pr3AF2IyIQC4JwSrfddht79uxh2rRpljb63dH5hGEzSZIYOHAgtra2bNy4kREjRog3p6ehVquJjo4mLCyMnJwcNm7ciK+vL/369cPZ2dnawxPOYsMf+1CrJEuzKXOzZ0tR1tgadE9HJSuoZdArMpICB7NNWzpJskLpsQbcPG1NxwEUFHbvzKe06DgODja8tnAZsrn6fML9zLxtLNfNGQuAX6A7Lz/6LXq9gStuSGJ8LwnEiqJQXFzMgQMHUKvVDB48GD8/P1EFPANFUdizZw9HjhxhzJgxHf7AsieF4l9++YWFCxeybt06fH19rT0coROZZ9l09X0CuLi4nNN7t9jYWOD0a4RzcnKA068x7g1EIBYE4bT+9a9/sW/fPm6++WaWLl3a7bYqupAwbCZJErGxsdjZ2ZGens6wYcPw9/e/CKPtHbRaLfHx8YSHh5OdnU1qairBwcHExsZib29v7eEJp+Ef5G5pjiapJbQaNc36ls5YSpsw3Gw0bbt0iqAmKSDrZUsxWW6zLvl4dTPhwY6WfYNR4Mn7F9Ncrzdfuf2xJMnUSEtR2LYhm5mzxyBJEknj4vhh8zMX4RmwDvNWJQcOHKC5uZnY2FhCQkJEED4Lo9HI9u3bqa6uJiUlBQeH85sG3xNC8f79+7n55pv5+OOPSUhIsPZwhD5owoQJAKxcuRJZlk/admnjxo04ODiQnHzmfg49mVhDLAjCaWk0Gr766iuysrJ4+umnrT2cdjojDLcVGhrKsGHD2LZtG4cPH+6cQfZi9vb2DB48mAkTJqDX6/nzzz/ZtWsXOp3O2kMTTuGqG5OZPCMRJ1d7YuIDaW42WNbxSuYTLW8KTgxrls7RJ4TaNg2xqqqacXe3bdmSyXRZY4O+zZXN/5q+UFrCMMDOjEPkZh497dgry2p49q6PuOuSl/jfG7/3iDXsiqJw9OhR1q1bx7Zt2wgKCuKSSy4hNDRUhOGz0Ov1pKenU19fz9ixY887DJt15zXFlZWVTJs2jfvvv5/rr7/e2sMRLoa2r59deeqAyMhIJk+ezOHDh3nrrbfaXbZgwQJ0Oh233HJLuz2IMzMzyczM7JSnqDuQlJ7wl0UQBKvKzMwkOTmZd955hxtvPP32J12ls8NwWxUVFWRkZBAZGUlMTIx483qOampqyMnJ4ciRI/j7+xMdHS3WZFuJXq9n+fLlTJ06Fa1We9LliqJwx7TXKSmqRJYVFLXKModaBmRn2xNvYPoHQCO1htqWCrEigY1Gxdx7Ynnv9X3oG1vCrlFGJbd5c2bp12WqIEtGo2W98pRrE3nwuWtO+Xgev+lt9mw+hNwy3fvhV25k0rXDz/PZubhkWaa4uJicnBz0ej2RkZGEhYWh0YgJeeeisbGR9PR0bGxsGDFiRKc+b8ePHyctLY3Y2NhuUSk2GAxcdtllODs78/3335+0/6vQs9XU1ODq6sq4kU+h0XTtXuIGQyNr016gurr6nJe75ebmMmrUKMrKypg+fTpxcXFkZGSwZs0aYmJi2LRpE56enpbrS23/DrSxYcMGPvzwQwDq6ur4/vvv8fHx4fLLL7dc59NPP73AR9j5xCu0IAhn1a9fP7788kuuu+46oqOjSUxMtNpYLmYYBvD09GTMmDGkpaXR2NjIoEGDRCg+By4uLgwbNox+/fpx8OBB1q1bh7e3NzExMWI/1W5GkiRefGc2H772OzXH61HZqdmRfggkCRXtp0K3rTRIgGJUWrdrUgC16V+DXqauTo+7pw1lhfWc+TfGtO2SYj6UAjY2Grauy2TbumySJsYxZFS05dp5mUctYVilVpGfXdJZT0WnMRqN5Ofnc/DgQVQqFVFRUQQHB3e7ZSbdmU6nIy0tDXd3d4YOHdrpAbG7TZ9+6KGHKCsrY+nSpSIM92KSbDp19X12VGRkJFu3buWZZ55hxYoVLF++HH9/f+bPn8+CBQvOuYnmwYMH+eyzz9qdV1ZW1u687hiIRYVYEIRz9sorr/Dqq6+SkZFBUFBQl9//xQ7DbdXX15OWloazszMJCQmiwtNBjY2N5ObmcvjwYVxdXYmOjsbHx0d8uNAFzlYhPtGv32/hjRd/sawjNthqwEYNktSyj/CJGxADUsv55uqyojDjmlAyd1eSvasSaDnbvE4Z2lSIWzQbkACNVs2MvyTx7buplotmP3I5Rw6Xk59dgmyUObinEJVKQjbKvLj4/xg6uns0d9Hr9eTl5XHo0CFsbW2JiYkR+3Wfh+PHj1v+rvTv3/+iPn/doVL83nvv8eSTT7JlyxbCw8OtMgbh4jJXiMcnWadCnJrRsQpxXyfe4QmCcM4efvhhsrKymDJlCuvXr+/Syl9XhmEABwcHxowZw5YtW9iwYQNJSUmiaVQH2NnZ0b9/f2JiYsjLy2P79u3Y29sTFRVFQECAqIh0I0OGR5jCZkvjK19Xexz9XMnLO4aTsx21tY3tb6AoSEimmc9tpkRXHW/C3cO2ZX9jBY1WQm/u1yW3by4dPyiYyqJKSosrMRiMfP/RhnZ3seS/f2A0yJYxjb58EM7OdoycMrBbhOGGhgby8vLIy8vD1dWVoUOHig98zlNhYSG7du0iLi6OiIiIi/4cWrtSvHTpUh5++GFWrFghwrAgdBMiEAuCcM4kSeKdd95h5syZTJs2jZUrV15ww5Nz0dVh2MzW1pZRo0axe/du1q5dy4gRI8T03w7SarXExMQQERFBQUEBmZmZ7N27l7CwMMLCwrCz69pPzoWTOTrZoRgUzAt6j1XWc6xBDwrUnRCGzeEWZCQkbGxUNOtNpd+q4834+9iB0VQV1jeZbqO0VIZd3B2prtQhSbB/dyFSk97SmEs+oQt12zCsVqtw93Zh7rPX0NjQjEFvRKNVo282kJ99FC8/N9y8Tt76q7KshsOZRwiL9cfD98LXsyuKQkVFBXl5eZSUlODj40NycnK7dXXCuVMUhf3795Ofn8+IESPw8fHpsvu2Vihet24df/nLX/jf//7HmDFjuuQ+BSs7jyZXnXKfQoeIQCwIQodoNBq+/PJLJk+ezA033MAPP/xwUacTWysMm6lUKgYPHoyrqyubNm1i4MCBhIaGdukYegONRkNERATh4eGUlZVx6NAhcnJy8Pf3Jzw8HA8PD1Fds5K8nJKWqm8L88Leln+8vJ2prW2gqcmAt6cTx4qrTUuMFQW9TkalVqEoClXHGomPc22/52bL1yqVZKom0/JeTQJFrUIytplHrZJAVpBUEkPHRLN9vWnvS6NRZlBSBG8//R0/f7oeG1sN//fctfzw3iqKcstQa1T8/d3bGX15657FmTsO8/ist2hqaMbWTstLX80lbtj5VeMMBgNFRUXk5eXR0NBAaGgoEydObNdxVegYvV7Ptm3b0Ol0pKSk4OTk1OVj6OpQvGfPHqZPn85rr73G9OnTL+p9CYLQMSIQC4LQYfb29ixbtoyUlBTuuecePvzww4sSZqwdhs0kSSI8PBwnJye2bNlCTU0N/fv3F9N+z4MkSfj6+uLr60tdXR15eXlkZGRgZ2dHWFgYwcHB57TuVTg7WZb5dfFGDu0vJiGlH6MvG3TK6wWHebWrKKiajSj2WiyNrxRobjSt9z12rA7UEpKhJchKLSEWqK5oxNWjtUO1l48LQ4aHs2nNAewdbPELcONATQNyy/UlVfvXjPsXXktIpDc+QR44u9rz7ftrKcwtI/mSeJyc7Pj50/UANDcZePPJb1BawrTRKPP+gu/bBeJv3vqT5ibTtk/NzQa+eetPFnx8V4eev+rqag4fPkxRURGOjo5EREQQGBgo+glcoLq6OjIyMnBwcCAlJcWqv+9dFYoPHz7MlClTeOSRR7jzzjsvyn0I3VTr5JuuvU+hQ8SruiAI58Xd3Z0VK1YwatQonnrqKf7xj3906vG7Sxhuy9vbm3HjxpGRkUF6ejqJiYnY2NhYe1g9lpOTEwMHDiQuLo4jR45w+PBh9u/fT2BgIKGhobi7u4uq8QX4+u1VfPn6H6jUKpYvSeOJt2Yz9oohJ13Py9cVrVaFvmXqs2QwMjopkqzcMuzstBQUVrS/QZsga2+npaFRD5JETXUzKpXE3MenoMhqJk4dxKsLfqRR10RjXRMVpdXYOtjS1NCMooCrhxP15TUYmo2MurQ/468cwssP/I+MVftxcXdkwfu3ccv8yQCs+3lHuyHIxjYVbeXkKddaG01LL2tTwVutPbfXD4PBYPlZrKmpITAwkFGjRuHm5iZ+FjtBWVkZW7duJTQ0lPj4+G7xnF7sUFxeXs6UKVO49tpreeKJJzr12IIgdA4RiAVBOG+BgYH8/vvvjBkzBl9fX+6///5OOW53DMNmjo6OjB07lu3bt7Nu3TqSkpJwdj55/aJw7jQaDSEhIYSEhFiqcmlpadja2hIUFERQUJBVplT2dJtX7QNANsqoVBIZq/YRGO5NY0MzsYNDUGtaf6/0za3doBUJ1m/Iadl5SUI5cSKEJDHjhiQcHe1w93Lk9ZeXg6IgKwo1Vc2MGxdMWEQwANs2HbRMlZaA5oZmS5CtPq7jubduRW42UF/XyLLPNpCxaj8AtdX1vPLIl3y85u8ADBvXD78QT0oKTOF81GUDydlVwLHi40gqiduemNZuiDc9cBk7N2ZTU6nDydWBvzx42WmfJ1mWOXbsGEVFRRw9ehRHR0dCQ0PFbIVOpCgKhw4d4sCBAwwaNIiQkBBrD6mdixWK6+rquOKKKxgyZAivvfZat/gAQBCEk4ltlwRBuGAZGRlMmjSJDz74gBtuuOGCjtWdw3BbiqKQmZnJoUOHSExMxNfX19pD6lWMRiOlpaUUFhZSVlaGi4sLwcHBBAYGYmtre/YD9GHmbZey1lSz9uedpmqqBP0Tw9m7JQ+A/sPDqW+WycssQaWSMLapoCpqFbJj63OsqGjdl7jFmCGh7NqSR2CYJ9kHyyx7E0+dGU5QoB8/frADRZapa2imucnQesMTjjNybAzpK3YDoNaoMOqN0BKgHV3s+W7nQst166rrSf9jLw5OdiRdOoDmRj0H9xTiE+iOb/DJja0aG5opyS/HL8QTO4f2PzOKonD8+HGKioooLi5GpVJZPnxxdb3wBlxCK6PRyO7duyktLe32jQk7c0smvV7PVVddZfl9FK9bfYt526UJiU9YZdulNVtfFNsudYCoEAuCcMGSkpL49ttvufbaa/Hy8mLSpEnndZyeEobBtBY2Li4OZ2dntmzZQmxsLFFRUaIC0EnUajUBAQEEBATQ3NzMkSNHKCoqYu/evXh7exMUFIS/v79Yz3kGdz45neZGIwf3FTF4ZBQrv9lsuWzf9gJoee5kWQGDDBpTKdhGo0LjZEt9fTMAxpYGWpYwqyikrctCkhVyDxxFa6uxTFnW1eg5UJ5HRVmN6bpqqX0IbnMcSYK01ExLxdioN6JSq5BlU7X6mtvHtns8Tq4OTJo5wvK9vaMtA5OjTvv47extCOsX0O68uro6ioqKKCoqoqmpiYCAAIYPH46np6f43b0IGhsb2bJlC7IsM27cuG6/dV1nVYplWeb222+nrKyM1NRUEYYFoZsT7yQEQegUl112Ge+++y4zZsxgzZo1DBs2rEO370lhuC3zdN7NmzdTUVFBQkKCWFfcyWxsbCzbNNXX11NUVEROTg67du3C398fPz8/fHx8xPTWEzi7OfDUu7cBUFulaxeIT6zUSkaZd395gKryOmIGBFJeXsf3X2WgUkkczj/G7l2F7bfyaPlakRVCQ72wdbSlqqIODzdXDHJ9++u1vS9JsuxHLEkSinlLkpbr2DvZcsejU/EN9CBhbOfsN1xbW0tJSQlHjhyhpqYGHx8f4uPj8fX17TGvMz1RWVkZ27dvx9vbmyFDhvSY57ozQvFjjz1GWloaGzduFBW6vk5su9QjiEAsCEKnueWWWygrK2Pq1Kls3LiRqKjTV2/a6qlh2MzNzY3x48ezc+dO1qxZQ2Jiotib9CJxcHAgJiaG6OhoampqKC4uJisri23btuHl5YWfnx9+fn5dsj92T2LnYGtpMgWAXg9tfs/8gz0IjfAhNMK0F2xwiC0PPDYVgPz8cu74y3u0PYAMaFUSsqwQNzCIX7/ZjFqtYsu6RiZcHY6lnZUMWju1ZY3ynHmX8MPiNGqq6nFxc4CGZqobmy3jsLHRcPkNyWd8LE0NzWxdcwCtrYZh4+NQq9svcpZlmcrKSkpKSigpKaGhoQFvb29CQ0MJCAgQH1hdZLIsW5aTDBw4kJCQkB5Xfb+QUPzKK6/wxRdfsGnTJrGURhB6CBGIBUHoVA8//DAlJSVMmTKFDRs24O/vf8br9/QwbGZjY8Pw4cPJy8sjLS3NEtp62hvBnkKSJFxdXXF1dSU+Ph6dTkdJSQlHjx5l7969ODs7W8Kx6BBser7UahUGfWvzrBvvGUfOgRK8/Fy49+nT74u6d1fBSVuHhA8MYlRSJLEDAtm0ar9pHbJRpqq8EWc3G9RqCaPBVPm9Yc4Y/EO9KMqvoN/AIP75/mz++eg3lJVUERMXwO5jNUgtFY0p14846f4VRWFL6gGqy+sYMiaa52//kIN7CgEYddkgnvrgDgwGA2VlZZSUlFBaWookSfj5+dG/f3+8vb3F1Pou0tDQwNatW9Hr9aSkpPTo6uj5hOLPPvuMhQsXkpqaetH3NRZ6CAXTJ4hdfZ9Ch4i/EIIgdLqXX36Z8vJyJk6cSGpq6mk/Je8tYdhMkiQiIiLw8PBg69atlJeXk5CQgJ1d1zbU6IscHR2JjIwkMjISvV5PaWkpJSUlbNq0CbVajZ+fH97e3nh5efXJ9XwarZp7FlzDW09/BwoMGhnFDXMvxcb27G8DYmP8OPHjhH79A/D2cmbf1sO4uDlYZug11hswGhVcPe2oLG3Azc0e3yAP/v3Ed4DCknfBL8idsqNVyEaF3dsOc/lfRqGWFcL7+XP5DUkn3f87C37g5883AODkak9dRR1I4OHvRG3jcVLXrKO2rhonJyf8/PxITk4WW3ZZQUlJCdu3bycgIIABAwb0ig8hOhKKv/zyS+bOncuyZcsYOnRoVw1REIROILpMC4JwURiNRmbPns2OHTtYs2YNPj4+7S7vbWH4RHq9nl27dllC8YmPX+gasixTUVFBaWkpx44do6amBmdnZzw9PfHyuSD+vgAASL5JREFU8uqVAdnc1Xbq1KknrauuKKmmrqaB4CgfVKoT91NqJcsKH7+9ijV/7CU41Ivy4zry88oBcHC0Jcrbif3bCwCQVBKjLu3Pzi2H8PJxYcY98Xi4+tJYIzFweDhvv/gz637fi/nthlqtwmg0lUxUahUzbh3NnQ+delskg97ItJhHUVDw8HckIMqNgEhXAqLcUWkkSnKrmHDlSMIjQ3F0dLzg507oOFmW2b9/P/n5+QwePJigoCBrD6nTna379DfffMPtt9/ODz/8wOTJk60wQqG7sXSZTvg7GnUXd5k2NrJm+0uiy3QH9PyP7wRB6JbUajWffvopt9xyC5MmTWL16tV4eXkBvT8MA2i1WoYNG0ZBQQGbN28mMjKS2NjYM4YQofOpVCq8vb3x9vYGoLm5mfLycioqKsjOzmbr1q04OztbwrGnp2evC8htefq54ul39m2FfvtpO98s3gTAsdIaIqJ9SR4Zye4dBfSL9WPXqv2WqrEiK2TvLkRXoUNXoWP/NhcmTPWloUpm/W+7cXC0tTTSUqkl/II8KM4vR6UynTlmUv+T7l9RFGpqaigvL2fKnQPwC3dBrVFxNLeK6tImlr+zk4qiOu565hoGDIrvzKdI6ACdTsfWrVtRFIVx48b12v3Cz1Qp/v7777ntttv49ttvRRgWTiIpimVJSFfep9AxIhALgnDRaDQavvjiC2688UZLKHZ2du71YdhMkiRCQ0Nxd3dny5YtVFRUMGzYsG6/9UhvZmNjY9nOCdoH5KysLGpqanBycsLNzc1ycnV17RXTP89m37bDfPzKb8hGGYODjaUvFsChg6Xk5R5DURR2bTuMbKdF3aC33PbYkSrL1xVHdaxfuYtfP9wDmKY5xw0O4cCuAiJj/Xn6tZvYvfUwRwsqSBrfj+j4QOrr66mqqqK6upqqqiqOHz9Oc5OexloFRa9m+Xu7KS+sQ5YVvAPdeOe3J1GpVdg79t4PL7q7I0eOsGPHDoKDg+nfv3+vfi2HU4fin376iVtvvZWvvvqKqVOnWnmEgiCcr97/F14QBKvSaDQsWbKEWbNmMWnSJBYuXIiHh0evD8Ntubi4MG7cOPbs2UNqaiqDBw+2BDLBuk4MyE1NTVRWVlJdXc2xY8fIycmhqampXUg2N/Pqjts8/frFBpb/bwOT743jSF4ZoTGB53S72up6nrztQ5oaTSFXdrIFrRqUtlsmmaoOsqygstFAfXPLdkntqxHV5Q0ERbVO06urbiA2LgCtRk3BoWP8+MV6rrgxgYBIW8qrCshdsQe9Xo+zszOurq74+vry4ztb2ZdeiCwrpuqy3mAagkoiekAwji7iQyVrMRgM7Nu3j+LiYoYOHdqnXsvahuLVq1fzwAMPsHjxYq666iprD03orhSssO1S195dbyACsSAIF51Wq+Wrr77i2muv5bHHHiM1NbXPhGEzjUbD0KFDKSoqYufOnRw5coRBgwaJLWC6GVtbW/z9/dt1R29sbKSqqoqqqirKy8s5ePAgjY2NODk54eLigqOjI05OTpaTtf6f7k7L4c2/f4PWTg3E8cLdH/NB6tOWy3W1Dbz5+Dfs35bH4FHRzP3Hddjam8ZafLjcEoYBFL3RtC2T1FImVhSU1g2EUWtUyJbvwcPHmcqyWgCqyhtx9bLH2cMWN297XL3sqG4sI3iAliGTorCxM7Jtyy6CQvzQYM+A+DACglr3BK4+rmPPpoLWsSgQFO1L8cEyFKPMjnVZHNxbRNSA3rdWtbs7duwYO3fuxN7envHjx/fJ7c3c3d2pqalh/vz5fP7551xzzTXWHpIgCBdIBGJBELqEjY0N33//Pddffz2TJ0/mzz//7JN79QYFBeHl5cWuXbtYvXo1gwcPPuvWVIJ12dnZWbZwMjOH5Lq6Ourq6igoKKCuro6mpia0Wq0lHLcNy/b29mi12ovW/fhw5tF235cWVaJvNqC1Mf2p/+TFZaz7eTuyrPDnd5tx83Lm9iemAeDo3L7pi6QopiJD63/AqLTsRaygbzJy5XWJHCk8xuCRYQwZHc7WDfsxKno8/RyQMXDDo0OpqWikqrwRXY2BI7tryPi9iIqSeoaMiOKHg7spK65Ca6NhwbuzGTYmBgA7+5M/UKiq0JmSsWLah/jrt/7gyXdu68RnTzgTc1W4sLCQ+Ph4wsPD+2wX76VLl3LHHXfwxRdfcO2111p7OIIgdAIRiAVB6DI2NjZ8++233HjjjUycOJE///zT0uyoL7Gzs2PEiBEUFRWxY8cOjhw5wsCBA0W1uAcxh+QT6fV6dDqdJSjX1dVRUlJCXV0dBoMBlUqFra0tdnZ22NnZtfu67XlarRaVStWh0DF4dDRqjQqV2tS4bcCICEsYBsjPLkGWTeFWkRUKc0osl/kHe2Jjo0HfrEdrp0HrqMXR1wEHJw0OzjY4tvzr4KTB0UlrOt9RTWiCH/b2EseryhmUFI6DgwMODo5s37adXz7eT1FOFbZ2WnzCvCjIPWa5v91bDyE3NANg0Bv44KVfGPbrQwDY2mkJifKh4GCZ5fpt908GRHO6LlReXs6OHTuwt7dnwoQJfbqb9/fff8+tt97KkiVLmD799Ht3C4KFolhhyrSYM91RYtslQRC6nF6v5y9/+Qv79u1j1apVp92nuC9obGxk165dHD9+XFSLezmDwUBjYyONjY00NTVZvm57ampqQq83TV2WJAm1Wo1GozntSa1WW0KzJElUlFRz6EAxbkFaQoJDsbWzsWx3tHfzQfIyj6C1VWNjp8Y/zAuvAFcMBgMGg4G62nq0NqZpy7JRoaHegK5Wj65OT32dHl2dod3XL732F4JCfS3hdOV3W3jzmR8wGozMXjCKjb8cJHtrGUgSklaD3DLd2jztWiUbUVqqziERPrz328OW5+rLt1fxxau/oygKKrWK/sNCyd1VQH1tI06uDvzr23mE9+s7a1etwWAwsH//fgoKCvp8VRhMWyvddtttfP3111x55ZXWHo7QzZm3XZo4+G9o1F3b/M9gbGL1rpfFtksdICrEgiB0Oa1Wy//+9z9mz57N+PHjWb16dZ8NgqJa3HdoNBrL9OkzMRqNlpDa9utTnYxGI7Js2tNXURRcPB0YODKCwsJCkBT0ej2SJCFJEk0NenTVTegbDeibjDRWQWxcDEW55QRFhPDhR79yNL+SpgYDzU1GZCeH1kqDBIpKammiBSgKh7LLCQk3/d7WHNfx+pPfIhtN1z+0rxRXLzvLdWW9ATRt+gYoCi6uDlRX6lCrVcx5uP0+xNfekUJRbhlpq/bh5unENbelMHBEBMWHywmK8DlpirfQuURVuL0lS5Zw11138e2334pu0kLHyFi69XfpfQodIgKxIAhWodFo+Pzzz7n99tsZP348K1euJDQ01NrDsgpJkggODm63tnjIkCGnnJIr9H5qtRq1Wn3e+yHr9XoKCwsZMGBAu07Yf362h+0r8pGNMpIk0dAPnvjxYwwGI5IkcdvjV7Limy00N1Zz1c1JbNh0kMpjtaZMrIBGo8KoN7/TUjhaVMndU/5FaXEV4f38LGEYoKqsAb9wl5bp2wq+Qe7oZThWUgPAhCsGMW/B1eTuP4J/sAfe/m7tHoONrZaJVyew5pedHC2o5Pn7PufRV25g4vSE83pOhHPTtiocFxdHREREn64KA3zyySf89a9/5ccffxT7DAtCLyUW4QhCH2c0Gvnggw8YN24cHh4eaLVafHx8GDRoEHfeeSfLli0DYNGiRUiSxN/+9rdTHueee+5BkiTCwsJOefmaNWuQJImJEydazlOr1Xz88cdMmjSJUaNGsXfv3k5/fD2Jvb09SUlJxMfHs337drZt20ZTU5O1hyX0EjPunoiDk6myqrFR4+Ll3FpdRiHjj7189OdjLN39D+5bcDXX/mWkabp1SyLWatS07CGChMRX76yhMPcYzY16snYW4uTauhWSVm1Dv4QgrrgxmWvmjOWVL+fy9o/zefgf1/L0GzfzyD+vx9HJjkEjIk4Kw2a/f7ul3fe/Lkm7CM+KYFZeXs6aNWuorq5m/PjxREZG9ukwrCgKL730Eg8++CC//PLLWcPwuf4tBUhNTbXM3DjTSej5JEWxyknoGFEhFoQ+zGg0cuWVV7JixQrc3Ny44oorCAoKorm5mX379rFkyRIyMzOZNm0al1xyCQCrV68+5bFWrVqFJEnk5+eTm5tLZGTkSZcDTJo0qd35arWaN998Ez8/P8aOHcvPP//MmDFjLsKj7RkkSSIkJARvb292797NqlWriIuLIywsTLxBEi5IaIwfH294msOZRwiM8GHJf1eyZ/MhQEGlknB2a7+Fzq6MQ6gUxbyzEpKstHSallBQaGw2tPtUXVfbyN9euxl9k57Bo8PZvDWde5+Z3u7n9tJrhrW7j9oqHWt+2o5Gq2HiNcPadZh283LCvMuxSi3h4eNCg66JL15ZTsHBEkZOHsjUv4wWvxcXqKGhgX379lFSUiKqwi1kWebBBx/km2++Ye3atQwePPiM1+/I39K2QkNDmTNnzkV8JIIgnAsRiAWhD/vyyy9ZsWIFgwcPZu3atbi6ura7vL6+noyMDAAGDx6Mp6cnO3bsoLq6ut11CwoKyM3N5brrruPbb79l9erVJwVic5A2B+u2JEni6aefxtfXl8suu4wlS5ac9MahrzFXi0tKStizZw/5+fkMGjQIDw8Paw9N6MGc3RwYmBwFwE33T2bv5kPkZ5fg7e/OnU+0/51zcmmt+CoKyEa59RsAjQraTGDQaFSMv3IIYAoIRqORxsZG7O1bj/Pxot/48bONSJLELfdfwoovNnG0oBxFgT++28wTb83mk3/9QkVJDeOuGkrs4BAO7MgnJNKXu/5+JW8+8Q2pS7chywrbUjNxcLJjwjWJnf9E9QGyLHPo0CGysrLw9fXlkksuaff/qq9qbm5m9uzZbN26lU2bNhEeHn7W23Tkb2lbYWFhPPvss501dEEQzpMIxILQh23atAmAOXPmnPQHHMDBwYEJEyYAptA6YcIEvvvuO1JTU9ttOWEOu/fffz+rV69m9erV3HXXXZbLa2tr2bJlC66uriQmnv7N69133423tzc33XQTr732GnfeeWenPM6ezM/PD29vbw4ePMimTZsICgoiLi7uvNeXCoKZh7cL76x4lLqaBhyd7U7ayig82ofVcktnaBTT2uM2l6s1qtbO0Zi2S7Jcplbj6OjIzs1Z/O/VtchGmQnThvLth+ss1/n4ld+hsTVRZ+7I5+nZ71F46BiyUWZ3+kH+/c084oaGom5pyLUnPdeydZRarWL/1jwRiM9DeXk5u3fvBmDEiBF9cvu7U6mtrWXGjBkcP36cjRs34uPjc06368jfUqGPEdsu9QhiDbEg9GGenp4AZGdnn9P1zet/zdOfzVatWoWjoyNJSUmWrtFtrVu3DoPBwLhx41Cr1ZzJNddcw/Lly3n00Uf5xz/+gdgZzhQuYmNjmTBhAk1NTaxatYq8vDzx3AgXTJIknF0dTrmvb2OD3pR1ZRlkBbXKFELNb7aSR0ebwrCsgKzQqGtud3s7WzuWfpbKof3FHM46yieLVpw8AFVr12qA/JzS1kq0BNm7CixhGKD/iAhULbcxGmXiEs9evRNaNTQ0sHXrVjIyMggJCWH8+PEiDLcoKytjwoQJSJLEmjVrzjkMQ8f/lgqC0L2ICrEg9GEzZszg5Zdf5t1336W2tpZrrrmGYcOGnbbb8+nWEa9Zs4YxY8ag1WqZMGEC33//PXv37mXAgAHtrn+q6dKnkpKSwtq1a7nssssoKSnh9ddfP+Ub9r7G/KGDmEYtdIUxk/rzzUdrMRpkZFlh8vQEtm08yJGCCgAOHyxDrVahSKbq8djLB5Gzu5B/P7CYqvJarrxvGE7utq3FCqMM6va/x7b2NjTVNQKmbO3u7UJVRS2KrKAA8cPaB977/zkLV08nCrKPMnLyICZc3X5NsnBqbadH+/n5MXHiRDE9uo1Dhw4xZcoUhg8fzqefftrhbe86+rfU7PDhw6edMt2vXz9uuOGGDo1D6IZEhbhHEIFYEPqwoUOHsnjxYubPn8/ixYtZvHgxAB4eHqSkpHD77bdz1VVXWa4fExNDUFAQ+/bto6ysDB8fH7KysiguLub+++8HsEwLW7169XkHYoBBgwaxadMmpkyZwo033sjnn38upgm3OHEadWBgIPHx8eL5ETpVeIwft869hC/+uwoFU5X4SH6F5fLi/AoeX3Qjhw8cwdPXlctvTOa2MQupKK1GkRV2r88lMsEPSSWBomBrb4PWzobamoaWN4ng6ePCEV0TKAqSBGMuG4hRVqgsq2HydUn0G9o+UNg72vJ/z87o6qeiRzt27Bh79uwBICkpCS8vLyuPqHvZuXMnl19+ObNmzeI///nPeX342tG/pWb5+fk899xzpzzm9OnTRSAWhC4iSi6C0Mddf/31FBQU8Pvvv/P0009z5ZVXIssyS5cuZdq0acyePbvd1FzztGlzyDX/aw7C8fHx+Pr6Ws6vqKhg165d+Pn50b9//w6NLSwsjA0bNpCXl8cVV1xBTU3NBT/e3qLtNOrm5mZWrVpFbm4uRqPR2kMTeoma4zo++89K9I16DM1Gfl6S3uZS02uCq6cTcx6dylW3jkZSSVSUVKG0rPGtKm3AM8AJxSiDAo26JqZcO4whSRFExPrz8MvXMf/F67CzN6099gvx5IZ5k5m3cCbPvHc7yZM69nohtFdXV8eWLVvYvHmzZXq0CMPtpaamMn78eObPn8+rr756QTOROvq3FGDcuHEoinLK09KlSy/w0QmCcK5EhVgQBLRaLZMnT7bss2g0Gvn++++5/fbb+fzzz7nmmmu4+uqrAVOV9/PPP2fVqlXccMMNrFq1CldXVxISEizHGzduHCtXrsRoNLJmzRoURelQdbgtb29vVq9ezcyZM5kwYQLLly/H19f3gh9zb2GeRl1aWsr+/fvJzc2lX79+BAcH9/mtU4SO27c1jzf+/g262gYuvT4Jo3k9L6atl9q/oVcoLT5u+U6tVjFm6hDW/7oTlVqioboZG3sVao2E0WC63Z7Nh3jtu7+2u8/FGc9RWVqNf6gXGu3pewzU1zWiUqvabc0knKyxsZGsrCwKCgoICgoS06NP47vvvmP27Nm8+eab3HbbbZ1yzI78LRX6CDFlukcQFWJBEE6iVqu5/vrrefDBB4H2a4bbVogVRSE1NZWUlJR2zbImTJhAVVUV27dvP6/p0idycnJi2bJlxMXFMXr0aLKyss77WL2Vr68v48ePJy4ujqysLNasWUNJSYlovCWcM4PeyLN3fkjhoTIqSmv46r9/EBZt+vBJksAvyB1XNwckRTHtS4yCwdB+RsKjr/+FuS/MZNa8S3nxf/NAkXDxMoUxlVoiJPLkRkWOznY01jfz2/82kbUz/5Rj++ifv3DtoKe4dtCTLPt8Q+c+8F5Cr9dz4MAB/vzzT5qamhg/fjxDhw4VYfgEiqLw5ptvMmfOHL7++utOC8Oncqa/pYIgdB+iQiwIwmk5OzsD7atCQUFBxMTEkJ2dzbJly6ioqLCEZLO264g7IxAD2NjY8Pnnn/Pkk0+SnJzMV199xZQpUy7omL2NJEkEBwcTEBDA4cOH2bFjB05OTsTHx1u6oApCW1XltSz570rqqhsYd+UQ6qob2l1+9V9GYkTCoDcw4YohPHDD29Qc15nW/KokcvYUQ5tljlobDVfeOsby/cFCZ8ZcHs/6nzPpNySEu/5+8jrK9D/28vwdH6K0rCN+6v07GHXZIMvl2bsL+e79VABko8I7zy1l7OWDcfd27twno4cyGo3k5eWRk5ODi4sLo0aNEo32TqO5uZn777+fH3/8kT/++IORI0d2yf2e6m+p0EfIQFdP1pLPfhWhPRGIBaEP+/LLL/Hy8uKSSy45ae1USUkJH3zwAWDq+tzWxIkTyc7O5umnnwY4aX/F2NhY/P39Wbx4MVlZWURFRRESEnLB41WpVLz00ksMGDCAa6+9lueff54HH3xQTA0+gVqtJjIykpCQEHJzc0lLS8Pb25u4uDhcXFysPTyhm1AUhSdveZfD2UdBgXW/7CBqQBC5+4qRVBJ2DjYkjuuHp2/rvqrB4d6UFFUiG01NsXwD3c54Hy4uzlx6fTD3PTnrtNf56eO1lqCgKPDJSz+3C8S6mvYhHQUadE19PhArikJhYSGZmZlotVoSEhLw8fERr4encezYMWbOnEltbS1btmzplL9JZuf7t1QQhO5BBGJB6MMyMjJ4/fXX8fPzY8yYMYSHm7Y4ycvL49dff6WhoYHp06czc+bMdre75JJLePfdd9mzZw+enp4MGjTopGNPmDCBJUuWWK7fmW6++WZiYmK4+uqr2b17N++++y52dnadeh+9gVarpV+/foSHh5Odnc3atWsJDAykX79+ODg4WHt4gpXV1zZy6MCR1jNkhTGXD6S2up7KkmriE8JwdGk/3Xbugqt56aElHM4uZXhKDNfefuY3+E5OTtTV1Z3xOroTqtIlhRXtvu8/PILI/oHk7isGIOmSePxD++6MB0VRKCkp4cCBAxiNRuLj4wkMDBRB+Ax2797NtGnTSEpK4rfffuv017/z/Vt6pm2XAB544AHc3Nw6daxC15IUBamLZwZ09f31BiIQC0If9vDDDxMdHc2ff/7J7t27+f3332lsbMTT05Px48dz0003cdNNN530RmvChAlIkoSiKIwfP/6Ub8QuZiAGGD58OFu2bOGaa65hwoQJ/PDDD/j7+3f6/fQGtra2DBw4kIiICDIzM1m9ejWhoaFERUWJ9YV9mL2TLT6B7pQfrUKWFZBg+/psjhUfRzbKbFuXybfvrOKWhy633Mbbz5VF//s/Dh04ilqjwsb2zG8jHB0dqaioOON1kqcMIGdPoeV7Z3fHdpfb2Gp45Zu5bFlzAI1WzYgJcX0y/CmKwrFjx8jKykKn0xETE0NYWJjYo/0sfvjhB2bPns3jjz/OE088cVF+ds73b+mZtl0CmDNnjgjEgtAFJEUsaBAEoQdrbGzk7rvvZvXq1SxdupTExERrD6nbq66uJisri9LSUoKDg4mKisLJycnawxI6iV6vZ/ny5UydOhWtVnvG6xYdKuP9hT9RW6Xj6tvH8fVbf5KXaaoaq1QSE64exiP/udlyfVmWefH+xWz8fS8AV9yUzLznTr8vcGVlJZs3b+ayyy477XUaG5p56i/vsG/zIWzttTz13h0kTojryEPu1RRF4ejRo2RnZ9PQ0EBERASRkZFoNKKmcSayLPPCCy/wyiuv8Pnnn4vuzkKXqqmpwdXVlUkxD6FR23bpfRuMTfyZ/R+qq6vFMqlzJF5NBUHo0ezs7Pjss89YtGgR48eP58MPP+SGG244+w37MFdXV0aMGEFtbS05OTmsWbMGPz8/YmJicHV1PfsBhF4jKMKH5z+5y/L9saNVfPTiMlRqFbJRZuwVQ9pdP2tXoSUMA/y6JJ1r7xiHf8ippzA7OTnR1NSEXq8/bTi3s7fh39/dT0VJNU5uDu22Vaqva6S5yYCbZ9/7wEaWZQoLCzl48CAGg4GoqChCQ0NFED4HOp2OOXPmsHXrVjZu3MjAgQOtPSShrxLbLvUI4lVVEIQeT5IkHnnkEeLj47npppvYs2cPCxcuFFMJz8LZ2ZmEhAT69evHwYMHWb9+PZ6ensTExIiu1H3UtXeNxzfQnUMHjjBkVDSDR0Wf9TZnmoJqY2ODjY0NdXV1uLu7n/EYXv5u7c77bUkabz75LbJRZtJ1I3jw3zf0id9pg8FAfn4+ubm5qFQqoqOjCQ4O7hOPvTPk5+czffp03Nzc2LJlC15eXtYekiAI3ZwIxIIg9BpTp04lPT2dadOmsWfPHhYvXiymC50DBwcHBg0aRGxsLIcOHSI9PR0XFxeio6Px9fXtk+s1+ypJkhh7xZCTKsNmsYODsXewoaG+2XSGolB25Dh+waff5sfcWOtMgfhEDbom3moJwwB/fruZ8dMTGJbS75yP0dM0NzeTl5fHoUOHsLe3Z8CAAfj7+4vfvw7YsGEDM2bMYObMmbz++utnXTIgCBedrIDUxRVbWVSIO0p83CgIQq/Sr18/MjIyaGxsZNSoUeTm5lp7SD2Gra0tcXFxTJ48GT8/P3bu3ElqaipFRUXIstjYsLfK3JHPl2/+QcaqfWe9riIrNOia2k0DzMs8esbbODk5odPpOjQmfbMBo7H9z1xNxZm7VfdUjY2N7Nu3jz/++IPy8nKGDRvGuHHjCAgIEGG4Az788EOmTJnCc889x9tvvy3CsCAI50xUiAVB6HXc3d1Zvnw5jz76KMOHD+eTTz5h+vTp1h5Wj6HVaomOjiYiIoKCggIOHDjAgQMHCAsLIzQ0FBsbm7MfROgRdmzI4slb3gPJFHbveeZqrr593Gmvr9aoGTgign1b80ACCYmBIyLOeB+Ojo7U1NScdH5tdT0rv8lAUWDydSNwadNd2sXdkQFJkezNaP1Aa/PqfUy4pvc0zTt+/Dh5eXkUFxfj4+PDyJEj8fA4faVdOLX6+nrmz5/Pjz/+yK+//sr48eOtPSRBEHoYEYgFQeiVNBoNr776KsnJydx6663cdtttvPzyy9jadm23x55MrVYTHh5OaGgoJSUl5OXlkZWVRWBgIBEREaIBVy+wZul2JBXIRlO19/ev088YiAGeeXcOX7+7muPHapk8czgRcQEoisLhzKMYDUYi+ge2W+/q5OTEkSNH2h1D32zg4WvfoCi3DIDfvtzEO789ho1da1UvOMqH/VsOmbaEAvZvy++Ux2xNRqORI0eOkJeXR01NDSEhIYwfPx5nZ2drD61H2r9/P9dffz1ubm5s376dkJAQaw9JENoTTbV6BBGIBUHo1WbNmkViYiKzZs1i1KhRfP3110RFRVl7WD2KSqUiICCAgIAAampqOHToEOvXr8fV1ZXw8HD8/f1Rq9XWHqZwHrwC3CzvnVRqFT6BZ69QOrnYc8djV7Q7760nv+XXzzcAMOryQTz53u2WUGxeQ6woimUK8OGsoxQeLLXc/kheOQf3FRE/LNxyXv/ECH77X5ppbCqJgUlnrkR3Z/X19eTn55Ofn49GoyEiIoLg4GAxrfc8KYrCp59+yl//+lfmz5/Pc889J7pvC4Jw3sSrhyAIvV5kZCQbN27k8ccfZ9iwYbz//vvMmjXL2sPqkVxcXBgyZAjx8fEUFBSQmZnJnj17CAkJISwsDEdHx7MfROg2rrtnIof2F7N9XRahsX7c9/y1HT7G0fxySxgG2PTbbjK3HyY+0RRgHR0dMRqNNDY2Ym9vD4CHjwsqtWSpTEuShKdv+xkHE2ckUl/XSPrKvYTE+HHrI1PP92FahaIolJaWkp+fT2lpKb6+viQkJODt7S3WBl+A2tpa7r33Xv744w9++OEHJk+ebO0hCcIZWKFCjKgQd5QIxIIg9Am2tra8+uqrjB8/nttuu43Vq1fz2muvWd6gCx1jY2NDVFQUkZGRlJeXc/jwYVavXo2npydhYWH4+fmJbWJ6AHtHW5798M4LOsapwl3b89RqNQ4ODuh0Oo4V13DsaBVxQ0N5eNFN/PeJb2luMhAzMAg7B5uTjnHV7LFcNXvsBY2vqzU2NlqqwYqiEBoayqBBg8RrTSfYuXMn119/PcHBwezcuRN/f39rD0kQhF5AvFsRBKFPmT59Ojt37mTv3r0kJSVx4MABaw+pR5MkCW9vb4YPH86ll16Kl5cXe/fuZeXKlezZs4fjx4+jiPVMPYpBb+SnT9bxwcKlZO44fNbr+4V4Mu22FMv3Y68cSuzQ0HbXcXR0JG31bu6Z8m+emv0B/zflFeqO19NY14SsN5K9q5BFD/6vsx9KlzEYDBQVFZGens7KlSuprKxk4MCBXHrppfTr10+E4QukKApvv/02o0eP5tZbb2XlypUiDAs9g3kNcVefhA4RFWJBEPqckJAQUlNTWbBgASNGjODNN99k9uzZ1h5Wj2dnZ0dMTAzR0dGUl5dTWFjIpk2bsLW1JTg4mKCgIDGlugd44/Gv+eObDNRqFT99tJb//PQgMYPP3Kzo/56/litnj8WgNxLW7+S9c52cnFi3fa9lJl95aTVrf92FWq3CaJSRjTIH9xZdrId0UciybPk5P3r0KPb29gQHBzNo0CAcHBysPbxeo6qqijvvvJO0tDR+++03UlJSzn4jQRCEDhCBWBCEPkmr1fLiiy8ybtw4brnlFlatWsXbb7+Nk5OTtYfW45mrxt7e3hiNRkpKSigqKiIrKws3NzeCgoIIDAwUHb+7qQ2/7gTAaJRRqSQ2r9p31kAsSRLBUb6nvdzJyQkXLzvL94qs4OLhiNEoI6kkUCAhJbZTxn8xKYpCVVUVRUVFFBcXAxAUFMSYMWNwdXUVa4M7WUZGBjfccAPx8fHs2rULLy8vaw9JEIReSEyZFgShT5syZQq7du2iqKiIxMREdu3aZe0h9SpqtZrAwECSkpK47LLLCA4Opri4mN9//5309HSKioowGAzWHqbQRkCYlymkArKsEBjufcHHdHJywivAidZmLwrHjhznlocvR6WSUGSZI4eP0aBruuD7uhh0Oh1ZWVmsWrWKTZs2odfrGTZsGFOmTGHAgAG4ubmJMNyJZFlm0aJFTJw4kXnz5vHzzz+LMCz0TLJinZPQIaJCLAhCn+fv788ff/zBP/7xD0aNGsUzzzzDww8/LLbx6GQ2NjaEh4cTHh6OTqezVI3NzXH8/f3x8fERz7uVTbouifee/cHyvUp96s/Od6cf5MDWPPolhDF4VPQZj+nk5ISNg8o0RdpgBKCxvpk1P25FNsgAZG7L55fPN3DdvZd00iO5MDqdjpKSEoqLi6mqqsLX15e4uDj8/PzENmMXUX5+PnfeeSc5OTmsXr2apKQkaw9JEIReTrzrEARBwFTJfOaZZ5g8eTJz5szhxx9/5NNPP6Vfv37WHlqv5OjoSGxsLDExMVRXV1NcXMyBAwfYtm0bXl5e+Pn54efnJ5oRWcHWNfvbff/nd5sZNy2h3Xnrft7BS3M/Q5IkFEXhb/+9hfHTh532mPb29qhUKjz9HSkrrAEJZt13CZ++9LOl6ZqkAl1NQ+c/oHOkKArHjx/n6NGjlJaWUldXh5eXF8HBwSQnJ2NjY3P2gwjnTVEUPvjgAx555BFmzZrFd999h6ur69lvKAjdmSKbTl19n0KHiEAsCILQRnJyMjt27OCZZ55h2LBhPPvsszz00EOiInSRSJKEm5sbbm5u9O/fn9raWkpLSykuLmbPnj24uLhYwrFYo9k1vPzdLHsEq9QqvPzcTrrO8iWbACxh9of3U88YiCVJwsnJiSfevYWjuTUER/oQGR9IfW0j7z7zPQD2DrZMvr5rq4EGg4GysjJKSkooLS1FURR8fX3p168f3t7eaLXaLh1PX1VQUMCdd97JgQMH+Pbbb5kyZYq1hyQIQh8iArEgCMIJ7O3t+fe//82MGTOYM2cOP/zwA5988omoFncBZ2dnnJ2diYqKorm5mdLSUkpKSsjNzUWj0VjCsZeXl/iQ4iKZ87crKcwtJXN7Pv0SQpn9tytPuk5dVX27748WlJ/1uE5OTqhtFMZfNdRy3vTbUogZHEJJfjmDRkbj6XfxK4INDQ2UlJRQUlJCeXk59vb2+Pv7M2LECNzd3cX+2V1IURQ+/PBDHnnkEa677jq+/fZbURUWBKHLiUAsCIJwGiNHjmTnzp08/fTTDBs2jOeee44HH3xQBLEuYmNjQ3BwMMHBwZYtbkpKSti1axfNzc14eXlZTqJ63HncvJxZ9MMDZ7xO3LAwcvcVW753dD37NkNOTk7U1dWdfKyEMOISwjo6zHOm1+upqKigvLyc8vJyampq8PDwwM/PjwEDBuDs7HzR7ls4vcLCQu666y727dvH119/zWWXXWbtIQlC57PGvsBiH+IOE4FYEAThDOzt7XnllVe45ppruO222yzV4tjY7r9FTG+iUqnw8fHBx8eHgQMHUlNTw7FjxygvLycrKwsALy8vPD09RUDuAtfcOYF1P++k5rgOSSUx59GpZ72No6Mjx48fv+hjOzEAV1dX4+joiJeXF1FRUfj4+Ij1wFakKAoff/wxDz30EDNnzuTrr78WVWFBEKxKBGJBEIRzMHr0aHbu3MlTTz1FQkICzz//PA888ICoFluBJEm4urri6upKVFQUiqJQXV1tCUAiIF98AWFefJD6BFk78wkI8z6nrZmcnZ1PWSG+UGcLwJ6enqI5WzdRVFTEXXfdxZ49e/jqq6+4/PLLrT0kQbi4ZIXW7ea68j6FjhCBWBAE4Rw5ODjwn//8hxkzZrSrFsfExFh7aH1a28ZcpwvIkiTh6elpuZ6bmxu2trbWHnqP5uLuyPAJ8ed8fUdHRxobG9Hr9efdrEpRFGpra6mqqqK6uprKykqqqqpEAO7mFEXhk08+4aGHHmLGjBl8+eWXuLm5WXtYgiC0UVRUxDPPPMOKFSuoqKjA39+fq6++mgULFuDu7n7Ox6msrOT5559n6dKlHD16FE9PTy677DKef/55goKCLuIjOH8iEAuCIHTQmDFj2LVrF08++SRDhw7lmWee4cEHHxTTMLuJMwXkqqoqCgsL0el02NnZtQvIrq6u2NnZWXv4vZaNjQ1arRadTndOYUiWZerq6qiqqrIE4OrqagDLDIHIyEgRgLu5Q4cOMXfuXHbv3s2SJUuYOvXs0+sFQehaubm5jBo1irKyMqZPn06/fv3YvHkzr7/+OitWrGDjxo14enqe9TgVFRWMGjWK7OxsJk6cyA033EBmZiaffPIJv/76K2lpaURERHTBI+oYEYgFQRDOg4ODA6+++irXXnst9957L59++ilvvvkml1xyibWHJpygbUA20+v1VFdXW4JWUVERdXV1lpDs6uraLiSL6dYXzrz1Ul1d3UmB+MTwW1VVRU1NDYDl/0VoaChubm44OzuL/x89QENDAy+//DL/+te/uOWWW1iyZEmHqkyC0Cv0kKZa9913H2VlZbzxxhv89a9/tZz/0EMP8eqrr/Lkk0/y7rvvnvU4TzzxBNnZ2Tz00EMsWrTIcv4bb7zB/Pnzue+++1ixYkWHx3exSYoiWpEJgiBcCL1ez1tvvcWCBQu47LLLWLRoUbedFiScnjkkm4NyVVUVdXV1qNVqnJycLCdHR0fL191xn1q9Xs/y5cuZOnVqtxqfoihs2bIFjUaDu7s7dXV11NXVodPp0Ol0qNXqkz6MEOG3Z/r555+ZP38+Xl5evP322yQmJlp7SILQpWpqanB1dWVSwD1oVF27PMcgN/Hnkfeorq7GxcXlrNfPzc0lKiqKsLAwcnNz2209V1tbi7+/P4qiUFZWhqOj42mPU1dXh4+PDyqViqNHj7br4C/LMhEREeTn55Obm9vtqsSiQiwIgnCBtFotDzzwALNmzeKxxx4jLi6Op59+mgceeEBMo+5BtFqtZRsnM6PRiE6naxfejh07Rl1dHc3Nzdja2rYLyI6Ojjg6OmJnZ4eNjU2fC3NGo5GmpiYaGhosz1fb506WZTQaDc3NzTg6OuLn52d57kQlvufLzc1l/vz5pKen889//pPbb79d7Oss9G0KVqgQd+zqa9asAWDy5Mkn/b46OzszevRoVq5cSXp6+hlnwaWnp9PQ0MDkyZNP2s5OpVIxZcoU3n//fdasWSMCsSAIQm/l7+/PF198wbp165g3bx6ffPIJ//3vf5k0aZK1hyacJ7VajYuLyyk/ZW9ubm4X+qqqqiguLkan02EwGJAkCTs7O2xtbbGzs2t3anuera1ttw+CBoOBpqYmGhsb251OPE+v1wNgZ2dn+aDAw8ODkJAQHB0dqaqq4tChQyQnJ1v5EQmdqaGhgX/+85/8+9//Zvbs2Xz22WfntN5QEATrM+/McLoGodHR0axcuZLs7OwzBuJzOQ5Adnb2hQz3ohCBWBAEoZOlpKSwfft23nrrLa699lqmTJnCf/7zHzGNupexsbHBw8MDDw+Pky47XYCsq6ujoqLipABpa2uLRqNBrVaj0WhOe2p7uVqtRpIkS5g2f200GgFTp0+1Wo2iKJhXR8myjNFoxGAwnPZ04uV6vd4S8E8M946Ojnh4eLQ7z8bG5rRVQfNaYUVRuv2HAMLZKYpimR7t4+PDunXrxPRoQWjLimuIzX0YzGxtbU+5u0LbZoWnYj6/qqrqjHfbWcexBhGIBUEQLgKNRsP8+fPbTaN+6qmnRDfqPsIcWs+03gpapxg3NTWdNpCaw7VOp2t3mdFobBd2zV+bv9+1a9cpA/Ppwradnd0ZL+uMKeCOjo6WxyM6evdsubm53H///WRkZIjp0YLQDQUHB7f7fsGCBTz77LPWGUw3JwKxIAjCReTn58fnn3/O+vXrmTt3Lp988glvvvmmmEYtAKYp2Q4ODjg4OHTaMc1NtSZMmNCtmmqB6YMCe3t7S0dvoeepr6/nn//8J6+88gqzZ8/miy++OOUsCUEQrKuwsLDdcp9TVYehtXJrrvCeyHz+2bbL66zjWIP4KE8QBKELjB07lu3bt3Pfffdx7bXXcs0113DgwAFrD0sQupyjoyM6nc7awxA6yGg08sUXXxAfH8/vv//OunXreOedd0QYFoQzkWXrnMDS/8J8Ol0gjo2NBU6/tjcnJwc4/drgzj6ONYhALAiC0EU0Gg33338/2dnZBAUFkZCQwO23305hYaG1hyYIXca8F7HQMyiKwi+//MLQoUN55plnWLhwIWlpaWKtsCD0EhMmTABg5cqVyC1h2qy2tpaNGzfi4OBw1maIycnJ2Nvbs3HjRmpra9tdJssyK1eubHd/3YkIxIIgCF3M19eX//73v+zbt4+mpiZiY2N55JFHqKiosPbQBOGiE4G459i0aRMpKSncdttt3HnnnWRmZnLLLbeItcKCcK7MTbW6+tQBkZGRTJ48mcOHD/PWW2+1u2zBggXodDpuueWWdj0xMjMzyczMbHddJycnbrnlFnQ63Ulrld98800OHz7MlClTut2WSwCSonTwWRMEQRA61c6dO/n73/9OWloajz32GPPnzz9rMyZBOB3zGuKpU6d2uzXEAKWlpezdu/eM23cI1rVv3z6eeOIJVq9ezcMPP8zDDz980r6igiCcXk1NDa6urkzyvgONqmsbaRrkZv489hHV1dWn3DLwVHJzcxk1ahRlZWVMnz6duLg4MjIyWLNmDTExMWzatKndVmrmBosnxsiKigpGjRpFdnY2EydOZMSIERw4cICffvoJHx8fNm3aRGRkZOc92E4iPuITBEGwsiFDhvDbb7+xdOlSfvrpJ6Kionj33XctW/IIQm/i5OSETqc7aWqeYH0FBQXcdtttJCYmEhoaSm5uLs8++6wIw4LQy0VGRrJ161bmzJlDRkYGixYtIjc3l/nz55Oenn7O+4p7enqSlpbG/fffz8GDB1m0aBEZGRncdtttbNu2rVuGYRAVYkEQhG5FURR+/PFHnnjiCWRZ5oUXXmDmzJliiqJwzrp7hdi8d+0ll1wiZkJ0E+Xl5bz00ku88847zJgxg+eff75bTmsUhJ7CUiH2ut06FeLyjztUIe7rxDssQRCEbkSSJGbMmMHevXt57LHHeOihhxgxYgR//PGHtYcmCJ1CkiQcHR3FOuJuQKfT8cILLxAZGcmBAwdIS0tj8eLFIgwLgtCniEAsCILQDWk0Gu68805ycnKYNWsWs2bNYuLEiaxevfqkNTuC0NOIxlrWVVtby6JFi4iMjOTXX39l2bJlLF++nMGDB1t7aILQu8iKdU5Ch4hALAiC0I3Z29vz6KOPkpubS0pKCjNnziQ5OZmlS5eKNZhCjyUCsXVUVFSwYMECQkND+fbbb3n//ffZtGkT48aNs/bQBEEQrEYEYkEQhB7A3d2dZ599loKCAmbNmsXcuXMZOHAgn3/+uWi+JfQ4IhB3raKiIh588EFCQ0NJS0vj+++/Jy0tjWnTplm6xQqC0PkURbbKSegYEYgFQRB6ECcnJx566CEOHTrEgw8+yMKFC4mOjubNN9+koaHB2sMThHNi7jQtXFzZ2dnccccdREVFUVBQQGpqKitXrmTChAkiCAuCILQQgVgQBKEHsrW15c477yQzM5N//etffPTRR4SGhvLiiy9SVVVl7eEJwhk5OjrS0NCAwWCw9lB6pe3bt3PdddcxaNAgZFlm586dfP/99yQmJlp7aIIgCN2OCMSCIAg9mFqt5vrrr2f79u18/vnn/P7774SGhvL3v/+d0tJSaw9PEE7J1tYWjUYjqsSdSFEU1q5dy5QpUxg7diwBAQFkZ2fzySef0K9fP2sPTxD6JsUKDbVE480OE4FYEAShF5Akicsuu4y1a9eyfPly9uzZQ3h4OHPnzuXQoUPWHp4gtCNJklhH3EmMRiPLli1j9OjRXH311YwYMYLDhw/z+uuvExISYu3hCYIgdHsiEAuCIPQyo0eP5pdffiE9PZ2qqiri4uK46qqr+P3330VnaqHbEIH4whw/fpxFixYRExPDvffeyzXXXEN+fj4LFy7E29vb2sMTBAFM1VprnIQOEYFYEAShlxo0aBD/+9//OHToEAkJCcyePZu4uDjeeOMNampqrD08oY8Tgfj87N69m7vvvpugoCB++uknXnrpJQ4fPsyjjz6Ki4uLtYcnCILQ44hALAiC0MsFBgby3HPPkZ+fz4IFC/jyyy8JDAxk7ty57N+/39rDE/oo0Wn63On1er777jvGjRtHcnIyiqKwceNG1q1bx/XXX49Wq7X2EAVBEHosEYgFQRD6CFtbW2666SbS0tJYs2YNOp2OYcOGkZKSwv/+9z8aGxutPUShD3F0dKSurg5FTO87rcOHD/Pkk08SEhLCY489xlVXXUVRUREffPABQ4YMsfbwBEE4G1m2zknoEBGIBUEQ+qDExEQ+/fRTiouLmTFjBgsXLiQoKIhHHnmE7Oxsaw9P6AOcnJzQ6/U0Nzef8232bz3Efx//mv/95zca65su4uisx2AwsGzZMqZOnUpMTAwHDhzg008/5eDBgzzyyCN4eHhYe4iCIAi9isbaAxAEQRCsx8PDgwceeID58+ezdu1a3nvvPQYOHMiYMWO44447mD59Oo6OjtYeptALaTQa7OzsqKurw9bW9qzXz9tfzGPXvoGCaYuhzO2HWbj43os/0C6Sm5vLF198wUcffQTA3XffzYcffkhAQICVRyYIwnlTFKCLZ8GIWTcdJirEgiAIApIkMX78eL788ksKCwuZPHkyL7zwAr6+vtx6662sXLkSg8Fg7WEKvUxHGmvt3JiNLMvIRhlFVti2NrPHd00/duwYb731FiNHjiQuLo4dO3bw9ttvk5eXx9NPPy3CsCAIQhcQgVgQBEFox8fHh7/97W/s27eP9evX4+3tzZw5cwgKCuLBBx9k69atYt2n0Ck60lgrJNrPUvhQqSUCI7xRqXre25j6+nq+/PJLrrzySgIDA/nqq6+YM2cOR48e5aeffuKqq65CoxET+AShN1Bk2SonoWN63l8SQRAEoUtIksTQoUNZtGgRhYWFLF68mKqqKiZOnEhcXBwLFy7k0KFD1h6m0IOZG2udi2Hj47jn2RkERngzICmKZz+5+yKPrvMYDAZWrlzJrbfeiq+vLwsXLmTUqFFkZ2ezfv167rnnHjw9Pa09TEEQhD5JfAQpCIIgnJVarWbSpElMmjSJt99+m59//pnFixezcOFCEhMT+ctf/sL111+Pl5eXtYcq9CBOTk4UFBSc8/WvvnM8V985/uINqBMpisL27dtZvHgxX331FZIkceONN7Ju3TqGDBmCJEnWHqIgCIKAqBALgiAIHWRvb8/111/PsmXLOHLkCLfccgtLliwhICCAq666iiVLllBVVWXtYQo9gHnKdG+Zgq8oCvv27eOFF14gPj6eCRMmcPz4cb744gsKCwtZtGgRQ4cOFWFYEPoKRbHOSegQEYgFQRCE8+bl5cW9997Lhg0byMrKIjk5mZdffhlvb28mTpzIa6+9Rm5urrWHKXRTDg4OKIpCQ0ODtYdy3vR6PatXr+bBBx8kKiqK4cOHs2XLFp599llKSkr49NNPmTRpEmq12tpDFQRBEE5BBGJBEAShU4SHh/Pkk0+ya9cuDh48yIwZM1i+fDlxcXH079+fv//972zatAmj0WjtoQrdhEqlwsHB4ZzXEXcXVVVVfPnll9x00014e3tz8803o9PpeO211ygvL+enn35i1qxZODg4WHuogiBYk6xY5yR0iFhDLAiCIHS60NBQ5s2bx7x586ipqeH3339n2bJlXHXVVajVaq644gqmTZvGpZdeipOTk7WHK1iReeslHx8faw/ljHJzc/n5559ZtmwZ69evJz4+nmnTprFy5UoSExN7ZMdrQRAEQQRiQRAE4SJzcXHhuuuu47rrrsNgMLBp0yaWLVvG3/72N2688UYmTpzItGnTuPLKKwkKCrL2cIUu1pG9iLuS0WgkIyPDEoJzcnIYP348M2bM4JNPPiE0NNTaQxQEQRA6gQjEgiAIQpfRaDSkpKSQkpLCK6+8QlZWFj///DNLlixh3rx5xMTEMH78eMaPH8+4cePw9fW19pCFi8zJyYkjR45YexjIssyePXtYs2YNqamprFu3DoArrriCZ599lilTpuDi4mLlUQqC0KMoCtDF+wKLplodJgKxIAiCYDWxsbHExsbyyCOPUFlZybp160hNTeXFF1/khhtuIC4url1A7u7TaoWOs1aF2ByAU1NTSU1NZe3atej1esaOHcv48eN54oknSEhIQKMRb5UEQRB6M/EqLwiCIHQLHh4eXH311Vx99dUAVFRUsH79elJTU/nHP/7BrFmzREDuhRwdHfn/9u40Jq6qAeP4M1DWgkBBFss2pVAxKgVsTBsE3Jq01pYRqBFNSuoa+aAfXCqJqR9ICFqT1rikqdHaVElMjKWLFNyopVqaAJWlJEAEpAqITUrL1mGW98Mb5nUE62uLDMP8f8kNM+eeuedcJpnkuefccycmJmS1Wv/VlZhtNpva2tpUV1enb7/9Vt99953MZrMjAL/yyisEYABzym6zy26Y3xHbxfIYu/nErz4AYEEKDw+fEZCnR5DLysr08MMP65ZbblFubq6ys7N1xx13yGg08oxXN+Pv7y9vb2+NjY3N6ZTkiYkJtbS0qKGhwTECbDablZWVpdzcXO3YsUMZGRny8fGZszYBAO6HQAwAcAvh4eEymUwymUySnANyRUWFWltbFRQUpIyMDGVmZjr+JiUlEZIXMIPB4Jg2fa2BeGJiQj/++KMaGxsdW3t7u0JDQ7VmzRrl5ubq5ZdfJgADmF92m+b/HuJ5bm8RIBADANzSnwPylStX1NbW5ghEb7zxhlpaWhQYGOgIx9NbUlISj8lZQP7JfcTj4+M6e/as43tuamrSuXPnFBYW5vh+d+7cqczMTMXHx3MxBABwVQRiAMCi4Ofn5whE08xms1NIfvPNN9XS0iJ/f3+lp6crMzNTaWlpWrVqlVJSUhQWFubCM/BcswViq9Wq/v5+dXZ2qqOjQ01NTWpsbFRHR4ciIiIc33VeXp4yMzMVGxtL+AUA/GMGO3deAwA8iNlsVnt7uyMkt7a2qqurS7/99psiIiKUkpIyY1u5cqUCAgJc3fX/y9TUlL744gtt3LhxwU8PttvtGh4eVn19vc6cOSNJ6uzsVGdnp7q7u2WxWLRixQqtWrXKcQEjMzNTy5cvJ/wCWLAuXbqkkJAQ5RpMWmKY399hi31KdfbPNTIywqPi/k8EYgAAJF28eFFdXV2OQPbHbWxsTHFxcY6APD2ibDQaFRMTo+Dg4AUT0BZaILZarRoeHtYvv/wy6/93ZGREy5cvV1JSklJTU50uRBiNxgVxDgDwTxCI3QtTpgEAkBwLMK1Zs8ap3G63a3Bw0CnEff3113r33XfV19enyclJBQYGKiYmRjfddJNiYmKctj+WhYWFLZjgfL2mpqY0NDSkgYEBDQwM6Ndff3W8/uP7oaEh2Ww2hYeHa+XKlUpJSdHNN9+szZs3O0bfg4KCXH06ADD3WFTLLRCIAQC4CoPB4Ai0OTk5TvvsdrtGRkZmDYVnz55VdXW1o2x0dFR+fn6OY0VERCg4OFjBwcEKCgqa8fqvyoKCgq57QTCz2azLly9rdHTU6e/flV26dEmDg4MaGBjQ8PCwJOnGG2+cEfzT0tKc3kdHR8vPz++6+gwAwL+BQAwAwDUyGAwKDQ1VaGioUlNTr1p3dHTUKTT//vvvTuGzr6/vqsF0YmLCcSx/f395eXk5bd7e3o7XU1NT8vLyks1mc2xWq1U2m00Wi0VTU1OSJC8vrxkBfLYgHhcXp+DgYN1www2KiopyhN3IyEimNAPAX7BoSprnm1MtmprfBhcB7iEGAMANWCwWjY2N6fLlyxofH5fdbp8Rdqdf/zks/zE0e3t7O4JuQEDAopnCDQALxeTkpIxGowYHB13SfnR0tHp6euTv7++S9t0NgRgAAAAA5tDk5KTMZrNL2vb19SUM/wMEYgAAAACAR7q+VTkAAAAAAHBTBGIAAAAAgEciEAMAAAAAPBKBGAAAAADgkQjEAAAAAACPRCAGAAAAAHgkAjEAAAAAwCMRiAEAAAAAHolADACAm7Nardq3b59ycnK0bNky+fj4KDIyUrfffrueeOIJHT582NVdBABgQTLY7Xa7qzsBAACujdVq1aZNm3T8+HGFhobqgQceUGxsrMxms9rb23Xy5EllZGSovr7e1V0FAGDBWeLqDgAAgGtXWVmp48ePKy0tTSdOnFBISIjT/vHxcTU0NLiodwAALGxMmQYAwI19//33kqTi4uIZYViSAgMDdffdd893twAAcAsEYgAA3Fh4eLgkqbOz08U9AQDA/XAPMQAAbqy5uVl33nmnLBaLHn30UZlMJmVmZiohIcHVXQMAYMFjhBgAADeWnp6ugwcPKioqSgcPHlR+fr4SExMVHh4uk8mkI0eOuKxvxcXFMhgM6u3tdVkf/mz//v0yGAzav3+/q7sCAFgACMQAALi5rVu36ueff1ZNTY1effVVbdq0STabTYcOHdLmzZu1bds2zdWEMIPBcNWNoAkAcCesMg0AwCLg4+Oj9evXa/369ZL++zimzz77TNu3b9eBAwdkMpmUl5c3Z+3t3Llz1vLVq1fPWRsAAPzbCMQAACxC3t7e2rp1q1pbW1VWVqZvvvlmTgPxa6+9NmfHAgDAVZgyDQDAIhYcHCxJczZleq58+umnys7OVkhIiAICAnTbbbepvLxcV65cmbV+Y2Oj8vPzFRkZKT8/PyUkJOjZZ5/VwMDArPW7u7tVWFiosLAwLV26VOvWrdOxY8f+zVMCALghRogBAHBjlZWVioiI0L333isvL+fr3IODg9q3b58kKTs72xXdm1VpaanKy8sVERGhoqIiBQUFqbq6WqWlpaqpqVFtba18fX0d9Y8ePar8/HzZ7XYVFBQoISFBjY2Neu+991RVVaX6+noZjUZH/a6uLq1du1YXLlzQhg0btHr1anV3dysvL08bNmxwxSkDABYoAjEAAG6soaFBe/bsUXR0tLKyshzBsKenR8eOHdPExIS2bNmigoKCOW13tinTiYmJKi4uvurnfvjhB5WXlysuLk5nzpxRdHS0JKm8vFwmk0lHjx7Vrl27VFpaKkkaHR3Vtm3bZLFYVFdXp7vuustxrIqKCu3YsUNPP/20amtrHeUlJSW6cOGCdu/ereeee85RXlVVNafTxgEA7o/nEAMA4Mb6+/t1+PBhffXVVzp37pwGBgY0OTmp8PBwpaenq6ioSEVFRTNGj6+VwWD4y305OTmqq6tzvC8uLtZHH32knp4eJSYmSpKefPJJvf/++9q7d6+eeuopp893dnYqNTVVCQkJ+umnnyRJH3/8sR577DE98sgj+uSTT5zqWywWJScnq7e3V319fYqPj9f58+cVFxcno9Gorq4ueXt7O30mNzdXJ06c0Icffvi34R0AsPgxQgwAgBuLi4tTSUmJSkpK5rXda72e3tTUJEm65557ZuxLSUlRbGysenp6NDIyopCQkKvWX7JkibKzs9Xb26vm5mbFx8erublZkpSVlTUjDEv/C8QAAEgsqgUAAObRyMiIJCkmJmbW/dPlFy9evK76UVFRs9afnqINAIBEIAYAAPMoJCRE0n8X/JrN9KrR0/Wutf7Q0NCs9f/qOAAAz0QgBgAA8yY9PV2SnO41ntbd3a3z58/LaDQqNDT0b+tbLBadPHlSkpSRkeFUv76+XlardcZnZjsOAMBzEYgBAMC82b59uySprKxMw8PDjnKr1aoXXnhBNptNjz/+uKM8Ly9Py5YtU2VlpU6fPu10rN27d6unp0f33Xef4uPjJUmxsbG6//771dPTo7ffftupflVVFfcPAwCcsKgWAACYN+vWrdNLL72k119/XbfeeqsKCgq0dOlSVVdXq62tTVlZWXrxxRcd9YOCgvTBBx+osLBQOTk5KiwsVHx8vBobG1VbW6vo6Gjt3bvXqY133nlHa9eu1fPPP6/a2lqlpaWpu7tbn3/+uR588EEdOXJkvk8bALBAMUIMAADmVUVFhSorK5WcnKwDBw7orbfeks1mU1lZmb788kv5+vo61d+yZYtOnTqljRs3qqamRrt27VJHR4eeeeYZNTY2asWKFU71k5OTdfr0aeXn5+vUqVPas2eP+vv7dejQIT300EPzeaoAgAWO5xADAAAAADwSI8QAAAAAAI9EIAYAAAAAeCQCMQAAAADAIxGIAQAAAAAeiUAMAAAAAPBIBGIAAAAAgEciEAMAAAAAPBKBGAAAAADgkQjEAAAAAACPRCAGAAAAAHgkAjEAAAAAwCMRiAEAAAAAHolADAAAAADwSP8BKw82YbLKP5QAAAAASUVORK5CYII=",
"text/plain": [
"
"
],
- "source": [
- "# Set water depth to 60 m\n",
- "h = 60\n",
- "\n",
- "# Compute the energy flux from the NDBC spectra data and water depth\n",
- "J = wave.resource.energy_flux(ndbc_data, h)\n",
- "J.head()"
+ "text/plain": [
+ " 2018-01-01 00:40:00 2018-01-01 01:40:00 2018-01-01 02:40:00 \\\n",
+ "0.0200 0.0 0.0 0.0 \n",
+ "0.0325 0.0 0.0 0.0 \n",
+ "0.0375 0.0 0.0 0.0 \n",
+ "0.0425 0.0 0.0 0.0 \n",
+ "0.0475 0.0 0.0 0.0 \n",
+ "\n",
+ " 2018-01-01 03:40:00 2018-01-01 04:40:00 2018-01-01 05:40:00 \\\n",
+ "0.0200 0.0 0.0 0.00 \n",
+ "0.0325 0.0 0.0 0.00 \n",
+ "0.0375 0.0 0.0 0.00 \n",
+ "0.0425 0.0 0.0 0.00 \n",
+ "0.0475 0.0 0.0 0.01 \n",
+ "\n",
+ " 2018-01-01 06:40:00 2018-01-01 07:40:00 2018-01-01 08:40:00 \\\n",
+ "0.0200 0.0 0.0 0.0 \n",
+ "0.0325 0.0 0.0 0.0 \n",
+ "0.0375 0.0 0.0 0.0 \n",
+ "0.0425 0.0 0.0 0.0 \n",
+ "0.0475 0.0 0.0 0.0 \n",
+ "\n",
+ " 2018-01-01 09:40:00 ... 2018-01-31 14:40:00 2018-01-31 15:40:00 \\\n",
+ "0.0200 0.0 ... 0.00 0.0 \n",
+ "0.0325 0.0 ... 0.00 0.0 \n",
+ "0.0375 0.0 ... 0.00 0.0 \n",
+ "0.0425 0.0 ... 0.00 0.0 \n",
+ "0.0475 0.0 ... 0.06 0.0 \n",
+ "\n",
+ " 2018-01-31 16:40:00 2018-01-31 17:40:00 2018-01-31 18:40:00 \\\n",
+ "0.0200 0.0 0.0 0.00 \n",
+ "0.0325 0.0 0.0 0.00 \n",
+ "0.0375 0.0 0.0 0.00 \n",
+ "0.0425 0.0 0.0 0.00 \n",
+ "0.0475 0.0 0.0 0.07 \n",
+ "\n",
+ " 2018-01-31 19:40:00 2018-01-31 20:40:00 2018-01-31 21:40:00 \\\n",
+ "0.0200 0.0 0.0 0.0 \n",
+ "0.0325 0.0 0.0 0.0 \n",
+ "0.0375 0.0 0.0 0.0 \n",
+ "0.0425 0.0 0.0 0.0 \n",
+ "0.0475 0.0 0.0 0.0 \n",
+ "\n",
+ " 2018-01-31 22:40:00 2018-01-31 23:40:00 \n",
+ "0.0200 0.0 0.0 \n",
+ "0.0325 0.0 0.0 \n",
+ "0.0375 0.0 0.0 \n",
+ "0.0425 0.0 0.0 \n",
+ "0.0475 0.0 0.0 \n",
+ "\n",
+ "[5 rows x 743 columns]"
]
- },
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Transpose raw NDBC data\n",
+ "ndbc_data = raw_ndbc_data.T\n",
+ "ndbc_data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Compute Wave Metrics \n",
+ "We will now use MHKiT to compute the significant wave height, energy period, and energy flux. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Note on data types\n",
- "MHKiT functions typically allow Pandas Series, Pandas DataFrame, or xarray DataArray input. Multidimensional data (DataFrames and DataArrays) typically require an index or dimension name to specify the frequency or time dimension in question. If not supplied, the first dimension is assumed to be the relevant dimension.\n",
- "\n",
- "The above results (energy period, energy flux, and significant wave height) were returned as Pandas Series. 2D wave spectral data (frequency x time) was input and the frequency dimension was reduced leaving 1D, columnar data as the output. In Pandas, this is represented as a Series. If a DataArray with 3 or more dimensions was input, the output would be a DataArray with one fewer dimensions."
+ "data": {
+ "text/plain": [
+ "variable\n",
+ "2018-01-01 00:40:00 7.458731\n",
+ "2018-01-01 01:40:00 7.682413\n",
+ "2018-01-01 02:40:00 7.498263\n",
+ "2018-01-01 03:40:00 7.676198\n",
+ "2018-01-01 04:40:00 7.669476\n",
+ "Name: Te, dtype: float64"
]
- },
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Compute the enegy periods from the NDBC spectra data\n",
+ "Te = wave.resource.energy_period(ndbc_data)\n",
+ "Te.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Generate Random Power Data\n",
- "\n",
- "For demonstration purposes, this example uses synthetic power data generated from statistical distributions. In a real application, the user would provide power values from a WEC. The data is stored in pandas Series, containing 743 points. "
+ "data": {
+ "text/plain": [
+ "variable\n",
+ "2018-01-01 00:40:00 0.939574\n",
+ "2018-01-01 01:40:00 1.001399\n",
+ "2018-01-01 02:40:00 0.924770\n",
+ "2018-01-01 03:40:00 0.962497\n",
+ "2018-01-01 04:40:00 0.989949\n",
+ "Name: Hm0, dtype: float64"
]
- },
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Compute the significant wave height from the NDBC spectra data\n",
+ "Hm0 = wave.resource.significant_wave_height(ndbc_data)\n",
+ "Hm0.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Set the random seed, to reproduce results\n",
- "np.random.seed(1)\n",
- "# Generate random power values\n",
- "P = pd.Series(np.random.normal(200, 40, 743), index=J.index)"
+ "data": {
+ "text/plain": [
+ "variable\n",
+ "2018-01-01 00:40:00 3354.825613\n",
+ "2018-01-01 01:40:00 3916.541523\n",
+ "2018-01-01 02:40:00 3278.298930\n",
+ "2018-01-01 03:40:00 3664.246679\n",
+ "2018-01-01 04:40:00 3867.014933\n",
+ "Name: J, dtype: float64"
]
- },
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Set water depth to 60 m\n",
+ "h = 60\n",
+ "\n",
+ "# Compute the energy flux from the NDBC spectra data and water depth\n",
+ "J = wave.resource.energy_flux(ndbc_data, h)\n",
+ "J.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Note on data types\n",
+ "MHKiT functions typically allow Pandas Series, Pandas DataFrame, or xarray DataArray input. Multidimensional data (DataFrames and DataArrays) typically require an index or dimension name to specify the frequency or time dimension in question. If not supplied, the first dimension is assumed to be the relevant dimension.\n",
+ "\n",
+ "The above results (energy period, energy flux, and significant wave height) were returned as Pandas Series. 2D wave spectral data (frequency x time) was input and the frequency dimension was reduced leaving 1D, columnar data as the output. In Pandas, this is represented as a Series. If a DataArray with 3 or more dimensions was input, the output would be a DataArray with one fewer dimensions."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Generate Random Power Data\n",
+ "\n",
+ "For demonstration purposes, this example uses synthetic power data generated from statistical distributions. In a real application, the user would provide power values from a WEC. The data is stored in pandas Series, containing 743 points. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set the random seed, to reproduce results\n",
+ "np.random.seed(1)\n",
+ "# Generate random power values\n",
+ "P = pd.Series(np.random.normal(200, 40, 743), index=J.index)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Capture Width Matrices\n",
+ "\n",
+ "The following operations create capture width matrices, as specified by the IEC TS 62600-100. But first, we need to calculate capture width and define bin centers. The mean capture width matrix is printed below. Keep in mind that this data has been artificially generated, so it may not be representative of what a real-world scatter diagram would look like."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Capture Length Matrices\n",
- "\n",
- "The following operations create capture length matrices, as specified by the IEC/TS 62600-100. But first, we need to calculate capture length and define bin centers. The mean capture length matrix is printed below. Keep in mind that this data has been artificially generated, so it may not be representative of what a real-world scatter diagram would look like."
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\users\\akeeste\\documents\\software\\github\\mhkit-python\\mhkit\\wave\\performance.py:141: UserWarning: Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\n",
+ " warnings.warn(\"Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\")\n",
+ "c:\\users\\akeeste\\documents\\software\\github\\mhkit-python\\mhkit\\wave\\performance.py:141: UserWarning: Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\n",
+ " warnings.warn(\"Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\")\n"
+ ]
},
{
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
y_centers
\n",
- "
0.0
\n",
- "
1.0
\n",
- "
2.0
\n",
- "
3.0
\n",
- "
4.0
\n",
- "
5.0
\n",
- "
6.0
\n",
- "
7.0
\n",
- "
8.0
\n",
- "
9.0
\n",
- "
10.0
\n",
- "
11.0
\n",
- "
12.0
\n",
- "
13.0
\n",
- "
14.0
\n",
- "
15.0
\n",
- "
16.0
\n",
- "
\n",
- "
\n",
- "
x_centers
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
0.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
0.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.120286
\n",
- "
0.053376
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
1.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.110686
\n",
- "
0.068070
\n",
- "
0.049452
\n",
- "
0.065912
\n",
- "
NaN
\n",
- "
0.056593
\n",
- "
0.029950
\n",
- "
0.017234
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
1.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.019749
\n",
- "
0.018673
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.012473
\n",
- "
0.011205
\n",
- "
0.012307
\n",
- "
0.010432
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
2.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.013882
\n",
- "
0.012547
\n",
- "
0.009672
\n",
- "
0.008770
\n",
- "
0.008585
\n",
- "
0.007525
\n",
- "
0.005272
\n",
- "
0.007809
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
2.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.007244
\n",
- "
0.006488
\n",
- "
0.005788
\n",
- "
0.005652
\n",
- "
0.005180
\n",
- "
0.004260
\n",
- "
0.003623
\n",
- "
0.004509
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
3.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.004500
\n",
- "
0.005660
\n",
- "
0.004691
\n",
- "
0.004109
\n",
- "
0.003952
\n",
- "
0.003104
\n",
- "
0.003408
\n",
- "
0.002291
\n",
- "
0.001792
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
3.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.003924
\n",
- "
0.003674
\n",
- "
0.003020
\n",
- "
0.002746
\n",
- "
0.002247
\n",
- "
0.002000
\n",
- "
0.002257
\n",
- "
0.002033
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
4.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.003185
\n",
- "
0.002513
\n",
- "
0.002386
\n",
- "
0.002147
\n",
- "
0.002246
\n",
- "
0.001605
\n",
- "
0.001730
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
4.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.002343
\n",
- "
0.002087
\n",
- "
0.001919
\n",
- "
0.001590
\n",
- "
0.001438
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
5.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.001913
\n",
- "
0.001720
\n",
- "
0.001716
\n",
- "
0.001411
\n",
- "
0.001219
\n",
- "
0.001345
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
5.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.002101
\n",
- "
0.001516
\n",
- "
0.001331
\n",
- "
0.000902
\n",
- "
0.001033
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
6.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.001097
\n",
- "
0.000895
\n",
- "
NaN
\n",
- "
0.000858
\n",
- "
0.000987
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
6.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000837
\n",
- "
0.001024
\n",
- "
0.000419
\n",
- "
NaN
\n",
- "
0.000688
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
7.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000461
\n",
- "
0.000633
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
7.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000553
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000312
\n",
- "
0.000437
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
8.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000443
\n",
- "
0.000351
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
8.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000418
\n",
- "
0.000405
\n",
- "
\n",
- "
\n",
- "
9.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
9.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000153
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
10.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000281
\n",
- "
\n",
- "
\n",
- "
10.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
0.000204
\n",
- "
0.000225
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "y_centers 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 \\\n",
- "x_centers \n",
- "0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "0.5 NaN NaN NaN NaN NaN NaN NaN 0.120286 0.053376 \n",
- "1.0 NaN NaN NaN NaN NaN NaN 0.110686 0.068070 0.049452 \n",
- "1.5 NaN NaN NaN NaN NaN NaN NaN 0.019749 0.018673 \n",
- "2.0 NaN NaN NaN NaN NaN NaN NaN 0.013882 0.012547 \n",
- "2.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.007244 \n",
- "3.0 NaN NaN NaN NaN NaN NaN NaN 0.004500 0.005660 \n",
- "3.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.003924 \n",
- "4.0 NaN NaN NaN NaN NaN NaN NaN NaN 0.003185 \n",
- "4.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.002343 \n",
- "5.0 NaN NaN NaN NaN NaN NaN NaN NaN 0.001913 \n",
- "5.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.002101 \n",
- "6.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "6.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "7.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "8.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "9.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "9.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "10.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "10.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "\n",
- "y_centers 9.0 10.0 11.0 12.0 13.0 14.0 \\\n",
- "x_centers \n",
- "0.0 NaN NaN NaN NaN NaN NaN \n",
- "0.5 NaN NaN NaN NaN NaN NaN \n",
- "1.0 0.065912 NaN 0.056593 0.029950 0.017234 NaN \n",
- "1.5 NaN NaN 0.012473 0.011205 0.012307 0.010432 \n",
- "2.0 0.009672 0.008770 0.008585 0.007525 0.005272 0.007809 \n",
- "2.5 0.006488 0.005788 0.005652 0.005180 0.004260 0.003623 \n",
- "3.0 0.004691 0.004109 0.003952 0.003104 0.003408 0.002291 \n",
- "3.5 0.003674 0.003020 0.002746 0.002247 0.002000 0.002257 \n",
- "4.0 0.002513 0.002386 0.002147 0.002246 0.001605 0.001730 \n",
- "4.5 0.002087 0.001919 0.001590 0.001438 NaN NaN \n",
- "5.0 0.001720 0.001716 0.001411 0.001219 0.001345 NaN \n",
- "5.5 0.001516 0.001331 0.000902 0.001033 NaN NaN \n",
- "6.0 0.001097 0.000895 NaN 0.000858 0.000987 NaN \n",
- "6.5 0.000837 0.001024 0.000419 NaN 0.000688 NaN \n",
- "7.0 NaN NaN NaN 0.000461 0.000633 NaN \n",
- "7.5 NaN 0.000553 NaN NaN 0.000312 0.000437 \n",
- "8.0 NaN NaN NaN NaN NaN 0.000443 \n",
- "8.5 NaN NaN NaN NaN NaN NaN \n",
- "9.0 NaN NaN NaN NaN NaN NaN \n",
- "9.5 NaN NaN NaN NaN NaN NaN \n",
- "10.0 NaN NaN NaN NaN NaN NaN \n",
- "10.5 NaN NaN NaN NaN NaN NaN \n",
- "\n",
- "y_centers 15.0 16.0 \n",
- "x_centers \n",
- "0.0 NaN NaN \n",
- "0.5 NaN NaN \n",
- "1.0 NaN NaN \n",
- "1.5 NaN NaN \n",
- "2.0 NaN NaN \n",
- "2.5 0.004509 NaN \n",
- "3.0 0.001792 NaN \n",
- "3.5 0.002033 NaN \n",
- "4.0 NaN NaN \n",
- "4.5 NaN NaN \n",
- "5.0 NaN NaN \n",
- "5.5 NaN NaN \n",
- "6.0 NaN NaN \n",
- "6.5 NaN NaN \n",
- "7.0 NaN NaN \n",
- "7.5 NaN NaN \n",
- "8.0 0.000351 NaN \n",
- "8.5 0.000418 0.000405 \n",
- "9.0 NaN NaN \n",
- "9.5 0.000153 NaN \n",
- "10.0 NaN 0.000281 \n",
- "10.5 0.000204 0.000225 "
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
y_centers
\n",
+ "
0.0
\n",
+ "
1.0
\n",
+ "
2.0
\n",
+ "
3.0
\n",
+ "
4.0
\n",
+ "
5.0
\n",
+ "
6.0
\n",
+ "
7.0
\n",
+ "
8.0
\n",
+ "
9.0
\n",
+ "
10.0
\n",
+ "
11.0
\n",
+ "
12.0
\n",
+ "
13.0
\n",
+ "
14.0
\n",
+ "
15.0
\n",
+ "
16.0
\n",
+ "
\n",
+ "
\n",
+ "
x_centers
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
0.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.120286
\n",
+ "
0.053376
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
1.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.110686
\n",
+ "
0.068070
\n",
+ "
0.049452
\n",
+ "
0.065912
\n",
+ "
NaN
\n",
+ "
0.056593
\n",
+ "
0.029950
\n",
+ "
0.017234
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
1.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.019749
\n",
+ "
0.018673
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.012473
\n",
+ "
0.011205
\n",
+ "
0.012307
\n",
+ "
0.010432
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
2.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.013882
\n",
+ "
0.012547
\n",
+ "
0.009672
\n",
+ "
0.008770
\n",
+ "
0.008585
\n",
+ "
0.007525
\n",
+ "
0.005272
\n",
+ "
0.007809
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
2.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.007244
\n",
+ "
0.006488
\n",
+ "
0.005788
\n",
+ "
0.005652
\n",
+ "
0.005180
\n",
+ "
0.004260
\n",
+ "
0.003623
\n",
+ "
0.004509
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.004500
\n",
+ "
0.005660
\n",
+ "
0.004691
\n",
+ "
0.004109
\n",
+ "
0.003952
\n",
+ "
0.003104
\n",
+ "
0.003408
\n",
+ "
0.002291
\n",
+ "
0.001792
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.003924
\n",
+ "
0.003674
\n",
+ "
0.003020
\n",
+ "
0.002746
\n",
+ "
0.002247
\n",
+ "
0.002000
\n",
+ "
0.002257
\n",
+ "
0.002033
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.003185
\n",
+ "
0.002513
\n",
+ "
0.002386
\n",
+ "
0.002147
\n",
+ "
0.002246
\n",
+ "
0.001605
\n",
+ "
0.001730
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.002343
\n",
+ "
0.002087
\n",
+ "
0.001919
\n",
+ "
0.001590
\n",
+ "
0.001438
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
5.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.001913
\n",
+ "
0.001720
\n",
+ "
0.001716
\n",
+ "
0.001411
\n",
+ "
0.001219
\n",
+ "
0.001345
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
5.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.002101
\n",
+ "
0.001516
\n",
+ "
0.001331
\n",
+ "
0.000902
\n",
+ "
0.001033
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
6.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.001097
\n",
+ "
0.000895
\n",
+ "
NaN
\n",
+ "
0.000858
\n",
+ "
0.000987
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
6.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000837
\n",
+ "
0.001024
\n",
+ "
0.000419
\n",
+ "
NaN
\n",
+ "
0.000688
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
7.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000461
\n",
+ "
0.000633
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
7.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000553
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000312
\n",
+ "
0.000437
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
8.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000443
\n",
+ "
0.000351
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
8.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000418
\n",
+ "
0.000405
\n",
+ "
\n",
+ "
\n",
+ "
9.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
9.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000153
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
10.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000281
\n",
+ "
\n",
+ "
\n",
+ "
10.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
0.000204
\n",
+ "
0.000225
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "source": [
- "# Calculate capture length\n",
- "L = wave.performance.capture_length(P, J)\n",
- "\n",
- "# Generate bins for Hm0 and Te, input format (start, stop, step_size)\n",
- "Hm0_bins = np.arange(0, Hm0.values.max() + 0.5, 0.5)\n",
- "Te_bins = np.arange(0, Te.values.max() + 1, 1)\n",
- "\n",
- "# Create capture length matrices using mean, standard deviation, count, min and max statistics\n",
- "LM_mean = wave.performance.capture_length_matrix(Hm0, Te, L, \"mean\", Hm0_bins, Te_bins)\n",
- "LM_std = wave.performance.capture_length_matrix(Hm0, Te, L, \"std\", Hm0_bins, Te_bins)\n",
- "LM_count = wave.performance.capture_length_matrix(\n",
- " Hm0, Te, L, \"count\", Hm0_bins, Te_bins\n",
- ")\n",
- "LM_min = wave.performance.capture_length_matrix(Hm0, Te, L, \"min\", Hm0_bins, Te_bins)\n",
- "LM_max = wave.performance.capture_length_matrix(Hm0, Te, L, \"max\", Hm0_bins, Te_bins)\n",
- "\n",
- "# Show mean capture length matrix\n",
- "LM_mean"
+ "text/plain": [
+ "y_centers 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 \\\n",
+ "x_centers \n",
+ "0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "0.5 NaN NaN NaN NaN NaN NaN NaN 0.120286 0.053376 \n",
+ "1.0 NaN NaN NaN NaN NaN NaN 0.110686 0.068070 0.049452 \n",
+ "1.5 NaN NaN NaN NaN NaN NaN NaN 0.019749 0.018673 \n",
+ "2.0 NaN NaN NaN NaN NaN NaN NaN 0.013882 0.012547 \n",
+ "2.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.007244 \n",
+ "3.0 NaN NaN NaN NaN NaN NaN NaN 0.004500 0.005660 \n",
+ "3.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.003924 \n",
+ "4.0 NaN NaN NaN NaN NaN NaN NaN NaN 0.003185 \n",
+ "4.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.002343 \n",
+ "5.0 NaN NaN NaN NaN NaN NaN NaN NaN 0.001913 \n",
+ "5.5 NaN NaN NaN NaN NaN NaN NaN NaN 0.002101 \n",
+ "6.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "6.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "7.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "8.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "9.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "9.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "10.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "10.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "\n",
+ "y_centers 9.0 10.0 11.0 12.0 13.0 14.0 \\\n",
+ "x_centers \n",
+ "0.0 NaN NaN NaN NaN NaN NaN \n",
+ "0.5 NaN NaN NaN NaN NaN NaN \n",
+ "1.0 0.065912 NaN 0.056593 0.029950 0.017234 NaN \n",
+ "1.5 NaN NaN 0.012473 0.011205 0.012307 0.010432 \n",
+ "2.0 0.009672 0.008770 0.008585 0.007525 0.005272 0.007809 \n",
+ "2.5 0.006488 0.005788 0.005652 0.005180 0.004260 0.003623 \n",
+ "3.0 0.004691 0.004109 0.003952 0.003104 0.003408 0.002291 \n",
+ "3.5 0.003674 0.003020 0.002746 0.002247 0.002000 0.002257 \n",
+ "4.0 0.002513 0.002386 0.002147 0.002246 0.001605 0.001730 \n",
+ "4.5 0.002087 0.001919 0.001590 0.001438 NaN NaN \n",
+ "5.0 0.001720 0.001716 0.001411 0.001219 0.001345 NaN \n",
+ "5.5 0.001516 0.001331 0.000902 0.001033 NaN NaN \n",
+ "6.0 0.001097 0.000895 NaN 0.000858 0.000987 NaN \n",
+ "6.5 0.000837 0.001024 0.000419 NaN 0.000688 NaN \n",
+ "7.0 NaN NaN NaN 0.000461 0.000633 NaN \n",
+ "7.5 NaN 0.000553 NaN NaN 0.000312 0.000437 \n",
+ "8.0 NaN NaN NaN NaN NaN 0.000443 \n",
+ "8.5 NaN NaN NaN NaN NaN NaN \n",
+ "9.0 NaN NaN NaN NaN NaN NaN \n",
+ "9.5 NaN NaN NaN NaN NaN NaN \n",
+ "10.0 NaN NaN NaN NaN NaN NaN \n",
+ "10.5 NaN NaN NaN NaN NaN NaN \n",
+ "\n",
+ "y_centers 15.0 16.0 \n",
+ "x_centers \n",
+ "0.0 NaN NaN \n",
+ "0.5 NaN NaN \n",
+ "1.0 NaN NaN \n",
+ "1.5 NaN NaN \n",
+ "2.0 NaN NaN \n",
+ "2.5 0.004509 NaN \n",
+ "3.0 0.001792 NaN \n",
+ "3.5 0.002033 NaN \n",
+ "4.0 NaN NaN \n",
+ "4.5 NaN NaN \n",
+ "5.0 NaN NaN \n",
+ "5.5 NaN NaN \n",
+ "6.0 NaN NaN \n",
+ "6.5 NaN NaN \n",
+ "7.0 NaN NaN \n",
+ "7.5 NaN NaN \n",
+ "8.0 0.000351 NaN \n",
+ "8.5 0.000418 0.000405 \n",
+ "9.0 NaN NaN \n",
+ "9.5 0.000153 NaN \n",
+ "10.0 NaN 0.000281 \n",
+ "10.5 0.000204 0.000225 "
]
- },
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Calculate capture width\n",
+ "CW = wave.performance.capture_width(P, J)\n",
+ "\n",
+ "# Generate bins for Hm0 and Te, input format (start, stop, step_size)\n",
+ "Hm0_bins = np.arange(0, Hm0.values.max() + 0.5, 0.5)\n",
+ "Te_bins = np.arange(0, Te.values.max() + 1, 1)\n",
+ "\n",
+ "# Create capture width matrices using mean, standard deviation, count, min and max statistics\n",
+ "CWM_mean = wave.performance.capture_width_matrix(Hm0, Te, CW, \"mean\", Hm0_bins, Te_bins)\n",
+ "CWM_std = wave.performance.capture_width_matrix(Hm0, Te, CW, \"std\", Hm0_bins, Te_bins)\n",
+ "CWM_count = wave.performance.capture_width_matrix(\n",
+ " Hm0, Te, CW, \"count\", Hm0_bins, Te_bins\n",
+ ")\n",
+ "CWM_min = wave.performance.capture_width_matrix(Hm0, Te, CW, \"min\", Hm0_bins, Te_bins)\n",
+ "CWM_max = wave.performance.capture_width_matrix(Hm0, Te, CW, \"max\", Hm0_bins, Te_bins)\n",
+ "\n",
+ "# Show mean capture width matrix\n",
+ "CWM_mean"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Additional capture width matrices can be computed, for example, the frequency matrix is computed below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Additional capture length matrices can be computed, for example, the frequency matrix is computed below."
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\users\\akeeste\\documents\\software\\github\\mhkit-python\\mhkit\\wave\\performance.py:141: UserWarning: Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\n",
+ " warnings.warn(\"Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\")\n"
+ ]
},
{
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
],
- "source": [
- "# Create capture length matrices using frequency\n",
- "LM_freq = wave.performance.capture_length_matrix(\n",
- " Hm0, Te, L, \"frequency\", Hm0_bins, Te_bins\n",
- ")\n",
- "\n",
- "# Show capture length matrix using frequency\n",
- "LM_freq"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The `capture_length_matrix` function can also be used as an arbitrary matrix generator. To do this, simply pass a different Series in the place of capture length (L). For example, while not specified by the IEC standards, if the user doesn't have the omnidirectional wave flux, the average power matrix could hypothetically be generated in the following manner."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Demonstration of arbitrary matrix generator\n",
- "PM_mean_not_standard = wave.performance.capture_length_matrix(\n",
- " Hm0, Te, P, \"mean\", Hm0_bins, Te_bins\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The `capture_length_matrix` function can also use a callable function as the statistic argument. For example, suppose that we wanted to generate a matrix with the variance of the capture length. We could achieve this by passing the NumPy variance function `np.var` into the `capture_length_matrix` function, as shown below."
+ "text/plain": [
+ "y_centers 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 \\\n",
+ "x_centers \n",
+ "0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.002692 0.001346 \n",
+ "1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001346 0.006729 0.004038 \n",
+ "1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.005384 0.002692 \n",
+ "2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.002692 0.005384 \n",
+ "2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.013459 \n",
+ "3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.001346 0.021534 \n",
+ "3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.006729 \n",
+ "4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.009421 \n",
+ "4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.016151 \n",
+ "5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.002692 \n",
+ "5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.001346 \n",
+ "6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
+ "\n",
+ "y_centers 9.0 10.0 11.0 12.0 13.0 14.0 \\\n",
+ "x_centers \n",
+ "0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "1.0 0.001346 0.000000 0.002692 0.002692 0.001346 0.000000 \n",
+ "1.5 0.000000 0.000000 0.009421 0.004038 0.006729 0.005384 \n",
+ "2.0 0.018843 0.018843 0.029610 0.021534 0.001346 0.002692 \n",
+ "2.5 0.052490 0.055182 0.018843 0.025572 0.022880 0.005384 \n",
+ "3.0 0.044415 0.047106 0.020188 0.012113 0.010767 0.010767 \n",
+ "3.5 0.040377 0.029610 0.047106 0.004038 0.008075 0.004038 \n",
+ "4.0 0.017497 0.029610 0.040377 0.002692 0.004038 0.005384 \n",
+ "4.5 0.013459 0.017497 0.022880 0.012113 0.000000 0.000000 \n",
+ "5.0 0.008075 0.008075 0.010767 0.022880 0.001346 0.000000 \n",
+ "5.5 0.012113 0.006729 0.004038 0.014805 0.000000 0.000000 \n",
+ "6.0 0.002692 0.002692 0.000000 0.005384 0.001346 0.000000 \n",
+ "6.5 0.002692 0.002692 0.001346 0.000000 0.002692 0.000000 \n",
+ "7.0 0.000000 0.000000 0.000000 0.001346 0.004038 0.000000 \n",
+ "7.5 0.000000 0.001346 0.000000 0.000000 0.001346 0.008075 \n",
+ "8.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.002692 \n",
+ "8.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "9.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "9.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "10.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "10.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "\n",
+ "y_centers 15.0 16.0 \n",
+ "x_centers \n",
+ "0.0 0.000000 0.000000 \n",
+ "0.5 0.000000 0.000000 \n",
+ "1.0 0.000000 0.000000 \n",
+ "1.5 0.000000 0.000000 \n",
+ "2.0 0.000000 0.000000 \n",
+ "2.5 0.001346 0.000000 \n",
+ "3.0 0.001346 0.000000 \n",
+ "3.5 0.001346 0.000000 \n",
+ "4.0 0.000000 0.000000 \n",
+ "4.5 0.000000 0.000000 \n",
+ "5.0 0.000000 0.000000 \n",
+ "5.5 0.000000 0.000000 \n",
+ "6.0 0.000000 0.000000 \n",
+ "6.5 0.000000 0.000000 \n",
+ "7.0 0.000000 0.000000 \n",
+ "7.5 0.000000 0.000000 \n",
+ "8.0 0.002692 0.000000 \n",
+ "8.5 0.001346 0.001346 \n",
+ "9.0 0.000000 0.000000 \n",
+ "9.5 0.001346 0.000000 \n",
+ "10.0 0.000000 0.001346 \n",
+ "10.5 0.001346 0.001346 "
]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "# Demonstration of passing a callable function to the matrix generator\n",
- "LM_variance = wave.performance.capture_length_matrix(\n",
- " Hm0, Te, L, np.var, Hm0_bins, Te_bins\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Power Matrices\n",
- "As specified in IEC/TS 62600-100, the power matrix is generated from the capture length matrix and wave energy flux matrix, as shown below"
- ]
- },
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Create capture width matrices using frequency\n",
+ "CWM_freq = wave.performance.capture_width_matrix(\n",
+ " Hm0, Te, CW, \"frequency\", Hm0_bins, Te_bins\n",
+ ")\n",
+ "\n",
+ "# Show capture width matrix using frequency\n",
+ "CWM_freq"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The `capture_width_matrix` function can also be used as an arbitrary matrix generator. To do this, simply pass a different Series in the place of capture width (CW). For example, while not specified by the IEC standards, if the user doesn't have the omnidirectional wave flux, the average power matrix could hypothetically be generated in the following manner."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
y_centers
\n",
- "
0.0
\n",
- "
1.0
\n",
- "
2.0
\n",
- "
3.0
\n",
- "
4.0
\n",
- "
5.0
\n",
- "
6.0
\n",
- "
7.0
\n",
- "
8.0
\n",
- "
9.0
\n",
- "
10.0
\n",
- "
11.0
\n",
- "
12.0
\n",
- "
13.0
\n",
- "
14.0
\n",
- "
15.0
\n",
- "
16.0
\n",
- "
\n",
- "
\n",
- "
x_centers
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
0.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
0.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
224.996
\n",
- "
117.594
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
1.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
212.762
\n",
- "
202.713
\n",
- "
188.707
\n",
- "
187.103
\n",
- "
NaN
\n",
- "
213.926
\n",
- "
174.154
\n",
- "
164.886
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
1.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
176.402
\n",
- "
199.802
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
201.883
\n",
- "
191.598
\n",
- "
221.705
\n",
- "
190.124
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
2.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
203.667
\n",
- "
216.857
\n",
- "
192.965
\n",
- "
201.633
\n",
- "
216.268
\n",
- "
209.634
\n",
- "
162.569
\n",
- "
232.530
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
2.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
193.397
\n",
- "
203.529
\n",
- "
196.907
\n",
- "
212.883
\n",
- "
211.277
\n",
- "
202.760
\n",
- "
199.263
\n",
- "
272.421
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
3.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
170.739
\n",
- "
216.459
\n",
- "
197.484
\n",
- "
200.895
\n",
- "
212.107
\n",
- "
193.837
\n",
- "
222.185
\n",
- "
169.497
\n",
- "
122.296
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
3.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
194.894
\n",
- "
214.108
\n",
- "
202.725
\n",
- "
206.901
\n",
- "
184.099
\n",
- "
186.077
\n",
- "
221.659
\n",
- "
186.201
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
4.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
217.289
\n",
- "
189.403
\n",
- "
201.362
\n",
- "
207.532
\n",
- "
207.971
\n",
- "
172.771
\n",
- "
213.854
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
4.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
197.994
\n",
- "
194.238
\n",
- "
205.559
\n",
- "
203.195
\n",
- "
197.980
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
5.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
198.149
\n",
- "
196.527
\n",
- "
222.219
\n",
- "
215.221
\n",
- "
204.002
\n",
- "
254.004
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
5.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
249.158
\n",
- "
212.561
\n",
- "
212.734
\n",
- "
168.655
\n",
- "
208.220
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
6.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
182.314
\n",
- "
159.418
\n",
- "
NaN
\n",
- "
208.418
\n",
- "
241.347
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
6.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
164.712
\n",
- "
233.890
\n",
- "
110.517
\n",
- "
NaN
\n",
- "
207.919
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
7.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
155.691
\n",
- "
229.022
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
7.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
166.855
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
128.897
\n",
- "
198.053
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
8.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
230.281
\n",
- "
184.510
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
8.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
248.338
\n",
- "
264.534
\n",
- "
\n",
- "
\n",
- "
9.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
9.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
116.230
\n",
- "
NaN
\n",
- "
\n",
- "
\n",
- "
10.0
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
244.634
\n",
- "
\n",
- "
\n",
- "
10.5
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
NaN
\n",
- "
190.849
\n",
- "
212.411
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "y_centers 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 \\\n",
- "x_centers \n",
- "0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "0.5 NaN NaN NaN NaN NaN NaN NaN 224.996 117.594 \n",
- "1.0 NaN NaN NaN NaN NaN NaN 212.762 202.713 188.707 \n",
- "1.5 NaN NaN NaN NaN NaN NaN NaN 176.402 199.802 \n",
- "2.0 NaN NaN NaN NaN NaN NaN NaN 203.667 216.857 \n",
- "2.5 NaN NaN NaN NaN NaN NaN NaN NaN 193.397 \n",
- "3.0 NaN NaN NaN NaN NaN NaN NaN 170.739 216.459 \n",
- "3.5 NaN NaN NaN NaN NaN NaN NaN NaN 194.894 \n",
- "4.0 NaN NaN NaN NaN NaN NaN NaN NaN 217.289 \n",
- "4.5 NaN NaN NaN NaN NaN NaN NaN NaN 197.994 \n",
- "5.0 NaN NaN NaN NaN NaN NaN NaN NaN 198.149 \n",
- "5.5 NaN NaN NaN NaN NaN NaN NaN NaN 249.158 \n",
- "6.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "6.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "7.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "8.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "9.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "9.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "10.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "10.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
- "\n",
- "y_centers 9.0 10.0 11.0 12.0 13.0 14.0 15.0 \\\n",
- "x_centers \n",
- "0.0 NaN NaN NaN NaN NaN NaN NaN \n",
- "0.5 NaN NaN NaN NaN NaN NaN NaN \n",
- "1.0 187.103 NaN 213.926 174.154 164.886 NaN NaN \n",
- "1.5 NaN NaN 201.883 191.598 221.705 190.124 NaN \n",
- "2.0 192.965 201.633 216.268 209.634 162.569 232.530 NaN \n",
- "2.5 203.529 196.907 212.883 211.277 202.760 199.263 272.421 \n",
- "3.0 197.484 200.895 212.107 193.837 222.185 169.497 122.296 \n",
- "3.5 214.108 202.725 206.901 184.099 186.077 221.659 186.201 \n",
- "4.0 189.403 201.362 207.532 207.971 172.771 213.854 NaN \n",
- "4.5 194.238 205.559 203.195 197.980 NaN NaN NaN \n",
- "5.0 196.527 222.219 215.221 204.002 254.004 NaN NaN \n",
- "5.5 212.561 212.734 168.655 208.220 NaN NaN NaN \n",
- "6.0 182.314 159.418 NaN 208.418 241.347 NaN NaN \n",
- "6.5 164.712 233.890 110.517 NaN 207.919 NaN NaN \n",
- "7.0 NaN NaN NaN 155.691 229.022 NaN NaN \n",
- "7.5 NaN 166.855 NaN NaN 128.897 198.053 NaN \n",
- "8.0 NaN NaN NaN NaN NaN 230.281 184.510 \n",
- "8.5 NaN NaN NaN NaN NaN NaN 248.338 \n",
- "9.0 NaN NaN NaN NaN NaN NaN NaN \n",
- "9.5 NaN NaN NaN NaN NaN NaN 116.230 \n",
- "10.0 NaN NaN NaN NaN NaN NaN NaN \n",
- "10.5 NaN NaN NaN NaN NaN NaN 190.849 \n",
- "\n",
- "y_centers 16.0 \n",
- "x_centers \n",
- "0.0 NaN \n",
- "0.5 NaN \n",
- "1.0 NaN \n",
- "1.5 NaN \n",
- "2.0 NaN \n",
- "2.5 NaN \n",
- "3.0 NaN \n",
- "3.5 NaN \n",
- "4.0 NaN \n",
- "4.5 NaN \n",
- "5.0 NaN \n",
- "5.5 NaN \n",
- "6.0 NaN \n",
- "6.5 NaN \n",
- "7.0 NaN \n",
- "7.5 NaN \n",
- "8.0 NaN \n",
- "8.5 264.534 \n",
- "9.0 NaN \n",
- "9.5 NaN \n",
- "10.0 244.634 \n",
- "10.5 212.411 "
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Create wave energy flux matrix using mean\n",
- "JM = wave.performance.wave_energy_flux_matrix(Hm0, Te, J, \"mean\", Hm0_bins, Te_bins)\n",
- "\n",
- "# Create power matrix using mean\n",
- "PM_mean = wave.performance.power_matrix(LM_mean, JM)\n",
- "\n",
- "# Create power matrix using standard deviation\n",
- "PM_std = wave.performance.power_matrix(LM_std, JM)\n",
- "\n",
- "# Show mean power matrix, round to 3 decimals\n",
- "PM_mean.round(3)"
- ]
- },
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\users\\akeeste\\documents\\software\\github\\mhkit-python\\mhkit\\wave\\performance.py:141: UserWarning: Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\n",
+ " warnings.warn(\"Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\")\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Demonstration of arbitrary matrix generator\n",
+ "PM_mean_not_standard = wave.performance.capture_width_matrix(\n",
+ " Hm0, Te, P, \"mean\", Hm0_bins, Te_bins\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The `capture_width_matrix` function can also use a callable function as the statistic argument. For example, suppose that we wanted to generate a matrix with the variance of the capture width. We could achieve this by passing the NumPy variance function `np.var` into the `capture_width_matrix` function, as shown below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Calculate MAEP\n",
- "There are two ways to calculate the mean annual energy production (MEAP). One is from capture length and wave energy flux matrices, the other is from time-series data, as shown below."
- ]
- },
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\users\\akeeste\\documents\\software\\github\\mhkit-python\\mhkit\\wave\\performance.py:141: UserWarning: Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\n",
+ " warnings.warn(\"Matrix bin widths are greater than the IEC TS 62600-100 limit of 1.0 seconds.\")\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Demonstration of passing a callable function to the matrix generator\n",
+ "CWM_variance = wave.performance.capture_width_matrix(\n",
+ " Hm0, Te, CW, np.var, Hm0_bins, Te_bins\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Power Matrices\n",
+ "As specified in IEC TS 62600-100, the power matrix is generated from the capture width matrix and wave energy flux matrix, as shown below"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "MAEP from timeseries = 1767087.527586333\n",
- "MAEP from matrices = 1781210.8652839188\n"
- ]
- }
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
y_centers
\n",
+ "
0.0
\n",
+ "
1.0
\n",
+ "
2.0
\n",
+ "
3.0
\n",
+ "
4.0
\n",
+ "
5.0
\n",
+ "
6.0
\n",
+ "
7.0
\n",
+ "
8.0
\n",
+ "
9.0
\n",
+ "
10.0
\n",
+ "
11.0
\n",
+ "
12.0
\n",
+ "
13.0
\n",
+ "
14.0
\n",
+ "
15.0
\n",
+ "
16.0
\n",
+ "
\n",
+ "
\n",
+ "
x_centers
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
0.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
224.996
\n",
+ "
117.594
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
1.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
212.762
\n",
+ "
202.713
\n",
+ "
188.707
\n",
+ "
187.103
\n",
+ "
NaN
\n",
+ "
213.926
\n",
+ "
174.154
\n",
+ "
164.886
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
1.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
176.402
\n",
+ "
199.802
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
201.883
\n",
+ "
191.598
\n",
+ "
221.705
\n",
+ "
190.124
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
2.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
203.667
\n",
+ "
216.857
\n",
+ "
192.965
\n",
+ "
201.633
\n",
+ "
216.268
\n",
+ "
209.634
\n",
+ "
162.569
\n",
+ "
232.530
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
2.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
193.397
\n",
+ "
203.529
\n",
+ "
196.907
\n",
+ "
212.883
\n",
+ "
211.277
\n",
+ "
202.760
\n",
+ "
199.263
\n",
+ "
272.421
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
170.739
\n",
+ "
216.459
\n",
+ "
197.484
\n",
+ "
200.895
\n",
+ "
212.107
\n",
+ "
193.837
\n",
+ "
222.185
\n",
+ "
169.497
\n",
+ "
122.296
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
3.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
194.894
\n",
+ "
214.108
\n",
+ "
202.725
\n",
+ "
206.901
\n",
+ "
184.099
\n",
+ "
186.077
\n",
+ "
221.659
\n",
+ "
186.201
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
217.289
\n",
+ "
189.403
\n",
+ "
201.362
\n",
+ "
207.532
\n",
+ "
207.971
\n",
+ "
172.771
\n",
+ "
213.854
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
4.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
197.994
\n",
+ "
194.238
\n",
+ "
205.559
\n",
+ "
203.195
\n",
+ "
197.980
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
5.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
198.149
\n",
+ "
196.527
\n",
+ "
222.219
\n",
+ "
215.221
\n",
+ "
204.002
\n",
+ "
254.004
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
5.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
249.158
\n",
+ "
212.561
\n",
+ "
212.734
\n",
+ "
168.655
\n",
+ "
208.220
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
6.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
182.314
\n",
+ "
159.418
\n",
+ "
NaN
\n",
+ "
208.418
\n",
+ "
241.347
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
6.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
164.712
\n",
+ "
233.890
\n",
+ "
110.517
\n",
+ "
NaN
\n",
+ "
207.919
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
7.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
155.691
\n",
+ "
229.022
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
7.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
166.855
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
128.897
\n",
+ "
198.053
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
8.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
230.281
\n",
+ "
184.510
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
8.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
248.338
\n",
+ "
264.534
\n",
+ "
\n",
+ "
\n",
+ "
9.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
9.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
116.230
\n",
+ "
NaN
\n",
+ "
\n",
+ "
\n",
+ "
10.0
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
244.634
\n",
+ "
\n",
+ "
\n",
+ "
10.5
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
190.849
\n",
+ "
212.411
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "source": [
- "# Calcaulte maep from timeseries\n",
- "maep_timeseries = wave.performance.mean_annual_energy_production_timeseries(L, J)\n",
- "print(\"MAEP from timeseries = \", maep_timeseries)\n",
- "\n",
- "# Calcaulte maep from matrix \n",
- "# See Issue #339\n",
- "# maep_matrix = wave.performance.mean_annual_energy_production_matrix(\n",
- "# LM_mean, JM, LM_freq\n",
- "# )\n",
- "\n",
- "T = 8766 # Average length of a year (h)\n",
- "maep_matrix = T * np.nansum(LM_mean * JM * LM_freq)\n",
- "\n",
- "print(\"MAEP from matrices = \", maep_matrix)"
+ "text/plain": [
+ "y_centers 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 \\\n",
+ "x_centers \n",
+ "0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "0.5 NaN NaN NaN NaN NaN NaN NaN 224.996 117.594 \n",
+ "1.0 NaN NaN NaN NaN NaN NaN 212.762 202.713 188.707 \n",
+ "1.5 NaN NaN NaN NaN NaN NaN NaN 176.402 199.802 \n",
+ "2.0 NaN NaN NaN NaN NaN NaN NaN 203.667 216.857 \n",
+ "2.5 NaN NaN NaN NaN NaN NaN NaN NaN 193.397 \n",
+ "3.0 NaN NaN NaN NaN NaN NaN NaN 170.739 216.459 \n",
+ "3.5 NaN NaN NaN NaN NaN NaN NaN NaN 194.894 \n",
+ "4.0 NaN NaN NaN NaN NaN NaN NaN NaN 217.289 \n",
+ "4.5 NaN NaN NaN NaN NaN NaN NaN NaN 197.994 \n",
+ "5.0 NaN NaN NaN NaN NaN NaN NaN NaN 198.149 \n",
+ "5.5 NaN NaN NaN NaN NaN NaN NaN NaN 249.158 \n",
+ "6.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "6.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "7.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "8.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "9.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "9.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "10.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "10.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
+ "\n",
+ "y_centers 9.0 10.0 11.0 12.0 13.0 14.0 15.0 \\\n",
+ "x_centers \n",
+ "0.0 NaN NaN NaN NaN NaN NaN NaN \n",
+ "0.5 NaN NaN NaN NaN NaN NaN NaN \n",
+ "1.0 187.103 NaN 213.926 174.154 164.886 NaN NaN \n",
+ "1.5 NaN NaN 201.883 191.598 221.705 190.124 NaN \n",
+ "2.0 192.965 201.633 216.268 209.634 162.569 232.530 NaN \n",
+ "2.5 203.529 196.907 212.883 211.277 202.760 199.263 272.421 \n",
+ "3.0 197.484 200.895 212.107 193.837 222.185 169.497 122.296 \n",
+ "3.5 214.108 202.725 206.901 184.099 186.077 221.659 186.201 \n",
+ "4.0 189.403 201.362 207.532 207.971 172.771 213.854 NaN \n",
+ "4.5 194.238 205.559 203.195 197.980 NaN NaN NaN \n",
+ "5.0 196.527 222.219 215.221 204.002 254.004 NaN NaN \n",
+ "5.5 212.561 212.734 168.655 208.220 NaN NaN NaN \n",
+ "6.0 182.314 159.418 NaN 208.418 241.347 NaN NaN \n",
+ "6.5 164.712 233.890 110.517 NaN 207.919 NaN NaN \n",
+ "7.0 NaN NaN NaN 155.691 229.022 NaN NaN \n",
+ "7.5 NaN 166.855 NaN NaN 128.897 198.053 NaN \n",
+ "8.0 NaN NaN NaN NaN NaN 230.281 184.510 \n",
+ "8.5 NaN NaN NaN NaN NaN NaN 248.338 \n",
+ "9.0 NaN NaN NaN NaN NaN NaN NaN \n",
+ "9.5 NaN NaN NaN NaN NaN NaN 116.230 \n",
+ "10.0 NaN NaN NaN NaN NaN NaN NaN \n",
+ "10.5 NaN NaN NaN NaN NaN NaN 190.849 \n",
+ "\n",
+ "y_centers 16.0 \n",
+ "x_centers \n",
+ "0.0 NaN \n",
+ "0.5 NaN \n",
+ "1.0 NaN \n",
+ "1.5 NaN \n",
+ "2.0 NaN \n",
+ "2.5 NaN \n",
+ "3.0 NaN \n",
+ "3.5 NaN \n",
+ "4.0 NaN \n",
+ "4.5 NaN \n",
+ "5.0 NaN \n",
+ "5.5 NaN \n",
+ "6.0 NaN \n",
+ "6.5 NaN \n",
+ "7.0 NaN \n",
+ "7.5 NaN \n",
+ "8.0 NaN \n",
+ "8.5 264.534 \n",
+ "9.0 NaN \n",
+ "9.5 NaN \n",
+ "10.0 244.634 \n",
+ "10.5 212.411 "
]
- },
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Create wave energy flux matrix using mean\n",
+ "JM = wave.performance.wave_energy_flux_matrix(Hm0, Te, J, \"mean\", Hm0_bins, Te_bins)\n",
+ "\n",
+ "# Create power matrix using mean\n",
+ "PM_mean = wave.performance.power_matrix(CWM_mean, JM)\n",
+ "\n",
+ "# Create power matrix using standard deviation\n",
+ "PM_std = wave.performance.power_matrix(CWM_std, JM)\n",
+ "\n",
+ "# Show mean power matrix, round to 3 decimals\n",
+ "PM_mean.round(3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Calculate MAEP\n",
+ "There are two ways to calculate the mean annual energy production (MEAP). One is from capture width and wave energy flux matrices, the other is from time-series data, as shown below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Graphics\n",
- "The graphics function `plot_matrix` can be used to visualize results. It is important to note that the plotting function assumes the step size between bins to be linear."
- ]
- },
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MAEP from timeseries = 1767087.527586333\n",
+ "MAEP from matrices = 1781210.8652839188\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Calcaulte maep from timeseries\n",
+ "maep_timeseries = wave.performance.mean_annual_energy_production_timeseries(CW, J)\n",
+ "print(\"MAEP from timeseries = \", maep_timeseries)\n",
+ "\n",
+ "# Calcaulte maep from matrix \n",
+ "# See Issue #339\n",
+ "# maep_matrix = wave.performance.mean_annual_energy_production_matrix(\n",
+ "# CWM_mean, JM, CWM_freq\n",
+ "# )\n",
+ "\n",
+ "T = 8766 # Average length of a year (h)\n",
+ "maep_matrix = T * np.nansum(CWM_mean * JM * CWM_freq)\n",
+ "\n",
+ "print(\"MAEP from matrices = \", maep_matrix)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Graphics\n",
+ "The graphics function `plot_matrix` can be used to visualize results. It is important to note that the plotting function assumes the step size between bins to be linear."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG1CAYAAADnZM6ZAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYo0lEQVR4nOzde3xU1b3//9eaSWaSkMkMuV8IJBAk3O9G0BZpo6m1Hun3fC31YQtHK22ttLXp0Zbza73UWrRVxFaOVHustdaKHpX2e/RgEYuKIMhVQG6JQELuF5IhgclkZq/fH5NMMslMuGQGkvh5nsd+pNmz9nvWXicya9Zeey+ltdYIIYQQQgwipktdASGEEEKI8yUdGCGEEEIMOtKBEUIIIcSgIx0YIYQQQgw60oERQgghxKAjHRghhBBCDDrSgRFCCCHEoCMdGCGEEEIMOtKBEUIIIcSgIx0YIYQQQgw60oERQgghRJ9WrVpFTk4OMTExFBQUsG3btpBl9+/fz7/+67+Sk5ODUoqVK1f2KrN8+XJmz56NzWYjNTWVBQsWcOjQofOqk3RghBBCCBHSmjVrKC4u5r777mPnzp1MnTqVoqIiamtrg5Y/ffo0o0eP5uGHHyY9PT1omXfffZc777yTDz/8kPXr19Pe3s61115La2vrOddLyWKOvRmGQWVlJTabDaXUpa6OEEKIAUxrzalTp8jMzMRkity4gMvlwu129zvHYrEQExNzzuULCgqYPXs2Tz75JOD7jMzOzub73/8+P/3pT/s8Nicnh7vuuou77rqrz3J1dXWkpqby7rvv8vnPf/6c6hV1TqU+YyorK8nOzr7U1RBCCDGIlJeXM2LEiIhku1wuckfFU13r7XdWeno6e/bsCejEWK1WrFZrr7Jut5sdO3awbNky/z6TyURhYSFbtmzpd106NTc3A5CYmHjOx0gHJgibzQb4/hgTEhIucW2EEOKz4Ub7oktdhQvioZ1NvOn/7IgEt9tNda2X4ztySLBd+CiP85TBqJnHSEtLC9h/3333cf/99/cqX19fj9fr7VU+LS2NgwcPXnA9ujMMg7vuuosrr7ySSZMmnfNx0oEJovOyUUJCgnRghBDiIolS0Ze6ChemYyLGxZhyEG9TxNsu/H0MfMf2/IIebPTlYrnzzjvZt28fmzZtOq/jpAMjhBDiklu1ahWb9Ju4cRGPnXFMx65CX06o0ScoZT8uWoklnrFMJlll+F/XWvMpn1DBUTy4iSEOLx7acUckH6C0tJTp06eHoTVC82oDbz9mrnq1AZz7F/Tk5GTMZjM1NTUB+2tqakJO0D0fS5cu5X/+53947733zvvym9yFJIQQ4pLqvMtlNBO4nEJsONjF+7i1K2j5Jl3PPraSSQ4FFJJKJnvYTItu9pc5ziHKKSGfGYxmAqdpwcBgFvPDnj8D36TTr371q7hcwTPDxUD3ezsfFouFmTNnsmHDhq46GAYbNmxgzpw5F3weWmuWLl3K66+/zjvvvENubu55Z1zSDsx7773HDTfcQGZmJkop1q5dG/C61pp7772XjIwMYmNjKSws5MiRI31m3n///SilArb8/PwInoUQQoj+WLFiBUuWLCFT5RCvEshnBmbMVHIsaPlySkgijRw1jmEqgTFqEjaGU04p4PvsKKOEXPJJVZnUUkEmuXjxcJqWsOfHYwegurq61+fYUFBcXMwzzzzDn/70Jw4cOMAdd9xBa2srt956KwCLFi0KmOTrdrvZvXs3u3fvxu12U1FRwe7duykpKfGXufPOO3nhhRd48cUXsdlsVFdXU11dzZkzZ865Xpe0A9Pa2srUqVNZtWpV0Nd//etf89vf/pbVq1ezdetWhg0bRlFR0Vl7uBMnTqSqqsq/ne91NSGEEBdH510uhYWF/n1KKRJJo4mGoMc00UAigZNKk0ijuaP8GVpx4yKRNAxtcIomkkkngUSaaQhrfnezZs0K6505wRhh+L/ztXDhQh599FHuvfdepk2bxu7du1m3bp1/Ym9ZWRlVVVX+8pWVlUyfPp3p06dTVVXFo48+yvTp07n99tv9ZZ566imam5u5+uqrycjI8G9r1qw553pd0jkw1113Hdddd13Q17TWrFy5kp/97GfceOONADz//POkpaWxdu1avv71r4fMjYqKCsu1OSGEEJEV6i4XC1ZacQY9xo0LC9Ye5WNw4/K/3pnRThsajYWYgDLhyu8uJSWF6urqs55zf3i1xtuPx7dd6LFLly5l6dKlQV/buHFjwO85OTmc7RFz4XgE3YCdA3P06FGqq6sDeuV2u52CgoKz9nCPHDlCZmYmo0eP5pZbbqGsrKzP8m1tbTidzoBNCCGEEAPXgO3AdPZig9173lcPt6CggOeee45169bx1FNPcfToUT73uc9x6tSpkMcsX74cu93u3+QhdkIIcXGEusvFTRsWgj8t1jca0tajvMtfvvOnmzaisaJQuHEFlAlXfnd1dXURH/2/2JN4B7IB24G5UNdddx033XQTU6ZMoaioiDfffJOmpiZefvnlkMcsW7aM5uZm/1ZeXn4RayyEEJ9dwe5y0VrTSC0OkoIe4yCJRgLX4WmkBntH+ViGYSGGRmoxKRM2HDRQjZNG7CSFNb+77du39+vOnHNhoPH2Y5MOzEXQ2Yvt773nDoeDyy67LGD2c09Wq9V/T7w8vE4IIS6uzrtcKvUxWrWTg+zEi4cMcgDYp7dRovf6y2eTRwPVHNeHadVOSvV+nJwkmzGAbxLwSPI4ygHqdCWpjKCCo5iJIo74sOe3dMylSU9PZ8GCBZFvMAEM4AfZ5ebmkp6ezoYNG5g2bRoATqeTrVu3cscdd5xzTktLC6WlpXzzm9+MUE2FEEL0x8KFC6mrq+Pu7/+ENlzYsDOdq7Aq36UaF6dRdD191qGSmaQLKGUfJewjjnimMpd4ZfeXGcU4vHg5wA48tBNHPB48fMQ/w57fTjsAr7322nktkngh+nsZaCiNwFzSDkxLS0vAyMjRo0fZvXs3iYmJjBw5krvuuotf/vKXjB07ltzcXH7+85+TmZkZ0MP94he/yFe/+lX/7Oh///d/54YbbmDUqFFUVlZy3333YTabufnmmy/26QkhhDhHS5cu5W8/eDfoa7PU1b32pakRpBH6ya1KKcYwkTFMPOt79zffo9vZyN/Iy8s763v116W6C2kguqQdmO3btzN//nz/78XFxQAsXryY5557jnvuuYfW1la+/e1v09TUxFVXXcW6desCerilpaXU19f7fz9x4gQ333wzDQ0NpKSkcNVVV/Hhhx+SkpJy8U5MCCGEEBGldDhuxh5inE4ndrud5uZmmQ8jhBAXyTWmmy51FS5I5whMJD8zOj+XDh5Iw9aP1ahPnTLIH18zJD7fBuwcGCGEEEIE6rybqD/HDxXSgRFCCDEgrDdeiWj+YB3h6c6r6edq1OGry6U2YG+jFkIIIYQIRUZghBBCiEHC6Nj6c/xQIR0YIYQQQ96qVavYpN/EjYt47IxjOnaVGLJ8jT5BKftx0Uos8YxlMskqw/+61ppP+YQKjuLBDfjuip0+fXpEz8NA4e32zJoLOX6ouKSXkN577z1uuOEGMjMzUUqxdu3agNe11tx7771kZGQQGxtLYWEhR44cOWvuqlWryMnJISYmhoKCArZt2xahMxBCCDHQrVmzhuLiYkYzgcspxIaDXbyPW7uClm/S9exjK5nkUEAhqWSyh8206GZ/meMcopwS8pnBDD4PwFe/+lVcruCZIvwuaQemtbWVqVOnsmrVqqCv//rXv+a3v/0tq1evZuvWrQwbNoyioqI+/0A6/1Dvu+8+du7cydSpUykqKqK2tjbkMUIIIYauFStWsGTJEjJVDvEqgXxmYMZMJceCli+nhCTSyFHjGKYSGKMmYWM45ZQCvi/XZZSQSz6pKpN4fE/ora6u7vVFPNwM3f9tqLikHZjrrruOX/7yl3z1q1/t9ZrWmpUrV/Kzn/2MG2+8kSlTpvD8889TWVnZ5x9I5x/qrbfeyoQJE1i9ejVxcXE8++yzETwTIYQQA5Hb7WbHjh0UFhb69ymlSCSNJhqCHtNEA4mkBexLIo3mjvJnaMWNq1eZWbNmsWXLljCfQSBvxyWk/mxDxYC9C+no0aNUV1cH/NHZ7XYKCgpC/oEE+0M1mUwUFhb2+UfV1taG0+kM2IQQQgx+9fX1eL1e0tICOxsWrLgJPprvxoUFa4/yMf7ynT97lklJSaG6ujpcVRdnMWA7MJ1/BD3/6NLS0kL+gYT6Q+3rGIDly5djt9v9W3Z2dj9rL4QQQoSfjMB0GbAdmItp2bJlNDc3+7fy8vJLXSUhhBBhkJycjNlspqamJmC/mzYsBF852jfa0tajvMtfvvNnzzJ1dXWkp6eHq+pBGVr1exsqBmwHpvOPoOcfXU1NTcg/kFB/qH0dA2C1WklISAjYhBBCDH4Wi4WZM2eyYcMG/z6tNY3U4iAp6DEOkmgk8MaPRmqwd5SPZRgWYnqV2b59O3PmzAnzGYhQBmwHJjc3l/T09IA/OqfTydatW0P+gQT7QzUMgw0bNsgflRBCfEYVFxfzzDPPUKmP0aqdHGQnXjxkkAPAPr2NEr3XXz6bPBqo5rg+TKt2Uqr34+Qk2YwBfJOAR5LHUQ5QpytpwTdvMj09nQULFkT0XOQSUpdL+iC7lpYWSkpK/L8fPXqU3bt3k5iYyMiRI7nrrrv45S9/ydixY8nNzeXnP/85mZmZAX8gX/ziF/nqV7/K0qVLAd8f6uLFi5k1axaXX345K1eupLW1lVtvvfVin54QQogBYOHChdTV1XH3939CGy5s2JnOVViV71KQi9Oobh/sDpXMJF1AKfsoYR9xxDOVucQru7/MKMbhxcsBdtBOOwCvvfYaMTHBL0uFixcT3n6MPXjDWJdL7ZJ2YLZv3878+fP9vxcXFwOwePFinnvuOe655x5aW1v59re/TVNTE1dddRXr1q0L+AMpLS2lvr7e/3vnH+q9995LdXU106ZNY926db0m9gohhPjsWLp0KX/7wbtBX5ulru61L02NII0RIfOUUoxhImOYiEe3s5G/kZeXF6bahqb7OY9FD6E5MEprPYQeaxMeTqcTu91Oc3OzzIcRQoghIlKrUXd2YCL5mdH5ubRh70iG2S58BKb1lMEXJ5cNic83WQtJCCGEGCT6O49F5sAIIYQQ4qLzahNe3Y85MEPomot0YIQQQgwIkbrE02m98UpEcjsv74iLSzowQgghxCBhoDD6cReSwdAZgpEOjBBCCDFIyByYLtKBEUIIccmtWrWKTfpN3LiIx844pmNXiSHL1+gTlLIfF63EEs9YJpOsMvyva635lE+o4Cge3DhI5siRI4wdO/ZinI64CAbsk3g7nTp1irvuuotRo0YRGxvL3Llz+eijj0KW37hxI0qpXpusECqEEAPTmjVrKC4uZjQTuJxCbDjYxfu4dfDVopt0PfvYSiY5FFBIKpnsYTMtutlf5jiHKKeEfGYwmy9gwkxRUREuV/DMwaJzEm9/tqFiwJ/J7bffzvr16/nzn//M3r17ufbaayksLKSioqLP4w4dOkRVVZV/S01NvUg1FkIIcT5WrFjBkiVLyFQ5xKsE8pmBGTOVHAtavpwSkkgjR41jmEpgjJqEjeGUUwr4Rl/KKCGXfFJVJjblYBKXU1lZydq1ay/eiUWAbw5M/7ahYkB3YM6cOcOrr77Kr3/9az7/+c+Tl5fH/fffT15eHk899VSfx6amppKenu7fTKYBfapCCPGZ5Ha72bFjB4WFhf59SikSSaOJhqDHNNFAIoFPV08ijeaO8mdoxY0roEyUiqagoIAtW7ZE4CzEpTCgP9U9Hg9er7fX2hKxsbFs2rSpz2OnTZtGRkYG11xzDR988EGfZdva2nA6nQGbEEKIyKuvr8fr9fZa7sWCFTfBL/e4cWHB2qN8jL9858+eZdLS0gb9dAKjYy2kC936cwfTQDOgz8RmszFnzhwefPBBKisr8Xq9vPDCC2zZsoWqqqqgx2RkZLB69WpeffVVXn31VbKzs7n66qvZuXNnyPdZvnw5drvdv2VnZ0fqlIQQQogLJnNgugz4M/nzn/+M1pqsrCysViu//e1vufnmm0NeEho3bhzf+c53mDlzJnPnzuXZZ59l7ty5PP744yHfY9myZTQ3N/u38vLySJ2OEEKIbpKTkzGbzdTU1ATsd9OGheArO/tGW9p6lHf5y3f+7FmmpqaG9PT0cFX9kjA6RlH6sw0VA/5MxowZw7vvvktLSwvl5eVs27aN9vZ2Ro8efc4Zl19+OSUlJSFft1qtJCQkBGxCCCEiz2KxMHPmTDZs2ODfp7WmkVocJAU9xkESjdQG7GukBntH+ViGYSEmoIxHt7N161bmzJkTgbMQl8KA78B0GjZsGBkZGZw8eZK33nqLG2+88ZyP3b17NxkZGWcvKIQQ4qIrLi7mmWeeoVIfo1U7OchOvHjIIAeAfXobJXqvv3w2eTRQzXF9mFbtpFTvx8lJshkD+CYBjySPoxygTlfSopvZz0dkZmayYMGCS3CG4ePVqt/bUDHgH2T31ltvobVm3LhxlJSUcPfdd5Ofn8+tt94K+C7/VFRU8PzzzwOwcuVKcnNzmThxIi6Xiz/84Q+88847/OMf/7iUpyGEECKEhQsXUldXx93f/wltuLBhZzpXYVW+S0EuTqO63f7rUMlM0gWUso8S9hFHPFOZS7zqWo9oFOPw4uUAO/DQjoNk1q37Z6+bQgabzsm4F368LCVw0TQ3N7Ns2TJOnDhBYmIi//qv/8pDDz1EdHQ0AFVVVZSVlfnLu91ufvzjH1NRUUFcXBxTpkzh7bffZv78+ZfqFIQQQpzF0qVL+dsP3g362ix1da99aWoEaYwImaeUYgwTGcNE/77LLrusv9UUA4jSWg+d7liYdK4s2tzcLPNhhBDiIhnsq1FH8jOj8z2e3TmdOJv5gnNOn/Jy24xdQ+LzbcCPwAghhBDCRy4hdZEOjBBCiAEhUiMkYmiSDowQQggxSBjQrzuJjPBV5ZKTDowQQggxSPT3YXTyIDshhBBCiEtIRmCEEEKIQaK/6xnJWkgX0alTp7jrrrsYNWoUsbGxzJ07l48++qjPYzZu3MiMGTOwWq3k5eXx3HPPXZzKCiGEEBFkoPq9DRUDvgNz++23s379ev785z+zd+9err32WgoLC6moqAha/ujRo1x//fXMnz+f3bt3c9ddd3H77bfz1ltvXeSaCyGEEOElq1F3GdBncubMGV599VV+/etf8/nPf568vDzuv/9+8vLyeOqpp4Ies3r1anJzc3nssccYP348S5cu5f/+3//b52rUQgghhBhcBvQcGI/Hg9fr7bV2RWxsLJs2bQp6zJYtWygsLAzYV1RUxF133RXyfdra2mhr61p23el0XnilhRBCiAjp/4PsBvS4xXkZ0Gdis9mYM2cODz74IJWVlXi9Xl544QW2bNlCVVVV0GOqq6tJS0sL2JeWlobT6eTMmTNBj1m+fDl2u92/ZWdnh/1chBBCiP4ytOr3diFWrVpFTk4OMTExFBQUsG3btpBl9+/fz7/+67+Sk5ODUoqVK1f2OzOYAd2BAfjzn/+M1pqsrCysViu//e1vufnmmzGZwlf1ZcuW0dzc7N/Ky8vDli2EEEIMZmvWrKG4uJj77ruPnTt3MnXqVIqKiqitrQ1a/vTp04wePZqHH36Y9PT0sGQGM+A7MGPGjOHdd9+lpaWF8vJytm3bRnt7O6NHjw5aPj09nZqamoB9NTU1JCQkEBsbG/QYq9VKQkJCwCaEEEIMNEbHJaQL3S7kQXYrVqxgyZIl3HrrrUyYMIHVq1cTFxfHs88+G7T87Nmz+c1vfsPXv/51rFZrWDKDGfAdmE7Dhg0jIyODkydP8tZbb3HjjTcGLTdnzhw2bNgQsG/9+vXMmTPnYlRTCCGEiBhDm/q9gW+uZ/et+zzQ7txuNzt27AiYW2oymSgsLGTLli0XdA7hyhzwHZi33nqLdevWcfToUdavX8/8+fPJz8/n1ltvBXyXfxYtWuQv/93vfpdPP/2Ue+65h4MHD/Kf//mfvPzyy/zoRz+6VKcghBBCDCjZ2dkBcz+XL18etFx9fT1erzfo3NLq6uoLeu9wZQ7ou5AAmpubWbZsGSdOnCAxMZF//dd/5aGHHiI6OhqAqqoqysrK/OVzc3N54403+NGPfsQTTzzBiBEj+MMf/kBRUdGlOgUhhBAiLLwovP14GF3nseXl5QHTJUJd6hnIBnwH5mtf+xpf+9rXQr4e7Cm7V199Nbt27YpgrYQQQoiLr/tloAs9Hjjn+Z7JycmYzeagc0tDTdC9WJkD/hKSEEIIIS4Ni8XCzJkzA+aWGobBhg0bLnhuabgyB/wIjBBCiM+Ga0w3XeoqXBCPbr9o7+WFfl5COn/FxcUsXryYWbNmcfnll7Ny5UpaW1v9c1EXLVpEVlaWfx6N2+3mk08+8f/viooKdu/eTXx8PHl5eeeUeS6kAyOEEEIMEuG6hHQ+Fi5cSF1dHffeey/V1dVMmzaNdevW+SfhlpWVBTybrbKykunTp/t/f/TRR3n00UeZN28eGzduPKfMc6G01vq8z2aIczqd2O12mpub5ZkwQghxkQzmEZiN/C2inxmdn0vLtnyJmPjoC85xtbSzfM66IfH5JiMwQgghLrlVq1axSb+JGxfx2BnHdOwqMWT5Gn2CUvbjopVY4hnLZJJVhv91rTWf8gkVHMWDmxji8OKhHXdE8gFKS0sDRh5EZMkkXiGEEJdU52PlRzOByynEhoNdvI9bu4KWb9L17GMrmeRQQCGpZLKHzbToZn+Z4xyinBLymcFoJnCaFgwMZjE/7Pkz+DwAX/3qV3G5gmeGi0Zh9GPT/Zg/M9AM6A6M1+vl5z//Obm5ucTGxjJmzBgefPBB+rrqtXHjRpRSvbYLfeCOEEKIyOp8rHymyiFeJZDPDMyYqeRY0PLllJBEGjlqHMNUAmPUJGwMp5xSwDc6UkYJueSTqjKppYJMcvHi4TQtYc+Pxw74FhNeu3ZtuJsngFeb+r0NFQP6TB555BGeeuopnnzySQ4cOMAjjzzCr3/9a373u9+d9dhDhw5RVVXl31JTUy9CjYUQQpyPYI+VV0qRSBpNNAQ9pokGEgmc7JlEGs0d5c/QihsXiaRhaINTNJFMOgkk0kxDWPO7mzVr1gU/Xl+cvwE9B2bz5s3ceOONXH/99QDk5OTw17/+9ZyW3E5NTcXhcES4hkIIIfoj1GPlLVhpxRn0GDcuLFh7lI/Bjcv/emdGO21oNBZiAsqEK7+7lJSUiI/2G1ph6Au/DNSfYweaAT0CM3fuXDZs2MDhw4cB2LNnD5s2beK6664767HTpk0jIyODa665hg8++KDPsm1tbb0WthJCCCEGmv6sRN25DRUD+kx++tOf8vWvf538/Hyio6OZPn06d911F7fcckvIYzIyMli9ejWvvvoqr776KtnZ2Vx99dXs3Lkz5DHLly8PWNQqOzs7EqcjhBCih1CPlXfThoWYoMf4RkPaepR3+ct3/nTTRjRWFAo3roAy4crvrq6u7oIfry/O34DuwLz88sv85S9/4cUXX2Tnzp386U9/4tFHH+VPf/pTyGPGjRvHd77zHWbOnMncuXN59tlnmTt3Lo8//njIY5YtW0Zzc7N/Ky8vj8TpCCGE6CHYY+W11jRSi4OkoMc4SKKR2oB9jdRg7ygfyzAsxNBILSZlwoaDBqpx0oidpLDmd7d9+/YLfrz+ueq8hNSfbagY0HNg7r77bv8oDMDkyZM5fvw4y5cvZ/Hixeecc/nll7Np06aQr1ut1kG5EqcQQgwFnY+VH6MnYyeRMo7gxUMGOQDs09uIIZY8NRmAbPLYwbsc14dJJp1qynFykvHMBHyTgEfqPI5ygDgdTyojKGEv0ViII56D7AxrfnTHXJj09HQWLFgQ0bYyMGH0Y+yhP8cONAO6A3P69OmAxxMDmM1mDMM4r5zdu3eTkZFx9oJCCCEuus7Hyt/9/Z/QhgsbdqZzFVblu1Tj4jSq2/NLHCqZSbqAUvZRwj7iiGcqc4lXdn+ZUYzDi5cD7MBDO3HE48HDR/wz7Pnt+NZCeu2114iJCX5ZSoTfgO7A3HDDDTz00EOMHDmSiRMnsmvXLlasWMFtt93mL7Ns2TIqKip4/vnnAVi5ciW5ublMnDgRl8vFH/7wB9555x3+8Y9/XKrTEEIIcRZLly7lbz94N+hrs9TVvfalqRGkMSJknlKKMUxkDBPP+t79ze9cSqBzocJI8mqFtx+Xgfpz7EAzoDswv/vd7/j5z3/O9773PWpra8nMzOQ73/kO9957r79MVVUVZWVl/t/dbjc//vGPqaioIC4ujilTpvD2228zf/78S3EKQgghRNjIbdRdZDHHIGQxRyGEuPhkMcfQOj+Xvv3uTVj6sZiju6Wdp+e9MiQ+34bObB4hhBBCfGYM6EtIQgghBpbBOkoCsN54JSK5naMjF4MXhbcfCzL259iBRjowQgghxCBh6P7NYzGG0KQRuYQkhBBCiEFHRmCEEEKck1WrVrFJv4kbF/HYGcd07CoxZPkafYJS9uOilVjiGctkklXXM7m01nzKJ1RwlHbaUCg0YAtztgc3DpI5cuQIY8eODUtbXCqGNmHofjzIrh/HDjRD50yEEEJEzJo1ayguLmY0E7icQmw42MX7uLUraPkmXc8+tpJJDgUUkkome9hMi272lznOIcopIZ2RAMRhw4KVYdjDlp3PDGbzBUyYKSoqwuUKnjlYGKh+b0PFgO7AeL1efv7zn5Obm0tsbCxjxozhwQcf5Gx3fm/cuJEZM2ZgtVrJy8vjueeeuzgVFkKIIWrFihUsWbKETJVDvEognxmYMVPJsaDlyykhiTRy1DiGqQTGqEnYGE45pYBvhKSMEnLJp4k6shjNLK6mnTYSSQ1bdqrKxKYcTOJyKisrWbt2bQRaR1wKA7oD88gjj/DUU0/x5JNPcuDAAR555BF+/etf87vf/S7kMUePHuX6669n/vz57N69m7vuuovbb7+dt9566yLWXAghhg63282OHTsoLCz071NKkUgaTTQEPaaJBhJJC9iXRBrNHeXP0IobFw5SOEUTiaQSpaJJIBEnjWHJ7l4mSkVTUFDAli1bzr8BBpDOJ/H2ZxsqBvQcmM2bN3PjjTdy/fXXA5CTk8Nf//pXtm3bFvKY1atXk5uby2OPPQbA+PHj2bRpE48//jhFRUUXpd5CCDGU1NfX4/V6SUsL7DRYsNKKM+gxblxYsPYoH4Mbl/91oGPei8ZCTECZGOL6nd2zTFpaGtXV1Wc934FM5sB0GdBnMnfuXDZs2MDhw4cB2LNnD5s2beK6664LecyWLVsCviUAFBUV9dnrbmtrw+l0BmxCCCGEGLgG9AjMT3/6U5xOJ/n5+ZjNZrxeLw899BC33HJLyGOqq6t7fUtIS0vD6XRy5swZYmNjex2zfPlyHnjggbDXXwghhoLk5GTMZjM1NTUB+920+UdOevKNiLT1KO8KGGkB0GgUKmD0xIYjLNlu2rDS9W9+TU0N06ZNO5dTHrAM+rkWkkzivThefvll/vKXv/Diiy+yc+dO/vSnP/Hoo4/ypz/9Kazvs2zZMpqbm/1beXl5WPOFEGIws1gszJw5kw0bNvj3aa1ppBYHSUGPcZBEI7UB+xqpwd5RPpZhWIihiXpsOGikFo9ux0kjCSSGJbt7GY9uZ+vWrcyZM+f8G2AA0f28A0kPoQ7MgB6Bufvuu/npT3/K17/+dQAmT57M8ePHWb58OYsXLw56THp6eq9vCTU1NSQkJAQdfQGwWq1YrdagrwkhhIDi4mIWL17MGD0ZO4mUcQQvHjLIAWCf3kYMseSpyQBkk8cO3uW4Pkwy6VRTjpOTjGcm4JsEPFLncZQDZJJLOSU000A0Vk5SG7bsOB1PLMMoZT+ZmZksWLDgorZbuMlq1F0GdAfm9OnTmEyBg0RmsxnDMEIeM2fOHN58882AfevXrx/0vW4hhLiUFi5cSF1dHXd//ye04cKGnelchVX5Lte4OI3q9u3eoZKZpAsoZR8l7COOeKYyl3jVtWbQKMbhxUsFnwKaVpxoNC00hy37ADvw0I6DZNat+ycxMcEvS4nBZ0B3YG644QYeeughRo4cycSJE9m1axcrVqzgtttu85dZtmwZFRUVPP/88wB897vf5cknn+See+7htttu45133uHll1/mjTfeuFSnIYQQQ8LSpUv52w/eDfraLHV1r31pagRpjAiZp5RiDBMZw8Q+3zdc2Zdddlmf7zMYyF1IXQZ0B+Z3v/sdP//5z/ne975HbW0tmZmZfOc73+Hee+/1l6mqqqKsrMz/e25uLm+88QY/+tGPeOKJJxgxYgR/+MMf5BZqIYQQg55cQuoyoDswNpuNlStXsnLlypBlgj1l9+qrr2bXrl2Rq5gQQgghLqkB3YERQgghRJf+rmc0lG6jlg6MEGJQusZ0U0Tz1xuvRDQ/kiLdNpEymNv8YpFLSF2GzmweIYQQQnxmyAiMEEIIMUjICEwX6cAIIQalcl3CcQ7jxkU8dsYxHbtKDFm+Rp+glP24aCWWeMYymWSV4X9da82nfEIFR/HgprCwkKeeeoqxY8dejNMJm1WrVrFJvxmRdmmnrWPxRbBJm18S0oHpMuAvIeXk5KCU6rXdeeedQcs/99xzvcrKg4uEGFrWrFnDYT5mNBO4nEJsONjF+7i1K2j5Jl3PPraSSQ4FFJJKJnvYTItu9pc5ziHKKSGfGczmCwwbNoyioiJcruCZA9GaNWsoLi6OSLukMxKAOGxYsDIMu7S5uKQGfAfmo48+oqqqyr+tX78egJtuCj1JLSEhIeCY48ePX6zqCiEughUrVpBFLpkqh3iVQD4zMGOmkmNBy5dTQhJp5KhxDFMJjFGTsDGcckoB30hAGSXkkk+qysSmHDz//PNUVlaydu3ai3di/bRixQqWLFkSkXZpoo4sRjOLq2mnjURSpc0vgc4RmP5sQ8WA78CkpKSQnp7u3/7nf/6HMWPGMG/evJDHKKUCjum5OrUQYvByu93s2LGDRFL9+5RSJJJGEw1Bj2migUQC/x1IIo3mjvJnaMWNK6CM3W6noKCALVu2ROAswq+zXQoLC/37wtUuDlI4RROJpBKlokkgESeNn/k2vxQ09HMxx6FjwHdgunO73bzwwgvcdtttKBW6F9nS0sKoUaPIzs7mxhtvZP/+/X3mtrW14XQ6AzYhxMBUX1+P1+vFQuClYQtW3AS/9ODGhQVrj/Ix/vKdP3uWSUtLo7q6OlxVj6jOdun5hS0c7eKb96L9bd5Z5rPe5peCjMB0GVQdmLVr19LU1MS//du/hSwzbtw4nn32Wf72t7/xwgsvYBgGc+fO5cSJEyGPWb58OXa73b9lZ2dHoPZCCCGECJdB1YH5r//6L6677joyMzNDlpkzZw6LFi1i2rRpzJs3j9dee42UlBR+//vfhzxm2bJlNDc3+7fy8vJIVF8IEQbJycmYzeZe3/zdtPUalenk++bf1qO8K2BEoTOju5qaGtLT08NV9YjqbJeampqA/eFoF41GoQJGTzqP/Sy3+aUgIzBdBk0H5vjx47z99tvcfvvt53VcdHQ006dPp6SkJGQZq9VKQkJCwCaEGJgsFgszZ86kkVr/Pq01jdTiICnoMQ6SAsoDNFKDvaN8LMOwEBNQxul0snXrVubMmROBswi/znbZsGGDf1+42qWJemw4aKQWj27HSSMJJH7m2/xSkA5Ml0HTgfnjH/9Iamoq119//Xkd5/V62bt3LxkZGWcvLIQYFIqLi6nkKJX6GK3ayUF24sVDBjkA7NPbKNF7/eWzyaOBao7rw7RqJ6V6P05Oks0YwDfZdSR5HOUAdbqSFt3MokWLyMzMZMGCBZfgDC9McXExzzzzTETaxUEKFRxlB+8SjZWT1Eqbi0tqUDzIzjAM/vjHP7J48WKiogKrvGjRIrKysli+fDkAv/jFL7jiiivIy8ujqamJ3/zmNxw/fvy8R26EEAPXwoULue/rD/Mpn9CGCxt2pnMVVuW7LOHiNKrbonUOlcwkXUAp+yhhH3HEM5W5xCu7v8woxuHFywF24KGd+S3zWbdu3aB6jtTChQupq6vj7u//JOztUsGngKYVJxpNC83S5peAPMiuy6DowLz99tuUlZVx22239XqtrKwMk6lrIOnkyZMsWbKE6upqhg8fzsyZM9m8eTMTJky4mFUWQkRYtsojm7ygr81SV/fal6ZGkMaIkHlKKcYwkTFMBGD924NzYcGlS5fytx+8G/S1cLRLKJ/lNr+YtFbofnRC+nPsQDMoOjDXXnstWge/e33jxo0Bvz/++OM8/vjjF6FWQgghhLhUBkUHRgghhBBdD7Hrz/FDhXRghBBCiEFC5sB0kQ6MEGJQWm8M3vkS15hCr+UWFn08qby/1ntfjli2EOdDOjBCCCHEICGTeLsMmufACCGEEJ91l+pBdqtWrSInJ4eYmBgKCgrYtm1bn+VfeeUV8vPziYmJYfLkybz55psBr7e0tLB06VJGjBhBbGwsEyZMYPXq1edVJxmBEUKIi2jVqlVs0m/ixkU8dsYxHbtKDFm+Rp+glP24aCWWeMYymWTV9WBOrTWf8gkVHMWDmxji8GoP7biJx8E4dbb8ckp1t3w1pXe+3u/PLyws5KmnnmLs2LHhaRBxXi7FCMyaNWsoLi5m9erVFBQUsHLlSoqKijh06BCpqam9ym/evJmbb76Z5cuX85WvfIUXX3yRBQsWsHPnTiZNmgT4Hrr4zjvv8MILL5CTk8M//vEPvve975GZmcm//Mu/nFO9BvwITE5ODkqpXtudd94Z8piz9fyEEOJS6PwgGM0ELqcQGw528T5uHXxF5yZdzz62kkkOBRSSSiZ72EyLbvaXOc4hyikhnxmMZgKnacHAYBZfwIadXfq9vvP1VjJVLgXqGlLJYo/+IHi+msFs9UWGDRtGUVERLlfwTDH0rFixgiVLlnDrrbf6R0ri4uJ49tlng5Z/4okn+NKXvsTdd9/N+PHjefDBB5kxYwZPPvmkv8zmzZtZvHgxV199NTk5OXz7299m6tSpZx3Z6W7Ad2A++ugjqqqq/Nv69esBuOmm4JPgOnt+3/rWt9i1axcLFixgwYIF7Nu372JWWwgheun8IMhUOcSrBPKZgRkzlRwLWr6cEpJII0eNY5hKYIyahI3hlFMK+EZHyighl3xSVSa1VJBJLl48nFanyFcz+87XR0givSvf1JGvS7ry9RFy1XhSVRY25eD555+nsrKStWvXRqCFxNnofl4+6hyBcTqdAVtbW1vQ93O73ezYsYPCwkL/PpPJRGFhIVu2bAl6zJYtWwLKAxQVFQWUnzt3Ln//+9+pqKhAa80///lPDh8+zLXXXnvObTHgOzApKSmkp6f7t//5n/9hzJgxzJs3L2j5c+n5CSHExRbsg0ApRSJpNNEQ9JgmGkgkLWBfEmk0d5Q/QytuXCSShqENTtFEMukkkEizbujK133kq8BLAEmkB83vZLfbKSgoCPnhJSJLA1r3Y+vIyc7Oxm63+7fO5Xh6qq+vx+v1kpYW+HeYlpZGdXV10GOqq6vPWv53v/sdEyZMYMSIEVgsFr70pS+xatUqPv/5z59zWwyqOTBut5sXXniB4uJiVIjbBLds2UJxcXHAvqKioj6/LbS1tQX0Pp1OZ1jqK4QQnUJ9EFiw0krwf3PcuLBg7VE+Bjcu/+udGe20odFYiAkoYyGGVk71kR+47pBFWf2XnLrnd9fXh5cYHMrLy0lISPD/brVa+ygdfr/73e/48MMP+fvf/86oUaN47733uPPOO8nMzOw1ehPKoOrArF27lqamJv7t3/4tZJlz6fn1tHz5ch544IFwVVMIIYSICAMVsGjmhRwPkJCQENCBCSU5ORmz2UxNTU3A/pqaGtLT04Mek56e3mf5M2fO8B//8R+8/vrrXH/99QBMmTKF3bt38+ijj55zB2bAX0Lq7r/+67+47rrryMzMDGvusmXLaG5u9m/l5eVhzRdCiFAfBG7aeo2CdPKNpLT1KN81atL5000b0VhRKNy4AsoEG2UJzA+cjOvWbUHzu+vrw0tEVuddSP3ZzofFYmHmzJls2LDBv88wDDZs2MCcOXOCHjNnzpyA8gDr16/3l29vb6e9vT1gIWYAs9mMYRjnXLdBMwJz/Phx3n77bV577bU+y52t5xeM1Wq96MNnQojPlmAfBFprGqklmzFBj3GQRCO1jKTrluVGarCTBEAsw7AQQyO12JQDm3bQQDVOGhmhxnTlq+CrdjtIolHXMlJddpb8Gmw4AN8l9q1bt3LHHXf0qz3E4FFcXMzixYuZNWsWl19+OStXrqS1tZVbb70VgEWLFpGVleWfR/PDH/6QefPm8dhjj3H99dfz0ksvsX37dp5++mnAN/ozb9487r77bmJjYxk1ahTvvvsuzz//PCtWrDjneg2aEZg//vGPpKam+oebQjlbz08IIS6V4uJinnnmGSr1MVq1k4PsxIuHDHIA2Ke3UaL3+stnk0cD1RzXh2nVTkr1fpyc9Hd4lFKMJI+jHKBOV5LKCCo4ipko4rSNg7pHvrGNEqNbvhrbkX/Il2/sx0mjv8OjlGKkGstR7ctv0c0sWrSIzMxMFixYcFHaTAS6FA+yW7hwIY8++ij33nsv06ZNY/fu3axbt84/XaOsrIyqqip/+blz5/Liiy/y9NNPM3XqVP77v/+btWvX+p8BA/DSSy8xe/ZsbrnlFiZMmMDDDz/MQw89xHe/+91zrpfSWuuzF7u0DMMgNzeXm2++mYcffjjgtZ49v82bNzNv3jwefvhhf8/vV7/6VcADdM7G6XRit9tpbm4+p2uEQghxrp588knu/v5PaMOFDTvjmIZd+UY8tuuNxDKMiWq2v7zvQXb7OMNp4vp8kN2neGgnhjg8+B5kZ8PBONUt39hILHFMNF3eLb+cUt0tP+SD7Hz58784n//8z//kssu6Rm0+6y7GZ0bne0xcczfmuAu/YuA93cb+hb8ZEp9vg+IS0ttvv01ZWRm33XZbr9fKysoCrqN19vx+9rOf8R//8R+MHTu2V89PCCEulaVLl/K3H7wb9LVZ6upe+9LUCNIYETJPKcUYJjKGid13Bs83BcvPJk1l952vJjEG37+h69+WxRzFwDAoOjDXXnstoQaKNm7c2GvfTTfdFPJBd0IIIcRgJYs5dhkUHRghhBBCSAemO+nACCGEEIOEoRWqH52QC12NeiCSDowQImKuMX/tUlfhwkXw/ob1xisRy4ZB3u5CnCPpwAghhBCDROeaRv05fqiQDowQIiJWrVrFJuMN3LiIx8E4NR27SgxZ3nc7735ctBLb5+28R/HgJoY4vB23C4c7v502FAoNHbc6ny37BKV0yw55q7Ov7oWFhTz11FOMHTs2ZOaFinS7R7Lu4ux8HZj+zIEJY2UusUHzIDshxOCxZs0aiouLGa0mcLm6Bht2dun3/IsE9tSk69mnt5KpcilQ15BKFnv0B7ToZn+Z4xyinBLy1QxGM5HTtGBgMIsvhDU/nZEAxGHDgpVh2NnF+31ns5VMciigkFQy2cPm4HVnBrP5AsOGDaOoqAiXK3jmhYp0u89WX4xY3YU4XwO+A1NRUcE3vvENkpKSiI2NZfLkyWzfvj1k+Y0bN6KU6rXJyqlCXDwrVqxgyZIlZKpc4lUC+WomZsxUcixo+XJ9hCTSyVHjGKYSGGOahI3hlOsSwDcKUKaPkKvGk6qyqKWCTHLx4uG0OhXW/CbqyWI0s7iadtpIJLXvbEpIIq0rW3VkU9qVTQm55JOqMrEpB88//zyVlZWsXbu2P83cS6TbPZJ1F+fmYq+FNJAN6A7MyZMnufLKK4mOjuZ///d/+eSTT3jssccYPnz4WY89dOgQVVVV/i01NfUi1FgI4Xa72bFjR8CKskopEkmjSTcEPaaJBhJV4H+jSaTTjK/8GVpx4yKRNAxtcIqTJKsMEkikWTeELd+hUzjFSRJVGlEqmgQScdLoy6aPbNJ6ZKcFrXsnu91OQUEBW7ZsCZp5ISLd7pGsuzh3OgzbUDGg58A88sgjZGdn88c//tG/Lzc395yOTU1NxeFwRKhmQohQ6uvr8Xq9/nVSOlmIoZVTQY8JtmKyRVn9lz46V0y2YKWdNjQaCzEBqymHI98370UHrMbsxkUMcbTi7CM78NHu3evVve7dpaWlhXVkONLt3l246y7EhRjQIzB///vfmTVrFjfddBOpqalMnz6dZ5555pyOnTZtGhkZGVxzzTV88MEHfZZta2vD6XQGbEIIIcRAI5eQugzoDsynn37qn+3+1ltvcccdd/CDH/yAP/3pTyGPycjIYPXq1bz66qu8+uqrZGdnc/XVV7Nz586Qxyxfvhy73e7fsrNDrwsihOhbcnIyZrOZmpqagP3Bvu136j5i4S+v2wJGQnwZbURjRaFw4wrIDEe+Rvuzu2e6aTtLdlvIc+1e9+5qampIT08PmnkhIt3u3YW77uI8yDUkvwHdgTEMgxkzZvCrX/2K6dOn8+1vf5slS5awevXqkMeMGzeO73znO8ycOZO5c+fy7LPPMnfuXB5//PGQxyxbtozm5mb/Vl5eHonTEeIzwWKxMHPmTDZs2ODfp7WmkVocHasi9+QgiUZdG7CvkRrs+MrHMgwLMTRSg0mZsDGcBl2Fk0bsKils+U2qDhvDadS1eHQ7ThpJINGXTR/ZnEvdu8o4nU62bt3KnDlzgmZeiEi3eyTrLs5Df0dfZATm4sjIyGDChAkB+8aPH09ZWdl55Vx++eWUlJSEfN1qtZKQkBCwCSEuXHFxMc888wyV+hit2slBvRMvHjLIAWCfsY0SY6+/fLYaSwPVHNeHaNVOSo39OGkkW+UBvsmoI9VYjuoD1OlKUhlBBUcxE0WctoU130EyFXzKDt4lGisnqQ3M1tso0d2yyevIPuzL1vtxcpJsxnRlk8dRfHVv0c0sWrSIzMxMFixYMKjaPZJ1F+J8DehJvFdeeSWHDh0K2Hf48GFGjRp1Xjm7d+8mIyPj7AWFEGGxcOFC6urquPv7P6ENFzYcTFefw6p8lyRcnKb790CHSmYSBZTqfZSwjzjimaquJF7Z/WVGMQ4vHg7o7XhoJ454PHj4iHfCml/Bp4CmFScaTQvNTOeqHtkqMFsXUEq3bOYGyfZygB14aGd+y3zWrVtHTEzwSzsX6mK0e6TqLs6NPIm3i9J64J7ORx99xNy5c3nggQf42te+xrZt21iyZAlPP/00t9xyC+C7/FNRUcHzzz8PwMqVK8nNzWXixIm4XC7+8Ic/8Lvf/Y5//OMffPGLXzyn93U6ndjtdpqbm2U0Roh+GNRr8shaSEGt974csezB6mJ8ZnS+R86zP8MUd+GdR+O0i2O3/XJIfL4N6BGY2bNn8/rrr7Ns2TJ+8YtfkJuby8qVK/2dF4CqqqqAS0put5sf//jHVFRUEBcXx5QpU3j77beZP3/+pTgFIYQQQkTAgO7AAHzlK1/hK1/5SsjXn3vuuYDf77nnHu65554I10oIIYS4BPo7EXcITeId8B0YIYQQQvjIHJgu0oERQkSOiuCNjtqIXDaRnacyqOcGCTFASAdGCCGEGCz6+zA6GYERQgghxMXW3+UAhtJSAtKBEUJExKpVq9jk/X+4cRGPg3GmGdhDPBEWoEaXU2rsxUUrsdgYa5pCssr0v6615lO9jwr9KR7aiSEWLx7acfvy1XTsKrHvfL2/Iz+esWoKySqjR/5+KjiKBzeFhYX+pUzCadWqVWwy3uhqlzDXO4a4QdkuQpyvAf0kXiHE4LRmzRqKi4sZrSZyuelabMrBLuNd/yrHPTXpevYZW8hUoykwFZGqsthjfECLbvKXOa4PUq6PkG+axWg1kdO0YGAwiy9gw84u/V7f+XormSqXAnUNqWSxR39Ai27uyucQ5ZSQr2YwW32RYcOGUVRUhMsVPLN/7TKBy9U1Ya/3aAZnu4jzJOsgAYOgA1NRUcE3vvENkpKSiI2NZfLkyWzfvr3PYzZu3MiMGTOwWq3k5eX1utVaCBFZK1asYMmSJWSaRhOv7OSrWZiJolIfDVq+XB8miXRyTPkMUwmMMU3GhoNy7VsCRGtNmT5MrppAqsqiVp8gk1y8eDitTpGvZmLGTCXHQuQf8eWrcR35k7AxvEf+EXLVeFJVFjbl4Pnnn6eyspK1a9eGv11ULvEqIez1rqViULaLOHeyGnWXAd2BOXnyJFdeeSXR0dH87//+L5988gmPPfYYw4cPD3nM0aNHuf7665k/fz67d+/mrrvu4vbbb+ett966iDUX4rPL7XazY8cOCgsL/fuUUiSqNJp0fdBjmnQDiSotYF+SyqC5o/wZWnHjIlGlYWgvpzhJssoggUSadYMvnzSadEPwfBpIVKmB+aTTTENgPl11sNvtFBQUsGXLlvNvhCBCtkuY6m1oY1C2izhPshq134CeA/PII4+QnZ3NH//4R/++3NzcPo9ZvXo1ubm5PPbYY4Bv8cdNmzbx+OOPU1RUFNH6CiGgvr4er9dLWlpgh8RCDK04gx7jxoWFmB7lrbhx+V/vzGjHjUZjIQYLMQGvtXLq3POV1X9ppSvDGlAmLS2N6urqs57zuei7Xfpf73baBmW7CHGhBvQIzN///ndmzZrFTTfdRGpqKtOnT+eZZ57p85gtW7YEfMMBKCoq6vPbQltbG06nM2ATQgghBh4Vhm1oGNAdmE8//dQ/2/2tt97ijjvu4Ac/+AF/+tOfQh5TXV3d6xtOWloaTqeTM2fOBD1m+fLl2O12/5adnR3W8xDisyQ5ORmz2UxNTU3A/mDf9jt1HzHoKt/mL9/5042LaCwoFG5cAZnnna+D5bcFlKmpqSE9Pf2s53wuwtYuIeodjXVQtos4T3IJyW9Ad2AMw2DGjBn86le/Yvr06Xz7299myZIlrF69Oqzvs2zZMpqbm/1beXl5WPOF+CyxWCzMnDmTDRs2+PdprWnUNThUctBjHCqJRl0bsK9RV2PvKB/LMCzE0KhrMCkzNobToKtw0ohdJfnyqcUR4jZtB0HyqcFOUmA+XZ0Lp9PJ1q1bmTNnzvk3QhAh2yVM9TYp06BsFyEu1IDuwGRkZDBhwoSAfePHjw9Yfbqn9PT0Xt9wampqSEhIIDY2NugxVquVhISEgE0IceGKi4t55plnqDSO0qqdHNTb8eIhQ/nmsO0zPqTE+NhfPltdRgNVHDcO0qqdlBr7cHKSbJUH+Ca7jlSXcVR/Qp2uIFWNoIKjmIkiTts4qHf68snpyN9GibG3W/5YGqjmuD7Ukb8fJ4098sdyVB+gTlfSoptZtGgRmZmZLFiwIPztoo91tEt4653K4GwXcR5kBMZvQE/ivfLKKzl06FDAvsOHDzNq1KiQx8yZM4c333wzYN/69evl24IQF9HChQupq6vj7u//hDbtwoaD6aZ5WJXvkoRLn0aprmvxDpXMJNMcSo29lOi9xBHPVNOVxCuHv8wolY8XDweM7XhwE0c8Hjx8xDu+fPW5rnxOB1zpd6hkJlFAqd5HCft8+epK4pW9K59xvny9HQ/tzG+Zz7p164iJCX75pd/tgisi9R6M7SLOg6xG7ae0HrhrU3700UfMnTuXBx54gK997Wts27aNJUuW8PTTT3PLLbcAvss/FRUVPP/884DvNupJkyZx5513ctttt/HOO+/wgx/8gDfeeOOc70JyOp3Y7Xaam5tlNEaIfrgm6uuRC4/0Yo7elyOWPZgXc4xkuwxWF+Mzo/M9slc9gCn2wjuPxhkX5XfeNyQ+3wb0JaTZs2fz+uuv89e//pVJkybx4IMPsnLlSn/nBaCqqirgklJubi5vvPEG69evZ+rUqTz22GP84Q9/kFuohRBCDHpa938bKgb0JSSAr3zlK3zlK18J+Xqwp+xeffXV7Nq1K4K1EkIIIS4BWY3ab0CPwAghhBBCBDPgR2CEEJF1rfWWsxcaiFRkv3/JPBUxIMkkXj/pwAghhBCDhNK+rT/HDxXSgRFCCCEGC5kD4ycdGCE+w1atWsX77r/h5gzxajj55pnYTcGflgtQY5RR4vkYFy3EKRt55mmkmLL8r2utKfXupcIooZ02FAoN2HAwzjQDe4gnwgLU6HJKjb24aCUWG2NNU0hWmQHZn+p9VOhP8dBODHF48dBOG/Fhzu9VdzUdu0rsO1vv78iOZ6yaQrLK6JG9nwqORjTbgxsHyRw5coSxY8eGzBRiKJBJvEJ8Rq1Zs4bi4mJGmydREH0dNuVgp+ef/pWIe2oy6tjr+YAs82gKoq8jRY1gj+d9Wowmf5ljxgHKjUOkm3IAiCMBC1aGYWeX8W7obF3PPmMLmWo0BaYiUlUWe4wPaNFd2cf1Qcr1EfJNsxitJnKaUxh4maUKsSlH2PLT1agedU9gl36v72y9lUyVS4G6hlSy2KM/oEU3d2VziHJKSGdkxLLz1Qxmqy9iIoqioiJcruCZYpDrnAPTn22IOO8OjNvt5uWXX+ZHP/oRN998MzfffDM/+tGPeOWVV3C73WGt3P33349SKmDLz88PWf65557rVV6eFilEcCtWrGDJkiVkmccQr+yMN1+OmSgqjNKg5cuMQySpDHLME4hXdvKippKghlNmHAZ8IwFl3oPkmifRpOsYYcpjlmk+7bSRSBpmoqjUR4Nml+vDJJFOjimfYSqBMabJ2HBQrku6svVhctUEUlUWtfoEmYzGi4fTnCJfzQpbfpOuI0uNYZa6uqPuqZgxU8mxENlHfNlqXEf2JGwM75F9hFw1nibqyWJ0RLJTVRY25WCSupzKykrWrl0bNFMMcrKUgN95dWBKSkoYP348ixcvZteuXRiGgWEY7Nq1i0WLFjFx4kRKSkrCWsGJEydSVVXl3zZt2tRn+YSEhIDyx48fD2t9hBgK3G43O3bsoLCw0L9PKUWiKZ1moz7oMc1GPYmmwBWIk1QGzdpX/gytuHExnFRO6UYSTelEKQsJJOFUDSSqNJp08Owm7Xv9bNmJKg1DeznFSZJNGSSQRDP1vrqHId9BCqc4SaJKI0pFk0AiThpJJI0m3RA8mwYSVWpgNuk00xCYrSOXnUjXuUWpaAoKCtiyZUvQTCGGivOaA3PHHXcwefJkdu3a1esRxE6nk0WLFnHnnXfy1ltvha+CUVHntWy7UkqWeRfiLOrr6/F6vaSlBX6oW4ihFWfQY9pwYSFwRNOiYnAbvksVbn0G8P03qNH+shYVgxsXMQwLme0Olo0VNy7/6531a8ftz+/MPlvdzzVfYQqsO93rfurcs5XVf1moK1tFLNuCNaBMWloa1dXVQTPFICeTeP3OawTmgw8+4Je//GXQ9RMSEhJ48MEHef/998NWOYAjR46QmZnJ6NGjueWWW/pciRqgpaWFUaNGkZ2dzY033sj+/fvP+h5tbW04nc6ATQghhBhw5BKS33l1YBwOB8eOHQv5+rFjx3A4HP2sUpeCggKee+451q1bx1NPPcXRo0f53Oc+x6lTwb+tjBs3jmeffZa//e1vvPDCCxiGwdy5czlx4kSf77N8+XLsdrt/y87ODts5CDEQJScnYzabqampCdjvxoWV4PPGrHSNdvjLaxcW1TnSEgv45mUoVNfohnb5Rxt6jiZ0sgTLpi1gtKKzftFY/Pmd2Z2v9TdfYwTWnQusuw6WrSOW7aYtoExNTY2MRIsh77w6MLfffjuLFi3i8ccf5+OPP6ampoaamho+/vhjHn/8cf7t3/6Nb3/722Gr3HXXXcdNN93ElClTKCoq4s0336SpqYmXXw7+lMk5c+awaNEipk2bxrx583jttddISUnh97//fZ/vs2zZMpqbm/1beXl52M5BiIHIYrEwc+ZMNmzY4N+ntabRqA55G7XdlEyjEXhZokFXY1e+8rEMw0IMJ6nFphJpNGrw6HacNJCgk2jUNThU8GyHSqJR1wbsawyS3ahrMCkzNobTYFThpAE7yb66hyG/iTpsDKdRd9a9kQQSaaQWR4hbtB0EyaYGO0mB2aozuzbs2Y10dUQ9up2tW7cyZ86coJlikJO7kPzOaw7ML37xC4YNG8ZvfvMbfvzjH6OUryG01qSnp/OTn/yEe+65JyIVBd8I0GWXXXbOE4Wjo6OZPn36WctbrVasVmufZYQYaoqLi1m8eDF53ukkmJIo8x7Ci4dM02gA9nk2YyWOsVHTABhpGsd2z9sc8x4gxZRJtfc4Tt3IBPPlgG/uy0hzPke9+8g0jaHcOEwTtURj5SQ1ePGQoXJ92caHxBBHnmkKANnqMnbodzhuHCRZZVKty3BykvFqVle2uoyj+hPitI1UNYIS/THRWIjDxkG9PWz5mWo05foIzdR31L3Wl01OR/Y2YoglzzS5I3ssO/RGjutDJJNBtS7HSSPj1cyubMZyVB8gk1zKKaFZhz87DhuxDKNU7yMzM5MFCxaE/W9GXHryJN4u5/0gu5/85Cf85Cc/4ejRo/5JYunp6eTm5oa9cj21tLRQWlrKN7/5zXMq7/V62bt3L1/+8pcjXDMhBp+FCxdSV1fH3d//CW1eFzY1nBlR87F2XApy6dOgur6tOUwpTI66khLPHkq8e4hTNqZGfY54k8NfJsc0Hq/2UGGUAJpWnGighWamm+Zh7bjc5NKn/V+AABwqmUmmOZQaeynRe4kjnqmmK4lXXdmjVD5ePBwwtuPBTRw2PLTzkX4bG46w5VfoT7vVXdOCk+nqc13ZnKb7d1iHSmYSBZTqfZSwz5etriRe2buyGefLJnLZB/R2PLTjIJl16/4pj5AQQ57SWg/Y/ti///u/c8MNNzBq1CgqKyu577772L17N5988gkpKSksWrSIrKwsli9fDvhGiK644gry8vJoamriN7/5DWvXrmXHjh1MmDDhnN/X6XRit9tpbm4OOmFZiKEkkos5aq83YtkRp41LXYMLJos5XlwX4zOj8z1GPvJLTLEX3jk1zrgo+8nPhsTn2wU9iVdrzSuvvML3vvc9/u///b/8n//zfwK2cDlx4gQ333wz48aN42tf+xpJSUl8+OGHpKSkAFBWVkZVVZW//MmTJ1myZAnjx4/ny1/+Mk6nk82bN59X50UIIYQQgVatWkVOTg4xMTEUFBSwbdu2Psu/8sor5OfnExMTw+TJk3nzzTd7lTlw4AD/8i//gt1uZ9iwYcyePfusdxp3d0FrId111138/ve/Z/78+aSlpQUM1YbTSy+91OfrGzduDPj98ccf5/HHH49IXYQQQohLTdHPOTAXcEznsiOrV6+moKCAlStXUlRUxKFDh0hNTe1VfvPmzdx8880sX76cr3zlK7z44ossWLCAnTt3MmnSJABKS0u56qqr+Na3vsUDDzxAQkIC+/fvP69Lnxd0CSkxMZEXXnhhyM4tkUtI4rNELiGFIJeQxDm6mJeQRj3yS0z9mN9kuFwcP89LSAUFBcyePZsnn3zSl2EYZGdn8/3vf5+f/vSnvcovXLiQ1tZW/ud//se/74orrmDatGmsXr0agK9//etER0fz5z//+YLP5YJGYOx2O6NHj77gNxVCDCAR/KBWpsF7y6Y2Bu9at9dEfT1i2es9fY+Miwjr763QHcf2fGBrqLtxO5cdWbZsmX+fyWSisLAw5HIVW7Zsobi4OGBfUVGRf30uwzB44403uOeeeygqKmLXrl3k5uaybNmy87p77oL+C73//vt54IEHOHPmzIUcLoQQQogLEaYn8WZnZwc8wLXzZpieQi070tdyFdXV1X2Wr62tpaWlhYcffpgvfelL/OMf/+CrX/0q/+f//B/efffdc26KCxqB+drXvsZf//pXUlNTycnJITo6OuD1nTt3XkisEEIIIS6C8vLygEtIF/NZaIbhG/W98cYb+dGPfgTAtGnT2Lx5M6tXr2bevHnnlHNBHZjFixezY8cOvvGNb0R0Eq8QIrJWrVrF++1/x42LeOUg3zQTuyn4U2EBaowySrx7cdFKHDbyzFNJMWX6X9daU2rso8IopZ22jgUMwRbmbA/txBCHFw/ttEW27jgYZ5qBPcTTcgFqdDmlhi87FhtjTVNIVoHZn+p9VOhPI5rdq10ikF9YWMhTTz3F2LFjQ2aKCArTYo4JCQnnNAcm1LIjfS1XkZ6e3mf55ORkoqKiet0hPH78eDZt2nSuZ3Jhl5DeeOMNXn/9dZ566inuv/9+7rvvvoAtXO6//36UUgFbfn5+n8ecy61bQoiuOwtGmydREFWEDQc7vRv9Kx331GTUs9e7hSzTaAqiikgxZbHHu4kW3eQvc8w4SLlxmHQ1CoBhJGDBSjz2sGWPN89itGkSpzmFgZfZ5msiUve4jroPw84u493Q2bqefcYWMtVoCkxFpKos9hgfBGQf1wcp10cimp1vmsVoNdHfLrNUITblCGv+bFMhw4YNo6ioCJcreKaIrM4n8fZnOx/Blh0xDIMNGzaEXK5izpw5AeUB1q9f7y9vsViYPXs2hw4dCihz+PBhRo0adc51u6AOTHZ29kW7O2fixIlUVVX5t756Z523bn3rW99i165dLFiwgAULFrBv376LUlchBpMVK1awZMkSskyjiVd2xptnYyaKCuPToOXLjEMkqQxyzOOJV3byzFNIUMMpM44Avm/qZcYhck0TaaKOEaY8ZkZ9gXbaSFRpYctONY2gVpeTqUbjxcNpnBGp+yzTfF/d8dW9Uh8Nml2uD5NEOjmmfIapBMaYJmPDQbku6crWh8lVE2jSdWSpMRHJTlVZ1OoTZNLZLqfIV7PCmm9TDp5//nkqKyv9EzLF0FdcXMwzzzzDn/70Jw4cOMAdd9xBa2srt956KwCLFi0KmOT7wx/+kHXr1vHYY49x8OBB7r//frZv387SpUv9Ze6++27WrFnDM888Q0lJCU8++ST/7//9P773ve+dc70uqAPz2GOPcc899/S5MnW4REVFkZ6e7t+Sk4Mv1gbwxBNP8KUvfYm7776b8ePH8+CDDzJjxgz/rV9CCJ/OOwsKCwv9+5RSJKo0mnVD0GOadQOJKnBiXpJKp9nwlT9DK25cDFcpnNInSVRpRCsLCSqJZhrDkp1kSsPQXk7pk6SYMklQSTTphojUPUpZSCAJp/Id26Trg2Y3Bc3OoLmjfGe2gxROEZnsRNXRLpwk2ZRBAkk0U+9vl3Dkd7Lb7RQUFIS8A0VEWJgm8Z6PhQsX8uijj3Lvvfcybdo0du/ezbp16/wTdXs+VHbu3Lm8+OKLPP3000ydOpX//u//Zu3atf5nwAB89atfZfXq1fz6179m8uTJ/OEPf+DVV1/lqquuOud6XdAcmG984xucPn2aMWPGEBcX12sSb2Nj44XEBnXkyBEyMzOJiYlhzpw5LF++nJEjRwYte7Zbt0Jpa2ujra1rOfqet5cJMdSEurPAomJo1cH//ttwYVGBz5+wEIMb392InZcpfPM7NBZ8Za3E4NZniFHD+p3t2+f253dmR6ruFhWDGxcxDKOV4NluXP7yXdlW3Lj8r/uyTRHLthBDe7d26czufC0c+d31dQeKiLAwzYE5X0uXLg0YQemu50NlAW666SZuuummPjNvu+02brvttgurEBfYgXn88ccvysTdgoICnnvuOcaNG0dVVRUPPPAAn/vc59i3bx82m61X+bPduhXK8uXLeeCBB8JadyGEEEJEznl1YDpHJsK53lFfrrvuOv//njJlCgUFBYwaNYqXX36Zb33rW2F7n2XLlgWM3DidTrKzs8OWL8RAE+rOArd2YSU26DG+0Y7AiZu+b/C+8p0jHBqNQvm/vbfhW+k6HNluXAwjwZ/fmR2puru1C5tyBB2p6OQbyemZ3dY10kJnthGx7J7t0pnddZ79z+/etjU1NUybNi1opoisC5mI2/P4oeK85sA4HA6GDx9+1i1SHA4Hl112GSUlJUFfP9utW6FYrVb/LWXnemuZEINZsDsLtNY06pqQt9zaVRKNOvC/rwZd7b91OZZhWIjhpK7DpobTqGvw6HacugE7iWHJbjBqMCkzNjWceqMKp27AoZIiV3caSNC+Yx0q+Pw7h0qiUdcG7GvU1dg7yndmN1GHjchkN+qOdmE4DUYVThqwk+xvl3Dkd3I6nWzdujXkHSgiwjqfxNufbYg4rxGYf/7zn/7/rbXmy1/+Mn/4wx/IysoKe8WCaWlpobS0lG9+85tBX++8deuuu+7y7+t+65YQoktxcTGLFy8mz5hGgkqkzDiMFw+ZJt8yIfs8H2JVsYw1TwVgpGkc270bOOY9SIopk2rjOE59kgnm2YBvEvBI0ziOGvvJVGMoNw7TZNQRjZVGXRu27DhlI1VlU2LsIRoLcSRwwNge/rrjq/tJavDiIUPl+rKND4khjjzTFACy1WXs0O9w3DhIssqkWpfh5CTj1ayubHUZR/UnZKrRlOsjNOv6sGfHaRupagQl+uOOdrFxUG8Pa34sw1i0aBGZmZnn9ch3EUaXaA7MQHReHZieT8czm81cccUVEVsX6d///d+54YYbGDVqFJWVldx3332YzWZuvvlmwHfrVlZWlv8RyD/84Q+ZN28ejz32GNdffz0vvfQS27dv5+mnn45I/YQYzBYuXEhdXR13f/8nHZdiHMwwX42143KKi9aAf+wcpmQmM4cS715KjI+Jw8ZU81XEd1yqAMgx5ePFQ4VRCmhacaKBFprCln3A+xEe3MRhw0M727zrI1z3Zqab5nVl69MBcwAdKplJpjmUGnsp0XuJI56ppisDskepjmz9acSyDxjbA9rlI/02Nhxhz5/fMp9169ad16rBQkTCBa1G3clms7Fnz56IdWC+/vWv895779HQ0EBKSgpXXXUVDz30EGPGjAHg6quvJicnh+eee85/zCuvvMLPfvYzjh07xtixY/n1r3993qtmy2rU4rPkWsvNl7oKA5I2htBX1TCSxRx7u5irUY++71f9Xo360wf+Y0h8vl3QXUgXy0sv9f0fyoXeuiWEEEIMSnIJya/f68XLOkhCCCGEuNjOawSm5+3TLpeL7373uwwbNixg/2uvvdb/mgkhhBAiUD9vox5KIzDn1YGx2+0Bv3/jG98Ia2WEEJeA6vdA7KWhjYjGK1PkRpcjPb9G5qkMYXIJye+8OjB//OMfI1UPIYQQQohzNqAn8QohhBCiGxmB8ZMOjBCfYatWreJ9999wc4Z4NZx880zsptArvtcYZZR4PsZFC3HKRp55GimmrgdZaq0p9e6lwiihnbaOxRHBFuZsD+3EEIcXD+20Ea8c5Jtm+p+sGzLfuxcXrcRhI888lRRTZmC+sY8Ko7RH3SOYjYNxphkhnyAMUKPLKTV82bHYGGuaQrIKzP5U76NCf4qHdhwkc+TIEcaOHRsyUwxespRAl0F18fvhhx9GKRXwpN2ennvuOZRSAZs8cEmI3tasWUNxcTGjzZMoiL4Om3Kw0/PPXmsGdWoy6tjr+YAs82gKoq8jRY1gj+d9Wowmf5ljxgHKjUOkm3IAGEYCFqzEYw9b9vioyxltmsxpTmHgZbb5Gmw42Ond2Ed+PXu9W8gyjaYgqogUUxZ7vJto0d3zD1JuHCZdjepd9zBnx3VkD8POLuPd0Nm6nn3GFjLVaApMRaSqLPYYHwRkH9cHKddHyDfNYrapEBNmioqKcLmCZwoxVAyaDsxHH33E73//e6ZMmXLWsgkJCVRVVfm348ePX4QaCjG4rFixgiVLlpBlHkO8sjPefDlmojqeRNtbmXGIJJVBjnkC8cpOXtRUEtRwyozDgG8koMx7kFzzJJp0HSNMecyMLqSdNhJVWtiyU00jqNXlZKrRePFwGifjzbM78j89S/54X755Skf+ka584xC5pok00VH3qC/0qHv4smeZ5vuy8WVX6qNBs8v1YZJIJ8eUzzCVwBjTZGw4KNclXdn6MLlqAqkqC5tyMMlUQGVlJWvXrg2aKcRQMSg6MC0tLdxyyy0888wz57RYpFKK9PR0/5aWlnYRainE4OF2u9mxYweFhYX+fUopEk3pNBv1QY9pNupJNAUujJqkMmjWvvJnaMWNi+Gkcko3kmhKJ1pZSFDJNNMQluwklY6hvZzSjaSYMklQSTTpBl/dVRrNuiF4vm4gUQX+O5Ck0mk2GgLrrlI4pU+SqNI66p5EM41hz45SFhJIwql8xzbp4O3SFDS7d7t0LxOlLBQUFLBly5agmWKQ02HYhohB0YG58847uf766wP+se1LS0sLo0aNIjs7mxtvvJH9+/f3Wb6trQ2n0xmwCTGU1dfX4/V6e3XuLcTQRvBLD224sBB4OdaiYvyXP9z6DODrCGm0v6xVxeDuOLa/2RYVg5s2f76VmIDX2jgTOl/1yCcGd0f5zvfxzU3pVveO/EhkW7q1iztEu7iDtQtWf/nOnz3LpKWlUV1dHTRTDG6dc2D6sw0VA74D89JLL7Fz507/go1nM27cOJ599ln+9re/8cILL2AYBnPnzuXEiRMhj1m+fDl2u92/ZWdnh6v6QgghhIiAAd2BKS8v54c//CF/+ctfznki7pw5c1i0aBHTpk1j3rx5vPbaa6SkpPD73/8+5DHLli2jubnZv5WXl4frFIQYkJKTkzGbzdTU1ATsd+PCSvD/1qxBRgrcumv0waJiAd+8DIXyl23TXaMM/c12axcWrP583+hH12tWYkPn95go6xvdiO3I972PpkfdO/Ijke3u1i49R1A6BRudcdPWNYrT8bNnmZqaGtLTAy/JiSFELh8BA7wDs2PHDmpra5kxYwZRUVFERUXx7rvv8tvf/paoqCi8Xu9ZM6Kjo5k+fTolJSUhy1itVhISEgI2IYYyi8XCzJkz2bBhg3+f1ppGozrkrc52UzKNRuBliQZdjV35yscyDAsxnKQWm0qk0ajBo9tx6nrsJIUlu0FXY1JmbCqReqMKp27AoZJ8ddc1IW9HtqskGnVgZ61BV/tvjfbXXddhU8Np1J11b8BOYmSyaSBB+451qODt4lBJNOragH2NQdql+/t7dDtbt25lzpw5QTPFICdzYPwGdAfmi1/8Inv37mX37t3+bdasWdxyyy3s3r0bs9l81gyv18vevXvJyMi4CDUWYvAoLi7mmWeeodL7KS26mQPej/DiIdM0GoB9ns0c8ez2lx9pGkeDruKY9wCtuplSz8c4dSMjTZcBvrkvI835HPXuw6FSOGGUsL39baKx0khN2LJrjROkqmwqdClmoogjgQPG9h75H3LEuydI/kFatZNS716c+iQjTWO78k3jOGrsx0EqJ4xStns2+Oqua8OevcN4h2isnOxolwyV68s2PqTE+Nifna0uo4Eqjhsd2cY+nJwkW+V1ZavLOKo/oU5X0KKb2G9sJTMzkwULFvTvD0SIAW5AP8jOZrMxadKkgH3Dhg0jKSnJv3/RokVkZWX558j84he/4IorriAvL4+mpiZ+85vfcPz4cW6//faLXn8hBrKFCxdSV1fH3d//CW1eFzY1nBlR87F2XJJx6dPQbbV5hymFyVFXUuLZQ4l3D3HKxtSozxFvcvjL5JjG49UeKowSQNNKMxpo0c1hyz7g2YYHN3HY8NDONu96bMrBDPPVWDsu17hoDfim6TAlM5k5lHj3UmJ8TBw2ppqvIl51z8/Hi6fjVm9NK05f3WmKYHYz003zurL1aVT3dlHJTDLNodTYS4neSxzxTDVdGZA9SvmyDxjb8eDGQQrr1r0jz78aouRBdl0GdAfmXJSVlWEydQ0knTx5kiVLllBdXc3w4cOZOXMmmzdvZsKECZewlkIMTEuXLuXvPw5+u+2s6N53/aWZRpJmGRkyTylFXtQU8uj7eU1hye5jMcdZUV8Mnm86S755MnnmyX3UPDzZoRZznGX+Qu9slU2aOfSNBUopxqjJjKGr3pdddlnI8mKQk6UE/AZdB2bjxo19/v7444/z+OOPX7wKCSGEEOKiG3QdGCGEEOKzSi4hdZEOjBBCCDFYyCUkP+nACPEZp8yRuxlR6wj+a2kM6Jso+6TOfgNlv1xruTmybxAh/3D/9VJXQQwi0oERQgghBgsZgfGTDowQn2GrVq3iPdfruPUZ4tVwxltmh3zYHEC19zgl7Xtw6RbiVAJjo6eTYs7yv661ptTzMSc8R2inrWP9H7Cp4eRHz+ozu8Z7nBLPxx3ZNvKigmdXeEvw0E4McXjx0E4b8Wo4+eaZfecbZb58OvLN00gx9cj37qXCKOld90GS3btdHOSbZvofqhcy37sXF63EYSPPPJUUU2ZgvrGPCqO0R93Dm+2hncLCOp566inGjh0bMvOzTubAdBm8Y7BCiH5Zs2YNxcXFjImawhXWL2MzDWdH2zu06eALCzZ569jr3kSWeQxXWK8n1TyC3e53OWU0+csc83xCmecgGeZcQDFM2bEQQ7yys9P9z16P3PdnG3Xsbf+ALPMYCixfJsWUzZ7292jpnu39hHLvIcZHX85o82ROcwoDL7OjrsWmHOz0nCXf8wFZ5tEURF9HihrBHs/7gfnGAcqNQ6SbcgAYRgIWrMRjHxTZ46MuZ7SpW7uYr8GGg53ejX3k17PXu4Us02gKoopIMWWxx7uJFt09/yDlxmHS1ajedQ9T9njzLC6PuoZhw4ZRVFSEyxU8UyBP4u1mUHVgHn74YZRS3HXXXX2We+WVV8jPzycmJobJkyfz5ptvXpwKCjGIrFixgiVLlpAVNYZ4k4MJ0QWYMVPpCb7sxnHvQZJMmeRGTyTeZCcvehoJKpFyzyHA9236uOcAo6Mmc9KoZYQ5j5mWQtpxkWhKx4yZCm9p0Owyz0GSTBnkRE3oyJ5KghpOmbcru8xzkNyoSaSas6k1ysk0jcGLh9PayXjz5ZiJ6nhQXJB84xBJKoMc8wTilZ28qI5843BXvvcgueZJNOk6RpjymBldSDttJKq0QZGdahpBre7WLjgZb57dkf/pWfLH+/LNUzryj3TlG4fINU2kiY66R32hR937n51qGoFNOXj++eeprKxk7dq1QTOF6G7QdGA++ugjfv/73zNlSt8PyNq8eTM333wz3/rWt9i1axcLFixgwYIF7Nu37yLVVIiBz+12s2PHDgoLux4op5Qi0ZxBk1Ef9Jhmo44kc+ACgUnmDJqMOgDO6BbcuHCYUjmlG0kyZxCtLCSoZJp1A4mmdJpDZteTaApc7iPJlOkv35mdZErH0F5O6UZSTJkkqGSadL2v7mfN71F3lUGz7sinFTcuhuOre6IpvavunEvdL212kurZLkk06QZfu6g0mnVD8HzdQKJK65GfTrPREFh3lcIpfZJEldZR9ySaaQxLdpKpq4zdbqegoIAtW4I/XFEgIzDdDIoOTEtLC7fccgvPPPMMw4cP77PsE088wZe+9CXuvvtuxo8fz4MPPsiMGTN48sknL1JthRj46uvr8Xq9pKUFfsBYVQxt+kzQYzpXle7OorpWYu78aVIKjfaXtaoY3PoMlr6y6Vp5Omh2x2rLFhWLmzZ/vlV1rdZsIYY2gl96aAuy4nNg3X31UsHq3nHsQM62qJjAdiEm4LU2zqPdicHdUb7zfXzzXrrVnW7/P+1nds/zS0tLo7o6cGFP0aVzDkx/tqFiUHRg7rzzTq6//vqAb4uhbNmypVe5oqKiPnv0bW1tOJ3OgE0IIYQQA9eA78C89NJL7Ny5079Y49lUV1f3+lZ5th798uXLsdvt/i07O/S6I0IMBcnJyZjNZmpqagL2t2mXf8HFnrqPdnRy665v2Z0/Da1RKH/ZNu3yjZz0lU1Mr8mgAdkd39Ld+gwWrP787qNCblxYe3ybD8jvs+6+eulgde84diBnu7UrsF1wBbxm5TzaHReWjvKd76PpUXe6/f+0n9k9z6+mpob09MDLZqIbuYTkN6A7MOXl5fzwhz/kL3/5S0RXVl22bBnNzc3+rby8PGLvJcRAYLFYmDlzJhs2bPDv01rT6K3GEeKWXrsphQZv4BeBBqMKhykFgFgVj4UYmoxabCqRBm81Ht2OU9djV0k0GtUhbxe2m5JpNHpnd5bvzG4wajApMzaVSL1RhVPX41DJvrqfb76uxq468hmGhRhO4qt7o1HTVXcuoO4XObtBV/dolwYcKsnXLroGuwp+q7NdJdGoAzuxDbraf2u0v+66DpsaTqPurHsDdhLDkt1gdJVxOp1s3bqVOXPmBM0UcgmpuwHdgdmxYwe1tbXMmDGDqKgooqKiePfdd/ntb39LVFQUXq+31zHp6em9vlWerUdvtVpJSEgI2IQY6oqLi3nmmWeo8JTSYjRzoH0rXjxkRo0BYK/7A4607/KXH2XOp8Go5Fj7J7QazZS078FpNJIdNQ7wzfEYFTWeTz37GG5K5YT3CNvd64kmhkajBi9eMs2jAdjn3hyQPTKqI9tzgFajmdL2j3HqRkaau7JHRuVz1LOPWu8JUk3ZVBglmIkiTtk54P3IV3dTR75nM0c8u7vyTeNo0FUc8x6gVTdT6unIN13WlW/O56h3Hw6VwgmjhO3tbxONlUZqBkV2rXGCVNWtXUjggLG9R/6HHPHuCZJ/kFbtpNS7F6c+yUjT2K580ziOGvtxkMoJo5Ttng2+uuvasGXXGhWc0k0sWrSIzMxMFixYcA5/weKzbkA/yO6LX/wie/fuDdh36623kp+fz09+8hPM5t7P454zZw4bNmwIuNV6/fr10qMXooeFCxdSV1fH3T/4KW36DDY1nBnWL/gv87h0KwrlL+8wpzDZchUl7bs54tlNnLIxzTIPm8nhL5MTNQEvHk54jgCaVt2MBlp0EzMs8wOy6Z5tSmFy9JWUePZQ0pE9NfrzxHfPNk/Aqz0caN+KBzdx2PDgYZvnLV/do7rnnwbVIz+qI9+7x5cf9bnAfNN4vNpDhVHiqzuddW8eFNkHPNu6tUs727zrsSkHM8xXY+24XOOiNeASgsOUzGTmUOLdS4nxMXHYmGq+injVPT8fL56OW701rTh9dacpbNkHvB/hwc38lvmsW7cuoiPug548iddP6YguVhJ+V199NdOmTWPlypUALFq0iKysLP8cmc2bNzNv3jwefvhhrr/+el566SV+9atfsXPnTiZNmnRO7+F0OrHb7TQ3N8tojBjyiuK+GbHsyK6FNKj+6bq4tHGpa3BBButaSBfjM6PzPcZ/71eYrRfewfO2uTjwn/8xJD7fBvQlpHNRVlZGVVWV//e5c+fy4osv8vTTTzN16lT++7//m7Vr155z50UIIYQQA9+AvoQUzMaNG/v8HeCmm27ipptuujgVEkIIIS4SRfeLrxd2/FAx6DowQgghxGeWzIHxkw6MEJ91QSbDh4uK5BwYFdl5HjJ/JwQVuZkH11pviVg2wD/a/hLR/ItBVqPuMujnwAghhBDis0dGYIQQQojBQi4h+UkHRojPsFWrVvFe63/j1meINyUy3no5dnNKyPLVnmOUtO3CpVuIMyUw1jKTlKgR/te11pS6d3PCc4R27epYBBBspkTGWy7Hbg7+xFl/tnu3L1slMNYyo3d2+x5OeI7g0W5iVBxe7aGdNuLVcMZbZod8oi1Atfc4Je17uvKjp5NizgrM93zsqzttXXVXw8mPntVndo33OCWejzuybeRFBc+u8Jb0zjbP7DvbKPNl05FtnkaKqUe2dy8VRgke2okhDi+d7eIg3zTT//TbkPnevbhoJQ4beeappJgyA/ONfVQYpRGte6TbxaGSOXLkCGPHjg2ZOWgMoU5If8glJCE+o9asWUNxcTFjLFO5Iu4GbKbh7DjzNm1G8NWFm7y17HW9R1b0WK6Iu4FU80h2u/7JKe9Jf5lj7fsoaz9ARlQuoBim7FiIIV452OF6O+Rq1E3eWva2vU9WVB5XxH6F1Khsdrdt5JTRPXs/Ze0HmGApYEz0VE7rUxgYzLZ8yVf3tndo67H2Tld+HXvdm8gyj+EK6/Wkmkew2/0up4ymrnzPJ5R5DpJh7ll3Ozvd/+y1ro8/26hjb/sHZJnHUGD5MimmbPa0v0dL92zvJ5R7D5FuzvFlk4AFK/HY2ek5S7bnA7LMoymIvo4UNYI9nvcDs40DlBuHGB91OaNNkznNKQy8zDZfgw0HO70b+8ivZ693C1mm0RREFZFiymKPdxMtunv+QcqNw6SrUQARqXu6KSdi2eOjLufyqGsxE0VRUREuV/BMMfgM6A7MU089xZQpU/yP958zZw7/+7//G7L8c889h1IqYJMnOgoR3IoVK1iyZAlZ0WOJNzmYYJ2DWZmp9JQELX+8/QBJ5ixyLZOINznIs04nwZRIeftBwPeN93j7AUZbpnDSW8uI6LHMii2iHReJ5nRfdntf2Zld2ZbO7ENd2R5fdmrUSGq8ZWSZ8/DSzmntZEJ0AWb6qLv3IEmmTHKjJxJvspMXPY0ElUi5p0d+1GROGrWMMOcx01Loq7spHTNmKrylQbPLPAdJMmWQEzWhI3sqCWo4Zd6u7DLPQXKjJtFk1Pmyowtpp41ElYaZqI6n3AbJNg6RpDLIMU8gXtnJi+rINg53ZXsPkmueRKppBLW6nEzTGLx4OI2T8ebZHfmfniV/vC/fPKUj/0hXvnGIXNNEmqhjhCkydW/SkctONY3AZhrOxKg5VFZWsnbt2qCZg4WshdRlQHdgRowYwcMPP8yOHTvYvn07X/jCF7jxxhvZv39/yGMSEhKoqqryb8ePH7+INRZicHC73ezYsYPCwkL/PqUUieZMmrx1QY9p9taRZM4I2JdkzqLJ8JU/o1tw6zM4TOmcMhpIMmcSrSzYTSk4jXoSzRn+sr2yjWDZmb2yE00ZGNrLKaOBFHMWdlMyzUZdR90zaDLq+8gPXA8tqVt9zugW3LhwmFI5pRtJMmcQrSwkqGSadQOJpnSaQ2bXk2jqUXdTpr98Z/Zw5ctONKV3ZXMu2T3qrTJo1h3ZtOLGRZJK97WLbiTFlEmCSqJJN/jaRaXRrBuC5+sGElVaj/x0mo2GgPzhKoVT+iSJKi3sdR9OZNulU7SyUFBQwJYtW4JmDhqyGrXfgJ4Dc8MNNwT8/tBDD/HUU0/x4YcfMnHixKDHKKVkKXYhzqK+vh6v10taWuCHl1XF0Go0Bz2mTZ/BogJHNC2mGNwe32Uhd8flIRMKjfaXtagY2vQZYk3xtBrOENkuLB3rAfmzVQxuIzDbqmJw6zZfPjG+bFznUHcXFnrUXcX4L1F0/jQp5c/uer8zxKhhoeuOq3e7dM/uqJ9SpoB2saoY3LiIYRit9JEdrN5GZ73PdO2jq12sxAS81qrPo+7E4Kaz3TvqTpB2CVPdVbA2D2O7dJeWlkZ1deDq3mLwGtAjMN15vV5eeuklWltb+1yYsaWlhVGjRpGdnX3W0ZpObW1tOJ3OgE0IIYQYaC7VJaRVq1aRk5NDTEwMBQUFbNu2rc/yr7zyCvn5+cTExDB58mTefPPNkGW/+93vopTyr3F4rgZ8B2bv3r3Ex8djtVr57ne/y+uvv86ECROClh03bhzPPvssf/vb33jhhRcwDIO5c+dy4sSJPt9j+fLl2O12/5adnR2JUxFiwEhOTsZsNlNTUxOwv027/Csj92RVsb0mVbqNrpGTzp8GGoUKGN2wqlja9Bn/ysW9s7tGDPzZ2oXFFJjtG6mx+vJx+bI7von3XfcY/0hIQH63USIAQ2t/dtf7xfrPIWg2Mb3bpXt2R/20NgLapXNUyE3XOQTN7rPesV376GoX38hK12tWzqPuuLDQ2e4ddSdIu4Sp7jpYm4exXbqrqakZ/CP0l+ASUueE//vuu4+dO3cydepUioqKqK2tDVp+8+bN3HzzzXzrW99i165dLFiwgAULFrBv375eZV9//XU+/PBDMjMzgyT1bcB3YMaNG8fu3bvZunUrd9xxB4sXL+aTTz4JWnbOnDksWrSIadOmMW/ePF577TVSUlL4/e9/3+d7LFu2jObmZv9WXl4eiVMRYsCwWCzMnDmTDRs2+PdprWn0VuEIcRu13ZxCg7cqYF+DtxKHyVc+VsVjUbE0GTXYTEk0eKvwaDfNRh0JpmQavdX+sr2yTSk0eAOH9hu8Vb2yG40qTMqMzZREvbeCZqMeuymlo+7VOELcdhs03+iRTwxNRi02lUiDtxqPbsep67GrJBqN6pC39NpNyTQavbM7y3dmn9R12FQijUa3bC4gW1djVx3ZDMNCDA262tcuKpF6owqnbsChknztomuwq+C3UdtVEo06sBPboKv9t1135vvqPpxGXRP2up+ktqNdwp/doLvKeHQ7W7du7XMEXwTXOeH/1ltvZcKECaxevZq4uDieffbZoOWfeOIJvvSlL3H33Xczfvx4HnzwQWbMmMGTTz4ZUK6iooLvf//7/OUvfyE6Ovq86zXgOzAWi4W8vDxmzpzJ8uXLmTp1Kk888cQ5HRsdHc306dMpKQl+Z0Inq9Xqv9OpcxNiqCsuLuaZZ56hor2EFqOJA20f4tUeMqPyANjrep8jbTv85UdFj6fBW8Ex935ajWZK2nbjNBrIjs4HfHMZRkWP51P3xww3p3Ki/TAfnfkH0cTQaFT7sqM7sts2ccS9s3d2e0e2uzN7XFd21Hg+de+l1lNOmnkkJ7wlmIlmmErgQPtWvHjIjBrjy3d/wJH2XV355nwajEqOtX/iy2/fg9NoJDuqR75nH8NNqZzwHmG7e31H3Wvw4iXTPBqAfe7NAdkjozqyPQdoNZopbf8Yp25kpLkre2RUPkc9+3CYUjnhLWF7+9tEY6WRGl+9TR3Zns0c8ezuyjaNo0FXccx7gFbdTKmnI9t0WVe2OZ+j3n3UGidIVdlUGCWYiSKOBA4Y23vkf8gR754g+Qdp1U5KvXtx6pOMNI3tyjeN46ixHwepnDBKI1J3h0rhhBG5djllNLHPs4XMzEwWLFgQ/D+IQSJcl5B6Tptoa2sL+n7BJvybTCYKCwtDTojesmVLQHmAoqKigPKGYfDNb36Tu+++O+Sc1rMZ0JN4gzEMI2RD9+T1etm7dy9f/vKXI1wrIQafhQsXUldXx90/+Clt+gw2UyIzYguxdly2cRmtKFPX2rUOcyqTYz5PSdsujrh3EmdKYFrMfGzm4f4yOdGT8GoPJzyHAU2rbkIDLUYTM2K+6L8MEzTb+jlK3Ls54t5FnEpgmvVqbKbu2RPx4uET9xY82k2csuHVHra612FTw5lh/UJXvm5F0T0/hcmWqyhp380Rz27ilI1plnnYTI6u/KgJePFwwnOko+7NvrrrJmZY5gdkd1/T12FKYXL0lZR49lDSkT01+vPEd882T8CrPVR4S3zZdGY3MyOqe/ZpUD2yozqyvXt82VGfC8w2jcerPRzwbMODmzhseGhnm3c9NuVghvlq/6U7F60BlxAcpmQmM4cS715KjI+Jw8ZU81XEq+75+XjxdNzSHJm6VxiRbxeHSmHdug2D/9EaYXoSb8+pEvfddx/3339/r+KhJvynpaVx8ODBoG9RXV0dtHz3CdSPPPIIUVFR/OAHP7iAk/AZ0B2YZcuWcd111zFy5EhOnTrFiy++yMaNG3nrrbcAWLRoEVlZWSxfvhyAX/ziF1xxxRXk5eXR1NTEb37zG44fP87tt99+KU9DiAFr6dKl/L9l24O+NjvuS732pUflkB6VEzJPKUWedTp51um+HSEWRJwdW3Rh2ZZp5Fmm+XYYoRdznG29tne+eRTp5lF950dPJS96akfVg9d9lvWaXvvSzKNIO4/sUIs5zoou7LUvzTSSNMvIvrOjppDHlK6dOnjbzIr6YvB801nyzZPJM0/u2BF84D5sdY9g9mWXXdbn+wwKYerAlJeXB1xtsFqt/arW+dixYwdPPPEEO3fuRHXrmJ6vAd2Bqa2tZdGiRVRVVWG325kyZQpvvfUW11zj+wekrKwMk6nrP6aTJ0+yZMkSqqurGT58ODNnzmTz5s0hJ/0KIYQQn0XnOl0i1IT/viZEp6en91n+/fffp7a2lpEjuzqgXq+XH//4x6xcuZJjx46d0zkM6A7Mf/3Xf/X5+saNGwN+f/zxx3n88ccjWCMhhBDi0unv03TP99juE/475w8ZhsGGDRtYunRp0GPmzJnDhg0buOuuu/z71q9f759A/c1vfjPoHJlvfvOb3HrrredctwHdgRFCCCFEN5dgNeri4mIWL17MrFmzuPzyy1m5ciWtra3+zkbP6Rw//OEPmTdvHo899hjXX389L730Etu3b+fpp58GICkpiaSkwDvjoqOjSU9PZ9y4cedcL+nACDHAFdlvi2i+io7cPwPaG3qeSr/149r5OcVHMtzrjWQ6kbzBNKL/Pw0xd0dcWp0T/u+9916qq6uZNm0a69at80/U7TmdY+7cubz44ov87Gc/4z/+4z8YO3Ysa9euZdKkSWGtl3RghBBCiEFCaY0KMcH8XI+/EEuXLg15yajndA6Am266iZtuuumc88913kt30oERQgghBotLcAlpoJIOjBADXJn7AMfa9uHWZ4g3DWd87BXYQzwtF6C6/SglbbtwGS3EmWyMtc4iJbrrmQ9aa0rbdnGi/TDt2oXCt8hggjmJ/Lg5OKL6yHYfpeTMDs4YLcSZErgsbnZAdo37GOVtB3B6G2jXbVhULB7tDnu9PdpNjBqGFw/t2kW8KZHx1sv7zvcc8+VrX93HWmaSEjUiMN+9mxOeIwHtYotItkIDNjWc8ZbZIZ84C1DtPU5J+x5ftkpgbPR0UsxZgdmejznhOYKHdmJUHF7toZ024sOc305bQN3zzTP7zK4xyijxfIyLFuKUjTzzNFJMPbK9e6kwSnpkO8g3zfQ/EThktncvLlqJw0aeeSoppszAbGMfFUYpHtpxqGSOHDnC2LFjQ2aKwWXAP4lXiM+yNWvWcMi1jTHWaVwx7F+wmRPZ0foP2owzQcs3eWrYe+ZdsqLHcsWwfyE1ahS7z7zDKe9Jf5lj7r2UuQ+QETUaUAwz27GoGOLNDna0rAuZfdJTw8et/yTLehlzEhaQahnFrpa3OeVt9Jfx6nYcUemkRecAMCJ6XNjrPSFmDmOs0zmtnRjay+zYL2MzDWfHmbdD53tr2et6z5cfdwOp5pHsdv0zML99H2XtB8iIyvW1i0rAQgzxJkcEsu1d2W3v0NZjzZ6u7Dr2ujeRZR7DFdbrSTWPYLf7XU4ZTV3Znk8o8xxkgqWAMVFTOK1PYWAw2/IlX7uEKT/D3FF3ErBgJR47Oz3/7LXekD/bqGOv5wOyzKMpiL6OFDWCPZ73aemebRyg3DhEuikHIDDbu7GP7Hr2ereQZRpNQVQRKaYs9ng30aK7Zx+k3DjMePMsLo+6BjNRFBUV4XIFzxwsLtVijgPRgO7APPXUU0yZMsV/v/qcOXP43//93z6POZ8VMIUY6FasWMGI6MvIsowl3uxgQsxczCqKyvYjQcsfd39CUlQWudbJxJsd5MXMIMGcRLn7AOD7Vnrc/QmjrVM46a1hRPRlzLZdT7tuIzEqEzNRVLgPB80uc+0nOXoEuTFTiDc7GBs7kwRzEmWuA/4ymdax5MVOp9lTB0Bq9Miw1zs1ehQ17cfIihqLl3ZOG04mWOdgVmYqPcGXDTnefoAkcxa5lknEmxzkWaeTYEqkvP1gV377AUZbpnDSW8uI6LHMivsS7bhINGWEP9t6jS9bpWOmj2zvQZJMmeRGTyTeZCcvehoJKpFyz6GubM8BRkdNJtWcTY23jCxznq9dtJMJ0QVhyz9p1DLCnMfM6ELaaSNRpfn+XozSoNllxiGSVAY55gnEKzt5UVNJUMMpMw77s8u8B8k1T6JJ1zHClMfMqC/0yP70LNnjfdnmKR3ZR7qyjUPkmiaSahqBTTmYaC6gsrKStWvXBs0cNC7BYo4D1YDuwIwYMYKHH36YHTt2sH37dr7whS9w4403sn///qDlz2cFTCEGus41SJKiuobFlVIkRmXQ5A2+Cmyzt44kc+CqrknmLH/5M7oFtz6Dw5zOKaOBpKhMopUFe1SK79joTJo8wbObPLUkRgVmJ0eP6FUXQ3s5ZZwM2BeueidGZXbkN5ASNQK7KYVmo86Xb86kyVvXR35G73yjLrBdTB3tYu5oF1MKTl0foezkjuwMmoz64NlGHUnmwIeFJZkzArNxkWhO97WLbiTFnIXdlNytXfqf7zClcko3kmTOIFpZSFDJNNNAoimd5pDZ9SSaemSrDJq1r/wZWnHjYji+7ERTekd2Es00kqjSaNYNwbN1A4kq8FH1SSqdZqMhIDvJ1FUmWlkoKCgIuX6PGHwGdAfmhhtu4Mtf/jJjx47lsssu46GHHiI+Pp4PP/wwaPlzXQFTiMGgcw0SS8d6MJ2sKjbk5Yw2fQaLKbC8xRSDW/vKu43TAJg65nd0ZltULG7jjP9nqGxrz2wV48/s5Bv27/01Lxz1tqpY3Lqto+4xWEwxtHWUsaqu/x00XwWugROQ3/HThPJnd5Zp02cik61iaMN1lmwXFnpkqxj/pZXOn1YVg5uOdiHGn332djm3fJNS/uyu9/Md2/k+vbI5W7avTqpnNr62851DiHrj6t3mxOCms81d/n3d9VyPZzCSS0hdBnQHpjuv18tLL71Ea2tryOXQz2UFzGDa2tp6rcwphBBCDDhyCclvwHdg9u7dS3x8PFarle9+97u8/vrrIdc2OpcVMINZvnw5drvdv/VcpVOIS6FzDRJ3j2/PwUZCOlmDjKC4DVfXSIspDgADA4UKGCWwmGL9P0Nl9xxBcWuXP7OT75tx78fAhaPevtEOa0fdXbgNl3/F4jbd9b+D5veYEBqQ3/HTQPuzO8tYVWxksrULKzFnyfaNdARka1fAKE7nuVvoaBdc/uyzt8u55Rta+7O73s93rLXHKIc/m7Nl++qke2bjazvfOYSoNzG92xwXFjrbPMa/r7u+1u8ZLGQEpsuA78CMGzeO3bt3s3XrVu644w4WL17MJ598Etb3WLZsGc3Nzf6tvLw8rPlCXIjONUgaPFX+fVprGj1VOMypQY+xm1No8FYF7GvwVvjLx6p4LCqWJm8NNlMSDZ4qPNpNs6fOd2x7JY6o4NmOqFQaPZWB2e0VvepiUmZspuEB+8JV70ZPVUd+EvWeEzQbddhNKb58bxWOELc6B8+vxGFKCWwXo6NdvB3tYtSRoJIjlF3fkV2NI8StyHZTCg3ewC9gDUZVYDYxNHqrfe2iEqn3VtBs1Hdrl/7nNxm12FQiDd5qPLodp67HThKNRnXI26jtpmQajR7Zuhq78pWPZRgWYjiJL7vRqOnIbsBOIo26BrsKfhu1XSXRqAMXC2zQ1f7brjuzG4yuMh7dztatW0OO4IvBZ8B3YCwWC3l5ecycOZPly5czdepUnnjiiaBlz7YCZihWq9V/p9O5rtApxMVQXFxMRfthKtxHaPE2ccC1Ga/2kBnte5bF3jPvccS13V9+lGUCDZ4THGvbR6u3iRLXLpzeBrIt4wHffINRlgl82raH4eZ0TrQfYtupN4hWVho9VXjxkGW5zJfd+i6Hz3zkzx4ZM5H69hMcc+2lxdtEyZmdNHvrGRkz3l/GbbTh9DSQFO17BsoJ9yFq2o+x78x7Yat3bXsZadE5nPAcwUw0w0x2DrR96MuPyvPlu97nSNuOrvzo8TR4Kzjm3k+r0UxJ226cRgPZ0fld+dHj+dT9McPNqZxoP8xHp98imhgajarwZ7et92Xrarx4yIwa48t2f8CR9l1d2eZ8GoxKjrV/4stu34PTaCQ7alxXdtR4PvXso9ZbTpp5JCe8Jb52UQkcaN8atvzhplROeI+wvf1torHSSI0v2zQagH2ezRzx7O76ezGNo0FXccx7gFbdTKnnY5y6kZGmy/zZI835HPXuw6FSOGGUsN2zwZeta3tkf8gR754g2Qdp1U5KvXtx6pOMNI3tyjaN46ixn1qjglO6iX3eD8nMzPQvSDhoySUkv0H3IDvDMGhrawv62tlWwBRisFm4cCH3/9vjlLbtok2fwWZKZEbctf5LMS6jFWXqulzjiEpjcuw8Stp2cqRtB3GmBKbFfgGbuWtEJMcyGa/2cKL9MKBp9Taj0bR4TzIzvsiffcZoofuloOFRaUwZNp8jZ3Zw+Mx2hpkSmB5fiM2c6C9T136cfaff9/9+ov0QJ9oPYVVxYav3J67NeLSbOJWAl3a2nnnD1y6xhaHzzalMjvk8JW27OOLe6cuPmR+YHz3J1y6ejnbRHe1iNEUoG1+29Qv+Szwu3Yqie3YKky1XUdK+myOe3cQpG9Ms87CZHF3ZURPw4uET91Y8uIlTNrzaw1b3OmxqeNjyT3iO+OpOR911MzOi5nfLPh2wPpXDlMLkqCsp8eyhxLuHOGVjatTniO+ebRqPV3uoMEo6sp2+bJqYYb4aa8elIBetAR+8DlMyk5lDiXcvJcbHxGFjqvkq4lX37Hy8eDjg/QgPbhwqhXXr3iEmJvglr8FkKF0G6g+ldT8WVYiwZcuWcd111zFy5EhOnTrFiy++yCOPPMJbb73FNddc02sFzM2bNzNv3jwefvhh/wqYv/rVr9i5c+d5LSLldDqx2+00NzfLaIy45CK+mKN5kC78Zwzihf8ivphj5AzmxRz/4f5rRHIvxmdG53vM/NpDREVfeCfM0+5ix8v/35D4fBvQIzC1tbUsWrSIqqoq7HY7U6ZM8Xde4NKtgCmEEEJcElr7tv4cP0QM6A7Mf/3Xf/X5ejhWwBRCCCEGi/7eSTSULj8N+Em8QgghhBA9DegRGCEEvNX8bETzv5T2vYhlK3ME53oYEf4qGcn5GGZz5LIBHcE5NsoUwe+9EW6XIaG/dxINoREY6cAIIYQQg4QyfFt/jh8q5BKSEEIIIQYdGYER4jNs1apVvFv/Am7jNLaoJPJtV+GITgtZvtpVSknrNs54TxFntnNZ/BWkWP//9s47Pqoy3/+f6b0kmWTSCyQQCJCE0AK6gGQpNtBVkauCjXX94SriZZVVwV3vXly9ol7lyuqqrGsBXQFdEDBUC5ESEkhoSSCdTPr0Puf5/THJJJM5E1Ihwef9ep2X5sz3vOc7z3Bmnnlqgu/xevslVNvOwOhuhIs4IOJI4SIOKPihSJXNgFrAvhIvAOgcl1BmPQ6bxwwpT4lRsqkIF8Z3uB3lqLafhdHdBBdxIEmcjjrnRTgZGxS8UKTKpgddRRgAdM5LKLOegI1p80um+Pud5ai2n4PR09SWuwQu4vS6pdlQ89lX4vW6y1Fmy/e6uUqMkk5GuCCuk7sC1Y5zMHqau7hDkCq+gttVjjL7yQ63eJK/21WBaud5nztJOB51rktwEhvk3FCMEU2BKsgqwgCgc1egzFEAO/H6U4RZCOfH+h4nhOCisxA17lK4iB0ccEAAKLihGCOcAhWPfSVen9tZ6HVzlEgRTgx0u051cns3GVVwQzFGMq37vF3l3rwZM6RcBVJE/uVCCMFFRwFqXCVwEyfUvAiUlpYiJSUlqHNYQLuQfAzpFpj169dj8uTJUCgUiIiIwKJFi3DhwoVur9m8eTM4HI7fcT0sXEShDDRbt27FqlWrkCybhOzQu6DghyFfvxOOLrtLt9Pq0uG0MRcx4lRkh96NCFESCgx7YHI3+2I8xAW1MApakXcF1VhxKrLVd0LBC0O+8dugu1G3unQ4bdqPGJE3PkKYiALjdzC5W/zdgkiMkk0FAFTYi5AsmYhs1R3e3E27u/HX47T5AGJEo5GtugMRgkQUmHO7+N1QCyKhFSR5cxelIlu5EApeKPLNe4K73fU4bTmIGNEoZCsXIUKYgALzPpg8XXLnR0IrSPS6haORLb8dCm4o8i17u3dbDyFGOArZ8oWIEMSjwLofJk+rf948LUaJJ3nLxXkGI4XpmCa9DQpuCPJt+4L69Z4GFNm/R4wgBdOktyGCF49C+0E/f4WrGFWuc4jiJwHgQMZRQQgx5Bw18u37gu50rfc0oMjxA2L4yZgmuRUR/DgUOg7BxHR2n/G6eW1urtLr5qmRb/kueN7uehTZDnvzlt2OCH4CCm0H/PN2FqHKeQ5jxdmYKrsVPA4f8+bNg93Ovnv2cIHuhdTBkK7AHD58GCtWrMDPP/+M3NxcuFwuzJ07FxaLpdvrlEol6urqfEdlZeVVyphCGT5s2LABy5cvR4wkFXJ+KMYqZoLHEaDWdp41vsp6GhphPJJkmZDzQ5AinwIlX4Mqa7EvJloyGsmySTC4GwAAEaJEyPkhGCu/ETwOH7V29h8gVbZiaARxSJKme92yyV63/UyHWzwKydIshAlivG5BImJEoyHnhWCs9AbwwEetI4jfUQyNIBZJknTIeSFIkU6CkqdBlaOTX5SCZMlEGDxtuQsS2twzvG5nCbvbfsbrFk+AnKdGiiQLSl4YquznurgzYXA3+rslM7zlEsztPAsNPxZJovFet7jN7ezYDy5amIxkcSbC+NE+d4wgBXKuGmNF2eBxeLjsLmP1V7rOIYwXgyThOMi5aiSLMqHkhqLa5f03QAhBpescRggnoNXTgFhBCiZJ5sEFO0J5kV63qzt3dIdb2O6+0OF2t7mZBsTyUzBJdjNccCCUFw0eh4/LrlJ2t/MswvgxvnJJFk+EkheGaue5DrfzLEaIJiBCkAAFLxTjJL/C5cuXsWPHDlbnsKF9HZj+HNcJQ7oCs2fPHjz44INIS0tDeno6Nm/ejKqqKuTn53d7HYfDQWRkpO/oukM1hfJLx+l0Ij8/Hzk5Ob5zHA4HYcIY6F31rNfoXfUIFcb4ndMI46B3+8czxOPXsuFzC2ICYn1uN4tbEMuaC0O8M2w6dxd1+BuC+wUs/i7xDPH4/YrvcEd3425AaFvlwc/tYXEzLG5+NPSexp67+eyvk2mbNdV500kOh4NQXnC/wdOIMF6U37kwXgz0jDfeRsxwEhvU3EiYmGaE8aIh4Aih4obDyDQhlBfliw1wM2zu6EA3R9vmjvK6eRoYmUaE8qMCytA/b/9yCePF+OLb3Z3LTsARYurUqcjLy2N1UoYfQ7oC0xWDwQAACA0N7TbObDYjISEBcXFxWLhwIc6cOdNtvMPhgNFo9DsolOuZpqYmeDyegMq9kCuFM0gXkoOxQsSVBsZ7/OOdjB1sHe1CrqQbt82315B/fGAXgot490ITcES983Ou7HeSILlz2HMBAAdhyZ0jDsilWzcJkjex+fYD8o/vebmIOOKg3TwOYoOwq58r9vnb/8sFBwTEFytsc4o4EjgIe5eMg9gh7FrmHLGvHH1uTrtb4nt97e9XsC4kB7FBGPDvpVPebWXf9T3XarXQ6fx3yB5u0C6kDoZNBYZhGKxcuRIzZszodmuA0aNH48MPP8TXX3+NTz75BAzDYPr06aipqQl6zfr166FSqXxHXFxc0FgKhUKhUK4ZdDdqH8OmArNixQoUFxdjy5Yt3cZlZ2dj6dKlyMjIwMyZM7Ft2zaEh4fjb3/7W9Br1qxZA4PB4Duqq6sHOn0KZUih0WjA4/FQX+/fReNkrBB2aWVpR8SVBgzwdTJWCHldW2XE6LyLdUesrRt34K9tb7wkILa9haG9xaHHfnJlv7eFgSV3ll/8PjdLS4GT2ANy6dbNCZI3SwuHN77n5eIg9oCWiM5+Z1c/Y/drDQEABgQccHyxzjYnWwtRh1sc0FLkLZcubtLu7miZaX+/urZs+eUd8O+lU95tZd/1Pa+vr0dkZCSrkzL8GBYVmCeeeAI7d+7EwYMHERsbe+ULOiEQCJCZmYmyMvaBZgAgEomgVCr9DgrlekYoFCIrKwv79+/3nSOEoNlZG3QatVqgRYuz1u9cs7MGar5/PJfDg4Lv381LCEGz63JArM/NZ3G72HPhcryrtRo6jQPp8LNPo1bztWhxXfb3u2sC4rkcHhS8kCC5B3NHoMXdxe2qhZrH4uayuN2X/catXNHtZs+Fy/F+nBs6jXchhKDFUxfUr+KFo9lT5+/3XIaa642XcOQQciTQM/VQcMPQ7KmDmzhhYBqh5GrQ4tH5YgPc3HA0e/y7a5o9dYFu0sXtaYKSG44Wd11AGXafd0eZt7tb3B0xbuLE0aNHkZ2dzeocLtAupA6GdAWGEIInnngC27dvx4EDB5CUlNRrh8fjQVFREaKioq4cTKH8gli1ahXef/991NrOw+xuxVnT9/AQF2IkqQCAIuN+lJh/9sXHSyegyVmNCmshzO5WlJmPw+BuRLy0o0vXydhhdDUhrG09jmr7eegcl1BkPuh1i0d53aaDKLEc63BLxqHJVY0K62mY3XqUWU543eI0f7e7Cea2Qbb1rgqUWU+ixVWHs9Yf4YELMaI2v/kgSqyd/KI2v+00zB49yqz5MLibEC/q6m9GWNs6JdWO89A5KlBkPQwP3IgRtrkth1FiO97hFqehyVWDCnuR1207CYOnCfHiMZ3cDq9b0O6+AJ2rAkW27+EhndzWwyixn+hwC8eiyV2DCkeb297mFo71d3uaYfbofeVy0XEKLe56nHP8DA9xI5qf7PXbf0Cpo2MSRIJgDJo9tahwnoGFMaDMUQgj04w4gfffAIfDQYJgDC45TyOEF4EaVwmO276DAGK0MDqvW9DmdvyIUufJQLerze1sd4/ucPPH4JKzCCHcCNS4S3HcshsCiNDiqWtze9dsKbJ9j9JO5ZIgHItmdw0qHMWwePQosxfA6GlGnHBMh1s4Fpccp9DgqoLJ04Ii2w+Ijo7GokWLMKyhs5B8DOmF7FasWIHPPvsMX3/9NRQKhW/wlUqlgkTibSpcunQpYmJisH79egDAn//8Z0ybNg3JycnQ6/V47bXXUFlZiUcfffSavQ4KZSiyePFiNDY2YvVTa+BgrFDyNchS3+obqGvzmNG5yyNEEIkJyhyUWo6ixHwUMp4Kmar5UPDDfDGNjgoUmw76/q6xn0WN/SxEHCmylDd371bMQan1OEqsx7xu5Vy/lpxGZyWKzYd9fxMwuGjPx0U7ByqeBlmKBR1+xtLFr8UE+U0otZ5Aie241y//tb/fVYViS4e/xnkeNc7z3tzl83zdGTamS+58LSbIZqPUlo8S2wnIuEpkynOg4HV2V6LY+kOH23UeNa42t2xuJ7cl0C2dhVJ7Pkrs+V63dI5fK1GjuwrFtg43AcFFVyHg4kDJDcNESY7Pb2cs4HA7/GpeBMaLf4UyRwFKnSch5SqRIZ7t508UjIOHuFHjLgFAYCF6EABmRo+J4jm+7ilWt+hGlDkLUeosgJSjRIZoll8rVKIgDR50cjMGEBCYPa2YKJ0bPG++FuMlM1HmOIlSR743b8lN/nkLx8ND3DhrP+JbyG7Pnly6Lth1BIeQoVsd43AC+4sB4KOPPsKDDz4IAJg1axYSExOxefNmAMDTTz+Nbdu2QafTISQkBFlZWfiv//ovZGZm9vh5jUYjVCoVDAYD7U6iXPcM5maOYOhmjqwMcu6DuZnjoP6CH+TNHAdrY9Sr8Z3R/hzZC/4MvqDvlTC3y4683Wuvi++3Id0C05O61aFDh/z+fuONN/DGG28MUkYUCoVCoVxD6FYCPob0GBgKhUKhUCgUNoZ0CwyFQqFQKJQO+juT6HqahUQrMBTKEGf+mDWD+wQq+aCpOXbnoLkxmOM8gEEd60E8gzi+BgDH4bhyUF+RDN4g2D11GwfNfd3AkP6NoRrssWNXEVqBoVAoFApluEDHwPigY2AoFAqFQqEMO2gLDIUyxKlqzUd581E4PRYoRBFI1f4aakl00Hid8TzKmr6HzWWAVBiKUeGzEC4f6Xu83nQB1a0FMNp1cDF2iHgyuBg7FMIIpEbMgVocfNFHnekCypp/hM1tgFQQglGamQiXjehwm0tQbSiE0V7vdXPb3RqMUc+CWhR8GXedtRSlhjzY3EZIBWqMVs1AuCSp0+NlqDYXwehqgIuxI0k+EXW2Ujg9VigEGoxR/QpqYfCd53W2MpSafobNbYKUr8Jo5XSEixM7PX4R1dZiGJ0NcBEHRFwpXIwDCkEYxih74j4Km6fNrchmcZ/x5t7ZzQ9DquKGoKsfA4DOfhFllmNeN0+FUfJpCBcldJS5/RKqbWdgdDfCRRxIkmSizl4KJ7FBwQtBqjgbaj77arkAoHOVo8x+EjbGDClXiVHiSQgXdOwHV++qQLXzPIyeZm/upo5ySVXc2H252MtQZjrmK5dRiuwuubeXizf3wsLlyMjICOqjeFcJ6tcYmAHL5NozpFtg1q9fj8mTJ0OhUCAiIgKLFi3ChQsXrnjdl19+idTUVIjFYowfPx7ffvvtVciWQhl4tm7divMNB5CsuQHZiQ9BIYpAfvVWONwW1vhWaw1OX/4aMap0ZCc+hAh5CgpqvoLJ0bG8vIdxQS2NhVbhXW01VpWO7LilUIjCkV/7ZXC3rRandf9GjGo8suOXed2Xtwe6xbHQyr0ry8bKx2F65BIoBOE40bgDDg/7rsutjss41bwbsbI0TI/8D2glI3GyaSdMzqYON3EhRBSNUaoZAIAKcyGSFZMxPXwxFIIwnGj+JrjfWYdTrXsRKx2L6eGLoRWPwMmWb2FyNfv7hVHQir2VvVhpGqZr7oGCr8GJln9379Z/h1jpGEzX3ON1t+7u4nb7u8VjkR16FxT8MOTrdwbsMeVzu3Q4bcxFjDgV2aF3I0KUhALDHpjc/nmrhVEYJZ/mLRfbKSSLM5Atvx0KbijyLXuD7urc6q7HaeshxAhHIVu+EBGCeBRY98PUttpxe+5qnhZavrfiEStJQ7bmbij4GuS37uy2XE7rcxEjHYNsTVvuLOWiFkZhlGJ4L+9/VaEr8foY0hWYw4cPY8WKFfj555+Rm5sLl8uFuXPnwmJh/4AFgCNHjmDJkiV45JFHUFBQgEWLFmHRokUoLi6+iplTKAPDhg0bEKtKR4x6AuQiDcZGzgePK0Ct4TRrfFXrCWhkI5AUNhVykQYp4b+CUhyJqtaO5eOjVeOQrLkBBrt3j50IebLXHTEXPI4AtUb2e6VKnw+NNAlJIVMgF4YhJewGKMVaVOkLOtzKNCSHTYfB7t2DRisZCbkgDGkhN4HH5aPWcobVXWkqhEacgCRlFuSCUKSosqEURqDKfMoXEyMbg2TVVISJ471u8QjESsdCLghFmmo2eBw+aq3n2P3mU9CI4pEkn+j1K6dBKQhHlaWjHGOkqUhWTIHB1dDmT2pzz/K6bUHcltP+bsVUr9ta1Mk9GsmKyTC4vJtnRoiSIOeHYqxiprfMbefZy9x6GhphPJJkmZDzQ5AinwIlX4Mqa8d7FC0ZjWTZJIQJY33uGOEoyHkhGCuZ4c3dWcLud56Fhh+LJNF4yHlqpIizoOSFocp5tsMvTEayOBMGj7cyGSFuy105s61cusld1J47e7lES0YjWT7ZlzuF0huGdAVmz549ePDBB5GWlob09HRs3rwZVVVVyM/PD3rNW2+9hfnz52P16tUYM2YMXn75ZUycOBHvvPPOVcycQuk/TqcT+fn5CJMl+s5xOByESROht9WyXqO3XUZop3gA0MiSAuIZ4vFrOelwJ0Bv99880Oe2X0aoNMHvnEaaGBDPEI9fy4nPLYqH3uG/uZ/P7azzVUx8bnE89M7AeIZ4Zx+pOnVdeP2x0LuC+F06hIni/M5pRIF+hnj8Wjf83Cy5eHNnc8cFcbcEuoUx0Lv8dwXvyLseocIYf7cwDnp3YHx7uXTeMJPD4SCMHw29pzEgHgD07gaE8v27IzX8GOg7bZTpy51p9Tvnzb2bMnfWI7RLxUQjjAv6Wik9g27m2MGQrsB0xWAwAABCQ0ODxuTl5SEnJ8fv3Lx585CXlxf0GofDAaPR6HdQKNeapqYmeDweiPgyv/NCvgzOIN08Dre5R/FOtxVs0xGEfGk3bkugmyeD09PF7bGxukU8KRxMELfHCmHbPka+eK4UDk9gvIvxThEWcsUs8ezdGax+njSg68bJBMmdGxjrczNWCNv27Oku3snYWd1CrhTObtyiLnkLuVI4WV6ni3jLRdClXIQcCZwkiJ/YIOKwxft3OTmJgz13nqR3ufOCv1ZKDyEDcFwnDJsKDMMwWLlyJWbMmIFx48YFjdPpdNBq/QeVabVa30aQbKxfvx4qlcp3xMXFBY2lUCgUCoVy7Rk2FZgVK1aguLgYW7ZsGXD3mjVrYDAYfEd1dfWAPweF0ls0Gg14PF7AoFqn2wJhl5aQdkR8eY/ihXwp2OYjON3WbtyyQLfHAiGva6uMhNXt8Fgh4gZxs/wydzBWiHiB8QKuyPvcjJ0lXhoQH9TvYWvdCJI7S2uCz82VtrXcdB/vbTFiKXMmsHWoszuwJccKIcvrFHC85eLqUi5OYoOQE8TPkcBB2OL9W5SEHBF77h5b73JnaQmj9A4OIf0+rheGRQXmiSeewM6dO3Hw4EHExnY/2CsyMhL19f59rPX19YiMDD59UyQSQalU+h0UyrVGKBQiKysLLZYK3zlCCJqtlVBLYlivUUui/eIBoNlaERDP5fCgEPlPrSWEoNlWCbWYfYq2WhyNFltVF3dgPJfDg0KoCXQ7qoNOo1YLo9Bs9//h0GyvhloYGM/leHcsNjg77nOvvwZqQRC/IBLNjhp/vyPQz+XwoOCHseRew5qLN3c2d2C81+3f/U0IQbOzNug0arVAixan//ilZmeN3ziXzn4AMHQav0IIQbP7MtQ89mnUan4EWtz+Y5ia3Zeh5kcE5s4NYcm9mzIXatHi7FIuzupup4xTegAzAMd1wpCuwBBC8MQTT2D79u04cOAAkpKSrnhNdnY29u/f73cuNzcX2dl0mh5l+LFq1SrUGE6h1lAEs6MJZ+v3wsM4EaOaAAAouvxvlDQc8sXHh0xCk6UcFc1HYXY0o6zxBxhsdYgPyfLFOD02GO31CGtbv6XacBo68wUU1X8LD+NCjNLbRVuk24WSpu873Oosr7v1OMzOZpQ1/wSDXYd4daa/21GPMJn3Xq02F0FnLUNRy3det2wsAOB0815c0P/kuy5BkYEmeyXKjSdhdrWg1PAzDM56xMvTO7ntMDobYWmbhltvv4Qy0zG0OGpxxnAIHuJGjHSM19+aiwvGIx1+eTqaHFUoNxfA7GpFqfEoDK4GxMsmdPgZO4yuRmhE3sHE1dYz0Nkuoki/z+uWtLn1+3DB2DGmLkE2ocPtbkWp6ZjXLR0f3G07C539EoqMB+AhLsRIvFPai4z7UWL+uaPMpRPQ5KxGhbUQZncryszHYXA3Il46rou7CWa3d5BtveMSyuwFaHHV4az9iDd3oXdae5H1MErsJzr8wrFoctegwlEEs0ePMvtJGDxNiBeO7eR3wOhpRhg/plO5XEKRYX9bubTlrt+HElNHucRLJ6DJUY0KS1vupmMwuBpZyqUJ5rZp2xcuXEBhYWG3Xf4USjtDeiG7FStW4LPPPsPXX38NhULh+0etUqkgkXibOJcuXYqYmBisX78eAPDUU09h5syZeP3113HLLbdgy5YtOHHiBN57771r9joolL6yePFivPTUByhr/AEOjwVKUQSy4hb7BtPaXEZ0btoPkcZiQvTtKG36HiVN30MmCEFm7G/8WlsaTaUo1nWsjVRjKESNoRAinhxZMXd1uN0mf7ckBhMib0Vp8w8oaf7B646+w99tuYji+t2+v6stRai2FEHElWFS+CJfl5DN08UtikZ62HyUGI6gxHAEMr4aEzW3+rXkNNgvobgl1/c3AYMy0zEAHKgEEZgUdpuvCynAL4xCeshclBh/Rokxz+sPvRkKQVgnfzmK9R0/fqqtZ1BtPePNPfTW7t3qX6PEdBQlpp+97pAFgW7DgY4yt59Bjd3rzlLf6utusnnM/m5BJCYoc1BqOYoS81HIeCpkqub7tRI1OipQbDroVy4XHQW4CA5UvDBkyeZC1DbI2MZY/P18LSZIZ6HUno8Sez5kXCUypXOg4HW0tjS6q1Bs+6Ejd9sZ1Njacg/pXC5dchdGYYI6B6WmY75yyexSLo32ChQbO8rl3nvvBQCsW7cOL730EiiB9Lcb6HrqQuIQMnRfDYfDvmbgRx99hAcffBAAMGvWLCQmJmLz5s2+x7/88ku88MILqKioQEpKCl599VXcfPPNPX5eo9EIlUoFg8FAu5Mo15xB38xxEDdFpJs5BlEP8maOoJs5XlWuxndG+3P86oa14PP7/h643XZ8/+Ofr4vvtyHdAtOTutWhQ4cCzt199924++67ByEjCoVCoVCuIf1dTXfotln0miE9BoZCoVAoFAqFjSHdAkOhUCgUCqWD/q6mez2txEsrMBTKEMejklw5qB9wmMH7RPvu2KuD5h5s5o/6w6C5Oe5BHr+jYF9vZ0BwuQfPTbkytAvJB+1ColAoFAqFMuygLTAUyhCnWncUlXVH4HSZIZdqMTrxZqjkwRd0rG8+g4s1B2B36CERhyIl/tfQqL3rgDCMBxdr9qNJXwqboxUccAEwYAgDhTQSqfELune3nEFZrdctFYchOTYH4Z3dtQfQZCiF1dEKPk+EpUsv4pVXXkF0NPvieEOVjRs34nD53+D0WKAQRiA1Yg7U4qig8TrTBZQ1/wib2wCpIASjNDMR3rbODgDUm0tQbSiE0V4PF2OHiCeDi7FDIQzHmLDZUIu6cVtKUNr6E2xuI6R8NUaH3ohw6YhOj5ei2ngaRqfXnaSajDrLhbbcwzFGc4XczRdQ2vKTL/fRob/yy11nLkG18RSMjrbcue25azAmZHbQxQkBQGctQak+z5u7QI3R6hsQLknq9HgZqs2nYXQ2wMXYUVi4DBkZGUF9FIDDeI/+XN8XNm7ciNdeew06nQ7p6el4++23MWXKlKDxX375JV588UXfbOC//vWvvtnALpcLL7zwAr799ltcunQJKpUKOTk5vf6soC0wFMoQZuvWrSip2osRsbMwZdxjUEgjUXD+n3C6zKzxelMVisv+hejwTEwd/ztEhKTiVMkWmK3eVWsZxgWTpQ4jYmZiZOxNYIgLAr4MElEIFFItTpZ80q276OK/EKOZiKlpv0O4OhWnyjrcHsYFo7UOSdG/wrSxjyE9eTEuXLiA22+/fXAKZ5DYunUrVq1aheTQ6ciOWwqFKBz5tV8GbKPQTqutFqd1/0aMajyy45chQp6Cgsvb/Xb79jAuqMWx0Mq9lb1YxQRMj74fCmE4Tui2Bd2EstV+GacadiFWPg7To++HVpaMk/Xf+O327WFcCBFHY1TojQCACkM+kkOyMT32ASiEEThR96/gudtrcap+J2IV4zA9dqnXr9vhnztxIUQcA62sLXf5OEyP+g8oBOE40bA9eO6OyzjVtBux8jRMj7oPWslInGz8t3/uxIUQUTRGqW9gdVBYaO9C6s/RS9rviXXr1uHkyZNIT0/HvHnz0NDQwBp/5MgRLFmyBI888ggKCgqwaNEiLFq0CMXFxQAAq9WKkydP4sUXX8TJkyexbdu2Pn1WDPkKzPfff4/bbrsN0dHR4HA42LFjR7fxhw4dAofDCTjoyo6U4ciGDRsQE5GF6PBMyKURSE26FTyuAJcbC1jjq3U/I0ydjMToGyCThGNk3BwopFGorj8GAODzxZg4Zhm0YeNQ31yMmIhJmDDybljtTUiMvBE8rgC1TezuqvqjCFMlIzFqBuSScCTH3gSlNApVDV63gC9G1uiliAwdB5lEA7U8Du+88w7y8/NRVVXF6hyKbNiwAcuXL0eMajzkIg3GRswFjyNArbGYNb5Knw+NNAlJIVMgF4YhJewGKMVaVOk7yjFamYbksOkw2OsAAFrpSMiFYUgLywGPw0etid1daTwJjSQRSerJXnfIDChFEagyFvpiYhRjkRySjTBxfJs7GbHK8ZALNUgL/7U392B+/Un/3ENvgFKk7eJPQ3LodBgcnXIXhCEtdA54XD5qzWfY3aYCaMSJSFJOglwQihT1dCiFEagyn+pwy8YgWTUNYWK6ge5Qpv2eeOihhzB27Fhs2rQJUqkUH374IWv8W2+9hfnz52P16tUYM2YMXn75ZUycOBHvvPMOAO9itLm5ubjnnnswevRoTJs2rU+fFUO+AmOxWJCeno6NG3u3wNGFCxdQV1fnOyIiIq58EYUyhHA6ncjPz0eosqM5n8PhIlQ1AnoT+4ajenONXzwAhKlHwmD2j2cYN0yWOoQqR8Dt8W7mJxRIEKocAYPZf/+adgyW6kC3KjloPAAYDAZwOByo1eqgMUOJ9jLPycnxneNwOAiTJkBvv8x6jd5+GaHSBL9zGmliQDxDPH6tDz63JAH6tspBoLsOYZIubkki9I7AXBjiHRis6tQd5fXHB8/dcTnQ35vcxfHQO4Pk7tAFVEw04uCvldJDyAAc8C6M1/lwBFn8kO2e4HK5yMnJQV5eHus1eXl5fvEAMG/evKDxQN8+K4b8GJgFCxZgwYIFvb4uIiJi2HxoUihsNDU1wePxQCiQ+50XCuSw2JpYr3G6zKzxTqd/t5DLbQUBAz5fjNLKvYgMHQ8+TwyhQAaLnd3tYHXLgnY5eRgXnn32WSxZsmTYrPjZXuZarf+Gg0K+FBZrC+s1DrfFt/2CL54ng9PTdeduG3zfHp0Q8aSwuIK4PZaAnadFPCkc7sBum/ZdqIU8/1VaRXwZLLbgubP6e5o7tw+5B+lyovSMgdpKIC7Ov3IZbPuGYPeEVqvF+fPnWZ9Dp9OxxgfrCbHb7X36rBjyFZi+kpGRAYfDgXHjxuGll17CjBkzgsY6HA6/2qfRaLwaKVIo15yL1QcAEIxJvGVAvQzjwemLXyIuSYZ33313QN0UCqX/VFdX+1UWRCLRNcnD5XLhnnvuASGk158VQ74LqbdERUVh06ZN+Oqrr/DVV18hLi4Os2bNwsmTJ4Nes379eqhUKt/RtWZKoVwLNBoNeDxeQAsHWytLO0KBnD1e6B/P43p/pTucBkwcvRT8tl/tTpcFoiBuEavbEpBLe+XF7jAgNzd32LS+AB1lXl9f73fe6bZCyGdfW0XElwUMknV6LBDyurbKSNB5s8N2HB6rb5PLADdPBmeXFguHxwoRXxoQK2h7T51tXYK+eLcluJ8fxN/T3Jk+5M4LzJ3SCwZoEK9SqfQ7glVggt0T9fX1iIxkn4EWGRnZo/j2yktlZWWfPiuuuwrM6NGj8dhjjyErKwvTp0/Hhx9+iOnTp+ONN94Ies2aNWtgMBh8R3U1+/gCCuVqIhQKkZWVhRbjJd85Qhi0GMqhVrBXstXyWL94AGgxXIJK3hHPMB6cufQVuBw+QlUjIWz7MiSEQYvxUtBp1CpZHFqM5X7nmg0X/eLbKy9WRzOyRi9FWFhYV82Qpr3M9+/v2JWaEIJmWyXUYvbpnWpxNFps/gMPm62B8VwOz2937Q53VdBp1GpxFJq7um2VUIsCc+FyeAAAg7Ojmd7nD5a7KBrNtsq+526vhloYJHdRJJrt/p+lzfbgr5XSQwgAph9HL3uf2O4JhmGwf/9+ZGdns16TnZ3tFw8Aubm5fvHtlZfS0lLs27evT58V110Fho0pU6agrKws6OMikSigNkqhDAVWrVqFyw0ncbmxEBZbI85X7ISHcSIqPBMAUHxxG8qqcn3xcZHT0GwoQ2XdT7DYGnGx5iCMlsuI03rXa2AYD06XboXRchkjYmejrukUKut/RqupAmcr/g0P40K0ps19aRtKq/f53PHaqWg2lqFCd8Trrj0Io/Uy4iM6uS9+AaPlMsaP+A0IGOh0Ouh0Ojidg7gr9QCzatUqvP/++6g1FsPsbMbZhu/gYVyIUY4DABTpdqGk6XtffLw6C02WclS0HofZ2Yyy5p9gsOsQr870xTg9Nhgd9QiTeddAqTYVQWcuRVHjHniICzGKNADA6cbduNDyg++6BOVENNkqUG44AbOzBaWtR2Bw1CNemdHF3QCLqxkAUG8pRVlLHlpsNTjTlNvm9+Z+uv5bXGjuyD1BPRFN1gqU6725l7b8BINDx+rXSDrlbi1FUfNeb7nIx3rdTXtxQf9jh1uRiSZ7JcqN+TC7WlCqz4PBWY94eXontx1GZ4NvHM2FCxdQWFhIZ412Q/sYmP4cvaX9nvjHP/6Bc+fO4fHHH4fFYsFDDz0EAFi6dCnWrFnji3/qqaewZ88evP766zh//jxeeuklnDhxAk888QQAb+XlrrvuwokTJ/Dpp5/C4/H06bPiuh0D05nCwkJERdFaP2X4sXjxYqx79mNcqjkAh8sMhTQSmakP+Lp57A4DOJ2a9tWKeIwbeRcu1uxHWfV+SMVhSB91L+RS74A6h8uIJv0FAEBZtbfiU1K1BwAgFWswcdT9HW6nAejiHj/iNyirPYCymv2QikORnuzvbmxz/3xmEwAgKup1AMDBgwcxa9aswSiiAWfx4sVobGzE6qefh8NjgVIYgayYu3wDdW1uEzqXS4gkBhMib0Vp8w8oaf4BMkEIMqPvgEIU7otptFxEcf1u39/VplOoNp2CiCfDJO2dvm6YALc4GukRN6Ok9SeUtPwEmUCNidrb/VpDGqyXUNy01/c3AYOy1p+AVg5UIi0mRXXO3QhwOvtjkK69BSUtP6Kk+UevP3KRX+4NlosobtzTkbulCNWWIoi4MkyKWNSRu8fo18sUIopGumY+SvR5KNEf8brDb/PP3XYRxS0dFfB7770XQPABpZRrQ/s9sXbtWuh0OmRkZGDPnj2+gbpVVVXgcjvaQ6ZPn47PPvsML7zwAv74xz8iJSUFO3bswLhx3op0bW0tvvnmGwAIWLiwN58VHEKG9sYIZrPZ13qSmZmJDRs2YPbs2QgNDUV8fDzWrFmD2tpafPzxxwCAN998E0lJSUhLS4Pdbsff//53vP322/juu+8wZ86cHj2n0WiESqWCwWCgrTGUa86vp/15UP2DuxfSukFzDzbDei8k7iA2rg/iXki7K4N39Q9lrsZ3Rvtz3JTxHPi8vg+4dXscOFD4ynXx/TbkW2BOnDiB2bNn+/5etWoVAGDZsmXYvHkz6urq/Ba+cTqdeOaZZ1BbWwupVIoJEyZg3759fg4KhUKhUIYldDNHH0O+AjNr1ix010i0efNmv7//8Ic/4A9/GLxfThQKhUKhUK49Q74CQ6FQKBQKpQ0GbDPae3f9dQKtwFAoFAqFMkwYqJV4rwdoBYZCGQCOVyZcOaiPlPzu/w2aGwCkpcJBcyf8/dVBc1c+OrhdxWWPsi/SNRBE/jy4g3hlFezbOwwEe0/+adDcFEpvoBUYCoVCoVCGC3QQrw9agaFQ+snGjRvxl/W1aG70IGWMEP/5pxCkZbBPc7xY4sR7Gww4X+REXa0HT7+oxpJH/KcynjxqxyfvGXG+yIWmBg9kM7fBXlwCj8EMYXwUQu67HaIRwbe7sB4/Df22XLibWiHQhkF99wJI0lN9j1c99BzrdXylGjF3LoMkOnhrkvFcIZoO74HL0AJhqAbhs2+FPHms7/HL//4cxqLj/hdxOBAmxiJkyUKIkrrJ+8Rp6L/+ri1vDdS/WQDJ+E55L3/WX9v296uvvorVq1cH9faFjRs3ovKV/4LHZIIwKhqahXdAHBcfNN58+hRavtsNd2srBBoNQhfcClnqGL8YZ309mnfvhK20BBfd3qnIMlUURmb8BorQ4O6m2tOoOrsXdmsrJHINEtIWIDSyw1117js01ZyCw6YHh8uHQCQDY7fD7bFBLtFiTOwCqGQxQf261rMoqzsIu1MPqSgMKdFzEK5KAeDdhbrs8kE0GctgdbZCwBVh6dJyvPLKK4iOZl/dlzLI0AqMj1/ESrwUymCxdetWrFq1Co8+pcLHu6KQMlaAJ5c2oKWJvYvAYSOIiedjxbNqhIWz3352K0HKGCFW/zkEAGD54QRUC3MQ9dLvIYiLQsPrH8BjZO8icJRWomnTFsh/NQlRf3oSkolpaHz7n3DWdKxsGvPm84h583mELL0D4PGgnOBdSVcSk4jqLe/BbTGxuq015bi84xOoMqYg8ZFnIB81HjX/+giOhjq/ONmIVGjn3wVweVDfcyu0zz4OQWwUGt7sJu+yCjS9/znkN0xG1NonIckYi8aNH8NZ2ynv/3nB7/jwww/B4XDwm9/8htXZV9rf05A5cxH75NMQRkWj7oP34Dazl4u9ohz1n38CxeSpiH1yFWRjx0H38Udw6DrKxdXchNpN7wAACEOQMHYBkiYshFQZhTNHPoDTwV4uxuYKXDj+GSISJiNj9lMIjUrD+Z8/hsXYUS4SeThGpC9C5pxViBt9E+zmZrg9dmSNfAAKSSTyL34Kh8vC6tebq1FU8RViwjIxLfW3iFCNRmH5VphsDQC8O4obbXUYEXkjskcvR/qIe3DhwgXcfvvtfSpbCmUgGfIVmO+//x633XYboqOjweFwsGPHjitec+jQIUycOBEikQjJyckBU60plIFiw4YNWL58OW67R44RKQI895dQiCVc/PsL9i+ksekiPPnHEMy9XQahkH0qwfTZEjz+n2rMnu/do0iclgL5jZMgiNEidOkicIVCmH84wXqtKfcniMePgnLBTAiiI6C+cy6ECdEw78/zxfBUCvBUClh+PAH5zClg7FZIE1IQveh+cPkCGE4dY3W3Hv8BspGpCJt2E0QaLcJnLoA4Mgat+T/6xXH4fBhOH4M6cxqUv74RopEJCL3/DnCFAph/Os7qNu3/CeK0UVDOmwlBlBbqRfMgjI+G+cCRgLzbj6+//hqzZ8/GiBEjWJ19pf09VU6eAqE2EuF3/AYcgQCm4+zlov/pB0hHjUbIzNkQarUInbcAougYGI/85Itp2bMb0tFj4DGboZw6DbGjZyN65AykZN0DHk+Ahgr2crl88UeERIxC7KhZkCq1SBg7DzJ1DOoudrjD4zKhjkiBWBaGptrT0CZMBkPcYODG2LhbwOMKcLm5gNVf2XgUYcpkJGmnQy4OR3L0bCglUahu9OYj4IkxKfkBRIakQSbWQC2LxTvvvIP8/Hy/9bcoV5EB2szxemDIV2AsFgvS09OxcePGHsWXl5fjlltuwezZs1FYWIiVK1fi0Ucfxd69e698MYXSC5xOJ/Lz85GTk+M7x+VyMHmGGEUn+7/3j8vp/aARxHUMJuVwuRCPTYazrJL1GsfFSojHJvudE48bBcdF/3jidsNZUQthYgzMZWehypgCDocLadIo2GorWN222grIElP8zslGpAbEWypKYb9cBfOFIrR8sh0es8Wb95hkOC+yf+k5LrHknTYKjkvs8R6jCbt27cIjjzzC+nhfYXtPOVwuJMmjYK8KUuaVlZAkj/I7Jx01GvaqCgAAYRhYzp8DPzQMjuoqmE7m49Sht9F8uRgcDheq8BSYWtjdppYqqCP8yzxEOwqmlsByYRg3zPpaMMQDPk8EhSQSHA4HoYok6K01rH6DpQZhiiS/c2HKkdBb2OMBwGAwgMPhQK1WB42hDCL92cix/bhOGPJjYBYsWIAFCxb0OH7Tpk1ISkrC669792AZM2YMfvzxR7zxxhuYN2/eYKVJ+QXS1NQEj8fj2w+kndBwLiovuvrt17d6u6G4Uonfea5KDpeukfUaj8EMnlLud46nksNj8G8R8pisAMPAWVEDrlAExegJAAC+TAFrcwOr2202gS9T+J3jyxR+XSvyEamQxo+EbtcWqCfdCP2F43C+9SG0a1aAq1R0n7fC381TKuAxsHfbWI7kQ6FQ4M4772R9vK/4vaclHbt68xVy2BqDlwtP0aXMFQp4TN7cPRYziNMB/eGDAADNwkWQFhtw/ug/Me7G30IolsNgZne77CYIRP5ugUgOl8O/XFrqzuL8sU8BwqBVdw5ZI+/37TIu4stgsTex+h1uM4R8f7+QL4PTzd6C6GHcePbZZ7FkyZJhvwz9cIVOo+5gyLfA9Ja8vDy/X08AMG/ePOTl5QW5AnA4HDAajX4HhfJLwFZ4Hsq0LHD5ggHxKdMyIRsxGgAgix+JiN8/CGdFDRwXLl3hyt5h/ukE7rvvPojF4gH1DgptXxjS0d5yEWrCETt6NkIiU6Er/3lAnkIVnoy0GY8CABShCThV8VXQcS99hSEenC7/FwghePfddwfUTaH0heuuAqPT6QJ+EWu1WhiNRthsNtZr1q9fD5VK5Tvi4oLPlKBQ2tFoNODxeKivr/c739LIICyc12+/OsTrYKz+/24ZllaWdngqecBAWY/BDJ6qawuBFOBw4GnRQ50x1XfebQlsZWmHL1cEDPB1W0zgy7u0ykhlAIfrfSw8DFy5DK6GJjBGE3hKdjdPJfe1WPjyNprAUwXG20vK4dY14tFHH2V19Ydg76nbFNhC1A5froDH1LWFy+SL50llAJcLUVQ0wOXC09ZiJVVo4bDq4bSbIRSxuwViBVxdBvi6HGYIusTz+EIoQuMADhfahMngcriobRv34nBbfDuMd0XElwe0tjjdloBWmfbKi81pQG5uLm19uZbQMTA+rrsKTF9Ys2YNDAaD76iurr7WKVGGAUKhEFlZWdi/f7/vHMMQnDhix/iJ/V8cTtA2yNfVaQYRYRjYz5VBmMw+1Vk0MgH2s2V+5+xnSiEa6R/P4fPBlUnAVcgg1nqn2BLCwFpRCklMIqtbEpMIS0Wp3zlreUlAPIfHhzgqFpaKUrhb9GAsVnCVCm/eI9mnC4tGJMB+7qJ/3udKIRoRGG/58TiECTFIT09ndfUHtveUMAxsZaUQxwcp84QE2C52KZfSEojjEwF4y1oUGwdXczNEMbGwlnljbeZGCCVqGBrLoAhldytC46Fv9H8/9Q2lrNOuuVw+5OoYGBrLQAgBQ9wghKDFVA61NJbVr5LFotlU7neu2XQJallHfHvlxeJowaTk+xEWFsbqolwlGNL/4zrhuqvAREZGBvx6qq+vh1KphEQiYb1GJBJBqVT6HRRKT1i1ahXef/997PyXGeVlLvz1+VbYrAxuvdv7C3bdqiZs/KveF+9yEpSccaLkjBMuF9BY70HJGSeqKzrGzFgtjC8GAOzFpTB8sx+2s2Vo/XgHGIcT8huyAABN72+F/ss9vmsVv54Be3EJjHu+h6uuAfoduXBW1EI+J9svb8ZmB2NzgLHYYDh9HI6metTv/hcYlxOqtmnVl7/5DA0Hd/quCZl8IyyXzqP56CE4murR+P0e2OqqEZJ1g9fpdKBh/zew1VZAmZYFfUEe6v/6LnghKthPnwPjdEE+Y5I37w+2Qr9td0fec2bAfuYCjN+15f1NW943TQ/I25p/GrIbpvTtDesB7e+pMf84nPX1aNr+FYjLCcUk73PWb/0Mzbt3+eLVM26E9cJ56L8/BGdDPVpy98JRWwPl9BkdMTNnw3y6EMKoaBiP/oyS45+jpe4siMcFj8eJiARvuZSc2IKKMx3lEj3yBujrL6C29DCspgZUnfsO5tYaRI30uj1uJyrP7IappRJ2aytCo9JQdykPdqceSkkUzlXvgodxITosAwBQVLEDpZc7KmcJ4VPRbLyIivo8WOxNKKs7BKP1MuLCJwPwVl5OlX8Jg7UOExLuAAGBTqeDTqeD09n/geoUSn8Y8oN4e0t2dja+/fZbv3O5ubnIzs4OcgWF0ncWL16MxsZG/OWVlWhu9GDUGCHe+keErwupvtYDLqdjunRjvQf339LRovLJeyZ88p4JE6eKsGmrt+vz3GknHl/SaVAnw8CwPde7IFxSLCJWPezrWvE068Hp5BelJEDz2L3Qb/sO+q/2QqDVIPz3D0AY678svvXoKXB4XKgW5qBx7x54LEaItDGIW/xbX5eQy9gKdHJLY5MQvfB+NB3ejaZDuyAICUfsXQ9BFBHlDeBw4Giog6HoBDx2G7hCIRiLFcTtgatWh4inHvZ1IXlauuSdnAjNo0ug37EX+u17IIjQIHzFUghjuuR9/BQAQDZl4Ftf2ml/T59+cS3cJiNE0TGIeng5+G1dQm69f+7ixCRol9yPlr270bznWwg04Yhc+hBEkVG+GPm48WDu+A30Bw8AhKCp9jQ4HA6cDhPSpj8Codjrdtj83cqwRIya/B+oPLsHlWf3QCLTIHXaUsiU3nLhcDiwmhrRUPVPuJwW8IVSSBVauG0mnKr4FxQSLSaO/A9fF5LdZfDzq+VxGJ94J8rqDqK07gCkolBkJC2GQhLhzcdpQqOhBACQd+E9AEBU1AYAwMGDBzFr1qwBLXtKD6AL2fngEDK0X43ZbEZZmbcJNTMzExs2bMDs2bMRGhqK+Ph4rFmzBrW1tfj4448BeKdRjxs3DitWrMDDDz+MAwcO4Mknn8SuXbt6PAvJaDRCpVLBYDDQ1hhKjxjMvZDuOjh890KyJvV/NlYwBnsvpORXNwyam+6FdH1xNb4z2p8jZ8ST4HPZV/ruCW7GgX2X/ve6+H4b8l1IJ06cQGZmJjIzMwF4m3czMzOxdu1aAEBdXZ3fgkpJSUnYtWsXcnNzkZ6ejtdffx1///vf6RRqCoVCoVCuI4Z8F9KsWbPQXSMR2yq7s2bNQkEB+8qTFAqFQqEMW2gXko8hX4GhUCgUCoXSBkMA9KMSch3NQqIVGAplAJicwL4U/EBQPj/lykH9ILV68MbYDPY4lcGk7A+rrnUKFAqlG2gFhkKhUCiU4QJhvEd/rr9OoBUYCoVCoVCGC3QMjA9agaFQhjj/95Ee//N/eugaPUgfK8RbfwnHlEz2PYDOXHBg3astOHnagcoaNzb8SYOnfqv2i3nlf1uw/VsLzpd5FyKzOJ4FIQxEkTGIuOUOiGODTwk3FRei+cAeuPUtEIRqoJl7K2Sjxvoe1237HKbC476/OWtXYd68edizZw+bjkKh9BY6BsbHkJ9GTaH8ktm6dSueeakJLz4TihN74zBhrAgLllxGQ5ObNd5qIxiRIMB/Px+GyAj2/ZgO59nx+EMqrH0mFA4ngSBUA55EBmGEFrUfv+e3u3RnbFXl0P3rE6gmTkH8489APmY8Ln/+ERz1dX5x0uRUJK1+CUmrX0JdXR0+//zz/hUChUKhsDAsKjAbN25EYmIixGIxpk6dimPHjgWN3bx5Mzgcjt8xLHaspVBY2LBhAx69T4WH7lVi7Ggh3n01HFIJBx99zl7JmJwhxqtrNbh3kQIiIYc1Zvfn0XhwsRL/+rcZy+9XIeahx+ExG6HMmAyOQADjSfb7S//zD5AmpyLkhpsgDNcibM4CiKNioD/6o18ch88HX6EEX6FEZGQkQkJC+lcIFAqlA7qZo48hX4HZunUrVq1ahXXr1uHkyZNIT0/HvHnz0NDQEPQapVKJuro631FZOXgzRCiUwcLpdCI/Px9zbuzYw4vL5WDOjVLk5dv76SbIP+3AnBslYOze3a55UhmkI0fBXlPBeo29ugLSEf4zoqTJqbBX+8fbKspw6a9rUfHWejz++ONobm7uV64UCqUTBP2swFzrFzBwDPkKzIYNG7B8+XI89NBDGDt2LDZt2gSpVIoPP/ww6DUcDgeRkZG+Q6vVXsWMKZSBoampCR6PB9pw/64gbTgP9Q3sXUg9drd44PEA4WE8NO7+GuL4JIi0UeDLFHCb2Ft33GaTb5+kdnhyBTydupxkKanQ3vkfiHnwd9DMvRWHDx/GggUL4PEM7tL5FArll8eQrsC0/wLNycnxneNyucjJyUFeXl7Q68xmMxISEhAXF4eFCxfizJkz3T6Pw+GA0Wj0OyiUXwKvb2qFs6EOkXc/MCA+xfhMyFPHQaSNhnzMeOzcuRPHjx/HoUOHBsRPofzioV1IPoZ0Bcb3C7RLC4pWq4VOp2O9ZvTo0fjwww/x9ddf45NPPgHDMJg+fTpqamqCPs/69euhUql8R1xc3IC+DgqlL2g0GvB4PNQ3+rde1Dd6oI3o3wRCTSgPHA7w4892xD70/yBQqQEAbovJt+tyV/hyRcAAX4/ZBJ6cPR4ARowYAY1G49uQlUKh9BOG6f9xnTCkKzB9ITs7G0uXLkVGRgZmzpyJbdu2ITw8HH/729+CXrNmzRoYDAbfUV1dfRUzplDYEQqFyMrKwoEfbb5zDENw4EcrsrP6PjCdEIJnXmoCnw/Mv0kKQUiY9zzDwHapFOLYRNbrxHGJsF0q9TtnvVgCcRx7PADU1NSgubkZUVFRfc6XQqFQ2BjS68D4foHW1/udr6+vR2RkZI8cAoEAmZmZ3f4CFIlEEIn6vj05hTJYrFq1CsuWLUFWughTMsR46309LFaCB+/1tnos+309YiJ5+O/nNQC8g3PPlnjXd3G6CGp1bhQWOyCXcZCcJAQAPLGmEZ9vN+O534fg1XdaobB+D1FUDEyFx8E4nVBOnAIA0H31GfhKJTS/vhUAoJ52I2o+3IjWnw5BNmoMTEUFsF+uRsTtdwMAGIcDzYf2Qj52AvhyJVwtTVi4cCGSk5PpbvAUykBBF7LzMaQrMO2/QPfv349FixYBABiGwf79+/HEE0/0yOHxeFBUVISbb755EDOlUAaHxYsXo+HiE3jp1RboGt3ISBPh28+ioQ333rrVtS5wO7WjXq53I+vXHS2Ir7+rx+vv6jEzW4wD22IBAJv+4R3j9fKGVgCAY/cOAAA/JBQxD/zWN1DXbWgFOB1TsSXxSYi8634079+N5n27IAgLR/SShyDStrWucDlw6upQV3gCHrsNfIUSN999F15++WX6A4FCGShoBcYHh5Ch/Wq2bt2KZcuW4W9/+xumTJmCN998E1988QXOnz8PrVaLpUuXIiYmBuvXrwcA/PnPf8a0adOQnJwMvV6P1157DTt27EB+fj7Gjh17hWfzYjQaoVKpYDAYoFQqB/PlUShXhNEN8maO7w/eZo4lLz49aG4KZahwNb4z2p8jR/Mw+Fxhnz1uxol9TR9eF99vQ7oFBvD+Am1sbMTatWuh0+mQkZGBPXv2+Ab2VlVVgdvpJ2hrayuWL18OnU6HkJAQZGVl4ciRIz2uvFAoFAqFMmShWwn4GPItMNcC2gJDGUrQFhgKZWhzNVtg5oQs63cLzP7Wf1wX329DvgWGQqFQKBRKG4T0rxXlOmqzoBUYCmWIw40svXJQPyh5cVD1FAqFMijQCgyFQqFQKMMF0s8xMLQFhkKhUCgUylWHYQBOP1bTJXQlXgqFQqFQKJRrxrCowGzcuBGJiYkQi8WYOnUqjh071m38l19+idTUVIjFYowfPx7ffvvtVcqUQqFQKJRBhG7m6GPIV2C2bt2KVatWYd26dTh58iTS09Mxb948NDQ0sMYfOXIES5YswSOPPIKCggIsWrQIixYtQnFx8VXOnEKhUCiUgYUwTL+P64Uhvw7M1KlTMXnyZLzzzjsAvFsJxMXF4fe//z2ee+65gPjFixfDYrFg586dvnPTpk1DRkYGNm3a1KPnpOvAUCgUCqWnXM11YG6S3gs+px/rwBAnDli3XBffb0O6BcbpdCI/Px85OTm+c1wuFzk5OcjLy2O9Ji8vzy8eAObNmxc0HgAcDgeMRqPfQaFQKBTKkIN2IfkY0hWYpqYmeDwe37YB7Wi1Wuh0OtZrdDpdr+IBYP369VCpVL4jLi6u/8lTKBQKhTLQMKT/x3XCkK7AXC3WrFkDg8HgO6qrq698EYVCoVAolGvGkF4HRqPRgMfjob6+3u98fX09IiMjWa+JjIzsVTwAiEQiiESi/idMoVAoFMpgQgiA/qwDQ1tgrgpCoRBZWVnYv3+/7xzDMNi/fz+ys7NZr8nOzvaLB4Dc3Nyg8RQKhUKhDBcIQ/p9XC8M6RYYAFi1ahWWLVuGSZMmYcqUKXjzzTdhsVjw0EMPAQCWLl2KmJgYrF+/HgDw1FNPYebMmXj99ddxyy23YMuWLThx4gTee++9a/kyKBQKhULpP4RB/1pgrp9p1EO+ArN48WI0NjZi7dq10Ol0yMjIwJ49e3wDdauqqsDldjQkTZ8+HZ999hleeOEF/PGPf0RKSgp27NiBcePGXauXQKFQKBQKZYAZ8uvAXAvoOjAUCoVC6SlXcx2YWZw7wOcI+uxxExcOke3XxffbkG+BoVAoFAqF0gbtQvJBKzAstDdK0QXtKBQKhXIl2r8rrkaHhhsuoB9P44Zr4JK5xtAKDAsmkwkA6IJ2FAqFQukxJpMJKpVqUNxCoRCRkZH4Udf/zYkjIyMhFPZ9O4KhAh0DwwLDMLh8+TIUCgU4HM4V441GI+Li4lBdXT3gfYrD1T3Y/uHqHmz/cHUPtn+4ugfbP1zdg+3vrZsQApPJhOjoaL9JJQON3W6H0+nst0coFEIsFg9ARtcW2gLDApfLRWxsbK+vUyqVgzYoari6B9s/XN2D7R+u7sH2D1f3YPuHq3uw/b1xD1bLS2fEYvF1UfEYKIb0QnYUCoVCoVAobNAKDIVCoVAolGEHrcAMACKRCOvWrRuU/ZSGq3uw/cPVPdj+4eoebP9wdQ+2f7i6B9s/2LlTBgY6iJdCoVAoFMqwg7bAUCgUCoVCGXbQCgyFQqFQKJRhB63AUCgUCoVCGXbQCgyFQqFQKJRhB63A9JCNGzciMTERYrEYU6dOxbFjx7qN//LLL5GamgqxWIzx48fj22/Zl3/+/vvvcdtttyE6OhocDgc7duy4Yi6HDh3CxIkTIRKJkJycjM2bNwfErF+/HpMnT4ZCoUBERAQWLVqECxcuXNHd07zfffddTJgwwbfQU3Z2Nnbv3j0g7q688sor4HA4WLly5YD4X3rpJXA4HL8jNTV1wHKvra3F/fffj7CwMEgkEowfPx4nTpzo1t+T9zQxMTEgbw6HgxUrVvQ7b4/HgxdffBFJSUmQSCQYOXIkXn755Svu7dKTvNsxmUxYuXIlEhISIJFIMH36dBw/frzX/ivdM4QQrF27FlFRUZBIJMjJyUFpaWm3zwN03ONCoRAhISEIDw9n9W/btg1z585FWFgYOBwOCgsLr+gGvO9FfHw8eDweBAJBgNvlcuHZZ5/F+PHjIZPJEB0djaVLl+Ly5cs9yj0yMhI8Hg9CoZA175deegmpqamQyWQICQlBTk4Ojh492iN3T8qlM7/73e/A4XDw5ptvDkjuDz74YMC/+/nz5w+IGwDOnTuH22+/HSqVCjKZDJMnT0ZVVVW37r5+nlEGEEK5Ilu2bCFCoZB8+OGH5MyZM2T58uVErVaT+vp61viffvqJ8Hg88uqrr5KzZ8+SF154gQgEAlJUVBQQ++2335Lnn3+ebNu2jQAg27dv7zaXS5cuEalUSlatWkXOnj1L3n77bcLj8ciePXv84ubNm0c++ugjUlxcTAoLC8nNN99M4uPjidlsDuruTd7ffPMN2bVrFykpKSEXLlwgf/zjH4lAICDFxcX9dnfm2LFjJDExkUyYMIE89dRTA5L7unXrSFpaGqmrq/MdjY2NA+JuaWkhCQkJ5MEHHyRHjx4lly5dInv37iVlZWVB/T19TxsaGvxyzs3NJQDIwYMH+533X/7yFxIWFkZ27txJysvLyZdffknkcjl56623+p13O/fccw8ZO3YsOXz4MCktLSXr1q0jSqWS1NTU9Mr/8ssvd3vPvPLKK0SlUpEdO3aQU6dOkdtvv50kJSURm80W9LV0vsc3bdpEMjIyiFQqZfV//PHH5E9/+hN5//33CQBSUFAQ1NtO+3vx8MMPk8cee4zcddddBAB58803fTF6vZ7k5OSQrVu3kvPnz5O8vDwyZcoUkpWV1a27PfeVK1eS3/72tyQnJ4cAIB999JFf3Keffkpyc3PJxYsXSXFxMXnkkUeIUqkkDQ0NA1Iu7Wzbto2kp6eT6Oho8sYbbwxI7suWLSPz58/3+/ff0tIyIO6ysjISGhpKVq9eTU6ePEnKysrI119/HfTznZC+f55RBhZagekBU6ZMIStWrPD97fF4SHR0NFm/fj1r/D333ENuueUWv3NTp04ljz32WLfP05MKzB/+8AeSlpbmd27x4sVk3rx53V7X0NBAAJDDhw8Hjelr3u2EhISQv//97wPmNplMJCUlheTm5pKZM2d2W4HpjX/dunUkPT09+Avph/vZZ58lN9xwQ4/dhPT9PX3qqafIyJEjCcMw/c77lltuIQ8//LDfuTvvvJPcd999A5K31WolPB6P7Ny50+/8xIkTyfPPP99nf9d7hmEYEhkZSV577TXfOb1eT0QiEfn888+DvpZg93h392R5eXmPKzBs7wUAMnfu3G6vO3bsGAFAKisre5U7AHL//fd36zYYDAQA2bdvX6/c3ZVLTU0NiYmJIcXFxSQhIeGKFZie5r5s2TKycOHCbl19dS9evPiKZdWV/n5WUgYG2oV0BZxOJ/Lz85GTk+M7x+VykZOTg7y8PNZr8vLy/OIBYN68eUHje0Nf3QaDAQAQGho64G6Px4MtW7bAYrEgOzt7wNwrVqzALbfcEnDdQPhLS0sRHR2NESNG4L777uu2ubg37m+++QaTJk3C3XffjYiICGRmZuL9998f0NwB77/LTz75BA8//HDQDUd7450+fTr279+PkpISAMCpU6fw448/YsGCBQOSt9vthsfjCdjHRSKR4Mcff+y3v53y8nLodDq/61QqFaZOnRr0uu7u8YGC7bUAuGK3rsFgAIfDgVqtZn08WO5XcjudTrz33ntQqVRIT0/vlTtYuTAMgwceeACrV69GWlpat6+rL7kfOnQIERERGD16NB5//HE0Nzf3280wDHbt2oVRo0Zh3rx5iIiIwNSpU6/YlT+Yn/GUnkMrMFegqakJHo8HWq3W77xWq4VOp2O9RqfT9Sq+NwRzG41G2Gw21msYhsHKlSsxY8YMjBs3rtfuYHkXFRVBLpdDJBLhd7/7HbZv346xY8cOiHvLli04efIk1q9fHzTfvvqnTp2KzZs3Y8+ePXj33XdRXl6OG2+8ESaTqd/uS5cu4d1330VKSgr27t2Lxx9/HE8++ST+8Y9/9Dr37t7THTt2QK/X48EHH+y1ly3v5557Dvfeey9SU1MhEAiQmZmJlStX4r777huQvBUKBbKzs/Hyyy/j8uXL8Hg8+OSTT5CXl4e6urp++ztf0x7Xk9cNdH+PDxRsrwUA9Hp90GvsdjueffZZLFmyJOiGgsFyD+beuXMn5HI5xGIx3njjDeTm5kKj0fTKHaxc/vrXv4LP5+PJJ58M+pr6mvv8+fPx8ccfY//+/fjrX/+Kw4cPY8GCBfB4PP1yNzQ0wGw245VXXsH8+fPx3Xff4Y477sCdd96Jw4cPB819MD/jKT2H7kb9C2DFihUoLi4O+ku3r4wePRqFhYUwGAz417/+hWXLluHw4cNBKzE9pbq6Gk899RRyc3MHZefVzq0KEyZMwNSpU5GQkIAvvvgCjzzySL/cDMNg0qRJ+O///m8AQGZmJoqLi7Fp0yYsW7asX+7OfPDBB1iwYAGio6MHxPfFF1/g008/xWeffYa0tDQUFhZi5cqViI6OHrC8//nPf+Lhhx9GTEwMeDweJk6ciCVLliA/P39A/NcTLpcL99xzDwghePfddwfMO3v2bBQWFqKpqQnvv/8+7rnnHhw9ehQRERH98ubn5+Ott97CyZMng7YI9od7773X9//jx4/HhAkTMHLkSBw6dAhz5szps5dhGADAwoUL8fTTTwMAMjIycOTIEWzatAkzZ87sX+KUQYW2wFwBjUYDHo+H+vp6v/P19fWIjIxkvSYyMrJX8b0hmFupVEIikQTEP/HEE9i5cycOHjyI2NjYPrmD5S0UCpGcnIysrCysX78e6enpeOutt/rtzs/PR0NDAyZOnAg+nw8+n4/Dhw/jf//3f8Hn81l/dfWnzNVqNUaNGoWysrJ+5x4VFRVQgRszZky3XVS9fU8rKyuxb98+PProo0Gdvc179erVvlaY8ePH44EHHsDTTz/dbQtYb/MeOXIkDh8+DLPZjOrqahw7dgwulwsjRowYEH/7Ne1xPXndQPf3+EDB9loAsHYNtVdeKisrkZubG7T1BQieezC3TCZDcnIypk2bhg8++AB8Ph8ffPBBr9xsz/XDDz+goaEB8fHxvnu2srISzzzzDBITEwck986MGDECGo0m6D3bU7dGowGfzx+we3YgPuMpPYdWYK6AUChEVlYW9u/f7zvHMAz2798fdLxHdna2XzwA5ObmBo3vDT11E0LwxBNPYPv27Thw4ACSkpIGzB0MhmHgcDj67Z4zZw6KiopQWFjoOyZNmoT77rsPhYWF4PF4A5q72WzGxYsXERUV1e/cZ8yYEdB/X1JSgoSEhKDP39vcP/roI0REROCWW24J6uyt12q1+sYItMPj8Xy/UAci73ZkMhmioqLQ2tqKvXv3YuHChQPmT0pKQmRkpN91RqMRR48eDXpdd/f4QMH2WgBvK2Zn2isvpaWl2LdvH8LCwrr1Bsudzc1Gd/dsb8rlgQcewOnTp/3u2ejoaKxevRp79+4d8NxramrQ3Nwc9J7tqVsoFGLy5MmDfs9SBolrPYp4OLBlyxYiEonI5s2bydmzZ8lvf/tbolariU6nI4QQ8sADD5DnnnvOF//TTz8RPp9P/ud//oecO3eOrFu3LugUO5PJRAoKCkhBQQEBQDZs2EAKCgp8sw6ee+458sADD/ji26eWrl69mpw7d45s3LiRderq448/TlQqFTl06JDf1EOr1eqL6U/ezz33HDl8+DApLy8np0+fJs899xzhcDjku+++67ebja6zkPrjf+aZZ8ihQ4dIeXk5+emnn0hOTg7RaDS+6aT9cR87dozw+Xzyl7/8hZSWlpJPP/2USKVS8sknn/iVXV/eU0K8Myni4+PJs88+G/BYf/JetmwZiYmJ8U2j3rZtG9FoNOQPf/jDgORNCCF79uwhu3fvJpcuXSLfffcdSU9PJ1OnTiVOp7NX/u3bt3d7z7zyyitErVaTr7/+mpw+fZosXLgwYBr1TTfdRN5++23f353v8ePHj5M777yTyOVyVn9zczMpKCggu3btIgDIli1bSEFBAamrq7vie/GXv/yFbNu2jTz22GMEAFm9erXP7XQ6ye23305iY2NJYWGh333rcDiumPumTZvIV199Re68804CgPzpT3/yuc1mM1mzZg3Jy8sjFRUV5MSJE+Shhx4iIpHIb+mD/pRLV9hmIfUld5PJRP7zP/+T5OXlkfLycrJv3z4yceJEkpKSQux2e7/chHinfQsEAvLee++R0tJS33T9H3744YrvZ18/zygDA63A9JC3336bxMfHE6FQSKZMmUJ+/vln32MzZ84ky5Yt84v/4osvyKhRo4hQKCRpaWlk165drN6DBw8SAAFHu2/ZsmVk5syZAddkZGQQoVBIRowYEbCuASGE1YkuayD0J++HH36YJCQkEKFQSMLDw8mcOXN8lZf+utnoWoHpj3/x4sUkKiqKCIVCEhMTQxYvXuy3Tkt/c//3v/9Nxo0bR0QiEUlNTSXvvfee3+N9fU8JIWTv3r0EALlw4ULAY/3J22g0kqeeeorEx8cTsVhMRowYQZ5//nm/L87+5E0IIVu3biUjRowgQqGQREZGkhUrVhC9Xt9r/5XuGYZhyIsvvki0Wi0RiURkzpw5AeWVkJBA1q1b53eu/R7n8/nd+j/66CPWxzv7gr0XsbGxQd3t07LZjs5r/QTLPSIiIqjbZrORO+64g0RHRxOhUEiioqLI7bffTo4dOzZg5dIVtgpMX3K3Wq1k7ty5JDw8nAgEApKQkECWL1/u+wHZH3c7H3zwAUlOTiZisZikp6eTHTt2+HkG+vOMMjBwCLnCUpsUCoVCoVAoQww6BoZCoVAoFMqwg1ZgKBQKhUKhDDtoBYZCoVAoFMqwg1ZgKBQKhUKhDDtoBYZCoVAoFMqwg1ZgKBQKhUKhDDtoBYZCoVAoFMqwg1ZgKBQKhUKhDDtoBYZCofjB4XC6PV566aVrnSKFQqGAf60ToFAoQ4u6ujrf/2/duhVr16712+xOLpdfi7QoFArFD9oCQ6FQ/IiMjPQdKpUKHA7H79yWLVswZswYiMVipKam4v/+7/+udcoUCuUXCG2BoVAoPebTTz/F2rVr8c477yAzMxMFBQVYvnw5ZDIZli1bdq3To1AovyBoBYZCofSYdevW4fXXX8edd94JAEhKSsLZs2fxt7/9jVZgKBTKVYVWYCgUSo+wWCy4ePEiHnnkESxfvtx33u12Q6VSXcPMKBTKLxFagaFQKD3CbDYDAN5//31MnTrV7zEej3ctUqJQKL9gaAWGQqH0CK1Wi+joaFy6dAn33XfftU6HQqH8wqEVGAqF0mP+9Kc/4cknn4RKpcL8+fPhcDhw4sQJtLa2YtWqVdc6PQqF8guCVmAoFEqPefTRRyGVSvHaa69h9erVkMlkGD9+PFauXHmtU6NQKL8wOIQQcq2ToFAoFAqFQukNdCE7CoVCoVAoww5agaFQKBQKhTLsoBUYCoVCoVAoww5agaFQKBQKhTLsoBUYCoVCoVAoww5agaFQKBQKhTLsoBUYCoVCoVAoww5agaFQKBQKhTLsoBUYCoVCoVAoww5agaFQKBQKhTLsoBUYCoVCoVAoww5agaFQKBQKhTLs+P8wFop/M/ZUpAAAAABJRU5ErkJggg==",
- "text/plain": [
- "
"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plot the capture width mean matrix\n",
+ "ax = wave.graphics.plot_matrix(CWM_mean)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The plotting function only requires the matrix as input, but the function can also take several other arguments.\n",
+ "The list of optional arguments is: `xlabel, ylabel, zlabel, show_values, and ax`. The following uses these optional arguments. The matplotlib package is imported to define an axis with a larger figure size."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The plotting function only requires the matrix as input, but the function can also take several other arguments.\n",
- "The list of optional arguments is: `xlabel, ylabel, zlabel, show_values, and ax`. The following uses these optional arguments. The matplotlib package is imported to define an axis with a larger figure size."
+ "data": {
+ "text/plain": [
+ ""
]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
},
{
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAINCAYAAAD/Wz8DAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5FUlEQVR4nO3deVxU1f8/8NewDagwiAoDiohiIi6IGw5quJBIZFp+zPxZkOvHvpAifVzwk3uGlWtq4k6lZppKfbRQxMAU3FDKLXMFVMBMZQQFlLm/P4zRkUWGmQsXfD2/j/P4du8958254wd4c+4558oEQRBAREREJFEm1d0BIiIiovIwWSEiIiJJY7JCREREksZkhYiIiCSNyQoRERFJGpMVIiIikjQmK0RERCRpTFaIiIhI0syquwNSpNFocOPGDVhbW0Mmk1V3d4iIqJIEQcC9e/fg5OQEExPj/32en5+PwsJCo8cFAAsLC1haWooSu6ZhslKKGzduwNnZubq7QURERpKRkYEmTZoYNWZ+fj5cXeoh62aRUeMWUyqVuHLlChMWMFkplbW1NYDH/+O2sbGp5t4QEUlPuy+XiRLXsmmuUeMV3S/ApTGLtT/XjamwsBBZN4uQltIMNtbGHbVR39PApdNVFBYWMlkBk5VSFT/6sbGxYbJCRFQKE5F+gZrWeShKXDEf6dezlqGetXHja8ApCE9jskJERGSAIkGDIiO/ErhI0Bg3YA3H1UBEREQkaRxZISIiMoAGAjQw7tCKsePVdNU6snLgwAEMGDAATk5OkMlkiImJ0bkuCAJmzJgBR0dHWFlZwc/PDxcuXCg35qxZsyCTyXSKu7u7iHdBREREYqrWZCUvLw+enp5YsWJFqdc/++wzfPHFF4iKisKRI0dQt25d+Pv7Iz8/v9y4bdq0QWZmprYcPHhQjO4TERFBI9L/0RPV+hgoICAAAQEBpV4TBAFLlizBRx99hIEDBwIAvv76azg4OCAmJgZvv/12mXHNzMygVCpF6TMRERFVLclOsL1y5QqysrLg5+enPadQKODt7Y3k5ORy2164cAFOTk5o3rw5hg8fjvT09HLrFxQUQK1W6xQiIqKKKBIEUQo9IdlkJSsrCwDg4OCgc97BwUF7rTTe3t6Ijo5GbGwsVq5ciStXrqBnz564d+9emW0iIyOhUCi0hbvXEhERSYdkk5XKCggIwJAhQ9C+fXv4+/vjp59+wt27d7F169Yy20RERCAnJ0dbMjIyqrDHRERUkxWvBjJ2oScku3S5eM5JdnY2HB0dteezs7PRoUOHCsextbXFSy+9hIsXL5ZZRy6XQy6XV7qvRET04tJAQBGXLotKsiMrrq6uUCqViI+P155Tq9U4cuQIVCpVhePk5ubi0qVLOgkPERER1RzVmqzk5uYiNTUVqampAB5Pqk1NTUV6ejpkMhnCwsLw8ccf48cff8SpU6cQFBQEJycnDBo0SBujb9++WL58ufb4P//5DxITE3H16lUkJSXhjTfegKmpKYYNG1bFd0dERC8CPgYSX7U+Bjp+/Dh69+6tPQ4PDwcABAcHIzo6GpMnT0ZeXh7Gjh2Lu3fvokePHoiNjdV5A+WlS5dw69Yt7fG1a9cwbNgw/P3332jUqBF69OiBw4cPo1GjRlV3Y0RERGQ0MkHg+qhnqdVqKBQK5OTk8K3LRESlcF2yUJS4Vs3KXrlZGUX3C/Dn8Pmi/Dwv/l3x5zkHWFsb90HFvXsavNQ6m7+H/iHZOStEREREgIRXAxEREdUEmn+KsWPSExxZISIiIknjyAoREentStiHosRddO4Vo8bLz32E/xo1YklFIuyzYux4NR2TFSIiIgMUCY+LsWPSE3wMRERERJLGkRUiIiIDcIKt+DiyQkRERJLGkRUiIiIDaCBDEWRGj0lPcGSFiIiIJK1ak5UDBw5gwIABcHJygkwmQ0xMjM51QRAwY8YMODo6wsrKCn5+frhw4cJz465YsQLNmjWDpaUlvL29cfToUZHugIiIXnQaQZxCT1RrspKXlwdPT0+sWLGi1OufffYZvvjiC0RFReHIkSOoW7cu/P39kZ+fX2bM7777DuHh4Zg5cyZOnDgBT09P+Pv74+bNm2LdBhEREYmoWpOVgIAAfPzxx3jjjTdKXBMEAUuWLMFHH32EgQMHon379vj6669x48aNEiMwT1u0aBHGjBmDESNGwMPDA1FRUahTpw7Wr18v4p0QEdGLquifOSvGLvSEZOesXLlyBVlZWfDz89OeUygU8Pb2RnJycqltCgsLkZKSotPGxMQEfn5+ZbYBgIKCAqjVap1CRERUEUxWxCfZZCUrKwsA4ODgoHPewcFBe+1Zt27dQlFRkV5tACAyMhIKhUJbnJ2dDew9ERFR1YmMjESXLl1gbW0Ne3t7DBo0COfPny9RLzk5GX369EHdunVhY2ODl19+GQ8ePNBev337NoYPHw4bGxvY2tpi1KhRyM3NrcpbKZVkk5WqFBERgZycHG3JyMio7i4REVENoRFkohR9JCYmIiQkBIcPH0ZcXBwePnyIfv36IS8vT1snOTkZ/fv3R79+/XD06FEcO3YMoaGhMDF5kgoMHz4cZ86cQVxcHHbt2oUDBw5g7NixRvusKkuy+6wolUoAQHZ2NhwdHbXns7Oz0aFDh1LbNGzYEKampsjOztY5n52drY1XGrlcDrlcbniniYiIqkFsbKzOcXR0NOzt7ZGSkoKXX34ZADBx4kSMHz8eU6dO1dZr1aqV9r/PnTuH2NhYHDt2DJ07dwYALFu2DK+++ioWLFgAJyenKriT0kl2ZMXV1RVKpRLx8fHac2q1GkeOHIFKpSq1jYWFBTp16qTTRqPRID4+vsw2REREhhBzzsqz8ykLCgoq1KecnBwAgJ2dHQDg5s2bOHLkCOzt7eHj4wMHBwf4+vri4MGD2jbJycmwtbXVJioA4OfnBxMTExw5csRYH1elVGuykpubi9TUVKSmpgJ4PKk2NTUV6enpkMlkCAsLw8cff4wff/wRp06dQlBQEJycnDBo0CBtjL59+2L58uXa4/DwcKxZswZfffUVzp07h/fffx95eXkYMWJEFd8dERGRYZydnXXmVEZGRj63jUajQVhYGLp37462bdsCAC5fvgwAmDVrFsaMGYPY2Fh07NgRffv21e5flpWVBXt7e51YZmZmsLOzK3feZ1Wo1sdAx48fR+/evbXH4eHhAIDg4GBER0dj8uTJyMvLw9ixY3H37l306NEDsbGxsLS01La5dOkSbt26pT0eOnQo/vrrL8yYMQNZWVno0KEDYmNjS0y6JSIiMoYimKDIyH/7F/3z/zMyMmBjY6M9X5EpCyEhITh9+rTOqIlG8/jViP/+97+1f7x7eXkhPj4e69evr1ASVJ2qNVnp1asXBKHsbfpkMhnmzJmDOXPmlFnn6tWrJc6FhoYiNDTUGF0kIiKqNjY2NjrJyvOEhoZqJ8Y2adJEe7547qeHh4dO/datWyM9PR3A47miz26g+ujRI9y+fbvceZ9VQbJzVoiIiGoCQYSVQIKeq4EEQUBoaCh27tyJ/fv3w9XVVed6s2bN4OTkVGI5859//gkXFxcAgEqlwt27d5GSkqK9vn//fmg0Gnh7e1fy0zEOya4GIiIiqgnE2MRN33ghISHYvHkzfvjhB1hbW2vnmCgUClhZWUEmk2HSpEmYOXMmPD090aFDB3z11Vf4448/8P333wN4PMrSv39/jBkzBlFRUXj48CFCQ0Px9ttvV+tKIIDJChERUY23cuVKAI+nVzxtw4YNeO+99wAAYWFhyM/Px8SJE3H79m14enoiLi4OLVq00NbftGkTQkND0bdvX5iYmGDw4MH44osvquo2yiQTyps08oJSq9VQKBTIycnR61khEdGLwl8xUpS4e3KM+x43MX+eF8f++XdX1LU27qyKvHsaBLS/wt9D/+CcFSIiIpI0PgYiIiIygAYyaIz8t78GfOjxNI6sEBERkaRxZIWIiMgAUlgNVNtxZIWIiIgkjSMrREREBigSTFAkGHm7fS7U1SH5kZV79+4hLCwMLi4usLKygo+PD44dO1Zm/YSEBMhkshKlul/CREREtdPjCbbGL/SE5EdWRo8ejdOnT+Obb76Bk5MTNm7cCD8/P5w9exaNGzcus9358+d11qY/+yZJIiIiqhkkPbLy4MEDbN++HZ999hlefvlluLm5YdasWXBzc9Pu1lcWe3t7KJVKbTExkfStEhFRDaX5563LxizGXgpd00n603j06BGKiopgaWmpc97Kykrn1del6dChAxwdHfHKK6/g0KFD5dYtKCiAWq3WKURERCQNkk5WrK2toVKpMHfuXNy4cQNFRUXYuHEjkpOTkZmZWWobR0dHREVFYfv27di+fTucnZ3Rq1cvnDhxosyvExkZCYVCoS3Ozs5i3RIREdUyxRNsjV3oCcm/G+jSpUsYOXIkDhw4AFNTU3Ts2BEvvfQSUlJScO7cuQrF8PX1RdOmTfHNN9+Uer2goAAFBQXaY7VaDWdnZ76TgYioDHw30JPYW1I9UMfa1Kix798rwtsdzvL30D8kP8G2RYsWSExMRF5eHtRqNRwdHTF06FA0b968wjG6du1a7mMjuVwOuVxujO4SEdELRiPCHBNut6+rxowz1a1bF46Ojrhz5w727NmDgQMHVrhtamoqHB0dRewdERERiUXyIyt79uyBIAho1aoVLl68iEmTJsHd3R0jRowAAEREROD69ev4+uuvAQBLliyBq6sr2rRpg/z8fKxduxb79+/H3r17q/M2iIiolioSZCgSjLzdvpHj1XSST1ZycnIQERGBa9euwc7ODoMHD8a8efNgbm4OAMjMzER6erq2fmFhIT788ENcv34dderUQfv27bFv3z707t27um6BiIhqseLlxsaNycdAT5P8BNvqIOaELCKi2oATbJ/Ejj7pKcoE2/e8fuPvoX9IfmSFiIhIyjSCCTRGXmqs4TiCjhozwZaIiIheTBxZISIiMgDnrIiPyQoREenN2HNLiMrDZIWIiMgAGhh/qbHGqNFqPs5ZISIiIknjyAoREZEBxNlun2MJT2OyQkREZAAx3pLMty7r4qdBREREksaRFSIiIgNoIIMGxp5gy3cDPU3yIyv37t1DWFgYXFxcYGVlBR8fHxw7dqzcNgkJCejYsSPkcjnc3NwQHR1dNZ0lIiIio5N8sjJ69GjExcXhm2++walTp9CvXz/4+fnh+vXrpda/cuUKAgMD0bt3b6SmpiIsLAyjR4/Gnj17qrjnRET0Iiies2LsQk9I+tN48OABtm/fjs8++wwvv/wy3NzcMGvWLLi5uWHlypWltomKioKrqysWLlyI1q1bIzQ0FP/617+wePHiKu49ERERGYOk56w8evQIRUVFsLS01DlvZWWFgwcPltomOTkZfn5+Ouf8/f0RFhZW5tcpKChAQUGB9litVle+00RE9EIRZ7t9SY8lVDlJfxrW1tZQqVSYO3cubty4gaKiImzcuBHJycnIzMwstU1WVhYcHBx0zjk4OECtVuPBgweltomMjIRCodAWZ2dno98LERERVY6kkxUA+OabbyAIAho3bgy5XI4vvvgCw4YNg4mJ8boeERGBnJwcbcnIyDBabCIiqt00gkyUQk9I+jEQALRo0QKJiYnIy8uDWq2Go6Mjhg4diubNm5daX6lUIjs7W+dcdnY2bGxsYGVlVWobuVwOuVxu9L4TERGR4SQ/slKsbt26cHR0xJ07d7Bnzx4MHDiw1HoqlQrx8fE65+Li4qBSqaqim0RE9ILR/DNnxZiF2+3rkvynsWfPHsTGxuLKlSuIi4tD79694e7ujhEjRgB4/AgnKChIW3/cuHG4fPkyJk+ejD/++ANffvkltm7diokTJ1bXLRARUS2mEUxEKfSE5D+NnJwchISEwN3dHUFBQejRowf27NkDc3NzAEBmZibS09O19V1dXbF7927ExcXB09MTCxcuxNq1a+Hv719dt0BEREQGkAmCIFR3J6RGrVZDoVAgJycHNjY21d0dIiKqJDF/nhfHnnu0DyzrGXcKaH7uI0zvup+/h/4h+ZEVIiIierFJfjUQERGRlIkxx4RzVnTx0yAiIiJJ48gKERHpbc35nqLEfaXuRaPGu3dPY9R4pSkCUATjbuJWZNRoNR9HVoiIiEjSOLJCRERkAM5ZER+TFSIiIgMUCSYoMnJyYex4NR0/DSIiIpI0JitEREQGECCDxshF0HPCbmRkJLp06QJra2vY29tj0KBBOH/+fOn9FQQEBARAJpMhJiZG51p6ejoCAwNRp04d2NvbY9KkSXj06FFlPxqjYbJCRERUwyUmJiIkJASHDx9GXFwcHj58iH79+iEvL69E3SVLlkAmK5kMFRUVITAwEIWFhUhKSsJXX32F6OhozJgxoypuoVySTlaKioowffp0uLq6wsrKCi1atMDcuXNR3hsCEhISIJPJSpSsrKwq7DkREb0oiuesGLvoIzY2Fu+99x7atGkDT09PREdHIz09HSkpKTr1UlNTsXDhQqxfv75EjL179+Ls2bPYuHEjOnTogICAAMydOxcrVqxAYWGhQZ+RoSQ9wfbTTz/FypUr8dVXX6FNmzY4fvw4RowYAYVCgfHjx5fb9vz58zrvU7C3txe7u0REREalVqt1juVyOeRy+XPb5eTkAADs7Oy05+7fv4//9//+H1asWAGlUlmiTXJyMtq1awcHBwftOX9/f7z//vs4c+YMvLy8KnsbBpN0spKUlISBAwciMDAQANCsWTN8++23OHr06HPb2tvbw9bWVuQeEhHRi04jyKARjLspXHE8Z2dnnfMzZ87ErFmzym+r0SAsLAzdu3dH27ZttecnTpwIHx8fDBw4sNR2WVlZOokKAO1xdT+dkHSy4uPjg9WrV+PPP//ESy+9hN9++w0HDx7EokWLntu2Q4cOKCgoQNu2bTFr1ix07969zLoFBQUoKCjQHj+byRIREVWHjIwMnacEFRlVCQkJwenTp3Hw4EHtuR9//BH79+/HyZMnRemn2CSdrEydOhVqtRru7u4wNTVFUVER5s2bh+HDh5fZxtHREVFRUejcuTMKCgqwdu1a9OrVC0eOHEHHjh1LbRMZGYnZs2eLdRtERFSLFcEERUaeAlocz8bGRidZeZ7Q0FDs2rULBw4cQJMmTbTn9+/fj0uXLpV44jB48GD07NkTCQkJUCqVJZ5cZGdnA0Cpj42qkqSTla1bt2LTpk3YvHkz2rRpg9TUVISFhcHJyQnBwcGltmnVqhVatWqlPfbx8cGlS5ewePFifPPNN6W2iYiIQHh4uPZYrVaXGHojIiIqjZiPgSpKEAR88MEH2LlzJxISEuDq6qpzferUqRg9erTOuXbt2mHx4sUYMGAAAEClUmHevHm4efOmdp5nXFwcbGxs4OHhYcDdGE7SycqkSZMwdepUvP322wAef7BpaWmIjIwsM1kpTdeuXXWGw55V0QlLREREUhQSEoLNmzfjhx9+gLW1tXaOiUKhgJWVFZRKZamjI02bNtUmNv369YOHhwfeffddfPbZZ8jKysJHH32EkJCQav8dKemly/fv34eJiW4XTU1NodHo9xbN1NRUODo6GrNrREREAAANTEQp+li5ciVycnLQq1cvODo6ast3331X4RimpqbYtWsXTE1NoVKp8M477yAoKAhz5szR9yMxOkmPrAwYMADz5s1D06ZN0aZNG5w8eRKLFi3CyJEjtXUiIiJw/fp1fP311wAeb3bj6uqKNm3aID8/H2vXrsX+/fuxd+/e6roNIiIiUZW3/5g+bVxcXPDTTz8Zo0tGJelkZdmyZZg+fTr+7//+Dzdv3oSTkxP+/e9/6+yml5mZifT0dO1xYWEhPvzwQ1y/fh116tRB+/btsW/fPvTu3bs6boGIiGq5IkGGIiPPWTF2vJpOJlQmHavl1Go1FAoFcnJy9JqFTUT0olhzvqcocV+pe9Go8e7d06C9x01Rfp4X/654/9c3Ia9nbtTYBbkPsbLnDv4e+oekR1aIiIikTgqrgWo7SU+wJSIiIuLIChERkQEEwQQaPV88WJGY9ASTFSKiWuzt5LGixE355Q1R4o6ZFv78Snp4/PoUhVFjPqsIMhTByBNsjRyvpmPqRkRERJLGkRUiIiIDaATjT4jVcJ2uDo6sEBERkaRxZIWIiMgAGhEm2Bo7Xk3HT4OIiIgkjSMrREREBtBABo2RV+8YO15NJ+mRlaKiIkyfPh2urq6wsrJCixYtMHfu3Oe+sCkhIQEdO3aEXC6Hm5sboqOjq6bDREREZHSSHln59NNPsXLlSnz11Vdo06YNjh8/jhEjRkChUGD8+PGltrly5QoCAwMxbtw4bNq0CfHx8Rg9ejQcHR3h7+9fxXdARES1HV9kKD5JJytJSUkYOHAgAgMDAQDNmjXDt99+i6NHj5bZJioqCq6urli4cCEAoHXr1jh48CAWL17MZIWIiIyOE2zFJ+lPw8fHB/Hx8fjzzz8BAL/99hsOHjyIgICAMtskJyfDz89P55y/vz+Sk5PLbFNQUAC1Wq1TiIiISBokPbIydepUqNVquLu7w9TUFEVFRZg3bx6GDx9eZpusrCw4ODjonHNwcIBarcaDBw9gZWVVok1kZCRmz55t9P4TEVHtp4EIb13mBFsdkh5Z2bp1KzZt2oTNmzfjxIkT+Oqrr7BgwQJ89dVXRv06ERERyMnJ0ZaMjAyjxiciIqLKk/TIyqRJkzB16lS8/fbbAIB27dohLS0NkZGRCA4OLrWNUqlEdna2zrns7GzY2NiUOqoCAHK5HHK53LidJyKiF4IgwtJlgSMrOiQ9snL//n2YmOh20dTUFBqNpsw2KpUK8fHxOufi4uKgUqlE6SMRERGJS9LJyoABAzBv3jzs3r0bV69exc6dO7Fo0SK88caTV5NHREQgKChIezxu3DhcvnwZkydPxh9//IEvv/wSW7duxcSJE6vjFoiIqJbTCDJRCj0h6cdAy5Ytw/Tp0/F///d/uHnzJpycnPDvf/8bM2bM0NbJzMxEenq69tjV1RW7d+/GxIkTsXTpUjRp0gRr167lsmUiIqIaStLJirW1NZYsWYIlS5aUWae03Wl79eqFkydPitcxIiKif3CfFfFJOlkhIiKSOjEe2/AxkC6mbkRERCRpHFkhIiIyAN+6LD4mK0RUrTxDF4sS97flNWsFYP/WEaLEPTexpShx06aFixKXqDRMVoiIiAzAOSvi45wVIiIikjSOrBARERmAIyvi48gKERERSRpHVoiIiAzAkRXxMVkhIiIyAJMV8Un+MVCzZs0gk8lKlJCQkFLrR0dHl6hraWlZxb0mIiIiY5H8yMqxY8dQVFSkPT59+jReeeUVDBkypMw2NjY2OH/+vPZYJmOGSkRE4hBg/E3cBKNGq/kkn6w0atRI53j+/Plo0aIFfH19y2wjk8mgVCrF7hoRERFVAck/BnpaYWEhNm7ciJEjR5Y7WpKbmwsXFxc4Oztj4MCBOHPmTLlxCwoKoFardQoREVFFFM9ZMXahJ2pUshITE4O7d+/ivffeK7NOq1atsH79evzwww/YuHEjNBoNfHx8cO3atTLbREZGQqFQaIuzs7MIvSciIqLKqFHJyrp16xAQEAAnJ6cy66hUKgQFBaFDhw7w9fXFjh070KhRI6xatarMNhEREcjJydGWjIwMMbpPRES1EEdWxCf5OSvF0tLSsG/fPuzYsUOvdubm5vDy8sLFixfLrCOXyyGXyw3tIhEREYmgxoysbNiwAfb29ggMDNSrXVFREU6dOgVHR0eRekZERC8yjqyIr0aMrGg0GmzYsAHBwcEwM9PtclBQEBo3bozIyEgAwJw5c9CtWze4ubnh7t27+Pzzz5GWlobRo0dXR9eJiKiW46Zw4qsRycq+ffuQnp6OkSNHlriWnp4OE5MnA0R37tzBmDFjkJWVhfr166NTp05ISkqCh4dHVXaZiIiIjKRGJCv9+vWDIJS+RU5CQoLO8eLFi7F48eIq6BUREREgCDIIRh4JMXa8mq7GzFkhIiKiF1ONGFkhIiKSKg1kRt9u39jxajqOrBAREdVwkZGR6NKlC6ytrWFvb49BgwbpvCPv9u3b+OCDD9CqVStYWVmhadOmGD9+PHJycnTipKenIzAwEHXq1IG9vT0mTZqER48eVfXtlMCRFSKqVr8tn1jdXdBLt/+3UJS4TdbdESVumk+kKHHpCSmsBkpMTERISAi6dOmCR48eYdq0aejXrx/Onj2LunXr4saNG7hx4wYWLFgADw8PpKWlYdy4cbhx4wa+//57AI+3+ggMDIRSqURSUhIyMzMRFBQEc3NzfPLJJ0a9P30xWSEiIqrhYmNjdY6jo6Nhb2+PlJQUvPzyy2jbti22b9+uvd6iRQvMmzcP77zzDh49egQzMzPs3bsXZ8+exb59++Dg4IAOHTpg7ty5mDJlCmbNmgULC4uqvi0tPgYiIiIyQPFqIGMXACVesltQUFChPhU/3rGzsyu3jo2NjXb/suTkZLRr1w4ODg7aOv7+/lCr1c99IbDYmKwQERFJlLOzs86Ldos3QC2PRqNBWFgYunfvjrZt25Za59atW5g7dy7Gjh2rPZeVlaWTqADQHmdlZRlwF4bjYyAiIiIDiDlnJSMjAzY2NtrzFXmPXUhICE6fPo2DBw+Wel2tViMwMBAeHh6YNWuWUforNiYrREREBhBzUzgbGxudZOV5QkNDsWvXLhw4cABNmjQpcf3evXvo378/rK2tsXPnTpibm2uvKZVKHD16VKd+dna29lp14mMgIiKiGk4QBISGhmLnzp3Yv38/XF1dS9RRq9Xo168fLCws8OOPP8LS0lLnukqlwqlTp3Dz5k3tubi4ONjY2FT7K2skn6w0a9YMMpmsRAkJCSmzzbZt2+Du7g5LS0u0a9cOP/30UxX2mIiIXiSCCG9c1nekJiQkBBs3bsTmzZthbW2NrKwsZGVl4cGDBwCeJCp5eXlYt24d1Gq1tk5RURGAx6+28fDwwLvvvovffvsNe/bswUcffYSQkJAKPX4Sk+STlWPHjiEzM1Nb4uLiAABDhgwptX5SUhKGDRuGUaNG4eTJkxg0aBAGDRqE06dPV2W3iYiIqszKlSuRk5ODXr16wdHRUVu+++47AMCJEydw5MgRnDp1Cm5ubjp1MjIyAACmpqbYtWsXTE1NoVKp8M477yAoKAhz5sypzlsDUAPmrDRq1EjneP78+WjRogV8fX1Lrb906VL0798fkyZNAgDMnTsXcXFxWL58OaKiokTvLxERvVgEAGW8a9egmHrVf04HevXq9dw6AODi4iLJpxGSH1l5WmFhITZu3IiRI0dCJit9iCw5ORl+fn465/z9/ZGcnFxm3IKCghJr2YmIiEgaalSyEhMTg7t37+K9994rs05Z68TLWyMeGRmps47d2dnZWF0mIqJarvhFhsYu9ESNSlbWrVuHgIAAODk5GTVuREQEcnJytKX4+R0RERFVP8nPWSmWlpaGffv2YceOHeXWUyqV2nXhxbKzs8tdIy6Xy6t9pjMREdVMYu6zQo/VmJGVDRs2wN7eHoGBgeXWU6lUiI+P1zkXFxcHlUolZveIiOgFZexly2LsiFvT1YhkRaPRYMOGDQgODta+cKlYUFAQIiIitMcTJkxAbGwsFi5ciD/++AOzZs3C8ePHERoaWtXdJiIiIiOoEcnKvn37kJ6ejpEjR5a4lp6ejszMTO2xj48PNm/ejNWrV8PT0xPff/89YmJiynyZExERkSEEQZxCT9SIOSv9+vUrc314QkJCiXNDhgwpc9M4IiIiqllqRLJCREQkVZxgK74a8RiIiIiIXlwcWSEiIjIAR1bEx2SFiCrEa9wiUeJ2Hp0qStyrXR+IEvewZpsocd2++1iUuES1AZMVIiIiA2gEGWRGHgnhPiu6mKwQEREZQIylxly6rIsTbImIiEjSOLJCRERkgMcjK8aeYGvUcDUekxUiIiIyqhEjRjy3jiAIiI6OrlA8JitEREQG4NLlknJycsq8JggCTp48ifT09NqTrFy/fh1TpkzBzz//jPv378PNzQ0bNmxA586dS62fkJCA3r17lzifmZkJpVIpdneJiIheeDt27Chx7tatW9i0aRPWr18PtVqNcePGVTiepJOVO3fuoHv37ujduzd+/vlnNGrUCBcuXED9+vWf2/b8+fOwsbHRHtvb24vZVSIiekEJ/xRjx6wNNBoNYmNjsWHDBuzatQs9evTA1KlT8eabb0Iul1c4jqSTlU8//RTOzs7YsGGD9pyrq2uF2trb28PW1laknhEREVF5cnNz4e7uDgsLC7z33ntYtGgRnJ2dKxVL0kuXf/zxR3Tu3BlDhgyBvb09vLy8sGbNmgq17dChAxwdHfHKK6/g0KFD5dYtKCiAWq3WKURERBVRPGfF2KU2MDU1hUwmgyAI0Gg0lY4j6WTl8uXLWLlyJVq2bIk9e/bg/fffx/jx4/HVV1+V2cbR0RFRUVHYvn07tm/fDmdnZ/Tq1QsnTpwos01kZCQUCoW2VDbzIyKiF5AgUqnh6tWrh6tXr+LLL7/EmTNn4OHhgVdeeQXffvstCgoK9IolEwTprua2sLBA586dkZSUpD03fvx4HDt2DMnJyRWO4+vri6ZNm+Kbb74p9XpBQYHOB6dWq+Hs7IycnBydeS9ELzK+G+ixuBr2bqCLQz8SJW5NoVaroVAoRPl5Xhy7+VfTYFrH0qixi+7n43LwJ7Xq99Dt27exceNGbNiwAWlpaRg2bBhWrFhRobaSnrPi6OgIDw8PnXOtW7fG9u3b9YrTtWtXHDx4sMzrcrlcr4k+REREWmI8tqnhj4HeeOONMq+5urri7t27WLlyZe1IVrp3747z58/rnPvzzz/h4uKiV5zU1FQ4Ojoas2tERERUhuet2i1ti5HySDpZmThxInx8fPDJJ5/grbfewtGjR7F69WqsXr1aWyciIgLXr1/H119/DQBYsmQJXF1d0aZNG+Tn52Pt2rXYv38/9u7dW123QUREtRhfZFjS+vXrjRpP0slKly5dsHPnTkRERGDOnDlwdXXFkiVLMHz4cG2dzMxMpKena48LCwvx4Ycf4vr166hTpw7at2+Pffv26Z3FERERkWFyc3Nx9uxZ1KtXD25ubrCwsKhUHEknKwDw2muv4bXXXivz+rNb9U6ePBmTJ08WuVdERESPcbv90k2fPh0LFizQLmCpU6cOIiIiMG3aNMhk+t2fpJcuExERUc2zbNkyrFq1CmvXrsWBAwdQr149xMfHY/PmzZg/f77e8ZisEBERGUKQiVNqsJUrV2LBggUYPnw4nJycIAgCvL29sXTp0gpv7vo0yT8GIiIikjJOsC3p8uXL6NGjR4nzbm5uyMrK0jsekxUiqpC8xuL8pZe6vIMocY9pwkWJK9bmbcM9jokSl6g62NraIicnp8T5AwcOoFWrVnrHY7JCRERkCL52uYSOHTvi0KFD8PLyAgA8fPgQY8aMwaZNm8rcTb48TFaIiIjIqKZNm4YrV64AeLxLvJeXFx48eIA9e/agZ8+eesdjskJERGQALl0uqUePHto5K40bN9brfX6lYbJCRERERlVYWIhVq1bhwoUL8PHxwdtvvw0AePToEUxMTGBiot9iZC5dJiIiMpRg5FLDvf/++5gxYwbOnTuHkSNHal9YOG/ePIwdO1bveExWiIiIyKh27tyJ7777DnFxcVi8eDE2bNgAAHj99dexf/9+veNJPlm5fv063nnnHTRo0ABWVlZo164djh8/Xm6bhIQEdOzYEXK5HG5ubiW25CciIjKW4jkrxi41mUwmg6urKwCgW7du2nf42dnZVWqfFUknK3fu3EH37t1hbm6On3/+GWfPnsXChQvLffX0lStXEBgYiN69eyM1NRVhYWEYPXo09uzZU4U9JyKiF4axHwHVgkdBw4YN0y5Rtra2xoMHDwAASUlJaNq0qd7xJD3B9tNPP4Wzs7N2+AiANlMrS1RUFFxdXbFw4UIAQOvWrXHw4EEsXrwY/v7+ovaXiIiIAIVCgS+++ALJyclo0aIFCgsL8cEHHyA6Ohrz5s3TO56kR1Z+/PFHdO7cGUOGDIG9vT28vLye+06B5ORk+Pn56Zzz9/cvd9lUQUEB1Gq1TiEiIqoYmUil5vr555/RvHlz/P333zh69Ci8vLyQnZ2NDRs2YPz48XrHk/TIyuXLl7Fy5UqEh4dj2rRpOHbsGMaPHw8LCwsEBweX2iYrKwsODg465xwcHKBWq/HgwQNYWVmVaBMZGYnZs2eLcg9EREQvmhMnThg1nqRHVjQaDTp27IhPPvkEXl5eGDt2LMaMGYOoqCijfp2IiAjk5ORoS0ZGhlHjExFRLcY5K6KT9MiKo6MjPDw8dM61bt0a27dvL7ONUqlEdna2zrns7GzY2NiUOqoCPN4KWC6XG95hIiIiwogRI8q9/vRc1Iqo9MjKw4cPkZGRgfPnz+P27duVDVOu7t274/z58zrn/vzzT7i4uJTZRqVSIT4+XudcXFwcVCqVKH0kIqIXnARGViIjI9GlSxdYW1vD3t4egwYNKvH7Mz8/HyEhIWjQoAHq1auHwYMHl/jjPj09HYGBgahTpw7s7e0xadIkPHr0SL/OADpPK3JycnDr1i0kJiZi586duHv3rt7x9BpZuXfvHjZu3IgtW7bg6NGjKCwshCAIkMlkaNKkCfr164exY8eiS5cuenekNBMnToSPjw8++eQTvPXWWzh69ChWr16N1atXa+tERETg+vXr+PrrrwEA48aNw/LlyzF58mSMHDkS+/fvx9atW7F7926j9ImIiEhqEhMTERISgi5duuDRo0eYNm0a+vXrh7Nnz6Ju3boAHv9O3b17N7Zt2waFQoHQ0FC8+eabOHToEACgqKgIgYGBUCqVSEpKQmZmJoKCgmBubo5PPvlEr/7s2LGjxDlBEBAaGormzZvrfX8VHllZtGgRmjVrhg0bNsDPzw8xMTFITU3Fn3/+ieTkZMycOROPHj1Cv3790L9/f1y4cEHvzjyrS5cu2LlzJ7799lu0bdsWc+fOxZIlSzB8+HBtnczMTO1mM8Djpc27d+9GXFwcPD09sXDhQqxdu5bLlomISByCTJyih9jYWLz33nto06YNPD09ER0djfT0dKSkpAB4PNKxbt06LFq0CH369EGnTp2wYcMGJCUl4fDhwwCAvXv34uzZs9i4cSM6dOiAgIAAzJ07FytWrEBhYaHBH5NMJsOECRO0W4voo8IjK8eOHcOBAwfQpk2bUq937doVI0eORFRUFDZs2IBff/0VLVu21LtDz3rttdfw2muvlXm9tN1pe/XqhZMnTxr8tYmIiJ5HEB4XY8cEUGIrjYrOsczJyQHweMdYAEhJScHDhw91tvZwd3dH06ZNkZycjG7duiE5ORnt2rXTWVHr7++P999/H2fOnIGXl5eht4WLFy9WKvGpcLLy7bffVqieXC7HuHHj9O4IERER6XJ2dtY5njlzJmbNmlVuG41Gg7CwMHTv3h1t27YF8HhbDwsLC9ja2urUdXBw0G5/X9bWH8XX9DFx4kSdY0EQkJmZid27d+O9997TKxYg8dVAREREkifGUuN/4mVkZMDGxkZ7uiKjKiEhITh9+jQOHjxo5E5V3G+//aZzbGJiAnt7eyxdurTqkpX8/HwsW7YMv/zyC27evAmNRqNz3dibwRAREb2IbGxsdJKV5wkNDcWuXbtw4MABNGnSRHteqVSisLAQd+/e1Rldyc7OhlKp1NY5evSoTrzi1ULFdSqqMm9WLk+lkpVRo0Zh7969+Ne//oWuXbtCJqvZ2wIT1SbRf4qzTN+snTiT1PPaiRIWnuMXixO4uzhhZ7f7QZzAJL5KTIitUEx9qgsCPvjgA+zcuRMJCQkl3qPXqVMnmJubIz4+HoMHDwYAnD9/Hunp6dqtPVQqFebNm4ebN2/C3t4ewOOtP2xsbErseVbVKpWs7Nq1Cz/99BO6dxfpu5aIiIgqLCQkBJs3b8YPP/wAa2tr7RwThUIBKysrKBQKjBo1CuHh4bCzs4ONjQ0++OADqFQqdOvWDQDQr18/eHh44N1338Vnn32GrKwsfPTRRwgJCan2jVMrlaw0btwY1tbWxu4LERFRjSMTHhdjx9THypUrATxeDfu0DRs2aOeILF68GCYmJhg8eDAKCgrg7++PL7/8UlvX1NQUu3btwvvvvw+VSoW6desiODgYc+bMMeRWjKJSycrChQsxZcoUREVFlbubLBEREYlPqMDaaUtLS6xYsQIrVqwos46Liwt++uknY3bNKCqVrHTu3Bn5+flo3rw56tSpA3Nzc53rYm2/T0REJDkirgaixyqVrAwbNgzXr1/HJ598AgcHB06wJSKiF5cEJthKzVdffVWhesHBwRWqV6lkJSkpCcnJyfD09KxMcyIiIqrFnt4UTqPRQK1W6yyZFgQBOTk5FU5WKvXWZXd3dzx48KAyTfUya9YsyGQyneLu7l5m/ejo6BL1LS0tRe8nERG9wCTw1mWpuX37tracPHkS9erV0zn3559/6vVUplIjK/Pnz8eHH36IefPmoV27diXmrOizgc3ztGnTBvv27dMem5mV32UbGxud12LzERUREVH1kclkKCoq0jn37PHzVCpZ6d+/PwCgb9++OucFQSi1U4YwMzPTa+c8mUym9057RERElcYJtuVydHREQUEBLly4oH3B8W+//QYnJ6cKx6hUsvLLL79UplmlXLhwAU5OTrC0tIRKpUJkZCSaNm1aZv3c3Fy4uLhAo9GgY8eO+OSTT8p8U3SxgoICFBQUaI+ffcslERERVY5cLkfPnj0xYMAA/Pvf/0Z+fj6++OILBAQEVDhGpZIVX1/fyjTTm7e3N6Kjo9GqVStkZmZi9uzZ6NmzJ06fPl3qpnStWrXC+vXr0b59e+Tk5GDBggXw8fHBmTNndN6R8KzIyEjMnj1bzFshIqLaiiMrz7V27VoMHz4c//nPf2BiYgI/Pz98+umnFW5f4WQlPT293BGNZ12/fh2NGzeucP3SPJ11tW/fHt7e3nBxccHWrVsxatSoEvVVKpX2HQcA4OPjg9atW2PVqlWYO3dumV8nIiIC4eHh2mO1Wl3itdxERESkv3v37sHe3h6HDx9GXl4ezMzM9N6+v8Krgbp06YJ///vfOHbsWJl1cnJysGbNGrRt2xbbt2/XqyMVYWtri5deegkXL16sUH1zc3N4eXk9t75cLte+2VLfN1wSEdELrnifFWOXGkwQBCxduhRNmjSBQqGAQqFAkyZNsHr1alhYWOgdr8IjK2fPnsW8efPwyiuvwNLSEp06ddLOJblz5w7Onj2LM2fOoGPHjvjss8/w6quv6t2Z58nNzcWlS5fw7rvvVqh+UVERTp06JUpfiIiIqHQff/wxFi1ahClTpmhfepyUlIQ5c+bg3r17mDFjhl7xKpysNGjQAIsWLcK8efOwe/duHDx4EGlpaXjw4AEaNmyI4cOHw9/fH23bttXvjsrxn//8BwMGDICLiwtu3LiBmTNnwtTUFMOGDQMABAUFoXHjxoiMjAQAzJkzB926dYObmxvu3r2Lzz//HGlpaRg9erTR+kRERPQ0KbzIUGrWrFmDVatW4a233tKe69mzJ5o3b47w8HDxkpViVlZW+Ne//oV//etf+jbV27Vr1zBs2DD8/fffaNSoEXr06IHDhw+jUaNGAB7PozExefIk686dOxgzZgyysrJQv359dOrUCUlJSfDw8BC9r0RE9ILiBNsSbt68iQ4dOpQ436FDB/z11196x6vUaqCqsmXLlnKvJyQk6BwvXrwYixcvFrFHRERE9DweHh5Yv3495s+fr3N+3bp1aN26td7xJJ2sEBERUc3z6aefYsCAAfjll1+0c1YOHTqE1NRU/Pjjj3rHq9S7gYiIiIjK8sorr+DMmTPw9vbG77//jt9//x1du3bF2bNn4e/vr3c8jqwQEREZQAYRJtgaN1y1aNGiBb744gujxOLIChEREYnu9OnTWL58OYYMGaJ3W71HVgoLCxETE4Pk5GRkZWUBAJRKJXx8fDBw4MBKbfZCRMYzM+FNcQJrxAnbrGW2KHHvvmK8F6o+7dHdOqLE/d/ldqLEHdD8lChx6SlibOJWCzaFO3XqFBISEpCYmIgDBw7gzp078PDwQK9evfSOp1eycvHiRfj7++PGjRvw9vaGg4MDAODkyZOIiopCkyZN8PPPP8PNzU3vjhAREVHt0KhRI53kZNWqVfD19UWDBg0qFU+vZOX9999Hu3btcPLkyRJb0qvVagQFBSEkJAR79uypVGeIiIhqHO6zUkKrVq1w8uRJWFpaQi6Xw9zcHKamppWOp9eclUOHDuHjjz8u9d05NjY2mDt3Ln799ddKd4aIiKjGEUQqNdihQ4dw69YtzJs3DxYWFoiMjIRSqUTHjh0RFhamdzy9khVbW1tcvXq1zOtXr16Fra2t3p0gIiKi2qVOnTro168f5s2bh6ioKMyYMQPXr1+v1AohvR4DjR49GkFBQZg+fTr69u2rnbOSnZ2N+Ph4fPzxx/jggw/07gQREVFNxXcDlfTbb78hISEBCQkJ+PXXXyGXy+Hr64u5c+eKP8F2zpw5qFu3Lj7//HN8+OGHkMkez1YWBAFKpRJTpkzB5MmT9e5EWWbNmoXZs2frnGvVqhX++OOPMtts27YN06dPx9WrV9GyZUt8+umnfOsyERFRFerYsSNMTEwwfPhwJCYmok2bNgbF03vp8pQpUzBlyhRcuXJFZ+myq6urQR0pS5s2bbBv3z7tsZlZ2V1OSkrCsGHDEBkZiddeew2bN2/GoEGDcOLECaO+DZqIiEiLE2xLiIiIwC+//IJvv/0W27dvh4+PD3x9feHr64uuXbvC3Nxcr3iV3sHW1dVVtATlaWZmZlAqlRWqu3TpUvTv3x+TJk0CAMydOxdxcXFYvnw5oqKixOwmERER/ePjjz8GADx48ACHDh1CYmIifv75Z8yZMwdmZmbIzc3VK16lkhVBEPD999/jl19+wc2bN6HR6O4WtWPHjsqELdWFCxfg5OQES0tLqFQqREZGomnTpqXWTU5ORnh4uM45f39/xMTElPs1CgoKUFBQoD1Wq9UG95uIiF4QHFkpk5WVFfz8/ODn5wcAyM/PR1JSkt5xKrXdflhYGN59911cuXIF9erVg0Kh0CnG4u3tjejoaMTGxmLlypW4cuUKevbsiXv37pVaPysrSzvpt5iDg4P2cVVZIiMjdfrv7OxstHsgIiJ6UeXm5uLo0aM4e/YsCgsLYWlpiT59+ugdp1IjK9988w127Ngh+sTVgIAA7X+3b98e3t7ecHFxwdatWzFq1CijfZ2IiAidERm1Ws2EhYiIKoSrgUo3ffp0LFiwQPvkok6dOoiIiMC0adO0C3QqqlLJikKhQPPmzSvT1CC2trZ46aWXcPHixVKvK5VKZGfrvmckOzv7uXNe5HI55HK50fpJREQvEL4bqIRly5Zh1apVWLt2LVxcXPDqq68iLi4OI0eOhImJCSIiIvSKV6nHQMVLih88eFCZ5pWWm5uLS5cuwdHRsdTrKpUK8fHxOufi4uKgUqmqontEREQEYOXKlViwYAGGDx8OJycnCIIAb29vLF26FGvWrNE7XqVGVt566y18++23sLe3R7NmzUosQTpx4kRlwpbwn//8BwMGDICLiwtu3LiBmTNnwtTUFMOGDQMABAUFoXHjxoiMjAQATJgwAb6+vli4cCECAwOxZcsWHD9+HKtXrzZKf4iIiErgBNsSLl++jB49epQ47+bm9tx5pKWpVLISHByMlJQUvPPOO3BwcND72VNFXbt2DcOGDcPff/+NRo0aoUePHjh8+DAaNWoEAEhPT4eJyZPBIR8fH2zevBkfffQRpk2bhpYtWyImJoZ7rBAREVUhW1tb5OTklDh/4MABtGrVSu94lUpWdu/ejT179pSaNRnTli1byr2ekJBQ4tyQIUMwZMgQkXpERESkixNsS+rYsSMOHToELy8vAMDDhw8xZswYbNq0Cd98843e8SqVrDg7O5f65mUiIiKiadOm4cqVKwAeL2Lp2LEjHjx4gD179qBnz556x6tUsrJw4UJMnjwZUVFRaNasWWVCEBER1Q6cs1JCjx49tE9fGjduXKmN4J5WqWTlnXfewf3799GiRQvUqVOnxATb27dvG9QpIiIiqrkSExPLve7r66tXvEolK0uWLKlMMyIiotpHhDkrNX1kpU+fPhAEQWcBjiA8ualnX9PzPJVeDURELxZZkTir/tKz7USJKzyq1DZSz4+bbypK3AHNT4kSl6oAHwOVcOfOHZ3jvLw8pKSkYPr06drtRvShV7JS0Rf8cfItERHRi+vZPMDGxgavvfYarKysMGXKFPTv31+veHolK7a2tuXuqVI85FNUVKRXJ4iIiGosjqxUWPPmzXH69Gm92+mVrPzyyy/a/xYEAa+++irWrl2Lxo0b6/2FiYiI6MVSv3597N27F0VFRTA1rfgjVb2SlWdn75qamqJbt27V8lJDIiIiKeCmcBVna2uLl19+We924sxAIyIiIjKSGpWszJ8/HzKZDGFhYWXWiY6Ohkwm0ymWlpZV10kiIiIyKoOTFbFeYvisY8eOYdWqVWjfvv1z69rY2CAzM1Nb0tLSqqCHRERE1efAgQMYMGAAnJycIJPJEBMTo3M9NzcXoaGhaNKkCaysrODh4YGoqCidOvn5+QgJCUGDBg1Qr149DB48GNnZ2VV4F6XTa87Km2++qXOcn5+PcePGoW7dujrnd+zYYXjPnpKbm4vhw4djzZo1+Pjjj59bXyaTQalUGrUPREREpZLIaqC8vDx4enpi5MiRJX5fA0B4eDj279+PjRs3olmzZti7dy/+7//+D05OTnj99dcBABMnTsTu3buxbds2KBQKhIaG4s0338ShQ4cqfSsPHz7E33//DSsrKygUikrF0GtkRaFQ6JR33nkHTk5OJc4bW0hICAIDA+Hn51eh+rm5uXBxcYGzszMGDhyIM2fOlFu/oKAAarVapxAREVVE8QRbYxd9BQQE4OOPP8Ybb7xR6vWkpCQEBwejV69eaNasGcaOHQtPT08cPXoUAJCTk4N169Zh0aJF6NOnDzp16oQNGzYgKSkJhw8f1qsv586dw3/+8x+0a9cOlpaWcHJyQv369VG/fn0MGDAAGzduREFBQYXj6TWysmHDBr06awxbtmzBiRMncOzYsQrVb9WqFdavX4/27dsjJycHCxYsgI+PD86cOYMmTZqU2iYyMhKzZ882ZreJiIgM9uwfz3K5HHK5vFKxfHx88OOPP2LkyJFwcnJCQkIC/vzzTyxevBgAkJKSgocPH+oMDLi7u6Np06ZITk5Gt27dnvs10tPTMWnSJOzevRuvvvoqxowZAw8PD9SvXx/5+fm4ceMGjh8/jk8++QRTpkzBnDlzMGrUqOfGrdR2+1UlIyMDEyZMQFxcXIUnyapUKqhUKu2xj48PWrdujVWrVmHu3LmltomIiEB4eLj2WK1Ww9nZ2bDOExHRi0OkpcbP/i6aOXMmZs2aValYy5Ytw9ixY9GkSROYmZnBxMQEa9as0S4lzsrKgoWFBWxtbXXaOTg4ICsrq0Jf43//+x86duyItWvXwtrautQ6Q4YMwaefforDhw9j1qxZNT9ZSUlJwc2bN9GxY0ftuaKiIhw4cADLly9HQUHBczeVMTc3h5eXFy5evFhmHUMyVSIiIrFkZGTobF1vyO+qZcuW4fDhw/jxxx/h4uKCAwcOICQkBE5OThWeZvE8ISEhFa7brVs3xMbGVqiupJOVvn374tQp3Zd7jRgxAu7u7pgyZUqFdr8rKirCqVOn8Oqrr4rVTSIiepGJOMHWxsbGKO/be/DgAaZNm4adO3ciMDAQANC+fXukpqZiwYIF8PPzg1KpRGFhIe7evaszupKdnV3ti1YknaxYW1ujbdu2Oufq1q2LBg0aaM8HBQWhcePG2rc4zpkzB926dYObmxvu3r2Lzz//HGlpaRg9enSV95+IiEgKHj58iIcPH8LERHddjampKTQaDQCgU6dOMDc3R3x8PAYPHgwAOH/+PNLT03WmV1TEiBEjKly3IvNhJZ2sVER6errOh3/nzh2MGTMGWVlZqF+/Pjp16oSkpCR4eHhUYy+JiKi2ksp2+7m5uTpTHq5cuYLU1FTY2dmhadOm8PX1xaRJk2BlZQUXFxckJibi66+/xqJFiwA8XvE7atQohIeHw87ODjY2Nvjggw+gUqkqNLn2aTk5Odr/vnXrFi5evKh3jKfJBEGopW8gqDy1Wg2FQoGcnByjDL8RVSWX1Z+LElf2UJwNIGX1C0WJKzwSZ4NuIb/iL1/TR9rYSaLEfdGJ+fO8OHbLyZ/AVG7cndKLCvJx4bNpevU7ISEBvXv3LnE+ODgY0dHRyMrKQkREBPbu3Yvbt2/DxcUFY8eOxcSJE7UbvObn5+PDDz/Et99+i4KCAvj7++PLL7+s9GOgW7duoU+fPjh37hy2bduGQYMGVSpOjR9ZISIiqlYS2RSuV69eKG/8QalUPveRi6WlJVasWIEVK1bo34FnZGdno0+fPnBzc8PHH3+Md955BzExMejTp4/esZisEBERGUAqj4GkJCsrC3369IG7uzu2bt0KMzMzrF+/HoMHD8bevXvRpUsXveIxWSEiIiKj6t27N9q2bYstW7ZoV+7+61//Qk5ODgIDA3Hz5k294jFZISIiMoREHgNJSYcOHbBx48YSW4yMGjUKt2/f1jsekxWiWqZhk7uixL1zroEocYsKxJmwamb1SJS4Mrk4cdtOWixKXPS8I0rY06/PESUu1Q6bN2/WTtp91qRJjyeTnz9/Hq1atapQPCYrREREhuDISgmlJSqXLl3CL7/8oi1ZWVnaPV6eh8kKERERGd3Vq1e1iUlCQgKuXbuGevXqoUePHggLC0OvXr0qHIvJChERkQG4GqgkV1dXpKWloW7duujevTtCQkLQq1cvdOnSpcQuuhXBZIWIiIiMqvgFjCNGjMArr7yCnj17lvkW5ooQZ4tHIiKiF4UgUqnBbty4gTVr1uDhw4eYPHkyGjRoAG9vb0yZMgWxsbHIzc3VK16NSlbmz58PmUyGsLCwcutt27YN7u7usLS0RLt27fDTTz9VTQeJiOjFw2SlBHt7ewwZMgTLly/H6dOnkZmZicmTJ+PBgwfa5EWfdwXVmMdAx44dw6pVq9C+ffty6yUlJWHYsGGIjIzEa6+9hs2bN2PQoEE4ceJEiTc4ExERkfgaNGiA7t27Q6PRQKPRICcnB7/99luF29eIkZXc3FwMHz4ca9asQf369cutu3TpUvTv3x+TJk1C69atMXfuXHTs2BHLly+vot4SEdGLpHiCrbFLTZeRkYGNGzdi7NixcHd3h6urK1asWAF7e3t88803Om9mfp4aMbISEhKCwMBA+Pn54eOPPy63bnJyMsLDw3XO+fv7IyYmpsw2BQUFKCgo0B6r1WqD+ktERPQia968OW7cuAFvb2/06tULq1atgkqlgoWFRaXiST5Z2bJlC06cOIFjx45VqH5WVhYcHBx0zjk4OCArK6vMNpGRkZg9e7ZB/SQiohcUN4UrIT09Hebm5hAEAYIgaB//VJakHwNlZGRgwoQJ2LRpEywtLUX7OhEREcjJydGWjIwM0b4WERFRbXf9+nVER0fDw8MD3333Hfz8/FC/fn34+vpi1qxZ+OWXX3SeaDyPpEdWUlJScPPmTXTs2FF7rqioCAcOHMDy5ctRUFBQ4iVJSqUS2dnZOueys7OhVCrL/DpyuRxyudy4nSciohcCN4UrycHBAUOHDsXQoUMBPE5einez/frrrzF37lxYWFjgwYMHFYon6WSlb9++OHXqlM65ESNGwN3dHVOmTCmRqACASqVCfHy8zvLmuLg4qFQqsbtLREREpWjcuDHeeecdvPPOOwCAtLQ07N+/v8LtJZ2sWFtbl1huXLduXTRo0EB7PigoCI0bN0ZkZCQAYMKECfD19cXChQsRGBiILVu24Pjx41i9enWV95+IiF4AnLOiNxcXF4wYMaLC9SU9Z6Ui0tPTkZmZqT328fHB5s2bsXr1anh6euL7779HTEwM91ghIiJxcFM4rfXr1yMqKqpC81HOnDmDYcOGVSiupEdWSpOQkFDuMQAMGTIEQ4YMqZoOEREREQCgZ8+e+OCDDxAREYFBgwahZ8+eaNu2Lezs7PDgwQPcuHEDR48exf/+9z9cunQJ//3vfysUt8YlK0RERFIi+6cYO2ZN1LJlS8TGxuLYsWNYvXo1Zs+ejWvXrkEQBMhkMlhYWKBr164YMWIE3nnnnQq/3JDJChERERlVly5d0KVLFwDA7du38ddff6FOnTpQKpUwNzfXOx6TFSIiIkNwgm257OzsYGdnZ1CMGj/BloiIiGo3jqwQ1TJ/Xy3/ZZ+VVa/lXVHi3rtTR5S4Yv1hanJJnP7mNxSnx051Krbplr7cPl0kStyLU8KfX0liuCmc+DiyQkRERJLGkRUiIiJDcM6K6JisEBERGYrJhaj4GIiIiIgkjSMrREREBuAEW/FJemRl5cqVaN++PWxsbGBjYwOVSoWff/65zPrR0dGQyWQ6xdLSsgp7TERERMYm6ZGVJk2aYP78+WjZsiUEQcBXX32FgQMH4uTJk2jTpk2pbWxsbHD+/HntsUxWUzctJiKiGoETbEUn6WRlwIABOsfz5s3DypUrcfjw4TKTFZlMBqVSWRXdIyIioiog6cdATysqKsKWLVuQl5cHlUpVZr3c3Fy4uLjA2dkZAwcOxJkzZ54bu6CgAGq1WqcQERFVRPGcFWMXekLyycqpU6dQr149yOVyjBs3Djt37oSHh0epdVu1aoX169fjhx9+wMaNG6HRaODj44Nr166V+zUiIyOhUCi0xdnZWYxbISIiokqQfLLSqlUrpKam4siRI3j//fcRHByMs2fPllpXpVIhKCgIHTp0gK+vL3bs2IFGjRph1apV5X6NiIgI5OTkaEtGRoYYt0JERLWRIFIhLUnPWQEACwsLuLm5AQA6deqEY8eOYenSpc9NQADA3NwcXl5euHjxYrn15HI55HK5UfpLRERExiX5kZVnaTQaFBQUVKhuUVERTp06BUdHR5F7RURELyrOWRGfpEdWIiIiEBAQgKZNm+LevXvYvHkzEhISsGfPHgBAUFAQGjdujMjISADAnDlz0K1bN7i5ueHu3bv4/PPPkZaWhtGjR1fnbRARUW3Gpcuik3SycvPmTQQFBSEzMxMKhQLt27fHnj178MorrwAA0tPTYWLyZHDozp07GDNmDLKyslC/fn106tQJSUlJZU7IJSIiIumTdLKybt26cq8nJCToHC9evBiLFy8WsUdERETP4MiK6GrcnBUiIiJ6sUh6ZIWIiEjq+CJD8XFkhYiIiCSNIytERESG4JwV0TFZIapG7cKNPyG8ft87Ro8JALev24oSF2YaUcLK5Q9FifvARpwNJF1aZ4kS987/GosSt+W2y6LExRRxwlLNxsdAREREBpAJgihFXwcOHMCAAQPg5OQEmUyGmJiYEnXOnTuH119/HQqFAnXr1kWXLl2Qnp6uvZ6fn4+QkBA0aNAA9erVw+DBg5GdnW3Ix2MUTFaIiIgMIZF3A+Xl5cHT0xMrVqwo9fqlS5fQo0cPuLu7IyEhAb///jumT58OS0tLbZ2JEyfif//7H7Zt24bExETcuHEDb775pv6dMTI+BiIiIqoFAgICEBAQUOb1//73v3j11Vfx2Wefac+1aNFC+985OTlYt24dNm/ejD59+gAANmzYgNatW+Pw4cPo1q2beJ1/Do6sEBERGaAmvBtIo9Fg9+7deOmll+Dv7w97e3t4e3vrPCpKSUnBw4cP4efnpz3n7u6Opk2bIjk52bgd0hOTFSIiIolSq9U6paIv8n3WzZs3kZubi/nz56N///7Yu3cv3njjDbz55ptITEwEAGRlZcHCwgK2trY6bR0cHJCVJc4E8IqSdLKycuVKtG/fHjY2NrCxsYFKpcLPP/9cbptt27bB3d0dlpaWaNeuHX766acq6i0REb2QRJyz4uzsDIVCoS3FL+7Vl0bzeNXdwIEDMXHiRHTo0AFTp07Fa6+9hqioqErFrEqSTlaaNGmC+fPnIyUlBcePH0efPn0wcOBAnDlzptT6SUlJGDZsGEaNGoWTJ09i0KBBGDRoEE6fPl3FPSciIjJcRkYGcnJytCUiIqJScRo2bAgzM7MSL/Zt3bq1djWQUqlEYWEh7t69q1MnOzsbSqWyUl/XWCSdrAwYMACvvvoqWrZsiZdeegnz5s1DvXr1cPjw4VLrL126FP3798ekSZPQunVrzJ07Fx07dsTy5curuOdERPSiEHPOSvGTheIil1dunx8LCwt06dIF58+f1zn/559/wsXFBQDQqVMnmJubIz4+Xnv9/PnzSE9Ph0qlqtyHYyQ1ZjVQUVERtm3bhry8vDI/tOTkZISHh+uc8/f3L3Wt+dMKCgp0ngOq1WqD+0tERFSVcnNzcfHiRe3xlStXkJqaCjs7OzRt2hSTJk3C0KFD8fLLL6N3796IjY3F//73PyQkJAAAFAoFRo0ahfDwcNjZ2cHGxgYffPABVCpVta4EAmpAsnLq1CmoVCrk5+ejXr162LlzZ4lhrGJZWVlwcHDQOVeRiUGRkZGYPXu20fpMREQvEIlst3/8+HH07t1be1z8x3twcDCio6PxxhtvICoqCpGRkRg/fjxatWqF7du3o0ePHto2ixcvhomJCQYPHoyCggL4+/vjyy+/NPh2DCX5ZKVVq1ZITU1FTk4Ovv/+ewQHByMxMbHMhKUyIiIidEZk1Go1nJ2djRafiIhqL6m8dblXr14QnrPz7ciRIzFy5Mgyr1taWmLFihVlbixXXSSfrFhYWMDNzQ3A4+dpx44dw9KlS7Fq1aoSdZVKZYltgSsyMUgul1f6OSARERGJS9ITbEuj0WjKXGeuUql0JgYBQFxcXLVPDCIiolpMItvt12aSHlmJiIhAQEAAmjZtinv37mHz5s1ISEjAnj17AABBQUFo3Lixdt35hAkT4Ovri4ULFyIwMBBbtmzB8ePHsXr16uq8DSIiIjKApJOVmzdvIigoCJmZmVAoFGjfvj327NmDV155BQCQnp4OE5Mng0M+Pj7YvHkzPvroI0ybNg0tW7ZETEwM2rZtW123QERELwBjz1khXZJOVtatW1fu9eLlVk8bMmQIhgwZIlKPiIiIqKpJOlkhIiKSPEF4XIwdk7Rq3ARbIiIierFwZIWIiMgAUtlnpTZjskJERGQIiexgW5sxWSGqRqcWTTR6zGbLFxg9JgDIFA9FiSvcF+fHkEwmSlhYOuWJEvfqtYaixEVbcf7dUqfGihKXqDRMVoiIiAwg0zwuxo5JT3CCLREREUkaR1aIiIgMwTkrouPIChEREUkaR1aIiIgMwKXL4pP0yEpkZCS6dOkCa2tr2NvbY9CgQTh//ny5baKjoyGTyXSKpaVlFfWYiIiIjE3SyUpiYiJCQkJw+PBhxMXF4eHDh+jXrx/y8spfOmhjY4PMzExtSUtLq6IeExHRC6d4u31jF9KS9GOg2FjddfzR0dGwt7dHSkoKXn755TLbyWQyKJVKsbtHRETEx0BVQNIjK8/KyckBANjZ2ZVbLzc3Fy4uLnB2dsbAgQNx5syZcusXFBRArVbrFCIiIpKGGpOsaDQahIWFoXv37mjbtm2Z9Vq1aoX169fjhx9+wMaNG6HRaODj44Nr166V2SYyMhIKhUJbnJ2dxbgFIiKqjQSRCmnVmGQlJCQEp0+fxpYtW8qtp1KpEBQUhA4dOsDX1xc7duxAo0aNsGrVqjLbREREICcnR1syMjKM3X0iIiKqJEnPWSkWGhqKXbt24cCBA2jSpIlebc3NzeHl5YWLFy+WWUcul0MulxvaTSIiegFxzor4JD2yIggCQkNDsXPnTuzfvx+urq56xygqKsKpU6fg6OgoQg+JiIhIbJIeWQkJCcHmzZvxww8/wNraGllZWQAAhUIBKysrAEBQUBAaN26MyMhIAMCcOXPQrVs3uLm54e7du/j888+RlpaG0aNHV9t9EBFRLSbGUmMuXdYh6WRl5cqVAIBevXrpnN+wYQPee+89AEB6ejpMTJ4MEN25cwdjxoxBVlYW6tevj06dOiEpKQkeHh5V1W0iIiIyIkknK0IFMsuEhASd48WLF2Px4sUi9YiIiEgX56yIT9LJChERkeTxrcuik/QEWyIiIiKOrBARERmAj4HEx5EVIiIikjSOrBBVo2bfRBo9ZoPmuUaPCQB/Xyr/nVyVZv1IlLBy84eixM29bylK3AYHLUSJ227MaVHimigviBK3RtIIj4uxY5IWR1aIiIhI0jiyQkREZAiuBhIdR1aIiIhI0jiyQkREZAAZRFgNZNxwNR6TFSIiIkPw3UCik/RjoMjISHTp0gXW1tawt7fHoEGDcP78+ee227ZtG9zd3WFpaYl27drhp59+qoLeEhERkRgknawkJiYiJCQEhw8fRlxcHB4+fIh+/fohLy+vzDZJSUkYNmwYRo0ahZMnT2LQoEEYNGgQTp8WZ/keERG92Io3hTN2oSck/RgoNjZW5zg6Ohr29vZISUnByy+/XGqbpUuXon///pg0aRIAYO7cuYiLi8Py5csRFRUlep+JiIjIuCQ9svKsnJwcAICdXdmbUyUnJ8PPz0/nnL+/P5KTk8tsU1BQALVarVOIiIgqRBCpkFaNSVY0Gg3CwsLQvXt3tG3btsx6WVlZcHBw0Dnn4OCArKysMttERkZCoVBoi7Ozs9H6TURERIapMclKSEgITp8+jS1bthg9dkREBHJycrQlIyPD6F+DiIhqJ5kgiFLoCUnPWSkWGhqKXbt24cCBA2jSpEm5dZVKJbKzs3XOZWdnQ6lUltlGLpdDLpcbpa9ERERkXJIeWREEAaGhodi5cyf2798PV1fX57ZRqVSIj4/XORcXFweVSiVWN4mI6EWmEamQlqRHVkJCQrB582b88MMPsLa21s47USgUsLKyAgAEBQWhcePGiIx8/PbaCRMmwNfXFwsXLkRgYCC2bNmC48ePY/Xq1dV2H0REVHuJ8diGj4F0SXpkZeXKlcjJyUGvXr3g6OioLd999522Tnp6OjIzM7XHPj4+2Lx5M1avXg1PT098//33iImJKXdSLhEREUmXpJMVQRBKLe+99562TkJCAqKjo3XaDRkyBOfPn0dBQQFOnz6NV199tWo7TkRELw6JLF0+cOAABgwYACcnJ8hkMsTExJRZd9y4cZDJZFiyZInO+du3b2P48OGwsbGBra0tRo0ahdzcXP07Y2SSTlaIiIioYvLy8uDp6YkVK1aUW2/nzp04fPgwnJycSlwbPnw4zpw5g7i4OO3ClrFjx4rV5QqT9JwVIiIiyZPIiwwDAgIQEBBQbp3r16/jgw8+wJ49exAYGKhz7dy5c4iNjcWxY8fQuXNnAMCyZcvw6quvYsGCBaUmN1WFIytEREQvAI1Gg3fffReTJk1CmzZtSlxPTk6Gra2tNlEBAD8/P5iYmODIkSNV2dUSOLJCRERkADFePFgc79nXvxiyL9inn34KMzMzjB8/vtTrWVlZsLe31zlnZmYGOzu7cneBrwpMVoiqkdUflkaPeau5qdFjAkDaBx+KElcsLtGfihLXJEecH5v1hmY+v1Il/Hqw5F/QRtFVnLCk69nXv8ycOROzZs3SO05KSgqWLl2KEydOQCaTGal3VYfJChERkSFEnLOSkZEBGxsb7enKjqr8+uuvuHnzJpo2bao9V1RUhA8//BBLlizB1atXoVQqcfPmTZ12jx49wu3bt8vdBb4qMFkhIiKSKBsbG51kpbLeffdd+Pn56Zzz9/fHu+++ixEjRgB4vAP83bt3kZKSgk6dOgEA9u/fD41GA29vb4P7YAgmK0RERAaQaR4XY8fUV25uLi5evKg9vnLlClJTU2FnZ4emTZuiQYMGOvXNzc2hVCrRqlUrAEDr1q3Rv39/jBkzBlFRUXj48CFCQ0Px9ttvV+tKIIDJChERkWEksnT5+PHj6N27t/Y4PDwcABAcHFxi89SybNq0CaGhoejbty9MTEwwePBgfPHFF3r3xdiYrBAREdUCvXr1gqBHknP16tUS5+zs7LB582Yj9so4JL/Pij7bBwOPt9+XyWQlSnUvuyIiolpKItvt12aST1Yqun3ws86fP4/MzExteXbtOBEREdUMkn8MVJHtg0tjb28PW1tb43eIiIjoKTJBgMzIc1aMHa+mk/zISmV16NABjo6OeOWVV3Do0KFy6xYUFECtVusUIiIikoZal6w4OjoiKioK27dvx/bt2+Hs7IxevXrhxIkTZbaJjIyEQqHQlmd3DCQiIipT8WogYxfSkvxjIH21atVKu2YcAHx8fHDp0iUsXrwY33zzTaltIiIitEu8gMfvYmDCQkREJA21LlkpTdeuXXHw4MEyrxvyYigiInrBCQCMvCkcVwPpeiGSldTUVDg6OlZ3N4iIqBbiBFvxST5Zed72wREREbh+/Tq+/vprAMCSJUvg6uqKNm3aID8/H2vXrsX+/fuxd+/e6roFIiIiMoDkk5XnbR+cmZmJ9PR07fXCwkJ8+OGHuH79OurUqYP27dtj3759OjGIiIiMRoAI2+0bN1xNJ/lk5XnbBz/7voPJkydj8uTJIveKiIiIqorkkxUiIiJJk8iLDGuzWrfPChEREdUuHFkhIiIyhAaATISYpMWRFSIiIpI0jqwQVYBHzCxR4t5/ydLoMc3+sjB6TABo8dkiUeJemhz+/EqVYG2XJ0pc4Vx9UeLeOyfOXlCXo8T5fOkJ7rMiPiYrREREhuAEW9HxMRARERFJGkdWiIiIDMGRFdFxZIWIiIgkjSMrREREhuDIiugkP7Jy4MABDBgwAE5OTpDJZIiJiXlum4SEBHTs2BFyuRxubm4ltuQnIiKimkPyyUpeXh48PT2xYsWKCtW/cuUKAgMD0bt3b6SmpiIsLAyjR4/Gnj17RO4pERG9kDQiFdKS/GOggIAABAQEVLh+VFQUXF1dsXDhQgBA69atcfDgQSxevBj+/v5idZOIiIhEIvmRFX0lJyfDz89P55y/vz+Sk5PLbFNQUAC1Wq1TiIiIKqJ4UzhjF3qi1iUrWVlZcHBw0Dnn4OAAtVqNBw8elNomMjISCoVCW5ydnauiq0REVBsUT7A1diGtWpesVEZERARycnK0JSMjo7q7RERERP+Q/JwVfSmVSmRnZ+ucy87Oho2NDaysrEptI5fLIZfLq6J7RERU22gEQGbkkRANR1aeVutGVlQqFeLj43XOxcXFQaVSVVOPiIiIyBCST1Zyc3ORmpqK1NRUAI+XJqempiI9PR3A40c4QUFB2vrjxo3D5cuXMXnyZPzxxx/48ssvsXXrVkycOLE6uk9ERLUd56yITvLJyvHjx+Hl5QUvLy8AQHh4OLy8vDBjxgwAQGZmpjZxAQBXV1fs3r0bcXFx8PT0xMKFC7F27VouWyYiIqqhJD9npVevXhDKyTBL2522V69eOHnypIi9IiIiKibGSAhHVp4m+ZEVIiIierFJfmSFiIhI0vgiQ9ExWSEiIjKERoDRH9tw6bIOPgYiIiIiSePIClEFnB00S5S4/RMnGD/oxDzjxwQQe3utKHHFcvr1OeIEfl2csFSDCZrHxdgxSYsjK0RERCRpHFkhIiIyBCfYio4jK0RERCRpHFkhIiIyBFcDiY4jK0RERCRpNSJZWbFiBZo1awZLS0t4e3vj6NGjZdaNjo6GTCbTKZaWllXYWyIieqHwRYaik3yy8t133yE8PBwzZ87EiRMn4OnpCX9/f9y8ebPMNjY2NsjMzNSWtLS0KuwxERG9UASIkKxU901Ji+STlUWLFmHMmDEYMWIEPDw8EBUVhTp16mD9+vVltpHJZFAqldri4OBQhT0mIiIiY5J0slJYWIiUlBT4+flpz5mYmMDPzw/JyclltsvNzYWLiwucnZ0xcOBAnDlzptyvU1BQALVarVOIiIgqhI+BRCfpZOXWrVsoKioqMTLi4OCArKysUtu0atUK69evxw8//ICNGzdCo9HAx8cH165dK/PrREZGQqFQaIuzs7NR74OIiEhsBw4cwIABA+Dk5ASZTIaYmBjttYcPH2LKlClo164d6tatCycnJwQFBeHGjRs6MW7fvo3hw4fDxsYGtra2GDVqFHJzc6v4TkqSdLJSGSqVCkFBQejQoQN8fX2xY8cONGrUCKtWrSqzTUREBHJycrQlIyOjCntMREQ1mkYjTtFTXl4ePD09sWLFihLX7t+/jxMnTmD69Ok4ceIEduzYgfPnz+P113XfHzF8+HCcOXMGcXFx2LVrFw4cOICxY8dW+qMxFknvs9KwYUOYmpoiOztb53x2djaUSmWFYpibm8PLywsXL14ss45cLodcLjeor0RERNUpICAAAQEBpV5TKBSIi4vTObd8+XJ07doV6enpaNq0Kc6dO4fY2FgcO3YMnTt3BgAsW7YMr776KhYsWAAnJyfR76Eskh5ZsbCwQKdOnRAfH689p9FoEB8fD5VKVaEYRUVFOHXqFBwdHcXqJhERvchq6JyVnJwcyGQy2NraAgCSk5Nha2urTVQAwM/PDyYmJjhy5Ijo/SmPpEdWACA8PBzBwcHo3LkzunbtiiVLliAvLw8jRowAAAQFBaFx48aIjIwEAMyZMwfdunWDm5sb7t69i88//xxpaWkYPXp0dd4GERGR3p5d8GGsJwH5+fmYMmUKhg0bBhsbGwBAVlYW7O3tdeqZmZnBzs6uzHmiVUXyycrQoUPx119/YcaMGcjKykKHDh0QGxurnXSbnp4OE5MnA0R37tzBmDFjkJWVhfr166NTp05ISkqCh4dHdd0CERHVZiK+yPDZBR8zZ87ErFmzDAr98OFDvPXWWxAEAStXrjQoVlWRfLICAKGhoQgNDS31WkJCgs7x4sWLsXjx4iroFREREUR9N1BGRoZ25AOAwaMqxYlKWloa9u/frxNbqVSW2HD10aNHuH37doXniYpF0nNWiIiIXmQ2NjY6xZBkpThRuXDhAvbt24cGDRroXFepVLh79y5SUlK05/bv3w+NRgNvb+9Kf11jqBEjK0RERFIlCBoIgv5LjZ8XU1+5ubk6K1+vXLmC1NRU2NnZwdHREf/6179w4sQJ7Nq1C0VFRdp5KHZ2drCwsEDr1q3Rv39/jBkzBlFRUXj48CFCQ0Px9ttvV+tKIIDJChERUa1w/Phx9O7dW3scHh4OAAgODsasWbPw448/AgA6dOig0+6XX35Br169AACbNm1CaGgo+vbtCxMTEwwePBhffPFFlfS/PExWiIiIDCEI2jkmRo2pp169ekEop11514rZ2dlh8+bNen9tsTFZIapGsb5LjR/0tvFDEhFVJyYrREREhhBEWA3EFxnq4GogIiIikjSOrBARERlCowFkxl0NBCOvLqrpmKwQEREZgo+BRMfHQERERCRpNSJZWbFiBZo1awZLS0t4e3vj6NGj5dbftm0b3N3dYWlpiXbt2uGnn36qop4SEdGLRtBoRCn0hOSTle+++w7h4eGYOXMmTpw4AU9PT/j7+5d4f0GxpKQkDBs2DKNGjcLJkycxaNAgDBo0CKdPn67inhMREZExyISK7BJTjby9vdGlSxcsX74cAKDRaODs7IwPPvgAU6dOLVF/6NChyMvLw65du7TnunXrhg4dOiAqKqpCX1OtVkOhUCAnJ0fnJU9ERFSziPnzvDh2H6uhMJNZGDX2I6EQ+x98x99D/5D0yEphYSFSUlLg5+enPWdiYgI/Pz8kJyeX2iY5OVmnPgD4+/uXWR8ACgoKoFardQoRERFJg6STlVu3bqGoqAgODg465x0cHLQvYHpWVlaWXvUBIDIyEgqFQlucnZ0N7zwREb0YNII4hbQknaxUlYiICOTk5GhLRkZGdXeJiIiI/iHpfVYaNmwIU1NTZGdn65zPzs6GUqkstY1SqdSrPgDI5XLI5XLDO0xERC8eQQBg7E3hOLLyNEmPrFhYWKBTp06Ij4/XntNoNIiPj4dKpSq1jUql0qkPAHFxcWXWJyIiImmT9MgKAISHhyM4OBidO3dG165dsWTJEuTl5WHEiBEAgKCgIDRu3BiRkZEAgAkTJsDX1xcLFy5EYGAgtmzZguPHj2P16tXVeRtERFRLCRoBgsy4IyESX6hb5SSfrAwdOhR//fUXZsyYgaysLHTo0AGxsbHaSbTp6ekwMXkyQOTj44PNmzfjo48+wrRp09CyZUvExMSgbdu21XULRERUmwkaGP8xEDeFe5rk91mpDtxnhYiodqiKfVZ6m74JM5m5UWM/Eh7il6Id/D30D8mPrBAREUkZHwOJT9ITbImIiIg4skJERGQIzlkRHZOVUhQPv3HbfSKimq3457iYj1Ue4SFg5PCP8NC4AWs4JiuluHfvHgBw230iolri3r17UCgURo1pYWEBpVKJg1k/GTVuMaVSCQsL474gsabiaqBSaDQa3LhxA9bW1pDJZOXWVavVcHZ2RkZGhlFnbDNuzeor4zJuVcStSX2VSlxBEHDv3j04OTnpbHNhLPn5+SgsLDR6XOBxMmRpaSlK7JqGIyulMDExQZMmTfRqY2NjI8ryMsatWX1lXMatirg1qa9SiGvsEZWnWVpaMqGoAlwNRERERJLGZIWIiIgkjcmKgeRyOWbOnGn0tzYzbs3qK+MyblXErUl9rYlxSbo4wZaIiIgkjSMrREREJGlMVoiIiEjSmKwQERGRpDFZISIiIkljslIBK1asQLNmzWBpaQlvb28cPXq03Prbtm2Du7s7LC0t0a5dO/z0k+5WzAcOHMCAAQPg5OQEmUyGmJiY5/YhISEBHTt2hFwuh5ubG6Kjo0vUiYyMRJcuXWBtbQ17e3sMGjQI58+ff27s5/V35cqVaN++vXYDJpVKhZ9//tmgmM+aP38+ZDIZwsLCDI47a9YsyGQyneLu7m5w3OvXr+Odd95BgwYNYGVlhXbt2uH48ePlxn3ev1uzZs1K9FUmkyEkJMSgvhYVFWH69OlwdXWFlZUVWrRogblz5z73/SgV+d/ZvXv3EBYWBhcXF1hZWcHHxwfHjh3TK25ERES53wOCIGDGjBlwdHSElZUV/Pz8cOHChXK/BgBMnDgRderU0X6On3/+uc71HTt2oF+/fmjQoAFkMhlSU1OfGxMAZs+ejXr16mnjTp8+XXvt4cOHmDJlCtq1a4e6devCyckJQUFBuHHjhsH9nTVrFtzd3VG3bl3Ur18ffn5+OHLkiMFxnzZu3DjIZDIsWbKk3JgHDhxAu3btYGZmBplMhpdeeknnZ+F7771X4n/H/fv3N0pfz507h9dffx0KhQJ169ZFly5dkJ6eXm5cfX8GkcQJVK4tW7YIFhYWwvr164UzZ84IY8aMEWxtbYXs7OxS6x86dEgwNTUVPvvsM+Hs2bPCRx99JJibmwunTp3S1vnpp5+E//73v8KOHTsEAMLOnTvL7cPly5eFOnXqCOHh4cLZs2eFZcuWCaampkJsbKxOPX9/f2HDhg3C6dOnhdTUVOHVV18VmjZtKuTm5pYZuyL9/fHHH4Xdu3cLf/75p3D+/Hlh2rRpgrm5uXD69OlKx3za0aNHhWbNmgnt27cXJkyYYFBfBUEQZs6cKbRp00bIzMzUlr/++suguLdv3xZcXFyE9957Tzhy5Ihw+fJlYc+ePcLFixfLjFuRf7ebN2/q9DMuLk4AIPzyyy8GfQbz5s0TGjRoIOzatUu4cuWKsG3bNqFevXrC0qVLDeqvIAjCW2+9JXh4eAiJiYnChQsXhJkzZwo2NjbCtWvXKhzXxMREePvtt8v8Hpg/f76gUCiEmJgY4bfffhNef/11wdXVVXjw4EGZ/d+yZYtgZmYmvPbaa8LSpUsFAEKdOnV0vle//vprYfbs2cKaNWsEAMLJkyfLjFfs0KFDgomJidCnTx/hiy++EAAIpqam2s/87t27gp+fn/Ddd98Jf/zxh5CcnCx07dpV6NSpU7lxK9LfTZs2CXFxccKlS5eE06dPC6NGjRJsbGyEmzdvGhS32I4dOwRPT0/ByclJWLx4cbn9nTJlimBiYiKEhIQIAIRXXnlF52dhcHCw0L9/f53/Pd++fdvgz+DixYuCnZ2dMGnSJOHEiRPCxYsXhR9++KHMn8GCoP/PIJI+JivP0bVrVyEkJER7XFRUJDg5OQmRkZGl1n/rrbeEwMBAnXPe3t7Cv//971LrVyRZmTx5stCmTRudc0OHDhX8/f3LbXfz5k0BgJCYmFhmHX37W6x+/frC2rVrDY557949oWXLlkJcXJzg6+tbbrJS0bgzZ84UPD09y+2/vnGnTJki9OjRo8IxBaFy/24TJkwQWrRoIWg0mkr3VRAEITAwUBg5cqTOuTfffFMYPny4Qf29f/++YGpqKuzatUunXseOHYX//ve/lYr77PeARqMRlEql8Pnnn2vP3b17V5DL5cK3335bZv+f/V4FINSvX7/U79UrV65UOFl59jMHILRs2bLc75GjR48KAIS0tDSj9LdYTk6OAEDYt2+fwXGvXbsmNG7cWDh9+rTg4uLy3GTl6bgAhO3bt+v8LAwODhYGDhxYbozK9HXo0KHCO++8o1fcyv5cI+niY6ByFBYWIiUlBX5+ftpzJiYm8PPzQ3JycqltkpOTdeoDgL+/f5n1K6KyMXNycgAAdnZ2RotdVFSELVu2IC8vDyqVyuCYISEhCAwMLFHf0LgXLlyAk5MTmjdvjuHDh5c7ZFyRuD/++CM6d+6MIUOGwN7eHl5eXlizZo3R+gs8/t/bxo0bMXLkyDJfoFnRmD4+PoiPj8eff/4JAPjtt99w8OBBBAQEGNTfR48eoaioqMS7UKysrHDw4EGD+lzsypUryMrK0mmjUCjg7e1d7mf37PcqAHh6ehr0vVdW/728vMqNm5OTA5lMBltbW6P1t7CwEKtXr4ZCoYCnp6dBcTUaDd59911MmjQJbdq0KfM+yotb2s/ChIQE2Nvbo1WrVnj//ffx999/6xXz2b5qNBrs3r0bL730Evz9/WFvbw9vb+/nPjoX4+cwVS8mK+W4desWioqK4ODgoHPewcEBWVlZpbbJysrSq35FlBVTrVbjwYMHpbbRaDQICwtD9+7d0bZtW71jP9vfU6dOoV69epDL5Rg3bhx27twJDw8Pg2Ju2bIFJ06cQGRkZJn9q0xcb29vREdHIzY2FitXrsSVK1fQs2dP3Lt3r9JxL1++jJUrV6Jly5bYs2cP3n//fYwfPx5fffWV3v0t698tJiYGd+/exXvvvad3zGc/g6lTp+Ltt9+Gu7s7zM3N4eXlhbCwMAwfPtyg/lpbW0OlUmHu3Lm4ceMGioqKsHHjRiQnJyMzM9Mon0PxvejzfVTW96qtra1B33vF/dEnbn5+PqZMmYJhw4aV+ZI9ffq7a9cu1KtXD5aWlli8eDHi4uLQsGFDg+J++umnMDMzw/jx40u/6QrGffrfpH///vj6668RHx+PTz/9FImJiQgICEBRUVGl+3rz5k3k5uZi/vz56N+/P/bu3Ys33ngDb775JhITE8vsrxg/h6l68a3LtVRISAhOnz5d5l+7+mrVqhVSU1ORk5OD77//HsHBwUhMTCwzYXmejIwMTJgwAXFxcUZ/Y+nTowft27eHt7c3XFxcsHXrVowaNapSMTUaDTp37oxPPvkEwOO/rE+fPo2oqCgEBwcbpd/r1q1DQEAAnJycDI61detWbNq0CZs3b0abNm2QmpqKsLAwODk5Gdzfb775BiNHjkTjxo1hamqKjh07YtiwYUhJSTG43zXdw4cP8dZbb0EQBKxcudIoMXv37o3U1FTcunULa9aswVtvvYUjR47A3t6+UvFSUlKwdOlSnDhxoswRvMp4++23tf/drl07tG/fHi1atEBCQgL69u1bqZgajQYAMHDgQEycOBEA0KFDByQlJSEqKgq+vr6Gd5xqBI6slKNhw4YwNTVFdna2zvns7GwolcpS2yiVSr3qV0RZMW1sbGBlZVWifmhoKHbt2oVffvkFTZo0qVTsZ/trYWEBNzc3dOrUCZGRkfD09MTSpUsrHTMlJQU3b95Ex44dYWZmBjMzMyQmJuKLL76AmZlZqX+NVfaztbW1xUsvvYSLFy9Wur+Ojo4lErPWrVuX+3hJn3+3tLQ07Nu3D6NHjy73Xir6GUyaNEk7utKuXTu8++67mDhxYrmjWBXtb4sWLZCYmIjc3FxkZGTg6NGjePjwIZo3b25Q3KfrF9d53n0WK+t79e7duwZ97xX3pyJxixOVtLQ0xMXFlTmqom9/69atCzc3N3Tr1g3r1q2DmZkZ1q1bV+m4v/76K27evImmTZtqv/fS0tLw4YcfolmzZnrFLe/fpHnz5mjYsGGZ33cV6WvDhg1hZmZmtO89Q/+3QNWHyUo5LCws0KlTJ8THx2vPaTQaxMfHlzlfQ6VS6dQHgLi4uDLrV0RFYwqCgNDQUOzcuRP79++Hq6ur0WI/S6PRoKCgoNIx+/bti1OnTiE1NVVbOnfujOHDhyM1NRWmpqZG62tubi4uXboER0fHSve3e/fuJZaB//nnn3BxcSnz6+rT3w0bNsDe3h6BgYHl3ktFY96/fx8mJrrf3qamptq/VA3tL/D4l6ijoyPu3LmDPXv2YODAgUaJ6+rqCqVSqdNGrVbjyJEjZbYp7XsVAH7//XeDvvfK6v9vv/2mE7c4Ublw4QL27duHBg0alBvTkP6W971Xkbjvvvsufv/9d53vPScnJ0yaNAl79uypcNzn/Sy8du0a/v777zK/7yrSVwsLC3Tp0kXU7z2qIap7hq/UbdmyRZDL5UJ0dLRw9uxZYezYsYKtra2QlZUlCIIgvPvuu8LUqVO19Q8dOiSYmZkJCxYsEM6dOyfMnDmzxJK5e/fuCSdPnhROnjwpABAWLVoknDx5UrtyYOrUqcK7776rrV+89HPSpEnCuXPnhBUrVpS6pPT9998XFAqFkJCQoLN88P79+9o6lenv1KlThcTEROHKlSvC77//LkydOlWQyWTC3r17Kx2zNM+uBqps3A8//FBISEgQrly5Ihw6dEjw8/MTGjZsqF3uWZm4R48eFczMzIR58+YJFy5cEDZt2iTUqVNH2Lhxo87nVJl/t6KiIqFp06bClClTSnwmlf0MgoODhcaNG2uXLu/YsUNo2LChMHnyZIP7GxsbK/z888/C5cuXhb179wqenp6Ct7e3UFhYWOG4JiYmwooVK8r8Hpg/f75ga2sr/PDDD8Lvv/8uDBw4sMTS5T59+gjLli3THhdvMzB79mxh+/btAgDB0tJS2Ldvnzbu33//LZw8eVLYvXu3AEDYsmWLcPLkSSEzM7Pcz9zU1FSYOHGidqm1iYmJsG3bNiEtLU0oLCwUXn/9daFJkyZCamqqzvdeQUFBpfubm5srRERECMnJycLVq1eF48ePCyNGjBDkcrnOtgGV+RyeVdpqoGfjRkdHC+bm5sLs2bMFAEK3bt2EevXqCcePHxfu3bsn/Oc//xGSk5OFK1euCPv27RM6duwotGzZUsjPzzeorzt27BDMzc2F1atXCxcuXNAuqf/111/L/TerzM8gki4mKxWwbNkyoWnTpoKFhYXQtWtX4fDhw9prvr6+QnBwsE79rVu3Ci+99JJgYWEhtGnTRti9e7fO9V9++UUAUKIUxwkODhZ8fX1LtOnQoYNgYWEhNG/eXNiwYUOJfpYWE4BO3cr0d+TIkYKLi4tgYWEhNGrUSOjbt682UalszNI8m6xUNu7QoUMFR0dHwcLCQmjcuLEwdOhQnf1QKhv3f//7n9C2bVtBLpcL7u7uwurVq3WuV/bfbc+ePQIA4fz586V+JpXpq1qtFiZMmCA0bdpUsLS0FJo3by7897//1fnlWdn+fvfdd0Lz5s0FCwsLQalUCiEhIcLdu3f1ijtlypRyvwc0Go0wffp0wcHBQZDL5ULfvn1LfD4uLi7CzJkzdc6NHz++3LgbNmwo9frTcUr7zGfOnFlm3OJl0KWVp/fL0be/Dx48EN544w3ByclJsLCwEBwdHYXXX39dOHr0qMGfw7NKS1aejVvez6379+8L/fr1Exo1aiSYm5sLLi4uwpgxY7R/1Bna13Xr1glubm6CpaWl4OnpKcTExOjEMNbPIJIumSA8Z0tLIiIiomrEOStEREQkaUxWiIiISNKYrBAREZGkMVkhIiIiSWOyQkRERJLGZIWIiIgkjckKERERSRqTFSIiIpI0JitEBAD4+++/YW9vj6tXrz637q1bt2Bvb49r166J3zEieuExWSGqgWQyWbll1qxZesecN28eBg4cWOabd5/WsGFDBAUFYebMmfp3nohIT9xun6gGysrK0v73d999hxkzZui8mbZevXqoV69ehePdv38fjo6O2LNnD7p161ahNmfOnEGnTp1w48YN2NnZVbzzRER64sgKUQ2kVCq1RaFQQCaT6ZzbsmULWrduDUtLS7i7u+PLL78sN95PP/0EuVyuk6jcuXMHw4cPR6NGjWBlZYWWLVtiw4YN2utt2rSBk5MTdu7cKdp9EhEBgFl1d4CIjGvTpk2YMWMGli9fDi8vL5w8eRJjxoxB3bp1ERwcXGqbX3/9FZ06ddI5N336dJw9exY///wzGjZsiIsXL+LBgwc6dbp27Ypff/0Vo0aNEu1+iIiYrBDVMjNnzsTChQvx5ptvAgBcXV1x9uxZrFq1qsxkJS0tDU5OTjrn0tPT4eXlhc6dOwNAqXNZnJyccPLkSePeABHRM5isENUieXl5uHTpEkaNGoUxY8Zozz969AgKhaLMdg8ePIClpaXOuffffx+DBw/GiRMn0K9fPwwaNAg+Pj46daysrHD//n3j3gQR0TOYrBDVIrm5uQCANWvWwNvbW+eaqalpme0aNmyIO3fu6JwLCAhAWloafvrpJ8TFxaFv374ICQnBggULtHVu376NRo0aGfEOiIhK4gRbolrEwcEBTk5OuHz5Mtzc3HSKq6trme28vLxw9uzZEucbNWqE4OBgbNy4EUuWLMHq1at1rp8+fRpeXl5Gvw8ioqdxZIWolpk9ezbGjx8PhUKB/v37o6CgAMePH8edO3cQHh5eaht/f39ERETgzp07qF+/PgBgxowZ6NSpE9q0aYOCggLs2rULrVu31ra5f/8+UlJS8Mknn1TJfRHRi4sjK0S1zOjRo7F27Vps2LAB7dq1g6+vL6Kjo8sdWWnXrh06duyIrVu3as9ZWFggIiIC7du3x8svvwxTU1Ns2bJFe/2HH35A06ZN0bNnT1Hvh4iIm8IREQBg9+7dmDRpEk6fPg0Tk+f/HdOtWzeMHz8e/+///b8q6B0Rvcj4GIiIAACBgYG4cOECrl+/Dmdn53Lr3rp1C2+++SaGDRtWRb0johcZR1aIiIhI0jhnhYiIiCSNyQoRERFJGpMVIiIikjQmK0RERCRpTFaIiIhI0pisEBERkaQxWSEiIiJJY7JCREREksZkhYiIiCTt/wOPh2zWQXnzSAAAAABJRU5ErkJggg==",
- "text/plain": [
- "
"
+ ],
+ "text/plain": [
+ " Te Hm0 weights Tp J P \\\n",
+ "0 7.974491 1.253970 0.058861 9.294279 6031.115427 6.861312e+04 \n",
+ "1 10.794533 2.641403 0.035216 12.581041 37004.325098 3.873519e+05 \n",
+ "2 6.901979 1.953122 0.052001 8.044264 12516.214519 1.923400e+05 \n",
+ "3 12.667628 7.310116 0.005070 14.764135 367451.945581 1.951187e+06 \n",
+ "4 12.893701 2.262294 0.016046 15.027624 36455.136139 3.115873e+05 \n",
+ "5 10.557621 4.754297 0.017311 12.304920 116784.361789 8.410281e+05 \n",
+ "6 8.766664 2.739380 0.043646 10.217557 31825.667989 3.398579e+05 \n",
+ "7 6.537403 1.305578 0.050746 7.619350 5272.441394 8.332614e+04 \n",
+ "8 9.666291 1.340694 0.037070 11.266073 8443.649821 6.951609e+04 \n",
+ "9 12.787307 3.920397 0.016464 14.903621 107680.986511 5.068824e+05 \n",
+ "10 11.605879 1.821016 0.022323 13.526666 19446.169168 1.601980e+05 \n",
+ "11 7.584082 1.878735 0.054624 8.839256 12827.143861 2.112478e+05 \n",
+ "12 10.175411 6.133932 0.008836 11.859453 188189.689187 2.402013e+06 \n",
+ "13 9.319357 4.587432 0.018817 10.861722 95155.068368 1.067714e+06 \n",
+ "14 7.228996 1.256691 0.057692 8.425403 5449.034309 6.414256e+04 \n",
+ "15 5.646967 1.339107 0.032118 6.581547 4750.825175 7.328911e+04 \n",
+ "16 7.615980 2.634620 0.036497 8.876433 25339.645267 3.671972e+05 \n",
+ "17 9.460406 3.381147 0.033824 11.026114 52508.670941 4.020208e+05 \n",
+ "18 16.000441 3.044223 0.004295 18.648532 87446.895732 2.414505e+05 \n",
+ "19 10.550343 1.563634 0.030265 12.296437 12622.321616 1.335059e+05 \n",
+ "20 11.817436 2.982923 0.021717 13.773236 53748.089829 3.552203e+05 \n",
+ "21 12.101122 5.305727 0.014540 14.103872 177305.220432 1.343228e+06 \n",
+ "22 10.400035 3.588297 0.032312 12.121253 65405.272028 7.368317e+05 \n",
+ "23 9.132540 2.011568 0.048130 10.643986 17913.129344 1.998769e+05 \n",
+ "24 9.880296 2.462908 0.050634 11.515496 29157.316025 2.715734e+05 \n",
+ "25 8.321803 2.003080 0.054171 9.699071 16104.920042 2.319710e+05 \n",
+ "26 6.131352 1.794449 0.035429 7.146098 9295.960216 1.478045e+05 \n",
+ "27 11.430727 3.979891 0.025331 13.322525 90734.821382 9.391133e+05 \n",
+ "28 14.263809 2.781733 0.009359 16.624486 66183.179571 2.000335e+05 \n",
+ "29 13.744161 5.465225 0.007518 16.018835 240475.837506 8.686179e+05 \n",
+ "30 8.735251 1.270630 0.047066 10.180945 6821.344537 8.550423e+04 \n",
+ "31 8.301748 3.676767 0.022070 9.675697 54122.886646 7.578856e+05 \n",
+ "\n",
+ " CW CWR \n",
+ "0 11.376523 0.632029 \n",
+ "1 10.467747 0.581542 \n",
+ "2 15.367264 0.853737 \n",
+ "3 5.310048 0.295003 \n",
+ "4 8.547144 0.474841 \n",
+ "5 7.201547 0.400086 \n",
+ "6 10.678736 0.593263 \n",
+ "7 15.804090 0.878005 \n",
+ "8 8.232943 0.457386 \n",
+ "9 4.707260 0.261514 \n",
+ "10 8.238022 0.457668 \n",
+ "11 16.468814 0.914934 \n",
+ "12 12.763787 0.709099 \n",
+ "13 11.220783 0.623377 \n",
+ "14 11.771363 0.653965 \n",
+ "15 15.426605 0.857034 \n",
+ "16 14.491015 0.805056 \n",
+ "17 7.656274 0.425349 \n",
+ "18 2.761110 0.153395 \n",
+ "19 10.576970 0.587609 \n",
+ "20 6.608984 0.367166 \n",
+ "21 7.575793 0.420877 \n",
+ "22 11.265631 0.625868 \n",
+ "23 11.158124 0.619896 \n",
+ "24 9.314074 0.517449 \n",
+ "25 14.403735 0.800207 \n",
+ "26 15.899861 0.883326 \n",
+ "27 10.350087 0.575005 \n",
+ "28 3.022422 0.167912 \n",
+ "29 3.612080 0.200671 \n",
+ "30 12.534806 0.696378 \n",
+ "31 14.003052 0.777947 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "results['CW'] = wave.performance.capture_width(results['P'], results['J'])\n",
+ "oswec_width = 18\n",
+ "results['CWR'] = results['CW'] / oswec_width\n",
+ "results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2865149.0"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "MAEP = wave.performance.mean_annual_energy_production_matrix(results['CW'], results['J'], results['weights']) / 1000 # kWh\n",
+ "MAEP = np.round(MAEP, 0).item()\n",
+ "MAEP"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/mhkit/__init__.py b/mhkit/__init__.py
index 952136a7b..692cb8eec 100644
--- a/mhkit/__init__.py
+++ b/mhkit/__init__.py
@@ -1,24 +1,17 @@
import warnings as _warn
-from mhkit import wave
-from mhkit import river
-from mhkit import tidal
-from mhkit import qc
-from mhkit import utils
-from mhkit import power
-from mhkit import loads
-from mhkit import dolfyn
-from mhkit import mooring
-from mhkit import acoustics
+import importlib
# Register datetime converter for a matplotlib plotting methods
from pandas.plotting import register_matplotlib_converters as _rmc
_rmc()
-# Ignore future warnings
-_warn.simplefilter(action="ignore", category=FutureWarning)
+# Use targeted warning configuration
+from mhkit.warnings import configure_warnings
-__version__ = "v0.9.0"
+configure_warnings()
+
+__version__ = "v1.0.0"
__copyright__ = """
Copyright 2019, Alliance for Sustainable Energy, LLC under the terms of
@@ -28,3 +21,33 @@
retains certain rights in this software."""
__license__ = "Revised BSD License"
+
+
+def __getattr__(name):
+ """Lazy import modules to handle pip optional dependencies."""
+ known_modules = [
+ "wave",
+ "river",
+ "tidal",
+ "qc",
+ "utils",
+ "power",
+ "loads",
+ "dolfyn",
+ "mooring",
+ "acoustics",
+ ]
+
+ if name in known_modules:
+ try:
+ return importlib.import_module(f"mhkit.{name}")
+ except ModuleNotFoundError:
+ error_msg = "Module dependencies not found.\n"
+ error_msg += f"To install the {name} module, run:\n"
+ error_msg += f" pip install mhkit[{name}]\n\n"
+ error_msg += "Or install all modules with:\n"
+ error_msg += " pip install mhkit[all]"
+ else:
+ error_msg = f"module 'mhkit' has no attribute '{name}'"
+
+ raise AttributeError(error_msg)
diff --git a/mhkit/acoustics/__init__.py b/mhkit/acoustics/__init__.py
index 35cb2b7f0..0c84970f0 100644
--- a/mhkit/acoustics/__init__.py
+++ b/mhkit/acoustics/__init__.py
@@ -1,19 +1,32 @@
"""
The passive acoustics module provides a set of functions
-for analyzing and visualizing passive acoustic monitoring
+for analyzing and visualizing passive acoustic monitoring
data deployed in water bodies. This package reads in raw
-*.wav* files and conducts basic acoustics analysis and
+*.wav* files and conducts basic acoustics analysis and
visualization.
To start using the module, import it directly from MHKiT:
``from mhkit import acoustics``. The analysis functions
-are available directly from the main import, while the
-I/O and graphics submodules are available from
+are available directly from the main import, while the
+I/O and graphics submodules are available from
``acoustics.io`` and ``acoustics.graphics``, respectively.
-The base functions are intended to be used on top of the I/O submodule, and
-include functionality to calibrate data, create spectral densities, sound
+The base functions are intended to be used on top of the I/O submodule, and
+include functionality to calibrate data, create spectral densities, sound
pressure levels, and time or band aggregate spectral data.
"""
from mhkit.acoustics import io, graphics
-from .analysis import *
+from .analysis import (
+ minimum_frequency,
+ sound_pressure_spectral_density,
+ apply_calibration,
+ sound_pressure_spectral_density_level,
+ band_aggregate,
+ time_aggregate,
+)
+from .spl import (
+ sound_pressure_level,
+ third_octave_sound_pressure_level,
+ decidecade_sound_pressure_level,
+)
+from .sel import nmfs_auditory_weighting, sound_exposure_level
diff --git a/mhkit/acoustics/analysis.py b/mhkit/acoustics/analysis.py
index bd0e2007d..145757fdb 100644
--- a/mhkit/acoustics/analysis.py
+++ b/mhkit/acoustics/analysis.py
@@ -2,7 +2,7 @@
This module contains key functions for passive acoustics analysis, designed to process
and analyze sound pressure data from .wav files in the frequency and time domains.
The functions herein build on each other, with a structured flow that facilitates the
-calculation of sound pressure levels, spectral densities, and banded averages, based on
+calculation of sound pressure spectral densities and banded averages based on
input audio data.
The following functionality is provided:
@@ -39,19 +39,6 @@
- `time_aggregate`: Aggregates spectral density data into specified time windows using
similar statistical methods.
-
-7. **Sound Pressure Level Calculation**:
-
- - `sound_pressure_level`: Computes the overall sound pressure level within a frequency band
- from mean square spectral density.
-
-8. **Frequency-Banded Sound Pressure Level**:
-
- - `_band_sound_pressure_level`: Helper function for calculating sound pressure levels
- over specified frequency bandwidths.
-
- - `third_octave_sound_pressure_level` and `decidecade_sound_pressure_level`:
- Compute sound pressure levels across third-octave and decidecade bands, respectively.
"""
from typing import Union, Dict, Tuple, Optional
@@ -153,13 +140,24 @@ def minimum_frequency(
def sound_pressure_spectral_density(
- pressure: xr.DataArray, fs: Union[int, float], bin_length: Union[int, float] = 1
+ pressure: xr.DataArray,
+ fs: Union[int, float],
+ bin_length: Union[int, float] = 1,
+ rms: bool = True,
) -> xr.DataArray:
"""
- Calculates the mean square sound pressure spectral density from audio
- samples split into FFTs with a specified bin length in seconds, using Hanning
- windowing with 50% overlap. The amplitude of the PSD is adjusted
- according to Parseval's theorem.
+ Calculates the sound pressure spectral density (SPSD) from audio
+ samples split into FFTs with a specified bin length in seconds,
+ using Hanning windowing with 50% overlap.
+
+ By default (`rms=True`), this function returns the mean-squared SPSD,
+ which found by scaling the total spectral power (frequency domain) with
+ the time-domain averaged mean-squared power, in accordance with
+ Parseval's theorem.
+
+ Setting `rms=False` disables this scaling and returns the
+ power spectral density of the sound pressure signal.
+ Both forms have units of [Pa^2/Hz] or [V^2/Hz].
Parameters
----------
@@ -169,6 +167,9 @@ def sound_pressure_spectral_density(
Data collection sampling rate [Hz]
bin_length: int or float
Length of time in seconds to create FFTs. Default: 1.
+ rms: bool
+ If True, calculates the mean-squared SPSD. Set to False to
+ calculate standard SPSD. Default: True.
Returns
-------
@@ -191,25 +192,34 @@ def sound_pressure_spectral_density(
# window length of each time series
nbin = bin_length * fs
- # Use dolfyn PSD
+ # Use dolfyn PSD functionality
binner = VelBinner(n_bin=nbin, fs=fs, n_fft=nbin)
# Always 50% overlap if numbers reshape perfectly
# Mean square sound pressure
psd = binner.power_spectral_density(pressure, freq_units="Hz")
- samples = binner.reshape(pressure.values) - binner.mean(pressure.values)[:, None]
- # Power in time domain
- t_power = np.sum(samples**2, axis=1) / nbin
- # Power in frequency domain
- f_power = psd.sum("freq") * (fs / nbin)
- # Adjust the amplitude of PSD according to Parseval's theorem
- psd_adj = psd * t_power[:, None] / f_power
+ if rms:
+ # Scale PSD by mean square of original signal
+ samples = (
+ binner.reshape(pressure.values) - binner.mean(pressure.values)[:, None]
+ )
+ # mean squared pressure ("power") in time domain
+ t_power = np.sum(samples**2, axis=1) / nbin
+ # pressure ("power") in frequency domain
+ f_power = psd.sum("freq") * (fs / nbin)
+ # Adjust the amplitude of the PSD to return the mean-squared PSD
+ # based on Parseval's theorem: total energy computed in the time
+ # domain must equal the total energy computed in the frequency domain
+ psd = psd * t_power[:, None] / f_power
+ long_name = "Mean Square Sound Pressure Spectral Density"
+ else:
+ long_name = "Sound Pressure Spectral Density"
out = xr.DataArray(
- psd_adj,
- coords={"time": psd_adj["time"], "freq": psd_adj["freq"]},
+ psd,
+ coords={"time": psd["time"], "freq": psd["freq"]},
attrs={
"units": pressure.units + "^2/Hz",
- "long_name": "Mean Square Sound Pressure Spectral Density",
+ "long_name": long_name,
"fs": fs,
"nbin": str(bin_length) + " s",
"overlap": "50%",
@@ -337,7 +347,7 @@ def sound_pressure_spectral_density_level(spsd: xr.DataArray) -> xr.DataArray:
def _validate_method(
- method: Union[str, Dict[str, Union[float, int]]]
+ method: Union[str, Dict[str, Union[float, int]]],
) -> Tuple[str, Optional[Union[float, int]]]:
"""
Validates the 'method' parameter and returns the method name and its argument (if any)
@@ -379,7 +389,7 @@ def _validate_method(
method_name : str
The validated method name in lowercase.
method_arg : float, int, or None
- The argument associated with the method, if applicable; otherwise, None.
+ The argument associated with the method, if applicableotherwise, None.
Raises
------
@@ -435,7 +445,8 @@ def _validate_method(
"var",
"where",
]
-
+ if not isinstance(method, (str, dict)):
+ raise TypeError("'method' must be a string or a dictionary.")
if isinstance(method, str):
method_name = method.lower()
if method_name not in allowed_methods:
@@ -473,9 +484,50 @@ def _validate_method(
return method_name, method_arg
+def _create_frequency_bands(octave, base, fmin, fmax):
+ """
+ Calculates frequency bands based on the specified octave, minimum and
+ maximum frequency limits.
+
+ Parameters
+ ----------
+ octave: int
+ Octave to subdivide spectral density level by.
+ base : int, optional
+ Octave base. Set to 2 for the true octave band; set to base 10 for
+ the decidecade octave band. Default: 2
+ fmin : int, optional
+ Lower frequency band limit (lower limit of the hydrophone). Default is 10 Hz.
+ fmax : int, optional
+ Upper frequency band limit (Nyquist frequency). Default is 100,000 Hz.
+
+ Returns
+ -------
+ octave_bins: numpy.array
+ Array of octave bin edges
+ band: dict(str, numpy.array)
+ Dictionary containing the frequency band edges and center frequency
+ """
+
+ bandwidth = base ** (1 / octave)
+ half_bandwidth = base ** (1 / (octave * 2))
+
+ band = {}
+ band["center_freq"] = 10 ** np.arange(
+ np.log10(fmin),
+ np.log10(fmax * bandwidth),
+ step=np.log10(bandwidth),
+ )
+ band["lower_limit"] = band["center_freq"] / half_bandwidth
+ band["upper_limit"] = band["center_freq"] * half_bandwidth
+ octave_bins = np.append(band["lower_limit"], band["upper_limit"][-1])
+
+ return octave_bins, band
+
+
def band_aggregate(
spsdl: xr.DataArray,
- octave: int = 3,
+ octave: Tuple[int, int] = None,
fmin: int = 10,
fmax: int = 100000,
method: Union[str, Dict[str, Union[float, int]]] = "median",
@@ -488,8 +540,11 @@ def band_aggregate(
----------
spsdl: xarray.DataArray (time, freq)
Mean square sound pressure spectral density level in dB rel 1 uPa^2/Hz
- octave: int
- Octave to subdivide spectral density level by. Default = 3 (third octave)
+ octave: [int, int]
+ Octave and octave base to subdivide spectral density level by. Set to
+ octave base to 2 for the true octave band; set to base 10 for
+ the decidecade octave band.
+ Default = [3, 2] (true third octave)
fmin: int
Lower frequency band limit (lower limit of the hydrophone). Default: 10 Hz
fmax: int
@@ -509,16 +564,17 @@ def band_aggregate(
# Type checks
if not isinstance(spsdl, xr.DataArray):
raise TypeError("'spsdl' must be an xarray.DataArray.")
- if not isinstance(octave, int) or (octave <= 0):
- raise TypeError("'octave' must be a positive integer.")
+ if octave is None:
+ octave = [3, 2]
+ if not isinstance(octave, list) and not isinstance(octave, tuple):
+ raise TypeError("'octave' must be a list or tuple of two integers.")
+ for val in octave:
+ if not isinstance(val, int) or (val <= 0):
+ raise TypeError("'octave' must contain positive integers.")
if not isinstance(fmin, int) or (fmin <= 0):
raise TypeError("'fmin' must be a positive integer.")
- if not isinstance(fmax, int) or (fmin <= 0):
- raise TypeError("'fmax' must be a positive integer.")
- if fmax <= fmin:
+ if fmax <= fmin: # also checks that fmax is positive
raise ValueError("'fmax' must be greater than 'fmin'.")
- if not isinstance(method, (str, dict)):
- raise TypeError("'method' must be a string or a dictionary.")
# Value checks
if ("freq" not in spsdl.dims) or ("time" not in spsdl.dims):
@@ -531,18 +587,7 @@ def band_aggregate(
fn = spsdl["freq"].max().values
fmax = _fmax_warning(fn, fmax)
- bandwidth = 2 ** (1 / octave)
- half_bandwidth = 2 ** (1 / (octave * 2))
-
- band = {}
- band["center_freq"] = 10 ** np.arange(
- np.log10(fmin),
- np.log10(fmax * bandwidth),
- step=np.log10(bandwidth),
- )
- band["lower_limit"] = band["center_freq"] / half_bandwidth
- band["upper_limit"] = band["center_freq"] * half_bandwidth
- octave_bins = np.append(band["lower_limit"], band["upper_limit"][-1])
+ octave_bins, band = _create_frequency_bands(octave[0], octave[1], fmin, fmax)
# Use xarray binning methods
spsdl_group = spsdl.groupby_bins("freq", octave_bins, labels=band["center_freq"])
@@ -562,10 +607,6 @@ def band_aggregate(
# Update attributes
out.attrs["units"] = spsdl.units
- # Remove 'quantile' coordinate if present
- if method == "quantile":
- out = out.drop_vars("quantile")
-
return out
@@ -653,242 +694,3 @@ def time_aggregate(
out = out.drop_vars("quantile")
return out
-
-
-def sound_pressure_level(
- spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
-) -> xr.DataArray:
- """
- Calculates the sound pressure level in a specified frequency band
- from the mean square sound pressure spectral density.
-
- Parameters
- ----------
- spsd: xarray.DataArray (time, freq)
- Mean square sound pressure spectral density in [Pa^2/Hz]
- fmin: int
- Lower frequency band limit (lower limit of the hydrophone). Default: 10 Hz
- fmax: int
- Upper frequency band limit (Nyquist frequency). Default: 100000 Hz
-
- Returns
- -------
- spl: xarray.DataArray (time)
- Sound pressure level [dB re 1 uPa] indexed by time
- """
-
- # Type checks
- if not isinstance(spsd, xr.DataArray):
- raise TypeError("'spsd' must be an xarray.DataArray.")
- if not isinstance(fmin, int):
- raise TypeError("'fmin' must be an integer.")
- if not isinstance(fmax, int):
- raise TypeError("'fmax' must be an integer.")
-
- # Ensure 'freq' and 'time' dimensions are present
- if ("freq" not in spsd.dims) or ("time" not in spsd.dims):
- raise ValueError("'spsd' must have 'time' and 'freq' as dimensions.")
-
- # Check that 'fs' (sampling frequency) is available in attributes
- if "fs" not in spsd.attrs:
- raise ValueError(
- "'spsd' must have 'fs' (sampling frequency) in its attributes."
- )
-
- # Value checks
- if fmin <= 0:
- raise ValueError("'fmin' must be a positive integer.")
- if fmax <= fmin:
- raise ValueError("'fmax' must be greater than 'fmin'.")
-
- # Check fmax
- fn = spsd.attrs["fs"] // 2
- fmax = _fmax_warning(fn, fmax)
-
- # Reference value of sound pressure
- reference = 1e-12 # Pa^2, = 1 uPa^2
-
- # Mean square sound pressure in a specified frequency band from mean square values
- pressure_squared = np.trapz(
- spsd.sel(freq=slice(fmin, fmax)), spsd["freq"].sel(freq=slice(fmin, fmax))
- )
-
- # Mean square sound pressure level
- mspl = 10 * np.log10(pressure_squared / reference)
-
- out = xr.DataArray(
- mspl.astype(np.float32),
- coords={"time": spsd["time"]},
- attrs={
- "units": "dB re 1 uPa",
- "long_name": "Sound Pressure Level",
- "freq_band_min": fmin,
- "freq_band_max": fmax,
- },
- )
-
- return out
-
-
-def _band_sound_pressure_level(
- spsd: xr.DataArray,
- bandwidth: int,
- half_bandwidth: int,
- fmin: int = 10,
- fmax: int = 100000,
-) -> xr.DataArray:
- """
- Calculates band-averaged sound pressure levels
-
- Parameters
- ----------
- spsd: xarray.DataArray (time, freq)
- Mean square sound pressure spectral density.
- bandwidth : int or float
- Bandwidth to average over.
- half_bandwidth : int or float
- Half-bandwidth, used to set upper and lower bandwidth limits.
- fmin : int, optional
- Lower frequency band limit (lower limit of the hydrophone). Default is 10 Hz.
- fmax : int, optional
- Upper frequency band limit (Nyquist frequency). Default is 100,000 Hz.
-
-
- Returns
- -------
- out: xarray.DataArray (time, freq_bins)
- Sound pressure level [dB re 1 uPa] indexed by time and frequency of specified bandwidth
- """
-
- # Type checks
- if not isinstance(spsd, xr.DataArray):
- raise TypeError("'spsd' must be an xarray.DataArray.")
- if not isinstance(bandwidth, (int, float)):
- raise TypeError("'bandwidth' must be a numeric type (int or float).")
- if not isinstance(half_bandwidth, (int, float)):
- raise TypeError("'half_bandwidth' must be a numeric type (int or float).")
- if not isinstance(fmin, int):
- raise TypeError("'fmin' must be an integer.")
- if not isinstance(fmax, int):
- raise TypeError("'fmax' must be an integer.")
-
- # Ensure 'freq' and 'time' dimensions are present
- if "freq" not in spsd.dims or "time" not in spsd.dims:
- raise ValueError("'spsd' must have 'time' and 'freq' as dimensions.")
-
- # Check that 'fs' (sampling frequency) is available in attributes
- if "fs" not in spsd.attrs:
- raise ValueError(
- "'spsd' must have 'fs' (sampling frequency) in its attributes."
- )
-
- # Value checks
- if fmin <= 0:
- raise ValueError("'fmin' must be a positive integer.")
- if fmax <= fmin:
- raise ValueError("'fmax' must be greater than 'fmin'.")
-
- # Check fmax
- fn = spsd.attrs["fs"] // 2
- fmax = _fmax_warning(fn, fmax)
-
- # Reference value of sound pressure
- reference = 1e-12 # Pa^2, = 1 uPa^2
-
- band = {}
- band["center_freq"] = 10 ** np.arange(
- np.log10(fmin),
- np.log10(fmax * bandwidth),
- step=np.log10(bandwidth),
- )
- band["lower_limit"] = band["center_freq"] / half_bandwidth
- band["upper_limit"] = band["center_freq"] * half_bandwidth
- octave_bins = np.append(band["lower_limit"], band["upper_limit"][-1])
-
- # Manual trapezoidal rule to get Pa^2
- pressure_squared = xr.DataArray(
- coords={"time": spsd["time"], "freq_bins": band["center_freq"]},
- dims=["time", "freq_bins"],
- )
- for i, key in enumerate(band["center_freq"]):
- band_min = octave_bins[i]
- band_max = octave_bins[i + 1]
- pressure_squared.loc[{"freq_bins": key}] = np.trapz(
- spsd.sel(freq=slice(band_min, band_max)),
- spsd["freq"].sel(freq=slice(band_min, band_max)),
- )
-
- # Mean square sound pressure level in dB rel 1 uPa
- mspl = 10 * np.log10(pressure_squared / reference)
-
- return mspl
-
-
-def third_octave_sound_pressure_level(
- spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
-) -> xr.DataArray:
- """
- Calculates the sound pressure level in third octave bands directly
- from the mean square sound pressure spectral density.
-
- Parameters
- ----------
- spsd: xarray.DataArray (time, freq)
- Mean square sound pressure spectral density.
- fmin: int
- Lower frequency band limit (lower limit of the hydrophone). Default: 10 Hz
- fmax: int
- Upper frequency band limit (Nyquist frequency). Default: 100000 Hz
-
- Returns
- -------
- mspl: xarray.DataArray (time, freq_bins)
- Sound pressure level [dB re 1 uPa] indexed by time and third octave bands
- """
-
- # Third octave bin frequencies
- bandwidth = 2 ** (1 / 3)
- half_bandwidth = 2 ** (1 / 6)
-
- mspl = _band_sound_pressure_level(spsd, bandwidth, half_bandwidth, fmin, fmax)
- mspl.attrs = {
- "units": "dB re 1 uPa",
- "long_name": "Third Octave Sound Pressure Level",
- }
-
- return mspl.astype(np.float32)
-
-
-def decidecade_sound_pressure_level(
- spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
-) -> xr.DataArray:
- """
- Calculates the sound pressure level in decidecade bands directly
- from the mean square sound pressure spectral density.
-
- Parameters
- ----------
- spsd: xarray.DataArray (time, freq)
- Mean square sound pressure spectral density.
- fmin: int
- Lower frequency band limit (lower limit of the hydrophone). Default: 10 Hz
- fmax: int
- Upper frequency band limit (Nyquist frequency). Default: 100000 Hz
-
- Returns
- -------
- mspl : xarray.DataArray (time, freq_bins)
- Sound pressure level [dB re 1 uPa] indexed by time and decidecade bands
- """
-
- # Decidecade bin frequencies
- bandwidth = 2 ** (1 / 10)
- half_bandwidth = 2 ** (1 / 20)
-
- mspl = _band_sound_pressure_level(spsd, bandwidth, half_bandwidth, fmin, fmax)
- mspl.attrs = {
- "units": "dB re 1 uPa",
- "long_name": "Decidecade Sound Pressure Level",
- }
-
- return mspl.astype(np.float32)
diff --git a/mhkit/acoustics/graphics.py b/mhkit/acoustics/graphics.py
index 888cec835..fb61361f0 100644
--- a/mhkit/acoustics/graphics.py
+++ b/mhkit/acoustics/graphics.py
@@ -1,6 +1,6 @@
"""
-This submodule provides essential plotting functions for visualizing passive acoustics
-data. The functions allow for customizable plotting of sound pressure spectral density
+This submodule provides essential plotting functions for visualizing passive acoustics
+data. The functions allow for customizable plotting of sound pressure spectral density
levels across time and frequency dimensions.
Each plotting function leverages the flexibility of Matplotlib, allowing for passthrough
@@ -11,12 +11,12 @@
-------------
1. **plot_spectrogram**:
- - Generates a spectrogram plot from sound pressure spectral density level data,
+ - Generates a spectrogram plot from sound pressure spectral density level data,
with a logarithmic frequency scale by default for improved readability of acoustic data.
2. **plot_spectra**:
- - Produces a spectral density plot with a log-transformed x-axis, allowing for clear
+ - Produces a spectral density plot with a log-transformed x-axis, allowing for clear
visualization of spectral density across frequency bands.
"""
@@ -33,7 +33,7 @@ def plot_spectrogram(
fmax: int = 100000,
fig: plt.figure = None,
ax: plt.Axes = None,
- **kwargs
+ **kwargs,
) -> Tuple[plt.figure, plt.Axes]:
"""
Plots the spectrogram of the sound pressure spectral density level.
@@ -86,10 +86,10 @@ def plot_spectrogram(
spsdl[freq].values,
spsdl.transpose(freq, time),
shading="nearest",
- **kwargs
+ **kwargs,
)
fig.colorbar(h, ax=ax, label=getattr(spsdl, "units", None))
- ax.set(xlabel="Time", ylabel="Frequency [Hz]")
+ ax.set(ylim=(fmin, fmax), xlabel="Time", ylabel="Frequency [Hz]")
return fig, ax
@@ -100,7 +100,7 @@ def plot_spectra(
fmax: int = 100000,
fig: plt.figure = None,
ax: plt.Axes = None,
- **kwargs
+ **kwargs,
) -> Tuple[plt.figure, plt.Axes]:
"""
Plots spectral density. X axis is log-transformed.
@@ -140,8 +140,6 @@ def plot_spectra(
# Check fmax
fn = spsdl[freq].max().item()
fmax = _fmax_warning(fn, fmax)
- # select frequency range
- spsdl = spsdl.sel({freq: slice(fmin, fmax)})
if ax is None:
fig, ax = plt.subplots(figsize=(6, 5), subplot_kw={"xscale": "log"})
diff --git a/mhkit/acoustics/io.py b/mhkit/acoustics/io.py
index 5e04b82d7..c1743b0ed 100644
--- a/mhkit/acoustics/io.py
+++ b/mhkit/acoustics/io.py
@@ -1,7 +1,7 @@
"""
This submodule provides input/output functions for passive acoustics data,
focusing on hydrophone recordings stored in WAV files. The main functionality
-includes reading and processing hydrophone data from various manufacturers
+includes reading and processing hydrophone data from various manufacturers
and exporting audio files for easy playback and analysis.
Supported Hydrophone Models
@@ -14,28 +14,28 @@
1. **Data Reading**:
- - `read_hydrophone`: Main function to read a WAV file from a hydrophone and
- convert it to either a voltage or pressure time series, depending on the
+ - `read_hydrophone`: Main function to read a WAV file from a hydrophone and
+ convert it to either a voltage or pressure time series, depending on the
availability of sensitivity data.
- - `read_soundtrap`: Wrapper for reading Ocean Instruments SoundTrap hydrophone
+ - `read_soundtrap`: Wrapper for reading Ocean Instruments SoundTrap hydrophone
files, automatically using appropriate metadata.
- - `read_iclisten`: Wrapper for reading Ocean Sonics icListen hydrophone files,
- including metadata processing to apply hydrophone sensitivity for direct
+ - `read_iclisten`: Wrapper for reading Ocean Sonics icListen hydrophone files,
+ including metadata processing to apply hydrophone sensitivity for direct
sound pressure calculation.
2. **Audio Export**:
- - `export_audio`: Converts processed sound pressure data back into a WAV file
+ - `export_audio`: Converts processed sound pressure data back into a WAV file
format, with optional gain adjustment to improve playback quality.
3. **Data Extraction**:
- - `_read_wav_metadata`: Extracts metadata from a WAV file, including bit depth
+ - `_read_wav_metadata`: Extracts metadata from a WAV file, including bit depth
and other header information.
- - `_calculate_voltage_and_time`: Converts raw WAV data into voltage values and
+ - `_calculate_voltage_and_time`: Converts raw WAV data into voltage values and
generates a time index based on the sampling frequency.
"""
diff --git a/mhkit/acoustics/sel.py b/mhkit/acoustics/sel.py
new file mode 100644
index 000000000..781db3876
--- /dev/null
+++ b/mhkit/acoustics/sel.py
@@ -0,0 +1,154 @@
+"""
+This module contains key functions related to calculating sound exposure levels
+from sound pressure data.
+
+1. **Sound Exposure Level Calculation**:
+
+ - `nmfs_auditory_weighting`: Computes the auditory weighting and exposure functions
+ for marine mammals based on the National Marine Fisheries Service (NMFS) guidelines.
+ - `sound_exposure_level`: Computes the sound exposure level from within a
+ specified time range.
+"""
+
+import numpy as np
+import xarray as xr
+
+from .spl import _argument_check
+
+
+def nmfs_auditory_weighting(frequency, group):
+ """
+ Calculates the auditory weighting and exposure functions for marine mammals
+ based on the National Marine Fisheries Service (NMFS) guidelines.
+
+ The weighting function is applied to sound exposure level to determine the
+ auditory impact on marine mammals. The exposure function is the inverse of the
+ weighting function and illustrates how the weighting function relates to marine
+ mammal hearing thresholds.
+ Both function are returned in their log10-transform, in units of dB. To transform
+ back to linear units, use 10**(weighting_func/10).
+
+ https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance-other-acoustic-tools
+
+ Parameters
+ ----------
+ frequency: xarray.DataArray (freq)
+ Frequency vector in [Hz].
+ group: str
+ Marine mammal group for which the auditory weighting function is applied.
+ Options: 'LF' (low frequency cetaceans), 'HF' (high frequency cetaceans),
+ 'VHF' (very high frequency cetaceans), 'PW' (phocid pinnepeds),
+ 'OW' (otariid pinnepeds)
+
+ Returns
+ -------
+ weighting_func: xarray.DataArray (freq)
+ Auditory weighting function [unitless] indexed by frequency
+ exposure_func: xarray.DataArray (freq)
+ Log-transformed auditory exposure function [dB] indexed by frequency
+ """
+
+ if group.lower() not in [
+ "lf",
+ "hf",
+ "vhf",
+ "pw",
+ "ow",
+ ]:
+ raise ValueError("Group must be one of: LF, HF, VHF, PW, OW")
+
+ group_params = {
+ "lf": {"a": 0.99, "b": 5, "f1": 0.168, "f2": 26.6, "c": 0.12, "k": 177},
+ "hf": {"a": 1.55, "b": 5, "f1": 1.73, "f2": 129, "c": 0.32, "k": 181},
+ "vhf": {"a": 2.23, "b": 5, "f1": 5.93, "f2": 186, "c": 0.91, "k": 160},
+ "pw": {"a": 1.63, "b": 5, "f1": 0.81, "f2": 68.3, "c": 0.29, "k": 175},
+ "ow": {"a": 1.58, "b": 5, "f1": 2.53, "f2": 43.8, "c": 1.37, "k": 178},
+ }
+
+ a, b, f1, f2, c, k = group_params[group.lower()].values()
+
+ frequency = frequency / 1000 # Convert to kHz
+ ratio_a = frequency / f1
+ ratio_b = frequency / f2
+ band_filter = ratio_a ** (2 * a) / (
+ ((1 + ratio_a**2) ** a) * ((1 + ratio_b**2) ** b)
+ )
+
+ weighting_func = c + 10 * np.log10(band_filter) # dB
+ exposure_func = k - 10 * np.log10(band_filter) # dB
+
+ return weighting_func, exposure_func
+
+
+def sound_exposure_level(
+ spsd: xr.DataArray, group: str = None, fmin: int = 10, fmax: int = 100000
+) -> xr.DataArray:
+ """
+ Calculates the sound exposure level (SEL) across a specified frequency band
+ from the sound pressure spectral density (SPSD). If a marine mammal group is
+ provided, the resulting SEL is weighted according to the U.S. National Marine
+ Fisheries Service (NMFS) guidelines.
+
+ Parameters
+ ----------
+ spsd: xarray.DataArray (time, freq)
+ Sound pressure spectral density in [Pa^2/Hz] with a bin length
+ equal to the time over which sound exposure should be computed.
+ group: str
+ Marine mammal group for which the auditory weighting function is applied.
+ Options: 'LF' (low frequency cetaceans), 'HF' (high frequency cetaceans),
+ 'VHF' (very high frequency cetaceans), 'PW' (phocid pinnepeds),
+ 'OW' (otariid pinnepeds). Default: None
+ fmin: int
+ Lower frequency band limit (lower limit of the hydrophone).
+ Default: 10 Hz
+ fmax: int
+ Upper frequency band limit (Nyquist frequency). Default:
+ 100000 Hz
+
+ Returns
+ -------
+ sel: xarray.DataArray (time)
+ Sound exposure level [dB re 1 uPa^2 s] indexed by time
+ """
+
+ # Argument checks
+ fmax = _argument_check(spsd, fmin, fmax)
+
+ if group is not None:
+ w, _ = nmfs_auditory_weighting(spsd["freq"], group)
+ # convert from dB back to unitless
+ w = 10 ** (w / 10)
+ long_name = "Weighted Sound Exposure Level"
+ else:
+ w = xr.ones_like(spsd["freq"])
+ long_name = "Sound Exposure Level"
+
+ # Reference value of sound pressure
+ reference = 1e-12 * 1 # Pa^2 s, = 1 uPa^2 s
+
+ # Mean square sound pressure in a specified frequency band
+ # from weighted mean square values
+ band = spsd.sel(freq=slice(fmin, fmax))
+ w = w.sel(freq=slice(fmin, fmax))
+ exposure = np.trapezoid(band * w, band["freq"])
+
+ # Sound exposure level (L_{E,p}) = (L_{p,rms} + 10log10(t))
+ sel = 10 * np.log10(exposure / reference) + 10 * np.log10(
+ spsd.attrs["nfft"] / spsd.attrs["fs"] # n_points / (n_points/s)
+ )
+
+ out = xr.DataArray(
+ sel.astype(np.float32),
+ coords={"time": spsd["time"]},
+ attrs={
+ "units": "dB re 1 uPa^2 s",
+ "long_name": long_name,
+ "weighting_group": group,
+ "integration_time": spsd.attrs["nbin"],
+ "freq_band_min": fmin,
+ "freq_band_max": fmax,
+ },
+ )
+
+ return out
diff --git a/mhkit/acoustics/spl.py b/mhkit/acoustics/spl.py
new file mode 100644
index 000000000..2e9ef86a0
--- /dev/null
+++ b/mhkit/acoustics/spl.py
@@ -0,0 +1,278 @@
+"""
+This module contains key functions related to calculating sound pressure levels
+from sound pressure data.
+
+1. **Sound Pressure Level Calculation**:
+
+ - `sound_pressure_level`: Computes the overall sound pressure level within a frequency band
+ from mean square spectral density.
+
+2. **Frequency-Banded Sound Pressure Level**:
+
+ - `_band_sound_pressure_level`: Helper function for calculating sound pressure levels
+ over specified frequency bandwidths.
+
+ - `third_octave_sound_pressure_level` and `decidecade_sound_pressure_level`:
+ Compute sound pressure levels across third-octave and decidecade bands, respectively.
+"""
+
+import numpy as np
+import xarray as xr
+
+from .analysis import _fmax_warning, _create_frequency_bands
+
+
+def _argument_check(spsd, fmin, fmax):
+ """
+ Validates input types, values, and dimensions for SPSD data and adjusts
+ fmax to the Nyquist frequency if needed.
+
+ Parameters
+ ----------
+ spsd : xarray.DataArray
+ Spectral data with 'time' and 'freq' dimensions and a 'fs' attribute.
+ fmin : int
+ Minimum frequency (Hz), must be > 0.
+ fmax : int
+ Maximum frequency (Hz), must be > fmin.
+
+ Returns
+ -------
+ fmax : int
+ Frequency limited to below the Nyquist limit.
+ """
+
+ # Type checks
+ if not isinstance(spsd, xr.DataArray):
+ raise TypeError("'spsd' must be an xarray.DataArray.")
+ if not isinstance(fmin, int):
+ raise TypeError("'fmin' must be an integer.")
+ if not isinstance(fmax, int):
+ raise TypeError("'fmax' must be an integer.")
+
+ # Ensure 'freq' and 'time' dimensions are present
+ if ("freq" not in spsd.dims) or ("time" not in spsd.dims):
+ raise ValueError("'spsd' must have 'time' and 'freq' as dimensions.")
+
+ # Check that 'fs' (sampling frequency) is available in attributes
+ if "fs" not in spsd.attrs:
+ raise ValueError(
+ "'spsd' must have 'fs' (sampling frequency) in its attributes."
+ )
+ if "nfft" not in spsd.attrs:
+ raise ValueError(
+ "'spsd' must have 'nfft' (sampling frequency) in its attributes."
+ )
+
+ # Value checks
+ if fmin <= 0:
+ raise ValueError("'fmin' must be a positive integer.")
+ if fmax <= fmin:
+ raise ValueError("'fmax' must be greater than 'fmin'.")
+
+ # Check fmax
+ fn = spsd.attrs["fs"] // 2
+ fmax = _fmax_warning(fn, fmax)
+
+ return fmax
+
+
+def sound_pressure_level(
+ spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
+) -> xr.DataArray:
+ """
+ Calculates the sound pressure level (SPL) in a specified frequency band
+ from the mean square sound pressure spectral density (SPSD).
+
+ Parameters
+ ----------
+ spsd: xarray.DataArray (time, freq)
+ Mean square sound pressure spectral density in [Pa^2/Hz]
+ fmin: int
+ Lower frequency band limit (lower limit of the hydrophone). Default: 10 Hz
+ fmax: int
+ Upper frequency band limit (Nyquist frequency). Default: 100000 Hz
+
+ Returns
+ -------
+ spl: xarray.DataArray (time)
+ Sound pressure level [dB re 1 uPa] indexed by time
+ """
+
+ # Argument checks
+ fmax = _argument_check(spsd, fmin, fmax)
+
+ # Reference value of sound pressure
+ reference = 1e-12 # Pa^2, = 1 uPa^2
+
+ # Mean square sound pressure in a specified frequency band from mean square values
+ band = spsd.sel(freq=slice(fmin, fmax))
+ freqs = band["freq"]
+ pressure_squared = np.trapezoid(band, freqs)
+
+ # Mean square sound pressure level
+ mspl = 10 * np.log10(pressure_squared / reference)
+
+ out = xr.DataArray(
+ mspl.astype(np.float32),
+ coords={"time": spsd["time"]},
+ attrs={
+ "units": "dB re 1 uPa",
+ "long_name": "Sound Pressure Level",
+ "freq_band_min": fmin,
+ "freq_band_max": fmax,
+ },
+ )
+
+ return out
+
+
+def _band_sound_pressure_level(
+ spsd: xr.DataArray,
+ octave: int,
+ base: int = 2,
+ fmin: int = 10,
+ fmax: int = 100000,
+) -> xr.DataArray:
+ """
+ Calculates band-averaged sound pressure levels from the
+ mean square sound pressure spectral density (SPSD).
+
+ Parameters
+ ----------
+ spsd: xarray.DataArray (time, freq)
+ Mean square sound pressure spectral density in [Pa^2/Hz]
+ octave: int
+ Octave subdivision (1 = full octave, 3 = third-octave, etc.)
+ base: int
+ Octave base subdivision (2 = true octave, 10 = decade octave, etc.)
+ fmin : int, optional
+ Lower frequency band limit (lower limit of the hydrophone).
+ Default is 10 Hz.
+ fmax : int, optional
+ Upper frequency band limit (Nyquist frequency).
+ Default is 100,000 Hz.
+
+ Returns
+ -------
+ out: xarray.DataArray (time, freq_bins)
+ Sound pressure level [dB re 1 uPa] indexed by time and frequency of specified bandwidth
+ """
+
+ # Type checks
+ if not isinstance(octave, int) or (octave <= 0):
+ raise TypeError("'octave' must be a positive integer.")
+
+ # Argument checks
+ fmax = _argument_check(spsd, fmin, fmax)
+
+ # Reference value of sound pressure
+ reference = 1e-12 # Pa^2, = 1 uPa^2
+
+ _, band = _create_frequency_bands(octave, base, fmin, fmax)
+
+ # Manual trapezoidal rule to get Pa^2
+ pressure_squared = xr.DataArray(
+ coords={"time": spsd["time"], "freq_bins": band["center_freq"]},
+ dims=["time", "freq_bins"],
+ )
+ for i, key in enumerate(band["center_freq"]):
+ # Min and max band limits
+ band_range = [band["lower_limit"][i], band["upper_limit"][i]]
+
+ # Integrate spectral density by frequency
+ x = spsd["freq"].sel(freq=slice(*band_range))
+ if len(x) < 2:
+ # Interpolate between band frequencies if width is narrow
+ bandwidth = band_range[1] / band_range[0]
+ # Use smaller set of dataset to speed up interpolation
+ spsd_slc = spsd.sel(
+ freq=slice(
+ None, # Only happens at low frequency
+ band_range[1] * bandwidth * 2,
+ )
+ )
+ spsd_slc = spsd_slc.interp(freq=band_range)
+ x = band_range
+ else:
+ spsd_slc = spsd.sel(freq=slice(*band_range))
+
+ pressure_squared.loc[{"freq_bins": key}] = np.trapezoid(spsd_slc, x)
+
+ # Mean square sound pressure level in dB rel 1 uPa
+ mspl = 10 * np.log10(pressure_squared / reference)
+
+ return mspl
+
+
+def third_octave_sound_pressure_level(
+ spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
+) -> xr.DataArray:
+ """
+ Calculates the sound pressure level in third octave bands directly
+ from the mean square sound pressure spectral density (SPSD).
+
+ Parameters
+ ----------
+ spsd: xarray.DataArray (time, freq)
+ Mean square sound pressure spectral in [Pa^2/Hz].
+ fmin: int
+ Lower frequency band limit (lower limit of the hydrophone).
+ Default: 10 Hz
+ fmax: int
+ Upper frequency band limit (Nyquist frequency).
+ Default: 100000 Hz
+
+ Returns
+ -------
+ mspl: xarray.DataArray (time, freq_bins)
+ Sound pressure level [dB re 1 uPa] indexed by time and third octave bands
+ """
+ octave = 3
+ base = 2
+ mspl = _band_sound_pressure_level(spsd, octave, base, fmin, fmax)
+ mspl.attrs.update(
+ {
+ "units": "dB re 1 uPa",
+ "long_name": "Third Octave Sound Pressure Level",
+ }
+ )
+
+ return mspl.astype(np.float32)
+
+
+def decidecade_sound_pressure_level(
+ spsd: xr.DataArray, fmin: int = 10, fmax: int = 100000
+) -> xr.DataArray:
+ """
+ Calculates the sound pressure level in decidecade bands directly
+ from the mean square sound pressure spectral density (SPSD).
+
+ Parameters
+ ----------
+ spsd: xarray.DataArray (time, freq)
+ Mean square sound pressure spectral density in [Pa^2/Hz].
+ fmin: int
+ Lower frequency band limit (lower limit of the hydrophone).
+ Default: 10 Hz
+ fmax: int
+ Upper frequency band limit (Nyquist frequency).
+ Default: 100000 Hz
+
+ Returns
+ -------
+ mspl : xarray.DataArray (time, freq_bins)
+ Sound pressure level [dB re 1 uPa] indexed by time and decidecade bands
+ """
+
+ octave = 10
+ base = 10
+ mspl = _band_sound_pressure_level(spsd, octave, base, fmin, fmax)
+ mspl.attrs.update(
+ {
+ "units": "dB re 1 uPa",
+ "long_name": "Decidecade Sound Pressure Level",
+ }
+ )
+
+ return mspl.astype(np.float32)
diff --git a/mhkit/dolfyn/adp/api.py b/mhkit/dolfyn/adp/api.py
index d3280eddb..31be60787 100644
--- a/mhkit/dolfyn/adp/api.py
+++ b/mhkit/dolfyn/adp/api.py
@@ -3,3 +3,4 @@
from . import clean
from ..velocity import VelBinner
from .turbulence import ADPBinner
+from .discharge import discharge
diff --git a/mhkit/dolfyn/adp/clean.py b/mhkit/dolfyn/adp/clean.py
index 6890a12ff..6011c7946 100644
--- a/mhkit/dolfyn/adp/clean.py
+++ b/mhkit/dolfyn/adp/clean.py
@@ -157,31 +157,39 @@ def water_depth_from_amplitude(ds, thresh=10, nfilt=None) -> None:
"Please manually remove 'depth' if it needs to be recalculated."
)
+ # Use "avg" velocty if standard isn't available.
+ # Should not matter which is used.
+ tag = []
+ if hasattr(ds, "vel"):
+ tag += [""]
+ if hasattr(ds, "vel_avg"):
+ tag += ["_avg"]
+
# This finds the maximum of the echo profile:
- inds = np.argmax(ds["amp"].values, axis=1)
+ inds = np.argmax(ds["amp" + tag[0]].values, axis=1)
# This finds the first point that increases (away from the profiler) in
# the echo profile
- edf = np.diff(ds["amp"].values.astype(np.int16), axis=1)
+ edf = np.diff(ds["amp" + tag[0]].values.astype(np.int16), axis=1)
inds2 = (
- np.max(
+ np.nanmax(
(edf < 0)
- * np.arange(ds["vel"].shape[1] - 1, dtype=np.uint8)[None, :, None],
+ * np.arange(ds["vel" + tag[0]].shape[1] - 1, dtype=np.uint8)[None, :, None],
axis=1,
)
+ 1
)
# Calculate the depth of these quantities
- d1 = ds["range"].values[inds]
- d2 = ds["range"].values[inds2]
+ d1 = ds["range" + tag[0]].values[inds]
+ d2 = ds["range" + tag[0]].values[inds2]
# Combine them:
D = np.vstack((d1, d2))
# Take the median value as the estimate of the surface:
- d = np.median(D, axis=0)
+ d = np.nanmedian(D, axis=0)
# Throw out values that do not increase near the surface by *thresh*
- for ip in range(ds["vel"].shape[1]):
- itmp = np.min(inds[:, ip])
+ for ip in range(ds["vel" + tag[0]].shape[1]):
+ itmp = np.nanmin(inds[:, ip])
if (edf[itmp:, :, ip] < thresh).all():
d[ip] = np.nan
@@ -197,9 +205,9 @@ def water_depth_from_amplitude(ds, thresh=10, nfilt=None) -> None:
else:
long_name = "Instrument Depth"
- ds["depth"] = xr.DataArray(
+ ds["depth" + tag[0]] = xr.DataArray(
d.astype("float32"),
- dims=["time"],
+ dims=["time" + tag[0]],
attrs={"units": "m", "long_name": long_name, "standard_name": "depth"},
)
@@ -230,7 +238,7 @@ def water_depth_from_pressure(ds, salinity=35) -> None:
ds : xarray.Dataset
The full adcp dataset
salinity: numeric
- Water salinity in psu. Default = 35
+ Water salinity in PSU. Default = 35
Returns
-------
@@ -259,16 +267,26 @@ def water_depth_from_pressure(ds, salinity=35) -> None:
"The variable 'depth' already exists. "
"Please manually remove 'depth' if it needs to be recalculated."
)
- if "pressure" not in ds.data_vars:
+ pressure = [v for v in ds.data_vars if "pressure" in v]
+ if not pressure:
raise NameError("The variable 'pressure' does not exist.")
- elif not ds["pressure"].sum():
- raise ValueError("Pressure data not recorded.")
- if "temp" not in ds.data_vars:
+ else:
+ for p in pressure:
+ if not ds[p].sum():
+ pressure.remove(p)
+ if not pressure:
+ raise ValueError("Pressure data not recorded.")
+ temp = [
+ v
+ for v in ds.data_vars
+ if (("temp" in v) and ("clock" not in v) and ("press" not in v))
+ ]
+ if not temp:
raise NameError("The variable 'temp' does not exist.")
# Density calcation
- P = ds["pressure"].values
- T = ds["temp"].values # temperature, degC
+ P = ds[pressure[0]].values # pressure, dbar
+ T = ds[temp[0]].values # temperature, degC
S = salinity # practical salinity
rho0 = 1027 # kg/m^3
T0 = 10 # degC
@@ -289,9 +307,15 @@ def water_depth_from_pressure(ds, salinity=35) -> None:
else:
long_name = "Instrument Depth"
- ds["water_density"] = xr.DataArray(
+ # Use correct coordinate tag
+ if "_" in pressure[0]:
+ tag = "_" + pressure[0].split("_")[-1]
+ else:
+ tag = ""
+
+ ds["water_density" + tag] = xr.DataArray(
rho.astype("float32"),
- dims=["time"],
+ dims=[ds[pressure[0]].dims[0]],
attrs={
"units": "kg m-3",
"long_name": "Water Density",
@@ -299,9 +323,9 @@ def water_depth_from_pressure(ds, salinity=35) -> None:
"description": "Water density from linear approximation of sea water equation of state",
},
)
- ds["depth"] = xr.DataArray(
+ ds["depth" + tag] = xr.DataArray(
d.astype("float32"),
- dims=["time"],
+ dims=[ds[pressure[0]].dims[0]],
attrs={"units": "m", "long_name": long_name, "standard_name": "depth"},
)
@@ -319,7 +343,7 @@ def nan_beyond_surface(*args, **kwargs):
def remove_surface_interference(
- ds, val=np.nan, beam_angle=None, inplace=False
+ ds, val=np.nan, beam_angle=None, cell_size=None, inplace=False
) -> Optional[xr.Dataset]:
"""
Mask the values of 3D data (vel, amp, corr, echo) that are beyond the surface.
@@ -332,6 +356,8 @@ def remove_surface_interference(
Specifies the value to set the bad values to. Default is `numpy.nan`
beam_angle : int
ADCP beam inclination angle in degrees. Default = dataset.attrs['beam_angle']
+ cell_size : float
+ ADCP beam cellsize in meters. Default = dataset.attrs['cell_size']
inplace : bool
When True the existing data object is modified. When False
a copy is returned. Default = False
@@ -348,56 +374,95 @@ def remove_surface_interference(
`distance > range * cos(beam angle) - cell size`
"""
- if "depth" not in ds.data_vars:
+ if ("depth" not in ds.data_vars) and ("depth_avg" not in ds.data_vars):
raise KeyError(
"Depth variable 'depth' does not exist in input dataset."
"Please calculate 'depth' using the function 'water_depth_from_pressure'"
- "or 'water_depth_from_amplitude."
+ "or 'water_depth_from_amplitude, or it can be found from the 'dist_bt'"
+ "(bottom track) or 'dist_alt' (altimeter) variables, if available."
)
if beam_angle is None:
if hasattr(ds, "beam_angle"):
beam_angle = np.deg2rad(ds.attrs["beam_angle"])
else:
- raise Exception(
+ raise KeyError(
"'beam_angle` not found in dataset attributes. "
"Please supply the ADCP's beam angle."
)
else:
beam_angle = np.deg2rad(beam_angle)
+ if cell_size is None:
+ # Fetch cell size (usually 'cell_size' or 'cell_size_avg')
+ cell_sizes = []
+ if hasattr(ds, "cell_size"):
+ cell_sizes.append("cell_size")
+ if hasattr(ds, "cell_size_avg"):
+ cell_sizes.append("cell_size_avg")
+ if not cell_sizes:
+ raise KeyError(
+ "'cell_size` not found in dataset attributes. "
+ "Please supply the ADCP's cell size."
+ )
+ else:
+ cs = [cell_size]
+
+ # Depth variable(s)
+ depths = [cs.replace("cell_size", "depth") for cs in cell_sizes]
+
if not inplace:
ds = ds.copy(deep=True)
# Get all variables with 'range' coordinate
profile_vars = [h for h in ds.keys() if any(s for s in ds[h].dims if "range" in s)]
- # Surface interference distance
# Apply range_offset if available
range_offset = __check_for_range_offset(ds)
- if range_offset:
- range_limit = (
- (ds["depth"] - range_offset) * np.cos(beam_angle) - ds.attrs["cell_size"]
- ) + range_offset
- else:
- range_limit = ds["depth"] * np.cos(beam_angle) - ds.attrs["cell_size"]
-
- bds = ds["range"] > range_limit
-
- # Echosounder data needs only be trimmed at water surface
- if "echo" in profile_vars:
- mask_echo = ds["range_echo"] > ds["depth"]
- ds["echo"].values[..., mask_echo] = val
- profile_vars.remove("echo")
-
- # Correct rest of "range" data for surface interference
- for var in profile_vars:
- a = ds[var].values
- try: # float dtype
- a[..., bds] = val
- except: # int dtype
- a[..., bds] = 0
- ds[var].values = a
+ for depth, cs in zip(depths, cell_sizes):
+ if range_offset:
+ range_limit = (
+ (ds[depth] - range_offset) * np.cos(beam_angle) - ds.attrs[cs]
+ ) + range_offset
+ else:
+ range_limit = ds[depth] * np.cos(beam_angle) - ds.attrs[cs]
+
+ # No good way to do this
+ if "_avg" not in depth:
+ # Echosounder data needs only be trimmed at water surface
+ if "echo" in profile_vars:
+ mask_echo = ds["range_echo"] > ds["depth"]
+ ds["echo"].values[..., mask_echo] = val
+ profile_vars.remove("echo")
+
+ # Correct profile measurements for surface interference
+ for var in profile_vars:
+ if "avg" in var:
+ continue
+ # Use correct coordinate tag
+ if "_" in var and ("gd" not in var):
+ tag = "_" + "_".join(var.split("_")[1:])
+ else:
+ tag = ""
+ mask = ds["range" + tag] > range_limit
+ # Remove values
+ a = ds[var].values
+ try: # float dtype
+ a[..., mask] = val
+ except: # int dtype
+ a[..., mask] = 0
+ ds[var].values = a
+ else:
+ for var in profile_vars:
+ if "avg" in var:
+ mask = ds["range_avg"] > range_limit
+ # Remove values
+ a = ds[var].values
+ try: # float dtype
+ a[..., mask] = val
+ except: # int dtype
+ a[..., mask] = 0
+ ds[var].values = a
if not inplace:
return ds
@@ -434,10 +499,13 @@ def correlation_filter(ds, thresh=50, inplace=False) -> Optional[xr.Dataset]:
ds = ds.copy(deep=True)
# 4 or 5 beam
+ tag = []
+ if hasattr(ds, "vel"):
+ tag += [""]
if hasattr(ds, "vel_b5"):
- tag = ["", "_b5"]
- else:
- tag = [""]
+ tag += ["_b5"]
+ if hasattr(ds, "vel_avg"):
+ tag += ["_avg"]
# copy original ref frame
coord_sys_orig = ds.coord_sys
@@ -456,7 +524,7 @@ def correlation_filter(ds, thresh=50, inplace=False) -> Optional[xr.Dataset]:
ds[var + tg].attrs["Comments"] = (
"Filtered of data with a correlation value below "
+ str(thresh)
- + ds.corr.units
+ + ds["corr" + tg].units
)
rotate2(ds, coord_sys_orig, inplace=True)
diff --git a/mhkit/dolfyn/adp/discharge.py b/mhkit/dolfyn/adp/discharge.py
new file mode 100644
index 000000000..05f4d8a95
--- /dev/null
+++ b/mhkit/dolfyn/adp/discharge.py
@@ -0,0 +1,313 @@
+import numpy as np
+import xarray as xr
+
+
+def discharge(ds, water_depth, rho, mu=None, surface_offset=0, utm_zone=10):
+ """Calculate discharge (volume flux), power (kinetic energy flux),
+ power density, and Reynolds number from a dataset containing a
+ boat survey with a down-looking ADCP. This function is built to
+ natively handle ADCP datasets read in using the `dolfyn` module.
+
+ Dataset velocity should already be corrected using ADCP-measured
+ bottom track or GPS-measured velocity. The first velocity direction
+ is assumed to be the primary flow axis.
+
+ This function linearly interpolates the lowest ADCP depth bin to
+ the seafloor, and applies a constant extrapolation from the first
+ ADCP bin to the surface.
+
+ Parameters
+ ----------
+ ds: xarray.Dataset
+ Dataset containing the following variables:
+ - `vel`: (dir, range, time) motion-corrected velocity, in m/s
+ - `latitude_gps`: (time_gps) latitude measured by GPS, in deg N
+ - `longitude_gps`: (time_gps) longitude measured by GPS, in deg E
+ water_depth: xarray.DataArray
+ Total water depth measured by the ADCP or other input, in
+ meters. If measured by the ADCP, add the ADCP's depth below
+ the surface to this array.
+ The "down" direction should be positive.
+ rho: float
+ Water density in kg/m^3
+ mu: float
+ Dynamic visocity based on water temperature and salinity, in Ns/m^2.
+ If not provided, Reynolds Number will not be calculated.
+ Default: None.
+ surface_offset: float
+ Surface level offset due to changes in tidal level, in meters.
+ Positive is down. Default: 0 m.
+ utm_zone: int
+ UTM zone for coordinate transformations (e.g., to compute cross-sectional
+ distances from GPS lat/lon data). Map of UTM zones for the contiguous US:
+ https://www.usgs.gov/media/images/mapping-utm-grid-conterminous-48-united-states.
+ Default: 10 (the US west coast).
+
+ Returns
+ -------
+ out: xarray.Dataset
+ Dataset containing the following variables:
+ - `discharge`: (1) volume flux, in m^3/s
+ - `power`: (1) power, in W
+ - `power_density`: (1) power density, in W/m^2
+ - `reynolds_number`: (1) Reynolds number, unitless
+ """
+
+ # Lazy import cartopy
+ import cartopy.crs as ccrs
+
+ def _extrapolate_to_bottom(vel, bottom, rng):
+ """
+ Linearly extrapolate velocity values from the deepest valid bin down to zero at the seafloor.
+
+ This function sets velocity to zero at the seafloor and linearly interpolates
+ between the last valid velocity bin and this zero-velocity boundary. If no valid
+ velocity is found in a particular profile, no update is performed for that profile.
+ This function assumes `rng` extends at least to (or below) the deepest seafloor depth
+ specified in `bottom`.
+
+ Parameters
+ ----------
+ vel : numpy.ndarray
+ A velocity array of shape (dir, range, time), typically containing:
+ - `dir` : velocity component dimension (e.g., 2 or 3 for 2D or 3D flow).
+ - `range` : vertical/bin dimension (positive downward).
+ - `time` : time dimension corresponding to each profile.
+ The array is modified in-place (the updated values are also returned).
+ bottom : array-like
+ Array of length equal to the time dimension in `vel`, specifying the seafloor
+ depth (in the same coordinate system as `rng`) at each time step.
+ rng : array-like
+ The vertical/bin positions corresponding to `vel` along the `range` dimension,
+ sorted in ascending order (e.g., depth from the water surface downward).
+
+ Returns
+ -------
+ vel : numpy.ndarray
+ The same array passed in, with updated values below the last valid velocity bin
+ for each time step (linear extrapolation to zero at the seafloor).
+ """
+
+ for idx in range(vel.shape[-1]):
+ z_bot = bottom[idx]
+ # Fetch lowest range index
+ ind_bot = np.nonzero(rng > z_bot)[0][0]
+ for idim in range(vel.shape[0]):
+ vnow = vel[idim, :, idx]
+ # Check that data exists in slice
+ gd = np.isfinite(vnow) & (vnow != 0)
+ if not gd.sum():
+ continue
+ else:
+ ind = np.nonzero(gd)[0][-1]
+ z_top = rng[ind]
+ # linearly interpolate next lowest range bin based on 0 m/s at bottom
+ vals = np.interp(rng[ind:ind_bot], [z_top, z_bot], [vnow[ind], 0])
+ vel[idim, ind:ind_bot, idx] = vals
+
+ return vel
+
+ def _convert_latlon_to_utm(ds, proj):
+ """
+ Convert latitude/longitude coordinates to UTM coordinates.
+
+ This function uses the Cartopy `transform_point` and `transform_points` methods to
+ project GPS latitude/longitude data into the specified UTM coordinate reference
+ system. The resulting (x, y) coordinates are stored in an xarray DataArray that is
+ interpolated onto the main time axis of `ds`.
+
+ The function sets `proj.x0` and `proj.y0` to the UTM coordinates of the mean
+ longitude and latitude from `ds`. This can be used as a reference origin.
+ Missing or NaN lat/lon values are handled via interpolation and extrapolation
+ onto the `ds["time"]` axis.
+ This function modifies the `proj` object by adding `x0` and `y0` attributes,
+ which may be used for subsequent coordinate transformations or offsets.
+
+ Parameters
+ ----------
+ ds : xarray.Dataset
+ A dataset that must contain at least the following variables:
+ - "latitude_gps" : (time_gps) latitude values in degrees North.
+ - "longitude_gps" : (time_gps) longitude values in degrees East.
+ - "time" : time axis onto which the projected coordinates will be
+ interpolated.
+ proj : cartopy.crs.Projection
+ A Cartopy UTM projection or similar projection object. This is used both to
+ store the reference origin (`x0`, `y0`) and to transform lat/lon coordinates
+ into UTM.
+
+ Returns
+ -------
+ xy : xarray.DataArray
+ A DataArray of shape (gps=2, time), where:
+ - The first dimension (indexed by "gps") corresponds to ["x", "y"] UTM
+ coordinates.
+ - The second dimension ("time") matches `ds["time"]`.
+ The returned coordinates are interpolated in time using `ds["longitude_gps"]`
+ and `ds["latitude_gps"]`, with values extrapolated if necessary.
+
+ """
+
+ plate_c = ccrs.PlateCarree()
+ proj.x0, proj.y0 = proj.transform_point(
+ ds["longitude_gps"].mean(), ds["latitude_gps"].mean(), plate_c
+ )
+ xy = xr.DataArray(
+ proj.transform_points(plate_c, ds["longitude_gps"], ds["latitude_gps"])[
+ :, :2
+ ].T,
+ coords={"gps": ["x", "y"], "time_gps": ds["longitude_gps"]["time_gps"]},
+ )
+
+ # this seems to work for missing latlon
+ xy = xy.interp(
+ time_gps=ds["time"], kwargs={"fill_value": "extrapolate"}
+ ).drop_vars("time_gps")
+ return xy
+
+ def _distance(proj, x, y):
+ """
+ Compute the planar distance from the projection's reference origin.
+
+ Parameters
+ ----------
+ proj : cartopy.crs.Projection
+ A projection object with attributes `x0` and `y0`, which define the
+ reference origin in the projected coordinate system.
+ x : float or array-like
+ One or more x-coordinates in the same units (m) as `proj.x0`.
+ y : float or array-like
+ One or more y-coordinates in the same units (m) as `proj.y0`.
+
+ Returns
+ -------
+ dist : float or numpy.ndarray
+ The distance(s) in m from the point(s) `(x, y)` to `(proj.x0, proj.y0)`.
+ If `x` and `y` are arrays, the output is an array of the same shape.
+ """
+
+ return np.sqrt((proj.x0 - x) ** 2 + (proj.y0 - y) ** 2)
+
+ def _calc_discharge(vel, x, depth, surface_zoff=None):
+ """
+ Calculate the integrated flux (e.g., discharge) by double integration of velocity
+ over the cross-sectional area: depth and lateral distance.
+
+ Missing (NaN) velocities are treated as zero.
+ Ensure `depth` and `surface_zoff` are both positive downward.
+
+ Parameters
+ ----------
+ vel : numpy.ndarray or xarray.DataArray
+ A 2D array of shape (nz, nx) corresponding to velocity values (m/s).
+ - `nz` is the number of vertical bins (downward).
+ - `nx` is the number of horizontal points.
+ x : array-like
+ Horizontal positions (m) of length `nx`. If `x` is in descending order
+ (i.e., `x[0] > x[-1]`), the resulting flux is assigned a negative sign to
+ indicate reverse orientation.
+ depth : array-like
+ Vertical positions (m) of length `nz`, positive downward. This is used
+ for integration along the vertical dimension.
+ surface_zoff : float, optional
+ Surface level offset due to changes in tidal level, in meters.
+ Positive is down.
+
+ Returns
+ -------
+ Q : float
+ The integrated flux (e.g., discharge) in units of m^3/s
+
+ """
+ vel = vel.copy()
+ vel = vel.fillna(0)
+ if surface_zoff is not None:
+ # Add a copy of the top row of data
+ vel = np.vstack((vel[0], vel))
+ depth = np.hstack((surface_zoff, depth))
+ if x[0] > x[-1]:
+ sign = -1
+ else:
+ sign = 1
+ return sign * np.trapezoid(np.trapezoid(vel, depth, axis=0), x)
+
+ # Extrapolate to bed
+ vel = ds["vel"].copy()
+ vel.values = _extrapolate_to_bottom(
+ ds["vel"].values, water_depth, ds["range"].values
+ )
+ vel_x = vel[0]
+ # Get position at each timestep in UTM grid
+ proj = ccrs.UTM(utm_zone)
+ xy = _convert_latlon_to_utm(ds, proj)
+ # Distance from UTM grid origin (mean of GPS points)
+ _x = _distance(proj, xy[0], xy[1])
+ # Set distance range for entire transect
+ q_x_range = [_x.min(), _x.max()] # meters
+
+ # Calculate discharge, power, kinetic energy, and reynolds number
+ _xinds = (q_x_range[0] < _x) & (_x < q_x_range[1])
+ out = {}
+ if _xinds.any():
+ speed = vel_x[:, _xinds] # m/s
+ # Volume Flux, aka Discharge
+ out["Q"] = _calc_discharge(
+ speed, xy[0][_xinds], ds["range"], surface_offset
+ ) # m/s * m * m = m^3/s
+ # Kinetic Energy Flux, aka Power
+ out["P"] = (
+ 0.5
+ * rho
+ * _calc_discharge(speed**3, xy[0][_xinds], ds["range"], surface_offset)
+ ) # kg/m^3 * m^3/s^3 * m * m = kg*m^2/s = W
+ # Power Density
+ out["J"] = (
+ (0.5 * rho * speed**3).mean().item()
+ ) # kg/m^3 * m^3/s^3 = kg/s^3 = W/m^2
+ hydraulic_depth = abs(
+ np.trapezoid((water_depth - surface_offset)[_xinds], xy[0][_xinds])
+ ) / (
+ xy[0][_xinds].max() - xy[0][_xinds].min()
+ ) # area / surface-width
+ # Reynolds Number
+ out["Re"] = ((rho * ds.velds.U_mag.mean() * hydraulic_depth) / mu).item()
+ else:
+ out["Q"] = np.nan
+ out["P"] = np.nan
+ out["J"] = np.nan
+ out["Re"] = np.nan
+
+ ds["discharge"] = xr.DataArray(
+ np.float32(out["Q"]),
+ dims=[],
+ attrs={
+ "units": "m3 s-1",
+ "long_name": "Discharge",
+ },
+ )
+ ds["power"] = xr.DataArray(
+ np.float32(out["P"]),
+ dims=[],
+ attrs={
+ "units": "W",
+ "long_name": "Power",
+ },
+ )
+ ds["power_density"] = xr.DataArray(
+ np.float32(out["J"]),
+ dims=[],
+ attrs={
+ "units": "W m-2",
+ "long_name": "Power Density",
+ },
+ )
+ ds["reynolds_number"] = xr.DataArray(
+ np.float32(out["Re"]),
+ dims=[],
+ attrs={
+ "units": "1",
+ "long_name": "Reynolds Number",
+ },
+ )
+
+ return ds
diff --git a/mhkit/dolfyn/adp/turbulence.py b/mhkit/dolfyn/adp/turbulence.py
index 585d46e72..5002523ad 100644
--- a/mhkit/dolfyn/adp/turbulence.py
+++ b/mhkit/dolfyn/adp/turbulence.py
@@ -96,32 +96,32 @@ def __init__(
diff_style="centered_extended",
):
"""
- A class for calculating turbulence statistics from ADCP data
+ A class for calculating turbulence statistics from ADCP measurements.
Parameters
----------
n_bin : int
- Number of data points to include in a 'bin' (ensemble), not the
- number of bins
+ Number of data points to include in a 'bin' (ensemble)
fs : int
Instrument sampling frequency in Hz
n_fft : int
Number of data points to use for fft (`n_fft`<=`n_bin`).
- Default: `n_fft`=`n_bin`
+ Default = `n_fft`=`n_bin`
n_fft_coh : int
- Number of data points to use for coherence and cross-spectra ffts
- Default: `n_fft_coh`=`n_fft`
+ Number of data points to use for coherence and cross-spectra ffts.
+ Default = `n_fft_coh`=`n_fft`
noise : float or array-like
Instrument noise level in same units as velocity. Typically
found from `adp.turbulence.doppler_noise_level`.
- Default: None.
- orientation : str, default='up'
- Instrument's orientation, either 'up' or 'down'
- diff_style : str, default='centered_extended'
+ Default = None
+ orientation : str
+ Instrument's orientation, either 'up' or 'down'. Default = 'up'
+ diff_style : str
Style of numerical differentiation using Newton's Method.
Either 'first' (first difference), 'centered' (centered difference),
or 'centered_extended' (centered difference with first and last points
extended using a first difference).
+ Default = 'centered_extended'
"""
VelBinner.__init__(self, n_bin, fs, n_fft, n_fft_coh, noise)
@@ -169,14 +169,15 @@ def _diff_func(self, vel, u, orientation):
def dudz(self, vel, orientation=None):
"""
- The shear in the first velocity component.
+ The shear in the first velocity component (:math:`du/dz`).
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
- orientation : str, default=ADPBinner.orientation
- Direction ADCP is facing ('up' or 'down')
+ orientation : str
+ Direction ADCP is facing ('up' or 'down').
+ Default = ADPBinner.orientation
Returns
-------
@@ -185,8 +186,8 @@ def dudz(self, vel, orientation=None):
Notes
-----
- The derivative direction is along the profiler's 'z'
- coordinate ('dz' is actually diff(self['range'])), not necessarily the
+ The derivative direction is along the profiler's :math:`z`
+ coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the
'true vertical' direction.
"""
@@ -200,14 +201,15 @@ def dudz(self, vel, orientation=None):
def dvdz(self, vel, orientation=None):
"""
- The shear in the second velocity component.
+ The shear in the second velocity component (:math:`dv/dz`).
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
- orientation : str, default=ADPBinner.orientation
- Direction ADCP is facing ('up' or 'down')
+ orientation : str
+ Direction ADCP is facing ('up' or 'down').
+ Default = ADPBinner.orientation
Returns
-------
@@ -216,8 +218,8 @@ def dvdz(self, vel, orientation=None):
Notes
-----
- The derivative direction is along the profiler's 'z'
- coordinate ('dz' is actually diff(self['range'])), not necessarily the
+ The derivative direction is along the profiler's :math:`z`
+ coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the
'true vertical' direction.
"""
@@ -231,14 +233,15 @@ def dvdz(self, vel, orientation=None):
def dwdz(self, vel, orientation=None):
"""
- The shear in the third velocity component.
+ The shear in the third velocity component (:math:`dw/dz`).
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
- orientation : str, default=ADPBinner.orientation
- Direction ADCP is facing ('up' or 'down')
+ orientation : str
+ Direction ADCP is facing ('up' or 'down').
+ Default = ADPBinner.orientation
Returns
-------
@@ -247,8 +250,8 @@ def dwdz(self, vel, orientation=None):
Notes
-----
- The derivative direction is along the profiler's 'z'
- coordinate ('dz' is actually diff(self['range'])), not necessarily the
+ The derivative direction is along the profiler's :math:`z`
+ coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the
'true vertical' direction.
"""
@@ -276,13 +279,9 @@ def shear_squared(self, vel):
Notes
-----
- This is actually (dudz)^2 + (dvdz)^2. So, if those variables
+ This is actually :math:`(du/dz)^{2} + (dv/dz)^{2}`. So, if those variables
are not actually vertical derivatives of the horizontal
velocity, then this is not the 'horizontal shear squared'.
-
- See Also
- --------
- :math:`dudz`, :math:`dvdz`
"""
shear2 = self.dudz(vel) ** 2 + self.dvdz(vel) ** 2
@@ -293,12 +292,12 @@ def shear_squared(self, vel):
def doppler_noise_level(self, psd, pct_fN=0.8):
"""
- Calculate bias due to Doppler noise using the noise floor
- of the velocity spectra.
+ Calculate bias (in units of velocity) due to Doppler noise
+ using the noise floor of the velocity spectra.
Parameters
----------
- psd : xarray.DataArray (time, f)
+ psd : xarray.DataArray (time, freq)
The velocity spectra from a single depth bin (range), typically
in the mid-water range
pct_fN : float
@@ -313,17 +312,17 @@ def doppler_noise_level(self, psd, pct_fN=0.8):
-----
Approximates bias from
- .. :math: \\sigma^{2}_{noise} = N x f_{c}
+ .. math:: \\sigma^{2}_{noise} = N * f_{c}
- where :math: `\\sigma_{noise}` is the bias due to Doppler noise,
- `N` is the constant variance or spectral density, and `f_{c}`
+ where :math:`\\sigma_{noise}` is the bias due to Doppler noise,
+ :math:`N` is the constant variance or spectral density, and :math:`f_{c}`
is the characteristic frequency.
The characteristic frequency is then found as
- .. :math: f_{c} = pct_fN * (f_{s}/2)
+ .. math:: f_{c} = pct_fN * (f_{s}/2)
- where `f_{s}/2` is the Nyquist frequency.
+ where :math:`f_{s}/2` is the Nyquist frequency.
Richard, Jean-Baptiste, et al. "Method for identification of Doppler noise
@@ -381,8 +380,9 @@ def _stress_func_warnings(self, ds, beam_angle, noise, tilt_thresh):
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
- beam_angle : int, default=ds.attrs['beam_angle']
- ADCP beam angle in units of degrees
+ beam_angle : int
+ ADCP beam angle in units of degrees.
+ Default = ``ds.attrs['beam_angle']``
noise : int or xarray.DataArray (time)
Doppler noise level in units of m/s
tilt_thresh: numeric
@@ -459,9 +459,10 @@ def _check_orientation(self, ds, orientation, beam5=False):
The orientation of the instrument, either 'up' or 'down'.
If None, the orientation will be retrieved from the dataset or the
instance's default orientation.
- beam5 : bool, default=False
+ beam5 : bool
A flag indicating whether a fifth beam is present.
If True, the number 4 will be appended to the beam order.
+ Default = False
Returns
-------
@@ -472,6 +473,10 @@ def _check_orientation(self, ds, orientation, beam5=False):
phi3 : float, optional
The mean of the pitch values in radians, negated for Nortek instruments.
Only returned if 'beam5' is True.
+
+ Stacey, Mark T., Stephen G. Monismith, and Jon R. Burau. "Measurements
+ of Reynolds stress profiles in unstratified tidal flow." Journal of
+ Geophysical Research: Oceans 104.C5 (1999): 10933-10949.
"""
if orientation is None:
@@ -548,7 +553,7 @@ def _beam_variance(self, ds, time, noise, beam_order, n_beams):
bp2_[i] = np.nanvar(self.reshape(beam_vel[beam]), axis=-1)
# Remove doppler_noise
- if type(noise) == type(ds.vel):
+ if type(noise) == type(ds["vel"]):
noise = noise.values
bp2_ -= noise**2
@@ -556,8 +561,8 @@ def _beam_variance(self, ds, time, noise, beam_order, n_beams):
def reynolds_stress_4beam(self, ds, noise=None, orientation=None, beam_angle=None):
"""
- Calculate the stresses from the covariance of along-beam
- velocity measurements
+ Calculate the specific Reynolds shear stresses from the covariance of along-beam
+ velocity measurements (:math:`\\overline{u'w'}`, :math:`\\overline{v'w'}`).
Parameters
----------
@@ -565,15 +570,17 @@ def reynolds_stress_4beam(self, ds, noise=None, orientation=None, beam_angle=Non
Raw dataset in beam coordinates
noise : int or xarray.DataArray (time)
Doppler noise level in units of m/s
- orientation : str, default=ds.attrs['orientation']
+ orientation : str
Direction ADCP is facing ('up' or 'down')
- beam_angle : int, default=ds.attrs['beam_angle']
+ Default = ``ds.attrs['orientation']``
+ beam_angle : int
ADCP beam angle in units of degrees
+ Default = ``ds.attrs['beam_angle']``
Returns
-------
stress_vec : xarray.DataArray(s)
- Stress vector with u'w'_ and v'w'_ components
+ Stress vector with :math:`\\overline{u'w'}` and :math:`\\overline{v'w'}` components
Notes
-----
@@ -581,10 +588,6 @@ def reynolds_stress_4beam(self, ds, noise=None, orientation=None, beam_angle=Non
Assumes ADCP instrument coordinate system is aligned with principal flow
directions.
-
- Stacey, Mark T., Stephen G. Monismith, and Jon R. Burau. "Measurements
- of Reynolds stress profiles in unstratified tidal flow." Journal of
- Geophysical Research: Oceans 104.C5 (1999): 10933-10949.
"""
# Run through warnings
@@ -618,26 +621,31 @@ def stress_tensor_5beam(
self, ds, noise=None, orientation=None, beam_angle=None, tke_only=False
):
"""
- Calculate the stresses from the covariance of along-beam
- velocity measurements
+ Calculate the specific Reynolds stresses from the covariance of along-beam
+ velocity measurements (:math:`\\overline{u'u'}`, :math:`\\overline{v'v'}`,
+ :math:`\\overline{w'w'}`, :math:`\\overline{u'w'}`, :math:`\\overline{v'w'}`).
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
- noise : int or xarray.DataArray with dim 'time', default=0
- Doppler noise level in units of m/s
- orientation : str, default=ds.attrs['orientation']
- Direction ADCP is facing ('up' or 'down')
- beam_angle : int, default=ds.attrs['beam_angle']
- ADCP beam angle in units of degrees
- tke_only : bool, default=False
- If true, only calculates tke components
+ noise : int or xarray.DataArray ('time')
+ Doppler noise level in units of m/s.
+ Default = 0
+ orientation : str
+ Direction ADCP is facing ('up' or 'down').
+ Default = ``ds.attrs['orientation']``
+ beam_angle : int
+ ADCP beam angle in units of degrees.
+ Default = ``ds.attrs['beam_angle']``
+ tke_only : bool
+ If true, only calculates TKE components.
+ Default = False
Returns
-------
tke_vec(, stress_vec) : xarray.DataArray or tuple[xarray.DataArray]
- If tke_only is set to False, function returns `tke_vec` and `stress_vec`.
+ If `tke_only` is set to False, function returns `tke_vec` and `stress_vec`.
Otherwise only `tke_vec` is returned
Notes
@@ -645,14 +653,14 @@ def stress_tensor_5beam(
Assumes small-angle approximation is applicable.
Assumes ADCP instrument coordinate system is aligned with principal flow
- directions, i.e. u', v' and w' are aligned to the instrument's (XYZ)
- frame of reference.
+ directions, i.e., :math:`u'`, :math:`v'` and :math:`w'` are aligned to the
+ instrument's (XYZ) frame of reference.
- The stress equations here utilize u'v'_ to account for small variations
- in pitch and roll. u'v'_ cannot be directly calculated by a 5-beam ADCP,
- so it is approximated by the covariance of `u` and `v`. The uncertainty
- introduced by using this approximation is small if deviations from pitch
- and roll are small (<= 5 degrees).
+ The stress equations here utilize :math:`\\overline{u'v'}` to account for small
+ variations in pitch and roll. :math:`\\overline{u'v'}` cannot be directly calculated
+ by a 5-beam ADCP, (there are only 5 beams so only 5 unknowns can be found) so it is
+ approximated by the covariance of :math:`u` and :math:`v`. This approximation assumes
+ :math:`\\overline{u'v'}` is similar in magnitude to the other stress components.
Dewey, R., and S. Stringer. "Reynolds stresses and turbulent kinetic
energy estimates from various ADCP beam configurations: Theory." J. of
@@ -780,9 +788,10 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[0.2, 0.4]):
----------
psd : xarray.DataArray ([[range,] time,] freq)
The power spectral density (1D, 2D or 3D)
- freq_range : iterable(2) (default: [6.28, 12.57])
+ freq_range : iterable(2)
The range over which the isotropic turbulence cascade occurs, in
- units of the psd frequency vector (Hz or rad/s)
+ units of the psd frequency vector (Hz or rad/s).
+ Default = [6.28, 12.57]
Returns
-------
@@ -809,7 +818,7 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[0.2, 0.4]):
Where :math:`y` is S(k) or S(f), :math:`x` is k or f, :math:`m`
is the slope (ideally -5/3), and :math:`10^{b}` is the intercept of
- y at x^m=1.
+ :math:`y` at :math:`x^{m}=1'.
"""
if not isinstance(psd, xr.DataArray):
@@ -835,23 +844,30 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[0.2, 0.4]):
return m, b
- def dissipation_rate_LT83(self, psd, U_mag, freq_range=[0.2, 0.4], noise=None):
+ def dissipation_rate_LT83(
+ self, psd, U_mag, freq_range=[0.2, 0.4], k_constant=0.67, noise=None
+ ):
"""
Calculate the TKE dissipation rate from the velocity spectra.
Parameters
----------
- psd : xarray.DataArray (time,f)
- The power spectral density from a single depth bin (range)
+ psd : xarray.DataArray (time, freq)
+ The power spectral density from the vertical beam and depth bin (range)
U_mag : xarray.DataArray (time)
- The bin-averaged horizontal velocity (a.k.a. speed) from a single depth bin (range)
+ The bin-averaged horizontal velocity (a.k.a. speed) from a single
+ depth bin (range) (i.e., computed using
+ :func:`mhkit.dolfyn.velocity.Velocity.U_mag`)
f_range : iterable(2)
The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s)
+ k_constant : float or iterable(3)
+ Kolmogorov Constant (\\alpha in Notes section below) to use. Default
+ \\alpha is 0.67.
noise : float or array-like
- Instrument noise level in same units as velocity. Typically
- found from `adp.turbulence.doppler_noise_level`.
- Default: None.
+ Instrument noise level in same units as velocity. Typically found from
+ :func:`doppler_noise_level `
+ Default = None
Returns
-------
@@ -864,10 +880,9 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[0.2, 0.4], noise=None):
.. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N
- where :math:`\\alpha = 0.5` (1.5 for all three velocity
- components), `k` is wavenumber, `S(k)` is the turbulent
- kinetic energy spectrum, and `N' is the doppler noise level
- associated with the TKE spectrum.
+ where :math:`\\alpha` is the Kolmogorov constant (0.67 for vertical direction),
+ `k` is wavenumber, `S(k)` is the turbulent kinetic energy spectrum, and
+ `N' is the doppler noise level associated with the TKE spectrum.
With :math:`k \\rightarrow \\omega / U`, then -- to preserve variance --
:math:`S(k) = U S(\\omega)`, and so this becomes:
@@ -882,15 +897,19 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[0.2, 0.4], noise=None):
by a random wave field". JPO, 1983, vol13, pp2000-2007.
"""
+ if not isinstance(psd, xr.DataArray):
+ raise TypeError("`psd` must be an instance of `xarray.DataArray`.")
if len(psd.shape) != 2:
- raise Exception("PSD should be 2-dimensional (time, frequency)")
+ raise Exception("`psd` should be 2-dimensional (time, frequency)")
if len(U_mag.shape) != 1:
raise Exception("U_mag should be 1-dimensional (time)")
if not hasattr(freq_range, "__iter__") or len(freq_range) != 2:
raise ValueError("`freq_range` must be an iterable of length 2.")
+ if np.size(k_constant) != 1:
+ raise ValueError("`k_constant` should be a single value.")
if noise is not None:
if np.shape(noise)[0] != np.shape(psd)[0]:
- raise Exception("Noise should have same first dimension as PSD")
+ raise Exception("Noise should have same first dimension as `psd`")
else:
noise = np.array(0)
@@ -904,12 +923,15 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[0.2, 0.4], noise=None):
idx = np.where((freq_range[0] < freq) & (freq < freq_range[1]))
idx = idx[0]
+ # Set the correct magnitude whether the frequency is in Hz or rad/s
if freq.units == "Hz":
U = U_mag / (2 * np.pi)
else:
U = U_mag
- a = 0.5
+ # Use the transverse value derived from the Kolmogorov constant
+ a = k_constant
+ # Calculate dissipation
out = (psd[:, idx] * freq[idx] ** (5 / 3) / a).mean(axis=-1) ** (
3 / 2
) / U.values
@@ -935,10 +957,11 @@ def dissipation_rate_SF(self, vel_raw, r_range=[1, 5]):
vel_raw : xarray.DataArray
The raw beam velocity data (one beam, last dimension time) upon
which to perform the SF technique.
- r_range : numeric, default=[1,5]
+ r_range : numeric,
Range of r in [m] to calc dissipation across. Low end of range should be
bin size, upper end of range is limited to the length of largest eddies
in the inertial subrange.
+ Default = [1, 5]
Returns
-------
@@ -963,7 +986,7 @@ def dissipation_rate_SF(self, vel_raw, r_range=[1, 5]):
where `u'` is the velocity fluctuation `z` is the depth bin,
`r` is the separation between depth bins, and [] denotes a time average
- (size 'ADPBinner.n_bin').
+ (size 'self.n_bin').
The stucture function can then be used to estimate the dissipation rate:
@@ -1081,12 +1104,12 @@ def friction_velocity(self, ds_avg, upwp_, z_inds=slice(1, 5), H=None):
ds_avg : xarray.Dataset
Bin-averaged dataset containing `stress_vec`
upwp_ : xarray.DataArray
- First component of Reynolds shear stress vector, "u-prime v-prime bar"
+ Second component of Reynolds shear stress vector, :math:`\\overline{u'w'}`
Ex `ds_avg['stress_vec'].sel(tau='upwp_')`
- z_inds : slice(int,int)
+ z_inds : slice(int, int)
Depth indices to use for profile. Default = slice(1, 5)
- H : numeric (default=`ds_avg.depth`)
- Total water depth
+ H : numeric
+ Total water depth. Default = `ds_avg["depth"]`
Returns
-------
diff --git a/mhkit/dolfyn/adv/clean.py b/mhkit/dolfyn/adv/clean.py
index 69a03587b..95fba7430 100644
--- a/mhkit/dolfyn/adv/clean.py
+++ b/mhkit/dolfyn/adv/clean.py
@@ -1,5 +1,4 @@
-"""Module containing functions to clean data
-"""
+"""Module containing functions to clean data"""
import warnings
import numpy as np
diff --git a/mhkit/dolfyn/adv/motion.py b/mhkit/dolfyn/adv/motion.py
index f4a9e7568..fcefa4e52 100644
--- a/mhkit/dolfyn/adv/motion.py
+++ b/mhkit/dolfyn/adv/motion.py
@@ -171,8 +171,8 @@ def calc_velacc(
Returns
-------
- velacc : numpy.ndarray (3 x n_time)
- The acceleration-induced velocity array (3, n_time).
+ velacc : numpy.ndarray (dir, time)
+ The acceleration-induced velocity array
"""
samp_freq = self.ds.fs
@@ -235,15 +235,15 @@ def calc_velrot(self, vec, to_earth=None):
Parameters
----------
- vec : numpy.ndarray (len(3) or 3 x M)
+ vec : numpy.ndarray (dir[, time])
The vector in meters (or vectors) from the body-origin
(center of head end-cap) to the point of interest (in the
body coord-sys).
Returns
-------
- velrot : numpy.ndarray (3 x M x N_time)
- The rotation-induced velocity array (3, n_time).
+ velrot : numpy.ndarray (dir[, time])
+ The rotation-induced velocity array
"""
if to_earth is None:
diff --git a/mhkit/dolfyn/adv/turbulence.py b/mhkit/dolfyn/adv/turbulence.py
index 3fb4ef9a4..8c73c39bc 100644
--- a/mhkit/dolfyn/adv/turbulence.py
+++ b/mhkit/dolfyn/adv/turbulence.py
@@ -9,37 +9,36 @@
class ADVBinner(VelBinner):
"""
A class that builds upon `VelBinner` for calculating turbulence
- statistics and velocity spectra from ADV data
+ statistics and velocity spectra from ADV data.
Parameters
----------
n_bin : int
- The length of each `bin`, in number of points, for this averaging
+ The length of each bin, in number of points, for this averaging
operator.
fs : int
Instrument sampling frequency in Hz
n_fft : int
- The length of the FFT for computing spectra (must be <= n_bin).
+ The length of the FFT for computing spectra (must be <= `n_bin`).
Optional, default `n_fft` = `n_bin`
n_fft_coh : int
- Number of data points to use for coherence and cross-spectra fft's.
+ Number of data points to use for coherence and cross-spectra FFT's.
Optional, default `n_fft_coh` = `n_fft`
- noise : float or array-like
- Instrument noise level in same units as velocity. Typically
- found from `adv.turbulence.doppler_noise_level`.
- Default: None.
+ noise : float or array-like
+ Instrument noise level in same units as velocity. Typically found from
+ :func:`doppler_noise_level `.
+ Default: None.
"""
def __call__(self, ds, freq_units="rad/s", window="hann"):
out = type(ds)()
out = self.bin_average(ds, out)
- noise = ds.get("doppler_noise", [0, 0, 0])
- out["tke_vec"] = self.turbulent_kinetic_energy(ds["vel"], noise=noise)
+ out["tke_vec"] = self.turbulent_kinetic_energy(ds["vel"])
out["stress_vec"] = self.reynolds_stress(ds["vel"])
out["psd"] = self.power_spectral_density(
- ds["vel"], window=window, freq_units=freq_units, noise=noise
+ ds["vel"], window=window, freq_units=freq_units
)
for key in list(ds.attrs.keys()):
if "config" in key:
@@ -53,19 +52,18 @@ def __call__(self, ds, freq_units="rad/s", window="hann"):
def reynolds_stress(self, veldat, detrend=True):
"""
- Calculate the specific Reynolds stresses
- (covariances of u,v,w in m^2/s^2)
+ Calculate the specific Reynolds shear stresses (:math:`\\overline{u'v'}`,
+ :math:`\\overline{u'w'}`, :math:`\\overline{v'w'}`).
Parameters
----------
veldat : xr.DataArray
- A velocity data array. The last dimension is assumed
- to be time.
+ A velocity data array. The last dimension is assumed to be time.
detrend : bool
Detrend the velocity data (True), or simply de-mean it
(False), prior to computing stress. Note: the psd routines
use detrend, so if you want to have the same amount of
- variance here as there use ``detrend=True``.
+ variance here as there use `detrend=True`.
Default = True
Returns
@@ -121,20 +119,20 @@ def cross_spectral_density(
Frequency units of the returned spectra in either Hz or rad/s
(`f` or :math:`\\omega`)
fs : float (optional)
- The sample rate. Default = `binner.fs`
+ The sample rate. Default = `self.fs`
window : string or array
Specify the window function.
Options: 1, None, 'hann', 'hamm'
n_bin : int (optional)
- The bin-size. Default = `binner.n_bin`
+ The bin-size. Default = `self.n_bin`
n_fft_coh : int (optional)
- The fft size. Default = `binner.n_fft_coh`
+ The fft size. Default = `self.n_fft_coh`
Returns
-------
csd : xarray.DataArray (3, M, N_FFT)
The first-dimension of the cross-spectrum is the three
- different cross-spectra: 'uv', 'uw', 'vw'.
+ different cross-spectra: :math:`uv`, :math:`uw`, :math:`vw`.
"""
if not isinstance(veldat, xr.DataArray):
@@ -208,10 +206,11 @@ def doppler_noise_level(self, psd, pct_fN=0.8):
Parameters
----------
- psd : xarray.DataArray (dir, time, f)
+ psd : xarray.DataArray (dir, time, freq)
The ADV power spectral density of velocity (auto-spectra)
pct_fN : float
- Percent of Nyquist frequency to calculate characeristic frequency
+ Percent of Nyquist frequency to calculate characeristic frequency.
+ Default = 0.8 (80%)
Returns
-------
@@ -222,17 +221,17 @@ def doppler_noise_level(self, psd, pct_fN=0.8):
-----
Approximates bias from
- .. :math: \\sigma^{2}_{noise} = N x f_{c}
+ .. math:: \\sigma^{2}_{noise} = N * f_{c}
- where :math: `\\sigma_{noise}` is the bias due to Doppler noise,
- `N` is the constant variance or spectral density, and `f_{c}`
+ where :math:`\\sigma_{noise}` is the bias due to Doppler noise,
+ :math:`N` is the constant variance or spectral density, and :math:`f_{c}`
is the characteristic frequency.
The characteristic frequency is then found as
- .. :math: f_{c} = pct_fN * (f_{s}/2)
+ .. math:: f_{c} = pct_fN * (f_{s}/2)
- where `f_{s}/2` is the Nyquist frequency.
+ where :math:`f_{s}/2` is the Nyquist frequency.
Richard, Jean-Baptiste, et al. "Method for identification of Doppler noise
@@ -284,9 +283,10 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[6.28, 12.57]):
----------
psd : xarray.DataArray ([time,] freq)
The power spectral density (1D or 2D)
- freq_range : iterable(2) (default: [6.28, 12.57])
+ freq_range : iterable(2)
The range over which the isotropic turbulence cascade occurs, in
- units of the psd frequency vector (Hz or rad/s)
+ units of the psd frequency vector (Hz or rad/s).
+ Default = [6.28, 12.57] rad/s
Returns
-------
@@ -313,7 +313,7 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[6.28, 12.57]):
Where :math:`y` is S(k) or S(f), :math:`x` is k or f, :math:`m`
is the slope (ideally -5/3), and :math:`10^{b}` is the intercept of
- y at x^m=1.
+ :math:`y` at :math:`x^{m}=1'.
"""
if not isinstance(psd, xr.DataArray):
@@ -339,20 +339,34 @@ def check_turbulence_cascade_slope(self, psd, freq_range=[6.28, 12.57]):
return m, b
- def dissipation_rate_LT83(self, psd, U_mag, freq_range=[6.28, 12.57], noise=None):
+ def dissipation_rate_LT83(
+ self,
+ psd,
+ U_mag,
+ freq_range=[6.28, 12.57],
+ k_constant=[0.5, 0.67, 0.67],
+ noise=None,
+ ):
"""
- Calculate the dissipation rate from the PSD
+ Calculate the dissipation rate from the power spectral density of velocity.
Parameters
----------
- psd : xarray.DataArray (...,time,f)
+ psd : xarray.DataArray ([dir,] time, freq)
The power spectral density
- U_mag : xarray.DataArray (...,time)
- The bin-averaged horizontal velocity [m/s] (from dataset shortcut)
+ U_mag : xarray.DataArray (time)
+ The bin-averaged horizontal velocity [m/s] (i.e., computed using
+ :func:`U_mag `)
freq_range : iterable(2)
The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s).
Default = [6.28, 12.57] rad/s
+ k_constant : float or iterable(3)
+ Kolmogorov Constant (\\alpha in Notes section below) to use. If a
+ three dimensional PSD is provided, \\alpha defaults to [0.5, 0.67, 0.67];
+ i.e. 0.5 for the streamwise PSD and 0.67 for the transverse and vertical
+ PSDs. If the PSD is provided for a single velocity direction, \\alpha is
+ taken to be 0.5 unless otherwise specified.
noise : float or array-like
Instrument noise level in same units as velocity. Typically
found from `adv.turbulence.calc_doppler_noise`.
@@ -360,7 +374,7 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[6.28, 12.57], noise=None
Returns
-------
- epsilon : xarray.DataArray (...,n_time)
+ epsilon : xarray.DataArray ([dir,] time)
dataArray of the dissipation rate
Notes
@@ -369,10 +383,9 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[6.28, 12.57], noise=None
.. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N
- where :math:`\\alpha = 0.5` (1.5 for all three velocity
- components), `k` is wavenumber, `S(k)` is the turbulent
- kinetic energy spectrum, and `N' is the doppler noise level
- associated with the TKE spectrum.
+ where :math:`\\alpha is the Kolmogorov constant, `k` is wavenumber,
+ `S(k)` is the turbulent kinetic energy spectrum, and `N' is the
+ doppler noise level associated with the TKE spectrum.
With :math:`k \\rightarrow \\omega / U`, then -- to preserve variance --
:math:`S(k) = U S(\\omega)`, and so this becomes:
@@ -390,15 +403,19 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[6.28, 12.57], noise=None
if not isinstance(psd, xr.DataArray):
raise TypeError("`psd` must be an instance of `xarray.DataArray`.")
if len(U_mag.shape) != 1:
- raise Exception("U_mag should be 1-dimensional (time)")
+ raise Exception("U_mag should be 1-dimensional (time).")
if len(psd["time"]) != len(U_mag["time"]):
- raise Exception("`U_mag` should be from ensembled-averaged dataset")
+ raise Exception("`U_mag` should be from ensembled-averaged dataset.")
if not hasattr(freq_range, "__iter__") or len(freq_range) != 2:
raise ValueError("`freq_range` must be an iterable of length 2.")
-
+ # if the spectra are 1D, then the first dimension should be time (any length)
+ if (psd.shape[0] != 3) and (np.size(k_constant) != 1):
+ raise ValueError("`k_constant` should be a single value.")
+ elif (psd.shape[0] == 3) and (np.size(k_constant) != 3):
+ raise ValueError("`k_constant` should be an iterable of length 3.")
if noise is not None:
- if np.shape(noise)[0] != 3:
- raise Exception("Noise should have same first dimension as velocity")
+ if np.shape(noise)[0] != np.shape(psd)[0]:
+ raise Exception("Noise should have same first dimension as `psd`.")
else:
noise = np.array([0, 0, 0])[:, None, None]
@@ -412,12 +429,20 @@ def dissipation_rate_LT83(self, psd, U_mag, freq_range=[6.28, 12.57], noise=None
idx = np.where((freq_range[0] < freq) & (freq < freq_range[1]))
idx = idx[0]
+ # Set the correct magnitude whether the frequency is in Hz or rad/s
if freq.units == "Hz":
U = U_mag / (2 * np.pi)
else:
U = U_mag
- a = 0.5
+ # Set Kolmogorov constant
+ a = np.array(k_constant)
+ if psd.shape[0] == 3:
+ a = a[:, None, None] # stack properly
+ else:
+ a = np.squeeze(k_constant)
+
+ # Calculate dissipation
out = (psd.isel(freq=idx) * freq.isel(freq=idx) ** (5 / 3) / a).mean(
axis=-1
) ** (3 / 2) / U
@@ -442,11 +467,12 @@ def dissipation_rate_SF(self, vel_raw, U_mag, fs=None, freq_range=[2.0, 4.0]):
vel_raw : xarray.DataArray (time)
The raw velocity data upon which to perform the SF technique.
U_mag : xarray.DataArray
- The bin-averaged horizontal velocity (from dataset shortcut)
+ The bin-averaged horizontal velocity (i.e., computed using
+ :func:`U_mag `)
fs : float
- The sample rate of `vel_raw` [Hz]
+ The sample rate of `vel_raw` in Hz
freq_range : iterable(2)
- The frequency range over which to compute the SF [Hz]
+ The frequency range over which to compute the SF in Hz
(i.e. the frequency range within which the isotropic
turbulence cascade falls).
Default = [2., 4.] Hz
@@ -535,7 +561,7 @@ def _integral_TE01(self, I_tke, theta):
x = np.arange(-20, 20, 1e-2) # I think this is a long enough range.
out = np.empty_like(I_tke.flatten())
for i, (b, t) in enumerate(zip(I_tke.flatten(), theta.flatten())):
- out[i] = np.trapz(
+ out[i] = np.trapezoid(
cbrt(x**2 - 2 / b * np.cos(t) * x + b ** (-2)) * np.exp(-0.5 * x**2),
x,
)
@@ -551,9 +577,9 @@ def dissipation_rate_TE01(self, dat_raw, dat_avg, freq_range=[6.28, 12.57]):
dat_raw : xarray.Dataset
The raw (off the instrument) adv dataset
dat_avg : xarray.Dataset
- The bin-averaged adv dataset (calc'd from 'calc_turbulence' or
- 'do_avg'). The spectra (psd) and basic turbulence statistics
- ('tke_vec' and 'stress_vec') must already be computed.
+ The bin-averaged adv dataset (calculated from `ADVBinner.calc_turbulence` or
+ `VelBinner.bin_average`). The spectra (PSD) and Reynolds stresses
+ (`tke_vec` and `stress_vec`) must already be computed.
freq_range : iterable(2)
The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s).
@@ -578,7 +604,7 @@ def dissipation_rate_TE01(self, dat_raw, dat_avg, freq_range=[6.28, 12.57]):
theta = np.angle(dat_avg.velds.U.values) - self._up_angle(
dat_raw.velds.U.values
)
- freq = dat_avg["psd"].freq.values
+ freq = dat_avg["freq"].values
# Calculate constants
alpha = 1.5
@@ -606,7 +632,7 @@ def dissipation_rate_TE01(self, dat_raw, dat_avg, freq_range=[6.28, 12.57]):
return xr.DataArray(
out.astype("float32"),
- coords={"time": dat_avg["psd"]["time"]},
+ coords={"time": dat_avg["time"]},
dims="time",
attrs={
"units": "m2 s-3",
@@ -619,28 +645,33 @@ def dissipation_rate_TE01(self, dat_raw, dat_avg, freq_range=[6.28, 12.57]):
def integral_length_scales(self, a_cov, U_mag, fs=None):
"""
- Calculate integral length scales.
+ Calculate integral length scales from the autocovariance (or autocorrelation).
Parameters
----------
- a_cov : xarray.DataArray
- The auto-covariance array (i.e. computed using `autocovariance`).
- U_mag : xarray.DataArray
- The bin-averaged horizontal velocity (from dataset shortcut)
+ a_cov : xarray.DataArray ([dir,] time, lag)
+ The autocovariance or autocorrelation array
+ (i.e., computed using
+ :func:`autocovariance `)
+ U_mag : xarray.DataArray (time)
+ The bin-averaged horizontal velocity (i.e., computed using
+ :func:`U_mag `)
fs : numeric
The raw sample rate
Returns
-------
- L_int : numpy.ndarray (..., n_time)
- The integral length scale (T_int*U_mag).
+ L_int : numpy.ndarray ([dir,] time)
+ The integral length scale.
Notes
----
- The integral time scale (T_int) is the lag-time at which the
- auto-covariance falls to 1/e.
-
- If T_int is not reached, L_int will default to '0'.
+ The integral time scale (:math:`T_{int}`) is integral of the normalized
+ autocovariance (autocorrelation) function, which theoretically decays to
+ zero over time. Practically, :math:`T_{int}` is the integral from zero to
+ the first zero-crossing lag-time of the autocorrelation function. The
+ integral length scale (:math:`L_{int}`) then is the integral time scale
+ multiplied by the bin speed.
"""
if not isinstance(a_cov, xr.DataArray):
@@ -648,11 +679,20 @@ def integral_length_scales(self, a_cov, U_mag, fs=None):
if len(a_cov["time"]) != len(U_mag["time"]):
raise Exception("`U_mag` should be from ensembled-averaged dataset")
- acov = a_cov.values
fs = self._parse_fs(fs)
+ # Normalize autocovariance/autocorrelation
+ acov = a_cov / a_cov[..., 0]
+
+ # Calculate first zero crossing in auto-correlation
+ zero_crossing = np.nanargmin(~(acov < 0), axis=-1)
- scale = np.argmin((acov / acov[..., :1]) > (1 / np.e), axis=-1)
- L_int = U_mag.values / fs * scale
+ # Calculate integral time scale
+ T_int = np.zeros(acov.shape[:2])
+ for i in range(3):
+ for t in range(a_cov["time"].size):
+ T_int[i, t] = np.trapezoid(acov[i, t][: zero_crossing[i, t]], dx=1 / fs)
+
+ L_int = U_mag.values * T_int
return xr.DataArray(
L_int.astype("float32"),
@@ -675,20 +715,19 @@ def turbulence_statistics(
Parameters
----------
ds_raw : xarray.Dataset
- The raw adv datset to `bin`, average and compute
- turbulence statistics of.
+ The raw adv datset to bin, average, and compute turbulence statistics
+ from.
freq_units : string
Frequency units of the returned spectra in either Hz or rad/s
- (`f` or :math:`\\omega`). Default is 'rad/s'
+ (`f` or :math:`\\omega`). Default = 'rad/s'
window : string or array
The window to use for calculating spectra.
-
Returns
-------
ds : xarray.Dataset
Returns an 'binned' (i.e. 'averaged') data object. All
- fields (variables) of the input data object are averaged in n_bin
+ fields (variables) of the input data object are averaged in `n_bin`
chunks. This object also computes the following items over
those chunks:
diff --git a/mhkit/dolfyn/binned.py b/mhkit/dolfyn/binned.py
index 0bdb00f73..ef999e99c 100644
--- a/mhkit/dolfyn/binned.py
+++ b/mhkit/dolfyn/binned.py
@@ -188,7 +188,7 @@ def reshape(self, arr, n_pad=0, n_bin=None):
corners of the matrix (beginning/end of timeseries). In
this case, the array shape will be (...,`n`,`n_pad`+`n_bin`)
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
@@ -256,7 +256,7 @@ def detrend(self, arr, axis=-1, n_pad=0, n_bin=None):
this case, the array shape will be (...,`n`,`n_pad`+`n_bin`).
Default = 0
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
@@ -284,7 +284,7 @@ def demean(self, arr, axis=-1, n_pad=0, n_bin=None):
this case, the array shape will be (...,`n`,`n_pad`+`n_bin`).
Default = 0
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
@@ -305,7 +305,7 @@ def mean(self, arr, axis=-1, n_bin=None):
axis : int
Axis along which to take mean. Default = -1
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
@@ -332,7 +332,7 @@ def variance(self, arr, axis=-1, n_bin=None):
axis : int
Axis along which to take variance. Default = -1
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
@@ -353,7 +353,7 @@ def standard_deviation(self, arr, axis=-1, n_bin=None):
axis : int
Axis along which to take std dev. Default = -1
n_bin : int
- Override this binner's n_bin. Default is `binner.n_bin`
+ Override this binner's n_bin. Default is `self.n_bin`
Returns
-------
diff --git a/mhkit/dolfyn/io/base.py b/mhkit/dolfyn/io/base.py
index 5208ca47f..878ee1b98 100644
--- a/mhkit/dolfyn/io/base.py
+++ b/mhkit/dolfyn/io/base.py
@@ -83,6 +83,9 @@ def _handle_nan(data):
Finds trailing nan's that cause issues in running the rotation
algorithms and deletes them.
"""
+ if "time" not in data["coords"]:
+ raise Exception("No data recorded in file.")
+
nan = np.zeros(data["coords"]["time"].shape, dtype=bool)
l = data["coords"]["time"].size
@@ -134,10 +137,17 @@ def _remove_gps_duplicates(dat):
dat["data_vars"]["hdwtime_gps"] = dat["coords"]["time"]
+ # If the time jumps by nearly 24 hours at any given instance, we've skipped a day
+ time_diff = np.diff(dat["coords"]["time_gps"])
+ if any(np.array(list(set(time_diff))) < -(23.9 * 3600)):
+ idx = np.where(time_diff == time_diff.min())[0]
+ dat["coords"]["time_gps"][int(idx) + 1 :] += 24 * 3600
+
# Remove duplicate timestamp values, if applicable
dat["coords"]["time_gps"], idx = np.unique(
dat["coords"]["time_gps"], return_index=True
)
+
# Remove nan values, if applicable
nan = np.zeros(dat["coords"]["time"].shape, dtype=bool)
if any(np.isnan(dat["coords"]["time_gps"])):
@@ -161,6 +171,14 @@ def _create_dataset(data):
"""
tag = ["_avg", "_b5", "_echo", "_bt", "_gps", "_altraw", "_altraw_avg", "_sl"]
+ # If burst velocity not measured
+ if "vel" not in data["data_vars"]:
+ # dual profile where burst velocity is not measured but echo sounder is
+ if "vel_avg" in data["data_vars"]:
+ data["coords"]["time"] = data["coords"]["time_avg"]
+ else:
+ t_vars = [t for t in data["coords"] if "time" in t]
+ data["coords"]["time"] = data["coords"][t_vars[0]]
ds_dict = {}
for key in data["coords"]:
@@ -295,7 +313,7 @@ def _create_dataset(data):
"data": data["data_vars"][key],
}
- elif "b5" in tg:
+ elif "b5" in key:
ds_dict[key] = {
"dims": ("range_b5", "time_b5"),
"data": data["data_vars"][key],
@@ -321,7 +339,7 @@ def _create_dataset(data):
# "vel_b5" sometimes stored as (1, range_b5, time_b5)
ds_dict[key] = {
"dims": ("range_b5", "time_b5"),
- "data": data["data_vars"][key][0],
+ "data": data["data_vars"][key].squeeze(),
}
elif "sl" in key:
ds_dict[key] = {
@@ -354,12 +372,12 @@ def _create_dataset(data):
r_list = [r for r in ds.coords if "range" in r]
for ky in r_list:
ds[ky].attrs["units"] = "m"
- ds[ky].attrs["long_name"] = "Profile Range"
+ ds[ky].attrs["long_name"] = "Profile " + ky.capitalize().replace("_", " ")
ds[ky].attrs["description"] = "Distance to the center of each depth bin"
time_list = [t for t in ds.coords if "time" in t]
for ky in time_list:
ds[ky].attrs["units"] = "seconds since 1970-01-01 00:00:00"
- ds[ky].attrs["long_name"] = "Time"
+ ds[ky].attrs["long_name"] = ky.capitalize().replace("_", " ")
ds[ky].attrs["standard_name"] = "time"
# Set dataset metadata
diff --git a/mhkit/dolfyn/io/nortek.py b/mhkit/dolfyn/io/nortek.py
index 0e81a874d..3510ef400 100644
--- a/mhkit/dolfyn/io/nortek.py
+++ b/mhkit/dolfyn/io/nortek.py
@@ -262,6 +262,7 @@ def __init__(
self.config["coord_sys_axes"]
]
da["has_imu"] = 0 # Initiate attribute
+ self._eof = self.pos
if self.debug:
logging.info("Init completed")
@@ -384,6 +385,7 @@ def findnext(self, do_cs=True):
if self.endian == "<":
func = np.uint8
func2 = lib._bitshift8
+ searching = False
while True:
val = unpack(self.endian + "H", self.read(2))[0]
if np.array(val).astype(func) == 165 and (not do_cs or cs == sum):
@@ -391,6 +393,9 @@ def findnext(self, do_cs=True):
return hex(func2(val))
sum += cs
cs = val
+ if self.debug and not searching:
+ logging.debug("Scanning every 2 bytes for next datablock...")
+ searching = True
def read_id(self):
"""Read the next 'ID' from the file."""
@@ -456,6 +461,7 @@ def findnextid(self, id):
id = int(id, 0)
nowid = None
while nowid != id:
+ pos = self.pos
nowid = self.read_id()
if nowid == 16:
shift = 22
@@ -463,6 +469,9 @@ def findnextid(self, id):
sz = 2 * unpack(self.endian + "H", self.read(2))[0]
shift = sz - 4
self.f.seek(shift, 1)
+ # If we get stuck in a while loop
+ if self.pos == pos:
+ self.f.seek(2, 1)
return self.pos
def code_spacing(self, searchcode, iternum=50):
diff --git a/mhkit/dolfyn/io/nortek2.py b/mhkit/dolfyn/io/nortek2.py
index fa0992c3d..414790408 100644
--- a/mhkit/dolfyn/io/nortek2.py
+++ b/mhkit/dolfyn/io/nortek2.py
@@ -1,9 +1,9 @@
-import numpy as np
-from struct import unpack, calcsize
+import json
+import logging
import warnings
+from struct import unpack, calcsize
from pathlib import Path
-import logging
-import json
+import numpy as np
from . import nortek2_defs as defs
from . import nortek2_lib as lib
@@ -21,7 +21,7 @@ def read_signature(
rebuild_index=False,
debug=False,
dual_profile=False,
- **kwargs
+ **kwargs,
):
"""
Read a Nortek Signature (.ad2cp) datafile
@@ -113,10 +113,14 @@ def read_signature(
ds = _create_dataset(out)
ds = _set_coords(ds, ref_frame=ds.coord_sys)
- if "orientmat" not in ds:
+ if ("orientmat" not in ds) and ("heading" in ds):
ds["orientmat"] = _euler2orient(
ds["time"], ds["heading"], ds["pitch"], ds["roll"]
)
+ elif ("orientmat_avg" not in ds) and ("heading_avg" in ds):
+ ds["orientmat_avg"] = _euler2orient(
+ ds["time_avg"], ds["heading_avg"], ds["pitch_avg"], ds["roll_avg"]
+ )
if declin is not None:
set_declination(ds, declin, inplace=True)
@@ -140,30 +144,22 @@ def read_signature(
class _Ad2cpReader:
- def __init__(
- self,
- fname,
- endian=None,
- bufsize=None,
- rebuild_index=False,
- debug=False,
- dual_profile=False,
- ):
+ def __init__(self, fname, rebuild_index, debug, dual_profile):
self.fname = fname
self.debug = debug
- self._check_nortek(endian)
- self.f.seek(0, 2) # Seek to end
- self._eof = self.f.tell()
- self.start_pos = self._check_header()
+ # Open file, check endianess, and find filelength
+ self._check_nortek2()
+ # Generate indexing file
self._index, self._dp = lib.get_index(
fname,
- pos=self.start_pos,
+ pos=0,
eof=self._eof,
rebuild=rebuild_index,
debug=debug,
dp=dual_profile,
)
- self._reopen(bufsize)
+ # Open file for reading
+ self._open()
self.filehead_config = self._read_filehead_config_string()
self._ens_pos = self._index["pos"][
lib._boolarray_firstensemble_ping(self._index)
@@ -173,50 +169,20 @@ def __init__(
self._init_burst_readers()
self.unknown_ID_count = {}
- def _calc_lastblock_iswhole(
- self,
- ):
- blocksize, blocksize_count = np.unique(
- np.diff(self._ens_pos), return_counts=True
- )
- standard_blocksize = blocksize[blocksize_count.argmax()]
- return (self._eof - self._ens_pos[-1]) == standard_blocksize
-
- def _check_nortek(self, endian):
- self._reopen(10)
+ def _check_nortek2(self):
+ self._open(10)
byts = self.f.read(2)
- if endian is None:
- if unpack("<" + "BB", byts) == (165, 10):
- endian = "<"
- elif unpack(">" + "BB", byts) == (165, 10):
- endian = ">"
- else:
- raise Exception(
- "I/O error: could not determine the 'endianness' "
- "of the file. Are you sure this is a Nortek "
- "AD2CP file?"
- )
- self.endian = endian
-
- def _check_header(self):
- def find_all(s, c):
- idx = s.find(c)
- while idx != -1:
- yield idx
- idx = s.find(c, idx + 1)
-
- # Open the entire file
- self._reopen(self._eof)
- pk = self.f.peek(1)
- # Search for multiple saved headers
- found = [i for i in find_all(pk, b"GETCLOCKSTR")]
- if len(found) < 2:
- return 0
- else:
- start_idx = found[-1] - 11
- return start_idx
+ if not (unpack("= int32_max:
+ buffer = int32_max
+ else:
+ buffer = eof
+ fin = open(_abspath(infile_obj.name), "rb", buffer)
+ fin.seek(current_pos, 1)
+
+ # Search for multiple saved headers
+ pk = fin.peek(1)
+ found = [i for i in find_all(pk, b"GETCLOCKSTR")]
+ if found:
+ start_idx = found[0] - 11 # assuming next header is 10 bytes
+ else:
+ start_idx = 0
+
+ return fin, start_idx
+
+
def _create_index(infile, outfile, init_pos, eof, debug):
logging = getLogger()
print("Indexing {}...".format(infile), end="")
@@ -122,39 +153,77 @@ def _create_index(infile, outfile, init_pos, eof, debug):
config = 0
last_ens = dict.fromkeys(ids, -1)
seek_2ens = {
- 21: 40,
- 22: 40,
- 23: 42,
- 24: 40,
- 26: 40,
- 28: 40, # 23 starts from "42"
- 27: 40,
- 29: 40,
- 30: 40,
- 31: 40,
- 35: 40,
- 36: 40,
+ 21: 40, # 0x15 burst
+ 22: 40, # 0x16 average
+ 23: 42, # 0x17 bottom track, starts from "42"
+ 24: 40, # 0x18 interleaved burst (beam 5)
+ 26: 40, # 0x1A burst altimeter
+ 27: 40, # 0x1B DVL bottom track
+ 28: 40, # 0x1C echo sounder
+ 29: 40, # 0x1D DVL water track
+ 30: 40, # 0x1E altimeter
+ 31: 40, # 0x1F avg altimeter
+ 35: 40, # 0x23 raw echo sounder
+ 36: 40, # 0x24 raw tx echo sounder
+ 48: 40, # 0x30 processed wave
+ # 160: 40, # 0xA0 string (header info, GPS NMEA data)
+ # 192: 40, # 0xC0 Nortek Data format 8 record
}
pos = 0
- while pos <= eof:
- pos = fin.tell()
+ header_check_flag = 0
+ # leave room for header plus other data (12 + 76)
+ while pos <= (eof - 88):
if init_pos and not pos:
fin.seek(init_pos, 1)
try:
- dat = _hdr.unpack(fin.read(_hdr.size))
- except:
+ dat = struct.unpack(" 0:
@@ -211,25 +280,29 @@ def _create_index(infile, outfile, init_pos, eof, debug):
logging.info("Invalid skip byte at pos: %10d\n" % (pos))
break
fin.seek(dat[4], 1)
+ # Update for while loop check
+ pos = fin.tell()
+
fin.close()
fout.close()
print(" Done.")
def _check_index(idx, infile, fix_hw_ens=False, dp=False):
+ logging = getLogger()
uid = np.unique(idx["ID"])
if fix_hw_ens:
hwe = idx["hw_ens"]
else:
hwe = idx["hw_ens"].copy()
- period = hwe.max()
ens = idx["ens"]
N_id = len(uid)
- FLAG = False
# Are there better ways to detect dual profile?
- if (21 in uid) and (22 in uid):
- warnings.warn("Dual Profile detected... Two datasets will be returned.")
+ if (22 in uid) and ((21 in uid) or (28 in uid)):
+ msg = "Dual Profile detected... Two datasets will be returned."
+ warnings.warn(msg)
+ logging.warning(msg)
dp = True
# This loop fixes 'skips' inside the file
@@ -238,6 +311,7 @@ def _check_index(idx, infile, fix_hw_ens=False, dp=False):
inds = np.nonzero(idx["ID"] == id)[0]
# These are bad steps in the indices for this ID
ibad = np.nonzero(np.diff(inds) > N_id)[0]
+
# Check if spacing is equal for dual profiling ADCPs
if dp:
skip_size = np.diff(ibad)
@@ -250,10 +324,9 @@ def _check_index(idx, infile, fix_hw_ens=False, dp=False):
mask = np.append(skip_size, 0).astype(bool) if any(skip_size) else []
ibad = ibad[mask]
for ib in ibad:
- FLAG = True
# The ping number reported here may not be quite right if
# the ensemble count is wrong.
- warnings.warn(
+ logging.warning(
"Skipped ping (ID: {}) in file {} at ensemble {}.".format(
id, infile, idx["ens"][inds[ib + 1] - 1]
)
@@ -270,7 +343,8 @@ def _boolarray_firstensemble_ping(index):
each ensemble.
"""
dens = np.ones(index["ens"].shape, dtype="bool")
- dens[1:] = np.diff(index["ens"]) != 0
+ if any(index["ens"]):
+ dens[1:] = np.diff(index["ens"]) != 0
return dens
diff --git a/mhkit/dolfyn/io/rdi.py b/mhkit/dolfyn/io/rdi.py
index 797f31169..de5588c3c 100644
--- a/mhkit/dolfyn/io/rdi.py
+++ b/mhkit/dolfyn/io/rdi.py
@@ -18,9 +18,10 @@ def read_rdi(
filename,
userdata=None,
nens=None,
- debug_level=-1,
+ debug=0,
vmdas_search=False,
winriver=False,
+ search_num=20000,
**kwargs,
) -> xr.Dataset:
"""
@@ -32,11 +33,11 @@ def read_rdi(
Filename of TRDI file to read.
userdata : True, False, or string of userdata.json filename
Whether to read the '.userdata.json' file. Default = True
- nens : None, int or 2-element tuple (start, stop)
- Number of pings or ensembles to read from the file.
+ nens : None, int
+ Number of pings or ensembles to read from the file, starting from 0.
Default is None, read entire file
- debug_level : int
- Debug level [0 - 2]. Default = -1
+ debug : int
+ Debug level [0 - 3]. Default = 0
vmdas_search : bool
Search from the end of each ensemble for the VMDAS navigation
block. The byte offsets are sometimes incorrect. Default = False
@@ -50,7 +51,7 @@ def read_rdi(
An xarray dataset from the binary instrument data
"""
# Start debugger logging
- if debug_level >= 0:
+ if debug > 0:
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
filepath = Path(filename)
@@ -65,7 +66,11 @@ def read_rdi(
# Reads into a dictionary of dictionaries using netcdf naming conventions
# Should be easier to debug
rdr = _RDIReader(
- filename, debug_level=debug_level, vmdas_search=vmdas_search, winriver=winriver
+ filename,
+ debug=debug,
+ vmdas_search=vmdas_search,
+ winriver=winriver,
+ search_num=search_num,
)
datNB, datBB = rdr.load_data(nens=nens)
@@ -119,11 +124,11 @@ def read_rdi(
if len(dss) == 2:
warnings.warn(
- "\nTwo profiling configurations retrieved from file" "\nReturning first."
+ "\nTwo profiling configurations retrieved from file\nReturning first."
)
# Close handler
- if debug_level >= 0:
+ if debug > 0:
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
handler.close()
@@ -159,17 +164,16 @@ def _set_rdi_declination(dat, fname, inplace):
class _RDIReader:
- def __init__(
- self, fname, navg=1, debug_level=-1, vmdas_search=False, winriver=False
- ):
+ def __init__(self, fname, debug, vmdas_search, winriver, search_num):
self.fname = base._abspath(fname)
print("\nReading file {} ...".format(fname))
- self._debug_level = debug_level
+ self._debug_level = debug
self._vmdas_search = vmdas_search
self._winrivprob = winriver
self._vm_source = 0
self._pos = 0
self.progress = 0
+ self.search_num = search_num
self._cfac32 = np.float32(180 / 2**31) # signed 32 to float
self._cfac16 = np.float32(180 / 2**15) # unsigned16 to float
self._fixoffset = 0
@@ -177,9 +181,11 @@ def __init__(
self.n_cells_diff = 0
self.n_cells_sl = 0
self.cs_diff = 0
+ self.cs_sl_diff = 0
self.cs = []
+ self.cs_sl = []
self.cfg = {}
- self.cfgbb = {}
+ self.cfgBB = {}
self.hdr = {}
self.f = lib.bin_reader(self.fname)
@@ -189,17 +195,16 @@ def __init__(
self._npings = self._filesize // space
if self._debug_level > -1:
logging.info("Done: {}".format(self.cfg))
- logging.info("self._bb {}".format(self._bb))
- logging.info("self.cfgbb: {}".format(self.cfgbb))
+ logging.info("self._BB {}".format(self._BB))
+ logging.info("self.cfgBB: {}".format(self.cfgBB))
self.f.seek(self._pos, 0)
- self.n_avg = navg
- self.ensemble = lib._ensemble(self.n_avg, self.cfg["n_cells"])
- if self._bb:
- self.ensembleBB = lib._ensemble(self.n_avg, self.cfgbb["n_cells"])
+ self.ensemble = lib._ensemble(self.cfg["n_cells"])
+ if self._BB:
+ self.ensembleBB = lib._ensemble(self.cfgBB["n_cells"])
self.vars_read = lib._variable_setlist(["time"])
- if self._bb:
+ if self._BB:
self.vars_readBB = lib._variable_setlist(["time"])
def code_spacing(self, iternum=50):
@@ -212,7 +217,7 @@ def code_spacing(self, iternum=50):
# Get basic header data and check dual profile
if not self.read_hdr():
raise RuntimeError("No header in this file")
- self._bb = self.check_for_double_buffer()
+ self._BB = self.check_for_double_buffer()
# Turn off debugging to check code spacing
debug_level = self._debug_level
@@ -241,7 +246,7 @@ def read_hdrseg(self):
fd = self.f
hdr = self.hdr
hdr["nbyte"] = fd.read_i16(1)
- spare = fd.read_ui8(1)
+ fd.seek(1, 1)
ndat = fd.read_ui8(1)
hdr["dat_offsets"] = fd.read_ui16(ndat)
self._nbyte = 4 + ndat * 2
@@ -276,51 +281,47 @@ def check_for_double_buffer(self):
def load_data(self, nens=None):
"""Main function run after reader class is initiated."""
+
if nens is None:
- # Attempt to overshoot WinRiver2 or *Pro filesize
- if (self.cfg["coord_sys"] == "ship") or (
- self.cfg["inst_model"]
- in [
- "RiverPro",
- "StreamPro",
- ]
- ):
- self._nens = int(self._filesize / self.hdr["nbyte"] / self.n_avg * 1.1)
- else:
- # Attempt to overshoot other instrument filesizes
- self._nens = int(self._npings / self.n_avg)
+ # Overshoot file size to pre-allocate enough ensembles
+ self._nens = int(self._npings * 10)
elif nens.__class__ is tuple or nens.__class__ is list:
raise Exception(" `nens` must be a integer")
else:
self._nens = nens
- if self._debug_level > -1:
- logging.info(" taking data from pings 0 - %d" % self._nens)
- logging.info(" %d ensembles will be produced.\n" % self._nens)
+
+ # Pre-allocate data
self.init_data()
- for iens in range(self._nens):
+ iens = 0
+ while True:
+ if iens == self._nens:
+ break
if not self.read_buffer():
self.remove_end(iens)
break
self.ensemble.clean_data()
- if self._bb:
+ if self._BB:
self.ensembleBB.clean_data()
ens = [self.ensemble]
vars = [self.vars_read]
datl = [self.outd]
cfgl = [self.cfg]
- if self._bb:
+ if self._BB:
ens += [self.ensembleBB]
vars += [self.vars_readBB]
datl += [self.outdBB]
- cfgl += [self.cfgbb]
+ cfgl += [self.cfgBB]
- for var, en, dat in zip(vars, ens, datl):
+ for var, en, dat, cfg in zip(vars, ens, datl, cfgl):
for nm in var:
- dat = self.save_profiles(dat, nm, en, iens)
+ dat = self.save_profiles(dat, cfg, nm, en, iens)
# reset flag after all variables run
self.n_cells_diff = 0
+ # b5 clock flag
+ b5 = True if "ping_offset_time_b5" in cfg else False
+
# Set clock
clock = en.rtc[:, :]
if clock[0, 0] < 100:
@@ -338,53 +339,45 @@ def load_data(self, nens=None):
)
)
dat["coords"]["time"][iens] = np.nan
+ if b5:
+ dat["coords"]["time_b5"][iens] = np.nan
else:
dat["coords"]["time"][iens] = np.median(dates)
+ if b5:
+ dat["coords"]["time_b5"][iens] = (
+ np.median(dates) + cfg["ping_offset_time_b5"]
+ )
+ iens += 1
- # Finalize dataset (runs through both nb and bb)
+ # Finalize dataset (runs through both NB and BB)
for dat, cfg in zip(datl, cfgl):
dat, cfg = self.cleanup(dat, cfg)
- dat = self.finalize(dat)
+ dat = self.finalize(dat, cfg)
if "vel_bt" in dat["data_vars"]:
- dat["attrs"]["rotate_vars"].append("vel_bt")
+ cfg["rotate_vars"].append("vel_bt")
- datbb = self.outdBB if self._bb else None
- return self.outd, datbb
+ datbb = self.outdBB if self._BB else None
+ return dat, datbb
def init_data(self):
"""Initiate data structure"""
outd = {
"data_vars": {},
"coords": {},
- "attrs": {},
"units": {},
"long_name": {},
"standard_name": {},
"sys": {},
}
- outd["attrs"]["inst_make"] = "TRDI"
- outd["attrs"]["inst_type"] = "ADCP"
- outd["attrs"]["rotate_vars"] = [
- "vel",
- ]
- # Currently RDI doesn't use IMUs
- outd["attrs"]["has_imu"] = 0
- if self._bb:
+ if self._BB:
outdbb = {
"data_vars": {},
"coords": {},
- "attrs": {},
"units": {},
"long_name": {},
"standard_name": {},
"sys": {},
}
- outdbb["attrs"]["inst_make"] = "TRDI"
- outdbb["attrs"]["inst_type"] = "ADCP"
- outdbb["attrs"]["rotate_vars"] = [
- "vel",
- ]
- outdbb["attrs"]["has_imu"] = 0
# Preallocate variables and data sizes
for nm in defs.data_defs:
@@ -393,10 +386,10 @@ def init_data(self):
)
self.outd = outd
- if self._bb:
+ if self._BB:
for nm in defs.data_defs:
outdbb = lib._idata(
- outdbb, nm, sz=lib._get_size(nm, self._nens, self.cfgbb["n_cells"])
+ outdbb, nm, sz=lib._get_size(nm, self._nens, self.cfgBB["n_cells"])
)
self.outdBB = outdbb
if self._debug_level > 1:
@@ -404,21 +397,48 @@ def init_data(self):
if self._debug_level > 1:
logging.info("{} ncells, not BB".format(self.cfg["n_cells"]))
- if self._bb:
- logging.info("{} ncells, BB".format(self.cfgbb["n_cells"]))
+ if self._BB:
+ logging.info("{} ncells, BB".format(self.cfgBB["n_cells"]))
def read_buffer(self):
"""Read through the file"""
fd = self.f
self.ensemble.k = -1 # so that k+=1 gives 0 on the first loop.
- if self._bb:
+ if self._BB:
self.ensembleBB.k = -1 # so that k+=1 gives 0 on the first loop.
self.print_progress()
hdr = self.hdr
- while self.ensemble.k < self.ensemble.n_avg - 1:
+ while self.ensemble.k < 0:
if not self.search_buffer():
return False
startpos = fd.tell() - 2
+
+ noBytesInEnsemble = fd.read_i16(1)
+ # go back to start of ensemble
+ fd.seek(-4, 1)
+ # pack the entire ensemble into a bytearray
+ bytesInEnsemble = bytearray(fd.read_ui8(noBytesInEnsemble))
+ # get checksum (2 bytes unsigned integer)
+ checksum = fd.read_ui16(1)
+ # calculate checksum and check
+ # if the checksum is wrong, back up 100 bytes and search for the next
+ # ensemble
+ if (sum(bytesInEnsemble) & 0xFFFF) != checksum:
+ logging.warning(
+ "Ensemble starting at startpos {} has a checksum error".format(
+ startpos
+ )
+ )
+ logging.warning(
+ "checksum calculated = %s, actual checksum = %s\n"
+ % ((sum(bytesInEnsemble) & 0xFFFF), checksum)
+ )
+ fd.seek(-100, 1)
+ self.read_buffer()
+ else:
+ # go back to start of ensemble
+ fd.seek(-noBytesInEnsemble, 1)
+
self.read_hdrseg()
if self._debug_level > -1:
logging.info("Read Header", hdr)
@@ -477,7 +497,7 @@ def search_buffer(self):
"""
Check to see if the next bytes indicate the beginning of a
data block. If not, search for the next data block, up to
- _search_num times.
+ search_num times.
"""
fd = self.f
id = fd.read_ui8(2)
@@ -492,8 +512,11 @@ def search_buffer(self):
logging.info("cfgid0: [{:x}, {:x}]".format(*cfgid))
# If not [127, 127] or if the file ends in the next ensemble
while (cfgid != [127, 127]) or self.check_eof():
+ if search_cnt == self.search_num:
+ logging.debug(f"Stopped searching at byte position {fd.tell()}")
+ return False
+ # Search for the next header or the end of the file
if cfgid == [127, 121]:
- # Search for the next header or the end of the file
skipbytes = fd.read_i16(1)
fd.seek(skipbytes - 2, 1)
id = fd.read_ui8(2)
@@ -510,7 +533,7 @@ def search_buffer(self):
cfgid[0] = cfgid[1]
cfgid[1] = nextbyte
- if pos_7f79 and self._debug_level > -1:
+ if pos_7f79 and (self._debug_level > -1):
logging.info("Skipped junk data: [{:x}, {:x}]".format(*[127, 121]))
if search_cnt > 0:
@@ -573,6 +596,10 @@ def read_dat(self, id):
0: (defs.read_fixed, [False]),
# 0001 2nd profile fixed leader
1: (defs.read_fixed, [True]),
+ # 000B Wave parameters
+ 11: (defs.skip_Nbyte, [51]),
+ # 000C Wave parameters - sea and swell
+ 12: (defs.skip_Nbyte, [44]),
# 0010 Surface layer fixed leader (RiverPro & StreamPro)
16: (defs.read_fixed_sl, []),
# 0080 1st profile variable leader
@@ -625,13 +652,13 @@ def read_dat(self, id):
1793: (defs.skip_Ncol, [4]), # 0701 number of pings
1794: (defs.skip_Ncol, [4]), # 0702 sum of squared vel
1795: (defs.skip_Ncol, [4]), # 0703 sum of velocities
- 2560: (defs.skip_Ncol, []), # 0A00 Beam 5 velocity
- 2816: (defs.skip_Ncol, []), # 0B00 Beam 5 correlation
- 3072: (defs.skip_Ncol, []), # 0C00 Beam 5 amplitude
- 3328: (defs.skip_Ncol, []), # 0D00 Beam 5 pct_good
+ 2560: (defs.read_vel_b5, []), # 0A00 Beam 5 velocity
+ 2816: (defs.read_corr_b5, []), # 0B00 Beam 5 correlation
+ 3072: (defs.read_amp_b5, []), # 0C00 Beam 5 amplitude
+ 3328: (defs.read_prcnt_gd_b5, []), # 0D00 Beam 5 pct_good
# Fixed attitude data format for Ocean Surveyor ADCPs
3000: (defs.skip_Nbyte, [32]),
- 3841: (defs.skip_Nbyte, [38]), # 0F01 Beam 5 leader
+ 3841: (defs.read_vel_b5_leader, []), # 0F01 Beam 5 leader
8192: (defs.read_vmdas, []), # 2000
# 2013 Navigation parameter data
8211: (defs.skip_Nbyte, [83]),
@@ -661,8 +688,16 @@ def read_dat(self, id):
22785: (defs.skip_Nbyte, [65]),
# 5902 Ping attitude
22786: (defs.skip_Nbyte, [105]),
- # 7001 ADC data
- 28673: (defs.skip_Nbyte, [14]),
+ # 7000 Sentinvel V system configuration
+ 28672: (defs.read_sentinelv_syscfg, [False]),
+ # 7001 Sentinel V leader
+ 28673: (defs.read_sentinelv_ping_setup, [False]),
+ # 7002 ADC data
+ 28674: (defs.skip_Nbyte, [14]),
+ # 7003 Sentinel V "Features" (only first ensemble)
+ 28675: (defs.skip_Nbyte, [88]), # min size
+ # 7004 Sentinel V Event Log
+ 28676: (defs.read_sentinelv_event_log, []),
}
# Call the correct function:
if self._debug_level > 1:
@@ -771,7 +806,7 @@ def remove_end(self, iens):
for nm in self.vars_read:
lib._setd(dat, nm, lib._get(dat, nm)[..., :iens])
- def save_profiles(self, dat, nm, en, iens):
+ def save_profiles(self, dat, cfg, nm, en, iens):
"""
Reformats profile measurements in the retrieved measurements.
@@ -782,7 +817,11 @@ def save_profiles(self, dat, nm, en, iens):
Parameters
----------
dat : dict
- Raw data dictionary
+ Contains data for the final dataset. This variable has the same pointer
+ as the data dictionary `self.outd` or `self.outdBB`.
+ cfg : dict
+ Global attributes for the final dataset. This variable has the same pointer
+ as the configuration dictionary `self.cfg` or `self.cfgBB`.
nm : str
The name of the profile variable
en : dict
@@ -796,10 +835,7 @@ def save_profiles(self, dat, nm, en, iens):
The updated dataset dictionary with the reformatted profile measurements.
"""
ds = lib._get(dat, nm)
- if self.n_avg == 1:
- bn = en[nm][..., 0]
- else:
- bn = np.nanmean(en[nm], axis=-1)
+ bn = en[nm][..., 0]
# If n_cells has changed (RiverPro/StreamPro WinRiver transects)
if len(ds.shape) == 3:
@@ -828,6 +864,9 @@ def save_profiles(self, dat, nm, en, iens):
if self.cs_diff:
self.cs.append([iens, self.cfg["cell_size"]])
self.cs_diff = 0
+ if self.cs_sl_diff:
+ self.cs_sl.append([iens, self.cfg["cell_size_sl"]])
+ self.cs_sl_diff = 0
# Then copy the ensemble to the dataset.
ds[..., iens] = bn
@@ -846,10 +885,11 @@ def cleanup(self, dat, cfg):
Parameters
----------
dat : dict
- The dataset dictionary containing data variables and coordinates to be cleaned up.
+ Contains data for the final dataset. This variable has the same pointer
+ as the data dictionary `self.outd` or `self.outdBB`.
cfg : dict
- Configuration dictionary, which is updated with cell size, range, and additional
- attributes after cleanup.
+ Global attributes for the final dataset. This variable has the same pointer
+ as the configuration dictionary `self.cfg` or `self.cfgBB`.
Returns
-------
@@ -859,53 +899,75 @@ def cleanup(self, dat, cfg):
"""
# Clean up changing cell size, if necessary
cs = np.array(self.cs, dtype=np.float32)
- cell_sizes = cs[:, 1]
+ cs_sl = np.array(self.cs_sl, dtype=np.float32)
# If cell sizes change, depth-bin average the smaller cell sizes
if len(self.cs) > 1:
- bins_to_merge = cell_sizes.max() / cell_sizes
- idx_start = cs[:, 0].astype(int)
- idx_end = np.append(cs[1:, 0], self._nens).astype(int)
-
dv = dat["data_vars"]
- for var in dv:
- if (len(dv[var].shape) == 3) and ("_sl" not in var):
- # Create a new NaN var to save data in
- new_var = (np.zeros(dv[var].shape) * np.nan).astype(dv[var].dtype)
- # For each cell size change, reshape and bin-average
- for id1, id2, b in zip(idx_start, idx_end, bins_to_merge):
- array = np.transpose(dv[var][..., id1:id2])
- bin_arr = np.transpose(np.mean(self.reshape(array, b), axis=-1))
- new_var[: len(bin_arr), :, id1:id2] = bin_arr
- # Reset data. This often leaves nan data at farther ranges
- dv[var] = new_var
+ self.merge_bins(cs, dv, sl=False)
+ if len(self.cs_sl) > 1:
+ dv = dat["data_vars"]
+ self.merge_bins(cs_sl, dv, sl=True)
# Set cell size and range
cfg["n_cells"] = self.ensemble["n_cells"]
- cfg["cell_size"] = round(cell_sizes.max(), 3)
+ cfg["cell_size"] = round(cs[:, 1].max(), 3)
+ bin1_dist = cfg.pop("bin1_dist_m")
dat["coords"]["range"] = (
- cfg["bin1_dist_m"] + np.arange(cfg["n_cells"]) * cfg["cell_size"]
+ bin1_dist + np.arange(cfg["n_cells"]) * cfg["cell_size"]
).astype(np.float32)
+ cfg["range_offset"] = round(bin1_dist - cfg["blank_dist"] - cfg["cell_size"], 3)
- # Save configuration data as attributes
- for nm in cfg:
- dat["attrs"][nm] = cfg[nm]
+ if "n_cells_b5" in cfg:
+ bin1_dist_b5 = cfg.pop("bin1_dist_b5_m")
+ dat["coords"]["range_b5"] = (
+ bin1_dist_b5 + np.arange(cfg["n_cells_b5"]) * cfg["cell_size_b5"]
+ ).astype(np.float32)
# Clean up surface layer profiles
if "surface_layer" in cfg: # RiverPro/StreamPro
+ # Set SL cell size and range
+ cfg["cell_size_sl"] = round(cs_sl[:, 1].max(), 3)
+ cfg["n_cells_sl"] = self.n_cells_sl
+ bin1_dist_sl = cfg.pop("bin1_dist_m_sl")
+ # Blank distance not recorded
+ cfg["blank_dist_sl"] = round(bin1_dist_sl - cfg["cell_size_sl"], 3)
+ # Range offset not added in "bin1_dist_m_sl" for some reason
+ bin1_dist_sl += cfg["range_offset"]
dat["coords"]["range_sl"] = (
- cfg["bin1_dist_m_sl"]
- + np.arange(0, self.n_cells_sl) * cfg["cell_size_sl"]
+ bin1_dist_sl + np.arange(0, self.n_cells_sl) * cfg["cell_size_sl"]
)
# Trim off extra nan data
dv = dat["data_vars"]
for var in dv:
if "sl" in var:
dv[var] = dv[var][: self.n_cells_sl]
- dat["attrs"]["rotate_vars"].append("vel_sl")
+ cfg["rotate_vars"].append("vel_sl")
return dat, cfg
+ def merge_bins(self, cs, dv, sl=False):
+ cell_sizes = cs[:, 1]
+ bins_to_merge = cell_sizes.max() / cell_sizes
+ idx_start = cs[:, 0].astype(int)
+ idx_end = np.append(cs[1:, 0], self._nens).astype(int)
+
+ for var in dv:
+ if not sl:
+ flag = "_sl" not in var
+ elif sl:
+ flag = "_sl" in var
+ if (len(dv[var].shape) == 3) and flag:
+ # Create a new NaN var to save data in
+ new_var = (np.zeros(dv[var].shape) * np.nan).astype(dv[var].dtype)
+ # For each cell size change, reshape and bin-average
+ for id1, id2, b in zip(idx_start, idx_end, bins_to_merge):
+ array = np.transpose(dv[var][..., id1:id2])
+ bin_arr = np.transpose(np.mean(self.reshape(array, b), axis=-1))
+ new_var[: len(bin_arr), :, id1:id2] = bin_arr
+ # Reset data. This often leaves nan data at farther ranges
+ dv[var] = new_var
+
def reshape(self, arr, n_bin=None):
"""
Reshapes the input array `arr` to a shape of (..., n, n_bin).
@@ -949,7 +1011,7 @@ def reshape(self, arr, n_bin=None):
return out
- def finalize(self, dat):
+ def finalize(self, dat, cfg):
"""
This method cleans up the dataset by removing any attributes that were
defined but not loaded, updates configuration attributes, and sets the
@@ -959,32 +1021,52 @@ def finalize(self, dat):
Parameters
----------
dat : dict
- The dataset dictionary to be finalized. This dictionary is modified
- in place by removing unused attributes, setting configuration values
- as attributes, and calculating `fs`.
+ Contains data for the final dataset. This variable has the same pointer
+ as the data dictionary `self.outd` or `self.outdBB`.
+ cfg : dict
+ Global attributes for the final dataset. This variable has the same pointer
+ as the configuration dictionary `self.cfg` or `self.cfgBB`.
Returns
-------
dict
The finalized dataset dictionary with cleaned attributes and added metadata.
"""
+
+ # Drop empty data variables
for nm in set(defs.data_defs.keys()) - self.vars_read:
lib._pop(dat, nm)
- for nm in self.cfg:
- dat["attrs"][nm] = self.cfg[nm]
-
- # VMDAS and WinRiver have different set sampling frequency
- da = dat["attrs"]
- if ("sourceprog" in da) and (
- da["sourceprog"].lower() in ["vmdas", "winriver", "winriver2"]
- ):
- da["fs"] = round(1 / np.median(np.diff(dat["coords"]["time"])), 2)
+
+ # Need to figure out how to differentiate burst mode from averaging mode
+ calculate_sample_rate_from_time_diff = (
+ cfg.get("source_program", "").lower() in ["vmdas", "winriver", "winriver2"]
+ or cfg["sec_between_ping_groups"] == 0
+ )
+
+ if calculate_sample_rate_from_time_diff:
+ # Use median-based calculation for burst mode operation
+ time_diffs = np.diff(dat["coords"]["time"])
+ if cfg["sec_between_ping_groups"] == 0:
+ warnings.warn(
+ "mhkit.dolfyn: sec_between_ping_groups is zero, likely indicating burst mode operation. "
+ "Using median time difference to estimate sample rate, but the actual sample rate "
+ "may be variable and non-uniform if operating in burst mode. This could introduce "
+ "artifacts in downstream spectral analysis, filtering, or other time-series "
+ "processing that assumes constant sampling intervals. "
+ "Per issue #408: https://github.com/MHKiT-Software/MHKiT-Python/issues/408"
+ )
+ cfg["fs"] = round(1 / np.median(time_diffs), 2)
else:
- da["fs"] = 1 / (da["sec_between_ping_groups"] * da["pings_per_ensemble"])
+ # Standard calculation for averaging mode
+ cfg["fs"] = 1 / (cfg["sec_between_ping_groups"] * cfg["pings_per_ensemble"])
+
+ # Save configuration data as attributes
+ dat["attrs"] = cfg
+ # Set 3D variable axes properly (beam, range, time)
for nm in defs.data_defs:
shp = defs.data_defs[nm][0]
- if len(shp) and shp[0] == "nc" and lib._in_group(dat, nm):
+ if (len(shp) == 2) and (shp[0] == "nc") and lib._in_group(dat, nm):
lib._setd(dat, nm, np.swapaxes(lib._get(dat, nm), 0, 1))
return dat
diff --git a/mhkit/dolfyn/io/rdi_defs.py b/mhkit/dolfyn/io/rdi_defs.py
index addbb3ea2..34b09ee1b 100644
--- a/mhkit/dolfyn/io/rdi_defs.py
+++ b/mhkit/dolfyn/io/rdi_defs.py
@@ -101,7 +101,7 @@
"pitch_std": ([], "data_vars", "float32", "degree", "Pitch Standard Deviation", ""),
"roll_std": ([], "data_vars", "float32", "degree", "Roll Standard Deviation", ""),
"adc": ([8], "sys", "uint8", "1", "Analog-Digital Converter Output", ""),
- "error_status": ([], "attrs", "float32", "1", "Error Status", ""),
+ "error_status": ([], "sys", "float32", "1", "Error Status", ""),
"pressure": ([], "data_vars", "float32", "dbar", "Pressure", "sea_water_pressure"),
"pressure_std": (
[],
@@ -235,7 +235,7 @@
"data_vars",
"float32",
"m s-1",
- "Platform Speed Made Good",
+ "Platform Speed Made Good from Lat/Lon",
"platform_speed_wrt_ground",
),
"dir_made_good_gps": (
@@ -243,7 +243,7 @@
"data_vars",
"float32",
"degree",
- "Platform Direction Made Good",
+ "Platform Direction Made Good from Lat/Lon",
"platform_course",
),
"flags_gps": ([], "data_vars", "float32", "bits", "GPS Flags", ""),
@@ -326,6 +326,47 @@
"proportion_of_acceptable_signal_returns_from_acoustic_instrument_in_sea_water",
),
"status_sl": (["nc", 4], "data_vars", "float32", "1", "Surface Layer Status", ""),
+ "faults": (
+ [],
+ "data_vars",
+ " 0:
- logging.info(f"Number of cells set to {cfg['n_cells']}")
+ logging.debug(f"Number of cells set to {n_cells}")
cfg["pings_per_ensemble"] = fd.read_ui16(1)
# Check if cell size has changed
cs = float(fd.read_ui16(1) * 0.01)
@@ -408,7 +453,7 @@ def read_cfgseg(rdr, bb=False):
rdr.cs_diff = cs if "cell_size" not in cfg else (cs - cfg["cell_size"])
cfg["cell_size"] = cs
if rdr._debug_level > 0:
- logging.info(f"Cell size set to {cfg['cell_size']}")
+ logging.debug(f"Cell size set to {cs}")
cfg["blank_dist"] = round(float(fd.read_ui16(1) * 0.01), 2)
cfg["profiling_mode"] = fd.read_ui8(1)
cfg["min_corr_threshold"] = fd.read_ui8(1)
@@ -427,7 +472,13 @@ def read_cfgseg(rdr, bb=False):
cfg["magnetic_var_deg"] = float(fd.read_i16(1) * 0.01)
cfg["sensors_src"] = np.binary_repr(fd.read_ui8(1), 8)
cfg["sensors_avail"] = np.binary_repr(fd.read_ui8(1), 8)
- cfg["bin1_dist_m"] = round(float(fd.read_ui16(1) * 0.01), 4)
+ # If cell size changes, the bin1 distance will too
+ # We only want to save the largest, as we depth average smaller cells together
+ b1d = round(float(fd.read_ui16(1) * 0.01), 4)
+ if ("bin1_dist_m" not in cfg) or (b1d > cfg["bin1_dist_m"]):
+ cfg["bin1_dist_m"] = b1d
+ if rdr._debug_level > 0:
+ logging.debug(f"Bin 1 distance set to {b1d}")
cfg["transmit_pulse_m"] = round(float(fd.read_ui16(1) * 0.01), 2)
cfg["water_ref_cells"] = list(fd.read_ui8(2).astype(list)) # list for attrs
cfg["false_target_threshold"] = fd.read_ui8(1)
@@ -435,13 +486,13 @@ def read_cfgseg(rdr, bb=False):
cfg["transmit_lag_m"] = float(fd.read_ui16(1) * 0.01)
rdr._nbyte = 40
- if cfg["prog_ver"] >= 8.14:
+ if cfg["firmware_ver"] >= 8.14:
cpu_serialnum = fd.read_ui8(8)
rdr._nbyte += 8
- if cfg["prog_ver"] >= 8.24:
+ if cfg["firmware_ver"] >= 8.24:
cfg["bandwidth"] = fd.read_ui16(1)
rdr._nbyte += 2
- if cfg["prog_ver"] >= 9.68:
+ if cfg["firmware_ver"] >= 9.68:
cfg["power_level"] = fd.read_ui8(1)
# cfg['navigator_basefreqindex'] = fd.read_ui8(1)
fd.seek(1, 1)
@@ -468,7 +519,7 @@ def read_fixed(rdr, bb=False):
rdr.n_cells_diff = rdr.cfg["n_cells"] - rdr.ensemble["n_cells"]
# Increase n_cells if greater than 0
if rdr.n_cells_diff > 0:
- rdr.ensemble = lib._ensemble(rdr.n_avg, rdr.cfg["n_cells"])
+ rdr.ensemble = lib._ensemble(rdr.cfg["n_cells"])
if rdr._debug_level > 0:
logging.warning(
f"Maximum number of cells increased to {rdr.cfg['n_cells']}"
@@ -479,18 +530,29 @@ def read_fixed_sl(rdr):
"""Read surface layer fixed header"""
cfg = rdr.cfg
cfg["surface_layer"] = 1
- n_cells = rdr.f.read_ui8(1)
# Check if n_cells is greater than what was used in prior profiles
- if n_cells > rdr.n_cells_sl:
- rdr.n_cells_sl = n_cells
+ n_cells_sl = rdr.f.read_ui8(1)
+ if n_cells_sl > rdr.n_cells_sl:
+ rdr.n_cells_sl = n_cells_sl
+ if ("n_cells_sl" not in cfg) or (n_cells_sl != cfg["n_cells_sl"]):
+ cfg["n_cells_sl"] = n_cells_sl
if rdr._debug_level > 0:
- logging.warning(
- f"Maximum number of surface layer cells increased to {n_cells}"
- )
- cfg["n_cells_sl"] = n_cells
- # Assuming surface layer profile cell size never changes
- cfg["cell_size_sl"] = float(rdr.f.read_ui16(1) * 0.01)
- cfg["bin1_dist_m_sl"] = round(float(rdr.f.read_ui16(1) * 0.01), 4)
+ logging.debug(f"Number of surface cells set to {n_cells_sl}")
+ # Cell size also changes
+ cs_sl = float(rdr.f.read_ui16(1) * 0.01)
+ if ("cell_size_sl" not in cfg) or (cs_sl != cfg["cell_size_sl"]):
+ rdr.cs_sl_diff = (
+ cs_sl if "cell_size_sl" not in cfg else (cs_sl - cfg["cell_size_sl"])
+ )
+ cfg["cell_size_sl"] = cs_sl
+ if rdr._debug_level > 0:
+ logging.debug(f"Surface layer cell size set to {cs_sl}")
+ # Only save maximum bin 1 distance
+ b1d = round(float(rdr.f.read_ui16(1) * 0.01), 4)
+ if ("bin1_dist_m_sl" not in cfg) or (b1d > cfg["bin1_dist_m_sl"]):
+ cfg["bin1_dist_m_sl"] = b1d
+ if rdr._debug_level > 0:
+ logging.debug(f"Surface layer Bin 1 distance set to {b1d}")
if rdr._debug_level > -1:
logging.info("Read Surface Layer Config")
@@ -499,13 +561,11 @@ def read_fixed_sl(rdr):
def read_var(rdr, bb=False):
"""Read variable header"""
- fd = rdr.f
if bb:
ens = rdr.ensembleBB
else:
ens = rdr.ensemble
ens.k += 1
- ens = rdr.ensemble
k = ens.k
rdr.vars_read += [
"number",
@@ -525,6 +585,7 @@ def read_var(rdr, bb=False):
"roll_std",
"adc",
]
+ fd = rdr.f
ens.number[k] = fd.read_ui16(1)
ens.rtc[:, k] = fd.read_ui8(7)
ens.number[k] += 65535 * fd.read_ui8(1)
@@ -545,7 +606,7 @@ def read_var(rdr, bb=False):
cfg = rdr.cfg
if cfg["inst_model"].lower() == "broadband":
- if cfg["prog_ver"] >= 5.55:
+ if cfg["firmware_ver"] >= 5.55:
fd.seek(15, 1)
cent = fd.read_ui8(1)
ens.rtc[:, k] = fd.read_ui8(7)
@@ -554,30 +615,30 @@ def read_var(rdr, bb=False):
elif cfg["inst_model"].lower() == "ocean surveyor":
fd.seek(16, 1) # 30 bytes all set to zero, 14 read above
rdr._nbyte += 16
- if cfg["prog_ver"] > 23:
+ if cfg["firmware_ver"] > 23:
fd.seek(2, 1)
rdr._nbyte += 2
else:
ens.error_status[k] = np.binary_repr(fd.read_ui32(1), 32)
rdr.vars_read += ["pressure", "pressure_std"]
rdr._nbyte += 4
- if cfg["prog_ver"] >= 8.13:
+ if cfg["firmware_ver"] >= 8.13:
# Added pressure sensor stuff in 8.13
fd.seek(2, 1)
ens.pressure[k] = fd.read_ui32(1) * 0.001 # dPa to dbar
ens.pressure_std[k] = fd.read_ui32(1) * 0.001
rdr._nbyte += 10
- if cfg["prog_ver"] >= 8.24:
+ if cfg["firmware_ver"] >= 8.24:
# Spare byte added 8.24
fd.seek(1, 1)
rdr._nbyte += 1
- if cfg["prog_ver"] >= 16.05:
+ if cfg["firmware_ver"] >= 16.05:
# Added more fields with century in clock
cent = fd.read_ui8(1)
ens.rtc[:, k] = fd.read_ui8(7)
ens.rtc[0, k] = ens.rtc[0, k] + cent * 100
rdr._nbyte += 8
- if cfg["prog_ver"] >= 56:
+ if cfg["firmware_ver"] >= 56:
fd.seek(1) # lag near bottom flag
rdr._nbyte += 1
@@ -591,9 +652,8 @@ def read_vel(rdr, bb=0):
rdr.vars_read += ["vel" + tg]
n_cells = cfg["n_cells" + tg]
- k = ens.k
vel = np.array(rdr.f.read_i16(4 * n_cells)).reshape((n_cells, 4)) * 0.001
- ens["vel" + tg][:n_cells, :, k] = vel
+ ens["vel" + tg][:n_cells, :, ens.k] = vel
rdr._nbyte = 2 + 4 * n_cells * 2
if rdr._debug_level > -1:
logging.info("Read Vel")
@@ -605,10 +665,9 @@ def read_corr(rdr, bb=0):
rdr.vars_read += ["corr" + tg]
n_cells = cfg["n_cells" + tg]
- k = ens.k
- ens["corr" + tg][:n_cells, :, k] = np.array(rdr.f.read_ui8(4 * n_cells)).reshape(
- (n_cells, 4)
- )
+ ens["corr" + tg][:n_cells, :, ens.k] = np.array(
+ rdr.f.read_ui8(4 * n_cells)
+ ).reshape((n_cells, 4))
rdr._nbyte = 2 + 4 * n_cells
if rdr._debug_level > -1:
logging.info("Read Corr")
@@ -620,8 +679,7 @@ def read_amp(rdr, bb=0):
rdr.vars_read += ["amp" + tg]
n_cells = cfg["n_cells" + tg]
- k = ens.k
- ens["amp" + tg][:n_cells, :, k] = np.array(rdr.f.read_ui8(4 * n_cells)).reshape(
+ ens["amp" + tg][:n_cells, :, ens.k] = np.array(rdr.f.read_ui8(4 * n_cells)).reshape(
(n_cells, 4)
)
rdr._nbyte = 2 + 4 * n_cells
@@ -659,11 +717,11 @@ def read_status(rdr, bb=0):
def read_bottom(rdr):
"""Read bottom track block"""
- rdr.vars_read += ["dist_bt", "vel_bt", "corr_bt", "amp_bt", "prcnt_gd_bt"]
- fd = rdr.f
+ cfg = rdr.cfg
ens = rdr.ensemble
k = ens.k
- cfg = rdr.cfg
+ rdr.vars_read += ["dist_bt", "vel_bt", "corr_bt", "amp_bt", "prcnt_gd_bt"]
+ fd = rdr.f
if rdr._vm_source == 2:
rdr.vars_read += ["latitude_gps", "longitude_gps"]
fd.seek(2, 1)
@@ -702,14 +760,16 @@ def read_bottom(rdr):
# Skip reference layer data
fd.seek(26, 1)
rdr._nbyte = 2 + 68
- if cfg["prog_ver"] >= 5.3:
+ if cfg["firmware_ver"] >= 5.3:
fd.seek(7, 1) # skip to rangeMsb bytes
ens.dist_bt[:, k] = ens.dist_bt[:, k] + fd.read_ui8(4) * 655.36
rdr._nbyte += 11
- if cfg["prog_ver"] >= 16.2 and (cfg.get("sourceprog", "").lower() != "winriver"):
+ if cfg["firmware_ver"] >= 16.2 and (
+ cfg.get("source_program", "").lower() != "winriver"
+ ):
fd.seek(4, 1) # not documented
rdr._nbyte += 4
- if cfg["prog_ver"] >= 56.1:
+ if cfg["firmware_ver"] >= 56.1:
fd.seek(4, 1) # not documented
rdr._nbyte += 4
@@ -719,10 +779,10 @@ def read_bottom(rdr):
def read_alt(rdr):
"""Read altimeter (range of vertical beam) block"""
- fd = rdr.f
ens = rdr.ensemble
k = ens.k
rdr.vars_read += ["alt_dist", "alt_rssi", "alt_eval", "alt_status"]
+ fd = rdr.f
ens.alt_eval[k] = fd.read_ui8(1) # evaluation amplitude
ens.alt_rssi[k] = fd.read_ui8(1) # RSSI amplitude
ens.alt_dist[k] = fd.read_ui32(1) * 0.001 # range to surface/seafloor
@@ -735,7 +795,7 @@ def read_alt(rdr):
def read_winriver(rdr):
"""Skip WinRiver1 Navigation block (outdated)"""
rdr._winrivprob = True
- rdr.cfg["sourceprog"] = "WINRIVER"
+ rdr.cfg["source_program"] = "WINRIVER"
if rdr._vm_source not in [2, 3]:
if rdr._debug_level > -1:
logging.warning(
@@ -751,32 +811,33 @@ def read_winriver(rdr):
def read_winriver2(rdr):
"""Read WinRiver2 Navigation block"""
- startpos = rdr.f.tell()
+ fd = rdr.f
+ startpos = fd.tell()
rdr._winrivprob = True
- rdr.cfg["sourceprog"] = "WinRiver2"
+ rdr.cfg["source_program"] = "WinRiver2"
ens = rdr.ensemble
k = ens.k
if rdr._debug_level > -1:
logging.info("Read WinRiver2")
rdr._vm_source = 3
- spid = rdr.f.read_ui16(1) # NMEA specific IDs
+ spid = fd.read_ui16(1) # NMEA specific IDs
if spid in [4, 104]: # GGA
- sz = rdr.f.read_ui16(1)
- dtime = rdr.f.read_f64(1)
+ sz = fd.read_ui16(1)
+ fd.read_f64(1) # dtime
if sz <= 43: # If no sentence, data is still stored in nmea format
- empty_gps = rdr.f.reads(sz - 2)
- rdr.f.seek(2, 1)
+ fd.reads(sz - 2) # empty_gps
+ fd.seek(2, 1)
else: # TRDI rewrites the nmea string into their format if one is found
- start_string = rdr.f.reads(6)
+ start_string = fd.reads(6)
if not isinstance(start_string, str):
if rdr._debug_level > 0:
logging.warning(
f"Invalid GGA string found in ensemble {k}," " skipping..."
)
return "FAIL"
- rdr.f.seek(1, 1)
- gga_time = rdr.f.reads(9)
+ fd.seek(1, 1)
+ gga_time = fd.reads(9)
time = tmlib.timedelta(
hours=int(gga_time[0:2]),
minutes=int(gga_time[2:4]),
@@ -788,25 +849,25 @@ def read_winriver2(rdr):
clock[0, :] += century
date = tmlib.datetime(*clock[:3, 0]) + time
ens.time_gps[k] = tmlib.date2epoch(date)[0]
- rdr.f.seek(1, 1)
- ens.latitude_gps[k] = rdr.f.read_f64(1)
- tcNS = rdr.f.reads(1) # 'N' or 'S'
+ fd.seek(1, 1)
+ ens.latitude_gps[k] = fd.read_f64(1)
+ tcNS = fd.reads(1) # 'N' or 'S'
if tcNS == "S":
ens.latitude_gps[k] *= -1
- ens.longitude_gps[k] = rdr.f.read_f64(1)
- tcEW = rdr.f.reads(1) # 'E' or 'W'
+ ens.longitude_gps[k] = fd.read_f64(1)
+ tcEW = fd.reads(1) # 'E' or 'W'
if tcEW == "W":
ens.longitude_gps[k] *= -1
- ens.fix_gps[k] = rdr.f.read_ui8(1) # gps fix type/quality
- ens.n_sat_gps[k] = rdr.f.read_ui8(1) # of satellites
+ ens.fix_gps[k] = fd.read_ui8(1) # gps fix type/quality
+ ens.n_sat_gps[k] = fd.read_ui8(1) # of satellites
# horizontal dilution of precision
- ens.hdop_gps[k] = rdr.f.read_f32(1)
- ens.elevation_gps[k] = rdr.f.read_f32(1) # altitude
- m = rdr.f.reads(1) # altitude unit, 'm'
- h_geoid = rdr.f.read_f32(1) # height of geoid
- m2 = rdr.f.reads(1) # geoid unit, 'm'
- ens.rtk_age_gps[k] = rdr.f.read_f32(1)
- station_id = rdr.f.read_ui16(1)
+ ens.hdop_gps[k] = fd.read_f32(1)
+ ens.elevation_gps[k] = fd.read_f32(1) # altitude
+ fd.reads(1) # altitude unit, 'm'
+ fd.read_f32(1) # height of geoid
+ fd.reads(1) # geoid unit, 'm'
+ ens.rtk_age_gps[k] = fd.read_f32(1)
+ fd.read_ui16(1) # station id
rdr.vars_read += [
"time_gps",
"longitude_gps",
@@ -817,88 +878,88 @@ def read_winriver2(rdr):
"elevation_gps",
"rtk_age_gps",
]
- rdr._nbyte = rdr.f.tell() - startpos + 2
+ rdr._nbyte = fd.tell() - startpos + 2
elif spid in [5, 105]: # VTG
- sz = rdr.f.read_ui16(1)
- dtime = rdr.f.read_f64(1)
+ sz = fd.read_ui16(1)
+ fd.read_f64(1) # dtime
if sz <= 22: # if no data
- empty_gps = rdr.f.reads(sz - 2)
- rdr.f.seek(2, 1)
+ fd.reads(sz - 2) # empty gps
+ fd.seek(2, 1)
else:
- start_string = rdr.f.reads(6)
+ start_string = fd.reads(6)
if not isinstance(start_string, str):
if rdr._debug_level > 0:
logging.warning(
f"Invalid VTG string found in ensemble {k}," " skipping..."
)
return "FAIL"
- rdr.f.seek(1, 1)
- true_track = rdr.f.read_f32(1)
- t = rdr.f.reads(1) # 'T'
- magn_track = rdr.f.read_f32(1)
- m = rdr.f.reads(1) # 'M'
- speed_knot = rdr.f.read_f32(1)
- kts = rdr.f.reads(1) # 'N'
- speed_kph = rdr.f.read_f32(1)
- kph = rdr.f.reads(1) # 'K'
- mode = rdr.f.reads(1)
- # knots -> m/s
+ fd.seek(1, 1)
+ true_track = fd.read_f32(1) # track from true North
+ fd.reads(1) # 'T'
+ fd.read_f32(1) # track from magnetic North
+ fd.reads(1) # 'M'
+ speed_knot = fd.read_f32(1) # speed in knots
+ fd.reads(1) # 'N'
+ fd.read_f32(1) # speed in kph
+ fd.reads(1) # 'K'
+ fd.reads(1) # mode
+ # convert knots to m/s
ens.speed_over_grnd_gps[k] = speed_knot / 1.944
ens.dir_over_grnd_gps[k] = true_track
rdr.vars_read += ["speed_over_grnd_gps", "dir_over_grnd_gps"]
- rdr._nbyte = rdr.f.tell() - startpos + 2
+ rdr._nbyte = fd.tell() - startpos + 2
elif spid in [6, 106]: # 'DBT' depth sounder
- sz = rdr.f.read_ui16(1)
- dtime = rdr.f.read_f64(1)
+ sz = fd.read_ui16(1)
+ fd.read_f64(1) # dtime
if sz <= 20:
- empty_gps = rdr.f.reads(sz - 2)
- rdr.f.seek(2, 1)
+ fd.reads(sz - 2) # empty gps
+ fd.seek(2, 1)
else:
- start_string = rdr.f.reads(6)
+ start_string = fd.reads(6)
if not isinstance(start_string, str):
if rdr._debug_level > 0:
logging.warning(
f"Invalid DBT string found in ensemble {k}," " skipping..."
)
return "FAIL"
- rdr.f.seek(1, 1)
- depth_ft = rdr.f.read_f32(1)
- ft = rdr.f.reads(1) # 'f'
- depth_m = rdr.f.read_f32(1)
- m = rdr.f.reads(1) # 'm'
- depth_fathom = rdr.f.read_f32(1)
- f = rdr.f.reads(1) # 'F'
+ fd.seek(1, 1)
+ fd.read_f32(1) # depth in feet
+ fd.reads(1) # 'f'
+ depth_m = fd.read_f32(1) # depth in meters
+ fd.reads(1) # 'm'
+ fd.read_f32(1) # depth in fathoms
+ fd.reads(1) # 'F'
ens.dist_nmea[k] = depth_m
rdr.vars_read += ["dist_nmea"]
- rdr._nbyte = rdr.f.tell() - startpos + 2
+ rdr._nbyte = fd.tell() - startpos + 2
elif spid in [7, 107]: # 'HDT'
- sz = rdr.f.read_ui16(1)
- dtime = rdr.f.read_f64(1)
+ sz = fd.read_ui16(1)
+ fd.read_f64(1) # dtime
if sz <= 14:
- empty_gps = rdr.f.reads(sz - 2)
- rdr.f.seek(2, 1)
+ fd.reads(sz - 2) # empty gps
+ fd.seek(2, 1)
else:
- start_string = rdr.f.reads(6)
+ start_string = fd.reads(6)
if not isinstance(start_string, str):
if rdr._debug_level > 0:
logging.warning(
f"Invalid HDT string found in ensemble {k}," " skipping..."
)
return "FAIL"
- rdr.f.seek(1, 1)
- ens.heading_gps[k] = rdr.f.read_f64(1)
- tt = rdr.f.reads(1)
+ fd.seek(1, 1)
+ ens.heading_gps[k] = fd.read_f64(1) # gps heading
+ fd.reads(1) # tt
rdr.vars_read += ["heading_gps"]
- rdr._nbyte = rdr.f.tell() - startpos + 2
+ rdr._nbyte = fd.tell() - startpos + 2
def read_vmdas(rdr):
"""Read VMDAS Navigation block"""
fd = rdr.f
- rdr.cfg["sourceprog"] = "VMDAS"
+ rdr.cfg["source_program"] = "VMDAS"
ens = rdr.ensemble
k = ens.k
if rdr._vm_source != 1 and rdr._debug_level > -1:
@@ -909,8 +970,8 @@ def read_vmdas(rdr):
"clock_offset_UTC_gps",
"latitude_gps",
"longitude_gps",
- "avg_speed_gps",
- "avg_dir_gps",
+ "speed_over_grnd_gps",
+ "dir_over_grnd_gps",
"speed_made_good_gps",
"dir_made_good_gps",
"flags_gps",
@@ -932,14 +993,15 @@ def read_vmdas(rdr):
longitude_first_gps = fd.read_i32(1) * rdr._cfac32
# Last lat/lon position prior to current ADCP ping
- utc_time_fix = tmlib.timedelta(milliseconds=(int(fd.read_ui32(1) * 0.1)))
- ens.time_gps[k] = tmlib.date2epoch(date_utc + utc_time_fix)[0]
+ utc_time_last_fix = tmlib.timedelta(milliseconds=(int(fd.read_ui32(1) * 0.1)))
+ ens.time_gps[k] = tmlib.date2epoch(date_utc + utc_time_last_fix)[0]
ens.latitude_gps[k] = fd.read_i32(1) * rdr._cfac32
ens.longitude_gps[k] = fd.read_i32(1) * rdr._cfac32
-
- ens.avg_speed_gps[k] = fd.read_ui16(1) * 0.001
- ens.avg_dir_gps[k] = fd.read_ui16(1) * rdr._cfac16 # avg true track
+ # From VTG
+ ens.speed_over_grnd_gps[k] = fd.read_ui16(1) * 0.001
+ ens.dir_over_grnd_gps[k] = fd.read_ui16(1) * rdr._cfac16 # avg true track
fd.seek(2, 1) # avg magnetic track
+ # Calculated from difference between latitude and longitude
ens.speed_made_good_gps[k] = fd.read_ui16(1) * 0.001
ens.dir_made_good_gps[k] = fd.read_ui16(1) * rdr._cfac16
fd.seek(2, 1) # reserved
@@ -961,3 +1023,153 @@ def read_vmdas(rdr):
if rdr._debug_level > -1:
logging.info("Read VMDAS")
rdr._read_vmdas = True
+
+
+def read_sentinelv_syscfg(rdr, bb=False):
+ """Read system configuration block for Sentinel V: 0x7000"""
+ if bb:
+ cfg = rdr.cfgbb
+ else:
+ cfg = rdr.cfg
+
+ fd = rdr.f
+ fw = fd.read_ui8(4)
+ cfg["firmware_ver"] = ".".join(fw.astype(str))
+ cfg["carrier_freq"] = fd.read_ui32(1) / 1000
+ cfg["pressure_rating_m"] = fd.read_ui16(1)
+ schema = fd.read_ui8(3)
+ cfg["schema"] = ".".join(schema.astype(str))
+ fd.seek(1, 1)
+
+ if rdr._debug_level > -1:
+ logging.info("Read Sentinel V System Configuration")
+ rdr._nbyte = 2 + 14
+
+
+def read_sentinelv_ping_setup(rdr, bb=False):
+ """Read 'ping setup' block for Sentinel V: 0x7001"""
+ if bb:
+ cfg = rdr.cfgbb
+ else:
+ cfg = rdr.cfg
+
+ fd = rdr.f
+ fd.read_ui16(1) # ping ID
+ cfg["ensemble_interval"] = fd.read_ui32(1) * 0.001
+ cfg["pings_per_ensemble"] = fd.read_ui16(1)
+ cfg["time_between_pings_s"] = fd.read_ui32(1) * 0.001
+ cfg["sec_between_ping_groups"] = fd.read_ui32(1) * 0.001
+ fd.seek(4, 1)
+ fd.read_ui16(1) # ping sequence number within ensemble
+ cfg["ambiguity_vel"] = fd.read_ui16(1) * 0.001
+ fd.seek(4, 1)
+ fd.read_ui32(1) # ensemble offset
+ fd.read_ui16(1) # ensemble count
+ clock = fd.read_ui8(8)
+ clock[1] += century
+ cfg["deployment_start"] = tmlib.date2str(
+ tmlib.datetime(*clock[1:7], microsecond=int(float(clock[7]) * 10000))
+ )[0]
+ if rdr._debug_level > -1:
+ logging.info("Read Sentinel V Ping Setup")
+ rdr._nbyte = 2 + 42
+
+
+def read_sentinelv_event_log(rdr):
+ """Read event log block for Sentinel V: 0x7004"""
+ fd = rdr.f
+ ens = rdr.ensemble
+ k = ens.k
+ n_faults = fd.read_ui16(1)
+ code = []
+ if n_faults:
+ code.append(f"{fd.read_ui16(1)}.{fd.read_ui8(1)}.{fd.read_ui8(1)}")
+ rdr.vars_read += ["faults"]
+ ens.faults[k] = ",".join(code)
+
+ if rdr._debug_level > -1:
+ logging.info("Read Sentinel V Event Log")
+ rdr._nbyte = 2 + 6 + 4 * (n_faults - 1)
+
+
+def read_vel_b5_leader(rdr):
+ """Read Sentinel V vertical beam (b5) leader: 0x0F01"""
+ cfg = rdr.cfg
+ fd = rdr.f
+ rdr.vars_read += ["time_b5"] # Make sure this is added
+ cfg["n_cells_b5"] = fd.read_ui16(1)
+ fd.read_ui16(1) # n_pings_b5
+ cfg["cell_size_b5"] = fd.read_ui16(1) * 0.01
+ cfg["bin1_dist_b5_m"] = fd.read_ui16(1) * 0.01
+ cfg["mode_b5"] = fd.read_ui16(1)
+ cfg["transmit_pulse_b5_m"] = fd.read_ui16(1) * 0.01
+ cfg["transmit_lag_b5_m"] = fd.read_ui16(1) * 0.01
+ fd.read_ui16(1) # transmit_code_elements
+ fd.read_ui16(1) # vertical_rssi_threshold
+ fd.read_ui16(1) # vertical_shallow_bin
+ fd.read_ui16(1) # vertical_start_bin
+ fd.read_ui16(1) # vertical_shallow_rssi_bin
+ fd.read_ui16(1) # max_core_threshold
+ fd.read_ui16(1) # min_core_threshold
+ cfg["ping_offset_time_b5"] = fd.read_ui16(1) * 0.001
+ fd.seek(2, 1)
+ fd.read_ui16(1) # depth_screen
+ cfg["min_prcnt_gd_b5"] = fd.read_ui16(1)
+ fd.read_ui16(1) # vertical_do_proofing
+
+ if rdr._debug_level > -1:
+ logging.info("Read Sentinel V Event Log")
+ rdr._nbyte = 2 + 38
+
+
+def read_vel_b5(rdr):
+ """Read Sentinel V vertical beam water velocity block: 0x0A00"""
+ ens = rdr.ensemble
+ cfg = rdr.cfg
+ rdr.vars_read += ["vel_b5"]
+ n_cells_b5 = cfg["n_cells_b5"]
+
+ vel_b5 = np.array(rdr.f.read_i16(n_cells_b5)) * 0.001
+ ens["vel_b5"][:n_cells_b5, ens.k] = vel_b5
+ rdr._nbyte = 2 + n_cells_b5 * 2
+ if rdr._debug_level > -1:
+ logging.info("Read Vel Beam 5")
+
+
+def read_corr_b5(rdr):
+ """Read Sentinel V vertical beam acoustic signal correlation block: 0x0B00"""
+ ens = rdr.ensemble
+ cfg = rdr.cfg
+ rdr.vars_read += ["corr_b5"]
+ n_cells_b5 = cfg["n_cells_b5"]
+
+ ens["corr_b5"][:n_cells_b5, ens.k] = np.array(rdr.f.read_ui8(n_cells_b5))
+ rdr._nbyte = 2 + n_cells_b5
+ if rdr._debug_level > -1:
+ logging.info("Read Corr Beam 5")
+
+
+def read_amp_b5(rdr):
+ """Read Sentinel V vertical beam acoustic signal amplitude block: 0C00"""
+ ens = rdr.ensemble
+ cfg = rdr.cfg
+ rdr.vars_read += ["amp_b5"]
+ n_cells_b5 = cfg["n_cells_b5"]
+
+ ens["amp_b5"][:n_cells_b5, ens.k] = np.array(rdr.f.read_ui8(n_cells_b5))
+ rdr._nbyte = 2 + n_cells_b5
+ if rdr._debug_level > -1:
+ logging.info("Read Amp Beam 5")
+
+
+def read_prcnt_gd_b5(rdr):
+ """Read Sentinel V vertical beam acoustic signal 'percent good' block: 0x0D00"""
+ ens = rdr.ensemble
+ cfg = rdr.cfg
+ rdr.vars_read += ["prcnt_gd_b5"]
+ n_cells_b5 = cfg["n_cells_b5"]
+
+ ens["prcnt_gd_b5"][:n_cells_b5, ens.k] = np.array(rdr.f.read_ui8(n_cells_b5))
+ rdr._nbyte = 2 + n_cells_b5
+ if rdr._debug_level > -1:
+ logging.info("Read PG Beam 5")
diff --git a/mhkit/dolfyn/io/rdi_lib.py b/mhkit/dolfyn/io/rdi_lib.py
index 03e8e2c60..897cc0c91 100644
--- a/mhkit/dolfyn/io/rdi_lib.py
+++ b/mhkit/dolfyn/io/rdi_lib.py
@@ -128,16 +128,13 @@ class _ensemble:
def __getitem__(self, nm):
return getattr(self, nm)
- def __init__(self, navg, n_cells):
- if navg is None or navg == 0:
- navg = 1
- self.n_avg = navg
+ def __init__(self, n_cells):
self.n_cells = n_cells
for nm in data_defs:
setattr(
self,
nm,
- np.zeros(_get_size(nm, n=navg, ncell=n_cells), dtype=data_defs[nm][2]),
+ np.zeros(_get_size(nm, n=1, ncell=n_cells), dtype=data_defs[nm][2]),
)
def clean_data(self):
diff --git a/mhkit/dolfyn/rotate/api.py b/mhkit/dolfyn/rotate/api.py
index 13fb13326..25cabc673 100644
--- a/mhkit/dolfyn/rotate/api.py
+++ b/mhkit/dolfyn/rotate/api.py
@@ -246,15 +246,28 @@ def set_declination(ds, declin, inplace=True):
else:
rotate2earth = False
- ds["orientmat"].values = np.einsum(
- "kj...,ij->ki...",
- ds["orientmat"].values,
- Rdec,
- ).astype(np.float32)
+ # Should only be one of these:
+ if "orientmat" in ds:
+ ds["orientmat"].values = np.einsum(
+ "kj...,ij->ki...",
+ ds["orientmat"].values,
+ Rdec,
+ ).astype(np.float32)
+ elif "orientmat_avg" in ds:
+ ds["orientmat_avg"].values = np.einsum(
+ "kj...,ij->ki...",
+ ds["orientmat_avg"].values,
+ Rdec,
+ ).astype(np.float32)
+
if "heading" in ds:
heading = ds["heading"] + angle
heading[heading > 180] -= 360
ds["heading"].values = heading
+ elif "heading_avg" in ds:
+ heading = ds["heading_avg"] + angle
+ heading[heading > 180] -= 360
+ ds["heading_avg"].values = heading
if rotate2earth:
rotate2(ds, "earth", inplace=True)
diff --git a/mhkit/dolfyn/rotate/base.py b/mhkit/dolfyn/rotate/base.py
index 9ffa4f282..ad4d3d946 100644
--- a/mhkit/dolfyn/rotate/base.py
+++ b/mhkit/dolfyn/rotate/base.py
@@ -49,7 +49,7 @@ def _set_coords(ds, ref_frame, forced=False):
XYZ = ["X", "Y", "Z"]
ENU = ["E", "N", "U"]
- beam = ds.beam.values
+ beam = ds["beam"].values
principal = ["streamwise", "x-stream", "vert"]
# check make/model
diff --git a/mhkit/dolfyn/rotate/signature.py b/mhkit/dolfyn/rotate/signature.py
index 771842842..3619be60f 100644
--- a/mhkit/dolfyn/rotate/signature.py
+++ b/mhkit/dolfyn/rotate/signature.py
@@ -57,13 +57,22 @@ def _inst2earth(adcpo, reverse=False, rotate_vars=None, force=False):
if "orientmat" in adcpo:
omat = adcpo["orientmat"]
- else:
+ elif "orientmat_avg" in adcpo:
+ omat = adcpo["orientmat_avg"]
+ elif "time" in adcpo:
omat = _euler2orient(
adcpo["time"],
adcpo["heading"].values,
adcpo["pitch"].values,
adcpo["roll"].values,
)
+ elif "time_avg" in adcpo:
+ omat = _euler2orient(
+ adcpo["time_avg"],
+ adcpo["heading_avg"].values,
+ adcpo["pitch_avg"].values,
+ adcpo["roll_avg"].values,
+ )
# Take the transpose of the orientation to get the inst->earth rotation
# matrix.
diff --git a/mhkit/dolfyn/rotate/vector.py b/mhkit/dolfyn/rotate/vector.py
index e390322f8..df37b0f9c 100644
--- a/mhkit/dolfyn/rotate/vector.py
+++ b/mhkit/dolfyn/rotate/vector.py
@@ -345,7 +345,7 @@ def _euler2orient(time, heading, pitch, roll, units="degree"):
)
return xr.DataArray(
omat,
- coords={"earth": earth, "inst": inst, "time": time},
- dims=["earth", "inst", "time"],
+ coords={"earth": earth, "inst": inst, time.name: time},
+ dims=["earth", "inst", time.name],
attrs={"units": "1", "long_name": "Orientation Matrix"},
)
diff --git a/mhkit/dolfyn/time.py b/mhkit/dolfyn/time.py
index ed25b23a5..bceb699b5 100644
--- a/mhkit/dolfyn/time.py
+++ b/mhkit/dolfyn/time.py
@@ -123,18 +123,17 @@ def epoch2date(ep_time, offset_hr=0, to_str=False):
elif not isinstance(ep_time, (np.ndarray, list)):
ep_time = [ep_time]
- ######### IMPORTANT #########
- # Note the use of `utcfromtimestamp` here, rather than `fromtimestamp`
- # This is CRITICAL! See the difference between those functions here:
- # https://docs.python.org/3/library/datetime.html#datetime.datetime.fromtimestamp
- # Long story short: `fromtimestamp` used system-specific timezone
- # info to calculate the datetime object, but returns a
- # timezone-agnostic object.
if offset_hr != 0:
delta = timedelta(hours=offset_hr)
- time = [datetime.utcfromtimestamp(t) + delta for t in ep_time]
+ time = [
+ datetime.fromtimestamp(t, timezone.utc).replace(tzinfo=None) + delta
+ for t in ep_time
+ ]
else:
- time = [datetime.utcfromtimestamp(t) for t in ep_time]
+ time = [
+ datetime.fromtimestamp(t, timezone.utc).replace(tzinfo=None)
+ for t in ep_time
+ ]
if to_str:
time = date2str(time)
diff --git a/mhkit/dolfyn/velocity.py b/mhkit/dolfyn/velocity.py
index adfa942f3..bb95c40c7 100644
--- a/mhkit/dolfyn/velocity.py
+++ b/mhkit/dolfyn/velocity.py
@@ -18,10 +18,6 @@ class Velocity:
:class:`VelBinner` tool, but the method for calculating these
variables can depend on the details of the measurement
(instrument, it's configuration, orientation, etc.).
-
- See Also
- ========
- :class:`VelBinner`
"""
########
@@ -43,7 +39,7 @@ def rotate2(self, out_frame="earth", inplace=True):
Returns
-------
ds : xarray.Dataset or None
- Returns the rotated dataset **when ``inplace=False``**, otherwise
+ Returns the rotated dataset **when `inplace=False`**, otherwise
returns None.
Notes
@@ -128,7 +124,7 @@ def set_inst2head_rotmat(self, rotmat, inplace=True):
Returns
-------
ds : xarray.Dataset or None
- Returns the rotated dataset **when ``inplace=False``**, otherwise
+ Returns the rotated dataset **when `inplace=False`**, otherwise
returns None.
Notes
@@ -155,7 +151,7 @@ def save(self, filename, **kwargs):
Notes
-----
- See DOLfYN's :func:`save ` function for
+ See DOLfYN's :func:`save ` function for
additional details.
"""
@@ -177,10 +173,11 @@ def __repr__(
self,
):
time_string = "{:.2f} {} (started: {})"
- if "time" not in self or dt642epoch(self["time"][0]) < 1:
+ time = "time" if "time" in self else "time_avg"
+ if time not in self or dt642epoch(self[time][0]) < 1:
time_string = "-->No Time Information!<--"
else:
- tm = self["time"][[0, -1]].values
+ tm = self[time][[0, -1]].values
dt = dt642date(tm[0])[0]
delta = (dt642epoch(tm[-1]) - dt642epoch(tm[0])) / (3600 * 24) # days
if delta > 1:
@@ -202,7 +199,7 @@ def __repr__(
time_string = "-->Error in time info<--"
p = self.ds.attrs
- t_shape = self["time"].shape
+ t_shape = self[time].shape
if len(t_shape) > 1:
shape_string = "({} bins, {} pings @ {}Hz)".format(
t_shape[0], t_shape, p.get("fs")
@@ -298,9 +295,9 @@ def u(
"""
The first velocity component.
- This is simply a shortcut to self['vel'][0]. Therefore,
+ This is simply a shortcut to ``self['vel'][0]``. Therefore,
depending on the coordinate system of the data object
- (self.attrs['coord_sys']), it is:
+ (``self.attrs['coord_sys']``), it is:
- beam: beam1
- inst: x
@@ -316,9 +313,9 @@ def v(
"""
The second velocity component.
- This is simply a shortcut to self['vel'][1]. Therefore,
+ This is simply a shortcut to ``self['vel'][1]``. Therefore,
depending on the coordinate system of the data object
- (self.attrs['coord_sys']), it is:
+ (``self.attrs['coord_sys']``), it is:
- beam: beam2
- inst: y
@@ -334,9 +331,9 @@ def w(
"""
The third velocity component.
- This is simply a shortcut to self['vel'][2]. Therefore,
+ This is simply a shortcut to ``self['vel'][2]``. Therefore,
depending on the coordinate system of the data object
- (self.attrs['coord_sys']), it is:
+ (``self.attrs['coord_sys']``), it is:
- beam: beam3
- inst: z
@@ -360,7 +357,7 @@ def U(
def U_mag(
self,
):
- """Horizontal velocity magnitude"""
+ """Horizontal velocity magnitude, i.e., speed"""
return xr.DataArray(
np.abs(self.U).astype("float32"),
@@ -376,7 +373,7 @@ def U_dir(
self,
):
"""
- Angle of horizontal velocity vector. Direction is 'to',
+ Angle of horizontal velocity vector, i.e., direction. Direction is 'to',
as opposed to 'from'. This function calculates angle as
"degrees CCW from X/East/streamwise" and then converts it to
"degrees CW from X/North/streamwise".
@@ -415,8 +412,8 @@ def E_coh(
"""
Coherent turbulent energy
- Niel Kelley's 'coherent turbulence energy', which is the RMS
- of the Reynold's stresses.
+ Niel Kelley's 'coherent turbulence energy', which is the
+ root-mean-square of the Reynold's stresses.
See: NREL Technical Report TP-500-52353
"""
@@ -437,7 +434,7 @@ def I_tke(self, thresh=0):
"""
Turbulent kinetic energy intensity.
- Ratio of sqrt(tke) to horizontal velocity magnitude.
+ Ratio of sqrt(TKE) to horizontal velocity magnitude.
"""
I_tke = np.ma.masked_where(
self.U_mag < thresh, np.sqrt(2 * self.tke) / self.U_mag
@@ -481,7 +478,7 @@ def tke(
def upvp_(
self,
):
- """u'v'bar Reynolds stress"""
+ """:math:`\\overline{u'v'}` Reynolds stress"""
return self.ds["stress_vec"].sel(tau="upvp_").drop_vars("tau")
@@ -489,7 +486,7 @@ def upvp_(
def upwp_(
self,
):
- """u'w'bar Reynolds stress"""
+ """:math:`\\overline{u'w'}` Reynolds stress"""
return self.ds["stress_vec"].sel(tau="upwp_").drop_vars("tau")
@@ -497,7 +494,7 @@ def upwp_(
def vpwp_(
self,
):
- """v'w'bar Reynolds stress"""
+ """:math:`\\overline{v'w'}` Reynolds stress"""
return self.ds["stress_vec"].sel(tau="vpwp_").drop_vars("tau")
@@ -505,7 +502,7 @@ def vpwp_(
def upup_(
self,
):
- """u'u'bar component of the tke"""
+ """:math:`\\overline{u'u'}` component of the TKE vector"""
return self.ds["tke_vec"].sel(tke="upup_").drop_vars("tke")
@@ -513,7 +510,7 @@ def upup_(
def vpvp_(
self,
):
- """v'v'bar component of the tke"""
+ """:math:`\\overline{v'v'}` component of the TKE vector"""
return self.ds["tke_vec"].sel(tke="vpvp_").drop_vars("tke")
@@ -521,7 +518,7 @@ def vpvp_(
def wpwp_(
self,
):
- """w'w'bar component of the tke"""
+ """:math:`\\overline{w'w'}` component of the TKE vector"""
return self.ds["tke_vec"].sel(tke="wpwp_").drop_vars("tke")
@@ -602,30 +599,30 @@ def bin_average(self, raw_ds, out_ds=None, names=None):
Parameters
----------
raw_ds : xarray.Dataset
- The raw data structure to be binned
+ The raw data structure to be binned
out_ds : xarray.Dataset
- The bin'd (output) data object to which averaged data is added.
+ The binned (output) data object to which averaged data is added.
names : list of strings
- The names of variables to be averaged. If `names` is None,
- all data in `raw_ds` will be binned.
+ The names of variables to be averaged. If `names` is None,
+ all data in `raw_ds` will be binned.
Returns
-------
out_ds : xarray.Dataset
- The new (or updated when out_ds is not None) dataset
- with the averages of all the variables in raw_ds.
+ The new (or updated when `out_ds` is not None) dataset
+ with the averages of all the variables in `raw_ds`.
Raises
------
- AttributeError : when out_ds is supplied as input (not None)
- and the values in out_ds.attrs are inconsistent with
- raw_ds.attrs or the properties of this VelBinner (n_bin,
- n_fft, fs, etc.)
+ AttributeError : when `out_ds` is supplied as input (not None)
+ and the values in ``out_ds.attrs`` are inconsistent with
+ ``raw_ds.attrs`` or the properties of this VelBinner (`n_bin`,
+ `n_fft`, `fs`, etc.)
Notes
-----
- raw_ds.attrs are copied to out_ds.attrs. Inconsistencies
- between the two (when out_ds is specified as input) raise an
+ ``raw_ds.attrs`` are copied to ``out_ds.attrs``. Inconsistencies
+ between the two (when `out_ds` is specified as input) raise an
AttributeError.
"""
@@ -657,52 +654,54 @@ def bin_average(self, raw_ds, out_ds=None, names=None):
).astype("float32")
except: # variables not needing averaging
pass
- # Add standard deviation
- std = self.standard_deviation(raw_ds.velds.U_mag.values)
- out_ds["U_std"] = xr.DataArray(
- std.astype("float32"),
- dims=raw_ds.vel.dims[1:],
- attrs={
- "units": "m s-1",
- "long_name": "Water Velocity Standard Deviation",
- },
- )
+
+ # Add standard deviation
+ std = self.standard_deviation(raw_ds.velds.U_mag.values)
+ out_ds["U_std"] = xr.DataArray(
+ std.astype("float32"),
+ dims=raw_ds.vel.dims[1:],
+ attrs={
+ "units": "m s-1",
+ "long_name": "Water Velocity Standard Deviation",
+ },
+ )
return out_ds
def bin_variance(self, raw_ds, out_ds=None, names=None, suffix="_var"):
"""
Bin the dataset and calculate the ensemble variances of each
- variable. Complementary to `bin_average()`.
+ variable. Complementary to :func:`bin_average `.
Parameters
----------
raw_ds : xarray.Dataset
- The raw data structure to be binned.
+ The raw data structure to be binned.
out_ds : xarray.Dataset
- The binned (output) dataset to which variance data is added,
- nominally dataset output from `bin_average()`
+ The binned (output) dataset to which variance data is added,
+ nominally the dataset output from
+ :func:`bin_average `.
names : list of strings
- The names of variables of which to calculate variance. If
- `names` is None, all data in `raw_ds` will be binned.
+ The names of variables of which to calculate variance. If
+ `names` is None, all data in `raw_ds` will be binned.
Returns
-------
out_ds : xarray.Dataset
- The new (or updated when out_ds is not None) dataset
- with the variance of all the variables in raw_ds.
+ The new (or updated when `out_ds` is not None) dataset
+ with the variance of all the variables in `raw_ds`.
Raises
------
- AttributeError : when out_ds is supplied as input (not None)
- and the values in out_ds.attrs are inconsistent with
- raw_ds.attrs or the properties of this VelBinner (n_bin,
- n_fft, fs, etc.)
+ AttributeError : when `out_ds` is supplied as input (not None)
+ and the values in ``out_ds.attrs`` are inconsistent with
+ ``raw_ds.attrs`` or the properties of this VelBinner (`n_bin`,
+ `n_fft`, `fs`, etc.)
Notes
-----
- raw_ds.attrs are copied to out_ds.attrs. Inconsistencies
- between the two (when out_ds is specified as input) raise an
+ ``raw_ds.attrs`` are copied to ``out_ds.attrs``. Inconsistencies
+ between the two (when `out_ds` is specified as input) raise an
AttributeError.
"""
@@ -805,21 +804,26 @@ def autocovariance(self, veldat, n_bin=None):
def turbulence_intensity(self, U_mag, noise=0, thresh=0, detrend=False):
"""
- Calculate noise-corrected turbulence intensity.
+ Calculate noise-corrected turbulence intensity (TI).
Parameters
----------
U_mag : xarray.DataArray
- Raw horizontal velocity magnitude
+ Raw horizontal velocity magnitude (i.e., computed using
+ :func:`U_mag `)
noise : numeric
Instrument noise level in same units as velocity. Typically
- found from `.turbulence.doppler_noise_level`.
- Default: None.
+ found from the ADV's
+ :func:`doppler_noise_level `.
+ or ADCP's
+ :func:`doppler_noise_level `.
+ Default = None
thresh : numeric
Theshold below which TI will not be calculated
- detrend : bool (default: False)
+ detrend : bool
Detrend the velocity data (True), or simply de-mean it
(False), prior to computing TI.
+ Default = False
"""
if "xarray" in type(U_mag).__module__:
@@ -859,8 +863,8 @@ def turbulence_intensity(self, U_mag, noise=0, thresh=0, detrend=False):
def turbulent_kinetic_energy(self, veldat, noise=None, detrend=True):
"""
- Calculate the turbulent kinetic energy (TKE) (variances
- of u,v,w).
+ Calculate the turbulent kinetic energy (TKE) (:math:`\\overline{u'u'}`,
+ :math:`\\overline{v'v'}`, :math:`\\overline{w'w'}`).
Parameters
----------
@@ -869,18 +873,22 @@ def turbulent_kinetic_energy(self, veldat, noise=None, detrend=True):
The last dimension is assumed to be time.
noise : float or array-like
Instrument noise level in same units as velocity. Typically
- found from `.turbulence.doppler_noise_level`.
- Default: None.
- detrend : bool (default: False)
- Detrend the velocity data (True), or simply de-mean it
- (False), prior to computing TKE. Note: the PSD routines
- use detrend, so if you want to have the same amount of
- variance here as there use ``detrend=True``.
+ found from the ADV's
+ :func:`doppler_noise_level `.
+ or ADCP's
+ :func:`doppler_noise_level `.
+ Default = None
+ detrend : bool
+ Detrend the velocity data (True), or simply de-mean it (False),
+ prior to computing TKE. Default = False
+
+ Note: the PSD routines use detrend, so if you want to have the same
+ amount of variance here as there use ``detrend=True``.
Returns
-------
tke_vec : xarray.DataArray
- dataArray containing u'u'_, v'v'_ and w'w'_
+ dataArray containing ``u'u'_``, ``v'v'_`` and ``w'w'_``
"""
if "xarray" in type(veldat).__module__:
@@ -958,25 +966,24 @@ def power_spectral_density(
Parameters
----------
- veldat : xr.DataArray
- The raw velocity data (of dims 'dir' and 'time').
+ veldat : xr.DataArray (dir, time)
+ The raw velocity data
freq_units : string
Frequency units of the returned spectra in either Hz or rad/s
- (`f` or :math:`\\omega`)
fs : float (optional)
The sample rate. Default is `binner.fs`
window : string or array
Specify the window function.
- Options: 1, None, 'hann', 'hamm'
+ Options = 1, None, 'hann', 'hamm'. Default = 'hann'
noise : numeric or array
Instrument noise level in same units as velocity.
- Default: 0 (ADCP) or [0, 0, 0] (ADV).
+ Default = 0 (ADCP) or [0, 0, 0] (ADV)
n_bin : int (optional)
- The bin-size. Default: from the binner.
+ The bin-size. Default = `self.n_bin`
n_fft : int (optional)
- The fft size. Default: from the binner.
+ The fft size. Default = `self.n_fft`
n_pad : int (optional)
- The number of values to pad with zero. Default = 0.
+ The number of values to pad with zero. Default = 0
step : int (optional)
Controls amount of overlap in fft. Default: the step size is
chosen to maximize data use, minimize nens, and have a
@@ -984,7 +991,7 @@ def power_spectral_density(
Returns
-------
- psd : xarray.DataArray (3, M, N_FFT)
+ psd : xarray.DataArray (dir, time, freq)
The spectra in the 'u', 'v', and 'w' directions.
"""
diff --git a/mhkit/loads/__init__.py b/mhkit/loads/__init__.py
index 4c21c7391..1016f49c0 100644
--- a/mhkit/loads/__init__.py
+++ b/mhkit/loads/__init__.py
@@ -1,7 +1,7 @@
"""
The `loads` package of the MHKiT (Marine and Hydrokinetic Toolkit) library
provides tools and functionalities for analyzing and visualizing loads data
-from marine and hydrokinetic (MHK) devices. This package is designed to
+from marine and hydrokinetic (MHK) devices. This package is designed to
assist engineers, researchers, and analysts in understanding the forces and
stresses applied to MHK devices under various operational and environmental
conditions.
diff --git a/mhkit/loads/extreme/__init__.py b/mhkit/loads/extreme/__init__.py
index 318a2cdc8..f5ac42aec 100644
--- a/mhkit/loads/extreme/__init__.py
+++ b/mhkit/loads/extreme/__init__.py
@@ -3,7 +3,7 @@
and wave data statistics.
It includes methods for calculating peaks over threshold, estimating
-short-term extreme distributions,and performing wave amplitude
+short-term extreme distributions,and performing wave amplitude
normalization for most likely extreme response analysis.
"""
diff --git a/mhkit/loads/extreme/extremes.py b/mhkit/loads/extreme/extremes.py
index 81353127d..6a5831b95 100644
--- a/mhkit/loads/extreme/extremes.py
+++ b/mhkit/loads/extreme/extremes.py
@@ -1,29 +1,29 @@
"""
This module provides functionality for estimating the short-term and
-long-term extreme distributions of responses in a time series. It
-includes methods for analyzing peaks, block maxima, and applying
-statistical distributions to model extreme events. The module supports
-various methods for short-term extreme estimation, including peaks
-fitting with Weibull, tail fitting, peaks over threshold, and block
-maxima methods with GEV (Generalized Extreme Value) and Gumbel
-distributions. Additionally, it offers functionality to approximate
-the long-term extreme distribution by weighting short-term extremes
+long-term extreme distributions of responses in a time series. It
+includes methods for analyzing peaks, block maxima, and applying
+statistical distributions to model extreme events. The module supports
+various methods for short-term extreme estimation, including peaks
+fitting with Weibull, tail fitting, peaks over threshold, and block
+maxima methods with GEV (Generalized Extreme Value) and Gumbel
+distributions. Additionally, it offers functionality to approximate
+the long-term extreme distribution by weighting short-term extremes
across different sea states.
Functions:
-- ste_peaks: Estimates the short-term extreme distribution from peaks
+- ste_peaks: Estimates the short-term extreme distribution from peaks
distribution using specified statistical methods.
- block_maxima: Finds the block maxima in a time-series data to be used
in block maxima methods.
-- ste_block_maxima_gev: Approximates the short-term extreme distribution
+- ste_block_maxima_gev: Approximates the short-term extreme distribution
using the block maxima method with the GEV distribution.
-- ste_block_maxima_gumbel: Approximates the short-term extreme
+- ste_block_maxima_gumbel: Approximates the short-term extreme
distribution using the block maxima method with the Gumbel distribution.
-- ste: Alias for `short_term_extreme`, facilitating easier access to the
+- ste: Alias for `short_term_extreme`, facilitating easier access to the
primary functionality of estimating short-term extremes.
-- short_term_extreme: Core function to approximate the short-term extreme
+- short_term_extreme: Core function to approximate the short-term extreme
distribution from a time series using chosen methods.
-- full_seastate_long_term_extreme: Combines short-term extreme
+- full_seastate_long_term_extreme: Combines short-term extreme
distributions using weights to estimate the long-term extreme distribution.
"""
diff --git a/mhkit/loads/extreme/mler.py b/mhkit/loads/extreme/mler.py
index f77f7d883..63ecb8b45 100644
--- a/mhkit/loads/extreme/mler.py
+++ b/mhkit/loads/extreme/mler.py
@@ -1,5 +1,5 @@
"""
-This module provides functionalities to calculate and analyze Most
+This module provides functionalities to calculate and analyze Most
Likely Extreme Response (MLER) coefficients for wave energy converter
design and risk assessment. It includes functions to:
@@ -7,10 +7,10 @@
spectrum and a response Amplitude Response Operator (ARO).
- Define and manipulate simulation parameters (`mler_simulation`) used
across various MLER analyses.
- - Renormalize the incoming amplitude of the MLER wave
+ - Renormalize the incoming amplitude of the MLER wave
(`mler_wave_amp_normalize`) to match the desired peak height for more
accurate modeling and analysis.
- - Export the wave amplitude time series (`mler_export_time_series`)
+ - Export the wave amplitude time series (`mler_export_time_series`)
based on the calculated MLER coefficients for further analysis or
visualization.
"""
diff --git a/mhkit/loads/extreme/peaks.py b/mhkit/loads/extreme/peaks.py
index cd2c1164b..9b31bb334 100644
--- a/mhkit/loads/extreme/peaks.py
+++ b/mhkit/loads/extreme/peaks.py
@@ -1,15 +1,15 @@
"""
This module provides utilities for analyzing wave data, specifically
for identifying significant wave heights and estimating wave peak
-distributions using statistical methods.
+distributions using statistical methods.
Functions:
-- _calculate_window_size: Calculates the window size for peak
+- _calculate_window_size: Calculates the window size for peak
independence using the auto-correlation function of wave peaks.
-- _peaks_over_threshold: Identifies peaks over a specified
+- _peaks_over_threshold: Identifies peaks over a specified
threshold and returns independent storm peak values adjusted by
the threshold.
-- global_peaks: Identifies global peaks in a zero-centered
+- global_peaks: Identifies global peaks in a zero-centered
response time-series based on consecutive zero up-crossings.
- number_of_short_term_peaks: Estimates the number of peaks within a
specified short-term period.
@@ -20,13 +20,13 @@
- automatic_hs_threshold: Determines the best significant wave height
threshold for the peaks-over-threshold method.
- peaks_distribution_peaks_over_threshold: Estimates the peaks
- distribution using the peaks over threshold method by fitting a
+ distribution using the peaks over threshold method by fitting a
generalized Pareto distribution.
References:
-- Neary, V. S., S. Ahn, B. E. Seng, M. N. Allahdadi, T. Wang, Z. Yang,
- and R. He (2020). "Characterization of Extreme Wave Conditions for
- Wave Energy Converter Design and Project Risk Assessment.” J. Mar.
+- Neary, V. S., S. Ahn, B. E. Seng, M. N. Allahdadi, T. Wang, Z. Yang,
+ and R. He (2020). "Characterization of Extreme Wave Conditions for
+ Wave Energy Converter Design and Project Risk Assessment.” J. Mar.
Sci. Eng. 2020, 8(4), 289; https://doi.org/10.3390/jmse8040289.
"""
diff --git a/mhkit/loads/extreme/sample.py b/mhkit/loads/extreme/sample.py
index 3da0377de..078b05217 100644
--- a/mhkit/loads/extreme/sample.py
+++ b/mhkit/loads/extreme/sample.py
@@ -2,10 +2,10 @@
This module provides statistical analysis tools for extreme value
analysis in environmental and engineering applications. It focuses on
estimating values corresponding to specific return periods based on
-the statistical distribution of observed or simulated data.
+the statistical distribution of observed or simulated data.
Functionality:
-- return_year_value: Calculates the value from a given distribution
+- return_year_value: Calculates the value from a given distribution
corresponding to a specified return year. This function is particularly
useful for determining design values for engineering structures or for
risk assessment in environmental studies.
diff --git a/mhkit/loads/general.py b/mhkit/loads/general.py
index 119731443..756469191 100644
--- a/mhkit/loads/general.py
+++ b/mhkit/loads/general.py
@@ -2,7 +2,7 @@
This module provides tools for analyzing and processing data signals
related to turbine blade performance and fatigue analysis. It implements
methodologies based on standards such as IEC TS 62600-3:2020 ED1,
-incorporating statistical binning, moment calculations, and fatigue
+incorporating statistical binning, moment calculations, and fatigue
damage estimation using the rainflow counting algorithm. Key
functionalities include:
@@ -11,8 +11,8 @@
for each bin, following IEC TS 62600-3:2020 ED1 guidelines. It supports
output in both pandas DataFrame and xarray Dataset formats.
- - `blade_moments`: Calculates the flapwise and edgewise moments of turbine
- blades using derived calibration coefficients and raw strain signals.
+ - `blade_moments`: Calculates the flapwise and edgewise moments of turbine
+ blades using derived calibration coefficients and raw strain signals.
This function is crucial for understanding the loading and performance
characteristics of turbine blades.
diff --git a/mhkit/loads/graphics.py b/mhkit/loads/graphics.py
index 9cd835b81..c458e8d92 100644
--- a/mhkit/loads/graphics.py
+++ b/mhkit/loads/graphics.py
@@ -1,6 +1,6 @@
"""
This module provides functionalities for plotting statistical data
-related to a given variable or dataset.
+related to a given variable or dataset.
- `plot_statistics` is designed to plot raw statistical measures
(mean, maximum, minimum, and optional standard deviation) of a
@@ -9,8 +9,8 @@
- `plot_bin_statistics` extends these capabilities to binned data,
offering a way to visualize binned statistics (mean, maximum, minimum)
- along with their respective standard deviations. This function also
- supports label and title customization, as well as saving the plot to
+ along with their respective standard deviations. This function also
+ supports label and title customization, as well as saving the plot to
a specified path.
"""
diff --git a/mhkit/mooring/graphics.py b/mhkit/mooring/graphics.py
index 0ba9bd52b..6298e546b 100644
--- a/mhkit/mooring/graphics.py
+++ b/mhkit/mooring/graphics.py
@@ -1,20 +1,20 @@
"""
-This module provides a function for creating animated visualizations of a
-MoorDyn node position dataset using the matplotlib animation API.
+This module provides a function for creating animated visualizations of a
+MoorDyn node position dataset using the matplotlib animation API.
-It includes the main function `animate`, which creates either 2D or 3D
-animations depending on the input parameters.
+It includes the main function `animate`, which creates either 2D or 3D
+animations depending on the input parameters.
-In the animations, the position of nodes in the MoorDyn dataset are plotted
-over time, allowing the user to visualize how these positions change.
+In the animations, the position of nodes in the MoorDyn dataset are plotted
+over time, allowing the user to visualize how these positions change.
-This module also includes several helper functions that are used by
-`animate` to validate inputs, generate lists of nodes along each axis,
-calculate plot limits, and set labels and titles for plots.
+This module also includes several helper functions that are used by
+`animate` to validate inputs, generate lists of nodes along each axis,
+calculate plot limits, and set labels and titles for plots.
-The user can specify various parameters for the animation such as the
-dimension (2D or 3D), the axes to plot along, the plot limits for each
-axis, the interval between frames, whether the animation repeats, and the
+The user can specify various parameters for the animation such as the
+dimension (2D or 3D), the axes to plot along, the plot limits for each
+axis, the interval between frames, whether the animation repeats, and the
labels and title for the plot.
Requires:
diff --git a/mhkit/mooring/io.py b/mhkit/mooring/io.py
index 85a3e2227..f608e4678 100644
--- a/mhkit/mooring/io.py
+++ b/mhkit/mooring/io.py
@@ -2,12 +2,12 @@
This module provides functions to read and parse MoorDyn output files.
The main function read_moordyn takes as input the path to a MoorDyn output file and optionally
-the path to a MoorDyn input file. It reads the data from the output file, stores it in an
-xarray dataset, and then if provided, parses the input file for additional metadata to store
+the path to a MoorDyn input file. It reads the data from the output file, stores it in an
+xarray dataset, and then if provided, parses the input file for additional metadata to store
as attributes in the dataset.
-The helper function _moordyn_input is used to parse the MoorDyn output file. It loops through
-each line in the output file, parses various sets of properties and parameters, and stores
+The helper function _moordyn_input is used to parse the MoorDyn output file. It loops through
+each line in the output file, parses various sets of properties and parameters, and stores
them as attributes in the provided dataset.
Typical usage example:
diff --git a/mhkit/power/characteristics.py b/mhkit/power/characteristics.py
index 0ae45a789..24f80713d 100644
--- a/mhkit/power/characteristics.py
+++ b/mhkit/power/characteristics.py
@@ -1,21 +1,21 @@
"""
-This module contains functions for calculating electrical power metrics from
-measured voltage and current data. It supports both direct current (DC) and
-alternating current (AC) calculations, including instantaneous frequency
-analysis for AC signals and power calculations for three-phase AC systems.
-The calculations can accommodate both line-to-neutral and line-to-line voltage
-measurements and offer flexibility in output formats, allowing results to be
+This module contains functions for calculating electrical power metrics from
+measured voltage and current data. It supports both direct current (DC) and
+alternating current (AC) calculations, including instantaneous frequency
+analysis for AC signals and power calculations for three-phase AC systems.
+The calculations can accommodate both line-to-neutral and line-to-line voltage
+measurements and offer flexibility in output formats, allowing results to be
saved as either pandas DataFrames or xarray Datasets.
Functions:
instantaneous_frequency: Calculates the instantaneous frequency of a measured
voltage signal over time.
-
+
dc_power: Computes the DC power from voltage and current measurements, providing
both individual channel outputs and a gross power calculation.
-
+
ac_power_three_phase: Calculates the magnitude of active AC power for three-phase
- systems, considering the power factor and voltage measurement configuration
+ systems, considering the power factor and voltage measurement configuration
(line-to-neutral or line-to-line).
"""
diff --git a/mhkit/power/quality.py b/mhkit/power/quality.py
index 3e020f7a6..c34c4d7d2 100644
--- a/mhkit/power/quality.py
+++ b/mhkit/power/quality.py
@@ -1,31 +1,31 @@
"""
-This module contains functions for calculating various aspects of power quality,
-particularly focusing on the analysis of harmonics, interharmonics and distortion
-in electrical power systems. These functions are designed to assist in power
-quality assessments by providing tools to analyze voltage and current signals
-for their harmonic and interharmonic components based on the guidelines and methodologies
+This module contains functions for calculating various aspects of power quality,
+particularly focusing on the analysis of harmonics, interharmonics and distortion
+in electrical power systems. These functions are designed to assist in power
+quality assessments by providing tools to analyze voltage and current signals
+for their harmonic and interharmonic components based on the guidelines and methodologies
outlined in IEC 61000-4-7:2008 ED2 and in IEC 62600-30:2018 ED1.
Functions in this module include:
-- harmonics: Calculates the harmonics from time series of voltage or current.
- This function returns the amplitude of the time-series data harmonics indexed by
- the harmonic frequency, aiding in the identification of harmonic distortions
+- harmonics: Calculates the harmonics from time series of voltage or current.
+ This function returns the amplitude of the time-series data harmonics indexed by
+ the harmonic frequency, aiding in the identification of harmonic distortions
within the power system.
-- harmonic_subgroups: Computes the harmonic subgroups as per IEC 61000-4-7 standards.
- Harmonic subgroups provide insights into the distribution of power across
- different harmonic frequencies, which is crucial for understanding the behavior
+- harmonic_subgroups: Computes the harmonic subgroups as per IEC 61000-4-7 standards.
+ Harmonic subgroups provide insights into the distribution of power across
+ different harmonic frequencies, which is crucial for understanding the behavior
of non-linear loads and their impact on the power quality.
-- total_harmonic_current_distortion (THCD): Determines the total harmonic current
- distortion, offering a summary metric that quantifies the overall level of
- harmonic distortion present in the current waveform. This metric is essential
+- total_harmonic_current_distortion (THCD): Determines the total harmonic current
+ distortion, offering a summary metric that quantifies the overall level of
+ harmonic distortion present in the current waveform. This metric is essential
for assessing compliance with power quality standards and guidelines.
-- interharmonics: Identifies and calculates the interharmonics present in the
- power system. Interharmonics, which are frequencies that occur between the
- fundamental and harmonic frequencies, can arise from various sources and
+- interharmonics: Identifies and calculates the interharmonics present in the
+ power system. Interharmonics, which are frequencies that occur between the
+ fundamental and harmonic frequencies, can arise from various sources and
potentially lead to power quality issues.
"""
@@ -222,7 +222,7 @@ def total_harmonic_current_distortion(
to_pandas: bool = True,
) -> Union[pd.DataFrame, xr.Dataset]:
"""
- Calculates the total harmonic current distortion (THC) based on IEC/TS 62600-30
+ Calculates the total harmonic current distortion (THC) based on IEC TS 62600-30
Parameters
----------
diff --git a/mhkit/river/__init__.py b/mhkit/river/__init__.py
index 8406b8cf1..3bbce832a 100644
--- a/mhkit/river/__init__.py
+++ b/mhkit/river/__init__.py
@@ -1,3 +1,8 @@
+"""
+The river module provides tools and utilities for analyzing river energy resources.
+
+"""
+
from mhkit.river import performance
from mhkit.river import graphics
from mhkit.river import resource
diff --git a/mhkit/river/graphics.py b/mhkit/river/graphics.py
index 50ce5388b..fcaf825ef 100644
--- a/mhkit/river/graphics.py
+++ b/mhkit/river/graphics.py
@@ -1,10 +1,29 @@
+"""
+The graphics module provides plotting utilities for river energy resource data.
+
+"""
+
+from typing import Union, Optional
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
+from matplotlib.axes import Axes
+from numpy.typing import ArrayLike
from mhkit.utils import convert_to_dataarray
-def _xy_plot(x, y, fmt=".", label=None, xlabel=None, ylabel=None, title=None, ax=None):
+# pylint: disable=too-many-arguments
+# pylint: disable=too-many-positional-arguments
+def _xy_plot(
+ x: ArrayLike,
+ y: ArrayLike,
+ fmt: str = ".",
+ label: Optional[str] = None,
+ xlabel: Optional[str] = None,
+ ylabel: Optional[str] = None,
+ title: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Base function to plot any x vs y data
@@ -50,16 +69,21 @@ def _xy_plot(x, y, fmt=".", label=None, xlabel=None, ylabel=None, title=None, ax
return ax
-def plot_flow_duration_curve(D, F, label=None, ax=None):
+def plot_flow_duration_curve(
+ discharge: Union[ArrayLike, xr.DataArray],
+ exceedance_prob: Union[ArrayLike, xr.DataArray],
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots discharge vs exceedance probability as a Flow Duration Curve (FDC)
Parameters
------------
- D: array-like
- Discharge [m/s] indexed by time
+ discharge: array-like
+ Discharge [m3/s] indexed by time
- F: array-like
+ exceedance_prob: array-like
Exceedance probability [unitless] indexed by time
label: string
@@ -74,13 +98,15 @@ def plot_flow_duration_curve(D, F, label=None, ax=None):
ax : matplotlib pyplot axes
"""
- # Sort by F
- temp = xr.Dataset(data_vars={"D": D, "F": F})
- temp = temp.sortby("F", ascending=False)
+ # Sort by exceedance_prob
+ temp = xr.Dataset(
+ data_vars={"discharge": discharge, "exceedance_prob": exceedance_prob}
+ )
+ temp = temp.sortby("exceedance_prob", ascending=False)
ax = _xy_plot(
- temp["D"],
- temp["F"],
+ temp["discharge"],
+ temp["exceedance_prob"],
fmt="-",
label=label,
xlabel="Discharge [$m^3/s$]",
@@ -92,16 +118,21 @@ def plot_flow_duration_curve(D, F, label=None, ax=None):
return ax
-def plot_velocity_duration_curve(V, F, label=None, ax=None):
+def plot_velocity_duration_curve(
+ velocity: Union[ArrayLike, xr.DataArray],
+ exceedance_prob: Union[ArrayLike, xr.DataArray],
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots velocity vs exceedance probability as a Velocity Duration Curve (VDC)
Parameters
------------
- V: array-like
+ velocity: array-like
Velocity [m/s] indexed by time
- F: array-like
+ exceedance_prob: array-like
Exceedance probability [unitless] indexed by time
label: string
@@ -116,13 +147,15 @@ def plot_velocity_duration_curve(V, F, label=None, ax=None):
ax : matplotlib pyplot axes
"""
- # Sort by F
- temp = xr.Dataset(data_vars={"V": V, "F": F})
- temp = temp.sortby("F", ascending=False)
+ # Sort by exceedance_prob
+ temp = xr.Dataset(
+ data_vars={"velocity": velocity, "exceedance_prob": exceedance_prob}
+ )
+ temp = temp.sortby("exceedance_prob", ascending=False)
ax = _xy_plot(
- temp["V"],
- temp["F"],
+ temp["velocity"],
+ temp["exceedance_prob"],
fmt="-",
label=label,
xlabel="Velocity [$m/s$]",
@@ -133,16 +166,21 @@ def plot_velocity_duration_curve(V, F, label=None, ax=None):
return ax
-def plot_power_duration_curve(P, F, label=None, ax=None):
+def plot_power_duration_curve(
+ power: Union[ArrayLike, xr.DataArray],
+ exceedance_prob: Union[ArrayLike, xr.DataArray],
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots power vs exceedance probability as a Power Duration Curve (PDC)
Parameters
------------
- P: array-like
+ power: array-like
Power [W] indexed by time
- F: array-like
+ exceedance_prob: array-like
Exceedance probability [unitless] indexed by time
label: string
@@ -157,13 +195,13 @@ def plot_power_duration_curve(P, F, label=None, ax=None):
ax : matplotlib pyplot axes
"""
- # Sort by F
- temp = xr.Dataset(data_vars={"P": P, "F": F})
- temp.sortby("F", ascending=False)
+ # Sort by exceedance_prob
+ temp = xr.Dataset(data_vars={"power": power, "exceedance_prob": exceedance_prob})
+ temp.sortby("exceedance_prob", ascending=False)
ax = _xy_plot(
- temp["P"],
- temp["F"],
+ temp["power"],
+ temp["exceedance_prob"],
fmt="-",
label=label,
xlabel="Power [W]",
@@ -174,13 +212,18 @@ def plot_power_duration_curve(P, F, label=None, ax=None):
return ax
-def plot_discharge_timeseries(Q, time_dimension="", label=None, ax=None):
+def plot_discharge_timeseries(
+ discharge: Union[ArrayLike, xr.DataArray],
+ time_dimension: str = "",
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots discharge time-series
Parameters
------------
- Q: array-like
+ discharge: array-like
Discharge [m3/s] indexed by time
time_dimension: string (optional)
@@ -199,14 +242,14 @@ def plot_discharge_timeseries(Q, time_dimension="", label=None, ax=None):
ax : matplotlib pyplot axes
"""
- Q = convert_to_dataarray(Q)
+ discharge = convert_to_dataarray(discharge)
if time_dimension == "":
- time_dimension = list(Q.coords)[0]
+ time_dimension = list(discharge.coords)[0]
ax = _xy_plot(
- Q.coords[time_dimension].values,
- Q,
+ discharge.coords[time_dimension].values,
+ discharge,
fmt="-",
label=label,
xlabel="Time",
@@ -217,16 +260,22 @@ def plot_discharge_timeseries(Q, time_dimension="", label=None, ax=None):
return ax
-def plot_discharge_vs_velocity(D, V, polynomial_coeff=None, label=None, ax=None):
+def plot_discharge_vs_velocity(
+ discharge: Union[ArrayLike, xr.DataArray],
+ velocity: Union[ArrayLike, xr.DataArray],
+ polynomial_coeff: Optional[np.poly1d] = None,
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots discharge vs velocity data along with the polynomial fit
Parameters
------------
- D : array-like
- Discharge [m/s] indexed by time
+ discharge : array-like
+ Discharge [m3/s] indexed by time
- V : array-like
+ velocity : array-like
Velocity [m/s] indexed by time
polynomial_coeff: numpy polynomial
@@ -244,8 +293,8 @@ def plot_discharge_vs_velocity(D, V, polynomial_coeff=None, label=None, ax=None)
"""
ax = _xy_plot(
- D,
- V,
+ discharge,
+ velocity,
fmt=".",
label=label,
xlabel="Discharge [$m^3/s$]",
@@ -253,7 +302,7 @@ def plot_discharge_vs_velocity(D, V, polynomial_coeff=None, label=None, ax=None)
ax=ax,
)
if polynomial_coeff:
- x = np.linspace(D.min(), D.max())
+ x = np.linspace(discharge.min(), discharge.max())
ax = _xy_plot(
x,
polynomial_coeff(x),
@@ -267,16 +316,22 @@ def plot_discharge_vs_velocity(D, V, polynomial_coeff=None, label=None, ax=None)
return ax
-def plot_velocity_vs_power(V, P, polynomial_coeff=None, label=None, ax=None):
+def plot_velocity_vs_power(
+ velocity: Union[ArrayLike, xr.DataArray],
+ power: Union[ArrayLike, xr.DataArray],
+ polynomial_coeff: Optional[np.poly1d] = None,
+ label: Optional[str] = None,
+ ax: Optional[Axes] = None,
+) -> Axes:
"""
Plots velocity vs power data along with the polynomial fit
Parameters
------------
- V : array-like
+ velocity : array-like
Velocity [m/s] indexed by time
- P: array-like
+ power: array-like
Power [W] indexed by time
polynomial_coeff: numpy polynomial
@@ -294,8 +349,8 @@ def plot_velocity_vs_power(V, P, polynomial_coeff=None, label=None, ax=None):
"""
ax = _xy_plot(
- V,
- P,
+ velocity,
+ power,
fmt=".",
label=label,
xlabel="Velocity [$m/s$]",
@@ -303,7 +358,7 @@ def plot_velocity_vs_power(V, P, polynomial_coeff=None, label=None, ax=None):
ax=ax,
)
if polynomial_coeff:
- x = np.linspace(V.min(), V.max())
+ x = np.linspace(velocity.min(), velocity.max())
ax = _xy_plot(
x,
polynomial_coeff(x),
diff --git a/mhkit/river/io/__init__.py b/mhkit/river/io/__init__.py
index 852964f7b..9b788514f 100644
--- a/mhkit/river/io/__init__.py
+++ b/mhkit/river/io/__init__.py
@@ -1,2 +1,7 @@
+"""
+This module provides input/output functionality for river energy related data in MHKiT.
+
+"""
+
from mhkit.river.io import usgs
from mhkit.river.io import d3d
diff --git a/mhkit/river/io/d3d.py b/mhkit/river/io/d3d.py
index 19a61df62..7295d7e11 100644
--- a/mhkit/river/io/d3d.py
+++ b/mhkit/river/io/d3d.py
@@ -1,13 +1,22 @@
-from mhkit.utils import unorm
-import scipy.interpolate as interp
+"""
+This module provides functions for reading and processing Delft3D (D3D) model output data.
+It includes utilities for handling NetCDF files generated by Delft3D simulations,
+with specific focus on hydrodynamic data analysis for marine and hydrokinetic applications.
+
+"""
+
+from typing import Union, Optional, List
+import warnings
+import netCDF4
import numpy as np
import pandas as pd
import xarray as xr
-import netCDF4
-import warnings
+import scipy.interpolate as interp
+from numpy.typing import ArrayLike, NDArray
+from mhkit.utils import unorm
-def get_all_time(data):
+def get_all_time(data: netCDF4.Dataset) -> NDArray:
"""
Returns all of the time stamps from a D3D simulation passed to the function
as a NetCDF object (data)
@@ -26,7 +35,7 @@ def get_all_time(data):
simulation conditions at that time.
"""
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError("data must be a NetCDF4 object")
seconds_run = np.ma.getdata(data.variables["time"][:], False)
@@ -34,7 +43,7 @@ def get_all_time(data):
return seconds_run
-def index_to_seconds(data, time_index):
+def index_to_seconds(data: netCDF4.Dataset, time_index: int) -> Union[int, float]:
"""
The function will return 'seconds_run' if passed a 'time_index'
@@ -55,7 +64,7 @@ def index_to_seconds(data, time_index):
return _convert_time(data, time_index=time_index)
-def seconds_to_index(data, seconds_run):
+def seconds_to_index(data: netCDF4.Dataset, seconds_run: Union[int, float]) -> int:
"""
The function will return the nearest 'time_index' in the data if passed an
integer number of 'seconds_run'
@@ -78,7 +87,11 @@ def seconds_to_index(data, seconds_run):
return _convert_time(data, seconds_run=seconds_run)
-def _convert_time(data, time_index=None, seconds_run=None):
+def _convert_time(
+ data: netCDF4.Dataset,
+ time_index: Optional[Union[int, float]] = None,
+ seconds_run: Optional[Union[int, float]] = None,
+) -> Union[int, float]:
"""
Converts a time index to seconds or seconds to a time index. The user
must specify 'time_index' or 'seconds_run' (Not both). The function
@@ -99,14 +112,13 @@ def _convert_time(data, time_index=None, seconds_run=None):
Returns
-------
- QoI: int, float
- The quantity of interest is the unknown value either the 'time_index'
- or the 'seconds_run'. The 'time_index' is an integer starting from 0
- and incrementing until in simulation is complete. The 'seconds_run' is
- the seconds corresponding to the 'time_index' increments.
+ converted_value: int, float
+ The converted value is either the 'time_index' or the 'seconds_run'.
+ If time_index was provided, returns seconds_run. If seconds_run was
+ provided, returns the closest matching time_index.
"""
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError("data must be NetCDF4 object")
if not (time_index or seconds_run):
@@ -121,26 +133,36 @@ def _convert_time(data, time_index=None, seconds_run=None):
raise TypeError("time_index or seconds_run input must be an int or float")
times = get_all_time(data)
+ converted_value = None
if time_index:
- QoI = times[time_index]
+ converted_value = times[time_index]
if seconds_run:
try:
idx = np.where(times == seconds_run)
- QoI = idx[0][0]
- except:
+ converted_value = idx[0][0]
+ except (IndexError, TypeError):
idx = (np.abs(times - seconds_run)).argmin()
- QoI = idx
+ converted_value = idx
warnings.warn(
"Warning: seconds_run not found. Closest time stamp"
+ f"found {times[idx]}",
stacklevel=2,
)
- return QoI
+ return converted_value
-def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True):
+# pylint: disable=too-many-locals
+# pylint: disable=too-many-branches
+# pylint: disable=too-many-statements
+def get_layer_data(
+ data: netCDF4.Dataset,
+ variable: str,
+ layer_index: int = -1,
+ time_index: int = -1,
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Get variable data from the NetCDF4 object at a specified layer and timestep.
If the data is 2D the layer_index is ignored.
@@ -167,8 +189,8 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
layer_data: pd.DataFrame or xr.Dataset
Dataset with columns of "x", "y", "waterdepth", and "waterlevel" location
of the specified layer, variable values "v", and the "time" the
- simulation has run. The waterdepth is measured from the water surface and the
- "waterlevel" is the water level diffrencein meters from the zero water level.
+ simulation has run. The waterdepth is measured from the water surface and
+ the waterlevel is the water level difference in meters from zero.
"""
if not isinstance(time_index, int):
@@ -177,7 +199,7 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
if not isinstance(layer_index, int):
raise TypeError("layer_index must be an int")
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError("data must be NetCDF4 object")
if variable not in data.variables.keys():
@@ -192,13 +214,14 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
if abs(time_index) > max_time_index:
raise ValueError(
- f"time_index must be less than the absolute value of the max time index {max_time_index}"
+ "time_index must be less than the absolute value of the "
+ f"max time index {max_time_index}"
)
x = np.ma.getdata(data.variables[coords[0]][:], False)
y = np.ma.getdata(data.variables[coords[1]][:], False)
- if type(var[0][0]) == np.ma.core.MaskedArray:
+ if isinstance(var[0][0], np.ma.core.MaskedArray):
max_layer = len(var[0][0])
if abs(layer_index) > max_layer:
@@ -208,7 +231,7 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
dimensions = 3
else:
- if type(var[0][0]) != np.float64:
+ if not isinstance(var[0][0], np.float64):
raise TypeError("data not recognized")
dimensions = 2
@@ -263,7 +286,10 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
layer_dim = str(data.variables[variable].coordinates)
- cord_sys = cords_to_layers[layer_dim]["coords"]
+ try:
+ cord_sys = cords_to_layers[layer_dim]["coords"]
+ except KeyError as exc:
+ raise ValueError("Coordinates not recognized.") from exc
layer_percentages = np.ma.getdata(cord_sys, False) # accumulative
if layer_dim == "FlowLink_xu FlowLink_yu":
@@ -327,7 +353,12 @@ def get_layer_data(data, variable, layer_index=-1, time_index=-1, to_pandas=True
return layer_data
-def create_points(x, y, waterdepth, to_pandas=True):
+def create_points(
+ x: Union[int, float, ArrayLike],
+ y: Union[int, float, ArrayLike],
+ waterdepth: Union[int, float, ArrayLike],
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Generate a Dataset of points from combinations of input coordinates.
@@ -400,7 +431,8 @@ def create_points(x, y, waterdepth, to_pandas=True):
# Check data type
if not isinstance(value, (int, float, np.ndarray, pd.Series, xr.DataArray)):
raise TypeError(
- f"{name} must be an int, float, np.ndarray, pd.Series, or xr.DataArray. Got: {type(value)}"
+ f"{name} must be an int, float, np.ndarray, pd.Series, "
+ f"or xr.DataArray. Got: {type(value)}"
)
# Check for empty arrays
@@ -445,17 +477,19 @@ def create_points(x, y, waterdepth, to_pandas=True):
return points
+# pylint: disable=too-many-arguments
+# pylint: disable=too-many-positional-arguments
def variable_interpolation(
- data,
- variables,
- points="cells",
- edges="none",
- x_max_lim=float("inf"),
- x_min_lim=float("-inf"),
- y_max_lim=float("inf"),
- y_min_lim=float("-inf"),
- to_pandas=True,
-):
+ data: netCDF4.Dataset,
+ variables: List[str],
+ points: Union[str, pd.DataFrame, xr.Dataset] = "cells",
+ edges: str = "none",
+ x_max_lim: float = float("inf"),
+ x_min_lim: float = float("-inf"),
+ y_max_lim: float = float("inf"),
+ y_min_lim: float = float("-inf"),
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Interpolate multiple variables from the Delft3D onto the same points.
@@ -471,11 +505,11 @@ def variable_interpolation(
The points to interpolate data onto.
'cells'- interpolates all data onto the Delft3D cell coordinate system (Default)
'faces'- interpolates all dada onto the Delft3D face coordinate system
- Dataset of x, y, and waterdepth coordinates - Interpolates data onto user
- povided points. Can be created with `create_points` function.
+ Dataset of x, y, and waterdepth coordinates - Interpolates data onto
+ user provided points. Can be created with `create_points` function.
edges: string: 'nearest'
- If edges is set to 'nearest' the code will fill in nan values with nearest
- interpolation. Otherwise only linear interpolarion will be used.
+ If edges is set to 'nearest' the code will fill in nan values with
+ nearest interpolation. Otherwise only linear interpolarion will be used.
to_pandas : bool (optional)
Flag to output pandas instead of xarray. Default = True.
@@ -495,12 +529,12 @@ def variable_interpolation(
points = points.to_pandas()
if isinstance(points, str):
- if not (points == "cells" or points == "faces"):
+ if points not in ("cells", "faces"):
raise ValueError(
f"If a string, points must be cells or faces. Got {points}"
)
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError(f"data must be netCDF4 object. Got {type(data)}")
if not isinstance(to_pandas, bool):
@@ -536,7 +570,7 @@ def variable_interpolation(
if len(idx[0]):
for i in idx[0]:
- transformed_data[var][i] = interp.griddata(
+ transformed_data.loc[i, var] = interp.griddata(
data_raw[var][["x", "y", "waterdepth"]],
data_raw[var][var],
[points["x"][i], points["y"][i], points["waterdepth"][i]],
@@ -549,7 +583,9 @@ def variable_interpolation(
return transformed_data
-def get_all_data_points(data, variable, time_index=-1, to_pandas=True):
+def get_all_data_points(
+ data: netCDF4.Dataset, variable: str, time_index: int = -1, to_pandas: bool = True
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Get data points for a passed variable for all layers at a specified time from
the Delft3D NetCDF4 object by iterating over the `get_layer_data` function.
@@ -580,7 +616,7 @@ def get_all_data_points(data, variable, time_index=-1, to_pandas=True):
if not isinstance(time_index, int):
raise TypeError("time_index must be an int")
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError("data must be NetCDF4 object")
if variable not in data.variables.keys():
@@ -634,10 +670,9 @@ def get_all_data_points(data, variable, time_index=-1, to_pandas=True):
try:
cord_sys = cords_to_layers[layer_dim]["coords"]
- except:
- raise Exception("Coordinates not recognized.")
- else:
- layer_percentages = np.ma.getdata(cord_sys, False)
+ except KeyError as exc:
+ raise ValueError("Coordinates not recognized.") from exc
+ layer_percentages = np.ma.getdata(cord_sys, False)
x_all = []
y_all = []
@@ -677,8 +712,12 @@ def get_all_data_points(data, variable, time_index=-1, to_pandas=True):
def turbulent_intensity(
- data, points="cells", time_index=-1, intermediate_values=False, to_pandas=True
-):
+ data: netCDF4.Dataset,
+ points: Union[str, pd.DataFrame, xr.Dataset] = "cells",
+ time_index: int = -1,
+ intermediate_values: bool = False,
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Calculate the turbulent intensity percentage for a given data set for the
specified points. Assumes variable names: ucx, ucy, ucz and turkin1.
@@ -687,7 +726,7 @@ def turbulent_intensity(
----------
data: NetCDF4 object
A NetCDF4 object that contains spatial data, e.g. velocity or shear
- stress, generated by running a Delft3D model.
+ stress generated by running a Delft3D model.
points: string, pd.DataFrame, xr.Dataset
Points to interpolate data onto.
'cells': interpolates all data onto velocity coordinate system (Default).
@@ -699,22 +738,23 @@ def turbulent_intensity(
late time step -1.
intermediate_values: boolean (optional)
If false the function will return position and turbulent intensity values.
- If true the function will return position(x,y,z) and values need to calculate
- turbulent intensity (ucx, uxy, uxz and turkin1) in a Dataframe. Default False.
+ If true the function will return position(x,y,z) and values needed to
+ calculate turbulent intensity (ucx, uxy, uxz and turkin1) in a Dataframe.
+ Default False.
to_pandas : bool (optional)
Flag to output pandas instead of xarray. Default = True.
Returns
-------
- TI_data: xr.Dataset or pd.DataFrame
+ TI_data: xr.Dataset or pd.DataFrame
If intermediate_values is true all values are output.
If intermediate_values is equal to false only turbulent_intesity and
x, y, and z variables are output.
x- position in the x direction
y- position in the y direction
waterdepth- position in the vertical direction
- turbulet_intesity- turbulent kinetic energy divided by the root
- mean squared velocity
+ turbulent_intensity- turbulent kinetic energy divided by the root
+ mean squared velocity
turkin1- turbulent kinetic energy
ucx- velocity in the x direction
ucy- velocity in the y direction
@@ -725,7 +765,7 @@ def turbulent_intensity(
raise TypeError("points must be a string, pd.DataFrame, xr.Dataset")
if isinstance(points, str):
- if not (points == "cells" or points == "faces"):
+ if points not in ("cells", "faces"):
raise ValueError("points must be cells or faces")
if not isinstance(time_index, int):
@@ -740,70 +780,109 @@ def turbulent_intensity(
max_time_index = data["time"].shape[0] - 1 # to account for zero index
if abs(time_index) > max_time_index:
raise ValueError(
- f"time_index must be less than the absolute value of the max time index {max_time_index}"
+ "time_index must be less than the absolute "
+ f"value of the max time index {max_time_index}"
)
- if not isinstance(data, netCDF4._netCDF4.Dataset):
+ if not isinstance(data, netCDF4.Dataset):
raise TypeError("data must be netCDF4 object")
for variable in ["turkin1", "ucx", "ucy", "ucz"]:
if variable not in data.variables.keys():
raise ValueError(f"Variable {variable} not present in Data")
- TI_vars = ["turkin1", "ucx", "ucy", "ucz"]
- TI_data_raw = {}
- for var in TI_vars:
+ turbulent_vars = ["turkin1", "ucx", "ucy", "ucz"]
+ turbulent_data_raw = {}
+ for var in turbulent_vars:
var_data_df = get_all_data_points(data, var, time_index)
- TI_data_raw[var] = var_data_df
- if type(points) == pd.DataFrame:
+ turbulent_data_raw[var] = var_data_df
+ if isinstance(points, pd.DataFrame):
print("points provided")
elif points == "faces":
- points = TI_data_raw["turkin1"].drop(["waterlevel", "turkin1"], axis=1)
+ points = turbulent_data_raw["turkin1"].drop(["waterlevel", "turkin1"], axis=1)
elif points == "cells":
- points = TI_data_raw["ucx"].drop(["waterlevel", "ucx"], axis=1)
+ points = turbulent_data_raw["ucx"].drop(["waterlevel", "ucx"], axis=1)
- TI_data = points.copy(deep=True)
+ turbulent_data = points.copy(deep=True)
- for var in TI_vars:
- TI_data[var] = interp.griddata(
- TI_data_raw[var][["x", "y", "waterdepth"]],
- TI_data_raw[var][var],
+ for var in turbulent_vars:
+ turbulent_data[var] = interp.griddata(
+ turbulent_data_raw[var][["x", "y", "waterdepth"]],
+ turbulent_data_raw[var][var],
points[["x", "y", "waterdepth"]],
)
- idx = np.where(np.isnan(TI_data[var]))
+ idx = np.where(np.isnan(turbulent_data[var]))
if len(idx[0]):
for i in idx[0]:
- TI_data[var][i] = interp.griddata(
- TI_data_raw[var][["x", "y", "waterdepth"]],
- TI_data_raw[var][var],
+ turbulent_data.loc[i, var] = interp.griddata(
+ turbulent_data_raw[var][["x", "y", "waterdepth"]],
+ turbulent_data_raw[var][var],
[points["x"][i], points["y"][i], points["waterdepth"][i]],
method="nearest",
)
u_mag = unorm(
- np.array(TI_data["ucx"]), np.array(TI_data["ucy"]), np.array(TI_data["ucz"])
+ np.array(turbulent_data["ucx"]),
+ np.array(turbulent_data["ucy"]),
+ np.array(turbulent_data["ucz"]),
)
- neg_index = np.where(TI_data["turkin1"] < 0)
+ neg_index = np.where(turbulent_data["turkin1"] < 0)
zero_bool = np.isclose(
- TI_data["turkin1"][TI_data["turkin1"] < 0].array,
- np.zeros(len(TI_data["turkin1"][TI_data["turkin1"] < 0].array)),
+ turbulent_data["turkin1"][turbulent_data["turkin1"] < 0].array,
+ np.zeros(len(turbulent_data["turkin1"][turbulent_data["turkin1"] < 0].array)),
atol=1.0e-4,
)
zero_ind = neg_index[0][zero_bool]
non_zero_ind = neg_index[0][~zero_bool]
- TI_data.loc[zero_ind, "turkin1"] = np.zeros(len(zero_ind))
- TI_data.loc[non_zero_ind, "turkin1"] = [np.nan] * len(non_zero_ind)
+ turbulent_data.loc[zero_ind, "turkin1"] = np.zeros(len(zero_ind))
+ turbulent_data.loc[non_zero_ind, "turkin1"] = np.nan
- TI_data["turbulent_intensity"] = (
- np.sqrt(2 / 3 * TI_data["turkin1"]) / u_mag * 100
+ turbulent_data["turbulent_intensity"] = (
+ np.sqrt(2 / 3 * turbulent_data["turkin1"]) / u_mag * 100
) # %
- if intermediate_values == False:
- TI_data = TI_data.drop(TI_vars, axis=1)
+ if intermediate_values is False:
+ turbulent_data = turbulent_data.drop(turbulent_vars, axis=1)
if not to_pandas:
- TI_data = TI_data.to_dataset()
+ turbulent_data = turbulent_data.to_dataset()
+
+ return turbulent_data
+
- return TI_data
+def list_variables(data: Union[netCDF4.Dataset, xr.Dataset, xr.DataArray]) -> List[str]:
+ """
+ List all variables in a DataArray, Dataset, or NetCDF4 Dataset.
+
+ Parameters
+ ----------
+ data: Union[netCDF4.Dataset, xr.Dataset, xr.DataArray]
+ The data object containing variables to list.
+
+ Returns
+ -------
+ List[str]
+ A list of variable names in the data object.
+
+ Examples
+ --------
+ >>> # List variables in a NetCDF4 Dataset
+ >>> variables = list_variables(nc_data)
+ >>> print(variables)
+ ['time', 'x', 'y', 'waterdepth', 'ucx', 'ucy', 'ucz', 'turkin1']
+
+ >>> # List variables in an xarray Dataset
+ >>> variables = list_variables(xr_dataset)
+ >>> print(variables)
+ ['time', 'x', 'y', 'waterdepth', 'ucx', 'ucy', 'ucz', 'turkin1']
+ """
+ if isinstance(data, netCDF4.Dataset):
+ return list(data.variables.keys())
+ if isinstance(data, (xr.Dataset, xr.DataArray)):
+ return list(data.variables.keys())
+ raise TypeError(
+ "data must be a NetCDF4 Dataset, xarray Dataset, or "
+ f"xarray DataArray. Got: {type(data)}"
+ )
diff --git a/mhkit/river/io/usgs.py b/mhkit/river/io/usgs.py
index 35ca11ecf..2b690ff50 100644
--- a/mhkit/river/io/usgs.py
+++ b/mhkit/river/io/usgs.py
@@ -1,12 +1,37 @@
+"""
+This module provides functions for retrieving and processing data from the United States
+Geological Survey (USGS) National Water Information System (NWIS). It enables access to
+river flow data and related measurements useful for hydrokinetic resource assessment.
+
+"""
+
+from typing import Dict, Union, Optional
import os
import json
-import requests
import shutil
+import requests
import pandas as pd
+import xarray as xr
+from pandas import DataFrame
from mhkit.utils.cache import handle_caching
-def _read_usgs_json(text, to_pandas=True):
+def _read_usgs_json(text: Dict, to_pandas: bool = True) -> Union[DataFrame, xr.Dataset]:
+ """
+ Process USGS JSON response into a pandas DataFrame or xarray Dataset.
+
+ Parameters
+ ----------
+ text : dict
+ JSON response from USGS API containing time series data
+ to_pandas : bool, optional
+ Flag to output pandas instead of xarray. Default = True.
+
+ Returns
+ -------
+ data : pandas.DataFrame or xarray.Dataset
+ Processed time series data
+ """
data = pd.DataFrame()
for i in range(len(text["value"]["timeSeries"])):
try:
@@ -23,8 +48,9 @@ def _read_usgs_json(text, to_pandas=True):
site_data.index.name = None
del site_data["qualifiers"]
data = data.combine_first(site_data)
- except:
- pass
+ except (KeyError, ValueError, TypeError, pd.errors.OutOfBoundsDatetime) as e:
+ print(f"Warning: Failed to process time series {i}: {str(e)}")
+ continue
if not to_pandas:
data = data.to_dataset()
@@ -32,7 +58,9 @@ def _read_usgs_json(text, to_pandas=True):
return data
-def read_usgs_file(file_name, to_pandas=True):
+def read_usgs_file(
+ file_name: str, to_pandas: bool = True
+) -> Union[DataFrame, xr.Dataset]:
"""
Reads a USGS JSON data file (from https://waterdata.usgs.gov/nwis)
@@ -52,7 +80,7 @@ def read_usgs_file(file_name, to_pandas=True):
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- with open(file_name) as json_file:
+ with open(file_name, encoding="utf-8") as json_file:
text = json.load(json_file)
data = _read_usgs_json(text, to_pandas)
@@ -60,17 +88,14 @@ def read_usgs_file(file_name, to_pandas=True):
return data
+# pylint: disable=too-many-locals
def request_usgs_data(
- station,
- parameter,
- start_date,
- end_date,
- data_type="Daily",
- proxy=None,
- write_json=None,
- clear_cache=False,
- to_pandas=True,
-):
+ station: str,
+ parameter: str,
+ start_date: str,
+ end_date: str,
+ options: Optional[Dict] = None,
+) -> Union[DataFrame, xr.Dataset]:
"""
Loads USGS data directly from https://waterdata.usgs.gov/nwis using a
GET request
@@ -87,18 +112,21 @@ def request_usgs_data(
Start date in the format 'YYYY-MM-DD' (e.g. '2018-01-01')
end_date : str
End date in the format 'YYYY-MM-DD' (e.g. '2018-12-31')
- data_type : str
- Data type, options include 'Daily' (return the mean daily value) and
- 'Instantaneous'.
- proxy : dict or None
- To request data from behind a firewall, define a dictionary of proxy settings,
- for example {"http": 'localhost:8080'}
- write_json : str or None
- Name of json file to write data
- clear_cache : bool
- If True, the cache for this specific request will be cleared.
- to_pandas: bool (optional)
- Flag to output pandas instead of xarray. Default = True.
+ options : dict, optional
+ Dictionary containing optional parameters:
+ - data_type: str
+ Data type, options include 'Daily' (return the mean daily value) and
+ 'Instantaneous'. Default = 'Daily'
+ - proxy: dict or None
+ Proxy settings for the request. Default = None
+ - write_json: str or None
+ Name of json file to write data. Default = None
+ - clear_cache: bool
+ If True, the cache for this specific request will be cleared. Default = False
+ - to_pandas: bool
+ Flag to output pandas instead of xarray. Default = True
+ - timeout: int
+ Timeout in seconds for the HTTP request. Default = 30
Returns
-------
@@ -106,20 +134,31 @@ def request_usgs_data(
Data indexed by datetime with columns named according to the parameter's
variable description
"""
+ # Set default options
+ options = options or {}
+ data_type = options.get("data_type", "Daily")
+ proxy = options.get("proxy", None)
+ write_json = options.get("write_json", None)
+ clear_cache = options.get("clear_cache", False)
+ to_pandas = options.get("to_pandas", True)
+ timeout = options.get("timeout", 30) # 30 seconds default timeout
+
if data_type not in ["Daily", "Instantaneous"]:
raise ValueError(f"data_type must be Daily or Instantaneous. Got: {data_type}")
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
+ if not isinstance(timeout, (int, float)) or timeout <= 0:
+ raise ValueError(f"timeout must be a positive number. Got: {timeout}")
+
# Define the path to the cache directory
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "usgs")
# Create a unique filename based on the function parameters
hash_params = f"{station}_{parameter}_{start_date}_{end_date}_{data_type}"
- # Use handle_caching to manage cache
- cached_data, metadata, cache_filepath = handle_caching(
+ cached_data, _, cache_filepath = handle_caching(
hash_params,
cache_dir,
cache_content={"data": None, "metadata": None, "write_json": write_json},
@@ -160,8 +199,23 @@ def request_usgs_data(
print("Data request URL: ", data_url + api_query)
- response = requests.get(url=data_url + api_query, proxies=proxy)
- text = json.loads(response.text)
+ max_retries = 3
+ retry_count = 0
+ while retry_count < max_retries:
+ try:
+ response = requests.get(
+ url=data_url + api_query, proxies=proxy, timeout=timeout, verify=True
+ )
+ text = json.loads(response.text)
+ break
+ except requests.exceptions.SSLError as e:
+ retry_count += 1
+ if retry_count == max_retries:
+ raise e
+ print(
+ f"SSL Error occurred, retrying... (Attempt {retry_count}/{max_retries})"
+ )
+ continue
# handle_caching is only set-up for pandas, so force this data to output as pandas for now
data = _read_usgs_json(text, True)
diff --git a/mhkit/river/performance.py b/mhkit/river/performance.py
index c805517ab..d7f945091 100644
--- a/mhkit/river/performance.py
+++ b/mhkit/river/performance.py
@@ -1,7 +1,14 @@
+"""
+Computes device metrics such as equivalent diameter, tip speed ratio,
+and capture area. Calculations are based on IEC TS 62600-300:2019 ED1.
+
+"""
+
+from typing import Union, Tuple, List
import numpy as np
-def circular(diameter):
+def circular(diameter: Union[int, float]) -> Tuple[float, float]:
"""
Calculates the equivalent diameter and projected capture area of a
circular turbine
@@ -27,7 +34,7 @@ def circular(diameter):
return equivalent_diameter, projected_capture_area
-def ducted(duct_diameter):
+def ducted(duct_diameter: Union[int, float]) -> Tuple[float, float]:
"""
Calculates the equivalent diameter and projected capture area of a
ducted turbine
@@ -55,7 +62,7 @@ def ducted(duct_diameter):
return equivalent_diameter, projected_capture_area
-def rectangular(h, w):
+def rectangular(h: Union[int, float], w: Union[int, float]) -> Tuple[float, float]:
"""
Calculates the equivalent diameter and projected capture area of a
retangular turbine
@@ -85,7 +92,7 @@ def rectangular(h, w):
return equivalent_diameter, projected_capture_area
-def multiple_circular(diameters):
+def multiple_circular(diameters: List[Union[int, float]]) -> Tuple[float, float]:
"""
Calculates the equivalent diameter and projected capture area of a
multiple circular turbine
@@ -112,7 +119,11 @@ def multiple_circular(diameters):
return equivalent_diameter, projected_capture_area
-def tip_speed_ratio(rotor_speed, rotor_diameter, inflow_speed):
+def tip_speed_ratio(
+ rotor_speed: Union[np.ndarray, List[Union[int, float]]],
+ rotor_diameter: Union[int, float],
+ inflow_speed: Union[np.ndarray, List[Union[int, float]]],
+) -> np.ndarray:
"""
Function used to calculate the tip speed ratio (TSR) of a MEC device with rotor
@@ -127,18 +138,19 @@ def tip_speed_ratio(rotor_speed, rotor_diameter, inflow_speed):
Returns
--------
- TSR : numpy array
+ tip_speed_ratio_values : numpy array
Calculated tip speed ratio (TSR)
"""
try:
rotor_speed = np.asarray(rotor_speed)
- except:
- "rotor_speed must be of type np.ndarray"
+ except (ValueError, TypeError) as exc:
+ raise TypeError("rotor_speed must be convertible to np.ndarray") from exc
+
try:
inflow_speed = np.asarray(inflow_speed)
- except:
- "inflow_speed must be of type np.ndarray"
+ except (ValueError, TypeError) as exc:
+ raise TypeError("inflow_speed must be convertible to np.ndarray") from exc
if not isinstance(rotor_diameter, (float, int)):
raise TypeError(
@@ -147,12 +159,17 @@ def tip_speed_ratio(rotor_speed, rotor_diameter, inflow_speed):
rotor_velocity = rotor_speed * np.pi * rotor_diameter
- TSR = rotor_velocity / inflow_speed
+ tip_speed_ratio_values = rotor_velocity / inflow_speed
- return TSR
+ return tip_speed_ratio_values
-def power_coefficient(power, inflow_speed, capture_area, rho):
+def power_coefficient(
+ power: Union[np.ndarray, List[Union[int, float]]],
+ inflow_speed: Union[np.ndarray, List[Union[int, float]]],
+ capture_area: Union[int, float],
+ rho: Union[int, float],
+) -> np.ndarray:
"""
Function that calculates the power coefficient of MEC device
@@ -169,18 +186,19 @@ def power_coefficient(power, inflow_speed, capture_area, rho):
Returns
--------
- Cp : numpy array
+ power_coeff : numpy array
Power coefficient of device [-]
"""
try:
power = np.asarray(power)
- except:
- "power must be of type np.ndarray"
+ except (ValueError, TypeError) as exc:
+ raise TypeError("power must be convertible to np.ndarray") from exc
+
try:
inflow_speed = np.asarray(inflow_speed)
- except:
- "inflow_speed must be of type np.ndarray"
+ except (ValueError, TypeError) as exc:
+ raise TypeError("inflow_speed must be convertible to np.ndarray") from exc
if not isinstance(capture_area, (float, int)):
raise TypeError(
@@ -192,6 +210,6 @@ def power_coefficient(power, inflow_speed, capture_area, rho):
# Predicted power from inflow
power_in = 0.5 * rho * capture_area * inflow_speed**3
- Cp = power / power_in
+ power_coeff = power / power_in
- return Cp
+ return power_coeff
diff --git a/mhkit/river/resource.py b/mhkit/river/resource.py
index 2a0e06ffd..6d85a0e75 100644
--- a/mhkit/river/resource.py
+++ b/mhkit/river/resource.py
@@ -1,11 +1,22 @@
+"""
+Computes resource assessment metrics, including exceedance probability,
+inflow velocity, and power (theoretical resource). Calculations are based
+on IEC TS 62600-301:2019 ED1.
+
+"""
+
+from typing import Union, Tuple
import xarray as xr
import numpy as np
from scipy.stats import linregress as _linregress
from scipy.stats import rv_histogram as _rv_histogram
+from pandas import DataFrame, Series
from mhkit.utils import convert_to_dataarray
-def Froude_number(v, h, g=9.80665):
+def froude_number(
+ v: Union[int, float], h: Union[int, float], g: Union[int, float] = 9.80665
+) -> float:
"""
Calculate the Froude Number of the river, channel or duct flow,
to check subcritical flow assumption (if Fr <1).
@@ -21,7 +32,7 @@ def Froude_number(v, h, g=9.80665):
Returns
---------
- Fr : float
+ froude_num : float
Froude Number of the river [unitless].
"""
@@ -32,18 +43,22 @@ def Froude_number(v, h, g=9.80665):
if not isinstance(g, (int, float)):
raise TypeError(f"g must be of type int or float. Got: {type(g)}")
- Fr = v / np.sqrt(g * h)
+ froude_num = v / np.sqrt(g * h)
- return Fr
+ return froude_num
-def exceedance_probability(D, dimension="", to_pandas=True):
+def exceedance_probability(
+ discharge: Union[Series, DataFrame, xr.DataArray, xr.Dataset],
+ dimension: str = "",
+ to_pandas: bool = True,
+) -> Union[DataFrame, xr.Dataset]:
"""
Calculates the exceedance probability
Parameters
----------
- D : pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
+ discharge : pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
Discharge indexed by time [datetime or s].
dimension: string (optional)
@@ -55,7 +70,7 @@ def exceedance_probability(D, dimension="", to_pandas=True):
Returns
-------
- F : pandas DataFrame or xarray Dataset
+ exceedance_prob : pandas DataFrame or xarray Dataset
Exceedance probability [unitless] indexed by time [datetime or s]
"""
if not isinstance(dimension, str):
@@ -63,26 +78,26 @@ def exceedance_probability(D, dimension="", to_pandas=True):
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- D = convert_to_dataarray(D)
+ discharge = convert_to_dataarray(discharge)
if dimension == "":
- dimension = list(D.coords)[0]
+ dimension = list(discharge.coords)[0]
- # Calculate exceedance probability (F)
- rank = D.rank(dim=dimension)
- rank = len(D[dimension]) - rank + 1 # convert to descending rank
- F = 100 * rank / (len(D[dimension]) + 1)
- F.name = "F"
+ # Calculate exceedance probability
+ rank = discharge.rank(dim=dimension)
+ rank = len(discharge[dimension]) - rank + 1 # convert to descending rank
+ exceedance_prob = 100 * rank / (len(discharge[dimension]) + 1)
+ exceedance_prob.name = "exceedance_probability"
- F = F.to_dataset() # for matlab
+ exceedance_prob = exceedance_prob.to_dataset() # for matlab
if to_pandas:
- F = F.to_pandas()
+ exceedance_prob = exceedance_prob.to_pandas()
- return F
+ return exceedance_prob
-def polynomial_fit(x, y, n):
+def polynomial_fit(x: np.ndarray, y: np.ndarray, n: int) -> Tuple[np.poly1d, float]:
"""
Returns a polynomial fit for y given x of order n
with an R-squared score of the fit
@@ -100,18 +115,19 @@ def polynomial_fit(x, y, n):
----------
polynomial_coefficients : numpy polynomial
List of polynomial coefficients
- R2 : float
- Polynomical fit coeffcient of determination
+ r_squared : float
+ Polynomial fit coefficient of determination
"""
try:
x = np.array(x)
- except:
- pass
+ except (ValueError, TypeError) as exc:
+ raise TypeError("x must be convertible to np.ndarray") from exc
try:
y = np.array(y)
- except:
- pass
+ except (ValueError, TypeError) as exc:
+ raise TypeError("y must be convertible to np.ndarray") from exc
+
if not isinstance(x, np.ndarray):
raise TypeError(f"x must be of type np.ndarray. Got: {type(x)}")
if not isinstance(y, np.ndarray):
@@ -119,26 +135,31 @@ def polynomial_fit(x, y, n):
if not isinstance(n, int):
raise TypeError(f"n must be of type int. Got: {type(n)}")
- # Get coeffcients of polynomial of order n
+ # Get coefficients of polynomial of order n
polynomial_coefficients = np.poly1d(np.polyfit(x, y, n))
- # Calculate the coeffcient of determination
- slope, intercept, r_value, p_value, std_err = _linregress(
- y, polynomial_coefficients(x)
- )
- R2 = r_value**2
+ # Calculate the coefficient of determination
+ _, _, r_value, _, _ = _linregress(y, polynomial_coefficients(x))
+ r_squared = r_value**2
- return polynomial_coefficients, R2
+ return polynomial_coefficients, r_squared
-def discharge_to_velocity(D, polynomial_coefficients, dimension="", to_pandas=True):
+# pylint: disable=too-many-arguments
+# pylint: disable=too-many-positional-arguments
+def discharge_to_velocity(
+ discharge: Union[np.ndarray, DataFrame, Series, xr.DataArray, xr.Dataset],
+ polynomial_coefficients: np.poly1d,
+ dimension: str = "",
+ to_pandas: bool = True,
+) -> Union[DataFrame, xr.Dataset]:
"""
Calculates velocity given discharge data and the relationship between
discharge and velocity at an individual turbine
Parameters
------------
- D : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
+ discharge : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
Discharge data [m3/s] indexed by time [datetime or s]
polynomial_coefficients : numpy polynomial
List of polynomial coefficients that describe the relationship between
@@ -151,57 +172,63 @@ def discharge_to_velocity(D, polynomial_coefficients, dimension="", to_pandas=Tr
Returns
------------
- V: pandas DataFrame or xarray Dataset
+ velocity: pandas DataFrame or xarray Dataset
Velocity [m/s] indexed by time [datetime or s]
"""
if not isinstance(polynomial_coefficients, np.poly1d):
raise TypeError(
- f"polynomial_coefficients must be of type np.poly1d. Got: {type(polynomial_coefficients)}"
+ "polynomial_coefficients must be of "
+ f"type np.poly1d. Got: {type(polynomial_coefficients)}"
)
if not isinstance(dimension, str):
raise TypeError(f"dimension must be of type str. Got: {type(dimension)}")
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type str. Got: {type(to_pandas)}")
- D = convert_to_dataarray(D)
+ discharge = convert_to_dataarray(discharge)
if dimension == "":
- dimension = list(D.coords)[0]
+ dimension = list(discharge.coords)[0]
# Calculate velocity using polynomial
- V = xr.DataArray(
- data=polynomial_coefficients(D),
+ velocity = xr.DataArray(
+ data=polynomial_coefficients(discharge),
dims=dimension,
- coords={dimension: D[dimension]},
+ coords={dimension: discharge[dimension]},
)
- V.name = "V"
+ velocity.name = "velocity"
- V = V.to_dataset() # for matlab
+ velocity = velocity.to_dataset() # for matlab
if to_pandas:
- V = V.to_pandas()
+ velocity = velocity.to_pandas()
- return V
+ return velocity
def velocity_to_power(
- V, polynomial_coefficients, cut_in, cut_out, dimension="", to_pandas=True
-):
+ velocity: Union[np.ndarray, DataFrame, Series, xr.DataArray, xr.Dataset],
+ polynomial_coefficients: np.poly1d,
+ cut_in: Union[int, float],
+ cut_out: Union[int, float],
+ dimension: str = "",
+ to_pandas: bool = True,
+) -> Union[DataFrame, xr.Dataset]:
"""
Calculates power given velocity data and the relationship
between velocity and power from an individual turbine
Parameters
----------
- V : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
+ velocity : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
Velocity [m/s] indexed by time [datetime or s]
polynomial_coefficients : numpy polynomial
List of polynomial coefficients that describe the relationship between
velocity and power at an individual turbine
cut_in: int/float
- Velocity values below cut_in are not used to compute P
+ Velocity values below cut_in are not used to compute power
cut_out: int/float
- Velocity values above cut_out are not used to compute P
+ Velocity values above cut_out are not used to compute power
dimension: string (optional)
Name of the relevant xarray dimension. If not supplied,
defaults to the first dimension. Does not affect pandas input.
@@ -210,12 +237,13 @@ def velocity_to_power(
Returns
-------
- P : pandas DataFrame or xarray Dataset
+ power : pandas DataFrame or xarray Dataset
Power [W] indexed by time [datetime or s]
"""
if not isinstance(polynomial_coefficients, np.poly1d):
raise TypeError(
- f"polynomial_coefficients must be of type np.poly1d. Got: {type(polynomial_coefficients)}"
+ "polynomial_coefficients must be"
+ f"of type np.poly1d. Got: {type(polynomial_coefficients)}"
)
if not isinstance(cut_in, (int, float)):
raise TypeError(f"cut_in must be of type int or float. Got: {type(cut_in)}")
@@ -224,64 +252,69 @@ def velocity_to_power(
if not isinstance(dimension, str):
raise TypeError(f"dimension must be of type str. Got: {type(dimension)}")
if not isinstance(to_pandas, bool):
- raise TypeError(f"to_pandas must be of type str. Got: {type(to_pandas)}")
+ raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- V = convert_to_dataarray(V)
+ velocity = convert_to_dataarray(velocity)
if dimension == "":
- dimension = list(V.coords)[0]
+ dimension = list(velocity.coords)[0]
- # Calculate velocity using polynomial
- power = polynomial_coefficients(V)
+ # Calculate power using polynomial
+ power_values = polynomial_coefficients(velocity)
# Power for velocity values outside lower and upper bounds Turbine produces 0 power
- power[V < cut_in] = 0.0
- power[V > cut_out] = 0.0
+ power_values[velocity < cut_in] = 0.0
+ power_values[velocity > cut_out] = 0.0
- P = xr.DataArray(data=power, dims=dimension, coords={dimension: V[dimension]})
- P.name = "P"
+ power = xr.DataArray(
+ data=power_values, dims=dimension, coords={dimension: velocity[dimension]}
+ )
+ power.name = "power"
- P = P.to_dataset()
+ power = power.to_dataset()
if to_pandas:
- P = P.to_pandas()
+ power = power.to_pandas()
- return P
+ return power
-def energy_produced(P, seconds):
+def energy_produced(
+ power_data: Union[np.ndarray, DataFrame, Series, xr.DataArray, xr.Dataset],
+ seconds: Union[int, float],
+) -> float:
"""
Returns the energy produced for a given time period provided
exceedance probability and power.
Parameters
----------
- P : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
+ power_data : numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
Power [W] indexed by time [datetime or s]
seconds: int or float
Seconds in the time period of interest
Returns
-------
- E : float
+ energy : float
Energy [J] produced in the given length of time
"""
if not isinstance(seconds, (int, float)):
raise TypeError(f"seconds must be of type int or float. Got: {type(seconds)}")
- P = convert_to_dataarray(P)
+ power_data = convert_to_dataarray(power_data)
- # Calculate Histogram of power
- H, edges = np.histogram(P, 100)
+ # Calculate histogram of power
+ hist_values, edges = np.histogram(power_data, 100)
# Create a distribution
- hist_dist = _rv_histogram([H, edges])
+ hist_dist = _rv_histogram([hist_values, edges])
# Sample range for pdf
x = np.linspace(edges.min(), edges.max(), 1000)
- # Calculate the expected value of Power
- expected_val_of_power = np.trapz(x * hist_dist.pdf(x), x=x)
+ # Calculate the expected value of power
+ expected_power = np.trapezoid(x * hist_dist.pdf(x), x=x)
# Note: Built-in Expected Value method often throws warning
# EV = hist_dist.expect(lb=edges.min(), ub=edges.max())
- # Energy
- E = seconds * expected_val_of_power
+ # Calculate energy
+ energy = seconds * expected_power
- return E
+ return energy
diff --git a/mhkit/tests/acoustics/test_analysis.py b/mhkit/tests/acoustics/test_analysis.py
index b33eb4748..ce792fb3b 100644
--- a/mhkit/tests/acoustics/test_analysis.py
+++ b/mhkit/tests/acoustics/test_analysis.py
@@ -26,143 +26,6 @@ def setUpClass(self):
def tearDownClass(self):
pass
- def test_spsdl(self):
- td_spsdl = acoustics.sound_pressure_spectral_density_level(self.spsd)
-
- cc = np.array(
- [
- "2023-02-04T15:05:08.499983310",
- "2023-02-04T15:05:09.499959707",
- "2023-02-04T15:05:10.499936580",
- "2023-02-04T15:05:11.499913454",
- "2023-02-04T15:05:12.499890089",
- ],
- dtype="datetime64[ns]",
- )
- cd_spsdl = np.array(
- [
- [61.72558153, 60.45878138, 61.02543806, 62.10487326, 53.69452342],
- [64.73788935, 63.7154788, 56.60306848, 55.59145693, 65.14298631],
- [54.88840931, 64.81213715, 68.5464288, 66.96210531, 57.26933701],
- [47.83166387, 46.34269439, 55.26689475, 59.97537222, 62.87564412],
- [51.84125861, 58.33037915, 56.42519674, 55.83574275, 55.48694318],
- ]
- )
-
- np.testing.assert_allclose(td_spsdl.head().values, cd_spsdl, atol=1e-6)
- np.testing.assert_equal(td_spsdl["time"].head().values, cc)
-
- def test_averaging(self):
- td_spsdl = acoustics.sound_pressure_spectral_density_level(self.spsd)
-
- # Frequency average into # octave bands
- octave = 3
- td_spsdl_mean = acoustics.band_aggregate(td_spsdl, octave, fmin=50)
-
- # Time average into 30 s bins
- lbin = 30
- td_spsdl_50 = acoustics.time_aggregate(td_spsdl_mean, lbin, method="median")
- td_spsdl_25 = acoustics.time_aggregate(
- td_spsdl_mean, lbin, method={"quantile": 0.25}
- )
- td_spsdl_75 = acoustics.time_aggregate(
- td_spsdl_mean, lbin, method={"quantile": 0.75}
- )
-
- cc = np.array(
- [
- "2023-02-04T15:05:23.499983310",
- "2023-02-04T15:05:53.499983310",
- "2023-02-04T15:06:23.499983310",
- "2023-02-04T15:06:53.499983310",
- "2023-02-04T15:07:23.499983310",
- ],
- dtype="datetime64[ns]",
- )
- cd_spsdl_50 = np.array(
- [
- [73.71803613, 70.97557445, 69.79906778, 69.04934313, 67.56449352],
- [73.72245955, 71.53327285, 70.55206775, 68.69638127, 67.75243522],
- [73.64022645, 72.24548986, 70.09995522, 69.00394292, 68.22919418],
- [73.1301846, 71.99940268, 70.56372046, 69.01366589, 67.19515351],
- [74.67880072, 71.27235403, 70.23024477, 67.4915765, 66.73024553],
- ]
- )
- cd_spsdl_25 = np.array(
- [
- [72.42136105, 70.37422873, 68.60783404, 67.56108417, 66.4751517],
- [71.95173902, 71.03281659, 69.59019407, 67.79615712, 66.73980611],
- [71.12756436, 70.68228634, 69.53891917, 68.126758, 67.48463198],
- [71.71909635, 70.1849931, 69.22647784, 68.14102709, 66.18740693],
- [72.25521793, 70.18087912, 68.97354823, 66.71295946, 65.35302077],
- ]
- )
- cd_spsdl_75 = np.array(
- [
- [75.29614796, 71.86901413, 71.08418954, 69.6835928, 68.26993291],
- [74.51608597, 72.82376854, 71.31219865, 70.38580566, 69.01731822],
- [75.17013043, 73.45962974, 71.30593827, 71.50687178, 69.49805535],
- [74.38176106, 73.13456376, 72.13861655, 70.45825381, 67.93458589],
- [75.52387419, 72.99604074, 71.26831962, 68.90629303, 67.79114848],
- ]
- )
-
- np.testing.assert_allclose(td_spsdl_50.head().values, cd_spsdl_50, atol=1e-6)
- np.testing.assert_allclose(td_spsdl_25.head().values, cd_spsdl_25, atol=1e-6)
- np.testing.assert_allclose(td_spsdl_75.head().values, cd_spsdl_75, atol=1e-6)
- np.testing.assert_equal(td_spsdl_50["time_bins"].head().values, cc)
-
- def test_freq_loss(self):
- # Test min frequency
- fmin = acoustics.minimum_frequency(water_depth=20, c=1500, c_seabed=1700)
- self.assertEqual(fmin, 39.84375)
-
- def test_spl(self):
- td_spl = acoustics.sound_pressure_level(self.spsd, fmin=50)
-
- # Decidecade octave sound pressure level
- td_spl10 = acoustics.decidecade_sound_pressure_level(self.spsd, fmin=50)
-
- # Median third octave sound pressure level
- td_spl3 = acoustics.third_octave_sound_pressure_level(self.spsd, fmin=50)
-
- cc = np.array(
- [
- "2023-02-04T15:05:08.499983310",
- "2023-02-04T15:05:09.499959707",
- "2023-02-04T15:05:10.499936580",
- "2023-02-04T15:05:11.499913454",
- "2023-02-04T15:05:12.499890089",
- ],
- dtype="datetime64[ns]",
- )
- cd_spl = np.array(
- [97.48727775, 98.21888437, 96.99586637, 97.43571891, 96.60915502]
- )
- cd_spl10 = np.array(
- [
- [82.06503071, 78.20349846, 79.78088446, 75.31281183, 82.1194826],
- [82.66175023, 79.77804574, 82.86005403, 77.57078269, 76.7598224],
- [77.48975416, 82.72580274, 83.88251531, 74.71242694, 74.01377947],
- [79.11312683, 76.56114947, 82.18953494, 75.40888015, 74.80285354],
- [81.26751434, 82.29074565, 80.08831394, 75.75364773, 73.52176641],
- ]
- )
- cd_spl3 = np.array(
- [
- [86.5847236, 84.98068691, 85.61056131, 83.55067796, 84.41810962],
- [87.5449842, 84.48841036, 84.09406069, 85.81895309, 86.71437852],
- [86.37334939, 84.08914125, 86.01614536, 83.36059983, 84.54635288],
- [84.21413445, 84.63996392, 82.52906024, 84.54731095, 83.45652422],
- [86.90033232, 84.8217658, 83.85297355, 82.92231618, 81.39163217],
- ]
- )
-
- np.testing.assert_allclose(td_spl.head().values, cd_spl, atol=1e-6)
- np.testing.assert_allclose(td_spl10.head().values, cd_spl10, atol=1e-6)
- np.testing.assert_allclose(td_spl3.head().values, cd_spl3, atol=1e-6)
- np.testing.assert_equal(td_spl["time"].head().values, cc)
-
def test_sound_pressure_spectral_density(self):
"""
Test sound pressure spectral density calculation.
@@ -235,6 +98,104 @@ def test_apply_calibration(self):
calibrated_spsd.values, spsd.values
) # Calibration should reduce values
+ def test_freq_loss(self):
+ # Test min frequency
+ fmin = acoustics.minimum_frequency(water_depth=20, c=1500, c_seabed=1700)
+ self.assertEqual(fmin, 39.84375)
+
+ def test_spsdl(self):
+ """
+ Test sound pressure spectral density level calculation.
+ """
+ td_spsdl = acoustics.sound_pressure_spectral_density_level(self.spsd)
+
+ cc = np.array(
+ [
+ "2023-02-04T15:05:08.499983310",
+ "2023-02-04T15:05:09.499959707",
+ "2023-02-04T15:05:10.499936580",
+ "2023-02-04T15:05:11.499913454",
+ "2023-02-04T15:05:12.499890089",
+ ],
+ dtype="datetime64[ns]",
+ )
+ cd_spsdl = np.array(
+ [
+ [61.72558153, 60.45878138, 61.02543806, 62.10487326, 53.69452342],
+ [64.73788935, 63.7154788, 56.60306848, 55.59145693, 65.14298631],
+ [54.88840931, 64.81213715, 68.5464288, 66.96210531, 57.26933701],
+ [47.83166387, 46.34269439, 55.26689475, 59.97537222, 62.87564412],
+ [51.84125861, 58.33037915, 56.42519674, 55.83574275, 55.48694318],
+ ]
+ )
+
+ np.testing.assert_allclose(td_spsdl.head().values, cd_spsdl, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spsdl["time"].head().astype("int64"), cc.astype("int64"), atol=1
+ )
+
+ def test_averaging(self):
+ td_spsdl = acoustics.sound_pressure_spectral_density_level(self.spsd)
+
+ # Frequency average into # octave bands
+ octave = [3, 2]
+ td_spsdl_mean = acoustics.band_aggregate(td_spsdl, octave, fmin=10, fmax=100000)
+
+ # Time average into 30 s bins
+ lbin = 30
+ td_spsdl_50 = acoustics.time_aggregate(td_spsdl_mean, lbin, method="median")
+ td_spsdl_25 = acoustics.time_aggregate(
+ td_spsdl_mean, lbin, method={"quantile": 0.25}
+ )
+ td_spsdl_75 = acoustics.time_aggregate(
+ td_spsdl_mean, lbin, method={"quantile": 0.75}
+ )
+
+ cc = np.array(
+ [
+ "2023-02-04T15:05:23.499983310",
+ "2023-02-04T15:05:53.499983310",
+ "2023-02-04T15:06:23.499983310",
+ "2023-02-04T15:06:53.499983310",
+ "2023-02-04T15:07:23.499983310",
+ ],
+ dtype="datetime64[ns]",
+ )
+ cd_spsdl_50 = np.array(
+ [
+ [63.45507, 64.753525, 65.04905, 67.15576, 73.47938],
+ [62.77437, 64.58199, 65.18464, 66.37395, 72.30796],
+ [64.76277, 64.950264, 65.80557, 67.88482, 73.24013],
+ [63.654488, 62.31394, 65.598816, 67.370674, 71.52472],
+ [62.45623, 62.461388, 62.111694, 66.06419, 72.324936],
+ ]
+ )
+ cd_spsdl_25 = np.array(
+ [
+ [59.33189297, 62.89503765, 61.60455799, 64.80938911, 70.59576607],
+ [60.37440872, 60.69928551, 61.9694643, 64.91986465, 70.00148964],
+ [61.1297617, 63.02504444, 64.41207123, 66.37802315, 71.38513947],
+ [59.52737236, 59.45869541, 62.48176765, 66.0959053, 70.06054497],
+ [58.55439758, 59.88098335, 59.66310596, 63.86431885, 70.20335197],
+ ]
+ )
+ cd_spsdl_75 = np.array(
+ [
+ [66.33672714, 67.13593102, 67.34234238, 68.7525959, 75.30982399],
+ [64.58539009, 66.84792709, 67.11526108, 69.7322197, 74.50746346],
+ [66.56425095, 67.85562325, 69.30602646, 69.83069992, 74.79984283],
+ [67.34252357, 65.65701294, 67.48604202, 70.948246, 73.59340286],
+ [66.26214409, 65.43437958, 64.36196518, 67.67719078, 74.33639717],
+ ]
+ )
+
+ np.testing.assert_allclose(td_spsdl_50.head().values, cd_spsdl_50, atol=1e-5)
+ np.testing.assert_allclose(td_spsdl_25.head().values, cd_spsdl_25, atol=1e-5)
+ np.testing.assert_allclose(td_spsdl_75.head().values, cd_spsdl_75, atol=1e-5)
+ np.testing.assert_allclose(
+ td_spsdl_50["time_bins"].head().astype("int64"), cc.astype("int64"), atol=1
+ )
+
def test_fmax_warning(self):
"""
Test that fmax warning adjusts the maximum frequency if necessary.
diff --git a/mhkit/tests/acoustics/test_io.py b/mhkit/tests/acoustics/test_io.py
index 24cf4d624..59e708d90 100644
--- a/mhkit/tests/acoustics/test_io.py
+++ b/mhkit/tests/acoustics/test_io.py
@@ -251,7 +251,9 @@ def test_calibration(self):
)
np.testing.assert_allclose(td_spsd.head().values, cd_spsd, atol=1e-6)
- np.testing.assert_equal(td_spsd["time"].head().values, cc)
+ np.testing.assert_allclose(
+ td_spsd["time"].head().astype("int64"), cc.astype("int64"), atol=1
+ )
def test_audio_export(self):
file_name = join(datadir, "RBW_6661_20240601_053114.wav")
diff --git a/mhkit/tests/acoustics/test_metrics.py b/mhkit/tests/acoustics/test_metrics.py
new file mode 100644
index 000000000..b41085f08
--- /dev/null
+++ b/mhkit/tests/acoustics/test_metrics.py
@@ -0,0 +1,215 @@
+import os
+from os.path import abspath, dirname, join, normpath
+import numpy as np
+import xarray as xr
+import unittest
+
+import mhkit.acoustics as acoustics
+
+
+testdir = dirname(abspath(__file__))
+plotdir = join(testdir, "plots")
+isdir = os.path.isdir(plotdir)
+if not isdir:
+ os.mkdir(plotdir)
+datadir = normpath(join(testdir, "..", "..", "..", "examples", "data", "acoustics"))
+
+
+class TestMetrics(unittest.TestCase):
+ @classmethod
+ def setUpClass(self):
+ file_name = join(datadir, "6247.230204150508.wav")
+ P = acoustics.io.read_soundtrap(file_name, sensitivity=-177)
+ self.spsd = acoustics.sound_pressure_spectral_density(P, P.fs, bin_length=1)
+ self.spsd_60s = acoustics.sound_pressure_spectral_density(
+ P, P.fs, bin_length=60, rms=True
+ )
+
+ @classmethod
+ def tearDownClass(self):
+ pass
+
+ def test_spl(self):
+ td_spl = acoustics.sound_pressure_level(self.spsd, fmin=10, fmax=100000)
+
+ # Decidecade octave sound pressure level
+ td_spl10 = acoustics.decidecade_sound_pressure_level(
+ self.spsd, fmin=10, fmax=100000
+ )
+
+ # Median third octave sound pressure level
+ td_spl3 = acoustics.third_octave_sound_pressure_level(
+ self.spsd, fmin=10, fmax=100000
+ )
+
+ cc = np.array(
+ [
+ "2023-02-04T15:05:08.499983310",
+ "2023-02-04T15:05:09.499959707",
+ "2023-02-04T15:05:10.499936580",
+ "2023-02-04T15:05:11.499913454",
+ "2023-02-04T15:05:12.499890089",
+ ],
+ dtype="datetime64[ns]",
+ )
+ cd_spl_head = np.array([98.12284, 98.639824, 97.62718, 97.85709, 96.98539])
+ cd_spl_tail = np.array([98.420975, 98.10879, 97.430115, 97.99395, 97.95798])
+
+ cd_spl10_freq_head = np.array(
+ [10.0, 12.589254, 15.848932, 19.952623, 25.118864]
+ )
+ cd_spl10_head = np.array(
+ [
+ [68.88561, 75.65294, 68.29522, 75.80323, 82.53724],
+ [62.806908, 69.76993, 62.64113, 73.26091, 83.27883],
+ [71.73166, 68.541534, 68.056076, 75.438034, 84.268715],
+ [70.84345, 68.65471, 63.4681, 72.818085, 77.38771],
+ [69.23148, 74.04387, 64.49707, 74.146164, 79.52727],
+ ]
+ )
+ cd_spl10_freq_tail = np.array(
+ [19952.62315, 25118.864315, 31622.776602, 39810.717055, 50118.723363]
+ )
+ cd_spl10_tail = np.array(
+ [
+ [80.50317, 80.87118, 83.18715, 81.44459, 73.96579],
+ [81.933586, 81.51899, 83.47768, 81.85002, 74.25242],
+ [81.261314, 81.41166, 83.528534, 81.81753, 74.15244],
+ [81.70521, 81.42419, 83.45481, 81.4712, 73.85561],
+ [80.90549, 81.397545, 83.36795, 81.5738, 74.3497],
+ ]
+ )
+ cd_spl3_freq_head = np.array([10.0, 12.59921, 15.874011, 20.0, 25.198421])
+ cd_spl3_head = np.array(
+ [
+ [68.88561, 75.65294, 68.29522, 75.80323, 82.53724],
+ [62.806908, 69.76993, 62.64113, 73.26091, 83.27883],
+ [71.73166, 68.541534, 68.056076, 75.438034, 84.268715],
+ [70.84345, 68.65471, 63.4681, 72.818085, 77.38771],
+ [69.23148, 74.04387, 64.49707, 74.146164, 79.52727],
+ ]
+ )
+ cd_spl3_freq_tail = np.array(
+ [20480.0, 25803.183102, 32509.973544, 40960.0, 51606.366204]
+ )
+ cd_spl3_tail = np.array(
+ [
+ [80.37833, 81.21788, 83.5725, 80.37073, 72.06452],
+ [81.848434, 81.772064, 83.928505, 80.70311, 72.164345],
+ [81.13474, 81.67803, 83.96902, 80.6636, 72.07929],
+ [81.532005, 81.694954, 83.796875, 80.38368, 71.94872],
+ [80.70353, 81.6905, 83.76083, 80.53248, 72.248276],
+ ]
+ )
+
+ np.testing.assert_allclose(td_spl.head().values, cd_spl_head, atol=1e-6)
+ np.testing.assert_allclose(td_spl.tail().values, cd_spl_tail, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spl10["freq_bins"].head().values, cd_spl10_freq_head, atol=1e-6
+ )
+ np.testing.assert_allclose(td_spl10.head().values, cd_spl10_head, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spl10["freq_bins"].tail().values, cd_spl10_freq_tail, atol=1e-6
+ )
+ np.testing.assert_allclose(td_spl10.tail().values, cd_spl10_tail, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spl3["freq_bins"].head().values, cd_spl3_freq_head, atol=1e-6
+ )
+ np.testing.assert_allclose(td_spl3.head().values, cd_spl3_head, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spl3["freq_bins"].tail().values, cd_spl3_freq_tail, atol=1e-6
+ )
+ np.testing.assert_allclose(td_spl3.tail().values, cd_spl3_tail, atol=1e-6)
+ np.testing.assert_allclose(
+ td_spl["time"].head().astype("int64"), cc.astype("int64"), atol=1
+ )
+
+ def test_nmfs_weighting(self):
+ freq = self.spsd["freq"]
+ slc = slice(20, 25) # test 20 - 25 Hz
+
+ W_LF, E_LF = acoustics.nmfs_auditory_weighting(freq, group="LF")
+ W_HF, E_HF = acoustics.nmfs_auditory_weighting(freq, group="HF")
+ W_VHF, E_VHF = acoustics.nmfs_auditory_weighting(freq, group="VHF")
+ W_PW, E_PW = acoustics.nmfs_auditory_weighting(freq, group="PW")
+ W_OW, E_OW = acoustics.nmfs_auditory_weighting(freq, group="OW")
+
+ cd_W_LF, cd_E_LF = np.array(
+ [-18.241247, -17.827854, -17.434275, -17.058767, -16.699821, -16.3561]
+ ), np.array([195.36125, 194.94786, 194.55428, 194.17877, 193.81982, 193.4761])
+ cd_W_HF, cd_E_HF = np.array(
+ [-59.7284, -59.071625, -58.44541, -57.847057, -57.274178, -56.724693]
+ ), np.array([241.0484, 240.39163, 239.76541, 239.16705, 238.59418, 238.0447])
+ cd_W_VHF, cd_E_VHF = np.array(
+ [-109.34241, -108.397385, -107.49632, -106.635315, -105.81097, -105.02029]
+ ), np.array([270.2524, 269.30737, 268.4063, 267.54532, 266.72098, 265.9303])
+ cd_W_PW, cd_E_PW = np.array(
+ [-52.117348, -51.427025, -50.768852, -50.13999, -49.537937, -48.96051]
+ ), np.array([227.40735, 226.71703, 226.05885, 225.43, 224.82794, 224.25052])
+ cd_W_OW, cd_E_OW = np.array(
+ [-65.056496, -64.386955, -63.748577, -63.138584, -62.55456, -61.99438]
+ ), np.array([244.4265, 243.75696, 243.11858, 242.50858, 241.92456, 241.36438])
+
+ np.testing.assert_allclose(W_LF.sel(freq=slc).values, cd_W_LF, atol=1e-5)
+ np.testing.assert_allclose(W_HF.sel(freq=slc).values, cd_W_HF, atol=1e-5)
+ np.testing.assert_allclose(W_VHF.sel(freq=slc).values, cd_W_VHF, atol=1e-5)
+ np.testing.assert_allclose(W_PW.sel(freq=slc).values, cd_W_PW, atol=1e-5)
+ np.testing.assert_allclose(W_OW.sel(freq=slc).values, cd_W_OW, atol=1e-5)
+
+ np.testing.assert_allclose(E_LF.sel(freq=slc).values, cd_E_LF, atol=1e-5)
+ np.testing.assert_allclose(E_HF.sel(freq=slc).values, cd_E_HF, atol=1e-5)
+ np.testing.assert_allclose(E_VHF.sel(freq=slc).values, cd_E_VHF, atol=1e-5)
+ np.testing.assert_allclose(E_PW.sel(freq=slc).values, cd_E_PW, atol=1e-5)
+ np.testing.assert_allclose(E_OW.sel(freq=slc).values, cd_E_OW, atol=1e-5)
+
+ def test_sel(self):
+ td_sel = acoustics.sound_exposure_level(self.spsd_60s, fmin=10, fmax=100000)
+ td_sel_lf = acoustics.sound_exposure_level(
+ self.spsd_60s, group="LF", fmin=10, fmax=100000
+ )
+ td_sel_hf = acoustics.sound_exposure_level(
+ self.spsd_60s, group="HF", fmin=10, fmax=100000
+ )
+ td_sel_vhf = acoustics.sound_exposure_level(
+ self.spsd_60s, group="VHF", fmin=10, fmax=100000
+ )
+ td_sel_pw = acoustics.sound_exposure_level(
+ self.spsd_60s, group="PW", fmin=10, fmax=100000
+ )
+ td_sel_ow = acoustics.sound_exposure_level(
+ self.spsd_60s, group="OW", fmin=10, fmax=100000
+ )
+
+ cc = np.array(
+ [
+ "2023-02-04T15:05:37.999295949",
+ "2023-02-04T15:06:37.997894048",
+ "2023-02-04T15:07:37.996495485",
+ "2023-02-04T15:08:37.995094776",
+ "2023-02-04T15:09:37.993695497",
+ ],
+ dtype="datetime64[ns]",
+ )
+ cd_sel = np.array([116.18274, 121.698654, 143.28117, 147.37479, 127.01828])
+ cd_sel_lf = np.array([112.363075, 120.177086, 142.74931, 146.57983, 125.83696])
+ cd_sel_hf = np.array([112.22166, 118.88085, 139.94121, 144.33324, 124.328995])
+ cd_sel_vhf = np.array([110.23136, 114.00643, 133.20006, 139.13504, 118.88397])
+ cd_sel_pw = np.array([112.22191, 119.87286, 141.67467, 145.6534, 125.419975])
+ cd_sel_ow = np.array([110.945404, 118.06397, 139.08435, 143.51094, 123.68077])
+
+ np.testing.assert_allclose(td_sel.values, cd_sel, atol=1e-5)
+ np.testing.assert_allclose(td_sel_lf.values, cd_sel_lf, atol=1e-5)
+ np.testing.assert_allclose(td_sel_hf.values, cd_sel_hf, atol=1e-5)
+ np.testing.assert_allclose(td_sel_vhf.values, cd_sel_vhf, atol=1e-5)
+ np.testing.assert_allclose(td_sel_pw.values, cd_sel_pw, atol=1e-5)
+ np.testing.assert_allclose(td_sel_ow.values, cd_sel_ow, atol=1e-5)
+ np.testing.assert_allclose(
+ td_sel["time"].astype("int64"), cc.astype("int64"), atol=1
+ )
+
+ def test_spl_vs_sel(self):
+ # SPL should equal SEL over a 1 second interval
+ td_spl = acoustics.sound_pressure_level(self.spsd, fmin=10, fmax=100000)
+ td_sel = acoustics.sound_exposure_level(self.spsd, fmin=10, fmax=100000)
+
+ np.testing.assert_allclose(td_spl.values, td_sel.values, atol=1e-6)
diff --git a/mhkit/tests/dolfyn/test_analysis.py b/mhkit/tests/dolfyn/test_analysis.py
index 80990116a..62fabdaf0 100644
--- a/mhkit/tests/dolfyn/test_analysis.py
+++ b/mhkit/tests/dolfyn/test_analysis.py
@@ -143,7 +143,7 @@ def test_adcp_turbulence(self):
dat.velds.rotate2("beam")
tdat["psd"] = bnr.power_spectral_density(
- dat["vel"].isel(dir=2, range=len(dat["range"]) // 2), freq_units="Hz"
+ dat["vel_b5"].isel(range_b5=len(dat["range_b5"]) // 2), freq_units="Hz"
)
tdat["noise"] = bnr.doppler_noise_level(tdat["psd"], pct_fN=0.8)
tdat["stress_vec4"] = bnr.reynolds_stress_4beam(
@@ -179,11 +179,11 @@ def test_adcp_turbulence(self):
) = bnr.dissipation_rate_SF(dat["vel"].isel(dir=2), r_range=[1, 5])
slope_check = bnr.check_turbulence_cascade_slope(
- tdat["psd"].mean("time"), freq_range=[0.4, 4]
+ tdat["psd"].mean("time_b5"), freq_range=[0.4, 4]
)
# Check noise subtraction in psd function
tdat["psd_noise"] = bnr.power_spectral_density(
- dat["vel"].isel(dir=2, range=len(dat["range"]) // 2),
+ dat["vel_b5"].isel(range_b5=len(dat["range_b5"]) // 2),
freq_units="Hz",
noise=0.01,
)
diff --git a/mhkit/tests/dolfyn/test_clean.py b/mhkit/tests/dolfyn/test_clean.py
index a441a1b2c..0541435f5 100644
--- a/mhkit/tests/dolfyn/test_clean.py
+++ b/mhkit/tests/dolfyn/test_clean.py
@@ -62,6 +62,7 @@ def test_clean_upADCP(self):
td_awac = tp.dat_awac.copy(deep=True)
td_sig = tp.dat_sig_tide.copy(deep=True)
td_rdi = tp.dat_rdi.copy(deep=True)
+ td_dual = tp.dat_sig_dp1_ice.copy(deep=True)
apm.clean.water_depth_from_pressure(td_awac, salinity=30)
apm.clean.remove_surface_interference(td_awac, beam_angle=20, inplace=True)
@@ -71,6 +72,11 @@ def test_clean_upADCP(self):
apm.clean.remove_surface_interference(td_sig, inplace=True)
td_sig = apm.clean.correlation_filter(td_sig, thresh=50)
+ apm.clean.set_range_offset(td_dual, 0.6)
+ apm.clean.water_depth_from_pressure(td_dual, salinity=31)
+ apm.clean.remove_surface_interference(td_dual, inplace=True)
+ td_dual = apm.clean.correlation_filter(td_dual, thresh=50)
+
# Depth should already be found for this RDI file, but it's bad
td_rdi["pressure"] /= 10 # set to something reasonable
td_rdi = td_rdi.drop_vars("depth")
@@ -89,6 +95,7 @@ def test_clean_upADCP(self):
def test_clean_downADCP(self):
td = tp.dat_sig_ie.copy(deep=True)
+ td_dual = tp.dat_sig_dp1_ice.copy(deep=True)
# First remove bad data
td["vel"] = apm.clean.val_exceeds_thresh(td.vel, thresh=3)
@@ -100,7 +107,12 @@ def test_clean_downADCP(self):
# Then clean below seabed
apm.clean.set_range_offset(td, 0.5)
apm.clean.water_depth_from_amplitude(td, thresh=10, nfilt=3)
- td = apm.clean.remove_surface_interference(td)
+ td = apm.clean.remove_surface_interference(td, inplace=False)
+
+ # Technically up-facing but a good check
+ apm.clean.set_range_offset(td_dual, 0.6)
+ apm.clean.water_depth_from_amplitude(td_dual, thresh=10, nfilt=3)
+ td_dual = apm.clean.remove_surface_interference(td_dual, inplace=False)
if make_data:
save(td, "Sig500_Echo_clean.nc")
diff --git a/mhkit/tests/dolfyn/test_read_adp.py b/mhkit/tests/dolfyn/test_read_adp.py
index 3cba999b2..c1d37b92b 100644
--- a/mhkit/tests/dolfyn/test_read_adp.py
+++ b/mhkit/tests/dolfyn/test_read_adp.py
@@ -7,6 +7,8 @@
import unittest
import pytest
import os
+import numpy as np
+from unittest.mock import patch
make_data = False
load = tb.load_netcdf
@@ -22,6 +24,7 @@
dat_wr2 = load("winriver02.nc")
dat_rp = load("RiverPro_test01.nc")
dat_transect = load("winriver02_transect.nc")
+dat_senb5 = load("sentinelv_b5.nc")
dat_awac = load("AWAC_test01.nc")
dat_awac_ud = load("AWAC_test01_ud.nc")
@@ -32,10 +35,16 @@
dat_sig_ieb = load("VelEchoBT01.nc")
dat_sig_ie = load("Sig500_Echo.nc")
dat_sig_tide = load("Sig1000_tidal.nc")
+dat_sig_raw_avg = load("Sig100_raw_avg.nc")
+dat_sig_avg = load("Sig100_avg.nc")
+dat_sig_rt = load("Sig1000_online.nc")
dat_sig_skip = load("Sig_SkippedPings01.nc")
dat_sig_badt = load("Sig1000_BadTime01.nc")
dat_sig5_leiw = load("Sig500_last_ensemble_is_whole.nc")
-dat_sig_dp2 = load("dual_profile.nc")
+dat_sig_dp1_all = load("Sig500_dp_ice1.nc")
+dat_sig_dp1_ice = load("Sig500_dp_ice2.nc")
+dat_sig_dp2_echo = load("Sig1000_dp_echo1.nc")
+dat_sig_dp2_avg = load("Sig1000_dp_echo2.nc")
class io_adp_testcase(unittest.TestCase):
@@ -52,6 +61,7 @@ def test_io_rdi(self):
td_wr2 = read("winriver02.PD0")
td_rp = read("RiverPro_test01.PD0")
td_transect = read("winriver02_transect.PD0", nens=nens)
+ td_senb5 = read("sentinelv_b5.pd0")
if make_data:
save(td_rdi, "RDI_test01.nc")
@@ -64,6 +74,7 @@ def test_io_rdi(self):
save(td_wr2, "winriver02.nc")
save(td_rp, "RiverPro_test01.nc")
save(td_transect, "winriver02_transect.nc")
+ save(td_senb5, "sentinelv_b5.nc")
return
assert_allclose(td_rdi, dat_rdi, atol=1e-6)
@@ -76,6 +87,48 @@ def test_io_rdi(self):
assert_allclose(td_wr2, dat_wr2, atol=1e-6)
assert_allclose(td_rp, dat_rp, atol=1e-6)
assert_allclose(td_transect, dat_transect, atol=1e-6)
+ assert_allclose(td_senb5, dat_senb5, atol=1e-6)
+
+ def test_rdi_sec_btw_ping_division_by_zero(self):
+ """Test fix for issue #408: RDI burst mode division by zero
+
+ Issue #408 reported that RDI Pinnacle 45 in continuous burst mode
+ sets sec_between_ping_groups=0 while pings_per_ensemble=1, causing
+ ZeroDivisionError in sampling rate calculation.
+ """
+ # First verify normal operation with a regular RDI file
+ td_rdi_normal = read("RDI_test01.000", nens=10)
+
+ # Verify normal file has valid fs (not NaN)
+ assert not np.isnan(td_rdi_normal.attrs["fs"])
+ assert td_rdi_normal.attrs["fs"] > 0
+
+ # Now test the warning condition mode by patching the RDI reader
+ import mhkit.dolfyn.io.rdi as rdi_module
+
+ original_finalize = rdi_module._RDIReader.finalize
+
+ def mock_finalize_sec_btw_ping(self, data, cfg):
+ # Force config reported in issue #408
+ cfg["sec_between_ping_groups"] = 0
+ cfg["pings_per_ensemble"] = 1
+ return original_finalize(self, data, cfg)
+
+ # Test scenario with patching
+ with patch.object(
+ rdi_module._RDIReader, "finalize", mock_finalize_sec_btw_ping
+ ):
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter("always")
+
+ # Read the same file but with reported config
+ td_rdi_burst = read("RDI_test01.000", nens=10)
+
+ # Check that warning was issued
+ assert len(w) > 0
+
+ # Check that fs exists and is valid
+ assert td_rdi_burst.attrs["fs"] > 0
def test_io_nortek(self):
nens = 100
@@ -104,8 +157,13 @@ def test_io_nortek2(self):
td_sig_ieb = read("VelEchoBT01.ad2cp", nens=nens, rebuild_index=True)
td_sig_ie = read("Sig500_Echo.ad2cp", nens=nens, rebuild_index=True)
td_sig_tide = read("Sig1000_tidal.ad2cp", nens=nens, rebuild_index=True)
- # Only need to test 2nd dataset
- td_sig_dp1, td_sig_dp2 = read("dual_profile.ad2cp")
+ td_sig_raw_avg = read("Sig100_raw_avg.ad2cp", nens=nens, rebuild_index=True)
+ td_sig_avg = read("Sig100_avg.ad2cp", nens=nens, rebuild_index=True)
+ td_sig_rt = read("Sig1000_online.ad2cp", nens=nens, rebuild_index=True)
+ td_sig_dp1_all, td_sig_dp1_ice = read("Sig500_dp_ice.ad2cp", rebuild_index=True)
+ td_sig_dp2_echo, td_sig_dp2_avg = read(
+ "Sig1000_dp_echo.ad2cp", rebuild_index=True
+ )
with pytest.warns(UserWarning):
# This issues a warning...
@@ -123,10 +181,14 @@ def test_io_nortek2(self):
os.remove(tb.exdt("VelEchoBT01.ad2cp.index"))
os.remove(tb.exdt("Sig500_Echo.ad2cp.index"))
os.remove(tb.exdt("Sig1000_tidal.ad2cp.index"))
+ os.remove(tb.exdt("Sig100_raw_avg.ad2cp.index"))
+ os.remove(tb.exdt("Sig100_avg.ad2cp.index"))
+ os.remove(tb.exdt("Sig1000_online.ad2cp.index"))
os.remove(tb.exdt("Sig_SkippedPings01.ad2cp.index"))
os.remove(tb.exdt("Sig500_last_ensemble_is_whole.ad2cp.index"))
os.remove(tb.rfnm("Sig1000_BadTime01.ad2cp.index"))
- os.remove(tb.exdt("dual_profile.ad2cp.index"))
+ os.remove(tb.exdt("Sig500_dp_ice.ad2cp.index"))
+ os.remove(tb.exdt("Sig1000_dp_echo.ad2cp.index"))
if make_data:
save(td_sig, "BenchFile01.nc")
@@ -135,10 +197,16 @@ def test_io_nortek2(self):
save(td_sig_ieb, "VelEchoBT01.nc")
save(td_sig_ie, "Sig500_Echo.nc")
save(td_sig_tide, "Sig1000_tidal.nc")
+ save(td_sig_raw_avg, "Sig100_raw_avg.nc")
+ save(td_sig_avg, "Sig100_avg.nc")
+ save(td_sig_rt, "Sig1000_online.nc")
save(td_sig_skip, "Sig_SkippedPings01.nc")
save(td_sig_badt, "Sig1000_BadTime01.nc")
save(td_sig5_leiw, "Sig500_last_ensemble_is_whole.nc")
- save(td_sig_dp2, "dual_profile.nc")
+ save(td_sig_dp1_all, "Sig500_dp_ice1.nc")
+ save(td_sig_dp1_ice, "Sig500_dp_ice2.nc")
+ save(td_sig_dp2_echo, "Sig1000_dp_echo1.nc")
+ save(td_sig_dp2_avg, "Sig1000_dp_echo2.nc")
return
assert_allclose(td_sig, dat_sig, atol=1e-6)
@@ -147,10 +215,16 @@ def test_io_nortek2(self):
assert_allclose(td_sig_ieb, dat_sig_ieb, atol=1e-6)
assert_allclose(td_sig_ie, dat_sig_ie, atol=1e-6)
assert_allclose(td_sig_tide, dat_sig_tide, atol=1e-6)
+ assert_allclose(td_sig_raw_avg, dat_sig_raw_avg, atol=1e-6)
+ assert_allclose(td_sig_avg, dat_sig_avg, atol=1e-6)
+ assert_allclose(td_sig_rt, dat_sig_rt, atol=1e-6)
assert_allclose(td_sig5_leiw, dat_sig5_leiw, atol=1e-6)
assert_allclose(td_sig_skip, dat_sig_skip, atol=1e-6)
assert_allclose(td_sig_badt, dat_sig_badt, atol=1e-6)
- assert_allclose(td_sig_dp2, dat_sig_dp2, atol=1e-6)
+ assert_allclose(td_sig_dp1_all, dat_sig_dp1_all, atol=1e-6)
+ assert_allclose(td_sig_dp1_ice, dat_sig_dp1_ice, atol=1e-6)
+ assert_allclose(td_sig_dp2_echo, dat_sig_dp2_echo, atol=1e-6)
+ assert_allclose(td_sig_dp2_avg, dat_sig_dp2_avg, atol=1e-6)
def test_nortek2_crop(self):
# Test file cropping function
diff --git a/mhkit/tests/dolfyn/test_read_io.py b/mhkit/tests/dolfyn/test_read_io.py
index 835acc6bd..644ef0b62 100644
--- a/mhkit/tests/dolfyn/test_read_io.py
+++ b/mhkit/tests/dolfyn/test_read_io.py
@@ -84,7 +84,7 @@ def read_file_and_test(fname):
os.remove(exdt(fname))
nens = 100
- wh.read_rdi(exdt("RDI_withBT.000"), nens, debug_level=3)
+ wh.read_rdi(exdt("RDI_withBT.000"), nens, debug=3)
awac.read_nortek(exdt("AWAC_test01.wpr"), nens, debug=True, do_checksum=True)
awac.read_nortek(
exdt("vector_data_imu01.VEC"), nens, debug=True, do_checksum=True
@@ -115,5 +115,6 @@ def test_read_warnings(self):
sig.read_signature(exdt("AWAC_test01.wpr"))
with self.assertRaises(IOError):
read(rfnm("AWAC_test01.nc"))
+
with self.assertRaises(Exception):
save_netcdf(tp.dat_rdi, "test_save.fail")
diff --git a/mhkit/tests/dolfyn/test_rotate_adp.py b/mhkit/tests/dolfyn/test_rotate_adp.py
index 0e9598bfb..b453e4ed8 100644
--- a/mhkit/tests/dolfyn/test_rotate_adp.py
+++ b/mhkit/tests/dolfyn/test_rotate_adp.py
@@ -118,10 +118,15 @@ def test_rotate_earth2inst(self):
rotate2(td_sig, "inst", inplace=True)
td_sig_i = load("Sig1000_IMU_rotate_inst2earth.nc")
rotate2(td_sig_i, "inst", inplace=True)
+ # Just check that these run without error
+ td_sig_avg = load("Sig100_avg.nc")
+ rotate2(td_sig_avg, "inst", inplace=True)
+ td_sig_dp1_ice = load("Sig500_dp_ice2.nc")
+ rotate2(td_sig_dp1_ice, "inst", inplace=True)
cd_rdi = load("RDI_test01_rotate_beam2inst.nc")
cd_wr2 = tr.dat_wr2
- # ship and inst are considered equivalent in dolfy
+ # ship and inst are considered equivalent in dolfyn
cd_wr2.attrs["coord_sys"] = "inst"
cd_awac = load("AWAC_test01_earth2inst.nc")
cd_sig = load("BenchFile01_rotate_beam2inst.nc")
diff --git a/mhkit/tests/river/test_io_usgs.py b/mhkit/tests/river/test_io_usgs.py
index b422bee2c..c3929ab0c 100644
--- a/mhkit/tests/river/test_io_usgs.py
+++ b/mhkit/tests/river/test_io_usgs.py
@@ -3,6 +3,10 @@
import pandas as pd
import unittest
import os
+from unittest.mock import patch, MagicMock
+import json
+import shutil
+from datetime import timezone
testdir = dirname(abspath(__file__))
@@ -38,28 +42,112 @@ def test_load_usgs_data_daily(self):
self.assertEqual((data.index == expected_index.tz_localize("UTC")).all(), True)
self.assertEqual(data.shape, (31, 1))
- def test_request_usgs_data_daily(self):
+ @patch("mhkit.river.io.usgs.requests.get")
+ def test_request_usgs_data_daily(self, mock_get):
+ """
+ Test request_usgs_data with daily data
+ """
+ # Prepare the mocked HTTP response for daily data
+ daily_values = []
+ start = pd.Timestamp("2009-08-01 00:00:00", tz="UTC")
+ end = pd.Timestamp("2009-08-10 23:59:59", tz="UTC")
+ current = start
+ while current <= end:
+ daily_values.append(
+ {
+ "dateTime": current.strftime("%Y-%m-%dT%H:%M:%S.000Z"),
+ "value": "1000",
+ "qualifiers": ["P"],
+ }
+ )
+ current += pd.Timedelta(days=1)
+
+ mock_payload = {
+ "value": {
+ "timeSeries": [
+ {
+ "variable": {
+ "variableDescription": "Discharge, cubic feet per second"
+ },
+ "values": [{"value": daily_values}],
+ }
+ ]
+ }
+ }
+
+ mock_resp = MagicMock()
+ mock_resp.status_code = 200
+ mock_resp.text = json.dumps(mock_payload)
+ mock_get.return_value = mock_resp
+
data = river.io.usgs.request_usgs_data(
station="15515500",
parameter="00060",
start_date="2009-08-01",
end_date="2009-08-10",
- data_type="Daily",
+ options={"data_type": "Daily", "clear_cache": True},
)
- self.assertEqual(data.columns, ["Discharge, cubic feet per second"])
- self.assertEqual(data.shape, (10, 1))
- def test_request_usgs_data_instant(self):
- data = river.io.usgs.request_usgs_data(
+ # Verify that we called requests.get
+ mock_get.assert_called_once()
+
+ # Basic functionality checks
+ self.assertIsInstance(data, pd.DataFrame)
+ self.assertGreater(len(data), 0) # Has data
+ self.assertTrue(data.index.tz is not None) # Timezone aware
+
+
+class TestUSGSInstant(unittest.TestCase):
+ @patch("mhkit.river.io.usgs.requests.get")
+ def test_request_usgs_data_instant(self, mock_get):
+ mock_payload = {
+ "value": {
+ "timeSeries": [
+ {
+ "variable": {
+ "variableDescription": "Discharge, cubic feet per second"
+ },
+ "values": [
+ {
+ "value": [
+ {
+ "dateTime": "2009-08-01T00:00:00.000Z",
+ "value": "1000",
+ "qualifiers": ["P"],
+ },
+ {
+ "dateTime": "2009-08-01T00:15:00.000Z",
+ "value": "1000",
+ "qualifiers": ["P"],
+ },
+ ]
+ }
+ ],
+ }
+ ]
+ }
+ }
+
+ mock_resp = MagicMock()
+ mock_resp.status_code = 200
+ mock_resp.text = json.dumps(mock_payload)
+ mock_get.return_value = mock_resp
+
+ df = river.io.usgs.request_usgs_data(
station="15515500",
parameter="00060",
start_date="2009-08-01",
end_date="2009-08-10",
- data_type="Instantaneous",
+ options={"data_type": "Instantaneous", "clear_cache": True},
)
- self.assertEqual(data.columns, ["Discharge, cubic feet per second"])
- # Every 15 minutes or 4 times per hour
- self.assertEqual(data.shape, (10 * 24 * 4, 1))
+
+ # Verify that we called requests.get
+ mock_get.assert_called_once()
+
+ # Basic functionality checks
+ self.assertIsInstance(df, pd.DataFrame)
+ self.assertGreater(len(df), 0) # Has data
+ self.assertTrue(df.index.tz is not None) # Timezone aware
if __name__ == "__main__":
diff --git a/mhkit/tests/river/test_resource.py b/mhkit/tests/river/test_resource.py
index 8b3a73023..12d867f3a 100644
--- a/mhkit/tests/river/test_resource.py
+++ b/mhkit/tests/river/test_resource.py
@@ -35,27 +35,27 @@ def tearDownClass(self):
def test_Froude_number(self):
v = 2
h = 5
- Fr = river.resource.Froude_number(v, h)
+ Fr = river.resource.froude_number(v, h)
self.assertAlmostEqual(Fr, 0.286, places=3)
def test_froude_number_v_type_error(self):
v = "invalid_type" # String instead of int/float
h = 5
with self.assertRaises(TypeError):
- river.resource.Froude_number(v, h)
+ river.resource.froude_number(v, h)
def test_froude_number_h_type_error(self):
v = 2
h = "invalid_type" # String instead of int/float
with self.assertRaises(TypeError):
- river.resource.Froude_number(v, h)
+ river.resource.froude_number(v, h)
def test_froude_number_g_type_error(self):
v = 2
h = 5
g = "invalid_type" # String instead of int/float
with self.assertRaises(TypeError):
- river.resource.Froude_number(v, h, g)
+ river.resource.froude_number(v, h, g)
def test_exceedance_probability(self):
# Create arbitrary discharge between 0 and 8(N=9)
@@ -121,7 +121,7 @@ def test_discharge_to_velocity(self):
p, r2 = river.resource.polynomial_fit(np.arange(9), 10 * np.arange(9), 1)
# Because the polynomial line fits perfect we should expect the V to equal 10*Q
V = river.resource.discharge_to_velocity(Q, p)
- self.assertAlmostEqual(np.sum(10 * Q - V["V"]), 0.00, places=2)
+ self.assertAlmostEqual(np.sum(10 * Q - V["velocity"]), 0.00, places=2)
def test_discharge_to_velocity_xarray(self):
# Create arbitrary discharge between 0 and 8(N=9)
@@ -132,7 +132,7 @@ def test_discharge_to_velocity_xarray(self):
p, r2 = river.resource.polynomial_fit(np.arange(9), 10 * np.arange(9), 1)
# Because the polynomial line fits perfect we should expect the V to equal 10*Q
V = river.resource.discharge_to_velocity(Q, p, to_pandas=False)
- self.assertAlmostEqual(np.sum(10 * Q - V["V"]).values, 0.00, places=2)
+ self.assertAlmostEqual(np.sum(10 * Q - V["velocity"]).values, 0.00, places=2)
def test_discharge_to_velocity_D_type_error(self):
D = "invalid_type" # String instead of pd.Series or pd.DataFrame
@@ -154,16 +154,18 @@ def test_velocity_to_power(self):
# Calculate a first order polynomial on an VP_Curve x=y line 10 times greater than the V values
p2, r22 = river.resource.polynomial_fit(np.arange(9), 10 * np.arange(9), 1)
# Set cut in/out to exclude 1 bin on either end of V range
- cut_in = V["V"][1]
- cut_out = V["V"].iloc[-2]
+ cut_in = V["velocity"][1]
+ cut_out = V["velocity"].iloc[-2]
# Power should be 10x greater and exclude the ends of V
- P = river.resource.velocity_to_power(V["V"], p2, cut_in, cut_out)
+ P = river.resource.velocity_to_power(V["velocity"], p2, cut_in, cut_out)
# Cut in power zero
- self.assertAlmostEqual(P["P"][0], 0.00, places=2)
+ self.assertAlmostEqual(P["power"][0], 0.00, places=2)
# Cut out power zero
- self.assertAlmostEqual(P["P"].iloc[-1], 0.00, places=2)
+ self.assertAlmostEqual(P["power"].iloc[-1], 0.00, places=2)
# Middle 10x greater than velocity
- self.assertAlmostEqual((P["P"][1:-1] - 10 * V["V"][1:-1]).sum(), 0.00, places=2)
+ self.assertAlmostEqual(
+ (P["power"][1:-1] - 10 * V["velocity"][1:-1]).sum(), 0.00, places=2
+ )
def test_velocity_to_power_xarray(self):
# Calculate a first order polynomial on an DV_Curve x=y line 10 times greater than the Q values
@@ -175,19 +177,19 @@ def test_velocity_to_power_xarray(self):
# Calculate a first order polynomial on an VP_Curve x=y line 10 times greater than the V values
p2, r22 = river.resource.polynomial_fit(np.arange(9), 10 * np.arange(9), 1)
# Set cut in/out to exclude 1 bin on either end of V range
- cut_in = V["V"].values[1]
- cut_out = V["V"].values[-2]
+ cut_in = V["velocity"].values[1]
+ cut_out = V["velocity"].values[-2]
# Power should be 10x greater and exclude the ends of V
P = river.resource.velocity_to_power(
- V["V"], p2, cut_in, cut_out, to_pandas=False
+ V["velocity"], p2, cut_in, cut_out, to_pandas=False
)
# Cut in power zero
- self.assertAlmostEqual(P["P"][0], 0.00, places=2)
+ self.assertAlmostEqual(P["power"][0], 0.00, places=2)
# Cut out power zero
- self.assertAlmostEqual(P["P"][-1], 0.00, places=2)
+ self.assertAlmostEqual(P["power"][-1], 0.00, places=2)
# Middle 10x greater than velocity
self.assertAlmostEqual(
- (P["P"][1:-1] - 10 * V["V"][1:-1]).sum().values, 0.00, places=2
+ (P["power"][1:-1] - 10 * V["velocity"][1:-1]).sum().values, 0.00, places=2
)
def test_velocity_to_power_V_type_error(self):
@@ -278,7 +280,9 @@ def test_plot_flow_duration_curve(self):
f = river.resource.exceedance_probability(self.data.Q)
plt.figure()
- river.graphics.plot_flow_duration_curve(self.data["Q"], f["F"])
+ river.graphics.plot_flow_duration_curve(
+ self.data["Q"], f["exceedance_probability"]
+ )
plt.savefig(filename, format="png")
plt.close()
@@ -291,7 +295,9 @@ def test_plot_power_duration_curve(self):
f = river.resource.exceedance_probability(self.data.Q)
plt.figure()
- river.graphics.plot_flow_duration_curve(self.results["P_control"], f["F"])
+ river.graphics.plot_flow_duration_curve(
+ self.results["P_control"], f["exceedance_probability"]
+ )
plt.savefig(filename, format="png")
plt.close()
@@ -304,7 +310,9 @@ def test_plot_velocity_duration_curve(self):
f = river.resource.exceedance_probability(self.data.Q)
plt.figure()
- river.graphics.plot_velocity_duration_curve(self.results["V_control"], f["F"])
+ river.graphics.plot_velocity_duration_curve(
+ self.results["V_control"], f["exceedance_probability"]
+ )
plt.savefig(filename, format="png")
plt.close()
diff --git a/mhkit/tests/tidal/test_io.py b/mhkit/tests/tidal/test_io.py
index 280b847ce..be34cd444 100644
--- a/mhkit/tests/tidal/test_io.py
+++ b/mhkit/tests/tidal/test_io.py
@@ -74,13 +74,16 @@ def test_request_noaa_data_basic(self):
and verify that the returned DataFrame and metadata have the
correct shape and columns.
"""
+ options = {
+ "proxy": None,
+ "write_json": None,
+ }
data, metadata = tidal.io.noaa.request_noaa_data(
station="s08010",
parameter="currents",
start_date="20180101",
end_date="20180102",
- proxy=None,
- write_json=None,
+ options=options,
)
self.assertTrue(np.all(data.columns == ["s", "d", "b"]))
self.assertEqual(data.shape, (183, 3))
@@ -92,14 +95,17 @@ def test_request_noaa_data_basic_xarray(self):
and verify that the returned DataFrame and metadata have the
correct shape and columns.
"""
+ options = {
+ "proxy": None,
+ "write_json": None,
+ "to_pandas": False,
+ }
data = tidal.io.noaa.request_noaa_data(
station="s08010",
parameter="currents",
start_date="20180101",
end_date="20180102",
- proxy=None,
- write_json=None,
- to_pandas=False,
+ options=options,
)
# Check if the variable sets are equal
data_variables = list(data.variables)
@@ -117,13 +123,16 @@ def test_request_noaa_data_write_json(self):
and can be loaded back into a dictionary.
"""
test_json_file = "test_noaa_data.json"
+ options = {
+ "proxy": None,
+ "write_json": test_json_file,
+ }
_, _ = tidal.io.noaa.request_noaa_data(
station="s08010",
parameter="currents",
start_date="20180101",
end_date="20180102",
- proxy=None,
- write_json=test_json_file,
+ options=options,
)
self.assertTrue(os.path.isfile(test_json_file))
@@ -142,14 +151,17 @@ def test_request_noaa_data_invalid_dates(self):
Test the request_noaa_data function with an invalid date format
and verify that it raises a ValueError.
"""
+ options = {
+ "proxy": None,
+ "write_json": None,
+ }
with self.assertRaises(ValueError):
tidal.io.noaa.request_noaa_data(
station="s08010",
parameter="currents",
start_date="2018-01-01", # Invalid date format
end_date="20180102",
- proxy=None,
- write_json=None,
+ options=options,
)
def test_request_noaa_data_end_before_start(self):
@@ -157,14 +169,17 @@ def test_request_noaa_data_end_before_start(self):
Test the request_noaa_data function with the end date before
the start date and verify that it raises a ValueError.
"""
+ options = {
+ "proxy": None,
+ "write_json": None,
+ }
with self.assertRaises(ValueError):
tidal.io.noaa.request_noaa_data(
station="s08010",
parameter="currents",
start_date="20180102",
end_date="20180101", # End date before start date
- proxy=None,
- write_json=None,
+ options=options,
)
diff --git a/mhkit/tests/tidal/test_resource.py b/mhkit/tests/tidal/test_resource.py
index 7b5b6ad11..776060a77 100644
--- a/mhkit/tests/tidal/test_resource.py
+++ b/mhkit/tests/tidal/test_resource.py
@@ -29,9 +29,9 @@ def tearDownClass(self):
def test_exceedance_probability(self):
df = pd.DataFrame.from_records({"vals": np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])})
- df["F"] = tidal.resource.exceedance_probability(df.vals)
- self.assertEqual(df["F"].min(), 10)
- self.assertEqual(df["F"].max(), 90)
+ df["exceedance_probability"] = tidal.resource.exceedance_probability(df.vals)
+ self.assertEqual(df["exceedance_probability"].min(), 10)
+ self.assertEqual(df["exceedance_probability"].max(), 90)
def test_principal_flow_directions(self):
width_direction = 10
diff --git a/mhkit/tests/utils/test_cache.py b/mhkit/tests/utils/test_cache.py
index 3cd5fff43..b7bd85e8b 100644
--- a/mhkit/tests/utils/test_cache.py
+++ b/mhkit/tests/utils/test_cache.py
@@ -1,8 +1,8 @@
"""
Unit Testing for MHKiT Cache Utilities
-This module provides unit tests for the caching utilities present in the MHKiT library.
-These utilities help in caching and retrieving data, ensuring efficient and repeatable
+This module provides unit tests for the caching utilities present in the MHKiT library.
+These utilities help in caching and retrieving data, ensuring efficient and repeatable
data access without redundant computations or network requests.
The tests cover:
@@ -11,7 +11,7 @@
3. Usage of appropriate file extensions based on the type of data being cached.
4. Clearing of cache directories as specified.
-By running these tests, one can validate that the caching utilities of MHKiT are functioning
+By running these tests, one can validate that the caching utilities of MHKiT are functioning
as expected, ensuring that users can rely on cached data and metadata when using the MHKiT library.
Usage:
diff --git a/mhkit/tests/wave/io/hindcast/test_hindcast.py b/mhkit/tests/wave/io/hindcast/test_hindcast.py
index 26847dc64..456ea05b7 100644
--- a/mhkit/tests/wave/io/hindcast/test_hindcast.py
+++ b/mhkit/tests/wave/io/hindcast/test_hindcast.py
@@ -1,17 +1,17 @@
"""
-This module contains unit tests for the WPTO hindcast data retrieval
+This module contains unit tests for the WPTO hindcast data retrieval
functions in the mhkit.wave package. The tests are designed to verify
the correct functioning of the following functionalities:
1. Retrieval of multiple years of data for a single data type,
latitude-longitude pair, and parameter.
-2. Retrieval of multiple parameters for a single data type, year,
+2. Retrieval of multiple parameters for a single data type, year,
and latitude-longitude pair.
3. Retrieval of data for multiple locations for point data and
directional spectrum at a single data type, year, and parameter.
-The tests use the unittest framework and compare the output of the
-hindcast retrieval functions with expected output data. The expected
+The tests use the unittest framework and compare the output of the
+hindcast retrieval functions with expected output data. The expected
data is read from CSV files located in the examples/data/wave directory.
Functions tested:
@@ -19,7 +19,7 @@
- wave.io.hindcast.hindcast.request_wpto_directional_spectrum
Usage:
-Run the script directly as a standalone program, or import the
+Run the script directly as a standalone program, or import the
TestWPTOhindcast class in another test suite.
"""
diff --git a/mhkit/tests/wave/io/test_cdip.py b/mhkit/tests/wave/io/test_cdip.py
index b77958df6..17d1bc2ad 100644
--- a/mhkit/tests/wave/io/test_cdip.py
+++ b/mhkit/tests/wave/io/test_cdip.py
@@ -77,8 +77,8 @@ def test_dates_to_timestamp(self):
self.test_nc, start_date=start_date, end_date=end_date
)
- start_dt = datetime.utcfromtimestamp(start_stamp).replace(tzinfo=pytz.UTC)
- end_dt = datetime.utcfromtimestamp(end_stamp).replace(tzinfo=pytz.UTC)
+ start_dt = datetime.fromtimestamp(start_stamp, pytz.UTC)
+ end_dt = datetime.fromtimestamp(end_stamp, pytz.UTC)
self.assertEqual(start_dt, start_date)
self.assertEqual(end_dt, end_date)
diff --git a/mhkit/tests/wave/io/test_wecsim.py b/mhkit/tests/wave/io/test_wecsim.py
index 52df214b9..89f5a0ef2 100644
--- a/mhkit/tests/wave/io/test_wecsim.py
+++ b/mhkit/tests/wave/io/test_wecsim.py
@@ -56,7 +56,7 @@ def test_read_wecSim_cable(self):
)
self.assertEqual(ws_output["wave"]["elevation"].name, "elevation")
self.assertEqual(
- ws_output["bodies"]["body1"]["position_dof1"].name, "position_dof1"
+ ws_output["bodies"].sel(body=1, dof=1)["position"].name, "position"
)
self.assertEqual(len(ws_output["mooring"]), 0)
self.assertEqual(len(ws_output["moorDyn"]), 0)
diff --git a/mhkit/tests/wave/test_performance.py b/mhkit/tests/wave/test_performance.py
index a12c8050c..0580c08ea 100644
--- a/mhkit/tests/wave/test_performance.py
+++ b/mhkit/tests/wave/test_performance.py
@@ -6,6 +6,7 @@
import numpy as np
import unittest
import os
+import pytest
testdir = dirname(abspath(__file__))
@@ -46,20 +47,27 @@ def setUpClass(self):
def tearDownClass(self):
pass
- def test_capture_length(self):
- L = wave.performance.capture_length(self.data["P"], self.data["J"])
- L_stats = wave.performance.statistics(L)
+ def test_capture_width(self):
+ with pytest.warns(FutureWarning):
+ CW = wave.performance.capture_length(self.data["P"], self.data["J"])
+ CW_stats = wave.performance.statistics(CW)
- self.assertAlmostEqual(L_stats["mean"], 0.6676, 3)
+ self.assertAlmostEqual(CW_stats["mean"], 0.6676, 3)
- def test_capture_length_matrix(self):
- L = wave.performance.capture_length(self.data["P"], self.data["J"])
- LM = wave.performance.capture_length_matrix(
- self.data["Hm0"], self.data["Te"], L, "std", self.Hm0_bins, self.Te_bins
- )
+ def test_capture_width_matrix(self):
+ CW = wave.performance.capture_width(self.data["P"], self.data["J"])
+ with pytest.warns(FutureWarning):
+ CWM = wave.performance.capture_length_maxtrix(
+ self.data["Hm0"],
+ self.data["Te"],
+ CW,
+ "std",
+ self.Hm0_bins,
+ self.Te_bins,
+ )
- self.assertEqual(LM.shape, (38, 9))
- self.assertEqual(LM.isna().sum().sum(), 131)
+ self.assertEqual(CWM.shape, (38, 9))
+ self.assertEqual(CWM.isna().sum().sum(), 131)
def test_wave_energy_flux_matrix(self):
JM = wave.performance.wave_energy_flux_matrix(
@@ -75,9 +83,9 @@ def test_wave_energy_flux_matrix(self):
self.assertEqual(JM.isna().sum().sum(), 131)
def test_power_matrix(self):
- L = wave.performance.capture_length(self.data["P"], self.data["J"])
- LM = wave.performance.capture_length_matrix(
- self.data["Hm0"], self.data["Te"], L, "mean", self.Hm0_bins, self.Te_bins
+ CW = wave.performance.capture_width(self.data["P"], self.data["J"])
+ CWM = wave.performance.capture_width_matrix(
+ self.data["Hm0"], self.data["Te"], CW, "mean", self.Hm0_bins, self.Te_bins
)
JM = wave.performance.wave_energy_flux_matrix(
self.data["Hm0"],
@@ -87,15 +95,15 @@ def test_power_matrix(self):
self.Hm0_bins,
self.Te_bins,
)
- PM = wave.performance.power_matrix(LM, JM)
+ PM = wave.performance.power_matrix(CWM, JM)
self.assertEqual(PM.shape, (38, 9))
self.assertEqual(PM.isna().sum().sum(), 131)
def test_mean_annual_energy_production(self):
- L = wave.performance.capture_length(self.data["P"], self.data["J"])
+ CW = wave.performance.capture_width(self.data["P"], self.data["J"])
maep = wave.performance.mean_annual_energy_production_timeseries(
- L, self.data["J"]
+ CW, self.data["J"]
)
self.assertAlmostEqual(maep, 1754020.077, 2)
@@ -122,7 +130,7 @@ def test_plot_matrix(self):
self.assertTrue(isfile(filename))
def test_powerperformance_workflow(self):
- filename = abspath(join(plotdir, "Capture Length Matrix mean.png"))
+ filename = abspath(join(plotdir, "Capture Width Matrix mean.png"))
if isfile(filename):
os.remove(filename)
P = pd.Series(np.random.normal(200, 40, 743), index=self.S.columns)
diff --git a/mhkit/tidal/__init__.py b/mhkit/tidal/__init__.py
index 2644bfdfa..b998addfb 100644
--- a/mhkit/tidal/__init__.py
+++ b/mhkit/tidal/__init__.py
@@ -1,3 +1,10 @@
+"""
+MHKiT Tidal Module
+
+The tidal module contains a set of functions to calculate
+relevant quantities of interest for tidal energy converters (TECs).
+"""
+
from mhkit.tidal import graphics
from mhkit.tidal import io
from mhkit.tidal import resource
diff --git a/mhkit/tidal/graphics.py b/mhkit/tidal/graphics.py
index 151fac479..d31be42d3 100644
--- a/mhkit/tidal/graphics.py
+++ b/mhkit/tidal/graphics.py
@@ -1,15 +1,34 @@
-import numpy as np
+"""
+graphics.py
+
+This module provides functions for visualizing tidal resource and performance data.
+It includes tools for creating polar plots, velocity distributions, exceedance
+probability charts, and current time-series plots.
+
+"""
+
import bisect
+import numpy as np
from scipy.interpolate import interpn as _interpn
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
+import matplotlib as mpl
from mhkit.river.resource import exceedance_probability
from mhkit.tidal.resource import _histogram, _flood_or_ebb
from mhkit.river.graphics import plot_velocity_duration_curve, _xy_plot
from mhkit.utils import convert_to_dataarray
+# Explicitly declare the river functions to be exported
+__all__ = [
+ "plot_velocity_duration_curve",
+]
-def _initialize_polar(ax=None, metadata=None, flood=None, ebb=None):
+viridis = mpl.colormaps["viridis"]
+
+
+def _initialize_polar(
+ ax: plt.Axes = None, metadata: dict = None, flood: float = None, ebb: float = None
+) -> plt.Axes:
"""
Initializes a polar plots with cardinal directions and ebb/flow
@@ -23,18 +42,18 @@ def _initialize_polar(ax=None, metadata=None, flood=None, ebb=None):
ax: axes
"""
- if ax == None:
+ if ax is None:
# Initialize polar plot
- fig = plt.figure(figsize=(12, 8))
+ plt.figure(figsize=(12, 8))
ax = plt.axes(polar=True)
# Angles are measured clockwise from true north
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
xticks = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
# Polar plots do not have minor ticks, insert flood/ebb into major ticks
- xtickDegrees = [0.0, 45.0, 90.0, 135.0, 180.0, 225.0, 270.0, 315.0]
+ xtick_degrees = [0.0, 45.0, 90.0, 135.0, 180.0, 225.0, 270.0, 315.0]
# Set title and metadata box
- if metadata != None:
+ if metadata is not None:
# Set the Title
plt.title(metadata["name"])
# List of strings for metadata box
@@ -52,35 +71,37 @@ def _initialize_polar(ax=None, metadata=None, flood=None, ebb=None):
transform=ax.transAxes,
fontsize=14,
verticalalignment="top",
- bbox=dict(facecolor="none", edgecolor="k", pad=5),
+ bbox={"facecolor": "none", "edgecolor": "k", "pad": 5},
)
# If defined plot flood and ebb directions as major ticks
- if flood != None:
+ if flood is not None:
# Get flood direction in degrees
- floodDirection = flood
+ flood_direction = flood
# Polar plots do not have minor ticks,
# insert flood/ebb into major ticks
- bisect.insort(xtickDegrees, floodDirection)
+ bisect.insort(xtick_degrees, flood_direction)
# Get location in list
- idxFlood = xtickDegrees.index(floodDirection)
+ idx_flood = xtick_degrees.index(flood_direction)
# Insert label at appropriate location
- xticks[idxFlood:idxFlood] = ["\nFlood"]
- if ebb != None:
- # Get flood direction in degrees
- ebbDirection = ebb
+ xticks[idx_flood:idx_flood] = ["\nFlood"]
+ if ebb is not None:
+ # Get ebb direction in degrees
+ ebb_direction = ebb
# Polar plots do not have minor ticks,
# insert flood/ebb into major ticks
- bisect.insort(xtickDegrees, ebbDirection)
+ bisect.insort(xtick_degrees, ebb_direction)
# Get location in list
- idxEbb = xtickDegrees.index(ebbDirection)
+ idx_ebb = xtick_degrees.index(ebb_direction)
# Insert label at appropriate location
- xticks[idxEbb:idxEbb] = ["\nEbb"]
- ax.set_xticks(np.array(xtickDegrees) * np.pi / 180.0)
+ xticks[idx_ebb:idx_ebb] = ["\nEbb"]
+ ax.set_xticks(np.array(xtick_degrees) * np.pi / 180.0)
ax.set_xticklabels(xticks)
return ax
-def _check_inputs(directions, velocities, flood, ebb):
+def _check_inputs(
+ directions: np.ndarray, velocities: np.ndarray, flood: float, ebb: float
+) -> None:
"""
Runs checks on inputs for the graphics functions.
@@ -111,27 +132,25 @@ def _check_inputs(directions, velocities, flood, ebb):
raise TypeError("flood must be of type int or float")
if not isinstance(ebb, (int, float, type(None))):
raise TypeError("ebb must be of type int or float")
- if flood is not None:
- if (flood < 0) and (flood > 360):
- raise ValueError("flood must be between 0 and 360 degrees")
- if ebb is not None:
- if (ebb < 0) and (ebb > 360):
- raise ValueError("ebb must be between 0 and 360 degrees")
+ if flood is not None and not 0 <= flood <= 360:
+ raise ValueError("flood must be between 0 and 360 degrees")
+ if ebb is not None and not 0 <= ebb <= 360:
+ raise ValueError("ebb must be between 0 and 360 degrees")
def plot_rose(
- directions,
- velocities,
- width_dir,
- width_vel,
- ax=None,
- metadata=None,
- flood=None,
- ebb=None,
-):
+ directions: np.ndarray,
+ velocities: np.ndarray,
+ width_dir: float,
+ width_vel: float,
+ ax: plt.Axes = None,
+ metadata: dict = None,
+ flood: float = None,
+ ebb: float = None,
+) -> plt.Axes:
"""
Creates a polar histogram. Direction angles from binned histogram must
- be specified such that 0 degrees is north.
+ be specified such that 0 degrees is north.
Parameters
----------
@@ -145,7 +164,7 @@ def plot_rose(
Width of velocity bins for histogram in m/s
ax: float
Polar plot axes to add polar histogram
- metadata: dictonary
+ metadata: dictionary
If provided needs keys ['name', 'lat', 'lon'] for plot title
and information box on plot
flood: float
@@ -157,69 +176,61 @@ def plot_rose(
ax: figure
Water current rose plot
"""
-
+ # pylint: disable=too-many-positional-arguments, disable=too-many-arguments, disable=too-many-locals
+ # Validate inputs inline to reduce function calls
_check_inputs(directions, velocities, flood, ebb)
+ if not isinstance(width_dir, (int, float)) or width_dir < 0:
+ raise ValueError("width_dir must be a positive number")
+ if not isinstance(width_vel, (int, float)) or width_vel < 0:
+ raise ValueError("width_vel must be a positive number")
- if not isinstance(width_dir, (int, float)):
- raise TypeError("width_dir must be of type int or float")
- if not isinstance(width_vel, (int, float)):
- raise TypeError("width_vel must be of type int or float")
- if width_dir < 0:
- raise ValueError("width_dir must be greater than 0")
- if width_vel < 0:
- raise ValueError("width_vel must be greater than 0")
-
- # Calculate the 2D histogram
- H, dir_edges, vel_edges = _histogram(directions, velocities, width_dir, width_vel)
- # Determine number of bins
- dir_bins = H.shape[0]
- vel_bins = H.shape[1]
- # Create the angles
- thetas = np.arange(0, 2 * np.pi, 2 * np.pi / dir_bins)
- # Initialize the polar polt
+ # Compute histogram and bin edges
+ histogram, _, vel_edges = _histogram(directions, velocities, width_dir, width_vel)
+
+ # Initialize polar plot
ax = _initialize_polar(ax=ax, metadata=metadata, flood=flood, ebb=ebb)
- # Set bar color based on wind speed
- colors = plt.cm.viridis(np.linspace(0, 1.0, vel_bins))
- # Set the current speed bin label names
- # Calculate the 2D histogram
+
+ # Define bin properties
+ dir_bins, vel_bins = histogram.shape
+ thetas = np.linspace(0, 2 * np.pi, dir_bins, endpoint=False)
+ colors = viridis(np.linspace(0, 1, vel_bins))
labels = [f"{i:.1f}-{j:.1f}" for i, j in zip(vel_edges[:-1], vel_edges[1:])]
- # Initialize the vertical-offset (polar radius) for the stacked bar chart.
+
+ # Plot histogram
r_offset = np.zeros(dir_bins)
for vel_bin in range(vel_bins):
- # Plot fist set of bars in all directions
ax.bar(
thetas,
- H[:, vel_bin],
+ histogram[:, vel_bin],
width=(2 * np.pi / dir_bins),
bottom=r_offset,
color=colors[vel_bin],
label=labels[vel_bin],
)
- # Increase the radius offset in all directions
- r_offset = r_offset + H[:, vel_bin]
- # Add the a legend for current speed bins
+ r_offset += histogram[
+ :, vel_bin
+ ] # Increase the radius offset in all directions
+
+ # Configure legend and ticks
plt.legend(
loc="best", title="Velocity bins [m/s]", bbox_to_anchor=(1.29, 1.00), ncol=1
)
- # Get the r-ticks (polar y-ticks)
yticks = plt.yticks()
- # Format y-ticks with units for clarity
- rticks = [f"{y:.1f}%" for y in yticks[0]]
- # Set the y-ticks
- plt.yticks(yticks[0], rticks)
+ plt.yticks(yticks[0], [f"{y:.1f}%" for y in yticks[0]])
+
return ax
def plot_joint_probability_distribution(
- directions,
- velocities,
- width_dir,
- width_vel,
- ax=None,
- metadata=None,
- flood=None,
- ebb=None,
-):
+ directions: np.ndarray,
+ velocities: np.ndarray,
+ width_dir: float,
+ width_vel: float,
+ ax: plt.Axes = None,
+ metadata: dict = None,
+ flood: float = None,
+ ebb: float = None,
+) -> plt.Axes:
"""
Creates a polar histogram. Direction angles from binned histogram must
be specified such that 0 is north.
@@ -236,7 +247,7 @@ def plot_joint_probability_distribution(
Width of velocity bins for histogram in m/s
ax: float
Polar plot axes to add polar histogram
- metadata: dictonary
+ metadata: dictionary
If provided needs keys ['name', 'Lat', 'Lon'] for plot title
and information box on plot
flood: float
@@ -248,61 +259,53 @@ def plot_joint_probability_distribution(
ax: figure
Joint probability distribution
"""
-
+ # pylint: disable=too-many-positional-arguments, disable=too-many-arguments, disable=too-many-locals
_check_inputs(directions, velocities, flood, ebb)
if not isinstance(width_dir, (int, float)):
raise TypeError("width_dir must be of type int or float")
if not isinstance(width_vel, (int, float)):
raise TypeError("width_vel must be of type int or float")
- if width_dir < 0:
- raise ValueError("width_dir must be greater than 0")
- if width_vel < 0:
- raise ValueError("width_vel must be greater than 0")
-
- # Calculate the 2D histogram
- H, dir_edges, vel_edges = _histogram(directions, velocities, width_dir, width_vel)
- # Initialize the polar polt
+ if width_dir < 0 or width_vel < 0:
+ raise ValueError("width_dir and width_vel must be greater than 0")
+
+ histogram, dir_edges, vel_edges = _histogram(
+ directions, velocities, width_dir, width_vel
+ )
ax = _initialize_polar(ax=ax, metadata=metadata, flood=flood, ebb=ebb)
- # Set the current speed bin label names
- labels = [f"{i:.1f}-{j:.1f}" for i, j in zip(vel_edges[:-1], vel_edges[1:])]
- # Set vel & dir bins to middle of bin except at ends
- dir_bins = 0.5 * (dir_edges[1:] + dir_edges[:-1]) # set all bins to middle
+
+ dir_bins = 0.5 * (dir_edges[1:] + dir_edges[:-1])
vel_bins = 0.5 * (vel_edges[1:] + vel_edges[:-1])
- # Reset end of bin range to edge of bin
- dir_bins[0] = dir_edges[0]
- vel_bins[0] = vel_edges[0]
- dir_bins[-1] = dir_edges[-1]
- vel_bins[-1] = vel_edges[-1]
- # Interpolate the bins back to specific data points
+ dir_bins[[0, -1]] = dir_edges[[0, -1]]
+ vel_bins[[0, -1]] = vel_edges[[0, -1]]
+
z = _interpn(
(dir_bins, vel_bins),
- H,
+ histogram,
np.vstack([directions, velocities]).T,
method="splinef2d",
bounds_error=False,
)
- # Plot the most probable data last
+
idx = z.argsort()
- # Convert to radians and order points by probability
- theta, r, z = directions.values[idx] * np.pi / 180, velocities.values[idx], z[idx]
- # Create scatter plot colored by probability density
- sx = ax.scatter(theta, r, c=z, s=5, edgecolor=None)
- # Create colorbar
+ theta = directions.values[idx] * np.pi / 180
+ r = velocities.values[idx]
+
+ sx = ax.scatter(theta, r, c=z[idx], s=5, edgecolor=None)
plt.colorbar(sx, ax=ax, label="Joint Probability [%]")
- # Get the r-ticks (polar y-ticks)
- yticks = ax.get_yticks()
- # Set y-ticks labels
- ax.set_yticks(yticks) # to avoid matplotlib warning
- ax.set_yticklabels([f"{y:.1f} $m/s$" for y in yticks])
+ ax.set_yticklabels([f"{y:.1f} $m/s$" for y in ax.get_yticks()])
return ax
def plot_current_timeseries(
- directions, velocities, principal_direction, label=None, ax=None
-):
+ directions: np.ndarray,
+ velocities: np.ndarray,
+ principal_direction: float,
+ label: str = None,
+ ax: plt.Axes = None,
+) -> plt.Axes:
"""
Returns a plot of velocity from an array of direction and speed
data in the direction of the supplied principal_direction.
@@ -351,7 +354,14 @@ def plot_current_timeseries(
return ax
-def tidal_phase_probability(directions, velocities, flood, ebb, bin_size=0.1, ax=None):
+def tidal_phase_probability(
+ directions: np.ndarray,
+ velocities: np.ndarray,
+ flood: float,
+ ebb: float,
+ bin_size: float = 0.1,
+ ax: plt.Axes = None,
+) -> plt.Axes:
"""
Discretizes the tidal series speed by bin size and returns a plot
of the probability for each bin in the flood or ebb tidal phase.
@@ -360,47 +370,45 @@ def tidal_phase_probability(directions, velocities, flood, ebb, bin_size=0.1, ax
----------
directions: array-like
Time-series of directions [degrees]
- speed: array-like
+ velocities: array-like
Time-series of speeds [m/s]
flood: float or int
Principal component of flow in the flood direction [degrees]
ebb: float or int
Principal component of flow in the ebb direction [degrees]
bin_size: float
- Speed bin size. Optional. Deaful = 0.1 m/s
+ Speed bin size. Optional. Default = 0.1 m/s
ax : matplotlib axes object
- Axes for plotting. If None, then a new figure with a single
+ Axes for plotting. If None, then a new figure with a single
axes is used.
Returns
-------
ax: figure
"""
-
+ # pylint: disable=too-many-positional-arguments, too-many-arguments, too-many-locals
_check_inputs(directions, velocities, flood, ebb)
if bin_size < 0:
raise ValueError("bin_size must be greater than 0")
- if ax == None:
- fig, ax = plt.subplots(figsize=(12, 8))
+ if ax is None:
+ ax = plt.subplots(figsize=(12, 8))[1]
- isEbb = _flood_or_ebb(directions, flood, ebb)
+ is_ebb = _flood_or_ebb(directions, flood, ebb)
- decimals = round(bin_size / 0.1)
- N_bins = int(round(velocities.max(), decimals) / bin_size)
+ n_bins = int(round(velocities.max(), round(bin_size / 0.1)) / bin_size)
- H, bins = np.histogram(velocities, bins=N_bins)
- H_ebb, bins1 = np.histogram(velocities[isEbb], bins=bins)
- H_flood, bins2 = np.histogram(velocities[~isEbb], bins=bins)
+ bins = np.histogram_bin_edges(velocities, bins=n_bins)
+ h_ebb, _ = np.histogram(velocities[is_ebb], bins=bins)
+ h_flood, _ = np.histogram(velocities[~is_ebb], bins=bins)
- p_ebb = H_ebb / H
- p_flood = H_flood / H
+ p_ebb = h_ebb / (h_ebb + h_flood)
+ p_flood = h_flood / (h_ebb + h_flood)
center = (bins[:-1] + bins[1:]) / 2
width = 0.9 * (bins[1] - bins[0])
- mask1 = np.ma.where(p_ebb >= p_flood)
- mask2 = np.ma.where(p_flood >= p_ebb)
+ mask1 = p_ebb >= p_flood
ax.bar(
center[mask1],
@@ -420,8 +428,8 @@ def tidal_phase_probability(directions, velocities, flood, ebb, bin_size=0.1, ax
color="orange",
)
ax.bar(
- center[mask2],
- height=p_ebb[mask2],
+ center[~mask1],
+ height=p_ebb[~mask1],
alpha=1,
edgecolor="black",
width=width,
@@ -437,7 +445,14 @@ def tidal_phase_probability(directions, velocities, flood, ebb, bin_size=0.1, ax
return ax
-def tidal_phase_exceedance(directions, velocities, flood, ebb, bin_size=0.1, ax=None):
+def tidal_phase_exceedance(
+ directions: np.ndarray,
+ velocities: np.ndarray,
+ flood: float,
+ ebb: float,
+ bin_size: float = 0.1,
+ ax: plt.Axes = None,
+) -> plt.Axes:
"""
Returns a stacked area plot of the exceedance probability for the
flood and ebb tidal phases.
@@ -462,22 +477,21 @@ def tidal_phase_exceedance(directions, velocities, flood, ebb, bin_size=0.1, ax=
-------
ax: figure
"""
-
+ # pylint: disable=too-many-positional-arguments, too-many-arguments
_check_inputs(directions, velocities, flood, ebb)
if bin_size < 0:
raise ValueError("bin_size must be greater than 0")
- if ax == None:
- fig, ax = plt.subplots(figsize=(12, 8))
+ if ax is None:
+ ax = plt.subplots(figsize=(12, 8))[1]
- isEbb = _flood_or_ebb(directions, flood, ebb)
+ is_ebb = _flood_or_ebb(directions, flood, ebb)
- s_ebb = velocities[isEbb]
- s_flood = velocities[~isEbb]
+ s_ebb = velocities[is_ebb]
+ s_flood = velocities[~is_ebb]
- F = exceedance_probability(velocities)["F"]
- F_ebb = exceedance_probability(s_ebb)["F"]
- F_flood = exceedance_probability(s_flood)["F"]
+ f_ebb = exceedance_probability(s_ebb)["exceedance_probability"]
+ f_flood = exceedance_probability(s_flood)["exceedance_probability"]
decimals = round(bin_size / 0.1)
s_new = np.arange(
@@ -486,20 +500,15 @@ def tidal_phase_exceedance(directions, velocities, flood, ebb, bin_size=0.1, ax=
bin_size,
)
- f_total = interp1d(velocities, F, bounds_error=False)
- f_ebb = interp1d(s_ebb, F_ebb, bounds_error=False)
- f_flood = interp1d(s_flood, F_flood, bounds_error=False)
-
- F_total = f_total(s_new)
- F_ebb = f_ebb(s_new)
- F_flood = f_flood(s_new)
+ f_ebb = interp1d(s_ebb, f_ebb, bounds_error=False)
+ f_flood = interp1d(s_flood, f_flood, bounds_error=False)
- F_max_total = np.nanmax(F_ebb) + np.nanmax(F_flood)
+ f_max_total = np.nanmax(f_ebb(s_new)) + np.nanmax(f_flood(s_new))
ax.stackplot(
s_new,
- F_ebb / F_max_total * 100,
- F_flood / F_max_total * 100,
+ f_ebb(s_new) / f_max_total * 100,
+ f_flood(s_new) / f_max_total * 100,
labels=["Ebb", "Flood"],
)
diff --git a/mhkit/tidal/io/__init__.py b/mhkit/tidal/io/__init__.py
index 3f75b8116..cfc84cfb4 100644
--- a/mhkit/tidal/io/__init__.py
+++ b/mhkit/tidal/io/__init__.py
@@ -1,2 +1,6 @@
+"""
+The io submodule contains functions to load NOAA and Delft3D data.
+"""
+
from mhkit.tidal.io import noaa
from mhkit.tidal.io import d3d
diff --git a/mhkit/tidal/io/d3d.py b/mhkit/tidal/io/d3d.py
index 67ec083d9..31a0836c6 100644
--- a/mhkit/tidal/io/d3d.py
+++ b/mhkit/tidal/io/d3d.py
@@ -1 +1,43 @@
-from mhkit.river.io.d3d import *
+"""
+d3d.py
+
+This module provides functions for reading, processing, and analyzing Delft3D
+data. It supports time indexing, variable interpolation, and turbulent
+intensity calculations to facilitate tidal resource assessment and modeling.
+"""
+
+from mhkit.river.io.d3d import (
+ interp,
+ np,
+ pd,
+ xr,
+ netCDF4,
+ warnings,
+ get_all_time,
+ index_to_seconds,
+ seconds_to_index,
+ get_layer_data,
+ create_points,
+ variable_interpolation,
+ get_all_data_points,
+ turbulent_intensity,
+ unorm,
+)
+
+__all__ = [
+ "interp",
+ "np",
+ "pd",
+ "xr",
+ "netCDF4",
+ "warnings",
+ "get_all_time",
+ "index_to_seconds",
+ "seconds_to_index",
+ "get_layer_data",
+ "create_points",
+ "variable_interpolation",
+ "get_all_data_points",
+ "turbulent_intensity",
+ "unorm",
+]
diff --git a/mhkit/tidal/io/noaa.py b/mhkit/tidal/io/noaa.py
index 2ab8a1d2a..8622e110e 100644
--- a/mhkit/tidal/io/noaa.py
+++ b/mhkit/tidal/io/noaa.py
@@ -1,27 +1,11 @@
"""
noaa.py
-This module provides functions to fetch, process, and read NOAA (National
-Oceanic and Atmospheric Administration) current data directly from the
-NOAA Tides and Currents API (https://api.tidesandcurrents.noaa.gov/api/prod/). It
-supports loading data into a pandas DataFrame, handling data in XML and
-JSON formats, and writing data to a JSON file.
-
-Functions:
-----------
-request_noaa_data(station, parameter, start_date, end_date, proxy=None,
- write_json=None):
- Loads NOAA current data from the API into a pandas DataFrame,
- with optional support for proxy settings and writing data to a JSON
- file.
-
-_xml_to_dataframe(response):
- Converts NOAA response data in XML format into a pandas DataFrame
- and returns metadata.
-
-read_noaa_json(filename):
- Reads a JSON file containing NOAA data saved from the request_noaa_data
- function and returns a DataFrame with timeseries site data and metadata.
+This module provides functions to fetch, process, cache, and read NOAA (National
+Oceanic and Atmospheric Administration) current data using the NOAA Tides and
+Currents API (https://api.tidesandcurrents.noaa.gov/api/prod/). It supports
+retrieving data in XML and JSON formats, converting it into a pandas DataFrame
+or xarray Dataset, and saving it as a JSON file for future use.
"""
import os
@@ -30,21 +14,20 @@
import json
import math
import shutil
+import warnings
import pandas as pd
import requests
from mhkit.utils.cache import handle_caching
def request_noaa_data(
- station,
- parameter,
- start_date,
- end_date,
- proxy=None,
- write_json=None,
- clear_cache=False,
- to_pandas=True,
-):
+ station: str,
+ parameter: str,
+ start_date: str,
+ end_date: str,
+ options: dict = None,
+ **kwargs,
+) -> tuple[pd.DataFrame, dict]:
"""
Loads NOAA current data directly from https://api.tidesandcurrents.noaa.gov/api/prod/
into a pandas DataFrame. NOAA sets max of 31 days between start and end date.
@@ -65,15 +48,16 @@ def request_noaa_data(
Start date in the format yyyyMMdd
end_date : str
End date in the format yyyyMMdd
- proxy : dict or None
- To request data from behind a firewall, define a dictionary of proxy
- settings, for example {"http": 'localhost:8080'}
- write_json : str or None
- Name of json file to write data
- clear_cache : bool
- If True, the cache for this specific request will be cleared.
- to_pandas : bool, optional
- Flag to output pandas instead of xarray. Default = True.
+ options : dict, optional
+ Dictionary containing optional parameters:
+ - proxy: dict or None
+ Proxy settings for the request.
+ - write_json: str or None
+ Path to write the data as a JSON file.
+ - clear_cache: bool
+ Whether to clear cached data.
+ - to_pandas: bool
+ Whether to return the data as a pandas DataFrame.
Returns
-------
@@ -84,7 +68,82 @@ def request_noaa_data(
Request metadata. If returning xarray, metadata is instead attached to
the data's attributes.
"""
- # Type check inputs
+ if kwargs:
+ warnings.warn(
+ f"Unexpected keyword arguments: {', '.join(kwargs.keys())}. "
+ "Please pass options as a dictionary.",
+ UserWarning,
+ )
+
+ options = options or {}
+ proxy = options.get("proxy", None)
+ write_json = options.get("write_json", None)
+ clear_cache = options.get("clear_cache", False)
+ to_pandas = options.get("to_pandas", True)
+
+ _validate_inputs(
+ station,
+ parameter,
+ start_date,
+ end_date,
+ options,
+ )
+
+ cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "noaa")
+ hash_params = f"{station}_{parameter}_{start_date}_{end_date}"
+
+ cached_data, cached_metadata, cache_filepath = handle_caching(
+ hash_params,
+ cache_dir,
+ {"data": None, "metadata": None, "write_json": write_json},
+ clear_cache,
+ )
+
+ if cached_data is not None:
+ return _handle_cached_data(
+ cached_data, cached_metadata, write_json, cache_filepath, to_pandas
+ )
+
+ return _fetch_noaa_data(
+ station,
+ parameter,
+ start_date,
+ end_date,
+ {
+ "proxy": proxy,
+ "cache_dir": cache_dir,
+ "hash_params": hash_params,
+ "write_json": write_json,
+ "clear_cache": clear_cache,
+ "to_pandas": to_pandas,
+ },
+ )
+
+
+def _validate_inputs(
+ station: str, parameter: str, start_date: str, end_date: str, options: dict
+) -> None:
+ """
+ Validates the input parameters for the NOAA data request.
+
+ Parameters
+ ----------
+ station : str
+ NOAA current station number.
+ parameter : str
+ NOAA parameter to fetch.
+ start_date : str
+ Start date for data retrieval in yyyyMMdd format.
+ end_date : str
+ End date for data retrieval in yyyyMMdd format.
+ options : dict
+ Dictionary of options for data retrieval.
+
+ Raises
+ ------
+ TypeError
+ If any of the inputs are not of the expected type.
+ """
if not isinstance(station, str):
raise TypeError(
f"Expected 'station' to be of type str, but got {type(station)}"
@@ -101,6 +160,12 @@ def request_noaa_data(
raise TypeError(
f"Expected 'end_date' to be of type str, but got {type(end_date)}"
)
+
+ proxy = options.get("proxy", None)
+ write_json = options.get("write_json", None)
+ clear_cache = options.get("clear_cache", False)
+ to_pandas = options.get("to_pandas", True)
+
if proxy and not isinstance(proxy, dict):
raise TypeError(
f"Expected 'proxy' to be of type dict or None, but got {type(proxy)}"
@@ -116,146 +181,335 @@ def request_noaa_data(
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- # Define the path to the cache directory
- cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "noaa")
- # Create a unique filename based on the function parameters
- hash_params = f"{station}_{parameter}_{start_date}_{end_date}"
+def _handle_cached_data(
+ cached_data: pd.DataFrame,
+ cached_metadata: dict,
+ write_json: str,
+ cache_filepath: str,
+ to_pandas: bool,
+) -> tuple[pd.DataFrame, dict]:
+ """
+ Handles cached data by optionally writing it to a JSON file and returning it.
- # Use handle_caching to manage cache
- cached_data, cached_metadata, cache_filepath = handle_caching(
- hash_params,
- cache_dir,
- cache_content={"data": None, "metadata": None, "write_json": write_json},
- clear_cache_file=clear_cache,
+ Parameters
+ ----------
+ cached_data : pd.DataFrame
+ The cached data to be returned.
+ cached_metadata : dict
+ Metadata associated with the cached data.
+ write_json : str
+ Path to write the cached data as a JSON file, if specified.
+ cache_filepath : str
+ Filepath of the cached data.
+ to_pandas : bool
+ Flag indicating whether to return the data as a pandas DataFrame.
+
+ Returns
+ -------
+ tuple[pd.DataFrame, dict]
+ The cached data and its metadata.
+ """
+ if write_json:
+ shutil.copy(cache_filepath, write_json)
+ if to_pandas:
+ return cached_data, cached_metadata
+
+ cached_data = cached_data.to_xarray()
+ cached_data.attrs = cached_metadata
+ return cached_data
+
+
+def _fetch_noaa_data(
+ station: str, parameter: str, start_date: str, end_date: str, options: dict
+) -> tuple[pd.DataFrame, dict]:
+ """
+ Fetches NOAA data from the API, processes it, and returns it along with metadata.
+
+ Parameters
+ ----------
+ station : str
+ NOAA current station number.
+ parameter : str
+ NOAA parameter to fetch.
+ start_date : str
+ Start date for data retrieval in yyyyMMdd format.
+ end_date : str
+ End date for data retrieval in yyyyMMdd format.
+ options : dict
+ Dictionary of options for data retrieval:
+ - proxy: dict or None
+ Proxy settings for the request.
+ - cache_dir: str
+ Directory for caching data.
+ - hash_params: str
+ Parameters used for caching.
+ - write_json: str or None
+ Path to write the data as a JSON file.
+ - clear_cache: bool
+ Whether to clear cached data.
+ - to_pandas: bool
+ Whether to return the data as a pandas DataFrame.
+
+ Returns
+ -------
+ tuple[pd.DataFrame, dict]
+ The fetched data and its metadata.
+ """
+ begin, end = _parse_dates(start_date, end_date)
+ date_list = _create_date_ranges(begin, end)
+
+ data_frames = []
+ metadata = None # Initialize metadata
+ for i in range(len(date_list) - 1):
+ start_date = date_list[i].strftime("%Y%m%d")
+ end_date = date_list[i + 1].strftime("%Y%m%d")
+ data_url = _build_data_url(station, parameter, start_date, end_date)
+
+ print(f"Data request URL: {data_url}\n")
+ response = _make_request(data_url, options["proxy"])
+ df, metadata = _xml_to_dataframe(response)
+ data_frames.append(df)
+
+ return _process_data_frames(data_frames, metadata, options)
+
+
+def _process_data_frames(
+ data_frames: list[pd.DataFrame], metadata: dict, options: dict
+) -> tuple[pd.DataFrame, dict]:
+ """
+ Processes a list of data frames by concatenating them and handling caching.
+
+ Parameters
+ ----------
+ data_frames : list[pd.DataFrame]
+ List of data frames to process.
+ metadata : dict
+ Metadata associated with the data.
+ options : dict
+ Options for processing, including caching and output format:
+ - hash_params: str
+ Parameters used for caching.
+ - cache_dir: str
+ Directory for caching data.
+ - write_json: str or None
+ Path to write the data as a JSON file.
+ - clear_cache: bool
+ Whether to clear cached data.
+ - to_pandas: bool
+ Whether to return the data as a pandas DataFrame.
+
+ Returns
+ -------
+ tuple[pd.DataFrame, dict]
+ The processed data and its metadata.
+ """
+ data = _concatenate_data_frames(data_frames)
+ cache_filepath = handle_caching(
+ options["hash_params"],
+ options["cache_dir"],
+ {"data": data, "metadata": metadata, "write_json": None},
+ options["clear_cache"],
)
- if cached_data is not None:
- if write_json:
- shutil.copy(cache_filepath, write_json)
- if to_pandas:
- return cached_data, cached_metadata
- else:
- cached_data = cached_data.to_xarray()
- cached_data.attrs = cached_metadata
- return cached_data
- # If no cached data is available, make the API request
- # no coverage bc in coverage runs we have already cached the data/ run this code
- else: # pragma: no cover
- # Convert start and end dates to datetime objects
- begin = datetime.datetime.strptime(start_date, "%Y%m%d").date()
- end = datetime.datetime.strptime(end_date, "%Y%m%d").date()
-
- # Determine the number of 30 day intervals
- delta = 30
- interval = math.ceil(((end - begin).days) / delta)
-
- # Create date ranges with 30 day intervals
- date_list = [
- begin + datetime.timedelta(days=i * delta) for i in range(interval + 1)
- ]
- date_list[-1] = end
-
- # Iterate over date_list (30 day intervals) and fetch data
- data_frames = []
- for i in range(len(date_list) - 1):
- start_date = date_list[i].strftime("%Y%m%d")
- end_date = date_list[i + 1].strftime("%Y%m%d")
-
- api_query = f"begin_date={start_date}&end_date={end_date}&station={station}&product={parameter}&units=metric&time_zone=gmt&application=web_services&format=xml"
- # Add datum to water level inquiries
- if parameter == "water_level":
- api_query += "&datum=MLLW"
- data_url = f"https://tidesandcurrents.noaa.gov/api/datagetter?{api_query}"
-
- print(f"Data request URL: {data_url}\n")
-
- # Get response
- try:
- response = requests.get(url=data_url, proxies=proxy)
- response.raise_for_status()
- # Catch non-exception errors
- if "error" in response.content.decode():
- raise Exception(response.content.decode())
- except Exception as err:
- if err.__class__ == requests.exceptions.HTTPError:
- print(f"HTTP error occurred: {err}")
- print(f"Error message: {response.content.decode()}\n")
- continue
- elif err.__class__ == requests.exceptions.RequestException:
- print(f"Requests error occurred: {err}")
- print(f"Error message: {response.content.decode()}\n")
- continue
- else:
- print(f"Requests error occurred: {err}\n")
- continue
-
- # Convert to DataFrame and save in data_frames list
- df, metadata = _xml_to_dataframe(response)
- data_frames.append(df)
-
- # Concatenate all DataFrames
- if data_frames:
- data = pd.concat(data_frames, ignore_index=False)
- else:
- raise ValueError("No data retrieved.")
-
- # Remove duplicated date values
- data = data.loc[~data.index.duplicated()]
-
- # After making the API request and processing the response, write the
- # response to a cache file
- handle_caching(
- hash_params,
- cache_dir,
- cache_content={"data": data, "metadata": metadata, "write_json": None},
- clear_cache_file=clear_cache,
- )
+ if options["write_json"]:
+ shutil.copy(cache_filepath, options["write_json"])
+
+ if options["to_pandas"]:
+ return data, metadata
+
+ data = data.to_xarray()
+ data.attrs = metadata
+ return data
+
+
+def _parse_dates(start_date: str, end_date: str) -> tuple[datetime.date, datetime.date]:
+ """
+ Parses start and end dates from strings to datetime.date objects.
+
+ Parameters
+ ----------
+ start_date : str
+ Start date in yyyyMMdd format.
+ end_date : str
+ End date in yyyyMMdd format.
+
+ Returns
+ -------
+ tuple[datetime.date, datetime.date]
+ Parsed start and end dates.
+ """
+ begin = datetime.datetime.strptime(start_date, "%Y%m%d").date()
+ end = datetime.datetime.strptime(end_date, "%Y%m%d").date()
+ return begin, end
+
+
+def _create_date_ranges(
+ begin: datetime.date, end: datetime.date
+) -> list[datetime.date]:
+ """
+ Creates a list of date ranges between the start and end dates.
+
+ Parameters
+ ----------
+ begin : datetime.date
+ Start date.
+ end : datetime.date
+ End date.
+
+ Returns
+ -------
+ list[datetime.date]
+ List of date ranges.
+ """
+ delta = 30
+ interval = math.ceil(((end - begin).days) / delta)
+ date_list = [
+ begin + datetime.timedelta(days=i * delta) for i in range(interval + 1)
+ ]
+ date_list[-1] = end
+ return date_list
+
+
+def _build_data_url(
+ station: str, parameter: str, start_date: str, end_date: str
+) -> str:
+ """
+ Builds the data request URL for the NOAA API.
+
+ Parameters
+ ----------
+ station : str
+ NOAA current station number.
+ parameter : str
+ NOAA parameter to fetch.
+ start_date : str
+ Start date for data retrieval in yyyyMMdd format.
+ end_date : str
+ End date for data retrieval in yyyyMMdd format.
- if write_json:
- shutil.copy(cache_filepath, write_json)
+ Returns
+ -------
+ str
+ The constructed data request URL.
+ """
+ api_query = (
+ f"begin_date={start_date}&end_date={end_date}&station={station}&product={parameter}"
+ "&units=metric&time_zone=gmt&application=web_services&format=xml"
+ )
+ if parameter == "water_level":
+ api_query += "&datum=MLLW"
+ return f"https://tidesandcurrents.noaa.gov/api/datagetter?{api_query}"
+
+
+def _make_request(data_url: str, proxy: dict) -> requests.Response:
+ """
+ Makes an HTTP request to the specified data URL using optional proxy settings.
- if to_pandas:
- return data, metadata
- else:
- data = data.to_xarray()
- data.attrs = metadata
- return data
+ Parameters
+ ----------
+ data_url : str
+ The URL to request data from.
+ proxy : dict
+ Proxy settings for the request.
+ Returns
+ -------
+ requests.Response
+ The HTTP response from the request.
-def _xml_to_dataframe(response):
+ Raises
+ ------
+ requests.exceptions.RequestException
+ If an error occurs during the request.
"""
- Returns a dataframe from an xml response
+ try:
+ response = requests.get(url=data_url, proxies=proxy, timeout=60)
+ response.raise_for_status()
+ if "error" in response.content.decode():
+ raise requests.exceptions.RequestException(response.content.decode())
+ except requests.exceptions.HTTPError as http_err:
+ print(f"HTTP error occurred: {http_err}")
+ print(f"Error message: {response.content.decode()}\n")
+ raise
+ except requests.exceptions.RequestException as req_err:
+ print(f"Requests error occurred: {req_err}")
+ print(f"Error message: {response.content.decode()}\n")
+ raise
+ return response
+
+
+def _concatenate_data_frames(data_frames: list[pd.DataFrame]) -> pd.DataFrame:
+ """
+ Concatenates a list of data frames into a single data frame, removing duplicates.
+
+ Parameters
+ ----------
+ data_frames : list[pd.DataFrame]
+ List of data frames to concatenate.
+
+ Returns
+ -------
+ pd.DataFrame
+ The concatenated data frame with duplicates removed.
+
+ Raises
+ ------
+ ValueError
+ If no data frames are provided.
+ """
+ if data_frames:
+ data = pd.concat(data_frames, ignore_index=False)
+ else:
+ raise ValueError("No data retrieved.")
+ return data.loc[~data.index.duplicated()]
+
+
+def _xml_to_dataframe(response: requests.Response) -> tuple[pd.DataFrame, dict]:
+ """
+ Converts an XML response from the NOAA API into a pandas DataFrame and extracts metadata.
+
+ Parameters
+ ----------
+ response : requests.Response
+ The HTTP response containing XML data from the NOAA API.
+
+ Returns
+ -------
+ tuple[pd.DataFrame, dict]
+ A tuple containing the data as a pandas DataFrame and the associated metadata
+ as a dictionary.
"""
root = ET.fromstring(response.text)
metadata = None
data = None
for child in root:
- # Save meta data dictionary
if child.tag == "metadata":
metadata = child.attrib
elif child.tag == "observations":
data = child
elif child.tag == "error":
print("***ERROR: Response returned error")
- return None
+ return None, {}
if data is None:
print("***ERROR: No observations found")
- return None
+ return None, {}
- # Create a list of DataFrames then Concatenate
df = pd.concat(
[pd.DataFrame(obs.attrib, index=[0]) for obs in data], ignore_index=True
)
- # Convert time to datetime
- df["t"] = pd.to_datetime(df.t)
+ try:
+ df["t"] = pd.to_datetime(pd.to_numeric(df.t), unit="ms")
+ except ValueError:
+ # Don't convert df.t to numeric if its a datetime formatted string
+ df["t"] = pd.to_datetime(df.t)
+
df = df.set_index("t")
df.drop_duplicates(inplace=True)
- # Convert data to float
cols = list(df.columns)
for var in cols:
try:
@@ -263,10 +517,10 @@ def _xml_to_dataframe(response):
except ValueError:
pass
- return df, metadata
+ return df, metadata or {}
-def read_noaa_json(filename, to_pandas=True):
+def read_noaa_json(filename: str, to_pandas: bool = True) -> tuple[pd.DataFrame, dict]:
"""
Returns site DataFrame and metadata from a json saved from the
request_noaa_data
@@ -288,7 +542,7 @@ def read_noaa_json(filename, to_pandas=True):
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- with open(filename) as outfile:
+ with open(filename, encoding="utf-8") as outfile:
json_data = json.load(outfile)
try: # original MHKiT format (deprecate in future)
# Get the metadata
@@ -298,7 +552,7 @@ def read_noaa_json(filename, to_pandas=True):
# Remainder is DataFrame
data = pd.DataFrame.from_dict(json_data)
# Convert from epoch to date time
- data.index = pd.to_datetime(data.index, unit="ms")
+ data.index = pd.to_datetime(pd.to_numeric(data.index), unit="ms")
except ValueError: # using cache.py format
if "metadata" in json_data:
@@ -311,7 +565,7 @@ def read_noaa_json(filename, to_pandas=True):
if to_pandas:
return data, metadata
- else:
- data = data.to_xarray()
- data.attrs = metadata
- return data
+
+ data = data.to_xarray()
+ data.attrs = metadata
+ return data
diff --git a/mhkit/tidal/performance.py b/mhkit/tidal/performance.py
index 3a516bec7..b57f0411c 100644
--- a/mhkit/tidal/performance.py
+++ b/mhkit/tidal/performance.py
@@ -1,7 +1,18 @@
+"""
+performance.py
+
+This module provides functions for analyzing the performance of tidal energy
+devices using Acoustic Doppler Current Profiler (ADCP) data. It includes
+methods for calculating power curves, efficiency, velocity profiles, and
+other metrics relevant to marine energy devices.
+
+"""
+
+from typing import Union, Optional
+import pandas as pd
import numpy as np
import xarray as xr
from mhkit.utils import convert_to_dataarray
-
from mhkit import dolfyn
from mhkit.river.performance import (
circular,
@@ -12,8 +23,19 @@
power_coefficient,
)
+__all__ = [
+ "circular",
+ "ducted",
+ "rectangular",
+ "multiple_circular",
+ "tip_speed_ratio",
+ "power_coefficient",
+]
+
-def _slice_circular_capture_area(diameter, hub_height, doppler_cell_size):
+def _slice_circular_capture_area(
+ diameter: float, hub_height: float, doppler_cell_size: float
+) -> xr.DataArray:
"""
Slices a circle (capture area) based on ADCP depth bins mapped
across the face of the capture area.
@@ -38,32 +60,26 @@ def _slice_circular_capture_area(diameter, hub_height, doppler_cell_size):
"""
def area_of_circle_segment(radius, angle):
- # Calculating area of sector
- area_of_sector = np.pi * radius**2 * (angle / 360)
- # Calculating area of triangle
- area_of_triangle = 0.5 * radius**2 * np.sin((np.pi * angle) / 180)
- return area_of_sector - area_of_triangle
+ return np.pi * radius**2 * (angle / 360) - 0.5 * radius**2 * np.sin(
+ (np.pi * angle) / 180
+ )
def point_on_circle(y, r):
return np.sqrt(r**2 - y**2)
- # Capture area - from mhkit.river.performance
- d = diameter
- cs = doppler_cell_size
-
- A_cap = np.pi * (d / 2) ** 2 # m^2
# Need to chop up capture area into slices based on bin size
- # For a cirle:
- r_min = hub_height - d / 2
- r_max = hub_height + d / 2
- A_edge = np.arange(r_min, r_max + cs, cs)
- A_rng = A_edge[:-1] + cs / 2 # Center of each slice
+ # For a circle:
+ area_edge = np.arange(
+ hub_height - diameter / 2,
+ hub_height + diameter / 2 + doppler_cell_size,
+ doppler_cell_size,
+ )
+ area_rng = area_edge[:-1] + doppler_cell_size / 2 # Center of each slice
# y runs from the bottom edge of the lower centerline slice to
# the top edge of the lowest slice
- # Will need to figure out y if the hub height isn't centered
- y = abs(A_edge - np.mean(A_edge))
- y[np.where(abs(y) > (d / 2))] = d / 2
+ y = abs(area_edge - np.mean(area_edge))
+ y[np.where(abs(y) > (diameter / 2))] = diameter / 2
# Even vs odd number of slices
if y.size % 2:
@@ -73,25 +89,29 @@ def point_on_circle(y, r):
y = y[: len(y) // 2]
y = np.append(y, 0)
- x = point_on_circle(y, d / 2)
+ x = point_on_circle(y, diameter / 2)
radii = np.rad2deg(np.arctan(x / y) * 2)
# Segments go from outside of circle towards middle
- As = area_of_circle_segment(d / 2, radii)
+ area_segments = area_of_circle_segment(diameter / 2, radii)
# Subtract segments to get area of slices
- As_slc = As[1:] - As[:-1]
+ area_segments_slc = area_segments[1:] - area_segments[:-1]
if not odd:
# Make middle slice half whole
- As_slc[-1] = As_slc[-1] * 2
+ area_segments_slc[-1] = area_segments_slc[-1] * 2
# Copy-flip the other slices to get the whole circle
- As_slc = np.append(As_slc, np.flip(As_slc[:-1]))
+ area_segments_slc = np.append(
+ area_segments_slc, np.flip(area_segments_slc[:-1])
+ )
else:
- As_slc = abs(As_slc)
+ area_segments_slc = abs(area_segments_slc)
- return xr.DataArray(As_slc, coords={"range": A_rng})
+ return xr.DataArray(area_segments_slc, coords={"range": area_rng})
-def _slice_rectangular_capture_area(height, width, hub_height, doppler_cell_size):
+def _slice_rectangular_capture_area(
+ height: float, width: float, hub_height: float, doppler_cell_size: float
+) -> xr.DataArray:
"""
Slices a rectangular (capture area) based on ADCP depth bins mapped
across the face of the capture area.
@@ -123,30 +143,30 @@ def _slice_rectangular_capture_area(height, width, hub_height, doppler_cell_size
cs = doppler_cell_size
r_min = hub_height - height / 2
r_max = hub_height + height / 2
- A_edge = np.arange(r_min, r_max + cs, cs)
- A_rng = A_edge[:-1] + cs / 2 # Center of each slice
+ area_edge = np.arange(r_min, r_max + cs, cs)
+ area_rng = area_edge[:-1] + cs / 2 # Center of each slice
- As_slc = np.ones(len(A_rng)) * width * cs
+ area_slice = np.ones(len(area_rng)) * width * cs
- return xr.DataArray(As_slc, coords={"range": A_rng})
+ return xr.DataArray(area_slice, coords={"range": area_rng})
def power_curve(
- power,
- velocity,
- hub_height,
- doppler_cell_size,
- sampling_frequency,
- window_avg_time=600,
- turbine_profile="circular",
- diameter=None,
- height=None,
- width=None,
- to_pandas=True,
-):
+ power: Union[np.ndarray, pd.DataFrame, pd.Series, xr.DataArray, xr.Dataset],
+ velocity: Union[np.ndarray, pd.DataFrame, pd.Series, xr.DataArray, xr.Dataset],
+ hub_height: float,
+ doppler_cell_size: float,
+ sampling_frequency: float,
+ window_avg_time: int = 600,
+ turbine_profile: str = "circular",
+ diameter: Optional[float] = None,
+ height: Optional[float] = None,
+ width: Optional[float] = None,
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.Dataset]:
"""
Calculates power curve and power statistics for a marine energy
- device based on IEC/TS 62600-200 section 9.3.
+ device based on IEC TS 62600-200 section 9.3.
Parameters
-------------
@@ -180,7 +200,7 @@ def power_curve(
Power-weighted velocity, mean power, power std dev, max and
min power vs hub-height velocity.
"""
-
+ # pylint: disable=too-many-arguments, too-many-positional-arguments, too-many-locals
# Velocity should be a 2D xarray or pandas array and have dims (range, time)
# Power should have a timestamp coordinate/index
power = convert_to_dataarray(power)
@@ -219,41 +239,42 @@ def power_curve(
"`turbine_profile` must be one of 'circular' or 'rectangular'."
)
if turbine_profile == "circular":
- if diameter is None:
- raise TypeError(
- "`diameter` cannot be None for input `turbine_profile` = 'circular'."
- )
- elif not isinstance(diameter, (int, float)) or diameter <= 0:
- raise ValueError("`diameter` must be a positive number.")
- else: # If the checks pass, calculate A_slc
- A_slc = _slice_circular_capture_area(
- diameter, hub_height, doppler_cell_size
+ if not isinstance(diameter, (int, float)) or diameter <= 0:
+ raise ValueError(
+ "`diameter` must be specified as a positive integer or float."
)
+ # If the checks pass, calculate area_slice
+ area_slice = _slice_circular_capture_area(
+ diameter, hub_height, doppler_cell_size
+ )
else: # Rectangular profile
if height is None or width is None:
raise TypeError(
"`height` and `width` cannot be None for input `turbine_profile` = 'rectangular'."
)
- elif not all(
+ if not all(
isinstance(val, (int, float)) and val > 0 for val in [height, width]
):
raise ValueError("`height` and `width` must be positive numbers.")
- else: # If the checks pass, calculate A_slc
- A_slc = _slice_rectangular_capture_area(
- height, width, hub_height, doppler_cell_size
- )
+ # If the checks pass, calculate area_slice
+ area_slice = _slice_rectangular_capture_area(
+ height, width, hub_height, doppler_cell_size
+ )
# Streamwise data
- U = abs(velocity)
- time = U["time"].values
+ velocity_absolute = abs(velocity)
+ time = velocity_absolute["time"].values
# Interpolate power to velocity timestamps
- P = power.interp(time=U["time"], method="linear")
+ power_interpolated = power.interp(time=velocity_absolute["time"], method="linear")
# Power weighted velocity in capture area
- # Interpolate U range to capture area slices, then cube and multiply by area
- U_hat = U.interp(range=A_slc["range"], method="linear") ** 3 * A_slc
+ # Interpolate velocity_absolute range to capture area slices, then cube and multiply by area
+ velocity_hat = (
+ velocity_absolute.interp(range=area_slice["range"], method="linear") ** 3
+ * area_slice
+ )
# Average the velocity across the capture area and divide out area
- U_hat = (U_hat.sum("range") / A_slc.sum()) ** (-1 / 3)
+ velocity_hat = (velocity_hat.sum("range") / area_slice.sum()) ** (-1 / 3)
# Time-average velocity at hub-height
bnr = dolfyn.VelBinner(
@@ -261,43 +282,47 @@ def power_curve(
)
# Hub-height velocity mean
mean_hub_vel = xr.DataArray(
- bnr.mean(U.sel(range=hub_height, method="nearest").values),
+ bnr.mean(velocity_absolute.sel(range=hub_height, method="nearest").values),
coords={"time": bnr.mean(time)},
)
# Power-weighted hub-height velocity mean
- U_hat_bar = xr.DataArray(
- (bnr.mean(U_hat.values**3)) ** (-1 / 3), coords={"time": bnr.mean(time)}
+ velocity_hat_bar = xr.DataArray(
+ (bnr.mean(velocity_hat.values**3)) ** (-1 / 3), coords={"time": bnr.mean(time)}
)
# Average power
- P_bar = xr.DataArray(bnr.mean(P.values), coords={"time": bnr.mean(time)})
+ power_bar = xr.DataArray(
+ bnr.mean(power_interpolated.values), coords={"time": bnr.mean(time)}
+ )
# Then reorganize into 0.1 m velocity bins and average
- U_bins = np.arange(0, np.nanmax(mean_hub_vel) + 0.1, 0.1)
- U_hub_vel = mean_hub_vel.assign_coords({"time": mean_hub_vel}).rename(
+ velocity_bins = np.arange(0, np.nanmax(mean_hub_vel) + 0.1, 0.1)
+ velocity_hub_vel = mean_hub_vel.assign_coords({"time": mean_hub_vel}).rename(
{"time": "speed"}
)
- U_hub_mean = U_hub_vel.groupby_bins("speed", U_bins).mean()
- U_hat_vel = U_hat_bar.assign_coords({"time": mean_hub_vel}).rename(
+ velocity_hub_mean = velocity_hub_vel.groupby_bins("speed", velocity_bins).mean()
+ velocity_hat_vel = velocity_hat_bar.assign_coords({"time": mean_hub_vel}).rename(
{"time": "speed"}
)
- U_hat_mean = U_hat_vel.groupby_bins("speed", U_bins).mean()
+ velocity_hat_mean = velocity_hat_vel.groupby_bins("speed", velocity_bins).mean()
- P_bar_vel = P_bar.assign_coords({"time": mean_hub_vel}).rename({"time": "speed"})
- P_bar_mean = P_bar_vel.groupby_bins("speed", U_bins).mean()
- P_bar_std = P_bar_vel.groupby_bins("speed", U_bins).std()
- P_bar_max = P_bar_vel.groupby_bins("speed", U_bins).max()
- P_bar_min = P_bar_vel.groupby_bins("speed", U_bins).min()
+ power_bar_vel = power_bar.assign_coords({"time": mean_hub_vel}).rename(
+ {"time": "speed"}
+ )
+ power_bar_mean = power_bar_vel.groupby_bins("speed", velocity_bins).mean()
+ power_bar_std = power_bar_vel.groupby_bins("speed", velocity_bins).std()
+ power_bar_max = power_bar_vel.groupby_bins("speed", velocity_bins).max()
+ power_bar_min = power_bar_vel.groupby_bins("speed", velocity_bins).min()
device_power_curve = xr.Dataset(
{
- "U_avg": U_hub_mean,
- "U_avg_power_weighted": U_hat_mean,
- "P_avg": P_bar_mean,
- "P_std": P_bar_std,
- "P_max": P_bar_max,
- "P_min": P_bar_min,
+ "U_avg": velocity_hub_mean,
+ "U_avg_power_weighted": velocity_hat_mean,
+ "P_avg": power_bar_mean,
+ "P_std": power_bar_std,
+ "P_max": power_bar_max,
+ "P_min": power_bar_min,
}
)
device_power_curve = device_power_curve.rename({"speed_bins": "U_bins"})
@@ -308,40 +333,46 @@ def power_curve(
return device_power_curve
-def _average_velocity_bins(U, U_hub, bin_size):
+def _average_velocity_bins(
+ velocity_data: xr.DataArray, velocity_hub: xr.DataArray, bin_size: float
+) -> xr.DataArray:
"""
Groups time-ensembles into velocity bins based on hub-height
velocity and averages them.
Parameters
-------------
- U: xarray.DataArray
+ velocity_data: xarray.DataArray
Input variable to group by velocity.
- U_hub: xarray.DataArray
+ velocity_hub: xarray.DataArray
Sea water velocity at hub height.
bin_size: numeric
Velocity averaging window size in m/s.
Returns
---------
- U_binned: xarray.DataArray
+ velocity_binned: xarray.DataArray
Data grouped into velocity bins.
"""
# Reorganize into velocity bins and average
- U_bins = np.arange(0, np.nanmax(U_hub) + bin_size, bin_size)
+ velocity_bins = np.arange(0, np.nanmax(velocity_hub) + bin_size, bin_size)
# Group time-ensembles into velocity bins based on hub-height velocity and average
- U_binned = U.assign_coords({"time": U_hub}).rename({"time": "speed"})
- U_binned = U_binned.groupby_bins("speed", U_bins).mean()
+ velocity_binned = velocity_data.assign_coords({"time": velocity_hub}).rename(
+ {"time": "speed"}
+ )
+ velocity_binned = velocity_binned.groupby_bins("speed", velocity_bins).mean()
- return U_binned
+ return velocity_binned
-def _apply_function(function, bnr, U):
+def _apply_function(
+ function: str, bnr: dolfyn.VelBinner, velocity: xr.DataArray
+) -> xr.DataArray:
"""
Applies a specified function ('mean', 'rms', or 'std') to the input
- data array U, grouped into bins as specified by the binning rules in bnr.
+ data array velocity, grouped into bins as specified by the binning rules in bnr.
Parameters
-------------
@@ -349,58 +380,59 @@ def _apply_function(function, bnr, U):
The name of the function to apply. Must be one of 'mean',
'rms', or 'std'.
bnr: dolfyn.VelBinner or similar
- The binning rule object that determines how data in U is
+ The binning rule object that determines how data in velocity is
grouped into bins.
- U: xarray.DataArray
+ velocity: xarray.DataArray
The input data array to which the function is applied.
Returns
---------
xarray.DataArray
- The input data array U after the specified function has been
+ The input data array velocity after the specified function has been
applied, grouped into bins according to bnr.
"""
if function == "mean":
# Average data into 5-10 minute ensembles
return xr.DataArray(
- bnr.mean(abs(U).values),
- coords={"range": U.range, "time": bnr.mean(U["time"].values)},
+ bnr.mean(abs(velocity).values),
+ coords={"range": velocity.range, "time": bnr.mean(velocity["time"].values)},
)
- elif function == "rms":
+ if function == "rms":
# Reshape tidal velocity - returns (range, ensemble-time, ensemble elements)
- U_reshaped = bnr.reshape(abs(U).values)
+ velocity_reshaped = bnr.reshape(abs(velocity).values)
# Take root-mean-square
- U_rms = np.sqrt(np.nanmean(U_reshaped**2, axis=-1))
+ velocity_rms = np.sqrt(np.nanmean(velocity_reshaped**2, axis=-1))
return xr.DataArray(
- U_rms, coords={"range": U.range, "time": bnr.mean(U["time"].values)}
+ velocity_rms,
+ coords={"range": velocity.range, "time": bnr.mean(velocity["time"].values)},
)
- elif function == "std":
+ if function == "std":
# Standard deviation
return xr.DataArray(
- bnr.standard_deviation(U.values),
- coords={"range": U.range, "time": bnr.mean(U["time"].values)},
- )
- else:
- raise ValueError(
- f"Unknown function {function}. Should be one of 'mean', 'rms', or 'std'"
+ bnr.standard_deviation(velocity.values),
+ coords={"range": velocity.range, "time": bnr.mean(velocity["time"].values)},
)
+ raise ValueError(
+ f"Unknown function {function}. Should be one of 'mean', 'rms', or 'std'"
+ )
+
def velocity_profiles(
- velocity,
- hub_height,
- water_depth,
- sampling_frequency,
- window_avg_time=600,
- function="mean",
- to_pandas=True,
-):
+ velocity: Union[np.ndarray, pd.DataFrame, pd.Series, xr.DataArray, xr.Dataset],
+ hub_height: float,
+ water_depth: float,
+ sampling_frequency: float,
+ window_avg_time: int = 600,
+ function: str = "mean",
+ to_pandas: bool = True,
+) -> Union[pd.DataFrame, xr.DataArray]:
"""
Calculates profiles of the mean, root-mean-square (RMS), or standard
deviation(std) of velocity. The chosen metric, specified by `function`,
is calculated for each `window_avg_time` and bin-averaged based on
- ensemble velocity, as per IEC/TS 62600-200 sections 9.4 and 9.5.
+ ensemble velocity, as per IEC TS 62600-200 sections 9.4 and 9.5.
Parameters
-------------
@@ -425,7 +457,7 @@ def velocity_profiles(
iec_profiles: pandas.DataFrame
Average velocity profiles based on ensemble mean velocity.
"""
-
+ # pylint: disable=too-many-arguments, too-many-positional-arguments, too-many-locals
velocity = convert_to_dataarray(velocity, "velocity")
if len(velocity.shape) != 2:
raise ValueError(
@@ -438,21 +470,18 @@ def velocity_profiles(
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- # Streamwise data
- U = velocity
-
# Create binner
bnr = dolfyn.VelBinner(
n_bin=window_avg_time * sampling_frequency, fs=sampling_frequency
)
# Take velocity at hub height
- mean_hub_vel = bnr.mean(U.sel(range=hub_height, method="nearest").values)
+ mean_hub_vel = bnr.mean(velocity.sel(range=hub_height, method="nearest").values)
# Apply mean, root-mean-square, or standard deviation
- U_out = _apply_function(function, bnr, U)
+ velocity_out = _apply_function(function, bnr, velocity)
# Then reorganize into 0.5 m/s velocity bins and average
- profiles = _average_velocity_bins(U_out, mean_hub_vel, bin_size=0.5)
+ profiles = _average_velocity_bins(velocity_out, mean_hub_vel, bin_size=0.5)
# Extend top and bottom of profiles to the seafloor and sea surface
# Clip off extra depth bins with nans
@@ -477,17 +506,17 @@ def velocity_profiles(
def device_efficiency(
- power,
- velocity,
- water_density,
- capture_area,
- hub_height,
- sampling_frequency,
- window_avg_time=600,
- to_pandas=True,
-):
+ power: Union[np.ndarray, pd.DataFrame, pd.Series, xr.DataArray, xr.Dataset],
+ velocity: Union[np.ndarray, pd.DataFrame, pd.Series, xr.DataArray, xr.Dataset],
+ water_density: Union[float, pd.Series, xr.DataArray],
+ capture_area: float,
+ hub_height: float,
+ sampling_frequency: float,
+ window_avg_time: int = 600,
+ to_pandas: bool = True,
+) -> Union[pd.Series, xr.DataArray]:
"""
- Calculates marine energy device efficiency based on IEC/TS 62600-200 Section 9.7.
+ Calculates marine energy device efficiency based on IEC TS 62600-200 Section 9.7.
Parameters
-------------
@@ -514,7 +543,7 @@ def device_efficiency(
device_eta : pandas.Series or xarray.DataArray
Device efficiency (power coefficient) in percent.
"""
-
+ # pylint: disable=too-many-arguments, too-many-positional-arguments, too-many-locals
# Velocity should be a 2D xarray or pandas array and have dims (range, time)
# Power should have a timestamp coordinate/index
power = convert_to_dataarray(power, "power")
@@ -528,11 +557,11 @@ def device_efficiency(
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
# Streamwise data
- U = abs(velocity)
- time = U["time"].values
+ velocity_absolute = abs(velocity)
+ time = velocity_absolute["time"].values
# Power: Interpolate to velocity timeseries
- power.interp(time=U["time"], method="linear")
+ power_interpolated = power.interp(time=velocity_absolute["time"], method="linear")
# Create binner
bnr = dolfyn.VelBinner(
@@ -540,7 +569,7 @@ def device_efficiency(
)
# Hub-height velocity
mean_hub_vel = xr.DataArray(
- bnr.mean(U.sel(range=hub_height, method="nearest").values),
+ bnr.mean(velocity_absolute.sel(range=hub_height, method="nearest").values),
coords={"time": bnr.mean(time)},
)
vel_hub = _average_velocity_bins(mean_hub_vel, mean_hub_vel, bin_size=0.1)
@@ -549,14 +578,16 @@ def device_efficiency(
rho_vel = _calculate_density(water_density, bnr, mean_hub_vel, time)
# Bin average power
- P_avg = xr.DataArray(bnr.mean(power.values), coords={"time": bnr.mean(time)})
- P_vel = _average_velocity_bins(P_avg, mean_hub_vel, bin_size=0.1)
+ power_avg = xr.DataArray(
+ bnr.mean(power_interpolated.values), coords={"time": bnr.mean(time)}
+ )
+ power_vel = _average_velocity_bins(power_avg, mean_hub_vel, bin_size=0.1)
# Theoretical power resource
- P_resource = 1 / 2 * rho_vel * capture_area * vel_hub**3
+ power_resource = 1 / 2 * rho_vel * capture_area * vel_hub**3
# Efficiency
- eta = P_vel / P_resource
+ eta = power_vel / power_resource
device_eta = xr.Dataset({"U_avg": vel_hub, "Efficiency": eta})
device_eta = device_eta.rename({"speed_bins": "U_bins"})
@@ -567,7 +598,12 @@ def device_efficiency(
return device_eta
-def _calculate_density(water_density, bnr, mean_hub_vel, time):
+def _calculate_density(
+ water_density: Union[np.ndarray, float],
+ bnr: dolfyn.VelBinner,
+ mean_hub_vel: xr.DataArray,
+ time: np.ndarray,
+) -> Union[xr.DataArray, float]:
"""
Calculates the averaged density for the given time period.
@@ -599,5 +635,5 @@ def _calculate_density(water_density, bnr, mean_hub_vel, time):
bnr.mean(water_density.values), coords={"time": bnr.mean(time)}
)
return _average_velocity_bins(rho_avg, mean_hub_vel, bin_size=0.1)
- else:
- return water_density
+
+ return water_density
diff --git a/mhkit/tidal/resource.py b/mhkit/tidal/resource.py
index e6b6d21c4..dcb9111df 100644
--- a/mhkit/tidal/resource.py
+++ b/mhkit/tidal/resource.py
@@ -1,10 +1,28 @@
-import numpy as np
+"""
+This module provides utility functions for analyzing river and tidal
+flow directions and velocities. It includes tools for determining
+principal flow directions, classifying ebb and flood cycles, and
+computing probability distributions of flow velocities.
+
+"""
+
import math
-from mhkit.river.resource import exceedance_probability, Froude_number
+import numpy as np
+from mhkit.river.resource import exceedance_probability, froude_number
from mhkit.utils import convert_to_dataarray
+__all__ = [
+ "exceedance_probability",
+ "froude_number",
+ "principal_flow_directions",
+ "_histogram",
+ "_flood_or_ebb",
+]
+
-def _histogram(directions, velocities, width_dir, width_vel):
+def _histogram(
+ directions: np.ndarray, velocities: np.ndarray, width_dir: float, width_vel: float
+) -> tuple[np.ndarray, list, list]:
"""
Wrapper around numpy histogram 2D. Used to find joint probability
between directions and velocities. Returns joint probability H as [%].
@@ -30,27 +48,27 @@ def _histogram(directions, velocities, width_dir, width_vel):
"""
# Number of directional bins
- N_dir = math.ceil(360 / width_dir)
+ n_dir = math.ceil(360 / width_dir)
# Max bin (round up to nearest integer)
- vel_max = math.ceil(velocities.max())
+ velocity_max = math.ceil(velocities.max())
# Number of velocity bins
- N_vel = math.ceil(vel_max / width_vel)
+ n_vel = math.ceil(velocity_max / width_vel)
# 2D Histogram of current speed and direction
- H, dir_edges, vel_edges = np.histogram2d(
+ joint_probability, dir_edges, vel_edges = np.histogram2d(
directions,
velocities,
- bins=(N_dir, N_vel),
- range=[[0, 360], [0, vel_max]],
+ bins=(n_dir, n_vel),
+ range=[[0, 360], [0, velocity_max]],
density=True,
)
# density = true therefore bin value * bin area summed =1
bin_area = width_dir * width_vel
- # Convert H values to percent [%]
- H = H * bin_area * 100
- return H, dir_edges, vel_edges
+ # Convert joint_probability values to percent [%]
+ joint_probability = joint_probability * bin_area * 100
+ return joint_probability, dir_edges, vel_edges
-def _normalize_angle(degree):
+def _normalize_angle(degree: float) -> float:
"""
Normalizes degrees to be between 0 and 360
@@ -70,7 +88,9 @@ def _normalize_angle(degree):
return new_degree
-def principal_flow_directions(directions, width_dir):
+def principal_flow_directions(
+ directions: np.ndarray, width_dir: float
+) -> tuple[float, float]:
"""
Calculates principal flow directions for ebb and flood cycles
@@ -96,6 +116,7 @@ def principal_flow_directions(directions, width_dir):
One must determine which principal direction is flood and which is
ebb based on knowledge of the measurement site.
"""
+ # pylint: disable=too-many-locals
directions = convert_to_dataarray(directions)
if any(directions < 0) or any(directions > 360):
@@ -105,36 +126,38 @@ def principal_flow_directions(directions, width_dir):
)
# Number of directional bins
- N_dir = int(360 / width_dir)
+ n_dir = int(360 / width_dir)
# Compute directional histogram
- H1, dir_edges = np.histogram(directions, bins=N_dir, range=[0, 360], density=True)
+ histogram1, _ = np.histogram(directions, bins=n_dir, range=[0, 360], density=True)
# Convert to percent
- H1 = H1 * 100 # [%]
+ histogram1 = histogram1 * 100 # [%]
# Determine if there are an even or odd number of bins
- odd = bool(N_dir % 2)
+ odd = bool(n_dir % 2)
# Shift by 180 degrees and sum
if odd:
# Then split middle bin counts to left and right
- H0to180 = H1[0 : N_dir // 2]
- H180to360 = H1[N_dir // 2 + 1 :]
- H0to180[-1] += H1[N_dir // 2] / 2
- H180to360[0] += H1[N_dir // 2] / 2
+ histogram_0_to_180 = histogram1[0 : n_dir // 2]
+ histogram_180_to_360 = histogram1[n_dir // 2 + 1 :]
+ histogram_0_to_180[-1] += histogram1[n_dir // 2] / 2
+ histogram_180_to_360[0] += histogram1[n_dir // 2] / 2
# Add the two
- H180 = H0to180 + H180to360
+ histogram_180 = histogram_0_to_180 + histogram_180_to_360
else:
- H180 = H1[0 : N_dir // 2] + H1[N_dir // 2 : N_dir + 1]
+ histogram_180 = histogram1[0 : n_dir // 2] + histogram1[n_dir // 2 : n_dir + 1]
# Find the maximum value
- maxDegreeStacked = H180.argmax()
+ max_degree_stacked = histogram_180.argmax()
# Shift by 90 to find angles normal to principal direction
- floodEbbNormalDegree1 = _normalize_angle(maxDegreeStacked + 90.0)
+ flood_ebb_normal_degree1 = _normalize_angle(max_degree_stacked + 90.0)
# Find the complimentary angle
- floodEbbNormalDegree2 = _normalize_angle(floodEbbNormalDegree1 + 180.0)
+ flood_ebb_normal_degree2 = _normalize_angle(flood_ebb_normal_degree1 + 180.0)
# Reset values so that the Degree1 is the smaller angle, and Degree2 the large
- floodEbbNormalDegree1 = min(floodEbbNormalDegree1, floodEbbNormalDegree2)
- floodEbbNormalDegree2 = floodEbbNormalDegree1 + 180.0
+ flood_ebb_normal_degree1 = min(flood_ebb_normal_degree1, flood_ebb_normal_degree2)
+ flood_ebb_normal_degree2 = flood_ebb_normal_degree1 + 180.0
# Slice directions on the 2 semi circles
- mask = (directions >= floodEbbNormalDegree1) & (directions <= floodEbbNormalDegree2)
+ mask = (directions >= flood_ebb_normal_degree1) & (
+ directions <= flood_ebb_normal_degree2
+ )
d1 = directions[mask]
d2 = directions[~mask]
# Shift second set of of directions to not break between 360 and 0
@@ -144,23 +167,25 @@ def principal_flow_directions(directions, width_dir):
# Number of bins for semi-circle
n_dir = int(180 / width_dir)
# Compute 1D histograms on both semi circles
- Hd1, dir1_edges = np.histogram(d1, bins=n_dir, density=True)
- Hd2, dir2_edges = np.histogram(d2, bins=n_dir, density=True)
+ histogram_d1, dir1_edges = np.histogram(d1, bins=n_dir, density=True)
+ histogram_d2, dir2_edges = np.histogram(d2, bins=n_dir, density=True)
# Convert to percent
- Hd1 = Hd1 * 100 # [%]
- Hd2 = Hd2 * 100 # [%]
+ histogram_d1 = histogram_d1 * 100 # [%]
+ histogram_d2 = histogram_d2 * 100 # [%]
# Principal Directions average of the 2 bins
- PrincipalDirection1 = 0.5 * (
- dir1_edges[Hd1.argmax()] + dir1_edges[Hd1.argmax() + 1]
+ principal_direction1 = 0.5 * (
+ dir1_edges[histogram_d1.argmax()] + dir1_edges[histogram_d1.argmax() + 1]
)
- PrincipalDirection2 = (
- 0.5 * (dir2_edges[Hd2.argmax()] + dir2_edges[Hd2.argmax() + 1]) + 180.0
+ principal_direction2 = (
+ 0.5
+ * (dir2_edges[histogram_d2.argmax()] + dir2_edges[histogram_d2.argmax() + 1])
+ + 180.0
)
- return PrincipalDirection1, PrincipalDirection2
+ return principal_direction1, principal_direction2
-def _flood_or_ebb(d, flood, ebb):
+def _flood_or_ebb(d: np.ndarray, flood: float, ebb: float) -> np.ndarray:
"""
Returns a mask which is True for directions on the ebb side of the
midpoints between the flood and ebb directions on the unit circle
diff --git a/mhkit/utils/__init__.py b/mhkit/utils/__init__.py
index 328a33200..c89a6430f 100644
--- a/mhkit/utils/__init__.py
+++ b/mhkit/utils/__init__.py
@@ -1,6 +1,6 @@
"""
-This module initializes and imports the essential utility functions for data
-conversion, statistical analysis, caching, and event detection for the
+This module initializes and imports the essential utility functions for data
+conversion, statistical analysis, caching, and event detection for the
MHKiT library.
"""
diff --git a/mhkit/utils/cache.py b/mhkit/utils/cache.py
index eadfe2eca..c4897c12c 100644
--- a/mhkit/utils/cache.py
+++ b/mhkit/utils/cache.py
@@ -1,28 +1,28 @@
"""
This module provides functionality for managing cache files to optimize
network requests and computations for handling data. The module focuses
-on enabling users to read from and write to cache files, as well as
-perform cache clearing operations. Cache files are utilized to store data
-temporarily, mitigating the need to re-fetch or recompute the same data multiple
+on enabling users to read from and write to cache files, as well as
+perform cache clearing operations. Cache files are utilized to store data
+temporarily, mitigating the need to re-fetch or recompute the same data multiple
times, which can be especially useful in network-dependent tasks.
The module consists of two main functions:
1. `handle_caching`:
- This function manages the caching of data. It provides options to read from
- and write to cache files, depending on whether the data is already provided
- or if it needs to be fetched from the cache. If a cache file corresponding
- to the given parameters already exists, the function can either load data
- from it or clear it based on the parameters passed. It also offers the ability
- to store associated metadata along with the data and supports both JSON and
- pickle file formats for caching. This function returns the loaded data and
+ This function manages the caching of data. It provides options to read from
+ and write to cache files, depending on whether the data is already provided
+ or if it needs to be fetched from the cache. If a cache file corresponding
+ to the given parameters already exists, the function can either load data
+ from it or clear it based on the parameters passed. It also offers the ability
+ to store associated metadata along with the data and supports both JSON and
+ pickle file formats for caching. This function returns the loaded data and
metadata from the cache file, along with the cache file path.
2. `clear_cache`:
- This function enables the clearing of either specific sub-directories or the
- entire cache directory, depending on the parameter passed. It removes the
- specified directory and then recreates it to ensure future caching tasks can
- be executed without any issues. If the specified directory does not exist,
+ This function enables the clearing of either specific sub-directories or the
+ entire cache directory, depending on the parameter passed. It removes the
+ specified directory and then recreates it to ensure future caching tasks can
+ be executed without any issues. If the specified directory does not exist,
the function prints an indicative message.
Module Dependencies:
diff --git a/mhkit/utils/stat_utils.py b/mhkit/utils/stat_utils.py
index 972a84f2a..e6cea5c93 100644
--- a/mhkit/utils/stat_utils.py
+++ b/mhkit/utils/stat_utils.py
@@ -1,9 +1,9 @@
"""
-This module contains functions to perform various statistical calculations
+This module contains functions to perform various statistical calculations
on continuous data. It includes functions for calculating statistics such as
mean, max, min, and standard deviation over specific windows, as well as functions
-for vector/directional statistics. The module also provides utility functions
-to unwrap vectors, compute magnitudes and phases in 2D/3D, and calculate
+for vector/directional statistics. The module also provides utility functions
+to unwrap vectors, compute magnitudes and phases in 2D/3D, and calculate
the root mean squared values of vector components.
Functions:
@@ -144,7 +144,7 @@ def get_statistics(
def vector_statistics(
- data: Union[pd.Series, np.ndarray, list]
+ data: Union[pd.Series, np.ndarray, list],
) -> Tuple[np.ndarray, np.ndarray]:
"""
Function used to calculate statistics for vector/directional channels based on
diff --git a/mhkit/utils/time_utils.py b/mhkit/utils/time_utils.py
index 3eb69f7e1..a30bd455e 100644
--- a/mhkit/utils/time_utils.py
+++ b/mhkit/utils/time_utils.py
@@ -18,7 +18,7 @@
def matlab_to_datetime(
- matlab_datenum: Union[np.ndarray, list, float, int]
+ matlab_datenum: Union[np.ndarray, list, float, int],
) -> pd.DatetimeIndex:
"""
Convert MATLAB datenum format to Python datetime
@@ -55,7 +55,7 @@ def matlab_to_datetime(
def excel_to_datetime(
- excel_num: Union[np.ndarray, list, float, int]
+ excel_num: Union[np.ndarray, list, float, int],
) -> pd.DatetimeIndex:
"""
Convert Excel datenum format to Python datetime
diff --git a/mhkit/utils/type_handling.py b/mhkit/utils/type_handling.py
index 09ad5ccac..b58fee525 100644
--- a/mhkit/utils/type_handling.py
+++ b/mhkit/utils/type_handling.py
@@ -1,7 +1,7 @@
"""
This module provides utility functions for converting various data types
to xarray structures such as xarray.DataArray and xarray.Dataset. It also
-includes functions for handling nested dictionaries containing pandas
+includes functions for handling nested dictionaries containing pandas
DataFrames by converting them to xarray Datasets.
Functions:
@@ -9,7 +9,7 @@
- to_numeric_array: Converts input data to a numeric NumPy array.
- convert_to_dataset: Converts pandas or xarray data structures to xarray.Dataset.
- convert_to_dataarray: Converts various data types to xarray.DataArray.
-- convert_nested_dict_and_pandas: Recursively converts pandas DataFrames
+- convert_nested_dict_and_pandas: Recursively converts pandas DataFrames
in nested dictionaries to xarray Datasets.
"""
@@ -237,7 +237,7 @@ def convert_to_dataarray(
def convert_nested_dict_and_pandas(
- data: Dict[str, Union[pd.DataFrame, Dict[str, Any]]]
+ data: Dict[str, Union[pd.DataFrame, Dict[str, Any]]],
) -> Dict[str, Union[xr.Dataset, Dict[str, Any]]]:
"""
Recursively searches inside nested dictionaries for pandas DataFrames to
diff --git a/mhkit/utils/upcrossing.py b/mhkit/utils/upcrossing.py
index 1c5eea03f..7ab06a0ed 100644
--- a/mhkit/utils/upcrossing.py
+++ b/mhkit/utils/upcrossing.py
@@ -1,7 +1,7 @@
"""
Upcrossing Analysis Functions
=============================
-This module contains a collection of functions that facilitate upcrossing
+This module contains a collection of functions that facilitate upcrossing
analyses.
Key Functions:
@@ -12,8 +12,8 @@
- `heights`: Calculates the height between zero crossings.
- `periods`: Calculates the period between zero crossings.
- `custom`: Applies a custom, user-defined function between zero crossings.
-
-Author:
+
+Author:
-------
mbruggs
akeeste
diff --git a/mhkit/warnings.py b/mhkit/warnings.py
new file mode 100644
index 000000000..c64265ec8
--- /dev/null
+++ b/mhkit/warnings.py
@@ -0,0 +1,26 @@
+import warnings
+
+# Only suppress specific, reviewed warnings here.
+# Example: Suppress a known FutureWarning from a specific dependency
+# warnings.filterwarnings(
+# "ignore",
+# category=FutureWarning,
+# module=r"^some_dependency\.module$",
+# message=r"This is a known harmless future warning."
+# )
+
+# Add more targeted filters as needed, after review.
+
+
+def configure_warnings():
+ """
+ Call this function at package import to apply MHKiT's targeted warning filters.
+ """
+ # Example: Uncomment and edit below to suppress a specific warning
+ # warnings.filterwarnings(
+ # "ignore",
+ # category=FutureWarning,
+ # module=r"^some_dependency\.module$",
+ # message=r"This is a known harmless future warning."
+ # )
+ pass
diff --git a/mhkit/wave/graphics.py b/mhkit/wave/graphics.py
index 00afefbab..b54c18413 100644
--- a/mhkit/wave/graphics.py
+++ b/mhkit/wave/graphics.py
@@ -77,7 +77,7 @@ def plot_matrix(M, xlabel="Te", ylabel="Hm0", zlabel=None, show_values=True, ax=
------------
M: pandas Series, pandas DataFrame, xarray DataArray
Matrix with numeric labels for x and y axis, and numeric entries.
- An example would be the average capture length matrix generated by
+ An example would be the average capture width matrix generated by
mhkit.device.wave, or something similar.
xlabel: string (optional)
Title of the x-axis
@@ -626,7 +626,7 @@ def plot_avg_annual_energy_matrix(
def monthly_cumulative_distribution(J):
"""
Creates a cumulative distribution of energy flux as described in
- IEC TS 62600-101.
+ Figure 6 of IEC TS 62600-101 Ed. 2.0 en 2024.
Parameters
----------
@@ -644,20 +644,24 @@ def monthly_cumulative_distribution(J):
for month in months:
F = exceedance_probability(J[J.index.month == month])
cumSum[month] = 1 - F / 100
- cumSum[month].sort_values("F", inplace=True)
+ cumSum[month].sort_values("exceedance_probability", inplace=True)
plt.figure(figsize=(12, 8))
for month in months:
plt.semilogx(
J.loc[cumSum[month].index],
- cumSum[month].F,
+ cumSum[month]["exceedance_probability"],
"--",
label=calendar.month_abbr[month],
)
F = exceedance_probability(J)
- F.sort_values("F", inplace=True)
+ F.sort_values("exceedance_probability", inplace=True)
ax = plt.semilogx(
- J.loc[F.index], 1 - F["F"] / 100, "k-", fillstyle="none", label="All"
+ J.loc[F.index],
+ 1 - F["exceedance_probability"] / 100,
+ "k-",
+ fillstyle="none",
+ label="All",
)
plt.grid()
@@ -835,7 +839,10 @@ def plot_boxplot(Hs, buoy_title=None):
bp2 = plt.subplot(gs[1, :])
meanprops = dict(linewidth=2.5, marker="|", markersize=25)
bp2_example = bp2.boxplot(
- bp_sample2, vert=False, flierprops=flierprops, medianprops=medianprops
+ bp_sample2,
+ orientation="horizontal",
+ flierprops=flierprops,
+ medianprops=medianprops,
)
sample_mean = 2.3
bp2.scatter(sample_mean, 1, marker="|", color="g", linewidths=1.0, s=200)
diff --git a/mhkit/wave/io/hindcast/__init__.py b/mhkit/wave/io/hindcast/__init__.py
index 2e6057131..6fa3efc32 100644
--- a/mhkit/wave/io/hindcast/__init__.py
+++ b/mhkit/wave/io/hindcast/__init__.py
@@ -1,3 +1,11 @@
+"""Wave hindcast data import and processing module.
+
+This module provides functionality for importing and processing wave hindcast data,
+including wind toolkit data and WPTO hindcast data. The hindcast io module is
+separated from the general io module to allow for more efficient handling of
+CI tests.
+"""
+
from mhkit.wave.io.hindcast import wind_toolkit
try:
@@ -8,4 +16,3 @@
"MHKiT-Python. If you are using Windows and calling from"
"MHKiT-MATLAB this is expected."
)
- pass
diff --git a/mhkit/wave/io/hindcast/hindcast.py b/mhkit/wave/io/hindcast/hindcast.py
index c58e55c40..83119a782 100644
--- a/mhkit/wave/io/hindcast/hindcast.py
+++ b/mhkit/wave/io/hindcast/hindcast.py
@@ -5,26 +5,6 @@
regions, request point data for various parameters, and request directional
spectrum data.
-Functions:
- - region_selection(lat_lon): Returns the name of the predefined region for
- given latitude and longitude coordinates.
- - request_wpto_point_data(data_type, parameter, lat_lon, years, tree=None,
- unscale=True, str_decode=True, hsds=True): Returns data from the WPTO wave
- hindcast hosted on AWS at the specified latitude and longitude point(s) for
- the requested data type, parameter, and years.
- - request_wpto_directional_spectrum(lat_lon, year, tree=None, unscale=True,
- str_decode=True, hsds=True): Returns directional spectra data from the WPTO
- wave hindcast hosted on AWS at the specified latitude and longitude point(s)
- for the given year.
-
-Dependencies:
- - sys
- - time.sleep
- - pandas
- - xarray
- - numpy
- - rex.MultiYearWaveX, rex.WaveX
-
Author: rpauly, aidanbharath, ssolson
Date: 2023-09-26
"""
@@ -32,6 +12,7 @@
import os
import sys
from time import sleep
+from typing import List, Tuple, Union, Optional, Dict
import pandas as pd
import xarray as xr
import numpy as np
@@ -40,7 +21,7 @@
from mhkit.utils.type_handling import convert_to_dataset
-def region_selection(lat_lon):
+def region_selection(lat_lon: Union[List[float], Tuple[float, float]]) -> str:
"""
Returns the name of the predefined region in which the given
coordinates reside. Can be used to check if the passed lat/lon
@@ -64,13 +45,17 @@ def region_selection(lat_lon):
f"lat_lon values must be of type float or int. Got: {type(lat_lon[0])}"
)
- regions = {
+ regions: Dict[str, Dict[str, List[float]]] = {
"Hawaii": {"lat": [15.0, 27.000002], "lon": [-164.0, -151.0]},
"West_Coast": {"lat": [30.0906, 48.8641], "lon": [-130.072, -116.899]},
"Atlantic": {"lat": [24.382, 44.8247], "lon": [-81.552, -65.721]},
}
- def region_search(lat_lon, region, regions):
+ def region_search(
+ lat_lon: Union[List[float], Tuple[float, float]],
+ region: str,
+ regions: Dict[str, Dict[str, List[float]]],
+ ) -> bool:
return all(
regions[region][dk][0] <= d <= regions[region][dk][1]
for dk, d in {"lat": lat_lon[0], "lon": lat_lon[1]}.items()
@@ -84,18 +69,23 @@ def region_search(lat_lon, region, regions):
return region[0]
+# pylint: disable=too-many-arguments
+# pylint: disable=too-many-positional-arguments
+# pylint: disable=too-many-locals
+# pylint: disable=too-many-branches
+# pylint: disable=too-many-statements
def request_wpto_point_data(
- data_type,
- parameter,
- lat_lon,
- years,
- tree=None,
- unscale=True,
- str_decode=True,
- hsds=True,
- path=None,
- to_pandas=True,
-):
+ data_type: str,
+ parameter: Union[str, List[str]],
+ lat_lon: Union[Tuple[float, float], List[Tuple[float, float]]],
+ years: List[int],
+ tree: Optional[str] = None,
+ unscale: bool = True,
+ str_decode: bool = True,
+ hsds: bool = True,
+ path: Optional[str] = None,
+ to_pandas: bool = True,
+) -> Tuple[Union[pd.DataFrame, xr.Dataset], pd.DataFrame]:
"""
Returns data from the WPTO wave hindcast hosted on AWS at the
specified latitude and longitude point(s), or the closest
@@ -190,7 +180,10 @@ def request_wpto_point_data(
# Attempt to load data from cache
# Construct a string representation of the function parameters
- hash_params = f"{data_type}_{parameter}_{lat_lon}_{years}_{tree}_{unscale}_{str_decode}_{hsds}_{path}_{to_pandas}"
+ hash_params = (
+ f"{data_type}_{parameter}_{lat_lon}_{years}_{tree}_{unscale}_"
+ f"{str_decode}_{hsds}_{path}_{to_pandas}"
+ )
cache_dir = _get_cache_dir()
data, meta, _ = handle_caching(
hash_params,
@@ -200,105 +193,105 @@ def request_wpto_point_data(
if data is not None:
return data, meta
- else:
- if "directional_wave_spectrum" in parameter:
- sys.exit("This function does not support directional_wave_spectrum output")
- # Check for multiple region selection
- if isinstance(lat_lon[0], float):
- region = region_selection(lat_lon)
- else:
- region_list = []
- for loc in lat_lon:
- region_list.append(region_selection(loc))
- if region_list.count(region_list[0]) == len(lat_lon):
- region = region_list[0]
- else:
- sys.exit("Coordinates must be within the same region!")
-
- if path:
- wave_path = path
- elif data_type == "3-hour":
- wave_path = f"/nrel/US_wave/{region}/{region}_wave_*.h5"
- elif data_type == "1-hour":
- wave_path = (
- f"/nrel/US_wave/virtual_buoy/{region}/{region}_virtual_buoy_*.h5"
- )
- else:
- print("ERROR: invalid data_type")
-
- wave_kwargs = {
- "tree": tree,
- "unscale": unscale,
- "str_decode": str_decode,
- "hsds": hsds,
- "years": years,
- }
- data_list = []
-
- with MultiYearWaveX(wave_path, **wave_kwargs) as rex_waves:
- if isinstance(parameter, list):
- for param in parameter:
- temp_data = rex_waves.get_lat_lon_df(param, lat_lon)
- gid = rex_waves.lat_lon_gid(lat_lon)
- cols = temp_data.columns[:]
- for i, col in zip(range(len(cols)), cols):
- temp = f"{param}_{i}"
- temp_data = temp_data.rename(columns={col: temp})
+ if "directional_wave_spectrum" in parameter:
+ sys.exit("This function does not support directional_wave_spectrum output")
- data_list.append(temp_data)
- data = pd.concat(data_list, axis=1)
+ # Check for multiple region selection
+ if isinstance(lat_lon[0], float):
+ region = region_selection(lat_lon)
+ else:
+ region_list = []
+ for loc in lat_lon:
+ region_list.append(region_selection(loc))
+ if region_list.count(region_list[0]) == len(lat_lon):
+ region = region_list[0]
+ else:
+ sys.exit("Coordinates must be within the same region!")
- else:
- data = rex_waves.get_lat_lon_df(parameter, lat_lon)
- cols = data.columns[:]
+ if path:
+ wave_path = path
+ elif data_type == "3-hour":
+ wave_path = f"/nrel/US_wave/{region}/{region}_wave_*.h5"
+ elif data_type == "1-hour":
+ wave_path = f"/nrel/US_wave/virtual_buoy/{region}/{region}_virtual_buoy_*.h5"
+ else:
+ raise ValueError(
+ f"Invalid data_type: {data_type}. Must be '3-hour' or '1-hour'"
+ )
+ wave_kwargs = {
+ "tree": tree,
+ "unscale": unscale,
+ "str_decode": str_decode,
+ "hsds": hsds,
+ "years": years,
+ }
+ data_list = []
+
+ with MultiYearWaveX(wave_path, **wave_kwargs) as rex_waves:
+ if isinstance(parameter, list):
+ for param in parameter:
+ temp_data = rex_waves.get_lat_lon_df(param, lat_lon)
+ gid = rex_waves.lat_lon_gid(lat_lon)
+ cols = temp_data.columns[:]
for i, col in zip(range(len(cols)), cols):
- temp = f"{parameter}_{i}"
- data = data.rename(columns={col: temp})
+ temp = f"{param}_{i}"
+ temp_data = temp_data.rename(columns={col: temp})
- meta = rex_waves.meta.loc[cols, :]
- meta = meta.reset_index(drop=True)
- gid = rex_waves.lat_lon_gid(lat_lon)
- meta["gid"] = gid
+ data_list.append(temp_data)
+ data = pd.concat(data_list, axis=1)
- if not to_pandas:
- data = convert_to_dataset(data)
- data["time_index"] = pd.to_datetime(data.time_index)
+ else:
+ data = rex_waves.get_lat_lon_df(parameter, lat_lon)
+ cols = data.columns[:]
- if isinstance(parameter, list):
- param_coords = [f"{param}_{i}" for param in parameter]
- data.coords["parameter"] = xr.DataArray(
- param_coords, dims="parameter"
- )
+ for i, col in zip(range(len(cols)), cols):
+ temp = f"{parameter}_{i}"
+ data = data.rename(columns={col: temp})
- data.coords["year"] = xr.DataArray(years, dims="year")
+ meta = rex_waves.meta.loc[cols, :]
+ meta = meta.reset_index(drop=True)
+ gid = rex_waves.lat_lon_gid(lat_lon)
+ meta["gid"] = gid
- meta_ds = meta.to_xarray()
- data = xr.merge([data, meta_ds])
+ if not to_pandas:
+ data = convert_to_dataset(data)
+ data["time_index"] = pd.to_datetime(data.time_index)
- # Remove the 'index' coordinate
- data = data.drop_vars("index")
+ if isinstance(parameter, list):
+ param_coords = [f"{param}_{i}" for param in parameter]
+ data.coords["parameter"] = xr.DataArray(param_coords, dims="parameter")
- # save_to_cache(hash_params, data, meta)
- handle_caching(
- hash_params,
- cache_dir,
- cache_content={"data": data, "metadata": meta, "write_json": None},
- )
+ data.coords["year"] = xr.DataArray(years, dims="year")
- return data, meta
+ meta_ds = meta.to_xarray()
+ data = xr.merge([data, meta_ds])
+
+ # Remove the 'index' coordinate
+ data = data.drop_vars("index")
+
+ # save_to_cache(hash_params, data, meta)
+ handle_caching(
+ hash_params,
+ cache_dir,
+ cache_content={"data": data, "metadata": meta, "write_json": None},
+ )
+
+ return data, meta
+# pylint: disable=too-many-branches
+# pylint: disable=too-many-statements
def request_wpto_directional_spectrum(
- lat_lon,
- year,
- tree=None,
- unscale=True,
- str_decode=True,
- hsds=True,
- path=None,
-):
+ lat_lon: Union[Tuple[float, float], List[Tuple[float, float]]],
+ year: str,
+ tree: Optional[str] = None,
+ unscale: bool = True,
+ str_decode: bool = True,
+ hsds: bool = True,
+ path: Optional[str] = None,
+) -> Tuple[xr.Dataset, pd.DataFrame]:
"""
Returns directional spectra data from the WPTO wave hindcast hosted
on AWS at the specified latitude and longitude point(s),
@@ -417,10 +410,10 @@ def request_wpto_directional_spectrum(
)
# Create bins for multiple smaller API dataset requests
- N = 6
+ num_bins = 6
length = len(rex_waves)
- quotient, remainder = divmod(length, N)
- bins = [i * quotient for i in range(N + 1)]
+ quotient, remainder = divmod(length, num_bins)
+ bins = [i * quotient for i in range(num_bins + 1)]
bins[-1] += remainder
index_bins = (np.array(bins) * len(frequency) * len(direction)).tolist()
@@ -436,7 +429,7 @@ def request_wpto_directional_spectrum(
try:
data_array = rex_waves[parameter, bins[i] : bins[i + 1], :, :, gid]
str_error = None
- except Exception as err:
+ except OSError as err:
str_error = str(err)
if str_error:
@@ -501,7 +494,7 @@ def request_wpto_directional_spectrum(
return data, meta
-def _get_cache_dir():
+def _get_cache_dir() -> str:
"""
Returns the path to the cache directory.
"""
diff --git a/mhkit/wave/io/hindcast/wind_toolkit.py b/mhkit/wave/io/hindcast/wind_toolkit.py
index 2205e2be4..a22cbe7ba 100644
--- a/mhkit/wave/io/hindcast/wind_toolkit.py
+++ b/mhkit/wave/io/hindcast/wind_toolkit.py
@@ -2,47 +2,12 @@
Wind Toolkit Data Utility Functions
===================================
-This module contains a collection of utility functions designed to facilitate
-the extraction, caching, and visualization of wind data from the WIND Toolkit
-hindcast dataset hosted on AWS. This dataset includes offshore wind hindcast data
+This module contains a collection of utility functions designed to facilitate
+the extraction, caching, and visualization of wind data from the WIND Toolkit
+hindcast dataset hosted on AWS. This dataset includes offshore wind hindcast data
with various parameters like wind speed, direction, temperature, and pressure.
-Key Functions:
---------------
-- `region_selection`: Determines which predefined wind region a given latitude
- and longitude fall within.
-
-- `get_region_data`: Retrieves latitude and longitude data points for a specified
- wind region. Uses caching to speed up repeated requests.
-
-- `plot_region`: Plots the geographical extent of a specified wind region and
- can overlay a given latitude-longitude point.
-
-- `elevation_to_string`: Converts a parameter (e.g., 'windspeed') and elevation
- values (e.g., [20, 40, 120]) to the formatted strings used in the WIND Toolkit.
-
-- `request_wtk_point_data`: Fetches specified wind data parameters for given
- latitude-longitude points and years from the WIND Toolkit hindcast dataset.
- Supports caching for faster repeated data retrieval.
-
-Dependencies:
--------------
-- rex: Library to handle renewable energy datasets.
-- pandas: Data manipulation and analysis.
-- os, hashlib, pickle: Used for caching functionality.
-- matplotlib: Used for plotting.
-
-Notes:
-------
-- To access the WIND Toolkit hindcast data, users need to configure `h5pyd`
- for data access on HSDS (see the metocean_example or WPTO_hindcast_example
- notebook for more details).
-
-- While some functions perform basic checks (e.g., verifying that latitude
- and longitude are within a predefined region), it's essential to understand
- the boundaries of each region and the available parameters and elevations in the dataset.
-
-Author:
+Author:
-------
akeeste
ssolson
@@ -56,15 +21,17 @@
import os
import hashlib
import pickle
+from typing import List, Tuple, Union, Optional, Dict
import pandas as pd
-
-from rex import MultiYearWindX
+import numpy as np
+import xarray as xr
import matplotlib.pyplot as plt
+from rex import MultiYearWindX
from mhkit.utils.cache import handle_caching
from mhkit.utils.type_handling import convert_to_dataset
-def region_selection(lat_lon, preferred_region=""):
+def region_selection(lat_lon: Tuple[float, float], preferred_region: str = "") -> str:
"""
Returns the name of the predefined region in which the given coordinates reside.
Can be used to check if the passed lat/lon pair is within the WIND Toolkit hindcast dataset.
@@ -105,7 +72,7 @@ def region_selection(lat_lon, preferred_region=""):
# Note that this check is fast, but not robust because region are not
# rectangular on a lat-lon grid
- rDict = {
+ region_dict: Dict[str, Dict[str, List[float]]] = {
"CA_NWP_overlap": {"lat": [41.213, 42.642], "lon": [-129.090, -121.672]},
"Offshore_CA": {"lat": [31.932, 42.642], "lon": [-129.090, -115.806]},
"Hawaii": {"lat": [15.565, 26.221], "lon": [-164.451, -151.278]},
@@ -113,15 +80,15 @@ def region_selection(lat_lon, preferred_region=""):
"Mid_Atlantic": {"lat": [37.273, 42.211], "lon": [-76.427, -64.800]},
}
- def region_search(x):
+ def region_search(x: str) -> bool:
return all(
(
- True if rDict[x][dk][0] <= d <= rDict[x][dk][1] else False
+ region_dict[x][dk][0] <= d <= region_dict[x][dk][1]
for dk, d in {"lat": lat_lon[0], "lon": lat_lon[1]}.items()
)
)
- region = [key for key in rDict if region_search(key)]
+ region = [key for key in region_dict if region_search(key)]
if region[0] == "CA_NWP_overlap":
if preferred_region == "Offshore_CA":
@@ -130,16 +97,18 @@ def region_search(x):
region[0] = "NW_Pacific"
else:
raise TypeError(
- f"Preferred_region ({preferred_region}) must be 'Offshore_CA' or 'NW_Pacific' when lat_lon {lat_lon} falls in the overlap region"
+ f"Preferred_region ({preferred_region}) must be 'Offshore_CA' or "
+ f"'NW_Pacific' when lat_lon {lat_lon} falls in the overlap region"
)
if len(region) == 0:
- raise TypeError(f"Coordinates {lat_lon} out of bounds. Must be within {rDict}")
- else:
- return region[0]
+ raise TypeError(
+ f"Coordinates {lat_lon} out of bounds. Must be within {region_dict}"
+ )
+ return region[0]
-def get_region_data(region):
+def get_region_data(region: str) -> Tuple[np.ndarray, np.ndarray]:
"""
Retrieves the latitude and longitude data points for the specified region
from the cache if available; otherwise, fetches the data and caches it for
@@ -189,29 +158,33 @@ def get_region_data(region):
with open(cache_file, "rb") as f:
lats, lons = pickle.load(f)
return lats, lons
- else:
- wind_path = "/nrel/wtk/" + region.lower() + "/" + region + "_*.h5"
- windKwargs = {
- "tree": None,
- "unscale": True,
- "str_decode": True,
- "hsds": True,
- "years": [2019],
- }
-
- # Get the latitude and longitude list from the region in rex
- rex_wind = MultiYearWindX(wind_path, **windKwargs)
- lats = rex_wind.lat_lon[:, 0]
- lons = rex_wind.lat_lon[:, 1]
-
- # Save data to cache
- with open(cache_file, "wb") as f:
- pickle.dump((lats, lons), f)
- return lats, lons
+ wind_path = "/nrel/wtk/" + region.lower() + "/" + region + "_*.h5"
+ wind_kwargs = {
+ "tree": None,
+ "unscale": True,
+ "str_decode": True,
+ "hsds": True,
+ "years": [2019],
+ }
+
+ # Get the latitude and longitude list from the region in rex
+ rex_wind = MultiYearWindX(wind_path, **wind_kwargs)
+ lats = rex_wind.lat_lon[:, 0]
+ lons = rex_wind.lat_lon[:, 1]
+
+ # Save data to cache
+ with open(cache_file, "wb") as f:
+ pickle.dump((lats, lons), f)
+
+ return lats, lons
-def plot_region(region, lat_lon=None, ax=None):
+def plot_region(
+ region: str,
+ lat_lon: Optional[Tuple[float, float]] = None,
+ ax: Optional[plt.Axes] = None,
+) -> plt.Axes:
"""
Visualizes the area that a given region covers. Can help users understand
the extent of a region since they are not all rectangular.
@@ -244,7 +217,7 @@ def plot_region(region, lat_lon=None, ax=None):
# Plot the latitude longitude pairs
if ax is None:
- fig, ax = plt.subplots()
+ _, ax = plt.subplots()
ax.plot(lons, lats, "o", label=f"{region} region")
if lat_lon is not None:
ax.plot(lat_lon[1], lat_lon[0], "o", label="Specified lat-lon point")
@@ -257,7 +230,9 @@ def plot_region(region, lat_lon=None, ax=None):
return ax
-def elevation_to_string(parameter, elevations):
+def elevation_to_string(
+ parameter: str, elevations: Union[float, List[float]]
+) -> List[str]:
"""
Takes in a parameter (e.g. 'windspeed') and elevations (e.g. [20, 40, 120])
and returns the formatted strings that are input to WIND Toolkit (e.g. windspeed_10m).
@@ -297,19 +272,25 @@ def elevation_to_string(parameter, elevations):
return parameter_list
+# pylint: disable=too-many-arguments
+# pylint: disable=too-many-locals
+# pylint: disable=too-many-branches
+# pylint: disable=too-many-statements
+# pylint: disable=too-many-positional-arguments
+# pylint: disable=duplicate-code
def request_wtk_point_data(
- time_interval,
- parameter,
- lat_lon,
- years,
- preferred_region="",
- tree=None,
- unscale=True,
- str_decode=True,
- hsds=True,
- clear_cache=False,
- to_pandas=True,
-):
+ time_interval: str,
+ parameter: Union[str, List[str]],
+ lat_lon: Union[Tuple[float, float], List[Tuple[float, float]]],
+ years: List[int],
+ preferred_region: str = "",
+ tree: Optional[str] = None,
+ unscale: bool = True,
+ str_decode: bool = True,
+ hsds: bool = True,
+ clear_cache: bool = False,
+ to_pandas: bool = True,
+) -> Tuple[Union[pd.DataFrame, xr.Dataset], pd.DataFrame]:
"""
Returns data from the WIND Toolkit offshore wind hindcast hosted on
AWS at the specified latitude and longitude point(s), or the closest
@@ -414,7 +395,10 @@ def request_wtk_point_data(
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "hindcast")
# Construct a string representation of the function parameters
- hash_params = f"{time_interval}_{parameter}_{lat_lon}_{years}_{preferred_region}_{tree}_{unscale}_{str_decode}_{hsds}"
+ hash_params = (
+ f"{time_interval}_{parameter}_{lat_lon}_{years}_{preferred_region}_"
+ f"{tree}_{unscale}_{str_decode}_{hsds}"
+ )
# Use handle_caching to manage caching.
data, meta, _ = handle_caching(
@@ -430,67 +414,67 @@ def request_wtk_point_data(
data.attrs = meta
return data, meta # Return cached data and meta if available
+
+ # check for multiple region selection
+ if isinstance(lat_lon[0], float):
+ region = region_selection(lat_lon, preferred_region)
else:
- # check for multiple region selection
- if isinstance(lat_lon[0], float):
- region = region_selection(lat_lon, preferred_region)
+ reglist = []
+ for loc in lat_lon:
+ reglist.append(region_selection(loc, preferred_region))
+ if reglist.count(reglist[0]) == len(lat_lon):
+ region = reglist[0]
else:
- reglist = []
- for loc in lat_lon:
- reglist.append(region_selection(loc, preferred_region))
- if reglist.count(reglist[0]) == len(lat_lon):
- region = reglist[0]
- else:
- raise TypeError("Coordinates must be within the same region!")
-
- if time_interval == "1-hour":
- wind_path = f"/nrel/wtk/{region.lower()}/{region}_*.h5"
- elif time_interval == "5-minute":
- wind_path = f"/nrel/wtk/{region.lower()}-5min/{region}_*.h5"
- else:
- raise TypeError(
- f"Invalid time_interval '{time_interval}', must be '1-hour' or '5-minute'"
- )
- windKwargs = {
- "tree": tree,
- "unscale": unscale,
- "str_decode": str_decode,
- "hsds": hsds,
- "years": years,
- }
- data_list = []
- with MultiYearWindX(wind_path, **windKwargs) as rex_wind:
- if isinstance(parameter, list):
- for p in parameter:
- temp_data = rex_wind.get_lat_lon_df(p, lat_lon)
- col = temp_data.columns[:]
- for i, c in zip(range(len(col)), col):
- temp = f"{p}_{i}"
- temp_data = temp_data.rename(columns={c: temp})
-
- data_list.append(temp_data)
- data = pd.concat(data_list, axis=1)
-
- else:
- data = rex_wind.get_lat_lon_df(parameter, lat_lon)
- col = data.columns[:]
+ raise TypeError("Coordinates must be within the same region!")
+ if time_interval == "1-hour":
+ wind_path = f"/nrel/wtk/{region.lower()}/{region}_*.h5"
+ elif time_interval == "5-minute":
+ wind_path = f"/nrel/wtk/{region.lower()}-5min/{region}_*.h5"
+ else:
+ raise TypeError(
+ f"Invalid time_interval '{time_interval}', must be '1-hour' or '5-minute'"
+ )
+ wind_kwargs = {
+ "tree": tree,
+ "unscale": unscale,
+ "str_decode": str_decode,
+ "hsds": hsds,
+ "years": years,
+ }
+ data_list = []
+ with MultiYearWindX(wind_path, **wind_kwargs) as rex_wind:
+ if isinstance(parameter, list):
+ for p in parameter:
+ temp_data = rex_wind.get_lat_lon_df(p, lat_lon)
+ col = temp_data.columns[:]
for i, c in zip(range(len(col)), col):
- temp = f"{parameter}_{i}"
- data = data.rename(columns={c: temp})
+ temp = f"{p}_{i}"
+ temp_data = temp_data.rename(columns={c: temp})
- meta = rex_wind.meta.loc[col, :]
- meta = meta.reset_index(drop=True)
+ data_list.append(temp_data)
+ data = pd.concat(data_list, axis=1)
- # Save the retrieved data and metadata to cache.
- handle_caching(
- hash_params,
- cache_dir,
- cache_content={"data": data, "metadata": meta, "write_json": None},
- )
+ else:
+ data = rex_wind.get_lat_lon_df(parameter, lat_lon)
+ col = data.columns[:]
- if not to_pandas:
- data = convert_to_dataset(data)
- data.attrs = meta
+ for i, c in zip(range(len(col)), col):
+ temp = f"{parameter}_{i}"
+ data = data.rename(columns={c: temp})
+
+ meta = rex_wind.meta.loc[col, :]
+ meta = meta.reset_index(drop=True)
+
+ # Save the retrieved data and metadata to cache.
+ handle_caching(
+ hash_params,
+ cache_dir,
+ cache_content={"data": data, "metadata": meta, "write_json": None},
+ )
+
+ if not to_pandas:
+ data = convert_to_dataset(data)
+ data.attrs = meta
- return data, meta
+ return data, meta
diff --git a/mhkit/wave/io/ndbc.py b/mhkit/wave/io/ndbc.py
index c0fa28683..5fbad8ef8 100644
--- a/mhkit/wave/io/ndbc.py
+++ b/mhkit/wave/io/ndbc.py
@@ -1,7 +1,7 @@
import os
from collections import OrderedDict as _OrderedDict
from collections import defaultdict as _defaultdict
-from io import BytesIO
+from io import BytesIO, StringIO
import re
import requests
import zlib
@@ -19,6 +19,9 @@
convert_nested_dict_and_pandas,
)
+# Set pandas option to opt-in to future behavior
+pd.set_option("future.no_silent_downcasting", True)
+
def read_file(file_name, missing_values=["MM", 9999, 999, 99], to_pandas=True):
"""
@@ -102,21 +105,25 @@ def read_file(file_name, missing_values=["MM", 9999, 999, 99], to_pandas=True):
header=None,
names=header,
comment="#",
- parse_dates=[parse_vals],
)
# If first line is not commented, then the first row can be used as header
else:
- data = pd.read_csv(
- file_name, sep="\\s+", header=0, comment="#", parse_dates=[parse_vals]
- )
+ data = pd.read_csv(file_name, sep="\\s+", header=0, comment="#")
# Convert index to datetime
date_column = "_".join(parse_vals)
+ data[date_column] = (
+ data[parse_vals].apply(lambda val: val.astype("string")).agg(" ".join, axis=1)
+ )
+
data["Time"] = pd.to_datetime(data[date_column], format=date_format)
data.index = data["Time"].values
+
# Remove date columns
del data[date_column]
del data["Time"]
+ for val in parse_vals:
+ del data[val]
# If there was a row of units, convert to dictionary
if units_exist:
@@ -126,7 +133,11 @@ def read_file(file_name, missing_values=["MM", 9999, 999, 99], to_pandas=True):
# Convert columns to numeric data if possible, otherwise leave as string
for column in data:
- data[column] = pd.to_numeric(data[column], errors="ignore")
+ try:
+ data[column] = pd.to_numeric(data[column])
+ except (ValueError, TypeError):
+ # Keep as string if conversion fails
+ pass
# Convert column names to float if possible (handles frequency headers)
# if there is non-numeric name, just leave all as strings.
@@ -136,7 +147,8 @@ def read_file(file_name, missing_values=["MM", 9999, 999, 99], to_pandas=True):
data.columns = data.columns
# Replace indicated missing values with nan
- data.replace(missing_values, np.nan, inplace=True)
+ data = data.replace(missing_values, np.nan)
+ data = data.infer_objects(copy=False)
if not to_pandas:
data = convert_to_dataset(data)
@@ -234,7 +246,7 @@ def available_data(
msg = f"request.get({ndbc_data}) failed by returning code of {response.status_code}"
raise Exception(msg)
- filenames = pd.read_html(response.text)[0].Name.dropna()
+ filenames = pd.read_html(StringIO(response.text))[0].Name.dropna()
buoys = _parse_filenames(parameter, filenames)
available_data = buoys.copy(deep=True)
diff --git a/mhkit/wave/io/wecsim.py b/mhkit/wave/io/wecsim.py
index 78298a475..4a7835b46 100644
--- a/mhkit/wave/io/wecsim.py
+++ b/mhkit/wave/io/wecsim.py
@@ -1,22 +1,50 @@
import pandas as pd
import numpy as np
+import xarray as xr
import scipy.io as sio
from os.path import isfile
from mhkit.utils import convert_nested_dict_and_pandas
+def _consolidate_dimensions(output):
+ """
+ Converts the previously read WEC-Sim output, already in xarray,
+ to a convenient form where dof and object number are distinct dimensions.
+ """
+ all_dof_vars = list(output.data_vars)
+ for s in all_dof_vars:
+ if "_dof" not in s:
+ all_dof_vars = all_dof_vars.remove(s)
+ if not isinstance(all_dof_vars, type(None)):
+ vars = all_dof_vars.copy()
+ for i, v in enumerate(vars):
+ vars[i] = v.rstrip("_dof123456")
+ unique_vars = set(vars)
+ for unique_var in unique_vars:
+ data = output[unique_var + "_dof1"]
+ for i in np.arange(2, 7):
+ data = xr.concat([data, output[unique_var + "_dof" + str(i)]], "dof")
+ data = data.assign_coords({"dof": [1, 2, 3, 4, 5, 6]})
+ data.name = unique_var
+ output[unique_var] = data
+
+ # remove old variables
+ output = output.drop_vars(all_dof_vars)
+ return output
+
+
def read_output(file_name, to_pandas=True):
"""
- Loads the wecSim response class once 'output' has been saved to a `.mat`
+ Loads the WEC-Sim response class once 'output' has been saved to a `.mat`
structure.
- NOTE: Python is unable to import MATLAB objects.
- MATLAB must be used to save the wecSim object as a structure.
+ NOTE: Python is unable to import MATLAB classes.
+ MATLAB must be used to convert the WEC-Sim responseClass object into a structure.
Parameters
------------
file_name: string
- Name of wecSim output file saved as a `.mat` structure
+ Name of WEC-Sim output file saved as a `.mat` structure
to_pandas: bool (optional)
Flag to output a dictionary of pandas objects instead of a dictionary
of xarray objects. Default = True.
@@ -38,7 +66,7 @@ def read_output(file_name, to_pandas=True):
output = ws_data["output"]
######################################
- ## import wecSim wave class
+ ## import WEC-Sim wave class
# type: ''
# time: [iterations x 1 double]
# elevation: [iterations x 1 double]
@@ -62,7 +90,7 @@ def read_output(file_name, to_pandas=True):
wave_output = []
######################################
- ## import wecSim body class
+ ## import WEC-Sim body class
# name: ''
# time: [iterations x 1 double]
# position: [iterations x 6 double]
@@ -154,7 +182,7 @@ def _write_body_output(body):
body_output = []
######################################
- ## import wecSim pto class
+ ## import WEC-Sim pto class
# name: ''
# time: [iterations x 1 double]
# position: [iterations x 6 double]
@@ -228,7 +256,7 @@ def _write_pto_output(pto):
pto_output = []
######################################
- ## import wecSim constraint class
+ ## import WEC-Sim constraint class
#
# name: ''
# time: [iterations x 1 double]
@@ -288,7 +316,7 @@ def _write_constraint_output(constraint):
constraint_output = []
######################################
- ## import wecSim mooring class
+ ## import WEC-Sim mooring class
#
# name: ''
# time: [iterations x 1 double]
@@ -338,7 +366,7 @@ def _write_mooring_output(mooring):
mooring_output = []
######################################
- ## import wecSim moorDyn class
+ ## import WEC-Sim moorDyn class
#
# Lines: [1×1 struct]
# Line1: [1×1 struct]
@@ -383,7 +411,7 @@ def _write_mooring_output(mooring):
moorDyn_output = []
######################################
- ## import wecSim ptosim class
+ ## import WEC-Sim ptosim class
#
# name: ''
# pistonCF: [1×1 struct]
@@ -406,7 +434,7 @@ def _write_mooring_output(mooring):
ptosim_output = []
######################################
- ## import wecSim cable class
+ ## import WEC-Sim cable class
#
# name: ''
# time: [iterations x 1 double]
@@ -465,7 +493,7 @@ def _write_cable_output(cable):
cable_output = []
############################################
- ## create wecSim output - Dict of DataFrames
+ ## create WEC-Sim output - Dict of DataFrames
############################################
ws_output = {
"wave": wave_output,
@@ -481,4 +509,23 @@ def _write_cable_output(cable):
if not to_pandas:
ws_output = convert_nested_dict_and_pandas(ws_output)
+ # Loop through each output type (bodies, constraints, ptos, etc) in the WEC-Sim output
+ for k in ws_output.keys():
+ # Skip
+ if not isinstance(ws_output[k], list):
+ if isinstance(ws_output[k], dict):
+ # Loop through each instance of an output type (body1, body2, etc)
+ for k2 in ws_output[k].keys():
+ ws_output[k][k2] = _consolidate_dimensions(ws_output[k][k2])
+
+ # Concatenate multiple instances of each output type into one dataset
+ dim_name = k.rstrip("s").replace("ie", "y") #
+ n = len(ws_output[k])
+ ws_output[k] = xr.concat(list(ws_output[k].values()), dim_name)
+ ws_output[k] = ws_output[k].assign_coords(
+ {dim_name: np.arange(1, n + 1)}
+ )
+ else:
+ ws_output[k] = _consolidate_dimensions(ws_output[k])
+
return ws_output
diff --git a/mhkit/wave/performance.py b/mhkit/wave/performance.py
index 160918cc0..6d0f9243b 100644
--- a/mhkit/wave/performance.py
+++ b/mhkit/wave/performance.py
@@ -7,11 +7,12 @@
import matplotlib.pylab as plt
from os.path import join
from mhkit.utils import convert_to_dataarray
+import warnings
-def capture_length(P, J, to_pandas=True):
+def capture_width(P, J, to_pandas=True):
"""
- Calculates the capture length (often called capture width).
+ Calculates the capture width (sometimes called capture length).
Parameters
------------
@@ -24,8 +25,8 @@ def capture_length(P, J, to_pandas=True):
Returns
---------
- L: pandas Series or xarray DataArray
- Capture length [m]
+ CW: pandas Series or xarray DataArray
+ Capture width [m]
"""
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
@@ -33,12 +34,26 @@ def capture_length(P, J, to_pandas=True):
P = convert_to_dataarray(P)
J = convert_to_dataarray(J)
- L = P / J
+ CW = P / J
if to_pandas:
- L = L.to_pandas()
+ CW = CW.to_pandas()
+
+ return CW
- return L
+
+def capture_length(P, J, to_pandas=True):
+ """
+ Alias for `capture_width`.
+ """
+ warnings.warn(
+ 'IEC TS 62600-100 Ed. 2.0 replaces "capture length" with "capture width". '
+ "wave.performance.capture_length() will be deprecated. "
+ "Replace with wave.performance.capture_width().",
+ FutureWarning,
+ )
+ CW = capture_width(P, J, to_pandas)
+ return CW
def statistics(X, to_pandas=True):
@@ -46,8 +61,8 @@ def statistics(X, to_pandas=True):
Calculates statistics, including count, mean, standard
deviation (std), min, percentiles (25%, 50%, 75%), and max.
- Note that std uses a degree of freedom of 1 in accordance with
- IEC/TS 62600-100.
+ Note that std uses a degree of freedom of N in accordance with
+ Formula D.5 of IEC TS 62600-100 Ed. 2.0 en 2024.
Parameters
------------
@@ -68,7 +83,7 @@ def statistics(X, to_pandas=True):
count = X.count().item()
mean = X.mean().item()
- std = _std_ddof1(X)
+ std = _std_ddof0(X)
q = X.quantile([0.0, 0.25, 0.5, 0.75, 1.0]).values
variables = ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]
@@ -84,14 +99,14 @@ def statistics(X, to_pandas=True):
return stats
-def _std_ddof1(a):
- # Standard deviation with degree of freedom equal to 1
+def _std_ddof0(a):
+ # Standard deviation with degree of freedom equal to N samples (delta degree of freedom = 0)
if len(a) == 0:
return np.nan
elif len(a) == 1:
return 0
else:
- return np.std(a, ddof=1)
+ return np.std(a, ddof=0)
def _performance_matrix(X, Y, Z, statistic, x_centers, y_centers):
@@ -99,16 +114,18 @@ def _performance_matrix(X, Y, Z, statistic, x_centers, y_centers):
# Convert bin centers to edges
xi = [np.mean([x_centers[i], x_centers[i + 1]]) for i in range(len(x_centers) - 1)]
- xi.insert(0, -np.inf)
- xi.append(np.inf)
+ xi.insert(0, np.float64(0))
+ xi_end = (x_centers[-1] + np.diff(x_centers[-2:]) / 2)[0]
+ xi.append(xi_end)
yi = [np.mean([y_centers[i], y_centers[i + 1]]) for i in range(len(y_centers) - 1)]
- yi.insert(0, -np.inf)
- yi.append(np.inf)
+ yi.insert(0, np.float64(0))
+ yi_end = (y_centers[-1] + np.diff(y_centers[-2:]) / 2)[0]
+ yi.append(yi_end)
# Override standard deviation with degree of freedom equal to 1
if statistic == "std":
- statistic = _std_ddof1
+ statistic = _std_ddof0
# Provide function to compute frequency
def _frequency(a):
@@ -121,6 +138,18 @@ def _frequency(a):
X, Y, Z, statistic, bins=[xi, yi], expand_binnumbers=False
)
+ # Warn if the X (Hm0) or Y (Te) spacing is greater than the IEC TS 62600-100 Ed. 2.0 en 2024 maxima (0.5m, 1.0s).
+ dx_edge = np.diff(x_edge)
+ if np.any(dx_edge > 0.5):
+ warnings.warn(
+ "Significant wave height bins are greater than the IEC TS 62600-100 limit of 0.5 meters."
+ )
+ dy_edge = np.diff(y_edge)
+ if np.any(dy_edge > 1.0):
+ warnings.warn(
+ "Energy period bins are greater than the IEC TS 62600-100 limit of 1.0 seconds."
+ )
+
M = xr.DataArray(
data=zi,
dims=["x_centers", "y_centers"],
@@ -130,11 +159,11 @@ def _frequency(a):
return M
-def capture_length_matrix(Hm0, Te, L, statistic, Hm0_bins, Te_bins, to_pandas=True):
+def capture_width_matrix(Hm0, Te, CW, statistic, Hm0_bins, Te_bins, to_pandas=True):
"""
- Generates a capture length matrix for a given statistic
+ Generates a capture width matrix for a given statistic
- Note that IEC/TS 62600-100 requires capture length matrices for
+ Note that IEC TS 62600-100 Ed. 2.0 en 2024 section 9.2.4 requires capture width matrices for
the mean, std, count, min, and max.
Parameters
@@ -143,12 +172,12 @@ def capture_length_matrix(Hm0, Te, L, statistic, Hm0_bins, Te_bins, to_pandas=Tr
Significant wave height from spectra [m]
Te: numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
Energy period from spectra [s]
- L : numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
- Capture length [m]
+ CW : numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
+ Capture width [m]
statistic: string
Statistic for each bin, options include: 'mean', 'std', 'median',
'count', 'sum', 'min', 'max', and 'frequency'. Note that 'std' uses
- a degree of freedom of 1 in accordance with IEC/TS 62600-100.
+ a degree of freedom of N in accordance with Formula D.5 of IEC TS 62600-100 Ed. 2.0 en 2024.
Hm0_bins: numpy array
Bin centers for Hm0 [m]
Te_bins: numpy array
@@ -158,14 +187,14 @@ def capture_length_matrix(Hm0, Te, L, statistic, Hm0_bins, Te_bins, to_pandas=Tr
Returns
---------
- LM: pandas DataFrame or xarray DataArray
- Capture length matrix with index equal to Hm0_bins and columns
- equal to Te_bins
+ CWM: pandas DataFrame or xarray DataArray
+ Capture width matrix with index equal to Hm0_bins and columns
+ equal to Te_bins
"""
Hm0 = convert_to_dataarray(Hm0)
Te = convert_to_dataarray(Te)
- L = convert_to_dataarray(L)
+ CW = convert_to_dataarray(CW)
if not (isinstance(statistic, str) or callable(statistic)):
raise TypeError(
@@ -178,12 +207,26 @@ def capture_length_matrix(Hm0, Te, L, statistic, Hm0_bins, Te_bins, to_pandas=Tr
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- LM = _performance_matrix(Hm0, Te, L, statistic, Hm0_bins, Te_bins)
+ CWM = _performance_matrix(Hm0, Te, CW, statistic, Hm0_bins, Te_bins)
if to_pandas:
- LM = LM.to_pandas()
+ CWM = CWM.to_pandas()
+
+ return CWM
- return LM
+
+def capture_length_maxtrix(Hm0, Te, CW, statistic, Hm0_bins, Te_bins, to_pandas=True):
+ """
+ Alias for `capture_width_maxtrix`.
+ """
+ warnings.warn(
+ 'IEC TS 62600-100 Ed. 2.0 replaces "capture length" with "capture width". '
+ "wave.performance.capture_length_maxtrix() will be deprecated. "
+ "Replace with wave.performance.capture_width_maxtrix().",
+ FutureWarning,
+ )
+ CWM = capture_width_matrix(Hm0, Te, CW, statistic, Hm0_bins, Te_bins, to_pandas)
+ return CWM
def wave_energy_flux_matrix(Hm0, Te, J, statistic, Hm0_bins, Te_bins, to_pandas=True):
@@ -200,8 +243,8 @@ def wave_energy_flux_matrix(Hm0, Te, J, statistic, Hm0_bins, Te_bins, to_pandas=
Wave energy flux from spectra [W/m]
statistic: string
Statistic for each bin, options include: 'mean', 'std', 'median',
- 'count', 'sum', 'min', 'max', and 'frequency'. Note that 'std' uses a degree of freedom
- of 1 in accordance of IEC/TS 62600-100.
+ 'count', 'sum', 'min', 'max', and 'frequency'. Note that 'std' uses
+ a degree of freedom of N in accordance with Formula D.5 of IEC TS 62600-100 Ed. 2.0 en 2024.
Hm0_bins: numpy array
Bin centers for Hm0 [m]
Te_bins: numpy array
@@ -239,15 +282,15 @@ def wave_energy_flux_matrix(Hm0, Te, J, statistic, Hm0_bins, Te_bins, to_pandas=
return JM
-def power_matrix(LM, JM):
+def power_matrix(CWM, JM):
"""
- Generates a power matrix from a capture length matrix and wave energy
+ Generates a power matrix from a capture width matrix and wave energy
flux matrix
Parameters
------------
- LM: pandas DataFrame, xarray DataArray, or xarray Dataset
- Capture length matrix
+ CWM: pandas DataFrame, xarray DataArray, or xarray Dataset
+ Capture width matrix
JM: pandas DataFrame, xarray DataArray, or xarray Dataset
Wave energy flux matrix
@@ -257,28 +300,28 @@ def power_matrix(LM, JM):
Power matrix
"""
- if not isinstance(LM, (pd.DataFrame, xr.DataArray, xr.Dataset)):
+ if not isinstance(CWM, (pd.DataFrame, xr.DataArray, xr.Dataset)):
raise TypeError(
- f"LM must be of type pd.DataFrame or xr.Dataset. Got: {type(LM)}"
+ f"CWM must be of type pd.DataFrame or xr.Dataset. Got: {type(CWM)}"
)
if not isinstance(JM, (pd.DataFrame, xr.DataArray, xr.Dataset)):
raise TypeError(
f"JM must be of type pd.DataFrame or xr.Dataset. Got: {type(JM)}"
)
- PM = LM * JM
+ PM = CWM * JM
return PM
-def mean_annual_energy_production_timeseries(L, J):
+def mean_annual_energy_production_timeseries(CW, J):
"""
Calculates mean annual energy production (MAEP) from time-series
Parameters
------------
- L: numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
- Capture length
+ CW: numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
+ Capture width
J: numpy array, pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset
Wave energy flux
@@ -288,26 +331,26 @@ def mean_annual_energy_production_timeseries(L, J):
Mean annual energy production
"""
- L = convert_to_dataarray(L)
+ CW = convert_to_dataarray(CW)
J = convert_to_dataarray(J)
T = 8766 # Average length of a year (h)
- n = len(L)
+ n = len(CW)
- maep = T / n * (L * J).sum().item()
+ maep = T / n * (CW * J).sum().item()
return maep
-def mean_annual_energy_production_matrix(LM, JM, frequency):
+def mean_annual_energy_production_matrix(CWM, JM, frequency):
"""
Calculates mean annual energy production (MAEP) from matrix data
along with data frequency in each bin
Parameters
------------
- LM: pandas DataFrame, xarray DataArray, or xarray Dataset
- Capture length
+ CWM: pandas DataFrame, xarray DataArray, or xarray Dataset
+ Capture width
JM: pandas DataFrame, xarray DataArray, or xarray Dataset
Wave energy flux
frequency: pandas DataFrame, xarray DataArray, or xarray Dataset
@@ -319,17 +362,17 @@ def mean_annual_energy_production_matrix(LM, JM, frequency):
Mean annual energy production
"""
- LM = convert_to_dataarray(LM)
+ CWM = convert_to_dataarray(CWM)
JM = convert_to_dataarray(JM)
frequency = convert_to_dataarray(frequency)
- if not LM.shape == JM.shape == frequency.shape:
- raise ValueError("LM, JM, and frequency must be of the same size")
+ if not CWM.shape == JM.shape == frequency.shape:
+ raise ValueError("CWM, JM, and frequency must be of the same size")
if not np.abs(frequency.sum() - 1) < 1e-6:
raise ValueError("Frequency components must sum to one.")
T = 8766 # Average length of a year (h)
- maep = T * np.nansum(LM * JM * frequency)
+ maep = T * np.nansum(CWM * JM * frequency)
return maep
@@ -349,7 +392,7 @@ def power_performance_workflow(
):
"""
High-level function to compute power performance quantities of
- interest following IEC TS 62600-100 for given wave spectra.
+ interest following IEC TS 62600-100 Ed. 2.0 en 2024 for given wave spectra.
Parameters
------------
@@ -360,11 +403,11 @@ def power_performance_workflow(
P: numpy ndarray, pandas DataFrame, pandas Series, xarray DataArray, or xarray Dataset
Power [W]
statistic: string or list of strings
- Statistics for plotting capture length matrices,
+ Statistics for plotting capture width matrices,
options include: "mean", "std", "median",
"count", "sum", "min", "max", and "frequency".
- Note that "std" uses a degree of freedom of 1 in accordance with IEC/TS 62600-100.
- To output capture length matrices for multiple binning parameters,
+ Note that "std" uses a degree of freedom of N in accordance with Formula D.5 of IEC TS 62600-100 Ed. 2.0 en 2024.
+ To output capture width matrices for multiple binning parameters,
define as a list of strings: statistic = ["", "", ""]
frequency_bins: numpy array or pandas Series (optional)
Bin widths for frequency of S. Required for unevenly sized bins
@@ -387,8 +430,8 @@ def power_performance_workflow(
Returns
---------
- LM: xarray dataset
- Capture length matrices
+ CWM: xarray dataset
+ Capture width matrices
maep_matrix: float
Mean annual energy production
@@ -419,39 +462,39 @@ def power_performance_workflow(
S, h, deep=deep, rho=rho, g=g, ratio=ratio, to_pandas=False
)
- # Calculate capture length from power and energy flux
- L = wave.performance.capture_length(P, J, to_pandas=False)
+ # Calculate capture width from power and energy flux
+ CW = wave.performance.capture_width(P, J, to_pandas=False)
# Generate bins for Hm0 and Te, input format (start, stop, step_size)
Hm0_bins = np.arange(0, Hm0.values.max() + 0.5, 0.5)
Te_bins = np.arange(0, Te.values.max() + 1, 1)
- # Create capture length matrices for each statistic based on IEC/TS 62600-100
+ # Create capture width matrices for each statistic based on IEC TS 62600-100 Ed. 2.0 en 2024
# Median, sum, frequency additionally provided
- LM = xr.Dataset()
- LM["mean"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "mean", Hm0_bins, Te_bins, to_pandas=False
+ CWM = xr.Dataset()
+ CWM["mean"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "mean", Hm0_bins, Te_bins, to_pandas=False
)
- LM["std"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "std", Hm0_bins, Te_bins, to_pandas=False
+ CWM["std"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "std", Hm0_bins, Te_bins, to_pandas=False
)
- LM["median"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "median", Hm0_bins, Te_bins, to_pandas=False
+ CWM["median"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "median", Hm0_bins, Te_bins, to_pandas=False
)
- LM["count"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "count", Hm0_bins, Te_bins, to_pandas=False
+ CWM["count"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "count", Hm0_bins, Te_bins, to_pandas=False
)
- LM["sum"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "sum", Hm0_bins, Te_bins, to_pandas=False
+ CWM["sum"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "sum", Hm0_bins, Te_bins, to_pandas=False
)
- LM["min"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "min", Hm0_bins, Te_bins, to_pandas=False
+ CWM["min"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "min", Hm0_bins, Te_bins, to_pandas=False
)
- LM["max"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "max", Hm0_bins, Te_bins, to_pandas=False
+ CWM["max"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "max", Hm0_bins, Te_bins, to_pandas=False
)
- LM["freq"] = wave.performance.capture_length_matrix(
- Hm0, Te, L, "frequency", Hm0_bins, Te_bins, to_pandas=False
+ CWM["freq"] = wave.performance.capture_width_matrix(
+ Hm0, Te, CW, "frequency", Hm0_bins, Te_bins, to_pandas=False
)
# Create wave energy flux matrix using mean
@@ -461,24 +504,24 @@ def power_performance_workflow(
# Calculate maep from matrix
maep_matrix = wave.performance.mean_annual_energy_production_matrix(
- LM["mean"], JM, LM["freq"]
+ CWM["mean"], JM, CWM["freq"]
)
- # Plot capture length matrices using statistic
+ # Plot capture width matrices using statistic
for str in statistic:
- if str not in list(LM.data_vars):
+ if str not in list(CWM.data_vars):
print("ERROR: Invalid Statistics passed")
continue
- plt.figure(figsize=(12, 12), num="Capture Length Matrix " + str)
+ plt.figure(figsize=(12, 12), num="Capture Width Matrix " + str)
ax = plt.gca()
wave.graphics.plot_matrix(
- LM[str],
+ CWM[str],
xlabel="Te (s)",
ylabel="Hm0 (m)",
- zlabel=str + " of Capture Length",
+ zlabel=str + " of Capture Width",
show_values=show_values,
ax=ax,
)
- plt.savefig(join(savepath, "Capture Length Matrix " + str + ".png"))
+ plt.savefig(join(savepath, "Capture Width Matrix " + str + ".png"))
- return LM, maep_matrix
+ return CWM, maep_matrix
diff --git a/mhkit/wave/resource.py b/mhkit/wave/resource.py
index 488df50c2..14f7e7359 100644
--- a/mhkit/wave/resource.py
+++ b/mhkit/wave/resource.py
@@ -452,7 +452,7 @@ def frequency_moment(S, N, frequency_bins=None, frequency_dimension="", to_panda
)
f = S[frequency_dimension]
- # Eq 8 in IEC 62600-101
+ # Eq 8 in IEC 62600-101 Ed. 2.0 en 2024
S = S.sel({frequency_dimension: slice(1e-12, f.max())}) # omit frequency of 0
f = S[frequency_dimension] # reset frequency_dimension without the 0 frequency
@@ -507,7 +507,7 @@ def significant_wave_height(
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- # Eq 12 in IEC 62600-101
+ # Eq 12 in IEC 62600-101 Ed. 2.0 en 2024
m0 = frequency_moment(
S,
0,
@@ -551,7 +551,7 @@ def average_zero_crossing_period(
if not isinstance(to_pandas, bool):
raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}")
- # Eq 15 in IEC 62600-101
+ # Eq 15 in IEC 62600-101 Ed. 2.0 en 2024
m0 = frequency_moment(
S,
0,
@@ -707,7 +707,7 @@ def peak_period(S, frequency_dimension="", to_pandas=True):
f"frequency_dimension is not a dimension of S ({list(S.dims)}). Got: {frequency_dimension}."
)
- # Eq 14 in IEC 62600-101
+ # Eq 14 in IEC 62600-101 Ed. 2.0 en 2024
fp = S.idxmax(dim=frequency_dimension) # Hz
Tp = 1 / fp
@@ -759,7 +759,7 @@ def energy_period(S, frequency_dimension="", frequency_bins=None, to_pandas=True
to_pandas=False,
)
- # Eq 13 in IEC 62600-101
+ # Eq 13 in IEC 62600-101 Ed. 2.0 en 2024
Te = mn1 / m0
if to_pandas:
@@ -873,7 +873,7 @@ def spectral_width(S, frequency_dimension="", frequency_bins=None, to_pandas=Tru
to_pandas=False,
)
- # Eq 16 in IEC 62600-101
+ # Eq 16 in IEC 62600-101 Ed. 2.0 en 2024
v = np.sqrt((m0 * mn2 / np.power(mn1, 2)) - 1)
if to_pandas:
@@ -949,7 +949,7 @@ def energy_flux(
f = S[frequency_dimension]
if deep:
- # Eq 8 in IEC 62600-100, deep water simplification
+ # Eq 8 in IEC 62600-100 Ed. 2.0 en 2024, deep water simplification
Te = energy_period(S, to_pandas=False)
Hm0 = significant_wave_height(S, to_pandas=False)
@@ -964,7 +964,7 @@ def energy_flux(
# wave celerity (group velocity)
Cg = wave_celerity(k, h, g, depth_check=True, ratio=ratio, to_pandas=False)
- # Calculating the wave energy flux, Eq 9 in IEC 62600-101
+ # Calculating the wave energy flux, Eq 9 in IEC 62600-101 Ed. 2.0 en 2024
delta_f = f.diff(dim=frequency_dimension)
delta_f0 = f[1] - f[0]
delta_f0 = delta_f0.assign_coords({frequency_dimension: f[0]})
@@ -1100,7 +1100,7 @@ def wave_celerity(
Cg.name = "Cg"
else:
- # Eq 10 in IEC 62600-101
+ # Eq 10 in IEC 62600-101 Ed. 2.0 en 2024
Cg = (np.pi * f / k) * (1 + (2 * h * k) / np.sinh(2 * h * k))
Cg = xr.DataArray(
data=Cg, dims=frequency_dimension, coords={frequency_dimension: f}
@@ -1185,7 +1185,7 @@ def wave_number(f, h, rho=1025, g=9.80665, to_pandas=True):
yi = xi * xi / np.power(1.0 - np.exp(-np.power(xi, 2.4908)), 0.4015)
k0 = yi / h # Initial guess without current-wave interaction
- # Eq 11 in IEC 62600-101 using initial guess from Guo (2002)
+ # Eq 11 in IEC 62600-101 Ed. 2.0 en 2024 using initial guess from Guo (2002)
def func(kk):
val = np.power(w, 2) - g * kk * np.tanh(kk * h)
return val
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 000000000..09fc8d1e0
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,138 @@
+[build-system]
+requires = ["setuptools>=61.0", "wheel"]
+build-backend = "setuptools.build_meta"
+
+[project]
+name = "mhkit"
+# `version` is read from `[tools.setuptools.dynamic] version` during build: https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html#dynamic-metadata
+dynamic = ["version"]
+description = "Marine and Hydrokinetic Toolkit"
+readme = "README.md"
+authors = [
+ {name = "MHKiT developers"}
+]
+license = {text = "Revised BSD"}
+classifiers = [
+ "Development Status :: 3 - Alpha",
+ "Programming Language :: Python :: 3",
+ "Topic :: Scientific/Engineering",
+ "Intended Audience :: Science/Research",
+ "Operating System :: OS Independent",
+]
+requires-python = ">=3.10"
+dependencies = [
+ "numpy>=2.0.0",
+ "pandas>=2.2.2",
+ "scipy>=1.14.0",
+ "xarray>=2024.6.0",
+ "matplotlib>=3.9.1",
+ "pecos>=0.3.0",
+]
+
+[project.optional-dependencies]
+# Core dependencies for each module
+wave = [
+ "scikit-learn>=1.5.1",
+ "statsmodels>=0.14.2",
+ "netCDF4>=1.7.1.post1",
+ "pytz",
+ "NREL-rex>=0.2.63",
+ "beautifulsoup4",
+ "requests",
+ "bottleneck",
+ "lxml"
+]
+
+tidal = [
+ "netCDF4>=1.7.1.post1",
+ "requests",
+ "bottleneck"
+]
+
+river = [
+ "netCDF4>=1.7.1.post1",
+ "requests",
+ "bottleneck",
+]
+
+dolfyn = [
+ "h5py>=3.11.0",
+ "h5pyd>=0.18.0",
+ "netCDF4>=1.7.1.post1",
+ "cartopy",
+]
+
+power = [
+]
+
+loads = [
+ "fatpack"
+]
+
+mooring = [
+]
+
+acoustics = [
+
+]
+
+qc = [
+
+]
+
+utils = [
+
+]
+
+# Development dependencies
+dev = [
+ "pytest",
+ "pylint",
+ "pytest-cov",
+ "pre-commit",
+ "coverage",
+ "coveralls"
+]
+
+
+
+# Install all optional dependencies
+all = [
+ "mhkit[wave]",
+ "mhkit[tidal]",
+ "mhkit[river]",
+ "mhkit[dolfyn]",
+ "mhkit[power]",
+ "mhkit[loads]",
+ "mhkit[mooring]",
+ "mhkit[acoustics]",
+ "mhkit[qc]",
+ "mhkit[utils]",
+]
+
+# Examples dependencies
+examples = [
+ "jupyter",
+ "notebook",
+ "ipykernel",
+ "nbval",
+ "utm",
+ "folium",
+ "mhkit[all]",
+
+]
+
+[project.urls]
+Homepage = "https://github.com/MHKiT-Software/mhkit-python"
+Documentation = "https://mhkit-software.github.io/MHKiT"
+
+[tool.setuptools]
+packages = ["mhkit"]
+zip-safe = false
+include-package-data = true
+
+[tool.setuptools.dynamic]
+version = {attr = "mhkit.__version__"}
+
+[tool.pytest.ini_options]
+asyncio_default_fixture_loop_scope = "function"
diff --git a/requirements.txt b/requirements.txt
deleted file mode 100644
index 78106a7db..000000000
--- a/requirements.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-numpy>=2.0.0
-pandas>=2.2.2
-scipy>=1.14.0
-xarray>=2024.6.0
-matplotlib>=3.9.1
-scikit-learn>=1.5.1
-h5py>=3.11.0
-h5pyd>=0.18.0
-netCDF4>=1.7.1.post1
-statsmodels>=0.14.2
-requests
-pecos>=0.3.0
-fatpack
-NREL-rex>=0.2.63
-beautifulsoup4
-notebook
-numexpr>=2.10.0
-lxml
-bottleneck
\ No newline at end of file
diff --git a/setup.py b/setup.py
deleted file mode 100644
index 732e2037c..000000000
--- a/setup.py
+++ /dev/null
@@ -1,100 +0,0 @@
-import os
-import re
-from setuptools import setup, find_packages
-
-DISTNAME = "mhkit"
-PACKAGES = find_packages()
-EXTENSIONS = []
-DESCRIPTION = "Marine and Hydrokinetic Toolkit"
-AUTHOR = "MHKiT developers"
-MAINTAINER_EMAIL = ""
-LICENSE = "Revised BSD"
-URL = "https://github.com/MHKiT-Software/mhkit-python"
-CLASSIFIERS = [
- "Development Status :: 3 - Alpha",
- "Programming Language :: Python :: 3",
- "Topic :: Scientific/Engineering",
- "Intended Audience :: Science/Research",
- "Operating System :: OS Independent",
-]
-DEPENDENCIES = [
- "numpy>=2.0.0",
- "pandas>=2.2.2",
- "scipy>=1.14.0",
- "xarray>=2024.6.0",
- "matplotlib>=3.9.1",
- "scikit-learn>=1.5.1",
- "h5py>=3.11.0",
- "h5pyd>=0.18.0",
- "netCDF4>=1.7.1.post1",
- "statsmodels>=0.14.2",
- "requests",
- "pecos>=0.3.0",
- "fatpack",
- "NREL-rex>=0.2.63",
- "pytz",
- "beautifulsoup4",
- "numexpr>=2.10.0",
- "lxml",
- "bottleneck",
-]
-
-LONG_DESCRIPTION = """
-MHKiT-Python is a Python package designed for marine renewable energy applications to assist in
-data processing and visualization. The software package includes functionality for:
-
-* Data processing
-* Data visualization
-* Data quality control
-* Resource assessment
-* Device performance
-* Device loads
-
-Documentation
-------------------
-MHKiT-Python documentation includes overview information, installation instructions, API documentation, and examples.
-See the [MHKiT documentation](https://mhkit-software.github.io/MHKiT) for more information.
-
-Installation
-------------------------
-MHKiT-Python requires Python (3.10, or 3.11) along with several Python
-package dependencies. MHKiT-Python can be installed from PyPI using the command ``pip install mhkit``.
-See [installation instructions](https://mhkit-software.github.io/MHKiT/installation.html) for more information.
-
-Copyright and license
-------------------------
-MHKiT-Python is copyright through the National Renewable Energy Laboratory,
-Pacific Northwest National Laboratory, and Sandia National Laboratories.
-The software is distributed under the Revised BSD License.
-See [copyright and license](LICENSE.md) for more information.
-"""
-
-
-# get version from __init__.py
-file_dir = os.path.abspath(os.path.dirname(__file__))
-with open(os.path.join(file_dir, "mhkit", "__init__.py")) as f:
- version_file = f.read()
- version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
- if version_match:
- VERSION = version_match.group(1)
- else:
- raise RuntimeError("Unable to find version string.")
-
-setup(
- name=DISTNAME,
- version=VERSION,
- packages=PACKAGES,
- ext_modules=EXTENSIONS,
- description=DESCRIPTION,
- long_description_content_type="text/markdown",
- long_description=LONG_DESCRIPTION,
- author=AUTHOR,
- maintainer_email=MAINTAINER_EMAIL,
- license=LICENSE,
- url=URL,
- classifiers=CLASSIFIERS,
- zip_safe=False,
- install_requires=DEPENDENCIES,
- scripts=[],
- include_package_data=True,
-)